
Discrete Particle Swarm Optimization for

Combinatorial Problems with Innovative

Applications

POPOOLA, PETER AYOKUNLE

(215079768)

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

Durban, South Africa

February, 2016

ii

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

Declaration

The research described in this thesis was performed at the University of KwaZulu-Natal

under the supervision of Prof. A.O. Adewumi and co-supervision of Dr. Martins A.

Arasomwan. I hereby declare that all materials incorporated in this thesis are my own original

work except where acknowledgement is made by name or in the form of a reference. The

work contained herein has not been submitted in part or whole for a degree at any other

university.

Signed:

Popoola Peter Ayokunle

Date: February, 2016

As the candidate’s supervisor, I have approved/disapproved the dissertation for submission

Signed:

Date: February, 2016

As the candidate’s co-supervisor, I have approved/disapproved the dissertation for

submission

Signed:

Date: February, 2016

iii

Declaration 1 – Plagiarism

I, Popoola Peter Ayokunle, declare that

1. The research reported in this thesis, except where otherwise indicated, is my original

research.

2. This thesis has not been submitted for any degree or examination at any other

university.

3. This thesis does not contain other persons' data, pictures, graphs or other information,

unless specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons' writing, unless specifically acknowledged

as being sourced from other researchers. Where other written sources have been

quoted, then:

a. Their words have been re-written but, the general information attributed to

them has been referenced.

b. Where their exact words have been used, their writing has been placed in

italics and in quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables which are copied and pasted from

the internet, unless specifically acknowledged, and the source being detailed in the

thesis and in References section.

Signed:

Date: February, 2016

iv

Dedication

I dedicate this research work to God the Father, Son and Holy Spirit, without whom this work

would have been impossible.

v

Acknowledgements

First and foremost, I fall in complete adoration and awe before the God of the whole Universe,

the Father and Guide of my youth and the Friend who has stuck closer to me than the closest

brother. Your faithfulness to me has been always fresh as the morning dew and constant from

day to day. You saw me through so many situations where I was stuck between a rock and a

hard place, having no one to turn to. I owe You everything I am and will ever be, and I am

nothing without You.

My loving parents, Dr. Samuel Funso Popoola and Mrs. Deborah Oluremi Popoola, you are

the best I could ever have. God has used and continues to use you as the hands that shape my

life and make me the person I am today. You have always been there for me, and you have

sacrificed your comforts and convenience countless times to see to my well-being. May God

continue to give you the deepest of your hearts desires. My dear siblings, Peace, Praise and

Paul, and my cousin, Idowu, you are so special and dear to me! I love you with all my heart,

and I pray that God grants you His best every day of your lives, here and hereafter.

My distinguished supervisor, Professor Aderemi Oluyinka Adewumi, you have been a strong

guiding and motivating force for me during this period of my research, and you have always

pushed me to achieve my potential. A big THANK YOU to you, sir. My able co-supervisor,

Dr. Martins Akugbe Arasomwan, you have been a friend and kind adviser to me, encouraging

me and giving me pithy tips at times when your guidance was most needed. Thank you so

much, sir.

I want to express my deep appreciation to Dr. Mike Olusanya who has been a father to me

here in South Africa. I cannot put into words all the sundry means through which you have

been of great help to me. May God reward you for all your investments into my life and a

multitude of others in exceeding abundant folds! I cannot also forget the indelible impact

which Dr. Joseph Adesina has made upon my life. May your way ever shine brighter and

brighter by the light of God! Professor Blamah V. Nachamada played such a significant role

in my life that I can never forget. You always went out of your way to be of help to me, more

vi

than most people would ever do. I say a heart-felt thank you to you, sir. May you never lose

your reward.

I want to sincerely appreciate the contributions of all members of the Computer Science

Discipline Optimization Group, Alex, Ayo, Ebenezer, Peter, Raphael, Seun, Stephen, and

Valentine for their valuable contributions and camaraderie during the period of this research.

Worthy of special mention is Ayo, whose brotherly love and concern I cannot forget. May

God reward you mightily! I also want to specially thank my friend Mafunda for his wonderful

sense of humor, and Shalin Singh for the times of stimulating conversation we had which

helped me gain a deeper grasp of stochastic graphs.

My gratitude goes to all members of the big family of Deeper Life Bible Church, KZN

Province for their love and support. Special thanks to my able G.C. Jeremiah Ogunniyi, and

my beloved co-members of the DLBC KZN choir. I really enjoyed my time spent with you,

and may God bless you all richly!

Finally, I want to sincerely thank all members of the UKZN community for the opportunity

of working on this thesis within a conducive didactic environment, and for all the assistance

you have offered to me in one way or the other. May you always have the best in life!

vii

Abstract

Particle Swarm Optimization (PSO) is a swarm intelligence metaheuristic which has been

widely applied to various real-world problems with great results. The original algorithm was

designed to solve continuous optimization problems. However, a lot of real-world problems

are inherently discrete in nature and are sometimes modelled as benchmark Combinatorial

Optimization Problems (COP) such as Travelling Salesman Problem (TSP) and Shortest Path

Problem (SPP). Therefore, various methods have been proffered towards discretizing it to

handle COPs. This work proposes two new Discrete Particle Swarm Optimization (DPSO)

algorithms based on insights from gaps noticed in literature and demonstrates that it compares

favorably with existing DPSOs. The proposed algorithms were designed and applied specific

to three COPs: the Travelling Salesman Problem, the Shortest Path Problem (SPP) and its

two variants, the Stochastic Shortest Path problem (SSP) and the Multi-Objective Stochastic

Shortest Path Problem (MOSSP), and the Submission Decision Process problem (SDP).

The proposed DPSO for TSP introduces a new concept of guiding particles’ search during

the PSO process by their collective experience on how ‘good’ an edge which constituted their

previous positions was. Parameters were introduced for determining the intensity with which

this ‘experience’ is followed. The proposed algorithm performed much better when

compared with the classical DPSO for TSP. Its performance in comparison with a widely-

known DPSO for TSP was also reported and analyzed.

Another DPSO with new ideas for particle position discretization was proposed for the SPP

and exhibited very positive performance in comparison with the best-performing DPSO

algorithm designed for SPP found in literature. Both algorithms were compared on instances

of size ranging from 50 nodes and 166 edges to 100 nodes and 280 edges, and results show

that the proposed algorithm out-performs its counterpart on all instances, with equal or lower

number of iterations. The proposed DPSO algorithm was also extended to solve instances of

size (150, 400) and (200, 450), achieving accuracy levels of 90 and 91 percent respectively.

In further evaluating the performance of the proposed DPSO for SPP, the classical SSP was

solved and the results compared with an existing work in literature. The proposed algorithm

viii

was able to find the path with shortest expected length on instances of size ranging from 10

– 15 nodes with 100% accuracy on all instances. Instances of size ranging from (50, 150) to

(200, 400), were also solved with 100% accuracy. The proposed DPSO was then extended to

solve MOSSP. To evaluate its performance, three graphs, each of size (25, 50) were generated

following exponential, triangular, uniform and normal distributions. The algorithm reports

the accurate Pareto front for all generated instances. The results were validated by comparing

each extreme of the Pareto front against the result produced by Dijkstra’s algorithm on the

corresponding single-objective problems. A problem instance of size (200, 1000) was also

solved, showing a near-optimal Pareto front, and demonstrating the effect of varying values

of ε on the algorithm. From experiments, values between 0.01 and 0.02 were recommended

as optimal for ε, in line with other results reported in literature.

Finally, the proposed DPSO algorithm for SPP was applied to the recently introduced SDP.

The algorithm’s performance was compared to that of the Metropolis algorithm used in the

paper introducing the problem, and drastic reductions in time complexity were reported while

maintaining comparable accuracy. All objectives were then combined in a 3-objective

problem of maximizing citation count while minimizing number of resubmissions and time

from submission to publication. The algorithm gives a satisfactory Pareto front which

highlights the optimal journal submission order to be followed depending on what

compromises are desired within the objective space.

ix

Table of Contents

Declaration .. ii

Declaration 1 – Plagiarism .. iii

Dedication ... iv

Acknowledgements ... v

Abstract ... vii

Table of Contents ... ix

Table of Figures ... xiv

List of Tables .. xvi

List of Abbreviations .. xvii

List of Articles .. xix

Chapter One .. 1

Introduction .. 1

1.0 Introduction .. 1

1.1 Problem Statement ... 2

1.2 Research Objectives ... 4

1.3 Research Methodology .. 4

1.4 Scope and Limitations.. 5

1.5 Thesis Contributions .. 5

1.6 Outline.. 6

Chapter Two ... 8

Literature Review ... 8

2.0 Introduction: Combinatorial Optimization Problems .. 8

2.1 The Travelling Salesman Problem ... 10

x

2.1.1 Solution Approaches to the TSP: Exact Methods .. 12

2.1.2 Solution Approaches to the TSP: Non-Nature-Inspired Heuristics 14

2.1.2.1 Nearest Neighbor Heuristic ... 14

2.1.2.2 Insertion Heuristic ... 14

2.1.2.3 K-opt Heuristics .. 14

2.1.2.4 Lin-Kernighan Heuristic ... 15

2.2 The Shortest Path Problem... 15

2.2.1 Variants of the Shortest Path Problem .. 16

2.2.1.1 Dynamic Shortest Path Problem (DSPP) .. 16

2.2.1.2 Fuzzy Shortest Path Problem (FSPP) .. 17

2.2.1.3 Stochastic Shortest Path Problem (SSP) ... 17

2.2.1.4 Constrained Shortest Path Problems (CSP) .. 22

2.2.2 Solution Approaches to the SPP: Exact Methods ... 23

2.2.2.1 Label-setting .. 23

2.2.2.2 Label-correcting .. 25

2.2.3 Solution Approaches to the SPP: Non-Nature-Inspired Heuristics 25

2.2.3.1 A* .. 25

2.2.3.2 Bi-directional search ... 27

2.2.3.3 Branch pruning .. 29

2.3 The Submission Decision Problem .. 30

2.3.1 Models for the SDP .. 34

2.3.2 Solution Approach to the SDP: Metropolis Algorithm 35

2.4 Solution Approaches to the TSP and SPP: Nature-Inspired Heuristics 37

2.4.1 Genetic Algorithms (GA) ... 38

xi

2.4.2 Physarum Algorithm... 40

2.4.3 Ant Colony Optimization (ACO) ... 43

2.4.4 Particle Swarm Optimization.. 46

2.4.5 Discrete Particle Swarm Optimization ... 48

2.4.5.1 Binary PSO .. 48

2.4.5.2 Swap-operator-based DPSO .. 49

2.4.5.3 Space transformation-based DPSO ... 50

2.4.5.4 Fuzzy DPSO .. 50

2.4.5.5 Set-based DPSO .. 51

2.4.5.6 Hybrid DPSO .. 54

2.4.6 Memetic DPSO ... 55

2.5 Multi-Objective Optimization (MOO) ... 56

2.5.1 Multi-Objective Particle Swarm Optimization (MOPSO) 59

2.5.1.1 Choice of leader .. 60

2.5.1.2 Set of non-dominated solutions ... 61

2.5.1.3 Diversity promotion .. 63

2.6 Inspirations for New Algorithms ... 64

2.7 Summary .. 66

Chapter Three ... 68

An Enhanced Communication Discrete Particle Swarm Optimizer for the Travelling

Salesman Problem .. 68

3.0 Introduction .. 68

3.1 PSO Discretization ... 68

3.1.1 Analysis of the Constant, Q .. 73

xii

3.1.2 Analysis of the constant, K ... 73

3.1.3 Analysis of the Value, T ... 74

3.2 Simulation .. 75

3.3 EC-DPSO Formal Algorithm ... 82

3.4 Results .. 83

3.4.1 Comparative Analysis of EC-DPSOB, EC-DPSOR, and ECDPSO 83

3.4.2 Comparative Analysis of EC-DPSO and S-CLPSO 85

3.5 Swarm Size Investigations for EC-DPSO.. 87

3.6 Summary and Conclusion .. 88

Chapter Four... 90

Proposed Discrete Particle Swarm Optimization Algorithm for the Shortest Path

Problem.. 90

4.0 Introduction .. 90

4.1 Position Encoding for SPP ... 90

4.2 Path Decoding .. 93

4.3 PSO Equation Discretization ... 95

4.4 Simulation .. 98

4.5 Summary and Conclusion .. 99

Chapter Five .. 100

A Memetic Discrete Particle Swarm Optimization Method for the Shortest Path

Problem.. 100

5.0 Introduction .. 100

5.1 Application of Proposed DPSO for SPP .. 101

5.2 Values of c1 and c2 .. 101

5.3 Results and Discussion .. 103

xiii

5.4 Summary and Conclusion .. 106

Chapter Six .. 107

A Discrete Particle Swarm Optimizer for the Multi-Objective Stochastic Shortest Path

Problem.. 107

6.0 Introduction .. 107

6.1 Adaptation of Proposed DPSO for SSP and MOSSP .. 108

6.2 Results of Proposed DPSO on SSP .. 109

6.3 Results of Proposed DPSO on MOSSP ... 112

6.4 Summary and Conclusion .. 116

Chapter Seven ... 119

A Multi-Objective Particle Swarm Optimization Approach to the Submission Decision

Process ... 119

7.0 Introduction .. 119

7.1 Application of Proposed DPSO to SDP ... 119

7.2 Results .. 120

7.3 Discussion .. 129

7.4 Summary and Conclusion .. 131

Chapter Eight .. 132

Summary, Conclusion and Future Work ... 132

8.0 Summary .. 132

8.1 Conclusion ... 132

8.2 Future Work ... 134

References .. 135

xiv

Table of Figures

Figure 2.1: A sample 2-opt move [13] ... 15

Figure 2.2: Simple Markov Decision Process .. 18

Figure 2.3: An illustration of change in shape and structure of a true slime mold in response

to new food sources (FS). (a) shows top and side views of the mold with food sources just

introduced. (b) shows the new shape of the mold, with the interconnecting tube between the

two sheet-like parts covering the food sources [163]. .. 41

Figure. 2.4: Illustrating dominance in a 2-objective space ([194]) 58

Figure. 2.5: Pareto front for a two-objective minimization problem.................................... 59

Figure 2.6: Dominance and ϵ-dominance [158] ... 62

Figure 2.7: Sample 6-node-sized graph .. 65

Figure 2.8: Graph illustrating weight-based encoding and resulting path 65

Figure 2.9: Graph illustrating weight-based encoding and resulting path 66

Figure 3.1: Graph showing gbest0 ... 76

Figure 3.2: Graph showing gbest1 ... 79

Figure 3.3: Graph showing gbest2 ... 81

Figure 3.4: Graph showing exact solution for simulation TSP .. 82

Figure 3.5: Chart showing speed of convergence of EC-DPSO on bays29 with swarm size

ranging from 10 – 100% of n.. 87

Figure 3.6: Chart showing divergence from optimal solution of EC-DPSO on bays29 with

swarm size ranging from 10 – 100% of n ... 88

Figure 4.1: Graph showing nodes, their sample priority allocations and the corresponding

path from nodes 2 to 6 .. 91

Figure 4.2: Graph illustrating weight-based encoding and resulting path 93

Figure 5.1: Graph displaying a path from node 2 to node 6 ... 101

Figure 5.2: Comparing proposed DPSO with DPSO in {Mohemmed, 2007 #5} 105

Figure 5.3: Graphical comparison of the performance of three DPSO variants 105

Figure 6.1: Sample graph showing edge cost probability distributions and node weights

(emphasized) ... 109

file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980330
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980331
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980332
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980332
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980332
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980332
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980333
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980334
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980335
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980336
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980337
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980338
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980339
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980340
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980341
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980342
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980345
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980345
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980346
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980347
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980348
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980349
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980350
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980350

xv

Figure 6.2: Pareto front for graph instance 2 .. 114

Figure 6.3: Pareto front for graph instance 3 .. 115

Figure 6.4: Evaluating Proposed DPSO’s performance with varying ϵ-values 115

Figure 7.1: A plot of expected Number of Citations against expected Number of Submissions

for about 3,150,000 submission schedules using the Metropolis algorithm in [196] 121

Figure 7.2: A plot of expected Number of Submissions against expected Number of Citations

using the proposed MOPSO algorithm ... 122

Figure 7.3: A plot of expected Number of Citations against expected Time Spent in Review

for about 3,150,000 submission schedules using the Metropolis algorithm in [196] 123

Figure 7.4: A plot of expected Number of Submissions against expected Time Spent in

Review using the proposed MOPSO algorithm ... 123

Figure 7.5: Growth trend of citation count over increasing value of N (number of journals)

for 5 randomly generated submission schedules .. 125

Figure 7.6: A plot of expected Number of Submissions against expected Number of

Submissions using the proposed MOPSO algorithm with N = 10 126

Figure 7.7: A plot of expected Number of Submissions against expected Time Spent in

Review using the proposed MOPSO algorithm with N = 10 ... 127

Figure 7.8: 3-Objective optimization plot of expected Number of Submissions, Number of

Citations and Time Spent in Review using MOPSO .. 128

Figure 7.9: 3-Objective optimization plot of expected Number of Submissions, Number of

Citations and Time Spent in Review using MOPSO with N = 10 129

file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980351
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980352
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980353
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980356
file:///C:/Users/Peter/Dropbox/Ongoing%20Research/Masters%20Thesis%20-%20Examiner%201%20Corrections.docx%23_Toc445980356

xvi

List of Tables

Table 2.1: Summary of PSO discretization schemes used in literature 55

Table 3.1: Comparison of ECDPSO variant performances on 10-city TSP 83

Table 3.2: Comparison of ECDPSO variant performances on 15-city TSP 83

Table 3.3: Comparison of ECDPSO variant performances on 20-city TSP 84

Table 3.4: Comparison of ECDPSO performance with S-CLPSO with respect to minimal

cost route found .. 85

Table 3.5: Regression Analysis for EC-DPSO ... 86

Table 3.6: Regression Analysis for S-CLPSO ... 86

Table 5.1: Comparison of Proposed DPSO with two other DPSOs and a GA................... 102

Table 5.2: Comparing performance of three DPSO variants for SPP 103

Table 6.1: Comparing Performance of Proposed Algorithm with DPSO in [157]............. 110

Table 6.2: Comparison of Proposed DPSO with Dijkstra and DPSO in [157] over three

instances ... 111

Table 6.3: Performance of Proposed DPSO on SSP instances of various sizes 111

Table 6.4: Graph Instance 1 .. 112

Table 6.5: Graph Instance 2 .. 113

Table 6.6: Graph Instance 3 .. 113

Table 6.7: Proposed DPSO’s performance on 3 graph instances 118

Table 7.1: Computational time comparison of Metropolis and MOPSO 124

Table 7.2: Computational time comparison of Metropolis, MOPSO and MOPSO10 127

xvii

List of Abbreviations

ACO Ant Colony Optimization

AIF Author Impact Factor

ATSP Asymmetric Travelling Salesman Problem

BPSO Binary Particle Swarm Optimization

COP Continuous Optimization Problem

CSP Constrained Shortest Path Problem

DPSO Discrete Particle Swarm Optimization

DSPP Dynamic Shortest Path Problem

DTSP Dynamic Travelling Salesman Problem

FSPP Fuzzy Shortest Path Problem

GA Genetic Algorithms

GTSP Generalized Travelling Salesman Problem

IF Impact Factor

JIF Journal Impact Factor

JSSP Job Shop Scheduling Problem

KP Knapsack Problem

MDP Markov Decision Process

MOO Multi-Objective Optimization

MOOP Multi-Objective Optimization Problem

MOPSO Multi-Objective Particle Swarm Optimization

MOSSP Multi-Objective Stochastic Shortest Path Problem

NI Nature-Inspired

PSO Particle Swarm Optimization

SAT Satisfiability Problem

SCP Set Covering Problem

SDP Submission Decision Problem

SI Swarm Intelligence

SPP Shortest Path Problem

xviii

SSP Stochastic Shortest Path Problem

SSP-RC Shortest Path Problem with Resource Constraints

SSSPP Single-Source Shortest Path Problem

STSP Symmetric Travelling Salesman Problem

TSP Travelling Salesman Problem

xix

List of Articles

Articles under review:

1. P. A. Popoola, A. O. Adewumi, and M. O. Olusanya, “A Memetic Discrete Particle

Swarm Optimization Method for the Shortest Path Problem”, Submitted to the South

African Journal of Industrial Engineering (SAJIE)

2. P.A. Popoola, N.V. Blamah, and A.O. Adewumi, “An Enhanced Communication

Discrete Particle Swarm Optimizer for the Travelling Salesman Problem”, Submitted

to The Transactions of the South African Institute of Electrical Engineers (SAIEE)

3. P.A. Popoola and A.O. Adewumi, “A Multi-Objective Particle Swarm Optimization

Approach to the Submission Decision Process”, International Journal of Systems

Assurance Engineering and Management (IJSA)

4. P.A. Popoola, A.O. Adewumi, and A.M. Arasomwan “A Discrete Particle Swarm

Optimizer for the Multi-Objective Stochastic Shortest Path Problem”, International

Journal of Advances in Soft Computing and its Application (IJASCA)

1

Chapter One

1 Introduction

1.0 Introduction

Combinatorial Optimization Problems (COP) are among the most widely studied problems

in Computer Science owing to their applicability in a myriad of real world scenarios. They

are generally problems, which involve finding the best arrangement of a set of discrete

objects, where an arrangement’s fitness is dependent on the specific problem domain [25].

This work focusses on three COPs, the Travelling Salesman Problem (TSP), Shortest Path

Problems (SPP) and its variants, Stochastic Shortest Path problem (SSP) and Multi-Objective

Stochastic Shortest Path problem (MOSSP), and the Submission Decision Process (SDP).

The TSP involves finding the cheapest arrangement of all nodes in a graph such that a

tour/cycle which includes exactly one node each is formed [93]. It is a classical NP-complete

COP which has been intensely studied over the years as a result of its ubiquitous real world

applications in vehicle routing, circuit board design, x-ray crystallography, and many others.

The SPP has been applicable from the most primitive days of man when he needed to find

the shortest path to various essential destinations (e.g. in search of food, shelter, and so on).

Up to the early 1950’s, SPP was applicable in computing the shortest and alternative shortest

paths for freeway drivers and long distance telephone calls in the United States [199]. SPP

applications then extended to applications such as network routing, scheduling, production

planning, energy (electric power, petroleum and natural gas), decision making process and

air, land and sea travel [77], and continue to extend modern applications at the cutting-edge

of technological advancement such as shortest path queries on massive social networks [8],

path planning in robotics [48], sequence alignment in molecular biology [156], Route

Guidance Systems [83, 136] and so on. In addition, when constraints are added to SPPs, they

form an important part of the well-known Column Generation algorithm for large-scale

Linear Programming problems [112].

2

The SDP problem arises as a result of the dilemma which researchers face in deciding what

journal to send their manuscript to such that the accumulated number of citations is

maximized. Journal Impact Factors (JIF) usually give a general approximation of how many

citations can be accumulated by papers published in them, and journals with high JIFs also tend

to have high rejection rates and take generally longer periods in review. This is most probably as

a result of the large number of submissions they receive. Therefore, authors need to know what

schedule to follow in submitting their manuscripts, taking into cognizance the probability of

getting rejected and having to re-submit to another journal. The SDP can be easily described as

a COP, since it essentially involves finding the best arrangement of journals which

maximizes/minimizes the desired objectives. The SDP is a newly introduced problem which

has a more immediate practical application to every researcher and author who wishes to

have their published work recognized.

As a result of this widespread interest in COPs, Nature-Inspired (NI) metaheuristics have

been applied to approximate solutions to them. This work focusses on the Swarm

Intelligence-based heuristic, Particle Swarm Optimization (PSO), which needs to be first

discretized before it is applied to COPs. Various discretization schemes have been applied to

PSO, one of which is the set-based approach where candidate solutions are represented as a

set of nodes. Two new set-based Discrete Particle Swarm Optimization (DPSO) algorithms

are presented in this work, each addressing TSP and SPP with new ideas which have not been

used in literature. These algorithms are applied to the TSP, classical SPP, SSP, and MOSSP.

1.1 Problem Statement

It was discovered from reviewed literature that the existing DPSOs for TSP do not optimize

their search by taking into account the cost of edges which constitute positions within the

fitness landscape. This could lead to the particles spending time unnecessarily exploring

positions constituted by relatively high-cost edges which stand a very low chance of being

part of the optimal solution.

A key characteristic of existing set-based DPSO algorithms designed for SPP was also

discovered. Since candidate paths are represented as sets of nodes, their position within the

set is a critical and distinguishing feature which determines the order in which the path will

3

be traversed from source to destination. However, in the existing DPSO methods, this critical

information is not taken into consideration when the various required set operations are

carried out such as addition (set union) and subtraction (set difference), as well as in the

representation of particles’ velocity.

In most real-world situations, the cost/weight of networks are not deterministic as they are

usually represented in the classical SPP [114]. They usually vary based on various factors

such as road/link congestion, safety or reliability of the link, and so on. As a result, a variant

of SPPs, known as Stochastic Shortest Path problem (SSP) is modelled to address them. In

SSPs, edge costs are modelled as probability distributions rather than fixed values, and

solutions to them usually give the expected shortest path. The PSO method which was found

in existing literature for the SSP only reported solutions to SSPs of size 10-15 nodes.

Again, most users are not only concerned with the expected minimum-length path, but are

also concerned about the degree of variance or ‘sureness’ of the path. This variance comes

into play as a result of the stochastic nature of the networks under consideration. Therefore,

multi-objective optimization is required, where both objectives are to minimize expected cost

and variance. It was observed in literature that the application of DPSOs to this type of

problem has not been well explored.

In introducing the SDP, Salinas and Munch [193] used a Metropolis algorithm to achieve the

Pareto front (or efficiency frontier) showing the optimal levels of compromise available to the

authors. Such compromises exist between maximizing citation count and minimizing number of

submissions on one hand, or total time spent in review by the various journals on the other. A

problem which was identified with this existing method is the huge computational burden

entailed by the Metropolis algorithm which they used, where about 3,200,000 different

submission schedules had to be tested before the optimal efficiency frontier was discovered. It

was also noted that optimizing all three objectives at once has not been considered in literature.

4

1.2 Research Objectives

The aim of this research is therefore to propose two new DPSOs for the TSP and SPP which

will be extensible to other problems such as SSP, MOSSP and the SDP. This will be achieved

by considering the following objectives:

1. Develop a new DPSO heuristic for the TSP which is optimized through informing

particles’ search by the input graph’s edge cost distribution, thereby causing them to

rapidly avoid edges with relatively high cost and gravitate towards those with much

lower costs.

2. Develop a new DPSO heuristic for the SPP which takes into consideration node

position-specific information and leads to more accurate results.

3. Adapt and apply the new DPSO for SPP algorithm to SSP and MOSSP, reporting the

results.

4. Adapt and apply the new DPSO for SPP algorithm to the Submission Decision

Process (SDP) with reasonable time savings, extending it to a 3-objective multi-

objective optimization of all objectives in the SDP.

1.3 Research Methodology

Two new DPSO algorithms for TSP and SPP are introduced, and their viability demonstrated

by applying them to a range of problems. The results obtained are validated empirically. An

empirical study uses a statistical tool to validate a hypothesis or result by experimentation

[254]. Four broad classifications of research methods exist in Computer Science literature,

as seen in [88]. They are scientific, engineering, empirical and analytical methods. Tichy et

al. [219] identify five major categories of works published in the field of Computer Science.

These categories are Formal Theory, Design and Modelling, Empirical Work, Hypothesis

Testing, and Others. Wainer et al. [227] randomly selected 200 articles published in ACM in

2005, using them as a sample population to estimate the percentage of articles published in

the categories identified in [219]. They found out that papers under the Empirical Work

category formed 17% of the total works published, with Theory, Hypothesis, Design and

Others forming 4, 4.7, 3.4 and 70 percent respectively. This shows that an empirical research

5

methodology is valid and is being used by a significant percentage of computer science

researchers, especially in the area of heuristics and meta-heuristics.

1.4 Scope and Limitations

This research is restricted to DPSO and its application to the three COPs earlier highlighted.

The limitations encountered for each problem are as follows:

 TSP: The TSP instance size in number of cities attempted was limited to 76. Efforts

will be made to increase the capability of the proposed algorithm in future.

 SPP: The number of papers which apply DPSO to the classical SPP is relatively low.

Therefore, there was a limitation to the works with which the results of the proposed

DPSO algorithm could be compared.

 MOSSP: It was observed that the application of PSO to Multi-Objective SSP has not

been really explored in the existing literature. The only similar work which we were

able to find, that of Zhang, et al. [262], did not report the Pareto front for their

optimization results, making it difficult for us to compare our results with theirs. We

were therefore constrained to randomly generate problem instances, though it is

believed that this will be of service to other researchers in testing and reporting their

results.

1.5 Thesis Contributions

The major contributions which this work makes are as follows:

1. A new DPSO algorithm for the TSP which takes advantage of edge cost information

in directing particles’ search.

2. A new DPSO algorithm which can be applied to the SPP. An extension of the DPSO

to solve the SSP and MOSSP for graph sizes ranging from 10 nodes and 15 edges to

200 nodes and 1000 edges. The provision of randomly generated SSP graph data

which follows four different probability distributions and can be used by other

scientists in validating their SSP-related work, and recommendation of optimal ε-

6

value for ε-dominance (related to MOSSP) which agrees with existing literature. It is

believed that the proposed DPSO for SPP can be applied to other similar COPs.

3. The first application of PSO to the SDP in literature (to our knowledge), leading to drastic

reduction in processing time and computational burden. Extension of the SDP to a 3-

objective optimization problem which considers all three intrinsic objectives:

maximizing citation count, minimizing number of resubmissions and minimizing time

spent in review. Optimal submission schedules are also reported for the implemented

journal data set which validates existing results in [196] to the benefit of the scientific

community.

1.6 Outline

The rest of this dissertation is structured as follows:

Chapter two gives some general information about COPs, focusing on the TSP and SPP, as

well as the various Exact, Heuristic, and NI methods used in addressing them. It also gives

some information needed for a good grasp of the SSP and Multi-Objective Optimization, as

well as PSO, with the various discretization methods existing in literature. A brief

background for the SDP is also given, together with the models developed to address it.

In Chapter three, the new DPSO algorithm for the TSP is presented and discussed, and

empirical results presented. The impact of various introduced parameters such as R and K on

its performance is also discussed.

Chapter four presents the DPSO designed for SPP with a memetic component used to

enhance local search. The proposed discretization of PSO is done specifically with respect to

weight-biased position encoding of paths in the SPP, the explorative nature of the algorithm

being balanced by the local search capability of the memetic algorithm and an optimal

selection of c1 and c2 parameters.

Chapter five presents the results of applying the proposed memetic DPSO to the classical

SPP, comparing them with two PSO and one GA algorithm in literature.

7

Chapter six presents an adaptation of the new DPSO to SSP with various improvements on

existing techniques, and applies it to both the single and multi-objective SSP with very

favorable results. The effect of varying ε-dominance values on the proposed discrete MOPSO

algorithm is also investigated and reported.

Chapter seven also presents an adapted version of the new DPSO for SDP, showing that it

cuts down computational time by a significant factor. An improvement in the computation

of the various objectives is also proposed which further reduces computational burden. The

problem is extended beyond the usual bi-objective optimization to a 3-objective optimization

and is solved with the proposed discrete PSO algorithm.

Finally, Chapter eight concludes and gives some recommendations for future studies.

8

Chapter Two

2 Literature Review

2.0 Introduction: Combinatorial Optimization Problems

Combinatorial Optimization is a field of study with roots in combinatorics, operations

research, economics and theoretical computer science. It involves finding the best ordering,

grouping, selection or arrangement of discrete objects which are usually finite in number

[134]. Combinatorial Optimization is one of the most widely-studied fields in mathematics

and computer science because it represents thousands of real-life problems such as

investment planning and facility location, capital budgeting, gene sequencing, design of new

molecules, design of fast and reliable communication networks, assignment of workers to

jobs (e.g. airline crew scheduling) design and management of transportation systems and

many others [95] [2, 5]. These types of problems can be formulated or modelled as abstract

combinatorial problems and formally defined [210] as a tuple I = (U, P, val, extr), where:

U is the solution space

P is the feasibility predicate

val is the objective function 𝑣𝑎𝑙: 𝑈 → ℝ,

extr is the extremum (min or max)

P induces a set, S of feasible solutions:

𝑆 = {𝑋 ∈ 𝑈: 𝑋 satisfies 𝑃} (2.1)

The goal is to attain a solution, 𝑠 ∈ 𝑆 which attains the desired extremum of val.

A few of these abstracted COPs are highlighted below:

 Knapsack Problem (KP): This is a family of problems which involves a set of items

each having a profit, pj and a weight, wj to be packed in one or more knapsacks of

capacity, c. A subset of these items is to be chosen in such a way that the accumulated

profit is maximized without the accumulated weights exceeding c. A most popular

member of this family is the 0-1 KP, which is mathematically formulated thus:

9

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑐,

𝑛

𝑗=1

𝑥𝑗 ∈ {0,1}, 𝑗 = 1, … , 𝑛,

(2.2)

where xj is a binary variable which takes the value 1 if item j is to be included in the

knapsack, and 0 otherwise [180]. Other variants of the Knapsack Problem include

Bounded Knapsack Problem, Multiple-choice Knapsack Problem, Multiple Knapsack

Problem, Nested Knapsack Problem, and a popular extension of the KP, the Bin-

Packing Problem [149] [180].

 Set Covering Problem (SCP): Given a universal set U of n elements which has a

family of subsets 𝑆 = {𝑆1, … , 𝑆𝑘}, and a cost function 𝑐: 𝑆 → 𝑄+, the SCP seeks a

minimum-cost sub-collection of S which covers all elements of U [224]. The SCP has

major applications in airline crew scheduling, location of emergency facilities,

assembly line balancing and information retrieval [20].

 Job Shop Scheduling Problem (JSSP): The JSSP is a very challenging and difficult

problem which has prompted intense studies by scientists over the years. Its fame for

difficulty is in part attributed to the fact that an instance with 10 machines and 10 jobs

which was proposed in 1963 remained unsolved for over 20 years [11]. It involves a

set of jobs to be scheduled on a set of machines, each having a predetermined order

in which they must be executed on each machine. Each machine can only process one

job at a time, and each job can be processed by at most one machine at a time. Given

that each processing operation has a fixed duration, the JSSP involves scheduling jobs

such that their maximum completion time is minimized [257]. Obviously, this

problem has numerous applications, with different variations, in the manufacturing

industry.

 Satisfiability Problem (SAT): The Satisfiability problem is among the six basic core

NP-complete problems which have been identified as intrinsic to many areas in

computing theory and engineering [133]. NP-complete problems are those for which

10

no proven polynomial-time algorithms exist over all instances. Apart from its indirect

applications from the reformulation of other problems, SAT has direct applications

in Boolean circuit synthesis, test pattern generation, VLSI engineering, design of

asynchronous circuits, sports planning, and so on [92, 96, 133]. It is defined [96] thus:

Given a Boolean formula with three components:

o A set of n variables, 𝑥1, 𝑥2, … , 𝑥𝑛

o A set of variables or their negated equivalents

o A set of m distinct clauses: C1, C2, … , Cm, each consisting of literals combined

by solely logical OR (˅) connectives,

Determine whether there exists an assignment of truth values to the variables which

makes the Conjunctive Normal Form:

𝐶1 ∧ 𝐶2 ∧ … ∧ 𝐶𝑚 (2.3)

true (or satisfiable), where ∧ is a logical AND connective.

The remainder of this review focuses on the three COPs which are pertinent to this work,

TSP, SPP and the Submission Decision Problem, with a greater emphasis on SPP since it

constitutes a larger portion of the work. As for the SDP which was very recently introduced

(in 2015) by Salinas and Munch [196], we were not able to find any articles in the literature

which explicitly handles it apart from the introducing paper. However, closely-related issues

such as citation rate/count, Impact Factor and other publication-related issues have been

researched, discussed and debated for decades. A preliminary review of these issues is

therefore given before the models for the SDP are presented. Also, we discuss the solution

approaches existing in literature for these problems in two broad groupings as exact and

heuristic. Heuristic algorithms are further discussed as non NI-based and NI-based methods,

as PSO, which is this work is restricted to, is an NI-based heuristic.

2.1 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a well-known combinatorial optimization

problem which was officially stated by the Austrian mathematician Karl Menger as follows

[94]: “A traveling salesman has to visit exactly once, each of one of a list of x cities and then

11

return to the home city. He knows the cost of traveling from any city i to any other city j.

Which of the possible tours of cities can he take at least possible total cost?” Such a tour

which includes all nodes exactly once is referred to as a Hamiltonian cycle [93]. Various

approaches exist for approximating solutions to the TSP which is a classical NP-complete

problem, and it is widely used as a test benchmark for these optimization algorithms [31].

An Integer Linear Programming formulation of the TSP is given thus [132]:

Minimize ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖≠𝑗

 (2.4)

Subject to

∑ 𝑥𝑖𝑗 = 1

𝑗=1

, 𝑖 = 1, … , 𝑛 (2.5)

∑ 𝑥𝑖𝑗 = 1,

𝑛

𝑖=1

 𝑗 = 1, … , 𝑛. (2.6)

∑ 𝑥𝑖𝑗 ≤ |𝑆| − 1

𝑖,𝑗∈𝑆

,

𝑆 ⊂ 𝑉, 2 ≤ |𝑆| ≤ 𝑛 − 2,

𝑥𝑖𝑗 ∈ {0,1}

(2.7)

𝑖, 𝑗 = 1, … , 𝑛, 𝑖 ≠ 𝑗. (2.8)

Where cij represents the cost of the edge (i,j), S represents the set of nodes constituting a

feasible Hamiltonian cycle, and V represents the set of all nodes in the graph. Constraints

(2.5) and (2.6) describe the cost of the optimal tour, constraints (2.7) prevent the formation

of subtours (tours/cycles with less than n nodes), and constraint (2.8) imposes binary

conditions on the variables.

If cij = cji for all edges in the graph, the problem is known as the Symmetric TSP (STSP). If

this is not the case, it is known as the Asymmetric TSP (ATSP). A generalization of the TSP

known as Generalized TSP (GTSP) partitions all nodes into clusters and seeks a minimum

cost cycle which visits at least one node in each cluster [78]. A variant of the TSP is the

Dynamic TSP (DTSP) where the input graph changes over time either with the deletion and

12

inclusion of new nodes and their connecting edges [97], or changes to edge costs [151].

Another is the Probabilistic TSP (PTSP) where each city in the input graph has an associated

probability of being visited [239].

The TSP has a wide range of applications including, but not at all limited to, computer wiring,

vehicle routing, data clustering, job shop scheduling, circuit board design, x-ray

crystallography, and so on [150].

2.1.1 Solution Approaches to the TSP: Exact Methods

One of the first exact methods for solving the TSP follows from the Integer Programming

model earlier presented, which was formulated by Dantzig, et al. [56]. It involved a linear

relaxation of some of the constraints, and they were able to optimally solve a 42-city instance

using this method. However, the most basic and general exact method for solving the TSP is

the branch-and-bound method which involves exhaustive search and is applicable in solving

all COPs. It directly originated from research work on TSP, being first introduced in the paper

by Little, et al. [142] in 1963.

The branch-and-bound method is typically described as a traversal through a search tree,

where the problem is progressively broken down into sub-problems as the tree grows

outwards from the root. Each child of a node is obtained by imposing a single new constraint

on the original relaxation of the problem. The search usually starts with the root node, and at

each iteration, a selection strategy is used to pick a node from a pool of unexplored feasible

subproblems. Branching is then performed through the construction of two or more child

nodes by the addition of constraints to the node’s subproblem. The bound for each child node

is calculated and evaluated. If it corresponds to the optimal solution, the algorithm is

terminated. If it is a feasible solution, it is compared to an earlier-generated initial solution

which acts as the upper bound, and discarded if it is not better. It is also discarded if no

feasible solution to this subproblem exists. Otherwise, the node is added to the pool of

unexplored subproblems, and the algorithm proceeds to the next iteration. This process

continues until the optimal solution is found or there are no more unexplored feasible

13

solutions. A summary of the branch-and-bound algorithm for a search tree, T, is presented in

Algorithm 2-I [49].

Algorithm 2-I: Branch-and-Bound

1. Initialize UB = ∞, LB(P0) := g(P0); Live := {(P0, LB(P0)) }

2. Repeat until Live = ∅

a. Select the node P from Live to be processed; Live := 𝐿𝑖𝑣𝑒 ∖ {𝑃};

b. Branch on P generating P1, ..., Pk;

c. For 1 ≤ i ≤ k do

i. Bound Pi : LB(Pi) := g(Pi);

ii. If LB(Pi) = f(X) for a feasible solution X and f(X) < UB then

1. UB := f(X); Solution := X;

2. go to EndBound;

iii. If LB(Pi) ≥ UB then discard Pi

iv. else Live := 𝐿𝑖𝑣𝑒 ∪ {(𝑃𝑖 , 𝐿𝐵(𝑃𝑖))}

d. EndBound

3. OptimalSolution := Solution; OptimumValue := UB

In Algorithm 2-I, UB is the upper bound computed so far by the algorithm, LB(Pi) is the

lower bound of the tree node Pi, Live is the list of unexplored feasible solutions, and g is a

function which maps real numbers (bounds) to each node in the branch-and-bound search

tree. For each internal node within the tree, this value is a lower bound/limit on any value

within the subspace corresponding to that node (that is, that can be achieved for all

subproblems which are children of the node). The function, g is required to satisfy these three

conditions:

 𝑔(𝑃𝑖) ≤ 𝑓(𝑃𝑖) for all nodes Pi in T

 𝑔(𝑃𝑖) = 𝑓(𝑃𝑖) for all leaves in T

 𝑔(𝑃𝑖) ≥ 𝑔(𝑃𝑗) if Pj is the parent of Pi

Other exact methods include cutting-plane [56], branch-and-cut [171], and the Concorde

solver [13].

14

2.1.2 Solution Approaches to the TSP: Non-Nature-Inspired Heuristics

As is to be expected, the exact methods discussed in section 2.1.1 increase exponentially in

complexity with increase in number of cities for the TSP. This effect is exacerbated as a result

of the search space for the ATSP being (𝑁 − 1)!/2 large. Therefore, various heuristics have

been proposed in literature to approximate solutions which are accurate to an acceptable level

in the real world. A few of them are highlighted.

2.1.2.1 Nearest Neighbor Heuristic

The Nearest Neighbor heuristic is a greedy approach which simply builds a tour by starting

from a randomly picked city and progressively adding the adjacent city with the minimal cost,

stopping when all cities have been added to the tour. It was described by Flood [80] in 1956,

but it weakness was quickly discovered as the possibility of getting into ‘corners’ which

would require the addition of relatively high-length edges to be able to link with unvisited

cities [13]. The same applies to its close counterpart, the proper greedy heuristic which sorts

all edges by cost and adds them to the tour from lowest to highest until the tour is completed.

2.1.2.2 Insertion Heuristic

In the insertion heuristic, an initial subtour is formed with the shortest edge. Then a city

which is not part of the subtour, but has the minimal distance to any of the cities in the tour,

is repetitively selected and inserted between the adjacent cities of a selected edge, (i,j). Edge

(i,j) is selected such that the increase in total cost of the new tour is minimal [93, 168].

2.1.2.3 K-opt Heuristics

K-opt heuristics are primarily tour improvement heuristics which seek the best way of

reducing the cost of a pre-existing tour. They are the most widely-used heuristics for the TSP

[106], consisting of making k-opt moves which involve removing k edges from the tour, and

reconnecting the disconnected nodes with a different set of k edges such that the new total

tour cost is reduced. This process is repeated with a fixed value of k until no more

improvements can be made with a k-opt move. The tour is then said to be k-optimal. A k-

optimal tour is also i-optimal for all i < k. The 2- and 3-opt moves are very popular as a result

15

of their simplicity to compute, speed, and near-optimal results [168]. An example of a 2-opt

move is shown in Figure 2.1.

2.1.2.4 Lin-Kernighan Heuristic

The Lin-Kernighan (LK) heuristic, which lies at the heart of the most-accurate solutions to

the TSP today [13], was originally proposed by Lin and Kernighan in 1973 [141]. It is based

on the k-opt heuristic, but uses a variable, rather than the usual static, value for k. It involves

deciding what value of k is most suitable at each iteration of the algorithm. This comes at the

cost of a much heightened level of complexity, however, making it quite difficult to

implement or improve. Moreso, its accuracy depends largely on how well it is implemented

[168]. In the year 2000, however, it was successfully implemented and improved upon by

Helsgaun [104], who continued to propose successful improvements in 2006 [105] and 2009

[106]. This has led to the Lin-Kernighan-Helsgaun (LKH) heuristic being the virtual state-

of-the-art algorithm for the TSP, and it has been used to solve very large instances of the TSP,

the most recently proven one having 85,000 cities [12]. It has also been used to solve the

largest TSP instance in the TSPLIB [191] known as World, having 1,904,711 cities, to within

0.049% of the optimal tour [105].

2.2 The Shortest Path Problem

The Shortest Path Problem (SPP) also a ubiquitous problem which has triggered widespread,

intensive and on-going research in the scientific community over the years. This is as a result

of its wide applicability in the fields of routing [38, 83, 204], transportation [45, 246], robotic

motion planning [35, 137], terrain navigation [128, 129], communication [156, 169] and so

on. It can be mathematically modelled as an integer programming problem thus [10]: Given

Figure 2.1: A sample 2-opt move [13]

16

a graph, G, with edge set E and vertex set V, specified source and destination nodes s and t,

and an associated cost cij for each edge (𝑖, 𝑗) ∈ 𝐸,

Minimize ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗 ∈𝐸

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑥𝑖𝑗 ≥ 0,

∀𝑖, ∑ 𝑥𝑖𝑗

𝑗

− ∑ 𝑥𝑗𝑖

𝑗

= {
1, 𝑖𝑓 𝑖 = 𝑠;
−1, 𝑖𝑓 𝑖 = 𝑡;
0. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.9)

With the introduction of various constraints as well as dynamic properties, its range of

application grows even wider [68, 185, 202].

The elementary SPP with single source and single destination nodes was solved by Dijkstra

in his 1959 paper [65], and since then, various types and variants of the shortest path problem

have been identified. A review of these problems is presented. It is important to note that the

definition of cost is not restricted to length of edge or distance between nodes, but can also

be expressed in other terms such as time taken to arrive at a particular node and so on.

2.2.1 Variants of the Shortest Path Problem

The form in which the input graph is presented has given rise to about four variants of the

SPP, viz: static, dynamic, stochastic and fuzzy shortest path problems. The elementary case

is the static SPP where the costs, nodes or constraints of the problem are predetermined and

remain fixed throughout the duration of the problem being solved. This case has already been

discussed earlier.

2.2.1.1 Dynamic Shortest Path Problem (DSPP)

In the Dynamic SPP (DSPP) which is hugely applicable to Mobile Ad-Hoc Communication

Networks, nodes in the graph dynamically disappear (sleep) and appear (awake) during the

course of time. In this case, algorithms used for static SPPs would have to be restarted

whenever there is a change in network topology, and this would lead to excessive overhead

17

and computational costs. The need therefore arises for algorithms which can easily adapt to

changing environment while maintaining optimal source-destination paths [40, 202].

2.2.1.2 Fuzzy Shortest Path Problem (FSPP)

Usually, edge weights or costs are represented as precise real numbers. However, as a result

of the fact that in real-world scenarios such as decision making [63], risk assessment [261],

and pattern recognition [251], these weights are naturally imprecise/vague, the Fuzzy

Shortest Path Problem (FSPP) represents them as fuzzy numbers, and hence, the summing

operation of fuzzy numbers as well as their comparison have to be redefined, as can be seen

in [215] and [233].

2.2.1.3 Stochastic Shortest Path Problem (SSP)

In the stochastic SPP (SSP), edge costs are not deterministically known ahead of time. This

arises in real-world applications as a result of the possibility of link failure, variable travelling

time due to traffic congestions, and so on. Path costs are hence modelled as continuously or

discretely distributed random variables, and at each node a probability distribution must be

selected over all possible successor nodes which leads to the destination node and has

minimum expected cost [42, 46, 157].

The SSP is one which has been studied over a long period of time since Frank [81] proposed

a solution to it in 1969. However, it was first formulated in 1962 by Eaton and Zadeh [69]

who termed it a “problem of pursuit”, and introduced the conditions for optimal solution. In

1991, Bertsekas and Tsitsiklis [26] introduced the term “Stochastic Shortest Path”, allowing

negative costs contrary to the positivity condition earlier introduced by Eaton and Zadeh [69].

This condition had already been weakened to cost non-negativity in Bertsekas [27].

A generalization of SSPs are Markov Decision Processes (MDPs), which are models that

evolve in both stochastic and non-deterministic ways. An MDP consists of states, and is

executed in rounds. At each round, the MDP is in a given state, each state having a set of

possible associated actions. A control/action strategy selects an action, and each action is

associated with a probability distribution over all associated subsequent states. Based on the

probability distribution, transition is made into a selected next state, and with each state

18

transition, an associated cost is incurred [30, 189]. The goal is therefore finding a control

strategy (or policy) which minimizes the total incurred cost from the initial to final state with

a probability 1 of reaching the final state. [26, 30]. A formal definition of an MDP is presented

in [30] as:

1. A finite state space S = {1,…,n}

2. A finite set of controls (actions) U(i) for each state i ∈ S

3. Transition probabilities p(i,u,j) associated with all 𝑢 ∈ 𝑈(𝑖) where p(i,u,j) is the

probability of transitioning to state j from i after selecting action u.

4. A cost g(i,u) associated with 𝑢 ∈ 𝑈(𝑖) and 𝑖 ∈ 𝑆

Figure 2.3 briefly illustrates an MDP. In the figure, S1 is a state with associated actions a and

b. Each associated action has a probability distribution over the states it leads to. For example,

from state S1 with action a, two states can be transitioned to, S2 and S4, with probabilities of

0.9 and 0.1 respectively. Also, a transition from S1 to S5 has an associated cost of 2.

A policy is a sequence of functions, (µ0, µ1, . . .), with µk mapping states to actions such that

action µk(i) will be executed in state xk = i at time k, as long as µk(i) ∈ 𝑈(𝑖). That is, a policy

is a sequence which defines actions (mapped to states) which are to be performed at any

given point in the decision process. The policy is said to be stationary when all µk are the

Ø

S1

b: 0.2

b: 0.8

a: 0.9

a: 0.1

a

a

Figure 2.2: Simple Markov Decision Process

4

S2

Ø

S4

2

S5

5

S3

19

same, i.e. a sequence of functions of the form (µ, µ, …). The total cost incurred by a given

policy, 𝜋 starting from state x0, is given by

𝐽𝜋(𝑥0) = lim
𝑁→∞

𝐸 {∑ 𝛼𝑘𝑔(𝑥𝑘, 𝜇𝑘(𝑥𝑘))

𝑁−1

𝑘=0

}
(2.10)

where 𝛼 ∈ [0,1] is known as the discount factor which discounts future costs at a geometric

rate. The aim in an MDP problem is therefore to find an optimal policy 𝜋∗ satisfying

𝐽∗(𝑖) ≝ 𝐽𝜋∗(𝑖) ≤ 𝐽𝜋(𝑖), 𝑖 = 1, … , 𝑛 (2.11)

for every other policy [30].

Two exact (dynamic programming) algorithms exist which are used to solve the MDP

problem. Value Iteration (VI), proposed by Bellman [23], iteratively computes an optimal

cost vector J* which satisfies the Bellman Optimality equation when 𝛼 < 1 (which implies

that there always exists an optimal stationary policy) as an update rule:

𝐽∗(𝑖) = min
𝑢∈𝑈(𝑖)

𝑔(𝑖, 𝑢) + 𝛼 ∑ 𝑝(𝑖, 𝑢, 𝑗)𝐽∗(𝑗)

𝑛

𝑗=1

 (2.12)

Once the optimal cost vector is obtained, an optimal policy is determined thus:

𝜋∗(𝑖) = arg min
𝑢∈𝑈(𝑖)

[𝑔(𝑖, 𝑢) + 𝛼 ∑ 𝑝(𝑖, 𝑢, 𝑗)𝐽∗(𝑗)

𝑛

𝑗=1

] (2.13)

The algorithm is said to have converged when successive values of J are the same, or when

the difference between them is sufficiently small [130].

Policy Iteration (PI) was also proposed by Bellman [23]. It begins with an arbitrary policy

and computes its value function thus:

𝐽𝜋(𝑖) = [𝑔(𝑖, 𝜋(𝑖)) + ∑ 𝑝𝑖,𝑗(𝜋(𝑖))𝐽𝜋(𝑗)

𝑛

𝑗=1

] (2.14)

It proceeds to iteratively improve on 𝜋 until convergence or an acceptable negligible error is

obtained.

20

An SSP therefore specializes an MDP with the following properties [30]:

 Non-discounted (i.e. 𝛼 = 1) rewards

 A designated goal/target self-absorbing state which represents the destination and is

cost-free

 A finite state and action space

 The state space maps to the node set of a graph

 Set of actions and their associated probability distributions maps to edge set

 A policy maps to a path through the graph from source to destination node

The SSP therefore seeks an optimal policy (path), 𝜋 with minimum total associated cost

which reaches the destination node with a probability of 1. To guarantee the existence of such

an optimal policy, the following conditions have to be met [26]:

1. There exists a proper policy which is guaranteed to reach the destination node from

any source node.

2. All costs are positive.

The exact methods discussed earlier (VI and PI) are dynamic programming methods, which

involve a lot of computational burden. For example, the VI method has to update the value

function for the entire state space at each iteration [130]. As a result, heuristics have been

successfully developed to solve the SSP and its variants.

In [40], a multi-criteria A* algorithm is proposed to compute the least expected time path in

Stochastic Time-Dependent networks (STDs), which are basically SSPs with costs

represented as time chunks. They worked specifically on STD networks which satisfy the

stochastic first-in-first-out property (S-FIFO), testing their results on large scale road

networks. They demonstrated that their proposed algorithm performs significantly better on

problems which have the S-FIFO property over algorithms which do not exploit that property.

In [240], a new admissible heuristic search-based family of algorithms called FRET (Find,

Revise, Eliminate Traps) was introduced to solve a newly introduced class of MDPs, the

Generalized SSP (GSSP), which relaxes some of the conditions stated in [26] for SSPs to

allow for negative costs and discounted-reward models. They investigated the performance

21

of their method against VI on the GSSP and found theirs to perform better in terms of speed

and convergence, even in cases where VI could not converge. However, the proposed

algorithm suffers the same problem of having to go through the entire state space, hence

running out of memory on some problem instances.

As per maximizing path reliability, Chen, et al. [41] carried out a study which proposed two

algorithms, a multi-criteria label-setting and an A* algorithm to maximize path reliability in

cases where link travel times follow a normal distribution. Based on the definition of α–

reliability, they tried to minimize the travel-time budget (amount of time) required to ensure

a certain level of on-time arrival probability. They classified travelers risk attitude towards

travel time uncertainty as “risk-averse” with on-time arrival probability, α > 0.5, “risk-neutral”

with α = 0.5 and “risk-seeking” with α < 0.5. They examined the performance of their

algorithms on large-scale networks, showing that their algorithms performed significantly

better than others under risk-averse scenarios. However, as they stated, their study was

restricted to normally distributed link times, and hence its performance on links following

other distributions remains unknown.

In [30], an improved Real-Time Dynamic Programming (RTDP) algorithm is proposed

which is guaranteed to terminate in finite time and return an optimal path, an improvement

on that proposed in [19] which converged asymptotically, providing no guarantee to

convergence in finite time. They compared the performance of the improved RTDP algorithm

with the Value Iteration (VI) algorithm based on the Bellman equation [23], showing that it

outperformed the VI algorithm by orders of magnitude on some benchmark problems with

large state spaces. Vladimirsky [226] defined and discussed a class of multimode SSPs,

defining conditions under which label-setting methods can be applied to them.

In the field of Swarm Intelligence, Sudholt and Thyssen [214] proposed a simple ACO for

SSPs, considering various noise models from general, arbitrary noise to independent gamma-

distributed noise, showing instances where ACO can discover optimal paths efficiently. They

showed however, that for independent gamma-distributed noise, ACO took exponential time

to find a good approximate solution. Momtazi, et al. [157] proposed a PSO method to solve

the SSP, comparing their results with those reported for Distributed Learning Approaches

22

proposed in [154] and [22] on 10 and 15-instance SSPs. They reported that their algorithm

outperformed those with which it was compared, achieving optimal paths with much fewer

iterations.

2.2.1.4 Constrained Shortest Path Problems (CSP)

The addition of constraints on the resource(s) consumed by including a given edge in the

path, as well as the restriction of the graph type to digraphs leads to various variants of the

SPP. Though the elementary form of SPP is solvable in O(n2) time or less [266], the addition

of one or more constraints makes it NP-complete [152]. As edges are added to the path under

construction, the amount of consumed resources accumulates, each resource being associated

with an upper limit/constraint which must not be exceeded. The Constrained Shortest Path

Problem (CSP), which has also been referred to in literature as the Resource-Constrained

Shortest Path Problem (RCSPP) or the Shortest Path Problem with Resource Constraint

(SPP-RC), is a generalization of the SPP with constraints, where number of resources ≥ 1.

Two well-known specializations of the CSP are Weight-Constrained SPP (WCSPP) where

number of resources = 1, and Shortest Path Problem with Time Windows (SPPTW) where

number of resources = 2 [112].

As is highlighted in [112], CSPs can be classified by the manner of resource accumulation,

fitness definition, under-lying network, and the existence of path-structural constraints

excluding specific paths. Examples of such variants include Maximum Capacity Path

Problem (Bottleneck SPP) [184], Balanced SPP [148], Weight-Constrained SPP with

Replenishment [28], Variance-Constrained SPP [206], Equity-Constrained SPP[91], and the

Hop-Constrained SPP [54]. A variant worthy of note is the Multi-Objective SPP (MOSPP)

[236] where all pareto-optimal solutions which minimize two or more objective functions are

sought. The variant with only two objectives is known as the Bi-criteria SPP [43]. Multi-

objective optimization is discussed in section 2.4, while CSPs are treated in much greater

detail in [112] and [152].

For CSPs, Label-setting [64, 68, 198] as well as Label-correcting [28, 125] algorithms have

also been developed. Lagrangean Relaxation methods have also been used [33, 160] for the

23

Resource-Constrained Shortest Path Problem. These algorithms are explained in the

following section.

2.2.2 Solution Approaches to the SPP: Exact Methods

As has been earlier stated, the elementary form of the SPP assumes a single source and

destination node. The aim here is to find the path of minimal cost from the identified source

node to the destination node [65]. A slightly varied but similar case is when the aim is to find

the shortest path from a single source destination to all other nodes in the graph. Both of these

problems are referred to as the Single-Source Shortest Path Problem (SSSP) [170, 218].

Due to the tractable nature of the SPP, most of the research effort on it has been towards

achieving greater computational efficiency. Exact algorithms which have been proposed to

solve this problem usually fall into two categories: label-setting and label-correcting

algorithms [83]. Note that many of these solution methods for the SSSP have been extended

or applied to solve other variants of the SPP derived by introducing constraints, seeking for

multiple objectives or re-defining the minimization function.

2.2.2.1 Label-setting

Label-setting algorithms associate a label L(i) to each node which represents an upper bound

on the cost of getting from the source node, s to that node through a preceding node P(i). Each

node is also associated with a status S(i) which could either be unreached, labeled or scanned.

The algorithm begins by setting L(i) = ∞, P(i) = null, and S(i) = unreached for all nodes, and is

initialized by setting L(s) = 0 and S(s) = labeled. At each iteration, a scan is made from the

current labeled node across all its emanating nodes, and they are each processed thus: If L(i)

+ cij < L(j), set S(i) = labeled, P(j) = i and L(j) = L(i) + cij, and let j become the current node. If

L(i) + cij ≥ L(j), set S(j) = scanned, where (i,j) is an edge from i to j. Out of the unreached

nodes, the one with the minimum L(i) is selected, its S(i) value is set to labeled and it becomes

the current node. Note that once a node has become labeled, it is no longer processed. This

state is also referred to in literature as permanently labeled.

The algorithm terminates either when all nodes have been processed (in the single source,

multiple destination problem) or when the destination node, t is reached (in the single source,

24

single destination problem) [10, 83, 256]. It can be inferred, therefore, that algorithms which

solve the single-source, multiple destinations case inherently solve the single source, single

destination case.

A formal general statement of label-correcting algorithms is presented in Algorithm 2-II:

Algorithm 2-II: Label-Setting Algorithm

1. Initialize scanned list

2. For i in node-set A:

3. Set L(i) = ∞, P(i) = null, and S(i) = unreached

4. Set L(s) = 0 and S(s) = labeled

5. Add s to scanned

6. Set s as current node, i

7. For all nodes, j adjacent to i:

8. If(S(j) != labeled)

9. If(L(i) + cij < L(j))

10. Set L(j) = L(i) + cij

11. Set S(i) = labeled

12. Set P(j) = i

13. Remove i from scanned

14. Set j as current node, i

15. Else

16. Set S(j) = scanned

17. Add j to scanned

18. Select node n with minimum L(m) from scanned

19. Set n as current node, i

20. If (i == t)

21. Stop

22. Else

23. Go to Step 7

Label-setting algorithms have the advantage of having better worst-case complexity bounds

than label-correcting algorithms, as well as being useful for solving single-source single-

destination SPPs. However, they are less general. That is, they do not apply to all classes of

problems such as problems with negative edge weights [10].

25

2.2.2.2 Label-correcting

In label-correcting algorithms, the same variables and initialization procedures are

maintained as with label-setting. The key difference with label-correcting algorithms rises in

the labelling procedure. In label-correcting algorithms, no label is denoted as permanent until

the final iteration. In addition, the procedure of selecting the next node to be processed differs.

While label-setting algorithms select the adjacent node with the minimum L(i), label-

correcting algorithms mostly use a First-In-First-Out (queuing) procedure, regardless of the

L(i) value. It processes each node in the same way, updating L(i) values when a lower

alternative is found [10]. Label-correcting algorithms are suitable for problems of a more

general class such as the Shortest Path Problem with negative edge weights, though with that

generality some level of performance optimality in terms of computational cost is sacrificed

[24].

2.2.3 Solution Approaches to the SPP: Non-Nature-Inspired Heuristics

Improvements on the performance of these exact algorithms have been attempted as a result

of their excessive computational intensity when applied to real-time one-to-one traffic

networks. These are in the form of heuristics which take advantage of available information

about the location of nodes in the graph, network structure, and other application-specific

information to reduce the search effort involved in the algorithm. This in turn reduces the

practical computational time. Some of the notable heuristics in this regard are considered: A*

algorithms, algorithms involving bi-directional search, and branch pruning methods [83].

2.2.3.1 A*

The A* algorithm was first introduced by Hart, et al. [100] in 1986 as an admissible

(guaranteed to converge) method for solving the SPP. It can be seen as a generalization of

the label-setting algorithm [166] since it involves node scanning, expansion and selection.

However, it makes use of a heuristic evaluation function F(i) = L(i) + e(i,d) as node labels, with

the algorithm proceeding in a best first search manner. That is, it maintains two lists: an open

and a closed list. The open list is ordered based on nodes’ F values and contains all nodes

26

which have not been expanded yet. The closed list contains nodes which have already been

expanded. See Algorithm 2-III for details of the A* algorithm [195].

Algorithm 2-III: A* Algorithm

1. Set s_pred = null, Fs = 0, and place s in open

2. For all nodes in open

3. Select node i with minimum Fi value

4. If (i == t)

5. Stop

6. For all j adjacent to i

7. If (j is not in closed)

8. If (j is not in open)

9. Add j to open

10. Else

11. If (new_Fj < old_Fj)

12. Fj = new_Fj

13. j_pred = i

14. Add i to closed

15. Stop

where s_pred and j_pred refer to the previous node to nodes s and j respectively in a path, s

represents the source node, t, the destination node, and e(i,d) is an optimistic estimate of the

sum cost from node i to node d..

The estimation of the e(i,d) function is a key factor in ensuring the admissibility of the

algorithm. As long as e(i,d) is selected in such a way that it is a lower bound (and not an

overestimation) of the actual distance from node i to the destination node d, the algorithm is

guaranteed to find the optimal solution. Such an estimation is usually done based on

information from the problem domain. A classic example given in [100] is the problem of

finding the shortest path between cities on a road network. Estimating the value of e(i,d) based

on the cost of travelling by air from city i to city d, which is the lowest possible travelling

cost by road, would guarantee the optimal path being found. The A* algorithm has the

advantage of being able to solve the SPP without prior knowledge of the network,

constructing the network concurrently with its solution. Another advantage is that the search

27

space is reduced to less than 11% if the edge costs are generated by Euclidean distances [89],

and hence, computational time is greatly reduced [18, 83].

2.2.3.2 Bi-directional search

Bi-directional search algorithms attempt to improve the search for the shortest path by

splitting the graph into two and searching in a label-setting fashion from both ends: one

forwards from the source node, and the other backwards from the end node. The first

publication introducing bi-directional algorithm was made by Dantzig [57] but it was

described as being “ambiguous and vague” [181]. It was in Nicholson’s work [165] that a

clear and concise definition of a bidirectional algorithm was made. His contributions are

based on the following definitions [181]: d(x) denotes an upper bound on the cost of getting

from s to node x and dt(x) denotes an upper bound on the cost of getting from node x to t. A

contains nodes which have been labelled as permanent, B contains nodes which have been

labelled scanned and C contains nodes which are still unreached. Sets D, E and F are

symmetrical sets corresponding to A, B and C respectively in the backward-directional search.

Two key aspects of Nicholson’s algorithm were the manner in which searches in both

directions were made, and the termination criteria. Regarding the search order, he proposed

an improvement to the alternating search order of Dantzig [57]. While Dantzig’s search order

alternated between the forward and backward searches, Nicholson [165] proposed that

instead of alternating, the search should be based on which node is closest to the source and

destination nodes. That is, if the node is closer to s, the search is conducted in a forward

manner, and if it is closer to t, the search is conducted in a backward manner. Where there is

a tie, the nodes were to be expanded simultaneously (within the same iteration). Secondly,

he defined an improved termination criteria thus [182]:

𝑚𝑖𝑛
𝑥𝑖 ∈ 𝐴 ∩ 𝐷

 𝑑(𝑥𝑖) + 𝑑𝑡(𝑥𝑖) ≤
𝑚𝑖𝑛

𝑥𝑖 ∈ 𝐵
 𝑑(𝑥𝑖) +

𝑚𝑖𝑛
𝑥𝑖 ∈ 𝐸

𝑑𝑡(𝑥𝑖) (2.15)

However, Dreyfus [67] proposed an improvement to this termination criteria. His

improvement involves the algorithm terminating immediately some node n is selected which

is contained both in A and D, and the shortest path is achieved by examining 𝑛 ∪ 𝑌,

𝑤ℎ𝑒𝑟𝑒 𝑌 = {𝑥𝑖: 𝑥𝑖 ∈ 𝐴 ∩ 𝐸}:

28

𝑚𝑖𝑛 (𝑑(𝑥𝑖) + 𝑑𝑡(𝑥𝑖), 𝑑(𝑛) + 𝑑𝑡(𝑛)) ∀𝑥𝑖 ∈ 𝑌 (2.16)

Pohl [181] proposed an improvement to Nicholson’s search procedure by stating that treating

all ties simultaneously is unnecessary. He proposed that the ties be handled individually,

which would lead to time efficiency, especially when the tie happens at a point where a node

occurs in the intersection of A and D.

It is important to note that thus far, no heuristic component had been introduced to the bi-

directional search. However, Pohl in [181, 182] introduced A* heuristic search to both

directions of the bi-directional search with an aim of improving its performance. He called

the algorithm the Bi-directional Heuristic Path Algorithm (BHPA) and noted that an

improvement in performance would only be achieved by the heuristic search if both searches

met near the middle of their separation. This did not seem to happen in his computations. The

forward and backward search trees would usually grow almost to completion before there

would be an intersection, thereby making the algorithm twice computationally intensive than

the uni-directional version. He concluded that the heuristic search trees were highly unlikely

to intersect while growing in opposite directions, likening the situation to a scenario of two

missiles independently aimed at each other’s base ‘missing’ each other. This conclusion was

taken for granted in the works of other researchers like de Champeaux [60], Sint and de

Champeaux [205] and Fu, et al. [83], and led to the development of ‘front-to-front’

algorithms which directed a search tree at the front of the opposite search tree, and not at the

root [60, 183, 205]. The front-to-front algorithms were however excessively computationally

demanding or had no admissibility [58, 118].

The notion of search trees ‘missing’ each other like missiles was refuted by Kaindl and Kainz

[118], who stated that rather than the search trees missing each other, they ‘pass through’

each other. They also identified the cause of the poor performance of the previous bi-

directional heuristic algorithms as the major computational effort spent on searching for a

better solution than that which is found when the search trees initially meet. Even when the

optimal solution is found, additional effort is spent on ensuring that it is indeed the best

solution possible, since the algorithm does not ‘know’ that the optimal solution is indeed

optimal until it has generated all the remaining nodes. They then devised a new generic

29

approach to bi-directional heuristic search which utilizes dynamic heuristic front-to-end

evaluations which can be embedded efficiently. They also showed instances of problems

where bi-directional search is more suitable and efficient than unidirectional search. In

addition, Ikeda, et al. [111] proposed a way to combine a bidirectional version of Dijkstra’s

algorithm with A* search in an admissible way, and based on his work, some improvements

on bidirectional shortest path algorithms were achieved in [126].

Major recent improvements on bidirectional heuristics as regards search space reduction, and

hence improvement in computational efficiency, include the scalar projections method

proposed by Whangbo [241] and the new lower bound proposed by Pijls and Post [179].

2.2.3.3 Branch pruning

Branch pruning involves a continual evaluation of the edges in the graph to find weak ones

which are unlikely to form part of the solution and directing the search away from them.

According to [83], the edges are evaluated based on the inequality

𝐿(𝑖) + 𝑒(𝑖,𝑑) ≤ 𝐸(𝑜,𝑑)
(2.17)

(where e(i,d) is the estimated cost from node i to the destination node, d, and E(o,d) is the

estimated cost from the source node to the destination node), and edges which violate this

inequality are pruned from the search.

Just like in A*, the performance of branch pruning algorithms depends on the accuracy of

the estimated costs. Hence, a weakness of branch pruning algorithms arises when the

algorithm is not able to find the optimal path as a result of the estimation functions evaluating

to relatively low values. This could lead to the optimal path being pruned from the search. In

fact, there exists the chance that it succeeds at finding no solution at all because all branches

from the source node are pruned before the destination node is reached. A way of remedying

this fault is presented in [82].

Of the three heuristic approaches discussed, A* heuristic search has been found to reduce

computational intensity by up to 50%. The viability of bidirectional search algorithms has

30

also been discussed and proven, as seen in [118], [241] and [195], against the conclusion

made in [83].

2.3 The Submission Decision Problem

Paper publication rate, citation rate, citation networks and other matters related to scientific

research publication have been widely studied over the years and even more intensely in

recent times, as they relate to issues which lie close to the heart of every researcher, easily

summarized as the desire for recognition and relevance. An easy (and widespread) way of

judging a researcher’s level of achievement as regards these two goals is the total number of

citations which they have accumulated over their paper publication history. Measures such

as the Impact Factor and h-index all in one way or the other factor citation count into their

assessment of a journal’s relevance or an author’s level of contribution to the scientific

community.

Despite the recent introduction of the h-index [107] as a response to the wide criticisms

leveled at the use of the Impact Factor [103], the Impact Factor still continues to be widely

used by scientists to judge the quality of a journal, and by universities and research institutes,

in conjunction with other measures like the h-index and citation count, to judge the quality

of an author’s contribution (number of articles published in high Impact Factor journals) to

knowledge. These judgements are then used to make administrative decisions like promotion,

appointment/election to prestigious positions, and awarding of prizes [200]. As a result,

deciding which journal to send a manuscript has been and still remains a crucial decision

problem faced by scientists all over the world. A naïve solution would be to simply sort all

target journals by their Impact Factor and then work down the list, but various other important

factors come into play such as whether the manuscript gets accepted, the time it takes till it

gets published as well as how long it takes before the authors get feedback (review outcome)

on the submitted manuscript. These factors have to be taken into consideration in order to

strike an acceptable balance between getting a reasonably high number of citations (which

generally determines and/or indicates the relevance of the work), and the time it takes to get

the desired citations.

31

Various measures of impact which differ with respect to the target of the assessment being

carried out have been proposed in literature over the years. Three main assessment targets

found in literature are author, paper and venue (journal) [200], and various impact measures

have been proposed which assess one or a combination of these targets. An old but still

popular impact measure is the citation count [200], which is a summation of all citations

obtained by a paper, venue or author over some time period. Citation count is more widely

applied in the assessment of a paper’s worth than venue or author, but when used to measure

an author’s impact, it has a few shortcomings. One of such shortcomings is its being easily

skewed by a few ‘popular’ papers which have very high number of citations but were co-

written with other authors, and hence may not represent the individual’s capabilities or

contributions. It also gives undue weight to review articles which are generally highly cited

but make no significant original contribution to scientific knowledge [107].

A more recent and widely used measure of an author’s impact is the h-index, which was

proposed by Hirsch in 2005 [107], and is computed as the maximum h for which an author

has h papers with more than h citations. To put it simply, an author has an h-index of x if he

has published x papers which each have at least x number of citations. Though the validity of

the h-index has been attested to by various researchers [108, 146], a major weakness was

pointed out by Shah and Song [200] which is its failure to offer a fair comparison between

authors whose publications’ citation distribution differ significantly. Pan and Fortunato [173]

pointed out another key weakness of the h-index which is the fact that its assessment covers

the entire career of an author, whereas authors’ performances vary significantly with time. A

good case in point is that of Nobel Laureates, whose publication trajectory tends to

significantly fall after they have been awarded the Nobel Prize, mostly as a result of other

non-publishing engagements that come as a result of the award. Also, some authors only

make a single significant contribution to science, while others continue to make great

contributions over their career horizon. Thus, a performance measure which collapses

important publication/performance dynamics into a single value may not be a suitable tool

for comparing between different authors’ performance at a particular point in time, and one

32

of the key reasons why assessment measures are created is the performance of such

comparisons.

Pan and Fortunato [173] therefore proposed another impact measure which extends the

ubiquitous Impact Factor (IF) to authors. The usual (and widespread) use of IF in the context

of authorship is basically to assess performance based on the number of publications that

have been made in relatively high IF journals within the respective fields. Pan and Fortunato

however made a formal extension of the IF to author assessment. They reported that their

new measure is dynamic in nature and overcomes the shortcomings found in the usual

definition of Impact Factor as regards its failure to capture current ‘hot’ researchers, papers,

journals and so on. They termed the extended IF measure Author Impact Factor (AIF), and

conducted varied empirical studies to prove its validity. Thus, it can be concluded that IF and

IF-based measures are still a widely-used and relatively viable measure of assessing an

author’s research impact.

Assessing the quality of a research paper is a critical process which authors undergo, as they

have to make choices about which publications to cite out of a large pool of related articles,

the quality of publications cited within a paper tending to contribute to its general quality as

perceived by the research community. To the best of our knowledge, the major and most

widely-used measure of a paper is the citation count [200, 211], a fact which is demonstrated

by its widespread use in author citation network analyses [250] and models for predicting

future/long term impacts of scientific publications [90, 193]. It is therefore a reasonable

conclusion that a schedule which maximizes the citation count of a paper will generally

increase its recognition and in turn lead to higher relevance in the scientific world.

Deciding which journal to send a paper to, which is the focus of this work, obviously has a

direct correlation with the way a journal’s quality is measured. It remains an established fact

that the Journal Impact Factor (JIF) is the most widely-used measure for assessing journal

quality, despite the various faults which have been highlighted in the literature [16, 76, 200].

The idea of an Impact Factor was first introduced by Garfield in 1955 [72], but formalized

by Garfield and Sher in the late 1960s [84] as a means of deciding which journals would be

selected for the Science Citation Index (SCI). The most critical factors taken into

33

consideration at its creation were recognizing large reputable journals with high citation

count while not neglecting ones which were not as large, but were also important in their

fields. To put it succinctly, they wanted to compare journals fairly irrespective of their size.

The JIF was defined by them as [200]:

𝐽 =
∑ 𝐶(𝑝)𝑝∈𝑃

|𝑃2|

(2.18)

where 𝑃2 is the set of papers published within the last two years, and C(p) is the citation

count of paper p, and |𝑃2| refers to the number of ‘citable publications’ in the last two years

[32].

In simple terms, the JIF is the total sum of citations which have been accumulated in the

current year by all articles which were published in a journal within the last two years divided

by the number of citable publications made in the same journal within the last two years. The

JIF is reported yearly by Thomson Reuters in their Journal Citation Reports (JCR), which

has assumed the position of a legitimate authority in ranking journals [103, 135]. The strong

points of the JIF, as pointed out in literature are its comprehensibility, stability, simplicity

and popularity [87]. On the other hand, quite a few weaknesses of the JIF have been pointed

out in literature, many of which relate to its misuse in comparing journals across unrelated

fields which have varying sizes and publication rates [32, 98, 103], the ambiguity of the term

‘citable publications’ and its lack of justification and tacit encouragement of ‘negotiations’

with Thomson Reuters [16, 209], the shortness of the 2-year horizon which puts fields where

citation rates rise relatively slowly at a disadvantage [32, 108], its susceptibility to self-

citation and coercive citation measures (journals directly or indirectly inferring that citing

self-published papers will influence acceptance) [16, 242] and so on. As a result of this

widespread criticism, other measures have been proposed, notable among which are the

PageRank system used by Google [76], EigenFactor [29], an extension of h-index to journal

assessment [32], and the s-index [200].

Considering the fact that the JIF is a citation-based measure, most flaws associated with it

which are a result of its use of citation count would also apply to measures which incorporate

citation count in their computations, such as the h-index. As has been stated earlier, though

34

the JIF has been so widely criticized, it still remains the most widely-used journal assessment

measure. This implies that it is still very much factors into an author’s assessment of a journal

and administrators’ assessment of an author [135], [212], [87], [70], and this justifies the

inclusion of the JIF in the SDP model developed by Salinas and Munch [196].

2.3.1 Models for the SDP

As was earlier stated, the SDP problem was formally introduced in 2105 by Salinas and

Munch [196]. It involves an author deciding which submission order to follow in submitting

their manuscripts to journals, based on a goal of maximizing citation count while minimizing

the number of resubmissions on one hand, or the amount of time it takes from submission to

publication on the other hand. While modeling this problem, they considered various

important factors like the acceptance rate of the journal, the average amount of time spent in

review, the probability of getting scooped (scoop ratio). Being scooped refers to a similar

article being published by a competing author before an author has a chance to publish his

work. Following Markov Decision Process theory, they proposed the following model which

gives the expected number of citations, C, over N submissions in a given order [196]:

𝐶 = 𝑞−1 ∑ 𝛼𝑗𝜆𝑗 [𝑇 − ∑ 𝜏𝑗 − (𝑗 − 1)𝑡𝑅]+ ∏(1 − 𝛼𝑘)(1 − 𝑠)𝜏𝑘+𝑡𝑅

𝑗−1

𝑘=1

𝑗

𝑘=1

𝑁

𝑗=1

(2.19)

where 𝛼 is the acceptance rate, 𝜆 is the expected number of citations (taken as the JIF), T is

the time horizon over which the author intends to maximize number of citations, 𝜏 is the time

from submission to publication, 𝑡𝑅 is the amount of time spent in revision, s is the scoop

probability per day, and q is a normalization constant. The + superscript indicates that

negative values within the inner summation term will be replaced with 0. All time units are

in days.

The model representing the expected number of submissions, R, is given as:

𝑅 = 𝑞−1 ∑ 𝑗𝛼𝑗 ∏(1 − 𝛼𝑖)

𝑗−1

𝑖=1

𝑁

𝑗=1

(1 − 𝑠)𝑡𝑅+𝜏𝑖H (𝑇 − ∑ 𝜏𝑗 − (𝑗 − 1)𝑡𝑅

𝑗

𝑘=1

) (2.20)

35

H is the Heaviside function which ensures that the expected number of citations is calculated

within the specified time horizon, T. It takes a value 1 when its argument it positive, and 0

otherwise.

To estimate the expected number of days from first submission to acceptance, P, they

proposed the following model:

𝑃 = 𝑞−1 ∑[𝜏𝑗(𝑗 − 1)𝑡𝑅]𝛼𝑗 ∏(1 − 𝛼𝑖)(1 − 𝑠)𝑡𝑅+𝜏𝑖

𝑗−1

𝑖=1

𝑁

𝑗=1

H (𝑇 − ∑ 𝜏𝑗 − (𝑗 − 1)𝑡𝑅

𝑗

𝑘=1

) (2.21)

They also modeled a means through which journal’s comparative desirability can be

evaluated, factoring the mentioned variables like acceptance rate and so on. The index value

V which depends on T being large relative to publication and revision times, of a given journal

j, is given as:

𝑉𝑗 =
𝛼𝑗𝜆𝑗 (1 −

𝜏𝑗

𝑇)

1 − (1 −
𝜏𝑗

𝑇 −
𝑡𝑅

𝑇) (1 − 𝛼𝑗)(1 − 𝑠)𝑡𝑅+𝜏𝑗

 (2.22)

A few assumptions were made for model simplification purposes, and as a result of the

unavailability of data. Some key assumptions among them were that all manuscripts are of

equal value to all sampled journals, that time to publication is the averagely same for all

papers submitted to a journal, that acceptance and scoop probability are the same for all

manuscripts, and obviously the use of a static JIF measure to represent the expected number

of citations for a journal. Though quite a few of these assumptions are not exactly realistic,

it is believed that they do not affect the quality of the models to a great extent.

2.3.2 Solution Approach to the SDP: Metropolis Algorithm

As a result of the very recent introduction of the SDP, the only existing method which has

been applied to it is the Metropolis algorithm [196]. The Metropolis algorithm, introduced

by Metropolis, et al. [153], is a Markov Chain Monte Carlo [86] algorithm generalized as the

Metropolis-Hastings algorithm [102]. It has been very widely applied to various problems in

the field of physics and computer science, and is also applied in Simulated Annealing, an

algorithm which has been effectively used for a wide variety of COPs [21]. It is initialized

36

by randomly generating an initial solution. The initial solution is progressively improved by

generating other random solutions and testing to see if they are better than the current solution.

The new solution becomes the current one only if it is better by a specified probability. It is

presented in Algorithm 2-IV [47].

Algorithm 2-IV: Metropolis Algorithm

1. Initialize 𝑥0 ∈ 𝒳

2. Repeat for i = 1 to n-1

a. Generate xi from Q(xi, x)

b. Generate u from 𝒰(0,1)

c. If 𝑢 <
𝜌(𝑥)

𝜌(𝑥𝑖)
, then

i. Set 𝑥𝑖+1 = 𝑥

d. else,

i. Set 𝑥𝑖+1 = 𝑥𝑖

3. Return 𝑥0, 𝑥1 … 𝑥𝑛

where Q is a stochastic matrix (𝑄 = (𝑄𝑎𝑏: 𝑎, 𝑏 ∈ 𝒳)) which represents the stochastically

distributed state space of the Markov Chain, and 𝜌(𝑥𝑖) in proportional to the probability of

xi.

In [196], the Metropolis algorithm is applied to SDP by representing states (x) in the Markov

chain as submission schedules, and transitions between states (moving form xi to xi+1) as a

random swap of the positions of two journals. Also, 𝜌(𝑥) is defined as the C, R, or P

evaluation of the submission schedule, x. Their adapted algorithm for the R and C bi-

objective optimization case (without loss of generality) is presented in Algorithm 2-V.

Algorithm 2-V: Metropolis Algorithm for SDP

4. Initialize 𝑥0 ∈ 𝒳

5. Repeat for i = 1 to n-1

a. Generate x from Q(xi, x)

b. Generate u from 𝒰(0,1)

37

c. If 𝑢 <
𝐶(𝑥𝑖)

𝐶(𝑥)
 𝐴𝑁𝐷 𝑢 <

𝑅(𝑥)

𝐶(𝑥𝑖)
 , then

i. Set 𝑥𝑖+1 = 𝑥

d. else,

i. Set 𝑥𝑖+1 = 𝑥𝑖

6. Return 𝑥0, 𝑥1 … 𝑥𝑛

In the following section, we discuss NI-based heuristics for both the TSP and SPP, bearing

in mind that for the SDP, no existing literature which applies NI-based heuristics has been

found.

2.4 Solution Approaches to the TSP and SPP: Nature-Inspired Heuristics

In the field of meta-heuristics, methods have also been developed to solve the TSP and SPP.

Specifically, Nature-Inspired algorithms have been widely applied to these and many other

COPs in literature [248]. Nature-Inspired algorithms are basically algorithms which derive

their inspiration from natural phenomena, either biological, physical, chemical or otherwise.

A very large percentage of these algorithms are based on some characteristics of biological

systems. These algorithms are called bio-inspired algorithms, and within them is a very

popular field known as Swarm Intelligence [79].

Swarm Intelligence (SI) is a branch of computational intelligence that mimics the collective

intelligence of autonomous self-organizing agents as inspired by social animals (swarms).

This leads to the derivation of some form of emergent behavior that could lead to the solution

of complex problems [3]. The fascinating ability of unsophisticated individuals in these real

swarms or colonies to solve complex problems and exhibit complex organization and

coordination without central control of any kind (known as emergence) has attracted both

biologists and computer scientists to both study them, and apply their methods in solving

life’s problems and challenges.

Fister Jr, et al. [79] give a broad grouping of NI heuristics as SI-based, Bio-inspired but not

SI-based, Chemistry and Physics-based, and Other algorithms. The discussion of NI methods

to solve the TSP and SPP in this work is restricted to two popular SI-based techniques, ACO

38

and PSO, and two popular Bio-inspired but not SI-based techniques, GA and Physarum

algorithms.

2.4.1 Genetic Algorithms (GA)

Genetic Algorithms (GAs) can be traced as far back as the 1940s when the use of evolution

to solve problems was suggested by Turing [222]. Though the introduction of GAs has been

attributed to Holland [109], other researchers had been using similar methods before him

[53]. GAs are inspired by the biological processes of natural selection and genetics, and how

better individuals evolve and emerge from these processes over many generations. In GAs,

candidate solutions are represented as chromosomes which are made of genes. Genes can

take 2 or more values, which are known as alleles [109].

GAs usually start with the generation of an initial population of chromosomes which encode

feasible solutions to the problem. Two major and widely-used methods exist for the encoding

of solutions as chromosomes: binary encoding and real encoding [53]. In binary encoding,

the solution is broken down or encoded into a binary string which will be decoded at the

fitness evaluation stage. In real encoding on the other hand, chromosomes are made of actual

parameters that make up feasible solutions, invalidating the need for a decoding procedure.

Once the initial population is generated, three distinct reproduction operators act on the

population to produce successive generations [53]:

 Selection: This operator uses some means (tournament, roulette wheel) to select the

parents which will be used to reproduce children which will form the next generation.

 Crossover: This operator is said to be the soul of GAs. It combines parent

chromosomes to produce a child. Various crossover schemes exist, the major of

which are the single point, multi-point and uniform schemes.

 Mutation: The mutation operator serves as a means of maintaining diversity in the

population, or exploring the search space. It randomly selects and alters the value of

one or more genes in the chromosome. Mutation rate can be used to bias the algorithm

either towards exploration or exploitation.

39

Various GA methods have been used to solve the SPP with varying levels of success. The

earliest work applying a GA to solve SPP which we were able to find in literature appeared

in 1997 [85]. In their work, a GA for the SPP is proposed in which a priority-based indirect

method of encoding is used, with various eligible node sets being used as a means of

preventing infeasible paths from being constructed during the decoding process. Infeasible

paths include those which contain loops and those that terminate in non-destination nodes.

They were able to solve SPP instances of up to 70 nodes and 211 edges accurately. In another

work, Ahn and Ramakrishna [9] used a direct encoding method to represent chromosomes,

with a repair function being designed for chromosomes representing invalid routes. They also

proposed a population-sizing equation which can be used to choose the right population for

the GA. They compared their algorithm’s performance with other GAs in literature, and

found theirs to have a better accuracy rate on problem instances up to 50 nodes in size.

In [243], a GA is proposed for SPP in which chromosomes are made of nodes which form

feasible paths, genes being constrained so as to ensure that chromosomes do not represent

infeasible paths. They tested their algorithm on an undirected SPP instance of 100 nodes

using a population size of 10 with maximum generation of 100, and found it to be at the same

level of accuracy as Floyd-Warshal’s algorithm. Hasan, et al. [101] proposed a Heuristic GA

(HGA) for SPP which combines exact as well as heuristic techniques into the GA for optimal

results. Their algorithm prove to be useful in selecting a promising initial population and

optimizing accuracy and execution time for the GA when tested on SPP instances ranging

from size 10 to 100.

GAs have also been severally applied to the TSP. In [234], two local optimization strategies

are merged into the traditional GA to form a HGA. Both local optimization strategies have

time complexities of O(n) and O(n3) respectively. The results were compared with the

traditional GA and showed better performance. However, they noted that with larger

instances the computational complexity of the proposed algorithm grows very fast, causing

it to require more time to obtain accurate results. Nagata and Soler [161] also used a GA

method to solve the ATSP, however, it was combined with a local search procedure based

on 3-opt for initial population generation. Their algorithm was successfully tested on 153

40

ATSP instances from the TSPLIB [192] in addition to 123 self-generated instances, and

reported competitive results.

2.4.2 Physarum Algorithm

Physarum polycephalum is a unicellular amoeboid organism (also known as true slime mold)

whose body shape resembles an intricate network of tubular components forming a means of

intracellular transportation of protoplasmic material [162]. The shape and physiological

features of the organism metamorphose through the disassembling and reassembling of tubes

with respect to changes in the environment (such as presentation of new food source(s)). This

adaptation ensures the maintenance of an efficient tubular network design which will lead to

efficient streaming of protoplasm between each pair of local parts of the plasmodium.

Intracellular exchange of protoplasm plays a significant role in chemical communication

within the cell, determining the survival and maintenance of the cell as a unified singular

individual [162]. The first work which investigated and channeled this unique behavior of

the slime mold was done by Nakagaki [162] in the year 2000. He carried out series of

experiments with the slime mold, placing it in a maze with two food sources at its entry and

exit points. After a period of time, the mold had metamorphosed into a three-part shape

consisting of two sheet-like parts covering the two food sources (absorbing nutrients from

the food sources), and a thick tube lying in the shortest path between these two parts,

41

maintaining an efficient means of intracellular communication between them (See Figure

2.3).

Thus, it was proven that Physarum polycephalum is capable of solving shortest path problems,

even in complex structures like mazes. A key part of modelling this process of shortest path

resolution is understanding the mechanism through which the protoplasmic material (also

referred to as ‘sol’) is pumped within the cell. At the food sources where a sponge-like part

of the organism is formed, actin-myosin fibers exhibit rhythmic contractions which exert

pressure on the sol, making it flow into the tube (s) and out at the other end. This flow is bi-

directional, involving periodic changes in direction known as protoplasmic shuttle streaming.

Hence, the sponge-like parts of the organism act as sources of mechanical force/pressure at

the food sources. The formation and thickness of tubes is directly proportional to the length

of time as well as pressure with which shuttle streaming is maintained in a particular direction

[217].

In the formation of a mathematical model for the flow of sol through tubes [217], the shape

of the Physarum is represented as a graph, where a tube is an edge, and a junction between

tubes is a node. Two special nodes corresponding to the two food sources are denoted as N1

and N2, with N1 as the source node and N2 as the sink node. Other nodes are designated as N3,

N4, N5, and so on. Mij represents the edge between Ni and Nj, Qij represents the flux between

Figure 2.3: An illustration of change in shape and structure of a true slime mold in response to new

food sources (FS). (a) shows top and side views of the mold with food sources just introduced. (b)

shows the new shape of the mold, with the interconnecting tube between the two sheet-like parts

covering the food sources [163].

42

Ni and Nj through Mij,, pi and pj represent the power at nodes i and j respectively, and Lij and

aij are the respective length and radius of the tube corresponding to Mij. Assuming that the

flow along the tube is approximately a Poiseuille flow, Qij is given as [217, 258]:

𝑄𝑖𝑗 =
𝐷𝑖𝑗

𝐿𝑖𝑗
(𝑝𝑖 − 𝑝𝑗)

 (2.23)

with Dij usually set at

𝐷𝑖𝑗 =
𝜋𝑎𝑖𝑗

4

8𝜅

 (2.24)

By taking into cognizance the conservation of sol,

∑ 𝑄𝑖𝑗 + 𝐼0 = 0

𝑖

, (𝑗 ≠ 1, 2).
 (2.25)

And, for the source and sink nodes, N1 and N2 respectively, the following equations hold:

∑ 𝑄𝑖1 + 𝐼0 = 0

𝑖

, ∑ 𝑄𝑖2 − 𝐼0 = 0

𝑖

 (2.26)

where I0 is the flux from the source node or into the sink node, and is constant.

Physarum algorithms have been quite successfully applied to the SPP in literature. In [260],

a Rapid Physarum Algorithm was proposed to solve the SPP, in which a heuristics rule

determined from experimentation and statistics is integrated to avoid redundancy and

improve efficiency. They tested their algorithm on graphs of size ranging from 15 nodes and

23 edges, to 2000 nodes and 4044 edges. They reported that their algorithm was able to solve

the SPP for a fully connected network with 1000 nodes in under 50 iterations, and a randomly

distributed network with 2000 nodes and 4044 edges in under 100 iterations. They compared

the performance reported for their improved algorithm with the basic Physarum model, and

found theirs to perform better. Similarly, Zhang, et al. [258] improved the basic Physarum

model for SPP by combining it with a new ‘energy’ parameter, accelerating the search speed

and reducing the number of iterations required in the basic version. They compared their

results with three other algorithms: the basic Physarum, ACO and Dijkstra’s algorithm,

showing that their new algorithm outperforms both the basic Physarum and ACO in both

running time and execution speed, while performing comparably to Dijkstra as well as

43

proposing more than one shortest path at the same time. Zhang, et al. [259] applied the

Physarum algorithm to the Constrained SPP (CSP) problem in a directed graph for the first

time, combining it with Lagrangean relaxation. They perform some experimental analysis to

prove the ability of Physarum algorithms to also deal with CSPs.

2.4.3 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) was introduced by Dorigo [52] in 1991 as a means of

solving difficult optimization problems like the SPP, Travelling Salesman Problem (TSP),

Job Shop Scheduling Problems (JSSP) and others, and has been widely used for solving the

SPP specifically because it is most naturally related to ants’ food-finding activities. ACO is

based on the behavior of colonies or nests of ants and how they solve their day-to-day

problems, the most common of which is finding the shortest path to a food source. A worker

ant leaves its nest in search of food, and as it moves along, it deposits pheromone, a chemical

substance which evaporates with time. Other ants also searching for food are biased to follow

the path with a stronger pheromone scent when they are faced with a branch. As more ants

choose a particular path, they also deposit pheromone, making the pheromone scent even

stronger. Conversely, a path which is less used will have an increasingly weaker pheromone

scent because of the evaporation of the pheromone. This situation is more likely to occur

because the shorter the path, the smaller the time it will take for ants to get to and from the

food source, leading to the path being more used, and therefore, have an increasingly denser

pheromone deposit. Note that once an ant finds a food source, it tends to walk back to the

nest on its own pheromone trail. Eventually, all ants will choose the shortest path since it will

have a much higher pheromone level than other paths [110].

Various ACO systems are modelled after the behavior of the ants to solve the SPP. These

systems have the following basic structure [245, 253]

1. Initialization:

a. Generate and position m ants on the m nodes of the graph

b. Set 𝜏𝑖𝑗(0) = 𝑐, 𝑐 ≠ 0 , where 𝜏𝑖𝑗(𝑡) is the pheromone trail on the edge

between nodes i and j at iteration t.

44

2. For each ant, k at node i, select next adjacent node j, thus:

𝑃𝑖𝑛
𝑘 (𝑡) = {

arg
𝑚𝑎𝑥

𝑠 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖 𝜏𝑖𝑧(𝑡)𝜂𝑖𝑧

𝛽 (𝑡), 𝑞 ≤ 𝑞0

𝑠, 𝑞 > 𝑞0

} (2.27)

 where allowedk
i contains nodes adjacent to i which have not been visited by ant k.

𝜂𝑖𝑧(𝑡) denotes a the inverse of the total cost between i and z. 𝜂𝑖𝑧 is a heuristic function,

and is used to estimate the a-priori ‘desirability’ of the decision to move to node z. q

and q0 are random values within the interval [0,1]. s is a randomly selected node based

on the probability distribution:

𝑃𝑖𝑛
𝑘 (𝑡) = {

𝜏𝑖𝑧(𝑡)𝜂𝑖𝑧
𝛽 (𝑡)

∑ 𝜏𝑖𝑧(𝑡)𝜂𝑖𝑧
𝛽 (𝑡)

𝑥∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖

, 𝑠 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖

0, 𝑠 ∉ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖

} (2.28)

3. When an ant has reached the destination node, update its trail thus:

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + 𝜌Δ𝜏𝑖𝑗(𝑡) (2.29)

where

Δ𝜏𝑖𝑗(𝑡) = ∑ Δ𝜏𝑖𝑗
𝑘 (𝑡)

𝑚

𝑘=1

(2.30)

Δ𝜏𝑖𝑗(𝑡) represents the pheromone gain that will be introduced after the current tour

and 𝜌 is the pheromone decay parameter. Δ𝜏𝑖𝑗(𝑡) = 0 if ant k has not visited edge

(i,j). This is called the local updating rule.

4. At the end of an iteration, when all ants have reached the destination node, global

update is performed to update the pheromone of the shortest path which is denoted

as Llocalmin:

𝜏𝑖𝑗(𝑡 + 1) = 𝜏𝑖𝑗 + 𝜇Δ𝜏𝑖𝑗 (2.31)

where

45

Δ𝜏𝑖𝑗(𝑡) = {

1

𝐿𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛
, (𝑖, 𝑗) ∈ 𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(2.32)

ACOs have been applied successfully to the TSP. Recently, Mavrovouniotis and Yang [151]

integrated ACO with immigrant schemes to address the Dynamic TSP with traffic factors

(changing edge costs and so on), considering two types of dynamic environments: those

where the changes in traffic factors are entirely random, and those where the changes are

cyclic and have a chance of recurring. They proposed three variants of the algorithm, with

Random, Elitism-based and Memory-based Immigrant schemes, which they reported to

perform well in quickly and significantly, slowly and slightly, and cyclic changing

environments respectively. Furthermore, Yang, et al. [247] developed and ACO for the GTSP

which included a mutation process to avoid getting stuck on local optima. They also used a

2-opt heuristic for local search, testing their results on 20 instances from the TSPLIB [192].

The method was able to successfully handle instances of size less than 200 cities.

In [17], an ACO algorithm called n-ANT is presented for the Single Destination SPP on

Directed Acyclic Graphs (DAGs), based on Neumann and Witt [164]’s 1-ANT ACO

algorithm. More importantly, they conducted a rigorous analysis of the running time of ACO

algorithms in general, and proved polynomial-time bounds for their algorithm specifically,

which was a better performance than that recorded in [164]. Improving on their work, Sudholt

and Thyssen [213] presented another ACO algorithm called MMASSDSP, with results

extended from DAGs to arbitrary directed graphs. They also showed that their algorithm

transfers to the All Pairs Shortest Path Problem (APSP). They then compared the

performance of the proposed ACO algorithm with evolutionary and genetic algorithms using

number of fitness evaluations as a performance measure, and showed that ACO is a state-of-

the-art algorithm for the APSP. Zakzouk, et al. [253] proposed an ACO algorithm to solve

SPPs with fuzzy constraints. They demonstrated that raising the number of ants while making

other parameters like pheromone evaporation coefficient a heuristic selection can lead to the

best result in the best time. Yabo, et al. [245] provided three improvements to the classical

ACO for the SPP to prevent it from falling into local optima: direction guiding via setting of

heuristic initial pheromone concentration level, pheromone redistribution to prevent the

46

pheromone concentration of the optimal path from being overdamped by the pheromone

decay process, and introducing a dynamic factor to the global renewal process. Their results

were tested on a 30-node graph, and the results showed that the proposed modifications in

the classical algorithm can greatly increase the probability of finding the optimal path. ACO

has also been applied to solve the Stochastic Shortest Path Problem with favorable results

[66].

2.4.4 Particle Swarm Optimization

Particle Swarm Optimization was introduced in 1995 by Kennedy and Eberhart [119] as a

method to solve continuous optimization problems (COPs). It originated from their study of

the swarming behavior of flocks of birds and schools of fish and attempt to simulate that

behavior computationally. However, its introduction saw a great favorable response by the

scientific community, chiefly because of its speed of convergence, simplicity, ease of

implementation and wide applicability [175]. The classical PSO and its many variants have

been applied to solve numerous COPs with a high level of success [175]. PSO algorithms

generally have the following components:

1. Particles: These are simple agents which represent an individual fish or bird and are

used to search out solutions in the problem’s search space.

2. Position: A position represents a candidate solution, and at any given time during the

execution of a PSO algorithm, each particle is at a particular position in the search

space.

3. Swarm: A set of particles act together as a swarm in their search endeavor. They

communicate through simple interactions to share knowledge on good solutions,

guiding their search around them. Each particle in the swarm keeps track of its best

position gained so far (pbest), as well as the best position gained by the entire swarm

(gbest).

4. Velocity: Each particle flies through the search space at a particular velocity which

dictates both its direction and speed of motion. Its velocity is majorly influenced by

its pbest and the swarm’s gbest, together with some element of randomness for search

diversity.

47

Two equations for velocity and position update were proposed by Kennedy and Eberhart

[119] in the original PSO:

 𝑉𝑖
𝑡+1 = 𝑉𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) + 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡) (2.33)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (2.34)

where t is the iteration counter, i is the particle index, pbest is the personal best, gbest is the

global best, r1 and r2 are random numbers in the interval [0, 1], c1 is the referred to as the

cognitive parameter which dictates how biased the particle’s search will be biased towards

its personal best position, and c2 is the social parameter which dictates how much its search

will be biased towards the global best. The c1 and c2 parameters can be tweaked to favor either

exploitation or exploration respectively.

However, with the high level of research that went into the PSO [3, 15], various

improvements which focused on a key aspect of the PSO algorithm, velocity update, were

proposed. The current state-of-the-art PSO variant is the constriction coefficient PSO [175]

proposed in [51]:

𝑉𝑖
𝑡+1 = 𝜒[𝑉𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) + 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡)] (2.35)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (2.36)

Clerc & Kennedy defined 𝜒 thus:

𝜒 =
2

|2 − φ − √φ2 − 4𝜑|

(2.37)

where 𝜑 = 𝑐1 + 𝑐2, and 𝜑 > 4

The default settings for 𝜒 is considered to be 0.729, and that for c1 and c2 is 2.05 [175]. The

general PSO format of the PSO algorithm is shown in Algorithm 2-VI.

Algorithm 2-VI: Particle Swarm Optimization

1. Initialize swarm, gbest

2. For particle i in swarm

48

3. Initialize 𝑋𝑖
0

4. Set pbesti = 𝑋𝑖
0

5. For particle i in swarm

6. If(pbesti < gbest) // minimization problem

7. Set gbest = pbesti

8. While (termination criteria is not met)

9. For particle i in swarm

10. Compute 𝑉𝑖
𝑡+1 using eq. (2.35) and 𝑋𝑖

𝑡+1 using eq. (2.36)

11. If(𝑓(𝑋𝑖
𝑡+1) < pbest) // minimization problem

12. Set pbesti = 𝑋𝑖
𝑡+1

13. For particle i in swarm

14. If(pbesti < gbest)

15. Set gbest = pbesti

16. End While

17. Return gbest

2.4.5 Discrete Particle Swarm Optimization

Though the PSO was originally designed for Continuous Optimization Problems, various

efforts have been made to discretize it for real world problem which are discrete in nature,

such as TSP, JSSP, SPP and others. Because of the prevalence of COPs as applications of

real-world problems, a lot of intensive research has gone into discretizing PSO to solve them,

with various approaches and schemes being proffered. These schemes can be classified into

six categories from literature [44, 131]: Binary, Swap-operator-based, Space transformation-

based, Fuzzy matrix-based, Set-based, and Hybrid DPSOs.

2.4.5.1 Binary PSO

Kennedy and Eberhart proposed a discretized version of the PSO algorithm known as Binary

PSO (BPSO) [121] in 1997. In BPSO, positions are indirectly represented as strings of bits,

and velocities are changes in the probability that a particular bit will either be zero or one. A

candidate solution could for example be represented as [100101001110101001], with each

49

bit representing some problem-specific information. Also, some works define operations like

addition, subtraction and multiplication in terms of bit-wise OR, XOR, and other bit-wise

operations. In addition to the initial work done by Kennedy and Eberhert [121], various other

variants of binary PSO have been developed. These include Modified Binary PSO (MBPSO)

by Shen et al [201] in which the fitness function is modified as a static function, C(p), and is

applied to variable selection for both Multiple Linear Regression (MLR) and Partial Least-

Squares (PLS). The modified BPSO showed satisfactory performance in variable selection

and convergence rate. A Probability Binary PSO (PBPSO) was introduced by Wang, et al.

[232] which included a novel probability-based strategy for the update of a particle’s position.

They claimed that their algorithm is relatively simple and improves optimization ability,

testing their results on the Multi-dimensional Knapsack Problem (MKP), and finding it better

than other existing algorithms in speed of convergence and global search ability.

2.4.5.2 Swap-operator-based DPSO

This scheme was introduced by Wang, et al. [230], but a clear outline and definition was

given by Clerc [50]. It defines the position of a particle as a permutation of numbers, and

velocity as a set of swaps or ‘exchanges’ of these numbers to achieve a different permutation.

For example, if a position, p is given as (3, 6, 2, 1, 8), a velocity, v = [(2, 3), (3, 1), (4, 2)],

then when p is added to v, we get, successively for each velocity element,

(3, 2, 6, 1, 8) (swap position 2 with position 3)

(2, 3, 6, 1, 8) (swap position 3 with position 1)

(2, 3, 1, 6, 8) (swap position 4 with position 2)

Definitions for other operators are given in [50], some of which are left to the DPSO designer

to be tuned with respect to specific problems. Shi, et al. [203] proposed a swap operator-

based DPSO with an uncertain searching strategy and crossover eliminated technique. This

algorithm was extended to the General TSP (GTSP), being the first DPSO to be used for

GTSP, and shown to be able to solve graph instances of large sizes in both cases.

50

2.4.5.3 Space transformation-based DPSO

In space transformation schemes, a transformation method is found which maps the search

space to the problem space. That is, the search space is ‘constructed’ in way as to suit the

discrete nature of the problem, with the search space being made of discrete points which

correspond to feasible solutions which are in turn potential positions for a particle. For

example, in [197] where a DTSP is proposed for the Task Assignment Problem (TAP), the

search space is constructed as an M-dimensional space corresponding to an M task

assignment problem, such that a position is a vector of M tasks. Comparisons with a GA

approach for the TAP showed that their method is viable. In [174], the search space is defined

as a continuous Cartesian N-dimensional space, where N is the number of cities for the TSP,

and a mapping was made from the continuous space to discrete which applies to TSP. They

included local search techniques as well as chaotic operations to prevent premature

convergence, and demonstrated the proposed algorithm’s ability to find good solutions in

short time by testing it on four benchmark TSP instances.

2.4.5.4 Fuzzy DPSO

In fuzzy discretization for PSO [238], position and velocity are represented as a fuzzy n-

dimensional square matrix whose elements denote degree of membership in the target

position. A defuzzification process is performed on the position matrix to generate a valid

TSP tour. This is done by the use of a ‘Max Number Method’ to go through the position

matrix row by row, selecting unique column indices with the highest membership score.

Upon completion of the selection process, the column indices form a set which represents a

TSP tour. A Similar fuzzy matrix scheme is implemented by Liao, et al. [140] in developing

a DPSO algorithm for the flow shop scheduling problem. They combined the DPSO with a

local search algorithm, and were able to solve both single- and multi-objective variants of

the flow shop scheduling problem with results which compared favorably with those existing

in literature. In the same vein, Hajforoosh, et al. [99] applied a Fuzzy DPSO to the Plug-in

Electric Vehicle (PEV) charging co-ordination problem which involves minimizing costs

associated with energy generation and grid losses when electric vehicles plug into an electric

grid for charging, while maximizing the power delivered to them. The algorithm was tested

51

on a 449-node electric network populated with PEVs having different driving patterns,

battery sizes and charging rates, and prove to be viable.

2.4.5.5 Set-based DPSO

In set-based schemes, a particle’s position is represented as a mathematical set of unique

elements which represents a solution in the search space, the search space being characterized

as a universal set. All operators in the two update equations are defined as set operations,

though the specific implementation of these operations vary from problem to problem and

from algorithm to algorithm. For the TSP, this set can either be made of edges that form a tour,

or ordered nodes which also form a tour. Therefore, a typical set for a 7-node graph could be

either (2, 1, 4, 6, 3, 5, 7, 2) or [(2,1), (1,4), (4,6), (6,3), (3,5), (5,7), (7,2)].

In [263], a novel algorithm is propounded for discretizing PSO for the TSP, which they called

C3DPSO, introducing a ‘mutation factor’, c3, to prevent premature convergence of the

classical discretized PSO. They discretized particles’ position as a set of edges with associated

probability. They also used the same representation for velocity. Operators were redefined

with respect to these representations, and they are discussed in the paper. Six classic TSP

benchmarks from TSPLIB [192] were used in comparing the results of their improved

algorithm with those obtained from ACO. They found out that the C3DPSO was much better

on all benchmarks than all other compared algorithms both in precision and in computational

cost. Fang, et al. [74] proposed “an advanced PSO algorithm with Simulated Annealing”,

aiming at using simulated annealing to reduce the tendency of the classical PSO to get trapped

in local minimum, “slow down the degeneration of the PSO swarm, and increase swarm

diversity”. They also used a set-based approach in discretizing PSO, where a position is a set

represented as {s[1], s[2], …, s[n]}, where s[i] = j indicates that city j is visited from city i.

In analyzing their algorithm’s efficiency, they compared it with basic Simulated Annealing,

basic Genetic Algorithm and basic Ant Colony Algorithm on the benchmark problems

Oliver30 and Att48 from the TSPLIB [192]. They found out that their algorithm is

significantly better than the other compared algorithms, and a more effective means of

solving the TSP problem.

52

Chen, et al. [44] developed a novel set-based PSO method for Discrete Optimization

problems, which they called Set-based PSO (S-PSO) aimed at using a set-based

representation scheme to characterize the search space of continual optimization problems,

and which could be used to extend the various PSO variants to their discrete versions. They

used their algorithm to develop a discrete version of the Comprehensive Learning

PSO(CLPSO) proposed in [138]. They evaluated the algorithm by using it to solve some

benchmark TSP problems and comparing the results with those of both existing PSO-based

approaches and some meta-heuristic algorithms. At the end, they found their algorithm to be

promising. Also, Ma, et al. [147] proposed an “efficient discrete PSO algorithm” in order to

achieve optimization in discrete space. This was a modification of the work of Qu, et al.

[186] called Locally Informed Particle Swarm (LIPS) based on set-theory. They called the

algorithm Set-based LIPS (S-LIPS). They then compared the performance of S-LIPS on

some benchmark TSP instances with that of S-CLPSO, and found the results to be promising,

especially in the case of large scale problems. A Discrete Particle Swarm Optimization

(DPSO) technique is also presented in [6] to solve graph-based TSP. Its convergence was

tested, and the result found favorable. Wu, et al. [244] proposed a discrete PSO (DPSO)

algorithm with scout particles for optimizing library material acquisition subject to certain

constraints including budget and number of materials. The efficiency of the proposed DPSO

was established through empirical study and simulation.

The majority of the DPSO algorithms which have been proposed specifically for the

(elementary) SPP have been found to also use the set-based approach [252], [155], and [156].

These algorithms all use an indirect method for encoding paths as positions, mainly because

of the fact that this allows for less invalid paths than would be produced by a direct

representation made of a mere random permutation of nodes. Another major reason is that

the updating of particle positions is based on set arithmetic operations which would lead to

invalid nodes if they are applied on direct node representations. The disadvantage of this

indirect method is the need for a decoding process to translate the encoded representation

into path for fitness evaluation [155]. Two major approaches exist for this indirect encoding:

priority-based and weight-bias-based. In priority-based encoding (used in [155]), a position

53

is a set whose indices represent nodes in the graph, and whose values are numbers

representing allocated priorities. The path is constructed through a path-growth procedure

which starts from the source node, iteratively selecting the adjacent node with the highest

priority, until the destination node is reached. In the weight-biased encoding method, each

node has an allocated weight, and the edge costs are biased based on the weights of their two

adjacent nodes. The formula used for edge cost bias in [156] was inspired by that presented

in [187], which is given in equation (2.38).

𝑐𝑖𝑗
′ = 𝑐𝑖𝑗 + 𝑤𝑖 + 𝑤𝑗 (2.38)

where cij is the cost of edge (i,j) and wi is the weight of node i.

For the weight-biased encoding scheme which was used in [156], the path-growth procedure

is used, but in this case, adjacent edges are evaluated and selected based on

𝑗 = min {𝑐𝑖𝑗𝛽𝑗|(𝑖, 𝑗) ∈ 𝐸} , 𝛽𝑗 ∈ [−1.0,1.0] (2.39)

where 𝑐𝑖𝑗 represents the cost of the edge (i,j), 𝛽𝑗 is the associated weight, and E is the set of

edges in the graph.

According to Mohemmed, et al. [156], the weight-biased method is superior to the priority-

based one when implemented for PSO. They presented a hybrid DPSO for the SPP which

uses weight-biased method and incorporates a noising metaheuristic and periodic velocity re-

initialization to enhance the search capability of the algorithm. They used their algorithm to

solve randomly generated SPP instances of sizes ranging between 50 nodes and 160 edges

and 100 nodes and 200 edges, achieving average accuracy levels of about 90% in all cases.

However, they do not discuss the discretization scheme used, nor do they mention the use of

position-specific information to enhance and consolidate their algorithm’s search process.

The same authors, in [155], presented a modified path encoding scheme in which they used

a priority-based approach. They introduced a heuristic operator to reduce the probability of

‘no-exit nodes’ which cause the formation loops or invalid paths, and compared their results

on instances ranging from 15 to 70 nodes with those produced by GA methods existing in

literature. Their algorithm was shown to perform better than those with which it was

54

compared, both in speed and accuracy. Their algorithm also produced near-optimal paths

with costs of up to 95% of the optimal cost.

In [252], an improvement is made on the algorithm in [155]. They maintained a priority-

based encoding approach, though they introduce a new idea of randomly selecting priority

values and incorporating search decomposition to improve the performance of the algorithm.

Their algorithm’s performance was different instances of real-world data with size ranging

from 13 to 38 nodes, and the performance of the improved algorithm was better than the

previous one. However, they similarly do not describe their PSO discretization procedure,

and therefore nothing can be said about how they went about operator redefinitions and so

on. Of all three DPSO methods for SPP which were found in literature, the one which showed

the most promise was [156], where 100-node instances of the SPP were solved with accuracy

of up to 90% in as few as 107 iterations.

2.4.5.6 Hybrid DPSO

Hybrid methods incorporate other meta-heuristics into DPSO. In [235], the ideas of a swarm,

gbest and pbest from PSO were combined with a novel quantum bit expression mechanism

based on Quantum-inspired Evolutionary algorithm to develop a Quantum Swarm

Evolutionary (QSE) algorithm. Experiments on the 0-1 Knapsack problem and TSP showed

that the algorithm outperformed Tabu Search and Simulated Annealing, though the

performance was not optimal when the number of cities is large for TSP. Afshinmanesh, et

al. [7] introduced a novel DPSO which combines Binary PSO with Artificial Immune

Systems to create a novel Binary PSO which performed better than other Binary PSO in

literature, as well as a GA method. Others hybrid approaches incorporate problem-dependent

local search methods. In [37], a Hybrid DPSO (HDPSO) algorithm is proposed which

combines a novel discretization technique with a local search algorithm based on Simulated

Annealing to improve quality. Their algorithm was specifically designed for the no-wait flow

shop scheduling problem, and upon comparing it with another Hybrid DPSO designed for

the same problem in literature, they found that their algorithm executes at much higher speed.

Finally, in [145] a hybrid model between PSO and a GA-based local search (called Fast Local

Search) is proposed for the blind TSP. Instances ranging between 76 and 2103 cities in size

55

were solved with error rates varying between 1 and 2.538%. This served to demonstrate the

robustness of the proposed HDPSO. A summary of the discretization schemes discussed is

presented in Table 2.1.

Table 2.1: Summary of PSO discretization schemes used in literature

Binary Afshinmanesh, et al. [7], Kennedy and Eberhart [121],

Khanesar, et al. [122], Khanesar, et al. [123], Taşgetiren

and Liang [216], Wang, et al. [232]

Swap operator-based Clerc [50], Wang, et al. [230]

Space transformation Pang, et al. [174], Salman, et al. [197]

Fuzzy Abraham, et al. [1], Hajforoosh, et al. [99], Liu, et al. [143],

Wei, et al. [238]

Set-based Chen, et al. [44], Langeveld and Engelbrecht [131], Liu and

Maeda [144], Ma, et al. [147], Mohemmed, et al. [155],

Mohemmed, et al. [156], Momtazi, et al. [157], Wei-Neng,

et al. [237], Yusoff, et al. [252]

Hybrid Afshinmanesh, et al. [7], Chandrasekaran, et al. [37], Lope

and Coelho [145], Wang, et al. [235]

2.4.6 Memetic DPSO

Memetic algorithms have been successfully used to solve complex optimization problems

because they have two components: the global and local search components, which lead to a

balance in both exploration and exploitation of the search space. The term ‘memetic’ comes

from ‘meme’, a word which was coined by Dawkins in 1976 in his book, the Selfish Gene

[59]. The meme is a unit of intellectual or cultural information, as opposed to the gene, which

is a unit of biological information. The key advantage of a meme is that an individual can

improve its meme’s information through learning and experience during its lifetime, a feat

which is impossible with genes. A memetic algorithm usually consists of memes with which

global search is done akin to other Evolutionary Algorithms. However, it then uses its local

search component to attempt to improve each meme iteratively. As a result, a balance can be

56

achieved between exploration and exploitation, where such a balance has been found difficult

to achieve with the general class of Evolutionary Algorithms, as well as some Particle Swarm

Optimization (PSO) variants [73, 178, 228]. In this work, the Random Walk with Direct

Exploitation (RWDE) algorithm presented in [178] is implemented with the application of

Schematic 1 described in the same paper, where local search is performed on the global best

at each iteration of the PSO. The local search algorithm is presented in Algorithm 2-VII

[178].

Algorithm 2-VII: Random Walk with Direct Exploitation

1. Let X(t) be a vector representing current position at the tth iteration, X(t+1)
 be the new value

at the (t+1)th iteration, and z(t)
 be a vector. Set λ = λinit and find F(X(t)), the fitness value

of position X(t)

2. Set t = t + 1. If t is greater than tmax, end. Otherwise randomly generate a z with elements

within the range (0,3].

3. Compute F’ = F(X(t) + λz).

4. If F’ < F

a. Set X(t+1) = X(t)+ λz, t = t + 1, λ = λinit, F
(t) = F’.

b. Check if t > tmax. If yes, terminate. If no, go to (3).

5. If F’ >= F, set X(t+1) = X(t) and go to (2).

2.5 Multi-Objective Optimization (MOO)

In multi-objective optimization (MOO) problems, two or more competing and/or conflicting

functions are to be minimized/maximized at the same time. As a result of the conflicting

nature of the objectives to be optimized, it is often near-impossible to find solutions which

optimize all objectives. As a result, trade-offs in optimizing the various objectives are usually

provided [194]. These tradeoffs are presented in form of a set of solutions which are not

strictly better than each other in all objectives to be minimized (one is better than the other

in at least one objective), referred to as pareto-optimal solutions [231]. Given 𝑥⃗ =

57

[𝑥1, 𝑥2, … , 𝑥𝑑] where d is the dimension of the decision variable space, multi-objective

optimization problems are usually of the form [221]:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = [𝑓1(𝑥⃗), 𝑓2(𝑥⃗), … , 𝑓𝑚(𝑥⃗)] (2.40)

 Subject to

𝑔𝑗(𝑥⃗) ≤ 0, 𝑗 = 1,2, … , 𝐽 (2.41)

ℎ𝑘(𝑥⃗) = 0 𝑘 = 1,2, … , 𝐾 (2.42)

where 𝑓𝑖 ∶ ℝ𝑛 → ℝ, 𝑖 = 1, … , 𝑚 are the objective functions, 𝑔𝑗(𝑥⃗), ℎ𝑘(𝑥⃗) ∶ ℝ𝑛 → ℝ, 𝑗 =

1, … , 𝐽, 𝑘 = 1,2, … , 𝐾 are the inequality and equality constraint functions, respectively, of

the multi-objective problem.

The concept of pareto-optimality was first introduced in 1906 by Vilfredo Pareto, an

economist [36]. In order to formally define this concept, a few important terms are defined

below [158, 194]:

Dominance: A vector, 𝑥⃗ is said to dominate another vector, 𝑦⃗ (denoted by 𝑥⃗ ≺ 𝑦⃗) if 𝑓𝑖(𝑥⃗) ≤

𝑓𝑖(𝑦⃗) for 𝑖 = 1, … , 𝑘 and 𝑓𝑖
⃗⃗⃗(𝑥⃗) < 𝑓𝑖

⃗⃗⃗(𝑦⃗) for at least one 𝑖 = 1, … , 𝑘. That is, 𝑥⃗ not worse than

𝑦⃗ in all objectives, and 𝑥⃗ better than 𝑦⃗ in at least one objective. A graphical illustration is

given in Figure. 2.4.

58

Non-dominance: A vector, 𝑥⃗ ∈ 𝒳 ⊂ ℝ𝑛 is said to be non-dominated with respect to 𝒳 if

there exists no other 𝑦⃗ ∈ 𝒳 such that 𝑓(𝑥⃗) ≺ 𝑓(𝑥⃗). In simple words, there exists no 𝑦⃗ which

is better than 𝑥⃗ in all objectives.

Pareto-optimality: Pareto-optimality of a vector 𝑥⃗ within a feasible region, ℱ, therefore,

implies that the vector 𝑥⃗ is non-dominated with respect to ℱ.

Pareto-optimal set: Denotes the set 𝒫∗, of all pareto-optimal solutions in ℱ. Formally, 𝒫∗

is defined as:

𝒫∗ = {𝑥⃗ ∈ ℱ | 𝑥⃗ is pareto-optimal}

Pareto Front: The Pareto Front, 𝒫ℱ∗is the set of all objective values corresponding to all

variables in the pareto-optimal set. A Pareto-front is shown in Figure. 2.5. Formally,

𝒫ℱ∗ = {𝑓(𝑥⃗) ∈ ℝ𝑘|𝑥⃗ ∈ 𝒫∗}

Figure. 2.4: Illustrating dominance in a 2-objective space ([194])

59

The goal in solving multi-objective optimization problems (MOOPs), therefore, is to detect

the “highest possible number of Pareto-optimal solutions that correspond to an adequately

spread Pareto front, with the smallest possible deviation from the true Pareto front” [177].

2.5.1 Multi-Objective Particle Swarm Optimization (MOPSO)

It is clear from the above definitions that the usual single-objective PSO would be inefficient

or even outright fail when applied to MOO. Due to the nature of MOO, the following issues

arise when extending PSO to solve MOOPs [194]:

1. Choice of leader: Choice of the right particle to act as a leader for the particle flight

process since the concept of a single global best no longer applies. The choice of

leader should be such that only non-dominated solutions are selected.

2. Set of non-dominated solutions: An optimal way of maintaining an updated set of

non-dominated solutions found over iterations, which are well-spread along the

Pareto front.

3. Diversity promotion: Maintaining the swarm in such a way that diversity is

promoted, and prevent convergence to a single solution is prevented.

Various MOPSO algorithms have been presented in literature, proposing various ways of

handling these issues. Some of the key proposals based on these three issues are highlighted

subsequently.

Figure. 2.5: Pareto front for a two-objective minimization problem

60

2.5.1.1 Choice of leader

In MOPSOs, rather than having a single leader (global/local best) directing the flight of

particles, a set of non-dominated solutions referred to as the external archive is usually

maintained, and the leader for each particle in each iteration selected from this set. The choice

of which leader to select has been approached from different angles. While a few researchers

decide to randomly select leaders from the external archive [124], the general approach taken

by researchers in literature is to define some quality measure by which the closeness of

particles within a swarm can be measured. Some of the important quality measures in

literature include the Nearest neighbor density estimator [62] and kernel density estimator

[61]. A very widely-used quality measure is the sigma method proposed by Mostaghim and

Teich [159] which assigns a value 𝜎𝑖 to each solution. Sigma (𝜎) is defined for the bi-

objective case as

𝜎 =
𝑓1

2 − 𝑓2
2

𝑓1
2 + 𝑓2

2 (2.43)

This value is extended to a 3- or more objective case thus:

𝜎⃗ =

(

𝑓1
2 − 𝑓2

2

𝑓2
2 − 𝑓3

2

𝑓3
2 − 𝑓1

2

)

(𝑓1
2 + 𝑓2

2 + 𝑓3
2)

(2.44)

Thus, a particle in the course of performing its position update will select the particle in the

external archive with the closest sigma-value to its own as its leader.

Another measure is the crowding distance proposed by Raquel and Naval Jr [190], which

provides an estimate of the density of solutions surrounding a given solution in the objective

space. To calculate crowding distance, all solutions are sorted in an ascending order based

on each objective function value. Solutions with highest and lowest objective values are

given infinite crowding distances, and the crowding distance for each remaining solution is

calculated by first obtaining the average distance of its two neighboring solutions in the

sorted list, for each objective. Its final crowding distance is then the sum of the crowding

distances obtained for each objective function. A group of non-dominated solutions with

61

highest crowding distances are used as the leaders of the swarm, each particle randomly

selecting its leader from this group. A few more recent techniques for selecting leaders

include the use of hyper-heuristics [34], and parallel cell coordinate system [229].

2.5.1.2 Set of non-dominated solutions

As a result of the complexity of maintaining an external archive as well as the chance of its

size exploding, some researchers have tried to avoid its use by proposing objective function

aggregation methods which perform a weighted combination of all objective functions into

a single one thus:

𝐹(𝑥) = ∑ 𝑤𝑖𝑓𝑖(𝑥)

𝑘

𝑖=1

(2.45)

where the sum of all the weights is usually normalized to 1:

𝐹(𝑥) = ∑ 𝑤𝑖 = 1

𝑘

𝑖=1

(2.46)

Some notable such approaches include the Conventional Weight Approach (CWA), Bang-

Bang Weighted Approach (BWA) and the Dynamic Weighted Approach (DWA), all adapted

from Jin et al [117] for MOPSO by Parsopoulos and Vrahatis [176]. However, these methods

have a strong limitation in that the algorithms have to be run repeatedly, hopefully finding a

different non-dominated solution at each run, for the pareto front to be achieved.

For pareto-based approaches, the size of the external archive poses a challenge. Whenever a

solution which is non-dominated by a particle’s pbest is found, it is to be added to the external

archive. There is therefore a tendency for the size of the external archive to increase

significantly after a few iterations, which results in dominance checks which have to be

carried out during every iteration becoming computationally expensive. This has led to the

necessity of restricting the size of the external archive to some reasonable and

computationally manageable value. Some researchers do this by determining a fixed size for

the external archive, and as soon as the predetermined size is reached, applying truncation

and clustering techniques to delete old archive candidates while maintaining a good spread

62

of solutions [127, 265]. However, the problem of deciding on a condition (better than mere

dominance) based on which a solution will be added to or removed from the external archive

still needs to be solved. The major scheme adopted by researchers in literature to address this

problem is the simple, yet effective 𝜖-dominance scheme proposed by Mostaghim and Teich

[158]. To explain the concept of 𝜖-dominance, they gave the following definitions:

𝜖-domination: For some ε > 0, a decision vector, 𝑥⃗1 ∈ 𝒳 is said to dominate a decision

vector 𝑥⃗2 ∈ 𝒳 (denoted by 𝑥⃗1 ≺𝜖 𝑥⃗2) iff:

 𝑓𝑖(𝑥⃗1)/(1 + 𝜖) < 𝑓𝑖(𝑥⃗2)∀ 𝑖 = 1, … , 𝑚.

 𝑓𝑖(𝑥⃗1)/(1 + 𝜖) ≤ 𝑓𝑖(𝑥⃗2) for at least one 𝑖 = 1, … , 𝑚.

𝜖 -approximate Pareto Front: Let 𝐹 ⊆ ℜ𝑚 be a set of vectors and 𝜖 > 0 . The ϵ-

approximate Pareto Front 𝐹𝜖 ⊆ 𝐹 contains all vectors 𝑥⃗ ∈ 𝐹, which are not ϵ-dominated by

any vector 𝑥⃗2 ∈ 𝐹:

∀𝑥⃗2 ∈ 𝐹: ∃ 𝑥⃗1 such that 𝑥⃗1 ≺𝜖 𝑥⃗2 (2.47)

Their scheme provides an effective way of filtering the contents of the external archive and

keeping its size at a reasonable level [177], and on comparison with other well-known

clustering techniques, it was shown to find solutions faster and with even better diversity. An

illustration of how 𝜖-dominance enlarges the area dominated by a solution is given in Figure

2.6.

Figure 2.6: Dominance and 𝜖-dominance [158]

63

Recently, a mechanism known as stripes which improves on 𝜖-dominance was proposed in

[225]. Though the proposed technique was shown to perform better than 𝜖-dominance in

selecting leaders, it exhibits much greater complexity compared to the simple nature of 𝜖-

dominance.

2.5.1.3 Diversity promotion

One of the strengths of PSO is its fast convergence. However, with fast convergence comes

the danger of getting trapped on local optima, as has been pointed out by various PSO

researchers [3, 4]. Therefore, there is the need for a means through which diversity can be

maintained within the swarm so as to counter-balance fast convergence. One of the major

factors which affects swarm diversity is inertia weight, and so tuning or optimizing the inertia

weight scheme can significantly improve the diversity of the swarm. In [14], two chaotic

inertia weight strategies are proposed which are proven to enhance swarm diversity while

maintaining fast convergence, with the methods tested successfully on benchmark global

optimization problems.

Another strategy which has been widely used in MOPSOs is mutation, a concept borrowed

from Genetic Algorithm (GA). Mutation is usually carried out based on a user-defined value

called mutation rate. Upon choosing a solution to be mutated, a decision is made on changing

each component of the solution or not based on the mutation rate (probability). Thus,

mutation can be a very useful tool in helping swarms to escape being trapped on local optima

[194]. Recent proposed algorithms for maintaining swarm diversity in MOPSOs include

Partitioning Around Medoid (PAM) clustering algorithm as well as uniform design proposed

by [264]. Here, the pareto front is partitioned into K clusters and then uniform crossover

employed on the minimal cluster, with PAM being used to decide which solutions are to be

removed or inserted in the external archive. Daneshyari and Yen [55] also introduced a

cultural-based MOPSO in which a cultural framework is used to adapt the personalized flight

parameters of mutated particles. Another approach to maintaining diversity is the use of a

dynamic multi-swarm technique, as was recently adapted to MOPSO by Liang, et al. [139]

showing remarkable performance on various benchmark test functions.

64

A summary of the general form of MOPSO algorithms is presented in Algorithm 2-VIII

[194].

Algorithm 2-VIII: General MOPSO Procedure

1. Initialize swarm

2. Initialize external archive

3. Compute quality measure of leaders in external archive

4. While (termination criteria not met)

5. For each particle in swarm

6. Select leader (based on quality measure)

7. Perform particle flight (based on equations (6) & (7)

8. Perform mutation

9. Evaluate fitness

10. Update pbest and add discovered non-dominated solution to external archive

11. Update external archive

12. Compute quality measure of leaders in external archive

13. Return external archive as pareto front

2.6 Inspirations for New Algorithms

Having reviewed the existing literature with special emphasis on DPSOs for TSPs and SPPs,

the following inspirations gave rise to the proposed DPSOs for both problems.

65

As regards the TSP, it was discovered in reviewed literature that none of the DPSOs actively

factored in the distribution of edge costs within the input graph in directing the particles’

search towards more promising solution regions. To illustrate this concept, consider the graph

in Figure 2.7. Given the distribution of edge costs within the graph, edges (5,1), (5,4), and

(3,2) have relatively high costs. A means was therefore sought through which these high-

cost edges can be identified, and the search directed away from them towards much cheaper

edges such as (1,2), (2,8), (5,3). This inspired the development of the Enhanced

Communication DPSO, as is fully presented and discussed in Chapter three.

Figure 2.7: Sample 6-node-sized graph

1

4

8

5

3

6

7

2 S

T

0.3

0.8 1.6

0.2

0.6

0.9
0.4

1.1

5

9

2 6

10

4

1

6

8 5

4

3

Figure 2.8: Graph illustrating weight-based encoding and resulting path

1 2

3

4 5

6

1

1

8

66

In addition, for the SPP, it was noted that the majority of DPSOs used in the literature are

set-based. Consider the graph in Figure 2.8 which shows a path from node 2 to node 6. In the

weight-biased encoding which has been successfully employed for SPP in literature, this path,

(2, 1, 5, 7, 4, 6), will be represented as (0.3, 1.1, 0.6, 0.4, 0.9, 1.6, 0.2, 0.8). The general

weight-biased path decoding scheme chooses the path with the minimum cumulative biased

edge cost (equation (2.38)). This implies that varying permutations of the same weights

within a set represent different paths.

As a simple example, if the set earlier given is rearranged as (0.4, 0.2, 1.1, 0.6, 0.8, 0.3, 1.9,

0.9), the resulting path will be changed to (2, 1, 5, 4, 6), as highlighted in Figure 2.9, which

happens to be a cheaper path. Therefore, the node allocations of these weights uniquely

identify a path, and need to be taken into consideration during the search process, especially

as the gbest and pbest need to be uniquely identified for the particles to be able to effectively

converge towards them. This prompted the development of the second algorithm which is

proposed for the SPP, presented in Chapter four.

2.7 Summary

A review has been conducted of the Shortest Path Problem and its variants, with a highlight

on Stochastic Shortest Path Problems. Also, the methods used for solving SPPs in literature

have been discussed, highlighting exact, non-NI heuristic methods and NI heuristics

1

4

8

5

3

6

7

2 S

T

0.4

0.9 0.3

1.9

1.1

0.8
0.6

0.2

5

9

2 6

10

4

1

6

8 5

4

3

Figure 2.9: Graph illustrating weight-based encoding and resulting path

67

including Particle Swarm Optimization. The various discretization techniques used for PSO

which exist in literature have also been discussed, and the existing DPSO methods specific

to the SPP and TSP highlighted. Three existing DPSO algorithms for SPP were found in

literature, but of all three, none explicitly described the PSO discretization process which

they used as is expected, and as was the case with other DPSOs presented in literature. It was

also observed that of all the discretization techniques used for TSP which were found in

literature, none took advantage of edge costs as a means of driving the particles’ search

towards more promising regions. Furthermore, it was observed that the existing method used

for solving the SDP in literature is a Metropolis algorithm which entails the generation of

about 3,200,000 different submission schedules. This involves unnecessary computational

burden, both time and memory-wise.

Based on the aforementioned observations, this research focusses on developing two new

DPSO algorithms. The first DPSO algorithm, which is tailored towards the TSP, introduces

the idea of driving particles’ search by their experience of how ‘good’ an edge is, leading

them to concentrate on more promising regions within the search space, and hence speeding

up convergence. A DPSO algorithm for the SPP is also proposed which clearly describes the

discretization process and incorporates node position-specific information. This research also

deals with the application of the DPSO algorithm proposed for SPP to solve the SPP, MOSSP,

and SDP.

68

Chapter Three

3 An Enhanced Communication Discrete Particle Swarm Optimizer for

the Travelling Salesman Problem

3.0 Introduction

The discretization of the Particle Swarm Optimization (PSO) technique for the Travelling

Salesman Problem (TSP) in the proposed case is such that a position is a certain permutation

of edges that form a Hamiltonian cycle. Hence, if for example, six cities are being considered,

all interconnected in a mesh, then a position could be the set of edges: {(1, 2), (2, 3), (3, 4),

(4, 5), (5, 6), (6, 1)}. The concept of the Enhanced Communication DPSO (EC-DPSO) is

embedded in the attempt to directly portray velocity as a measure of the amount of change

that will be effected on a particular position to produce a new position, and drive particle’s

search by their communal concept of how ‘good’ or ‘bad’ an edge is.

3.1 PSO Discretization

In the process of adapting equations (2.33) & (2.34) to the discrete form of PSO, and more

specifically EC-DPSO, the following definitions were made:

Definition 1: (x, y) – represents an undirected edge between two cities, x and y, where the

cost of travelling from city x to city y is equal to the cost of travelling from city y to city x.

Definition 2: Velocity, V represents the number of edges in the current position to be

substituted for new edges. Where the value of V exceeds the number of edges required to

form a Hamiltonian cycle, it will be clamped down to the number of edges required to form

a Hamiltonian cycle. For example, if the number of cities is 6, then the number of edges

required to form a Hamiltonian cycle is also 6. Now, if the value of V is, say 9, its value will

be brought back down to 6. The rationale behind this is that the highest number of edges that

can be changed in a particular position is obviously the number of edges in that position.

Therefore, if V exceeds this value, the value that most closely represents the value of V is that

number. Also, since velocity is discretized as a scalar value, the question arises about the

69

case when this value is not an integer. Since the value of V has to be an integer, it was decided

that any floating point value gotten will be approximated to the nearest integer.

Definition 3: Subtraction –Between two position vectors, A and B, a subtraction, represented

as A – B, is defined as the index values of edges in B, which are not in A. The motivation

behind defining subtraction this way arises from the two instances where this operation

occurs in equation (2.33), that is pbest – X and gbest – X. This operation, in the classical PSO,

is aimed at measuring the deviation of the position of the current particle from its personal

best and the global best respectively, so as to make the subsequent positions to oscillate

around those values. Now, since the velocity, V represents the number of edges to be changed

in the process of finding a new position, and considering the fact that the result of pbest – X

and gbest – X will invariably contribute to this value of V, subtraction should be carried out

in such a way that the result constitutes those edges in the current position which are not in

the pbest and gbest, and hence show which edges are to be changed in the current position to

obtain the new one. Recall that at this point, these values are the best known values, and the

aim is to use the information they contain to aid the search for new positions. An example

will suffice to illustrate the redefined subtraction operation:

If 𝐴 = {(2, 3), (5, 6), (3, 4), (6, 2), (1, 5), (1, 4), and

 𝐵 = {(1, 4), (1, 3), (4, 2), (6, 5), (5, 2), (6, 3)},

Then 𝐴 – 𝐵 = {2, 3, 5, 6}

The numbers, 2, 3, 5 and 6 are the indices of the edges in B which differ from those in A.

Definition 4: Multiplication – is defined thus: x * A = {x1, x2, …, xn} = x * |A| . For example,

3 * {1, 3, 7} = 9.

Definition 5: Addition maintains its meaning as a sum of two scalar quantities, A and B. For

example, 3 + 4 = 7.

Definition 6: EdgeBank – EdgeBank is a list of all edges in the input graph from which each

particle will select the edges to form its new position. Each edge in EdgeBank has an

70

associated goodnessIndex which influences its chance of being selected as part of a new

position. An example of an EdgeBank could be:

 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
{0.552(1,2), 0(2,3), 0.232(3,4), 1.0923(4,5), 0(5,6), 0(6,1), 2.1110(6,2)}

All goodnessIndex values of the edges will be initialized to zero, and will only be updated at

the end of the current iteration, that is after all particles have been processed.

As can be seen from the example above, the EdgeBank will also be used to track the

‘opinions’ of the different particles about a particular edge. To do this, the EdgeBank will

contain, for each edge, three integer values: the first, a, will track how many particles

included edge x, the second, b, will track how many particles consider edge x to be a ‘good’

edge, as will be defined below, and the third, c, will track how many particles consider edge

x to be a ‘bad’ edge.

 The concept of ‘goodness’ of an edge is defined thus:

o If during the processing of a particle, the fitness function of the new position

evaluates to a better result than the one obtained at the previous iteration, the

edge is considered to be ‘good’. That is, the value of b will increase by 1.

o If on the other hand, the fitness function of the new position evaluates to a

worse result than the one obtained at the previous iteration, the edge is

considered to be ‘bad’. That is, the value of c will increase by 1.

o If it is neither better nor worse, nothing will be done to the edge, or it is

considered ‘neutral’. That is, a and b will remain unchanged.

 After the processing of each particle, the value of a for all edges constituting the new

position will be increased by 1.

 After all particles have been processed, the goodnessIndex values of the all the edges

in EdgeBank will be updated thus:

a b c

71

o If the value of b is greater than or equal to half the value of a, the

goodnessIndex of that edge will be increased by a constant, Q. The value of

Q is discussed in section 3.1.1.

o If the value of c is greater than or equal to half the value of a, the

goodnessIndex of that edge will be reduced by Q.

o In the case where neither of the above happens, or b and c are the same, the

goodnessIndex of that edge will not be changed.

Finally, there will be a fixed value, K, above which if any edge’s goodnessIndex gets, it will

be always selected by particles in their generation of a new position. The parameter K is also

discussed in section 3.1.2.

Definition 7: The update operation in equation 2.34 has also been re-defined. As has been

earlier stated, the velocity is the number of edges to be replaced in X. In the update process,

𝑉𝑖
𝑡+1 random edges will be selected from EdgeBank and used to replace the ones in 𝑋𝑖

𝑡. It

involves both the selection of the specific edges in 𝑋𝑖
𝑡 which are going to be replaced, and

the selection of the edges in EdgeBank which will replace them.

The selection of edges to be replaced in 𝑋𝑖
𝑡 will be in three stages:

1. Compute the approximate value of 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡), x, and then randomly choose,

from the set of indices resulting from 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡, x indices whose edges in 𝑋𝑖
𝑡 will

be replaced.

2. Compute the approximate value of 𝑐2𝑟2
𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖

𝑡), y, and then randomly choose,

from the set of indices resulting from 𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡, y indices whose edges in 𝑋𝑖

𝑡 will

be replaced.

3. Where the value of x + y is less than 𝑉𝑖
𝑡+1, randomly choose the remaining 𝑉𝑖

𝑡+1 – (x

+ y) edges which will be replaced in 𝑋𝑖
𝑡.

The selection of the edges from EdgeBank which will be used in the replacement will also

be thus:

72

1) Randomly select, if possible, 𝑉𝑖
𝑡+1 edges whose goodnessIndex values are greater

than or equal to K. If the number of edges selected is not up to 𝑉𝑖
𝑡+1, then proceed to

2, with z as the number of edges already selected. Else, terminate the selection

process.

2) Randomly generate a number, R, within the interval [0, T], where T is a value which

will continue to increase as the number of iterations increase. The value of T is

elaborated upon in section 3.1.3.

3) From EdgeBank, randomly select 𝑉𝑖
𝑡+1 − 𝑧 edges whose goodnessIndex values are

higher than R. In the case where the number of edges whose goodnessIndex values

are higher than R is not up to 𝑉𝑖
𝑡+1 − 𝑧, then randomly select the remaining number

of edges needed to form a Hamiltonian cycle, ensuring that no edge(s) are selected

which are already part of the new position. It is worthy of note that in selecting the

edges, the selection of the last edge to form the new position does not really have

any element of stochasticity in it, as only a particular edge in EdgeBank can be

selected that will make up a Hamiltonian cycle (the nearest neighbour). Also, in the

selection of edges, one must be careful not to select an edge that will lead to an

invalid subtour by adhering to the following rules:

a) In the final list of edges to constitute the new position, each node must

appear exactly twice.

b) Do not select any edge which consists of a node which already appears up

to two times in the new position being generated.

c) Do not select any edge that will cause a cycle to be formed except it is the

last edge, i.e. prevent the forming of sub-tours.

Definition 8: Fitness Function – is defined as the sum of the costs of all the edges that form

the new position.

Definition 9: N is the number of particles in the entire search space.

73

Therefore, the new update equations for the EC-DPSO are thus:

𝑉𝑖
𝑡+1 = 𝑉𝑖

𝑡⨁ 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) ⊕ 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡) (3.1)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡⨀ 𝑉𝑖
𝑡+1 (3.2)

3.1.1 Analysis of the Constant, Q

It will be observed that the value of Q will be based, to a large extent, on the degree or

exploitation or exploration that is desired. However, it was decided that a value that will more

or less maintain a balance between exploration and exploitation and prevent particles from

becoming stuck on local optimum should be selected. If there are v nodes in the graph, and

there are m edges in EdgeBank, then the singular probability of one edge being selected, i.e.

not considering that x edges are to be selected at once to form a position, is
1

𝑚
 Therefore, Q

is set at

Q =
1

𝑚

 (3.3)

Thus, an edge grows in ‘goodness’ by a factor of its probability of being selected among n

other edges.

3.1.2 Analysis of the constant, K

In the course of simulating the iteration process, it became evident that among the edges

making up the graph, some were very ‘good’, i.e. they had very low cost, and would almost

always influence the overall fitness of any position in which they were included positively.

Conversely, some edges were also noticed which were very ‘bad’, i.e., they had such high

cost that whenever a particle selected them, the fitness value was almost always poor. A way

was therefore sought, through which those edges could be tracked, and a difference could be

made between the really good and the really bad ones. Therefore, the pegging of a certain

value, K, above which if an edge’s goodnessIndex can climb, it will always be selected is

motivated by the attempt to single out exceptionally ‘good’ edges and hasten convergence

towards the best position by making particles always select them, instead of wasting time

selecting edges which are not so ‘good’. Obviously, this is a measure which can easily lead

74

to the particles getting trapped on local optimum. This is the reason why it was decided that

the decision of an edge being ‘good’ will be based on the opinions of all of the particles

which have used it. More so the value of K will be selected such that only if over a series of

iterations, the goodnessIndex (a cumulative value) of that edge is up to K will it be

permanently selected as a good or desirable edge. It should also be noted that when a particle

marks an edge as ‘good’, it is based on the value of the fitness function, which takes into

cognizance all other edges that make up that position. Therefore, other edges also contribute

in the decision, and the possibility is still reasonably high of an edge’s goodnessIndex being

reduced because it was selected together with other edges whose costs are high, even though

its own cost is low. Also, where the number of edges which have goodnessIndex values

higher than K is greater than the velocity, the required number of edges will be randomly

selected from amongst all those who qualify. It is obvious then, that the selection of the value

of K has to take into consideration the probability of an edge being selected among the n

edges in the edge bank, as well as the probability of that edge being among the group of m

edges that will form a Hamiltonian cycle which will be selected from among the n edges in

EdgeBank.

The probability of an edge being selected from n edges is
1

𝑛
. Therefore, the probability of

selecting an edge among the m edges to be selected from the n edges in EdgeBank is
𝑚

𝑛
 . The

value of K is hence expressed as

K =
𝑚

𝑛

 (3.4)

3.1.3 Analysis of the Value, T

The value T is introduced so as to give the edges whose goodnessIndex values are higher than

those of others a minutely better chance of being selected. It is important that the value of T

start at a small value and proceed higher as the maximum goodnessIndex value of the edges

increases, so as to continually give better edges a higher prospect than poorer ones. Since the

value of T is dynamic, the initial value of T is defined as

75

𝑇0 =
1

𝑛

 (3.5)

The subsequent values of T will be defined as

𝑇𝑘 = max({𝑝1, 𝑝2, … , 𝑝𝑛}) + 𝑄 (3.6)

Where:

pi = the goodnessIndex of edge i in EdgeBank

n = number of edges in EdgeBank

k = the number of iteration

Thus, T will always maintain a lead ahead of the highest possible goodnessIndex value an

edge can have.

3.2 Simulation

A short simulation of this algorithm will be done so as to show the nature of the algorithm

and give a clearer picture of how it operates. In this simulation of the EC-DPSO algorithm,

the search space will be made of 2 particles going through three iterations. The selected

parameters are for illustration purpose only. A 6-city TSP will be considered, with the graph

representation earlier given in Figure 2.7, which is reproduced here:

c1 = 0.8, c2 = 0.8, w = 1

1 2

3

4 5

6

1

1

8

76

Initialization

Particle 1:

𝑋0
0 = {(1,6), (6,2), (2,3), (3,4), (4,5), (5,1)} 𝑓(𝑋0

0) = 33

𝑝𝑏𝑒𝑠𝑡0
0 = {(1,6), (6,5), (5,3), (3,2), (2,4), (4,1)} 𝑓(𝑝𝑏𝑒𝑠𝑡0

0) = 20

𝑉0
0 = 4

Particle 2:

𝑋1
0 = {(2,3), (3,4), (4,5), (5,6), (6,1), (1,2)} 𝑓(𝑋1

0) = 26

𝑝𝑏𝑒𝑠𝑡1
0 = {(2,4), (4,1), (1,5), (5,6), (6,3), (3,2)} 𝑓(𝑝𝑏𝑒𝑠𝑡1

0) = 23

𝑉0
0 = 2

Communication

𝑔𝑏𝑒𝑠𝑡0 = {(1,6), (6,5), (5,3), (3,2), (2,4), (4,1)} 𝑓(𝑔𝑏𝑒𝑠𝑡0) = 20

 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘 = {0(1,2), 0(2,3), 0(3,4), 0(4,5), 0(5,6), 0(6,1), 0(6,2), 0(6,3), 0(6,4), 0(4,1), 0(4,2),

 0,0,0 0,0,0 0,0,0 0,0,0
 0(2,5), 0(5,1), 0(5,3), 0(3,1)}

A graph illustrating 𝑔𝑏𝑒𝑠𝑡0 is shown in

From (3.4), (3.5) and (3.6), with n = 15 and m = 6, we will respectively have:

1 2

3

4 5

6

1

1

8

a
b
c

Figure 3.1: Graph showing 𝑔𝑏𝑒𝑠𝑡0

77

 Q =
1

15
 = 0.067, T0 =

1

15
 = 0.067, K =

6

15
= 0.4

1st Iteration

Particle 1:

Let 𝑟1 = 0.2, 𝑟2 = 0.8

𝑝𝑏𝑒𝑠𝑡0
0 − 𝑋0

0 = {2, 4, 5, 6} 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
0 − 𝑋0

0) = 1

𝑔𝑏𝑒𝑠𝑡0 − 𝑋0
0 = {2, 4, 5, 6} 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡0 − 𝑋0

0) = 3

𝑉0
1 = 𝑉0

0 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
0 − 𝑋0

0) + c2r2(gbest0 − X0
0)

 = 4 + 1 + 3

 = 8

Clamping this to the maximum velocity,

𝑉0
1 = 6

Let R = 0.017

Edges to be replaced: 1, 2, 3, 4, 5, 6

Edges to be used for replacement (randomly selected according to the rules stated in

definition 7): 1, 11, 9, 8, 14, 13

𝑋0
1 = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)} 𝑓(𝑋0

1) = 15

𝑝𝑏𝑒𝑠𝑡0
1 = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)} 𝑓(𝑝𝑏𝑒𝑠𝑡0

1) = 15

 1,1,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 1,1,0 1,1,0 0,0,0 1,1,0
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘 = {0(1,2), 0(2,3), 0(3,4), 0(4,5), 0(5,6), 0(6,1), 0(6,2), 0(6,3), 0(6,4), 0(4,1), 0(4,2),

 0,0,0 1,1,0 1,1,0 0,0,0
 0(2,5), 0(5,1), 0(5,3), 0(3,1)}

Note that the values of a and b have been updated based on definition 6.

Particle 2

Let 𝑟1 = 0.5, 𝑟2 = 0.6

78

𝑝𝑏𝑒𝑠𝑡1
0 − 𝑋1

0 = {2,3, 5, 6} 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
0 − 𝑋1

0) = 2

𝑔𝑏𝑒𝑠𝑡0 − 𝑋0
0 = {2, 3, 6} 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡0 − 𝑋1

0) = 1

𝑉1
1 = 𝑉1

0 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
0 − 𝑋1

0) + c2r2(gbest0 − X1
0)

 = 2 + 2 + 1

 = 5

Let R = 0.04

Edges to be replaced: 2, 5, 3, 1, 6

Edges to be used for replacement: 13, 9, 15, 2, 11

𝑋1
1 = {(5,6), (5,1), (6,4), (1,3), (3,2), (2,4)} 𝑓(𝑋1

1) = 25

𝑝𝑏𝑒𝑠𝑡1
1 = {(2,4),(4,1),(1,5),(5,6),(6,3),(3,2)} 𝑓(𝑝𝑏𝑒𝑠𝑡1

1) = 23

 1,1,0 1,1,0 0,0,0 0,0,0 1,1,0 0,0,0 0,0,0 2,2,0 2,2,0 0,0,0 2,2,0
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘 = {0(1,2), 0(2,3), 0(3,4), 0(4,5), 0(5,6), 0(6,1), 0(6,2), 0(6,3), 0(6,4), 0(4,1), 0(4,2),

 0,0,0 2,2,0 1,1,0 1,1,0
 0(2,5), 0(5,1), 0(5,3), 0(3,1)}

Communication

𝑔𝑏𝑒𝑠𝑡1 = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)} 𝑓(𝑔𝑏𝑒𝑠𝑡1) = 15

 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘 = {0.067(1,2), 0.067(2,3), 0(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
 0.067(6,4), 0(4,1), 0(4,2), 0(2,5), 0.067(5,1), 0.067(5,3), 0.067(3,1)}

Graph illustrating 𝑔𝑏𝑒𝑠𝑡1:

79

From (9), T = 0.134

2nd Iteration

Particle 1:

Let 𝑟1 = 0.3, 𝑟2 = 0.4

𝑝𝑏𝑒𝑠𝑡0
1 − 𝑋0

1 = {} 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
1 − 𝑋0

1) = 0

𝑔𝑏𝑒𝑠𝑡1 − 𝑋0
1 = {} 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡1 − 𝑋0

1) = 0

𝑉0
2 = 𝑉0

1 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
1 − 𝑋0

1) + c2r2(gbest1 − X0
1)

 = 6 + 0 + 0

 = 6

𝑉0
2 = 6

Let R = 0.025

Edges to be replaced: 1, 2, 3, 4, 5, 6

Edges to be used for replacement: 5, 9, 11, 2, 15, 13

𝑋0
2 = {(5,6), (6,4), (4,2), (2,3), (3,1), (1,5)} 𝑓(𝑋0

2) = 25

1 2

3

4 5

6

1

1

8

Figure 3.2: Graph showing 𝑔𝑏𝑒𝑠𝑡1

80

𝑝𝑏𝑒𝑠𝑡0
2 = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)} 𝑓(𝑝𝑏𝑒𝑠𝑡0

2) = 15

 0,0,0 1,0,1 0,0,0 0,0,0 1,0,1 0,0,0 0,0,0 0,0,0
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘 = {0.067(1,2), 0.067(2,3), 0(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 1,0,1 0,0,0 1,0,1 0,0,0 1,0,1 0,0,0 1,0,1
 0.067(6,4), 0(4,1), 0(4,2), 0(2,5), 0.067(5,1), 0.067(5,3), 0.067(3,1)}

Particle 2

Let 𝑟1 = 0.9, 𝑟2 = 0.2

𝑝𝑏𝑒𝑠𝑡1
1 − 𝑋1

1 = {2, 5} 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
1 − 𝑋1

1) = 2

𝑔𝑏𝑒𝑠𝑡1 − 𝑋0
1 = {1, 4, 5} 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡1 − 𝑋1

1) = 0

𝑉1
1 = 𝑉1

1 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
1 − 𝑋1

1) + c2r2(gbest1 − X1
1)

 = 5 + 2 + 0

 = 7

𝑉1
2 = 6 (velocity clamping)

Let R = 0.105

Edges to be replaced: 1, 2, 3, 4, 5, 6

Edges to be used for replacement: 1, 12, 5, 8, 3, 14

𝑋1
2 = {(1,2), (2,5), (5,6), (6,3), (3,4), (4,1)} 𝑓(𝑋1

2) = 13

𝑝𝑏𝑒𝑠𝑡1
2 = {(1,2), (2,5), (5,6), (6,3), (3,4), (4,1)} 𝑓(𝑝𝑏𝑒𝑠𝑡1

2) = 13

 1,1,0 1,0,1 1,1,0 0,0,0 1,1,1 0,0,0 0,0,0 0,0,0
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘 = {0.067(1,2), 0.067(2,3), 0(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 1,0,1 1,1,0 1,0,1 1,1,0 1,0,1 0,0,0 1,0,1
 0.067(6,4), 0(4,1), 0(4,2), 0(2,5), 0.067(5,1), 0.067(5,3), 0.067(3,1)}

Communication

𝑔𝑏𝑒𝑠𝑡2 = {(1,2), (2,5), (5,6), (6,3), (3,4), (4,1)} 𝑓(𝑔𝑏𝑒𝑠𝑡2) = 13

81

 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘 = {0.134(1,2), 0(2,3), 0.067(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
 0(6,4), 0.067(4,1), 0(4,2), 0.067(2,5), 0(5,1), 0.067(5,3), 0(3,1)}

T = 0.201, from (9).

At the end of the second iteration, the fitness value obtained can be seen to be approaching

the exact solution, and will eventually converge to it. It is also interesting to observe how

some of the low-cost edges already have higher goodnessIndex values than others. The exact

solution is {(1,2), (2,5), (5,3), (3,6), (6,4), (4,1)}

.

1 2

3

4 5

6

1

1

8

Figure 3.3: Graph showing 𝑔𝑏𝑒𝑠𝑡2

82

3.3 EC-DPSO Formal Algorithm

Below is a formal presentation of the EC-DPSO algorithm:

Algorithm 3-I: EC-DPSO Algorithm

1: Randomly initialize the whole swarm

2: Compute Q and K, and T0

3: Populate EdgeBank with all edges in the graph and set a, b and c of each edge to 0

and all goodnessIndex values to 0.0

4: while(termination criteria not met) {

5: for(t = 1; t ≤ swarmsize; t++) {

6: calculate(vt)

7: update(xt)

8: evaluate f(xt)

9: if (f(xt) < f(pbestt-1)) pbestt = xt

10: update EdgeBank // using definition 6(a)

11: }

12: for(t = 1; t ≤ swarmsize; t++) {

13: if (f(pbestt) < f(gbest)) gbest = pbestt

14 }

15: update EdgeBank // using definition 6(b)

16: compute Tk

17: }

1 2

3

4 5

6

1

1

8

Figure 3.4: Graph showing exact solution for simulation TSP

83

3.4 Results

3.4.1 Comparative Analysis of EC-DPSOB, EC-DPSOR, and EC-DPSO

The algorithm was implemented in the Java programming language and run on a Toshiba

C660 dual-core computer running @2.00GHz with 4.0GB RAM. The values of c1 and c2

were both set at 1.49. The performance of the algorithm was investigated by testing three

variants of the proposed algorithm: basic EC-DPSO (without implementing R or K - EC-

DPSOB), EC-DPSO with R alone (without K: EC-DPSOR), and the full EC-DPSO algorithm,

(with both R and K: EC-DPSO). Each algorithm was run fifty (50) times on 10, 15 and 20-

city TSPs (complete graphs), and the average best result, average time taken in seconds and

the standard deviation recorded. The termination criterion was set at convergence, i.e. when

130 consecutive iterations give the same gbest. The result is presented in Tables 3.1, 3.2 and

3.3.

Table 3.1: Comparison of ECDPSO variant performances on 10-city TSP

Algorithm Variants Average Time (s) Average gbest Standard Deviation

for Time (SD)

Average No.

of iterations

EC-DPSOB 0.3893 131 14.8007 264

EC-DPSOR 0.2345 108.28 7.8896 182

EC-DPSO 0.2476 108.14 5.7464 181

Table 3.2: Comparison of ECDPSO variant performances on 15-city TSP

Algorithm

Variants

Average Time (s) Average gbest Standard

Deviation for

Time (SD)

Average No. Of

Iterations

EC-DPSOB 1.7275 225.18 18.7199 237

EC-DPSOR 2.0674 132.04 5.0748 330

EC-DPSO 2.1131 129.82 2.1351 320

84

Table 3.3: Comparison of ECDPSO variant performances on 20-city TSP

Algorithm

Variants

Average Time (s) Average gbest Standard

Deviation for

Time (SD)

Average No. Of

Iterations

EC-DPSOB 5.1041 311.44 19.8228 237

EC-DPSOR 8.5543 140.1 8.2764 450

EC-DPSO 10.1541 137.18 8.4169 519

From the results presented above, it can be seen that the basic algorithm, EC-DPSOB

performed worst in the 10-city, 15-city and 20-city TSP instances. In the 10-city TSP

instance, the EC-DPSO performed best in both computational cost and speed of convergence,

closely followed by EC-DPSOR. It is also interesting to observe that in this smallest-sized

instance of the three tested instances, the number of iterations for EC-DPSOB was much

higher than those of the remaining two, whose values are very close. Looking across the

standard deviations obtained for the three variants, it can be seen that the disparity of gbest

values over the 50 runs decreases from EC-DPSOB through EC-DPSO. In the 15-city TSP

instance, a similar trend is observed, the differences being that EC-DPSO took longer time

than all the rest, though with better results. It is interesting to note that the number of

iterations of the EC-DPSOB variant is significantly lower than those of the rest. When its

result is compared with those of the other two, it becomes evident that this must have been

as a result of pre-mature convergence/getting stuck on local optima, since the standard

deviation is high, indicating very low agreement in results over the 50 runs. In the case of the

20-city TSP, the tendency of EC-DPSO to take more time to converge gets more pronounced,

as does its ability to provide better results. The relative weakness of EC-DPSOB and its

tendency towards premature convergence and getting stuck on local optima is much more

pronounced here. In summary, it is evident that the implementation of the concept of

enhanced communication through the introduction of the constants R and K helps to not only

lead to much smaller convergence times, but also keep the algorithm from getting stuck in

local optima. Also, the constant K in particular leads to more accurate results but slower

convergence.

85

3.4.2 Comparative Analysis of EC-DPSO and S-CLPSO

To further test the performance of the new EC-DPSO algorithm, three TSP instances from

the TSPLIB[192], eil51, berlin52, st70, eil76, and pr76 were used. On each instance, the

algorithm, which was implemented in Java, was run 50 times on a computer with Intel®

Core™i7 CPU at 3.10GHz with 8.00GB RAM running a Windows 8.1 Operating System.

The results were compared with those reported on the same problem instances in [44], and

are presented below:

Table 3.4: Comparison of ECDPSO performance with S-CLPSO with respect

to minimal cost route found

 EC-DPSO S-CLPSO

S/N

TSP

Instance Best Mean Worst Best Mean Worst

1 eil51 478.7 511 566.8 426 433 427.9

2 berlin52 8446.9 9190 9919.6 7542 7662 7548.4

3 st70 844.4 911.1 1058.6 675 680.1 690

4 eil76 679.5 718.4 785.8 538 549 541.7

5 pr76 133438 147348.5 166226.8 108159 108690 110255

On the eil51 TSP instance, it can be seen that the best result produced by EC-DPSO is

comparable to that produced by S-CLPSO, since, though the best produced by S-CLPSO is

better, the results are close. As for the other instances, the performance of the S-CLPSO is

evidently much better than that of the EC-DPSO. However, the results shown in the five

instances indicate that the EC-DPSO algorithm has prospects.

To buttress this point, regression analysis was conducted to determine how well the means

of both algorithms predict the best values gotten, with the mean values as independent

variable, and the best values as dependent variable. The results for both EC-DPSO and S-

CLPSO are shown:

86

Table 3.5: Regression Analysis for EC-DPSO

Model

Unstandardized Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

1 (Constant) 46.797 27.093

1.727 .183

EC-DPSO_Mean .905 .000 1.000 2206.274 .000

a. Dependent Variable: EC-DPSO_Best

 Table 3.6: Regression Analysis for S-CLPSO

Model

Unstandardized Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

1 (Constant) -23.826 20.247

-1.177 .324

S-CLPSO_Mean .995 .000 1.000 2395.447 .000

a. Dependent Variable: S-CLPSO

The mean values of the EC-DPSO predict the best results with a correlation coefficient of

0.905. This shows that the prediction of the best result by the means is highly significant, and

hence, indicates that the performance of the EC-DPSO is reliable and promising, though the

S-CLPSO shows a slightly better result.

It is believed that, as is recommended in section 3.5, when the novel idea of enhanced

communication between particles based on the ‘goodness’ of individual edges is introduced

into other algorithms, their performance can be greatly improved. Further research will also

be made on improving the performance of the EC-DPSO algorithm itself via optimized

parameter selection, initialization techniques and velocity discretization.

87

3.5 Swarm Size Investigations for EC-DPSO

The impact of variations in swarm size on the algorithm was also investigated. According to

[220], the population (swarm) size can be varied to encourage either exploration or

exploitation of the search space. El-Gallad, et al. [71] state that very small settings of the

swarm size will greatly increase the chance of the algorithm being trapped in local minima.

However, if the value of swarm size is set too high, computational time requirements will be

increased. Therefore, to see impact of these variations more clearly, bays29 from [191] was

used, and the size of the swarm was varied from 10 to 100 percent of the TSP instance size,

n. The results in terms of time and deviation from optimal value are displayed below.

Figure 3.5: Chart showing speed of convergence of EC-DPSO on bays29 with swarm size ranging

from 10 – 100% of n

0

2

4

6

8

10

12

14

A
ve

ra
ge

 T
im

e
(s

)

10 20 30 40 50 60 70 80 90 100
Swarm Size in Percentage of n

88

Figure 3.6: Chart showing divergence from optimal solution of EC-DPSO on bays29 with swarm

size ranging from 10 – 100% of n

From the charts above, it can be seen that, as expected, speed increased almost perfectly

uniformly as swarm size increased. However, the accuracy in terms of divergence from the

optimal solution was not that uniform. There was a steady fall in divergence from the optimal

solution between 10 and 60 percent, after which it can be argued that the performance was

generally within the same range. This indicates that if the swarm size is set at 60 percent of

n, the performance will not be significantly different from when it is set at n.

3.6 Summary and Conclusion

After successfully discretizing the Particle Swarm Optimization technique and successfully

optimizing it through the achievement of enhanced communication between particles, it can

be concluded that the EC-DPSO algorithm is a very promising one. The great improvement

in results achieved by directing the particles towards positions formed by ‘good’ edges

clearly proves this. By taking into account the impact which the inclusion of an edge makes

on the fitness value achieved in the new position, the chances of edges with relatively high

cost getting included was greatly reduced, and that of those with relatively very low cost

increased. In addition, swarm size experimentations indicated that setting the swarm size to

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

D
ev

ia
ti

o
n

Swarm Size in Percentage of n

89

around 50-60 percent of the size of the TSP instance n, as against the previous setting of n as

the swarm size, significantly improved speed, while maintaining accurate results.

90

Chapter Four

4 Proposed Discrete Particle Swarm Optimization Algorithm for the

Shortest Path Problem

4.0 Introduction

As has been highlighted in the literature review, various methods have been proffered for

discretizing PSO, including binary methods [120, 123, 216], set-based methods [116, 144,

237], and fuzzy methods [1, 143, 238]. Most of the algorithms which are used to address SPP

adopt the set-based approach. In the set-based method, the set represents a feasible path from

source to destination node, where the order or arrangement of elements within the set

uniquely identifies that path. This implies that the position of each element within the set is

critical in path representation, and any computation upon the set which disrupts or disregards

this order/position ultimately disregards the unique path which it represents. The proposed

PSO discretization is therefore performed in such a way that operations such as addition,

subtraction and so on which are intrinsic to the PSO algorithm are performed such that the

position information of each element is maintained. The new DPSO algorithm for the

Shortest Path Problem is presented in this chapter.

4.1 Position Encoding for SPP

A highly important factor when discretizing PSO is how a position is represented in discrete

space. There are two general methods of representing a position, the direct and indirect

encoding methods [156]. In the direct method which was used in [157], position is

represented as a set of vertices (or edges) which directly represent a feasible s-t path in the

graph. When position is represented as a set of vertices, numbers (IDs) are allocated to

represent each vertex. For example, in the graph in Figure 4.1, the highlighted path would be

represented as (2, 1, 8, 5, 4, 6).

91

In this encoding method, the size of the set representing a position varies with the length of

the path. Hence, (2, 3, 6) and (2, 4, 5, 7, 6) are both valid positions. In some cases the source

and destination nodes are left out of the set, since they are always the same, and are added

when fitness evaluation is to be done. The direct method suffers a major disadvantage of

having a much higher chance of representing invalid paths, since a permutation of nodes can

represent any path containing edges which are not contained in the graph under consideration

[156]. For example, a path represented by (2, 1, 4, 6) could be generated, but it is infeasible,

as it does not lead to the destination node (Figure 4.1). The chance of generating invalid paths

can be reduced if an indirect approach is used. Another distinguishing feature between direct

and indirect encoding is that directly encoded positions can have varying lengths. That is, (1,

4, 2, 7) and (1, 2, 7) could be valid positions for a particle, but in indirect encoding, the

cardinality of the position set is always fixed. For a graph with n nodes, a particle’s position

will always also be of size n The indirect encoding method has been successfully applied by

various researchers, as can be seen in [85], [155] and [156]. In the indirect method, the

information represented by the position leads to the generation of a path, as opposed to

representing the path directly. This will however necessitate a means of decoding the

information to produce the path represented by such a position. There are two ways of

encoding a position indirectly: priority-based and weight-based. Gen, et al. [85] and

1

4

8

5

3

6

7

2 S

T

2

7 5

9

3

8 2

1

Figure 4.1: Graph showing nodes, their sample priority allocations and the

corresponding path from nodes 2 to 6

92

Mohemmed, et al. [155] use the priority-based method for encoding an s-t path for SPP. In

this method, each node in the graph is allocated a priority, and a position is a set of such

priorities with each index in the set representing the priority of the corresponding node.

Consequently, the size of the set is always fixed in a priority-based encoding scheme. Path

generation (decoding) proceeds in a step-wise manner, starting from the source node,

selecting the adjacent node with least priority. The process is repeated with the selected node

until the destination node is reached.

For example, Figure 4.1 shows a position represented as (2, 1, 3, 2, 8, 5, 9, 7), which will be

decoded as the path (2, 1, 8, 5, 4, 6) for an SPP with source and destination nodes as 2 and 6

respectively.

Although the priority-based method has been found to perform acceptably for SPP, its main

drawback is that edge costs are not taken into consideration in the priority allocation. This is

where the weight-based encoding approach proves to be a better option. Raidl and Julstrom

[187] as well as Mohemmed, et al. [155] use the weight-based encoding method for SPP. In

this method which was first described in [172], each vertex is associated with a weight. The

cost of each edge is then biased by adding the weight of both its adjacent vertices to its cost:

𝑐𝑖𝑗
′ = 𝑤𝑖 + 𝑐𝑖𝑗 + 𝑤𝑗 (4.1)

Therefore, each position is a set of weights whose indices represent the IDs of the respective

vertices. However, Raidl and Julstrom [187] found that multiplying the edge costs by weights

generated from a log-normal distribution led to a better performance than adding them.

Therefore they performed cost biasing thus:

𝑐𝑖𝑗
′ = 𝑤𝑖 ∙ 𝑐𝑖𝑗 ∙ 𝑤𝑗 (4.2)

93

They chose their weights from the distribution (1 + 𝛾)𝒩(0,1), where 𝒩(0,1) is the normal

distribution. 𝛾 represents a parameter called biasing strength, which they set at 1.5, and their

approach is adopted in this work. An example of a position represented with the weight-based

encoding scheme is (0.3, 1.1, 0.6, 0.4, 0.9, 1.6, 0.2, 0.8) as depicted in Figure 4.2, which

would generate the path [2, 1, 5, 7, 4, 6].

4.2 Path Decoding

The path decoding scheme which is used to transform particle positions to their

corresponding paths for fitness evaluation is discussed in this section. A general decoding

procedure is presented in Algorithm 4-I:

Algorithm 4-I – General Path Decoding Procedure

1. Initialize empty path, P

2. Add source vertex s to P

3. while (destination node not reached)

a. Add node v with lowest biased weight to P

b. Set added node as current node, v

4. Return P

5. End

1

4

8

5

3

6

7

2 S

T

0.3

0.8 1.6

0.2

0.6

0.9
0.4

1.1

5

9

2 6

10

4

1

6

8 5

4

3

Figure 4.2: Graph illustrating weight-based encoding and resulting path

94

Though Algorithm 4-I selects nodes based on lowest biased weight, it can be trivially adapted

to select nodes based on highest priority.

An important issue is how to handle cases when a partial path leads to a dead end, that is, the

path ends with a non-destination node. In [155] and [262], such nodes are referred to as “no

exit nodes”. The strategy adopted in the two aforementioned works is to terminate the path

decoding process once such a node is detected, resulting in an invalid path which will be

discarded. Other methods of handling such invalid paths include the use of a penalty

value/function [249] or a repair function [9]. A better way of handling such a case without

any chance of creating an invalid path is proposed. At the point in the path decoding process

when a ‘no-exit’ node is detected, that node is discarded, and a simple backtracking is done

to select the node with the next lowest biased cost. Also, in order to prevent loop formation,

a simple check is conducted, and any node which is already part of the partial path discarded.

Algorithm 4-II gives a complete description of the proposed decoding procedure:

Algorithm 4-II: Proposed Path Decoding Procedure

1. Initialize Stack P, source node, s and destination node, t, List invalid_nodes

2. P.push(s)

3. Set curr = s, next = null

4. Set min_weight = -∞

5. While (curr ≠ t){

6. For i in adj[curr] {

7. if (!(P.contains(i) or invalid_nodes.contains(i)){ // Loop prevention check

8. biased_weight = weight[i] * weight[curr]

9. if(biased_weight < min _weight){

10. Set next = i

11. Set min_weight = biased_weight

12. }

13. }

14. }

95

15. if(min_weighty == -∞) { // Detection of “no exit node” and backtracking

16. invalid = P.pop()

17. curr = P.peek()

18. invalid_nodes.add(invalid)

19. continue

20. }

21. curr = next

22. P.push(curr)

23. }

24. return P

Though the proposed algorithm selects nodes based on lowest biased weight, it can be

trivially adapted to select nodes based on highest priority. The proposed DPSO can therefore

also be used both for priority-based and weight-biased encoding schemes with some minor

adaptations to suit each case.

4.3 PSO Equation Discretization

As a reminder, the constriction-coefficient PSO which is adopted in this work has the

following equations [51]:

𝑉𝑖
𝑡+1 = 𝜒[𝑉𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) + 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡)] (4.3)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (4.4)

where t is the iteration counter, i is the particle index, pbest is the personal best, gbest is the

global best, r1 and r2 are random numbers in the interval [0, 1], c1 is the referred to as the

cognitive parameter which dictates how biased the particle’s search will be biased towards

its personal best position, and c2 is the social parameter which dictates how much its search

will be biased towards the global best. The c1 and c2 parameters can be tweaked to favor either

exploitation or exploration respectively.

96

𝜒 is defined as

𝜒 =
2

|2 − φ − √φ2 − 4𝜑|

(4.5)

where 𝜑 = 𝑐1 + 𝑐2, and 𝜑 > 4

It must be noted here that the manner in which the various elements of the PSO equations are

discretized will have a very significant impact on the performance of the discrete PSO

algorithm. A new set-based discretization method which is believed to give the proposed

algorithm an edge over existing PSO discretization methods used for SPP is presented below.

1. Velocity: In a set-based discretization scheme, operations such as addition and subtraction

are usually redefined in terms of set union and difference operators [44]. It was discovered

that when these operations are carried out in discretization schemes that map priorities or

weights to node indices, vital data related to the index mappings of either node priorities or

weights are lost. Obviously, the major point in such schemes is the priority/weight-to-node

mapping. For example, consider two positions, A = (0.2, 0.6, 1.1, 0.5) and B = (0.9, 0.6, 1.1,

2.1). The result of the operation, A-B would be (0.2, 0.5). Priority/weight 0.5, which was

originally mapped to node 4 in A, now points to node 2 in the resulting difference set. This

does not represent the original sets which were involved in the set difference operation.

Furthermore, in the course of the PSO algorithm, the result of this difference operation will

be combined in some way with other sets to form a new position. The new position then

becomes completely different from the previous one in terms of node-priority/weight

mappings, severely limiting the search capability of particles. For this reason, a different

scheme of representation for velocity is proposed which retains this index mapping

information throughout the velocity and position update operations. Velocity is defined in

terms of direction and magnitude, direction indicating the specific node indices within a

position whose priorities/weights will be altered and their associated priorities/weights which

will be used in replacement, and magnitude, the number of indices whose priority/weight

values will be replaced. That is, velocity is defined as

𝑉 = {(𝑢1, 𝑣1), (𝑢2, 𝑣2), … , (𝑢𝑛, 𝑣𝑛)}𝑘 (4.6)

where ui is the ith index, vi is its associated priority/weight, and k is the magnitude of V.

97

For example, a velocity could be {(7, 0.2), (5, 0.4), (1, 0.3), (4, 0.1), (2, 0.3)}3.

2. Subtraction (⊖): In line with the above definition of velocity, subtraction is redefined thus:

Given two sets, A and B, A-B is gotten by comparing the elements in A to those in B index-

wise. That is, compare the element at index 1 in A with the element at index 1 in B and so on,

forming the resulting set with those elements in A which are different from their counterparts

in B. Thus, the resulting set maintains information about node-weight mappings. Therefore,

for the example given above where A = (0.2, 0.6, 1.1, 0.5) and B = (0.9, 0.6, 1.1, 2.1), A – B

= {(1, 0.2), (4, 0.5)}2, where 2 is the size of the resulting set, which will be useful

subsequently.

3. Multiplication (⊙): A multiplication operation between a real number and a velocity set

results in that set with its magnitude component changed to the closest approximate integer

resulting from a multiplication operation between that number and the magnitude component

of the velocity set. Continuing with the above example, if 𝐶 = 𝐴 − 𝐵, then

0.4 × 𝐶 = {(1, 0.2), (4, 0.5)}0.4×2

⇒ 0.4 × 𝐶 = {(1, 0.2), (0.5)}1

4. Addition (⊕): In adding two velocity sets A with magnitude k1 and B with magnitude k2

together, randomly select k1 elements from B and then k2 elements from A to form the

resulting sum set with a resultant magnitude of k1 + k2. An example is given below:

Let A = {(2, 0.6), (4, 0.5)}1 and B = {(3, 0.3), (2, 1.3), (1, 0.1), (7, 2.3)}2.

Then A + B = {(1, 0.1), (3, 0.3), (2, 0.6)}3

In selecting elements, it should be ensured that no elements with the same index values are

present in the resulting sum. Also, it was decided to pick first from B so as to favor gbest

over pbest in equation (4.3), and hence speed up convergence.

5. Position Update (⊗): Position update is conducted as per equation (4.8) by replacing k

randomly selected priorities/weights in the current position with those in the updated velocity

according to their associate indices. An example will suffice to make this concept clearer.

Let Xi
t = (1.3, 0.5, 0.8, 0.3, 0.2, 1.0) and Vi

t+1 = {(1, 0.1), (3, 0.3), (2, 0.6)}2.

To obtain Xi
t+1, replace the value at index 2 of Xi

t with 0.6 and the value at index 3 with 0.3.

Thus, the new position will be:

Xi
t+1= (1.3, 0.6, 0.3, 0.2, 1.0)

98

Thus, the updated equations will be:

𝑉𝑖
𝑡+1 = 𝜒[𝑉𝑖

𝑡⨁𝑐1𝑟1
𝑡⨀(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 ⊖ 𝑋𝑖
𝑡)⨁ 𝑐2𝑟2

𝑡⨀(𝑔𝑏𝑒𝑠𝑡𝑡 ⊖ 𝑋𝑖
𝑡)] (4.7)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡⨂ 𝑉𝑖
𝑡+1 (4.8)

4.4 Simulation

A brief simulation is presented to demonstrate the discretization scheme as a whole.

Let pbesti
t = (0.4, 2.1, 0.3, 1.1, 1.2, 0,9, 2.3), gbesti = (1.0, 0.2, 0.7, 0.3, 1.7, 2.8, 0.4), Xi

t =

(0.6, 2.1, 0.7, 1.3, 1.9, 0.5, 2.3), Vi
t = {(2, 0.2), (5, 0.8), (1, 1.3), (6, 01)}3.

Then from definition 2,

pbesti
t - Xi

t = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5

gbest - Xi
t = {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}6

Let c1 = 2.05, r1 = 0.5, c2 = 0.5, r2 = 0.5

From definition 3,

c1r1(pbesti
t - Xi

t) = 1.025{(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5

 = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5 * 1.025

 = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5

c2r2(gbest - Xi
t) = 0.25{(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}6

 = {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}6 * 0.25

 = {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}2

From definition 4,

c1r1(pbesti
t - Xi

t) + c2r2(gbest - Xi
t) = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5

 + {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}2

 = {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7

Vi
t + c1r1(pbesti

t - Xi
t) + c2r2(gbest - Xi

t) = {(2, 0.2), (5, 0.8), (1, 1.3), (6, 0.1)}3

99

 + {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7

 = {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7

Note that whenever the magnitude sum exceeds n, which is 7 in this case, it is clamped it to

7. Also, as was earlier stated, once an index value is present in the resulting sum, no new

element with the same index value is added.

Now, applying equation (4.7),

𝑉𝑖
𝑡+1 = 𝜒[𝑉𝑖

𝑡⨁𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 ⊖ 𝑋𝑖
𝑡)⨁ 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 ⊖ 𝑋𝑖
𝑡)]

= 0.729 * {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7

= {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7 * 0.729

= {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}5

Note that the χ value recommended in [175] as 0.729 is used here.

From equation (4.8) and definition 5,

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡⨂ 𝑉𝑖
𝑡+1

= (0.6, 2.1, 0.7, 1.3, 1.9, 0.5, 2.3) ⨂ {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}5

= (0.4, 2.1, 0.3, 1.1, 1.2, 2.8, 2.3)

4.5 Summary and Conclusion

In this chapter, the proposed DPSO algorithm was presented with an explanation of the

various modifications and redefinitions that had to be made to the original continuous PSO,

and the presentation of a new path decoding algorithm. A brief simulation to illustrate the

PSO operation redefinitions in clearer terms was also presented. In the subsequent chapters,

this algorithm is applied with a few adaptations where necessary, to the SPP, MOSSP, and

SDP.

100

Chapter Five

5 A Memetic Discrete Particle Swarm Optimization Method for the

Shortest Path Problem

5.0 Introduction

Given an undirected, connected graph G with a set V of vertices and a set E of edges defined

as

𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗𝜖𝑉} (5.1)

each of which have associated costs cij, the Shortest Path Problem (SPP) seeks to find a path

between a source vertex 𝑠 𝜖 𝑉, and a destination or sink vertex 𝑡 𝜖 𝑉, the total cost of whose

constituent edges is minimized. Mathematically,

𝑚𝑖𝑛
𝑝𝜖Ρ

 ∑ 𝑐𝑖𝑗

(𝑖,𝑗)𝜖 𝑉

 (5.2)

Where Ρ is the set of all s-t paths defined as sequences of non-repeating (i,j) edges starting

at s and terminating at t. In the problem case under consideration, the shortest path is sought

between a specified single source node and single destination node.

Apart from its ubiquitous applications, the SPP is also important because it forms a base for

other NP-complete problems such as weight-constrained shortest path problem, multi-

objective shortest path problem, bottleneck shortest path problem and so on [68, 223, 236].

Though exact methods have been proffered to solve the classical SPP such as the Dijkstra

and Bellman-Ford algorithms [207, 255], these exact methods have a major drawback of not

being extendable its variants. They also cannot be used to determine other similar or

dissimilar short routes, in addition to the fact that they perform poorly in real-time rapidly

changing environments [202, 246].

101

Therefore, various heuristic methods such as A* and branch pruning [83, 100] have been

proposed to solve the SPP and avoid these drawbacks. Methods in the field of Swarm

Intelligence have also been developed to solve the problem. These algorithms have been

discussed in sections 2.3 and 2.4..

5.1 Application of Proposed DPSO for SPP

The proposed DPSO algorithm as presented in Chapter four is now applied to the SPP,

incorporating the memetic algorithm discussed in section 2.3.6 to improve its local search

capability. The results obtained are compared with those reported in [156], [155], and [85].

A randomly negative or positive λ value of 0.5 in the memetic component was found to

perform better than other values after experimentation. This takes care of cases where the

search needs to be towards regions where weight is lower than the current position as well as

regions where weight is higher.

5.2 Values of c1 and c2

The values of c1 and c2 are known as the cognitive and social parameters respectively, and

they are used to control the level of exploitation or exploration of the algorithm. Where c1 is

higher than c2, exploration is favored, and where c2 is higher than c1, exploitation is being

favored [175]. Therefore, upon close examination of the algorithm’s performance, it was

1

4

8

5

3

6

7

2 S

T

Figure 5.1: Graph displaying a path from node 2 to node 6

102

discovered that the default settings of the values of both c1 and c2 at 2.05 [175] were not

favorable in this case. This is because with these values, the magnitude value of the

operations 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) or 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡) will be at such a high level, that during

position update, the particle has a very high probability of flying directly to the position of

the gbest or pbest, as the case may be. This leads to premature convergence and makes the

local search capability of the algorithm very poor. Experiments were therefore carried out to

find the most suitable setting of c1 and c2 for the algorithm, and it was discovered that setting

their values at 1.48 and 0.5 respectively leads to an improved performance. As was explained

earlier, this setting encourages exploitative search around the particle’s personal best as

against a premature direct flight to the swarm’s global best position.

Table 5.1: Comparison of Proposed DPSO with two other DPSOs and a GA

S/N Number

of nodes

Number

of edges

DPSO in [155] GA in [85] DPSO in [156] Proposed DPSO

Success

Rate

No of

Iterations

Success

Rate

No. of

Iterations

Success

Rate

No of

Iterations

Success

Rate

No of

Iterations

1 6 10 100 50 100 50 - - 100 40

2 32 66 100 100 98 100 - - 100 60

3 50 166 - - - - 95 44 99 50

4 60 233 - - - - 89 60 94 60

5 70 211,

216, 212

80 200 64 200 91 60 98 60

6 70 326 - - - - 86 78 98 60

7 80 188 - - - - 92 74 95 60

8 80 232 - - - - 93 77 96 60

9 90 230 - - - - 88 90 96 60

10 90 251 - - - - 94 86 97 60

11 100 255 - - - - 90 95 94 60

12 100 280 - - - - 90 107 95 60

103

5.3 Results and Discussion

A comparison of the three variants of the proposed DPSO algorithm is presented in Table

5.2. The variant with default c1 and c2 settings will be called DPSOa
, the memetic variant

with default c1 and c2 settings, DPSOb, and the proposed memetic algorithm with the new

c1 and c2 values, DPSOc. Each variant was implemented in Java and executed on a computer

with Intel® Core™i7 CPU at 3.10GHz with 8.00GB RAM running a Windows 8.1 Operating

System. Each graph instance (with a given number of nodes and edges) was randomly

generated 100 times, with edge costs taken randomly from the range [10, 1000]. As a result

of the stochastic nature of the algorithm, performance slightly varied over each of the 100

runs. Therefore, for each variant and in each instance, the algorithm was run multiple times

and the average performance taken, so as to depict a clear picture of its performance both in

terms of accuracy and consistency.

Table 5.2: Comparing performance of three DPSO variants for SPP

 DPSOa DPSOb DPSOc

S/N Nodes Edges Accuracy Iterations Accuracy Iterations Accuracy Iterations

1 200 450 0.83 90 0.84 90 0.91 90

2 150 400 0.83 90 0.87 90 0.90 90

3 100 280 0.83 60 0.86 60 0.93 60

4 100 255 0.82 60 0.88 60 0.91 60

5 90 251 0.81 60 0.91 60 0.92 60

6 90 230 0.84 60 0.88 60 0.92 60

7 80 232 0.85 50 0.88 50 0.93 60

8 80 188 0.82 50 0.86 50 0.93 60

9 70 326 0.85 40 0.87 40 0.96 60

10 70 212 0.85 40 0.87 40 0.93 60

11 60 233 0.85 40 0.9 40 0.93 60

12 50 160 0.89 40 0.92 40 0.95 60

104

The chart in Figure 5.1 shows the improvement in performance that has been achieved both

by selecting the right values for c1 and c2, and by implementing a memetic version with both

global and local search components. The nature of the discrete algorithm inherently

encourages global search as has been stated in the definition of the addition operation for the

velocity update equation. Hence, selecting c1 and c2 parameters which favor exploitation has

proven to improve the algorithm’s local search capability. Further improvement has been

achieved by making the algorithm memetic with the addition of a local search component,

enabling it to search for better positions around the current global best. Therefore, it can be

said that a balance in both exploitation and exploration has been achieved by the addition of

these two features to the algorithm, with the resultant significant improvement in its

performance.

Table 5.1 shows the viability of the proposed DPSO algorithm in the light of the

performances of others reported in [155], [156] and [85].

105

0.7

0.75

0.8

0.85

0.9

0.95

1

200 150 100 100 90 90 80 80 70 70 60 50

Number of Nodes

DPSOa DPSOb DPSOc

 Figure 5.3: Graphical comparison of the performance of three DPSO variants

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

100 100 90 90 80 80 70 70 60 50

A
cc

u
ra

cy

Number of Nodes

Proposed DPSO DPSO in [3]

Figure 5.2: Comparing proposed DPSO with DPSO in [156]

106

The proposed algorithm performs comparatively with all compared algorithms in terms of

accuracy, and in most cases, with a lower number of iterations. This proves that the novel

discretization method introduced with the algorithm is a strong and viable one. As is shown

in Table 5.2, even with the basic variant of the algorithm, performance in all cases never goes

below 80%. In Table 5.2, it can also be seen that the algorithm was able to solve SPP

instances of size of up to 200 nodes at ≥ 90% accuracy, whereas the largest number of nodes

solved from sampled literature is 100. This proves that the method used to discretize PSO for

a specific combinatorial optimization problem greatly determines the resulting algorithm’s

efficiency. Tailoring the discretization of the PSO equations to best fit the search space, in

this case, the weight-biased representation, has proven to be a very definitive factor in

determining performance. The chart in Figure 5.2 highlights the better performance of the

proposed algorithm in all shown instances compared to the DPSO proposed in [156], which

was used to solve problems of highest size among all three algorithms in literature with which

the proposed algorithm is compared.

5.4 Summary and Conclusion

The proposed memetic DPSO algorithm discussed in chapter four was applied to SPP.

Optimal values were also selected for c1 and c2 with improved results. The local search

capability of the memetic component of the algorithm further led to more promising results

which, in comparison with those of three other algorithms proposed for the SPP.

107

Chapter Six

6 A Discrete Particle Swarm Optimizer for the Multi-Objective

Stochastic Shortest Path Problem

6.0 Introduction

The Shortest Path Problem (SPP) which was first defined and solved by Dijkstra in 1958 [65]

has been extensively studied by scientists over the years, with various variants being

proposed and numerous solution techniques applied to them. However, it has been observed

that the SPP in its deterministic form does not adequately represent real-world situations with

their inherent uncertainties (such as the road/link congestion, accident occurrence and so on),

leading to the solutions proffered for deterministic SPPs ending up failing [249, 262]. The

Stochastic Shortest Path problem (SSP) assigns probability distributions associated with

costs to each edge in the graph, and is usually solved by seeking the path with the least

expected length [157]. A good deal of research has been made into solving various SSPs in

literature, from exact methods like value and policy iteration [26] and quasi-convex

maximization [167], to heuristics and meta-heuristics like A* [42], Genetic Algorithms (GA)

[188] and Particle Swarm Optimization (PSO) [262].

Moreover, most users do not only desire to know the path of least-expected cost, but desire

some level of certainty in the chosen path as well. This has led to multi-objective SSPs with

objectives like least expected path cost, variance, probability of achieving cost at or below a

given value, expected cost to guarantee a given probability, and so on [188]. As was outlined

by Rajabi-Bahaabadi, et al. [188], various approaches have also been applied to solve these

multi-objective SSPs. In the area of nature-inspired/evolutionary/swarm intelligence

algorithms for multi-objective SSPs, GAs have been applied with good results [115, 188].

However, except for the work done in [262], the application of MOPSO to SSP seems not to

have received much attention in literature, despite its good qualities of fast convergence,

lower computational cost, fewer lines of code and relatively minimal required computational

book keeping [119]. In [262], a hybrid algorithm made of Artificial Immune System and a

108

chaotic PSO is applied to a multi-objective SSP where the mean and variance of path

congestion are minimized (stochastic variables) as well as the distance (deterministic

variable). The performance of their algorithm was compared with an existing bi-objective

Genetic Algorithm reported in [114] and a single-objective PSO method proposed for SSP

in [156]. They reported that their algorithm outperformed both algorithms with which it was

compared, though it is unclear on what basis they were able to compare the performance of

their 3-objective algorithm against 2- and 1- objective algorithms. Theirs was the only work

found in literature which applies PSO to MOSSP. In this chapter, the new DPSO for SPP is

applied to solve the least expected cost SSP (known as SSP-E [189]) as a means of validating

it. Two requirements are then combined (minimizing variance and expected cost) in a multi-

objective discrete Particle Swarm Optimization algorithm, and experiments carried out to

investigate and validate results.

6.1 Adaptation of Proposed DPSO for SSP and MOSSP

All PSO equation redefinitions, as well as the algorithm presented in Algorithm 4-II remain

the same for the SSP, except that cost is redefined as expected (mean) cost. However, an

important modification had to be made to the proposed weight biasing technique originally

proposed in [187] as:

𝑤𝑖,𝑗 = 𝑤𝑖 ⋅ 𝑤𝑗 ⋅ 𝑐𝑖𝑗 (6.1)

In applying equation (6.1) to a multi-objective setting, it was noticed that as expected, the

search procedure was being hampered by the bias towards only edge costs at the expense of

other objectives such as variance. An attempt was then made to implement objective

aggregation methods as proposed in [176] , but the results were not favorable. However, upon

further investigation, the following equation which removes bias towards any of the objective

functions was used with very favorable results:

𝑤𝑖,𝑗 = 𝑤𝑖 ∗ 𝑤𝑗 (6.2)

In single-objective cases however, the use of equation (6.1) is maintained.

109

A possible position could be (0.3, 1.4, 2.1, 0.8) for a 4-node sized graph as illustrated in

Figure 6.1.

6.2 Results of Proposed DPSO on SSP

In this section, the results of applying the proposed DPSO algorithm to the SSP-E where the

aim is to minimize total expected cost in a stochastic graph is presented. The objective

function for the SSP-E is [39, 113]:

𝑀𝑖𝑛 𝐸 [∑ 𝜇𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝒜

]

(6.3)

 Subject to

∑ 𝑥1𝑗(1,𝑗)∈𝒜 − ∑ 𝑥𝑗1 = 1,(𝑗,1)∈𝒜 (6.4)

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝒜 − ∑ 𝑥𝑗𝑖 = 0, 2 ≤ 𝑖 ≤ 𝑛 − 1(𝑗,𝑖)∈𝒜 (6.5)

∑ 𝑥𝑛𝑗(𝑛,𝑗)∈𝒜 − ∑ 𝑥𝑗𝑛 = −1,(𝑗,𝑛)∈𝒜 (6.6)

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝒜 (6.7)

3 (0.50), 9 (0.50)

 1 2

3 4

Figure 6.1: Sample graph showing edge cost probability distributions and node weights (emphasized)

5
 (

1
.0

)

1
2

 (
0

.7
5

),
 2

 (
0

.2
5

)

2 (0.15), 6 (0.35), 15 (0.50)

0.3 1.4

2.1 0.8

110

where 𝜇𝑖𝑗 is the expected length of edge (i,j), 𝒜 is the set of all edges in the graph, constraints

(14) – (16) ensure that the edges in the path are feasible, connecting from origin 1 to

destination n, and constraint (17) ensures that the decision variables are binary.

In [157], a discrete PSO method was proposed and applied to the SSP-E problem, and the

result compared with Distributed Learning Automata methods in [154] and [22]. Their results

proved the applicability of DPSO to SSP-E by reducing the number of iterations by over

9000. They also compared their results with the results gotten from solving the problem with

Dijkstra’s algorithm, reporting the same optimal paths as that gotten from Dijkstra’s but with

lower cost. It is however unclear how they were able to achieve different costs on the same

path using the same objective function for SSP-E stated above. The algorithm was tested with

c1 and c2 settings as 1.48 and 0.5 respectively (after experimentation) on the three test cases

(Graphs 1 – 3) presented in their paper. The results obtained are compared with theirs with

varying swarm sizes for Graph 3 (15 nodes, 43 edges) over 12 runs in Table 6.1.

Table 6.1: Comparing Performance of Proposed Algorithm with DPSO in [157]

Swarm

Size

Best Converged Path
Cost of Converged

Path

Number of

Convergences

Percentage of

Convergence

DPSO in

[157]

Proposed

DPSO

DPSO in

[157]

Proposed

DPSO

DPSO

in

[157]

Proposed

DPSO

DPSO

in

[157]

Proposed

DPSO

25 1 2 5 15 1 2 5 15 63.292 64.5 4 12 33.33% 100%

50 1 2 5 15 1 2 5 15 61.1428 64.5 8 12 66.6% 100%

100 1 2 5 15 1 2 5 15 62.7442 64.5 6 12 50.0% 100%

150 1 2 5 15 1 2 5 15 63.0834 64.5 9 12 75.0% 100%

111

Results obtained are also compared with those obtained by Dijkstra’s algorithm and those in

[157] over all three test cases in Table 6.2:

Table 6.2: Comparison of Proposed DPSO with Dijkstra and DPSO in [157] over three

instances

Graphs

Shortest Path

for DPSO in

[157]

Path Cost

Shortest Path

from

Proposed

DPSO

Path Cost

Shortest

Path from

Dijkstra

Path Cost

Graph 1 1 3 7 10 14.84535 1 3 7 10 15.22 1 3 7 10 15.22

Graph 2 1 4 9 10 15.49471 1 4 9 10 16.1 1 4 9 10 16.1

Graph 3 1 2 5 15 62.46404 1 2 5 15 64.5 1 2 5 15 64.5

The performance of the proposed DPSO is clearly better than that proposed in [157] since it

was able to consistently find the path with least expected cost over all tested swarm sizes

with a 100% accuracy. As a further proof of the viability of the algorithm, three more graphs

of dimension (50, 150), (100, 250), and (200, 400) were randomly generated with probability

distributions generated with the scheme detailed in [208]. Associated integer costs were also

randomly generated within the interval [1, 100). For each dimension, 50 cases were randomly

generated and the algorithm’s performance tested over swarm sizes of 25, 50, 100, and 150.

Number of iterations was fixed at 50. The algorithm’s accuracy was validated against

Dijkstra’s algorithm and the percentage accuracy reported. The results are presented in Table

6.3.

Table 6.3: Performance of Proposed DPSO on

SSP instances of various sizes

Instances
Swarm

Size
Accuracy

Average

Time (s)

50, 150

25 100% 0.0526

50 100% 0.0940

100 100% 0.1937

100, 250
25 100% 0.1792

50 100% 0.3774

112

100 100% 0.7584

200, 400

25 92% 0.9880

50 100% 2.2301

100 100% 3.2276

Table 6.3, shows that the proposed DPSO algorithm is effective in solving the SSP-E problem.

However, in practical applications, users are usually not just interested in the path of least

expected cost. Most are also concerned with the reliability of the recommended path,

especially in applications that have to do with road networks and expected travel time [39].

This leads to the need for a multi-objective algorithm which will proffer pareto-optimal

solutions, giving users the chance to make a compromise between these conflicting objectives.

6.3 Results of Proposed DPSO on MOSSP

An attempt was made to compare the results obtained upon applying the proposed DPSO

with those presented in [262], but the data presented was unusable, as the probability

distributions presented had no associated costs. Because, as was stated earlier, Zhang, et al.

[262]’s work was the only one found in literature solving MOSSPs using PSO, and the only

other recent work which solves MOSSPs with a Swarm Intelligence approach (Ant Colony

Optimization) which was presented in [75] deals with stochastic nodes which is beyond the

scope of this work, we randomly generated and present our own data. To prove the viability

of the proposed algorithm, three SSP instances with 25 nodes and 50 edges (small instances

for the sake of space constraints) were randomly generated with the following probability

distributions: N(μ, σ2) denoting a normal distribution, E(λ) an exponential distribution, U(a,

b) a uniform distribution, and T(a, b, c) a triangular distribution. The three instances are

presented in Table 6.4 - Table 6.6.

Table 6.4: Graph Instance 1

Arc
Distribution

Function
Arc

Distribution
Function

Arc
Distribution

Function
Arc

Distribution
Function

Arc
Distribution

Function

(1, 17) E(9) (11, 22) N(28, 4) (21, 11) T(15, 18, 15) (3, 11) U(4, 23) (18, 6) T(15, 25, 25)

(2, 14) U(4, 11) (12, 23) U(6, 15) (22, 3) U(8, 26) (15, 4) T(9, 28, 14) (5, 21) U(9, 19)

(3, 25) U(13, 15) (13, 4) N(24, 4) (23, 5) N(25, 4) (20, 18) U(12, 27) (20, 9) T(12, 17, 13)

(4, 12) E(9) (14, 7) U(22, 29) (24, 18) T(15, 23, 15) (5, 23) N(22, 24) (21, 4) U(15, 18)

113

(5, 14) U(2, 27) (15, 22) T(2, 12, 4) (25, 17) U(4, 20) (17, 25) U(9, 20) (14, 11) T(17, 21, 21)

(6, 16) U(4, 16) (16, 20) E(19) (1, 7) U(18, 27) (13, 8) U(1, 14) (12, 10) T(0, 12, 6)

(7, 19) T(6, 15, 15) (17, 7) N(18, 20) (18, 12) U(8, 12) (11, 13) T(8, 17, 17) (21, 3) U(11, 18)

(8, 4) E(2) (18, 8) T(3, 15, 4) (5, 8) T(7, 14, 14) (10, 24) N(4, 17) (21, 19) E(29)

(9, 1) N(0, 24) (19, 22) T(5, 11, 11) (8, 9) N(26, 1) (2, 3) N(15, 11) (1, 3) U(12, 23)

(10, 9) E(13) (20, 8) U(2, 12) (2, 13) N(1, 1) (23, 8) U(8, 10) (20, 19) E(21)

Table 6.5: Graph Instance 2

Arc
Distribution

Function
Arc

Distribution
Function

Arc
Distribution

Function
Arc

Distribution
Function

Arc
Distribution

Function

(1, 23) E(12) (11, 17) E(1) (21, 4) U(6, 17) (25, 2) U(17, 18) (16, 22) E(19)

(2, 24) T(18, 21, 21) (12, 15) U(11, 23) (22, 10) T(11, 20, 19) (1, 15) E(7) (12, 13) T(9, 25, 21)

(3, 19) T(6, 19, 19) (13, 25) N(10, 15) (23, 14) E(23) (2, 20) N(9, 20) (12, 10) E(10)

(4, 1) T(1, 18, 4) (14, 18) N(8, 15) (24, 6) T(2, 15, 6) (11, 5) E(10) (10, 3) U(17, 29)

(5, 4) T(7, 16, 16) (15, 11) T(1, 8, 4) (25, 6) N(5, 25) (11, 3) N(2, 18) (3, 4) E(15)

(6, 9) N(4, 28) (16, 17) N(16, 11) (24, 4) U(5, 21) (9, 1) E(6) (23, 20) T(2, 4, 3)

(7, 16) U(0, 9) (17, 4) U(15, 22) (3, 2) N(10, 26) (13, 8) E(8) (24, 25)
T(15, 27,

21)

(8, 1) U(16, 25) (18, 1) N(2, 9) (14, 22) N(8, 19) (21, 13) N(9, 14) (19, 25) U(7, 20)

(9, 1) T(18, 19, 18) (19, 13) U(13, 25) (4, 19) N(18, 5) (15, 23)
T(15, 24,

15)
(21, 23) E(2)

(10, 19) U(7, 27) (20, 2) E(13) (1, 10) T(13, 16, 15) (17, 22) E(21) (14, 2) E(29)

Table 6.6: Graph Instance 3

Arc
Distribution

Function
Arc

Distribution
Function

Arc
Distribution

Function
Arc

Distribution
Function

Arc
Distribution

Function

(1, 7) N(13, 16) (11, 4) E(8) (21, 23) T(3, 9, 8) (13, 3) T(6, 30, 16) (17, 15) N(3, 13)

(2, 22) E(27) (12, 15) U(7, 17) (22, 12) U(7, 25) (14, 24) T(6, 10, 9) (14, 2) E(2)

(3, 8) T(17, 25, 23) (13, 8) E(10) (23, 3) T(9, 15, 9) (20, 17) N(25, 5) (3, 11) E(11)

(4, 22) T(14, 22, 14) (14, 11) U(15, 17) (24, 12) U(11, 20) (8, 15) T(15, 19, 19) (25, 12) T(0, 9, 5)

(5, 11) T(1, 21, 2) (15, 25) T(11, 23, 22) (25, 20) U(13, 18) (15, 24) U(5, 26) (4, 10) U(16, 28)

(6, 1) U(20, 22) (16, 20) T(13, 18, 13) (22, 5) E(10) (17, 13) E(8) (11, 4) U(3, 18)

(7, 17) T(8, 11, 10) (17, 20) T(6, 24, 23) (12, 19) T(11, 17, 16) (6, 18) N(3, 15) (1, 24) U(15, 18)

(8, 14) N(29, 14) (18, 6) E(22) (13, 22) U(14, 23) (18, 19) U(20, 28) (21, 3) T(3, 26, 22)

(9, 25) U(21, 27) (19, 8) E(24) (22, 19) N(23, 6) (18, 12) U(11, 20) (17, 10) U(17, 26)

(10, 23) N(5, 23) (20, 6) U(0, 2) (15, 25) E(12) (13, 10) T(10, 29, 24) (4, 22) N(22, 11)

For the proposed MOPSO, Sigma-value as discussed in section 2.4.1 was used for leader

selection, with 𝜖-dominance [158] used for the maintenance of the external archive. Mutation

114

was used as a swarm diversity measure. The algorithm was implemented in Java and executed

on a computer with Intel® Core™i7 CPU at 3.10GHz with 8.00GB RAM running a Windows

8.1 Operating System. Dijkstra’s algorithm was used to solve each instance for both single-

objective cases (minimum expected cost and variance) to verify that the algorithm is able to

achieve the two extremes of the Pareto front. Each instance was executed over 10 runs with

number of iterations set at 50 for each run to investigate consistency, a mutation rate of 0.3,

and an 𝜖-value of 0.01. The results of the algorithm on the three instances are presented in

Table 6.7. From the results, it is obvious that the aim of multi-objective optimization is

achieved, since the user is given the freedom to make a choice on the shortest path to take

based on his preference either for the shortest path which has more variability, or the surest

path which has higher cost, or, as the results on instances 2 and 3 show, a path which gives a

suitable balance between the two desirables. The proposed algorithm is shown to achieve

both extremes of the two objective functions on the three tested instances as verified by

Dijkstra’s algorithm. The algorithm’s consistency is also shown by its ability to achieve the

Pareto front 100% of the time on all tested instances. Figure 6.2 and Figure 6.3 show the

Pareto fronts achieved in instances 2 and 3.

34

35

36

37

38

39

40

41

42

0 10 20 30 40 50

Ex
p

ec
te

d
 C

o
st

Variance

Figure 6.2: Pareto front for graph instance 2

115

Further experiments were carried out on the impact of 𝜖-value used for 𝜖-dominance on the

algorithm’s performance by varying its value from 0.01 to 0.1. The experiments were carried

out on a randomly generated graph with 200 nodes and 1000 edges, with the same settings

as earlier stated except for the varying 𝜖-values. The minimum values found by Dijkstra’s

0

10

20

30

40

50

60

70

0 10 20 30 40

Ex
p

ec
te

d
 C

o
st

Variance

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Ex
p

ec
te

d
 C

o
st

Variance

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 6.4: Evaluating Proposed DPSO’s performance with varying 𝜖-values

Figure 6.3: Pareto front for graph instance 3

116

algorithm for expected length and variance were 5.3 and 4.9 respectively. The algorithm was

run 10 times, and results which showed the greatest spread/diversity and accuracy were

selected for comparison.

We quickly note that solutions provided for a discrete problem may not be as rich or diverse

as those which are achieved for a continuous problem, the obvious reason being the limitation

in solution space available for discrete optimization problems. The chart in Figure 6.4 shows

the impact that 𝜖-value can have on the performance of a MOPSO algorithm, indicating that

lower 𝜖-values are generally preferable for consistency, accuracy and greater diversity. For

most values of 𝜖, the algorithm was able to achieve a variance of 6.9, very close to the

minimum variance. However, only when 𝜖 was set to 0.01 was it able to simultaneously find

a minimum expected cost of 5.3. For values ranging from between 0.03 and 0.08,

performance is generally poorer and farther away from the pareto front which was achieved

with 𝜖 = 0.01. An outlying case occurred with a value of 0.09, where the solution was very

close to the pareto front, but the poorer performance trend resumed with a value of 0.1. This

trend can be explained given the fact that with larger 𝜖-values, the area dominated by a given

solution increases, thereby hiding other good solutions which would have been found out.

Therefore, for optimal performance, the 𝜖-value should be kept reasonably low, preferably

between 0.01 and 0.02. This is in agreement with the values used in [158].

6.4 Summary and Conclusion

In this chapter, the proposed DPSO for SPP has been extended to MOSSP, with the

introduction of various novel operators and improvements to the generally known decoding

process for path construction. Results of the algorithm on expected cost SSP (SSP-E) were

compared with those proposed in [157], reporting better performance majorly in terms of

consistency on all tested instances. The proposed algorithm was also applied to three

randomly generated SSP graph instances with 25 nodes and 50 edges having normal, uniform,

exponential and triangular distributions, and the Pareto front accurately approximated, with

results by Dijkstra’s algorithm solutions to both single-objective versions of the problem.

The proposed algorithm was then applied to a problem with 200 nodes and 1000 edges, also

successfully approximating the Pareto front. The proposed algorithm’s performance with 𝜖-

117

values ranging from 0.01 to 0.1 was evaluated, and a conclusion that 𝜖-values between 0.01

and 0.02 tend to give better results than other values reached in line with existing literature.

118

Table 6.7: Proposed DPSO’s performance on 3 graph instances

Problem instance Path

Expected

Cost

(DPSO)

Minimum

Expected Cost

(Dijkstra)

Variance

(DPSO)

Minimum

Variance

(Dijkstra)

Average CPU

Time (s)

Convergence Rate

(%)

1 (Source: 1, Sink: 20)

1-12-7-3-11-22-4-20 58.6

58.6

34.6

24.2 0.0219 100

1-12-3-11-22-4-20 74.6 24.2

2 (Source: 1, Sink: 25)

1-23-14-2-24-25 41.2

34.6

6.6

6.6 0.0109 100 1-15-11-3-4-19-25 38.0 39.3

1-15-11-3-19-25 34.6 43.6

3 (Source: 1, Sink: 25)

1-24-12-19-8-15-25 64.5

25.7

10.2

10.2 0.0142 100
1-7-17-15-25 25.7 29.4

1-24-12-15-25 44.1 15.9

1-7-17-13-8-15-25 40.7 17.5

119

Chapter Seven

7 A Multi-Objective Particle Swarm Optimization Approach to the

Submission Decision Process

7.0 Introduction

The SDP was very recently introduced by Salinas and Munch [196] as one of choosing a

permutation of journals to which to submit a manuscript (factoring in possibility of rejection

and subsequent resubmission) such that the number of citations accumulated over a given

time period is maximized, while the number of submissions and time taken from submission

to publication are minimized. However, it was observed that the algorithm selected for their

computation (Metropolis algorithm) entails an unnecessarily high computational burden and

execution time. The proposed DPSO for SPP is therefore extended into a discrete Multi-

Objective Particle Swarm Optimization heuristic (MOPSO) so as to address the highlighted

issue. Some insight is also provided into the proposed models which can be used to achieve

even higher speed increase.

7.1 Application of Proposed DPSO to SDP

As a result of the unique nature of the SDP, a few definition need to be made differently from

those made in the proposed DPSO for SPP:

 Position: A position must be represented in such a way that it either directly or

indirectly represents a feasible solution within the solution space. Position is therefore

represented with respect to SDP as a set containing a permutation of journals

(represented as numbers/indices) which represents a particular order of manuscript

submission. Initially, the set of candidate journals is sorted by name, and indices are

assigned to them. These are the indices used to refer to each journal. Thus, a possible

position, with number of journals N = 10, would be

(2, 4, 7, 5, 1, 9, 3, 8, 0, 6)

Here, 2 could represent a journal named Ecology, 6 a journal named Science, and so on.

120

 Velocity: The same definition for velocity as was earlier proposed is maintained. An

example velocity, specific to the SDP could be {(7, 2), (5, 1), (1, 6), (4, 15), (2, 4)}3.

That is, for example, the journal at index 7 of a target position will be replaced with

another journal represented as 2, and so on.

Furthermore, a redefinition is necessary for the position update operation:

Position Update (⊗): As per equation (4.8), position update is done by first creating a new

position and inserting k elements in their respective indices in it. Subsequently, any empty

indices are filled with values with the original positions, and if any gaps still remain, they

are filled with randomly generated values. For example:

If Xi
t = (2, 5, 1, 3, 4) and Vi

t+1 = {(3, 2), (1, 5)}2

To obtain Xi
t+1, first build a new position:

Xi
t+1 = (5, , 2, ,)

Then, insert all values from the previous position which will not result in duplications within

the new position:

Xi
t+1 = (5, , 2, 3, 4)

Finally, randomly generate/fill the remaining empty indices:

Xi
t+1 = (5, 1, 2, 3, 4)

The updated equations still remain the same as equations (4.7) and (4.8).

7.2 Results

In the introductory paper by Salinas and Munch [196], a Metropolis algorithm was used in

solving the two bi-objective cases of the SDP, obtaining the C, R, and P values for about 3.2

million different submission schedules. They also used multiple starting conditions, going

through all N(N-1) possible permutations of the first two journals in a submission schedule.

Upon implementing their algorithm, a few areas in which improvements can be made were

discovered. The generation of 3.2 million different submission schedules obviously is very

time-consuming, also resulting in data which is overly large and cumbersome to process. The

proposed discrete MOPSO algorithm was therefore applied to the problem, in which case the

reported Pareto front (final contents of the external archive) suffices in helping authors make

121

their choice. For the experiments, the Sigma value was used for selection of leaders and a

mutation rate of 0.5 for diversity maintenance. Also, to be able to properly cover the search

space, the first two journals in a sequence were randomly swapped with any other two at

every tenth iteration.

All implementations were done in Java and executed on a computer with Intel® Core™i7

CPU at 3.10GHz with 8.00GB RAM running a Windows 8.1 Operating System, and using

one core. The same settings applied in [196] (scoop rate = 0.001, tR = 30, and T = 5 years

(1826 days)) were used in implementing both the Metropolis algorithm and the proposed

discrete MOPSO algorithm for the bi-objective problem seeking to maximize number of

citations, C, and minimize number of submissions, R. The charts in Figure 7.1 & Figure 7.2

show the results of the Metropolis algorithm and the proposed discrete MOPSO algorithm,

respectively.

Figure 7.1: A plot of expected Number of Citations against expected Number of Submissions for

about 3,150,000 submission schedules using the Metropolis algorithm in [196]

122

Figure 7.2: A plot of expected Number of Submissions against expected Number of Citations using

the proposed MOPSO algorithm

Similarly, the results of optimizing number of citations, C, and time spent in review, P for

both algorithms are shown in Figure 7.3 & Figure 7.4 respectively:

123

Figure 7.4: A plot of expected Number of Submissions against expected Time Spent in Review using

the proposed MOPSO algorithm

Figure 7.3: A plot of expected Number of Citations against expected Time Spent in Review

for about 3,150,000 submission schedules using the Metropolis algorithm in [196]

124

Table 7.1 shows the time spent by both algorithms on the two different optimization scenarios.

Table 7.1: Computational time comparison of Metropolis and MOPSO

Objectives Algorithm Time (s)

Maximize C, Minimize R
Metropolis 1001

MOPSO 11.957

Maximize C, Minimize P
Metropolis 966

MOPSO 12.134

During computations and experiments, it was observed that the number of citations gained

increased at a decreasing rate as j increased from 1 to N. Also, as noted in [196], a large N

does not seem realistic, as most authors would not have the patience to continue down the

submission schedule till the very last journal. Experiments were therefore performed to

determine at what point the increase in number of citations is reasonably negligible, and thus

to what value N can be reasonably reduced with minimal impact on number of citations

gained. A graph of the growth trend for number of citations for 5 randomly generated

submission schedules, S1 to S5 is shown in Figure 7.5.

125

Figure 7.5: Growth trend of citation count over increasing value of N (number of journals) for 5

randomly generated submission schedules

As can be observed from Figure 7.5, beyond the point where N = 10, the increase in number

of citations gained is very little. In line with this observation, the value of N was reduced to

10 and the algorithm rerun to see what time savings could be achieved. The result of

optimizing C and R with N=10 is shown in Figure 7.6, and C and P in Figure 7.7. A

comparison of time spent for all three algorithms: Metropolis, MOPSO, and MOPSO with N

= 10, denoted as MOPSO10, is shown in Table 7.2.

126

Figure 7.6: A plot of expected Number of Submissions against expected Number of Submissions

using the proposed MOPSO algorithm with N = 10

127

Figure 7.7: A plot of expected Number of Submissions against expected Time Spent in Review using

the proposed MOPSO algorithm with N = 10

Table 7.2: Computational time comparison of Metropolis, MOPSO and MOPSO10

Objectives Algorithm Time (s)

Maximize C, Minimize R

Metropolis 1001

MOPSO 11.957

MOPSO10 0.563

Maximize C, Minimize P

Metropolis 966

MOPSO 12.134

MOPSO10 0.539

Maximize C, Minimize P,

Minimize R

Metropolis -

MOPSO 12.068

MOSPO10 0.63

128

Finally, the result of combining all objectives into a 3-objective optimization problem and

solving with the proposed discrete MOPSO algorithm was investigated. The Pareto front for

this 3-objective optimization is presented in Figure 7.8. In Figure 7.9, the same 3-objective

optimization is presented, but with N=10.

Figure 7.8: 3-Objective optimization plot of expected Number of Submissions, Number of Citations

and Time Spent in Review using MOPSO

129

Figure 7.9: 3-Objective optimization plot of expected Number of Submissions, Number of Citations

and Time Spent in Review using MOPSO with N = 10

7.3 Discussion

In Figure 7.1, which highlights the Pareto front achieved by the Metropolis algorithm, the

top-right portion of the Pareto front is dominated by Ecology Letters and Israel Journal of

Ecology and Evolution. Figure 7.2 which shows the Pareto front achieved by the proposed

MOPSO algorithm has the top-right portion dominated by Ecology Letters and Science. Both

algorithms therefore show that a first submission to Ecology Letters has a much higher

chance of maximizing citation count. Furthermore, the middle-right portions of the Pareto

fronts identified by both algorithms are clearly dominated by PLoS ONE, indicating that this

journal gives the best compromise between both desired objectives. The results similarly

reported by both algorithms in Figure 7.3 and Figure 7.4 are also in favor of Ecology Letters

for maximizing citation count, and PLoS ONE for achieving a good compromise between

maximizing citation count and minimizing time spent in review. It is also interesting to note

that in Figure 7.6 and Figure 7.7 where N = 10, the Pareto fronts reported agree with those

achieved when N = 61.

130

When all objectives are optimized as a 3-objective optimization problem, Ecology Letters

stands out clearly as the one which maximizes citation count (though with higher number of

submissions and longer time spent in review), while PLoS ONE gives a reasonable

compromise among all three objectives. This behavior is consistent both when N=61 and

N=10.

Therefore, the proposed algorithm, when compared to the Metropolis algorithm in [196],

shows similar results: that a schedule with a preference to maximizing number of citations

gained during the time horizon over minimizing the number of submissions should begin

submission with Ecology Letters. Experiments also show that a first submission to Science

is a good strategy. Other good first journals for maximizing citation count are Ecological

Monographs and Molecular Ecology Resources, as can be seen from the charts. An optimal

submission schedule which gives a reasonable compromise between the two objectives

should clearly begin submission with PLoS ONE. That is, if an author would not mind losing

a few citations (5 to 10), his best option would be to first submit his manuscript to PLoS ONE.

An interesting observation which was also made from experiments is that almost in all cases,

for schedules which achieve higher citation counts by first submitting to either Ecology or

Science, the second journal in the submission schedule is PLoS ONE. This implies that if

upon submission to either of the two journals, one is rejected, the best option would be to

submit to PLoS ONE. It is also worthy of note that most, if not all of the journals which form

the upper to middle (desirable) part of the Pareto front are among the first ten journals when

all journals are ranked by their V values (equation (2.22)). These journals in descending order

of V values are: Ecology Letters, Science, Israel Journal of Ecology and Evolution,

Ecological Monographs, Proceedings of National Academy of Sciences USA, Molecular

Ecology Resources, Molecular Ecology, ISME Journal, Journal of Evolutionary Biology, and

PLoS ONE. The same results with minute variations apply when optimizing expected number

of citations and time spent in review. Most of these observations are similarly made by

Salinas and Munch [196].

It has therefore been shown that the SDP problem can be solved in a much smaller amount

of time with the proposed MOPSO, and even smaller time when N is reduced to 10, without

affecting the quality of results obtained.

131

7.4 Summary and Conclusion

In this chapter, the proposed discrete MOPSO algorithm was applied to the SDP with results

showing that it performs much faster than the Metropolis algorithm used in the introducing

paper [196] without compromising accuracy. It was also shown that reducing the value of N

(Number of journals) to 10 when computing the different objective values C, P, and R leads

to a greater reduction in computational time. Furthermore, the proposed algorithm was used

to solve a 3-objective optimization problem combining the three objectives C, P and R, as

against the existing optimization of only 2 objectives (either C and R or C and P), and the

results were reported.

132

Chapter Eight

8 Summary, Conclusion and Future Work

8.0 Summary

In this research work, COPs have been discussed with focus on the TSP, SPP and SDP. Exact

and heuristic solution approaches to these problems have also been discussed and reviewed.

Exact methods discussed include label-setting, label-correcting and branch-and-bound

algorithms. The non-NI heuristics which were discussed include A*, heuristic bi-directional

search, branch and prune methods for the SPP and nearest-neighbor, k-opt and the widely-

acclaimed LKH heuristic for the TSP. Nature-Inspired algorithms such as GA, ACO, PSO

and the Physarum algorithms were also discussed. With specific regard to PSO, various

discretization techniques existing in literature were highlighted such as binary, fuzzy, swap

operator-based, set-based, and space transformation-based methods. The SDP was also

discussed in the context of pertinent issues related to it in literature. We also briefly presented

the Metropolis algorithm which was implemented in literature to solve it.

Two new set-based DPSOs were presented, EC-DPSO and a DPSO for SPP, which involve

the use of innovative problem-specific information to speed up convergence and achieve

accurate results. The EC-DPSO algorithm was applied to the TSP, while the DPSO proposed

for the SPP was applied to the classical SPP and SSP, as well as the MOSSP and SDP. The

results achieved are presented in the subsequent sections, and future areas of potential

research highlighted. This is done with respect to each of the problems solved.

8.1 Conclusion

A Discrete Particle Swarm Optimization (DPSO) heuristic for the Travelling Salesman

Problem (TSP) which was optimized through enhanced communication between particles

was presented. A great improvement in results was achieved by attempting to direct the

particles towards positions formed by ‘good’ edges. By taking into account the impact which

the inclusion of an edge makes on the fitness value achieved in the new position, the chances

133

of edges with relatively high cost getting included was greatly reduced, and that of those with

relatively very low cost increased

A memetic DPSO algorithm for the Shortest Path Problem (SPP) was also presented,

introducing new discretization concepts which proved to have a great impact on the global

search ability of the DPSO algorithm. Optimal values were also selected for c1 and c2 with

improved results. The local search ability of the memetic component of the algorithm led to

still better results. These results were compared with those of 3 other algorithms proposed in

literature for the SPP and found to be better. More so, the size of SPP instances solved by

DPSOs found in literature was increased from 100 to 200 cities.

Furthermore, the proposed DPSO algorithm was adapted to the Multi-Objective Stochastic

Shortest Path problem (MOSSP), introducing various novel operators and improvements to

the generally known decoding process for path construction. Results obtained on expected

cost SSP (SSP-E) were compared with those proposed in [157], reporting better performance

majorly in terms of consistency on all tested instances.

The proposed algorithm was then applied to MOSSP. Three random SSP graph instances of

size 25 nodes and 50 edges were generated, having normal, uniform, exponential and

triangular distributions. The Pareto front was accurately approximated, and results validated

by Dijkstra’s solutions for both single-objective versions of the problem. The algorithm was

also applied to a MOSSP instance with 200 nodes and 1000 edges, with the Pareto front also

successfully approximated. The performance of the algorithm with 𝜖-values ranging from

0.01 to 0.1 were evaluated and reported, and a conclusion that 𝜖-values between 0.01 and

0.02 tend to give better results reached in consonance with existing literature.

The Submission Decision Problem was addressed with an adaptation of the proposed discrete

MOPSO algorithm. It was shown that the algorithm performs much faster than the Metropolis

algorithm used in the paper [196] which introduced the problem. It was also shown that

reducing the value of N (Number of journals) to 10 in computing the different objective

values, expected citation count (C), expected time spent in review (P), and expected number

of submissions (R) leads to a greater reduction in computational time without compromising

134

results. Furthermore, the proposed algorithm was used to solve a 3-objective optimization

problem combining the three objectives C, P and R, as against the existing optimization of

only 2 objectives (either C and R or C and P).

8.2 Future Work

The DPSO for TSP algorithm which was presented represents a new idea in discretizing PSO

for TSP. However, the performance of the algorithm still needs to be improved in terms of

speed and accuracy, as we were only able to attempt TSPs of size up to 76 cities. In addition,

it was observed in the review of literature that no Particle Swarm Optimization (PSO)

algorithm has been applied to the family of constrained Shortest Path problems (CSP). It is

therefore recommended that the new DPSO algorithm for SPP be adapted to solve the CSP

as a means of testing its robustness and investigating if any improvements can be made on

existing results.

The application of discrete MOPSOs to Stochastic Time-Dependent Networks with variants

including correlations between link costs, reliability and α-reliability and others will be

looked into, as this appears to be an area of active research. Finally, attempts will be made to

obtain data specific to the computer science field so as to use them in solving the SDP and

reported the results. These results will be of great use to authors in the field of computer

science in deciding what journal submission schedule to follow in submitting their

manuscripts.

9 References

[1] A. Abraham, H. Liu, W. Zhang, and T.-G. Chang, "Scheduling Jobs on

Computational Grids Using Fuzzy Particle Swarm Algorithm," in Knowledge-Based

Intelligent Information and Engineering Systems. vol. 4252, B. Gabrys, R. Howlett,

and L. Jain, Eds., ed: Springer Berlin Heidelberg, 2006, pp. 500-507.

[2] M. O. Adamu and A. O. Adewumi, "A survey of single machine scheduling to

minimize weighted number of tardy jobs," Journal of Industrial and Management

Optimization, vol. 10, pp. 219-241, 2014.

[3] A. O. Adewumi and A. M. Arasomwan, "An improved particle swarm optimiser

based on swarm success rate for global optimisation problems," Journal of

Experimental & Theoretical Artificial Intelligence, pp. 1-43, 2014.

[4] A. O. Adewumi and A. M. Arasomwan, "Improved particle swarm optimization

based on greedy and adaptive features," in Proceedings of IEEE Symposium on

Swarm Intelligence (SIS), 2014, pp. 1-6.

[5] A. O. Adewumi, B. A. Sawyerr, and M. Montaz Ali, "A heuristic solution to the

university timetabling problem," Engineering Computations, vol. 26, pp. 972-984,

2009.

[6] H. Afaq and S. Saini, "A Novel Approach to Solve Graph-based Travelling Salesman

Problem Using Particle Swarm Optimization Technique," in Proceedings of

International Conference on Computational Intelligence and Computing Research,

Coimbatore, 2012.

[7] F. Afshinmanesh, A. Marandi, and A. Rahimi-Kian, "A novel binary particle swarm

optimization method using artificial immune system," in Proceedings of the

International Conference on Computer as a Tool (EUROCON 2005). 2005, pp. 217-

220.

[8] R. Agarwal, M. Caesar, P. B. Godfrey, and B. Y. Zhao, "Shortest paths in less than a

millisecond," in Proceedings of the 2012 ACM workshop on Workshop on online

social networks, 2012, pp. 37-42.

[9] C. W. Ahn and R. S. Ramakrishna, "A genetic algorithm for shortest path routing

problem and the sizing of populations," IEEE Transactions on Evolutionary

Computation, vol. 6, pp. 566-579, 2002.

[10] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms

and Applications. New Jersey: Prentice-Hall, Inc., 1993.

[11] D. Applegate and W. Cook, "A computational study of the job-shop scheduling

problem," ORSA Journal on computing, vol. 3, pp. 149-156, 1991.

[12] D. L. Applegate, R. E. Bixby, V. Chvátal, W. Cook, D. G. Espinoza, M. Goycoolea,

et al., "Certification of an optimal TSP tour through 85,900 cities," Operations

Research Letters, vol. 37, pp. 11-15, 2009.

[13] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling Salesman

Problem: A Computational Study: Princeton University Press, 2011.

[14] M. A. Arasomwan and A. O. Adewumi, "On adaptive chaotic inertia weights in

Particle Swarm Optimization," in IEEE Symposium on Swarm Intelligence (SIS),

2013, pp. 72-79.

[15] M. A. Arasomwan and A. O. Adewumi, "Improved particle swarm optimization with

a collective local Unimodal search for continuous optimization problems," The

Scientific World Journal, vol. 2014, 2014.

[16] É. Archambault and V. Larivière, "History of the journal impact factor: Contingencies

and consequences," Scientometrics, vol. 79, pp. 635-649, 2009.

[17] N. Attiratanasunthron and J. Fakcharoenphol, "A running time analysis of an ant

colony optimization algorithm for shortest paths in directed acyclic graphs,"

Information Processing Letters, vol. 105, pp. 88-92, 2008.

[18] J. L. Bander and C. C. White, III, "A new route optimization algorithm for rapid

decision support," in Vehicle Navigation and Information Systems Conference, 1991,

1991, pp. 709-728.

[19] A. G. Barto, S. J. Bradtke, and S. P. Singh, "Learning to act using real-time dynamic

programming," Artificial Intelligence, vol. 72, pp. 81-138, 1995.

[20] J. E. Beasley, "An algorithm for set covering problem," European Journal of

Operational Research, vol. 31, pp. 85-93, 1987.

[21] I. Beichl and F. Sullivan, "The metropolis algorithm," Computing in Science &

Engineering, vol. 2, pp. 65-69, 2000.

[22] H. Beigy and M. R. Meybodi, "A New Distributed Learning Automata Based

Algorithm For Solving Stochastic Shortest Path Problem," in JCIS, 2002, pp. 339-

343.

[23] R. Bellman, "Dynamic programming and Lagrange multipliers," Proceedings of the

National Academy of Sciences of the United States of America, vol. 42, p. 767, 1956.

[24] R. Bellman, "On a routing problem," DTIC Document1956.

[25] H. Bernhard, B. Korte, and J. Vygen, "Combinatorial optimization: Theory and

algorithms," ed: Heidelberg: Springer-Verlag, 2008.

[26] D. P. Bertsekas and J. N. Tsitsiklis, "An analysis of stochastic shortest path

problems," Mathematics of Operations Research, vol. 16, pp. 580-595, 1991.

[27] F. J. Beutler, "Dynamic Programming: Deterministic and Stochastic Models (Dimitri

P. Bertsekas)," SIAM Review, vol. 31, pp. 132-133, 1989.

[28] M. Bolívar, L. Lozano, and A. Medaglia, "Acceleration strategies for the weight

constrained shortest path problem with replenishment," Optimization Letters, vol. 8,

pp. 2155-2172, 2014.

[29] J. Bollen, H. Van de Sompel, A. Hagberg, and R. Chute, "A principal component

analysis of 39 scientific impact measures," PloS one, vol. 4, p. e6022, 2009.

[30] B. Bonet and H. Geffner, "Solving stochastic shortest-path problems with RTDP,"

University of California, Los Angeles, 2002.

[31] M. R. Bonyadi, M. R. Azghadi, and H. Shah-Hosseini, "Population-Based

Optimization Algorithms for Solving the Travelling Salesman Problem," in

Travelling Salesman Problem, F. Greco, Ed., ed Croatia: In-Tech, 2008, pp. 1-34.

[32] L. Bornmann, W. Marx, A. Y. Gasparyan, and G. D. Kitas, "Diversity, value and

limitations of the journal impact factor and alternative metrics," Rheumatology

International, vol. 32, pp. 1861-1867, 2012.

[33] W. M. Carlyle, J. O. Royset, and R. Kevin Wood, "Lagrangian relaxation and

enumeration for solving constrained shortest-path problems," Networks, vol. 52, pp.

256-270, 2008.

[34] O. Castro, Jr. and A. Pozo, "Using Hyper-Heuristic to Select Leader and Archiving

Methods for Many-Objective Problems," in Evolutionary Multi-Criterion

Optimization. vol. 9018, A. Gaspar-Cunha, C. Henggeler Antunes, and C. C. Coello,

Eds., ed: Springer International Publishing, 2015, pp. 109-123.

[35] Y. Y. Cha, "Navigation of a free-ranging mobile robot using heuristic local path-

planning algorithm," Robotics and Computer-Integrated Manufacturing, vol. 13, pp.

145-156, 6// 1997.

[36] S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, and M. A. Shooredeli, "Modified

multi-objective particle swarm optimization for electromagnetic absorber design," in

Proceedings of Asia-Pacific Conference on Applied Electromagnetics (APACE),

2007, pp. 1-5.

[37] S. Chandrasekaran, S. Ponnambalam, R. K. Suresh, and N. Vijayakumar, "A hybrid

discrete particle swarm optimization algorithm to solve flow shop scheduling

problems," in Proceedings of IEEE Conference on Cybernetics and Intelligent

Systems, 2006, pp. 1-6.

[38] W. A. Chang and R. S. Ramakrishna, "A genetic algorithm for shortest path routing

problem and the sizing of populations," IEEE Transactions on Evolutionary

Computation, vol. 6, pp. 566-579, 2002.

[39] A. Chen and Z. Ji, "Path finding under uncertainty," Journal of advanced

transportation, vol. 39, pp. 19-37, 2005.

[40] B.-Y. Chen, W. H. K. Lam, L. Qingquan, A. Sumalee, and Y. Ke, "Shortest Path

Finding Problem in Stochastic Time-Dependent Road Networks With Stochastic

First-In-First-Out Property," IEEE Transactions on Intelligent Transportation

Systems, vol. 14, pp. 1907-1917, 2013.

[41] B. Y. Chen, W. H. Lam, A. Sumalee, Q. Li, H. Shao, and Z. Fang, "Finding reliable

shortest paths in road networks under uncertainty," Networks and spatial economics,

vol. 13, pp. 123-148, 2013.

[42] B. Y. Chen, W. H. K. Lam, A. Sumalee, Q. Li, and M. L. Tam, "Reliable Shortest

Path Problems in Stochastic Time-Dependent Networks," Journal of Intelligent

Transportation Systems, vol. 18, pp. 177-189, 2013.

[43] P. Chen and Y. Nie, "Bicriterion shortest path problem with a general nonadditive

cost," Transportation Research Part B: Methodological, vol. 57, pp. 419-435, 2013.

[44] W.-N. Chen, J. Zhang, H. S.-H. Chung, W.-L. Zhong, W.-G. Wu, and Y.-H. Shi, "A

novel set-based particle swarm optimization method for discrete optimization

problems," IEEE Transactions on Evolutionary Computation, vol. 14, pp. 278-300,

2010.

[45] Y.-L. Chen and H.-H. Yang, "Shortest paths in traffic-light networks,"

Transportation Research Part B: Methodological, vol. 34, pp. 241-253, 5// 2000.

[46] J. Cheng, S. Kosuch, and A. Lisser, "Stochastic Shortest Path Problem with Uncertain

Delays," in ICORES, 2012, pp. 256-264.

[47] S. Chib and E. Greenberg, "Understanding the metropolis-hastings algorithm," The

american statistician, vol. 49, pp. 327-335, 1995.

[48] H. M. Choset, Principles of robot motion: theory, algorithms, and implementation:

MIT press, 2005.

[49] J. Clausen, "Branch and bound algorithms-principles and examples," Department of

Computer Science, University of Copenhagen, pp. 1-30, 1999.

[50] M. Clerc, "Discrete Particle Swarm Optimization, illustrated by the Traveling

Salesman Problem," in New Optimization Techniques in Engineering. vol. 141, ed:

Springer Berlin Heidelberg, 2004, pp. 219-239.

[51] M. Clerc and J. Kennedy, "The particle swarm-explosion, stability, and convergence

in a multidimensional complex space," IEEE Transactions on Evolutionary

Computation, vol. 6, pp. 58-73, 2002.

[52] A. Colorni, M. Dorigo, and V. Maniezzo, "Distributed optimization by ant colonies,"

in Proceedings of the first European conference on artificial life, 1991, pp. 134-142.

[53] J. Cooper, "Improving performance of genetic algorithms by using novel fitness

functions," Computer Science, Loughborough University, 2006.

[54] G. Dahl and L. Gouveia, "On the directed hop-constrained shortest path problem,"

Operations Research Letters, vol. 32, pp. 15-22, 1// 2004.

[55] M. Daneshyari and G. G. Yen, "Cultural-Based Multiobjective Particle Swarm

Optimization," IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 41, pp. 553-567, 2011.

[56] G. Dantzig, R. Fulkerson, and S. Johnson, "Solution of a large-scale traveling-

salesman problem," Journal of the operations research society of America, vol. 2, pp.

393-410, 1954.

[57] G. B. Dantzig, "On the shortest route through a network," Management Science, vol.

6, pp. 187-190, 1960.

[58] H. W. Davis, R. B. Pollack, and T. Sudkamp, "Towards a Better Understanding of

Bidirectional Search," in AAAI, 1984, pp. 68-72.

[59] R. Dawkins, The Selfish Gene, 3rd ed. New York: Oxford University Press, 2006.

[60] D. de Champeaux, "Bidirectional heuristic search again," Journal of the ACM

(JACM), vol. 30, pp. 22-32, 1983.

[61] K. Deb and D. E. Goldberg, "An investigation of niche and species formation in

genetic function optimization," in Proceedings of the 3rd international conference on

genetic algorithms, 1989, pp. 42-50.

[62] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective

genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol.

6, pp. 182-197, 2002.

[63] Y. Deng, R. Sadiq, W. Jiang, and S. Tesfamariam, "Risk analysis in a linguistic

environment: A fuzzy evidential reasoning-based approach," Expert Systems with

Applications, vol. 38, pp. 15438-15446, 2011.

[64] M. Desrochers and F. Soumis, "A generalized permanent labeling algorithm for the

shortest path problem with time windows," INFOR Information Systems and

Operational Research, 1988.

[65] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische

Mathematik, vol. 1, pp. 269-271, 1959/12/01 1959.

[66] B. Doerr, A. Hota, and T. Kötzing, "Ants easily solve stochastic shortest path

problems," in Proceedings of the 14th annual conference on Genetic and evolutionary

computation, 2012, pp. 17-24.

[67] S. E. Dreyfus, "An Appraisal of Some Shortest-Path Algorithms," Operations

Research, vol. 17, pp. 395-412, 1969.

[68] I. Dumitrescu and N. Boland, "Improved preprocessing, labeling and scaling

algorithms for the Weight-Constrained Shortest Path Problem," Networks, vol. 42, pp.

135-153, 2003.

[69] J. Eaton and L. Zadeh, "Optimal pursuit strategies in discrete-state probabilistic

systems," Journal of Fluids Engineering, vol. 84, pp. 23-29, 1962.

[70] P. M. Editors, "The impact factor game," PLoS Med, vol. 3, p. e291, 2006.

[71] A. El-Gallad, M. El-Hawary, A. Sallam, and A. Kalas, "Enhancing the particle swarm

optimizer via proper parameters selection," in Proceedings of Canadian Conference

on Electrical and Computer Engineering (IEEE CCECE 2002), 2002, pp. 792-797

vol.2.

[72] G. Eugene, "Citation indexes for science: A new dimension in documentation through

association of ideas," Science, vol. 122, pp. 108-111, 1955.

[73] M. Eusuff, K. Lansey, and F. Pasha, "Shuffled frog-leaping algorithm: a memetic

meta-heuristic for discrete optimization," Engineering Optimization, vol. 38, pp. 129-

154, 2006/03/01 2006.

[74] L. Fang, P. Chen, and S. Liu, "Particle swarm optimization with simulated annealing

for TSP," in Proceedings of the 6th WSEAS International Conference on Artificial

Intelligence, Knowledge Engineering and Data Bases (AIKED’07), 2007, pp. 206-

210.

[75] M. Farhanchi, R. Hassanzadeh, I. Mahdavi, and N. Mahdavi-Amiri, "A modified ant

colony system for finding the expected shortest path in networks with variable arc

lengths and probabilistic nodes," Applied Soft Computing, vol. 21, pp. 491-500, 8//

2014.

[76] S. Fazel and J. Lamsma, "Beyond the impact factor?," Evidence Based Mental Health,

pp. 33-35. doi:10.1136/eb-2015-102087, 2015.

[77] P. Festa, "Constrained shortest path problems: State-of-the-art and recent advances,"

in Proceedings of the 17th International Conference on Transparent Optical

Networks (ICTON), 2015, pp. 1-17.

[78] M. Fischetti, J. J. Salazar Gonzalez, and P. Toth, "A branch-and-cut algorithm for the

symmetric generalized traveling salesman problem," Operations Research, vol. 45,

pp. 378-394, 1997.

[79] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, "A brief review of nature-

inspired algorithms for optimization," arXiv preprint arXiv:1307.4186, 2013.

[80] M. M. Flood, "The traveling-salesman problem," Operations Research, vol. 4, pp.

61-75, 1956.

[81] H. Frank, "Shortest paths in probabilistic graphs," Operations Research, vol. 17, pp.

583-599, 1969.

[82] L. Fu, "Real-time vehicle routing and scheduling in dynamic and stochastic traffic

networks," Department of Transportation Engineering, University of Alberta, 1996.

Ph.D thesis.

[83] L. Fu, D. Sun, and L. R. Rilett, "Heuristic shortest path algorithms for transportation

applications: State of the art," Computers & Operations Research, vol. 33, pp. 3324-

3343, 2006.

[84] E. Garfield, "Journal impact factor: a brief review," Canadian Medical Association

Journal, vol. 161, pp. 979-980, 1999.

[85] M. Gen, C. Runwei, and W. Dingwei, "Genetic algorithms for solving shortest path

problems," in Proceedings of IEEE International Conference on Evolutionary

Computation,1997, pp. 401-406.

[86] C. Geyer, "Introduction to Markov Chain Monte Carlo," Handbook of Markov Chain

Monte Carlo, pp. 3-48, 2011.

[87] W. Glänzel and H. F. Moed, "Journal impact measures in bibliometric research,"

Scientometrics, vol. 53, pp. 171-193, 2002.

[88] R. L. Glass, "A structure-based critique of contemporary computing research,"

Journal of Systems and Software, vol. 28, pp. 3-7, 1995.

[89] B. Golden, "Technical Note—Shortest-Path Algorithms: A Comparison," Operations

Research, vol. 24, pp. 1164-1168, 1976.

[90] M. Golosovsky and S. Solomon, "Uncovering the dynamics of citations of scientific

papers," arXiv preprint arXiv:1410.0343, 2014.

[91] R. Gopalan, R. Batta, and M. H. karwan, "The equity constrained shortest path

problem," Computers & Operations Research, vol. 17, pp. 297-307, 1990.

[92] J. Gottlieb, E. Marchiori, and C. Rossi, "Evolutionary algorithms for the satisfiability

problem," Evolutionary Computation, vol. 10, pp. 35-50, 2002.

[93] S. Goyal, "A survey on travelling salesman problem," in Proc. 43rd Midwest

Instruction and Computing Symposium (MICS 2010), 2010.

[94] F. Greco, Traveling Salesman Problem: In-Tech, 2008.

[95] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial

optimization vol. 2: Springer Science & Business Media, 2012.

[96] J. Gu, P. Purdom, J. Franco, and B. Wah, "Algorithms for the Satisfiability problem:

a survey, DIMACS Series on Discrete Mathematics and Theoretical Computer

Science 35: 19-151," American Mathematical Society, 1997.

[97] M. Guntsch and M. Middendorf, "Pheromone Modification Strategies for Ant

Algorithms Applied to Dynamic TSP," in Proceedings of Applications of

Evolutionary Computing: EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP,

EvoLearn, and EvoSTIM Como, E. J. W. Boers, Ed., ed Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001, pp. 213-222.

[98] F. Habibzadeh, "Opinion: Journal Impact Factor: Uses and Misuses," Archives of

Iranian Medicine, vol. 11, pp. 453-454, 2008.

[99] S. Hajforoosh, M. A. Masoum, and S. M. Islam, "Real-time charging coordination of

plug-in electric vehicles based on hybrid fuzzy discrete particle swarm optimization,"

Electric Power Systems Research, vol. 128, pp. 19-29, 2015.

[100] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and

Cybernetics, vol. 4, pp. 100-107, 1968.

[101] B. S. Hasan, M. Khamees, and A. S. H. Mahmoud, "A heuristic genetic algorithm for

the single source shortest path problem," in Proceedings of IEEE/ACS International

Conference on Computer Systems and Applications (AICCSA'07), 2007, pp. 187-194.

[102] W. K. Hastings, "Monte Carlo sampling methods using Markov chains and their

applications," Biometrika, vol. 57, pp. 97-109, 1970.

[103] F. Hecht, B. K. Hecht, and A. A. Sandberg, "The journal “impact factor”: a misnamed,

misleading, misused measure," Cancer genetics and cytogenetics, vol. 104, pp. 77-

81, 1998.

[104] K. Helsgaun, "An effective implementation of the Lin–Kernighan traveling salesman

heuristic," European Journal of Operational Research, vol. 126, pp. 106-130, 2000.

[105] K. Helsgaun, "An effective implementation of K-opt moves for the Lin-Kernighan

TSP heuristic," Roskilde University. Department of Computer Science, 2006.

[106] K. Helsgaun, "General k-opt submoves for the Lin–Kernighan TSP heuristic,"

Mathematical Programming Computation, vol. 1, pp. 119-163, 2009.

[107] J. E. Hirsch, "An index to quantify an individual's scientific research output,"

Proceedings of the National academy of Sciences of the United States of America,

vol. 102, pp. 16569-16572, 2005.

[108] D. R. Hodge and J. R. Lacasse, "Evaluating journal quality: Is the H-index a better

measure than impact factors?," Research on Social Work Practice, 2010.

[109] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence: MIT press, 1992.

[110] O. Hussein and T. Saadawi, "Ant routing algorithm for mobile ad-hoc networks

(ARAMA)," in Proceedings of the IEEE International Performance, Computing, and

Communications Conference, 2003, pp. 281-290.

[111] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, et al., "A

fast algorithm for finding better routes by AI search techniques," in Proceedings of

Vehicle Navigation and Information Systems Conference, 1994, pp. 291-296.

[112] S. Irnich and G. Desaulniers, "Shortest Path Problems with Resource Constraints," in

Column Generation, G. Desaulniers, J. Desrosiers, and M. Solomon, Eds., ed:

Springer US, 2005, pp. 33-65.

[113] X. Ji, "Models and algorithm for stochastic shortest path problem," Applied

Mathematics and Computation, vol. 170, pp. 503-514, 2005.

[114] Z. Ji, Y. S. Kim, and A. Chen, "Multi-objective α-reliable path finding in stochastic

networks with correlated link costs: a simulation-based multi-objective genetic

algorithm approach (SMOGA)," Expert Systems with Applications, vol. 38, pp. 1515-

1528, 2011.

[115] Z. Ji, Y. S. Kim, and A. Chen, "Multi-objective α-reliable path finding in stochastic

networks with correlated link costs: a simulation-based multi-objective genetic

algorithm approach (SMOGA)," Expert Systems with Applications, vol. 38, pp. 1515-

1528, 2011.

[116] Y.-X. Jin, H.-Z. Cheng, J.-y. Yan, and L. Zhang, "New discrete method for particle

swarm optimization and its application in transmission network expansion planning,"

Electric Power Systems Research, vol. 77, pp. 227-233, 2007.

[117] Y. Jin, M. Olhofer, and B. Sendhoff, "Dynamic weighted aggregation for

evolutionary multi-objective optimization: Why does it work and how?," in

Proceedings GECCO 2001 Conference, to appear, 2001.

[118] H. Kaindl and G. Kainz, "Bidirectional heuristic search reconsidered," Journal of

Artificial Intelligence Research, pp. 283-317, 1997.

[119] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural Networks, 1995.

Proceedings., IEEE International Conference on, 1995, pp. 1942-1948 vol.4.

[120] J. Kennedy and R. C. Eberhart, "A discrete binary version of the particle swarm

algorithm," in Systems, Man, and Cybernetics, 1997. Computational Cybernetics and

Simulation., 1997 IEEE International Conference on, 1997, pp. 4104-4108 vol.5.

 [122] M. A. Khanesar, H. Tavakoli, M. Teshnehlab, and M. A. Shoorehdeli, "A Discrete

Binary Version of the Particle Swarm Algorithm," in Particle Swamp Optimization,

A. Lazinica, Ed., ed Rijeka, Croatia: In-Tech, 2009, pp. 1-10.

[123] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, "A novel binary particle

swarm optimization," in Proceedings of Mediterranean Conference on Control &

Automation,(MED '07), 2007, pp. 1-6.

[124] L. Ki-Baek and K. Jong-Hwan, "Multiobjective Particle Swarm Optimization With

Preference-Based Sort and Its Application to Path Following Footstep Optimization

for Humanoid Robots," IEEE Transactions on Evolutionary Computation, vol. 17,

pp. 755-766, 2013.

[125] D. Kirchler, L. Liberti, and R. Wolfler Calvo, "A Label Correcting Algorithm for the

Shortest Path Problem on a Multi-modal Route Network," in Experimental

Algorithms. vol. 7276, R. Klasing, Ed., ed: Springer Berlin Heidelberg, 2012, pp. 236-

247.

[126] G. Klunder and H. Post, "The shortest path problem on large‐scale real‐road

networks," Networks, vol. 48, pp. 182-194, 2006.

[127] J. D. Knowles and D. W. Corne, "Approximating the nondominated front using the

Pareto archived evolution strategy," Evolutionary computation, vol. 8, pp. 149-172,

2000.

[128] S. Koenig and M. Likhachev, "Improved fast replanning for robot navigation in

unknown terrain," in Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE

International Conference on, 2002, pp. 968-975 vol.1.

[129] S. Koenig and M. Likhachev, "Fast replanning for navigation in unknown terrain,"

IEEE Transactions on Robotics, vol. 21, pp. 354-363, 2005.

[130] A. B. Kozhokanova, "Bounds for the Maximum-time Stochastic Shortest Path

Problem," Department of Computer Science and Engineering, Mississippi State

University, Unpublished Masters Thesis, 2014.

[131] J. Langeveld and A. P. Engelbrecht, "Set-based particle swarm optimization applied

to the multidimensional knapsack problem," Swarm Intelligence, vol. 6, pp. 297-342,

2012.

[132] G. Laporte, "The traveling salesman problem: An overview of exact and approximate

algorithms," European Journal of Operational Research, vol. 59, pp. 231-247, 1992.

[133] F. Lardeux, F. Saubion, and J.-K. Hao, "GASAT: a genetic local search algorithm for

the satisfiability problem," Evolutionary Computation, vol. 14, pp. 223-253, 2006.

[134] E. L. Lawler, Combinatorial optimization: networks and matroids: Courier

Corporation, 1976.

[135] D. Leff, "Making an impact: the rise of the impact factor as a measure of journal

quality," Journal of the American Dietetic Association, vol. 105, pp. 29-30, 2005.

[136] C. Li, S. G. Anavatti, and T. Ray, "Analytical hierarchy process using fuzzy inference

technique for real-time route guidance system," IEEE Transactions on Intelligent

Transportation Systems, vol. 15, pp. 84-93, 2014.

[137] W. Li, L. Yushu, D. Hongbin, and X. Yuanqing, "Obstacle-avoidance Path Planning

for Soccer Robots Using Particle Swarm Optimization," in Proceedings of IEEE

International Conference on Robotics and Biomimetics (ROBIO '06), 2006, pp. 1233-

1238.

[138] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions," IEEE

Transactions on Evolutionary Computation, vol. 10, pp. 281-295, 2006.

[139] J. J. Liang, B. Y. Qu, P. N. Suganthan, and B. Niu, "Dynamic Multi-Swarm Particle

Swarm Optimization for Multi-objective optimization problems," in Proceedings of

2012 IEEE Congress on Evolutionary Computation (CEC), 2012, pp. 1-8.

[140] C.-J. Liao, C.-T. Tseng, and P. Luarn, "A discrete version of particle swarm

optimization for flowshop scheduling problems," Computers & Operations Research,

vol. 34, pp. 3099-3111, 2007.

[141] S. Lin and B. W. Kernighan, "An effective heuristic algorithm for the traveling-

salesman problem," Operations research, vol. 21, pp. 498-516, 1973.

[142] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel, "An algorithm for the

traveling salesman problem," Operations research, vol. 11, pp. 972-989, 1963.

[143] H. Liu, A. Abraham, and M. Clerc, "An Hybrid Fuzzy Variable Neighborhood

Particle Swarm Optimization Algorithm for Solving Quadratic Assignment

Problems," J. UCS, vol. 13, pp. 1309-1331, 2007.

[144] T. Liu and M. Maeda, "A Modified Hybrid Algorithm of Set-Based Particle Swarm

Optimization for Traveling Salesman Problem," Journal of Signal Processing, vol.

17, pp. 293-297, 2013.

[145] H. S. Lope and L. S. Coelho, "Particle swarn optimization with fast local search for

the blind traveling salesman problem," in Hybrid Intelligent Systems, 2005. HIS'05.

Fifth International Conference on, 2005, pp. 245-250.

[146] J. Lopez, S. M. Susarla, E. W. Swanson, N. Calotta, and S. D. Lifchez, "The

Association of the H-Index and Academic Rank Among Full-Time Academic Hand

Surgeons Affiliated With Fellowship Programs," The Journal of Hand Surgery, 2015.

[147] Y.-y. Ma, Y.-j. Gong, W.-n. Chen, and J. Zhang, "A set-based locally informed

discrete particle swarm optimization," in Proceedings of the 15th annual conference

companion on Genetic and evolutionary computation, 2013, pp. 71-72.

[148] S. Martello, W. R. Pulleyblank, P. Toth, and D. de Werra, "Balanced optimization

problems," Operations Research Letters, vol. 3, pp. 275-278, 1984.

[149] S. Martello and P. Toth, Knapsack problems: algorithms and computer

implementations: John Wiley & Sons, Inc., 1990.

[150] R. Matai, M. L. Mittal, and S. Singh, Traveling salesman problem: An overview of

applications, formulations, and solution approaches: In Tech Open Access Publisher,

2010.

[151] M. Mavrovouniotis and S. Yang, "Ant colony optimization with immigrants schemes

for the dynamic travelling salesman problem with traffic factors," Applied Soft

Computing, vol. 13, pp. 4023-4037, 2013.

[152] K. Mehlhorn and M. Ziegelmann, "Resource Constrained Shortest Paths," in

Algorithms - ESA 2000. vol. 1879, M. Paterson, Ed., ed: Springer Berlin Heidelberg,

2000, pp. 326-337.

[153] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

"Equation of state calculations by fast computing machines," The journal of chemical

physics, vol. 21, pp. 1087-1092, 1953.

[154] M. Meybodi and H. BEYGY, "Solving stochastic shortest path problem using

distributed learning automata," in Proceeding of Annual International CSI Computer

Conference, 2001.

[155] A. W. Mohemmed, N. C. Sahoo, and T. K. Geok, "Solving shortest path problem

using particle swarm optimization," Applied Soft Computing, vol. 8, pp. 1643-1653,

2008.

[156] A. W. Mohemmed, N. C. Sahoo, and G. Tan Kim, "Particle swarm optimization with

noising metaheuristics for solving network shortest path problem," in IEEE

International Conference on Telecommunications and Malaysia International

Conference on Communications (ICT-MICC 2007), 2007, pp. 354-359.

[157] S. Momtazi, S. Kafi, and H. Beigy, "Solving Stochastic Path Problem: Particle Swarm

Optimization Approach," in New Frontiers in Applied Artificial Intelligence. vol.

5027, N. Nguyen, L. Borzemski, A. Grzech, and M. Ali, Eds., ed: Springer Berlin

Heidelberg, 2008, pp. 590-600.

[158] S. Mostaghim and J. Teich, "The role of ε-dominance in multi objective particle

swarm optimization methods," in Evolutionary Computation, 2003. CEC'03. The

2003 Congress on, 2003, pp. 1764-1771.

[159] S. Mostaghim and J. Teich, "Strategies for finding good local guides in multi-

objective particle swarm optimization (MOPSO)," in Proceedings of the 2003 IEEE

Swarm Intelligence Symposium (SIS'03), 2003, pp. 26-33.

[160] R. Muhandiramge and N. Boland, "Simultaneous solution of Lagrangean dual

problems interleaved with preprocessing for the weight constrained shortest path

problem," Networks, vol. 53, pp. 358-381, 2009.

[161] Y. Nagata and D. Soler, "A new genetic algorithm for the asymmetric traveling

salesman problem," Expert Systems with Applications, vol. 39, pp. 8947-8953, 8//

2012.

[162] T. Nakagaki, "Smart behavior of true slime mold in a labyrinth," Research in

Microbiology, vol. 152, pp. 767-770, 2001.

[163] T. Nakagaki, H. Yamada, and A. Toth, "Intelligence: Maze-solving by an amoeboid

organism," Nature, vol. 407, pp. 470-470, 2000.

[164] F. Neumann and C. Witt, Runtime analysis of a simple ant colony optimization

algorithm: Springer, 2006.

[165] T. A. J. Nicholson, Finding the shortest route between two points in a network: United

Kingdom Atomic Energy Authority, 1966.

[166] G. Nicosia and G. Oriolo, "An approximate A∗ algorithm and its application to the

SCS problem," Theoretical Computer Science, vol. 290, pp. 2021-2029, 2003.

[167] E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher, "Stochastic shortest

paths via quasi-convex maximization," in Algorithms–ESA 2006, ed: Springer, 2006,

pp. 552-563.

[168] C. Nilsson, "Heuristics for the traveling salesman problem," Tech. Report, Linköping

University, Sweden2003.

[169] A. Orda and R. Rom, "Shortest-path and minimum-delay algorithms in networks with

time-dependent edge-length," J. ACM, vol. 37, pp. 607-625, 1990.

[170] J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson, "A faster algorithm for

the single source shortest path problem with few distinct positive lengths," Journal

of Discrete Algorithms, vol. 8, pp. 189-198, 6// 2010.

[171] M. Padberg and G. Rinaldi, "Optimization of a 532-city symmetric traveling salesman

problem by branch and cut," Operations Research Letters, vol. 6, pp. 1-7, 1987.

[172] C. C. Palmer and A. Kershenbaum, "Representing trees in genetic algorithms," in

Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE

World Congress on Computational Intelligence, 1994, pp. 379-384.

[173] R. K. Pan and S. Fortunato, "Author Impact Factor: tracking the dynamics of

individual scientific impact," Scientific reports, vol. 4, 2014.

[174] W. Pang, K.-P. Wang, C.-G. Zhou, L.-J. Dong, M. Liu, H.-Y. Zhang, et al., "Modified

particle swarm optimization based on space transformation for solving traveling

salesman problem," in Proceedings of 2004 International Conference on Machine

Learning and Cybernetics, 2004, pp. 2342-2346.

[175] K. E. Parsopoulos, Particle Swarm Optimization and Intelligence: Advances and

Applications: Advances and Applications: IGI Global, 2010.

[176] K. E. Parsopoulos and M. N. Vrahatis, "Recent approaches to global optimization

problems through particle swarm optimization," Natural computing, vol. 1, pp. 235-

306, 2002.

[177] K. E. Parsopoulos and M. N. Vrahatis, "Multi-objective particles swarm optimization

approaches," Multi-objective optimization in computational intelligence: Theory and

practice, pp. 20-42, 2008.

[178] Y. G. Petalas, K. E. Parsopoulos, and M. N. Vrahatis, "Memetic particle swarm

optimization," Annals of Operations Research, vol. 156, pp. 99-127, 2007.

[179] W. Pijls and H. Post, "A new bidirectional search algorithm with shortened

postprocessing," European Journal of Operational Research, vol. 198, pp. 363-369,

2009.

[180] D. Pisinger, "Algorithms for knapsack problems," Ph.D, Computer Science,

University of Copenhagen, Copenhagen, Denmark, 1995.

[181] I. Pohl, "Bi-directional and heuristic search in path problems," Dept. of Computer

Science, Stanford University., 1969.

[182] I. Pohl, Bi-directional search: IBM TJ Watson Research Center, 1970.

[183] G. Politowski and I. Pohl, "D-Node Retargeting in Bidirectional Heuristic Search,"

in AAAI, 1984, pp. 274-277.

[184] M. Pollack, "The Maximum Capacity through a Network," Operations Research, vol.

8, pp. 733-736, 1960.

[185] H. Psaraftis, "Dynamic vehicle routing: Status and prospects," Annals of Operations

Research, vol. 61, pp. 143-164, 1995.

[186] B.-Y. Qu, P. N. Suganthan, and S. Das, "A distance-based locally informed particle

swarm model for multimodal optimization," IEEE Transactions on Evolutionary

Computation, vol. 17, pp. 387-402, 2013.

[187] G. R. Raidl and B. A. Julstrom, "A weighted coding in a genetic algorithm for the

degree-constrained minimum spanning tree problem," in Proceedings of the 2000

ACM symposium on Applied computing, vol 1, Italy, 2000.

[188] M. Rajabi-Bahaabadi, A. Shariat-Mohaymany, M. Babaei, and C. W. Ahn, "Multi-

objective path finding in stochastic time-dependent road networks using non-

dominated sorting genetic algorithm," Expert Systems with Applications, vol. 42, pp.

5056-5064, 2015.

[189] M. Randour, J.-F. Raskin, and O. Sankur, "Variations on the stochastic shortest path

problem," in Verification, Model Checking, and Abstract Interpretation, 2014, pp. 1-

18.

[190] C. R. Raquel and P. C. Naval Jr, "An effective use of crowding distance in

multiobjective particle swarm optimization," in Proceedings of the 7th Annual

conference on Genetic and Evolutionary Computation, 2005, pp. 257-264.

[191] G. Reinelt, "TSPLIB—A traveling salesman problem library," ORSA journal on

computing, vol. 3, pp. 376-384, 1991.

[192] G. Reinelt, "TSPLIB

 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html,"

TSPLIB95, 1995.

[193] P. Z. Revesz, "A method for predicting citations to the scientific publications of

individual researchers," in Proceedings of the 18th International Database

Engineering & Applications Symposium, 2014, pp. 9-18.

[194] M. Reyes-Sierra and C. C. Coello, "Multi-objective particle swarm optimizers: A

survey of the state-of-the-art," International Journal of Computational Intelligence

Research, vol. 2, pp. 287-308, 2006.

[195] L. H. O. Rios and L. Chaimowicz, "PNBA*: A Parallel Bidirectional Heuristic Search

Algorithm," Proceedings of the XXXI Congressa da Sociedade Brasileira de

Computaçao, 2011.

[196] S. Salinas and S. B. Munch, "Where should I send it? Optimizing the submission

decision process," PloS one, vol. 10, 2015.

[197] A. Salman, I. Ahmad, and S. Al-Madani, "Particle swarm optimization for task

assignment problem," Microprocessors and Microsystems, vol. 26, pp. 363-371, 2002.

[198] P. Sanders and L. Mandow, "Parallel Label-Setting Multi-objective Shortest Path

Search," in Proceedings of the 2013 IEEE 27th International Symposium on Parallel

& Distributed Processing (IPDPS), 2013, pp. 215-224.

[199] A. Schrijver, "On the history of the shortest path problem," Documenta Mathematica,

pp. 155-167, 2012.

[200] N. Shah and Y. Song, "S-index: Towards Better Metrics for Quantifying Research

Impact," arXiv preprint arXiv:1507.03650, 2015.

[201] Q. Shen, J.-H. Jiang, C.-X. Jiao, G.-l. Shen, and R.-Q. Yu, "Modified particle swarm

optimization algorithm for variable selection in MLR and PLS modeling: QSAR

studies of antagonism of angiotensin II antagonists," European Journal of

Pharmaceutical Sciences, vol. 22, pp. 145-152, 2004.

[202] Y. Shengxiang, C. Hui, and W. Fang, "Genetic Algorithms With Immigrants and

Memory Schemes for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html,

Networks," IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 40, pp. 52-63, 2010.

[203] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, and Q. Wang, "Particle swarm optimization-

based algorithms for TSP and generalized TSP," Information Processing Letters, vol.

103, pp. 169-176, 2007.

[204] L. Silva Junior, N. Nedjah, and L. de Macedo Mourelle, "Routing for applications in

NoC using ACO-based algorithms," Applied Soft Computing, vol. 13, pp. 2224-2231,

2013.

[205] L. Sint and D. de Champeaux, "An improved bidirectional heuristic search

algorithm," Journal of the ACM (JACM), vol. 24, pp. 177-191, 1977.

[206] R. A. Sivakumar and R. Batta, "The Variance-Constrained Shortest Path Problem,"

Transportation Science, vol. 28, pp. 309-316, 1994.

[207] S. Skiena, "Dijkstra's Algorithm," Implementing Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica, Reading, MA: Addison-Wesley,

pp. 225-227, 1990.

[208] N. A. Smith and R. W. Tromble, "Sampling uniformly from the unit simplex," Johns

Hopkins University, Tech. Rep, pp. 1-6, 2004.

[209] R. Smith, "Commentary: the power of the unrelenting impact factor—is it a force for

good or harm?," International Journal of Epidemiology, vol. 35, pp. 1129-1130, 2006.

[210] A. Souza, Combinatorial Algorithms: Lecture Notes: Huboldt University, Berlin,

2010.

[211] C. Stegehuis, N. Litvak, and L. Waltman, "Predicting the long-term citation impact

of recent publications," arXiv preprint arXiv:1503.09156, 2015.

[212] D. I. Stern, "High-ranked social science journal articles can be identified from early

citation information," PLoS ONE, vol9, 2014. doi: 10.1371/journal.pone.0112520.

[213] D. Sudholt and C. Thyssen, "Running time analysis of ant colony optimization for

shortest path problems," Journal of Discrete Algorithms, vol. 10, pp. 165-180, 2012.

[214] D. Sudholt and C. Thyssen, "A simple ant colony optimizer for stochastic shortest

path problems," Algorithmica, vol. 64, pp. 643-672, 2012.

[215] A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri, and B. Sadeghpour-Gildeh, "Computing a

fuzzy shortest path in a network with mixed fuzzy arc lengths using -cuts," Computers

& Mathematics with Applications, vol. 60, pp. 989-1002, 2010.

[216] M. F. Taşgetiren and Y.-C. Liang, "A binary particle swarm optimization algorithm

for lot sizing problem," Journal of Economic and Social Research, vol. 5, pp. 1-20,

2004.

[217] A. Tero, R. Kobayashi, and T. Nakagaki, "A mathematical model for adaptive

transport network in path finding by true slime mold," Journal of theoretical biology,

vol. 244, pp. 553-564, 2007.

[218] M. Thorup, "Undirected single-source shortest paths with positive integer weights in

linear time," J. ACM, vol. 46, pp. 362-394, 1999.

[219] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz, "Experimental evaluation in

computer science: A quantitative study," Journal of Systems and Software, vol. 28,

pp. 9-18, 1995.

[220] I. C. Trelea, "The particle swarm optimization algorithm: convergence analysis and

parameter selection," Information processing letters, 2003.

[221] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, "Multi-objective particle swarm

optimization with time variant inertia and acceleration coefficients," Information

Sciences, vol. 177, pp. 5033-5049, 2007.

[222] A. M. Turing, "Intelligent Machinery, A Heretical Theory," The Turing Test: Verbal

Behavior as the Hallmark of Intelligence, p. 105, 1948.

[223] L. Turner, "Variants of Shortest Path Problems," 2012, vol. 6, p. 14, 2012-01-03 2012.

[224] V. V. Vazirani, Approximation algorithms: Springer Science & Business Media, 2013.

[225] M. A. Villalobos-Arias, G. T. Pulido, and C. A. C. Coello, "A new mechanism to

maintain diversity in multi-objective metaheuristics," Optimization, vol. 61, pp. 823-

854, 2012.

[226] A. Vladimirsky, "Label-setting methods for multimode stochastic shortest path

problems on graphs," Mathematics of Operations Research, vol. 33, pp. 821-838,

2008.

[227] J. Wainer, C. G. Novoa Barsottini, D. Lacerda, and L. R. Magalhães de Marco,

"Empirical evaluation in Computer Science research published by ACM,"

Information and Software Technology, vol. 51, pp. 1081-1085, 2009.

[228] H. Wang, I. Moon, S. Yang, and D. Wang, "A memetic particle swarm optimization

algorithm for multimodal optimization problems," Information Sciences, vol. 197, pp.

38-52, 2012.

[229] H. Wang and G. G. Yen, "Adaptive Multiobjective Particle Swarm Optimization

Based on Parallel Cell Coordinate System," IEEE Transactions on Evolutionary

Computation, vol. 19, pp. 1-18, 2015.

[230] K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, "Particle swarm optimization for

traveling salesman problem," in Proceedings of 2003 International Conference on

Machine Learning and Cybernetics, 2003, pp. 1583-1585.

[231] L. Wang and C. Singh, "Environmental/economic power dispatch using a fuzzified

multi-objective particle swarm optimization algorithm," Electric Power Systems

Research, vol. 77, pp. 1654-1664, 2007.

[232] L. Wang, X. Wang, J. Fu, and L. Zhen, "A novel probability binary particle swarm

optimization algorithm and its application," Journal of software, vol. 3, pp. 28-35,

2008.

[233] Q. Wang, Z. Zhang, Y. Zhang, and Y. Deng, "Fuzzy shortest path problem based on

biological method," Journal of information and computational science, vol. 95, pp.

1365-1371, 2012.

[234] Y. Wang, "The hybrid genetic algorithm with two local optimization strategies for

traveling salesman problem," Computers & Industrial Engineering, vol. 70, pp. 124-

133, 4// 2014.

[235] Y. Wang, X.-Y. Feng, Y.-X. Huang, D.-B. Pu, W.-G. Zhou, Y.-C. Liang, et al., "A

novel quantum swarm evolutionary algorithm and its applications," Neurocomputing,

vol. 70, pp. 633-640, 2007.

[236] A. Warburton, "Approximation of Pareto Optima in Multiple-Objective, Shortest-

Path Problems," Operations Research, vol. 35, pp. 70-79, 1987.

[237] C. Wei-Neng, Z. Jun, H. S. H. Chung, Z. Wen-Liang, W. Wei-gang, and S. Yu-hui,

"A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization

Problems," Evolutionary Computation, IEEE Transactions on, vol. 14, pp. 278-300,

2010.

[238] P. Wei, W. Kang-Ping, Z. Chun-Guang, and D. Long-Jiang, "Fuzzy discrete particle

swarm optimization for solving traveling salesman problem," in Proceedings of the

Fourth International Conference on Computer and Information Technology (CIT '04),

2004, pp. 796-800.

[239] C. Weiler, B. Biesinger, B. Hu, and G. R. Raidl, "Heuristic Approaches for the

Probabilistic Traveling Salesman Problem," in Computer Aided Systems Theory–

EUROCAST 2015, ed: Springer, 2015, pp. 342-349.

[240] A. Weld, Kolobov Mausam, D. S, and H. Geffner, "Heuristic search for generalized

stochastic shortest path MDPs," 2011.

[241] T.-K. Whangbo, "Efficient modified bidirectional A* algorithm for optimal route-

finding," in New Trends in Applied Artificial Intelligence, ed: Springer, 2007, pp.

344-353.

[242] A. W. Wilhite and E. A. Fong, "Coercive citation in academic publishing," Science,

vol. 335, pp. 542-543, 2012.

[243] W. Wu and Q. Ruan, "A gene-constrained genetic algorithm for solving shortest path

problem," in Proceedings of the 7th International Conference on Signal Processing,

2004, vol.3, pp. 2510-2513.

[244] Y.-L. Wu, T.-F. Ho, S. J. Shyu, and B. M. Lin, "Discrete particle swarm optimization

with scout particles for library materials acquisition," The Scientific World Journal,

vol. 2013, 2013.

[245] Y. Yabo, L. Yi, and W. Bin, "A modified ant colony algorithm to solve the shortest

path problem," in Proceedings of the 2014 International Conference on Cloud

Computing and Internet of Things (CCIOT), 2014, pp. 148-151.

[246] D. Yanfang, T. Hengqing, and Z. Xiedong, "Dynamic shortest path in stochastic

traffic networks based on fluid neural network and Particle Swarm Optimization," in

Proceedings of the 2010 Sixth International Conference on Natural Computation

(ICNC), 2010, pp. 2325-2329.

[247] J. Yang, X. Shi, M. Marchese, and Y. Liang, "An ant colony optimization method for

generalized TSP problem," Progress in Natural Science, vol. 18, pp. 1417-1422, 2008.

[248] X.-S. Yang, Nature-inspired metaheuristic algorithms: Luniver press, 2010.

[249] J. Yao, K. Li, Y. Kong, and Y. Shen, "Solving the deterministic/stochastic SPR

problems by PSO with predatory escaping behavior," International Journal of Digital

Content Technology and its Applications, vol. 6, p. 42, 2012.

[250] Q. F. Ying, S. Venkatramanan, and D. M. Chiu, "Modeling and Analysis of Scholar

Mobility on Scientific Landscape," in Proceedings of the 24th International

Conference on World Wide Web Companion, 2015, pp. 609-614.

[251] D. Yong, S. Wenkang, D. Feng, and L. Qi, "A new similarity measure of generalized

fuzzy numbers and its application to pattern recognition," Pattern Recognition Letters,

vol. 25, pp. 875-883, 2004.

[252] M. Yusoff, J. Ariffin, and A. Mohamed, "Discrete particle swarm optimization with

a search decomposition and random selection for the shortest path problem," J.

Comput. Inf. Syst. Ind. Manag. Appl, vol. 4, pp. 578-588, 2012.

[253] A. A. Zakzouk, H. M. Zaher, and R. A. Z. El-Deen, "An ant colony optimization

approach for solving shortest path problem with fuzzy constraints," in Proceedings

The 7th International Conference on Informatics and Systems (INFOS), 2010, pp. 1-

8.

[254] M. V. Zelkowitz and D. R. Wallace, "Experimental models for validating

technology," Computer, vol. 31, pp. 23-31, 1998.

[255] F. B. Zhan, "Three fastest shortest path algorithms on real road networks: Data

structures and procedures," Journal of geographic information and decision analysis,

vol. 1, pp. 69-82, 1997.

[256] F. B. Zhan and C. E. Noon, "A comparison between label-setting and label-correcting

algorithms for computing one-to-one shortest paths," Journal of Geographic

Information and Decision Analysis, vol. 4, pp. 1-11, 2000.

[257] R. Zhang, S. Song, and C. Wu, "A hybrid artificial bee colony algorithm for the job

shop scheduling problem," International Journal of Production Economics, vol. 141,

pp. 167-178, 2013.

[258] X. Zhang, Q. Wang, A. Adamatzky, F. T. Chan, S. Mahadevan, and Y. Deng, "An

improved physarum polycephalum algorithm for the shortest path problem," The

Scientific World Journal, vol. 2014, 2014.

[259] X. Zhang, Y. Zhang, Y. Hu, Y. Deng, and S. Mahadevan, "An adaptive amoeba

algorithm for constrained shortest paths," Expert Systems with Applications, vol. 40,

pp. 7607-7616, 2013.

[260] X. Zhang, Y. Zhang, Z. Zhang, S. Mahadevan, A. Adamatzky, and Y. Deng, "Rapid

Physarum Algorithm for shortest path problem," Applied Soft Computing, vol. 23, pp.

19-26, 2014.

[261] Y. Zhang, X. Deng, Y. Li, J. Wu, X. Sun, and Y. Deng, "E-commerce security

assessment under group decision making," Journal of Information and

Computational Science, vol. 8, pp. 7-15, 2011.

[262] Y. Zhang, Y. Jun, G. Wei, and L. Wu, "Find multi-objective paths in stochastic

networks via chaotic immune PSO," Expert Systems with Applications, vol. 37, pp.

1911-1919, 2010.

[263] W.-l. Zhong, J. Zhang, and W.-n. Chen, "A novel discrete particle swarm

optimization to solve traveling salesman problem," in Proceedings of IEEE Congress

on Evolutionary Computation, (CEC 2007), 2007, pp. 3283-3287.

[264] X. Zhu, J. Zhang, and J. Feng, "Multiobjective Particle Swarm Optimization Based

on PAM and Uniform Design," Mathematical Problems in Engineering, vol. 501, p.

126404, 2015.

[265] E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: a comparative case

study and the strength Pareto approach," IEEE Transactions on Evolutionary

Computation, vol. 3, pp. 257-271, 1999.

[266] X. Zongyan, L. Haihua, and G. Ye, "A Study on the Shortest Path Problem Based on

Improved Genetic Algorithm," in 2012 Fourth International Conference on 2012

Computational and Information Sciences (ICCIS), pp. 325-328.

