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Abstract 

Particle Swarm Optimization (PSO) is a swarm intelligence metaheuristic which has been 

widely applied to various real-world problems with great results. The original algorithm was 

designed to solve continuous optimization problems. However, a lot of real-world problems 

are inherently discrete in nature and are sometimes modelled as benchmark Combinatorial 

Optimization Problems (COP) such as Travelling Salesman Problem (TSP) and Shortest Path 

Problem (SPP). Therefore, various methods have been proffered towards discretizing it to 

handle COPs. This work proposes two new Discrete Particle Swarm Optimization (DPSO) 

algorithms based on insights from gaps noticed in literature and demonstrates that it compares 

favorably with existing DPSOs. The proposed algorithms were designed and applied specific 

to three COPs: the Travelling Salesman Problem, the Shortest Path Problem (SPP) and its 

two variants, the Stochastic Shortest Path problem (SSP) and the Multi-Objective Stochastic 

Shortest Path Problem (MOSSP), and the Submission Decision Process problem (SDP). 

The proposed DPSO for TSP introduces a new concept of guiding particles’ search during 

the PSO process by their collective experience on how ‘good’ an edge which constituted their 

previous positions was. Parameters were introduced for determining the intensity with which 

this ‘experience’ is followed. The proposed algorithm performed much better when 

compared with the classical DPSO for TSP. Its performance in comparison with a widely-

known DPSO for TSP was also reported and analyzed.  

Another DPSO with new ideas for particle position discretization was proposed for the SPP 

and exhibited very positive performance in comparison with the best-performing DPSO 

algorithm designed for SPP found in literature. Both algorithms were compared on instances 

of size ranging from 50 nodes and 166 edges to 100 nodes and 280 edges, and results show 

that the proposed algorithm out-performs its counterpart on all instances, with equal or lower 

number of iterations. The proposed DPSO algorithm was also extended to solve instances of 

size (150, 400) and (200, 450), achieving accuracy levels of 90 and 91 percent respectively. 

In further evaluating the performance of the proposed DPSO for SPP, the classical SSP was 

solved and the results compared with an existing work in literature. The proposed algorithm 
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was able to find the path with shortest expected length on instances of size ranging from 10 

– 15 nodes with 100% accuracy on all instances. Instances of size ranging from (50, 150) to 

(200, 400), were also solved with 100% accuracy. The proposed DPSO was then extended to 

solve MOSSP. To evaluate its performance, three graphs, each of size (25, 50) were generated 

following exponential, triangular, uniform and normal distributions. The algorithm reports 

the accurate Pareto front for all generated instances. The results were validated by comparing 

each extreme of the Pareto front against the result produced by Dijkstra’s algorithm on the 

corresponding single-objective problems. A problem instance of size (200, 1000) was also 

solved, showing a near-optimal Pareto front, and demonstrating the effect of varying values 

of ε on the algorithm. From experiments, values between 0.01 and 0.02 were recommended 

as optimal for ε, in line with other results reported in literature. 

Finally, the proposed DPSO algorithm for SPP was applied to the recently introduced SDP. 

The algorithm’s performance was compared to that of the Metropolis algorithm used in the 

paper introducing the problem, and drastic reductions in time complexity were reported while 

maintaining comparable accuracy. All objectives were then combined in a 3-objective 

problem of maximizing citation count while minimizing number of resubmissions and time 

from submission to publication. The algorithm gives a satisfactory Pareto front which 

highlights the optimal journal submission order to be followed depending on what 

compromises are desired within the objective space. 
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Chapter One 

1 Introduction  

1.0 Introduction 

Combinatorial Optimization Problems (COP) are among the most widely studied problems 

in Computer Science owing to their applicability in a myriad of real world scenarios.  They 

are generally problems, which involve finding the best arrangement of a set of discrete 

objects, where an arrangement’s fitness is dependent on the specific problem domain [25]. 

This work focusses on three COPs, the Travelling Salesman Problem (TSP), Shortest Path 

Problems (SPP) and its variants, Stochastic Shortest Path problem (SSP) and Multi-Objective 

Stochastic Shortest Path problem (MOSSP), and the Submission Decision Process (SDP). 

The TSP involves finding the cheapest arrangement of all nodes in a graph such that a 

tour/cycle which includes exactly one node each is formed [93]. It is a classical NP-complete 

COP which has been intensely studied over the years as a result of its ubiquitous real world 

applications in vehicle routing, circuit board design, x-ray crystallography, and many others.  

The SPP has been applicable from the most primitive days of man when he needed to find 

the shortest path to various essential destinations (e.g. in search of food, shelter, and so on). 

Up to the early 1950’s, SPP was applicable in computing the shortest and alternative shortest 

paths for freeway drivers and long distance telephone calls in the United States [199]. SPP 

applications then extended to applications such as network routing, scheduling, production 

planning, energy (electric power, petroleum and natural gas), decision making process and 

air, land and sea travel [77], and continue to extend modern applications at the cutting-edge 

of technological advancement such as shortest path queries on massive social networks [8], 

path planning in robotics [48], sequence alignment in molecular biology [156], Route 

Guidance Systems [83, 136] and so on. In addition, when constraints are added to SPPs, they 

form an important part of the well-known Column Generation algorithm for large-scale 

Linear Programming problems [112]. 
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The SDP problem arises as a result of the dilemma which researchers face in deciding what 

journal to send their manuscript to such that the accumulated number of citations is 

maximized. Journal Impact Factors (JIF) usually give a general approximation of how many 

citations can be accumulated by papers published in them, and journals with high JIFs also tend 

to have high rejection rates and take generally longer periods in review. This is most probably as 

a result of the large number of submissions they receive. Therefore, authors need to know what 

schedule to follow in submitting their manuscripts, taking into cognizance the probability of 

getting rejected and having to re-submit to another journal. The SDP can be easily described as 

a COP, since it essentially involves finding the best arrangement of journals which 

maximizes/minimizes the desired objectives. The SDP is a newly introduced problem which 

has a more immediate practical application to every researcher and author who wishes to 

have their published work recognized. 

As a result of this widespread interest in COPs, Nature-Inspired (NI) metaheuristics have 

been applied to approximate solutions to them. This work focusses on the Swarm 

Intelligence-based heuristic, Particle Swarm Optimization (PSO), which needs to be first 

discretized before it is applied to COPs. Various discretization schemes have been applied to 

PSO, one of which is the set-based approach where candidate solutions are represented as a 

set of nodes. Two new set-based Discrete Particle Swarm Optimization (DPSO) algorithms 

are presented in this work, each addressing TSP and SPP with new ideas which have not been 

used in literature. These algorithms are applied to the TSP, classical SPP, SSP, and MOSSP.  

1.1 Problem Statement 

It was discovered from reviewed literature that the existing DPSOs for TSP do not optimize 

their search by taking into account the cost of edges which constitute positions within the 

fitness landscape. This could lead to the particles spending time unnecessarily exploring 

positions constituted by relatively high-cost edges which stand a very low chance of being 

part of the optimal solution. 

A key characteristic of existing set-based DPSO algorithms designed for SPP was also 

discovered. Since candidate paths are represented as sets of nodes, their position within the 

set is a critical and distinguishing feature which determines the order in which the path will 



3 

 

be traversed from source to destination. However, in the existing DPSO methods, this critical 

information is not taken into consideration when the various required set operations are 

carried out such as addition (set union) and subtraction (set difference), as well as in the 

representation of particles’ velocity.  

In most real-world situations, the cost/weight of networks are not deterministic as they are 

usually represented in the classical SPP [114]. They usually vary based on various factors 

such as road/link congestion, safety or reliability of the link, and so on. As a result, a variant 

of SPPs, known as Stochastic Shortest Path problem (SSP) is modelled to address them. In 

SSPs, edge costs are modelled as probability distributions rather than fixed values, and 

solutions to them usually give the expected shortest path. The PSO method which was found 

in existing literature for the SSP only reported solutions to SSPs of size 10-15 nodes. 

Again, most users are not only concerned with the expected minimum-length path, but are 

also concerned about the degree of variance or ‘sureness’ of the path. This variance comes 

into play as a result of the stochastic nature of the networks under consideration. Therefore, 

multi-objective optimization is required, where both objectives are to minimize expected cost 

and variance. It was observed in literature that the application of DPSOs to this type of 

problem has not been well explored. 

In introducing the SDP, Salinas and Munch [193] used a Metropolis algorithm to achieve the 

Pareto front (or efficiency frontier) showing the optimal levels of compromise available to the 

authors. Such compromises exist between maximizing citation count and minimizing number of 

submissions on one hand, or total time spent in review by the various journals on the other. A 

problem which was identified with this existing method is the huge computational burden 

entailed by the Metropolis algorithm which they used, where about 3,200,000 different 

submission schedules had to be tested before the optimal efficiency frontier was discovered. It 

was also noted that optimizing all three objectives at once has not been considered in literature.  
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1.2 Research Objectives 

The aim of this research is therefore to propose two new DPSOs for the TSP and SPP which 

will be extensible to other problems such as SSP, MOSSP and the SDP. This will be achieved 

by considering the following objectives: 

1. Develop a new DPSO heuristic for the TSP which is optimized through informing 

particles’ search by the input graph’s edge cost distribution, thereby causing them to 

rapidly avoid edges with relatively high cost and gravitate towards those with much 

lower costs. 

2. Develop a new DPSO heuristic for the SPP which takes into consideration node 

position-specific information and leads to more accurate results. 

3. Adapt and apply the new DPSO for SPP algorithm to SSP and MOSSP, reporting the 

results. 

4. Adapt and apply the new DPSO for SPP algorithm to the Submission Decision 

Process (SDP) with reasonable time savings, extending it to a 3-objective multi-

objective optimization of all objectives in the SDP. 

1.3 Research Methodology 

Two new DPSO algorithms for TSP and SPP are introduced, and their viability demonstrated 

by applying them to a range of problems. The results obtained are validated empirically. An 

empirical study uses a statistical tool to validate a hypothesis or result by experimentation 

[254]. Four broad classifications of research methods exist in Computer Science literature, 

as seen in [88]. They are scientific, engineering, empirical and analytical methods. Tichy et 

al. [219] identify five major categories of works published in the field of Computer Science. 

These categories are Formal Theory, Design and Modelling, Empirical Work, Hypothesis 

Testing, and Others. Wainer et al. [227] randomly selected 200 articles published in ACM in 

2005, using them as a sample population to estimate the percentage of articles published in 

the categories identified in [219]. They found out that papers under the Empirical Work 

category formed 17% of the total works published, with Theory, Hypothesis, Design and 

Others forming 4, 4.7, 3.4 and 70 percent respectively. This shows that an empirical research 
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methodology is valid and is being used by a significant percentage of computer science 

researchers, especially in the area of heuristics and meta-heuristics. 

1.4 Scope and Limitations 

This research is restricted to DPSO and its application to the three COPs earlier highlighted. 

The limitations encountered for each problem are as follows: 

 TSP: The TSP instance size in number of cities attempted was limited to 76. Efforts 

will be made to increase the capability of the proposed algorithm in future. 

 SPP: The number of papers which apply DPSO to the classical SPP is relatively low. 

Therefore, there was a limitation to the works with which the results of the proposed 

DPSO algorithm could be compared. 

 MOSSP: It was observed that the application of PSO to Multi-Objective SSP has not 

been really explored in the existing literature. The only similar work which we were 

able to find, that of Zhang, et al. [262], did not report the Pareto front for their 

optimization results, making it difficult for us to compare our results with theirs. We 

were therefore constrained to randomly generate problem instances, though it is 

believed that this will be of service to other researchers in testing and reporting their 

results. 

1.5 Thesis Contributions  

The major contributions which this work makes are as follows: 

1. A new DPSO algorithm for the TSP which takes advantage of edge cost information 

in directing particles’ search. 

2. A new DPSO algorithm which can be applied to the SPP.  An extension of the DPSO 

to solve the SSP and MOSSP for graph sizes ranging from 10 nodes and 15 edges to 

200 nodes and 1000 edges. The provision of randomly generated SSP graph data 

which follows four different probability distributions and can be used by other 

scientists in validating their SSP-related work, and recommendation of optimal ε-
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value for ε-dominance (related to MOSSP) which agrees with existing literature. It is 

believed that the proposed DPSO for SPP can be applied to other similar COPs. 

3. The first application of PSO to the SDP in literature (to our knowledge), leading to drastic 

reduction in processing time and computational burden. Extension of the SDP to a 3-

objective optimization problem which considers all three intrinsic objectives: 

maximizing citation count, minimizing number of resubmissions and minimizing time 

spent in review. Optimal submission schedules are also reported for the implemented 

journal data set which validates existing results in [196] to the benefit of the scientific 

community. 

1.6 Outline 

The rest of this dissertation is structured as follows: 

Chapter two gives some general information about COPs, focusing on the TSP and SPP, as 

well as the various Exact, Heuristic, and NI methods used in addressing them. It also gives 

some information needed for a good grasp of the SSP and Multi-Objective Optimization, as 

well as PSO, with the various discretization methods existing in literature. A brief 

background for the SDP is also given, together with the models developed to address it. 

In Chapter three, the new DPSO algorithm for the TSP is presented and discussed, and 

empirical results presented. The impact of various introduced parameters such as R and K on 

its performance is also discussed. 

Chapter four presents the DPSO designed for SPP with a memetic component used to 

enhance local search. The proposed discretization of PSO is done specifically with respect to 

weight-biased position encoding of paths in the SPP, the explorative nature of the algorithm 

being balanced by the local search capability of the memetic algorithm and an optimal 

selection of c1 and c2 parameters. 

Chapter five presents the results of applying the proposed memetic DPSO to the classical 

SPP, comparing them with two PSO and one GA algorithm in literature. 
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Chapter six presents an adaptation of the new DPSO to SSP with various improvements on 

existing techniques, and applies it to both the single and multi-objective SSP with very 

favorable results. The effect of varying ε-dominance values on the proposed discrete MOPSO 

algorithm is also investigated and reported. 

Chapter seven also presents an adapted version of the new DPSO for SDP, showing that it 

cuts down computational time by a significant factor. An improvement in the computation 

of the various objectives is also proposed which further reduces computational burden. The 

problem is extended beyond the usual bi-objective optimization to a 3-objective optimization 

and is solved with the proposed discrete PSO algorithm. 

Finally, Chapter eight concludes and gives some recommendations for future studies. 
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Chapter Two 

2 Literature Review 

2.0 Introduction: Combinatorial Optimization Problems 

Combinatorial Optimization is a field of study with roots in combinatorics, operations 

research, economics and theoretical computer science. It involves finding the best ordering, 

grouping, selection or arrangement of discrete objects which are usually finite in number 

[134]. Combinatorial Optimization is one of the most widely-studied fields in mathematics 

and computer science because it represents thousands of real-life problems such as 

investment planning and facility location, capital budgeting, gene sequencing, design of new 

molecules, design of fast and reliable communication networks, assignment of workers to 

jobs (e.g. airline crew scheduling) design and management of transportation systems and 

many others [95] [2, 5]. These types of problems can be formulated or modelled as abstract 

combinatorial problems and formally defined [210] as a tuple I = (U, P, val, extr), where: 

U is the solution space 

P is the feasibility predicate 

val is the objective function 𝑣𝑎𝑙: 𝑈 → ℝ, 

extr is the extremum (min or max)  

P induces a set, S of feasible solutions: 

𝑆 = {𝑋 ∈ 𝑈: 𝑋 satisfies 𝑃} (2.1) 

The goal is to attain a solution, 𝑠 ∈ 𝑆 which attains the desired extremum of val. 

A few of these abstracted COPs are highlighted below: 

 Knapsack Problem (KP): This is a family of problems which involves a set of items 

each having a profit, pj and a weight, wj to be packed in one or more knapsacks of 

capacity, c. A subset of these items is to be chosen in such a way that the accumulated 

profit is maximized without the accumulated weights exceeding c. A most popular 

member of this family is the 0-1 KP, which is mathematically formulated thus: 
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑐,

𝑛

𝑗=1

 

𝑥𝑗 ∈ {0,1},      𝑗 = 1, … , 𝑛, 

(2.2) 

where xj is a binary variable which takes the value 1 if item j is to be included in the 

knapsack, and 0 otherwise [180]. Other variants of the Knapsack Problem include 

Bounded Knapsack Problem, Multiple-choice Knapsack Problem, Multiple Knapsack 

Problem, Nested Knapsack Problem, and a popular extension of the KP, the Bin-

Packing Problem [149] [180]. 

 Set Covering Problem (SCP): Given a universal set U of n elements which has a 

family of subsets 𝑆 = {𝑆1, … , 𝑆𝑘}, and a cost function 𝑐: 𝑆 → 𝑄+, the SCP seeks a 

minimum-cost sub-collection of S which covers all elements of U [224]. The SCP has 

major applications in airline crew scheduling, location of emergency facilities, 

assembly line balancing and information retrieval [20]. 

 Job Shop Scheduling Problem (JSSP): The JSSP is a very challenging and difficult 

problem which has prompted intense studies by scientists over the years. Its fame for 

difficulty is in part attributed to the fact that an instance with 10 machines and 10 jobs 

which was proposed in 1963 remained unsolved for over 20 years [11]. It involves a 

set of jobs to be scheduled on a set of machines, each having a predetermined order 

in which they must be executed on each machine. Each machine can only process one 

job at a time, and each job can be processed by at most one machine at a time. Given 

that each processing operation has a fixed duration, the JSSP involves scheduling jobs 

such that their maximum completion time is minimized [257]. Obviously, this 

problem has numerous applications, with different variations, in the manufacturing 

industry. 

 Satisfiability Problem (SAT): The Satisfiability problem is among the six basic core 

NP-complete problems which have been identified as intrinsic to many areas in 

computing theory and engineering [133]. NP-complete problems are those for which 
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no proven polynomial-time algorithms exist over all instances. Apart from its indirect 

applications from the reformulation of other problems, SAT has direct applications 

in Boolean circuit synthesis, test pattern generation, VLSI engineering, design of 

asynchronous circuits, sports planning, and so on [92, 96, 133]. It is defined [96] thus: 

Given a Boolean formula with three components: 

o A set of n variables, 𝑥1, 𝑥2, … , 𝑥𝑛 

o A set of variables or their negated equivalents 

o A set of m distinct clauses: C1, C2, … , Cm, each consisting of literals combined 

by solely logical OR (˅) connectives, 

Determine whether there exists an assignment of truth values to the variables which 

makes the Conjunctive Normal Form: 

𝐶1 ∧ 𝐶2 ∧ … ∧ 𝐶𝑚 (2.3) 

true (or satisfiable), where ∧ is a logical AND connective. 

The remainder of this review focuses on the three COPs which are pertinent to this work, 

TSP, SPP and the Submission Decision Problem, with a greater emphasis on SPP since it 

constitutes a larger portion of the work. As for the SDP which was very recently introduced 

(in 2015) by Salinas and Munch [196], we were not able to find any articles in the literature 

which explicitly handles it apart from the introducing paper. However, closely-related issues 

such as citation rate/count, Impact Factor and other publication-related issues have been 

researched, discussed and debated for decades. A preliminary review of these issues is 

therefore given before the models for the SDP are presented. Also, we discuss the solution 

approaches existing in literature for these problems in two broad groupings as exact and 

heuristic. Heuristic algorithms are further discussed as non NI-based and NI-based methods, 

as PSO, which is this work is restricted to, is an NI-based heuristic.  

2.1 The Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is a well-known combinatorial optimization 

problem which was officially stated by the Austrian mathematician Karl Menger as follows 

[94]: “A traveling salesman has to visit exactly once, each of one of a list of x cities and then 
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return to the home city. He knows the cost of traveling from any city i to any other city j.  

Which of the possible tours of cities can he take at least possible total cost?” Such a tour 

which includes all nodes exactly once is referred to as a Hamiltonian cycle [93]. Various 

approaches exist for approximating solutions to the TSP which is a classical NP-complete 

problem, and it is widely used as a test benchmark for these optimization algorithms [31]. 

An Integer Linear Programming formulation of the TSP is given thus [132]: 

Minimize ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖≠𝑗

 (2.4) 

Subject to  

∑ 𝑥𝑖𝑗 = 1

𝑗=1

,      𝑖 = 1, … , 𝑛 (2.5) 

∑ 𝑥𝑖𝑗 = 1,

𝑛

𝑖=1

               𝑗 = 1, … , 𝑛. (2.6) 

∑ 𝑥𝑖𝑗 ≤ |𝑆| − 1

𝑖,𝑗∈𝑆

, 

𝑆 ⊂ 𝑉, 2 ≤ |𝑆| ≤ 𝑛 − 2, 

𝑥𝑖𝑗 ∈ {0,1} 

(2.7) 

𝑖, 𝑗 = 1, … , 𝑛,    𝑖 ≠ 𝑗. (2.8) 

Where cij represents the cost of the edge (i,j), S represents the set of nodes constituting a 

feasible Hamiltonian cycle, and V represents the set of all nodes in the graph. Constraints 

(2.5) and (2.6) describe the cost of the optimal tour, constraints (2.7) prevent the formation 

of subtours (tours/cycles with less than n nodes), and constraint (2.8) imposes binary 

conditions on the variables. 

If cij = cji for all edges in the graph, the problem is known as the Symmetric TSP (STSP). If 

this is not the case, it is known as the Asymmetric TSP (ATSP). A generalization of the TSP 

known as Generalized TSP (GTSP) partitions all nodes into clusters and seeks a minimum 

cost cycle which visits at least one node in each cluster [78]. A variant of the TSP is the 

Dynamic TSP (DTSP) where the input graph changes over time either with the deletion and 
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inclusion of new nodes and their connecting edges [97], or changes to edge costs [151]. 

Another is the Probabilistic TSP (PTSP) where each city in the input graph has an associated 

probability of being visited [239]. 

The TSP has a wide range of applications including, but not at all limited to, computer wiring, 

vehicle routing, data clustering, job shop scheduling, circuit board design, x-ray 

crystallography, and so on [150]. 

2.1.1 Solution Approaches to the TSP: Exact Methods 

One of the first exact methods for solving the TSP follows from the Integer Programming 

model earlier presented, which was formulated by Dantzig, et al. [56]. It involved a linear 

relaxation of some of the constraints, and they were able to optimally solve a 42-city instance 

using this method. However, the most basic and general exact method for solving the TSP is 

the branch-and-bound method which involves exhaustive search and is applicable in solving 

all COPs. It directly originated from research work on TSP, being first introduced in the paper 

by Little, et al. [142] in 1963. 

The branch-and-bound method is typically described as a traversal through a search tree, 

where the problem is progressively broken down into sub-problems as the tree grows 

outwards from the root. Each child of a node is obtained by imposing a single new constraint 

on the original relaxation of the problem. The search usually starts with the root node, and at 

each iteration, a selection strategy is used to pick a node from a pool of unexplored feasible 

subproblems. Branching is then performed through the construction of two or more child 

nodes by the addition of constraints to the node’s subproblem. The bound for each child node 

is calculated and evaluated. If it corresponds to the optimal solution, the algorithm is 

terminated. If it is a feasible solution, it is compared to an earlier-generated initial solution 

which acts as the upper bound, and discarded if it is not better. It is also discarded if no 

feasible solution to this subproblem exists. Otherwise, the node is added to the pool of 

unexplored subproblems, and the algorithm proceeds to the next iteration. This process 

continues until the optimal solution is found or there are no more unexplored feasible 
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solutions. A summary of the branch-and-bound algorithm for a search tree, T, is presented in 

Algorithm 2-I [49]. 

Algorithm 2-I: Branch-and-Bound  

1. Initialize UB = ∞, LB(P0) := g(P0); Live := {(P0, LB(P0)) } 

2. Repeat until Live = ∅  

a. Select the node P from Live to be processed; Live := 𝐿𝑖𝑣𝑒 ∖ {𝑃}; 

b. Branch on P generating P1, ..., Pk; 

c. For 1 ≤ i ≤ k do  

i. Bound Pi : LB(Pi) := g(Pi); 

ii. If LB(Pi) = f(X) for a feasible solution X and f(X) < UB then 

1. UB := f(X); Solution := X; 

2. go to EndBound; 

iii. If LB(Pi) ≥ UB then discard Pi  

iv. else Live := 𝐿𝑖𝑣𝑒 ∪ {(𝑃𝑖 , 𝐿𝐵(𝑃𝑖))} 

d. EndBound 

3. OptimalSolution := Solution; OptimumValue := UB 

In Algorithm 2-I, UB is the upper bound computed so far by the algorithm, LB(Pi) is the 

lower bound of the tree node Pi, Live is the list of unexplored feasible solutions, and g is a 

function which maps real numbers (bounds) to each node in the branch-and-bound search 

tree. For each internal node within the tree, this value is a lower bound/limit on any value 

within the subspace corresponding to that node (that is, that can be achieved for all 

subproblems which are children of the node). The function, g is required to satisfy these three 

conditions: 

 𝑔(𝑃𝑖) ≤ 𝑓(𝑃𝑖) for all nodes Pi in T 

 𝑔(𝑃𝑖) = 𝑓(𝑃𝑖) for all leaves in T 

 𝑔(𝑃𝑖) ≥ 𝑔(𝑃𝑗) if Pj is the parent of Pi 

Other exact methods include cutting-plane [56], branch-and-cut [171], and the Concorde 

solver [13]. 
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2.1.2 Solution Approaches to the TSP: Non-Nature-Inspired Heuristics 

As is to be expected, the exact methods discussed in section 2.1.1 increase exponentially in 

complexity with increase in number of cities for the TSP. This effect is exacerbated as a result 

of the search space for the ATSP being (𝑁 − 1)!/2 large. Therefore, various heuristics have 

been proposed in literature to approximate solutions which are accurate to an acceptable level 

in the real world. A few of them are highlighted. 

2.1.2.1 Nearest Neighbor Heuristic 

The Nearest Neighbor heuristic is a greedy approach which simply builds a tour by starting 

from a randomly picked city and progressively adding the adjacent city with the minimal cost, 

stopping when all cities have been added to the tour. It was described by Flood [80] in 1956, 

but it weakness was quickly discovered as the possibility of getting into ‘corners’ which 

would require the addition of relatively high-length edges to be able to link with unvisited 

cities [13]. The same applies to its close counterpart, the proper greedy heuristic which sorts 

all edges by cost and adds them to the tour from lowest to highest until the tour is completed. 

2.1.2.2 Insertion Heuristic 

In the insertion heuristic, an initial subtour is formed with the shortest edge. Then a city 

which is not part of the subtour, but has the minimal distance to any of the cities in the tour, 

is repetitively selected and inserted between the adjacent cities of a selected edge, (i,j). Edge 

(i,j) is selected such that the increase in total cost of the new tour is minimal [93, 168].  

2.1.2.3 K-opt Heuristics 

K-opt heuristics are primarily tour improvement heuristics which seek the best way of 

reducing the cost of a pre-existing tour. They are the most widely-used heuristics for the TSP 

[106], consisting of making k-opt moves which involve removing k edges from the tour, and 

reconnecting the disconnected nodes with a different set of k edges such that the new total 

tour cost is reduced. This process is repeated with a fixed value of k until no more 

improvements can be made with a k-opt move. The tour is then said to be k-optimal. A k-

optimal tour is also i-optimal for all i < k. The 2- and 3-opt moves are very popular as a result 
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of their simplicity to compute, speed, and near-optimal results [168]. An example of a 2-opt 

move is shown in Figure 2.1. 

 

2.1.2.4 Lin-Kernighan Heuristic 

The Lin-Kernighan (LK) heuristic, which lies at the heart of the most-accurate solutions to 

the TSP today [13], was originally proposed by Lin and Kernighan in 1973 [141]. It is based 

on the k-opt heuristic, but uses a variable, rather than the usual static, value for k. It involves 

deciding what value of k is most suitable at each iteration of the algorithm. This comes at the 

cost of a much heightened level of complexity, however, making it quite difficult to 

implement or improve. Moreso, its accuracy depends largely on how well it is implemented 

[168]. In the year 2000, however, it was successfully implemented and improved upon by 

Helsgaun [104], who continued to propose successful improvements in 2006 [105] and 2009 

[106]. This has led to the Lin-Kernighan-Helsgaun (LKH) heuristic being the virtual state-

of-the-art algorithm for the TSP, and it has been used to solve very large instances of the TSP, 

the most recently proven one having 85,000 cities [12]. It has also been used to solve the 

largest TSP instance in the TSPLIB [191] known as World, having 1,904,711 cities, to within 

0.049% of the optimal tour [105]. 

2.2 The Shortest Path Problem 

The Shortest Path Problem (SPP) also a ubiquitous problem which has triggered widespread, 

intensive and on-going research in the scientific community over the years. This is as a result 

of its wide applicability in the fields of routing [38, 83, 204], transportation [45, 246], robotic 

motion planning [35, 137], terrain navigation [128, 129], communication [156, 169] and so 

on. It can be mathematically modelled as an integer programming problem thus [10]: Given 

Figure 2.1: A sample 2-opt move [13] 
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a graph, G, with edge set E and vertex set V, specified source and destination nodes s and t, 

and an associated cost cij for each edge (𝑖, 𝑗) ∈ 𝐸,  

Minimize ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗 ∈𝐸

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑥𝑖𝑗 ≥ 0, 

∀𝑖, ∑ 𝑥𝑖𝑗

𝑗

− ∑ 𝑥𝑗𝑖

𝑗

=  {
1, 𝑖𝑓 𝑖 = 𝑠;
−1,     𝑖𝑓 𝑖 = 𝑡;
0.    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2.9) 

With the introduction of various constraints as well as dynamic properties, its range of 

application grows even wider [68, 185, 202]. 

The elementary SPP with single source and single destination nodes was solved by Dijkstra 

in his 1959 paper [65], and since then, various types and variants of the shortest path problem 

have been identified. A review of these problems is presented. It is important to note that the 

definition of cost is not restricted to length of edge or distance between nodes, but can also 

be expressed in other terms such as time taken to arrive at a particular node and so on. 

2.2.1 Variants of the Shortest Path Problem 

The form in which the input graph is presented has given rise to about four variants of the 

SPP, viz: static, dynamic, stochastic and fuzzy shortest path problems. The elementary case 

is the static SPP where the costs, nodes or constraints of the problem are predetermined and 

remain fixed throughout the duration of the problem being solved. This case has already been 

discussed earlier.  

2.2.1.1 Dynamic Shortest Path Problem (DSPP) 

In the Dynamic SPP (DSPP) which is hugely applicable to Mobile Ad-Hoc Communication 

Networks, nodes in the graph dynamically disappear (sleep) and appear (awake) during the 

course of time. In this case, algorithms used for static SPPs would have to be restarted 

whenever there is a change in network topology, and this would lead to excessive overhead 
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and computational costs. The need therefore arises for algorithms which can easily adapt to 

changing environment while maintaining optimal source-destination paths [40, 202]. 

2.2.1.2 Fuzzy Shortest Path Problem (FSPP) 

Usually, edge weights or costs are represented as precise real numbers. However, as a result 

of the fact that in real-world scenarios such as decision making [63], risk assessment [261], 

and pattern recognition [251], these weights are naturally imprecise/vague, the Fuzzy 

Shortest Path Problem (FSPP) represents them as fuzzy numbers, and hence, the summing 

operation of fuzzy numbers as well as their comparison have to be redefined, as can be seen 

in [215] and [233]. 

2.2.1.3 Stochastic Shortest Path Problem (SSP) 

In the stochastic SPP (SSP), edge costs are not deterministically known ahead of time. This 

arises in real-world applications as a result of the possibility of link failure, variable travelling 

time due to traffic congestions, and so on. Path costs are hence modelled as continuously or 

discretely distributed random variables, and at each node a probability distribution must be 

selected over all possible successor nodes which leads to the destination node and has 

minimum expected cost [42, 46, 157].  

The SSP is one which has been studied over a long period of time since Frank [81] proposed 

a solution to it in 1969. However, it was first formulated in 1962 by Eaton and Zadeh [69] 

who termed it a “problem of pursuit”, and introduced the conditions for optimal solution. In 

1991, Bertsekas and Tsitsiklis [26] introduced the term “Stochastic Shortest Path”, allowing 

negative costs contrary to the positivity condition earlier introduced by Eaton and Zadeh [69]. 

This condition had already been weakened to cost non-negativity in Bertsekas [27].  

A generalization of SSPs are Markov Decision Processes (MDPs), which are models that 

evolve in both stochastic and non-deterministic ways. An MDP consists of states, and is 

executed in rounds. At each round, the MDP is in a given state, each state having a set of 

possible associated actions. A control/action strategy selects an action, and each action is 

associated with a probability distribution over all associated subsequent states. Based on the 

probability distribution, transition is made into a selected next state, and with each state 
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transition, an associated cost is incurred [30, 189]. The goal is therefore finding a control 

strategy (or policy) which minimizes the total incurred cost from the initial to final state with 

a probability 1 of reaching the final state. [26, 30]. A formal definition of an MDP is presented 

in [30] as: 

1. A finite state space S = {1,…,n} 

2. A finite set of controls (actions) U(i) for each state i ∈ S  

3. Transition probabilities p(i,u,j) associated with all 𝑢 ∈ 𝑈(𝑖)  where p(i,u,j) is the 

probability of transitioning to state j from i after selecting action u. 

4. A cost g(i,u) associated with 𝑢 ∈ 𝑈(𝑖) and 𝑖 ∈ 𝑆 

 

Figure 2.3 briefly illustrates an MDP. In the figure, S1 is a state with associated actions a and 

b. Each associated action has a probability distribution over the states it leads to. For example, 

from state S1 with action a, two states can be transitioned to, S2 and S4, with probabilities of 

0.9 and 0.1 respectively. Also, a transition from S1 to S5 has an associated cost of 2. 

A policy is a sequence of functions, (µ0, µ1, . . .), with µk mapping states to actions such that 

action µk(i) will be executed in state xk = i at time k, as long as µk(i) ∈ 𝑈(𝑖). That is, a policy 

is a sequence which defines actions (mapped to states) which are to be performed at any 

given point in the decision process. The policy is said to be stationary when all µk are the 

Ø 

S1 

b: 0.2 

b: 0.8 

a: 0.9 

a: 0.1 

a 

a 

Figure 2.2: Simple Markov Decision Process 

4 

S2 

Ø 

S4 

2 

S5 

5 

S3 
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same, i.e. a sequence of functions of the form (µ, µ, …). The total cost incurred by a given 

policy, 𝜋 starting from state x0, is given by  

𝐽𝜋(𝑥0) = lim
𝑁→∞

𝐸 {∑ 𝛼𝑘𝑔(𝑥𝑘, 𝜇𝑘(𝑥𝑘))

𝑁−1

𝑘=0

}   
(2.10) 

where 𝛼 ∈ [0,1] is known as the discount factor which discounts future costs at a geometric 

rate. The aim in an MDP problem is therefore to find an optimal policy 𝜋∗ satisfying 

𝐽∗(𝑖) ≝ 𝐽𝜋∗(𝑖) ≤ 𝐽𝜋(𝑖),          𝑖 = 1, … , 𝑛 (2.11) 

for every other policy [30]. 

Two exact (dynamic programming) algorithms exist which are used to solve the MDP 

problem. Value Iteration (VI), proposed by Bellman [23], iteratively computes an optimal 

cost vector J* which satisfies the Bellman Optimality equation when 𝛼 < 1 (which implies 

that there always exists an optimal stationary policy) as an update rule: 

𝐽∗(𝑖) = min
𝑢∈𝑈(𝑖)

𝑔(𝑖, 𝑢) + 𝛼 ∑ 𝑝(𝑖, 𝑢, 𝑗)𝐽∗(𝑗)

𝑛

𝑗=1

 (2.12) 

Once the optimal cost vector is obtained, an optimal policy is determined thus: 

𝜋∗(𝑖) = arg min
𝑢∈𝑈(𝑖)

[𝑔(𝑖, 𝑢) + 𝛼 ∑ 𝑝(𝑖, 𝑢, 𝑗)𝐽∗(𝑗)

𝑛

𝑗=1

] (2.13) 

The algorithm is said to have converged when successive values of J are the same, or when 

the difference between them is sufficiently small [130].  

Policy Iteration (PI) was also proposed by Bellman [23]. It begins with an arbitrary policy 

and computes its value function thus: 

𝐽𝜋(𝑖) = [𝑔(𝑖, 𝜋(𝑖)) + ∑ 𝑝𝑖,𝑗(𝜋(𝑖))𝐽𝜋(𝑗)

𝑛

𝑗=1

] (2.14) 

It proceeds to iteratively improve on 𝜋 until convergence or an acceptable negligible error is 

obtained. 
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An SSP therefore specializes an MDP with the following properties [30]: 

 Non-discounted (i.e. 𝛼 = 1) rewards 

 A designated goal/target self-absorbing state which represents the destination and is 

cost-free 

 A finite state and action space 

 The state space maps to the node set of a graph 

 Set of actions and their associated probability distributions maps to edge set 

 A policy maps to a path through the graph from source to destination node 

The SSP therefore seeks an optimal policy (path), 𝜋 with minimum total associated cost 

which reaches the destination node with a probability of 1. To guarantee the existence of such 

an optimal policy, the following conditions have to be met [26]: 

1. There exists a proper policy which is guaranteed to reach the destination node from 

any source node. 

2. All costs are positive. 

The exact methods discussed earlier (VI and PI) are dynamic programming methods, which 

involve a lot of computational burden. For example, the VI method has to update the value 

function for the entire state space at each iteration [130]. As a result, heuristics have been 

successfully developed to solve the SSP and its variants. 

In [40], a multi-criteria A* algorithm is proposed to compute the least expected time path in 

Stochastic Time-Dependent networks (STDs), which are basically SSPs with costs 

represented as time chunks. They worked specifically on STD networks which satisfy the 

stochastic first-in-first-out property (S-FIFO), testing their results on large scale road 

networks. They demonstrated that their proposed algorithm performs significantly better on 

problems which have the S-FIFO property over algorithms which do not exploit that property. 

In [240], a new admissible heuristic search-based family of algorithms called FRET (Find, 

Revise, Eliminate Traps) was introduced to solve a newly introduced class of MDPs, the 

Generalized SSP (GSSP), which relaxes some of the conditions stated in [26] for SSPs to 

allow for negative costs and discounted-reward models. They investigated the performance 
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of their method against VI on the GSSP and found theirs to perform better in terms of speed 

and convergence, even in cases where VI could not converge. However, the proposed 

algorithm suffers the same problem of having to go through the entire state space, hence 

running out of memory on some problem instances. 

As per maximizing path reliability, Chen, et al. [41] carried out a study which proposed two 

algorithms, a multi-criteria label-setting and an A* algorithm to maximize path reliability in 

cases where link travel times follow a normal distribution. Based on the definition of α–

reliability, they tried to minimize the travel-time budget (amount of time) required to ensure 

a certain level of on-time arrival probability. They classified travelers risk attitude towards 

travel time uncertainty as “risk-averse” with on-time arrival probability, α > 0.5, “risk-neutral” 

with α = 0.5 and “risk-seeking” with α < 0.5.  They examined the performance of their 

algorithms on large-scale networks, showing that their algorithms performed significantly 

better than others under risk-averse scenarios. However, as they stated, their study was 

restricted to normally distributed link times, and hence its performance on links following 

other distributions remains unknown. 

In [30], an improved Real-Time Dynamic Programming (RTDP) algorithm is proposed 

which is guaranteed to terminate in finite time and return an optimal path, an improvement 

on that proposed in [19] which converged asymptotically, providing no guarantee to 

convergence in finite time. They compared the performance of the improved RTDP algorithm 

with the Value Iteration (VI) algorithm based on the Bellman equation [23], showing that it 

outperformed the VI algorithm by orders of magnitude on some benchmark problems with 

large state spaces. Vladimirsky [226] defined and discussed a class of multimode SSPs, 

defining conditions under which label-setting methods can be applied to them.  

In the field of Swarm Intelligence, Sudholt and Thyssen [214] proposed a simple ACO for 

SSPs, considering various noise models from general, arbitrary noise to independent gamma-

distributed noise, showing instances where ACO can discover optimal paths efficiently. They 

showed however, that for independent gamma-distributed noise, ACO took exponential time 

to find a good approximate solution. Momtazi, et al. [157] proposed a PSO method to solve 

the SSP, comparing their results with those reported for Distributed Learning Approaches 



22 

 

proposed in [154] and [22] on 10 and 15-instance SSPs. They reported that their algorithm 

outperformed those with which it was compared, achieving optimal paths with much fewer 

iterations. 

2.2.1.4 Constrained Shortest Path Problems (CSP) 

The addition of constraints on the resource(s) consumed by including a given edge in the 

path, as well as the restriction of the graph type to digraphs leads to various variants of the 

SPP. Though the elementary form of SPP is solvable in O(n2) time or less [266], the addition 

of one or more constraints makes it NP-complete [152]. As edges are added to the path under 

construction, the amount of consumed resources accumulates, each resource being associated 

with an upper limit/constraint which must not be exceeded. The Constrained Shortest Path 

Problem (CSP), which has also been referred to in literature as the Resource-Constrained 

Shortest Path Problem (RCSPP) or the Shortest Path Problem with Resource Constraint 

(SPP-RC), is a generalization of the SPP with constraints, where number of resources ≥ 1. 

Two well-known specializations of the CSP are Weight-Constrained SPP (WCSPP) where 

number of resources = 1, and Shortest Path Problem with Time Windows (SPPTW) where 

number of resources = 2 [112].  

As is highlighted in [112], CSPs can be classified by the manner of resource accumulation, 

fitness definition, under-lying network, and the existence of path-structural constraints 

excluding specific paths. Examples of such variants include Maximum Capacity Path 

Problem (Bottleneck SPP) [184], Balanced SPP [148], Weight-Constrained SPP with 

Replenishment [28], Variance-Constrained SPP [206], Equity-Constrained SPP[91], and the 

Hop-Constrained SPP [54]. A variant worthy of note is the Multi-Objective SPP (MOSPP) 

[236] where all pareto-optimal solutions which minimize two or more objective functions are 

sought. The variant with only two objectives is known as the Bi-criteria SPP [43]. Multi-

objective optimization is discussed in section 2.4, while CSPs are treated in much greater 

detail in [112] and [152]. 

For CSPs, Label-setting [64, 68, 198] as well as Label-correcting [28, 125] algorithms have 

also been developed. Lagrangean Relaxation methods have also been used [33, 160] for the 
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Resource-Constrained Shortest Path Problem. These algorithms are explained in the 

following section.  

2.2.2 Solution Approaches to the SPP: Exact Methods 

As has been earlier stated, the elementary form of the SPP assumes a single source and 

destination node. The aim here is to find the path of minimal cost from the identified source 

node to the destination node [65]. A slightly varied but similar case is when the aim is to find 

the shortest path from a single source destination to all other nodes in the graph. Both of these 

problems are referred to as the Single-Source Shortest Path Problem (SSSP) [170, 218].  

Due to the tractable nature of the SPP, most of the research effort on it has been towards 

achieving greater computational efficiency. Exact algorithms which have been proposed to 

solve this problem usually fall into two categories: label-setting and label-correcting 

algorithms [83]. Note that many of these solution methods for the SSSP have been extended 

or applied to solve other variants of the SPP derived by introducing constraints, seeking for 

multiple objectives or re-defining the minimization function. 

2.2.2.1 Label-setting  

Label-setting algorithms associate a label L(i)  to each node which represents an upper bound 

on the cost of getting from the source node, s to that node through a preceding node P(i). Each 

node is also associated with a status S(i) which could either be unreached, labeled or scanned.  

The algorithm begins by setting L(i) = ∞, P(i) = null, and S(i) = unreached for all nodes, and is 

initialized by setting L(s) = 0 and S(s) = labeled. At each iteration, a scan is made from the 

current labeled node across all its emanating nodes, and they are each processed thus: If L(i) 

+ cij < L(j), set S(i) = labeled, P(j) = i and L(j) = L(i) + cij, and let j become the current node. If 

L(i) + cij ≥  L(j), set S(j) = scanned, where (i,j) is an edge from i to j. Out of the unreached 

nodes, the one with the minimum L(i) is selected, its S(i) value is set to labeled and it becomes 

the current node. Note that once a node has become labeled, it is no longer processed. This 

state is also referred to in literature as permanently labeled. 

The algorithm terminates either when all nodes have been processed (in the single source, 

multiple destination problem) or when the destination node, t is reached (in the single source, 
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single destination problem) [10, 83, 256]. It can be inferred, therefore, that algorithms which 

solve the single-source, multiple destinations case inherently solve the single source, single 

destination case. 

A formal general statement of label-correcting algorithms is presented in Algorithm 2-II: 

Algorithm 2-II: Label-Setting Algorithm  

1. Initialize scanned list 

2. For i in node-set A: 

3.  Set L(i) = ∞, P(i) = null, and S(i) = unreached 

4. Set L(s) = 0 and S(s) = labeled 

5. Add s to scanned 

6. Set s as current node, i 

7. For all nodes, j adjacent to i: 

8.  If(S(j) != labeled) 

9.   If(L(i) + cij < L(j)) 

10.   Set L(j) = L(i) + cij 

11.   Set S(i) = labeled 

12.   Set P(j) = i 

13.   Remove i from scanned 

14.   Set j as current node, i 

15.   Else 

16.    Set S(j) = scanned 

17.    Add j to scanned 

18.    Select node n with minimum L(m) from scanned 

19.    Set n as current node, i 

20.  If (i == t) 

21.    Stop 

22.  Else 

23.   Go to Step 7 

Label-setting algorithms have the advantage of having better worst-case complexity bounds 

than label-correcting algorithms, as well as being useful for solving single-source single-

destination SPPs. However, they are less general. That is, they do not apply to all classes of 

problems such as problems with negative edge weights [10]. 
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2.2.2.2 Label-correcting  

In label-correcting algorithms, the same variables and initialization procedures are 

maintained as with label-setting. The key difference with label-correcting algorithms rises in 

the labelling procedure. In label-correcting algorithms, no label is denoted as permanent until 

the final iteration. In addition, the procedure of selecting the next node to be processed differs. 

While label-setting algorithms select the adjacent node with the minimum L(i), label-

correcting algorithms mostly use a First-In-First-Out (queuing) procedure, regardless of the 

L(i) value. It processes each node in the same way, updating L(i) values when a lower 

alternative is found [10]. Label-correcting algorithms are suitable for problems of a more 

general class such as the Shortest Path Problem with negative edge weights, though with that 

generality some level of performance optimality in terms of computational cost is sacrificed 

[24]. 

2.2.3 Solution Approaches to the SPP: Non-Nature-Inspired Heuristics 

Improvements on the performance of these exact algorithms have been attempted as a result 

of their excessive computational intensity when applied to real-time one-to-one traffic 

networks. These are in the form of heuristics which take advantage of available information 

about the location of nodes in the graph, network structure, and other application-specific 

information to reduce the search effort involved in the algorithm. This in turn reduces the 

practical computational time. Some of the notable heuristics in this regard are considered: A* 

algorithms, algorithms involving bi-directional search, and branch pruning methods [83]. 

2.2.3.1 A* 

The A* algorithm was first introduced by Hart, et al. [100] in 1986 as an admissible 

(guaranteed to converge) method for solving the SPP. It can be seen as a generalization of 

the label-setting algorithm [166] since it involves node scanning, expansion and selection. 

However, it makes use of a heuristic evaluation function F(i) = L(i) + e(i,d) as node labels, with 

the algorithm proceeding in a best first search manner. That is, it maintains two lists: an open 

and a closed list. The open list is ordered based on nodes’ F values and contains all nodes 
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which have not been expanded yet. The closed list contains nodes which have already been 

expanded. See Algorithm 2-III for details of the A* algorithm [195]. 

Algorithm 2-III: A* Algorithm 

1. Set s_pred = null, Fs = 0, and place s in open  

2. For all nodes in open  

3.  Select node i with minimum Fi value 

4.  If (i == t) 

5.   Stop  

6.  For all j adjacent to i  

7.   If (j is not in closed)  

8.    If (j is not in open) 

9.     Add j to open 

10.    Else 

11.     If (new_Fj  <  old_Fj) 

12.      Fj = new_Fj 

13.      j_pred = i              

14.  Add i to closed 

15. Stop 

where s_pred and j_pred refer to the previous node to nodes s and j respectively in a path, s 

represents the source node, t, the destination node, and e(i,d) is an optimistic estimate of the 

sum cost from node i to node d..  

The estimation of the e(i,d) function is a key factor in ensuring the admissibility of the 

algorithm. As long as e(i,d) is selected in such a way that it is a lower bound (and not an 

overestimation) of the actual distance from node i to the destination node d, the algorithm is 

guaranteed to find the optimal solution. Such an estimation is usually done based on 

information from the problem domain. A classic example given in [100] is the problem of 

finding the shortest path between cities on a road network. Estimating the value of e(i,d) based 

on the cost of travelling by air from city i to city d, which is the lowest possible travelling 

cost by road, would guarantee the optimal path being found. The A* algorithm has the 

advantage of being able to solve the SPP without prior knowledge of the network, 

constructing the network concurrently with its solution. Another advantage is that the search 
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space is reduced to less than 11% if the edge costs are generated by Euclidean distances [89], 

and hence, computational time is greatly reduced [18, 83].  

2.2.3.2 Bi-directional search 

Bi-directional search algorithms attempt to improve the search for the shortest path by 

splitting the graph into two and searching in a label-setting fashion from both ends: one 

forwards from the source node, and the other backwards from the end node. The first 

publication introducing bi-directional algorithm was made by Dantzig [57] but it was 

described as being “ambiguous and vague” [181]. It was in Nicholson’s work [165] that a 

clear and concise definition of a bidirectional algorithm was made. His contributions are 

based on the following definitions [181]: d(x) denotes an upper bound on the cost of getting 

from s to node x and dt(x) denotes an upper bound on the cost of getting from node x to t. A 

contains nodes which have been labelled as permanent, B contains nodes which have been 

labelled scanned and C contains nodes which are still unreached. Sets D, E and F are 

symmetrical sets corresponding to A, B and C respectively in the backward-directional search. 

Two key aspects of Nicholson’s algorithm were the manner in which searches in both 

directions were made, and the termination criteria. Regarding the search order, he proposed 

an improvement to the alternating search order of Dantzig [57]. While Dantzig’s search order 

alternated between the forward and backward searches, Nicholson [165] proposed that 

instead of alternating, the search should be based on which node is closest to the source and 

destination nodes. That is, if the node is closer to s, the search is conducted in a forward 

manner, and if it is closer to t, the search is conducted in a backward manner. Where there is 

a tie, the nodes were to be expanded simultaneously (within the same iteration). Secondly, 

he defined an improved termination criteria thus [182]: 

𝑚𝑖𝑛
𝑥𝑖 ∈ 𝐴 ∩ 𝐷

 𝑑(𝑥𝑖) + 𝑑𝑡(𝑥𝑖) ≤
𝑚𝑖𝑛

𝑥𝑖 ∈ 𝐵
 𝑑(𝑥𝑖) +

𝑚𝑖𝑛
𝑥𝑖 ∈ 𝐸

𝑑𝑡(𝑥𝑖) (2.15) 

However, Dreyfus [67] proposed an improvement to this termination criteria. His 

improvement involves the algorithm terminating immediately some node n is selected which 

is contained both in A and D, and the shortest path is achieved by examining 𝑛 ∪ 𝑌,

𝑤ℎ𝑒𝑟𝑒 𝑌 = {𝑥𝑖: 𝑥𝑖 ∈ 𝐴 ∩ 𝐸}: 
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𝑚𝑖𝑛 (𝑑(𝑥𝑖) + 𝑑𝑡(𝑥𝑖), 𝑑(𝑛) + 𝑑𝑡(𝑛)) ∀𝑥𝑖 ∈ 𝑌 (2.16) 

Pohl [181] proposed an improvement to Nicholson’s search procedure by stating that treating 

all ties simultaneously is unnecessary. He proposed that the ties be handled individually, 

which would lead to time efficiency, especially when the tie happens at a point where a node 

occurs in the intersection of A and D. 

It is important to note that thus far, no heuristic component had been introduced to the bi-

directional search. However, Pohl in [181, 182] introduced A* heuristic search to both 

directions of the bi-directional search with an aim of improving its performance. He called 

the algorithm the Bi-directional Heuristic Path Algorithm (BHPA) and noted that an 

improvement in performance would only be achieved by the heuristic search if both searches 

met near the middle of their separation. This did not seem to happen in his computations. The 

forward and backward search trees would usually grow almost to completion before there 

would be an intersection, thereby making the algorithm twice computationally intensive than 

the uni-directional version. He concluded that the heuristic search trees were highly unlikely 

to intersect while growing in opposite directions, likening the situation to a scenario of two 

missiles independently aimed at each other’s base ‘missing’ each other. This conclusion was 

taken for granted in the works of other researchers like de Champeaux [60], Sint and de 

Champeaux [205] and Fu, et al. [83], and led to the development of ‘front-to-front’ 

algorithms which directed a search tree at the front of the opposite search tree, and not at the 

root [60, 183, 205]. The front-to-front algorithms were however excessively computationally 

demanding or had no admissibility [58, 118].  

The notion of search trees ‘missing’ each other like missiles was refuted by Kaindl and Kainz 

[118], who stated that rather than the search trees missing each other, they ‘pass through’ 

each other. They also identified the cause of the poor performance of the previous bi-

directional heuristic algorithms as the major computational effort spent on searching for a 

better solution than that which is found when the search trees initially meet. Even when the 

optimal solution is found, additional effort is spent on ensuring that it is indeed the best 

solution possible, since the algorithm does not ‘know’ that the optimal solution is indeed 

optimal until it has generated all the remaining nodes. They then devised a new generic 
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approach to bi-directional heuristic search which utilizes dynamic heuristic front-to-end 

evaluations which can be embedded efficiently. They also showed instances of problems 

where bi-directional search is more suitable and efficient than unidirectional search. In 

addition, Ikeda, et al. [111] proposed a way to combine a bidirectional version of Dijkstra’s 

algorithm with A* search in an admissible way, and based on his work, some improvements 

on bidirectional shortest path algorithms were achieved in [126]. 

Major recent improvements on bidirectional heuristics as regards search space reduction, and 

hence improvement in computational efficiency, include the scalar projections method 

proposed by Whangbo [241] and the new lower bound proposed by Pijls and Post [179].  

2.2.3.3 Branch pruning 

Branch pruning involves a continual evaluation of the edges in the graph to find weak ones 

which are unlikely to form part of the solution and directing the search away from them. 

According to [83], the edges are evaluated based on the inequality 

𝐿(𝑖) + 𝑒(𝑖,𝑑)  ≤ 𝐸(𝑜,𝑑) 
(2.17) 

(where e(i,d) is the estimated cost from node i to the destination node, d, and E(o,d) is the 

estimated cost from the source node to the destination node), and edges which violate this 

inequality are pruned from the search.  

Just like in A*, the performance of branch pruning algorithms depends on the accuracy of 

the estimated costs. Hence, a weakness of branch pruning algorithms arises when the 

algorithm is not able to find the optimal path as a result of the estimation functions evaluating 

to relatively low values. This could lead to the optimal path being pruned from the search. In 

fact, there exists the chance that it succeeds at finding no solution at all because all branches 

from the source node are pruned before the destination node is reached. A way of remedying 

this fault is presented in [82]. 

Of the three heuristic approaches discussed, A* heuristic search has been found to reduce 

computational intensity by up to 50%. The viability of bidirectional search algorithms has 
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also been discussed and proven, as seen in [118], [241] and [195], against the conclusion 

made in [83].  

2.3 The Submission Decision Problem 

Paper publication rate, citation rate, citation networks and other matters related to scientific 

research publication have been widely studied over the years and even more intensely in 

recent times, as they relate to issues which lie close to the heart of every researcher, easily 

summarized as the desire for recognition and relevance. An easy (and widespread) way of 

judging a researcher’s level of achievement as regards these two goals is the total number of 

citations which they have accumulated over their paper publication history. Measures such 

as the Impact Factor and h-index all in one way or the other factor citation count into their 

assessment of a journal’s relevance or an author’s level of contribution to the scientific 

community.  

Despite the recent introduction of the h-index [107] as a response to the wide criticisms 

leveled at the use of the Impact Factor [103], the Impact Factor still continues to be widely 

used by scientists to judge the quality of a journal, and by universities and research institutes, 

in conjunction with other measures like the h-index and citation count, to judge the quality 

of an author’s contribution (number of articles published in high Impact Factor journals) to 

knowledge. These judgements are then used to make administrative decisions like promotion, 

appointment/election to prestigious positions, and awarding of prizes [200]. As a result, 

deciding which journal to send a manuscript has been and still remains a crucial decision 

problem faced by scientists all over the world. A naïve solution would be to simply sort all 

target journals by their Impact Factor and then work down the list, but various other important 

factors come into play such as whether the manuscript gets accepted, the time it takes till it 

gets published as well as how long it takes before the authors get feedback (review outcome) 

on the submitted manuscript. These factors have to be taken into consideration in order to 

strike an acceptable balance between getting a reasonably high number of citations (which 

generally determines and/or indicates the relevance of the work), and the time it takes to get 

the desired citations.  



31 

 

Various measures of impact which differ with respect to the target of the assessment being 

carried out have been proposed in literature over the years. Three main assessment targets 

found in literature are author, paper and venue (journal) [200], and various impact measures 

have been proposed which assess one or a combination of these targets. An old but still 

popular impact measure is the citation count [200], which is a summation of all citations 

obtained by a paper, venue or author over some time period. Citation count is more widely 

applied in the assessment of a paper’s worth than venue or author, but when used to measure 

an author’s impact, it has a few shortcomings. One of such shortcomings is its being easily 

skewed by a few ‘popular’ papers which have very high number of citations but were co-

written with other authors, and hence may not represent the individual’s capabilities or 

contributions. It also gives undue weight to review articles which are generally highly cited 

but make no significant original contribution to scientific knowledge [107].  

A more recent and widely used measure of an author’s impact is the h-index, which was 

proposed by Hirsch in 2005 [107], and is computed as the maximum h for which an author 

has h papers with more than h citations. To put it simply, an author has an h-index of x if he 

has published x papers which each have at least x number of citations. Though the validity of 

the h-index has been attested to by various researchers [108, 146], a major weakness was 

pointed out by Shah and Song [200] which is its failure to offer a fair comparison between 

authors whose publications’ citation distribution differ significantly. Pan and Fortunato [173] 

pointed out another key weakness of the h-index which is the fact that its assessment covers 

the entire career of an author, whereas authors’ performances vary significantly with time. A 

good case in point is that of Nobel Laureates, whose publication trajectory tends to 

significantly fall after they have been awarded the Nobel Prize, mostly as a result of other 

non-publishing engagements that come as a result of the award.  Also, some authors only 

make a single significant contribution to science, while others continue to make great 

contributions over their career horizon. Thus, a performance measure which collapses 

important publication/performance dynamics into a single value may not be a suitable tool 

for comparing between different authors’ performance at a particular point in time, and one 
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of the key reasons why assessment measures are created is the performance of such 

comparisons.  

Pan and Fortunato [173] therefore proposed another impact measure which extends the 

ubiquitous Impact Factor (IF) to authors. The usual (and widespread) use of IF in the context 

of authorship is basically to assess performance based on the number of publications that 

have been made in relatively high IF journals within the respective fields. Pan and Fortunato 

however made a formal extension of the IF to author assessment. They reported that their 

new measure is dynamic in nature and overcomes the shortcomings found in the usual 

definition of Impact Factor as regards its failure to capture current ‘hot’ researchers, papers, 

journals and so on. They termed the extended IF measure Author Impact Factor (AIF), and 

conducted varied empirical studies to prove its validity. Thus, it can be concluded that IF and 

IF-based measures are still a widely-used and relatively viable measure of assessing an 

author’s research impact. 

Assessing the quality of a research paper is a critical process which authors undergo, as they 

have to make choices about which publications to cite out of a large pool of related articles, 

the quality of publications cited within a paper tending to contribute to its general quality as 

perceived by the research community. To the best of our knowledge, the major and most 

widely-used measure of a paper is the citation count [200, 211], a fact which is demonstrated 

by its widespread use in author citation network analyses [250] and models for predicting 

future/long term impacts of scientific publications [90, 193]. It is therefore a reasonable 

conclusion that a schedule which maximizes the citation count of a paper will generally 

increase its recognition and in turn lead to higher relevance in the scientific world. 

Deciding which journal to send a paper to, which is the focus of this work, obviously has a 

direct correlation with the way a journal’s quality is measured. It remains an established fact 

that the Journal Impact Factor (JIF) is the most widely-used measure for assessing journal 

quality, despite the various faults which have been highlighted in the literature [16, 76, 200]. 

The idea of an Impact Factor was first introduced by Garfield in 1955 [72], but formalized 

by Garfield and Sher in the late 1960s [84] as a means of deciding which journals would be 

selected for the Science Citation Index (SCI). The most critical factors taken into 
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consideration at its creation were recognizing large reputable journals with high citation 

count while not neglecting ones which were not as large, but were also important in their 

fields. To put it succinctly, they wanted to compare journals fairly irrespective of their size. 

The JIF was defined by them as [200]: 

𝐽 =
∑ 𝐶(𝑝)𝑝∈𝑃

|𝑃2| 
 

(2.18) 

where 𝑃2 is the set of papers published within the last two years, and C(p) is the citation 

count of paper p, and |𝑃2| refers to the number of ‘citable publications’ in the last two years 

[32]. 

In simple terms, the JIF is the total sum of citations which have been accumulated in the 

current year by all articles which were published in a journal within the last two years divided 

by the number of citable publications made in the same journal within the last two years. The 

JIF is reported yearly by Thomson Reuters in their Journal Citation Reports (JCR), which 

has assumed the position of a legitimate authority in ranking journals [103, 135]. The strong 

points of the JIF, as pointed out in literature are its comprehensibility, stability, simplicity 

and popularity [87]. On the other hand, quite a few weaknesses of the JIF have been pointed 

out in literature, many of which relate to its misuse in comparing journals across unrelated 

fields which have varying sizes and publication rates [32, 98, 103], the ambiguity of the term 

‘citable publications’ and its lack of justification and tacit encouragement of ‘negotiations’ 

with Thomson Reuters [16, 209], the shortness of the 2-year horizon which puts fields where 

citation rates rise relatively slowly at a disadvantage [32, 108], its susceptibility to self-

citation and coercive citation measures (journals directly or indirectly inferring that citing 

self-published papers will influence acceptance) [16, 242] and so on. As a result of this 

widespread criticism, other measures have been proposed, notable among which are the 

PageRank system used by Google [76], EigenFactor [29], an extension of h-index to journal 

assessment [32], and the s-index [200].  

Considering the fact that the JIF is a citation-based measure, most flaws associated with it 

which are a result of its use of citation count would also apply to measures which incorporate 

citation count in their computations, such as the h-index. As has been stated earlier, though 
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the JIF has been so widely criticized, it still remains the most widely-used journal assessment 

measure. This implies that it is still very much factors into an author’s assessment of a journal 

and administrators’ assessment of an author [135], [212], [87], [70], and this justifies the 

inclusion of the JIF in the SDP model developed by Salinas and Munch [196]. 

2.3.1 Models for the SDP 

As was earlier stated, the SDP problem was formally introduced in 2105 by Salinas and 

Munch [196]. It involves an author deciding which submission order to follow in submitting 

their manuscripts to journals, based on a goal of maximizing citation count while minimizing 

the number of resubmissions on one hand, or the amount of time it takes from submission to 

publication on the other hand. While modeling this problem, they considered various 

important factors like the acceptance rate of the journal, the average amount of time spent in 

review, the probability of getting scooped (scoop ratio). Being scooped refers to a similar 

article being published by a competing author before an author has a chance to publish his 

work. Following Markov Decision Process theory, they proposed the following model which 

gives the expected number of citations, C, over N submissions in a given order [196]: 

𝐶 = 𝑞−1 ∑ 𝛼𝑗𝜆𝑗  [𝑇 −  ∑ 𝜏𝑗 − (𝑗 − 1)𝑡𝑅]+ ∏(1 − 𝛼𝑘)(1 − 𝑠)𝜏𝑘+𝑡𝑅

𝑗−1

𝑘=1

 

𝑗

𝑘=1

𝑁

𝑗=1

 
(2.19) 

where 𝛼 is the acceptance rate, 𝜆 is the expected number of citations (taken as the JIF), T is 

the time horizon over which the author intends to maximize number of citations, 𝜏 is the time 

from submission to publication, 𝑡𝑅 is the amount of time spent in revision, s is the scoop 

probability per day, and q is a normalization constant. The + superscript indicates that 

negative values within the inner summation term will be replaced with 0. All time units are 

in days.  

The model representing the expected number of submissions, R, is given as: 

𝑅 = 𝑞−1 ∑ 𝑗𝛼𝑗 ∏(1 − 𝛼𝑖)

𝑗−1

𝑖=1

𝑁

𝑗=1

(1 − 𝑠)𝑡𝑅+𝜏𝑖H (𝑇 −  ∑ 𝜏𝑗 − (𝑗 − 1)𝑡𝑅

𝑗

𝑘=1

) (2.20) 



35 

 

H is the Heaviside function which ensures that the expected number of citations is calculated 

within the specified time horizon, T. It takes a value 1 when its argument it positive, and 0 

otherwise. 

To estimate the expected number of days from first submission to acceptance, P, they 

proposed the following model: 

𝑃 = 𝑞−1 ∑[𝜏𝑗(𝑗 − 1)𝑡𝑅]𝛼𝑗 ∏(1 − 𝛼𝑖)(1 − 𝑠)𝑡𝑅+𝜏𝑖

𝑗−1

𝑖=1

𝑁

𝑗=1

H (𝑇 −  ∑ 𝜏𝑗 − (𝑗 − 1)𝑡𝑅

𝑗

𝑘=1

) (2.21) 

They also modeled a means through which journal’s comparative desirability can be 

evaluated, factoring the mentioned variables like acceptance rate and so on. The index value 

V which depends on T being large relative to publication and revision times, of a given journal 

j, is given as: 

𝑉𝑗 =
𝛼𝑗𝜆𝑗 (1 −

𝜏𝑗

𝑇)

1 − (1 −
𝜏𝑗

𝑇 −
𝑡𝑅

𝑇 ) (1 − 𝛼𝑗)(1 − 𝑠)𝑡𝑅+𝜏𝑗

 (2.22) 

A few assumptions were made for model simplification purposes, and as a result of the 

unavailability of data. Some key assumptions among them were that all manuscripts are of 

equal value to all sampled journals, that time to publication is the averagely same for all 

papers submitted to a journal, that acceptance and scoop probability are the same for all 

manuscripts, and obviously the use of a static JIF measure to represent the expected number 

of citations for a journal. Though quite a few of these assumptions are not exactly realistic, 

it is believed that they do not affect the quality of the models to a great extent. 

2.3.2 Solution Approach to the SDP: Metropolis Algorithm 

As a result of the very recent introduction of the SDP, the only existing method which has 

been applied to it is the Metropolis algorithm [196]. The Metropolis algorithm, introduced 

by Metropolis, et al. [153], is a Markov Chain Monte Carlo [86] algorithm generalized as the 

Metropolis-Hastings algorithm [102]. It has been very widely applied to various problems in 

the field of physics and computer science, and is also applied in Simulated Annealing, an 

algorithm which has been effectively used for a wide variety of COPs [21]. It is initialized 
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by randomly generating an initial solution. The initial solution is progressively improved by 

generating other random solutions and testing to see if they are better than the current solution. 

The new solution becomes the current one only if it is better by a specified probability. It is 

presented in Algorithm 2-IV [47]. 

Algorithm 2-IV: Metropolis Algorithm 

1. Initialize 𝑥0 ∈ 𝒳 

2. Repeat for i = 1 to n-1 

a. Generate xi from Q(xi, x) 

b. Generate u from 𝒰(0,1) 

c. If 𝑢 <
𝜌(𝑥)

𝜌(𝑥𝑖)
, then 

i. Set 𝑥𝑖+1 = 𝑥  

d. else, 

i. Set 𝑥𝑖+1 = 𝑥𝑖 

3. Return 𝑥0, 𝑥1 … 𝑥𝑛 

where Q is a stochastic matrix (𝑄 = (𝑄𝑎𝑏: 𝑎, 𝑏 ∈ 𝒳)) which represents the stochastically 

distributed state space of the Markov Chain, and 𝜌(𝑥𝑖) in proportional to the probability of 

xi. 

In [196], the Metropolis algorithm is applied to SDP by representing states (x) in the Markov 

chain as submission schedules, and transitions between states (moving form xi to xi+1) as a 

random swap of the positions of two journals. Also, 𝜌(𝑥) is defined as the C, R, or P 

evaluation of the submission schedule, x. Their adapted algorithm for the R and C bi-

objective optimization case (without loss of generality) is presented in Algorithm 2-V. 

Algorithm 2-V: Metropolis Algorithm for SDP 

4. Initialize 𝑥0 ∈ 𝒳 

5. Repeat for i = 1 to n-1 

a. Generate x from Q(xi, x) 

b. Generate u from 𝒰(0,1) 
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c. If 𝑢 <
𝐶(𝑥𝑖)

𝐶(𝑥)
 𝐴𝑁𝐷 𝑢 <

𝑅(𝑥)

𝐶(𝑥𝑖)
 , then 

i. Set 𝑥𝑖+1 = 𝑥  

d. else, 

i. Set 𝑥𝑖+1 = 𝑥𝑖 

6. Return 𝑥0, 𝑥1 … 𝑥𝑛 

 

In the following section, we discuss NI-based heuristics for both the TSP and SPP, bearing 

in mind that for the SDP, no existing literature which applies NI-based heuristics has been 

found. 

2.4 Solution Approaches to the TSP and SPP: Nature-Inspired Heuristics 

In the field of meta-heuristics, methods have also been developed to solve the TSP and SPP. 

Specifically, Nature-Inspired algorithms have been widely applied to these and many other 

COPs in literature [248]. Nature-Inspired algorithms are basically algorithms which derive 

their inspiration from natural phenomena, either biological, physical, chemical or otherwise. 

A very large percentage of these algorithms are based on some characteristics of biological 

systems. These algorithms are called bio-inspired algorithms, and within them is a very 

popular field known as Swarm Intelligence [79].  

Swarm Intelligence (SI) is a branch of computational intelligence that mimics the collective 

intelligence of autonomous self-organizing agents as inspired by social animals (swarms). 

This leads to the derivation of some form of emergent behavior that could lead to the solution 

of complex problems [3]. The fascinating ability of unsophisticated individuals in these real 

swarms or colonies to solve complex problems and exhibit complex organization and 

coordination without central control of any kind (known as emergence) has attracted both 

biologists and computer scientists to both study them, and apply their methods in solving 

life’s problems and challenges. 

Fister Jr, et al. [79] give a broad grouping of NI heuristics as SI-based, Bio-inspired but not 

SI-based, Chemistry and Physics-based, and Other algorithms. The discussion of NI methods 

to solve the TSP and SPP in this work is restricted to two popular SI-based techniques, ACO 
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and PSO, and two popular Bio-inspired but not SI-based techniques, GA and Physarum 

algorithms. 

2.4.1 Genetic Algorithms (GA) 

Genetic Algorithms (GAs) can be traced as far back as the 1940s when the use of evolution 

to solve problems was suggested by Turing [222]. Though the introduction of GAs has been 

attributed to Holland [109], other researchers had been using similar methods before him 

[53]. GAs are inspired by the biological processes of natural selection and genetics, and how 

better individuals evolve and emerge from these processes over many generations. In GAs, 

candidate solutions are represented as chromosomes which are made of genes. Genes can 

take 2 or more values, which are known as alleles [109].  

GAs usually start with the generation of an initial population of chromosomes which encode 

feasible solutions to the problem. Two major and widely-used methods exist for the encoding 

of solutions as chromosomes: binary encoding and real encoding [53].  In binary encoding, 

the solution is broken down or encoded into a binary string which will be decoded at the 

fitness evaluation stage. In real encoding on the other hand, chromosomes are made of actual 

parameters that make up feasible solutions, invalidating the need for a decoding procedure.  

Once the initial population is generated, three distinct reproduction operators act on the 

population to produce successive generations [53]: 

 Selection: This operator uses some means (tournament, roulette wheel) to select the 

parents which will be used to reproduce children which will form the next generation.  

 Crossover: This operator is said to be the soul of GAs. It combines parent 

chromosomes to produce a child. Various crossover schemes exist, the major of 

which are the single point, multi-point and uniform schemes.  

 Mutation: The mutation operator serves as a means of maintaining diversity in the 

population, or exploring the search space. It randomly selects and alters the value of 

one or more genes in the chromosome. Mutation rate can be used to bias the algorithm 

either towards exploration or exploitation. 
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Various GA methods have been used to solve the SPP with varying levels of success. The 

earliest work applying a GA to solve SPP which we were able to find in literature appeared 

in 1997 [85]. In their work, a GA for the SPP is proposed in which a priority-based indirect 

method of encoding is used, with various eligible node sets being used as a means of 

preventing infeasible paths from being constructed during the decoding process. Infeasible 

paths include those which contain loops and those that terminate in non-destination nodes.  

They were able to solve SPP instances of up to 70 nodes and 211 edges accurately. In another 

work, Ahn and Ramakrishna [9] used a direct encoding method to represent chromosomes, 

with a repair function being designed for chromosomes representing invalid routes. They also 

proposed a population-sizing equation which can be used to choose the right population for 

the GA. They compared their algorithm’s performance with other GAs in literature, and 

found theirs to have a better accuracy rate on problem instances up to 50 nodes in size. 

In [243], a GA is proposed for SPP in which chromosomes are made of nodes which form 

feasible paths, genes being constrained so as to ensure that chromosomes do not represent 

infeasible paths. They tested their algorithm on an undirected SPP instance of 100 nodes 

using a population size of 10 with maximum generation of 100, and found it to be at the same 

level of accuracy as Floyd-Warshal’s algorithm. Hasan, et al. [101] proposed a Heuristic GA 

(HGA) for SPP which combines exact as well as heuristic techniques into the GA for optimal 

results. Their algorithm prove to be useful in selecting a promising initial population and 

optimizing accuracy and execution time for the GA when tested on SPP instances ranging 

from size 10 to 100. 

GAs have also been severally applied to the TSP. In [234], two local optimization strategies 

are merged into the traditional GA to form a HGA. Both local optimization strategies have 

time complexities of O(n) and O(n3) respectively. The results were compared with the 

traditional GA and showed better performance. However, they noted that with larger 

instances the computational complexity of the proposed algorithm grows very fast, causing 

it to require more time to obtain accurate results. Nagata and Soler [161] also used a GA 

method to solve the ATSP, however, it was combined with a local search procedure based 

on 3-opt for initial population generation. Their algorithm was successfully tested on 153 
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ATSP instances from the TSPLIB [192] in addition to 123 self-generated instances, and 

reported competitive results. 

2.4.2 Physarum Algorithm 

Physarum polycephalum is a unicellular amoeboid organism (also known as true slime mold) 

whose body shape resembles an intricate network of tubular components forming a means of 

intracellular transportation of protoplasmic material [162]. The shape and physiological 

features of the organism metamorphose through the disassembling and reassembling of tubes 

with respect to changes in the environment (such as presentation of new food source(s)). This 

adaptation ensures the maintenance of an efficient tubular network design which will lead to 

efficient streaming of protoplasm between each pair of local parts of the plasmodium. 

Intracellular exchange of protoplasm plays a significant role in chemical communication 

within the cell, determining the survival and maintenance of the cell as a unified singular 

individual [162]. The first work which investigated and channeled this unique behavior of 

the slime mold was done by Nakagaki [162] in the year 2000. He carried out series of 

experiments with the slime mold, placing it in a maze with two food sources at its entry and 

exit points. After a period of time, the mold had metamorphosed into a three-part shape 

consisting of two sheet-like parts covering the two food sources (absorbing nutrients from 

the food sources), and a thick tube lying in the shortest path between these two parts, 
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maintaining an efficient means of intracellular communication between them (See Figure 

2.3).  

Thus, it was proven that Physarum polycephalum is capable of solving shortest path problems, 

even in complex structures like mazes. A key part of modelling this process of shortest path 

resolution is understanding the mechanism through which the protoplasmic material (also 

referred to as ‘sol’) is pumped within the cell. At the food sources where a sponge-like part 

of the organism is formed, actin-myosin fibers exhibit rhythmic contractions which exert 

pressure on the sol, making it flow into the tube (s) and out at the other end. This flow is bi-

directional, involving periodic changes in direction known as protoplasmic shuttle streaming. 

Hence, the sponge-like parts of the organism act as sources of mechanical force/pressure at 

the food sources. The formation and thickness of tubes is directly proportional to the length 

of time as well as pressure with which shuttle streaming is maintained in a particular direction 

[217].  

In the formation of a mathematical model for the flow of sol through tubes [217], the shape 

of the Physarum is represented as a graph, where a tube is an edge, and a junction between 

tubes is a node. Two special nodes corresponding to the two food sources are denoted as N1 

and N2, with N1 as the source node and N2 as the sink node. Other nodes are designated as N3, 

N4, N5, and so on. Mij represents the edge between Ni and Nj, Qij represents the flux between 

Figure 2.3: An illustration of change in shape and structure of a true slime mold in response to new 

food sources (FS). (a) shows top and side views of the mold with food sources just introduced. (b) 

shows the new shape of the mold, with the interconnecting tube between the two sheet-like parts 

covering the food sources [163]. 
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Ni and Nj through Mij,, pi and pj represent the power at nodes i and j respectively, and Lij and 

aij are the respective length and radius of the tube corresponding to Mij. Assuming that the 

flow along the tube is approximately a Poiseuille flow, Qij is given as [217, 258]: 

𝑄𝑖𝑗 =
𝐷𝑖𝑗

𝐿𝑖𝑗
(𝑝𝑖 − 𝑝𝑗) 

 (2.23) 

with Dij usually set at 

𝐷𝑖𝑗 =
𝜋𝑎𝑖𝑗

4

8𝜅
 

 (2.24) 

By taking into cognizance the conservation of sol, 

∑ 𝑄𝑖𝑗 + 𝐼0 = 0

𝑖

, (𝑗 ≠ 1, 2). 
 (2.25) 

And, for the source and sink nodes, N1 and N2 respectively, the following equations hold: 

∑ 𝑄𝑖1 + 𝐼0 = 0

𝑖

,    ∑ 𝑄𝑖2 − 𝐼0 = 0

𝑖

   
 (2.26) 

where I0 is the flux from the source node or into the sink node, and is constant.  

Physarum algorithms have been quite successfully applied to the SPP in literature. In [260], 

a Rapid Physarum Algorithm was proposed to solve the SPP, in which a heuristics rule 

determined from experimentation and statistics is integrated to avoid redundancy and 

improve efficiency. They tested their algorithm on graphs of size ranging from 15 nodes and 

23 edges, to 2000 nodes and 4044 edges. They reported that their algorithm was able to solve 

the SPP for a fully connected network with 1000 nodes in under 50 iterations, and a randomly 

distributed network with 2000 nodes and 4044 edges in under 100 iterations. They compared 

the performance reported for their improved algorithm with the basic Physarum model, and 

found theirs to perform better. Similarly, Zhang, et al. [258] improved the basic Physarum 

model for SPP by combining it with a new ‘energy’ parameter, accelerating the search speed 

and reducing the number of iterations required in the basic version. They compared their 

results with three other algorithms: the basic Physarum, ACO and Dijkstra’s algorithm, 

showing that their new algorithm outperforms both the basic Physarum and ACO in both 

running time and execution speed, while performing comparably to Dijkstra as well as 
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proposing more than one shortest path at the same time.  Zhang, et al. [259] applied the 

Physarum algorithm to the Constrained SPP (CSP) problem in a directed graph for the first 

time, combining it with Lagrangean relaxation. They perform some experimental analysis to 

prove the ability of Physarum algorithms to also deal with CSPs. 

2.4.3 Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) was introduced by Dorigo [52] in 1991 as a means of 

solving difficult optimization problems like the SPP, Travelling Salesman Problem (TSP), 

Job Shop Scheduling Problems (JSSP) and others, and has been widely used for solving the 

SPP specifically because it is most naturally related to ants’ food-finding activities. ACO is 

based on the behavior of colonies or nests of ants and how they solve their day-to-day 

problems, the most common of which is finding the shortest path to a food source. A worker 

ant leaves its nest in search of food, and as it moves along, it deposits pheromone, a chemical 

substance which evaporates with time. Other ants also searching for food are biased to follow 

the path with a stronger pheromone scent when they are faced with a branch. As more ants 

choose a particular path, they also deposit pheromone, making the pheromone scent even 

stronger. Conversely, a path which is less used will have an increasingly weaker pheromone 

scent because of the evaporation of the pheromone. This situation is more likely to occur 

because the shorter the path, the smaller the time it will take for ants to get to and from the 

food source, leading to the path being more used, and therefore, have an increasingly denser 

pheromone deposit. Note that once an ant finds a food source, it tends to walk back to the 

nest on its own pheromone trail. Eventually, all ants will choose the shortest path since it will 

have a much higher pheromone level than other paths [110]. 

Various ACO systems are modelled after the behavior of the ants to solve the SPP. These 

systems have the following basic structure [245, 253] 

1. Initialization: 

a. Generate and position m ants on the m nodes of the graph  

b. Set 𝜏𝑖𝑗(0) = 𝑐, 𝑐 ≠ 0 , where 𝜏𝑖𝑗(𝑡)  is the pheromone trail on the edge 

between nodes i and j at iteration t. 
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2. For each ant, k at node i, select next adjacent node j, thus: 

𝑃𝑖𝑛
𝑘 (𝑡) = {

arg    
𝑚𝑎𝑥

𝑠 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖 𝜏𝑖𝑧(𝑡)𝜂𝑖𝑧

𝛽 (𝑡),                                    𝑞 ≤ 𝑞0

𝑠,                                          𝑞 > 𝑞0

} (2.27) 

 where allowedk
i contains nodes adjacent to i which have not been visited by ant k. 

𝜂𝑖𝑧(𝑡) denotes a the inverse of the total cost between i and z. 𝜂𝑖𝑧 is a heuristic function, 

and is used to estimate the a-priori ‘desirability’ of the decision to move to node z. q 

and q0 are random values within the interval [0,1]. s is a randomly selected node based 

on the probability distribution: 

𝑃𝑖𝑛
𝑘 (𝑡) = {

𝜏𝑖𝑧(𝑡)𝜂𝑖𝑧
𝛽 (𝑡)

∑ 𝜏𝑖𝑧(𝑡)𝜂𝑖𝑧
𝛽 (𝑡)

𝑥∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖

, 𝑠 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖

0,                                          𝑠 ∉ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝑖

} (2.28) 

3. When an ant has reached the destination node, update its trail thus: 

𝜏𝑖𝑗(𝑡 + 1) = (1 −  𝜌)𝜏𝑖𝑗(𝑡) + 𝜌Δ𝜏𝑖𝑗(𝑡) (2.29) 

where  

Δ𝜏𝑖𝑗(𝑡) =  ∑ Δ𝜏𝑖𝑗
𝑘 (𝑡)

𝑚

𝑘=1

 
(2.30) 

Δ𝜏𝑖𝑗(𝑡) represents the pheromone gain that will be introduced after the current tour 

and 𝜌 is the pheromone decay parameter. Δ𝜏𝑖𝑗(𝑡) = 0 if ant k has not visited edge 

(i,j). This is called the local updating rule. 

4. At the end of an iteration, when all ants have reached the destination node, global 

update is performed to update the pheromone of the shortest path which is denoted 

as Llocalmin: 

𝜏𝑖𝑗(𝑡 + 1) = 𝜏𝑖𝑗 + 𝜇Δ𝜏𝑖𝑗 (2.31) 

where  
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Δ𝜏𝑖𝑗(𝑡) = {

1

𝐿𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛
, (𝑖, 𝑗) ∈ 𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

(2.32) 

ACOs have been applied successfully to the TSP. Recently, Mavrovouniotis and Yang [151] 

integrated ACO with immigrant schemes to address the Dynamic TSP with traffic factors 

(changing edge costs and so on), considering two types of dynamic environments: those 

where the changes in traffic factors are entirely random, and those where the changes are 

cyclic and have a chance of recurring. They proposed three variants of the algorithm, with 

Random, Elitism-based and Memory-based Immigrant schemes, which they reported to 

perform well in quickly and significantly, slowly and slightly, and cyclic changing 

environments respectively. Furthermore, Yang, et al. [247] developed and ACO for the GTSP 

which included a mutation process to avoid getting stuck on local optima. They also used a 

2-opt heuristic for local search, testing their results on 20 instances from the TSPLIB [192]. 

The method was able to successfully handle instances of size less than 200 cities. 

In [17], an ACO algorithm called n-ANT is presented for the Single Destination SPP on 

Directed Acyclic Graphs (DAGs), based on Neumann and Witt [164]’s 1-ANT ACO 

algorithm. More importantly, they conducted a rigorous analysis of the running time of ACO 

algorithms in general, and proved polynomial-time bounds for their algorithm specifically, 

which was a better performance than that recorded in [164]. Improving on their work, Sudholt 

and Thyssen [213] presented another ACO algorithm called MMASSDSP, with results 

extended from DAGs to arbitrary directed graphs. They also showed that their algorithm 

transfers to the All Pairs Shortest Path Problem (APSP). They then compared the 

performance of the proposed ACO algorithm with evolutionary and genetic algorithms using 

number of fitness evaluations as a performance measure, and showed that ACO is a state-of-

the-art algorithm for the APSP. Zakzouk, et al. [253] proposed an ACO algorithm to solve 

SPPs with fuzzy constraints. They demonstrated that raising the number of ants while making 

other parameters like pheromone evaporation coefficient a heuristic selection can lead to the 

best result in the best time. Yabo, et al. [245] provided three improvements to the classical 

ACO for the SPP to prevent it from falling into local optima: direction guiding via setting of 

heuristic initial pheromone concentration level, pheromone redistribution to prevent the 



46 

 

pheromone concentration of the optimal path from being overdamped by the pheromone 

decay process, and introducing a dynamic factor to the global renewal process. Their results 

were tested on a 30-node graph, and the results showed that the proposed modifications in 

the classical algorithm can greatly increase the probability of finding the optimal path. ACO 

has also been applied to solve the Stochastic Shortest Path Problem with favorable results 

[66]. 

2.4.4 Particle Swarm Optimization  

Particle Swarm Optimization was introduced in 1995 by Kennedy and Eberhart [119] as a 

method to solve continuous optimization problems (COPs). It originated from their study of 

the swarming behavior of flocks of birds and schools of fish and attempt to simulate that 

behavior computationally. However, its introduction saw a great favorable response by the 

scientific community, chiefly because of its speed of convergence, simplicity, ease of 

implementation and wide applicability [175]. The classical PSO and its many variants have 

been applied to solve numerous COPs with a high level of success [175]. PSO algorithms 

generally have the following components: 

1. Particles: These are simple agents which represent an individual fish or bird and are 

used to search out solutions in the problem’s search space. 

2. Position: A position represents a candidate solution, and at any given time during the 

execution of a PSO algorithm, each particle is at a particular position in the search 

space. 

3. Swarm: A set of particles act together as a swarm in their search endeavor. They 

communicate through simple interactions to share knowledge on good solutions, 

guiding their search around them. Each particle in the swarm keeps track of its best 

position gained so far (pbest), as well as the best position gained by the entire swarm 

(gbest). 

4. Velocity: Each particle flies through the search space at a particular velocity which 

dictates both its direction and speed of motion. Its velocity is majorly influenced by 

its pbest and the swarm’s gbest, together with some element of randomness for search 

diversity. 
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Two equations for velocity and position update were proposed by Kennedy and Eberhart 

[119] in the original PSO: 

 𝑉𝑖
𝑡+1 =  𝑉𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) +  𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡) (2.33) 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 +  𝑉𝑖
𝑡+1 (2.34) 

where t is the iteration counter, i is the particle index, pbest is the personal best, gbest is the 

global best, r1 and r2 are random numbers in the interval [0, 1], c1 is the referred to as the 

cognitive parameter which dictates how biased the particle’s search will be biased towards 

its personal best position, and c2 is the social parameter which dictates how much its search 

will be biased towards the global best. The c1 and c2 parameters can be tweaked to favor either 

exploitation or exploration respectively. 

However, with the high level of research that went into the PSO [3, 15], various 

improvements which focused on a key aspect of the PSO algorithm, velocity update, were 

proposed. The current state-of-the-art PSO variant is the constriction coefficient PSO [175] 

proposed in [51]: 

𝑉𝑖
𝑡+1 =  𝜒[𝑉𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) +  𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡)] (2.35) 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 +  𝑉𝑖
𝑡+1 (2.36) 

Clerc & Kennedy defined 𝜒 thus: 

𝜒 =
2

|2 − φ − √φ2 − 4𝜑|
 

(2.37) 

where 𝜑 = 𝑐1 + 𝑐2, and 𝜑 > 4  

The default settings for 𝜒 is considered to be 0.729, and that for c1 and c2 is 2.05 [175]. The 

general PSO format of the PSO algorithm is shown in Algorithm 2-VI. 

Algorithm 2-VI: Particle Swarm Optimization 

1. Initialize swarm, gbest 

2. For particle i in swarm 
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3.  Initialize 𝑋𝑖
0 

4.  Set pbesti = 𝑋𝑖
0 

5. For particle i in swarm 

6.  If(pbesti < gbest) // minimization problem 

7.   Set gbest = pbesti 

8. While (termination criteria is not met) 

9.  For particle i in swarm 

10.   Compute  𝑉𝑖
𝑡+1 using eq. (2.35) and 𝑋𝑖

𝑡+1 using eq. (2.36) 

11.   If(𝑓(𝑋𝑖
𝑡+1) < pbest) // minimization problem 

12.    Set pbesti = 𝑋𝑖
𝑡+1 

13.  For particle i in swarm 

14.   If(pbesti < gbest) 

15.   Set gbest = pbesti 

16. End While 

17. Return gbest 

2.4.5 Discrete Particle Swarm Optimization 

Though the PSO was originally designed for Continuous Optimization Problems, various  

efforts have been made to discretize it for real world problem which are discrete in nature, 

such as TSP, JSSP, SPP  and others. Because of the prevalence of COPs as applications of 

real-world problems, a lot of intensive research has gone into discretizing PSO to solve them, 

with various approaches and schemes being proffered. These schemes can be classified into 

six categories from literature [44, 131]: Binary, Swap-operator-based, Space transformation-

based, Fuzzy matrix-based, Set-based, and Hybrid DPSOs. 

2.4.5.1 Binary PSO 

Kennedy and Eberhart proposed a discretized version of the PSO algorithm known as Binary 

PSO (BPSO) [121] in 1997. In BPSO, positions are indirectly represented as strings of bits, 

and velocities are changes in the probability that a particular bit will either be zero or one. A 

candidate solution could for example be represented as [100101001110101001], with each 
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bit representing some problem-specific information. Also, some works define operations like 

addition, subtraction and multiplication in terms of bit-wise OR, XOR, and other bit-wise 

operations. In addition to the initial work done by Kennedy and Eberhert [121], various other 

variants of binary PSO have been developed. These include Modified Binary PSO (MBPSO) 

by Shen et al [201] in which the fitness function is modified as a static function, C(p), and is 

applied to variable selection for both Multiple Linear Regression (MLR) and Partial Least-

Squares (PLS). The modified BPSO showed satisfactory performance in variable selection 

and convergence rate. A Probability Binary PSO (PBPSO) was introduced by Wang, et al. 

[232] which included a novel probability-based strategy for the update of a particle’s position. 

They claimed that their algorithm is relatively simple and improves optimization ability, 

testing their results on the Multi-dimensional Knapsack Problem (MKP), and finding it better 

than other existing algorithms in speed of convergence and global search ability. 

2.4.5.2 Swap-operator-based DPSO 

This scheme was introduced by Wang, et al. [230], but a clear outline and definition was 

given by Clerc [50]. It defines the position of a particle as a permutation of numbers, and 

velocity as a set of swaps or ‘exchanges’ of these numbers to achieve a different permutation. 

For example, if a position, p is given as (3, 6, 2, 1, 8), a velocity, v = [(2, 3), (3, 1), (4, 2)], 

then when p is added to v, we get, successively for each velocity element, 

(3, 2, 6, 1, 8) (swap position 2 with position 3) 

(2, 3, 6, 1, 8) (swap position 3 with position 1) 

(2, 3, 1, 6, 8) (swap position 4 with position 2) 

Definitions for other operators are given in [50], some of which are left to the DPSO designer 

to be tuned with respect to specific problems. Shi, et al. [203] proposed a swap operator-

based DPSO with an uncertain searching strategy and crossover eliminated technique. This 

algorithm was extended to the General TSP (GTSP), being the first DPSO to be used for 

GTSP, and shown to be able to solve graph instances of large sizes in both cases. 
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2.4.5.3 Space transformation-based DPSO 

In space transformation schemes, a transformation method is found which maps the search 

space to the problem space. That is, the search space is ‘constructed’ in way as to suit the 

discrete nature of the problem, with the search space being made of discrete points which 

correspond to feasible solutions which are in turn potential positions for a particle. For 

example, in [197] where a DTSP is proposed for the Task Assignment Problem (TAP), the 

search space is constructed as an M-dimensional space corresponding to an M task 

assignment problem, such that a position is a vector of M tasks. Comparisons with a GA 

approach for the TAP showed that their method is viable. In [174], the search space is defined 

as a continuous Cartesian N-dimensional space, where N is the number of cities for the TSP, 

and a mapping was made from the continuous space to discrete which applies to TSP. They 

included local search techniques as well as chaotic operations to prevent premature 

convergence, and demonstrated the proposed algorithm’s ability to find good solutions in 

short time by testing it on four benchmark TSP instances.  

2.4.5.4 Fuzzy DPSO 

In fuzzy discretization for PSO [238], position and velocity are represented as a fuzzy n-

dimensional square matrix whose elements denote degree of membership in the target 

position. A defuzzification process is performed on the position matrix to generate a valid 

TSP tour. This is done by the use of a ‘Max Number Method’ to go through the position 

matrix row by row, selecting unique column indices with the highest membership score. 

Upon completion of the selection process, the column indices form a set which represents a 

TSP tour. A Similar fuzzy matrix scheme is implemented by Liao, et al. [140] in developing 

a DPSO algorithm for the flow shop scheduling problem. They combined the DPSO with a 

local search algorithm, and were able to solve both single- and multi-objective variants of 

the flow shop scheduling problem with results which compared favorably with those existing 

in literature. In the same vein, Hajforoosh, et al. [99] applied a Fuzzy DPSO to the Plug-in 

Electric Vehicle (PEV) charging co-ordination problem which involves minimizing costs 

associated with energy generation and grid losses when electric vehicles plug into an electric 

grid for charging, while maximizing the power delivered to them. The algorithm was tested 
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on a 449-node electric network populated with PEVs having different driving patterns, 

battery sizes and charging rates, and prove to be viable. 

2.4.5.5 Set-based DPSO 

In set-based schemes, a particle’s position is represented as a mathematical set of unique 

elements which represents a solution in the search space, the search space being characterized 

as a universal set. All operators in the two update equations are defined as set operations, 

though the specific implementation of these operations vary from problem to problem and 

from algorithm to algorithm. For the TSP, this set can either be made of edges that form a tour, 

or ordered nodes which also form a tour. Therefore, a typical set for a 7-node graph could be 

either (2, 1, 4, 6, 3, 5, 7, 2) or [(2,1), (1,4), (4,6), (6,3), (3,5), (5,7), (7,2)]. 

In [263], a novel algorithm is propounded for discretizing PSO for the TSP, which they called 

C3DPSO, introducing a ‘mutation factor’, c3, to prevent premature convergence of the 

classical discretized PSO. They discretized particles’ position as a set of edges with associated 

probability. They also used the same representation for velocity. Operators were redefined 

with respect to these representations, and they are discussed in the paper. Six classic TSP 

benchmarks from TSPLIB [192] were used in comparing the results of their improved 

algorithm with those obtained from ACO. They found out that the C3DPSO was much better 

on all benchmarks than all other compared algorithms both in precision and in computational 

cost. Fang, et al. [74] proposed “an advanced PSO algorithm with Simulated Annealing”, 

aiming at using simulated annealing to reduce the tendency of the classical PSO to get trapped 

in local minimum, “slow down the degeneration of the PSO swarm, and increase swarm 

diversity”. They also used a set-based approach in discretizing PSO, where a position is a set 

represented as {s[1], s[2], …, s[n]}, where s[i] = j indicates that city j is visited from city i. 

In analyzing their algorithm’s efficiency, they compared it with basic Simulated Annealing, 

basic Genetic Algorithm and basic Ant Colony Algorithm on the benchmark problems 

Oliver30 and Att48 from the TSPLIB [192]. They found out that their algorithm is 

significantly better than the other compared algorithms, and a more effective means of 

solving the TSP problem. 
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Chen, et al. [44] developed a novel set-based PSO method for Discrete Optimization 

problems, which they called Set-based PSO (S-PSO) aimed at using a set-based 

representation scheme to characterize the search space of continual optimization problems, 

and which could be used to extend the various PSO variants to their discrete versions. They 

used their algorithm to develop a discrete version of the Comprehensive Learning 

PSO(CLPSO) proposed in [138]. They evaluated the algorithm by using it to solve some 

benchmark TSP problems and comparing the results with those of both existing PSO-based 

approaches and some meta-heuristic algorithms. At the end, they found their algorithm to be 

promising. Also, Ma, et al. [147] proposed an “efficient discrete PSO algorithm” in order to 

achieve optimization in discrete space.  This was a modification of the work of Qu, et al. 

[186] called Locally Informed Particle Swarm (LIPS) based on set-theory. They called the 

algorithm Set-based LIPS (S-LIPS). They then compared the performance of S-LIPS on 

some benchmark TSP instances with that of S-CLPSO, and found the results to be promising, 

especially in the case of large scale problems.  A Discrete Particle Swarm Optimization 

(DPSO) technique is also presented in [6] to solve graph-based TSP. Its convergence was 

tested, and the result found favorable. Wu, et al. [244] proposed a discrete PSO (DPSO) 

algorithm with scout particles for optimizing library material acquisition subject to certain 

constraints including budget and number of materials. The efficiency of the proposed DPSO 

was established through empirical study and simulation. 

The majority of the DPSO algorithms which have been proposed specifically for the 

(elementary) SPP have been found to also use the set-based approach [252], [155], and [156]. 

These algorithms all use an indirect method for encoding paths as positions, mainly because 

of the fact that this allows for less invalid paths than would be produced by a direct 

representation made of a mere random permutation of nodes. Another major reason is that 

the updating of particle positions is based on set arithmetic operations which would lead to 

invalid nodes if they are applied on direct node representations. The disadvantage of this 

indirect method is the need for a decoding process to translate the encoded representation 

into path for fitness evaluation [155]. Two major approaches exist for this indirect encoding: 

priority-based and weight-bias-based. In priority-based encoding (used in [155]), a position 
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is a set whose indices represent nodes in the graph, and whose values are numbers 

representing allocated priorities. The path is constructed through a path-growth procedure 

which starts from the source node, iteratively selecting the adjacent node with the highest 

priority, until the destination node is reached. In the weight-biased encoding method, each 

node has an allocated weight, and the edge costs are biased based on the weights of their two 

adjacent nodes. The formula used for edge cost bias in [156] was inspired by that presented 

in [187], which is given in equation (2.38). 

𝑐𝑖𝑗
′ = 𝑐𝑖𝑗 + 𝑤𝑖 + 𝑤𝑗  (2.38) 

where cij is the cost of edge (i,j) and wi is the weight of node i.  

For the weight-biased encoding scheme which was used in [156], the path-growth procedure 

is used, but in this case, adjacent edges are evaluated and selected based on 

𝑗 = min  {𝑐𝑖𝑗𝛽𝑗|(𝑖, 𝑗) ∈ 𝐸} , 𝛽𝑗 ∈ [−1.0,1.0]  (2.39) 

where 𝑐𝑖𝑗 represents the cost of the edge (i,j), 𝛽𝑗 is the associated weight, and E is the set of 

edges in the graph. 

According to Mohemmed, et al. [156], the weight-biased method is superior to the priority-

based one when implemented for PSO. They presented a hybrid DPSO for the SPP which 

uses weight-biased method and incorporates a noising metaheuristic and periodic velocity re-

initialization to enhance the search capability of the algorithm. They used their algorithm to 

solve randomly generated SPP instances of sizes ranging between 50 nodes and 160 edges 

and 100 nodes and 200 edges, achieving average accuracy levels of about 90% in all cases. 

However, they do not discuss the discretization scheme used, nor do they mention the use of 

position-specific information to enhance and consolidate their algorithm’s search process.  

The same authors, in [155], presented a modified path encoding scheme in which they used 

a priority-based approach. They introduced a heuristic operator to reduce the probability of 

‘no-exit nodes’ which cause the formation loops or invalid paths, and compared their results 

on instances ranging from 15 to 70 nodes with those produced by GA methods existing in 

literature. Their algorithm was shown to perform better than those with which it was 
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compared, both in speed and accuracy. Their algorithm also produced near-optimal paths 

with costs of up to 95% of the optimal cost.  

In [252], an improvement is made on the algorithm in [155]. They maintained a priority-

based encoding approach, though they introduce a new idea of randomly selecting priority 

values and incorporating search decomposition to improve the performance of the algorithm. 

Their algorithm’s performance was different instances of real-world data with size ranging 

from 13 to 38 nodes, and the performance of the improved algorithm was better than the 

previous one. However, they similarly do not describe their PSO discretization procedure, 

and therefore nothing can be said about how they went about operator redefinitions and so 

on. Of all three DPSO methods for SPP which were found in literature, the one which showed 

the most promise was [156], where 100-node instances of the SPP were solved with accuracy 

of up to 90% in as few as 107 iterations. 

2.4.5.6 Hybrid DPSO 

Hybrid methods incorporate other meta-heuristics into DPSO. In  [235], the ideas of a swarm, 

gbest and pbest from PSO were combined with a novel quantum bit expression mechanism 

based on Quantum-inspired Evolutionary algorithm to develop a Quantum Swarm 

Evolutionary (QSE) algorithm. Experiments on the 0-1 Knapsack problem and TSP showed 

that the algorithm outperformed Tabu Search and Simulated Annealing, though the 

performance was not optimal when the number of cities is large for TSP. Afshinmanesh, et 

al. [7] introduced a novel DPSO which combines Binary PSO with Artificial Immune 

Systems to create a novel Binary PSO which performed better than other Binary PSO in 

literature, as well as a GA method. Others hybrid approaches incorporate problem-dependent 

local search methods. In [37], a Hybrid DPSO (HDPSO) algorithm is proposed which 

combines a novel discretization technique with a local search algorithm based on Simulated 

Annealing to improve quality. Their algorithm was specifically designed for the no-wait flow 

shop scheduling problem, and upon comparing it with another Hybrid DPSO designed for 

the same problem in literature, they found that their algorithm executes at much higher speed. 

Finally, in [145] a hybrid model between PSO and a GA-based local search (called Fast Local 

Search) is proposed for the blind TSP. Instances ranging between 76 and 2103 cities in size 
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were solved with error rates varying between 1 and 2.538%. This served to demonstrate the 

robustness of the proposed HDPSO. A summary of the discretization schemes discussed is 

presented in Table 2.1. 

Table 2.1: Summary of PSO discretization schemes used in literature 

Binary Afshinmanesh, et al. [7], Kennedy and Eberhart [121], 

Khanesar, et al. [122], Khanesar, et al. [123], Taşgetiren 

and Liang [216], Wang, et al. [232] 

Swap operator-based  Clerc [50], Wang, et al. [230] 

Space transformation Pang, et al. [174], Salman, et al. [197] 

Fuzzy Abraham, et al. [1], Hajforoosh, et al. [99], Liu, et al. [143], 

Wei, et al. [238] 

Set-based Chen, et al. [44], Langeveld and Engelbrecht [131], Liu and 

Maeda [144], Ma, et al. [147], Mohemmed, et al. [155], 

Mohemmed, et al. [156], Momtazi, et al. [157], Wei-Neng, 

et al. [237], Yusoff, et al. [252] 

Hybrid Afshinmanesh, et al. [7], Chandrasekaran, et al. [37], Lope 

and Coelho [145], Wang, et al. [235] 

 

2.4.6 Memetic DPSO 

Memetic algorithms have been successfully used to solve complex optimization problems 

because they have two components: the global and local search components, which lead to a 

balance in both exploration and exploitation of the search space. The term ‘memetic’ comes 

from ‘meme’, a word which was coined by Dawkins in 1976 in his book, the Selfish Gene 

[59]. The meme is a unit of intellectual or cultural information, as opposed to the gene, which 

is a unit of biological information. The key advantage of a meme is that an individual can 

improve its meme’s information through learning and experience during its lifetime, a feat 

which is impossible with genes. A memetic algorithm usually consists of memes with which 

global search is done akin to other Evolutionary Algorithms. However, it then uses its local 

search component to attempt to improve each meme iteratively. As a result, a balance can be 
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achieved between exploration and exploitation, where such a balance has been found difficult 

to achieve with the general class of Evolutionary Algorithms, as well as some Particle Swarm 

Optimization (PSO) variants [73, 178, 228]. In this work, the Random Walk with Direct 

Exploitation (RWDE) algorithm presented in [178] is implemented with the application of 

Schematic 1 described in the same paper, where local search is performed on the global best 

at each iteration of the PSO. The local search algorithm is presented in Algorithm 2-VII  

[178]. 

Algorithm 2-VII: Random Walk with Direct Exploitation 

1. Let X(t) be a vector representing current position at the tth iteration, X(t+1)
 be the new value 

at the (t+1)th iteration, and z(t)
 be a vector. Set λ = λinit and find F(X(t)), the fitness value 

of position X(t) 

2. Set t = t + 1. If t is greater than tmax, end. Otherwise randomly generate a z with elements 

within the range (0,3]. 

3. Compute F’ = F(X(t) + λz). 

4. If F’ < F 

a. Set X(t+1) = X(t)+ λz, t = t + 1, λ = λinit, F
(t) = F’. 

b. Check if t > tmax. If yes, terminate. If no, go to (3).  

5. If F’ >= F, set X(t+1) = X(t) and go to (2). 
 

 

2.5 Multi-Objective Optimization (MOO) 

In multi-objective optimization (MOO) problems, two or more competing and/or conflicting 

functions are to be minimized/maximized at the same time. As a result of the conflicting 

nature of the objectives to be optimized, it is often near-impossible to find solutions which 

optimize all objectives. As a result, trade-offs in optimizing the various objectives are usually 

provided [194]. These tradeoffs are presented in form of a set of solutions which are not 

strictly better than each other in all objectives to be minimized (one is better than the other 

in at least one objective), referred to as pareto-optimal solutions [231]. Given 𝑥⃗ =



57 

 

[𝑥1, 𝑥2, … , 𝑥𝑑]  where d is the dimension of the decision variable space, multi-objective 

optimization problems are usually of the form [221]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = [𝑓1(𝑥⃗), 𝑓2(𝑥⃗), … , 𝑓𝑚(𝑥⃗)] (2.40) 

  Subject to 

𝑔𝑗(𝑥⃗) ≤ 0,   𝑗 = 1,2, … , 𝐽 (2.41) 

ℎ𝑘(𝑥⃗) = 0   𝑘 = 1,2, … , 𝐾 (2.42) 

where 𝑓𝑖 ∶ ℝ𝑛 →  ℝ, 𝑖 = 1, … , 𝑚 are the objective functions, 𝑔𝑗(𝑥⃗), ℎ𝑘(𝑥⃗) ∶  ℝ𝑛 →  ℝ, 𝑗 =

1, … , 𝐽,   𝑘 = 1,2, … , 𝐾 are the inequality and equality constraint functions, respectively, of 

the multi-objective problem.  

The concept of pareto-optimality was first introduced in 1906 by Vilfredo Pareto, an 

economist [36]. In order to formally define this concept, a few important terms are defined 

below [158, 194]: 

Dominance: A vector, 𝑥⃗ is said to dominate another vector, 𝑦⃗ (denoted by 𝑥⃗ ≺ 𝑦⃗) if 𝑓𝑖(𝑥⃗) ≤

𝑓𝑖(𝑦⃗) for 𝑖 = 1, … , 𝑘 and 𝑓𝑖
⃗⃗⃗(𝑥⃗) < 𝑓𝑖

⃗⃗⃗(𝑦⃗) for at least one 𝑖 = 1, … , 𝑘. That is, 𝑥⃗ not worse than 

𝑦⃗ in all objectives, and 𝑥⃗ better than 𝑦⃗ in at least one objective. A graphical illustration is 

given in Figure. 2.4. 
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Non-dominance: A vector, 𝑥⃗ ∈ 𝒳 ⊂ ℝ𝑛 is said to be non-dominated with respect to 𝒳 if 

there exists no other 𝑦⃗ ∈ 𝒳 such that 𝑓(𝑥⃗) ≺ 𝑓(𝑥⃗). In simple words, there exists no 𝑦⃗ which 

is better than 𝑥⃗ in all objectives. 

Pareto-optimality: Pareto-optimality of a vector 𝑥⃗ within a feasible region, ℱ, therefore, 

implies that the vector 𝑥⃗ is non-dominated with respect to ℱ. 

Pareto-optimal set: Denotes the set 𝒫∗, of all pareto-optimal solutions in ℱ. Formally, 𝒫∗ 

is defined as: 

𝒫∗ = {𝑥⃗ ∈ ℱ | 𝑥⃗ is pareto-optimal} 

Pareto Front: The Pareto Front, 𝒫ℱ∗is the set of all objective values corresponding to all 

variables in the pareto-optimal set. A Pareto-front is shown in Figure. 2.5. Formally, 

𝒫ℱ∗ = {𝑓(𝑥⃗) ∈ ℝ𝑘|𝑥⃗ ∈ 𝒫∗} 

 

Figure. 2.4: Illustrating dominance in a 2-objective space ([194]) 
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The goal in solving multi-objective optimization problems (MOOPs), therefore, is to detect 

the “highest possible number of Pareto-optimal solutions that correspond to an adequately 

spread Pareto front, with the smallest possible deviation from the true Pareto front” [177]. 

 

2.5.1 Multi-Objective Particle Swarm Optimization (MOPSO) 

It is clear from the above definitions that the usual single-objective PSO would be inefficient 

or even outright fail when applied to MOO. Due to the nature of MOO, the following issues 

arise when extending PSO to solve MOOPs [194]: 

1. Choice of leader: Choice of the right particle to act as a leader for the particle flight 

process since the concept of a single global best no longer applies. The choice of 

leader should be such that only non-dominated solutions are selected. 

2. Set of non-dominated solutions: An optimal way of maintaining an updated set of 

non-dominated solutions found over iterations, which are well-spread along the 

Pareto front. 

3. Diversity promotion: Maintaining the swarm in such a way that diversity is 

promoted, and prevent convergence to a single solution is prevented. 

Various MOPSO algorithms have been presented in literature, proposing various ways of 

handling these issues. Some of the key proposals based on these three issues are highlighted 

subsequently. 

 

Figure. 2.5: Pareto front for a two-objective minimization problem 
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2.5.1.1 Choice of leader 

In MOPSOs, rather than having a single leader (global/local best) directing the flight of 

particles, a set of non-dominated solutions referred to as the external archive is usually 

maintained, and the leader for each particle in each iteration selected from this set. The choice 

of which leader to select has been approached from different angles. While a few researchers 

decide to randomly select leaders from the external archive [124], the general approach taken 

by researchers in literature is to define some quality measure by which the closeness of 

particles within a swarm can be measured. Some of the important quality measures in 

literature include the Nearest neighbor density estimator [62] and kernel density estimator 

[61]. A very widely-used quality measure is the sigma method proposed by Mostaghim and 

Teich [159] which assigns a value 𝜎𝑖  to each solution. Sigma (𝜎) is defined for the bi-

objective case as 

𝜎 =
𝑓1

2 − 𝑓2
2

𝑓1
2 + 𝑓2

2 (2.43) 

This value is extended to a 3- or more objective case thus: 

𝜎⃗ =

(

𝑓1
2 − 𝑓2

2

𝑓2
2 − 𝑓3

2

𝑓3
2 − 𝑓1

2

)

(𝑓1
2 + 𝑓2

2 + 𝑓3
2)

 

(2.44) 

Thus, a particle in the course of performing its position update will select the particle in the 

external archive with the closest sigma-value to its own as its leader.  

Another measure is the crowding distance proposed by Raquel and Naval Jr [190], which 

provides an estimate of the density of solutions surrounding a given solution in the objective 

space. To calculate crowding distance, all solutions are sorted in an ascending order based 

on each objective function value. Solutions with highest and lowest objective values are 

given infinite crowding distances, and the crowding distance for each remaining solution is 

calculated by first obtaining the average distance of its two neighboring solutions in the 

sorted list, for each objective. Its final crowding distance is then the sum of the crowding 

distances obtained for each objective function. A group of non-dominated solutions with 
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highest crowding distances are used as the leaders of the swarm, each particle randomly 

selecting its leader from this group. A few more recent techniques for selecting leaders 

include the use of hyper-heuristics [34], and parallel cell coordinate system [229]. 

2.5.1.2 Set of non-dominated solutions 

As a result of the complexity of maintaining an external archive as well as the chance of its 

size exploding, some researchers have tried to avoid its use by proposing objective function 

aggregation methods which perform a weighted combination of all objective functions into 

a single one thus: 

𝐹(𝑥) =  ∑ 𝑤𝑖𝑓𝑖(𝑥)

𝑘

𝑖=1

 
(2.45) 

where the sum of all the weights is usually normalized to 1: 

𝐹(𝑥) =  ∑ 𝑤𝑖 = 1

𝑘

𝑖=1

 
(2.46) 

Some notable such approaches include the Conventional Weight Approach (CWA), Bang-

Bang Weighted Approach (BWA) and the Dynamic Weighted Approach (DWA), all adapted 

from Jin et al [117] for MOPSO by Parsopoulos and Vrahatis [176]. However, these methods 

have a strong limitation in that the algorithms have to be run repeatedly, hopefully finding a 

different non-dominated solution at each run, for the pareto front to be achieved. 

For pareto-based approaches, the size of the external archive poses a challenge. Whenever a 

solution which is non-dominated by a particle’s pbest is found, it is to be added to the external 

archive. There is therefore a tendency for the size of the external archive to increase 

significantly after a few iterations, which results in dominance checks which have to be 

carried out during every iteration becoming computationally expensive. This has led to the 

necessity of restricting the size of the external archive to some reasonable and 

computationally manageable value. Some researchers do this by determining a fixed size for 

the external archive, and as soon as the predetermined size is reached, applying truncation 

and clustering techniques to delete old archive candidates while maintaining a good spread 
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of solutions [127, 265]. However, the problem of deciding on a condition (better than mere 

dominance) based on which a solution will be added to or removed from the external archive 

still needs to be solved. The major scheme adopted by researchers in literature to address this 

problem is the simple, yet effective 𝜖-dominance scheme proposed by Mostaghim and Teich 

[158]. To explain the concept of 𝜖-dominance, they gave the following definitions: 

𝜖-domination: For some ε > 0, a decision vector, 𝑥⃗1 ∈ 𝒳 is said to dominate a decision 

vector 𝑥⃗2 ∈ 𝒳 (denoted by 𝑥⃗1 ≺𝜖 𝑥⃗2) iff: 

 𝑓𝑖(𝑥⃗1)/(1 + 𝜖)  <  𝑓𝑖(𝑥⃗2)∀ 𝑖 = 1, … , 𝑚. 

 𝑓𝑖(𝑥⃗1)/(1 + 𝜖) ≤ 𝑓𝑖(𝑥⃗2) for at least one 𝑖 = 1, … , 𝑚. 

𝜖 -approximate Pareto Front: Let 𝐹 ⊆ ℜ𝑚  be a set of vectors and 𝜖 > 0 . The ϵ-

approximate Pareto Front 𝐹𝜖 ⊆ 𝐹 contains all vectors 𝑥⃗ ∈ 𝐹, which are not ϵ-dominated by 

any vector 𝑥⃗2 ∈ 𝐹: 

∀𝑥⃗2 ∈ 𝐹: ∃ 𝑥⃗1 such that  𝑥⃗1 ≺𝜖 𝑥⃗2 (2.47) 

Their scheme provides an effective way of filtering the contents of the external archive and 

keeping its size at a reasonable level [177], and on comparison with other well-known 

clustering techniques, it was shown to find solutions faster and with even better diversity. An 

illustration of how 𝜖-dominance enlarges the area dominated by a solution is given in Figure 

2.6. 

 

 

Figure 2.6: Dominance and 𝜖-dominance [158] 
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Recently, a mechanism known as stripes which improves on 𝜖-dominance was proposed in 

[225]. Though the proposed technique was shown to perform better than 𝜖-dominance in 

selecting leaders, it exhibits much greater complexity compared to the simple nature of 𝜖-

dominance. 

2.5.1.3 Diversity promotion 

One of the strengths of PSO is its fast convergence. However, with fast convergence comes 

the danger of getting trapped on local optima, as has been pointed out by various PSO 

researchers [3, 4]. Therefore, there is the need for a means through which diversity can be 

maintained within the swarm so as to counter-balance fast convergence. One of the major 

factors which affects swarm diversity is inertia weight, and so tuning or optimizing the inertia 

weight scheme can significantly improve the diversity of the swarm. In [14], two chaotic 

inertia weight strategies are proposed which are proven to enhance swarm diversity while 

maintaining fast convergence, with the methods tested successfully on benchmark global 

optimization problems. 

Another strategy which has been widely used in MOPSOs is mutation, a concept borrowed 

from Genetic Algorithm (GA). Mutation is usually carried out based on a user-defined value 

called mutation rate. Upon choosing a solution to be mutated, a decision is made on changing 

each component of the solution or not based on the mutation rate (probability). Thus, 

mutation can be a very useful tool in helping swarms to escape being trapped on local optima 

[194]. Recent proposed algorithms for maintaining swarm diversity in MOPSOs include 

Partitioning Around Medoid (PAM) clustering algorithm as well as uniform design proposed 

by [264]. Here, the pareto front is partitioned into K clusters and then uniform crossover 

employed on the minimal cluster, with PAM being used to decide which solutions are to be 

removed or inserted in the external archive. Daneshyari and Yen [55] also introduced a 

cultural-based MOPSO in which a cultural framework is used to adapt the personalized flight 

parameters of mutated particles. Another approach to maintaining diversity is the use of a 

dynamic multi-swarm technique, as was recently adapted to MOPSO by Liang, et al. [139] 

showing remarkable performance on various benchmark test functions. 
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A summary of the general form of MOPSO algorithms is presented in Algorithm 2-VIII 

[194].  

Algorithm 2-VIII: General MOPSO Procedure 

1. Initialize swarm 

2. Initialize external archive 

3. Compute quality measure of leaders in external archive 

4. While (termination criteria not met) 

5.  For each particle in swarm 

6.  Select leader (based on quality measure) 

7.  Perform particle flight (based on equations (6) & (7) 

8.  Perform mutation 

9.  Evaluate fitness 

10.  Update pbest and add discovered non-dominated solution to external archive 

11.  Update external archive 

12.  Compute quality measure of leaders in external archive 

13.  Return external archive as pareto front  

 

2.6 Inspirations for New Algorithms 

Having reviewed the existing literature with special emphasis on DPSOs for TSPs and SPPs, 

the following inspirations gave rise to the proposed DPSOs for both problems. 
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As regards the TSP, it was discovered in reviewed literature that none of the DPSOs actively 

factored in the distribution of edge costs within the input graph in directing the particles’ 

search towards more promising solution regions. To illustrate this concept, consider the graph 

in Figure 2.7. Given the distribution of edge costs within the graph, edges (5,1), (5,4), and 

(3,2) have relatively high costs. A means was therefore sought through which these  high-

cost edges can be identified, and the search directed away from them towards much cheaper 

edges such as (1,2), (2,8), (5,3). This inspired the development of the Enhanced 

Communication DPSO, as is fully presented and discussed in Chapter three. 

Figure 2.7: Sample 6-node-sized graph 
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In addition, for the SPP, it was noted that the majority of DPSOs used in the literature are 

set-based. Consider the graph in Figure 2.8 which shows a path from node 2 to node 6. In the 

weight-biased encoding which has been successfully employed for SPP in literature, this path, 

(2, 1, 5, 7, 4, 6), will be represented as (0.3, 1.1, 0.6, 0.4, 0.9, 1.6, 0.2, 0.8). The general 

weight-biased path decoding scheme chooses the path with the minimum cumulative biased 

edge cost (equation (2.38)). This implies that varying permutations of the same weights 

within a set represent different paths.  

As a simple example, if the set earlier given is rearranged as (0.4, 0.2, 1.1, 0.6, 0.8, 0.3, 1.9, 

0.9), the resulting path will be changed to (2, 1, 5, 4, 6), as highlighted in Figure 2.9, which 

happens to be a cheaper path. Therefore, the node allocations of these weights uniquely 

identify a path, and need to be taken into consideration during the search process, especially 

as the gbest and pbest need to be uniquely identified for the particles to be able to effectively 

converge towards them. This prompted the development of the second algorithm which is 

proposed for the SPP, presented in Chapter four. 

2.7 Summary 

A review has been conducted of the Shortest Path Problem and its variants, with a highlight 

on Stochastic Shortest Path Problems. Also, the methods used for solving SPPs in literature 

have been discussed, highlighting exact, non-NI heuristic methods and NI heuristics 
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Figure 2.9: Graph illustrating weight-based encoding and resulting path 
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including Particle Swarm Optimization. The various discretization techniques used for PSO 

which exist in literature have also been discussed, and the existing DPSO methods specific 

to the SPP and TSP highlighted. Three existing DPSO algorithms for SPP were found in 

literature, but of all three, none explicitly described the PSO discretization process which 

they used as is expected, and as was the case with other DPSOs presented in literature. It was 

also observed that of all the discretization techniques used for TSP which were found in 

literature, none took advantage of edge costs as a means of driving the particles’ search 

towards more promising regions. Furthermore, it was observed that the existing method used 

for solving the SDP in literature is a Metropolis algorithm which entails the generation of 

about 3,200,000 different submission schedules. This involves unnecessary computational 

burden, both time and memory-wise.  

Based on the aforementioned observations, this research focusses on developing two new 

DPSO algorithms. The first DPSO algorithm, which is tailored towards the TSP, introduces 

the idea of driving particles’ search by their experience of how ‘good’ an edge is, leading 

them to concentrate on more promising regions within the search space, and hence speeding 

up convergence. A DPSO algorithm for the SPP is also proposed which clearly describes the 

discretization process and incorporates node position-specific information. This research also 

deals with the application of the DPSO algorithm proposed for SPP to solve the SPP, MOSSP, 

and SDP. 
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Chapter Three 

3 An Enhanced Communication Discrete Particle Swarm Optimizer for 

the Travelling Salesman Problem 

3.0 Introduction 

The discretization of the Particle Swarm Optimization (PSO) technique for the Travelling 

Salesman Problem (TSP) in the proposed case is such that a position is a certain permutation 

of edges that form a Hamiltonian cycle. Hence, if for example, six cities are being considered, 

all interconnected in a mesh, then a position could be the set of edges: {(1, 2), (2, 3), (3, 4), 

(4, 5), (5, 6), (6, 1)}. The concept of the Enhanced Communication DPSO (EC-DPSO) is 

embedded in the attempt to directly portray velocity as a measure of the amount of change 

that will be effected on a particular position to produce a new position, and drive particle’s 

search by their communal concept of how ‘good’ or ‘bad’ an edge is. 

3.1 PSO Discretization 

In the process of adapting equations (2.33)  & (2.34) to the discrete form of PSO, and more 

specifically EC-DPSO, the following definitions were made: 

Definition 1: (x, y) – represents an undirected edge between two cities, x and y, where the 

cost of travelling from city x to city y  is equal to the cost of travelling from city y  to city x. 

Definition 2: Velocity, V represents the number of edges in the current position to be 

substituted for new edges. Where the value of V exceeds the number of edges required to 

form a Hamiltonian cycle, it will be clamped down to the number of edges required to form 

a Hamiltonian cycle. For example, if the number of cities is 6, then the number of edges 

required to form a Hamiltonian cycle is also 6. Now, if the value of V is, say 9, its value will 

be brought back down to 6. The rationale behind this is that the highest number of edges that 

can be changed in a particular position is obviously the number of edges in that position. 

Therefore, if V exceeds this value, the value that most closely represents the value of V is that 

number. Also, since velocity is discretized as a scalar value, the question arises about the 
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case when this value is not an integer. Since the value of V has to be an integer, it was decided 

that any floating point value gotten will be approximated to the nearest integer. 

Definition 3: Subtraction –Between two position vectors, A and B, a subtraction, represented 

as A – B, is defined as the index values of edges in B, which are not in A. The motivation 

behind defining subtraction this way arises from the two instances where this operation 

occurs in equation (2.33), that is pbest – X and gbest – X. This operation, in the classical PSO, 

is aimed at measuring the deviation of the position of the current particle from its personal 

best and the global best respectively, so as to make the subsequent positions to oscillate 

around those values. Now, since the velocity, V  represents the number of edges to be changed 

in the process of finding a new position, and considering the fact that the result of pbest – X 

and gbest – X  will invariably contribute to this value of V, subtraction should be carried out 

in such a way that the result constitutes those edges in the current position which are not in 

the pbest and gbest, and hence show which edges are to be changed in the current position to 

obtain the new one. Recall that at this point, these values are the best known values, and the 

aim is to use the information they contain to aid the search for new positions. An example 

will suffice to illustrate the redefined subtraction operation: 

If 𝐴 =  {(2, 3), (5, 6), (3, 4), (6, 2), (1, 5), (1, 4),   and 

    𝐵 =  {(1, 4), (1, 3), (4, 2), (6, 5), (5, 2), (6, 3)}, 

Then 𝐴 –  𝐵 =  {2, 3, 5, 6}  

The numbers, 2, 3, 5 and 6 are the indices of the edges in B  which differ from those in A.  

Definition 4: Multiplication – is defined thus: x * A = {x1, x2, …, xn} = x * |A| . For example, 

3 * {1, 3, 7} = 9. 

Definition 5: Addition maintains its meaning as a sum of two scalar quantities, A and B. For 

example, 3 + 4 = 7. 

Definition 6: EdgeBank – EdgeBank is a list of all edges in the input graph from which each 

particle will select the edges to form its new position. Each edge in EdgeBank has an 
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associated goodnessIndex which influences its chance of being selected as part of a new 

position. An example of an EdgeBank could be:  

              0,0,0    0,0,0              0,0,0               0,0,0     0,0,0    0,0,0               0,0,0 
{0.552(1,2), 0(2,3), 0.232(3,4), 1.0923(4,5), 0(5,6), 0(6,1), 2.1110(6,2)}

 

All goodnessIndex values of the edges will be initialized to zero, and will only be updated at 

the end of the current iteration, that is after all particles have been processed. 

As can be seen from the example above, the EdgeBank will also be used to track the 

‘opinions’ of the different particles about a particular edge. To do this, the EdgeBank will 

contain, for each edge, three integer values: the first, a, will track how many particles 

included edge x, the second, b, will track how many particles consider edge x  to be a ‘good’ 

edge, as will be defined below, and the third, c, will track how many particles consider edge 

x  to be a ‘bad’ edge.  

 The concept of ‘goodness’ of an edge is defined thus: 

o If during the processing of a particle, the fitness function of the new position 

evaluates to a better result than the one obtained at the previous iteration, the 

edge is considered to be ‘good’. That is, the value of b  will increase by 1. 

o If on the other hand, the fitness function of the new position evaluates to a 

worse result than the one obtained at the previous iteration, the edge is 

considered to be ‘bad’. That is, the value of c will increase by 1. 

o If it is neither better nor worse, nothing will be done to the edge, or it is 

considered ‘neutral’. That is, a and b will remain unchanged. 

 After the processing of each particle, the value of a for all edges constituting the new 

position will be increased by 1. 

 After all particles have been processed, the goodnessIndex values of the all the edges 

in EdgeBank will be updated thus: 

a b c 
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o If the value of b is greater than or equal to half the value of a, the 

goodnessIndex of that edge will be increased by a constant, Q. The value of 

Q is discussed in section 3.1.1. 

o If the value of c is greater than or equal to half the value of a, the 

goodnessIndex of that edge will be reduced by Q. 

o In the case where neither of the above happens, or b and c are the same, the 

goodnessIndex of that edge will not be changed. 

Finally, there will be a fixed value, K, above which if any edge’s goodnessIndex gets, it will 

be always selected by particles in their generation of a new position. The parameter K is also 

discussed in section 3.1.2. 

Definition 7: The update operation in equation 2.34 has also been re-defined. As has been 

earlier stated, the velocity is the number of edges to be replaced in X. In the update process, 

𝑉𝑖
𝑡+1 random edges will be selected from EdgeBank and used to replace the ones in 𝑋𝑖

𝑡. It 

involves both the selection of the specific edges in 𝑋𝑖
𝑡 which are going to be replaced, and 

the selection of the edges in EdgeBank which will replace them.  

The selection of edges to be replaced in 𝑋𝑖
𝑡 will be in three stages: 

1. Compute the approximate value of 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡), x, and then randomly choose, 

from the set of indices resulting from 𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡, x indices whose edges in 𝑋𝑖
𝑡 will 

be replaced. 

2. Compute the approximate value of 𝑐2𝑟2
𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖

𝑡), y, and then randomly choose, 

from the set of indices resulting from 𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡, y indices whose edges in 𝑋𝑖

𝑡 will 

be replaced. 

3. Where the value of x + y is less than 𝑉𝑖
𝑡+1, randomly choose the remaining 𝑉𝑖

𝑡+1 – (x 

+ y) edges which will be replaced in 𝑋𝑖
𝑡. 

The selection of the edges from EdgeBank which will be used in the replacement will also 

be thus:  
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1) Randomly select, if possible, 𝑉𝑖
𝑡+1 edges whose goodnessIndex values are greater 

than or equal to K. If the number of edges selected is not up to 𝑉𝑖
𝑡+1, then proceed to 

2, with z as the number of edges already selected. Else, terminate the selection 

process.  

2) Randomly generate a number, R, within the interval [0, T], where T is a value which 

will continue to increase as the number of iterations increase. The value of T is 

elaborated upon in section 3.1.3. 

3) From EdgeBank, randomly select  𝑉𝑖
𝑡+1 − 𝑧 edges whose goodnessIndex values are 

higher than R. In the case where the number of edges whose goodnessIndex values 

are higher than R is not up to 𝑉𝑖
𝑡+1 − 𝑧, then randomly select the remaining  number 

of edges needed to form a Hamiltonian cycle, ensuring that no edge(s) are selected 

which are already part of the new position. It is worthy of note that in selecting the 

edges, the selection of the last edge to form the new position does not really have 

any element of stochasticity in it, as only a particular edge in EdgeBank can be 

selected that will make up a Hamiltonian cycle (the nearest neighbour). Also, in the 

selection of edges, one must be careful not to select an edge that will lead to an 

invalid subtour by adhering to the following rules: 

a) In the final list of edges to constitute the new position, each node must 

appear exactly twice. 

b) Do not select any edge which consists of a node which already appears up 

to two times in the new position being generated. 

c) Do not select any edge that will cause a cycle to be formed except it is the 

last edge, i.e. prevent the forming of sub-tours. 

Definition 8: Fitness Function – is defined as the sum of the costs of all the edges that form 

the new position. 

Definition 9: N is the number of particles in the entire search space. 
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Therefore, the new update equations for the EC-DPSO are thus: 

𝑉𝑖
𝑡+1 =  𝑉𝑖

𝑡⨁ 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) ⊕ 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡)  (3.1) 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡⨀ 𝑉𝑖
𝑡+1  (3.2) 

3.1.1 Analysis of the Constant, Q 

It will be observed that the value of Q will be based, to a large extent, on the degree or 

exploitation or exploration that is desired. However, it was decided that a value that will more 

or less maintain a balance between exploration and exploitation and prevent particles from 

becoming stuck on local optimum should be selected. If there are v nodes in the graph, and 

there are m edges in EdgeBank, then the singular probability of one edge being selected, i.e. 

not considering that x edges are to be selected at once to form a position, is 
1

𝑚
 Therefore, Q 

is set at 

Q  =
1

𝑚
 

 (3.3) 

Thus, an edge grows in ‘goodness’ by a factor of its probability of being selected among n 

other edges. 

3.1.2 Analysis of the constant, K 

In the course of simulating the iteration process, it became evident that among the edges 

making up the graph, some were very ‘good’, i.e. they had very low cost, and would almost 

always influence the overall fitness of any position in which they were included positively. 

Conversely, some edges were also noticed which were very ‘bad’, i.e., they had such high 

cost that whenever a particle selected them, the fitness value was almost always poor. A way 

was therefore sought, through which those edges could be tracked, and a difference could be 

made between the really good and the really bad ones. Therefore, the pegging of a certain 

value, K, above which if an edge’s goodnessIndex can climb, it will always be selected is 

motivated by the attempt to single out exceptionally ‘good’ edges and hasten convergence 

towards the best position by making particles always select them, instead of wasting time 

selecting edges which are not so ‘good’. Obviously, this is a measure which can easily lead 
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to the particles getting trapped on local optimum. This is the reason why it was decided that 

the decision of an edge being ‘good’ will be based on the opinions of all of the particles 

which have used it. More so the value of K will be selected such that only if over a series of 

iterations, the goodnessIndex (a cumulative value) of that edge is up to K will it be 

permanently selected as a good or desirable edge. It should also be noted that when a particle 

marks an edge as ‘good’, it is based on the value of the fitness function, which takes into 

cognizance all other edges that make up that position. Therefore, other edges also contribute 

in the decision, and the possibility is still reasonably high of an edge’s goodnessIndex being 

reduced because it was selected together with other edges whose costs are high, even though 

its own cost is low.  Also, where the number of edges which have goodnessIndex values 

higher than K is greater than the velocity, the required number of edges will be randomly 

selected from amongst all those who qualify. It is obvious then, that the selection of the value 

of K has to take into consideration the probability of an edge being selected among the n 

edges in the edge bank, as well as the probability of that edge being among the group of m 

edges that will form a Hamiltonian cycle which will be selected from among the n edges in 

EdgeBank. 

The probability of an edge being selected from n edges is 
1

𝑛
. Therefore, the probability of 

selecting an edge among the m edges to be selected from the n edges in EdgeBank is 
𝑚

𝑛
 . The 

value of K is hence expressed as 

K =
𝑚

𝑛
 

 (3.4) 

3.1.3 Analysis of the Value, T 

The value T is introduced so as to give the edges whose goodnessIndex values are higher than 

those of others a minutely better chance of being selected. It is important that the value of T 

start at a small value and proceed higher as the maximum goodnessIndex value of the edges 

increases, so as to continually give better edges a higher prospect than poorer ones. Since the 

value of T is dynamic, the initial value of T is defined as  
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𝑇0 =
1

𝑛
 

 (3.5) 

The subsequent values of T  will be defined as 

𝑇𝑘 = max({𝑝1, 𝑝2, … , 𝑝𝑛}) + 𝑄  (3.6) 

Where: 

pi = the goodnessIndex of edge i in EdgeBank 

n = number of edges in EdgeBank 

k = the number of iteration 

Thus, T will always maintain a lead ahead of the highest possible goodnessIndex value an 

edge can have.  

3.2 Simulation 

A short simulation of this algorithm will be done so as to show the nature of the algorithm 

and give a clearer picture of how it operates. In this simulation of the EC-DPSO algorithm, 

the search space will be made of 2 particles going through three iterations. The selected 

parameters are for illustration purpose only. A 6-city TSP will be considered, with the graph 

representation earlier given in Figure 2.7, which is reproduced here: 

 

c1 = 0.8, c2 = 0.8, w = 1 

1 2 

3 

4 5 

6 

1 

1 

8 
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Initialization 

Particle 1: 

𝑋0
0    = {(1,6), (6,2), (2,3), (3,4), (4,5), (5,1)}   𝑓(𝑋0

0) = 33 

𝑝𝑏𝑒𝑠𝑡0
0   = {(1,6), (6,5), (5,3), (3,2), (2,4), (4,1)}    𝑓(𝑝𝑏𝑒𝑠𝑡0

0) = 20 

𝑉0
0         = 4 

 

Particle 2: 

𝑋1
0  = {(2,3), (3,4), (4,5), (5,6), (6,1), (1,2)} 𝑓(𝑋1

0) = 26 

𝑝𝑏𝑒𝑠𝑡1
0  = {(2,4), (4,1), (1,5), (5,6), (6,3), (3,2)}     𝑓(𝑝𝑏𝑒𝑠𝑡1

0) = 23 

𝑉0
0                        = 2 

Communication 

𝑔𝑏𝑒𝑠𝑡0              = {(1,6), (6,5), (5,3), (3,2), (2,4), (4,1)} 𝑓(𝑔𝑏𝑒𝑠𝑡0) = 20 

                                      0,0,0    0,0,0     0,0,0    0,0,0      0,0,0    0,0,0     0,0,0    0,0,0     0,0,0     0,0,0   0,0,0 
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘      = {0(1,2), 0(2,3), 0(3,4), 0(4,5), 0(5,6), 0(6,1), 0(6,2), 0(6,3), 0(6,4), 0(4,1), 0(4,2),

 

   
     0,0,0    0,0,0    0,0,0     0,0,0 
   0(2,5), 0(5,1), 0(5,3), 0(3,1)}

 

A graph illustrating 𝑔𝑏𝑒𝑠𝑡0 is shown in  

 

From (3.4), (3.5) and (3.6), with n = 15 and m = 6, we will respectively have: 

1 2 

3 

4 5 

6 

1 

1 

8 

a 
b 
c 

Figure 3.1: Graph showing 𝑔𝑏𝑒𝑠𝑡0 
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 Q = 
1

15
 =  0.067, T0 = 

1

15
  = 0.067, K = 

6

15
= 0.4 

1st Iteration 

Particle 1: 

Let 𝑟1 = 0.2, 𝑟2 = 0.8 

𝑝𝑏𝑒𝑠𝑡0
0 − 𝑋0

0  = {2, 4, 5, 6}   𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
0 − 𝑋0

0) = 1 

𝑔𝑏𝑒𝑠𝑡0 − 𝑋0
0  = {2, 4, 5, 6}   𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡0 − 𝑋0

0) = 3 

𝑉0
1 = 𝑉0

0 +  𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
0 − 𝑋0

0) +  c2r2(gbest0 − X0
0) 

       = 4 + 1 + 3 

 = 8 

Clamping this to the maximum velocity,  

𝑉0
1 = 6 

Let R = 0.017 

Edges to be replaced: 1, 2, 3, 4, 5, 6 

Edges to be used for replacement (randomly selected according to the rules stated in 

definition 7): 1, 11, 9, 8, 14, 13 

𝑋0
1    = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)}  𝑓(𝑋0

1) = 15 

𝑝𝑏𝑒𝑠𝑡0
1   = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)}  𝑓(𝑝𝑏𝑒𝑠𝑡0

1) = 15 

                                        1,1,0    0,0,0     0,0,0    0,0,0      0,0,0    0,0,0     0,0,0    1,1,0     1,1,0     0,0,0   1,1,0 
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘         = {0(1,2), 0(2,3), 0(3,4), 0(4,5), 0(5,6), 0(6,1), 0(6,2), 0(6,3), 0(6,4), 0(4,1), 0(4,2),

 

    
     0,0,0    1,1,0    1,1,0     0,0,0 
   0(2,5), 0(5,1), 0(5,3), 0(3,1)}

 

Note that the values of a and b have been updated based on definition 6. 

Particle 2 

Let 𝑟1 = 0.5, 𝑟2 = 0.6 
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𝑝𝑏𝑒𝑠𝑡1
0 − 𝑋1

0      = {2,3, 5, 6}           𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
0 − 𝑋1

0) = 2 

𝑔𝑏𝑒𝑠𝑡0 − 𝑋0
0      = {2, 3, 6}              𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡0 − 𝑋1

0) = 1 

𝑉1
1 = 𝑉1

0 +  𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
0 − 𝑋1

0) +  c2r2(gbest0 − X1
0) 

       = 2 + 2 + 1 

       = 5 

Let R = 0.04 

Edges to be replaced: 2, 5, 3, 1, 6 

Edges to be used for replacement: 13, 9, 15, 2, 11 

𝑋1
1    = {(5,6), (5,1), (6,4), (1,3), (3,2), (2,4)} 𝑓(𝑋1

1) = 25 

𝑝𝑏𝑒𝑠𝑡1
1   = {(2,4),(4,1),(1,5),(5,6),(6,3),(3,2)}  𝑓(𝑝𝑏𝑒𝑠𝑡1

1) = 23 

 

                                          1,1,0    1,1,0     0,0,0    0,0,0      1,1,0    0,0,0     0,0,0    2,2,0     2,2,0     0,0,0   2,2,0 
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘     =  {0(1,2), 0(2,3), 0(3,4), 0(4,5), 0(5,6), 0(6,1), 0(6,2), 0(6,3), 0(6,4), 0(4,1), 0(4,2),

 

       
     0,0,0    2,2,0    1,1,0     1,1,0 
   0(2,5), 0(5,1), 0(5,3), 0(3,1)}

 

Communication 

𝑔𝑏𝑒𝑠𝑡1   = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)}  𝑓(𝑔𝑏𝑒𝑠𝑡1) = 15 

                                                     0,0,0            0,0,0    0,0,0    0,0,0              0,0,0     0,0,0    0,0,0             0,0,0 
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘           =  {0.067(1,2), 0.067(2,3), 0(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 

               0,0,0    0,0,0    0,0,0     0,0,0              0,0,0             0,0,0             0,0,0 
   0.067(6,4), 0(4,1), 0(4,2), 0(2,5), 0.067(5,1), 0.067(5,3), 0.067(3,1)}

 

Graph illustrating 𝑔𝑏𝑒𝑠𝑡1: 
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From (9), T  = 0.134 

2nd Iteration 

Particle 1: 

Let 𝑟1 = 0.3, 𝑟2 = 0.4 

𝑝𝑏𝑒𝑠𝑡0
1 − 𝑋0

1 = {}           𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
1 − 𝑋0

1) = 0 

𝑔𝑏𝑒𝑠𝑡1 − 𝑋0
1 = {}           𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡1 − 𝑋0

1) = 0 

 

𝑉0
2 = 𝑉0

1 +  𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡0
1 − 𝑋0

1) +  c2r2(gbest1 − X0
1) 

       = 6 + 0 + 0 

 = 6 

𝑉0
2 = 6 

Let R = 0.025 

Edges to be replaced: 1, 2, 3, 4, 5, 6 

Edges to be used for replacement: 5, 9, 11, 2, 15, 13 

𝑋0
2   = {(5,6), (6,4), (4,2), (2,3), (3,1), (1,5)}  𝑓(𝑋0

2) = 25 

1 2 

3 

4 5 

6 

1 

1 

8 

Figure 3.2: Graph showing 𝑔𝑏𝑒𝑠𝑡1 
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𝑝𝑏𝑒𝑠𝑡0
2   = {(1,2), (2,4), (4,6), (6,3), (3,5), (5,1)}  𝑓(𝑝𝑏𝑒𝑠𝑡0

2) = 15   

                                                   0,0,0            1,0,1    0,0,0    0,0,0              1,0,1     0,0,0    0,0,0             0,0,0 
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘          =  {0.067(1,2), 0.067(2,3), 0(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 

                            
              1,0,1    0,0,0    1,0,1     0,0,0              1,0,1             0,0,0             1,0,1 
   0.067(6,4), 0(4,1), 0(4,2), 0(2,5), 0.067(5,1), 0.067(5,3), 0.067(3,1)}

                 

Particle 2 

Let 𝑟1 = 0.9, 𝑟2 = 0.2 

𝑝𝑏𝑒𝑠𝑡1
1 − 𝑋1

1  = {2, 5}   𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
1 − 𝑋1

1) = 2 

𝑔𝑏𝑒𝑠𝑡1 − 𝑋0
1     = {1, 4, 5}   𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡1 − 𝑋1

1) = 0 

𝑉1
1 = 𝑉1

1 +  𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1
1 − 𝑋1

1) +  c2r2(gbest1 − X1
1) 

       = 5 + 2 + 0 

       = 7 

𝑉1
2 = 6 (velocity clamping) 

Let R = 0.105 

Edges to be replaced: 1, 2, 3, 4, 5, 6  

Edges to be used for replacement: 1, 12, 5, 8, 3, 14 

𝑋1
2    = {(1,2), (2,5), (5,6), (6,3), (3,4), (4,1)}  𝑓(𝑋1

2) = 13 

𝑝𝑏𝑒𝑠𝑡1
2   = {(1,2), (2,5), (5,6), (6,3), (3,4), (4,1)} 𝑓(𝑝𝑏𝑒𝑠𝑡1

2) = 13 

                                                   1,1,0            1,0,1    1,1,0    0,0,0              1,1,1     0,0,0    0,0,0             0,0,0 
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘         = {0.067(1,2), 0.067(2,3), 0(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 

                          
              1,0,1    1,1,0    1,0,1     1,1,0              1,0,1             0,0,0             1,0,1 
   0.067(6,4), 0(4,1), 0(4,2), 0(2,5), 0.067(5,1), 0.067(5,3), 0.067(3,1)}

                   

Communication 

𝑔𝑏𝑒𝑠𝑡2   = {(1,2), (2,5), (5,6), (6,3), (3,4), (4,1)} 𝑓(𝑔𝑏𝑒𝑠𝑡2) = 13 
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                                                 0,0,0   0,0,0             0,0,0    0,0,0              0,0,0     0,0,0    0,0,0             0,0,0 
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘       =  {0.134(1,2), 0(2,3), 0.067(3,4), 0(4,5), 0.067(5,6), 0(6,1), 0(6,2), 0.067(6,3),

 

                                      

                 
      0,0,0              0,0,0    0,0,0            0,0,0      0,0,0             0,0,0     0,0,0 
   0(6,4), 0.067(4,1), 0(4,2), 0.067(2,5), 0(5,1), 0.067(5,3), 0(3,1)}

 

 

T  = 0.201, from (9). 

At the end of the second iteration, the fitness value obtained can be seen to be approaching 

the exact solution, and will eventually converge to it. It is also interesting to observe how 

some of the low-cost edges already have higher goodnessIndex values than others. The exact 

solution is {(1,2), (2,5), (5,3), (3,6), (6,4), (4,1)} 

. 
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Figure 3.3: Graph showing 𝑔𝑏𝑒𝑠𝑡2 
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3.3 EC-DPSO Formal Algorithm 

Below is a formal presentation of the EC-DPSO algorithm: 

Algorithm 3-I: EC-DPSO Algorithm 

1:  Randomly initialize the whole swarm 

2:  Compute Q and K, and T0    

3:  Populate EdgeBank with all edges in the graph and set a, b and c of each edge to 0 

and all goodnessIndex values to 0.0 

4: while(termination criteria not met) { 

5:  for(t = 1; t ≤ swarmsize; t++) { 

6:   calculate(vt)      

7:   update(xt)         

8:   evaluate f(xt) 

9:   if (f(xt) < f(pbestt-1)) pbestt = xt 

10:   update EdgeBank     // using definition 6(a) 

11:  } 

12:  for(t = 1; t ≤ swarmsize; t++) { 

13:   if (f(pbestt) < f(gbest)) gbest = pbestt 

14  } 

15:  update EdgeBank     // using definition 6(b) 

16:  compute Tk          

17: } 
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Figure 3.4: Graph showing exact solution for simulation TSP 
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3.4  Results 

3.4.1 Comparative Analysis of EC-DPSOB, EC-DPSOR, and EC-DPSO 

The algorithm was implemented in the Java programming language and run on a Toshiba 

C660 dual-core computer running @2.00GHz with 4.0GB RAM. The values of c1 and c2 

were both set at 1.49. The performance of the algorithm was investigated by testing three 

variants of the proposed algorithm: basic EC-DPSO (without implementing R or K - EC-

DPSOB), EC-DPSO with R alone (without K: EC-DPSOR), and the full EC-DPSO algorithm, 

(with both R and K:  EC-DPSO). Each algorithm was run fifty (50) times on 10, 15 and 20-

city TSPs (complete graphs), and the average best result, average time taken in seconds and 

the standard deviation recorded. The termination criterion was set at convergence, i.e. when 

130 consecutive iterations give the same gbest. The result is presented in Tables 3.1, 3.2 and 

3.3. 

 

Table 3.1: Comparison of ECDPSO variant performances on 10-city TSP 

Algorithm Variants Average Time (s) Average gbest Standard Deviation 

for Time (SD) 

Average No. 

of iterations 

EC-DPSOB 0.3893 131 14.8007 264 

EC-DPSOR 0.2345 108.28 7.8896 182 

EC-DPSO 0.2476 108.14 5.7464 181 

 

 

Table 3.2: Comparison of ECDPSO variant performances on 15-city TSP 

Algorithm 

Variants 

Average Time (s) Average gbest Standard 

Deviation for 

Time (SD) 

Average No. Of 

Iterations 

EC-DPSOB 1.7275 225.18 18.7199 237 

EC-DPSOR 2.0674 132.04 5.0748 330 

EC-DPSO 2.1131 129.82 2.1351 320 
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Table 3.3: Comparison of ECDPSO variant performances on 20-city TSP 

Algorithm 

Variants 

Average Time (s) Average gbest Standard 

Deviation for 

Time (SD) 

Average No. Of 

Iterations 

EC-DPSOB 5.1041 311.44 19.8228 237 

EC-DPSOR 8.5543 140.1 8.2764 450 

EC-DPSO 10.1541 137.18 8.4169 519 
 

From the results presented above, it can be seen that the basic algorithm, EC-DPSOB 

performed worst in the 10-city, 15-city and 20-city TSP instances. In the 10-city TSP 

instance, the EC-DPSO performed best in both computational cost and speed of convergence, 

closely followed by EC-DPSOR. It is also interesting to observe that in this smallest-sized 

instance of the three tested instances, the number of iterations for EC-DPSOB was much 

higher than those of the remaining two, whose values are very close. Looking across the 

standard deviations obtained for the three variants, it can be seen that the disparity of gbest 

values over the 50 runs decreases from EC-DPSOB through EC-DPSO. In the 15-city TSP 

instance, a similar trend is observed, the differences being that EC-DPSO took longer time 

than all the rest, though with better results. It is interesting to note that the number of 

iterations of the EC-DPSOB variant is significantly lower than those of the rest. When its 

result is compared with those of the other two, it becomes evident that this must have been 

as a result of pre-mature convergence/getting stuck on local optima, since the standard 

deviation is high, indicating very low agreement in results over the 50 runs. In the case of the 

20-city TSP, the tendency of EC-DPSO to take more time to converge gets more pronounced, 

as does its ability to provide better results. The relative weakness of EC-DPSOB and its 

tendency towards premature convergence and getting stuck on local optima is much more 

pronounced here. In summary, it is evident that the implementation of the concept of 

enhanced communication through the introduction of the constants R and K helps to not only 

lead to much smaller convergence times, but also keep the algorithm from getting stuck in 

local optima. Also, the constant K in particular leads to more accurate results but slower 

convergence. 
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3.4.2 Comparative Analysis of EC-DPSO and S-CLPSO 

To further test the performance of the new EC-DPSO algorithm, three TSP instances from 

the TSPLIB[192], eil51, berlin52, st70, eil76, and pr76 were used. On each instance, the 

algorithm, which was implemented in Java, was run 50 times on a computer with Intel® 

Core™i7 CPU at 3.10GHz with 8.00GB RAM running a Windows 8.1 Operating System. 

The results were compared with those reported on the same problem instances in [44], and 

are presented below: 

Table 3.4: Comparison of ECDPSO performance with S-CLPSO with respect 

to minimal cost route found 

  EC-DPSO S-CLPSO 

S/N 

TSP 

Instance Best Mean Worst Best Mean Worst 

1 eil51 478.7 511 566.8 426 433 427.9 

2 berlin52 8446.9 9190 9919.6 7542 7662 7548.4 

3 st70 844.4 911.1 1058.6 675 680.1 690 

4 eil76 679.5 718.4 785.8 538 549 541.7 

5 pr76 133438 147348.5 166226.8 108159 108690 110255 

 

On the eil51 TSP instance, it can be seen that the best result produced by EC-DPSO is 

comparable to that produced by S-CLPSO, since, though the best produced by S-CLPSO is 

better, the results are close. As for the other instances, the performance of the S-CLPSO is 

evidently much better than that of the EC-DPSO. However, the results shown in the five 

instances indicate that the EC-DPSO algorithm has prospects. 

To buttress this point, regression analysis was conducted to determine how well the means 

of both algorithms predict the best values gotten, with the mean values as independent 

variable, and the best values as dependent variable. The results for both EC-DPSO and S-

CLPSO are shown: 
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Table 3.5: Regression Analysis for EC-DPSO 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 46.797 27.093 
 

1.727 .183 

EC-DPSO_Mean .905 .000 1.000 2206.274 .000 

a. Dependent Variable: EC-DPSO_Best 

 Table 3.6: Regression Analysis for S-CLPSO 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -23.826 20.247 
 

-1.177 .324 

S-CLPSO_Mean .995 .000 1.000 2395.447 .000 

a. Dependent Variable: S-CLPSO 

The mean values of the EC-DPSO predict the best results with a correlation coefficient of 

0.905. This shows that the prediction of the best result by the means is highly significant, and 

hence, indicates that the performance of the EC-DPSO is reliable and promising, though the 

S-CLPSO shows a slightly better result. 

It is believed that, as is recommended in section 3.5, when the novel idea of enhanced 

communication between particles based on the ‘goodness’ of individual edges is introduced 

into other algorithms, their performance can be greatly improved. Further research will also 

be made on improving the performance of the EC-DPSO algorithm itself via optimized 

parameter selection, initialization techniques and velocity discretization. 
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3.5 Swarm Size Investigations for EC-DPSO 

The impact of variations in swarm size on the algorithm was also investigated. According to 

[220], the population (swarm) size can be varied to encourage either exploration or 

exploitation of the search space. El-Gallad, et al. [71] state that very small settings of the 

swarm size will greatly increase the chance of the algorithm being trapped in local minima. 

However, if the value of swarm size is set too high, computational time requirements will be 

increased. Therefore, to see impact of these variations more clearly, bays29 from [191] was 

used, and the size of the swarm was varied from 10 to 100 percent of the TSP instance size, 

n. The results in terms of time and deviation from optimal value are displayed below. 

 

Figure 3.5:  Chart showing speed of convergence of EC-DPSO on bays29 with swarm size ranging 

from 10 – 100% of n  
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Figure 3.6: Chart showing divergence from optimal solution of EC-DPSO on bays29 with swarm 

size ranging from 10 – 100% of n  

From the charts above, it can be seen that, as expected, speed increased almost perfectly 

uniformly as swarm size increased. However, the accuracy in terms of divergence from the 

optimal solution was not that uniform. There was a steady fall in divergence from the optimal 

solution between 10 and 60 percent, after which it can be argued that the performance was 

generally within the same range. This indicates that if the swarm size is set at 60 percent of 

n, the performance will not be significantly different from when it is set at n. 

3.6 Summary and Conclusion 

After successfully discretizing the Particle Swarm Optimization technique and successfully 

optimizing it through the achievement of enhanced communication between particles, it can 

be concluded that the EC-DPSO algorithm is a very promising one. The great improvement 

in results achieved by directing the particles towards positions formed by ‘good’ edges 

clearly proves this. By taking into account the impact which the inclusion of an edge makes 

on the fitness value achieved in the new position, the chances of edges with relatively high 

cost getting included was greatly reduced, and  that of those with relatively very low cost 

increased. In addition, swarm size experimentations indicated that setting the swarm size to 
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around 50-60 percent of the size of the TSP instance n, as against the previous setting of n as 

the swarm size, significantly improved speed, while maintaining accurate results. 
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Chapter Four 

4 Proposed Discrete Particle Swarm Optimization Algorithm for the 

Shortest Path Problem 

4.0 Introduction 

As has been highlighted in the literature review, various methods have been proffered for 

discretizing PSO, including binary methods [120, 123, 216], set-based methods [116, 144, 

237], and fuzzy methods [1, 143, 238]. Most of the algorithms which are used to address SPP 

adopt the set-based approach. In the set-based method, the set represents a feasible path from 

source to destination node, where the order or arrangement of elements within the set 

uniquely identifies that path. This implies that the position of each element within the set is 

critical in path representation, and any computation upon the set which disrupts or disregards 

this order/position ultimately disregards the unique path which it represents. The proposed 

PSO discretization is therefore performed in such a way that operations such as addition, 

subtraction and so on which are intrinsic to the PSO algorithm are performed such that the 

position information of each element is maintained. The new DPSO algorithm for the 

Shortest Path Problem is presented in this chapter. 

4.1 Position Encoding for SPP 

A highly important factor when discretizing PSO is how a position is represented in discrete 

space. There are two general methods of representing a position, the direct and indirect 

encoding methods [156]. In the direct method which was used in [157], position is 

represented as a set of vertices (or edges) which directly represent a feasible s-t path in the 

graph. When position is represented as a set of vertices, numbers (IDs) are allocated to 

represent each vertex. For example, in the graph in Figure 4.1, the highlighted path would be 

represented as (2, 1, 8, 5, 4, 6).  
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In this encoding method, the size of the set representing a position varies with the length of 

the path. Hence, (2, 3, 6) and (2, 4, 5, 7, 6) are both valid positions. In some cases the source 

and destination nodes are left out of the set, since they are always the same, and are added 

when fitness evaluation is to be done. The direct method suffers a major disadvantage of 

having a much higher chance of representing invalid paths, since a permutation of nodes can 

represent any path containing edges which are not contained in the graph under consideration 

[156]. For example, a path represented by (2, 1, 4, 6) could be generated, but it is infeasible, 

as it does not lead to the destination node (Figure 4.1). The chance of generating invalid paths 

can be reduced if an indirect approach is used. Another distinguishing feature between direct 

and indirect encoding is that directly encoded positions can have varying lengths. That is, (1, 

4, 2, 7) and (1, 2, 7) could be valid positions for a particle, but in indirect encoding, the 

cardinality of the position set is always fixed. For a graph with n nodes, a particle’s position 

will always also be of size n The indirect encoding method has been successfully applied by 

various researchers, as can be seen in [85], [155] and [156]. In the indirect method, the 

information represented by the position leads to the generation of a path, as opposed to 

representing the path directly. This will however necessitate a means of decoding the 

information to produce the path represented by such a position.  There are two ways of 

encoding a position indirectly: priority-based and weight-based. Gen, et al. [85] and 
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Figure 4.1: Graph showing nodes, their sample priority allocations and the 

corresponding path from nodes 2 to 6 
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Mohemmed, et al. [155] use the priority-based method for encoding an s-t path for SPP. In 

this method, each node in the graph is allocated a priority, and a position is a set of such 

priorities with each index in the set representing the priority of the corresponding node. 

Consequently, the size of the set is always fixed in a priority-based encoding scheme. Path 

generation (decoding) proceeds in a step-wise manner, starting from the source node, 

selecting the adjacent node with least priority. The process is repeated with the selected node 

until the destination node is reached.  

For example, Figure 4.1 shows a position represented as (2, 1, 3, 2, 8, 5, 9, 7), which will be 

decoded as the path (2, 1, 8, 5, 4, 6) for an SPP with source and destination nodes as 2 and 6 

respectively.  

Although the priority-based method has been found to perform acceptably for SPP, its main 

drawback is that edge costs are not taken into consideration in the priority allocation. This is 

where the weight-based encoding approach proves to be a better option. Raidl and Julstrom 

[187] as well as Mohemmed, et al. [155] use the weight-based encoding method for SPP. In 

this method which was first described in [172], each vertex is associated with a weight. The 

cost of each edge is then biased by adding the weight of both its adjacent vertices to its cost: 

𝑐𝑖𝑗
′ = 𝑤𝑖 + 𝑐𝑖𝑗 + 𝑤𝑗 (4.1) 

Therefore, each position is a set of weights whose indices represent the IDs of the respective 

vertices. However, Raidl and Julstrom [187] found that multiplying the edge costs by weights 

generated from a log-normal distribution led to a better performance than adding them. 

Therefore they performed cost biasing thus: 

𝑐𝑖𝑗
′ = 𝑤𝑖 ∙ 𝑐𝑖𝑗 ∙ 𝑤𝑗 (4.2) 
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They chose their weights from the distribution (1 + 𝛾)𝒩(0,1), where 𝒩(0,1) is the normal 

distribution. 𝛾 represents a parameter called biasing strength, which they set at 1.5, and their 

approach is adopted in this work. An example of a position represented with the weight-based 

encoding scheme is (0.3, 1.1, 0.6, 0.4, 0.9, 1.6, 0.2, 0.8) as depicted in Figure 4.2, which 

would generate the path [2, 1, 5, 7, 4, 6]. 

4.2 Path Decoding 

The path decoding scheme which is used to transform particle positions to their 

corresponding paths for fitness evaluation is discussed in this section. A general decoding 

procedure is presented in Algorithm 4-I: 

Algorithm 4-I – General Path Decoding Procedure 

1. Initialize empty path, P 

2. Add source vertex s to P 

3. while (destination node not reached)  

a. Add node v with lowest biased weight to P 

b. Set added node as current node, v 

4. Return P 

5. End  

1 

4 

8 

5 

3 

6 

7 

2 S 

T 

0.3 

0.8 1.6 

0.2 

0.6 

0.9 
0.4 

1.1 

5 

9 

2 6 

10 

4 

1 

6 

8 5 

4 

3 

Figure 4.2: Graph illustrating weight-based encoding and resulting path 
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Though Algorithm 4-I selects nodes based on lowest biased weight, it can be trivially adapted 

to select nodes based on highest priority.  

An important issue is how to handle cases when a partial path leads to a dead end, that is, the 

path ends with a non-destination node. In [155] and [262], such nodes are referred to as “no 

exit nodes”. The strategy adopted in the two aforementioned works is to terminate the path 

decoding process once such a node is detected, resulting in an invalid path which will be 

discarded. Other methods of handling such invalid paths include the use of a penalty 

value/function [249] or a repair function [9]. A better way of handling such a case without 

any chance of creating an invalid path is proposed. At the point in the path decoding process 

when a ‘no-exit’ node is detected, that node is discarded, and a simple backtracking is done 

to select the node with the next lowest biased cost. Also, in order to prevent loop formation, 

a simple check is conducted, and any node which is already part of the partial path discarded. 

Algorithm 4-II gives a complete description of the proposed decoding procedure: 

 

Algorithm 4-II: Proposed Path Decoding Procedure 

1. Initialize Stack P, source node, s and destination node, t, List invalid_nodes 

2. P.push(s) 

3. Set curr = s, next = null 

4. Set min_weight = -∞ 

5. While (curr ≠ t){ 

6.     For i in adj[curr] { 

7.         if (!(P.contains(i) or invalid_nodes.contains(i)){ // Loop prevention check 

8.  biased_weight = weight[i] * weight[curr] 

9.             if(biased_weight  < min _weight){ 

10.                 Set next = i 

11.                 Set min_weight = biased_weight 

12.             } 

13.         } 

14.     } 



95 

 

15.     if(min_weighty == -∞) { // Detection of “no exit node” and backtracking 

16.         invalid = P.pop() 

17.         curr = P.peek() 

18.  invalid_nodes.add(invalid) 

19.         continue 

20.     } 

21.     curr = next 

22.     P.push(curr) 

23. } 

24. return P 

Though the proposed algorithm selects nodes based on lowest biased weight, it can be 

trivially adapted to select nodes based on highest priority. The proposed DPSO can therefore 

also be used both for priority-based and weight-biased encoding schemes with some minor 

adaptations to suit each case.  

4.3 PSO Equation Discretization 

As a reminder, the constriction-coefficient PSO which is adopted in this work has the 

following equations [51]: 

𝑉𝑖
𝑡+1 =  𝜒[𝑉𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) +  𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡)] (4.3) 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 +  𝑉𝑖
𝑡+1 (4.4) 

where t is the iteration counter, i is the particle index, pbest is the personal best, gbest is the 

global best, r1 and r2 are random numbers in the interval [0, 1], c1 is the referred to as the 

cognitive parameter which dictates how biased the particle’s search will be biased towards 

its personal best position, and c2 is the social parameter which dictates how much its search 

will be biased towards the global best. The c1 and c2 parameters can be tweaked to favor either 

exploitation or exploration respectively. 
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𝜒 is defined as 

𝜒 =
2

|2 − φ − √φ2 − 4𝜑|
 

(4.5) 

where 𝜑 = 𝑐1 + 𝑐2, and 𝜑 > 4 

It must be noted here that the manner in which the various elements of the PSO equations are 

discretized will have a very significant impact on the performance of the discrete PSO 

algorithm. A new set-based discretization method which is believed to give the proposed 

algorithm an edge over existing PSO discretization methods used for SPP is presented below. 

1. Velocity: In a set-based discretization scheme, operations such as addition and subtraction 

are usually redefined in terms of set union and difference operators [44]. It was discovered 

that when these operations are carried out in discretization schemes that map priorities or 

weights to node indices, vital data related to the index mappings of either node priorities or 

weights are lost. Obviously, the major point in such schemes is the priority/weight-to-node 

mapping. For example, consider two positions, A = (0.2, 0.6, 1.1, 0.5) and B = (0.9, 0.6, 1.1, 

2.1). The result of the operation, A-B would be (0.2, 0.5). Priority/weight 0.5, which was 

originally mapped to node 4 in A, now points to node 2 in the resulting difference set. This 

does not represent the original sets which were involved in the set difference operation. 

Furthermore, in the course of the PSO algorithm, the result of this difference operation will 

be combined in some way with other sets to form a new position. The new position then 

becomes completely different from the previous one in terms of node-priority/weight 

mappings, severely limiting the search capability of particles. For this reason, a different 

scheme of representation for velocity is proposed which retains this index mapping 

information throughout the velocity and position update operations. Velocity is defined in 

terms of direction and magnitude, direction indicating the specific node indices within a 

position whose priorities/weights will be altered and their associated priorities/weights which 

will be used in replacement, and magnitude, the number of indices whose priority/weight 

values will be replaced. That is, velocity is defined as  

𝑉 = {(𝑢1, 𝑣1), (𝑢2, 𝑣2), … , (𝑢𝑛, 𝑣𝑛)}𝑘 (4.6) 

where ui is the ith index, vi is its associated priority/weight, and k is the magnitude of V. 
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For example, a velocity could be {(7, 0.2), (5, 0.4), (1, 0.3), (4, 0.1), (2, 0.3)}3. 

2. Subtraction (⊖): In line with the above definition of velocity, subtraction is redefined thus: 

Given two sets, A and B, A-B is gotten by comparing the elements in A to those in B index-

wise. That is, compare the element at index 1 in A with the element at index 1 in B and so on, 

forming the resulting set with those elements in A which are different from their counterparts 

in B. Thus, the resulting set maintains information about node-weight mappings. Therefore, 

for the example given above where A = (0.2, 0.6, 1.1, 0.5) and B = (0.9, 0.6, 1.1, 2.1), A – B 

= {(1, 0.2), (4, 0.5)}2, where 2 is the size of the resulting set, which will be useful 

subsequently. 

3. Multiplication (⊙): A multiplication operation between a real number and a velocity set 

results in that set with its magnitude component changed to the closest approximate integer 

resulting from a multiplication operation between that number and the magnitude component 

of the velocity set. Continuing with the above example, if 𝐶 = 𝐴 − 𝐵, then 

0.4 × 𝐶 = {(1, 0.2), (4, 0.5)}0.4×2 

⇒ 0.4 × 𝐶 = {(1, 0.2), (0.5)}1 

4. Addition (⊕): In adding two velocity sets A with magnitude k1 and B with magnitude k2 

together, randomly select k1 elements from B and then k2 elements from A to form the 

resulting sum set with a resultant magnitude of k1 + k2. An example is given below:  

Let A = {(2, 0.6), (4, 0.5)}1 and B = {(3, 0.3), (2, 1.3), (1, 0.1), (7, 2.3)}2.  

Then A + B = {(1, 0.1), (3, 0.3), (2, 0.6)}3 

In selecting elements, it should be ensured that no elements with the same index values are 

present in the resulting sum. Also, it was decided to pick first from B so as to favor gbest 

over pbest in equation (4.3), and hence speed up convergence. 

5. Position Update (⊗): Position update is conducted as per equation (4.8) by replacing k 

randomly selected priorities/weights in the current position with those in the updated velocity 

according to their associate indices. An example will suffice to make this concept clearer.  

Let Xi
t = (1.3, 0.5, 0.8, 0.3, 0.2, 1.0) and Vi

t+1 = {(1, 0.1), (3, 0.3), (2, 0.6)}2. 

To obtain Xi
t+1, replace the value at index 2 of Xi

t with 0.6 and the value at index 3 with 0.3. 

Thus, the new position will be: 

Xi
t+1= (1.3, 0.6, 0.3, 0.2, 1.0) 
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Thus, the updated equations will be: 

𝑉𝑖
𝑡+1 =  𝜒[𝑉𝑖

𝑡⨁𝑐1𝑟1
𝑡⨀(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 ⊖ 𝑋𝑖
𝑡)⨁ 𝑐2𝑟2

𝑡⨀(𝑔𝑏𝑒𝑠𝑡𝑡 ⊖ 𝑋𝑖
𝑡)] (4.7) 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡⨂ 𝑉𝑖
𝑡+1 (4.8) 

4.4 Simulation 

A brief simulation is presented to demonstrate the discretization scheme as a whole.  

Let pbesti
t = (0.4, 2.1, 0.3, 1.1, 1.2, 0,9, 2.3), gbesti = (1.0, 0.2, 0.7, 0.3, 1.7, 2.8, 0.4), Xi

t = 

(0.6, 2.1, 0.7, 1.3, 1.9, 0.5, 2.3), Vi
t = {(2, 0.2), (5, 0.8), (1, 1.3), (6, 01)}3.  

Then from definition 2,  

pbesti
t - Xi

t = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5
 

gbest - Xi
t = {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}6 

Let c1 = 2.05, r1 = 0.5, c2 = 0.5, r2 = 0.5 

From definition 3, 

c1r1(pbesti
t - Xi

t ) = 1.025{(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5 

        = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5 * 1.025 

 = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5 

c2r2(gbest - Xi
t)  = 0.25{(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}6 

 = {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}6 * 0.25 

 = {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}2 

From definition 4, 

c1r1(pbesti
t - Xi

t ) + c2r2(gbest - Xi
t) = {(1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2), (6, 0.9)}5 

  + {(1, 1.0), (2, 0.2), (4, 0.3), (5, 1.7), (6, 2.8), (7, 0.4)}2 

 = {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7 

Vi
t  + c1r1(pbesti

t - Xi
t ) + c2r2(gbest - Xi

t) = {(2, 0.2), (5, 0.8), (1, 1.3), (6, 0.1)}3  
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 + {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7 

 = {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7 

Note that whenever the magnitude sum exceeds n, which is 7 in this case, it is clamped it to 

7. Also, as was earlier stated, once an index value is present in the resulting sum, no new 

element with the same index value is added. 

Now, applying equation (4.7), 

𝑉𝑖
𝑡+1 =  𝜒[𝑉𝑖

𝑡⨁𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 ⊖ 𝑋𝑖
𝑡)⨁ 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 ⊖ 𝑋𝑖
𝑡)] 

= 0.729 * {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7 

= {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}7 * 0.729  

= {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}5 

Note that the χ value recommended in [175] as 0.729 is used here. 

From equation (4.8) and definition 5, 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡⨂ 𝑉𝑖
𝑡+1 

= (0.6, 2.1, 0.7, 1.3, 1.9, 0.5, 2.3) ⨂ {(2, 0.2), (6, 2.8), (1, 0.4), (3, 0.3), (4, 1.1), (5, 1.2)}5 

= (0.4, 2.1, 0.3, 1.1, 1.2, 2.8, 2.3) 

4.5 Summary and Conclusion 

In this chapter, the proposed DPSO algorithm was presented with an explanation of the 

various modifications and redefinitions that had to be made to the original continuous PSO, 

and the presentation of a new path decoding algorithm. A brief simulation to illustrate the 

PSO operation redefinitions in clearer terms was also presented. In the subsequent chapters, 

this algorithm is applied with a few adaptations where necessary, to the SPP, MOSSP, and 

SDP. 
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Chapter Five 

5 A Memetic Discrete Particle Swarm Optimization Method for the 

Shortest Path Problem 

5.0 Introduction 

Given an undirected, connected graph G with a set V of vertices and a set E of edges defined 

as  

𝐸 =  {(𝑖, 𝑗)|𝑖, 𝑗𝜖𝑉}  (5.1) 

each of which have associated costs cij, the Shortest Path Problem (SPP) seeks to find a path 

between a source vertex 𝑠 𝜖 𝑉, and a destination or sink vertex 𝑡 𝜖 𝑉, the total cost of whose 

constituent edges is minimized. Mathematically,  

𝑚𝑖𝑛
𝑝𝜖Ρ

 ∑ 𝑐𝑖𝑗

(𝑖,𝑗)𝜖 𝑉

 
 (5.2) 

Where Ρ is the set of all s-t paths defined as sequences of non-repeating (i,j) edges starting 

at s and terminating at t. In the problem case under consideration, the shortest path is sought 

between a specified single source node and single destination node. 

Apart from its ubiquitous applications, the SPP is also important because it forms a base for 

other NP-complete problems such as weight-constrained shortest path problem, multi-

objective shortest path problem, bottleneck shortest path problem and so on [68, 223, 236]. 

Though exact methods have been proffered to solve the classical SPP such as the Dijkstra 

and Bellman-Ford algorithms [207, 255], these exact methods have a major drawback of not 

being extendable its variants. They also cannot be used to determine other similar or 

dissimilar short routes, in addition to the fact that they perform poorly in real-time rapidly 

changing environments [202, 246]. 
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Therefore, various heuristic methods such as A* and branch pruning [83, 100] have been 

proposed to solve the SPP and avoid these drawbacks. Methods in the field of Swarm 

Intelligence have also been developed to solve the problem. These algorithms have been 

discussed in sections 2.3 and 2.4.. 

5.1 Application of Proposed DPSO for SPP 

The proposed DPSO algorithm as presented in Chapter four is now applied to the SPP, 

incorporating the memetic algorithm discussed in section 2.3.6 to improve its local search 

capability. The results obtained are compared with those reported in [156], [155], and [85]. 

A randomly negative or positive λ value of 0.5 in the memetic component was found to 

perform better than other values after experimentation. This takes care of cases where the 

search needs to be towards regions where weight is lower than the current position as well as 

regions where weight is higher. 

5.2 Values of c1 and c2 

The values of c1 and c2 are known as the cognitive and social parameters respectively, and 

they are used to control the level of exploitation or exploration of the algorithm. Where c1 is 

higher than c2, exploration is favored, and where c2 is higher than c1, exploitation is being 

favored [175]. Therefore, upon close examination of the algorithm’s performance, it was  
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Figure 5.1: Graph displaying a path from node 2 to node 6 
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discovered that the default settings of the values of both c1 and c2 at 2.05 [175] were not 

favorable in this case. This is because with these values, the magnitude value of the 

operations 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) or 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑖
𝑡) will be at such a high level, that during 

position update, the particle has a very high probability of flying directly to the position of 

the gbest or pbest, as the case may be. This leads to premature convergence and makes the 

local search capability of the algorithm very poor. Experiments were therefore carried out to 

find the most suitable setting of c1 and c2 for the algorithm, and it was discovered that setting 

their values at 1.48 and 0.5 respectively leads to an improved performance. As was explained 

earlier, this setting encourages exploitative search around the particle’s personal best as 

against a premature direct flight to the swarm’s global best position. 

 

Table 5.1: Comparison of Proposed DPSO with two other DPSOs and a GA 

S/N Number 

of nodes 

Number 

of edges 

DPSO in [155] GA in [85] DPSO in [156] Proposed DPSO 

Success 

Rate 

No of 

Iterations 

Success 

Rate 

No. of 

Iterations 

Success 

Rate 

No of 

Iterations 

Success 

Rate 

No of 

Iterations 

1 6 10 100 50 100 50 - - 100 40 

2 32 66 100 100 98 100 - - 100 60 

3 50 166 - - - - 95 44 99 50 

4 60 233 - - - - 89 60 94 60 

5 70 211, 

216, 212 

80 200 64 200 91 60 98 60 

6 70 326 - - - - 86 78 98 60 

7 80 188 - - - - 92 74 95 60 

8 80 232 - - - - 93 77 96 60 

9 90 230 - - - - 88 90 96 60 

10 90 251 - - - - 94 86 97 60 

11 100 255 - - - - 90 95 94 60 

12 100 280 - - - - 90 107 95 60 
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5.3 Results and Discussion 

A comparison of the three variants of the proposed DPSO algorithm is presented in Table 

5.2. The variant with default c1 and c2 settings will be called DPSOa
, the memetic variant 

with default c1 and c2 settings, DPSOb, and the proposed memetic algorithm with the new 

c1 and c2 values, DPSOc. Each variant was implemented in Java and executed on a computer 

with Intel® Core™i7 CPU at 3.10GHz with 8.00GB RAM running a Windows 8.1 Operating 

System. Each graph instance (with a given number of nodes and edges) was randomly 

generated 100 times, with edge costs taken randomly from the range [10, 1000]. As a result 

of the stochastic nature of the algorithm, performance slightly varied over each of the 100 

runs. Therefore, for each variant and in each instance, the algorithm was run multiple times 

and the average performance taken, so as to depict a clear picture of its performance both in 

terms of accuracy and consistency. 

 

Table 5.2: Comparing performance of three DPSO variants for SPP 

 DPSOa DPSOb DPSOc 

S/N Nodes Edges Accuracy Iterations Accuracy Iterations Accuracy Iterations 

1 200 450 0.83 90 0.84 90 0.91 90 

2 150 400 0.83 90 0.87 90 0.90 90 

3 100 280 0.83 60 0.86 60 0.93 60 

4 100 255 0.82 60 0.88 60 0.91 60 

5 90 251 0.81 60 0.91 60 0.92 60 

6 90 230 0.84 60 0.88 60 0.92 60 

7 80 232 0.85 50 0.88 50 0.93 60 

8 80 188 0.82 50 0.86 50 0.93 60 

9 70 326 0.85 40 0.87 40 0.96 60 

10 70 212 0.85 40 0.87 40 0.93 60 

11 60 233 0.85 40 0.9 40 0.93 60 

12 50 160 0.89 40 0.92 40 0.95 60 
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The chart in Figure 5.1 shows the improvement in performance that has been achieved both 

by selecting the right values for c1 and c2, and by implementing a memetic version with both 

global and local search components. The nature of the discrete algorithm inherently 

encourages global search as has been stated in the definition of the addition operation for the 

velocity update equation. Hence, selecting c1 and c2 parameters which favor exploitation has 

proven to improve the algorithm’s local search capability. Further improvement has been 

achieved by making the algorithm memetic with the addition of a local search component, 

enabling it to search for better positions around the current global best. Therefore, it can be 

said that a balance in both exploitation and exploration has been achieved by the addition of 

these two features to the algorithm, with the resultant significant improvement in its 

performance. 

Table 5.1 shows the viability of the proposed DPSO algorithm in the light of the 

performances of others reported in [155],  [156] and [85]. 
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 Figure 5.3: Graphical comparison of the performance of three DPSO variants 
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The proposed algorithm performs comparatively with all compared algorithms in terms of 

accuracy, and in most cases, with a lower number of iterations. This proves that the novel 

discretization method introduced with the algorithm is a strong and viable one. As is shown 

in Table 5.2, even with the basic variant of the algorithm, performance in all cases never goes 

below 80%. In Table 5.2, it can also be seen that the algorithm was able to solve SPP 

instances of size of up to 200 nodes at ≥ 90% accuracy, whereas the largest number of nodes 

solved from sampled literature is 100. This proves that the method used to discretize PSO for 

a specific combinatorial optimization problem greatly determines the resulting algorithm’s 

efficiency. Tailoring the discretization of the PSO equations to best fit the search space, in 

this case, the weight-biased representation, has proven to be a very definitive factor in 

determining performance. The chart in Figure 5.2 highlights the better performance of the 

proposed algorithm in all shown instances compared to the DPSO proposed in [156], which 

was used to solve problems of highest size among all three algorithms in literature with which 

the proposed algorithm is compared. 

5.4 Summary and Conclusion 

The proposed memetic DPSO algorithm discussed in chapter four was applied to SPP. 

Optimal values were also selected for c1 and c2 with improved results. The local search 

capability of the memetic component of the algorithm further led to more promising results 

which, in comparison with those of three other algorithms proposed for the SPP. 
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Chapter Six 

6 A Discrete Particle Swarm Optimizer for the Multi-Objective 

Stochastic Shortest Path Problem 

6.0 Introduction 

The Shortest Path Problem (SPP) which was first defined and solved by Dijkstra in 1958 [65] 

has been extensively studied by scientists over the years, with various variants being 

proposed and numerous solution techniques applied to them. However, it has been observed 

that the SPP in its deterministic form does not adequately represent real-world situations with 

their inherent uncertainties (such as the road/link congestion, accident occurrence and so on), 

leading to the solutions proffered for deterministic SPPs ending up failing [249, 262]. The 

Stochastic Shortest Path problem (SSP) assigns probability distributions associated with 

costs to each edge in the graph, and is usually solved by seeking the path with the least 

expected length [157]. A good deal of research has been made into solving various SSPs in 

literature, from exact methods like value and policy iteration [26] and quasi-convex 

maximization [167], to heuristics and meta-heuristics like A* [42], Genetic Algorithms (GA) 

[188] and Particle Swarm Optimization (PSO) [262]. 

Moreover, most users do not only desire to know the path of least-expected cost, but desire 

some level of certainty in the chosen path as well. This has led to multi-objective SSPs with 

objectives like least expected path cost, variance, probability of achieving cost at or below a 

given value, expected cost to guarantee a given probability, and so on [188]. As was outlined 

by Rajabi-Bahaabadi, et al. [188], various approaches have also been applied to solve these 

multi-objective SSPs. In the area of nature-inspired/evolutionary/swarm intelligence 

algorithms for multi-objective SSPs, GAs have been applied with good results [115, 188].  

However, except for the work done in [262], the application of MOPSO to SSP seems not to 

have received much attention in literature, despite its good qualities of fast convergence, 

lower computational cost, fewer lines of code and relatively minimal required computational 

book keeping [119]. In [262], a hybrid algorithm made of Artificial Immune System and a 
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chaotic PSO is applied to a multi-objective SSP where the mean and variance of path 

congestion are minimized (stochastic variables) as well as the distance (deterministic 

variable). The performance of their algorithm was compared with an existing bi-objective 

Genetic Algorithm reported in [114] and a single-objective PSO method proposed for SSP 

in [156]. They reported that their algorithm outperformed both algorithms with which it was 

compared, though it is unclear on what basis they were able to compare the performance of 

their 3-objective algorithm against 2- and 1- objective algorithms. Theirs was the only work 

found in literature which applies PSO to MOSSP. In this chapter, the new DPSO for SPP is 

applied to solve the least expected cost SSP (known as SSP-E [189]) as a means of validating 

it. Two requirements are then combined (minimizing variance and expected cost) in a multi-

objective discrete Particle Swarm Optimization algorithm, and experiments carried out to 

investigate and validate results.  

6.1 Adaptation of Proposed DPSO for SSP and MOSSP 

All PSO equation redefinitions, as well as the algorithm presented in Algorithm 4-II remain 

the same for the SSP, except that cost is redefined as expected (mean) cost. However, an 

important modification had to be made to the proposed weight biasing technique originally 

proposed in [187] as: 

𝑤𝑖,𝑗 = 𝑤𝑖 ⋅ 𝑤𝑗 ⋅ 𝑐𝑖𝑗 (6.1) 

In applying equation (6.1) to a multi-objective setting, it was noticed that as expected, the 

search procedure was being hampered by the bias towards only edge costs at the expense of 

other objectives such as variance. An attempt was then made to implement objective 

aggregation methods as proposed in [176] , but the results were not favorable. However, upon 

further investigation, the following equation which removes bias towards any of the objective 

functions was used with very favorable results: 

𝑤𝑖,𝑗 = 𝑤𝑖 ∗ 𝑤𝑗 (6.2) 

In single-objective cases however, the use of equation (6.1) is maintained.  
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A possible position could be (0.3, 1.4, 2.1, 0.8) for a 4-node sized graph as illustrated in 

Figure 6.1. 

6.2 Results of Proposed DPSO on SSP 

In this section, the results of applying the proposed DPSO algorithm to the SSP-E where the 

aim is to minimize total expected cost in a stochastic graph is presented. The objective 

function for the SSP-E is [39, 113]: 

𝑀𝑖𝑛 𝐸 [ ∑ 𝜇𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝒜

] 

(6.3) 

  Subject to 

∑ 𝑥1𝑗(1,𝑗)∈𝒜 − ∑ 𝑥𝑗1 = 1,(𝑗,1)∈𝒜   (6.4) 

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝒜 − ∑ 𝑥𝑗𝑖 = 0,     2 ≤ 𝑖 ≤ 𝑛 − 1(𝑗,𝑖)∈𝒜   (6.5) 

∑ 𝑥𝑛𝑗(𝑛,𝑗)∈𝒜 − ∑ 𝑥𝑗𝑛 = −1,(𝑗,𝑛)∈𝒜   (6.6) 

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝒜 (6.7) 

3 (0.50), 9 (0.50) 

 1 2 
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Figure 6.1: Sample graph showing edge cost probability distributions and node weights (emphasized) 
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where 𝜇𝑖𝑗 is the expected length of edge (i,j), 𝒜 is the set of all edges in the graph, constraints 

(14) – (16) ensure that the edges in the path are feasible, connecting from origin 1 to 

destination n, and constraint (17) ensures that the decision variables are binary. 

In [157], a discrete PSO method was proposed and applied to the SSP-E problem, and the 

result compared with Distributed Learning Automata methods in [154] and [22]. Their results 

proved the applicability of DPSO to SSP-E by reducing the number of iterations by over 

9000. They also compared their results with the results gotten from solving the problem with 

Dijkstra’s algorithm, reporting the same optimal paths as that gotten from Dijkstra’s but with 

lower cost. It is however unclear how they were able to achieve different costs on the same 

path using the same objective function for SSP-E stated above. The algorithm was tested with 

c1 and c2 settings as 1.48 and 0.5 respectively (after experimentation) on the three test cases 

(Graphs 1 – 3) presented in their paper. The results obtained are compared with theirs with 

varying swarm sizes for Graph 3 (15 nodes, 43 edges) over 12 runs in Table 6.1. 

Table 6.1: Comparing Performance of Proposed Algorithm with DPSO in [157]  

Swarm 

Size 

Best Converged Path 
Cost of Converged 

Path 

Number of 

Convergences 

Percentage of 

Convergence 

DPSO in 

[157] 

Proposed 

DPSO 

DPSO in 

[157] 

Proposed 

DPSO 

DPSO 

in 

[157] 

Proposed 

DPSO 

DPSO 

in 

[157] 

Proposed 

DPSO 

25 1 2 5 15 1 2 5 15 63.292 64.5 4 12 33.33% 100% 

50 1 2 5 15 1 2 5 15 61.1428 64.5 8 12 66.6% 100% 

100 1 2 5 15 1 2 5 15 62.7442 64.5 6 12 50.0% 100% 

150 1 2 5 15 1 2 5 15 63.0834 64.5 9 12 75.0% 100% 
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Results obtained are also compared with those obtained by Dijkstra’s algorithm and those in 

[157] over all three test cases in Table 6.2: 

Table 6.2: Comparison of Proposed DPSO with Dijkstra and DPSO in [157] over three 

instances 

Graphs 

Shortest Path 

for DPSO in 

[157] 

Path Cost 

Shortest Path 

from 

Proposed 

DPSO 

Path Cost 

Shortest 

Path from 

Dijkstra 

Path Cost 

Graph 1 1 3 7 10 14.84535 1 3 7 10 15.22 1 3 7 10 15.22 

Graph 2 1 4 9 10 15.49471 1 4 9 10 16.1 1 4 9 10 16.1 

Graph 3 1 2 5 15 62.46404 1 2 5 15 64.5 1 2 5 15 64.5 
 

The performance of the proposed DPSO is clearly better than that proposed in [157] since it 

was able to consistently find the path with least expected cost over all tested swarm sizes 

with a 100% accuracy. As a further proof of the viability of the algorithm, three more graphs 

of dimension (50, 150), (100, 250), and (200, 400) were randomly generated with probability 

distributions generated with the scheme detailed in [208]. Associated integer costs were also 

randomly generated within the interval [1, 100). For each dimension, 50 cases were randomly 

generated and the algorithm’s performance tested over swarm sizes of 25, 50, 100, and 150. 

Number of iterations was fixed at 50. The algorithm’s accuracy was validated against 

Dijkstra’s algorithm and the percentage accuracy reported. The results are presented in Table 

6.3. 

Table 6.3: Performance of Proposed DPSO on 

SSP instances of various sizes 

Instances 
Swarm 

Size 
Accuracy 

Average 

Time (s) 

50, 150 

25 100% 0.0526 

50 100% 0.0940 

100 100% 0.1937 

100, 250 
25 100% 0.1792 

50 100% 0.3774 
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100 100% 0.7584 

200, 400 

25 92% 0.9880 

50 100% 2.2301 

100 100% 3.2276 

 

Table 6.3, shows that the proposed DPSO algorithm is effective in solving the SSP-E problem. 

However, in practical applications, users are usually not just interested in the path of least 

expected cost. Most are also concerned with the reliability of the recommended path, 

especially in applications that have to do with road networks and expected travel time [39]. 

This leads to the need for a multi-objective algorithm which will proffer pareto-optimal 

solutions, giving users the chance to make a compromise between these conflicting objectives.  

6.3 Results of Proposed DPSO on MOSSP 

An attempt was made to compare the results obtained upon applying the proposed DPSO 

with those presented in [262], but the data presented was unusable, as the probability 

distributions presented had no associated costs. Because, as was stated earlier, Zhang, et al. 

[262]’s work was the only one found in literature solving MOSSPs using PSO, and the only 

other recent work which solves MOSSPs with a Swarm Intelligence approach (Ant Colony 

Optimization) which was presented in [75] deals with stochastic nodes which is beyond the 

scope of this work, we randomly generated and present our own data. To prove the viability 

of the proposed algorithm, three SSP instances with 25 nodes and 50 edges (small instances 

for the sake of space constraints) were randomly generated with the following probability 

distributions: N(μ, σ2) denoting a normal distribution, E(λ) an exponential distribution, U(a, 

b) a uniform distribution, and T(a, b, c) a triangular distribution. The three instances are 

presented in Table 6.4 - Table 6.6. 

Table 6.4: Graph Instance 1 

Arc 
Distribution 

Function 
Arc 

Distribution 
Function 

Arc 
Distribution 

Function 
Arc 

Distribution 
Function 

Arc 
Distribution 

Function 

(1, 17) E(9) (11, 22) N(28, 4) (21, 11) T(15, 18, 15) (3, 11) U(4, 23) (18, 6) T(15, 25, 25) 

(2, 14) U(4, 11) (12, 23) U(6, 15) (22, 3) U(8, 26) (15, 4) T(9, 28, 14) (5, 21) U(9, 19) 

(3, 25) U(13, 15) (13, 4) N(24, 4) (23, 5) N(25, 4) (20, 18) U(12, 27) (20, 9) T(12, 17, 13) 

(4, 12) E(9) (14, 7) U(22, 29) (24, 18) T(15, 23, 15) (5, 23) N(22, 24) (21, 4) U(15, 18) 
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(5, 14) U(2, 27) (15, 22) T(2, 12, 4) (25, 17) U(4, 20) (17, 25) U(9, 20) (14, 11) T(17, 21, 21) 

(6, 16) U(4, 16) (16, 20) E(19) (1, 7) U(18, 27) (13, 8) U(1, 14) (12, 10) T(0, 12, 6) 

(7, 19) T(6, 15, 15) (17, 7) N(18, 20) (18, 12) U(8, 12) (11, 13) T(8, 17, 17) (21, 3) U(11, 18) 

(8, 4) E(2) (18, 8) T(3, 15, 4) (5, 8) T(7, 14, 14) (10, 24) N(4, 17) (21, 19) E(29) 

(9, 1) N(0, 24) (19, 22) T(5, 11, 11) (8, 9) N(26, 1) (2, 3) N(15, 11) (1, 3) U(12, 23) 

(10, 9) E(13) (20, 8) U(2, 12) (2, 13) N(1, 1) (23, 8) U(8, 10) (20, 19) E(21) 

 

Table 6.5: Graph Instance 2 

Arc 
Distribution 

Function 
Arc 

Distribution 
Function 

Arc 
Distribution 

Function 
Arc 

Distribution 
Function 

Arc 
Distribution 

Function 

(1, 23) E(12) (11, 17) E(1) (21, 4) U(6, 17) (25, 2) U(17, 18) (16, 22) E(19) 

(2, 24) T(18, 21, 21) (12, 15) U(11, 23) (22, 10) T(11, 20, 19) (1, 15) E(7) (12, 13) T(9, 25, 21) 

(3, 19) T(6, 19, 19) (13, 25) N(10, 15) (23, 14) E(23) (2, 20) N(9, 20) (12, 10) E(10) 

(4, 1) T(1, 18, 4) (14, 18) N(8, 15) (24, 6) T(2, 15, 6) (11, 5) E(10) (10, 3) U(17, 29) 

(5, 4) T(7, 16, 16) (15, 11) T(1, 8, 4) (25, 6) N(5, 25) (11, 3) N(2, 18) (3, 4) E(15) 

(6, 9) N(4, 28) (16, 17) N(16, 11) (24, 4) U(5, 21) (9, 1) E(6) (23, 20) T(2, 4, 3) 

(7, 16) U(0, 9) (17, 4) U(15, 22) (3, 2) N(10, 26) (13, 8) E(8) (24, 25) 
T(15, 27, 

21) 

(8, 1) U(16, 25) (18, 1) N(2, 9) (14, 22) N(8, 19) (21, 13) N(9, 14) (19, 25) U(7, 20) 

(9, 1) T(18, 19, 18) (19, 13) U(13, 25) (4, 19) N(18, 5) (15, 23) 
T(15, 24, 

15) 
(21, 23) E(2) 

(10, 19) U(7, 27) (20, 2) E(13) (1, 10) T(13, 16, 15) (17, 22) E(21) (14, 2) E(29) 

 

Table 6.6: Graph Instance 3 

Arc 
Distribution 

Function 
Arc 

Distribution 
Function 

Arc 
Distribution 

Function 
Arc 

Distribution 
Function 

Arc 
Distribution 

Function 

(1, 7) N(13, 16) (11, 4) E(8) (21, 23) T(3, 9, 8) (13, 3) T(6, 30, 16) (17, 15) N(3, 13) 

(2, 22) E(27) (12, 15) U(7, 17) (22, 12) U(7, 25) (14, 24) T(6, 10, 9) (14, 2) E(2) 

(3, 8) T(17, 25, 23) (13, 8) E(10) (23, 3) T(9, 15, 9) (20, 17) N(25, 5) (3, 11) E(11) 

(4, 22) T(14, 22, 14) (14, 11) U(15, 17) (24, 12) U(11, 20) (8, 15) T(15, 19, 19) (25, 12) T(0, 9, 5) 

(5, 11) T(1, 21, 2) (15, 25) T(11, 23, 22) (25, 20) U(13, 18) (15, 24) U(5, 26) (4, 10) U(16, 28) 

(6, 1) U(20, 22) (16, 20) T(13, 18, 13) (22, 5) E(10) (17, 13) E(8) (11, 4) U(3, 18) 

(7, 17) T(8, 11, 10) (17, 20) T(6, 24, 23) (12, 19) T(11, 17, 16) (6, 18) N(3, 15) (1, 24) U(15, 18) 

(8, 14) N(29, 14) (18, 6) E(22) (13, 22) U(14, 23) (18, 19) U(20, 28) (21, 3) T(3, 26, 22) 

(9, 25) U(21, 27) (19, 8) E(24) (22, 19) N(23, 6) (18, 12) U(11, 20) (17, 10) U(17, 26) 

(10, 23) N(5, 23) (20, 6) U(0, 2) (15, 25) E(12) (13, 10) T(10, 29, 24) (4, 22) N(22, 11) 

 

For the proposed MOPSO, Sigma-value as discussed in section 2.4.1 was used for leader 

selection, with 𝜖-dominance [158] used for the maintenance of the external archive. Mutation 
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was used as a swarm diversity measure. The algorithm was implemented in Java and executed 

on a computer with Intel® Core™i7 CPU at 3.10GHz with 8.00GB RAM running a Windows 

8.1 Operating System. Dijkstra’s algorithm was used to solve each instance for both single-

objective cases (minimum expected cost and variance) to verify that the algorithm is able to 

achieve the two extremes of the Pareto front. Each instance was executed over 10 runs with 

number of iterations set at 50 for each run to investigate consistency, a mutation rate of 0.3, 

and an 𝜖-value of 0.01. The results of the algorithm on the three instances are presented in 

Table 6.7. From the results, it is obvious that the aim of multi-objective optimization is 

achieved, since the user is given the freedom to make a choice on the shortest path to take 

based on his preference either for the shortest path which has more variability, or the surest 

path which has higher cost, or, as the results on instances 2 and 3 show, a path which gives a 

suitable balance between the two desirables. The proposed algorithm is shown to achieve 

both extremes of the two objective functions on the three tested instances as verified by 

Dijkstra’s algorithm. The algorithm’s consistency is also shown by its ability to achieve the 

Pareto front 100% of the time on all tested instances. Figure 6.2 and Figure 6.3 show the 

Pareto fronts achieved in instances 2 and 3.  
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Figure 6.2: Pareto front for graph instance 2 
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Further experiments were carried out on the impact of 𝜖-value used for 𝜖-dominance on the 

algorithm’s performance by varying its value from 0.01 to 0.1. The experiments were carried 

out on a randomly generated graph with 200 nodes and 1000 edges, with the same settings 

as earlier stated except for the varying 𝜖-values. The minimum values found by Dijkstra’s 

0

10

20

30

40

50

60

70

0 10 20 30 40

Ex
p

ec
te

d
 C

o
st

Variance

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Ex
p

ec
te

d
 C

o
st

Variance

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 6.4: Evaluating Proposed DPSO’s performance with varying 𝜖-values 

Figure 6.3: Pareto front for graph instance 3 
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algorithm for expected length and variance were 5.3 and 4.9 respectively.  The algorithm was 

run 10 times, and results which showed the greatest spread/diversity and accuracy were 

selected for comparison. 

We quickly note that solutions provided for a discrete problem may not be as rich or diverse 

as those which are achieved for a continuous problem, the obvious reason being the limitation 

in solution space available for discrete optimization problems. The chart in Figure 6.4 shows 

the impact that 𝜖-value can have on the performance of a MOPSO algorithm, indicating that 

lower 𝜖-values are generally preferable for consistency, accuracy and greater diversity. For 

most values of 𝜖, the algorithm was able to achieve a variance of 6.9, very close to the 

minimum variance. However, only when 𝜖 was set to 0.01 was it able to simultaneously find 

a minimum expected cost of 5.3.  For values ranging from between 0.03 and 0.08, 

performance is generally poorer and farther away from the pareto front which was achieved 

with 𝜖 = 0.01.  An outlying case occurred with a value of 0.09, where the solution was very 

close to the pareto front, but the poorer performance trend resumed with a value of 0.1. This 

trend can be explained given the fact that with larger 𝜖-values, the area dominated by a given 

solution increases, thereby hiding other good solutions which would have been found out. 

Therefore, for optimal performance, the 𝜖-value should be kept reasonably low, preferably 

between 0.01 and 0.02. This is in agreement with the values used in [158]. 

6.4 Summary and Conclusion 

In this chapter, the proposed DPSO for SPP has been extended to MOSSP, with the 

introduction of various novel operators and improvements to the generally known decoding 

process for path construction. Results of the algorithm on expected cost SSP (SSP-E) were 

compared with those proposed in [157], reporting better performance majorly in terms of 

consistency on all tested instances. The proposed algorithm was also applied to three 

randomly generated SSP graph instances with 25 nodes and 50 edges having normal, uniform, 

exponential and triangular distributions, and the Pareto front accurately approximated, with 

results by Dijkstra’s algorithm solutions to both single-objective versions of the problem. 

The proposed algorithm was then applied to a problem with 200 nodes and 1000 edges, also 

successfully approximating the Pareto front. The proposed algorithm’s performance with 𝜖-
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values ranging from 0.01 to 0.1 was evaluated, and a conclusion that  𝜖-values between 0.01 

and 0.02 tend to give better results than other values reached in line with existing literature. 
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Table 6.7: Proposed DPSO’s performance on 3 graph instances 

Problem instance Path 

Expected 

Cost 

(DPSO) 

Minimum 

Expected Cost 

(Dijkstra) 

Variance 

(DPSO) 

Minimum 

Variance 

(Dijkstra) 

Average CPU 

Time (s) 

Convergence Rate 

(%) 

1 (Source: 1, Sink: 20) 

1-12-7-3-11-22-4-20 58.6 

58.6 

34.6 

24.2 0.0219 100 

1-12-3-11-22-4-20 74.6 24.2 

2 (Source: 1, Sink: 25) 

1-23-14-2-24-25 41.2 

34.6 

6.6 

6.6 0.0109 100 1-15-11-3-4-19-25 38.0 39.3 

1-15-11-3-19-25 34.6 43.6 

3 (Source: 1, Sink: 25) 

1-24-12-19-8-15-25 64.5 

25.7 

10.2 

10.2 0.0142 100 
1-7-17-15-25 25.7 29.4 

1-24-12-15-25 44.1 15.9 

1-7-17-13-8-15-25 40.7 17.5 
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Chapter Seven 

7 A Multi-Objective Particle Swarm Optimization Approach to the 

Submission Decision Process 

7.0 Introduction 

The SDP was very recently introduced by Salinas and Munch [196] as one of choosing a 

permutation of journals to which to submit a manuscript (factoring in possibility of rejection 

and subsequent resubmission) such that the number of citations accumulated over a given 

time period is maximized, while the number of submissions and time taken from submission 

to publication are minimized. However, it was observed that the algorithm selected for their 

computation (Metropolis algorithm) entails an unnecessarily high computational burden and 

execution time. The proposed DPSO for SPP is therefore extended into a discrete Multi-

Objective Particle Swarm Optimization heuristic (MOPSO) so as to address the highlighted 

issue. Some insight is also provided into the proposed models which can be used to achieve 

even higher speed increase.  

7.1 Application of Proposed DPSO to SDP 

As a result of the unique nature of the SDP, a few definition need to be made differently from 

those made in the proposed DPSO for SPP: 

 Position: A position must be represented in such a way that it either directly or 

indirectly represents a feasible solution within the solution space. Position is therefore 

represented with respect to SDP as a set containing a permutation of journals 

(represented as numbers/indices) which represents a particular order of manuscript 

submission. Initially, the set of candidate journals is sorted by name, and indices are 

assigned to them. These are the indices used to refer to each journal. Thus, a possible 

position, with number of journals N = 10, would be 

(2, 4, 7, 5, 1, 9, 3, 8, 0, 6) 

Here, 2 could represent a journal named Ecology, 6 a journal named Science, and so on. 
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 Velocity: The same definition for velocity as was earlier proposed is maintained. An 

example velocity, specific to the SDP could be {(7, 2), (5, 1), (1, 6), (4, 15), (2, 4)}3. 

That is, for example, the journal at index 7 of a target position will be replaced with 

another journal represented as 2, and so on. 

Furthermore, a redefinition is necessary for the position update operation: 

Position Update (⊗): As per equation (4.8), position update is done by first creating a new 

position and inserting k elements in their respective indices in it. Subsequently, any empty 

indices are filled with values with the original positions, and if any gaps still remain, they 

are filled with randomly generated values. For example: 

If Xi
t = (2, 5, 1, 3, 4) and Vi

t+1 = {(3, 2), (1, 5)}2  

To obtain Xi
t+1, first build a new position: 

Xi
t+1 = (5,  , 2,  ,  ) 

Then, insert all values from the previous position which will not result in duplications within 

the new position: 

Xi
t+1 = (5,  , 2, 3, 4) 

Finally, randomly generate/fill the remaining empty indices: 

Xi
t+1 = (5, 1, 2, 3, 4) 

The updated equations still remain the same as equations (4.7) and (4.8). 

7.2 Results 

In the introductory paper by Salinas and Munch [196], a Metropolis algorithm was used in 

solving the two bi-objective cases of the SDP, obtaining the C, R, and P values for about 3.2 

million different submission schedules. They also used multiple starting conditions, going 

through all N(N-1) possible permutations of the first two journals in a submission schedule. 

Upon implementing their algorithm, a few areas in which improvements can be made were 

discovered. The generation of 3.2 million different submission schedules obviously is very 

time-consuming, also resulting in data which is overly large and cumbersome to process. The 

proposed discrete MOPSO algorithm was therefore applied to the problem, in which case the 

reported Pareto front (final contents of the external archive) suffices in helping authors make 
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their choice. For the experiments, the Sigma value was used for selection of leaders and a 

mutation rate of 0.5 for diversity maintenance. Also, to be able to properly cover the search 

space, the first two journals in a sequence were randomly swapped with any other two at 

every tenth iteration. 

All implementations were done in Java and executed on a computer with Intel® Core™i7 

CPU at 3.10GHz with 8.00GB RAM running a Windows 8.1 Operating System, and using 

one core. The same settings applied in [196] (scoop rate = 0.001, tR = 30, and T = 5 years 

(1826 days)) were used in implementing both the Metropolis algorithm and the proposed 

discrete MOPSO algorithm for the bi-objective problem seeking to maximize number of 

citations, C, and minimize number of submissions, R. The charts in Figure 7.1 & Figure 7.2 

show the results of the Metropolis algorithm and the proposed discrete MOPSO algorithm, 

respectively. 

 

Figure 7.1: A plot of expected Number of Citations against expected Number of Submissions for 

about 3,150,000 submission schedules using the Metropolis algorithm in [196] 
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Figure 7.2: A plot of expected Number of Submissions against expected Number of Citations using 

the proposed MOPSO algorithm 

Similarly, the results of optimizing number of citations, C, and time spent in review, P for 

both algorithms are shown in Figure 7.3 & Figure 7.4 respectively: 
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Figure 7.4: A plot of expected Number of Submissions against expected Time Spent in Review using 

the proposed MOPSO algorithm 

Figure 7.3: A plot of expected Number of Citations against expected Time Spent in Review 

for about 3,150,000 submission schedules using the Metropolis algorithm in [196] 

 



124 

 

 

Table 7.1 shows the time spent by both algorithms on the two different optimization scenarios.  

 

Table 7.1: Computational time comparison of Metropolis and MOPSO 

Objectives Algorithm Time (s) 

Maximize C, Minimize R 
Metropolis 1001 

MOPSO 11.957 

Maximize C, Minimize P 
Metropolis 966 

MOPSO 12.134 

 

During computations and experiments, it was observed that the number of citations gained 

increased at a decreasing rate as j increased from 1 to N. Also, as noted in [196], a large N 

does not seem realistic, as most authors would not have the patience to continue down the 

submission schedule till the very last journal. Experiments were therefore performed to 

determine at what point the increase in number of citations is reasonably negligible, and thus 

to what value N can be reasonably reduced with minimal impact on number of citations 

gained. A graph of the growth trend for number of citations for 5 randomly generated 

submission schedules, S1 to S5 is shown in Figure 7.5. 
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Figure 7.5: Growth trend of citation count over increasing value of N (number of journals) for 5 

randomly generated submission schedules 

As can be observed from Figure 7.5, beyond the point where N = 10, the increase in number 

of citations gained is very little. In line with this observation, the value of N was reduced to 

10 and the algorithm rerun to see what time savings could be achieved. The result of 

optimizing C and R with N=10 is shown in Figure 7.6, and C and P in Figure 7.7. A 

comparison of time spent for all three algorithms: Metropolis, MOPSO, and MOPSO with N 

= 10, denoted as MOPSO10, is shown in Table 7.2. 
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Figure 7.6: A plot of expected Number of Submissions against expected Number of Submissions 

using the proposed MOPSO algorithm with N = 10 
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Figure 7.7: A plot of expected Number of Submissions against expected Time Spent in Review using 

the proposed MOPSO algorithm with N = 10 

Table 7.2: Computational time comparison of Metropolis, MOPSO and MOPSO10 

Objectives Algorithm Time (s) 

Maximize C, Minimize R 

Metropolis 1001 

MOPSO 11.957 

MOPSO10 0.563 

Maximize C, Minimize P 

Metropolis 966 

MOPSO 12.134 

MOPSO10 0.539 

Maximize C, Minimize P, 

Minimize R 

Metropolis - 

MOPSO 12.068 

MOSPO10 0.63 
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Finally, the result of combining all objectives into a 3-objective optimization problem and 

solving with the proposed discrete MOPSO algorithm was investigated. The Pareto front for 

this 3-objective optimization is presented in Figure 7.8. In Figure 7.9, the same 3-objective 

optimization is presented, but with N=10. 

 

 

Figure 7.8: 3-Objective optimization plot of expected Number of Submissions, Number of Citations 

and Time Spent in Review using MOPSO 
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Figure 7.9: 3-Objective optimization plot of expected Number of Submissions, Number of Citations 

and Time Spent in Review using MOPSO with N = 10 

7.3 Discussion 

In Figure 7.1, which highlights the Pareto front achieved by the Metropolis algorithm, the 

top-right portion of the Pareto front is dominated by Ecology Letters and Israel Journal of 

Ecology and Evolution. Figure 7.2 which shows the Pareto front achieved by the proposed 

MOPSO algorithm has the top-right portion dominated by Ecology Letters and Science. Both 

algorithms therefore show that a first submission to Ecology Letters has a much higher 

chance of maximizing citation count. Furthermore, the middle-right portions of the Pareto 

fronts identified by both algorithms are clearly dominated by PLoS ONE, indicating that this 

journal gives the best compromise between both desired objectives. The results similarly 

reported by both algorithms in Figure 7.3 and Figure 7.4 are also in favor of Ecology Letters 

for maximizing citation count, and PLoS ONE for achieving a good compromise between 

maximizing citation count and minimizing time spent in review. It is also interesting to note 

that in Figure 7.6 and Figure 7.7 where N = 10, the Pareto fronts reported agree with those 

achieved when N = 61.  
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When all objectives are optimized as a 3-objective optimization problem, Ecology Letters 

stands out clearly as the one which maximizes citation count (though with higher number of 

submissions and longer time spent in review), while PLoS ONE gives a reasonable 

compromise among all three objectives. This behavior is consistent both when N=61 and 

N=10. 

Therefore, the proposed algorithm, when compared to the Metropolis algorithm in [196], 

shows similar results: that a schedule with a preference to maximizing number of citations 

gained during the time horizon over minimizing the number of submissions should begin 

submission with Ecology Letters. Experiments also show that a first submission to Science 

is a good strategy. Other good first journals for maximizing citation count are Ecological 

Monographs and Molecular Ecology Resources, as can be seen from the charts. An optimal 

submission schedule which gives a reasonable compromise between the two objectives 

should clearly begin submission with PLoS ONE. That is, if an author would not mind losing 

a few citations (5 to 10), his best option would be to first submit his manuscript to PLoS ONE. 

An interesting observation which was also made from experiments is that almost in all cases, 

for schedules which achieve higher citation counts by first submitting to either Ecology or 

Science, the second journal in the submission schedule is PLoS ONE. This implies that if 

upon submission to either of the two journals, one is rejected, the best option would be to 

submit to PLoS ONE. It is also worthy of note that most, if not all of the journals which form 

the upper to middle (desirable) part of the Pareto front are among the first ten journals when 

all journals are ranked by their V values (equation (2.22)). These journals in descending order 

of V values are: Ecology Letters, Science, Israel Journal of Ecology and Evolution, 

Ecological Monographs, Proceedings of National Academy of Sciences USA, Molecular 

Ecology Resources, Molecular Ecology, ISME Journal, Journal of Evolutionary Biology, and 

PLoS ONE. The same results with minute variations apply when optimizing expected number 

of citations and time spent in review. Most of these observations are similarly made by 

Salinas and Munch [196]. 

It has therefore been shown that the SDP problem can be solved in a much smaller amount 

of time with the proposed MOPSO, and even smaller time when N is reduced to 10, without 

affecting the quality of results obtained. 
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7.4 Summary and Conclusion 

In this chapter, the proposed discrete MOPSO algorithm was applied to the SDP with results 

showing that it performs much faster than the Metropolis algorithm used in the introducing 

paper [196] without compromising accuracy. It was also shown that reducing the value of N 

(Number of journals) to 10 when computing the different objective values C, P, and R leads 

to a greater reduction in computational time. Furthermore, the proposed algorithm was used 

to solve a 3-objective optimization problem combining the three objectives C, P and R, as 

against the existing optimization of only 2 objectives (either C and R or C and P), and the 

results were reported. 
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Chapter Eight 

8 Summary, Conclusion and Future Work 

8.0 Summary 

In this research work, COPs have been discussed with focus on the TSP, SPP and SDP. Exact 

and heuristic solution approaches to these problems have also been discussed and reviewed. 

Exact methods discussed include label-setting, label-correcting and branch-and-bound 

algorithms. The non-NI heuristics which were discussed include A*, heuristic bi-directional 

search, branch and prune methods for the SPP and nearest-neighbor, k-opt and the widely-

acclaimed LKH heuristic for the TSP. Nature-Inspired algorithms such as GA, ACO, PSO 

and the Physarum algorithms were also discussed. With specific regard to PSO, various 

discretization techniques existing in literature were highlighted such as binary, fuzzy, swap 

operator-based, set-based, and space transformation-based methods. The SDP was also 

discussed in the context of pertinent issues related to it in literature. We also briefly presented 

the Metropolis algorithm which was implemented in literature to solve it. 

Two new set-based DPSOs were presented, EC-DPSO and a DPSO for SPP, which involve 

the use of innovative problem-specific information to speed up convergence and achieve 

accurate results. The EC-DPSO algorithm was applied to the TSP, while the DPSO proposed 

for the SPP was applied to the classical SPP and SSP, as well as the MOSSP and SDP. The 

results achieved are presented in the subsequent sections, and future areas of potential 

research highlighted. This is done with respect to each of the problems solved. 

8.1 Conclusion 

A Discrete Particle Swarm Optimization (DPSO) heuristic for the Travelling Salesman 

Problem (TSP) which was optimized through enhanced communication between particles 

was presented. A great improvement in results was achieved by attempting to direct the 

particles towards positions formed by ‘good’ edges. By taking into account the impact which 

the inclusion of an edge makes on the fitness value achieved in the new position, the chances 
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of edges with relatively high cost getting included was greatly reduced, and that of those with 

relatively very low cost increased 

A memetic DPSO algorithm for the Shortest Path Problem (SPP) was also presented, 

introducing new discretization concepts which proved to have a great impact on the global 

search ability of the DPSO algorithm. Optimal values were also selected for c1 and c2 with 

improved results. The local search ability of the memetic component of the algorithm led to 

still better results. These results were compared with those of 3 other algorithms proposed in 

literature for the SPP and found to be better. More so, the size of SPP instances solved by 

DPSOs found in literature was increased from 100 to 200 cities. 

Furthermore, the proposed DPSO algorithm was adapted to the Multi-Objective Stochastic 

Shortest Path problem (MOSSP), introducing various novel operators and improvements to 

the generally known decoding process for path construction. Results obtained on expected 

cost SSP (SSP-E) were compared with those proposed in [157], reporting better performance 

majorly in terms of consistency on all tested instances.  

The proposed algorithm was then applied to MOSSP. Three random SSP graph instances of 

size 25 nodes and 50 edges were generated, having normal, uniform, exponential and 

triangular distributions. The Pareto front was accurately approximated, and results validated 

by Dijkstra’s solutions for both single-objective versions of the problem. The algorithm was 

also applied to a MOSSP instance with 200 nodes and 1000 edges, with the Pareto front also 

successfully approximated. The performance of the algorithm with 𝜖-values ranging from 

0.01 to 0.1 were evaluated and reported, and a conclusion that  𝜖-values between 0.01 and 

0.02 tend to give better results reached in consonance with existing literature. 

The Submission Decision Problem was addressed with an adaptation of the proposed discrete 

MOPSO algorithm. It was shown that the algorithm performs much faster than the Metropolis 

algorithm used in the paper [196] which introduced the problem. It was also shown that 

reducing the value of N (Number of journals) to 10 in computing the different objective 

values, expected citation count (C), expected time spent in review (P), and expected number 

of submissions (R) leads to a greater reduction in computational time without compromising 
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results. Furthermore, the proposed algorithm was used to solve a 3-objective optimization 

problem combining the three objectives C, P and R, as against the existing optimization of 

only 2 objectives (either C and R or C and P). 

8.2 Future Work 

The DPSO for TSP algorithm which was presented represents a new idea in discretizing PSO 

for TSP. However, the performance of the algorithm still needs to be improved in terms of 

speed and accuracy, as we were only able to attempt TSPs of size up to 76 cities. In addition, 

it was observed in the review of literature that no Particle Swarm Optimization (PSO) 

algorithm has been applied to the family of constrained Shortest Path problems (CSP). It is 

therefore recommended that the new DPSO algorithm for SPP be adapted to solve the CSP 

as a means of testing its robustness and investigating if any improvements can be made on 

existing results.  

The application of discrete MOPSOs to Stochastic Time-Dependent Networks with variants 

including correlations between link costs, reliability and α-reliability and others will be 

looked into, as this appears to be an area of active research. Finally, attempts will be made to 

obtain data specific to the computer science field so as to use them in solving the SDP and 

reported the results. These results will be of great use to authors in the field of computer 

science in deciding what journal submission schedule to follow in submitting their 

manuscripts.  
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