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Abstract 

The work presented in this thesis focuses on the problem of reconstructing three-

dimensional models of fire from real images. The intended application of the 

reconstructions is for use in research into the phenomenon of fire-induced high 

voltage flashover, which, while a common problem, is not fully understood. As such 

the reconstruction must estimate not only the geometry of the flame but also the 

internal density structure, using only a set of a few synchronised images. Current 

flame reconstruction techniques are investigated, revealing that relatively little work 

has been done on the subject, and that most techniques follow either an exclusively 

geometric or tomographic direction. A novel method, termed the 3D Fuzzy Hull 

method, is proposed, incorporating aspects of tomography, statistical image 

segmentation and traditional object reconstruction techniques. By using physically 

based principles the flame images are related to the relative flame density, allowing 

the problem to be tackled from a tomographic perspective. A variation of algebraic 

tomography is then used to estimate the internal density field of the flame. This is 

done within a geometric framework by integrating the fuzzy c-means image 

segmentation technique and the visual hull concept into the process. Results are 

presented using synthetic and real flame image sets. 
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Chapter 1. 

Introduction 

It is known that fires burning underneath high voltage transmission lines can cause 

flashover - a short circuit from the transmission line to earth. Such transmission line 

faults are not only inconvenient but can be extremely costly to industry. 

An analysis of the Eskom Main Transmission System line faults (in South Africa), 

for the period 1993 to 1999, was done by Britten [1],[2]. His research showed that 

19.3% of all faults were caused by fire, 15.6% by grass fires and 3.7% by sugar cane 

fires. The only factors more significant than fire were storms (28.8%) and 

"unknown" (38.2%). 

One can thus see that fire-induced flashover is a serious problem, further 

compounded by the fact that such faults are difficult to prevent. Sugar cane fires are 

intentional, and therefore controllable, yet the problem remains. 

More recently a satellite-based fire detection system has been tested. The CSIR and 

Eskom developed the Advanced Fire Information System, for the purpose of 

prediction, detection and assessment of fires in South Africa [3]. Ideally such a 

system would be able to detect small fires within a large region in near real time. 

However this ideal satellite does not exist and instead two available satellites, one 

1 
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geostationary and one polar orbiting, were used. This means that the one satellite 

can provide detailed high resolution images, but only infrequently, while the other 

provides low resolution images, but can do so every 15 minutes. It is estimated that 

the low-res satellite (MSG) can detect fires of a minimum size of 500mz, while the 

high-res satellite (MODIS) has a minimum detection size of 100m . Combining the 

two satellites, results were obtained showing the detection of 60% of flashover 

causing fire, with up to 80% of those fires detected before flashover occurred. The 

system shows great promise, although of course detecting the fire is only the first 

step - effective communications and systems must be in place in order to quickly 

react and actually prevent flashover. 

However, the actual process of fire-induced flashover is complex and dynamic, and 

is not completely understood. The three main theories as to the mechanism involved 

are: the reduced air density theory, particle initiated flashover and the flame 

conductivity theory. These theories are reviewed in §1.1. A better understanding of 

the phenomenon could allow for further preventative measures to be developed. 

The goal of this project is to create a system that can create a three-dimensional 

reconstruction of a flame, using photographic images. The primary purpose of the 

reconstruction would be its use for further research regarding the flame conductivity 

theory. Three-dimensional electric field models could be estimated and the internal 

conductivity of the flame analysed. As such, the focus of this project is not on the 

actual use of the reconstruction for research, but rather on the development of a tool 

to enable the creation of 3D reconstructions of real world flames. 

Keeping in mind the intended application the following specifications were decided 

upon to guide the development of the system: 

• The reconstruction must be volumetric. By this it is meant that the 

reconstruction space is formed by elementary, regular cells (voxels) which 

can be definitively classified as being part of the object or not. 
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• The internal structure of the flame should be represented by an estimation of 

the density field. 

• The method should be general, able to handle any type of visible flame, not 

require specific laboratory conditions, and should not be too limiting 

regarding the size of the flame or the reconstruction. 

• In order to maintain the generality and portability of the system, camera 

calibration should be kept to a minimum. 

• The system must be able to handle video sequences, not just a single frame, 

and must therefore be able to create the reconstruction in a reasonable amount 

of time. 

• The video sequences should be instantaneously captured in real time - in 

other words no axis-symmetric flame assumptions or time-averaged images. 

• No expensive equipment should be needed other than several cameras and a 

PC. 

This means that flame analysis techniques using lasers or other specialised 

equipment are not directly relevant. A brief review of such flame measurement and 

analysis techniques is presented in §2.3. 

In terms of flame reconstruction from images there are two different approaches one 

can take. The first approach is that of geometric reconstruction. As the name 

implies these methods are concerned with the physical shape of the fire, creating a 

reconstruction representing the surface or volume of the flame [4],[5],[6]. The 

simplest geometric method is the visual hull, formed by the intersection of the 

object's silhouettes. 
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The second approach involves the use of tomography. Tomography makes use of 

several side-views, or projections of the object, representing the integral of the 

internal mass density of the object from the particular view. This density 

information is then used to estimate the structure of the internal density field of the 

object. Probably the most common application of tomography can be found in 

medicine. CAT (Computerised Axial Tomography) uses a series of X-Ray images to 

construct cross-sectional slices of the human body. The field of tomography is 

discussed in more detail in chapter 3. Tomography-based flame reconstruction 

methods have been developed [7],[8],[9], although these reconstruction methods are 

typically based on only a few images (as opposed to over 100 images in medical 

applications), and as such require different techniques to those used in medical 

imaging. Previous work on flame reconstruction from photographic images is 

reviewed in chapter 4. 

This thesis presents a hybrid flame reconstruction technique, termed the Fuzzy Hull 

method. By using elements from both geometric and tomographic approaches this 

method is able to create a flame reconstruction, from only a few images, that 

estimates both the geometry and the internal density structure of the flame. 

The simplified radiative transfer image formation model (§2.2.2) provides the 

foundation for a tomographic reconstruction by converting the flame images into an 

approximation of the flame's ray density integrals (the relative density along the ray 

forming each image pixel). Algebraic tomography is then used to create an estimate 

of the flame's internal density field, based on the converted images. Fuzzy c-means 

images segmentation then classifies the reconstruction voxels as either object or 

background, based on statistical features, giving a volumetric nature to the 

reconstruction. The visual hull is used as a boundary for these operations. The 

evolution and testing of the fuzzy hull method is presented in chapter 5. 

Finally, in chapter 6, results are presented from full-scale tests performed with a hot 

air balloon burner, in an environment simulating a fire burning under a high voltage 

transmission line. 
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1.1 Fire-Induced High Voltage Flashover Theories 

There would appear to be three main theories relating to the phenomenon of fire-

induced flashover. These are outlined below. 

1.1.1 Reduced Air Density Theory 

An air gap is essentially an insulator, and as such the effectiveness of this insulation 

is determined by its physical properties. Under normal conditions one can relate the 

flashover voltage of an air gap to the density of the air by [10] 

V,=Vsjj , (1.1) 

where D is the relative air density, H is a humidity correction factor and Vs is the 

flashover voltage under standard temperature and pressure. Expanding the relative 

density term to 

D = •£•%• (1.2) 
Po T 

(where/) is pressure, 7 is temperature,po = 101.3 kPa and To= 293 °K) and assuming 

a negligible humidity correction factor gives 

V.-V2-^ . (1.3) 

What this implies is that the flashover voltage will decrease, in a linear fashion as the 

air density is decreased. This density reduction is caused by the heat of the fire, 

therefore the hotter the flame, the lower the voltage required for flashover (as shown 

by the inverse temperature relationship of equation (1.3)). 

Experimentally it has been shown that while this relationship holds at lower 

temperatures, it does not apply to the higher temperatures typically found in fire [12] 

(sugar cane can have an adiabatic flame temperature of over 2000°K [11]). This 
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indicates that the reduced air density theory is not sufficient to account for the 

reduction in flashover voltage experienced at such high temperatures. 

The effects at these high temperatures are not well understood and further research is 

required [12],[13], 

1.1.2 Particle Initiated Flashover 

It has been shown that introducing particles into the flame reduces the air breakdown 

voltage [10],[12],[14]. A typical source of such particles would be ash from the 

burning of a solid fuel (e.g. a sugar cane fire). The effect of the particles on the 

dielectric strength is strongly affected by the concentration and size of the particles, 

and can be more significant in smaller gaps [14]. However, other factors such as 

flame turbulence, wind, and the large air gaps under high voltage transmission lines 

must be considered. 

One must conclude that although the presence of particles will reduce the breakdown 

voltage, this is unlikely to be the dominant breakdown mechanism. 

1.1.3 Flame Conductivity Theory 

The principle behind the flame conductivity theory is that, because of the conductive 

nature of fire, the flame acts a conductor, thereby effectively reducing the air gap. 

The typical reaction occurring in hydrocarbon-based flame is 

CJH, + 2 * +
2

y / 2 0 2 - > * C 0 2 + | H 2 0 ( 1 4 ) 

However, the mechanism by which this takes place involves a complex series of 

elementary steps involving highly reactive molecular fragments such as H-, -OH and 

•CH3 [15]. These atoms and free radicals only have a transient existence, but a 

steady concentration is maintained as they are continuously formed in chain reactions. 
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In addition, if temperatures are high enough then the gas atoms or molecules may 

have enough energy to ionise other atoms and molecules upon collision - thermal 

ionisation. Thermal ionisation creates a state of matter called plasma, and the degree 

of ionisation is described by the Saha ionisation equation. 

The ionisation of the air above the flame also contributes to lowering the electric 

field gradient required for breakdown. These high temperature ionisation effects 

require further research in order to be fully quantified [12] [13]. 

Both of the above-mentioned factors, chemical oxidation and thermal ionisation, are 

therefore responsible for the concentration of ions and electrons found in a flame. 

The actual conductivity of the fire can be estimated by the gas conductivity equation 

or = pju , (1.5) 

where p is the charge density and /J. is the ion motility. 

Sukhnandan has carried out simulations to investigate the effect of flame 

conductivity on the electric field [16]. Using finite element analysis software the 2D 

electric field was modelled for the case of a fire under a conductor with an air gap. 

Different flame conductivities were used and the electric field at the conductor 

surface and flame tip was analysed. His results show that the conductivity of a flame 

is indeed an important factor in the breakdown process. 

1.1.4 Summary 

It would appear that all three theories play a part in explaining the fire-induced 

flashover phenomenon. While the reduced air density theory is an established effect, 

it does not explain the drastic reduction of air insulation strength at higher 

temperatures [10]. The introduction of particles alters the electric field and can be 

viewed as effectively reducing the air gap distance. The degree of breakdown 

voltage reduction caused by particles can be significant, and varies according to 
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particle size [10]. Flashover can still be induced however using clean burning LPG 

flames, and thus the particle effect cannot be seen as the sole mechanism, but rather 

as an aid to the process. The effect of the flame conductivity in the breakdown 

process would appear to be that of increasing the electric field gradient in the air gap 

between the flame and the conductor, thereby making it easier to attain the gradient 

needed to initiate flashover. Thermal ionisation, both within the flame and in the air, 

is also a contributing factor, although the precise effect has yet to be fully quantified. 

1.2 Flame Reconstruction as a Research Tool 

The main purpose of this project is to create a tool able to create a three dimensional 

reconstruction of fire. This reconstruction can then be used in further research 

regarding the effect of flame conductivity on the fire-induced flashover phenomenon. 

As mentioned, work has been done using 2D simulations and a simplified 

representation of fire, shown below [16]. 

Conductor i 

/ i Fire \ 

Figure 1.1: The 2D geometry used for the electric field simulations in [16]. 

However, such investigations could be more accurate and thorough if a 3D 

simulation was used, incorporating a 3D reconstruction of the actual flame coupled 

with actual physical measurements. The electric field could be more completely 
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modelled, since the flame geometry would be more accurate, with features such as 

sharp points influencing the electric field formation. 

In addition, the approximation of the internal flame density could be used for further 

analysis. The geometry and varying density of the flame mean that the resistance of 

the flame is not uniform, and therefore any conductivities measured are only 

representative of the flame as whole, and might not accurately reflect individual 

regions. 



Chapter 2. 

Fire Physics and Measurement 

2.1 Flame Physics 

2.1.1 The Candle 

According to Michael Faraday: 

"There is no more open door by which you can enter into the study of natural 

philosophy than by considering the physical phenomena of a candle. There is not a 

law under which any part of this universe is governed which does not come into play, 

and is not touched upon, in these phenomena. " [17] 

Indeed, the common candle provides a good example with which to introduce the 

physical and chemical processes associated with fire. 

10 
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Figure 2.1: The humble candle. 

Consider a steady-state candle flame. Part of the heat generated by the flame is 

radiated downwards, melting the candle wax to form a small pool of wax around the 

wick. The liquid wax is drawn up the wick by capillary action and vapourised by the 

heat. The wax vapour then diffuses across the dark zone, mixing with oxygen. The 

ensuing combustion in the blue zone generates the most heat in the flame. The 

combustion process continues up through the yellow region until completion. This is 

where the main visible light is generated, as the sooty carbon particles are burnt. 
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Incandescent soot particles 

Blue reaction zone Wax vapour 

Liquid wax is drawn 
up the wick 

Figure 2.2: The elements of a candle flame. 

The shape of the flame is caused by convection - the heated gasses expand and 

ascend. The self-sustaining reaction is able to continue, however, due to the 

downward and inward flow of radiated heat. Just enough heat reaches the wax to 

melt the wax at the same rate it is being burned, and the radiation from the blue 

combustion region ensures the liquid wax is vapourised. 

The combustion process is exothermic, meaning energy is released, and typically the 

process proceeds as shown below: [17] 

- (CH 2 ) - + y202 -> C02 + H 2 0 + heat 

wax fragment oxygen carbon 
dioxide 

L 2 V 

water 

This is of course only a generalised representation, with many intermediate species 

forming and reactions occurring along the way, both exothermic and endothermic 

(requiring energy) in nature. The wax molecules are subject to a thermal "cracking", 

being fragmented into various molecules, free radicals and ions. In the dark region 
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of the flame, where oxygen is scarce, reactions occur without oxidation, creating 

carbon rich molecules that accumulate to form soot particles: [17] 

-CH2- + -CH 2 - -> - ( C - C ) x + 2H- + H2 + ... 

As the soot particles rise upwards, oxidation occurs on the surface of the particles, 

creating carbon dioxide: 

C + 0 2 -» C02 + heat 

These incandescent soot particles are responsible for most of the candlelight. 

The many complex steps in the chemical process involving highly reactive molecular 

fragments create a steady concentration of various transient atoms and free radicals. 

The exact details are beyond the scope of this project, but what should be noted is 

that these chemical reactions are likely to contribute to the conductivity of the flame. 

Although only candles have been looked at here, the physics and chemistry involved 

are generally valid when looking at organic (carbon based) fuel combustion. The 

manner in which oxygen is introduced to the reaction can vary, however. Diffusion 

flames rely on oxygen to diffuse from the air, and premixed flames use a fuel already 

mixed with oxygen, for example a Bunsen burner. 
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Figure 2.3: A Bunsen burner produces a premixed flame. 

2.1.2 The Radiative Nature of Fire 

When one looks at a flame what one is actually seeing is the radiation of visible light, 

emitted by the reactions occurring within the flame. This means that a flame can be 

characterised, in terms of temperature and chemical composition, by analysing the 

spectrum of emission from the flame. 

In terms of radiation a blackbody is an object that is a perfect emitter of radiation. 

The spectral radiance, L, of an object at a certain temperature (T) and wavelength (X) 

is given by Planck's equation: 

where kg is Boltzmann's constant and h is Planck's constant. The term £j (where 0 < 

£i < 1) is the spectral emissivity, which indicates how well the object represents an 

ideal blackbody. If £*, = 1 then the object is acting like a blackbody and emitting 

maximum radiance. 

Integrating Planck's equation over all wavelengths gives 
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L(T) = 
\5c2h3 

rpA (2.2) 

which is the Stefan-Boltzman equation. This shows how the total radiance of a 

blackbody increases exponentially with temperature. 

The absorptivity (ax) of an object can be defined analogously to emissivity. That is, 

the absorptivity of an object is the fraction of presented absorbance relative to the 

absorbance of a blackbody (at the same temperature). This comes about since the 

absorptivity of a blackbody is equal to its emissivity (according to Kirchoff s law) 

and a blackbody is therefore also an ideal absorber of radiation. 

The reduction in intensity as a beam of light passes through a medium is described 

by the Beer-Lambert equation. The derivation shown here is based on [18]. 

Material cross-section of unit area. 

Opaque paticles of area o 

IX(8)-dIx 

Figure 2.4: Absorption model for Beer-Lambert Law derivation. 

Consider an infinitesimally thin slab of material of unit area, through which light 

passes. The absorption process is modelled by using small, completely opaque 

regions that block the light by an amount proportional to their area. The area of these 

particles is defined as ah known as the extinction cross-section. Using the density of 

medium (p) one can then represent the total area of extinction as atp(s)ds, giving 

the total reduction in radiance h as 
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dIA=-atp(s)IA(s)ds . (2.3) 

Integrating along path L gives 

In Ix (I) - In / , (0) = -<x, [ p(s).6s . (2.4) 

Calculating absorptivity (assuming blackbody extinction) gives 

^ = z ^ 7 ^ = 1 - e x p h ^ ( H • (2-5) 

Assuming constant density gives the Beer-Lambert Law: 

ax =l-exp(-cr (pZ) . (2.6) 

This expression for the absorptivity (and consequently the emissivity) of an object 

allows the formulation of the Soot Volume model of flame image formation (§2.2.1). 

2.1.3 Flame Refraction 

Viewing the background through a flame will produce a distorted image, due to the 

refraction of light in the flames. Although the deflection is usually less than 0.1° 

[19], this is enough to cause noticeable distortions. The refractive index is related to 

the flame density and a turbulent flame will thus cause a dynamic image warping. 

The most common solution is to use a uniformly black background. This 

phenomenon can be exploited though, through Schlieren photography [19],[20], 

discussed in §2.3.3. 

2.1.4 The Gaseous Nature of Fire 

Because of the high temperature of fire, the reaction products are mainly in the 

gaseous phase. As such fire is subject to the laws of fluid mechanics. Although fluid 

mechanics form the basis of fire modelling and simulation [27], there is not any work 
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that uses such models for the purpose of physical flame measurement or 

reconstruction [18]. 

2.2 Image Formation Model 

In order to justify the reconstruction of fire from photographic images one must look 

at how the images are formed and how this process can be modelled and therefore 

form the basis of a reconstruction system. The imaging models presented here are 

based on the work presented in [18] and [8]. 

2.2.1 Soot Volume Model 

The typical luminous yellow colour of a diffusion flame is caused by the glowing 

carbon-based particles. These soot particles are approximately 10 to 100 nm in 

diameter and approximate minute blackbodies [15]. If these particles are smaller 

than the emitted radiation wavelength (visible light is 400-700 nm) then the soot 

volume model says that the emissivity should be proportional to the soot density [15]. 

Using Kirchoff s Law one can equate emissivity and absorptivity, allowing one to 

calculate a flame's emission according to the light absorption of an equivalent soot 

density. Therefore the Beer-Lambert Law can be re-stated to give the flame 

emissivity: 

&=l-exp(-<7,jf/>(*).&) . (2.7) 

The total emitted radiance can then be calculated, using the emissivity and 

temperature. However, this means that in order to create an image formation model 

based on the soot volume model one needs to explicitly account for the temperature 

and the variations thereof within the flame. The simplest solution is to assume 

constant temperature, although this is of course not ideal. 
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2.2.2 Simplified Radiative Transfer Model 

The simplified radiative transfer model of fire uses two simplifications: 

1. Negligible scattering: For relatively smokeless fires this is a good 

approximation since the radiance is dominated by the self-emission from 

glowing soot particles. The total emission thus consists only of self-emission. 

2. Constant self-emission: By modelling the brightness of the fire as being 

dependent only on the density field, one may assume the self-emission to be 

constant, per unit mass, denoted by Qo- This does mean though that 

temperature is not properly considered and as a result density fields 

reconstructed using this model will be a function of density and temperature, 

instead of true mass density. However, the effect of this is dependent on 

temperature variations, not absolute temperature, and so the smaller the 

temperature variations the more accurate a density reconstruction should be. 

These two simplifications allow the expression of the intensity of a given ray as: 

I = (\-T)Q0. (2.8) 

The total transparency, r, along a given ray is given by the radiative transfer model as 

the integral of the density field, p(x), along the ray: 

r = exp (-o-, | p(x).dx], (2.9) 

where a, is a medium dependent constant relating density and transparency, known 

as the extinction cross-section. 

To account for the emission constant, Qo, it is noted how equation (2.1) shows that, 

as the transparency tends to zero, the intensity approaches Qo, thus giving a 

maximum intensity of I*, = Qo- Given a digital imaging system with a saturation of 

Imax, we can then say that /«, = Imax + 1. Thus, eliminating Q0 gives: 
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/ = ( l -0 /« (2.10) 

Rearranging this equation in terms of r. 

r = l — (2.11) 

and finally, combining equations (2.9) and (2.11) and manipulating gives a 

transformed intensity: 

I' = at \tp{x).dx 

= -ln 1 — 
(2.12) 

'oo y 

This transformed intensity, 7", corresponds to the integral of the density field along 

the ray, thus showing that computerised tomography solutions can be applied to the 

problem of flame reconstruction. 

It should be mentioned that equation (2.12) assumes a black background. To account 

for an arbitrary background, equation (2.10) is modified to include a background 

intensity term: 

I = Tl.+(l-T)Ix. (2.13) 

The transformed image intensity then becomes: 

7' = - ln 
V hg ~ * co j 

(2.14) 

This allows one to relate the measured flame intensity (an image pixel) with an 

integral of the flame density along the ray represented by that pixel. It is this density 

integral which is required for a tomographic reconstruction of the density field. 
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2.3 Flame Measurement and Diagnostic Tools 

There exists much work regarding the measurement and analysis of flames, for 

example in the field of combustion fuels. Much of this research is based on two 

dimensional analyses of flame, focused on anything from temperature and chemical 

species distribution to flame-front imaging and tracking [21],[22],[23],[24],[25],[26]. 

If needed, several sets of the 2D data can then be used to create a 3D distribution, or 

reconstruction, of the flame. The reconstruction of an object from density-based 

projections is termed tomography. The topic of tomography is looked at in detail in 

chapter 3, while the application of tomography to flame and combustion research is 

discussed in §4.4. 

The fact that normal cameras are being used in this project, to obtain 2D data, makes 

much of the published research regarding non-photographic flame measurement 

techniques irrelevant. With this in mind, this section looks briefly at some of the 

more common or partially relevant flame measurement techniques. 

2.3.1 The Thermocouple 

The simplest method for measuring the temperature of a flame is to place a 

thermocouple within the flame. Consisting of two different metals that expand at 

differing rates, the voltage across a thermocouple will vary according to its 

temperature. Obviously this invasive method lacks the spatial and temporal accuracy 

needed for measuring the temperature distribution of a flame, but nonetheless 

remains a simple and effective technique for elementary temperature determination. 

2.3.2 Two-Wavelength Pyrometry 

Pyrometry, literally meaning "fire measuring", is widely used for temperature 

measurement, due to its accuracy and non-invasive nature [18],[28]. This optical 

technique makes use of Planck's equation, which defines the relationship between 

spectral radiance, L, and the emitted wavelength, X, of an object. Measuring the 
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spectral radiance at two different wavelengths, L(T, X,i) and L(T, ki), and 

manipulating Planck's equation allows one to obtain the temperature: 

T = \ 4> 

In 
L(T,\) 

+ 51n + ln 'I ->x\ 
I 

(2.15) 

\^X2 J 

he 
where c2 -— . The emissivities, 0 < t, < 1, which indicate how well the object 

kB 

represents an ideal blackbody, are also needed. 

Other optical techniques used for temperature measurement include: coherent anti-

Stokes Raman scattering, light induced fluorescence, Rayleigh scattering, 

interferometric and speckle methods [28]. 

2.3.3 Schlieren Photography 

A technique that has some relevance in terms of 3D reconstruction of fire is 

Schlieren Photography [19],[20]. This method takes advantage of the fact that fire is 

a transparent medium, which deflects light transmitted through it. Spatial variations 

of the gas density alter the refractive index of the flame, and the resultant deflection 

of light is made visible using a Schlieren system. The image is formed by modifying 

the brightness according to the degree of deflection. 
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Figure 2.5: The creation of a Schlieren Image, (based on [18].) 

A light source is passed through Lens 1, sending parallel light beams through the 

object. Lens 2 directs the light to the Schlieren filter, before arriving at the camera. 

The Schlieren filter, or knife-edge filter, stops half the light intensity, so as to remove 

certain harmonics. 

Schwarz presented a complex method [19] where he was able to measure the 

extinction coefficient, spectral radiance, and refractive index using a Schlieren 

device and perform a tomographic reconstruction of the temperature distribution of 

the flame. The intricate apparatus he created consisted of a light source, 120 mirrors, 

4 lenses, a rotating mirror, a Schlieren filter and a CCD camera, measuring 1.2m in 

height, and 2.6m in diameter. The circular apparatus meant that non-axially 

symmetric flames could be studied, but the ability to only take measurements from 

one direction at a time means that the flame needs to be relatively stationary. It is 

this need for a complex system and a lack of temporal resolution that makes the 

Schlieren method unsuitable for our task. 

2.3.4 Laser Methods 

Lasers are a common tool in flame diagnostics, being non-invasive, versatile, and can 

be made to handle the high temperatures and pressures one might find, for example, 

in a combustion chamber. Measurements that lasers have been used to obtain 

include: [29] 
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• chemical species identification and concentration 

• temperature, 

• pollutants, 

• droplet/particle size, 

• the velocity and flow of air and fuel. 

Planer Laser Induced Fluorescence (PLIF or LIF) is a technique that uses suitable 

optics to create a laser sheet illuminating a slice of the flame [22],[23]. Seeding of 

the flame, manipulation of wavelength and spectral analysis form the basis of LIF 

related techniques. 

While lasers are undoubtedly a useful tool for flame analysis, they are not suitable 

for this project, since a laser-based 3D reconstruction system would be expensive, 

overly complex and have limited reconstruction capabilities. 



Chapter 3. 

Computerised Tomography. 

Tomography can be defined simply as the reconstruction of an object or image from 

projections. Originally introduced by Radon in 1917, the most important application 

of tomography is undoubtedly X-ray computerised tomography, for which 

Hounsfield received a Nobel prize in 1972 [30]. X-rays are transmitted through the 

body and a receiver measures their attenuation, giving a proportional mass along the 

corresponding rays. This data is then used to recreate cross-sections of the human 

body. There are of course many other wide-ranging applications for tomography, 

such as non-destructive testing in manufacture, 3D imaging using electron 

microscopy [31], and the reconstruction of supernova remnants [30], to name a few. 

3.1 Projections 

The projections used in tomographic reconstruction are ideally formed by the line 

integral of a certain parameter of the object [31]. Figure 3.1 below illustrates how 

such projections are formed and defined. To use a typical example, assume that the 

object is a two-dimensional slice of human tissue through which x-rays are being 

transmitted in a straight line. The attenuation suffered by the x-rays, forming the 

projection, is represented by the corresponding line integral through the object. 

24 
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Object - f(x,y) 

Figure 3.1 : The projection of an object at angle 6. 

The object is described by the function f(x,y), and the one-dimensional projection, Pg, 

is parameterised by /. Each ray passing through the object (such as line AB) has the 

equation 

x cos 6 + y sin 6 = /, (3.1) 

and the line integral Pg(t) can be expressed as 

Pe(t)=\f{x,y)ds. (3.2) 

Rewriting using the dirac delta function, 5(f), gives 

Pg (t) = \\f(x, y)S(x cosd + y sin 6 - t)dxdy, (3-3) 
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which is known as the Radon transform. This linear expression provides a 

mathematical description defining the collection of rays forming a parallel projection. 

Not all projection geometries are parallel of course, and indeed the standard 

configuration for a medical CT is a fan-beam spiral/helical scanning system [32]. 

While a complete volumetric reconstruction is traditionally obtained by stacking a 

series of 2D slices, this is not always the case. With a cone-beam geometry there is a 

single point source and a detector plane behind the object. Obviously the different 

imaging geometries need different projection formation models, but the fundamental 

principles remain the same. 

3.2 Fourier Slice Theorem and Filtered Back Projection 

The Fourier slice theorem is a fundamental theorem in computerised tomography, 

relating the 2D Fourier transform of an object to the ID Fourier transform of a 

projection of the object. The 2D Fourier transform of the object function is defined 

as 

F(u,v) = \\f(x,y)e-n*{ux+vy)dxdy, (3.4) 

and likewise the Fourier transform of a projection of the object at angle 6 as 

Sg{co)=\P0{t)e-j2™dt. (3.5) 

If one now writes the 2D Fourier transform of the object along the line v=0 in the 

frequency domain, one obtains (from equation (3.4)) 

F(«,0)= §_\f(x,y)dy]e->2™dx, (3.6) 

where the integral has been split into two parts. If one looks at the section in the 

square brackets one can see that it in fact defines a projection (equation (3.2)) 
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parallel to the y axis, at an angle of 0=0°. Rewriting equation (3.6) to show this 

gives 

F ( K , 0 ) = \Pe^{x)e-j2!mxdx, (3.7) 

and finally, incorporating equation (3.5) gives 

F(u,O) = S0=o(u). (3.8) 

In essence, what this says is that the Fourier transform of a parallel projection of an 

object gives the slice of the 2D Fourier transform of the object at 90° to the direction 

of the projection. This is illustrated in Figure 3.2. A more comprehensive proof can 

be done which shows the Fourier Slice Theorem is valid irrespective of projection 

angle and coordinate system [31]. 

Figure 3.2: The Fourier Slice Theorem. 

Theoretically, forming the 2D Fourier transform of the object from all the Fourier 

transforms of the projections (by the Fourier Slice Theorem) and then performing an 

inverse Fourier transform should yield a perfect reconstruction. Practically, of 
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course, this is not possible since the image space is discrete, not continuous, there are 

only a finite number of projections available, and the method is sensitive to noise. 

The dominant CT reconstruction algorithm for the last 30 years has been Filtered 

Backprojection (FBP) [18], based on the Fourier Slice Theorem. The first part of 

this method, filtering, is used to help reduce noise and to apply the proper weighting 

to the projections in the frequency domain. The second stage, backprojection, is 

where the 2D inverse Fourier transform of the filtered projections are summed over 

the image to give the final reconstruction. The reasons for first inverting each 

projection individually and then adding them, are that the inversions can be 

performed quickly since the values are only along a single line, and the process can 

begin as soon as a single projection is acquired. Also, when summing the 

contributions of the projections, it is more accurate to perform interpolations 

spatially than in the frequency domain [31]. While FBP can produce very good 

reconstructions, many views are required (typically more than a hundred [7]), and as 

such the method is not used for applications where only a few views are available. 

Fourier Inverse Fourier 
/"""** transform ~""\ /""*" transform 

Projections Weight function Sum over 
(sinogram) (filter) image plane 

Figure 3.3: The Filtered Backprojection process. 

Figure 3.3 shows the filtered backprojection process. A sinogram is simply a 

collection of all the projections of the object formed into a single image, where each 

column represents a projection. 

^ 
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A special case is where the object in question is axially symmetric. This is a 

reasonable assumption to make in flame research when the image of the flame is 

time averaged [18],[7],[33]. Since all projections are identical, only one is required, 

and the Radon transform can be modified to give the Abel transform [18], 

P(t) = 2r-££Ldr, (3.9) 
* v> -t 

where J{x,y) is replaced hy flf) since the density of the object is dependant only on 

the radial distance r. The reconstruction is obtained using the Inverse Abel Integral 

Equation [7]: 

7T* dt Jt
2-r2 

Figure 3.1 demonstrates Filtered Backprojection using a Shepp Logan head phantom. 

This is commonly used to evaluate reconstruction techniques, and is meant to 

represent a cross-sectional slice of the human head. In this case the phantom was 

generated by MATLAB®. Note how only the 150 view reconstruction is precise 

enough for medical applications. 
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Figure 3.4: FBP reconstructions of a head phantom. 

3.3 Algebraic Tomography 

Algebraic techniques are useful when only a limited number of views are available 

(typically less than ten) giving better reconstructions than FBP for few view 

problems [7], and handling noisy data better [18]. 
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To look at the reconstruction problem from an algebraic perspective, one needs to 

assume that the reconstructed image consists of a number of unknown values, and 

then set up equations for these unknowns in terms of the image projections. The task 

is then reduced to finding values for the image points that best satisfy the equations. 

Figure 3.5: Setting up the reconstruction problem algebraically on a regular grid. (Based on 
[31]-) 

The image space of the reconstruction is defined by a regular grid, as shown in 

Figure 3.5. The unknown image is denoted by j{x,y), and fj indicates the value of 

image cell j , where there are N image cells in total. Each projection is defined as 

being composed of a series of rays, denoted ph having a finite width d. The rays 

should be similar in width to the image cells. Each ray has a raysum, equivalent to 

the line integrals used earlier to model the formation of projections. As such, each 

ray can be expressed as 

in a manner analogous to the Radon transform (equation (3.3)). The term Wy is the 

fraction of cellj falling within ray i, shown as area A in Figure 3.5. The contribution 

of each cell towards a specific raysum is thus proportional to the area of that cell 
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intersecting the ray. To simplify calculations it is common to replace Wy with a 

binary operator [31], which is 1 if the centre of the cell is within the ray (ie. if Wy> 

0.5). 

Because the number of unknowns is large and usually outnumbers the known values, 

the reconstruction cannot be done analytically and hence an iterative method is the 

best option. The simplest method of reconstruction, Algebraic Reconstruction 

Technique (ART), is based on updating each image cell according to the difference 

between the measured projection and the reconstructed raysum. The correction to 

cell j in ray / is calculated by 

N, 

where/?, is the measured projection value of the ray, qt is the reconstructed raysum of 

the ray, and Nt is the number of cells in the ray. Effectively what is happening is the 

difference between the actual and reconstructed raysums is smeared back along the 

ray. An improvement can be made by modifying equation (3.12) to give 

y' = PL-JL (3.13) 
1 L, N, 

where Lt is the length of the ray in the image. 

Reconstructions made using ART have a tendency to suffer from salt and pepper 

type noise [31]. Improved images can be created by using Simultaneous Iterative 

Reconstruction Technique (SIRT). Equation (3.13) is still used, but the image cell is 

only updated after considering the contribution by the all the rays that intersect the 

cell. Rewriting equation (3.13) to reflect this gives 

i i=M 

'' EL-3L (3.14) 
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Both ART and SIRT are iterative techniques, and the image cells of the 

reconstruction are updated until convergence is reached. The criteria for 

convergence is usually based on the difference between the measured and 

reconstructed raysums, or on the degree of correction performed on the image cells 

in the iteration. An advantage of algebraic techniques is that they can easily be 

modified, or adapted for a certain application. One possible modification is to add a 

relaxation parameter to equation (3.14), gradually decreasing the fraction of the 

calculated Af that is actually applied to the image cells [31]. 

SIRT reconstructions for different numbers of projections are presented in Figure 3.6 

below, for both the head phantom used to demonstrate FBP, and a more flame-like 

phantom. 

> 

Head Phantom Flame Phantom 
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Figure 3.6: SIRT reconstructions for head phantom and flame phantom. 

Obviously, more views produce a better reconstruction, but what is more relevant in 

this case is the performance with only a few views. The SIRT reconstructions tend 

to produce a smoother image, with fewer artefacts. This smoothness means a loss of 

detail, but this is irrelevant unless one has many views, in which case SIRT would 

not be used anyway. 

The reconstructions with only a few views may not appear to be very good, but this 

because of the nature of the problem, not the method of reconstruction. A few views 

provide only sparse information with which to recreate an entire cross-section, and as 
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such the goal is merely to obtain a reasonable estimate. The only way to improve 

this estimate is if one has prior knowledge. By taking a probabilistic approach one 

can force the reconstruction to favour certain properties which the mass distribution 

of the real object is thought to have, such as smoothness, constant density or a certain 

shape. Such maximum a posteriori (MAP) estimates are usually defined in a 

Bayesian framework [34],[35],[36]. For the purpose of this project the only 

reasonable prior knowledge that could be incorporated is the tendency of fire to have 

a degree of local smoothness in terms of its internal density distribution. 

While FBP and algebraic techniques form the basis of tomography, there are many 

possible reconstruction techniques, often incorporating some form of MAP criteria, 

and obviously these cannot all be discussed here. These include: view interpolation 

[37], the Expectation Maximisation (EM) algorithm [18], simulated annealing 

[38][39], wavelets [40], neural networks [41], least squares techniques [42], 

parametric or deformable models [43] and level set techniques [44]. 

3.4 Tomographic Segmentation 

After a tomographic reconstruction has been created there is sometimes the need to 

differentiate between various elements within the image. This could mean merely 

distinguishing the object from the image background, or identifying different regions, 

for example, tissue classification in a brain scan. Furthermore, applications may call 

for a 2D or 3D segmentation. Both methods presented here are extendable to any 

dimension. 

Looking at Figure 3.6 one can see that when using only a few views the 

reconstruction is not well defined and has a generally fuzzy appearance. Therefore 

any methods based on line/edge detection, region growing and thresholding are 

probably not a very good option. Statistical models, using a prior model and 

parameters, generally require supervision and are not really suited to this project. 

Neural networks are potentially useful, and have been used for the segmentation of 
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medical images [45][46]. However, they generally require a priori information and 

of course training. The two methods of segmentation discussed here are Fuzzy c-

means and the Level Set technique. 

3.4.1 Fuzzy C-Means Image Segmentation 

Since it is a tomographic reconstruction that needs to be segmented, it makes sense to 

look at methods used in other applications in which tomographic segmentation is 

performed. One of the largest places to look is in medical imaging. With X-ray 

tomography (CT), magnetic resonance imaging (MRI), single photon emission 

tomography (SPECT), and positron emission tomography (PET), there is a whole 

range of tomographic images needing to be segmented [47]. A popular solution is 

the use of soft, or fuzzy, segmentation techniques, where image cells are classified 

into various sets according to a membership value, indicating the strength of the 

classification [47],[48]. 

The fuzzy c-means algorithm (FCM), introduced by J Bezdek [49], is an iterative 

method that seeks to classify the image cells into a number of classes. Each class has 

a centroid, which defines the central feature values for that class. Membership 

values are assigned to each image cell based on the distance of their feature values to 

that of the class centroid. The typical features used are the statistical mean and 

standard deviation [50], although any feature and any number of features can be used. 

There are several advantages to the FCM algorithm: 

• It is an unsupervised method, although this does of course mean one has little 

control over the final segmentation. 

• One can have an image of any dimension and segment into any number of 

classes using any number of features. 

• The membership values are normally distributed. 

Consider an image with n pixels or cells, to be segmented into c classes. Let 

{xx,X2, ,xn} form set X, where each element xk is a vector containing the image 
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features of cell k. Each class, or fuzzy subset, of X, is defined by a centroid v„ giving 

the central features of the class. X is partitioned into these subsets by assigning a 

fuzzy membership value un to each image cell, indicating the similarity of cell k to 

each class i, where the following conditions must be satisfied [51]: 

0<w ; i <l Vi,k (3.15) 

5X=i v^ (3.16) 
(=i 

0<XW<* <n '̂" (3.17) 
k=\ 

The important point here is equation (3.16), which says that the sum of all the 

membership values of a particular cell, for all classes, must be equal to one. In other 

words the membership value does not tell one which class an image cell belongs to, 

but rather the degree to which it belongs to all classes. 

The FCM algorithm attempts to cluster feature vectors by minimizing the energy 

function 

Jm{U,v-X) = YJJJ(ulk)
mdlk, (3.18) 

(=1 k=\ 

by iteratively updating the membership and centroid values (U and V) using 

",* = 

2 \ -1 

s 
7=1 

(A Y(«-
uik 

KdjkJ 
\fi,k (3.19) 

2-,k=\U* Xk 
V " u * 

Vz. (3.20) 

The term dik is a similarity measure between centroid / and feature vector k, typically 

the Euclidean distance, and the factor m is weighting exponent that controls the 
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crispness of classification. If m is set to 1 then one obtains a crisp classification, with 

uik e [0,1]. A larger m gives a greater fuzziness, meaning an increased distribution 

of membership values. A typical value would be m = 2. [51]. The iteration process 

stops when usually ^ | |A« / t | or Av, is sufficiently small. 

Mohamed et al [51] suggest a modification to improve the performance of FCM with 

a noisy image. The calculation of d^ is modified to include the effect of 

neighbouring pixels, using 

4 = dlk 
jeneighbours 'J **j 

•a 4^ 

\ 

V 
(3.21) 

The ua of neighbouring pixels is considered, weighted relative to their proximity to 

the central pixel k. The term py is a measure of this proximity, where pkj = Ik - j \ \ . 

The factor a (0< a <1) is a constant controlling the strength of the modification, with 

a suggested value of 0.5. This new method of calculating dtk works as an adaptive 

filter, improving clustering while maintaining edges. 

Once FCM is complete one must defuzzify the results if requiring a hard 

classification. Obviously the simplest way to do this is to assign the image cell to the 

class with which it has highest membership. Figure 3.7 below shows the result of an 

FCM classification on a tomographic image from Figure 3.6, with the aim of 

separating the object from the background. The first few iterations were performed 

with normal FCM, followed by several iterations using the modified FCM. 
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(a) (b) 

(c) (d) (e) 

Figure 3.7: (b) A 5 view SIRT reconstruction of (a), (c) FCM result after 4 iterations, (d) 
Modified FCM performed on (c). (e) The SIRT image (b) is masked with (d) to give a 

segmented tomographic image. 

3.4.2 The Level Set Technique 

The Level Set technique was introduced in 1988 by Osher and Sethian [52] for the 

purpose of tracking a moving interface. Consider a curve, in 2D, or a surface, in 3D, 

separating two regions, where the interface can propagate in a direction normal to 

itself with a known speed. Using level sets one can track the evolution of this front. 

The motion of the interface, or zero level set, is determined using partial differential 

equations in a dimension one greater than that of the curve/surface being tracked. 

This increased dimensionality allows cusps and sharp corners to form, and changes 

in topology are implicitly handled [53]. In contrast, the more traditional active 
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contour or snake methods use a parameterised interface defined by a set of marker 

points, making topological changes very difficult to handle [54]. Although the added 

dimensionality that level sets brings to the problem is very powerful and convenient, 

it does of course have the disadvantage of increasing the computational complexity 

and hence processing time. There are other advantages to using a Level Set 

formulation: [55] 

• The techniques used for the numerical solutions of hyperbolic conservation 

laws can be exploited to create accurate computational schemes. 

• Geometric properties such as curvature or the normal vector are easy to 

obtain. 

For a simple illustration, consider an invisible bounding cube and two points inside 

the cube. Allowing these points to propagate normally at constant speed produces 

the evolution shown in Figure 3.8, where each stage shown is the zero level set at 

certain time intervals. Note the topological change when the two regions merge, and 

how easily this is handled by defining the front as the zero level set of a higher 

dimension. 

Figure 3.8: Level Set evolution of 2 points with constant speed subject to cube boundary. 

To find an equation of motion for the evolving front, the initial position of the front 

is first defined as the zero level set of a higher dimensional function <j>. It is a 

requirement that the level set of the evolving function must match the propagating 

front, written as 

*K*(0,0=o. (3.22) 
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Expanding with the chain rule gives 

ri+V0(jc(O,O-*'(O = o. (3-23) 

The speed of propagation, F, is defined in a direction normal to the surface, written 

as 

x\t)-n = F, (3.24) 

where 

n = ^ . (3.25) 
|V*| 

This gives the level set equation, defining the evolution of (f>: 

# + F | V ^ | = 0, (3.26) 

given </>(x,t = 0). (3.27) 

This is the initial value level set equation [52]. 

Alternatively, one could pose the problem as a front advancing towards a boundary, 

leading to a boundary value formulation. If the restriction is imposed that the speed 

can be only positive, F>0 (or only negative), then the position of the advancing front 

can be defined as the arrival time T(x,y) at which the front crosses each point (x,y). 

The calculation of the arrival time of this monotonically advancing front is then 

relatively simple. Using the fact that distance=speed*time, one has 

riT 
dx = F(dT) and hence \ = F—. (3.28) 

dx 

In higher dimensions the spatial derivative of T becomes the gradient, giving rise to 

[56] 
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where T = 0 on T, 

where Tis the initial position of the front. This boundary value level set problem is 

solved using the Fast Marching Algorithm [57]. 

3.4.2.1 Fast Marching Implementation 

The implementation presented here is based on that in [57]. In order to solve 

equation (3.29) the gradient is approximated by 

[max(D-xT,-D;\0)2
+max(D;/T,-D;/,0)2] = -±Y (3.30) 

•J 

where D~ and D+ are backward and forward difference operators for point (ij). This 

approximation is easily extended to three dimensions. Since the equation forms a 

quadratic, one can solve for the value of T at each grid point, taking the largest 

answer as the solution. 

The Fast Marching algorithm is based on the fact that equation (3.30) has an upwind 

difference structure, meaning that the values of T propagate from smaller values to 

larger ones. The front is therefore swept forwards in an upwind manner, considering 

only those points adjacent to the front in a narrow band. This narrow band is 

marched forward, locking confirmed values of T and bringing new points into the 

narrow band. The Fast Marching Algorithm is outlined below. 

Consider a 2D grid through which a front is propagating. Each grid point is assigned 

a state value, which can be ALIVE, TRIAL or DEAD. All points through which the 

front has passed are designated ALIVE, all points adjacent to ALIVE points are 

marked TRIAL, forming the narrow band, and all other points are said to be DEAD. 
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Narrow Band 

ALIVE 

TRIAL 

DEAD 

Figure 3.9: The narrow band Fast Marching method. The narrow band of TRIAL points 
marches through the grid turning DEAD points into ALIVE points. 

1. Initialisation 

a. Define initial front at 7=0. 

b. Mark all grid points as ALIVE, TRIAL or DEAD. 

c. Calculate Tfor all trial points using equation(3.30). 

2. Marching 

a. Take the smallest TRIAL point (Ty(min)) and change its status to 

ALIVE. The T value for that point is now locked. 

b. Check all neighbours of Ti}(min) - if any are DEAD change them to 

TRIAL, forming part of the narrowband. 

c. Recalculate T for all TRIAL values neighbouring Ty(min) according 

to equation (3.30). 

d. Return to step 2a. 

The reason why this algorithm works is that one is always selecting the smallest 

value in the trial band, which must be correct since the other values in the trial band 
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are larger (or further away) and thus cannot influence its arrival time. The 

recalculation of the neighbouring TRIAL points cannot give a smaller value than any 

of the accepted ALIVE points since the largest solution to the quadratic T calculation 

is always taken. The front thus marches outwards, continually selecting the 

minimum trial value and updating its neighbours. 

The key to an efficient implementation of the fast marching technique lies in finding 

a method to quickly determine the lowest valued point in the trial band. In [58] 

Malladi and Sethain suggest using a variation on a heap algorithm with back-pointers 

to store the T values, resulting in an overall processing time for the entire algorithm 

of 0(N log N), where N is the number of points processed in the structure. 

The definition of the speed function F depends on the application. For example, in 

an image segmentation problem, using Fast Marching, F might be based on the 

image gradient. For problems involving curvature dependant propagation speed one 

would use a level set approach (initial value) since F can be both positive and 

negative. 

3.4.3 Level Set Applications 

The potential applications of the Level Set technique (including Fast Marching) are 

numerous and varied, and hence only a few will be listed here. 

• Image processing [59], 

• Shape modelling and reconstruction [60], [61 ], 

• Flame propagation and modelling [27], 

• Medical Imaging [62],[63] 

• Grid Generation [64], 

• Optimal path planning [56], 

• Seismic calculations [56], 

• Two phase flow (two fluid interface problems) [56], 

• Etching and deposition in semi-conductor manufacture [65]. 
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Elangovan [44] uses Level Sets to directly segment tomographic reconstructions. 

Instead of first creating the reconstruction and then segmenting, he uses Level Sets 

and works directly with the sinograms (tomographic projections) to find an optimal 

interface between object and background that best fits the projection data. An 

iterative process updates the surface model, followed by the object and background 

density estimations. This technique is useful where normal reconstructions are not 

suitable for normal segmentation, for example as a result of incomplete sinograms, 

limited angle tomography, measurement noise or view misregistration. The 

limitation of this method, however, is the assumption of constant object density. 

For a more in-depth look at Level Sets and their applications, the reader is referred to 

the work by Sethian [55]. 



Chapter 4. 

Flame Reconstruction 

This chapter looks at previous work that has been done on the topic of fire 

reconstruction from normal photographic images. Methods of reconstruction using 

other techniques such as lasers or Schlieren photography were covered in §2.3. 

Before focusing on the reconstruction of solely fire however, one should investigate 

the reconstruction of objects in general. 

4.1 Object Reconstruction - the Visual and Photo Hull 

The simplest method to reconstruct an object is to use the visual hull concept. 

Introduced by Laurentini [4], the visual hull of an object is the convex volume 

created by the intersection of the silhouettes of the object (Figure 4.1). Strictly 

speaking, the visual hull of an object is the shape that gives the silhouette of the 

object when viewed from any direction. To create this one would need an infinite 

number of photos. Therefore the term visual hull is more commonly taken to mean 

the shape formed using TV silhouettes. 

46 
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visual hull 

Figure 4.1: The visual hull (shown in grey) of a triangle formed by 3 cameras. 

If one compares the ideal reconstruction of an object with its visual hull (using any 

number of silhouettes), one notices two interesting properties of the hull. Because of 

the way the visual hull is constructed, it is guaranteed to contain the object. The 

visual hull can be said to be a maximal estimation of the object, meaning it is the best 

possible reconstruction, using only silhouette information, which is known to contain 

the object. Secondly, since the visual hull is formed by the intersection of the 

projections of the silhouettes this means that the reconstruction is convex. Because 

concave regions of the object are not apparent in its silhouettes, the visual hull cannot 

reconstruct such concave areas. 

The calculation of the visual hull of an object is relatively fast and simple and can be 

represented in two different ways: 

• Voxels: A voxel (volume element) can be thought of as a 3D pixel. A voxel-

based reconstruction is easy to calculate and is useful when further processing 

is to be done on the hull. 
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• Polyhedral: A mesh is used to define the surface of the hull. Using a 

polyhedral mesh to represent the hull is more complex than voxels as a mesh 

generation algorithm needs to be used. 

Polyhedral meshes create a surface reconstruction, and can be difficult to manipulate, 

while voxels provide a volumetric reconstruction that is easy to work with. A voxel 

representation is also more suitable when considering tomography, and therefore the 

reconstruction methods used in this thesis are voxel-based. 

Typically a visual hull is not very geometrically accurate, since the visual hull is 

always larger than the object. The accuracy obtainable depends on factors such as 

the number of silhouettes, the viewing directions, and of course the nature of the 

shape of the object. Forbes et al [66] effectively increases the number of available 

silhouettes by using several sets of silhouettes of the same rigid object. He uses a 

silhouette consistency constraint to calculate the relative poses between the sets, 

which can then be combined to create a visual hull that is more accurate than using 

only a single set. However this is not feasible with a dynamic object such as fire. 

To enhance the accuracy of the visual hull reconstruction, more information than just 

the silhouette is needed. The most logical choice is to use colour (or luminance for 

grey-scale images). To this end Kutulakos and Seitz [67] introduced the concept of 

the photo hull. Whereas the visual hull is consistent only with the silhouettes of the 

object, the photo hull must also be photo-consistent. By photo-consistent it is meant 

that the colour of a point in the direction of the camera is the same as that observed 

when the point is projected to the photograph. This is illustrated in Figure 4.2. The 

photo hull is thus unique and is found by identifying the spatially largest set of 

voxels that are photo-consistent with all the photographs taken of the scene [68]. In 

addition, it is the tightest possible bound on the shape of the true scene that can be 

inferred from N photographs, in the absence of apriori geometric or point 

correspondence information [67]. 
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photo hull 

Figure 4.2: The photo hull (shown in grey) of the same object as in Figure 4.1. Note how a 
closer approximation to the original shape is obtained. 

The computation of the photo hull can be done using space carving [67],[68],[69]. 

The general approach used is to remove (carve) voxels that are not photo-consistent 

with the reference photographs. This is done iteratively (since as a voxel is removed 

the visibility of other voxels changes) until the entire reconstruction is photo-

consistent. Voxel colouring, or generalized voxel colouring is probably the 

predominant space carving technique [70][71]. For a more detailed look at voxel 

colouring and object reconstruction in general, the reader is referred to Slabaugh [68]. 

The problem with any colour-based space carving method is that the colour or 

radiance needs to be locally computable - the radiance of any point must be 

independent of the radiance of any other point [67]. A common special case is the 

Lambertian scene, where a voxel will project a similar colour when viewed from any 

of the reference views. A Non-Lambertian model can be used, but may require the 

calibration of light sources and the calculation of surface normals [72]. In addition, 

objects that are homogeneously textured will not work well with space carving. This 
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means that transparent objects cannot be reconstructed using such methods. 

Attempts have been made to handle transparent or semi-transparent objects [73],[74], 

but they are at best limited and are generally aimed more at handling transparency 

within the reconstruction of a scene, rather than a transparent object on its own. 

It is thus apparent that, given the semi-transparent nature of fire and its lack of 

texture, the use of a photo hull is not suitable for the reconstruction of fire. 

Therefore some other method is needed to improve upon the visual hull when 

considering fire. 

4.2 Flame Modelling 

It is not unusual in computer vision to fit a model to real world data to create a 

reconstruction, for example full body motion capture. Within the scope of this 

project this is obviously not practical, given the dynamic and complex nature of fire. 

Nguyen et al [27] present a physically based method for the modelling and animation 

of fire. Using the level set method to track the reaction zone, and the incompressible 

Navier-Stokes equations to model vapourised fuel and hot gaseous products, they 

create very realistic fire. However, to try and fit their modelling technique to real 

world fire would require the measurement of extensive parameters and is not 

currently feasible. 

4.3 Geometric Flame Reconstruction 

4.3.1 Contour-based Reconstruction 

Yan et al [5],[75] developed a fast and simple method of flame reconstruction. 

Using three cameras placed equidistantly around the flame, the contours of the flame 

from the photographs are extracted. The contours are then arranged three 

dimensionally and /?-splines are used to interpolate between them to create a surface 

mesh. Figure 4.3 below illustrates this contour arrangement. This produces a 
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smooth, natural looking reconstruction which suits the fluid nature of fire, and is thus 

probably more accurate than using the angular visual hull. While appealing, such a 

contour-based approach still produces an essentially convex reconstruction with no 

internal flame data, and is not likely to handle more complex flame geometries very 

well. 

camera A camera C 

camera B 

Figure 4.3: Flame contour arrangement. 

This technique was developed for the purpose of monitoring and characterising 

fossil-fuel combustion systems and is well suited to real-time monitoring 

applications because of its speed. In addition the need for only three cameras keeps 

costs low. In terms of characterisation of the flame, several parameters are 

quantified, namely: volume, surface area, orientation, length, circularity and the 

uncertainty of these parameters. 
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Figure 4.4: Example of ̂ -spline mesh flame reconstruction, from [5]. 

4.3.2 Stereoscopic Reconstruction 

Another common tool in computer vision is stereo vision, which emulates the way in 

which the human vision system works. If one takes two images of the same scene, 

from a slightly different viewpoint, one can calculate the depth of a point or feature 

by identifying it in both images (given a set of calibrated cameras). It is this problem 

of correspondence, finding the same point in both images that provides the challenge 

in stereoscopic systems. Obstacles to overcome include occlusion, homogeneously 

coloured regions, multiple matches and non-Lambertian reflectance. 

Given these possible problems it is fair to assume that fire is not an ideal candidate 

for stereoscopic reconstruction. Ng and Zhang [6] have however attempted to 

reconstruct a flame surface using stereo techniques. The first problem with their 

work though, it would appear, is the use of only turbulent impinging diffusion flames. 

This is done to create the necessary detail for stereo matching, but is of course very 

limiting. Secondly, only two images were used and occlusion was not accounted for, 

which means the result is only a partial surface reconstruction and not a full three 

dimensional reconstruction. Therefore one can conclude that stereoscopic 

reconstruction is not suitable for general 3D flame reconstruction. 



CHAPTER 4. FLAME RECONSTRUCTION 53 

Figure 4.5: Example of stereoscopic flame reconstruction from [6]. 

4.4 Tomographic Flame Reconstruction 

The problem with tomography using only a few views is that the task is ill posed -

there are many more variables than projection equations. The fewer the number of 

views the more ambiguous the process of reconstruction becomes. This is illustrated 

in Figure 4.6. Using a simple data set one can see how any of the three solutions 

shown are viable and yet completely different. Of course as the number of views 

increases the degree of ambiguity lessens. What one should understand from this is 

that any sparse view tomographic technique is at best an estimation, and that a 

particular method should be chosen because it is more suited to the application, and 

not only because it performed well in a different application. 
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Figure 4.6: Demonstration of tomographic ambiguity. 

Recently, the use of tomography in combustion research has received a fair amount 

of attention [7],[33],[76],[77],[78],[79],[80]. However, these techniques often suffer 

from several problems: 



CHAPTER 4. FLAME RECONSTRUCTION 54 

• Poor spatial resolution: Typically because of sensor limitations due to 

physical constraints [76]. For example, reconstructions limited to cross-

sectional slices [77],[81]. 

• Poor temporal resolution: Flame images may need to be captured 

consecutively, not synchronously [19]. Alternatively several frames are 

averaged together to form a time-averaged image [33]. 

• Axially symmetric flame assumptions: A 3D reconstruction can be inferred 

from a single image if the flame is assumed to be symmetrical about its axis 

(for example a non-turbulent Bunsen burner flame) [7], [79],[80]. 

• Expensive or complex apparatus, such as lasers, fibre optic sensors and the 

Schlieren apparatus [19],[77],[81]. 

Typically these techniques are designed for a particular industrial application, and 

therefore certain limitations may be acceptable in the given case. These limitations 

usually arise because of physical conditions (e.g. within a combustion chamber), or 

because of the sensors used, such as photodiodes, fibre optics and capacitive sensors. 

In addition there is often the need for special combustion chambers and controlled 

conditions. 

The following research is more applicable to this project, using tomographic 

techniques based on normal photographic images, to produce visually realistic, 

density-based 3D reconstructions of fire. 

4.4.1 Flame sheets and blobs 

Hasinoff and Kutulakos [8],[18] show that by modelling fire as a semi-transparent 

3D density field one can approach the problem from a tomographic perspective. 

This was demonstrated in §2.2. In [8] they solve the under-constrained problem by 

creating a set of density field solutions for every pair of photographs in the form of 

monotonic curves or sheets. The final reconstruction is formed by a convex 

combination of the density sheets derived from each pair of input views. As shown 
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in Figure 4.6 the solution to a two-view tomographic problem may be ambiguous, 

and the flame sheet method is merely a particular form of solution for this case, that 

results in a sheet-like, minimal size reconstruction. For specific details on its 

implementation the reader is referred to [8]. 
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Figure 4.7: (a) A flame sheet solution for images Is and I2. (b) The multiplicative solution. 
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An example of a simple flame sheet is shown in Figure 4.7 above. Part (a) shows 

two input images, Ii and I2, and the corresponding flame sheet solution. In essence, 

the sheet is created by starting at the bottom left and filling the image cell with the 

largest value possible, before moving to the next image cell. Part (b) shows a more 

conventional solution, formed by the multiplication of corresponding row and 

column input values. 

It should be noted that their goal was to create photo-consistent 3D reconstructions of 

fire, and visually their results look good. However, from a geometric aspect the 

reconstructions are not accurate since they are formed from a set of flat 2D solutions. 

In the reconstruction of a geometrically complex flame one can see how the flame 

consists of 2D sheets. When considering a problem with only 2 input views, 

however, the decomposed flame sheet method is likely to be a good choice, 

preferable to a straightforward multiplicative solution. 

In his thesis [18] Hasinoff proposes using blobs to create the reconstruction. By 

representing each cross-sectional slice as a density field parameterised by a 

superposition of Gaussian blobs, and by fixing the positions and variances of the 

blobs, he shows how the reconstruction problem is reduced to a constrained linear 

least-squares problem. 

A normalised, symmetric Gaussian distribution, centred at (jux, /uy), is described by 

the equation: 

_(*-^+o,-,,n (41) 
2(7 J 

This allows a density field to be represented as a weighted sum of r blobs: 

r 

p(x,y) = YJwlGl(x,y) . (4.2) 
;=1 

G(x,y) = 
9777T" 

-exp 
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Fixing the positions and variances of the blobs allows a forward projection model to 

be defined that is dependant only on the blob weights. The line integral of blob G 

over line I can be expressed as 

1 (-d2\ 
r(G,*) = - 7 — - e x p - y , (4.3) 

yj27t(T2 V2°" ) 

where d is the distance from the line to the blob centre. The formation of pixel I(£) 

can therefore be described as 

I(£) = Yw,r(G„£) . (4.4) 
i=i 

By limiting the number of blobs to less than the total number of ID input pixels, the 

system is reduced to an overdetermined set of equations, allowing standard least 

squares techniques to be used. 

The uniform distribution of the blob basis functions is not ideal, meaning many of 

the blobs, already limited in number, may be being used for empty areas. Therefore, 

the next stage of Hasinoff s method involves using the initial least squares 

reconstruction as a guide for repositioning the blobs. This allows the limited number 

of blobs to be more effectively distributed, thereby enabling regions of greater detail 

to be more accurately reconstructed. The blob variances can then too be altered, 

using similar considerations, or by constructing a Delaunay triangulation and using 

the distance to the furthest neighbour to determine the variances. 

Of course there are many possible variations of this method. Not only could 

different types of basis functions be used, but the manner in which they are 

distributed or redistributed can also make a significant difference to the quality of the 

reconstruction. 

Although this method is also intended to create graphically realistic renderings of the 

fire from novel views, the reconstructions created are also more volumetrically 
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accurate than in [8], being composed of spherical blobs rather than sheets. The 

success of this type of approach lies in the method of parameterisation, and further 

research and testing is required to find an optimal solution. A similar least squares 

approach is discussed in §4.4.2 below. 

(a) (b) 

Figure 4.8: Examples of flame reconstruction from [18] using (a) sheets and (b) blobs. 

4.4.2 Visual Hull Limited Tomographic Inversion 

Ihrke and Magnor [9] have recently developed a tomographic method for the 

volumetric reconstruction of fire using at most 8 cameras. Although they state that 

they are concerned with generating visually accurate animations, not measuring 

physical properties, they achieve this by creating a reconstruction with an accurate 

density distribution. The approach they take is to use sparse matrix inversion 

techniques to find a least squares reconstruction of each slice. 

Recall that one can represent the transformed pixel intensity as 

Ip = [<t>.ds (4.5) 

where Ip is modelled as the integral of the density field, </>, along ray c. In order to 

solve equation (4.5) one needs to impose some form of structure to the density field. 

This can be done by defining 0 as being composed of a linear combination of basis 

functions: 
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/,=lfsfl^V' <4-6> 
where a, are the coefficients for the density basis functions $. Rearranging the 

equation gives 

7 ,=Z^(1H' (4-7) 

which describes a linear system and can be written in matrix form as 

p = Sa. (4.8) 

The matrix S defines the relationship between each image pixel's projected ray and 

the basis functions. By definition every pixel is influenced by every basis function, 

creating a full matrix, but by structuring the basis function such that it only affects a 

small region, one may eliminate many entries in S, creating a sparse matrix. In 

addition, the visual hull is used to restrict the basis functions to those falling within 

the flame silhouettes, thus further reducing S. 

The simplest basis function is the box function - essentially each voxel is a basis 

function. This is assumed in traditional algebraic (ART, SIRT) techniques. Ihrke 

and Magnor [9] use a trilinear basis function, covering 8 voxels as shown in Figure 

4.9. The function value at the centre of the cube is 1, decreasing linearly to 0 at the 

edges. Representing the function value in each voxel with a cubic polynomial allows 

the analytical integration of the intersection of the image rays with the basis 

functions. 
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Figure 4.9: Trilinear basis function covering 8 voxels, with transparent isosufaces indicating 
the function values (from [9]). 

The linear system (4.8) is then solved for a using the conjugate gradient method. 

This iterative method allows a least squares solution to be found. For more 

information refer to [9]. 

Although setting up the S matrix is computationally intensive, it need only be done 

once, since additional frames require only modification to reflect which entries are 

contained in the visual hull. Therefore the main computational expense is for solving 

the linear system in each frame of a video sequence. 

While their results look realistic and are reported to be fairly accurate, the problem is 

that working with such large matrices requires a great deal of computer memory. 

Although a least squares solution is appealing for sparse view tomography, it is not 

often used because of the computational resources required. Indeed in [9] it stated 

that their images needed to be resized to fit the matrix in 2GB of memory. A volume 

size of 96x96x96 voxels was the largest mentioned (although it is not clear if this 

was the largest possible), which is reasonable, although considerably smaller than the 

640x480 images being used. 
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Figure 4.10: Example of flame reconstruction based on tomographic inversion from [9]. 

4.5 Summary - The Hybrid Approach 

As one can see the problem of flame reconstruction is generally tackled from either a 

tomographic or a geometric perspective. It is the intended application that 

determines the general direction to be taken. When one wants to generate realistic 

renderings from novel viewpoints (e.g. for computer graphics) one needs to use 

tomography. Because of the semi-transparent nature of fire, the perceived images of 

a flame are dependant on its internal density, and not merely the surface radiance as 

with opaque objects. This necessitates a tomographic reconstruction of the flame's 

internal density field. This also means that one would not generally be concerned 

with defining the actual flame surface, or front, which a tomographic reconstruction 

would not create. Geometric techniques, using the visual hull or contours, generate 

an explicit flame surface, and are more suited to monitoring or geometric analysis 

applications. A definitive flame volume and surface allows for analysis of the 

geometric properties of the flame. 

As computers become faster, with more memory, matrix-based tomographic 

techniques ([9],[18]) should become more common, and the algorithms used more 

efficient. For the purposes of this project, it was decided not to pursue a direct 

matrix solution approach, mainly because of the limitations that it would impose on 

the reconstruction volume size. In addition the processing time required could be 

prohibitive when considering a video sequence composed of many frames. 
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In the case of this thesis, the reconstruction needs to be geometric, having a 

quantifiable volume and surface, but with an estimate of the internal density structure 

as well. Hence a hybrid approach is needed, incorporating aspects of both geometric 

and tomographic flame reconstruction. In chapter 5 a hybrid method is presented 

using the visual hull, algebraic tomography and fuzzy image segmentation. 



Chapter 5. 

The Fuzzy Hull Method 

The method presented in this thesis, for the reconstruction of fire, shall be referred to 

as the Fuzzy Hull method. As discussed in chapter 4, the research that has been done 

on flame reconstruction from images is usually for one of two purposes: the 

generation of photorealistic renderings of fire for computer graphics [8],[9], or flame 

monitoring and geometric analysis applications [5]. With that in mind the required 

properties of the method presented here are briefly reviewed. 

• Volumetric: By volumetric it is meant that each voxel in the reconstruction 

space must be classified as being a part of the flame volume or not. 

• Density field: The reconstruction must contain an estimate of the flame 

density field. 

• Generality: The reconstruction technique must be able to handle any type of 

visible flame, should not require specific laboratory conditions, and should 

not be too limiting regarding the size of the flame or the reconstruction. 

• Non-calibrated: One should still be able to create a reconstruction even with a 

non-calibrated (or minimally calibrated) camera set. 

• Speed: The process should not be too computationally expensive since video 

sequences need to be processed, and not just a single frame. 

• Cost: No specialised equipment should be needed, only suitable cameras. 

63 
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It was thus concluded that the general approach to follow should consist of a 

tomographic reconstruction that is subject to some form of image segmentation in 

order to classify the voxels. It was decided that fuzzy c-means would be a suitable 

segmentation method to use, given that is used in other tomographic segmentation 

applications (see §3.4.1). The use of algebraic tomography and fuzzy image 

segmentation form the basis of the flame reconstruction method presented here. The 

visual hull is also considered. The implementation thereof is developed throughout 

the remainder of this chapter. 

5.1 Overview 

The reconstruction process can be divided into four stages, shown in Figure 5.1 

below. 
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Figure 5.1: Process overview. 

The first step is to capture the video sequences. Note that the video is treated as a 

series of independent images. Before the 3D reconstruction can take place, the 

images must be suitably processed. The completed reconstruction can then be 

rendered or analysed from any viewpoint. 

5.2 Experimental Set-up 

The cameras used are monochrome with a resolution of 640 x 480 pixels. Colour 

cameras are not necessary since the reconstruction need not be photorealistic. If one 

were creating a colour reconstruction one would need to reconstruct each channel 
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(RGB) separately before combining them, as in [9], tripling the computational effort. 

The bus-powered cameras operate off an IEEE 1394 (Firewire) bus, allowing the 

simultaneous capture of up to 7 synchronised cameras at 15 frames per second using 

a single PC. The cameras are able to capture images synchronised to within 125ns of 

each other [82]. In terms of spectral response one is looking at light having 

wavelengths in the region of 570 - 620 nm (yellow - orange). This gives a fairly 

linear relative spectral response ranging from 0.92 (at 570 nm) to 0.80 (at 620 nm) 

[82]. Although this 13% difference is of course a potential source of error, 

individual flames generally tend to occupy a fairly narrow spectral band, their colour 

depending on factors such as fuel and temperature, so the spectral response should 

not present a significant problem. 
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Figure 5.2: Camera configuration. The cameras should be roughly equally spaced - e.g. 60° 
apart for 3 cameras. 
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The cameras are optimally positioned equidistantly within a 180° arc around the 

flame, as shown in Figure 5.2 above. Although one might think they should be 

placed around 360°, this is not true since two cameras opposite each other would 

produce a mirror image of each other, due to the semi-transparent nature of fire. This 

configuration is optimal (when the cameras are standing on the ground plane, as is 

the case here) since the unknown space between images is at a minimum. 

The cameras are equipped with zoom lenses having a focal length of 5 to 40 mm. 

When setting up the cameras to record images of fire, one ideally wants the shutter 

speed to be as quick as possible, since fire is not static and therefore requires a short 

exposure to obtain a sharp image. In addition one does not want to use the gain 

function on the cameras, since this introduces and amplifies noise within the image. 

Therefore the shutter duration and gain are set to their minimum values and the 

variable aperture on the lenses is adjusted to provide the correct image intensity. 

5.3 Camera Modelling and Calibration 

The purpose of camera calibration is to provide a link between the 2D images 

generated by a camera and the real world. In order to relate a point in 3D space and 

its projection on the image plane, one needs to define a set of extrinsic and intrinsic 

parameters, calculated by a calibration process. Intrinsic refers to the geometric, 

optical and digital properties of the camera, while the extrinsic parameters define the 

location and orientation of the camera. With a calibrated set of cameras one is thus 

able to calculate the position of a point in 3D space, if that point can be identified in 

2 (or more) images. Camera calibration is therefore a critical aspect of many 

computer vision applications, such as motion capture and object reconstruction, 

where typically multiple cameras are used. 
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5.3.1 Pinhole Camera Model 

In order to calibrate a camera one needs to model its geometry, defining how an 

image is formed. The most common way to do this is to use the pinhole camera 

model, shown in Figure 2.5. This perspective projection model consists of a camera 

reference frame with origin O, an image plane n. The optical or z-axis is 

perpendicular to the image plane intersecting it at the principal point o, with the focal 

length, / , being the distance between O and the image plane. A real world point, 

P(X,Y,Z), is shown, projecting onto the image plane as p(x,y,z). 

Xc 

Figure 5.3: The pinhole camera model. 

The real 3D world can then be mapped onto the 2D image plane using a similar 

triangle relation: 

f / 

Since Z is variable the transformation is non-linear. By assigning Z a fixed value, 

say Z0, the transformation becomes linear, having a constant scaling factor of //Z0. 



CHAPTER 5. THE FUZZY HULL METHOD 68 

Called weak perspective projection, or scaled orthographic projection, this 

approximation can be justified if the distance from the camera to the object is 

considerably greater than the thickness of the object. 

For this project it was decided to use the weak perspective projection model, since 

this simplifies the implementation of the tomographic reconstruction process. This 

choice can be justified because owing to the dangers of both fire and high voltages it 

is necessary to place the cameras at some distance from the flame itself, meaning that 

the distance between camera and flame is much greater than the thickness of the 

flame. In addition, the use of full perspective projection would be unlikely to 

produce any significantly better results. One must remember that tomographic 

reconstruction from only a few views is an approximation, not a precision 

reconstruction. 

5.3.2 Camera Calibration 

Many computer vision applications require a precise correlation between a 3D point 

and its 2D projections, making camera calibration critical. Ideally though, one would 

like to create systems that do not require explicit calibration. Calibration can be 

restrictive, requiring specific calibration objects and processes, and should a camera 

be bumped or altered even slightly, then recalibration is required. An error in the 

calibration process could potentially render the captured data useless. Therefore it is 

best if the degree of calibration is kept to a minimum - or rather a compromise needs 

to be reached between calibration complexity and the accuracy of the end results. 

As mentioned previously, a specification of this project is to keep calibration 

requirements to a minimum, primarily to make the system easier to use. Although a 

lower calibration accuracy may result in less reconstruction accuracy, this is unlikely 

to be significant given the reconstruction method and the fact that the reconstruction 

is only an estimate. 
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The difference between this application and your typical 3D computer vision system 

is that one is not dealing specifically with 3D points from the real world, but rather 

the projection of 2D silhouettes. The most important issue is that the silhouettes are 

correctly projected to give an optimum and accurate intersection. Considering the 

experimental camera configuration and the use of weak perspective projection it 

becomes apparent that the main calibration parameter that needs to be determined is 

the angle between adjacent cameras (given that the cameras are all positioned 

vertically and in a planar configuration). From the previous work done on 3D flame 

reconstruction from images (chapter 4), the only case where proper calibration was 

done was in the work by Ihrke and Magnor [9]. In the other cases the only 

information available was usually the angle between the cameras, confirming that 

this is sufficient information to create a reasonable reconstruction. 

An advantage of minimal calibration requirements is adaptability and generality -

images can be used from various sources and be subject to the same reconstruction 

methods, as done by Hasinoff [18]. In addition, the experiments are to be done 

mostly outdoors, subject to wind, bumping and adjustments to the aperture and zoom 

of the lenses, all requiring recalibration. 

If the angle between the cameras is not known, then a simple calibration object is 

used with the sole purpose of determining the angles. Using a square object 

(illustrated in Figure 5.4 below) only a single image from each camera is needed to 

determine their relative angles. Should it be required one could also estimate the 

camera rotation and a relationship between real world and reconstruction units. 
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Figure 5.4: Calibration object geometry. 

Simple trigonometry gives 

6 = arctan 
Vxi J 

(5.2) 

One can relate the size of the reconstruction to the real world by using the 

relationship 

scale 
Lcos0 

pixels per real world unit. (5.3) 

Other information, needed to correctly align the silhouette projections, is obtained 

from the flame images themselves. 

5.4 Image Processing 

The raw flame images need to be processed before being fed into the reconstruction 

algorithm. The first step, as discussed in §2.2, is to transform the image intensities in 

order to give a representation of the flame density along the ray projected by each 
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pixel. This is achieved using equation (2.12) if the background is dark, or equation 

(2.14) if there are background intensities. 

The transformed images must then be segmented, isolating the flame. Edge or line-

based segmentation methods can be problematic when dealing with potentially soft-

edged flames. Since the background will already be fairly dark the process is kept 

simple, using threshold segmentation. The actual threshold value to use is 

determined automatically by analysing the histogram of the image. 

(a) • (b) 

Figure 5.5: (b) is the (cropped) histogram of image (a). 

Given a typical flame one would expect the histogram to have certain characteristics. 

The large, dark background area produces large values on the low end of the 

histogram, rapidly tailing off, with the rest of the histogram dependant on the flame 

itself. This indicates that an optimum threshold value would be after the background 

spikes, where the histogram starts levelling out, with mainly background to the left 

and flame to the right. 

The histogram is smoothed and a derivative based metric is used to find this point. 

The background spikes produce a large negative gradient as one travels along the 

histogram. The threshold point is therefore found by determining when the 

magnitude of the smoothed gradient becomes sufficiently low, after the background 

spike. Various degrees of smoothing and derivative-based definitions of the 
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optimum threshold were explored, but it was found that similar results were obtained, 

as long as the basic principle was followed. Also, an exact comparison between 

variations proved difficult since fuzzy and indistinct regions of the flame made an 

ideal threshold value difficult to quantify. Further study is needed to formalise and 

evaluate this technique. 

Once segmented, the images are scaled, ensuring all images are the correct size. The 

tip of the flame in each image is located, providing a reference point to align the 

projection of the flame silhouettes. This is simply a search for the upper most 

(central) point of the segmented flame in each image. It is acknowledged that this is 

not an ideal method since it relies on the flame having a single, distinct tip, and may 

fail if, for example, a more complex flame image contains two or more tips in the 

same row of pixels. The advantage, though, is the provision of a simple self-

calibration technique, based on general flame characteristics. In addition, because it 

need only be performed once, for a single frame in a sequence, one does not need 

every frame to have a distinct tip. 

Finally the images are normalised so that each image has the same sum. This is 

necessary because the sum of the density seen from any direction must be equal, 

since one is looking at the same object. In other words, given that the transformed 

images represent the relative density of the object, all views of the object must give 

the same total object mass - the same image pixel sum. 

5.5 The Reconstruction Methods 

Here the evolution of the reconstruction method is presented, from a simple 2D to a 

full 3D reconstruction. 
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5.5.1 Simple - SIRT and Fuzzy 

By treating the 3D reconstruction as a series of stacked 2D slices, the problem is 

reduced to two dimensions. Algebraic tomography (SIRT) is used to estimate the 

density field, after which fuzzy c-means (FCM) image segmentation is used to 

classify the density field based on each pixel's statistical mean and standard 

deviation in its local neighbourhood. A non-negativity constraint is imposed during 

the tomographic stage, since it is not physically possible to have a negative density. 

Figure 5.6 below shows the result of this technique on a synthetic 2D test object. As 

one would expect, the results are not spectacular, but they do improve as the number 

of views is increased. 

Test object SIRT reconstruction 

FCM segmentation Final result 

Figure 5.6: Reconstruction of test object from 5 views using SIRT and FCM. 

The problem with this method is that not all the available information is being used. 

The image pixel intensities guide the tomographic process, but the actual silhouettes 

of the flame (or test object) are being ignored. By including the silhouette 



CHAPTER 5. THE FUZZY HULL METHOD 74 

information one can restrict the space in which the reconstruction is created. Using 

the silhouettes to define the visual hull of the flame gives a shell outside of which no 

part of the reconstruction may occupy. 

Therefore the concept of the visual hull was incorporated into the process, named the 

Fuzzy Hull method. 

5.5.2 The Fuzzy Hull Method 

Using the visual hull provides two main benefits: 

• Accuracy: Instead of being smeared across the entire reconstruction space, the 

flame image pixel intensities need only be spread along the portion 

of the relevant ray intersecting the visual hull. This means that 

SIRT will be more accurate, the convergence faster, and the fuzzy 

classification will therefore also be more accurate. 

• Speed: As well as faster convergence, the fact that only the space occupied by 

the visual hull needs to be processed means the overall processing 

time is greatly reduced, since the majority of the reconstruction space 

can be ignored. 

The visual hull provides a reasonable initial reconstruction. Algebraic tomography 

then provides an estimate of the density field within the hull and fuzzy segmentation 

is used to refine the volumetric reconstruction. While the tomographic 

reconstruction stage maintains the integrity of the hull, the fuzzy segmentation does 

not. This means that the silhouettes of the reconstruction will usually not be the 

same as the original flame image silhouettes, and are invariably smaller. 

Ideally the original and reconstructed silhouettes should be identical, and therefore a 

silhouette consistency constraint is introduced in an effort to improve the projected 

reconstruction silhouette and thus the volumetric reconstruction accuracy. First the 



CHAPTER 5. THE FUZZY HULL METHOD 75 

orphan rays are identified. The term orphan rays describes those rays (pixel 

projections) that are a part of the original image silhouette, but do not project to the 

reconstruction. The voxels forming the intersection of the orphan rays and the visual 

hull are called orphans. Because the orphan rays form part of the visual hull it is 

known that at least one voxel along each orphaned ray should be reclassified as part 

of the reconstruction. There is however no way to determine exactly which, or how 

many, voxels need reclassification, so an estimate is made using fuzzy segmentation 

to decide which orphans are most likely to be a part of the reconstruction. The 

integration of these reclassified orphaned voxels into the reconstruction is illustrated, 

along with the entire reconstruction process, in the flowchart below. 

f For each slice , 

i r 

perform SIRT 

i r 

perform FCM 

i r 

Find orphans 

i r 

FCM orphans 

s^ error low \ . 
\ . enough? / 

-* 
^ 

No 
w 
w 

iinHntf QTDT va^~n 

Yes 

End 

Figure 5.7: Flowchart outlining the Fuzzy Hull algorithm with orphan estimation. 
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5.5.2.1 Synthetic Data Testing 

Synthetic test objects were used to test the developed reconstruction methods. It 

must be noted that using synthetic objects will of course produce better results than 

real data, but they are nonetheless useful. Using test objects allows one to determine 

that a reconstruction method is valid and has been implemented correctly. In 

addition, synthetic data provides a ground truth against which a reconstruction can be 

compared, enabling a quantifiable analysis to be done. This means that different 

algorithms and parameters can be tested and evaluated comparatively. Using real 

data makes this more difficult, since one cannot do a ground truth comparison and 

can only really perform an evaluation based on 2D projections and the perceived 

visual accuracy (i.e. does it look right?). 

The testing presented in this section focuses on the methods discussed in §5.5 and 

§5.5.1. The method using the straightforward application of SIRT and FCM is 

referred to as method A. The analysis done is based on the volumetric accuracy, 

rather than density field accuracy, since the density field estimation is not affected by 

the fuzzy classification - its accuracy is largely dependant on the number of views, 

and a better density field reconstruction encourages a better volumetric 

reconstruction. The results shown here are therefore to test the accuracy with which 

the reconstructed density field was classified by the fuzzy segmentation. 

2D Testing 

Method A and the Fuzzy Hull method were tested using two different 2D objects, for 

3, 5 and 7 views. (The same generated views were used for each method.) 

The results were compared using three parameters: 

i. False positive percentage (fp %): The number of pixels incorrectly classified 

as object, relative to the total amount of object pixels, 

ii. False negative percentage (f„ %): The number of pixels incorrectly classified 

as background, relative to the total amount of object pixels, 

iii. Total Error percentage: The total number of incorrectly classified pixels, (fp + 

fnl 
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Test Object #1 

Method A Fuzzy Hull 

fP% 3.3 1.9 

fn% 3.1 3.3 

Total error % 6.4 5.2 

(a) 3 views 

Method A Fuzzy Hull 

Test Object #1 

fP% 4.8 0.7 

fn% 1.5 2.3 

Total error % 6.3 3.0 

(b) 5 views 
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Test Object #1 

Method A Fuzzy Hull 

poa 
fP% 

fn% 

Total error % 

2.5 

0.9 

3.4 

0.4 

1.2 

1.6 

(c) 7 views 

Figure 5.8: Reconstructions of test object #1. 

Test Object #2 n 
fP% 

fn% 

Total error % 

Method A • 
18.5 

13.1 

31.6 

Fuzzy Hull 

n 
4.5 

9.5 

15.0 

(a) 3 views 
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Test Object #2 

fP% 

fn% 

Total error % 

Method A 

5.0 

7.9 

12.9 

Fuzzy Hull 

0.9 

3.3 

4.2 

(b) 5 views 

Method A Fuzzy Hull 

Test Object #2 

fP% 4.1 0.5 

fn% 3.1 3.0 

Total error % 7.2 3.5 

(c) 7 views 

Figure 5.9: Reconstructions of test object #2. 

From the above results it is evident that the fuzzy hull method consistently produces 

more accurate reconstructions. This validates the use of the visual hull and the 
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silhouette consistency constraint. Both methods give better results as the number of 

views is increased, as one would expect. Looking at the fuzzy hull (method B) 

reconstructions one notices that the number of false negatives is always larger than 

the number of false positives. This indicates that the fuzzy segmentation process is 

being too strict in its decision-making. Adjusting the fuzzy classification parameter 

to make^, ~f„, although not necessarily increasing overall accuracy, would produce 

a more balanced result and is thus a good guide to determining an optimal fuzzy 

classification parameter. 

3D Testing 

In order to test the reconstruction algorithms with 3D objects a relatively complex 

flame-like object was created using MATLAB®. Figure 5.10 below shows the object 

and an example of a generated view of the object used as an input to the 

reconstruction algorithms. Rendering of the reconstructions of this object was also 

done in MATLAB®. 

(a) (b) 

Figure 5.10: (a) Synthetic flame-like test object, (b) Example of generated image. 

Figure 5.11 below shows reconstructions of the object from 5 views using method A 

and the fuzzy hull method. Just from a visual inspection one can see that the fuzzy 

hull algorithm produces a superior result. 
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(a) (b) 

Figure 5.11: 5-view reconstruction using (a) method A, (b) the fuzzy hull method. 

In order to obtain a direct visual analysis of the reconstructions they were 

superimposed on the original, as shown below. 

(a) (b) 
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(c) (d) 

Figure 5.12: Reconstructions superimposed on original object. On the left is method A and 
on the right is the fuzzy hull method, (c) and (d) have been rendered with partial 

transparency. 

Figure 5.12 shows how the fuzzy hull reconstruction is much closer to the shape of 

the original object. A more quantifiable analysis is presented in Table 5.1 below and 

the graphs that follow. 

Table 5.1: Analysis of 3D reconstructions. 

Views 

3 

5 

7 

9 

Method 

A 

Fuzzy 

A 

Fuzzy 

A 

Fuzzy 

A 

Fuzzy 

Time(s) 

56 

34 

72 

36 

88 

42 

102 

47 

fP% 

16.7 

8 3 

9.4 

2.9 

8.1 

1.7 

7.5 

2.1 

f.% 

4.0 

4.4 

2.5 

1.8 

2.5 

1.7 

2.6 

1.2 

% error 

20.7 

12.7 

11.9 

4.7 

10.6 

3.4 

10.1 

3J 

%SA 
error 

2.1 

1.6 

2.7 

2.0 

3.9 

2.0 

6.3 

1.6 

% Vol 
error 

12.7 

3.8 

6.8 

1.1 

5.7 

0.1 

4.9 

0.9 
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Figure 5.13: Graphical representation of 3D reconstruction accuracy analysis. 
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From the first graph one can see that the fuzzy hull algorithm consistently achieves a 

significantly more accurate reconstruction. When looking at the volume and surface 

area graphs one must note that these do not represent the geometric accuracy of the 

reconstruction, but rather a measured parameter of the reconstruction. This means 

that a low surface area error, for example, could be the result of a balance between 

positive and negative errors. What one should look for in these two graphs is a 

relatively flat line, indicating consistency. Note how the surface area error of method 

A actually increases notably with the number of views (as the total error decreases), 

contrary to what one would expect. This is an indication that these apparently good 

surface area measurements with 3 or 5 views are due to factors other than 

reconstruction accuracy. 

These graphs were also used to determine the number of cameras to be used in the 

system. It was noted how the amount of error tends to level off after 5 views, 

suggesting that 5 cameras would be a good compromise between accuracy, 

equipment complexity and cost. Obviously these measurements are dependant on 

other factors such as object geometry and algorithmic details, but they nonetheless 

remain a reasonable guide for camera quantity selection, providing a rough idea of 

the accuracy limitations and trends using specific reconstruction principles. It should 

be remembered that sparse view tomography is in general very dependant on the 

number of available views. 

5.5.3 3D Fuzzy Hull 

The final version of the fuzzy hull algorithm was enhanced to better deal with the 

three dimensional nature of the problem. Instead of viewing the reconstruction as a 

set of stacked, independent 2D slices, the entire 3D reconstruction space was 

considered. 

In the fuzzy segmentation stage the slices directly above and below are taken into 

account when calculating the image statistics. This increases the spatial coherence of 
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the reconstruction, relating adjacent slices and therefore providing a smoother 

reconstruction. 

When testing with real flame images a problem was encountered in that the flame 

projections did not intersect perfectly, causing sharp edges and density field errors. 

This incorrect alignment was caused by factors such as calibration inaccuracy and 

inconsistent image segmentation of the flame images. While these errors were 

relatively minor on their own, their affect on the reconstruction could be significant. 

For example, consider a ray that should project to 5 voxels in the visual hull. A 

slight misalignment causes the ray to only project to 1 voxel instead. This means the 

density of this voxel will be estimated at 5 times the value it should be, affecting all 

other rays projecting to that voxel. 

One solution is to make the camera calibration as complete and precise as possible, 

although it would still be difficult to ensure consistent image segmentation in all 

images. In this case a simpler method was developed to help reduce the effects of 

misalignment. The algorithm works by comparing the original flame silhouette and 

the visual hull silhouette. This data is analysed and the image alignment is adjusted, 

one pixel at a time, based on where the projection errors are occurring. This process 

effectively improves the alignment of the projections with minimal effort. Figure 

5.14 below shows a set of four flame silhouettes, with the projection error indicated 

by the white regions. After the visual hull optimisation algorithm is used it can be 

seen how the projection error has been greatly reduced. 
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Figure 5.14: A set of 4 projections subject to the hull optimisation algorithm. 

The silhouette consistency constraint was abandoned, since the additional processing 

required to process the orphans was prohibitive, given a relatively small gain in 

accuracy. Ideally a better way should be found to incorporate a silhouette constraint. 

As mentioned previously, the algebraic reconstruction of the density field uses a 

discrete approximation of the ray projection - each ray is defined as being composed 

of a set of pixels. However, the actual images (while themselves discrete) are 

formed by the continuous density field of the real world flame. This discrepancy can 

result in errors and artefacts in the reconstruction, particularly when the ray width is 

too small. The wider the ray is, relative to the pixel size, the more accurate the ray 

definition becomes, and hence also the reconstruction. 

An initial solution was to oversample the reconstruction space, replacing each pixel 

with 4 pixels. This provided a significant improvement in the smoothness and 

accuracy of the density field estimation, (demonstrated in Figure 5.15 below) but at 
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the expense of greatly increased processing time and memory requirements 

(approximately 4 times greater). 

It must be noted that if one measures the density field estimation accuracy it is with 

respect to the discrete ray definition, and is not therefore a good indication of the 

actual reconstruction accuracy. Hence a visual, qualitative inspection is sometimes 

necessary. 

(a) (b) 

(c) (d) 

Figure 5.15: (a) shows the discrete definition of the rays using pixels, while (b) is the same 
but using oversampling. (c) and (d) are corresponding density renderings of a reconstruction 

of a candle flame differing only in the ray definition used. 

Generally, fire tends to have a high degree of local smoothness. What is meant by 

this is that the density changes gradually, or smoothly. This can be exploited to 
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improve the reconstruction. As done in [9] a basis function was implemented - a 

cube, consisting of 8 voxels. These basis functions were arranged so as to overlap 

once in each dimension. The SIRT algorithm was modified so as to estimate a value 

for each basis function, instead of each individual voxel. This resulted in a smoother 

internal density gradient, also helping to counteract the effect of discrete ray 

definitions. The entire reconstruction process is therefore three dimensional, taking 

neighbouring voxels in all directions into account in both the tomographic and fuzzy 

segmentation phases, giving a smoother, more accurate reconstruction in terms of 

both the internal density field and the flame surface. 

(a) (b) (c) 

Figure 5.16: Cross-sectional reconstruction slice showing the effect of using (b) 
oversampling and (c) the basis function, compared with a slice reconstructed using (a) 

neither. 

The 3D fuzzy hull algorithm was tested on a real data set, consisting of a video 

sequence of a candle flame captured with 4 cameras. The reconstructions of two 

frames are shown below. The surface rendering shows the geometric aspect of the 

reconstruction, while the density rendering uses the reconstructed density field to 

create a photo-realistic view of the reconstructed flame. The surface renderings were 

created with the aid of the VOLPACK C++ library [83]. 
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Figure 5.17: Surface renderings of 2 reconstructed frames rotated through 180°. 
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Figure 5.18: Density renderings of 2 reconstructed frames rotated through 180°. 

Because the reconstructions are modelled using voxels, and not a polygonal mesh, 

the surface renderings can have a slightly blocky appearance (as above). This can be 
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improved by performing a three-dimensional smoothing operation on the volume 

before rendering. 

Figure 5.18 shows that the reconstruction algorithm is good enough to create realistic 

renderings of the flame from any novel viewpoint. Although that is not the objective 

of this project, it does provide a good qualitative way to assess the algorithm. 

Upon further testing it was decided that oversampling the reconstruction space was 

too resource intensive. A better approach was to change the way in which the 

relationship between the rays and the reconstruction is defined. Instead of making 

the simplification of defining the wy term in equation (3.11) as a binary function, the 

rays are defined by calculating their relative weight factors (wy). This means that 

each voxel in the reconstruction space is defined not by which ray it projects to, but 

rather by the fraction of the voxel falling within each ray. Although this is more 

complex and time consuming than the binary simplification, it need only be done 

once and is faster and more accurate than the oversampling method. 

The SIRT algorithm needs to be changed to reflect the new ray definitions, and the 

update equation for cell j from M projections is amended to 

4/";=— y t f l - f t P , (5.4) 

where the term Wt is the weight of ray i (in the visual hull, where a cell (voxel) is of 

unit weight) and r0 .. T2 is a simplification to reflect the fact that a maximum of 3 rays 

can project to any single cell (where ray width = cell width). 

An interesting modification can be made to equation (5.4) that forces the 

reconstruction to be biased towards longer rays - the longer the ray the more it is 

favoured in the calculation of the update value. 
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1 M JL W 

This can be useful to help alleviate the problem where misalignment of the 

projections can cause short rays to dominate a particular voxel, creating artefacts. 

Note that the terms long and short refer in this case to the length of the ray within the 

visual hull. 

5.6 Level Set Reconstruction 

The use of the level set technique in the reconstruction process was investigated. 

The advantage of using level sets is that they produce a smooth, continuous surface, 

or rather, a continuous set of isosurfaces, even in a discrete domain. In addition the 

formation of the level sets can be controlled by any user-defined speed function, 

allowing parameters such as curvature and distance to influence the shaping of the 

level set. Although this means that level sets can be adapted to suit a particular 

problem, this also means that the process can be very difficult to tune and can require 

a great deal of trial and error to find optimal parameters. 

The primary reason that the level set technique was not adopted, though, is the 

processing time required. Level sets can be very computationally expensive and in 

the case where one has a video sequence consisting of many frames this can be a 

problem. This becomes feasible if one is using high-speed cameras, where each 

frame is relatively similar to the previous frame. Where consecutive frames are 

similar it means that the level set does not need to be recreated for each frame, and 

can instead be used to track the evolution of the flame front from frame to frame. 

Using level sets in this manner would be a very useful tool in terms of analysing 

flame surface dynamics. 
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5.7 Flame reconstruction analysis 

5.7.1 Geometric Analysis 

The volume of the reconstruction is easily determined by counting the number of 

voxels forming the reconstruction. Calculating the surface area however, is not so 

straightforward. If one was using a polygonal mesh then one could sum the areas of 

the 2D polygons to give the surface, but with voxels one needs to first generate a 

geometric surface approximation. The most common tool for such a problem is 

probably the Marching Cubes Algorithm. 

Introduced by William E. Lorensen and Harvey E. Kline [84], the Marching Cubes 

algorithm is able to extract surface information from a three dimensional data grid. 

The first step is to divide the reconstruction space into a set of cubes. The comers of 

each cube are then tested and the cube replaced by a polygon, as defined by the 

comer values. There are 15 possible corner combinations, creating a set of 

predefined polygons to use. 

Figure 5.19: An example showing a cube and the polygons defined by its corner points. 

The drawbacks of marching cubes though are a potentially complex model, and the 

fact that it is possible to have holes in the surface - certain situations create an 

ambiguity, having more than one possible solution, as illustrated in Figure 5.20 

below. 
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Q - - x -

Figure 5.20: 2D example of an ambiguous case. 

An alternative to marching cubes is Adaptive Skeleton Climbing [85], which is a 

multi-resolution isosurface generation method, claiming to reduce the number of 

triangles generated by marching cubes by a factor of 4 to 25. This method can still 

suffer from ambiguities. 

For this project though it is only required to obtain an estimation of the surface area, 

so a complete marching cubes surface generation would consume unnecessary 

processing time. Hence, a simpler, quicker algorithm was developed to give an 

estimation of surface area. 

Of course one could get an estimate by summing the area of the exposed voxel faces, 

but this would obviously create an over-inflated value (since fire and most objects 

are not actually composed of little cubes). The method that was developed works by 

examining the voxel structure and determining the voxels most likely to cause such 

over-inflation. These voxels are then reshaped to give a more likely contribution 

towards the surface. The voxels themselves are not altered, merely the contribution 

that exposed voxel faces make towards the surface area estimate. The voxel 

contribution is determined according to the number and position of adjacent voxels, 

as defined in Figure 5.21. 
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Figure 5.21: Rule set for voxel-based surface area estimation. 

5.8 Summary 

The 3D Fuzzy Hull method uses algebraic tomography, bound by the visual hull, to 

create a density field estimation. The use of an area-weighted ray definition and a 

basis function improves the local smoothness and visual accuracy of the 

reconstruction. Fuzzy c-means image segmentation then defines the flame volume 

by segmenting the reconstruction space according to statistical image features. The 

3D implementation of the algorithm takes adjacent slices into account at all stages of 

the process, improving the spatial coherence of the reconstruction. 
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As has been seen, this method produces reasonable reconstructions, using both a 

synthetic dataset and real flame images. Although some inaccuracy can be 

accounted for by the simple calibration and of course the fact that there are only a 

few cameras, the primary source of error is due to the algebraic tomography itself. 

Algebraic tomography is not a precision technique, and does not create an optimal 

reconstruction. It is rather an iterative technique that smears the projections across 

the reconstruction space in a way that reduces error, suited to cases where only a few 

views are available. 

To create an optimal reconstruction one needs to invert the projection matrix, (as in 

[9],[18]), using a least-squares sparse matrix inversion technique, thereby creating a 

solution with minimum error. A state-of-the-art reconstruction method would appear 

to consist of a sparse matrix inversion density field estimation, using level sets to 

model and track the flame front. Although this has been deemed unsuitable for this 

project, it is worth looking at for future work in terms of optimal implementation 

techniques in order to make such a method feasible. 



Chapter 6. 

Experimental Results 

The original purpose of this project was to develop a tool able to create 3D 

reconstruction of fire within a high voltage environment, in order to aid in research 

into the phenomenon of fire-induced flashover. Therefore, full-scale experiments 

were carried out on the roof of a high voltage lab, using a hot-air balloon burner. 

This enabled a power line over a fire to be simulated, and although not strictly 

necessary in terms of the flame reconstruction itself, this was needed to confirm that 

the flame video sequences could be successfully captured and reconstructed under 

flashover conditions. 

6.1 The Setup 

Figure 6.1 below shows the experimental configuration. A hot-air balloon burner, 

able to be operated remotely, was used to provide the fire. Above the burner was a 

metal grid, connected to earth. The flames from the burner extended above the grid 

towards a metal rod, sitting at the potential determined in the lab below. A water 

resistor was used to limit the current during flashover between the rod and the 

earthed grid. The voltage was varied via the control panel. 

96 
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Figure 6.1: High-voltage arrangement. 

The configuration of the cameras was as per Figure 5.2. Five cameras were used, 

placed approximately 36° apart at regular intervals around the flame. This 

arrangement gives optimum coverage of the flame. The photos below show the 

setup on the roof more clearly. 
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:mm 

(b) 

(c) 

Figure 6.2: (a) The five cameras positioned around the grid, (b) The copper rod is connected 
to the high voltage source in the lab below and held over the grid, (c) The burner. 
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6.2 Experimental Issues 

This section serves to address various issues encountered during testing, both in 

terms of experimental procedure and setup, and issues affecting the resulting 

reconstructions. Given the intended application of this project it was felt to be 

important to identify aspects that could be improved upon in order to allow for more 

effective future experiments. 

6.2.1 System Configuration 

This issue, separate from camera calibration, was not given enough attention, making 

the process more time-consuming and difficult than it could have been. Procedures 

and tools need to be created for the purposes of camera positioning and lens 

adjustment (zoom, focus, aperture size). For example, the lens' apertures should 

ideally be set so that the flame images use as large a dynamic range as possible 

without saturating. Systematically configuring all the cameras and lenses to be as 

similar as possible, and to meet certain specifications, will help to reduce error in the 

final reconstruction, particularly (but not exclusively) in a minimally calibrated 

system. 

6.2.2 EMI 

Because a digital (IEEE 1394) camera system was used, there was no visible noise or 

interference induced in the images themselves at any stage - indeed this was one of 

the reasons for choosing a digital camera system in the first place. However, the 

electromagnetic interference produced during flashover was greater than anticipated 

and occasionally affected the cameras and (or) PC, resulting in a loss of the video 

capture. The simplest solution is to move the cameras and PC further away from the 

fire, and if not possible then some further form of shielding may be required. 
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6.2.3 Real World Factors 

Environmental factors, namely wind, proved problematic - although not much can be 

done about this, it should be noted that fire is strongly affected by wind and must 

therefore be considered when performing such experiments.. 

Two other issues arose later, during reconstruction, as a result of real world factors. 

Firstly, flame occlusion (for example by the earthed grid) was not sufficiently 

accounted for. Secondly, when processing the captured flame images it was noted 

that the reflection of the light from the flame by surrounding objects created the 

possibility of erroneous image segmentation. Methods should be formalised to 

attempt to handle these potential problems. 

Although it does not fit with the original project specifications, the possibility of 

using an indoor, more permanent experimental setup should be considered. This 

would allow for controlled conditions, more complete camera calibration, 

repeatability, and ultimately better reconstruction accuracy. 

6.3 Results 

All results and reconstructions presented in this chapter are based on the captured 

video sequences of the flames produced by the hot-air balloon burner. 

It is rather difficult to present video reconstruction sequences on paper. Even a 

single reconstruction frame is best viewed by rotating it in 3D space. For this reason 

several video clips of the reconstructions can be found at 

http://wwwl.webng.com/ccfire/. 

Nonetheless some results are shown here, using density rendering (photorealistic) 

and surface rendering to display select reconstruction frames. A 2D comparison of 

cross-sectional slices is done, as well as an overall 3D reconstruction analysis. 

http://wwwl.webng.com/ccfire/
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6.3.1 3D Renderings 

The density renderings were obtained by integrating the reconstruction along the rays 

defined by each pixel (ray-tracing) and applying the image formation model 

principles defined in §2.2.2. The 3D surface renderings were obtained using the 

VOLPACK [83], which is a fast, portable C++ library for performing volume 

rendering on a regular three-dimensional grid. 

Each of the figures below shows the reconstruction of a different frame. In each case 

the top row is the density renderings while the bottom row is the surface renderings. 

The images from the viewing points of 0°, 40°, 80° and 120° are all novel viewpoints, 

while the final image, at 160°, is an original viewing angle (i.e. viewed from the 

same direction as one of the original flame images used to create the reconstruction.) 

As mentioned previously the flame images were captured at a resolution of 640x480. 

An effort was made to ensure the captured flames occupied a large portion of the 

available resolution - the largest reconstructed flame had a height of around 300 

pixels (according to the reconstruction in frame A below). All of the images in 

Figure 6.3 below use the same scaling factor - they have been scaled to 50% of their 

original size in order to fit on the page. The reason the frames presented seem to 

differ in size is due to the dynamic nature of the captured flame - frames A, B and C 

are in fact consecutive frames from a captured video sequence. A full size 

reconstruction is shown in Figure 6.4, but because of printing resolutions and other 

factors it is best to view the videos to get a better sense of the resolution and quality 

of the reconstructions. 
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Frame A 

Frame B 
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Frame C 

Frame D 
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Frame E 

Frame F 
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0° 40° 80° 120° 160° 

Frame G 

Figure 6.3: Density and surface renderings of various frames of a reconstructed flame 
sequence. 160° is an original viewing angle while the rest are novel views. 

Note how the density renderings appear less detailed when viewed from a novel 

viewpoint. One must remember, however, that the problem of tomographic 

reconstruction from few views is ill posed, and the algebraic technique employed 

works on the principle of smearing the projection data back over the reconstruction 

space. One would therefore expect the result to closely approximate the original 

image when viewed from the same angle (as in Figure 6.4 below), becoming more 

vague and less detailed as one moves further away from the original viewpoint. 

Of course using more views to create the reconstruction means the solution would be 

more detailed and accurate, as the "unknown" space between original projection 

angles is effectively reduced. 



CHAPTER 6. EXPERIMENTAL RESULTS 106 

(a) (b) 

Figure 6.4: (a) shows a raw, unprocessed captured image of a flame, and (b) shows the 
density rendering of the reconstruction of the corresponding frame. Note that part (b) is 

based on a relative density reconstruction and will thus not necessarily have the same 
absolute intensity as the original photograph. 

6.3.2 2D Cross-Sectional Analysis 

Figure 6.5 below shows the same cross-sectional slice taken from different 

reconstructions of the same flame. They differ in that figure (b) was created using an 

8-voxel cubic basis function, promoting better local smoothness and spatial 

coherence. 
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(a) (b) 

Figure 6.5: Comparison of reconstructed cross-section. 

The linear artefacts, most noticeable in (a), are as a result of the SIRT algebraic 

process, reflecting how the ray intensity is smeared back across the reconstruction 

space. Although improved, this linear effect is still noticeable in (b). Essentially the 

solution is suffering from overfitting. With only a few input views there simply is 

not enough information to reconstruct the complexity of the density field at the given 

resolution. This is evident in Figure 6.6, which shows how the degree of overfitting 

increases as the relative cross-section size increases. 

Figure 6.6: Several cross-sections taken from the reconstruction of a single flame. 
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Smoother solutions can be produced by using a smaller resolution, or larger and 

fewer basis functions. This of course means a trade-off between smoothness and 

accuracy, and an optimal solution would be dependant on the specific flame 

geometry, density distribution and input data resolution. This is not a trivial problem 

and as such is a good topic for further research. 

6.3.3 3D Reconstruction Analysis 

In order to perform a quantitative analysis, reconstructions were created using only 

four views. The result could then be viewed from the direction of the fifth image, 

thereby allowing one to compare a novel view with a ground truth (the fifth, unused 

image). 

Two metrics were used to quantify the accuracy of the novel view: 

• Silhouette error: The percentage error of the reconstruction silhouette relative 

to the ground truth silhouette. It must be noted that this measure is not an 

indication of absolute accuracy, since image processing is obviously required 

in order to extract the reference silhouette. The error term was calculated by 

expressing the sum of false positive and false negative projection pixel 

classifications as a percentage of the reference silhouette area. 

• Mean pixel error: The average absolute error per pixel comparing the novel 

view and the ground truth image (using normal 8-bit greyscale). In order to 

prevent results being skewed by silhouette errors, only pixels corresponding 

to both the reconstruction silhouette and the reference silhouette were 

considered. 

A video sequence consisting of 32 consecutive frames was analysed. The flames, 

created by the hot-air balloon burner, varied significantly from frame to frame in 

terms of size and geometry. A summary of the results is tabulated below. 
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Table 6.1: Summary of novel view analysis. 

Silhouette error % 

Mean pixel error 

min. 

5.2 

10.1 

max. 

25.3 

24.6 

mean. 

12.6 

15.7 

The silhouette error primarily indicates the accuracy of the projection alignment, 

including the 2D image processing steps of rescaling and segmentation. The 

relatively high errors reported indicate that calibration and alignment procedure is 

inadequate for these more complex flames. The average silhouette error for the 

reconstruction silhouettes compared with the silhouettes of the original 4 input views, 

over all 32 frames, was 8.7%. This figure gives a rough indication of how much of 

the mean novel view silhouette error (12.6%) is due to projection misalignment 

(since the input view silhouettes are known), and hence the degree of improvement 

potentially possible as a result of better calibration. 

The mean pixel error gives an indication of the accuracy of the tomographic density 

field estimation. Given that only 4 views are used to create the reconstruction one 

would expect a fair degree of error in this regard. This error is also affected by 

projection errors, so improved calibration would also improve the mean pixel error. 

6.3.4 Summary 

The results presented above have shown that the 3D Fuzzy Hull method is able to 

produce reasonably convincing reconstructions of fire, given only a few views. As 

far as accuracy is concerned the use of algebraic tomography remains a limiting 

factor - although this limitation is fundamentally imposed by the use of only a few 

views (five in this case). 

However, the results indicate that there are several causes of inaccuracy that can be 

worked on to improve the accuracy of the reconstruction. The use of limited camera 
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calibration gave the system greater portability and generality, and proved adequate 

for synthetic data and simple flames such as a candle. However, the more complex 

and dynamic flames produced by the hot air balloon burner made it more difficult to 

extract calibration information from the flame images, causing greater error in terms 

of projection alignment. Another area for improvement would be a more systematic 

method of setting up the cameras and lenses in order to be as similar as possible (as 

well as preventing pixel saturation). Coupled with calibration errors this caused 

inaccuracies in the 2D image processing regarding image segmentation and scaling. 

Another effect not fully accounted for was the partial occlusion of the flame by the 

earthed grid. 

The weakness of algebraic tomography was exposed when reconstructing these 

larger, more complex flames. The larger flame cross-sections simply had too much 

detail present along the rays to be reliably reconstructed with only a few views, 

resulting in overfitting and linear artefacts. 

Even with these problems the reconstructions were relatively successful, and the 

above-mentioned causes of inaccuracy show that there is plenty of scope for 

improvement within the reconstruction process. 



Chapter 7. 

Conclusion 

This thesis has investigated the three-dimensional reconstruction of fire, from a set of 

synchronised images. The intended application of this work is for use in research 

into the phenomenon of flashover induced by fires burning under high voltage 

transmission lines. 

The simplified radiative transfer model was used to model the formation of images of 

fire, thereby enabling the reconstruction problem to be viewed from a tomographic 

perspective. In addition, the incorporation of fuzzy c-means image segmentation and 

the visual hull concept allowed the reconstruction to estimate the geometric structure 

of the flame, as well as the internal density field. 

In order to test the process an experimental setup was created, with a hot air balloon 

burner positioned under a high voltage conductor. Video sequences of the flame 

were captured as flashover was induced. The reconstruction of the fire, using the 3D 

Fuzzy Hull method developed in this thesis, was presented in chapter 6. The 

resulting reconstructions appeared reasonably convincing, although a complete 

analysis is difficult since one does not have a 3D ground truth of the flame. 

I l l 
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The reconstructions exposed the fact that the extent of camera calibration of the 

system is inadequate for more complex flames and needs improvement. Also, the 

fundamental limitation of tomographic reconstruction from only a few views was 

apparent when viewing the reconstruction from novel viewpoints. The use of 

algebraic tomography, while adequate for the smaller and less detailed flames used in 

initial testing, did not perform so well when reconstructing the complex flames 

produced by the hot air balloon burner. 

7.1 Future Work 

As previously mentioned, the problem of tomography with few views is severely 

underdetermined. No matter what technique is employed, the solution remains an 

estimate. The need therefore arises to find a method of parameterisation of the 

reconstruction space so as to suit the general structure of the flame. There is much 

potential work that can be done in this direction, since an optimal parameterisation 

would most likely be particular to a certain type of fire or fuel. These inferred 

structural elements or qualities would be used to guide the reconstruction process. 

Other physically based assumptions or characteristics of fire could also be 

incorporated into the process. Mathematically based simulations and models of fire 

(such as [27]) could be useful in this regard. 

In addition, the use of variable basis functions would allow a more effective 

compromise to be found when looking at the smoothness and accuracy of the 

reconstruction, using larger basis functions to represent areas of relatively constant 

density and smaller ones to recreate fine geometric detail. Of course the problem 

then becomes exactly how to distribute the functions and how to determine their 

relevant sizes. Controlling the number of basis functions can also help to reduce 

overfitting, forcing the system to be overdetermined. 

Sparse matrix inversion techniques, using a least squares approach, would appear to 

be the best way to actually perform the tomographic reconstruction, and would allow 
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one to develop parameterisation methods independently. However, in order to make 

a matrix based approach feasible one could only perform reconstructions on one 

cross-sectional slice at a time, due to the amount of computer resources required. 

Reducing the number of basis function would also help in this regard, and should 

thus be considered in conjunction with the density field parameterisation, as 

discussed above. 

Finally, the use of level sets could be used to represent the flame surface. Combined 

with high-speed cameras this would allow one to analyse the flame front from both a 

temporal and geometric perspective. 
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