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ABSTRACT

Glutathione reductase (GR) and superoxide dismutase (SOD) enzymes are

thought to play an important role in the plant chloroplast antioxidant system.

Tobacco plants transformed with E. coli glutathione reductase and superoxide

dismutase genes were used to investigate the role of these gene products

(enzymes) in the chloroplast antioxidant system. These plants were T1318

(transformants with increased levels of cytoplasmic glutathione reductase activity)

and GOR1OT (transformants with increased levels of cytoplasmic' glutathione

reductase activity and chloroplastic superoxide dismutase).

In addition, 10~M methyl violegen (paraquat), was used to perturb the system

experimentally under high light, low light and in darkness. During these

experiments GRA (glutathione reductase activity) was assayed and the results

expressed as mg-1protein, mg-1 chlorophyll and g-1 tissue, using different types

of transgenic plants.

T131 B-cytosolic GOR transformants had a higher GRA under high light intensity.

Under low light intensity T131B had a small increase in GRA compared to

controls (T131 Bs in 1mM CaS04). Also leaf discs in the dark showed similar

GRA as did controls. The three treatments had no effect on the GRA of

untransformed plants. GOR1OT (cytoplamic GOR and chloroplastic SOD

transformants) had a slight increase in GRA under high light intensity and in

darkness. At low light intensity GOR10T showed similar results to controls.
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The results indicate the overall absolute increase in GRA in transgenic plants

after methyl violegen treatment. The higher activity than that of nontransgenic

controls indicate that bacterial GRA must have also increased following exposure

to methyl violegen.
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I CHAPTER 1: GENERAL INTRODUCTION I
~-----

Life in the presence of oxygen is energetically favorable, because in an aerobic

environment oxygen acts as a terminal electron acceptor of respiration and is

reduced to water with concomitant increased energy yields. It is obvious that the

combination of photoautotrophic and aerobic lifestyles offers advantages of

relative energy dependence and efficiency, two factors that can largely explain

the success of modern plants. On the other hand, oxygen is potentially

hazardous. Oxygen has been reported to undergo single electron reductions,

precipitating the formation of toxic oxygen species (Salin, 1988). These reactive

oxygen species include the hydrogen peroxide, the hydroxyl radical, singlet

oxygen and superoxide anion. These active species are produced in most

tissues, but are more likely to form in leaves; here the oxygen concentration is

slightly raised due to the light reactions of photosynthesis (Halliwell and

Gutteridge, 1989). Hydrogen peroxide is toxic because it inhibits carbon dioxide

fixation at concentrations as low as 50-5M (Kaiser, 1976). The site of inhibition

seems to be the fructose and sedoheptulose bisphosphatase enzymes, which are

oxidized by hydrogen peroxide to forms that cannot participate in the Calvin cycle

(Halliwell, 1985). The formation of singlet oxygen by oxygen is toxic because it

leads to lipid peroxidation. The hydroxyl radical is the most reactive species
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known to chemists, it attacks and damages almost every molecule found in living

cells. Superoxide has been implicated as an agent in a number of oxygen­

mediated toxic reactions which include membrane damage, cellular toxicity, single

strand breaks in DNA, and lipid peroxidation.

Levels of the toxic oxygen species should be controlled, to minimize unwanted

oxidation and destruction of cell components. Higher plants chloroplast contain

an antioxidant system that has evolved to combat photosynthetically generated

free radicals (Salin, 1987; Halliwell, 1987). This system comprises a series of

enzyme catalyzed redox reactions that reduce toxic oxygen species to water.

The rate limiting step in this pathway is believed to be the reduction of glutathione

by NADPH using glutathione reductase (Jablonski and Anderson, 1981).

In an effort to increase knowledge of the plant antioxidant system, tobacco,

containing enhanced levels of GR (suggested rate-limiting step), has been

engineered. The GR gene, under the control of the Cauliflower Mosaic virus 35S

promotor, was inserted into the T-DNA region of the binary vector pBin19. The

use of such transgenic plants could provide insight into the role of cytoplasmic GR

during oxidative stress.
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The present study was developed in an effort to investigate the response of

glutathione reductase in transgenic tobacco plants to environmental and chemical

stresses. Firstly, background on the transformation of plant tissue and the

relationship between the antioxidant system and environmental stress will be

discussed. Materials and methods used are described. Thereafter the results will

be discussed.
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CHAPTER 2: TRANSFORMATION AND THE CHARACTERISTICS OF THE

TRANSFORMING VECTOR

2.1 INTRODUCTION

In this section theories behind genetic engineering of plants will be discussed.

Also, the transforming vector will be analyzed.

2.1.1 Plant transformation

Plant transformation is one of the technologies of plant genetic engineering i.e.

the manipulation of plant genomes via the introduction of a DNA segment. The

novel genetic information of the introduced DNA will either specify a new protein

or alter expression level (overexpressing or underexpressing) of an endogenous

gene. This powerful approach can improve agronomic and quality traits such as

nutritional value, composition, flavour and storage ability. By this process DNA is

introduced into the genome of an organism (Comai, 1993).
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2.1.1.1 Agrobacterium and plant transformation

Agrobacterium tumefaciens is a gram negative soil bacterium and causes crown

gall. This bacterium is often employed in the transformation of tobacco plants,

and carries a large Ti- plasmid, the most commonly studied of which are the

Octopine and the Nopaline types. (Figure 1)

A segment of this plasmid, designated T-DNA (tumour DNA) is introduced by this

bacterium into the plant nuclear genome. The wild type Agrobacterium T-DNA is

a plant pathogenic element since it carries genes for plant hormone production.

The T-DNA segment is transmitted by this organism into individual plant cells,

usually within wounded tissue. This segment penetrates the plant cell nucleus

and integrates randomly within the genome where it is stably incorporated and

inherited like any other plant gene in a predictable dominant Mendelian fashion

(Fisk and Dandekar, 1993). Expression of these genes induces proliferation of

transformed cells and results in tumour growth (Gruber and Crosby, 1993).

The oncogenic genes responsible for this phenotype are often experimentally

removed, leaving only regions of DNA needed in cis for transforming and called

borders. The borders define the start and the end of the T-DNA. The T-DNA
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used to transform plants is usually 5 to 10 kb, but may be up to 50 kb in size, with

the capacity to encode 2 to 20 genes.

virA virA
vir8 vir8

tms 7 virC tms 7 virC

fms 2 virD fms 2 virD

tmr vir[ fmr vir[

fmf virG tmf virG

nos virH ocs virH

1 y zl«
z

«
0 z Z

a:l I a:l 0 0::: 0::: co
0

--.J f- 0::: U 0 >
co I co 0::: o 0::: co

-.J -.J f- 0::: 0 U > --.J

o
octopine plasmid nopaline plasmid

Figure 1. The general organization of octopine and nopaline-type Ti plasmids (adapted from Draper et al.,

1988).
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The Ti-plasmid carries an antibiotic resistance gene for the selection of

transformed cells, called a selectable marker gene. The most common selectable

marker confers resistance to the aminoglycoside antibiotic kanamycin and

encodes the bacterial enzyme neomycin phosphotransferase. The T-DNA also

carries one or rarely two additional genes which vary according to the objective of

the experiment (Fisk et aI., 1993; Gruber and Crosby, 1993).

2.1.1.2 Characteristics of the tumour-inducing plasmid

Two regions of the Ti-plasmid (tumour-inducing) and Ri-plasmid (root-inducing) of

A. tumefaciens and A. rhizogenes respectively (are essential for virulence) have

been identified. These regions are the T-DNA (transferred DNA) and the vir

region.

The vir region (50 kb) of a Ti- plasmid is responsible for virulence and confers

upon the host Agrobacterium the ability to transmit a natural or genetically

modified T-DNA. Mutational and DNA sequence analysis have shown that this

region can be divided into six complementation groups, to which have been

designated as vir A, B, C, D, E and G (Klee et al., 1982, 1983). The genes vir A

and G are the regulatory genes responsible for the induction of transcription of the

other genes. Their gene products operate as a two component signal



8

transduction system responding to a variety of environmental signals (Stachel and

Zambryski, 1986). Mutations in any of the vir regions genes abolishes T-DNA

transfer and hence virulence. It has also been shown that some of these genes

are not expressed unless the bacterial cells are either mixed with plant tissue or

separated from growing plant tissue by a dialysis membrane, meaning that the

plant tissue provides the inducer factor (Gruber & Crosby, 1993).

The T-DNA is a specific region of the Ti-plasmid or Ri-plasmid that is integrated

into the plant nuclear genome. The integrated T-DNA is transcribed; for the

octopine type Ti-plasmid, eight polyadenylated transcripts have been identified

representing 0,001 % of the total polyadenylated mRNA in the plant tissue and

this has been found by northern blotting experiments. T-DNA transcription is

inhibited by a-amanitin indicating that it is RNA polymerase 11 dependent. Either

polymerase 1 or 111 is also amanitin-sensitive, although at different

concentration. DNA sequence analysis show reading frames that correlate with

these transcripts which are preceded by TATA boxes and in some cases CAAT

boxes and succeeded by AATAAA boxes. The former two sequence boxes are

thought to be involved in initiation of transcription and the latter in polyadenylation

of transcripts in a wide variety of eukaryotes. Four genetic loci in the T- DNA that

map within open reading frames have been identified using transposon and

deletion mutagenesis genetic analysis. These loci are the oes locus encoding the

octopine synthase enzyme, the tmr locus encoding an enzyme involved in
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cytokine biosynthesis. Mutations in the latter locus (rooty mutants) results in

massive root proliferation. The third and fourth loci are the fms1 and fms2 loci

encoding functions involved in auxin biosynthesis and mutations in either of these

loci result in shoot proliferation. The origin (ORI) and conjugation site (CON) are

involved with conjugative transfer and replication of the plasmid within

Agrobacterium (Draper et al., 1988). The Ti-plasmid based vectors have been

developed that have deletions of the onc region ( the genes fms1, tms2 and tmr)

yet retain the boarder sequences that allow T-DNA transfer. T-DNA is also

flanked by 25 base-pair near perfect reapeats and these sequences are thought

to be involved in transfer of the T-DNA to the plant genome since the end points

of the integrated T-DNA are close to these sequences. Removal of the right

border by deletion mutagenesis of the Ti-plasmid abolishes the transfer of T-DNA.

2.1.2 Agrobacterium based transformation systems.

There are two mechanisms involving Agrobacterium transformation, the co­

intergrating system and the binary vector system. The co-integrating system

features two independent plasmids: a Ti-plasmid in Agrobacferium and an

intermediate vector in Escherichia coli (E. coli). Both plasmids have a region of

homology which undergoes recombination to form a large, co-integrated plasmid

after conjugation between Agrobacferium and E.coli (Fig. 2)
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VIR

Receptor plasmid

HOM HOM

Intermediate vector

Figure 2. Schematic diagram of a cointergrative vector system (adapted from Draper et ai, 1988).

Genes of interest are cloned and manipulated in E. coli and, after recombination

with the Ti-plasmid in Agrobacterium, are situated between two T-DNA border

repeats. The E. coli plasmid does not have an origin of replication for

maintenance in Agrobacterium and is not retained without the recombination step.

The example of a co-integrating system is the split-end vector (SEV) system in

which the right and left border sequences reside each on one of the independent

plasmids (Gruber & Crosby, 1993). The two plasmids form a cointergrate

following a single recombination event (Fig. 3). Binary vectors exploit the

observation that when the vir region and the T-DNA region of the Ti-plasmid are

on two separate plasmid replicons the vir region on one plasmid can complement

in trans to effect transfer of DNA to plants (Gruber & Crosby, 1993). In such
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systems the Agrobacterium host strain contains a wild-type Ti-plasmid or

disarmed (tumor genes deleted) Ti-plasmid that carries the vir functions and

a.
K:UlR

nos-npt /I-nos
.,

HiJldlJl
Xhol
Bglll
CllI)
Xbal

EcoRl

b.

pTiB6S.3SEn--=."r-_-r----..;.......'_·1I_,--~----_-L. __
Left Border ::::::J I

I
",

",

BamHl Hpa)

+
c. • Cointegrated SEV T·DNA ..

:J .tL::lm:::-WJ})j; nos~ M~~M%#;Wq;J./II:?)::--. ~

d.
~....---"..,,JlJJ!J!,

- - ~ :;:/:~L1It)(~
plant DNA ~
I. - -- ---plant DNA

........
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Figure 3. Cointergrate formation and plant intergration of plasmid pMON200 using the SEV system: (a)

pTiBS3SE, an engineered Ti plasmid residing in Agrabacterium; (b) restriction map of intemediate vector

pNM0200 residing in E.coli; (c) cointergrated plasmid residing in Agrobacterium after conjugation; (d) T-DNA

intergrated into plant chromosome after transformation; other elements are represented by boxes. (From

Rogers et al., Gene transfer in plants: production of transformed plants using Ti plasmid vectors, in Methods

for Plant Molecular Biology,Weissbach ,A. & Weissbach, H., Eds., Academic Press, 1988, pp. 423)
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serves as a helper. The T-DNA borders are located on a compatible replicon

that will function both in E coli and Agrobacterium (An et al., 1988). The example

is shown in Fig. 4.

T-DNA

+

VIR

Figure 4. Schematic diagram of a binary vector system (adapted from Draper et al., 1988).

The binary plasmid which has been used in this investigation is the expression

vector pBIN 19. This was constructed to contain only border repeats and a

selectable nos-npt 11 sequence, thereby providing multiple cloning sites for the

insertion of foreign genes. The construction of pBIN 19. (Fig. 4), used in this

study to introduce a bacterial GR gene into tobacco will be briefly discussed. The

selectable marker gene npt11 was excised from the bacterial transposon 5,

modified, then ligated between nos promotor and nos polyadenylation site on a

PUC 9 plasmid (Bevan, 1984). This plasmid provided a suitable skeleton on
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which to construct pBIN 19. The right border from the nopaline plasmid, TiT37,

was ligated to the chimeric marker gene sequence, and the left border made flush

with DNA polymerase 1 (Fig. 5).

'Q) 5 3-+- ~

(/)

(j)
C.-
C
0- <r:()

-+- V) :::::: 0:::

:J 0 ....-. V) ECD E
c: Q. 0 (D

--.J 0.. c: c: ~ --.J

pBIN19

10 kb

Figure 5. The expression vector pBIN19 (adapted from Bevan, 1984).
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Both border elements of TiT37, including the selectab!e marker, were then ligated

into the wide host range plasmid pRK 252. The latter contain a type 111

aminoglycoside phosphotransferase gene from Streptococcus for selection in

Agrobacterium. This prototype, called pBIN 6, was modified by replacing a

portion of T-DNA with a fragment of DNA from vector M13mp 19 containing an

array of restriction sites for the cloning of foreign genes (Fig. 5) (Bevan, 1984).

The npt11 gene confers resistance to G418 and the less toxic analogue,

kanamycin (Horsch et al., 1985). The nos promotor has been used extensively to

direct the expression of foreign genes contained on both oncogenic cointegrate

and binary plasmids (Bevan, 1984).

2.1.2.1 The insertion of GR into pBIN 19

The bacterial glutathione reductase gene has been mapped, isolated and

sequenced in earlier studies (Greer & Perham 1986). The GR gene was mapped

and excised as a 2.8 kb Dde1 fragment from the pGR plasmid. The Dde1

fragment was treated with DNA polymerase 1 to create blunt ends and cloned into

the DNA polymerase 1 treated Hind 111 site of a vector M13mp 19. Hind 11 sites

were recreated at both ends of the GR gene. Deletions were subsequently

created at the 5' end of the GDR gene with Bal 31 exonuclease digestion and the

GDR DNA cut with HIND 111. The resulting GDR fragment was inserted into

Sma1/HIND 111 sites of an M13mp 9 vector. After sequencing analysis, the

GDR gene (without the promotor region), was inserted as a Hpa1/HIND 111

fragment into the Hinc11 site of the vector pUC 19 (Kunert et al., 1990). This
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al., 1990). This vector was cloned into the vector pJIT62 designed by Guerinean

and co- worker~(1990) (Fig. 6).
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Plasmid pJIT62, a derivative of pJIT30 is an expression cassette made of a pUC-

derived vector carrying the 35S promotor, corresponding to the co-ordinates

7040-7432 and the CaMV polyadenylation signal, corresponding to the co-

ordinates 7435-126 (Guerinean et al., 1990). GOR was cloned from the

transconjugant as Sst1/Xh01 fragment into the Sst1-Sa/1 site of the poly linker of

pBIN 19 ( Bevan 1984). The transconjugant (fig. 7) was mobilised by the helper

plasmid, pRK2013, containig the Ti-plasmid derivative pAL4404.

~

0-0 <t
E >...0
L 0
0.... 0....

(f) (f)
L{') L{')
(Y) (Y)

> >
~ ~ ~

co eel 0 eel
---.J U Q) U
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5 --.. 3
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>... E
0

0 L
0... 0... a:::

<I) -+- Cl) c
() Q.. () CO 0:: co CO
c: C c: 0:: 0 ~ ---l

TI
: !

____ i '

-------

Figure 7. The pBIN19 transconjugant vector (adapted from Bevan, 1984).
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CHAPTER 3: RESPONSE OF GLUTATHIONE REDUCTASE TO

ENVIRONMENTAL AND CHEMICAL STRESS

3.1 INTRODUCTION

Aerobic organisms are exposed to an atmosphere that contains at least 20%

oxygen. A life with oxygen, while highly efficient, carries with itself a potential

danger. Molecular oxygen inhibits cellular enzymes for instance, it directly

inhibits nitrogenase in Clostridium pasteurinum. The nitrogenase enzyme

depends on maintaining some of its cofactors in a highly reduced state and on

exposure to oxygen. they are irreversibly oxidised and the enzyme is inactivated

(Halliwell, 1981). The best example of the direct effect of oxygen on aerobic

organisms comes from green plants. During photosynthesis, illuminated green

plants fix carbon dioxide into sugars by a complex metabolic pathway known as

the Calvin Cycle. The first enzyme in this pathway, ribulose bisphosphate

carboxylase (rubisco) combines C02 with a five-carbon sugar (ribulose 1,5­

bisphosphate) to produce two molecules of phosphoglyceric acid. 02 is an

inhibitor of this reaction, competing with C02 (oxygenase activity).

While the energetic advantages of life in the presence of oxygen should be

evident, it induces destruction of cell components. The methods of containing it

have attracted considerable research, and were the primary reason for generating

the transformants used in this study. To understand the motivation for this
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transformation, a discussion of oxygen and oxygen scavenging systems is thus

advisable. Such analysis is even more pertinent considering the apparent effects

of oxygen stress on the expression of GR in these transgenic plants (Whittaker,

1990).

3.1.1 THE CHEMISTRY OF OXYGEN AND ITS DERIVATIVES

In general the rates of enzyme inactivation by 02 in aerobic cells are too slow and

too limited in extent to account for the rate at which toxic effects develop. Also

many enzymes are totally unaffected by oxygen. The most damaging effects of

02 could be attributed to the formation of oxygen free radicals (Gutteridge and

Halliwell, 1989). A free radical can be defined as any species capable of

independent existence that contains one or more unpaired electrons, which cause

the species to be attracted slightly to a magnetic field, and sometimes makes the

species highly reactive. Radicals can be formed by the loss of a single electron

from a non-radical, or by the gain of a single electron by a non-radical. This can

easily happen when a covalent bond is broken and one of the electrons from each

of the pair shared remain with each atom, a process known as homolytic fission.

When the reduction of oxygen proceeds in univalent steps, reactive intermediates

are produced. Among these are superoxide (02-), hydrogen peroxide (H20 2)

and the hydroxyl radical (OH-). Figure 8 depicts the pathways and interrelations

between substrates and oxy-intermediates.
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Figure 8. Pathways in 02 reduction: formation of oxygen intermediates (from Salin, 1988)

It is through these species that oxygen exerts its effects, and thus an

understanding of this group is required before an accurate assessment of the

dangers of oxygen can be made.

3.1.1.1 Superoxide

Superoxide is produced either through the univalent reduction of oxygen or the

univalent oxidation of H202. It can also be enzymatically produced by some



20

flavoprotein dehydrogenases or non-enzymatically through the autoxidation of

substrates such as ferredoxins hydroquinones, thiols and reduced hemoproteins

(Fridovich, 1974). Superoxide is not as toxic as other oxy-radical species. It,has

been implicated as an agent in a number of oxygen-mediated toxic reactions.

These include lipid peroxidation, membrane damage, cellular toxicity and single

strand breaks in DNA leading to mutations.

Among a few effects directly attributed to the superoxide anion are the

inactivation of catalase, glutatione peroxidase and NADP(H) (Fridovich, 1986). It

appears that superoxide anion exerts its effect through the formation of other

species, notably hydrogen peroxide.

3.1.1.2 Hydrogen peroxide.

Hydrogen peroxide while toxic, it is not an free radical. It is a weak oxidising

agent, capable of oxidising thiol groups of proteins. Several Calvin cycle

enzymes within the chloroplast are extremely sensitive to hydrogen peroxide and

high levels of it directly inhibit carbon dioxide fixation (Kaiser, 1979). The site of

inhibition seems to be the fructose and sedoheptulose bisphosphatase enzymes,

which are oxidised by hydrogen peroxide to forms that cannot participate in the

Calvin cycle (Halliwell, 1985).

Like superoxide, it can act as both an oxidant and mild reductant. It does not

exhibit radical properties. In general, hydrogen peroxide has a low reactivity and
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toxic effects are frequently seen only at non-physiological concentrations. In the

presence of metal catalysts the toxicity is enhanced, perhaps, due to a metal­

catalyzed hydroxyl radical formation.

Hydrogen peroxide and the superoxide anion can react in a "Haber-Weiss"

reaction to generate the hydroxyl radical (OH-), which is the most potent oxidant

known (Scandalios, 1990; Bowler et. ai, 1992).

(Haber-Weiss reaction)

3.1.1.3 Hydoxyl radical

The product of a univalent reduction of hydrogen peroxide is the highly reactive

hydroxyl radical (OH·) This is a weak acid and has a pK similar to that of

hydrogen peroxide (11,85). It is one of the strongest oxidising agents and reacts

at almost diffusion-controlled rates (k>199M-1 s-1) with most organic compounds

(Gutteridge and Halliwell, 1989).

This is the most reactive species known to chemistry. It will attack and damage

almost every molecule found in living cells. It can hydroxylate the purine and

pyrimidine bases present in DNA so giving rise to mutations and can abstract

hydrogen radicals from membrane lipids and, as a result, trigger peroxidation.
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3.1.1.4 Singlet oxygen

Molecular oxygen or dioxygen (02) in the ground state is a triplet molecule

containing two unpaired electrons with parallel spins. Electronically excited

species of oxygen are formed when one of the outer shell electrons is elevated to

a higher orbital and the spin is inverted, the resulting antiparallel spin is referred

to as the singlet state. The orbital depiction of ground state triplet and the two

excited singlet states as well as the energy levels above ground state are as

follows:

1~g

3~g

~G, kJ

155

92 1 1

1 1

Fig.8 Pathways in oxygen reduction.

Because 1~g is stable as compared to 1bg state because of its half-life, the

singlet oxygen reactions involve the former species. Although singlet oxygen is

not a free radical it can be formed in some radical reactions and can trigger off
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others. The higher electronic excitation states formed on illumination of the

chlorophyll molecule are capable of transferring energy into oxygen and this leads

to the singlet state of oxygen. It can interact with other molecules in essentially

two ways: it can either combine chemically with them, or transfer its excitation

energy to them returning to the ground state while the molecule enters an excited

state. Singlet oxygen species are extremely reactive and cytotoxic in all

organisms. They can react with unsaturated fatty acids to cause peroxidation of

essential membrane lipids in the plasmalemma or intracellular organelles. This

leads to the leakage of cellular contents, rapid desiccation and cell death.

Intracellular damage can affect respiration in mitocondria, cause pigment

breakdown, and cause loss of carbon-fixing ability in chloroplasts (Halliwell, 1985;

Scandalios, 1993).

In addition to normal metabolic activity, cellular exposure to various environmental

conditions (Fig. 9) such as UV light factor and other forms of radiation, herbicides

such as methyl violegen (paraquat) and diquat, temperature fluctuations and

various other stresses are known to induce free radical formation in most aerqbic

organisms (Scandalios, 1993).
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Figure 9. Scheme showing some initiators of oxyradicals and the biological consequences leading to

biological dysfunctions and cell death.
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3.1.2 THE DEFENCE MECHANISM AGAINST OXIDATIVE STRESS IN

CHLOROPLASTS.

The fact that hydroxyl radicals are far too reactive to be controlled easily, aerobic

organisms eliminate the less reactive forms as efficiently as possible, the species

such as hydrogen peroxide and superoxide are removed before they have the

opportunity to produce the hydroxyl radical.

In view of the susceptibility of chloroplasts to oxidative damage, one would

expect to find antioxidant protective mechanisms in these organelles. Two

antioxidant systems are found in the chloroplasts: the thylakoid membrane based

(non enzymatic) system (Halliwell, 1987) and the stromal based antioxidant

system (Asada-Halliwell pathway). These two systems will be discussed

separately.

3.1.2.1 The thylakoid membrane based antioxidant system

The thylakoid membrane is very rich in a-tocopherol (vitamin E) and chloroplasts

appear to be the site of synthesis of this substance in plants. Vitamin E interrupts

the chain reaction of lipid peroxidation by scavenging the peroxy and alkoxy

radicals. It also can quench and scavenge singlet oxygen. The free radical that

is formed from chain-breaking antioxidation of vitamin E can be reduced back to

vitamin E by ascorbic acid. This is likely to happen in chloroplasts since the

stroma contains vitamin C at millimolar concentrations.
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Carotenoids are another component of the thylakoid membrane. There are two

main types ( ~-carotene and xanthophylls), which are oxygen-containing

derivatives of carotenes. Carotenoids can quench singlet oxygen extremely

rapidly (Knox and Dodge, 1985; Asada et.a!. , 1987). As integral components of

the light harvesting complex they function mostly to block free radical chain

initiation, and act as energy traps to deactivate species such as triplet chlorophyll

and singlet oxygen (Fig. 10).

THYLAKOID

THYLAKOID MEMBRANE

NADP· NADPH

MDA __.. .. M_:~._ -,- _. '.OHA-.__-_-_-_-__~,Gscr
NADPH I , iOHAR' GSSG

\ . --'

Heat y
Ilo-carotene °2 '\~
~,J ~'chI3

°2 Ilo-carotene /

oo~ H"'il'
~'~\...l VitE-OH Chi

ASC

STROMA

Figure 10. The chloroplast antioxidant system. Diagram indicates the interaction between the membrane

and stromal free radical scavenging pathways. In the stroma enzyme catalyzed reactions are indicated by

solid lines, while broken lines indicate non enzymatic reactions. Enzyme components are surrounded by

boxes. Abbreviations are as in the text (adapted from Badenhorst, 1993).
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3.1.2.2 Stromal based antioxidant system.

The stromal antioxidant system comprises a myriad of radical-quenching

reactions. The crux of the cycle is the Asada-Halliwell pathway which, through a

series of enzyme catalysed-reactions, uses photosynthetically-produced

reductants to maintain the antioxidants, ascorbate and glutathione, in the reduced

state. Peripheral to this engine are the interactions of ascorbate and glutathione

with free radicals, and the activities of other enzymes such as superoxide

dismutase.

Superoxide dismutase.

Superoxide produced in the chloroplast is dismutated by & superoxide dismutase

enzyme. This reaction is called the disproportionation of superoxide:

This enzyme is present in all subcellular compartments where oxidative stress is

likely to arise, especially in the chloroplast stroma (Bowler et aI., 1992). The

action of superoxide dismutase results in the formation of a higher concentration

of hydrogen peroxide, which have a negative feedback on itself. The increased

concentrations of hydrogen peroxide may lead to reaction with the superoxide

and the formation of the hydroxyl free radical. Thus the superoxide dismutase

activity will be meaningless without a system that functions at least as effectively
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to remove the resultant hydrogen peroxide which also blocks the Calvin cycle. In

plants this is achieved by the Asada-Halliwell cycle.

The Asada-Halliwell cycle.

Of more importance in the context of oxidative stress is a chloroplast localized

ascorbate specific peroxidase activity. Together with glutathione reductase and

dehydroascorbate reductase it is thought to remove hydrogen peroxide through a

mechanism termed the Asada-Halliwell pathway (Fig. 11).

The action of superoxide dismutase results in the formation of hydrogen peroxide

and is intimately linked with this pathway. Glutathione reductase, which is

another key component of this pathway, has a regulatory function because of the

dependence of its activity on the availability of NADPH. Glutathione reductase is

found in chloroplasts, mitocondria and the cytoplasm, where it cooperates with

SOD to remove superoxide radicals. Besides dehydroascorbate, ascorbate

peroxidase activity also generates monodehydroascorbate.

The ascorbate radical is converted back to ascorbate by monodehydroascorbate

reductase which uses either NADPH or NADH as reductant.
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Ascorbate Monodehydroascorbate

)
Dehydroascorbate
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GSSG GSH

2 NADPH 2 NADP+

Figure. 11 Inducible reactions of the Halliwell-Asada Pathway. Abbreviations: GSH, reduced glutathione;

GSSG, oxidised glutathione. Enzymes catalysing the reactions are indicated by the following numbers: 1,

superoxide dismutase; 2, ascorbate peroxidase; 3, dehydroascorbate reductase; 4, glutathione reductase.
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3.1.3 THE EFFECT OF PARAQUAT ON GR.

Paraquat is a bipyridal herbicide, which means that the structure contains two

pyridine rings. There are aromatic rings in which one carbon atom is replaced by

a nitrogen. A methyl group is attached to each nitrogen giving a full chemical

name as 1,1'-dimethyl-4,4'-dipyridiniumchloride (Fig. 12).

2'

Figure 12. The chemical structure of Paraquat dichloride.

As is shown in the structure, paraquat is usually manufactured as a salt with

chloride (CI-) ion. It seems feasible that methyl violegen should influence the

Asada-Halliwell pathway by the normal production of superoxide from

photosystem 1. This compound increases the oxidative stress directly by

generating oxygen radicals. Also known as methyl violegen (1, 1'-dimethyl-4,4'­

bipyridinium chloride), paraquat is a redox-active compound that is photoreduced

by photosystem 1 and subsequently reoxidised by transfer of its electrons to

oxygen, forming the superoxide anion (Halliwell & Gutteridge, 1989). Highly

reactive hydroxyl radicals and related species produced from this superoxide are
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presumably the agents that cause cellular death. In fact, paraquat can cross the

chloroplast envelope easily and can accept electrons from the non-haem-iron

proteins associated with photosystem 1 and also from the flavin at the active site

of ferredoxin-NADP reductase, in both cases becoming reduced to its radical

form. On reaction with oxygen, the radicals disappear because they react with

oxygen extremely rapidly (Fig. 13).

Bp2+ electron-transport chain (1 electron) BP+

Figure 13. Reactions involving paraquat and its radicals. BP stands for paraquat.

The treatment of illuminated chloroplasts in vitro with paraquat leads to a rapid

uptake of oxygen as methyl violegen is continuously reduced and reoxidised

(Gutteridge & Halliwell, 1989). The oxygen is converted into hydrogen peroxide

by chloroplast superoxide dismutase. For the reason that chloroplasts contain no

catalase, hydrogen peroxide is dealt with by the Asada-Halliwell pathway, but

glutathione (GSH) and ascorbate are quickly oxidised and this leads to the

inactivation of the Calvin cycle enzymes such as fructose bisphosphatase, and as

a result of this carbon dioxide fixation comes to a halt. The other reason for the

inhibition of C02-fixation is that diversion of electrons from photosystem 1 onto
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paraquat will decrease the supply of NADPH both for the Calvin cycle and for

glutathione reductase activity (Fig. 14).

Cyclic
electron
flow

02" (H20 2)

ROUTE B reduction of
02 by reduced
ferredoxin

ROUTE C formation
ofNADPH

Ferredoxin
NADPH­
reductase

Reduced ferredoxin

NADPH

0;
ROUTE A direct
reduction of02

Figure 14. The effect of paraquat on the Calvin cycle (from Halliwell & Gutleridge, 1989).
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Lipid peroxidation and other cellular toxic effects such as leaf death follow. A

number of flavoprotein enzymes, including glutathione reductase, have been

experimentally proved or shown to be capable of reducing methyl violegen. If it

can penetrate into the active sites of the enzymes, 1,1 '-dimethyl-4,4'-dipyridinium

dichloride seem able to take electrons from the flavin ring and then, in the

presence of oxygen, to generate the superoxide anion.

3.1.4 AIMS OF THE PRESENT INVESTIGATION.

The objective of the present investigation was the Agrobacterium tumefaciens­

mediated transformation of Nicotiana tabacum (tobacco) using pBIN19 constructs

carrying the bacterial gene for chloroplastic glutathione reductase (GR).

Essentially GR provides the connection between the antioxidant system and

photochemically -produced reductant (NADPH) in the chloroplasts and this is vital

to the continued operation of the Asada-Haliwell pathway. In addition it would

seem that the GR is the rate limiting step in dehydroascorbate reduction

(Jablonski & Anderson, 1981). This suggests that the effectiveness of the

enzyme antioxidant cycle may be limited by the degree of GR activity. The

second objective was to test the resultant transgenic plants for the level of this

enzyme and to select and clone high expressing individuals. The third objective

was to study the response of glutathione reductase to environmental and

chemical stresses using transgenic plants as a research tool. The fourth

objective was to indirectly measure toxic oxygen species formation by measuring

the chlorophyll content.
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CHAPTER 4: MATERIALS AND METHODS. I
1.....--- _

4.1 TRANSFORMATION STUDIES

4.1.1 Bacterial culture and plasmid preparation.

Agrobacterium tumefaciens (strain lBA4404 pBIN19/gor T2), containing the

plasmid pBIN19/gor, which has a glutathione reductase gene with a chloropastic

leader sequence (transit peptide), was maintained at 28oC, on GT medium,

supplemented with 100/lg mr1 Kanamycin, 100/lg ml-1 Rifampicin and 200/lg

ml-1 Streptomycin.

Plasmid pBIN19/gor T2 was isolated using a modified method of Birnboim and

Doly (1979). A. tumefaciens was grown by innoculating 5 ml of GT broth

containing the appropriate antibiotics, with a 48 hour culture of the Agrobacterium

strain. The broth was then incubated at 280 C in a shaking environmental

incubator for 28 hours and 1.5 ml was centrifuged for 1 minute in an Biofuge B

microfuge (Heraeus Sepatech, Germany) at 11000 rpm. The remainder of the

overnight culture was stored at 4oC. The medium was removed by aspiration,

leaving the bacterial pellet as dry as possible. The bacterial pellet was

resuspended by vortexing in 100 /ll of an ice-cold solutionof 50 mM glucose, 10

mM EDTA and 25 mM Tris (pH 8.0), stored for five minutes at room temperature

with the top of an eppendorf tube open. 200/ll of a freshly prepared solution of



35

0.2 N NaOH and 1% SOS was added. The top of the tube was closed and

contents mixed by inverting the tube rapidly two or three times. This was then

stored for 5 minutes on ice. Aliquot of 150 III of an ice-cold solution of 5M

potassium acetate (~pH 4.8) was added. The cap of the tube was closed and

tube gently vortexed in an inverted position for 10 seconds and then stored on

ice for 5 minutes. The tubes were then centrifuged at 40 C in an eppendorf

centrifuge and supernatant transferred to a fresh tube. An equal volume of

phenol/chloroform was added and the solution mixed by vortexing. After

centrifuging for 2 minutes in an eppendorf centrifuge, the supernatant was

transferred to a fresh tube. Two volumes of absolute ethanol was added at room

temperature to precipitate DNA. This was then mixed by vortexing and allowed

to settle at room temperature for 2 minutes. Thereafter the tubes were again

centrifuged for 5 minutes in an eppendorf centrifuge at room temperature. The

supernatant was removed and the tube was placed in an inverted position on a

paper towel to allow fluid to drain away. About 1 ml of 70% ethanol was added,

the tube was briefly vortexed and then centrifuged for one minute to wash out

salts (this was done two or three times). The supernatant was again removed

and the pellet briefly dried in a vacuum dessicator. Exactly 50llL of TE (pH 8.0)

containing DNAse-free pancreatic RNAse (20ll9 /ml) was added and the tube

briefly vortexed. The quality of DNA was assessed by determining the absorption

at 260 nm and 280 nm using a Beckman DU 7500 spectrophotometer. The

plasmid was stored at -200 C until required.
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4.1.2 Restriction digest and DNA agarose gel electrophoresis.

All restriction digests and DNA agarose electrophoresis were performed using

enzyme supplied by Boehringer Mannheim, Germany. DNA was digested with

one unit of restriction enzyme per ~g target DNA for two hours at 37oC. After 2

hours enzymes were inactivated by heating at 650 C in a water bath for 10

minutes followed by 5 minutes chilling on ice. Gel electrophoresis was performed

on horizontal (100 x 75 mm) 1% (w/v) agarose gel using a Hoefer Scientific Mini

instrument. Agarose used was analytical grade agarose, supplied by Biorad,

USA. The electrophoresis buffer used was 1 x TBE (89 mM Tris, 89 mM boric

acid and 2 mM EDTA, pH 7.0). Exactly 16~L of DNA per well in one third loading,

buffer (1.46 M sucrose, 4 M urea, 1.5 mM bromophenol blue ( Merck, Germany),

50 mM EDTA, pH 7.5-8.0) was loaded onto wells. Electrophoresis was performed,

at 70V until the dye front had migrated to within two cm of the end of the gel.

The gels were stained in 0.5 ~g mL-1 ethidium bromide for 20 minutes, and

subsequently destained in distilled water for 30 minutes prior to vieWing with a

Hoefer ultraviolet (300 nm) transilluminator. Results were recorded

photographically with a Nikon SLR camera equipped with a 1 x Red filter and

Kodak Tmax 400 ASA film.

4.1.3 Leaf disc transformation.

Green house-grown plants of tobacco (Nicotiana tabacum var Samsun) were

used for transformation. Plant transformation was carried out using a modified
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method described by Horsch et al. (1985) using the Agrobacterium tumefaciens

strain LSA4404. Mature tobacco leaves were removed from 10 week old plants

and surface-sterilized for 15 minutes with 1% sodium hypochlorite. After sterile

rinsing, leaf discs of diameter 10 mm were cut and innoculated for 20-40 minutes

with an A. tumefaciens plasmid, a plasmid construct containing a glutathione

reductase gene with a chloroplastic leader sequence (LSA 4404 pSIN 19/9or T2)

that had been grown for 24 hours at 28°C in GT medium ( Yeast extract, 3g L-1,

Oxoid, England; Tryptone, 10g L-1, Oifco, USA; Glucose, 2g L-1, SOH, England;

Sodium glycerophosphate, 10g L-1, Merck, Germany; Tris, SOH, England; CaCI2,

0.04 gL-1, SOH, England, pH 7.4) supplemented with 100f.!g mL-1 kanamycin,

100 f.!g mL-1 Rifampicin and 200 f.!g mL-1 Streptomycin. The Agrobacterium was

pelleted by centrifugation and resuspended in 1x MS (Murashige and Skoog,

1962,) containing 3% sucrose. After an incubation of an hour, the leaf discs were

placed on agar plates of 1x MS without antibiotcs for 24 hours at 25°C with a

16:8 hr day:night schedule. Leaf discs were then transferred to selection medium

of 1x MS supplemented with antibiotics (500f.!g mL-1 Cefotaxime and 50f.!g mL-1

kanamycin). Callus was initiated in the dark for 7 weeks after which the culture

tubes were transferred to a 16 hour day / 8 hour night schedule at 25°C to initiate

shoot formation. Subculturing onto fresh medium was performed weekly if there

was an Agrobacterium growth.
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4.1.4 Plant tissue culture and growth conditions.

Transformed tobacco (Nicotiana tabacum var Samsun) seeds T131 B containing a

high cytoplasmic glutathione reductase (GR) activity, and GOR10T, containing

high cytoplasmic glutathione reductase and chloroplastic superoxide dismutase

were used in this study. The T131 B transformants were generated by Mr. M.

Roberts (Biology Department, University of Natal, Durban), while the GOR10T

plants were produced by Prof. Dvora Aviv (Israel Institute). Seeds were

germinated in aseptic conditions and screened for kanamycin resistance

according to the method of Horsch et al. (1984). Resistant plants were

transferred to the greenhouse. Control seeds [SAMX (Samsun x Xanthi )

provided by Prof. Dvora Aviv (Israel Institute)] were sown directly onto potting soil

and mantained under greenhouse conditions.

Two to three weeks before enzyme analysis, plants were transferred to growth

chambers (Conviron Model EF7, controlled environments, USA), and grown under

a 16 hour light 8 hour dark regime at 250 tJmol m-2 s-1 and 25°C. This provided

ample time for the plants to acclimatize to the photoperiod. Plants were watered

as above, when required.
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4.1.5 Screening for the highest expressors and selection of transgenic

plants

Leaf discs (10 mm in diameter) were obtained from greenhouse plants using a

cork borer. Thereafter the discs were surface sterilized in 1% (v/v) commercial

bleach (Jik) and 0.1 % (v/v) tween 20 (Merck, Germany) for 15 minutes. Discs

were then rinsed two or three times with sterile water before being placed on 1 x

MS (Murashige and Skoog, 1962) induction medium [(consisting of 30 g L-1

sucrose, 1 mg L-1 naphthyl acetic acid (NAA), 10 g L-1 agar, pH 5.6) and

kanamycin (100 I.Ig ml-1 )] in 65 mm Petri dishes (Carbi, South Africa). The petri

dishes were placed in the light under a 16 hour light, 8 hour dark photoperiod at

200 I.Imol m-2 s-1 and 25°C, for three weeks to allow embryos to form.

After three weeks, embryos were excised and placed on germination medium

consisting of half strength MS and 30 g L-1 sucrose, 10 g L-1 agar, pH 5.6) in

tubes (100 x 25 mm), in the light, under the same conditions specified above.

Embryos were allowed to germinate and when the shoots were about 50 mm

high, they were transferred to pots containing moistened potting soil. The plants

were enclosed in plastic bags and hardened off under greenhouse conditions.

The bags were kept closed for a week but, subsequently, were opened slowly,

allowing plants to acclimatize to the moisture differential. Once plants were fUlly

established the bags were removed. Plants were watered with Long Ashton

solution (Hewitt, 1952) (consisting of 0.208 g L-1 NaH2P04. 2H2 , 0.369 g L-1

MgS04· 7H20, 0.00223 g L-1 MnS04 . H20, 0.00024 g L-1 CuS04 . 5H20,
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0.00029 9 L-1 ZnS04' 7H20, 0.00186 9 L-1 H3B3, 0.00003 9 L-1(NH4)6Mo7024'

4H20, 0.00002 9 L-1 CoS04. 7H20, 0.00585 9 L-1 NaCI, 0.505 9 L-1 KN03 , 0.820

9 L-1Ca(N03h· 4H20, and 0,03 9 L-1 FeEDTA).

4.2 BIOCHEMICAL STUDIES.

4.2.1 Tissue harvesting and processing

Leaf discs (10 mm in diameter), were cut from the uppermost fully expanded

leaves of the three clones, randomized and placed in glass petri dishes containing

1mM CaS04. Disks were either kept in the dark or exposed to low (200 Ilmoles

m-2S·1) or high (1200 Ilmoles m-2 S-1) light levels in the absence or presence of 5

IlM methyl violegen for 5 hours. Leaf discs were also taken for immediate

enzyme analysis.

4.2.2 Glutathione reductase assay.

Glutathione reductase was extracted from leaf tissue according to the procedure

of Smith et al. (1988). Previously-collected leaf samples were ground in ten

volumes of extraction buffer ( 0.1 M potassium phosphate buffer (pH 7.5)

containing 0.5 mM EDTA) using a mortar and pestle on ice. The extract was then

centrifuged for 5 minutes at 11000 rpm and 4°C in a Biofuge B microfuge

(Heraeus Sepatech, Germany). The supernatant was promptly removed and

used to assay enzyme activity.
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The GR assay was performed according to the procedure of Carlberg and

Mannervik (1985). Extract (100 IJL) was added to 500 IJL of the assay buffer (0.4

M potassium phosphate buffer (pH 7.5) containing 1mM EDTA), 100IJL 2 mM

NADPH (Boehringer Mannheim, Germany), 1001J1 16 mM GSSG (Boehringer

Mannheim, Germany). The decline in absorbance of NADPH at 340 nm was

followed spectrophotometrically using a Beckman (USA) DU7500

spectrophotometer. Rates of oxidation of NADPH were calculated using the

DU7500 kinetics package and the molar extinction coefficient of 6.22 x 106 cm2

for NADPH (Merck index). GR activity was expressed on a protein basis after

extract protein levels were determined by the method of Bradford (1976), using

bovine serum albumin (Boehringer Mannheim, Germany) as protein standard.

4.2.3 Superoxide dismutase assay.

Sample preparation.

Leaf tissue was harvested in the same manner as in the GR assay. Leaf material

was ground in two volumes of 0.05 M phosphate buffer (pH 7.8) containing 0.5

mM EDTA plus 1.4 gram isoascorbate per 100 mL of buffer just before use.

Homogenate was centrifuged at 11000 rpm for 30 minutes in a Biofuge B

microfuge (Heraeus Sepatech, Germany) and the clear supernatant assayed for

protein content according to the method of Bradford (1976).
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Native- polyacrylamide gel electrophoresis.

Non-denaturing PAGE was performed according to the method of Laemmli

(1970). Aliquots (90-11 OlJg) with 1/10 volume 0.1 % bromophenol blue and 50%

sucrose tracker dye (Merck, Germany) were loaded onto 1.5 mm thick non­

denaturing 10% polyacrylamide gels containing 2.7% bis-acrylamide (BOH,

England), 0.375 M tris (pH, 8.8) and 0.3 IJL L-1 TEMEO (Sigma, USA), 0.5 g L-1

ammonium persulphate (Biorad, USA», with a 4% polyacrylamide stacking gel

containing 2.7% bis-acrylamide (BOH, England), 0.125 M tris containing(pH 6.6),

0.3 IJL L-1 TEMEO (Sgma, USA) and 0.5 g L-ammonium persulphate (Biorad,

USA). Gels were assembled in a SE 600 Vertical Slab Electrophoresis Unit. The

gel solution was degassed (KF Neuberger vacuum pump) for 5 minutes, before

adding TEMEO and ammonium persulphate. The solution was poured into the

assembled glass plates (16 cm x 18 cm) to a height of about 14 cm and allowed

to polymerise at room temperature. Separating gel was overlayed with a

deaerated stacking gel solution .

Running buffer containing Tris (0.025 M, pH 8.3) and glycine (0.192 M) was

added to the chambers and gels subjected to electrophoresis at 4mA for 10 hours

using PS 500X power supply (Hoefer Scientific Instruments, USA). The first gel

was stained for protein in 0.25% Coomassie Blue G-250 for 15 minutes and

destained in 7% acetic acid and 5% methanol for 25 minutes. For the

quantification of gels, the protein separations were scanned with a GS 300

Oensiometer at a speed of 13.5 cm / min.
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Superoxide dismutase staining

Solution A [(19 ml Wing buffer x 4 (0.2 M Na phosphate buffer pH 7.8, 4 mM

EDTA), 57 ml H20, 16 mg Nitroblue Tetrazolium)] was mixed with 40 ml of

solution B [( 40 ml Wing x 1 (10 ml of Wing x 4 + 30 ml of H20), 10 mg

Riboflavin)] and 0.2 ml of TEMED (to start the reaction) and this solution was

immediately poured onto the gels which were transferred into small plastic boxes.

The boxes were then covered with aluminium foil and gently shaken for 40

minutes. The gels were then transferred onto a light box, light was turned on for

5-10 minutes. The yellow background colour turned purple. Where SOD was

present bands remained colourless. The gels were kept in 7% acetic acid until

they were scanned with a GS 300 Densiometer.

4.2.4 Chlorophyll assay.

For chorophyll determination 200lll extract (same extract used for GR assay)

was mixed with 2.8 III 80% acetone and centrifuged for five minutes at 11000

rpm and 4°C in a Biofuge B microfuge (Heraeus Sepatech, Germany). The

supernatant was promptly removed and the absorbance was read at 652 nm

using a Beckman (USA) DU 7500 spectrophotometer. The chlorophyll

concentration was calculated using the DU7500 kinetics package.

4.3 STATISTICAL ANALYSIS

Estimates of sample variability are provided in terms of the standard

deviation(SD) of the mean. For each plant the assay was repeated three times.
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I CHAPTER 5 : RESULTS I1...- __

5.1 INTRODUCTION

Glutathione reductase (GR) is believed to be a rate-limiting enzyme in the plant

chloroplast antioxidant system (Jablonski & Anderson, 1981). To test this

hypothesis, transformed tobacco plants containing either enhanced chloroplastic or

cytoplasmic GR activities and enhanced cytoplasmic GR plus chloroplastic SOD

activity were subjected to paraquat treatment at two light intensities and in the dark.

Plants with high cytoplasmic gor expression with and without SOD were grown

from seed and propagated by tissue culture. Plants with high levels of chloroplastic

gor expression were produced by Agrobacterium transformation. The results

section will first highlight the problems associated with this transformation, discuss

plant selection and finally report on the effects of paraquat in the light and dark.

5.2 TRANSFORMATION STUDIES

5.2.1 Restriction analysis of the T-DNA of pKG2

The restriction map derived from the theoretical sequence compilation (Paul

Badenhorst, 1993 Msc reference) is shown in Fig. 15A. This was found from the

information of the pBIN19 binary vector construction ( Bevan, 1984).

It was suggested that Eeo R1 and Hind 111 should be used for restriction analysis

of the T-DNA of pKG2 since the theoretical restriction indicated that Hind 111 and

EeoR1 sites occurred in the T-DNA of pKG2 (Fig. 15B).
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Figure 15. (A) The restriction map derived from the theoretical sequence compilation (Badennhorst, 1995).

(B) Lane 1 is the molecular weight marker of EcoR1/Hind111 digestion of j,-ONA. Lanes 2 and 3 is pKG2

digested with EcoR1. Lanes 5 and 6 is pKG2 undigested. Lanes 7 and 8 is the digestion of pKG2 with

Hind111. 12111 was loaded on each lane and the molecular weight marker loaded on lane 1 was 3.5111.

As there was only one band in each lane the DNA sequence could not be

successfully cut with these two enzymes.
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5.2.2 Plant selection.

Seeds of transgenic plants were germinated in vermiculite under greenhouse

conditions to obtain plants which would be screened for the highest expressors of

gor and sod (Fig 16A and B). Transformants used in this study were the T131Bs

(cytoplasmic gor transformationts), GOR10Ts (cytoplasmic gor and chloroplactic

sod transformants).

Germination on kanamycin was used as a primary screen for transgenic plants.

Plants that germinated on kanamycin containing medium were tested for the ability

to root on kanamycin-containing medium. This was done because the T-DNA

carries an antibiotic resistance gene for the selection of transformed cells, called a

selectable marker gene, and this confers resistance to the aminoglycoside

antibiotic kanamycin, because it encodes the bacterial enzyme neomycin

phosphotransferase.

Fig. 16A shows the germination of the seeds of transformed plants in vermiculite

and in Fig. 16B plants from vermiculite have been transferred to pots before plant

selection is done.

As a first step in plant selection, GOR1OT transformants which had been hardened

off under greenhouse conditions, were assayed for glutathione reductase activity

(GRA). Plants number 1 and 10 are control plants (SamX) and plants number 2-9

are transformants (Table 1).
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A

B

Figure16. Plant selection. (A) Germination of seeds in vermiculite. (8) Plants transferred to pots with

potting soil.
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Table 1. GRA of 10 GOR10T plants expressed as per mg protein. Plants number 1 and 10 are the controls

(untransformed plants) and n is the number of separate GRA determinations on each plant.

Plant number Mean GRA (nmoles n

NADPH/min/mg

protein)

1 50±5 3

2 139±16 3

3 167±12 3

4 143±15 3

5 187±16 3

6 190±18 3

7 181±12 3

8 179±17 3

9 180±23 3

10 49±5 3

As is seen in this table, plant designated 6 had the highest GRA



49

To determine the highest expressor of the sod enzyme, 8 GOR10T transformants,

as in Table 1, were assayed for sod using Native PAGE (Fig. 17).

Figure 17. Native PAGE showing the SOD assay of the 8 GOR10T and two control plants selected. Control

plants (lanes 1 and 10) and transformants expressed SOD activity. The levels of the cytoplasmic isoform (a)

was similar in all plants. Transformants had higher chloroplastic activity due to additional expression of

bacterial SOD (b). The third isoform (c), situated in the cytoplasm, was equally expressed in all transformants

but expressed at a lower level in the controls.

GOR10T and T1318 plants with the highest activity of SOD and GR, which were

cloned and screened for kanamycin resistance and later hardened off in
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GOR10T and T131B plants with the highest activity of SOD and GR were cloned

and screened for kanamycin resistance and later hardened off in greenhouse

conditions for further experimental usage. Fig. 18 demonstrates germination and

rooting in kanamycin containing medium that confirms the presence of the

neomycin phosphotransferase gene in the selected clones.

A

B

Figure 18. Screening for kanamycin resistance. (A) Germination on kanamycin containing medium. (8)

Rooting on kanamycin containing medium.
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5.3 BIOCHEMICAL STUDIES

5.3.1 Effect of paraquat on GRA of transgenic plants exposed to different

enviromental conditions.

Paraquat increases the oxidative stress directly by generating oxygen radicals

(Halliwell & Gutteridge, 1989). It is a redox-active compound that is photoreduced

by photosystem I and subsequently reoxidised by transfer of its electrons to

oxygen, forming the superoxide anion which is presumed to produce highly

reactive hydroxyl radicals and related species. These active oxygen species are

involved in the process of cellular death. The addition of paraquat will therefore

increase oxidative damage that will further enhance damage under environmental

stress (e.g. high light intensity). Under environmental stress the activity of GR

increases ( Asada & Takahashi, 1987). Also, it is hypothesized that GR is the rate

limiting step in the antioxidant pathway (Jablonski & Anderson, 1981).

To test this hypothesis and the relationship between SOD, the first enzyme in the

pathway, and GR, the two different transformants ( enhanced cytoplasmic GR

activity, and enhanced cytoplasmic GR activity and chloroplastic SOD activity) were

subjected to paraquat (10 f.lM methylviolegen). Experiments were conducted in the

dark (no or little effect), low light (paraquat stress) and high light ( light and

paraquat stress).
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As a first step the response of GR to darkness in the presence and absence of

methyl violegen, was investigated. Leaf discs were soaked in 10 IlM methyl

violegen and kept in the dark for five hours and assayed for GR activity (Fig. 20).

Transgenic plants showed higher GRA than did controls. Also, methyl violegen

had no effect on GRA in the dark.
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Figure 20. The effect of methyl violegen on GRA of T131 B transformants put in darkness for 5 hours.

[Untransformed plant without Methyl violegen (0), untransformed plant with methyl violegen ( D ), a high

expressing transformant T131B without Methyl violegen (e) and a high expressing transformant T131B with

Methyl violegen (.)]' Each point represent the mean, n=3 and bar represents standard deviation..
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To examine GR response in T131 B transformants treated with methyl violegen

and kept under low light intensity, GRA was assayed in leaf discs incubated in the

presence and absence of 10 ~M Methyl violegen under 200 ~mole m-
2

S-1 over a

five hour period (Fig. 21). The presence of methyl violegen had little effect on

GRA in the light and dark in either control or transformed plants. After five hours

there appeared to be a small increase in GR activity in transformed tissue.
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Figure 21. Effect of methyl violegen on T1318 transformants placed under low light intensity for five hours.

[Untransformed plant untreated with Methyl violegen (0), untransformed pla"t with Methyl violegen (), a

high expressing transformant T1318 untreated with Methyl violegen (e) and a high expressing itransformant

T1318 with Methyl violegen (.)]' Each data point represents the mean, n=3, bar represents standard

deviation.
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GRA was also assayed in leaf discs of T1318 transformants and control plants

treated with paraquat and subjected to high light intensity (1 000 ~mole m-
2

S-1 )(

Fig. 22).
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Figure 22. Effect of methyl violegen on GRA of T131 B transformants exposed to high light intensity for five

hours. Untransformed plant not soaked in paraquat (0), untransformed plant soaked in paraquat () a high

expressing transformant T131 B not soaked in paraquat (e) and a high expressing transformant T131 B

soaked in paraquat (.). Each data point represents the mean, n;:::3, bar represents standard deviation.

There was a sharp increase in GRA in T131 8 transformants treated with paraquat

under high light intensity. There was also a significant rise in GRA of T1318

transformants not treated with paraquat. Interestingly GR activity increased up to

the third hour and thereafter remained constant in paraquat treated T1318

transformants. With the paraquat untreated transformants GRA also increased
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during the first three hours then declined. There was a slight rise in GR activity in

untransformed plants either soaked or not soaked in paraquat but this declines

after the third hour. The level of GR activity was higher in control plants subjected

in high light (Fig. 22) compared to plants at low light (Fig. 21).

GR response was also examined in the clones of high expressing sod and gOT

(GOR10T) transformants. Leaf discs of GOR10Ts were treated with 10 ~M methy

violegen and kept in the dark for five hours.
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Figure 23. An effect of methyl violegen on GRA of GOR10T transformants kept in darkness for five hours.

[Untransformed plant untreated with paraquat (0), untransformed plant treated with paraquat (), a high

expressing transformant GOR10T untreated with paraquat (e) and a high expressing transformant treated

with paraquat (.)]. Each data point represents the mean, n=3, bar represents standard deviation of three

separate determinations.
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As can be seen in Figure 23 there was no increase In GR activity in

untransformed plants treated or not treated with paraquat. There was a

significant rise of GRA in GOR10T transformants treated with methyl violegen that

declined after the second hour back to the baseline levels. The activity of GR

fluctuated over the five hour experiment in transformants not exposed to methyl

violegen (Fig. 23).

GRA was again assayed in leaf disc of GOR10T transformants treated with

paraquat and maintained under low light intensity.
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Figure 24. An effect of methyl violegen on GRA of GOR10T transformants placed under low light intensity

for five hours. [Untransformed plant untreated with paraquat (0), untransformed plant treated with 10I-lM

paraquat 0, a high expressing transformant GOR10T untreated with paraquat (e) and a high expressing

transformant GOR10T treated with 10 I-lM paraquat (.)]. Each data point represents the mean, n=3, bar

represents standard deviation of three separate determinations.
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There was an increase in GR activity of GOR10T treated with methyl violegen, but

in untreated transformants GRA increased slightly. Under low light condition

transformants showed a slightly elevated level of GR activity in the presence of

methyl violegen. In the control plants methyl violegen had little effect in GR

activity (Fig. 24).

GR activity was also determined in GOR10T transformants subjected under high

light intensity in the presence or absence of methyl violegen for five hours.
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Figure 25. An effect of methyl violegen on GRA of GOR10T transformants exposed to high light intensity.

[Untransformed plant not soaked in paraquat (0), untransformed plant soaked in 10 JlM paraquat (), A high

expressing transformant GOR10T not soaked in paraquat (e) and a high expressing transformant GOR10T

soaked in 10 JlM paraquat (.)]. Each data point represents the mean, n=3, bar represents standard

deviation of three separate determinations.
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There was a significant increase in GRA of GOR1OT transformants treated with

paraquat although an increase in GR activity is also seen in transformants in the

absence of paraquat (Fig. 25). There was no change in GR activity in

untransformed plants treated or not treated with paraquat. The significant rise of

GR activity in paraquat treated transformants, compared to that of T131 B

transformants might be due to the increased levels of SOD activity in these

transformants.
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5.3.2 Chlorophyll bleaching

Metabolic reactions in the chloroplasts of higher plants have the potential to

generate many forms of toxic oxygen species. Interaction between triplet

chlorophyll and oxygen results in the generation of singlet oxygen. Oxygen may

accept electrons from the terminal electron carriers of photosystem I and thus

become reduced to the superoxide anion. The dismutation of the latter by

superoxide dismutase forms hydrogen peroxide, while reaction of hydrogen

peroxide with superoxide generates the highly reactive hydroxyl radical.

Toxic oxygen species can lead to extensive damage to the photosynthetic

apparatus especially the chlorophyll molecules (Gillham & Dodge, 1985). The

carotenoids are very important in protecting chlorophyll from photosensitized

reactions and play a role in preventing chlorophyll bleaching. They deactivate

triplet chlorophylls and transform singlet oxygen to its triplet ground state.

Chlorophyll content may therefore be used as an indirect measure of toxic oxygen

species formation.
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Chlorophyll content was therefore determined under identical experimental

conditions as the paraquat experiments. Chlorophyll content was measured in

leaf dics of high expressing GR transformants (T131 Ss) that were soaked in 10

J.!M methyl violegen and subjected to darkness, low and high light intensities over

a period of five hours.
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Figure 26. Chlorophyll assay of T131B transformants in darkness over a period of five hours. [(0)

Untransformed plant not treated with methyl violegen, () untransformed plant treated with 10 IlM methyl

violegen, (e) a high expressing transformant T131 B without methyl violegen and (.) a high expressing

transformant T131B with 10 IlM methyl violegen]. Each data point represents the mean, bar represents

standard deviation of three separate determinations.

In the dark there was not much change in the chlorophyll content in transformants

in the presence or absence of methyl violegen (Fig. 26). Interestingly the

chlorophyll content of the transformants was higher than that of the control plants

treated or untreated with paraquat.
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Figure 27. Chlorophyll Assay of T1318 transformants put under low light intensity over a period of five

hours. [(0) Untransformed plant with no methyl violegen, () untransformed plant treated with 10 IlM methyl

violegen, (e) a high expressing transformant T1318 without methyl violegen and (.) a high expressing

transformant T131 8 with methyl violegen]. Each data point represents the mean, bar represents standard

deviation of three separate determinations.

Under low light intensity there was no change inthe chlorophyll content in both

controls and transformants in the presence or absence of methyl violegen (Fig.

27). The chlorophyll content of transformants was much higher than that of

untransformed plants treated or not treated with methyl violegen.
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Figure 28. Chlorophyll assay of T1318 transformants put under high light intensity over a period of five

hours. (0) Untransformed plant not treated with methyl violegen, () untransformed plant treated with methyl

violegen, (e) a high expressing transformant T1318 without 10 IlM methyl violegen and (.) a high

expressing transformant T1318 with 10 IlM methyl violegen. Each data point represent the mean, bar

represents standard deviation of three separate determinations.

There was no noticeable change in the chlorophyll content of both controls and

transformants put under high light intensity in the presence or absence of

paraquat. The chlorophyll content of transformed plants vvas seen to be higher

than that of the untransformed plants.
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Chlorophyll content was also measured in leaf discs of GOR10T transformants

that were soaked in 10 f.lM paraquat and subjected to darkness, low light and high

light intensities over a period of five hours.
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Figure 29. Chlorophyll assay of GOR10T transformants placed in darkness over a period of five hours. (0)

Untransformed plant not treated with methyl violegen, () untransformed plant treated with methyl violegen,

(e) a high expressing transformant GOR10T without paraquat and (.) a high expressing transformant

GOR10T with 10 J.1M paraquat. Each data point represent mean, bar represents standard deviation of three

separate determinations.

In the dark there was no change in the chlorophyll content in both controls and

transformants in the presence and absence of paraquat (Fig. 29). A high

chlorophyll content was again seen in the transformants as compared to the

untranformed plants



64

0.6

0.5 I
'§ 04
Cl>
§.
o
z
o
o 0.3
:::l
>
:J::
Q.

~
on 0.2

0.1

oL- ~ ~ "__ ~ ~ ___J

o 2

TIME (HOURS)

3 4 5

Figure 30. Chlorophyll assay of GOR10T transformants put under low light intensity over a period of five

hours. (0) Untransformed plant not treated with methyl violegen, () untransformed plant treated with methyl

violegen, (e) a high expressing transformant GOR10T without methyl violegen and (.) a high expressing

transformant GOR10T with 10 /lM methyl violegen. Each data point represent the mean, bar represents

standard deviation of three separate determinations.

Under low light intensity there was again no change in the chlorophyll content in

both controls and transformants in the presence or absence of paraquat (Fig.

30). The chlorophyll content of tranformants was seen to be higher than that of

untransformed plants.
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Figure 31. Chlorophyll assay of GOR10T transformants put under high light intensity over a period of five

hours. (0) Untransformed plant not treated with methyl violegen, ( ) untransformed plant treated with methyl

violegen, (e) a high expressing transformant GOR10T without methyl violegen and (.) a high expressing

transformant GOR10T with 10 !J.M methyl violegen. Each data point represent the mean, bar represents

standard deviation of three separate determinations.

Under high light intensity the chlorophyll content remained unchanged in both

controls and transformants in the presence or absence of paraquat, but the

chlorophyll content of transformants was higher than that of untransformed plants

(Fig.31).
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6.1 INTRODUCTION

The aims of the present study were to produce tobacco plants expressing high

levels of Escherichia coli glutathione reductase in the chloroplast, and to

investigate the effect of oxidative stress on tobacco with (1) increased levels of

cytoplasmic GRA, (2) increased levels of chloroplastic GRA and (3) increased

levels of cytoplasmic GRA and chloroplastic SOD. This project was undertaken

to investigate the role of GR in plants subjected to environmental stress using

transformed plants as a research tool.

6.2 TRANSFORMATION STUDIES

6.2.1 Transformation of tobacco using E. coli gene for GR.

Leaf disc transformation was done according to the method of Horsch et al., 1985.

Young actively-growing leaves were used in the transformation. The experiment

was done three times but without success. Either calli did not form completely

and the leaf discs became brown after some weeks in the dark or calli formed in

the dark and when leaf discs were transferred to root inducing media in a 16 hour

day/8 hour night regime they did not form roots and became yellowish in colour.

The transformation method was then modified following the method of David et al.
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(1993) by virulence induction of Agrobacterium. Leaf discs were placed in the

dark for 21 days with the selective antibiotics and then transferred to induction

medium without antibiotic in the dark for 21 days. This was unsuccessful as very

little calli formed. Calli that was produced also failed to root and subsequently

died.

In the final attempt, leaf discs were pre-treated with 0.5 JlM NAA (naphthalene

acetic acid) (Gui'varch', 1993) to improve transformation efficiency. This was also

unsuccessful.

Many factors may have contributed to the failure of these experiments. It has

been reported that a temperature of about 25°C is required for transformation to

take place (Fisk et al., 1993). The temperature in the growth room where leaf

discs were placed in the dark was 28°C or higher. The second factor that led to

the failure of this experiment could be DNA methylation of the transgenes which

were present on the integrated T-DNA and subsequent inactivation of the nos­

npt11 marker gene and this might have been the reason for the problems in shoot

regeneration (Mandal et al., 1992). The selective antibiotic concentration was

also reduced to 25 mgL-1 so that transformation might not be inhibited. Problems

encountered might have been mainly caused by the inhibition of the expression of

the nos-npt11 gene in the integrated T-DNA rather than T-DNA loss or mutation.

It was very unfortunate that it was not easy to obtain a DNA methylation inhibitor

such as 5-azacytidine to remove the block in regeneration of shoots from calli.
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6.2.2 Restriction analysis of the pKG2 T-DNA

It was suggested that Eco R1 and Hind 111 should be used for restriction analysis

of T-DNA of PKG2 since the theoretical restriction indicated that Hind 111 and Eco

R1 sites occurred in the T-DNA of PKG2. The rectriction mapping procedure was

commenced by using restriction enzymes that were specific to the polycloning site

of pBIN19 and these enzymes were expected to cleave only within the T-DNA,

and not generate additional bands. The preliminary restriction map (Fig. 15A)

indicated that two Hind111 sites occurred in the T-DNA of pKG2. Analysis

showed that the two sites were absent (Fig. 158, lanes 7 and 8). This could

mean that there was a problem in cutting the DNA with Hind 111. The positions

of the Eco R1 sites on pKG2 were analysed and also here the expected 1.9 kb

fragment was obtained. The reasons which might have contributed to the failure

of the two enzymes to cut the T-DNA might have been that one unit of enzyme to

was not enough to cut the T-DNA. The time of the digestion was about 2 hours at

37°C and this was long enough because usually 1 hour restriction is enough. The

plasmid DNA was checked for purity and the value was 1.8, which means that it

was pure enough to be cut with enzymes. The bands might have been to small

to be seen for the concentration of DNA seemingly was very small. Only uncut

bands were seen.
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6.2.3 Screening for the highest expressor.

Plants exhibiting highest expression of SOD and GR were to be cloned and used

in the experiments. Seeds of transgenic plants were provided by Prof. Dvora

Aviv (Israel Institute). These were germinated in vermiculite under greenhouse

conditions (Fig. 16A and 16B) to be screened for the highest expressors of GOR

and SOD. Screening was done in 8 GOR10T (cytoplasmic GR and chloroplastic

SOD transformants) plants by assaying the SOD and the GR activity. Table 1

shows results of gor activity for the 8 GOR1OT plants expressed as per mg

protein. Plant number 6 was found to be the highest expressor of GOR activity Le

190±18 nmoles NADPH/min/mg protein. Before the SOD assay was performed

using native polyacrylamide gel electrophoresis, a native PAGE was done to see

whether the gel could show the distribution of protein bands (Fig. 17). The SOD

assay was then performed on the 8 GOR10T plants (Fig.18). 100~g protein was

loaded onto each lane. The SOD activity was the same because bands of the 8

plants were all equal. This experiment was repeated three times and the banding

pattern was similar at all instances. This led to the conclusion that the highest

expressor plant was plant number 6 because it had the highest GRA as compared

to all other plants including the controls.

6.2.4 Cloning the highest expressor.

Explants derived from the highest GR and SOD expressor which had also been

screened for kanamycin resistance were placed on induction medium after being
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sterilised (Fig. 19A). After two to three weeks embryos were excised and placed

on germination medium (Fig. 19B). Embryos were allowed to germinate and

grow to 50 mm, after which shoots were removed and hardened off in greenhouse

conditions, by transferring to pots containing moistened potting soil (Fig. 16B).

Cloning was done in order to mass produce experimental material.

6.3 BIOCHEMICAL STUDIES

6.3.1 An effect of methyl violegen on glutathione reductase activity.

In this study tobacco plants, transformed with bacterial reductase genes, were

used to elucidate the role of glutathione reductase during oxidative stress.

Oxygen stress was induced by soaking leaf discs in 10 !-!M methyl violegen and

placed under high light intensity, low light intensity and in darkness for five hours.

Soaking in methyl violegen would increase the oxidativ8 stress because this

compound increases the oxidative stress directly by generating oxygen free

radicals (Halliwell and Gutteridge, 1989).

In the present investigation there was a significant increase in the levels of GRA in

the leaves of transformants with enhanced cytoplasmic GR (T131Bs) and control

plants following exposure to methyl violegen at high light intensity (Fig. 22).

These results support those of Foyer et al. (1991) who showed that both light

and the oxidative stress mediator, methyl violegen, caused an increase in the

amount of extractable GRA in transgenic and nontransgenic plants. Transgenic
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plants with enhanced cytoplasmic GR showed higher GRA than did the controls.

Under low light the enhanced cytoplasmic GR transformants showed higher GRA

than did controls (Fig. 20). The rise in GRA seen could be as a result of paraquat

stress because this is consistent with findings of Asada and Takahashi (1987) that

light should influence the Asada-Halliwell pathway, by the normal production of

superoxide from photosystem 1 or the Mehler reaction. However, this will be

enhanced under high light, as this condition deplete stromal NADP levels,

resulting in an increase in the reduction state of ferredoxin and photosystem 1

(Bowler et al. 1982). Given the effect of such superoxide generation on the

antioxidant pathway, it seems likely that light should influence GR. Also paraquat

had no effect on enhanced cytoplasmic GR transformants GRA placed in the dark.

This was expected since paraquat is photoreduced by photosystem 1 and

subsequently reoxidised by transfer of its electrons to oxygen forming the

superoxide anion (Halliwel an Gutteridge, 1989) which leads to highly reactive

hydroxyl radicals and related species being formed. In darkness oxidative stress

by this compound is not possible since it cannot be photoreduced by photosystem

1.

. In enhanced cytoplasmic GR and chloroplastic SOD (GOR10T) transformants the

overall glutathione reductase activity was further enhanced during oxidative

stress, but with time GRA declined (Fig. 23, 24 & 25). With enhanced levels of

SOD the concentration of hydrogen peroxide increases. Although GR is the rate

limiting enzyme, the supply of NADPH is the most crucial factor responsible for

antioxidant functioning (Robinson, 1988). The decline seen in GRA with time
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could reflect a possible decline in reductant and I or an increase in the rate of

hydrogen peroxide production (Law et a/., 1983; Smith et ai, 1985).

Investigations have shown that hydrogen peroxide is responsible for the oxidation

of GR ( Law et a/1983). Excessive hydrogen peroxide production and the loss of

metabolite pools are both suggested to inactivate the antioxidant enzymes

(Hossain and Asada, 1984a; Nakano and Asada, 1981). Oxidation of GR due to

higher hydrogen peroxide concentration led to the inactivation of the Calvin cycle

enzymes and this led to cell death. There was no noticeable change in the

chlorophyll content during the experiment and this might be due to a short period

within which the experiment was conducted, which is only five hours. If time had

been extended chlorophyll beaching might have resulted. The chlorophyll content

of transformants was higher than that of untransformed plants and that might be

due to the fact that transformants were purely samsun plants whereas

untranformed plants were Samx (Samsun X Xanthi) plants. It is not good to

increase levels of SOD in plants because it leads to more oxidative damage.

Protection against oxygen free radicals damage appears to be vital in times of

stress, such stress conditions are frequently found to induce increases in the

extractable activities of free metabolising enzymes such as GR and other

protective enzymes, this is also shown in this study because at high lev~1 of

stress, GR increased, leading to protection against oxygen free radicals damage.

Also when GRA was expressed (g fresh weightr1 results followed a similar pattern

(data not shown).
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6.4 CONCLUSION

The main aim of the present investigation was to investigate the effect of oxidative

stress on tobacco with enhanced levels of cytoplasmic GR and / or chloroplastic

SOD. Preliminary results have indicated that the use of genetically engineered

plants can provide a powerful tool with which to examine the relationship between

gene expression and antioxidant functioning. Paraquat, the oxidative stress

mediator, was shown to induce an increase in the levels of glutathione reductase

in both control and transformed plants. The increase in GRA was more marked in

transformants with enhanced cytoplasmic GR and chloroplastic SOD (GOR 10T)

when they were subjected to high light intensity. This is consistent with the

findings that the glutathione reductase levels in transgenic tobacco had been

shown to be affected by oxygen stress (Whittaker, 1990) and light (Foyer et al.,

1991 ).
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