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ABSTRACT  
 
Petroleum reservoir fluid properties are regarded as vital parameters in a number of 

computations associated with petroleum engineering, including hydrocarbon reserve 

estimation and consequently economic efficiency evaluation, fluid flow in porous media 

issues, and improved and enhanced oil recovery. In addition to empirical methods, 

laboratory measurements, and equations of state are used to determine such properties. 

The two latter methods are generally expensive and time-consuming and require 

complex calculations. Therefore, it is timely to develop more rapid, accurate, and reliable 

models for the determination of petroleum fluid’s physical properties. 

This study sets out to show that the powerful modeling approaches developed here for 

the determination of reservoir fluid properties, provide an accurately and efficient 

alternative to existing methods. They are reliable and straightforward predictive 

techniques, which are simpler than existing approaches and with fewer computations. To 

this end, artificial intelligence methods are preferred as the means to develop reliable 

models for the estimation of petroleum reservoir fluid properties. Recently, artificial 

intelligence methods have gained popularity in solving complex nonlinear problems, and 

could be applied in reservoir modeling and characterization. Furthermore, models 

developed on the basis of artificial intelligence methods can perform prediction and 

generalization rapidly once trained. Therefore, in this study novel models for the 

prediction of petroleum reservoir fluid properties are applied in areas including 

reservoirs simulations, relevant reservoir engineering softwares, calculations associated 

with enhanced oil recovery processes, fluid flow in porous media, well-testing, and well-

logging. 

The present study aims to develop reliable models for petroleum reservoir properties 

using gene expression programming (GEP), artificial neural networks (ANNs), least 

square support vector machine (LSSVM), adaptive neuro-fuzzy inference system (ANFIS), 

and decision tree (DT) computational schemes. And, in order to tune the adjustable 

parameters associated with the algorithms mentioned above, different optimization 

techniques viz. couples simulated annealing (CSA), particle swarm optimization (PSO), 

and genetic algorithm (GA), are employed. In order to enable the development of these 

predictive models thousands of series of data on reservoirs from various geographical 

locations worldwide were assembled and collated.   
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The thermos-physical and petroleum reservoir fluid properties studied are surfactant 

retention, dew point pressure, natural gas compressibility factor, gasoline properties 

(specific gravity (SG), motor octane number (MON), research octane number (RON), Reid 

vapor pressure (RVP)), vaporization enthalpy of petroleum fractions, dead reservoir oil 

viscosity, saturated reservoir oil viscosity, under-saturated reservoir oil viscosity, 

solution gas-oil ratio, oil formation volume factor, bubble point pressure, wax 

disappearance temperature, asphaltene precipitation, and hydrocarbon–plus fractions 

properties viz. boiling point temperature, specific gravity, and molecular weight.  

Many empirically derived correlations have been developed, tested and compared. A 

comparison of results show that the models are superior to those in literature in terms of 

accuracy and simplicity of use. 
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NOMENCLATURE 
 
𝜇𝑜                    Under-saturated reservoir oil viscosity, cP 

𝜇𝑜𝑏                  Saturated oil viscosity, cP 

𝜇𝑜𝑑                  Dead oil viscosity, cP 

API                  Oil gravity 

Bob                   Oil formation volume factor at bubble point pressure, bbl/STB 

Cco-solvents        Co-solvent concentration, wt% 

CXw                 Cumulative weight fraction. 

C7+                             Heptane-plus fraction  

Ea             Average absolute percent relative error, % 

Ei             Percent relative error, % 

Er            Average percent relative error, % 

Kabs                 Absolute permeability, mD 

M                    Solvent molecular weight, g/mol 

MWb               Bulk molecular weight, g/mol 

MWC7+           Molecular weight of heptane-plus fraction, g/mol 

MWSur            Average molecular weight of the surfactant solution, g/mol 

N            Number of data points 

n,                       Number of moles 

P                     Pressure, psi, Pa, kPa 

Pb                    Bubble point pressure, psi 

Pci                   Critical pressure of component i 

Pd                   Dew point pressure, psi 

pH                  Maximum effluent pH 
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Ppc                Pseudo-critical pressure 

Ppr                Pseudo-reduced pressure, psi 

R                  Gas constant  

R                  Retention of surfactant, mg/g-Rock 

R2        Coefficient of determination 

Rs                Solution gas-oil ratio, SCF/STB 

RSi               Initial solution gas oil ratio, SCF/STB 

Rv                Solvent to oil dilution ratio, mL/g 

r                  Relevancy factor, % 

S                  Specific gravity 

SGb              Bulk specific gravity 

SPC7+           Specific gravity of pentane plus fraction 

SPD              Salinity of the polymer drive, ppm 

T                  Temperature, °C 

Tb                         Boiling point temperature, °R 

Tci                Critical temperature component i, °R 

Tpc                Pseudo-critical temperature, °R 

Tpr                Pseudo-reduced temperature 

TR                 Reservoir temperature, °F 

V                  Volume 

Vci                Critical volume component i 

Wt                Amount of asphaltene precipitated, wt% 

yi                  Mole fraction of component i 

z                   Gas compressibility factor 

γ                   Relative weight of the summation of the regression errors 
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γg                 Gas specific gravity 

σ2                          Squared bandwidth 
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ABBREVATIONS 

 
AAPRE         Average absolute percent relative error 

AARD          Average absolute relative deviation 

ANN             Artificial neural network 

ANFIS          Adaptive neuro-fuzzy inference system 

APRE           Average percent relative error  

ARD             Average relative deviation 

AI                 Artificial intelligence 

CCE             Constant composition expansion  

CVD             Constant volume depletion 

DPP              Dew point pressure 

EOR              Enhanced oil recovery 

EoS               Equations of state 

ET                 Expression tree 

ET                 Expression tree 

GA                Genetic algorithm 

GC                Group contribution 

GEP              Gene expression programming 

GOR             Gas oil ratio 

GFVF          Gas formation volume factor 

GP                Gene programming 

HFC             Hydrofluorocarbon 

LINGO         Linear Interactive and General Optimizer 
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LSSVM        Least square support vector machine 

MON           Motor octane number 

MLP            Multilayer-perceptron 

MR              Mobility ratio 

MSE            Mean square error 

OF               Objective function  

OFVF          Oil formation volume factor 

QSPR          Quantitative structure–property relationship  

RMSE          Root mean square error  

RON             Research octane number 

RVP              Reid vapor pressure 

SA                Simulated annealing  

SCF              Standard cubic feet 

SD                Standard deviation 

SG                Specific gravity 

STB              Stock tank barrel 

SVM             Support vector machine 

TAN             Total acid number of the oil, mg KOH/g-oil 

WAT            Wax appearance temperature 

WDT            Wax disappearance temperature 
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CHAPTER 1 

 
1. Introduction 

 The computations for the estimation of reserves in an oil reservoir - predicting 

economic efficiency - needs a thorough and accurate knowledge of the reservoir fluid 

properties (De Ghetto and Villa, 1994).  

The properties associated with pressure-volume-temperature (PVT) parameters 

are accounted as fundamental to many petroleum engineering calculations. Of particular 

relevance for this study, PVT parameters are used in computations related to enhanced 

and improved oil recovery, properties estimation of hydrocarbon flowing, analyses 

related to well testing and well logging, computations associated with material balance 

(in order to undertake reserves estimation and prediction of petroleum reservoir 

performance), reservoir oil production and the regulation of surface and reservoir oil and 

gas volumes.  

In other words, it can be agreed that reaching reliable solutions is impossible for 

many petroleum engineering problems without precise predicts of PVT properties of 

petroleum reservoir fluids (Khoukhi, 2012). 
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1.1. Petroleum Reservoir Fluid Properties 

The properties of reservoir fluid (Elsharkawy and Alikhan, 1997) are normally 

determined from bottom-hole and/or surface recombined samples. The fluid properties 

are required for a large number of reservoir engineering calculations, which include, 

selection of the enhanced oil recovery (EOR) method for a reservoir candidate, estimation 

of hydrocarbon reserves, performance prediction, calculations related to the production 

operation, production optimization, well-testing studies, and fluid flow through porous 

media (Al-Marhoun, 1988; Al-Marhoun, 2004; Alizadeh et al., 2013; Elsharkawy and 

Alikhan, 1997; Frashad et al., 1996; Hemmati-Sarapardeh et al., 2013b; Kamari et al., 

2015c; Kamari and Mohammadi, 2014; Kamari et al., 2014f; Kamari et al., 2014h). As a 

result, reservoir fluid properties are significant parameters in petroleum engineering 

calculations. These are obtained through laboratory measurements, theoretical methods, 

and/or empirically derived correlations. PVT fluid properties of primary importance are 

the solution gas oil ratio (GOR), bubble point pressure (BPP), gas formation volume factor 

(GFVF) and oil formation volume factor (OFVF) (Sutton and Farshad, 1990).  

PVT properties are normally acquired experimentally by conducting laboratory 

tests (El-Sebakhy, 2009a). However, the estimation of PVT properties by laboratory 

experiments is difficult and complex because cores or rock samples containing petroleum 

reservoir fluid are not easily acquired and are usually only available from isolated and 

limited well locations (Khoukhi, 2012). Furthermore, the production horizon does not 

always warrant the cost of an in-depth petroleum reservoir fluid investigation because it 

may still be essential to have precise predictions of the fluid’s physical properties and 

therefore PVT properties must still be obtained by the utilization of empirically derived 

correlations (Saleh et al., 1987). As a result, empirical correlations are frequently 

employed in the place of time-consuming and costly experimental PVT tests.  Another 

method to determine PVT properties of crude oils is equations of state, which are 

proposed based on knowledge of detailed reservoir fluid composition. However, accurate 

determination of such compositions requires much time and cost, and moreover it 

includes numerous complex numerical calculations (Alimadadi et al., 2011). 

The accurate prediction of crude oil viscosity is critical for the petroleum engineer. 

As a simple definition, the reservoir oil viscosity is the resistance of fluid flow through 

porous media. It is fundamental to such issues as the design of enhanced oil recovery 



27 | P a g e  
 

processes, the evaluation of fluid flow rate through porous media, the estimation of 

hydrocarbon reserves, design of operation and production systems equipment and 

pipelines, production reduction and future performance issues, and the development of 

reservoir and production simulation software  (Al-Marhoun, 2004; Alizadeh et al., 2013; 

Elsharkwy and Gharbi, 2000; Hemmati-Sarapardeh et al.; Kamari et al., 2014h; Labedi, 

1992; Naseri et al., 2005). In addition, this fundamental parameter plays a key role in 

studying the deposition of wax during crude oil production in the transportation 

pipelines (Obanijesu and Omidiora, 2008).  

Importantly, the efficiency of thermal EOR processes including steam injection, 

hot water injection, and steam assisted gravity drainage, is strongly associated with 

reducing the viscosity of heavy oil. Furthermore, the oil production capacity of 

hydrocarbon reservoirs is directly related to the oil viscosity, so that reservoirs with low 

viscosities have a higher production capacity (Xu et al., 2010).  

It is critically important to develop reliable methods for establishing reservoir 

fluid properties in order to enable the design of thermal EOR techniques, to address 

production capacity and petroleum transportation issues. 

Gas condensate reservoirs have been growing in importance as a hydrocarbon 

resource for energy supply. In these reservoirs, well deliverability often reduces when 

the bottom-hole pressure drops below the dew point pressure (DPP). As a definition, dew 

point pressure is the pressure at which a considerably larger amount of the gas phase is 

in equilibrium with a significantly smaller amount of liquid phase (Shokir, 2008). As a 

result, the calculation of dew point pressure plays a significant role in hydrocarbon 

reservoir engineering. Gas condensate reservoirs differ in their thermodynamic and flow 

behavior compared to common gas reservoirs. 

Due to decreasing oil production and a general increase in the demand for oil and 

oil products, as well as concerns about the future of hydrocarbon reserves, near 

saturation of techniques for optimization of production facilities, and oil price volatility, 

considerable work is being undertaken on enhanced oil recovery techniques (Kamari et 

al., 2014g). There is a recent trend to continue production from mature crude oil 

reservoirs and to assess options for increasing their ultimate oil recovery (Kamari and 

Mohammadi, 2014). In this vein, EOR techniques have gained attention in the petroleum 
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industry for their potential to recover larger amounts of oil from depleted reservoirs 

compared with conventional production methods (Al Adasani and Bai, 2011).  

An EOR technique to optimize oil recovery requires a decrease in the saturation of 

residual oil by means of a reduction in the interfacial tension existing between phases. 

Among chemical flooding methods, the use of surfactants decreases interfacial tension 

between oil and water, enabling recovery of much of the saturated residual oil in 

hydrocarbon reservoirs. After water flooding, the injection of surfactants as an oil 

recovery method has been implemented for more than 35 years in depleting oil 

reservoirs, especially in the United States of America (Ferrell et al., 1988; Garrett, 1972; 

Green and Willhite, 1998; Maerker and Gale, 1992). Typically, surfactant injection is an 

expensive oil recovery method in comparison with other recovery processes like gas 

injection and thermal recovery techniques. However, in the early 21st Century surfactant 

flooding has experienced an increase in interest because of higher oil prices (Iglauer et 

al., 2010). In other words, surfactant-implemented oil recovery is influenced by 

economics. Questions relate to the cost of surfactants and the development of a practical 

EOR process aimed at minimizing the use of surfactant (Novosad et al., 1981). Therefore, 

a better understanding of the retention of these emulsions by crude oils is of paramount 

importance for progress in the use of this technique for EOR. 

The determination of physical properties of substances is, in general, a difficult 

task. In the case of determining the physical properties of petroleum products the 

difficulty is even greater as petroleum is a complex substance, the full composition of 

which is not entirely known (Litani-Barzilai et al., 1997).  

Gasoline which is a petroleum product fractionated from crude oil is a complex 

mixture of combustible and volatile compounds (Mendes et al., 2012). It is one of the most 

recognized petroleum products as it is used as a fuel for transportation globally (Murty 

and Rao, 2004). Moreover, approximately 70% of the crude oil produced is normally 

processed into gasoline in integrated petroleum refineries (Murty and Rao, 2004).  

Gasoline fractions are normally separated into several hydrocarbon groups, viz. 

aromatics, olefins and naphthenics, iso-paraffins and n-paraffins (de Oliveira et al., 2004; 

Teixeira et al., 2007). Additionally, the specific gravity (SG), motor octane number (MON), 

research octane number (RON), and Reid vapor pressure (RVP) are very important 
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gasoline properties because they characterize the performance and therefore the price of 

fuels (Albahri, 2014).  

The RVP provides an indication of gasoline’s tendency to evaporate. The higher 

the RVP the easier it is for a fuel to evaporate (Teixeira et al., 2009). SG plays a key role in 

assessing the performance and operational-ability of the engine (Aleme et al., 2009). 

Ratings or octane numbers are associated with the power and efficiency of a petrol or 

diesel engine operated using gasoline. It is used to evaluate the quality of the gasoline and 

also to classify the gasoline by price and grade (viz. premium or regular) (Assis et al., 

2013; Doble et al., 2003). There are different kinds of engines, and consequently different 

test conditions, which result in the two most common octane rating scales, viz. MON and 

RON. The MON and RON are determined by assessing the fuel in a test engine under 

rigorous and controlled conditions (Assis et al., 2013). 

Heavy paraffins in hydrocarbon reservoir’s fluid including crude oil and gas 

condensate reserves possess high potential of forming wax (Ji et al., 2004). Wax deposit 

ingredients are located between pure paraffins to asphalthenes. In this wide variation, 

wax deposits include a lot of constituents such as microcrystalline paraffins, 

asphalthenes, resins. Wax deposition is mainly affected by thermodynamic conditions 

and the reservoir fluid’s composition (García and Carbognani, 2001). One of the main 

characteristics of wax is wax appearance temperature (WAT) which causes wax to 

precipitate in pipe lines and transferring tools when the temperature is reduced below 

this value (Daridon et al., 2002; Moradi et al., 2013b). In wax appearance temperature, 

which is also known as cloud point, first crystals of paraffins are formed as a result of 

dropping temperature. This process is reversible and consequently, the temperature in 

which the last precipitated paraffin is re-solved in fluid is known as wax disappearance 

temperature (WDT). The difference between the WDT and WAT can be noticeable (Parsa 

et al., 2014; Wang et al., 2003). WDT always relates to equilibrium conditions.  

The main problems in transferring equipment and reservoirs associated with wax 

deposition, which give rise to research and development, include reduction in production 

rate, imposing damage in well bore, increased power needs, fuel filter and process 

implement damage (Ji et al., 2004). One of the most serious consequence of wax 

deposition is reduction in diameter of pipelines and equipment which leads to cessation 

of procedure. To avoid wax deposition in pipes and equipment, the transferring route of 
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fluid should be maintained in conditions in which wax cannot be precipitated. This could 

be achieved either by mixing the oil or increasing the temperature (Daridon et al., 2002; 

Moradi et al., 2013b). 

Asphaltene molecules are complex structures and are the heaviest part of crude oils 

and cannot be dissolved in light hydrocarbon solvents such as n-pentane, n-heptane, and 

n-decane (Zanganeh et al., 2015). The precipitation of asphaltenes is directly associated 

with the stability condition of crude oil, which includes changes in the reservoir pressure 

and temperature as well as the chemical composition of petroleum fractions (Junior et al., 

2006; Srivastava et al., 1999). As a result, precipitation of asphaltene is known as a 

problematic phenomenon in the petroleum industry, and in particular during oil 

production from hydrocarbon reservoirs to the pipelines.  

The precipitation of asphaltene can lead to serious engineering problems including 

reduced oil recovery and relative permeabilities, blockage of rock pores, and reduction 

of flow rate. Importantly, asphaltene precipitation causes the reduction of relative 

permeabilities with changes of reservoir rock wettability from water-wet rock to oil-wet 

rock which can decreased the oil recovery factor (Amin et al., 2010; Soorghali et al., 2014). 

Additionally, wellbore damage caused by the blocking of the rock pores, and the 

reduction of processing facility capability with the plugging of surface pipelines during 

petroleum production, are two other serious problems associated with asphaltene 

precipitation (Buckley and Wang, 2002).   

Asphaltene precipitation is also an important issue for enhanced oil recovery 

processes, and in particular, carbon dioxide flooding. During injection of carbon dioxide 

into wells, contact between the oil and injected CO2 can change the reservoir fluid 

properties and also its phase equilibrium conditions, and consequently cause 

precipitation of heavy and complex hydrocarbon mixtures or asphaltenes (Monger and 

Trujillo, 1991). Here it is worth mentioning that the type and amount of asphaltene 

precipitated from the crude oils may differ from one geographical location to another 

because of non-uniformity of petroleum reservoirs in terms of oil gravity and density 

(Kazemzadeh et al., 2015). 

The boiling point temperature, molecular weight, and specific gravity are accounted 

as the fundamental properties of heptane–plus (C7+) components of petroleum fractions 
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or the heavier and more complex mixture of crude oil, so that accurate determination of 

such important properties is required to characterize and estimate the thermos-physical 

properties of crude oils. Additionally, application of equations of state (EoS) in the 

prediction of phase behaviour of reservoir fluid and PVT calculations, which are required 

for designing and operating the refinery distillation columns reservoir simulation, need 

accurate and reliable characterization of crude oil, in particular, the heavier components 

(Riazi, 1989; Riazi, 1997). Furthermore, the volumetric and phase behaviours of volatile 

oils and gas-condensates are quite sensitive to characterization of heavier petroleum 

fractions such as heptane–plus components (Riazi, 1997). 

A simple definition of vaporization enthalpy is that it is the difference between the 

enthalpies of the vapor and liquid phases at the same equilibrium pressure and 

temperature. Vaporization enthalpy (ΔHvap) is the energy needed to transform a quantity 

of liquid substance into a gas phase at its boiling point temperature (Parhizgar et al., 

2013). As a result, the vaporization enthalpy for petroleum fractions and hydrocarbon 

components is a property that is used in many chemical disciplines, as well as is in the oil 

and gas industries. From a thermodynamic perspective, vaporization enthalpies can be 

applied in processing and transportation facilities for the optimization and design of oil 

and gas production and for heat flux calculations, as well as for the estimation of some 

physical phenomena like the solubility parameters of hydrocarbons (Mohammadi and 

Richon, 2007). The vaporization enthalpy of pure components, in particular 

hydrocarbons and petroleum fractions, is a key and fundamental thermodynamic 

property which is related to the specific gravity (S), boiling point temperature (Tb), and 

molecular weight (M) through various thermodynamic relationships.  

Natural gas, as a multi-component mixture, is composed of broadly different 

components, methane as the key component along with more useful components such as 

carbon dioxide (CO2), nitrogen (N2), ethane (C2H6), propane (C3H8), and weightier 

hydrocarbon components (Sanjari and Lay, 2012a). Natural gas is a clean and cheap 

source of energy, compared to other hydrocarbon-based materials like oil and coal. It also 

has a longer predicted future availability than crude oil and coal (BP, 2006). Furthermore, 

there has been growing understanding of the importance of natural gas as a means of 

meeting the world energy requirements due to its adaptability, profusion and clean 

burning (Wang and Economides, 2009). It is therefore important to develop reliable 
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predictive methods for the physical properties related to natural gas, such as the gas 

compressibility factor (z-factor), for optimal exploitation and usage.  

The gas compressibility factor is a key thermodynamic parameter in chemical and 

petroleum engineering disciplines. Factors such as the phase equilibria of various 

hydrocarbon and non-hydrocarbon mixtures, PVT behavior, upstream and downstream 

calculations, material balances, assessment of underground gas reserves, gas reservoir 

simulations, well-testing analysis and calculations associated with the processing of 

gasses (Chamkalani et al., 2013c; Heidaryan et al., 2010b). Moreover, the importance and 

role of z-factor cannot be overemphasized in process engineering calculations and in 

lower complexity simulations within a thermodynamics context. 

 

1.2. Artificial Intelligence 

We have seen that on account of economic and technical requirements, petroleum 

engineers seek a rapid means to obtain accurate values for the properties of petroleum 

reservoir fluid and that there are some shortcomings in the existing methods. This study 

sets out to show that reservoir fluid properties can be usefully determined through 

empirical methods. Reliable and simple predictive techniques, which are simpler than 

existing approaches and with fewer computations, are possible. To this end, artificial 

intelligence methods are the chosen means to develop reliable models for the estimation 

of petroleum reservoir fluid properties.  

In recent years, intelligent/smart methods have been progressively employed in 

petroleum and chemical calculations (Esfahani et al., 2015; Fathinasab et al., 2015; Ghiasi 

et al., 2013; Hosseinzadeh and Hemmati-Sarapardeh, 2014; Kamari et al., 2015a; Kamari 

et al., 2014a; Kamari et al., 2015b; Kamari et al., 2014d; Kamari et al., 2014e; Mohaghegh 

et al.; Nejatian et al., 2014; Talebi et al., 2014; Zendehboudi et al., 2014). Artificial neural 

networks (ANN), support vector machines (SVM), decision tree (DT), fuzzy logic (FL), and 

genetic algorithms (GA) are the most commonly-used artificial intelligence (AI) methods 

which are applied in oil and natural gas reservoirs simulation, production, enhanced oil 

recovery (EOR), optimization, drilling automation, process control, and data mining (Al-

Bulushi et al., 2009; Aminian and Ameri, 2005; Aminzadeh, 2005; Asadisaghandi and 

Tahmasebi, 2011; Darabi et al., 2010; El-Sebakhy, 2009b; Huang et al., 2003; Irani and 

Nasimi, 2011; Jafari Kenari and Mashohor, 2013; Jahanandish et al., 2011; Kamari et al., 
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2014h; Kamyab et al., 2010b). As a consequence, artificial intelligence techniques have 

gained popularity in solving complex nonlinear problems (Al-Fattah and Al-Naim, 2009).  

The ANN methodology is a fast and accurate method for the prediction of reservoir 

properties, which can be applied in reservoir modeling and characterization. Artificial 

neural networks are able to solve complex nonlinear and classification problems, and 

they can perform prediction and generalization rapidly (Gharbi, 1997). In the presence 

of a small size of dataset, the ANN technique may lead to an overfitting problem during 

training/learning phase, which potentially diminishes performance for capability, 

applicability and generalization (Al-Anazi and Gates, 2012). Although ANN has 

demonstrated some successful applications for the estimation of reservoir rock and fluid 

properties (Bhatt and Helle, 2002; Saemi et al., 2007; Tahmasebi and Hezarkhani, 2012), 

the basic training/learning mathematical algorithm has been designed for application 

with large sample sizes. Hence, for a given small size of dataset, extensive experiments 

with various training/learning methods are required to perform an accurate regression 

(Kaviani et al., 2008). 

In recent decades, an important smart technique, namely support vector machine 

(SVM), has rapidly gained popularity due to its excellent performance in solving complex 

classification and regression problems (Al-Anazi and Gates, 2012). The SVM technique 

has found many applications in various fields of science and engineering including 

petroleum engineering and geology, pattern recognition in medical science, and speech 

and text detection. (Choisy and Belaid, 2001; Gao et al., 2001; Li et al., 2000; Ma et al., 

2001; Van Gestel et al., 2001).  

The least square support vector machine (LSSVM) (Suykens and Vandewalle, 

1999) is a variation of conventional SVM. The main differences between SVM and LSSVM 

are that the LSSVM utilizes square errors instead of nonnegative errors in the cost 

function and equality constraints instead of inequality constraints, as opposed to the 

conventional SVM (Li et al., 2012). In other words, the least squares support vector 

machine (LSSVM) is an improved version of the classical SVM approach, which considers 

equality constraints in place of inequalities for classical SVM (Suykens and Vandewalle, 

1999). In the LSSVM models, the problem of local minima does not occur. As a result, the 

main drawbacks of LSSVM are fewer tuning parameters (typically two parameters) and 

lack of sparseness for solutions, respectively (Yang et al., 2010).  
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In recent years, the genetic algorithm (Holland, 1975) mathematical approach has 

been applied increasingly as a reliable optimization method for various targets in 

petroleum engineering. More recently, the original form of GA was improved and a new 

form known as genetic programming (GP) was introduced. In the GP mathematical 

approach, the solutions are treated as nonlinear structures of parse trees (treated as 

functions) instead of fixed length binary solutions (Cramer, 1985; Koza, 1992). An 

additional development was introduced by Ferreira (Ferreira, 2001) who presented the 

gene expression programming (GEP) scheme as a new modified and variant version of 

the classical GP approach.  

Another important AI technique is the decision tree algorithm which constructs 

models for the purpose of regression or classification with the structural shape of a tree. 

It divides a dataset into smaller subsections while a related decision tree is incrementally 

and simultaneously developed. The outcome is a tree with decision nodes and leaf nodes. 

A decision node has two or more divisions, each signifying values for the feature tested. 

A leaf node represents a decision on the target. The top decision node in a tree relates to 

the best predictor called a root node. Decision trees can process both categorical and 

numerical data (Erdogan et al., 2001; Heinze et al., 1995; Sethi and Chatterjee, 1977). 

 

1.3. Scope of Study 

The current study claims to put forward a more efficient, accurate and reliable 

predictive model for the determination of petroleum reservoir fluid properties. To this 

end, the largest possible databank was assembled from two main sources: actual field 

data collected and previously published data available in the literature. This databank 

therefore contains a wide range of reservoir rock and fluid properties coming from the 

various geographical regions of world.  

In order to obtain the information for the databank, robust artificial intelligence 

strategies were utilized to determine petroleum reservoir fluid properties. Additionally, 

the Leverage methodology and parameter-dependency approach were employed to 

detect suspended and/or outlier data points existing in the dataset, and to investigate the 

effects of different input variables on the output parameters (petroleum reservoir fluid 

properties).  
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The results obtained from the use of the newly developed models are compared 

against the actual field and literature data, equations of state, and also previously 

published empirically-derived correlations available in literature.  

Finally, in order to evaluate the accuracy and capability performance of the 

developed empirical model, and to provide a comparative study, graphical and statistical 

error analyses are performed. 

In summary, these are the steps that were undertaken to conduct the modelling 

processes: 

 

I. Determine the most important properties associated with petroleum reservoir 

fluid properties, as well as the parameters related to the oil and gas production 

operation. 

 

II. Collect the most comprehensive database from different sources, taking into 

account screening of the duplicated and erroneous data.  

 

III. Select the most appropriate artificial intelligence method for model development 

with respect to the nature of each petroleum reservoir fluid property. 

 

IV. Evaluate the accuracy and performance capability of the models developed 

through various graphical and statistical error analyses.  

 

V. Conduct a comparative study of different artificial intelligence methods, and 

compare the results to previously published empirical correlations, and equations 

of state. 

This study is organized as follows:  

A detailed background on petroleum reservoir fluid properties is presented in 

Section 2, based on a literature review of previously published works.  

Section 3 presents the databanks collected in this study, and investigates effective 

variables for accurate prediction of petroleum reservoir fluid properties.  

In Section 4, the computational methodologies pursued in this study for 

developing reliable methods to determine the petroleum reservoir fluid properties are 

covered.  
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The results obtained by means of the newly developed methods are presented and 

discussed in Section 5. In this section, the results obtained are compared with literature-

reported data, as well as previously published empirical correlations, and equations of 

states. In order to assess the validity of the models developed in this study, graphical and 

statistical error parameters are also analysed and discussed.  

Finally, future prospects and conclusions of the current study are briefly 

expressed in Section 6. 
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CHAPTER 2 

 
2. General Background 

Growing global demand for oil and its products, reduction of the natural production of oil 

resources, concerns about the future of hydrocarbon reserves, production optimization 

topics, and finally, oil prices have, in recent years, led to considerable research effort into 

reservoir fluid, which roughly comprises oil, gas, and water. As a result, several studies 

have been published on the prediction of petroleum reservoir fluid properties and 

production parameters. Furthermore, the large expansion in industrial projects, and 

population growth, have led to global attention on petroleum engineering, and in 

particular, reservoirs and production engineering.  

Much experimental work, simulation studies, analytical research, and intelligent 

predictive models have been developed for accurate determination of petroleum 

reservoir fluid properties. However, because of the complex nature of reservoir fluid, 

previously published approaches may not be widely applicable in a variety of reservoir 

conditions.  

There is therefore much scope for the development of simple, robust and reliable 

models for the accurate estimation of petroleum reservoir fluid properties. 
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2.1. Surfactant Retention 

In the recovery of residual oil, the loss of surfactant can reduce the technical and 

economic feasibility of recovery (Glover et al., 1979; Yassin et al., 2013). The retention of 

surfactant molecules is therefore a fundamental factor in chemical surfactant flooding. 

The adsorption of surfactants by porous rocks is dependent on the rock characteristics 

(mineralogical and morphological), type of surfactant used, and types of electrolytes 

existing in the solution (Austad, 1993).  

Several studies have been undertaken in order to investigate the retention of 

surfactants. Standnes and Austad (Standnes and Austad, 2000) used 14 different 

surfactants for spontaneous counter-current imbibition into oil-wet chalk cores by 

altering wettability. They indicated that cationic surfactants can recover oil. Liu (Liu, 

2008) conducted laboratory experiments taking into consideration the type of the rock 

and surfactant. Results from the study by Liu (Liu, 2008) indicated that anionic 

surfactants have much lower adsorption into a sandstone surface than non-ionic 

surfactants. Yassin et al. (Yassin et al., 2013) developed an artificial intelligent model for 

prediction of surfactant retention by using the least squares support vector machine 

algorithm. They used experimental dynamic surfactant retention data over a wide range 

of conditions. Their results indicated that the values predicted by their model were in 

agreement with experimental surfactant retention data.  

For the determination of the retention of surfactant in porous media, there is an 

empirical correlation proposed by Solairaj et al. (Solairaj, 2011; Solairaj et al., 2012). The 

correlation is a multi-variable regression used to investigate the impact of different 

parameters on surfactant retention during chemical flooding under different conditions. 

Solairaj et al. (Solairaj, 2011; Solairaj et al., 2012) predicted surfactant retention based on 

the following input parameters, which included average molecular weight of the 

surfactant solution, maximum effluent pH, reservoir temperature, total acid number of 

the oil, mobility ratio, salinity of the polymer, drive co-solvent concentration, as follows: 

𝑅 = 𝑎1𝑇𝐴𝑁 + 𝑎2𝑇 + 𝑎3𝐶𝑐𝑜−𝑠𝑜𝑙𝑣𝑒𝑛𝑡 + 𝑎4𝑆𝑃𝐷 + 𝑎5𝑝𝐻 + 𝑎6𝑀𝑅 + 𝑎7𝑀𝑊𝑆𝑢𝑟 + 𝐶          (2.1) 

where R denotes the retention of surfactant, TAN is total acid number of the oil, T denotes 

reservoir temperature, Cco-solvents is co-solvent concentration, SPD stands for salinity of the 
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polymer drive, pH  is maximum effluent pH, MR is value of mobility ratio, and MWSur is 

average molecular weight of the surfactant solution, as well as some constants as follows: 

a1=-0.0538725; a2=-0.0001459; a3=-0.4855773; a4=0.0000002; 

a5=-0.0275395; a6=0.0383129; a7=0.0000072; C=0.4846366 

 

2.2. Dew Point Pressure of Gas Condensate Reservoirs 

The accurate prediction of dew point pressure in gas condensate reservoirs is 

important for the evaluation of their performance, because there is a reduction in the rate 

of gas condensate production with an increase of liquid (Seyed  Mohammad  Javad  Majidi 

2013). A number of researchers have studied the effect of dew point pressure on well 

productivity, e.g. Fevang and Whitson (Ø. Fevang 1996), Fan et al. (D. Afidick, 1994), 

Afidick et al. (Fan and Whitson, 1998), Barnum et al. (Barnum, 1995), and Smits et al. 

(Eilerts, 1942). The studies conclude that there is a considerable reduction in well 

generation in gas condensate wells under certain conditions, e.g. near wellbore 

condensate aggregation.  

The determination of the dew point pressure in gas condensate reservoirs, both 

experimentally and theoretically, has been investigated by several researchers. For the 

experimental determination of the DPP, the constant composition expansion (CCE) and 

constant volume depletion (CVD) are the two most commonly-used laboratory 

measurement methods (Shokir, 2008). While laboratory measurement of DPP is reliable, 

it is expensive and time-consuming. Hence, there is a preference to determine DPP using 

an empirical method called equations of state (EoS) (Shokir, 2008). EoSs are usually not, 

however, able to accurately simulate the phase behavior of light oil and gas condensate 

reservoirs, particularly in the retrograde region (Hadi Rostami-Hosseinkhani 2014). 

Over the years, many research studies have attempted to provide a global model 

for the prediction of DPP in gas condensate systems, on the basis of temperature, 

hydrocarbon composition, and C7+. In 1942, Kurata and Katz (F. Kurata, 1942) developed 

a correlation to predict the critical properties of volatile hydrocarbon mixtures. 

Unfortunately, they neglected the effect of composition due to the limited DPP data used 
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for the model development. Eilerts and Smith (Eilerts, 1942) proposed a relationship 

between temperature, pressure, composition, boiling point of the fluid, and gas oil ratio 

based on research in the Palam field. In 1945, Olds et al.(R. Olds, 1945) developed a 

correlation to predict the dew point pressure (in graphical and tabular forms) by using 

the characteristics of oil and gas samples obtained from the primary separator of a well 

in the Paloma field. They also studied the impact of the elimination of intermediate 

molecular weight on DPP. They showed that the intermediate molecular weight 

components have a significant influence on DPP.  

Olds et al. (R. Olds, 1949) experimentally studied the volumetric behavior for 

various mixtures of gas condensate samples which were collected from the San Joaquin 

Valley field. The correlation developed by them provided a relationship between the 

retrograde DPP and gas-oil ratio, temperature, and stock tank API oil gravity. The results 

obtained showed that the effect of temperature was minimal in comparison to the 

influence of modifying the compositions. Modification of the composition was 

undertaken by eliminating the intermediate components (Elsharkawy, 2002b). In 1950, 

Reamer and Sage (H. Reamer, 1950) investigated existing correlations, with respect to 

higher gas-oil ratio samples by combining five different pairs of fluid from a typical field 

in Louisiana. In their study, the effect of temperature and gas-oil ratio on DPP was 

investigated. They concluded that the complexity of the effect of composition on DPP is 

the main reason for a lack of a global model for predicting DPP. 

In 1952, Organic and Golding (E. Organick, 1952) studied the dew point pressure 

in condensate gas and volatile-oil mixtures. They introduced a simple correlation in the 

form of working charts which had an error of approximately 8% (Elsharkawy, 2002b). 

The correlation developed was not able to describe some materials like pure components 

and non-complex mixtures. Nemth and Kennedy (L. Nemeth, 1967) developed an 

extended relationship between dew point pressure, temperature, composition, and 

characteristics of the C7+ fraction of  the hydrocarbon fluid. They used multiple-variable 

regression analysis in their correlation development. In 1996, Crogh (Crogh, 1996) 

improved the Nemeth and Kennedy (L. Nemeth, 1967) correlation. Their correlation 

enabled better prediction of DPP, neglecting reservoir temperature. Humoud and Al-

Marhoun (Humoud, 2001) developed an empirical model using different gas condensate 

samples extracted from the Middle East. The correlation developed is a relationship 



41 | P a g e  
 

between the DPP of a gas condensate fluid with its reservoir temperature, the primary 

separator pressure and temperature, primary separator gas-oil ratio, pseudo reduced 

pressure and temperature, relative densities of separator, and heptane-plus fraction.  

  In 1996, Carlson and Cawston (M.R. Carlson, 1996) studied the effect of H2S on 

DPP. They concluded that an increase in H2S content decreases the volume of liquid drop 

out. Marruffo et al. (I. Marruffo, 2001) proposed a correlation which used 146 PVT 

analyses data from Western Venezuela (Anaco) fields to determine the DPP in gas 

condensate reservoirs. In 2002, Elsharkawy (Elsharkawy, 2002b) developed a 

relationship between DPP of the gas condensate reservoirs and some properties, 

including temperature, molecular weight, composition of hydrocarbon fluid and specific 

gravity of the C7+ components. They used 340 experimentally measured data within a 

pressure range of 1560-11830 psi and temperature ranging from 40 to 340 °F. Gonzales 

et al. (A. González, 2003) used neural network modeling to predict DPP. The reservoir 

temperature, hydrocarbon and non-hydrocarbon composition, molecular weight and 

specific gravity of the C7+ were applied as the inputs of the network developed. In 2008, 

Shokir (Shokir, 2008) proposed a model using  mathematical genetic programming, 

neglecting the effect of specific gravity of C7+. The study showed that the model developed 

is more acceptable (precise) compared to previous methods. Sarkar et al. (R. Sarkar, 

1991) proposed equations of state to model the behavior of the reservoir fluid phase, but 

they could not accurately simulate the complex hydrocarbon behavior, such as the 

retrograde gas condensate reservoir phase. 

It appears that the most commonly used methods for the calculation of dew point 

pressure are Elsharkawy (Elsharkawy, 2002a), Shokir (Shokir, 2008), and Nemeth and 

Kennedy (Nemeth and Kennedy, 1967) as follows: 

Elsharkawy (Elsharkawy, 2002a) 
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(2.2) 

Shokir (Shokir, 2008) 

(2.3)                                                                                                                                   1 2 3 4dP B B B B    

where 

 

(2.4) 

527372

27772

9399.225500)))))))((((

)))())(()((((((000007.02

CNCCCSH

COCCCCO

zzMWzMWTz

TzMWTzMWzTB









 

(2.5) 









7

22717275321

6908.72

))))()))(((()))()(((((9719.120586 2
63

C

NSHCCCCSHCCCSHC

MW

zzzzzzzzzzzzB
 

(2.6) 

)7(2.                                             

5 7 1

7 2 3 4 7 2 3 3 7

4 2

2
4 1962.40851( ( ))

253385.67764(( (( ) ( )))( ( ( ))))

13358.59271 4676.933602 6567.9

C C C

C CO C C C CO C C C

C C

B z MW z

z z z z z z z z MW

z z



  

   

  

  

 

Nemeth and Kennedy (Nemeth and Kennedy, 1967) 

5

227712275727

42424262237

87953.38456

))))))(()))((((()))))())(

)((((()))))(())((((((((875481.201
22

1

C

SHCCCCNSHCCCNC

CCOCCCCOCCOSHCrC

z

zzMWzzTzzzzMWzMW

zZzzzZzZzzTzB













43 | P a g e  
 

1

2 2 2 6 3 4 5 1 2 7

7

7 7

7 7 7 7 7 7

7 7

7

7

1 2 3

2 3 2
4 5 6 7 8 9

3
10

ln( ) ( 2( ) 0.4 0.2 ) ( )
0.002

( ) ( ) ( ) [ ] [ ]
0.0001 0.0001

[ ]
0.0001

C

d C CO H S C C C C C N C

C

C C

C C C C C C

C C

C

C

z
P A z z z z z z z z z A SG A

z

MW MW
A T A z MW A z MW A z MW A A

SG SG

MW
A

SG





 

     

 





          


     
 




11A

(2.8) 

where in the equations Pd denotes the dew point pressure in gas condensate reservoirs, 

MWC7+ is the molecular weight of the heptane-plus fraction, SGC7+ is the specific gravity of 

the heptane plus fraction, TR is the reservoir temperature and 

𝑧𝐶1
, 𝑧𝐶2

, 𝑧𝐶3
, 𝑧𝐶4

, 𝑧𝐶5
, 𝑧𝐶6

𝑧𝐶7+
,  𝑧𝐶𝑂2

, 𝑧𝑁2
,  𝑧𝐻2𝑆 are compositions of methane, ethane, propane, 

butanes, pentanes, hexanes, heptane-plus, carbon dioxide, nitrogen, and hydrogen 

sulfide, respectively. Furthermore, the adjustable parameters of Elsharkawy 

(Elsharkawy, 2002a), and Nemeth and Kennedy (Nemeth and Kennedy, 1967) methods 

are presented in Table 2. 1. 
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Table 2. 1  List of the adjustable parameters applied in the Elsharkawy (Elsharkawy, 

2002a), and Nemeth and Kennedy (Nemeth and Kennedy, 1967) methods. 

Parameter Elsharkawy's model  Nemeth and Kennedy's model  

A0 4268.85  

A1 0.094056 -2.0623054 

A2 -7157.87 6.6259728 

A3 -4540.58 -4.4670559*10-3 

A4 -4663.55 1.0448346*10-4 

A5 -1357.56 3.2673714*10-2 

A6 -7776.1 -3.6453277*10-3 

A7 -9967.99 7.4299951*10-5 

A8 -4257.1 -1.1381195*10-1 

A9 -1417.1 6.2476497*10-4 

A10 691.5298 -1.0716866*10-6 

A11 40660.36 1.746622*10+1 

A12 205.26  

A13 -7260.32  

A14 -352.413  

A15 -114.519  

A16 8.133  

A17 94.916  

A18 238.252  

 

2.3. Bubble Point Pressure and Oil Formation Volume Factor 

Several PVT empirical correlations to determine the fluid’s physical properties viz. 

bubble point pressure and oil formation volume factor, have been developed between 

1947 and the present. Standing (Standing, 1947a) and Katz (Katz, 1942) first provided 

PVT empirical correlations graphically for the estimation of PVT properties such as OFVF 

and bubble point pressure in 1947 and 1950, respectively. The Standing (Standing, 

1947a) correlation is based on experimental tests conducted on 105 cores from 22 crude 

oils in California State and also the Katz (Katz, 1942) method employs bubble point 
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pressure, oil API gravity, gas specific gravity, reservoir temperature and solution gas oil 

ratio in order to calculate the oil formation volume factor. Vazquez and Beggs (Vazquez 

and Beggs, 1980) presented a new PVT empirical correlation to estimate solution gas–oil 

ratio, viscosity associated with under-saturated oil reservoirs and oil formation volume 

factor based on the laboratory measurement of 600 cores collected from various regions 

of world. Subsequently, the results indicated that their proposed empirical correlation 

for the estimation of OFVF has an average error of 4.7%.  

Glaso (Glaso, 1980) performed regression and graphical analyses for the oil PVT 

properties by using data related to 45 core samples mostly collected from the North Sea 

region. Their results, related to oil formation volume factor and bubble point pressure, 

were of an average errors equal to 1.28 and 20.43 %, respectively. Al-Marhoun (Al-

Marhoun, 1992) proposed a PVT empirical correlation for oil formation volume factor 

based on experimental PVT data mostly extracted from North America and the Middle 

East, Dokla and Osman (Dokla and Osman, 1992) used experimental PVT data from UAE 

for development of bubble point pressure and oil formation volume factor correlations, 

and Petrosky and Farshad (Petrosky Jr and Farshad, 1998) developed under-saturated 

isothermal oil compressibility, oil formation volume factor and solution gas–oil ratio 

correlations using PVT data from the Gulf of Mexico. 

Arabloo et al. (Arabloo et al., 2014) implemented two constrained multivariable 

search techniques including a generalized reduced gradient algorithm and successive 

linear programming for the development of two empirical correlations to determine the 

oil formation volume factor and bubble point pressure. To pursue their objective, they 

utilized experimental data associated with various geographical domains worldwide. The 

results indicated that their OFVF and bubble point pressure correlations had average 

relative errors equal to 2.24 and 18.9 %, respectively. Recently, smart techniques have 

been increasingly employed to predict PVT properties (Boukadi et al., 1999; Elsharkawy, 

1998; Gharbi and Elsharkawy, 1997a; Gharbi and Elsharkawy, 1997b). However, these 

intelligent methods have some drawbacks. For example, a symbolic equation, necessary 

in a large dataset for prediction and over-fitting problems, was not given. 
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2.4. Saturated, Under-Saturated, and Dead Oil Viscosities 

The viscosity of reservoir oil depends on many thermo-physical factors including 

reservoir pressure, reservoir temperature, solution gas–oil ratio properties, bubble point 

pressure properties, the gravity of gas and oil, and the composition of oil mixture (Riazi 

and Al-Sahhaf, 1996; Torabi et al., 2011). Normally, the measurement of reservoir oil 

viscosity is undertaken by conducting experimental methods that simulate reservoir 

conditions under particular reservoir temperatures. Nevertheless, experimentally 

measuring the reservoir oil viscosity at different temperatures is sometimes impossible 

and/or unprofitable due to the high price of the sampling equipment and the related tests 

(Torabi et al., 2011). Therefore, empirically derived methods can be useful in estimating 

the reservoir oil viscosity where experimental data is not available.  

In regard to the pressure issue, there are several empirical and/or semi-empirical 

correlations available for calculation of dead oil viscosities, saturated, and under-

saturated, which will be explained in more detail in the next section. Moreover, there are 

some models for the prediction of viscosity on the basis of the corresponding states 

method (Johnson, 1991; Johnson et al., 1987; Teja and Rice, 1981). The corresponding 

states-based method has not found acceptance because it requires complex 

calculations/computations as well as information on the composition of fluid for its 

viscosity estimation (Elsharkawy and Alikhan, 1999; Naseri et al., 2005). 

Additional methods include smart techniques like the neural networks and 

support vector machines approaches, which are applied to determine reservoir oil 

viscosities. But these methods sometimes have over-fitting problems and also require 

large databases and finally, do not give a symbolic equation for future applications (Al-

Anazi and Gates, 2010; Al-Anazi and Gates, 2012; Parhizgar et al., 2013).  Obanijesu and 

Omidiora (Obanijesu and Omidiora, 2009) developed an artificial neural network model 

for the determination of oil viscosities of Nigerian crudes. Hemmati-Sarapardeh et al. 

(Hemmati-Sarapardeh et al., 2014b) proposed a smart predictive model based on the 

least squares version of the support vector machines mathematical scheme for the 

prediction of Iranian oil field viscosities. The results illustrated agreements between the 

experimental data and the results.  
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The list of the previously published dead, saturated, and under-saturated oil 

viscosity models investigated in this study as well as their ranges and formulas have been 

summarized in Tables 2. 2-4. 
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Table 2. 2 List of the previously published dead oil viscosity models investigated in this study as well as their ranges and formulas. 

Method Origin of Data T (K) API µod (cP) Formula 

Beal (Beal, 1946) 
US 310-394 10.1-

52 

0.865-

1550 

μod = (0.32 + 1.8 ×
107

API4.53
) (

360

T + 200
)

x

; x = e
[2.302585(0.43+

8.33
API

)]
 

Beggs and Robinson (Beggs and 

Robinson, 1975) 

- 294-419 16-58 - μod = 10x − 1; x = e[3.0324−0.02023API]  T−1.163 

Glaso (Glaso, 1980) 
North Sea 283-422 20-48 0.6-39 

μod = (
3.141 × 1010

T3.44
) log(API)[0.313 log(T)−36.447] 

Kaye (Kaye, 1985) Offshore California 334-412 7-41 - μod = 10[T−0.6510(2.203−0.0254API)] − 1, API ≤ 12; μod = 10[T−0.6510(2.305−0.03354API)] − 1, API > 12; 

Al-Khafaji (Al-Khafaji et al., 

1987) 

- 289-422 15-51 - 
μod =

10(4.9563−0.00488T)

(API +
T

30
− 14.29)2.709

 

Petrosky (Petrosky, 1990) 
Gulf of Mexico 319-415 25-46 0.72-

10.25 

μod =
2.3511 × 107

T2.10255
log (API)[4.59388 log(T)−22.82792 

Egbogah and Ng (Egbogah and 

Ng, 1990) 

- 288-353 5-58 - μod = 10x − 1; x = 10[1.8653−2.5086×10−2 API−0.56441 log(T)] 

Labedi (Labedi, 1992) Libya 311-425 32-48 0.66-4.79 μod = 109.224 API−4.7013  T−0.6739 

Kartoatmodjo and Schmidt 

(Kartoatmodjo and Schmidt, 

1994b) 

Worldwide 300-433 14-59 0.5-586 
μod =

1.6 × 109

T2.8177
log (API)[5.7526 log(T)−26.9718] 
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Bennison (Bennison, 1998) North Sea 277-422 11-20 6.4-8396 μod = 10[−0.8021API+23.8765] T[0.31458API−9.21592] 

Elsharkawy and Alikhan 

(Elsharkawy and Alikhan, 1999) 

Middle East 311-422 20-48 0.6-33.7 μod = 10x − 1; x = e[2.16924−0.02525API−0.68875 log(T)] 

Hossain et al. (Hossain et al., 

2005) 

Worldwide 273-375 7-22 12-451 μod = 10[−0.71523API+22.13766] T[0.269024API−8.268047] 

Naseri et al. (Naseri et al., 2005)  Iran 314-421 17-44 0.75-54 μod = 10[11.2699−4.2699 log(API)−2.052 log(T)] 

Alomair et al. (Alomair et al., 

2011) 

Kuwait 293-433 10-20 1.78-

11360 
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Table 2. 3 List of the previously published saturated oil viscosity models investigated in this study as well as their ranges and formulas. 

Method Source of Data 

Solution 

GOR 

(SCF/STB) 

Saturation 

Pressure 

(MPa) 

μod, cP Formula 

Chew and Connally I (Chew and 

Connally Jr, 1959) 

US 
51-3544 

0.91-38.92 0.37-50 
μob = Aμod

B ; A = 0.2 +
0.8

100.00081Rs
 ; B = 0.43 +

0.57

100.00072Rs
  

Chew and Connally II (Chew and 

Connally Jr, 1959) 

US 
51-3544 

0.91-38.92 0.37-50 μob = Aμod
B ; A = 10[Rs(2.2×10−7Rs−7.4×10−4)] ;    

B = 0.68 × 10[−8.62×10−5Rs] + 0.25 × 10[−1.1×10−3Rs] + 0.062 × 10[−3.74×10−3Rs] 

Chew and Connally III (Chew and 

Connally Jr, 1959) 

US 

51-3544 

0.91-38.92 0.37-50 μob = Aμod
B  

A = 0.987583 − 0.1746773 × 10−2Rs + 0.2067531 × 10−5Rs
2 − 0.1310529 × 10−8Rs

3 + 0.3229416 × 10−12Rs
4 

B = 0.9900216 − 0.112183 × 10−2Rs + 0.1427879 × 10−5Rs
2 − 0.9440539 × 10−9Rs

3 + 0.2312365 × 10−12Rs
4 

Beggs and Robinson (Beggs and 

Robinson, 1975) 

- 
20-2070 

0.91-36.30 - 
μob = Aμod

B ; A =
10.715

(Rs + 100)0.515
 ; B =

5.44

(Rs + 150)0.338
  

Al-Khafaji (Al-Khafaji et al., 1987) 

- 

0-2100 

- - μob = Aμod
B ; X1 = log (Rs) 

A = 0.247 + 0.2824X1 + 0.5657X1
2 − 0.4065X1

3 + 0.0631X1
4 

B = 0.894 + 0.0546X1 + 0.07667X1
2 − 0.0736X1

3 + 0.01008X1
4 

Khan et al. (Khan et al., 1987) 
Saudi Arabia 

24-1901 
0.74-29.75 0.13-77.4 μob =

0.09γg
0.5

R
sb

1
3 [

T+459.67

459.67
 ]4.5 (1−γo)3

; if P < Pb  →  μo =
μob e[−2.5×10−4

(P−Pb)

 (
P

Pb
)0.14

  

Petrosky (Petrosky, 1990) Gulf of Mexico 21-1855 10.85-65.85 0.21-7.4 
μob = Aμod

B ; A = 0.1651 +
0.6165

10(6.0866×10−4Rs)
 ; B = 0.5131 +

0.5109

10(1.1831×10−3Rs)
 

Labedi (Labedi, 1992) 
Libya 

13-3533 
0.41-43.83 0.115-3.72 

μob =
10(2.344−0.03542API) μod

0.6447

Pb
0.426  ; at P < Pb  →  μo =

μob

1 − (10−3.876 Pb
05423API1.1302 (1 −

P
Pb

)
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Kartoatmodjo and Schmidt 

(Kartoatmodjo and Schmidt, 

1994b) 

Worldwide 

2.3-572 

0.10-41.74 0.1-6.3 μob = −0.06821 + 0.9824X2 + 4.034 × 10−4X2
2; 

X1 = 0.43 + 0.5156 × 10[−8.1×10−4Rs]; X2 = [0.2001 + 0.8428 × 10[−8.45×10−4Rs]]μod
X1 

Elsharkawy and Alikhan 

(Elsharkawy and Alikhan, 1999) 

Middle East 
10-3600 

0.69-25.51 0.05-21 
μob = Aμod

B ; A =
1241.935

(Rs + 641.026)1.12410
 ; B =

1768.841

(Rs + 1180.335)1.06622
 

Hossain et al. (Hossain et al., 

2005) 

Worldwide 
19-493 

0.83-43.24 3.6-360 μob = Aμod
B  

A = 1 − 0.001718831Rs + 1.58081 × 10−6Rs
2 ;  A = 1 − 0.002052461Rs + 3.47559 × 10−6Rs

2 

Naseri et al. (Naseri et al., 2005) 
Iran 

255-4116 
2.89-40.68 0.11-18.15 μob = 101.1145Pb

−0.4956μod
0.9961 

 

Bergman and Sutton 

(Bergman and Sutton, 2007) 

Worldwide 

6-6525 

0.45-71.02 0.21-4277 μob = Aμod
B  ; A =

1

1 + (
Rs

344.198
)0.855344

 ; B =
0.617677

1 + (
Rs

567.953
)0.819326
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Table 2. 4 List of the previously published under-saturated oil viscosity models investigated in this study as well as their ranges and 

formulas. 

Method Origin of Data P (MPa) Pb (MPa) µob (cP) μo (cP) Formula 

Beal (Beal, 1946) USA - - 0.142-127 0.16-315 μo = μob + [0.001(P − Pb)](0.024μob
1.6 + 0.038μob

0.56) 

Vazquez and Beggs (Vazquez 

and Beggs, 1980) 

Worldwide 0.87-65.50 - - 0.117-148 μo = μob e
[(5.50318×10−5+3.77163×10−5μob

0.278)(P−Pb)] 

Khan et al. (Khan et al., 1987) Saudi Arabia - 0.74-33.05 0.13-77.4 0.13-71 μo = μob e
[9.6×10−5(P−Pb)] 

Petrosky (Petrosky, 1990) Gulf of Mexico 11.03-

70.67 

10.85-

65.86 

0.211-3.546 0.22-4.09 μo = μob + 1.3449 × 10−5(P − Pb)10X2; X1 = log(μob) ; X2 = −1.0146+1.3322X1 − 0.4876X1
2 − 1.15036X1

3  

Labedi (Labedi, 1992) Libya - 0.41-43.84 0.115-3.72 - 
μo = μob +

μod
0.9036Pb

0.6151

10(2.488+0.01976 API) (
P

pb

− 1) 

Orbey and Sandler (Orbey 

and Sandler, 1993) 

- 5.10-

100.00 

- 0.217-3.1 0.225-7.3 μo = μob e
[α(P−Pb)] ; α = 6.89 × 10−5 

Kartoatmodjo and Schmidt 

(Kartoatmodjo and Schmidt, 

1994b) 

Worldwide 0.17-41.47 0.17-32.92 0.168-184.86 0.168-517.03 μo = 1.0081μob + 1.127 × 10−3(P − Pb)(−6.517 × 10−3μob
1.8148 + 0.038μob

1.59) 

Elsharkawy and Alikhan 

(Elsharkawy and Alikhan, 

1999) 

Middle East 8.87-68.94 - - 0.2-5.7 
μo = μob +

10−2.0771(P − Pb)μod
1.19279

μob
0.40712Pb

0.7941  

Hossain et al. (Hossain et al., 

2005) 

Worldwide 2.07-23.44 0.83-43.24 3.6-360 3-517 μo = μob + [0.004481(P − Pb)](0.555955μob
1.068099 − 0.527737μob

1.063547) 
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2.5 Solution Gas–Oil Ratio 

Over the years, various empirical methods have been reported for the 

determination of reservoir fluid properties related to oil samples from different 

geographical locations. To this end, in one of the first attempts, Elam (Elam, 1957) in 1957 

proposed a correlation for the estimation of saturation pressure as a function of 

temperature, gas specific gravity, oil gravity and solution GOR using as a basis of 231 data 

points for Texas crude oil. One year later, Lasater (Lasater, 1958) presented a bubble 

point-pressure correlation for black oil data taken from Canada, western and mid-

continental United States and South America. His model was developed using 158 

samples of 137 various crude oils. He reported an average error of 3.8% for his model. 

He also observed that the existence of CO2 in crude oil samples results in an increment in 

the saturation pressure. Vasquez and Beggs (Vazquez and Beggs, 1980) proposed some 

empirically derived methods for the estimation of reservoir fluid properties using a 

universal databank collected from various regions of the world. Moreover, they separated 

the experimentally obtained data into two classes. The first group contained oils with 

gravities less than 30 °API. The second group contained oils with gravities of more than 

30 °API. In contrast with Lasater's results (Lasater, 1958), they found that CO2 content 

decreases the saturation pressure.  

In 1983, Ostermann (Ostermann et al., 1983) developed two correlations for the 

estimation of the saturation pressure of crude oil samples taken from different regions in 

Alaska based on a limited number of data points. Al-Marhoun (Al-Marhoun, 1988) 

developed an empirical correlation applying data gathered from the Middle East region. 

In 1990, Rollins et al. (Rollins et al., 1990) proposed an empirically derived method to 

calculate the stock-tank gas–oil ratio as a function of oil API gravity, separator pressure 

and temperature, and gas gravity. In the same year, Sutton and Farshad (Sutton and 

Farshad, 1990) reviewed several PVT correlations and compared the accuracy of  several 

PVT parameters in each model for application in the Gulf of Mexico. In their study, Glaso’s 

correlations (Glaso, 1980) provided acceptable results for calculation of saturation 

pressure, solution GOR, and OFVF. They reported that Vazquez and Begg’s correlations 

(Vazquez and Beggs, 1980) had higher accuracy for solution GOR for more than 1400 

SCF/STB and saturation pressures of more than 7000 psi.  
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In 1992, Dokla and Osman (Dokla and Osman, 1992) studied 51 crude oil samples 

from UAE and developed a new empirical methods for OFVF, saturation pressure and 

solution GOR. They reported that PVT correlations should be derived using local data sets 

because universal correlations are not always accurate enough. In addition, Omar and 

Todd (Omar and Todd, 1993) developed models for OFVF and saturation pressure on the 

basis of Standing’s correlations (Standing, 1947b) using 93 PVT datasets from Malaysian 

oil reservoirs. Their models showed better accuracy for Malaysian oil samples. 

Furthermore, Petrosky and Farshad (Petrosky Jr and Farshad, 1993) proposed some 

empirically derived methods for the determination of reservoir fluid properties using 

data collected from the Gulf of Mexico. They showed that the empirical methods proposed 

outperformed other methods developed for the Gulf of Mexico, including those of 

Standing (Standing, 1947b), Vasquez and Beggs (Vazquez and Beggs, 1980), Glaso (Glaso, 

1980), and Al-Marhoun (Al-Marhoun, 1988).  Elsharkawy et al. (Elsharkawy et al., 1995) 

also compared different correlations to characterize Kuwaiti crude oils using a limited 

number of oil samples.  

Ghetto et al. (Ghetto et al., 1994) proposed empirical methods for the calculation of 

saturation pressure, solution GOR, OFVF, oil compressibility, and oil viscosity for heavy  

and extra-heavy oils. The data used in developing the correlations came from reservoir 

fluid samples extracted from the Mediterranean Basin, Africa, and the Persian Gulf. In 

1998, Khairy et al. (Khairy et al., 1998) developed empirical methods for the estimation 

of saturation pressure and bubble point OFVF. They compared their model with nine 

published correlations. In 1999, Velarde and McCain (Velarde et al., 1999) developed a 

set of empirical methods for calculating solution GOR and OFVF, and modified OFVF using 

195 laboratory tests. In 2007, Mazandarani and Asghari (Mazandarani and Asghari, 

2007) tuned Al-Marhoun 's attempted to find a modified correlation (Al-Marhoun, 1988) 

for Iranian field data using about fifty fluid samples collected from different Iranian oil 

fields. In 2008, Taghaz et al. (Taghaz et al., 2008) tested the accuracy of PVT correlations 

to determine the solution GOR of Libyan oils using about 1600 data points from different 

oil fields in the Sirte basin. They concluded that no correlation is suitable for Libyan oils. 

In 2012, Shafiie et al. (Shafiie et al., 2012) optimized Standing (Standing, 1947b) and 

McCain correlations for solution GOR and OFVF, based on Iranian crude oil samples, and 

developed a new model using Genetic Algorithms. In 2014 Arabloo et al. (Arabloo et al., 



55 | P a g e  
 

2014) developed simple and accurate empirical methods for the prediction of saturation 

pressure and OFVF using a large databank compiled from various geographical locations.  

Here, it is worth mentioning that, in addition to empirical methods, smart 

techniques have been implemented for the estimation of reservoir fluid properties and 

petroleum engineering problems (Esfahani et al., 2015; Hosseinzadeh and Hemmati-

Sarapardeh, 2014; Kamari et al., 2015a; Kamari et al., 2014a; Kamari et al., 2015b; Kamari 

et al., 2014c; Kamari et al., 2014d; Kamari et al., 2014e; Zendehboudi et al., 2013b). 

Tables 2. 5 and 2. 6 summarize the most important methods available in the literature 

in order to determine the petroleum reservoir fluid properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 | P a g e  
 

Table 2. 5 Author defined ranges for bubble point pressure, solution GOR, OFVF, and compressibility correlations 

Petroleum 
reservoir fluid 
properties Standing Lasater Glaso Kartoatmodjo 

Vasques-
Beggs Al-Marhoun 

Rollins-
McCain 
Creeger 

Petrosky-
Farshad Lebadi 

Tank-oil gravity  
(⁰API)  16.5 to 63.8 17.9 to 51.1 22.3 to 48.1 14.4 to 58.95 15.3 to 59.5 19.4 to 44.6 18 to 53.5 16.3 to 45 

32.2 to 
48 

Bubblepoiot 
pressure (psia) 130 to 7000 48 to 5780 165 to 7142 0 to 6040 15 to 6055 130 to 3573 – 

1574 to 
6523 

520 to 
6358 

Reservoir 
temperature (⁰F) 100 to 258 82 to 272 80 to 280 75 to 320 170 (mean) 74 to 240 – 114 to 288 

128 to 
306 

OFVF at 
bubblepoint 
(bbl/STB) 1.024 to 2.15 - 

1.025 to 
2.588 1.022 to 2.747 1.028 to 2.226 1.032 to 1.997 – 

1.1178 to 
1.6229 

1.088 
to 2.92 

Solution GOR 
(scf/STB) 20 to 1425 3 to 2905 90 to 2637 0 to 2890 0 to 2199 26 to 1602 – 

217 to 
1406 – 

Separator gas 
gravity (air=I) – – – 0.4824 to 1.668 0.511 to 1.351 – 0.579 to 1.124 - – 

Total surface gas 
gravity (air-1) 0.59 to 0.95 0.574 to 1.223 0.65 to 1.276 – – 0.752 to 1.367 – 

0.5781 to 
0.8519 – 

Separator 
pressure (psia) 265 to 465 15 to 605 415 (mean) 100 60 to 565 – 29.7 to 314.7 – 

34.7 to 
789.7 

Separator 
temperature (⁰F) 100 (mean) 34to 106 125 (mean) 38 to 294 76 to 150 – 60 to 150 – 

60 to 
220 

Reservoir 
pressure (psia) – – – 10 to 6000 141 to 9515 20 to 3573 - 

1700 to 
10692 – 

Stock-tank GOR 
(scf/STB) – – – – – – 4 to 220 – – 

Separator GOR 
(scf/STB) – – – – – – 12 to 1742 – – 
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Table 2. 6 Average errors reported by authors in their original papers. 

 
Bubblepoiot 
pressure Solution GOR OFVF 

Isothermal 
compressibility 

Dead-oil 
viscosity 

Gas-saturated oil 
viscosity Undersaturated oil viscosity 

Author Standing 
Vasquez-
Beggs Standing Labedi 

Beggs-
Robinson Beggs-Robinson Vasquez-Beggs  

Average 
error (%) 4.8 -0.7 1.17 3 -0.64 -1.83 -7.541  

Author Lasater Kartoatmodjo 
Vasquez-
Beggs Kartoatmodjo Egbogah-Jack Kartoatmodjo Kartoatmodjo  

Average 
error (%) 3.8 23.2 4.7 23.7 -5.13 16.1 6.9  

Author Glaso 

Rollins-
McCain 
Creeger Glaso 

Petrosky-
Farshad Kartoatmodjo Labedi Majeed-Kattan-Salman 

Average 
error (%) 1.28 3 -0.43 6.66 39.6 -2.38 1.188  

Author Al-Marhoun  Kartoatmodjo  Labedi  Labedi  

Average 
error (%) 3.66  2  -2.61  -3.1  

Author Kartoatmodjo        

Average 
error (%) 20.2        
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2.6. Asphaltene Precipitation 

A significant number of attempts have been made by researchers to address 

asphaltene precipitation during petroleum production. Loureiro et al. (Loureiro et al., 

2015) studied the effect of carbon dioxide and n-heptane on the behavior of asphaltene 

precipitated. To this end, they employed ultraviolet–visible (UV–vis) spectrometry to 

monitor phase behaviour of asphaltene precipitation. Hemmati-Sarapardeh et al. 

(Hemmati-Sarapardeh et al., 2013a) developed a SARA fraction based model using a least 

square support vector machine (LSSVM) algorithm for the estimation of asphaltene 

precipitation of Iranian crudes. They indicated that the results obtained by their model 

were in satisfactory agreement with the corresponding experimental data.  

Zendehboudi et al. (Zendehboudi et al., 2014) performed laboratory tests on 

asphaltene precipitation to observe the influence of mixture composition temperature, 

pressure, pressure drop, and dilution ratio. They also compared the results with those of 

an artificial neural network. They found that temperature and pressure drop have 

significant impacts on the precipitation of asphaltene. Ju et al. (Ju et al., 2013) developed 

a 3D multiphase indicating the carbon dioxide transport into a reservoir, and 

precipitation of asphaltene. In the study, they observed the influence of asphaltene 

precipitation on the petroleum production trend during CO2 injection. The results 

obtained in the study indicated that the permeability and production rate reduce with the 

precipitation of asphaltene.  

Huang et al. (Lei et al., 2010) conducted an experimental investigation as well as a 

modeling approach to study asphaltene precipitation inducted with carbon dioxide 

flooding. Shahebrahimi and Zonnouri (Shahebrahimi and Zonnouri, 2013) developed a 

thermodynamics model for the determination of asphaltene precipitation. The model is 

composed of Flory–Huggins as well as None Random Two Liquid (NRTL) models. The 

results demonstrated a satisfactory accuracy between the model values and experimental 

data. 

Rassamdana et al. (Rassamdana et al., 1996) proposed the two-variables scaling 

equation as a function of the solvent to oil dilution ratio (R), and solvent molecular weight 

(M) for predicting the phase behaviour of asphaltene precipitation. Next, Rassamdana 

and Sahimi  (Rassamdana and Sahimi, 1996) modified the scaling equation suggested by 
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Rassamdana et al. (Rassamdana et al., 1996) by observing the influence of temperature 

(T). The asphaltene scaling equation proposed by Rassamdana et al. (Rassamdana et al., 

1996) is formulated as follows: 

𝑋 =
𝑅𝑣

𝑀𝑧
                                                                                                                                                (2.9) 

𝑌 =
𝑊

𝑅𝑣
𝑧′                                                                                                                                            (2.10) 

where Rv stands for the solvent to oil dilution ratio, M expresses the solvent molecular 

weight, and z and z’ denote the tuning parameters of equations above. Regardless of oil 

and precipitant applied in the experiments, z and z’ should be considered 2 and –2 

(Rassamdana et al., 1996). The scaling equations mentioned above can be expressed with 

a new form through a polynomial function as below: 

𝑌 = 𝐴1 +  𝐴2𝑋 + 𝐴3𝑋2 + 𝐴4𝑋3     (𝑋 ≥ 𝑋𝑐)                                                                            (2.11) 

where Xc denotes the value of X at the onset point of asphaltene precipitation, and A1, A2, 

A3, and A4 are considered as the scaling coefficients. As mentioned earlier, Rassamdana 

and Sahimi  (Rassamdana and Sahimi, 1996) modified the scaling equation by considering 

the influence of temperature as follows: 

𝑥 =
𝑋

𝑇𝐶1
                                                                                                                                              (2.12) 

𝑦 =
𝑌

𝑋𝐶2
                                                                                                                                              (2.13) 

𝑦 = 𝑏1 +  𝑏2𝑥 + 𝑏3𝑥2 + 𝑏4𝑥3     (𝑥 ≥ 𝑥𝑐)                                                                                (2.14) 

In Eqs. (2.8–2.14), X and Y are the same variables which are defined in Eqs. 2.9 and 2.10, 

C1 and C2 denote the adjustable parameters of the asphaltene precipitation scaling 

equation (a good fit of the experimental data of asphaltene precipitation with the 

predicted values by Eqs. (2.8–2.14) is obtained at C1=0.25 and C2=1.6), and b1, b2, b3, and 

b4 are considered as the coefficients of third-order polynomial scaling equation regarding 

effect of temperature. 
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2.7. Wax Disappearance Temperature 

Several experimental and mathematical studies have been conducted regarding 

the measurement and modelling of wax deposition (Kamari et al., 2013c; Kamari et al., 

2014d; Mohammadi et al., 2011; Mohammadi et al., 2012b; Mohammadi et al., 2012d; 

Mohammadi et al., 2006). Moradi et al. predicted wax disappearance temperature by 

means of artificial neural networks (Moradi et al., 2013b). Ji et al. used a set of data which 

included a number of binary and multi-component systems to develop a new 

thermodynamic model for prediction of WDT (Ji et al., 2004).  

A correlation for wax disappearance temperature was proposed by Moradi et al. 

for various pressure conditions (Moradi et al., 2013a). Ghanaei et al. developed a novel 

thermodynamic model to predict formation of wax at high pressure conditions and, a 

simplified thermodynamic model which works based on sensitivity analysis together 

with a new improved predictive UNIQUAC to forecast wax formation from paraffinic 

compounds (Ghanaei et al., 2012; Ghanaei et al., 2014; Ghanaei et al., 2007). In other 

research by this group, 25 groupings of five models (regular solution theory, UNIFAC, 

predictive UNIQUAC, predictive Wilson and ideal solution model) for the explanation of 

solid and liquid phases have been analyzed to get the highest agreement between 

experimental and predicted data (Ghanaei et al., 2006).  

To illustrate an improved representation of wax deposition of hydrocarbon fluid, 

Zuo et al. established a solid-solution model (Zuo et al., 2001). Daridon et al. designed a 

high pressure device which uses a polarizing microscope to control visually the liquid–

solid phase conversions in intricate waxy systems (Daridon et al., 2002). Banki et al. 

developed a new mathematical model to predict wax deposition in transferring 

equipment for laminar flow (Banki et al., 2008). Kelechukwu et al. proposed an empirical 

model by advanced feed forward neural network to forecast deposition of wax in 

production systems (Modesty Kelechukwu et al., 2013). Li et al. analyzed the pressure 

impact on WDT/WAT of crude oil with different water cuts (Li and Jing, 2010).  

Coutinho et al. undertook a review to compare different methods of cloud point 

measurements (Coutinho and Daridon, 2005). Won modeled new thermodynamic 

correlations for wax appearance temperatures and the compositions of the deposited 

waxes in a broad range of temperature (Won, 1989). Chen et al. developed a 
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thermodynamic model for wax deposition and novel correlations for properties of solid-

solid and solid-liquid conversions. A thermodynamic model to forecast phase 

equilibriums of crude oils was also proposed (CHEN and ZHAO, 2006; Chen et al., 2007). 

 

2.8. Hydrocarbon–plus (C7+) Properties of Crude Oils and Gas-

Condensates 

An adequate and reliable determination and characterization of properties of 

heptane–plus components of petroleum fractions increases the accuracy of calculations 

related to the PVT calculations (Whitson, 1983). To this end, Whitson (Whitson, 1983) 

developed a distribution method for the estimation of molecular weight of heptane–plus 

components of crude oils as follows (Riazi, 1989): 

𝐹(𝑀) =
(𝑀−𝜂)𝛼−1 exp[−

𝑀−𝜂

𝛽
]

𝛽𝛼 Γ(𝛼)
                                                                                                 (2.15)    

where F(M) stands for the possibility density function, M denotes the molecular weight 

of heptane–plus components of crude oil, and 𝛼, 𝛽, 𝜂 express the distribution parameters 

of the model. An improvement on the model presented above has been performed by 

Whitson et al. (1986) (Whitson et al., 1989) to characterize the molecular weight and the 

boiling point temperature of crude oil and gas-condensate samples. 

Another successful distribution model has been proposed by Riazi (1989) (Riazi, 

1989) for characterization and estimation of the boiling point temperature, molecular 

weight, and specific gravity of heptane–plus (C7+) components of crude oils and gas-

condensate samples as follows (Riazi, 1989): 

𝑃∗ = [
𝐴

𝐵
 ln (

1

1 − 𝑥
)]

1
𝐵                                                                                                                   (2.16) 

where P*=(P-P0)/P and P are considered for the molecular weight , specific gravity , and 

or boiling point temperature, x stands for cumulative weight, mole, and or volume 

fractions, and finally A, B and P0 are the model parameters which can be obtained by 

linear regression of the data used (Riazi, 1989).  
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Moreover, there are studies for characterization of heavier components of petroleum 

fractions such as that reported by Moradi et al. (Moradi et al., 2011). An artificial neural 

network model was developed for the estimation of the molecular weight, specific 

gravity, and boiling point temperature. The results obtained by Moradi et al. (Moradi et 

al., 2011) indicated a good fit between the values predicted by the ANN modelling and the 

actual data used. 

 

2.9. Vaporization Enthalpy of Petroleum Fractions 

Vaporization enthalpy is important from both the experimental and theoretical 

perspective because of its use in engineering optimization and design, and thus 

experimental techniques, correlations, and estimation models have been developed to 

provide greater thermodynamic insight (Fang et al., 2003). For hydrocarbon components, 

Vetere (Vetere, 1979; Vetere, 1995) developed two empirical correlations for the 

calculation of vaporization enthalpy using two variables, viz. molecular weight and 

normal boiling temperature. Riazi and Daubert (Riazi and Daubert, 1980) proposed an 

empirical correlation for predicting the vaporization enthalpy as a function of Tb and S. 

Both the Vetere and Riazi and Daubert correlations showed an estimation error of 

approximately 7%.  

Mohammadi and Richon (Mohammadi and Richon, 2007) developed a simple 

correlation for vaporization enthalpy as a function of the Tb and S. The correlation is 

capable of calculating the vaporization enthalpies of pure hydrocarbon components and 

petroleum fractions. They also proposed an artificial neural network (ANN) tool for 

comparison of the results obtained from their empirical correlation. The results showed 

agreement between their empirical correlation, the ANN model, and experimental values. 

Parhizgar et al. (Parhizgar et al., 2013) proposed an empirical method for determination 

of vaporization enthalpies of pure hydrocarbon components and petroleum fractions 

using genetic programming which is a function of the Tb and S. Their results indicated 

that their correlation can calculate the vaporization enthalpy of both pure hydrocarbon 

components and petroleum fractions with an average absolute relative deviation (AARD) 

of approximately 1.35%. 
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2.10. Gasoline Properties 

There have been many attempts to determine the properties of gasoline, especially 

with regard to characterization of its quality. Mendes et al. (Mendes et al., 2012) utilized 

distillation curves (ASTM D86) to estimate the RON and MON efficiently. Balabin et al. 

(Balabin et al., 2007) compared the most popular methods for the determination of 

properties, and consequently characteristics, of gasoline, with the use of near infrared 

spectroscopy data. Murty and Rao (Murty and Rao, 2004) developed a neural network-

based model for estimating the RON. They compared the results obtained with a multiple 

linear regression technique accessible in the open literature. In their opinion, the 

advantage of the neural network-based model over the classical methods is that the 

neural network method can handle data covering several variables which do not have to 

be specified in advance.  

Aleme et al. (Aleme et al., 2009) developed a partial least-squares regression 

model for predicting the value of SG using distillation curves (ASTM-D86). They state that 

their method is effective in predicting the SG and content of ethanol in gasoline. 

The standard techniques used to evaluate the quality of fuels, petroleum, and its 

fractions are tedious and time-consuming. They also require highly qualified personnel 

and costly equipment (de Oliveira et al., 2004). There is therefore a need for prediction 

methods which can determine gasoline properties from easy-to-determine gasoline 

parameters or properties, with an aim to understand which parameters most affect the 

properties. This study aims to develop a reliable predictive model for accurately 

predicting some gasoline properties, viz. SG, MON, RON and RVP. 

 

2.11. Gas Compressibility Factor of Natural Gas 

Generally, the volumetric properties of petroleum fluid are predicted from 

laboratory tests, empirically derived models, or thermodynamic models (Yan et al., 

2013). Normally,  high-temperature and high-pressure apparatuses are utilized for the 

experimental measurements (Chylinski et al., 2002). These measurements are expensive 

and time-consuming and it is impossible to measure properties for all possible 

compositions of natural gasses (Ahmed, 2006).  
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In addition to laboratory tests, equations of state and empirically derived models 

can predict the properties related to petroleum fluid. To determine the natural gas z-

factor, empirical correlations are more rapid and simple than equations of state 

(involving a large number of parameters) which require longer computations and are 

complicated (Elsharkawy, 2004). Furthermore, the gas compressibility factor of all EoS 

models is implicit and consequently should be explained as a root of the EoS (Heidaryan 

et al., 2010a).  

It is worth noting that in-spite of the abovementioned drawback, EoS has some 

advantages. For instance, it expends some accuracy in exchange for smoothing the model 

and for nice mathematical behaviour in terms of the derivatives of the mathematical 

function. The partial derivatives of compressibility lead to different expressions, 

including the entropy, enthalpy, and Gibbs free energy residuals, which are in turn 

utilized to estimate fugacity coefficients and then are used to describe phase equilibria 

(Kamari et al., 2013a). 

As a definition, the gas compressibility factor of an ideal gas is the ratio of the  

molar volume occupied by a gas to the molar volume related to an ideal gas at a 

given/same temperature and pressure (Kumar, 2005). In other words, the 

compressibility factor of gasses is a dimensionless quality which is a function of pressure 

and temperature. According to the kinetic concept related to gasses (Ahmed, 2006), the 

volume of a molecule is insignificant and/or unimportant compared to the total bulk 

volume. Also, it is assumed that there are neither attractive nor repulsive forces among 

the gas molecules (Ahmed, 2006).  

A mathematical equation called an equation of state shows a relationship among 

pressure (P), volume (V), and temperature (T) for a given quantity of moles of gas (n). 

Consequently, the abovementioned relationship is mathematically expressed by the 

following equation: 

RTnPV '                                                                                                                    (2.17) 

where P represent the pressure, V denotes the volume, n, is number of moles, R stands for 

gas constant, and T indicates the temperature. 

Gases that deviate from the ideal are known as real gasses. Ideal gas EoS shows 

low deviations from experimental data at atmospheric pressure (2-3% of average 
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absolute relative deviation) whereas, its application at high pressures is not 

recommended due to the high deviations which it causes (Ahmed, 2006). The deviation 

dramatically increases with an increase in temperature and pressure and the deviation 

depends on the gas composition.  

To correlate the pressure, volume and temperature (PVT) parameters, various 

EoSs have already been reported for real gasses. In order to present the relationship 

among the parameters above (PVT variables), an equation can be formulated as follows: 

RTZnPV '                                                                                                                       (2.18) 

where P represent the pressure, V denotes the volume, Z shows the gas compressibility 

factor n, is number of moles, R stands for gas constant, and T indicates the temperature. 

Investigation of the compressibility factor for natural gasses of different 

compositions have shown that the z-factor can be employed with adequate accuracy for 

most engineering targets when they are defined in relation to the following two 

dimensionless properties (Ahmed, 2006), which are expressed as follows: 

pc

pr
P

P
P                                                                                       (2.19) 
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T

T
T                                                                                           (2.20) 

where Ppr denotes the pseudo-reduced pressure, Tpr expresses the pseudo-reduced 

temperature, Tpc stands for the pseudo-critical temperature and Ppc is the pseudo-critical 

pressure, which  are expressed by following equations: 
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where Pci denotes the critical pressure, Tci stands for the critical temperature, and yi 

expresses the mole fraction of component i. 
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For the determination of z-factor, Standing and Katz (Standing and Katz, 1942) 

expressed a generalized z-factor chart on the basis of the theory of pseudo-reduced 

properties such as pseudo-reduced pressure (Ppr) and pseudo-reduced temperature 

(Tpr). Equations of state are another method for estimating the gas compressibility factor. 

The van der Waals EoS model was one of the first to consider the molecule’s volume and 

intermolecular forces (van der Waals, 2004 and Valderrama, 2003). It should be noted 

that determination of z-factor utilizing the van der Waals EoS is a development over 

utilizing the z-factor charts generalized by Standing and Katz. Nevertheless, there are 

several modified forms of the van der Waals EoS, which provide even more accuracy and 

development for prediction of z-factor (Al-Anazi et al., 2011). Some of the commonly used 

equations of state for calculation of z-factor are presented as follows: the Redlich and 

Kwong equation (Redlich and Kwong, 1949), the Soave-Redlich-Kwong equation (Soave, 

1972), the Peng and Robinson equation (Peng and Robinson, 1976)   and Lawal-Lake-

Silberberg equation (Lawal, 1999). 

 In addition to equations of state, numerous empirically derived models for direct 

calculation of the gas compressibility factor have been reported over the years (2003; 

Beggs and Brill, 1973; Dranchuk and Kassem, 1975; Dranchuk et al., 1973; Gopal, 1977; 

Hall and Yarborough, 1973). For example, Hall and Yarborough in 1973 (Hall and 

Yarborough, 1973) developed a correlation that precisely denotes the gas compressibility 

factor chart presented by Standing and Katz. The developed equation is based on the 

Starling-Carnahan (Carnahan and Starling, 1969) EoS (Ahmed, 2006). The coefficients of 

the correlation were obtained by fitting them to data points extracted from the gas 

compressibility factor chart presented by Standing and Katz. Based on the Benedict-

Webb-Rubin (Benedict et al., 1942) type of EOS, Dranchuk, Purvis, and Robinson in 1974 

(Dranchuk et al., 1973) developed a correlation. They optimized the eight coefficients of 

the developed equations by fitting the equation to 1,500 data points extracted from the 

gas compressibility factor chart presented by Standing and Katz. 

There are many empirically derived correlation that can be used for the 

determination of the plus properties of natural gas components. A review is given by the 

late Ali Danesh (Danesh, 1998). He recommended, as one of most reliable methods for 

this purpose, the correlation proposed by Twu (Twu, 1984) as follows: 

Critical temperature. 
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𝑇𝑐 = 𝑇𝑐
𝑜[(1 + 2𝑓𝑇)/(1 − 2𝑓𝑇)]2                                                                                                (2.23)           

where   

𝑓𝑇 = ∆𝑆𝐺𝑇 [−0.362456/𝑇𝑏

1

2   + (0.0398285 −  0.948125/𝑇𝑏

1

2) ∆𝑆𝐺𝑇]                        (2.24)                                                                

where 

∆𝑆𝐺𝑇 = 𝑒𝑥𝑝[5( 𝑆𝐺𝑜  −  𝑆𝐺)] − 1                                                                                             (2.25) 

Critical volume. 

𝑉𝑐 = 𝑉𝑐
𝑜[(1 + 2𝑓𝑉)/(1 − 2𝑓𝑉)]2                                                                                                (2.26)           

where          

𝑓𝑉 = ∆𝑆𝐺𝑉 [0.466590/𝑇𝑏

1
2  + ( −0.182421 +  3.01721/𝑇𝑏

1
2)∆𝑆𝐺𝑉]                                 (2.27) 

where 

∆𝑆𝐺𝑉 = 𝑒𝑥𝑝[4( 𝑆𝐺𝑜2  −  𝑆𝐺2)] − 1                                                                                         (2.28) 

Critical pressure. 

𝑃𝑐 = 𝑃𝑐
𝑜(𝑇𝑐/𝑇𝑐

𝑜)(𝑉𝑐
𝑜/𝑉𝑐) [

1+2𝑓𝑃

1−2𝑓𝑃
]

2

                                                                                         (2.29)           

where 

𝑓𝑃 = ∆𝑆𝐺𝑃 [(2.53262 − 46.1955/𝑇𝑏

1
2  −  0.00127885 𝑇𝑏) + (− 11.4277 +  252.140/𝑇𝑏

1
2  

+  0.00230535  𝑇𝑏)∆𝑆𝐺𝑃]                                                                        (2.30) 

where 

∆𝑆𝐺𝑃 = 𝑒𝑥𝑝[0.5( 𝑆𝐺𝑜  −  𝑆𝐺)] − 1                                                                                         (2.31) 

where in the equations above, the superscript “o” denotes correlations specific to the n-

alkanes, Tb is the normal boiling point temperature (°R), SG stands for the specific gravity, 

and finally Tc, Vc and Pc express critical temperature, volume, and pressure, respectively. 
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CHAPTER 3 

 
3. Data Management 

Data mining is a broad term often utilized to describe the process of using database 

technology, modeling techniques, statistical analysis, and machine learning to analyze 

large amounts of data in an automated fashion to discover hidden patterns and predictive 

information in the data.  By building highly complex and sophisticated statistical and 

mathematical models, organizations can gain new insight into their activities. More and 

more, organizations are using data mining to make proactive knowledge-driven 

decisions, and improving their organization’s efficiency and effectiveness.   

Despite the power of data mining tools, growth and user adoption of these 

applications has been low. Therefore, it can be said that the applicability, reliability and 

accuracy of any predictive model is normally associated with the validity of the employed 

data. In other words, the success of models developed on the basis of the artificial 

intelligence approach strongly depends on the comprehensiveness of the data employed, 

so that the database provided for model development should cover a comprehensive 

ranges of input and output variables. 
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3.1. Ranges of Data for Surfactant Retention 

Normally, chemical EOR methods such as surfactant-based flooding techniques 

are applied to oil with an API gravity higher than 15 and viscosity in the range of 15-35cp 

and high-intermediate depths (Taber et al., 1997). As already mentioned, the retention of 

surfactant plays a key role in surfactant-based EOR methods. As a matter of fact, the test 

temperature, maximum effluent pH, reservoir rock type (carbonated or sandstone), co-

solvent concentration, molecular weight of surfactant mixture, total acid number of the 

oil (TAN), absolute permeability, mobility ratio, salinity of polymer, and surfactant 

formulation all have considerable influence on the surfactant retention during surfactant-

based flooding (Solairaj, 2011). In the implementation of the surfactant flooding method, 

the abovementioned parameters can affect retention and/or adsorption of surfactant in 

a porous media, as listed below (Yassin et al., 2013): 

 The retention of surfactant dependents on several parameters including the acidity 

of the oil or TAN, chemical slurry formulation, reservoir temperature, types of 

electrolytes present in the solution, and also the type of reservoir rock.  

 Alkalinity decreases adsorption of anionic surfactant on sand. 

 By increasing the pH, the charge on the sand surface negatively increases and the rate 

of anionic surfactant adsorption decreases. 

 With regard to aqueous phase stability and microemulsion phase behavior, an 

increase in temperature would affect surfactant retention for a given surfactant 

solution at certain conditions. 

 An increase in the molecular weight of the surfactant results in an increase in the 

adsorption of surfactant. 

 Adsorption of surfactant into a porous media is affected by the type and 

characteristics of the porous rock present. 

 An increase in TAN results in a decrease in the retention of surfactant because by 

increasing TAN at high pH, the in-situ soap generated decreases the active sites 

present for synthetic surfactant adsorption, and consequently, reduces the retention 

of surfactant in porous rock (Solairaj, 2011; Solairaj et al., 2012; Zhang et al., 2006). 

 An increasing the mobility ratio can cause an increase in retention of surfactant in 

porous media. This behavior is in agreement with an existing empirical correlation 



70 | P a g e  
 

presented by Solairaj et al. (Solairaj, 2011; Solairaj et al., 2012) for determination of 

surfactant retention during flooding into porous rocks. 

In view of the issues mentioned above, it is necessary to select and collect all of the 

important parameters influencing the retention and/or adsorption of surfactant in 

porous media during surfactant flooding. Therefore, a reliable database containing 47 

core flooding laboratory experiments (Solairaj, 2011; Solairaj et al., 2012) performed in 

the chemical EOR group of CPGE at the University of Texas at Austin is selected and used 

in this study. The available parameters in this database are the test temperature, 

maximum effluent pH, reservoir rock type, co-solvent concentration, average molecular 

weight of surfactant mixture, TAN, absolute permeability, mobility ratio, salinity of 

polymer, surfactant formulation, and the corresponding experimental/literature 

surfactant retention values.  It should be mentioned that the surfactants employed in the 

laboratory experiments are composed of mixtures of several anionic surfactants 

including alkyl benzene sulfonates (ABS), internal olefin sulfonates (IOS), large 

hydrophobe Guerbetalkoxy carboxylates (GAC), alcohol propoxy sulfates (APS), and large 

hydrophobe Guerbetalkoxy sulfates (GAS). Table 3.1 summarizes the maximum, 

minimum, average and standard deviation values for all parameters existing in the 

database for both sandstone and carbonated rocks. 

Table 3. 1 Ranges and averages of the input/output data used for developing the new 

model for the prediction of surfactant retention in porous media. 

Parameter Unit Min. Avg. Max. SD Type 

Kabs mD 115 1222.04 6400 1548.000 Input 

TAN  mg KOH/g-oil 0.0 1.13 3.2 0.948 Input 

Temperature 0C 25 54.83 100 22.622 Input 

Co-solvent  wt % 0 0.01 0.030 0.006 Input 

Polymer Salinity  ppm 250 12779.79 41000 10202.000 Input 

Max Effluent pH  6.0 9.34 11.0 1.768 Input 

Mobility Ratio  0.01 0.31 1.40 0.282 Input 

MW Surfactant  368.52 687.76 1320.00 263.000 Input 

Retention  mg/g-Rock 0.040 0.18 0.370 0.101 Output 
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3.2. Variables for Estimation of Dew Point Pressure of Gas Condensate 

Reservoirs 

The dew point pressure (DPP) in gas condensate reservoirs is strongly influenced 

by the properties of C7+ (molecular and specific gravity), reservoir temperature, and 

compositions of hydrocarbon and non-hydrocarbon components (A. González, 2003; 

Akbari and Jalali, 2007; Elsharkawy, 2002b; L. Nemeth, 1967; Nowroozi et al., 2009; 

Shokir, 2008). An extensive dataset is thus required if one wants to develop a good 

correlative model.  

A comprehensive databank consisting of 562 experimental data (Nemeth, 1966) 

for DPP obtained from CVD tests was collected. The database comprises the values for 

DPP (Pd, Psia), molecular weight for heptane plus fractions (MWC7+), reservoir 

temperature (TR, °F), specific gravity for heptane plus fractions (SGC7+), compositions of 

hydrocarbons including methane (C1), ethane (C2), propane (C3), butanes (C4), pentanes 

(C5), hexanes (C6), heptane-plus (C7+), and compositions of non-hydrocarbons including 

nitrogen (N2), carbon dioxide (CO2), and hydrogen sulfide (H2S). Table 3.2 summarizes 

the ranges, averages, and units of the abovementioned parameters. As can be seen in 

Table 3.2, the parameters presented cover a wide range of DPP, reservoir temperature, 

etc. 

Table 3. 2 Ranges, averages and units of the variables implemented for the development 

of the GEP-based model for the prediction of dew point pressures. 

Property Unit Min. Max. Avg. 
Dew-point pressure, DPP  Psia 1405 10790 4747.222 
Reservoir temperature, TR °F 40 320 205.146 
Molecular weight, MW C7+ - 106 235 148.189 
specific gravity, SGC7+ - 0.7330 0.8681 0.788 
Nitrogen, N2 mole fraction 0.0000 0.4322 0.010 
Carbon dioxide, CO2 mole fraction 0.0000 0.9192 0.015 
Hydrogen sulfide, H2S mole fraction 0.0000 0.2986 0.006 
Methane, C1 mole fraction 0.0349 0.9668 0.802 
Ethane, C2 mole fraction 0.0037 0.1513 0.057 
Propane, C3 mole fraction 0.0011 0.1090 0.030 
Butanes, C4 mole fraction 0.0017 0.2030 0.020 
Pentanes, C5 mole fraction 0.0006 0.0631 0.012 
Hexanes, C6 mole fraction 0.0004 0.0510 0.009 
Heptane-plus, C7+  mole fraction 0.0019 0.1356 0.037 
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3.3. Range of Data for PVT Properties of Reservoir Crude Oil 

A comprehensive review on the previously published empirical methods 

developed for the prediction of oil formation volume factor and bubble point pressure 

since the early 1940s indicates the importance of  PVT properties from the industry point 

of view (Arabloo et al., 2014). As a definition, OFVF is the reservoir oil required to 

produce one barrel (1 bbl) of oil at surface conditions (McCain, 1990). Additionally, in its 

original condition reservoir oil contains some natural gas in solution, consequently, the 

pressure at which this natural gas begins to come out of solution and form bubbles is 

identified as the Pb. As a result, Pb and OFVF are among the most vital properties for 

accurate calculation of hydrocarbon reservoir recoverable reserves, the oil-water flow 

ratio, reservoir capacity for production of oil, problems related to enhanced and 

improved oil recovery, and approximately all other issues associated with petroleum 

engineering computations (Bandyopadhyay and Sharma, 2011; Obanijesu and Araromi, 

2008; Ostermann and Owolabi, 1983; Petrosky Jr and Farshad, 1993; Vazquez and Beggs, 

1980). Therefore, presenting accurate and efficient methods for the determination of Pb 

and OFVF is extremely important. 

As a result, in order to predict the PVT properties associated with petroleum 

reservoir fluid, empirically derived correlations of field measured data are utilized, such 

as reservoir temperature (TR), reservoir pressure (PR), crude oil API gravity (API) and gas 

specific gravity or gas relative density (γ g) and solution gas oil ratio (Gharbi and 

Elsharkawy, 1997b). Reservoir temperature, crude oil API gravity, gas relative density 

and solution gas oil ratio, which  are required variables for accurate estimation of Pb and 

OFVF, are found in the majority of published work (Al-Shammasi, 1999; Kartoatmodjo 

and Schmidt, 1994a; Macary and El-Batanoney, 1993; Petrosky Jr and Farshad, 1998; 

Standing, 1947a; Vazquez and Beggs, 1980) as follows: 

𝑃𝑏 = 𝑓1(𝑇𝑅 , 𝛾𝑔, 𝐺𝑂𝑅, 𝐴𝑃𝐼)                                                                                                    (3.1) 

𝑃𝑏 = 𝑓2(𝑇𝑅 , 𝛾𝑔, 𝐺𝑂𝑅, 𝐴𝑃𝐼)                                                                                                    (3.2) 

Geographical and geological conditions associated with reservoir oil are very 

important in PVT empirical correlations because the chemical composition must be 

specified for any crude oil. In other words, obtaining consistent, accurate results by 

means of PVT empirical correlations for different crude oils having different chemical and 
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physical characteristics is difficult to accomplish (Mahmood and Al-Marhoun, 1996a). 

Hence, to account for regional characteristics, PVT empirical correlations need to utilize 

comprehensive datasets which cover a wide range of PVT properties from almost all 

regions of world. We can go so far as to say that the quality and reliability of predictive 

models for measuring the PVT and thermo-physical properties is contingent on the 

applicability of the applied database (Kamari et al., 2014b; Kamari et al., 2014c; Kamari 

et al., 2015d). Therefore, about 755 laboratory PVT datasets covering varied ranges of 

PVT experimental conditions from various geographical and geographic world’s regions 

were utilized in this study to develop and test the models for accurately determination of 

Pb and OFVF. 

The dataset used for developing the Pb and OFVF models comprise reservoir 

temperature (according to °F), oil formation volume factor at bubble point pressure 

(according to bbl/STB), crude oil API gravity  and gas gravity and solution gas oil ratio at 

bubble point pressure ( according to SCF/STB), which was collected from Moghaddam et 

al. (Moghadam et al., 2011), Obomanu and Okpobiri (Obomanu and Okpobiri, 1987), Bello 

et al. (Bello et al., 2008), Omar and Todd (Omar and Todd, 1993), Dokla and Osman (Dokla 

and Osman, 1992), Mahmood and Al-Marhoun (Mahmood and Al-Marhoun, 1996a), 

Ghetto et al. (De Ghetto and Villa, 1994), Al-Marhoun (Al-Marhoun, 1988), and Ostermann 

et al. (Ostermann and Owolabi, 1983). Table 3.3 summarizes the values of minimum, 

maximum and average for reservoir temperature, gas oil ratio, bubble point pressure, gas 

gravity and oil formation volume factor. The table confirms that the databank collected 

in this study covers a wide range of PVT properties from volatile oils to heavy crudes. 

 

Table 3. 3 The minimum, maximum and average values associated with the PVT 

properties in the databank utilized for the GEP models. 

PVT Properties Unit Min. Max. Avg. Type 

Oil formation volume factor, Bob bbl/STB 1.02 2.92 1.40 Output 

Bubble point pressure, Pb psi 58.02 6613.82 1846.05 Output 

Gas gravity, γ g - 0.52 3.44 1.12 Input 

Initial solution gas oil ratio, RSi SCF/STB 7.08 3298.66 592.39 Input 

Reservoir temperature, TR °F 74.00 360.93 207.17 Input 

Oil gravity, API - 6.00 56.80 34.36 Input 
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3.4. The Field Data for Reservoir Oil Viscosities 

Laboratory tests conducted on the bottom hole cores or surface recombined 

samples of reservoirs normally arrive at the viscosities of reservoir oil isothermally at 

reservoir temperature and at different reservoir pressures (Obanijesu and Omidiora, 

2009). In fact, three pressure regions, including above and below bubble point pressure 

as well as for dead oil (gas-free reservoir oil) are utilized (Fig. 3.1). Thus, a specific 

correlation should be developed for each pressure region in order to take into account 

differences in the nature of crudes and compositions (Hemmati-Sarapardeh et al., 2014b).  

It has therefore been confirmed that the crude oil viscosities depend on the 

reservoir pressure and temperature. The viscosity at above bubble point pressure 

increases and below bubble point pressure reduces (Torabi et al., 2011). 

 

 

Fig. 3. 1 A representative trend plot of viscosity versus pressure illustrating regions 

related to dead, saturated, and under-saturated oil viscosities. 
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Various empirical correlations have been reported for dead, saturated and under-

saturated crude oils over the years. In this study, several empirical correlations related 

to dead oils (Al-Khafaji et al., 1987; Alomair et al., 2011; Beal, 1946; Beggs and Robinson, 

1975; Bennison, 1998; Egbogah and Ng, 1990; Elsharkawy and Alikhan, 1999; Glaso, 

1980; Hossain et al., 2005; Kartoatmodjo and Schmidt, 1994b; Kaye, 1985; Labedi, 1992; 

Naseri et al., 2005; Petrosky, 1990), saturated oils (Al-Khafaji et al., 1987; Beggs and 

Robinson, 1975; Bergman and Sutton, 2007; Chew and Connally Jr, 1959; Elsharkawy and 

Alikhan, 1999; Hossain et al., 2005; Kartoatmodjo and Schmidt, 1994b; Khan et al., 1987; 

Labedi, 1992; Naseri et al., 2005; Petrosky, 1990) and under-saturated oils (Beal, 1946; 

Elsharkawy and Alikhan, 1999; Hossain et al., 2005; Kartoatmodjo and Schmidt, 1994b; 

Khan et al., 1987; Labedi, 1992; Orbey and Sandler, 1993; Petrosky, 1990; Vazquez and 

Beggs, 1980) are employed as points of comparison with the models developed in this 

study.  

Tables 2. 2-4 list the comparative correlations employed in this study as well as 

their ranges, data origin and formulas. To develop these types of correlations, the 

common reservoir fluid data including the oil gravity, solution gas oil ratio, bubble point 

pressure and reservoir temperature are applied.  Consequently, the comparative 

correlations used confirm that reservoir temperature and crude oil API gravity are 

applied for the prediction of dead oil viscosity. Additionally, the dead oil viscosity and 

saturated pressure are the required parameters for the determination of saturated 

reservoir oil viscosity. The pressure in general, as well as pressure and viscosity at bubble 

point are the variables used for the estimation of under-saturated reservoir oil viscosity. 

The reservoir parameters used to develop the GEP-based models for the determination 

of dead, saturated and under-saturated crude oil viscosities are as follows: 

 

μod = f1(TR, API)                                                                                                  (3.3) 

μob = f2(μod, P)                                                                                                    (3.4) 

μo = f3(μob, P, Pb)                                                                                               (3.5) 
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In the above equations, more than 1000 series were used of experimental PVT 

data drawn from Iranian oil fields, comprising the gravity of oil, reservoir temperature, 

solution gas oil ratio, and bubble point pressure. A rolling ball viscometer (Ruska, series 

1602) has been implemented for accurately measuring the Iranian reservoir oil 

viscosities at different pressures above and below saturation pressure. Tables 3.4-6 list 

the ranges of the applied variables used to develop the GEP-based models for the 

prediction of dead, saturated and under-saturated oil viscosities, respectively. It is 

worthwhile to note that the range of the data presented in Tables 3.4-6 includes almost 

all of the PVT data available for Iranian oil fields. 

 

Table 3. 4 Ranges and units of the applied variables for developing the dead oil viscosity 

model 

Reservoir Property Unit Min. Max. Avg. SD Type 

Temperature °F 50.27 290.26 176.11 42.84 Input 

Oil API gravity - 17.30 43.56 29.32 7.00 Input 

Dead oil viscosity  cP 0.55 69.50 7.41 11.44 Output 

 

Table 3. 5. Ranges and units of the applied variables for developing the saturated oil 

viscosity model. 

Reservoir Property Unit Min. Max. Avg. SD Type 

Saturation Pressure psi 158.09 5701.43 1705.64 7.50 Input 

Dead oil viscosity cP 0.55 37.18 4.55 5.05 Input 

Saturated oil viscosity cP 0.18 25.58 1.92 2.59 Output 

 

 

Table 3. 6 Ranges and units of the applied variables for developing the under-saturated 

oil viscosity model. 

Reservoir Property Unit Min. Max. Avg. SD Type 

Bubble point Pressure psi 729.53 5115.47  1135.39 7.81 Input 

Bubble point viscosity cP 0.18 18.16  1.62 2.19 Input 

Pressure MPa 5.03 86.18  25.38 11.63 Input 

Under-saturated oil viscosity cP 0.18 31.00  1.84 2.97 Output 
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3.5. Comprehensive Databank for Solution–Gas Oil Ratio 

As mentioned above, the solution GOR plays a key role in PVT analysis related to 

petroleum engineering calculations. Solution GOR affects the OFVF, the viscosity 

compressibility of oil, and the determination of the in-situ total reservoir fluid rates. As a 

definition, solution GOR is the amount of gas dissolved in oil with regard to pressure. 

Here, it should be noted that reservoirs containing light oils have more dissolved gas than 

reservoirs with heavy oils. With an increase in pressure, solution GOR increases 

approximately linearly until the attainment of bubble point/saturation pressure (Pb); 

after which it is a constant and the oil is supposed to be under-saturated (Fig. 3.2). Fig. 

3.2 is a typical illustration of the trend of solution GOR versus pressure. 

 

 

Fig. 3. 2 Typical trend of solution GOR versus pressure. 

 

 Most of the empirically derived methods reported in the open literature for the 

determination of reservoir fluid properties have been developed on the basis of data 

related to a specific region and limited PVT studies (Baniasadi et al., 2015). This is a 

drawback that can decrease their accuracy in predicting reservoir fluid properties at a 
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particular solution gas–oil ratio. This means that the empirical correlations used may lead 

to significant deviation when they are utilized for the estimation of reservoir fluid 

properties for other geographical locations. For this reason, it is important to collect a 

comprehensive databank covering a wide range of reservoir fluid properties for all 

regions in the world.  

Therefore, a reliable and comprehensive databank (Abdul-Majeed et al., 1988; Al-

Marhoun, 1988; Bello et al., 2008; Dokla and Osman, 1992; Ghetto et al., 1994; Mahmood 

and Al-Marhoun, 1996b; Moghadam et al., 2011; Obomanu and Okpobiri, 1987; Omar and 

Todd, 1993; Ostermann et al., 1983) comprising more than 1000 data series collected 

from various geographical locations including Asia, the Mediterranean Basin, North 

America, Africa, and the Middle East was compiled. The databank collected includes 

reservoir fluid properties, viz. solution GOR (Rs, SCF/BBL), bubble point pressure (Pb, 

psi), reservoir temperature (TR, °F), and gas gravity, as well as oil gravity. A statistical 

description of the properties, including maximum, minimum, and average values is 

summarized in Table 3. 7.  

 

Table 3. 7 Statistical analysis of reservoir fluid properties used for the estimation of 

solution gas–oil ratio. 

Property Unit Minimum Average Maximum Role 

Rs SCF/STB 7.08 515.32 3298.66 Output 

γg – 0.52 1.00 3.44 Input 

TR °F 54.9 173.30 360.93 Input 

API – 6.00 33.41 56.8 Input 

Pb psi 58.01 1755.58 7127.01 Input 

 

3.6. Iranian Crude Oil Data for Asphaltene Precipitation 

According to Rassamdana et al. (Rassamdana et al., 1996) and Rassamdana and 

Sahimi  (Rassamdana and Sahimi, 1996), the solvent to oil dilution ratio, temperature, 
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and solvent molecular weight, are the most important parameters for use in asphaltene 

scaling equations for prediction of asphaltene precipitation (Wt). To forecast the phase 

behaviour of asphaltene precipitation, an asphaltenic crude (Ashoori et al., 2010) with oil 

density of 0.934 g/cc taken from one of the southwestern reservoirs in Iran is used to 

pursue our modeling target in this study.  

The SARA analysis of asphaltenic crude oil is as follows: saturates=29.3 wt. %, 

aromatics=35.2 wt. %, resins=27.2 wt. %, and asphaltenes=8.3 wt. %. The temperatures 

tested for measuring the amount of asphaltene precipitated are 30, 50, and 70 °C, which 

have been undertaken at atmospheric pressure. Furthermore, at different dilution ratios, 

three asphaltene precipitants including n-pentane, n-hexane, and n-heptane are 

implemented. Table 3. 8 summarizes the ranges of parameters applied for estimating the 

amount of asphaltene precipitation in Iranian crude oil studied (Ashoori et al., 2010). 

Table 3. 8 Ranges of effective variables in predicting asphaltene precipitation. 

Property Unit Minimum Averag
e 

Maximum Role 

Asphaltene 
precipitation 

wt % 0.5 4.78 10.4 Output 

MW – 72.15 68.18 100.21 Input 

T °C 30 50 70 Input 

Rv mL/g 0.67 7.61 20 Input 

 

3.7. Database for Wax Disappearance Temperature 

As mentioned earlier, in order to develop reliable models, a reliable database, 

which covers a wide range of phase behavior related parameters of deposition, needs to 

be collected. Hence, the experimental data related to wax disappearance temperature (T, 

K) as a function of molar mass (M, g/mol) and pressure (P, MPa) has been collected from 

different sources in the literature (Daridon et al., 2002; Ji et al., 2004; Metivaud et al., 

1999; Milhet et al., 2005; Robles et al., 1996; Vafaie-Sefti et al., 2000). The experimental 

wax disappearance temperature data are measured at 0.1-100.3 MPa for the mixtures 

including C6–C16, C6–C17, C16–C18, C16–C20, C15–C19, C6–C16–C17, C7–C36, C14–C15, C14–C16, C14–

C15–C16, C16–C17–C18, C17–C19, C18–C19–C20, C19–C20–C21, and C13–C24. Ranges (i.e. maximum, 
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minimum and average) of WDT, pressure and molar mass parameters are summarized in 

Table 3. 9. 

 

Table 3. 9 Ranges of inputs/output parameters applied for predicting wax disappearance 

temperature. 

Parameter Min. Avg. Max. Type 

Pressure, MPa 0.1 39.0 100.3 Input 

Molar Mass, g/mol 191.0 220.7 293.9 Input 

Wax Disappearance Temperature, K 270.6 293.8 321.1 Output 

 

 

3.8. Distributed Data for Hydrocarbon–plus (C7+) Properties 

Specific gravity, boiling point temperature, and molecular weight, which are the 

basic distributed properties of oil and gas, are normally applied for the determination 

and characterization of the heptane–plus components of crude oil, and gas-condensate 

samples (Riazi, 1997). To this end,  62 sets or samples (Whitson et al., 1989) including 

around 801 data points of heptane-plus properties are used in this study. The databank 

contains the distributed properties of the specific gravity, boiling point temperature, and 

molecular weight as well as the weight fractions, bulk molecular weight (MWb), and bulk 

specific gravity (SGb).  

The cumulative weight fraction (CXw) was calculated from weight fractions of each 

sample and added to the database for estimating the distributed properties of heptane–

plus components crude oil, and gas-condensate samples. Ranges (i.e. maximum, 

minimum and average) of Tb, MW, SG, as well as MWb, SGb, and CXw are listed in Table 3. 

10. The bulk molecular weight, bulk specific gravity, and cumulative weight fraction are 

considered as the input variables for the determination of distributed properties of 

heptane-plus components of crude oil, and gas-condensate samples. 
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Table 3. 10 Ranges of data used for the prediction of C7+ properties using the models 

developed in this study. 

Parameter Min. Avg. Max. Type 

Cumulative weight fraction 0.0139 0.44 1 Input 

Average molecular weight (g/mole) 118.9 201.91 348.2 Input 

Average specific gravity 0.7597 3.91 213.6 Input 

Boiling temperature (°R) 631 924.42 1829.8 Output 

Specific gravity 0.704 0.82 0.989 Output 

Molecular weight (g/mole) 15 196.00 675 Output 

 

 

3.9. Database for Vaporization Enthalpy 

Vaporization enthalpy data are normally determined at the normal Tb through an 

appropriate technique and are then calculated at the required temperature. There are 

two classes of empirically derived methods for determining the vaporization enthalpy. 

The first class of correlations relate vaporization enthalpy, at the normal boiling point 

temperature, to the critical properties and their normal boiling point (Reid et al., 1987). 

The next class of correlations relate vaporization enthalpy to the specific gravity, 

molecular weight, and the normal boiling point temperature (Mohammadi and Richon, 

2007). As a result, the selection of the most appropriate input/predictor variables used 

for building the LSSVM models plays a significant role. Therefore, to accurately predict 

the vaporization enthalpy (ΔHvap, kJ/g-mol) of pure hydrocarbon and petroleum fractions, 

the parameters which most influence the property, viz. the boiling point temperature (Tb, 

K), specific gravity, and molecular weight  (M, g/g-mol) are gathered from literature (Fang 

et al., 2003).  

The collected data covers an extensive range of the vaporization enthalpy, from 

19.0 to 80.1 kJ/g-mol for both petroleum fractions and pure hydrocarbon components. 

Distribution of the collected data in terms of minimum, and maximum, as well as averages 

are summarized in Table 3. 11, with the input variables being Tb, S, and M, and the output 

parameter, ΔHvap. 
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Table 3. 11 Distribution of the data used in this study for forecasting the vaporization 

enthalpies of pure hydrocarbon components and petroleum fractions. 

Parameter Min. Avg. Max. Type 

Tb, K 231.1 451.9 722.8 Input 

S 0.5 0.7 0.8 Input 

M, g/g-mol 44.1 160.2 422.8 Input 

ΔHvap, kJ/g-mol 19.0 42.1 80.1 Output 

 

 

3.10. Ranges of Gasoline Properties Data 

Distillation curves obtained using standard American Society for Testing and 

Materials (ASTM) distillation tests, in terms of both percent volume and boiling points 

can provide comprehensive information about the intrinsic components in gasoline and 

petroleum fractions (Albahri, 2014). These parameters have significant influence on the 

SG, MON, RON and RVP properties of gasoline and petroleum fractions and also provide 

a reliable correlation with the experimental/literature-reported data.  

In this study, ASTM D86 distillation temperatures at various volume percentages 

(5% to 95%, as well as initial boiling point (IBP) and final boiling point (FBP), commonly 

extracted from a standard ASTM D86 distillation apparatus, are used to predict the 

properties of gasoline, viz. SG, MON, RON and RVP. Depending on the gasoline property, 

the dataset may include additional intrinsic chemical structures like saturates, olefins and 

aromatic components, in particular for MON and RON properties (Albahri, 2014). The 

numbers of data points for SG, MON, RON and RVP are 178, 178, 178 and 362. 

 In order to develop a reliable predictive model for gasoline properties, 

experimental data were gathered and collated from literature (Albahri, 2014; Healy et al., 

1959). The databases generated have values of SG ranging from 0.6849 to 0.9248, MON 

values ranging from 34 to 107, RON values ranging from 37 to 97, and RVP values ranging 

from 0.007 to 4.55 bars. These four distinct databases were used for the different 

properties. Each of the four databases were randomly separated into two sub-data sets 
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comprising the “Training” and “Test” sets. In the development of a reliable and accurate 

LSSVM model for predicting the gasoline properties, viz. SG, MON, RON, and RVP, eighty 

percent of the main databank was randomly selected for the “Training” set and the 

remaining twenty percent assigned for the testing part. 

 

3.11. The Literature Data for the Gas Compressibility Factor 

A large dataset covering wide ranges of pressures and temperatures for estimating 

the z-factors of gasses was collected from the literature (Buxton and Campbell, 1967; 

Elsharkawy and Foda, 1998; McLeod, 1968; Robinson Jr and Jacoby, 1965; Simon and 

Briggs, 1964; Whitson and Torp, 1981; Wichert and Aziz, 1972). The minimum, maximum 

and average values of the data are reported in Table 3. 12. As can be observed in Table 

3. 12, the data points include an extensive range of pse1udo-reduced temperatures, 

pressures, and compositions. As mentioned above, capability and consistency of a 

correlation for estimation of a specific parameter like the gas compressibility factor of 

gasses relies on the inclusiveness of the dataset used for its development. Hence, the 

method proposed in this work is expected to be consistent for the estimation a range of 

samples. 
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Table 3. 12 Range and corresponding statistical parameters of the input/output data 

utilized in the development of the model for the prediction of gas compressibility factor. 

Property Min. Max. Average 

Pressure ,psi 154 7026 2820 
Reservoir temperature, ˚F 40 300 147 
Methane 17.27 97.48 71.18 
Ethane 0 28.67 3.86 
Propane 0 13.16 1.44 
Iso-Butane 0 2.23 0.21 
N-Butane 0 3.10 0.36 
Iso-Pentane 0 2.85 0.18 
n-Pentane 0 0.79 0.10 
Hexane 0 2.68 0.20 
Heptane plus 0 8.17 0.64 
Mw C7+ 0 150 50 
SG C7+ 0 0.90 0.31 
Hydrogen sulfide 0 73.85 13.92 
Carbon dioxide 0 54.46 6.00 
Nitrogen 0 25.15 1.83 
Tpr 0.97 1.96 1.46 
Ppr 0.17 10.19 3.75 
z-factor 0.40 1.241 0.86 
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CHAPTER 4 
 

4. Model development 

The development of predictive models plays a key role in the accurate estimation of 

thermo-physical properties, petroleum reservoir properties, enhanced oil recovery 

processes, production operations, drilling technology, and fluid flow in porous media. 

Based on the recent progress in the development of predictive models, the petroleum 

industry has become aware of the immense potential offered by intelligent systems.  

The daily working life of petroleum professionals consists of highly complex and 

dynamic problems and high-stakes decisions. During the last two decades, the petroleum 

industry worldwide has seen a rapid increase in the number of artificial intelligence 

applications. This upsurge in the number of applications of artificial intelligence (AI) is 

due to the availability of human expertise and the publication of a large number of case 

studies. Artificial intelligence is the science and engineering of making intelligent 

machines. AI is devoted to designing ways to make computers perform tasks that were 

previously thought to require human intelligence. 
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4.1. Artificial Intelligence Technology 

As previously mentioned, reliable and powerful predictive means are required by the 

petroleum industry for the accurate estimation of petroleum reservoir fluid properties. 

This is occasioned by the unwieldy and costly nature of the current methods. To this end, 

a number of efficient intelligent algorithms have been developed and employed, with the 

aim of replacing the old methodologies. These intelligent approaches have not previously 

been applied for the prediction of petroleum reservoir fluid properties.  

Within the industry, there are many different petroleum fluid properties requiring the 

prediction of thermodynamic phase behavior. These include: solution gas oil ratio, 

reservoir oil viscosities, bubble and dew point pressures, oil formation volume factor, 

asphaltene scaling, wax disappearance temperature and natural gas deviation factor.  

Artificial intelligence methods have in recent years gained popularity in solving 

complex nonlinear problems, and have shown the potential to be applied in reservoir 

modeling and characterization. These predictive models can be applied to solve complex 

practical problems relating to underground hydrocarbon reservoirs, which cannot be 

physically inspected and measured.  

The models can be effectively applied to reservoir engineering, production 

operations, drilling technology, fluid flow in porous media, well-testing and well-logging. 

Furthermore, models developed on the basis of artificial intelligence methods can 

perform prediction and generalization rapidly once trained. 

 

4.1.1. Least Square Support Vector Machine 

The machine-learning community regards the SVM computational strategy to be a 

reliable means to analyze data, solve regression and classification problems, and 

recognize patterns (Eslamimanesh et al., 2012a; Suykens and Vandewalle, 1999). As a 

consequence, the SVM approach was introduced to solve, in particular, classification 

problems, utilizing hyper-planes for defining the decision borders between the data 

related to its various classes (Suykens and Vandewalle, 1999). Based on the initial SVM 

algorithm equation, primary function f(x) is defined as below (Farasat et al., 2013; 

Shokrollahi et al., 2013; Suykens et al., 2002b): 
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  (4.1) 

where , , x, and are the transposed output layer vector, the feature map,  a 

vector of dimension n, and the bias, respectively. To obtain w and b, the following 

equation has been presented as a cost function (Suykens et al., 2002b): 

 
(4.2) 

To satisfy constraints: 

 

(4.3) 

where stand for kth input variable data, and kth output variable data, 

respectively. The ε stands for the established accuracy of the function approximation. The 

and  stands for slack variables. Here it is valuable to mentioned that if we consider 

a low value of ε for developing a an accurate model, some data points may be out-domain 

of the ε accuracy. Therefore, the application of the slack variables is required to determine 

the permitted margin of inaccuracy. As a matter of fact, the c in Eq. (4.2) is recognized as 

the adjustable parameter of the SVM algorithm, which controls the error difference from 

the wanted ε. To reach a minimization of the cost function, utilization of the Lagrangian 

is needed (Hemmati-Sarapardeh et al., 2013c; Suykens et al., 2002b): 

 

 

 

(4.4) 

(4.4a) 

 

(4.4b) 

where ak and ak*are identified as Lagrangin multipliers. In the end, the ultimate formula 

for the SVM algorithm is expressed as below (Hemmati-Sarapardeh et al., 2013c): 
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For the determination of , a quadratic programming problem needs 

to  be solved. To this end, Suykens and Vandewalle (Pelckmans et al., 2002; Suykens and 

Vandewalle, 1999) used the least-square modification (LSSVM) to improve the SVM 

algorithm. To introduce the LSSVM algorithm, Suykens and Vandewalle (Pelckmans et al., 

2002; Suykens and Vandewalle, 1999) reformulated the SVM as below (Arabloo et al., 

2013; Hemmati-Sarapardeh et al., 2013c; Rafiee-Taghanaki et al., 2013; Suykens et al., 

2002b): 

                                                                                      
(4.6) 

Subjected to the following constraint constraints (for k=1,...,N): 

                                                                                                                   
(4.7)

 

 

where γ and ek are the adjustable parameter related to the LSSVM approach and the 

deviation variable, respectively. The following equation (Lagrangian) is expressed to 

solve the problem (Hemmati-Sarapardeh et al., 2013c): 

 
(4.8) 

           As a result, for solving the problem, the derivatives of Eq. (4.8) should be considered 

equal to zero. To this end, below equations are expressed: 
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Eq. (4.9) indicates that there are 2N+2 equations and 2N+2 unknown parameters

. Hence, the parameters of LSSVM are acquired by solving the system of 

equations presented in Eq. (4.9) (Suykens et al., 2002b). As mentioned already,  is one 

of the adjustable parameter of LSSVM algorithm. Meanwhile, as either of the LSSVM and 

SVM are kernel-based methods, the parameters of the kernel functions should be 

considered in the same manner as for other tuning parameters. The RBF kernel function 

is formulated as follows (Farasat et al., 2013; Fazavi et al., 2013; Taghanaki et al., 2013): 

 (4.10) 

where is recognized as an adjustable parameter of the LSSVM algorithm. Consequently, 

 and  are  two adjustable parameters of LSSVM methodology with the RBF kernel 

function, which should be tuned with a reliable optimization technique (Shokrollahi et al., 

2013; Suykens et al., 2002b).  

In the LSSVM approach developed in this study, the mean square error (MSE) has 

been used as follows (Arabloo et al., 2013; Farasat et al., 2013; Shokrollahi et al., 2013): 
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where Z  is the reservoir fluid properties, subscripts rep./pred. and exp. express the 

values estimated by the LSSVM model developed in this study, and actual data, 

respectively, and n stands for the number of samples from the initial population. In the 

present work, the original LSSVM approach introduced by Suykens and Vandewalle 

(Suykens and Vandewalle, 1999) is employed for the determination of reservoir fluid 

properties through a performance evaluation analysis. The MATLAB code developed in 

this study for the least square support vector machine algorithm is presented in 

Appendix A. 

 

4.1.2. Artificial Neural Network 

An artificial neural network (ANN) is an advanced model to process and classify 

information which simulates the biological neural network in the human brain and is 
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based on the mathematical systemitization of processes which happen in the brain (Al-

Bulushi et al., 2007; Hegeman et al., 2007; Zabihi et al., 2011). Multilayer-perceptron 

(MLP) denotes the advanced, and well researched type of ANN in regression and 

classification, applying a feed forward, supervised and hetero-associative model (Rafiq et 

al., 2001).  

The MLP and many other neural networks use an algorithm named back-

propagation. By using back-propagation, the input data is repetitively imported to the 

neural network. With each step that outputs are generated, the values will compare to 

measured outputs and consequently, error is calculated. This error is then provided back 

(back-propagated) to the ANN and used to regulate the weights such that the error 

declines with each iteration and the neural model produces accurate outputs which are 

close to the desired targets. This procedure is recognized as "training" (Arulampalam and 

Bouzerdoum, 2003). 

In artificial neural networks, information handling is executed in numerous simple 

separate processors, which are called neurons. When inputs are imported to the neuron, 

they are multiplied by the related weight of each link. Then the bias (threshold) of the 

neuron is supplied for the summation of weighted inputs. Each neuron uses a transfer 

function which is applied on inputs to produce outputs. In the artificial neural network 

approach, the data from the input neurons are propagated through the network via 

weighted interconnections (Mohammadi and Richon, 2010). Every i neuron in a k layer 

is connected to every neuron in adjacent layers. The activation function of the exponential 

sigmoid function has traditionally been utilized to develop ANNs (Eslamimanesh et al., 

2011a) as following: 

xe
xf




1
1)(  (4.12) 

where x stands for parameter of activation function. A bias term, b, is associated with 

every interconnection in order to introduce a supplementary degree of freedom. The 

expression of the weighted sum, S, to the ith neuron in the kth layer (k ≥ 2) is 

(Mohammadi and Richon, 2010) 
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where w is the weight parameter between each neuron-neuron interconnection. Using 

this feed-forward network with activation function, the output, O, of the i neuron within 

the hidden k layer is (Mohammadi and Richon, 2010) 
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The MATLAB code developed in this study for the artificial neural network algorithm is 

presented in Appendix B. 

 

4.1.3. Decision Tree 

The decision tree constructs models with a tree structure for the purpose of 

regression or classification. It divides a dataset into smaller subsections while a related 

decision tree is incrementally developed.. The outcome is a tree with decision nodes and 

leaf nodes. A decision node has two or more divisions, each signifying values for the 

feature tested. A leaf node represents a decision on the target. The top decision node in a 

tree relates to the best predictor called a root node.  

Decision trees can process both categorical and numerical data (Erdogan et al., 

2001; Heinze et al., 1995; Sethi and Chatterjee, 1977). There are three kinds of decision 

tree: CRT, CHAID and Exhaustive CHAID, and Quest. The procedures for the three types 

follow the following phases: start tree building by allocating the nodes to classes, stop 

tree building; reach the optimum tree selection and perform cross-validation. CRT 

undertakes tree “pruning” before creating the optimum tree selection, while the CHAID 

method implements statistical tests at each step of splitting (Alkhasawneh et al., 2014; 

Chandra et al., 2010; Osei-Bryson, 2004). 

The CRT (Classification and Regression Tree) is a recursive subdividing technique 

used for both regression and classification. The CRT is built by division of data sets into 

the subgroups using all of the predictor variables to repeatedly create two child nodes, 

using the whole data set. The best predictor is chosen using a diversity of measures. The 

objective is to yield subdivisions of the data which are as similar as possible to the target 

variable (Laughton et al., 2006; Tan et al., 2006; Wang et al., 2015).  
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The CHAID (Chi-Square Automatic Interaction Detector) technique is established 

based on the X2-test of association. A CHAID algorithm is a decision tree that is created by 

repetitively dividing subgroups of the space into two or more child nodes. To control the 

best splitting at any node, any acceptable couple of groups of the predictor variables are 

combined until there is no statistically important alteration in the couple with respect to 

the target variable. This CHAID method works logically with communications between 

the independent variables that are directly accessible from an analysis of the tree. The 

final nodes recognize subsections defined by diverse groups of independent variables 

(Gandomi et al., 2013; Tan et al., 2006). There is no assurance that the original CHAID 

procedure will discover the best split for all those inspected because it uses the last split 

tested. The Exhaustive CHAID procedure tries to solve this issue by continuing to combine 

groups, regardless of significance level, until only two groups stay for each predictor. It 

then uses the split with the major importance value rather than the last one tried. The 

Exhaustive CHAID needs additional computer time (Alkhasawneh et al., 2014; Tan et al., 

2006).  

The QUEST (Quick-Unbiased-Efficient Statistical Tree) is a binary split decision 

tree process for classification and data analysis. The QUEST can be used with univariant 

or linear grouping splits. An exceptional characteristic is that its attribute selection 

technique has insignificant bias. If all the attributes are uninformative with respect to the 

class attribute, then each has approximately the identical chance of being selected to split 

a node time (Alkhasawneh et al., 2014; Tan et al., 2006). Finally, here it is worthwhile to 

note that a regression tree is similar to a classification tree, except that the Y variable 

takes ordered values and a regression model is fitted to each node to give the predicted 

values of Y (Loh, 2011). 

The MATLAB code developed in this study for the decision tree algorithm is presented in 

Appendix C. 

 

4.1.4. Gene Expression Programming 

As mentioned already, the GEP mathematical algorithm is applied in this study to 

develop reliable empirical models for the determination of petroleum reservoir fluid 

properties. The GEP (Ferreira, 2001) approach is a new and modified version of a genetic 
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algorithm combined with genetic programming, which is implemented for solving 

regression and classification problems by employing populations of individuals, choosing 

them in keeping with fitness, and presenting genetic variation utilizing one and/or more 

genetic operator (Mitchell, 1998). The nature of individuals is the fundamental difference 

between GA, GP and GEP algorithms (Ferreira, 2001). The individuals in GA, GP and GEP 

algorithms are the chromosomes or linear strings of fixed length, parse trees or nonlinear 

entities of different shapes and sizes, and the chromosomes or genome and or linear 

strings of fixed length which are subsequently presented as nonlinear entities of different 

shapes and sizes, respectively (Ferreira, 2001). 

In the GEP (Ferreira, 2001) algorithm, the structure of the genes allows encoding 

of any program for effective evolution and development of solutions (Ferreira, 2006).  

The GEP (Ferreira, 2001) mathematical algorithm employs two elements, namely, the 

expression tree (ET) and the chromosome (the chromosome has the role of encoder for 

the candidate solution which is translated into an expression tree). Each genetic 

chromosome involves terminals with constants and variables and functions structured in 

one and/or more genes of equal length (Teodorescu and Sherwood, 2008). The constants 

are produced by the GEP algorithm in a range selected by the employer while the 

functions and variables are recognized as input data. Additionally, the gene consists of a 

tail made only of terminals, and a head made of functions, in addition to terminals 

including variables and constants. The head length (h) is recognized as an input 

parameter for the GEP mathematical algorithm while the tail length (t) is expressed as 

follows: 

1)1(  nht

 

 (4.15) 

where t stands for the tail length of the gene, h shows the head length, and  n is the largest 

arity of the functions utilized in the gene’s head. To better view of GEP procedure, Fig. 4. 

1 is an example of a two-gene chromosome composed of four functions including -, ∗, / 

and Q, and three terminals including x, y and z, together with its decoded ET and the 

corresponding mathematical expression which is formulated as (√𝑥/𝑧 ) - (x*y). 
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Fig. 4. 1 A typical two-gene chromosome with its corresponding mathematical 

expression; Q is the square root function. 

 

The procedure presented by Ferreira (Ferreira, 2006) has been followed in this 

study to develop empirical models using a GEP algorithm in order to predict the 

petroleum reservoir fluid properties as follows (Ferreira, 2006):  

I. The population individuals initializing, which is based on counting the 

random made chromosomes of a certain number of individuals by setting 

various stated correlations;  

II. The population individuals fitting, considering fitness functions (cases);  

III. The population individuals selecting, in keeping with their fitness in order 

to replicate with modifications;  
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IV. The new population individuals are dealt with by implementing the same 

procedure, with modifications, as for the confrontation of the selection 

environment and the genomes expression, selection, and duplication;  

V. The stages above are followed for a certain number of generations or until 

an optimum solution has been established (convergence of the algorithm 

in keeping with the criteria defined).  

 

In order to present capable and reliable empirical models for the calculation of 

petroleum reservoir fluid properties, various input variables have been considered. 

Higher valued input variables can suppress the impact of the smaller ones during the 

training phase of a mathematical algorithm, such as in the GEP method. To overcome such 

an obstacle, and in order to make the GEP algorithm fit for the prediction of petroleum 

reservoir fluid properties, all data points should be adequately processed and well scaled 

prior to input to the GEP. Although normalizing the data points is not a necessity in the 

estimation process by GP-based methods, better results are generally acquired by 

normalizing the parameters (Alavi et al., 2010). Thus, all data points related to the input 

and output variables are normalized as follows: 
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 (4.16) 

where rn stands for the data points normalized, r indicates the actual data and rmax is the 

maximum value of the data (Srinivas et al., 2010). In the next step, the normalized data 

points were returned to their original values at the end of modeling process. 

The MATLAB code developed in this study for the gene expression programming 

algorithm is presented in Appendix D. 

4.1.5.  Adaptive neuro-fuzzy inference system 

The adaptive neuro-fuzzy inference system proposed by Jang in 1993 (Jang, 1993) 

is viewed as a smart hybrid methodology composed of, and/or combining both fuzzy logic 

and artificial neural networks. The production of reasonable results by means of the 

implementation of the simple fuzzy inference system (FIS) is directly associated with 

expert-knowledge rules. The absence of such rules is recognized as a major disadvantage 

of this intelligent system.  
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The definition of intelligent rules and appropriate membership functions can help 

to avoid imperfect results. The ANFIS combines the strengths of fuzzy logic and artificial 

neural networks in order to develop models on the basis of an FIS with optimized rules 

and membership functions. The ANFIS methodology relies on the assumption that ANN 

trains the whole network and FIS structure to pursue the fuzzy logic representation. It is 

worth mentioning that the structures of rules and functions in models developed based 

on the ANFIS method are similar to those which have been proposed by the concept of 

fuzzy logic (Rahimzadeh Kivi et al., 2013). 

The MATLAB code developed in this study for the adaptive neuro-fuzzy inference system 

algorithm is presented in Appendix E. 

 

4.2. Structural Based Models 

There are two main molecular structures based methods namely the group 

contribution (GC) and quantitative structure–property relationship (QSPR) strategies. As 

a result, molecular descriptors are one of the most important ingredients in developing a 

GC and/or QSPR model. Moreover, the molecular descriptors are the final result of a 

logical and mathematical procedure in technical terms, which transform chemical 

structure information encoded within a symbolic representation of a molecule into a 

useful number or the result of some standardized experiment (Gharagheizi et al., 2013). 

The optimized molecular structures are a necessity to calculate molecular descriptors. In 

order to calculate the molecular descriptors, the optimized molecular structures must be 

loaded into Dragon software (Eslamimanesh et al., 2011b). It is capable of calculating 

over 3000 descriptors from several diverse classes. The descriptors obtained were 

carefully analyzed and those which were not able to be calculated for some compounds 

were completely neglected. 

In order to develop a reliable group contribution and/or QSPR model, the 

chemical structures of all the components used in a database should be examined 

thoroughly to find out the most efficient sub-structures for the estimation of thermos-

physical properties. In other words, having defined the compounds present in the 

database, the chemical structures of all of the studied compounds have been analyzed to 

recognize the functional groups.  
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To represent the GC and/or QSPR models, a sequential search mathematical 

strategy is applied to reduce the number of molecular descriptors to several tens of 

descriptors. The sequential search strategy implements an extensive search throughout 

the feature subsets (Dudek et al., 2006). As a first step, a single feature that leads to the 

best estimation is selected. Next, sequentially, each feature is individually added to the 

current subset and the errors of resulting models are quantified. The feature that is the 

best in decreasing the error is incorporated into the subset. Thus, in each step, a single 

best feature is added, resulting in a sequence of nested subsets of features. The procedure 

stops when a specified number of features are selected. When this feature is to be selected 

as the one that improves the quality of the model, the procedure is stopped. In other 

words, the basic idea is to replace each variable one at a time with all the remaining ones 

and see whether a better model is obtained. The disadvantage of sequential forward 

selection (SFS) is that if several features collectively are good predictors, but alone each 

is a poor prediction, none of the features may be chosen (Dudek et al., 2006). However, it 

should be mentioned that the SFS with percentage of average absolute relative deviation 

as an objective function is successfully used for selection of variables.  

 

4.3. Intelligent Optimization Algorithms  

4.3.1. Coupled Simulated Annealing 

To avoid local optima, simulated annealing methodology has been utilized 

(Atiqullah and Rao, 1993; Fabian, 1997; Vasan and Raju, 2009) as an optimization 

strategy. The idea is based on allowing moves which lead to solutions of worse quality 

than the present solution for avoiding the problem of local optima. The coupled simulated 

annealing (CSA) optimization technique, as an improved version of simulated annealing 

(SA), has been proposed to avoid the problem of local optima. The innovative principles 

of CSA methodology was reported by Suykens et al.(Suykens et al., 2001). In order to 

avoid the problem of local optima in non-convex complications, they applied coupling to 

local optimization developments. Additionally, Xavier et al. (Xavier-de-Souza et al., 2010) 

used CSA as a reliable optimization technique for the improvement of accuracy in the final 

solution of their problem. Further, the coupled optimization techniques like CSA could be 
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more effective if the communication of a coupling strategy is decreased to minimum 

(Koch, 2005). 

The below formula defines the acceptance possibility of function A with coupling 

term ρ (Chamkalani et al., 2013a): 
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as the set of current states of q minimizers. Moreover, the variance σ2 of A is as follows 

(Chamkalani et al., 2013a): 
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Consequently, the coupling term ρ is presented as follows (Chamkalani et al., 

2013a): 
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(4.19) 

 

4.3.2. Genetic Algorithm 

The genetic algorithm proposed by Holland (Holland, 1975) is capable of 

exploiting the information on an initially unknown search space to bias the subsequent 

search into promising subspaces. On the basis of the Darwinian principle of ‘survival of 

the fittest’, the genetic algorithm can explore the finest coordinate in the particular space 

after a series of repetitive calculations. As a result, artificial mutation, crossover and 

selection operators are the major ingredients of this searching process. To operate the 
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algorithm, an initial population, containing an already defined number of solutions under 

the title of individuals or chromosomes, is generated to switch the process on. The next 

step is to encode the components of populations into bit-string so-called chromosomes. 

Then, the nobility of the strings, normally named fitness, is evaluated in association with 

some functions representing the constraints of the issue. 

 

4.3.3. Particle Swarm Optimization 

The particle swarm optimization algorithm is proposed for solving the problems 

in continuous search space. This optimization technique was founded on an image of 

social interaction and communication (e.g. bird flocking and fish training) (Coulibaly and 

Baldwin, 2005; Eberhart and Kennedy, 1995). The particle swarm optimization algorithm 

employs social rules for searching in the design space by systematizing the trajectories of 

a series of independent particles. The location of each particle, which indicates a 

particular solution associated with the problem, is applied in order to calculate the tuned 

extent of the fitness function (Zendehboudi et al., 2013a). In the PSO approach, each 

particle has a different position during the optimization process, as its position is 

continuously altered to discover the solution in space. 

On the basis of velocity and location, every particle moves around at each iteration. 

The cost function for each particle is assessed to rank its current position. As the particle 

velocity builds quickly (Coulibaly and Baldwin, 2005), Shi and Eberhart (Shi and 

Eberhart, 1998) proposed the concept of inertia weight (ω) to the classical form of the 

particle swarm optimization for decreasing the velocity of particles. Afterward, the 

particles velocities are updated stochastically as follows (Coulibaly and Baldwin, 2005; 

Shi and Eberhart, 1998): 

𝑉𝑖
𝑡+1 = 𝜔𝑉𝑖

𝑡 𝐶1𝑟1
𝑡 (𝑃𝑖

𝑡 − 𝑋𝑖
𝑡) +  𝐶2𝑟2

𝑡 (𝑃𝑔
𝑡 − 𝑋𝑖

𝑡)                                                              (4.20) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1                                                                                                                  (4.21) 

where 𝑉𝑖
𝑡 stands for the velocity at iteration of t, 𝑋𝑖

𝑡  shows the particle location at iteration 

of t, 𝜔 is the inertia weight, r denotes the random number, 𝑃𝑔
𝑡  expresses the best ever 

particle position of the particle i, and 𝑃𝑖
𝑡  indicates the global best position in the swarm 

until iteration of t. 
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4.4. Computational Procedure 

To develop our intelligent models, various input variables associated with each 

property have been selected, while the petroleum reservoir fluid properties are regarded 

as output variables. Three sub-data sets, the “Training” set, “Validating” set and the “Test” 

set, have been considered on the main databank in order to develop and check the models 

constructed by different artificial intelligence approaches.  Here it should be noted that 

only two sub-data viz. training and test sets are considered for some analyses. Routinely, 

the “Training” set is employed for developing the main structure of the model, and the 

“Validating” set as well as the “Test (prediction)” set are utilized for visualizing the 

accuracy, capability, and reliability of the model obtained (Arabloo et al., 2013; Farasat et 

al., 2013; Shokrollahi et al., 2013). Here, it should be mentioned that the allocation 

process of the data is random.  

The K-means clustering technique (Kamari et al., 2014e) has been utilized in the 

present study for establishing the relationship among different variables to establish 

whether they have relevance. The K-means clustering is recognized as a method which 

divides n observations into k clusters in which each observation belongs to the cluster 

with the nearest mean. In other word, the K-means clustering approach helps to assign 

and divide the datasets. However, the dataset may have to be grouped by a different 

method before the K-means clustering is utilized.  

To this end, the K-Fold cross validation method is applied in this study. The 

approach considers k=10, then it partitions the dataset into 10 subsets. Holding one 

subset as a test/validation set, the model will be trained with the remaining 9 subsets. 

Afterward, the same procedure is repeated 10 times to find the best data division. In other 

words, the dataset is partitioned into subsets D1, D2, …, D10. In the first iteration, D1 is 

taken as test/validation set and {D2, D3, ..., D10} as training sets. In the second iteration, D2 

is considered as the test/validation set and {D1, D3, D4,..., D10} as training sets. Finally, the 

average of testing and validation accuracy is calculated over 10 runs. 

In this study, we selected different data divisions (80:10:10, 80:20, etc.) to study 

and predict the petroleum reservoir fluid properties. As a result, the value/percentage of 

assigned data for training sets must be balanced and reasonable to avoid an over-fitting 

problem, and also to achieve an accurate and tested prediction. If the value/percentage 
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of assigned data is high for a training set, then an over-fitting problem may occur for the 

predictive model. Moreover, if the value/percentage of assigned data is low, then we 

cannot develop a strong and reliable model for prediction targets. The results obtained 

in this study show that the model developed with the division of 80:20 (80% of data 

points for training and 20% for test sets) is the most appropriate and reliable because of 

its balanced accuracy in the testing and validation phases.  

As noted earlier, small value input parameters may be affected by higher values 

during the training phase of model development by intelligent approaches. To overcome 

this problem, the available data points should be normalized to achieve a good prediction 

by intelligent approaches. Therefore, all available data points related to input/output 

variables are normalized as below: 

' X
X






                                                               (4.22) 

where 'X  denotes the initial value or actual data, X expresses the normalized values for 

the actual data,   stands for the mean and finally   is the standard deviation. In this 

method, each of the input/output variables is normalized so that the mean and standard 

deviation of normal variable are 0 and 1, respectively (Karambeigi et al., 2011). It should 

be mentioned that normalizing the data has no impact on the results obtained because, 

finally, all normalized data points will be returned to their original values. 

 

4.5. Methods for Performance Evaluation 

4.5.1. Leverage Approach 

The Leverage technique is composed of statistical analysis comprising residual 

errors and the Hat matrix that consider the actual values of data and the estimated values 

of the petroleum reservoir fluid properties (Eslamimanesh et al., 2012b; Mohammadi et 

al., 2012a; Mohammadi et al., 2012c). In fact, the use of a mathematical model is the main 

application criterion of the Leverage algorithm. The Hat matrix embedded in the 

Leverage technique is presented as follows (Eslamimanesh et al., 2012b; Gharagheizi et 

al., 2012b; Goodall, 1993; Gramatica, 2007; Mohammadi et al., 2012a; Rousseeuw and 

Leroy, 2005): 
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tt XXXXH 1)(                                                                (4.23) 

where t stands for the transpose matrix and X refers to a matrix containing k columns and 

N rows. The Hat values, which represent the viable region of the case under study, are 

characterized by the diagonal elements of the H matrix. Moreover, the outliers are usually 

detected on the basis of H values obtained from Eq. (4.23). The H indices and standard 

residual values are well described in the Williams plot. In general, a warning leverage 

(H*) is set to be 3p/n, where p is equal to the number of model coefficients plus one and 

the number of training data points is symbolized with n. If the leverage is 3, it means the 

data points are accepted with a standard deviation of ±3 with respect to the average 

(mean) value. If H [0, H*] and R [-3, 3] are the intervals in which the main part of the data 

are placed, the statistical accuracy of the technique is demonstrated in the defined 

domain in terms of predictive performance. It is important to note that acceptably high 

leverage is attributed to the condition where H is equal to or greater than H* and R is 

between -3 and 3.  The data points in the intervals of R < -3 or 3 < R are recognized as the 

suspect data, known as poor high leverage. The presence of the outliers in computation 

and analysis may cause considerable error in the model output, leading to false decisions. 

 

4.5.2. Variables Relevancy Analysis 

A sensitivity analysis is performed in order to show the degree of reliability of the 

petroleum reservoir fluid properties selected as input variables (e.g. saturation pressure, 

reservoir temperature, gas specific gravity, and API gravity) on the output variables 

estimated by the developed intelligent models. Hence, the relevancy factor (r) (Chen et 

al., 2014) is utilized in this study to measure the degree of effect of each input variable 

used for the determination of petroleum reservoir fluid properties.  

In terms of the relevancy factor approach, an input variable has a higher influence 

on the output parameter if the calculated absolute value of r between the input and 

output variables is greater than the r values for other input variables. As a consequence, 

the positive or negative influence of input variables (e.g. saturation pressure, reservoir 

temperature, gas specific gravity, and API gravity) on the outputs is not determined by an 

absolute value of r. Consequently, the following equation is used to calculate the r values 

by means of the relevancy analysis (Hosseinzadeh and Hemmati-Sarapardeh, 2014): 
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where Inpk,i stands for ith value of the kth input variables and kInp denotes the average 

value of the kth input variables (e.g. bubble point pressure, reservoir temperature, gas 

gravity, and oil gravity), μi indicates the ith value of the outputs determined by the 

developed intelligent models, and   is the average value of the outputs determined the 

developed intelligent models. 
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CHAPTER 5 

 
5. Results & Discussion 

 

In this chapter, models based on the least square support vector machine, artificial neural 

network, decision tree, and adaptive neuro-fuzzy inference system, are applied in order 

to gauge various petroleum reservoir fluid properties. Then, different graphical plots are 

sketched in order to analyse the applicability domain of the values predicted by these 

models in relation to different ranges of petroleum reservoir fluid properties. 

Furthermore, different error parameters viz. average absolute relative deviation, R-

squared, average relative deviation, standard deviation, and root mean square error, are 

employed to statistically evaluate the accuracy of the models that have been developed 

and applied. This data is presented in Appendix F.  

The effects of the input variables on the accuracy of prediction of the petroleum 

reservoir fluid properties are investigated and discussed by means of the relevancy 

analysis approach.  

Finally, a list of the limitations/drawbacks of the deterministic methods discussed in 

this thesis are highlighted. Additionally, the importance of this study for the advancement 

of modeling of petroleum reservoir fluid properties is discussed in terms of fluid flow in 

porous media, enhanced oil recovery, PVT analysis of the reservoir fluid, and production 

technology. 
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5.1. New Equation for Surfactant Retention 

To develop a reliable model for the determination of surfactant retention, the GEP 

algorithm has been employed. After an acceptable numbers of generations were 

considered in the development of the model, a neutral gene was added to the model in 

order to increase the accuracy. Furthermore, various mathematical functions and basic 

arithmetic operators were implemented to obtain the optimal model with the highest 

possible accuracy. Additionally, a function according to mean absolute error and R2 was 

selected to compute the overall fitness associated with the evolved programs. The 

program was run until there was no longer a significant improvement in the accuracy and 

performance of the several models developed with the functions employed. The final 

form obtained can be expressed as follows: 

𝑅 = 𝐴 − 𝐵 + 0.22481                                                                                                                             (5.1) 

𝐴 = 𝐶𝑐𝑜−𝑠𝑜𝑙𝑣𝑒𝑛𝑡 + 0.001 [(𝑀𝑊𝑆𝑢𝑟

1
2) 𝑇2(9.3489 − 𝑝𝐻)]

1
3

− (
0.0022395𝑇

0.1𝐾𝑎𝑏𝑠 − 𝑝𝐻
)                         (5.2)    

𝐵 = (10𝑇𝐴𝑁 − 5.2855) × 0.001 [(100𝑀𝑅 − 1000𝐶𝑐𝑜−𝑠𝑜𝑙𝑣𝑒𝑛𝑡 + 30.723)
1

2 −
622.68

𝑆𝑃𝐷
]           (5.3) 

where R denotes the retention of surfactant, Kabs the absolute permeability, TAN is the 

total acid number of the oil, T denotes reservoir temperature, Cco-solvents is the co-solvent 

concentration, SPD the salinity of the polymer drive, pH  is the maximum effluent pH, MR 

is the value of mobility ratio, and MWSur is the average molecular weight of the surfactant 

solution.  

The performance of the newly developed model for the prediction of surfactant 

retention in porous media in terms of the statistical model validation parameters are 

given in Table 5. 1. As can be seen in this Table, the R2 in the testing phase is 0.9464. 

Furthermore, Ea or average absolute relative deviation in the testing stage is reported as 

9.66 %. These results indicate that the newly developed model predicts the surfactant 

retention values with an acceptable accuracy. 
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Table 5. 1 Statistics error parameters of the developed model for prediction of the 

surfactant retention. 

Performance Ea % Er % SD RMSE R²  

Total 16.62 -3.6473 0.0580 0.0275 0.9246 

Training 18.50 -4.7640 0.0562 0.0294 0.9213 

Testing 9.66 0.4840 0.0144 0.0187 0.9464 

 

Fig. 5. 1 shows a point-to-point comparison between values obtained by the new 

model and the literature-reported surfactant retention data. As can be seen in this Figure, 

the points are in good agreement. Fig. 5. 2 shows a comparison between predicted and 

real surfactant retention in porous media. As is clear from the figure, approximately all 

data corresponding to the training and testing stages straddle the Y=X line, indicating that 

there is a good fit between the newly developed model predictions and the real data taken 

from the literature.  

Fig. 5. 3 provides more statistical information for the model performance 

evaluation and depicts the magnitudes of relative error percentage versus the real data 

employed in both the training and testing phases. Based on this study, a small margin of 

error is noticed. Therefore, it can be concluded that the newly developed model is 

efficient in estimating surfactant retention in porous media during the application of the 

chemical flooding recovery method. The accuracy of the model is sufficient for its 

utilization in the design of EOR processes in petroleum reservoir disciplines. 
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Fig. 5. 1 Point-to-point comparison between the results of the developed empirical 

correlation and literature-reported values of the surfactant retention in porous media. 

 

Fig. 5. 2 Crossplot for predicted values by the new empirical correlation and literature-

reported values of the surfactant retention in porous media. 
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Fig. 5. 3 Relative deviations of the surfactant retention in porous media obtained by the 

newly proposed model from the database values. 

 

Figs. 5. 4 and 5. 5 display the performance of the model developed in terms of R2 

and average absolute percent relative error (AAPRE). This model is for prediction of 

surfactant retention in comparison with predicted values by the intelligent artificial 

method called LSSVM (Yassin et al., 2013). For the testing stage, a previously published 

empirical correlation, namely Solairaj et al. (Solairaj, 2011; Solairaj et al., 2012) is used. 

Figs. 5. 4 and 5. 5 graphically illustrate the calculated R-squared error and AAPRE for the 

all methods investigated in this study. From these figures it can be concluded that the 

new model performs better for the prediction of surfactant retention compared with 

LSSVM (Yassin et al., 2013) and Solairaj et al.’s correlation (Solairaj, 2011; Solairaj et al., 

2012) based on the available database. Moreover, unlike LSSVM, the new model can 

provide a symbolic equation for correlation and determination of surfactant retention in 

porous media, which can be employed in reservoir engineering science and in issues 

associated with EOR processes. 
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Fig. 5. 4 Comparison between the R2 obtained by the newly developed correlation in the 

testing phase, the LSSVM values (Yassin et al., 2013) in the testing stage and Solairaj et 

al.’s correlation (Solairaj, 2011; Solairaj et al., 2012) for predicting the surfactant 

retention in porous media. 
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Fig. 5. 5 Comparison between the average absolute relative deviations (AAPRE) 

obtained by the newly developed correlation in the testing phase, the LSSVM values 

(Yassin et al., 2013) in the testing stage and Solairaj et al.’s correlation (Solairaj, 2011; 

Solairaj et al., 2012) for predicting the surfactant retention in porous media. 

 

From these results it can be concluded that the method introduced in this study 

can result in excellent generalization and can be advantageously employed for the 

estimation of surfactant retention in porous media during surfactant/chemical flooding. 

In addition, the significance of the new method is its use of readily existing reservoir 

sample data. It can therefore be widely applied in situations where experimentally 

measured records are not available. Moreover, the method can be employed in reservoir 

engineering software developed for the simulation of EOR methods, in particular 

surfactant-based flooding, and can provide precise performance in predicting the 

retention of surfactant with regard to stated parameters. 
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5.2. New Equation for Dew Point Pressure of Gas Condensate 

Reservoirs 

5.2.1. The GEP-based model 

         As indicated earlier, there are a number of different factors which affect the 

prediction capability of GEP-based models. Hence, many computation runs were 

performed on a trial and error basis to find optimum accuracy and simplicity. During the 

development of the GEP-based model for the prediction of DPP in gas condensate 

reservoirs, it was noticed that an increase in the number of permitted genes in the applied 

individual, and the maximum depth of ET, have an effect on the domain size of the 

solution space. The complexity of the evolved function rises and there is an increase in 

the run-time of the process.  

The accuracy of models developed based on the GEP evolutionary approach is 

normally increased in relation to an increase in the number of genes and the depth of ET. 

Consequently, we applied two genes, AARD and R-squared as fitness functions, and a 

function set including *, +, -, ln and /. Specific gravity and molecular weight for heptane 

plus fractions, reservoir temperature, compositions of hydrocarbons including methane, 

ethane, propane, butanes, pentanes, hexanes, heptane-plus, and compositions of non-

hydrocarbons including nitrogen, carbon dioxide, hydrogen sulfide were used as input 

variables. The optimum GEP-based model obtained for the estimation of DPP in gas 

condensate reservoirs is as follows: 

𝑃𝑑 = 𝐴 + 𝐵                                                                                                                                    (5.4) 

𝐴

=
13.145 − 4.942 𝑧𝐶1

+ 1961.7 𝑧𝐶2
− 6212.71 𝑧𝐶4

+ 39335.07 (𝑧𝐶4
)

2
+ 2097 𝑧𝐶5

− 3451.17 𝑧𝐶6
+ 201.93 𝑧𝐻2𝑆 − 0.065224𝑇𝑅

0.0031904 𝑇𝑅 + 0.094398
   (5.5)      

𝐵 =
1367.4 + 9.98 𝑧𝐶1

𝑀𝑊𝐶7+
− 1697.6 𝑧𝐶3

− 5096.8 𝑧𝐶7
+ 358.09 ln (𝑧𝐶7+

) + 933.35 𝑧𝐶𝑂2
+ 1909.7 𝑧𝑁2

1.0214 − 𝑆𝐺𝐶7+

      (5.6)    

where Pd (Psia) denotes the DPP in gas condensate reservoirs, MWC7+ is the molecular 

weight of the heptane-plus fraction, SGC7+ is the specific gravity of heptane plus fraction, 

TR is reservoir temperature (°F) and 𝑧𝐶1
, 𝑧𝐶2

, 𝑧𝐶3
, 𝑧𝐶4

, 𝑧𝐶5
, 𝑧𝐶6

𝑧𝐶7+
,  𝑧𝐶𝑂2

, 𝑧𝑁2
,  𝑧𝐻2𝑆 are 

compositions of methane, ethane, propane, butanes, pentanes, hexanes, heptane-plus, 

carbon dioxide, nitrogen, and hydrogen sulfide, respectively. 
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5.2.2. Capability and precision evaluation of the GEP-based Model 

In order to evaluate the capability of the model in predicting DPP, we used some 

important error functions including AARD, R-squared, average percent relative error, 

root mean square error and standard deviation. Furthermore, a graph that provides a 

cross-plot of actual data against the predicted values, using Eq. (5.4), as well as a relative 

error distribution plot, are presented. Table 5. 2 summarizes the calculated errors for 

data predicted by the GEP-based model developed for DPP in gas condensate reservoirs.  

The proposed model based on the GEP approach has an overall AARD of 7.8 % and 

an R-squared equal to 0.89. These values are acceptable for the proposed model taking 

into account the dataset used in its development. Fig. 5. 6 shows the cross-plot of the 

actual data against the predicted values using Eq. (5.4), as well as the relative error 

distribution plot. As can be seen in Fig. 5. 6, there is good agreement between the actual 

data and values calculated using the GEP-based model proposed in this study. There is an 

acceptable match, as observed in the top panel of Fig. 5. 6 between the reported and 

estimated DPP values using the GEP model. Additionally, the bottom panel of Fig. 5. 6 

illustrates satisfactory distribution of relative deviation around the zero line. 

 

Table 5. 2 The overall performance of the model developed, for the training and testing 

phases, as well as comparison with other models in terms of statistical error analysis. 

Method AARD % APRE % SD  RMSE  R2  

Elsharkawy’s model (Elsharkawy, 

2002a) 15.3 -9.667 0.201 891.075 0.759 

Shokir’s model (Shokir, 2008) 11.0 -0.728 0.151 704.177 0.818 

Nemeth and Kennedy’s model 

(Nemeth and Kennedy, 1967) 8.6 4.794 0.095 611.369 0.886 

This study, overall 7.8 0.871 0.088 549.219 0.890 

This study, training set 7.8 0.759 0.078 524.082 0.891 

This study, testing set 8.0 1.321 0.040 640.348 0.882 
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Fig. 5. 6 Comparison between the data calculated by Eq. (5.4) and actual magnitudes of 

dew point pressures with regard to line Y=X and residual error percentage. 

 

A performance of Eq. (5.4) was further evaluated by comparing the results 
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Kennedy, 1967). Table 5. 2 also provides a systematic comparison between the actual 

DPP data, the output values of the Elsharkawy (Elsharkawy, 2002a), Shokir (Shokir, 

2008), and Nemeth and Kennedy (Nemeth and Kennedy, 1967) methods, as well as the 

results of the GEP-based model. Moreover, Figs. 5. 7-9 illustrate the results obtained by 

Nemeth and Kennedy (Nemeth and Kennedy, 1967), Shokir (Shokir, 2008), and 

Elsharkawy’s (Elsharkawy, 2002a) methods, respectively.  

As can be seen in these figures, the agreement between the values predicted by 

these comparative methods and the actual data of DPP is not as good as with the GEP-

based model. Fig. 5. 10 shows the calculated AARD for the comparative methods as well 

as for the GEP-based model. It can be observed that the GEP-based model has better 

performance than the other correlations with respect to the calculated AARD values. The 

AARDs for the Elsharkawy (Elsharkawy, 2002a), Shokir (Shokir, 2008), and Nemeth and 

Kennedy (Nemeth and Kennedy, 1967) methods are 15.3, 11.0 and 8.6, respectively, 

while it is 7.8 % for Eq. (5.4). 

Fig. 5. 11 shows a further comparison of the DPP values predicted using Eq. (5.4) 

with actual data, as well as the calculated DPP values using the comparative techniques, 

taking into account the influence of reservoir temperature on DPP. This figure also shows 

that the values predicted using Eq. (5.4) are closer to the actual data compared to the 

other methods. Furthermore, it illustrates that DPP has an incremental trend with an 

increase in temperature.  

The comparative analysis confirms that the GEP-based model is able to calculate 

the desired parameter (i.e. the DPP in gas condensate reservoirs) with greater accuracy 

and consistency. The model also has a smaller number of adjustable, resulting in the 

model optimization and development of GEP-based models being faster, less laborious, 

and less costly. In other words, the GEP-based model for the estimation of DPP in gas 

condensate reservoirs can be considered as more simple-to-use than the comparable 

methods. 

 



115 | P a g e  
 

 

 

Fig. 5. 7 Comparison between the data calculated by the Nemeth and Kennedy’s model 

(Nemeth and Kennedy, 1967) and actual magnitudes of dew point pressures with 

regard to line Y=X and residual error percentage. 
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Fig. 5. 8 Comparison between the data calculated by the Shokir’s model (Shokir, 2008) 

and actual magnitudes of dew point pressures with regard to line Y=X and residual 

error percentage. 
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Fig. 5. 9 Comparison between the data calculated by the Elsharkawy’s model 

(Elsharkawy, 2002a) and actual magnitudes of dew point pressures with regard to line 

Y=X and residual error percentage. 
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Fig. 5. 10 The performance of Eq. (5.4 and the comparative methods in predicting dew 

point pressures with respect to AARD. 

 

 

Fig. 5. 11 The performance of Eq. (5.4), and the comparative methods in predicting dew 

point pressures with respect to the study of the influence of temperature on dew point 

pressure trend. 
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5.2.3. Detection of the outlier DPP data points available in the databank 

         The Leverage scheme was used to detect outlier DPP data points existing in the 

assembled database. To find doubtful DPP data points, the Williams' plot is drawn by 

calculation of the Hat values, as illustrated in Fig. 5. 12. The GEP-based model proposed 

in this study for the prediction of DPP in gas condensate reservoirs displays a higher 

performance statistically, as the main portions of the data are located within the domains 

of 0 < H<0.07473 and –3 <R<3.  It can be observed, based on the Leverage scheme, as 

illustrated in Fig. 5. 12, that there are only 13 data points (among a total of 562 data 

points) outside of the acceptable range of the proposed technique. Further details on 

outlier detection are available in the literature (Goodall, 1993; Gramatica, 2007; 

Mohammadi et al., 2012a).  

 

 

Fig. 5. 12 Determination of doubtful data points in the dew point pressure dataset, 

collected during development of the GEP-based scheme, using Hat values. 
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5.3. New Equations for Bubble Point Pressure and Oil Formation 

Volume Factor 

5.3.1. Performance Evaluation 

Previous research has proved that the performance of an empirical correlation of 

bubble point pressure is more complicated than for oil formation volume factor. As a 

result, the empirical correlations for bubble point pressure are less vigorous and precise 

than those for the estimation of oil formation volume factor (Arabloo et al., 2014). Hence, 

in order to obtain more robust, reliable and accurate empirical models for both bubble 

point pressure and oil formation volume factor, the GEP algorithm computational 

procedure has been utilized because the computational phases associated with the GEP 

approach (Ferreira, 2006) define the required parameters, which therefore give the most 

precise model for both bubble point pressure and oil formation volume factor based on 

the variables of  solution gas oil ratio, gas gravity, oil API gravity and reservoir 

temperature.  

In order to increase the capability and accuracy of the GEP model, compared to 

existing empirical correlations, neutral genes can be added to the model (this is a newly 

developed equation) after reaching a reasonable and appropriate number of generations 

required to show that both models relate to OFVF and Pb. properties. Moreover, the 

function called the average absolute percent relative error and correlation coefficient 

(R2) was chosen to compute the overall fitness of the evolved programs.  

The run of program was continued until there was no longer important 

improvement in the accuracy and capability of the several proposed models with the 

various functions utilized. The final equations for both bubble point pressure and oil 

formation volume factor properties are obtained as follows: 

𝐵𝑜𝑏  = 1 − 0.000081623 𝛾𝑔 [√𝐴𝑃𝐼 𝑇𝑅  +
𝑅𝑆𝑖−4.846

√𝛾𝑔
] (0.37658 𝛾𝑔 − (𝐴𝑃𝐼 − 𝑇𝑅)0.3652)                    Eq. (5.7)                                                                                                                                                                          

𝑃𝑏  =
87.3067𝑅𝑆𝑖 𝑇𝑅 |𝛾𝑔− 2.95787|+7639.17

947.493 𝛾𝑔+exp(0.000641267 𝐴𝑃𝐼 𝑇𝑅)+𝐴𝑃𝐼 𝑇𝑅+3.59953 𝛾𝑔 𝑅𝑆𝑖
                                        Eq. (5.8) 

where Pb denotes bubble point pressure (psi), Bob stands for OFVF at bubble point 

pressure (bbl/STB), TR expresses the reservoir temperature (°F), API is the crude oil API 
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gravity, γ g indicates the gas gravity and RSi shows the solution gas oil ratio at bubble point 

pressure  (SCF/STB).       

Having developed the GEP models for the prediction of Boi and Pb properties, error 

analyses were performed to evaluate the prediction performance of those models. These 

include statistical error analysis in which R2, AAPRE, average percent relative error 

(APRE), root mean square (RMSE) and graphical error analysis in which a parity diagram 

and relative error distribution is plotted. Table 5. 3 summarizes the statistical error 

parameters calculated for the Boi model developed in this study.  

The results obtained indicate a R2=0.93 and an AAPRE=3.62. The error values 

acquired reveal that the newly developed GEP model has predicted the oil formation 

volume factor values with an acceptable and reliable accuracy. Fig. 5. 13 illustrates the 

parity diagram and a comparison between the calculated and actual values related to oil 

formation volume factor data.  As is clear from the figure, most of the data points are 

almost placed on the line of Y=X, illustrating there is agreement between the model 

predictions and the actual oil formation volume factor data gathered from the literature. 

For the purpose of illustrating the capability and performance of the GEP model in 

predicting oil formation volume factor, a relative error percentage distribution plot is 

also drawn in Fig. 5. 14., which reveals a small level of error on the basis of Eq. (5.7).  

Additionally, the capability of the model for evaluation of the oil formation volume 

factor data sourced from the literature has been compared with the results of several of 

the most widely-utilized empirical correlations. Thirteen empirical correlations are used, 

viz. Arabloo et al. (Arabloo et al., 2014) model, Al-Shammasi (Al-Shammasi, 1999) model, 

Kartoatmodjo and Schmidt (Kartoatmodjo and Schmidt, 1994a) model, Frashad et. al 

(Frashad et al., 1996)  model, Al-Marhoun (Al-Marhoun, 1992) model, Standing (Standing, 

1947a) model, Petrosky and Farshad (Petrosky Jr and Farshad, 1998) model, Omar and 

Todd (Omar and Todd, 1993) model, Dindoruk  and Christman (Dindoruk and Christman, 

2004) model, Vazquez  and Beggs (Vazquez and Beggs, 1980) model, Macary and El-

Batanony (Macary and El-Batanoney, 1993) model, Abdul-Majeed (Abdul-Majeed et al., 

1988) model, and Labedi (Labedi, 1990) model.  

A summary of the comparative study, which was performed using statistical error 

parameters, is listed in Table 5. 3. These results confirm that Eq. (5.7) has performed 



122 | P a g e  
 

better for the calculation of oil formation volume factor compared to the studied 

empirical correlations. An acceptable AAPRE of the predicted values is generated from 

the actual Boi data. A graphical comparison of AAPRE results is shown in Fig. 5. 15. The 

bar plots drawn in Fig. 5. 15 illustrates that the model developed for the prediction of oil 

formation volume factor is acceptable in comparison with values calculated by other 

empirical correlations. 

 

Table 5. 3 Summarized statistical error parameters including AAPRE, APRE, RMSE and 

R2 for the newly developed model for oil formation volume factor as well as the empirical 

correlation results from the actual data. 

Method 
AAPR
E, % 

APRE, % RMSE R²  

Present study (Eq. (5.7)) 2.17 0.18 0.07 0.93 

Arabloo et al. (Arabloo et al., 2014) model 2.24 −0.04 0.07 0.94 

Al-Shammasi (Al-Shammasi, 1999) model 2.59 −0.92 0.07 0.93 

Kartoatmodjo and Schmidt (Kartoatmodjo and 

Schmidt, 1994a) model 

2.92  −0.30 0.07 0.93 

Frashad et.al (Frashad et al., 1996) model 2.94 0.39 0.07 0.93 

Al-Marhoun (Al-Marhoun, 1992) model 3.09  −0.38 0.08 0.93 

Standing (Standing, 1947a) model 3.36 −1.98 0.08 0.93 

Petrosky and Farshad (Petrosky Jr and Farshad, 

1998) model 

3.46 −2.35 0.08 0.93 

Omar and Todd (Omar and Todd, 1993) model 5.03 2.08 0.12 0.85 

Dindoruk  and Christman (Dindoruk and Christman, 

2004) model 

5.52  −2.94 0.14 0.83 

Vazquez  and Beggs (Vazquez and Beggs, 1980) 

model 

5.59 3.01 0.13 0.82 

Macary and El-Batanony (Macary and El-Batanoney, 

1993) model 

9.11 −8.44 0.19 0.85 

Abdul-Majeed (Abdul-Majeed et al., 1988) model 27.77 −27.73 0.4 0.83 

Labedi (Labedi, 1990) model 37.68 −37.64 0.68 0.93 
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Fig. 5. 13 Parity diagram for the predicted values by the new empirical model and the 

literature-reported values of the oil formation volume factor. 

 

 

Fig. 5. 14 Relative deviations plot of the oil formation volume factor values obtained by 

the newly proposed model from the available dataset. 
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Fig. 5. 15 Comparison between the AAPRE values obtained by the new model, and the 

corresponding empirical correlations, for the prediction of oil formation volume factor 

 

Table 5. 4 lists the statistical error parameters calculated for the proposed Pb 

model. The table reports that the values obtained for AAPRE, APRE, RMSE and R2 are 

15.3%, 2.23%, 468.11 and 0.88, respectively. These amounts of error confirm the level of 

accuracy of the new model for the prediction of bubble point pressure. Figure 5. 16 

provides a diagram of the parity between the calculated and reported values of bubble 

point pressure data, which illustrates a high level of agreement between the newly 

developed model predictions and the actual bubble point pressure data. Figure 5. 17 

represents the relative percentage error distribution plot for the Pb model. This figure 
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Batanoney, 1993) model, Petrosky and Farshad (Petrosky Jr and Farshad, 1998) model, 

Yi (Yi, 2000) model, Omar and Todd (Omar and Todd, 1993) model, and the 

Ikiensikimama and Ogboja (Ikiensikimama and Ogboja, 2009) model. Table 5. 4 

summarizes statistical error parameters calculated for the aforementioned correlations 

as well as for the Pb model developed in this study. As can be seen in the table, the Pb 

model has better performance in comparison with the studied methods. To highlight 

relative performance, the AAPRE obtained for all methods is shown in Figure 5. 18.  

Figure 5. 18 confirms that Eq. (5.8) is more capable and accurate than the other 

correlations for the prediction of bubble point pressure. In view of the above results and 

discussion, it can be confirmed that the models proposed for the evaluation of reservoir 

oil PVT properties, including oil formation volume factor and bubble point pressure, 

perform in terms of universality, reliability and accuracy, and they can be implemented 

in various applications in petroleum engineering, such as in the development of new 

software. 

 

 

Fig. 5. 16 Parity diagram for the predicted values by the new empirical model and the 

literature-reported values of bubble point pressure. 
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Table 5. 4 Summarized statistical error parameters, including AAPRE, APRE, RMSE and 

R2, for the new model and the empirical correlation results from the actual data, for 

bubble point pressure. 

Method AAPRE, % 
APRE, 
% 

RMSE R²  

Present study (Eq. (5.8)) 15.3 2.23 468.11 0.88 

Arabloo et al. (Arabloo et al., 2014) model 18.9 3.2 501.7 0.86 

Al-Shammasi (Al-Shammasi, 1999) model 20.8 −7.6 478.7 0.87 

Lasater (Lasater, 1958)  model 25.5 −8.6 481.5 0.87 

Dindoruk and Christman (Dindoruk and 

Christman, 2004) model 

25.6 −2.8 510.8 0.86 

Valko and Mcain (Valko and McCain Jr, 2003) 

model 

25.7 0.1 584.2 0.82 

Frashad et al. (Frashad et al., 1996) model 25.9 −8.7 507.4 0.85 

Velarde et al. (Velarde et al., 1997) model 26.9 −2.1 596.6 0.82 

Al-Marhoun (Al-Marhoun, 1988) model 27.9 −4.5 550.8 0.84 

Standing (Standing, 1947a) model 28.7 −16.4 588.4 0.85 

Vazquez and Beggs (Vazquez and Beggs, 1980) 

model 

32.3 −24.7 693.9 0.87 

Kartoatmodjo and Schmidt (Kartoatmodjo and 

Schmidt, 1994a) model 

35.6 −27.2 819.7 0.84 

Macary and El-Batanony (Macary and El-

Batanoney, 1993) model 

52.9 −38.3 596.4 0.85 

Petrosky and Farshad (Petrosky Jr and 

Farshad, 1998) model 

90.7 58.7 840 0.85 

Yi (Yi, 2000) model 94 94 2115.2 0.77 

Omar and Todd (Omar and Todd, 1993) model 361.5 −356.0 11387.4 0.03 

Ikiensikimama and Ogboja (Ikiensikimama and 

Ogboja, 2009) model 

555.5 −555.5 5175.9 0.40 
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Fig. 5. 17 Relative deviation plot of the bubble point pressure values obtained by the 

newly proposed model from the available dataset. 

 

 

Fig. 5. 18 Comparison of the AAPRE values obtained by the new model, and the 

empirical correlations, for the prediction of bubble point pressure.  
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5.3.2. Detection of Outlier Data Points Existing in the Dataset 

The accuracy performance and capability of any predictive model will be 

improved by means of the detection of the outlier data point(s) existing in the datasets 

because the results will probably be sensitive to such data points. The outlier data points 

are the individual datum (or groups of data) that may differ from the bulk of the data 

existing in a databank (Gramatica, 2007; Mohammadi et al., 2012a; Mohammadi et al., 

2012c; Rousseeuw and Leroy, 2005). Hence, evaluating the datasets related to both oil 

formation volume factor and bubble point pressure is a requisite, since uncertainties 

affect the accuracy performance and capability of predictive models developed.  

The Leverage value statistical technique is applied in this study for the detection 

of outlier data points existing in the datasets associated with both oil formation volume 

factor and bubble point pressure properties (Goodall, 1993; Gramatica, 2007). The 

detection of the suspended data or outliers is undertaken by drawing  the Williams plot 

based on the H values calculated (Mohammadi et al., 2012a; Mohammadi et al., 2012c). 

For more information about the Leverage approach, a detailed definition related to the 

computational procedure and also equations of this technique can be obtained elsewhere 

(Mohammadi et al., 2012a; Mohammadi et al., 2012c).  

Figs. 5. 19 and 5. 20 illustrate the Williams plots for the predicted values of oil 

formation volume factor and bubble point pressure using the newly developed GEP 

models. As can be seen in these figures, the existence of the majority of data points, in the 

ranges 0  H 0.01984 and -3Rfor both oil formation volume factor and bubble point 

pressure models, confirms that the applied models are statistically valid and correct. As 

a matter of fact, Figs. 5. 19 and 5. 20 show that there are 12 data points for the oil 

formation volume factor model and 13 data points for the bubble point pressure model, 

that are outside of the applicability domain of the GEP models and are accounted as 

outliers whose values may be doubtful, compared with the corresponding actual data. 
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Fig. 5. 19 Detection of the probable outlier and doubtful data of oil formation volume 

factor and the applicability domain of the proposed GEP model. 

 

 

Fig. 5. 20 Detection of the probable outlier and doubtful data of bubble point pressure 

and the applicability domain of the proposed GEP model. 
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5.4. New Equations for Reservoir Oil Viscosities 

5.4.1. Dead Oil Viscosity 

In the GEP-based symbolic regression approach, the most effective input variables 

on the target parameter (dead oil viscosity) are selected automatically from the set of all 

of the independent predictors. But in this study the algorithm was fixed on two variables 

including oil gravity and reservoir temperature. Certain previously published models (Al-

Khafaji et al., 1987; Alomair et al., 2011; Beal, 1946; Beggs and Robinson, 1975; Bennison, 

1998; Egbogah and Ng, 1990; Elsharkawy and Alikhan, 1999; Glaso, 1980; Hossain et al., 

2005; Kartoatmodjo and Schmidt, 1994b; Kaye, 1985; Labedi, 1992; Naseri et al., 2005; 

Petrosky, 1990), used these two parameters as effective variables for the determination 

of dead oil viscosity. Consequently, for the development of the GEP algorithm, the best 

GEP-based model using the independent predictors (reservoir temperature and oil 

gravity) obtained after the GEP evolution process, is given as follows: 

𝜇𝑜𝑑 =
614.82 𝐴𝑃𝐼 ×𝑇 − 63529.0 𝑇+2.0359 ×107

𝑇× 𝐴𝑃𝐼3  − 482088
                                                                (5.9) 

where 𝜇𝑜𝑑 denotes the dead oil viscosity (cp), T represents reservoir temperature (°F) 

and finally API stands for dead oil gravity. 

Table 5. 5 (top section) summarizes the statistical error factors, including the 

average absolute relative deviation, root mean square error and R-squared error, for the 

calculation of dead oil viscosities. The table reports reasonable values for the 

abovementioned error parameters (e.g., AARD=17.29%, RMSE=1.82, and R2=0.97).  

To illustrate the accuracy of the performance of the new model, a comparison 

between the values of dead oil viscosity using Eq. (5.9) and the values in the applied 

dataset, is demonstrated by means of a parity diagram or crossplot and a relative error 

distribution (Fig. 5. 21). Furthermore, to make visual the accuracy and capability of the 

model for dead oil viscosity, a broad comparative study was conducted applying the most 

reliable empirically derived correlations available (Al-Khafaji et al., 1987; Alomair et al., 

2011; Beal, 1946; Beggs and Robinson, 1975; Bennison, 1998; Egbogah and Ng, 1990; 

Elsharkawy and Alikhan, 1999; Glaso, 1980; Hossain et al., 2005; Kartoatmodjo and 

Schmidt, 1994b; Kaye, 1985; Labedi, 1992; Naseri et al., 2005; Petrosky, 1990).  

 



131 | P a g e  
 

Table 5. 5 Summarized statistical error factors including AARD, RMSE and R2 for the 

developed models associated with dead, saturated and under-saturated oil viscosities. 

Developed model AARD a % RMSE d R2 e 

Dead oil viscosity model    

Training 17.40 1.95 0.974 

Testing 16.86 1.16 0.900 

Overall 17.29 1.82 0.973 

Saturated oil viscosity model    

Training 14.06 0.53 0.966 

Testing 11.53 0.26 0.961 

Overall 13.55 0.49 0.966 

Under-saturated oil viscosity model    

Training 1.51 0.10 0.999 

Testing 1.29 0.06 0.998 

Overall 1.47 0.09 0.999 

 

Table 5. 6 reveals the results of the comparative study on the estimation of dead oil 

viscosities. As is clear from the table, in relation to all of the error factors investigated, the 

model for dead oil viscosities is more accurate than the empirically derived correlations. 

Additionally, Naseri et al. (Naseri et al., 2005) is shown to have developed the second best 

model for the determination of dead oil viscosity of Iranian crudes (AARD equal to 27.5 

% as shown in Fig. 5. 22.  

To represent the smoothness of the developd model for dead oil viscosity, a trend 

analysis is performed illustrating the changes of viscosity versus input variables. To this 

end, a 3D plot of changes of dead oil viscosity, oil API gravity and reservoir temperatures 

is presented. Fig. 5. 23 shows that dead oil viscosity decreases with an increase in 

temperature and oil API gravity. This figure confirms that the model has captured the 

reported general trend (Ahmed, 2006) of dead oil viscosity versus oil API gravity and 

temperature.  
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Table 5. 6 Comparison of summarized statistical error factors including AARD, RMSE and 

R2 for dead oil viscosity and empirical correlations to the actual data. 

Method AARD % R2 RMSE 

Beal (Beal, 1946) 
891.2 0.1088 83.14 

Beggs and Robinson (Beggs and 

Robinson, 1975) 
216.7 0.0376 245.05 

Glaso (Glaso, 1980) 
33.4 0.9270 3.84 

Kaye (Kaye, 1985) 
52.0 0.2268 10.19 

Al-Khafaji (Al-Khafaji et al., 1987) 
29.9 0.7283 6.04 

Petrosky (Petrosky, 1990) 
41.6 0.8695 4.18 

Egbogah and Ng (Egbogah and Ng, 

1990) 
55.6 0.9208 3.26 

Labedi (Labedi, 1992) 
177.9 0.3910 14.95 

Kartoatmodjo and Schmidt 

(Kartoatmodjo and Schmidt, 1994b) 
36.8 0.9065 4.50 

Bennison (Bennison, 1998) 
70.9 0.6689 12.25 

Elsharkawy and Alikhan 

(Elsharkawy and Alikhan, 1999) 
72.9 0.9065 13.25 

Hossain et al. (Hossain et al., 2005) 
68.9 0.6000 16.24 

Naseri et al. (Naseri et al., 2005)  
27.5 0.8233 3.88 

Alomair et al. (Alomair et al., 2011) 
72.4 0.8275 6.36 

This study 
17.2 0.9730 1.82 
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Fig. 5. 21 Parity diagram and relative deviation distribution plot for the developed dead 

oil viscosity model. 
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Fig. 5. 22 Comparison between the AARD % values for the determination of dead oil 

viscosity obtained by the model developed in this work  and comparative methods. 

 

Fig. 5. 23 3D plot of change of dead oil viscosity versus change in temperature and oil 

API gravity. 
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viscosity are considered as the most effective input variables or predictors, 

recommended by published researchers (Al-Khafaji et al., 1987; Beggs and Robinson, 

1975; Bergman and Sutton, 2007; Chew and Connally Jr, 1959; Elsharkawy and Alikhan, 

1999; Hossain et al., 2005; Kartoatmodjo and Schmidt, 1994b; Khan et al., 1987; Labedi, 

1992; Naseri et al., 2005; Petrosky, 1990). As a result, the run of the encoded GEP 

algorithm was continued until there were no longer important improvements in the 

efficiency, simplicity and accuracy of the equations obtained. Consequently, the final 

model for the determination of saturated oil viscosity is obtained as follows: 

𝜇𝑜𝑏 =
3.5752 𝜇𝑜𝑑 + 1.9812

145.0377𝑃𝑏 − 0.1379 𝜇𝑜𝑑 + 9.4204
+ 0.71308𝜇𝑜𝑑

7.3
+  0.083617                                            (5.10) 

where 𝜇𝑜𝑏 is saturated oil viscosity (cp), 𝜇𝑜𝑑 expresses the dead oil viscosity (cp), Pb 

stands for bubble point pressure (psi). 

The middle section of Table 5. 5 lists the statistical error parameters calculated 

for Eq. (5.10). The equation proposed in this study for the determination of saturated oil 

viscosity has an acceptable accuracy with an AARD %, RMSE and R2 equal to 13.55, 0.49 

and 0.96, respectively. Fig. 5. 24 illustrates the analysis of the predicted saturated oil 

viscosity versus the actual data points. The top view is a crossplot and the bottom view 

demonstrates the relative error distribution plot of saturated oil viscosity. As can be seen, 

there is good agreement between the predicted and actual saturated oil viscosity data. 

Moreover, the results obtained by using the model are compared with well-known 

empirical correlations available in open literature (Al-Khafaji et al., 1987; Beggs and 

Robinson, 1975; Bergman and Sutton, 2007; Chew and Connally Jr, 1959; Elsharkawy and 

Alikhan, 1999; Hossain et al., 2005; Kartoatmodjo and Schmidt, 1994b; Khan et al., 1987; 

Labedi, 1992; Naseri et al., 2005; Petrosky, 1990).  
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Table 5. 7 Comparison of summarized statistical error factors for saturated oil viscosity, 

including AARD, RMSE and R2, for the developed model and the empirical correlation 

results from the data obtained. 

Method AARD % R2 RMSE 

Chew and Connally I (Chew and 

Connally Jr, 1959) 
29.6 0.8238 1.18 

Chew and Connally II (Chew and 

Connally Jr, 1959) 
39.6 0.7999 1.46 

Chew and Connally III (Chew and 

Connally Jr, 1959) 
Out of Range 

0 Out of Range 

Beggs and Robinson (Beggs and 

Robinson, 1975) 
31.9 0.5320 1.35 

Al-Khafaji (Al-Khafaji et al., 1987) 20.7 0.7992 1.32 

Khan et al. (Khan et al., 1987) Out of Range 
0 Out of Range 

Petrosky (Petrosky, 1990) 27.3 0.7399 1.14 

Labedi (Labedi, 1992) 248.6 0.4283 3.70 

Kartoatmodjo and Schmidt 

(Kartoatmodjo and Schmidt, 1994b) 
25.7 0.7895 1.11 

Elsharkawy and Alikhan 

(Elsharkawy and Alikhan, 1999) 
24.4 0.6576 1.20 

Hossain et al. (Hossain et al., 2005) Out of Range 
0 Out of Range 

Naseri et al. (Naseri et al., 2005) 52.3 0.5672 1.38 

Bergman and Sutton (Bergman and 

Sutton, 2007) 
26.7 0.7339 1.15 

This study 
13.5 0.9660 0.49 
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Table 5. 7 summarizes the calculated AARD %, RMSE and R-squared for the model 

developed in this study along with the comparative methods studied. The table clearly 

points out that Eq. (5.10) has the highest accuracy with regard to all of the error factors 

investigated. Additionally, Fig. 5. 25 shows the AARD % analysis of all studied models, 

which confirms a low deviation result using Eq. (5.10) in comparison with the other 

methods. As a result, an increase to the pressure at bubble point leads to a reduction of 

saturated oil viscosities (Hemmati-Sarapardeh et al., 2014b). Fig. 5. 26 confirms this 

change of saturated reservoir oil viscosities. 

 

 

Fig. 5. 24 Parity diagram and relative deviation distribution plot for the developed 

saturated oil viscosity model. 
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Fig. 5. 25 Comparison between the AARD % values obtained for the determination of 

saturated oil viscosity and those obtained in the comparative methods. The AARDs 

obtained by means of the Chew and Connally III (Chew and Connally Jr, 1959), Khan et 

al. (Khan et al., 1987), and Hossain et al. (Hossain et al., 2005) methods are out of range. 

 

 

Fig. 5. 26 3D plot of change of saturated oil viscosity versus change in the pressure at 

bubble point and dead oil viscosity. 
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5.4.3. Under-Saturated Oil Viscosity 

Previously published research (Beal, 1946; Elsharkawy and Alikhan, 1999; 

Hossain et al., 2005; Kartoatmodjo and Schmidt, 1994b; Khan et al., 1987; Labedi, 1992; 

Orbey and Sandler, 1993; Petrosky, 1990; Vazquez and Beggs, 1980) recommend the 

pressure, saturated oil viscosity and bubble point pressure as the most effective reservoir 

parameters for the estimation of under-saturated oil viscosity. Therefore, these variables 

are selected as required parameters to develop a reliable model using the GEP approach. 

The final model for the determination of under-saturated reservoir oil viscosity using the 

GEP algorithm is obtained as follows: 

𝜇𝑜 =
0.01115 𝑃

𝑃𝑏 
+

1.1989×10−8   (𝑃×𝜇𝑜𝑏) 2 + 7.9372×10−4 × 𝑃×𝜇𝑜𝑏 + 10.926 𝜇𝑜𝑏

0.001 𝑃𝑏 + 10.712
                                       (5.11) 

where 𝜇𝑜 represent reservoir oil viscosity (cp), P denotes pressure (psi), Pb stands for 

pressure at bubble point (psi) and finally 𝜇𝑜𝑏 is saturated oil viscosity (cp). 

Table 5. 5 (bottom section) shows the statistical error factors calculated for the 

developed model applied to under-saturated oil viscosities. The table shows that the 

obtained AARD %, RMSE, and R2 are 1.47, 0.09 and 0.99, respectively. From these values 

of deviation it can be concluded that the model is reliable for the calculation of under-

saturated reservoir oil viscosity. Fig. 5. 27 provides crossplot and relative deviation 

distribution plots for the predicted under-saturated oil viscosities against the obtained 

data. As can be seen in the figure, the data points are almost on the line of Y=X, illustrating 

that there is agreement between the GEP-based model calculations and the actual data 

on under-saturated reservoir oil viscosities. Moreover, the low distribution of data points 

is observed in the bottom section of Fig. 5. 27.  

Additionally, comparison of the values estimated by Eq. (5.11) with the previously 

published models (Beal, 1946; Elsharkawy and Alikhan, 1999; Hossain et al., 2005; 

Kartoatmodjo and Schmidt, 1994b; Khan et al., 1987; Labedi, 1992; Orbey and Sandler, 

1993; Petrosky, 1990; Vazquez and Beggs, 1980) for the determination of under-

saturated oil viscosities, clearly shows the accuracy of the model compared to other 

comparative methods (Table 5. 8 and Fig. 5. 28).  

Finally, Fig. 5. 29 demonstrates the behaviour of the GEP-based model with 

changes of under-saturated oil viscosity against decreasing and/or increasing saturated 



140 | P a g e  
 

oil viscosity and pressure, ultimately to a pressure at bubble point. As can be seen in the 

figure, there is a smoothness for the model developed in predicting under-saturated oil 

viscosity in terms of trend analysis. 

 

Table 5. 8 Comparison of statistical error factors for under-saturated oil viscosity, 

including AARD, RMSE and R2, of the new model and the empirical correlation results 

from data. 

Method AARD % R2 RMSE 

Beal (Beal, 1946) 1.8 
0.9978 

0.133 

Vazquez and Beggs (Vazquez and 

Beggs, 1980) 

5.2 

0.9713 

0.575 

Khan et al. (Khan et al., 1987) 3.2 
0.9881 

0.298 

Petrosky (Petrosky, 1990) 6.7 
0.8301 

0.940 

Labedi (Labedi, 1992) 1078.4 
0.0969 

43.557 

Orbey and Sandler (Orbey and 

Sandler, 1993) 

1.9 

0.9624 

0.495 

Kartoatmodjo and Schmidt 

(Kartoatmodjo and Schmidt, 1994b) 

3.6 

0.9986 

0.107 

Elsharkawy and Alikhan 

(Elsharkawy and Alikhan, 1999) 

1.8 

0.9372 

0.618 

Hossain et al. (Hossain et al., 2005) 4.7 
0.9948 

0.225 

This study 1.4 0.9990 0.09 
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Fig. 5. 27 Parity diagram and relative deviation distribution plot for the developed 

under-saturated oil viscosity model. 

 

 

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pr
ed

ic
te

d/
C

al
cu

la
te

d 
U

nd
er

-S
at

ur
at

ed
 O

il 
Vi

sc
os

ity
 (c

P)

Experimental Under-Saturated Oil Viscosity (cP)

Training Set
Testing Set
Unit Slope Line

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30

R
el

at
iv

e 
D

ev
ia

tio
n,

 %

Experimental Under-Saturated Oil Viscosity (cP)

Training Set

Testing Set



142 | P a g e  
 

 

Fig. 5. 28 Comparison of the AARD % values obtained for the determination of under-

saturated oil viscosity with comparative methods; the obtained AARD % for Labedi 

(Labedi, 1992) method is 1078.4 %. 

 

  

Fig. 5. 29 3D plot of change of under-saturated oil viscosity versus change in pressure 

up to the pressure at bubble point and saturated oil viscosity. 
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5.4.4. Identification of Outlier Data Points 

Normally, there are some outlier data points in databases associated with dead, 

saturated and under-saturated reservoir oil viscosities. The resulting uncertainties in 

experimental data may lead to a high deviation in predicting the reservoir oil viscosities. 

Accordingly, the Leverage value statistics technique is employed in this study for 

detecting outlier data points available in the reservoir oil viscosities databanks (Goodall, 

1993; Gramatica, 2007). As a consequence, the Williams plot in the Leverage analysis is 

implemented to show outlier data points on the basis of the H values calculated 

(Mohammadi et al., 2012a; Mohammadi et al., 2012c).  

Figs. 5. 30-32 demonstrates the Williams plots for the calculated values of dead, 

saturated, and under-saturated reservoir oil viscosities applying the GEP-based models. 

It is evident from the figures that the majority of data points are in the ranges 0 H 

0.08035 and -3R for the dead oil viscosity model, 0 H 0.02233 and -3Rfor the 

saturated oil viscosity, and 0 H0.02298 and -3Rfor the under-saturated oil viscosity. 

This confirms that the equations presented in this study are statistically valid and correct 

in calculating those viscosities. In addition, Figs. 5. 30-32 illustrates that there are only 

three data points for the developed dead oil viscosity model, five data points for the 

developed saturated oil viscosity, and finally, eight data points for the developed under-

saturated oil viscosity, which is outside the applicability domain of the GEP-based models 

and are therefore probably accounted as outliers whose values may be doubtful. 
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Fig. 5. 30 Detection of outlier data points existing in the dead oil viscosity dataset during 

development of the model using the Leverage approach. 

 

Fig. 5. 31 Detection of outlier data points existing in the saturated oil viscosity dataset 

during development of the model using the Leverage approach. 
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Fig. 5. 32 Detection of outlier data points existing in the under-saturated oil viscosity 

dataset during development of the model using the Leverage approach. 

 

 

5.5. New Equation for Solution Gas–Oil Ratio 

5.5.1. Development of the New Model 

The key aim of the present study is to propose a comprehensive, accurate and 

reliable model for the determination of solution GOR using data collected from various 

crudes worldwide. To this end, the LINGO methodology (LINGO-Softwate, 2011) is used 

for pursuing our objective. Basically, the technique is an interactive linear and discrete 

tuning tool. As a result, the methodology has been utilized in mathematics, science, and 

industry, and employed to solve computer problems mathematically (Carvalho et al., 

2012; Chuang et al., 2012; Vidal et al., 2007). Furthermore, quadratic programming, as 
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(Arabloo et al., 2014). As a result, the LINGO methodology can solve root and algebraic 
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It should be mentioned that the LINGO software includes a number of common 

mathematical functions within the programming language useful for finding/solving 

programming problems (Miao, 2011). In this study, the LINGO methodology is used to 

develop a reliable model to determine the solution GOR as a function of reservoir fluid 

properties, including bubble point/saturation pressure, reservoir temperature, and gas 

gravity, as well as oil gravity (API) as follows: 

 

𝑅𝑠 = 𝑓(𝛾𝑔, 𝑇𝑅 , 𝐴𝑃𝐼, 𝑃𝑏)                                                                                                                              (5.12)  

In the development of the model, the databank collected was separated into two 

sets of data, viz. the training and test sets. Approximately 80% of entire the databank was 

used in the development of the model (training set), and the rest (20%) was assigned to 

the test set for checking the model and evaluating its accuracy, performance, and 

capability. To measure the accuracy of the model, the average absolute relative deviation 

(AARD) is selected as an objective function. Finally, a simple form of equation with four 

easy functions including ×, +, −,/ was obtained as follows: 

 

𝑅𝑠 = 𝐴 + 𝐵 − 15.849                                                                                                                                   (5.13) 

𝐴 = 0.14624 𝑃𝑏  −  0.14624 𝐴𝑃𝐼 +
802.44

𝑃𝑏
+

(2.7277 𝑃𝑏  −  𝐴𝑃𝐼 𝑇𝑅  +  2715.5)2

(𝐴𝑃𝐼 −  995.53)2
                  (5.14) 

𝐵 = (0.0064332 𝑃𝑏  +  0.0064332 𝐴𝑃𝐼 𝛾𝑔) × (𝐴𝑃𝐼 𝛾𝑔  −  14.811)                                               (5.15) 

where Pb denotes the bubble point pressure (psi), API stands for oil API gravity, TR 

denotes the reservoir temperature (°F), and γg is gas specific gravity. 

 

5.5.2. Performance Evaluation 

A graphical statistical error analysis was conducted to evaluate the performance of 

the method over a wide range of the reservoir fluid properties, and to compare the results 

obtained using the model against the most widely used empirically derived correlations. 

Hence, AARD, root mean square error, and average relative percent error (ARPE) were 

considered as statistical error parameters, and a parity diagram or scatter plot, as well as 
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a relative distribution error curve, are used as two illustrations to evaluate the 

performance of the method proposed to estimate the solution GORs. The results of the 

error analysis are summarized in Table 5. 9.  

The results in the table indicate that the model has acceptable accuracy with respect 

to the large number of data points and the wide range of reservoir fluid properties 

employed in its development. The AARD value reported for the model is 19.83%. The 

value indicates that the method output values are in agreement with the corresponding 

experimental records of the solution GOR. Furthermore, the calculated APRE and RMSE 

values are 1.73% and 203.05, respectively. 

 

Table 5. 9 Error analysis performed for the proposed model and comparable methods 

investigated in this study. 

 

 

To assess the performance of the proposed model, a scatter diagram, as well as a 

relative distribution error plot of values estimated, using Eq. (5.13), were plotted. Fig. 5. 

33 shows on a parity diagram a comparison of values estimated by the model versus 

Method AARD, % APRE, % RMSE 

Glaso (Glaso, 1980) 79.25    32.37 468.33 
Petrosky and Farshad (Petrosky Jr and 
Farshad, 1993) 62.70 -48.16 217.38 
Kartoatmodjo  and Schmidt 
(Kartoatmodjo and Schmidt, 1994c) 57.80 -48.15 395.93 

Standing (Standing, 1947b) 47.84 -38.61 312.88 

Farshad et al. (Frashad et al., 1996) 43.07 -28.87 267.08 
Vazquez and Beggs (Vazquez and 
Beggs, 1980) 42.29 -31.99 389.08 

Al-Marhoun (Al-Marhoun, 1988) 42.01 -21.28 348.17 
Dindoruk and Christman (Dindoruk 
and Christman, 2004) 36.89 -13.78 254.27 
Macary and El-Batanony (Macary and 
El-Batanoney, 1993) 36.54 1.40 238.87 

Al-Shammasi (Al-Shammasi, 1999) 32.95 -16.72 242.81 

Baniasadi et al. (Baniasadi et al., 2015) 23.15 2.29 197.39 

This study 19.83 1.73 203.05 
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experimental values of solution GOR. It is clear from the figure that the estimated GOR 

values approximate the experimental values, resulting in data clustered around the parity 

line. This shows the capability of the new model in predicting more than 1000 data values 

for solution GOR.  

Another graphical comparison is shown in Fig. 5. 34, which illustrates the 

calculated average relative percent error between the model and the experimental data 

for solution GOR. As can be seen in the figure, that the relative errors for the estimated 

data are clustered around the zero line. This demonstrates that there is acceptable 

agreement between the model predictions and experimental data for solution GOR. Fig. 

5. 35 shows the plot of the predicted values against experimental data for the solution 

GOR with respect to the sorted data index. 

 

 

Fig. 5. 33 Scatter diagram of the predicted solution gas-oil ratio values versus the 

experimental records. 
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Fig. 5. 34 Relative error distribution plot of the predicted solution gas-oil ratio values 

versus the experimental records. 

 

Fig. 5. 35 A fitting curve, as a sorted data index, for the predicted solution gas-oil ratio 

values versus the experimental records. 
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In order to evaluate the performance of the method in predicting solution GOR data, 

a comparative analysis was undertaken between the model developed in this study and 

widely-used empirically derived methods including the Farshad et al. method (Frashad 

et al., 1996), Macary and El-Batanony method (Macary and El-Batanoney, 1993), Petrosky 

and Farshad method (Petrosky Jr and Farshad, 1993), Vazquez and Beggs method 

(Vazquez and Beggs, 1980), Al-Marhoun method (Al-Marhoun, 1988), Kartoatmodjo and 

Schmidt method (Kartoatmodjo and Schmidt, 1994c), Al-Shammasi method (Al-

Shammasi, 1999), Standing method (Standing, 1947b), Glaso (Glaso, 1980), Baniasadi et al. 

method (Baniasadi et al., 2015), and the Dindoruk and Christman method (Dindoruk and 

Christman, 2004). Table 5. 9 reports on the statistical results obtained from the 

comparisons.  

The table shows that the new model performs better for the calculation of solution 

GOR. Fig. 5. 36 illustrates the calculated AARD for the model and the comparative 

methods. From Table 5. 9 and Fig. 5. 36, it can be concluded that the methods of 

Baniasadi et al. (Baniasadi et al., 2015), Al-Shammasi  (Al-Shammasi, 1999), Macary and 

El-Batanony (Macary and El-Batanoney, 1993), Dindoruk and Christman (Dindoruk and 

Christman, 2004), and Al-Marhoun (Al-Marhoun, 1988) are, after the method proposed 

in this study, the most accurate for the calculation of solution GOR with AARD values of 

23.15, 32.95, 36.54, 36.89, and 42.01%, respectively. 

 

Fig. 5. 36 Graphical comparison of the developed model against the comparative 

methods studied in terms of the statistical error parameter of AARD. 
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Table 5. 10 lists some random data points selected from the databank, and Table 

5. 11 summarizes the estimated values for the data points presented in Table 5. 10 using 

both the method developed and the above-mentioned empirical methods. Table 5. 11 

also confirms superior performance of the new model over the empirical methods to 

which it was compared. 

 

Table 5. 10 Records of some data points existing in the databank compiled in this study. 

Data Index Pb γg API TR Rsi 

1 2082.77 0.756 7.5 153.5 208.7 

2 2076.97 0.815 10.5 152.6 260.0 

3 554.99 0.68 12 74.9 52.4 

4 599.98 0.74 14.8 82.8 68.0 

5 825.28 1.411 19.4 172.4 177.8 

6 3199.97 0.75 20.9 110.5 556.2 

7 285 0.74 23 114.8 32.5 

8 430.04 1.04 25 99.4 95.5 

9 1499.98 0.64 27 107.7 239.9 

10 909.97 0.67 30 88.25 171.8 

11 3057 0.778 32 175 679.0 

12 400.01 0.8 34 71.6 76.6 

13 2775.01 0.823 35.7 140.5 689.4 

14 1340 0.8 36.3 87.8 313.4 

15 1415 1.2468 37.2 248 486.0 

16 5760.99 0.924 40.1 302 1760.6 

17 1153.05 0.85 40.4 105.5 299.6 

18 2221 0.693 45.3 238 547.0 

19 1386.97 0.763 46.5 116.03 367.6 

20 1962.07 0.78 52.5 138.25 636.7 

21 1170.47 0.649 56.8 140.7 300.9 
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Table 5. 11 A point-to-point comparison between the results obtained and comparative 

methods, as applied to the experimental records reported in Table 5. 10. 

Data 
Index 

This 
Study ARD% Baniasadi ARD% 

D& 
Christman ARD% 

Al-
Marhoun ARD% Macary ARD% 

Al-
Shamasi ARD% 

1 219.0 4.9 102.8 50.8 291.9 39.9 194.7 6.7 288.9 38.4 199.0 4.6 

2 250.2 3.8 150.2 42.2 323.3 24.4 260.2 0.1 310.8 19.5 236.7 9.0 

3 52.4 0.0 39.5 28.5 78.5 42.3 35.6 35.5 64.2 42.3 43.6 3.4 

4 66.1 2.9 57.7 15.2 92.7 36.3 50.8 25.4 75.5 36.0 59.4 6.9 

5 174.6 1.8 36.5 6.5 91.1 133.6 40.2 3.0 40.0 2.5 28.5 27.0 

6 555.0 0.2 38.9 22.5 53.7 69.0 20.2 36.4 44.3 70.9 27.4 5.9 

7 30.3 6.6 170.0 17.6 167.8 18.7 142.0 31.2 161.5 4.1 170.4 1.2 

8 80.2 16.1 669.0 12.1 631.0 17.1 856.4 12.5 1107.4 78.3 900.9 45.0 

9 240.4 0.2 241.8 0.8 184.0 23.3 163.4 31.9 233.7 19.4 264.7 35.2 

10 152.3 11.3 167.3 2.6 123.2 28.3 106.1 38.2 132.3 5.6 163.9 16.9 

11 658.8 3.0 776.1 10.2 729.1 3.5 996.8 41.5 1094.5 90.4 1064.8 85.2 

12 75.8 1.1 324.2 5.2 257.2 24.7 364.2 6.5 265.4 4.9 366.0 31.2 

13 678.0 1.6 749.8 23.6 653.9 7.8 665.6 9.7 909.5 83.7 967.1 95.3 

14 311.7 0.5 331.2 5.7 250.8 20.0 344.2 9.8 252.9 1.1 362.2 41.6 

15 490.7 1.0 366.7 3.8 404.7 6.2 591.2 55.2 200.3 47.4 356.3 6.5 

16 1694.3 3.8 473.4 0.4 376.5 20.2 595.1 26.2 369.2 4.1 546.3 41.9 

17 299.5 0.0 616.6 22.1 492.0 37.8 510.4 35.5 535.7 32.3 692.3 12.5 

18 547.4 0.1 633.3 0.1 461.5 27.2 440.4 30.5 493.2 22.2 702.5 10.8 

19 371.2 1.0 426.7 16.1 265.6 27.8 376.6 2.5 290.3 3.2 487.6 62.5 

20 601.4 5.5 690.7 8.5 478.9 24.8 699.1 9.8 526.9 1.4 889.1 71.1 

21 323.9 7.6 400.1 33.0 177.6 41.0 230.1 23.5 240.0 20.2 497.8 65.4 

 

 

5.5.3. Influence of the Reservoir Fluid Properties on Solution GOR 

As pointed out earlier, reservoirs containing light oils have more dissolved gases 

than reservoir with heavy oils. Therefore, it would be interesting to determine the 

accuracy of the model developed for various ranges of oil API gravity. To this end, the 

capability of the model presented in this study for estimating the solution GOR was 

scrutinized across the spectrum of the light to heavy oils. The solution GORs estimated by 

the proposed model were partitioned into four classes of oil API gravities, viz. 6-15, 15-

25, 25-35, and 35-56.8°. The results of analysis in terms of the calculated AARD values is 

shown in Fig. 5. 37. As can be seen in the figure, the model errors for the estimation of 

solution GORs of light oils is less than that for heavy oils. It can therefore be concluded 

that the model developed in this study is more accurate for the measurement of crudes 

with higher values of oil API gravity.  
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To further investigate the influence of reservoir fluid properties, including 

saturation pressure, reservoir temperature, gas specific gravity, and oil API gravity, a 

sensitivity analysis was performed using the relevancy factor approach. Fig. 5. 38 shows 

the results of sensitivity analysis. The figure indicates that bubble point pressure and gas 

specific gravity have the largest and smallest influences, respectively, on the solution GOR 

values predicted by the model. 

 

Fig. 5. 37 Accuracy of the model developed in this study in different API ranges. 
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Fig. 5. 38 Degree of importance for each input parameter for the prediction of solution 

gas-oil ratio. 

5.5.4. Detection of Outlier Solution GOR Data Points 

The detection of outlier data points that exist in a databank used to develop a 

predictive model is important in order to determine the applicability domain of the 

model. To this end, the Leverage methodology (Gharagheizi et al., 2012a; Mohammadi et 

al., 2012c; Rousseeuw and Leroy, 2005) is utilized in this study to identify outlier data 

points in the solution GOR databank that was compiled. Detailed information on the 

Leverage methodology in terms of mathematical equations, as well as a step-by-step 

procedure is reported elsewhere (Gharagheizi et al., 2012a; Mohammadi et al., 2012c).  

The Williams diagram is sketched to show the applicability domain of the 

proposed method. The existence of a majority of solution GOR data in the domain 0 H 

0.1428 and -3Standardized Residuals  demonstrates that the method is statistically 

valid. The data points which are located in the domain range -3Standardized Residuals 

 are recognized as valid solution GOR data, and data which are outside the range are 

considered as outliers. The results show that only 26 data points in the solution GOR 

databank (among more than 1000 data points) were identified as outlier data points (Fig. 

5. 39). 
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Fig. 5. 39 Plot of the Leverage analysis for the recognition of outlier data points. 

 

5.6. Intelligent Model Development for Asphatene Precipitation 

In this study, three reliable models have been proposed to predict the amount of 

asphaltene precipitated from a crude oil extracted from Iranian reservoirs. To this end, 

the asphaltene precipitation model is based on the solvent to oil dilution ratio, 

temperature, and solvent molecular weight. As mentioned earlier, the LSSVM modeling 

approach has two adjustable parameters including γ and σ2 which should be optimized 

through an external optimization methodology.  

In this study, a coupled simulated annealing (Atiqullah and Rao, 1993; Fabian, 

1997; Vasan and Raju, 2009) was employed for obtaining the optimum values of the 

LSSVM parameters. As a result, the values adjusted by the CSA approach for the LSSVM 

developed to predict asphaltene precipitation are 1.0465 and 927850.8749 for σ2 and γ, 
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To develop a DT model, we used the available MATLAB codes related to the 

regression DT approach. In the regression DT approach, the Y variable takes ordered 

values and a regression model is fitted to each node to give the predicted values of Y (Loh, 

2011). 

To propose the GEP-based model, we applied one gene with 30 chromosomes, and 

an average absolute relative deviation was utilized as an accuracy function. The head size 

is equal to 7 and a function set including *, /, – and + is selected while applying the GEP 

methodology. To achieve a highly accurate and capable model, the stop condition of the 

algorithm was set on maximum generation with a best number of 72 thousands. The final 

model obtained by the GEP algorithm is simple-to-use with the lowest possible 

coefficients as follows: 

𝑊𝑡 =
−0.9048 𝑅𝑣  (𝑀 −  188.76)

6.1211 𝑅𝑣  +  𝑇 +  33.302
                                                                                                           (5.16) 

where Wt denotes the amount of asphaltene precipitated (wt. %), M stands for the solvent 

molecular weight, T expresses the temperature (°C), and finally, Rv is the solvent to oil 

dilution ratio (mL/g). 

Furthermore, the AARD error parameter was applied to compare the results 

obtained by these models with those of the artificial neural network model proposed by 

Ashoori et al. (Ashoori et al., 2010) as well as the scaling equation, and asphaltene scaling 

equations presented by Hu et. al (Hu and Guo, 2001) and Rassamdana et al. (Rassamdana 

et al., 1996). Fig.5. 40 illustrates the comparison of AARD calculated for all models 

developed in this study (i.e. the LSSVM, DT and GEP-based models) as well as the ANN 

modeling approach, and three asphaltene scaling equations proposed by Ashoori et al. 

(Ashoori et al., 2010), Hu et. al (Hu and Guo, 2001), and Rassamdana et al. (Rassamdana 

et al., 1996). The ANN model includes three layers of input, output, and hidden layers with 

10 hidden neuron numbers. 

In order to compare all models investigated in this study, two panels, namely, smart 

techniques and symbolic equations, should be considered. In the smart techniques panel, 

the LSSVM model shows the highest accuracy in comparison with the DT and ANN 

models. The AARD reported for the LSSVM model is 3 %, while AARDs calculated for the 

ANN and DT models are 5 and 11%, respectively. In the other panel, the equation 
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developed based on the GEP approach is more accurate than the scaling equations 

proposed by Ashoori et al. (Ashoori et al., 2010), Hu et. al (Hu and Guo, 2001), and 

Rassamdana et al. (Rassamdana et al., 1996). The AARD calculated for methods 

mentioned above are 8.5, 10.9, 17.3, and 17.9, respectively. 

 

 

Fig. 5. 40 AARD calculated by means of the developed model and the comparative 

methods. 

 

To show the capability performance of the models investigated in this study, a 

graphical analysis, using a parity diagram or crossplot and relative error distribution plot 

has been performed. To this end, the four most accurate methods investigated (e.i. the 

LSSVM, ANN, DT, and GEP-based models) in predicting the asphaltene precipitation have 

been considered. Fig. 5. 41 provides the crossplots for four methods mentioned above. It 

is clear from the figure that the distribution of data points predicted by the LSSVM model, 

around the unit slope line, is lower than from the other methods. In other words, the R-

squared error obtained by the LSSVM model is higher than from the ANN, DT, and GEP-
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based models. Fig. 5. 42 illustrates the relative error distribution plots for the LSSVM, 

ANN, DT, and GEP-based models. The figure clearly shows that the distribution of relative 

error around Y=0 (zero error) is lower than that from the other methods. 

To show the smoothness performance of the models mentioned above, a trend 

analysis is undertaken of the asphaltene precipitation versus solvent to oil dilution ratio 

data at various temperatures for n-pentane, n-hexane, and n-heptane solvents. Figs. 5. 

43-45 indicate the trend plot of asphaltene precipitation changes versus the dilution 

ratio at a temperature of 30 °C for n-pentane, n-hexane, and n-heptane solvents, 

respectively. Furthermore, Figs. 5. 46-48 illustrates the changes of asphaltene 

precipitation versus solvent to oil dilution ratio at temperature of 50 °C for n-pentane, n-

hexane, and n-heptane solvents, respectively. Finally, Figs. 5. 49-51 show the changes of 

asphaltene precipitation at 70 °C.  

It is clear from the figures that the data points related to the LSSVM model are 

matched more closely with the experimental values than are the other models’. This 

shows that the LSSVM model is more capable for the prediction of asphalte precipitation 

as a function of temperature, solvent to oil dilution ration and solvent molecular weight. 

Additionally, the model proposed by the LSSVM approach has only two adjustable 

parameter, while the other methods require more parameters.  A high number of 

adjustable parameters can increase the error of a model. The results obtained in this 

study confirm that the model is more appropriate for the prediction of targets in the 

petroleum industry, and also for the simulation of heavy organics precipitation such as 

asphaltene. 
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Fig. 5. 41 Crossplots for the different methods investigated in this study with respect to 

R-squared error. 
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Fig. 5. 42 Relative error distribution analysis of the different methods investigated in 

this study. 

 

 

 

 

 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

R
e

la
ti

ve
 D

e
vi

at
io

n
 (

%
)

Reported Asphaltene Precipitated (wt %)

LSSVM

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12

R
e

la
ti

ve
 D

e
vi

at
io

n
 (

%
)

Reported Asphaltene Precipitated (wt %)

ANN

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12

R
e

la
ti

ve
 D

e
vi

at
io

n
 (

%
)

Reported Asphaltene Precipitated (wt %)

GEP

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12

R
e

la
ti

ve
 D

e
vi

at
io

n
 (

%
)

Reported Asphaltene Precipitated (wt %)

DT



161 | P a g e  
 

 

Fig. 5. 43 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 30 °C for n-C5 solvent. 

 

Fig. 5. 44 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 30 °C for n-C6 solvent. 

 

Fig. 5. 45 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 30 °C for n-C7 solvent. 
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Fig. 5. 46 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 50 °C for n-C5 solvent. 

 

Fig. 5. 47 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 50 °C for n-C6 solvent. 

 

Fig. 5. 48 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 50 °C for n-C7 solvent. 
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Fig. 5. 49 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 70 °C for n-C5 solvent. 

 

Fig. 5. 50 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 70 °C for n-C6 solvent. 

 

Fig. 5. 51 Trend plot of asphaltene precipitation changes versus dilution ratio at 

temperature of 70 °C for n-C7 solvent. 
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Classification of crude oil by solubility is the most relevant to asphaltene 

association and solubility modeling. There are four major solubility fractions: saturates 

aromatics, resins, and asphaltenes (SARA). The input divided into two classes: saturate + 

asphaltene and resin + aromatic, and consequently output divided into three modes: 

severe, mild, and no/minor problems. To classify the asphaltene stability, the DT and 

ANFIS approaches have been employed in this study. Furthermore, the results obtained 

by the mentioned approaches are compared with the output of LSSVM algorithm 

(Chamkalani, 2015). Our conclusions elucidate that the proposed models can be 

implemented for asphaltene stability determination. The detailed results regarding the 

classification of asphaltene stability have been presented in Appendix G. 

 

5.7. Model Development for Wax Disappearance Temperature 

In order to develop an accurate and rapid predictive model for the determination of wax 

disappearance temperature, two input variables have been considered according to the 

existing thermodynamics methods, namely, molar mass and pressure.  

A comprehensive database is first required in order to develop models for the 

evaluation of WDT. The database is randomly divided into two sets consisting of the 

“Training” set and the “Test” set. About eighty percent (203 data points) of the main data 

set was randomly separated for the “Training” set and the rest, twenty percent (51 data 

points), has been used to test the models developed by means of the ANN, LSSVM, and DT 

approaches. In this study, several statistical error parameters have been used through a 

comprehensive error analysis in order to visualize the accuracy and performance 

capability of the developed models for the determination of wax disappearance 

temperature. The statistical error parameters implemented in this study are squared 

correlation coefficient, average absolute percent relative error, average absolute percent 

relative error, standard deviation errors, and root mean square errors. In addition to the 

statistical error analysis, a graphical analysis was conducted consisting of a scatter plot 

(crossplot) and a relative error distribution. 

For the ANN approach model, the tanh-axon was used as the transfer function, and 

Levenberg–Marquardt back propagation was employed for training the model on the 

basis of an ANN algorithm. As a result, the number of hidden neurons in the hidden layer 
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should be optimized using a trial and error method. The development of the most 

accurate ANN model was optimized by using 5 hidden neurons by means of AAPRE, R2, 

and RMSE. In other words, the ANN model includes three layers of input, output, and 

hidden with 5 hidden neuron numbers. In the next stage, the LSSVM algorithm was 

coupled with an optimization strategy known as coupled simulated annealing (Atiqullah 

and Rao, 1993; Fabian, 1997; Vasan and Raju, 2009) for obtaining the optimum values of 

the LSSVM parameters (γ and σ2). As a result, the values obtained by means of the CSA-

LSSVM model for the prediction of wax disappearance temperature are 40.8325 and 

2138.4288 for σ2 and γ, respectively. Finally, the regression DT toolbox available in the 

MATLAB software was used to develop a predictive model for comparing the predicted 

values with the other methods. 

Table 5. 12 lists the calculated statistical error factors for the models developed 

on the basis of ANN, LSSVM, and regression DT approaches for the prediction of wax 

disappearance temperature. Regarding the table, similar results are achieved from the 

use of the ANN and LSSVM models. The AAPRE and R2 for ANN and LSSVM models are 

0.6% and 0.95, respectively, while the regression DT model has provided better results. 

The statistical error analysis for the regression DT model shows an AAPRE=0.3 and 

R2=0.97. The above results clearly indicate that the regression DT method is the most 

capable for the prediction of wax disappearance temperature with respect to the 

database collected in this study. To compare the performance of the models graphically, 

a scatter diagram as well as a relative error distribution plot were sketched. 

 

Table 5. 12 Statistic error parameters calculated for the models developed in this study. 

Method AAPREa % APREb % SDc RMSEd R² e 

ANN Model 0.6 0.017 0.004 2.2 0.95 

LSSVM Model 0.6 -0.040 0.004 2.2 0.95 

DT Model 0.3 -0.002 0.003 1.5 0.97 

 

Table 5. 13 lists some predicted values of wax disappearance temperature data 

by the ANN, LSSVM and DT modelling approaches. Fig. 5. 52 illustrates the experimental 
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data of WDT against the output values obtained from ANN, LSSVM, and regression DT 

models. As is clear from the Fig. 5. 52, all data corresponding to ANN, LSSVM, and 

regression DT models are almost placed on the unit slope line (Y=X), revealing that there 

is acceptable agreement between the model predictions and the experimental data of wax 

disappearance temperature. Additionally, Fig. 5. 53 reveals the relative error 

distribution plots for the ANN, LSSVM, and regression DT models for the prediction of 

wax disappearance temperature. Regarding the Fig. 5. 53, the output values of all models 

developed in this study have a low scatter around the zero error line, and a small range 

of error has been observed through the prediction of wax disappearance temperature by 

using ANN, LSSVM, and regression DT approaches. The results clearly show that 

intelligent approaches such as ANN, LSSVM, and DT can be applied as an alternative to 

thermodynamic methods for the evaluation of phase behavior of wax deposition. 

Finally, we selected the results obtained by the regression DT model (because they 

provided the most accurate prediction the WDT) to find the effects of molar mass and 

pressure on the predicted WDT values. To conduct such a sensitivity analysis, the 

relevancy factor (r) approach (Chen et al., 2014) is applied for assessing the influence 

degree of each input variable (i.e. molar mass and pressure) on the wax disappearance 

temperature. The result of the sensitivity analysis performed is indicated in Fig. 5. 54.  It 

is clear from the figure that molar mass and pressure have positive effects on the WDT 

values predicted by the regression DT model. The results indicate that the molar mass 

has higher impact on the WDT predicted by the regression DT model compared to the 

pressure variable. The reported relevancy factor for molar mass and pressure are 0.70 

and 0.33, respectively. 
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Table 5. 13 Summary of some correlated wax disappearance temperature values 

provided by the models developed in this study in comparison with the experimental 

data. 

P(MPa) M(g/mol) WDT (K) ANN AAPRE LSSVM AAPRE2 DT AAPRE3 

0.1 199.4 277.4 276.2 0.4 276.1 0.5 277.8 0.1 

0.1 199.75 277.1 276.4 0.3 276.3 0.3 276.6 0.2 

0.1 200.1 276.2 276.5 0.1 276.4 0.1 276.6 0.2 

0.1 205 278.7 278.6 0.0 278.7 0.0 277.9 0.3 

0.1 208.5 280.8 280.2 0.2 280.3 0.2 279.4 0.5 

0.1 212 283.2 281.8 0.5 281.9 0.5 282.2 0.4 

20 200.1 280.6 281.2 0.2 281.1 0.2 281.1 0.2 

20 200.8 280.9 281.5 0.2 281.4 0.2 281.1 0.1 

20 201.5 281.2 281.8 0.2 281.7 0.2 281.1 0.0 

20 205 283 283.5 0.2 283.4 0.1 282.2 0.3 

20 208.5 285.2 285.1 0.0 285.0 0.1 284.7 0.2 

40 200.8 285.1 285.7 0.2 286.0 0.3 285.3 0.1 

40 201.5 285.3 286.1 0.3 286.3 0.3 285.3 0.0 

40 205 287.3 287.8 0.2 288.0 0.2 286.0 0.5 

40 208.5 289.5 289.5 0.0 289.6 0.0 288.8 0.2 

40 212 291.9 291.2 0.2 291.3 0.2 293.3 0.5 

60 200.1 288.8 289.5 0.2 290.0 0.4 289.3 0.2 

60 200.8 289.1 289.8 0.2 290.3 0.4 289.3 0.1 

60 201.5 289.4 290.1 0.3 290.7 0.4 289.3 0.0 

60 205 291.3 291.8 0.2 292.4 0.4 290.0 0.5 

60 208.5 293.5 293.6 0.0 294.1 0.2 292.8 0.3 

60 212 296.2 295.3 0.3 295.7 0.2 296.9 0.2 

80 200.1 292.7 293.5 0.3 294.0 0.5 293.7 0.3 

80 200.8 292.9 293.8 0.3 294.4 0.5 293.7 0.3 

80 201.5 293.2 294.1 0.3 294.8 0.5 293.7 0.2 

80 205 295.1 295.8 0.2 296.5 0.5 293.0 0.7 

80 208.5 297.4 297.5 0.0 298.2 0.3 296.6 0.3 

100 199.75 298.9 297.2 0.6 297.6 0.4 297.8 0.4 

100 200.1 296.3 297.4 0.4 297.8 0.5 297.8 0.5 

100 200.8 296.7 297.7 0.3 298.1 0.5 297.8 0.4 

100 201.5 296.9 298.0 0.4 298.5 0.5 297.8 0.3 

100 205 298.8 299.7 0.3 300.3 0.5 296.6 0.7 
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Fig. 5. 52 Crossplots for the models developed in this study. 
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Fig. 5. 53 Relative deviation distribution plots for the models developed in this study. 
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Fig. 5. 54 The result of sensitivity analysis conducted to find the impact of molar mass 

and pressure variables on the WDT predicted by the regression DT model. 

 

5.8. Intelligent Model Development for Hydrocarbon–plus (C7+) 

Properties 
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DT approaches.  

In this study, two important statistical error parameters have been used to 

conduct a comprehensive error analysis in order to demonstrate the accuracy and 
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To ensure a reliable ANN model, the tanh-axon was considered as a transfer 

function, and the Levenberg–Marquardt back propagation was employed for training the 

model developed on the basis of the ANN algorithm. As a result, the number of hidden 

neurons in hidden layer should be optimized using a trial and error method. An ANN 

model was developed using 10 hidden neurons relating to AARD and R2. In other words, 

the ANN model includes three layers of input, output, and hidden layers with 10 hidden 

neuron numbers. In the next stage, the LSSVM algorithm was coupled with an 

optimization strategy known as coupled simulated annealing (Atiqullah and Rao, 1993; 

Fabian, 1997; Vasan and Raju, 2009) in order to obtain the optimum values of the LSSVM 

parameters (γ and σ2). 

The values produced by means of the CSA-LSSVM model for the prediction of the 

distributed properties of heptane-plus components are σ2=0.521696 and γ=6020.4 for 

the boiling point model; σ2=5.342234 and γ=126813.9 for the specific gravity model; 

andσ2= 414.181743 and γ= 1.2 for the molecular weight model. Finally, the regression DT 

toolbox available in the MATLAB software was used to develop a predictive model for 

comparing the predicted values with the other methods. 

Three GEP-based models for the distributed properties (ie. molecular weight, 

specific gravity, and boiling point temperature), were proposed by applying one gene 

with 30 chromosome for each model, and  an average absolute relative deviation was 

utilized as the accuracy function. Furthermore, a function set including power, cube root, 

*, /, – and + is selected during the GEP methodology. The final models obtained by the 

GEP algorithm developed in this study are simple-to-use with the lowest possible 

coefficients as follows: 

a) Molecular weight. 

𝑀𝑊 = (𝐶𝑋𝑤
2 + 𝐶𝑋𝑤

1
3) (𝑀𝑊𝑏 −

1

𝑆𝐺𝑏
12.1871 + 11.37)                                           (5.17) 

 

b) Specific gravity. 
 

𝑆𝐺 = (
1

(
17.064 𝑆𝐺𝑏

𝐶𝑋𝑤
2 )

(
8.575

𝑀𝑊𝑏+𝑆𝐺𝑏
)
)                                                                                              (5.18) 



172 | P a g e  
 

 

c)  Boiling point temperature. 

𝑇𝑏 = 𝑀𝑊𝑏 + 3.9123 𝐶𝑋𝑤 𝑀𝑊𝑏 + 396.29 +
𝐶𝑋𝑤

𝑆𝐺𝑏
                                                          (5.19) 

where MW, SG, and Tb shows the distributed properties (ie. molecular weight (g/mole), 

specific gravity, and boiling point temperature (°R), respectively). MWb expresses the 

bulk molecular weight (g/mole), SGb stands for the bulk specific gravity, and CXw is the 

cumulative weight fraction. 

Table 5. 14 summarizes the calculated statistical error factors for the models 

developed on the basis of ANN, LSSVM, GEP and regression DT approaches for the 

prediction of distributed properties (ie. molecular weight, specific gravity, and boiling 

point temperature). It can been seen in the table that the DT modelling is superior to the 

ANN, LSSVM, and GEP methods for the prediction of all three properties studied. 

Additionally, the LSSVM model provides a more accurate prediction of boiling point 

temperature in comparison to the GEP and ANN models.  

The results indicate that the specific gravity values characterized by the GEP and 

LSSVM models are in satisfactory agreement with the actual data, while the ANN model 

could not predict the specific gravity properly. Furthermore, Table 5. 14 shows that the 

ANN, LSSVM and GEP models developed in this study approximate the same performance 

of heptane-plus data in predicting molecular weight. Fig. 5. 55 illustrates the AARD % 

calculated for the prediction of C7+ properties (ie. Tb, SG, and MW). It clearly demonstrates 

that the DT model outperforms other methods. 

Table 5. 14 Statistical error analysis for the models developed in this study. 

Parameter ANN DT LSSVM GEP 

AARD %     

Boiling temperature  3.809 1.64 3.2 4.46 

Specific gravity 11.434 0.677 1.6 2.4 

Molecular weight 11.85 5.1 10.387 12.7 

R-squared      

Boiling temperature  0.8803 0.9779 0.9139 0.8193 

Specific gravity 0.2292 0.9724 0.8362 0.7148 

Molecular weight 0.8338 0.9567 0.8649 0.8049 
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Fig. 5. 55 AARD % calculated graphically for the prediction of C7+ properties (i.e. Tb, SG, 

and MW) using the models developed in this study. 

For further comparison of the performance of these models, scatter diagrams of 

the data predicted versus actual data of C7+ properties were sketched. Figs. 5. 56-58 

illustrate the output values obtained from ANN, LSSVM, GEP and regression DT models 
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the existing distribution methods for the characterization of the heavier and complex 

components of crude oils 

  

  

 

Fig. 5. 56 Graphical comparison (crossplot) between the results obtained by the models 

developed (i.e. ANN, DT, LSSVM, and GEP) and the actual data of Tb. 
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Fig. 5. 57 Graphical comparison (crossplot) between the results obtained by the models 

developed (i.e. ANN, DT, LSSVM, and GEP) and the actual data of SG. 
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Fig. 5. 58 Graphical comparison (crossplot) between the results obtained by the models 

developed (ie. ANN, DT, LSSVM, and GEP) and the actual data of MW. 
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Fig. 5. 59 Trend plot of boiling point temperature versus cumulative weight fraction of 

the different models developed (ie. ANN, DT, LSSVM, and GEP) against the actual data. 
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classes, viz. those which relate the vaporization enthalpy to the critical properties at the 

normal boiling point temperature, and those which are a function of the S, M, and Tb. 

However, the second class, which requires S, M and Tb are more applicable  in the 

petroleum industry (Fang et al., 2003; Vetere, 1995). 

 

Fig. 5. 60 Vaporization enthalpies of petroleum fractions and pure hydrocarbons as a 

function of Tb, M, and S. 
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In view of the above issues, four LSSVM models were developed with various 

input parameters to achieve the highest accuracy in the determination of the vaporization 

enthalpies of pure hydrocarbon components and petroleum fractions. To this end, a 

statistical error analysis, in which standard deviation, average absolute relative deviation 

(AARD or Ea), average relative deviation (Er), root mean square error, and R-squared 

error (R2) are employed. A graphic error analysis is also provided, in which a crossplot is 

sketched. More details about statistical and graphical error analyses can be found 

elsewhere (Hemmati-Sarapardeh et al., 2014a; Kamari et al., 2013b; Montgomery, 2008; 

Shafiei et al., 2013; Zendehboudi et al., 2011; Zendehboudi et al., 2009).  

Table 5. 15 lists the statistical error parameters for the four LSSVMs proposed 

with the various input parameters. Furthermore, this table summarizes the optimized 

LSSVM parameters for these four models developed with various input parameters. As 

has been pointed out earlier, an efficient tuning technique is required to optimize the 

parameters of the model during the calculations for predicting the vaporization 

enthalpies of pure hydrocarbon components, as well as for petroleum fractions. The 

optimum values of the two parameters of the LSSVM model developed in this study, σ2 

and γ, were optimized and determined by implementing the coupled simulated annealing 

(CSA) (Atiqullah and Rao, 1993; Fabian, 1997; Vasan and Raju, 2009) optimization 

strategy. As seen from Table 5. 15, the LSSVM model developed for three input 

parameters which include S, M, and Tb have the highest accuracy compared to the other 

models. The total AARD and R2 for this model is 1.15514% and 0.9982, respectively. For 

the training and testing phases, the AARD and R2 values are 1.08062% and 1.45939%, 

and 0.9983 and 0.9973, respectively. Fig. 5. 61 shows the structure of the final LSSVM 

model developed with its corresponding inputs and output. 

 

Fig. 5. 61 Structure of the LSSVM model developed in this study with three input 

variables of Tb, M, and S. 
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Table 5. 15 The error parameters calculated for the model in order to determine the 

vaporization enthalpies of pure hydrocarbon components and petroleum fractions. 

Mo

del 

No. 

Inputs 

Parameters 
γ  σ2 

Eaa % Erb % SDc RMSEd R² e 

1 S and M 214.330 24.938 2.35 -0.268 0.012 1.23 0.9927 

2 Tb and M 137.759 10.452 1.96 -0.209 0.010 1.23 0.9927 

3 Tb and S 4699824.055 2275.917 1.85 -0.267 0.009 1.08 0.9944 

4 Tb, S and M 114.161 5.111 1.15 0.063 0.005 0.62 0.9982 

 

 

Fig. 5. 62 shows a point by point comparison between values obtained with the 

LSSVM model and that from literature for the vaporization enthalpy. As can be seen in 

this figure, there is satisfactory agreement between the points. A crossplot for the 

estimated vaporization enthalpy, versus reported values from literature, for both the 

training and test sub-sets of data is shown in Fig. 5. 63.  A tight grouping of points around 

the 45˚ line for the training and test datasets illustrates the capability of the new LSSVM 

model for forecasting the vaporization enthalpies of pure hydrocarbon components and 

petroleum fractions. Furthermore, Fig. 5. 64 shows the absolute relative deviation 

distributions of the suggested LSSVM model for forecasting the vaporization enthalpies 

of petroleum fractions and pure hydrocarbon components. The figure clearly illustrates 

that the LSSVM model developed in this study has low scatter/distribution around the 

zero error. From Figs. 5. 62-64 it can be concluded that there is excellent agreement 

between the forecasted values by the LSSVM approach and literature data on the 

vaporization enthalpies of pure hydrocarbon components and petroleum fractions. 

The capability of the LSSVM model for forecasting the vaporization enthalpies was 

compared with results from some widely-utilized empirical correlations, including Fang 

et al. (Fang et al., 2003), Mohammadi and Richon (Mohammadi and Richon, 2007), as well 

as Parhizgar et al. (Parhizgar et al., 2013) and an intelligent method, namely ANN 

modeling (Mohammadi and Richon, 2007). The bar plots in Fig. 5. 65 show the average 
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absolute percent relative deviations of the vaporization enthalpy for the suggested 

LSSVM model, ANN modeling and the empirically correlations. In Fig. 5. 65, the results 

display that the LSSVM model has a higher accuracy compared to other methods 

investigated. It is worth mentioning that the CSA-LSSVM model has been developed on 

the basis of only “two adjustable parameters” while other methods investigated like ANN 

methodology require more adjustable parameters for forecasting the vaporization 

enthalpies of pure hydrocarbon components and petroleum fractions. 

 

 

Fig. 5. 62 Point by point comparison between results of the LSSVM model proposed and 

the actual data for the vaporization enthalpies of pure hydrocarbon components and 

petroleum fractions. 

 

Fig. 5. 63 Scatter diagram comparing the results of the developed LSSVM model and the 

actual values of vaporization enthalpies of petroleum fractions and pure hydrocarbons. 
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Fig. 5. 64 Distribution of relative deviation of the estimated vaporization enthalpies of 

petroleum fractions and pure hydrocarbons using the LSSVM model. 

 

 

 

Fig. 5. 65 Calculated average absolute percent relative deviation for the empirically 

derived methods, ANN methodology, as well as the LSSVM model proposed. 
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From the results obtained in this study, it can be ascertained that the LSSVM 

strategy displays superior capability for modeling vaporization enthalpies of petroleum 

fractions than traditional neural networks and thus makes it a more attractive choice for 

the prediction of vaporization enthalpy of petroleum fractions. The ANN methodology 

does not perform well using small datasets due to its high number of adjustable 

parameters. Furthermore, the ANN-based models have an over-fitting problem and may 

lead to errors in the outer range of data. This indicates that they are probably not 

appropriate for extrapolation. Furthermore, the many more adjustable parameters are 

required to develop an ANN-based model than for the LSSVM methodology. The LSSVM 

methodology has only two adjustable parameters. Normally, a higher number of 

adjustable parameters causes an over-fitting problem, and decreases the capability and 

reliability of the modeling approach in solving nonlinear problems.  

The advantage of the LSSVM approach is that it does not need to use a large 

number of data points in order to optimize and achieve the best (optimal) condition for 

prediction. Other local regression methods such as neural networks have poor 

performance for prediction in the presence of a small dataset size, as pointed out earlier. 

Additionally, prior determination of the network topology is not required in the LSSVM 

approach and can be automatically determined in the training process. Moreover, the 

number of hidden nodes and hidden layers does not need to be determined in the CSA-

LSSVM model. Furthermore, this model has fewer adjustable parameters (typically two) 

compared to ANN methods. Additionally, the empirical correlations normally require an 

initial value, longer computations, and considerable effort to determine a proper 

relationship for fitting the literature/experimental values.  

However, despite its attractive benefits, the LSSVM approach has some potential 

disadvantages: 1) every data point of an existing database contributes to the model 

developed and the relative importance of a data point is given by its support value; 2) the 

second problem is that it is well known that the utilization of a sum squared error cost 

function without regularization might lead to predictions which are less robust (Suykens 

et al., 2002a). The LSSVM model developed in this study can be integrated with 

commercial software applicable available in the industry in order to improve its accuracy 

and reliability, while decreasing the uncertainties accompanying these applications. 
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5.9.2. Outlier Diagnosis 

It is important to be able to identify the outlier points existing in a databank during 

the development of a model for forecasting the vaporization enthalpies of pure 

hydrocarbon components and petroleum fractions because the results of a regression 

analysis may be biased by such data points. Recognizing the outlier data point(s) is a 

critical step in the development of a mathematical model and in the assessment of the 

applicability of a new model (Esfahani et al., 2015; Gharagheizi et al., 2012a; Mohammadi 

et al., 2012c). Determining the outliers is required in order to recognize individual datum 

(or groups of data) that may differ from the bulk of the data existing in a database 

(Gharagheizi et al., 2012a; Gramatica, 2007; Mohammadi et al., 2012c; Rousseeuw and 

Leroy, 2005). The Leverage method (Goodall, 1993; Gramatica, 2007; Shateri et al., 2014) 

was implemented in this study. The graphical determination of the suspect data or 

outliers is carried out by means of  sketching the Williams plot based on the calculated H 

values (Gharagheizi et al., 2012a; Mohammadi et al., 2012c). A detailed explanation of the 

procedure and formulas for the Leverage strategy have been reported elsewhere 

(Gharagheizi et al., 2012a; Mohammadi et al., 2012c).  

The Williams plot is sketched in Fig. 5. 66 for the predictions of the vaporization 

enthalpies of petroleum fractions and pure hydrocarbon components using the LSSVM 

model suggested in the current study. The results indicate that the majority of data points 

are in the ranges of 0  H 0.09836 and -3R which confirms the efficiency and 

credibility of the LSSVM model. As is clear from Fig. 5. 66, that there is only one data point 

which is outside of the applicability domain of the model that may be an outlier, from the 

available vaporization enthalpy database.  
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Fig. 5. 66 The Leverage approach illustrating the suspected data existing in the collected 
database of the vaporization enthalpies of pure hydrocarbon components and petroleum 
fractions. 

 

5.10. Model Development for Gasoline Properties 

In this study, an efficient LSSVM model was developed for the estimation of gasoline 
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can be seen in this table, the R2s for the testing phase for SG, MON, RON and RVP are 0.994, 
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RON, and RVP data against the predicted values from the LSSVM model, for both training 

and testing stages, are shown in Fig. 5. 67. Furthermore, the error percentage 

distributions between the predicted and literature-reported values of SG, MON, RON, and 

RVP are shown in Fig. 5. 68. The graphical plots confirm that there is a good fit between 

the literature-reported data and the predictions of the LSSVM model for SG. 

Recently, Albahri (Albahri, 2014) developed a predictive model on the basis of the 

neural network approach for determining gasoline properties using the same databank. 

Their results indicated acceptable accuracy with a R2=0.99 and a maximum deviation of 

1.71 for SG, R2=0.99 and a maximum deviation of 0.13 for RVP, R2=0.99 and a maximum 

deviation of 8.25 for RON, and R2=0.99 and a maximum deviation of 11.3 for MON. The 

capability and applicability of any mathematical predictive model depends on the 

complexity of the model and the number of adjustable parameters, in addition to 

accuracy.  

As a comparison, the model developed in the present study is satisfactory in terms 

of time to develop, speed of the computation, ease of development, applicability and 

capability. Additionally, it should be noted that the LSSVM model developed in this study 

for prediction of gasoline properties (SG, MON, RON and RVP) has only “two adjustable 

parameters” (σ2 and γ), while other intelligent methods such as neural networks require 

many more adjustable parameters for their estimation targets. The model developed in 

this study has additional advantages over classical techniques, advantages such as 

convergence to the global optimum, does not require the optimization and evaluation of 

the number of neurons in hidden layers (in other words finding the topology of 

networks); has very low possibility for over and under-fitting problems; and does not 

need large databases (Cristianini and Shawe-Taylor, 2000; Gharagheizi, 2007; Suykens 

and Vandewalle, 1999).  
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Table 5. 16 The results obtained using the LSSVM model for SG, MON, RON, and RVP. 

Performance Ea% Er% SD RMSE R² 
SG model (γ: 740.4370534; σ2: 114.4808574) 

Total 0.62 0.009 0.0044 0.007 0.990 

Training 0.62 -0.011 0.004 0.007 0.989 

Testing 0.61 0.090 0.001 0.005 0.994 

MON model (γ: 20.5295675; σ2: 3.8287799) 

Total 2.51 -0.332 0.018 2.780 0.933 

Training 2.41 -0.274 0.016 2.730 0.936 

Testing 2.90 -0.56 0.008 2.966 0.928 

RON model (γ: 30.9073519; σ2: 3.7480896)                             

Total 2.39 -0.088 0.018 2.929 0.955 

Training 2.05 -0.238 0.014 2.515 0.967 

Testing 3.74 0.504 0.011 4.182 0.919 

RVP model (γ: 9.0376950; σ2: 6.1108949) 

Total 15.29 -5.411 0.176 0.092 0.92 

Training 13.79 -4.731 0.137 0.089 0.932 

Testing 21.23 -8.12 0.110 0.101 0.828 

 

In order to develop an accurate predictive model, one needs a collection of the 

most reliable data points, from which one has detected and excluded suspect or 

unreliable data. Moreover, there is also a need to assess the available literature-reported 

data for the gasoline properties (SG, MON, RON and RVP) because large uncertainties will 

influence the estimation capability of the model. Hence, the Leverage value statistics 

technique (Goodall, 1993; Gramatica, 2007) is used in this study to detect outliers data 

points. Graphical detection of the outliers or suspect data is determined using the 

Williams plot on the basis of the calculated H value (Mohammadi et al., 2012a; 

Mohammadi et al., 2012c). Details on the Williams plot and the related mathematical 
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equations and calculation procedure are available in the literature (Mohammadi et al., 

2012a; Mohammadi et al., 2012c).  

The Williams plot for the SG model, the MON model, the RON and the RVP model 

are shown in Fig. 5. 69. As can be seen from the existence of the majority of data points 

in the ranges 0  H 0.1685 and -3R for the SG model, 0H0.2022 and -3R for the 

MON model, 0H0.2022 and -3R for the RON model and 0 H 0.0668 and -3R 

for the RVP model, the mathematical method proposed in this study is statistically 

satisfactory and useable. As a result, high good domain leverage points are placed in the 

area of 0.1685<H for the SG model, 0.2022<H for the MON and RON models, and 

0.0668<H for the RVP model. Fig. 5. 69 shows that only three data points for the SG 

model, four data points for the MON and RON models, and six data points for the RVP 

model are located in the bad Leverage domain or region. Here it should be mentioned 

that some data points in Fig. 5. 69 are located in the high leverage zone which does not 

affect the overall performance of the LSSVM model. 
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Fig. 5. 67 Comparison of the estimated and literature values of SG, MON, RON, and RVP. 
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Fig. 5. 68 Comparison of estimated and literature values of SG, MON, RON, and RVP with 

respect to the residual error percentage. 
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Fig. 5. 69 Identification of doubtful data for SG, MON, RON, and RVP in LSSVM modeling 

using Hat values. 
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5.11. New Equation for Gas Compressibility Factor 

The computational steps as described above were followed to achieve an efficient, 

reliable, and capable GEP model for the prediction of z-factor. Moreover, as previously 

mentioned, for assessing the capability and performance of the GEP model, a statistical 

error analysis, in which AAPRE, APRE, SD, RMSE and R2, as well as a graphical error 

analysis, in which a parity diagram and APRE error distribution plot are sketched, have 

been implemented. It is thereby shown that the GEP (Ferreira, 2006) approach 

calculations express the required parameters, which yield the most precise model from 

the introduced parameters (Ppr and Tpr). Hence, one can consider several independent 

parameters for a particular problem and find the ones which have the most positive 

impacts on the desired output results. The ultimate form of z-factor equation obtained 

can be expressed as follows: 

2
2 3

2
3

2

3.1263651 3.8916368 1.0551763Z 0.2625136 0.5638878ln( ) 0.3372525ln( )

1.3976452ln( ) 0.5217521ln( ) 0.447935ln( )
0.061688ln( )

pr pr

pr pr pr

pr pr pr

pr

pr pr pr

P P
T T T

P P P
P

T T T


     


   

 (5.20) 

 

where Tpr is pseudo-reduced temperature and, Ppr denotes pseudo-reduced pressure.  

To obtain the equation above, the number of significant digits for the coefficients 

has been calculated by conducting sensitivity analysis of the predicted results in relation 

to the actual values. The statistical error parameters of the results obtained show that the 

average absolute percent relative errors and R2 of the three sub-data set (total) results 

are about 3.44 and 0.898, respectively. This indicator demonstrates acceptable accuracy 

of the method developed for calculation of the z-factor of the gasses studied.  

A detailed statistical error analysis of the proposed model for z-factor in this 

work is listed in Table 5. 17. The results listed for the training, validation and testing 

phases in Table 5. 17 reveal that the new model has a reliable performance. A crossplot 

of the training, validation, and test datasets for z-factor, obtained by Eq. (5.20) is 

illustrated graphically in Fig. 5. 70. The results indicate that the new model provides a 

more precise estimation of the z-factor. Additionally, it is obvious that almost all data 
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points obtained by the newly developed GEP model lie on the unit slope line and this 

reveals its prediction capability. Fig. 5. 71 represents the error distribution of the model 

for the determination of the z-factor of natural gasses. The figure confirms that the 

proposed model has a small error range and a low scatter around the zero error line. This 

indicates the potential of Eq. (5.20) for estimation of z-factor with a small expected error. 

 

Table 5. 17 Statistical error parameters to determine the z-factor of the developed model 

(including training, validation and prediction sets). 

Statistical Parameter 

training set 

R2 0.897 

Average Absolute Percent Relative Error 3.47 

Standard deviation error 0.04 

Root mean square error 0.04 

N 784 
  
validation set 

R2 0.883 
Average Absolute Percent Relative Error 3.47 
Standard deviation error 0.04 
Root mean square error 0.04 
N 97 
  
test set 

R2 0.921 
Average Absolute Percent Relative Error 3.46 
Standard deviation error 0.04 
Root mean square error 0.04 
N 97 
  
total 

R2 0.898 
Average Absolute Percent Relative Error 3.44 
Standard deviation error 0.04 
Root mean square error 0.04 
N 978 

  

The performance of the model for determination of the z-factor for the 

experimental data studied has been compared with that of some of the most widely-

utilized empirically derived models and equations of state available in the literature, 
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including six empirically derived models, viz. Dranchuk-Abu-Kassem (Dranchuk and 

Kassem, 1975), Dranchuk-Purvis-Robinson (Dranchuk et al., 1973), Hall-Yarborough 

(Hall and Yarborough, 1973), Beggs-Brill (Beggs and Brill, 1973), Shell Oil Company 

(2003), Gopal (Gopal, 1977), Heidaryan et al. (Heidaryan et al., 2010a), Azizi et al. (Azizi 

et al., 2010), and Sanjari-Lay (Sanjari and Lay, 2012b) and three EoS-based models viz. 

van der Waals (van der Waals, 2004), Peng-Robinson (Peng and Robinson, 1976), Lawal-

Lake-Sil berberg (Lawal, 1999), Soave-Redlich-Kwong (Soave, 1972), Patel-Teja (Patel 

and Teja, 1982). Additionally, the feed-forward multi-layer artificial neural network 

(ANN) approach has been employed to conduct a further comparison of the model 

developed with other kinds of artificial intelligence techniques. To this end, two reliable 

optimization methods viz. particle swarm optimization (PSO) (Kennedy, 2010) and 

genetic algorithm (GA) (Holland, 1975) have been used to tune the ANN adjustable 

parameters, including weight and bias. More information regarding these methods can 

be found elsewhere (Chamkalani et al., 2013b; Kamyab et al., 2010a; Shokir et al., 2012).  

 

 

Fig. 5. 70 Comparison between the results of the model developed and the database 

values of z-factor. 
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Fig. 5. 71 Relative deviations of the represented z-factor values by Eq. (5.20) from the 

database values. 

Table 5. 18 reports on the correspondence of results of a comparative study. It 

is clear from a reading of Table 5. 18 that the model in this study is simple and leads to a 

reasonable deviation of the determined z-factor values in comparison to the literature 

correlations, EoS-based models, and ANN based models. The bar plots in Fig. 5. 72 

represent the average absolute percent relative errors of the z-factor for the newly 

proposed method, EoS-based models, the ANN based model, and the empirical 

correlations. In Fig. 5. 72, the results show that Eq. (5.20) has a reliable level of accuracy. 

The proposed model is easy-to-use and does not need any soft-computing programs for 

calculation.  

The results clearly demonstrate that the GEP algorithm is more powerful than 

ANN methodology in terms of accuracy, capability, and future usability. While the GEP 

algorithm model developed in the current study estimates the gas compressibility factors 
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of natural gasses with an AARD=3.44%, the AARD obtained for ANN optimized with the 

PSO and GA methods are 6.13, and 7.46 %, respectively. Additionally, over-fitting is a 

major problem faced in the ANN approach, in particular when a small dataset is used, 

because of the high number of adjustable parameters viz. weights and bias. It is worth 

noting that this is the first time that the GEP mathematical approach has been 

implemented for estimation of the z-factor of gasses. The results obtained indicate that 

the mathematical strategy implemented is very promising for evaluation of other 

petroleum fluid.  

Table 5. 18 Comparative statistical error analysis of the empirical correlations, EoSs, and 

an artificial intelligent technique, and the newly developed model. 

Method Er % Ea % RMSE R² 

van der-Waals (van der Waals, 2004) EoS 0.31 6.42 0.0696 0.771 

Peng-Robinson (Peng and Robinson, 1976) EoS -5.34 6.10 0.0599 0.891 

Lawal-Lake-Silberberg (Lawal, 1999) EoS -2.66 4.43 0.0453 0.894 

Patel-Teja (Patel and Teja, 1982) EoS -1.18 4.15 0.0447 0.880 

Soave-Redlich-Kwong (Soave, 1972) EoS -3.14 4.82 0.0493 0.893 

Dranchuk-Abu-Kassem (Dranchuk and Kassem, 

1975) Corr. 

4.21 8.18 0.0992 0.574 

Dranchuk-Purvis-Robinson (Dranchuk et al., 

1973) Corr. 

4.66 4.77 0.0555 0.906 

Hall-Yarborough (Hall and Yarborough, 1973) 

Corr. 

1.46 3.59 0.0429 0.892 

Beggs-Brill (Beggs and Brill, 1973) Corr. 4.95 5.07 0.0574 0.904 

Shell Oil Company (2003) Corr. 5.34 5.40 0.0596 0.908 

Gopal (Gopal, 1977) Corr. 6.12 6.26 0.0910 0.737 

Azizi et al. (Azizi et al., 2010) Corr. 4.26 6.25 0.0792 0.772 

Heidaryan et al. (Heidaryan et al., 2010a) Corr. 3.61 5.80 0.0762 0.778 

Sanjari-Lay (Sanjari and Lay, 2012b) Corr. 0.66 5.67 0.0697 0.811 

ANN-PSO -1.13 6.13 0.0647 0.736 

ANN GA -1.85 7.46 0.0766 0.624 

Eq. (5.20) -0.25 3.44 0.04 0.898 
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To show the applicability domain of all methods investigated in this study 

graphically, the absolute percent relative error contour of the gas compressibility factor 

has been sketched together with the collected database for the input variables of Ppr and 

Tpr. Fig. 5. 73 illustrates the absolute percent relative error contour of the gas 

compressibility factor predicted by the model developed in the current study. It is evident 

from the figure that the model is able to predict gas compressibility factors in the dataset 

range. However, the model developed in the current study could not estimate the gas 

compressibility factor with high accuracy in the Tpr range of 1-1.2, and Ppr range of 1-3.  

However, the absolute percent relative error contours of the gas compressibility 

factor estimated by the comparative methods mentioned above are illustrated in Figs. 5 

and 6. These figures clearly indicate that the method presented in this study is superior 

to the comparative methods. Furthermore, Figs. 5. 74 and Fig. 5. 75 show that the 

comparative methods have high errors in the Tpr range of 1-1.2 and Ppr range of 1-3, 

similar to the developed method. This may be due to the experimental errors when 

conducting laboratory measurements for the gas compressibility factors. 

Fig. 5. 72 Calculated average absolute percent relative error for the empirical 

correlations, EoSs, and the artificial intelligent technique, as well as the proposed model 

(Eq. (5.20)). 
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Fig. 5. 73 Absolute percent relative error contour of gas compressibility factor for the 

Eq. (5.20) in the ranges of Ppr and Tpr. 

In the development of a predictive model or correlation, the leverage technique 

(detection of the outlier data points) plays a significant role to assess a group or groups 

of data which may differ from the bulk of the data present in a dataset (Mohammadi et 

al., 2012a; Mohammadi et al., 2012c; Rousseeuw and Leroy, 2005). The main objective of 

the leverage technique is the detection, in each experimental/literature databank, of data 

located outside of the applicability domain of the model. A detailed description of 

computational procedure and equations for the leverage technique can be found 

elsewhere (Mohammadi et al., 2012a; Mohammadi et al., 2012c; Rousseeuw and Leroy, 

2005). Hence, to check whether the GEP model is statistically acceptable; the Williams 

plot has been provided.  

The existence of the majority of data points in the ranges 0  H 0.0092 and -

3Standardized Residuals  confirms that the GEP model developed for the calculation 

of z-factor is statistically accurate and reliable. As a consequence, good high leverage data 

points are located in the domain of 0.0092 < H for the method presented. Those good 

leverage points which are outside of the ranges -3Standardized Residuals  may be 

regarded as outlier data points in terms of the applicability domain of the presented GEP 
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model. The results of the z-factor predictive method illustrate that a few of the data points 

are located in the aforementioned domain (Fig. 5. 76). 

 

Fig. 5. 74 Absolute percent relative error contour of gas compressibility factor for the 

comparative methods (set I) in the ranges of Ppr and Tpr. 
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Fig. 5. 75 Absolute percent relative error contour of gas compressibility factor for the 

comparative methods (set II) in the ranges of Ppr and Tpr. 
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Fig. 5. 76 Detection of probable doubtful data of the z-factor and the applicability 

domain of the model developed. 

 

 

5.12. Structural Based Models for the Estimation of Watson 

Characterization Factors of Hydrocarbon Components 

Petroleum is one of the most complex mixtures and is defined as a substance, 

generally liquid, which occurs naturally in the earth and is composed mainly of mixtures 

of chemical compounds of carbon and hydrogen with or without other nonmetallic 

elements such as sulfur, oxygen, and nitrogen. Exact identification of the components 

available in unique petroleum cuts is highly desired in petroleum science and industry. 

For this identification, many characterization factors have been defined. One of the 

characterization factors which is widely used is the Watson characterization factor or 

Universal Oil Products Company (UOP) characterization factor. 
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5.12.1. Model with 10 adjustable parameters 

In order to obtain an accurate and reliable correlation for the determination of 

Watson characterization of hydrocarbon components, a number of chemical 

substructures prepared were introduced into the sequential search mathematical 

algorithm. Furthermore, in order to obtain the optimal correlation in terms of both the 

number of chemical substructures and accuracy, a threshold value of 0.01 was considered 

for the reduction in the AARD as a stopping criterion. It means that when the 

improvement of the model AARD% was less than 0.01, the sequential search 

mathematical strategy was automatically stopped and reported the final model. The best 

model derived by using group contribution approach to predict the Watson 

characterization data for a ten-chemical structures correlation equation, with a total 

AARD= 14.60, is tabulated in Table 5. 19: 

 

Table 5. 19 Equation with 10 parameters for the estimation of Watson characterization 

factor using GC approach. A detailed definition is presented in the Dragon software. 

Equation Definitions 

Y =  4.941786494 * X1  X1 : E : nCp 
     + 0.108759048 * X2  X2 : F : nCs 
     + 0.330039526 * X6  X6 : J : nCrt 
     - 0.919667638 * X14  X14 : R : n=C= 
     - 4.628165746 * X25  X25 : AC : NsCH3 
     - 1.217880596 * X27  X27 : AE : NtCH 
     - 0.665938713 * X35  X35 : AW : F01[C-C] 
     + 0.183872627 * X38  X38 : AZ : F04[C-C] 
     + 0.158262938 * X39  X39 : BA : F05[C-C] 
     + 0.254532833 * X41  X41 : BC : F07[C-C] 
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5.12.2. Model with 15 adjustable parameters 

The best model derived by using group contribution approach to predict the 

Watson characterization data for a fifteen-chemical structures correlation equation, with 

a total AARD= 17.36, is tabulated in Table 5. 20: 

 

 

Table 5. 20 Equation with 15 parameters for the estimation of Watson characterization 

factor using GC approach. A detailed definition is presented in the Dragon software. 

Equation Definitions 

Y =  0.296361869 * X2  X2 : F : nCs 
     + 0.299771183 * X3  X3 : G : nCt 
     - 0.195144625 * X5  X5 : I : nCrs 
     - 0.938337165 * X14  X14 : R : n=C= 
     + 2.174648042 * X17  X17 : U : C-001 
     - 0.317516851 * X20  X20 : X : C-015 
     - 2.037246983 * X22  X22 : Z : C-021 
     - 2.283929986 * X25  X25 : AC : NsCH3 
     - 1.685603621 * X35  X35 : AW : F01[C-C] 
     + 0.497567616 * X36  X36 : AX : F02[C-C] 
     + 0.150798585 * X37  X37 : AY : F03[C-C] 
     + 0.186566269 * X38  X38 : AZ : F04[C-C] 
     + 0.179758444 * X39  X39 : BA : F05[C-C] 
     + 0.252660707 * X40  X40 : BB : F06[C-C] 
     + 0.161989378 * X42  X42 : BD : F08[C-C] 

 

 

5.12.3. Model with 20 adjustable parameters 

The best model derived by using group contribution approach to predict the 

Watson characterization data for a twenty-chemical structures correlation equation, with 

a total AARD= 16.90, is tabulated in Table 5. 21: 
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Table 5. 21 Equation with 20 parameters for the estimation of Watson characterization 

factor using GC approach. A detailed definition is presented in the Dragon software. 

Equation Definitions 

Y =  2.649191783 * X1  X1 : E : nCp 
     - 2.766611746 * X4  X4 : H : nCq 
     - 0.096054873 * X5  X5 : I : nCrs 
     + 0.248508342 * X6  X6 : J : nCrt 
     + 0.458263980 * X7  X7 : K : nCrq 
     - 1.135284865 * X8  X8 : L : nCar 
     + 0.924619192 * X9  X9 : M : nCbH 
     - 0.265558515 * X12  X12 : P : nR=Cs 
     - 1.319737539 * X13  X13 : Q : nR=Ct 
     - 2.406420367 * X25  X25 : AC : NsCH3 
     - 1.843847001 * X27  X27 : AE : NtCH 
     - 1.042638849 * X28  X28 : AF : NsssCH 
     - 1.262497738 * X29  X29 : AG : NddC 
     - 1.799478217 * X35  X35 : AW : F01[C-C] 
     + 0.875342269 * X36  X36 : AX : F02[C-C] 
     + 0.144627020 * X37  X37 : AY : F03[C-C] 
     + 0.206540886 * X38  X38 : AZ : F04[C-C] 
     + 0.198352266 * X39  X39 : BA : F05[C-C] 
     + 0.242696246 * X40  X40 : BB : F06[C-C] 
     + 0.172614950 * X42  X42 : BD : F08[C-C] 
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CHAPTER 6 

 
6. Conclusions and Recommendations 

This study set out to develop simple, efficient, accurate and reliable predictive models for 

the determination of petroleum reservoir fluid properties. To this end, the largest 

possible databanks were gathered from two main sources including the actual field data 

and previously published data available in the literature. The databases collected cover a 

wide ranges of reservoir rock and fluid properties coming from the various geographical 

regions of world.  

To develop predictive models for the determination of petroleum reservoir fluid 

properties, robust artificial intelligence strategies viz., gene expression programming, 

artificial neural networks, least square support vector machine, adaptive neuro-fuzzy 

inference system, and decision tree computational schemes, were utilized. In order to 

tune the adjustable parameters associated with the algorithms mentioned above, 

different optimization techniques were employed simultaneously viz., couples simulated 

annealing, particle swarm optimization, and genetic algorithm. Many empirically derived 

correlations were developed and compared. 

The results show that the models are superior in terms of accuracy and simplicity 

of use to those in the literature. 

6.1. Conclusions 

The main conclusions for each property studied are listed as follows: 

6.1.1. Model for determination of surfactant retention in porous media during 

chemical flooding 

The error analysis indicated an R2 = 0.9464 for the predicted values of surfactant 

retention is reported for the new model. A high quality of results are obtained by using 
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the GEP mathematical strategy, which are quantified by the average absolute relative 

deviation error obtained. The average absolute relative deviation error for the newly 

developed correlation is approximately 9.44%. These results indicate that the newly 

developed model predicts the surfactant retention values with an acceptable accuracy. 

The accuracy of method presented in this study is suitable for utilization in the design of 

EOR processes in petroleum reservoir disciplines. It can therefore be widely applied in 

situations where experimentally measured records are not available. 

 

6.1.2. Model for the calculation of dew point pressure in gas condensate reservoirs 

The proposed model has an overall AARD of 7.88 % and an R-squared equal to 0.89. 

It is observed that the model has a superior performance to the other correlations with 

respect to calculated statistical error parameters. Furthermore, there is good agreement 

between the actual data and values calculated using the GEP-based model proposed in 

this study. The comparative analysis conducted in this study also confirms that the GEP-

based model is able to calculate the desired parameter (i.e. the DPP in gas condensate 

reservoirs) with greater accuracy and consistency. The model also has a smaller number 

of adjustable, resulting in the model optimization and development of GEP-based models 

being faster, less laborious, and less costly.  

6.1.3. Models for the calculation of the oil PVT properties  

Our conclusions indicated that the GEP model that is developed for the calculation of 

oil formation volume factor has an AAPRE=3.62% and a R2=0.93 and for bubble point 

pressure the results are 15.3% and 0.88, respectively. These amounts of error confirm 

the level of accuracy of the new model for the prediction of PVT properties. The results 

obtained from the comparison analysis confirm that the models presented are quicker to 

calculate, and are more accurate, reliable and capable. The Leverage analysis performed 

in current study showed that there are 12 data points for the oil formation volume factor 

model and 13 data points for the bubble point pressure model that are outside of the 

applicability domain of the GEP models and are accounted as outliers whose values may 

be doubtful, compared with the corresponding actual data. 

 



207 | P a g e  
 

6.1.4. Models for the determination of dead, saturated and under-saturated 

reservoir oil viscosities 

The results reveal that GEP-based models calculate the dead, saturated and under-

saturated reservoir oil viscosities in a wide range of reservoir properties of Iranian crude 

oils. The models developed for dead, saturated and under-saturated reservoir oil 

viscosities are shown to be more accurate than the studied comparative methods in terms 

of all error factors investigated. The calculated AARD % for the developed dead, saturated 

and under-saturated reservoir oil viscosities models are 17.29, 13.55, and 1.47, 

respectively. From the results obtained in this study it can be concluded that the 

proposed models are  reliable for the estimation of developed dead, saturated and under-

saturated reservoir oil viscosities. 

6.1.5. Model for calculating solution GOR data 

The applicability domain of the proposed method was determined through the 

detection of outlier data points using the Leverage approach. It is found that only 26 data 

points (among more than 1000 data values) are identified as outlier data points. The 

results obtained indicate that the model used, with an AARD value of 19.83%, 

outperforms all comparable models studied. A sensitivity analysis conducted in this study 

indicates that bubble point pressure and gas gravity have the largest and smallest 

influences, respectively, on the predicted solution GOR data. Furthermore, the model has 

more applicability for the estimation of solution GORs for reservoirs containing light oils. 

6.1.6. Models to calculate the asphaltene precipitated versus solvent to oil dilution 

ratio  

A study was conducted on the changes in asphaltene precipitation versus solvent to 

oil dilution ratio in an Iranian asphaltenic crude oil at different temperatures for n-

pentane, n-hexane, and n-heptane solvents. It was found that the previously published 

scaling equations are not fully accurate and satisfactory. To compare all methods 

investigated, two panels are considered. In the smart based panel, the LSSVM approach 

has the most accuracy and could predict the asphaltene precipation with an AARD of 3%. 

In the symbolic equations panel, the method proposed on the basis of GEP approach gave 

an acceptable AARD of 8.5 %.  
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The results indicate that the methods developed are applicable for the simulation of 

asphaltene precipitation in black oil software. Moreover, a simple symbolic method 

presented can be a reliable alternative to existing scaling equations and complex 

thermodynamic methods. 

6.1.7. Modeling of phase behavior of wax deposition 

Our conclusions demonstrate similar results for ANN and LSSVM models. The AAPRE 

and R2 for ANN and LSSVM models are 0.6% and 0.95, respectively. As a result, the 

regression DT model provided more acceptable results compared to the ANN and LSSVM 

approaches. The statistical error analysis for regression DT model shows an AAPRE=0.3 

and R2=0.97. Finally, it has been shown in this study that application of intelligent 

approaches such as ANN, LSSVM, and DT could be preferable to complex thermodynamics 

methods for the evaluation of phase behavior of wax deposition. 

6.1.8. Models for the characterization of the heptane-plus properties of crude oil, 

and gas-condensate 

The results indicate that all of the methods developed in this study can be applied for 

the characterization of C7+ properties. The statistical error analysis revealed that decision 

tree modelling is superior to the ANN, LSSVM, and GEP methods for the prediction of all 

three properties studied. Additionally, simple symbolic equations proposed by gene 

expression programming is a capable alternative for the existing distribution methods to 

characterize the heavier and complex components of crude oils. The AARD obtained by 

using GEP algorithm were reported 4, 2, and 12 % for boiling point, specific gravity, and 

molecular weight, respectively. 

6.1.9. Model to determine the vaporization enthalpies of pure hydrocarbon 

components and petroleum fractions 

The results of the comparison confirmed the advantages of the CSA-LSSVM model 

over previously reported methods investigated. The Leverage approach was used to 

identify probable data outliers. It was found that only one data point is outside of 

applicability domain of the model suggested. The total AARD and R2 for the LSSVM model 

proposed in the current study are 1.15514% and 0.9982, respectively. The model is 
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considered to be reliable for the estimation of the vaporization enthalpies of pure 

hydrocarbon components and petroleum fractions. 

6.1.10. Model to predict gasoline properties 

The results obtained indicated the success of the mathematical strategy pursued in 

this study for the prediction of gasoline properties, SG, MON, RON and RVP. The 

coefficient of determination, R2, of the proposed model is 0.990, 0.933, 0.955 and 0.920 

for SG, MON, RON and RVP, respectively. The results obtained indicate that the LSSVM 

model can be applied as a reliable tool for predicting the properties of gasoline and 

consequently, can be used to determine the quality of the gasoline. 

6.1.11. Model for the calculation of z-factor values 

A comparison, based on the statistical and graphical analyses, made with other 

models (empirical correlations, equations of state, and an artificial intelligent technique), 

showed the superiority of the newly developed method via indices such as R2, Ea and 

RMSE of 0.898, 3.45, and 0.04, respectively. This statistically indicates a satisfactory 

predictive tool. The model proposed in this study also provides a considerable 

improvement over previous proposed correlations and equations of state with broader 

applicability in terms of temperature and pressure ranges. 

6.1.12. Model to predict Watson characterization of hydrocarbon components 

A group contribution technique has been successfully developed for estimation of 

the Watson characterization. In addition, a comprehensive dataset of experimental 

Watson characterization data was used to develop a general group contribution 

correlation. A number of chemical substructures was implemented as model inputs. 

Using this approach, three models were developed having 10, 15 and 200 adjustable 

parameters with AARD of 14.6, 17.36, and 16.9, respectively. As a result, the model 

proposed here is reliable and also has appropriate capability for predict and modeling 

the physical property. 
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6.2. Recommendations 

Most of petroleum reservoirs fluid properties available were investigated in this study. 

The main recommendations suggested by current study for future works are summarized 

as follows: 

 

6.2.1. Potential Alternative Applications of New Methods 

The methods developed in this study have a broader application within petroleum 

engineering and can be used to investigate other properties associated with reservoir 

rock. Furthermore, they offer alternatives for application in the investigation of a broad 

range of  issues related to petroleum engineering such as, fluid flow through porous 

media, enhanced and improved oil recovery, well-testing and well log data analyses, 

drilling technology, production and operation, EOR screening, reserve estimation, and 

production performance prediction. 

6.2.2. New Methods Provide Reliable and Simple Predictive Techniques  

The determination of reservoir fluid properties using laboratory experiments are 

complex and can be time-consuming and expensive. Furthermore, existing 

thermodynamics models have some short comings in the phase behavior modeling of 

petroleum reservoir fluid properties. Consequently, reservoir fluid properties, in the 

absence of experimental measurements, can be determined through empirical methods. 

Therefore, the models presented in the current study provide useful, reliable and simple 

predictive techniques, which are easier than existing approaches, less complicated, and 

with fewer computations. 

6.2.3. New methods Avoid an Over-fitting Problem 

Although artificial intelligence methods are powerful methods in solving regression 

and classification problems, the main problem associated with such techniques is the 

over-fitting issue. As a consequence, the development of methods/algorithms on the 

basis of artificial intelligence with a low number of adjustable parameters is necessary in 

order to avoid the over-fitting problem. 

6.2.4. New methods Allow for Rapid Investigations 
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Petroleum engineers seek a rapid way to obtain accurate values for petroleum 

reservoir fluid properties, taking into account both economic and technical issues. The 

methods and models developed in this study are appropriate for utilization in the design 

of processes, and software for reservoir simulation, relating to petroleum reservoirs.  
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APPENDIX A 
 

Least Square Support Vector Machine Algorithm  

 
The MATLAB code developed in this study for the least square support vector machine 

algorithm is presented as follows. In the beginning, the original LSSVM toolbox for 

MATLAB should be installed, after that the directory of the LSSVM toolbox should be 

inserted as the main directory in the MATLAB environment. The encoded MATLAB file 

(VE.m) is available upon reader request. Following example provides a step-by-step 

instruction for using the proposed models. 

Example: Calculation of vaporization enthalpy (VE) using the input variables (e.g. boiling 

point, specific gravity, and molecular weight). Then, vaporization enthalpy is calculated 

easily applying the below codes in the command window: 

 

clc;clear; 

Data=[355.5 0.7015 95]; %Input vector 

%% Prediction of LS-SVM model based on kernel function 

%% Calculation of VE 

load 'VE.mat' 

VE_clac = simlssvm({trainX,trainY,type,gam,sig2,'RBF_kernel','preprocess'},{alpha,b},Data) % Calculated 

VE 
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APPENDIX B 
 

Artificial Neural Network Algorithm  

 

The MATLAB code developed in this study for the artificial neural network algorithm is 

presented as follows: 

 
%% Start of Program 

clc 

clear 

%close all 

  

%% Data Loading 

Data = xlsread('Data.xls'); 

  

X = Data(:,1:end-1); 

Y = Data(:,end); 

  

DataNum = size(X,1); 

InputNum = size(X,2); 

OutputNum = size(Y,2); 

  

%% Normalization 

MinX = min(X); 

MaxX = max(X); 

  

MinY = min(Y); 

MaxY = max(Y); 

  



254 | P a g e  
 

XN = X; 

YN = Y; 

  

for ii = 1:InputNum 

    XN(:,ii) = Normalize_Fcn(X(:,ii),MinX(ii),MaxX(ii)); 

end 

  

for ii = 1:OutputNum 

    YN(:,ii) = Normalize_Fcn(Y(:,ii),MinY(ii),MaxY(ii)); 

end 

  

%% Test and Train Data 

TrPercent = 80; 

TrNum = round(DataNum * TrPercent / 100); 

TsNum = DataNum - TrNum; 

  

R = randperm(DataNum); 

trIndex = R(1 : TrNum); 

tsIndex = R(1+TrNum : end); 

  

Xtr = XN(trIndex,:); 

Ytr = YN(trIndex,:); 

  

Xts = XN(tsIndex,:); 

Yts = YN(tsIndex,:); 

  

%% Network Structure 

pr = [-1 1]; 
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PR = repmat(pr,InputNum,1); 

  

Network = newff(PR,[5 OutputNum],{'tansig' 'tansig'}); 

  

%% Training 

Network = TrainUsing_PSO_Fcn(Network,Xtr,Ytr); 

  

%% Assesment 

YtrNet = sim(Network,Xtr')'; 

YtsNet = sim(Network,Xts')'; 

  

MSEtr = mse(YtrNet - Ytr) 

MSEts = mse(YtsNet - Yts) 

  

%% Denormalization  

  

Denormalization_Ytr = (Ytr./2+0.5) * (MaxY-MinY) + MinY; 

Denormalization_Yts = (Yts./2+0.5) * (MaxY-MinY) + MinY; 

Denormalization_YtrNet = (YtrNet./2+0.5) * (MaxY-MinY) + MinY; 

Denormalization_YtsNet = (YtsNet./2+0.5) * (MaxY-MinY) + MinY; 

  

%% Display 

figure(1) 

plot(Ytr,'-or'); 

hold on 

plot(YtrNet,'-sb'); 

hold off 
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figure(2) 

plot(Yts,'-or'); 

hold on 

plot(YtsNet,'-sb'); 

hold off 

  

figure(3) 

t = -1:.1:1; 

plot(t,t,'b','linewidth',2) 

hold on 

plot(Ytr,YtrNet,'ok') 

hold off 

  

figure(4) 

t = -1:.1:1; 

plot(t,t,'b','linewidth',2) 

hold on 

plot(Yts,YtsNet,'ok') 

hold off 
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APPENDIX C 
 

Decision Tree Algorithm  

 
The MATLAB code developed in this study for the regression decision tree algorithm is 

presented as follows: 

 
clc 

clf 

A=xlsread('wax'); 

x=A(:,1:2); 

y=A(:,3); 

tree = fitrtree(x,y); 

Yfit = predict(tree,x) 
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APPENDIX D 
 

Gene Expression Programming Algorithm  

 
The MATLAB code developed in this study for the gene expression programming 

algorithm associated with each property studied is presented as follows. 

 
Surfactant Retention: 
 
G1C1 = -2.23953344600004; 

G1C5 = -6.4152152106317; 

G1C3 = -8.57843269407123; 

G2C7 = 9.34891432853352; 

G3C5 = 0.622676265417228; 

G3C3 = -5.28553342496036; 

G3C4 = -30.7231165312331; 

  

syms K; 

syms TAN; 

syms T; 

syms Co_solvent; 

syms Polymer; 

syms MaxPH; 

syms Mobility; 

syms MW; 

  

TAN_10 = TAN*10; 

Co_solvent_1E3 = Co_solvent*1E3; 

Mobility_1E2 = Mobility*1E2; 
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Polymer_1E_3 = Polymer*1E-3; 

K_1E_1 = K*1E-1; 

  

y = 0.0; 

  

y = (((Co_solvent_1E3)+((G1C5+G1C3)^2))+((G1C1*(T))/((K_1E_1)-(MaxPH)))); 

y = y + ((-((-(((((T)^2)*sqrt((MW)))*(G2C7-(MaxPH))))))))^(1/3); 

y = y + ((sqrt(((Mobility_1E2)-(Co_solvent_1E3)-G3C4))-(G3C5/(Polymer_1E_3)))*((-(G3C3))-

(TAN_10))); 

Dew Point Pressure: 

 

G1C1 = 1367.41291856528; 

G1C0 = 1.02137231558021; 

G1C2 = 1909.69508955175; 

G1C4 = 358.093397489431; 

G1C3 = 933.348585036562; 

G2C0 = 1.024023; 

G2C1 = -1697.64421139709; 

G2C3 = 9.97999003998998; 

G2C2 = -5096.84992009682; 

G3C2 = 13.1454000006988; 

G3C0 = 9.43977272271795e-02; 

G3C1 = 3.19035556629968e-03; 

G3C3 = 1961.70118405183; 

G3C4 = 2096.95260530625; 

G3C6 = 39335.0733508395; 

G3C5 = 201.934160542236; 

G4C0 = 8.56837764914087e-02; 

G4C2 = -6.52240974576734e-02; 

G4C1 = 3.31393632912371e-03; 

G4C3 = -4.94222387656948; 

G4C4 = -3451.17091475473; 

G4C5 = -6212.70961095208; 

  

d(1)=sym('T'); 

T = 1; 

  

d(2)=sym('C1'); 
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C1 = 2; 

  

d(3)=sym('C2'); 

C2 = 3; 

  

d(4)=sym('C3'); 

C3 = 4; 

  

d(5)=sym('C4'); 

C4 = 5; 

  

d(6)=sym('C5'); 

C5 = 6; 

  

d(7)=sym('C6'); 

C6 = 7; 

  

d(8)=sym('C7'); 

C7 = 8; 

  

d(9)=sym('N2'); 

N2 = 9; 

  

d(10)=sym('CO2'); 

CO2 = 10; 

  

d(11)=sym('H2S'); 

H2S = 11; 

  

d(12)=sym('SGC7'); 

SGC7 = 12; 

  

d(13)=sym('MWC7'); 

MWC7 = 13; 

  

y = 0.0; 
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y = 

(((((log(d(C7))*G1C4)+(G1C3*d(CO2)))+(G1C2*d(N2)))+G1C1+((((d(C1)*d(MWC7))*G2C3)+(G2C2*d(C7

)))+(G2C1*d(C3))))/(G1C0-d(SGC7))); 

y = y + 

(((((((d(C4)^2)*G3C6)+(G3C5*d(H2S)))+(G3C4*d(C5)))+(G3C3*d(C2)))+G3C2+((((G4C4*d(C6))+(G4C5*

d(C4)))+(G4C3*d(C1)))+(G4C2*d(T))))/((G3C1*d(T))+G3C0)); 

 

 
 
 
 
Bubble Point Pressure: 

 
G1C7 = -31.5611233086022; 

G1C4 = 45.3186644685036; 

G2C6 = -6.6033163791293; 

G2C5 = 4.84791197058782; 

G3C3 = 7.77581429969672; 

  

d(1)=sym('Rsi'); 

Rsi = 1; 

  

d(2)=sym('GG'); 

GG = 2; 

  

d(3)=sym('API'); 

API = 3; 

  

d(4)=sym('TR'); 

TR = 4; 

  



262 | P a g e  
 

y = 0.0; 

  

y = (((d(Rsi)+d(Rsi)+d(Rsi))+(d(API)+d(API)+d(Rsi))+d(Rsi))+(G1C7/d(GG))+(G1C4*d(GG))); 

y = y * (((G2C5^2)-(d(GG)*d(GG)*d(GG)))-((d(Rsi)/d(TR))+G2C6)); 

y = y * (1.0/(((log10(d(TR))^2)+sqrt(G3C3)+(d(GG)*d(API))))); 

 
 
Oil Formation Volume Factor: 

 
 
G1C9 = 4.90321382405149; 

G1C4 = 6.94610229569658; 

G1C6 = 9.40509870669927; 

G2C7 = 2.73797223607466; 

G2C2 = -2.65549676704016; 

G3C7 = 4.84603411969359; 

  

d(1)=sym('Rsi'); 

Rsi = 1; 

  

d(2)=sym('GG'); 

GG = 2; 

  

d(3)=sym('API'); 

API = 3; 

  

d(4)=sym('TR'); 

TR = 4; 
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y = 0.0; 

  

y = ((1.0/(((G1C9*G1C4)+(G1C6^2))))*d(GG)); 

y = y * (power((d(API)+d(TR)),(1.0/(G2C7)))+(1.0/((G2C2/d(GG))))); 

y = y * (((d(Rsi)-G3C7)/sqrt(d(GG)))+sqrt((d(TR)*d(API)))); 

y = y/100 + 1; 

 
Oil Formation Volume Factor: 
Dead Oil Viscosity: 

 
G1C0 = 20358822.3876518; 

G1C1 = 614.823948580112; 

G1C2 = 63528.8729420635; 

G2C0 = 482063.84826673; 

  

d(1)=sym('T'); 

T = 1; 

  

d(2)=sym('API'); 

API = 2; 

  

y = 0.0; 
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y = ((((d(T)*d(API))*G1C1)-(d(T)*G1C2))+G1C0); 

y = y * (1.0/((((d(API)^3)*d(T))-G2C0))); 

 
 
 
 
 
Saturated Oil Viscosity: 

 
G1C0 = 7.97272338586754e-02; 

G1C1 = 0.707434125153867; 

G1C2 = 14.1932041932374; 

G2C0 = 1.92690208295064; 

G2C2 = 9.05243619825834; 

G2C1 = 3.5226945752933; 

G2C3 = 0.13056267156335; 

  

d(1)=sym('Pb'); 

Pb = 1; 

  

d(2)=sym('DOV'); 

DOV = 2; 



265 | P a g e  
 

  

y = 0.0; 

  

y = (power(G1C1,(G1C2/(d(DOV)^2)))+G1C0); 

y = y + ((G2C0+(G2C1*d(DOV)))/(G2C2+(d(Pb)-(G2C3*d(DOV))))); 

Saturated Oil Viscosity: 
Under-Saturated Oil Viscosity: 
 
G1C0 = 1.11496172357196e-02; 

G2C0 = 10.7121633356412; 

G2C2 = 10.9261044638846; 

G2C1 = 0.000999897000303; 

G2C3 = 7.93724070371478e-04; 

G2C4 = 1.19885535429917e-08; 

d(1)=sym('Pb'); 

Pb = 1; 

d(2)=sym('SOV'); 

SOV = 2; 

d(3)=sym('P'); 

P = 3; 
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y = 0.0; 

y = ((G1C0*d(P))/d(Pb)); 

y = y + 

(((G2C2*d(SOV))+((G2C3*(d(SOV)*d(P)))+(G2C4*((d(SOV)^2)*(d(P)^2)))))/(G2C0+(G2C1*d(Pb)))); 

 
 
Asphaltene Precipitation: 
 

G1C1 = -188.762283858578; 

G1C7 = -1.10521967470357; 

G1C2 = 33.3016661393978; 

G1C6 = 6.12109132450331; 

  

d(1)=sym('T'); 

T = 1; 

d(2)=sym('Rv'); 

Rv = 2; 

d(3)=sym('MW'); 

MW = 3; 

  

y = 0.0; 
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y = (((G1C1+d(3))*(d(2)/G1C7))/((G1C2+d(1))+(G1C6*d(2)))); 

 

 
 
 
 
 
 
Heptane-Plus fractions Properties (Molecular Weight): 

 
G1C8 = 11.3703978820953; 
G1C0 = -12.1871296215731; 
  
  
  
d(1)=sym('CWf'); 
CWf = 1; 
  
d(2)=sym('MWAvg'); 
MWAvg = 2; 
  
d(3)=sym('SGAvg'); 
SGAvg = 3; 
  
  
  
y = 0.0; 
  
y = (((d(2)+G1C8)-power(d(3),G1C0))*((d(1))^(1/3)+(d(1)^2))); 
 

 

 
Heptane-Plus fractions Properties (Specific Gravity): 

 
G1C6 = 17.0636230676328; 
G1C1 = -5.38069093905454; 
G1C3 = -3.19434379244057; 
  
  
  
d(1)=sym('CWf'); 
CWf = 1; 
  
d(2)=sym('MWAvg'); 
MWAvg = 2; 
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d(3)=sym('SGAvg'); 
SGAvg = 3; 
  
  
  
y = 0.0; 
  
y = power(((G1C6/d(1))*(d(3)/d(1))),((G1C1+G1C3)/(d(2)+d(3)))); 

 
 
 
 
Heptane-Plus fractions Properties (Boiling Point): 

 
G1C9 = 5.63157492202521; 
G1C0 = 1.43944467574612; 
G1C2 = -396.286225847496; 
  
  
d(1)=sym('CWf'); 
CWf = 1; 
  
d(2)=sym('MWAvg'); 
MWAvg = 2; 
  
d(3)=sym('SGAvg'); 
SGAvg = 3; 
  
  
  
y = 0.0; 
  
y = (((d(1)*d(2))*(G1C9/G1C0))+((d(1)/d(3))-(G1C2-d(2)))); 
 
 

 
 
Gas Compressibility Factor: 
 
 
clc 
clear all 

 
a=xlsread('z-factor'); 
Tpr=a(:,1); 
Ppr=a(:,2); 
z_exp=a(:,3); 
  
a   =   0.2625136   ; 
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b   =   3.126365119 ; 
c   =   0.56388785  ; 
d   =   -3.891636887    ; 
e   =   -0.33725254 ; 
f   =   -1.397645228    ; 
g   =   1.055176333 ; 
h   =   0.061688046 ; 
i   =   0.447935053 ; 
j   =   0.521752161 ; 
  
z=a+b./Tpr+c*log(Ppr)+d./Tpr.^2+e*(log(Ppr)).^2+f*(log(Ppr))./Tpr+g./Tpr.^3+h*(log(Ppr)).^3+i*(log(
Ppr)).^2./Tpr+j*(log(Ppr))./Tpr.^2; 
  
figure(1) 
plot(z_exp,z,'*',[0.3 1.3],[0.3 1.3],'r-') 
axis([0.3 1.3 0.3 1.3]) 
100*sum(abs(z-z_exp)./z_exp)/length(z) 
figure(2) 
plot(Ppr,z,'*') 
 

APPENDIX E 
 

Adaptive Neuro-Fuzzy Inference System Algorithm  

 
The MATLAB code developed in this study for the adaptive neuro-fuzzy inference 

system algorithm is presented as follows. 

 
 
 
clc; 

clear all; 

tic 

%% Load Data 

Data = xlsread('Data.xls');    % read the data from your excel file 
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x = Data(:,1:end-1);           % read the number of input columns  

t = Data(:,end);               % read the number of output column 

%% Generate Basic FIS 

fis = genfis3(x,t);            % for different data you can use "genfis1" and "genfis2", but the best one is 

"genfis3" 

  

%% Train Using ANFIS Method 

fis = anfis([x t],fis);        % training process is going to be handeled by "anfis"   

          

%% Results  

yy = evalfis(x,fis);           % evaluation or prediction is handeled by "evalfis" 

ee = t - yy;                   % estimation of errors  

figure; 

subplot(1,2,1); 

plot(t,'r:'); 

hold on 

plot(yy,'b'); 

legend('Targets','Outpus'); 

title('Targets and Outputs'); 

subplot(1,2,2); 
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bar(ee); 

legend('Errors'); 

toc 

fuzzy(fis) 

APPENDIX F 
 

Definition of Statistical Error Parameters 

 
For performance evaluation of the newly proposed artificial intelligence based models, a 

number of statistical deviation parameters have been used. The formulas related to the 

abovementioned deviation parameters are as follows: 

1. Average percent relative error (APRE, or Er). It evaluates the relative deviation of 

estimated petroleum reservoir fluids properties data from the actual ones, which 

is expressed as follows: 
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where Ei% stands for the relative deviation of a represented/predicted values from its 

related actual value and is defined as percent relative error: 
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2. Average absolute percent relative error (AAPRE, or Ea), is also called average 

absolute relative deviation (AARD) in this study. It measures the absolute relative 

deviation (ARD) from the actual data and is expressed as follows: 
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3. Root mean square error (RMSE). It measures the data scattering around the zero 

deviation, expressed as follows: 
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4. Standard deviation (SD). It is a criterion of dispersion and a lower value exhibits a 

smaller degree of dispersion. It is expressed as follows: 
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5. Coefficient of Determination (R2, or R-squared). This parameter is a simple 

statistical deviation parameter which illustrations how good the model matches 

the data and accordantly, expresses a measure of the usefulness of the developed 

models. It is expressed as follows: 

 

 

 












n

i

n

i

i

ZZ

ZZ

R

1

2
 rep./pred i

1

2
 rep./pred iexp

2 1  (A.6) 

 

where Z
 is the mean of the actual/literature/experimental data values presented in the 

above equation. 
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APPENDIX G 
 

The Results for the Classification of Asphaltene Stability 

 
As mentioned earlier, to classify the asphaltene stability, the DT and ANFIS approaches 

have been employed in this study. Furthermore, the results obtained by the mentioned 

approaches are compared with the output of LSSVM algorithm (Chamkalani, 2015). 

Table A. 1 summarizes a comparison between the predicted data by the ANFIS approach 

comparing with the LSSVM output. Fig. A. 1 indicates the applicability ranges of most 

important input variables viz. aromatic + resin and asphaltene + saturates for DT 

algorithm. Furthermore, Fig. A. 2 illustrates the fitting curve and relative error 

distribution plot for ANFIS algorithm. The results demonstrates that the output data are 

in satisfactory agreement with the actual field data. 
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Table A. 1 Comparison between the simulated output and field observation stability state. 

Ar+Re As+Sa Data (Numeric) Data (Symbolic) ANFIS 

LSSVM 
(Chamkalani, 
2015) 

56.16 35.09 0 No or minor OK OK 

54.27 33.47 0 No or minor OK OK 

63.89 28.61 0 No or minor OK OK 

70.79 33.1 0 No or minor OK OK 

75.97 45.69 0 No or minor Wrong OK 

76.13 47.31 0 No or minor OK OK 

74 45.82 0 No or minor OK OK 

38.62 30.12 1 Mild OK OK 

38.79 31.3 1 Mild OK OK 

40.43 30.5 1 Mild OK OK 

42.33 34.37 1 Mild OK OK 

48.84 38.87 1 Mild OK OK 

52.14 41.5 1 Mild OK OK 

55.1 43.37 1 Mild OK OK 

55.35 46 1 Mild OK OK 

69.61 58.25 1 Mild OK OK 

62.03 64.4 2 Severe Wrong Wrong 

59.39 70.88 2 Severe OK Wrong 

53.21 59.91 2 Severe OK OK 

51.23 54.67 2 Severe OK OK 

48.1 50.93 2 Severe OK OK 

42.08 56.42 2 Severe OK OK 

44.31 59.66 2 Severe OK OK 
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Fig. A. 1 the applicability ranges of most important input variables viz. aromatic + resin 

and asphaltene + saturates for DT algorithm 

 

 

 

Fig. A. 2 the fitting curve and relative error distribution plot for ANFIS algorithm. 
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APPENDIX H 
 

Further Study on the Classifiably Performance of the 

Developed Algorithms 

 

Hydrofluorocarbons (HFCs), or "super greenhouse gases," are gases used for 

refrigeration and air conditioning, and known as super greenhouse gases because the 

combined effect of their soaring use and high global warming potential could undercut 

the benefits expected from the reduction of other greenhouse gases such as carbon 

dioxide. Used as refrigerants, they were introduced by the chemical industry to replace 

ozone destroying CFCs (chlorofluorocarbons). As a matter of fact, the determination of 

solubility of hydrocarbons in hydrofluorocarbons experimentally is expensive and time- 

consuming. Therefore, it is much important to develop reliable models which are fast and 

accurate than laboratory apparatus. To this end, three reliable predictive models have 

been proposed in this study for the prediction of solubility of hydrocarbons in 

hydrofluorocarbons. 

In this study, three reliable models are developed which are based on artificial 

intelligence techniques viz. least square support vector machine, decision tree, and fuzzy 

logic system. To this end, numerical descriptors have been considered as the input 

variables of the models to predict the hydrofluorocarbons ability to dissolve the 

hydrocarbons, considering “Solvent” or soluble and “Non-solvent” or insoluble 

components as an output set. In other words, numerical descriptors (Dowman and Woolf, 

1995) for a number of FC and HFC compounds have been considered as input variables, 

and the outputs are set at 1 and 0 for solvents or soluble components and non-solvents 

or insoluble components, respectively. The input variables are the number of C, H, and F 

as well as the ration C to F and H to F. Additionally, sum of α and β factors which allowed 

for polarity is another input in addition to R which is the ratio of number of carbons. Fig. 

A. 3 is the tree diagram obtained by the DT algorithm illustrating the applicability ranges 

of most important input variables (R and C/F) for the prediction of solubility of 

hydrocarbons in hydrofluorocarbons. Fig. A. 4 demonstrate the performance (receiver 

operating characteristic (ROC curve)) of the LSSVM algorithm in predicting the solubility 
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of hydrocarbons in hydrofluorocarbons. Fig. A. 5 indicates the error range obtained by 

the ANFIS method for the output variables viz. solvents and non-solvents. 

 

Fig. A. 3 The applicability ranges of most important input variables (R and C/F) for DT 

algorithm. 

 

 

 

Fig. A. 4 The ROC curve which measures the performance of a classifier (LSSVM). 
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Fig. A. 5 Fitting curve and relative error distribution plot for ANFIS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


