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Abstract

For a number of years, researches on optimization have investigated and explored

different methods that can uncover or provide optimal solutions to a number of

problems in the area of timetabling and scheduling. For decades the scheduling

of sport tournaments has been done manually through years of experience, how-

ever the manual process takes a substantial amount of time and to automate this

process, a different set of heuristics have been applied to produce the schedules

in a significantly less amount of time. This study focuses on the performance of

the Swarm Intelligence (SI) metaheuristics on the Traveling Tournament Problem

(TTP).

TTP is a timetabling problem in sports which abstracts the issues that are im-

portant in creating timetables where traveling is a significant issue. TTP is a

combinatorial optimization problem that involves devising a schedule that allows

teams in a league or tournament play each other twice while minimizing the travel-

ing distance. Scheduling of professional sports is one of many researched practical

problems in combinatorial optimization. The scheduling of professional sports is

a known NP-Hard problem which is very difficult to solve as it involves multiple

constraints.

Various methods of solving the problem have been implemented. Some methods

such as integer and linear programming are only effective for small instances of the

problem, and metaheuristics have been successfully applied to the problem, even

for larger instances of the problem. Five Swarm Intelligence (SI) metaheuristics are

implemented in this study to address the problem and the algorithms are applied

to two different data instances which are used frequently in literature, with a max-

imum of 16 teams. Results obtained are compared with previous results obtained

in literature. The algorithms obtained good solutions for small instances, and some

of them proved to be very competitive for large instances.
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Chapter One

Introduction

Scheduling is one of the many researched practical problems in combinatorial opti-

mization. Scheduling consists of developing a timetable of events within a specified

time frame and given a set of resources such that no one of the events conflict with

one another or violate any constraints [1]. Some real world scheduling problems

include job shop scheduling, school examination timetable and scheduling processes

in a computer operating system.

For many years the design of professional sports schedules have been done manu-

ally through a combination of adherence to tradition and years of experience [2].

However there have been several efforts to understand and examine the goals and

constraints of sport scheduling, most of these constraints have focused on the dif-

ficulty of producing a feasible schedule. The manual process takes a substantial

amount of time, and the final result is usually far from the expected optimal sched-

ule [1]. To eliminate the inefficient practice of manual scheduling, researchers have

tried to automate the task of scheduling by applying a set of heuristics that produce

schedules in significantly less time than a manual approach.

The organization of sports is becoming more complex as professional sports leagues

now consist of many teams playing long schedules, and thus the creation of sports

league schedules have become a difficult task. Beyond the complexity of creating

a schedule to be contained within a specified time period, there are also the issues

1



of venue availability, travel time and cost, fairness in schedules between the teams,

along with a multitude of other constraints and desired goals [3]. Devising a sched-

ule that meets all of a league administrator’s criteria regarding when and where

games should be played is an NP-Hard optimization problem i.e. there is no known

polynomial time algorithm capable of finding a solution that combines the given

resources in an optimal way without violating constraints, because as more teams

are added to a league, the search space of possible schedules grows exponentially.

Sports scheduling has attracted a lot of interest from different research communities

such as the Operations Research (OR) and Artificial Intelligence (AI) communities.

There are various important or essential aspects to be considered in determining

the best schedule, in some situations one seeks for a schedule that minimizes the

total distance traveled and in some situations one seeks for a schedule that attempts

to minimize the number of breaks [4]. The former will be the focus of this thesis.

A solution to the Traveling Tournament Problem (TTP) is a Double Round-Robin

Tournament (DRRT) that minimizes the total traveling distance amongst all the

teams and satisfies feasibility constraints. Because the total traveling distance is an

immense issue for every team taking part in the tournament, solving the TTP may

be a base for the solution of real timetabling applications in sports. Schedules with

minimum traveling times are of major interest to leagues, teams, fans and sponsors

[4].

Several researchers have addressed the problem of scheduling tournaments in vari-

ous sports and leagues using different approaches such as Constraint Programming

(CP) or Integer Programming (IP), local search and population based algorithms.

The TTP has a combination of common features from the Traveling Salesman Prob-

lem (TSP) [5] and tournament scheduling problem, thus it puts forward strong

issues of feasibility together with a optimization part that is complex (distance

traveled) [6]. From both the theoretical and practical side it is considered an in-

teresting problem. Due to the complexity of the TTP, it has proved to be difficult

to solve by means of exact methods even for very small problem instances, even
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by employing advanced combinatorial optimization techniques. For instance, its

solution by either CP or IP has so far been made possible for problem instances for

up to only six teams [7].

1.1 Metaheuristics

Metaheuristics are designed and developed to solve optimization problems that are

complex, where other relevant optimization techniques have either been inefficient

or ineffective [8]. Metaheuristics are now recognized as one of the best approaches

that are practical for tackling complex problems, especially for numerous real world

problems which are combinatorial in nature. General applicability and effectiveness

are the beneficial properties of metaheuristics. Previously, specific heuristics were

usually developed to tackle complex optimization problems which are combinato-

rial. The need for a new or different approach to each problem arose as whatever

was learned from one problem was not always generalized to a class of different

problems. With the emergence of strategies that provide a general solution like

metaheuristics such as Simulated Annealing (SA), Genetic Algorithm (GA) etc.,

the only challenge one faces currently is adapting the metaheuristics to a specific

problem, and this requires minimal effort compared to developing a specific heuristic

for a certain application. A good implementation of a metaheuristic will probably

provide a close to optimal solution in moderate computational time.

The application of metaheuristics as a chosen method over other optimization tech-

niques/methods is mainly to enable researchers find good solutions to optimization

problems that are complex having numerous local optima and little structure that

is essential to lead the search. Using the metaheuristic approach to solve problems

begins by obtaining an initial solution or sets of initial solutions and by introduc-

ing an improved search which is led by certain principles with the search structure

having many elements which are common across different methods. There is always

a set of solutions or a solution θk that denotes the current state in every step of
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the search algorithm. Metaheuristics are classified into solution-to-solution search

methods such as SA and Tabu Search (TS) and set based search methods such as

GA etc. The former means that θk is a single solution or point θk ∈ Θ in a solu-

tion space, and the latter means that in every step θk represents a set of solutions

θk ⊆ Θ [8]. Nevertheless, regardless of whether it is a solution-to-solution or set

based metaheuristic, the fundamental structure of the search stays the same.

“Given a neighborhood N(θk) of the solution (set), a candidate solution (set) θc ⊂

N(θk) is selected and evaluated. This evaluation involves calculating or estimating

the performance of the candidate solution(s) and comparing them with the perfor-

mance of θk and sometimes with each other. Based on this evaluation, the candidate

solution may either be accepted, in which case θk+1 = θc, or rejected, in which case

θk+1 = θk [8].”

1.2 Swarm Intelligence

The main focus of this study is on Swarm Intelligence (SI) metaheuristics and their

performance compared to other optimization algorithms in literature, in this sec-

tion the background of SI is discussed.

For a number of years numerous biological systems have tackled complex prob-

lems by sharing information with other members of the group. By studying and

understanding the fundamental individual behaviours and collective behaviour of

insects, one will have an understanding of the fundamental mechanisms of SI. In

this section insects will used to illustrate the formation of patterns, the making of

collective decisions and how a large group of insects are able to move together as

one.
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1.2.1 Decision Making

“The evolution of sociality, the phenomenon where individuals live together within

a nest such as is found in many bees and wasps, and all ants and termites, has

created the need for information transfer among group members. No longer can

each individual simply behave as if solitary, but actions by different group members

need to be carefully tuned to achieve adaptive behaviour at the level of the whole

group [9]”. Collective decisions need to be made by the colony of insects, decisions

such as where to forage, which nest to move to, the right time to reproduce and

the delegation of tasks according to resource availability or work force. Individuals

act mainly on information obtained locally by interacting with their peers and

the immediate environment, and the group level decisions are the result of this

behaviour. Ants and honeybees will be used to show how this is achieved by insect

colonies.

1.2.1.1 Where to Forage?

A form of recruitment needs to be performed or undergone by social insects in order

to organize foraging. This enables insects to efficiently forage in an environment

with food sources that are distributed intermittently/sporadically or too large for

a single individual to exploit. Social insects that can pass information about the

location of good food sources have the ability to exploit an area much more than

those that lack a mechanism for recruitment as sophisticated as this one. Hon-

eybees are an example of insects with such recruitment mechanism, their dance

language which is very sophisticated enables them to forage food sources which are

far from their colony; as far as 10 kilometers. Among social insects, recruitment

mechanisms are very different, but can be split into two classes: direct and indirect

mechanisms. One good example of an indirect mechanism is the use of chemical

trails for mass recruitment. There is no physical contact between the recruitee and

recruits, instead communication is via the modulation of the environment; the trail

[9]. On its way back from a good food source, the recruiter deposits pheromone and
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this trail is simply followed by the recruits. One can think of this mechanism being

similar to broadcasting in a way, broadcasts have no control over who receives the

broadcasted information. The honeybees’ dance language is the best known exam-

ple of indirect recruitment. The dance encodes information about the distance and

direction of the food source, and is performed by successful foragers (recruiters).

Potential recruits will try to locate the food source being advertised by extracting

the information passed to them via the dance.

A double bridge experiment, which a lot of computer scientists are quite familiar

with, is an example of the organization of foraging in ant colonies. In this exper-

iment, a colony of ants laying trails are offered two equal food sources which are

located at the end of two paths with different lengths. The shorter path is eventu-

ally chosen by the majority of foragers after some time. This is due to the positive

feedback process; on their way back to the nest, ants that find food mark the en-

vironment with pheromone trails, and probabilistically these trails are followed by

ants searching for food. This trail following behaviour enables ant colony to select

the best food source out of many possible food sources without the individual ants

having to compare the quality of food sources available.

Several experiments performed on different species of ants have illustrated that ants

modulate the amount of pheromone deposited depending on the quality of the food

source, the more pheromone is left, the more likely other ants are to follow the trail

to the best food source. “The success of the pheromone trail mechanism is likely

to be due, at least in part, to the non-linear response of ants to pheromone trails

where, for example, the distance at which an ant follows a trail before leaving it, is

a saturating function of the concentration of the pheromone. In other words, the

probability an ant will follow a trail is a function of the trail strength (expressed as

concentration of pheromone), However ants never have a zero probability of losing

a trail, irrespective of the strength of the trail [9]”. Mathematically, non-linearity

in response means an increase in the number and complexity of solutions of the

model equations which may be thought of as underlying foraging.
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Biologically, the distribution of ants between food sources corresponds to a differ-

ential equation solution, and an increase in solutions means more flexibility as the

ants make a selection between different possible food sources or solutions. Provided

that the food source has unlimited capacity, this allocation of workers among food

sources, which basically assigns to the best food source all trail following foragers

is optimal. If a food source has unlimited capacity, trail following ants will be

directed to it and they cannot feed from it. The ant colony gets stuck in a subop-

timal solution in a way and the only way to get out, is by introducing some layers

of complexity which basically signals to the ants to avoid such a food source, this

is known as negative pheromone in ant colony. Another drawback of pheromone

reliance is that competing with an existing trail may be difficult, even if a good

food source is found. If due to conditions that existed initially, a food source which

is mediocre is found first, ants that have discovered a better food source after the

establishment of the first trail will not be able to build up a trail that is strong

enough to attract nest mates to the newly found food source and thus again the

ants are stuck in a sub-optimal solution.

Honeybees do not get stuck in sub-optimal solutions because their recruitment

mechanism is fundamentally different. The direct mechanism encodes two impor-

tant pieces of information; the distance and the direction to the target. Both are

necessary as honeybees have to deal with a three dimensional space unlike ants.

The dancer shakes her body from side to side vigorously and strides forward about

1.5 times her length during the typical dance, and this is known as the waggle

phase of the dance. The bee makes an abrupt turn to the right or left after this

phase, circling back to start this phase again and this is known as the return phase.

After doing the waggle phase for the second time, the bee turns in the opposite

direction so that the figure eight pattern of the waggle dance will be traced with

every second circuit of the dance [9]. The waggle phase is the phase that is the

most information rich. In the duration of the waggle phase, distance information is

encoded. For nearby targets, dances for the waggle phase are short and longer for

distant targets. For dance followers to be able to decode the direction information
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they need to be in close contact with the dancer and thus only limited individ-

uals receive this information. Furthermore, more than one dance can take place

simultaneously, and these dances can either be for the same or different sites. The

assumption is that the number of followers that read a dance are infinite, so there

is no direct competition between dances and these dances are only performed for

very good food sources.

For a forager to determine the quality of the food source encountered, it uses an

internal gauge to evaluate the profitability of the source, based nectar sugar con-

tent and the distance of the source from the colony, as well as how easy nectar can

be collected. The nervous system of a bee is calibrated with a threshold which it

uses to measure these variables when deciding whether it is worth foraging for a

particular patch and whether it is worth advertising that patch to other workers.

Dancers adjust both the vigour and duration of their dance depending on the prof-

itability of their current food source. The number of waggle phases performed by

the dancer in a certain dance, measures the duration of the dance and the time

interval between the waggle phases measures the vigour. More nest mates are re-

cruited to a more profitable food source which is indicated by a larger number

of waggle phases and by a smaller return phase. This basically means that when

two dances are performed at the same time, one for a good site and the other for

a mediocre site, dance followers are more likely to be attracted to the good site,

however the mediocre site will still attract some other followers, since dances are

not weighed or evaluated by the followers before making a decision as to which one

to choose/follow.

1.2.1.2 Exploration vs. Exploitation

In most studies done on the allocation of foragers to food sources, the forager sites

or feeders are kept constant in a stable environment. In stable conditions, from

the colony’s point of view, the optimal solution is to focus only on the best or

good food source and the ant species do exactly this when collecting stable food

8



sources like leaves or honeydew. They construct trails that last for a long time,

and connect the foraging locations to the nest. Due to the workers changing the

environment actively by removing vegetation, trails are more or less permanent in

some species. When the conditions become unstable, there has to be some sort of

mechanism that allows a change over to another profitable food source, when the

initial food source has been exhausted. This basically means that for these species

to do well in a dynamically changing environment, the colony of insects should have

some sort of repository for storing information about existing food patches that are

being exploited but also allow exploration for new sites at the same time. The

trade off between exploitation and exploration is key in keeping track of changing

conditions.

As mentioned earlier, there is never a zero probability that ants that follow a trail

would not lose it, irrespective of the trail, resulting in some ants getting lost even

when the trail is at its strongest [9]. Assuming, that the ants that got lost are ca-

pable of discovering new food sources and thus assist as explorers or scouts for the

colony, depending on the profitability of the food source being/already exploited,

this strategy allows the number of scouts to be fine tuned. This is because, as

the trail gets weaker, the number of ants that get lost increases and thus become

scouts. A stronger trail will result with a less number of ants getting lost and hence

a smaller number of scouts. The honeybees’ regulation of scouts ensures that there

is a right balance between the number of workers/individuals assigned to explo-

ration and exploitation.

A forager that does not know where to forage will try to locate a dance to follow

first, if she fails to do so due to the number of dancers being small, she will search

the surroundings and leave the colony, and thus become a scout. Because of this,

if many good forage sites have not been discovered by the colony, the number of

scouts becomes high. This mechanism affords the colony ways to immediately ad-

just the number of scouts based on the available information on forage sites that

are profitable. Other profitable sites that need to be exploited may still exist even
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if the colony is currently exploiting profitable patches. As soon as the number of

dancers decrease in the colony, there is an increase in the probability that some

foragers that are not employed will not be able to locate a dancer, and for that

reason the colony sends out some more scouts.

1.2.1.3 Where to Live?

Even more astonishing is that the same communication methods are frequently

used to achieve a very different goal; selecting a new nest. A new home needs to

be selected under two conditions; either an old nest has been ruined and the whole

colony needs to move, or a new nest site is required by some part of the colony for

reproductive swarming reasons i.e. the initial/original nest has grown to a point

that some part of the colony needs to be sent off to start a new colony, this part

is sent off with two or three queens. Insects exhibit similar behaviour as humans

when changing homes, asking the same kind of questions: what potential homes are

alternatively available? How do they compare in terms of attributes? Has enough

information been collected? Social insects use the same communication mechanism

as above when house hunting [9].

1.3 Purpose of Study

A lot of research has been done on the TTP using various methodologies but only

a few of these methodologies are based on Swarm Intelligence (SI). The purpose of

this study is to tackle the TTP using SI algorithms, apply these algorithms to two

data sets that have been used quite often in literature to address this problem, and

then compare the performance of these algorithms with previous results found in

literature. The algorithms are Cuckoo Search (CS), Artificial Bee Colony (ABC),

Bacterial Foraging (BFO), Bat and an algorithm that combines the CS, BFO and

Bat.
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1.4 Scope of Study

The TTP is a broad problem, there are different relevant aspects to consider in

determining the best schedule. Some people seek for a schedule that attempts to

minimize the total number of breaks and some seek for a schedule that minimizes

the total distance traveled. In this study the focus is on the latter (minimize the

total distance traveled), usually there are breaks in sports leagues or tournaments

but this is not taken into consideration in this study for simplicity purposes. This

study limits testing to only two data sets with a maximum of 16 teams, since these

are commonly used in literature and this study only focuses on the SI.

1.5 Thesis Structure

In Chapter Two the literature review is discussed and is split into two sections;

Constraint and Integer Programming, and Metaheuristics. A comparative study of

the results found in literature is also undergone. Other scheduling problems tackled

with SI are also explored. In Chapter Three, the methodology adopted including

an overview of the TTP and the mathematical model employed are discussed and

finally in Chapter Four, the experimental results and findings from the study are

represented.
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Chapter Two

Literature Review

In this chapter, an overview of the various approaches that have been utilised

in solving the TTP is given. In section 2.1, a few Integer Programming (IP) and

Constraint Programming (CP) approaches that have been used to solve the problem

are discussed, in section 2.2, some metaheuristics that have been used to solve the

problem are discussed and in section 2.3 a review of other scheduling problems that

have been solved using swarm intelligence algorithms is given.

2.1 Constraint and Integer Programming

CP is a programming paradigm in which constraints are used to state relations

between variables [10]. Constraints determine the properties of a solution to be

found rather than a sequence of steps to execute and this differentiates them from

the common imperative programming languages [10]. A problem must first be

formulated as a Constraint Satisfaction Problem (CSP) when solving it using CP. In

order to achieve this, one first introduces variables that range over set domains and

define constraints for the introduced variables, the constraints can be expressed in

any chosen language. Finally one can use either general or domain methods [11] to

solve the representation chosen. The modeling language offered by CP is very rich,

it allows various constraint types and this makes it easier to use an intuitive model
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to formulate a problem and people do not need to have an indepth understanding

of the underlying mechanisms for them to use the solution technique.

An IP problem “is a mathematical optimization or feasibility program in which

some or all of the variables are restricted to be integers” [12]. IP may sometimes

be referred to as Integer Linear Programming (ILP), and can also be referred to as

Mixed Integer Linear Programming (MILP) when some but not all the variables are

restricted to be integers. Linear Programming (LP) problems contain an objective

function that is linear and the objective is to minimize or maximize while satisfying

several constraints, discrete problems are modelled as IP or MILP problems in the

OR community and both problems are formulated as LP problems.

Easton et al. [7] proposed a branch and price algorithm which uses IP for the

pricing problem, they used parallel implementation for the algorithm. In [7] they

used CP in addition as a primary heuristic and also used their proposed approach

to solve data sets with 8 teams (n = 8). They proposed the following IP model:

Minimize
∑
i∈P

CiXi (2.1)

Where:

P : is a small set of columns that consist of the best tours for each team, P = 1, 2, ..., k, k

is the number of time slots.

C : distances affiliated with the tours.

Xi: is a binary for i ∈ P

Subject to the following constraints:

• A single tour must be chosen for every team in the tournament.

• In each timeslot every team must play only once.
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Easton et al. [7] also proposed a CP model that runs once for each team. [7] used

variables to represent venues where games for each team will be played in each time

slot. The teams in the tournament are represented by the domains of the variables.

The variables also represent the distances between venues which are in sequence,

but these variables are strictly used in the calculation of the objective. The variable

domains are reduced in accordance with prior branching before running the CP. In

the model proposed in [7], constraints are set as follows:

• The venue for each opponent must appear only once.

• The home venue must appear exactly n-1 times.

• A team must not have more than 3 home or away games consecutively.

• Non-home venues must not appear more than 3 times in sequence.

• The dual values and the total distance affiliated with the games in the tour

must be less than zero.

For the approach proposed in [7], data sets with 4 teams (n = 4) were not difficult

to solve while data sets with 6 teams were more challenging to solve and data sets

with 8 teams were left unsolved.

Juan et al. [13] presented a new hybrid algorithm which combines constraint-based

algorithm and a neighbourhood search. This is an exploration into an improved and

alternative methodology to sports tournament scheduling problems with a number

of special constraints. In [13] the sports tournament scheduling problem is used at

the University Utara Malaysia as a case problem and thus modelled as a constraint

satisfaction problem. The algorithm proposed encompasses three stages; genera-

tion of possible combination of matchups based on the partial round-robin strategy,

gathering and enumeration of all matchups and assignment of teams based on the

relevant constraints through constraint-based scheduling algorithm for the prelim-

inary round. In [13] the tournament scheduling problem is modelled as CSP, the

CSP consists of Constraint Network (CN): (T, S, C), where:

14



• A set of teams, T = [t1, t2, ..., tn], is allocated as the set of variables.

• A set of teams domains, S = [S(t1), S(t2), ..., S(tn)], where S(ti) is a finite set

of possible values for team ti. Domains in this problem are the time slots.

• A set of constraints related to teams, C = c1, c2, ..., ck.

• The objective is to assign pairs of teams into time slots such that all con-

straints are satisfied.

The algorithm proposed in [13] was evaluated in terms of computational time, venue

assignment and duration of break and it managed to provide feasible, efficient and

quick solutions.

Rasmussen [14] modelled the TTP using an IP formulation and CP formulation.

[14] formulated the problem as an IP model using a variable (binary) his (for every

i ∈ T and s ∈ S), where T and S are set of teams and time slots respectively.

His is equal to 1 when team i is playing a home game in slot s and is equal to 0

when team i is playing away. A variable dis ( for every i ∈ T and s ∈ S0) which

is an integer is used to calculate the total distance, which is given by the distance

travelled between slot s and s + 1 by team i. Below is the IP model proposed in

[14]:

Minimize
∑
i∈T

∑
s∈S0

dis (2.2)

Subject to the following constraints:

• Every team starts at home and ends at home.

• The home games for every team must be exactly n− 1.

• Each time slot consists of a match between two teams (team i1 and i2), only

one of the teams must be a home team and the other one an away team.

• Team i must play the same opponent two times, one home game and one

away game in two different slots.
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Rasmussen [14] used variables similar to the ones used in the IP model to formulate

the problem as a CP model which allowed them redefine the constraints and this

is why their CP model differs from their IP model. Rasmussen [14] also proposed

a hybrid IP/CP technique that decomposed the problem into two different phases.

The first is responsible for generating feasible patterns for every team using CP

and phase 2 is responsible for the assignment of teams to the generated patterns

to find the optimal pattern set using IP. In [14], CP solved instances with n = 6

teams better than IP but could not solve instances with n = 8, while IP solved all

the data sets with n ≤ 10 and only one data set with n = 10 teams. The proposed

hybrid IP/CP technique in [14] outperformed the IP and CP models, it proved to

be fastest on average, but the major drawback with this hybrid is that it consumes

a lot of memory when generating initial patterns.

2.2 Related Research

A metaheuristic [15] is a high-level algorithm framework which is independent from

the problem and heuristic optimization algorithms are developed using a set of

tactics provided. There is no positive assurance that optimal solutions will be

found with metaheuristics, and for this reason, they are specifically developed to

find a suitable or competent solution in the smallest computational time possible.

Metaheuristics can search large spaces of possible solutions and make few or no

assumptions about the problem being optimized [16].The scientific community has

shown that metaheuristics are the viable and often preferred alternative to exact

methods, especially for large data sets or problem instances, most of the time they

are able to offer a better compromise between computing time and the quality of

the solution.

There are two important ways in which metaheuristics are more flexible than ex-

act methods. Firstly, most optimization problems in real-life have requirements in

terms of the expected quality of the solution and the computing time allowed, which
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can differ depending on the problem, metaheuristic algorithms can be adjusted to

fit those needs. Secondly, when it comes to the formulation of the problem, meta-

heuristic algorithms do not place any complex or unnecessary demands [15]. In this

section some of the metaheuristic algorithms that have been used for the TTP are

reviewed.

Anagnostopoulos et al. [17] presented a Simulated Annealing (SA) algorithm for

the TTP which explores both the infeasible and feasible schedules. In [17] they

use a large neighbourhood and advanced methods such as reheats for balancing

the exploration of the infeasible and feasible regions and for escaping local minima.

The other advanced method they use is the strategic oscillation. The results they

obtained match the best known results on smaller instances and are much better

on larger instances. Hung et al. [18] used a Genetic Algorithm (GA) to solve the

constraint satisfaction problem for sport schedules and analysed the battle com-

bination constraints of the National Basketball Association (NBA) and National

Hockey League (NHL). They simulated the NBA schedules in 2009. In [18] they

planned the schedules based on the shortest traveling cost. The system was able

to arrange two or more sport schedules. The schedules satisfied all the expected

characters of every league and the genetic algorithm used, solved the scheduling

problems effectively.

Gaspero and Schaerf [6] proposed a Tabu Search (TS) approach to the solution of

the TTP. The proposed approach uses a combination of two neighborhood rela-

tions. In [6], before applying a local search to the problem, they defined numerous

features. These features include illustrating the cost function, the procedure for

computing the initial state and the search space. Then finally, they define the

structure of the neighbourhood and described the guiding metaheuristic. Their

algorithm performed very well in terms of computational time and also obtained

good quality solutions for some benchmark problems.

Wei et al. [19] tackled the mirrored Traveling Tournament Problem (mTTP). The

only difference between mTTP and the general TTP is the mirrored double round-
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robin concept, which is basically a double round-robin tournament in which the

second half of the tournament is the mirror of the first half (i.e. the venues are

reversed). They proposed a local search hybrid that combines TS and a Variable

Neighbourhood Descent (VND) metaheuristic together with a procedure that is

based on a greedy randomized adaptive search which helps in the exploration of

large neighbourhoods. The approach proposed in [19] did not perform well on small

benchmark instances due to the conciseness of the neighbourhood structure.

Lim et al. [20] used a combination of SA and Hill-Climbing (HC) algorithms or

techniques to solve the problem. They divided the search space; for searching a

timetable space they use SA and for exploring team assignment space they use HC.

SA uses conditional jumps to mutate timetables that will lead to better schedules

and the enhancement of HC by dynamic cost updating and pre-computation to pro-

duce efficient and fast searches [20]. Their approach gave better results compared to

other results they used for benchmarking. Tajbakhsh et al. [21] proposed a differ-

ent mathematical model with no-repeater constraints for the TTP and additionally

proposed a hybrid algorithm that combines SA and Particle Swarm Optimization

(PSO). In phase 1 of the proposed hybrid, PSO is used to generate many schedules

very quickly. In phase 2, the best schedules are applied and improved by SA [21].

The results obtained in [21] were comparable to the best known solutions used for

benchmarking and even performed better with standard (small) instances, in terms

of computational time.

Chen et al. [22] proposed a framework in which ant algorithm is employed as a

hyper-heursitic. The problem is modelled as a fully connected graph by the pro-

posed algorithm. The pheromone volume on the edges of the graph is used by the

ants when deciding on their next move (which vertex to visit next) from the current

vertex. The vertices represent some visible feature of the problem. A heuristic ap-

plied to a current solution returns a new solution, each vertex represents a heuristic

to be applied. The vertices of the network have many ants carrying initial solutions

uniformly located with each ant representing a hyper-heuristic agent. When an ant
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arrives at a vertex, a heuristic at that node is applied. The proposed algorithm in

[22] performed very well (found optimal solutions) with smaller instances (n = 4

and n = 6 teams) and also for large instances, the algorithm obtained very good

and high quality solutions.

2.2.1 Comparative Study

Tables 2.1 and 2.2 below show the solutions obtained for two different data sets

by the metaheuristics discussed above. Some metaheuristics were only tested for

only one of the instances and some were only tested for instances with n ≥ 8

because most metaheuristics obtain very good solutions for smaller instances. The

highlighted entries illustrate the best solution obtained for that data instance by

comparing all the metaheuristics.

Table 2.1: Comparative Study of Metaheuristics in Literature

Author Method Circ4 Circ6 Circ8 Circ10 Circ12 Circ14 Circ16

Anagnostopoulos et al. [17] SA - - 132 254 420 682 976

Gaspero and Schaerf [6] TS - - - 244 426 682 1004

Wei et al. [19] TS, VND - - 132 288 456 714 1002

Lim et al. [20] SA, HC 20 54 132 246 408 654 928

From Table 2.1 and 2.2 we can observe that in most Circn and NL10 instances

good solutions are obtained by Lim et al. [20] and Anagnostopoulos et al. [17]

respectively.

2.3 Other Scheduling Problems

In this section a few of the various approaches used to automate scheduling prob-

lems are explained with more focus on those that employ Swarm Intelligence (SI).
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Table 2.2: Comparative Study of Metaheuristics in Literature

Author Method NL4 NL6 NL8 NL10 NL12 NL14 NL16

Anagnostopoulos et al. [17] SA - - 39721 59583 112298 190056 267194

Wei et al. [19] TS, VND - - 42802 64992 120635 208086 286532

Lim et al. [20] SA, HC 8276 23916 39721 59821 115089 196363 274673

Chen et al. [22] Ant 8276 23916 40361 65168 123752 225169 321037

Tajbakhsh et al. [21] SA, PSO 8276 23916 39721 65002

Finding the optimal solution for fairly large scheduling problems may not be practi-

cal and thus resorting to techniques that find reasonable solutions in an acceptable

time frame is more feasible.

2.3.1 The School Timetabling Problem

In many respects, scheduling timetables for a university or high school is very

similar to the sports scheduling problem and there are significant researches that

have been done in this area. Timetabling entails “assigning a set of events to a

number of rooms and timeslots such that they satisfy a number of constraints” [23].

The most common variants of the problem are the University Course Timetabling

Problem (UCTP) and the Exam Timetabling Problem (ETP). The two have minor

constraint related differences. For ETP, exams can take place in the same room

and timeslot as long as all constraints are satisfied whereas in UCTP only one event

can occupy a certain room at a specific time [23].

Sheafenho et al. [24] proposed a PSO approach to solve the UCTP. In [24] they use

a standard PSO-based algorithm and apply it to three different UCTP datasets.

Their proposed approach did not do so well compared to other algorithms used

for benchmarking, but did well in terms of computational time. Sheafenho et al.

20



[25] also proposed a combination of PSO and local search to effectively search the

solution space in solving the UCTP. PSO is applied to schedule subjects into the

timetable at each iteration and whenever there are clashes in the timetable, the local

search is applied to seek for the nearest available neighbourhood timeslot and room

[25]. The local search algorithm used in [25] is not mentioned in their research study.

The proposed algorithm was tested on three different datasets of different sizes and

performed very well compared to other algorithms used for benchmarking.

Djamaras and Ku-Mahamud [26] presented an algorithm; an ant system based

algorithm for solving the UCTP. They use a bipartite graph to model the problem.

From the graph’s characteristics, four heuristic factors are derived for directing

ants as agents in finding elements of course timetabling. The first factor is more

concerned with finding a destination vertex that has the shortest path leading to it

from the source vertex, and the source vertex load is distributed by the second factor

to destination vertices. The third factor gives high priority to courses that require

more time to deliver, and finally, high priority is given to edges that represent

expertise of the lectures in choosing courses and preferable time slots by the fourth

factor and this leads to high quality schedules [26]. [26] applied the concept of

negative pheromone which ensures that the paths that lead to a dead end are not

selected. The proposed algorithm was tested on randomly generated data and the

use of the four heuristic factors and negative pheromone concept improved the

performance of the algorithm.

Khang et al. [27] proposed the bees algorithm to solve real-world UCTP in Vietnam,

this was a highly constrained UCTP. The curriculum-based UCTP was considered

in [27] mapping between a set of periods, devices, rooms and a set of courses in such

a way that the requirements of the university are satisfied. The proposed algorithm

was applied to 9 real-world data sets and obtained very promising results which

were much better than handmade results.
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2.3.2 Job Shop Scheduling Problem

In the Job Shop Scheduling Problem (JSSP) n jobs j1, j2, j3, ..., jn, which need to

be scheduled on m machines are presented with the objective of minimizing the

makespan (time required to complete the jobs) [28].

Chong et al. [29] presented an innovative method that uses the foraging model of

the honey bees to solve the JSSP. The JSSP is presented as the disjunctive graph,

each operation has a node and there are two extra nodes called the source which

serves as an initial operation and the sink which serves as a final operation. The

initial operation of each job is connected to the source and the sink is connected

to the final operation. In the graph, the length of the longest directed path gives a

solution’s makespan and the total of the processing times of the problem in a path

gives the length of that path [29]. The algorithm proposed in [29] was applied to

82 JSSP instances and did not obtain good solutions but was able to provide some

solutions that were comparable to other algorithms used for benchmarking.

Sha and Lin [30] proposed a PSO for solving a multi-objective JSSP. In the approach

suggested in [30], rather than moving particles towards the best solution, the focus

is on preventing them from becoming stuck in local optima. The proposed algorithm

was applied to benchmark problems and obtained very good results on all instances.

Li et al. [31] presented an Artificial Bee Colony (ABC) hybrid algorithm to solve

the flexible JSSP. In proposed algorithm, local search is performed using TS for the

employed bee phase, scout bees and onlooker bees. The proposed algorithm was

then applied to five well-known benchmark instances and proved to be superior to

other algorithms in terms of computational complexity and search quality.

Li and Wang [32] proposed an improved version of an ant colony algorithm to solve

the multi-objective flexible JSSP. The flexible JSSP is based on several objects;

the first object is based on the time taken for production e.g. the makespan, the

second object is based on delivery date e.g. cost of delay and the last one is based

on cost e.g. cost of processing [32]. The approach proposed in [32] only focus on

production time which includes makespan, total workload and machine workload.
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The proposed approach was applied to practical instances and it proved to be

efficient and feasible for the flexible multi-objective JSSP.

2.3.3 Airline Crew Scheduling

Crew scheduling involves the assignment of a number of workers to a set of tasks.

The aim of crew scheduling is to create a set of pairings that are feasible and that

also minimize the total cost of assigning crew while satisfying given government

regulations, flight schedule, company’s own policy and flight routes [33]. The prob-

lem has been getting a lot of attention from both the academic community and

from industry. Lo and Deng [34] proposed an Ant Colony Optimization (ACO)

algorithm when tackling the problem. They expressed the problem as a Traveling

Salesman Problem (TSP), that makes use of a flight graph representation. The

graph uses flights as nodes of paths and the connecting edges to comply to the con-

straints between sequential flights [34]. The proposed ACO algorithm was tested

on real cases of a Taiwanese airline company, the algorithm was benchmarked with

three other algorithms and was able to converge to better solutions more efficiently

than the other algorithms.

2.4 Conclusion

From the literature survey, one would observe that the TTP is very difficult to solve

using exact methods (IP and CP) especially for medium to large data instances.

Local search algorithms such as SA have proven that they can obtain good quality

solutions when they are applied to the problem and a number of these algorithms

have been tested. Only few SI algorithms have been tested, one of them is the ant

algorithm which performed well only on small datasets and the other one is the

PSO which only performed well when hybridized with a local search algorithm. SI

has been applied to other scheduling problems which are similar to the TTP and

23



it performed very well. In this research study more SI algorithms are explored as

SI has a large subset of algorithms.
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Chapter Three

Swarm Intelligence for the

Traveling Tournament Problem

In this chapter we discuss all the different methods used in this research; they

include all the SI algorithms that have been implemented in solving the problem.

Also the TTP including the mathematical model used is used.

3.1 Problem Definition

Easton et al. [7] introduced the TTP. The TTP takes in an even set of n teams

and an n× n symmetric matrix D, whose entries dij denotes the distance between

the home cities of team Ti and Tj. A desired solution for the TTP is a DRRT that

minimizes the total travelling distance amongst all the teams and satisfies feasibility

constraints. A DRRT is a tournament in which every team plays its opponent twice,

one home game and one away game. A DRRT has 2(n − 1) timeslots or rounds,

where n is the number of teams. Each team starts the tournament at its home

site and must return home after its last away game. When a team plays away

games consecutively, it travels from one away venue directly to the next one. The

main constraints of the TTP are the double round-robin constraints which must be

satisfied at all times, at-most constraints and no-repeat constraints which may or
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may not be satisfied at times. The at-most constraints ensure that a team cannot

play more than three home or away games in sequence and the no-repeat constraints

ensure that a game between team Ti and Tj, at the home venue of team Ti, cannot

be immediately followed by a game between the two teams at the home venue of

team Tj. In this study the mathematical model proposed in [21] which proved to

work for instances as large as n = 16 is used.

Minimize
n∑

i=1

2(n−1)∑
k=1

dijxijk (3.1)

Subject to the following constraints:

n∑
j=1

(xi,j,k + xj,i,k) = 1 ∀1 ≤ i ≤ n, ∀1 ≤ k ≤ 2(n− 1) (3.2)

2(n−1)∑
k=1

xi,j,k = 1 ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ n, i 6= j (3.3)

xi,j,k + xj,i,k+1 ≤ 1 ∀1 ≤ i 6= j ≤ n, ∀1 ≤ k ≤ 2n− 3 (3.4)

xj,i,k + xi,j,k+1 ≤ 1 ∀1 ≤ i 6= j ≤ n, ∀1 ≤ k ≤ 2n− 3 (3.5)

n∑
j=1

k+3∑
s=k

xi,j,s ≤ 3 ∀1 ≤ i ≤ n, ∀1 ≤ k ≤ 2n− 5 (3.6)

n∑
j=1

k+3∑
s=k

xj,i,s ≤ 3 ∀1 ≤ i ≤ n, ∀1 ≤ k ≤ 2n− 5 (3.7)

Where:

n : represents the number of teams

i : a team index

j : a team index

k : represents a timeslot or a round

dij : is the distance between team i’s home venue and team j’s home.

xijk =

 0, if team i is playing at home in slot or round k,

1, Otherwise.

 (3.8)
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Constraint (3.2) ensures that each team plays against exactly one team in each

timeslot. Constrainst (3.3) ensures that every team plays one home game with

other teams. Constraints (3.4) and (3.5) prevent the no-repeat constraints while

constraints (3.6) and (3.7) prevent the at-most constraint.

3.1.1 New Objective Function

When applying the algorithm, it is difficult to satisfy all the TTP constraints in

all iterations, especially the no-repeat and at-most constraints. Exploring the in-

feasible regions can help one find solutions which are of high quality and hence the

need to modify the objective function. The new objective function C(S) is given

below [17]:

C(S) =

 d, If schedule S is feasible√
d2 + (w ∗ f(n(S)))2, Otherwise

 (3.9)

Where d is the cost of a schedule (total distance travelled amongst all the teams),

w is the penalty weight incurred by a non-feasible schedule and n(S) represents the

number of violations of the at-most and no-repeat constraints. Anagnostopoulos et

al. [17] proved that a suitable function to control the violations of the constraints

is given by: f(v) = 1 +
√
v × ln (v/2), v is the number of violations.

3.2 Creating Initial Schedules

A polygon method as in [4] was used to create a schedule with n abstract teams

for a single round-robin tournament without assigning venues. The abstract teams

are randomized rather than having a simple increasing order from 1 to n. The

abstract teams arranged from 1 to n−1 are placed initially at clockwise sequentially

numbered nodes of a regular polygon with n− 1 nodes, the abstract team n is not

placed in the polygon. At every round, the team placed in the node on one side of

the symmetric axis plays against the team on the other side (opposite side). The
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Figure 3.1: Polygon Method for n = 8.

Table 3.1: Polygon Method Output

T \K 1 2 3 4 5 6 7

1 8 6 4 2 7 5 3

2 7 5 3 1 6 4 8

3 6 4 2 7 5 8 1

4 5 3 1 6 8 2 7

5 4 2 7 8 3 1 6

6 3 1 8 4 2 7 5

7 2 8 5 3 1 6 4

8 1 7 6 5 4 3 2

abstract team n plays against the team placed in node 1. After every round, every

abstract team is moved right away to the next node in a clockwise direction until

all n−1 assignments are accomplished. Figure 3.1 depicts how the polygon method

is executed for 8 teams and Table 3.1 shows the results from the execution of the

polygon method.
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Table 3.2: Final Schedule Produced after Initialization

T \K 1 2 3 4 5 6 7

1 −8 −6 4 −2 −7 −5 3

2 7 −5 3 1 −6 −4 −8

3 6 4 −2 7 5 −8 1

4 5 −3 −1 6 −8 2 7

5 −4 2 7 −8 −3 1 6

6 −3 1 −8 −4 2 −7 −5

7 −2 8 −5 −3 1 6 4

8 1 −7 6 5 4 3 2

The next stage in creating an initial schedule is assigning real teams to the abstract

teams. The initial schedule is duplicated and used to produce an n × n matrix of

consecutive opponents [19]. Each entry (i,j) is equal to the number of times the two

teams are consecutive opponents of other teams. Real teams with smaller distances

between their home cities are likely to be assigned to abstract teams that are played

more times, consecutively, so as to reduce the total travelling distance.

The final stage is to assign venues to each game, venues are assigned randomly

and feasibility constraints must be satisfied, if the schedule is not feasible, the

assignments are repeated until a feasible schedule is obtained. Table 3.2 depicts

how the final schedule should look after initialization. Home and away games are

represented by different signs, −ti is an away game and ti is a home game. The

schedule is then duplicated, and the venues are reversed to create the second half

of the tournament, and thus, a DRRT is produced.
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3.3 Neighbourhoods

In this study four different types of moves are defined and explored by the algo-

rithms. The neighbourhood of a solution is basically a set of possible schedules

obtained by applying these moves. These are the four moves that yielded better

results after experimenting with different combination of moves.

Home-Away Swap: This move swaps a venue for a game between teams Ti and

Tj. If team Ti initially plays at home against Tj at round Kl and away at Tj’s home

at round Km, where l and m are round indexes, then in the solution obtained by

this neighbourhood, Ti will play away at Tj’s home at round Kl and home at round

Km. Consider the schedule with n = 6 and 2(n − 1) rounds. Below the appplica-

tion of home-away swap to teams T2 and T5 is shown. The tables simply give an

overview of how this particular move works, some constraints might be violated.

The highlighted entries are the entries affected by the move.

Table 3.3: Schedule before Home-Away Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 7 3 −4 −6 5 −8 −2 −7 −3 4 6 −5 8

2 −1 8 7 −3 4 −6 −5 1 −8 −7 3 −4 6 5

3 −6 5 −1 2 7 −8 4 6 −5 1 −2 −7 8 −4

4 8 −6 5 1 −2 7 −3 −8 6 −5 −1 2 −7 3

5 7 −3 −4 −6 8 −1 2 −7 3 4 6 −8 1 −2

6 3 4 −8 5 1 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −1 −2 8 −3 −4 6 5 1 2 −8 3 4 −6

8 −4 −2 6 −7 −5 3 1 4 2 −6 7 5 −3 −1
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Table 3.4: Schedule after Home-Away Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 7 3 −4 −6 5 −8 −2 −7 −3 4 6 −5 8

2 −1 8 7 −3 4 −6 5 1 −8 −7 3 −4 6 −5

3 −6 5 −1 2 7 −8 4 6 −5 1 −2 −7 8 −4

4 8 −6 5 1 −2 7 −3 −8 6 −5 −1 2 −7 3

5 7 −3 −4 −6 8 −1 −2 −7 3 4 6 −8 1 2

6 3 4 −8 5 1 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −1 −2 8 −3 −4 6 5 1 2 −8 3 4 −6

8 −4 −2 6 −7 −5 3 1 4 2 −6 7 5 −3 −1

Team Swap: This move selects two teams Ti and Tj randomly and swaps the

schedule of the two teams except when they play against each other. The corre-

sponding lines of the opponents of Ti and Tj must be changed as well i.e. the rest of

the schedule must be updated to produce a DRRT. Below the application of team

swap to teams T3 and T6 is shown.

Table 3.5: Schedule before Team Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 7 3 −4 −6 5 −8 −2 −7 −3 4 6 −5 8

2 −1 8 7 −3 4 −6 −5 1 −8 −7 3 −4 6 5

3 −6 5 −1 2 7 −8 4 6 −5 1 −2 −7 8 −4

4 8 −6 5 1 −2 7 −3 −8 6 −5 −1 2 −7 3

5 7 −3 −4 −6 8 −1 2 −7 3 4 6 −8 1 −2

6 3 4 −8 5 1 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −1 −2 8 −3 −4 6 5 1 2 −8 3 4 −6

8 −4 −2 6 −7 −5 3 1 4 2 −6 7 5 −3 −1
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Table 3.6: Schedule after Team Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 7 6 −4 −3 5 −8 −2 −7 −6 4 3 −5 8

2 −1 8 7 −6 4 −3 −5 1 −8 −7 6 −4 3 5

3 −6 5 −1 2 7 −8 4 6 −5 1 −2 −7 8 −4

4 8 −3 5 1 −2 7 −6 −8 6 −5 −1 2 −7 3

5 7 −6 −4 −3 8 −1 2 −7 6 4 3 −8 1 −2

6 3 4 −8 5 1 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −1 −2 8 −6 −4 3 5 1 2 −8 6 4 −3

8 −4 −2 3 −7 −5 6 1 4 2 −3 7 5 −6 −1

Round Swap: This move selects two rounds randomly Kl and Km and then simply

swaps all the games between the two rounds. In the table below, the application

of round swap to rounds K2 and K5 is shown.

Table 3.7: Schedule before Round Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 7 3 −4 −6 5 −8 −2 −7 −3 4 6 −5 8

2 −1 8 7 −3 4 −6 −5 1 −8 −7 3 −4 6 5

3 −6 5 −1 2 7 −8 4 6 −5 1 −2 −7 8 −4

4 8 −6 5 1 −2 7 −3 −8 6 −5 −1 2 −7 3

5 7 −3 −4 −6 8 −1 2 −7 3 4 6 −8 1 −2

6 3 4 −8 5 1 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −1 −2 8 −3 −4 6 5 1 2 −8 3 4 −6

8 −4 −2 6 −7 −5 3 1 4 2 −6 7 5 −3 −1

32



Table 3.8: Schedule after Round Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 −6 3 −4 7 5 −8 −2 −7 −3 4 6 −5 8

2 −1 4 7 −3 8 −6 −5 1 −8 −7 3 −4 6 5

3 −6 7 −1 2 5 −8 4 6 −5 1 −2 −7 8 −4

4 8 −2 5 1 −6 7 −3 −8 6 −5 −1 2 −7 3

5 7 8 −4 −6 −3 −1 2 −7 3 4 6 −8 1 −2

6 3 1 −8 5 4 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −3 −2 8 −1 −4 6 5 1 2 −8 3 4 −6

8 −4 −5 6 −7 −2 3 1 4 2 −6 7 5 −3 −1

Partial Round Swap: This move selects a random team Ti and two rounds Kl

and Km, and swaps Ti’s games at these two rounds. The rest of the schedule is

updated in order to produce a DRRT. The table below shows the application of

partial round swap to K1 and K8 and team T4. After applying the move, note that

it is also necessary to do a swap for team T8 in order to obtain a DRRT.
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Table 3.9: Schedule before Partial Round Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 7 3 −4 −6 5 −8 −2 −7 −3 4 6 −5 8

2 −1 8 7 −3 4 −6 −5 1 −8 −7 3 −4 6 5

3 −6 5 −1 2 7 −8 4 6 −5 1 −2 −7 8 −4

4 8 −6 5 1 −2 7 −3 −8 6 −5 −1 2 −7 3

5 7 −3 −4 −6 8 −1 2 −7 3 4 6 −8 1 −2

6 3 4 −8 5 1 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −1 −2 8 −3 −4 6 5 1 2 −8 3 4 −6

8 −4 −2 6 −7 −5 3 1 4 2 −6 7 5 −3 −1

Table 3.10: Schedule after Partial Round Swap

T \K 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 7 3 −4 −6 5 −8 −2 −7 −3 4 6 −5 8

2 −1 8 7 −3 4 −6 −5 1 −8 −7 3 −4 6 5

3 −6 5 −1 2 7 −8 4 6 −5 1 −2 −7 8 −4

4 −8 −6 5 1 −2 7 −3 8 6 −5 −1 2 −7 3

5 7 −3 −4 −6 8 −1 2 −7 3 4 6 −8 1 −2

6 3 4 −8 5 1 2 −7 −3 −4 8 −5 −1 −2 7

7 −5 −1 −2 8 −3 −4 6 5 1 2 −8 3 4 −6

8 4 −2 6 −7 −5 3 1 −4 2 −6 7 5 −3 −1

3.4 Algorithms

In this section all the SI algorithms that have been implemented in trying to solve

the problem are discussed.
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3.4.1 Artificial Bee Colony (ABC) Algorithm

ABC [35, 36] is an optimization algorithm that is based on the foraging behaviour

of the honey bee swarm. The algorithm starts with n food sources (solutions). A

fitness function f(xi) is used to evaluate the fitness of each solution. The principal

aim of the bees is to discover solutions with good fitness values [35]. If a newly

generated solution has a better fitness value than the previous solution, the previous

solution is forgotten and the new position is updated. The ABC has three different

groups of bees; the employed bees, onlooker bees and scout bees. The employed bees

produce modifications on the source positions in their memory and produce new

positions of good solutions. If the fitness of the new solution is better than that of

the prior solution, an employed bee forgets the previous solution and memorizes the

new one. Employed bees share the information of the solutions with the onlooker

bees that then choose a solution depending on the fitness values of the solutions.

The scout bees abandon all the solutions that are not beneficial for search progress

and insert new solutions. The algorithm has a well balanced exploration ability

achieved by using employed and onlooker bees, and exploitation ability achieved

by scout bees [35]. In this work, the food sources are all the possible schedules to

the problem and the fitness is the cost (travelling distance) of each schedule. The

parameter limit controls the number of trials given to a solution to improve, if it

does not improve then it is abandoned. In this work the new solution v is obtained

by exploring the different neighborhoods defined. Selection probability used in the

onlooker phase is given by:

probi =
fitness(i)∑n
i=1 fitness(i)

Where n is the population size divide by 2. Algorithm 1 below is the pseudo-code

for ABC adapted from [35], colonySize is the population size, limit is the number

of pre-determined trials before a food source is abandoned and maxCycle is the

number of iterations.
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Algorithm 1 Artificial Bee Colony

Require: Parameters: colonySize, limit and maxCycle.

Ensure: Initialize food sources randomly.

Ensure: Evaluate the fitness of the population.

for i = 0 to maxCycle do

for j = 0 to colonySize/2 do

{Employed Bee phase}

Execute the defined neighbourhoods to get new solution v.

if fitness(v) > fitness(xi) then

Greedy selection

else

counti ← counti + 1

end if

end for

for j = colonySize/2 + 1 to colonySize do

{Onlooker phase}

Calculate selection probability, select a bee using selection probability

Execute the defined neighbourhoods to get new solution v

if fitness(v) > fitness(xi) then

Greedy selection

else

counti ← counti + 1

end if

end for

for j = 1 to colonySize/2 do

{Scout phase}

if counti > limit then

xi ← init()

end if

end for

Memorize best solution

end for 36



3.4.2 Cuckoo Search (CS) Algorithm

CS [35, 37] mimics the breeding behaviour of some cuckoo species, which hatch

their eggs and raise their chicks using host birds. Most of the time parasitic cuckoos

choose a nest where a host bird has just laid its eggs. When the host bird discovers

that the eggs are not its own, it either throws them away or simply leaves the nest

and builds a new one. From the cuckoo’s strategy, three simple principles emerge

and the design search is based on these principles:

• Each cuckoo lays a single egg, and choose an arbitrary nest to dump the egg.

• The nest with the best quality of eggs (i.e. nests with best solutions) proceeds

to the next generation. The quality of a solution also known as the fitness of

a solution (fi) , is the total travelling distance.

• The number of host nests available is fixed and the probability of a cuckoo

egg being discovered by a host is p ∈ [0, 1]. In this work, the host nests are all

the possible solutions (schedules) to the problem. The probability of a host

discovering an alien egg is given by:

p(i) = pmax − i/nmax[pmax − pmin]

Where i is the current iteration and nmax is the total number of iterations,

populationSize used later in algorithm 2 is the number of possible solutions.

Below is the pseudo-code for CS adapted from [37].
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Algorithm 2 Cuckoo Search

Require: Parameters: populationSize, nmax, pmax and pmin.

Generate initial solution/schedule

Calculate the fitness of the solution.

for i = 0 to maxIterations do

Apply the moves discussed in 4.2 to get a new solution

Calculate the fitness of the new solution (fi)

Select a random solution (say fj)

if f(i) < f(j) then

replace fj with the new solution

end if

Remove worst solutions based on prob. p and build new solutions

Find the best solution by ranking the solutions

Keep track of the best solution

end for

3.4.3 Bacterial Foraging Optimization (BFO) Algorithm

The BFO [38, 35] algorithm gets its inspiration from the group foraging behaviour

of bacteria such as M. xarithus and E. coli. The BFO is specifically inspired by

the bacteria’s behaviour called the chemotaxis that percieves chemical gradients

in the environment and moves away or towards particular signals. The chemical

gradients in the bacteria’s environment helps them see the direction to the food

source. Bacteria also secretes chemicals into the environment that may either repel

or attract and this is how they notice each other [38]. All possible solutions to a

problem are represented by a colony of n bacteria. A fitness function fxi is used

to evaluate the fitness of each solution. There are three main routines in the BFO

[35]:

• Chemotaxis: In this routine a tumble is represented by a bacterium that has

arbitrary direction and a run is represented by a bacterium that has the same
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direction as its prior step.

• Reproduction: The fitness value of each bacterium is represented by its health.

The health status of bacteria is used for sorting all bacteria and the only

population that survives is the one in the first half. The surviving bacteria

is duplicated to make a new population and thus the bacteria population is

kept constant.

• Elimination-dispersal: The population’s diversity is increased by this routine.

Chemotaxis and reproduction steps help to achieve the exploitation of the search

space and exploration is accomplished by elimation-dispersal. Algorithm 3 below

depicts the BFO algorithm, Nc is the number of chemotactic steps, Nre is the

number of reproduction steps, Ns is the number runs steps and Ned is the number

of elimination-dispersal steps.
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Algorithm 3 Bacterial Foraging algorithm

Require: Parameters: n,Nc, Nre, Ns, Ned.

Ensure: Initialize randomly the bacterial colony

Ensure: Evaluate the fitness of the population.

for i = 1 to Ned do

{Elimination dispersal}

for j = 1 to Nre do

{Reproduction loop}

for j = 1 to Nc do

{Chemotaxis loop}

for k = 0 to n do

Explore the neighbourhoods defined to get new solution

Compute its fitness

m← 0

while m < Ns do

if newsolution < f(xi) then

Update solution

Move again

else

m← Ns

end if

end while

end for

end for

for x = 1 to n do

Sort bacteria

Best half of the colony duplicates and replaces the worst part

end for

end for

end for
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3.4.4 Bat Algorithm

The Bat algorithm [35] has a population of n possible solutions (bats), that use

biosonar for sensing the distance and for updating its velocities and positions by

randomly flying through a search space. The fitness function f(xi) is used to

evaluate each solution (the fitness of each solution is the total travelling distance).

The aim of the flights is to find good solutions. The main parameters of the

algorithm are the loudness decay factor (loudness) and the pulse rate (pulseRate).

The loudness parameter works like the cooling schedule in the Simulated Annealing

(SA) algorithm [39] and the pulse rate is responsible for regulating the frequency

of the pulse. Updating both the pulse and loudness parameters properly helps to

balance both the exploration and exploitation behaviour of each individual bat [35].

Once a bat finds its solution, the loudness decreases and the accuracy of the attack

is raised by increasing the emission of the pulse rate. Algorithm 4 below shows the

pseudocode of the Bat algorithm, maxIterations is the number iterations.
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Algorithm 4 Bat algorithm

Require: Parameters: n, pulseRate, loudness, maxIterations

Ensure: Initialize population

Ensure: Evaluate the fitness of each solution.

while i < maxIterations do

newSol← Generate new solution by exploring defined neighbourhoods

ftns← EvaluatefitnessofnewSol

rand← random[0, 2]

if rand < pulseRate then

if ftns < f(xi) then

Replace i with new solution

end if

end if

Generate new solution by randomly exploring the neighbourhood

ftns← Evaluate fitness of the new solution

rand← random[0, 1]

if rand < loudnes and ftns < f(xi) then

Accept new solution

Increase pulseRate

Decrease loudness

end if

Memorize best solution

i+ +

end while
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3.4.5 Bacterial Foraging, Bat and Cuckoo Search (BBC)

This algorithm is the combination of BFO, Bat and CS. The parameter settings and

the design of the algorithms are still the same. An algorithm is selected randomly,

runs for n times and no algorithm is selected consecutively; they alternate for

every run. Algorithm 5 below depicts the method that drives the running of this

algorithm.

Algorithm 5 BBC algorithm

selected← 1

algos← array[1, 2, 3]

for i = 0 to numRuns do

random← [0, 2]

while Same algorithm selected do

random← [0, 2]

end while

selected← rand(random)

switch (selected) do

Case 1: run BFO()

Case 2: run Bat()

Case 3: run CS()

end switch

end for
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Chapter Four

Experimental Results and

Discussion

All the algorithms were coded in Java and the experiments were performed on a

machine running with the Ubuntu operating system, with 2.00 GHz × 2 processor

and 1 GB of RAM.

4.1 Data Set

Two data sets are used in this study. The first data set is formed by artificially

generated circle instances for testing whether the TTP problems are easier when

the associated travelling salesman instances are trivial [4]. The instance is denoted

by Circn, where n is the number of teams and 8 ≤ n ≤ 16. The second data set is

formed by the National League (NL) instances which were generated by measuring

the distances between the home cities of the teams participating in the league. The

name of the instance is denoted by NLn, where n is the number of teams playing

in the league and 8 ≤ n ≤ 16. The NL instances are based on the Major League

Baseball (MLB) in U.S.A.
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4.2 Results

In this section the parameter settings and the results obtained by each of the

implemented algorithms are discussed.

4.2.1 Cuckoo Search (CS)

Experiments were performed with the CS algorithm and the selected parameter

values that led to better solutions: populationSize was set to 100, nmax was set

to 100, pmax was set to 1 and pmin was set to 0.05 and the algorithm was run 20

times in order to view or test its robustness. Table 4.1 shows the best, and worst

solutions obtained for each instance over 20 runs, as well as the computational

time measured in seconds. Table 4.2 illustrates the performance of the CS com-

pared to other previous results found in literature. The three algorithms used for

benchmarking are: the Simulated Annealing for the TTP (TTSA) [17] which uses

advanced techniques like reheating for balancing the exploitation and exploration

of both the infeasible and feasible regions, the GRILS mTTP [4] which is based on

iterated local search metaheuristics and the ejection chain in the neighbourhood to

improve the quality of the solution and the last one is a hybrid heuristic which is a

combination of the Genetic Algorithm (GA) and the SA (GA-SA) [40].

TTSA had the best known results as extracted from this study, especially for the

NL instances. The last column of Table 4.2 contains the relative gap in percentage

between the values of the best known solution and the best solution found by our

algorithm.
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Table 4.1: Computational Results of CS Algorithm

Instance Best Worst Time(sec)

Circ8 130 174 27.751

Circ10 249 313 46.632

Circ12 418 527 69.313

Circ14 673 814 149.054

Circ16 1001 1178 444.484

NL8 39044 57589 32.399

NL10 58112 80654 61.675

NL12 113769 151234 83.539

NL14 188678 239893 145.528

NL16 277579 345542 388.297

Table 4.2: CS Results with Three Benchmark Algorithms

Instance TTSA GRILS-mTTP GA-SA CS %

Circ8 132 140 142 130 −1.5

Circ10 254 276 282 249 −2.0

Circ12 420 456 458 418 −0.5

Circ14 682 714 714 673 −1.3

Circ16 976 1004 1014 1001 2.5

NL8 39721 41928 43112 39044 −1.7

NL10 59583 63832 66264 58112 −2.5

NL12 112298 120655 120981 113769 1.3

NL14 190056 208086 208086 188678 −0.7

NL16 267194 285614 290188 277579 3.9
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4.2.2 Artificial Bee Colony (ABC)

The colony size (colonySize) was set to 100, the maximun number of cycles (maxCycle)

for foraging was also set to 100 and the algorithm was run 50 times in order to view

or test its robustness. Table 4.3 shows the best, and worst solutions obtained for

each instance over the 50 runs, as well as the computational time measured in sec-

onds. Table 4.4 illustrates the performance of the ABC compared to other previous

results found in literature.

Table 4.3: Computational Results of ABC Algorithm

Instance Best Worst Time(sec)

Circ8 131 161 66.582

Circ10 238 270 101.016

Circ12 411 477 190.098

Circ14 715 813 384.025

Circ16 1114 1256 708.897

NL8 35651 49877 76.938

NL10 58675 70313 142.627

NL12 113140 131863 377.181

NL14 237691 268846 435.602

NL16 300429 338618 608.976
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Table 4.4: ABC Results with Three Benchmark Algorithms

Instance TTSA GRILS-mTTP GA-SA ABC %

Circ8 132 140 142 131 −0.7

Circ10 254 276 282 238 −6.3

Circ12 420 456 458 411 −2.1

Circ14 682 714 714 715 4.8

Circ16 976 1004 1014 1114 14.1

NL8 39721 41928 43112 35651 −10.3

NL10 59583 63832 66264 58675 −1.5

NL12 112298 120655 120981 113140 0.8

NL14 190056 208086 208086 237691 25.1

NL16 267194 285614 290188 300429 12.4

4.2.3 Bat

The population size (populatonSize) was set to 100, the loudness to 0.95 and the

pulse rate (pulseRate) to 1, the maximum number of iterations was set to 100 and

the number of runs to 50. Table 4.5 shows the results obtained by the algorithm

for each data instance over 50 runs, it shows the best and the worst solutions

obtained as well as the running time measured in seconds. Table 4.6 illustrates the

performance of Bat compared with previous results found in literature.
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Table 4.5: Computational Results of Bat Algorithm

Instance Best Worst Time(sec)

Circ8 129 226 4.394

Circ10 296 450 8.334

Circ12 516 744 13.923

Circ14 896 1188 35.621

Circ16 1396 1802 133.589

NL8 33804 60756 9.855

NL10 60630 97122 14.597

NL12 117746 187016 17.149

NL14 255460 350832 72.631

NL16 364498 489766 93.196

Table 4.6: Bat Results with Three Benchmark Algorithms

Instance TTSA GRILS-mTTP GA-SA Bat %

Circ8 132 140 142 129 −2.3

Circ10 254 276 282 296 16.5

Circ12 420 456 458 516 22.9

Circ14 682 714 714 896 31.4

Circ16 976 1004 1014 1296 32.8

NL8 39721 41928 43112 33804 −14.9

NL10 59583 63832 66264 60630 1.8

NL12 112298 120655 120981 117746 4.9

NL14 190056 208086 208086 255460 34.4

NL16 267194 285614 290188 364498 36.4
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4.2.4 Bacterial Foraging (BFO)

The population size (colonySize) was set to 100, Nc = 70, Nre = 4, Ns = 4,Ned = 1

and the number of runs was set to 50. Nc, Nre, Ns, Ned, represent the number of

chemotactic, reproductive, run and elimination dispersal steps respectively. Table

4.7 depicts the best and the worst solutions obtained by the algorithm over 50

runs, as well as the running time(seconds) of the algorithm. Table 4.8 illustrates

the performance of BFO compared with previous results found in literature.

Table 4.7: Computational Results of BFO Algorithm

Instance Best Worst Time(sec)

Circ8 130 206 277.66

Circ10 252 430 523.712

Circ12 411 686 999.573

Circ14 657 1070 2940.59

Circ16 1087 1652 6459.09

NL8 35546 56928 281.147

NL10 56443 90305 491.81

NL12 119036 173853 925.041

NL14 191362 194549 1585.665

NL16 296067 296438 4781.973
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Table 4.8: BFO Results with Three Benchmark Algorithms

Instance TTSA GRILS-mTTP GA-SA BFO %

Circ8 132 140 142 130 −1.5

Circ10 254 276 282 252 −0.8

Circ12 420 456 458 411 −2.1

Circ14 682 714 714 657 −3.7

Circ16 976 1004 1014 1087 11.4

NL8 39721 41928 43112 35546 −10.5

NL10 59583 63832 66264 56443 −5.3

NL12 112298 120655 120981 119036 6.0

NL14 190056 208086 208086 191362 0.7

NL16 267194 285614 290188 296067 10.9

4.2.5 Bacterial Foraging, Bat and Cuckoo Search (BBC)

This algorithm is the combination of BFO, Bat and CS algorithms. The same

parameter settings are utilised for each of these algorithms. The algorithm was

run 50 times. Table 4.9 depicts the best and the worst solutions obtained by the

algorithm over 50 runs, as well as the running time(seconds) of the algorithm. Table

4.10 illustrates the performance of the BBC compared to previous results found in

literature.
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Table 4.9: Computational Results of BBC Algorithm

Instance Best Worst Time(sec)

Circ8 125 234 109.64

Circ10 252 462 249.632

Circ12 421 754 366.251

Circ14 678 1210 916.678

Circ16 1077 1776 1549.274

NL8 31208 61308 119.406

NL10 56987 104581 258.769

NL12 111157 203303 417.678

NL14 191265 345765 774.965

NL16 292472 497854 1497.357

Table 4.10: BBC Results with Three Benchmark Algorithms

Instance TTSA GRILS-mTTP GA-SA BBC %

Circ8 132 140 142 125 −5.3

Circ10 254 276 282 252 −0.8

Circ12 420 456 458 421 0.2

Circ14 682 714 714 678 −0.59

Circ16 976 1004 1014 1077 10.4

NL8 39721 41928 43112 31208 −21.4

NL10 59583 63832 66264 56987 −4.4

NL12 112298 120655 120981 111157 −1.0

NL14 190056 208086 208086 191265 0.6

NL16 267194 285614 290188 292472 9.5
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4.3 Discussion

The algorithms utilised in this study were very competitive on small instances

(n ≤ 14) and in some instances obtained solutions that are far better than the best

known solution. From Table 4.2 and Figure 4.1, one can observe that for the circle

instances; Circ8, Circ10, Circ12 and Circ14, CS improved the best solution values

by 1.5%, 2.0%, 0.5% and 1.3% respectively. For the national league instances; NL8,

NL10 and NL14, the algorithm improved the best known solution values by 1.7%,

2.5% and 0.7% respectively. CS outperformed GRILS-mTTP and GA-SA on all in-

stances. ABC improved the best known solution values by 0.7%, 6.3%, 2.1%, 10.3%,

1.5% on Circ8, Circ10, Circ12, NL8 and NL10 respectively, and obtained better so-

lutions than GRILS-mTTP, GA-SA on most instances except Circ14, Circ16, NL14

and NL16, this can be seen from Table 4.4 and Figure 4.2. From Table 4.6 and

Figure 4.3, it can be observed the Bat algorithm only obtained better solutions on

two instances Circ8 and NL8 and improved the best known solution values by 2.3%

and 14.9% respectively and also did not perform well compared to the other two

alogrithms on all instances except when n = 8.

From Table 4.8 and Figure 4.4, one can observe that the BFO algorithm improved

the best known solution values on Circ8 to Circ14 by 1.5%, 0.8%, 2.1% and 3.7%

respectively and improved NL8 and NL10 by 10.5% and 5.3% respectively, the al-

gorithm obtained better solutions compared to the other two algorithms (GRILS-

mTTP and GA-SA) on all instances except when n = 16. BBC obtained better

solutions than the best known solution on Circ8, Circ10, Circ14, NL8, NL10, NL12

and improved the best known solution values by 5.3%, 0.8%, 0.6%, 21.4%, 4.4%

and 1.0% respectively, this can be observed from Table 4.10 and Figure 4.5. From

the results obtained, it is observed that CS is the best performing algorithm since it

was able to improve the best known solution values for all seven instances, followed

by BFO, BBC and ABC respectively. CS performs local search more efficiently,

this is one of the key contributors to its good performance.

Bat is the worst performing algorithm as depicted in Figures 4.6 and 4.7 but proved
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to be the best in terms of computational time as illustrated in Figures 4.8 and 4.9,

this is because of its fast convergence speed. This inspired the implementation of

BBC, which basically combines the best performing algorithms (CS and BFO) but

quite slow in terms of computational time, compared to the algorithm that per-

formed better and faster. From Figures 4.8 and 4.9, one can observe that BFO is

the worst performing algorithm in terms of computational time due its slow con-

vergence. All implemented algorithms performed poorly when n = 16 for both

instances, but CS was able to retain/maintain the gap below 4% (1.9% on Circ16

and 3.9% on NL16) compared to the best known solution (TTSA).

(a) Circn instances (b) NLn instances

Figure 4.1: CS Benchmarked with the Best known Solution

(a) Circn instances (b) NLn instances

Figure 4.2: ABC Benchmarked with the Best known Solution
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(a) Circn instances (b) NLn instances

Figure 4.3: Bat Benchmarked with the Best known Solution

(a) Circn instances (b) NLn instances

Figure 4.4: BFO Benchmarked with the Best known Solution

(a) Circn instances (b) NLn instances

Figure 4.5: BBC Benchmarked with the Best Known Solution
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Figure 4.6: Swarm Intelligence Algorithms Performance on Circn Instances

Figure 4.7: Swarm Intelligence Algorithms Performance on NLn Instances
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Figure 4.8: Swarm Intelligence Algorithms Computational Times on Circn In-

stances

Figure 4.9: Swarm Intelligence Algorithms Computatinal Times on NLn Instances
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Chapter Five

Conclusion and Future Research

In this study, the TTP was addressed. Five algorithms were developed and applied

to the problem. Four neighbourhoods were defined and explored or executed by

the algorithms with the goal of improving the solution available. The results ob-

tained by some of the algorithms used in this study are very promising, providing

better solutions than the algorithms used for benchmarking, in some instances and

obtaining very competitive results in other instances especially for very large data

sets (n = 16). Though some of the implemented algorithms proved to be very

competitive, one of them (Bat) did not perform well for most instances, but was

very competitive in terms of computational time.

From all the algorithms implemented, CS performed very well on most instances,

the algorithm was able to improve 4 out of 5 best known solutions of Circn instances

and 3 out of 5 of NLn instances. None of the algorithms managed to improve the

best known solution for the largest instance (n = 16), but they did obtain com-

petitive solutions. From this study, one can observe that from SI family, there are

algorithms that can obtain near optimal solutions for scheduling problems such as

the TTP, though they are often overlooked for this problem. One direction that

future research studies can focus on, will be trying to improve the mathemati-

cal model or using different combinations of swaps with the aim of improving the

solution.
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Appendix One

User Manual

A.1 Starting the Application

We have developed a very simple Java GUI application. The name of the application

file is “Swarm.jar”, to run the the file in Ubuntu, open the terminal, go to the

directory where the jar file is located and then type java -jar Swarm.jar. The

application will start and the main window will pop up as seen in figure A.1.

Figure A.1: Main Window
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A.2 Running Algorithms

Select data set: To select a data set, click the upload button, the open dialog

shown in figure A.2 will pop up, go to the directory where the data set is located,

then click open once you have selected the file you want.

Figure A.2: Data Set

Selecting Algorithm: Select the algorithm that you wish to run from the list as

seen in figure A.3, then click ok.

Figure A.3: Selecting Algorithm

This will take you to a new panel, select the parameter values that you want to run

the algorithm with, then click run. The output will be displayed in the text area

on the right hand side of the panel as seen in figure A.4.
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(a) Parameters (b) Output

Figure A.4: Algorithm Parameters and Output

To save the output, click the save results button and a save dialog will pop up as

seen in figure A.5, select the directory that you wish to save results in, then click

save.

Figure A.5: Save Output

Open existing file: To open an existing file, go to file as shown in figure A.6,

select the the first option file, then select the file you wish to open. The file will be

displayed in a separate window.
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(a) Open existing file

(b) Select file

(c) Selected file

Figure A.6: Opening already Existing File

Help: To open the help file, go to the help tab, select manual, and a new window

will pop up displaying the help file.

(a) Parameters
(b) Help file

Figure A.7: Help File
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