

MECHATRONICS INTEGRATION FOR A VEHICLE SIMULATOR

Taahir Kader

Student Number: 210513192

Submitted in fulfilment of the academic requirements for the degree of
Master of Science in Engineering,

College of Agriculture, Engineering and Science,
University of KwaZulu-Natal

June 2016

Supervisor: Professor Riaan Stopforth

Co-Supervisor: Professor Glen Bright

ii

As the candidate’s supervisor I agree to the submission of this dissertation.

Date of Submission: _________________________

Supervisor: _________________________

 Professor Riaan Stopforth

Declaration

I, Taahir Kader, declare that

1. The research reported in this dissertation, except where otherwise indicated, is my
original research.

2. This dissertation has not been submitted for any degree or examination at any other
university.

3. This dissertation does not contain other persons’ data, pictures, graphs or other
information, unless specifically acknowledged as being sourced from other persons.

4. This dissertation does not contain other persons' writing, unless specifically
acknowledged as being sourced from other researchers. Where other written sources
have been quoted, then:

a. Their words have been re-written but the general information attributed to them has
been referenced

b. Where their exact words have been used, then their writing has been placed in italics
and inside quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables copied and pasted from the
Internet, unless specifically acknowledged, and the source being detailed in the
dissertation and in the References sections.

Signed: _________________________

iii

Publications

The work in this dissertation has been presented in the following publications:

Publication 1:

Kader, T., Stopforth, R. and Bright, G. (2016) ‘Simulation System to Aid in Vehicle Simulator

Design’, Research and Development (R&D) Journal of The South African Institution of

Mechanical Engineering (SAIMechE), [Under review], February 2016. This journal paper

contains work done in chapter 2, chapter 4 and chapter 5 of this dissertation.

Signed: _________________________

iv

Acknowledgements

I would like to take this opportunity to express my sincere gratitude and appreciation to my

supervisor Prof Riaan Stopforth for all the help, support, advice and guidance whilst on this

journey. I wish to also thank Prof Glen Bright for the support, advice and suggestions

throughout my masters which benefitted immensely.

I would also like to express gratitude to the following people and organisations:

 To my family for all the support and especially to my parents for the encouragement

and commitment shown throughout my life.

 CSIR for the financial support provided to pursue this research work.

 Mechanical engineering workshop staff and admin staff for all their assistance.

 To my friends for providing motivation and assistance during this research work.

v

Abstract

This dissertation presents the research and integration of a mechatronics system to be used in

a vehicle simulator. The vehicle simulator is comprised of a 3-DOF platform which is used to

provide motion cues to the driver. Kinematic analysis is performed on the 3-DOF system and

this analysis assists in implementing platform motion control. To recreate the motion

sensations experienced in an actual vehicle while respecting the platform workspace limits the

classical washout algorithm is implemented in the vehicle simulator. A novel simulation system

was contributed in Matlab/Simulink to aid in vehicle simulator design. This simulation setup

incorporates all the motion cueing aspects; these aspects include input vehicle data scaling,

the classical washout algorithm and inverse kinematic analysis. The developed simulation

system was used to adjust the motion cueing parameters to ensure motion that respects the

actuator motion constraints. These constraints ensure the vehicle simulator is operated safely.

A second contribution used the developed simulation system in Matlab/Simulink and the

human vestibular system models. A performance evaluation was performed on the 3-DOF

system against the traditional 6-DOF system. The results highlight the benefits of the 3-DOF

system in replication of certain motion cues. Software was developed to receive input game

data and output actuator stroke lengths to the motion control system. Limitations in the

motion control system were found when testing was done on the vehicle simulator. These

limitations led to a modified partial 2-DOF vehicle simulator. The motion control hardware is

able to replicate actuator motion well. The final vehicle simulator system is a partial 2-DOF

system that provides visual and motion cues that create a realistic driving experience. The

developed system is suitable for applications with cost constraints and reasonable

performance requirements.

vi

Table of Contents

Declaration ...ii

Publications ... iii

Acknowledgements ... iv

Abstract .. v

List of Figures ... x

List of Tables .. xvi

List of Acronyms ... xvii

1 Introduction .. 1

1.1 Robotic Manipulators .. 1

1.2 Vehicle Simulators ... 4

1.3 Motion Cueing ... 10

1.4 Motion Control .. 13

1.5 Motivation for Study ... 15

1.6 Scientific Contribution... 17

1.7 Research Objectives .. 17

1.8 Dissertation Outline .. 18

1.9 Chapter Summary ... 19

2 Mechanical System Design and Analysis ... 22

2.1 Vehicle Simulator Framework ... 22

2.2 Vehicle Simulator Motion Platform .. 23

2.3 Motion Platform Kinematics ... 25

vii

2.3.1 Inverse Kinematics .. 25

2.3.2 Forward Kinematics... 31

2.4 Inverse Kinematics Simulation .. 32

2.4.1 Inverse Kinematics Simulation System.. 32

2.4.2 Inverse Kinematics Simulation Results .. 35

2.5 Inverse Kinematics Simulation for the 6-DOF Motion Platform 41

2.6 Chapter Summary ... 50

3 Motion Control System ... 51

3.1 Motion Control System Overview ... 51

3.2 Motion Control System Setup and Testing ... 54

3.3 PLC Software Programming .. 59

3.4 Chapter Summary ... 61

4 Motion Cueing ... 62

4.1 Vestibular System .. 62

4.2 Coordinate Systems .. 64

4.3 Classical Washout Algorithm ... 65

4.3.1 Translational Motion ... 66

4.3.2 Rotational Motion ... 67

4.3.3 Filter Selection... 69

4.4 Motion Cueing Simulation .. 70

4.4.1 Motion Cueing Simulation Setup .. 70

4.4.2 Motion Cueing Simulation Results .. 73

viii

4.5 Chapter Summary ... 81

5 Software .. 83

5.1 X-Sim Software .. 83

5.1.1 Game Telemetry Data ... 85

5.1.2 Software Plugin ... 87

5.2 Simulations .. 89

5.2.1 Filter Parameter Selection .. 92

5.2.2 Discrete Filter Implementation ... 93

5.2.3 Kinematic Analysis Results .. 94

5.2.4 Motion Limit Results ... 98

5.2.5 Simulator Fidelity Results .. 101

5.2.6 Performance Evaluation of 3-DOF Motion Platform ... 104

5.2.7 Software Plugin Testing ... 109

5.3 Chapter Summary ... 111

6 Results and Discussion .. 112

6.1 Vehicle Simulator System Overview ... 112

6.2 Position Control System Limitations ... 113

6.3 Position Control System Results ... 121

6.4 Chapter Summary ... 122

7 Conclusions and Future Work ... 124

References... 129

Appendices .. 135

ix

Appendix A – Hardware Architecture ... 135

Appendix B – Electrical Layout .. 136

Appendix C – PLC Software ... 137

Appendix D – X-Sim Software Plugin Code ... 139

x

List of Figures

Figure 1-1 Schematic of a PUMA 560 Serial Manipulator ... 2

Figure 1-2 Stewart Platform Parallel Manipulator .. 3

Figure 1-3 Renault ULTIMATE Driving Simulator .. 5

Figure 1-4 The NADS at the University of Iowa ... 5

Figure 1-5 Vehicle Simulator Sub-systems .. 7

Figure 1-6 Designed Vehicle Simulator System... 9

Figure 1-7 Human Vestibular System .. 10

Figure 1-8 Classical Washout Algorithm ... 13

Figure 1-9 Scheme for Model Predictive Control Strategy ... 13

Figure 1-10 Festo Single Actuator Position Control System ... 15

Figure 1-11 Vehicle Simulator System .. 16

Figure 2-1 Mechanical Framework of the Vehicle Simulator .. 23

Figure 2-2 3-DOF Platform .. 24

Figure 2-3 Individual Kinematic Leg for the 3-DOF Platform .. 25

Figure 2-4 3-DOF Platform with Coordinate Systems ... 26

Figure 2-5 Branch Model for the Individual Kinematic Leg for the 3-DOF Platform 34

Figure 2-6 Structural Model for the 3-DOF Platform .. 35

Figure 2-7 Desired Platform Orientation for the 3-DOF Platform .. 36

Figure 2-8 Desired Platform Position for the 3-DOF Platform .. 37

Figure 2-9 Simulation Model for the 3-DOF Platform ... 38

Figure 2-10 Calculated Stroke Lengths for the 3-DOF Platform .. 39

xi

Figure 2-11 Simulated Stroke Lengths for the 3-DOF Platform .. 39

Figure 2-12 Simulated Platform Orientation for the 3-DOF Platform... 40

Figure 2-13 Simulated Platform Position for the 3-DOF Platform .. 41

Figure 2-14 6-DOF Platform Model ... 42

Figure 2-15 6-DOF Platform with Joint and Coordinate System Labels 42

Figure 2-16 Branch Model for the Individual Kinematic Leg for the 6-DOF Platform 44

Figure 2-17 Structural Model for the 6-DOF Platform .. 45

Figure 2-18 Desired Platform Orientation for the 6-DOF Platform .. 46

Figure 2-19 Desired Platform Position for the 6-DOF Platform .. 47

Figure 2-20 Simulation Model for the 6-DOF Platform ... 47

Figure 2-21 Calculated Stroke Lengths for the 6-DOF Platform .. 48

Figure 2-22 Simulated Stroke Lengths for the 6-DOF Platform .. 48

Figure 2-23 Simulated Platform Orientation for the 6-DOF Platform... 49

Figure 2-24 Simulated Platform Position for the 6-DOF Platform .. 49

Figure 3-1 Single Axis Pneumatic Position Control System ... 52

Figure 3-2 Linear Pneumatic Actuator with Integrated Displacement Encoder 52

Figure 3-3 Digital Incremental Sensor Interface ... 52

Figure 3-4 Double Acting Directional Proportional Control Valve .. 53

Figure 3-5 CMAX Axis Controller ... 53

Figure 3-6 CPX Programmable Logic Controller .. 54

Figure 3-7 Vehicle Simulator with Position Control System ... 55

Figure 3-8 3-DOF Platform with Actuator Labels .. 56

xii

Figure 3-9 Actuator 1 Position Control Tracking ... 57

Figure 3-10 Actuator 2 Position Control Tracking ... 58

Figure 3-11 Actuator 3 Position Control Tracking ... 59

Figure 3-12 PLC Program UML Activity Diagram ... 60

Figure 4-1 Semi-Circular Canal Model ... 63

Figure 4-2 Otolith Model ... 63

Figure 4-3 Motion Cueing Coordinate Systems for the 3-DOF Platform 65

Figure 4-4 Translational Channel for the Classical Washout Algorithm 67

Figure 4-5 Rotational Channel for the Classical Washout Algorithm .. 68

Figure 4-6 Translational Channel Subsystem .. 71

Figure 4-7 Tilt Coordination Subsystem .. 71

Figure 4-8 Angular Velocity Subsystem ... 72

Figure 4-9 Otolith Simulation Model .. 72

Figure 4-10 Semi-circular Canal Simulation Model ... 73

Figure 4-11 Specific Force Input for the x-axis .. 74

Figure 4-12 Platform Acceleration for the x-axis .. 75

Figure 4-13 Platform Position for the x-axis ... 76

Figure 4-14 Platform Pitch Angle for the y-axis .. 77

Figure 4-15 Sensed Vehicle and Simulator Specific Force for the x-axis..................................... 78

Figure 4-16 Angular Velocity Input for the x-axis ... 79

Figure 4-17 Sensed Vehicle Angular Velocity for the x-axis .. 80

Figure 4-18 Sensed Simulator Angular Velocity for the x-axis .. 80

xiii

Figure 4-19 Platform Orientation for the x-axis .. 81

Figure 5-1 X-Sim Software Setup .. 84

Figure 5-2 Longitudinal Force Game Data... 85

Figure 5-3 Pitch Angle Game Data .. 86

Figure 5-4 Software Plugin UML Activity Diagram .. 88

Figure 5-5 Vehicle Simulator Matlab/Simulink Simulation Setup ... 91

Figure 5-6 Roll Angle Comparison ... 95

Figure 5-7 Roll Angle Error .. 95

Figure 5-8 Pitch Angle Comparison ... 96

Figure 5-9 Pitch Angle Error .. 96

Figure 5-10 Heave Comparison ... 97

Figure 5-11 Heave Error .. 97

Figure 5-12 3-DOF Platform Backward Tilt ... 98

Figure 5-13 3-DOF Platform Tilt to Right ... 98

Figure 5-14 Structural Model Length Output of Actuators ... 99

Figure 5-15 Structural Model Velocity Output of Actuators ... 100

Figure 5-16 Structural Model Acceleration Output of Actuators.. 100

Figure 5-17 Sensed Vehicle and Simulator Specific Force by the Otolith Model (x-axis) 101

Figure 5-18 Sensed Vehicle and Simulator Specific Force by the Otolith Model (y-axis) 102

Figure 5-19 Sensed Vehicle and Simulator Specific Force by the Otolith Model (z-axis) 102

Figure 5-20 Sensed Vehicle and Simulator Angular Velocity by the Semi-circular Canal Model (x-

axis) ... 103

xiv

Figure 5-21 Sensed Vehicle and Simulator Angular Velocity by the Semi-circular Canal Model (y-

axis) ... 103

Figure 5-22 Specific Force Comparison (x-axis) .. 104

Figure 5-23 Specific Force Comparison (y-axis) .. 105

Figure 5-24 Specific Force Comparison (z-axis) ... 105

Figure 5-25 Angular Velocity Comparison (x-axis) .. 106

Figure 5-26 Angular Velocity Sample Comparison (x-axis) ... 106

Figure 5-27 Angular Velocity Comparison (y-axis) .. 107

Figure 5-28 Angular Velocity Sample Comparison (y-axis) ... 107

Figure 5-29 Angular Velocity Comparison (z-axis) .. 108

Figure 5-30 Angular Velocity Sample Comparison (z-axis) ... 108

Figure 5-31 Actuator 1 Output Comparison ... 109

Figure 5-32 Actuator 2 Output Comparison ... 110

Figure 5-33 Actuator 3 Output Comparison ... 110

Figure 6-1 Vehicle Simulator System Overview .. 112

Figure 6-2 Actuator 1 Position Control Tracking with Live Game Data..................................... 113

Figure 6-3 Actuator 2 Position Control Tracking with Live Game Data..................................... 113

Figure 6-4 Actuator 3 Position Control Tracking with Live Game Data..................................... 114

Figure 6-5 Modified Partial 2-DOF Motion Platform with Single Motion Actuator 115

Figure 6-6 Heave Comparison (Modified System) .. 116

Figure 6-7 Roll Angle Comparison (Modified System) .. 116

Figure 6-8 Pitch Angle Comparison (Modified System) .. 117

Figure 6-9 Actuator 1 Matlab/Simulink Simulation Output (Modified System) 117

xv

Figure 6-10 Specific Force Comparison – Modified System (x-axis) ... 118

Figure 6-11 Specific Force Comparison – Modified System (z-axis) ... 119

Figure 6-12 Angular Velocity Comparison – Modified System (y-axis) 119

Figure 6-13 Angular Velocity Sample Comparison – Modified System (y-axis) 120

Figure 6-14 Actuator Reference Point and Position Limits ... 121

Figure 6-15 Actuator 1 Position Control Tracking with Live Game Data (Modified System) 121

Figure 6-16 Actuator 1 Matlab/Simulink Simulation Output with Live Game Data.................. 122

xvi

List of Tables

Table 3-1 Actuator Position Control Parameters .. 56

Table 4-1 Model Parameters for Rotational Motion .. 64

Table 4-2 Model Parameters for Translational Motion .. 64

Table 4-3 Parameter Values for the Translational Channel Filter ... 69

Table 4-4 Parameter Values for the Transient Angular Velocity Filter 69

Table 4-5 Parameter Values for the Low-Pass Tilt Coordination Filter 70

Table 5-1 Actuator Motion Limits ... 89

Table 5-2 Translational Channel Filter Parameters ... 92

Table 5-3 Transient Angular Velocity Filter Parameters ... 92

Table 5-4 Tilt Coordination Filter Parameters ... 93

Table 7-1 Vehicle Simulator Systems Performance/Cost Comparisons 128

xvii

List of Acronyms

 3-D Three Dimensional

 AHS Automated Highway System

 CAD Computer-Aided Design

 CSV Comma-Separated Values

DOF Degree of Freedom

 DOFs Degrees of Freedom

 DLL Dynamic Link Library

 HP High-Pass

ITS Intelligent Transportation Systems

 kg Kilogram

 LAN Local Area Network

 LED Light-Emitting Diode

 LP Low-Pass

 m Metre

NADS National Advanced Driving Simulator

 PID Proportional–Integral–Derivative

 PLC Programmable Logic Controller

 RTOS Real-Time Operating System

 s Second

 TCP Transmission Control Protocol

 UDP User Datagram Protocol

 VR Virtual Reality

 X-Sim Cross-Simulator Software

1

1 Introduction

The following chapter provides details on the research conducted on the various aspects

involved in a vehicle simulator system and explains the research objectives for this

dissertation. The sections in this chapter aim to highlight all the aspects that a vehicle

simulator is comprised of.

The field of robotic manipulators is explained and the use of these manipulators in a vehicle

simulator system is discussed. The various literatures on vehicle simulators are discussed, and

this research assists in categorising these systems based on cost and fidelity. Applications for

vehicle simulators are also discussed.

A literature review of motion cueing provides insight into the methods used to increase the

vehicle simulator fidelity. This section also highlights how the human vestibular system

functions and how this system is exploited in a vehicle simulator.

The various techniques in research for motion control of robotic manipulators, specifically

parallel manipulators which form the basis of a vehicle simulator system, is then discussed.

Using the research knowledge gained the motivation for this study, scientific contributions and

research objectives are presented.

1.1 Robotic Manipulators

In robotics, there are two main types of manipulators which are used to create a robotic

system that performs a certain number of tasks. These manipulators include the serial and

parallel manipulators.

A serial manipulator is an open chain kinematic mechanism which comprises a fixed base,

series of links attached together by joints and an end-effector. The motion of these

manipulators is achieved by actuating individual joints. By controlling the motion of the joints

either the position and/or the orientation of the end-effector is manipulated to perform a

specific task (Ghosal, no date). The serial manipulator, illustrated in figure 1-1 (Ghosal, no

date), is referred to as an open loop manipulator. This is because none of the links form closed

kinematic chains.

2

The serial manipulator has a large workspace and is dexterous. The disadvantages of the serial

manipulator are that the cantilever-like structure is not rigid and it has poor dynamic

performance at high speed (Lee and Shah, 1988).

Figure 1-1 Schematic of a PUMA 560 Serial Manipulator

Parallel manipulators consist of a fixed base and a number of independent kinematic chains

connected to a moving platform or end-effector. Parallel manipulators have a greater load

carrying capacity due to the many parallel links distributing the load. The actuator locations in

a parallel manipulator are near the base, this location results in low inertia of the parts in

motion. Parallel manipulators do not suffer from accumulation of errors along a kinematic

chain and have a higher stiffness. The disadvantages of these manipulators include smaller

workspace due to the link interference among kinematic chains, physical constraints

introduced by universal and spherical joints, complex forward kinematics, platform

singularities and motion actuator range limits (Patel and George, 2012).

In 1942 a patent was filed, in the US, for a parallel robot to control the movement and

positioning of a spray gun (Pollard, 1942). Development of parallel manipulators date back to

the 1960s during which a universal tyre test machine was developed (Gough and Whitehall,

1962); this manipulator is a six-linear jack system. Later, Stewart developed a 6-DOF parallel

manipulator to be used as a flight simulator (Stewart, 1965). Due to the complex forward

kinematics and difficulty to manufacture precise spherical joints at low cost (Tsai et al., 1996),

the development of lower DOF parallel manipulators has been researched extensively.

Analysis of a 3-DOF parallel manipulator, which has two rotational degrees of freedom and one

translational degree of freedom, was performed (Lee and Shah, 1988). Solutions for forward

and inverse kinematics were derived for this 3-DOF parallel manipulator. A 3-DOF purely

translational parallel robot, known as the DELTA robot was developed (Clavel, 1988). Forward

3

and inverse kinematics for the DELTA robots was presented (Sternheim, 1987). The DELTA

robot can operate with high speed and accuracy. This led to high usage of the DELTA robot in

the medical, pharmaceutical and packaging industry (Patel and George, 2012). Kinematic

analysis was performed on a purely translational 3-DOF parallel manipulator made entirely

from revolute joints (Tsai et al., 1996).

Recent research has focused on the development of hybrid manipulators; these manipulators

combine both serial and parallel manipulators and aim to benefit from the advantages of both.

An 8-DOF hybrid manipulator was developed and aimed to combine the high rigidity of a

parallel robot and large workspace of a serial robot (Mohammadipanah and Zohoor, 2009). A

3-DOF hybrid parallel manipulator which is modular was created. This manipulator is aimed at

being reconfigurable, either manually or automatically, as well as self-repairing (Ng et al.,

2006).

Applications for parallel manipulators include motion simulators, precise machine tools and

micro mechanisms. Figure 1-2 (Patel and George, 2012) depicts a 6-DOF Stewart platform

parallel manipulator which is typically used in motion simulators.

Figure 1-2 Stewart Platform Parallel Manipulator

In robotics an important area of interest is the kinematics of the manipulator. The kinematics

of a robotic manipulator aims to provide a relationship linking the motion of the end-effector

to the motion of the joint variables. These joint variables could be joint angles for revolute

joints or joint lengths for prismatic joints.

4

The two main aspects in kinematics is the forward and inverse kinematics. In forward

kinematics the joint variables are known and the aim is to work out the position and

orientation of the end-effector. Inverse kinematics gives us the position and orientation of the

end-effector and requires the computation of joint variables to achieve such a position and

orientation.

The research carried out focused on parallel manipulator kinematics, these robot manipulators

have fairly straight forward inverse kinematics but have complex forward kinematic equations.

Kinematic analysis of the 6-DOF motion platform robotic wrist was performed, the inverse

kinematics solution was presented in close form and the Newton-Rhapson method was used

to iteratively solve the forward kinematic solution (Nguyen et al., 1991). Closed form forward

and inverse kinematic solutions for a 3-DOF parallel manipulator were developed (Lee and

Shah, 1988). Simulations, using MATLAB/Simulink and SimMechanics toolbox, were used to

verify the inverse kinematic equations derived for a similar 3-DOF platform and visually analyse

platform motion (Yu et al., 2010). The research knowledge gained is used to perform

kinematic analysis on the motion platform used for the vehicle simulator system.

1.2 Vehicle Simulators

Motion simulators originated from the development of flight simulators. The first vehicle

simulators started to appear in the 1970s and featured improved fidelity with advancements in

computer technology. In the early 1980s Daimler-Benz created a high fidelity vehicle simulator

(Drosdol and Panik, 1985). Subsequent high-fidelity simulators have since been created by

General Motors (Bertollini et al., 1994), University of IOWA (Freeman et al., 1996) and Toyota

(Toyota, 2007). Renault initially developed a 6-DOF motion platform to be used as a vehicle

simulator (Reymond and Kemeny, 2000). Renault currently have the ULTIMATE simulator

which is capable of 8-DOF, it consists of a 6-DOF Stewart platform combined with an XY motion

system (Colombet et al., 2008). Figure 1-3 (Colombet et al., 2008) illustrates the Renault

ULTIMATE driving simulator, the XY table is added to better replicate sustained longitudinal

and lateral acceleration.

5

Figure 1-3 Renault ULTIMATE Driving Simulator

The National Advanced Driving Simulator (NADS), illustrated in figure 1-4 (Chen et al., 2001),

which was funded by the National Highway Traffic Safety Administration (NHTSA) is a driving

simulator operated at the University of Iowa. The 9-DOF system consists of a turntable that

rotates ±330 degrees and a 6-DOF Stewart platform which moves on a XY motion system

(Chen et al., 2001). The XY motion system is added to better replicate sustained longitudinal

and lateral acceleration similar to the Renault ULTIMATE driving simulator.

Figure 1-4 The NADS at the University of Iowa

Lee et al. developed an effective and economical driving simulator based on the 6-DOF

platform and this simulator is a scaled down version intended for usage in human factor

6

studies and evaluation of full-scaled motion simulators. This work also highlighted the various

subsystems and how these are put together to create a high fidelity driving simulator system

(Lee et al., 1998). A motion control system for this driving simulator, which is hydraulically

driven, was subsequently developed (Kim et al., 1997). Universiti Teknologi Malaysia (UTM)

presented a conceptual design for a 6-DOF platform. This study performed simulations, using

Matlab/Simulink and the SimMechanics toolbox. The simulations allowed for visualisation of

the motion platform and by integrating with the inverse kinematics the user is provided with a

graphical display of motion cues. This type of simulation allows testing and verification of the

vehicle simulator platform to be performed before an actual system is constructed (Shiong et

al., 2009).

Several studies have looked at alternative vehicle simulator systems due to the excessive cost

of the traditional 6-DOF Stewart platform used to provide motion cues. A low-cost 2-DOF

motion platform was developed and it allowed for the recreation of longitudinal and yaw

motion. This particular simulator is a compromise between motion replication quality, cost and

compactness. It is intended to be used in driving schools, hospitals and other areas (Arioui et

al., 2009). The 2-DOF motion platform performance evaluation and experiments were also

performed. Using the classical washout algorithm to replicate motion cues the platform

showed acceptable driving realism (Arioui et al., 2011).

In the leisure industry low-cost motion systems are the most common systems used. It is

adequate to represent just rotational motion along the x-axis (Roll), rotational motion along

the y-axis (Pitch) and translation motion along the z-axis (Heave). The increased availability of

these lower-cost systems will allow for third world countries to adopt them in civil and military

applications (Denne, 1986). A 3-DOF motion simulator was developed and a study concluded

that the participants feel the vehicle simulator system does well to replicate vehicle motion

(Capustiac et al., 2011).

In a vehicle simulator a number of sub-systems exist, as illustrated in figure 1-5 adapted from

(Taikui and Jianmin, 2011). These sub-systems interact in cohesion to provide a high fidelity

simulator. These sub-systems include:

 The automobile cab system, which is used to provide the inputs from the driver. This

system uses component such as a steering wheel, gear knobs, acceleration and brake

pedals.

7

 The visual system is used to provide visual cues to the driver based on the inputs

received from the automobile cab system. This system also provides car kinematic

parameters, such as linear accelerations and angular velocities.

 A computer control system is used to transform the input linear accelerations and

angular velocities of the vehicle into actuator stroke lengths of the motion platform.

 The motion platform system provides the dynamic control of the motion platform and

subsequent motion cues experienced by the driver in the simulator.

Figure 1-5 Vehicle Simulator Sub-systems

A study performed classifies vehicle simulators into low, medium or high-cost simulators as

follows (Blana, 1996):

 Low-cost simulators are now available with improvements in computer technology

which have enabled the ability of creating reasonable fidelity motion systems. These

simulators are useful for dissertation related research and vehicle manufactures with

limited budget for research.

 Medium-cost simulators provide a large projection screen, advanced imaging

techniques and a complete vehicle. These systems can be comprised of a fixed-base or

a motion platform.

 A high-cost simulator provides a 360 degree field of view and is located in an enclosed

cabin. They are usually made from a 6-DOF motion platform.

8

Applications for vehicle simulators include:

 Research related to human factor studies – The Kookmin University fixed-based driving

simulator was used to test driver reactions in the recreation of an accident scenario. It

was designed to ascertain to what level driver carelessness or absentmindedness

contributed to traffic accidents. Unfortunately due to the simulator being fixed-based

realism was compromised and no significant conclusions could be drawn (Lee et al.,

2001). The NADS operated at the University of Iowa was designed to test a host of

human factors in contributing to traffic accidents (Chen et al., 2001). It is also intended

to use the NADS to test Intelligent Transportation Systems (ITS) and Automated

Highway System (AHS) technologies in a safe and controlled environment, with one of

the outcomes being to assess how these system impact overall driver performance

(Stall and Bourne, 1996).

 To validate vehicle dynamic models, test car prototypes and new features - Renault

used a 6-DOF motion simulator to test an adaptive cruise control system. Testing in

the simulator allowed for critical and even dangerous scenarios to be tested. The

simulator is seen as a prototyping tool which allows for the adaptive cruise control

system to be tested before it is integrated into an actual vehicle (Raymond et al.,

2000).

 To facilitate training of the vehicle driver - The Arizona Department of Transportation

(ADOT) have used fixed-base vehicle simulators to train snowplow operators. Two

types of training were performed, the first was to teach drivers how to react to

potential hazard while operating a snowplow and the second taught drivers proper

driving techniques to increase fuel efficiency. It was concluded that both types of

training have value and improvements to the training was planned (Kihl and Wolf,

2007). Utah Department of Transportation (UDOT) in collaboration with University of

Utah and General Electric Driver Development (GEDD) developed a similar training

program for snowplow operators, which included training in both a fixed-base and

motion simulator. The motion simulator was used to help operators prepare for issues

critical to the safe and efficient operation of the snowplow. Fixed-based simulators

were used to teach driving techniques to improve fuel efficiency. It was concluded that

operators who received training had lower odds of being involved in an accident than

9

the control group who were not trained. Fuel efficiency was also greater for trained

drivers (Strayer et al., 2004). Fuel efficiency training for truck drivers in a truck fleet

operation concluded that drivers with the poorest fuel efficiency benefitted

significantly from the training. Proper driving techniques learnt during training were

shown to be retained for this group (Strayer and Drews, 2003).

Figure 1-6 illustrates the designed vehicle simulator system; this particular system is a lower-

cost system. It is comprised of a 3-DOF motion platform capable of providing rotational motion

about the x-axis (Roll), rotational motion about the y-axis (Pitch) and translational motion

along the z-axis (Heave). This motion capability allows the platform to replicate sustained

longitudinal and lateral accelerations, through a technique called tilt coordination. Inability to

replicate sustained longitudinal accelerations results in poor simulation of maneuverers such

as emergency braking (Arioui et al., 2009). The designed vehicle simulator systems

performance is evaluated against the traditional 6-DOF Stewart platform using the human

vestibular system models, to highlight the benefits of such a system in replicating certain

motion cues.

Figure 1-6 Designed Vehicle Simulator System

10

Applications for such a lower-cost system include human factor studies in scenarios which do

not have much transient accelerations e.g. highway studies. In terms of testing car prototypes

this system could be used to test adaptive cruise control systems which generally have smooth

sustained accelerations. For driving training this platform can be adopted as a first contact for

new drivers to provide experience, in heavy machinery systems which do not undergo severe

accelerations, in general leisure environments and fuel efficiency training since proper shifting

techniques do not produce too many transient acceleration signals.

1.3 Motion Cueing

Vehicle driving was a task thought to be mainly facilitated through visual information. Recent

research has shown that other sensory information, such as the vestibular and proprioceptive

channels also contribute to motion perception (Kemeny and Panerai, 2003).

The human being senses motion via the vestibular system. The vestibular system consists of

the semi-circular canal and otolith. The otolith senses linear acceleration and the semi-circular

canal senses angular velocity. Additionally the otolith senses head tilt, which is the rotation of

the head relative to gravity (Kemeny and Panerai, 2003).

Figure 1-7 (Kemeny and Panerai, 2003) illustrates the human vestibular system. The semi-

circular canals are in red, orange and pink; these canals sense the angular acceleration of the

head. The otolith receptors in blue and green, sense both linear acceleration and tilt of the

head.

Figure 1-7 Human Vestibular System

11

The aim of the motion platform in a vehicle simulator is to replicate the motion sensations

experienced in a real vehicle, as accurately as possible. The main issue with the motion

platform is the limited workspace; this makes it difficult to recreate the motion sensations felt

in a real vehicle. Various motion cueing algorithms have been developed to try and replicate as

closely as possibly the sensations felt in a real vehicle (Taikui and Jianmin, 2011). The motion

cueing algorithm research aims to develop techniques to exploit the human vestibular system

and aid in replication of real vehicle motion sensations within the limited motion platform

workspace.

Motion cueing algorithms consist of two aspects:

 Washout - Replicating of the transient accelerations is achieved by high-pass filtering;

this signal is integrated to obtain a position or orientation output. To prevent actuator

saturation additional high-pass filtering is added to return the platform back to

neutral position (washout). This return motion should go undetected to the human

vestibular system to avoid being detected as false motion cues (Reymond et al., 2000).

 Tilt coordination - Replication of sustained horizontal accelerations is achieved by first

low-pass filtering the acceleration signal. Tilting of the motion platform to make use of

a component of the gravity vector is then used to replicate these sustained

accelerations. The rate of tilting must be done under the detectable threshold of the

vestibular system to prevent false motion cues (Reymond et al., 2000).

Various types of motion cueing algorithms have been proposed in literature, these include:

 The classical washout algorithm, first proposed (Schmidt and Conrad, 1970), employs

fixed parameters in the filter designs. High-pass filters are used to extract the transient

components of the translational and rotational channels, the filter parameters are

chosen to keep the motion platform within the workspace. A low-pass filter is used to

represent the sustained translational acceleration through tilt coordination. The

equations for the classical washout algorithm were initially developed (Reid and

Nahon, 1985) and a method to select the filter parameters was subsequently proposed

(Reid and Nahon, 1986).

12

 The adaptive washout algorithm is seen as an improvement to the classical washout

algorithm; the filter parameters are updated in real time with the aim of minimising a

cost function (Arioui et al., 2005). The classical washout algorithm suffers from false

motion cues for transient motion and the adaptive algorithm was designed with false

cue reduction in mind (Ariel and Sivan, 1984). A theoretical evaluation of the adaptive

algorithm was done using the vestibular system model; it concluded that the adaptive

algorithm provides motion sensations closer to the actual vehicle as compared to the

classical washout algorithm (Taikui and Jianmin, 2011).

 The optimal washout algorithm aims to minimise the sensation errors between the

physiological outputs of the vestibular system in an actual vehicle and the motion

platform. An optimal control problem is developed to generate the input to the

motion platform based on the input to the actual vehicle; this process is done such

that the error between the outputs in the vehicle and motion platform is minimised

(Sivan et al., 1982).

 Model predictive control is a model-based technique that allows the ability to include

workspace constraints and to make use of future references signals. Baseggio et al.

employed a technique that makes use of the detailed model of the human vestibular

system and a predictive strategy based on a virtual driver (Baseggio et al., 2011).

Figure 1-8 (Beghi et al., 2012) shows an implementation of the classical washout algorithm.

The linear acceleration is filtered into the transient and sustained components, using high-pass

and low-pass filters respectively. The high-pass filter signal is integrated twice to give platform

position and the washout filter is used to return the platform to neutral position. The low-pass

filter signal is transformed via tilt coordination; this tilting is interpreted as a sustained

acceleration by the human vestibular system. The angular velocity is also high-pass filtered and

integrated to give an output for platform orientation. The signal is added with the tilt

coordination signal to provide the final platform orientation signal.

13

Figure 1-8 Classical Washout Algorithm

Figure 1-9 (Beghi et al., 2012) illustrates the model-predictive control scheme. The actual

vehicle translational accelerations and rotational velocities are obtained from simulation

software. These are scaled and the perceived accelerations, r, is obtained by filtering these

values via the vestibular system model. This signal becomes the reference for the MPC

algorithm. Using the MPC algorithm the displacement signals, p, are passed to the platform

control system.

Figure 1-9 Scheme for Model Predictive Control Strategy

The MPC technique is shown to make better use of workspace, eliminate false cues and has

better performance than the classical washout algorithm (Baseggio et al., 2011). The

subsequent research conducted makes use of an optimisation algorithm to tune the MPC

algorithm with regard to platform workspace constraints and tilt coordination (Beghi et al.,

2012).

1.4 Motion Control

Motion control of parallel manipulators deals with the trajectory control of parallel

manipulators. The main focus is to minimize the error between the desired end-effector

position and orientation and the actual end-effector position and orientation. Motion control

14

of parallel manipulators can be classified as either model-based control or performance based

control approaches (He et al., 2007).

Traditionally PID controllers, which are performance based controllers, are often applied to the

control of parallel manipulators. PID controllers are easy to implement but are known to have

steady state errors. A model based control strategy, PID control with gravity compensation,

was designed to mitigate the steady state errors due to gravity. This controller was shown to

have faster response than the traditional PID controller and suffered from no steady state

errors (Yang et al., 2008).

Results are favourable for model based control schemes however it is difficult to implement

for parallel manipulators due to the high nonlinearity of parallel manipulator systems. This has

led to research into performance based control strategies (He et al., 2007).

Adaptive control is a nonlinear, performance based, control strategy. It aims to identify and

optimize parameters of the dynamic model online. This type of control scheme requires

significant computational power. An implementation of the nonlinear adaptive control on the

real-time operating system (RTOS) called XOberon was implemented and achieved better

performance than a traditional linear controller (Honegger et al., 2000). The adaptive

controller is able to achieve good control performance in situations with model parameter

uncertainties but control performance can suffer due to unknown disturbances. An adaptive

control scheme which incorporates disturbance rejection capabilities, to reject leg coupling

disturbances, for a 6-DOF parallel manipulator performed well in normal and extreme

conditions (Qinglong and Wenjie, 2011).

Robust control is another control strategy designed for plants with parameter uncertainties

and disturbances. A 2-DOF QFT robust controller was designed in the joint space for a 6-DOF

parallel robot. The single channel mathematical model of an electro-hydraulic system was

defined and a robust controller with pre-filter was designed. The controller was tested and the

experimental results show strong robustness against parameter variations, good disturbance

rejection and precise trajectory tracking (Wu et al., 2010).

Due to the reasonable performance requirements for this vehicle simulator an industrial

motion control system is used. The motion control system, by Festo, is a pneumatic system

and it is designed to perform position control of each actuator leg in the 3-DOF motion

platform. Figure 1-10 (Festo, 2009) illustrates the position control system for a single linear

15

pneumatic actuator; the vehicle simulator currently has 3 position control systems for the 3

linear pneumatic actuators. Inverse kinematics is used to supply the CMAX controllers with the

desired actuator stroke length, the CMAX controller then adjusts the output from the double

acting directional proportional control valve (VPWP). The proportional control valve drives the

linear pneumatic actuator which has a built in incremental position encoder which feeds the

actual position back to the CMAX controller. This creates a closed loop feedback position

control system. Each position control system has to be configured with suitable parameters to

achieve good tracking performance.

Figure 1-10 Festo Single Actuator Position Control System

1.5 Motivation for Study

The University of Kwa-Zulu Natal has a vehicle simulator, illustrated in figure 1-11, which was

designed as a final year project in 2012. Currently the system only makes use of visual cues,

which it receives from 3 x 27 inch LED monitors. The vehicle simulator is low-cost compared to

other simulator systems mentioned in the literature review, such as the Daimler-Benz vehicle

simulator, General Motors vehicle simulator and the NADS.

16

Figure 1-11 Vehicle Simulator System

The motion platform for this simulator is a 3-DOF platform as compared to the traditional 6-

DOF Stewart platform. The reasons for choosing a 3-DOF system were the lower

manufacturing costs involved and relatively simple manufacturing of such a system.

The motivation of this research is to research, design and implement motion cues for the 3-

DOF motion platform. The aim is to create the best possible fidelity in the vehicle simulator

system by creating realistic motion cues that work in cohesion with visual cues. Evaluation is

performed against the traditional 6-DOF motion platform using the human vestibular system

models, highlighting the benefit of such a system in certain applications.

17

1.6 Scientific Contribution

The research contributes the following aspects:

 A performance evaluation of the 3-DOF motion platform which was designed. The

performance of the 3-DOF motion platform is evaluated against the traditional 6-DOF

motion platform in the Matlab/Simulink environment. By observing the outputs of the

human vestibular system models the fidelity of both systems is assessed. The results

conclude on the benefit of the 3-DOF motion platform in replication of certain motion

sensations and in certain applications, especially those which have cost constraints and

reasonable performance requirements.

 A simulation system developed in Matlab/Simulink to aid in the design of a vehicle

simulator is contributed. The position control system used, in the vehicle simulator, is

a pneumatic system and comprises of 3 linear pneumatic actuators. Limits were

imposed on the position, velocity and acceleration values of each actuator. These

limits were imposed to guarantee safety of the user in the vehicle simulator and safety

of the mechanical structure of the vehicle simulator. The simulation system developed

comprises of all the aspects involved in the motion cueing process, which includes

input vehicle data scaling, implementing of the washout algorithm and performing

inverse kinematics for the 3-DOF motion platform. By incorporating the various motion

cueing aspects in the Matlab/Simulink environment the parameters of the various

aspects are varied until performance that adheres to the actuator motion limits is

achieved. Using the developed simulation system also aids in ensuring the motion

cueing aspects are tested before they can be implemented on the actual vehicle

simulator.

1.7 Research Objectives

The research objectives are as follows:

 Investigate and understand current mechanical framework.

 Perform kinematic analysis, simulation and testing of the 3-DOF motion platform and

traditional 6-DOF motion platform.

 Investigate, design, implement and test the classical washout algorithm for use in both

the 3-DOF motion platform and traditional 6-DOF motion platform.

18

 Implement the novel simulation system, developed in Matlab/Simulink, to aid in the

vehicle simulator design. This system is used to adjust various parameters in the

motion cueing process to ensure actuator motion constraints are respected.

 Evaluate the performance of the 3-DOF motion platform against the traditional 6-DOF

motion platform using human vestibular system models in Matlab/Simulink.

 Write software a software plugin, written in C++, to interface between the physics

engine of a game and the position control system on the 3-DOF motion platform. The

software plugin implements the various motion cueing aspects in the C++ language.

 Configure and test the position control system hardware.

 Develop PLC software to perform actuator position control.

 Evaluate the position control system performance to provide motion cues against the

performance of the Matlab/Simulink simulation system results.

 Integrate and test the entire vehicle simulator system. Evaluate the fidelity of the

vehicle simulator.

1.8 Dissertation Outline

The next chapter in the dissertation is the mechanical system design and analysis. The

mechanical system is presented and the various components for the vehicle simulator are

discussed. Kinematic solutions for the 3-DOF platform are derived and a simulation system is

developed, in the Matlab/Simulink environment, to validate the derived inverse kinematic

equations. Similar kinematic equations are presented for a known 6-DOF motion platform and

Matlab/Simulink simulations are used to validate these equations.

Chapter 3 presents the Festo position control system used in the vehicle simulator for motion

control. The various components in the position control system are discussed and the

configuration of this position control system is explained. Setup and basic testing of the

position control system is performed. The chapter concludes by explaining the PLC software

algorithm and how this algorithm is used in the vehicle simulator.

Chapter 4 presents the motion cueing strategy used for the vehicle simulator. The classical

washout algorithm is selected to be implemented on the vehicle simulator. An implementation

of the classical washout algorithm is presented for the motion platform. Simulations are

performed on the classical washout algorithm in the Matlab/Simulink environment. The

simulations test the algorithm to ensure the washout process is effective. It also evaluates the

19

ability of the classical washout algorithm to replicate the motion sensations experienced in an

actual vehicle; this process makes use of the human vestibular system models.

Chapter 5 presents the software used to provide visual cues and telemetry data. The X-Sim

software is used to provide visual cues and telemetry data via the games build in physics

engine. A novel simulation system developed, in Matlab/Simulink, is used to adjust the motion

cueing parameters to ensure motion that adheres to the actuator motion constraints; this

guarantees safe performance. Fidelity of the 3-DOF motion platform is evaluated using the

human vestibular system models. The 3-DOF motion platform motion cues are evaluated

against the sensations felt in an actual vehicle and the 6-DOF motion platform; this testing

highlights the benefits of the 3-DOF motion platform, especially in scenarios with cost

constraints and reasonable performance requirements. Once this testing is complete a

software plugin is developed, in C++, to interface between the X-Sim software and the Festo

position control system. Motion cueing that was implemented and tested in the

Matlab/Simulink environment was written in the C++ language to be used in the software

plugin. The actuator stroke length outputs for the software plugin and the simulation system,

in Matlab/Simulink, were also compared to ensure the C++ plugin implementation is correct.

In Chapter 6 the entire vehicle simulator is presented. The various components used to

provide visual and motion cues are discussed. These visual and motion cues are integrated to

create a vehicle simulator with the best possible fidelity. Position control testing with live

game data is performed and this testing highlights the issue of control system instability on the

back actuators. A modification is done to the 3-DOF system to provide motion cues through

the front actuator only. The modified system is a partial 2-DOF system and is able to provide

translational motion along the z-axis (Heave) and rotational motion along the y-axis (Pitch).

The modified partial 2-DOF system is compared to the initially designed 3-DOF system and the

results are favourable. The chapter is concluded by evaluating the position control system

response in the vehicle simulator against the results from the Matlab/Simulink simulations.

The final chapter presents the conclusions of this research and highlights possible future work

which could be undertaken.

1.9 Chapter Summary

This chapter presents research conducted in the field of vehicle simulators and the various

components of these simulators.

20

The importance of parallel manipulators, which have a high load carrying capacity, in vehicle

simulators, was discussed. The complexities and limitations of these robot manipulators were

highlighted. Research developments in the field of motion cueing algorithms began due to the

limited workspace of parallel manipulators; these motion cueing algorithms aims to maximise

platform utilisation and provide realistic motion sensations.

The history of vehicle simulators and various commercial vehicle simulators were mentioned.

It was shown that the vehicle simulator is comprised of several sub-systems and these sub-

systems act in cohesion to provide high fidelity. The classification of these vehicle simulators

based on cost was also presented; this showed that costing has a direct impact on fidelity of

the vehicle simulator. The higher costing systems tend to provide the highest simulator fidelity.

Several applications which used both higher and lower cost systems were discussed.

Research has classified motion control of parallel manipulators as either model based control

or performance base control. Various types of model based control strategies were discussed;

these strategies are difficult to implement due to non-linear characteristics of the parallel

manipulator model. Subsequent research into performance based control highlights the

benefits of this control strategy. Performance based control however requires excessive

computational power. Robust control strategies were also researched and these aim to

provide good tracking while rejecting disturbances. In the 3-DOF motion platform an industrial

control system, which is a pneumatic system from Festo, was selected to perform motion

control and this control systems components were explained.

The motivation of this study was highlighted and this aims create the best possible fidelity by

creating realistic motion cues that work in cohesion with visual cues. Implementation of the

various components used in the vehicle simulator system is performed on the 3-DOF motion

platform. Performance of the 3-DOF motion platform is evaluated against the 6-DOF motion

platform, using the human vestibular system models, to highlight the benefits of such a

system.

Scientific contributions were presented for this research. The first is the performance

evaluation of the 3-DOF motion platform against the traditionally used 6-DOF motion

platform. Results are aimed to show the benefit of the 3-DOF system especially in applications

which have cost constraints and reasonable performance requirements. The second

contribution is through the novel simulation system developed which aids in the vehicle

21

simulator design and evaluating of the selected position control system, in terms of trajectory

tracking and accurate replication of motion cues. This simulation system, developed in

Matlab/Simulink, ensures actuator motions that adhere to the actuator motion constraints are

achieved. This guarantees safety of the user of the vehicle simulator and safety of the

mechanical structure of the vehicle simulator.

The chapter concludes with the research objectives, showing the various aspects that need to

be performed to create a vehicle simulator system, and dissertation outline for the rest of this

dissertation.

22

2 Mechanical System Design and Analysis

The following chapter describes the mechanical system used for the vehicle simulator. It

provides a detailed description of the 3-DOF motion platform used for the vehicle simulator

and presents the kinematic analysis for this platform. Simulations are performed, in Matlab

using Simulink and the SimMechanics toolbox. SimMechanics is a toolbox that provides a

multibody simulation environment which allows for the modelling and simulation of

mechanical systems using their geometrical layout and structural properties. It provides a

simulation environment were kinematic and dynamic analysis can be performed on multibody

systems (The MathWorks Inc., 2007). The SimMechanics toolbox creates a 3-D model of the 3-

DOF motion platform based on the geometrical layout of the motion platform. This model can

be used to simulate kinematic and dynamic analysis for the motion platform.

The simulation system developed is used verify the derived inverse kinematic equations by

comparing them to the results output from the structural model of the platform created using

the SimMechanics toolbox. A similar simulation system is developed for the 6-DOF motion

platform and the inverse kinematic equations for this platform are also verified. The 3-DOF

motion platforms performance is evaluated against the traditionally used 6-DOF motion

platform in subsequent chapters.

2.1 Vehicle Simulator Framework

The University of KwaZulu-Natal has a vehicle simulator which was designed to be used in the

Department of Mechanical Engineering. The simulator comprises of a mechanical framework, a

3-DOF motion platform and three linear pneumatic actuators.

Figure 2-1 illustrates the mechanical framework which was designed to support the following

components for the vehicle simulator:

• 3 x 27 inch LED monitors

• Steering wheel

• Vehicle seat

• Pedals

23

Figure 2-1 Mechanical Framework of the Vehicle Simulator

The mechanical framework was constructed from steel tubing, which is lower cost in

comparison to aluminium. To reduce the mass of the structure hollow steel tubing was used.

The steel tubing used is 32 mm x 32 mm x 2 mm for all members of the mechanical framework.

2.2 Vehicle Simulator Motion Platform

Figure 2-2 illustrates the vehicle simulator motion platform which was designed to be a 3-DOF

platform. It is designed to provide translation motion along the z-axis (Heave) and rotational

motion about the x-axis (Roll) and y-axis (Pitch) respectively.

24

Figure 2-2 3-DOF Platform

The individual kinematic leg illustrated in figure 2-3, which forms part of the platform, is

comprised of the following:

 A passive revolute joint which attaches the base to the first link.

 An actuated prismatic joint which connects the first and second link.

 A passive universal joint which attaches the second link to the moving platform.

25

Figure 2-3 Individual Kinematic Leg for the 3-DOF Platform

2.3 Motion Platform Kinematics

The following section provides the kinematic analysis for the 3-DOF motion platform used in

the vehicle simulator. A solution for the inverse kinematic problem is presented in closed-form

and an iterative method is used to solve the forward kinematics.

2.3.1 Inverse Kinematics

The inverse kinematics of a robot manipulator aims to find the actuator stroke lengths for a

particular end-effector position and orientation. The 3-DOF parallel manipulator motion can be

specified with three independent end-effector parameters; these parameters include the

translational motion along the z-axis (Heave), the rotational motion about the x-axis (Roll) and

rotational motion about y-axis (Pitch) respectively.

A complete kinematic analysis of a symmetric 3-DOF parallel manipulator was initially

performed (Lee and Shah, 1988). The inverse kinematic solution for the current platform being

used was developed using a geometrical approach similar to the one presented for a 6-DOF

Stewart platform-based robotic wrist (Nguyen et al., 1991). The aim was to develop equations

26

which are used to find the actuator stroke lengths for a desired end-effector position and

orientation. Figure 2-4 illustrates the motion platform for the vehicle simulator with the

various coordinate systems used.

Figure 2-4 3-DOF Platform with Coordinate Systems

Coordinate frame A(x, y, z) is attached to the centroid, O, of the base of the motion platform

and coordinate frame B(u, v, w) is attached to the centroid, P, of the moving platform.
The x-y plane contains revolute joints 𝐴𝑖, 𝑖 = 1 to 3, and the u-v plane contains universal

joints 𝐵𝑖, 𝑖 = 1 to 3.

27

A point moving from the moving coordinate system B, to the fixed base coordinate system A,

can be described fully by a translational component and a rotational component. Unit vectors

u, v, w, are defined along the u, v, w axes of the moving coordinate system B.

The rotation matrix from coordinate frame B to coordinate frame A is defined as:

 𝐴𝑅𝐵 = [

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

] . . . (2.1)

The rotation matrix is an orthogonal matrix and satisfies the following conditions:

𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 = 1, . . . (2.2)

𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 = 1, . . . (2.3)

𝑤𝑥
2 + 𝑤𝑦

2 + 𝑤𝑧
2 = 1, . . . (2.4)

𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧 = 0, . . . (2.5)

𝑢𝑥𝑤𝑥 + 𝑢𝑦𝑤𝑦 + 𝑢𝑧𝑤𝑧 = 0, . . . (2.6)

𝑣𝑥𝑤𝑥 + 𝑣𝑦𝑤𝑦 + 𝑣𝑧𝑤𝑧 = 0 . . . (2.7)

The vector 𝐴𝑖
𝐴 = [𝑎𝑖𝑥 𝑎𝑖𝑦 𝑎𝑖𝑧]

𝑇 is the position of the revolute joint 𝐴𝑖 with respect to the

frame A and vector 𝐵𝑖
𝐵 = [𝑏𝑖𝑢 𝑏𝑖𝑣 𝑏𝑖𝑤]𝑇 is the position of the universal joint 𝐵𝑖 with respect to

the frame B.

The three revolute joints, in the base coordinate frame A, are given by the following

coordinates in metres:

𝐴
𝐴

1 = [0.6 0 0]𝑇 . . . (2.8)

𝐴
𝐴

2 = [−0.6 0.25 0]𝑇 . . . (2.9)

𝐴
𝐴

3 = [−0.6 −0.25 0]𝑇 . . . (2.10)

The three universal joints, in the moving platform coordinate frame B, are given by the

following coordinates in metres:

𝐵
𝐵

1 = [0.5 0 0]𝑇 . . . (2.11)

28

𝐵
𝐵

2 = [−0.5 0.15 0]𝑇 . . . (2.12)

𝐵
𝐵

3 = [−0.5 −0.15 0]𝑇 . . . (2.13)

The position of point P, the centroid of the moving platform, with respect to fixed base frame

A is given by:

𝑃
𝐴 = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] . . . (2.14)

The position vector 𝑞𝑖 of 𝐵𝑖 with respect to coordinate frame A is given by the following

transformation:

𝑞𝑖 = 𝑃
𝐴 + 𝐴𝑅𝐵 𝐵𝑖

𝐵 . . . (2.15)

The coordinates of the universal joints with respect to coordinate frame A is given by the

following:

𝑞1 = [

𝑝𝑥 + 0.5𝑢𝑥

𝑝𝑦 + 0.5𝑢𝑦

𝑝𝑧 + 0.5𝑢𝑧

] . . . (2.16)

𝑞2 = [

𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥

𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦

𝑝𝑧 − 0.5𝑢𝑧 + 0.15𝑣𝑧

] . . . (2.17)

𝑞3 = [

𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥

𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦

𝑝𝑧 − 0.5𝑢𝑧 − 0.15𝑣𝑧

] . . . (2.18)

The motion of each limb is constrained by the revolute joints, which attaches the limb to the

fixed base. The motion is constrained in one of the following three planes:

𝑞1𝑦 = 0 for 𝑖 = 1 . . . (2.19)

𝑞2𝑦 = −
0.25

0.6
𝑞2𝑥 for 𝑖 = 2 . . . (2.20)

𝑞3𝑦 =
0.25

0.6
𝑞3𝑥 for 𝑖 = 3 . . . (2.21)

Using the above results of equation 2.16 to equation 2.21 gives the following:

𝑝𝑦 + 0.5𝑢𝑦 = 0 . . . (2.22)

29

𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦 = −
0.25

0.6
(𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥) . . . (2.23)

𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦 =
0.25

0.6
(𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥) . . . (2.24)

Adding Eq. 2.23 to Eq. 2.24 gives the following motion constraint for the y-axis translational

motion:

𝑝𝑦 =
1

2
𝑢𝑦 −

0.0375

0.6
𝑣𝑥 . . . (2.25)

Subtracting Eq. 2.24 from Eq. 2.23 gives the following motion constraint for the x-axis

translational motion:

𝑝𝑥 = 0.5𝑢𝑥 − 0.36𝑣𝑦 . . . (2.26)

The Roll-Pitch-Yaw angles of orientation for the moving platform are defined as a rotation of 𝛼

about the x-axis, followed by a rotation of 𝛽 about the y-axis and a rotation of 𝛾 about the z-

axis. The platform has two rotational degrees of freedom, a rotation about the x-axis (Roll) and

a rotation about the y-axis (Pitch), implying that 𝛾 = 0 and the rotation matrix is given by:

𝑅
𝐴

𝐵 = 𝑅𝑍(0)𝑅𝑌(𝛽)𝑅𝑋(𝛼) = [
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛼

0 𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼
−𝑠𝑖𝑛 𝛽 cos𝛽 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝛼

] . . . (2.27)

Using the above rotation matrix the three motion constraints can be expressed as follows:

𝛾 = 0 . . . (2.28)

𝑝𝑦 = −
0.0375

0.6
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 . . . (2.29)

𝑝𝑥 = 0.5 cos𝛽 − 0.36 cos𝛼 . . . (2.30)

From figure 2-4 the leg vector 𝑠𝑖 = [𝑠𝑖𝑥 𝑠𝑖𝑦 𝑠𝑖𝑧]
𝑇 with respect to frame A, is given by:

𝑠𝑖 = 𝑃
𝐴 + 𝐴𝑅𝐵 𝐵𝑖

𝐵 − 𝐴𝑖
𝐴

= [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] + [

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

] [

𝑏𝑖𝑢

𝑏𝑖𝑣

𝑏𝑖𝑤

] − [

𝑎𝑖𝑥

𝑎𝑖𝑦

𝑎𝑖𝑧

] . . . (2.31)

For the above equation the revolute joints 𝐴𝑖, 𝑖 = 1 to 3 are contained within the x-y plane,

resulting in 𝑎𝑖𝑧 = 0. The individual leg vectors are thus given by:

30

𝑠1 = [

𝑝𝑥 + 0.5𝑢𝑥 − 0.6
𝑝𝑦 + 0.5𝑢𝑦

𝑝𝑧 + 0.5𝑢𝑧

] . . . (2.32)

𝑠2 = [

𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥 + 0.6
𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦 − 0.25

𝑝𝑧 − 0.5𝑢𝑧 + 0.15𝑣𝑧

] . . . (2.33)

𝑠3 = [

𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥 + 0.6
𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦 + 0.25

𝑝𝑧 − 0.5𝑢𝑧 − 0.15𝑣𝑧

] . . . (2.34)

The magnitude of each leg vector gives the leg length of each leg. Taking the magnitude of

each leg vector gives the following leg length equations:

𝑙𝑖 = √𝑠𝑖𝑥
2 + 𝑠𝑖𝑦

2 + 𝑠𝑖𝑧
2 for 𝑖 = 1 to 3 . . . (2.35)

𝑙1 = √(𝑝𝑥 + 0.5𝑢𝑥 − 0.6)2 + (𝑝𝑦 + 0.5𝑢𝑦)2 + (𝑝𝑧 + 0.5𝑢𝑧)
2

= √(𝑝𝑥 + 0.5 𝑐𝑜𝑠 𝛽 − 0.6)2 + 𝑝𝑦
2 + (𝑝𝑧 − 0.5𝑠𝑖𝑛 𝛽)2 . . . (2.36)

𝑙2

= √(𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥 + 0.6)2 + (𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦 − 0.25)2 + (𝑝𝑧 − 0.5𝑢𝑧 + 0.15𝑣𝑧)
2

= √
(𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 + 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 + 0.15 𝑐𝑜𝑠 𝛼 − 0.25)

2

+(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 + 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2
 . . . (2.37)

𝑙3

= √(𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥 + 0.6)2 + (𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦 + 0.25)2 + (𝑝𝑧 − 0.5𝑢𝑧 − 0.15𝑣𝑧)
2

= √
(𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 − 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 − 0.15 𝑐𝑜𝑠 𝛼 + 0.25)

2

+(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 − 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2
 . . . (2.38)

The leg length equations derived above is used to determine the actuator stroke lengths for a

particular trajectory of the end-effector. These equations are dependent on the 3 independent

31

end-effector parameters (Roll, Pitch and Heave) and the 3 constraint equations 2.28, 2.29 and

2.30.

2.3.2 Forward Kinematics

The forward kinematics for a robotic manipulator deals with finding the end-effector position

and orientation for a particular set of joint variables. In general for parallel manipulators the

equations for solving the forward kinematic problem are highly non-linear and in many

instances no closed-form solution exists (Nguyen et al., 1991).

The technique below, used to solve the forward kinematic problem is a numerical method

known as the Newton method, it is generally simpler and more computationally efficient than

the exact solution (Smit, 2010). This technique has good convergence for a solution.

The system of non-linear equations can be written as a function of 𝑝𝑧 ,𝛼 and 𝛽 as follows for

𝑖 = 1 to 3:

𝑓1(𝑝𝑧, 𝛼, 𝛽) = (𝑝𝑥 + 0.5 𝑐𝑜𝑠 𝛽 − 0.6)2 + 𝑝𝑦
2 + (𝑝𝑧 − 0.5𝑠𝑖𝑛 𝛽)2 − 𝑙1

2 = 0 . . . (2.39)

𝑓2(𝑝𝑧, 𝛼, 𝛽) = (𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 + 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 + 0.15 𝑐𝑜𝑠 𝛼 − 0.25)
2
+

(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 + 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2 − 𝑙2
2 = 0 . . . (2.40)

𝑓3(𝑝𝑧, 𝛼, 𝛽) = (𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 − 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 − 0.15 𝑐𝑜𝑠 𝛼 + 0.25)
2
+

(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 − 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2 − 𝑙3
2 = 0 . . . (2.41)

The iterative solution for the Newton method, for 𝑝𝑧 ,𝛼 and 𝛽 is given by:

[

𝑝𝑧

𝛼
𝛽

]

𝑛+1

= [

𝑝𝑧

𝛼
𝛽

]

𝑛

− J𝑛
−1 [

𝑓1(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)

𝑓2(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)

𝑓3(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)

] . . . (2.42)

𝑛 denotes the iteration number and J𝑛 is called the Jacobian matrix and is given by:

J𝑛 =

[

𝜕𝑓1(𝑝𝑧

𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝑝𝑧

𝜕𝑓1(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛼

𝜕𝑓1(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛽

𝜕𝑓2(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝑝𝑧

𝜕𝑓2(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛼

𝜕𝑓2(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛽

𝜕𝑓3(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝑝𝑧

𝜕𝑓3(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛼

𝜕𝑓3(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛽]

 . . . (2.43)

The initial approximation for 𝑝𝑧 ,𝛼 and 𝛽 for 𝑛 = 0, is given by:

32

[

𝑝𝑧

𝛼
𝛽

]

𝑛=0

= [

(𝑙1+𝑙2+𝑙3)

3

0
0

] . . . (2.44)

For each iteration of Eq. 2.42 an improved approximation is obtained. The technique will

continue to iterate until the convergence criteria is satisfied:

√𝑓1(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)2 + 𝑓2(𝑝𝑧

𝑛, 𝛼𝑛, 𝛽𝑛)2 + 𝑓3(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)2 < 𝜀 . . . (2.45)

𝜀 is a small positive quantity set by the user.

The technique above allows for the 3 independent platform parameters to be determined for a

particular set of stroke lengths. The 3 dependent parameters can then be determined from the

constraint equations 2.28, 2.29 and 2.30. These 6 parameters give the platform position and

orientation.

2.4 Inverse Kinematics Simulation

The 3-DOF motion platform inverse kinematics was simulated in Matlab/Simulink. The

Simulink modelling package was used to recreate the structural model of the motion platform

and simulate the results. Simulink contains a toolbox, which is called SimMechanics, which

provides the components used to model the motion platform. SimMechanics allows for

kinematic and dynamic analysis to be performed on the designed mechanical system.

The simulation has the following objectives:

 Compare the calculated actuator stroke lengths, based on the derived leg length

equation 2.36 to equation 2.38, with the actuator stroke lengths that are output from

the structural model.

 Observe how well the input platform trajectory is replicated at the output of the

structural model.

2.4.1 Inverse Kinematics Simulation System

The mobility criterion for the 3-DOF platform is given using the Grubler formula:

𝐹 = 𝜆(𝑛 − 𝑗 − 1) + ∑ 𝑓𝑖
𝑗
𝑖=1 . . . (2.46)

Where 𝜆 = 6 for spatial manipulators, 𝑛 is the number of links, 𝑗 is the number of joints, 𝑓𝑖 is

the number of degrees of freedom of the 𝑖th joint. The 3-DOF platform has 3 universal joints, 3

33

prismatic joints and 3 revolute joints. This configuration gives the following result for the

mobility criterion:

𝐹 = 6(8 − 9 − 1) + (3 + 3 + 6)

𝐹 = 0

If the same configuration is used in Matlab/Simulink it results in an overconstrained system

and a simulation error when attempts are made to actuate the prismatic joints. To be able to

simulate the 3-DOF motion platform the universal joints in the system are replaced by

spherical joints. This configuration gives the following result for the mobility criterion:

𝐹 = 6(8 − 9 − 1) + (3 + 3 + 9)

𝐹 = 3

This configuration allows for the 3 prismatic joints to be actuated and the simulation system

can function correctly. The rotational motion about the z-axis (Yaw) introduced by the

spherical joints should be minimal and can be neglected because the actual 3-DOF motion

platform uses universal joints.

Figure 2-5 illustrates the individual kinematic leg which is used. This model was created as a

library package in Simulink to facilitate re-usability. The individual kinematic leg is made up of

a revolute joint at the base, prismatic joint in the middle and spherical joint at the top. The

spherical joint is used in place of the universal joint used on the actual 3-DOF motion platform.

The 3-DOF motion platform contains three individual kinematic legs; these legs connect the

base to the motion platform. The prismatic joints stroke lengths are varied according to the

inverse kinematic calculations. The aim is to calculate the individual stroke length of each leg

for a particular platform end-effector position and orientation. The PVA block in Figure 2-5 is

used to input the position, velocity and acceleration changes that each prismatic joint will

undergo. A joint sensor block is attached to each prismatic joint to measure changes in stroke

length.

34

Figure 2-5 Branch Model for the Individual Kinematic Leg for the 3-DOF Platform

Figure 2-6 shows the structural model for the 3-DOF motion platform. The geometrical layout

of the individual kinematic legs for the motion platform in Simulink is based on the CAD model

of the actual 3-DOF motion platform. The individual kinematic legs are attached to the base via

the revolute joints and to the top platform via the spherical joints.

1

len1

2 base1

1top1

B
F

Spherical

B
F

Revolute1

B
F

Prismatic1

Position PVA

PVA

Joint Sensor

Joint Actuator

C
S

3
C

S
2

Body1-1

C
S

1
C

S
3

Body1

1

we1

35

Figure 2-6 Structural Model for the 3-DOF Platform

2.4.2 Inverse Kinematics Simulation Results

In order to validate the derived leg length equation 2.36 to equation 2.38 for the inverse

kinematics, a trajectory test was performed. The fundamental idea behind this test is to

specify a path in time that the end-effector of the motion platform will follow. The leg lengths

are then determined based on inverse kinematics equation 2.36 to equation 2.38. These leg

length values are input to the system and are compared to the leg lengths from the output of

the structural model of the motion platform. The end-effector output trajectory from the

structural model was also compared to the input trajectory. Using the results obtained the

accuracy of the derived leg length equation 2.36 to equation 2.38 for the inverse kinematics

was determined.

The desired trajectory input for the end-effector of the motion platform is based on the 3

independent parameters below:

1

LEN

1

Top

C
S

1

C
S

2

C
S

3

C
S

4

Top Body

Env

Machine

Environment

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg3

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg2

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg1

Ground3Ground2Ground1

[W3]
Goto5

[W2]
Goto4

[W1]
Goto3

[L3]

Goto2

[L2]

Goto1

[L1]

Goto

[L3]
From5

[L2]
From4

[L1]
From3

[W3]

From2

[W2]

From1
[W1]

From

1

WEI

36

𝛼 = 15 sin(
2𝜋

3
𝑡) . . . (2.47)

𝛽 = −15 sin (
2𝜋

3
𝑡) . . . (2.48)

𝑝𝑧 = 0.05 sin (
2𝜋

3
𝑡) + 0.74 . . . (2.49)

The independent constraint parameters are 𝛼 which specifies a rotation about the x-axis (Roll),

𝛽 which specifies a rotation about the y-axis (Pitch), 𝑝𝑧 which specifies translation motion

along the z-axis (Heave). The roll and pitch angles have a sinusoidal input, with amplitude of 15

degrees and angular frequency of
2𝜋

3
 rad/s. The heave motion starts with a 0.74 m height bias

at rest. This height value is based on the structural height above the ground of the actual 3-

DOF motion platform. The heave motion is varied using a sinusoidal input with maximum

amplitude of 0.05 m which is added to the height bias.

Figure 2-7 illustrates the orientation of the end-effector input trajectory. It shows the

sinusoidal input signal for the rotation about the x-axis (Roll) and y-axis (Pitch). There is no

rotation about the z-axis (Yaw) in the system because of the constraint introduced by the

universal joints used on the actual motion platform; therefore this parameter is set to zero for

all instances in time.

Figure 2-7 Desired Platform Orientation for the 3-DOF Platform

Figure 2-8 illustrates the position of the end-effector input trajectory. The translational motion

of the end-effector is a change in motion about the z-axis (Heave). This input is a sinusoidal

0 0.5 1 1.5 2 2.5 3
-15

-10

-5

0

5

10

15

t (s)

A
n
g
le

 (
d
e
g
)

Roll(x)

Pitch(y)

Yaw(z)

37

signal with a maximum change in height of 0.05 m. From the results it can be seen that the

constraint equation 2.29 and equation 2.30 introduces constrained translational motion along

the x and y axes. The x-axis motion is fairly large but does not change significantly with a

minimum value of 0.1352 m and maximum value of 0.1400 m, therefore this motion will not

affect the overall motion, in terms of changing actuator stroke of the motion platform

significantly. Constrained motion along the y-axis is minimal and this motion is ignored.

Figure 2-8 Desired Platform Position for the 3-DOF Platform

The simulation model illustrated in figure 2-9 is used to predict the motion of the end-effector.

The end-effector motion from the structural model, designed using SimMechanics, should be

similar to the desired input trajectory. The analysis of this result will determine the accuracy

of the derived leg length equation 2.36 to equation 2.38 for the inverse kinematics.

The leg trajectory block uses the desired trajectory input equation 2.47 to equation 2.49 to

determine the change in stroke length of the prismatic joints, for each individual kinematic leg,

using the derived leg length equation 2.36 to equation 2.38. The changing stroke lengths of the

prismatic joints are input into the structural model.

The first output of the structural model is the simulated change in stroke lengths of the

prismatic joints; these values are measured using the joint sensor block attached to each

prismatic joint shown in figure 2-5. The second output provides the body position and

orientation for the end-effector. This output provides both the change in translational motion

and change in Roll-Pitch-Yaw angles of the end-effector. The translational motion and the

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t (s)

P
o
s
it
io

n
 (

m
)

x

y

z

38

orientation of the end-effector should be close to the desired input trajectory equation 2.47 to

equation 2.49; this result will validate the derived leg length equation 2.36 to equation 2.38 for

the inverse kinematics.

Figure 2-9 Simulation Model for the 3-DOF Platform

Figure 2-10 and figure 2-11 illustrate the outputs from Scope 1 and Scope 2. The output

illustrated in figure 2-10 shows the change in stroke length of the individual kinematic legs,

which is based on the derived leg length equation 2.36 to equation 2.38. The output illustrated

in figure 2-11 is the change in kinematic stroke length from the output of the structural model

of the motion platform. Comparing the two results it can be seen that the calculated change in

stroke lengths, based on derived leg length equation 2.36 to equation 2.38, matches the

change in stroke lengths of the structural model.

WEI

LEN

Top

Structural Model

Scope4

Scope3

Scope2

Scope1

len

Leg

Trajectory

1

s

Integrator

p

av

Body Sensor

39

Figure 2-10 Calculated Stroke Lengths for the 3-DOF Platform

Figure 2-11 Simulated Stroke Lengths for the 3-DOF Platform

Figure 2-12 illustrates the result of the end-effector orientation output from the structural

model. The orientation output for the end-effector of the structural model is reasonably

similar to the orientation of the desired input trajectory equation 2.47 and equation 2.48, the

sinusoidal signals for the x-axis (Roll) and y-axis (Pitch) is repeated almost identically. The

0 0.5 1 1.5 2 2.5 3
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (s)

L
e
n
g
th

 (
m

)

Actuator 1

Actuator 2

Actuator 3

0 0.5 1 1.5 2 2.5 3
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (s)

L
e
n
g
th

 (
m

)

Actuator 1

Actuator 2

Actuator 3

40

rotational motion about the z-axis (Yaw) is negligible for the 3-DOF motion platform which

uses universal joints in place of spherical joints; hence it can be ignored.

Figure 2-12 Simulated Platform Orientation for the 3-DOF Platform

Figure 2-13 illustrates the result of the end-effector position output from the structural model.

The position of the end-effector of the structural model is in agreement with the position of

the desired input trajectory equation 2.49; the change in translational motion along the z-axis

(Heave) is in agreement with the input trajectory motion. Constrained translational motion

about the x-axis is similar to the constraint motion from the input trajectory with a minimum

value of 0.1206 m and a maximum value of 0.1401 m, therefore this motion will not affect the

overall motion on the platform significantly, in terms of changing actuator stroke lengths.

Constrained motion along the y-axis is minimal, similar to the input trajectory case, and is

ignored.

0 0.5 1 1.5 2 2.5 3
-15

-10

-5

0

5

10

15

20

t (s)

A
n
g
le

 (
d
e
g
)

Roll(x)

Pitch(y)

Yaw(z)

41

Figure 2-13 Simulated Platform Position for the 3-DOF Platform

The results show that the output trajectory from the structural model matches the required

input trajectory. Actuator stroke length outputs from the structural model also match the

calculated actuator stroke lengths based on the derived leg length equation 2.36 to equation

2.38. This result shows that the derived leg length equation 2.36 to equation 2.38 for the

inverse kinematics is valid and acceptable to be used for the 3-DOF motion platform.

2.5 Inverse Kinematics Simulation for the 6-DOF Motion Platform

Simulations performed for the 3-DOF motion platform inverse kinematics is repeated, in

Matlab/Simulink, for the 6-DOF motion platform. The aim was similarly to validate the inverse

kinematic equations below which were derived previously (Bingul and Karahan, 2012).

Figure 2-14 (Bingul and Karahan, 2012) illustrates the 6-DOF motion platform geometrical

layout which is used. 𝜃𝑝 represents the angle between top joints (T2 and T3 , T4 and T5 , T1 and

T6) and 𝜃𝑏 represents the angle between bottom joints (B1 and B2 , B3 and B4 , B5 and B6).

0 0.5 1 1.5 2 2.5 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t (s)

P
o
s
it
io

n
 (

m
)

x

y

z

42

Figure 2-14 6-DOF Platform Model

Figure 2-15 (Bingul and Karahan, 2012) illustrates the 6-DOF motion platform with joint and

coordinate system labels.

Figure 2-15 6-DOF Platform with Joint and Coordinate System Labels

Equation 2.50 to equation 2.54, which is used here for the 6-DOF motion platform inverse

kinematics, was derived previously (Bingul and Karahan, 2012). The top universal joints in the

motion platform are represented by the following coordinates:

𝐺𝑇𝑖 = [

𝐺𝑇𝑥𝑖

𝐺𝑇𝑦𝑖

𝐺𝑇𝑧𝑖

] = [

𝑟𝑝 cos(𝜆𝑖)

𝑟𝑝 sin(𝜆𝑖)

0

] {
𝜆𝑖 =

𝑖𝜋

3
−

𝜃𝑝

2
 𝑖 = 1, 3, 5

𝜆𝑖 = 𝜆𝑖−1 + 𝜃𝑝 𝑖 = 2, 4, 6
 . . . (2.50)

43

with 𝑟𝑝 the radius of the moving platform.

The bottom universal joints are represented by the following coordinates:

𝐵𝑖 = [

𝐵𝑥𝑖

𝐵𝑦𝑖

𝐵𝑧𝑖

] = [
𝑟𝑏𝑎𝑠𝑒 cos(𝜈𝑖)

𝑟𝑏𝑎𝑠𝑒 sin(𝜈𝑖)
0

] {
𝜈𝑖 =

𝑖𝜋

3
−

𝜃𝑏

2
 𝑖 = 1, 3, 5

𝜈𝑖 = 𝜈𝑖−1 + 𝜃𝑏 𝑖 = 2, 4, 6
 . . . (2.51)

with 𝑟𝑏𝑎𝑠𝑒 the radius of the fixed base.

The rotation matrix for the 6-DOF motion platform is given by:

𝑅
𝐵

𝑇 = 𝑅𝑧(𝛾)𝑅𝑌(𝛽)𝑅𝑋(𝛼) = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] . . . (2.52)

= [

cos𝛽 cos 𝛾 cos 𝛾 sin 𝛼 sin𝛽 − cos𝛼 sin 𝛾 sin𝛼 sin 𝛾 + cos𝛼 cos 𝛾 sin𝛽
cos𝛽 sin 𝛾 cos𝛼 cos𝛾 + sin𝛼 sin𝛽 sin 𝛾 cos𝛼 sin𝛽 sin𝛾 − cos 𝛾 sin𝛼

−sin𝛽 cos𝛽 sin𝛼 cos𝛼 cos𝛽
]

The position of the centroid of the moving platform is given by:

𝑃 = [𝑃𝑥 𝑃𝑦 𝑃𝑧]𝑇 . . . (2.53)

The leg length equations (inverse kinematics) for each leg are given by:

𝑙𝑖 = √

(𝑃𝑥 − 𝐵𝑥𝑖 + 𝐺𝑇𝑥𝑖𝑟11 + 𝐺𝑇𝑦𝑖𝑟12)
2

+(𝑃𝑦 − 𝐵𝑦𝑖 + 𝐺𝑇𝑥𝑖𝑟12 + 𝐺𝑇𝑦𝑖𝑟22)
2

+(𝑃𝑧 + 𝐺𝑇𝑥𝑖𝑟31 + 𝐺𝑇𝑦𝑖𝑟32)
2

 for 𝑖 = 1 to 6 . . . (2.54)

Figure 2-16 illustrates the individual kinematic leg used for the 6-DOF motion platform. It

consists of a passive universal joint connecting the base to the lower leg, an actuated

cylindrical joint that connects the lower leg to the upper leg and a passive universal joint that

connects the upper leg to the top platform. As in the 3-DOF motion platform case the input to

the joint actuator is the PVA block; this block inputs the position, velocity and acceleration that

the cylindrical joint will undergo. The joint sensor block is attached to each cylindrical joint to

measure changes in stroke length.

44

Figure 2-16 Branch Model for the Individual Kinematic Leg for the 6-DOF Platform

Figure 2-17 illustrates the structural model for the 6-DOF motion platform. The individual

kinematic legs are attached to the base and top platform by universal joints. The geometric

configuration is based on the standard 6-DOF platform layout used previously (Bingul and

Karahan, 2012).

1

len1

2 base1

1top1

B
F

Universal1

B
F

Universal

Position PVA

PVA

Joint Sensor

Joint ActuatorB
F

Cylindrical

C
S

3
C

S
2

Body1-1

C
S

1
C

S
3

Body1

1

we1

45

Figure 2-17 Structural Model for the 6-DOF Platform

The input trajectory for the 6-DOF motion platform uses the desired trajectory input equation

2.47 to equation 2.49 used for the 3-DOF motion platform, Eq. 2.49 uses a height bias of 2.5 m;

additionally the following movements are added:

𝛾 = 5 sin(
2𝜋

3
𝑡) . . . (2.55)

𝑝𝑥 = 0.05 sin(
2𝜋

3
𝑡) . . . (2.56)

𝑝𝑦 = 0.10 sin(
2𝜋

3
𝑡) . . . (2.57)

The 3 additional parameters are added for the 6-DOF motion platform since these parameters

are also independent constraint parameters. 𝛾 specifies a rotation about the z-axis (Yaw) with

amplitude of 5 degrees and angular frequency of
2𝜋

3
 rad/s. 𝑝𝑥 specifies translational motion

along the x-axis (Surge) with amplitude of 0.05 m and angular frequency of
2𝜋

3
 rad/s. 𝑝𝑦

specifies translational motion along the y-axis (Sway) with amplitude of 0.10 m and angular

frequency of
2𝜋

3
 rad/s.

Figure 2-18 illustrates the orientation of the end-effector for the 6-DOF motion platform input

trajectory. It shows the sinusoidal input signals for rotation about the x-axis (Roll), y-axis (Pitch)

1

LEN

1

Top

C
S

1

C
S

2

C
S

3

C
S

4

C
S

5

C
S

6

C
S

7

Top Body

Env

Machine

Environment

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg6

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg5

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg4

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg3

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg2

w
e
1

le
n
1

b
a
s
e
1

to
p
1

Leg1

Ground6Ground5Ground4Ground3Ground2Ground1

[L4]

Goto9

[W6]
Goto8

[W5]
Goto7

[W4]
Goto6

[W3]
Goto5

[W2]
Goto4

[W1]
Goto3

[L3]

Goto2

[L6]

Goto11

[L5]

Goto10

[L2]

Goto1

[L1]

Goto

[W4]

From9

[L6]
From8
[L5]

From7
[L4]

From6
[L3]

From5
[L2]

From4
[L1]

From3

[W3]

From2

[W6]

From11

[W5]

From10

[W2]

From1

[W1]

From

1

WEI

46

and z-axis (Yaw). These signals are the orientation desired to be replicated by the structural

model.

Figure 2-18 Desired Platform Orientation for the 6-DOF Platform

Figure 2-19 illustrates the position of the end-effector for the 6-DOF motion platform input

trajectory. Translational motion along the x-axis (Surge) is a sinusoidal signal with a maximum

change in motion of 0.05 m. Translational motion along the y-axis (Sway) is a sinusoidal signal

with a maximum change in motion of 0.10 m. The translational motion about the z-axis

(Heave) is a sinusoidal signal with a maximum change in height of 0.05 m. This signal starts

from a height bias of 2.5 m, which represents the 6-DOF motion platforms height above the

ground.

0 0.5 1 1.5 2 2.5 3
-15

-10

-5

0

5

10

15

t (s)

A
n
g
le

 (
d
e
g
)

Roll(x)

Pitch(y)

Yaw(z)

47

Figure 2-19 Desired Platform Position for the 6-DOF Platform

The simulation model illustrated in figure 2-20 is used to verify the inverse kinematics Eq. 2.54

for the 6-DOF motion platform. The leg trajectory block uses the desired trajectory input

equation 2.47 to equation 2.49 and equation 2.55 to equation 2.57 to output the change in

stroke lengths of the cylindrical joints. These values are based on the inverse kinematic

equations for the 6-DOF motion platform. Changes in the stroke lengths of the cylindrical joints

are input into the structural model for the 6-DOF motion platform.

Figure 2-20 Simulation Model for the 6-DOF Platform

Figure 2-21 and figure 2-22 illustrate the outputs from Scope and Scope 1 respectively. Figure

2-21 illustrates the change in stroke lengths of the individual kinematics legs, which is based on

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

3

t (s)

P
o
s
it
io

n
 (

m
)

x

y

z

WEI

LEN

Top

Stewart Structural Model

Scope3

Scope2

Scope1

Scope

len

Leg Trajectory

1

s

Integrator

p

av

Body Sensor

48

the inverse kinematics Eq. 2.54 for the 6-DOF motion platform. Figure 2-22 illustrates the

change in stroke lengths from the output of the structural model of the 6-DOF motion

platform. It can be seen that the calculated change in stroke lengths, based on the inverse

kinematics Eq. 2.54 for the 6-DOF motion platform, is in agreement with the change in stroke

length output from the structural model.

Figure 2-21 Calculated Stroke Lengths for the 6-DOF Platform

Figure 2-22 Simulated Stroke Lengths for the 6-DOF Platform

Figure 2-23 illustrates the end-effector orientation output from the structural model of the 6-

DOF motion platform. The orientation output for the end-effector of the structural model is

similar to the orientation of the desired input trajectory equation 2.47 to equation 2.48 and

equation 2.55.

0 0.5 1 1.5 2 2.5 3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t (s)

L
e
n
g
th

 (
m

)

Actuator 1

Actuator 2

Actuator 3

Actuator 4

Actuator 5

Actuator 6

0 0.5 1 1.5 2 2.5 3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t (s)

L
e
n
g
th

 (
m

)

Actuator 1

Actuator 2

Actuator 3

Actuator 4

Actuator 5

Actuator 6

49

Figure 2-23 Simulated Platform Orientation for the 6-DOF Platform

Figure 2-24 illustrates the end-effector position output from the structural model for the 6-

DOF motion platform. The position of the end-effector output from the structural model is in

agreement with the position of the desired input trajectory equation 2.49 and equation 2.56 to

equation 2.57.

Figure 2-24 Simulated Platform Position for the 6-DOF Platform

The result shows that the output trajectory from the structural model for the 6-DOF motion

platform follows the desired input trajectory. Actuator stroke lengths output from the

structural model for the 6-DOF motion platform matches the calculated actuator stroke

lengths based on the inverse kinematics Eq. 2.54 for the 6-DOF motion platform. Results

0 0.5 1 1.5 2 2.5 3
-20

-15

-10

-5

0

5

10

15

t (s)

A
n
g
le

 (
d
e
g
)

Roll(x)

Pitch(y)

Yaw(z)

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

3

t (s)

P
o
s
it
io

n
 (

m
)

x

y

z

50

indicate that the structural model is able to replicate the inverse kinematics and that the

inverse kinematics Eq. 2.54 is acceptable to be used.

2.6 Chapter Summary

The mechanical system for the vehicle simulator was discussed, highlighting and describing the

various components that the vehicle simulator is comprised of. The closed form solution for

the inverse kinematics of the 3-DOF motion platform used for the vehicle simulator was

presented in detail. This solution highlighted the fact that at any time the actuator stroke

lengths can be determined using just 3 independent parameters (Roll, Pitch and Heave) and

constraint equations 2.28, 2.29 and 2.30. In the next section the iterative solution for the

forward kinematic was presented; this solution is known as the Newton method. The method

is simpler and more computational efficient than an exact solution to the forward kinematics

problem. Simulations were then performed, in Matlab/Simulink, to verify the derived leg

length equation 2.36 to equation 2.38 for the inverse kinematics. SimMechanics was used to

create the structural model of the 3-DOF motion platform using the geometrical structure of

the platform. The simulation results, output from the structural model, showed that the

change in stroke lengths for the actuators in both the derived leg length case and the

structural model output were in agreement. It was also shown that the output for the platform

end-effector trajectory is similar to the desired input trajectory equation 2.47 to equation

2.49. Based on this result the derived leg length equation 2.36 to equation 2.38 for the inverse

kinematics is accepted.

A similar setup was developed for the traditional 6-DOF motion platform. It was shown that

the inverse kinematics Eq. 2.54, which was derived previously (Bingul and Karahan, 2012), is

acceptable to be used for this motion platform. The 3-DOF motion platform, used for the

vehicle simulator, is evaluated against the 6-DOF motion platform in the chapters to follow.

This study will highlight the benefits of the 3-DOF motion platform in replication of certain

motion cues and this platforms application in certain scenarios.

51

3 Motion Control System

This chapter presents the motion control system used in the vehicle simulator system. It

explains the Festo position control system used to perform position tracking for each actuator

in the system. The various components used are described and details of how these

components interact to perform position control are discussed. Setup with parameters used

for each of the actuators in the motion control system is then presented. Testing of each

actuator in the system is performed and the performance of the position control system

tracking is analysed.

The PLC software algorithm is then explained, this algorithm provides the link between the X-

Sim Convertor software plugin output, explained in chapter 5, and the Festo position control

system. The data transfer, processing and transmission is explained in detail. This algorithm

shows how the various aspects involved in the vehicle simulator are integrated to achieve the

desired performance.

3.1 Motion Control System Overview

Figure 3-1 illustrates the various components of the position control system for a single linear

pneumatic actuator. The detailed hardware architecture and electrical schematic is attached in

appendix A and appendix B respectively. The PLC device is the programmable device which is

used to obtain the transferred position data from the X-Sim Universal Serial Output (USO)

interface, transmitted via UDP, and transmit this position data to each of the 3 axis controllers.

The axis controller is the device which performs the control system tracking by controlling the

double acting directional proportional control valve. The linear drive provides position

feedback through the position sensor interface; this position feedback is transferred to the

proportional control valve and through to the axis controller. Based on the difference between

the required position value and actual position value the axis controller controls the direction

and flow of air output from the double acting directional proportional control valve. This

control signal causes the output linear drive position to track the required input position,

achieving feedback control.

52

Figure 3-1 Single Axis Pneumatic Position Control System

The entire position control system used was obtained from Festo. The linear pneumatic

actuator used is illustrated in figure 3-2 (Festo, 2014a) and contains an integrated

displacement encoder. The 3 cylinders used all have a piston diameter of 63 mm and an

actuator stroke length of 250 mm. Each actuator is capable of lifting a maximum mass of 60 kg

at 6 bar of pressure.

Figure 3-2 Linear Pneumatic Actuator with Integrated Displacement Encoder

The sensor interface shown in figure 3-3 (Festo, 2014b) is designed to interface the

displacement encoder to the double acting directional proportional control valve. The actual

position value from the displacement encoder is passed all the way through to the axis

controller.

Figure 3-3 Digital Incremental Sensor Interface

Figure 3-4 (Festo, 2015a) illustrates the double acting directional proportional control valve

used. The double acting valve is able to control the forward and backward strokes on the linear

53

pneumatic actuator by applying the appropriate pressure to the appropriate end of the linear

pneumatic actuator.

Figure 3-4 Double Acting Directional Proportional Control Valve

The CMAX axis controller illustrated in figure 3-5 (Festo, 2015b) is the intelligence of the

position control system. It detects the various hardware components in the system and

determines if all the components are functioning correctly. The controller can be used as

either a position controller or force controller, for this application it is used as a position

control system. It provides feedback control by adjusting the control signal to the directional

proportional control valve; this signal adjustment is based on the error signal between the

desired and actual position of the linear pneumatic actuator.

Figure 3-5 CMAX Axis Controller

The CPX programmable logic controller, illustrated in figure 3-6 (Festo, 2015c), is the device

used to interface with the X-Sim Convertor software plugin and the 3 axis controllers. Software

is written in the PLC environment to read in data, via UDP, and extract the position output for

each actuator. This position output is passed to the appropriate axis controller to perform

position control.

54

Figure 3-6 CPX Programmable Logic Controller

3.2 Motion Control System Setup and Testing

The pneumatic position control system components were connected together onto the vehicle

simulator system, illustrated in figure 3-7. The system was configured and tested using the

Festo Configuration Tool. Basic motion was performed, without any simulator driver, on each

actuator to test the functionality and evaluate the position control systems performance.

55

Figure 3-7 Vehicle Simulator with Position Control System

Before any motion could be performed each system is configured with basic parameters,

shown in table 3-1, that aid in position control. Figure 3-8 illustrates the actuator labelling

used; this labelling of actuators is used in subsequent chapters to ensure correct motion data

for each of the actuators.

56

Table 3-1 Actuator Position Control Parameters

Actuator 1 2 3

Mass 25 kg 25 kg 25 kg

Supply Pressure 3 bar 3 bar 3 bar

Fitting Position 90° 90° 90°

Velocity 0.2 m/s 0.2 m/s 0.2 m/s

Acceleration 2.0 m/s2 2.0 m/s2 2.0 m/s2

Deceleration 2.0 m/s2 2.0 m/s2 2.0 m/s2

Position Tolerance 1.0 mm 1.0 mm 1.0 mm

Figure 3-8 3-DOF Platform with Actuator Labels

The next step was to calibrate each displacement encoder that is built into each of the

actuators. The method is called homing and retracts each actuator until the mechanical end

point is reached; this position becomes the zero reference point for the displacement encoder.

57

Basic motion was then performed on each of the 3 actuators in the system, the results are

reported below.

Figure 3-9 illustrates the position control tracking performance of actuator 1 in the vehicle

simulator. Input to the system is a step motion change from 10 mm to 70 mm. The graph

illustrates the tracking performance showing the actual position of the actuator stroke length

tracking the nominal value (output from the controller) which is desired. Transient response of

the system is within the 1 mm error tolerance throughout and the response time is 1.4 s. The

system tracks well until the end position is reached. Steady state actual value is 69.21 mm and

the nominal value is 69.99 mm. The error value is -0.78 mm which is within the 1 mm position

tolerance set for the system.

Figure 3-9 Actuator 1 Position Control Tracking

Figure 3-10 illustrates the position control performance of actuator 2 in the vehicle simulator.

The input used is again a step change from 10 mm to 70 mm. The graph illustrates the tracking

performance showing the actual position of the actuator stroke length tracking the nominal

value (output from the controller) which is desired. The system tracks within 1 mm error

tolerance for the transient response. The response time for this step change input is 1.4 s.

Steady state actual value is 69.15 mm for this actuator and the nominal value which is desired

is 69.99 mm. The error for this actuator is -0.84 mm and is within the 1 mm error tolerance

used for the system.

58

Figure 3-10 Actuator 2 Position Control Tracking

Figure 3-11 illustrates the position control tracking performance of actuator 3 in the vehicle

simulator. The input is a step motion change from 10 mm to 70 mm. The graph illustrates the

tracking performance showing the actual position of the actuator stroke length tracking the

nominal value (output from the controller) which is desired. The system tracks well within the

1 mm tolerance until the end position is reached. It can be seen that final actual value is 69.18

mm and the nominal value, which is desired, is 69.99 mm. The error is within the tolerance of

1 mm used for testing. The response time for actuator 3 is 1.4 s.

59

Figure 3-11 Actuator 3 Position Control Tracking

3.3 PLC Software Programming

The PLC is programmed in the Festo Software Tool program and uses the structure text syntax

for code writing. The CPX PLC is designed to interface with the X-Sim Convertor software

plugin, discussed in chapter 5, and receives data over a UDP network connection. Figure 3-12

illustrates the PLC program UML activity diagram illustrating the software algorithm; the full

code for this algorithm is attached in appendix C. The PLC receives the actuator position string

which is transferred via UDP; this data contains the required positions of each of the 3

actuators to be able to replicate the vehicle motion on the vehicle simulator motion platform.

The PLC separates and extracts each actuators individual axis string which contains the

individual actuators required position value. The actuator string is then converted to an integer

values since the CMAX controller accepts the required actuator position in integer format. The

integer actuator position value is written to the CMAX controller which controls the directional

proportional control valve to achieve the desired position value.

60

Figure 3-12 PLC Program UML Activity Diagram

61

3.4 Chapter Summary

This chapter presented the motion control system used in the vehicle simulator system. It

explained the Festo position control system, which is a pneumatic system. The various

components in the position control system are explained and details of how these components

interact to achieve position control are discussed.

Motion control hardware was added and configured onto the vehicle simulator system.

Parameters for the system, shown in table 3-1 were then added. Basic motion tasks were

performed for each of the 3 actuators in the vehicle simulator system; the results showed

excellent tracking performance and good control system response time.

The final part of this chapter explained the PLC software algorithm which is written to provide

the interface between the X-Sim Convertor software plugin, explained in chapter 5, and the

position control hardware. This software algorithm is used in chapter 6 to obtain results using

live data from the games physics engine and evaluate the vehicle simulators performance.

62

4 Motion Cueing

Motion cueing aims to recreate the motion sensations experienced in a vehicle within the

confines of a motion simulator platform. The main problem with the replication of this motion

is the limited workspace of the motion platform. The classical washout algorithm (Schmidt and

Conrad, 1970), adaptive washout algorithm (Ariel and Sivan, 1984), optimal washout algorithm

(Sivan et al., 1982) and model predictive control techniques (Baseggio et al., 2011) aim to

recreate these motion sensations, by exploiting the human vestibular system, and try to

maximise workspace utilisation.

In human beings the vestibular system is responsible for providing motion cues. The full

functioning of the vestibular system models and its limitations is presented in this chapter. The

various coordinate systems used in motion cueing are discussed with the aim of highlighting

which coordinate system is best to implement the motion cueing strategy. The classical

washout algorithm is designed be used for both the 3-DOF motion platform and the 6-DOF

motion platform cases. It was decided to use the classical washout algorithm for the vehicle

simulator due to its low computational requirements and ease of implementation, in

comparison to other motion cueing strategies. Finally simulations in Matlab/Simulink are

conducted to evaluate the performance of the classical washout algorithm against the human

vestibular system models.

4.1 Vestibular System

The vestibular system is the sensory system used to provide motion cues. It consists of the

otolith and semi-circular canal. The semi-circular canal senses angular velocity and the otolith

is used to sense linear motion via specific force.

In figure 4-1 the semi-circular canal model used is illustrated, this model was developed by

Young and Oman and was subsequently reported on (Zacharias, 1978). It can be seen that the

term 𝛿𝑇𝐻 represents a detection threshold of angular velocity in the semi-circular canal

system. Motion below this threshold will go undetected to the human observer. The

parameter values used in the semi-circular canal model are taken from (Reid and Nahon, 1985)

and shown in Table 4-1.

63

Figure 4-1 Semi-Circular Canal Model

The detection threshold output ∆ is represented by:

∆ = 0 for |𝛿| < 𝛿𝑇𝐻 . . . (4.1)

∆ = 𝛿 − 𝑆𝐺𝑁(𝛿)𝛿𝑇𝐻 for |𝛿| > 𝛿𝑇𝐻 . . . (4.2)

The semi-circular canal model is used to evaluate the sensed angular velocity 𝜔̂ for the three

axes of motion, with the actual vehicle angular velocity 𝜔 as the input. This model applies to

rotation about the x-axis (Roll), rotation about the y-axis (Pitch) and rotation about the z-axis

(Yaw), with different parameter values.

The otolith contained in the vestibular system is used to sense the translational motion. It

senses specific force, the vector difference between translational inertial acceleration and

gravitational acceleration. It is represented by:

𝑓 = 𝑎⃗ − 𝑔⃗ . . . (4.3)

Figure 4-2 illustrates the model for the otolith system which is used; this model was developed

by Meiry and Young and was subsequently reported on (Zacharias, 1978). It can be seen that

the term 𝑑𝑇𝐻 represents a detection threshold of specific force motion in the otolith system.

Motion below this threshold will go undetected to the human observer. The parameter values

used in the otolith model are taken from (Reid and Nahon, 1985) and shown in Table 4-2.

Figure 4-2 Otolith Model

The detection threshold output 𝐷 is represented by:

𝐷 = 0 for |𝑑| < 𝑑𝑇𝐻 . . . (4.4)

64

𝐷 = 𝑑 − 𝑆𝐺𝑁(𝑑)𝑑𝑇𝐻 for |𝑑| > 𝑑𝑇𝐻 . . . (4.5)

The otolith model is used to evaluate the sensed specific force 𝑓 for the three axes of motion,

with the actual vehicle specific force 𝑓 as the input. This model applies to translational motion

along the x-axis (Surge), the y-axis (Sway) and the z-axis (Heave), with different parameter

values.

Parameter values for the semi-circular canal and otolith model are taken from (Reid and

Nahon, 1985) and are shown in table 4-1 and table 4-2.

Table 4-1 Model Parameters for Rotational Motion

 Roll (x-axis) Pitch (y-axis) Yaw (z-axis)

𝑇𝐿(𝑠) 6.1 5.3 10.2

𝑇𝑠(𝑠) 0.1 0.1 0.1

𝑇𝑎(𝑠) 30 30 30

𝛿𝑇𝐻 (°/s) 3.0 3.6 2.6

Table 4-2 Model Parameters for Translational Motion

 Surge (x-axis) Sway (y-axis) Heave (z-axis)

𝜏𝐿(𝑠) 5.33 5.33 5.33

𝜏𝑠(𝑠) 0.66 0.66 0.66

𝜏𝑎(𝑠) 13.2 13.2 13.2

𝐾 0.4 0.4 0.4

𝑑𝑇𝐻 (m/s2) 0.17 0.17 0.28

4.2 Coordinate Systems

The motion cueing techniques aim to replicate the motion sensations felt in a real vehicle

within the workspace of the motion simulator platform. Based on research done previously

(Reid and Nahon, 1985) the following coordinate systems are chosen. Coordinate system {B} is

located at the centroid of the moving platform and coordinate system {A} is located at the

centroid of the base.

Coordinate system {B} illustrated in figure 4-3 represents the point where the specific forces

and angular velocity inputs to the vehicle are used, in (Reid and Nahon, 1985) it was shown

that this location is the best choice since it minimises actuator movement. Coordinate system

{A} illustrated in figure 4-3 represents the inertial coordinate frame. It is the coordinate system

in which the platform motion is evaluated.

65

Figure 4-3 Motion Cueing Coordinate Systems for the 3-DOF Platform

The inputs to the motion cueing strategy are the specific force vector 𝑓𝑣𝑒ℎ and angular velocity

vector 𝜔⃗⃗⃗𝑣𝑒ℎ experienced in the real vehicle. The motion cueing strategy aims to replicate

these signals, within the vehicle simulator, as closely as possible.

𝑓𝑠𝑖𝑚 ≈ 𝑓𝑣𝑒ℎ . . . (4.6)

𝜔⃗⃗⃗𝑠𝑖𝑚 ≈ 𝜔⃗⃗⃗𝑣𝑒ℎ . . . (4.7)

𝑓𝑠𝑖𝑚 and 𝜔⃗⃗⃗𝑠𝑖𝑚 represent the specific force vector and angular velocity vector experienced at

the centroid of the moving platform coordinate system {B}.

4.3 Classical Washout Algorithm

The classical washout algorithm is a motion cueing strategy first implemented in flight

simulators (Schmidt and Conrad, 1970). It is designed to replicate the motion sensations felt in

an actual vehicle without breaching the platform workspace constraints. The implementation

66

is divided into two channels, the first channel is used for translational motion and the second is

used for rotational motion.

4.3.1 Translational Motion

Figure 4-4 illustrates the translation channel for the classical washout algorithm. The

translational channel is used to replicate the transient component of the vehicle specific force

vector 𝑓𝑣𝑒ℎ. The vehicle specific force vector 𝑓𝑣𝑒ℎ is input into the system. This signal is scaled

to help constrain platform motion. The scaled specific force vector 𝑓1 is then used to generate

the acceleration vector 𝑎⃗1 for the centroid of the moving platform {B}. The acceleration vector

is given by:

𝑎⃗1 = 𝑓1 + 𝑔⃗1 . . . (4.8)

According to (Reid and Nahon, 1985) the gravitational vector signal 𝑔⃗1 is given by:

𝑔⃗1 = 𝑅𝐵
𝑇

𝐴 [

0
0

−𝑔
] . . . (4.9)

The result of matrix multiplying by the transpose of the rotation matrix from {B} to coordinate

frame {A} is expressed as:

𝑔⃗1 = [

𝑔 sin𝛽
−𝑔 sin𝛼 cos𝛽
−𝑔 cos𝛼 cos𝛽

] . . . (4.10)

The vector 𝑎⃗1 is then transformed into coordinate frame {A}. This transformation is done by

multiplying by the rotation matrix as follows:

𝑎⃗2 = 𝐴𝑅𝐵𝑎⃗1 . . . (4.11)

Filtering of the vector 𝑎⃗2 in the fixed based coordinate system {A} is done to perform washout.

The washout process is used to return the simulator motion platform back to the neutral

(centre) position. This process helps in preventing steady state motion errors on the actuator

legs. The output acceleration vector 𝑎⃗
𝐴 is then integrated twice to produce the platform

position vector 𝑃
𝐴 = [𝑝𝑥 𝑝𝑦 𝑝𝑧]𝑇, in the inertial coordinate frame {A}. This signal is used in

the inverse kinematic analysis to obtain the actuator stroke lengths.

67

Figure 4-4 Translational Channel for the Classical Washout Algorithm

4.3.2 Rotational Motion

Figure 4-5 illustrates the rotational channel for the classical washout algorithm. The rotational

channel is composed of two parts, which together produce the rotation (Roll-Pitch-Yaw) angles

for the motion platform.

The first part involves a process called tilt coordination. Tilt coordination is used to replicate

the sustained component of the vehicle specific force vector 𝑓𝑣𝑒ℎ via tilt of the motion

platform. It aims to use a component of the gravity vector to simulate a sustained specific

force. This component is interpreted by the otolith as a sustained linear acceleration. It is

important to note that the tilt rate should be kept below 𝛿𝑇𝐻, the angular velocity motion

detection threshold, to prevent false rotational cues from being detected by the semi-circular

canal.

The process starts with the signal 𝑓𝑣𝑒ℎ which is scaled and passed through a low-pass filter.

This filter extracts the low frequency component vector 𝑓𝐿 of the vehicles specific force.

In the absence of rotational motion from the angular velocity component, the Roll-Pitch-Yaw

angles can be represented by:

𝜑⃗⃗
𝐴 = 𝜑⃗⃗𝐿

𝐴 . . . (4.12)

The Roll-Pitch-Yaw angles based on the sustained specific force vector 𝑓𝐿 were approximated

previously (Reid and Nahon, 1985) and is given by:

𝛼𝐿 ≈
𝑓𝐿

𝑦

𝑔
 . . . (4.13)

𝛽𝐿 ≈ −
𝑓𝐿

𝑥

𝑔
 . . . (4.14)

𝛾𝐿 = 0 . . . (4.15)

68

The second component of the rotational channel is used in the replication of the transient

component of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The vehicle angular velocity vector

𝜔⃗⃗⃗𝑣𝑒ℎ is scaled to ensure the platform rotational motion limits are not reached. The next step

involves transforming the angular velocity vector 𝜔⃗⃗⃗1 to the Roll-Pitch-Yaw angle rate vector,

𝜑⃗⃗̇1, which is required to be able to perform inverse kinematic analysis. The transformation is

given by:

𝜑⃗⃗̇1 = 𝑇𝐵
𝐴 𝜔⃗⃗⃗1 . . . (4.16)

With 𝑇𝐵
𝐴 given by:

𝑇𝐵
𝐴 = [

1 sin𝛼 tan𝛽 cos𝛼 tan𝛽
0 cos𝛼 − sin𝛼
0 sin𝛼 sec𝛽 cos𝛼 sec𝛽

] . . . (4.17)

The signal 𝜑⃗⃗̇1 is then high-pass filtered to ensure platform washout. This filtering will ensure

the platform returns back to its neutral position (centre) once the rotational motion is

complete. It has the same effect as the translation channel washout filter by preventing steady

state motion errors on the actuator legs. The signal 𝜑⃗⃗̇𝐻 is integrated to give the high frequency

signal for Roll-Pitch-Yaw angles below:

𝜑⃗⃗𝐻
𝐴 = ∫ 𝜑⃗⃗̇𝐻 𝑑𝑡 . . . (4.18)

Figure 4-5 Rotational Channel for the Classical Washout Algorithm

The Roll-Pitch-Yaw angle components for the sustained specific force vector signal (Eq. 4.12)

and the angular velocity vector signal (Eq. 4.18) are combined to give the Roll-Pitch-Yaw angle

values that are used in the inverse kinematic analysis. The Roll-Pitch-Yaw angle values are

given by:

69

𝜑⃗⃗
𝐴 = 𝜑⃗⃗𝐿

𝐴 + 𝜑⃗⃗𝐻
𝐴 . . . (4.19)

4.3.3 Filter Selection

The filter selection for the flight simulator in (Reid and Nahon, 1986) was chosen to be 2nd

order for transient translational acceleration and 1st order for transient angular velocity. This

selection was due to modest motions experienced in a flight simulator. A vehicle in general has

more demanding acceleration manoeuvres, leading to the usage of a 3rd order filter for

transient translational acceleration and a 2nd order filter for the transient angular velocity.

The transient translational acceleration filter, HP Filter in figure 4-4, implemented in

coordinate frame {A} is given by:

𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑠) =
𝑠3

(𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2)(𝑠+𝜔𝑏)

 . . . (4.20)

The filter parameters used for 𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 in the rest of this chapter are given in table 4-3

Table 4-3 Parameter Values for the Translational Channel Filter

𝜁 1

𝜔𝑛 3.1 rad/s

𝜔𝑏 0.2 rad/s

The transient angular velocity filter, HP Filter in figure 4-5, implemented in coordinate frame

{A} is given by:

𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑠) =
𝑠2

(𝑠+𝜔𝑛)2
 . . . (4.21)

The filter parameters used for 𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟 in the rest of this chapter are given in table 4-4

Table 4-4 Parameter Values for the Transient Angular Velocity Filter

𝜁 1

𝜔𝑛 1 rad/s

The low-pass filter, LP Filter in figure 4-5, used in the tilt coordination process is given by:

𝐿𝑃𝑇𝑖𝑙𝑡(𝑠) =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2 . . . (4.22)

The filter parameters used for 𝐿𝑃𝑇𝑖𝑙𝑡 in the rest of this chapter are given in table 4-5

70

Table 4-5 Parameter Values for the Low-Pass Tilt Coordination Filter

𝜁 1

𝜔𝑛 6.2 rad/s

4.4 Motion Cueing Simulation

A simulation setup was created in Matlab/Simulink to evaluate the effectiveness of the

classical washout algorithm. The purpose of this simulation setup was to evaluate the

effectiveness of the classical washout algorithm to:

 Effectively return the platform to neutral position using washout.

 Replicate sustained translational accelerations via tilt coordination.

 Replicate the sensations experienced in a vehicle as closely as possible within the

motion simulator platform.

4.4.1 Motion Cueing Simulation Setup

The simulation setup was divided into libraries for the various subsystems. Libraries help in

creating an easy to understand and modular system. Using libraries also facilitates reusability

and allows for modification to be done easily.

The first subsystem created was for the translational motion channel, illustrated in figure 4-6,

this subsystem aims to replicate the transient component of the vehicle specific force vector

𝑓𝑣𝑒ℎ in the simulation setup. The inputs to this subsystem are the vehicle specific force signals

𝑓𝑣𝑒ℎ and the Roll-Pitch-Yaw angles. These inputs are used to produce the acceleration signal 𝑎⃗1

given by Eq. 4.8. The translational filter block process aims to extract the acceleration signals

that are used at the centroid of the motion simulator platform {B}.

71

Figure 4-6 Translational Channel Subsystem

Figure 4-7 illustrates the tilt coordination subsystem which takes in the vehicle specific force

vector signal 𝑓𝑣𝑒ℎ. The low-pass filter is used to extract the sustained specific force vector 𝑓𝐿.

The low frequency Roll-Pitch-Yaw angle vector, 𝜑⃗⃗𝐿
𝐴 , is generated using equations 4.13 and

4.14. These signals are rate limited to 3 °/s for the x-axis (Roll) and 3.6 °/s for the y-axis (Pitch),

which is the motion perception threshold values for the semi-circular canal 𝛿𝑇𝐻. The z-axis

(Yaw) component has no contribution to the tilt coordination process and is set to zero.

Figure 4-7 Tilt Coordination Subsystem

The angular velocity subsystem, illustrated in figure 4-8, aims to replicate the transient

component of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. It takes in the Roll-Pitch-Yaw angles

and the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The Roll-Pitch-Yaw angle rates (Eq. 4.16) are then

formed and this signal is filtered to extract the high frequency component. The high frequency

Roll-Pitch-Yaw angle rate signal is integrated to give the Roll-Pitch-Yaw angles, 𝜑⃗⃗𝐻
𝐴 , which is

output from this subsystem.

1

a

a2 a

Translational fi lters

x y z angles EulerXYZ

RPY angles to Rotation matrix

Matrix

Multiply

Product1

Orienation angles

Grav ity
Grav ity v ector

Gravity to Gravity vector

-C-

Constant

2

Specific force

1

RPY angles

1

RPY angles L

38.44

den(s)

Transfer Fcn2

38.44

den(s)

Transfer Fcn1

Rate Limiter1

Rate Limiter

u(1)/9.81

Fcn1

-u(1)/9.81

Fcn

0

Constant1

1

Specific force

72

Figure 4-8 Angular Velocity Subsystem

The human vestibular system models are used to evaluate the effectiveness of the classical

washout algorithm in replication of motion sensations experienced in a real vehicle. The

models for the otolith and the semi-circular canal are used to evaluate the classical washout

algorithm in Simulink.

The otolith model illustrated in figure 4-9 is used to evaluate the effectiveness of the classical

washout algorithm in replication of the vehicle specific force vector 𝑓𝑣𝑒ℎ experienced.

Figure 4-9 Otolith Simulation Model

The semi-circular canal model illustrated in figure 4-10 is used to evaluate the effectiveness of

the classical washout algorithm in replication of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ

experienced.

1

RPY angles H

Matrix

Multiply

Product

x y z angles Orientation rates

Orientation rates transform

1

s

Integrator

angular rate in angular rate out

Angular velocity fi lters

2

Angular velocities

1

RPY angles

1

sensed_specific_force

s+1/13.2

s+10

Transfer Fcn5

s+1/13.2

s+10

Transfer Fcn4

s+1/13.2

s+10

Transfer Fcn3

1.501

den(s)

Transfer Fcn2

1.501

den(s)

Transfer Fcn1

1.501

den(s)

Transfer Fcn

Dead Zone2

Dead Zone1

Dead Zone

1

specific_force_inputs

73

Figure 4-10 Semi-circular Canal Simulation Model

4.4.2 Motion Cueing Simulation Results

The simulations presented in this section were performed to verify the correct functioning of

the classical washout algorithm in replication of both translational acceleration and angular

velocity motion cues. A series of tests were conducted and these tests are explained together

with the results.

4.4.2.1 Translational Motion Test

The translational motion test was used to verify the correct functioning of the classical

washout algorithm in replication of the vehicle specific force vector 𝑓𝑣𝑒ℎ. The human vestibular

system, using the otolith model, is used to show how well the vehicle specific force vector 𝑓𝑣𝑒ℎ

is replicated in the motion simulator by 𝑓𝑠𝑖𝑚 the specific force vector at the centroid of the

moving platform coordinate system {B}.

Figure 4-11 illustrates the specific force input signal used for the system testing. The input

signal is a unit step response with an initial value of 2 m/s2 along the x-axis, the signal lasts for

a period of 10 s.

1

sensed_angular_velocities

30s

30s+1

Transfer Fcn5

30s

30s+1

Transfer Fcn4

30s

30s+1

Transfer Fcn3

10.2s

den(s)

Transfer Fcn2

5.3s

den(s)

Transfer Fcn1

6.1s

den(s)

Transfer Fcn

Dead Zone2

Dead Zone1

Dead Zone

1

angular_velocity_inputs

74

Figure 4-11 Specific Force Input for the x-axis

Figure 4-12 illustrates the platform acceleration along the x-axis. This acceleration represents

the transients extracted from the high-pass filter along the translational motion channel. The

first transient occurs initially when the acceleration goes from 0 m/s2 to 2 m/s2. The next

transient occurs at 10 seconds when the acceleration drops from 2 m/s2 to 0 m/s2. It can be

seen that the high-pass filter attempts to return the platform back to neutral (centre) position

after both the transient acceleration periods. This process is known as washout and it aids in

preventing steady state motion errors on the actuator legs. It can be seen that the washout

process also creates some acceleration in the opposite direction to the intended acceleration;

these accelerations can be seen just after the start and at 10 seconds. These signals are known

as a false cue if the acceleration is above the otolith systems motion detection threshold 𝑑𝑇𝐻.

It is known that the classical washout algorithm does let through some false cues due to the

fixed filter parameters employed. During selection of these filter parameters there is a trade-

off between optimal workspace utilisation and minimization of false motion cues.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t (s)

S
p
e
c
if
ic

 f
o
rc

e
 (

m
/s

2
)

x-axis vehicle input specific force

75

Figure 4-12 Platform Acceleration for the x-axis

In figure 4-13 the position of the platform along the x-axis is shown. Initial transient

acceleration creates motion in the positive direction, washout then occurs causing the

platform to return to the neutral (centre) position. The washout process is not optimal due to

the fixed filter parameters, which are designed for worse case motion. This results in the

platform taking additional time to stop motion completely. The washout process is a trade-off

between optimal workspace utilisation and the prevention of false motion cues. The

advantages of using the classical washout algorithm are the minimal implementation

complexity and low processing performance requirements of this algorithm.

0 5 10 15 20 25 30 35 40
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t (s)

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

x-axis

76

Figure 4-13 Platform Position for the x-axis

Figure 4-14 shows the replication of the sustained component of the vehicle specific force

vector 𝑓𝑣𝑒ℎ via tilt coordination. This replication is done via tilting of the platform about the y-

axis (Pitch). The tilting is done with the tilt rate limit set to the motion detection threshold

value of 3.6 °/s for rotations about the y-axis. The tilting of the motion platform is an attempt

to replicate the sustained acceleration, along the x-axis, of 2 m/s2 that occurs during the initial

10 seconds. The maximum tilt angle achieved for this motion is -11.68 degrees which gives the

perception of accelerating constantly at 1.99 m/s2 based on Eq. 4.14.

0 5 10 15 20 25 30 35 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t (s)

P
o
s
it
io

n
 (

m
)

x-axis

77

Figure 4-14 Platform Pitch Angle for the y-axis

Illustrated in figure 4-15 is the actual output from the otolith model for the vehicle specific

force vector 𝑓𝑣𝑒ℎ for the x-axis component and the output from the otolith model for the

simulator specific force vector 𝑓𝑠𝑖𝑚 for the x-axis component. It can be seen that the classical

washout filter provides a reasonably good result for the replication of translational motion

sensations within the motion simulator platform. The washout filter is also effective in

ensuring the platform returns to the neutral position after the motion input is complete. The

classical washout filter, through the usage of tilt coordination, is also able to replicate

sustained translational accelerations successfully.

0 5 10 15 20 25 30 35 40
-12

-10

-8

-6

-4

-2

0

2

t (s)

A
n
g
le

 (
d
e
g
)

Pitch angle (y-axis)

78

Figure 4-15 Sensed Vehicle and Simulator Specific Force for the x-axis

4.4.2.2 Rotational Motion Test

The rotational motion test was used to verify the correct functioning of the classical washout

algorithm in replication of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The human vestibular

system, using the semi-circular canal model, is used to show how well the vehicle angular

velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ is replicated in the motion simulator by 𝜔⃗⃗⃗𝑠𝑖𝑚 the angular velocity vector

at the centroid of the moving platform coordinate system {B}.

In figure 4-16 illustrated, the angular velocity positive and negative ramp input test signal is

shown. The slope rate for the positive slope is set at 0.1 rad/s and -0.1 rad/s for the negative

slope. The positive and negative slope input each run for 0.125 seconds.

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

t (s)

S
p
e
c
if
ic

 f
o
rc

e
 (

m
/s

2
)

Sensed vehicle specific force (x-axis)

Sensed simulator specific force (x-axis)

79

Figure 4-16 Angular Velocity Input for the x-axis

Illustrated in figure 4-17 is the sensed angular velocity signal, along the x-axis, of the actual

vehicle for the vehicle angular velocity input shown in figure 4-16. The semi-circular canal

model is used to demonstrate the feeling felt by the vehicle user. It can be noted that the

human semi-circular system attenuates the input angular velocity signal. Figure 4-18 shows the

sensed angular velocity along the x-axis within the simulator, this signal matches closely the

sensed angular velocity of the vehicle signals general shape in figure 4-17 but it is an

attenuated signal. There is also some sensed angular velocity in the opposite direction of

motion due to the washout process attempting to return the platform to the neutral position.

Ideally this motion should not occur, but the classical washout filter is known to let through

such false cues due to the fixed filter parameter values.

0 5 10 15 20 25 30 35 40
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t (s)

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

x-axis vehicle input angular velocity

80

Figure 4-17 Sensed Vehicle Angular Velocity for the x-axis

Figure 4-18 Sensed Simulator Angular Velocity for the x-axis

0 5 10 15 20 25 30 35 40
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

t (s)

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Sensed vehicle angular velocity (x-axis)

0 5 10 15 20 25 30 35 40
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

t (s)

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Sensed simulator angular velocity (x-axis)

81

Figure 4-19 illustrates the platform orientation along the x-axis. It can be seen that the

platform reaches a Roll angle (x-axis) of about 5.5 degrees. The platform attempts to return to

neutral (centre) position after the applied signal goes to zero but there is some platform

motion caused in the opposite direction. This motion is explained again by the washout

process being is a trade-off between optimal workspace utilisation and prevention of false

motion cues. The performance seems poor since the applied motion cues lasted just 0.25

seconds but it should be noted that the applied test signal of dual positive and negative ramp

is fairly challenging. A signal of this nature is unlikely to be encountered in the actual output of

the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ.

Figure 4-19 Platform Orientation for the x-axis

4.5 Chapter Summary

The technique of motion cueing and its usage in the replication of vehicle motion sensations

was discussed. The chapter highlighted the functioning of the human vestibular system. The

human vestibular system is able to sense translational and rotational motion sensations via the

otolith and semi-circular canal systems respectively. Limitations in motion detection threshold

of both the otolith 𝑑𝑇𝐻 and semi-circular 𝛿𝑇𝐻 were highlighted. These limits are used in the

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

3

4

5

6

t (s)

A
n
g
le

 (
d
e
g
)

x-axis

82

motion cueing algorithm to perform washout, which aims to return the platform to the neutral

position without being detected by the human observer, this washout process aids in

preventing steady state motion errors on actuator legs.

The classical washout algorithm was described in terms of the translational and rotational

components. The transient specific force and angular velocity signals are obtained by filtering

of the input signals of the vehicle specific force vector 𝑓𝑣𝑒ℎ and angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ.

The filtering is performed in the inertial coordinate frame {A} which prevents the accumulation

of motion errors on the actuator legs and successfully performs platform washout. The

replication of the sustained component of the vehicle specific force vector 𝑓𝑣𝑒ℎ is performed

via platform tilt. This technique aims to exploit the otolith system, which senses linear motion

via specific force. By tilting the platform, a component of the gravity vector can be used to

replicate sustained specific force signals. The platform tilting was kept below the rotational

channel motion detection threshold 𝛿𝑇𝐻; limiting this tilt ensures that the motion is not

interpreted as false rotational motion.

The simulation system was setup to test the ability of the classical washout algorithm to

effectively recreate vehicle motion sensations within the simulator environment and return

the platform to the neutral position by performing washout. It was shown that the translation

motion channel is able to replicate the motion sensations experienced in the vehicle fairly well

with no false motion cues; according to the otolith model output in figure 4-15. The rotational

channel is able to replicate the motion sensations experienced in the vehicle but suffers from

some false cues when performing platform washout. Alternative motion cueing algorithms,

such as the adaptive washout algorithm (Ariel and Sivan, 1984), optimal washout algorithm

(Sivan et al., 1982) and MPC (Baseggio et al., 2011), could be used in future to mitigate false

cues. It is observed that the washout process in both the translational and rotational channels

were performed successfully and the platform was able to return to the neutral position after

the input motion signal subsided. The washout filter parameters will need to be adjusted in the

next chapter based on motion signals received from the software system and the position

control system motion constraints, to ensure optimal performance on the vehicle simulator.

83

5 Software

This chapter discusses the software implementation for the vehicle simulator. The software

package, X-Sim, which is used in the interfacing between telemetry data from the games

physics engine and the motion control system, is explained. The software plugin, which is

written in C++, is designed to process input game data into actuator stroke lengths and this

data is sent to the actuator position control system.

A novel simulation setup in Matlab/Simulink, using the SimMechanics toolbox, is developed.

This setup is used to adjust the input data scaling and filter parameters on the classical

washout algorithm. The simulation setup is used for the following:

 Test that motion data from the game is replicated on the simulator platform in the

Matlab/Simulink environment.

 Ensure that the position, velocity and acceleration constraints imposed on the

actuators in the system are not violated.

 Test the fidelity of the system in replicating the input game data.

 Evaluate the fidelity performance of the 3-DOF system against the traditional 6-DOF

system using the human vestibular system models.

The Matlab/Simulink setup is implemented in C++ for the X-Sim software package. The C++

software implementation results for actuator stroke lengths are tested against the results from

the Matlab/Simulink setup to ensure the C++ software plugin implementation is correct.

5.1 X-Sim Software

In the vehicle simulator, visual cues are passed to the driver via the 3 monitors that are

mounted on the platform. The game Dirt 3 is used to generate visual cues for the vehicle

simulator. The game renders visual cues and provide motion cues via the built in physics

engine.

X-Sim is the middleware package which is used to extract and interpret the data from the

games physics engine. The X-Sim package consists of two software packages, the Extractor and

Convertor. These packages are designed to run independently and could possibly run on

separate machines.

84

The X-Sim Extractor software is used to communicate with the games physics engine and

receive the telemetry data. This data includes the lateral force, longitudinal force, vertical

force, roll angle, pitch angle and yaw angle. The physics data from most games are read either

from shared memory or via a localhost network connection.

Input telemetry data is relayed from the X-Sim Extractor software to the X-Sim Convertor

software via a TCP network connection. The use of a network connection between the two

software packages allows them to run on independent machines. This network connection

may be required depending on the capabilities of the machine running the game. When a

lower performance machine is used to run the game then it is intuitive to run the X-Sim

Convertor software on a separate machine. This setup reduces any processing bottlenecks

which may affect the relaying of data to the motion simulator, resulting in delayed motion

cues. When using a high performance machine, both software packages could run on the same

machine. Figure 5-1 illustrates the network configuration used for this particular motion

simulator application; it can be seen that both the TCP connections are done on the localhost

machine.

Figure 5-1 X-Sim Software Setup

The X-Sim Convertor software is able to receive telemetry data from the X-Sim Extractor

software in real time. The X-Sim Convertor software is then able to perform maths functions

on the data. This data processing is used in applications were the data needs to be scaled or

filtered and kinematic analysis needs to be performed.

The X-Sim Convertor software is able to output data in three separate modes as follows (X-Sim,

no date):

 The Universal Serial Output (USO) – Processed data is transferred to the position

control system hardware via an RS232/RS485 serial interface or a network connection.

 Synaptrix Interface – This mode provides a motion control system that is able to

control certain hardware systems, allowing for sensing and controlling the hardware

directly.

85

 CSV file – Data is logged to a CSV file and allows the user to perform data analyses. The

data logged could be input game data or data which has been processed by the X-Sim

Convertor software.

5.1.1 Game Telemetry Data

The testing of the input data received from the game was done by logging the data to CSV file

for the 3 translational values (Lateral, Longitudinal and Vertical specific forces) and 3 rotational

values (Roll, Pitch and Yaw angles). The output values from the X-Sim Extractor software have

a 32-bit signed range. Figure 5-2 illustrates the game data for the longitudinal specific force for

a single lap of the game, it highlights the various instances in time were the vehicle undergoes

acceleration and deceleration during the lap.

Figure 5-2 Longitudinal Force Game Data

Figure 5-3 illustrate the game data for the pitch angle values for a single lap of the game, it

shows the various motions of the car rotating about the y-axis.

86

Figure 5-3 Pitch Angle Game Data

Angular velocity values are required in the classical washout algorithm for the rotational

channel. The Roll, Pitch and Yaw angle values from the input game data had to be scaled and

then transformed into angular velocity signals. The following transformation was used:

𝜔⃗⃗⃗𝑣𝑒ℎ = 𝑆𝜑⃗⃗̇𝑣𝑒ℎ . . . (5.1)

with 𝑆 the transformation matrix from RPY angle rates 𝜑⃗⃗̇𝑣𝑒ℎ into vehicle angular velocity 𝜔⃗⃗⃗𝑣𝑒ℎ

given by:

𝑆 = [

1 0 − sin𝛽
0 cos𝛼 sin 𝛼 cos𝛽
0 − sin𝛼 cos 𝛼 cos𝛽

] . . . (5.2)

RPY angle rates 𝜑⃗⃗̇𝑣𝑒ℎ, used above, are obtained from RPY angles 𝜑⃗⃗𝑣𝑒ℎ by the following transfer

function which was shown previously (Reid and Nahon, 1985):

𝜑⃗⃗̇𝑣𝑒ℎ =
12.5

𝑠+12.5
𝜑⃗⃗𝑣𝑒ℎ . . . (5.3)

87

5.1.2 Software Plugin

The X-Sim software allows for the implementation of a dll (dynamic linked library) software

plugin which is used to perform processing on the input game data. The plugin is written in C++

and it is incorporated in the X-Sim Convertor software. The plugin allows for various forms of

data processing such as scaling, motion cueing and inverse kinematics to be performed. Figure

5-4 illustrates the software plugin UML activity diagram which was developed to be used for

the 3-DOF motion platform. The software plugin, which is shown in appendix D, was written to

extract and scale the input data received from the game via the X-Sim Extractor software

package. The implementation of the classical washout filter is performed in the discrete

domain. The translation motion along the z-axis (Heave), rotational motion about the x-axis

(Roll) and rotational motion about the y-axis (Pitch) output from the classical washout

algorithm is used in the inverse kinematics analysis. Using the derived leg length equation 2.36

to equation 2.38 and constraint equation 2.28 to equation 2.30 the actuator stroke lengths for

each actuator is derived and passed through to the motion control system, over a LAN, via

UDP.

88

Figure 5-4 Software Plugin UML Activity Diagram

89

5.2 Simulations

The motion control system, discussed in chapter 3, is a pneumatic system. It employs 3

pneumatically driven linear actuators and performs position control on each of these

actuators. The system itself is limited to the following actuator position, velocity and

acceleration values. Table 5-1 shows the limits of the actuators.

Table 5-1 Actuator Motion Limits

Position ± 0.1 m

Velocity ± 0.2 m/s

Acceleration ± 2 m/s2

It is important to adhere to the actuator motion constraints imposed to ensure safe operation

of the vehicle simulator. A failure to adhere to these limits could result in mechanical damage

to the structure of the motion simulator platform and injury to the user in the vehicle

simulator. Based on these constraints it is important that the vehicle input data scaling and

classical washout filter parameters are selected to ensure motion that does not violate the

actuator motion constraints. The objective is to get the actuator motion to be within the

position, velocity and acceleration limits imposed.

In the previous work in chapters 2 and chapter 4 two simulation systems were created in the

Matlab/Simulink environment. Chapter 2 created a structural model of the 3-DOF motion

platform by using the SimMechanics toolbox, this toolbox creates a model of the 3-DOF

motion platform based on the geometrical properties of the platform. The system was

designed to perform verification of the derived inverse kinematic equation 2.36 to equation

2.38 for the 3-DOF motion platform. Kinematic analysis was performed and results from the

output of the structural model were compared to the derived inverse kinematic equation 2.36

to equation 2.38, this chapter concluded by confirming the derived inverse kinematic equation

2.36 to equation 2.38 were correct. The work in chapter 4 created and implemented the

motion cueing strategy in the Matlab/Simulink environment. Results from this chapter showed

that the classical washout algorithm has reasonable performance in replication of motion

sensations experienced in a real vehicle.

The simulation setup used for this particular chapter combines the previous two simulation

setups from chapter 2 and chapter 4. A novel simulation setup is created, illustrated in figure

5-5, which is able perform the entire vehicle simulator data processing. The vehicle simulator

90

data processing includes input data scaling, classical washout algorithm implementation and

inverse kinematic analysis. The setup is used to adjust the scaling of the input data and the

classical washout filter parameters to ensure the actuator motions adhere to constraints

imposed on them by the selected position control system. Additionally SimMechanics creates a

3-D visual display of the motion platform, allowing for the platform motion to be viewed in

real time.

Input game data received from the games physics engine (Specific forces and RPY angles) are

input directly into the simulation system. These values are scaled and the RPY angles are

transformed into the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The classical washout algorithm

takes in the vehicle specific force vector 𝑓𝑣𝑒ℎ and vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ to be

used in the translational and rotational channel. Independent motion parameters (Roll, Pitch

and Heave) are output from the classical washout algorithm. Independent parameter values

are fed into the leg trajectory block which computes the derived leg length equation 2.36 to

equation 2.38. These values are input into the structural model, which is designed using the

SimMechanics toolbox. Motion from the output of the structural model is then analysed to

ensure that the actuator motions do not violate the imposed motion constraints.

The simulation setup developed allows for input data scaling and filter parameters to be

adjusted easily and safely in the Matlab/Simulink environment. Adjustments are made till the

actuator motion constraints, in table 5-1, are adhered to. The simulation setup can then be

implemented as a software plugin in the X-Sim Convertor software. Since the software has

been tested, in Matlab/Simulink, it is guaranteed that the motion constraints will be adhered

to by the software plugin. Adherence to these constraints ensures safety of the user and safety

of the mechanical structure of the vehicle simulator.

A fidelity study is also performed in Matlab/Simulink to highlight how well the vehicle

simulator, using the 3-DOF motion platform, replicates the sensations felt in a vehicle for the

selected motion cueing parameters. The 3-DOF motion platform fidelity is also evaluated

against the traditional 6-DOF motion platform.

The simulation setup is also used to test and verify the correct functioning of the various

components in the C++ software plugin developed. The Matlab/Simulink setup was modified

to be implemented in the discrete domain, since the X-Sim software samples input game data

at discrete time intervals of 0.01 second.

91

Figure 5-5 Vehicle Simulator Matlab/Simulink Simulation Setup

92

5.2.1 Filter Parameter Selection

The filter parameters used in the classical washout algorithm were adjusted to not violate the

actuator motion constraints in table 5-1. The transient translational acceleration filter, HP

Filter in figure 4-4, has the following form:

𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑠) =
𝑠3

(𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2)(𝑠+𝜔𝑏)

 . . . (5.4)

Table 5-2 shows the filter parameters selected for 𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙

Table 5-2 Translational Channel Filter Parameters

𝜁 1

𝜔𝑛 3.1 rad/s

𝜔𝑏 0.2 rad/s

The transient angular velocity filter, HP Filter in figure 4-5, has the following form:

𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑠) =
𝑠2

(𝑠+𝜔𝑛)2
 . . . (5.5)

The parameters values for 𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟 are shown in table 5-3.

Table 5-3 Transient Angular Velocity Filter Parameters

𝜁 1

𝜔𝑛 1 rad/s

Upon initial evaluation it was found that the output signals from the transient angular velocity

filters were creating large actuator accelerations. It was decided to attenuate some of the high

frequency signals by passing the output signal from the transient angular velocity filters

through a low-pass filter. The low-pass filter has a break frequency of 𝜔𝑏 = 3.1 rad/s and has

the following form:

𝐿𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑠) =
𝜔𝑏

(𝑠+𝜔𝑏)
 . . . (5.6)

The low-pass filter, LP Filter in figure 4-5, used in the tilt coordination process has the following

form:

𝐿𝑃𝑇𝑖𝑙𝑡(𝑠) =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2 . . . (5.7)

93

The parameter values for 𝐿𝑃𝑇𝑖𝑙𝑡 are given in table 5-4.

Table 5-4 Tilt Coordination Filter Parameters

𝜁 1

𝜔𝑛 1 rad/s

5.2.2 Discrete Filter Implementation

To be able to implement the classical washout algorithm in the C++ software plugin the filter

design had to be done in the discrete domain. The sampling time for the X-Sim software is 0.01

second per output for each reading of actuator stroke lengths. The Matlab/Simulink libraries

were modified to implement the simulation in the discrete domain.

The bilinear transform was used with the following approximation for continuous time to

discrete time conversion:

𝑠 ≈
2

𝑇

1−𝑧−1

1+ 𝑧−1 . . . (5.8)

With T the sampling time of 0.01 second.

The transient translational acceleration filter in the discrete domain is designed using filter

parameters in table 5-2 and with a sample time of 0.01 second. The transfer function in the

discrete domain is given by:

𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

0.004844𝑧3−0.004844𝑧2−0.004844𝑧+0.004844

𝑧3−2.937𝑧2+2.875𝑧−0.938
 . . . (5.9)

Implementing this transfer function in the form of a difference equation yields the following:

𝑦[𝑛] = 0.938𝑦[𝑛 − 3] − 2.875𝑦[𝑛 − 2] + 2.937𝑦[𝑛 − 1] + 0.004844𝑥[𝑛 − 3] −

0.004844𝑥[𝑛 − 2] − 0.004844𝑥[𝑛 − 1] + 0.004844𝑥[𝑛] . . . (5.10)

The transient angular velocity filter in the discrete domain is designed using filter parameters

in table 5-3 and with a sample time of 0.01 second. The transfer function in the discrete

domain is given by:

𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

0.9901𝑧2−1.98𝑧+0.9901

𝑧2−1.98𝑧+0.9802
 . . . (5.11)

94

Implementing this transfer function in the form of a difference equation yields the following:

𝑦[𝑛] = −0.9802𝑦[𝑛 − 2] + 1.98𝑦[𝑛 − 1] + 0.9901𝑥[𝑛 − 2] − 1.98𝑥[𝑛 − 1] + 0.9901𝑥[𝑛] .

. . (5.12)

The low-pass filter added to the rotational channel in the discrete domain is given by:

𝐿𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑧) =
0.01526𝑧+0.01526

𝑧−0.99
 . . . (5.13)

Implementing this filter in the form of a difference equation yields the following:

𝑦[𝑛] = 0.99𝑦[𝑛 − 1] + 0.01526𝑥[𝑛] + 0.01526𝑥[𝑛 − 1] . . . (5.14)

The low-pass filter used in the tilt coordination process in the discrete domain is designed

using filter parameters in table 5-4 and with a sample time of 0.01 second. The transfer

function in the discrete domain is given by:

𝐿𝑃𝑇𝑖𝑙𝑡(𝑧) =
2.475𝑥10−5𝑧2+4.95𝑥10−5𝑧+2.475𝑥10−5

𝑧2−1.98𝑧+0.9802
 . . . (5.15)

Implementing this filter in the form of a difference equation yields the following:

𝑦[𝑛] = −0.9802𝑦[𝑛 − 2] + 1.98𝑦[𝑛 − 1] + 2.475𝑥10−5𝑥[𝑛 − 2] + 4.95𝑥10−5𝑥[−1] +

2.475𝑥10−5𝑥[𝑛] . . . (5.16)

5.2.3 Kinematic Analysis Results

The first part of the testing used the Matlab/Simulink setup. The input game is scaled and

processed with the classical washout algorithm. Upon completion the three independent

parameters, translational motion along the z-axis (Heave) and rotation about the x-axis (Roll)

and y-axis (Pitch) are input into the inverse kinematics system. Using the three independent

parameters and the constraint equation 2.28 to equation 2.30 the derived leg length equation

2.36 to equation 2.38 are formed. As in chapter 2 the output trajectory from the structural

model can be compared to the input trajectory to determine the accuracy of the derived leg

length equation 2.36 to equation 2.38 and the effectiveness of the classical washout algorithm

can also be determined from the output trajectory.

Figure 5.6 illustrates the roll angle (x-axis) comparison; this graph shows the comparison

between the input and output roll angle trajectory. It can be seen that the output trajectory,

for the roll, replicates the input trajectory extremely well. The maximum roll angle achieved

95

for the selected motion cueing parameters in the system is 4.5 degrees. Figure 5-7 illustrates

the error between the input and output trajectory for the roll angle. The maximum error is

0.2863 degrees and the mean error is 0.0274 degrees.

Figure 5-6 Roll Angle Comparison

Figure 5-7 Roll Angle Error

Figure 5-8 illustrates the pitch angle (y-axis) comparison. It can be noted that the output

trajectory, for the pitch angle, replicates the input trajectory extremely well. The maximum

pitch angle achieved for the selected motion cueing parameters in the system is 5.4 degrees.

Figure 5-9 illustrates the error between the input and output trajectory for the pitch motion.

The maximum error is 0.2170 degrees and the mean error is 0.0290 degrees.

96

Figure 5-8 Pitch Angle Comparison

Figure 5-9 Pitch Angle Error

Figure 5-10 illustrates the heave (z-axis) motion comparison. The heave motion of the output

replicates the heave input well; there is some difficulty in replicating the larger heave motions.

The maximum heave motion achieved, at the output, for the selected motion cueing

parameters in the system is 0.0083 m. Figure 5-11 illustrates the error between the input and

output trajectories for the heave motion. The maximum error is 0.0013 m and the mean error

is 0.00025 m.

97

Figure 5-10 Heave Comparison

Figure 5-11 Heave Error

The errors between the input and output trajectory are reasonable and not extreme. All the

outputs track their respective inputs well. These results validate the derived leg length

equation 2.36 to equation 2.38. It can also be seen that the classical washout algorithm is

effective in ensuring the platform returns to neutral position (washout) for the entire duration

of the lap. Roll, pitch and heave motions all return to zero when the applied motion cue is

complete. The maximum values achieved for the roll angle, pitch angle and heave motion

represent reasonable performance for a low-cost simulator used for research purposes.

Figure 5-12 and figure 5-13 illustrates the 3-D model for the 3-DOF motion platform for two

instances in the simulation; this system, using SimMechanics, provides a visualisation tool of

98

expected platform motions. It can also verify platform motion is correct, for e.g. the platform

should tilt backwards about the y-axis (Pitch) to replicate a positive acceleration about the x-

axis as in figure 5-12. In figure 5-13 the driver is going around a curve and turning left,

therefore the driver is tilted to the right to replicate the motion sensations experienced in the

vehicle.

Figure 5-12 3-DOF Platform Backward Tilt

Figure 5-13 3-DOF Platform Tilt to Right

5.2.4 Motion Limit Results

The next aspect of the testing evaluated the actuator motion limits from the structural model

to determine if the actuator motions adhere to the constraints. The filter parameters for all

99

the channels in the washout algorithm were selected to ensure that the actuator motion limits

in table 5-1 is not violated. The results from this test helped ensure a successful

implementation of the motion scaling, classical washout algorithm and inverse kinematics on

the actual 3-DOF motion platform. It also guarantees safety of the user and the mechanical

structure of the vehicle simulator.

Figure 5-14 illustrates the actuator stroke length output from the structural model for each of

the actuators. Actuator 1 has a maximum motion change of 0.0458 m, actuator 2 has a

maximum motion change of 0.0766 m and actuator 3 has a maximum motion change of 0.0848

m. Based on these results it can be concluded that all three actuators adhere to the maximum

possible actuator position limit of 0.1 m.

Figure 5-14 Structural Model Length Output of Actuators

Figure 5-15 illustrates the velocity output of each actuator from the structural model. Actuator

1 has a maximum velocity of 0.1178 m/s, actuator 2 has a maximum velocity of 0.1580 m/s and

actuator 3 has a maximum velocity of 0.1570 m/s. The actuator velocity values lie within the

maximum permissible actuator velocity of 0.2 m/s.

100

Figure 5-15 Structural Model Velocity Output of Actuators

Figure 5-16 illustrates the acceleration output of each actuator from the structural model.

Actuator 1 has a maximum acceleration of 1.1643 m/s2, actuator 2 has a maximum

acceleration of 1.5375 m/s2 and actuator 3 has a maximum acceleration of 1.5230 m/s2. The

accelerations of all actuators lie within the maximum acceleration value of 2 m/s2.

Figure 5-16 Structural Model Acceleration Output of Actuators

The input data scaling and filter parameters selected ensured that none of the actuator motion

constraints, in table 5-1, are violated. These constraints ensure safe operation for the driver in

the vehicle simulator and safety of the mechanical structure for the vehicle simulator. It can be

seen from the acceleration of the actuator legs that the actuators reach maximum acceleration

for very short periods in time. This platform acceleration is due to the fixed filter parameters of

101

the classical washout algorithm which is designed for the worst motion case. Therefore

platform workspace usage is not optimised for the classical washout algorithm.

5.2.5 Simulator Fidelity Results

Simulator fidelity is the next aspect which is evaluated for the vehicle simulator. To evaluate

the vehicle simulator fidelity the otolith model is used for the translational motion and the

semi-circular canal model is used for the rotational motion.

Figure 5-17 illustrates the sensed specific forces in the vehicle and the vehicle simulator along

the x-axis. It can be seen that the vehicle simulator does reasonably well to replicate the

motion sensations felt in the vehicle, with some false motion cues. For the vehicle simulator

used, which is a 3-DOF system, only the sustained specific forces along the x-axis will be felt.

This sensation is represented by tilt coordination along the y-axis (Pitch); here the motion is

kept below the y-axis semi-circular canal motion detection threshold 𝛿𝑇𝐻 to prevent false

rotational motion cues. The transient component of vehicle specific force along the x-axis is

not used in the 3-DOF vehicle simulator.

Figure 5-17 Sensed Vehicle and Simulator Specific Force by the Otolith Model (x-axis)

Figure 5-18 illustrates the sensed specific forces in the vehicle and the vehicle simulator along

the y-axis. It can be seen that the vehicle simulator replicates, extremely well, the motion

sensations felt in the vehicle for this channel. For the vehicle simulator used, which is a 3-DOF

system, only the sustained specific forces along the y-axis will be felt. The sustained specific

forces along the y-axis are represented by tilt of the motion platform along the x-axis (Roll).

102

Tilting along the x-axis is kept below the semi-circular canal motion detection threshold 𝛿𝑇𝐻

to prevent false rotational motion cues along the x-axis (Roll). The transient component of

vehicle specific force along the y-axis is not used in the 3-DOF vehicle simulator.

Figure 5-18 Sensed Vehicle and Simulator Specific Force by the Otolith Model (y-axis)

Figure 5-19 illustrates the sensed specific forces in the vehicle and the vehicle simulator along

the z-axis. It can be seen that the vehicle simulator does well to replicate the motion

sensations felt in the vehicle. The transient component of vehicle specific force along the z-axis

(Heave) will be felt in the vehicle simulator.

Figure 5-19 Sensed Vehicle and Simulator Specific Force by the Otolith Model (z-axis)

103

Figure 5-20 illustrates the sensed angular velocity in the vehicle and the vehicle simulator

along the x-axis. The motion sensations along this channel are minimal and the vehicle

simulator replicates an attenuated version of vehicle angular velocity along the x-axis (Roll).

Figure 5-20 Sensed Vehicle and Simulator Angular Velocity by the Semi-circular Canal Model
(x-axis)

Figure 5-21 illustrates the sensed angular velocity in the vehicle and the vehicle simulator

along the y-axis. The motion sensations in the vehicle simulator are attenuated but represent

the motion sensations felt in the vehicle reasonably well.

Figure 5-21 Sensed Vehicle and Simulator Angular Velocity by the Semi-circular Canal Model
(y-axis)

104

The vehicle simulator designed is a 3-DOF system. It is used to replicate sustained translational

accelerations along the x-axis and y-axis; this replication is done via tilt coordination. It is also

used to replicate the transient translational acceleration along the z-axis (Heave) and transient

rotational motion about the x-axis (Roll) and y-axis (Pitch) in the vehicle simulator.

5.2.6 Performance Evaluation of 3-DOF Motion Platform

The 3-DOF vehicle simulator used is a system that is not commonly used for vehicle simulators.

Generally the traditional 6-DOF motion platform is used for vehicle simulators. However it is

fairly well known that these systems have excessive costs attached to them. These systems

have typically been funded by car manufacturers and transport departments to perform

various research and training; these developers typically have excessive budgets making the 6-

DOF systems feasible. By evaluating the performance of the 3-DOF system against the 6-DOF

motion platform developed in chapter 2 the benefits of such a system becomes apparent,

particularly in scenarios were cost is a major factor and reasonable performance is needed.

Figure 5-22 shows the sensed specific force, along the x-axis, by the otolith model for both 3-

DOF and 6-DOF systems. These signals are compared to the sensed specific force, along the x-

axis, in the actual vehicle. Both systems perform reasonably well with a fair amount of false

motion cues. The 3-DOF system actually has smaller sensations felt for false motion cues,

which is attributed to the lack of transient translational acceleration for the x-axis component.

Figure 5-22 Specific Force Comparison (x-axis)

105

Figure 5-23 shows the sensed specific force, along the y-axis, by the otolith model for both 3-

DOF and 6-DOF systems. These signals are compared to the sensed specific force, along the y-

axis, in the actual vehicle. Both systems perform extremely well with minimal amount of false

motion cues. The 6-DOF system performs slightly better, specifically at replicating the transient

accelerations since the 3-DOF system lacks the transient component.

Figure 5-23 Specific Force Comparison (y-axis)

Figure 5-24 shows the sensed specific force, along the z-axis, by the otolith for both 3-DOF and

6-DOF systems. These signals are compared to the sensed specific force, along the z-axis, in the

actual vehicle. Both systems perform well in replication of motion sensations felt along the z-

axis.

Figure 5-24 Specific Force Comparison (z-axis)

106

Figure 5-25 shows the sensed angular velocity, along the x-axis, by the semi-circular canal

model for both 3-DOF and 6-DOF systems. These signals are compared to the sensed angular

velocity, along the x-axis, in the actual vehicle. The motion for this component is minimal and

both systems replicate an attenuated signal with some small false motion sensations. Figure 5-

26 illustrates the motion cues experienced in both systems for a small time period. It shows

that both components replicate an attenuated signal, the 6-DOF system performs slightly

better.

Figure 5-25 Angular Velocity Comparison (x-axis)

Figure 5-26 Angular Velocity Sample Comparison (x-axis)

Figure 5-27 shows the sensed angular velocity, along the y-axis, by the semi-circular canal

model for both 3-DOF and 6-DOF systems. These signals are compared to the sensed angular

velocity, along the y-axis, in the actual vehicle. The performance of motion replication for this

107

component is modest in both systems. Figure 5-28 illustrates the motion cues experienced in

both systems for a small time period. It shows that both components replicate an attenuated

signal, the 6-DOF system performs slightly better. There are some motion cues which are

missed completely in both systems.

Figure 5-27 Angular Velocity Comparison (y-axis)

Figure 5-28 Angular Velocity Sample Comparison (y-axis)

Figure 5-29 shows the sensed angular velocity, along the z-axis, for both 3-DOF and 6-DOF

systems. These signals are compared to the sensed angular velocity, along the z-axis, in the

actual vehicle. The 3-DOF system has no motion for this component while the 6-DOF system

replicates an attenuated signal for the sparse motion sensations felt for this component.

Figure 5-30 illustrates the motion cues experienced in both systems for a small time period. It

108

shows the 6-DOF system replicates an attenuated signal for the motion cues felt in the actual

vehicle. There are some motion cues which are missed completely in the 6-DOF system.

Figure 5-29 Angular Velocity Comparison (z-axis)

Figure 5-30 Angular Velocity Sample Comparison (z-axis)

For the modest motions required by the motion control system, in table 5-1, the classical

washout filter parameters were optimised. Using this classical washout algorithm

implementation on both the 3-DOF and 6-DOF systems the performance output shows that

there is merit for the 3-DOF motion system. For modest motion requirements the 3-DOF

system is more than capable of replicating the more costly 6-DOF system. It only ever fails to

replicate rotational motion along the z-axis (Yaw) at all and from figure 5-29 this motion cue is

of not much significance. When a low-cost solution with modest performs requirements is

desired then the 3-DOF motion platform would be the best choice.

109

5.2.7 Software Plugin Testing

The final part of the testing was used to verify the correct functioning of the C++ software

plugin in implementing the input data scaling, classical washout algorithm and inverse

kinematics. The software plugin actuator outputs, which were saved to CSV file, are shown.

Figure 5-31 illustrates the actuator 1 stroke length output for the software plugin and the

Matlab/Simulink simulation. The software plugin output for actuator 1 does well to replicate

the output from the Matlab/Simulink simulation. The maximum error value between the

actuator 1 value in the software plugin and in the Matlab/Simulink simulation is -0.0134 m.

Figure 5-31 Actuator 1 Output Comparison

Figure 5-32 illustrates the actuator 2 stroke length output for the software plugin and the

Matlab/Simulink simulation. The software plugin output for actuator 2 replicates the output

from the Matlab/Simulink simulation well. The maximum error value between the actuator 2

value in the software plugin and in the Matlab/Simulink simulation is 0.0035 m.

110

Figure 5-32 Actuator 2 Output Comparison

Figure 5-33 illustrates the actuator 3 stroke length output for the software plugin and the

Matlab/Simulink simulation. The software plugin output for actuator 3 replicates the output

from the Matlab/Simulink simulation well. The maximum error value between the actuator 3

value in the software plugin and in the Matlab/Simulink simulation is 0.0010 m.

Figure 5-33 Actuator 3 Output Comparison

The results from the software plugin match the output from the structural model really well

for all the actuators. The maximum errors for the actuators are acceptable and none of the

actuators have significant errors between the software plugin output and the Matlab/Simulink

simulation results. These results conclude that the software plugin implementation of data

scaling, classical washout algorithm and inverse kinematics calculations are correct. It can also

111

be noted that the washout process works well in returning the platform actuators back to zero

positions for the entire duration of the lap. The software plugin is used in the next chapter to

transfer actuator stroke length data, via UDP, to the motion control system.

5.3 Chapter Summary

This chapter discussed the software package, X-Sim, which is used to interface with the games

physics engine and obtain telemetry data. A software plugin, written in C++ and found in

appendix D, is used to perform the data processing and transmit the actuator stroke lengths to

the position control system via a LAN connection that uses UDP. The data processing includes

input data scaling, the classical washout algorithm and inverse kinematics.

A novel simulation setup developed was used to test the various data processing steps; this

testing was done using telemetry data logged from the game. This simulation setup allowed

for the input data scaling and filter parameters in the classical washout algorithm to be

adjusted. The filter parameters for the various aspects of the classical washout algorithm were

selected to ensure the actuator motion constraints, in table 5-1, is not violated. The results

from the simulation setup show that the input platform trajectory, into the structural model, is

replicated at the output of the structural model. It also confirms that the filter parameters

selected ensured the constraints in table 5-1, for the actuator position control system, is

respected. Adherence to these constraints ensures safety of the user in the vehicle simulator

and safety of the mechanical structure of the vehicle simulator. Simulator fidelity was then

evaluated, using the human vestibular system models. The results indicate that the classical

washout algorithm does very well in replication of translational motion sensed by the otolith

model and the classical washout algorithm does reasonably in replication of the rotational

motion sensed by the semi-circular canal model. Evaluating the performance of the 3-DOF

system against the traditional 6-DOF system it was found that the 3-DOF system performs

better than the 6-DOF system in replication of some motion sensations. This result highlights

the benefit of such a platform were low-cost and reasonable performance requirements are

needed. The various data processing steps in Matlab/Simulink were implemented in C++ and

were used in the software plugin for the X-Sim software package. The results, of the actuator

stroke lengths, from the output of the software plugin were compared against the output from

the Matlab/Simulink setup. The results show that the software plugin implementation is

correct and acceptable to be used to transmit data to the motion control system.

112

6 Results and Discussion

This chapter discusses and evaluates the performance of the position control system on the

vehicle simulator. Details on how the entire system functions and a description on how the

various components come together to create a vehicle simulator is presented. Results from

the position control system are evaluated and compared to the results in the Matlab/Simulink

simulations.

6.1 Vehicle Simulator System Overview

Figure 6-1 illustrates the entire integrated vehicle simulator system, this figure shows the

various components and how these combine to achieve the best possible motion simulator

fidelity. The game (Dirt 3) provides visual cues to the simulator driver via the PC monitors.

Telemetry data is transferred to the software plugin using the X-Sim software package.

Position data for each actuator is transferred from the software plugin into the Festo PLC, via a

UDP network interface. The position data for each actuator is passed onto the axis controllers

which provide actuator motion. Motion cues are transferred to the simulator driver via this

actuator motion. Through seamless synchronisation of visual and motion cues a vehicle

simulator system with the best possible fidelity is achieved.

Figure 6-1 Vehicle Simulator System Overview

113

6.2 Position Control System Limitations

During integration and testing of the entire system it was found that the back actuators in the

system were creating excessive coupling forces between each other. These coupling forces

affected the position control system performance and led to the control system on each of

these actuators becoming unstable. Independently these actuator position control systems

were found to track the required input correctly, however when simultaneous motion was

required the position control system on each actuator became unstable. Figure 6-2 to figure 6-

4 illustrates the position control system performance for each of the 3 actuators. It shows the

actual position tracking the reference input, which is the nominal position supplied to the

CMAX controller, from the software plugin.

Figure 6-2 Actuator 1 Position Control Tracking with Live Game Data

Figure 6-3 Actuator 2 Position Control Tracking with Live Game Data

114

Figure 6-4 Actuator 3 Position Control Tracking with Live Game Data

The excessive coupling on the position control system could not be mitigated with the selected

position control system from Festo, despite numerous efforts to adjust the control system

parameters on each of the axis controllers. It was decided to modify the system by not

implementing position control on the back actuators in the vehicle simulator system. This

modification will eliminate the rotational motion about the x-axis (Roll) from the vehicle

simulator system completely. Removing the rotational motion about the x-axis (Roll) will

eliminate the transient x-axis angular velocity component and the sustained translational

motion along the y-axis (which is done through platform tilt). Figure 6-5 illustrates the

modified 3-DOF motion platform with the front actuator (Actuator 1) used to provide motion.

The new vehicle simulator system is modified into a partial 2-DOF system which is able to

produce translational motion along the z-axis (Heave) and rotational motion about the y-axis

(Pitch).

115

Figure 6-5 Modified Partial 2-DOF Motion Platform with Single Motion Actuator

Simulations in Matlab/Simulink were conducted using the Vehicle Simulator Simulation Setup,

illustrated in figure 5-5, to evaluate the modified vehicle simulator systems performance using

just the front actuator for motion. The new systems motion was compared to the motion for

the 3-DOF motion platform, highlighting the effect on motion cues for the modified system.

The partial 2-DOF systems input data scaling factors used were all increased since actuator 1 is

only used and this actuator had modest motions initially for the 3-DOF system. Figure 6-6

illustrates the z-axis translational motion (Heave) for the partial 2-DOF system and the initially

designed 3-DOF system. It can be seen that with a larger scaling factor, increased from 1 m/s2

to 2 m/s2 for the specific force z-axis game input, there is more motion achieved for this

motion cue in the partial 2-DOF system. The maximum heave motion achieved in the partial 2-

DOF system is 0.0307 m and the maximum heave motion achieved in the 3-DOF system is

0.0083 m.

116

Figure 6-6 Heave Comparison (Modified System)

Figure 6-7 illustrates the rotational motion about the x-axis (Roll) for the partial 2-DOF system

and the initially designed 3-DOF system. The partial 2-DOF system has no rotational motion

about the x-axis (Roll). A maximum roll value of 4.5313 degrees is achieved for the 3-DOF

system.

Figure 6-7 Roll Angle Comparison (Modified System)

Figure 6-8 illustrates the rotational motion about the y-axis (Pitch) for the partial 2-DOF system

and the 3-DOF system. The scaling factor for the game input data for the pitch component was

increased from 10 degrees to 15 degrees. The partial 2-DOF system provides an attenuated

signal that matches the 3-DOF motion systems cues. A maximum pitch value of 3.5140 degrees

117

is achieved for the partial 2-DOF system and a maximum pitch value of 5.4235 degrees is

achieved in the 3-DOF system.

Figure 6-8 Pitch Angle Comparison (Modified System)

Figure 6-9 illustrates the actuator stroke length output for actuator 1 in the vehicle simulator

system for the partial 2-DOF system. A maximum platform motion value of 0.6 m was

achieved. Simulation results proved that the motion constraints, in table 5-1, were still

respected in the modified system, even with the increased input data scale factors.

Figure 6-9 Actuator 1 Matlab/Simulink Simulation Output (Modified System)

The modified partial 2-DOF system is able to achieve more significant motion cues for the

translation motion along the z-axis (Heave) than the 3-DOF system. No rotational motion

118

about the x-axis (Roll) occurs in the partial 2-DOF system and the 3-DOF system provides

significant cues for this component. Rational motion along the y-axis (Pitch) is replicated well

in the partial 2-DOF system, this systems replicates attenuated cues that are felt in the 3-DOF

system. The partial 2-DOF systems actuator motion respects the actuator motion constraints in

table 5-1.

Figure 6-10 shows the sensed specific force, along the x-axis, by the otolith model for both 3-

DOF and the modified partial 2-DOF system. These signals are compared to the sensed specific

force, along the x-axis, in the actual vehicle. Both systems perform reasonably well with a fair

amount of false motion cues. The partial 2-DOF system outperforms the 3-DOF system by

having far less false motion cues. It provides motion sensations closer to that felt within the

actual vehicle.

Figure 6-10 Specific Force Comparison – Modified System (x-axis)

Figure 6-11 shows the sensed specific force, along the z-axis, by the otolith for both 3-DOF and

the modified partial 2-DOF system. These signals are compared to the sensed specific force,

along the z-axis, in the actual vehicle. Both systems perform well in replication of motion

sensations felt along the z-axis.

119

Figure 6-11 Specific Force Comparison – Modified System (z-axis)

Figure 6-12 shows the sensed angular velocity, along the y-axis, by the semi-circular canal

model for both 3-DOF and the modified partial 2-DOF system. These signals are compared to

the sensed angular velocity, along the y-axis, in the actual vehicle. The performance of motion

replication for this component is modest in both systems; the 3-DOF system outperforms the

modified partial 2-DOF system for this motion cue. Figure 6-13 illustrates the motion cues

experienced, for sensed angular velocity along the y-axis, in both systems for a small time

period. It shows that both components replicate an attenuated signal, the 3-DOF system

performs better than the partial 2-DOF system in motion replication. There are some motion

cues which are missed completely in both systems.

Figure 6-12 Angular Velocity Comparison – Modified System (y-axis)

120

Figure 6-13 Angular Velocity Sample Comparison – Modified System (y-axis)

The modified system which is a partial 2-DOF system is able to outperform the initially

designed 3-DOF motion system in replication of translation motion along the x-axis (Surge).

Both systems are able to replicate the translation motion along the z-axis (Heave). Rotational

motion along the y-axis (Pitch) is replicated poorly in both systems, with the 3-DOF system

performing better. This modified partial 2-DOF system has applications were sustained

translation motion along the x-axis is required. Inability to replicate sustained longitudinal

accelerations results in poor simulation of maneuverers such as emergency braking (Arioui et

al., 2009). Applications for the partial 2-DOF system include human factor studies in scenarios

which do not have much transient accelerations e.g. highway studies. In terms of testing car

prototypes this system could be used to test adaptive cruise control systems which generally

have smooth sustained accelerations. For driving training this platform can be adopted as a

first contact for new drivers to provide experience, in heavy machinery systems which do not

undergo severe accelerations, in general leisure environments and fuel efficiency training since

proper shifting techniques do not produce too many transient acceleration signals.

During testing of the position control system it was found that stopping at the mechanical

endpoints was abrupt. This method of stopping could eventually cause damage to the vehicle

simulator and causes discomfort for the user in the vehicle simulator. Upper and lower

software end positions were set to ensure the actuator does not stop abruptly at the

mechanical end positions. Illustrated in figure 6-14 is the lower software end position (LP) and

the upper software end position (UP), which was set at 10 mm and 130 mm respectively, these

values were based on the maximum and minimum position values of actuator 1 from figure 6-

121

9. These values give a working stroke length of 120 mm for the actuator. This cylinder stroke

length was limited, by the software end positions; based on the workspace usage from the

Matlab/Simulink simulation results. In addition to these limits the actuator needed to have a

reference zero point at which to start from and return to when motion is complete. Figure 6-

14 illustrates the actuator reference zero point and software position limits selected. The

reference zero point (ZP) for the actuator was set at 70 mm in height, resulting in maximum

motion in both the forward and backward strokes.

Figure 6-14 Actuator Reference Point and Position Limits

6.3 Position Control System Results

Position control tracking performance for the modified partial 2-DOF system is logged using

the Festo Control Software. Live data from the game is sent to the position control hardware

and the tracking performance is evaluated. Ideally the actual position should track the nominal

position (this is the value sent to the controller from the written software plugin) value

perfectly.

Figure 6-15 illustrates the tracking performance for the modified partial 2-DOF system using

live game data. The position control system hardware tracks the nominal position well with

minimum deviation from the setpoint value and almost perfect response time.

Figure 6-15 Actuator 1 Position Control Tracking with Live Game Data (Modified System)

122

Figure 6-16 illustrates the simulation results in Matlab/Simulink for the modified partial 2-DOF

system. Comparing this result to the actual tracking performance of the position control

hardware in figure 6-15 it can be noted that the position control hardware response performs

well. It can be seen that there is limitation in fully reproducing some transient components for

this system. The fidelity while driving in the actual vehicle is realistic. Motion and visual cues

tie in to create an immersive driving experience in the current vehicle simulator system. The

overall performance is a vehicle system with good fidelity and the modified partial 2-DOF

system is a low-cost alternative to the traditional 6-DOF system.

Figure 6-16 Actuator 1 Matlab/Simulink Simulation Output with Live Game Data

6.4 Chapter Summary

The vehicle simulator with the various components was presented in this chapter. It was

shown how the motion and visual cues tie in together to achieve the best possible vehicle

simulator fidelity.

Position control system testing found limitation in the selected Festo position control system.

It was decided to modify the system by eliminating rotational motion about the x-axis (Roll)

completely from the system. The modified system is a partial 2-DOF system and this system

was shown to outperform the 3-DOF system, initially chosen, in replication of translational

motion along the x-axis (Surge).

Testing and comparing the position control hardware tracking performance was then

performed. It was shown that the position control system does extremely well to track the

0 1 2 3 4 5 6 7 8 9
40

50

60

70

80

90

100

t (s)

P
o
s
it
io

n
 (

m
m

)

123

nominal position value. Comparing the position control system tracking performance to the

Matlab/Simulink system shows that replication of actuator motion is replicated well. The

position control hardware does come short in replicating of some transient motions. The

overall system provides motion and visual cues that tie in together to create an immersive

driving experience. This modified partial 2-DOF system is seen as a low-cost alternative in

scenarios with cost constraints and reasonable performance requirements.

124

7 Conclusions and Future Work

The purpose of this research was to research, design and implement motion cues for the 3-

DOF motion platform. This motion platform is able to provide translational motion along the z-

axis (Heave), rotational motion about the x-axis (Roll) and rotational motion about the y-axis

(Pitch). The research aimed to create the best possible fidelity in the vehicle simulator system

by creating realistic motion cues that work in cohesion with visual cues.

The motion platform for this simulator is a 3-DOF platform as compared to the traditional 6-

DOF Stewart platform. It is known that the 6-DOF motion platform is used extensively in

vehicle simulators around the world. The 6-DOF motion platform has complex forward

kinematics and excessive manufacturing costs (Tsai et al, 1996). Lower DOF motion platforms

are a compromise between motion replication quality and cost (Arioui et al., 2009).

A kinematic analysis was performed on the 3-DOF system to facilitate in replication of vehicle

motion cues. This kinematic analysis presented a closed form solution to the inverse

kinematics and a numerical approximation for the forward kinematics. The derived inverse

kinematics equations were validated in the Matlab/Simulink environment, using the

SimMechanics toolbox. A similar simulation setup and testing was implemented for the

traditional 6-DOF system.

The classical washout algorithm was the motion cueing algorithm selected to be used on the 3-

DOF platform in the vehicle simulator. This particular motion cueing algorithm is simple to

implement and has lower performance requirements than the other motion cueing algorithms.

A disadvantage of the classical washout algorithm is the false motion cues due to the fixed

filter parameters used in the design process.

A novel simulation system was developed in the Matlab/Simulink environment, illustrated in

figure 5-5, to aid in the design of a vehicle simulator. The simulation system developed

comprises of all the aspects involved in the motion cueing process which includes input vehicle

data scaling, implementing of the classical washout algorithm and performing inverse

kinematics.

The first research contribution showed how the developed simulation system was used to aid

in ensuring the actuator motion constraints, in table 5-1, are respected. The input data scaling

and filter parameters were adjusted to ensure that these actuator motion constraints are

125

respected. These constraints ensure safe operation for the driver in the vehicle simulator and

ensure safety of the mechanical structure of the vehicle simulator.

It can be noted from the acceleration of the actuator legs, illustrated in figure 5-16, that the

actuators reach a maximum acceleration for very short periods of time. This platform

acceleration is due to the fixed filter parameters of the classical washout algorithm which is

designed for the worst case motion. Therefore platform workspace usage is not optimised. In

future to improve the workspace usage and motion sensations in the vehicle simulator system

alternative washout algorithms will be implemented. These alternatives include the adaptive

washout algorithm (Ariel and Sivan, 1984), optimal washout algorithm (Sivan et al., 1982) and

model predictive control techniques (Baseggio et al., 2011).

The next research contribution evaluated the performance of the 3-DOF system against the

traditional 6-DOF system, in the Matlab/Simulink environment, using the human vestibular

system models. Specific force comparison along the x-axis shows that the 3-DOF system

performs better at motion replication and has smaller motion sensations for false motion cues

than the 6-DOF system. Specific force comparison along the y-axis showed the 6-DOF system

performing better at motion replication for this component. Both systems do well in

replication of specific force along the z-axis. In terms of the angular velocity components, both

systems replicate attenuated motion cues for the angular velocity along the x-axis with some

small false motion cues. Angular velocity along the y-axis is replicated modestly in both

systems. In terms of angular velocity along the z-axis the 3-DOF system has no motion

sensation for this component and the 6-DOF system does reasonably well in replication of the

sparse motion sensations felt. These results highlight the benefits of the 3-DOF system in

certain applications. These systems are applicable to scenarios with cost constraints and which

have reasonable performance requirements. The reasons for choosing a 3-DOF system were

the lower manufacturing costs involved and relatively simple manufacturing of such a system.

Testing of the position control system on the 3-DOF motion platform highlighted instability in

the back actuators. This instability led to the elimination of motion in the back actuators and

this change removed the rotational motion along the x-axis (Roll). The final system developed

was a partial 2-DOF system; this system is capable of partial restitution of translational motion

along the z-axis (Heave) and rotational motion along the y-axis (Pitch). This system was

evaluated against the initially designed 3-DOF system. Results from this evaluation showed

126

that the partial 2-DOF system did better in replication of translational motion along the x-axis

(Surge).

The position control system tracking results for the partial 2-DOF system showed excellent

tracking of the nominal position value (this is the value sent to the controller from the written

software plugin). Comparing the position control system tracking performance to the

Matlab/Simulink system shows that the replication of the actuator motion is replicated well.

The position control hardware does come short in replication of some transient motions. Final

testing of the system shows that it provides visual and motion cues that tie in together to

create an immersive driving experience.

The following research objectives were met:

 The current mechanical framework was investigated and understood.

 Kinematic analysis, simulation and testing of the 3-DOF motion platform and

traditional 6-DOF motion platform were performed.

 The classical washout algorithm for use in both the 3-DOF motion platform and

traditional 6-DOF motion platform was investigated, designed and implemented.

 A novel simulation system, developed in Matlab/Simulink, to aid in the vehicle

simulator design was developed. This system was successfully used to adjust various

parameters in the motion cueing process to ensure actuator motion constraints are

respected.

 The performance of the designed 3-DOF motion platform was evaluated against the

traditional 6-DOF motion platform using human vestibular system models in

Matlab/Simulink.

 A software plugin, developed in C++, was used to interface between the physics engine

of a game and the position control system on the 3-DOF motion platform. The

software plugin implemented the various motion cueing aspects in the C++ language.

 The Festo position control system hardware was configured and tested.

 PLC software to perform actuator position control was developed and tested.

 The position control system performance was evaluated. This evaluation highlighted

the instability of the selected position control system. This instability led to a

modification in which rotational motion along the x-axis (Roll) was removed from the

vehicle simulator. The vehicle simulator was modified into a partial 2-DOF system. This

modified systems position control performance in replication of motion cues was

127

subsequently evaluated against the results from the developed Matlab/Simulink

simulation system.

 The entire vehicle simulator system was integrated and tested. A vehicle simulator

with good fidelity was achieved. The initially designed 3-DOF vehicle simulator and the

final partial 2-DOF vehicle simulators performance highlight the benefits of lower-cost

systems. These systems have merit in applications with cost constrains and reasonable

performance requirements.

Table 7-1 adapted from (Cheng et al., 2006) shows how the two systems designed, the initial 3-

DOF system and final partial 2-DOF system, perform against other simulators. These two

systems are not able to produce the same large motions cues as other alternative simulators.

These alternative simulators have excessive costs as compared to both systems designed, even

without accounting for inflation costs on these alternative systems. The alternative simulators

are viable to transport departments and car manufactures which have excessive budgets. The

3-DOF system and final partial 2-DOF system are seen as low-cost alternative in scenarios with

cost constraints and reasonable performance requirements.

The partial 2-DOF system is able to replicate transient translational motion along the z-axis,

transient rotational motion about the y-axis and sustained translation motion along the x-axis

(which is done through platform tilt about the y-axis). Inability to replicate sustained

translation motion along the x-axis results in poor simulation of maneuverers such as

emergency braking (Arioui et al., 2009).

Applications for the developed system includes human factor studies in scenarios which do not

have much transient accelerations e.g. highway studies. In terms of testing car prototypes this

system could be used to test adaptive cruise control systems which generally have smooth

sustained accelerations. For driving training this platform can be adopted as a first contact for

new drivers to provide experience, in heavy machinery systems which do not undergo severe

accelerations, in general leisure environments and fuel efficiency training since proper shifting

techniques do not produce too many transient acceleration signals.

Future work for this vehicle simulator is evident in the shortcomings of the selected motion

control system from Festo. Unfortunately at present a modification to the control system

could not be performed due to the closed source nature of the Festo system. New hardware

would need to be implemented and an improved control system could be designed to be able

128

to create a fully functional 3-DOF vehicle simulator. Improved control strategies such as model

based control or performance based control would be selected. It is more appropriate to select

a performance based control strategy for this system due to non-linear dynamics of parallel

manipulators. Controllers with good disturbance rejection such as an adaptive control scheme

which incorporates disturbance rejection (Qinglong and Wenjie, 2011) and robust control (Wu

et al., 2010) are desirable to mitigate the disturbances introduced by the leg coupling forces on

the back actuators.

In terms of the provision of visual cues future work would see replacing the current 3x27 inch

LED monitors with a VR technology device to render visual cues. This technology will render

more immersive visual cues and a better field of view.

Table 7-1 Vehicle Simulator Systems Performance/Cost Comparisons

 Kookmin
University
Simulator

Vision Light
(MotionBase

3D150)

NADS
(University of

Iowa)

3-DOF
System

2-DOF
System

Pitch angle
(Degrees)

25 18 25 5.4 3.5

Roll angle
(Degrees)

20 15 25 4.5 0

Heave
motion (m)

- - 0.6 0.0083 0.0307

Load
(Newtons)

1970 1500 - 1200 1200

DOFs 6 6 13 3 2 (Partial)

No. of
Actuators

3 3 10 3 1

Acceleration
(m/s2)

6 7 10 2 2

Price ($) - $16990 $50 million $9500 $5700

The dissertation presented the mechatronics integration for a vehicle simulator. The

developed system is lower-cost and has application in scenarios with cost constraints and

reasonable performance requirements.

129

References

Ariel, D. and Sivan, R. (1984) ‘False cue reduction in moving flight simulators’, IEEE

Transactions on Systems, Man and Cybernetics, 14(4), pp.665-671.

Arioui, H., Hima, S. and Nehaoua, L. (2009) ‘2 DOF low cost platform for driving simulator:

design and modeling’, 2009 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, Singapore, July 2009, pp.1206-1211.

Arioui, H., Hima, S., Nehaoua, L., Bertin, R.J.V. and Espié, S. (2011) ‘From design to experiments

of a 2-DOF vehicle driving simulator’, IEEE Transactions on Vehicular Technology, 60(2),

pp.357–368.

Arioui, H., Nehaoua, L. and Amouri, A. (2005) ‘Classic and adaptive washout comparison for a

low cost driving simulator’, 13th IEEE Mediterranean Conference on Control and Automation

(MED 2005), Limassol, June 2005, pp.586-591.

Baseggio, M., Beghi, A., Bruschetta, M., Maran, F. and Minen, D. (2011) ‘An MPC approach to

the design of motion cueing algorithms for driving simulators’, 2011 14th International IEEE

Conference on Intelligent Transportation Systems, Washington-DC, October 2011, pp.692-697.

Beghi, A., Bruschetta, M. and Maran, F. (2012) ‘A real time implementation of MPC based

motion cueing strategy for driving simulators’, 51st IEEE Conference on Decision and Control,

Maui, Hawaii, December 2012, pp.6340-6345.

Bertollini, G.P., Johnston, C.M., Kuiper, J.W., Kukula, J.C., Kulczycka, M.A. and Thomas, W.E.

(1994) ‘The general motors driving simulator’, SAE Technical Paper No. 940179.

Bingul, Z. and Karahan, O. (2012) ‘Dynamic modeling and simulation of stewart platform’,

Serial and Parallel Robot Manipulators - Kinematics, Dynamics, Control and Optimization, Dr.

Serdar Kucuk (Ed.), InTech, Available at: http://www.intechopen.com/books/serial-and-

parallel-robot-manipulators-kinematics-dynamics-control-and-optimization/dynamic-

modelling-of-stewart-platform (Accessed 22nd May 2016).

Blana, E. (1996) ‘A survey of driving research simulators around the world’, Institute of

Transport Studies, University of Leeds, Working Paper 481.

130

Capustiac, A., Banabic, D., Schramm, D. and Ossendoth, U. (2011) ‘Motion cueing: From design

until implementation’, Proceedings of the Romanian Academy, Series A, 12(3), pp.249-256.

Chen, L.D., Papelis, Y., Waston, G. and Solis, D. (2001) ‘NADS at the University of IOWA: A tool

for driving safety research’, Proceedings of the 1st Human-Centered Transportation Simulation

Conference, Iowa, November 2001.

Cheng, M., Irawan, P., Kwak, S, and Putra, P. (2006) ‘Motion base driving simulator’, Available

at: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/49562/me450?sequence=2

(Accessed 31st May 2016)

Clavel, R. (1988) ‘Delta, a fast robot with parallel geometry’, Proceedings of International

Symposium on Industrial Robots, Lausanne, April 1988, pp.91-100.

Colombet, F., Dagdelen, M., Reymond, G., Pere, C., Merienne, F. and Kemeny, A. (2008)

‘Motion cueing: What is the impact on the driver’s behaviour?’, In Driving Simulator

Conference 2008 (DSC), Monaco, January 2008, pp.171-182.

Denne, P. (1986) ‘Simulators for leisure–A new industry’, IEE Conference on Simulation,

November 1986.

Drosdol, J. and Panik, F. (1985) ‘The Daimler-Benz driving simulator a tool for vehicle

development’, SAE Technical Paper No. 850334.

Festo (2009) ‘System description CMAX axis controller’, Available at:

https://www.festo.com/net/SupportPortal/Files/379484/CPX-CMAX-SYS_2015-

05a_559751g1.pdf (Accessed 22nd May 2016).

Festo (2014a) ‘Standard cylinder DNCI, with integrated displacement encoder’, Available at:

https://www.festo.com/cat/en-gb_gb/data/doc_ENGB/PDF/EN/DNCI_EN.PDF (Accessed 22nd

May 2016).

Festo (2014b) ‘Sensor interface CASM’, Available at: https://www.festo.com/cat/en-

gb_gb/data/doc_ENGB/PDF/EN/CASM_EN.PDF (Accessed 22nd May 2016).

Festo (2015a) ‘Proportional directional control valves VPWP’, Available at:

https://www.festo.com/cat/de_de/data/doc_engb/PDF/EN/VPWP_EN.PDF (Accessed 22nd

May 2016).

131

Festo (2015b) ‘Axis controller CPX-CMAX’, Available at: https://www.festo.com/cat/en-

us_us/data/doc_ENUS/PDF/US/CPX-CMAX_ENUS.PDF (Accessed 22nd May 2016).

Festo (2015c) ‘Control blocks CPX-CEC’, Available at: https://www.festo.com/cat/en-

gb_gb/data/doc_ENGB/PDF/EN/CPX-CEC_EN.PDF (Accessed 22nd May 2016).

Freeman, J.S., Watson, G., Papelis, Y.E., Lin, T.C., Tayyab, A., Romano, R.A. and Kuhl, J.G. (1996)

‘The Iowa driving simulator: An implementation and application overview’, SAE Technical

Paper 950174.

Ghosal, A. (no date) ‘Kinematics of serial manipulators’.

Gough, V.E. and Whitehall, S.G. (1962) ‘Universal tyre test machine’, Proceedings of 9th

International Congress FISITA, pp.117-137.

He, J.F., Jiang, H.Z., Cong, D.C., Ye, Z.M. and Han, J.W. (2007) ‘A survey on control of parallel

manipulator’, Key Engineering Materials, 339, pp.307-313.

Honegger, M., Brega, R. and Schweiter, G. (2000) ‘Application of a nonlinear adaptive

controller to a 6 dof parallel manipulator’, Proceedings of the 2000 IEEE International

Conference on Robotics & Automation, San Francisco-CA, April 2000, pp.1930-1935.

Kemeny, A. and Panerai, F. (2003) ‘Evaluating perception in driving simulation experiments’,

Trends in Cognitive Sciences, 7(1), pp.31-37.

Kihl, M. and Wolf, P.J. (2007) ‘Using driving simulators to train snowplow operators: The

Arizona experience’, Proceedings of the 2007 Mid-Continent Transportation Research

Symposium, Iowa, August 2007.

Kim, J.H., Lee, W.S., Park, I.K., Park, K.K. and Cho, J.H. (1997) ‘A design and characteristic

analysis of the motion base for vehicle driving simulator’, IEEE International Workshop on

Robot and Human Communication, Sendai, September 1997, pp.290-294.

Lee, W.S., Jung, S.K., Cho, J.H., Shin, S.I. and Bag, J.C. (2001) ‘A sudden acceleration study using

the Kookmin University driving simulator’, Proceedings of the 1st Human-Centered

Transportation Simulation Conference, Iowa, November 2001.

132

Lee, W.S., Kim, J.H. and Cho, J.H. (1998) ‘A driving simulator as a virtual reality tool’,

Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven,

May 1998, pp.71-76.

Lee, K.M. and Shah, D.K. (1988) ‘Kinematic analysis of a three-degrees-of-freedom in-parallel

actuated manipulator’, IEEE Journal on Robotics and Automation, 4(3), pp.354–360.

Mohammadipanah, H. and Zohoor, H. (2009) ‘Design and analysis of a novel 8-DOF hybrid

manipulator’, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and

Manufacturing Engineering, 3(10), pp.1158-1164.

Ng, C.C., Ong, S.K. and Nee, A.Y.C. (2006) ‘Design and development of 3–DOF modular micro

parallel kinematic manipulator’, The International Journal of Advanced Manufacturing

Technology, 31(1-2), pp.188–200.

Nguyen, C.C., Antrazi, S.C., Zhou, Z.-L. and Campbell, C.E. (1991) ‘Analysis and implementation

of a 6 DOF Stewart platform-based robotic wrist’, Computers & Electrical Engineering, 17(3),

pp.191–203.

Patel, Y.D. and George, P.M. (2012) ‘Parallel manipulators applications—a survey’, Modern

Mechanical Engineering, 2(3), pp.57-64.

Pollard, W.L.V. (1942) ‘Position controlling apparatus’ US Patent No. 2286571.

Qinglong, J. and Wenjie, C. (2011) ‘Adaptive control of 6-DOF parallel manipulator’,

Proceedings of the 30th Chinese Control Conference, Yantai, July 2011, pp.2440-2445.

Reid, L.D. and Nahon, M.A. (1985) ‘Flight simulation motion-base drive algorithms: Part 1,

Developing and testing equations’, UTIAS Report No. 296, December 1985.

Reid, L.D. and Nahon, M.A. (1986) ‘Flight simulation motion-base drive algorithms: Part 2,

Selecting the system parameters’, UTIAS Report No. 307, May 1986.

Reymond, G., Heidet, A., Canry, M. and Kemeny, A. (2000) ‘Validation of Renault’s dynamic

simulator for adaptive cruise control experiments’, In Proceedings of the Driving Simulator

Conference (DSC00), Paris, September 2000, pp.181-191.

Reymond, G. and Kemeny, A. (2000) ‘Motion cueing in the Renault driving simulator’, Vehicle

System Dynamics: International Journal of Vehicle Mechanics and Mobility, 34(4), pp.249-259.

133

Schmidt, S.F. and Conrad, B. (1970) ‘Motion drive signals for piloted flight simulators’, in

Contractor Report NASA CR-1601, Washington, May 1970.

Shiong, C.Y., Jalil, M.K.A. and Hussein, M. (2009) ‘Motion visualisation and control of a driving

simulator motion platform’, Proceedings of the 6th International Symposium on Mechatronics

and its Applications (ISMA09), Sharjah, March 2009, pp.1-5.

Sivan, R., Ish-Shalom, J. and Huang, J.K. (1982) ‘An optimal control approach to the design of

moving flight simulators’, IEEE Transactions on Systems, Man and Cybernetics, 12(6), pp.818-

827.

Smit, P.E. (2010) ‘Development of a 3-DOF motion simulation platform’, Doctoral dissertation,

Stellenbosch University.

Stall, D. and Bourne, S. (1996) ‘The national advanced driving simulator: potential applications

to ITS and AHS research’, In Proceeding of the 6th Annual meeting of the Intelligent

Transportation Society, April 1996, pp.700-710.

Sternheim, F. (1987) ‘Computation of the direct and inverse geometric models of the delta 4

parallel robot’, Robotersysteme, 3(4), pp.199-203.

Stewart, D. (1965) ‘A platform with six degrees of freedom’, Proceedings of the Institution of

Mechanical Engineers, 180(1), pp.371-386.

Strayer, D.L. and Drews, F.A. (2003) ‘Simulator training improves driver efficiency: Transfer

from the simulator to the real world’, Proceedings of the Second International Driving

Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Utah, July

2003, pp.190-193.

Strayer, D.L., Drews, F.A. and Burns, S. (2004) ‘The development and evaluation of a high-

fidelity simulator training program for snowplow operators’, Proceedings of the Third

International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle

Design, pp.464-470.

Taikui, W. and Jianmin, D. (2011) ‘Research on motion control system of driving simulator and

control algorithm’, Third International Conference on Intelligent Human-Machine Systems and

Cybernetics (IHMSC), Zhejiang, August 2011, pp.61-65.

134

The MathWorks, Inc. (2007) ‘SimMechanics 2 Users Guide’, Available at:

https://mecanismos2mm7.files.wordpress.com/2011/09/tutorial-sim-mechanics.pdf

(Accessed 22nd May 2016).

Toyota (2007) ‘Toyota Develops World – Class Driving Simulator’, Available at:

http://www.toyota.co.jp/en/news/07/1126_1.html (Accessed 27th September 2015).

Tsai, L.W., Walsh, G.C. and Stamper, R.E. (1996) ‘Kinematics of a novel three DOF translational

platform’, Proceedings of the 1996 IEEE International Conference on Robotics and Automation,

Minneapolis- Minnesota, April 1996, pp.3446-3451.

Wu, B., Wang, Z., Wang, F., Liu, X. and Wu, S. (2010) ‘QFT robust controller design and

experiment research of electro-hydraulic driving parallel robot’, 2010 International Conference

on Computer Application and System Modeling (ICCASM), Taiyuan, October 2010, pp.V4-653-

V4-657.

X-Sim (no date), ’Manual’, Available at: http://www.x-sim.de/manual/index.html (Accessed

22nd May 2016).

Yang, C., He, J., Jiang, H. and Han, J. (2008) ‘Modeling and simulation of 6-DOF parallel

manipulator based on PID control with gravity compensation in Simulink/ADAMS’, 2008

International Workshop on Modelling, Simulation and Optimization, Hong Kong, December

2008, pp.391-395.

Yu, L., Zhang, L., Zhang, N., Yang, S. and Wang, D. (2010) ‘Kinematics simulation and analysis of

3-RPS parallel robot on SimMechanics’, Proceedings of the 2010 IEEE International Conference

on Information and Automation (ICIA), Harbin, June 2010, pp.2363-2367.

Zacharias, G.L. (1978) ‘Motion cue models for pilot-vehicle analysis’, BOLT BERANEK AND

NEWMAN INC CAMBRIDGE MA CONTROL SYSTEMS DEPT, AMRL-TR-78-2, May 1978

135

Appendices

Appendix A – Hardware Architecture

136

Appendix B – Electrical Layout

137

Appendix C – PLC Software

Codeblock P0

STEP 0

 THEN SET P1 " AXIS 1 SETUP

STEP 1

 IF NOP

 THEN SET P3 " UDP HANDLER

STEP 2

 IF NOP

 THEN SET P4

STEP 3

 IF NOP

 THEN JMP TO 1

Codeblock P1

STEP 0

 THEN SET O128.0 " ENABLE DRIVE AXIS V1

STEP 1

 IF I128.0 " DRIVE ENABLED

 THEN SET O128.0 " ENABLE DRIVE

 SET O128.1 " STOP

 SET O128.2 " BRAKE

 RESET O128.3 " RESET (RISING EDGE ACK ERROR)

 RESET O128.4

 RESET O128.5 " LOCK (FCT ENABLED = V0)

 SET O128.6 " OPM1

 RESET O128.7 " OPM2

 SET O129.6 " FAST STOP

 RESET O129.0 " ABS

 RESET O129.1 " COM1

 RESET O129.2 " COM2

 IF I128.0 " DRIVE ENABLED

 AND I128.1 " OPEN

 AND N I128.3 " FAULT

 AND I128.4 " 24V

 AND I128.6 " OPM1

 AND N I128.7 " OPM2

 THEN SET O128.10 " HOME

STEP 2

 IF I128.15

 THEN NOP

STEP 3

 IF I128.10

 THEN NOP

STEP 4

 IF I128.10

 THEN LOAD V1100

 TO OW130

 SET O129.10 " sec. setpoint

 SET O129.13 " sec. setpoint

 SET O129.14

 SET O129.3 " CONT

 RESET O128.10 " HOME

138

STEP 5

 IF I128.10

 THEN SET O128.9 " START

 SET T51 " DELAY START

 WITH 0.1s

STEP 6

 IF NOP

 THEN JMP TO 6

Codeblock P3

STEP 0

 THEN CFM 2 " Install UDP handler

 WITH V1024 " Local port number (>=1024)

 WITH V4 " Number of first flagword for data

 LOAD FU32 " 0 if successful, otherwise error

 TO R103

 IF NOP

 THEN LOAD FW15

 SWAP

 TO R103

 LOAD FW18

 SWAP

 TO R104

 LOAD FW21

 SWAP

 TO R105

STEP 1

 IF NOP

 THEN LOAD (R103

 AND V255)

 TO R106

 IF NOP

 THEN LOAD (R104

 AND V255)

 TO R107

 IF NOP

 THEN LOAD (R105

 AND V255)

 TO R108

Codeblock P4

STEP 0

 IF I128.9 "ACK

 THEN NOP

STEP 1

 IF ((R106

 >= V10)

 AND (R106

 <= V130))

 THEN LOAD R106

 * V100

 TO OW130 "AXIS 1

 OTHRW NOP

139

Appendix D – X-Sim Software Plugin Code

// Rotation motion globals
double d_rpy_pre_1[3] = { 0, 0, 0 };
double rotation_angles_pre_1[3] = { 0, 0, 0 };
double rpy_1_rate_hf_pre_1[3] = { 0, 0, 0 };
double rpy_2_rate_hf_pre_1[3] = { 0, 0, 0 };
double rpy_3_rate_hf_pre_1[3] = { 0, 0, 0 };
double rpy_rate_pre_1[3] = { 0, 0, 0 };
double rpy_pre_1[3] = { 0, 0, 0 };

// Translational motion globals
double a_XYZ_pre_1[3] = { 0, 0, 0 };
double a_H1_XYZ_pre_1[3] = { 0, 0, 0 };
double a_H2_XYZ_pre_1[3] = { 0, 0, 0 };
double a_H2_XYZ_pre_2[3] = { 0, 0, 0 };
double p_XYZ_pre_1[3] = { 0, 0, 0 };
double p_XYZ_pre_2[3] = { 0, 0, 0 };

// Tilt coordination motion globals
double fl_1_xy_pre_1[2] = { 0, 0 };
double fl_2_xy_pre_1[2] = { 0, 0 };
double f_xy_pre_1[2] = { 0, 0 };

// Euler angles (high plus low)
double euler_angles_pre_1[3] = { 0, 0, 0 };

// Translational motion codeblock

double rotation_matrix[3][3] = { { cos(euler_angles_pre_1[1])*cos(euler_angles_pre_1[2]),
sin(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*cos(euler_angles_pre_1[2]) - cos(euler_angles_pre_1[0])*sin(euler_angles_pre_1[2]),
cos(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*cos(euler_angles_pre_1[2]) + sin(euler_angles_pre_1[0])*sin(euler_angles_pre_1[2]) }, {
cos(euler_angles_pre_1[1])*sin(euler_angles_pre_1[2]), sin(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*sin(euler_angles_pre_1[2]) +
cos(euler_angles_pre_1[0])*cos(euler_angles_pre_1[2]), cos(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*sin(euler_angles_pre_1[2]) -
sin(euler_angles_pre_1[0])*cos(euler_angles_pre_1[2]) }, { -sin(euler_angles_pre_1[1]), sin(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]),
cos(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]) } };

double f_x, f_y, f_z = 0;
 double g = -9.81;
 double max_longitudinal_acceleration = 2128990;
 double max_lateral_acceleration = 3454338;
 double max_vertical_acceleration = 6725081;
 double a_xyz[3] = { 0, 0, 0 };
 double a_XYZ[3] = { 0, 0, 0 };
 double a_H1_XYZ[3] = { 0, 0, 0 };
 double a_H2_XYZ[3] = { 0, 0, 0 };
 double p_XYZ[3] = { 0, 0, 0 };
 f_x= 2*((valuearray[sixdofarray::longitudenal_acceleration].inputvalue)/max_longitudinal_acceleration);
 // Positive x(mine) for positive z
 f_y = -2*((valuearray[sixdofarray::lateral_acceleration].inputvalue)/max_lateral_acceleration);
 // Negative y(mine) for positive x
 f_z = -1*((valuearray[sixdofarray::vertical_acceleration].inputvalue)/max_vertical_acceleration);
 // Negative z(mine) for positive y

if ((f_x - 2.0) > EPSILON) { f_x = 2.0; }
else if ((f_x + 2.0) < (-EPSILON)) { f_x = -2.0; }
if ((f_y - 2.0) > EPSILON) { f_y = 2.0; }
else if ((f_y + 2.0) < (-EPSILON)) { f_y = -2.0; }
if ((f_z - 1.0) > EPSILON) { f_z = 1.0; }
else if ((f_z + 1.0) < (-EPSILON)) { f_z = -1.0; }
// Set f_z offset of 9.81
f_z = f_z - g;
a_xyz[0] = f_x - g*sin(euler_angles_pre_1[1]);
a_xyz[1] = f_y + g*sin(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]);
a_xyz[2] = f_z + g*cos(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]);
for (int i = 0; i < 3; ++i) {
 for (int j = 0; j < 3; ++j) { a_XYZ[i] += rotation_matrix[i][j] * a_xyz[j];}}
 for (int i = 0; i < 3; ++i) { a_H1_XYZ[i] = 0.9695*a_H1_XYZ_pre_1[i] - 0.9847*a_XYZ_pre_1[i] + 0.9847*a_XYZ[i];}
 for (int i = 0; i < 3; ++i) { a_H2_XYZ[i] = 0.9695*a_H2_XYZ_pre_1[i] - 0.9847*a_H1_XYZ_pre_1[i] + 0.9847*a_H1_XYZ[i];}
 for (int i = 0; i < 3; ++i) { p_XYZ[i] = -p_XYZ_pre_2[i] + 2*p_XYZ_pre_1[i] + 0.000025*a_H2_XYZ_pre_2[i] +
0.00005*a_H2_XYZ_pre_1[i] + 0.000025*a_H2_XYZ[i];}

140

// Tilt coordination codeblock

double f_xy[2] = {0, 0};
double fl_1_xy[2] = {0, 0};
double fl_2_xy[2] = {0, 0};
double fl_xy_g[2] = {0, 0};
double fl_xy_g_pre_1[2] = {0, 0};
double euler_angles_l[3] = {0, 0, 0};
f_xy[0] = f_x;
f_xy[1] = f_y;

for (int i = 0; i < 2; ++i) { fl_1_xy[i] = 0.99*fl_1_xy_pre_1[i] + 0.004975*f_xy[i] + 0.004975*f_xy_pre_1[i];}
for (int i = 0; i < 2; ++i) { fl_2_xy[i] = 0.99*fl_2_xy_pre_1[i] + 0.004975*fl_1_xy[i] + 0.004975*fl_1_xy_pre_1[i];}
fl_xy_g[0] = fl_2_xy[1] / 9.81; // Tilt rate limiting
fl_xy_g[1] = -fl_2_xy[0] / 9.81;
fl_xy_g_pre_1[0] = fl_2_xy_pre_1[1] / 9.81;
fl_xy_g_pre_1[1] = -fl_2_xy_pre_1[0] / 9.81;
 if (((fl_xy_g[0] - fl_xy_g_pre_1[0])/0.01)>(0.0524)) { fl_xy_g[0] = fl_xy_g_pre_1[0] + 0.0524*0.01;}
 else if(((fl_xy_g[0] - fl_xy_g_pre_1[0])/0.01)<(-0.0524)) { fl_xy_g[0] = fl_xy_g_pre_1[0] - 0.0524*0.01;}
 if (((fl_xy_g[1] - fl_xy_g_pre_1[1])/0.01)>(0.0628)) { fl_xy_g[1] = fl_xy_g_pre_1[1] + 0.0628*0.01;}
 else if (((fl_xy_g[1] - fl_xy_g_pre_1[1])/0.01)<(-0.0628)){ fl_xy_g[1] = fl_xy_g_pre_1[1] - 0.0628*0.01;}
euler_angles_l[0] = fl_xy_g[0];
euler_angles_l[1] = fl_xy_g[1];

// Rotational motion codeblock

double max_roll_angle = 0.262;
double max_pitch_angle = -0.262; // Negative y for positive x
double max_yaw_angle = -0.262;
double max_roll_value = 10501891;
double max_pitch_value = 906402;
double max_yaw_value = 17997544;
double scaled_rpy[3] = { 0, 0, 0 };
double d_rpy[3] = { 0, 0, 0 };
double angular_velocity[3] = { 0, 0, 0 };
double rpy_rate[3] = { 0, 0, 0 };
double rpy_1_rate_hf[3] = { 0, 0, 0 };
double rpy_2_rate_hf[3] = { 0, 0, 0 };
double rpy_3_rate_hf[3] = { 0, 0, 0 };
double rpy[3] = { 0, 0, 0 };

scaled_rpy[0] = max_roll_angle*((valuearray[sixdofarray::roll_angle].inputvalue) / max_roll_value);
scaled_rpy[1] = max_pitch_angle*((valuearray[sixdofarray::pitch_angle].inputvalue) / max_pitch_value);
scaled_rpy[2] = max_yaw_angle*((valuearray[sixdofarray::yaw_angle].inputvalue) / max_yaw_value);
for (int i = 0; i < 3; ++i) { if ((scaled_rpy[i] - 0.262) > EPSILON) {
 scaled_rpy[i] = 0.262;}
 else if ((scaled_rpy[i] + 0.262) < (-EPSILON)) {
 scaled_rpy[i] = -0.262;}}
for (int i = 0; i < 3; ++i) { d_rpy[i] = 0.8824*d_rpy_pre_1[i] + 11.76*scaled_rpy[i] - 11.76*rotation_angles_pre_1[i];}
angular_velocity[0] = d_rpy[0] - d_rpy[2]*sin(rotation_angles_pre_1[1]);
angular_velocity[1] = d_rpy[1]*cos(rotation_angles_pre_1[0]) + d_rpy[2]*sin(rotation_angles_pre_1[0])*cos(rotation_angles_pre_1[1]);
angular_velocity[2] = -d_rpy[1]*sin(rotation_angles_pre_1[0]) + d_rpy[2]*cos(rotation_angles_pre_1[0])*cos(rotation_angles_pre_1[1]);
rpy_rate[0] = angular_velocity[0] + angular_velocity[1]*sin(euler_angles_pre_1[0])*tan(euler_angles_pre_1[1]) +
angular_velocity[2]*cos(euler_angles_pre_1[0])*tan(euler_angles_pre_1[1]);
rpy_rate[1] = angular_velocity[1]*cos(euler_angles_pre_1[0]) - angular_velocity[2]*sin(euler_angles_pre_1[0]);
rpy_rate[2] = angular_velocity[1]*(sin(euler_angles_pre_1[0])/cos(euler_angles_pre_1[1])) +
angular_velocity[2]*(cos(euler_angles_pre_1[0])/cos(euler_angles_pre_1[1]));
for (int i = 0; i < 3; ++i) { rpy_1_rate_hf[i] = 0.99*rpy_1_rate_hf_pre_1[i] + 0.995*rpy_rate[i] - 0.995*rpy_rate_pre_1[i];}
for (int i = 0; i < 3; ++i) { rpy_2_rate_hf[i] = 0.99*rpy_2_rate_hf_pre_1[i] + 0.995*rpy_1_rate_hf[i] - 0.995*rpy_1_rate_hf_pre_1[i];}
for (int i = 0; i < 3; ++i) { rpy_3_rate_hf[i] = 0.9695*rpy_3_rate_hf_pre_1[i] + 0.01526*rpy_2_rate_hf[i] + 0.01526*rpy_2_rate_hf_pre_1[i];}
for (int i = 0; i < 3; ++i) { rpy[i] = rpy_pre_1[i] + 0.005*rpy_3_rate_hf[i] + 0.005*rpy_3_rate_hf_pre_1[i];}

double euler_angles[3] = { 0, 0, 0 };
euler_angles[0] = euler_angles_l[0] + rpy[0];
euler_angles[1] = euler_angles_l[1] + rpy[1];
euler_angles[2] = rpy[2];
double actuator_1_length = 0;
double actuator_2_length = 0;
double actuator_3_length = 0;
double alpha, beta = 0;
double p_x, p_y, p_z = 0;
alpha = euler_angles[0];
beta = euler_angles[1];
p_x = 0.5*cos(beta) - 0.36*cos(alpha);
p_y = (-0.0375/0.6)*sin(beta)*sin(alpha);
p_z = p_XYZ[2] + 0.74;

141

actuator_1_length = sqrt(pow((p_x + 0.5*cos(beta) - 0.6), 2.0) + pow(p_y, 2.0) + pow((p_z - 0.5*sin(beta)), 2.0)) - 0.74;
actuator_2_length = sqrt(pow((p_x - 0.5*cos(beta) + 0.15*sin(beta)*sin(alpha) + 0.6), 2.0) + pow((p_y + 0.15*cos(alpha) - 0.25), 2.0) + pow((p_z +
0.5*sin(beta) + 0.15*cos(beta)*sin(alpha)), 2.0)) - 0.74;
actuator_3_length = sqrt(pow((p_x - 0.5*cos(beta) - 0.15*sin(beta)*sin(alpha) + 0.6), 2.0) + pow((p_y - 0.15*cos(alpha) + 0.25), 2.0) + pow((p_z +
0.5*sin(beta) - 0.15*cos(beta)*sin(alpha)), 2.0)) - 0.74;

int actuator_length_1 = (actuator_1_length * 1000);
int actuator_length_2 = (actuator_2_length * 1000);
int actuator_length_3 = (actuator_3_length * 1000);
 if (actuator_length_1 < -60) {actuator_length_1 = -60;}
 else if (actuator_length_1 > 60) {actuator_length_1 = 60;}
 if (actuator_length_2 < -60) {actuator_length_2 = -60;}
 else if (actuator_length_2 > 60) {actuator_length_2 = 60;}
 if (actuator_length_3 < -60) {actuator_length_3 = -60;}
 else if (actuator_length_3 > 60) { actuator_length_3 = 60;}

//Now set the output to all actuators simultaneous
 valuearray[sixdofarray::roll_angle].resultvalue = int(euler_angles[0]*1000);
 valuearray[sixdofarray::pitch_angle].resultvalue = int(euler_angles[1]*1000);
 valuearray[sixdofarray::yaw_angle].resultvalue = int(p_XYZ[2]*1000);
 valuearray[sixdofarray::longitudenal_acceleration].resultvalue = int((actuator_length_1 + 71));
 valuearray[sixdofarray::lateral_acceleration].resultvalue = int((actuator_length_2 + 71));
 valuearray[sixdofarray::vertical_acceleration].resultvalue = int((actuator_length_3 + 71));

// Translational reset

for (int i = 0; i < 3; ++i) { a_XYZ_pre_1[i] = a_XYZ[i];
 a_H1_XYZ_pre_1[i] = a_H1_XYZ[i];
 a_H2_XYZ_pre_2[i] = a_H2_XYZ_pre_1[i];
 a_H2_XYZ_pre_1[i] = a_H2_XYZ[i];
 p_XYZ_pre_2[i] = p_XYZ_pre_1[i];
 p_XYZ_pre_1[i] = p_XYZ[i];}
// Tilt reset

for (int i = 0; i < 2; ++i) { f_xy_pre_1[i] = f_xy[i];
 fl_1_xy_pre_1[i] = fl_1_xy[i];
 fl_2_xy_pre_1[i] = fl_2_xy[i];}

// Rotational reset

for (int i = 0; i < 3; ++i) { d_rpy_pre_1[i] = d_rpy[i];
 rotation_angles_pre_1[i] = scaled_rpy[i];
 rpy_1_rate_hf_pre_1[i] = rpy_1_rate_hf[i];
 rpy_2_rate_hf_pre_1[i] = rpy_2_rate_hf[i];
 rpy_3_rate_hf_pre_1[i] = rpy_3_rate_hf[i];
 rpy_rate_pre_1[i] = rpy_rate[i];
 rpy_pre_1[i] = rpy[i];
 euler_angles_pre_1[i] = euler_angles[i];}

