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Abstract 

This dissertation presents the research and integration of a mechatronics system to be used in 

a vehicle simulator. The vehicle simulator is comprised of a 3-DOF platform which is used to 

provide motion cues to the driver. Kinematic analysis is performed on the 3-DOF system and 

this analysis assists in implementing platform motion control. To recreate the motion 

sensations experienced in an actual vehicle while respecting the platform workspace limits the 

classical washout algorithm is implemented in the vehicle simulator. A novel simulation system 

was contributed in Matlab/Simulink to aid in vehicle simulator design. This simulation setup 

incorporates all the motion cueing aspects; these aspects include input vehicle data scaling, 

the classical washout algorithm and inverse kinematic analysis. The developed simulation 

system was used to adjust the motion cueing parameters to ensure motion that respects the 

actuator motion constraints. These constraints ensure the vehicle simulator is operated safely.  

A second contribution used the developed simulation system in Matlab/Simulink and the 

human vestibular system models. A performance evaluation was performed on the 3-DOF 

system against the traditional 6-DOF system. The results highlight the benefits of the 3-DOF 

system in replication of certain motion cues. Software was developed to receive input game 

data and output actuator stroke lengths to the motion control system. Limitations in the 

motion control system were found when testing was done on the vehicle simulator. These 

limitations led to a modified partial 2-DOF vehicle simulator. The motion control hardware is 

able to replicate actuator motion well. The final vehicle simulator system is a partial 2-DOF 

system that provides visual and motion cues that create a realistic driving experience. The 

developed system is suitable for applications with cost constraints and reasonable 

performance requirements. 
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1 Introduction 

The following chapter provides details on the research conducted on the various aspects 

involved in a vehicle simulator system and explains the research objectives for this 

dissertation. The sections in this chapter aim to highlight all the aspects that a vehicle 

simulator is comprised of.  

The field of robotic manipulators is explained and the use of these manipulators in a vehicle 

simulator system is discussed. The various literatures on vehicle simulators are discussed, and 

this research assists in categorising these systems based on cost and fidelity. Applications for 

vehicle simulators are also discussed. 

A literature review of motion cueing provides insight into the methods used to increase the 

vehicle simulator fidelity. This section also highlights how the human vestibular system 

functions and how this system is exploited in a vehicle simulator. 

The various techniques in research for motion control of robotic manipulators, specifically 

parallel manipulators which form the basis of a vehicle simulator system, is then discussed.   

Using the research knowledge gained the motivation for this study, scientific contributions and 

research objectives are presented. 

1.1 Robotic Manipulators 

In robotics, there are two main types of manipulators which are used to create a robotic 

system that performs a certain number of tasks. These manipulators include the serial and 

parallel manipulators. 

A serial manipulator is an open chain kinematic mechanism which comprises a fixed base, 

series of links attached together by joints and an end-effector. The motion of these 

manipulators is achieved by actuating individual joints. By controlling the motion of the joints 

either the position and/or the orientation of the end-effector is manipulated to perform a 

specific task (Ghosal, no date). The serial manipulator, illustrated in figure 1-1 (Ghosal, no 

date), is referred to as an open loop manipulator. This is because none of the links form closed 

kinematic chains. 
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The serial manipulator has a large workspace and is dexterous. The disadvantages of the serial 

manipulator are that the cantilever-like structure is not rigid and it has poor dynamic 

performance at high speed (Lee and Shah, 1988).  

 

Figure 1-1 Schematic of a PUMA 560 Serial Manipulator 

Parallel manipulators consist of a fixed base and a number of independent kinematic chains 

connected to a moving platform or end-effector. Parallel manipulators have a greater load 

carrying capacity due to the many parallel links distributing the load. The actuator locations in 

a parallel manipulator are near the base, this location results in low inertia of the parts in 

motion. Parallel manipulators do not suffer from accumulation of errors along a kinematic 

chain and have a higher stiffness. The disadvantages of these manipulators include smaller 

workspace due to the link interference among kinematic chains, physical constraints 

introduced by universal and spherical joints, complex forward kinematics, platform 

singularities and motion actuator range limits (Patel and George, 2012).      

In 1942 a patent was filed, in the US, for a parallel robot to control the movement and 

positioning of a spray gun (Pollard, 1942). Development of parallel manipulators date back to 

the 1960s during which a universal tyre test machine was developed (Gough and Whitehall, 

1962); this manipulator is a six-linear jack system. Later, Stewart developed a 6-DOF parallel 

manipulator to be used as a flight simulator (Stewart, 1965). Due to the complex forward 

kinematics and difficulty to manufacture precise spherical joints at low cost (Tsai et al., 1996), 

the development of lower DOF parallel manipulators has been researched extensively.  

Analysis of a 3-DOF parallel manipulator, which has two rotational degrees of freedom and one 

translational degree of freedom, was performed (Lee and Shah, 1988). Solutions for forward 

and inverse kinematics were derived for this 3-DOF parallel manipulator. A 3-DOF purely 

translational parallel robot, known as the DELTA robot was developed (Clavel, 1988). Forward 
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and inverse kinematics for the DELTA robots was presented (Sternheim, 1987). The DELTA 

robot can operate with high speed and accuracy. This led to high usage of the DELTA robot in 

the medical, pharmaceutical and packaging industry (Patel and George, 2012). Kinematic 

analysis was performed on a purely translational 3-DOF parallel manipulator made entirely 

from revolute joints (Tsai et al., 1996).  

Recent research has focused on the development of hybrid manipulators; these manipulators 

combine both serial and parallel manipulators and aim to benefit from the advantages of both. 

An 8-DOF hybrid manipulator was developed and aimed to combine the high rigidity of a 

parallel robot and large workspace of a serial robot (Mohammadipanah and Zohoor, 2009). A 

3-DOF hybrid parallel manipulator which is modular was created. This manipulator is aimed at 

being reconfigurable, either manually or automatically, as well as self-repairing (Ng et al., 

2006).  

Applications for parallel manipulators include motion simulators, precise machine tools and 

micro mechanisms. Figure 1-2 (Patel and George, 2012) depicts a 6-DOF Stewart platform 

parallel manipulator which is typically used in motion simulators. 

 

Figure 1-2 Stewart Platform Parallel Manipulator 

In robotics an important area of interest is the kinematics of the manipulator. The kinematics 

of a robotic manipulator aims to provide a relationship linking the motion of the end-effector 

to the motion of the joint variables. These joint variables could be joint angles for revolute 

joints or joint lengths for prismatic joints.  
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The two main aspects in kinematics is the forward and inverse kinematics. In forward 

kinematics the joint variables are known and the aim is to work out the position and 

orientation of the end-effector. Inverse kinematics gives us the position and orientation of the 

end-effector and requires the computation of joint variables to achieve such a position and 

orientation.  

The research carried out focused on parallel manipulator kinematics, these robot manipulators 

have fairly straight forward inverse kinematics but have complex forward kinematic equations. 

Kinematic analysis of the 6-DOF motion platform robotic wrist was performed, the inverse 

kinematics solution was presented in close form and the Newton-Rhapson method was used 

to iteratively solve the forward kinematic solution (Nguyen et al., 1991). Closed form forward 

and inverse kinematic solutions for a 3-DOF parallel manipulator were developed (Lee and 

Shah, 1988). Simulations, using MATLAB/Simulink and SimMechanics toolbox, were used to 

verify the inverse kinematic equations derived for a similar 3-DOF platform and visually analyse 

platform motion (Yu et al., 2010).  The research knowledge gained is used to perform 

kinematic analysis on the motion platform used for the vehicle simulator system. 

1.2 Vehicle Simulators 

Motion simulators originated from the development of flight simulators. The first vehicle 

simulators started to appear in the 1970s and featured improved fidelity with advancements in 

computer technology. In the early 1980s Daimler-Benz created a high fidelity vehicle simulator 

(Drosdol and Panik, 1985). Subsequent high-fidelity simulators have since been created by 

General Motors (Bertollini et al., 1994), University of IOWA (Freeman et al., 1996) and Toyota 

(Toyota, 2007). Renault initially developed a 6-DOF motion platform to be used as a vehicle 

simulator (Reymond and Kemeny, 2000). Renault currently have the ULTIMATE simulator 

which is capable of 8-DOF, it consists of a 6-DOF Stewart platform combined with an XY motion 

system (Colombet et al., 2008). Figure 1-3 (Colombet et al., 2008) illustrates the Renault 

ULTIMATE driving simulator, the XY table is added to better replicate sustained longitudinal 

and lateral acceleration. 
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Figure 1-3 Renault ULTIMATE Driving Simulator 

The National Advanced Driving Simulator (NADS), illustrated in figure 1-4 (Chen et al., 2001), 

which was funded by the National Highway Traffic Safety Administration (NHTSA) is a driving 

simulator operated at the University of Iowa. The 9-DOF system consists of a turntable that 

rotates ±330 degrees and a 6-DOF Stewart platform which moves on a XY motion system 

(Chen et al., 2001). The XY motion system is added to better replicate sustained longitudinal 

and lateral acceleration similar to the Renault ULTIMATE driving simulator. 

 

Figure 1-4 The NADS at the University of Iowa 

Lee et al. developed an effective and economical driving simulator based on the 6-DOF 

platform and this simulator is a scaled down version intended for usage in human factor 
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studies and evaluation of full-scaled motion simulators. This work also highlighted the various 

subsystems and how these are put together to create a high fidelity driving simulator system 

(Lee et al., 1998). A motion control system for this driving simulator, which is hydraulically 

driven, was subsequently developed (Kim et al., 1997). Universiti Teknologi Malaysia (UTM) 

presented a conceptual design for a 6-DOF platform. This study performed simulations, using 

Matlab/Simulink and the SimMechanics toolbox.  The simulations allowed for visualisation of 

the motion platform and by integrating with the inverse kinematics the user is provided with a 

graphical display of motion cues. This type of simulation allows testing and verification of the 

vehicle simulator platform to be performed before an actual system is constructed (Shiong et 

al., 2009). 

Several studies have looked at alternative vehicle simulator systems due to the excessive cost 

of the traditional 6-DOF Stewart platform used to provide motion cues. A low-cost 2-DOF 

motion platform was developed and it allowed for the recreation of longitudinal and yaw 

motion. This particular simulator is a compromise between motion replication quality, cost and 

compactness. It is intended to be used in driving schools, hospitals and other areas (Arioui et 

al., 2009). The 2-DOF motion platform performance evaluation and experiments were also 

performed. Using the classical washout algorithm to replicate motion cues the platform 

showed acceptable driving realism (Arioui et al., 2011).  

In the leisure industry low-cost motion systems are the most common systems used. It is 

adequate to represent just rotational motion along the x-axis (Roll), rotational motion along 

the y-axis (Pitch) and translation motion along the z-axis (Heave). The increased availability of 

these lower-cost systems will allow for third world countries to adopt them in civil and military 

applications (Denne, 1986). A 3-DOF motion simulator was developed and a study concluded 

that the participants feel the vehicle simulator system does well to replicate vehicle motion 

(Capustiac et al., 2011).    

In a vehicle simulator a number of sub-systems exist, as illustrated in figure 1-5 adapted from 

(Taikui and Jianmin, 2011). These sub-systems interact in cohesion to provide a high fidelity 

simulator. These sub-systems include:  

 The automobile cab system, which is used to provide the inputs from the driver. This 

system uses component such as a steering wheel, gear knobs, acceleration and brake 

pedals.  
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 The visual system is used to provide visual cues to the driver based on the inputs 

received from the automobile cab system. This system also provides car kinematic 

parameters, such as linear accelerations and angular velocities. 

 A computer control system is used to transform the input linear accelerations and 

angular velocities of the vehicle into actuator stroke lengths of the motion platform.  

 The motion platform system provides the dynamic control of the motion platform and 

subsequent motion cues experienced by the driver in the simulator.  

 

Figure 1-5 Vehicle Simulator Sub-systems 

A study performed classifies vehicle simulators into low, medium or high-cost simulators as 

follows (Blana, 1996): 

 Low-cost simulators are now available with improvements in computer technology 

which have enabled the ability of creating reasonable fidelity motion systems. These 

simulators are useful for dissertation related research and vehicle manufactures with 

limited budget for research.  

 Medium-cost simulators provide a large projection screen, advanced imaging 

techniques and a complete vehicle. These systems can be comprised of a fixed-base or 

a motion platform. 

 A high-cost simulator provides a 360 degree field of view and is located in an enclosed 

cabin. They are usually made from a 6-DOF motion platform. 
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Applications for vehicle simulators include:  

 Research related to human factor studies – The Kookmin University fixed-based driving 

simulator was used to test driver reactions in the recreation of an accident scenario. It 

was designed to ascertain to what level driver carelessness or absentmindedness 

contributed to traffic accidents.  Unfortunately due to the simulator being fixed-based 

realism was compromised and no significant conclusions could be drawn (Lee et al., 

2001). The NADS operated at the University of Iowa was designed to test a host of 

human factors in contributing to traffic accidents (Chen et al., 2001). It is also intended 

to use the NADS to test Intelligent Transportation Systems (ITS) and Automated 

Highway System (AHS) technologies in a safe and controlled environment, with one of 

the outcomes being to assess how these system impact overall driver performance 

(Stall and Bourne, 1996). 

 

 To validate vehicle dynamic models, test car prototypes and new features - Renault 

used a 6-DOF motion simulator to test an adaptive cruise control system. Testing in 

the simulator allowed for critical and even dangerous scenarios to be tested. The 

simulator is seen as a prototyping tool which allows for the adaptive cruise control 

system to be tested before it is integrated into an actual vehicle (Raymond et al., 

2000). 

 

 To facilitate training of the vehicle driver - The Arizona Department of Transportation 

(ADOT) have used fixed-base vehicle simulators to train snowplow operators. Two 

types of training were performed, the first was to teach drivers how to react to 

potential hazard while operating a snowplow and the second taught drivers proper 

driving techniques to increase fuel efficiency. It was concluded that both types of 

training have value and improvements to the training was planned (Kihl and Wolf, 

2007). Utah Department of Transportation (UDOT) in collaboration with University of 

Utah and General Electric Driver Development (GEDD) developed a similar training 

program for snowplow operators, which included training in both a fixed-base and 

motion simulator. The motion simulator was used to help operators prepare for issues 

critical to the safe and efficient operation of the snowplow.  Fixed-based simulators 

were used to teach driving techniques to improve fuel efficiency. It was concluded that 

operators who received training had lower odds of being involved in an accident than 
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the control group who were not trained. Fuel efficiency was also greater for trained 

drivers (Strayer et al., 2004). Fuel efficiency training for truck drivers in a truck fleet 

operation concluded that drivers with the poorest fuel efficiency benefitted 

significantly from the training. Proper driving techniques learnt during training were 

shown to be retained for this group (Strayer and Drews, 2003). 

Figure 1-6 illustrates the designed vehicle simulator system; this particular system is a lower-

cost system. It is comprised of a 3-DOF motion platform capable of providing rotational motion 

about the x-axis (Roll), rotational motion about the y-axis (Pitch) and translational motion 

along the z-axis (Heave). This motion capability allows the platform to replicate sustained 

longitudinal and lateral accelerations, through a technique called tilt coordination. Inability to 

replicate sustained longitudinal accelerations results in poor simulation of maneuverers such 

as emergency braking (Arioui et al., 2009). The designed vehicle simulator systems 

performance is evaluated against the traditional 6-DOF Stewart platform using the human 

vestibular system models, to highlight the benefits of such a system in replicating certain 

motion cues.  

 

Figure 1-6 Designed Vehicle Simulator System 
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Applications for such a lower-cost system include human factor studies in scenarios which do 

not have much transient accelerations e.g. highway studies. In terms of testing car prototypes 

this system could be used to test adaptive cruise control systems which generally have smooth 

sustained accelerations. For driving training this platform can be adopted as a first contact for 

new drivers to provide experience, in heavy machinery systems which do not undergo severe 

accelerations, in general leisure environments and fuel efficiency training since proper shifting 

techniques do not produce too many transient acceleration signals. 

1.3 Motion Cueing 

Vehicle driving was a task thought to be mainly facilitated through visual information. Recent 

research has shown that other sensory information, such as the vestibular and proprioceptive 

channels also contribute to motion perception (Kemeny and Panerai, 2003).  

The human being senses motion via the vestibular system. The vestibular system consists of 

the semi-circular canal and otolith. The otolith senses linear acceleration and the semi-circular 

canal senses angular velocity. Additionally the otolith senses head tilt, which is the rotation of 

the head relative to gravity (Kemeny and Panerai, 2003).  

Figure 1-7 (Kemeny and Panerai, 2003) illustrates the human vestibular system. The semi-

circular canals are in red, orange and pink; these canals sense the angular acceleration of the 

head. The otolith receptors in blue and green, sense both linear acceleration and tilt of the 

head. 

 

Figure 1-7 Human Vestibular System 
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The aim of the motion platform in a vehicle simulator is to replicate the motion sensations 

experienced in a real vehicle, as accurately as possible. The main issue with the motion 

platform is the limited workspace; this makes it difficult to recreate the motion sensations felt 

in a real vehicle. Various motion cueing algorithms have been developed to try and replicate as 

closely as possibly the sensations felt in a real vehicle (Taikui and Jianmin, 2011). The motion 

cueing algorithm research aims to develop techniques to exploit the human vestibular system 

and aid in replication of real vehicle motion sensations within the limited motion platform 

workspace.  

Motion cueing algorithms consist of two aspects: 

 Washout - Replicating of the transient accelerations is achieved by high-pass filtering; 

this signal is integrated to obtain a position or orientation output. To prevent actuator 

saturation additional high-pass filtering is added to return the platform back to 

neutral position (washout). This return motion should go undetected to the human 

vestibular system to avoid being detected as false motion cues (Reymond et al., 2000).  

  

 Tilt coordination - Replication of sustained horizontal accelerations is achieved by first 

low-pass filtering the acceleration signal. Tilting of the motion platform to make use of 

a component of the gravity vector is then used to replicate these sustained 

accelerations. The rate of tilting must be done under the detectable threshold of the 

vestibular system to prevent false motion cues (Reymond et al., 2000).  

Various types of motion cueing algorithms have been proposed in literature, these include: 

 The classical washout algorithm, first proposed (Schmidt and Conrad, 1970), employs 

fixed parameters in the filter designs. High-pass filters are used to extract the transient 

components of the translational and rotational channels, the filter parameters are 

chosen to keep the motion platform within the workspace. A low-pass filter is used to 

represent the sustained translational acceleration through tilt coordination. The 

equations for the classical washout algorithm were initially developed (Reid and 

Nahon, 1985) and a method to select the filter parameters was subsequently proposed 

(Reid and Nahon, 1986). 
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 The adaptive washout algorithm is seen as an improvement to the classical washout 

algorithm; the filter parameters are updated in real time with the aim of minimising a 

cost function (Arioui et al., 2005). The classical washout algorithm suffers from false 

motion cues for transient motion and the adaptive algorithm was designed with false 

cue reduction in mind (Ariel and Sivan, 1984). A theoretical evaluation of the adaptive 

algorithm was done using the vestibular system model; it concluded that the adaptive 

algorithm provides motion sensations closer to the actual vehicle as compared to the 

classical washout algorithm (Taikui and Jianmin, 2011). 

 

 The optimal washout algorithm aims to minimise the sensation errors between the 

physiological outputs of the vestibular system in an actual vehicle and the motion 

platform. An optimal control problem is developed to generate the input to the 

motion platform based on the input to the actual vehicle; this process is done such 

that the error between the outputs in the vehicle and motion platform is minimised 

(Sivan et al., 1982). 

 

 Model predictive control is a model-based technique that allows the ability to include 

workspace constraints and to make use of future references signals. Baseggio et al. 

employed a technique that makes use of the detailed model of the human vestibular 

system and a predictive strategy based on a virtual driver (Baseggio et al., 2011). 

 

Figure 1-8 (Beghi et al., 2012) shows an implementation of the classical washout algorithm. 

The linear acceleration is filtered into the transient and sustained components, using high-pass 

and low-pass filters respectively. The high-pass filter signal is integrated twice to give platform 

position and the washout filter is used to return the platform to neutral position. The low-pass 

filter signal is transformed via tilt coordination; this tilting is interpreted as a sustained 

acceleration by the human vestibular system. The angular velocity is also high-pass filtered and 

integrated to give an output for platform orientation. The signal is added with the tilt 

coordination signal to provide the final platform orientation signal. 
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Figure 1-8 Classical Washout Algorithm  

Figure 1-9 (Beghi et al., 2012) illustrates the model-predictive control scheme. The actual 

vehicle translational accelerations and rotational velocities are obtained from simulation 

software. These are scaled and the perceived accelerations, r, is obtained by filtering these 

values via the vestibular system model. This signal becomes the reference for the MPC 

algorithm. Using the MPC algorithm the displacement signals, p, are passed to the platform 

control system.   

 

Figure 1-9 Scheme for Model Predictive Control Strategy  

The MPC technique is shown to make better use of workspace, eliminate false cues and has 

better performance than the classical washout algorithm (Baseggio et al., 2011). The 

subsequent research conducted makes use of an optimisation algorithm to tune the MPC 

algorithm with regard to platform workspace constraints and tilt coordination (Beghi et al., 

2012). 

1.4 Motion Control 

Motion control of parallel manipulators deals with the trajectory control of parallel 

manipulators. The main focus is to minimize the error between the desired end-effector 

position and orientation and the actual end-effector position and orientation. Motion control 
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of parallel manipulators can be classified as either model-based control or performance based 

control approaches (He et al., 2007).  

Traditionally PID controllers, which are performance based controllers, are often applied to the 

control of parallel manipulators. PID controllers are easy to implement but are known to have 

steady state errors.  A model based control strategy, PID control with gravity compensation, 

was designed to mitigate the steady state errors due to gravity. This controller was shown to 

have faster response than the traditional PID controller and suffered from no steady state 

errors (Yang et al., 2008).  

Results are favourable for model based control schemes however it is difficult to implement 

for parallel manipulators due to the high nonlinearity of parallel manipulator systems. This has 

led to research into performance based control strategies (He et al., 2007). 

Adaptive control is a nonlinear, performance based, control strategy. It aims to identify and 

optimize parameters of the dynamic model online. This type of control scheme requires 

significant computational power. An implementation of the nonlinear adaptive control on the 

real-time operating system (RTOS) called XOberon was implemented and achieved better 

performance than a traditional linear controller (Honegger et al., 2000). The adaptive 

controller is able to achieve good control performance in situations with model parameter 

uncertainties but control performance can suffer due to unknown disturbances. An adaptive 

control scheme which incorporates disturbance rejection capabilities, to reject leg coupling 

disturbances, for a 6-DOF parallel manipulator performed well in normal and extreme 

conditions (Qinglong and Wenjie, 2011).   

Robust control is another control strategy designed for plants with parameter uncertainties 

and disturbances. A 2-DOF QFT robust controller was designed in the joint space for a 6-DOF 

parallel robot. The single channel mathematical model of an electro-hydraulic system was 

defined and a robust controller with pre-filter was designed. The controller was tested and the 

experimental results show strong robustness against parameter variations, good disturbance 

rejection and precise trajectory tracking (Wu et al., 2010).  

Due to the reasonable performance requirements for this vehicle simulator an industrial 

motion control system is used. The motion control system, by Festo, is a pneumatic system 

and it is designed to perform position control of each actuator leg in the 3-DOF motion 

platform. Figure 1-10 (Festo, 2009) illustrates the position control system for a single linear 
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pneumatic actuator; the vehicle simulator currently has 3 position control systems for the 3 

linear pneumatic actuators. Inverse kinematics is used to supply the CMAX controllers with the 

desired actuator stroke length, the CMAX controller then adjusts the output from the double 

acting directional proportional control valve (VPWP). The proportional control valve drives the 

linear pneumatic actuator which has a built in incremental position encoder which feeds the 

actual position back to the CMAX controller. This creates a closed loop feedback position 

control system. Each position control system has to be configured with suitable parameters to 

achieve good tracking performance. 

 

Figure 1-10 Festo Single Actuator Position Control System 

1.5 Motivation for Study 

The University of Kwa-Zulu Natal has a vehicle simulator, illustrated in figure 1-11, which was 

designed as a final year project in 2012. Currently the system only makes use of visual cues, 

which it receives from 3 x 27 inch LED monitors. The vehicle simulator is low-cost compared to 

other simulator systems mentioned in the literature review, such as the Daimler-Benz vehicle 

simulator, General Motors vehicle simulator and the NADS. 
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Figure 1-11 Vehicle Simulator System 

The motion platform for this simulator is a 3-DOF platform as compared to the traditional 6-

DOF Stewart platform. The reasons for choosing a 3-DOF system were the lower 

manufacturing costs involved and relatively simple manufacturing of such a system. 

The motivation of this research is to research, design and implement motion cues for the 3-

DOF motion platform. The aim is to create the best possible fidelity in the vehicle simulator 

system by creating realistic motion cues that work in cohesion with visual cues. Evaluation is 

performed against the traditional 6-DOF motion platform using the human vestibular system 

models, highlighting the benefit of such a system in certain applications. 
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1.6 Scientific Contribution 

The research contributes the following aspects: 

 A performance evaluation of the 3-DOF motion platform which was designed. The 

performance of the 3-DOF motion platform is evaluated against the traditional 6-DOF 

motion platform in the Matlab/Simulink environment. By observing the outputs of the 

human vestibular system models the fidelity of both systems is assessed. The results 

conclude on the benefit of the 3-DOF motion platform in replication of certain motion 

sensations and in certain applications, especially those which have cost constraints and 

reasonable performance requirements. 

 

 A simulation system developed in Matlab/Simulink to aid in the design of a vehicle 

simulator is contributed. The position control system used, in the vehicle simulator, is 

a pneumatic system and comprises of 3 linear pneumatic actuators. Limits were 

imposed on the position, velocity and acceleration values of each actuator. These 

limits were imposed to guarantee safety of the user in the vehicle simulator and safety 

of the mechanical structure of the vehicle simulator. The simulation system developed 

comprises of all the aspects involved in the motion cueing process, which includes 

input vehicle data scaling, implementing of the washout algorithm and performing 

inverse kinematics for the 3-DOF motion platform. By incorporating the various motion 

cueing aspects in the Matlab/Simulink environment the parameters of the various 

aspects are varied until performance that adheres to the actuator motion limits is 

achieved. Using the developed simulation system also aids in ensuring the motion 

cueing aspects are tested before they can be implemented on the actual vehicle 

simulator.  

1.7 Research Objectives 

The research objectives are as follows: 

 Investigate and understand current mechanical framework. 

 Perform kinematic analysis, simulation and testing of the 3-DOF motion platform and 

traditional 6-DOF motion platform. 

 Investigate, design, implement and test the classical washout algorithm for use in both 

the 3-DOF motion platform and traditional 6-DOF motion platform. 
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 Implement the novel simulation system, developed in Matlab/Simulink, to aid in the 

vehicle simulator design. This system is used to adjust various parameters in the 

motion cueing process to ensure actuator motion constraints are respected.  

 Evaluate the performance of the 3-DOF motion platform against the traditional 6-DOF 

motion platform using human vestibular system models in Matlab/Simulink. 

 Write software a software plugin, written in C++, to interface between the physics 

engine of a game and the position control system on the 3-DOF motion platform. The 

software plugin implements the various motion cueing aspects in the C++ language.  

 Configure and test the position control system hardware. 

 Develop PLC software to perform actuator position control. 

 Evaluate the position control system performance to provide motion cues against the 

performance of the Matlab/Simulink simulation system results. 

 Integrate and test the entire vehicle simulator system. Evaluate the fidelity of the 

vehicle simulator. 

1.8 Dissertation Outline 

The next chapter in the dissertation is the mechanical system design and analysis. The 

mechanical system is presented and the various components for the vehicle simulator are 

discussed. Kinematic solutions for the 3-DOF platform are derived and a simulation system is 

developed, in the Matlab/Simulink environment, to validate the derived inverse kinematic 

equations. Similar kinematic equations are presented for a known 6-DOF motion platform and 

Matlab/Simulink simulations are used to validate these equations. 

Chapter 3 presents the Festo position control system used in the vehicle simulator for motion 

control. The various components in the position control system are discussed and the 

configuration of this position control system is explained. Setup and basic testing of the 

position control system is performed. The chapter concludes by explaining the PLC software 

algorithm and how this algorithm is used in the vehicle simulator.   

Chapter 4 presents the motion cueing strategy used for the vehicle simulator. The classical 

washout algorithm is selected to be implemented on the vehicle simulator. An implementation 

of the classical washout algorithm is presented for the motion platform. Simulations are 

performed on the classical washout algorithm in the Matlab/Simulink environment. The 

simulations test the algorithm to ensure the washout process is effective. It also evaluates the 
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ability of the classical washout algorithm to replicate the motion sensations experienced in an 

actual vehicle; this process makes use of the human vestibular system models. 

Chapter 5 presents the software used to provide visual cues and telemetry data. The X-Sim 

software is used to provide visual cues and telemetry data via the games build in physics 

engine. A novel simulation system developed, in Matlab/Simulink, is used to adjust the motion 

cueing parameters to ensure motion that adheres to the actuator motion constraints; this 

guarantees safe performance. Fidelity of the 3-DOF motion platform is evaluated using the 

human vestibular system models. The 3-DOF motion platform motion cues are evaluated 

against the sensations felt in an actual vehicle and the 6-DOF motion platform; this testing 

highlights the benefits of the 3-DOF motion platform, especially in scenarios with cost 

constraints and reasonable performance requirements. Once this testing is complete a 

software plugin is developed, in C++, to interface between the X-Sim software and the Festo 

position control system. Motion cueing that was implemented and tested in the 

Matlab/Simulink environment was written in the C++ language to be used in the software 

plugin. The actuator stroke length outputs for the software plugin and the simulation system, 

in Matlab/Simulink, were also compared to ensure the C++ plugin implementation is correct.  

In Chapter 6 the entire vehicle simulator is presented. The various components used to 

provide visual and motion cues are discussed. These visual and motion cues are integrated to 

create a vehicle simulator with the best possible fidelity. Position control testing with live 

game data is performed and this testing highlights the issue of control system instability on the 

back actuators. A modification is done to the 3-DOF system to provide motion cues through 

the front actuator only. The modified system is a partial 2-DOF system and is able to provide 

translational motion along the z-axis (Heave) and rotational motion along the y-axis (Pitch). 

The modified partial 2-DOF system is compared to the initially designed 3-DOF system and the 

results are favourable. The chapter is concluded by evaluating the position control system 

response in the vehicle simulator against the results from the Matlab/Simulink simulations. 

The final chapter presents the conclusions of this research and highlights possible future work 

which could be undertaken. 

1.9 Chapter Summary 

This chapter presents research conducted in the field of vehicle simulators and the various 

components of these simulators.  
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The importance of parallel manipulators, which have a high load carrying capacity, in vehicle 

simulators, was discussed. The complexities and limitations of these robot manipulators were 

highlighted. Research developments in the field of motion cueing algorithms began due to the 

limited workspace of parallel manipulators; these motion cueing algorithms aims to maximise 

platform utilisation and provide realistic motion sensations. 

The history of vehicle simulators and various commercial vehicle simulators were mentioned. 

It was shown that the vehicle simulator is comprised of several sub-systems and these sub-

systems act in cohesion to provide high fidelity. The classification of these vehicle simulators 

based on cost was also presented; this showed that costing has a direct impact on fidelity of 

the vehicle simulator. The higher costing systems tend to provide the highest simulator fidelity. 

Several applications which used both higher and lower cost systems were discussed. 

Research has classified motion control of parallel manipulators as either model based control 

or performance base control. Various types of model based control strategies were discussed; 

these strategies are difficult to implement due to non-linear characteristics of the parallel 

manipulator model. Subsequent research into performance based control highlights the 

benefits of this control strategy. Performance based control however requires excessive 

computational power. Robust control strategies were also researched and these aim to 

provide good tracking while rejecting disturbances. In the 3-DOF motion platform an industrial 

control system, which is a pneumatic system from Festo, was selected to perform motion 

control and this control systems components were explained.   

The motivation of this study was highlighted and this aims create the best possible fidelity by 

creating realistic motion cues that work in cohesion with visual cues. Implementation of the 

various components used in the vehicle simulator system is performed on the 3-DOF motion 

platform. Performance of the 3-DOF motion platform is evaluated against the 6-DOF motion 

platform, using the human vestibular system models, to highlight the benefits of such a 

system.  

Scientific contributions were presented for this research. The first is the performance 

evaluation of the 3-DOF motion platform against the traditionally used 6-DOF motion 

platform. Results are aimed to show the benefit of the 3-DOF system especially in applications 

which have cost constraints and reasonable performance requirements. The second 

contribution is through the novel simulation system developed which aids in the vehicle 
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simulator design and evaluating of the selected position control system, in terms of trajectory 

tracking and accurate replication of motion cues. This simulation system, developed in 

Matlab/Simulink, ensures actuator motions that adhere to the actuator motion constraints are 

achieved. This guarantees safety of the user of the vehicle simulator and safety of the 

mechanical structure of the vehicle simulator.  

The chapter concludes with the research objectives, showing the various aspects that need to 

be performed to create a vehicle simulator system, and dissertation outline for the rest of this 

dissertation.  
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2 Mechanical System Design and Analysis 

The following chapter describes the mechanical system used for the vehicle simulator. It 

provides a detailed description of the 3-DOF motion platform used for the vehicle simulator 

and presents the kinematic analysis for this platform. Simulations are performed, in Matlab 

using Simulink and the SimMechanics toolbox. SimMechanics is a toolbox that provides a 

multibody simulation environment which allows for the modelling and simulation of 

mechanical systems using their geometrical layout and structural properties. It provides a 

simulation environment were kinematic and dynamic analysis can be performed on multibody 

systems (The MathWorks Inc., 2007). The SimMechanics toolbox creates a 3-D model of the 3-

DOF motion platform based on the geometrical layout of the motion platform. This model can 

be used to simulate kinematic and dynamic analysis for the motion platform.  

The simulation system developed is used verify the derived inverse kinematic equations by 

comparing them to the results output from the structural model of the platform created using 

the SimMechanics toolbox. A similar simulation system is developed for the 6-DOF motion 

platform and the inverse kinematic equations for this platform are also verified. The 3-DOF 

motion platforms performance is evaluated against the traditionally used 6-DOF motion 

platform in subsequent chapters.  

2.1 Vehicle Simulator Framework 

The University of KwaZulu-Natal has a vehicle simulator which was designed to be used in the 

Department of Mechanical Engineering. The simulator comprises of a mechanical framework, a 

3-DOF motion platform and three linear pneumatic actuators.  

Figure 2-1 illustrates the mechanical framework which was designed to support the following 

components for the vehicle simulator: 

• 3 x 27 inch LED monitors 

• Steering wheel 

• Vehicle seat 

• Pedals 
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Figure 2-1 Mechanical Framework of the Vehicle Simulator 

The mechanical framework was constructed from steel tubing, which is lower cost in 

comparison to aluminium. To reduce the mass of the structure hollow steel tubing was used. 

The steel tubing used is 32 mm x 32 mm x 2 mm for all members of the mechanical framework.  

2.2 Vehicle Simulator Motion Platform 

Figure 2-2 illustrates the vehicle simulator motion platform which was designed to be a 3-DOF 

platform. It is designed to provide translation motion along the z-axis (Heave) and rotational 

motion about the x-axis (Roll) and y-axis (Pitch) respectively. 
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Figure 2-2 3-DOF Platform 

The individual kinematic leg illustrated in figure 2-3, which forms part of the platform, is 

comprised of the following:  

 A passive revolute joint which attaches the base to the first link. 

 An actuated prismatic joint which connects the first and second link. 

 A passive universal joint which attaches the second link to the moving platform. 
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Figure 2-3 Individual Kinematic Leg for the 3-DOF Platform  

2.3 Motion Platform Kinematics 

The following section provides the kinematic analysis for the 3-DOF motion platform used in 

the vehicle simulator. A solution for the inverse kinematic problem is presented in closed-form 

and an iterative method is used to solve the forward kinematics. 

2.3.1 Inverse Kinematics 

The inverse kinematics of a robot manipulator aims to find the actuator stroke lengths for a 

particular end-effector position and orientation. The 3-DOF parallel manipulator motion can be 

specified with three independent end-effector parameters; these parameters include the 

translational motion along the z-axis (Heave), the rotational motion about the x-axis (Roll) and 

rotational motion about y-axis (Pitch) respectively.  

A complete kinematic analysis of a symmetric 3-DOF parallel manipulator was initially 

performed (Lee and Shah, 1988). The inverse kinematic solution for the current platform being 

used was developed using a geometrical approach similar to the one presented for a 6-DOF 

Stewart platform-based robotic wrist (Nguyen et al., 1991). The aim was to develop equations 
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which are used to find the actuator stroke lengths for a desired end-effector position and 

orientation. Figure 2-4 illustrates the motion platform for the vehicle simulator with the 

various coordinate systems used.  

 

Figure 2-4 3-DOF Platform with Coordinate Systems 

Coordinate frame A(x, y, z) is attached to the centroid, O, of the base of the motion platform 

and coordinate frame B(u, v, w) is attached to the centroid, P, of the moving platform.  
The x-y plane contains revolute joints 𝐴𝑖, 𝑖 = 1 to 3, and the u-v plane contains universal 

joints 𝐵𝑖, 𝑖 = 1 to 3. 
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A point moving from the moving coordinate system B, to the fixed base coordinate system A, 

can be described fully by a translational component and a rotational component. Unit vectors 

u, v, w, are defined along the u, v, w axes of the moving coordinate system B.  

The rotation matrix from coordinate frame B to coordinate frame A is defined as: 

 𝐴𝑅𝐵 = [

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

]  . . .  (2.1) 

The rotation matrix is an orthogonal matrix and satisfies the following conditions: 

𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 = 1,  . . .  (2.2) 

𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 = 1,  . . .  (2.3) 

𝑤𝑥
2 + 𝑤𝑦

2 + 𝑤𝑧
2 = 1,  . . .  (2.4) 

𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧 = 0,  . . .  (2.5) 

𝑢𝑥𝑤𝑥 + 𝑢𝑦𝑤𝑦 + 𝑢𝑧𝑤𝑧 = 0,  . . .  (2.6) 

𝑣𝑥𝑤𝑥 + 𝑣𝑦𝑤𝑦 + 𝑣𝑧𝑤𝑧 = 0  . . .  (2.7) 

The vector 𝐴𝑖 
𝐴 = [𝑎𝑖𝑥  𝑎𝑖𝑦 𝑎𝑖𝑧]

𝑇 is the position of the revolute joint 𝐴𝑖  with respect to the 

frame A and vector 𝐵𝑖 
𝐵 = [𝑏𝑖𝑢 𝑏𝑖𝑣 𝑏𝑖𝑤]𝑇 is the position of the universal joint 𝐵𝑖  with respect to 

the frame B. 

The three revolute joints, in the base coordinate frame A, are given by the following 

coordinates in metres: 

𝐴 
𝐴

1 = [0.6 0 0]𝑇  . . .  (2.8) 

𝐴 
𝐴

2 = [−0.6 0.25 0]𝑇  . . .  (2.9) 

𝐴 
𝐴

3 = [−0.6 −0.25 0]𝑇  . . .  (2.10) 

The three universal joints, in the moving platform coordinate frame B, are given by the 

following coordinates in metres: 

𝐵 
𝐵

1 = [0.5 0 0]𝑇  . . .  (2.11) 
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𝐵 
𝐵

2 = [−0.5 0.15 0]𝑇  . . .  (2.12) 

𝐵 
𝐵

3 = [−0.5 −0.15 0]𝑇  . . .  (2.13) 

The position of point P, the centroid of the moving platform, with respect to fixed base frame 

A is given by: 

𝑃 
𝐴 = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

]  . . .  (2.14) 

The position vector 𝑞𝑖 of 𝐵𝑖  with respect to coordinate frame A is given by the following 

transformation: 

𝑞𝑖 = 𝑃 
𝐴 +  𝐴𝑅𝐵 𝐵𝑖 

𝐵   . . .  (2.15) 

The coordinates of the universal joints with respect to coordinate frame A is given by the 

following: 

𝑞1 = [

𝑝𝑥 + 0.5𝑢𝑥

𝑝𝑦  + 0.5𝑢𝑦

𝑝𝑧  + 0.5𝑢𝑧

]  . . .  (2.16)  

𝑞2 = [

𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥

𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦

𝑝𝑧 − 0.5𝑢𝑧 + 0.15𝑣𝑧

]  . . .  (2.17) 

𝑞3 = [

𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥

𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦

𝑝𝑧 − 0.5𝑢𝑧 − 0.15𝑣𝑧

]  . . .  (2.18) 

The motion of each limb is constrained by the revolute joints, which attaches the limb to the 

fixed base. The motion is constrained in one of the following three planes: 

𝑞1𝑦 = 0 for 𝑖 = 1  . . .  (2.19) 

𝑞2𝑦 = −
0.25

0.6
𝑞2𝑥 for 𝑖 = 2  . . .  (2.20) 

𝑞3𝑦 = 
0.25

0.6
𝑞3𝑥 for 𝑖 = 3  . . .  (2.21) 

Using the above results of equation 2.16 to equation 2.21 gives the following: 

𝑝𝑦  + 0.5𝑢𝑦 = 0  . . .  (2.22) 
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𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦 = −
0.25

0.6
(𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥)  . . .  (2.23) 

𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦 =
0.25

0.6
(𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥)  . . .  (2.24) 

Adding Eq. 2.23 to Eq. 2.24 gives the following motion constraint for the y-axis translational 

motion: 

𝑝𝑦 = 
1

2
𝑢𝑦 − 

0.0375

0.6
𝑣𝑥  . . .  (2.25) 

Subtracting Eq. 2.24 from Eq. 2.23 gives the following motion constraint for the x-axis 

translational motion: 

𝑝𝑥 =  0.5𝑢𝑥 − 0.36𝑣𝑦  . . .  (2.26) 

The Roll-Pitch-Yaw angles of orientation for the moving platform are defined as a rotation of 𝛼 

about the x-axis, followed by a rotation of 𝛽 about the y-axis and a rotation of 𝛾 about the z-

axis. The platform has two rotational degrees of freedom, a rotation about the x-axis (Roll) and 

a rotation about the y-axis (Pitch), implying that 𝛾 = 0 and the rotation matrix is given by: 

𝑅 
𝐴

𝐵 = 𝑅𝑍(0)𝑅𝑌(𝛽 )𝑅𝑋(𝛼) = [
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛼

0 𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼
−𝑠𝑖𝑛 𝛽 cos𝛽 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠 𝛼

]  . . .  (2.27) 

Using the above rotation matrix the three motion constraints can be expressed as follows: 

𝛾 = 0  . . .  (2.28) 

𝑝𝑦 = −
0.0375

0.6
𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼  . . .  (2.29) 

𝑝𝑥 =  0.5 cos𝛽 − 0.36 cos𝛼  . . .  (2.30) 

From figure 2-4 the leg vector 𝑠𝑖 = [𝑠𝑖𝑥 𝑠𝑖𝑦 𝑠𝑖𝑧]
𝑇 with respect to frame A, is given by: 

𝑠𝑖 = 𝑃 
𝐴 +  𝐴𝑅𝐵 𝐵𝑖 

𝐵 − 𝐴𝑖 
𝐴  

= [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] + [

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

] [

𝑏𝑖𝑢

𝑏𝑖𝑣

𝑏𝑖𝑤

] − [

𝑎𝑖𝑥

𝑎𝑖𝑦

𝑎𝑖𝑧

]  . . .  (2.31) 

For the above equation the revolute joints 𝐴𝑖, 𝑖 = 1 to 3 are contained within the x-y plane, 

resulting in  𝑎𝑖𝑧 = 0. The individual leg vectors are thus given by: 



30 

 

𝑠1 = [

𝑝𝑥 + 0.5𝑢𝑥 − 0.6
𝑝𝑦 + 0.5𝑢𝑦

𝑝𝑧 + 0.5𝑢𝑧

]  . . .  (2.32) 

𝑠2 = [

𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥 + 0.6
𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦 − 0.25

𝑝𝑧 − 0.5𝑢𝑧 + 0.15𝑣𝑧

]  . . .  (2.33) 

𝑠3 = [

𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥 + 0.6
𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦 + 0.25

𝑝𝑧 − 0.5𝑢𝑧 − 0.15𝑣𝑧

]  . . .  (2.34) 

The magnitude of each leg vector gives the leg length of each leg. Taking the magnitude of 

each leg vector gives the following leg length equations: 

𝑙𝑖 = √𝑠𝑖𝑥
2 + 𝑠𝑖𝑦

2 + 𝑠𝑖𝑧
2  for 𝑖 = 1 to 3  . . .  (2.35)      

𝑙1 = √(𝑝𝑥 + 0.5𝑢𝑥 − 0.6)2 + (𝑝𝑦 + 0.5𝑢𝑦)2 + (𝑝𝑧 + 0.5𝑢𝑧)
2 

= √(𝑝𝑥 + 0.5 𝑐𝑜𝑠 𝛽 − 0.6)2 + 𝑝𝑦
2 + (𝑝𝑧 − 0.5𝑠𝑖𝑛 𝛽)2   . . .  (2.36) 

𝑙2

= √(𝑝𝑥 − 0.5𝑢𝑥 + 0.15𝑣𝑥 + 0.6)2 + (𝑝𝑦 − 0.5𝑢𝑦 + 0.15𝑣𝑦 − 0.25)2 + (𝑝𝑧 − 0.5𝑢𝑧 + 0.15𝑣𝑧)
2 

= √
(𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 + 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 + 0.15 𝑐𝑜𝑠 𝛼 − 0.25)

2

+(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 + 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2
   . . .  (2.37) 

𝑙3

= √(𝑝𝑥 − 0.5𝑢𝑥 − 0.15𝑣𝑥 + 0.6)2 + (𝑝𝑦 − 0.5𝑢𝑦 − 0.15𝑣𝑦 + 0.25)2 + (𝑝𝑧 − 0.5𝑢𝑧 − 0.15𝑣𝑧)
2 

= √
(𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 − 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 − 0.15 𝑐𝑜𝑠 𝛼 + 0.25)

2

+(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 − 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2
   . . .  (2.38)  

The leg length equations derived above is used to determine the actuator stroke lengths for a 

particular trajectory of the end-effector. These equations are dependent on the 3 independent 
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end-effector parameters (Roll, Pitch and Heave) and the 3 constraint equations 2.28, 2.29 and 

2.30. 

2.3.2 Forward Kinematics 

The forward kinematics for a robotic manipulator deals with finding the end-effector position 

and orientation for a particular set of joint variables. In general for parallel manipulators the 

equations for solving the forward kinematic problem are highly non-linear and in many 

instances no closed-form solution exists (Nguyen et al., 1991). 

The technique below, used to solve the forward kinematic problem is a numerical method 

known as the Newton method, it is generally simpler and more computationally efficient than 

the exact solution (Smit, 2010). This technique has good convergence for a solution. 

The system of non-linear equations can be written as a function of 𝑝𝑧 ,𝛼 and 𝛽 as follows for 

𝑖 = 1 to 3: 

𝑓1(𝑝𝑧, 𝛼, 𝛽) = (𝑝𝑥 + 0.5 𝑐𝑜𝑠 𝛽 − 0.6)2 + 𝑝𝑦
2 + (𝑝𝑧 − 0.5𝑠𝑖𝑛 𝛽)2 − 𝑙1

2 = 0  . . .  (2.39) 

𝑓2(𝑝𝑧, 𝛼, 𝛽) =  (𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 + 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 + 0.15 𝑐𝑜𝑠 𝛼 − 0.25)
2
+

(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 + 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2 − 𝑙2
2 = 0  . . .  (2.40) 

𝑓3(𝑝𝑧, 𝛼, 𝛽) =  (𝑝𝑥 − 0.5 𝑐𝑜𝑠 𝛽 − 0.15 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 + 0.6)2 + (𝑝𝑦 − 0.15 𝑐𝑜𝑠 𝛼 + 0.25)
2
+

(𝑝𝑧 + 0.5 𝑠𝑖𝑛 𝛽 − 0.15 cos𝛽 𝑠𝑖𝑛 𝛼)2 − 𝑙3
2 = 0  . . .  (2.41) 

The iterative solution for the Newton method, for 𝑝𝑧 ,𝛼 and 𝛽 is given by:  

[

𝑝𝑧

𝛼
𝛽

]

𝑛+1

= [

𝑝𝑧

𝛼
𝛽

]

𝑛

− J𝑛
−1 [

𝑓1(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)

𝑓2(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)

𝑓3(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)

]  . . .  (2.42) 

𝑛 denotes the iteration number and J𝑛 is called the Jacobian matrix and is given by: 

J𝑛 = 

[
 
 
 
 
𝜕𝑓1(𝑝𝑧

𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝑝𝑧

𝜕𝑓1(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛼

𝜕𝑓1(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛽

𝜕𝑓2(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝑝𝑧

𝜕𝑓2(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛼

𝜕𝑓2(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛽

𝜕𝑓3(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝑝𝑧

𝜕𝑓3(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛼

𝜕𝑓3(𝑝𝑧
𝑛,𝛼𝑛,𝛽𝑛)

𝜕𝛽 ]
 
 
 
 

  . . .  (2.43) 

The initial approximation for 𝑝𝑧 ,𝛼 and 𝛽 for 𝑛 = 0, is given by: 
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[

𝑝𝑧

𝛼
𝛽

]

𝑛=0

= [

(𝑙1+𝑙2+𝑙3)

3

0
0

]  . . .  (2.44) 

For each iteration of Eq. 2.42 an improved approximation is obtained. The technique will 

continue to iterate until the convergence criteria is satisfied: 

√𝑓1(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)2 + 𝑓2(𝑝𝑧

𝑛, 𝛼𝑛, 𝛽𝑛)2 + 𝑓3(𝑝𝑧
𝑛, 𝛼𝑛, 𝛽𝑛)2 <  𝜀  . . .  (2.45) 

𝜀 is a small positive quantity set by the user. 

The technique above allows for the 3 independent platform parameters to be determined for a 

particular set of stroke lengths. The 3 dependent parameters can then be determined from the 

constraint equations 2.28, 2.29 and 2.30. These 6 parameters give the platform position and 

orientation. 

2.4 Inverse Kinematics Simulation 

The 3-DOF motion platform inverse kinematics was simulated in Matlab/Simulink. The 

Simulink modelling package was used to recreate the structural model of the motion platform 

and simulate the results. Simulink contains a toolbox, which is called SimMechanics, which 

provides the components used to model the motion platform. SimMechanics allows for 

kinematic and dynamic analysis to be performed on the designed mechanical system. 

The simulation has the following objectives:  

 Compare the calculated actuator stroke lengths, based on the derived leg length 

equation 2.36 to equation 2.38, with the actuator stroke lengths that are output from 

the structural model. 

 Observe how well the input platform trajectory is replicated at the output of the 

structural model.  

2.4.1 Inverse Kinematics Simulation System 

The mobility criterion for the 3-DOF platform is given using the Grubler formula: 

𝐹 = 𝜆(𝑛 − 𝑗 − 1) + ∑ 𝑓𝑖
𝑗
𝑖=1   . . .  (2.46) 

Where 𝜆 = 6 for spatial manipulators, 𝑛 is the number of links, 𝑗 is the number of joints, 𝑓𝑖 is 

the number of degrees of freedom of the 𝑖th joint. The 3-DOF platform has 3 universal joints, 3 
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prismatic joints and 3 revolute joints. This configuration gives the following result for the 

mobility criterion: 

𝐹 = 6(8 − 9 − 1) + (3 + 3 + 6) 

𝐹 = 0 

If the same configuration is used in Matlab/Simulink it results in an overconstrained system 

and a simulation error when attempts are made to actuate the prismatic joints. To be able to 

simulate the 3-DOF motion platform the universal joints in the system are replaced by 

spherical joints. This configuration gives the following result for the mobility criterion: 

𝐹 = 6(8 − 9 − 1) + (3 + 3 + 9) 

𝐹 = 3 

This configuration allows for the 3 prismatic joints to be actuated and the simulation system 

can function correctly. The rotational motion about the z-axis (Yaw) introduced by the 

spherical joints should be minimal and can be neglected because the actual 3-DOF motion 

platform uses universal joints.  

Figure 2-5 illustrates the individual kinematic leg which is used. This model was created as a 

library package in Simulink to facilitate re-usability. The individual kinematic leg is made up of 

a revolute joint at the base, prismatic joint in the middle and spherical joint at the top. The 

spherical joint is used in place of the universal joint used on the actual 3-DOF motion platform. 

The 3-DOF motion platform contains three individual kinematic legs; these legs connect the 

base to the motion platform. The prismatic joints stroke lengths are varied according to the 

inverse kinematic calculations. The aim is to calculate the individual stroke length of each leg 

for a particular platform end-effector position and orientation. The PVA block in Figure 2-5 is 

used to input the position, velocity and acceleration changes that each prismatic joint will 

undergo. A joint sensor block is attached to each prismatic joint to measure changes in stroke 

length. 
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Figure 2-5 Branch Model for the Individual Kinematic Leg for the 3-DOF Platform  

Figure 2-6 shows the structural model for the 3-DOF motion platform. The geometrical layout 

of the individual kinematic legs for the motion platform in Simulink is based on the CAD model 

of the actual 3-DOF motion platform. The individual kinematic legs are attached to the base via 

the revolute joints and to the top platform via the spherical joints. 
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Figure 2-6 Structural Model for the 3-DOF Platform 

2.4.2 Inverse Kinematics Simulation Results 

In order to validate the derived leg length equation 2.36 to equation 2.38 for the inverse 

kinematics, a trajectory test was performed. The fundamental idea behind this test is to 

specify a path in time that the end-effector of the motion platform will follow. The leg lengths 

are then determined based on inverse kinematics equation 2.36 to equation 2.38. These leg 

length values are input to the system and are compared to the leg lengths from the output of 

the structural model of the motion platform. The end-effector output trajectory from the 

structural model was also compared to the input trajectory. Using the results obtained the 

accuracy of the derived leg length equation 2.36 to equation 2.38 for the inverse kinematics 

was determined. 

The desired trajectory input for the end-effector of the motion platform is based on the 3 

independent parameters below: 
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𝛼 = 15 sin(
2𝜋

3
𝑡)  . . .  (2.47) 

𝛽 = −15 sin (
2𝜋

3
𝑡)  . . .  (2.48) 

𝑝𝑧 = 0.05 sin (
2𝜋

3
𝑡) + 0.74  . . .  (2.49) 

The independent constraint parameters are 𝛼 which specifies a rotation about the x-axis (Roll), 

𝛽 which specifies a rotation about the y-axis (Pitch), 𝑝𝑧  which specifies translation motion 

along the z-axis (Heave). The roll and pitch angles have a sinusoidal input, with amplitude of 15 

degrees and angular frequency of 
2𝜋

3
 rad/s. The heave motion starts with a 0.74 m height bias 

at rest. This height value is based on the structural height above the ground of the actual 3-

DOF motion platform. The heave motion is varied using a sinusoidal input with maximum 

amplitude of 0.05 m which is added to the height bias. 

Figure 2-7 illustrates the orientation of the end-effector input trajectory. It shows the 

sinusoidal input signal for the rotation about the x-axis (Roll) and y-axis (Pitch). There is no 

rotation about the z-axis (Yaw) in the system because of the constraint introduced by the 

universal joints used on the actual motion platform; therefore this parameter is set to zero for 

all instances in time. 

 

Figure 2-7 Desired Platform Orientation for the 3-DOF Platform 

Figure 2-8 illustrates the position of the end-effector input trajectory. The translational motion 

of the end-effector is a change in motion about the z-axis (Heave). This input is a sinusoidal 
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signal with a maximum change in height of 0.05 m. From the results it can be seen that the 

constraint equation 2.29 and equation 2.30 introduces constrained translational motion along 

the x and y axes. The x-axis motion is fairly large but does not change significantly with a 

minimum value of 0.1352 m and maximum value of 0.1400 m, therefore this motion will not 

affect the overall motion, in terms of changing actuator stroke of the motion platform 

significantly. Constrained motion along the y-axis is minimal and this motion is ignored. 

 

Figure 2-8 Desired Platform Position for the 3-DOF Platform 

The simulation model illustrated in figure 2-9 is used to predict the motion of the end-effector. 

The end-effector motion from the structural model, designed using SimMechanics, should be 

similar to the desired input trajectory.  The analysis of this result will determine the accuracy 

of the derived leg length equation 2.36 to equation 2.38 for the inverse kinematics.  

The leg trajectory block uses the desired trajectory input equation 2.47 to equation 2.49 to 

determine the change in stroke length of the prismatic joints, for each individual kinematic leg, 

using the derived leg length equation 2.36 to equation 2.38. The changing stroke lengths of the 

prismatic joints are input into the structural model.  

The first output of the structural model is the simulated change in stroke lengths of the 

prismatic joints; these values are measured using the joint sensor block attached to each 

prismatic joint shown in figure 2-5. The second output provides the body position and 

orientation for the end-effector. This output provides both the change in translational motion 

and change in Roll-Pitch-Yaw angles of the end-effector. The translational motion and the 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t (s)

P
o
s
it
io

n
 (

m
)

 

 
x

y

z



38 

 

orientation of the end-effector should be close to the desired input trajectory equation 2.47 to 

equation 2.49; this result will validate the derived leg length equation 2.36 to equation 2.38 for 

the inverse kinematics. 

 

Figure 2-9 Simulation Model for the 3-DOF Platform 

Figure 2-10 and figure 2-11 illustrate the outputs from Scope 1 and Scope 2. The output 

illustrated in figure 2-10 shows the change in stroke length of the individual kinematic legs, 

which is based on the derived leg length equation 2.36 to equation 2.38. The output illustrated 

in figure 2-11 is the change in kinematic stroke length from the output of the structural model 

of the motion platform. Comparing the two results it can be seen that the calculated change in 

stroke lengths, based on derived leg length equation 2.36 to equation 2.38, matches the 

change in stroke lengths of the structural model.  
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Figure 2-10 Calculated Stroke Lengths for the 3-DOF Platform 

 

Figure 2-11 Simulated Stroke Lengths for the 3-DOF Platform 

Figure 2-12 illustrates the result of the end-effector orientation output from the structural 

model. The orientation output for the end-effector of the structural model is reasonably 

similar to the orientation of the desired input trajectory equation 2.47 and equation 2.48, the 

sinusoidal signals for the x-axis (Roll) and y-axis (Pitch) is repeated almost identically. The 
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rotational motion about the z-axis (Yaw) is negligible for the 3-DOF motion platform which 

uses universal joints in place of spherical joints; hence it can be ignored.  

 

Figure 2-12 Simulated Platform Orientation for the 3-DOF Platform 

Figure 2-13 illustrates the result of the end-effector position output from the structural model. 

The position of the end-effector of the structural model is in agreement with the position of 

the desired input trajectory equation 2.49; the change in translational motion along the z-axis 

(Heave) is in agreement with the input trajectory motion. Constrained translational motion 

about the x-axis is similar to the constraint motion from the input trajectory with a minimum 

value of 0.1206 m and a maximum value of 0.1401 m, therefore this motion will not affect the 

overall motion on the platform significantly, in terms of changing actuator stroke lengths. 

Constrained motion along the y-axis is minimal, similar to the input trajectory case, and is 

ignored. 
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Figure 2-13 Simulated Platform Position for the 3-DOF Platform  

The results show that the output trajectory from the structural model matches the required 

input trajectory. Actuator stroke length outputs from the structural model also match the 

calculated actuator stroke lengths based on the derived leg length equation 2.36 to equation 

2.38. This result shows that the derived leg length equation 2.36 to equation 2.38 for the 

inverse kinematics is valid and acceptable to be used for the 3-DOF motion platform.  

2.5 Inverse Kinematics Simulation for the 6-DOF Motion Platform 

Simulations performed for the 3-DOF motion platform inverse kinematics is repeated, in 

Matlab/Simulink, for the 6-DOF motion platform. The aim was similarly to validate the inverse 

kinematic equations below which were derived previously (Bingul and Karahan, 2012). 

Figure 2-14 (Bingul and Karahan, 2012) illustrates the 6-DOF motion platform geometrical 

layout which is used. 𝜃𝑝 represents the angle between top joints (T2 and T3 , T4 and T5 , T1 and 

T6) and 𝜃𝑏 represents the angle between bottom joints (B1 and B2 , B3 and B4 , B5 and B6). 
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Figure 2-14 6-DOF Platform Model 

Figure 2-15 (Bingul and Karahan, 2012) illustrates the 6-DOF motion platform with joint and 

coordinate system labels.  

 

Figure 2-15 6-DOF Platform with Joint and Coordinate System Labels 

Equation 2.50 to equation 2.54, which is used here for the 6-DOF motion platform inverse 

kinematics, was derived previously (Bingul and Karahan, 2012). The top universal joints in the 

motion platform are represented by the following coordinates: 

𝐺𝑇𝑖 = [

𝐺𝑇𝑥𝑖

𝐺𝑇𝑦𝑖

𝐺𝑇𝑧𝑖

] =  [

𝑟𝑝 cos(𝜆𝑖)

𝑟𝑝 sin(𝜆𝑖)

0

]   {
𝜆𝑖 =

𝑖𝜋

3
−

𝜃𝑝

2
          𝑖 = 1, 3, 5

𝜆𝑖 = 𝜆𝑖−1 + 𝜃𝑝     𝑖 = 2, 4, 6
  . . .  (2.50)  
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with 𝑟𝑝 the radius of the moving platform.   

The bottom universal joints are represented by the following coordinates: 

𝐵𝑖 = [

𝐵𝑥𝑖

𝐵𝑦𝑖

𝐵𝑧𝑖

]  =  [
𝑟𝑏𝑎𝑠𝑒 cos(𝜈𝑖)

𝑟𝑏𝑎𝑠𝑒 sin(𝜈𝑖)
0

] {
𝜈𝑖 =

𝑖𝜋

3
−

𝜃𝑏

2
           𝑖 = 1, 3, 5

𝜈𝑖 =  𝜈𝑖−1 + 𝜃𝑏     𝑖 = 2, 4, 6
  . . .  (2.51) 

with 𝑟𝑏𝑎𝑠𝑒 the radius of the fixed base.  

The rotation matrix for the 6-DOF motion platform is given by: 

𝑅 
𝐵

𝑇 = 𝑅𝑧(𝛾)𝑅𝑌(𝛽)𝑅𝑋(𝛼) =  [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]  . . .  (2.52)  

= [

cos𝛽 cos 𝛾 cos 𝛾 sin 𝛼 sin𝛽 − cos𝛼 sin 𝛾 sin𝛼 sin 𝛾 + cos𝛼 cos 𝛾 sin𝛽
cos𝛽 sin 𝛾 cos𝛼 cos𝛾 + sin𝛼 sin𝛽 sin 𝛾 cos𝛼 sin𝛽 sin𝛾 − cos 𝛾 sin𝛼

−sin𝛽 cos𝛽 sin𝛼 cos𝛼 cos𝛽
] 

The position of the centroid of the moving platform is given by: 

𝑃 = [𝑃𝑥 𝑃𝑦 𝑃𝑧]𝑇  . . .  (2.53) 

The leg length equations (inverse kinematics) for each leg are given by: 

𝑙𝑖 = √

(𝑃𝑥 − 𝐵𝑥𝑖 + 𝐺𝑇𝑥𝑖𝑟11 + 𝐺𝑇𝑦𝑖𝑟12)
2

+(𝑃𝑦 − 𝐵𝑦𝑖 + 𝐺𝑇𝑥𝑖𝑟12 + 𝐺𝑇𝑦𝑖𝑟22)
2

+(𝑃𝑧 + 𝐺𝑇𝑥𝑖𝑟31 + 𝐺𝑇𝑦𝑖𝑟32)
2

  for 𝑖 = 1 to 6  . . .  (2.54) 

Figure 2-16 illustrates the individual kinematic leg used for the 6-DOF motion platform. It 

consists of a passive universal joint connecting the base to the lower leg, an actuated 

cylindrical joint that connects the lower leg to the upper leg and a passive universal joint that 

connects the upper leg to the top platform. As in the 3-DOF motion platform case the input to 

the joint actuator is the PVA block; this block inputs the position, velocity and acceleration that 

the cylindrical joint will undergo. The joint sensor block is attached to each cylindrical joint to 

measure changes in stroke length. 



44 

 

 

Figure 2-16 Branch Model for the Individual Kinematic Leg for the 6-DOF Platform 

Figure 2-17 illustrates the structural model for the 6-DOF motion platform. The individual 

kinematic legs are attached to the base and top platform by universal joints. The geometric 

configuration is based on the standard 6-DOF platform layout used previously (Bingul and 

Karahan, 2012). 
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Figure 2-17 Structural Model for the 6-DOF Platform 

The input trajectory for the 6-DOF motion platform uses the desired trajectory input equation 

2.47 to equation 2.49 used for the 3-DOF motion platform, Eq. 2.49 uses a height bias of 2.5 m; 

additionally the following movements are added: 

𝛾 = 5 sin(
2𝜋

3
𝑡)  . . .  (2.55) 

𝑝𝑥 = 0.05 sin(
2𝜋

3
𝑡)  . . .  (2.56) 

𝑝𝑦 = 0.10 sin(
2𝜋

3
𝑡)  . . .  (2.57) 

The 3 additional parameters are added for the 6-DOF motion platform since these parameters 

are also independent constraint parameters. 𝛾 specifies a rotation about the z-axis (Yaw) with 

amplitude of 5 degrees and angular frequency of 
2𝜋

3
 rad/s. 𝑝𝑥  specifies translational motion 

along the x-axis (Surge) with amplitude of 0.05 m and angular frequency of 
2𝜋

3
 rad/s. 𝑝𝑦 

specifies translational motion along the y-axis (Sway) with amplitude of 0.10 m and angular 

frequency of 
2𝜋

3
 rad/s.  

Figure 2-18 illustrates the orientation of the end-effector for the 6-DOF motion platform input 

trajectory. It shows the sinusoidal input signals for rotation about the x-axis (Roll), y-axis (Pitch) 
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and z-axis (Yaw). These signals are the orientation desired to be replicated by the structural 

model.  

 

Figure 2-18 Desired Platform Orientation for the 6-DOF Platform 

Figure 2-19 illustrates the position of the end-effector for the 6-DOF motion platform input 

trajectory. Translational motion along the x-axis (Surge) is a sinusoidal signal with a maximum 

change in motion of 0.05 m. Translational motion along the y-axis (Sway) is a sinusoidal signal 

with a maximum change in motion of 0.10 m. The translational motion about the z-axis 

(Heave) is a sinusoidal signal with a maximum change in height of 0.05 m. This signal starts 

from a height bias of 2.5 m, which represents the 6-DOF motion platforms height above the 

ground. 
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Figure 2-19 Desired Platform Position for the 6-DOF Platform 

The simulation model illustrated in figure 2-20 is used to verify the inverse kinematics Eq. 2.54 

for the 6-DOF motion platform. The leg trajectory block uses the desired trajectory input 

equation 2.47 to equation 2.49 and equation 2.55 to equation 2.57 to output the change in 

stroke lengths of the cylindrical joints. These values are based on the inverse kinematic 

equations for the 6-DOF motion platform. Changes in the stroke lengths of the cylindrical joints 

are input into the structural model for the 6-DOF motion platform. 

 

Figure 2-20 Simulation Model for the 6-DOF Platform 

Figure 2-21 and figure 2-22 illustrate the outputs from Scope and Scope 1 respectively. Figure 

2-21 illustrates the change in stroke lengths of the individual kinematics legs, which is based on 
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the inverse kinematics Eq. 2.54 for the 6-DOF motion platform. Figure 2-22 illustrates the 

change in stroke lengths from the output of the structural model of the 6-DOF motion 

platform. It can be seen that the calculated change in stroke lengths, based on the inverse 

kinematics Eq. 2.54 for the 6-DOF motion platform, is in agreement with the change in stroke 

length output from the structural model. 

 

Figure 2-21 Calculated Stroke Lengths for the 6-DOF Platform 

 

Figure 2-22 Simulated Stroke Lengths for the 6-DOF Platform 

Figure 2-23 illustrates the end-effector orientation output from the structural model of the 6-

DOF motion platform. The orientation output for the end-effector of the structural model is 

similar to the orientation of the desired input trajectory equation 2.47 to equation 2.48 and 

equation 2.55. 
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Figure 2-23 Simulated Platform Orientation for the 6-DOF Platform 

Figure 2-24 illustrates the end-effector position output from the structural model for the 6-

DOF motion platform. The position of the end-effector output from the structural model is in 

agreement with the position of the desired input trajectory equation 2.49 and equation 2.56 to 

equation 2.57. 

 

Figure 2-24 Simulated Platform Position for the 6-DOF Platform 

The result shows that the output trajectory from the structural model for the 6-DOF motion 

platform follows the desired input trajectory. Actuator stroke lengths output from the 

structural model for the 6-DOF motion platform matches the calculated actuator stroke 

lengths based on the inverse kinematics Eq. 2.54 for the 6-DOF motion platform. Results 
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indicate that the structural model is able to replicate the inverse kinematics and that the 

inverse kinematics Eq. 2.54 is acceptable to be used. 

2.6 Chapter Summary  

The mechanical system for the vehicle simulator was discussed, highlighting and describing the 

various components that the vehicle simulator is comprised of. The closed form solution for 

the inverse kinematics of the 3-DOF motion platform used for the vehicle simulator was 

presented in detail. This solution highlighted the fact that at any time the actuator stroke 

lengths can be determined using just 3 independent parameters (Roll, Pitch and Heave) and 

constraint equations 2.28, 2.29 and 2.30. In the next section the iterative solution for the 

forward kinematic was presented; this solution is known as the Newton method. The method 

is simpler and more computational efficient than an exact solution to the forward kinematics 

problem. Simulations were then performed, in Matlab/Simulink, to verify the derived leg 

length equation 2.36 to equation 2.38 for the inverse kinematics. SimMechanics was used to 

create the structural model of the 3-DOF motion platform using the geometrical structure of 

the platform. The simulation results, output from the structural model, showed that the 

change in stroke lengths for the actuators in both the derived leg length case and the 

structural model output were in agreement. It was also shown that the output for the platform 

end-effector trajectory is similar to the desired input trajectory equation 2.47 to equation 

2.49. Based on this result the derived leg length equation 2.36 to equation 2.38 for the inverse 

kinematics is accepted. 

A similar setup was developed for the traditional 6-DOF motion platform. It was shown that 

the inverse kinematics Eq. 2.54, which was derived previously (Bingul and Karahan, 2012), is 

acceptable to be used for this motion platform. The 3-DOF motion platform, used for the 

vehicle simulator, is evaluated against the 6-DOF motion platform in the chapters to follow. 

This study will highlight the benefits of the 3-DOF motion platform in replication of certain 

motion cues and this platforms application in certain scenarios.   
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3 Motion Control System 

This chapter presents the motion control system used in the vehicle simulator system. It 

explains the Festo position control system used to perform position tracking for each actuator 

in the system. The various components used are described and details of how these 

components interact to perform position control are discussed. Setup with parameters used 

for each of the actuators in the motion control system is then presented. Testing of each 

actuator in the system is performed and the performance of the position control system 

tracking is analysed. 

The PLC software algorithm is then explained, this algorithm provides the link between the X-

Sim Convertor software plugin output, explained in chapter 5, and the Festo position control 

system. The data transfer, processing and transmission is explained in detail. This algorithm 

shows how the various aspects involved in the vehicle simulator are integrated to achieve the 

desired performance. 

3.1 Motion Control System Overview 

Figure 3-1 illustrates the various components of the position control system for a single linear 

pneumatic actuator. The detailed hardware architecture and electrical schematic is attached in 

appendix A and appendix B respectively. The PLC device is the programmable device which is 

used to obtain the transferred position data from the X-Sim Universal Serial Output (USO) 

interface, transmitted via UDP, and transmit this position data to each of the 3 axis controllers. 

The axis controller is the device which performs the control system tracking by controlling the 

double acting directional proportional control valve. The linear drive provides position 

feedback through the position sensor interface; this position feedback is transferred to the 

proportional control valve and through to the axis controller. Based on the difference between 

the required position value and actual position value the axis controller controls the direction 

and flow of air output from the double acting directional proportional control valve. This 

control signal causes the output linear drive position to track the required input position, 

achieving feedback control.  
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Figure 3-1 Single Axis Pneumatic Position Control System 

The entire position control system used was obtained from Festo. The linear pneumatic 

actuator used is illustrated in figure 3-2 (Festo, 2014a) and contains an integrated 

displacement encoder. The 3 cylinders used all have a piston diameter of 63 mm and an 

actuator stroke length of 250 mm. Each actuator is capable of lifting a maximum mass of 60 kg 

at 6 bar of pressure. 

 

Figure 3-2 Linear Pneumatic Actuator with Integrated Displacement Encoder 

The sensor interface shown in figure 3-3 (Festo, 2014b) is designed to interface the 

displacement encoder to the double acting directional proportional control valve. The actual 

position value from the displacement encoder is passed all the way through to the axis 

controller. 

 

Figure 3-3 Digital Incremental Sensor Interface 

Figure 3-4 (Festo, 2015a) illustrates the double acting directional proportional control valve 

used. The double acting valve is able to control the forward and backward strokes on the linear 
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pneumatic actuator by applying the appropriate pressure to the appropriate end of the linear 

pneumatic actuator. 

 

Figure 3-4 Double Acting Directional Proportional Control Valve 

The CMAX axis controller illustrated in figure 3-5 (Festo, 2015b) is the intelligence of the 

position control system. It detects the various hardware components in the system and 

determines if all the components are functioning correctly.  The controller can be used as 

either a position controller or force controller, for this application it is used as a position 

control system. It provides feedback control by adjusting the control signal to the directional 

proportional control valve; this signal adjustment is based on the error signal between the 

desired and actual position of the linear pneumatic actuator. 

 

Figure 3-5 CMAX Axis Controller 

The CPX programmable logic controller, illustrated in figure 3-6 (Festo, 2015c), is the device 

used to interface with the X-Sim Convertor software plugin and the 3 axis controllers. Software 

is written in the PLC environment to read in data, via UDP, and extract the position output for 

each actuator. This position output is passed to the appropriate axis controller to perform 

position control.  
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Figure 3-6 CPX Programmable Logic Controller 

3.2 Motion Control System Setup and Testing 

The pneumatic position control system components were connected together onto the vehicle 

simulator system, illustrated in figure 3-7. The system was configured and tested using the 

Festo Configuration Tool. Basic motion was performed, without any simulator driver, on each 

actuator to test the functionality and evaluate the position control systems performance.  
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Figure 3-7 Vehicle Simulator with Position Control System 

Before any motion could be performed each system is configured with basic parameters, 

shown in table 3-1, that aid in position control. Figure 3-8 illustrates the actuator labelling 

used; this labelling of actuators is used in subsequent chapters to ensure correct motion data 

for each of the actuators. 
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Table 3-1 Actuator Position Control Parameters 

Actuator  1 2 3 

Mass 25 kg 25 kg 25 kg 

Supply Pressure 3 bar 3 bar 3 bar 

Fitting Position 90° 90° 90° 

Velocity 0.2 m/s 0.2 m/s 0.2 m/s 

Acceleration 2.0 m/s2 2.0 m/s2 2.0 m/s2 

Deceleration 2.0 m/s2 2.0 m/s2 2.0 m/s2 

Position Tolerance 1.0 mm 1.0 mm 1.0 mm 

 

 

Figure 3-8 3-DOF Platform with Actuator Labels 

The next step was to calibrate each displacement encoder that is built into each of the 

actuators. The method is called homing and retracts each actuator until the mechanical end 

point is reached; this position becomes the zero reference point for the displacement encoder. 



57 

 

Basic motion was then performed on each of the 3 actuators in the system, the results are 

reported below. 

Figure 3-9 illustrates the position control tracking performance of actuator 1 in the vehicle 

simulator. Input to the system is a step motion change from 10 mm to 70 mm. The graph 

illustrates the tracking performance showing the actual position of the actuator stroke length 

tracking the nominal value (output from the controller) which is desired. Transient response of 

the system is within the 1 mm error tolerance throughout and the response time is 1.4 s. The 

system tracks well until the end position is reached. Steady state actual value is 69.21 mm and 

the nominal value is 69.99 mm. The error value is -0.78 mm which is within the 1 mm position 

tolerance set for the system. 

 

Figure 3-9 Actuator 1 Position Control Tracking 

Figure 3-10 illustrates the position control performance of actuator 2 in the vehicle simulator. 

The input used is again a step change from 10 mm to 70 mm. The graph illustrates the tracking 

performance showing the actual position of the actuator stroke length tracking the nominal 

value (output from the controller) which is desired. The system tracks within 1 mm error 

tolerance for the transient response. The response time for this step change input is 1.4 s. 

Steady state actual value is 69.15 mm for this actuator and the nominal value which is desired 

is 69.99 mm. The error for this actuator is -0.84 mm and is within the 1 mm error tolerance 

used for the system. 
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Figure 3-10 Actuator 2 Position Control Tracking 

Figure 3-11 illustrates the position control tracking performance of actuator 3 in the vehicle 

simulator. The input is a step motion change from 10 mm to 70 mm. The graph illustrates the 

tracking performance showing the actual position of the actuator stroke length tracking the 

nominal value (output from the controller) which is desired. The system tracks well within the 

1 mm tolerance until the end position is reached. It can be seen that final actual value is 69.18 

mm and the nominal value, which is desired, is 69.99 mm. The error is within the tolerance of 

1 mm used for testing. The response time for actuator 3 is 1.4 s. 
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Figure 3-11 Actuator 3 Position Control Tracking 

3.3 PLC Software Programming 

The PLC is programmed in the Festo Software Tool program and uses the structure text syntax 

for code writing. The CPX PLC is designed to interface with the X-Sim Convertor software 

plugin, discussed in chapter 5, and receives data over a UDP network connection. Figure 3-12 

illustrates the PLC program UML activity diagram illustrating the software algorithm; the full 

code for this algorithm is attached in appendix C. The PLC receives the actuator position string 

which is transferred via UDP; this data contains the required positions of each of the 3 

actuators to be able to replicate the vehicle motion on the vehicle simulator motion platform. 

The PLC separates and extracts each actuators individual axis string which contains the 

individual actuators required position value. The actuator string is then converted to an integer 

values since the CMAX controller accepts the required actuator position in integer format. The 

integer actuator position value is written to the CMAX controller which controls the directional 

proportional control valve to achieve the desired position value. 
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Figure 3-12 PLC Program UML Activity Diagram 
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3.4 Chapter Summary 

This chapter presented the motion control system used in the vehicle simulator system. It 

explained the Festo position control system, which is a pneumatic system. The various 

components in the position control system are explained and details of how these components 

interact to achieve position control are discussed.   

Motion control hardware was added and configured onto the vehicle simulator system. 

Parameters for the system, shown in table 3-1 were then added. Basic motion tasks were 

performed for each of the 3 actuators in the vehicle simulator system; the results showed 

excellent tracking performance and good control system response time. 

The final part of this chapter explained the PLC software algorithm which is written to provide 

the interface between the X-Sim Convertor software plugin, explained in chapter 5, and the 

position control hardware. This software algorithm is used in chapter 6 to obtain results using 

live data from the games physics engine and evaluate the vehicle simulators performance.  
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4 Motion Cueing  

Motion cueing aims to recreate the motion sensations experienced in a vehicle within the 

confines of a motion simulator platform. The main problem with the replication of this motion 

is the limited workspace of the motion platform. The classical washout algorithm (Schmidt and 

Conrad, 1970), adaptive washout algorithm (Ariel and Sivan, 1984), optimal washout algorithm 

(Sivan et al., 1982) and model predictive control techniques (Baseggio et al., 2011) aim to 

recreate these motion sensations, by exploiting the human vestibular system, and try to 

maximise workspace utilisation.  

In human beings the vestibular system is responsible for providing motion cues. The full 

functioning of the vestibular system models and its limitations is presented in this chapter. The 

various coordinate systems used in motion cueing are discussed with the aim of highlighting 

which coordinate system is best to implement the motion cueing strategy. The classical 

washout algorithm is designed be used for both the 3-DOF motion platform and the 6-DOF 

motion platform cases. It was decided to use the classical washout algorithm for the vehicle 

simulator due to its low computational requirements and ease of implementation, in 

comparison to other motion cueing strategies. Finally simulations in Matlab/Simulink are 

conducted to evaluate the performance of the classical washout algorithm against the human 

vestibular system models. 

4.1 Vestibular System 

The vestibular system is the sensory system used to provide motion cues. It consists of the 

otolith and semi-circular canal. The semi-circular canal senses angular velocity and the otolith 

is used to sense linear motion via specific force. 

In figure 4-1 the semi-circular canal model used is illustrated, this model was developed by 

Young and Oman and was subsequently reported on (Zacharias, 1978). It can be seen that the 

term 𝛿𝑇𝐻 represents a detection threshold of angular velocity in the semi-circular canal 

system. Motion below this threshold will go undetected to the human observer. The 

parameter values used in the semi-circular canal model are taken from (Reid and Nahon, 1985) 

and shown in Table 4-1. 
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Figure 4-1 Semi-Circular Canal Model  

The detection threshold output ∆ is represented by: 

∆ = 0  for  |𝛿| <  𝛿𝑇𝐻  . . .  (4.1) 

∆ =  𝛿 − 𝑆𝐺𝑁(𝛿)𝛿𝑇𝐻  for  |𝛿| > 𝛿𝑇𝐻  . . .  (4.2) 

The semi-circular canal model is used to evaluate the sensed angular velocity 𝜔̂ for the three 

axes of motion, with the actual vehicle angular velocity 𝜔 as the input. This model applies to 

rotation about the x-axis (Roll), rotation about the y-axis (Pitch) and rotation about the z-axis 

(Yaw), with different parameter values.  

The otolith contained in the vestibular system is used to sense the translational motion. It 

senses specific force, the vector difference between translational inertial acceleration and 

gravitational acceleration. It is represented by: 

𝑓 =  𝑎⃗ − 𝑔⃗  . . .  (4.3) 

Figure 4-2 illustrates the model for the otolith system which is used; this model was developed 

by Meiry and Young and was subsequently reported on (Zacharias, 1978). It can be seen that 

the term 𝑑𝑇𝐻 represents a detection threshold of specific force motion in the otolith system. 

Motion below this threshold will go undetected to the human observer. The parameter values 

used in the otolith model are taken from (Reid and Nahon, 1985) and shown in Table 4-2. 

 

Figure 4-2 Otolith Model 

The detection threshold output 𝐷 is represented by: 

𝐷 = 0  for  |𝑑| <  𝑑𝑇𝐻  . . .  (4.4) 
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𝐷 = 𝑑 − 𝑆𝐺𝑁(𝑑)𝑑𝑇𝐻  for  |𝑑| > 𝑑𝑇𝐻  . . .  (4.5) 

The otolith model is used to evaluate the sensed specific force 𝑓 for the three axes of motion, 

with the actual vehicle specific force 𝑓 as the input. This model applies to translational motion 

along the x-axis (Surge), the y-axis (Sway) and the z-axis (Heave), with different parameter 

values. 

Parameter values for the semi-circular canal and otolith model are taken from (Reid and 

Nahon, 1985) and are shown in table 4-1 and table 4-2. 

Table 4-1 Model Parameters for Rotational Motion 

 Roll (x-axis) Pitch (y-axis) Yaw (z-axis) 

𝑇𝐿(𝑠) 6.1 5.3 10.2 

𝑇𝑠(𝑠) 0.1 0.1 0.1 

𝑇𝑎(𝑠) 30 30 30 

𝛿𝑇𝐻 (°/s) 3.0 3.6 2.6 

 

Table 4-2 Model Parameters for Translational Motion 

 Surge (x-axis) Sway (y-axis) Heave (z-axis) 

𝜏𝐿(𝑠) 5.33 5.33 5.33 

𝜏𝑠(𝑠) 0.66 0.66 0.66 

𝜏𝑎(𝑠) 13.2 13.2 13.2 

𝐾 0.4 0.4 0.4 

𝑑𝑇𝐻 (m/s2) 0.17 0.17 0.28 

 

4.2 Coordinate Systems 

The motion cueing techniques aim to replicate the motion sensations felt in a real vehicle 

within the workspace of the motion simulator platform. Based on research done previously 

(Reid and Nahon, 1985) the following coordinate systems are chosen. Coordinate system {B} is 

located at the centroid of the moving platform and coordinate system {A} is located at the 

centroid of the base.  

Coordinate system {B} illustrated in figure 4-3 represents the point where the specific forces 

and angular velocity inputs to the vehicle are used, in (Reid and Nahon, 1985) it was shown 

that this location is the best choice since it minimises actuator movement. Coordinate system 

{A} illustrated in figure 4-3 represents the inertial coordinate frame. It is the coordinate system 

in which the platform motion is evaluated. 
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Figure 4-3 Motion Cueing Coordinate Systems for the 3-DOF Platform 

The inputs to the motion cueing strategy are the specific force vector 𝑓𝑣𝑒ℎ and angular velocity 

vector 𝜔⃗⃗⃗𝑣𝑒ℎ  experienced in the real vehicle. The motion cueing strategy aims to replicate 

these signals, within the vehicle simulator, as closely as possible. 

𝑓𝑠𝑖𝑚 ≈ 𝑓𝑣𝑒ℎ  . . .  (4.6) 

𝜔⃗⃗⃗𝑠𝑖𝑚 ≈ 𝜔⃗⃗⃗𝑣𝑒ℎ  . . .  (4.7) 

𝑓𝑠𝑖𝑚 and 𝜔⃗⃗⃗𝑠𝑖𝑚 represent the specific force vector and angular velocity vector experienced at 

the centroid of the moving platform coordinate system {B}.  

4.3 Classical Washout Algorithm 

The classical washout algorithm is a motion cueing strategy first implemented in flight 

simulators (Schmidt and Conrad, 1970). It is designed to replicate the motion sensations felt in 

an actual vehicle without breaching the platform workspace constraints. The implementation 
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is divided into two channels, the first channel is used for translational motion and the second is 

used for rotational motion. 

4.3.1 Translational Motion 

Figure 4-4 illustrates the translation channel for the classical washout algorithm. The 

translational channel is used to replicate the transient component of the vehicle specific force 

vector 𝑓𝑣𝑒ℎ. The vehicle specific force vector 𝑓𝑣𝑒ℎ is input into the system. This signal is scaled 

to help constrain platform motion. The scaled specific force vector 𝑓1 is then used to generate 

the acceleration vector 𝑎⃗1 for the centroid of the moving platform {B}. The acceleration vector 

is given by: 

𝑎⃗1 = 𝑓1 + 𝑔⃗1  . . .  (4.8) 

According to (Reid and Nahon, 1985) the gravitational vector signal 𝑔⃗1 is given by: 

𝑔⃗1 = 𝑅𝐵
𝑇

 
𝐴  [

0
0

−𝑔
]  . . .  (4.9) 

The result of matrix multiplying by the transpose of the rotation matrix from {B} to coordinate 

frame {A} is expressed as: 

𝑔⃗1 = [

𝑔 sin𝛽
−𝑔 sin𝛼 cos𝛽
−𝑔 cos𝛼 cos𝛽

]  . . .  (4.10) 

The vector 𝑎⃗1 is then transformed into coordinate frame {A}. This transformation is done by 

multiplying by the rotation matrix as follows: 

𝑎⃗2 =  𝐴𝑅𝐵𝑎⃗1  . . .  (4.11) 

Filtering of the vector 𝑎⃗2 in the fixed based coordinate system {A} is done to perform washout. 

The washout process is used to return the simulator motion platform back to the neutral 

(centre) position. This process helps in preventing steady state motion errors on the actuator 

legs. The output acceleration vector 𝑎⃗ 
𝐴   is then integrated twice to produce the platform 

position vector 𝑃 
𝐴 = [𝑝𝑥 𝑝𝑦 𝑝𝑧]𝑇, in the inertial coordinate frame {A}. This signal is used in 

the inverse kinematic analysis to obtain the actuator stroke lengths.   
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Figure 4-4 Translational Channel for the Classical Washout Algorithm 

4.3.2 Rotational Motion 

Figure 4-5 illustrates the rotational channel for the classical washout algorithm. The rotational 

channel is composed of two parts, which together produce the rotation (Roll-Pitch-Yaw) angles 

for the motion platform.  

The first part involves a process called tilt coordination. Tilt coordination is used to replicate 

the sustained component of the vehicle specific force vector 𝑓𝑣𝑒ℎ  via tilt of the motion 

platform. It aims to use a component of the gravity vector to simulate a sustained specific 

force. This component is interpreted by the otolith as a sustained linear acceleration. It is 

important to note that the tilt rate should be kept below 𝛿𝑇𝐻, the angular velocity motion 

detection threshold, to prevent false rotational cues from being detected by the semi-circular 

canal.  

The process starts with the signal 𝑓𝑣𝑒ℎ which is scaled and passed through a low-pass filter. 

This filter extracts the low frequency component vector 𝑓𝐿 of the vehicles specific force.  

In the absence of rotational motion from the angular velocity component, the Roll-Pitch-Yaw 

angles can be represented by: 

𝜑⃗⃗ 
𝐴 = 𝜑⃗⃗𝐿 

𝐴   . . .  (4.12) 

The Roll-Pitch-Yaw angles based on the sustained specific force vector 𝑓𝐿 were approximated 

previously (Reid and Nahon, 1985) and is given by: 

𝛼𝐿 ≈
𝑓𝐿

𝑦

𝑔
  . . .  (4.13) 

𝛽𝐿 ≈ −
𝑓𝐿

𝑥

𝑔
  . . .  (4.14) 

𝛾𝐿 = 0  . . .  (4.15) 
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The second component of the rotational channel is used in the replication of the transient 

component of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The vehicle angular velocity vector 

𝜔⃗⃗⃗𝑣𝑒ℎ is scaled to ensure the platform rotational motion limits are not reached. The next step 

involves transforming the angular velocity vector 𝜔⃗⃗⃗1 to the Roll-Pitch-Yaw angle rate vector, 

𝜑⃗⃗̇1, which is required to be able to perform inverse kinematic analysis. The transformation is 

given by: 

𝜑⃗⃗̇1 = 𝑇𝐵 
𝐴 𝜔⃗⃗⃗1  . . .  (4.16) 

With 𝑇𝐵 
𝐴  given by: 

𝑇𝐵 
𝐴 = [

1 sin𝛼 tan𝛽 cos𝛼 tan𝛽
0 cos𝛼 − sin𝛼
0 sin𝛼 sec𝛽 cos𝛼 sec𝛽

]  . . .  (4.17) 

The signal 𝜑⃗⃗̇1 is then high-pass filtered to ensure platform washout. This filtering will ensure 

the platform returns back to its neutral position (centre) once the rotational motion is 

complete. It has the same effect as the translation channel washout filter by preventing steady 

state motion errors on the actuator legs. The signal 𝜑⃗⃗̇𝐻 is integrated to give the high frequency 

signal for Roll-Pitch-Yaw angles below: 

𝜑⃗⃗𝐻 
𝐴 = ∫ 𝜑⃗⃗̇𝐻 𝑑𝑡  . . .  (4.18) 

 

Figure 4-5 Rotational Channel for the Classical Washout Algorithm 

The Roll-Pitch-Yaw angle components for the sustained specific force vector signal (Eq. 4.12) 

and the angular velocity vector signal (Eq. 4.18) are combined to give the Roll-Pitch-Yaw angle 

values that are used in the inverse kinematic analysis. The Roll-Pitch-Yaw angle values are 

given by: 
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𝜑⃗⃗ 
𝐴 = 𝜑⃗⃗𝐿 

𝐴 + 𝜑⃗⃗𝐻 
𝐴   . . .  (4.19) 

4.3.3 Filter Selection 

The filter selection for the flight simulator in (Reid and Nahon, 1986) was chosen to be 2nd 

order for transient translational acceleration and 1st order for transient angular velocity. This 

selection was due to modest motions experienced in a flight simulator. A vehicle in general has 

more demanding acceleration manoeuvres, leading to the usage of a 3rd order filter for 

transient translational acceleration and a 2nd order filter for the transient angular velocity. 

The transient translational acceleration filter, HP Filter in figure 4-4, implemented in 

coordinate frame {A} is given by: 

𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑠) =
𝑠3

(𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2)(𝑠+𝜔𝑏)

  . . .  (4.20) 

The filter parameters used for 𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 in the rest of this chapter are given in table 4-3 

 

Table 4-3 Parameter Values for the Translational Channel Filter 

𝜁 1 

𝜔𝑛 3.1 rad/s 

𝜔𝑏 0.2 rad/s 

The transient angular velocity filter, HP Filter in figure 4-5, implemented in coordinate frame 

{A} is given by: 

𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑠) =
𝑠2

(𝑠+𝜔𝑛)2
  . . .  (4.21) 

The filter parameters used for 𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟 in the rest of this chapter are given in table 4-4  

 

Table 4-4 Parameter Values for the Transient Angular Velocity Filter 

𝜁 1 

𝜔𝑛 1 rad/s 

The low-pass filter, LP Filter in figure 4-5, used in the tilt coordination process is given by: 

𝐿𝑃𝑇𝑖𝑙𝑡(𝑠) =  
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2   . . .  (4.22) 

The filter parameters used for 𝐿𝑃𝑇𝑖𝑙𝑡 in the rest of this chapter are given in table 4-5 
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Table 4-5 Parameter Values for the Low-Pass Tilt Coordination Filter 

𝜁 1 

𝜔𝑛 6.2 rad/s 

 

4.4 Motion Cueing Simulation 

A simulation setup was created in Matlab/Simulink to evaluate the effectiveness of the 

classical washout algorithm. The purpose of this simulation setup was to evaluate the 

effectiveness of the classical washout algorithm to: 

 Effectively return the platform to neutral position using washout. 

 Replicate sustained translational accelerations via tilt coordination. 

 Replicate the sensations experienced in a vehicle as closely as possible within the 

motion simulator platform. 

4.4.1 Motion Cueing Simulation Setup 

The simulation setup was divided into libraries for the various subsystems. Libraries help in 

creating an easy to understand and modular system. Using libraries also facilitates reusability 

and allows for modification to be done easily.  

The first subsystem created was for the translational motion channel, illustrated in figure 4-6, 

this subsystem aims to replicate the transient component of the vehicle specific force vector 

𝑓𝑣𝑒ℎ in the simulation setup. The inputs to this subsystem are the vehicle specific force signals 

𝑓𝑣𝑒ℎ and the Roll-Pitch-Yaw angles. These inputs are used to produce the acceleration signal 𝑎⃗1 

given by Eq. 4.8. The translational filter block process aims to extract the acceleration signals 

that are used at the centroid of the motion simulator platform {B}. 
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Figure 4-6 Translational Channel Subsystem 

Figure 4-7 illustrates the tilt coordination subsystem which takes in the vehicle specific force 

vector signal 𝑓𝑣𝑒ℎ. The low-pass filter is used to extract the sustained specific force vector 𝑓𝐿. 

The low frequency Roll-Pitch-Yaw angle vector, 𝜑⃗⃗𝐿 
𝐴 , is generated using equations 4.13 and 

4.14. These signals are rate limited to 3 °/s for the x-axis (Roll) and 3.6 °/s for the y-axis (Pitch), 

which is the motion perception threshold values for the semi-circular canal 𝛿𝑇𝐻. The z-axis 

(Yaw) component has no contribution to the tilt coordination process and is set to zero. 

 

Figure 4-7 Tilt Coordination Subsystem 

The angular velocity subsystem, illustrated in figure 4-8, aims to replicate the transient 

component of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. It takes in the Roll-Pitch-Yaw angles 

and the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The Roll-Pitch-Yaw angle rates (Eq. 4.16) are then 

formed and this signal is filtered to extract the high frequency component. The high frequency 

Roll-Pitch-Yaw angle rate signal is integrated to give the Roll-Pitch-Yaw angles, 𝜑⃗⃗𝐻 
𝐴 , which is 

output from this subsystem.  
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Figure 4-8 Angular Velocity Subsystem 

The human vestibular system models are used to evaluate the effectiveness of the classical 

washout algorithm in replication of motion sensations experienced in a real vehicle. The 

models for the otolith and the semi-circular canal are used to evaluate the classical washout 

algorithm in Simulink.  

The otolith model illustrated in figure 4-9 is used to evaluate the effectiveness of the classical 

washout algorithm in replication of the vehicle specific force vector 𝑓𝑣𝑒ℎ experienced.  

 

Figure 4-9 Otolith Simulation Model 

The semi-circular canal model illustrated in figure 4-10 is used to evaluate the effectiveness of 

the classical washout algorithm in replication of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ 

experienced. 
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Figure 4-10 Semi-circular Canal Simulation Model 

4.4.2 Motion Cueing Simulation Results 

The simulations presented in this section were performed to verify the correct functioning of 

the classical washout algorithm in replication of both translational acceleration and angular 

velocity motion cues. A series of tests were conducted and these tests are explained together 

with the results. 

4.4.2.1 Translational Motion Test 

The translational motion test was used to verify the correct functioning of the classical 

washout algorithm in replication of the vehicle specific force vector 𝑓𝑣𝑒ℎ. The human vestibular 

system, using the otolith model, is used to show how well the vehicle specific force vector 𝑓𝑣𝑒ℎ 

is replicated in the motion simulator by 𝑓𝑠𝑖𝑚 the specific force vector at the centroid of the 

moving platform coordinate system {B}.  

Figure 4-11 illustrates the specific force input signal used for the system testing. The input 

signal is a unit step response with an initial value of 2 m/s2 along the x-axis, the signal lasts for 

a period of 10 s.  
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Figure 4-11 Specific Force Input for the x-axis  

Figure 4-12 illustrates the platform acceleration along the x-axis. This acceleration represents 

the transients extracted from the high-pass filter along the translational motion channel. The 

first transient occurs initially when the acceleration goes from 0 m/s2 to 2 m/s2. The next 

transient occurs at 10 seconds when the acceleration drops from 2 m/s2 to 0 m/s2. It can be 

seen that the high-pass filter attempts to return the platform back to neutral (centre) position 

after both the transient acceleration periods. This process is known as washout and it aids in 

preventing steady state motion errors on the actuator legs. It can be seen that the washout 

process also creates some acceleration in the opposite direction to the intended acceleration; 

these accelerations can be seen just after the start and at 10 seconds. These signals are known 

as a false cue if the acceleration is above the otolith systems motion detection threshold 𝑑𝑇𝐻. 

It is known that the classical washout algorithm does let through some false cues due to the 

fixed filter parameters employed. During selection of these filter parameters there is a trade-

off between optimal workspace utilisation and minimization of false motion cues.  
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Figure 4-12 Platform Acceleration for the x-axis 

In figure 4-13 the position of the platform along the x-axis is shown. Initial transient 

acceleration creates motion in the positive direction, washout then occurs causing the 

platform to return to the neutral (centre) position. The washout process is not optimal due to 

the fixed filter parameters, which are designed for worse case motion. This results in the 

platform taking additional time to stop motion completely. The washout process is a trade-off 

between optimal workspace utilisation and the prevention of false motion cues. The 

advantages of using the classical washout algorithm are the minimal implementation 

complexity and low processing performance requirements of this algorithm. 
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Figure 4-13 Platform Position for the x-axis 

Figure 4-14 shows the replication of the sustained component of the vehicle specific force 

vector 𝑓𝑣𝑒ℎ via tilt coordination. This replication is done via tilting of the platform about the y-

axis (Pitch). The tilting is done with the tilt rate limit set to the motion detection threshold 

value of 3.6 °/s for rotations about the y-axis. The tilting of the motion platform is an attempt 

to replicate the sustained acceleration, along the x-axis, of 2 m/s2 that occurs during the initial 

10 seconds. The maximum tilt angle achieved for this motion is -11.68 degrees which gives the 

perception of accelerating constantly at 1.99 m/s2 based on Eq. 4.14. 
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Figure 4-14 Platform Pitch Angle for the y-axis 

Illustrated in figure 4-15 is the actual output from the otolith model for the vehicle specific 

force vector 𝑓𝑣𝑒ℎ for the x-axis component and the output from the otolith model for the 

simulator specific force vector  𝑓𝑠𝑖𝑚 for the x-axis component. It can be seen that the classical 

washout filter provides a reasonably good result for the replication of translational motion 

sensations within the motion simulator platform. The washout filter is also effective in 

ensuring the platform returns to the neutral position after the motion input is complete. The 

classical washout filter, through the usage of tilt coordination, is also able to replicate 

sustained translational accelerations successfully. 
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Figure 4-15 Sensed Vehicle and Simulator Specific Force for the x-axis 

4.4.2.2 Rotational Motion Test 

The rotational motion test was used to verify the correct functioning of the classical washout 

algorithm in replication of the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The human vestibular 

system, using the semi-circular canal model, is used to show how well the vehicle angular 

velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ is replicated in the motion simulator by 𝜔⃗⃗⃗𝑠𝑖𝑚 the angular velocity vector 

at the centroid of the moving platform coordinate system {B}. 

In figure 4-16 illustrated, the angular velocity positive and negative ramp input test signal is 

shown. The slope rate for the positive slope is set at 0.1 rad/s and -0.1 rad/s for the negative 

slope. The positive and negative slope input each run for 0.125 seconds. 
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Figure 4-16 Angular Velocity Input for the x-axis 

Illustrated in figure 4-17 is the sensed angular velocity signal, along the x-axis, of the actual 

vehicle for the vehicle angular velocity input shown in figure 4-16. The semi-circular canal 

model is used to demonstrate the feeling felt by the vehicle user. It can be noted that the 

human semi-circular system attenuates the input angular velocity signal. Figure 4-18 shows the 

sensed angular velocity along the x-axis within the simulator, this signal matches closely the 

sensed angular velocity of the vehicle signals general shape in figure 4-17 but it is an 

attenuated signal. There is also some sensed angular velocity in the opposite direction of 

motion due to the washout process attempting to return the platform to the neutral position. 

Ideally this motion should not occur, but the classical washout filter is known to let through 

such false cues due to the fixed filter parameter values.  
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Figure 4-17 Sensed Vehicle Angular Velocity for the x-axis 

 

Figure 4-18 Sensed Simulator Angular Velocity for the x-axis 
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Figure 4-19 illustrates the platform orientation along the x-axis. It can be seen that the 

platform reaches a Roll angle (x-axis) of about 5.5 degrees. The platform attempts to return to 

neutral (centre) position after the applied signal goes to zero but there is some platform 

motion caused in the opposite direction. This motion is explained again by the washout 

process being is a trade-off between optimal workspace utilisation and prevention of false 

motion cues. The performance seems poor since the applied motion cues lasted just 0.25 

seconds but it should be noted that the applied test signal of dual positive and negative ramp 

is fairly challenging. A signal of this nature is unlikely to be encountered in the actual output of 

the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ.  

 

Figure 4-19 Platform Orientation for the x-axis 

4.5 Chapter Summary 

The technique of motion cueing and its usage in the replication of vehicle motion sensations 

was discussed. The chapter highlighted the functioning of the human vestibular system. The 

human vestibular system is able to sense translational and rotational motion sensations via the 

otolith and semi-circular canal systems respectively. Limitations in motion detection threshold 

of both the otolith 𝑑𝑇𝐻 and semi-circular 𝛿𝑇𝐻 were highlighted. These limits are used in the 
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motion cueing algorithm to perform washout, which aims to return the platform to the neutral 

position without being detected by the human observer, this washout process aids in 

preventing steady state motion errors on actuator legs.  

The classical washout algorithm was described in terms of the translational and rotational 

components. The transient specific force and angular velocity signals are obtained by filtering 

of the input signals of the vehicle specific force vector 𝑓𝑣𝑒ℎ  and angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. 

The filtering is performed in the inertial coordinate frame {A} which prevents the accumulation 

of motion errors on the actuator legs and successfully performs platform washout. The 

replication of the sustained component of the vehicle specific force vector 𝑓𝑣𝑒ℎ is performed 

via platform tilt. This technique aims to exploit the otolith system, which senses linear motion 

via specific force. By tilting the platform, a component of the gravity vector can be used to 

replicate sustained specific force signals. The platform tilting was kept below the rotational 

channel motion detection threshold 𝛿𝑇𝐻; limiting this tilt ensures that the motion is not 

interpreted as false rotational motion. 

The simulation system was setup to test the ability of the classical washout algorithm to 

effectively recreate vehicle motion sensations within the simulator environment and return 

the platform to the neutral position by performing washout. It was shown that the translation 

motion channel is able to replicate the motion sensations experienced in the vehicle fairly well 

with no false motion cues; according to the otolith model output in figure 4-15. The rotational 

channel is able to replicate the motion sensations experienced in the vehicle but suffers from 

some false cues when performing platform washout. Alternative motion cueing algorithms, 

such as the adaptive washout algorithm (Ariel and Sivan, 1984), optimal washout algorithm 

(Sivan et al., 1982) and MPC (Baseggio et al., 2011), could be used in future to mitigate false 

cues. It is observed that the washout process in both the translational and rotational channels 

were performed successfully and the platform was able to return to the neutral position after 

the input motion signal subsided. The washout filter parameters will need to be adjusted in the 

next chapter based on motion signals received from the software system and the position 

control system motion constraints, to ensure optimal performance on the vehicle simulator.  

 

  



83 

 

5 Software 

This chapter discusses the software implementation for the vehicle simulator. The software 

package, X-Sim, which is used in the interfacing between telemetry data from the games 

physics engine and the motion control system, is explained. The software plugin, which is 

written in C++, is designed to process input game data into actuator stroke lengths and this 

data is sent to the actuator position control system.  

A novel simulation setup in Matlab/Simulink, using the SimMechanics toolbox, is developed. 

This setup is used to adjust the input data scaling and filter parameters on the classical 

washout algorithm. The simulation setup is used for the following: 

 Test that motion data from the game is replicated on the simulator platform in the 

Matlab/Simulink environment. 

 Ensure that the position, velocity and acceleration constraints imposed on the 

actuators in the system are not violated. 

 Test the fidelity of the system in replicating the input game data.  

 Evaluate the fidelity performance of the 3-DOF system against the traditional 6-DOF 

system using the human vestibular system models. 

The Matlab/Simulink setup is implemented in C++ for the X-Sim software package. The C++ 

software implementation results for actuator stroke lengths are tested against the results from 

the Matlab/Simulink setup to ensure the C++ software plugin implementation is correct.   

5.1 X-Sim Software 

In the vehicle simulator, visual cues are passed to the driver via the 3 monitors that are 

mounted on the platform. The game Dirt 3 is used to generate visual cues for the vehicle 

simulator. The game renders visual cues and provide motion cues via the built in physics 

engine.  

X-Sim is the middleware package which is used to extract and interpret the data from the 

games physics engine. The X-Sim package consists of two software packages, the Extractor and 

Convertor. These packages are designed to run independently and could possibly run on 

separate machines. 
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The X-Sim Extractor software is used to communicate with the games physics engine and 

receive the telemetry data. This data includes the lateral force, longitudinal force, vertical 

force, roll angle, pitch angle and yaw angle. The physics data from most games are read either 

from shared memory or via a localhost network connection.  

Input telemetry data is relayed from the X-Sim Extractor software to the X-Sim Convertor 

software via a TCP network connection. The use of a network connection between the two 

software packages allows them to run on independent machines. This network connection 

may be required depending on the capabilities of the machine running the game. When a 

lower performance machine is used to run the game then it is intuitive to run the X-Sim 

Convertor software on a separate machine. This setup reduces any processing bottlenecks 

which may affect the relaying of data to the motion simulator, resulting in delayed motion 

cues. When using a high performance machine, both software packages could run on the same 

machine. Figure 5-1 illustrates the network configuration used for this particular motion 

simulator application; it can be seen that both the TCP connections are done on the localhost 

machine. 

 

Figure 5-1 X-Sim Software Setup 

The X-Sim Convertor software is able to receive telemetry data from the X-Sim Extractor 

software in real time. The X-Sim Convertor software is then able to perform maths functions 

on the data. This data processing is used in applications were the data needs to be scaled or 

filtered and kinematic analysis needs to be performed.  

The X-Sim Convertor software is able to output data in three separate modes as follows (X-Sim, 

no date): 

 The Universal Serial Output (USO) – Processed data is transferred to the position 

control system hardware via an RS232/RS485 serial interface or a network connection. 

 Synaptrix Interface – This mode provides a motion control system that is able to 

control certain hardware systems, allowing for sensing and controlling the hardware 

directly. 
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 CSV file – Data is logged to a CSV file and allows the user to perform data analyses. The 

data logged could be input game data or data which has been processed by the X-Sim 

Convertor software. 

5.1.1 Game Telemetry Data 

The testing of the input data received from the game was done by logging the data to CSV file 

for the 3 translational values (Lateral, Longitudinal and Vertical specific forces) and 3 rotational 

values (Roll, Pitch and Yaw angles). The output values from the X-Sim Extractor software have 

a 32-bit signed range. Figure 5-2 illustrates the game data for the longitudinal specific force for 

a single lap of the game, it highlights the various instances in time were the vehicle undergoes 

acceleration and deceleration during the lap. 

 

Figure 5-2 Longitudinal Force Game Data 

Figure 5-3 illustrate the game data for the pitch angle values for a single lap of the game, it 

shows the various motions of the car rotating about the y-axis. 
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Figure 5-3 Pitch Angle Game Data 

Angular velocity values are required in the classical washout algorithm for the rotational 

channel. The Roll, Pitch and Yaw angle values from the input game data had to be scaled and 

then transformed into angular velocity signals. The following transformation was used: 

𝜔⃗⃗⃗𝑣𝑒ℎ =  𝑆𝜑⃗⃗̇𝑣𝑒ℎ  . . .  (5.1) 

with 𝑆 the transformation matrix from RPY angle rates 𝜑⃗⃗̇𝑣𝑒ℎ into vehicle angular velocity 𝜔⃗⃗⃗𝑣𝑒ℎ 

given by:  

𝑆 =  [

1 0 − sin𝛽
0 cos𝛼 sin 𝛼 cos𝛽
0 − sin𝛼 cos 𝛼 cos𝛽

]  . . .  (5.2) 

RPY angle rates 𝜑⃗⃗̇𝑣𝑒ℎ, used above, are obtained from RPY angles 𝜑⃗⃗𝑣𝑒ℎ by the following transfer 

function which was shown previously (Reid and Nahon, 1985): 

𝜑⃗⃗̇𝑣𝑒ℎ = 
12.5

𝑠+12.5
𝜑⃗⃗𝑣𝑒ℎ  . . .  (5.3) 
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5.1.2 Software Plugin 

The X-Sim software allows for the implementation of a dll (dynamic linked library) software 

plugin which is used to perform processing on the input game data. The plugin is written in C++ 

and it is incorporated in the X-Sim Convertor software. The plugin allows for various forms of 

data processing such as scaling, motion cueing and inverse kinematics to be performed. Figure 

5-4 illustrates the software plugin UML activity diagram which was developed to be used for 

the 3-DOF motion platform. The software plugin, which is shown in appendix D, was written to 

extract and scale the input data received from the game via the X-Sim Extractor software 

package. The implementation of the classical washout filter is performed in the discrete 

domain. The translation motion along the z-axis (Heave), rotational motion about the x-axis 

(Roll) and rotational motion about the y-axis (Pitch) output from the classical washout 

algorithm is used in the inverse kinematics analysis. Using the derived leg length equation 2.36 

to equation 2.38 and constraint equation 2.28 to equation 2.30 the actuator stroke lengths for 

each actuator is derived and passed through to the motion control system, over a LAN, via 

UDP. 
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Figure 5-4 Software Plugin UML Activity Diagram  
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5.2 Simulations 

The motion control system, discussed in chapter 3, is a pneumatic system. It employs 3 

pneumatically driven linear actuators and performs position control on each of these 

actuators. The system itself is limited to the following actuator position, velocity and 

acceleration values. Table 5-1 shows the limits of the actuators. 

 

Table 5-1 Actuator Motion Limits 

Position ± 0.1 m 

Velocity ± 0.2 m/s 

Acceleration ± 2 m/s2 

It is important to adhere to the actuator motion constraints imposed to ensure safe operation 

of the vehicle simulator. A failure to adhere to these limits could result in mechanical damage 

to the structure of the motion simulator platform and injury to the user in the vehicle 

simulator. Based on these constraints it is important that the vehicle input data scaling and 

classical washout filter parameters are selected to ensure motion that does not violate the 

actuator motion constraints. The objective is to get the actuator motion to be within the 

position, velocity and acceleration limits imposed.  

In the previous work in chapters 2 and chapter 4 two simulation systems were created in the 

Matlab/Simulink environment. Chapter 2 created a structural model of the 3-DOF motion 

platform by using the SimMechanics toolbox, this toolbox creates a model of the 3-DOF 

motion platform based on the geometrical properties of the platform. The system was 

designed to perform verification of the derived inverse kinematic equation 2.36 to equation 

2.38 for the 3-DOF motion platform. Kinematic analysis was performed and results from the 

output of the structural model were compared to the derived inverse kinematic equation 2.36 

to equation 2.38, this chapter concluded by confirming the derived inverse kinematic equation 

2.36 to equation 2.38 were correct. The work in chapter 4 created and implemented the 

motion cueing strategy in the Matlab/Simulink environment. Results from this chapter showed 

that the classical washout algorithm has reasonable performance in replication of motion 

sensations experienced in a real vehicle.  

The simulation setup used for this particular chapter combines the previous two simulation 

setups from chapter 2 and chapter 4. A novel simulation setup is created, illustrated in figure 

5-5, which is able perform the entire vehicle simulator data processing. The vehicle simulator 
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data processing includes input data scaling, classical washout algorithm implementation and 

inverse kinematic analysis. The setup is used to adjust the scaling of the input data and the 

classical washout filter parameters to ensure the actuator motions adhere to constraints 

imposed on them by the selected position control system. Additionally SimMechanics creates a 

3-D visual display of the motion platform, allowing for the platform motion to be viewed in 

real time.   

Input game data received from the games physics engine (Specific forces and RPY angles) are 

input directly into the simulation system. These values are scaled and the RPY angles are 

transformed into the vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ. The classical washout algorithm 

takes in the vehicle specific force vector 𝑓𝑣𝑒ℎ and vehicle angular velocity vector 𝜔⃗⃗⃗𝑣𝑒ℎ to be 

used in the translational and rotational channel. Independent motion parameters (Roll, Pitch 

and Heave) are output from the classical washout algorithm. Independent parameter values 

are fed into the leg trajectory block which computes the derived leg length equation 2.36 to 

equation 2.38. These values are input into the structural model, which is designed using the 

SimMechanics toolbox. Motion from the output of the structural model is then analysed to 

ensure that the actuator motions do not violate the imposed motion constraints.  

The simulation setup developed allows for input data scaling and filter parameters to be 

adjusted easily and safely in the Matlab/Simulink environment. Adjustments are made till the 

actuator motion constraints, in table 5-1, are adhered to. The simulation setup can then be 

implemented as a software plugin in the X-Sim Convertor software. Since the software has 

been tested, in Matlab/Simulink, it is guaranteed that the motion constraints will be adhered 

to by the software plugin. Adherence to these constraints ensures safety of the user and safety 

of the mechanical structure of the vehicle simulator.   

A fidelity study is also performed in Matlab/Simulink to highlight how well the vehicle 

simulator, using the 3-DOF motion platform, replicates the sensations felt in a vehicle for the 

selected motion cueing parameters. The 3-DOF motion platform fidelity is also evaluated 

against the traditional 6-DOF motion platform. 

The simulation setup is also used to test and verify the correct functioning of the various 

components in the C++ software plugin developed. The Matlab/Simulink setup was modified 

to be implemented in the discrete domain, since the X-Sim software samples input game data 

at discrete time intervals of 0.01 second.
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Figure 5-5 Vehicle Simulator Matlab/Simulink Simulation Setup
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5.2.1 Filter Parameter Selection 

The filter parameters used in the classical washout algorithm were adjusted to not violate the 

actuator motion constraints in table 5-1. The transient translational acceleration filter, HP 

Filter in figure 4-4, has the following form: 

𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑠) =  
𝑠3

(𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2)(𝑠+𝜔𝑏)

  . . .  (5.4) 

Table 5-2 shows the filter parameters selected for 𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 

 

Table 5-2 Translational Channel Filter Parameters 

𝜁 1 

𝜔𝑛 3.1 rad/s 

𝜔𝑏 0.2 rad/s 

The transient angular velocity filter, HP Filter in figure 4-5, has the following form: 

𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑠) =
𝑠2

(𝑠+𝜔𝑛)2
  . . .  (5.5) 

The parameters values for 𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟 are shown in table 5-3. 

 

Table 5-3 Transient Angular Velocity Filter Parameters 

𝜁 1 

𝜔𝑛 1 rad/s 

Upon initial evaluation it was found that the output signals from the transient angular velocity 

filters were creating large actuator accelerations. It was decided to attenuate some of the high 

frequency signals by passing the output signal from the transient angular velocity filters 

through a low-pass filter. The low-pass filter has a break frequency of 𝜔𝑏 = 3.1 rad/s and has 

the following form: 

𝐿𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑠) =
𝜔𝑏

(𝑠+𝜔𝑏)
  . . .  (5.6) 

The low-pass filter, LP Filter in figure 4-5, used in the tilt coordination process has the following 

form:  

𝐿𝑃𝑇𝑖𝑙𝑡(𝑠) =  
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2   . . .  (5.7) 
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The parameter values for 𝐿𝑃𝑇𝑖𝑙𝑡  are given in table 5-4. 

 

Table 5-4 Tilt Coordination Filter Parameters 

𝜁 1 

𝜔𝑛 1 rad/s 

 

5.2.2 Discrete Filter Implementation 

To be able to implement the classical washout algorithm in the C++ software plugin the filter 

design had to be done in the discrete domain. The sampling time for the X-Sim software is 0.01 

second per output for each reading of actuator stroke lengths. The Matlab/Simulink libraries 

were modified to implement the simulation in the discrete domain.  

The bilinear transform was used with the following approximation for continuous time to 

discrete time conversion: 

𝑠 ≈  
2

𝑇

1−𝑧−1

1+ 𝑧−1  . . .  (5.8) 

With T the sampling time of 0.01 second. 

The transient translational acceleration filter in the discrete domain is designed using filter 

parameters in table 5-2 and with a sample time of 0.01 second. The transfer function in the 

discrete domain is given by:  

𝐻𝑃𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑧) =  
𝑌(𝑧)

𝑋(𝑧)
= 

0.004844𝑧3−0.004844𝑧2−0.004844𝑧+0.004844

𝑧3−2.937𝑧2+2.875𝑧−0.938
  . . .  (5.9) 

Implementing this transfer function in the form of a difference equation yields the following: 

𝑦[𝑛] = 0.938𝑦[𝑛 − 3] − 2.875𝑦[𝑛 − 2] + 2.937𝑦[𝑛 − 1] + 0.004844𝑥[𝑛 − 3] −

0.004844𝑥[𝑛 − 2] − 0.004844𝑥[𝑛 − 1] + 0.004844𝑥[𝑛]  . . .  (5.10) 

The transient angular velocity filter in the discrete domain is designed using filter parameters 

in table 5-3 and with a sample time of 0.01 second. The transfer function in the discrete 

domain is given by: 

𝐻𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑧) =  
𝑌(𝑧)

𝑋(𝑧)
= 

0.9901𝑧2−1.98𝑧+0.9901

𝑧2−1.98𝑧+0.9802
  . . .  (5.11) 
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Implementing this transfer function in the form of a difference equation yields the following: 

𝑦[𝑛] = −0.9802𝑦[𝑛 − 2] + 1.98𝑦[𝑛 − 1] + 0.9901𝑥[𝑛 − 2] − 1.98𝑥[𝑛 − 1] + 0.9901𝑥[𝑛]  . 

. .  (5.12) 

The low-pass filter added to the rotational channel in the discrete domain is given by: 

𝐿𝑃𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑧) =  
0.01526𝑧+0.01526

𝑧−0.99
  . . .  (5.13) 

Implementing this filter in the form of a difference equation yields the following: 

𝑦[𝑛] = 0.99𝑦[𝑛 − 1] + 0.01526𝑥[𝑛] + 0.01526𝑥[𝑛 − 1]  . . .  (5.14) 

The low-pass filter used in the tilt coordination process in the discrete domain is designed 

using filter parameters in table 5-4 and with a sample time of 0.01 second. The transfer 

function in the discrete domain is given by: 

𝐿𝑃𝑇𝑖𝑙𝑡(𝑧) =  
2.475𝑥10−5𝑧2+4.95𝑥10−5𝑧+2.475𝑥10−5

𝑧2−1.98𝑧+0.9802
  . . .  (5.15) 

Implementing this filter in the form of a difference equation yields the following: 

𝑦[𝑛] = −0.9802𝑦[𝑛 − 2] + 1.98𝑦[𝑛 − 1] + 2.475𝑥10−5𝑥[𝑛 − 2] + 4.95𝑥10−5𝑥[−1] +

2.475𝑥10−5𝑥[𝑛]  . . .  (5.16) 

5.2.3 Kinematic Analysis Results 

The first part of the testing used the Matlab/Simulink setup. The input game is scaled and 

processed with the classical washout algorithm. Upon completion the three independent 

parameters, translational motion along the z-axis (Heave) and rotation about the x-axis (Roll) 

and y-axis (Pitch) are input into the inverse kinematics system. Using the three independent 

parameters and the constraint equation 2.28 to equation 2.30 the derived leg length equation 

2.36 to equation 2.38 are formed. As in chapter 2 the output trajectory from the structural 

model can be compared to the input trajectory to determine the accuracy of the derived leg 

length equation 2.36 to equation 2.38 and the effectiveness of the classical washout algorithm 

can also be determined from the output trajectory.  

Figure 5.6 illustrates the roll angle (x-axis) comparison; this graph shows the comparison 

between the input and output roll angle trajectory. It can be seen that the output trajectory, 

for the roll, replicates the input trajectory extremely well. The maximum roll angle achieved 



95 

 

for the selected motion cueing parameters in the system is 4.5 degrees. Figure 5-7 illustrates 

the error between the input and output trajectory for the roll angle. The maximum error is 

0.2863 degrees and the mean error is 0.0274 degrees. 

 

Figure 5-6 Roll Angle Comparison 

 

Figure 5-7 Roll Angle Error  

Figure 5-8 illustrates the pitch angle (y-axis) comparison. It can be noted that the output 

trajectory, for the pitch angle, replicates the input trajectory extremely well. The maximum 

pitch angle achieved for the selected motion cueing parameters in the system is 5.4 degrees. 

Figure 5-9 illustrates the error between the input and output trajectory for the pitch motion. 

The maximum error is 0.2170 degrees and the mean error is 0.0290 degrees. 
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Figure 5-8 Pitch Angle Comparison 

 

Figure 5-9 Pitch Angle Error 

Figure 5-10 illustrates the heave (z-axis) motion comparison. The heave motion of the output 

replicates the heave input well; there is some difficulty in replicating the larger heave motions. 

The maximum heave motion achieved, at the output, for the selected motion cueing 

parameters in the system is 0.0083 m. Figure 5-11 illustrates the error between the input and 

output trajectories for the heave motion. The maximum error is 0.0013 m and the mean error 

is 0.00025 m. 
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Figure 5-10 Heave Comparison 

 

Figure 5-11 Heave Error 

The errors between the input and output trajectory are reasonable and not extreme. All the 

outputs track their respective inputs well. These results validate the derived leg length 

equation 2.36 to equation 2.38. It can also be seen that the classical washout algorithm is 

effective in ensuring the platform returns to neutral position (washout) for the entire duration 

of the lap. Roll, pitch and heave motions all return to zero when the applied motion cue is 

complete. The maximum values achieved for the roll angle, pitch angle and heave motion 

represent reasonable performance for a low-cost simulator used for research purposes. 

Figure 5-12 and figure 5-13 illustrates the 3-D model for the 3-DOF motion platform for two 

instances in the simulation; this system, using SimMechanics, provides a visualisation tool of 



98 

 

expected platform motions. It can also verify platform motion is correct, for e.g. the platform 

should tilt backwards about the y-axis (Pitch) to replicate a positive acceleration about the x-

axis as in figure 5-12. In figure 5-13 the driver is going around a curve and turning left, 

therefore the driver is tilted to the right to replicate the motion sensations experienced in the 

vehicle. 

 

Figure 5-12 3-DOF Platform Backward Tilt 

 

Figure 5-13 3-DOF Platform Tilt to Right 

5.2.4 Motion Limit Results 

The next aspect of the testing evaluated the actuator motion limits from the structural model 

to determine if the actuator motions adhere to the constraints. The filter parameters for all 
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the channels in the washout algorithm were selected to ensure that the actuator motion limits 

in table 5-1 is not violated. The results from this test helped ensure a successful 

implementation of the motion scaling, classical washout algorithm and inverse kinematics on 

the actual 3-DOF motion platform. It also guarantees safety of the user and the mechanical 

structure of the vehicle simulator. 

Figure 5-14 illustrates the actuator stroke length output from the structural model for each of 

the actuators. Actuator 1 has a maximum motion change of 0.0458 m, actuator 2 has a 

maximum motion change of 0.0766 m and actuator 3 has a maximum motion change of 0.0848 

m. Based on these results it can be concluded that all three actuators adhere to the maximum 

possible actuator position limit of 0.1 m. 

 

Figure 5-14 Structural Model Length Output of Actuators 

Figure 5-15 illustrates the velocity output of each actuator from the structural model. Actuator 

1 has a maximum velocity of 0.1178 m/s, actuator 2 has a maximum velocity of 0.1580 m/s and 

actuator 3 has a maximum velocity of 0.1570 m/s. The actuator velocity values lie within the 

maximum permissible actuator velocity of 0.2 m/s. 
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Figure 5-15 Structural Model Velocity Output of Actuators 

Figure 5-16 illustrates the acceleration output of each actuator from the structural model. 

Actuator 1 has a maximum acceleration of 1.1643 m/s2, actuator 2 has a maximum 

acceleration of 1.5375 m/s2 and actuator 3 has a maximum acceleration of 1.5230 m/s2. The 

accelerations of all actuators lie within the maximum acceleration value of 2 m/s2. 

 

Figure 5-16 Structural Model Acceleration Output of Actuators 

The input data scaling and filter parameters selected ensured that none of the actuator motion 

constraints, in table 5-1, are violated. These constraints ensure safe operation for the driver in 

the vehicle simulator and safety of the mechanical structure for the vehicle simulator. It can be 

seen from the acceleration of the actuator legs that the actuators reach maximum acceleration 

for very short periods in time. This platform acceleration is due to the fixed filter parameters of 
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the classical washout algorithm which is designed for the worst motion case. Therefore 

platform workspace usage is not optimised for the classical washout algorithm. 

5.2.5 Simulator Fidelity Results 

Simulator fidelity is the next aspect which is evaluated for the vehicle simulator. To evaluate 

the vehicle simulator fidelity the otolith model is used for the translational motion and the 

semi-circular canal model is used for the rotational motion.  

Figure 5-17 illustrates the sensed specific forces in the vehicle and the vehicle simulator along 

the x-axis. It can be seen that the vehicle simulator does reasonably well to replicate the 

motion sensations felt in the vehicle, with some false motion cues. For the vehicle simulator 

used, which is a 3-DOF system, only the sustained specific forces along the x-axis will be felt. 

This sensation is represented by tilt coordination along the y-axis (Pitch); here the motion is 

kept below the y-axis semi-circular canal motion detection threshold 𝛿𝑇𝐻 to prevent false 

rotational motion cues. The transient component of vehicle specific force along the x-axis is 

not used in the 3-DOF vehicle simulator.  

 

Figure 5-17 Sensed Vehicle and Simulator Specific Force by the Otolith Model (x-axis) 

Figure 5-18 illustrates the sensed specific forces in the vehicle and the vehicle simulator along 

the y-axis. It can be seen that the vehicle simulator replicates, extremely well, the motion 

sensations felt in the vehicle for this channel. For the vehicle simulator used, which is a 3-DOF 

system, only the sustained specific forces along the y-axis will be felt. The sustained specific 

forces along the y-axis are represented by tilt of the motion platform along the x-axis (Roll). 
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Tilting along the x-axis is kept below the semi-circular canal motion detection threshold 𝛿𝑇𝐻 

to prevent false rotational motion cues along the x-axis (Roll). The transient component of 

vehicle specific force along the y-axis is not used in the 3-DOF vehicle simulator.  

 

Figure 5-18 Sensed Vehicle and Simulator Specific Force by the Otolith Model (y-axis) 

Figure 5-19 illustrates the sensed specific forces in the vehicle and the vehicle simulator along 

the z-axis. It can be seen that the vehicle simulator does well to replicate the motion 

sensations felt in the vehicle. The transient component of vehicle specific force along the z-axis 

(Heave) will be felt in the vehicle simulator.  

 

Figure 5-19 Sensed Vehicle and Simulator Specific Force by the Otolith Model (z-axis) 
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Figure 5-20 illustrates the sensed angular velocity in the vehicle and the vehicle simulator 

along the x-axis. The motion sensations along this channel are minimal and the vehicle 

simulator replicates an attenuated version of vehicle angular velocity along the x-axis (Roll). 

 

Figure 5-20 Sensed Vehicle and Simulator Angular Velocity by the Semi-circular Canal Model 
(x-axis) 

Figure 5-21 illustrates the sensed angular velocity in the vehicle and the vehicle simulator 

along the y-axis. The motion sensations in the vehicle simulator are attenuated but represent 

the motion sensations felt in the vehicle reasonably well.  

 

Figure 5-21 Sensed Vehicle and Simulator Angular Velocity by the Semi-circular Canal Model 
(y-axis) 
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The vehicle simulator designed is a 3-DOF system. It is used to replicate sustained translational 

accelerations along the x-axis and y-axis; this replication is done via tilt coordination. It is also 

used to replicate the transient translational acceleration along the z-axis (Heave) and transient 

rotational motion about the x-axis (Roll) and y-axis (Pitch) in the vehicle simulator.  

5.2.6 Performance Evaluation of 3-DOF Motion Platform 

The 3-DOF vehicle simulator used is a system that is not commonly used for vehicle simulators. 

Generally the traditional 6-DOF motion platform is used for vehicle simulators. However it is 

fairly well known that these systems have excessive costs attached to them. These systems 

have typically been funded by car manufacturers and transport departments to perform 

various research and training; these developers typically have excessive budgets making the 6-

DOF systems feasible. By evaluating the performance of the 3-DOF system against the 6-DOF 

motion platform developed in chapter 2 the benefits of such a system becomes apparent, 

particularly in scenarios were cost is a major factor and reasonable performance is needed. 

Figure 5-22 shows the sensed specific force, along the x-axis, by the otolith model for both 3-

DOF and 6-DOF systems. These signals are compared to the sensed specific force, along the x-

axis, in the actual vehicle. Both systems perform reasonably well with a fair amount of false 

motion cues. The 3-DOF system actually has smaller sensations felt for false motion cues, 

which is attributed to the lack of transient translational acceleration for the x-axis component.   

 

Figure 5-22 Specific Force Comparison (x-axis) 
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Figure 5-23 shows the sensed specific force, along the y-axis, by the otolith model for both 3-

DOF and 6-DOF systems. These signals are compared to the sensed specific force, along the y-

axis, in the actual vehicle. Both systems perform extremely well with minimal amount of false 

motion cues. The 6-DOF system performs slightly better, specifically at replicating the transient 

accelerations since the 3-DOF system lacks the transient component.    

 

Figure 5-23 Specific Force Comparison (y-axis) 

Figure 5-24 shows the sensed specific force, along the z-axis, by the otolith for both 3-DOF and 

6-DOF systems. These signals are compared to the sensed specific force, along the z-axis, in the 

actual vehicle. Both systems perform well in replication of motion sensations felt along the z-

axis.    

 

Figure 5-24 Specific Force Comparison (z-axis) 
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Figure 5-25 shows the sensed angular velocity, along the x-axis, by the semi-circular canal 

model for both 3-DOF and 6-DOF systems. These signals are compared to the sensed angular 

velocity, along the x-axis, in the actual vehicle. The motion for this component is minimal and 

both systems replicate an attenuated signal with some small false motion sensations. Figure 5-

26 illustrates the motion cues experienced in both systems for a small time period. It shows 

that both components replicate an attenuated signal, the 6-DOF system performs slightly 

better.  

 

Figure 5-25 Angular Velocity Comparison (x-axis) 

 

Figure 5-26 Angular Velocity Sample Comparison (x-axis) 

Figure 5-27 shows the sensed angular velocity, along the y-axis, by the semi-circular canal 

model for both 3-DOF and 6-DOF systems. These signals are compared to the sensed angular 

velocity, along the y-axis, in the actual vehicle. The performance of motion replication for this 



107 

 

component is modest in both systems. Figure 5-28 illustrates the motion cues experienced in 

both systems for a small time period. It shows that both components replicate an attenuated 

signal, the 6-DOF system performs slightly better. There are some motion cues which are 

missed completely in both systems. 

 

Figure 5-27 Angular Velocity Comparison (y-axis) 

 

Figure 5-28 Angular Velocity Sample Comparison (y-axis) 

Figure 5-29 shows the sensed angular velocity, along the z-axis, for both 3-DOF and 6-DOF 

systems. These signals are compared to the sensed angular velocity, along the z-axis, in the 

actual vehicle. The 3-DOF system has no motion for this component while the 6-DOF system 

replicates an attenuated signal for the sparse motion sensations felt for this component. 

Figure 5-30 illustrates the motion cues experienced in both systems for a small time period. It 
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shows the 6-DOF system replicates an attenuated signal for the motion cues felt in the actual 

vehicle. There are some motion cues which are missed completely in the 6-DOF system. 

 

Figure 5-29 Angular Velocity Comparison (z-axis) 

 

Figure 5-30 Angular Velocity Sample Comparison (z-axis) 

For the modest motions required by the motion control system, in table 5-1, the classical 

washout filter parameters were optimised. Using this classical washout algorithm 

implementation on both the 3-DOF and 6-DOF systems the performance output shows that 

there is merit for the 3-DOF motion system. For modest motion requirements the 3-DOF 

system is more than capable of replicating the more costly 6-DOF system. It only ever fails to 

replicate rotational motion along the z-axis (Yaw) at all and from figure 5-29 this motion cue is 

of not much significance. When a low-cost solution with modest performs requirements is 

desired then the 3-DOF motion platform would be the best choice.  
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5.2.7 Software Plugin Testing 

The final part of the testing was used to verify the correct functioning of the C++ software 

plugin in implementing the input data scaling, classical washout algorithm and inverse 

kinematics. The software plugin actuator outputs, which were saved to CSV file, are shown. 

Figure 5-31 illustrates the actuator 1 stroke length output for the software plugin and the 

Matlab/Simulink simulation. The software plugin output for actuator 1 does well to replicate 

the output from the Matlab/Simulink simulation. The maximum error value between the 

actuator 1 value in the software plugin and in the Matlab/Simulink simulation is -0.0134  m. 

 

Figure 5-31 Actuator 1 Output Comparison 

Figure 5-32 illustrates the actuator 2 stroke length output for the software plugin and the 

Matlab/Simulink simulation. The software plugin output for actuator 2 replicates the output 

from the Matlab/Simulink simulation well. The maximum error value between the actuator 2 

value in the software plugin and in the Matlab/Simulink simulation is 0.0035 m. 
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Figure 5-32 Actuator 2 Output Comparison 

Figure 5-33 illustrates the actuator 3 stroke length output for the software plugin and the 

Matlab/Simulink simulation. The software plugin output for actuator 3 replicates the output 

from the Matlab/Simulink simulation well. The maximum error value between the actuator 3 

value in the software plugin and in the Matlab/Simulink simulation is 0.0010 m. 

 

Figure 5-33 Actuator 3 Output Comparison 

The results from the software plugin match the output from the structural model really well 

for all the actuators. The maximum errors for the actuators are acceptable and none of the 

actuators have significant errors between the software plugin output and the Matlab/Simulink 

simulation results. These results conclude that the software plugin implementation of data 

scaling, classical washout algorithm and inverse kinematics calculations are correct. It can also 



111 

 

be noted that the washout process works well in returning the platform actuators back to zero 

positions for the entire duration of the lap. The software plugin is used in the next chapter to 

transfer actuator stroke length data, via UDP, to the motion control system. 

5.3 Chapter Summary 

This chapter discussed the software package, X-Sim, which is used to interface with the games 

physics engine and obtain telemetry data. A software plugin, written in C++ and found in 

appendix D, is used to perform the data processing and transmit the actuator stroke lengths to 

the position control system via a LAN connection that uses UDP. The data processing includes 

input data scaling, the classical washout algorithm and inverse kinematics. 

A novel simulation setup developed was used to test the various data processing steps; this 

testing was done using telemetry data logged from the game. This simulation setup allowed 

for the input data scaling and filter parameters in the classical washout algorithm to be 

adjusted. The filter parameters for the various aspects of the classical washout algorithm were 

selected to ensure the actuator motion constraints, in table 5-1, is not violated. The results 

from the simulation setup show that the input platform trajectory, into the structural model, is 

replicated at the output of the structural model. It also confirms that the filter parameters 

selected ensured the constraints in table 5-1, for the actuator position control system, is 

respected. Adherence to these constraints ensures safety of the user in the vehicle simulator 

and safety of the mechanical structure of the vehicle simulator. Simulator fidelity was then 

evaluated, using the human vestibular system models. The results indicate that the classical 

washout algorithm does very well in replication of translational motion sensed by the otolith 

model and the classical washout algorithm does reasonably in replication of the rotational 

motion sensed by the semi-circular canal model. Evaluating the performance of the 3-DOF 

system against the traditional 6-DOF system it was found that the 3-DOF system performs 

better than the 6-DOF system in replication of some motion sensations. This result highlights 

the benefit of such a platform were low-cost and reasonable performance requirements are 

needed. The various data processing steps in Matlab/Simulink were implemented in C++ and 

were used in the software plugin for the X-Sim software package. The results, of the actuator 

stroke lengths, from the output of the software plugin were compared against the output from 

the Matlab/Simulink setup. The results show that the software plugin implementation is 

correct and acceptable to be used to transmit data to the motion control system. 
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6 Results and Discussion 

This chapter discusses and evaluates the performance of the position control system on the 

vehicle simulator. Details on how the entire system functions and a description on how the 

various components come together to create a vehicle simulator is presented. Results from 

the position control system are evaluated and compared to the results in the Matlab/Simulink 

simulations.  

6.1 Vehicle Simulator System Overview 

Figure 6-1 illustrates the entire integrated vehicle simulator system, this figure shows the 

various components and how these combine to achieve the best possible motion simulator 

fidelity. The game (Dirt 3) provides visual cues to the simulator driver via the PC monitors. 

Telemetry data is transferred to the software plugin using the X-Sim software package. 

Position data for each actuator is transferred from the software plugin into the Festo PLC, via a 

UDP network interface. The position data for each actuator is passed onto the axis controllers 

which provide actuator motion. Motion cues are transferred to the simulator driver via this 

actuator motion. Through seamless synchronisation of visual and motion cues a vehicle 

simulator system with the best possible fidelity is achieved.  

 

Figure 6-1 Vehicle Simulator System Overview 
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6.2 Position Control System Limitations 

During integration and testing of the entire system it was found that the back actuators in the 

system were creating excessive coupling forces between each other. These coupling forces 

affected the position control system performance and led to the control system on each of 

these actuators becoming unstable. Independently these actuator position control systems 

were found to track the required input correctly, however when simultaneous motion was 

required the position control system on each actuator became unstable. Figure 6-2 to figure 6-

4 illustrates the position control system performance for each of the 3 actuators. It shows the 

actual position tracking the reference input, which is the nominal position supplied to the 

CMAX controller, from the software plugin.  

 

Figure 6-2 Actuator 1 Position Control Tracking with Live Game Data 

 

Figure 6-3 Actuator 2 Position Control Tracking with Live Game Data 
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Figure 6-4 Actuator 3 Position Control Tracking with Live Game Data 

The excessive coupling on the position control system could not be mitigated with the selected 

position control system from Festo, despite numerous efforts to adjust the control system 

parameters on each of the axis controllers. It was decided to modify the system by not 

implementing position control on the back actuators in the vehicle simulator system. This 

modification will eliminate the rotational motion about the x-axis (Roll) from the vehicle 

simulator system completely. Removing the rotational motion about the x-axis (Roll) will 

eliminate the transient x-axis angular velocity component and the sustained translational 

motion along the y-axis (which is done through platform tilt). Figure 6-5 illustrates the 

modified 3-DOF motion platform with the front actuator (Actuator 1) used to provide motion. 

The new vehicle simulator system is modified into a partial 2-DOF system which is able to 

produce translational motion along the z-axis (Heave) and rotational motion about the y-axis 

(Pitch). 
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Figure 6-5 Modified Partial 2-DOF Motion Platform with Single Motion Actuator 

Simulations in Matlab/Simulink were conducted using the Vehicle Simulator Simulation Setup, 

illustrated in figure 5-5, to evaluate the modified vehicle simulator systems performance using 

just the front actuator for motion. The new systems motion was compared to the motion for 

the 3-DOF motion platform, highlighting the effect on motion cues for the modified system. 

The partial 2-DOF systems input data scaling factors used were all increased since actuator 1 is 

only used and this actuator had modest motions initially for the 3-DOF system. Figure 6-6 

illustrates the z-axis translational motion (Heave) for the partial 2-DOF system and the initially 

designed 3-DOF system. It can be seen that with a larger scaling factor, increased from 1 m/s2 

to 2 m/s2 for the specific force z-axis game input, there is more motion achieved for this 

motion cue in the partial 2-DOF system. The maximum heave motion achieved in the partial 2-

DOF system is 0.0307 m and the maximum heave motion achieved in the 3-DOF system is 

0.0083 m. 
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Figure 6-6 Heave Comparison (Modified System) 

Figure 6-7 illustrates the rotational motion about the x-axis (Roll) for the partial 2-DOF system 

and the initially designed 3-DOF system. The partial 2-DOF system has no rotational motion 

about the x-axis (Roll). A maximum roll value of 4.5313 degrees is achieved for the 3-DOF 

system. 

 

Figure 6-7 Roll Angle Comparison (Modified System) 

Figure 6-8 illustrates the rotational motion about the y-axis (Pitch) for the partial 2-DOF system 

and the 3-DOF system. The scaling factor for the game input data for the pitch component was 

increased from 10 degrees to 15 degrees. The partial 2-DOF system provides an attenuated 

signal that matches the 3-DOF motion systems cues. A maximum pitch value of 3.5140 degrees 
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is achieved for the partial 2-DOF system and a maximum pitch value of 5.4235 degrees is 

achieved in the 3-DOF system. 

 

Figure 6-8 Pitch Angle Comparison (Modified System) 

Figure 6-9 illustrates the actuator stroke length output for actuator 1 in the vehicle simulator 

system for the partial 2-DOF system. A maximum platform motion value of 0.6 m was 

achieved. Simulation results proved that the motion constraints, in table 5-1, were still 

respected in the modified system, even with the increased input data scale factors. 

 

Figure 6-9 Actuator 1 Matlab/Simulink Simulation Output (Modified System) 

The modified partial 2-DOF system is able to achieve more significant motion cues for the 

translation motion along the z-axis (Heave) than the 3-DOF system. No rotational motion 
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about the x-axis (Roll) occurs in the partial 2-DOF system and the 3-DOF system provides 

significant cues for this component. Rational motion along the y-axis (Pitch) is replicated well 

in the partial 2-DOF system, this systems replicates attenuated cues that are felt in the 3-DOF 

system. The partial 2-DOF systems actuator motion respects the actuator motion constraints in 

table 5-1. 

Figure 6-10 shows the sensed specific force, along the x-axis, by the otolith model for both 3-

DOF and the modified partial 2-DOF system. These signals are compared to the sensed specific 

force, along the x-axis, in the actual vehicle. Both systems perform reasonably well with a fair 

amount of false motion cues. The partial 2-DOF system outperforms the 3-DOF system by 

having far less false motion cues. It provides motion sensations closer to that felt within the 

actual vehicle.    

 

Figure 6-10 Specific Force Comparison – Modified System (x-axis) 

Figure 6-11 shows the sensed specific force, along the z-axis, by the otolith for both 3-DOF and 

the modified partial 2-DOF system. These signals are compared to the sensed specific force, 

along the z-axis, in the actual vehicle. Both systems perform well in replication of motion 

sensations felt along the z-axis.    



119 

 

 

Figure 6-11 Specific Force Comparison – Modified System (z-axis) 

Figure 6-12 shows the sensed angular velocity, along the y-axis, by the semi-circular canal 

model for both 3-DOF and the modified partial 2-DOF system. These signals are compared to 

the sensed angular velocity, along the y-axis, in the actual vehicle. The performance of motion 

replication for this component is modest in both systems; the 3-DOF system outperforms the 

modified partial 2-DOF system for this motion cue. Figure 6-13 illustrates the motion cues 

experienced, for sensed angular velocity along the y-axis, in both systems for a small time 

period. It shows that both components replicate an attenuated signal, the 3-DOF system 

performs better than the partial 2-DOF system in motion replication. There are some motion 

cues which are missed completely in both systems. 

 

Figure 6-12 Angular Velocity Comparison – Modified System (y-axis) 
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Figure 6-13 Angular Velocity Sample Comparison – Modified System (y-axis) 

The modified system which is a partial 2-DOF system is able to outperform the initially 

designed 3-DOF motion system in replication of translation motion along the x-axis (Surge). 

Both systems are able to replicate the translation motion along the z-axis (Heave). Rotational 

motion along the y-axis (Pitch) is replicated poorly in both systems, with the 3-DOF system 

performing better. This modified partial 2-DOF system has applications were sustained 

translation motion along the x-axis is required. Inability to replicate sustained longitudinal 

accelerations results in poor simulation of maneuverers such as emergency braking (Arioui et 

al., 2009). Applications for the partial 2-DOF system include human factor studies in scenarios 

which do not have much transient accelerations e.g. highway studies. In terms of testing car 

prototypes this system could be used to test adaptive cruise control systems which generally 

have smooth sustained accelerations. For driving training this platform can be adopted as a 

first contact for new drivers to provide experience, in heavy machinery systems which do not 

undergo severe accelerations, in general leisure environments and fuel efficiency training since 

proper shifting techniques do not produce too many transient acceleration signals. 

During testing of the position control system it was found that stopping at the mechanical 

endpoints was abrupt. This method of stopping could eventually cause damage to the vehicle 

simulator and causes discomfort for the user in the vehicle simulator. Upper and lower 

software end positions were set to ensure the actuator does not stop abruptly at the 

mechanical end positions. Illustrated in figure 6-14 is the lower software end position (LP) and 

the upper software end position (UP), which was set at 10 mm and 130 mm respectively, these 

values were based on the maximum and minimum position values of actuator 1 from figure 6-
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9. These values give a working stroke length of 120 mm for the actuator. This cylinder stroke 

length was limited, by the software end positions; based on the workspace usage from the 

Matlab/Simulink simulation results. In addition to these limits the actuator needed to have a 

reference zero point at which to start from and return to when motion is complete. Figure 6-

14 illustrates the actuator reference zero point and software position limits selected. The 

reference zero point (ZP) for the actuator was set at 70 mm in height, resulting in maximum 

motion in both the forward and backward strokes.  

 

Figure 6-14 Actuator Reference Point and Position Limits 

6.3 Position Control System Results 

Position control tracking performance for the modified partial 2-DOF system is logged using 

the Festo Control Software. Live data from the game is sent to the position control hardware 

and the tracking performance is evaluated. Ideally the actual position should track the nominal 

position (this is the value sent to the controller from the written software plugin) value 

perfectly.  

Figure 6-15 illustrates the tracking performance for the modified partial 2-DOF system using 

live game data. The position control system hardware tracks the nominal position well with 

minimum deviation from the setpoint value and almost perfect response time. 

 

Figure 6-15 Actuator 1 Position Control Tracking with Live Game Data (Modified System) 
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Figure 6-16 illustrates the simulation results in Matlab/Simulink for the modified partial 2-DOF 

system. Comparing this result to the actual tracking performance of the position control 

hardware in figure 6-15 it can be noted that the position control hardware response performs 

well. It can be seen that there is limitation in fully reproducing some transient components for 

this system. The fidelity while driving in the actual vehicle is realistic. Motion and visual cues 

tie in to create an immersive driving experience in the current vehicle simulator system. The 

overall performance is a vehicle system with good fidelity and the modified partial 2-DOF 

system is a low-cost alternative to the traditional 6-DOF system. 

 

Figure 6-16 Actuator 1 Matlab/Simulink Simulation Output with Live Game Data 

6.4 Chapter Summary 

The vehicle simulator with the various components was presented in this chapter. It was 

shown how the motion and visual cues tie in together to achieve the best possible vehicle 

simulator fidelity.  

Position control system testing found limitation in the selected Festo position control system. 

It was decided to modify the system by eliminating rotational motion about the x-axis (Roll) 

completely from the system. The modified system is a partial 2-DOF system and this system 

was shown to outperform the 3-DOF system, initially chosen, in replication of translational 

motion along the x-axis (Surge).  

Testing and comparing the position control hardware tracking performance was then 

performed. It was shown that the position control system does extremely well to track the 
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nominal position value. Comparing the position control system tracking performance to the 

Matlab/Simulink system shows that replication of actuator motion is replicated well. The 

position control hardware does come short in replicating of some transient motions. The 

overall system provides motion and visual cues that tie in together to create an immersive 

driving experience. This modified partial 2-DOF system is seen as a low-cost alternative in 

scenarios with cost constraints and reasonable performance requirements.   
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7 Conclusions and Future Work 

The purpose of this research was to research, design and implement motion cues for the 3-

DOF motion platform. This motion platform is able to provide translational motion along the z-

axis (Heave), rotational motion about the x-axis (Roll) and rotational motion about the y-axis 

(Pitch). The research aimed to create the best possible fidelity in the vehicle simulator system 

by creating realistic motion cues that work in cohesion with visual cues.  

The motion platform for this simulator is a 3-DOF platform as compared to the traditional 6-

DOF Stewart platform. It is known that the 6-DOF motion platform is used extensively in 

vehicle simulators around the world. The 6-DOF motion platform has complex forward 

kinematics and excessive manufacturing costs (Tsai et al, 1996). Lower DOF motion platforms 

are a compromise between motion replication quality and cost (Arioui et al., 2009). 

A kinematic analysis was performed on the 3-DOF system to facilitate in replication of vehicle 

motion cues. This kinematic analysis presented a closed form solution to the inverse 

kinematics and a numerical approximation for the forward kinematics. The derived inverse 

kinematics equations were validated in the Matlab/Simulink environment, using the 

SimMechanics toolbox. A similar simulation setup and testing was implemented for the 

traditional 6-DOF system. 

The classical washout algorithm was the motion cueing algorithm selected to be used on the 3-

DOF platform in the vehicle simulator. This particular motion cueing algorithm is simple to 

implement and has lower performance requirements than the other motion cueing algorithms. 

A disadvantage of the classical washout algorithm is the false motion cues due to the fixed 

filter parameters used in the design process.  

A novel simulation system was developed in the Matlab/Simulink environment, illustrated in 

figure 5-5, to aid in the design of a vehicle simulator. The simulation system developed 

comprises of all the aspects involved in the motion cueing process which includes input vehicle 

data scaling, implementing of the classical washout algorithm and performing inverse 

kinematics.  

The first research contribution showed how the developed simulation system was used to aid 

in ensuring the actuator motion constraints, in table 5-1, are respected. The input data scaling 

and filter parameters were adjusted to ensure that these actuator motion constraints are 
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respected. These constraints ensure safe operation for the driver in the vehicle simulator and 

ensure safety of the mechanical structure of the vehicle simulator. 

It can be noted from the acceleration of the actuator legs, illustrated in figure 5-16, that the 

actuators reach a maximum acceleration for very short periods of time. This platform 

acceleration is due to the fixed filter parameters of the classical washout algorithm which is 

designed for the worst case motion. Therefore platform workspace usage is not optimised. In 

future to improve the workspace usage and motion sensations in the vehicle simulator system 

alternative washout algorithms will be implemented. These alternatives include the adaptive 

washout algorithm (Ariel and Sivan, 1984), optimal washout algorithm (Sivan et al., 1982) and 

model predictive control techniques (Baseggio et al., 2011). 

The next research contribution evaluated the performance of the 3-DOF system against the 

traditional 6-DOF system, in the Matlab/Simulink environment, using the human vestibular 

system models. Specific force comparison along the x-axis shows that the 3-DOF system 

performs better at motion replication and has smaller motion sensations for false motion cues 

than the 6-DOF system. Specific force comparison along the y-axis showed the 6-DOF system 

performing better at motion replication for this component. Both systems do well in 

replication of specific force along the z-axis. In terms of the angular velocity components, both 

systems replicate attenuated motion cues for the angular velocity along the x-axis with some 

small false motion cues. Angular velocity along the y-axis is replicated modestly in both 

systems. In terms of angular velocity along the z-axis the 3-DOF system has no motion 

sensation for this component and the 6-DOF system does reasonably well in replication of the 

sparse motion sensations felt. These results highlight the benefits of the 3-DOF system in 

certain applications. These systems are applicable to scenarios with cost constraints and which 

have reasonable performance requirements. The reasons for choosing a 3-DOF system were 

the lower manufacturing costs involved and relatively simple manufacturing of such a system.  

Testing of the position control system on the 3-DOF motion platform highlighted instability in 

the back actuators. This instability led to the elimination of motion in the back actuators and 

this change removed the rotational motion along the x-axis (Roll). The final system developed 

was a partial 2-DOF system; this system is capable of partial restitution of translational motion 

along the z-axis (Heave) and rotational motion along the y-axis (Pitch). This system was 

evaluated against the initially designed 3-DOF system. Results from this evaluation showed 
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that the partial 2-DOF system did better in replication of translational motion along the x-axis 

(Surge).  

The position control system tracking results for the partial 2-DOF system showed excellent 

tracking of the nominal position value (this is the value sent to the controller from the written 

software plugin). Comparing the position control system tracking performance to the 

Matlab/Simulink system shows that the replication of the actuator motion is replicated well. 

The position control hardware does come short in replication of some transient motions. Final 

testing of the system shows that it provides visual and motion cues that tie in together to 

create an immersive driving experience.  

The following research objectives were met: 

 The current mechanical framework was investigated and understood. 

 Kinematic analysis, simulation and testing of the 3-DOF motion platform and 

traditional 6-DOF motion platform were performed. 

 The classical washout algorithm for use in both the 3-DOF motion platform and 

traditional 6-DOF motion platform was investigated, designed and implemented. 

 A novel simulation system, developed in Matlab/Simulink, to aid in the vehicle 

simulator design was developed. This system was successfully used to adjust various 

parameters in the motion cueing process to ensure actuator motion constraints are 

respected.  

 The performance of the designed 3-DOF motion platform was evaluated against the 

traditional 6-DOF motion platform using human vestibular system models in 

Matlab/Simulink. 

 A software plugin, developed in C++, was used to interface between the physics engine 

of a game and the position control system on the 3-DOF motion platform. The 

software plugin implemented the various motion cueing aspects in the C++ language.  

 The Festo position control system hardware was configured and tested. 

 PLC software to perform actuator position control was developed and tested. 

 The position control system performance was evaluated. This evaluation highlighted 

the instability of the selected position control system. This instability led to a 

modification in which rotational motion along the x-axis (Roll) was removed from the 

vehicle simulator. The vehicle simulator was modified into a partial 2-DOF system. This 

modified systems position control performance in replication of motion cues was 
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subsequently evaluated against the results from the developed Matlab/Simulink 

simulation system.  

 The entire vehicle simulator system was integrated and tested. A vehicle simulator 

with good fidelity was achieved. The initially designed 3-DOF vehicle simulator and the 

final partial 2-DOF vehicle simulators performance highlight the benefits of lower-cost 

systems. These systems have merit in applications with cost constrains and reasonable 

performance requirements.  

Table 7-1 adapted from (Cheng et al., 2006) shows how the two systems designed, the initial 3-

DOF system and final partial 2-DOF system, perform against other simulators. These two 

systems are not able to produce the same large motions cues as other alternative simulators. 

These alternative simulators have excessive costs as compared to both systems designed, even 

without accounting for inflation costs on these alternative systems. The alternative simulators 

are viable to transport departments and car manufactures which have excessive budgets. The 

3-DOF system and final partial 2-DOF system are seen as low-cost alternative in scenarios with 

cost constraints and reasonable performance requirements. 

The partial 2-DOF system is able to replicate transient translational motion along the z-axis, 

transient rotational motion about the y-axis and sustained translation motion along the x-axis 

(which is done through platform tilt about the y-axis). Inability to replicate sustained 

translation motion along the x-axis results in poor simulation of maneuverers such as 

emergency braking (Arioui et al., 2009). 

Applications for the developed system includes human factor studies in scenarios which do not 

have much transient accelerations e.g. highway studies. In terms of testing car prototypes this 

system could be used to test adaptive cruise control systems which generally have smooth 

sustained accelerations. For driving training this platform can be adopted as a first contact for 

new drivers to provide experience, in heavy machinery systems which do not undergo severe 

accelerations, in general leisure environments and fuel efficiency training since proper shifting 

techniques do not produce too many transient acceleration signals. 

Future work for this vehicle simulator is evident in the shortcomings of the selected motion 

control system from Festo. Unfortunately at present a modification to the control system 

could not be performed due to the closed source nature of the Festo system. New hardware 

would need to be implemented and an improved control system could be designed to be able 
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to create a fully functional 3-DOF vehicle simulator. Improved control strategies such as model 

based control or performance based control would be selected. It is more appropriate to select 

a performance based control strategy for this system due to non-linear dynamics of parallel 

manipulators. Controllers with good disturbance rejection such as an adaptive control scheme 

which incorporates disturbance rejection (Qinglong and Wenjie, 2011) and robust control (Wu 

et al., 2010) are desirable to mitigate the disturbances introduced by the leg coupling forces on 

the back actuators.    

In terms of the provision of visual cues future work would see replacing the current 3x27 inch 

LED monitors with a VR technology device to render visual cues. This technology will render 

more immersive visual cues and a better field of view. 

 

Table 7-1 Vehicle Simulator Systems Performance/Cost Comparisons 

 Kookmin 
University 
Simulator 

Vision Light 
(MotionBase 

3D150) 

NADS 
(University of 

Iowa) 

3-DOF 
System 

2-DOF 
System 

Pitch angle 
(Degrees) 

25   18   25  5.4  3.5 

Roll angle 
(Degrees) 

20   15  25  4.5 0 

Heave 
motion (m) 

- - 0.6 0.0083 0.0307 

Load 
(Newtons) 

1970 1500 - 1200 1200 

DOFs 6 6 13 3 2 (Partial) 

No. of 
Actuators 

3 3 10 3 1 

Acceleration 
(m/s2) 

6  7 10 2 2 

Price ($) - $16990 $50 million $9500 $5700 

The dissertation presented the mechatronics integration for a vehicle simulator. The 

developed system is lower-cost and has application in scenarios with cost constraints and 

reasonable performance requirements.   
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Appendices 

Appendix A – Hardware Architecture 
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Appendix B – Electrical Layout 
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Appendix C – PLC Software 

Codeblock P0 

STEP 0 

 THEN  SET            P1             " AXIS 1 SETUP 

 

STEP 1 

 IF                   NOP 

 THEN  SET            P3             " UDP HANDLER 

 

STEP 2 

 IF                   NOP 

 THEN  SET            P4 

 

STEP 3 

 IF                   NOP 

 THEN  JMP TO 1 

Codeblock P1 

STEP 0 

 THEN  SET            O128.0         " ENABLE DRIVE AXIS V1 

 

STEP 1 

 IF                   I128.0         " DRIVE ENABLED 

 THEN  SET            O128.0         " ENABLE DRIVE 

       SET            O128.1         " STOP 

       SET            O128.2         " BRAKE 

       RESET          O128.3         " RESET (RISING EDGE ACK ERROR) 

       RESET          O128.4 

       RESET          O128.5         " LOCK (FCT ENABLED = V0) 

       SET            O128.6         " OPM1 

       RESET          O128.7         " OPM2 

       SET            O129.6         " FAST STOP 

       RESET          O129.0         " ABS 

       RESET          O129.1         " COM1 

       RESET          O129.2         " COM2 

 IF                   I128.0         " DRIVE ENABLED 

       AND            I128.1         " OPEN 

       AND     N      I128.3         " FAULT 

       AND            I128.4         " 24V 

       AND            I128.6         " OPM1 

       AND     N      I128.7         " OPM2 

 THEN  SET            O128.10        " HOME 

 

STEP 2 

 IF                   I128.15 

 THEN                 NOP 

 

STEP 3 

 IF                   I128.10 

 THEN                 NOP 

 

STEP 4 

 IF                   I128.10 

 THEN  LOAD           V1100 

         TO           OW130 

       SET            O129.10        " sec. setpoint 

       SET            O129.13        " sec. setpoint 

       SET            O129.14 

       SET            O129.3         " CONT 

       RESET          O128.10        " HOME 
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STEP 5 

 IF                   I128.10 

 THEN  SET            O128.9         " START 

       SET            T51            " DELAY START 

         WITH         0.1s 

 

STEP 6 

 IF                   NOP 

 THEN  JMP TO 6 

Codeblock P3 

STEP 0 

 THEN  CFM 2                         " Install UDP handler 

         WITH         V1024          " Local port number (>=1024) 

         WITH         V4             " Number of first flagword for data 

       LOAD           FU32           " 0 if successful, otherwise error 

         TO           R103 

 IF                   NOP 

 THEN  LOAD           FW15 

         SWAP 

         TO           R103 

       LOAD           FW18 

         SWAP 

         TO           R104 

       LOAD           FW21 

         SWAP 

         TO           R105 

 

STEP 1 

 IF                   NOP 

 THEN  LOAD      (    R103 

       AND            V255      ) 

         TO           R106 

 IF                   NOP 

 THEN  LOAD      (    R104 

       AND            V255      ) 

         TO           R107 

 IF                   NOP 

 THEN  LOAD      (    R105 

       AND            V255      ) 

         TO           R108 

Codeblock P4 

STEP 0 

 IF                   I128.9         "ACK 

 THEN                 NOP 

 

STEP 1 

 IF              ( (  R106 

         >=           V10       ) 

       AND       (    R106 

         <=           V130      ) ) 

 THEN  LOAD           R106 

         *            V100 

         TO           OW130          "AXIS 1 

 OTHRW                NOP 
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Appendix D – X-Sim Software Plugin Code 

// Rotation motion globals                 
double d_rpy_pre_1[3] = { 0, 0, 0 };               
double rotation_angles_pre_1[3] = { 0, 0, 0 };                            
double rpy_1_rate_hf_pre_1[3] = { 0, 0, 0 };              
double rpy_2_rate_hf_pre_1[3] = { 0, 0, 0 };              
double rpy_3_rate_hf_pre_1[3] = { 0, 0, 0 };              
double rpy_rate_pre_1[3] = { 0, 0, 0 };               
double rpy_pre_1[3] = { 0, 0, 0 }; 

// Translational motion globals                
double a_XYZ_pre_1[3] = { 0, 0, 0 };               
double a_H1_XYZ_pre_1[3] = { 0, 0, 0 };              
double a_H2_XYZ_pre_1[3] = { 0, 0, 0 };              
double a_H2_XYZ_pre_2[3] = { 0, 0, 0 };               
double p_XYZ_pre_1[3] = { 0, 0, 0 };                                     
double p_XYZ_pre_2[3] = { 0, 0, 0 };         

// Tilt coordination motion globals                
double fl_1_xy_pre_1[2] = { 0, 0 };                                     
double fl_2_xy_pre_1[2] = { 0, 0 };                
double f_xy_pre_1[2] = { 0, 0 };          

// Euler angles (high plus low)                
double euler_angles_pre_1[3] = { 0, 0, 0 }; 

// Translational motion codeblock 

double rotation_matrix[3][3] = { { cos(euler_angles_pre_1[1])*cos(euler_angles_pre_1[2]), 
sin(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*cos(euler_angles_pre_1[2]) - cos(euler_angles_pre_1[0])*sin(euler_angles_pre_1[2]), 
cos(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*cos(euler_angles_pre_1[2]) + sin(euler_angles_pre_1[0])*sin(euler_angles_pre_1[2]) }, { 
cos(euler_angles_pre_1[1])*sin(euler_angles_pre_1[2]), sin(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*sin(euler_angles_pre_1[2]) + 
cos(euler_angles_pre_1[0])*cos(euler_angles_pre_1[2]), cos(euler_angles_pre_1[0])*sin(euler_angles_pre_1[1])*sin(euler_angles_pre_1[2]) - 
sin(euler_angles_pre_1[0])*cos(euler_angles_pre_1[2]) }, { -sin(euler_angles_pre_1[1]), sin(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]), 
cos(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]) } };                

double f_x, f_y, f_z = 0;         
 double g = -9.81;         
 double max_longitudinal_acceleration = 2128990;       
 double max_lateral_acceleration = 3454338;       
 double max_vertical_acceleration = 6725081;       
 double a_xyz[3] = { 0, 0, 0 };        
 double a_XYZ[3] = { 0, 0, 0 };        
 double a_H1_XYZ[3] = { 0, 0, 0 };        
 double a_H2_XYZ[3] = { 0, 0, 0 };        
 double p_XYZ[3] = { 0, 0, 0 };        
 f_x= 2*((valuearray[sixdofarray::longitudenal_acceleration].inputvalue)/max_longitudinal_acceleration);              
 // Positive x(mine) for positive z        
 f_y = -2*((valuearray[sixdofarray::lateral_acceleration].inputvalue)/max_lateral_acceleration);                                      
 // Negative y(mine) for positive x        
 f_z = -1*((valuearray[sixdofarray::vertical_acceleration].inputvalue)/max_vertical_acceleration);                  
 // Negative z(mine) for positive y        
  

if ((f_x - 2.0) > EPSILON) { f_x = 2.0; }                      
else if ((f_x + 2.0) < (-EPSILON)) { f_x = -2.0; }                        
if ((f_y - 2.0) > EPSILON) { f_y = 2.0; }                     
else if ((f_y + 2.0) < (-EPSILON)) { f_y = -2.0; }                         
if ((f_z - 1.0) > EPSILON) { f_z = 1.0; }                     
else if ((f_z + 1.0) < (-EPSILON)) { f_z = -1.0; }                       
// Set f_z offset of 9.81                        
f_z = f_z - g;               
a_xyz[0] = f_x - g*sin(euler_angles_pre_1[1]);           
a_xyz[1] = f_y + g*sin(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]);          
a_xyz[2] = f_z + g*cos(euler_angles_pre_1[0])*cos(euler_angles_pre_1[1]);                   
for (int i = 0; i < 3; ++i) {          
 for (int j = 0; j < 3; ++j) {  a_XYZ[i] += rotation_matrix[i][j] * a_xyz[j];}}    
 for (int i = 0; i < 3; ++i) { a_H1_XYZ[i] = 0.9695*a_H1_XYZ_pre_1[i] - 0.9847*a_XYZ_pre_1[i] + 0.9847*a_XYZ[i];} 
 for (int i = 0; i < 3; ++i) { a_H2_XYZ[i] = 0.9695*a_H2_XYZ_pre_1[i] - 0.9847*a_H1_XYZ_pre_1[i] + 0.9847*a_H1_XYZ[i];}
 for (int i = 0; i < 3; ++i) { p_XYZ[i] = -p_XYZ_pre_2[i] + 2*p_XYZ_pre_1[i] + 0.000025*a_H2_XYZ_pre_2[i] + 
0.00005*a_H2_XYZ_pre_1[i] + 0.000025*a_H2_XYZ[i];} 
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// Tilt coordination codeblock                

double f_xy[2] = {0, 0};                       
double fl_1_xy[2] = {0, 0};                      
double fl_2_xy[2] = {0, 0};                       
double fl_xy_g[2] = {0, 0};                      
double fl_xy_g_pre_1[2] = {0, 0};                      
double euler_angles_l[3] = {0, 0, 0};               
f_xy[0] = f_x;                       
f_xy[1] = f_y;  

for (int i = 0; i < 2; ++i) { fl_1_xy[i] = 0.99*fl_1_xy_pre_1[i] + 0.004975*f_xy[i] + 0.004975*f_xy_pre_1[i];}                 
for (int i = 0; i < 2; ++i) { fl_2_xy[i] = 0.99*fl_2_xy_pre_1[i] + 0.004975*fl_1_xy[i] + 0.004975*fl_1_xy_pre_1[i];}     
fl_xy_g[0] = fl_2_xy[1] / 9.81;  // Tilt rate limiting       
fl_xy_g[1] = -fl_2_xy[0] / 9.81;                   
fl_xy_g_pre_1[0] = fl_2_xy_pre_1[1] / 9.81;                  
fl_xy_g_pre_1[1] = -fl_2_xy_pre_1[0] / 9.81;        
 if (((fl_xy_g[0] - fl_xy_g_pre_1[0])/0.01)>(0.0524)) { fl_xy_g[0] = fl_xy_g_pre_1[0] + 0.0524*0.01;}   
 else if(((fl_xy_g[0] - fl_xy_g_pre_1[0])/0.01)<(-0.0524)) { fl_xy_g[0] = fl_xy_g_pre_1[0] - 0.0524*0.01;}  
 if (((fl_xy_g[1] - fl_xy_g_pre_1[1])/0.01)>(0.0628)) { fl_xy_g[1] = fl_xy_g_pre_1[1] + 0.0628*0.01;}   
 else if (((fl_xy_g[1] - fl_xy_g_pre_1[1])/0.01)<(-0.0628)){ fl_xy_g[1] = fl_xy_g_pre_1[1] - 0.0628*0.01;}                
euler_angles_l[0] = fl_xy_g[0];                    
euler_angles_l[1] = fl_xy_g[1]; 

// Rotational motion codeblock 

double max_roll_angle = 0.262;               
double max_pitch_angle = -0.262; // Negative y for positive x             
double max_yaw_angle = -0.262;                
double max_roll_value = 10501891;                                                  
double max_pitch_value = 906402;                
double max_yaw_value = 17997544;               
double scaled_rpy[3] = { 0, 0, 0 };               
double d_rpy[3] = { 0, 0, 0 };               
double angular_velocity[3] = { 0, 0, 0 };               
double rpy_rate[3] = { 0, 0, 0 };               
double rpy_1_rate_hf[3] = { 0, 0, 0 };               
double rpy_2_rate_hf[3] = { 0, 0, 0 };                
double rpy_3_rate_hf[3] = { 0, 0, 0 };               
double rpy[3] = { 0, 0, 0 };                           

scaled_rpy[0] = max_roll_angle*((valuearray[sixdofarray::roll_angle].inputvalue) / max_roll_value);                    
scaled_rpy[1] = max_pitch_angle*((valuearray[sixdofarray::pitch_angle].inputvalue) / max_pitch_value);                     
scaled_rpy[2] = max_yaw_angle*((valuearray[sixdofarray::yaw_angle].inputvalue) / max_yaw_value);                 
for (int i = 0; i < 3; ++i) {  if ((scaled_rpy[i] - 0.262) > EPSILON) {       
   scaled_rpy[i] = 0.262;}       
  else if ((scaled_rpy[i] + 0.262) < (-EPSILON)) {      
   scaled_rpy[i] = -0.262;}}                     
for (int i = 0; i < 3; ++i) { d_rpy[i] = 0.8824*d_rpy_pre_1[i] + 11.76*scaled_rpy[i] - 11.76*rotation_angles_pre_1[i];}        
angular_velocity[0] = d_rpy[0] - d_rpy[2]*sin(rotation_angles_pre_1[1]);             
angular_velocity[1] = d_rpy[1]*cos(rotation_angles_pre_1[0]) + d_rpy[2]*sin(rotation_angles_pre_1[0])*cos(rotation_angles_pre_1[1]); 
angular_velocity[2] = -d_rpy[1]*sin(rotation_angles_pre_1[0]) + d_rpy[2]*cos(rotation_angles_pre_1[0])*cos(rotation_angles_pre_1[1]);    
rpy_rate[0] = angular_velocity[0] + angular_velocity[1]*sin(euler_angles_pre_1[0])*tan(euler_angles_pre_1[1]) + 
angular_velocity[2]*cos(euler_angles_pre_1[0])*tan(euler_angles_pre_1[1]);                         
rpy_rate[1] = angular_velocity[1]*cos(euler_angles_pre_1[0]) - angular_velocity[2]*sin(euler_angles_pre_1[0]);                       
rpy_rate[2] = angular_velocity[1]*(sin(euler_angles_pre_1[0])/cos(euler_angles_pre_1[1])) + 
angular_velocity[2]*(cos(euler_angles_pre_1[0])/cos(euler_angles_pre_1[1]));                   
for (int i = 0; i < 3; ++i) { rpy_1_rate_hf[i] = 0.99*rpy_1_rate_hf_pre_1[i] + 0.995*rpy_rate[i] - 0.995*rpy_rate_pre_1[i];}                    
for (int i = 0; i < 3; ++i) { rpy_2_rate_hf[i] = 0.99*rpy_2_rate_hf_pre_1[i] + 0.995*rpy_1_rate_hf[i] - 0.995*rpy_1_rate_hf_pre_1[i];}                             
for (int i = 0; i < 3; ++i) { rpy_3_rate_hf[i] = 0.9695*rpy_3_rate_hf_pre_1[i] + 0.01526*rpy_2_rate_hf[i] + 0.01526*rpy_2_rate_hf_pre_1[i];}               
for (int i = 0; i < 3; ++i) { rpy[i] = rpy_pre_1[i] + 0.005*rpy_3_rate_hf[i] + 0.005*rpy_3_rate_hf_pre_1[i];} 

double euler_angles[3] = { 0, 0, 0 };                      
euler_angles[0] = euler_angles_l[0] + rpy[0];                      
euler_angles[1] = euler_angles_l[1] + rpy[1];                     
euler_angles[2] = rpy[2];                
double actuator_1_length = 0;               
double actuator_2_length = 0;               
double actuator_3_length = 0;               
double alpha, beta = 0;                 
double p_x, p_y, p_z = 0;                   
alpha = euler_angles[0];                     
beta = euler_angles[1];                      
p_x = 0.5*cos(beta) - 0.36*cos(alpha);                     
p_y = (-0.0375/0.6)*sin(beta)*sin(alpha);                      
p_z = p_XYZ[2] + 0.74; 
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actuator_1_length = sqrt(pow((p_x + 0.5*cos(beta) - 0.6), 2.0) + pow(p_y, 2.0) + pow((p_z - 0.5*sin(beta)), 2.0)) - 0.74;          
actuator_2_length = sqrt(pow((p_x - 0.5*cos(beta) + 0.15*sin(beta)*sin(alpha) + 0.6), 2.0) + pow((p_y + 0.15*cos(alpha) - 0.25), 2.0) + pow((p_z + 
0.5*sin(beta) + 0.15*cos(beta)*sin(alpha)), 2.0)) - 0.74;              
actuator_3_length = sqrt(pow((p_x - 0.5*cos(beta) - 0.15*sin(beta)*sin(alpha) + 0.6), 2.0) + pow((p_y - 0.15*cos(alpha) + 0.25), 2.0) + pow((p_z + 
0.5*sin(beta) - 0.15*cos(beta)*sin(alpha)), 2.0)) - 0.74; 

int actuator_length_1 = (actuator_1_length * 1000);                     
int actuator_length_2 = (actuator_2_length * 1000);                     
int actuator_length_3 = (actuator_3_length * 1000);       
 if (actuator_length_1 < -60) {actuator_length_1 = -60;}      
 else if (actuator_length_1 > 60) {actuator_length_1 = 60;}      
 if (actuator_length_2 < -60) {actuator_length_2 = -60;}      
 else if (actuator_length_2 > 60) {actuator_length_2 = 60;}      
 if (actuator_length_3 < -60) {actuator_length_3 = -60;}      
 else if (actuator_length_3 > 60) { actuator_length_3 = 60;} 

//Now set the output to all actuators simultaneous     
 valuearray[sixdofarray::roll_angle].resultvalue = int(euler_angles[0]*1000);  
 valuearray[sixdofarray::pitch_angle].resultvalue = int(euler_angles[1]*1000);  
 valuearray[sixdofarray::yaw_angle].resultvalue = int(p_XYZ[2]*1000);
 valuearray[sixdofarray::longitudenal_acceleration].resultvalue = int((actuator_length_1 + 71));
 valuearray[sixdofarray::lateral_acceleration].resultvalue = int((actuator_length_2 + 71));
 valuearray[sixdofarray::vertical_acceleration].resultvalue = int((actuator_length_3 + 71)); 

// Translational reset 

for (int i = 0; i < 3; ++i) {  a_XYZ_pre_1[i] = a_XYZ[i];       
  a_H1_XYZ_pre_1[i] = a_H1_XYZ[i];       
  a_H2_XYZ_pre_2[i] = a_H2_XYZ_pre_1[i];      
  a_H2_XYZ_pre_1[i] = a_H2_XYZ[i];       
  p_XYZ_pre_2[i] = p_XYZ_pre_1[i];       
  p_XYZ_pre_1[i] = p_XYZ[i];}                       
// Tilt reset 

for (int i = 0; i < 2; ++i) { f_xy_pre_1[i] = f_xy[i];        
  fl_1_xy_pre_1[i] = fl_1_xy[i];       
  fl_2_xy_pre_1[i] = fl_2_xy[i];}   

// Rotational reset 

for (int i = 0; i < 3; ++i) { d_rpy_pre_1[i] = d_rpy[i];       
  rotation_angles_pre_1[i] = scaled_rpy[i];      
  rpy_1_rate_hf_pre_1[i] = rpy_1_rate_hf[i];      
  rpy_2_rate_hf_pre_1[i] = rpy_2_rate_hf[i];      
  rpy_3_rate_hf_pre_1[i] = rpy_3_rate_hf[i];      
  rpy_rate_pre_1[i] = rpy_rate[i];       
  rpy_pre_1[i] = rpy[i];        
  euler_angles_pre_1[i] = euler_angles[i];} 


