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Abstract 

 

The traditional closed innovation model is largely supported by a regime where intellectual property 

rights (IPRs) are used to secure monopolies over inventions, with one justification being that this 

maximises profits for future innovation. In the pharmaceutical and related healthcare technology 

industries, such a regime has been criticised as impeding access to healthcare technologies and 

hampering cumulative innovation. One response to this criticism has been a shift towards a more 

open innovation model, where more permeable boundaries between organisations facilitates the flow 

of knowledge for innovation. In such a model, IPRs may be used to facilitate such knowledge flows 

rather than solely as a means of securing a monopoly, satisfying the interests of private actors to 

profits, public interest to access advanced technology, and private-public interest to further 

innovation. In this dissertation, it is explored how IPRs, particularly as patents, may be used to 

facilitate open collaborative innovation in the genomic medicine field. This relatively nascent field 

of medicine endeavours to personalise medical decisions based on an individual's genome, but in 

order to develop the necessary technologies, requires vast amounts of knowledge on the human 

genome. Many initiatives have adopted intellectual property (IP) policies that facilitate open 

innovation so as to accelerate knowledge flows and resulting innovation in genomic medicine. Herein, 

these policies are consolidated to provide a tentative IP policy framework that supports open 

collaborative innovation in genomic medicine, against which South Africa's Draft IP policy and the 

IP policy of South Africa's leading research body, the Medical Research Council, is compared. It is 

found that whilst other countries are directly addressing the issues of patenting in genomic medicine 

through legislature and case law, South Africa is yet to take comparable actions. This is reflected in 

its vague patent laws and IP policies regarding IP in genomic medicine. Though there may be 

common elements that support open innovation between the policies of international initiatives and 

those of South Africa, the lack of clarity in the South African instruments does not provide a strong 

foundation for open innovation in genomic medicine. However, as the national IP policy is still in its 

draft phase, and this policy recognises the value of protecting public health, there may be opportunity 

to amend provisions to provide the necessary direction towards open innovation in genomic medicine, 

especially for bodies such as the Medical Research Council.  
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Chapter One: An introduction to the role of intellectual property law and policy in facilitating 

open innovation in genomic medicine 

 

I. Introduction 

International treaties such as Universal Declaration of Human Rights (1948)1 and the International 

Covenant on Economic, Social & Cultural Rights (1966),2 as well as regional instruments such as the 

African Charter on Human and Peoples' Rights3 and national legislation such as the Constitution of 

the Republic of South Africa 1996,4 have recognised access to healthcare as a basic human right, in 

which access to medicines is encompassed. As healthcare needs evolve, new branches of medicine 

emerge, and require existing aspects related to healthcare, such as models of innovation, to evolve. 

Such a branch is that of genomic medicine. 

Genomic medicine is a way to customise medical care to a person’s unique genomic makeup.5 

Genomics refers to the study of genomes; a genome is the entire collective of DNA present within an 

individual, which includes genes.6 Whilst each individual in a species has a standard genomic 

blueprint, each genome may vary structurally,7 resulting in different characteristics between 

individuals. These variations are termed genomic variants, and form the basis of genomic medicine.8 

In genomic medicine, genomic variation is examined to: 1) determine predisposition to disease; 2) 

tailor treatments accordingly; and, consequently 3) predict response to treatments.9 This informs 

personalised routes of medical care offered to patients from diagnosis of disease, to treatment and 

prognosis. The intention of developing such tailored care is to enhance efficiency and efficacy, 

thereby reducing adverse outcomes and maximising benefits of healthcare beyond what is currently 

achieved in conventional medicine.10 However, when juxtaposed to conventional medicine, genomic 

medicine is a relatively nascent field, requiring significant amount of research and development 

(R&D) before it can adequately fulfil the right to health. 

                                                           
1 Universal Declaration of Human Rights (1948) Article 5. 

2 International Covenant on Economic, Social and Cultural Rights (1966) Article 12. 

3 African Charter on Human and Peoples' Rights (1981) Article 16. 
4 Constitution of the Republic of South Africa (1996) Article 27. 

5 D M Goodman, C Lymn, E H Livingston ‘Genomic Medicine’ (2013) 309(14) JAMA 1544.  

6 World Health Organization The Ethical, Legal and Social Implications of Pharmacogenomics in 

Developing Countries (2007) (Report of an International Group of Experts) 5. 

7 Ibid 3. 

8 Ibid 5. 

9 Ibid 3.  

10 Ibid 3. 
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The fulfilment of the right to health is aided by the availability of health technologies11 as 

well as accessibility to these, as proposed by the Committee on Economic, Social and Cultural 

Rights.12 Innovation enables access to a greater range of health technologies, and is therefore 

implicated in the fulfilment of the right to health. Innovation in science is often cumulative, meaning 

that innovation is built on previous innovation or knowledge.13 Therefore, access to upstream 

knowledge and innovation is essential in driving the progression of innovation in genomic medicine. 

However, with the emergence of a globalised intellectual property (IP) regime there has been a trend 

to increase IP rights (IPRs) on such knowledge and technologies, which has received public outcry.14  

A globalised regime on IP protection has emerged from the agenda of the World Trade 

Organisation. This has been achieved by binding member states to TRIPS, which seeks to ‘reduce 

distortions and impediments to international trade’ by harmonising the protection of IPRs.15 The 

patent legislation of member states has adopted the TRIPS provisions as minima standards, despite 

the differing economic, social and political standing and interests between the countries. 

TRIPS does recognise the need of members to ‘promote the public interest in sectors of vital 

importance to their socio–economic and technological development’.16 This encompasses the 

promotion of technological innovation and the transfer of technology, to benefit producers and users, 

in a way that is ‘conducive to social and economic welfare’,17 and that balances ‘rights and 

obligations’.18 However, developing countries found that interpretation of TRIPS by developed 

countries did not promote their interests as developing countries in public health, despite its express 

provisions relating to this. Consequently, the Declaration on the TRIPS Agreement and Public Health 

(the Doha Declaration),19 which also recognises the importance of IP protection in medical 

development, emerged largely from the disgruntlement of developing countries at the WTO Fourth 

Ministerial Conference in Doha. The Doha Declaration emphasises that developing countries in 

particular should make use of the flexibilities provided in TRIPS,20 but to date, these have been used 

                                                           
11 Used as an umbrella term to include facilities, services and goods. 

12 CESCR General Comment No. 14:  The Right to the Highest Attainable Standard of Health (Art. 12) 

(2000) Article 12) Articles 12(a)–(b). 

13 Y Joly ‘Open source approaches in biotechnology: Utopia Revisited’ (2007) 59(2) Maine Law Review 391. 

14 M A Heller & R S Eisenberg ‘Can Patents Deter Innovation? The Anticommons in Biomedical Research.’ 

(1998) 280(5364) Science. 

15 Agreement on Trade-related Aspects of Intellectual Property Rights (TRIPS Agreement) (1994) 320. 

16 Ibid Article 8, 323. 

17 Ibid Article 7, 323. 

18 Ibid Article 7, 323. 

19 Doha Declaration on the TRIPS Agreement and Public Health (Doha Declaration) (2001). 

20 Ibid Article 4–7. 
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sparsely to meet public health needs. Thus, IP governance needs to evolve under a more pragmatic 

model that supports public and private interests.  

Pharmaceutical and biotechnology industries claim that patents allow for recoupment of high 

R&D costs and investment, which incentivises and stimulates further innovation in the field, which 

in turn may raise the standard of healthcare available to the public.21 However, patent monopolies are 

likely to arise, running the risk of restricted patient access and high costs of technologies. Thus, this 

rationale has received criticism and public outcry, as commentators view these healthcare-based 

industries as having a ‘unique’ ‘social contract with the public’ to produce health technologies.22 

Consequently, the United Nations responded by consolidating the obligations of non-states actors, 

namely businesses, to the right to health.23  

This claim of recouping R&D investment may be boosted in light of the consequences of 

stratification of consumer markets according to genomic sub-populations, to be discussed in the 

following chapters, and whether it is sound, it is undeniable that the costs of R&D and 

commercialisation are high. There are multiple results of patents, which will be discussed further in 

the following chapters, however, regarding innovation and access to innovation, patents have two 

possible effects: a) monopolies may be created where access to genomic medicine by patients is 

limited, and costs may be raised without competition; b) innovation in the field of genomic medicine 

may be stymied as R&D attempts are hindered by the threat of patent infringement, despite the claim 

that the promise of patenting spurs innovation. If the traditional business rationale of patenting to 

recoup investment for further innovation does in fact hinder R&D more than it promotes innovation, 

such a rationale may be untenable for the advancement of personalised healthcare. Furthermore, this 

traditional business rationale of patenting profusely so as to maximise profits invites contention 

around the issue of whether elements of the human genome, such as human genes, as shared biological 

features of all human organisms, are even patentable subject matter. 

The Human Genome Project ignited the discussion on gene patents. The Human Genome 

Project regarded the discovered genomic information as a public good, and promoted open access to 

this information. However, competing private firms sought to privatise the genetic knowledge that 

they had discovered. This issue of gene patenting were considered in the United States case of 

                                                           
21 Y A Vawda, B K Baker ‘Achieving social justice in the human rights/intellectual property debate: 

Realising the goal of access to medicines’ (2013) 13 AHRLJ 70–73. 

22 KM Lybecker ‘Social, ethical and legal issues in drug development, marketing, and pricing policies: 

setting priorities; pharmaceuticals as private organizations and the duty to make money/maximize profits’ in 

Cohen et al (eds) The Power of Pills (2006) 25–31. 

23 Special Representative of the Secretary-General Guiding principles on business and human rights: 

Implementing the United Nations ‘protect, respect and remedy’ framework, UN Doc A/HRC/17/31 (2011). 
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Association for Molecular Pathology et al v Myriad Genetics, Inc et al.24 This case concerned the 

breast cancer risk genes BRCA1 and BRCA2 (BRCA1/2) that were patented by Myriad Genetics, hence 

limiting patient access to breast cancer diagnostics based on these genes. A clear theme underlying 

this debate is: to what extent must healthcare-based companies and such non-state actors fulfil their 

unique social responsibility in lieu of their private interests to generate a profit? Clearly, a new model 

for organisational R&D is required — one that promotes what will be termed as the ‘triad of interests’: 

a) the private interest in return on investments; b) the private–public interest in rapid innovation in 

the field of genomic medicine to deliver optimal technologies; and c), the public interest in patients’ 

access to technologies in genomic medicine. A new R&D model that has been widely adopted by 

global leaders in healthcare technologies — the ‘big pharma’ — in an attempt to address the triad of 

interests, is open innovation.25 

‘Open Innovation’ is a model proposed by Henry Chesbrough where ‘firms can and should 

use external ideas as well as internal ideas, and internal and external paths to market, as the firms 

look to advance their technology’.26 This contrasts the traditional ‘closed innovation’ model in which 

R&D was retained in the internal structures of an organisation, whose boundaries remained 

impermeable.27 Essentially, Chesbrough calls for a bi-directional flow of knowledge — classified as 

either inbound, outbound, or coupled processes — through leveraging of R&D (which focuses 

significantly on rethinking traditional IP management).28 Open innovation has evolved as the 

literature and experiential evidence around it has grown, and has even extended to ‘open collaborative 

innovation’.29 Nonetheless, what is retained in these divergent views is that there are ‘distributed 

sources of knowledge for innovation’,30 a highly relevant feature of the genomic medicines industry. 

These ‘sources’, under an open innovation framework, need to network or collaborate to optimise the 

utility of their IP expanding innovation beyond the existing ‘closed’ and impermeable boundaries of 

the organisations. This could be highly beneficial to the advancement of innovation in genomic 

medicine, whilst satisfying the private interests of the entities involved.  

                                                           
24 Association for Molecular Pathology et al v Myriad Genetics, Inc, et al (2014) 569 USC. 

25 B H Raja, P Sambandan Open Innovation in Pharmaceutical Industry: A case study of Eli Lilli (Master of 

Science Thesis, KTH Industrial Engineering and Management, 2015). 

26 H W Chesbrough Open innovation: The new imperative for creating and profiting from technology (2003). 

27 H W Chesbrough & M Bogers ‘Explicating Open Innovation:  Clarifying an Emerging Paradigm for 

Understanding Innovation’ in H W Chesbrough, W Vanhaverbeke, J West (eds) New Frontiers in Open 

Innovation First edition (2014) 3. 

28 Ibid 13–15. 

29 Ibid 15–16. 

30 Ibid 16. 
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Genomic medicine has two central facets underlying diagnostic testing and personalised, 

genome–based treatment — basic research of genome sequences, function and location, and 

downstream development of genome-based diagnostic and therapeutic technologies. These facets 

may be suited different approaches to IP protection, which will be explored herein, so as to facilitate 

sustainable innovation.   Instead of using blanket approaches where IP protection is either abolished 

(such as in the public good argument), or where IP protection is too extensive to serve the interests 

of inventors (such as in closed innovation), an open innovation model may consider both the public 

good nature of genes and the value of downstream technologies as IP leverage in innovation. This 

may facilitate patient access to genomic health technologies, whilst promoting innovation in the field. 

South Africa (SA) has identified through its 2013 Bio–economy Strategy that innovations in 

emerging knowledge economies, such as genomics, may contribute significantly to the country’s 

future economy.31 However, it reports that ‘sustained performance of biotechnology companies has 

been a challenge’,32 calling for new innovation models that integrate issues, one of which it identifies 

as ‘access to global intellectual property and knowledge pools’.33 Thus, SA may stand to benefit from 

open innovation in terms of growing its biopharmaceutical and biotechnological industries, but will 

also need to create a favourable IP environment.  

 

II. Rationale and research questions 

As the field of genomic medicine is explored, it becomes apparent that rapid and significant 

innovation is needed to make available optimal technologies. However, as the contention surrounding 

access to conventional medicine and IPRs illustrates, researchers may face challenges in accessing 

knowledge and upstream innovations that are essential to advancing genomic medicine technology. 

However, as it will be explored, IPRs also have a role in the open innovation model. A consolidated, 

multi-faceted open innovation concept endeavours to expand innovation through the use of IPRs, and 

reduce the burden on healthcare entities such as companies and universities (where burdens may 

range from costs to human capital and skills), optimising the benefits to all stakeholders, including 

patients, and fulfilling the triad of interests posited above.  

 This study therefore endeavours to examine the role of IP law, policy and management in the 

open collaborative innovation model that facilitates innovation in and access to genomic medicine, 

so as to fulfil the right to health as delineated by international law. In order to achieve this, the role 

of IPRs under the traditional, closed innovation model that has received criticism for blocking 

                                                           
31 Department of Science & Technology The Bio-Economy Strategy (2013). 

32 Ibid 14. 

33 Ibid 21. 
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essential knowledge and upstream technologies is explored. This highlights, from an IP perspective, 

why there is a shift to an open innovation model that uses IPRs differently. The value of open 

collaborative innovation in genomic medicine is substantiated using existing initiatives, and it is 

examined through IP policies how IPRs are used in these initiatives to create sustainable open 

innovation. Using these policies, a consolidated open collaborative innovation policy that can be 

suited to the different aspects of genomic medicine is provided.34 This consolidated policy is then 

used as a reference in brief analysis of the amenability of major policy influences in SA to open 

collaborative innovation in genomic medicine in the country. 

 

III. Research outline 

The body of the dissertation will be constructed of five chapters, including the introductory and 

conclusory chapters. In Chapter One, the topic is introduced and the background and rationale of the 

study is presented. This is followed by a Literature Review detailing the main sources of literature — 

mainly primary works — that are relevant to answering the research question.  

 Chapter two introduces the concept of genomic medicine will be developed and juxtaposed to 

conventional medicine. This juxtaposition elucidates how R&D needs for innovation differs between 

the two, partially justifying a shift in healthcare innovation. In outlining these R&D needs, there is a 

concentration on the role of large–scale genomic research projects, such as the Human Genome 

Project, databases and biobanks in facilitating the generation of genomic knowledge that can be used 

to downstream R&D. 

In Chapter Three, the concept of a closed innovation model and how IPRs in genomics has 

traditionally been used to support his model is introduced. The public good nature of genomic 

knowledge is also explored, and the value of limiting IPRs use so as to promote access to essential 

research tools such as genome sequences is highlighted. There is an examination of various cases in 

which patents on genomic elements, such as genes, have been challenged on the basis of hindering 

future innovation and restricting patient access, providing a rationale for a shift in how IPRs is used 

to promote innovation whilst expanding access to genomic knowledge and technologies.  

 In Chapter Four, the paradigm of open innovation will be explored, with a focus on open 

collaborative innovation. The rationale for using open collaborative innovation in the field of genomic 

medicine is substantiated, and there is an exploration of the IP policies of initiatives to establish how 

IP may be used to further the objectives of openness in genomic medicine innovation. Through this 

exploration of policies, a consolidated IP policy that supports open innovation is provided,35 and used 

                                                           
34 Section II (a). 
35 Ibid. 
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to analyse the IP policy climate within the South African context, focussing on SA’s national IP 

policy and the IP policy of a leading body of research, the SA Medical Research Council.    

 The last chapter, Chapter Five, will conclude this study by listing the limitations to the study 

and recommendations for future researchers to consider. The conclusory remarks on the role of IP in 

open innovation that facilitates innovation in, and access to, genomic medicine, will be presented to 

close this chapter. 

 

IV. Literature review 

In this literature review, the major authoritative patent legislature and litigation in genomic medicine 

that illustrate the use of IPRs under a closed innovation model, and the divergent approaches to 

genome patenting adopted by various jurisdictions resulting from the lack of an international 

consensus on the matter are identified. This forms part of the substantiation for shifting to the open 

innovation model proposed by Chesbrough. Following this is an outline the evolution of 

Chesbrough’s open innovation into the model of open collaborative innovation that will be used in 

this dissertation. The various initiatives and authoritative bodies whose IP policies are used to 

highlight the groundwork that is being laid for open collaborative innovation in genomic medicine 

are then introduced. Subsequent to the introduction of these policies, it is substantiated as to why 

South African has been chosen as a focus country in this dissertation as there is a paucity of IP law 

and policy supporting open collaborative innovation in genomic medicine in the country. 

 

(a) The Global Intellectual Property Rights Regime 

A starting point for any critique of genome patenting and its effects on innovation is the TRIPS 

Agreement, which binds member states to its provisions and aims to ‘reduce distortions and 

impediments to international trade’ by harmonising the protection of IPRs in a manner that does not 

allow these rights to hamper ‘legitimate trade’.36 The two underlying principles of TRIPS include the 

National Treatment and the Most–Favoured–Nation–Treatment provisions that essentially seek to 

harmonise the protection of IPRs amongst member states by extending state provisions to nationals 

of all other states. 37   

Though TRIPS arises from a trade agenda, it also recognises the need of members to ‘promote 

the public interest in sectors of vital importance to their socio-economic and technological 

                                                           
36 TRIPS Agreement (note 15 above) 320. 

37 Ibid Articles 3-4. 
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development’, 38 which includes the public interest to protect public health.39 This is reiterated in the 

Declaration on the TRIPS Agreement and Public Health (the Doha Declaration), which also 

recognises the importance of IP protection in medical development.40 Both TRIPS and the Doha 

Declaration also emphasise the use of flexibilities to protect public health, especially regarding 

compulsory licensing and parallel licensing,41 although commentary on this suggests these not are 

not exploited, opening the avenue for new models that facilitate technological development and 

address public health interests.42 

The IPRs provisions of TRIPS are meant to be interpreted in light of its objectives of Article 

8 mentioned above, but have been criticised as being open–ended, minima standards,43 leading to 

divergent approaches to patenting in specific technological industries. Genome patenting is a 

pertinent case where it is observed that various jurisdictions have opposing views that could affect 

innovation in genomics differently. Two prominent examples are that of the US and the EU. The 

EU’s Directive on the Legal Protection of Biotechnological Inventions44 (the EU Directive) 

recognises the EU’s primary obligations set out in TRIPS, and in its preamble, takes a pro-trade 

outlook, indicating the importance of IP protection in trade and industrial development. Subsequently, 

it provides clear grounds for the patenting of biological material, including genome sequences 

isolated from humans, taking a stance that promotes maximum patent–eligibility within the 

conditions of patentability set forth in TRIPS. 45  However, the US Patent and Trademark Office takes 

an opposing stance to patenting isolated genome sequences, following the judgement of the Myriad 

case in the US, where a number of claims based on the BRCA1 and BRCA2 genes were challenged 

on the grounds that they are not patentable subject matter under section 101 the Title 35 of the US 

Code, following that the isolated genes are products of nature, and thus patent-ineligible according to 

the law at hand.46 These dissimilar provisions highlight the need for sound and clear patent law that 

                                                           
38 Ibid Article 8, 323. 

39 TRIPS Agreement (note 15 above) Article 8. 

40 Doha Declaration (note 19 above) Article 3. 

41 TRIPS Agreement (note 15 above); Doha Declaration (note 19) Article 5. 

42 K J Strandburg ‘Accommodating user innovation in the international intellectual property regime: A global 

administrative law approach’ (2009) Acta Juridica 283-318. 

43 Ibid. 

44 Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection 

of biotechnological inventions (1998). 

45 EU Directive (note 45 above) Articles 3(1), 5(2). 

46 K Sevick ‘U.S. patent office floats new biotech-friendly guidelines’ (19 December available at 

http://www.sciencemag.org/news/2014/12/us-patent-office-floats-new-biotech-friendly-guidelines), accessed 

on 15 April 2017. 
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addresses patenting of the various forms of DNA and associated molecular structures, uses of these, 

and associated methods claims.  

A review of the literature on genome patenting, in light of TRIPS, highlights the need to a 

comprehensive legal international consensus on patenting in genomics that fulfils the objectives to 

protect public health and promote technological development as set out in TRIPS and the Doha 

Declaration. However, the structure of such a consensus determines how innovation will be 

conducted, and law and policy reform should be cognisant of the emerging models of innovation that 

digress from the traditional closed model.  

(b) An Evolved Concept of Open Innovation 

In his 2003 paper, Chesbrough introduces the concept of open innovation in the firm as that based on 

inbound and outbound flow of knowledge, 47 and in his subsequent work, he evolves the concept of 

open innovation by incorporating more recent reconceptualisations, including Gassman and Enkel’s 

coupled innovation where knowledge is simultaneously inbound and outbound.48 Chesbrough 

proposes the following definition of open innovation as ‘a distributed innovation process [primarily 

of R&D spill–overs] based on purposively managed knowledge flows across organizational 

boundaries, using pecuniary and non-pecuniary mechanisms in line with the organization's business 

model’.49  

 Chesbrough then incorporates divergent views on open innovation that transgress his firm–

centric model. These views include innovations of a public good nature that arise through ‘distributed 

social division of labour’, as proposed by von Hippel, 50 particularly termed as ‘open, distributed 

innovation’ and ‘open collaborative innovation’.51 Both open innovation and open collaborative 

innovation are based on the notion of ‘distributed sources of knowledge for innovation’.52 Open 

collaborative innovation is offered as a feasible, evolved model of open innovation in genomic 

medicine by various initiatives, as commentators debate the public good nature of genomic 

knowledge,53 yet also recognise the need to incentivise private actors in collaborations. 

                                                           
47 Chesbrough (note 26 above). 

48 Chesbrough & Bogers (note 27 above; 13). 

49 Ibid. 

50 Ibid 16. 

51 Ibid 15. 

52 Ibid 16. 

53 F Huzair & T Papaioannou ‘UK Biobank: Consequences for commons and innovation’ (2012) 39 Science 

and Public Policy 501. 
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Commentators suggest that open collaborative innovation has the potential to capture value both for 

private and public actors, and to accelerate the biotechnological advancement.54  

 Though there is a relative paucity of evidence of the success of open collaborative innovation 

in genomic medicine when compared to more established open practices in industries such as the 

software industry, many open initiatives in genomics have emerged that lay the foundation for future 

insight into the success of open collaborative innovation. Two such examples are that of CAMBIA’s 

BIOS55 and the 100 000 Genomes Project (100KGP). Both these initiatives emphasise in their policies 

the crucial role of their genomic biobanks and databases in generating meaningful genomic 

knowledge and allowing for knowledge flows. 

Established in 2004, the BIOS initiative, based in Australia, seeks to use collective and 

distributed innovation to create sustainable and equitable economic and social development in the 

biological sciences. 56  Though its focus has largely been on agriculture, BIOS does recognise the 

need to address public health, and its innovation policy is worthwhile to examine as it incorporates 

an open innovation approach. Its objectives are seek not only to recognise public-good norms in the 

biological sciences, but also to ‘adapt new inclusive IP sharing mechanisms’ that do not allow the 

appropriation of public goods.57 These two objectives indicate that BIOS does not employ a narrow 

view on open innovation, and endeavours to include interests to use research tools to innovate, and 

public and private interests to capture value from innovations through dissemination of knowledge 

and technologies and commercialisation. Importantly, BIOS distinguishes between research tools and 

downstream applications,58 forming a crux of this dissertation — that research tools such as genome 

sequences should be public goods to maximise innovation of downstream technologies that need to 

be commercialised. BIOS seeks to achieve this commercialisation in a manner that does not restrict 

further access and innovation through patenting, but looks for alternative IP sharing mechanisms.  

Firstly, BIOS seeks to create an understanding of the current patent IP landscape amongst its 

users, and has created a cost–free, public–access database of patents in the EU, US, Australia and 

through the Patent Cooperation Treaty (PCT) — BIOS intends to extend the range of jurisdictions. 

Through its patent database and informatics tools, BIOS creates a means by which to guide policy 

through ‘analysis of patterns of IP development, protection and ownership’.59 BIOS favours open–
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access licensing of CAMBIA’s IP, and endeavours to identify core technologies that need to be 

developed.60 To support such development, BIOS will create a cyberspace — an internet–based 

platform where researchers and developers can communicate to facilitate open collaborative 

innovation. It is for these reasons that BIOS is a suitable candidate for the study of open collaborative 

innovation. 

The 100KGP is a genomic database established by the UK Department of Health company, 

Genomics England, in 2013, and is a key initiative discussed by the University of Cambridge’s Centre 

for Science and Policy.61 It aims to compile and own the genomic and clinical data of patients with 

specific diseases, and make these available for use by third parties either freely (if parties are 

members) or for a reasonable and fair fee.62 Though it is not directly a platform for collaborative 

innovation, as with BIOS, its IP and access policy is notable as is it more aligned to a business model 

that seeks to generate a profit for public benefit. The IP and access policy for this project is tiered: 

academic and public-sectors researchers are required to join the Genomics England Clinical 

Interpretation Partnership (‘GeCIP’), and private companies are to join the Genomics Expert Network 

for Enterprises (‘GENE’) Consortium.63 Each tier is subject to different rules on IPRs and access, and 

licensing and payments. This tiered approach considers the different roles potential collaborators 

have, that is, whether their strengths lie in generating basic knowledge or in developing this 

knowledge into commercial applications, aligning with the crux of this dissertation that an innovation 

model needs to accommodate both the public good nature of genomic knowledge and the private 

good nature of its downstream applications. The 100KGP does achieve openness through fair and 

reasonable licensing, fully/partial open–access databases, capture of social value, and dissemination 

of knowledge through management of IPRs,64 and for these reasons, is considered as a significant 

initiative in this dissertation topic.   

These initiatives provide valuable insight into the IP policies that engender openness in 

collaboration, but are restricted to the boundaries of the initiative. Policy and guidelines need to 

extend beyond an entity to a national and even international phase, as illustrated by the OECD’s 

Guidelines for the Licensing of Genetic Inventions,65 a source which ultimately provides a platform 
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for the integration and balancing of innovation, IPRs and genomic medicine. Licensing is identified 

by Chesbrough as a key element to open innovation,66 and the Guidelines discuss best practices for 

licensing genetic inventions in healthcare,67 defining ‘genetic invention’68 beyond that tackled in the 

case law mentioned above.69 It explores the value of genetic innovation (which is included in genomic 

invention) in human healthcare and economic growth,70 and explores the collaborative and 

cooperative nature of innovation. In its objective to balance the IP system, the guidelines outline 

licensing that: a) occurs in an ‘economically–rational’ manner; b) comply with competition law; and 

c), balance the ‘interests of society, shareholders and stakeholders’.71 The overarching themes under 

which ‘Principles and Best Practices’ are discussed all have a role in the structure of open 

collaborative innovation, and include: licensing generally, healthcare and genetic inventions, research 

freedom, commercial development, competition.72 Whilst the premise may seem idealistic, the 

Guidelines provide further insight and solutions where possible in the ‘Annotations’,73 and is a 

valuable foundation for national, regional or international IP policy that can foster openness in 

innovation. 

 

(c) Open innovation in South Africa 

South Africa is a developing country with the status of an emerging market and leader in 

biotechnology R&D investment, as found by Gastrow in his quantitative study of the South African 

biotechnology sector.74 However, in this study, which is partially based on patent data, Gastrow finds 

that South Africa’s biotechnology R&D profile is small by international standards, with Jordaan’s 

concurring finding that biotechnology innovation of SA as compared to other countries has been 

‘modest’.75 Furthermore, Jordaan observes an asymmetry between the involvement of the private and 

public sectors in biotechnological innovation, which has not been amended by prior policy revisions 
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such as that of the 2001 National Biotechnology Strategy or the 2013 Bio-Economy Strategy.76 As 

discussed above the current Bio-Economy Strategy sees the value of genomics in the economy, but 

reports that ‘sustained performance of biotechnology companies has been a challenge’,77 calling for 

new innovation models that integrate issues, one of which it identifies as ‘access to global intellectual 

property and knowledge pools’.78 From this statement, an open innovation model may find a place in 

building SA’s bio-economy. 

In another study, Gastrow observes that literature on open innovation focussed on developed 

countries, and addresses this by conducting a study of open innovation in the South African 

nanotechnology, biotechnology and software industries.79 He finds that whilst the biotechnology 

sector is ‘highly networked and highly collaborative’, current public policies ‘do not take sufficient 

advantage of this’, and encourages the development of public policy that supports network–

building.80 As the Draft Intellectual Property Policy of SA Phase 1 (2017)81 is still in its early stages, 

and there are no major research bodies with policies geared towards open innovation in the 

biotechnology sector, there is a window of opportunity for SA to drive its public policy towards open 

innovation.   

 

V. Research design and methods 

The design of this study is based on desktop research of primary and secondary sources. Primary 

sources include, but are not limited to, international treaties and agreements, national 

legislature/policies/strategies, case law, empirical research of journal articles and original reports, and 

patent databases. Review of secondary sources mainly involve journal articles, reports and 

commentary on cases.  
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Chapter Two: Understanding the Principles of Genomic Medicine 

 

For centuries, patents as a form of IPRs have been granted for inventions in various fields of 

technology as a reward for innovation by private parties, and as an incentive to disclose the invention 

for the sake of public interest.82 These inventions derive from the application of knowledge, for 

example, the principles of physics were applied to the invention of the aircraft. Over the years, 

knowledge has evolved, and new fields of technology have emerged. In the biological sciences, one 

such field is genomics, which is the study of the genomes of species and individuals. The genome is 

the entire DNA content found in an individual, which includes their genes — the unique set of 

instructions for the various functions and characteristics of an individual.83 Genomics has led to the 

emergence of genomic medicine — a branch of personalised medicine where medical decisions are 

based on the unique characteristics of an individual’s genome. As a relatively nascent field, genomic 

medicine requires extensive innovation that is rapid and cost-effective. Innovation begins at the stages 

of research and development (R&D), and extends through to the commercialisation of a product for 

use by the consumer.84 Traditional proprietary-based models of innovation, loosely termed as ‘closed’ 

innovation, is when a firm is responsible for the entire innovative process, and is in this way the sole 

owner of any IPRs that is applied to the innovation — this will be explained further in the following 

chapters.85 Though the closed model has reaped significant advancements in the past, industries have 

recognised the pitfalls of this type of model — namely, that it is costly and that IPRs may impede 

follow-on developments by blocking research and development (R&D) using patented technologies. 

Thus a new model of ‘open’ innovation, based on the flow of knowledge and technology that will be 

elaborated on below,86 in which IPRs could play a more conducive role in innovation and access to 

emerging technologies, may be better suited to the progression of genomic medicine.  

However, before it is understood how IPRs can be used in an open innovation model to further 

genomic medicine, the facets of the field itself will be explained, that is, what is genomic knowledge 

and what are its applications, and how has IPRs thus far been applied to these facets under the 

traditional proprietary model. In this chapter, in order to understand genomic knowledge and its 

applications, a brief explanation of the science of genomics and genomic medicine will first be 

presented. This will be followed by an exploration of the historical development of genomic 
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knowledge and its significance as a research tool in genomic medicine, and a description of the current 

structures that contribute to the generation of this knowledge. Following this understanding of 

genomic knowledge, the IPRs issues regarding genomic knowledge, and the impact this may have in 

a closed innovation model will be explored in Chapter Three. 

 

I. Conceptualising genomic medicine 

The field of genomic medicine is a relatively new concept in healthcare, although it is closely aligned 

with another field — genetic medicine — which has provided the foundation for genomic medicine. 

Similar to genomic medicine, genetic medicine is also a branch of personalised medicine. Genetic 

medicine entails the making of medical decisions regarding the treatment of a disease based on a 

patient’s specific genes.87 As discussed below, a gene for a particular characteristic can have many 

variations, such as the gene for eye colour. As it will be seen with genomic medicine, this requires 

genetic testing and therapies tailored to genetic variations of a patient. An example pertinent to 

genetic medicine would be in breast cancer, where specific variations of the breast cancers genes 

BRCA1 and BRCA2 confer a greater susceptibility to breast cancer in women.88 Genetic medicine 

has, in the past few decades, garnered much attention regarding the influence of IPRs on innovation 

in and access to the technologies of this field.89 Using the above example of BRCA1 and BRCA2, a 

landmark case emerged in the US when Myriad Genetics, the company holding the patents for these 

genes claimed that other companies who were offering commercial genetic testing for these genes 

were infringing on their patents.90 In this case, the attention centred on how these claims of 

infringement would affect the provision of genetic testing to the public, and further innovation in 

breast cancer research using the genetic data from these tests.  

Genomic medicine is also raising the question of whether the traditional, proprietary-based 

‘closed’ innovation model is sufficient to meet private and public interests. However, before 

answering whether a shift is needed in the innovation model, and how IP can facilitate this model, an 

understanding of the nature of genomic medicine and how this nature may lend itself to more ‘open’ 

innovation will be provided. ‘Open’ innovation is the flow of knowledge and technologies between 

innovation entities, changing the requirements of closed innovation from that which necessitates that 

an entity perform all the innovative activities (from R&D to commercialisation), to that which allows 
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for a networking and sharing of these activities.91 This may be valuable in a highly complex, 

knowledge-based and high technology field such as genomic medicine, and will be explored in greater 

detail in the following chapters. In this section, a brief background into the science of genomics and 

genomic medicine and its link to genetics and genetic medicine will be provided, which will be 

reiterated in the following chapter where some of the IP issues relating to genetics will be extrapolated 

to genomics. The use of genomic knowledge as a research tool in downstream applications, such as 

pharmacogenomics, is also discussed, providing an understanding that genomic medicine comprises 

of essentially two facets which may lead to different approaches under an open innovation model.  

(a) A scientific background to genomics 

As early as 1963, an Expert Committee of the World Health Organization (WHO) noted that ‘genetic 

considerations add a new dimension to public health work: a concern not only for the health and 

wellbeing of persons now living, but also for … generations yet to come’.92 In the past few decades, 

genetics and genetic medicine are fields that have been deliberated at length not only by health 

organisations, but by intellectual property authorities as well, who have considered how IPRs should 

be applied in these fields. As science progressed, genetics research was taken further, and the field of 

genomics emerged. Both these fields are based on the gene, a concept that will be explored below. 

A human being is composed of trillions of cells, each containing the same set of genes.93 A 

gene encodes the ‘master instructions to build, repair, and maintain humans’ in a cell.94 The cell uses 

these instructions to produce functional molecules, such as proteins, for specialist functions — for 

example, a liver cell will be instructed by a subset of genes to produce proteins that perform the 

functions of detoxifying ingested compounds, and a white blood cell will be instructed by a different 

subset of genes to produce antibodies proteins fight off infections.95 Essentially the gene is a molecule 

consisting of DNA — a nucleic acid made up of nucleotides, or bases.96 A single strand of DNA 

forms a structure called a chromosome within the nucleus, along which many genes are located at a 

specific locus on the chromosome. The four bases of DNA occur in sequences which may differ in 

order and length, resulting in a code; it is for this reason that genes are called ‘coding’ DNA.97 This 

variety of sequences in the genes arises in differences in the instructions given to the machinery of a 
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cell, a simple example being that a gene for blue eye colour instructs the relevant cells to produce a 

blue pigment, whereas a variation to that gene may result in a green pigment being produced. The 

roughly 23 000 genes of a typical human are found in the 23 pairs of chromosomes,98 although 

between these genes are also stretches of ‘junk’ DNA — that is DNA that has no apparent coding, 

regulatory or structural function, and is probably the result of inefficient evolution.99 Only about 2% 

of the human genome contains the genes that encode for other functional molecules such as proteins; 

100 the remaining 98% is junk DNA. As each half of each chromosome pair is received from each 

parent’s reproductive cell during sexual reproduction, genes are actually inherited and passed down 

to future generations.101 

In his New York number one bestseller, The Gene: An Intimate History, Siddhartha 

Mukherjee suggests as follows regarding the concept ‘gene’: ‘one of the most powerful…ideas in the 

history of science: the “gene,” the fundamental unit of heredity, and the basic unit of all biological 

information.’102 This is a reasonable viewpoint, as genes encode the characteristics of individuals that 

makes them different in how they look, behave and interact with their environment. These differences 

conferred by genes have been identified as the future of medicine by tailoring medical decisions based 

on the genetics of individuals. Now science has introduced the term ‘genomics’ to the concept of 

personalising medicine.103 So what is the link, and what does genomics have to offer to healthcare? 

As stated above, genes are coding regions of DNA, and genetics is primarily concerned with 

the study of these coding regions. However, the DNA of chromosomes also includes regions that do 

not code for specific characteristics (termed non-coding DNA, which includes junk DNA), or that is 

required for structural or regulatory purposes in the cell.104 A genome consists of all the DNA in an 

organisms, as introduced above, which includes coding, non-coding, structural and regulatory 

DNA.105 Though it is often confused with genetics, genomics differs subtly from genetics. Whereas 

genetics is the study of a single gene or a small number of genes and their associated functions and 

disorders, genomics studies the entire genetic constitution of an organism.106 These studies include 

identifying the structure, function, location and evolution of the genetic elements of the genome. 
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Furthermore, genomics considers the interactions of chromosomes with each other and with other 

environmental factors.107 This allows for researchers to study complex, multi-factorial diseases such 

as diabetes, cancer and cardiovascular diseases.108 The study of genomes (or ‘genomics’) includes 

understanding the structure, function, mapping and evolution of genomes, which will enable scientists 

to understand the multiple genetic factors contributing, together with environmental interactions, to 

certain diseases. 

Many developments in genomics have been made since the 1950s, and this field is still 

expanding. A critical development has been the Human Genome Project, led as a public initiative by 

the National Human Genome Research Institute.109 In the Human Genome Project, researchers 

compiled a representative genome of the human genome by sequencing and mapping the genes of 

many individuals, providing a comprehensive reference database for future research.110 Sequencing 

refers to uncovering the order of the bases in a gene, which codes for specific RNA and possibly 

proteins.111 Mapping refers to identifying the location of genes along the chromosomes so as to 

produce a ‘genetic map’.112 As Mukherjee suggests, understanding genes (and by extension, 

genomes), ‘tantalizes us with the prospect of controlling our bodies and fates’.113 However, as will 

be discussed below, understanding genomes results in the development of knowledge which must be 

regulated. This knowledge can then be applied to produce technology that has a utility for society. 

How this knowledge and these applications is governed and protected, and how this protection allows 

for the development of the field through innovation, forms the crux of this dissertation.  

(b) Understanding the nature of genomics medicine  

Human genomics knowledge has been applied to the healthcare setting, resulting in the field of 

genomic medicine, a branch of personalised medicine, as introduced above. The inherent diversity 

seen between individuals of a species can be largely attributed to variations in genes. Genetic 
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variation in humans arises from mutations and processes of sexual reproduction, where the nucleotide 

sequence of a gene may be altered.114 These processes produce gene variants, or alternative forms of 

a gene, which may alter an instruction given for a specific function, for example, a variant may 

instructs that more antibodies are produced, or may instruct for the production of a dysfunctional 

protein.115 Gene variants can be classified according to their effect, that is, they may be protective, 

neutral or risk variants.116 Risk variants increase the susceptibility to disease, whereas protective 

variants decrease susceptibility to disease. Neutral variants do not appear to provide an advantage or 

disadvantage.117 The study of these variants is the basis of genomic medicine. Some diseases are 

caused by alterations to one gene, and are called Mendelian or monogenic diseases; these are the 

subject of genetic studies.118 Others are polygenic, which means the risk variants of many genes are 

involved in disease progression.119 Often, polygenic diseases are multifactorial, i.e. there is a genetic 

component to the disease as well as an environmental component, which includes the external 

environment as well as the interactions that occur with noncoding DNA sequences and other 

molecular structures in the cell environment.120 Examples of such diseases include heart diseases, 

mental illnesses, diabetes and cancer.121 Due to the involvement of multiple genes and the cell’s 

environmental factors, which together contribute to genomic variation, genomics provides a better 

understanding of how these genetic and environmental factors interact in the cell to cause disease, as 

opposed to identifying and studying these genes in isolation to each other and other factors.122  

In genomic medicine, variations in the genome are used to optimise patient diagnosis, 

treatment and prognosis, and reduce side effects and risk of inefficiency.123  This is based on the 

premise that the diagnosed diseases have a significant genomic basis. By understanding the genomic 

component of disease progression more clearly, in conjunction with patient history, presentation of 

symptoms and laboratory testing, a more accurate route of treatment can be chosen for the patient.124 

This may involve pharmacogenomics, where a pharmaceutical treatment is administered depending 

on the genomic constitution of an individual (which may affect the response to the treatment). This 
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application will be discussed further in subsequent sections. In this way, it can be seen that genomic 

medicine has been taken a step further than conventional medicine, which has only been able to use 

presentation of symptoms, patient history and laboratory tests of non-genetic factors. This means that 

conventional medicine has had to employ blanket, ‘trial–and–error’ approaches to treatment upon 

diagnosis, an approach which runs the risk of being ineffective or toxic to the individual.125 

Additionally, genomic medicine also has a strong preventative medicine component — 

genetic testing is employed to predict the likelihood of developing a disease based on an individual’s 

genes.126 This enables healthcare professionals to design a route of preventative measures to delay 

disease onset before onset of disease; in this way, genomic medicine seeks to reduce reactive 

medicine (that is, treating a disease only upon presentation of symptoms), in favour of preventative 

medicine.127 Conventional medicine has endeavoured to develop a preventative approach to 

medicine, for instance, statins are used to lower cholesterol to prevent cardiovascular disease, but 

genomics medicine will be able to more accurately and timeously inform the preventative 

interventions strategy, with less reliance on patient and family history and presentation of symptoms, 

which may be incomplete.128   

The ultimate goal of genomic medicine is to have the patient’s genomic profile (that is, the 

data on all the patient’s genes and other genetic material) available to the physician so that a route of 

treatment can be chosen that will minimise harms and maximise benefits to the patient. Hence, it is 

apparent that genetic testing is a tenet of this approach. The development of genetic diagnostic 

technologies will have to progress simultaneously with genomic treatment technologies; that is, as 

new diseases emerge, or at least, as genes are identified that correlate with specific diseases and are 

recognised as targets in treatments,129 there must be sufficient capability to diagnose whether an 

individual possesses those specific genes responsible — the example of DNA microarrays relates to 

this and will be discussed below. A genetic test may not be confined to only direct analysis of genetic 

material, but may also include testing for a gene product like protein.130 These genes and gene 

products will then have to be available for ensuing R&D of genetic diagnostic technologies.  
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Whilst this focus on the patient necessitates the profiling of an individual’s genome, 

understanding the data of this profile requires extensive R&D. The structure, function, location and 

evolution of genes and their variants, as well as the rest of the DNA within the genome needs to be 

clarified and understood in relation to diseases. As with any scientific study, this requires large-scale 

studies in order to derive accurate and statistically significant information. This requirement 

emphasises the importance of genomic databases — databases storing the information pertaining to 

individuals’ sequenced and mapped genomes — in future medical practice. The databases, which will 

be discussed below, could also store information on the environmental factors to which a patient is 

exposed, strengthening the study of multifactorial diseases that are often the subject of genomic 

medicine.  

What is critical to note from this discussion is the nature of genomic medicine with regard to 

its two technological components: genomic knowledge (such as DNA sequences and associated 

disease risk), and the diagnostic and therapeutic technologies that emerge downstream to this 

knowledge. The examples of these are briefly discussed so as to create an appreciation for the 

essential nature of genomic knowledge in genomic medicine innovation.  

(i) Pharmacogenomics and DNA microarrays: the application of genomic knowledge 

In genomic medicine, genomic knowledge can be applied to downstream diagnostic or therapeutic 

technologies, mentioned above. The examples of DNA microarrays and pharmacogenomics are used 

to illustrate the necessity of genomic knowledge in both these types of technologies, respectively.  

 Pharmacogenomics is the study of how genomes affect a person's response to medications in 

order to develop effective and safe medications, tailored to a person's genomic makeup.131 These 

medications may be existing medications that are tested in different genomic sub-populations, or may 

be new medications that are developed using genomic knowledge. An example of this would be the 

highly popular medication used to prevent heart attacks and strokes, Plavix.132 Using knowledge on 

the variation of the gene CYP2C19, researchers realised that certain variants of this gene could not 

metabolise Plavix, resulting in the FDA issuing a warning that patients should get tested for these 

variants.133 This emphasis on genomic testing relates to the second technology, diagnostic technology. 

 Diagnostic technology may be used in a clinical setting where a patient’s genomic profile is 

captured for further use in treatment decisions, or in research studies, where, using the example of 

pharmacogenomics, the data generated may be used in the development of downstream applications. 
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However, these diagnostic technologies rely on the incorporation of DNA sequences into their 

hardware.134 An example of this is DNA microarray technology, where a collection of DNA ‘spots’ 

are placed on a solid surface. These spots are the DNA sequences of specific genes or other elements 

of the DNA that are under study, and are used to determine the expression of elements in, for example, 

disease or treatment response.135 This will help determine how the gene influences disease 

progression or responds to medical treatment.  

 These are not the only example of how genomic knowledge is essential to the development of 

downstream applications — other examples include genome therapy where the genome is altered. 

Nonetheless, even without extensive exploration of the downstream technologies, the vital 

importance of genomic knowledge as a research tool can be appreciated, and it for this reason that 

the focus of this dissertation is on the impact of IP on genomic knowledge generation and its use. 

 

 

II. Generating genomic knowledge for application: an insight into genomic databases and 

biobanks 

 

As noted above, genomic knowledge is a critical component of genomic medicine, providing research 

tools that can be applied to addressing diseases with a genomic component. The first major step in 

uncovering this knowledge was seen in the Human Genome Project and in the concurrent efforts by 

the private company Celera Genomics, under the direction of Craig Venter, to do the same.136 These 

examples are discussed below to illustrate these landmark efforts by the public and private sectors, 

highlighting the need for both, as critical in the advancement of genomic medicine. 

(a) The Human Genome: uncovering the reference genome 

The Human Genome Project was a 3-billion-dollar, 15-year public initiative,137 ‘brought about by 

‘international cooperation, scientific excellence and altruism’ which led to the production of a 

‘curated and accurate’ reference sequence for the human genome,  referring to an abstraction of the 
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typical genome of a human being.138 This led to the cataloguing of a ‘parts list ’of most human genes, 

and thus most human proteins and other important elements, integral for this understanding of system 

biology.139 The human genome thus described is a mosaic of the genomes of many research 

participants, and whilst each and every individual has their own unique genome, what the Human 

Genome Project and other similar projects demonstrated is that individuals of the human species 

shared distinct elements.140 Individuals have different variations of genes, which confer varying 

characteristics, but the location and function of these genes in a normal human profile is the same.141 

Thus, whilst genomic medicine relies on the sequencing of an individual’s genes, it is the ‘master’ 

information on gene location and function provided by projects such as the Human Genome Project 

that allows for the holistic application of this sequencing data in genomic medicine. However, the 

information provided by the Human Genome Project alone is not sufficient for the translation of 

genomic data.142 Further data needs to be collected especially on gaps left in the Human Genome 

Project, such as undiscovered variants, and experimental analyses needs to be conducted to 

adequately annotate the genome (that is, to indicate the particular gene variant sequenced in the 

genome, the chromosomal environment, and the functional implications of these factors on the 

production of downstream molecules).143  

 Genomic medicine focusses on genomic sub-populations that are characterised according to 

their genomic variation. In both conventional medicine and genomic medicine, studies have statistical 

power when the sample sizes of the studies are large enough. The statistical power of a test in a study 

is the probability that the test will correctly detect a difference, if the difference actually exists.144 
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However, due to the blanket, ‘one–size fits all’ nature of conventional medicine, this is much easier 

to achieve — often study cohorts are selected from a provincial or national region. In genomic 

medicine, variations in genes and possible other factors that affect genome function stratify research 

samples into variant sub-populations. This may mean that research has to extend to a national or 

global scale to achieve significant statistical power.145 Additionally, research that is performed at a 

global level could identify links between diseases and smaller genomic sub-populations — links that 

may otherwise remain undetected in smaller scale research. To facilitate such genomic research, as 

seen in the Human Genome Project, ‘a powerful new set of research tools, resources and supporting 

technologies’ is needed.146 This includes not only sample data, but also ‘highly sophisticated, 

substantial database infrastructures’.147 Therefore, countries and global consortia have created 

mechanisms like genomic biobanks and databases to collect, store and use genomic data samples. 

Essentially, these databases contain upstream technologies (or research tools) which will facilitate 

innovation in downstream technologies such as pharmacogenomics.  

 The Human Genome Project followed an open approach to data sharing and used open source 

software.148 The international cooperation and altruism of this project has been praised by those who 

maintain that genomic data should be placed in the public domain and should not be privatised.149 

 Proponents of this stance maintain that the human genome is part of the common human 

heritage and belongs to all people, and should be made freely accessible to the public.150 This claim 

will be explored further in the following chapter. However, much has to be said about the privately–

run human genome project led by Craig Venter and his team in Celera Genomics. In 1998, Venter 

started Celera Genomics and announced that his company would also sequence the human genome 

using a different, newer sequencing technique, as he felt the efforts of the Human Genome Project 

was too costly and was taking longer than necessary.151 Unlike the Human Genome Project, Celera 

intended to privatise its genome sequences granting access to these data only to paying customers, 152 

and through patenting roughly 100–300 genes that were important to drug development, although 
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approximately 6 500 place-holder patent applications were initially filed (and later relinquished).153 

As this was contrary to the public-spiritedness of the Human Genome Project, the race was on to 

complete the sequencing of the human genome.  

 In the beginning of 2000, both Celera and the Human Genome Project made a joint public 

announcement that they had each completed a working draft of the human genome, although there 

were still gaps to be filled by both contenders.154 This announcement was made together with the 

joint declaration by US President Bill Clinton and British Prime Minister Tony Blair that all genome 

information should be free to the public.155 In 2001, the Human Genome Project published its findings 

in Nature, with Celera publishing its findings a day later in Science.156 By 2003, The Human Genome 

Project had completed its final draft of the human genome, and Celera agreed to make its sequences 

available for non-commercial use, although it limited the amount of data that could be downloaded 

at any given time.157 Unfortunately, in 2002, Venter was removed from his presidency at Celera, and 

pursued improving the application of personalised medicine through sequencing his own genome 

with a slightly different goal to Celera or the Human Genome project.158 Whereas Celera and the 

Human Genome Project concentrated on sequencing one chromosome of each pair of chromosomes 

in the complete set, Venter decided to sequence both chromosomes in the 23 pairs.159  

 This entry of a private competitor may well have galvanised the efforts of the Human Genome 

Project, suggesting that private entities could have a necessary role in creating sustainable models to 

undertake extensive, time-consuming and costly R&D needed before genomics medicine can become 

a primary route of medical care.160 As stated by Venter, ‘business is the way to drive science forward, 

and people are finding there’s no difference in the goals or outcomes, because for science to impact 

society, it has to be economically viable’.161 Celera and the Human Genome Project ran parallel to 

each other, yet it is likely that they influenced the accomplishment of each other’s goals. It is possible 

that creating a symbiosis between the public and private domains through an open innovation model 
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could accelerate the field of genomics medicine even more. This will be explored further in Chapter 

Four. However, before exploring the innovation model that may accelerate the field, the aspects that 

individually contribute to the development of genomic medicine are identified in the following sub-

section. 

(b) Genomic databases and biobanks: creating research tools for innovation 

When considering that the roughly 23 000 genes of the human genome is only about 2% of the 

genome,162 and considering the multitude of diseases implicated in genomic medicine, it is not 

difficult to acknowledge the amount of R&D that will be needed to develop this medical field. This 

R&D will require an extensive amount of genomic data and samples from which this data can be 

obtained. The infrastructural requirement to capture and store such data and their associated samples 

may be ‘huge’.163 It is likely that it is on these grounds that biobanks and large genomic databases 

have secured a place in the field of genomics research. 

 Biobanks are repositories of samples from living organisms, which are used in studies to 

generate information that is stored in databases. This may include genomic data on gene variants and 

other genome-related molecules, as well as non-genomic data such as environmental factors and 

epidemiological information, all of which may have a bearing on genomic variation to influence 

disease progression.164 These structures are usually based in a regional or national population, for 

example, the Framingham Heart study is based in Framingham, Massachusetts, and more large-scale 

initiatives have been established, such as the UK Biobank, the National Biobank of Korea,165 the 

Estonia Genome Project and the Icelandic Health Sector Database.166 However, as it will be discussed 

below under global consortia, efforts are being to globalise these databases and biobank-related 

research through networking.  

 Both biobanks and databases are ‘huge infrastructural development[s]’, and necessitate 

‘ongoing governance and management for sample collection, storage and use’.167 As raised by Huzair 

and Papaionnou, regarding the UK Biobank, there is the question of ‘who should invest to support 

pharmaceutical innovation…and serve the public interest.’168 Currently, approximately 60% of 
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sponsors for biobanks are government institutions,169 yet pharmaceutical companies benefit from 

these resources by developing commercial technologies from their related studies. The CAMBIA 

BIOS initiative170 recognises the distinction between the tools for innovation generated by biobanks 

and stored in databases, and the products of innovation, such as the downstream applications of 

diagnostics or therapeutic technologies, often produce by private actors.171 This initiative seeks to 

create an open, networking platform that addresses how IP may be used in open innovation in 

biological sciences, including genomics. This type of networking between public and private actors 

endeavours to alleviate the challenges of the substantial time, investment, research participation and 

expertise that is involved in creating and applying genomic knowledge so as to ‘fully to address all 

of the complexities of the common disease risk’.172 Collaborative initiatives involving biobanks and 

databases, including CAMBIA BIOS,173 are explored in Chapter Four to assess how their IP policies 

and structure contribute to open innovation in genomic medicine. 

 

III. Conclusion 

WHO states that ‘in the long–term, [information generated by genomics will] have major benefits for 

the prevention, diagnosis and management of many diseases which hitherto have been difficult or 

impossible to control.’174 It is for this reason that special attention should be given to the progress and 

development of genomics, which includes innovation in genomic medicine and access to its 

technologies.  

 Genomic medicine requires the genomic profile of an individual in order to inform medical 

decisions. This profiling requires genomic testing, but a profile alone cannot aid in directing medical 

decisions if the significance of genomic variants in disease progression is not understood. Thus, an 

understanding the complexity of the human genome is critical. The development of genetic 

technologies used to understand human genes is not a new endeavour, however the human genome, 

in all its complexity, poses a more complicated, and possibly more expensive challenge. A projection 

of the costs of sequencing an individual genome shows that there has been a dramatic decline in the 

cost, starting at roughly $100 million in 2001, to approximately $1000 in 2015.175 This is promising, 
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however if the resulting genomic knowledge is protected by IPRs, further R&D may be expensive —

this is discussed in the next chapter. Furthermore, to fully annotate the human genome and develop 

downstream technologies, significant expertise is needed. Thus, biobanks and genomic databases as 

components of larger networking initiatives, could be critical structures in accelerating research, 

whilst addressing these issues of cost and capacity.  

 It is for this reason that a better model that facilitates access to research tools for innovation 

in downstream applications should be developed and employed. Intellectual property will have a role 

in this model, which should allow for both open collaboration and maintaining a sustainable industry. 

Thus it is important to answer the questions of who should own such genomic knowledge, and how 

can IPRs be used to facilitate R&D in genomic medicine for further innovation. These questions will 

be discussed in the following chapters on: a) IPRs pertaining to genomic knowledge; and, b) the open 

innovation models of biobanks and databases that facilitate innovation in genomic medicine. 
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Chapter Three: understanding the current IP landscape in genomic medicine 

 

‘Light bulb moments’ are synonymous with an ingenious, innovative idea. However, innovation is 

not just a moment; it is a process of many stages. A simplified innovative process begins with an idea, 

discovery or emergence of new knowledge. These are then used in the design of new technologies, 

which may occur by tying in old knowledge or inventions, by experimental trial-and-error, or both. 

Following the invention of the new technology, the technology has to be marketed and 

commercialised so as to create a consumer market, satisfy this market, and, regarding profit-driven 

entities, generate a profit. If the technologies are health-related, there may be an additional, regulatory 

step prior to commercialisation. This multi-step process can be laborious and expensive depending 

on how many steps an entity controls.  

 In traditional closed innovation, an entity will control the entire process, incurring significant 

costs. IPRs then play an important role in securing financial gains for the inventors by limiting the 

amount of competitors in the market. In this way, securing markets captures value for the inventors 

from the invention. Thus, an important aspect of closed innovation is the protection and management 

of IP. However, there has been a shift in the innovation models of certain industries, particularly in 

the biotechnology and software industries.176 Escalating costs and burden of resources, which will be 

discussed further in Chapter Four, are compelling actors in certain industries to limit their activities 

to fewer steps in the innovation chain.177 This division of the innovation chain falls under the model 

of open collaborative innovation, which will be explored in the next chapter. However, this shift does 

not make IPRs obsolete. In fact, IPRs now adopt an additional role to being an incentive to invent 

and reward — the role of being an incentive to network with another entity to gain external knowledge 

for one’s own innovation chain. 

 However, especially in the health-related industries of pharmaceuticals and biotechnology, 

IPRs, especially in the form of patents, have received criticism for two broad effects: blocking further 

innovation, and hampering consumer access through trade barriers.178 The latter will not be discussed 

herein, as this would require discussion that is too extensive for this dissertation. Instead, the impact 

of IPRs on innovation will be explored. Through this exploration it will be ascertained how the current 

IP regime, which has been used to support a closed innovation model, could hinder scientists in 

accessing upstream technologies for further innovation and so reduce both the scientific progress for 

public benefit and potential economic gains of the related private sector. The discussion will focus 
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on patents as these are the main form of IPRs used by biotechnology and pharmaceutical industries. 

It will be assessed whether patents on parts of the genome (such as gene sequences and non-coding 

DNA) should be allowed under international and national patent law, considering the value of this 

knowledge as research tools and the nature of this knowledge as a public good. Using this assessment, 

the amendment of patent law and how these amendments may facilitate open innovation between the 

public and private sectors will be recommended.   

.  

I. A brief understanding of patents  

Intellectual property refers to ‘creations of the mind: inventions; literary and artistic works; and 

symbols, names and images used in commerce’.179 Intellectual property rights, in the form of patents, 

copyrights and trademarks, are rights to ownership of intellectual property, and are enshrined by 

Article 27(2) of the Universal Declaration on Human Rights which states that: 

 

‘Everyone has the right to the protection of the moral and material interests resulting from 

any scientific, literary or artistic production of which he is the author’.180 

 

 Patents are government-granted privileges that provide exclusive rights to the patent holder 

to make, use, sell and trade in the patented invention within a particular jurisdiction,181 usually for a 

term of 20 years.182 An invention, as stipulated by Article of 27(1) of TRIPS, is that which is: a) novel 

(it does not exist in prior art, which is the body of existing knowledge); b) non-obvious (or inventive, 

as termed some jurisdictions), meaning that it is not obvious to a person skilled in the art to create the 

invention from prior art; and c), useful or capable of industrial application.183 Patents may apply to 

products, processes of manufacture or uses of an invention.184 

 Patents operate under a quid pro quo system — they seek to reward the inventor through 

exclusive rights that will enable him to recoup the costs of inventing, but also for the obligatory 

disclosure of his invention to the public in a sufficiently detailed manner so as to enable a person 

skilled in the art to replicate in the invention.185 With this knowledge, others may apply for a licence 
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to use the invention within the patent term, ‘invent around’ the claims of the patent, or choose to use 

it once the patent has lapsed.186 Thus, this information may be used in further innovation that makes 

a greater range of technologies available for public consumption, and in doing so, may significantly 

boost economic activity.187 As set out in Article 7 of TRIPS to be discussed below, the objectives of 

IP protection are as follows: 

 

‘promotion of technological innovation and to the transfer and dissemination of 

technology, to the mutual advantage of producers and users of technological 

knowledge and in a manner conducive to social and economic welfare, and to a 

balance of rights and obligations.’188 

 

 This disclosure through patents is juxtaposed to trade secrets, which are based in private law, 

where information of an invention is not publically disclosed, preventing the public from using this 

information in further innovation until the trade secret is shared either through private contract or 

unauthorised disclosure.189 In this scenario, information may remain undisclosed for an indefinite 

period of time, which would not support further innovation. Contrary to this, patents attempt to 

balance the social cost of exclusion to use an invention with the social benefit to information about 

the invention for further use and innovation. However, contention arises as to whether patent law 

does actually achieve this balance, and whether patents do not in fact ‘deter’ innovation.190 This 

debate, particularly in the context of genomic medicine, will be explored in the following sections. 

 

II. The impact of patents on genomic medicine: a focus on genomic knowledge 

The impact of patents on access to technologies by researchers and consumers has been widely 

debated over the past decades, especially after the rise of human-rights based litigation challenging 

pharmaceutical patents.191 Whilst patents have an economic justification as a reward for the labour 

and costs incurred by inventors, these also have the potential to create monopolies that prevent access 

to patented technologies, stifling further innovation along the innovation chain. 
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 On the note of research, genomic technologies are heavily reliant on upstream research tools, 

such as DNA sequences, for their R&D. This was illustrated in the examples of DNA microarrays 

and pharmacogenomics in Chapter Two. As critical research tools, the privatisation of these 

sequences through patents may result in their underuse, a phenomenon described as the ‘tragedy of 

the anti-commons’ by Eisenberg and Heller.192 Furthermore, DNA sequences form part of a critical 

facet of genomic knowledge, which some argue is a public good that should not be privatised.193 The 

effect of patents on genomic medicine innovation will be discussed in light of these two arguments. 

 

 (a) Genomic knowledge as a public good 

As proposed by Clark and Turner, ‘knowledge is at the heart of innovation’.194 This is exemplified 

by the biotechnology industry, which is a knowledge-based industry where knowledge is derived 

from research and developed into applications.195 Both the knowledge and the applications capture 

not only social value from use in health systems, but also financial value from IP protection and 

consumer markets (where for-profit entities are concerned). In genomic medicine, the foundational 

knowledge is that of genomic variants and their role in disease progression. Such knowledge, as 

research tools, has allowed for a plethora of downstream applications in diagnostics and therapeutics 

to emerge, justifying the above statement by Clark and Turner.  However, knowledge is also regarded 

as the archetypal public good,196 and the human genome may be regarded as our ‘common human 

heritage’.197 As such, genomic knowledge regarding the genome sequences may be considered as a 

public good, which should benefit the public and not be privatised — this will be explored below. 

 The nature of goods as public or private has been defined by politics and economics. In a 

political sense, public goods are defined as ‘interests or goods which are associated with a multiplicity 

of people or communities’.198 Though this dissertation focuses more on the economic ramifications 

of IP on genomic medicine innovation, this political definition cannot be discarded as genomics 

relates to it in two ways: a) research projects like the Human Genome Project require several groups 
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of participants from different communities in order for the research to be translated into effective and 

viable applications that address multiple interests groups, for example, analysing the variations in the 

genome across ethnicities could highlight which ethnic groups are more susceptible to onset of certain 

diseases; and b), in such public initiatives, the involved scientists and related personnel may come 

from many different national background and sectors. Therefore, groups have argued that the human 

genome (as genomic knowledge) is a public good, and because it is shared amongst people and 

inherited through generations, is also part of the ‘common human heritage’.199 The Human Genome 

Organisation (HUGO) Ethics Committee Statement on Human Genomic Databases is one such 

proponent, taking the view that such databases are ‘global public goods’, and so should be treated as 

public resources to promote the access and flow of information.200 It is for this reason that these 

groups argue against patenting the parts of the human genome, such as DNA sequences. This is a 

strong argument, but fails to evaluate genomic knowledge as a tool in the innovation process. 

Certainly the sentiment of a ‘common human heritage’ calls for unhindered access to genomic 

knowledge, but this fails to address how innovation can be derived from genomic knowledge sans the 

traditional incentive of IPRs. Thus, the economic definition of private and public goods must be 

applied to genomic knowledge to evaluate to what extent this knowledge should reside in the public 

domain or be privatised.  

 From an economics perspective, public goods are non-excludable, meaning that no person can 

be ‘effectively excluded from using the good’.201 Public goods are also non-rivalrous, meaning that 

the use of the good by one person does not reduce the availability of the good for use by another.202 

Knowledge is considered the archetypal public good,203 but this stance is evolving as throughout the 

decades, knowledge, and not merely the applications deriving from knowledge, have been subjected 

to privatisation by patents, making such knowledge excludable. Indeed, holding knowledge as a trade 

secret excludes others from using it, and so knowledge may not actually be a pure public good. In 

this case, where a good is excludable and non-rivalrous, it is considered as a ‘club good’.204  

 Biobanks and genomic databases, specifically those associated with consortia, as mentioned 

in Chapter Two, govern common pool resources, that is, samples are rivalrous (they can be depleted 

or be made unavailable through use), but are intended to be non-excludable (available to all 

researchers, often pending research approval). However the knowledge that is generated, which 
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includes genomic knowledge, is non-rivalrous and does not necessarily have to be excludable.205 In 

many cases, public (or semi-public) biobanks and databases endeavour to protect the non-

excludability of knowledge, that is, the knowledge generated from research on the samples is kept in 

the public domain for others to access.206 This is mainly because samples from which this knowledge 

is obtained are donated by the public, and so the public interest to access this knowledge and avail it 

for future beneficial innovation is considered.  

 However, generating knowledge, especially in risky and high-technology fields such as 

genomics, is expensive, and so it is unrealistic to assume that continued production of genomic 

knowledge will continue without a means to guarantee a profit. Public initiatives and government 

intervention shoulder these costs to keep the knowledge in the public domain to satisfy all interests 

to access and demand, but looking at the cost of the Human Genome Project, listed in chapter two, it 

may be unwise to rely on these for the future of genomic research. This does not necessarily mean 

that privatisation of genomic knowledge is the solution, as will be discussed further on, although the 

private sector may have access to greater resources for the generation of genomic knowledge. Thus, 

what may be needed are collaborations between the private and public sectors where genomic 

knowledge is generated in the public domain and used to develop technologies for privatisation. As 

biobanks and related consortia already face the dilemma of whether the privatisation of the 

downstream technologies, derived from public participation should be condoned,207 what is needed 

are clear IP policies on genomic knowledge, downstream innovation and collaboration. However, as 

policy is informed by law, patent law, which will be discussed below, is critical in determining 

whether genomic knowledge remains in the public domain, and how it is used as research tools if it 

is privatised. The impact of patents on genomic knowledge as a research tool will be discussed below. 

 

 (b) The tragedy of the anti-commons: the underuse of genomic knowledge as research tools 

As drawn from the Ligand Pharmaceuticals v. La Jolla Research case,208 research tools have 

significant impacts on basic research activities and on commercial treatment discovery. Science 

innovation is a cumulative process where inventions or knowledge are constantly improved or used 

to create new inventions.209 For this to occur, scientists need to be able to access and use the inventions 
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or knowledge generated by others. Premarket, upstream research yields knowledge that can be used 

as research tools in the further development of a technology. Genomic knowledge, such as sequences 

of coding and non-coding DNA regions, is valuable as research tools and a foundation for further 

innovation in genomic medicine, for example, gene sequences can be used in creating DNA 

microarrays for genome testing as discussed in Chapter Two. 

 Biomedical research, which includes pharmaceutical and biotechnology research, has 

traditionally existed in the public sector,210 with universities as prolific hubs of research. Governments 

frequently funded such research, especially at universities, and the results were placed in the public 

domain through publication.211 However, in recent years, the promise of such research to yield 

profitable products has been recognised, and a shift has occurred in universities to patent the products 

of their research and not only to publish their results. Some countries even have legislation that 

supports this, such as the Patent and Trademark Law Amendments Act (commonly referred to as the 

Bayh-Doyle Act)212 in the US and the Intellectual Property Rights Act in South Africa,213 possibly to 

encourage accelerated growth of sectors — these will be examined below. This shift towards 

privatising knowledge that may otherwise have existed in the public domain potentially reduces the 

access and use of important upstream resources — a phenomenon called ‘the tragedy of the anti-

commons’.214   

 In their article, Eisenberg and Heller propose the ‘tragedy of the anti-commons’ in biomedical 

research.215 The tragedy of the anti-commons derives from the contrasting proposition of the ‘tragedy 

of the commons’. The latter was a theory proposed by ecologist Garrett Hardin which states that 

people overuse resources they commonly own to satisfy their self–interests, which results in the 

depletion of the resource, contrary to the common of all users,216 for example, communal land may 

be farmed excessively. This occurs because there are no private rights to protect how the resource is 

used, and is analogous to tangible goods, such as biological samples, placed in the public domain.217 

Thus, to protect common resources from overuse and exploitation, private rights to these resources 

were granted in hopes of conserving these resources. Knowledge has been included as a resource that 
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requires protection, but as it will be substantiated further on, knowledge cannot be depleted as it is 

used, nullifying the justification that knowledge should be privatised to conserve it. 

 The tragedy of the anti-commons posits that at present resources have been privatised too 

extensively, preventing access to these resources, and effectively underusing them. This is not limited 

to the patenting activities of universities, but these entities are prolific hubs of premarket, upstream 

scientific research, and are usually publically-funded. This proposed tragedy underlies the rationale 

for the Bermuda Principles218 signed by the Human Genome Project consortia to place primary gene 

sequences in the public domain, discussed in chapter two. In this way, the consortia sought to 

maximise the use of this basic scientific resource, and so was jolted by Celera’s threat to privatise 

their own corresponding genomic research.219  

 In biomedical science, including biotechnology, Eisenberg and Heller propose that extensive 

patenting leads to ‘patent thickets’, that is, when many patents are held for a particular technology.220 

In order to access this technology for use in R&D or in a clinical setting, the potential user would 

have to gain licenses for a number of patents, or risk infringements.221 This may be a time-consuming 

and expensive task, and may deter R&D and use of the invention. Furthermore, where there is 

fragmentation of patents, that is, each of the many patents on a technology are held by multiple 

holders, license negotiations may be more arduous and costly, and there is no guarantee that every 

patent holder will agree to licensing out their patent.  

 In the context of biotechnology, the tragedy of the anti-commons can be discussed in terms 

of concurrent fragments and stacking licenses. Concurrent fragments of IPRs refers to when multiple 

patents required for a technology are held by many different patent holders, requiring extensive 

licensing agreements to avoid infringement. Eisenberg and Heller propose that as more patents exist 

for a technology, the risk of infringement increases, and it is more likely to deter potential 

innovation.222 This is of particular interest in genomic diagnostic and therapeutic technologies, whose 

R&D require multiple gene sequences to be used simultaneously. Using the example of genomic 

microarray technology for diabetes, if a microarray for this multifactorial disease was to be 

developed, many genes of the genome, and possibly non-coding regions, would be required to 

develop the technology. If each of these genes and non-coding regions are patented, a developer 

would have to negotiate multiple licenses before being able to develop the microarray technology.223 

This may be a formidable task in terms of time and costs, and could deter the envisioned innovation. 
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Additionally, depending on the contract of the licenses, selling and use of the microarray technology 

may be subject to additional royalty payments, as it will be discussed below under stacked licenses. 

 A particular incident highlights the challenge of concurrent fragments in genomic 

technologies. In 1991, the (National Institutes of Health) NIH filed patents for expressed sequence 

tags (ESTs), which are gene fragments that signal how genes are expressed, and are used in genomics 

to identify genes and families of genes, and map these.224 Unlike with the case of Myriad Genetics 

discussed below,225 the outcry was not necessarily that gene sequences were being patented, but that 

the function of these ESTs were largely unknown.226 As ESTs were correctly thought to be powerful 

research tools in genome analysis, patenting these ESTs potentially had the effect of hindering 

efficient genomic research as in many cases ESTs were not yet corresponded to their particular genes, 

and even if they were, the patents would prevent further R&D in the absence of licenses. The NIH 

abandoned their attempt to patent these tools, although private firms continued to patent ESTs and 

genes whose function were unknown.227 In the development of genomic technologies for genomic 

medicine, patenting many ESTs and their associated genes could hinder R&D for a particular 

application, for example the microarray for diabetes, as licenses for each of the multiple ESTs and 

related genes may be needed before R&D can ensue.228 This further translates to the use of the 

technology, which will be discussed under stacking licenses. 

 A stacked license is that which goes beyond the patented, licensed research tool to the ensuing 

downstream technologies.229 In many cases, research tools enable the development of valuable 

commercial technologies, but because the research tool may not be directly be incorporated into the 

technology, the patent holder of the research tool does not reap the downstream value his tool helped 

create. An example of this would be in pharmacogenomics, where genomes sequences would be used 

to research a medical treatment, but the actual sequences are not in the medication. In this case, patent 

holders of the sequences will only receive a once-off payment by licensees for use in research, and 

will not reap the commercial benefits of the medical treatment. A stacked license is a creative attempt 

to transfer some of these benefits of patent holders of upstream technologies. An example of a stacked 

license is a reach-through licensing agreement (RTLA).230 An RTLA gives the patent holder rights to 

the downstream technology developed by the licensee.231 These rights may be exclusive or non-
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exclusive licenses to use the technology (to be explained in Chapter Four), and/or royalty rights. 

Where the RTLA stipulates exclusive licensing to the licensor, future innovation or use of the 

technology may be blocked as licensors now have bargaining power over the downstream technology, 

which may fall beyond the scope of their actual patents.232  

 However, RTLAs do provide a potential loophole to pursue otherwise costly research — 

licensors may only ask for a small upfront fee in anticipation of receiving royalties on the downstream 

technology, instead of asking for a larger, once-off payment for the license and receiving no further 

royalties.233 This simplifies the initiation of the R&D by the licensee. Although where a downstream 

technology requires many research tools, and thus incurs multiple RTLAs, this may not be a feasible 

solution, especially if the expected commercial value is low, as may be the case in stratified markets. 

In this case, royalties must be paid to many licensors, and is termed ‘royalty stacking’.234 Cetus 

Corporation attempted to stack royalties on all products developed from their licensed technology 

called polymerase chain reaction, an integral technology in genome analysis, but was met with 

resistance.235  

 A particular challenge arises in negotiating licenses in genomic technologies due to the nature 

of the upstream research tools and technologies. Genes and non-coding regions of the genome, which 

are critical components of the research into and hardware of diagnostic and therapeutic technologies 

of genomic medicine, are non-substitutable. This exponentially increases the bargaining power of 

patent holders, who may hold out on licensing until satisfactory terms and conditions are applied. 

Furthermore, it is difficult to successfully ‘invent around’ DNA sequences, especially if the patent 

claims are broad.236 Using the example of the human erythropoietin protein in the case of Amgen, Inc 

v Chugai Pharm Co,237 the claims to the erythropoietin protein (traded as EPOGEN) were broad, as 

it covered any ‘purified and isolated DNA sequence consisting essentially of a DNA sequence 

encoding human erythropoietin’, which would include chemically synthesised DNA and naturally-

occurring DNA. These were found by the court to be valid and infringed by Chugai Pharm Co, forcing 

competitors to ‘invent around’ the product claims, for example the private company Hoffman–La 
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Roche chemically altered its erythropoietin protein by conjugating it to another compound.238 

However, as Roche still uses the DNA sequence in producing the erythropoietin protein prior to 

conjugation, Amgen sued the company,239 and Roche was ordered by the district court not to import 

its product to the US.240 As mentioned in the above section, infringement may be avoided by public 

sector researchers using research or experimental exemption, although this is not always clear. 

Additionally, if a technology resulting from such research were to be commercialised, and if it is clear 

that patented technology was used, inventors run this risk of infringement, as will be discussed under 

the Myriad case.241  

 These examples illustrate the tragedy of the anti–commons, but Heller and Eisenberg do 

concede that privatisation through IPRs may fortify the incentive to undertake risky and high–

investment research, and could allow for the distribution of profits more equitably as the rights clearly 

delineate who is to reap according to what he has sown.242 Furthermore, there are means to circumvent 

the challenges of multiple negotiations. Developers have the option of employing experienced and 

knowledgeable lawyers to expedite the negotiation process, however, this is only feasible if the 

developers have the financial means to do so. Compulsory licenses, whereby the government instructs 

that the patent–holders to grant the developers the right to use the patented technology, may also be 

used.243 The debate on the effectiveness of compulsory licensing is extensive, and will not be 

discussed here, but what is noteworthy is that it is a measure to be used only after negotiations with 

the patent owner have failed, 244 and it is relatively rarely used, so it may not be an effective 

solution.245  

 Moreover, there is the argument that there is little evidence that the anti–commons is 

prevalence problem that will persist in biomedical sciences. Whilst Gold observes that in the 

pharmaceutical industry, there are fewer new medications produced each year, which he attributes to 

heightened patenting,246 in Kaplan’s review of studies on the anti–commons effect, he finds there is 
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little conclusive evidence on the existence of this tragedy in the biomedical sciences.247 Heller and 

Eisenberg note that private arrangements have been created to reduce the potential obstacles of 

multiple, overlapping IPRs, and such arrangements include bundling of licenses, clearinghouses and 

patent pools, as well as practicing non–exclusive licensing, all of which are discussed further on.248 

As these become more established in the industry, negotiating licenses may become simpler, enabling 

wider use of the patented resource. The feasibility of such arrangements will be explored further in 

ensuing sections. 

(i) Merck and the SNP Consortium: the private sector’s attempts to counter the anti-

commons 

As mentioned above, IPRs owners may devise an arrangement to alleviate the obstacles of 

privatisation. And so, although private actors are often accused of placing profit before public interest, 

contributing to the perceived anti-commons at the expense of further innovation, this is not always 

the case, as demonstrated by the following actions of private actors. One such action, important event 

in the timeline of genomics development, is that of the Merck Gene Index. In 1994, Merck, a private 

pharmaceutical company, together with the Gene Sequencing Center at Washington University, 

initiated a project to identify gene sequences and place these in the public domain.249 Four years later, 

over 800 000 gene sequences had been released into the public domain where any interested 

researcher could access the data.250 This move was not purely philanthropic, although it did enable 

open access to the data.251 By building this database in the public domain, Merck effectively 

prevented other entities from privatising the same knowledge, meaning that Merck would not have to 

enter into license negotiations as a licensee and incur license and transaction costs.252  

 The success of this pre-emption in bolstering genomic research prompted further initiatives, 

such as the SNP consortium, where eleven pharmaceutical companies and the Wellcome Trust 

collaborated to share data on research into genome variations called single nucleotide polymorphisms 

(SNP) and disease associations.253 Though the data was placed in the public domain, the consortium 

initially filed patents to protect data that was at high risk of being patented by other entities. These 
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patents were then abandoned once the consortium placed the data in the public domain. This is a good 

example of IP strategy used to protect genomic knowledge.254  

 These two examples illustrate  how valuable genomic knowledge is for commercial prospects 

— companies are willing to forgo IPRs and enter into collaborations to protect their interests to 

innovation down the line, and so openness is not only a model for public actors to share their scientific 

endeavours and avail it to the public for use. These collaborative efforts between private and public 

entities could be regarded as a foundation for openness in the genomics world, and more recent 

initiatives will be explored in the following chapter.  

 

(c) IPRs on publically-funded technologies: the private rights granted to genomic knowledge 

generators 

The anti-commons is by no means restricted to the patenting activities of large companies in the 

private sector. Publically-funded entities, such as universities and research institutes, biotechnology 

start-ups and non-profit organisations are prolific generators of genomic knowledge, and as such, may 

contribute to the anti-commons through their own patenting activities. As these entities are often 

driven by state-funding, it is questioned whether the results of their research should not be placed in 

the public domain to be used for the benefit of the public. Two ground-breaking additions to national 

legislature were made regarding this question in the US and SA with the Bayh-Dole Act255 and the 

IPR Act256 respectively. These statutes changed the IP activities of publically-funded entities to 

promote the ownership of inventions by these entities rather than the state. By granting universities, 

small businesses and non-profit organisations rights to their state-funded inventions, these Acts 

endeavour to encourage these entities to transfer their technologies from the laboratory to the market 

through commercialisation, as governments may not have the resources to commercialise all the 

projects they fund.257 In this way, the tragedy of the anti-commons and underusing inventions is 

lessened as inventions are commercialised for utilisation by the public.258 Importantly, the goal of 

such legislation is to promote scientific progress by unifying the policy on government-funded 

inventions. As these two Acts share many similarities, they will be discussed simultaneously below 
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to determine how they may influence the privatisation of genomic knowledge and the collaboration 

between private and public sectors. 

 In the US, two of the objectives of the Bayh-Dole Act are: 

 

‘to promote collaboration between commercial concerns and non-profit organizations, 

including universities; to ensure that inventions made by non-profit organizations and 

small business firms are used in a manner to promote free competition and enterprise 

without unduly encumbering future research and discovery’259 (emphasis added) 

 

 Though these objectives are not explicitly stated in the IPR Act, the provisions of the IPR Act 

mirror those of the Bayh-Dole Act that seek to address these objectives.  

 In section 202(c)(3) of the Bayh-Dole Act, the above-mentioned entities are required to patent 

any state-funded invention that they intend to own and commercialise.260 The IPR Act also stipulates 

that IP must be protected from appropriation, although it does not explicitly state that this must be 

done through patenting.261 It is assumed that a patent encourages commercialisation as it secures a 

market for the entity, and it also allows for the dissemination of knowledge through disclosure and 

licensing. Concerning licensing, both Acts stipulate that priority must be given to small businesses,262 

with the IPR Act preferring non-exclusive licensing.263 The Bayh-Dole Act states that the state must 

be granted a non-exclusive, irrevocable, non-transferrable, paid-up license.264 This is mirrored by the 

IPR Act, which stipulates that an irrevocable, royalty-free license must be granted to the state.265 

 Through these licensing provisions, it seems that the objectives of collaboration between the 

two sectors, and free competition and enterprise is being promoted. Furthermore, under the Bayh-

Dole Act, if entities agree to license these inventions, royalties have to be shared with the state, and 

a percentage has to be invested to further scientific R&D, thus attempting to satisfy the second 

objective listed above.266 The IPR Act also calls for a portion of the resulting revenue to be allocated 

for further scientific development.267 However, for these licensing provisions to be effective in 
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transferring technology from the laboratory to market, small businesses must be able to 

commercialise these technologies maximally. The sentiment of collaboration between state-funded 

entities should not rule out the possibility that larger private actors may more effectively achieve the 

objective of utilising the invention. Though the Bayh-Dole Act does not lean towards the involvement 

of larger private entities through its provisions, the IPR Act does recognise that: 

 

‘A private entity or organisation may become an exclusive licensee of intellectual 

property emanating from publicly financed research and development undertaken at an 

institution if such private entity or organisation has the capacity to manage and 

commercialise the intellectual property in a manner that benefits the Republic.’268 

 

 Thus, whilst the Bayh-Dole Act makes collaboration an objective, it is actually the provisions 

of the IPR Act that may allow for more feasible collaborations for the commercialisation of 

technology. Therefore, policy on state-funded inventions should encourage collaboration that 

encompasses a diversity of actors so as to provide an even more regulated approach to openness.  

 As universities, biotechnology start-ups and non-profit organisations are primary contributors 

to the generation of genomic knowledge, it could be assumed that, in the absence of clear patent laws 

regarding DNA sequences and uses in research methods, which will be discussed below, these entities 

may ring-fence valuable knowledge needed for downstream applications by other entities through 

patenting. Whether this has indeed been the case requires further research beyond the scope of this 

dissertation.  

 In their study, Huang and Murray find that gene patenting decreases public genetic 

knowledge, an effect that is exacerbated by increasing patent scope, private sector ownership, thickets 

and fragmented patent ownership.269 However, Eisenberg and Heller do acknowledge the potential 

role of privatisation in upstream research, noting that it ‘fortif[ies] incentives to undertake risky 

research projects’.270 Furthermore, Kaplan observes that ‘there is little empirical evidence that an 

anti-commons problem is impeding innovation’.271 These diverging viewpoints on the pervasiveness 

of the anti-commons tragedy suggest that as yet patents can neither be absolved of their posited 

impediment to innovation, nor can they be prohibited on the basis of the anti-commons. Rather, it is 

recommended that more industry- and sector-specific research be conducted regarding the anti-
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commons effect created by the patenting upstream research tools such as genome sequences, which 

will be discussed below. 

 

III. Patenting Genome Sequences 

When Celera announced its intent to patent the genomic sequences it uncovered, the Human Genome 

Project responded by accelerating its efforts so as to win the race and place its reference genome in 

the public domain (as elaborated on in the previous chapter). Since this race, patenting of genes has 

garnered global attention, with a simultaneous rise in litigation against DNA patents, mostly in 

developed countries. Indeed, in the US, there was a motion to pass the Genomic Research and 

Accessibility Act, which would end patenting of genes.272 The number of DNA patents, on full or 

partial sequences, has increased over the years in the countries producing the most biomedical 

innovations. Thus GeneWatch UK noticed an upward trend in gene patenting in the UK.273 However, 

investigators analysing gene patenting in the US should observe a decline in gene patents since the 

judgement of Myriad274 where patents on natural DNA sequences were declared non-patentable (to 

be discussed below). These discrepancies arise from the fact that international and national patent 

laws are either not clear on the subject of DNA patenting, or that they are not aligned. The laws on 

these research tools will affect the IP policies created for open innovation initiatives by consortia 

involving biobanks and genomic databases, as well as downstream developers, and will be explored 

in Chapter Four. Thus, the legal instruments — in particular, TRIPS, and the national or regional 

patent laws of the US, the EU and SA— as well as relevant litigation on DNA patenting and further 

innovation will be examined. Based on this, recommendations on how these laws can be amended so 

as to facilitate IP policies that align with open innovation principles will be made. 

(a) Examining international patent law: the TRIPS agreement 

The examination begins with an international legal instrument, the TRIPS agreement, which binds 

162 member states, and thus has a significant influence on the global landscape of IPRs. The standards 

provisions of patents, relating to patent term and invention criteria, enclosed in TRIPS have been 

outlined in the above section. Though TRIPS seeks to harmonise IP law across states, the language 

of certain provisions allows for flexibility in interpretation. The most pertinent of such provisions to 

this discussion of DNA patenting are those of Article 27. Whilst Articles 27(2) and (3) allows 
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members to exclude certain subject matter from patentability, it is neither specific in its exclusions, 

not are member states obliged to do so. Indeed, methods of diagnosis, therapy and surgery of humans 

may be excluded, but this in itself does not exclude diagnostic or therapeutic genomic technologies.275 

The gene patent debate more likely hinges on the interpretation of Articles 27(1) and (2). Where 

Article 27(1) states that there may be no discrimination in the fields of technology on what is 

patentable,276 two overarching stipulations apply that may be used to challenge patents in genomic 

technologies. Firstly, the invention claimed must fulfil the criteria of inventiveness, novelty and 

industrial application.277 Litigants have challenged human gene patents based on these grounds. 

Secondly, members may exclude inventions from patentability if they are contrary to public policy 

or if the inventions protect human health.278 Considering the global public good nature of genomic 

knowledge, discussed above, it may be seen as contrary to public policy to patent genes as inventions. 

A second argument could be made that it is contrary to public health to patent basic science that is 

critical as a research tool. 

 Article 8, which outlines the principles of TRIPS, grants members the freedom to adopt 

measures that ‘protect public health’, ‘promote the public interest in sectors of vital importance to 

their socio-economic and technological development’, and ‘prevent the abuse of intellectual property 

rights by right holders’.279 In light of these freedoms, the national/regional patent law of the US, the 

EU and SA, the choice of which has been justified in Chapter One, will be examined. These laws will 

be explored with reference to the landmark precedent set by the US Myriad case280 that led to a 

revision of United States Patent and Trademark Office (USPTO) guidelines.281 

(b) The role of Myriad in patent office practice 

Myriad Genetics is a US-based molecular diagnostic company that held patents for the breast cancer 

genes, BRCA1 and BRCA2. Under the prior USPTO guidelines, genes were patentable as they were 

regarded as ‘compositions of matter’.282 The company offered testing for the variants of these genes, 

some of which are associated with higher incidences of breast and ovarian cancer in women, but was 
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not the only provider which used these genes in their diagnostic testing. In the ensuing litigation, 

Myriad challenged competing providers in attempts to secure a monopoly over the diagnostic 

service.283 This began with litigation against OncorMed284 and the University of Pennsylvania285 that 

forced both competitors agreed to leave the commercial testing market and created a monopoly over 

the testing for these genes by Myriad. In this instance, the use of the genes in non-commercial research 

was not challenged. The risks of a monopoly are that: a) costs of services or products can be raised; 

b) logistics may hinder patient access; c) the company can deny access to goods; d) there is less 

incentive for a company to improve on the existing technology;286 and, e) all the information about 

the gene variants is controlled by one entity, which is not necessarily unbeneficial if the company has 

interests in maximally developing this information. The threat of these risks led to the landmark case 

Association for Molecular Pathology v Myriad Genetics, Inc287 where a precedent was set regarding 

the patentability of naturally-occurring DNA sequences,288 which led to a revision of the USPTO 

guidelines.289 

 In the above case, the plaintiff, the Association for Molecular Pathology (AMP), challenged 

many claims of the BRCA1/2 patents, including the validity of patenting gene sequences, diagnostic 

methods claims and drug screening claims. Of particular interest to this chapter is the validity of gene 

patents as patentable subject matter, based on §101 of Title 35 of the Unites States Code (regarding 

patent law) which states that: 

 

‘Whoever invents or discovers any new and useful process, machine, manufacture, or 

composition of matter, or any new and useful improvement thereof, may obtain a patent 

therefor, subject to the conditions and requirements of this title.’290 

 

 The plaintiff argued that the patents restricted research for clinicians and limited scientific 

progress, which is at the heart of this discussion. Additionally, the plaintiff argued that the patent 
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made it impossible for patients to receive second opinions, and they were subjected to high costs of 

the testing service. The defendant, Myriad Genetics, countered that the ‘isolated sequences’ were 

analogous to other chemical compounds, which were patentable under the USPTO provided they 

were novel and thus different from sequences found in the body. Myriad argued that the isolation 

procedure sufficiently altered the chemical composition of the isolated sequences. Patent law is the 

US, in line with the guidelines of TRIPS (to be discussed below) excludes laws of nature from patent 

eligibility, and the Supreme Court judges in the Myriad case cited Diamond v Chakrabarty in 

determining whether the isolated genes had ‘markedly different characteristics from any found in 

nature’.291 It was found that merely isolating and purifying the two genes did not markedly alter their 

genetic information, and these patents did not claim for ‘new compositions of matter’, and were thus 

ineligible.292 This led to a revision of the USPTO guidelines, which states that ‘examiners should now 

reject product claims drawn solely to naturally occurring nucleic acids or fragments thereof, whether 

isolated or not’.293  

 Another claim that was challenged by the plaintiffs was the sequences to cDNA 

(complementary DNA) of the above genes. Genes contain regions that are coding and non-coding, 

called exons and introns, respectively.294 The introns do not code for the gene’s functional product 

(such as a protein), but are involved in the regulation of gene expression in the cell. In a laboratory 

setting, these introns are unnecessary and removed to form cDNA — a refined form of the isolated 

DNA.295 As with natural DNA sequences, cDNA is also an important research tool, often used in 

place of naturally-occurring sequences, as introns may be redundant to the research.296 On this matter, 

the judges found that cDNA is ‘not a “product of nature”’, and must be created in a laboratory by 

removing intron sequences, and thus it is patent eligible according to US patent law.297 However, it 

must be pointed out that whilst cDNA is produced by removing intron sequences, this is mirrored by 

machinery in the cell that creates templates of the DNA to be used in making the final product, such 

as a protein.298 These templates are also void of introns sequences, these having been removed by the 

cell machinery. Thus, it is felt that this step is part of existing knowledge and an obvious step, and 

should render cDNA patent ineligible. 
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 Nonetheless, the judgement on naturally-occurring DNA sequences has been celebrated by 

the public and scientific community. A key feature of this case is that the judges recognised that 

patent protection must balance creating incentives for innovation, and should not ‘imped[e] the flow 

of information’ that might lead to innovation.299 Furthermore, they highlighted that Myriad could not 

rely on that fact that it was the practice of the patent office in the past to grant gene patents.300 This 

is a promising stance that invites reconsideration of what may be an outdated system for genomic 

technologies, as it has already been incorporated into the USPTO guidelines. 

(ii) Patenting methods of using research tools: the GTG controversy on non-coding DNA 

Literature on DNA patenting has focussed on gene patenting, and little attention has been placed on 

the patents of non-coding DNA (as explained above, DNA that does not form genes, which code for 

cell processes). Non-coding DNA is also being recognised as a valuable diagnostics research tool in 

genomic medicine as it enables the identification and analysis of genes that may be associated with 

diseases. Recent cases have emerged with a leading firm in non-coding DNA research, Genetic 

Technologies (GTG), and have highlighted the function of non-coding DNA sequences in identifying 

gene sequences.  

 Non-coding sequences and genes are linked, which means that they are inherited together. 

Therefore, to identify a specific genetic variation, one can look for the non-coding region, which is 

often a shorter sequence, rather than looking for the longer gene sequence.301 In many of the GTG 

cases, the company claimed that other pharmaceutical and biotechnology firms were infringing on 

their patented methods of detecting genes using the non-coding DNA, such as in the US case of 

Genetic Technologies Ltd v Merial LLC.302 Here the Federal Court used the two-step test for patent-

eligibility. In the first step they determined whether the disputed claim was directed toward patent-

ineligible subject matter, and found that GTG’s patent was ‘directed toward a law of nature’— that 

is, the linkages between the non-coding and coding regions of DNA was naturally-occurring — which 

is a patent-ineligible concept.303 In the second step, the court assessed whether an inventive concept 

was used that sufficiently transformed the patent-ineligible law of nature into a patent-eligible 

application.  
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 The court found that the steps of ‘amplification and analysis of the amplified [non-coding] 

DNA’ did not constitute an inventive concept, as these steps were ‘well-known, routine and 

conventional’ activity.304 Furthermore, the court found that analysing the non-coding DNA to detect 

the coding region was a mental process, which is regarded as patent-ineligible because ‘computational 

methods which can be performed entirely in the human mind are the types of methods that embody 

the basic tools of scientific and technological work that are free to all men and reserved exclusively 

to none’.305 Thus, the patent was declared invalid under 35 USC s 101,306 setting a precedent for 

methods that use non-coding DNA as a research tool for genomic analysis.307 However, this only 

applied in the US. Other countries have not yet raised the issue of patents on non-coding DNA 

sequences or how these are used, leaving GTG as a chief patent-holder in non-coding DNA 

technology. Additionally, the patenting of the sequences was not been challenged as in Myriad,308 

although it is likely that non-coding DNA will be treated the same as naturally-occurring isolated 

gene sequences. This is because the only difference between these two structures is their function, 

not their chemical structures. Thus, these implications for gene patents would hold for non-coding 

DNA sequence patents as well. 

 GTG, as such a leader in non-coding DNA technology, is in a prime position to expand its 

licensing potential globally. Unlike with the Merck Gene Index,309 GTG seeks to capture value 

through licensing patents to increase their revenue for further projects, even extending licensing to 

academic institutions who stand to benefit commercially from their R&D using non-coding DNA.310 

However, in light of the Genetic Technologies case (and similar litigation), it is questionable whether 

its patents are necessarily valid. If these patents are not valid, GTG’s extensive licensing, costing 

from $75,000 for commercial firms, is an expensive obstacle in the R&D cycle of firms and academic 

institutions.311 Nonetheless, in the absence of legal precedent and clarity in the patent law, GTG is 

primed to expand its licensing program with private and public entities engaged in genomic research. 

Mervyn Jacobson, executive chairman of GTG says that the licenses for academic institutions are a 

flat license arrangement of $1 000, which is minimal, and that GTG tries ‘to be helpful to publicly 
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funded organizations’.312 Future research will determine whether this approach is indeed beneficial, 

or if the GTG extensive licensing program needs more development under an open innovation 

paradigm, assuming GTG will not adopt an open access approach like Merck and that patent law or 

case law will not address the patent-eligibility of non-coding DNA sequences or the methods of gene 

detection in which they are used.313  

(c) Examining the patent law of the EU and South Africa 

The above cases, and those that were used in deciding their judgements, have set precedents in the 

US. However, not all jurisdictions concur with these guidelines, as seen in the EU. Under the EU 

Directive on the legal protection of biotechnological inventions, inventions are still eligible to patent 

‘even if the structure of that element is identical to that of a natural element’, such as isolated DNA.314 

As products of nature, these were recognised as ‘basic tools of scientific and technological work’ 

beyond patent protection in Myriad, which were required for future innovation.315 The Directive holds 

the view that private business interests and public health interests should be considered, and 

acknowledges that high-risk investment in the fields related to genomics must be rewarded to 

encourage further investment and industrial development, without creating barriers to trade.316 

Although the Directive does acknowledge the need to protect public health,317 which may be a 

gateway should a situation arise where genome patents threaten the interest of the public in genomic 

healthcare technologies, its current provisions allow genome sequences (natural, isolated or cDNA) 

to be privatised and kept out of the reach of the public domain, which may not favour open access, as 

envisioned by certain open innovation practices. However, open innovation does not rely on open 

access alone, with licensing of IP an integral part of certain practices under this paradigm. Therefore, 

at least with these clear legal guidelines, IP policies that favour open innovation may still be more 

easily developed as opposed to countries that do not have clear guidelines, such as SA.  

 SA is an example of a country that, despite adopting Article 27(1) of TRIPS in its Patents Act 

No. 57 of 1978318 (hereafter the Patents Act), does not apply the subject patentability criteria of 

novelty, inventiveness and utility when granting patents. The European Patent Office, on the other 
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hand, follows Article 3 of the EU Directive which lists these criteria. Unlike in the US, the SA patent 

authority does not issue guidelines that are used to assess patentability, so it could well occur that 

patent claims on naturally-occurring DNA sequences or otherwise may slip under the radar, left to be 

challenged in the courts. Nonetheless, this is not entirely ominous as this deficit of direction leaves a 

space to develop patent law, judicial guidelines or policy that could call for the proper application of 

the invention criteria (as will be discussed in Chapter Four under the national IP policy of SA). It is 

suggested that firstly, SA draws on the judgement of Myriad319 to exclude naturally-occurring DNA 

sequences, isolated or not, and defines what is ‘markedly different’ to nature, and in the process 

reviews the decision made on cDNA. Secondly, SA should employ a search-and-examination system 

where the patent authorities will grant a patent based on the criteria of novelty, inventiveness and 

utility. This will be explored under SA IP policy reform in the next chapter. By implementing these 

measures, SA and other countries that follow suit, may create a healthier IP environment for open 

innovation initiatives. 

 Certainly, when looking at global consortia, such as the SNP Consortium or the Human 

Genome Project, international harmonisation regarding patent law and policy is favourable, 

regardless of the innovation model they employ. TRIPS is in an ideal position to initiate this, given 

the number of signatories, its objective to harmonise patent law, and the fact that its provisions were 

adopted into legislation in several countries. Commentators argue that perhaps the World Intellectual 

Property Organization (WIPO), free from the trade agenda of TRIPS, is a better platform for issues 

of intellectual property harmonisation.320 An international consensus on patent law and policy would 

ease the task of global consortia in advancing genomic health. However, as already seen by the 

contrasting provisions between the USPTO guidelines and the EU Directive, such a consensus on 

genomic issues, especially DNA patenting, may be challenging. Furthermore, natural genome 

sequences are only one aspect of the genomic research tool arsenal. As highlighted in the Myriad 

judgement, a distinction can be made between man-made and naturally occurring sequences, although 

this is also contentious. Additionally, a lack of IPRs may discourage discovery of these research tools 

in the private sector, placing the task on the public sector, which may lack the necessary resources. 

IP law may need to evolve to encompass these issues before solid IP policies of open initiatives can 

progress smoothly to address public and private interests in innovation.  
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IV. The benefits of patents on the human genome 

In the above sections, the potential of patents on genomic knowledge to hinder scientific progress, 

however this is a one-sided perspective has been explored. Patents may also have a valuable role to 

play in managing the flow of information and optimising the use of knowledge. These benefits will 

be discussed under Burk’s theory of patents as data aggregators, and under the practice of licensing 

in open innovation. 

 Burk theorises that patents on technologies that contribute to genomic knowledge application, 

such as genomic testing technologies, act as data aggregators.321 In his theory, Burk posits that as 

patents can restrict the number of gene/genome testing providers, data resulting from these genetic 

tests will accrue within fewer companies’ databases. Myriad Genetics is a good example of this as by 

monopolising the genetic testing of BRCA1/2, it received all the data on the possible variants and 

associated disease information from its patients. As genomic medicine is tethered to the in-depth 

understanding of these variants, Burk suggests that patents allow for the data to be coordinated at one 

point (in the case of single provider) rather than being dispersed among competitors as incomplete 

pockets of data. Thus, he proposes that the amount and diversity of useful data held by a firm 

decreases as more competitors enter a market, in the absence of licensing agreements and networking, 

leading to reduced innovative output.  

 In a closed innovation model, a patent monopoly favours data aggregation, but limits the R&D 

capabilities of other interested researchers who do not hold the patent rights through licensing. In 

open innovation, the flow of knowledge will require either open access to data or extensive licensing, 

both of which will be discussed in Chapter Four. Patents are integral to licensing, as these are licensed 

out or in, and in this way technology is transferred and a profit may be generated. Currently, licensing 

practices are modelled under a closed innovation approach, but are essential in Chesbrough’s open 

innovation model to be explored in Chapter Four. But patents are not only a passive means of securing 

profits through monopolies or licensing, but are also used as indicators of a firm’s expertise and 

potential.322 This is particularly relevant to Small and Medium Enterprises (SMEs) who may 

proactively use patent portfolios to attract the partnership or investment of large corporations, or may 

establish themselves as prolific innovators from whom large companies can buy the patented 

technologies or agree to licenses.  This is especially the case in cross-licensing,323 where SMEs (or 

any actor) can use their IPRs as a form of leverage. In all these cases, IPRs are used to confer a 
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competitive advantage.324 Furthermore, the evolution of these inter-firm relationships could pave the 

way for more open models of innovation using IPRs and strengthening the pro-IPRs stance largely 

adopted by the private sector of the biotechnology and pharmaceutical industries. The use of IPRs in 

open innovation through licensing will be discussed in the following chapter.  

V.  Conclusion 

Genomic knowledge generates critical R&D tools, such as DNA sequences, for downstream 

innovation in genomic medicine, but this knowledge, despite it being argued that it is a public good, 

may be privatised through IPRs such as patenting. This necessitates licenses for further innovation, 

which may be costly and difficult to negotiate, especially where a patented technology incorporates 

claims to many research tools, or where innovation requires multiple research tools held by different 

patent holders (concurrent fragments). Using the Myriad325 case as precedent, some may argue that 

patents on DNA sequences should be prohibited, and whilst this is sentiment is shared by the author, 

the lack of clarity from TRIPS, and the conflicting views of jurisdictions may not enable a global 

transition to this provision. Furthermore, although these measures will open up these critical research 

tools for further innovation, these will not enable value capture for private interests groups, as these 

research tools alone are merely chips of knowledge that need to be translated into useful, commercial 

medical technologies. What is needed is a governance mechanism that promotes innovation in 

genomic medicine and ‘maintains a balance between the global public goods characteristics of 

genomics knowledge and the private goods nature of its application’.326 This mechanism, facilitated 

by coherent IP law and policy on patenting and licensing in the public and private sectors, needs to 

allow for the ‘continuous circulation of knowledge’ for downstream innovation.327 

 Innovation systems need to be constructed so as to ‘create and distribute benefits from a public 

resource without being captured through patents and private appropriation of value’.328 There should 

be an innovation system that does not rely on patent monopolies and excessive license fees, but in 

doing so, does not minimise the economic profits to potential ‘research partners’ of biobanks and 

public initiatives to that which is unappealing and unsustainable. Thus private actors must be 

incentivised to produce public goods, that are not rendered excludable by IP, or public actors must be 
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supported to undertake risky, high investment ventures.329 One means of doing this would be to 

nationalise IP at market prices, which means that privately–owned IP would be sold to the state and 

the IP would exist under state control and become a public asset. This provides private actors with a 

more dependable source of profit in lieu of profiting off their patents, and allows the state to use the 

IP as a public good to meet the demands of the concerned sectors. The 100 000 Genomes Project, 

which is explored in the following chapter, employs a similar structure where a state–owned company 

largely controls the publically– or privately–generated IP developed from the genomic information it 

holds. 

 This model has economic ramifications that may affect the subsequent willingness of the 

private sector to engage in this type of arrangement where IPRs are traded for a dependable income 

source, however, these ramifications are beyond the scope of this dissertation. Instead what this 

arrangement emphasises is the centralisation of IP ownership. As the state concerns itself with 

meeting public demands, it is a prime candidate to act as a governing body over the relevant IP. 

However, the state may not be the only actor capable of coordinating IP through ownership — 

independent, private initiatives also have this capacity, such as with the BIOS initiative to be explored 

in the following chapter. Ideally what such centralisation offers is a control over how knowledge 

flows are created, fostering an environment for partnerships or networks between public and private 

actors that have similar R&D goals but different interests.330 Rischard331 summarises the potential of 

networks below as follows: 

 

‘On our increasingly small and interconnected planet…global problems cannot be solved 

within any one nationstate. They call for collective and collaborative action….The current 

international system is simply not effective enough – or at least fast enough – to solve 

these problems.’332 

 

 Though Rischard is referring to networking between nations, and Dowdeswell et al333 use this 

in support of government-led networks (for legitimacy and accountability), the latter agree that the 

potential of this system could be extrapolated to public-private sectors networks as well (which 

involve international organisations, non-governmental organisations, corporations, and other 
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interested parties), such as BIOS,334 although this requires further substantive evidence. These 

networks require a flow of knowledge and technology, facilitated by a model such as that of open 

innovation. In the following chapter, open innovation in genomic medicine will be explored, and the 

openness of the IP policies of three genomics-related initiatives that involve the public and private 

sectors will be compared. 
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Chapter Four: The role of IP policy on open collaborative innovation in genomic medicine 

 

As proposed by Peter Drucker, an eminent management theorist of the 20th century, ‘The corporation 

as we know it is … unlikely to survive the next 25 years. Legally and financially, yes. But not 

structurally and economically’, as the economy becomes based in rapidly evolving knowledge.335 

Companies operating under traditional internally-focussed, closed innovation models — in which 

producers control the entire innovation chain, from discovery to marketing, and act in isolation336 — 

are realising that this business model is becoming obsolete337 as it struggles to produce and use 

knowledge at sufficient pace, leading to declining R&D productivity and competitive advantage.338 

This has led to the concept of ‘openness’ in innovation, which relies on strategic alliances based on 

strengths, and models where knowledge can rapidly flow to enhance productivity and 

commercialisation of innovation. In this chapter, the concept of open innovation, focussing on open 

collaborative innovation as framed in Chapter One will be discussed. This will be followed by a 

discussion on the shift from closed to open innovation models in genomic medicine, drawing on the 

arguments made in Chapter Three to highlight the role of IPRs in this shift. In the next section, the 

various IP policies of collaborative initiatives, as substantiated in Chapter One, will be consolidated 

into a comprehensive IP policy that promotes open innovation. The Draft Intellectual Property Policy 

of SA Phase 1 (2017)339 and the SA Medical Research Council’s (MRC) IP policy340 will be examined 

in juxtaposition to the consolidated IP policy on open collaborative innovation.  

 

I.  The principles of open innovation in genomic medicine 

(a) The foundation of open innovation: purposive knowledge flows 

Science has traditionally been associated with the ‘ideal of free and open dissemination of scientific 

knowledge’ that enables cumulative innovation by producers and users of inventions.341 However, as 

industries emerged and grew, the interest arose to capture value from scientific pursuits for future 
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innovation and to satisfy investments. As knowledge was recognised as the heart of innovation and 

competitiveness,342 and a firm’s competitive advantage stemmed from its ‘unique knowledge and 

how it manage[d] that knowledge’343 industries sought to control knowledge and resources in the 

innovation chain, from discovery to commercialisation to avoid incurring external costs for resources 

and skills, and to secure monopolies and fees from licensing.344 This control required the boundaries 

of the firm (or other profit–seeking entities) to be closed and impermeable; knowledge and innovation 

was kept within the firm, and was sourced in as this would require the firm to enter costly licensing 

agreements, whose upfront payments or royalties would reduce the profit margins of the firm.345 

Especially in the past few decades, IPRs, as discussed in Chapter Three, have dominated the 

innovation landscape as means of creating competitive advantage and capturing value through closing 

the boundaries of an entity,346 and IP policies based on patent and contract law have been integral in 

the business model of profit-seeking entities, as well as the models of public-based organisations that 

seek to capture social value of healthcare, such as medical research councils or national biobanks, or 

initiatives, such as the Human Genome Project. Additionally, IPRs are not only a passive means of 

securing profits through monopolies or licensing, but are also used as indicators of a firm’s expertise 

and potential.347 This is particularly relevant to SMEs who may proactively use patent portfolios to 

attract the partnership or investment of large corporations, or may establish themselves as prolific 

innovators from whom large companies can buy the patented technologies or agree to licenses. 

 However, arguments have been raised that enclosing scientific knowledge is contrary to the 

communalism ideal of science mentioned above,348 and that a new model of innovation is needed that 

balances the ideals of science with the private interests of participants. This model should allow for 

the dissemination of knowledge and technology, aligned with the principles of international 

instruments such as the Universal Declaration of Human Rights349 or the TRIPS Agreement,350 to be 
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used for further scientific pursuit. For knowledge to flow optimally, the boundaries of entities have 

to be permeable, leading to the model of open innovation. Before the potential of this model is 

explored, open innovation has to be defined within the context of this dissertation. In Chapter One, 

the open innovation model that will be explored has been outlined, and will be elaborated on in this 

section.   

 The concept of open innovation is based on the principle that knowledge relevant for 

innovation is abundantly dispersed outside the firm, and external knowledge can be used to improve 

internal innovation.351 A strong public knowledge base is highlighted as a factor promulgating the 

shift to open innovation,352 as the abundance of external knowledge that will be available to 

competitors is extensive. Knowledge–based economies are suited to open innovation and the nature 

of knowledge itself supports openness — whereas physical goods are protected from overuse by 

privatisation, as discussed under the tragedy of the commons, knowledge is intangible and non–rival, 

that is, it can be reused and applied to generate increasing returns without being diminished.353  In 

this way, knowledge can flow easily between entities and be used without creating obstacles of access 

for each entity. For example, two diagnostics firms may use the same gene information to 

independently develop diagnostic technologies, and the knowledge will still be available for further 

use. This is juxtaposed to a scenario where two soft drink companies have to compete for an 

exhaustible supply of water. This concept of purposive in–flows and out–flows of knowledge is based 

on the work of Henry Chesbrough, as discussed in Chapter One. Chesbrough delineates open 

innovation as being inbound or outbound, with knowledge being internalised from external parties, 

or outsourced to external parties, respectively.354 Synonymous phrases used to describe such flow of 

knowledge include outside–in and inside–out, respectively.355 In the following sub–section, the 

means by which knowledge flow is created in the firm–centric open innovation model envisioned by 

Chesbrough will be described, and further on the evolution of this model beyond the firm to a more 

collaborative approach between a variety of actors will be explained. 
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(i) Inbound and outbound licensing  

Licensing is a means of creating knowledge flow, and knowledge may be licensed in from an external 

source, or licensed out. Generally, IP is licensed out by a licensor to a licensee for a fee, although in 

a cross–license, each party acts as a licensor and a licensee, trading in IP licenses. Licensing incurs 

transactions costs, and high upfront fees or royalties, which may be prohibitive to the practice. The 

OECD addresses best licensing practices in its Guidelines for the Licensing of Genetic Inventions 

(Guidelines)356 (to be discussed below under the section on the consolidated policy framework). 

There are three types of licenses, each dictating the number of potential licensees and third party 

involvement: exclusive, semi–exclusive and non–exclusive. In an exclusive licence agreement, the 

licensee has exclusive rights to use the licensed technology and the associated IPRs, and the licensor 

itself does not retain these and must refrain from granting licences to third parties.357 The semi-

exclusive licence agreement assigns the same rights to the licensee as the exclusive license, however 

the licensor may retain the right to exploit the technology, although it may not license out to third 

parties.358 In a non-exclusive licence agreement, the licensee and licensor are assigned the same rights 

as in the semi–exclusive license, but the licensor retains the right to grant other licences to third 

parties.359 

 The benefits of licensing in knowledge is that it reduces the amount of human and financial 

capital required by a single firm to generate the same knowledge, and diminishes duplication and 

risks of failure.360 Moreover, it may provide new directions to the existing knowledge base. Licensing 

out is also beneficial to a firm, especially in light of knowledge spill–overs, that is, knowledge that is 

generated by the firm but is not directly useful for its core purposes but can be used by others.361 

These knowledge spill–overs contribute to external knowledge, and are useful as leverage in the open 

innovation model, where one party trades their knowledge for that of another.362 Licensing out 

provides financial revenue, and in some cases, builds a reputation for the firm. An evolution of 

licensing practice to cross–licensing, may reduce transaction costs, upfront payments and royalties, 
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but this is only feasible if both parties have equally valuable licenses, which is not necessarily easy 

to evaluate objectively.363  

 Licenses do not have to be for patented technology. In fact, an OECD report states that ‘in 

several countries most licences are for non-patented intellectual property, such as biological research 

material or copyrighted works’.364 However, as the focus on this dissertation on the role of IPRs, 

particularly patents, in open innovation, licensing will henceforth concern patented knowledge and 

technologies, unless otherwise stated.  

 To maximise the diffusion of knowledge, licensing may follow FRAND licensing policy.365 

FRAND policy requires that licensing is fair, reasonable and non-discriminatory.366 However, the 

challenge is determining what constitutes the FRAND principles. Often, these terms are defined by 

standard bodies that oversee licensing in a particular technology. Genomic medicine does not seem 

to have such bodies, without which the articulation of FRAND policy is difficult to achieve. Policies 

regarding IP that intend to favour open innovation, or any licensing practice, should address both the 

issue of FRAND definitions and oversight standard bodies. The three following examples of licensing 

in genomic diagnostics illustrates this challenge. Firstly, genes patented by research institutions can 

be freely accessed for diagnostic testing, but royalties must be paid when the genes are used in 

commercial tests, and these payments should not be prohibitive.367 Secondly, firms may also choose 

to license out their patents on diagnostic testing on condition that competitors mark their cost-price 

higher than the patent holder. This, however, may not benefit consumers if the patent holder chooses 

to set this baseline cost quite high. A third strategy, as employed by Myriad regarding the BRCA 

genes, is that licenses may be granted for a subset of the gene mutations, with the patent holder 

retaining the rights to test for the entire set of genetic mutations. Again, patient access to services is 

impeded by this model of commercialisation, and as seen from these examples. What is needed is a 

model of innovation that creates more openness for researchers and consumers to enjoy the scientific 

benefits.  
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(b) The evolution of open innovation through democratisation and collaboration 

The open innovation model proposed by Chesbrough is a firm-centric paradigm where firms form 

strategic alliances to barter knowledge, but this knowledge remains within a closed circuit of the few 

networked parties. 368 Over the years, others have developed the model to extend beyond the firm, 

retaining the principle of knowledge flows between actors, claiming that certain knowledge  such as 

research tools, must not just flow in a closed circuit, as in Chesbrough’s firm-centric model as this 

may impede cumulative innovation.369  For example, knowledge on genomic sequences should be 

available as widely as possible, with the option of improving on the knowledge base through 

annotation, and re–entering this modified knowledge into a commons. As mentioned in Chapter One, 

of particular note is the open distributed innovation model proposed by Von Hippel — which 

incorporates the public good nature of genomic knowledge —370 and Gassman and Enkel’s interactive 

coupled innovation model,371 which builds on Chesbrough’s model. In the latter model, inside–out 

and outside–in processes are combined in strategic networks of complementary partners, which 

distributes the innovation process as suggested by Von Hippel.372  

 This distributed innovation, also known as democratised innovation,373 is where knowledge 

is disseminated (through means discussed below) through society so that the tasks of innovation are 

shared by partners. 374  These partners may include other firms, non-profit organisations, universities, 

and individuals (such as users and inventors)375 which may differ in what they produce and how they 

commercialise their innovations, that is, these entities may have different innovation strengths and 

approaches to disseminating innovation.376 For example, universities are rich sources of basic 

research;377 core biotechnology firms are rich sources of complementary knowledge, creativity and 

entrepreneurship; 378  and large companies offer ‘management organisation and technology’. 379 These 
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principles of purposeful, reciprocal and strategic flows of knowledge between parties aims ‘for the 

benefit of all by coordinating activities and communicating information within an environment of 

trust and transparency’, leading to an overall model of open collaboration.380 In such a model, the 

locus of innovation shifts from being within each organisation to being jointly created outside the 

collaborating organisations.381  

 The open collaborative model explored here is based on the flow of public and privatised 

knowledge between the private and public actors. UNESCO’s Universal Declaration on the Human 

Genome & Human Rights382 states that scientific benefits should be shared,383 calling for the 

exchange of scientific knowledge and information between cooperating organisations and states.384 

As discussed in the previous chapter, whilst knowledge is regarded as the archetypal public good, 

knowledge as IP can be protected. Thus, as highlighted in Chapter Three, the crux is the balance 

between keeping knowledge in the public domain and privatising it so as to maximise its distribution 

for further innovation. The UK MRC’s Data Sharing Policy385 encapsulates this duality in both its 

mandate on commercialisation and public–private collaboration, and the view that publically–funded 

research data is a public good, to which access should be as unrestricted as possible.386 Placing 

knowledge in the public domain does have the potential to optimise its diffusion for further scientific 

innovation as the knowledge is freely accessible. However, as explored in the previous chapter, 

privatising knowledge attracts commercialisation that also allows for diffusion of innovation in the 

interests of the consumer. In the sub–sections below, the various models of open innovation that can 

be incorporated into open collaborative innovation will be described. 

 At this juncture it is important to emphasise that open collaboration here does not necessarily 

mean parties have a common research or development goal – some, such as the SNP Consortium or 

the severe acute respiratory syndrome (SARS) vaccine pool, may concentrate on a particular disease 

or task, but others may simply have an overall goal to promote information flow to enable the goals 

of individual parties.  Moreover, open collaboration is not necessarily synonymous with altruism or 

free–for–all access without IP protection. 387 ‘Open’ in this context does not stipulate ‘free’ in terms 
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of access or cost. As  Cohen and Walsh state, ‘any positive price for access to intellectual property 

potentially restricts access’,388 however, if the price is reasonable and non–discriminatory, analogous 

to the FRAND principles above, the knowledge is regarded as being open in a ‘weak’ sense.389 

Openness rather refers to the unimpeded flow of knowledge via networks of strategic alliances 

through which knowledge is diffused to meet innovation needs. These alliances are often based on 

contractual tools or cooperative strategies,390 which may involve protected IP, or may operate through 

a knowledge commons or public domain.  

 At the centre of my dissertation, as delineated in Chapter Two, are two ideas: a) knowledge 

of research tools stemming from precompetitive research, often enabled by biobanks and databases, 

should be made widely available through the public domain; and, b) downstream applications of 

knowledge may need to be protected to satisfy private interests, which may in turn lead to public 

benefit as technologies are made available. In the following sub–sections, it is explored how the 

public domain and knowledge commons, as well as specialised practices of licensing IP may be used 

to promote open collaboration. These mechanisms have been incorporated into the policies that will 

be examined further on and used to consolidate an overall policy on which to base open collaborative 

innovation. 

(i) Collaboration through the public domain and knowledge commons  

The concepts of the public domain, knowledge commons and open access have been explored in 

Chapter Two under the Human Genome Project and in Chapter Three. To summarise, anything that 

is placed in the public domain can be accessed, used and distributed by the public, and is without IP 

protection or licensing agreements.391 This is regarded as the most open type of access arrangement, 

and any collaborator of member of the public is able to access and use the knowledge for innovation, 

such as in the Human Genome Project. The OECD states that data from publically–funded research 

should fall under an open–access model as an international norm.392 

 Another means by which open access is created is through a knowledge commons, which is 

similar to the public domain but partially addresses the issue of free–riding of public goods.393 Free–

riding occurs where those who benefit from a resource do not pay for it, leading to an under–

                                                           
388 In Pénin (note 209 above; 6). 
389 Pénin (note 209 above; 6). 

390 Joly (note 13 above; 387). 

391 Stanford University Libraries ‘The Public Domain’ available at 

https://fairuse.stanford.edu/overview/public-domain/welcome/, accessed on 14 November 2017. 

392 OECD Principles and Guidelines for Access to Research Data from Public Funding (2007) 15. 

393 Carvalho (note 56 above; 105). 



68 

 

production of that resource, or an over–consumption.394 Knowledge is non–rival and so does not 

deplete through use, and so cannot be over–consumed like a physical good. However, there is a 

disincentive to produce knowledge if there is no commercial incentive to do so, or if the modifications 

of that knowledge are enclosed by property rights. For example, a genome sequence may be placed 

in the public domain, but a firm may develop and patent a diagnostic test using that sequence, 

diminishing the public benefit of that sequence. A knowledge commons, such as that of BIOS395 to 

be discussed below, may stipulate that users are bound to a copyleft license, that is, any cumulative 

innovation based on the knowledge of the commons must be placed in the commons for its users to 

access and use without restriction, and each user’s input will add to the value of the goods.396  A 

knowledge commons, such as BIOS397, may also be created within a certain community, in which 

parties may have to pay membership fees for open access, reiterating that ‘open’ is not synonymous 

with free of cost. The aim of this measure is not to restrict access, but rather to create sustainability 

of the commons. It may also be that only members of the commons enjoy unrestricted use of the IP 

through copyleft licensing,398 whilst other users may have separate arrangements with the licensor, 

allowing for financial gain. This would encourage entities to become members, increasing the pool 

of knowledge and subsequent benefits to scientific progress.  

 These models of open access suit precompetitive research where commercial entities are more 

willing to waive their IPRs to participate with public entities and develop a strong foundation for 

future innovation, such as in the Innovative Medicines Initiative (IMI). However, to translate such 

research into viable downstream technologies is highly risky, costly and requires clinical trials and 

regulation. For these reasons, without a means of capturing financial value, commercial entities may 

be unwilling to collaborate in purely open access initiatives, without IP protection for downstream 

technologies. Recognising this, protected IP may still be used as a specialised tool for co-ordinating 

collaborations.399 For example, many national policies and guidelines from state health departments 

and funding bodies encourage the commercialisation of technology by the traditional basic science 

hubs — academia and the public–sector — through exploitation of IPRs,400 and through collaboration 
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with industry.401 Two such tools – patent pools and clearing houses –402 will be discussed below as a 

means of coordinating collaboration whilst retaining capture of financial value for licensors of IP. 

However, without an effective open strategy to guide this process, knowledge can be hedged in and 

its benefits to a wider population reduced. Thus it is important for entities to consider how an IP 

strategy may be used to sustain open innovation, in which value is created and captured by many, not 

just a single entity. 

(ii) Patent Pools and clearinghouses 

The characteristics of the various licenses used in transferring knowledge and technology has been 

described above. To reiterate, licenses may be exclusive, semi–exclusive or non–exclusive in nature, 

which determine to what rights licensees and licensors are entitled. The practice of licensing has been 

used in the closed model of innovation, and is a vital practice of Chesbrough’s firm–centric open 

innovation.403 Open collaborative innovation initiatives, such as BIOS404 or 100KGP405, also use 

licensing to create openness. Licenses create openness when the knowledge flow is maximised, which 

occurs when multiple licensees are allowed by the licensing structure, as in a non–exclusive license, 

and when the total costs of the license are not prohibitive. Patent pools and clearinghouses have the 

potential to maximise the licensing of knowledge and technologies whilst reducing the overall costs 

to licensees, as will be explored below.  

 Patent pools and clearinghouses, often referred to as collaborative licensing models, are 

intermediary tools that enable access to multiple inventions through aggregating information and 

technologies, thus reducing search and transaction costs and streamlining the licensing process.406 

These tools involve numerous licensors and licensees, as opposed to only a few as in bilateral 

licensing.407 In a patent pool, licensors may license their patents out to each other by way of a multi–

party agreement, and then bundle their patents and license out the bundle to a third party. As a one-

stop license, these mechanisms reduce the number and complexity of negotiations and the high 

transactions costs incurred through multiple bilateral licenses, and may standardise license terms to 

provide greater legal certainty.408  A prudent pool would also vet the patents that are pooled to verify 
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that these are valid and enforceable to prevent unnecessary litigation. Additionally, a patent pool 

consists of complementary technologies or information, rather than those that are competing or are 

substitutes for each other.409 

 Over the years, patent pools have emerged involving public and private actors, many of which 

targeted the treatment or prevention of infectious diseases such as malaria (Medicines Patent Pool) 

or neglected tropical diseases (BIO Ventures for Global Health pool). Though not directly related to 

human genomic medicine, these pools will need to include parties that have an understanding of the 

genomes of the infectious agents, as in the Severe Acute Respiratory Syndrome (SARS) pool. 

However, although private and public actors are involved, these pools are humanitarian in their 

objectives, and it is yet to be seen how pools in genomic medicine that incorporate private interests 

will work.  

 A clearinghouse is an intermediate platform that acts as a matchmaker service between 

licensors and licensees to exchange information or technology. As a neutral intermediary service that 

standardises licensing terms, such as the Science Commons,410 and that may bundle licenses, the 

clearinghouse eliminates engagement between the licensors and licensees.411 This reduces 

negotiations and transaction costs, provides visibility for licensors, and cuts down on the searching 

process by licensees.412 Clearinghouses may also engage in other activities, such as royalty collection 

and dispute management.413  

 Two pertinent examples of clearinghouses include MPEG LA’s Librassay414 and DSM’s SNP 

Nutrigenomics.415 Librassay aims to aggregate patents for existing and emerging diagnostic tests that 

bear on personalised treatment of diseases, and non-exclusively license out this bundle for diagnostic 

use.416 The success of the clearinghouses is still to be established. DSM, through its SNP 

Nutrigenomics clearinghouse seeks to reduce patent thickets around genetic variations called SNPs, 

particularly regarding personalised nutrition. By providing standard licenses, it hopes to encourage 

companies to develop genetic tests for personalised nutrition, but the uncertainty of such a market has 

discouraged potential parties from collaborating.417 This suggests that whilst patent pools and 

clearinghouses have promise as mechanisms of open innovation, they are heavily dependent on the 
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willingness of actors to participate to create a critical mass of information and technology that makes 

the platform viable.418  

 By enabling access to multiple inventions, patent pools and clearinghouses may overcome the 

problems of patent thicketing as all relevant patents may be included in a bundle of rights, especially 

where the development of an innovation is dependent on using multiple research tools like genomic 

sequences. Both patent pools and clearinghouses are mechanisms to enhance the licensing process 

needed in open innovation models. However, these simplify the process of licensing, and may not 

necessarily lead to technology transfer and distribution without suitable policy that promotes these 

aims.419 Furthermore, the interests of parties that may be from different sectors must be aligned, and 

competing technologies should not be included in the same pool.420 And as other commentators have 

noted, patent pooling can tend towards anti-competitive practices. To keep within the IP law focus of 

this dissertation, this will not be discussed further, but future policy should consider this. As yet, 

neither mechanism has seen extensive and broad success in the life sciences or genomic medicine, in 

particular. Although as models that require broad licensing, such open collaborative innovation, are 

more frequently adopted, these tools may be refined and used more widely, which would need to be 

pre-empted by policy.   

(d) The shift to open collaborative innovation 

Pharmaceutical companies, core biotechnology firms (such as SMEs) and public research institutes 

(such as universities and NPOs) are looking to expand their current operations in personalised 

medicine activities, which would benefit public health interests. Pharmaceutical companies have 

largely relied on blockbuster models of innovation in conventional medicine, where incremental 

changes are made to an existing, successful invention.421 But the field of genomic medicine is nascent 

and different from conventional medicine, as discussed in Chapter Two, and requires breakthrough 

innovations to capture consumer interest and meet their needs. To bring about such breakthroughs, 

the following activities are critical in the innovation chains: extensive precompetitive research and 

discovery of genomic knowledge; innovative application of this knowledge to generate inventions; 

and effective distribution of these inventions to satisfy consumer interests. This highlights the 

importance of knowledge in driving genomic medicine. However, under a closed innovation model, 
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these entities are faced with stagnated knowledge — either knowledge that is obsolete, or knowledge 

that cannot be translated into useful innovation by that entity because the boundaries of these entities 

are closed. In this way, knowledge cannot flow to where it would be used most effectively, for 

example, key information on genome variants associated with a disease discovered by a university 

may enable an SME to develop a genomic test. To assist these knowledge flows, the boundaries of 

these entities need to become more permeable, which may be facilitated by strategic alliances and 

collaborations,422 for example, Merck’s Gene Index423 discussed in the previous chapter. In this 

dissertation, the main focus is on the collaboration between public and private sectors, with an 

emphasis on public biobanks and databases. 

 Clarke and Turner424 note that a salient characteristic of the biotechnology industry is that of 

collaborations between various actors such as universities, biotechnology SMEs and large companies 

(often pharmaceutical-based) and not-for-profit organisations.425 The alliances within collaborations 

may be vertical, which brings in new upstream knowledge and allows for commercialisation 

downstream, or horizontal, which brings in the complementary knowledge of competitors. 

Networking arising from webs of vertical and horizontal alliances is also powerful, as Powell notes, 

in the biotechnology industry, innovation is a result of networks, not individual firms.426 The Diabetes 

Genetics Initiative427 is a pertinent example of collaboration between the Broad Institute of 

Massachusetts Institute of Technology (MIT) and Harvard, Lund University, and Novartis Institutes 

for BioMedical Research where the expertise and resources of these collaborators are combined to 

collect and analyse the genomes of diabetic patients so as to understand the genomic variants 

contributing to Type 2 Diabetes.428 

 The importance of collaborative innovation in genomic medicine can be attributed to various 

reasons, as outlined below, many of which are proposed by the Genomic Medicine Colloquium429 – 

the overall reasoning is very few firms have the internal capacity to take a product through from 

research to commercialisation, for reasons of time, cost, resources and regulatory approval.430. Firstly, 

genomic medicine is dependent on highly complex technologies in both diagnostics and therapeutics, 
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which should be developed together to optimise their benefits. This complexity is partially attribute 

to the nature of genomics — to understand a single disease through genomics, a web of multiple 

genomic elements may have to be studied. This complexity calls for greater human and financial 

resources than a single firm may be able to provide. 431 Open collaboration creates networks of 

partners and transparency, and where initiatives are geared towards a common R&D goal, 432 the 

activities of innovation may be democratised, reducing overlapping research and duplication. 433 Such 

transparency and distribution of tasks will also enable collaborators to work on cumulative innovation 

and concurrent technologies and accelerate development in the field. Furthermore, as the focus shifts 

away from only producers to include users of technologies, diagnostic and therapeutic technologies 

can be customised within the collaborative initiative, potentially expanding the range of user of the 

downstream technologies. 434 A hypothetical example would be where a collaborating commercial 

laboratory finds that testing for breast and ovarian cancer is more appealing to patients than only 

testing for one type of cancer, and uses the network to communicate this to producers of the test. The 

networks of collaboration creates a platform not only to share IP and funding, but also expertise and 

skills in applying new knowledge.435 Balancing the development of resources and relations is needed 

in such a highly complex field that requires interoperability and convergence of technologies and 

knowledge to address the needs in diagnostics and therapeutics. 436 Companies, like Roche, are 

recognising that collaboration may aid them in achieving breakthrough inventions and assisting the 

shift from the blockbuster model that relies on incremental adjustments to existing technologies. 437  

 Secondly, the tools used and the technologies required by the field undergo rapid evolution 

may be too costly for a single entity to constantly update their tools and develop new technologies. 

As with other branches of medicine, genomic medicine is a high–investment and high–risk field that 

requires value capture, although private entities are observing that patenting may not always result in 

such capture, as explained by the ‘Valley of Death’ phenomenon.438 In this phenomenon it is observed 

that patented inventions do not necessarily become commercialised. This may fall into an abyss 
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because the costs between the processes of patenting and commercialisation in the medical field is 

higher than in other fields of technology (noting the additional step of regulation). Moreover, as 

populations are stratified according to genomic sub-populations, there is a risk of market failure as 

the consumer bracket for a product becomes smaller as compared to the larger populations for which 

conventional medicine caters. Collaborative efforts, whether by private or public actors, or both, share 

these risks and investments, as discussed in the previous section, and can pool resources and reduce 

transactions costs and time–consuming negotiations,439 especially regarding the use of patent pools.  

 Thirdly, genomics is also highly susceptible to the effects of patent thickets, as genome 

sequences cannot be substituted.440 Open collaborative innovation that creates more open access 

through specialised licensing agreements, such as copyleft licenses or patent pools, or stipulations to 

preserve the knowledge in the public domain, can reduce the number of patents placed on essential 

research tools that are needed for precompetitive research, such as in the Merck Gene Index.441 Such 

preservation of the public domain or knowledge commons reduces the threat of patent infringement 

and litigation, and attracts scientists to the field. Open collaborative innovation lessens the uncertainty 

of research exemptions, whereby scientists in public research institutes may be hesitant to engage in 

precompetitive research as countries either do not have explicit laws or guidelines, or in some cases 

have very strict rulings from courts. For example, the US federal court ruled that research exemptions 

should only apply ‘when research is solely for amusement, to satisfy idle curiosity, or for strict 

philosophical inquiry’.442 Such a narrow view of this exemption is possibly influenced by legislation 

such as the Bayh-Dole Act443 that promotes publically-funded bodies to patent inventions. Narrowing 

the scope prevents public entities from exploiting the exemption to further their commercial interests 

without proper due compensation for the patent holder. Collaborative networks that are based on 

private contracts between parties, informed by policy and law, provide an opportunity for researchers 

and patent holders to communicate the terms of research exemptions.  

 Lastly, open collaborative innovation engenders social responsibility by firms in terms of 

patenting and licensing practices by facilitating greater access for further innovation and social benefit 

without jeopardising the firm’s sustainability. In such open innovation, where the boundaries of a 

firm are willingly made more permeable, commercial entities agree to avoid strategies of secrecy in 

precompetitive stages to maintain a competitive advantage downstream. As suggested by Melese et 
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al ,‘Establishing areas of precompetitive research, with open standards and protocols, would enable 

companies to pool their knowledge and resources to fill current technology gaps’.444 

 

II.  The role of IP policy in open collaborative innovation 

 (a)  A consolidation of IP Policies to promote open collaborative innovation in genomic 

medicine 

As explained in Chapter Two, biobanks and genomic databases are essential in generating genomic 

knowledge and in supporting precompetitive research. A primary mission of many large–scale public 

biobanks is to make these data accessible to the scientific community so as to maximise the research 

output for downstream innovation.445 The approach of sharing data on DNA sequences was endorsed 

by the Bermuda Principles,446 and the role of resource producers, users and funding agencies in doing 

so was reiterated by the scientific community in 2003.447  These are rich sources of primary 

knowledge and expertise, databases and biobanks are valuable as platforms for private–public 

partnerships and collaborations, which are useful in decentralising the innovation process and 

accelerating the generation and translation of genomic knowledge into applications for patient 

benefit.448  

 However, the heterogeneity of collaborative partners from public and private sectors leads to 

diverse views on: a) how samples and databases should be accessed; b) whether IP should be granted 

to inventions stemming from research on their samples; and c) how such IP should then be governed, 

considering the public good nature of the knowledge in databases discussed in Chapter Three. 

Currently, there is no binding international consensus or comprehensive framework, as found in an 

OECD report on the ‘issues of ownership, commercialisation, exclusive licensing, access for 

researchers, benefit sharing and other issues’ regarding population databases,449 thus leaving these 

issues to the policy–makers of the biobanks and databases. The Universal Declaration on the Human 

Genome and Human Rights states that human genome in its natural state will not give rise to financial 
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gains,450 and favours free access to and sharing of data under a collaborative framework. However, 

this declaration pays little attention to the translation of such data in useful medical applications. 

Biobanks and genomic databases, such as the 100KGP,451 have acknowledged that IP frameworks 

are essential in their governance of common pool resources used in research, especially where there 

are private participants and commercialisation is essential to the distribution of innovation. IP policy 

must capture the full potential of collaborative relationships between the different sectors, and close 

the gap between basic research and its clinical translation. In this section, the policies of various open 

collaborative initiatives related to genomics that have been introduced in Chapter One, such as the 

BIOS initiative,452 the 100KGP,453 and the Diabetes Genetics Initiative, as well the OECD’s 

Guidelines,454 will be drawn on to create a framework for IP policy that can be applied in an open 

collaborative model of innovation.455  

 The open collaborative model, highlighted in the above section, is a modification of 

Chesbrough’s firm–centric open innovation model; the former incorporates a mixture of actors from 

the private and public sectors. This means that innovation policies, which include IP policies, should 

also be modified to fit the objectives of collaboration, that is, where there is a network of actors who 

benefit jointly from the collaboration, even if they do not have a common research goal. Thus, policy 

should encourage the development of open strategy where collaborators ‘actively shape the external 

conditions to facilitate the development of a joint innovation strategy where all partners can 

benefit’456, rather than a system of immediate bartering knowledge for a short–term open innovation 

effort. Partners from different sectors have different interests, as discussed throughout this 

dissertation, all of which must be met by policy to promote the sustainability of the open collaboration 

by attracting contributors,457 aligning research agendas, disseminating collaboration results, or using 

IP strategies to promote further innovation and prevent unsuitable appropriation of the results 

emerging from the collaboration.458 A good example of open strategy is the Merck Gene Index459 
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discussed in the previous chapter. Philanthropy aside, Merck attracted partners using the bait of a 

common objective — to prevent the appropriation of valuable knowledge that would influence their 

independent commercial activities downstream. In doing this, whilst Merck relinquished any rights 

to the genetic markers in the index, it also encouraged others to do the same, creating a valuable 

knowledge commons that would enable greater downstream innovation and value capture, rather than 

only capturing value on a few patented genes. This initiative upheld the tenets of open collaboration 

by encouraging entities to make their boundaries permeable to allow knowledge to flow out (into a 

commons) for use by others, promoting the democratisation of precompetitive research and enabling 

the diffusion of knowledge for further innovation whose social and financial value may be captured. 

460   Based on these principles, encapsulated by many IP and licensing policies of guiding bodies, such 

as the OECD, and collaborative initiatives by biobanks and databases, and how IP policy should be 

framed so as to promote open collaborative innovation will be outlined.  

 In the previous section, there is an exploration of how knowledge flows are created in open 

collaborative innovation through the public domain and knowledge commons and specialised 

licensing that endeavours to preserve open access to knowledge. As mentioned in that discussion, 

IPRs do not necessarily have to be negated, but must be used creatively to avoid creating obstacles to 

accessing knowledge, as IPRs still have a role in attracting venture capital and external investment, 

as well as commercial entities such as large pharmaceutical companies.461 IPRs for research tools 

(although this is not ideal, as discussed in Chapter Three) or downstream innovations should not be 

disproportionately allocated in collaborations; collaborators should receive the rights according to 

their contribution. 

 Many collaborations, especially those initiated by the public sector, such as health 

departments or the MRC, include universities and public research institutions. These are regarded as 

prolific producers of basic research that can be licensed out in accordance with open policy that 

encourages data–sharing.462 The policies of these national bodies should balance commercialisation 

needs with open access, and should stipulate that collaborators incorporate data–sharing plans in their 

research proposals. 463 In cases where exclusive licensing is preferable, such as when considerable 

investment is needed to distribute a technology, policy should include an agreement that licensees 

fulfil the requirement to exploit the invention and agree to milestones in the event of 
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commercialisation.464 Furthermore, where national legislature or policy prefer licenses held by 

research institutions to be granted to NPOs and SMEs,465 such provisions must not hamper the flow 

of knowledge to other actors such as large pharmaceutical companies, which could adversely affect 

the distribution of goods in genomic medicine as commercialisation may not be optimally executed. 

 To create sustainability and promote open access, national policy could instruct publically-

funded bodies to dedicate a percentage of their output to the public domain where it is applicable.466 

Policies of individual collaborative initiatives have also recognised the value of preserving a 

commons for research tools, for example, the Diabetes Genetics Initiative aims to make its work 

readily available at no cost to academic institutions and NPOs,467 and BIOS states that ‘enclosure 

rarely ensure[s] a sustainable competitive advantage’.468 This implies that a fragmented hegemony 

on critical tools does not actually benefit firms, and is a waste of innovation resources, for example, 

if various genome sequences involved in diabetes are patented by different firms, a single firm will 

not be able to develop effective technologies without licensing-in other patents. For research tools to 

be effective in innovation, broad access, in which multiple components are publically accessible, 

needs to be realised. In his theory on patents as data aggregators, explored in Chapter Three, Burk 

highlights that genomic data is more powerful when coordinated at one point, for example, if Myriad 

held all the data on the BRCA gene variations, instead of the dataset being fragmented, this single 

firm would be able to develop more impactful diagnostics tests.469 Burk suggests that patents are key 

in allowing this aggregation of data at a single point, or even to control the coordination points through 

licensing. In a closed innovation model, a patent monopoly favours data aggregation, but limits the 

R&D capabilities of other interested researchers who do not hold the patent rights through licensing. 

In open innovation, the flow of knowledge will require either open access to data or extensive 

licensing. In moving away from closed innovation, large–scale biobanks and databases that pool 

resources into a commons or in the public domain, may also function as coordination points as they 

provide robust sample sets and datasets for research, and can adopt open licensing practices.   

 Although, merely placing knowledge in the public domain may not prevent others from 

appropriating the data by combining it in their own cumulative innovation; BIOS470 recognises that 
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genome sequences placed in the public domain may be captured by ‘converting that information into 

economically valuable goods and services’.471 BIOS proposes the solution of a copyleft licensing 

obligation, discussed above, in its open licensing agreements to grant rights to BIOS in any 

improvements made on the licensed technology, which will be placed in a protected commons to 

prevent those who incrementally improve on a technology from enclosing that technology in a patent. 

Thus, licensees may not appropriate developments to technologies licensed out by BIOS and prevent 

access by others or fostering of growth of the knowledge commons.472 The HapMap project, which 

seeks to identify shared genetic variations across populations, also addresses this problem of 

commons appropriation using a click-wrap license where users have to click to agree to the terms of 

the project before being able to use the information — these terms include users agreeing not to 

combine the data of the project with their own results and enclose the project’s data in a patent.473  

 However, although a commons model and the public domain may be suitable for 

precompetitive knowledge and vital research tools, this may not always be a feasible option to 

incentivise participation in a collaboration; IPRs may still be regarded as essential to value capture 

from downstream innovation. It is my suggestion that IPRs only be used to capture value from 

downstream applications, and appropriation is deferred until is in undeniable that the invention meets 

the criterion of patentability, which needs to be clarified by TRIPS or national policy and legislation, 

as discussed in Chapter Three.474  Policy should ensure that IPRs promote knowledge flow through 

open licensing practices, as used by BIOS475 and the Diabetes Genetics Initiative which follow the 

FRAND principles discussed above, and favour non–exclusive licensing. Before open licensing 

becomes attainable, there must be clarity as to how IPRs are assigned to collaborators. This is 

especially pertinent considering that national legislation in some countries, such as the US and SA, 

encourages patenting of publically–funded research by assigning IPRs to public actors such as 

universities, as discussed in Chapter Three. Policy should clarify how the IPRs on the collaboration’s 

results are to be assigned between collaborators, and how non–holders may use the IP post–

termination of the collaboration. 476 Open collaborations should differentiate between precompetitive, 

non–commercial research, and competitive, commercial R&D. This may allow for a tiered system of 
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IPRs, as seen in the 100KGP,477 where non–commercial academic researchers assign all IPRs to the 

100KGP parent body, Genomics England, to avoid a fragmentation of rights and to create a 

knowledge coordination point. Should researchers intend to commercialise any technologies using 

Genomics England IP, the two parties will negotiate a ‘fair and reasonable’ license.478 Genomics 

England will also share any profits with institutions that contributed to the IP enclosed in the 

license.479 However, forgoing any IPRs as an academic institution may not always seem appealing, 

especially when IPRs are used to attract investment or commercial partners, or build a reputation.  

 Genomics England also has an IP policy for commercial entities, which are tiered according 

to size. Where companies collaborate in 100KGP,480 any IP that arises will be owned by Genomics 

England, but where companies solely develop technologies using Genomics England information, 

without collaboration, the company retains all IPRs. In the former scenario, such a policy may deter 

commercial collaborators as IPRs have to be relinquished, although it does create a strong knowledge 

base for 100KGP. In the latter, openness is substituted for sustainability as IPRs holders either have 

to pay royalties or a larger upfront fee, depending on their size. 481 This business model approach to 

collaboration, where profits are derived from IP, may certainly support sustainability, however 

commentators at the IP Policy Workshop held by the Centre for Science and Policy, Cambridge,482 

have queried whether a government–based initiative should support the capture of financial value, 

instead of the traditional focus in supporting innovation through infrastructure and funding. From this 

arises the concern of how to balance openness with value capture so as to cater for public and private 

interests, which are dependent on the nature of the collaborators, the complexity and potential of the 

field, and the long–term goals of the collaboration. 

 Another option to keep the boundaries of collaborators permeable and maintain a knowledge 

flow is where IPRs are jointly held by collaborators, and in the cases where a collaborator cannot 

hold the IPRs, open licensing should enable them to access the information easily, encouraging their 

participation in the initiative. Creative licensing agreements could also be used to prevent a hegemony 

over knowledge, for example, jointly–held IPRs or exclusive licenses could be licensed according to 

geography, field of use and time, without infringing competition law483, as recommended by the IP 

policy for 100KGP. 484  Hypothetically, companies A and B could each hold IPRs in different 
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countries simultaneously, or hold IPRs in the same country at different times. Where a technology 

has patents on multiple uses, such as a diagnostic test for breast and ovarian cancers, A could hold 

the IPRs for the use of the test in breast cancer diagnosis, whilst B could hold the IPRs for ovarian 

cancer diagnosis.  

 Furthermore, open collaborative initiatives should make core external knowledge available 

for licensing if it is not already in the public domain. This knowledge is not the IP of the initiative, 

but is externally sourced from third parties by collaborators in order to innovate. For example, 

Genomics England, a subsidiary of the UK Department of Health, may claim ownership of whole 

genome sequence datasets of third parties if these datasets are used by 100KGP academic researchers 

in creating their own IP for a hypothetical invention ‘C’, depending on whether the datasets were 

created using public funds.485 By doing this, Genomics England ensures that licensees who seek to 

use C for further innovation can acquire critical research tools to fully understand C and optimise 

innovation without having to enter negotiations with the third party and pay exorbitant transactions 

costs.486 However, before adopting such measures, policy–makers need to evaluate whether this 

appropriation of external IP does not discourage third parties from allowing collaborators to use their 

data. As this data is publically–funded, funding bodies should clearly communicate in their own IP 

policy the possibility of a governmental subsidiary claiming ownership of core data. 

 Open licensing should be available to third parties so as to maintain a flow of knowledge, and 

where IPRs align in research, patent pools could be orchestrated to facilitate licensing within the 

collaboration and with third parties. Again, the assignment of the resultant IP from third party 

collaboration should be clearly guided by policy.487 In Nicol’s analysis of cooperative IPRs in 

biotechnology, 488 it is suggested that databases and biobanks such as BIOS or 100KGP act as 

coordination points of knowledge, and through their IP policy, can act as patent pools.489  Open 

collaborations could also participate in clearinghouses to maximise the dissemination of their IP, and 

policy would have to address how this may be conducted. Clearinghouses and technology transfer 

offices, or similar mechanisms within a collaboration, should be used to correctly evaluate IP for fair 

licensing. 490  However, for patent pools and clearinghouses to be effectively formed, policy would 

also need to address the possibly negative perception entities have of patent trolls and clearinghouses 

that may have thus far contributed to the slow growth of these mechanisms, for example parties 
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believe that they will lose control over the bargaining process, to their determines.491 Furthermore, in 

genomic medicine, these mechanisms would need to assemble multiple key patented technologies, 

which would need to be clearly marketed to prospective licensees. If these technologies are not 

verifiably critical to further innovation, prospective licensees may fear wasting financial and human 

resources on buying into these license bundles, and attempting to develop using these patented 

technologies. Effective policy would appease these licensees if it articulated clear instructions on how 

patent pools and clearinghouses vet patented technologies, although achieving this may be unrealistic 

as it is not always easy to evaluate a technology. Furthermore, licensors may fear that their 

technologies are undervalued, discouraging their participation.  

 Licensing of IP is an important means of knowledge diffusion and distribution of applicable 

technologies. The OECD Guidelines492 provide best practices that would enable diffusion of 

knowledge and financial and social value capture to satisfy private and public interests. The objective 

of the Guidelines is to foster innovation and make this readily available for maximum utilisation 

through non–exclusive licensing to promote a healthy competitive environment that would meet the 

commercialisation needs of public demand, 493  and would enable licensors and licensees to obtain 

returns on their investment. 494 In accordance with the principle of reasonableness in FRAND 

licensing, the Guidelines recommend that best practice minimise the burden of royalties, upfront fees 

and transaction costs, and reach–through licenses, discussed in Chapter Three, as these may hinder 

access to downstream innovation and discourage inventors. 495   

 Particularly in relation to research activities, which would encompass the agendas of genomic 

databases and biobanks, the Guidelines recommend that information, particularly foundational 

genetic inventions,496 is rapidly disseminated through broad licensing and unrestricted access to 

databases. Where research results are kept confidential for patenting, this should not unduly hamper 

the eventual publication of such results in the public domain or knowledge commons.497 

 In the event that IPRs are not used to capture financial value through monopolies and social 

value through dissemination of innovation, policies should consider how value is to be captured, and 

how knowledge spill–overs are to be patented or otherwise treated as public goods. 498 Where 
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knowledge flow is encouraged through open access that reduces a commercial entity’s ability to 

derive profit from IP protection, there must be an alternative rewards system. These rewards may still 

be pecuniary, as in prizes for open innovation, or could be non–pecuniary, as in social rewards.499 

The latter could include prestige and recognition derived from open challenges, a reputation of 

openness, refinement of skills and gain in expertise through peer interactions and exposure to new 

ideas.500 A significant development in this area of alternative rewards systems is in the InnoCentive 

open initiative where solutions are sourced from the public knowledge flows, termed crowdsourcing, 

and rewarded socially and monetarily. Policy must clearly outline these rewards for sharing IP and 

create realistic paths for participants to gain these.  

 Collaboration policy offers a platform for standardising activities that are not clearly legislated 

or regulated by national policy. Ideally, national policy and open collaboration policy should 

standardise research exemption licenses to clarify how research may be conducted in collaborative 

innovation. This would reduce uncertainty about facing infringement litigation. On that point, IP 

policy should provide clear IP dispute resolution mechanisms.  

 The policy guidelines,501 consolidated from various sources, attempt to promote the principles 

of open collaborative innovation discussed in this chapter. Policy is dependent on national laws, but 

can also provide certainty in areas that the law does not address. The innovation policies of individual 

collaborations or overarching bodies, such as the Medical Research Council (MRC) can be more 

specific in how IP is managed in particular fields, for example, whether genomic research tools can 

be patented. In its IP policy, Genomics England states that it does not intend to own the genomes of 

any individual, 502 or patent isolated sequences,503 nor does it support patenting overly broad claims 

that may hinder further innovation.504 Overarching bodies, such as medical research councils or 

national research foundations, play a critical role in promoting a research agenda that addresses public 

health needs through the collaboration of the public and private sectors – for example, funding bodies 

could stipulate that grant–holders engage in open collaborative practices. The IP policies of these 

national bodies should favour governmental health services, as seen in the 100KGP505 where a 

particularly favourable licensing regime will be considered for the National Health Service in 
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alignment with the 100KGP objectives to ‘bring benefit to NHS patients’.506 Using the case of the 

South African MRC, the role of its IP policy in fostering open collaborative innovation will be 

explored, juxtaposing its policy with the consolidated framework above.507 However, as open 

collaborative innovation develops, and healthcare needs change, a single, static framework would not 

be advantageous. As suggested in the preface of the OECD Guidelines,508 guidelines and policy 

should be dynamic, evolving in light of scientific progression, and changes in business practice and 

societal needs.509 

 

(b)  The promise of South African IP policy in open collaborative innovation 

According to the OECD, SA is ‘the continent’s leading economy, with strong research–based 

industries’510 and ‘related knowledge–intensive business services’ and ‘knowledge infrastructure’.511 

Research and innovation are significantly influenced by domestic industry–academic networks,512 

and as Gastrow finds, these networks are incorporating open innovation.513 Furthermore, international 

collaboration has a role in scientific publication and patenting, as per the OECD’s findings, indicating 

that knowledge flow is occurring on the domestic and international fronts. However, despite these 

positive indicators, there is an imbalance in the participation of the private and public sectors in the 

biotechnology industry — the OECD reports that whilst government funding of R&D doubled, the 

figure by businesses hardly increased.514 Jordaan suggests that public policy on the level of national 

strategy, which largely excludes the private sector, contributes to the reluctance of private sector to 

contribute to the industry.515 This imbalance has the potential to impede the growth of a strong 

genomic knowledge base and, more pertinently, to hinder the translation of this knowledge into 

downstream technologies and the distribution of these technologies to capture their value. At a 

meeting convened by SA’s Council for Scientific and Industrial Research (CSIR), policymakers and 

leading researchers identified that in order to create affordable products and services, universities, 
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research councils and industry must closely network,516 and called for a policy that promotes not only 

networking, but the growth of these sectors, possibly assisted by collaboration. Thus, it is critical to 

understand the current public policy landscape to determine how the innovation chain in genomic 

medicine may be hampered, looking at this through the lens of open collaborative innovation. In 

Chapter One, the past national strategies aimed at building the biotechnology industry in South Africa 

were briefly outlined, and in this section, the focus is on two current IP policies that have a bearing 

on innovation in this field: the Draft Intellectual Property Policy of SA Phase 1 (2017),517 and the 

Medical Research Council’s IP Policy.518 

 

(i) The Draft Intellectual Property Policy of SA Phase 1 (2017) 

In the Draft Intellectual Property Policy of SA Phase 1 (2017) (Draft Policy),519 under the Department 

of Trade and Industry, IP is recognised as an important policy instrument in ‘promoting innovation, 

technology transfer, research and development (R &D), creative expression, consumer protection, 

industrial development and more broadly, economic growth’.520 The Draft Policy also aims to 

transition from an ‘over-reliance’521 on natural resources to a knowledge economy. Though public 

health is given more attention, with this policy intending to ‘strike a balance between owners and 

users of IP’,522 SA still lags behind other jurisdictions which have specific public policies addressing 

genomics in public health, such as the EU Directive.523 This section examines how the provisions of 

this policy promote open collaborative innovation between the public and private sectors in genomic 

medicine — although its phase 2 intends to address biotechnology, this seems to be limited to 

agricultural resources.524 

 As the Draft Policy seeks to promote the growth of domestic industry,525 it is important to 

determine its reliance on national and international linkages to do this, that is, to determine whether 

a global openness is fostered. As demonstrated by the Human Genome Project and subsequent 

genomic research initiatives, the nature of research and development in genomic medicine is global 
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— research participants, and researchers and developers from around the world engage in these 

initiatives to maximise the potential of the genomic knowledge generated so as to benefit a wider 

range of genomic sub–populations. Therefore, there is a need for a national policy to facilitate 

international networking so as to access globally distributed knowledge networks that can support 

such initiatives by the public and private sectors.526 Gastrow notes that public policy does not 

currently promote the formation of global innovation networks.527 These linkages are essential in a 

field like genomic medicine, which relies on cumulative innovation and is highly complex in terms 

of its technological content,528 requiring diagnostic and therapeutic goods for a multitude of genomic 

sub-populations. As Herstad et al note, the ‘more complex knowledge bases, products or processes 

become, the higher is the direct or indirect dependence on various external sources of information, 

ideas and knowledge’.529 Open innovation on a global scale can enable broader knowledge diffusion, 

and allow domestic actors to in-source knowledge and technologies to build their R&D capacity in a 

highly complex area such as genomic medicine, especially in the cases of developing countries. 

Furthermore, these international linkages may contribute to knowledge spill-overs, which can be 

transformed by domestic actors into useful technologies, if supported by policy that encourages 

networking and permeability for the flow of information. 

 However, the globalisation of genomic research does not detract from the requirements of 

domestic industries to develop. As Herstad et al observe,530 Chesbrough emphasises the use of these 

knowledge spill-overs from the knowledge commons, but this may in fact reduce domestic capability 

in the long run. If there is a perpetual dependence on external sources, domestic industries are less 

likely to invest in their own R&D, which would mean that in the long-run, knowledge flow will 

become unidirectional as opposed to bi-directional, and capacity to absorb from external sources will 

not increase dynamically in these industries.531  Cohen and Levinthal define absorptive capacity as 

‘the ability to recognize the value of new information, assimilate it, and apply it to commercial 

ends’.532 Hence, prior knowledge created by internal R&D is essential in increasing absorptive 

capacity, and an open innovation model should accommodate both in-sourcing and internal 
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development, which may contribute to out-sourcing later on. Thus, if the Draft Policy should seek to 

foster open innovative practice, it would need to balance the formation of international linkages with 

that of domestic networking and growth.533 Currently, although the Draft Policy is unclear about how 

it would foster international linkages to achieve this balance, like the Bayh-Dole Act534 of the US, 

SA’s IPR Act articulates the need to support domestic firms, especially SMEs, and the need to develop 

policies that prioritise national linkages. Therefore, when focussing on the field of genomic medicine, 

the Draft Policy should appoint a focus group that identifies: a) how the biotechnology industry of 

SA is formed and how productive it is; b) what are the current international influences; c) how have 

comparator countries addressed the issues of domestic and international linkages in the industry; and 

d), how should SA address the same issues.  

 A key reform introduce by the Draft Policy is the application of a substantive search–and–

examination (SSE) process to stimulate ‘genuine innovation’,535 as the Draft recognises that whilst 

SA patent law provides for SSE, as discussed in Chapter Three, limited human and financial resources 

in the past have curtailed efforts to effectively apply such a process.536 Currently, only a depository 

system is employed, with SSE only be applied if the patent is challenged in litigation. This allows for 

a significant difference in patenting trends in SA as compared to comparator countries such as Indian 

or Brazil. According to a study by researchers from Harvard and Columbia, SA grants 93% of the 

patents applications, compared to India’s 19% or Brazil’s 14%. Even the US, a country which 

promulgates strong patent law, only grants 61% of the patent applications. This is an important 

flexibility that may prevent the patenting of subject matter that does not fit the criteria of inventions, 

such as isolated DNA sequences (referring to Myriad537 from the previous chapter). In this way, 

genomic sequences, research tools and inventions that do not fit the criteria may be placed in the 

public domain or in knowledge commons, but it is important that policy considers the role of secrecy 

in lieu of patenting. There must be sufficient incentive, generated by clearly–defined means of value 

capture, to share IP in collaborations otherwise entities may not publically disclose their results and 

inventions as in done patenting quid pro quo. 

 The Draft Policy also intends TRIPS flexibilities to be used optimally to meet public health 

needs. As discussed in Chapter Three, apart from the actual flexibilities stated in TRIPS, there may 

be significant room for the interpretation of its provisions, especially regarding interpreting patentable 
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subject matter criteria.538 The Draft Policy suggests that there may be a way to interpret TRIPS so as 

to allow for SSE limited to certain fields of public interests so as to accommodate for capacity 

constraints. Whilst Article 27.1 of TRIPS states that all fields of technology should enjoy patent 

rights, this does not mean that rights have to be granted through a depository system. As long as an 

alternative system, such as SSE, is used that potentially allows patents in the field, this article is not 

violated.  

 The Draft Policy also values voluntary licensing to third parties. To optimise the impact of 

voluntary licensing that promotes access and innovation through technology and information transfer, 

the Draft Policy calls for transparency regarding the terms and conditions of the licensing contract. 

The Draft Policy concurs with the IPR Act539 of SA on how publically–funded IP should be licensed, 

preferring non–exclusive licensing to SMEs and Broad–Based Black Empowerment Enterprises 

(BBEEE),540 but these preferences may not always be feasible, for example, where exclusive 

licensing may be better suited (as identified above by 100KGP)541, or where large firms are necessary 

for innovation. As the IP Policy of SA intends to propagate the ideals of the IPR Act, and promote 

the conditions of ‘fair’ licensing,542 possibly modelled on FRAND terms, the policy itself should 

delineate what these conditions are and how they can be achieved. By doing so, the policy will 

engender a national protocol on licensing that will improve technology transfer and knowledge flows 

through the public and private sector collaborators. 

 In a study conducted by Gastrow, he observed that firms, universities and public science 

institutes are all active collaborators, with evidence of open innovation.543 He also found that there 

was a great propensity to collaborate with other domestic firms or within the firm, or to collaborate 

with international firms, as well as government organisations.544 However, he finds that the greatest 

single mode of collaboration is the industry–university linkage, particularly with foreign 

universities.545 A pertinent issue to this type of linkage is that of research exemptions on patented 

inventions. The Draft Policy recognises that to promote the dissemination and advancement of 

knowledge, and ‘preserve the scope of researchers’546 provisions on research exception and 
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experimental use must be clarified.547 This clarification will ease the flow of knowledge through 

research, necessary for openness in innovation. 

 The Draft Policy, although not explicitly geared towards open innovation, recognises the 

importance of allowing knowledge to flow between the public and private sectors. Its provisions on 

granting of patents, licensing practices and research exemptions are foundational for future open 

collaboration, although the policy does not fully address the potential of patent pools and 

clearinghouses in promoting innovation. Moreover, as a national policy, there is a stronger focus on 

domestic linkages than international linkages, which may be detrimental in a global field like 

genomics. However, this policy is promising, and, together with the law, will inform how national 

bodies create innovative practices. One such body, the Medical Research Council, will be discussed 

below regarding how well suited its IP policy is to fostering open collaborative innovation. 

(ii) The Medical Research Council 

The South African Medical Research Council (MRC) is a national research body, mentioned in 

Chapter One, which includes research, development and technology transfer in its mandate on the 

improvement of public health.548 Through its Technology Transfer Unit and its Strategic Health 

Innovation Partnerships (SHIP), the MRC endeavours to partner with local universities, science 

councils and the private sector to translate its research into applications that can improve 

healthcare.549 These partnerships, occurring at different stages of the innovation chain, are indicative 

of openness in the MRC’s innovation, but the body’s IP policy will determine the level of open 

collaboration engendered by the MRC. 

 In its Management and Commercialisation of Intellectual Property Policy, the MRC identifies 

IP as a key asset,550 and sets out to identify, protect, utilise and commercialise IP emerging from its 

research, for public benefit,551 and to reward relevant stakeholders to encourage further investment.552 

As with the policy framework above, and in line with the concept of balancing heterogeneous 

interests, the policy recognises the need to achieve a ‘balance between research excellence, academic 

freedom and capacity development and the need to commercialise inventions through innovative and 
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entrepreneurial endeavour’ through the involvement of multiple actors, including the MRC, industry, 

society and IP creators.553  

 The policy aligns with the policy framework for open innovation provided above in that it 

seeks to create a flow of information through ‘open dissemination and free exchange of research 

results’,554 but like with BIOS555 and 100KGP556, values the protection and management of IP in this 

process.557 In its policy, the MRC sets out how IP ownership should occur and how benefits from its 

commercialisation should be shared between the MRC and member institutions. Unlike with 

100KGP558, the MRC is more willing to vest IPRs in the participating institutions, or to jointly own 

IP.559 The MRC is also willing to share or vest complete IP ownership with sponsors or private 

funding organisations, especially where the MRC is unable to commercialise the IP. This willingness 

to share IP ownership may be inviting for potential MRC collaborators, and could facilitate wider 

commercialisation of technologies. Moreover, the MRC will ensure that the MRC and IP creators are 

not prevented from using the IP for further research, thus maintaining a knowledge flow for 

cumulative innovation.560 The policy also provides for the exclusive or non–exclusive licensing of IP 

to third parties for commercialisation that will benefit the public, increasing the value of resources to 

consumers. Importantly, if the licensee fails to exploit the IP adequately, the MRC retains the right 

to exploit the IP itself or contract another organisation to do so, thus ensuring innovation is optimised. 

 In terms of its licensing policy, the MRC, like the initiatives examined in the above sub-

section, has a preference for non–exclusive licensing, promoting the involvement of more parties, 

and encouraging a wider dissemination of knowledge.561 The MRC also intends to limit licenses 

according to geographic location, a particular market or sector, and/or field of use, as explained in 

the policy framework above.562 Furthermore, diligence and performance clauses are attached to 

exclusive licenses to optimise their benefits.563 The MRC policy is also aligned to the IPR Act, which 

delineates the rights of the state regarding licensing and march-in rights, and which gives preference 

to SMEs and BBBEE firms, as discussed in the previous chapter, widening the range of potential 
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collaborators.564 However, the preferences to license to the SA government, or to firms (including 

joint ventures and spin–outs)565 domiciled in SA encourages national linkages over international 

linkages, which may be detrimental in the long run, as discussed under the Draft Policy.  

 To further allow for the dissemination of knowledge, the MRC does not claim ownership of 

not–for–profit academic works, but does specify that it should have indefinite, free, non–exclusive 

use of such material.566 However, commercial IP, such as databases or electronic data, which may be 

appropriated by external entities and marketed at costs that are prohibitive to knowledge 

dissemination, will be owned by the MRC unless otherwise negotiated (in which case the MRC 

retains the right to use such IP).567 Like with BIOS568 and 100KGP569, this will prevent a hegemony 

over valuable information needed for further innovation, creating a more open access environment.  

 The MRC also promotes publication of research results in line with the principles of open 

science discussed above. However, where commercial potential exists, the MRC encourages patent 

applications to be filed before results are openly communicated.570 This is not an indefinite inhibition 

of open communication of results, but to ensure that IP can be commercialised to more effectively 

benefit the public in appropriate circumstances. This commercialisation is further supported by the 

inclusion of spin–out companies and joint ventures in the IP policy, as well as licensing and placing 

invention in the public domain for open access where suitable and approved by the National 

Intellectual Property Management Office (NIPMO).571 If regulated appropriately, these commercial 

entities could strategically engage with industry and the public sector to create a network of open 

innovation to maximise the application and benefit of IP.572 The MRC, like the 100KGP,573 also 

intends on commercialising IP to generate income, which will be shared accordingly with involved 

MRC members.574 This may encourage participation in MRC research projects and may create 

sustainability for future innovation. 

 The provisions of the MRC IP policy align with the main purpose of the consolidated 

framework provided in sub-section II (a) — to create open dissemination of knowledge and free 
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exchange of research. However, the MRC, unlike the biobanks and databases examined above, does 

not have an explicit stance on creating open access databases and knowledge commons, either by 

acting as a platform, or by stipulating that collaborators do so. The MRC could take a firmer stance 

on the data–sharing responsibilities of collaborators, and could include provisions on creative 

licensing such as copyleft licensing that promotes open access. The MRC, like the Draft Policy, offers 

sparse direction on patent pooling and clearinghouses, and there is a stronger focus on domestic rather 

than international linkages. However, the MRC recognises the need to create knowledge flow and to 

capture the social and financial interests of the different actors, and sets a strong foundation for open 

collaborative innovation between the public and private sectors. With time it will be seen how the 

MRC intends to engage in innovation in genomics medicine, and whether it develops its IP policy to 

build on the foundations of open collaborative innovation it has built.  

 

III.  Conclusion 

Open innovation as conceptualised by Chesbrough has evolved and includes the model of open 

collaborative innovation – a model that is highly suitable to meeting the demands of the complex, 

global and rapidly transforming field of genomic medicine. ‘If an organisation lacks the ability to 

collaborate, it lacks the ability to innovate and grow’.575 This transition of the genomics field from 

closed to open innovation requires entities to revise their policies on innovation, including their IP 

policies. In this chapter, a consolidated IP policy framework geared towards open collaborative 

innovation is provided in section II (a), and is used as basis for examining the national Draft IP policy 

of SA and its MRC. From this comparison it appears that both the Draft Policy and the MRC recognise 

both the importance of knowledge dissemination and translation into useful applications to satisfy 

public and private interests to innovation and capture value — the licensing practices of these 

instruments align with the OECD’s Guidelines576 and of more open collaborations, such as 

100KGP577 and BIOS578, included in the consolidated framework provided above. However, neither 

offer guidance on optimising alternative mechanisms for more open collaborative knowledge transfer, 

such as patent pooling and clearinghouses. Without clear guidance, these mechanisms may not be 

considered by domestic and international actors in the industry, and may not be used optimally to 

reduce transaction and licensing costs so as to promote the maximum use of resources in innovation. 

Additionally, lack of guidance may result in intentional or unintentional anti–competitive practices 
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in those patent pools and clearinghouses that emerge, which could be deleterious to the effectiveness 

of the mechanism and could cause its premature termination by the state. 

 Moreover, although they mention opening access to information, neither the Draft Policy nor 

the MRC commit to initiating a strong scientific knowledge base, either in the public domain or as a 

knowledge commons through databases or biobanks. Rather, as found in a closed innovation model, 

there is a stronger focus on using IP for the purposes of commercialisation, rather than examining its 

role in growing knowledge bases. The provisions in the Draft Policy579 and the MRC IP Policy580 

place emphasis on how commercialisation may be promoted through domestic and international 

linkages, and through national patent law amendments, such as the review of the SSE process in South 

Africa or the IPR Act to support the dissemination of publically-funded inventions. This is promising 

for established industries that are on the precipice of commercialising their innovations. However, in 

a nascent industry like genomic medicine, where innovation must still occur at the R&D stages prior 

to commercialisation, what is first needed is the development of a strong knowledge base that can 

serve the R&D needs of the industry. Both the Draft Policy581 and the MRC IP Policy582 omit specific 

provisions on how to develop this knowledge base either at a national level or through international 

linkages. Both these policies should address how IP may be used to promote collaboration in R&D, 

and should pay greater attention to structures such as open access databases, patent pools and 

clearinghouses on a domestic and global level that could facilitate open collaboration prior to 

commercialisation. In a globalised knowledge economy, and especially in the knowledge-intensive 

field of genomic medicine, neglecting collaborative innovation in R&D that generates knowledge 

may retard long term social and financial value capture as the knowledge available to the local 

industries to innovate is diminished.  

 South Africa could draw on the experience of the UK — where the UK Department of Health 

created the subsidiary body, Genomics England, to establish and govern its 100KGP biobanks and 

database.583 South Africa similarly needs to appoint a governing body that can either oversee a 

national, publically-accessible biobank and database, or coordinate multiple fragmented databases 

and biobanks. Without engaging in an extensive discussion that is beyond the scope of this 

dissertation, it is proposed that the MRC is a possible candidate, being a national research body. 

However, other institutions, such as universities, or an independent conglomeration of private and 

public actors acting in concert with the state, could also be oversight bodies in the nationalisation of 

genomic knowledge. 
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 Policy can be used to elaborate on the unclarified areas of the law, such as genome patenting 

for the benefit of public health. The Draft Policy intends to focus on public health, but its 

biotechnology focus seems to angle towards agriculture, with public policy on genomics left 

undeveloped. The gap could be addressed by the MRC, a major national research body, but its IP 

policy is vague regarding the patenting of research tools in genomics, such as genomes sequences. 

Though the limitations of this dissertation preclude a comparison with IP policies of organisations 

similar to the MRC in other countries, it would be valuable to compare their provisions of patenting 

in genomics. It is suggested that the MRC clarifies its position on genomes patenting so that 

collaborators are not deterred by uncertainty on this matter. 

 On the point of collaboration, both the Draft Policy and the MRC, like the IPR Act,584 focus 

on domestic linkages, especially regarding the public sector and small businesses. There is uncertainty 

as to how large domestic private companies are regarded in the hierarchy over the licensing policies, 

which may exclude these entities from participating in the knowledge flow and technology transfer 

required for open collaboration. From the provisions of both the policies, the preference given to 

SMEs and BBEEE firms, combined with the lack of direction regarding large multinationals, may 

also exclude these multinational firms from collaborating.  It is recommended that both policies 

encourage the inclusion of these entities in collaborations, and afford greater attention to fostering 

global linkages.  

 As the policies of both the MRC and state have significant bearing on the innovation landscape 

of South Africa, their IP policies could be used to promote the principles of open collaborative 

innovation so as to satisfy private and public interests in innovation in genomic medicine. Both the 

MRC’s IP policy and the Draft Policy have laid a foundation for open innovation through their 

recognition of the importance of dissemination of knowledge and optimal distribution of innovation, 

and their provisions on licensing align significantly with those of initiatives based in open innovation, 

as discussed under the consolidated policy framework.585 However, neither body explicitly identifies 

the value of open collaborative innovation in a field like genomics, where considerable R&D is 

necessary and would benefit not only from the growth of the domestic industry, but also from 

networking with international players. As key industry players, such as the large multinationals, are 

recognising the value of open collaborative innovation in fulfilling their own private interests in 

profit, as well as the public interest in relation to advancement in the field, the existing policies should 

adopt a firmer stance on promoting open innovation in the genomic industry. The Draft Policy is a 

national instrument, and so addressing the specific topic of open innovation in genomics may be 
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unrealistic. However, the policy could better address innovation in healthcare, which has been 

cursorily mentioned in its objectives. The MRC is in a prime position to address the specific topic of 

open innovation in genomic medicine, as it as a national body that coordinates research and governs 

key players in the field. If the MRC is to adopt a firm stance promoting openness in innovation, it 

would need to first ascertain the amenability of the domestic and international industries to adopting 

open collaborative approaches. It is found that the biotechnology and pharmaceutical industries are 

accelerating in their willingness to adopt openness.  Pursuant to this, the MRC should base its policy 

on existing best practices that are evidently viable in the industry. As it has already laid a reasonable 

foundation in its IP policy for openness in innovation, as discussed above, the MRC has the potential 

to drive open collaborative innovation in genomic medicine.    
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Chapter Five: Conclusion 

 

Open collaborative innovation, evolved from Chesbrough’s firm-centric open innovation model, is 

based on the flow of knowledge between collaborators.586 Juxtaposed to the traditional closed 

innovation model, open collaboration uses both the public domain and knowledge commons, as well 

as IPRs to facilitate the transfer of knowledge. This open model has established itself in the software 

industry, and is budding in the biotechnology industry as players address declining R&D and 

increasing costs and complexity of technologies. Players recognise that a model promoting rapid 

breakthrough innovation is needed to satisfy: public interests to advanced health technologies; private 

interests to improved profits; and private-public interests in sustaining future innovation. As seen in 

the examples of CAMBIA’s BIOS Initiative587 and the 100KGP588, although the research goals of 

collaborators may not be aligned, there is a common vision under the initiatives to create open access 

to knowledge and sustainable innovation to meet public healthcare needs. 

 Healthcare is also evolving to adopt a more personalised approach to medical decisions. This 

personalised medicine can be based on a number of individual characteristics, and herein genomic 

medicine is discussed, where medical decisions are based on a patient’s unique genomic constitution. 

These decisions involve the use of diagnostic and therapeutic technologies that are highly complex 

and developed from extensive genomic knowledge. As a relatively nascent field, significant R&D is 

required to rapidly generate a rich source of genomic knowledge and research tools for these 

technologies to emerge, and innovation has to be optimised to apply these technologies effectively to 

address the needs of public health. Genomic databases and biobanks are critical infrastructures in the 

generation of genomic knowledge, as discussed in Chapter Two, and under a suitable model can foster 

downstream innovation by coordinating knowledge and making this available to researchers. In this 

dissertation, it is proposed that open collaborative innovation is a fitting model, as various examples 

of initiatives that employ this model in a private-public sphere, such as BIOS589 and 100KGP590, are 

used. The policies of these initiatives dictate how open collaboration may be achieved, and 

particularly focus is on their IP policies to examine the role of IP in engendering open innovation. 

These policies are dictated by international, national and regional IP law, which have been discussed 

in Chapter Three.  

 Open collaborative innovation is a model that does not only incorporate the public domain 

and knowledge commons; it is also steeped in Chesbrough’s model of open innovation that relies on 
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active IP strategy to achieve knowledge flows. Though there is a paucity of conclusive evidence on 

the impact of IPRs on innovation in genomic medicine under a closed innovation model, it is found 

that IPRs are important in the structure of open collaborative innovation, enabling licensing and 

stimulating participation of profit-seeking entities in open initiatives. For such a model to function 

optimally in genomic medicine, patent law and policy needs to be clarified. It is concurred with prior 

commentary that although there is an attempt to harmonise IP law through the international 

framework of the TRIPS Agreement, there is divergence amongst member states when it comes to 

the particulars of genomics.591 TRIPS does not elaborate on the issues of genomic patenting; rather, 

its open-ended provisions underpin the needs to transfer technology, protect inventors and satisfy 

public health goals. And as yet, there is no legal international consensus on the patenting of the human 

genomic knowledge and downstream technologies. Landmark cases, such as Myriad,592 have led to a 

review of legislation on patenting regarding biological material in certain jurisdictions, such as the 

US, but relying on litigation to ignite a response to genome patenting may not be the most effective 

and expeditious solution to providing clarification to support innovation. This is a challenge that 

South Africa faces in light of its depository system of patent application, where the criteria for 

inventiveness are not examined, and the patent is only challenged in litigation. As litigation is costly 

and time-consuming, patents may be left unchallenged despite their weak grounds for inventiveness 

and their impact on further innovation. South Africa’s Draft IP Policy593 intends to reform the 

depository system to that of a search-and-examination (SSE) system, but this will require significantly 

greater human resources. The suggestion that the SSE system should be first adopted by priority areas 

is agreeable. Considering the Draft Policy’s attention to public health, and the potential of genomic 

medicine to address public health needs, it is recommended that development and adoption of patent 

law and policy on genomics be prioritised. As this national IP policy is still in its draft phase, there 

may be ample opportunity to amend its provisions, and once this is achieved, other bodies, such as 

the MRC, may have greater clarity in building a foundation geared towards open innovation in 

genomic medicine. 

 Once the field of genomics is prioritised, the next task is to determine what constitutes a 

patentable invention. Though TRIPS594 and national legislature include the criteria of inventiveness, 

novelty and utility in their provisions, without clear guidance, there is significant room for 

interpretation. The USPTO guidelines595 and the EU Directive596 are examples of provisions that are 
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more specific in how elements of genomic medicine may be treated, although countries such as SA 

lag behind in providing clear guidance. Moreover, even although these guidelines provide clarity, 

they are divergent, and in a globalised economy of international players, initiatives in genomics that 

rely on crossing borders need aligned provisions. To address this it is firstly suggest that genomics is 

divided into a) genomic knowledge that is essential as research tools, and b) downstream applications 

of that knowledge, and that these divisions are subjected to tailored provisions, as proposed by 

BIOS.597 Drawing on Myriad598, it is then recommended that isolated DNA should be non-patentable, 

and a review of the decision on cDNA, which is also a critical research tool found to be a product of 

an obvious step found in nature, is advocated. Then, following the examples of the SNP Consortium, 

the HapMap Project, BIOS599 and 100KGP,600 it is suggested that such basic genomic knowledge is 

placed in a knowledge commons that can be freely accessed, but is protected by creative licensing 

clauses, such as click-wrap licensing or copyleft licensing, to enable sustainable open innovation 

practices. Downstream technologies should also be licensed according to open practices to maintain 

knowledge flow, which includes non-exclusive licensing and reduced licensing costs, which can be 

facilitated by patent pools and clearinghouses. 

 To optimise the potential of genomic medicine in public health, public-based infrastructures 

such as genomic biobanks and databases are critical. The South African Medical Research Council 

(MRC) is a foremost organisation of research in the country, and as such, has a vital role in directing 

the course of innovation in genomic medicine. The MRC, like other public-based initiatives in other 

countries such as the 100KGP601, can encourage the generation of vast amounts of genomic 

knowledge on sequences and their relation to disease through establishing or overseeing public 

biobanks used for research, and can coordinate this knowledge in public databases. This knowledge 

can then be used by developers in the private or public sector in downstream innovation. However, 

before fuelling the engine of genomics medicine, the MRC will need a comprehensive IP policy on 

what may be patented and what remains in the public domain, how access to resources will be 

governed, and on the particulars of licensing and the engagement of private and public actors. This is 

largely determined by the national patent laws and policies, but as these are vague on the matter of 

genomics, it is recommended that the MRC follows the emerging trend in healthcare of open 

collaborative innovation, and a comprehensive policy framework built on the IP policies on various 

open initiatives has been provided. With the initiation of the South African Human Genome 
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Programme by the Department of Science and Technology,602 the role of the MRC and public policy 

will be more prominent in guiding how the data of this project is governed to allow future innovation.  

 Although there is a focus on the transfer of resources as knowledge and technology through 

IP policy and law, the foundation of IP resides within the human resources of an entity, and for open 

collaborative innovation to be optimised, there needs to be a development of a community of 

collaboration, rather than just policy on licensing practices and how IPRs are allocated. This is based 

on Aubrey and Al-Laham’s findings that alliances based solely on licensing patents was not 

sustainable or useful,603 and that together with the knowledge-based transfer of licensing patents, it 

was also necessary to transfer relational components, such as expertise and skills of researchers.604 

The Human Genome Project is such an example, where a global community of researchers 

contributed to a common goal. However, collaboration does not necessarily necessitate a common 

goal, but rather, in the case of open collaborative innovation, a dedication to creating openness. Future 

research should explore how meaningful communities of collaborators are created and sustained, 

examining the all relevant policies, not only those limited to IP, that bear on innovation. 

 An additional point on the extensive R&D that is required in genomic medicine to understand 

and treat genome–linked diseases is that the genome is now recognised as only one aspect of disease 

aetiology from the working of the cell; a second aspect, called epigenomics, has also been identified. 

Epigenomics relates to mechanisms apart from DNA sequences that cause changes in genome 

expression.605 These mechanisms incorporate environmental influences on genome expression, which 

may even include childhood care or the lifestyle of ancestors,606 and as such, requires extensive data 

collection. Cancer is one disease in which the study epigenomics is established — scientists find that 

a certain mechanism called DNA methylation of genes is much higher in cancerous cells than in 

normal cells.607 The understanding of these mechanisms, and the technologies developed thereafter 

have led to patents, much like in genetics and genomics. Similarly, important research tools or 

diagnostic methods may be patented,608 and the field of epigenomics may be stagnated by a closed 

model of innovation, as discussed in genomics. As genomics and epigenomics operate together in the 

workings of the cell, these should be studied concurrently. Thus, when developing the IP policies for 
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an open collaboration innovation model in genomics, these policies must also consider the role of IP 

in epigenomics.  

 Lastly, whilst open collaborative innovation, based on the current trends of transition in 

innovation models in the biotechnology industry, is advocated, the model must be analysed to produce 

conclusive evidence that it is indeed a beneficial model to adopt in genomic medicine. In the long-

run, the licensing practices, knowledge sharing, and networking effects and strategic alliances609 of 

open collaborative initiatives needs to be evaluated in terms of their impact on innovation, the 

economy and access to healthcare.  
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