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Abstract

Event understanding systems, responsible for automatically generating human relatable event descriptions
from video sequences, is an open problem in computer vision research that has many applications in the sports
domain, such as indexing and retrieval systems for sports video. Background modelling and shot classification
of broadcast video are important steps in event understanding in video sequences. Shot classification seeks
to identify shots, i.e. the labelling of continuous frame sequences captured by a single camera action such
as long shot, close-up and audience shot, while background modelling seeks to classify pixels in an image
as foreground/background. Many features used for shot classification are built upon the background model
therefore background modelling is an essential part of shot classification.

This dissertation reports on an investigation into techniques and procedures for background modelling and
classification of shots in broadcast soccer videos. Broadcast video refers to video which would typically be
viewed by a person at home on their television set and imposes constraints that are often not considered in
many approaches to event detection. In this work we analyse the performances of two background modelling
techniques appropriate for broadcast video, the colour distance model and Gaussian mixture model. The
performance of the background models depends on correctly set parameters. Some techniques o�er better
updating schemes and thus adapt better to the changing conditions of a game, some are shown to be more
robust to changes in broadcast technique and are therefore of greater value in shot classification. Our results
show the colour distance model slightly outperformed the Gaussian mixture model with both techniques
performing similar to those found in literature.

Many features useful for shot classification are proposed in the literature. This dissertation identifies these
features and presents a detailed analysis and comparison of various features appropriate for shot classification
in broadcast soccer video. Once a feature set is established, a classifier is required to determine a shot class
based on the extracted features. We establish the best use of the feature set and decision tree parameters
that result in the best performance and then use a combined feature set to train a neural network to
classify shots. The combined feature set in conjunction with the neural network classifier proved e�ective in
classifying shots and in some situations outperformed those techniques found in literature.
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Chapter 1

Introduction

1.1 Background

Every year billions of hours of video are produced, created and recorded. As with other
forms of media, users would benefit from the ability to sort, search and retrieve items relev-
ant to them. The retrieval of images and video based on their content is a very active area
of research with numerous applications ranging from medicine to entertainment. To enable
content based retrieval requires the analysis of the video to produce content descriptions or
annotations. The annotations facilitate content based sorting, searching and retrieval of the
video sequences. This process can and often is performed manually but doing so is generally
impractical due to the quantity of produced video and the subjectivity of the annotations,
thus automated solutions need to be developed. There are numerous applications besides
content based retrieval especially for sports video. These include automatic highlight gener-
ation, live commentary, post match tactics and performance analysis and content aware low
bit-rate streaming. Automatic highlight generation is of particular interest. Being able to
automatically generate a series of highlights from a game allows a user to watch most of the
interesting activities from a game in a much shorter time. This also opens up possibilities
that allow a user to receive a customised set of highlights based on user specified criteria.

Due to the massive variety of video available, developing general content analysis techniques
that are able to process all types of video is infeasible at this stage, so this work focuses on a
narrower context, that of broadcast soccer video. By limiting the focus, the goal of this work
was to produce a more thorough exploration that could then be expanded beyond the initial
scope. Sports video provides a rich context for analysis due to its constrained nature, strong
structure and the adherence to specific rule-sets. This allows for a set of events to be defined
which can be universally applied to all videos of a particular sport. Unlike general video
content where di�erent users may associate a di�erent meaning to an event, a framework



2

can be established for sporting events which can provide relatable information to all users.
By creating a structured and systematic method for labelling events based on activities in
the video sequences, the process of automatically producing event descriptions is greatly
simplified. The focus on soccer is due to its worldwide popularity. General principles can
be investigated that can then be expanded in future work to cover other sports.

Broadcast video refers specifically to video that has been produced for reception on televi-
sion and is the most common format of sports video, which makes its analysis the sensible
choice when considering general applicability. The nature of broadcast video poses certain
challenges related to how the views change from camera to camera but it also brings certain
advantages related to the specific nature of its production. Broadcast production strategies
convey information and the identification of the techniques used can be used to infer se-
mantics. This is opposed to situations where a camera setup may be purposely constructed
to allow for video analysis, sometimes used for a single purpose such as the Hawk-Eye[2]
visual tracking system. The output of these types of systems are generally not meant to be
seen by the viewers and may have little relevance outside of their direct association with
corresponding broadcast sequences.

1.2 Motivation

Significant amounts of research has been focused on content analysis for soccer video [7,
9, 10, 13, 14, 22, 25, 28, 32, 39, 41, 44, 46]. A broad range of solutions have been o�ered
but many are incomplete or still in their infancy. An important goal of content analysis
of sports video is to generate semantic event understanding which is to take the low level
representation of a video sequence and translate it into a human relatable descriptions that
make assertions about the content contained within the sequences. There are numerous
events in soccer but a conservative set of events would include those directly related to game
play such as goals, free kicks, penalties, throw-ins and corners. Additional details about the
events can also be included such as who scored the goal or which team was awarded the free
kick. Numerous techniques have been explored to solve the problem of event understanding
and classification, for example, using multi-modal approaches that combine visual, textual
and audio information [8, 7, 14, 16, 17, 43]. The visual and audio approaches are the most
popular and are often used in combination with the textual information to enhance the
classification made by the visual features.

When only the visual mode is used, the goal is to translate low-level visual features into
semantic concepts. When constructing such a system for processing broadcast sports video,
characterising views or shots is often a key process. A shot is a continuous frame sequence
captured by a single camera action such as long shot, close-up and audience shot. Due to
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the way broadcast videos are produced, the information the producer wants to highlight for
the audience influences the types of shots used and the order of their usage. Because the
choice of shot is made with the specific intention of conveying information, identifying and
classifying shots can provide a good basis to extract semantic information. Thus a common
approach to event detection in broadcast soccer video has been shot pattern analysis, which
detects events based solely on the order in which shots occur in a video sequence. In addition
to production strategies, di�erent shot classes also o�er opportunities to extract di�erent
kinds of information useful for event detection. A shot which displays most of the play field
area may be used to identify where the interesting actions are occurring or to determine
the direction of play to suggest which team is attacking or defending, while a close up shot
of a single player may give information about the player or team performing the actions.
Even a shot of the audience may be an indicator that something interesting has occurred
on the field and the producer wishes to show crowd reactions.

Thus solving the problem of shot classification is of significant importance to event classi-
fication and understanding, which in turn creates a basis for content analysis and retrieval.

This work focuses on methods and techniques that facilitate the classification of shot types
in broadcast soccer video. To advance this goal three key problems have been identified:
the modelling of the play-field area, the selection of shot features and the methods used to
classify shots.

Shot are classified by examining a feature set extracted from a set of frames. These features
are selected based on their ability to characterise certain shot types. This choice of features
is crucial to di�erentiating among the various shot types. Importantly though, all the
features used in this work rely on the quality of the play-field model. Thus the modelling
of the play-field is a vital first step. Finally, with an appropriate feature set, the task of
assigning a shot to a specific class is performed by a classifier. There are numerous classifiers
with di�erent complexities and other characteristics.

1.3 Objectives

The main aim of this work is the investigation of techniques and methods used in shot
classification of broadcast soccer video and the establishment of each method’s suitability
for such a purpose.

The objectives of this work are to:

• Survey the literature to gain an understanding of the state of the art shot classification
techniques.
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• Investigate shot classification through the three key processes of background (play-
field) modelling, feature selection and classifier selection.

– Compare two background modelling techniques (viz. the colour distance model
and the Gaussian mixture model) for their ability to model the field colour in
broadcast soccer video. Key points of comparison include; the model’s training
requirements and how the requirements a�ect the model’s usability, the accuracy
with which the model represents the play-field, the ability of the model to adapt
to changing illumination conditions within a sequence.

– Compare three feature sets (viz. the field colour ratio, the vertical projection and
the object size ratio) for shot classification and their e�cacy for shot classification
using the decision tree and neural network classifiers. Key points of comparison
include; the features ability to work within a classifier to accurately classify
shots, the potential of the feature to operate within a larger feature set and/or
in conjunction with a more advanced classifier.

1.4 Contributions

The main contribution of this work is the establishment of a feature set and comparison of
background modelling techniques for shot classification in broadcast soccer video.

A set of four shot classes have been proposed: the long, medium, close-up and out of field
shot. Each provides an opportunity to extract certain kinds of information and are often
used in the event classification process. Three sets of features; the field ratio, the vertical
projection and the object size ratio, have been identified as having the potential to classify
these shot types due to their ability to discriminate between the various shot types. These
features have been individually explored in this work with particular attention given to each
feature’s classification potential.

The extraction of features remains largely dependant on the play-field model. Establishing
e�ective techniques to do this is essential to the task of shot classification. Thus two
techniques for field modelling in broadcast soccer video were identified as being both popular
and accurate viz. the colour distance model and Gaussian mixture model. The ability of
these techniques to perform the function of field modelling has been investigated with each
technique being evaluated against similar techniques found in the literature and shown to
perform at the same level.

To determine the e�ectiveness of the features a decision tree classifier was used for each
individual feature. They were then combined into a single feature set and input into a
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neural network classifier. Although the decision tree is one of the most basic classifiers,
it was selected for this reason as other more complex classifiers may have obfuscated the
performance of the underlying features. Given the lack of well established features for shot
classification it was important to individually assess the performance of features rather than
just the classification system as a whole. As a result the individual features with decision
tree classifier showed a lower performance than other techniques in the literature but this
provided a means to assess the relationship and potential of these features. To o�er levels of
performance closer to those which can be expected from these features in a more advanced
system, a set of features were combined and used in conjunction with a neural network
classifier for the purpose of classifying shots. This provided a solid baseline to use when
comparing them to similar works. The feature set gave favourable results, outperforming
other techniques for certain shot classes.

1.5 Dissertation Structure

This dissertation is structured as follows: Chapter 2 provides a review of shot classification
techniques in the literature, Chapter 3 details the various methods and techniques imple-
mented for achieving shot classification, Chapter 4 presents and discusses the results of the
field modelling and shot classification techniques and Chapter 5 concludes this dissertation
with a discussion of the various techniques and results and o�ers avenues for further study.
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Chapter 2

Literature Review

This chapter reviews relevant techniques for background modelling, shot feature selection
and shot classification. As background modelling is a fundamental step in video processing
systems this topic has been reviewed in Section 2.1. Three approaches of particular relevance
for broadcast sport video have been reviewed viz. colour distance modelling, homogeneous
regions detection and Gaussian Mixture Modelling and Histogram Matching and the Code
Book approach. Automated shot classification is a very common step which precedes higher
level processing of broadcast soccer video because certain shot types, e.g. slow motion or
close up, are good indicators that important events have occurred, such as goals or free
kicks. A review of various features and classifiers used in shot classification is given in
Section 2.2.

2.1 Background Modelling

One of the fundamental processes in computer vision is separating areas of interest, the
foreground, from the rest of the image, the background. Common techniques developed
for general background modelling are not directly applicable to broadcast video because
many of these techniques have been developed in situations where there is a single static
camera while broadcast video typically involves multiple dynamic cameras which perform
actions such as panning, tilting and zooming [34]. The core assumption of most background
modelling techniques, a correspondence between pixel locations and object locations, thus
does not hold for broadcast video. Much of the research in detecting events in sports
video has attempted to address the problem of adapting or creating background modelling
techniques suitable for use in broadcast video [8, 16, 18, 23, 24, 31, 36, 44, 48].

Numerous approaches to background modelling were inappropriate for broadcast soccer
video, at least without alteration. Disregarding simple techniques such as frame di�erencing,
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many other techniques operate on a per pixel basis, where each pixel is modelled individually,
but this is unsuitable for broadcast video because of the camera movement. Common
techniques which operate on this basis include the single Gaussian, the mixture of Gaussians,
kernel density estimate and the temporal median filter. Common techniques for broadcast
video operate on the frame level, whereby the colour distribution is modelled for the frame
as a whole rather than per pixel. While it is possible to adapt each for use on a frame level
rather than pixel level, certain techniques lend themselves more to this process due to their
ability to robustly model a wider array of inputs.

In this section we describe three techniques appropriate for background modelling of broad-
cast soccer video viz. colour distance modelling which models colour similarity by the
distance in colour space; Homogeneous Regions with Gaussian Mixture Modelling that
models the probability of model membership with a Mixture of Gaussian Distributions and
Histogram Matching & The Code Book Approach which maintains a set of reference colours
used to establish the model.

2.1.1 Colour Distance Modelling

Many sports are typically played on uniformly coloured playing surfaces such as a soccer
fields or tennis courts. One popular and frequently used approach to background modelling
in the broadcast sports video domain uses this property by modelling the dominant scene
colour instead of modelling the background directly [8, 16, 18, 23, 24, 31, 36, 44, 48]. The
reasonable assumption here is that the playing surface colour is the dominant colour of
the scenes and that most interesting behaviour occurs on the playing field. Liu et al. [31]
describe the play field as having an “essential role in analysing many kinds of sports” due to
the play field colour dominating most shots in sports video. The importance of play field is
further emphasised by [24] as they state that it plays a “fundamental role in automatically

analysing many sport programs”.

In [44] the field is modelled as the dominant colour and pixels are determined to be field
or non-field based on their distance from this dominant colour. The dominant colour is
modelled by performing a density estimation using a histogram from appropriate training
images or video sequences. Analysis is done in the HSI (Hue, Saturation, Intensity) colour
space and a histogram is generated for each colour component. The distance from this dom-
inant colour is determined by the robust cylindrical metric

1 and thresholds are set according
to a selection schema. Dominant and non-dominant colour classification is determined by
the distance from the model and separated by the given thresholds.

1

Euclidean distance in the cylindrical co-ordinate system
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A crucial problem which is not addressed by this technique is the proverbial ‘chicken and
egg’ situation which a�ects all background modelling techniques, i.e. it is not known at
the time of learning whether foreground is being learnt as background or visa versa [17,
52]. This technique, therefore, relies on the use of preselected sequences which are known
to contain dominant field coloured scenes for learning the dominant colour. The use of
manual thresholds also makes general applicability across di�erent soccer videos di�cult.
This technique assumes a uni-modal field colour distribution, i.e a single dominant colour.
If this is not strictly true, such as when the field contains large sections of shadow (see
Figure 2.1), this assumption can introduce inaccuracies in these situations. Updating the
background model using this technique is awkward and can decrease rather than improve
accuracy. Without an e�ective updating scheme the performance over an entire video
sequence may deteriorate as conditions begin to diverge from the training sequence due to
global illumination changes caused by sun sets, cloud cover and stadium lighting.

Ekin et al. [18] improve upon the original approach of [44] in several ways. Two models are
established, namely primary and control space, to avoid drift from the dominant colour due
to adaptation. Additionally an algorithm is introduced to fuse segmentation results from
two colour spaces. This is a similar approach used in [43] where both the HSV and Lab
colour spaces are used. However, it is unclear what benefit the Lab colour space provides
as it appears to perform significantly worse than the HSV colour space.

Figure 2.1: Areas of shadow on field

In [45] an approach is used that requires only the Hue and Saturation components of the
HSV (Hue, Saturation, Value) colour space. No update scheme is provided and distance is
measured using a polar coordinate system. Ignoring the value colour component can reduce
the e�ect of illumination changes, such as shadows, on the performance. This is due to the
Value component approximately representing the brightness2 of a colour. However, because

2A notoriously di�cult concept to formalise
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this approximation is fairly rudimentary this component still contains colour information
and thus not including Value in the colour model can reduce overall performance.

Certain approaches, such as the one presented in [50], use the RGB colour space to model
the field colour. While this approach is feasible, it is less optimal than working with a
transformed colour space such as HSV or HSI. This is due to how colours are distributed
in the RGB colour space and how changes in illumination translate a colour from one point
to another in the RGB space. Changing the brightness of a colour in the RGB colour space
causes it to move along a vector passing through the origin. Thus, to detect an illumination
change this vector needs to be calculated and used to determine if the colour shift was merely
a result of changing illumination or if this is a di�erent colour all together. The HSV and
HSI colour spaces align this vector with their V/I axis which simplifies and accelerates
this process. The other di�culty with the RGB colour space lies in how similar3 colours
are distributed. This colour similarity is referred to as the hue of a colour and is a useful
quantity when trying to automatically match associated colours. The HSI/HSV colour
spaces formally define hue and align it to an axis making comparisons simpler. Because
these quantities are aligned to axes in a cylindrical coordinate space, the euclidean distance

measure becomes a meaningful metric that could be used to measure colour similarity. To
reiterate the HSV colour space is described in [29] as natural and approximately perceptually

uniform while definition of perceptual uniformity is provided in [48] as that property of a
colour space where two colours of equal Cartesian distance in the colour space are also

equally distant perceptually.

Due to di�culties in the direct use of the RGB colour space, Yoon et al. [50] choose to
manually define the range of required colours used to specify the field region (see Equation
2.1). Here strong assumptions are made about the colours of the playing fields which
may not hold for all types of soccer playing fields, specifically that the field’s colour is
predominantly green. Initial threshold values are also set manually without any initial
training and a threshold update algorithm is suggested but not provided. The lack of
training or updating can result in decreasing performance during lengthy video sequences.
The binarized field mask output image O(x, y) is given by;

3Defined by human perception
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O(x, y) =

Y
_________________]

_________________[

1, if

Y
_____________]

_____________[

IG(x, y) > IR(x, y)

IG(x, y) > IB(x, y)

|IR(x, y) ≠ Rpeak| < Rt

|IG(x, y) ≠ Gpeak| < Gt

|IB(x, y) ≠ Bpeak| < Bt

GL(x, y) < GLt

0, otherwise

(2.1)

O(x, y) is the binarized output image. IR, IG and IB represent the red, green
and blue pixel values with Rt, Gt and Bt representing the respective threshold
values. GL(x, y) refers to the grey level information and GLt is the respective
threshold value. Rpeak, Gpeak and Bpeak are the peak component values of the
colour histogram. The threshold values of Rt, Gt and Bt are manually set to 10,
15 and 10, respectively and are manually adjusted based on colour variance.

The work in [26] builds upon that of [50] by introducing a better threshold selection and
updating scheme. The threshold update scheme is modelled after the scheme used in [44]
where threshold values are adjusted based on colour component histograms, peak values
and standard deviation as;

A
Õ
peak =

q
H(i)Ø–H(A

peak

)

i · H(i)
q

H(i)Ø–H(A
peak

)

H(i) (2.2)

At = std(IA(x, y)) {(x, y) œ HA(IA(x, y)) Ø – · Apeak} (2.3)

GLt = GLpeak + — · std(GL(x, y)) (2.4)

A = {R, G, B} represents the set of colour components, Apeak refers to the peak
value and A

Õ
peak is the colour mean value in the vicinity of the peak. H(i) refers

to the value of the colour histogram at index i. – and — are constant coe�cients.

This update scheme allows the model to adapt to changing conditions that alter the ap-
pearance of the playing field over the course of a video sequence. Because this approach
is still based on the model introduced in [50] the same assumptions of colour apply which
may be invalidated by certain field conditions.
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2.1.2 Homogeneous Region Detection and Gaussian Mixture Modelling

One problem with using only colour information is that it can result in noise being included
into the background model because all colours in the scene are included in the modelling
process without any application of heuristics to determine more likely matches. However, it
is possible to exploit further knowledge of this uniformly coloured field by assuming that it
constitutes the largest homogeneously coloured region in the image. It is therefore possible
to be more selective of candidate field regions by performing connected component analysis
and filtering regions which are considered too small to be regarded as field regions. By
removing areas which are unlikely to contain field pixels, fewer non-field colours are learnt
into the model thereby increasing model accuracy. Variations of this approach have become
popular and can be seen in literature (see [17, 24, 31, 39, 40, 48]).

Duan et al. [17] make use of motion analysis to further reduce possible sources of noise by
eliminating shot classes which are unsuitable for field colour learning, such as those shots
whose largest components may not be associated with the playing field. The background
model is based on the mixture of Gaussians technique which is popular with many tradi-
tional background modelling approaches [33, 38, 47] and is commonly known as Gaussian

Mixture Model (GMM). The average colours of candidate field regions are modelled by
K Gaussian distributions. Foreground classification occurs by determining a candidate’s
distance to the mean of the nearest Gaussian distribution and thresholding based on the
standard deviation of that Gaussian. This approach does not require pre-selected training
samples and the model is easily updated to reflect changes in the environment by alter-
ing or replacing the Gaussian distributions. However, certain techniques used, such as the
mean shift procedure and connected component analysis, are computationally expensive and
may not be appropriate for certain applications. The mean shift procedure [15] is used to
cluster the colour information before being processed by a connected component algorithm.
Unfortunately this procedure incurs a high computation cost when requiring the level of
clustering needed to produce a useful output by a connected component algorithm. The
cost of connected component analysis can be reduced significantly by using the contour
tracing technique presented in [12].

Liu et al. [31] o�er a simpler approach by applying the (4-)connected component analysis
directly on a 2-Dimensional colour histogram to establish peaks generated in the CbCr
colour space. Depending on quantisation levels, this significantly reduces the computational
cost associated with both the clustering and connected component analysis used to establish
the homogeneous regions. The dominant colours are then modelled using a GMM and
updated using an incremental EM algorithm. Here, the YCbCr colour space is used instead
of the HSI space as their results show improved performance when the 2D Colour histogram
is constructed form the CbCr components over the H, I components. No filtering takes place
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to establish more suitable candidates but due to the use of a 2-dimensional histogram the
correlation between these colour components are maintained, as opposed to the typical
assumption of independence used for separate channel analysis. This naturally lends itself
to reduced noise from other scene colours.

2.1.3 Histogram Matching and The Code Book Approach

Instead of modelling the background/field colour directly, Zhong and Chang [52] attempt
to identify whether a scene displays the appropriate colour characteristics to be classified
as a dominant play-field coloured scene. This approach is based on 3-dimensional colour
histograms used to characterise a scene. K-means clustering, applied to manually selected
training data, is used to generate K representative feature vectors. Initially a large number
of colour models are included and then narrowed down by adapting to the initial portion
of the video. The adaptation process involves an initial filtering threshold and then an
object-level verification process. Similarly Coldefy and Bouthemy [14] use colour histograms
computed in the CIE Lab colour space along with an on-line K-means clustering algorithm
to determine the presence of a green dominant colour scene. This approach works well within
the context of their research but it does not provide adequate information with which to
perform further feature extraction. Lin and Zhang [29] establish a shot correlation measure
via the use of quantised 3-dimensional colour histograms in the HSV colour space and what
they describe as colour objects i.e. significant clusters in the HSV space of a frame formed
by a scene’s dominant colours. Unfortunately due to the strong colour correlation between
shots in sports video it becomes di�cult to apply such a method. In [37] colour histogram
di�erencing based on multiple timescales is used to detect scene changes, the details of
which however, are not present due to its implementation and subsequent use of a third
party annotation tool (IBM VideoAnnEx4). In a survey on automatic video classification
[11] the use of histograms to detect shot or scene changes is fairly common.

In [41] a colour code book is created to define all colours which are considered field colours.
A green colour table is manually constructed defining all permissible field colours. Then
a training video sequence is processed and all colours in the upper half of each image
in the sequence which match those in the green colour table are kept in another table
referred to as the upper green table. A similar table is constructed for the lower half of
each image in the sequence and the matches are stored in a lower green table. The target
sequence is then processed and colours are compared to those stored in the lower and upper
tables and determined to be either green or non-green. Unfortunately, the algorithm used
to determine colour similarity is not given. The need to manually construct a table of

4The VideoAnnEx annotation tool assists authors in the task of annotating video sequences with MPEG-7
metadata.[3]
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expected field colours may be impractical for many applications as the field conditions can
vary dramatically from sequence to sequence. This approach also does not include any form
of update scheme.

With the review of background modelling concluded, the discussion now turns to the features
and classifiers used in the shot classification process.

2.2 Shot Classification

This section reviews the two components of the shot classification process, namely the shot
features and the classification techniques. The features identify shot properties which are
then used by classification techniques to identify type of shot.

2.2.1 Features for Shot Classification

An important first step in classifying shots is to determine the shot classes that are se-
mantically relevant and separable. Tekalp and Ekin [44] propose three shot classes; long,
in-field medium and out-of-field/close-up shots (see Figure 2.2). Long shots contain the
global field view and are useful for shot localisation. Medium shots provide a zoomed in
view of a specific part of the field. Close-up or out-of-field shots describe a single person
or audience shot. Classifying shots in this manner is useful due to the nature and context
of their usage in a typical broadcast which facilitate the extraction of certain semantics.
Close or audience shots are good indicators of important events such as goals or free kicks.
Medium shots are often used to highlight interesting activity such as dribbling or tackling.
Long shots are useful for activity localisation i.e. identifying the area of the field in which
interesting activity is currently happening. This can be used to infer probabilities of the
current state of events, e.g. which team is attacking or if a set piece is taking place. The
field to non-field ratio is the primary feature used to determine shot classes and is su�cient
to separate long shots and close/out-of-field shots. Medium shots, however are typically
more di�cult to classify or define, especially when compared to certain types of close-up
shots.

Field colour ratio is widely used, in whole or in part, in many shot detection and classification
algorithms [18, 23, 36, 37, 39, 48, 49]. The global field ratio and subsection ratios based
on sections marked by the golden section spatial composition rule5 are thresholded and
passed to a Bayesian classifier. Figure 2.3 shows a frame segmented using golden section

5The image is divided in a ratio of 3:5:3 in both the vertical and horizontal directions
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spatial composition, with the middle sections being used for processing. By processing
only a specific subsection of each image certain issues are avoided such as interference from
out-of-field sections in long/medium shots (see Figure 2.4a). Sub-sectioning experiences
problems in instances with low angle medium shots or other situations such as a shot which
is not framed by the playing field (see Figure 2.4b).

(a) Close-up (b) Out of field (c) Medium (d) Long

Figure 2.2: Shot classes proposed by [44]

Figure 2.3: Images showing golden section spatial composition from [44]

Tong et al. [45] o�er similar shot classes but use a broader set of classification features.
Global field ratio separates shots containing a field background such as long and medium
shots with shots such as out-of-field and close up shots. Using only field ratios does not
produce su�cient accuracy when classifying medium and close-up shots therefore further
features are needed. The existence of a head area along with texture features are used at
the next level of separation to improve the accuracy with which medium and close-up shots
can be classified. Here, the presence of a large central head area is a strong indicator for a
zoomed in single person shot. However, potential for further misclassification may arise due
to the large variance in human skin tones and thus the di�culty in separating skin tones from
the vast array of other colours present in a broadcast video. A more robust facial detection
algorithm such as those based on principle component analysis or Gabor filters would greatly
improve detection accuracy compared to the simple skin tone comparison. This would
unfortunately result in significantly increased computation complexity which, depending on
the application, may not be tolerated. Finally, object size ratios help distinguish medium
and long shots. Simple object detection is used to generate an estimate of object sizes in
relation to the field area. By assuming object scales are associated with the zoom level
of a shot an inference about a shot’s type can be made. Shots with large object ratios
have a high probability of being medium shots, similarly those with low ratios have a high
probability of being long shots. Replay shots form a shot meta-class which are detected by
identifying shot transitions where a logo is present. The detection of replay or slow-motion
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shots provides a reliable indicator for semantically important events in a video sequence.
Detecting replays this way performs adequately in certain instances but there are many
instances where replays are not bounded by logo transitions therefore invalidating this
method for general application.

(a) Players framed by playing field (b) Players not framed by playing field

Figure 2.4: Examples showing framed and non-framed shots

Sun et al. [41] introduce the idea of visual keywords which are claimed to have greater
semantic linkage than shot classes. Shots are first segmented using motion analysis into
active and static parts. Background modelling is then used to segment field and non-field
regions. Each shot is segmented into four equally spaced rows. Shots are classified as one
of four classes: green non-dominant, green dominant, green partially or field with player.
Classification is based on the instances of green and non-green colours in each of the four
rows.

Field of view is a strong feature which can be used to classify shots but this information
is not readily available from the video sequences. [45] and [17] both o�er techniques for
field of view estimation. In [45] simple object detection is performed and the field to object
height ratio is used to estimate the relative size of the objects and thus the field of view.
Duan et al. [17] calculates the field ratio along each column of the image generating a 1-
dimensional field-player interaction curve (see Figure 2.5) from which additional descriptors
are extracted and used to estimate the depth of field by reasoning about the size and location
of non-field elements in the image.

These features form a good basis for identifying scene properties but they can vary greatly
from game to game requiring thresholds and classifiers to be trained per game. Alternatively,
complex field properties can su�er significant decrease in accuracy with a poor performing
background model. Therefore it becomes beneficial to combine colour and motion analysis,
a popular approach seen in literature (see [8, 7, 16, 17, 52]). The inclusion of audio features
as seen in [14, 28, 43] can also increase performance and accuracy, however, audio features
are typically only introduced for mid to high-level analysis where scene and event detection
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Figure 2.5: 1-Dimensional field player interaction curve from Duan et al. [17]

occur.

The goal of the shot features is to identify properties or characteristics of a shot which allows
the identification of the shot’s type or class. These features are processed by a classifier for
the purpose of classifying a shot’s type. The discussion of the classification process follows.

2.2.2 Classification

Finding the best features to use for shot classification is a di�cult and as yet unsolved prob-
lem and the generation and extraction of these features is still the main focus of research.
This often leaves the analysis and processing of these features as secondary considerations.
Relatively few papers such as [16] provide a more detailed look at the classification process.
Without a standardised, or at least ‘best practise’, feature set, papers like [46] which focus
too heavily on higher level concerns can become too superficial for practical usage.

Due to this lack of maturity in the feature space, shot classification methodology is often
basic. Techniques which rely on domain and a priori knowledge such as decision trees
[17, 30, 44] are often used instead of adaptive techniques such as Bayesian classifiers [7, 18],
support vector machines [16, 36] and neural networks [8]. There is generally little discourse
around the selection of technique and its possible advantages or disadvantages over similar
techniques. The variety of features used in literature makes it di�cult to delineate between
the strength of the feature set over the strength of the classification technique. Furthermore
because of the often widely varying conditions between games, techniques which require
significant training may require this training for each game and thus may become unsuitable
for many applications.
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In [18] and [44] a Bayesian classifier is used within the decision tree structure to separate a
subset of shot classes, specifically the medium and long shot types, using as its feature set
the three ratios generated by a golden section spacial decomposition of the shot. Due to
the classifiers position and incorporation into the decision tree, its performance is heavily
influenced by the decision tree itself.

Nan et al. [36] use a series of SVM classifiers to classify four di�erent shot types. Long and
medium shots are classified based on dominant colour features while close-up and out of
field shots use an additional set of features based on texture and edge information. SVM
classifiers also prove popular when analysing audio features, a topic not discussed here but
nevertheless popular, especially in combination with visual features as seen in [16].

Assfalg et al. [8] use two neutral network classifiers in conjunction with numerous features to
classify a broad range of shots, unfortunately the details of the classifiers are not elaborated.

2.3 Summary

Three types of background modelling approaches have been discussed: Colour Distance
modelling, Homogeneous region detection with Gaussian mixture modelling and Histogram
matching & the Code Book approach.

Colour Distance modelling uses colour spaces and distance measurement to construct a
model of the dominant scene colour typically representative of the play field area. This
is a largely autonomous approach as only the training set and a limited number of para-
meters need be manually selected. The approach is relatively computationally e�cient and
provides a modular platform which allows the various sections to be easily substituted and
experimented with. For example the choice of colour space and distance measurement can
be easily changed.

The homogeneous region detection and the Gaussian Mixture model is based on colour
probability distributions created using a Mixture of Gaussian distributions. No training
data need be supplied for the models generations which lessens the requirement for manual
intervention. However, model parameters still require adjustment which is often performed
manually. This approach however, is relatively computationally expensive compared with
the others discussed and even more so when using multiple colour channels which increases
the dimensionality of the distribution. This approach also requires computationally expens-
ive pre-processing in order to generate the homogeneous regions for input into the model but
a strong update schema provides the model with greater adaptability to changing conditions
within the video sequence.
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Histogram matching and the Code Book approach uses as its model a set of reference colours
and/or colour histograms which is used to determine scene type. One problem with this
approach is that no background mask is generated and thus it is not a feasible approach to
use when further processing is required using the background mask as input. Furthermore,
using these techniques to separate shots with the required fidelity becomes di�cult due to
soccer video sequences having a high colour correlation between shots.

The colour distance model and the Gaussian mixture model show the most potential for
generating an accurate and robust background model for use in a shot classification system.

The shot classification process has been discussed in two parts; the features used for shot
classification and then the classification techniques which use these features to identify and
classify shots.

The various shot types typically defined in the literature, such as long, medium, close,
audience and out of field shots were described. The relevance of each shot is discussed
along with why the identification of the shot type is useful.

A basic yet popular shot feature is that of the field ratio, of which two variations are
discussed, the global field ratio and the golden section field ratio. Field ratios are reliable
for long and out of field shots but for medium and close shots, further features are required
such as texture, motion or the identification of a person’s head. A category of features
attempt to identify the field of view of a shot which can be closely related to the the shot’s
type. These features include the object size ratio feature and the 1-D field/player interaction
curve. The object size ratio identifies the objects in the shot and their size relative to the
field size to estimate the field of view. The 1-D field/player interaction curve establishes a
vertical projection of the field masks and extracts information from this projection for the
purposes of identifying various shot properties.

Four shot classification techniques have been described: the decision tree, the Bayesian
classifier, the SVM classifier and the neural network. The most widely used of the four is
the decision tree which can operate in conjunction with SVM and Bayesian classifiers.



19

Chapter 3

Methodology

In this chapter various methods and tools for automatic shot classification in broadcast
soccer video are motivated and described. Through the presentation of background mod-
elling and its goal of modelling the play-field, a foundation is established from which to
extract features necessary for shot classification. We discuss the features extracted from
this field model and explain how and why the characteristics of these features are used for
shot classification. Finally the classification process itself is detailed by examining how the
various features are combined to produce a classification.

3.1 Field Colour Modelling

The modelling of a scene’s background is a common procedure in image processing which
is often used as a foundation for more complex processing and analysis. Most applications
focus on a static camera arrangement. For broadcast video, however, it becomes necessary
to adapt the approach to background modelling when operating in environments with dy-
namic camera movement. This is because moving cameras result in a moving background,
something that is typically not tolerated in traditional background modelling techniques.
A common approach used to address this issue, one typically associated with sports video
processing, is to forgo attempts at modelling a ‘generic’ background and instead focus on
modelling the play field area. This is the approach we have chosen to pursue. The field area
is useful for numerous reasons, the most important of which is that it often contains the ma-
jority of the interesting activities one would wish to analyse in a sports video. By applying
heuristics, the field model is significantly easier to generate than a traditional background
model, especially when considering moving cameras and changing points of view. This is be-
cause there is no longer a reliance on pixel location to object location correlation, otherwise
referred to as a spatio-temporal consistency. Hence it is possible to generate a reasonable
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model of the play field area given any number of di�erent view points that may be present
in a video sequence. Additionally [29] found colour features to be e�ective yet computa-
tionally inexpensive when establishing shot similarities making them highly appropriate for
our application by ensuring appropriate levels of accuracy and performance.

Two colour modelling approaches have been explored in this work, the colour distance
model and the Gaussian mixture model. Section 3.1.1 details the colour distance modelling
method and covers the topics of colour models, density estimation, dominant colour estim-
ation, threshold selection and finally connected component labelling and filtering. Section
3.1.2 details the Gaussian mixture modelling method and covers the topics of connected
component analysis, clustering techniques and the Mixture of Gaussians technique.

3.1.1 Colour Distance Modelling

The colour distance approach to modelling the play field area leverages the idea that the
similarity of two colours is determined by the distance between them. The core concept
behind this colour distance, and its representation of similarity, is the idea of a colour space.
A colour space is the subspace generated by the components of a colour representation for a
particular colour model. Three is the typical number of components for most colour spaces
although the dimensionality of the colour space does not alter the principles of the model.
An individual colour becomes a point, or coordinate, in this subspace therefore making it
possible to compare any two colours by measuring the distance between them. Subsequently
a field model was created by establishing the coordinates of the primary field colour and
then determining appropriate distance thresholds to separate colours from those belonging
to the model and those which do not. If the colour space used were 3 dimensional and used a
cylindrical coordinate system then one could visualise the model as a pie slice in this space.
Figure 3.1 shows the generation procedure used for the colour distance model where training
data is input and used to locate the dominant colour and establish a surrounding region
where a colour is accepted as belonging to the model. Naturally, it becomes important to
select a colour model which is able to maintain a high level of discriminatory power under
the various shot and illumination changes typically present in broadcast soccer video.

The discussion begins with the motivation for the selection of the colour space model,
which is used to generate the field model. This is followed by the discussion of the density
estimation technique which was used to establish the most frequently occurring colours.
This then leads into how the dominant colour is selected and what methods were used to
select the thresholds for segmenting the dominant and non-dominant colours. The connected
component filtering process is covered last.



21

Figure 3.1: Colour Distance Model Generation

3.1.1.1 Colour Models

A common method for representing colours for capturing and displaying digital images,
used in devices such as digital cameras and display monitors, is the Red, Green and Blue
(RGB) colour model. Its popularity stems from its similarity to the mechanical operation
of the human eye and that of imaging sensors. The RGB colour model generates a subspace
in the shape of a cube which can be visually represented as a colour solid (see Figure 3.2).

One of the problems with the RGB colour model is that it does not correspond well to how
humans classify colours since we do not consider a colour to be merely a linear combination
of primary colours [20]. Considering that humans are significantly superior at processing
visual data than machines it seems prudent for the purposes of image processing to con-
struct a model closer to that used by humans. The set of colour models which replicate
this behaviour are known as perceptual colour models and include the Hue, Saturation
and Value (HSV), the Hue, Saturation and Intensity (HSI) and the Hue, Saturation and
Lightness (HSL/HLS) colour models. These models are not independent representations
but are instead linear transformations of the RGB colour space that are unfortunately not
standardised. Thus the specific transformation used needs to be specified and vary from
one implementation to another. The advantage of HSV/HSI/HSL is that they attempt
to approximate perceptual uniformity to ensure distances between two colours represents
the perceptual di�erence between them [48]. This results in certain desirable characteristics
such as those found by [21] that when images are contaminated by highlights, the hue colour
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component achieves the best performance. Even under consistent lighting conditions, hue
is found to perform equal to normalised colour spaces while still being superior to the RGB
colour space. This proves useful in analysing soccer video due to the frequent occurrence
of shadows and highlights created by the various light sources at stadiums.

Figure 3.2: Visual representation of the RGB colour space

In this work, the colour distance modelling approach is based on the work done in [44]
and uses the HSL colour space, with the specific RGB to HSL transformation defined1 in
equations 3.1, 3.2 and 3.3 (see Figure 3.4). The transformation from the red (R), green (G)
and blue (B) colour space to the hue (H), saturation (S) and lightness (L) colour space is
given as:

Vmax = max(R, G, B)

Vmin = min(R, G, B)

L = (Vmax + Vmin)
2 (3.1)
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____]

____[

(G≠B)ú60

S if Vmax = R

180 + (B≠R)ú60

S if Vmax = G

240 + (R≠G)ú60

S if Vmax = B

(3.3)

1Based on the OpenCV implementation [5, 6]
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Hue describes the colour according to its similarity to the perceived colours of red, green
and blue or a combination of two.

Saturation describes the pureness of a colour or level of chromacity. Achromatic colours
being unsaturated, while pastel to primary colours are fully saturated.

Lightness is the measure of light intensity.

(a) Constant Green (b) Constant Hue

Figure 3.3: RGB and HSL colour spaces projected on to the GB and SL planes respectively

(a) Original

(b) Red (c) Green (d) Blue

(e) Hue (f) Saturation (g) Lightness

Figure 3.4: HSL colour space component separation
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3.1.1.2 Density Estimation

After establishing a model with which to represent colours the next step involved construct-
ing a method to establish the dominant colour of any given frame. The dominant scene
colours corresponds to the colours with the highest probabilities of occurrence. Thus to
identify these colours, knowledge of the probability density function (pdf) of the scene col-
ours is required. The pdf however, is unknown at the time of processing and therefore a
density estimation is required to be generated from the observed data. For this purpose we
employed a popular density estimator, the histogram. The histogram is used to estimate
the underlying pdf of the frame colours from the observed data (pixel values). Thus the
histogram can be used to determine the dominant scene colours.

Because individual colours are represented as a triple of strongly correlated colour com-
ponents, a full colour histogram results in a 4-dimensional construction. The complexity of
such a construct is illustrated in Figure 3.5. This would result in 16777216 (2563) histogram
bins resulting in a prohibitively costly computation per frame. However, if the assumption
is made that the components are independent, and thus there is no correlation between
them, we can generate density estimates for each component individually (see Figure 3.6)
thus reducing the total bins to 768 (256 ◊ 3). Of course this assumption is inaccurate as
the components are not independent but it provides a useful approximation for speeding up
calculations. If further performance gains are required simple clustering can be performed
to reduce the number of component bins and thus the total number of bins. This did not
appear necessary for this work thus a full set of three ‘independent’ 1-D component his-
tograms to represent the colour density were used. It is possible to create a compromise
and use a 2-D histogram as used by [31] however this still adds substantial computational
complexity when establishing peaks for dominant colour selection and was therefore not
considered.
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(a) Original Image

(b) Top down view of HLS colour histo-
gram

(c) Side view of HLS colour histogram

Figure 3.5: 3-D colour histogram visualisation generated by 3D Color Inspector/Color His-
togram [1]
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(a) Original Image

(b) Red (c) Green (d) Blue

(e) Hue (f) Saturation (g) Lightness

Figure 3.6: Component histograms

3.1.1.3 Dominant Colour Estimation and Threshold Selection

By using the histogram for density estimation the probability distribution for a given frame
was established, but to generate a more accurate and reliable estimation of the dominant
scene colour of a video sequence, multiple frames and their respective histograms were
analysed.

Algorithm 3.1 [18, 44] was used to determine the dominant scene colour by using the HSL
colour space and histogram density estimation. The mean values of the highest represen-
ted colours (Hmean, Smean, Lmean) were established for each colour component, and thus
represented the dominant scene colour. This was done by creating a combined histogram
representing a number of frames and establishing the set of bins to represent the dominant
colour. The set was established by first considering the peak bin for each colour component
and including all adjacent bins which fit a criterion. The criterion used for a bin to be
included as part of the dominant colour was that it should be no less than K% of the peak
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bin value, where K is the predetermined threshold. This technique assumes a uni-modal
distribution for each colour component which does not hold true for every situation, but,
for this work inaccuracies resulting from this assumption proved an acceptable compromise
to maintain high performance.

Subsequently considering the set of means (Hmean, Smean, Lmean) as a co-ordinate in the
cylindrical co-ordinate system, the euclidean distance was used to measure the colour sim-
ilarity of a pixel’s colour from the mean by leveraging the perceptual uniformity of the HSL
colour space. Algorithm 3.2 [18, 44] processed a training set of images to find appropriate
threshold values to use for classification. The dominant/non-dominant classification was
made by referencing these threshold values. Due to the varied conditions of soccer matches
and the extent of illumination changes present in di�erent videos, a leniency factor – was
required to scale threshold values so as to ensure an acceptable level of accuracy while
maintaining high recall rates.

Algorithm 3.1 Find Dominant Colour [44]
1. Convert input from RGB (default) to HSL using Equations 3.1, 3.2 and 3.3.

2. Generate histograms (H) for each colour channel separately.

3. Establish parameters for each colour channel assuming a uni-modal distribution.

(a) Find peak histogram bin (ipeak).

(b) Find smallest (imin) and largest (imax) bin equal to K% of peak.

i. Check all bins with indices equal to or lower than the peak (imin Æ ipeak)
and find bin that satisfies equation 3.4. This establishes the lower bin index,
imin.

ii. Check all bins with indices equal to or higher than the peak (imax Ø ipeak)
and find the bin that satisfies equation 3.5. This establishes the upper bin
index, imax.

Hi
min

Ø K ◊ Hi
peak

and Hi
min

≠1

< K ◊ Hi
peak

(3.4)

Hi
max

Ø K ◊ Hi
peak

and Hi
max

+1

< K ◊ Hi
peak

(3.5)

imin Æ ipeak and imax Ø ipeak (3.6)

(c) Calculate mean.

mean(H) =
qi

max

i=i
min

i ◊ Hi
qi

max

i=i
min

i
(3.7)
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Algorithm 3.2 Calculate Distance Thresholds[44]
1. Convert input frame, x, from RGB to HSL

2. For each pixel, i, in frame, x, with colour components Hi, Si, Li, calculate the euc-
lidean distance from dominant colour Hmean, Smean, Lmean.

◊ =

Y
]

[
|Hmean ≠ Hi| if |Hmean ≠ Hi| < 180¶

360¶ ≠ |Hmean ≠ Hi| if |Hmean ≠ Hi| > 180¶
(3.8)

dL(i) = |Lmean ≠ Li| (3.9)

dpolar(i) =
Ò

S2

mean + S2

i ≠ 2SiSmean cos(◊) (3.10)

distance(i) =
Ò

d2

L(i) + d2

polar(i) (3.11)

3. Calculate mean distance.

meanDistance(x) =
qi

max

i=0

distance(i)
imax

(3.12)

4. Set threshold as –% of mean where – is a leniency factor and has been determined
from domain knowledge.

threshold = – ◊ meanDistance(x) (3.13)

3.1.1.4 Connected Component Labelling

Once the basic background model was generated by the previously described techniques
the model was further refined by performing a connected component analysis. Using heur-
istics, components were filtered based on size and shape to eliminate unsuitable regions.
Components which were too small were filtered as they are likely to be as a result of field
colours present in objects other than the field. Initially a basic single pass depth-first con-
nected component algorithm was implemented but the performance was unacceptable for
this work. A more e�cient two pass algorithm, modified from the multi-pass algorithms
described in [42], was used.
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P

(a) 8-connected neigh-
bourhood

2 3 4
1 P

(b) Scan mask

Figure 3.7: Pixel neighbourhood

First Pass. The binary image is scanned sequentially from top left to bottom right. For
each non-background pixel p, the neighbouring pixels are scanned according to the scan
mask (M = [1, 2, 3, 4]); in Figure 3.7b to determine connected regions. Only provisional
labels are assigned during this pass with the assignment procedure as follows;

L[p] =

Y
____]

____[

0, if I[p] = 0

l, (l Ω l + 1), if I[i] = 0, for all i‘M

T [{ min
i|I[i]=1

(L[i])|i‘M }], otherwise

(3.14)

For further explanation Equation 3.14 is translated into Algorithm 3.3.

Algorithm 3.3 First pass connected component labelling
1. Begin iterating through all pixels p in image I using scan mask i to assign labels L,

initializing label counter l as 1.

(a) Case 1: I[p] = 0 (Pixel represents background)

i. Assign label of zero
L[p] = 0

(b) Case 2: I[i] = 0, ’i (No foreground neighbours in scan mask)

i. Assign new label
L[p] = l

ii. Increment label counter l

l Ω l + 1

(c) Case 3: (A foreground neighbour is present in scan mask)Assign label as smallest
equivalent label determined by equivalence table T

L[p] = T [ min
i|I[i]=1

(L[i]) ]

The first case for labelling a pixel is when the pixel represents the background, I[p] = 0, in
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this case a zero or null value will always be assigned. The second case represents a scenario
where all pixels in the scan mask are background, I[i] = 0, therefore a new label is assigned
to the current pixel and the label counter is incremented, l, (l Ω l + 1). Otherwise if the
pixel is not a background pixel and the scan mask contains labelled neighbours then the
pixel label must be assigned the equivalence label of the minimum neighbouring label. The
equivalence table T tracks labels found to be equivalent thus T [i] represents the smallest
label equal to i.

Analysis. After the first pass is complete all pixels have been assigned a provisional label
and an equivalence table has been constructed. At this point the equivalence table is still
incomplete as only ‘local’ relationships have been established, meaning a label’s equivalence
may not have been fully propagated [42]. Figure 3.8 shows the state of both the labels and
the equivalence table after the first pass has been completed. In this instance the labels
have fully propagated as both labels 2 and 3 have been found equal to label 1.

1 1
2 1

3 1
(a) Labels

i 1 2 3
T[i] 1 1 1

(b) Equivalence table

Figure 3.8: Connected component labelling procedure, first pass completed and labels fully
propagated

This is not typically the case however and often labels are not fully propagated, as demon-
strated in Figure 3.9. To correct this issue and ensure full propagation of labels the equival-
ence table is processed and labels are back propagated such that the resulting table reflects
the lowest equivalent label. This procedure is shown in Algorithm 3.4.

1
2 1

3 2 1
3 2 1

(a) Labels

i 1 2 3
T[i] 1 1 2

(b) Equivalence table

Figure 3.9: Connected component labelling procedure, first pass completed and labels not
fully propagated

Second Pass. The second pass is simple: iterate through the labels and change each label
to its lowest equivalent. However, using only the above procedures the final set of labels
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Algorithm 3.4 Equivalence Table Label Propagation

for each label
i f T [label] ”= label

T [label] Ω T [T [label]]
end

end

are often non-sequential which can be inconvenient. A few extra steps can be added if
sequential labels or additional label data such as label counts, centroids or bounding boxes
are desired.

After the connected component labelling procedure has completed, the components are
filtered based on size and shape (aspect ratio only) and components found outside acceptable
parameters are removed from the background model. The results of this procedure can be
seen in Figure 3.10 from which we can see that small non-field regions which were initially
labelled as background in Figures 3.10b and 3.10e have been correctly filtered and relabelled
as foreground in Figures 3.10c and 3.10f.

(a) Original (b) Field Model (c) Filtered

(d) Original (e) Field Model (f) Filtered

Figure 3.10: Field colour model and connected component filtering

3.1.2 Gaussian Mixture Modelling

The Gaussian mixture model is a popular technique often used for background modelling.
Traditionally this model operates by modelling each pixel individually as a mixture of
Gaussian distributions. This forms a probability density function which is used to determine
the probability of a pixel value belonging to the background. Due to the lack of a fixed
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camera view it is not possible to use this technique on a per pixel level for this work, thus
instead of modelling individual pixels the Gaussian mixture models the field colour.

The discussion begins with the pre-processing techniques used to simplify the modelling
process. This is followed by detailing the on-line Gaussian Mixture learning process used
to generate the Gaussian Mixture model.

3.1.2.1 Connected Component Analysis and Clustering Techniques

Before constructing the model using a mixtures of Gaussians, connected component analysis
was performed to isolate probable field candidate regions. This improves model accuracy by
preventing most non-field regions from being introduced into the model by using heuristics
to rank regions based on their probability of containing field pixels. The ranking was based
on the size and shape of the regions, with regions falling outside of the expected aspect
ratios of a field region being filtered out and the remaining regions ordered by size with the
largest three regions being included into the model.

The connected component analysis was however performed before the field/non-field mask
had been calculated, thus the analysis was not performed on a binary image but rather a
grayscale Hue channel image. This meant that some form of clustering was required prior
to determining connected components. To simplify the process of establishing connected
components, similarly valued pixels are clustered together to form homogeneous regions.
This reduces the total number of components and provides a better segmentation of com-
ponents. Some approaches have used the mean shift procedure on the hue colour channel
to cluster pixels. To attain a su�cient level of clustering however, the mean shift procedure
becomes computationally expensive.

Instead we observe that hue distributions for field regions commonly occupy a narrow band
of values (10¶ ≠15¶). By using a simple binning technique for clustering, su�cient accuracy
was still possible but at a low computational cost. The technique used was a basic 10x range
reduction, linearly reducing the maximum range of hue values from 180¶ to 18¶ e�ectively
discarding the least significant digit. Combining this technique with the expected range
of field hues it becomes evident that field regions will typically occupy only one or two
bins which reduces the complexity of establishing connected regions. Figure 3.11 shows
the results of applying this binning technique to the hue colour channel, observing how the
many hue values of the field region have been assigned to a single bin.
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(a) Original (b) Hue before clustering (c) Hue after clustering

(d) Original (e) Hue before clustering (f) Hue after clustering

Figure 3.11: Hue channel clustering (colour mapped for visualisation purposes)

The connected component labelling algorithm used is the same as presented in section
3.1.1.4 with only a few alterations needed to operate on non-binary images. Because of
the clustering already performed on the hue channel image, a connected component in this
space was defined as a connected set of equal value pixels. As a consequence it could no
longer be assumed that neighbouring labels are connected without first verifying the value
of the original pixel. The new provisional labelling procedure became:

L[p] =

Y
_]

_[

l, (l Ω l + 1), I[i] ”= I[p], ’i

T [ min
i|I[i]=I[p]

(L[i]) ], otherwise
(3.15)

Figure 3.12 provides two examples of connected component labelling performed on the hue
channel of the respective images after clustering has been performed. These components
were candidates for inclusion into the field model, their eligibility determined by their size
relative to the size of the frame, thus only su�ciently large components were included in
the model.

3.1.2.2 Mixture of Gaussians

The mixture of Gaussians technique generates a set of Gaussian distributions used to model
the background and, more specifically for our application, to model the field colour. Due
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(a) Original (b) Largest three connected components

(c) Original (d) Largest three connected components

Figure 3.12: Connected component labelling on hue channel after clustering

to the typically large amount of data present in soccer video sequences and the computa-
tionally expensive cost of processing, a batch processing model is not feasible. An on-line
or incremental Gaussian mixture model technique was instead used based on expectation
maximisation techniques found in [27] (see Algorithm 3.5).

Here the model evolves based on the incoming data. If new data is found to be close to
an existing distribution then that distribution is altered and increases in weight relative to
other distributions. If new data is not su�ciently close to any existing distributions then
the lowest weighted Gaussian is replaced with a new distribution with the mean located at
the new data point. This allows dominant distributions to grow while smaller distributions
continue to get replaced and remain small.

Focusing on the hue channel, Figure 3.13 shows the resulting set of Gaussian distributions
modelled using a single frame. As can be seen in Figure 3.13b a heavily weighted Gaussian
forms to encompass a narrow band of hue values which we have assumed to represent the
field colour. Here the entire frame is used to model the field without any filtering and due
to the specific frame composition the results remain respectable with the highest weight
Gaussian achieving a maximum certainty of 62%. However, a di�erent frame composition
from a di�erent shot type could result in a significant reduction in accuracy if no filtering
was performed prior to model generation.

By restricting the model to include only good field candidates, accuracy was maintained
throughout the video sequence. Figure 3.14 shows the Gaussian model of the example frame
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Algorithm 3.5 On-line Gaussian Mixture Learning[27]

Control Var i ab l e s :

K // the number of Gaussian d i s t r i b u t i o n s

V
0

// the s t a r t i n g standard d e v i a t i o n of a new Gaussian

– // the l e a r n i n g r a t e constant

T
‡

// the t h r e s h o l d for the number of standard d e v i a t i o n s away from an e x i s t i n g Gaussian

I n t i a l i z a t i o n :

’
j=1..K

w
j

= 0 , // set i n i t i a l weight of a l l Gaussians to 0

µ
j

= Œ , // set i n i t i a l mean of a l l Gaussians to i n f

‡
j

= V
0

, // set i n i t i a l s td dev of a l l Gaussians to V
0

c
j

= 0 // set counter for number of e f f e c t i v e o b s e r v a t i o n s of a l l Gaussians to 0

While new data x ( t )

// c a l c u l a t e p r o b a b i l i t y p for Gaussian d i s t r i b u t i o n g given parameters w , µ and ‡
// at obse rvat i on x for a l l K d i s t r o b u t i o n s

’
j=1...K

p
j

=

;
w

j

· g
j

(x, µ
j

, ‡
j

) if
|x≠u

j

|
‡

j

< T
‡

0 otherwise

I f

q
K

j=1

p
j

> 0 Then // at l e a s t one match i s found

For (k = 1 , k < K , k + +)

q
k

=

p

kq
K

j=1
p

j

I f Winner≠Take≠Al l Then

q
k

=

;
1 if k = argmax

j

{p
j

}
0 otherwise

End I f

w
k

(t) = (1 ≠ –) · w
k

(t ≠ 1) + – · q
k

I f q
k

> 0 Then // for matched Gaussians

c
k

= c
k

+ q
k

÷
k

= q
k

· (

1≠–

c

k

+ –)

µ
k

= (1 ≠ ÷
k

) · µ
k

(t ≠ 1) + ÷
k

· x

‡2

k

(t) = (1 ≠ ÷
k

) · ‡2

k

(t ≠ 1) + ÷
k

· (x ≠ µ
k

(t ≠ 1))

2

End I f

End For

Else //no match found

’
j=1...K

w
j

(t) = (1 ≠ –) · w
j

(t ≠ 1)

k = argmin
j

{w
j

} w
k

= – µ
k

= x ‡
k

= V
0

c
k

= 1

End I f

normalize w
End While
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(a) Original [Hue Channel]

(b) Gaussian mixture model

Figure 3.13: Background model of example frame as modelled by a mixture of five Gaussian
distributions

after it has been processed to include only the top three candidates. These results show the
highest weighted Gaussian achieving a maximum certainty of 98%.

To determine the binary field mask for a given frame we iterated through the frame and
compared each pixel with that of the field mask. If the pixel had a su�ciently high probab-
ility of belonging to the model then the pixel was marked as field, otherwise it was marked
as foreground. For pixel x the probability p of it belonging to the background is max(Gk(x))
where Gk is the kth Gaussian distribution and k œ 1..n for n distributions (see Algorithm
3.6). The threshold value varies based on the characteristics of the video segmented. In
Figure 3.15 a threshold of 1% (p = 0.1) was used.
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(a) Original [hue channel]

(b) Gaussian mixture model

Figure 3.14: Background model of example frame as modelled by a mixture of three Gaus-
sian distributions generated using only the three largest candidate field regions

(a) Example 1: Original, hue channel, field model

(b) Example 2: Original, hue channel, field model

Figure 3.15: Field model generated using the mixture of Gaussians technique
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Algorithm 3.6 Field Mask for Gaussian mixture model
for each row

for each c o l

/úGet p i x e l va lue at p o s i t i o n ( row , c o l ) in imageú/

x = image( row , c o l )

/ú I n i t i l i z e mask as foreground ú/

mask ( row , c o l ) = 0

/ú I t e r a t e through each Gaussian d i s t r i b u t i o n ú/

for k = 1 : n

/ú Calcu la t e the p r o b a b i l i t y o f the p i x e l with value x be lon ing

to the background model ú/

p = G
k

(x) Ω≠ w
k

·

.....
1

‡

k

Ô
2fi

e
≠ (x≠µ

k

)2

2‡

2
k

.....

/úCompare p r o b a b i l i t y to the t h r e s h o l d ú/

i f p >= t h r e s h o l d

/ú I f p r o b a b i l i t y i s g r e a t e r than t h r e s h o l d

then set mask at p o s i t i o n ( row , c o l ) as background ú/

mask ( row , c o l ) = 1

cont inue

end

end

end

end

In both the examples, Figure 3.15a and Figure 3.15b, only a single frame was used to model
the background and the selected frames consisted mainly of field coloured pixels. However,
for our work the model updates with each frame to maintain accuracy for changing condi-
tions but this does cause concern as not all frames are dominated by field coloured pixels
and of these frames a few may contain large homogeneously coloured regions. Depending
on their frequency and positioning in the video sequence the impact on the field model
can vary. It is possible to use the existing background model to further filter unsuitable
candidates, however, this feedback loop relies heavily on the initial model being accurate,
therefore the initial frames used to train the model need be carefully selected to ensure
high levels of field pixels. This type of manual intervention was unnecessary for this work.
The model’s ability to recover from false positives generated by these types of regions will
determine the necessity of this approach for situations not present in this work.

3.2 Shot Classification

3.2.1 Shot Features

Building upon a solid foundation created with the field model, various methods of extracting
features from the model were investigated in order to assist with shot classification. Two
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broad types of features recur frequently in the literature, those directly establishing shot
types from field properties and those which attempt to infer higher level features from this
data [51]. For this work the focus was on investigating the link between field ratios and shot
classes and then also at a higher level, established methods to estimate the field of view, or
zoom level of a frame were also investigated.

3.2.1.1 Field Ratios and Frame Composition

The ratio of field to non-field pixels in a shot is a computationally friendly method for de-
termining certain shot characteristics [29]. Two shot classes which can be reliably separated
by examining global field colour ratios are the out of field and long shots as they lie on
opposing ends of expected values. Long shots contain high ratios of field coloured pixels
while out of field shots typically demonstrate very low ratios [44, 48, 49] (see Figure 3.16).

(a) Long shot: Original æ Field model; Ratio = 0.8691

(b) Out of Field: Original æ Field model; Ratio = 0.0119

Figure 3.16: Global field ratios established from field models for long and out of field shots

Medium and close-up shots provide a more di�cult classification proposition as their field
ratios can vary significantly depending on the composition of the specific frame and often
contain a significant quantity of field coloured pixels, which make them di�cult to separate
from long shots (see Figure 3.17). To incorporate this frame composition variance, the
image was segmented into zones and the field ratios of the varying zones were determined
to link specific field ratios to a locality. This is useful because of the general consistent
nature of production techniques used in broadcast soccer videos hence the composition of
a frame can often yield pertinent information.
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(a) Medium shot: Original æ Field model; Ratio = 0.9313

(b) Close up: Original æ Field model; Ratio = 0.7408

Figure 3.17: Global field ratios established from field models for medium and close up shots

Two di�erent spatial segmentation patterns were used on the field model to establish local
field ratios for the various segments, shown in Figure 3.18. The golden section segmentation
pattern uses a ratio of 3:5:3 for both the horizontal and vertical directions following common
production strategies described in [34]. The evenly spaced pattern of nine segments was
used as reference to create a feature pattern based on field ratio locations. Figure 3.19
shows the potential advantage gained in discriminatory power from calculating ratios based
on predefined sections, as opposed to calculating a single ratio for the entire frame.

(a) Golden Section (3:5:3), only
sections 1, 2 and 3 used

(b) Nine evenly distributed sec-
tions, all sections used

Figure 3.18: Spacial segmentation patterns
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1.00 0.47 0.95
(a) Close

0.99 0.85 1.00
(b) Medium

0.96 0.96 0.98
(c) Long shot

Figure 3.19: Applying golden section segmentation pattern to close, medium and long shots

Field ratios were also segmented temporally for the purpose of establishing shot boundaries
to inform classification procedures and to potentially reduce the number of classification
decisions by only classifying certain frames per shot. Two basic techniques were used for
this task. The first technique simply compares field ratios of the current frame to those of
the previous frame and calculates the absolute di�erence. This is useful for the detection of
shot boundaries which result from ‘cuts’ from one shot to another. The second technique
compares field ratios of the current frame to the previous K frames, where K is the window
size, to determine the average absolute di�erence between frames. This is useful for detecting
shot boundaries generated by gradual transitions such as ‘fades’.

Figure 3.20 shows the ratios for each respective segmentation pattern (Figures 3.20a, 3.20b,
3.20c) over the course of a video sequence together with the manually defined shot class
‘mask’ (Figure 3.20d) for the sequence. In Figure 3.20a the golden field ratio has been
plotted as it changes over the course of the 1278 frame sequence. Comparing this plot
to that in Figure 3.20d we can see a certain level of correlation as the ratios change in
response to the shot changes. This correlation can once again be seen with the golden and
even ratios shown in Figures 3.20b and 3.20c. However, because ratios for individual areas
are determined it is possible to see the changing relationship between these areas in a frame
thus providing more information with which to determine the shot type. Additionally, large
changes in successive ratios provide a strong indicator for shot boundaries and demonstrates
the value of field ratios as a feature for shot classification.
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(a) Global field ratios

(b) Golden section ratios (stacked) (c) Even nine section ratios (stacked)

(d) Shot class mask for sequence; 3-Long, 2-
Medium, 1-Close, 0-Out of field

Figure 3.20: Field ratios over the course of a 1278 frame video sequence

3.2.1.2 Field of View

The field of view or zoom level of a shot can reasonably be considered as the predominant
characteristic separating the three di�erent types of in-field shots; long, medium and close.
Therefore, being able to estimate a value for this characteristic is of great benefit to shot
classification. Various methods have been used to generate this estimate and while the
techniques are di�erent, the core philosophy for all of them is similar, that of establishing
a relationship between the field and the foreground.

The first technique used is described in [17]. It consists of generating a 1-dimensional field-
player interaction curve using a vertical projection of field pixels (see Figure 3.21). By
examining the characteristics of this curve, an estimate for the field of view of a frame is
formed. The mean and standard deviation (Equations 3.16 and 3.17) are the features of
the vertical projection used to classify the di�erent shot types.

The mean x̄ is given by

x̄ = 1
n

nÿ

i=1

xi (3.16)

where x is the input vector and n the total number of elements. The standard
deviation s is then given by
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s =
ı̂ıÙ 1

n

nÿ

i=1

(xi ≠ x̄)2 (3.17)

A cursory analysis of the data, together with observable trends in the literature, lead to
the following hypothesis which would guide the experimentation. A high mean with small
standard deviation suggests a long shot such as Figure 3.21a. A medium to high mean with
a middling standard deviation suggests a medium shot such as Figure 3.21b. Lastly a low
to medium mean with a large standard deviation suggests a close-up shot such as 3.21c. Of
course these definitions of high, low, medium, small and large are subjective and vary from
game to game but they do provide a useful illustration to convey the salient properties of
this type of projection.

(a) Long shot (b) Medium Shot (c) Close-up Shot

Figure 3.21: Vertical projection of field pixels (smoothed)

A second technique used, more common in the literature, is that of establishing a relation-
ship between field and foreground by virtue of their respective sizes. This approximation
was done using connected component analysis of the frame foreground and applying similar
filtering rules as those used in section 3.1.1.4 where candidates which do not fit within ex-
pected dimensions are removed from consideration (0.2 Æ width

height Æ 2). By calculating these
ratios of sizes we were able to generate an estimate for the field of view by assuming the
smaller the foreground objects were in relation to the field the further out the camera was
zoomed. Filtering rules were kept simple and only aspect ratio was considered under the
assumption that most of the objects should correspond to players and players are almost
always in an upright position. The size of a component is determined by the number of
contributing pixels and ratios are calculated by a size weighted sum of height compared
to the height of the frame (see equations 3.18 and 3.19). Figure 3.22 shows the results of
connected component analysis of the foreground object detected in the three ‘field backed’
shot types. From the connected component analysis the heights of the varying objects are
estimated by the bounding box heights of each component with larger object heights cor-
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responding to a greater zoom level associated with the shot types. The weighted object
height, H, and the height ratio, HeightRatio, are given by:

H =
qn

i=1

wi · hiqn
i=1

wi
(3.18)

HeightRatio = H

heightimage
(3.19)

Where wi and hi correspond to the weight and height of object i respectively.

(a) Long shot (b) Medium shot (c) Close shot

Figure 3.22: Size ratios of foreground objects

3.2.2 Shot Classifiers

Finally, the features established previously in Section 3.2.1 (field ratio, vertical projection
and object size ratio) could be combined in various ways to perform classification for a
frame. Shot classifications were initially calculated on each of the features separately to
better understand the discriminatory power of each feature. Later they were combined to
leverage the strengths of each. The decision tree was used as the classification tool for this
work as it o�ered several suitable properties, such as the ease with which features can be
combined and separated and the ability to observe the performance of individual decision
nodes. The decision tree also o�ers flexibility by being able to combine other classifiers into
the decision structure without much alteration.
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3.2.2.1 Field Ratios

The features investigated are the field ratios in the three di�erent configurations; global,
gold section and even nine. The goal here was to establish which ratios and in what order
would produce the most reliable classification. Each set of ratios were evaluated separ-
ately. The global ratio is only a single value per frame so it is not possible to establish
intra-relationships, such as those possible with the other two configurations. For the golden
section both the weighted average ratio, goldenmean, of each section and the absolute di�er-
ence, goldendiff , between the middle section ratio (R2) and the maximum of the two outer
section ratios (R1 and R3) were used, given as;

goldenmean = 3 ◊ R1 + 5 ◊ R2 + 3 ◊ R3
3 + 5 + 3 (3.20)

goldendiff = max [(||R2 ≠ R1||), (||R2 ≠ R3||)] (3.21)

This provided clues towards establishing the existence of a large foreground figure occupying
the central area of the frame typically associated with close-up shots. Two features for the
even configuration were defined, the average of the highest six section ratios, evenmean

(useful for eliminating noise introduced from certain boundary elements in a frame such as
the stands or advertising boards) and the absolute di�erence between the outer and inner
areas, evendiff . The outer area being those sections on the far left, L, and far right, R,
of the frame with the inner area being those sections down the centre, C, of the frame.
evenmean and evendiff are given as;

evenmean =
q

6

i=1

SRi

6 (3.22)

L = R1 + R4 + R7
3

R = R3 + R6 + R9
3

C = R2 + R5 + R9
3

evendiff = ||C ≠ R|| + ||C ≠ L||
2 (3.23)
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where SR is a vector of even field ratio sections sorted in descending order such
that SR

1

contains the largest ratio and SR
9

the smallest

The even segmentation is used to describe the overall composition of the frame, in a similar
way to the global ratio but with the ability to compensate for bias introduced from out
of field elements typically found either on the top or bottom of a long shot. The golden
sections account for the more nuanced di�erences between the shots such as large centrally
located foreground objects.

(a) Global field ratio. The global field ratio, GL_FR,
used to classify four shot classes using three threshold
values, Th_low, Th_med and Th_high.

(b) Golden section ratios. The mean,
GO_Mean, and di�erence, GO_Di�, fea-
tures of the golden field ratio used to classify
four shot classes using three threshold values,
Th_low, Th_close and Th_high.

(c) Even nine ratios. The mean, EN_Mean, and di�er-
ence, EN_Di�, features of the even nine field ratio used
to classify four shot classes using three threshold values,
Th_low, Th_close and Th_high.

Figure 3.23: Decision trees for field ratios
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3.2.2.2 Field of View

We have previously described, in Section 3.2.1.2, the two techniques used to estimate the
field of view of a shot. Here we describe how these derived properties were combined in a
decision tree structure to produce a shot classification.

The vertical projection technique produces two descriptors which were used for classific-
ation; mean projection height and standard deviation from mean. The mean projection
height is analogous to the global field ratio but the smoothing of the projection removes
certain outliers and reduces certain types of noisy data. The standard deviation provides
information about the uniformity of the frame with the assumption that most disturbances
will be caused by players on the field, identified as foreground objects, therefore the larger
the disturbances, the larger the foreground objects hence the narrower the field of view.
Incorporating this information, a decision tree (Figure 3.24) was constructed, where low
mean values indicate out of field shots, large deviations indicate a close shot, a high mean
with a small deviation indicates a long shot and a low mean with small deviations indicate
a medium shot.

The next technique provides a single descriptor, the object/field ratio, which is best used
in combination with other descriptors but for evaluation purposes was initially used separ-
ately. Similar to the standard deviation of the vertical projection, the object ratio provides
information about the disturbances in the shot with the larger the disturbance the narrower
the field of view. Therefore a large ratio was associated with a close-up shot, a small ratio
with a long shot and anything in between determined as a medium shot (see Figure 3.25).
Due to the nature of the feature, out of field shots were ignored/uncategorised.

Figure 3.24: Vertical projection decision tree. The mean, VP_Mean, and standard devi-
ation, VP_StdDev, features of the vertical projection are used to classify four shot classes
using three threshold values, Th_low, Th_close and Th_high.



48

Figure 3.25: Object/Field size ratio decision tree. The height ratio is used to classify three
shot classes using two threshold values, Th_small and Th_large.

3.2.2.3 Feature Combination and the Neural Network Classifier

As a final stage, a selected combination of the previously described features were used in
the classification procedure. Initially a simple decision tree structure was again employed
to classify the shot types given the input feature set, however, because determining the
performance of the individual features was no longer necessary a higher level classification
technique, the multi-layer perceptron neural network (MLP-NN), was used instead. Using
this technique generated results closer to those seen in other works where a combination of
features is typically used, giving a better comparative reference.

The features were selected based on a demonstrated potential for shot classification. This
feature set was comprised of five previously described features; the mean and max di�erence
features of the golden field ratio, the mean top six feature of the even nine field ratio and
the mean and standard deviation of the vertical projection. This formed the 5-dimensional
feature vector used as the input for the MLP-NN.

The MLP-NN was constructed as a two-layer, feed-forward network using a tan-sigmoid
activation function for both hidden and output neurons. The scaled conjugate gradient
back-propagation algorithm2 was used to train the network. Figure 3.26 illustrates the
basic neural network topology with input, hidden and output layers.

The training data was constructed as a subset of frames from each video sequence. The
training subset consisted of 30 randomly selected feature vectors from each shot class,
thus giving 120 3 vectors used to train the network. The sample set was then segmented
into training (80%), verification (15%) and testing (5%) data sets. The sample data was

2See [35] as implemented by MATLAB’s[4] Neural Network toolbox
3Sequence 2 has less than 30 close shots therefore the total training sample was fewer than 120
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Input 1: Golden Mean

Input 2: Golden Di�erence

Input 3: Even Mean

Input 4: Vertical Projection Mean

Input 5: Vertical Projection Std Dev

Output 1: Out of Field

Output 2: Long

Output 3: Medium

Output 4: Close

Hidden
layer

Input
layer

Output
layer

*Note: Not all hidden layer neurons are shown

Figure 3.26: Multi-layer perceptron neural network
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Algorithm 3.7 Training Data Selection
Input: The feature matrix, data, of size N ◊ K where N is the number of feature vectors
and K the number of components per vector. The target class for each feature vector,
dataClass, of size 1 ◊ N with values ranging from 1 to the total number of classes, C.
Initialisation: ’j=1..C classCountj = 0 ’j=1..N xj = Random(N) count = 0
for each x

i

for j = 1 to C
i f ( classCount

j

Ø 30 )
break

i f ( classCount

dataClass

i

< 30 )
outputData (count) = data

i

[ data

i

= row i of data ]
outputClass (count , dataClass

i

) = 1
classCount

dataClass

i

= classCount

dataClass

i

+ 1
count = count + 1

end
end

Output: The sample feature matrix, outputData, of size count ◊ K with the number
of sample feature vectors equal to count. The associated target class for each sample,
outputClass, of size count ◊ C in a format such that for each sample feature vector i the
target class is given by the column of outputClass at row i containing the value 1.

randomly selected using Algorithm 3.7. The samples were randomly selected to increase the
classifiers ability to generalise classification to a larger data set and to avoid over training
specific samples.

3.2.3 Summary

This chapter has detailed the various methods used to classify shots in broadcast soccer
video. The fundamental process of background modelling where two techniques, Colour
Distance modelling and Gaussian Mixture modelling, were described first. Then the feature
set comprising of three distinct features, field ratio, vertical projection and size ratio were
described next. Finally the classification process driven by the decision tree model and a
multi-layer perceptron neural network was described.
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Chapter 4

Experimental Results and
Discussion

This chapter details and discusses the results of the various techniques used to perform
shot classification of broadcast soccer videos. The results for the two field colour (back-
ground) modelling techniques, colour distance modelling and Gaussian mixture modelling,
are presented first followed by the results of shot classification using the three features de-
scribed previously viz. field ratios, vertical projection and object size ratio and the combined
classification using the MLP-NN. Each technique was applied to four di�erent broadcast
soccer video sequences of varying length from di�erent matches and broadcast providers
(see Table 4.1 for details). Experiments were performed on a Dell Inspiron 1525 laptop
with a Intel Core 2 Duo T5750 CPU with 2GB of RAM, running Windows Vista 32-bit.
The software tools comprised of Microsoft’s Visual Studio 2009 IDE using the OpenCV
computer vision library with MATLAB used for analysing results data.

Sequence No. Total Frames Original Resolution Processed Resolution Shots*

1 1550 640 x 368 384 x 220 11
2 948 640 x 368 384 x 220 6
3 3274 624 x 352 374 x 211 31
4 1846 640 x 360 384 x 216 12

*Number of continuous shot sequences

Table 4.1: Video Sequence Details
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4.1 Field Colour Modelling

In this section we present the results for the colour distance modelling and Gaussian mixture
modelling field modelling techniques. The results for each are given in the form of precision,
recall and accuracy, first overall per sequence then by class per sequence. Precision, recall
and accuracy are given as [19];

Precision = tp

tp + fp
(4.1)

Recall = tp

tp + fn
(4.2)

Accuracy = tp + tn

tp + tn + fp + fn
(4.3)

where tp and tn are the true positives and true negatives respectively and fp

and fn are the false positives and false negatives respectively.

The ground truth field model was manually generated for 10 to 15 frames per sequence
(total of 46), with the frames extracted from throughout the sequence to sample the various
shot types. These ground truth models were then compared with those generated by the
background modelling techniques using Algorithm 4.1, generating the results in the form
of true positive/negative, false positive/negative. A true positive is any background pixel
which is labelled as background by the model. A true negative is any non-background
pixel which is labelled as a non-background pixel by the model. A false positive is a non-
background pixel which is labelled as a background pixel by the model. A false negative is
a background pixel which is labelled as a non-background pixel by the model.

A full set of results in the form of confusion matrices is supplied in Appendix A.
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Algorithm 4.1 Ground Truth versus Model Compare

for row = 1 : s ize ( groundtruth , 1 )
for c o l = 1 : s ize ( groundtruth , 2 )

current_gt = groundtruth ( row , c o l ) ;
current_model = model ( row , c o l ) ;

i f ( current_gt == current_model )
i f ( current_gt )

t ruepos = truepos + 1 ;
else

trueneg = trueneg + 1 ;
end

end

i f ( current_gt < current_model )
f a l s e p o s i t i v e = f a l s e p o s i t i v e + 1 ;

end

i f ( current_gt > current_model )
f a l s e n e g a t i v e = f a l s e n e g a t i v e + 1 ;

end
end

end

4.1.1 Colour Distance Modelling

Table 4.2 presents the results of the colour distance modelling process both with and without
filtering performed by connected component analysis (described in Section 3.1.1.4) where
field candidates were filtered based on size and aspect ratio. The mean and standard
deviations for precision, recall and accuracy are shown per sequence. Table 4.3 on page 56
presents the resulting precision, recall and accuracy means separated by shot class (long,
medium, close and out of field) per sequence.

The accuracy of the unfiltered performance shows the maximal di�erence across all se-
quences is less than 2% with an average standard deviation of less than 3%. This indicates
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the technique to be stable throughout a sequence as well as being robust to changes of
venue, field conditions and broadcasting styles between the di�erent sequences. Similarly
the performance is consistent across all classes with a range of only 6% between the best
and worst sequence/class performances, and on average a less than a 2% overall di�erence
between classes. This shows the robustness of the technique in handling changes of camera
angle and switching between the various cameras as seen between shots. Recall performance
show similar values with a 2% range and a 4% standard deviation.

Precision values experienced the greatest fluctuation between sequences with a range of
more than 7% with the worst performance seen in sequence 3 with 89.13% precision at
a standard deviation of 15.23%, nearly 3 times higher than the other sequences. This
poor performance is due mostly to a few frames containing a small number of field pixels,
that tend to amplify the negative performance aspects of any false positive classifications.
The per class comparison shows that the medium shot class has a precision of 77.14%,
significantly lower than the 90.83% of the next worst performing sequence/class pair. The
poorest performing frame in the sequence achieved a precision of 52.66% while still having
a recall of 99.79% and an accuracy of 87.79%. This suggest that for a binary classification
system, such as field modelling, where false positives and false negatives have an equal
impact on the performance, accuracy is a more indicative measure of performance than
precision and recall especially in situations where a large bias towards true positives or true
negative may exist.

Overall, filtering increases the precision by +1.13% but at the expense of decreased recall
and accuracy of -2.01% and -0.65% respectively. This was due to the filtering process in-
creasing the mean number of false negatives while decreasing the mean number of false
positives per frame. At this level of performance the increased computational cost of per-
forming connected component analysis is not worthwhile. However, if a more advanced,
accurate filtering process were to be employed it should be possible to universally increase
the performance of the modelling technique.

Thus the colour distance model has been shown to be consistent and accurate across shot
classes and video sequences, properties which are highly desirable for a field modelling
technique. Trying to improve the results through post-processing via filtering did not have
the desired e�ect and reduced the overall accuracy but this was more likely due to the
implementation of the filtering process rather than the process itself. A more thorough
process may indeed improve the results as required.
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Unfiltered Filtered

Precision Recall Accuracy Precision Recall Accuracy

Sequence 1

Mean 96.36% 97.57% 96.25% 97.15% 93.51% 94.45%

Std Dev 3.89% 2.56% 2.72% 4.13% 14.52% 7.16%

Sequence 2

Mean 95.98% 97.06% 95.13% 97.05% 96.52% 95.64%

Std Dev 3.13% 4.37% 2.58% 2.26% 5.09% 2.62%

Sequence 3

Mean 89.13% 99.59% 95.27% 91.70% 97.85% 95.11%

Std Dev 15.23% 0.44% 3.51% 9.57% 0.45% 1.66%

Sequence 4

Mean 93.75% 99.51% 94.91% 93.87% 97.81% 93.76%

Std Dev 3.21% 0.96% 2.70% 2.80% 1.10% 2.89%

Average

Mean 93.81% 98.43% 95.39% 94.94% 96.42% 94.74%

Std Dev 6.36% 2.08% 2.88% 4.69% 5.29% 3.58%

Table 4.2: Colour Distance performance by sequence
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Unfiltered Filtered

Precision Recall Accuracy Precision Recall Accuracy

Sequence 1

Long 97.96% 99.17% 97.56% 97.80% 98.93% 97.33%

Medium 98.06% 96.90% 97.13% 98.75% 86.22% 91.96%

Close 96.47% 95.31% 96.22% 99.37% 94.97% 97.13%

Sequence 2

Long 95.43% 99.10% 95.66% 96.60% 98.89% 96.48%

Medium 97.18% 90.04% 93.39% 97.55% 89.36% 93.22%

Close 97.55% 93.87% 94.24% 98.80% 91.86% 93.85%

Sequence 3

Long 95.20% 99.49% 96.55% 95.57% 97.91% 95.74%

Medium 77.14% 99.65% 92.15% 83.93% 97.94% 93.62%

Close 97.95% 99.71% 98.31% 97.58% 97.50% 96.50%

Sequence 4

Long 94.80% 99.33% 94.64% 94.66% 98.04% 93.48%

Medium 90.95% 99.58% 95.49% 92.23% 97.40% 94.94%

Close 93.40% 99.99% 95.15% 93.17% 97.53% 93.40%

Average

Long 95.85% 99.27% 96.10% 96.16% 98.44% 95.76%

Medium 90.83% 96.54% 94.54% 93.12% 92.73% 93.44%

Close 96.34% 97.22% 95.98% 97.23% 95.47% 95.22%

Table 4.3: Colour Distance performance by shot class
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4.1.2 Gaussian Mixture Model

The Gaussian Mixture model (GMM) is the second field modelling technique implemented.
Table 4.4 shows the results in terms of precision, recall and accuracy of the Gaussian mixture
model technique applied to the four video sequences, firstly showing the overall means and
standard deviations and then showing the mean values by class.

The accuracy of the Gaussian mixture model proved somewhat less consistent than the
colour distance model with a range across video sequences of 5.54% and an overall standard
deviation of 7.13%. The per class accuracy showed a range of over 10% between best
and worst with an overall di�erence of 1.13% between classes. Much of this variation
can be attributed to the need to alter the model parameters for each sequence, namely the
learning rate of the model and the initial standard deviation for newly created Gaussians. In
certain circumstances, where frames which were not field colour dominated existed near the
beginning of the sequence or lasted for an extended duration the GMM would occasionally
learn non-field colours as primary e.g. player uniform colours. This had a severe negative
impact on the performance. With a better understanding of the relationship between model
parameters and sequence properties it should be possible to increase both the stability and
the performance of the model by setting appropriate values for the Gaussian initialization
parameters and especially the learning rate. The initialization parameters set the properties
of newly formed Gaussian in the mixture, which occur when replacing the previous lowest
valued Gaussian in the Mixture, and the learning rate determines how quickly the model
will adjust to new data.
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Precision Recall Accuracy

Sequence 1

Mean 89.25% 99.13% 92.09%

Std Dev 9.40% 1.68% 4.08%

Sequence 2

Mean 95.03% 97.71% 94.57%

Std Dev 3.45% 2.05% 2.77%

Sequence 3

Mean 89.72% 99.67% 88.63%

Std Dev 8.18% 0.60% 16.86%

Sequence 4

Mean 92.98% 99.84% 94.18%

Std Dev 5.34% 0.21% 4.81%

Average

Mean 91.74% 99.09% 92.37%

Std Dev 6.59% 1.13% 7.13%

(a) by sequence

Precision Recall Accuracy

Sequence 1

Long 91.72% 99.19% 92.69%

Medium 84.28% 99.92% 90.64%

Close 96.77% 95.67% 94.87%

Sequence 2

Long 94.32% 97.77% 93.68%

Medium 95.17% 96.19% 95.50%

Close 98.42% 98.96% 98.11%

Sequence 3

Long 87.71% 99.95% 91.54%

Medium 88.82% 99.17% 94.75%

Close 96.08% 99.73% 96.93%

Sequence 4

Long 95.04% 99.89% 95.44%

Medium 94.26% 99.54% 96.62%

Close 85.53% 99.99% 87.95%

Average

Long 92.20% 99.20% 93.34%

Medium 90.63% 98.70% 94.38%

Close 94.20% 98.59% 94.47%

(b) by class

Table 4.4: GMM performance
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4.1.3 Comparison with related works

Figures 4.1a and 4.1b show the combined mean values for precision and recall, respectively,
across all four sequences per class for both the colour distance model and the GMM. Both
techniques o�er a similar level of performance with the colour distance model o�ering better
results for precision but with the Gaussian mixture model having a marginally stronger recall
performance. In terms of accuracy the colour distance model had a strong performance of
95.39%, a +3.02% increase from the GMM’s 92.37% accuracy. The colour distance model
also proved more consistent with the standard deviation of accuracy at 2.88% compared to
the Gaussian model deviation of 7.13%, a +4.25% increase.

A comparison of these results with those of similar techniques found in the literature,
as seen in Table 4.5, shows the performance to be within 1 ≥ 2%. The two techniques
from literature were chosen based on their use of the colour distance modelling technique,
technique A[18], and the Gaussian mixture modelling technique, technique B[24].

Technique A uses a fusion of two colour spaces, HSI and L*a*b, to create a control space and
primary space used to model the field colour. The data set comprised of 6050 frames spread
over four clips, processed at a resolution of 88x60, with 41 frames manually annotated and
used to generate the results. Technique B uses the expectation maximization algorithm to
construct the GMM in the hue-luminance colour space (creating a 2-Dimensional model),
post-process filtering occurs via the use of a region growing technique. Details about the
data set were not given beyond the use of three clips from various sources.

The implemented colour distance model slightly outperformed that of A, the di�erence
is however small enough to be accounted for by variance in the di�erent data sets. The
significant di�erence in resolutions between that used to generate the results of this work
and the resolutions used to generate the results of A may require further investigation as
to their impact on the results. The implemented GMM performed worse than that of B by
a large enough margin to suggest possible inadequacies of the implemented technique.
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(a) Precision (b) Recall

Figure 4.1: Colour Distance Versus GMM, comparison by class

CD GMM A1 B2

Accuracy 95.39% 92.37% 95% 94.34%

1
Colour Distance model based technique by [18].

2
Gaussian Mixture model based technique by [24].

Table 4.5: Comparison of proposed works to those in literature for field colour modelling

4.2 Shot Classification

In this section, we present the results of the three features used for shot classification viz.
field ratios, vertical projection and object size ratio; the multi-layer perceptron neural net-
work classification results and finally the aggregated results of the classification techniques
compared with results obtained from notable works in the literature. The results were
generated by manually labelling each frame in the sequence as belonging to one of four
shot classes; long, medium, close and out of field, and then using an automated proced-
ure to compare the manually given labels to the labels given by each of the classification
techniques. Results are given in the form of true positive (correct), false positive and false
negative, followed by the subsequent precision and recall values for each class per sequence.
A true positive occurs when the classifier correctly identifies a frame as belonging to the
target class, thus the output class equals the target class. A false positive occurs when the
classifier incorrectly identifies a frame from a di�erent target class as belonging to the cur-
rent output class. A false negative occurs when the classifier incorrectly identifies a frame
from the current target class as belonging to a di�erent output class.

A full set of results in the form of confusion matrices is supplied in Appendix B.
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4.2.1 Field Ratios

The field ratio features are the features which establish a field to non-field ratio for the each
shot in three di�erent configurations; global, golden and even nine. The performance for
each field ratio set is given individually showing the complete breakdown per sequence for
each shot class along with both the precision and recall rates. Tables 4.6, 4.7 and 4.8 (pages
63, 64 and 65) show the performance of the global, golden and even field ratios respectively.
Figures 4.2 and 4.3 (page 66) present a side by side comparison of the three ratio sets by shot
class per video sequence for precision and recall respectively. Finally Figures 4.4 and 4.5
(page 67) show the 2-dimensional scatter plots per sequence for the golden ratio and even
nine ratio set which plots the two classification inputs of mean and max ratio di�erence for
each ratio set. This demonstrates how the classes are distributed in this space and provides
insights into how classes may be separated using these inputs.

The results for the field ratio feature set show the even nine field ratio to have the highest
overall performance with precision and recall rates of 81% and 83% while both global and
golden ratios performed less accurately with precision and recall rates of 59%/64% and
79%/84% respectively. Comparing the even nine and the golden section ratios on a class
by class basis, the golden section showed the highest performance for the long and medium
shot classes by a slight margin while the even nine ratio performed significantly better with
the out of field shot class. The close shot class was split between the two with the even
nine ratio having a significantly better precision and the golden ratios having a significantly
better recall. As the golden field ratio analyses only the central portion of the frame, this
would suggest that the entire frame needs to be analysed, such as that done in the even
nine ratios, when trying to identify shots with very few field coloured pixels, e.g. out of
field shots.

Both the golden section and even nine ratios outperformed the global field ratio for every
shot class, leaving the global ratio as an obsolete feature as better results can be achieved
by the other techniques with little to no disadvantage.

Two particular individual cases stand out: the close shot class for sequence 2 and the
medium shot class for sequence 3. The sequence 2 close shot class can be labelled as outlier
data as a result of the relatively low number of close shots in the sequence compared to other
shot types which has the e�ect of making its classification unreliable. So even though this
class may have false positives comparable to other classes in the sequence the subsequent
precision will be vastly lower due to low number of close shots and thus maximum number
of possible true positives. The sequence 3 medium shot class is however, of greater concern.
The best performing feature for this combination, the golden section, managed a precision
of only 15.57%, over 40% below the average of 58.14% for that class. This suggested there
were properties of this sequence which required further inspection.
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Examining the sequence 3 2-D scatter plots in Figures 4.4 and 4.5 reveals the likely cause of
such poor performance. Sequences 1, 2 and 4 show a degree of separation between the shot
classes but in sequence 3 there is a significant degree of overlap between the medium and
long shot classes. This makes it very di�cult to separate the two classes in a classification
process using only a 2-dimensional feature set, especially with a decision tree classifier. This
suggests both the use of a higher dimensional feature set and a more advanced classifier.
Figure 4.6 on page 68 expands the region occupied by the medium and long shot classes for
both the golden section and even nine field ratios in order to further highlight the degree
of overlap. Sequence 1 shows the least amount of overlap between classes and thus has the
most distinct shot classes and consequently is the best performing sequence of the four.

The medium shot class of sequence 4 also appears to exhibit some interesting behaviour
where two distinct groups have formed, more evident with the even nine ratio 2D scatter
plot in Figure 4.5. One group with a low mean (0.2-0.4) and another group with a high
mean (0.8-1.0). This suggests the consideration of a new class or subclass may be useful for
certain broadcasts such as separating the medium class into two subclasses, the medium,
field back and the medium, non-field backed class. The medium, field backed class would
essentially represent the shot taken from a high angle but zoomed in to an area of the field
which would still frame the players within the field and the medium, non-field backed class
would represent the shot taken from field level looking across the field which would often
include a large portion of audience or advertising boards in the background.
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Class Count Correct False Precision Recall

Negative Positive

Sequence 1

Long 278 258 20 20 92.81% 92.81%

Medium 231 231 0 82 73.80% 100.00%

Close 70 17 53 20 45.95% 24.29%

Out of field 699 649 50 1 99.85% 92.85%

Sequence 2

Long 342 254 88 52 83.01% 74.27%

Medium 173 78 95 79 49.68% 45.09%

Close 7 6 1 98 5.77% 85.71%

Out of field 426 384 78 33 92.09% 83.12%

Sequence 3

Long 2552 1468 1084 252 85.35% 57.52%

Medium 174 5 169 314 1.57% 2.87%

Close 310 165 145 912 15.32% 53.23%

Out of field 238 158 80 0 100.00% 66.39%

Sequence 4

Long 840 568 272 134 80.91% 67.62%

Medium 282 212 70 539 28.23% 75.18%

Close 593 10 583 238 4.03% 1.69%

Out of field 131 131 0 14 90.34% 100.00%

Average

Long 85.52% 73.05%

Medium 38.32% 55.78%

Close 17.77% 41.23%

Out of Field 95.57% 85.59%

Overall 59.29% 63.91%

Table 4.6: Field Ratio classification performance, global field ratio
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Class Count Correct False Precision Recall

Negative Positive

Sequence 1

Long 278 276 2 0 100.00% 99.28%

Medium 231 218 13 0 100.00% 94.37%

Close 70 68 2 13 83.95% 97.14%

Out of field 699 691 8 12 98.29% 98.86%

Sequence 2

Long 342 304 38 22 93.25% 88.89%

Medium 173 91 82 65 58.33% 52.60%

Close 7 7 0 53 11.67% 100.00%

Out of field 426 353 73 53 86.95% 82.86%

Sequence 3

Long 2552 2317 235 133 94.57% 90.79%

Medium 174 45 129 244 15.57% 25.86%

Close 310 292 18 5 98.32% 94.19%

Out of field 238 236 2 2 99.16% 99.16%

Sequence 4

Long 840 757 83 67 91.87% 90.12%

Medium 282 183 99 129 58.65% 64.89%

Close 593 509 84 61 89.30% 85.83%

Out of field 131 110 21 30 78.57% 83.97%

Average

Long 94.92% 92.27%

Medium 58.14% 59.43%

Close 70.81% 94.29%

Out of Field 90.74% 91.21%

Overall 78.65% 84.30%

Table 4.7: Field Ratio classification performance, golden field ratio
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Class Count Correct False Precision Recall

Negative Positive

Sequence 1

Long 278 275 3 0 100.00% 98.92%

Medium 231 230 1 22 91.27% 99.57%

Close 70 61 9 4 93.85% 87.14%

Out of field 699 677 22 9 98.69% 96.85%

Sequence 2

Long 342 328 14 54 85.86% 95.91%

Medium 173 86 87 77 52.76% 49.71%

Close 7 5 2 6 45.45% 71.43%

Out of field 426 359 67 33 91.58% 84.27%

Sequence 3

Long 2552 2224 328 129 94.52% 87.15%

Medium 174 31 143 331 8.56% 17.82%

Close 310 305 5 17 94.72% 98.39%

Out of field 238 237 1 0 100.00% 99.58%

Sequence 4

Long 840 727 113 65 91.79% 86.55%

Medium 282 210 72 143 59.49% 74.47%

Close 593 480 113 89 84.36% 80.94%

Out of field 131 131 0 1 99.24% 100.00%

Average

Long 93.04% 92.13%

Medium 53.02% 60.39%

Close 79.59% 84.48%

Out of Field 97.38% 95.18%

Overall 80.76% 83.04%

Table 4.8: Field Ratio classification performance, even field ratio
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(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

Figure 4.2: Precision by shot class for field ratios

(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

Figure 4.3: Recall by shot class for field ratios
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(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

Figure 4.4: Mean/Di�erence 2D scatter plots per sequence by class for the golden section
field ratios
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(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

Figure 4.5: Mean/Di�erence 2D scatter plots per sequence by class for the even nine field
ratios

(a) Golden Section Ratio (b) Even Nine Ratio

Figure 4.6: Mean/Di�erence 2D scatter plots for sequence 3, medium/long shot class high-
light

4.2.2 Vertical Projection

The vertical projection feature projects each horizontal line of pixels in the field mask on
to a single vector which is then used to extract the mean projection and standard deviation
of the projection. Table 4.9 presents the full performance breakdown, including precision
and recall, across all video sequences. Figure 4.7 shows a side by side comparison of the
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respective precision and recall values for each sequence per class. Finally Figure 4.8 presents
the 2-dimensional scatter plots of the vertical projection mean versus standard deviation,
highlighting the regions of this space occupied by the di�erent classes.

The vertical projection feature set provided fairly strong results with an overall accuracy of
82%/86% for precision and recall, giving it a better performance than the field ratios. The
majority of gains achieved by the vertical projection resulted from the improved classification
accuracy of the medium and close shot types over the even nine field ratio, showing a 9%
increase in precision for the medium shot class and a 10% increase in recall for the close
shot class.

Comparing the 2-dimensional scatter plots seen in Figures 4.4 (golden field ratio) and 4.8
(vertical projection) we can see a more prominent clustering of classes in the latter graphs
corresponding to the vertical projection features than we see with the two features associ-
ated with the golden field ratio. This is a good indicator that the vertical projection and
it’s subsequent features may prove more powerful for shot classification. Given additional
features and a higher order classification technique such as a SVM, the vertical projection
may emerge as a strong candidate as a feature for more accurate shot classification.

In the same manner as the field ratio features, the medium shot class of sequence 3 remains
problematic for the vertical projection. However, when observing the 2-D scatter plot for
sequence 3 in Figure 4.8 the degree of class separation is far more prominent, and the degree
of overlap far less than for the field ratio but this has not resulted in a better classification
performance. In fact the vertical projection performed worse for this combination than the
golden section field ratio. Seeing the classification procedure in Figure 3.24 in Chapter 3
shows the long and medium shot class to be separated solely by the vertical projection
mean, corresponding to the y axis of the projection. For the other sequences this proves
e�ective however for sequence 3 it is clear that such a strategy will not work and instead
it would be more appropriate to separate the medium and long shots for the sequence by
the standard deviation for the vertical projection, corresponding to the x axis. Doing so
increases the classification performance of both classes significantly with the precision and
recall increasing from 94%/87% to 98%/97% for long shots and from 12%/24% to 63%/75%
for medium shots. Because a decision tree classifier is constructed using only general domain
knowledge it can not adapt to or learn specific distributions in a way other techniques are
able which again indicates the necessity of including more sophisticated techniques in the
decision process.
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Class Count Correct False Precision Recall
Negative Positive

Sequence 1
Long 278 275 3 0 100.00% 98.92%

Medium 231 224 7 15 93.72% 96.97%

Close 70 61 9 14 81.33% 87.14%

Out of field 699 680 19 9 98.69% 97.28%

Sequence 2
Long 342 334 8 55 85.86% 97.66%

Medium 173 81 92 26 75.70% 46.82%

Close 7 7 0 13 35.00% 100.00%

Out of field 426 395 31 37 91.44% 92.72%

Sequence 3
Long 2552 2240 312 138 94.20% 87.77%

Medium 174 42 132 311 11.90% 24.14%

Close 310 304 6 3 99.02% 98.06%

Out of field 238 236 2 0 100.00% 99.16%

Sequence 4
Long 840 747 93 48 93.96% 88.93%

Medium 282 212 70 113 65.23% 75.18%

Close 593 549 44 39 93.37% 92.58%

Out of field 131 131 0 7 94.93% 100.00%

Average
Long 93.51% 93.32%

Medium 61.64% 60.78%

Close 77.18% 94.45%

Out of Field 96.26% 97.29%

Overall 82.15% 86.46%

Table 4.9: Vertical Projection performance

(a) Precision (b) Recall

Figure 4.7: Performance by shot class for vertical projection
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(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

Figure 4.8: Mean/Std Dev 2D scatter plots per sequence by class for vertical projections

4.2.3 Size ratios

The size ratio feature estimates field of view by examining components in the field mask and
comparing the component heights in relation to the frame height. Table 4.10 presents the
full performance breakdown, including precision and recall, across all video sequences for
the size ratio feature. Figure 4.9 shows a side by side comparison of the respective precision
and recall values for each sequence per class.

The object size ratio feature again o�ers fair levels of accuracy with overall precision and
recall values of 74% and 85% respectively. It’s important to note that object size ratio is not
capable of classifying out of field shots due to the lack of field coloured pixels and possible
increase in noise, therefore these values are based on the classification of only three classes.

The medium shot class of sequence 3 again proved problematic with a low precision rate
of 23%, although a recall rate of 82% was achieved which is significantly higher than that
achieved by other features. The close shot class of sequence 3 also sees a marked decrease
in precision when compared with other feature sets, similarly the recall performance of the
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medium shot class in sequence 2. Unlike the vertical projection feature the size ratio feature
o�ers only a single dimension with which to classify shots, therefore there are no avenues to
pursue the improvement of the performance for this instance. But given the performance
attained using only a single value, the size ratio feature merits consideration for inclusion
in combination with other features when classifying shots.

Class Count Correct False Precision Recall

Negative Positive

Sequence 1

Long 278 273 5 16 94.46% 98.20%

Medium 231 201 30 5 97.57% 87.01%

Close 70 70 0 14 83.33% 100.00%

Sequence 2

Long 342 339 3 5 98.55% 99.12%

Medium 173 78 95 3 96.30% 45.09%

Close 7 7 0 90 7.22% 100.00%

Sequence 3

Long 2552 1738 814 33 98.14% 68.10%

Medium 174 143 31 470 23.33% 82.18%

Close 310 259 51 393 39.72% 83.55%

Sequence 4

Long 840 807 33 42 95.05% 96.07%

Medium 282 239 43 165 59.16% 84.75%

Close 593 460 133 2 99.57% 77.57%

Average

Long 96.55% 90.37%

Medium 69.09% 74.76%

Close 57.46% 90.28%

Overall 74.37% 85.14%

Table 4.10: Size ratio performance
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(a) Precision (b) Recall

Figure 4.9: Performance by shot class for size ratios

4.2.4 Neural Network

Table 4.11 presents the full performance breakdown, including precision and recall, across
all video sequences for the combined feature vector using a multi-layer perceptron neural
network (MLP-NN).

This technique managed consistent levels of performance across all sequences and classes
with precision values above 73% and recall values above 81% with an average precision
and recall across all classes of 91.43% and 95.69% respectively. The classifier behaved
consistently with only the expected minor variations between multiple training/classification
runs of the same sequence. Sequence 2 proved challenging allowing for instances of a poorly
trained classifier due to the very limited number of close shots in the sequence. This type
of scenario is unlikely to occur in a typical full match sequence.

When looking at individual class performance per sequence the medium shot class of se-
quence 3 still remains the most di�cult to classify but is only a 5% decrease in precision from
the next most di�cult sequence. This still shows a greater than 50% increase in precision
and recall for that combination, in most cases, when compared to using features individu-
ally. Figure 4.10 shows that nearly all the misclasifications for this sequence were between
the medium and long shot classes. This suggests there are still some shot properties not
accounted for in the feature set, and that the discovery and extraction of these properties
will increase the performance of the shot classification process. The most promising is likely
the accurate detection of the players themselves as they are often the most relevant objects
in the frame thus providing the most salient information regarding a shot composition.
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Class Count Correct False Precision Recall
Negative Positive

Sequence 1
Long 278 275 3 0 100.00% 98.92%

Medium 231 230 1 0 100.00% 99.57%

Close 70 69 1 23 75.00% 98.57%

Out of field 699 697 20 2 99.71% 97.21%

Sequence 2
Long 342 306 36 1 99.67% 89.47%

Medium 173 169 4 49 77.52% 97.69%

Close 7 7 0 2 77.78% 100.00%

Out of field 426 412 14 2 99.52% 96.71%

Sequence 3
Long 2552 2507 45 32 98.74% 98.24%

Medium 174 142 32 50 73.96% 81.61%

Close 310 305 5 9 97.13% 98.39%

Out of field 238 229 9 0 100.00% 96.22%

Sequence 4
Long 840 783 57 36 95.60% 93.21%

Medium 282 253 29 69 78.57% 89.72%

Close 593 566 27 1 99.82% 95.45%

Out of field 131 131 0 7 94.93% 100.00%

Average
Long 98.50% 94.96%

Medium 82.51% 92.15%

Close 87.43% 98.10%

Out of Field 98.54% 97.54%

Overall 91.75% 95.69%

Table 4.11: Combined performance using a MLP-NN classifier

Figure 4.10: Isolated confusion matrix for the medium and long shot classes of sequence 3
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4.2.5 Comparison

Table 4.11 combines all the previously discussed feature set classification results (Field
Ratio1, Vertical Projection and Size Ratio) along with the MLP-NN classification results.
The results have been aggregated across all video sequences and compared with the results
obtained in four notable papers using similar techniques [18, 36, 44, 45]. Some techniques
did not classify out of field shots and thus have been marked as NA.

Various data sets were used in these papers with only [18] and [44] appearing to share the
same or similar data sets. Both papers use video with a resolution of 352x288, processed
at a resolution of 88x60. [18] further details the data set as consisting of 6050 frames, with
41 frames used to evaluate performance. [44] mentions only the length of the video being
49mins. [36] uses video with resolutions ranging from 512x384 to 480x360, together making
up 4000 frames and 1000 shots, 25% of which are used for training purposes. [45] provides
only the frame count of 14000 and source, 2002 FIFA World Cup, of the data set.

The results show the MLP-NN using the 5 feature set combination as performing very well
compared to using each feature set separately within a decision tree structure and even
compared to those techniques in literature. The MLP-NN achieved the best precision for
both the long and out of field shot classes and achieved the best recall for the close and
out of field shot classes. Second best precision and recall rates were also achieved for the
medium shot class. Comparing the MLP-NN to the individual features an average increase
in precision can be seen across all classes by +10.78% and an increase in recall by +9.88%
with the medium shot class showing the largest single class increase with precision and
recall going up by +21.26% and +26.84% respectively. The individual features managed a
strong performance for the long and out of field shot class outperforming other methods in
both precision and recall for the out of field shot class and o�ering comparable or better
precision and recall for the long shot class.

This comparison serves to illustrate the virtues of the proposed methods but is still largely
cursory and a more thorough analysis of the various techniques would be required to def-
initely address the advantages and disadvantages of each technique. A comparison of this
nature would need to establish a standardized definition for each shot class and process
identical data sets with each technique. This is outside the scope of this work but would
be a candidate for future endeavours.

1For the field ratio only the even nine field ratio results have been displayed
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Precision
FR VP SR MLP-NN [18] [44] [36] [45]

Long 93.04% 93.51% 96.55% 98.50% 83.48% 84.7% 96.5% 83.53%

Medium 53.02% 61.64% 69.09% 82.51% 81.25% 67.53% 93.0% 81.57%

Close 79.59% 77.18% 57.46% 87.43% 96.63% 93.9% 94.0% 97.12%

Out of Field 97.38% 96.26% NA 98.54% NA NA 92.0% 92.58%

Recall
Long 92.13% 93.32% 90.37% 94.96% 96.0% 69.3% 96.5% 92.03%

Medium 60.39% 60.78% 74.76% 92.15% 78.0% 76.4% 94.7% 84.85%

Close 84.48% 94.45% 90.28% 98.10% 86.0% 73.9% 92.0% 91.75%

Out of Field 95.18% 97.29% NA 97.54% NA NA 94.0% 89.8%

Table 4.12: Comparison of proposed works to those in literature for shot classification
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Chapter 5

Conclusion and Future Work

This chapter concludes this dissertation by summarising the ideas and achievements in this
work for furthering the goal of shot classification in broadcast soccer video. Various aspects
of the field colour modelling techniques are discussed regarding how each technique per-
formed relative to each other and the techniques in literature, the strength and weakness of
each technique and finally if these techniques may be used in other sports or to solve sim-
ilar problems. The shot classification discussion focuses on three areas; the level of success
achieved in classifying the di�erent shot types, the performance of each feature/classifier
and the possible limitations of the features when applying them to other sports. A final
retrospective is given along with suggestions for avenues of exploration to improve shot
classification in broadcast soccer video.

5.1 Field Colour Modelling

This work has shown how two techniques, the colour distance model and Gaussian mixture
model, can be used to model dominant colours for the purpose of modelling the play-field
area in broadcast soccer videos. The results in Section 4.1 show both the field colour
modelling techniques to have achieved a high level of accuracy (92% ~ 95%) on par (within
2%) with similar techniques found in the literature. The colour distance model did however,
slightly outperform the Gaussian mixture model in terms of both accuracy and consistency
across sequences and shot classes.

There are numerous specific factors to consider when evaluating the performance of these
techniques. This specific implementation of the Gaussian mixture modelled only the hue
channel due to limitations of computation time. If these concerns are not relevant, the
model can be further expanded to encompass all colour channels thus increasing accuracy.
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The video sequences themselves were selected based on a varied distribution of shot types
and only formed a portion of the full length of a typical soccer match. Thus the robustness
of the techniques were not rigorously tested regarding changing global illumination over the
course of a match. The adaptability of the Gaussian mixture model technique does provide
an advantage in that it can incorporate global illumination changes. However, this is an
area of concern as determining the rate at which the model adapts to new data, such as
gradual changes, a�ects the way noisy or transitory data alters the model. The higher the
learning rate the better the model adapts to change but as a consequence the model will
also learn noisy data more quickly and thus possibly deteriorate the model’s accuracy. The
GMM requires various parameters to be configured correctly which requires knowledge of
the modelled data. Such a requirement would not be feasible for real world production.
Therefore to consider such a technique would also require the development of methods to
facilitate the automatic configuration of the GMM.

The colour distance model as implemented lacks an update process and instead incorporates
a training phase which may address certain issues arising from global illumination changes if
the training data included samples from various portions of the sequence but it is uncertain
what impact that may have on overall accuracy. The need for a training process is itself
a disadvantage since the training sequence needs to be manually selected. Alternatively
certain update schemes were discussed in Section 3.1.1 which could potentially add an
element of adaptability to this technique. Although the Euclidean distance measure was
employed for this work it is not the only distance that can be used. Mahalanobis distance
can be considered as it incorporates the data distribution into the distance measurement.
Compared to the GMM, the colour distance model is relatively simple to configure with
only a single parameter, the leniency factor, which required adjustment between sequences.
While it is possible to adjust other model parameters this was not required to produce any
of the results seen in this work. These parameters were assumed to have only minor impact
on the performance and were thus not investigated but it would be prudent to confirm this
assumption in future work.

Both techniques provide a solid foundation from which further processing and analysis
may proceed as both o�er a reliable, accurate and extensible solution to the task of field
modelling.

Extending this work in field modelling beyond broadcast soccer video to video of other
sports, broadcast or otherwise, is both feasible and natural. Any sport which is played on
a large uniformly coloured field, e.g. tennis, cricket, (field) hockey, are candidate sports
for field colour modelling. Indeed numerous papers have been written which examines the
applications of field modelling for these sports [7, 17, 18, 24, 31, 37]. The key limitation for
these techniques would be the requirement for the dominant view of the sequence to include
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as it’s main constituent a uniformly coloured background, typically for sports this represents
the playing field. The required degree of uniformity is dependant on the technique used,
as certain techniques, such as GMM, are able to represent multi-modal distributions and
therefore have the ability to model backgrounds with more than one dominant colour.

With regard to general background modelling in a fixed view, fixed camera environment it
may be possible to adapt these techniques to work along side or supplemental to traditional
background modelling techniques. Perhaps incorporating a windowing scheme to establish
areas of local colour dominance and using the information to separate not only foreground
objects from background objects but even separate background or foreground objects from
each other. The ability of these techniques to establish pixel relationships through col-
our space could be a property worth considering for applications of general background
modelling.

5.2 Shot Classification

Three sets of features (field ratio, vertical projection and object size ratio) have been eval-
uated regarding their ability to perform shot classification in broadcast soccer video. Each
feature set was evaluated independently using a decision tree classifier and then combined
for use with a multi-layer perceptron neural network (MLP-NN).

The long shot class proved easier to classify than other shot types with all the features
showing precision and recall rates greater than 90%. This may be due to the more consistent
nature of long shots as typically there are fewer variables influencing the shot’s composition,
or at least the changes are more subtle. That is because of the ‘zoomed’ out nature of long
shots, objects in the field generally occupy only a small area of the shot compared to the
area occupied by the field therefore objects entering or leaving the shot have a significantly
smaller impact on the shot composition for long shots than for other shot types. The out
of field shot class also managed precision and recall rates near or above 90%, a strong
performance but it is worth noting that certain higher level event classification techniques
require further classification of out of field shots into audience and player shots which could
have a di�erent semantic relevance. So while identifying out of field shots may be reliable
using these techniques, further classification of this shot type would require new features or
the current features would need to be adapted for this problem.

The medium and close shot types proved the most di�cult shots to classify, largely due to the
varied nature of the shots and the many variables which may a�ect the shot’s composition.
This was exemplified by the di�culty in classifying the medium shot class of sequence 3
using any of the features. Unlike long shots which are typically captured from cameras in
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a fixed position at a fixed height from the field, medium and close shot are often captured
from multiple cameras at multiple locations around the field and located at varying heights
and possibly changing position between shots. The limited field of view also means small
changes in the scene can have a huge e�ect on the composition of the shot, e.g. if a player
walks into a close shot the number of field pixels can change by as much as 100%.

Of the three di�erent field ratio feature sets the even nine ratio set achieved the highest
overall performance with precision and recall values of 81% and 83% respectively. The
golden section ratio achieved slightly lower overall results with precision and recall values of
79% and 84% respectively but in specific instances outperformed the even nine ratio. The
global ratio performed poorly, managing overall precision and recall rates of only 59% and
64%, significantly lower than the other two ratio sets and showing no instances in which it
out performs the others. Therefore the use of the even nine or golden section ratio sets will
always be preferable to that of the global ratio.

The vertical projection feature set managed to outperform the field ratio feature sets by
achieving an overall precision and recall of 82% and 86%. Crucially the vertical projec-
tion feature set improved classification performance over the field ratio feature sets for the
medium and close shot classes. Additionally observing the 2-D scatter plots for both the
field ratios and the vertical projection, showed the vertical projection to have a more pro-
nounced separation of shot classes in the feature space and thus a greater potential for shot
classification given an appropriate classifier.

The object size ratio feature achieved an overall precision and recall of 74% and 85%,
surprisingly high given shot classes were separated by only a single value. As previously
mentioned this feature set was not used to classify out of field shots and therefore the results
reflect only the classification of the long, medium and close shot classes. Considering this
features ability to classify shots even within its 1-dimensional feature space, including this
feature as part of a higher dimensional feature set is recommend.

When the features were combined and used as an input to a MLP-NN, performance across
all shot classes increased for both precision and recall by an average of 10.78% and 9.88%
respectively. The largest increase was seen by the medium shot class with an increase
in precision of 21.26% and an increase in recall of 26.84% which would suggest that the
features o�ered greater discriminatory power than the specific configuration of the decision
trees would allow for this shot class. This technique proved comparable to results obtained
from similar techniques shown in Section 4.2.5, demonstrating the highest precision and
recall rates for a number of classes and achieving an overall precision and recall rate of
91.75% and 95.69% respectively.

The limitation of these features is that they all operate on the field model which is appro-
priate for broadcast soccer video but careful consideration would need to be given before
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extending these features to other broadcast sports video. Considerations such as how the
field and actors within the field are framed in di�erent shots or if the features adequately
represent the distinct properties of the desired shots? Even the use of the field as a back-
ground model can be challenged and should techniques exist to generate a background model
incorporating other aspects of a shot, it could instead be possible to extract the features
discussed in this dissertation from this new model.

Extending beyond sports video and extending these features for use while classifying shots
in general video may be possible but such a broad topic is beyond the scope of this work
and warrants its own discussion.

5.3 Future Work

All the techniques evaluated have potential for further improvement either through a richer
analysis or from expanding on the ideas already established.

Both of the background modelling techniques proved very capable at modelling the play-field
although lacking in certain aspects, aspects which could be built into these techniques to
improve performance. The colour distance modelling technique would benefit from a strong
update procedure which could help the technique maintain a high level of performance
throughout an extended video sequence. The update procedure would, however, have to
take care not to learn noisy or incorrect data which would reduce the accuracy of the
model. The need for a manually selected training sequence is one of the disadvantages of
this technique, therefore any improvement that would remove this requirement or automate
the process would be advantageous. The Gaussian mixture model can be expanded by
including not just the hue channel but also other colour channels which may increase the
accuracy at the expense of computational complexity. A major di�culty of the Gaussian
mixture model is the selection of model parameters, which determine the attributes of newly
formed Gaussians and the rate at which new observations increase the weight of matching
Gaussians (the learning rate). Properly configuring these parameters requires knowledge of
the modelled data, which is an unreasonable restriction in most cases. Thus methods need
to be investigated which are capable of either automatically configuring or assisting in the
configuration of such parameters.

Each of these techniques focus on modelling the play-field through the colour space but
supplementing the model with other descriptors such as shape and texture information
may increase the performance of the models. Filtering based on shape has been discussed
in this work but it was shown that simple aspect ratio with component size filtering was
not su�cient to adequately separate field and non-field areas. Further research is needed
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on this topic with a focus on more detailed shape descriptors. Texture filtering has not
been mentioned in this work but texture information may be useful both for pre- and
post-filtering potential field candidates.

As previously mentioned, the colour distance model and the Gaussian mixture model op-
erate within the colour space to model the field colour. In sports videos, however, the field
colour is not the only semantically important colour. The colours of player’s uniforms are
generally distinct between teams and thus conveys information. Using colour modelling
techniques to model and identify player uniform colours would prove useful in the task of
content analysis. Once player uniforms can be modelled and identified it then becomes
possible to attempt tracking of players on the field. For both modelling and tracking a
player the type of shot analysed would no doubt become important.

Three shot classification feature sets were used and all but the global field ratio proved
useful. However, the vertical projection feature set did display the highest performance and
showed the greatest potential for improvement with numerous other features being readily
extractable from the projection. These features were all extracted from the field model
but there are other features which may be used for shot classification such as features
extracted from the play-field lines or advertising boards. Such features could assist in
shot localisation and subsequently provide information about the type of shot. Another
feature which would benefit from additional information is the object size ratio. Because
the connected component analysis was performed merely on the foreground mask produced
by the field modelling techniques the analysis was limited in its ability to separate objects
not framed by the field. If it were possible to identify and separate players (and referees)
from audience and non-field background a far more accurate size ratio would be possible.

The use of the MLP-NN in conjunction with a combined feature vector provided a significant
classification performance increase over the single feature set with decision tree combination.
This indicates that further investigation and use of higher order classification techniques
such as SVMs, Bayesian classifiers and neural networks is a prudent and sensible next step
in evolving a shot classification system.

A shot type or rather a pseudo shot type which was not explored in this work is the slow-
motion or action replay shot. While not strictly a separate shot type the use of these
production techniques can be very useful for event classification as the presence of a replay
will often indicate the proximity of an important event.

Beyond broadcast soccer video, expanding this work into other types of sports video would
be a worthwhile endeavour which could lead to a better understanding of the features and
possibly the relationship between the various sports. The ultimate goal though for shot
classification is as a facilitator for event detection in sports video, and thus investigating
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classification outputs as inputs into an event detection system would be of crucial import-
ance to future work.
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Appendix A

Background Modelling
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Figure A.1: Confusion Matrix Template



90

73.1% 1.8%

3.0% 22.1%

Colour Distance
Confusion Matrix

A
ct

ua
l

V
al

ue

b

f

Model Prediction
b f

(a) Sequence 1

68.9% 1.4%

2.4% 27.4%

Colour Distance
Confusion Matrix

A
ct

ua
l

V
al

ue

b

f

Model Prediction
b f

(b) Sequence 2

60.9% 0.2%

4.5% 34.4%

Colour Distance
Confusion Matrix

A
ct

ua
l

V
al

ue

b

f

Model Prediction
b f

(c) Sequence 3

74.1% 0.4%

4.9% 21.9%

Colour Distance
Confusion Matrix

A
ct

ua
l

V
al

ue

b

f

Model Prediction
b f

(d) Sequence 4

Figure A.2: Colour Distance Confusion Matrices
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Figure A.3: Colour Distance Confusion Matrices, Filtered
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Appendix B

Shot Classification Performance

Type
1. Out of Field
2. Long
3. Medium
4. Close

Table B.1: Shot types
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Figure B.1: Field Ratio Confusion Matrices, Sequence 1



95

348 0 33 1 91.3%

0 254 52 0 83.0%

78 0 78 1 49.7%

0 88 10 6 5.8%

81.7% 74.3% 45.1% 85.7% 72.4%

Global Ratio
Confusion Matrix

O
ut

pu
t

C
la

ss

1

2

3

4

Target Class
1 2 3 4

(a)

353 0 53 0 86.9%

0 304 22 0 93.3%

27 38 91 0 58.3%

46 0 7 7 11.7%

82.9% 88.9% 52.6% 100% 79.6%

Golden Ratio
Confusion Matrix

O
ut

pu
t

C
la

ss

1

2

3

4

Target Class
1 2 3 4

(b)

359 0 33 0 91.6%

0 328 54 0 85.9%

61 14 86 2 52.8%

6 0 0 5 45.5%

84.3% 95.9% 49.7% 71.4% 92.1%

Even Ratio
Confusion Matrix

O
ut

pu
t

C
la

ss

1

2

3

4

Target Class
1 2 3 4

(c)

Figure B.2: Field Ratio Confusion Matrices, Sequence 2
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Figure B.3: Field Ratio Confusion Matrices, Sequence 3
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Figure B.4: Field Ratio Confusion Matrices, Sequence 4
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Figure B.5: Vertical Projection Confusion Matrices
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Figure B.6: Size Ratio Confusion Matrices
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Figure B.7: MLP Confusion Matrices


