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Abstract

In this thesis we consider spherically symmetric cosmological models when the shear

is nonzero and also cases when the shear is vanishing. We investigate the role of

the Emden-Fowler equation which governs the behaviour of the gravitational field.

The Einstein field equations are derived in comoving coordinates for a spherically

symmetric line element and a perfect fluid source for charged and uncharged matter.

It is possible to reduce the system of field equations under different assumptions to

the solution of a particular Emden-Fowler equation. The situations in which the

Emden-Fowler equation arises are identified and studied. We analyse the Emden­

Fowler equation via the method of Lie point symmetries. The conditions under which

this equation is reduced to quadratures are obtained. The Lie analysis is applied to

the particular models of Herlt (1996), Govender (1996) and Maharaj et al (1996) and

the role of the Emden-Fowler equation is highlighted. We establish the uniqueness

of the solutions of Maharaj et al (1996). Some physical features of the Einstein­

Maxwell system are noted which distinguishes charged solutions. A charged analogue

of the Maharaj et al (1993) spherically symmetric solution is obtained. The Gutman­

Bespal'ko (1967) solution is recovered as a special case within this class of solutions

by fixing the parameters and setting the charge to zero. It is also demonstrated

that, under the assumptions of vanishing acceleration and proper charge density,

the Emden-Fowler equation arises as a governing equation in charged spherically

symmetric models.
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1 Introduction

-The behaviour of the gravitational field is at present best described by the theory of

general relativity. Observations in cosmology and ast rophysics are consistent with

the theoretical predictions made by the theory of general relativity (Will 1981). This

has been highlighted by recent observations using modern technology in spacecraft

eg the Rubble space telescope . General relativity in the framework of a differentiable

manifold is utilised to study various aspe cts of the gravi tational field. Increasingly

general relativistic models are being utilised for the analysis of st rong gravitational

fields; the conventional Newtonian models are not appropriate in this scenario eg

neut ron star models. The description of stellar structure and the problem of gravit a­

tional collapse are important areas of study in relativistic astrophysics. In cosmology

we can answer many fundamental questions about the evolution of the universe by

studying cosmological models which satisfy the Einstein field equations.

In this thesis we study spherically symmetric gravitational fields with a perfect

fluid energy-momentum tensor for charged and uncharged matter. Spherically sym­

metric models are physically significant and are extensively utilised in a variety of

applicat ions. In astrophysics the collapse of a star can be accurately modelled by a

spherically symmetric gravitational field (Shapiro and Teukolsky 1983). In cosmol­

ogy spherically symmetric spacetimes have been used to model the behaviour and

subsequent evolut ion of the early universe (Krasinski 1997). The spherically sym-
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metric models provide an important generalisation of the Robertson-Walker models ,

the st andar d cosmological models which are homogeneous and isotropic . To describe

many physical situations we need to incorporate anisot ropies and inhomogeneities.

Anisotropic cosmologies have been considered by a number of authors to study the

effect of deviations from an isot ropic universe (Ryan and Shepley 1975). The motiva­

tion for studying inhomogeneous models is to study the deviation from homogeneity

based on observational evidence (Krasinski 1997).

The simplest inhomogeneous cosmological models are the spherically symmetric

spacetimes which are invariant under the act ion of a three dimensional Lie algebra

of rotational Killing vectors. If these models are also invariant under a three di­

mensional Lie algebra of t ranslational Killing vectors, we regain the isotropic and

homogeneous Robertson-Walker models. To analyse the behaviour of the gravita­

tional field we need to solve the Eins tein field equat ions which descri be how curvature

and matter are coupled. This system of highly nonlinear partial differential equations

is not easily tractable in general and solutions are normally sought via simplifying

assumptions on the nature of the matter content or the form for the gravi tational

potentials. Solutions to the Einstein field equat ions are listed by Kramer et at (1980)

and Krasinski (1997). The study of exact solutions forms an important area of re­

search in general relativity. They are important because many quali tati ve features of

the gravit at ional field are obtained by analysing individual models. Without exact

solut ions to the Einstein field equations , it is not possible to consider many of the

physical implications of the general field equations because of their nonlinearity. We

are interested in obtaining exact solutions to the Einstein field equations in the case

of spherically symmetric spacet imes, both for charged and uncharged mat ter in this

thesis.
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We review recent exact solutions of the Einstein field equations in spherically

symmetric spacetimes which are applicable in cosmology and astrophysics. Note

that there are few spherically symmetric solutions having nonzero shear because

the system of partial differential equations that arises is more difficult to integrate;

the shear-free case in contrast is easier to handle. We are principally concerned

with the more general case of nonvanishing shear. An early known solution with

shear is the Gutman and Bespal'ko (1967) solution which admits a stiff equation of

state. Van den Bergh and Wils (1985) found exact solutions for nonstatic perfect

fluid spheres with shear and a barotropic equation of state. All their models have

nonzero expansion and some are also accelerating. Maharaj et al (1993) found a

general class of solutions in terms of elementary functions with shear, expansion and

acceleration which obey an equation of state which is a generalisation of the stiff

equation of state. They incorporated the solutions of Gutman and Bespal'ko (1967),

Hajj-Boutros (1985) , Lake (1983), Shaver and Lake (1988) and Wesson (1978). Kita­

mura (1989, 1994, 1995a, 1995b) , using the 'characteristic system' method devised by

Takeno (1966), derived exact solutions for a perfect fluid with shear, expansion and

acceleration which also involve the Gutman and Bespal'ko (1967), Sussman (1991),

Van den Bergh and Wils (1985) and Wesson (1978) solutions as special cases. By

imposing a conformal symmetry requirement on the manifold Herrera and Ponce de

Leon (1985) produced conformally invariant exact analytical solutions of the field

equations. Qadir and Zaid (1995) presented a complete classification of spherically

symmetric spacetimes according to their isometries and line elements by solving the

Killing equations. These references indicate that spherically symmetric gravitational

fields with shear arise in a variety of applications and deserve clear scrutiny.

The difficulty in obtaining exact solutions lies primarily in the complicated system
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of nonlinear partial differential equations that arises. It is therefore convenient when

the solution of this system of partial differential equations reduces to the integration

of a single differential equation. This is the case for shear-free fluids (Maharaj et al

1996) and we will demonstrate that a similar situation arises for particular classes of

cosmological models where the shear is nonzero. In spherically symmetric spacetimes

we discover that, in different physical situations, the system of field equations reduces

to the study of the Emden-Fowler equation. The Emden-Fowler equation was first

studied in an astrophysical context by Emden (1907). Fowler (1914) established its

mathematical foundations and presented it in its present form. Kustaanheimo and

Qvist (1948) first derived this equation as the principal equation in the study of

shear-free spherically symmetric spacetimes. It has subsequently reappeared in the

solution to the spherically symmetric field equations under different assumptions.

It appears that the Emden-Fowler equation is of generic importance to spherically

symmetric spacetimes.

The study of the mathematical properties of the Emden-Fowler equation and the

techniques used to solve this equation are important in the context of general relativ­

ity. Since it was first derived, various methods have been used to solve this equation.

Only recently has the more general systematic technique of the Lie analysis been

applied to the Emden-Fowler equation (Leach 1981). The Lie analysis of differential

equations was first formulated by Lie (1891) in his attempt to present a systematic

and geometric approach to solve differential equations. The method employs the

use of symmetry transformations of a differential equation to reduce the order of

the differential equation. This allows us systematically to study the Emden-Fowler

equation which, in different situations, appears as the principal equation in spheri­

cally symmetric spacetimes. Our intention in this thesis is to study the particular
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Emden-Fowler equation that arises in spherically symmetric systems with shear. We

also identify particular classes of cosmological models where the behaviour of the

gravitational field is governed by the Emden-Fowler equat ion.

In chapter 2 of this thesis we consider the basic kinematical and dynamical aspects

of spherically symmetric spacetimes which establish the basis for later work. Those

aspects of differential geometry relevant to this thesis are briefly discussed in §2.2.

The general spherically symmetric line element for a perfect fluid source is specified

in comoving coordinates and the kinematical quantities are obtained in §2.3. The

nonvanishing components of the connection coefficients, the Ricci tensor, Ricci scalar

and the Einstein tensor are explicitly calculated. In §2.4 the energy-momentum

tensor is coupled to the Einstein tensor to generate the Einstein field equations. The

conservation of energy-momentum is established and the relevance of an equation of

state, in particular the barotropic equation of state, is discussed.

In chapter 3 we analyse the generalised Emden-Fowler equation using the method

of Lie point symmetries. Special cases in this analysis are also considered. In §3.2

we define some important concepts intrinsic to symmetry groups of differential equa­

tions. The technique of the Lie analysis of differential equations is then discussed.

In §3.3 we analyse the generalised Emden-Fowler equation via the method of Lie

point symmetries and are able to reduce the equation to quadrature under certain

conditions. Various special cases , which arise in this analysis, are considered in §3.4.

A brief summary of the results of chapter 3 is included in §3.5.

In chapter 4 we investigate the importance of the Emden-Fowler equation in many

cosmological models in general relativity. In §4.2 we obtain a specific case of the

Emden-Fowler equation under the assumption of vanishing acceleration. Solutions for

vanishing pressure are obtained by using the analysis of the Emden-Fowler equation
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via the Lie method. In §4.3 we consider the case of vanishing shear in spherically

symmetric spacetimes and discuss how the class of solutions obtained, is governed

by a specific Emden-Fowler equation. In §4.4 we demonstrate how a particular

Emden-Fowler equation arises under the assumption of a stiff fluid equation of state.

Solutions for this accelerating, shearing and expanding class are obtained using the

Lie analysis of the Emden-Fowler equation. In §4.5 we attempt to integrate the

generalised Emden-Fowler equation via an ad hoc integration technique. We discuss

the success of this technique and relate our results to previously published work.

In chapter 5 we examine the role of charge in spherically symmetric models by

investigating the Einstein-Maxwell field equations. In §5.2 we derive the Einstein­

Maxwell system of field equations for a spherically symmetric spacetime containing

a charged perfect fluid. The conservation of energy-momentum follows from the

field equations. In §5.3 we consider certain physical aspects of the structure of the

Einstein-Maxwell system and generate qualitative results for the existence of charge.

In §5.4 we derive a charged analogue of the spherically symmetric solution obtained

by Maharaj et al (1993). On fixing the parameters in this class of solutions and set­

ting the charge contribution to zero we regain the Gutman-Bespal'ko (1967) solution.

In §5.5 we demonstrate that the Emden-Fowler equation arises as a governing equa­

tion in charged spherically symmetric spacetimes under the assumption of vanishing

acceleration and proper charge density.

Chapter 6 outlines the conclusions arrived at in this thesis. The main results of

the investigations are highlighted and possible extensions arising from these results

are discussed.
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2 Differential geometry, spherically symmetric space­

times and the field equations

2.1 Introduction

The theory of general relativity provides the most successful description of the be­

haviour of the gravitational field. The differential equations that govern this be­

haviour arise from the idea that spacetime can be represented by a Riemannian

manifold together with the description of the interaction between matter and cur­

vature contained in the Einstein field equations. In this chapter we consider certain

basic aspects of sphe rically symmetric spacetimes containing a perfect fluid source

which are necessary for later work. The aspects of differential geometry relevant

to general relativity and this thesis are briefly discussed in §2.2. In §2.3 we use

the spherically symmetric line element given in comoving coordinates to obtain the

kinematical quantities viz the acceleration, expansion, shear and vorticity. The non­

vanishing components of the connection coefficients , the Ricci tensor, the Ricci scalar

and the Einstein tensor are explicitly calculated for spherically symmetric spacetimes.

The energy-momentum tensor for a perfect fluid matter distribution is introduced in

§2.4. The coupling of the Einstein tensor and the energy-momentum tensor is used to

generate the Einstein field equations. The conservation of energy-momentum follows

from the field equations. The relevance of the equation of state, in particular the
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barotropic equation of state, in cosmological models is also briefly discussed.

2.2 Differential Geometry

In this section we introduce the basic elements of differential geometry required to

obtain the Einstein field equations. For a thorough discussion of these and other

aspects of differential geometry, the reader is referred to do Carrno (1992). The

application of differential geometry to general relativity is dealt with in greater detail

by de Felice and Clark (1990), Hawking and Ellis (1973) and Misner et al (1973).

We take spacetime to be a 4-dimensional differentiable manifold M with signature

(- + + +). On the manifold we define differentiable structures which can then

be used to model the physics of our spacetime. The manifold is labelled by local

coordinates (x a
) = (XO, xl, x 2

, x 3
) where XO is timelike and xI, x 2

, x 3 are spacelike.

A manifold is a topological space which locally has the structure of Euclidean space

in that it may be covered with coordinate patches. The global structure of M may be

very different from that of Euclidean space. The manifold M supports a differentiable

structure by definition and the passage between the coordinate patches in overlapping

coordinate neighbourhoods is smooth. For more information on manifolds refer to

the texts given above.

To study physics in the manifold M it is necessary to measure the invariant separa­

tion of neighbouring points. This is done by introducing a symmetric, nondegenerate

metric tensor field g onto the manifold. The fundamental line element, defining the

invariant infinitesimal separation between neighbouring points on M, is given by

(2.1)
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To characterise the curvature of the manifold we need to introduce additional struc-

ture on the manifold. The metric connection r, also known as the Christoffel symbol

of the second kind, is defined in terms of the metric tensor g in (2.1), and its deriva-

tives by

a 1 ad( )r be ="29 ged,b +9db,e - 9be,d (2.2)

where the comma denotes a partial derivative. The metric connection r is used to

generalise the partial derivative in Minkowski spacetime to the covariant derivative

in curved spacetime. For example we write the covariant derivative of a (1,0) vector

field X as

Similarly the covariant derivative of a (2,0) tensor field T is defined by

Clearly the covariant derivative reduces to the partial derivative in Minkowski space-

time.

The Riemann tensor is a (1,3) tensor field which characterises the curvature of

spacetime. Also known as the curvature tensor, the Riemann tensor vanishes in flat

spacetime; there are always nonvanishing components in a curved spacetime. It is

defined by the noncommutativity of the second covariant derivatives of a vector field

X given by

(2.3)

which is sometimes called the Ricci identity. On using the definition of the covariant

derivative of the vector X in (2.3), we can write the Riemann tensor as

(2.4)
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in terms of the metric connection (2.2). The components Ra bcd satisfy the following

identities

Rabcd = - Rbacd = - R abdc = Rcdab

Rabcd +Racdb + R adbc = 0

Rabcd;e + Rabde;c + Rabec;d = 0

On contracting the Riemann tensor (2.4) we obtain the Ricci tensor

(2.5)

which is a symmetric (0,2) tensor. The Ricci scalar or curvat ure scalar is obtained

by taking the trace of the Ricci tensor and is given by

(2.6)

The Einstein tensor

(2.7)

is defined in terms of the Ricci tensor and Ricci scalar. It is constructed such that

it has zero divergence

(2.8)

a result which follows from the definition (2.7) and the contracted Bianchi identities.

The importance of G in gravity was first recognised by Einstein when developing
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the field equations for the theory of general relativity. The Bianchi identity (2.8)

will be used later, together with the field equations , to derive the conservation of

energy-momentum.

2.3 Spherically symmetric spacetimes

Spherical symmetry is a property inherent in many systems in nature. In general

relativity it can be used to model both astrophysical and cosmological systems. A

spacetime is said to be spherically symmetric if it admits a 3-dimensional Lie algebra

of linearly independent rotational Killing vector fields; in a spherically symmetric

spacetime the met ric field g is invariant under rotations. The three rotational Killing

vectors which the spacetime admit are

e2 = cos </JaB - sin </J cot ear/>

e3 = sin </JaB + cos </J cot ear/>

in polar coordinates. The set of vectors {el' e2' e3} spans a G3 Lie algebra of motions

and satisfy

which is called Killing 's equat ion.

With the condition of spherical symmetry and using comoving coordinates we can
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show that the line-element takes the form

(Kramer et al1980 , Krasinski 1997). The functions v(t , r}, A(t, r) and Y(t , r) repre-

sent the gravitational potentials.

A consequence of spherical symmetry is that the vorticity of the spacetime van­

ishes. From this result it follows that we can choose a comoving 4-velocity which is

hypersurface orthogonal. The timelike, unit fluid 4-velocity u is defined by

which is orthogonal to the hypersurfaces {t = const ant}. We measure the kinematical

quantities, relative to the 4-velocity u , which are given by

W ab = °

ua = (O ,v' ,O ,O)

(. 2Y)e = e- lI A+ Y

(2.10a)

(2.10b)

(2.10c)

(2.10d)

where W ab is the vorticity tensor , ua is the acceleration vector, e is the expansion

scalar and aab is the shear tensor of the fluid. The technique of decomposing the

covariant derivative of the velocity field U a;b relative to the 4-velocity to obtain the

kinematical quantities, is discussed in more detail by Ellis (1971).

We can determine t he curvature of the spacetime now that the line element (2.9)

has been specified. The connection coefficient s follow directly from (2.2) and the
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nonzero coefficients are listed below

r ooo = v

2 Yr 02 =-y

r 0
01 = v'

3 Yr 03 =-y

where dots denote differenti at ion with respect to t and primes denote differentia-

tion with respect to r. We now generate the Ricci tensor (2.5) , utilising the above

connection coefficients , to yield the following nonzero components:

. ..
.. · 2 . . . Y y

Roo = -A - A + AV +2v - - 2­
Y Y

+e'(v-A) (vu + v" - v'>" + 2v'~)

13
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y ' y "
R - - " _ ,2+" '+2 " - -2-11- v V AV Ay Y

+e2(A- V) (~ + ~2 - ~V+2~t)

. (. y Y)R22 = e- 2I1Y Y ,\ - V+ Y + l'

(
Y' Y

II
)+e-2,\y y ' '\' - V' - - - - +1

Y Y'

(2.11b)

(2.11c)

(2.11d)

(2.11e)

On using the Ricci tensor components (2.11) and the definit ion (2.6) we establish

that the Ricci scalar has the form

2 (.. • 2 ' • l' l' 1'2 Y)R = 2e- 11 ,\ + ,\ -,\v + 2,\- - 2v- + - + 2-
Y Y Y2 Y

(
Y' Y' y,2 Y II

) 22'\ 11 ,2 ", ,- 2e- V + V - V,\ - 2,\ - + 2v - + - + 2- +-
Y Y Y2 Y Y2 (2.12)

The corresponding nonzero components of the Einstein tensor (2.7) are generated

from the Ricci tensor (2.11) and the Ricci scalar (2.12):

. l' 1'2 ( Y' y,2 YII
) e211

Goo = 2,\- + - - e2(1I- '\ ) - 2'\'- + - + 2- +-
Y Y2 Y Y2 Y Y2

. Y' l' 1"
GOl = 2,\ - +2v' - - 2-

Y Y Y

Y' y ,2 ( l' 1'2 Y) 2'\
G11 = 2v' - +- +e2('\ - II) 2v- - - - 2- - ~

Y Y2 Y Y2 Y Y2

14
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(2.13c)



G22 = _e-2v [(~ + ~2 _ ~b) y2 + (ty - bY + Y) y]

+e-2A[(v" + V,2 - v').') y2 + (v'y' - ).'y' + Y") y]

G33 = sin2 oGn

(2.13d)

(2.13e)

These components specify the curvature and will be used to generate the field equa­

tions.

2.4 Einstein field equations

The Einstein field equations describe the coupling between the curvature of a space­

time and the matter content. We assume the matter to be a perfect fluid of the

form

= (f-l +p)UaUb +P9ab (2.14)

where the energy density f-l and the isotropic pressure P of the fluid are measured

relative to the fluid 4-velocity u. We obtain the field equations by specifying the

curvature through the Einstein tensor G and the matter content through the energy­

momentum tensor T. The energy-momentum tensor is coupled to the Einstein tensor

via the Einstein field equations

Gab = Tab (2.15)

where we have chosen units in which the value of the gravitational coupling con­

stant is unity. These field equations were first formulated by Einstein to provide a

description of gravitating systems.
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The perfect fluid form for the energy-momentum tensor (2.14) has the particular

form

di (2V 2'\ y2 . 2 e y2)Mab = iag fl-e ,pe , p - Psin (2.16)

for the line element (2.9). From (2.16) and (2.13) we obtain the Einstein field equa-

tions

= ~ _! -2,\ (Y" _A'y' + y'2) +!e-2V(~y + Y2)
fl- Y2 ye 2Y Y 2Y

p = e- 2
,\ [v" +V,2 - v'A' + ~ (v'Y' - A'Y' +Y")]

_ e-2v [~ + ~2
- ~zi + ~ (~y - ziY+17)]

y' - y v' - Y'~ = 0

for spherically symmetric gravitational fields.

The conservatio n of energy-momentum

(2.17a)

(2.17b)

(2.17c)

(2.17d)

is a consequence of the field equat ions (2.15) and the Bianchi identity (2.8). The

equation T 1b;b = 0 is the conservation of momentum and the equat ion TOb;b = 0 is the

conservation of energy. These conservation equations may be written respectively as

(2.18a)

16



(2.18b)

The equations (2.18) are first order differential equat ions which can also be derived

directly from the field equations (2.17).

To describe fully the matter cont ent we often specify an equation of state for

cosmological and astrophysical systems. The equation of state is chosen on physical

grounds. The barotropic equation of state P = P(fl), relating the energy density to

t he pressure, has many applicat ions (Collins and Wainwright 1983). T he simplest

case is the linear form

p= (,-1)fl

which allows for physically reasonable solut ions in the range 1 ~ I ~ 2. The re­

striction on I ensures that the energy conditions are satisfied and causality is not

violated (Ellis 1971). Note that particular values of I correspond to different types

of matter. Wh en I = 1 the pressure vanishes and we have a dust solution. The case

I = ~ corresponds to radiation. The case I = 2 corresponds to the stiff equation of

state for which the speed of sound equals the speed of light. Another example of an

equat ion of state utilised in applicat ions is the polytropic equation of state

where k and n are constants (Shapiro and Teukolsky 1983).
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3 A group theoretic approach to the Emden-Fowler

equation

3.1 Introduction

Many of the numerous approaches and special techniques used to solve differential

equations may be unified and extended via a general integration procedure. This

pro cedure perfected by Lie (1891) is based on the invariance of a differen tial equa­

tion under a point t ransformation. The Lie theory of extended groups provides a

powerful technique of solving many differential equat ions that arise in fields such

as classical mechanics, continuum mechani cs, hydrodynamics and relativity. In this

chap ter we analyse the generalised Emden-Fowler equation (Govinder and Leach

1996) for applications in general relativity in later chapters. Note that the study of

the Emden-Fowler equation originated from earlier theories concerning gaseous dy­

namics in astrophysics. More recently the Emden-Fowler equation has been used to

study chemically reacting systems, nuclear physics and relativistic mechanics (Wong

1975). One of the earliest attempts at solving the Emden-Fowler equation via the Lie

method was performed by Leach (1981) when studying time dependent anharmonic

oscillators. In secti on §3.2 we int roduce the technique of the Lie analysis by first

defining the important concepts intrinsic to symmetry groups of differential equa­

t ions. The method of obtaining the symmetries and their use in the reduction of

18



differential equations to quadrature is then discussed with an illustrative example.

In section §3.3 we analyse the generali sed Emden-Fowler equation via the method

of Lie point symmetries. The conditions under which this equation is reduced to

quadratures are obtained. Various special cases which arise in this analysis are in­

vestigated in §3.4. For ease of reference the results obtained are briefly summarised

in §3.5.

3.2 Lie symmetries and their application to differential equa­

tions

In this section we briefly introduce the technique of the Lie analysis. This method

will be used to solve the ordinary differential equations that arise from relativistic

models. The strength of the Lie analysis is that differential equations can be solved

using their symmetries. By a symmetry we mean the generator of a transformation

which leaves the form of the differential equation invariant . The symmetries are used

to either reduce the order of the differential equation or transform the differential

equation to a simpler form . Before describing the method in detail we define some

important concepts intrinsic to Lie symmetries of ordinary differential equations.

One of the routes to the solution of differential equations is by transforming the

dependent or independent variable, which results in a simpler equation to solve.

Wh en the transformation depends on the variables only, it is called a point trans­

formation. We confine our attention to thi s type of transformat ion, although more

general types of transform ation can be used eg contact transformations (Mahomed

and Leach 1991). We define a one-parameter group of point transformations

x = x(x,y; c)
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y = y(x,y; E)

which depends on the arbitrary parameter E and satisfies the group properties. We

define an infini tesimal transformat ion

X(X,y;E) = x +Ee(X,y) +.. . = x + EGX+.. .

y(x , y; E) = Y + ET} (x, y) +... = y +EGy +...

using the functions

Ox
e(x ,y) = OE 1(=0

oy
T}( x ,y) = OE 1(=0

and the operator

G = e(x , y)Ox +T}( x ,Y)Oy

The quantities T} and eare the components of the tangent vector G, which is called the

generator of the infinitesimal transformation. There always exist coordinates such

that the generator takes the normal form G = Os, where s is the new independent

variable.

Applying a point t ransformat ion to an ordinary differential equat ion

H (x , y ,y' , ... , y(nl ) = 0

requires knowledge of how the derivatives of y transform. This is calculated from

_, dy(x, y ; E) _'( ')
y =d~( )=y x, y,y ;f.

x X, y;E

d ~ ,

- n y - " ( ''')y = dx = Y x , y,Y , y ; E
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The extension up to the n-th derivative of the generator G is given by (Mahomed

and Leach 1990)

G[n] = e(x,y)8x +1](x,y)8y + (1](n) - ~;::(;)y(j+l)e(k-j)) 8y( n )

where the prime denotes the total derivative d/dx.

For our purposes a symmetry transformation of an ordinary differential equation is

a point transformation that maps solutions into solutions. In mathematical notation

we require that, under a symmetry transformation, the image y(x) of any solution

y(x) is again a solution. It is easily established that G = e8x +1]8y is a symmetry of

H( x, y,y', .." y(n)) = 0 if and only if

(3.1)

Condition (3.1) is an identity in the powers of y'. Equating coefficients ofthe different

powers of y' to zero results in a system of linear partial differential equations in e
and 1]. Solving this system explicitly for eand 1] yields the symmetry G.

Once the symmetries are known explicitly, they can be used to solve the differential

equation. A single symmetry of a differential equation can be used to either reduce

the order or to cast the differential equation into standard (or autonomous) form.

We consider both these techniques below.

Consider the differential equation

(3.2)

which is a special case of the generalised Emden-Fowler equation. This equation can

be reduced to quadratures via the Lie approach if it possesses at least two symmetries.

Using the package Program Lie (Head 1993), the symmetries are found to be

G1 = o,
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where [Gb G
2

] = ~G1' We first reduce the order of (3.2) using the symmetry G1·

This choice is dictated by the fact that the nonzero commutator of G1 and G2

is proportional to G1 . Once reduced, the resulting equation will still possess the

(transformed) symmetry G2 • If we reduce (3.2) using G2 then the resulting equation

will not possess any additional point symmetries (DIver 1993). The symmetry G1 =

ax has the associated Lagrange's system

dx dy dy'

1 0 0

The two characterist ics

Cl' = y ,

can be used to determine the transformation

f3 = y'

u = 11(Cl') = Cl' = Y

v = 12(f3) = f3 = y'

where we have chosen the arbit rary functions 11 and 12 as indicated above and u is

now the independent variable. Under this transformation (3.2) reduces to

vv'(u) = u2 (3.3)

which is a first order nonautonomous differential equation. (At this stage we could

easily reduce (3.3) to quadrature, However, we choose to transform the equation

into autonomous form to illustrate another use of symmetries.) In terms of the new

variables the additional symmetry G2 can be written as

G[l ] - 1 a 8 3'a
2 - 2X x - Y y - 2Y y'

= - u8 - ~vau 2 v
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An equation in autonomous form has the symmetry G = 8x (Bluman and Kumei

1989) where we have chosen X as the independent variable and Y as the dependent

variable. We seek to transform the symmetry

into G= 8x where the subscript denotes the partial derivative with respect to that

variable. On equating the coefficient of 8x to one and the coefficient of 8y to zero

we obtain the system

-uXu - ~vXv = 1

-uYu - ~v~ = 0

(3.4a)

(3.4b)

which is solved by the method of characteristics to obtain the required transforma-

tion. The associated Lagrange's system

dv du
-3--
-"2v -u

dY

o

for Y is obtained from (3.4b) and possesses the characteristic a = u-lV~. On choos-

ing the second characteristic as Y = j3 = j3(a) = a we obtain the transformation

The associated Lagrange's system for X is obtained from (3.4a) as

dX
1

(3.5)

This yields the transformation

X= -In(u)+'l(a)

= -In(u)
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on setting ,(a) = 0 where a = U-1V~ is also a characteristic of the system (3.5).

The required transformation

x = -In(u)

Y () -1 .£= ,2 a = a = u ·v 3

allows (3.3) to be written in the autonomous form

y' _ y + ~y-2 = 0
3

which can again be reduced to an algebraic equation. More detailed discussions of

these ideas and methods are available in texts by Bluman and Kumei (1989) and

Olver (1993). We now apply these techniques to the Emden-Fowler equation.

3.3 The Lie analysis of the Emden-Fowler equation

We are concerned with the Emden-Fowler equation in the form

y" + f(x)yn = 0 (3.6)

Our intention is to find those functions f(x) such that (3.6) can be reduced to a

first order equation or quadratures. The presence of the (initially) arbitrary function

f(x) prevents the direct use of Program Lie (Head 1993). Applying condition (3.1)

with H given by (3.6), we obtain

2fJxy - exx +3f(x)yney = 0

efxyn +nfJf(x)yn-1 + fJxx - f(x)yn(fJy - 2ex) = 0
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which is an over-determined system of linear partial differential equations in eand

TJ. Solving (3.7a) and (3.7b) yields

e(x ,y) = a(x) + yb(x)

TJ( x , y) = y2b'(x) + yc(x ) +d(x)

which upon subst it ut ion into (3.7c) results in the equation

2c'(x) - a"(x) +3b"(x)y +3f(x)d(x)yn = 0 (3.8)

T his is an identity in the powers of y. From equation (3.8) we note that the cases

n = 0 and n = 1 are special. Both these cases correspond to linear differential

equat ions: the case n = 0 is easily solved by

y(x) = - JX(Juf( v)dv) du

and the case n = 1 corresponds to the linear harmonic oscillator equation. A more

detailed discussion of linear differential equations is available in Ince (1956). For

n =I- 0,1 we have, on equat ing coefficients of the powers of y to zero in (3.8), the

equations

b(x) = 0

b"(x) = 0

c'(x) = ~a"(x)

(3.9a)

(3.9b)

(3.9c)

The first and second equations (3.9a, 3.9b) are satisfied by b(x) = O. We integrate

(3.9c) to obtain

c(x ) = ~a'(x) +C (3.10)

where C = constant. Substituting for e= a(x ) and TJ = d(x ) + (~a'(x ) + C)y we

rewrite (3.7d) as

eyn[a(x)fx + (n - 1 )f(x)(~a'(x ) +C) +2f(x )a'(x)]
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+yn-l[nf(x)d(x)] + y[all/(x )] + [d"( x)] = 0 (3.11)

where we have used (3.10). We equate coefficients of the powers of y to zero, to

obtain

d"(x ) = 0

d(x) = 0

a"'(x) = 0

a(x)fx+ (n - l)Ga'( x) +C)f +2f(x)a'(x) = 0

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(The special cases (n = 2) and (n = -3, C = 0) will be analysed later.) The

equat ions (3.12a) and (3.12b) are sat isfied by d(x) = O. We integrate (3.12c) to

obtain

(3.13)

which impli es, via (3.10), that

Integrating (3.12d) (excluding the possibilities of f(x) = 0 and a(x) = 0) yields

!!.±.l J C«(')ll clf (x)=I<a(xr 2 e- ax x (3.14)

which is the form f( x ) must assume for the equat ion (3.6) to possess the symmetry

(3.15)

To use this symmetry we restrict ourselves to considering the Emden-Fowler equation

of the form

(3.16)
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Note that this equation possesses just the one symmetry G, ie (3.15), and not any

more since the constants AI, A2 , A3 and C are not arbitrary but constrained by

the equation (3.16). This symmetry is used to write (3.16) in autonomous form by

performing a point transformation from variables (x, y) to (X, Y). We write the

transformation as

X=E(x,y),

We seek to transform the symmetry

Y = F(x,y)

G = a(x)ox + yGa'(x) +C)Oy

= (aEx+ (~a'(x) +C)yEy)ox + (aFx+ (~a'(x) +C)yFy)f}y

(where we have not substituted for a(x)) into G = Ox. On equating the coefficients

of Ox and Oy to one and zero respectively we obtain the system

a(x)Fx+Ga'(x) +C)yFy = 0

a(x)Ex+ (~a'(x) +C)yEy = 1

(3.17a)

(3.17b)

which is solved by the method of characteristics. The associated Lagrange's system

dx dy dF

a(x) - y(~a'(x)+C) = 0

for F(x,y) is obtained from (3.17a). The first characteristic is

la'(x)+C-J 2 dxa = ye a(x)

and choosing the second characteristic as F = (3 = (3(a) = a results in

la'(x)+C
F(x,y) = ye- J 2 a(x) dx

The associated Lagrange's system for E(x, y) follows from (3.17b) as

dx dy dE
a(x) = (~a'(x) +C)y - -1
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from which we obtain

J dx
E(x,y)= a(x)+,(a)

J dx
= a(x)

where we have set ,(a) = O. The required transformation is thus

J dx
X=E(x,y)= a(x)

f ,,'(rHe cl
Y = F (x,y) = ye- c r X

Under this transformation the derivative y" = d2y/dx2 is writ ten as

(3.18)

where Y' = dY /dX and Y " = d2y /dX2 while the remaining term in (3.16) trans-

forms as

It follows that the equation (3.16) is transformed via (3.18) to

y" +2CY' + DY +K'Y" = 0

where D = C2 +A}A3 - ~A~ = constant .

(3.19)

Equation (3.19) is easily reduced to quadrature if C = O. For this case (3.19)

simplifies to the form

Y" + DY +Kyn = 0

which is reduced via

u=Y,
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to the first order equation

vv' + Du + I<u" = 0

where u is the independent var iable. Integrating this equation and transforming back

to the original var iables yields the quadrature

J
dY

X -C =
2 J C

l
_ DY2 _ 2K yn+l

n+l

for the case n f:. -1. In the case n = -1 we obtain

J dY
X - C2 = VC

l
_ DY2 _ 2I< In Y

On inverting (3.18) to t ransform the quadratures to the original variables x and y ,

we obtain the solution to the Emden-Fowler equation of the form

for the case C = 0, where a(x) is given by (3.13).

For the general case C f:. 0, (3.20) is again used to reduce (3.19). In this case, we

obtain

vv ' + 2Cv + Du + K un = 0

which is an Abel equat ion of the second kind. The solution of this first order equation,

though it exist s in principle, is not obvious. To proceed further we have to analyse

(3.19) for additional symmetries.

The symmetry condition (3.1) for equati on (3.19) yields the identity

y,3(- eyy ) + y '2(1]YY - 2ex y ) +Y ' (21]XX - ex x + 3Dyey + 3Ky ney)

+ (D1] + n.K1]y
n- l + 2C1]x +nx x + (2ex - nx )(DY + Kyn)) = 0
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On equating coefficients of the powers of Y ' to zero we obtain the system

~yy = 0 (3.21a)

nvv - 2exy = 0 (3.21b)

2T/Xx - exx +3Dyey +3Kyn~y = 0 (3.21c)

T/D +n.KT/yn- 1+2CT/x + tixx + (2ex - ttx )(DY +Kyn)
= 0 (3.21d)

Integrati ng equations (3.21a) and (3.21b) yields

~ = a(X)Y + b(X)

T/ = (2Ca - a')y2 + c(X)Y + d(X )

which , upon substitution into (3.21c), gives

Y(lOCa' - 3Da - 5a") + y n(3Ka) + (2c' +2Cb' - b") = 0 (3.22)

We equate coefficients of the powers of Y to zero in (3.22) to obtain

lOCa' - 3Da - 5a" = 0

a = O

2c' +2Cb' - b" = 0

(3.23a)

(3.23b)

(3.23c)

Equations (3.23a) and (3.23b) are satisfied by a(X) = 0 while (3.23c) relates b(X)

to c(X). On substituting for ~ and T/, equation (3.21d) simplifies to the identity

y n(2Kb' +c(n - l )K ) + y n-1(Knd) +

Y(2Cc' +CIf + 2Db') + (d" +2Cd' + Dd) = 0

which yields the syst em

d" +2Cd' +Dd = 0
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d=O

2Ce' + e" +2Db' = 0

2b' + e(n - 1) = 0

(3.24b)

(3.24c)

(3.24d)

on equating the coefficient s of the powers of Y to zero. The equations (3.24a) and

(3.24b) are satisfied by d(X) = O. We solve equat ions (3.23c) and (3.24d) to obtain

2f<n- j1) X
e(X) = M1e n+3

2«n-j1) xb(X) = - ~t3 A11e n +3 +A12

(excluding the case n = -3, C =I- 0 which has no additional symmetries to (3.15)).

Subst it ut ing b(X) and e(X ) into equat ion (3.24c) yields the constraint

(3.25)

which forces a(x) to have real roots . The symmetry of (3.19) is given by

In fact (3.19) has two symmetries because of the two arbitrary constants M 1 and

M2 • The first symmet ry G't = Ox is obtained by setting M1 = 0 and M2 = 1. The

addit ional symmetry

- ( ~x) ( ~ )G2 = ~t3 e(ii+3) Ox - Ye(ii+3)x 8v

is obtained by setting M1 = 1 and M 2 = 0 and ari ses only if the condition (3.25)

holds . This symmetry is used to transform equation (3.19) into a simpler form.

Under the t ransformation

2 2f <n-jllX
W = E(X , Y) = --e- n +3

n-l

(3.26)
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equ ation (3.19) reduces to

where N = (n4"t3)2J< = constant.

e" +Nzn = 0 (3.27)

The conditions (3.14) and (3.25) combine to generate a stronger rest riction on

the form of f( x ) in (3.6). Condition (3.25) implies that the discriminant ~{a(x)} =

A~ - 4AI A3 ~ O. This means that a(x ) can be factorised as a(x ) = Al (x - a)(x - ,8) ,

where a and ,8 are the two root s of a(x). Subst it uting this form for a(x) into (3.14)

yields the form

f( x) = L(x - at(n+3)

where L = KA~ and we have used the fact that a - ,8 = ~~f~~~J. This means

that , with the exception of the special cases n = 0,1 ,2, - 3, we have reduced the

Emd en-Fowler equat ion of the form

(3.28)

to the simpler equat ion (3.27). Combining (3.18) and (3.26) , we obtain the transfor-

mation

2 (x- ,8 )w - - - --
n - l x -a

that allows this simplfication.

y .!!.±1.z = --(x - a)n-l
VAI (3.29)

Equat ion (3.27) is easily redu ced to quadrature. For the case n = -1 we obtain

c J dz .
w - 2 = V2C

I
_ 2N In z
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while for the general case (n i- -3, -1 ,0 ,1 ,2) we obtain

(3.30)

where Cl and C2 are arbitrary constants. The solution of the Emden-Fowler equat ion

(3.28) has been reduced to evaluating the above integral. Given a part icular value

of n , where n i- -3, - 1,0 ,1 ,2 , we obtain the solution of (3.28) by evaluating the

integral

J dz
JC1 - zn+l

and using (3.29) to transform the solution back to the original variables.

Let us consider the case n = 3. Here the integral (3.30) that must be evaluated is

an elliptic integral of the first kind . The solution

J dz 1 -1 ( Z )

JC1 - Z4 = VCl
sn

Cl

is written in terms of an elliptic function (Gradshteyn and Ryzhik 1994). On sub­

stituting this solution into (3.30) and t ransforming back to the original variables via

(3.29), we obtain the solut ion to

as

where C3 = JNfl , N = :~ and L = K At.
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3.4 Special cases

(aJ n = 2

For the case n = 2 we are interested in solving

y" + f(x)y2 = 0 (3.31)

The analysis is the same as for the general case up to equation (3.11) . Equating

coefficients of the powers of y to zero in (3.11) yields the system

d"(x) = 0

~alll(x) +2d(x)f(x) = 0

a(x)fx + ~a'(x) +Cf(x) = 0

This system is solved as

d = D1 x + Do

f( x) = J{a(xr~e- f a(:)dx

subject to a(x) being a solution of

alii = -4J{d(x ) a (xr~e- f afudx (3.32)

When d = 0 (D1 = Do = 0) the analysis is the same as for the general case since it

follows from (3.32) that a(x) = A1x2+ A2x + A3 . We will assume that d i- O. Wh en

d = Do (D1 = 0), (3.32) can be differentiated to obtain

2aa(4) +5a'alii +Calli = 0 (3.33)

which is the differential equation that a(x) must satisfy. In the general case d =

D1 x + Do , Govinder and Leach (1996) have shown that the analysis reduces to
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solving an equation of the same form as (3.33). They have in fact formally studied

the symmetry properties of (3.33) , the solution of which is not easy to obtain except

in the case C = O. Nevertheless without solving explicitly for a(x) we use the

symmetry G = a(x )8x +[d+ yGa' +C)]8y to transform (3.31). Requiring that (3.31)

be transformed to an autonomous equation, we obtain the transformation

X-J~- a(x)

Y = ya(xrte- I afudx - Jd(x)a(xr~ (e-I afudX) dx

where X is the independen t variable and Y is the dependent variable. Under this

transformation (3.31) becomes

Y " +2CY' +Ky2 + (; +C2
) Y +B = 0

where A and B are constants given by

A = aa" - ~al2 +4K !

with

(3.34)

Multiplying (3.32) by a(x) and integrat ing gives A as a constant of integration while

multiplying (3.32) by a(x) I d(x)a- ~dx and integrating gives B as a constant of

integration. We remove the constant term B in (3.34) by the translation

y =z +w

where W = constant and satisfies th e equation
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For a real W to exist we require that

~ = (~ +0 2
) 2 _ 4B I< 2 0

The differential equation that Z satisfies is given by

Z" +20Z' + I<Z2 + (~ +0
2+2I<W) Z = 0

This equation has an additional symmetry

G= ef Cx Ox - (4f Z + if(4 + ~: +2I<W)) e
f CXf}y

if the condition

(3.35)

(3.36)

(3.37)

holds , where ~ is given by (3.35). Requiring that the additional symmetry G be

transformed to the symmetry G = 8u yields the transformation

U -~CX= e 5

where U is the independent variable. Under this transformation (3.36) reduces to

the simpler equation

V" +V 2 = 0

This differential equation is easily reduced to the quadrature

where Uo and U1 are constants, which is recognisable as an elliptic integral. Equations

(3.35) and (3.37) combine to yield
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This is the condition under which (3.31) is redu ced to quadratures.

(b) n = -3, C = 0

For the case n = -3 and C = 0 the general analysis is valid up to equation (3.12d).

With these values equation (3.12d) yields the condition f x = 0 which implies that

f( x ) = K = constant. The Emden-Fowler equation then simplifies to

s" +Ky- 3= 0 (3.38)

which is a special case of the Ermakov-Pinney equation. A full discussion of this

equat ion is available in Govinder (1993). We merely note that (3.38) reduces to the

quadrature

J dy
x - Xo = JXl + I<v?

where Xo and Xl are constants of integration. This reduction to quadrature is possible

because equat ion (3.38) has three symmetries which is more than the required two

symmetries.

3.5 Summary

In order to solve the Emden-Fowler equation of the form

y" + f( x)yn = 0

we undertook a Lie symmetry analysis thereof. This equation possesses one sym­

metry (and thus can be reduced to a first orde r equation) provided f( x) is given

by

.!!±.2. f C«(jl ) df(x) = I<a(xf 2 e- a x X
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where a(x) = A l x2 +A 2x +A3 and AI, A2 , A3 , C and J{ are constants. The equation

possesses an additional symmetry (now enabling reduction to quadratures) if the

condition

(3.40)

holds. This implies that a(x) must have real roots, a and 13 say. The two conditions

(3.39) and (3.40) are combined to constrain f(x) as

f(x) = L(x - at(n+3)

where L is a constant . It is therefore possible (via the use of the two symmetries) to

reduce the Emden-Fowler equation of the form

to the quadrature

w - C - JnH J dz
2 - 2N JC

I
_ zn+l

(3.41)

(3.42)

(where Cl,C2,N are constant), for the cases n =I- -3,-1,0,1,2 via the transforma-

tion

2 (x - 13)w--- --
n-1 x-a

y !!±..l
Z = --(x - a)n-l

VAI (3.43)

Once the quadrature has been evaluated the above transformation is inverted to

obtain the solution in the original variables. The special mathematical cases (n = 2)

and (n = -3, C = 0) were also studied. Similar results were obtained.
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4 The Emden-Fowler equation in general relativ­

ity

4.1 Introduction

The Emden-Fowler equation is an equation of fundamental importance when analysing

the gravitational behaviour in many cosmological models in general relativity. The

equation of interest has the form

y" = F( x)yn (4.1)

where n is constant and F is arbitrary. In cosmology a special case of (4.1) first

arose in the analysis of Kustaanheimo and Qvist (1948) when studying shear-free

spherically symmetric models . In this chapter we demonstrate that particular values

of n are associated with different classes of solution to the Einstein field equations.

In §4.2 we obtain an Emden-Fowler equation with n = -~ under the assumption

of vanishing acceleration. The solution of the Emden-Fowler equation via the Lie

analysis is used to obtain a class of solutions to the field equat ions for vanishing

pressure. The case of vanishing shear in sphericall y symmetric spacetimes is discussed

in §4.3 where an Emden-Fowler equation with n = 2 is obtained. This is the case that

has attracted the greatest attention and interest of researchers (Maharaj et al1996) .

In §4.4 an Emden-Fowler equation with n = -2 is derived under the assumption of

a stiff fluid equation of state. Solutions are obtained for this accelerating, expanding
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and shear ing class by using the results of the Lie analysis. In §4.5 an attempt is

made to integrate the Emden-Fowler equat ion for general n via an ad hoc integration

technique utilised by Maharaj et al (1996) for the case n = 2. A conclusion is made

about the uniqueness of the resul ts of Maharaj et al.

4.2 The case n = - ~

The Em den-Fowler equation (4.1) with n = -~ was obtained by Herlt (1996) in

his attempt to find solutions of the Einst ein field equations (2.17) for the case of

vanishing acceleration. The expansion (2.10c) and shear (2.10d) are nonzero. On

using (2.10b) we observe that vanishing acceleration is equivalent to

v' = 0 (4.2)

Thus t/ = v(t) and by rescaling the time coordinate in the line element (2.9) we can

set v = 0 as long as Y' i= 0 as pointed out by Kramer et al (1980). Then from the

momentum conservat ion equatio n (2.18a) we deduce that p' = 0 so that p = p(t).

Under these assumptions the field equat ions become

fJ = ~ _ !e-2A(Y" _ ).'Y' + Y'2) +! (~Y + Y2)
Y2 Y 2Y Y 2Y

p = e-2A[~ (-.\'Y' +Y")]

_ [~+ ~2 + ~ (~y +y)]
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y' = ~Y' (4.3d)

which are simpler than (2.17). Studies of nonaccelerating spherically symmetric

gravitational fields, involving (4.2) and (4.3), have been pursued by a number of au­

thors in the past including Govender (1996), Kitamura (1994), Maharaj et al (1993),

McVittie and Wiltshire (1975) and Van den Bergh and Wils (1985). Their investiga-

tions involved ad hoc assumptions about the functional forms for the matter variables

and gravitational potentials. Our treatment in contrast involves the systematic Lie

analysis of differential equations and we show that the Emden-Fowler equation is the

principal equation governing the behaviour of the gravitational field.

The field equation (4.3d) is integrated to yield

(4.4)

where h(r) is an arbitrary function of integration and e is an arbitrary constant

which can be scaled to 0,1 or -1 (Herlt 1996). The field equation (4.3c) is satisfied

if (4.3b) is satisfied. To demonstrate this we differentiate (4.3b) x y 2 with respect to

r to obtain

2YY'p +P'y2 = 2Y'Y"e-2A- 2).'e-2Ay,2 - 2Y'Y - 2YY' - 2YY'

Clearly if we utilise p' = 0, Y' = ~Y' and y l = ~Y' +~2y' in the above equation we

regain (4.3c). Thus we consider only the equations (4.3a), (4.3b) and (4.4) in solving

the field equations. These are three equations in the four unknowns p(t), /-l(r, t), ).(r,t)

and Y(r, t). In our approach we specify p(t) and consequently obtain the other

quantities. On substituting (4.4) into (4.3b) we obtain

1 (2 '" )P=Y2 -ch (r)-2y_y2
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It is convenient to replace Y by

2

Y = z3"

so that (4.5) becomes

3 () 3 h2 ( ) _1Z+ -p t z = - -t r z 3

4 4
(4.6)

in terms of the new dependent variable z . We remove the explicit r dep endence by

setting

z(r,t) = Z(r,t)E(r)

Under this transformation (4.6) becomes

.. 3 3 4 2 1
Z + -p(t)Z = --tE-3"(r)h (r)Z- 3"

4 4

which simplifies to

on choosing

.. 3 1

Z + -p(t)Z = - tZ- 3"
4

4 3 2
E 3"(r) = 4h (r)

(4.7)

By specifying p(t) in (4.7) we can solve this equat ion to obtain Z(r , t) and then

Y(r, t) via the transformation

Y = V3h(r)Z~
2

The gravitational potential '\ (r, t) follows from (4.4) and the remaining unknown

fun ction J-l(r, t) is obtained from (4.3a) . Therefore the equation (4.7) is the focal

point of our investigation and we require a general solution. Note that we cannot
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solve this equation by first specifying Z and then determining p(t); this is because Z

is a function of both the rand t coordinates. Even the simple form Z = Z(t) does

not generate useful solutions since the shear (J vanishes.

Some special cases of (4.7) were considered by Herlt (1996). For the cases

p = constant ,

p=O

the differential equation (4.7) can be solved by means of quadratures. The case p =

constant was first solved by Ruban (1969). The case p = 0 corresponds to dust

which was initially studied by Lemaitre (1933) and Tolman (1934). The value t = 0

in (4.7) corresponds to solving a simple second order linear differential equation.

Bona and Stella (1987) and Leibowitz (1971) examined this case. Solutions for

various functions p(t), in (4.7) with t = 0, can be found by referring to handbooks

of differential equations eg Kamke (1983). As these special cases have been studied

comprehensively in the past by a variety of authors we do not pursue them further.

In our attempt to solve (4.7) in general we perform a point transformation

Z(r, t) = J(t)y(x(t), r)

which results in (4.7) being transformed to

·2 (2" ") (" 3()) 1 1X JYxx + Jx +Jx Yx + J + 4"p t J = - ej - 3" Y- 3" (4.8)

The coefficients of Yx and y vanish if we specify the relation between x and t as

(4.9)

and we choose

(4.10)
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With the above assumptions (4.8) simplifies to

(4.11)

where

8
F (X) = - EJ3(X)

This is an equation of the Emden-Fowler type. It is a partial differential equation

because y = y(x,r) but can be solved as an ordinary differential equat ion. If F(x) is

specified then the equation F (x) = - EJ ~ det ermines J(x). The form for x(t) follows

from integrating (4.9) which enables us to obtain J(t) = J(x(t)) . The pressure p(t) is

then determined from (4.10). Note that if J(t) is a linear function of time then the

pressure is zero. We now focus our attention on solving the Emden-Fowler equation

(4.11).

For n = -~ , the Emden-Fowler equat ion becomes

(4.12)

The above equation is a special case of (3.41) and is solved in the manner described

in §3.5. The quadrature (3.42) is first evaluated for n = -~. The solution to this

quadrature is then inverte d via the transformation (3.43) (with n = -~) to obtain

the solut ion to (4.12). On inverting the solution of (4.12) via the t ransformat ions

Z(r , t ) = J(t)y(r ,t) and Y = V;h(r )Z f we obtain the form for the metric potential

Y( r, t). It would appear that this procedure generates a new class of nonaccelerating

solut ions to the field equations. However this is not the case since the function

8

F (x) = -L(x - at 3 (4.13)

implies that the pressure vanishes. Solutions with vanishing pressure have been

obtained previously in the literature. We now demonstrate that the pressure is zero

44



and then provide the solut ion of the spherically symmetric field equations for the

case of vanishing pressure and acceleration by using the procedure described above.

Given the function (4.13) we obtain

(4.14)

where w = ~ . This allows us to integrate (4.9) to obtain

(4.15)

where to is a constant of integration. Combining (4.14) and (4.15) we obtain

from which we deduce that j' = O. This is turn implies, using (4.10), that p(t) = 0

and we have vanishing pressure. The solut ion for the metric potent ial Y(r, t) , in the

case of vanishing pressure and acceleration, is given by

where

The arbitrary functions D 1 (r) and D2 ( r) result from integration and the constants

H , Nand L are given by
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The remaining potential ,\ and the matter variables are deduced from the above form

for Y.

4.3 The case n = 2

With the value n = 2, the Emden-Fowler equation (4.1) arises in the study of spheri­

cally symmetric cosmological models. However in this case the shear (2.lOd) vanishes,

the acceleration and expansion are nonzero, and the solution to the field equations

(2.17) reduces to the integration of the single equation

y" = F(X)y2 (4.16)

which is an Ernden-Fowler equation. This equation has generated tremendous inter­

est because of its important role in shear-free relativistic fluids . The first systematic

analysis of (4.16) was performed by Kustaanheimo and Qvist (1948). Recent analy­

ses of this equation include the treatments of Maharaj et al (1996), Stephani (1983),

Stephani and Wolf (1996) and Srivastava (1987). Note that the related equation

y" = F(X)y2 +G(x)y3

corresponding to shear-free fluids with an electromagnetic field arises in the analysis

of the Einstein-Maxwcll equations (Krasinski 1997, Srivastava 1992). We do not

pursue this case in greater detail because the shear vanishes.

4 .4 T he case n = -2

The Emden-Fowler equation (4.1) with n = - 2 arises in the analysis of Govender

(1996) for shearing fluids in spherically symmetric models . This class of solutions is
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accelerating, expanding and shearing. Govender imposed the conditions

,\ = constant,

P=J-L

so that there is a stiff equation of state for his models. Under the above conditions

the line element (2.9) can be written as

and the behaviour of the gravitational potentials depends on the function Y(r, t).

The explicit form for the physical and kinematical quantities is also obtained from

Y(r, t) (Govender 1996). The solution of the field equations (2.17) reduces to the

integration of the differential equation

Y" = f(r)y- 2 (4.17)

where f(r) is arbitrary. Again we observe that the Emden-Fowler equation arises in

this class of shearing, spherically symmetric solutions.

The equation (4.17) is a special case of (3.41) with the independent variable rand

the dependent variable Y corresponding to x and y respectively. The corresponding

function f(r) has the form

f(r) = -L(r - a)-l

The solution to this equation is obtained as discussed in §3.5 with the corresponding

value n = -2. The quadrature (3.42) is first evaluated for n = -2. The solution

to this quadrature is then inverted via the transformation (3.43) (with n = -2) to

obtain the solution to (4.17). The gravitational potential Y(r, t) is given by

pc! (t) (2(r - (3) +C2(t))
3(r - a)

47



= log (VI +QC1(t)(r - a)-~Y - QC1(r - a)-t y)

-log (VI - QC1(r - at t y) -log (VQC1(r - a)-~Y)

(4.18)

where Cl (t) and C2 ( t) are arbitrary functions of integration and the quantities

are constant. Again we have an example of the role played by the Lie analysis of

chapter 3 in solving the field equations, via the Emden-Fowler equation. Note that

the explicit solution (4.18) was not given by Govender (1996) in his treatment of

shearing models.

4.5 Uniqueness of a method used to obtain a class of solu­

tions

We now try to solve the Emden-Fowler equation (4.1) via an ad hoc technique of

integration. This idea is motivated by the success of the approach as employed by

Maharaj et al (1996) when integrating the Emden-Fowler equation (4.1) for the case

n = 2. The first integral of (4.1) with n = 2 obtained by Maharaj et al has the form

(4.19)

where 'l/Jo(t) is an arbitrary function of integration where we use the notation

FI = JF(x)dx
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for convenience. The existence of (4.19) is subjeet to the condition

2FFIll + 3(F FIl)r = Ko (4.20)

where Ko is a const ant. We can transform the integral equation (4.20) into an

ordinary different ial equation which is easier to work with . We introduce

F = FIll

so that (4.20) becomes

2FFx x x x +5Fx Fx x x = 0

which can be integrated once to yield

where K 1 is a constant of integration. Integration of (4.21) yields the result

(4.21)

where Kz, K 3 and K 4 are constants of integration. We now let

(F-1 )1U x = 2

which reduces (4.22) to the quadrature

(4.23)

where Xo is const ant. Thus the differential equation (4.21) has been reduced to the

quadrature (4.23) which can be evaluat ed in terms of elliptic integrals in general

(Gradshteyn and Ryzhik 1994). The first int egral (4.19) with F given by (4.23)

represents a new class of solutions of (4.16) found by Maharaj et al (1996).
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We now seek to solve the general Emden-Fowler equation (4.1), to determine for

which other values of n the above technique yields a first integral. The method

utilised is to integrate by parts until we are left with an integral which can be

evaluated by placing a constraint on the form of F(x). On integrating both sides of

y" = F(x )yn we obtain

Yx + 1/Jo(t)

(4.24)

I

I
j

I
I
I
I
f

I

where we utilised integration by parts. We continue with the procedure to integrate

the term f F1yn-lYxdx twice. This yields the result

Yx + 1/Jo(t )

A fur ther integration by parts of (4.25) yields

Yx + 1/Jo(t)

= F1yn - nFnyn-l yx +n(n - 1)Fn 1yn-l y; +n(FFn)Iy2n-l

-n(2n -1)(FFn )Iy2n-2yx - n(n -l)(n - 2)JFnlyn-3Yx3dx

-J{2n(n - 1)FFII1+n(2n -1)(FFII)I}y2n-2Yxdx (4.26)

If we proceed with integrating (4.26) by parts we generate the result
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Yx + 'l/Jo(t )

= Flyn - nFnyn-l yx +n(n - 1)Fn lyn-2y; +n(FFn)ry2n-l

-n(2n - l)(FFn)ry2n-2yx - n(n - l)(n - 2)Fn n yn-3y;

-{2n(n - l )F FnI +n(2n - 1)(F Fn )r}Iy2n- 2yx

+ ({2n(n - l )F Fn I +n(2n - l)(FFn)rh +3n(n - l)(n - 2)F Fnn)I y2n-3y;

+({2n(n - l)FFnI +n(2n - l)(FFn)r }F)I y3n-2

- (2n - 3)J({2n(n -l )F Fn I +n(2n -l)(FFn)r}I

+3n(n - l)(n - 2)FFlnI) I y2n-4y;dx

+n(n - l )(n - 2)(n - 3)JFnnyn-4Yx4dx

- 2J[({2n(n - l) F FnI +n(2n - l)(FFn)r} I + 3n(n - l)(n - 2)F Fnn) I F

+(3n - 2)({2n(n - l)FFIn +n(2n - l )(F Fn)r }F)IJy3n-3Yxdx (4.27)

It is possib le to continue with the integrat ion procedure but we stop at this point as

(4.27) enables us to make our conclus ions.

The objective in our analysis is to eliminate the integrals on the right hand sides

of (4.24) , (4.25) , (4.26) and (4.27) and thereby generate a first integral for (4.1).

With n = 0, (4.24) gives

Yx + 'l/Jo(t ) = FI

which is an obvious first integral of s" = F(x).

If n = 1 then (4.25) can be written as

Yx + 'l/Jo(t) = FI - Fnyx
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with the integrability condition

where K, is a constant. This integrability condition implies that F(x) = O. The first

integral of (4.29) is then

Yx + 'l/;o(t) = 0 (4.30)

which is an obvious first integral of y" = O. For the case n = 1 this technique does

not yield a first integral for nontrivial F(x).

When n = 2, (4.26) yields the solution

which is the same as (4.19). The solution (4.31) is subject to the integrability con-

dition

2FFIll + 3(F Fll)r = Ko

which is the same as (4.20) . Therefore we have regenerated the first integral found by

Maharaj et al (1996) in our general treatment. Note that although the first integrals

(4.28) and (4.30) may be obtained using other techniques, the first integral (4.26)

is not easily obtainable using other approaches because the differential equation

y" = F( X)y2 is highly nonlinear. It is interesting to observe that the first integral

(4.26) also arises as a special case in the Lie analysis of y" = F( X)y2 performed by

Maharaj et al (1996). (Also refer to the general Lie analysis in chapter 3). With

F(x) = X_I; , (4.31) takes the form
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and with F( x) = (ax +bt
1
; , (4.31) becomes

9 7 8 Z 7 z( ) 1'ljJO(t ) = -36yx - 2(~)(ax +bt'1y - 9(~) ax + b - '1 YYx

37 6 7 3 9 3
+2(~)3(ax + b) '1 y; - ( ~) (ax + b)-'1y (4.33)

The special cases (4.32) and (4.33) were obtained by Stephani (1983) and Srivastava

(1987) respectively.

It would seem that our approach may be extended to generate other first integrals

by subsequent iterat ions. However this is not possible as we can demonstrate by a

careful analysis of (4.27). To obtain a first integral from (4.27) we need to eliminate

the three integrals on the right hand side of this equat ion. The third integral is

eliminated if we set

({2n (n - l )FFIll +n(2n - l) (F FIl )I}1+ 3n(n - l)(n - 2)FFIlII) I F

+(3n - 2) ({2n(n -l )FFIll +n(2n - l )(F FIlh}F)1 = Kz

where Kz is a constant. With this int egrability condition (which is the analogue of

(4.20)) we find that (4.27) can be written as

Yx + 'ljJo(t )

-n(2n -l)(FFIlhyzn-zyx - n(n -l)(n - 2)FIIIIyn- 3y;

-{2n(n -l)FFIlI + n(2n -l )(FFIlhhyzn- zyx

+ ({2n(n - l )FFIll +n(2n - l)(FFII)I}I +3n(n - l) (n - 2)FFIlII) I yZn-3y;

+ ({2n(n - l)FFIll + n(2n - l)(FFIlh }F)l y3n-Z

-(2n - 3)J({2n(n - l)FFII~ +n(2n - l) (F FIIhh

+3n(n - l)(n - 2)F FIIlIh yzn-4y~dx
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+n(n - l)(n - 2)(n - 3)JFIIIIyn
-

4yx4dx

2 f{ 3n-3+l

3n - 3 + 1 lY
(4.34)

It remains to eliminate the two integrals in (4.34). As they stand these integrals are

impossible to evaluate because of the nonlinear powers of Yx' If we require that these

integrals vanish then the following conditions must hold simultaneously:

2n - 3 = °
n(n - l)(n - 2)(n - 3) = °

The first condition gives the value n = ~ and the second condition yields the values

n = 0,1 ,2,3 which is a contradiction. Hence we cannot eliminate both integrals on

right hand side of (4.34) simult aneously. Attempting to further integrate (4.34) by

parts will not allow us to obtain a new first integral. This is because each iteration

produces integrals that contain higher powers of Yx' These integrals cannot be made

to vanish simultaneously by choosing n: the quantity n would have to be both a

fraction and a natural number which is not possible.

Therefore we have established that the integration procedure of Maharaj et al

(1996) works only for the cases n = 0,1,2 and will not yield first integrals for other

values of n. The integration by parts procedure yields the unique first integrals

(4.28), (4.30) and (4.31). We believe that our result establishing the uniqueness of

the procedure to obtain the first integrals of the Emden-Fowler equation (4.1) , for

n = 0,1 ,2 is new and has not been published previously. It is interesting to note

that the values n = 0,1 ,2 also occur as special cases in the Lie analysis. The Lie

analysis in chapter 3 is a more general te chnique however and it possible to obtain

first integrals of the Emden-Fowler equation (4.1) for a wider range of values of n.
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5 Charged, spherically symmetric solutions

5.1 Introduction

The role of charge in relativistic models has been a subject of investigation since

the formulation of the general theory of relativity. The first charged solution was

the Reissner-Nordstrom (1916,1918) spherically symmetric Einstein-Maxwell solu­

tion which generalised the Schwarzschild (1916) solution. The aim of finding solu­

tions to the Einstein-Maxwell field equations is to obtain a physical understanding

of the effect of an electromagnetic field in a curved spacetime. Despite the observed

charge neutrality of the universe it is important to study the Einstein-Maxwell field

equations for a number of reasons. For example the role of charge in gravitational

collapse has been pointed out by a variety of authors (Joshi 1993). Also the electro­

magnetic field may play a role in preventing a big bang singularity (Vickers 1973). In

§5.2 we derive the Einstein-Maxwell system of field equations for a spherically sym­

metric spacetime containing a charged perfect fluid. These equations are obtained

for a particular choice of the electromagnetic gauge potential which is consistent with

spherical symmetry. In §5.3 we discuss certain physical aspects of the structure of

the Einstein-Maxwell system. A number of conditions are obtained from the gen­

eral form of the electromagnetic gauge potential and the transition from the charged

model to neutral matter is discussed. We derive a charged analogue of the spherically
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symmetric solution obtained by Maharaj et al (1993) in §5.4. The shear, accelera-

tion and expansion are nonvanishing in this class of solutions. The charged analogue

of the Gutman-Bespal'ko (1967) solution, characterised by a stiff equation of state,

is recovered as a particular case of this method. In §5.5 we demonstrate that the

Emden-Fowler equation arises as a governing equation in charged spherically sym-

metric spacetimes under the assumption of vanishing acceleration and proper charge

density. This emphasises the importance of studying the Emden-Fowler equation in

general relativity.

5.2 Einstein-Maxwell field equations

The Einstein-Maxwell field equations describe the coupling between the curvature

of spacetime and the matter content which now includes the electromagnetic field

in contrast to §1.4. The Einstein equations are supplemented by the Maxwell equa-

tions which govern the behaviour of the electromagnetic field. Charge is introduced

through the electromagnetic 4-potential A which defines the electromagnetic field

tensor F. The electromagnetic field tensor is given by

(5.1)

The electromagnetic contribution to the energy-momentum tensor is

(5.2)

which is defined in terms of F. The uncharged matter contribution to T is
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which is the perfect fluid (2.14). The total energy-momentum tensor is then given

by

(5.3)

where the right hand side is the sum of (2.14) and (5.2). The Einstein-Maxwell field

equations comprise the system

Gab = Tab

= Mab + Eab

Fab;c + Fbc;a + Fca;b =°

where J" is the 4-current density. We can write the 4-current as

where ua is the fluid 4-velocity and K, is the proper charge density.

We utilise the gauge freedom in choosing the 4-potential A. The form

Aa = (4)(t ,r),O,O ,O)

(5.4a)

(5.4b)

(5.4c)

(5.5)

(5.6)

for the 4-potential is consistent with spherical symmetry and has been extensively

utilised in inhomogeneous cosmological models (Sussman 1987, Sussman 1988a, Suss-

man 1988b). The quantity 4>(t, r) is called the electromagnetic gauge potential. Note

that we have taken 4> to be a function of both the radial and time coordinates anal-

ogous to the dependence of the metric potentials u, A and Y . We can calculate
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the components of the electromagnetic field tensor from (5.1) and (5.6) ; the nonzero

components are

FlO = -Fo! = 4>/ (5.7)

On using these components we calculate the elect romagnet ic cont ribut ion to the

energy-momentum tensor which is given by

The nonzero components follow from (2.16) and (5.8):

T ab = diag (fJ-e2/1 + ~e-2'\ 4>I2, pe2'\ _ ~e-2/1 4>/2 , py2 + ~ y 2e- 2('\+/I) 4>12,

p sin2e y2 + ~sin2e y2e-2('\+ /I )4>/2)

which are for the total energy-momentum tensor T (5.3).

From (5.9) and (2 .13) we obtain the Einstein field equations (5.4a) as

1 2 ( y/2) 2 (.. y2 )fJ- = - - _e-2,\ y" - A/Y/ +- + _e-2 /1 AY +-
y2 Y 2Y Y 2Y

_ ~e- 2('\+/1) 4>/2
2

p = e-2'\ [VII + v/2
- V/ A/ + ~ (v/Y/ _ A/Y/ +Y II ) ]
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[
1 (. . . .. )]

_ e-211 ~ + ~2 _ ~b + Y AY - bY + Y

o= y' - y v' - Y'~ (5.10c)

for a spherically symmetric model with charged matter. With <p = <p(t) we regain

the field equations (2.17) for uncharged matter.

Given the nonzero components of the electromagnetic field tensor (5.7), we obtain

the Maxwell equations. The first Maxwell equation (5.4b) is identically satisfied for

the particular electromagnetic field tensor (5.7). The second Maxwell equation (5.4c)

is identically satisfied for a = 2,3. We generate the conditions

(

)...11 Y')e-2A- 1I <p' A'+ v' - _If' - 2- = K,

<p' Y

(. Y).
<p' A+b - 2Y = <p'

(5.11a)

(5.11b)

from (5.4c) and (5.5) where we have set a = 0 and a = 1, respectively. We take

(5.11a) as the definition of the proper charge density given in terms of the gravi-

tational potentials and the electromagnetic gauge potential. The Maxwell equation

(5.11b) does not arise in static spherically symmetric models as the potentials are

functions only of the radial coordinate r (Humi and Mansour 1984, Pant and Sah

1979, Patel and Mehta 1995). The system of equations (5.10)-(5.11) comprise the

Einstein-Maxwell equations for the spherically symmetric models, given by the line

element (2.9), with our chosen form of F in (5.7).

For charged matter the conservation of energy-momentum is given by
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With a = 1 and a = 0 the conservation equat ions become

(
<jJ1t Y')p' + (fJ + p)v' +e-2.\- 2lJ <jJ'2 A' + i/ -1/ - 2 Y = 0 (5.12a)

(5.12b)

respectively. Analogous to the uncharged case we interpret (5.12a) as the momentum

conservation equation and (5.12b) as the energy conservation equat ion. With <jJ =

<jJ(t) we regain the conservation equations (2.18) for uncharged matter.

5.3 Some physical aspects of the Einstein-Maxwell field

equations

We now investigate some consequences that follow from the general structure of the

Einstein-Maxwell system for a spherically symmetric spacetime. Certain important

properties of this system are discussed which prove useful in describing solutions to

the field equations from a physical perspective. The Einstein-Maxwell field equations

(5.10)-(5.11) and the conservation equations (5.12) hold for a charged perfect fluid

in a spherically symmetric spacetime for our chosen form of F given in (5.7).

The proper charge density K, is obtained in terms of t/ , A, Y and <jJ from the first

Maxwell equation (5.11a). The condition (5.11b) arising from the second Maxwell

equation is satisfied by

(5.13)

Equation (5.13) gives the explicit relation between the electromagnetic gauge poten­

tial <jJ, the gravitational potentials and the arbitrary function A1(r). The relation
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(5.13) is important because the electromagnetic gauge potential 4>' is explicitly de­

fined in terms of the potentials t/, A and Y. It is important to note that the case

corresponds to charged spacetimes whereas on setting

we regain the uncharged models as 4> = 4>(t) only. This condition is the criterion that

enables us to recover the corresponding uncharged solution from a charged solution.

A consequence of the Maxwell equation (5.11b) is that the energy conservation

equation (5.12b) is changed to

(5.14)

which is exactly the form of the corresponding equation in the uncharged case in

§2.4. It appears from (5.14) that the electromagnetic field F is not contributing

directly to the energy density J-l or the pressure p. This is an incorrect physical

intepretation. From the Einstein field equations (5.10) and (5.13) we observe that

the electromagnetic gauge potential 4> is related to the gravitational potentials u, A

and Y; thus there is an essential nonlinear link between 4> and J-l and p. From specific

models where the functional form of v, A and Y are given it is clear that the potential

4> is an integral component; the line element will be different from the uncharged case

together with the energy density and pressure.

An interesting discussion arises from examining the condition K, = 0 corresponding

to vanishing charge density. From (5.11a) we have

,p' (A' +v' - 2~) -,p" = 0
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which is satisfied by

(5.15)

where A2 (t ) is an arbitrary function. From (5.13) and (5.15) we deduce that

A1 (r ) = A2(t ) = constant

Another consequence of the condition r: = 0 is that the momentum conservation

equation (5.12a) is simplified: the conservation equations (5.12) become

p' + (f-l +p)v' = 0

which are the same as in the uncharged model. Although <p' does not appear explic-

itly in the conservation equations, the electromagnetic field F does affect the matter

variables (f-l,p) and the gravitational potentials (v, A, Y). It is possible to give van-

ishing proper charge density r: a physical interpretation (Sussman 1988b). There

exist uniform density solutions in which the matter is neutral but the electric field is

nonzero. The interpretation here is that there are charges of oppposite sign located

at opposite boundaries of spacetime which may be singular. For a comprehensive

list of such solutions and a description of their physical properties refer to Krasinski

(1997).

5.4 A charged generalisation of a spherically symmetric

solution

In this case we generate the charged analogue of a class of solutions given by Maharaj

et at (1993). This class is accelerating, shearing and expanding for spherically sym-
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metric line elements (2.9). The Maharaj et al class of solutions has the advantage

of containing the Gutman-Bespalko (1967) model with a stiff equation of state. We

generalise the Gutman-Bespalko model to obtain its charged analogue.

The technique used to obtain the solution clearly follows the approach used by

Maharaj et al (1993). We make the ansatz

Equation (5.13) can be written as

(5.17)

With the simplified form of the line element (5.16), the field equations (5.10) become

o= 1 - rt/

Equation (5.18d) is immediately integrated to yield

(5.18a)

(5.18b)

(5.18c)

(5.18d)

(5.19)

where a is a constant. On equating (5.18b) to (5.18c), and using (5.19), we obtain

1 1.. . A2(r )- + --(TT +T 2
) - _1_ = 2e-2A(1 + ).'r)T2 a2T2 r2T4
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which is often referred to as the pressure isotropy equation. If we make the choice

where al is a constant, then the variables r and t separate in the pressure isotropy

equation. We obtain the result

which is equivalent to

1 1 .. . 2 ai- + - (TT +T ) - - = 2kT2 a2T2 T4 (5.20a)

(5.20b)

where k is a constant . The differential equation (5.20b) for r is converted via the

transformation

to the Riccati equation

,2 2k 2
u + -u = - u

r r

The Riccati equation (5.21) has the particular solution

1
u =-

k

To obtain a general solution we set

1 1
u = - + - -

k v(r)

which transforms (5.21) to the differential equation

, 2 2k
v + -v = --

r r
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This is a linear equation in v(r) and is easily integrated to yield

k 2)
V = --(k +br

br

On transforming to the original variables the solution to (5.20b) is thus obtained as

2'\ 1
e =

k + br?

Note that Maharaj et al (1993) obtained a similar form for e2
,\ . However their analysis

was valid only for uncharged matter. In addition their solution technique was ad hoc

and the general solution of the Riccati equation was not demonstrated.

The time dependence in T is obtained from (5.20a). This equation is transformed

vIa

1

T = Z'2

to the simpler differential equation

2 2 2
.. 2 2 a a lZ +2a - 4ka Z - -- = 0

Z

Equation (5.22) can be written as

This equation is easily reduced to the quadrature

JV dZ = t- to
Cl - 4a2Z +4a2Z2 +4a2ai log Z

(5.22)

where Cl and to are constant. On evaluating this quadrature we obtain the form

of T via the transformation T = Z~. Closed form solutions may be obtained for

particular values of the constants in the integrand.
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The matter variables f-l and p are then obtained from (5.18a) and (5.18b) respec-

tivelyas

k 1 T ai
f-l = -3b + r2 - a2r2 T - 2r2T4

k 1 T ai
p = 3b + 2 +-22T + 2 2T4r a r r

From (5.23) we note that p and f-l are related by

ai(r)
p - f-l = 6b+ r2T4

(5.23a)

(5.23b)

(5.24)

We regain the stiff equation of state if we set al = b = O. The electromagnetic gauge

potential is given by

, ala 1
ljY = T2 Jk +br2

and the proper charge density is

Therefore we have generated an exact solution to the Einstein-Maxwell field equations

(5.10)-(5.11) with the equation of state (5.24). This exact solution has nonvanishing

acceleration, expansion and shear.

The choice al = 0 implies that ljY' = 0 which corresponds to the uncharged case.

With this assumption the differential equation (5.22) for Z becomes

Depending on the sign of k this equation can be integrated to yield the following

forms of the line element
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k = 0:

ds2 = _a2,2dt2+ _1_d,2 + ,2( _a2t2+ et + d)dn2
b,2

k = _n2 < 0:

ds 2 = _a2,2dt2 + 1 d,2 +,2 (esin(2ant) + dcos(2ant) - 2\) dn2
-n2+ b,2 n

k = n 2 > 0:

ds 2
= _a2,2dt2 + n2~ b,2 d,2 +,2 (ee

2ant
+ de-

2ant
+ 2~2) dn

2

where dn2 = d02 + sin20d<p and e and d are constants of integration. For the

case k ~ 0 we require that b > 0 while for k < 0 we must have that r ~ j-k/b.

These results were obtained by Maharaj et al (1993). Thus we have recovered their

solutions when the charge vanishes. The equation of state for this class of models is

P - I-" = 6b

This is a generalisation of the stiff equation of state P = 1-" . If we set k = 1, a = t
and b = 0 we obtain the line element

which is the original Gutman-Bespal'ko (1967) solution. Note that the Maharaj et

al models contain this particular case.
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5.5 The Emden-Fowler equation in charged spherically sym­

metric spacetimes

In this sect ion we demonstrate that the Emden-Fowler equation also arises in charged

spacet imes under specific conditions. This equat ion arises in analogy to chapter 3

and to the approach by Herlt (1996) in obtaining an Emden-Fowler equation for

uncharged spherically symmetric spacetimes.

We analyse the case of vanishing acceleration. This assumption is equivalent to

V' = 0

Thus u = v(t) and by rescaling the time coordinate in the line element (2.9) we can

set u = O. In addition we assume that

where A is a constant. This form for the electromagnetic gauge potential satisfies

the condition (S.l1b). Then equation (S.l1a) yields the result

",=0

so that the proper charge density vanish es. Under these assumptions the momentum

conservat ion reduces to

p' = 0

which implies that p = p(t). The Einstein field equations (S.lO) become

f-l = J...- _ !e-2
,\ (Y II

_ ,X'y' + Y
12)

+! (~Y + Y2) _ A
2

Y2 Y 2Y Y 2Y 2Y4
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p = e-2
'\ [~ (--\'Y' + Y")]

- [~+ ~2 + ~ U1' + 17)] - 2;4

1" = ~Y'

The Maxwell equations (5.11) are satisfied because y 2 <p' = Ae,\.

The field equation (5.25d) is integrated to yield

where f = f(r) is an arbitrary function. We choose to set

f=l

(5.25c)

(5.25d)

(5.26)

for simplicity. The field equation (5.25c) is satisfied if (5.25b) is satisfied. To demon-

strate this we differentiate (5.25b) xy 2 with respect to r to obtain

2YY'p +P'y2 = 2Y'Y"e-2
,\ - 2-\'e-2'\y f2

- 2Y'17 - 2Y17' - 21'1" - A2 ~~

On utilising p' = 0, 1" = ~Y' and 17' = ~2y' + ~Y' in the above equation we regain

(5.25c). Thus we consider only the equations (5.25a), (5.25b) and (5.26) in solving the

field equations. These are three equations in the four unknowns p(t), f-l(r, t), -\(r,t)

and Y(r, i). In our approach we specify p(i) and consequently obtain the other

quantities. On substituting (5.26) into (5.25b) we have

1 ( .. . 2 A
2

)p= - -2Y-Y +-Y2 2Y2

It is convenient to replace Y by

2
Y = Z3
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so that (5.27) becomes

.. 3 () p_ 2-
Z + -p t z = Z 3

4

in terms of the new dependent variable z, where P = ~A2 is constant .

To analyse (5.28) we perform the point t ransformation

z = J(t)y(x(t) , r)

(cf §4.2). Then (5.28) becomes

i?JYxx + (2j x +JX)Yx + (3 + ~p(t)J) = PJ- ty- t

Under the assumptions

l(x)x= 1

j' + ~p(t)J(t) = 0
4

equation (5.29) simplifies to

where

(5.28)

(5.29)

(5.31)

Equation (5.31) is an Emden-Fowler equat ion. We have seen other examples of the

Emden-Fowler equation in chapter 4 for uncharged matter. Here we have demon-

st rated that an Emden-Fowler equation governs the behaviour of the Einstein-Maxwell

system for charged matter. This latest appearance of the Emden-Fowler equation in

charged, spherically symmetric spacetimes further demonstrates the importance of

this equation in general relativity.
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6 Conclusion

The research conducted in this thesis investigated the aspects of spherically symmet­

ric cosmological models , in particular the role of the Emden-Fowler equation. We

demonstrated that the solution of the field equations reduced to the Emden-Fowler

equ ation for different classes of shearing line elements with spherical symmet ry. Our

aim was to specify completely the behaviour of the gravit ational field by solving

the Emden-Fowler equation. Our analysis was initially applicable to a perfect fluid

energy-momentum tensor for uncharged matter. Later we considered the Einstein­

Maxwell equations for charged matter and showed that the Emden-Fowler equation

plays a role in describing t he behaviour of the gravit at ional field. We now highlight

the main points and conclusions arrived at in this thesis .

After reviewing the differential geometry applicable to general relativity we ob­

tained the Einstein field equations from the spherically symmetric line element for a

perfect fluid source for uncharged matter in chapter 1. In chapter 2 we comprehen­

sively analysed the Emden-Fowler equation via the geometric approach of the Lie

analysis of differential equations. Solutions to the Emden-Fowler equation in partic­

ular cases were generated for application to the system of spherically symmetric field

equations in later chapters . We demonstrated that the Emden-Fowler equation can

be reduced via a symmetry transformation to quadratures under certain conditions.

On evaluat ing this quadrature for the particular cases we generated a solution to the
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Emden-Fowler equation by transforming back to the original variables.

The different physical situations within the spherically symmetric spacetimes, in

which the Emden-Fowler equation arose as the principal equation, were then studied.

The first situation concerned the assumption of vanishing acceleration. Solutions to

the field equations, using the solution to the Emden-Fowler equation, were recovered

under the additional condition of vanishing pressure. Our solution was related to

the model of Herlt (1996). In the second situation we discussed the appearance of

the Emden-Fowler equation in shear-free spherically symmetric spacetimes and high­

lighted the historical development of the equation for this case. The third physical

situation involves the assumption of a constant gravitational potential and a stiff

fluid equation of state. We demonstrated that the Emden-Fowler equation arises in

this class of spherically symmetric models. An exact solution to the field equations

was presented which extends the treatment of Govender (1996). The fourth situation

involved the class of cosmological models presented by Maharaj et at (1996). We ap­

plied an ad hoc technique of integration to generate solutions to the Emden-Fowler

equation and regained the Maharaj et al results. Our general approach enabled us

to establish the uniqueness of this class of models.

We derived the Einstein-Maxwell system of field equations which governs the

behaviour of a spherically symmetric model for a charged perfect fluid. The conser­

vation equations follow from the field equations. We discussed the role of the proper

charge density in the Einstein-Maxwell system and obtained a condition on the elec­

tromagnetic gauge potential. This condition enables us to characterise charged so­

lutions which have an un charged analogue when the gauge potential vanishes. We

generalised the solution of Maharaj et al (1993) to obtain its charged analogue. By

setting the charge contribution to zero we regained the Maharaj et al solution. We
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demonstrated the uniqueness of this class of cosmological models by solving the non­

linear Riccati eqaution. The famous Gutman-Bespal'ko (1967) solution was regained

from our general class.

We now briefly discuss possible areas for future investigation that arise as a result

of the findings in this thesis. The method of Lie point symmetries used to generate

solutions of the Emden-Fowler equation in chapter 3 could be extended to include

more general contact transformations (Mahomed and Leach 1991). We could apply

the general Lie analysis to the Einstein-Maxwell system of field equations by using

the Lie method for systems of partial differential equations to generate a similarity

variable. This method, based on the approach used by Govender (1996) to solve

the spherically symmetric field equations with neutral matter, reduces the system of

partial differential equations to a simpler system of ordinary differential equations

through the use of the similarity variable. We could also use a more general form

for the similarity generator than the one chosen by Govender (1996), to obtain a

wider class of solutions for both the uncharged and charged field equations. However

this is a formidable problem and is a research initiative in its own right. We also

notice that the Emden-Fowler equation appears to be generic in spherically sym­

metric spacetimes. We could investigate the precise relationship that exists between

the Emden-Fowler equation and the geometric property of spherical symmetry in

general. It is also necessary to consider the influence of the Emden-Fowler equation

on gravitating systems which are not spherically symmetric. This could be done

by analysing models which are not invariant under rotations eg the Bianchi models

(Ryan and Shepley 1975). This investigation would provide additional information

on the importance of the Emden-Fowler equation in general relativity. For the sys­

tem of Einstein-Maxwell field equations we obtained a solution which reduced to the
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solutions of Maharaj et al (1993) and Gutman-Besp al'ko (1967) in the uncharged

limit. We could investigate whether it is possible to generate a wider class of solu­

tions which have an appropriate uncharged limit and an equation of state other than

the stiff fluid equat ion of state. This class of solutions would generalise all the exact

solutions for spherically symmetric spacetimes in the uncharged limit. Also the role

of the Emden-Fowler equation in the Einstein-Maxwell system has to be analysed,

extending the simple example given in §5.4.

In conclusion it is hoped that this thesis has significantly highlighted the impor­

tance of studying spherically symmetric cosmological models, in particular the role

of the Emden-Fowler equation in these models.
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