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ABSTRACT

We wish to apply the newly developed multigrid method [14] to the solution of

ODEs resulting from the semi-discretization of time dependent PDEs by the

method of lines. In particular, we consider the general form of two important

PDE equations occuring in practice, viz. the nonlinear diffusion equation and

the telegraph equation. Furthermore, we briefly examine a practical area, viz.

atmospheric physics where we feel this method might be of significance. In

order to offer the method to a wider range of PC users we present a computer

program, called PDEMGS. The purpose of this program is to relieve the user

of much of the expensive and time consuming effort involved in the solution

of nonlinear PDEs. A wide variety of examples are given to demonstrate the

usefulness of the multigrid method and the versatility of PDEMGS.
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Chapter 1

Introduction

1.1 Numerical Solution of ODEs and PDEs

The numerical solution of ordinary differential equations (ODEs) is a very

wide and accomplished field of applied mathematics. In particular, the solu-

tion of the initial value problem (IVP) for the system of ODEs

dy
dt == f( t, y); y(O) == yo; (1.1 )

has received much attention in the literature with regard to formulation of

new methods and development of software [8, 21]. Stiff ODE systems1 of

lStiff ODE systems are formally defined in the next chapter, see page 9.
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the form (1.1) have been recognized as being particularly common in ap­

plications and at the same time presents a formidable numerical challenge.

However, in this modern computer era it is common knowledge that, with

the advent of parallel computers, such systems may be adequately handled

by means of newer types of explicit ODE methods (e.g. new Runge-Kutta

methods). Such an opinion, has been voiced for instance, at a recent con­

ference for computational ordinary differential equations [2]. On the other

hand, with the increasing popularity of personal computers (pes) and the

excessive hardware costs involved with parallelism there still seems to be

room for the development of special numerical methods capable of treating

the IVP (1.1) when the ODE system is large and stiff. One such recent

development is a method proposed by Kozakiewicz and Mika [14], called a

multigrid metho<P 3. Their method is designed to solve IVPs of the form (1.1)

with a reduced computational effort, in particular, when 1.1 represent a stiff

system of ODEs. Another possibility is the case when the time constants

2Incidentally, there is also a well established "multigrid method" which applies directly

to PDEs [13]. The present multigrid method should not be confused with this "multigrid

method" .

3 A formal definition of the multigrid method will be given in chapter 3, see page 41.
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in (1.1) do not differ from each other much but are very large. In this case

small time steps need to be used and if the time integration interval is long

this could result in excessive computing times.

In direct competition with ODEs, the numerical solution of partial differ­

ential equations (PDEs) has also prompted a great deal of interest in numer­

ical methods and software development over the years. Even in the present

day a common trend for solving nonlinear PDEs is to use the method of lines

(MOL) [2]. Basically, the MOL is a numerical technique for converting PDEs

into a system of ODEs via discretization in the space-like independent vari­

ables. With this technique some classes of PDEs lead directly to large stiff

systems of ODEs in the time-like independent variable. Recently, Mika and

Scribani [18] reported preliminary results of the multigrid method applied to

such systems of ODEs resulting from parabolic equations.

1.2 Object of Study

One purpose of this study is to check the feasibility of the multigrid method

for the solution of physically realistic PDE problems using the MOL described

above. For this purpose we consider the general form of two important
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PDE problems that commonly model physical processes, viz. the nonlinear

diffusion equation and the telegraph equation. Furthermore, we select a

problem from the field of atmospherical physics to illustrate the applicablity

of the method to problems arising in various fields of application.

Another goal of this study is to avail the method to a broader spectrum

of PC users interested in solving large systems of PDEs occuring in scientific

and engineering applications. In this regard, we provide a piece of computer

software, called PDEMGS, which will serve as an interface allowing the newly

developed multigrid method to be applied to PDEs. PDEMGS relieves the

user of much of the duplicative work that is commonly encountered when

discretizing PDEs by the MOL. Basically, PDEMGS requires the user to

simply define his PDE problem and supply a spatial mesh (uniform) which is

then used for the discretization. The software interface automatically forms

and evaluates an approximating ODE system to the PDE system which can

then be solved using the multigrid method.

This study is structured in the following way: Chapter 2 describes stiff

ODE systems and methods for solving stiff ODE systems. We concentrate

mainly on linear multistep methods and Runge-Kutta methods since these

methods are most commonly used in codes for stiff ODE systems. Chapter
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3 reVIews the main results of the multigrid method and includes an Im­

proved multigrid algorithm for implementation on a PC. We also propose an

improved multigrid algorithm for implementation on a PC. The solution of

stiff ODEs resulting from PDEs is discussed in chapter 4. Chapter 5 con­

tains an extensive investigation into the applicability of the multigrid method

to PDEs. A variety of non-trivial numerical examples designed to indicate

the versatility of the method and the ease of use of the software interface

PDEMGS is presented here. Finally, Chapter 6 concludes this study with a

general discussion of the material presented in this thesis.
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Chapter 2

Stiff ODE Systems

2.1 Introduction

Stiff ordinary differential equations (ODEs) arise in many application ar­

eas, e.g. chemical kinetics, control theory, electronic circuit theory, bio­

mathematics, etc. [1, 19]. The intent of this chapter is to give a brief review

of stiff ODE systems.

We begin by considering the first order initial value problem in the fol­

lowing form

y f (t, y); to::; t ::; t final ;

6
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where

y(to) Yo ; (2.2)

t is the time variable,

N is the number of scalar first order ODEs,

.= d/dt denotes differentiation with respect to t,

f is an N -vector function of y and t,

to is the given initial value of time,

t final is the final value of the interval of integration,

Yo is the initial value N-vector.

As an example of a stiff ODE system of the form (2.1 )-(2.2) we consider

a system from chemical kinetics. Robertson's problem [12] is given by the

following three nonlinear equations describing the reaction rates of three

processes

·2
Y (2.3)
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yl(O) = 1 ;

y2(0) = 0 ;

y3(0) = O.

(2.4)

This reaction is in~eresting because the reaction coefficients (the constants

on the right hand side of (2.3)) are widely varying (the smallest being of

order 10-2 and the largest of order 101
). Moreover, it can be trivially shown

that the steady state solution for this problem is yl -t 0, y2 -t 0, y3 -t l.

By inspection of (2.3) we see that the dominant equation at equilibrium is

iJ2 = -104y2, whose solution y2 = eoe-104t
, represents a strongly damped

exponential regardless of the initial value. This situation is typical of stiff

ODE systems.

Before proceeding to define what is meant by a stiff ODE system and how

to solve such a system we would like to preview a few concepts for solving

the ODE system (2.1)-(2.2), in general. Firstly most numerical methods for

solving (2.1 )-(2.2) (and the ones discussed in section 2.3) require us to com-

pute a sequence of values Yo, yt, ... , Yn, which approximate the solution y(t)

at the discrete t values to, tt, ... , tn, This process is called discretization.

Since an approximation is being computed at each step errors are incurred.
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The two main types of errors are local error and global error [5]. In general,

we need to know if these errors have a large or small effect on the solution. To

this end we define the concept of absolute stability [7] using the test problem

iJ = AY, where A is a complex constant!:

Definition 2.1 : The region of absolute stability is defined as the set of

values of h and A for which a perturbation in a single value Yn will produce

a change in subsequent values which does not increase from step to step.

Now we are ready to define what is meant by stiffness and a stiff ODE

system in general.

2.2 Stiffness and Stiff ODE Systems

Although it is difficult to give a precise mathematical definition to the concept

of stiffness, it can be roughly said that a stiff ODE system is one having a

general solution containing both very fast and very slow components. For

example, consider the following prototypical stiff ODE given by

(2.5)

IThe constant Acorresponds either to *for a scalar equation or the eigenvalues (which

may be complex) of the Jacobian matrix for a system of equations
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with the initial condition

y(o) = 0.

The exact solution to this problem is

y(t) = e- t _ e-1OOOt ;

(2.6)

(2.7)

from which it is seen that the solution consists of a rapidly varying component

e-1OOOt and a slowly varying one e-t • In general, the rapidly varying solution

components are referred to as the transient solution components or stiff so­

lution components and the slowly varying solution components are referred

to as the non-transient solution components or smooth solution components.

It is clear from (2.7) that the transient component e-lOOOt will almost damp

out at the end of a very small time interval (0,0.01) (see Figure 2.1). Usually

the time interval for which this happens is called the transient interval.

If we use the fourth order Runge-Kutta method to solve (2.5) then we

would have to use a small time-step in the transient interval in order to

represent the rapidly decaying transient components accurately. In fact, for

absolute stability we require Ah E (-2.78,0), (see Lambert [15]), and since

A = -1000 this implies that h < 0.00278. Beyond the transient interval

the value of the solution is essentially the slow component, and one might

10



expect to take a larger time-step. However, this is not the case, since the

the presence of the transient component (although fully decayed) forces the

use of excessively small time-steps. Thus the small time-step must be used

throughout the interval, and if t final is large this could be extremely costly.

Had it been possible to change the initial value problem (2.5)-(2.6) for t >

0.01 so that the solution did not contain the transient, a step-size up to h =

2.78 would have been possible, although a smaller value would be required

for accurate results. This leads to one definition of stiffness, viz. stiffness

occurs when the step-size is restricted by numerical stability rather than by

accuracy. Consider the general linear system with constant coefficients

iJ(t) = Ay(t) +w(t) ; (2.8)

where A is an N x N matrix whose eigenvalues Aj, j = 1,2, ... , N are assumed

to be distinct, and w(t) is a given vector function.

A more formal definition of stiffness given by Lambert [15] is that the

system (2.8) is said to be stiff if :

~(Aj) < Oforj=1,2, ... ,N;

The number S is called the stiffness ratio.

11
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Figure 2.1: Graph of y(t) = e-t - e-10OOt

Generalizing this definition we say that a nonlinear system (2.1 )-(2.2) is stiff

on the interval 0 ~ t ~ tjinal if th~ eigenvalues .A(t) of the Jacobian matrix

satisfy (2.9) and (2.10) for all 0 ~ t ~ tjinal.

The definition (2.9)-(2.10) is perhaps too restrictive in requiring that all

the eigenvalues should have negative real parts.· In fact, stiffness in ODE

systems really occurs because different terms in the solution vector behave

on different scales, so that an ODE system is stiff if the Jacobian matrix has

at least one eigenvalue whose real part is negative and large in magnitude,

in comparison with the others. Since the independent variable is usually t,
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an ODE system is stiff if its solution is slowly varying with respect to the

most rapidly decaying component. This is essentially the definition given by

Shampine and Gear [20].

To illustrate this point, we note that equation (2.5) has one eigenvalue

aiJ = -1000. By equation (2.7) the solution beyond the transient intervalay
is essentially e- t • It is indeed slowly varying with respect to e-1OOOt

• By

contrast, if we replace the forcing function by, say, sin(100t), the solution

no longer varies slowly with respect to the transient, and the problem is not

stiff according to the preceeding definition. The previous point is closely

associated with a common misunderstanding of stiffness. Problems which

have undamped high frequency oscillations in the solution, either due to

forcing functions or to eigenvalues with large imaginary parts are generally

not called stiff. One reason being that highly oscillatory problems require

numerical methods which differ radically from those of stiff problems and as

such deserve a special treatment.

In practice, it is usually difficult to determine if the system (2.8) is stiff

or not. In fact, even a knowledge of the eigenvalues of the Jacobian matrix is

not sufficient justification to ascertain if the system (2.8) is stiff or not. For

13



(2.11 )

example, consider (2.8) with w(t) = 0 and the matrix A(t) defined by [6]

(

-1 - 9 cos2 6t +6 sin 12t 12 cos2 6t + ~ sin 12t )
A(t) =

-12 sin2 6t +¥sin 12t -1 - 9 sin2 6t - 6 sin 12t

The matrix A(t) has constant eigenvalues -1 and -10, but the solution to the

system (2.8) is

(

COS 6t +2 sin 6t ) ( sin 6t - 2 cos 6t )
- C 2t +C e-13t

Y - le 2

2 cos 6t - sin 6t 2 sin 6t +cos 6t
(2.12)

where Cl and C2 are arbitrary constants. Clearly the exponentials e-t and

e-10t are not present in the solution.

In general, stiffness should be suspected if a fixed step-size method gives

very poor results - or even diverges - for "reasonable" step-sizes, or if a solver

with variable step-size cannot meet the accuracy requirement or is excessively

slow (takes excessively small time-steps).

2.3 Solving Stiff ODE Systems

Some familiarity with numerical methods for solving stiff ODE systems is

needed for applying the newly developed MGM [14] to the system (2.1) and

for understanding the mechanics of available ODE software for solving such

systems. For this reason we give here a brief description of two important

14



ODE methods, viz. Linear multistep methods and Runge-Kutta methods,

which are most frequently used in ODE solvers. A more extensive survey can

be found in Gupta, Sacks-Davis, and Tischer [8] and Seward, Fairweather,

and Johnston [21].

2.3.1 Linear Multistep Methods

The class of linear multistep methods is very wide and varied and contains

some of the most useful methods for solving stiff and non-stiff systems of

ODEs of the form (2.1 )-(2.2). A linear multistep method for solving the

vector system of equations (2.1)-(2.2) can be defined by the formula

K l K2

Yn+l = 2: QiYn+l-i +h 2: f3iYn+l-i ;
i=l i=O

(2.13)

where Yj = f(tj,Yj) and h is a constant step-size in t. The coefficients Qi and

f3i and the non-negative integer constants K l and K 2 are fixed for a given

method. The number K =max(Kt, K 2 ) is called the step-number, i.e. the

number of previous values, and (2.13) is referred to as a K-step method. In

general, the most significant distinction among linear multistep formulas is

between explicit and implicit methods. A method given by (2.13) is explicit

if f30 = 0 (Yn+l is absent) and is implicit otherwise. Equation (2.13) can also

15



be written in a form which uses varying step-sizes hj+1 = t j+1 - tj, i.e.

K 1 K 2

Yn+l = L:: a niYn+l-i +hn+1 L:: f3ni'iJn+l-i ;
i=l i=O

where the a and f3 coefficients now depend on the changing step-size.

(2.14)

The simplest examples of linear multistep methods are the Euler (forward

Euler) method

Yn+l = Yn +hYn ;

and the backward Euler method

Yn+l = Yn + hYn+l.

(2.15)

(2.16)

These are one-step methods (K = 1) but are nevertheless included in the

class of linear multistep methods as special cases, for convenience.

The class of methods most commonly used for stiff problems is the Back-

ward Differentiation Formulas (BDFs). These methods follow from (2.13)

(or (2.14)) by setting K 2 = 0 and K 1 = q. Thus the BDF of order q is given

by either
q

Yn+l = E aiYn+l-i + hf30Yn+l ;
i=l

(2.17)

or the variable-step analogue. The case q = 1 is the backward Euler method.

On the other hand, the most commonly used non-stiff methods are the

Adams methods. These methods are characterized by having only one term,

16



Yn, in the first sum in (2.13) or (2.14). Thus, the explicit Adams method of

order q is given by either

q-l

Yn+l = Yn +h I: f3dJn+l-i ;
i=l

(2.18)

or the variable-step analogue of this formula, and the implicit Adams method

of order q is given by either

q-l

Yn+l = Yn + h L f3dJn+l-i ;
i=O

(2.19)

or its variable-step analogue. The familiar Trapezoidal Rule is obtained by

setting q = 2 in (2.19), i.e.

Yn+l = Yn + (h/2)(Yn+l +Yn) ; (2.20)

The term order is well defined for linear multistep methods. For (2.13),

it is the largest integer q for which

K 1 K2

y(tn+1) - I: aiy(tn+l-i) - h I: f3iy(tn+l-i) = O(hq+1
) ;

i=l i=O
(2.21 )

as h ~ 0, when y(t) is an arbitrary smooth function. It can be equivalently

defined as the largest integer q for which the local error Yn+l - y(tn+d =

O(hq+1
) when (2.13) is used to take one step with all past values exact

(Yn+l-i = y(tn+1-d for i ~ 1).

17



For an implicit method, an algebraic system of the form

Yn+l == h{3of(tn+b Yn+d +l:: (QiYn+l-i +h{3iYn+l-i) == h{3of(tn+l' Yn+l) +an ;
i~l

(2.22)

where an is a known quantity, has to be solved for Yn+l at each step. The

choice of methods for doing this may have a significant effect on the efficiency

of the resulting algorithm or solver. As f is in general nonlinear, an iterative

procedure of some type is ususlly used. The simplest such procedure is

functional (or fixed point) iteration,

y~7-tl) == h{3of(tn+1 , y~7-i) +an; (m == 0, 1, ... ) ; (2.23)

where Y~~l is taken as an initial approximation to Yn+l obtained by an explicit

method, e.g. Euler's method, and m denotes the iteration number. This

works reasonably well for nonstiff problems, but for stiff problems it converges

only when h is smaller than or comparable to the smallest time constant in the

system, and such a restriction on h is unacceptable because of the excessive

computer run time.

For stiff problems, the choices most often made for solving (2.22) are

based on Newton's iteration method. For the problem in the form

(2.24)

18



Newton iteration takes the form

Y
(m+1) _ y(m) _ [F (y(m) )]-1 F(y(m) )
n+1 - n+1 y n+1 n+1

or

[ h f ( m) )]( (m+1) (m) ) - F( (m»)I - (30 y Yn+1, Yn+1 Yn+1 - Yn+1 - - Yn+1·

(2.25)

(2.26)

Newton's method is in general a powerful method for solving nonlinear

equations but has some considerable costs associated with it. For example,

the J acobian matrix fy needs to be computed and stored at each step and also

the solution of the (N x N) system for the correction ~Y = y(m+1) - y(m) is

required. Both costs can be reduced significantly by modifying the iteration

and paying close attention to the matrix structure. Firstly, since fy usually

varies slowly, little is lost in the rate of convergence by using a constant

Jacobian matrix for more than one iteration in a single step. By the same

reasoning, fy can be kept fixed for several steps, provided a test can be made

to decide when to recompute it. Newton's iteration procedure modified in

this way is referred to as modified Newton iteration. Secondly, for a given

problem, fy may have a sparse matrix structure that could be exploited in

order to reduce the costs of computing and storing it. Once a value of the
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matrix

Fy = P = I - h{3ofy ; (2.27)

has been computed (or approximated), suitable preprocessing of it (such as

LU decomposition) can be done, depending on the structure assumed, so

that the subsequent solutions of linear systems

P~y = -F;

are as inexpensive as possible.

2.3.2 Runge-Kutta Methods

(2.28)

The class of Runge-Kutta methods is also wide and varied. However, we

give here only a brief summary of these methods since they are used less

frequently in current codes for stiff ODEs.

Runge-Kutta methods are one-step methods, but involve intermediate

stages within a step. They can be either explicit or implicit. The general

r-stage explicit Runge-Kutta formula (RKF) for solving (2.1) can be written

as

(2.29)

20



i-I

ki - hf(tn +Ci h,Yn +~ aijkj ); (i = 2,3, ... , r) ;
j=1

r

Yn+1 = Yn +~ biki ;
i=1

(2.30)

(2.31 )

i-I
where the aij, bi and Ci are constants satisfying Ci = L: aij. For example,

j=1

setting r = 4 ; C2 = C3 = !' C4 = 1 ; bl = b4 = !' b2 = b3 = ~ ; a2I = a32 =

!' a43 = 1 ; and all other constants equal to zero in (2.29)- (2.31) yields the

explicit fourth order Runge-Kutta formula (RK4)

kl - hf(tn,Yn) ; (2.32)

h 1
(2.33)k2 hf(tn +2' Yn +2kl ) ;

h 1
(2.34)k3 hf(tn +2' Yn +2k2 ) ;

k4 hf(tn +h, Yn + k3) ; (2.35)

1
(2.36)Yn+1 - Yn + 6(kl +2k2 +2k3+ k4 ).

By means of rather lengthy calculations [7] one can determine the coef-

ficient values in (2.29)-(2.31) which yield higher order formulas (q :::; r). On

the other hand, it is often convenient to embed a method of order q within

a method of order q - 1, thus making dynamic error control possible, based

on the difference between the two Yn+1 values.

For stiff problems, explicit RKF are not suitable, which means implicit
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methods have to be used. The general r-stage implicit RKF can be written

as

Yn+l

r

hf(tn +Ci h, Yn +I: aijkj ) ; (i = 1,2, ... , r) ;
j=l

r

Yn +I: biki.
i=l

(2.37)

(2.38)

Upon inspection of (2.37) we see that, since there are N ODEs in the system

(2.1), we have to solve an algebraic system in rN unknowns. Many special

cases have been considered to reduce this algebraic problem. We summarize

a few cases below [9]:

(i) Semi-implicit RKF - in this case the matrix (aij) is lower triangular and

so each ki involves solving a system of N equations.

(ii) Diagonally implicit RKF - if Newton's method is used to solve (2.37) then

a matrix of the form I - haiify appears. A further reduction in algebraic

effort can be accomplished by taking all the aii equal- in this case the method

is called diagonally implicit.

(iii) Singly implicit RKF - these formulas are characterized by the matrix (aij)

having a single r-fold eigenvalue, thus permitting a linear transformation to

an algebraic system that resembles that of the diagonally implicit case.

(iv) Rosenbrock methods (ROW) - here terms involving the Jacobian matrix
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are added to (2.37), i.e.

r i

ki = hfi(tn +Ci h,Yn +L aijkj ) +hJ L dijki ;
j=l j=l

(2.39)

were J = af represents the Jacobian matrix or some approximation toay
it. The coefficients dij are chosen to optimize order and stability properties

and setting all the dii equal reduces the required matrix computation to a

rmnlmum.

(v)Mono-implicit RKF - in this case the Y argument of f in (2.30) contains

a term involving a single unknown Yn+l - hence the name mono-implicit.

2.4 Stability of Stiff ODE Systems

When solving the system (2.8) numerically the step-size h must be chosen

according to two criteria : firstly the transient components must be accu-

rately represented and, secondly, hAj must be within the region of absolute

stability for all j such that ~(Aj) < o. This latter condition may pose some

difficulties when solving stiff systems. In view of this we review some results

that call for a method to possess some 'adequate' region of absolute stability

[15]
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Definition 2.2 : A numerical method is said to be A-stable if its region of

absolute stability contains the entire left half of the complex plane

C = {Ah : ?R(Ah) < O}

(see Figure 2.2 (a)).

Ideally one would like to use an A-stable method to solve stiff ODEs

since no matter how large m~x 1?R(Aj)l, is, no stability restriction on h can
J

result. Unfortunately A-stability is a very stringent requirement to ask of a

numerical method as the following thereom shows [15]

Theorem 2.1 : (i) An explicit linear multistep method cannot be A-stable.

(ii) The order of an A-stable implicit linear multistep method cannot exceed

two.

(iii) The most accurate A-stable linear multistep method is the trapezoidal

rule.

In view of this less demanding stability definitions have been postulated.

We list three such definitions here [15].

Definition 2.3 : A numerical method is said to be A(a)-stable if its region

of absolute stability contains the infinite wedge

Wa = {Ah: -a < 1r - arg(Ah) < a} for a E (O,1r/2);
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(see Figure 2.2 (c)) and it is said to be A(O)-stable if it is A(a)-stable for

some sufficiently small a E (0, 1r/2).

Definition 2.4 : A numerical method is said to be stiffly-stable if it is

absolutely stable in the region {Ah : ~(Ah) ~ -a} and is accurate in the

region { Ah : -a < ~(Ah) < b; -c < ~(Ah) ~ c } where a, b, c are positive

constants (see Figure 2.2 (b)).

Definition 2.5 : A numerical method is said to be Ao-stable if its region of

absolute stability contains the whole negative real axis (see Figure 2.2 (d)).

While A-stability is a very stringent stability requirement, an even stronger

stability condition can be defined for one-step methods. Consider the trape-

zoidal rule applied to the scalar test equation iJ = AY, A a complex constant

with ~(A) < o. Then

Yn+l

Yn
1 + >'h
----.,;}==-h ~ -1 as ~(Ah) ~ -00.
1- 2"

Thus any decaying components of the solution will do so slowly, in an oscil-

latory manner, for a large step-size. In contrast, the backward Euler method

has

1
rl(Ah) = 1 _ Ah ~ 0 as ~(Ah) ~ -00;
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so decaying components will be rapidly damped out in a monotonic way. The

above demonstration leads to the following definition [15]:

Definition 2.6 : An A-stable one-step numerical method is said to be L-

stable, strongly A-stable, or stiffiy A-stable if 1'1 (Ah) --+ 0 as ~(Ah) --+ -00,

when applied to the scalar test equation iJ = Ay, A being a complex constant

with ~(A) < o.

From the above it follows that

L-stability =} A-stability =} Stiff-stability =} A(a)-stability =} Ao-stability.

2.5 Numerical Example

Consider the system [15]

iJ = Ay(t), y(O) = [1,0, _1]T, 0 ~ t ~ 1;

where
-21 19 -20

A = 19 -21 20

40 -40 -40

The exact solution of the above system is

(2.40)
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c

(a)

(c)

(b)

(d)

Figure 2.2: If the region of absolute stability includes the shaded region then

the method is (a) A-stable, (b) stiffly-stable, (c) A(0:)-stable, (d) Aa-stable.
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~e-2t - ~e-40t(cOS 40t +sin 40t) .
22'

_e-40t ( cos 40t - sin 40t).

(2.42)

(2.43)

We solved this problem on a PC/AT using double precision arithmetic

and the following solvers

(i) TRAP - stiff ODE solver which implements the trapezoidal rule (2.20)

using a generalized Newton's iteration procedure. A starting approximation

for the iteration was obtained using the explicit Euler method (2.15). The

number of iterations per time-step was set equal to 10 (m = 10 in (2.25)). An

exact Jacobian matrix was supplied in (2.27) and the resulting linear system

(2.28) was solved using LV decomposition.

(ii) RK4 - non-stiff solver which implements the explicit fourth order Runge-

Kutta formulas (2.32)-(2.36).

The numerical results giving the solution components yl, y2 , y3, at t =

Is, are given in Table 2.1. In the first instance, using h=O.l we see that

RK4 failed to solve this problem. TRAP, on the other hand, produced a

solution, although not very accurate, for this case. Since the trapezoidal rule

is A-stable this suggests that the choice of h = 0.1 causes hA to lie outside
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the region of absolute stablity for RK4, and this is indeed the case. The

eigenvalues A of the Jacobian matrix A for this problem are -2, -40 +40i,

-40 - 40i. Recall that the region of absolute stability for RK4 is given by

the open interval (-2.78,0) in the complex-plane. Hence for hA to lie within

this interval for all three values of A, h must satisfy h < 0.0695. In the

second case, using h = 0.01, created no problems and both solvers produced

reasonably accurate solutions. It may be worthwhile to note that in this case

RK4 performs better than TRAP. This should be expected since TRAP is

2nd-order and RK4 is 4-th order.

Finally, we note that for this problem the stiffness ratio S (defined by

(2.10)) equals 20 so that this represents a mildly stiff problem. Stiffness

ratios of up to 50 000 are not uncommon in practice [4].
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EXACT 6.7667E-2 6.7667E-2 0.0000

SOLUTION

RK4 0.1 -2.6717E13 -2.6717E1 1.9733E14

0.01 6.7667E-2 6.7667E-2 0.0000

TRAP 0.1 6.7306E-2 6.7279E-2 0.0000

0.01 6.7663E-2 6.7663E-2 0.0000

I SOLVER ISTEP-SIZE I

Table 2.1: Numerical Results for Example 2.5.
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Chapter 3

Multigrid Method for Stiff

ODE Systems

3.1 Introduction

In many practical applications large systems of ODEs need to be solved.

These systems are generally recognized as being stiff since they contain com­

ponents with highly different time constants. We have seen in the previous

chapter that the conventional way of handling such systems is to use a stiff

ODE solver based on e.g. BDF or Runge-Kutta methods.

The common trend nowadays for handling such ODE systems is to use
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methods which are suitable for parallel computation on large main frame

computers (e.g. splitting of ODE system into several sub-systems and inte­

grating each sub-system separately over a certain time interval). Such a view

has emerged, for example, from the recent conferences on Computational Or­

dinary Differential Equations [1, 2].

However, due to an increasing popularity for personal computers and the

excessive costs of large main frame computers, it still seems highly advanta­

geous to develop special numerical techniques that are capable of exploiting

certain features of the system being solved without resorting to large main

frame computers. For example, when simulating the time dependent be­

haviour of nuclear reactors, an extremely large system of ODEs results. To

alleviate the situation the so called quasistatic method was developed and

used successfully in nuclear reactor calculations in the early sixties. Origi­

nally the method was based on purely heuristic grounds until its mathemat­

ical foundations were given by Mika [17].

Recently, Kozakiewicz and Mika [14] proposed a multigrid method, for

the solution of ODEs, based on the ideas used in developing the quasistatic

method. In this chapter we review some of the results of the multigrid

method and in the process propose an improved algorithm for implementing
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the method on a PC.

3.2 Review of the Multigrid Method

Consider the singularly perturbed initial value system of ODEs in the fol-

lowing form

f(x, t); t ~ 0;
dx

E dt

x(O) - q;

(3.1)

(3.2)

where x(t), q and fare n dimensional vectors and E is a small positive

parameter. Firstly, we note that when integrating (3.1)-(3.2) the time step

would be severely restricted by numerical stability, due to the presence of the

small constant E. SO when we need to integrate (3.1) over a long time interval,

being forced to choose very small time steps means that the integration

process is excessively slow. However physical systems modelled by equations

of the form (3.1) might have the property that the shape of the solution vector

x(t) changes rapidly with respect to t only in a very short time interval,

called the transient interval. Past the transient interval the solution x(t)

changes very slowly with respect to t, i.e. the solution vector x(t) assumes

33



a relatively smooth shape for the rest of the time interval. In such cases the

solution vector x(t) may be approximately expressed as the product

x(t) = cp(t)v(t); (3.3)

where cp(t) is a scalar function which changes very rapidly with respect to t

and v(t) is a vector function which can be made to vary slowly with respect

to t by imposing certain conditions on it. We will call the function cp(t) the

amplitude function and the vector v(t) the shape vector of the solution vector

x(t).

In the next section we will consider a more general case in which the

solution vector x(t) may be separated into several sub-vectors so that (3.3)

turns into a sum of products of several amplitude functions and shape vectors.

We will discuss the conditions that have to be imposed on the shape vectors

v and derive the necessary equations for the amplitude functions and shape

vectors.

3.2.1 Amplitude and Shape Equations

When solving certain systems of ODEs the properties of the system may

suggest a partition of the solution vector into several sub-vectors. We will
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be interested in three particular cases :

(i) When, solving stiff ODE systems, it may be possible to combine sepa-

rately the fast and slow components into one or more groups (see example

in section 2.1)

(ii) When, reducing a second order system of ODEs into a first order system

of ODEs, the solution vector can be expressed in a partitioned form (see

section 5.6).

(iii) The solution vector of a discretized version of a system of n time de-

pendent PDEs can be represented in a partitioned form consisting of n sub-

vectors (see section 5.2).

When it is possible to partition the solution vector into several sub-

vectors, we write the IVP for a system of ODEs in the following form:

dx
dt = f(x, t), x(O) = q, 0 < t ~ to, to > 0;

we shall introduce the following notation:
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so that x is a function from [0, to] into Rn, where n

f : D x [0, to] ~ Rn where

D = {a E Rn : Ila - qll ~ d};

m

L: nk· Similarly
k=l

(3.6)

with 11.11 any of the equivalent norms in Rn,d > °and q is the initial vector

with the same structure as that of x given in (3.5).

We have the following well known existence theorem which we will state

without proof.

Theorem 3.1. [14] The IVP (3.4) has a unique solution on the interval

[0, tll where tl = min{to, ~} if

(i) f is continous with respect to all arguments and Lipschitz continous with

respect to x on D x [0, to];

(ii) sup{llf(x, t)ll; x E D; t E [0, to]} = M < 00.

In a manner similar to (3.3) we express each of the sub-vectors Xk in the

form

(3.7)

where 'Pk are the amplitude functions and Vk = (vl, v~, ... ,vZk
) are the shape

vectors. We now require that the shape vectors Vk depend on time as weakly

as possible. To express that, we will make the basic assumption that the
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projections of Vk onto a one-dimensional sub-space of Rn" are independent

of t:

Let Pk : Rn" -+ R be a projection operator defined by the usual scalar

product as

(3.8)

then we require that

(3.9)

From equation (3.7) we get

(3.10)

The choice of the projection operator Pk usually depends on the properties of

the original system (3.4) being solved and in most cases the simple averaging

operator might be adequate.

Theorem 3.2. [14] The form (3.7) is unique on an interval [0, t2], where

o< t2 ~ tt, if

(3.11)

Proof
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By (3.11), Xk is not a zero vector. Suppose that

Applying the projection operator Pk to this equation and using equation (3.9)

gIves

Then from (3.12)

(3.13)

(3.14)

Since <pk(t) and Vk(t) are both nonzero, then (3.13) and (3.14) prove unique-

ness.D

Consider the system (3.4) in the extended form

Substituting Xk in the form given by equation (3.7) into this equation yields

Now applying the projection operators Pk (k = 1,2, ... , m) to both sides of

equation (3.16) and noting that
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yields the following system of scalar equations for the amplitude functions

(3.17)

where

As a natural initial condition for (3.17) we take

(3.18)

where ak = Pkqk. To satisfy the uniqueness condition (3.11) for some t2 > 0

we have to assume that

c,ok(O) = ak I: 0; k = 1,2, ... ,m. (3.19)

If the condition (3.11) holds then we may eliminate dc,ok from (3.16) to obtain
dt

a system of equations for the shape vectors

(3.20)

with initial conditions

(3.21 )
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In a manner similar to (3.4), we may write the system of equations (3.17)-

(3.18) and (3.20)-(3.21) in vector form as

dz
dt = h(z, t); z(O) = r;

where

(3.22)

k=1,2, ... ,m

m
so that z : [0, t 2] -+ Rn+m where n = 2: nk.

k=l

Similarly h : D1 x [0, t2 ] -+ Rn+m where

(3.23)

where d1 > 0, and 11.11 is a norm in Rn+m related to the norm chosen in Rn.

Finally r is the initial vector with the same structure as that of z, and is

given by

(3.24)

Theorem 3.3. [14] The system of ODEs (3.22) has a unique solution on an

interval [0, t3 ] where °< t3 ~ t2 with t2 defined by (3.11).

Proof
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We will show that the system (3.22) satisfies the conditions (i) and (ii) of

theorem 3.1. The first condition follows immediately since the projection

operators Pk , applied to the original system of ODEs (3.4), do not change

the smoothness properties of the functions contained in the system.

On the other hand, dividing by '{Jk in (3.20) may change the constant M

defined in condition (ii), thereby resulting in a new constant M1 defined by

M1 = sup{llh(z, t)ll; z E D1 ; t E [0, t2]} < 00

Thus, on the basis of condition (i) and (ii), the system of ODEs (3.22) will

have a unique solution on an interval [0, t3], where 0 < t3 :::; t2 and t2 is

defined by (3.11). 0

Finally we state the following theorem without proof:

Theorem 3.4. [14] The solutions of (3.4) and (3.22) are equivalent to each

other on an interval [0, t3 ], with t3 defined as in the preceeding theorem

The above procedure for reducing the original system of ODEs (3.4) into

equivalent systems for the amplitude equations (3.17)-(3.18) and the shape

vectors (3.20)-(3.21), might be called a muItigrid method [14]. The advantage

of this multigrid method is that one can use different step-sizes for solving the

amplitude and shape equations. Obviously the multigrid method is applica-
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ble only if the system (3.20)-(3.21) is much easier to solve than the original

system (3.4), otherwise it would be senseless to solve m additional equations

(3.17).

A numerical procedure for solving the amplitude and shape equations is

given in the next section.

3.3 Multigrid Numerical Procedure

In the previous section it was shown that over a certain time interval the

original system of ODEs (3.15) is equivalent to the system for the amplitude

functions

(3.25)

and the system for the shape vectors

(3.26)

where the functions 'Pk and the vectors Vk are related to the solution vector

Xk by the relationship (3.7).

Equation (3.25) is a system of scalar equations whose solutions 'Pk are

rapidly changing functions of time. One aim of using the multigrid method
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to solve (3.15) is (hopefully) to concentrate all the "nasty" features of the

system into the amplitude equations, when these nasty features exist. IT,

for example, (3.25) is stiff then it may be necessary to use a stiff solver to

integrate (3.25). On the other hand, (3.26) is a system of vector equations

whose solution components Vk change very slowly with respect to time. To

solve (3.26) it is admissible to use a simple explicit method with relatively

large step-size.

The stiff and non-stiff solvers are combined into a single multigrid solver,

(called MGS [14]), for solving the original system of ODEs in the form (3.15).

An algorithm for implementing the multigrid method on a PC was given

by Kozakiewicz and Mika [14]. Here we propose an improved! version of this

algorithm.

3.3.1 Improved Multigrid Algorithm

(i) Begin the first cycle at t = 0, (I = 0), (see Figure 3.1) by solving the

system for the amplitude equation (3.25) over a fixed number L of steps of

size hi, using the initial values 'PZ and vf. The functions 'k in the amplitude

IThe algorithm has been improved by introducing inner iterations in each cycle of the

multigrid algorithm and using improved starting values in each stage in a cycle.
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equations are calculated with Vk fixed at their initial values.

(ii) Solve the system for the shape vectors (3.26) over a single step having

L
size H = I: hi using as initial values v~ and a linear approximation c.pJ/ =

i=l

(c.p~ +c.pl)/2, which is simply the average values of c.pk at the end points t = 0

and t = H (see figure 3.1). L is prescribed by the user.

(iii) Repeat the calculations starting at t = 0, (I = 1) using the average

values vkv = (v~+vl) /2 and the value c.p~ as starting values for the first stage

and the values (c.pkv = c.pl + c.p~) /2 and v~ as starting values for the second

stage.

(iv) At the end of the second stage we have improved values c.p~ and v~ which

serve as initial values for the next cycle.

3.4 Structure and Use of MGS

The structure of MGS consists of a main program, a driver routine for setting

up and solving the amplitude and shape equations and a routine which defines

the original ODE system. The typical overall structure of MGS is illustrated

in Figure 3.2. We give a brief description of each of the principal routines

used in MGS:
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I 1=0 I

~hi~
I I
I I

L
H = L: hi

i=1

0+ 1
av_~

'Pk - 2

1=1

1+ 2
lnav - ~rk - 2

Figure 3.1: Inner iteration for a multigrid cycle: I=iteration number.
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STIFF

AMPL

MAIN

MGS

INIT

DIFEQ

NON-STIFF

SHAPE

Figure 3.2: Structure of MGS: Oval shapes indicate user-defined routines.
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MAIN : User-defined main program that is responsible for setting pa-

rameters and allocating storage for variables used in MGS. The parameters

may include the initial time, number of amplitude equations, number of shape

equations, number of time-steps in amplitude equations for one step in shape

equations and the user-defined parameters of the stiff ODE solver (e.g. initial

time-step, error tolerance, etc.). The main program also serves to call the

driver routine MGS and sets up the initial conditions of the original system

of ODEs (3.4). Finally the main program calculates the computing time for

execution of MGS and provides for output times and printing of results.

MGS : Driver routine for solver. On the first call to the solver this routine

performs initialization tasks such as evaluation of the projection operators

and calling of INIT. After initialization is complete, MGS makes repeated

calls to the core integrator routine of the stiff ODE solver in order to advance

the time variable of the amplitude equations a single step hi at a time until

the user-defined L (number of time steps in amplitude equations for one step

in shape equations) is reached. Next, MGS makes one single call to the non-

stiff ODE solver in order to advance the time variable of the shape equations

L
by a single step H = L hi.

i=l

INIT : Routine containing initial conditions of the amplitude and shape equa-
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tions.

STIFF: Stiff ODE solver for integrating amplitude equations. Solver should

implement methods that have good stability properties (see section 2.3).

Non-stiff: Non-stiff ODE solver for integrating shape equations. A solver

based on a simple explicit method should suffice.

AMPL : Routine for evaluating the right-hand side of the amplitude equa-

tions.

SHAPE: Routine for evaluating the right-hand side of the shape equations.

DIFEQ : User-defined routine containing the function f of the original system

of ODEs represented in the form (3.15).

In order to use MGS, the user needs to supply two routines, viz. MAIN

and DIFEQ. The subsequent calculations of the right-hand sides and initial

conditions of (3.25) and (3.26) are done automatically by MGS.

3.5 Numerical Example

We consider the following system of 2n coupled linear ODEs for which the

extended form (3.15) is [14]

- (A + j)x{ +X{+l +0.1 (x~+l); x{(O) = 1;
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dx~

dt
j+l 0 1 ( j+l) .= X2 +. Xl , X~(O) = 1; (3.28)

j = 1,2, ... , n. We use here the convention that x~+l = x~ and X~+l = x~.

The above system (3.27)-(3.28) becomes stiff if A is large in magnitude. The

sub-vector Xl contains the fast components and the sub-vector X2 contains

the slow components of the solution vector. In our calculations we choose

A = 1000 and n = 30.

We solved this problem on a PCIAT (speed-10MHz) using double preci-

sion arithmetic and the following multigrid solvers:

(i) MGS1 : Same as MGS [14], except that in this case the classic fourth

order Runge-Kutta method (RK4) with fixed step-size is used to integrate

the amplitude equations and the shape equations are treated using the simple

second order Runge-Kutta method2 (RK2) with fixed step-size. The number

of time-steps for one step in shape vectors was set as L = 10, and a step-size

of H = 1 X 10-4 was used for the integration of the amplitude equations.

(iii) MGS2 : Same as (i), except that in this case we implement the improved

multigrid algorithm for solving the amplitude and shape equations, discussed

in section 3.3.1.

2 Refers to Heun's method [5]
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The numerical results of MGS1 and MGS2 are compared with Implicit

GS in Table 3.13 . The table gives the 1st and 10th solution component of the

solution sub-vectors Xl and X2 in (3.27)-(3.28),respectively, at t = 0.015s. It

is noted that, MGS2 is more accurate than MGS1 when compared with Im­

plicit GS. Although MGS2 is slower than MGS1 it is still considerably faster

than Implicit GS. The implementation of the improved multigrid algorithm

using the Implicit GS for treating the amplitude equations is presently under

consideration.

The above discussion shows that the multigrid method seems to be ad­

vantageous for the solution of large systems of ODEs because a large saving

in computer time may be achieved. One such area where this method may

be viable is the solution of large stiff systems of ODEs resulting from PDEs.

The solution of such systems is considered in the next chapter.

3 Appendix 1 contains complete results for this example.
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ERROR

SOLVER TOLERANCE COMPUTING

OR TIME (8) X
10 X

10
1 2

STEP-SIZE (xl03
) (xI0-1)

IMPLICIT GS € = 1 X 10-4 326 3373 3887

MGSl H = 1 X 10-4 17 3392 3890

MGS2 H = 1 X 10-4 35 3373 3882

Table 3.1: Numerical Results for Example 3.5.
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Chapter 4

Solution of Stiff ODE Systems

Resulting from PDEs

4.1 Introduction

In order to solve scientific and engineering problems on a personal computer

it is often convenient to use a readily available software package. In the field

of ordinary differential equations very reliable and robust software is available

for solving the initial value problem

dy
dt = f(t, y); y(to) = Yo;
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where Yo is a vector of initial values.

One such software package is the GEAR! solver (GS). This solver is capa­

ble of solving both stiff and non-stiff equations of the type (4.1) and has reli­

able and efficient algorithms for dynamically changing step-size and method

order to maintain stability and user specified accuracy. Other popular soft­

ware packages for solving (4.1) are too numerous to mention and can be

found in the book Stiff Computation [1].

The current state of the art for ODEs is in direct contrast to that for

the field of partial differential equations2 (PDEs) where, with the possible

exception of elliptic PDEs, there exists very limited packaged software that

is capable of efficiently solving very wide classes of nontrivial and difficult

problems. One reason for this is that due to the variety of PDE equations,

it is much more difficult to produce general purpose software packages for

PDEs. In view of this, it is not surprising that the common trend in most of

the current software packages for solving initial boundary value PDEs is to

IThis is the 1974 version of GEAR developed by A.C.Hindmarsh of Lawrence Livermore

Laboratory. The solver has been modified, so that the integration proceeds to the next

desired output time, by M.Borysiewicz of the Institute of Atomic Energy, Swierk, Poland.

2Here we consider only 2nd order PDEs
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use a numerical technique that produces a system of ODEs of the form (4.1),

which may be subsequently solved by a state of the art ODE integrator.

This technique is called the method of lines or semi-discretization method

and will be discussed in the next section.

4.2 Method of Lines (MOL)

Basically the MOL can be described as follows:

If one has a time dependent PDE, then it can be transformed into a corre-

sponding system of ODEs by discretizing the space variable(s}.

To demonstrate the method, we consider the one-dimensional heat equa-

tion

8u 82u
at = 8x2; 0 ~ x ~ X; t > 0;

where u(x, t) satisfies the initial condition

u(x,O) = g(x); 0 ~ x ~ X;

and has known boundary values3 at x = 0 and X for t > O.

(4.2)

(4.3)

3The boundary conditions may be functions of time, but here we consider only time

independent boundary conditions.
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If the spatial derivative in equation (4.2) is replaced at (x, t) by the central

difference approximation

1
h2 {u(x - h, t) - 2u(x, t) +u(x +h, t)} ; (4.4)

and x is considered as a constant, equation (4.2) can be written as the ODE

du(t) 1 2--a:t= h2{u(x-h,t)-2u(x,t)+u(x+h,t)}+O(h). (4.5)

The MOL consists of subdividing the interval 0 ~ x ~ X into N + 1 equal

sub-intervals by the grid lines Xi = ih, i = 0,1, ... , N +1, where (N+l)h = X,

(see Figure 4.1), and applying (4.5) at each mesh point Xi = ih, i = 1,2, ... , N,

along time level t. It then follows that the values of Vi(t) approximating Ui(t)

will be the exact solution values of the system of NODEs

dVI(t)
dt

dV2(t)
dt

1
h2(vQ - 2VI +V2);

1
- h2(VI - 2V2 +V3);

where VQ and VN+I are known boundary values.
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The above system of ODEs can be written in a matrix form as

VI -2 1 VI Vo

V2 1 -2 1 V2 0

d 1 1
- - h2 + h2dt

VN-I 1 -2 1 VN-I 0

VN 1 -2 VN VN+I

I.e. as

dv(t) = Av(t) +b (4.6)
dt

where v(t) = [Vb V2, ••.VN]T, bis a column vector of zeros and known boundary

values, and A is a matrix of dimension N given by

-2 1

1 -2 1

1
(4.7)A= h2

1 -2 1

1 -2

The above description shows that the MOL consists of two stages, viz.

(i) serni-discretization, and

(ii) the solution of the resulting ODEs.

Several observations about this method are given below.
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t

~o ~1 U2 Ui UN+1

° h 2h ih (X,O)

Figure 4.1: Method of lines: semi-discretization process

1. The method is most directly applicable to a problem of the form

u(x,O) = gzven;

and u(x, t) specified at the boundary points. Here x stands for the space

variables, for example, (x, y) in a problem with two space variables, Ut = :

and t represents the time variable.

2. One must balance the errors: Truncatioin error is determined by two

independent sources:

(i) the discretization of the space variable O(h2 ) in equation (4.2)

(ii) the solution of the resulting system of ODEs.

Thus the error associated to solving the ODEs should be approximately equal

to that in discretizing the space variables.
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3. The problem can be nonlinear: Since the ODE solution techniques can be

applied equally well to nonlinear problems, it is not necessary for the right

hand side of (4.6) to be linear.

The method applies to an equation like

au a2u (au)2 .at = (u2+t) ax2+ ax - sln(u +tx).

4.The right hand side is banded: In this linear problem the matrix A in

equation (4.6) is tri-diagonal. Even if the system is nonlinear, there is a

special banded structure to the problem that can be exploited. In this case

it may be advantageous to use some sparse matrix techniques in order to

resolve storage difficulties. Some ODE software, for example LSODES [10],

has special provisions for "banded" right hand sides just to facilitate its use

with the MOL. However, one should be careful when using such codes, since

the costs involved in programming to exploit sparsity may be unacceptable.

5. Any discretization method can be used for the space variables: The appli-

cation of the MOL to the PDE problem (4.2) is characterized by the form

of the algebraic approximation of the spatial derivative. Generally, these

approximations can be classified as direct and indirect. The direct methods

involve direct replacement of the PDE spatial derivatives with algebraic ap-
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proximations, e.g. finite differences, while the indirect methods involve some

operations performed on the PDE residuals, e.g. the various methods based

on weighted residuals, such as Galerkin's, and collocation on finite elements.

The first approach leads to systems of explicit ODEs of the form:

dy
dt = !(y, t); (4.8)

while the second approach leads to systems of implicit ODEs of the form

dy
A dt = !(y, t), (4.9)

where A is a coupling matrix that may be a function of y. In this work we

used the method of finite differences because it is the simplest, and more-

over, because the ODE integrator, viz. GS, which we are using, is directly

applicable to the ODE system (4.8).

6. Dimensionality: If the problem under consideration is one-dimensional

then, in many cases, 50 lines can be used without excessive computing time,

provided an efficient ODE solver is available. On the other hand, as the

dimensionality of the problem increases, the number of ODEs increases ex-

ponentially. For example, if M PDEs are discretized in aD-dimensional

space with N grid points in each direction, then the number of ODEs is

approximately M N D
, which can be quite large (consider M = 2, D = 3,
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N = 30, then the number of ODEs approximately equals 54 ODD!). This

latter case is so large that it is unlikely that the ODEs can be solved without

taking advantage of sparsity, and using a powerful computer.

7. The system of ODEs is frequently stiff: For the tri-diagonal matrix A,

defined by (4.7), the eigenvalues As can be calculated by the formula [23]

( 4 ) ( . 2 S1r )As = - h2 SIn 2(N +1) ; S = 1,2,oo.,N.

Hence for large N, the largest eigenvalue can be approximated by

while the smallest eigenvalue can be estimated by

(4.10)

Then the stiffness ratio S (see section 2.2) for the system of ODEs (4.6) is

measured by

S -
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Thus the value of N is crucial in determining whether the PDE given by

equation (4.2) can be efficiently solved using existing ODE techniques, since

for large N the system of ODEs (4.6) resulting from (4.2) is stiff. In this case

the stiff methods for solving stiff ODEs, discussed in section 2.3, have to be

used.

8. Stiff and Non-stiff Integration: Since the system of ODEs resulting from

the original PDE system must be numerically integrated with respect to t,

it follows that the choice of an initial-value integrator is necessary. Most

ODE integrators implement time integration methods which are suitable for

solving either stiff or non-stiff equations.

Typically stiff integrators implement methods that have good stability

properties. For example, the GS implements Gears's stifHy stable formulas

of up to fifth order. These methods are generalizations of the usual backward

difference formulas.

The methods implemented in stiff integrators usually employ use a mod­

ified Newton's method for solving their nonlinear equations. This iterative

scheme requires the Jacobian matrix and therefore involves additional com­

putational costs.

On the other hand, the most popular non-stiff integrators implement
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Adams' methods. For example, the GS, which has both stiff and non­

stiff methods built into the same program, uses Adams-Bashforth-Moulton

predictor-corrector schemes of up to order twelve, for the non-stiff integra­

tion.

The advantage of non-stiff integrators is that their solution process does

not require the solution of large matrix systems, since fixed point iteration

is used to solve the nonlinear equations. Their main disadvantage is that

the stability regions for the higher order methods, are small and hence often

require very small time steps to maintain stability and accuracy. Non-stiff

integrators are not always adequate for even simple PDEs, since the problem

can become stiff as the number of mesh points increases.

However, non-stiff integration should not be precluded on the basis of

the stability requirement. In fact, it is wise to try explicit integration of the

ODE system first. It is easy to program and is very effective in many MOL

applications.

Only if the computing times are excessive, i.e. the integration time steps

are small, or the eigenvalues are widely separated, should implicit integra­

tion be used. In other words, using a stiff integrator for a non-stiff problem

can be wasteful in computer time because of the linear algebra of implicit
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integration, which may be performed unnecessarily.

9. Adaptive Grids: The adaptive grid technique is a numerical technique

which is used to compute accurate numerical solutions to PDE systems which

exhibit steep moving fronts. For example, such fronts appear in solutions of

systems of some first-order PDEs. Numerical methods which approximate

the spatial derivatives of such PDE systems using a uniformly spatial grid

are bound to fail. A possible solution to this problem has been to implement

moving grids which automatically adapt to the local needs of the problem,

e.g. concentrate spatial grid points where the solution is changing rapidly in

space (see section 4.3).

10. Software: Over the years much attention has been focused on devel­

oping software packages for PDEs, that implement the MOL. Some of the

more popular software packages include [1] PDEONE, PDETWO, PDECOL,

DPDE, DSSj2, DYLA and FORSIM. These codes provide the user with the

option of performing stages (i) and (ii) mentioned (on page 56) in the MOL

separately or automatically. However, it may not be possible to extract the

integrators from codes that perform both stages (i) and (ii) together.
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4.3 Numerical Example

To illustrate the main points made above we take a PDE with travelling wave

solutions. Burger's equation [16] for u = u(x, t) is

An exact solution for Burger's equation is given by

f1 (x, t)
u(x,t)=f(x,t) = f( );

2 x, t

where

(4.11 )

(4.12)

A(x, t)

B(x, t)

C(x,t)

(0~5) (x - 0.5 +4.95t)j

(
0.25) (-;;- x - 0.5 +0.75t);

(0~5) (x - 0.375).

The initial conditions and Dirichlet boundary conditions are taken directly

from (4.12), i.e.

u(x,O) = f(x,O);
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U(O, t) - j(O, t);

u(1,t) - j(1,t).

Burger's equation is an ideal test problem since:

• It is nonlinear.

• The exact solution of the PDE is known.

(4.14)

(4.15)

• It can be thought of as a hyperbolic problem with negligible diffusion for

small v [3].

• It is sometimes used in boundary layer calculations for the flow of viscous

fluids [3].

As mentioned above the simplest method of spatial discretization is to

discretize along the x-axis using a uniform mesh of N + 2 grid points and

to replace all spatial derivatives in (4.11) by (say) centered finite difference

approximations. Thus if we take

h

Ui(t)

1
N+1'

j(ih,t); i = 1,2, ... ,N +1;

(4.16)

(4.17)

then the system of ODEs for the MOL solution to (4.11) is

U·
~

v u·
h2 (Ui+l - 2Ui +ui-d - 2~ (Ui+l - Ui-l); i = 1,2, ... , N; (4.18)
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Ui(O) - f( ih, 0);

Ut (t) - f(O, t);

UN(t) - f(1, t);

where (4.19)-(4.21) are taken directly from (4.12).

(4.19)

(4.20)

(4.21)

We note by inspection that the system of ODEs (4.18) has a tri-diagonal

Jacobian matrix, the sub-diagonal elements of which are

QUi V Ui
--=-+-;
QUi-t h2 2h

while the diagonal elements are

and the super-diagonal elements are

QUi V Ui

QUi+t = h2 - 2h;

for i = 1, 2, ... , N.

(4.22)

(4.23)

(4.24)

Another method of spatial discretization for (4.11) was described by Chin,

Hedstrom, Karlson [3]. They used a simplified Galerkin method to reduce

Burger's equation to a linearly implicit system of ODEs of the form (4.9).

The system for (4.11) is then of the form

Au = g(t, u);
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where A is an N x N tri-diagonal matrix.

If Ui(t) is the numerical solution of (4.11) at Xi then

1 [ 2 2] V [ ]. . - 1 2 N·gi = - 4h ui+l - Ui-l + h2 Ui+l - 2Ui +Ui-l , Z - , , ••• , , (4.26)

The initial and boundary conditions can be taken from (4.19)-(4.21). The

Jacobian matrix of 9 can be obtained from (4.26) as before, and is given by

for i = 1,2, ... ,N.

8gi

8U i-l

8gi

8U i

8gi

8Ui+l

Ui-l v

2h+ h2 ;

2v
- h2 ;

(4.27)

(4.28)

(4.29)

We solved this problem on a PCjAT (speed-10MHz) using double preci-

sion, and the following solvers:

(i) Explicit GS : Non-stiff solver which implements the implicit Adams'

method and uses fixed point iteration to solve the associated nonlinear equa-

tions.

(ii) Implicit GS : Stiff solver which implements the Gear stiffly stable methods

and uses a generalized Newton's method to solve the corresponding nonlin-

ear equations. The Jacobian matrix is computed automatically using finite

differences.

67



(iii) Implicit GS1 : Same as (ii) except that in this case the Jacobian matrix

is replaced by a diagonal matrix based on a directional derivative.

(iv) Implicit GS2 : Same as (ii) except that the solver requires the user to

supply a separate subroutine for the Jacobian matrix.

(v) RK4 : Explicit fourth order Runge-Kutta solver with fixed step-size h.

The first four solvers above are built into the GS4
• We only consider the

first method of spatial discretization , viz. finite differences, since the GS is

applicable to the ODE system (4.18)-(4.21).

For this problem we used a uniform mesh of 50 grid points and the value

of v was taken equal to 0.003. The initial time step and the time integration

error tolerance in GS were set equal to 1 X 10-8 and 1 X 10-5, respectively.

The step-size in RK4 was taken equal to h = 1 X 10-5•

Table 4.15 6 gives the 20th and 30th solution components at t = O.ls,

and Table 4.2 gives the error in these solution components. From Table 4.2

4In all, there are eight options available in GS. In addition to the above 4 options the

other combinations are implicit Adams' method with Newton iteration, and Gear's stifHy

stable methods with fixed point iteration.

5Results for this problem using MGS will be presented in the next chapter.

6Appendix 1 contains a complete set of results for this problem.
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it is seen that the Implicit GS1 performs the best for this problem. It is the

fastest and most accurate of all the solvers. It may also be noted that the

Explicit GS is approximately 4 times faster than Implicit GS2 and 7 times

faster than Implicit GS, and the solutions obtained are almost identical. This

confirms the point made previously that explicit integration should not be

precluded on the basis of the stability requirement.

Another important point worth noting is that it is wasteful, from the

viewpoint of computing time, to make the time integration error tolerance

for this problem smaller than 1 x 10-5 • In fact, most of the error in the

solution is due to the spatial discretization. This can be verified by noting

that refining the mesh from 50 to 100 points reduces the error in the solution,

at x = 0.4 and x = 0.6, by approximately a factor of 1.25 (see Table 4.3).

On the other hand, reducing the time integration error tolerance to 1 X 10-10

affects the solution very slightly but the computing time is almost doubled

(see Table 4.3). Finally, we note that RK4 is extremely slow for this problem,

and in general its use is not recommended for the solution of ODEs resulting

from PDEs.

Now let us consider Burger's equation (4.11) with v = 1. The reason for

considering this case is to show that the ODE system resulting from (4.11)
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SOLVER COMPUTING u20 ( x 10-6 ) u30 ( X 10-6)

TIME (s)

EXACT - 502633 106379

SOLUTION

EXPLICIT GS 11 499106 103362

IMPLICIT GS 75 499106 103362

IMPLICIT GS1 10 499106 103362

IMPLICIT GS2 46 499106 103361

RK4 1787 499106 103362

Table 4.1: 20th and 30th solution components at t = O.ls.

SOLVER COMPUTING ERROR IN ERROR IN

TIME (S) u20 ( X 10-1 ) u30 ( X 10-1)

EXPLICIT GS 11 35259 30167

IMPLICIT GS 75 35261 30162

IMPLICIT GS1 10 35259 30162

IMPLICIT GS2 46 35261 30164

RK4 1787 35279 30172

Table 4.2: Error in 20th and 30th solution components at t = O.ls.
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NO. OF SPATIAL COMPUTING ERROR AT ERROR AT

GRID POINTS TIME x = 0.4 x = 0.6

(x 10-8 ) (x 10-8 )

50 11 352591 301677

100 20 280584 242697

I

Table 4.3: Error in u at x = 0.4 and x = 0.6 using 50 grid points.

TIME COMPUTING ERROR AT ERROR AT

INTEGRATION TIME x = 0.4 x = 0.6

ERROR TOLERANCE (x 10-8 ) (x 10-8 )

1 X 10-5 11 352591 301677

1 x 10-10 19 352620 301633

Table 4.4: Error in u at x = 0.4 and x = 0.6 using 100 grid points.
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can become stiff as the number of spatial grid points becomes large. Using

the same parameters in the Explicit GS and Implicit GS1, as before, we

solved this problem using uniform meshes of 50 and 100 grid points. Table

4.5 and Table 4.5 give the solution vector at x = 0.4 and x = 0.6, for t = 0.1,

using 50 and 100 grid points, respectively. In both instances we see that the

Explicit GS is slower than the Implicit GS1 and in particular for 100 grid

points the Explicit GS is considerably slow. This clearly indicates that the

problem is stiff since fixed point iteration is expensive.

Finally, we note that since Burger's equation exhibits steep moving fronts

the solution process might be enhanced by using the adaptive grid technique.

Schiesser [22] has applied the adaptive grid technique to Burger's equation.

The solution obtained is shown in Figure 4.2. The solid curves represent

the exact solution and the points are the computed MOL solution. The

behaviour of the adaptive grid for different values of t is shown at the base

of the figure and the changing number ODEs (due to the changing number

of spatial grid points during the solution process) is shown in Figure 4.3.
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SOLVER COMPUTING SOLUTION SOLUTION

TIME AT x = 0.4 AT x = 0.6

8 (x10-6 ) (x 10-6 )

EXACT - 534987 521288

SOLUTION

EXPLICIT GS 211 532375 518681

IMPLICIT GS1 44 532299 518604

Table 4.5: Solution at t = 0.18 using 50 grid points.

SOLVER COMPUTING SOLUTION SOLUTION

TIME AT x = 0.4 AT x = 0.6

8 (x10-6) (x 10-6 )

EXACT - 534571 521012

SOLUTION

EXPLICIT GS 1644 531944 518410

IMPLICIT GS1 282 531905 518364

Table 4.6: Solution at t = 0.18 using 100 grid points.
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Chapter 5

Multigrid Solver for PDE

Systems

5.1 Introduction

The primary objective in this chapter is to present a numerical technique

which will serve as an interface allowing the newly developed Multigrid

Solver, discussed in chapter 2, to be applied to time dependent PDEs. For

this purpose we use a discretized form of a PDE obtained by the method of

lines, using finite difference approximations.

We intend to show that the approach is quite robust in that it is capable of
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solving a wide class of difficult PDE problems with reduced computational

effort. In particular, we consider the general form of two important PDE

equations occuring in practice, viz. the nonlinear diffusion equation and the

telegraph equation. Furthermore, we briefly examine a practical area, viz.

atmospherical physics, where we feel this approach might be of significance.

We feel, however, that the approach is applicable to an even wider class of

physically realistic problems.

Finally, we stress that the approach seems to be particularly useful for

solving large systems of PDEs, occuring in scientific and engineering applica-

tions, on a personal computer. Therefore to make the technique accessible to

a wider range of users we implemented the technique in a computer program

which we call PDEMGS.

5.2 The Nonlinear Diffusion Equation

Consider the general system of N nonlinear PDEs, of at most second order,

on the interval [a, b] in the following form

(5.1)
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where

Each function Uk depends on the spatial variable p and time t. Depending

on the arguments of the vector function !, any particular equation in (5.1)

may be an ODE, a first order PDE, or a second order PDE. In the latter two

cases boundary conditions need to be specified at a and b. These boundary

conditions are assumed to be of the form

(5.2)

Such boundary conditions can be classified into three types: Dirichlet (f3k =

0); Neumann (ak = 0); and mixed (ak =I 0, f3k =I 0). We make the ba-

sic assumption that the boundary conditions are consistent with the initial

condition. If the initial condition is given in the form

(5.3)

then qk must satisfy the boundary condition (5.2).
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It is important to note that for the equations (5.1 )-(5.3) the solution

may either not exist or be not unique. In the sequel we deal only with

mathematically meaningful initial-boundary value problems for PDEs such

that the solution exists and is unique.

5.2.1 Using MGS to Solve the Nonlinear Diffusion

Equation

We show that the system of PDEs (5.1)-(5.3) can be reduced to the form

required by MGS. The basic technique which we use to achieve this is the

numerical method of lines discussed in chapter 3.

Firstly, we assume that p E [0, 1] for simplicity, and divide the interval

[0, 1] into m - 1 equal sub-intervals of size h. This imposes on the interval

[0, 1] a mesh of m equally spaced points. We associate with each mesh point

the functions Xki(t), (k = 1,2, ...N) that represent approximations of the

t 1 t · t k h' . i - 1rue so u Ion a en at t e pOInts p' = . We define
m-1

. (i-1)uic(t) = Uk ,t .
m-1
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To obtain the system of ODEs in the form (5.4) in terms of xi we consider the

kth PDE in the system (5.1) at p = pi where 1 < i < m. For this we need

the values u, Up, U pp which are not known exactly. We approximate these

values by means of 3-point central-difference approximations involving the

functions xi. More specifically, for p = pi we substitute the approximations

Uj(t,pi) "J X .i. (5.6)"J J ,

8uj ( i)
X i.+1 i-I-x·

(5.7)"J J J •
8p t,P "J

2h
,

8
2
uj ( i) X i.+1 _ 2xi. + X i.- I

(5.8)"J J J J.
8p2 t, P "J

h2
,

i = 2,3, ... , m - 1; j = 1,2, ...N in the kth PDE in (5.1).

Next we consider the boundary points, p = 0 and p = 1. It will suffice

to consider the difference approximations for the left boundary point p = 0

since that for the right boundary point p = 1 is completely analogous.

If for the kth PDE at p = 0 we have that {3k = 0 in (5.2) then clearly the

value of xl is given by xl = Ik and no ODE is required. However to preserve
ak

the basic structure of the ODE system (5.4) we set

dxl = o.
dt (5.9)

On the other hand, suppose that for the kth PDE at p = 0, we have that

f3k =I 0 in (5.2). Then the value of the solution at p = 0 is not given explicitly.
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In this case we combine (5.1) and (5.2) at p = 0, to derive an appropriate

ODE for the left boundary point.

Proceeding as for the interior points, we use at p = 0 the approximations

Uj(t,O) ro.J x~·ro.J

(' x~-x\
~~ (t,O) ~i::i:]

if {3j = 0, j=fk
ro.J
ro.J

if {3j =f 0
{ {3i 2(>?;-xn if {3j = 0, j=fk

82u· h2

8p; (t, 0) ro.J
ro.J

1 [xj-x] _(~i-"iXn] if {3j =f 0h h f3j

for j = 1,2, ...N.

(5.10)

(5.11)

(5.12)

Clearly upon substitution of (5.6)-(5.8) and the boundary conditions into

(5.1) we obtain a semi-discrete system of N *m ODEs of the form

dxl
dt
dx~

dt
dXk:
dt

ft(t·Xi - 1 xi Xi+1). 2 1- k' " z = , ... ,m -

for k = 1,2, ...N; where xi

expressed in vector form as

The above system can be

(5.13)

k = 1,2, ... , N. The appropriate initial conditions for (5.13) are easily ob-
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tained from (5.3), i.e.

or in vector form

(5.14)

Combining equations (5.13) and (5.14) gives the desired form (5.4) required

by MGS.

The next step is to implement the above technique in a computer program

which we call PDEMGS. Basically, PDEMGS requires the user to provide

the number of spatial grid points, the vector function f and the boundary

conditions for an allowable problem (5.1)-(5.3). PDEMGS then uses the

difference approximations (5.6)-(5.12) to define and evaluate the right-hand

side of the approximating ODE system (5.4). Moreover, this ODE system is

in a form which is immediately useable with MGS.

In the next section we discuss the structure and use of PDEMGS.

5.3 Structure and Use of PDEMGS

According to the discussion presented in section 3.4, to solve the system

(5.1)-(5.3) by MGS the user is required to provide a subroutine DIFEQ which

81



contains the approximating system of ODEs to the original system of PDEs

(see Figure 3.2). This involves reducing the original system of PDEs (5.1)­

(5.3) to the reduced form (5.4) discussed in the previous section.

The purpose of PDEMGS is to relieve the user of this time consuming

and tedious task by automatically forming and evaluating the right-hand side

of (5.4). Therefore according to the discussion presented in section 3.4, to

use PDEMGS and MGS to solve the PDE system (5.1), we must construct a

main program which sets parameters and allocates storage for MGS, sets the

initial conditions (5.3), specifies the m points of the spatial mesh (m ~ 3),

initializes and calls MGS, and provides for evaluation of the calculation times

and printing of the results. Furthermore, a minor adjustment needs to be

made in the main program, in order to incorperate PDEMGS into MGS, viz.

the user needs to initialize the array X (m), containing the m spatial points

of the spatial mesh, and the step-size h. These variables should be specified

in a common block, say, MESH.

The remaining task is to define the approximating ODE system (5.4) for

MGS. This is done by noting that the PDE system (5.1)-(5.3) is completely

defined if one specifies the interval [a, b]; the initial time, to; the vector func­

tions f = (fk), a = (ak), {3 = ((3k) , I = (,k); and the initial conditions,
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qk(X) (k = 1,2, ... , N).

In order to use PDEMGS to solve the PDE system (5.1)-(5.3) it is only

necessary for the user to supply two basic subroutines containing the vector

f and the boundary conditions (i.e. the vectors 0, {3, ,). These user-defined

subroutines will be called F and BNDRY, respectively.

Next we consider the structure of PDEMGS and give a brief description

of the subroutines which it uses. In the following description T and X are

scalar quantities representing the current time and spatial variable, respec­

tively; U is a vector containing the solution vector and UX and UX X are

vector quantities containing the approximations to the 1st and 2nd deriva­

tives, respectively. A brief description of each of the subroutines used in

PDEMGS follows.

PDEMGS : Interface routine, between MGS and the user-defined routines, F

and BNDRY, that is responsible for converting the original system of PDEs

(5.1)-(5.3) into a form (5.4) which may be integrated using MGS. It replaces

the routine DIFEQ shown in Figure 5.1. The new structure is illustrated

in Figure 5.2. Clearly MGS will have to be trivially modified so that it

properly calls PDEMGS instead of DIFEQ. This modification is made in the

routines AMPL and SHAPE (see Figure 3.2). In other words, instead of
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calling DIFEQ these routines call PDEMGS.

On a call to PDEMGS, it performs the semi-discretization process for

converting the original system of PDEs into a system of ODEs of the form

DU = F(T, X, U), which may be integrated using MGS.

The input parameters are as follows:

NPDE = number of PDEs

M PTS = number of spatial grid points

T = current value of time

U = an N * m array containing the computed solution at time T.

The output parameters are:

DU = N PDE * M PTS array containing the right-hand side of the resulting

system of ODEs F(T, X, U) obtained by discretizing the given PDE system.

The user is required to insert a dimension statement of the following form

DIMENSION ALPHA(**), BETA(**), GAMMA(**), U(**), UX(**),

UXX(**),

where the symbol ** represents the actual dimension of the PDE system

being solved.

To perform the semi-discretization process PDEMGS adopts the following

procedure:
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1. Updates the left boundary values by calling the user-defined routine

BNDRY.

2. Forms approximations to :: at the left boundary.

82u
3. Evaluates 8x

2
at the left boundary.

4. Evaluates the right-hand side of the PDEs at the left boundary by calling

the user-defined routine F.

5. Updates the right boundary values by calling BNDRY.

6. Performs main loop that form the ODEs at the grid points by the follow-

ing steps:

6.1 Evaluates :: at the ith grid point;

E I 82u h' h 'd .6.2 va uates 8x
2

at t e zt gn pOInt;

6.3 Evaluates right-hand side of PDEs at the ith grid point by calling F.

7. Forms approximations to :: at the right boundary.

82u
8. Evaluates 8x

2
at the right boundary.

9. Evaluates right-hand side of PDEs at the right boundary by calling F.

10. Returns to the calling program.

BNDRY : User-defined routine specifying Ok, I3k and 'Yk in (5.2). If X is the

left (right) boundary point X(l) (X(m)) define ALPHA(K), BETA(K) and

GAMMA(K) at the left (right) boundary point and return.
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F : User-defined routine containing the right-hand side vector f of (5.1).

When solving PDE problems using MGS and the interface routine PDEMGS

we will refer to the solver simply as PDEMGS. In order to demonstrate the

potential usefulness of PDEMGS we present a few numerical examples. The

value of L, number of time-steps in amplitude equations for one step in shape

equations in PDEMGS, was taken equal to 10 in all cases. All computations

were performed on a PC/AT (speed-10MHz) using double precision arith-

metic.

5.3.1 Numerical Examples

A

We consider the numerical solution of the equation

8u 82u
2- = - +u - (4x +2)ex+t

at 8x2 (5.15)

on the x interval [-1,1] and for 0 < t :::; 0.1. We assume initial and boundary

conditions of the form

u(x,O)

u(-l,t)
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MAIN PROGRAM

Initialize

Call MGS

Output Results

MGS

Driver Routine

MGS INTEGRATOR ROUTINES

Built in routines of MGS used to

perform integration (see Fig.3.2)

DIFEQ

User written routine

to define f(t, u)

Figure 5.1: Structure of MGS. Oval shapes indicate user-defined routines.
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MAIN PROGRAM

Initialize

Call MGS

Output Results

MGS

Driver Routine

MGS INTEGRATOR ROUTINES

Built in routines of MGS used to

perform integration

PDEMGS

Performs spatial discretization

F

Defines f in (5.1)

BNDRY

~fines CXk f3k Ik in (5;)

Figure 5.2: Structure of PDEMGS. Oval shapes indicate user-defined rou­

tines.
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Note that the initial conditions are consistent with the boundary conditions

as required by PDEMGS. The exact solution for this problem is easily seen

to be

(5.18)

To solve this problem we used the following solvers

(1) Explicit GS (discretization done by hand)

(2) Implicit GS (discretization done by hand)

(3) PDEMGS

(4) RK4

(discretization done automatically)

(discretization done by hand).

We used uniform meshes of 60 and 120 points and the time integration error

tolerance (EPS), in Explicit GS, Implicit GS and PDEMGS, was set at

1 X 10-4 and 1 X 10-5• The initial time-step (DTMIN) was set equal to

1 X 10-15 in the first three solvers above. Step-sizes of 1 x 10-4 and 1 X 10-5

were used in RK4.

In the first instance, using a uniform mesh of 60 points we obtained the

numerical results shown in Table 5.11 . In the table the 10th and 40th com­

ponents of the solution vector u are shown at t = 0.1. From the table it is

lSee Appendix 1
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seen that with EPS = 1 X 10-5 the Implicit GS was slightly faster than Ex­

plicit GS and dramatically faster (approximately twenty-eight times faster)

than RK4 solver with fixed step-size h = 1 X 10-5
• This is clearly indicative

of the stiffness inherent in the problem. On the other hand, PDEMGS was

approximately ten times faster than the Implicit GS and was still sufficiently

accurate. Such a difference in computing time might be crucial when solving

PDEs where a very fine mesh refinement is required (see chapter 3).

Moreover, in the second instance an even more interesting observation

was made using PDEMGS. In this case using 120 grid points means that we

have to solve a system of 120 ODEs. Hence this represents an even stiffer

system due to the ::~ term. The numerical results giving the 10th and

the 40th components of the solution vector u at t = 0.1 are shown in Table

5.2. The Implicit GS failed to solve this problem! It is suspected that the

problem lies with the Newton iteration procedure for solving the nonlinear

equations arising from implicit integration. The solver seems to have failed

to solve the nonlinear system (2.28) resulting for this problem. The Explicit

GS and RK4, produced a soluti'on but were slow, in particular, RK4 with

h = 1 X 10-5 was excessively slow. PDEMGS, on the other hand, with

EPS = 1 X 10-5 gave a sufficiently accurate solution and only took 198.
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ERROR

SOLVER TOLERANCE COMPUTING

OR TIME (s) utO u40

STEP-SIZE (x10-5 ) (x10-4 )

EXACT - - -28523 -13669

SOLUTION

EXPLICIT EPS = 1 X 10-4 87 -28523 -13668

GS = 1 X 10-5 107 -28522 -13668

IMPLICIT EPS = 1 X 10-4 91 -28522 -13668

GS = 1 X 10-5 102 -28521 -13668

PDEMGS EPS = 1 X 10-4 9 -28521 -13667

= 1 X 10-5 10 -28519 -13666

RK4 H = 1 X 10-4 283 -28521 -13668

= 1 X 10-5 2838 -28522 -13668

Table 5.1: Numerical Results for Example 5.3.1(A), using 60 points.
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ERROR

SOLVER TOLERANCE COMPUTING

OR TIME (8) U
tO u40

STEP-SIZE (xl0-5 ) (xl0-5 )

EXACT - - -13226 -69011

SOLUTION

EXPLICIT EPS = 1 X 10-4 773 -13225 -69011

GS = 1 X 10-5 747 -13225 -69011

IMPLICIT EPS = 1 X 10-4 **** FAILED ****

GS = 1 X 10-5 **** FAILED ****

PDEMGS EPS = 1 X 10-4 18 -13225 -69007

= 1 X 10-5 19 -13225 -69007

RK4 H = 1 X 10-4 572 -13225 -69010

= 1 X 10-5 5723 -13225 -69011

Table 5.2: Numerical Results for Example 5.3.1(A), using 120 points.
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B

We attempted to solve Burger's equation

(5.19)

presented in section 4.3, using PDEMGS. The initial and boundary condi-

tions were taken as in equations (4.13)-(4.15). As noted in section 4.3, in

order to solve this problem, to any reasonable degree of accuracy, it is nec-

essay to use a very fine mesh refinement if a uniform mesh is being used for

the spatial discretization.

We solved this problem in exactly the same way as the previous one,

using a uniformly spaced mesh of 400 points. We did not attempt to obtain

a solution using RK4, considering the excessive computer run time in example

4.3 when only 50 grid points were used. The value of v, in equation (5.19),

was taken equal to 0.003. The parameters EPSand DTM IN were set

equal to 1 X 10-7 and 1 X 10-15
, respectively, in Explicit GS, Implicit GS and

PDEMGS. The numerical results giving the 50th and 300th components of

the solution vector u, at t = 0.1 are shown in Table 5.3.

Once again Implicit GS failed to solve this problem for the same reason

as suspected in the previous example. The Explicit GS produced a solution
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SOLVER COMPUTING u50 ( x 10-5 ) U3OO ( X 10-5 )

TIME (8)

EXACT - 100000 10000

SOLUTION

EXPLICIT GS 1008 99939 10000

IMPLICIT GS **** FAILED ****

PDEMGS 28 99932 10000

Table 5.3: Numerical Results for Example 5.3.1(B).

but was very slow. PDEMGS, on the other hand, produced a reasonably

accurate solution in under half a minute. Since Burger's equation is fre­

quently encountered in practice, this shows that PDEMGS might be useful

for practical applications. In section 5.4 we consider a particular practical

application of PDEMGS.

In general the ODE system resulting from a PDE system becomes stiff as

the number of spatial grid points increases (see section 4.2). Hence Explicit

GS may not be suitable for these problems and moreover the fixed step RK4

method is completely ruled out. In the remaining problems in this section

we solve using only Implicit GS and PDEMGS.
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In the next example we consider a system of two nonlinear PDEs.

c

Consider the system of PDEs [16]

8u = !...- ((v _ 1)8U) + [16xt - 2t - 16(v -l)](u - 1) +10xe-4x
; (5.20)

8t 8x 8x

8v 82v 8u 2 0 -4x- = - +- +4u - 4 +x - 2t - 1 te ;
8t 8x2 8x

on the x interval [0,1], with boundary conditions

u(t,O) = v(t, 0) = 1.0

8u 8v U( )3u +- = 3; 5- = e u - 1
8x 8x

and initial conditions

u(O,x) = v(O,x) = 1.

The exact solution for this problem is

at x = 0;

at x = 1

(5.21)

(5.22)

(5.23)

(5.24)

u(t,x)

v(t,x)

(5.25)

(5.26)

Note that the initial conditions are consistent with the boundary as required

by PDEMGS. We used a uniform mesh of 30 grid points and set EPS =
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1 X 10-6 and DTM I N = 1 X 10-15 in Implicit GS and PDEMGS. The

numerical results giving the 10th and 20th components of the u and v solution

vectors, at t = 0.01, are shown in Table 5.4 and Table 5.5, respectively. From

the table it is seen that PDEMGS is approximately 10 times faster than

Implicit GS and the solutions obtained are almost identical.

D

Consider the following PDE

8u 82u
2 8t = 8x2 + u - (4x + 2)ex+t + 2 cos t;

on the interval [0, 1] and for 0 < t ~ 0.1.

The boundary and initial conditions for this problem are taken as

(5.27)

u(x,O)

u(-l,t)

The exact solution for this problem is

u(l, t) = O.

(5.28)

(5.29)

u(x,t) = (x 2 _l)ex+t + sint. (5.30)

We used a uniform mesh of 60 points and set EPS = 1X 10-4 and DTM I N =

1 X 10-15 in Implicit GS and PDEMGS.

96



SOLVER COMPUTING u10 ( x 10-5 ) U 20 ( X 10-5 )

TIME (s)

EXACT - 100807 100428

SOLUTION

IMPLICIT GS 180 100896 100476

PDEMGS 11 100896 100476

Table 5.4: Numerical Results for Example 5.3.1(C) (u vector).

SOLVER COMPUTING v10 ( x10-5 ) v20 ( X 10-5 )

TIME (s)

EXACT - 100086 100386

SOLUTION

IMPLICIT GS 180 100119 100475

PDEMGS 11 100076 100433

Table 5.5: Numerical Results for Example 5.3.1(C) (v vector).
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SOLVER COMPUTING u20 ( x10-4 ) u50 ( X 10-3)

TIME (8)

EXACT - -5762 -1105

SOLUTION

IMPLICIT GS 161 -5773 -1118

PDEMGS 11 -5353 -1023

Table 5.6: Numerical Results for Example 5.3.1(D).

The numerical results giving the 20th and 50th components of the solution

vector u are shown in Table 5.6. From the table it is seen that PDEMGS is

still faster than Implicit GS, in terms of computing speed, but in this case

PDEMGS is not very accurate. The reason for this is discussed in section

5.5.

In the next example we consider a case where the initial condition is not

consistent with the boundary conditions.

E

We consider the same problem as that in example 5.3.1 (A) but in this case

the initial conditions and boundary conditions are not consistent. Here we
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assume initial and boundary conditions of the form

u(x,O) - (X2+1)eX
;

u(-1,t) - u(1,t) = 0;

The exact solution for this problem is still

(5.31)

(5.32)

(5.33)

Proceeding in the same way as before, using a uniform mesh of 60 points,

we obtained the results in Table 5.7. The table gives the 20th and 40th

components of the solution vector u at t = 0.1. From the table we see that

PDEMGS performed badly for this problem. The solution obtained was very

inaccurate and not much gain in computing speed was obtained. The reason

for this is that the initial conditions are not consistent with the boundary

conditions and the basic assumptions of PDEMGS fail.

5.4 Physical Significance of PDEMGS

The occurence of stiff ODEs resulting from PDEs is frequently encountered

in practice. To illustrate the physical significance of PDEMGS we select a

problem from the field of atmospheric physics.
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SOLVER COMPUTING u20 ( x10-4 ) U 40 ( X 10-3 )

TIME (s)

EXACT - 8722 1683

SOLUTION

IMPLICIT GS 297 8393 1496

PDEMGS 247 6770 1064

Table 5.7: Numerical Results for Example 5.3.1(E).

Description of an atmosphere involves transport phenomena with chemi­

cal reactions. Thus stiffness can occur because the time constants for chem­

ical reactions might be smaller than those for particle transport. The trans­

port equations themselves can be stiff if the distances involved are large, and

the chemical kinetic equations are almost always stiff.

The pollution caused by supersonic transport (SST) in the stratosphere

has been studied by MacCracken [11]. The SST exhaust can disrupt the

chemical balance of the stratosphere thus leading to a net decrease in ozone

[03 ]. This would in turn lead to an increase in ultraviolet radiation on the

surface of the earth.
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5.4.1 Numerical Example

A simple one-dimensional model which describes the interactions of the chem-

ical species O2, 0 3 , NO, and N02 along with normal diffusion processes is

given by the system of equations below

8u 82u
8t D 8x2 + at - a2u + a3v + a4Y - a5uv - a6U Y; (5.34)

8v 82v
8t - D 8x2 +b1U - b2v +b3uv - b4vw; (5.35)

8w 82w
8t D 8x2 - ClW + C2Y + C3uy - C4VW + 800 + S; (5.36)

8y 82y
8t - D 8x2 - d1 y +d2vw - d3uy +800; (5.37)

where

D - 10-4 •- ,

at = 4 X 105
, a2 = 272.443800016, a3 = 10-4

,

Cl = 1.6 X 10-8
, c2 = 0.007, C3 = 4.1283 X 10-12

C4 = 3.57 X 10-15 ,

d1 = 7.000016 X 10-3
, d2 = 3.57 X 10-15 , d3 = 4.128 X 10-12

101



and the source producing NO is given by

{

3250 if .475 ~ x ~ .575
s=

360 otherwise.

The reflecting boundary conditions

8u = 8v = 8w = 8y = 0;
8x 8x 8x 8x

(5.38)

(5.39)

are assumed to hold at each end of the normalized spatial domain [0,1].

The variables u, v, wand y, respectively, represent the chemical species

O2 , 0 3 , NO, N02 and are assumed to have the constant initial values

u(O,x)

v(O,x)

w(O, x)

y(O,x)

1.076508 X 1012
,

6.457715 X 1010
,

3.542285 X 1010
•

(5.40)

(5.41)

(5.42)

(5.43)

The problem (5.34)-(5.37) is difficult because the chemical reactions make

the problem stiff and it is usually necessary to obtain solutions for very large

real times. For this problem we used a uniform mesh of 31 points. We solved

using Explicit GS, Implicit GS, PDEMGS and RK4. We set EPS = 1 X 10-5

and DTM IN = 1 X 10-10 in the first three solvers and H = 1 X 10-4 in
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SOLVER COMPUTING w10 ( x 106 ) W
20

( X 106 )

TIME (s)

EXPLICIT GS 389 64577 64577

PDEMGS 14 64576 64576

RK4 3587 64577 64577

Table 5.8: Numerical Results for Example 5.4.1.

RK4. Once again the Implicit GS failed to solve this problem, probably

for the same reason as suspected in 5.3.1 (A). Table 5.8 gives the 10th and

20th components of the third solution sub-vector (NO) at t = Is. From

the table it is seen that PDEMGS is very much faster than Explicit GS and

dramatically faster than RK4 and the solutions obtained are almost identical.

5.5 Limitations and General Remarks Con-

cerning PDEMGS

Obviously a single program such as PDEMGS will not be able to solve all

PDE problems because of certain restrictions that it impose on the class of

problems it solves. These restrictions are listed below.
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Firstly, the class of of problems that PDEMGS solves obviously depends

on the choice of projection operators Pk used in MGS (see section 3.2.1). In

this study we choose as projection operators the simple averaging operator

and this may not be suitable for all problems.

Secondly, PDEMGS requires that the initial conditions be consistent with

the boundary conditions as demonstrated in example 5.3.1 (F).

Thirdly, the assumption that the solution vector x(t) be written as a

product of the amplitude functions ep(t) and shape vectors v(t), as suggested

in section 3.2.1, may not serve a purpose. In other words, the shape vector

of the solution vector x(t) may not have the property that it changes very

rapidly with respect to time in only a very short time interval, assuming a

relatively smooth shape, thereafter. Example 5.3.1 (E) is a case of where this

happens.

When using a solver like PDEMGS it is customary to encounter certain

criteria that might affect the computing time. For example, one such criterion

is the time integration error tolerance which is set by the user. Obviously,

it will cost more if a greater accuracy is desirable. As a general rule, it is

neither necessary nor desirable to use a time integration error tolerance which

is very much smaller than the error which is being produced by the spatial
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discretization. However, if one wants to be sure that all the errors in the

approximate solution are due to the spatial discretization, a relatively small

time integration error tolerance should be used. The type of integration error

control may vary for different integrators (for example, absolute, relative,

mixed, etc.). We note that GEAR (see chapter 3), implemented in PDEMGS,

uses a relative error bound.

In general, when solving problems using PDEMGS a very small initial

time-step is used. One might wonder if this might have a significant effect

on the computing time. In fact, GEAR usually requires a very small starting

time-step and then automatically adjusts the step-size to an appropriate size

without much sacrifice in computing time. Usually, it is preferable to start

with a time-step which is too small rather than one which is too large, since

a time-step which is too large may force the integrator to execute its error

recovery mechanisms thus resulting in additional computational costs.

While GEAR is a very reliable ODE integrator, the user should note that,

if modified so that the integration proceeds to the next desired output time

(see chapter 4), it may lose its stability if forced, by the user, to change

step-size too frequently.
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dx1

Finally, as mentioned in section 5.2.1, we use the "dummy" ODE dt == 0

for the boundary points where the solution value xl is known a priori from the

boundary condition. This is done to maintain a convenient regular structure

for the resulting ODE system (5.4), as required by MGS. Using this ad hoc

device has the effect of eliminating the direct influence of this particular

solution value from the time-step or error controls in GEAR. This is precisely

what is desired, since known boundary values must be allowed to assume their

true values (they have no discertization error). These values only indirectly

affect the time-step choice or error control, through their influence on the

behaviour of neighbouring solution values.

5.6 The Telegraph Equation

We consider the singularly perturbed telegraph equation in the following

form

(5.44)

where the unknown function q depends on a spatial variable p and time t, A

is a constant matrix, J.l is an arbitrary constant, , an arbitrary function of t

and r is a function of p and t.
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Following a similar procedure to that presented in section 5.2.1 we express

(5.44) in the multigrid form (5.4). For simplicity we assume that the spatial

variable p changes from 0 to 1 and divide the interval [0, 1] into n - 1 equal

sub-intervals of length h. Then if we define

(
i -1 )q --, t = Xi( t); i = 1,2, ... , n;
n-1

we can write (5.44) as the second order system of ODEs

d2x dx
C dt2 +A dt + f(x, t) = 0;

where f(x, t) is given by

f(x, t) = -p,Dx +,(t)x - r(q, t).

(5.45)

(5.46)

(5.47)

and the matrix D, representing the central difference approximation to the

spatial derivative in (5.44), has the form

(DX)i = :2 (Xi-l - 2Xi +Xi+I); i = 2,3, ..., n - 1. (5.48)

The form of (Dxh and (Dx)n depends on the boundary conditions as in

section 5.2.1.

If we set ~~ = z in (5.46) then we can write the second order system of

ODEs (5.46) as the equivalent first order system

dx
dt - z;
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dz
e- = -Az - f(x, t).

dt
(5.50)

Here the sub-vector x represents the slow variable and the sub-vector z the

fast variable. Replacing x by Xl and z by X2 we see that the system of

equations given in (5.49)-(5.50) has the same form as that given in (5.13) i.e.

(5.51)

where the functions ik have the obvious definitions implied by the right-hand

side of (5.49)-(5.50) .

The initial conditions for (5.51) are obtained from the initial conditions

of (5.44) in a similar fashion to that described in section 5.2.1. Moreover,

the ODE system (5.51) is in a form which is immediately useable with MGS.

5.6.1 Numerical Examples

A

We consider the solution of the following second order PDE in time

on the p interval 0 ~ p ~ 7( and for 0 < t ~ 0.1 obtained by setting

e=J.L=l; A=O; ,=-1; r=-2etePcosp;
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in equation (5.44)

The boundary conditions and initial conditions for (5.52) are taken as

u(O,t) - u(7t",t) =0;

u(p,O) - eP sin p.

The exact solution for (5.52) is given by

(5.54)

(5.55)

(5.56)

We used a uniform mesh of 30 grid points and set EPS = 1 X 10-5 and

DTM IN = 1 X 10-15 in Implicit GS and MGS. The numerical results giving

the 5th and 25th components of the solution vector q, at t = 0.1, are shown

in Table 5.9. We observed that Implicit GS gave completely incorrect results

for this problem. PDEMGS, on the other hand, gave a more acceptable

solution with reduced computational effort.

This problem illustrates a further advantage of PDEMGS namely that

for certain problems MGS might be slightly more reliable than the standard

solvers.
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SOLVER COMPUTING q5( x 10-4 ) q25( X 10-3)

TIME (s)

EXACT - 7157 7670

SOLUTION

IMPLICIT GS 145 8553 23112

MGS 11 7157 7550

Table 5.9: Numerical Results for Example 5.6.1(A).

B

In this example we consider the solution of the following PDE:

on the p interval -1 ::; p ::; 1 and for 0 < t ::; 1, obtained by setting

€ = J.L = 1, A = I, , = 1, r = 1r cos 1rt

in (5.44).

As boundary conditions for this problem we take

8q 8q
8p(-1,t) = 8p(1,t) = 0;
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SOLVER COMPUTING q5( x10-5 ) q25( X 10-5 )

TIME (s)

IMPLICIT GS 158 274623 274623

MGS 6 274623 274623

Table 5.10: Numerical Results for Example 5.6.1(B).

and as initial conditions we take

q(p, 0) = (1, ... , 1);

aqat (p, 0) = (1(", ... , 1(").

(5.60)

(5.61)

We solved this problem in exactly the same way as the previous problem

with all the required parameters in Implicit GS and MGS unchanged. The

numerical results giving the 5th and 25th components of the solution vector

q at t = LOs are shown in Table 5.10. From the table it is seen that the

results obtained for this problem using MGS is exactly the same as Implicit

GS but MGS is considerably faster than Implicit GS.
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Chapter 6

Conclusion

We have seen that the MOL is a well established technique for the numerical

solution of PDEs. When this technique is applied to a PDE a stiff system of

ODEs usually results. The recent approach for solving such systems on large

mainframe computers has been to take advantage of parallel computation

(e.g. partitioning of a system into stiff and non-stiff sub-systems). On the

other hand, the common PC user still relies heavily on a stiff ODE solver

based on, typically, Backward Differentiation Formulas (BDFs) for treating

such systems. Since BDF is an implicit method an algebraic system needs

to be solved at each time step. It is generally recognized that for physically

realistic PDE systems (e.g. the system in section 5.4) the problems are
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so difficult or so large that a direct application of the BDF codes can be

prohibitive in both cost and storage requirement, or may not be applicable

at all (see section 5.4). In such cases it may be necessary to use specific ODE

solution methods which are capable of exploiting the special features of the

system to be solved.

From the discussions and results presented in this thesis it is probably

safe to conclude that the multigrid method seems to be one such viable solu­

tion method. The method has been applied successfully to single equations,

systems of equations, linear and nonlinear equations, parabolic and hyper­

bolic equations, linear and nonlinear boundary conditions, or a combination

of these. We have also indicated the feasibility of using the multigrid method

in practical applications by considering Burger's equation, occuring in many

real life situations, and solving a difficult PDE system in chemical kinetics

(see section 5.4). Moreover, most of the preceeding problems (except the

ones in section 5.6) were solved with a single program, PDEMGS, resulting

in both reduction in computing time and human effort.

We feel that this should be sufficient justification to indicate the potential

usefulness of the multigrid method for solving ODEs resulting from PDEs,

and the versatility of the software interface PDEMGS.
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Finally, we would like to mention that the modified multigrid method,

presented in chapter 3, where innner iterations are introduced in each cycle

seems to be a promising way of implementing the multigrid algorithm. The

code MGS2 implements this algorithm using RK4 for the integration of the

amplitude equations and RK2 for the solution of the shape equations. It

was found that MGS2 was more accurate than MGS1, which is the code for

implementing the original multigrid method [14] using the same solvers as

MGS2 for the integration of the amplitude and shape equations. Although

MGS2 was slightly slower than MGS1 it was still considerably faster than

the standard GS.
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Appendix A

Numerical Results

Appendix 1 contains additional tables for examples 3.5, 4.3 and 5.3.1 (A). In
the tables below the parameters have the following meaning :
N - number of equations
Y - solution vector
T - current time
EPS - time integration error tolerance
DTMIN - initial time-step
L - number of time-steps in amplitude equations for one step in shape equa­
tions
H - fixed step-size
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*** NUMERICAL RESULTS FOR EXAMPLE 3.5 ***

GEAR REVISED INTEGRATION RULE
GEAR STIFFLY STABLE METHOD 22

N = 60 EPS = 1.0E-04 DTMIN = 1.0E-15

T Y( 1) y( 10) Y( 40) Y( 50)

O.OOOE+OO 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00
1.000E-03 2.724040E+00 2.748672E+00 1.001174E+00 1.001175E+00
2.000E-03 7.420243E+00 7.555052E+00 1.002652E+00 1.002660E+00
3.000E-03 2.021172E+01 2.076500E+01 1.004965E+00 1.005008E+00
4.000E-03 5.505441E+01 5.707297E+01 1.009576E+00 1.009751E+00
5.000E-03 1.499602E+02 1.568642E+02 1.020507E+00 1.021147E+00
6.000E-03 4.085469E+02 4.312236E+02 1.048828E+00 1.051038E+00
7.000E-03 1.113270E+03 1. 185708E+03 1.125030E+00 1.132359E+00
8.000E-03 3.032329E+03 3. 258838E+03 1.332861E+00 1.356492E+00
9.000E-03 8.259330E+03 8. 956534E+03 1.902861E+00 1.977512E+00
1.000E-02 2.249655E+04 2.461614E+04 3.469260E+00 3.701414E+00
1.100E-02 6. 127605E+04 6.765561E+04 7.776953E+00 8.490074E+00
1.200E-02 1.669106E+05 1.859546E+05 1.962723E+01 2.179611E+01
1.300E-02 4. 546278E+05 5. 110788E+05 5.222646E+01 5.876810E+01
1.400E-02 1.238323E+06 1.404672E+06 1.419123E+02 1.615067E+02
1.500E-02 3.373197E+06 3.860942E+06 3.886818E+02 4.470341E+02

COMPUTING TIME WAS 326 S
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RK4-RK2 MULTIGRID SOLVER

N = 60 H = 1.0E-04 L = 10

T YC 1) YC 10) YC 40) YC 50)

O.OOOE+OO 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00
1.000E-03 2.743640E+00 2.756077E+00 1.001174E+00 1.001174E+00
2.000E-03 7.472816E+00 7. 574549E+00 1.002653E+00 1.002659E+00
4.000E-03 5.543510E+Ol 5.721029E+Ol 1.009578E+00 1.009745E+00
5.000E-03 1.509850E+02 1. 572286E+02 1.020502E+00 1.021135E+00
6.000E-03 4. 112282E+02 4. 321047E+02 1.048789E+00 1.051007E+00
7.000E-03 1.120037E+03 1. 187536E+03 1. 124835E+00 1. 132233E+00
8.000E-03 3.050578E+03 3.263661E+03 1.332346E+00 1.356050E+00
9.000E-03 8.308687E+03 8. 969407E+03 1.902129E+00 1.975360E+00
1.000E-02 2.262992E+04 2.465034E+04 3.470416E+00 3.691487E+00
1.100E-02 6. 163597E+04 6.774581E+04 7.786423E+00 8.454568E+00
1.200E-02 1.678750E+05 1.861840E+05 1.965648E+Ol 2.169010E+Ol
1.300E-02 4. 572334E+05 5. 116853E+05 5.229816E+Ol 5.847914E+Ol
1.400E-02 1.245347E+06 1.406254E+06 1.420710E+02 1.607299E+02
1.500E-02 3.391904E+06 3. 864785E+06 3.889982E+02 4. 448954E+02

COMPUTING TIME WAS 17 S
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IMPROVED RK4-RK2 MULTIGRID SOLVER

N = 60 H = 1.0E-04 L = 10

T y( 1) Y( 10) Y( 40) Y( 50)

O.OOOE+OO 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00
1.000E-03 2.723913E+00 2.748413E+00 1.001173E+00 1.001175E+00
2.000E-03 7.419744E+00 7. 553473E+00 1.002649E+00 1.002663E+00
4.000E-03 5.505132E+01 5.705096E+01 1.009533E+00 1.009797E+00
5.000E-03 1.499535E+02 1.567906E+02 1.020361E+00 1.021299E+00
6.000E-03 4.084566E+02 4.309009E+02 1.048362E+00 1.051500E+00
7.000E-03 1.112592E+03 1. 184228E+03 1. 123635E+00 1. 133606E+00
8.000E-03 3.030590E+03 3. 254572E+03 1.329468E+00 1.359325E+OO
9.000E-03 8.255040E+03 8. 944440E+03 1.896715E+00 1.981541E+OO
1.000E-02 2.248600E+04 2.458176E+04 3.461349E+OO 3.702096E+OO
1.100E-02 6. 124999E+04 6.755749E+04 7.768036E+OO 8.476838E+OO
1.200E-02 1.668402E+05 1.856670E+05 1.961086E+01 2. 174657E+01
1.300E-02 4.544610E+05 5.102658E+05 5. 217584E+01 5.863226E+01
1.400E-02 1.237922E+06 1.402358E+06 1.417362E+02 1.611520E+02
1.500E-02 3.372027E+06 3. 854093E+06 3. 880781E+02 4.460629E+02

COMPUTING TIME WAS 35 S

*** END OF NUMERICAL RESULTS FOR EXAMPLE 3.5 ***
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*** NUMERICAL RESULTS FOR EXAMPLE 4.3 ***

EXACT SOLUTION

N = 50

T Y(10) Y(20) Y(30) Y(40)

O.OOOE+OO 9.980193E-01 4. 997803E-01 1.008753E-01 1000000E-01
1.000E-02 9.989379E-01 4. 998255E-01 1.010686E-01 1000000E-01
2.000E-02 9.994309E-01 4. 998673E-01 1.013044E-01 1000000E-01
3.000E-02 9.996952E-01 4.999102E-01 1.015921E-01 1000000E-01
4.000E-02 9.998368E-01 4.999619E-01 1.019428E-01 1000000E-01
5.000E-02 9.999126E-01 5.000349E-01 1.023704E-01 1000000E-01
6.000E-02 9.999532E-01 5.001519E-01 1.028915E-01 1000000E-01
7.000E-02 9.999750E-01 5.003548E-01 1.035260E-01 1000000E-01
8.000E-02 9.999866E-01 5.007206E-01 1.042983E-01 1000000E-01
9.000E-02 9.999928E-01 5.013920E-01 1.052375E-01 1000000E-01
1.000E-01 9.999962E-01 5.026331E-01 1.063785E-01 1000000E-01
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GEAR REVISED INTEGRATION RULE
IMPLICIT ADAMS METHOD 10

N = 50 EPS = 1.0E-05 DTMIN = 1.0E-08

T

O.OOOE+OO
1.000E-02
2.000E-02
3.000E-02
4.000E-02
5.000E-02
6.000E-02
7.000E-02
8.000E-02
9.000E-02
1.000E-Ol

Y( 10) ye 20) ye 30) ye 40)

9.980193E-01 4. 997803E-01 1.008753E-01 1.000000E-Ol
9.974571E-Ol 4. 997443E-Ol 1.010197E-Ol 1.000000E-Ol
9.967867E-Ol 4.997027E-Ol 1.011852E-Ol 1.000000E-Ol
9.960123E-Ol 4.996550E-Ol 1.013732E-Ol 1.000000E-Ol
9.951400E-01 4. 996004E-Ol 1.015847E-01 1.000000E-01
9.941776E-01 4.995386E-Ol 1.018202E-01 1.000000E-Ol
9.931332E-Ol 4. 994689E-01 1.020802E-Ol 1.000000E-Ol
9.920153E-Ol 4.993912E-Ol 1.023648E-Ol 1.000000E-Ol
9.908325E-Ol 4.993050E-Ol 1.026736E-Ol 1.000000E-Ol
9.895930E-Ol 4.992103E-Ol 1.030062E-01 1.000000E-01
9.883046E-Ol 4.991069E-Ol 1.033622E-Ol 1.000000E-Ol

COMPUTING TIME WAS 11 S
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GEAR REVISED INTEGRATION RULE
GEAR STIFFLY STABLE METHOD 22

N = 50 EPS = 1.0E-05 DTMIN = 1.0E-08

T y( 10) y( 20) Y( 30) Y( 40)

O.OOOE+OO 9.980193E-01 4.997803E-01 1.008753E-01 1.000000E-01
1.000E-02 9.974571E-01 4. 997443E-01 1.010197E-01 1.000000E-01
2.000E-02 9.967868E-01 4.997027E-01 1.011852E-01 1.000000E-01
3.000E-02 9.960123E-01 4.996550E-01 1.013732E-01 1.000000E-01
4.000E-02 9.951401E-01 4.996004E-01 1.015846E-01 1.000000E-01
5.000E-02 9.941776E-01 4. 995386E-01 1.018202E-01 1.000000E-01
6.000E-02 9.931332E-01 4.994689E-01 1.020802E-01 1.000000E-01
7.000E-02 9.920153E-01 4.993912E-01 1.023647E-01 1.000000E-01
8.000E-02 9.908325E-01 4.993050E-01 1.026735E-01 1.000000E-01
9.000E-02 9.895929E-01 4.992103E-01 1.030062E-01 1.000000E-01
1.000E-01 9.883045E-01 4.991069E-01 1.033622E-01 1.000000E-01

COMPUTING TIME WAS 75 S
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GEAR REVISED INTEGRATION RULE
GEAR STIFFLY STABLE METHOD 23

N = 50 EPS = 1.0E-05 DTMIN = 1.0E-08

T Y( 10) y( 20) y( 30) y( 40)

O.OOOE+OO 9.980193E-01 4.997803E-01 1.008753E-01 1.000000E-01
1.000E-02 9.974571E-01 4. 997443E-01 1.010197E-01 1.000000E-01
2.000E-02 9.967870E-01 4. 997027E-01 1.011852E-01 1.000000E-01
3.000E-02 9.960127E-01 4.996550E-01 1.013732E-01 1.000000E-01
4.000E-02 9.951404E-01 4.996004E-01 1.015846E-01 1.000000E-01
5.000E-02 9.941779E-01 4.995386E-01 1.018202E-01 1.000000E-01
6.000E-02 9.931334E-01 4. 994689E-01 1.020802E-01 1.000000E-01
7.000E-02 9.920155E-01 4.993912E-01 1.023647E-01 1.000000E-01
8.000E-02 9.908327E-01 4.993050E-01 1.026735E-01 1.000000E-01
9.000E-02 9.895931E-01 4.992103E-01 1.030062E-01 1.000000E-01
1.000E-01 9.883047E-01 4.991069E-01 1.033622E-01 1.000000E-01

COMPUTING TIME WAS 10 S

8



GEAR REVISED INTEGRATION RULE
GEAR STIFFLY STABLE METHOD 21

N = 50 EPS= 1.0E-05 DTMIN = 1.0E-08

T Y( 10) Y( 20) Y( 30) y( 40)

O.OOOE+OO 9.980193E-01 4. 997803E-01 1.008753E-01 1.000000E-01
1.000E-02 9.974571E-01 4. 997443E-01 1.010197E-01 1.000000E-01
2.000E-02 9.967868E-01 4.997027E-01 1.011852E-01 1.000000E-01
3.000E-02 9.960124E-01 4.996550E-01 1.013732E-01 1.000000E-01
4.000E-02 9.951402E-01 4.996004E-01 1.015846E-01 1.000000E-01
5.000E-02 9.941777E-01 4.995386E-01 1.018202E-01 1.000000E-01
6.000E-02 9.931333E-01 4. 994689E-01 1.020802E-01 1.000000E-01
7.000E-02 9.920153E-01 4.993912E-01 1.023647E-01 1.000000E-01
8.000E-02 9.908325E-01 4.993050E-01 1.026735E-01 1.000000E-01
9.000E-02 9.895930E-01 4.992103E-01 1.030062E-01 1.000000E-01
1.000E-01 9.883046E-01 4.991069E-01 1.033622E-01 1.000000E-01

COMPUTING TIME WAS 46 S
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FOURTH ORDER RUNGE-KUTTA METHOD

N = 50 H = 1.0E-05

T yC 10) yC 20) yC 30) yC 40)

O.OOOE+OO 9.980193E-Ol 4.997803E-Ol 1.008753E-Ol 1.000000E-Ol
1.000E-02 9.974564E-Ol 4. 997443E-Ol 1.010199E-Ol 1.000000E-Ol
2.000E-02 9.967860E-Ol 4. 997027E-Ol 1.011854E-Ol 1.000000E-Ol
3.000E-02 9.960114E-Ol 4.996549E-Ol 1.013734E-Ol 1.000000E-Ol
4.000E-02 9.951400E-Ol 4.996004E-Ol 1.015847E-Ol 1.000000E-Ol
5.000E-02 9.941776E-Ol 4.995386E-Ol 1.018202E-Ol 1.000000E-Ol
6.000E-02 9.931332E-Ol 4.994689E-Ol 1.020802E-Ol 1.000000E-Ol
7.000E-02 9.920153E-Ol 4.993912E-Ol 1.023648E-Ol 1.000000E-Ol
8.000E-02 9.908325E-Ol 4.993050E-Ol 1.026736E-Ol 1.000000E-Ol
9.000E-02 9.895917E-Ol 4.992102E-Ol 1.030066E-Ol 1.000000E-Ol
1.000E-Ol 9.883033E-Ol 4.991068E-Ol 1.033626E-Ol 1.000000E-Ol

COMPUTING TIME WAS 1787 S

*** END OF NUMERICAL RESULTS FOR EXAMPLE 4.3 ***
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*** NUMERICAL RESULTS FOR EXAMPLE 5.3.1 CA) ***

EXACT SOLUTION

N = 60

T Y(10) Y(20) Y(30) Y(40)

O.OOOE+OO -2. 580897E-01 -6. 117728E-01 -9.829112E-01 -1.236824E+00
1.000E-02 -2.606835E-01 -6.179212E-01 -9.927897E-01 -1.249254E+00
2.000E-02 -2.633034E-01 -6.241314E-01 -1.002767E+00 -1.261810E+00
3.000E-02 -2.659497E-01 -6.304041E-01 -1.012845E+00 -1.274491E+00
4.000E-02 -2.686225E-01 -6.367397E-01 -1.023024E+00 -1.287300E+00
5.000E-02 -2.713222E-01 -6.431391E-01 -1.033306E+00 -1.300238E+00
6.000E-02 -2.740490E-01 -6.496027E-01 -1.043691E+00 -1.313305E+00
7.000E-02 -2.768033E-01 -6.561313E-01 -1.054180E+00 -1.326504E+00
8.000E-02 -2.795852E-01 -6.627256E-01 -1.064775E+00 -1.339836E+00
9.000E-02 -2.823951E-01 -6.693861E-01 -1.075476E+00 -1.353301E+00
1.000E-01 -2.852332E-01 -6.761135E-01 -1.086284E+00 -1.366902E+00
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GEAR REVISED INTEGRATION RULE
GEAR STIFFLY STABLE METHOD 22

N = 60 EPS = 1.0E-05 DTMIN = 1.0E-15

T YC 10) yC 20) yC 30) yC 40)

O.OOOE+OO -2.580897E-01 -6.117728E-01 -9.829112E-01 -1.236825E+00
1.000E-02 -2.606821E-01 -6.179184E-01 -9.927845E-01 -1.249246E+00
2.000E-02 -2.633005E-01 -6.241257E-01 -1.002757E+00 -1.261792E+00
3.000E-02 -2.659453E-01 -6.303953E-01 -1.012829E+00 -1.274463E+00
4.000E-02 -2.686166E-01 -6.367279E-01 -1.023003E+00 -1.287262E+00
5.000E-02 -2.713148E-01 -6.431241E-01 -1.033279E+00 -1.300190E+00
6.000E-02 -2.740401E-01 -6.495845E-01 -1.043658E+00 -1.313247E+00
7.000E-02 -2.767927E-01 -6.561098E-01 -1.054141E+00 -1.326435E+00
8.000E-02 -2.795731E-01 -6.627006E-01 -1.064729E+00 -1.339756E+00
9.000E-02 -2.823814E-01 -6.693575E-01 -1.075424E+00 -1.353211E+00
1.000E-Ol -2.852179E-Ol -6.760814E-Ol -1.086226E+00 -1.366801E+00

COMPUTING TIME WAS 107 S
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N = 60

PDEMGS

EPS = 1.0E-05 NFI= 10 DTMIN= 1.0E-15

T
O.OOOE+OO
1.000E-02
2.000E-02
3.000E-02
4.000E-02
5.000E-02
6.000E-02
7.000E-02
8.000E-02
9.000E-02
1.000E-01

YC 10) YC 20)
-2.580897E-01 -6.117728E-01
-2.606820E-01 -6.179183E-01
-2.633003E-01 -6.241252E-01
-2.659450E-01 -6.303946E-01
-2.686163E-01 -6.367270E-01
-2.713187E-01 -6.431226E-01
-2.740394E-01 -6.495826E-01
-2.767922E-01 -6.561077E-01
-2.795723E-01 -6.626982E-01
-2.823807E-01 -6.693550E-01
-2.852174E-01 -6.760785E-01

YC 30)
-9.829112E-01
-9.927843E-01
-1.002756E+00
-1.012828E+00
-1.023001E+00
-1.033276E+00
-1.043655E+00
-1.054137E+00
-1.064726E+00
-1.075420E+00
-1.086221E+00

YC 40)
-1.236825E+00
-1.249246E+00
-1.261790E+00
-1.274462E+00
-1.287260E+00
-1.300186E+00
-1.313243E+00
-1.326431E+00
-1.339751E+00
-1.353205E+OO
-1.366792E+OO

COMPUTING TIME WAS 10 S

*** END OF NUMERICAL RESULTS FOR EXAMPLE 5.3.1 CA) ***
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Appendix B

Computer Programs TRAP
and RK4

PROGRAM TRMAIN
C

C ----------------------------------------------------
C

C MAIN PROGRAM FOR SOLVING THE SYSTEM AY' (T)=F(T,Y) IN
C EXAMPLE 2.5 THIS PROGRAM CALLS THE DRIVER ROUTINE
C TRAP WHICH IS RESPONSIBLE FOR PERFORMING THE
C INTEGRATION. THIS PROGRAM IS ALSO RESPONSIBLE FOR
C THE INITIALISATION OF PARAMETERS REQUIRED BY TRAP
C AND SETTING OF THE INITIAL CONDITIONS
C

C -----------------------------------------------------
C

C SEE DRIVER ROUTINE TRAP FOR DEFINITION OF PARAMETERS
C

c -----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/SYSVAR/N,A(3,3),YO(3),TO
COMMON/STATE1/H,ITERMAX
COMMON/OTHER/DTOUT,TMAX,NCOL1,NCOL2,NCOL3,TNEXT
DATA N,TO/3,O.DO/
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DATA H,ITERMAX/0.01DO,10/
DATA YO/1.DO,0.DO,-1.DO/
DATA A/-21,19,40,19,-21,-40,-20,20,-40/
DATA TMAX,DTOUT/1.1DO,1.D-1/
DATA NCOL1,NCOL2,NCOL3/1,2,3/

C

WRITE(*,100)
100 FORMAT(3X,'IMPLICIT TRAPEZOIDAL RULE')

WRITE(*,*)'H = ',H
WRITE(*,200) NCOL1,NCOL2,NCOL3

200 FORMAT (/5X, ,T' , 10X, ,Y( , ,13, , ) , ,8X, ,Y( , ,13, , ) , ,8X,
* 'Y(',I3,')'/)
WRITE(*,201) TO,YO(NCOL1),YO(NCOL2),YO(NCOL3)

201 FORMAT(1PE10.3,5(1X,1PE13.6))
TNEXT=TO+DTOUT

C

C CALL DRIVER ROUTINE TRAP
C

CALL TRAP
C

END
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SUBROUTINE TRAP

A
N
H

YO

PARAMETERS ARE :

- THE N X N MATRIX OF COEFFICIENTS
- NUMBER OF EQUATIONS
- TIMESTEP
- VECTOR OF DIMENSION N CONTAINING THE

INITIAL CONDITIONS. THE SOLUTION VECTOR
IS RETURNED IN THIS VECTOR

TO - INITIAL TIME
ITERMAX - MAXIMUM NUMBER OF NEWTON ITERATIONS
RJ - N X N JACOBIN MATRIX
DTOUT - INTERVALS FOR PRINTING OF OUTPUT

RESULTS
TMAX - FINAL TIME
NCOL1 ... - COLUMNS FOR OUTPUT.

SUBROUTINE TRAP :
THIS ROUTINE IS THE DRIVER

ROUTINE FOR INTEGRATING THE SYSTEM AY' (T)=F(T,Y)
IN EXAMPLE 2.5. THE ROUTINE IMPLEMENTS THE
IMPLICIT TRAPEZOIDAL RULE USING A GENERALISED
NEWTON'S ITERATION PROCEDURE. A STARTING
APPROXIMATION FOR THE ITERATION IS OBTAINED USING
EULER'S METHOD. AN EXACT JACOBIAN MATRIX WAS
SUPPLIED AND THE ALGEBRAIC SYSTEM RESULTING FROM
IMPLICIT INTEGRATION WAS SOLVED USING LU
DECOMPOSITION.

c
C
C
C

C -----------------------------------------------------
C

C

C -----------------------------------------------------
C
C
C
C

C
C
C

C

C

C

C

C
C
C ----------------------------------------------------
C

C

C
C
C
C
C

C
C
C

C
C
C
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IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/SYSVAR/N,A(3,3),YO(3),TO
COMMON/STATE1/H,ITERMAX
COMMON/STATE2/FPYB(3,3),RL(3,3),RU(3,3)
COMMON/STATE3/FYB(3),X(3)
COMMON/STATE4/RJ(3,3)
COMMON/OTHER/DTOUT,TMAX,NCOL1,NCOL2,NCOL3,TNEXT
DIMENSION ID(3,3),YB(3),DY(3),DYOLD(3)

C
DO 50 I=1,N
DO 60 J=1,N
ID(I,I)=1.DO
IF (I.NE.J) THEN
ID(I,J)=O.DO
ENDIF

60 CONTINUE
50 CONTINUE

C GET INITIAL APPROXIMATION FOR NEWTON ITERATION
C USING EULER'S METHOD

CALL DIFEQ(N,TO,A,YO,DY)
DO 10 I=1,N
YB(I)=YO(I)+H*DY(I)

CONTINUE

CONTINUE
DO 200 ITER=1,ITERMAX
00 30 I=l,N
OYOLO(I)=OY(I)
CONTINUE
Tl=TO+H
CALL DIFEQ(N,Tl,A,YB,DY)
00 40 I=l,N
FYB(I)=YB(I)-YO(I)-(H/2.DO)*DYOLD(I)-(H/2.DO)*DY(I)

10
C

C BEGIN NEWTON ITERATION
C
20

30
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DO 70 I=1,N
DO 80 J=1,N
FPYB(I,J)=ID(I,J)-(H/2.DO)*RJ(I,J)
CONTINUE
CONTINUE

FYB(I)=-FYB(I)
40 CONTINUE
C
C COMPUTE THE JACOBIAN MATRIX
C

CALL RJAC
C

80
70
C

C SOLVE THE LINEAR ALGEBRAIC SYSTEM IN NEWTON'S METHOD
C

CALL LUDC
CALL SOLVE

C

DO 90 I=1,N
90 YB(I)=YB(I)+X(I)
200 CONTINUE

DO 100 I=1,N
YO(I)=YB(I)

100 CONTINUE
IF (TO.GE.TNEXT) THEN
WRITE(*,201) TO,YO(NCOL1),YO(NCOL2),YO(NCOL3)
TNEXT=TNEXT+DTOUT
ENDIF
TO=TO+H
CALL DIFEQ(N,TO,A,YO,DY)
IF(TO.LE.TMAX) GOTO 20

201 FORMAT(1PE10.3,5(1X,1PE13.6))
C

RETURN
END
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SUBROUTINE LUDC :
THIS SUBROUTINE COMPUTES THE L

AND U TRIANGULAR MATRICES EQUIVALENT TO THE
MATRIX A, SUCH THAT LU=A.

PARAMETERS ARE :
RP - THE N X N MATRIX TO BE REDUCED
N - DIMENSION OF COEFFICIENT MATRIX RP
RL - REDUCED LOWER TRIANGULAR FORM OF A
RU - REDUCED UPPER TRIANGULAR FORM OF A

SUBROUTINE LUDC
C

C -----------------------------------------------------
C
C
C
C
C

C

C -----------------------------------------------------
C
C

C
C
C
C

C

C -----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON/SYSVAR/N,A(3,3),YO(3),TO
COMMON/STATE2/RP(3,3),RL(3,3),RU(3,3)

C
C FIRST FIRST COLUMN OF L EQUALS FIRST COLUMN OF A
C

DO 10 I=l,N
10 RL(I,l)=RP(I,l)
C
C IF DIAGONAL ELEMENT VERY SMALL PRINT ERROR MESSAGE
C AND RETURN
C

IF (ABS(RP(1,1)).LT.l.D-5) THEN
WRITE(*,100)
RETURN

ENDIF
C
C
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C COMPUTE ELEMENTS FOR FIRST ROW OF U
C

DO 20 J=1,N
20 RU(1,J)=RP(1,J)/RL(1,1)
C
C COMPLETE COMPUTING THE LAND U ELEMENTS. THE IDEA IS
C TO COMPUTE A COLUMN OF L'S, AND THEN A ROW OF U'S.
C

DO 30 J=2,N
C
C FIRST COMPUTE A COLUMN OF L'S
C

DO 40 I=J,N
SUM1=0.DO
DO 50 K=1,J-1
SUM1=SUM1+RL(I,K)*RU(K,J)
CONTINUE

RL(I,J)=RP(I,J)-SUM1
CONTINUE

50

40
C

C TEST FOR TOO SMALL DIAGONAL ELEMENT
C

IF (ABS(RP(J,J)).LT.1.D-5) THEN
WRITE(*,100)
RETURN

ENDIF
C

C NOW GET A ROW OF U'S
C

RU(J,J)=1.DO
DO 60 I=J+1,N

SUM2=0.DO
DO 80 K=1,J-1
SUM2=SUM2+RL(J,K)*RU(K,I)

80 CONTINUE
RU(J,I)=(RP(J,I)-SUM2)/RL(J,J)

60 CONTINUE
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30 CONTINUE
C

100 FORMAT(/,' VERY SMALL DIAGONAL ELEMENT INDICATES',
*'A NEARLY SINGULAR MATRIX.')

C

RETURN
END
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SUBROUTINE SOLVE

SUBROUTINE SOLVE :
THIS SUBROUTINE IS USED TO FIND

THE SOLUTION TO A SYSTEM OF EQUATIONS, AX = B,
AFTER THE LAND U MATRICES OF A HAS BEEN FOUND.
THE SOLUTION IS RETURNED IN THE VECTOR X.

c
c
c

C

C -----------------------------------------------------
C

C
C

PARAMETERS ARE :
RL - REDUCED LOWER TRIANGULAR FORM OF A
RU - REDUCED UPPER TRIANGULAR FORM OF A
N - DIMENSION OF A
B - THE VECTOR OF RIGHT HAND SIDES
X - SOLUTION VECTOR

C

C -----------------------------------------------------
C
C

C
C

C

C

C
C

C -----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
COMMON/SYSVAR/N,A(3,3),YO(3),TO
COMMON/STATE2/RP(3,3),RL(3,3),RU(3,3)
COMMON/STATE3/B(3),X(3)

C

C COMPUTE THE B VECTOR
C

B(1)=B(1)/RL(1,1)
DO 10 I=2,N
SUM1=0.dO
DO 20 K=l,I-l
SUM1=SUM1+RL(I,K)*B(K)

20 CONTINUE
B(I)=(B(I)-SUM1)/RL(I,I)

10 CONTINUE
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C
C COMPUTE THE SOLUTION VECTOR
C

X(N)=B(N)
DO 30 J=N-1,1,-1
SUM2=0.dO
DO 40 K=J+1,N
SUM2=SUM2+RU(J,K)*X(K)

40 CONTINUE
X(J)=B(J)-SUM2

30 CONTINUE
C

RETURN
END
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SUBROUTINE RJAC

SUBROUTINE CONTAINING THE
ELEMENTS OF THE JACOBIAN MATRIX J. THE USER IS
REQUIRED TO SUPPLY AN ANALYTIC JACOBIAN MATRIX.

SUBROUTINE RJAC :

c
c

C

C -----------------------------------------------------
C

C
C

C

C -----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/SYSVAR/N,A(3,3),YO(3),TO
COMMON/STATE4/RJ(3,3)

DO 10 I=l,N
DO 20 J=l,N
RJ(I,J)=A(I,J)

20 CONTINUE
10 CONTINUE

RETURN
C

END
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THIS SUBROUTINE EVALUATES THE
RIGHT HAND SIDE OF THE SYSTEM AY'=F. THE RIGHT
HAND SIDE VECTOR IS RETURNED IN THE VECTOR DY.

c
c

SUBROUTINE DIFEQ(N,T,A,Y,DY)
C -----------------------------------------------------
C SUBROUTINE DIFEQ :
C

C

C -----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(3,3),Y(3),DY(3)

DO 10 I=1,N
10 DY(I)=O.DO

DO 20 I=1,N
DO 30 J=1,N
DY(I)=DY(I)+A(I,J)*Y(J)

30 CONTINUE
20 CONTINUE
C

RETURN
END
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PARAMETERS ARE :
TO - CURRENT TIME
N - NUMBER OF EQUATIONS
Y - SOLUTION VECTOR
DT - TIME STEP
TMAX - FINAL TIME
DTOUT - INTERVALS FOR PRINTING OF RESULTS
NCOL1 ... - COLUMNS FOR OUTPUT

PROGRAM RKMAIN
C

C -----------------------------------------------------
C
C MAIN PROGRAM FOR SOLVING THE SYSTEM AY'(T) = F(T,Y)IN
C EXAMPLE 2.5. THIS PROGRAM CALLS THE DRIVER ROUTINE
C RK4 WHICH PERFORMS THE INTEGRATION. THE
C INITIALISATION OF THE REQUIRED PARAMETERS AND SETTING
C OF THE INITIAL CONDITIONS IS ALSO DONE HERE.
C
C -----------------------------------------------------
C
C

C
C
C
C
C
C
C
C

C ----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /SYSVAR/ T,TMAX,TNEXT,DT
COMMON /STATE1/ N,Y(200),GN(200)
DATA N,TO,DT/3,O.DO,O.01DO/
DATA TMAX,DTOUT/1.DO,O.1DO/
DATA NCOL1,NCOL2,NCOL3/1,2,3/

C

DK = 1.DO
TNEXT = TO+DTOUT

c
CALL INIT(N,Y)
CALL DIFEQ2
WRITE(*,102)
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102 FORMAT(3X,'FOURTH ORDER RUNGE-KUTTA METHOD')
WR1TE(*,*)' DT = ',DT
WR1TE(*,*) NCOL1,NCOL2,NCOL3

2 FORMAT(/5X,' T',10X,'Y(',13,')',8X,'Y(',13,')',
* 8X,'Y(' ,13,')'/)
WRITE(*,201) T,Y(NCOL1),Y(NCOL2),Y(NCOL3)

201 FORMAT(1PE10.3,3(1X,1PE13.6))
C
10 CONTINUE

CALL RK4
1F(T.GE.TNEXT) THEN
WR1TE(*,201) T,Y(NCOL1),Y(NCOL2),Y(NCOL3)
TNEXT = TNEXT+DTOUT
END1F
1F(T.LE.TMAX) GOTO 10

C

END
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SUBROUTINE RK4 :

PARAMETERS ARE :
T - CURRENT TIME
DT - STEPSIZE
N - NUMBER OF EQUATIONS
Y - SOLUTION VECTOR

DRIVER ROUTINE FOR INTEGRATING
A SYSTEM AY'(T)=F(T,Y). THE FOURTH ORDER RUNGE­
KUTTA METHOD WITH FIXED STEPSIZE IS IMPLEMENTED.

SUBROUTINE RK4
C

C ----------------------------------------------------
C
C

C

C
C
C

C ----------------------------------------------------
C

C

C

C

C
C
C

C ----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION YOLD(200) ,RK1(200) ,RK2(200) ,RK3(200)
COMMON/SYSVAR/ T,TMAX,TNEXT,DT
COMMON/STATE1/ N,Y(200),GN(200)

C

TINIT=T
SIXTH=1.DO/6.DO
S=DT/2.DO

C CALCULATE FIRST DERIVATIVE
C

CALL DIFEQ2
DO 10 I=1,N

C

YOLD(I)=Y(I)
RK1(I)=GN(I)*S
Y(I)=YOLD(I)+RK1(I)

C
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10 CONTINUE
C
C CALCULATE SECOND DERIVATIVE
C

T=T+S
C

CALL DIFEQ2
DO 20 I=l,N

C
RK2(I)=GN(I)*S
Y(I)=YOLD(I)+RK2(I)

C
20 CONTINUE

C CALCULATE THIRD DERIVATIVE
CALL DIFEQ2
DO 30 I=l,N

RK3(I)=GN(I)*DT
Y(I)=YOLD(I)+RK3(I)

30 CONTINUE
C
C CALCULATE FOURTH DERIVATIVE
C

T=T+S
C

CALL DIFEQ2
C
C FINAL ESTIMATE
C

DO 40 I=l,N

GN(I)=GN(I)*DT
Y(I)=SIXTH*(2.DO*(RK1(I)+RK3(I))+4.DO*RK2(I)

* +GN(I))+YOLD(I)

40 CONTINUE
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T=TINIT+DT

RETURN
END

30



SUBROUTINE DIFEQ2 :
CONTAINS THE RIGHT HAND SIDE

OF THE SYSTEM AY'(T) = F(T,Y) IN EXAMPLE 2.5.

SUBROUTINE DIFEQ2
C

C -----------------------------------------------------
C

C

C

C

C

C -----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /SYSVAR/ T,TMAX,TNEXT,DT
COMMON /STATE1/N,Y(200),DY(200)
DIMENSION A(3,3)

A(1,1) = -21.dO
A(1,2) = 19.dO
A(1,3) = -20.dO
A(2,1) = 19.dO
A(2,2) = -21.dO
A(2,3) = 20.dO
A(3,1) = 40.dO
A(3,2) = -40.dO
A(3,3) = -40.dO

DO 10 I=1,N
10 DY(I)=O.DO

DO 20 I=1,N
DO 30 J=1,N
DY(I)=DY(I)+A(I,J)*Y(J)

30 CONTINUE
20 CONTINUE
C

RETURN
END
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SUBROUTINE INIT(N,Y)
C ----------------------------------------------------
C

C SUBROUTINE INIT
C CONTAINS THE VECTOR OF INITIAL
C CONDITIONS.
C

C -----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION YeN)

Y(1)=1.dO
Y(2)=O.dO
Y(3)=-1.dO

C

RETURN
END
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S

FI
V
YVAL

Appendix C

Portion of Program MGS2

Portion of computer code shown below replaces the main loop in MGSl. The
user should insert a dimension statement of the form
DIMENSION FIOLD(20), VOLD(200)
The variables in the code below have the following meanings

NORDR1 - NUMBER OF AMPLITUDE EQUATIONS
NORDR2 - NUMBER OF SHAPE EQUATIONS
L - NUMBER OF TIME STEPS IN AMPLITUDE EQUATIONS

- FOR ONE STEP IN SHAPE EQUATIONS
- ITERATION NUMBER FOR INNER ITERATIONS
- AMPLITUDE FUNCTION
- SHAPE VECTOR
- SOLUTION VECTOR

C ****** BEGINNING OF MAIN LOOP FOR MGS2 ******
C

DO 11 I=1)NORDR1
11 FIOLD(I)=FI(I)

C=O
TOLD=T
T20LD=T2
S=O
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15 CONTINUE
C=C+1

C

C ------------------------------------------------
C

CALL RK4
C

C ------------------------------------------------
C

IF(C.LT.L) GOTO 15
C=O
IF(S.EQ.O) THEN
00 14 I=1,NORDR1

FI1(I)=FI(I)
FI(I)=(FIOLO(I)+FI(I))/2

14 CONTINUE
00 12 I=1,NOROR2

12 VOLO(I)=V(I)
ENOIF

IF (S.EQ.1) THEN
00 16 I=1,NOROR2

16 V(I)=VOLO(I)
00 19 I=1,NOROR1

19 FI(I)=(FI1(I)+FI(I))/2
ENOIF

C

C ------------------------------------------------
C

CALL RK2
C

C ------------------------------------------------
C

S=S+1
IF(S.EQ.1) THEN

T=TOLO
T2=T20LO
00 35 I=1,NORDR1
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35 FI(I)=FIOLD(I)
DO 36 I=1,NORDR2

V(I)=(VOLD(I)+V(I))/2
36 CONTINUE

GOTO 15
ELSE

S=O
TOLD=T
T20LD=T2
DO 17 I=1,NORDR1

17 FIOLD(I) = FI(I)
ENDIF

C
IF( T.GE.TNEXT)THEN
DO 140 J=1,M
DO 140 I=1+(J-1)*K,J*K

140 YVAL(I) = FI(J)*V(I)
WRITE(*,999)T,YVAL(NCOL1),YVAL(NCOL2),

*YVAL(NCOL3),YVAL(NCOL4),YVAL(NCOL5)
999 FORMAT(1PE10.3,5(1X,1PE13.6))

WRITE(2,9991)T,FI(1),FI(2),DT,V(10),
* V(40),DT2

9991 FORMAT(1PE10.3,2(1X,1PE12.5),1PE8.1,2(1X,1PE12.5),
*1PE8.1)

DK=DK+1.DO
TNEXT=DK*DTOUT
ENDIF
IF(T.LT.TMAX) GOTO 15

C

C ********** END OF MAIN LOOP FOR MGS2 **********
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Appendix D

PDEMGS and User Defined
Routines

SUBROUTINE PDEMGS(NPDE,MPTS,T,Y,DY)

REFERENCES

SUBROUTINE PDEMGS :

[1] KOZAKIEWICZ, J.M., MIKA, J.R., MULTIGRID
METHOD FOR NUMERICAL SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS, UNIVERSITY OF NATAL, DEPT.
OF MATHEMATICS AND APPLIED MATHEMATICS, DURBAN,
SOUTH AFRICA, 1991.

PDEMGS IS AN INTERFACE
ROUTINE WHICH USES CENTRED DIFFERENCE
APPROXIMATIONS TO CONVERT ONE-DIMENSIONAL SYSTEMS
OF PARTIAL DIFFERENTIAL INTO A SYSTEM OF ORDINARY
DIFFERENTIAL EQUATIONS, DY = F(T,X,Y). THIS
ROUTINE IS INTENDED TO BE USED WITH MGS [lJ.

C
C This is DOUBLE PRECISION version !

C -----------------------------------------------------
C

C

C

C

C
C

C

C
C

C

C
C

C

C

C

C

C

C
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THE COMMON BLOCK MESH CONTAINS THE USER SPECIFIED
SPATIAL MESH POINTS AND THE MESHSIZE H.

THE OUTPUT PARAMETERS ARE :
DY = AN NPDE*MPTS ARRAY CONTAINING THE RIGHT

HAND SIDE OF THE RESULTING SYSTEM OF ODES,
F(T,X,Y), OBTAINED BY DISCRETISING THE
GIVEN PDEs.

THE INPUT PARAMTERS ARE :
NPDE = NUMBER OF PARTIAL DIFFERENTIAL EQUATIONS.
MPTS = NUMBER OF SPATIAL GRID POINTS.

T = CURRENT VALUE OF TIME.
Y = AN NPDE*MPTS ARRAY CONTAINING THE

COMPUTED SOLUTION AT TIME T.

THE USER IS RQUIRED TO INSERT DIMENSION STATEMENTS
OF THE FOLLOWING FORM :

DIMENSION U(**), UX(**), UXX(**), UDOT(**)
DIMENSION ALPHA(**), BETA(**), GAMMA(**)

THE SYMBOLS ** DENOTE THE ACTUAL VALUE OF THE NPDE
FOR THE PROBLEM BEING SOLVED.

C -----------------------------------------------------
C
C
C
C

C

C

C
C

C

C
C
C

C

C
C

C

C

C
C

C
C
C

C
C

C ----------------------------------------------------
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/MESH/X(100),H
DIMENSION Y(200) , DY(200)
DIMENSION U(2) ,UX(2),UXX(2) ,UDOT(2)
DIMENSION ALPHA(2) ,BETA(2) ,GAMMA (2)

C

C ----------------------------------------------------
C
C UPDATE THE LEFT BOUNDARY VALUES
C
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DO 10 K=1,NPDE
L=(K-1)*MPTS
U(K)=Y(1+L)

10 CONTINUE
CALL BNDRY(T,X(1),U,ALPHA,BETA,GAMMA,NPDE)
KTEST=O
DO 20 K=1,NPDE

L=(K-1)*MPTS
IF (BETA(K).NE.O.DO) GOTO 20
Y(1+L)=GAMMA(K)/ALPHA(K)
KTEST=KTEST+1

20 CONTINUE
IF (KTEST.EQ.NPDE) GOTO 80

C
C FORM APPROXIMATIONS TO UX AT THE LEFT BOUNDARY
C

DD 40 K=1,NPDE
L=(K-1)*MPTS
IF(BETA(K).NE.O.DO) GoTo 30
UX(K)=(Y(2+L)-Y(1+L))/2*H
GoTO 40
UX(K)=(GAMMA(K)-ALPHA(K)*Y(1+L))/BETA(K)

CONTINUE
30
40
C

C FORM APPROXIMATIONS TO UXX AT THE LEFT BOUNDARY
C

DD 60 K=1,NPDE
L=(K-1)*MPTS
IF (BETA(K).NE.O.DO) GOTO 50
UXX(K)=(2.DO/H**2)*(Y(2+L)-Y(1+L))
GOTO 60
UXX(K)=(2.DO/H)*«Y(2+L)-Y(1+L))/H -

* (GAMMA(K)-ALPHA(K)*Y(1+L))/BETA(K))
CONTINUE

50

60
C

C EVALUATE RIGHTHAND SIDE OF PDEs AT THE LEFT BOUNDARY
C
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DO 90 K=1,NPDE
L=(K-1)*MPTS
IF(BETA(K).EQ.O.DO) DY(1+L)=0.DO

CONTINUE

CALL F(T,X(1),U,UX,UXX,UDOT,NPDE)
DO 70 K=1,NPDE

L=(K-1)*MPTS
DY(1+L)=UDOT(K)

CONTINUE

90
C
C UPDATE THE RIGHT BOUNDARY VALUES
C

70
C
C SET DY=O FOR KNOWN LEFT BOUNDARY VALUES
C
80

DO 100 K=1,NPDE
L=K*MPTS
U(K)=Y(L)

CONTINUE
CALL BNDRY(T,X(MPTS),U,ALPHA,BETA,GAMMA,NPDE)
KTEST=O
DO 110 K=1,NPDE

L=K*MPTS
IF (BETA(K).NE.O.DO) GOTO 110
Y(L)=GAMMA(K)/ALPHA(K)
KTEST=KTEST+1

CONTINUE110
C

C -----------------------------------------------------
C
C MAIN LOOP TO FORM ORDINARY DIFFERENTIAL EQUATIONS AT
C THE GRID POINTS.
C

100

DO 130 I=2,MPTS-1
DO 120 K=1,NPDE

L=(K-1)*MPTS
U(K)=Y(I+L)
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C
C EVALUATE UX AT THE I-TH GRID POINT
C

UX(K)=(Y(I+1+L)-Y(I-1+L))/(2.DO*H)
C
C EVALUATE UXX AT THE I-TH GRID POINT

UXX(K)=(Y(I+1+L)-2.DO*Y(I+L)+Y(I-1+L))/(H**2)
120 CONTINUE
C
C EVALUATE RIGHTHAND SIDE OF PDEs AT THE I-TH GRID POINT
C

CALL F(T,X(I),U,UX,UXX,UDOT,NPDE)
DO 140 K=1,NPDE

L=(K-1)*MPTS
DY(I+L)=UDOT(K)

140 CONTINUE
130 CONTINUE

IF(KTEST.EQ.NPDE) GOTO 210
C

C -----------------------------------------------------
C

C FINISH UPDATING RIGHT BOUNDARY IF NECESSARY
C

DO 150 K=1,NPDE
L=K*MPTS
U(K)=Y(L)

150 CONTINUE
CALL BNDRY(T,X(MPTS),U,ALPHA,BETA,GAMMA,NPDE)

C

C FORM APPROXIMATIONS TO UX AT RIGHT BOUNDARY
C

DO 170 K=1,NPDE
L=K*MPTS
IF(BETA(K).NE.O.DO) GOTO 160
UX(K)=(Y(L)-Y(L-1))/2*H
GOTO 170
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160 UX(K)=(GAMMA(K)-ALPHA(K)*Y(L))/BETA(K)
170 CONTINUE
C
C FORM APPROXIMATIONS TO UXX AT RIGHT BOUNDARY
C

DO 190 K=l,NPDE
L=K*MPTS
IF(BETA(K).NE.O.DO) GOTO 180
UXX(K)=(2/H**2)*(Y(L-l)-Y(L))
GOTO 190
UXX(K)=(2.DO/H)*«Y(L-l)-Y(L))/H+

* (GAMMA(K)-ALPHA(K)*Y(L))/BETA(K))
CONTINUE190

C
C EVALUATE UXX AT RIGHT BOUNDARY
C

180

SET DY =0 FOR KNOWN BOUNDARY VALUES

DO 220 K=l,NPDE
L=K*MPTS
IF(BETA(K).EQ.O.DO) DY(L)=O.DO

CONTINUE

CALL F(T,X(MPTS),U,UX,UXX,UDOT,NPDE)
DO 200 K=l,NPDE
L=K*MPTS
DY(L)=UDOT(K)
CONTINUE

220
C

C -----------------------------------------------------
RETURN
END

200
C
C

C

210
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SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE),UX(NPDE),UXX(NPDE),FVAL(NPDE)

C F ROUTINE FOR EXAMPLE 5.3.1 (A)
C

FVAL(1)=O.5DO*(UXX(1)+U(1)-(4.DO*X+2.DO)*EXP(X+T))
RETURN
END

SUBROUTINE BNDRY(T,X,U,ALPHA,BETA,GAMMA,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE),ALPHA(NPDE),BETA(NPDE),GAMMA(NPDE)

C

C BNDRY ROUTINE FOR EXAMPLE 5.3.1 (A)
C

ALPHA(1)=1.DO
BETA(1)=O.DO
GAMMA(1)=O.DO
RETURN
END
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SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE),UX(NPDE),UXX(NPDE),FVAL(NPDE)

C F ROUTINE FOR EXAMPLE 5.3.1 (B)
C

FVAL(1)=O.003DO*UXX(1)-U(1)*UX(1)
RET~N

END

SUBROUTINE BNDRY(T,X,U,ALPHA,BETA,GAMMA,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE) ,ALPHA(NPDE) ,BETA(NPDE) ,GAMMA (NPDE)

C

C BNDRY ROUTINE FOR EXAMPLE 5.3.1 (B)
C

ALPHA(1)=1.DO
BETA(1)=O.DO

C
C EXAC IS A FUNCTION ROUTINE FOR COMPUTING THE EXACT
C SOLUTION VALUES
C

GAMMA(1)=EXAC(X,T)
RET~N

END
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SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE) ,UX(NPDE),UXX(NPDE) ,FVAL(NPDE)

C F ROUTINE FOR EXAMPLE 5.3.1 (C)
C

FVAL(1)=UX(1)*UX(2)+(U(2)-1.DO)*UXX(1)
FVAL(1)=FVAL(1)+(16*X*T-2*T-16*(U(2)-1))*(U(1)-1)
FVAL(1)=FVAL(1)+10*X*EXP(-4*X)
FVAL(2)=UXX(2)+UX(1)+4*U(1)-4.DO+X**2-2*T-10*T*EXP(-4*X)
RETURN
END

SUBROUTINE BNDRY(T,X,U,ALPHA,BETA,GAMMA,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE) ,ALPHA (NPDE) ,BETA(NPDE) ,GAMMA(NPDE)

C

C BNDRY ROUTINE FOR EXAMPLE 5.3.1 (C)
C

IF(X.EQ.O.DO)THEN
ALPHA(1)=1.DO
BETA(1)=O.DO
GAMMA(1)=1.DO
ALPHA(2)=1.DO
BETA(2)=O.DO
GAMMA(2)=1.DO
ENDIF
IF(X.EQ.1.DO)THEN
ALPHA(1)=3.DO
BETA(1)=1.DO
GAMMA(1)=3.DO
ALPHA(2)=-EXP(U(1))
BETA(2)=5.DO
GAMMA(2)=-EXP(U(1))
ENDIF
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RETURN
END
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SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE),UX(NPDE),UXX(NPDE),FVAL(NPDE)

C
C F ROUTINE FOR EXAMPLE 5.3.1 (D)
C

FVAL(1)=(U(2)**2)*UXX(1)+2*U(2)*UX(1)*UX(2)-U(1)*U(2)
FVAL(1)=FVAL(1)-(U(1)**2)+10.DO
FVAL(2)=(U(1)**2)*UXX(2)+2*U(1)*UX(1)*UX(2)+UXX(1)
FVAL(2)=FVAL(2)+U(1)*U(2)-U(2)**2
~T~N

END

SUBROUTINE BNDRY(T,X,U,ALPHA,BETA,GAMMA,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE),ALPHA(NPDE),BETA(NPDE),GAMMA(NPDE)

C

C BNDRY ROUTINE FOR EXAMPLE 5.3.1 (D)
C

PI=4.DO*ATAN(1.DO)
C
C DEFINE ALPHA(K),BETA(K),GAMMA(K) AT THE LEFT BOUNDARY
C

IF(X.EQ.O.DO) THEN
ALPHA(1)=1.DO
BETA(1)=O.DO
GAMMA(1)=O.5DO
ALPHA(2)=1.DO
BETA(2)=O.DO
GAMMA(2)=PI
ENDIF

C

C DEFINE ALPHA(K),BETA(K),GAMMA(K) AT THE RIGHT BOUNDARY
C

IF(X.EQ.1.DO) THEN
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ALPHA(1)=O.DO
BETA(1)=1.DO
GAMMA(1)=O.5DO-DSIN(U(1)*U(2))
ALPHA(2)=O.DO
BETA(2)=1.DO
GAMMA(2)=1.DO+DCOS(U(1)*U(2))
ENDIF
RETURN
END
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SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE),UX(NPDE),UXX(NPDE),FVAL(NPDE)

C
C F ROUTINE FOR CHEMICAL KINETICS PROBLEM
C

D=1.D-4
A1=4.D5
A2=272.443800016DO
A3=1.D-4
A4=0.007DO
A5=3.67D-16
A6=4.13D-12
B1=272.4438DO
B2=1.00016D-4
B3=3.67D-15
B4=3.57D-15
C1=1.6D-8
C2=0.007DO
C3=4.1283D-12
C4=3.57D-15
D1=7.000016D-3
D2=3.57D-15
D3=4.128D-12
IF (X.GE.0.475DO.AND.X.LE.0.575DO) THEN
S=3250.DO
ELSE
S=360.DO
ENDIF

FVAL(1)=D*UXX(1)+A1-A2*U(1)+A3*U(2)+A4*U(4)-
* A5*U(1)*U(2)-A6*U(1)*U(4)
FVAL(2)=D*UXX(2)+B1*U(1)-B2*U(2)+B3*U(1)*U(2)­

*B4*U(2)*U(3)
FVAL(3)=D*UXX(3)-C1*U(3)+C2*U(4)+C3*U(1)*U(4)­

*C4*U(2)*U(3)+800.DO+S
FVAL(4)=D*UXX(4)-D1*U(4)+D2*U(2)*U(3)-D3*U(1)*U(4)
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*+800.DO

RETURN
END

SUBROUTINE BNDRY(T,X,U,ALPHA,BETA,GAMMA,NPDE)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION U(NPDE),ALPHA(NPDE),BETA(NPDE),GAMMA(NPDE)

ALPHA(1)=0.DO
BETA(1)=1.DO
GAMMA(1)=0.DO
ALPHA(2)=0.DO
BETA(2)=1.DO
GAMMA(2)=0.DO
ALPHA(3)=0.DO
BETA(3)=1.DO
GAMMA(3)=0.DO
ALPHA(4)=0.DO
BETA(4)=1.DO
GAMMA(4)=0.DO
RETURN
END
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