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Structures of synthesized compounds reported in chapters 4 and 5 

 

Quinoxaline-amino acid A6a-n 

No.  R 
 

No. R 

A6a 

 

A6h 

 

A6b 

 

A6i 

 

A6c 

 

A6j 

 

A6d 

 

A6k* 

 

A6e 

 

 

A6l 

 

A6f 

 

 

A6m 

 

A6g 

 

 

A6n 

 

*Fragment fused with the quinoxaline framework. N belongs to the quinoxaline skeletal framework. 
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Structures of synthesized compounds reported in chapter 6 

 

 

Quinoxaline-thiazolidine-amino acid 

No. R R1 
B5a val - 
B5b met - 
B5c tyr - 
B6a val H 
B6b val F 
B6c val OMe 
B6d val NO2 
B6e met H 
B6f met F 
B6g met OMe 
B6h met NO2 
B6i tyr H 
B6j tyr F 
B6k tyr OMe 
B6l tyr NO2 

                                                  R = amino acid side chain;   

 

val = ;    met =  ;   tyr =   

  

CH3

CH3 SCH3

OH
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Structures of synthesized compounds reported in Chapter 7 

 

 

2-Substituted benzimidazoles C5a-v 

No. R No. R 

 
C5a Ph C5l 4-S(CH3) Ph  
C5b 4-F Ph C5m 2-Naphthyl 
C5c 4-Cl Ph C5n α-(E)-prop-1-en-1-yl Ph  
C5d 4-Br Ph C5o 2-(6-Chloroquinolinyl) 
C5e 4-CF3 Ph C5p 2-OH-4,6-(OCH3)2 Ph 
C5f 4-NO2 Ph C5q 3,4-(OH)2 Ph 
C5g 4-CH3 Ph C5r 2,3,4-(OH)3 Ph 
C5h 4-OCH3 Ph C5s 2-Thiophenyl 
C5i 4-NH2 Ph C5t 2-Furanyl 
C5j 4-OH Ph C5u n-Butyl 
C5k 4-N(CH3)2 Ph C5v n-Heptyl 
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Abstract 

A total of 51 compounds, including 17 quinoxaline-amino acid hybrids (A6a-n and B5a-c), 12 

quinoxaline-amino acid-thiazolidine hybrids (B6a-l) and 22 2-phenyl substituted 

benzimidazoles (C5a-v) were successfully synthesized in yields in excess of 75%.  Of these 

compounds, only 8 of the quinoxaline-amino acid hybrids were previously reported.  All the 

other compounds synthesized in this work were novel.  A thermal study was carried out on the 

quinoxaline-amino acid hybrids A6a-n to determine the hydrogen bonding capabilities of the 

molecules, important in deciding whether or not the molecules can act as good ligands.  It was 

found that of the three centers studied for their hydrogen bonding, NH-1 and NH-4 had very 

poor hydrogen bonding capability whereas the best hydrogen bonding capability was seen by 

H-2.  This study was supported by DFT and MD calculations on A6d since a crystal structure 

was also obtained for this molecule.  The results supported the thermal study in showing that 

H-2 was highly involved in hydrogen bonding.   

Certain steps in the synthesis of compounds B6a-l and C5a-v were carried out under 

microwave conditions, which have the advantage of short reaction times and good yields 

compared to conventional methods.  We report here for the first time the synthesis of 

thiazolidines with quinoxaline-amino acids under microwave conditions.  All the synthesized 

compounds were characterized using instrumental techniques such as 1D and 2D NMR and 

Mass spectrometry.  X-Ray crystallography was carried out on selected samples to confirm the 

structures and to determine the configuration of stereocentres in the molecules.  The crystal 

structures indicated that the quinoxaline-amino acid hybrids were synthesized in the S-

configuration at C-2, while the quinoxaline-amino acid-thiazolidine hybrids were all 

synthesized as racemates. 

The synthesized compounds were tested in three different assays; antimicrobial, antioxidant 

and antidiabetic.  Compounds B6f, B6j and B6k, showed broad spectrum activity in the 
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antimicrobial assays with minimum bactericidal concentration (MBC) values comparable to 

that of ciprofloxacin.  B6f and B6j was active at <100 µM against all the strains tested against 

and B6k were active at <100 µM against Staphylococcus aureus, Methicillin-resistant S. aureus 

(MRSA) and Escherichia coli as well as the fungal strain, Candida albicans.  B6f was highly 

active against S. aureus (23.4 µM) and Klebsiella pneumonia (11.7 µM), B6j against 

Pseudomonas aeruginosa (21.7 µM) and B6k against S. aureus (15.9 µM) and E. coli (21.2 

µM).  The thiazolidine moiety was essential for antimicrobial activity.  In the first series of 

compounds without the thiazolidine group, the activity was much less (in the mM range), with 

only A6g having a MBC of 80 µM against E. coli.  The antimicrobial activity of the 

benzimidazoles was also not good, with only C5p and C5r being notably active against K. 

pneumoniae (MBCs of 14.5 and 25.5 µM). 

The quinoxaline amino acids A6a, A6d and A6f showed better α-glucosidase inhibitory 

activity with IC50 values of 0.056, 0.012 and 0.042 mM, respectively compared to acarbose 

IC50 of 0.088 mM.  Their activity against α-amylase was not as good, being higher than that 

for acarbose.  The thiazolidine hybrids were less active than the quinoxaline amino acids in the 

antidiabetic assay with only a few compounds being 2-3 fold higher than the acarbose standard.  

Molecular docking of the two most active anti-diabetic compounds (A6d and A6f) in the 

binding site of Saccharomyces cerevisiae α-glucosidase indicated predominant hydrophobic 

and hydrogen bonding interactions, which could be responsible for their activity in the 

antidiabetic assay.  The best antioxidant activity was shown by B6k and B6l with IC50 values 

of 19.60 and 10.53 µM respectively in comparison to ascorbic acid (IC50 16.86 µM). 
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Chapter 1. Introduction 

Quinoxalines and benzimidazoles are two important classes of heterocyclic compounds, with 

major applications in the pharmaceutical industry.  Currently, there are several drugs 

containing a quinoxaline core unit such as echinomycin, levomycin and quinacillin 

(antibiotics), varenicline (nicotinic receptor agonist), brimonidine (eye drop), 

chloroquinoxaline sulfonamide (CQS, NSC 339004), XK469 (NSC697887) (anticancer 

agents), and sulfaquinoxaline (used in veterinary medicine) (Figure 1-1) (Bailly et al., 1999; 

Campbell et al., 2008; Baumann et al., 2013; Nageswar et al., 2013; Ali et al., 2015).  In 

addition, there are several other quinoxaline compounds presently used as AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) receptor antagonists such as YM90K, CNQX, 

DNQX, YM872, LU112313 and NBQX (Figure 1-2) (Sasaki and Kaneko, 1996; Kodama et 

al., 1999; Loscher et al., 1999; Takahashi et al., 2002; Olayiwola et al., 2007; Seidl et al., 2014; 

Deng et al., 2016; Zuo et al., 2016). 

 

Several drugs used in the pharmaceutical industry also contain a benzimidazole scaffold in 

their structure.  Examples of these are omeprazole (used for gastric ulcers and acid reflux), 

clemizole and astemizole (antihistamines), mebendazole and thiabendazole (anthelmintics), 

pimobendan (inodilator), bezitramide (analgesic), cambendazole (veterinary anthelmintic), 

Imet-3393 (cancer), pimozide (antipsychotic drug) and diabazole (diabetes) (Figure 1-3) 

(Lieberman et al., 2009; Ingle and Magar, 2011; Khokra et al., 2011; Raghunath et al., 2014; 

Zhang et al., 2015).  In addition, benomyl, thiabendazole and carbendazim are used as 

fungicides (Si et al., 2016). 
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Figure 1-1  Drugs containing a quinoxaline scaffold 

 

 

Figure 1-2 Quinoxaline compounds as AMPA receptor antagonists 
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Figure 1-3  Drugs containing a benzimidazole scaffold 
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1.1 Quinoxalines 

Quinoxaline is isomeric with other naphthyridines including quinazoline, phthalazine and 

cinnoline (Figure 1-4).  It consists of two aromatic rings; a benzene ring fused to a second six 

membered ring containing two nitrogen atoms. 

 

 

Figure 1-4  Structures isomeric with quinoxaline 

 

The quinoxaline scaffold occurs in many naturally occurring compounds such as riboflavin 

(Vitamin B2) (Figure 1-5), flavoenzymes, molybdopterines and antibiotics of Streptomyces 

(Saito et al., 1967; Yoshida and Katagiri, 1969; Cornish et al., 1985; Hirose et al., 2011; Mu et 

al., 2014; Sheraz et al., 2014).  Riboflavin is involved in a variety of biochemical processes in 

the body such as antibody production and red blood cell formation (Hardwick et al., 2004).  In 

addition, they have potential industrial application, being able to inhibit metal corrosion, being 

used as dyes, and in organic semiconductors, cavitands and dehydroannulenes (O’Brien et al., 

1996; Koti et al., 2000; Dailey et al., 2001; Sessler et al., 2002; Castro et al., 2004; Sascha and 

Faust, 2004; Chang et al., 2011; Zarrok et al., 2012; Tayebi et al., 2014).  They have also been 

used as a ligand in a catalytic system (Wu et al., 2007). 

 

The first report of a quinoxaline compound having antimalarial activity was reported by 

Haworth in 1948 (Haworth et al., 1948).  In 1949, Crowther and his co-workers synthesized a 

series of dialkylaminoquinoxaline derivatives and tested them for their antimalarial activity.  

They obtained results similar to that of Haworth (Crowther et al., 1949).  The antitumoral 
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properties of quinoxaline compounds was first noticed by Renault in 1981 (Renault et al., 

1981). 

 

Figure 1-5  Biologically active quinoxaline scaffold containing compounds 

 

Subsequently, there has much interest in the synthesis and bioactivity of quinoxaline 

derivatives.  This is elaborated on further in Chapter 2. 

 

1.2 Benzimidazoles 

Benzimidazoles consist of a benzene ring fused to a diazole ring, where both nitrogen atoms 

are adjacent to the benzene ring (Figure 1-6).  They are also known as 1,3-benzodiazoles, 

benziminazoles or benzoglyoxalines.  In 1948, benzimidazole was recognised as an integral 

part of vitamin B12 (α-(5,6-dimethylbenzimidazolyl)cobamidcyanide) available in nature 

(Barker et al., 1960).   

 

 

Figure 1-6  Benzimidazole core structure 

 

Benzimidazole-derived alkaloids are rare in nature, and only a few examples of these natural 

products can be found in the literature such as kealiiquinone (Figure 1-7) (Faulkner et al., 
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1992; Jin, 2011).  In 1889, Fischer reported the bacteriostatic and fungicidal properties of the 

parent benzimidazole (Fischer et al., 1889).   

 

 

Figure 1-7  Structure of kealiiquinone 

 

Beside their pharmaceutical application, benzimidazoles have played a role in organocatalysis, 

ligands for organometallic reactions, in semiconductors, the textile industry, dyes, the 

photographic industry, cosmetics and materials (Johnson et al., 1966; Overman, 1974; Hegngi 

et al., 1999; Berrada et al., 2002; Robert et al., 2004; Malathi et al., 2009; Mamada et al., 2011; 

Kim et al., 2012; Jain et al., 2013; Tozlu et al., 2013; Ahmed et al., 2014; Fleischmann et al., 

2015; Mănescu et al., 2015; Nájera et al., 2015; Bodedla et al., 2016; Sánchez et al., 2016).  5-

Methyl benzimidazole has also been used as camphor substitute (Wright, 1951).  A number of 

salts of benzimidazole sulfonic acid are said to be of value in preparations for dental care 

(Rehman et al., 2013).   

 

The first benzimidazole was prepared by Hobreck in 1872 (Wright, 1951), who obtained a 

mixture of 2,5- and 2,6-dimethyl-benzimidazole (1 and 2) by the reduction of 2-nitro-4-

methylacetanilide (Scheme 1-1).  Three years later Ladenburg obtained the same 

benzimidazole (4) by refluxing 3,4-diaminotoluene, with acetic acid (Wright, 1951). 
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Scheme 1-1.  Synthesis of benzimidazole (1 and 2)  

 

The traditional synthesis of benzimidazoles (3) involves the reaction between an o-

phenylenediamine and a carboxylic acid or its derivatives under harsh dehydrating reaction 

conditions (Scheme 1-2) (Phillips, 1928).  As such, this is known as the “Phillips method”. 

 

 

Scheme 1-2  Benzimidazole synthesized by the “Phillips method” 

 

The first use of triethyl orthoformate for the preparation of 2-substituted benzimidazoles (4) 

was done by Walther and Kessler in 1906 (Scheme 1-3) (Wright, 1951). 

 

 

Scheme 1-3  Benzimidazole (4) synthesized using triethyl orthoformate  

 

Subsequent to these early studies, a range of synthetic pathways and reactions to synthesize 

benzimidazole derivatives were carried out.  This is elaborated on further in chapter 3. 
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This thesis focuses on the synthesis and bioactivity of derivatives of these two scaffolds.  The 

quinoxalines are combined with amino acids and thiazolidines resulting in hybrid molecules 

and the benzimidazoles contain substituted benzene moieties in their core structure.  Hybrid 

molecules can either enhance or diminish the activity of either of the two scaffolds alone 

(Aiyelabola et al., 2012; Saxena et al., 2014; Tripathi et al., 2014; Demmer et al., 2015; 

Mickevičienė et al., 2015; Srivastava et al., 2015; Napoleon et al., 2016).  Both amino acids 

and thiazolidines, are each bioactive molecules in their own right and hence are both capable 

of enhancing the effect of the quinoxalines (Hughes et al., 2007; Singh et al., 2011; Vinay and 

Lakshika, 2011; Bayram et al., 2015; Camacho et al., 2016; Gupta et al., 2016; Pânzariu et al., 

2016).  Different substituents attached to the core structure of many organic molecules alter 

their bioactivity.  Hence derivatising benzimidazoles with aromatic groups containing different 

substituents can be used to identify lead compounds for the pharmaceutical industry.  

 

1.3 Hypothesis 

It is hypothesized that since quinoxalines and benzimidazole scaffolds are contained in known 

drugs, new molecules based on these scaffolds may lead to new drugs with either enhanced 

bioactivity or fewer side effects.  Furthermore, it is hypothesized that the activity of each of the 

molecules can be enhanced by combining each of these scaffolds with another bioactive 

scaffold.  

 

1.4 Aim 

To identify lead compounds with quinoxaline and benzimidazole core structures, which can be 

developed into pharmaceuticals. 
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1.5 Objectives  

Broad objective:  To synthesize novel hybrid frameworks of amino acid tethered quinoxalines, 

amino acid-quinoxaline-thiazolidine hybrids and fluorinated benzimidazole derivatives and 

test them for their antimicrobial, antidiabetic and antioxidant activities. 

 

Specific objective 

1. To synthesize a small library of novel: 

a) amino acid tethered quinoxalines;  

b) amino acid-quinoxaline-thiazolidine hybrids and  

c) fluorinated benzimidazoles.  

2. To carry out a structural elucidation of all the synthesized compounds by 2D NMR 

spectroscopy and X-ray crystallography.   

3. To screen the synthesized hybrid compounds for their antibacterial, antifungal, 

antioxidant and antidiabetic activities. 
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Chapter 2. Advanced synthetic methods and pharmacological potential of 

quinoxaline derivatives 

 

 

Abstract 

Quinoxalines, including those with additional fused heterocyclic rings are an important class 

of compounds with diverse pharmacological properties such as anticancer, antiviral, 

antibacterial and antifungal properties amongst others.  This review reports on the different 

methods used to synthesize quinoxalines and comments on the reactants used to produce 

different types of quinoxalines, together with proposed mechanisms for their synthesis.  

Modification at the 2, 3 and 6 positions of the basic quinoxaline core structure demonstrated 

good antibacterial and antifungal activity.   

 

Keywords: quinoxaline, synthesis, mechanisms. 
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2.1 Introduction 

Quinoxaline is a heterocyclic molecule containing a benzene ring fused to a pyrazine ring 

(Figure 2-1).  It is also known as 1,4-diazanaphthalene or benzopyrine.  The chemistry and 

pharmacological activity of quinoxalines have been recently reviewed (Ajani et al., 2014), 

which shows their potential to be used widely in the field of pharmacy and medicine.  In 

addition, there have also been reports of them used in industrial applications (Kono et al., 2012; 

Keshtov et al., 2015). 

 

 

Figure 2-1  The general structure of a quinoxaline with nomenclature included 

 

Quinoxaline derivatives possess a wide range of pharmacological properties such as 

antimicrobial (Alasmari et al., 2015; Chaudhary et al., 2015; Issa et al., 2015; Manchal et al., 

2015), antifungal (Castro et al., 2015; Issa et al., 2015; Manchal et al., 2015), antioxidant 

(Manta et al., 2014; Burguete et al., 2011), anticancer (Neckel et al., 2015; Thabit et al., 2015; 

Ma et al., 2014, 2015), antidiabetic (Kulkarni et al., 2015), antitubercular (Puratchikody et al., 

2011; Achutha et al., 2013), antimalarial (Chandra Shekhar et al., 2014), anti-inflammatory 

(Burguete et al., 2011), antiviral (Selvam et al., 2011; Henen et al., 2012), and anti-HIV (Gris 

et al., 2008).  The quinoxaline framework was also part of various antibiotics such as 

echinomycin, levomycin and actinolutin, known to inhibit growth of Gram +ve bacteria 

(Katagiri et al., 1975). 
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In this review, we focus on the different routes for synthesizing quinoxaline molecules and 

highlight the reactants used in each of these routes.  We also attempt to provide some 

mechanistic information on the formation of these molecules from their precursors. 

 

2.2 Synthesis 

A common procedure for the synthesis of these molecules makes use of ortho diamines, which 

undergo substitution or addition reactions with dicarbonyl compounds or carbonyl derivatives 

forming the quinoxalines (Ingle and Wadher, 2014; Chandra Shekhar et al., 2014; Alasmari et 

al., 2015; Demmer et al., 2015).  Various carbonyl compounds such as oxalic acid (Pradeep et 

al., 2015; Thabit et al., 2015), pyruvic acid (Noolvi et al., 2011) and acetic acid (Kumar et al., 

2013; Neckel et al., 2015) all result in different quinoxalines being formed, each with different 

groups at C-2 and C-3.  In addition, quinoxalines were synthesized from α,β-unsaturated 

carbonyl compounds (Arimondo et al., 2001; Vekariya et al., 2003; Karki et al., 2009; Hossain 

et al., 2012; Manta et al., 2014), α-chloro carbonyl compounds (Gavara et al., 2010) and 1,4-

dialdehydes (Diana et al., 2008; Parrino et al., 2015), all using o-phenylenediamines.  There 

are also some miscellaneous routes to synthesizing quinoxalines, which involve nucleophilic 

substitution reactions of fluorinated nitrobenzenes and fluorinated amines (Moarbess et al., 

2008; Khier et al., 2010).  Quinoxaline N-oxides were also reported to be synthesized from 

benzofurazan (Ismail et al., 2010; Barea et al., 2013; Torres et al., 2013; Gil et al., 2014).  

 

2.2.1 Quinoxalines synthesized from o-phenylenediamines and 1,2-dicarbonyl 
compounds 

In this particular synthesis, the amino group first reacts with one carbonyl group by either a 

substitution reaction (if the leaving group is good) or an addition reaction (with a poor leaving 
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group).  A second nucleophilic addition to the second carbonyl group in an intramolecular 

reaction leads to the formation of the quinoxaline. 

 

2.2.2 The reaction of ortho diamines with 1,2-dicarbonyl compounds with leaving 
groups at both carbonyl centers 

There have been several reports of quinoxalines being synthesized from oxalic acid resulting 

in quinoxaline-2,3-dione (5) (Alasmari et al., 2015; Thabit et al., 2015; Pradeep et al., 2015).  

These intermediates was synthesized en route to other quinoxaline derivatives, which make use 

of the reactivity of the two amide bonds formed in the reaction.  The lone pair of the amine of 

the diamine initially adds to the carbonyl carbon of the carboxylic acid, forming the alkoxide 

anion, followed by the same mechanism occurring with the other amino group and carboxylic 

group, the latter being an intramolecular reaction.  The hydroxyl group in the intermediate then 

picks up a proton, and reformation of the carbonyl group at C-2 occurs forming the quinoxaline-

2,3-diones (5) (Scheme 2-1).  The same mechanism takes place with diethyloxalate and this 

reagent can be used for the synthesis of quinoxaline-2,3-dione instead of oxalic acid (Demmer 

et al., 2015). 

 

 

Scheme 2-1  Mechanism of synthesis of quinoxaline-2,3-diones (5) 

 

Once formed, the intermediate 5 can be chlorinated at both C-2 and C-3 with phosphoryl 

chloride (POCl3) in DCM or with POCl3 and thionyl chloride (SOCl2) leading to the 3-chloro-

2-ketoquinoxaline (6) or dihalogenated quinoxaline (7).  These halogenated quinoxalines can 
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then be substituted with strong bases for example hydrazine hydrate resulting in the hydrazine 

derivative 8 and 9 (Scheme 2-2) (Suresh et al., 2010; Galal et al., 2011, 2013; Alswah et al., 

2013; Alasmari et al., 2015). 

 

Scheme 2-2  Derivatization of quinoxaline-2,3-diones (5) 

 

2.2.3 The reaction of ortho diamines with 1,2-dicarbonyl compounds with leaving 
groups at only one carbonyl centre 

Pyruvic acid (Noolvi et al., 2011; Andres et al., 2013; Chaudhary et al., 2015), 2-oxoacetic acid 

(Rodrigues et al., 2014), 2-oxo-2-phenylacetic acid (Corona et al., 2008, 2009), ethyl-2-

oxopropanoate (Andres et al., 2013), ethyl 2-(1-benzoyl-1H-indol-3-yl)-2-oxoacetate (El-Sawy 

et al., 2010) and ethyl oxamate (Galal et al., 2011) all have one good leaving group (or a 

hydroxyl group capable of being protonated) and one poor leaving group attached to each of 

the carbonyl centres (Scheme 2-3).  After nucleophilic attack by the amino group of the 

diamino phenyl reagent, the leaving group departs from the tetrahedral intermediate after a 
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proton is abstracted from the secondary amine, forming an amide bond.  Nucleophilic attack of 

the second amine intramolecularly results in a tetrahedral hydroxy intermediate, which 

undergoes elimination of water after a base abstracts a proton from the secondary amine, 

forming the imine.  The product of the reaction with 1,2-dicarbonyl compounds with one 

leaving group is a 3-substituted quinoxaline-2-one (14) (Scheme 2-4). 

 

 

Scheme 2-3  Reactions of o-diamine with one leaving group containing compound 
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Scheme 2-4  Mechanism for synthesis of 3-aminoquinoxalin-2(1H)-one (14) 

 

2.2.4 The reaction of ortho diamines with 1,2-dicarbonyl compounds with two poor 
leaving groups (1,2-diketones and 1,2-dialdehyde) 

Two types of 1,2-diketones are reported to react with the diamines.  The first consists of alkyl 

groups which are not joined together (open chain diketones) (Gavara et al., 2010; Isikdag et 

al., 2011; Rajule et al., 2012; Chandra Shekhar et al., 2014; Piras et al., 2014) and the second 

contains the diketone as part of a ring (mainly five membered and six membered rings) (Gavara 

et al., 2010; Isikdag et al., 2011; Alasmari et al., 2015). 

 

Examples of these precursors to the quinoxalines include simple 1,2-diketones such as hexane-

3,4-dione (Gavara et al., 2010) as well as aromatic diketones such as substituted benzils (Ingle 

and Marathe, 2012; Ingle et al., 2013; Ingle and Wadher, 2014).  The substituents on the 

dicarbonyl compound could even be heterocyclic rings such as pyrrolopyridine (Leboho et al., 

2015).  When the diacarbonyl compounds are contained in heterocyclic rings such as indoline-

2,3-dione (Arimondo et al., 2001; Karki et al., 2009; Sridevi et al., 2011; Hossain et al., 2012; 

Srinivas et al., 2013) or carboxcylic rings such as cyclopentane-1,2-diones (Gavara et al., 2010; 

Alasmari et al., 2015), a heterocyclic or carbocyclic ring occurs at the 2 and 3 positions of the 

quinoxaline molecule after addition of the diamine (Scheme 2-5).   
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The mechanism for these reactions consist of the amino groups adding to the carbonyl carbon, 

forming an alcohol after which the same mechanism occurs intramolecularly to form the 

quinoxalines.  Elimination of two water molecules results in the formation of the substituted 

quinoxaline molecule (15) (Scheme 2-6), with both substituents adjacent to the carbonyl 

groups retained after imine formation.  With glyoxal (Melero et al., 2004; Huang et al., 2009; 

Mielcke et al., 2012; Neckel et al., 2015), butenedioane (Melero et al., 2004), a two-carbon 

compound containing two aldehyde groups (Melero et al., 2004), an unsubstituted quinoxaline 

occurs where R1 and R2 is hydrogen (Scheme 2-6).   

 

 

Scheme 2-5  Reactions of o-diamine with two poor leaving group-containing compound 
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Scheme 2-6 Mechanism of formation of quinoxaline (15) 

 

2.2.5 The reaction of diamines with α,β-unsaturated carbonyl compounds 

There are two reports of quinoxalines forming from α,β-unsaturated carbonyl compounds, 

however the mechanisms for these reactions are not clear.  In the first instance, bromoacetic 

acid is used together with the α,β -unsaturated carbonyl compound producing a quinoxaline 

where the two nitrogen atoms from the diamine add across the double bond and the carbonyl 

group is reduced in the process.  It is reported that the product forms through a dibromo 

intermediate, but this is not further clarified (Vekariya et al., 2003).  This leads to the 

quinoxalines 21-29 in Scheme 2-7. 

 

 

Scheme 2-7  Synthesis of benzimidazole fused quinoxaline compounds (21-29) 
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The second example contains an α,β-unsaturated amide group reacting with a hydroxy and ester 

substituted double bond in the reagent.  A complete mechanism is not reported in the literature 

(Manta et al., 2014), however it is proposed that 30 occurs through a nucleophilic attack on the 

α-carbon of the double bond, resulting an enolate ion, which eliminates H2O on reformation of 

the α,β-unsaturated group, placing the double bond adjacent to the ester carbonyl.  A second 

nucleophilic attack on the amide carbonyl and elimination of water leads to the quinoxalines 

30 (Scheme 2-8).  Compound 31 is formed by reduction since this is energetically favourable 

due to the formation of a fully conjugated system.   

 

Scheme 2-8  Synthesis and mechanism of pyrrolo quinoxaline 
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2.2.6 The reaction of diamines with α-chloro ketones 

The reaction of diamines with α-chloro ketones probably occurs via a direct nucleophilic 

substitution of the chloro group with an amino group of the diamine followed by nucleophilic 

attack by the second amino group on the carbonyl carbon producing an aminol, which 

dehydrates to an imine forming the quinoxaline 32.  PTSA is used as a catalyst in the reaction.  

The products reported in Gavara et al. (2010) is speculated to be due to a subsequent reduction 

step after formation of the quinoxaline, since formation of 32 leads to aromaticity into the 

nitrogen-containing ring (Scheme 2-9) (Gavara et al., 2010). 

 

 

Scheme 2-9  Synthesis and mechanism of pyrazolo quinoxalines 

 

2.2.7 Formation of quinoxalines by nucleophilic substitution of ortho 
nitrofluorobenzenes and ortho aminofluorobenzenes 

Ortho nitrofluorobenzenes were subjected to a nucleophilic substitution reaction with 

imidazole.  Reduction of the nitro group to the amine follows and then formation of the 

quinoxaline with di-imidazolylmethanone.  This occurred by attack of the amine on the di-

imidazolylmethanone carbonyl group with a concomitant loss of one imidazole group and then 
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an intramolecular attack on the same carbonyl group by the imidazolyl group ortho to the amide 

resulting in formation of the quinoxaline (34) and departure of the second imidazole group 

(Scheme 2-10) (Moarbess et al., 2008).   

 

With imidazole and pyrazole dimers formed through their carboxylic acids, the amino group 

of the ortho aminofluorobenzene attacks the carbonyl group of the dimer resulting in cleavage 

of the imidazole group.  Attack at the other carbonyl group in a similar fashion leads to two 

molecules of the fluorinated intermediate being formed.  The imidazole nitrogen then replaces 

the fluorine on the aromatic ring leading to formation of the quinoxalines (35) (Scheme 2-11) 

(Moarbess et al., 2008; Khier et al., 2010). 

 

 

Scheme 2-10  Mechanism of formation of imidazole quinoxaline (34) 
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Scheme 2-11  Synthesis and mechanism of pyrazolo quinoxaline (35) 

2.2.8 Reaction of azalactones with diamines 

The cinnamate azalactone was prepared by the reaction of N-acetyl glycine with 

benzaldehydes, which when added to the ortho diamine forms quinoxaline (36) (Issa et al., 

2015).  It is speculated that the reaction occurs through a nucleophilic attack by the amine on 

the lactone carbonyl, which rearranges to the keto tautomer before attack on the imine carbon 

occurs by a pictet-spengler like reaction.  Removal of an acetonitrile group then leads to the 

quinoxaline 36 (Scheme 2-12). 

 

2.2.9 Reaction of 1,2-dialdehydes with diamines 

Diamines react with 1,2-dialdehydes in the presence of a cyanide ion and acid, producing a 

cyano intermediate (39) which further cyclises to three different quinoxalines (40-43) (Scheme 

2-13) (Diana et al., 2008; Parrino et al., 2015).  In the synthesis of the intermediate, one of the 

amino groups first adds to the aldehyde forming an imine, which is activated by acid and 
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attacked by a cyanide ion.  The secondary amine formed then attacks the second aldehyde 

resulting in pyrrole formation to which a nitrile is attached (39) (Scheme 2-14). 

 

Scheme 2-12  Reaction and mechanism of quinoxaline via azalactones with diamines 

 

Scheme 2-13  Synthesis of quinoxalines from 1,2-dialdehydes with diamines 
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In formation of the first quinoxaline (40), H2O adds to the nitrile carbon and the nitrile nitrogen 

is protonated by acid, resulting in an imide, which is further protonated, resulting in collapse 

of the imide to the amide.  Intramolecular amide formation then occurs under acidic conditions, 

hydrolysing the free amide and forming a cyclic amide resulting in the quinoxaline (40) 

(Scheme 2-15).  In the second quinoxaline (41), collapse of the imide to the amide does not 

occur, but instead the second amino group adds to the activated iminium carbon, forming the 

quinoxaline after elimination of water, resulting in an iminium quinoxaline (41) (Scheme 

2-16). 

 

 

Scheme 2-14  Mechanism of preparation of intermediate (39) 

 

 

Scheme 2-15  Mechanism of formation of quinoxaline (40) 
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Scheme 2-16  Mechanism of formation of quinoxaline (41) 

 

The third quinoxaline forms by the amine of the nitrile intermediate (39) reacting with formic 

acid and producing a protonated intermediate to which a water molecule adds resulting in ring 

closure.  Loss of two water molecules leading to the stable aromatic quinoxaline (43) then 

occurs  (Scheme 2-17). 

 

 

Scheme 2-17  Mechanism of formation of quinoxaline (43) 

 

2.2.10 Reaction of diamines with 3-chloro-2-oxopropanal and iodoxybenzoic acid 

3-chloro-2-oxopropanal and iodoxybenzoic acid first reacts to activate the aldehydic carbonyl 

group.  Thereafter the two amino groups attack each of the carbonyl groups forming a hydroxy 
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intermediate (44).  The first double bond forms when the iodo complex is eliminated and the 

quinoxaline (45) forms after the elimination of water (Scheme 2-18) (Elshihawy et al., 2013). 

 

 

Scheme 2-18  Mechanism for synthesis of quinoxaline using IBX 

 

2.2.11 Synthesis of 1,4-di-N-oxide quinoxaline derivatives 

The benzofurazan oxide 46 is an important intermediate in the synthesis of 1,4-di-N-oxide 

quinoxaline derivatives, which can react with nitrile, carbonyl or dicarbonyl compounds with 

acidic α hydrogens or with conjugated double bonds.  This benzofurazan oxide (46) 

intermediate was synthesized from 2-nitroaniline by reacting it with either sodium nitrite, 

sodium azide (Monge et al., 1995) or sodium hypochlorite (Sheng et al., 2007) (Scheme 2-19).  

2-Nitroaniline is commercially available, however it can also be synthesized from aniline by 

first protecting the aniline and then nitrating it.  Depending on the reagent used, different 

functionalities become available on the quinoxaline ring, which can be reacted further to create 

a multitude of organic products.  Some of these reactions are shown in Scheme 2-20 to Scheme 

2-24. 



32 

 

Scheme 2-19  Synthesis of benzofurazan oxide (46) 

 
By the reaction of 46 with malonitrile, N-oxide quinoxalines 47 (Monge et al., 1995) with 

cyano and amino groups result where the amino group is reacted further with dimethyl 

sulphoxide producing N-methyl derivatives 48 (Ismail et al., 2010), acid chlorides producing 

N acyl derivatives 49 (Barea et al., 2013) and acetic anhydride producing N acetyl derivatives 

50 (Ismail et al., 2010) (Scheme 2-20).  With styrene imines, the intermediate 46 produces N-

oxide quinoxalines with imino groups 51, which can be reduced with LiBH4 to yield amines 

52 (Scheme 2-20) (Ismail et al., 2010). 

 

Scheme 2-20  Synthesis of N-oxide quinoxaline derivatives 
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Substituted 2-keto-3-methylquinoxaline-1,4-dioxides (53) were prepared by the Beirut reaction 

(reacting 1,3-dicarbonyl compounds, ethanol, morpholine and the benzofurazan oxide 46).  

These intermediates were further reacted with DMA (a strong base) and DMF in xylene 

yielding the enamines (54) or the enaminone derivative (55).  The intermediate quinoxaline-N-

oxide acetophenone (53b) underwent Claisen-Schmidt condensation reactions with various 

substituted aldehydes yielding chalcones (56) which were used as precursors for the synthesis 

of three, five and six membered cyclic compounds 57, 58 and 59 respectively (Amin et al 2006; 

Gil A et al., 2014) (Scheme 2-21). 

 

Scheme 2-21  Synthesis of different N-oxide quinoxaline derivatives 

 

The mechanism of the Beirut reaction involves the enol form of the 1,3-dicarbonyl compound 

attacking the electrophilic N-oxide nitrogen of the benzofurazan N-oxide (46), forming an 

anion on the other nitrogen, which subsequently adds to the carbonyl of the ketone forming an 
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alcohol intermediate.  Rearrangement of the benzofurazan N-oxide and elimination of water 

results in the 1,4-di-N-oxides (53) (Scheme 2-22). 

 

 

Scheme 2-22  Mechanism of the Beirut reaction 

 

The benzofurazan N-oxide 46 reacts with various other 1,3-dicarbonyl reagents or a β-

cyanocarbonyl reagent yielding quinoxaline alkyl esters 60, ketones (61-63) or caboxamides 

(64) (Zarranz et al., 2004; Amin et al., 2006; Solano et al., 2007; Torres et al., 2013) (Scheme 

2-23).  The bubbling of ammonia gas in a warm alcoholic solution of 46 and substituted 

acetophenones for 3 h yielded 65, a phenylene quinoxaline derivative in high yields (Amin et 

al., 2006) (Scheme 2-23). 

 

The reaction of 46 with hydrazine hydrate and ethyl acetoacetate produced the intermediate 66, 

which upon treatment with sodium nitrite produced the keto azides 67, which were reacted 

further with aryl amines and alkyl alcohols to produce quinoxaline N-oxide ureas (68) or 

carbamates (69) (Scheme 2-24) (Ismail et al., 2010).  

 



35 

 

Scheme 2-23  Reactions of benzofurazan oxide with different dicarbonyl compounds 

 

 

Scheme 2-24  Synthesis of N-oxide quinoxaline urea and carbamate derivatives 
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2.2.12 Synthesis of quinoxaline ligands starting with phenanthroline and subsequent 
complex formation 

Quinoxaline based ligands were synthesized by oxidation of phenanthroline (70) using 

sulphuric and nitric acids along with sodium bromide to yield 2,10-phenanthroline-5,6-dione 

(71).  This diketo intermediate, 71 was further reacted with various di-amino compounds such 

as ethylene diamine, o-phenylenediamine and cyclohexane-1,2-diamine to yield dipyrido[3,2-

d:2',3'-f] quinoxaline (72), dipyrido[3,2-a:2',3'-c]phenazine (73) and dipyrido[3,2-a:2',3'-

c](6,7,8,9-tetrahydro)phenazine (71) respectively (Scheme 2-25).  These derivatives 72, 73 and 

74 were bidentate ligands, which were shown to co-ordinate to Cu and Pd metals via the 

nitrogen lone pairs of the phenanthroline ring resulting in the quinoxaline metal complexes 75-

82 (Nagaraj et al., 2015; Ma et al., 2014, 2015) (Scheme 2-26 and Scheme 2-27).  

 

Scheme 2-25  Synthesis of different quinoxaline ligands 
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Scheme 2-26  Synthesis of metal complexes of quinoxaline 

 

 

Scheme 2-27  Synthesis of quinoxaline metal complexes 
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Manchal et al. (2015) reported various metal complexes (84-87) prepared from the quinoxaline 

schiff base (83) obtained from commercially available 3-chloro-2-hydrazinequinoxaline (8) and 

furfuraldehyde (Manchal et al., 2015).  This ligand 83 co-ordinates to the metal via the nitrogen 

atoms of the quinoxaline and imine and the oxygen atom of the furan ring (Scheme 2-28). 

 

 

Scheme 2-28  Metal complexes prepared from quinoxaline schiff bases 

 

Quinoxaline dione (5) treated with substituted hydrazine carbothioamides (88) yielded the 

thiosemicarbazide ligand 89-90 which was shown to complex with various metals via both 

sulfur and nitrogen to form the complexes 91 (Kulkarni et al., 2012) (Scheme 2-29).  

 

 

Scheme 2-29  Quinoxaline metal complexes prepared from thiosemicarbazide ligand 
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2.3 Pharmacological Importance of Quinoxaline Derivatives 

Derivatives of quinoxaline have shown activity in a vast array of biological assays including 

antioxidant, antimicrobial, anticancer, antitubercular, antimalarial, analgesic, anti-

inflammatory, anticonvulsant, anti-epileptic and anti-HIV and have been reviewed extensively 

in the last three years (Ajani et al., 2014; Ali et al., 2015; Newahie et al., 2016).  Synthetic 

quinoxalines form part of antibiotics such as echinomycin, levomycin and actinomycin 

(Katagiri et al., 1975).  This short review focusses on the antimicrobial and antidiabetic 

activities of quinoxalines, since these two biological assays were carried out in this thesis. 

 

2.3.1 Antimicrobial activity  

Table 2-1 to Table 2-4 contains quinoxaline derivatives with reported MIC values of <100 µg 

mL-1 and zones of inhibition >25 mm.  These quinoxalines fall into several classes of 

substituted quinoxalines ranging from simple quinoxalines to more complex dimers.  

 

The simple quinoxalines contain substituents at the nitrogen, C-2 and C-3 and various positions 

on the aromatic ring (Figure 2-2).  These quinoxalines contain thioketo groups at C-2 and alkyl 

groups at N-1 (92, 93) (Caleb et al., 2011), carboxylic acids at C-3 along with methoxy or 

ethoxy groups (94-96) (Kumar et al., 2013), a 2-chloro-3-alkyl-3-carboxylate (97) (Kumar et 

al., 2013), C-6 amino acid linked quinoxalines (98-109) (Chaudhary et al., 2015), and a 6-

methyl-2-piperidinyl quinoxaline (110) (Henen et al., 2012), 2,3-diphenyl-6-sulphonyl 

quinoxalines (111-118) (Ingle and Wadher, 2014), 3-hydrazino-2-benzylquinoxaline (119) 

(Issa et al., 2015) and 2-hetrocyclic-3-alkyl or aromatic substituted quinoxalines (21-29, 120-

124) (Vekariya et al., 2003; El-Sawy et al., 2010; Issa et al., 2015).  Among these compounds, 

the best antimicrobial activity was seen by the C-6 amino acid linked quinoxalines 98-109 
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(Table 2-1 and Table 2-2) ranging from 6 to 25 µg mL-1 and 96-97 and 121-122 showing zones 

of inhibition > 30 mm (Table 2-1 and Table 2-2). 

 

 

Figure 2-2  Biologically active simple quinoxaline compounds 

 

The second class of bioactive quinoxalines are the 2-substituted C-3-N-4 fused triazolo 

quinoxalines.  Compounds 125-133 contain a benzyl-substituted group at C-2 and a triazolo 

group fused at C-3-N-4 (Issa et al. 2015).  The triazolo moiety in turn has C-3' substituted alkyl 

(126), phenyl (127, 128), keto (129), ester (130, 131), alkyl acid (132) or phenyl acid (133) 

group attached to it, providing further variation within this class.  Further compounds 134-145 

contains chloro, methoxy, thioacids, piperazine, anilines and thiotriazoles at the 2-position 

(Figure 2-3) (Suresh et al., 2010; Henen et al., 2012). 
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Table 2-1  Antimicrobial activity of simple quinoxaline compounds 

 
 

Comp. 
No. 

Gram Positive 
 

Gram Negative Fungi 

S.A B.S 

 

B.M R.F E.C P.V K.P P.A C.A A.N M.A P.C 

DD MIC 
 

DD MIC DD MIC DD DD MIC MIC MIC DD MIC MIC DD 

21 18-25 - - - - - 18-25 - - - - - - - - 

22 18-25 - - - 18-25 - 18-25 18-25 - - - - - - - 

23 - - - - 18-25 - - - - - - 18-25 - - - 

24 18-25 - - - - - - - - - - 18-25 - - - 

25 18-25 - - - - - - - - - - 18-25 - - - 

26 - - - - - - 18-25 18-25 - - - 18-25 - - - 

27 - - - - - - 18-25 - - - - 18-25 - - - 

28 - - - - - - - 18-28 - - - - - - - 

29 - - - - - - - 18-25 - - - - - - - 

92* - 32 - - - 16 - - - - - - - - - 

93* - 64 - - - - - - - - - - - - - 

94 - - - - - - - - - - - 29 - - - 

95 - - - - - - - - - - - 27 - - - 

96 - - 35 - - - - - - - - 33 - - - 

97           - 30 - - - 

98 - 12.5 - 6 - - - - 12.5 6 6 - 12.5 25 6 

99 - 25 - 12.5 - - - - 12.5 6 12.5 - 12.5 12.5 12.5 

100 - 12.5 - 6 - - - - 12.5 6 6 - 25 25 6 

101 - 12.5 - 6 - - - - 25 12.5 12.5 - 12.5 25 6 

102 - 25 - 12.5 - - - - 25 6 6 - 12.5 12.5 6 

103 - 12.5 - 6 - - - - 12.5 6 25 - 25 6 25 

S.A = Staphylococcus aureus; B.S = Bacillus subtilis; B.C = Bacillus cereus; B.M = Bacillus magaterium; R.F = Rhodococcus fascians; E.C = Escherichia 
coli; P.V = Proteus vulgaris; K.P = Klebsiella pneumoniae; P.A = Pseudomonas aeruginosa; C.A = Candida albicans; A.N = Aspergillus niger; M.A = 
Microsporum audouinii; P.C = Penicillium chrysogenum; DD = Disc diffusion method, zone of inhibition in mm; MIC = Minimum inhibitory concentration 
in µg ML-1; * = MIC value in mg ML-1.  Highlighted values show the most best results. 
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Table 2-2  Antimicrobial activity of simple quinoxaline compounds (continued) 

 
 
 

Comp. 
No. 

Gram Positive 
 

Gram Negative Fungi 

S. 

aureus 

 

B. 

subtilis 

B. 

cereus  

E. coli K. 

pneumoniae 

P. 

aeruginosa 

C.  

albicans 

 

A. niger 

M. 

audouinii 

P.  

chrysogenum 

MIC MIC DD 
 

MIC MIC DD MIC DD MIC MIC MIC DD 

104 12.5 6 - - 6 - 6 - 6 12.5 25 6 
105 12.5 6 - - 6 - 6 - 6 25 12.5 6 
106 25 6 - - 6 - 12.5 - 6 12.5 12.5 6 
107 12.5 12.5 - - 6 - 6 - 6 12.5 12.5 6 
108 25 6 - - 6 - 6 - 6 12.5 12.5 6 
109 12.5 6 - - 6 - 6 - 6 12.5 12.5 6 
110 - - - 85 - - - - - - - - 
111 23 - - 36 - - - - - - - - 
112 32 - - 35 - - - - - - - - 
113 50 - - 40 - - - - - - - - 
114 12 - - 67 - - - - - - - - 
115 35 - - 25 - - - - - - - - 
116 19 - - 21 - - - - - - - - 
117 22 - - 27 - - - - - - - - 
118 24 - - 29 - - - - - - - - 
119 100 50 - 50 - - 100 - 50 - - - 
120 100 100 - 100 - - 50 - 50 - - - 
121 - - - - - - - 32 - - - - 
122 - - - - - - - 32 - - - - 
123 - - 28 - - 25 - - - - - - 
124 - - 28 - - 25 - - - - - - 

DD = Disc diffusion method, zone of inhibition in mm; MIC = Minimum inhibitory concentration in µg ML-1.  Highlighted values show the most  
best results.
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Compounds 125, 127, 132 and 133 showed MIC values of 25 µg mL-1 or less against bacterial 

strains, whilst 128, 130-131 and 133 showed MICs of 25 µg mL-1 against C. albicans.  Compounds 

136, 139 and 142 showed zones of inhibition of > 30 mm against bacterial strains with 136 showing 

a broad spectrum of activity being active against both Gram +ve and Gram –ve bacteria.  

Compounds 138, 140-143 all showed zones of inhibition > 30 mm against the fungal species, A. 

niger and P. chrysogenum (Table 2-3). 

 

 
Figure 2-3  Second class of quinoxaline compounds  

 

A set of unique quinoxalines with a C-2-C-3 fused imidazo thiadiazo group also showed good 

bioactivity (146-152) (Teja et al., 2013).  Compounds 146-147 showed MICs of 15.63 µg mL-1 

against Gram +ve and Gram –ve bacteria as well as the fungal A. fumigatus.   
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Table 2-3  Antimicrobial activity of second class of quinoxaline compounds 

 
 
 

Comp. 
No. 

Gram Positive Gram Negative 
 

Fungi 

S. aureus 

 

B. subtilis E. coli P.  

Vulgaris 

 

K. 

pneumoniae 

P. 

aeruginosa 

C.  

albicans 

A. niger P.  

chrysogenum 

DD MIC DD 
 

MIC MIC DD DD MIC MIC DD DD 

125 - 50 - 50 25 - - 50 100 - - 
126 - 50 - 50 50 - - 100 100 - - 
127 - 100 - 25 25 - - 50 100 - - 
128 - 50 - 100 100 - - 50 25 - - 
129 - 100 - 100 100 - - 100 50 - - 
130 - 50 - 50 50 - - 100 25 - - 
131 - 50 - 100 100 - - 100 25 - - 
132 - 25 - 12.5 12.5 - - 25 50 - - 
133 - 100 - 100 25 - - 100 25 - - 
134 - - - - 87 - - - 89 - - 
135 - 84 - - - - - - - - - 
136 31 - 30 - - 31 35 - - - - 
137 25 - - - - - - - - 26 26 
138 - - - - - - - - - 31 - 
139 32 - 27 - - - 36 - - - 25 
140 26 - 26 - - - - - - 25 30 
141 - - - - - - - - - 30 26 
142 28 - 31 - - - - - - 31 28 
143 25 - - - - - - - - 33 34 
144 - 94 - - 67 - - - - - - 
145 - - - 91 98 - - - 78 - - 

DD = Disc diffusion method, zone of inhibition in mm; MIC = Minimum inhibitory concentration in µg ML-1.  Highlighted values show the best results.  
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The best activity was seen by the 2-hydroxyphenyl derivative 149, which showed MIC values of 

7.81 µg mL-1 against these same bacterial and fungal strains (Table 2-4).  Three molecules with a 

six membered triazine ring fused at C-3-N-4 (153-155) also showed activity < 100 μg mL-1 with 

153 showing a MIC of 25 µg mL-1 against P. aeruginosa and 12.5 µg mL-1 against C. albicans 

(Figure 2-4; Table 2-4) (Issa et al., 2015). 

 

Compounds 156-158 contained a methylene linker bridging two quinoxalines (Srinivas et al., 

2013) (Figure 2-4).  The para chloro and fluoro derivatives 157 and 158 showed MIC values of 

8-16 µg mL-1 against both Gram +ve and –ve bacterial strains (Table 2-4). 

 

Two metal chelated quinoxalines (75, 76) synthesized from phenanthroline and ethylenediamine 

precursors (discussed above, Scheme 2-27) showed zones of inhibition of 26 and 29 mm 

respectively against an unspecified fungal Aspergillus species (Table 2-4) (Nagaraj et al., 2015).   

 

 

Figure 2-4  Unique quinoxaline compounds 
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Table 2-4  Antimicrobial activity of unique quinoxaline compounds 

 
 
 

Comp. 
No. 

Gram Positive 
 

Gram Negative 
 

Fungi 

S. aureus 

 

B. 

subtilis 

B. cereus E. coli P. 

vulgaris 

 

P. 

aeruginosa 

C. 

albicans 

A. niger A. 

fumigatus 

Aspergillus 

MIC (µg ML-1) 
 

DD 

75 - - - - - - - - - 26 
76 - - - - - - - - - 29 
146 31.25 - 15.63 31.25 - 15.63 - 31.25 15.63 - 
147 31.25 - 15.63 31.25 - 31.25 - 31.25 15.63 - 
148 31.25 - - 31.25 - - - - - - 
149 7.81 - 7.81 31.25 - 7.81 - 31.25 7.81 - 
150 - - 31.25 - - - - 31.25 31.25 - 
151 - - - 31.25 - 31.25 - 31.25 - - 
152 31.25 - 31.25 - - 31.25 - - - - 
153 50 25 - 50 - 25 12.5 - - - 
154 50 100 - 50 - 50 25 - - - 
155 50 50 - 50 - 100 50 - - - 
156 - 64 - - - - - - - - 
157 8 8 - 16 8 - - - - - 
158 8 16 - 16 16 - - - - - 

DD = Disc diffusion method, zone of inhibition in mm; MIC = Minimum inhibitory concentration in µg ML-1.  Highlighted values show the best results.  
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2.3.2 Antidiabetic Activity 

Antidiabetic activity of quinoxalines were limited to the quinoxaline–thiosemicarbazone 

ligands (89-90) and their metal complexes (91) (Kulkarni et al., 2012) (Scheme 2-29).  This 

was evaluated by a blood-glucose and oral glucose tolerance test (OGTT).  These compounds 

showed a notable reduction in the blood glucose level and promising activity in the OGTT.  In 

addition, they posessed low toxicity with a high safety profile (Kulkarni et al., 2012). 

 

2.4 Conclusion 

Quinoxalines can be easily synthesized using a variety of methods, most of which contain an 

ortho-diamine with oxalic acid derivatives.  There are however some other more specific 

syntheses, also contained in this review.  This literature survey identifies many quinoxaline 

molecules with promising antibacterial and antifungal activity such as C-6 amino acid linked 

quinoxalines (MIC 6-12.5 µg mL-1), 7,8-dinitro-2-(2-hydroxy-phenyl)[1,3,4] 

thiadiazolo[2’,3’:2,3]imidazo[4,5-b]quinoxaline (MIC 7.81 µg mL-1), (5-(4-fluorophenyl)-3-

((2-(3-(3-phenylquinoxalin-2-yl)benzyl)-6H-indolo[2,3-b]quinoxalin-6-yl)methyl)-4,5-

dihydro-1H-pyrazol-1-yl)(phenyl)methanone (MIC 8-16 µg mL-1) and 3-(4-benzyl-

[1,2,4]triazolo[4,3-a] quinoxalin-1-yl)propanoic acid (MIC 12.5-50 µg mL-1).  These 

compounds can be considered lead compounds for antibiotics since they show better activity 

than gatifloxacin, ampicillin and clotrimazole (currently used antibiotics).   
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Chapter 3. The synthesis, antimicrobial and antidiabetic activity of 

benzimidazole scaffolds 

 

 

Abstract 

Molecules with a benzimidazole scaffold are regarded as an important class of heterocyclic 

compounds with a wide spectrum of biological activities.  We report on the latest synthetic 

methods and mechanisms of these reactions as well as their antibacterial, antifungal and 

antidiabetic activities.  The present review covers more than 60 of the latest references, which 

focused on the synthesis of the benzimidazole scaffold using various synthetic strategies.   

 

Keywords: Benzimidazole, synthesis, mechanism, antibacterial, antifungal, antidiabetic. 
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3.1 Introduction 

Benzimidazoles are the benzo derivatives of imidazole, also known as 1H-benzimidazole or 

1,3-benzodiazole (Figure 3-1).  Benzimidazole and thiobenzimidazole both exist in two 

equivalent tautomeric forms (Figure 3-2).  In 1944, Woolley proved that benzimidazoles 

showed similar therapeutic potential to purines in eliciting optimum biological responses 

(Woolley et al., 1944).  In recent years, benzimidazoles have gained much importance, having 

applications in the pharmaceutical industry (Chaudhari et al., 2014; Yadav et al., 2015; Preethi 

et al., 2015; Aboul-Enein et al., 2015; Verma et al., 2016), in agriculture as fungicides (Yang 

et al., 2011; Raghunath et al., 2014) and in industry (Tang et al., 2013; Finšgar et al., 2014; 

Zhang et al., 2014).  In addition, benzimidazoles are applied as important intermediates in many 

organic reactions (Sánchez et al., 2016).  There are currently a number of drugs in the market 

containing a benzimidazole scaffold, such as omeprazole (proton pump inhibitors), albendazole 

(anthelmintic), mebendazole (antimicrobial) and enviradine (antiviral) (Bansal et al., 2015; 

Yadav et al., 2015). 

 

Benzimidazoles have been prepared most commonly from the reaction of o-phenylenediamine 

with carbonyl-containing compounds such as carboxylic acids, acid chlorides and aldehydes, 

under harsh dehydrating conditions using strong acids such as polyphosphoric and 

hydrochloric acids (Chen et al., 2014; Fang et al., 2016; Khairunissa et al., 2016; Weijie et al., 

2016).  When o-phenylenediamine was reacted with carbon disulphide (Reddy et al., 2016) or 

hydrazinecarbothioamide (El Ashry et al., 2010), 1H-benzo[d]imidazole-2-thiols were 

produced.  In addition, o-phenylenediamines reacted with cyanogen bromide or urea produced 

1H-benzo[d]imidazol-2-amines and 1H-benzo[d]imidazol-2(3H)-ones respectively (Abbas et 

al., 2013; Reddy et al., 2016). 
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There have also been reports of the preparation of benzimidazole isoindolones from o-

phenylenediamines and phthalic anhydride (Deshmukh et al., 2015; Mehta et al., 2015) as well 

as 2-(o-sulfamoylphenyl) benzimidazoles with o-phenylenediamine and saccharin (Ashraf et 

al., 2016).  Such reactions provide convenient strategies for the synthesis of hybrid 

benzimidazoles, which have the potential to be further derivatized.  Beside o-

phenylenediamines, o-nitro arylamines were also used to synthesize benzimidazoles, 

producing 2-cyclohexyl-1H-benzimidazoles with cyclohexanecarbonyl chloride (Park et al., 

2014). 

 

This mini review covers the literature from 2014 to May 2016 focusing on the various pathways 

for the synthesis of the benzimidazole nucleus under different reaction conditions. In addition, 

we attempt to explain a mechanistic pathway for the formation of the benzimidazole nucleus 

from o-phenylenediamine.  The antibacterial, antifungal and antidiabetic activity of 

benzimidazole derivatives are also highlighted in this review. 

 

Figure 3-1  The general structure of a benzimidazole with nomenclature included 

 

 

Figure 3-2  Tautomeric forms of benzimidazoles 
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3.2 Synthesis 

There are two common methods for the synthesis of benzimidazoles.  The first is the coupling 

of o-phenylenediamine with carboxylic acids or their derivatives and the second involves a 

two-step reaction that includes oxidative cyclo-dehydrogenation of Schiff bases generated from 

the condensation of o-phenylenediamine and aldehydes.  Since a vast number of acids and 

aldehydes are available, a large number of benzimidazoles have been prepared from these 

precursors.   

 

3.2.1 Benzimidazoles synthesized from substituted o-phenylenediamine with 
carboxylic acids 

2-Substituted benzimidazoles (159-174) were prepared in good yields from o-

phenylenediamines and different types of carboxylic acids in the presence of hydrochloric or 

polyphosphoric acid (Scheme 3-1 to Scheme 3-3) (Chinnappadu et al., 2014; Harkala et al., 

2014; Huizhen et al., 2014; Madabhushi et al., 2014; Rao et al., 2014; Alasmary et al., 2015; 

Chandra et al., 2015; Elagab et al., 2015; Gobis et al., 2015; Kankate et al., 2015; Mariappan 

et al., 2015; Rashid et al., 2015; Fang et al., 2016; Gaballah et al., 2016; Govindaraj et al., 

2016; Mehta et al., 2016; Reddy et al., 2016; Tien et al., 2016; Wu et al., 2016; Zhang et al., 

2016). 

 

 

Scheme 3-1  General scheme of synthesis of benzimidazole 
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The mechanism for this reaction involves nucleophilic addition of the amino group to the 

carbonyl carbon of the carboxylic acid, forming the amide, after which a second nucleophilic 

step involving the other amino group resulted in the alcohol addition intermediate (175), which 

formed the benzimidazole (161) upon dehydration (Scheme 3-4).  The reaction is catalysed by 

either polyphosphoric or hydrochloric acid, whose function is to activate the carboxylic acid, 

making the carbonyl group more susceptible to nucleophilic attack. 

 

 

Scheme 3-2  Synthesis of 2-substituted benzimidazoles using various carboxylic acid 
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Scheme 3-3  Synthesis of 2-substituted benzimidazoles using various carboxylic acid 

 

 

Scheme 3-4  Mechanism of synthesis of benzimidazole (161) 

 

Benzimidazoles synthesized from substituted o-phenylenediamine and aldehydes  

Aldehydes react with o-phenylenediamines in the presence of a catalyst such as sodium 

dithionite (Kamal et al., 2014; Kumar et al., 2015), sodium metabisulfite (Taha et al., 2014; 

Kamal et al., 2015; Ramprasad et al., 2015; Khairunissa et al., 2016), sodium bisulfite (Weijie 

et al., 2016), copper sulfate (Zhang et al., 2016), ammonium chloride (Al-ebaist et al., 2015), 

zinc oxide or magnesium oxide (Dinparastast et al., 2016), resulting in 2-substituted 

benzimidazoles (176-183) (Scheme 3-5 and Scheme 3-6). 
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Scheme 3-5  Synthesis of benzimidazole using different reaction conditions 

 

 
Scheme 3-6  Synthesis of 2-substituted benzimidazoles using various aldehydes 

 

Scheme 3-7  Mechanism of synthesis of benzimidazole (184) 
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Eren et al. (2014) reports a plausible mechanism for this reaction in which sodium sulphite 

adds to the aldehyde intermediate forming the hydroxy sulphite, which is then attacked by one 

of the amino groups of the o-phenylenediamine.  This first substitutes the hydroxy group and 

subsequently the sulphite group when the second amino group adds to the same carbon, 

forming the benzimidazole (184) after the release of H2 (Scheme 3-7) (Eren et al., 2014). 

 

3.2.2 1H-benzo[d]imidazole-2-thiols synthesized from substituted o-phenylenediamine 
with carbondisulfide or hydrazinecarbothioamide 

Both carbon disulphide and carbothiamide were used to synthesize benzimidazole-2-thiols with 

o-phenylenediamine, however no mechanisms are reported in the literature (El Ashry et al., 

2010; Reddy et al., 2016).  We postulate mechanisms for each of the reactions below. 

 

With carbon disulphide, the amino group from o-phenylenediamine adds to the carbon of CS2 

forming a thiol intermediate, which is attacked by the second amino group, substituting the 

thiol group, eliminating H2S and forming the benzimidazole thiol (185) (Scheme 3-8). 

 

 

Scheme 3-8  Synthesis of thiobenzimidazole (185) 
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Using hydrazine carbothiamide, the amino group of o-phenylenediamine attacks the 

electrophilic carbon in the usual manner, forming a tetrahedral sulphide intermediate (186), 

which then collapses eliminating hydrazine and forming a trigonal planar thiourea like 

intermediate, which is again attacked by the second amino group forming a tetrahedral sulphide 

intermediate again (187), which this time collapses eliminating ammonia and forming the 

thiobenzimidazole (188-189) (Scheme 3-9). 

 

 

Scheme 3-9  Synthesis with possible mechanism of formation of thiobenzimidazole using 

hydrazine carbothiamide 

 

3.2.3 Benzimidazoles synthesized from o-phenylenediamine or o-nitroaniline and acid 
chlorides 

Benzimidazoles are formed in good yields using o-phenylenediamine with acid chlorides (Chen 

et al., 2014; Park et al., 2014).  This reaction forms via nucleophilic acyl substitution of the 

chloro group with the amino group on the o-phenylenediamine, first forming the amide, which 

is attacked further by the second amino group forming a tetrahedral intermediate, which 
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ultimately forms the benzimidazole (190) by elimination of water (Scheme 3-10).  When o-

nitroanilines are used instead of o-phenylenediamines, an additional reduction step is needed 

after the formation of the amide intermediate (191) (Scheme 3-11).  

 

 

Scheme 3-10 Synthesis with mechanism of benzimidazole (190) 

 

 

Scheme 3-11  Synthesis and mechanism of benzimidazole (192) 
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3.2.4 Benzimidazoles synthesized from o-phenylenediamine and urea 

O-phenylenediamines react with urea in acidic condition producing 1H-benzo[d]imidazol-

2(3H)-one in good yields (Abbas et al., 2013; Srinivas Rao et al., 2014; Benali et al., 2015).  In 

this mechanism, the lone pair on the amino group attacks the carbonyl group of urea forming 

an amide bond and eliminating ammonia.  The lone pair on the second amine then repeats this 

process to produce the benzimidazol-2(3H)one (193) (Scheme 3-12). 

 

 

Scheme 3-12  Formation of benzimidazole using o-phenylenediamine and urea 

  

3.2.5 Benzimidazoles synthesized from substituted o-phenylenediamine and cyanogen 
bromide 

Benzimidazole-2-amines (194) are synthesized from the reaction of substituted o-

phenylenediamines and cyanogen bromide in the presence of ethanol and water (Garg et al., 

2014; Bansal et al., 2015; Reddy et al., 2016).  The postulated mechanism for this reaction is 

attack of the lone pair of one of the amino groups from o-phenylenediamine on the cyanogen 

carbon.  This occurs with a concomitant loss of HBr.  The lone pair of the second amino group 

then attacks the same nitrile carbon, forming an imine.  Proton transfers then produce the 
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benzimidazole-2-amines (194) (Scheme 3-13).  The presence of an amino group at C-2 makes 

a variety of derivatisation involving amino groups possible.   

 

 

Scheme 3-13  Synthesis of benzimidazole using o-phenylenediamine and cyanogen bromide 

 

3.2.6 Benzimidazo-isoindol-ones synthesized from o-phenylenediamine and phthalic 
anhydride 

Benzimidazole-indole (195) hybrid scaffolds are formed in good yields by the reaction of o-

phenylenediamines and phthalic anhydride (Deshmukh et al., 2015; Mehta et al., 2015).  In this 

mechanism, the anhydride is cleaved after the amine attacks the carbonyl group of the 

anhydride, forming an amide bond at one end and an acid at the other.  The lone pair of the 

second amino group then attacks the amide carbonyl group, forming an imidazole ring with a 

hydroxy group at C-2.  A further attack of the lone pair of one of the NH groups on the 

imidazole moiety then reacts with the carboxylic acid forming the benzimidazo-isoindol-one 

(195) after a dehydration step (Scheme 3-14). 
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Scheme 3-14  Synthesis of Benzimidazo-isoindol-ones (195) 

 

3.2.7 Benzimidazol-2-benzenesulphonamides synthesized form o-phenylenediamine 
and saccharin 

The reaction of o-phenylenediamine and benzene sulphonamide (saccharin) produced 2-(1H-

benzo[d]imidazol-2-yl)benzenesulfonamide (196) (Ashraf et al., 2016), probably by the lone 

pair of the amino group attacking the carbonyl group of saccharin, hydrolysing the amide bond.  

The second amino group of o-phenylenediamine then reacts with the newly formed amide 

bond, forming the benzimidazol-2-benzene sulphonamide (196) after a dehydration step 

(Scheme 3-15). 

 

3.3 Applications of benzimidazole derivatives as antimicrobial and antidiabetic agents 

Benzimidazole derivatives have shown a number of different biological activities including 

antimicrobial, antidiabetic, antioxidant, anticancer, anti-tubercular, anti-HIV, anti-

inflammatory, antiviral, antihypertensive, antiprotozoal, anticonvulsant and analgesic activity 

(Keri et al., 2015; Singla et al., 2015; Khairunissa et al., 2016; Verma et al., 2016; Zhang et al., 
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2016).  The benzimidazole scaffold can be functionalised at a variety of positions, however the 

most common positions found to be derivatised are N-1, C-2, C-5 and C-6.   

 

 

Scheme 3-15  Synthesis and mechanism of benzimidazol-2-benzenesulphonamides (196) 

 

This short review focus on the antimicrobial and antidiabetic activities of benzimidazole 

derivatives since these two biological assays were carried out in this thesis. 

 

3.3.1 Antimicrobial activity 

Outlined below is a summary of benzimidazole structures with reported MIC values of <10 µg 

mL-1 and >30 mm zones of inhibition against one or more bacterial and fungal strains (Table 

3-1 to Table 3-6).  Essentially, these benzimidazoles were substituted at C-2 and N-1.   

 

Compounds 197-199 contains substitution on N-1 only, with C-2 left unsubstituted.  These 

substituents were propanoate esters.  The benzene ring in these compounds were either 

unsubstituted (199), contained methyl groups at C-5 and C-6 (197) or a chloro group at C-6 

(198) (Figure 3-3).  Compounds 197 and 198 showed strain specific activity to Bacillus. 
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proteus and 199 showed activity against Staphyllococcus aureus, all having MIC values of 8 

µg mL-1 (Wen et al., 2016). 

 

 

Figure 3-3  Biologically active N-1 substituted benzimidazoles 

 

Benzimidazoles 200-204 contain hydroxy, methyl, amino and nitro groups on the phenyl ring 

substituted at C-2 and bromo, nitro and methyl groups on the benzene ring of benzimidazole 

(Al-Ebaisat et al., 2015; Govindaraj et al., 2016).  Compounds 205 and 206 contain a 2-

benzamide group at C-2, with the benzene ring of the benzimidazole being unsubstituted in 

205 and substituted with a bromo group at C-6 in 206 (Govindaraj et al., 2016; Reddy et al., 

2016).  Compound 207 also contained a phenyl group at C-2, but with a phenyl tetrazolo moiety 

attached at the ortho position (Reddy et al., 2016).  Compound 208 contains a fluoro group at 

C-5 and a methyl-5-fluorouracil moiety at C-2, while compounds 209-214 contains a thio-6-

methyl pyrimidine moiety with fluoro, chloro, bromo, methyl, methoxy and trifluoromethyl 

groups (209-214) (Chen et al., 2014; Fang et al., 2016).  Compounds 215-216 contains a phenyl 

substituted thiourea moiety at C-2, with trifluoromethyl groups on the phenyl ring and propyl 

and butyl groups substituted at the nitrogen of the thiourea group (Figure 3-4) (Madabhushi et 

al., 2014).  Compounds 208 and 210 showed excellent MIC values of 2 µg mL-1 against the 

fungal strain (Candida albicans) and Gram –ve strain (Stenotrophomonas maltophilia). 

 

Benzimidazoles 217-327 all contained an imidazo-thiadiazol group attached to C-2 through C-

5' of the imidazole ring in the substitutent.  These substitutents further contained fluoro, chloro 
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and methoxy groups on the phenyl ring at C-4' of the imidazole group (Ramprasad et al., 2015).  

Compounds 238-249 contained thiomethyl-1,2,3-triazol-1-ylarylethylideneaceto-hydrazide 

groups at C-2, where the phenyl group was substituted with halogens, hydroxy, methoxy, 

isopropyl or dimethylamino groups (Youssif et al., 2014).   

 

 

Figure 3-4  Biologically active C-2 substituted simple benzimidazoles 

 

Compounds 250-267 each contained fluoroquinolones attached to C-2 through a piperidine 

linker, either directly (250 and 251) or through a methylene (252-261), ethylene (262-263), 

ethylamine (264-265) or imine group (266-267) (Zhang et al., 2016).  The nitrogen of the 

fluoroquinoline moiety was substituted either with an ethyl group or with a cyclopropyl group 

and the benzene ring of the benzimidazole moiety was either unsubstituted or contained 

halogens (Br, Cl and F) or a nitro group.  In addition, compound 268 contained an ethylidene-

pyridine-6-arylimino-3,5-dicarbonitrile-4-nitrophenyl group at C-2 (Figure 3-5 and Figure 

3-6) (Desai et al., 2014).  Among these, compounds 257 and 259 showed the best antimicrobial 

activity with MIC values ranging from 0.125-1 µg mL-1 against Gram +ve and –ve bacterial 

strains.  The other compounds also showed good MIC values of between 0.5-10 µg mL-1. 
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The next class of benzimidazoles contain substitution at both N-1 and C-2.  Compounds 269-

272 contain ethyl, propyl, butyl and 3-F-benzyl groups at N-1, while C-2 is attached to a 

substituted 5-fluorouracil moiety (Fang et al., 2016).   

 

Figure 3-5  Biologically active C-2 substituted complex benzimidazoles 

 

 

Figure 3-6  Biologically active C-2 substituted complex benzimidazoles 

 

Compounds 273-274 contains a 2,4-difluorobenzyl group at N-1 and a 3,5-ditrifluoromethyl 

methylaminophenyl group at C-2 (Huizhen et al., 2014).  In addition, 275 and 276 has a N-

benzyl-N-methyl-5-fluorouracil group at C-2 and a substituted benzyl group at N-1 (Fang et 
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al., 2016).  Compounds 277-301 all contain a piperidine linked fluoroquinolone linked to C-2 

similar to 250-267, but now with either an ethyl group or a substituted benzyl group at N-1 

(Figure 3-7) (Zhang et al., 2016).  Of these, compounds 292, 295 and 299 showed the best 

activity against Gram +ve and Gram –ve bacterial strains and fungal strains with MIC values 

ranging from 0.03-8 µg mL-1.  Other compounds also showed good antimicrobial activity 

against certain bacteria. 

 

 

Figure 3-7  Biologically active N-1 and C-2 substituted complex benzimidazoles 

 

Compounds 302-316 were slightly different to all the other compounds discussed previously.  

Compounds 302-304 contained an imine at C-2 and either phenylpropyl or 2-oxo-2-

phenylethyl groups at N-1 and N-3 (Mavrova et al., 2015).  Compounds 305-316 contain a 

propyl chain at N-1, a 2,4-dichlorophenyl moiety at C-2 and substituted benzilidene hydrazones 

at C-5 (Figure 3-8) (Kumar et al., 2015).  Most of these compounds showed good activity 
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against the fungal strain, Aspergillus niger with MIC values of 3.12-6.25 µg mL-1.  Compound 

315 showed broad spectrum antimicrobial activity with MIC values of 3.12 to 6.25 µg mL-1. 

 

 

Figure 3-8  Biologically active N-1, N-3 and C-2 substituted complex benzimidazoles 

3.3.2 Antidiabetic activity 

Two types of benzimidazoles showed α-glucosidase inhibition with reported IC50 values of 

<25 µg mL-1 (Table 3-7).  This includes benzimidazole 318 with a 4-cyanophenyl moiety at 

C-2 and a 4-cyanobenzyl moiety at N-1 and compounds 319-333 with methyl groups at C-5 

and C-6 and a substituted benzohydrazide group at C-2 containing hydroxy, methoxy, chloro, 

and methyl groups.  The most active of these compounds were 319, 321, 324-325 and 333 with 

IC50 values of <9 µg mL-1 (Figure 3-9; Table 3-7) (Dinparast et al., 2016; Khairunissa et al., 

2016).  In addition, 2,3-dihydro-3-(4-nitrobenzensulfonyl)-2-oxo-1H-benzimidazole (317) 

(Figure 3-9) coupled to hydroxyethyl starch (HES) resulted in a 67% reduction in blood 

glucose levels of rats (Abbas et al., 2015).   

 

Figure 3-9  Biologically active benzimidazoles 
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Table 3-1  Antimicrobial activity of benzimidazole compounds (197-216) 

 
 

Comp. 
No. 

Gram +ve Gram -ve Fungi 
 

M. 

luteus 

S. 

aureus 

B. 

proteus 

E. 

coli 

P. 

aeruginosa 

S. 

maltophilia 

C. 

albicans 

S. 

cerevisiae 

C. 

glabrata 

C. 

krusei 

MIC MIC DD MIC DD MIC 
197 - - - 8 - - - - - - - 
198 - - - 8 - - - - - - - 
199 - 8 - - - - - - - - - 
200 - - - - - - - - - 6.25 6.25 
201 - - - - - - - - - - 6.25 
202 - - - - - - - - - - 6.25 
203 - - - - - - - - - - 6.25 
204 - - - - 30 - - - - - - 
205 - - - - 30 - - - - - - 
206 - - 32 - 36 - - - - - - 
207 - - 32 - 36 - - - - - - 
208 - 8 - - - - - 2 8 -  
209 - - - - - - - 8 - - - 
210 - 8 - - - - 2 - - - - 
211 - - - - - - 4 8 - - - 
212 - - - - - - 8 - - - - 
213 - - - - - - 8 - - - - 
214 - - - - - - 8 - - - - 
215 - - - - - 6.25 - - - - - 
216 6.25 - - - - - - - - - - 

MIC = Minimum inhibitory concentration in µg mL-1; DD = Disc diffusion method, zone of inhibition in mm  
M. luteus = Micrococcus luteus; E. coli = Escherichia coli; P. aeruginosa = Pseudomonas aerugoinosa; S. cerevisiae = Saccharomyces cerevisiae; C. glabrata = Candida 

glabrata; C. krusei = Candida krusei. 
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Table 3-2  Antimicrobial activity of benzimidazole compounds (217-238) 

 
 

Comp. 
No. 

Gram 
+ve 

Gram -ve Fungi 
 

S. 

aureus 

E. 

coli 

P. 

aeruginosa 

S. 

typhi 

A.flavus C.albicans C. 

Keratinophilum 

 

MIC (µg mL-1) 
 

217 6 4 7 3 3 3 4 
218 4 5 4 5 5 4 5 
219 3 4 4 3 3 4 3 
220 4 4 5 6 3 3 4 
221 - - - - 6 6 5 
222 4 4 3 4 5 5 4 
223 3 3 2 3 - - - 
224 7 5 8 3 4 3 4 
225 5 5 6 4 5 5 4 
226 4 5 2 3 4 5 4 
227 3 4 6 4 - 6 - 
228 5 4 3 - 5 2 3 
229 - - - - 2 2 3 
230 2 4 3 2 3 - 4 
231 3 4 1 2 - 9 - 
232 9 - - 10 7 6 8 
233 4 4 5 3 6 - 7 
234 9 6 8 6 - 4 - 
235 3 4 4 4 3 - 5 
236 5 5 3 6 - 4 - 
237 - 8 9 8 3 - 2 
238 - - - - - 6.25* - 

MIC = Minimum inhibitory concentration in µg mL-1; *= MIC in µM  

 

3.4 Conclusion 

Benzimidazoles can easily be prepared from substituted o-phenylenediamine with a variety of 

carboxylic acid or aldehyde derivatives.  Due to the variety of substituted precursors available, 

a vast number of benzimidazoles were able to be prepared, however there is still scope for the 

synthesis of many more.  Many of these compounds showed promising antimicrobial and anti-

diabetic activity and can be considered lead compounds for antibiotics and anti-diabetic agents 

since some have shown better activity than miconazole, fluconazole and acarbose (currently 

used drugs).   
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Table 3-3  Antimicrobial activity of benzimidazole compounds (239-261) 

 
 

Comp. 
No. 

Gram +ve Gram –ve Fungi 
B. subtilis MRSA M. luteus S. aureus B. proteus E. coli P. 

aeruginosa 

S. 

dysenteriae 

S. 

Enterica 

C. albicans 

MIC (µg mL-1) 
239 - - - - - 3.12* - - - 6.25* 
240 - - - - - 6.25* - - - 3.12* 
241 - - - - - - - - - 6.25* 
242 - - - - - - - - - 6.25* 
243 - - - - - 6.25* - - - 6.25* 
244 - - - - - 3.12* - - - 3.12* 
245 - - - - - - - - - 3.12* 
246 - - - - - 6.25* - - - 6.25* 
247 - - - - - - - - - 6.25* 
248 - - - - - - - - - 6.25* 
249 - - - - - 6.25* - - - 6.25* 
250 2 4 4 2 1 2 2 4 2 - 
251 2 0.5 1 1 2 1 0.5 0.5 1 - 
252 1 1 1 2 0.5 0.5 1 2 0.5 - 
253 8 - 0.5 - 2 - 4 8 8 - 
254 - 1 1 2 0.5 0.5 1 1 0.5 - 
255 8 - 2 - 4 - 2 - 8 - 
256 8 8 1 - 2 8 2 4 4 - 
257 0.125 0.125 0.125 0.25 0.125 0.125 0.5 1 0.125 - 
258 0.5 2 2 4 1 1 2 2 1 - 
259 0.5 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 - 
260 - 4 - - 8 8 1 - 4 - 
261 8 2 8 -- 4 4 0.5 4 4 - 

MIC = Minimum inhibitory concentration in µg mL-1; * = MIC in µM; B. subtilis = Bacillus subtilis 
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Table 3-4  Antimicrobial activity of benzimidazole compounds (262-285) 

 
 
 

Comp. 
No. 

Gram +ve Gram –ve Fungi 

B. 

subtilis 

MRSA M. 

luteus 

S. 

aureus 

B. 

proteus 

B. 

typhi 

E. 

coli 

P. 

aeruginosa 

S. 

dysenteriae 

S. 

enterica 

 

A. 

flavus 

C. 

albicans 

C. 

mycoderma 

C. 

utilis 

S. 

cerevisiae 

MIC (µg mL-1) 
 

262 2 - - - - - - - - - - - - - - 
263 - 4 1 4 2 - 4 0.5 0.5 1 - - - - - 
264 8 0.5 4 2 8 - 1 1 0.5 2 - - - - - 
265 1 0.25 1 1 1 - 1 0.5 0.25 1 - - - - - 
266 4 - - - - - - 8 - - - - - - - 
267 2 - 4 - 4 - 8 2 8 4 - - - - - 
268 - 6.25 - - - - - - - - - - - - - 
269 - - - - - - 8 - - - - 2 - - 4 
270 - - - - - - - - - - - 2 - - 8 
271 - - - - 8 - - - - - - - 8 - 8 
272 8 - - 4 2 - 2 - - - - - - - 4 
273 - - - - - - 8 - - - - - - 8 - 
274 8 - 8 8 - - - - - - 8 - 8 - 8 
275 - 2 - 4 4 8 2 - - - 8 - - - 1 
276 - - - - - - - - - - - 4 - - - 
277 2 8 4 - 1 - 4 - - 0.5 - - - - - 
278 2 - 8 - - - - - - - - - - - - 
279 - - - - 8 - 8 - - - - - - - - 
280 - - 4 - 4 - 4 - - 8 - - - - - 
281 - 2 4 - 4 - 8 2 - 4 - - - - - 
282 4 8 - - 8 - 0.5 4 8 8 - - - - - 
283 0.5 - 2 - 0.5 - 2 2 8 0.5 - - - - - 
284 - 2 1 - - - 1 1 4 4 - - - - - 
285 4 - 4 - 2 - 1 2 8 4 - - - - - 

MIC = Minimum inhibitory concentration in µg mL-1; 
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Table 3-5  Antimicrobial activity of benzimidazole compounds (286-300) 

 
 
 

Comp. 
No 

Gram +ve Gram –ve 
 

B. subtilis MRSA M. luteus S. aureus B. proteus E. coli S. dysenteriae 

 

S. enterica P. aeruginosa 

MIC (µg mL-1) 
 

286 - 1 1 - 0.5 0.5 4 4 1 
287 4 - 4 - 4 8 2 - 4 
288 - 0.125 0.5 8 4 2 - 0.5 1 
289 - 2 2 - - 8 - 4 2 
290 - - - - 4 - 1 8 8 
291 8 - 8 8 - - - 8 8 
292 8 0.125 0.25 4 1 1 2 0.25 1 
293 2 8 4 4 - - 4 4 4 
294 0.5 4 4 - 1 2 - 2 2 
295 4 0.5 0.125 8 0.5 0.5 4 0.25 0.125 
296 8 0.25 0.25 - 1 1 4 0.25 2 
297 - 8 - - - - - 4 - 
298 8 4 - - - - - - 8 
299 4 0.125 0.0625 8 0.03 0.125 1 0.03 0.5 
300 4 2 8 4 8 - 8 - 4 
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Table 3-6  Antimicrobial activity of benzimidazole compounds (301-316) 

 
 

Comp. 
No. 

Gram +ve Gram -ve Fungi 
 

B. subtilis S. aureus E. coli K. pneumonia S. abony A. niger C. albicans C. tropicalis P. notatum 

 

MIC (µg mL-1) 
 

301 0.125* 0.016* 0.50* - 0.50* - - - - 
302 0.50* 0.50* - - - - - - - 
303 1* - - - - - - - - 
304 - - - -  6.25 - 6.25 - 
305 - - 6.25 - - - - - - 
306 6.25 - 6.25 - - 3.12 6.25 6.25 - 
307 6.25 6.25 6.25 6.25 - 6.25 6.25 6.25 - 
308 - 6.25 - - - 3.12 - - - 
309 6.25 - 3.12 - - 6.25 - - - 
310 - 6.25 - 6.25 - 3.12 - 6.25 6.25 
311 6.25 - - - - - - - - 
312 - - - - - 6.25 6.25 3.12 - 
313 - - - - - 6.25 - - - 
314 - - - - - 6.25 - - - 
315 3.12 3.12 3.12 6.25 - 3.12 3.12 6.25 6.25 
316 - - 6.25 - - 6.25 - - - 

* = Minimum inhibitory concentration (MIC) in mg mL-1 
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Table 3-7  α-Glucosidase inhibitory enzyme activity 

Comp. 
No. 

IC50 µg mL-1 Comp. 
No. 

IC50 µg mL-1 

318 22.4 326 84.84 
319 8.74 327 23.53 
320 9.99 328 18.30 
321 8.74 329 18.21 
322 12.49 330 24.82 
323 22.36 331 15.06 
324 8.44 332 19.35 
325 8.44 333 8.40 
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Chapter 4. Synthesis and structure elucidation using 2D-NMR and thermal 

coefficient investigation on amino acid tethered quinoxalines  

 

* The compounds referred to in the chapter are referred to elsewhere in the thesis with an A preceding the 

number of the compound.  For example 6a-n is referred to as A6a-n elsewhere in the thesis. 

 

 

Abstract 

A chiral library of amino acid tethered quinoxalines (A6a-A6n) was synthesized via a 4-step 

synthesis using a SNAr reaction mediated by reduction and cyclization steps at ambient 

temperature.  The synthesized compounds were characterized with the use of instrumental 

techniques such as 2D NMR spectroscopy and X-ray crystallography.  Hydrogen bonding in 

the molecules was determined by thermal coefficient investigations and X-ray crystallography.  

We herein report the elucidation of the series of quinoxalines (A6a-n) by NMR spectroscopy 

and X-ray crystallography and report on the thermal coefficient investigations.  Density 

functional theory (DFT) and molecular dynamic (MD) studies were additionally conducted to 

support the experimental hydrogen bonding and conformational flexibility of these 

compounds. 

 

Keywords: quinoxalines; amino acids; 1H &13C NMR; X-ray crystallography; thermal 

coefficient investigations 
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4.1 Introduction 

The structure of quinoxalines are characterised by a benzene ring fused to a 6 membered 

heterocyclic ring incorporating two nitrogen atoms, both of which are bonded to the aromatic 

ring.  These compounds play an important role in the field of medicine (Reddy et al., 1999; 

Lu et al., 2011; Cholo et al., 2012; Ajani et al., 2014; Demmer et al., 2015), industrial (Keshtov 

et al., 2015; Podsiadly et al., 2011; Kono et al., 2012).  

 

Quinoxaline units are present in a number of natural and pharmacological compounds and are 

found to display a wide array of biological activity (Deepika et al., 2011), such as anticancer 

(Vázquez et al., 2015; Issa et al., 2015; Parrino et al., 2015), anti-HIV (Ajani et al., 2014; Ramli 

et al., 2014; Balasubramanian et al., 2014), antituberculosis (Vicente et al., 2011; Puratchikody 

et al., 2011; Ramli et al., 2014; Ajani et al., 2014), antibacterial (Chandra Shekhar et al., 2015; 

Raju  et al., 2015; Manchal et al., 2015), fungicidal (Naga Raju  et al., 2015; Zhang  et al., 

2014; Ramli et al., 2014), insecticidal (Gil et al., 2014; Ninfa et al., 2014), anti-inflammatory 

(Achutha et al., 2013; Ingle and Marathe, 2012b; Patidar et al., 2011), antioxidant (Kotra et al., 

2013; Sridevi et al., 2011; Burguete et al., 2011), antimalarial (Gil et al., 2014; Chandra 

Shekhar et al., 2014; Barea et al., 2013), anti-tumor (Neckel et al., 2015; Huang et al., 2015; 

Bříza et al., 2015), and other pharmacological activities.  They have therefore become an 

interesting scaffold to for the synthetic chemists (Ameen et al., 2015; Ingle and Marathe, 

2012a).   

 

Bioactive compounds show enhanced activity when linked to amino acids (Suhas et al., 2011; 

Sharma et al., 2013).  Amino acids are good building blocks to incorporate into quinoxalines 

since they have low toxicity and biocompatibility (Shantharam et al., 2014). Currently there is 

huge tendency of conjugating amino acid/peptide residues with small bioactive heterocyclic 
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motifs in the field of biomedical research (Sharma et al., 2013; Suhas et al., 2012, Suhas et al., 

2011).  

 

We herein report the NMR elucidation of a series of amino acid tethered quinoxalines, of which 

six are novel.  Their structural elucidation is slightly more complicated because of the amino 

acid moiety linked to the quinoxaline, which has an effect on the resonances of the quinoxaline 

moiety.  Extensive 2D NMR studies, X-ray crystallography and thermal coefficient 

investigations were used to provide a full structural elucidation of these amino acid tethered 

quinoxalines.  Additionally, the density functional theory (DFT) and molecular dynamic (MD) 

simulations were employed to explain the hydrogen bonding tendency and conformational 

flexibility of these compounds.  

 

4.2 Experimental 

4.2.1  Chemistry 

All the chemicals were supplied by Sigma-Aldrich via Capital Lab, South Africa.  Organic 

solvents were redistilled and dried according to standard procedure.  Silica gel 60F254 plates 

(Merck) were used for thin layer chromatography.  Purifications were carried out by column 

chromatography using silica gel (60-120 mesh) with an EtOAc : Hexane mobile phase. Melting 

points were recorded using a Stuart Scientific SMP3 apparatus.  UV spectra were obtained on 

a Varian Cary UV-VIS spectrometer in MeOH.  IR spectra were recorded on a Perkin Elmer 

100 FT-IR spectrometer with universal attenuated total reflectance sampling accessory.  1H, 

13C and all 2D NMR spectra were recorded at 298 K with 5- to 10-mg samples dissolved in 0.5 

ml of DMSO-d6 in 5-mm NMR tubes using a Bruker Avance 400 MHz instrument and 1H 

NMR for thermal analysis was performed on a Bruker Avance 600 MHz instrument (9.4 T; 

Bruker, Germany) (400.22 MHz for 1H, 100.63 MHz for 13C). The digital digitizer resolution 
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was set at 22 for both the 1H and 13C NMR experiments.  Chemical shifts are reported in δ 

values (ppm) and coupling constants (J) in Hz relative to the internal standard, 

tetramethylsilane (TMS) and referenced to the solvent line of DMSO-d6 (δH = 2.5, δC = 39.52).  

For the 1H NMR analyses, 16 transients were acquired with a 1-s relaxation delay using 32 K 

data points.  The 90° pulse duration was 10.0 µs, and the spectral width was 8223.68 Hz.  The 

13C NMR spectra were obtained with a spectral width of 24 038.46 Hz using 64 K data points.  

The 90° pulse duration was of 8.40 µs. For the 2D experiments including COSY, NOESY, 

HSQC and HMBC, all data were acquired with 4 K × 128 data points (t2 × t1).  The mixing 

time for the NOESY experiment was 0.3 s, and the long range coupling time for the HMBC 

experiment was 65ms.  All data were analysed using Bruker Topspin 2.1 (2008) software.  

High-resolution mass data were obtained using a Bruker micro TOF-Q II ESI instrument 

operating at ambient temperature.  Optical rotations were recorded using a Perkin ElmerTM 

model 341 polarimeter with a 10 cm flow tube in MeOH.  The purity of the compounds were 

determined by analytical HPLC on a Shimadzu-20A5 fitted with a C8 (150mm x 5µm x 4.6) 

column using a mobile phase (A) of 0.1M KHPO4 buffer and (B) acetonitrile with a linear 

gradient of 0 to 30% over a period of 60 minutes at a flow rate of 1 mL/min.  

 

General procedure for the preparation of amino acid methyl ester hydrochloride (A4) 

Methanol (20 mL) was added to different amino acids (A3a-n) (0.1 mol) followed by the 

gradual addition of thionyl chloride (0.3 mol) at room temperature.  The resulting solution was 

stirred at 70°C for 4h and the reaction mixture concentrated on a rotary evaporator producing 

the respective amino acid ester hydrochlorides in yields of >90%. 
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General procedure for the preparation of methyl 4-fluoro-3-nitrobenzoate (A2) 

4-Fluoro-3-nitrobenzoic acid (5g, 27 mmol) was refluxed in methanol (50 mL) and conc. 

H2SO4 (5 mL) for 8h.  After completion of the reaction (as evident from TLC), the methanol 

was evaporated under reduced pressure and the aqueous layer extracted with ethyl acetate (25 

mL x 3).  The EtOAc layer was dried over anhydrous Na2SO4 and concentrated under reduced 

pressure to yield A2 as a cream-colored powder in a yield of 95%. 

 

General procedure for the preparation of compound (A5) 

Methyl-4-fluoro-3-nitrobenzoate A2 (0.5g, 2.34 mmol), the hydrochloride salt of the amino 

acid ester A4 (3.51 mmol) and NaHCO3 (0.005g, 4.68 mmol) were mixed in THF (10 mL).  

The reaction mixture was stirred overnight at room temperature.  After completion of the 

reaction (monitored by TLC), the reaction mixture was washed with water (10 mL x 2), 

followed by 10% Na2CO3 solution (10 mL).  The organic layer was separated and dried over 

anhydrous Na2SO4 and concentrated under reduced pressure to afford A5, which was purified 

by column chromatography (hexane/ethyl acetate) to afford the desired product in good yields 

(80-90%). 

 

General procedure for the preparation of compound (A6)  

4-(Substituted amino)-3-nitro-methyl benzoate A5 (1 mmol) was added to methanol (10 mL), 

to which 10% Pd/C (50 mg) was added.  The reaction mixture was stirred for 4h at room 

temperature under H2 atmosphere.  The reaction mixture was then filtered through Celite 545 

to remove the catalyst.  The filtrate was evaporated under reduced pressure and the obtained 

solid was purified by column chromatography (hexane/ethyl acetate) to afford the desired 

products (Table 4-1) in moderate to good yield (60-85%).   

 



88 

Table 4-1 Physical data of the synthesized compounds 

 

Entry R Appearance  Melting 

Point 

Yielda Purityb 

A6a 

 

Orange solid 212-214 80 92 

A6b 

 

Cream solid 218-220 77 94 

A6c 

 

Yellow solid 158-160 75 98 

A6d 

 

White solid 216-218 85 98 

A6e 

 

White solid 204-206 83 90 

A6f 

 

White solid 206 75 85 

A6g 

 

Cream solid 166-168 93 87 

CH3

1a

OH

1a

2a

3a

4a

5a

6a

7a

8a

O
CH3

O

1a
2a

3a

CH3

CH3

1a

2a 3a

4a

CH3

CH3

1a

2a

3a

CH3

CH3

1a
2a

3a

4a

1a
2a

3a

4a

5a

6a

7a



89 

A6h 

 

Orange solid 102 84 96 

A6i 

 

Black solid 206-208 76 93 

A6j 

 

Cream solid 140-142 90 98 

A6k** 

 

Yellow solid 135-137 88 97 

A6l 

 

Cream solid 168-170 86 92 

A6m 

 

Cream solid 184-186 78 80 

A6n 

 

Black solid 102-104 75 80 

aPurified sample yield (%);  bPurity determined by HPLC;  **Proline and quinoxaline conjugated together 

  

(S)-Methyl-2-methyl-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (A6a), UV λmax 

nm (log ε): 316 (3.75), 253 (3.89), 220 (4.01); IR υmax (cm-1):  3342 (NH), 3188 (CH aromatic), 

3098 (NH amide), 1746 (C=O ester), 1670 (C=O amide); [α]25
D = +12° (c = 10, MeOH); LRMS 

m/z 243.0843 [M + Na]+. 

 

(S)-Methyl-2-(4-hydroxybenzyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate 

(A6b), UV λmax nm (log ε): 319 (4.01), 257 (4.12), 223 (4.37); IR υmax (cm-1):  3365 (OH), 3337 

NH

1a

2a

3a

4a

5a

6a

7a

8a
9a

10a

N

NH

1a
2a

3a

4a

5a

SCH3
1a

2a 3a

N

1a

2a

3a

O

O
CH31a

2a
3a 4a

OH

1a
2a

3a

OH

1a

2a
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(NH), 3198 (CH aromatic), 3099 (NH amide), 1776 (C=O ester), 1662 (C=O amide); [α]25
D = 

-108.3° (c = 10, MeOH); HRMS m/z 335.0992 [M + Na]+ (calcd.for C17H16N2O4Na 335.1008). 

(S)-Methyl-2-(2-methoxy-2-oxoethyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate 

(A6c), UV λmax nm (log ε): 315 (4.01), 254 (4.18), 220 (4.32); IR υmax (cm-1): 3337 (NH), 3144 

(CH aromatic), 3025 (NH amide), 1776 (C=O ester), 1676 (C=O amide); [α]25
D = -49.50° (c = 

10, MeOH); HRMS m/z 301.0786 [M + Na]+ (calcd. for C13H14N2O5Na 301.0800). 

 

(S)-Methyl-2-isobutyl-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (A6d), UV λmax 

nm (log ε): 317 (3.95), 254 (4.07), 221 (4.17); IR υmax (cm-1):  3344 (NH), 3217 (CH aromatic), 

2958 (NH amide), 1748 (C=O ester), 1696 (C=O amide); [α]25
D = +23.50° (c = 10, MeOH); 

LRMS m/z 285.1573 [M + Na]+.  

 

(S)-Methyl-2-isopropyl-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (A6e), UV 

λmax nm (log ε): 320 (3.84), 257 (3.95), 221 (4.08);  IR υmax (cm-1):  3331 (NH), 3139 (CH 

aromatic), 3017 (NH amide), 1727 (C=O ester), 1678 (C=O amide); [α]25
D = +36.50° (c = 10, 

MeOH); LRMS m/z 271.1412 [M + Na]+. 

 

(S)-Methyl-2-((S)-sec-butyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (A6f), 

UV λmax nm (log ε): 321 (3.84), 257 (3.95), 221 (4.22); IR υmax (cm-1):  3338 (NH), 3206 (CH 

aromatic), 2960 (NH amide), 1746 (C=O ester), 1698 (C=O amide); [α]25
D = +30.50° (c = 10, 

MeOH); LRMS m/z 285.1579 [M + Na]+. 

 

(S)-Methyl-2-benzyl-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (A6g), UV λmax 

nm (log ε): 319 (3.73), 258 (3.89), 220 (4.11); IR υmax (cm-1):  3342 (NH), 3144 (CH aromatic), 
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3025 (NH amide), 1750 (C=O ester), 1695 (C=O amide); [α]25
D = -67.50° (c = 10, MeOH); 

HRMS m/z 319.1057 [M + Na]+ (calcd. for C17H16N2O3Na 319.1059). 

 

(S)-Methyl-2-((1H-indol-3-yl)methyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-arboxylate 

(A6h), UV λmax nm (log ε): 320 (3.79), 258 (3.94), 221 (4.38); IR υmax (cm-1):  3331 (NH), 3170 

(CH aromatic), 2948 (NH amide), 1730 (C=O ester), 1671 (C=O amide); [α]25
D = -47.0° (c = 

10, MeOH); HRMS m/z 358.1169 [M + Na]+ (calcd. for C19H17N3O3Na 358.1168). 

 

(S)-Methyl-2-((1H-imidazol-4-yl)methyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-

carboxylate (A6i), UV λmax nm (log ε): 316 (3.61), 255 (3.77), 219 (4.00); IR υmax (cm-1): 3356 

(NH), 3134 (CH aromatic), 2947 (NH amide), 1730 (C=O ester), 1671 (C=O amide); [α]25
D = 

-16.0° (c = 10, MeOH); LRMS m/z 309.1420 [M + Na]+. 

 

(S)-Methyl-2-(2-(methylthio)ethyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate 

(A6j), UV λmax nm (log ε): 317 (3.82), 255 (3.95), 220 (4.05);  IR υmax (cm-1): 3345 (NH), 3181 

(CH aromatic), 3089 (NH amide), 1720 (C=O ester), 1683 (C=O amide); [α]25
D = -16.25° (c = 

10, MeOH); HRMS m/z 303.0766 [M + Na]+ (calcd. for C13H16N2O3SNa 303.0763). 

 

(S)-Methyl-4-oxo-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoxaline-7-carboxylate (A6k), 

UV λmax nm (log ε): 321 (3.93), 257 (3.94), 224 (4.093);  IR υmax (cm-1): 3189 (CH aromatic), 

3095 (NH amide), 1701 (C=O ester), 1677 (C=O amide); [α]25
D = -117.3° (c = 10, MeOH); 

LRMS m/z 269.1239 [M + Na]+. 

 

(S)-Methyl-2-(3-methoxy-3-oxopropyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-

carboxylate (A6l), UV λmax nm (log ε): 317 (3.87), 255 (4.02), 221 (4.19);  IR υmax (cm-1): 
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3348 (NH), 3185 (CH aromatic), 3095 (NH amide), 1734 (C=O ester), 1686 (C=O amide); 

[α]25
D = -10.75° (c = 10, MeOH); HRMS m/z 315.0952 [M + Na]+ (calcd. for C14H16N2O5Na 

315.0957). 

 

(S)-Methyl-2-((R)-1-hydroxyethyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate 

(A6m), UV λmax nm (log ε): 324 (3.50), 264 (3.77), 220 (4.14);  IR υmax (cm-1):  3302 (OH), 

3254 (NH), 3170 (CH aromatic), 2980 (NH amide), 1730 (C=O ester), 1699 (C=O amide); 

[α]25
D = +22.50° (c = 10, MeOH); HRMS m/z 273.0854 [M + Na]+ (calcd. for C12H14N2O4Na 

273.0851). 

 

(S)-Methyl-2-(hydroxymethyl)-3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (A6n) 

UV λmax nm (log ε): 325 (3.45), 265 (3.69), 221 (4.06);  IR υmax  (cm-1): 3244 (OH), 3205 (NH), 

3188 (CH aromatic), 2950 (NH amide), 1720 (C=O ester), 1668 (C=O amide); [α]25
D = +24.50° 

(c = 10, MeOH); HRMS m/z 259.0690 [M + Na]+ (calcd. for C11H12N2O4Na 259.0695).  

4.2.2 Single Crystal X-ray Diffraction Analysis of compound A6d 

A cube-shaped single crystal was selected and glued onto the tip of a glass fiber and mounted 

in a stream of cold nitrogen at 173 K and centered in the X-ray beam using a video camera. 

The crystal evaluation and data collection were performed on a Bruker Smart APEX II 

diffractometer with Mo Kα radiation (λ = 0.71073 Å).  The diffractometer to crystal distance 

was set at 4.00 cm.  The initial cell matrix was obtained from three series of scans at different 

starting angles.  Each series consisted of 12 frames collected at intervals of 0.5° in a 6° range 

with the exposure time of 10s per frame.  The reflections were successfully indexed by an 

automated indexing routine built in the APEX II program suite.  The final cell constants were 

calculated from a set of 3387 strong reflections from the actual data collection.  Data collection 

method involved ω scans of width 0.5°.  Data reduction was carried out using the program 
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System Administrator’s Integrated Network Tool (SAINT+).  The structure was solved by 

direct methods using SHELXS and refined.  Non-H atoms were first refined isotropically and 

then by anisotropic refinement with full-matrix least-squares calculations based on F2 using 

SHELXS.  All H atoms were positioned geometrically and allowed to ride on their respective 

parent atoms.  All H atoms were refined isotropically.  The absorption correction was based on 

fitting a function to the empirical transmission surface as sampled by multiple equivalent 

measurements.  The final least-squares refinement of 286 parameters against 5126 data points 

resulted in residuals R (based on F2 for I ≥ 2σ) and wR (based on F2 for all data) of 0.0497 and 

0.1358, respectively.  The final difference Fourier map was featureless.  The programs Olex-2 

and Ortep-3 were used within the WinGX software package to prepare artwork representation 

(Farrugia et al., 2012; Spek et al., 2003).  Crystallographic data (excluding structure factors) 

for the structure in this paper has been deposited with the Cambridge Crystallographic Data 

Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK.  Copies of the data can be obtained 

free of charge on quoting the depository number CCDC 1451681 (Fax: +44-1223-336-033; E-

Mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk). 

 

4.2.3 Computational methods 

Different conformations of A6d were obtained using the “Generate Conformation” module in 

the Accelrys Discovery Studio (Accelrys Software, 2013).  Conformation of A6d with lowest 

energy was further optimized using the Becke’s (Becke et al., 1988) three parameter exchange-

functional (B3) and gradient-corrected correlation functional of Lee, Yang ad Parr (LYP) (Lee 

et al., 1988) with implementation of 6-311g+(2d,p) basis sets, with Gaussian 09 software 

(Frisch et al., 2009).  The true energy minima was further verified by frequency calculations 

on the optimized geometry.  HOMO-LUMO visualization was performed using the gauss view.  
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For MD, the optimized structure of A6d was explicitly solvated with water molecules using 

the “Solvation” algorithm embedded in the Discovery Studio (DS).  The system was 

energetically minimized in DS using 1000 steps of the steepest descent algorithm followed by 

1000 steps of Conjugant gradient, until the root mean square (RMS) gradient of 0.1 kcal mol-1 

was achieved in DS.  The temperature of the system was raised to 300 K at constant volume.  

The equilibration step with a length of 10 picoseconds was used to create uniform density of 

the solvent around the compound at constant pressure and temperature.  Finally, the MD 

simulation of 500 ps was performed using default parameters in DS.  

 

4.3 Results and Discussion 

4.3.1 Synthesis 

Quinoxalines with various substituents at C-2 and with an ester group at C-6 were synthesized 

in a four- step reaction involving esterification of 4-fluoro-3-nitrobenzoic acid A1 to methyl 4-

fluoro-3-nitrobenzoate A2, which was then reacted with various amino acid hydrochloride 

esters A4 prepared from amino acids themselves.  This produced an intermediate A5 which 

incorporates both the amino acid and the benzoate moieties.  This intermediate was cyclised to 

the quinoxalines A6a-n following reduction of the nitro group with Pd/C and methanol 

(Scheme 4-1). 

 

Scheme 4-1  Synthesis of amino acids derived quinoxalines; Reagents and conditions: (i) 

SOCl2, MeOH, reflux, 4h; (ii) H2SO4, MeOH, reflux, 8h; (iii) NaHCO3, THF, rt, 8h;  (iv) 10% 

Pd/C, MeOH, rt, 4h 
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The most important step in the reaction sequence was the nucleophilic substitution of the 

fluorine in A2 with the amino acid ester A4a.  In order to determine the optimum conditions 

for step, we first examined the effect of solvent (Table 4-2), followed by base (Table 4-3). 

Various polar, non-polar, protic and non-protic solvents were investigated.  The results 

indicated that the two polar non-protic solvents, THF and DMF reacted in the shortest time (8 

h) and with the highest yield (80 and 68% respectively) (Table 4-2). 

 

The role of the base in step 3 is to deprotonate the hydrochloride amino salt of the ester, 

allowing the amino ester to act as a nucleophile.  From the results in Table 4-3, the moderate 

bases NaHCO3 and Et3N resulted in the best yields (78-80%) in the shortest time (8 h).  From 

these two, NaHCO3 has the advantages of being less expensive, available in the solid form and 

easy to handle as opposed to the pungent odour and comparatively more expensive organic 

liquid base of Et3N. 

 

4.3.2 Structural elucidation  

The full characterization (1H and 13C NMR) of amino acid derived tetrahydroquinoxalines 

A6a-n is presented in Table 4-4, Table 4-5 and Table 4-6 and the 1H and 13C NMR spectra of 

a representative tetrahydroquinoxaline (A6b) is presented in Figure 4-1 and Figure 4-2 

respectively.  With the aid of COSY, NOESY, HSQC and HMBC as well as multiplicity of the 

resonances, unambiguous chemical shift assignments were made. 

 

Compounds A6a-n from this series were derived from various amino acids and hence these 

analogues contain a basic skeleton, 3-oxo-1,2,3,4-tetrahydroquinoxaline-6-carboxylate with 

different amino acid side chain functionalities at the chiral carbon C-2.  Compound A6b was 

chosen for discussion, since this compound was the most interesting of the series. 
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Table 4-2  Yields and times of completion of reaction with different solvents for the 

formation of the intermediate A5a 

No. Solvent Time 

(h) 

Yieldb 

(%) 

1 MeOH 16 48 

2 DCM 14 35 

3 Ethanol 12 64 

4 Diethyl ether 18 40 

5 DMF 8 68 

6 THF 8 80 

7 Water 24 NR 

8 ACN 24 NR 

9 EtOAc 24 NR 

10 Toluene 24 NR 

a prepared from methyl-4-fluoro-3-nitrobenzoate (2.34 mmol) and (R)-methyl 2-amino-3-methylbutanoate (3.51 
mmol), base: Et3N (4.68 mmol), room temperature and 10 mL solvent; b Isolated yield, NR = No reaction 

 

 

The core quinoxaline framework 

 The core quinoxaline structure contains seven proton resonances at δ 10.34 for the H-4 amino, 

δ 6.73 for the H-1 amino, δ 4.15 for H-2 (a triplet in this case with J = 4.6 Hz) and a singlet 

methyl resonance at δ 3.73 for the H-12 ester methyl group. The aromatic protons of the core 

skeleton, H-8, H-7 and H-5 appear between δ 6.64 to 7.35, H-8 appearing as a doublet at δ 6.64 

(J = 8.3 Hz), H-7 as a double doublet at δ 7.35 (J = 8.2, 1.5 Hz) and H-5 at δ 7.22 as a doublet 

with J = 1.5 Hz.  For A6a-n, H-2 shows different chemical shifts and splitting patterns, which 

is dependent on the groups at the 2-position.  For A6b H-2 showed a COSY correlation with 
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NH-1, distinguishing it from NH-4.  Furthermore, NH-4 also showed a HMBC correlation to 

C-5 and NH-1 to C-8 confirming these assignments.     

 

Table 4-3  The effect on yields and time of completion of reaction with different bases in the 
formation of the intermediate A5a 

Sl. No. Base 
 

pKa Time 
(h) 

Yieldb 
(%) 

1 Pyridine 5.2 14 67 

2 4-Methyl 

morpholine 

7.38 18 59 

3 DIPEA 40 12 60 

4 DMAP 9.7 10 50 

5 K2CO3 10.25 24 55 

6 NaHCO3 10.3  8 80 

7 Et3N 10.75  8 78 

8 NaOH 13 24 NR 

9 KOH 13.5 24 NR 

a Reaction condition: Methyl-4-fluoro-3-nitrobenzoate (2.34 mmol), (R)-methyl 2-amino-3-methylbutanoate 
(3.51 mmol), solvent: THF (10 mL), room temperature and base (2 eq.); b Isolated yield; NR = No reaction 

 

The two carbonyl resonances in the core skeleton, the amide carbon resonance (C-3) and the 

ester carbonyl resonance (C-11) appear very close to each other in the 13C NMR spectrum at δ 

166.1 and δ 166.0 and are interchangeable.  These resonances also cannot be distinguished in 

compounds A6h, A6k and A6l.  However, in other compounds, for example A6a, these can be 

distinguished due to HMBC correlations between C-2 with H-2, NH-4 and H-1a and C-11 with 

H-7, H-5 and the ester methyl H-12.  The assignment of C-10 at δ 138.3 was made due to an 

HMBC correlation with H-7.  C-9 and C-6 at δ 124.3 and δ 117.1 respectively were 

distinguished by C-9 showing a HMBC correlation to both H-8 and NH-1 and C-6 showing a 

HMBC correlation to H-8 only. 
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Side chain of quinoxaline A6b 

For the benzyl moiety attached to C-2, the two diastereotopic protons of H-1a each appeared 

as a doublet of doublets at δH 2.84 (J = 13.8, 6.2 Hz) and δH 2.80 (J = 13.8, 4.8 Hz).  These 

proton resonances showed a COSY correlation to H-2 and a HMBC correlation to the amide 

carbonyl C-3.  The aromatic protons of benzyl group H-3a/7a and H-4a/6a, each occurred as 

doublets at δH 6.93 and δH 6.59 respectively with coupling constants of 8.2 Hz respectively.  

The assignment of H-3a/7a was made due to a HMBC correlation with C-1a.  The hydroxyl 

proton attached to the para position of benzyl group appeared at δH 9.1 as a singlet.  This 

hydroxyl proton (OH-8a) showed a long range COSY correlation with H-4a/6a.  The singlet 

C-2a and C-5a resonances occurred at δC 126.6 and δC 155.8 respectively.  C-2a showed HMBC 

correlations to H-2 and C-5a showed HMBC correlations to H-3a/7a.  Selected HMBC 

correlations used in the structural elucidation of A6b are provided in Figure 4-3. 

 

 

Figure 4-1  1H NMR spectrum of (S)-methyl 2-(4-hydroxybenzyl)3-oxo-1,2,3,4-

tetrahydroquinoxaline-6-carboxylate (A6b) 
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Figure 4-2  13C NMR spectrum of (S)-methyl 2-(4-hydroxybenzyl)3-oxo-1,2,3,4-

tetrahydroquinoxaline-6-carboxylate (A6b) 

 

 

Figure 4-3  Selected HMBC correlations for (S)-methyl 2-(4-hydroxybenzyl)-3-oxo-1,2,3,4-

tetrahydroquinoxaline-6-carboxylate (A6b) 

 

The structural elucidation of each of the side chains in the quinoxalines are divided into three 

sections, (i) quinoxalines with aromatic side chains, (ii) quinoxalines with non-polar side 

chains and (iii) quinoxalines with polar side chains. 

 

 



100 

Table 4-4  1H NMR data (δ in ppm) for compounds A6a-g (J is given in Hz)   

 A6a A6b A6c A6d A6e A6f A6g 

1 6.81 s 6.73 s 6.86 s 6.82 s 6.84 s 6.84 s 6.80 s 
2 3.95 (q, 6.6) 4.15 (t, 4.6)1 4.31 (td, 5.7, 1.2)2 3.88 (ddd, 7.4, 

5.5, 1.6) 
3.77 (dd, 4.2, 2.0) 3.84 (dd,4.0, 1.8) 4.25 (ddd, 6.6, 

5.2, 1.6) 
3 - - - - - - - 
4 10.36 s 10.34 s 10.49 s 10.37 s 10.41 s 10.40 s 10.37 s 
5 7.34 (d, 1.8) 7.22 (d, 1.5) 7.34 (d, 1.6) 7.33 (d, 1.6) 7.29 (d, 1.7) 7.29 (d, 1.6) 7.20 (d, 1.9) 
6 - - - - - - - 
7 7.40 (dd, 8.1, 1.8) 7.35 (dd, 8.2, 1.5) 7.40 (dd, 8.2, 1.6) 7.40 (dd, 8.3, 1.6) 7.38 (dd, 8.3, 1.7) 7.38 (dd, 8.2, 1.6) 7.36 (dd, 8.4, 1.9) 
8 6.67 (d, 8.3) 6.64 (d, 8.3) 6.67 (d, 8.3) 6.73 (d, 8.3) 6.73 (d, 8.3) 6.70 (d, 8.3) 6.65 (d, 8.3) 
9 - - - - - - - 
10 - - - - - - - 
11 - - - - - - - 
12 3.75 s (3H) 3.73 s (3H) 3.75 s (3H) 3.74 s (3H) 3.73 s (3H) 3.73 s (3H) 3.72 s (3H) 
1a 1.28 (d, 6.6, 3H) 2.84 (dd, 13.8, 

6.2) 
2.78 (dd, 14.1, 
3.2)   

1.40-1.52 m3 2.06 (sep of d, 6.8, 
2.0) 

1.75-1.83 m 2.97 (13.7, 6.0) 

  2.80 (dd, 13.8, 
4.8) 

2.73 (dd, 14.1, 
3.8) 

    

2a - - - 1.81 (sep, 6.6) 0.94 (d, 6.8, 3H) 1.37-1.44 m  
1.06-1.16 m 

- 

3a - 6.93 (d, 8.2) 3.58 s (3H) 
0.87 (d, 6.6, 6H)4 0.82 (d, 6.8, 3H) 0.90 (d, 7.0, 3H) 7.15-7.17 m 

4a - 6.59 (d, 8.2) - - 0.81 (t, 7.4, 3H)1 7.20-7.22 m 
5a - - - 0.87 (d, 6.6, 6H)4 - - 7.15-7.17 m 
6a - 6.59 (d, 8.2) - - - - 7.20-7.22 m 
7a - 6.93 (d, 8.2) - - - - 7.15-7.17 m 
8a - 9.1 s - - - - - 

1 actually a dd appearing as a t due to 2nd order coupling; 2 actually a ddd appearing as a td due to 2nd order coupling; 3two overlapping ddd; 4equivalent resonances integrating 
to 6H. 
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Table 4-5  1H NMR data (δ in ppm) for compounds A6h-n (J is given in Hz) 

 A6h A6i A6j A6k A6l A6m A6n 

1 6.75 s 6.71 s 6.88 s - 6.85 (d, 1.1) 6.84 s - 
2 4.24 (td, 5.6, 1.4)1 4.15 

(ddd,7.7,4.1,1.6) 
4.02 (ddd, 6.2, 
4.4, 1.0) 

3.86 (dd, 9.2, 7.2) 3.95 (td, 6.1, 1.6) 3.93 (dd, 6.4, 3.6) 3.97 (dd, 5.4, 3.5) 

3 - - - - - - - 
4 10.34 s 10.41 s 10.44 s 10.50 s 10.46 s 10.37 s 10.40 s 
5 7.23 (d, 1.6) 7.31 (d, 1.7) 7.33 (d, 1.7) 7.40 (d, 1.8) 7.33 (d, 1.8) 7.26 (d, 1.8) 7.29 (d, 1.8) 
6 - - - - - - - 
7 7.34 (dd, 8.2, 1.7) 7.38 (dd, 8.3, 1.8) 7.41 (dd, 8.3, 1.8) 7.52 (dd, 8.3, 1.8) 7.40 (dd, 8.1, 1.9) 7.36 (dd, 8.2, 1.8) 7.37 (dd, 8.2, 1.7) 
8 6.63 (d, 8.3) 6.69 (d, 8.3) 6.71 (d, 8.3) 6.59 (d, 8.3) 6.70 (d, 8.3) 6.72 (d, 8.3) 6.69 (d, 8.3) 
9 - - - - - - - 
10 - - - - - - - 
11 - - - - - - - 
12 3.72 s (3H) 3.74 s (3H) 3.74 s (3H) 3.76 s (3H) 3.73 s (3H) 3.73 s (3H) 3.73 s (3H) 
1a 3.07 (d, 5.6)2 2.97 (dd, 14.7, 

4.1) 
2.83 (dd, 14.7, 
7.7) 

1.81-1.98 m 2.00-2.20 m 
 

1.81-1.97 m 3.71-3.73 m 3.66 (dd, 10.8, 
5.4)  
3.60 (dd, 10.8, 
3.4) 

2a - - 2.53-2.64 m 1.93-2.00 m 2.39-2.45 m 1.12 (d, 6.4) - 
3a 7.07 (d, 2.1) 6.79 s 2.03 s (3H) 3.25-3.47 m 

 
- - - 

4a 10.82 s 10.90 s - - 3.55 s (3H) - - 
5a - 7.58 s - - - - - 
6a 7.51 (d, 7.8) - - - - - - 
7a 7.03 (t, 7.8)3 - - - - - - 
8a 6.95 (t, 7.5)3 - - - - - - 
9a 7.29 (d, 7.5) - - - - - - 

1actually a ddd collapsed due to 2nd order coupling. 2 both resonances of 1a overlap. Each proton of 1a should be a dd, however this could not be detected since the 2nd order 
coupling is so strong that the outer peaks of the dd were too negligible to be detected. 3 actually a dd appearing as a t since both J values are the same. 
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Table 4-6  13C NMR data (δ in ppm) for compounds A6a-6n 

 A6a A6b A6c A6d A6e A6f A6g A6h A6i A6j A6k A6l A6m A6n 

1 - - - - - - - - - - - - - - 
2 50.4 56.6 51.9 53.3 60.3 59.7 56.3 55.9 55.0 53.8 59.0 54.2 67.4 57.5 
3 167.4 166.1 166.0 167.0 166.1 166.1 166.0 166.4 166.1 166.4 166.2 166.5 166.2 166.1 
4 - - - - - - - - - - - - - - 
5 115.4 115.1 115.5 115.3 115.2 115.2 115.2 115.1 115.4 115.4 114.9 115.7 115.0 115.2 
6 117.8 117.1 117.8 117.6 116.9 116.8 117.3 117.1 117.7 117.8 117.8 118.0 116.5 116.8 
7 125.0 125.1 125.1 125.1 125.2 125.2 125.1 125.1 125.1 125.1 125.3 125.4 125.0 125.1 
8 112.2 111.9 112.1 112.3 111.4 111.4 112.0 111.9 112.4 112.2 110.5 112.5 111.6 111.6 
9 125.2 124.3 124.7 124.8 124.1 124.1 124.3 124.4 124.7 124.7 126.8 124.8 124.3 124.2 
10 138.9 138.3 138.2 138.3 138.9 138.9 138.3 138.3 138.3 138.4 138.5 138.6 139.1 138.8 
11 166.1 166.0 165.4 166.1 165.8 165.7 165.8 166.1 165.9 166.0 166.1 166.3 165.5 165.2 
12 51.4 51.3 51.4 51.4 51.3 51.3 51.4 51.3 51.5 51.4 51.5 51.7 51.3 51.3 
1a 18.2 37.7 37.0 41.4 32.1 39.0  38.5 28.7 29.4 31.8 27.0 27.9 61.3 62.8 
2a - 126.6 170.5 23.3 18.6 24.2 136.8 136.0 131.7 28.7 21.7 29.2 19.8 - 
3a - 130.7 51.5 22.9 17.2 15.1 129.9 124.2 117.3 14.4 46.0 173.1  - - 
4a - 114.8 - 21.7 - 11.6 128.2 - - - - 51.5 - - 
5a - 155.8 - - - - 126.3 127.5 134.4 - - - - - 
6a - 114.8 - - - - 128.2 118.3 - - - - - - 
7a - 130.7 - - - - 129.9 120.8 - - - - - - 
8a - - - - - - - 118.4 - - - - - - 
9a - - - - - - - 111.2 - - - - - - 
10a - - - - - - - 109.0 - - - - - - 
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Quinoxalines with aromatic side chain 

Compounds A6b and A6g-i contained aromatic amino acids, tyrosine (A6b), phenylalanine (A6g), 

tryptophan (A6h) and histidine (A6i).  Tyrosine contains a polar hydroxyl group, tryptophan and 

histidine are basic whereas phenylalanine is non-polar. 

 

All the functional groups of these amino acids contain a methylene group bonded directly to C-2 

and hence, H-2 should appear as a ddd in each case, coupling with the two methylene protons and 

NH-1.  However, this is only seen in two cases, A6g and A6i with J = 6.6, 5.2, 1.6 Hz for A6g and 

J = 7.7, 4.1, 1.6 Hz for A6i.  For A6b we observe a triplet for H-2 at δ 4.15 (J = 4.6 Hz).  This 

could be due to there being no coupling with the NH-1 proton and the protons of the diastereotopic 

methylene group occurring at the same resonance.  For A6h, we observe a triplet of doublets at δ 

4.24 for H-2, due to coupling with equivalent methylene protons (J = 5.6 Hz) and a small coupling 

with the NH-1 proton (J = 1.4 Hz).  The diastereotopic proton resonances are clearly observed in 

A6b at δ 2.84 (J = 13.8, 6.2 Hz) and 2.80 (J = 13.8, 4.8 Hz) and A6i at δ 2.97 (J = 14.7, 4.1 Hz) 

and 2.83 (J = 14.7, 7.7 Hz).  For A6h, this methylene group, H-1a is observed as a doublet at δ 

3.07 (J = 5.6 Hz).  We do not observe geminal coupling here and propose that due to second order 

coupling, the two outer peaks of each of the doublets have disappeared and that the inner peaks 

only are observed 5.6 Hz apart.  Since no other coupling is observed, the dihedral angle between 

the two methylene protons and H-2 must be very close to 90º.  For A6g, the two methylene protons 

overlap at δ 2.97 and both geminal (13.7 Hz) and vicinal (6.0 Hz) coupling is observed. 

 

For the rest of the side chain, expected resonances were seen for A6b, two pairs of doublets at d 

6.93 (H-3a/7a) and 6.59 (H-4a/6a) with J = 8.2 Hz indicative of ortho coupling; for A6g, three 
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proton (at d 7.15-7.17) and two proton (at δ 7.20-7.22) aromatic resonances were seen for the five 

aromatic protons; for A6h the six tryptophan proton resonances can be seen at δ 7.07 (d, J = 2.1 

Hz, H-3a), δ 10.82 (s, NH-4a), δ 7.51 (d, J = 7.8 Hz, H-6a), δ 7.03 (t, J = 7.3 Hz, H-7a), δ 6.95 (t, 

J = 7.5 Hz, H-8a) and δ 7.29 (d, J = 7.5 Hz, H-9a); and for A6i the three imidazole protons can be 

seen at δ 6.79 (s, H-3a), δ 10.90 (s, NH-4a) and δ 7.58 (s, H-5a). 

 

An NMR study on hydrogen bonding (see 4.3.4) indicated that amongst these aromatic side chain 

amino acid quinoxalines, the −∆δ/∆T value of H-2 for compound A6b is much higher at 3.8 than 

for compounds A6g-A6i (0.46, 0.28 and 0.19 respectively) (Table 4-8).  This indicates strong 

hydrogen bonding for A6g-i and only moderate hydrogen bonding for A6b as H-2 in this case 

showed the largest change.  

 

Quinoxalines with aliphatic non-polar side chain  

The side chains of quinoxalines containing alanine (A6a), leucine (A6d), valine (A6e), isoleucine 

(A6f) and proline (A6k) are aliphatic and non-polar in nature.  In the case of A6a (alanine 

quinoxaline) with a methyl group in its side chain, H-2 was observed as a quartet at δ 3.95 and the 

methyl group H-1a appeared at δ 1.28 with a J value of 6.6 Hz.  For A6d (leucine quinoxaline) 

with a 2-methylpropyl side chain, H-2 appears as a ddd (J = 7.4, 5.5, 1.6 Hz), coupling with each 

of the diastereotopic methylene protons and the NH-1 proton.  The two H-1a protons overlap and 

occur as a multiplet at δ 1.40-1.52.  Interestingly, H-2a does not couple with either of the H-1a 

protons and occurs as a septet at δ 1.81 (J = 6.6 Hz) coupling only with the two equivalent methyl 

groups, which appear as a doublet at δ 0.87.  
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In A6e, H-2 appears as a double doublet at δ 3.77 (J = 4.2, 2.0 Hz), coupling with both NH-1 and 

H-1a.  The H-1a resonance occurs as a multiplet at δ 2.03-2.11.  The methyl groups appear as two 

separate doublets at δ 0.94 and 0.82.  These methyl groups appear as separate resonances since 

they are close to the chiral H-2 proton.  In A6f (isoleucine side chain), H-2 appears as a double 

doublet at δ 3.84 (J = 4.0, 1.8 Hz), H-1a and the two H-2a protons as multiplets at δ 1.75-1.83, 

1.06-1.16 and δ 1.37-1.44 respectively.  The methyl groups CH3-3a and CH3-4a appear as a doublet 

and triplet with J = 7.0 and 7.4 Hz respectively.  In A6k with a proline side chain, the H-2 

resonance occurs as a double doublet (J = 9.2, 7.2 Hz) and H-1a to H-3a all appear as multiplets 

at δ 2.00-2.20, δ 1.93-2.00 and δ 3.25-3.47 respectively, the latter resonance being deshielded since 

it is adjacent to nitrogen. 

 

The −∆δ/∆T value of the H-2 proton (Table 4-8) for compounds A6a, A6d-f and A6k indicated 

that A6d, A6f and A6k are more strongly involved in hydrogen bonding than A6a and that A6e 

has the least intermolecular hydrogen bonding from this series.   

 

Quinoxalines with ester, thiomethyl and hydroxyl functionality 

Compounds A6c and A6l both have ester functional groups in its side chain.  In A6c, the H-2 

proton was split into a triplet of doublets (td), since H-2 was first split into a triplet by the H-1a 

protons and then into a td by NH-1.  Even though both H-1a protons are diastereotopic, they behave 

as though they split H-2 equally, thus resulting in a triplet.  Each of the diastereotopic H-1a 

resonances appear separately at δ 2.78 (J = 14.1, 3.2 Hz) and 2.73 (J = 14.1, 3.8 Hz).  A similar 

splitting pattern for H-2 is seen in A6l which appears as a td.  Since A6l has two methylene groups 

adjacent to each other in its side chain, each of H-1a and H-2a appear as two-proton multiplets at 
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δ 1.81-1.97 and  δ 2.39-2.45 respectively.  Each of the ester methyl groups for A6c and A6l appear 

as singlets at δ 3.58 and 3.55 respectively and the ester carbonyl resonances occur at δ 170.5 and 

173.1 respectively.  For A6j with a thiomethyl ester side chain, H-2 appears as a ddd, coupling 

with each of the diastereotopic H-1a protons and then NH-1 with J values of 6.2, 4.4 and 1.0 Hz.  

This is slightly different to H-2 of A6c and A6l above which occur as td.  Both 1a and 2a appear 

as two-proton multiplets similar to A6l at δ 1.81-1.98 and δ 2.53-2.64 respectively and the 

thiomethyl group appears a singlet at δ 2.03. 

 

For A6m and A6n derived from threonine and serine, containing hydroxy groups in its side chain, 

the H-2 splitting pattern and coupling constants were similar in both cases, occurring as dd at δ 

3.93 (J = 6.4, 3.6 Hz) and δ 3.97 (J = 5.4, 3.5 Hz) respectively, even though H-2 in A6m was 

vicinal to a CH-O moiety and in A6n to a CH2-O moiety.  This could be due to there being no 

coupling to NH-1 in A6n and therefore the dd arises from coupling to each of the H-1a protons.  

The H-1a resonance in A6m overlaps with the ester methyl resonance and appears as a deshielded 

multiplet at δ 3.71-3.73.  The methyl group CH3-2a appears as a doublet as expected at δ 1.12 (J 

= 6.4 Hz).  In A6n, each of the H-1a resonances occur separately as dd at δ 3.66 and 3.60 with 

geminal coupling of 10.8 Hz and smaller vicinal coupling to H-2 of 5.4 and 3.4 Hz respectively. 

 

From the thermal study carried out, A6c is seen to have a larger −∆δ/∆T value for H-2 of 2.34 than 

A6m- A6n, A6j and A6l with a −∆δ/∆T value of less than 0.5 (Table 4-8), indicating that A6c has 

weaker intermolecular hydrogen bonding than the other compounds in this series.    
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4.3.3 Structure determination of A6d by single crystal X-Ray diffraction 

 In order to describe the structure of the series of compounds more fully, we obtained the crystal 

structure of A6d as a representative of the series (Figure 4-4).  Compound A6d was solved in the 

orthorhombic space group P21/c, with one molecule in the asymmetric unit.  The crystal structure 

of A6d indicated that the absolute stereochemistry at C-2 was in the S configuration and that the 

benzene and piperazine rings are contained in the same plane (the torsion angle for C5 - C9 - C10 

- N1 is 177.7º and that of N4 - C9 - C10 - C8 is -175.3º) with the isobutyl moiety out of the plane, 

perpendicular to the benzene ring with the dihedral angle between C1a and C10 being 73.8º and 

C1a and N4 being -89.6º (Figure 4-4).  The dihedral angle between the axial H-2 with axial H-1aa 

is 124.8º, whereas the dihedral angle between the axial H-2 with equatorial H-1ab is 4.5º.  The six 

membered rings exist in a twist half boat conformation Φ = 42.1 (3) Å, θ = 64.3 (3)°, Ψ= 0.3703 

(17)°.  As expected the O(3)…. NH(4) distance is 2.44 Å and the O(3)….. H(2) distance is 2.53 

Å, falling within the range of 2.30-3.10 Å required for hydrogen abstraction (Nishio et al., 2005).  

Interestingly the O(3)….H(1ab) distance of 2.89 Å also falls within this range, but the 

O(3)….H(1aa) distance of 3.44 Å falls out of this range.  In general there was intermolecular 

hydrogen bonding between the NH protons and the oxygen of the carbonyl groups as well as 

between the chiral proton H-2 and the oxygen atoms of carbonyl groups (Figure 4-5; Table 4-7).  
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Figure 4-4  ORTEP diagram of compound A6d 

 

Table 4-7  Geometry of hydrogen bonding in molecule A6d (Å,o) 

D - H….A D - H H….A  D….A D - H….A 

N1 – H1….O2 0.88 2.06 2.852 (2) 149 

N4 – H4….O3 0.88 2.26 3.104 (2) 162 

C2 – H2….O3 1.00 2.60 3.597 (2) 179 

Symmetry codes: (i) -x,-1/2+y,3/2-z; (ii) -x,1/2+y,3/2-z; (iii) x,-1+y,z 
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Figure 4-5  Intermolecular hydrogen bonding in A6d 

 

4.3.4 Thermal coefficient shift NMR investigation 

Amino acids have the tendency to be involved in hydrogen bonding, both intermolecular and 

intramolecular, especially the ones with polar functional groups.  In order to investigate this 

hydrogen bonding in the molecules synthesized in this work, 1H proton NMR thermal analysis was 

performed starting from 298 K and increasing the temperature in increments of 10 ºC up to 328 K.  

At higher temperatures, the hydrogen bonding would be disrupted and as such the proton 

resonances involved in hydrogen bonding would be more shielded due to the N-H bond now being 

shorter. 
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Upon heating, a significant upfield shift of NH-4 and NH-1 in the tetrahydroquinoxalines was 

observed in the 1H NMR spectra (Figure 4-6).  The chemical shift of the chiral proton H-2 did not 

change much.  In the crystal structure of A6d, intermolecular hydrogen bond interactions were 

evident between NH-1 and the carbonyl oxygen of the ester moiety (O2).  For NH-4 both 

intramolecular and intermolecular hydrogen bonding was present to O3, the amide carbonyl 

oxygen, with greater intermolecular hydrogen bonding being present.  Intramolecular and 

intermolecular hydrogen bonding also occurred with H-2 and O3 with greater intramolecular 

hydrogen bonding being present (Figure 4-5). 

 

In aprotic solvents such as DMSO-d6, −∆δ/∆T < 3 ppb K-1 indicates the presence of hydrogen 

bonding and at −∆δ/∆T > 5 ppb K−1 hydrogen bonding is not possible (Farahani et al., 2014). The 

−∆δ/∆T values for selected protons in A6a-n acquired in DMSO-d6 are summarised in (Table 

4-8).  For the NH-4 proton our results indicate −∆δ/∆T values between 4.12 - 5.04 ppb K-1.  

According to the definition above only A6a with −∆δ/∆T of 5.04 ppb K-1 would have no hydrogen 

bonding.  All the other compounds show weak hydrogen bonding since its values are close to 

−∆δ/∆T of 5.0.  For the NH1 proton resonance, −∆δ/∆T range from 3.90 to 44.77, although only 

three values are in the high end of the range between 41.67-44.77 for A6c (esterified aspartic acid 

derivative), A6d (leucine derivative) and A6e (valine derivative).  All other compounds have 

−∆δ/∆T less than 5.64. In two of the cases, NH1 could not be observed and the −∆δ/∆T was not 

calculated.  For the three compounds with very high −∆δ/∆T values for NH-1 (A6c-e) all hydrogen 

bonding involving this proton was totally absent upon heating.  The fact that these three molecules 

deviated from the norm could be due to the fact that once heated, the interaction between the atoms 

involved in hydrogen bonding were totally absent.  For the chiral proton H-2, hydrogen bonding 
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in A6a-n were conserved upon heating since the −∆δ/∆T values were present in the range of 0.04-

3.80.  This could be due to the conservation of the intramolecular hydrogen bonding between H-2 

and the oxygen of the amide carbonyl group.  NH-4 also had intramolecular hydrogen bonding, 

not as much as H-2, but more than NH1.  This supports our data in that the more intramolecular 

hydrogen bonding present, the smaller the −∆δ/∆T value. 

 

4.3.5 Computational results 

Conformational analysis and structure validation 

The conformational profile with of A6d was explored using the Discovery studio programme, and 

the five lowest energy conformers obtained.  These structures were re-optimized at DFT level 

using Gaussian software (Frisch et al., 2009).  The computed electronic energies of conformer 1-

5 were found to be -879.531657, -879.528114, -879.530716, -879.525673 and -879.529739 

Hartree, respectively, indicating conformer 1 to be the energetically most favourable in 

comparison to other conformers.  The most energetically favourable DFT predicted structure was 

further validated by monitoring the root mean square deviation (RMSD) of all five conformers 

relative to the X-ray structure of A6d considering all their atoms, using the Discovery Studio 

visualizer.  The computed RMSD with values of 0.832 Å, 1.112 Å, 1.125 Å, 1.151 Å and 1.045 Å 

for conformers 1-5 respectively, indicated a close structural correlation between conformer 1 and 

the X-ray structure.  Three dimensional structure comparison of conformer 1 and conformer 2 with 

the X-ray structure of A6d was performed using DS visualizer to indicate the similarity between 

conformer 1 and the X-Ray structure and the deviation from the X-Ray structure by conformer 2 

(Figure 4-7).  Conformer 1 (green) structurally fits very well on the X-ray structure (red). On the 
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other hand, conformer 2 (blue), was slightly more folded bringing the ester and alkyl chain 

inwards, accounting for higher RMSD (1.112Å) compared to conformer 1 (0.832Å).       

 

Table 4-8  −∆δ/∆T values of shielded and deshielded proton from compound A6a-n 

Entry NH-1 NH-4 H-2 OH NH-4a 
A6a 4.50 5.04 1.59 - - 
A6b 5.64 4.57 3.8 5.43 - 
A6c 44.77 4.54 2.34 - - 
A6d 43.81 4.75 0.45 - - 
A6e 41.67 4.79 3.53 - - 
A6f 3.90 4.81 0.25 - - 
A6g 4.51 4.30 0.46 - - 
A6h 5.15 4.27 0.26 - 3.64 
A6i 4.21 4.70 0.19 - - 
A6j 4.03 4.67 0.23 - - 
A6k - 4.68 0.57 - - 
A6l 4.12 4.71 0.04 - - 

A6m 5.09 4.12 0.12 1.28 - 
A6n - 4.42 0.26 - - 

      
 

Natural atomic charges and electronic properties 

The effective atomic charges of chemical entities provide very useful information about their 

interactions in the molecular systems.  Accordingly, the atomic charges of A6d were obtained 

using the Mulliken population analysis procedure, and are depicted in Figure 4-8.  A closer 

inspection of Figure 4-8 revealed that the negative (–ve) charge was predominantly distributed 

over the nitrogen (N4 and N1) and oxygen atoms (O1 and O2), imposing large positive charges on 

the directly bonded carbon atoms (C3, C2, C10, C9 and C11).  Except for the nitrogen bonded 

hydrogen atoms (H4 and H1), no significant charge distribution was observed in the remaining 

hydrogen atoms of the molecule.  The accumulation of a large positive charge on H4 (0.290) and 

H1 (0.258) was attributed to a large negative charge on the nitrogen atoms (N4 and N1, 

respectively).  This indicates the participation of these atoms in hydrogen bonding, in agreement 

with the argument presented above.  
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Figure 4-6  1H spectral traces showing the shift of amide, sec. amine and chiral carbon 

containing proton at variable temperature in DMSO-d6 

 

In order to substantiate these observations, the electron density plots for the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were visualized, 

and are depicted in Figure 4-9 and Figure 4-10 respectively.  The electron density in HOMO was 

preferably localized on the piperazine and phenyl rings, whereas in LUMO it was distributed over 

the oxygens of the ester functionality and phenyl ring. This HOMO-LUMO electronic arrangement 

suggests an electron density exchange between the central part (piperazine and phenyl rings) and 

the edge (ester group) of the molecule, indicating the possibility of hydrogen bonding in these 

regions, in accordance with the X-ray structure. Morever, the computed HOMO-LUMO gap was 

sufficiently low (4.4 eV) reflecting the chemical reactivity of the compound and resulting charge 

transfer interaction.   
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Molecular dynamics (MD) results 

Finally, a molecular dynamics (MD) study was conducted to explain the structural flexibility of 

A6d, observed in NMR experiments (Table 8).  A total of 500 different conformations of A6d 

were explored under explicit solvent conditions using the Standard Dynamics Cascade algorithm 

embedded in the Discovery Studio (Accelrys Software, 2013). 

 

The evolution of four distances; distance 1 [(N1)H..H(C2a)], distance 2 [O3..H(C2a)], distance 3 

[(N1)H..H(C1a)] and distance 4 [(N1)H..O3), was monitored during the progress of MD 

simulation, and is diagrammatically shown in Figure 4-11.  These results revealed that the distance 

1 (in black) fluctuates between 2-5 Å during the first half of simulation, but becomes stable (2.3 

Å) during the next half, suggesting the formation of a hydrogen bond between atoms N1 and HC2a.  

On the other hand, the distance 2 (in red) exhibited an average fluctuation around 5Å after 250 

picoseconds, indicating the unstable nature of this interaction.  The inter-atomic distances, 3 (in 

green) and 4 (in blue), exhibited larger deviations (>3.0 Å) in the majority of the sampled 

conformations.  Overall, the MD results suggested that compound A6d is highly flexible in the 

presence of solvent molecules, and also indicates the role of N1 (quinoxaline) and HC2a in 

intramolecular and intermolecular hydrogen bonding.  
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Figure 4-7  Overlay of X-ray structure (in red sticks) of A6d with its DFT predicted conformer1 

(in green sticks) and conformer 2 (in blue sticks), performed using DS Software (2013) 

 

 

 

Figure 4-8  Optimized geometry of A6d displaying natural charge distribution on each atom 
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Figure 4-9  The electron density distribution in HOMO of compound A6d 

 

Figure 4-10  The electron density distribution in LUMO of compound A6d 

 

Figure 4-11  Progress of selected inter-atomic distances (in Å) during MD simulation for 

compound A6d 
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4.4 Conclusion 

Fourteen quinoxaline derivatives were successfully synthesized and 1H and 13C NMR assignments 

of tetrahydroquinoxaline were made with the aid of HSQC and HMBC data and will provide a 

reference point for the structural elucidation of other tetrahydroquinoxalines synthesized.  NMR 

studies appear to reveal that atoms on the tetrahydroquinoxaline core enforce intermolecular 

hydrogen bonding interactions.  The stereochemistry of C-2 for A6d was shown to be in the S 

configuration for tetrahydroquinoxaline from X-Ray data.  Thermal coefficient investigation 

studies revealed the presence of hydrogen bonding in these molecules. Additionally, DFT 

calculations of A6d revealed the role of the quinoxaline ring in hydrogen bonding and charge 

transfer.  Moreover, MD studies explained the high flexible nature of A6d in the solvent phase, 

and supported the experimental observations.  From the thermal coefficient shift, NMR 

investigation and X-ray crystal analysis of quinoxalines it can be described that the chiral carbon 

containing proton (H-2) is involved in low to strong hydrogen bonding.  This could be due to 

different side chain functionalities of amino acid precursors, each having a different structure.  
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Chapter 5. Biological evaluation and docking study of synthesized amino acid 

tethered quinoxalines 

 

* The compounds referred to in the chapter are referred to elsewhere in the thesis with an A preceding the number of 

the compound.  For example 6a-n is referred to as A6a-n elsewhere in the thesis. 

 

Abstract 

A total of 14 amino acid-tethered-quinoxalines (A6a-A6n) were evaluated for their antimicrobial, 

anti-oxidant and anti-diabetic activity.  Preliminary structure-activity relationship studies showed 

that compounds with an alanine (A6a), threonine (A6m) and serine (A6n) residues possessed a 

broader spectrum of antimicrobial activity than the other quinoxalines tested.  Compound A6g 

with a benzyl group appeared to have strain specific activity against Escherichia coli and 

Pseudomonas aeruginosa (MBC 0.08 mM and 0.17 mM), compared to the standard ciprofloxacin 

(0.002 mM).  Compounds A6a, A6d and A6f showed the most potent anti-diabetic activity, with 

the A6d derivative (leucine residue) showing the most potent activity against both α-Glucosidase 

(IC50 0.01 mM) and α-amylase (IC50 1.41 mM) enzymes respectively compared to the standard 

acarbose (IC50 0.088 and 0.104 mM).  Five of the molecules (A6a, A6d, A6e, A6h and A6j) 

showed antioxidant activity, with two of the molecules (A6h and A6d) showing good antioxidant 

activity (IC50 0.15 mM) compared to that of ascorbic acid (IC50 0.10 mM).  Furthermore, in silico 

molecular docking simulations were conducted to support the anti-bacterial and anti-diabetic 

activity profiles of the synthesized compounds using the bacterial topoisomerase II (PDB code: 

2XCT) and α-glucosidase proteins.  

 

Keywords: Quinoxaline, amino acids, antimicrobial, antioxidant, anti-diabetic, docking 
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5.1 Introduction  

Quinoxaline is a heterocyclic core structure used as a back-bone for the synthesis of bioactive 

compounds.  It is formed by two aromatic rings, benzene and pyrazine.  This core structure is rare 

in nature but is easy to synthesize chemically.  By varying the functional groups and moieties on 

the quinoxaline scaffold, a wide variety of compounds were synthesized, many of which had good 

biological activity (Ajani et al., 2014; Ramli et al., 2014; Ameen et al., 2015; Padvi et al., 2015).   

 

Various quinoxaline derivatives have shown antibacterial, antifungal, antiviral, anti-HIV, anti-

tuberculosis, antimalarial, leishmanicial, antitumor, antioxidant, anti-inflammatory, analgesic, 

antidepressant, antidiabetic, enzyme inhibitory, kinase inhibitory, receptor antagonist, multi-drug 

resistant antagonist, antithrombotic, antiamoebic, anticonvulsant, antiepileptic and Gonadotropin 

releasing hormone antagonistic activities (Lawrence et al., 2001; Waring et al., 2002; Burguete et 

al., 2011; Noolvi et al., 2011; Kakodkar et al., 2011; Puratchikody et al., 2011; Habib et al., 2012; 

Kulkarni et al., 2012; Kotra et al., 2013; Soliman et al., 2013; Ajani et al., 2014; Ramli et al., 2014; 

Srinivas et al., 2014a, 2014b; Vieira et al., 2014; Ameen et al., 2015; Ismail et al., 2015; Wei et 

al., 2015; Padvi et al., 2015; Anand et al., 2015; Raju et al., 2015).  Their wide range of bioactivity 

makes them a versatile scaffold for pharmaceuticals. 

 

Amino acids are the building blocks of peptides and proteins as well as other naturally occurring 

substances such as alkaloids, antibiotics and heterocyclic peptides (Hughes et al., 2007; Nolan et 

al., 2009; Fester et al., 2010; Albers et al., 2013).  Being a natural ligand, they are water soluble 

and less toxic than other synthetic ligands used in drug design.  Simple α-amino acids were used 

to form conjugated piperazinyl benzoisothiazole complexes with anti-ulcer activity (Sharma et al., 
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2013a, 2013b) and conjugated benzisoxazole derivatives with potent antimicrobial activity (Suhas 

et al., 2011), showing that these amino acids have the ability to form bioactive molecules when 

coupled with heterocyclic rings.  Cinnamic acid analogues combined with amino acids showed 

promising anti-diabetic activity (Prakash et al., 2014).   

 

The amino acids themselves, such as 4-hydroxyisoleucine and 3-guanidinopropionic acid and its 

semi-synthetic derivatives, polypeptides such as polypeptide-k and proteins such as ADMc1 from 

the seed extract of Momordica charantia has shown good anti-diabetic properties (Larsen et al., 

2001; Ahmad et al., 2012; Patel et al., 2012; Chhabra and Dixit, 2013; Sridevi et al., 2014; Shukla 

and Rangari, 2015).  Peptides have also been used in the design of antimicrobials (Friedrich et al., 

2000; Laverty et al., 2011; Mojsoska et al., 2015; Kalita et al., 2015).  The beta-defensin-3 peptide 

has shown a broad spectrum of antimicrobial activity (Dhople et al., 2006).  Amino acids are also 

found in thiostrepton-derived thiopeptide antibiotics (Baringo et al., 2014; Wang et al., 2015).  

Copper and cobalt amino acid complexes have shown the ability to be developed into antibiotics 

(Stanila et al., 2011) and amino acids conjugated to thiazole and oxazole moieties showed good to 

moderate antimicrobial activity (Stanchev et al., 1999; Prakasha et al., 2011).  A report on the 

synthesis of quinoxalines with β-amino acid derivatives has shown good antibacterial and 

antifungal activity (Mickeviciene et al., 2015). 

 

Due to the vast range of bioactivity of quinoxalines reported we have synthesized quinoxaline 

amino acid conjugates (A6a-A6n) with the aim of testing them for antimicrobial and antidiabetic 

activities (Thesis chapter 4).  We herein report the antimicrobial, antidiabetic and antioxidant 

activities of some amino acid-tethered-quinoxalines.  
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5.2 Experimental 

5.2.1 Test compounds 

The amino acid-tethered-quinoxalines (A6a-A6n) were previously synthesized in our laboratory 

(Thesis chapter 4).  These molecules contain a 1,2,3,4-tetrahydroquinoxaline heterocyclic skeleton 

with an ester group at position 6 and various amino acids at position 2.  These amino acids contain 

aliphatic and aromatic groups and are either polar or non-polar in nature (Table 5-1).  

5.2.2 In vitro antimicrobial studies 

The microbial cultures were grown overnight at 37 °C in nutrient broth (UKZN Biolab, South 

Africa), adjusted to 0.5 McFarland standard using distilled water and lawn inoculated onto 

Mueller-Hinton agar (MHA) plates.  A volume of 10 µL of each sample (29.84 – 45.44 mM, 1 mL 

DMSO) was inoculated onto antibiotic assay discs (6 mm diameter) and placed on the MHA plates 

which were incubated overnight at 37°C for 24 hours.  After the incubation period, zones of 

inhibition were measured in mm.  Compounds showing an inhibition zone of > 9 mm were selected 

to determine their MBC values using the broth dilution assay with ampicillin and ciprofloxacin as 

the controls following the method in Andrews (2001).  Compounds A6a-b, A6d-h, A6j, and A6m-

n were selected to determine their MBC values by the broth dilution method. 

 

In the MBC method, the microbial cultures were prepared as described previously for the disc 

diffusion method and adjusted to a 0.5 McFarland standard.  The test compounds were dissolved 

in DMSO (10 mg/mL) and subject to a 50% serial dilution in 1 mL eppendorf tubes with Mueller-

Hinton Broth (MHB), inoculated with bacterial cultures (20 µL) and then incubated at 37°C for 18 

h.  The total volume in each eppendorf was 200 µL.  A volume of 10 µL of each dilution was 

spotted on MHA plates and incubated at 37°C for 18 h to determine the MBC (in mM).  Ampicillin, 
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ciprofloxacin and tioconazole served as the standard drugs for the antibacterial and antifungal 

studies respectively.  All experiments were performed in duplicate. 

 

5.2.3 In vitro antioxidant studies 

DPPH radical scavenging activity 

The total free radical scavenging activity of the synthesized amino acid-tethered quinoxaline 

compounds (A6a-A6n) was determined and compared to that of ascorbic acid using a slightly 

modified method described by Tuba and Gulcin et al., 2008.  A 0.3 mM solution of DPPH was 

prepared in methanol and 500 µL of this solution added to 50 µL of the compounds (dissolved in 

DMSO) at different concentrations (50-200 µg mL-1).  These solutions were mixed and incubated 

in the dark for 30 min at room temperature.  Absorbance was then measured at 517 nm against a 

blank sample lacking scavenger. 

5.2.4 Anti-diabetic activity 

In vitro α-Glucosidase inhibitory activity 

The α-Glucosidase inhibitory activity of the synthesized amino acid-tethered quinoxaline 

compounds (A6a-n) was determined according to the method described by Ademiluyi et al. 

(2013), with slight modifications.  Briefly, 50 µL of each compound or acarbose dissolved in 

DMSO at different concentrations (50-200 µg mL-1), was incubated with 100 µL of 1.0 U mL–1 α-

glucosidase solution in 100 mM phosphate buffer (pH 6.8) at 37 °C for 15 min.  Thereafter, 50 µL 

of pNPG solution (5 mM) in 100 mmol L–1 phosphate buffer (pH 6.8) was added and the mixture 

was further incubated at 37 °C for 20 min.  The absorbance of the released p-nitrophenol was 

measured at 405 nm and the inhibitory activity expressed as a percentage of the control sample 

without inhibitors.  
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In vitro α-Amylase inhibitory activity  

The α-Amylase inhibitory activity of the compounds A6a-n, was determined according to the 

method described by Shai et al. 2010, with slight modifications.  A volume of 50 µL of each 

compound dissolved in DMSO or acarbose at different concentrations (50-200 µg mL-1) was 

incubated with 100 µL of porcine pancreatic amylase (2 U mL–1 ) in 100 mM phosphate buffer 

(pH 6.8) at 37 °C for 20 min. 50 µL of 1% starch dissolved in 100 mM phosphate buffer (pH 6.8) 

was then added to the reaction mixture and incubated at 37 °C for 1 h. 100 µL of 3,5-

dinitrosalicylic acid (DNS) colour reagent was then added and boiled for 10 min.  The absorbance 

of the resulting mixture was measured at 540 nm and the inhibitory activity was expressed as 

percentage of a control sample without inhibitors.  All assays were carried out in triplicate. 

 

5.2.5 Docking methodology 

Initial structures of the representative compounds (RCs) (A6d, A6f, A6g and A6n) in protein data 

bank (pdb) format were drawn in the Discovery Studio software (DS).  Different isomers of the 

compounds were generated at the physiological pH (7.0) using the “Prepare Ligands” algorithm, 

and further geometrically minimized using the “minimize ligands” module.  The CHARMm force 

field was considered to develop the partial atomic charges of each atom.  The X-ray structure of 

topoisomerase II DNA-gyrase (pdb id: 2xct, resolution 3.5Å) was downloaded from the protein 

data bank (PDB) database (www.rcsb.org).  The bound ligands and water molecules were removed 

from the protein while the manganese ion (Mn+2) present in the active site was retained (Bax et al., 

2010).  The “Prepare Protein” module in DS was used to add missing atoms/loops and protonates 

amino acid residues according the physiological conditions. Since, the X-ray structure of α-

glucosidase is not known, homology modelling method was used to generate it’s 3D structure 
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using the crystal structure of S. cerevisiae from isomaltase (pdb id: 3AJ7) as a template, using 

MODELER algorithm (Eswar et al., 2006) in Discovery Studio (DS). Prior to docking, a binding 

sphere covering the active site residues of proteins was developed.  CDOCKER (Wu et al., 2003), 

a grid-based program, was used to dock RCs in the active site of the protein where a conformational 

profile of the ligands was explored by the molecular dynamics sampling method.  The most 

favourable pose of each RC was chosen based on the CDOCKER energy (CDE), where the most 

negative CDE indicates the strongest interaction with the receptor.   

 

5.3 Results and Discussion 

5.3.1 Chemical structures 

The chemical structures of the compounds used in the structure activity relationship (SAR), have 

a 1,2,3,4-tetrahydroquinoxaline base core moiety which is formed by the fusion of the phenyl 

group and amino acids (Figure 5-1).  Compounds A6a-n contain precursors of different amino 

acids, two secondary amine groups and a methyl ester at position 6.  These functional groups are 

believed to play an important role in antimicrobial and antioxidant activities (Ghorab et al., 2004; 

Shivakumara et al., 2009; Kumar et al., 2011; Abedini et al., 2013; Goszczyn´ska et al., 2015). 

Compounds A6b, A6g, A6h and A6i contain aromatic R groups and A6a, A6c-f and A6j-6n, either 

polar or non-polar aliphatic side chain R groups.  The R groups in A6a-n are tabulated in Table 

5-1.  

 

Figure 5-1  The core structure of amino acid tethered quinoxalines 
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5.3.2 Antimicrobial activity 

The compounds were evaluated for their in vitro antimicrobial activity against two Gram +ve 

strains S. aureus (ATCC 25923) and methicillin resistant S. aureus (MRSA) (ATCC BAA-1683) 

and three Gram -ve strains E. coli (ATCC 25922), K. pneumonia (ATCC 31488) and P. aeruginosa 

(ATCC 27853) as well as one fungal strain, C. albicans (ATCC 10231).  The disc diffusion assay 

was used to screen all the synthesized compounds and to select compounds to determine their 

MBC values.  Compounds with a zone of inhibition between 8-35 mm were selected (Table 5-2). 

 

Compounds A6a, A6m and A6n with alanine, threonine and serine side chains showed a broad 

spectrum of antimicrobial activity with MBCs of between 0.31 to 1.42 mM for both 

Staphylococcus species and MBCs of 0.25 to 5.68 mM against the Gram -ve strains and 0.63 to 

2.84 for C. albicans.  The activity of A6m and A6n could possibly be due to the hydroxy groups 

in the side chain.  The fact that A6a is more active than A6d-f may be due to the branched chains 

hindering interaction between the molecule and the active sites of the enzymes in the bacteria. 

 

Compound A6b with a tyrosine side chain showed strain specific activity to S. aureus, MRSA and 

E. coli with IC50 values of 0.38, 1.00 and 0.38 mM, better than the standard ampicillin.  The other 

compounds with aromatic side chains, A6g (phenylalanine side chain) and A6h (tryptophan 

residue) also showed strain specific activity, A6g being active against E. coli and P. aeruginosa 

with IC50 values of 0.08 and 0.17 mM respectively and A6h being active in all strains except 

MRSA with the best activity being against K. pneumoniae (0.18 mM) and E. coli (0.35 mM). 
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Table 5-1  Side chains of compounds A6a-n 

Compound R Compound R 

A6a 

 

A6h 

 

A6b 

 

A6i 

 

A6c 

 

A6j 

 

A6d 

 

A6k** 

 

A6e 

 

A6l 

 

A6f 

 

A6m 

 

A6g 

 

A6n 

 

**Proline and quinoxaline conjugated together 
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Table 5-2  Minimum Bactericidal Concentration (MBC in mM) of compounds A6a-n 

 

No. 

Gram +ve Gram -ve Fungi 

S. aureus MRSA E. coli P. 

aeruginosa 

K. 

pneumoniae 

C. 

albicans 

A6a 1.42 0.71 5.68 5.68 4.26 2.84 

A6b 0.38 1.00 0.38 - 4.01 1.00 

A6c - - - - - - 

A6d 2.89 2.89 0.27 0.72 - 5.78 

A6e - 1.89 2.52 0.24 5.04 - 

A6f 0.60 - 0.34 - 0.15 0.15 

A6g - - 0.08 0.17 - - 

A6h 0.70 - 0.35 1.87 0.18 1.87 

A6i - - - - - - 

A6j - - 0.21 1.12 0.42 - 

A6k - - - - - - 

A6l - - - - - - 

A6m 0.47 0.31 1.25 0.39 0.31 0.63 

A6n 0.41 0.37 0.66 0.25 0.25 0.99 

ampicilin 0.06 1.79 0.89 3.58 0.89 0.89 

ciprofloxacin 0.002 0.007 0.002 0.002 0.004 0.002 

tioconazole - - - - - 25.79 

DMSO - - - - - - 

Highlighted values indicate the best results 

 

Amongst the compounds with branched alkyl side chains (A6d-f), A6d with a leucine side chain 

showed good activity with IC50 values of 0.27 and 0.72 mM against E. coli and P. aeruginosa, A6e 

was active against P. aeruginosa at 0.24 mM and A6f was active against four of the test strains, 

including the fungal strain, with IC50 values of 0.60 and 0.34 mM against S. aureus and E. coli and 

0.15 mM each against both Klebsiella pneumonia and C. albicans.  Compound A6j a methionine 

side chain was active against E. coli, P. aeruginosa and K. pneumonia with IC50 values of 0.21, 
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1.12 and 0.42 mM respectively.  The compounds with the best antifungal activity against C. 

albicans was A6f and A6m with IC50 values of 0.15 and 0.63 mM respectively.   

Compounds A6c, A6i, A6k and A6l with an esterified aspartic acid side chain, a histidine side 

chain, proline side chain and esterified glutamic acid side chain all showed no activity against all 

of the test strains. 

 

5.3.3 Antioxidant Activity 

Antioxidant properties of the synthesized compounds were tested by the DPPH radical scavenging 

activity, which determines the effectiveness of the compounds in scavenging free radicals.  These 

results are presented in Table 5-3.  The antioxidant activity was dependent on the side chain 

attached at C-2.  Compounds A6a, A6d-e, A6h and A6j showed good scavenging activity, with 

IC50 values of 0.20 mM or less in comparison to ascorbic acid (IC50 of 0.10 mM).  Compounds 

A6d and A6h showed the best activity with IC50 values of 0.15 mM each.  Of the active 

compounds, three of these, A6a, A6d and A6e contained aliphatic side chains with one or more 

methyl groups.  The aliphatic side chain of A6j also contained an aliphatic side chain, but with a 

thiomethyl group.  The other active residue (in A6h) contained an indole moiety. 
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Table 5-3  Antioxidant activity of the synthesized compounds A6a-n (mM) 

Sample  

No. 

DPPH 

(IC50 (mM) 

Sample 

 No. 

DPPH 

(IC50 (mM) 

A6a 0.20±0.02bc A6h 0.15±0.01bc 

A6b 0.32±0.02ef A6i 0.40±0.01fg 

A6c 0.30±0.02de A6j 0.18±0.01bc 

A6d 0.15±0.01b A6k 0.50±0.01g 

A6e 0.19±0.02bc A6l 0.30±0.02e 

A6f 0.25±0.03cd A6m 0.24±0.07bc 

A6g 0.38±0.04fg A6n 0.36±0.01e 

Ascorbic acid 0.10±0.02a 

Data are presented as mean ± SD values of triplicate determinations. 
a-d Different letters stand for significantly different values from each other within a column (Tukey’s-HSD multiple 
range post hoc test, p < 0.05);  the same letters stand for non-significant difference.  Highlighted values indicate the 
best results. 
 

5.3.4 Anti-diabetic activity 

In order to investigate the in vitro anti-diabetic activity of the synthesized amino acid tethered 

quinoxalines, two enzymes, α-glucosidase and α-amylase were used.  The results are summarized 

in Table 5-4.  In comparison to acarbose (IC50 of 0.88 mM), A6a, A6d and A6f showed better α-

glucosidase inhibitory activity with IC50 values of 0.056, 0.012 and 0.042 mM respectively.  These 

compounds contained amino acid residues with aliphatic side chains with at least one or two 

methyl groups.  The test compounds were however not as active against the α-amylase enzyme 

with IC50 values of 14 fold or greater than the standard acarbose. 
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Table 5-4  In vitro α-Glucosidase and α-amylase activity of A6a-n (IC50 in mM)  

No α-Glucosidase α-amylase No α-Glucosidase α-amylase 

A6a 0.056±0.002ab 3.564±0.192a A6h 0.114±0.030abc 5.714±2.795a 

A6b 0.332±0.019de 8.558±0.598a A6i 0.415±0.004e 8.959±2.70a 

A6c 0.231±0.024c 33.054±0.101ab A6j 0.159±0.076bc 5.165±0.216a 

A6d 0.012±0.0a 1.414±0.241a A6k 0.482±0.021e 8.026±0.126a 

A6e 0.168±0.016bc 11.417±0.407a A6l 0.203±0.043c 102.295±0.81b 

A6f 0.042±0.021ab 8.729±2.252a A6m 0.190±0.056c 2.206±0.038a 

A6g 0.353±0.031de 2.839±0.824a A6n 0.297±0.008cd 4.644±0.599a 

Ac* 0.088±0.005c 0.104 ±0.028a Ac* 0.088±0.005c 0.104 ±0.028a 

Data are presented as mean ± SD values of triplicate determinations. 
a-d Different letters stand for significantly different values from each other within a column (Tukey’s-HSD multiple 
range post hoc test, p < 0.05);  the same letters stand for non-significant difference. 
Ac* = acarbose standard.  Highlighted values indicate the best results. 
 

5.3.5 Molecular docking  

The inhibition of bacterial type II topoisomerases (topoisomerase IV and DNA-gyrase) is one of 

the mechanisms associated with anti-bacterial action of several drugs including ciprofloxacin, 

enoxacin, and lomefloxacin (Mitscher et al., 2005).  In order to examine the binding modes of the 

synthesized molecules with topoisomerase and DNA-gyrase, compounds A6g and A6n (chosen as 

representative compounds (RCs)), were flexibly docked into the binding cavity of bacterial 

topoisomerase II DNA-gyrase (PDB id: 2XCT) using the CDOCKER module in discovery studio 

(DS) (Wu et al., 2003).  The docking efficiency of the docking protocol was first assessed by re-

docking ciprofloxacin (co-crystallized ligand) into the active site of the bacterial protein. Overlay 

of the sampled conformation of ciprofloxacin and its X-ray structure (Figure 5-2) showed the root 

mean square deviation (RMSD, all atoms) to be <1Å.  This demonstrated the accuracy and good 

predictive efficiency of the docking protocol.  
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The scoring function, -CDOCKER energy (CDE) that includes the receptor interaction energy and 

internal ligand strain energy was computed to assess the binding affinity of ligands with the 

receptor.  A more negative CDE indicates stronger interaction for the receptor.  The CDE of A6g 

was found to be -20.1 kcal mol-1 and A6n -18.5 kcal mol-1, which was not as strong as the standard 

ciprofloxacin which had a CDE of -28.6 kcal mol-1.  Figure 5-3 and Figure 5-4  contain the 

complexes of A6g, A6n and ciprofloxacin with the bacterial protein, which were visualized (using 

DS) to get a deeper understanding of their binding modes and interacting forces.  

 

Generally, hydrogen bonding was found to be essential in locking the conformation of the 

compounds in the binding site of the protein.  Compound A6g, for instance, formed two concurrent 

hydrogen bonds (conventional) with Asp437 (proton acceptor) through its piperazinyl nitrogen 

(proton donor) and another single hydrogen bond with the same amino acid (proton donor) through 

its ester carbonyl (proton acceptor) moiety in addition to three non-conventional hydrogen bonds 

with Glu435 and Gly436 (Figure 5-3).  Compound A6n also displayed prominent hydrogen 

bonding (Figure 5-4) with Ser1084, Arg458, Glu477 and Lys460 amino acids.  Typically, the 

conformation of A6g was more folded in comparison to A6n, and supported its greater interaction 

with the binding cavity of the bacterial protein, as evidenced by its lower CDE (-20.1 kcal mol-1).  

Both compounds, however, missed interaction with Mg2+. Ciprofloxacin (Figure 5-4), on the other 

hand, exhibited two co-ordinate bonds (2.6 and 2.8 Å) with the Mg2+ by its two oxygen atoms, in 

addition to its engagement with Glu477, Lys460 and Arg458 amino acid residues of the protein 

through hydrogen bonding.  Enhanced antibacterial activity of ciprofloxacin, compared to A6g 

and A6n, could be attributed to this additional interaction with the Mg2+ metal which led to its 

tighter binding with the bacterial protein.  
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Since, the synthesized compounds exhibited good potency against α-glucosidase, it was thought 

worthwhile to support their activity profiles by illuminating their binding characteristics into the 

active site of the protein.  However, the 3D structure for α-glucosidase obtained from S. cerevisiae 

used in our study was not available in the protein database.  Literature survey, nonetheless, 

indicated the utilization of its homology models in several publications (Khan et al., 2014; Lee et 

al., 2014; Huang et al., 2015).  Since, these modelled structures are not available publicly, we built 

the 3D structure of α-glucosidase by homology modelling method using the Discovery Studio 

program.    

 

The amino acid sequence for S. cerevisiae α-glucosidase (access code P53341) was downloaded 

from UniProt protein data bank (http://www.uniprot.org/). Different protein templates were 

subsequently identified using BLAST, a program which searches against a query sequence 

database constructed from proteins deposited in PDB repository.  The crystal structure of S. 

cerevisiae from isomaltase (pdb id: 3AJ7) was found to be the best match based on its high 

sequence identity (71.4%) and sequence similarity (86.9%) with the query sequence, and selected 

as a template for homology modelling. 3D structure was generated using MODELER algorithm 

(Eswar et al., 2006) in DS considering default parameters, and verified using Verify Protein 

(Profiles-3D) module.  Finally, the generated model was energetically minimized up to 0.1 RMS 

gradient in DS.   

 

Two most active compounds, A6d (IC50 = 0.012±0.0 mM) and A6f (0.042±0.021mM) (Table 5-

4) were subsequently docked into the active site of modelled structure of the α-glucosidase.  The 

computed scoring function (CDE) suggested the favorable binding of both compounds for the 
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protein with the most active compound (A6d) showing comparatively the stronger interaction 

(CDE = -38.0 kcal mol-1) in comparison to A6f (BE = -29.1 kcal mol-1).  Compound A6d 

established a conventional hydrogen bond (2.74Å) with His 280 through its NH (piperazine 

moiety), and three non-conventional hydrogen bonds with Glu 277 and His 240 residues of α-

glucosidase (Figure 5-5).  Additionally, hydrophobic (alkyl and π-alkyl types) interactions 

between A6d and the active site residues (Phe 178, His 240 and Arg 315) of protein were also 

observed.  Compound A6f, on the other hand, displayed predominantly hydrophobic interactions 

with the active site residues e.g., Arg 442, Arg315, Phe 158 and Phe 303, in addition to a non-

conventional hydrogen bond with Asp 411 residues (Figure 5-5).  The presence of strong hydrogen 

bonding network in A6d probably accounts for its stronger binding affinity (lower CDE) for the 

protein and supports its higher anti-diabetic action observed under experimental conditions. 

 

Figure 5-2  Superimposition of the conformation (from docking) of ciprofloxacin (in red sticks) 

on its original X-ray structure (in green sticks) 
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Figure 5-3  Docked conformation (in blue sticks) of A6g in the binding cavity of the bacterial 

protein (shown as red lines).  Green dotted lines represent conventional H-bonds whereas red 

dotted lines depict non-conventional H-bonds 

 

5.4 Conclusion 

Compounds A6a, A6m and A6n showed broad spectrum antibacterial activity with several other 

compounds also showing very good strain specific activity to at least one of the bacterial strains 

tested against.  Five of the synthesized compounds A6a, A6d-e, A6h and A6j demonstrated 

antioxidant activity with IC50 values of 0.20 mM or less (good in comparison to ascorbic acid with 

an IC50 of 0.10 mM).  Compounds A6a, A6d and A6f showed better α-glucosidase inhibitory 

activity (IC50 values of 0.056, 0.012 and 0.042 mM respectively) in comparison to acarbose (IC50 

of 0.88 mM).  Docking simulations of A6g and A6n with the bacterial topoisomerase II enzyme 

indicated the significance of Mg2+ interaction in the stability of complexes.  The inability to interact 

with Mg2+ decreased the stability of the RCs, A6g (BE = -20.1 kcal mol-1) and A6n (BE = -18.5 

kcal mol-1) relative the standard ciprofloxacin (BE = -28.6 kcal mol-1), and probably accounts for 

their lower anti-bacterial activity.  The docking of two most active anti-diabetic compounds (A6d, 
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A6f) in the binding site of modelled S. cerevisiae α-glucosidase revealed the predominance of 

hydrophobic and hydrogen bonding interactions in their host-guest relationship. Of all the 

synthesized compounds, A6a was active in all three assays (antibacterial, anti-oxidant and anti-

diabetic) and may be a good pharmaceutical lead compound. 

 

Figure 5-4  Docked conformation (in blue sticks) of A6n (A) and ciprofloxacin (B) in the 

binding cavity of the bacterial protein (shown as red lines).  A green dotted line represents 

conventional H-bonds, red dotted lines non-conventional H-bonds and golden dotted lines 

represent the co-ordinate bonds 



140 

 

Figure 5-5  Docked conformation (in blue sticks) of A6d (A) and A6f (B) in the binding cavity 

of the α-glucosidase (red lines).  Conventional H-bonds are shown as green dotted lines, non-

conventional H-bonds (red dotted lines) and hydrophobic forces (blue dotted lines) 
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Chapter 6. Synthesis, in vitro antimicrobial, antioxidant and antidiabetic 

activities of amino acid linked thiazolidine-quinoxaline derivatives 

 

* The compounds referred to in the chapter are referred to elsewhere in the thesis with an B preceding the number of 

the compound.  For example 5a-c and 6a-l is referred to as B5a-c and B6a-l elsewhere in the thesis. 

 

Abstract 

A novel protocol for the rapid assembly of a hybrid framework based on amino acid, thiazolidine 

and quinoxaline scaffolds has been demonstrated by microwave irradiation.  The amino acid 

quinoxalines B5a-B5c were prepared in three steps from 2,4-dinitrofluorobenzene and the amino 

acids, valine, methionine and tyrosine and subsequently reacted with four different aldehydes and 

thioglycolic acid to produce thiazolidine-quinoxaline-amino acid hybrids B6a-B6l.  All 

synthesized compounds were evaluated for their in vitro antimicrobial, antioxidant and antidiabetic 

activities.  Compounds B6f, B6j and B6k showed broad spectrum antimicrobial activity against 

Gram +ve and Gram –ve bacteria, whilst B6h, B6k and B6l showed the best antioxidant activity 

in the same order of magnitude to that of ascorbic acid.  Four of the compounds, B5c, B6d, B6g 

and B6k showed activity against α-glucosidase and α-amylase similar to acarbose.  Those 

compounds showing antibacterial activity possessed 4-fluorophenyl and 4-methoxyphenyl groups 

along with methionine and tyrosine residues while the compounds showing antioxidant, α-

glucosidase and α-amylase activity contained 4-nitrophenyl and 4-methoxyphenyl groups on the 

thiazolidine moiety with mainly methionine and tyrosine amino acid residues.  The α-glucosidase 

and α-amylase inhibitory compound B5c did not have a thiazolidine moiety and B6d was the only 

active compound with a valine amino acid moiety.  Compound B6k with a tyrosine amino acid 

residue and a 4-methoxyphenylthiazolidine moiety on the quinoxaline scaffold showed good 

bioactivity in all three assays.  

 

Keywords: Microwave irradiation, thermal, antimicrobial, antioxidant, antidiabetic, α-

glucosidase, α-amylase.  
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6.1 Introduction 

Thiazolidinones consists of a heterocyclic 5-membered ring containing a thioether 

and amide group.  This moiety is found in many highly active natural products (Riego et al., 2005; 

Davyt et al., 2010; Sahoo et al., 2015; Zhang et al., 2015).  Thiazolidine derivatives have been 

studied extensively and found to have diverse chemical reactivities (Teresa et al., 2006; Bayuelo 

et al., 2012; Fernanda et al., 2013; Lobana et al., 2015) and a broad-spectrum of biological 

activities, such as anti-microbial, antidiabetic, anti-obesity, anti-inflammatory, antioxidant, anti-

proliferative, antitumor, anti-HIV, anticancer and anti-tubercular (Siddiqui et al., 2009; Malik et 

al., 2011; Vinay et al., 2011; Singh et al., 2011; Singh et al., 2011; Geronikaki et al., 2013). 

 

Quinoxaline is commonly called 1,4-diazanaphthalene or benzopyrazine.  Quinoxaline and its 

derivatives are mostly of synthetic origin (Baumann et al., 2013; Srivastava et al., 2014; Padvi et 

al., 2015).  They have been described as a part of a bicyclic desipeptide antibiotic having activity 

against Gram +ve bacteria and certain tumours by inhibiting RNA synthesis (Waring et al., 1979; 

Eike et al., 2011; Noorulla et al., 2011; Noolvi et al., 2011; Kotra et al., 2013; Mishra et al., 2013; 

Al-Marhabi et al., 2015).  The quinoxaline moiety can be found in a number of antibiotics such as 

echinomycin, levomycin and actinomycin (Katagiri et al., 1975; Patidar et al., 2011; Pai et al., 

2011; Dhanaraj et al., 2015).   

 

Simple α-amino acids have been known to be converted into complex arrays of heteroaromatic 

rings with interesting and potent biological activities (Suhas et al., 2011; Sharma et al., 2013; 

Hashash et al., 2013; Sharma et al., 2015).  Amino acid coupled to other heterocyclic scaffolds 

(benzo-phenoxazine, indole), or amides of amino acids and metal complexes increased the 
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bioactivity of the molecular scaffolds themselves (Yang et al., 1998; Aiyelabola et al., 2012; 

Saxena et al., 2014; Mickevičienė et al., 2015).  Thus far, there have been two reports on the 

synthesis of quinoxalines using amino acids (Holley et al., 1952; Tung et al., 2004).  Amino acids 

attached to quinoxaline derivatives which have shown antimicrobial, and glutamate receptor 

activity have also been described (Faham et al., 2002; Demmer et al., 2015; Mickevičienė et al., 

2015).  In addition, there have been reports of thiazolidine containing quinoxalines, which showed 

good antibacterial and antitubercular activity (Pawar et al., 2007, 2008; Puratchikody et al., 2011). 

 

We herein report an efficient microwave-assisted synthesis of amino acid linked thiazolidine-

quinoxaline compounds and tested them in antimicrobial, antioxidant and antidiabetic assays.  

 

6.2 Experimental  

6.2.1 Materials and methods 

All chemicals were supplied by Sigma-Aldrich via Capital Lab, South Africa.  All organic solvents 

were redistilled and dried according to standard procedures.  Silica gel 60 F254 plates (Merck) were 

used for thin layer chromatography.  Products were purified by column chromatography using 

silica gel (60-120 mesh) with ethyl acetate : hexane as the eluent.  Melting points were recorded 

using a Stuart Scientific SMP3 apparatus.  UV spectra were obtained on a Varian Cary UV-VIS 

spectrophotometer using MeOH as a solvent.  IR spectra were recorded on a Perkin Elmer 100 FT-

IR spectrophotometer with universal attenuated total reflectance sampling accessory.  Microwave 

reactions were performed using a CEM Discover, Explorer-12 Hybrid microwave instrument.  1H, 

13C NMR and all 2D NMR spectra were recorded on a Bruker Avance instrument operating at 400 

MHz.  Chemical shifts were reported as δ values (ppm) relative to an internal standard of 
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tetramethylsilane (TMS) or to the solvent line of DMSO-d6 (δH = 2.50, δC = 39.52).  High-

resolution mass data were obtained using a Bruker micro TOF-Q II ESI instrument operating at 

ambient temperature. 

 

General procedure for the preparation of amino acid methyl ester hydrochloride (B2) 

Methanol (20 mL) was added to different amino acids (B1a-c) (0.1 mol) followed by gradual 

addition of thionyl chloride (0.3 mol) at room temperature.  The resulting solution was stirred at 

70 °C for 4h and the reaction mixture concentrated on a rotary evaporator producing the respective 

amino acid ester hydrochlorides in yields of > 90 %. 

 

The general scheme for the reaction sequence is shown in Scheme 6-1 below. 

 

 

Scheme 6-1  Synthesis of amino acid linked thiazolidine-quinoxaline compounds 
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General procedure for the preparation of compounds (B4a-c) 

1-Fluoro-2,4-dinitrobenzene B3 (0.50 g, 2.34 mmol), amino acid ester (3.51 mmol) and NaHCO3 

(0.005 g, 4.68 mmol) were mixed in THF (10 mL).  The reaction mixture was stirred overnight at 

room temperature.  After completion of the reaction (monitored by TLC), the reaction mixture was 

washed with water (2 × 10 mL), followed by 10% Na2CO3 solution (10 mL).  The organic layer 

was separated from the aqueous layer by adding a small amount of ethyl acetate to distinguish the 

THF and aqueous layers.  The organic layer was then dried over anhydrous Na2SO4 and 

concentrated under reduced pressure to afford B4a-c, which was subsequently purified by column 

chromatography (hexane/ethyl acetate) to afford the desired product in good yields (80-90%). 

 

General procedure for the preparation of compounds (B5a-c)  

The 2,4-dinitrophenyl amino acid compounds B4a-c (1 mmol) was added to methanol (10 mL), to 

which 10% Pd/C (50 mg) was added.  The reaction mixture was stirred for 4h at room temperature 

under H2 atmosphere.  The reaction mixture was then filtered through Celite 545 to remove the 

catalyst.  The filtrate was evaporated under reduced pressure and the obtained solid was purified 

by column chromatography (hexane/ethyl acetate) to afford the desired product in good yield (80-

85%).   

 

General procedure for the preparation of amino acid linked thiazolidine-quinoxaline 

derivatives (B6a-l) 

A mixture of 3-substituted-7-amino quinoxalin-2(1H)-one (B5a-c) (1.0 mmol), the appropriate 

substituted benzaldehyde (1.5 mmol) and thioglycolic acid (5.0 mmol) was placed in a 10 mL 

reaction vial containing absolute ethanol (3 mL) and a stirring bar.  The vial was sealed tightly 
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with a Teflon septum, placed into the microwave cavity and irradiated at 100 ºC using 100 W as 

the maximum power for 10-45 min.  Upon completion, the reaction mixture was rapidly cooled by 

gas jet cooling to ambient temperature, the contents dissolved in ethyl acetate and washed with 5% 

aqueous citric acid (2 × 5 mL), water and aqueous sodium hydrogen carbonate (2 × 5 mL).  The 

organic layer was then separated and dried over sodium sulphate, evaporated under reduced 

pressure and the solid obtained purified by column chromatography (hexane/ethyl acetate) to 

afford the desired product in good yield (80-90%).   

 

(B5a) 7-Amino-3-isopropylquinoxalin-2(1H)-one, dark brown solid; mp 238-240 ºC; UV λmax 

(MeOH) nm (log ε) 222 (3.40), 282 (2.40), 364 (3.02); IR υmax 3460 (NH2), 3331 (NH), 1650, 1622 

(C=O) cm-1; 1H NMR (400 MHz, DMSO) δH 11.87 (s, 1H, H-1), 7.33 (d, J = 8.0 Hz, 1H, H-5), 

6.51 (dd, J = 8.0, 2.2 Hz, 1H, H-6), 6.32 (d, J = 2.2 Hz, 1H, H-8), 5.80 (s, 2H, H-11), 3.28-3.39 

(m, 1H, H-1a), 1.15 (d, J = 6.8 Hz, 6H, H-2a/H-3a); 13C NMR (400 MHz, DMSO) δC 157.4 (C, C-

3), 154.9 (C, C-2), 150.3 (C, C-7), 133.6 (C, C-9), 129.1 (CH, C-5), 124.0 (C, C-10), 111.5 (CH, 

C-6), 95.9 (CH, C-8), 29.3 (CH, C-1a), 20.3 (2CH3, C-2a/3a); HRMS (m/z): calc. for C11H13N3ONa 

(M + Na)+: 226.0956, found: 226.0956. 

 

(B5b) 7-amino-3-(2-(methylthio)ethyl)quinoxalin-2(1H)-one, brown solid; mp 178-180 ºC; UV 

λmax (MeOH) nm (log ε) 230 (3.14), 283 (2.97), 390 (3.02); IR υmax 3337 (NH), 2809 (C-H), 1671, 

1637 (C=O), 1521 cm-1; 1H NMR (400 MHz, DMSO) δH 12.01 (s, 1H, H-1), 7.34 (d, J = 8.5 Hz, 

1H, H-5), 6.53 (d, J = 8.5 Hz, 1H, H-6), 6.33 (bs, 1H, H-8), 5.89 (s, 2H, H-11), 3.14-3.20 (m, 2H, 

H-2a), 2.97-3.05 (m, 2H, H-1a), 2.58 (s, 3H, H-4a); 13C NMR (400 MHz, DMSO) δC 155.2 (C, C-

3), 150.7 (C, C-2), 150.7 (C, C-7), 133.9 (C, C-10), 129.0 (CH, C-5), 124.0 (C, C-9), 111.7 (CH, 
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C-6), 95.9 (CH, C-8), 49.9 (CH2, C-2a), 38.0 (CH3, C-4a), 25.2 (CH2, C-1a); HRMS (m/z): calc. 

for C11H12N3OS (M + H)+: 234.0701, found: 234.0708. 

 

(B5c) 3-(4-hydroxybenzyl)-7-aminoquinoxalin-2(1H)-one, light yellow solid; mp 164-166 ºC; 

UV λmax (MeOH) nm (log ε) 224 (3.51), 249 (3.0), 279 (2.78), 371 (3.15); IR υmax 3461 (NH2), 

3332 (NH), 1651, 1622 (C=O) cm-1; 1H NMR (400 MHz, DMSO) δH 11.91 (s, 1H, H-1), 9.17 (s, 

1H, H-8a), 7.33 (d, J = 8.6 Hz, 1H, H-5), 7.08 (d, J = 8.2 Hz, 2H, H-3a/7a), 6.65 (d, J = 8.2 Hz, 

2H, H-4a/6a), 6.51 (dd, J = 8.6, 1.6 Hz, 1H, H-6), 6.31 (d, J = 1.6 Hz, 1H, H-8), 5.84 (s, 2H, H-

11), 3.85 (s, 2H, H-1a); 13C NMR (400 MHz, DMSO) δC 155.7 (C, C-3), 155.3 (C, C-5a), 152.6 

(C, C-2), 150.6 (C, C-7), 133.9 (C, C-9), 129.8 (2CH, C-3a/7a), 129.1 (CH, C-5), 128.6 (C, C-10), 

124.2 (C, C-2a), 115.0 (2CH, C-4a/6a), 111.6 (CH, C-6), 95.9 (CH, C-8), 37.6 (CH2, C-1a); HRMS 

(m/z): calc. for C15H13N3O2Na (M + Na)+: 290.0905, found: 290.0910. 

 

(B6a) 3-isopropyl-7-(4-oxo-2-phenylthiazolidin-3-yl)quinoxalin-2(1H)-one, white solid; mp 

280-282 ºC; UV λmax (MeOH) nm (log ε) 231 (3.13), 287 (2.59), 341 (2.81); IR υmax 3151 (NH), 

1683 (C=O), 1652, 1616 cm-1; 1H NMR (400 MHz, DMSO) δH 12.27 (s, 1H, H-1), 7.60 (d, J = 8.8 

Hz, 1H, H-5), 7.38 (dd, J = 7.7,  Hz, 2H, H-2c/6c), 7.31 (d, J = 2.2 Hz, 1H, H-8), 7.26 (dd, J = 7.7, 

7.7 Hz, 2H, H-3c/5c), 7.22 (dd, J = 7.7, 2.2 Hz, 1H, H-4c), 7.20 (dd, J = 8.8, 2.2 Hz, 1H, H-6), 

6.58 (s, 1H, H-5b), 4.06 (d, J = 15.9 Hz, 1H, H-3bi), 3.92 (d, J = 15.9 Hz, 1H, H-3bii), 3.39 (sep, 

J = 6.9 Hz, 1H, H-1a), 1.16 (d, J = 6.9 Hz, 3H, H-2a), 1.15 (d, J = 6.9 Hz, 3H, H-3a); 13C NMR 

(400 MHz, DMSO) δC 170.8 (C, C-2b), 165.5 (C, C-3), 154.1 (C, C-2), 139.7 (C, C-1c), 138.1 (C, 

C-7), 131.7 (C, C-9*), 129.4 (C, C-10*), 128.7 (2CH, C-3c/5c), 128.6 (CH, C-4c), 128.3 (CH, C-

5), 126.9 (2CH, C-2c/6c), 119.3 (CH, C-8), 111.3 (CH, C-6), 63.3 (CH, C-5b), 32.8 (CH2, C-3b), 
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29.8 (CH, C-1a), 19.99 (CH3, C-2a), 19.97 (CH3, C-3a); HRMS (m/z): calc. for C20H19N3O2SNa 

(M + Na)+: 388.1096, found: 388.1096.  *indicates that assignments are interchangeable. 

 

(B6b) 7-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-isopropylquinoxalin-2(1H)-one, white 

solid; mp 252-254 ºC; UV λmax (MeOH) nm (log ε) 230 (3.29), 287 (2.72), 340 (2.95); IR υmax 

3178 (NH), 1657 (C=O), 1615, 1510 cm-1; 1H NMR (400 MHz, DMSO) δH 12.27 (s, 1H, H-1), 

7.61 (d, J = 8.7 Hz, 1H, H-5), 7.45 (dd, J = 8.7, 5.4, Hz, 2H, H-2c/6c), 7.27 (d, J = 2.2 Hz, 1H, H-

8), 7.19 (dd, J = 8.7, 2.2 Hz, 1H, H-6), 7.12 (t, J = 8.8 Hz, 2H, H-3c/5c), 6.59 (s, 1H, H-5b), 4.06 

(d, J = 15.8 Hz, 1H, H-3bi), 3.92 (d, J = 15.8 Hz, 1H, H-3bii), 3.42 (septet, J = 6.8 Hz, 1H, H-1a), 

1.16 (d, J = 6.8 Hz, 3H, H-2a), 1.15 (d, J = 6.8 Hz, 3H, H-3a); 13C NMR (400 MHz, DMSO) δC 

170.7 (C, C-2b), 165.6 (C, C-3), 161.9 (d, JC-F = 243.9 Hz, C, C-4c), 154.1 (C, C-2), 137.9 (C, C-

7), 135.9 (d, J = 2.8 Hz, C, C-1c), 131.7 (C, C-9*), 129.5 (C, C-10*), 129.3 (d, J = 8.6 Hz, 2CH, 

C-2c/6c), 128.4 (CH, C-5), 119.4 (CH, C-6), 115.6 (d, J = 21.7 Hz, 2CH, C-3c/5c), 111.5 (CH, C-

8), 62.6 (CH, C-5b), 32.8 (CH2, C-3b), 29.8 (CH, C-1a), 19.99 (CH3, C-2a*), 19.96 (CH3, C-3a*); 

HRMS (m/z): calc. for C20H18N3O2SFNa (M + Na)+: 406.1001, found: 406.0999.  *indicates that 

assignments are interchangeable. 

 

(B6c) 3-isopropyl-7-(2-(4-methoxyphenyl)-4-oxothiazolidin-3-yl)quinoxalin-2(1H)-one, 

brown solid; mp 268-270 ºC; UV λmax (MeOH) nm (log ε) 230 (3.67), 284 (3.03), 341 (3.22); IR 

υmax 3144 (NH), 1682 (C=O), 1657, 1609 cm-1; 1H NMR (400 MHz, DMSO) δH 12.26 (s, 1H, H-

1), 7.59 (d, J = 8.6 Hz, 1H, H-5), 7.31 (d, J = 8.8 Hz, 2H, H-2c/6c), 7.26 (d, J = 2.2 Hz, 1H, H-8), 

7.18 (dd, J = 8.6, 2.2 Hz, 1H, H-6), 6.82 (d, J = 8.8 Hz, 2H, H-3c/5c), 6.52 (s, 1H, H-5b), 4.03 (d, 

J = 15.7 Hz, 1H, H-3bi), 3.91 (d, J = 15.7 Hz, 1H, H-3bii), 3.67 (s, 3H, H-8c), 3.38 (septet, J = 6.8 
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Hz, 1H, H-1a), 1.16 (d, J = 6.8 Hz, 3H, H-2a), 1.15 (d, J = 6.8 Hz, 3H, H-3a); 13C NMR (400 MHz, 

DMSO) δC 171.1 (C, C-2b), 165.9 (C, C-3), 159.5 (C, C-4c), 154.3 (C, C-2), 138.4 (C, C-7), 131.8 

(C, C-1c), 131.2 (C, C-9*), 129.7 (C, C-10*), 129.1 (2CH, C-2c/6c), 128.5 (CH, C-5), 120.2 (CH, 

C-6), 114.3 (2CH, C-3c/5c), 111.9 (CH, C-8), 63.5 (CH, C-5b), 55.3 (CH3, C-8c), 33.2 (CH2, C-

3b), 30.1 (CH, C-1a), 20.2 (2CH3, C-2a/3a); HRMS (m/z): calc. for C21H21N3O3SNa (M + Na)+: 

418.1201, found: 418.1213.  *indicates that assignments are interchangeable. 

 

(B6d) 3-isopropyl-7-(2-(4-nitrophenyl)-4-oxothiazolidin-3-yl)quinoxalin-2(1H)-one, light 

yellow solid; mp 274-276 ºC; UV λmax (MeOH) nm (log ε) 229 (3.48), 341 (3.12); IR υmax 3088 

(NH), 1694, 1664 (C=O), 1624 cm-1; 1H NMR (400 MHz, DMSO) δH 12.28 (s, 1H, H-1), 8.15 (d, 

J = 8.7 Hz, 2H, H-3c/5c), 7.70 (d, J = 8.7 Hz, 2H, H-2c/6c), 7.62 (d, J = 8.8 Hz, 1H, H-5), 7.32 (d, 

J = 2.2 Hz, 1H, H-8), 7.24 (dd, J = 8.8, 2.2 Hz, 1H, H-6), 6.75 (s, 1H, H-5b), 4.13 (d, J = 15.8 Hz, 

1H, H-3bi), 3.96 (d, J = 15.8 Hz, 1H, H-3bii), 3.39 (septet, J = 6.8 Hz, 1H, H-1a), 1.16 (d, J = 6.8 

Hz, 3H, H-2a), 1.15 (d, J = 6.8 Hz, 3H, H-3a); 13C NMR (400 MHz, DMSO) δC 170.7 (C, C-2b), 

165.7 (C, C-3), 154.0 (C, C-2), 147.5 (C, C-4c), 147.4 (C, C-1c), 137.8 (C, C-7), 131.8 (C, C-9*), 

129.5 (C, C-10*), 128.5 (CH, C-5), 128.1 (2CH, C-2c/6c), 124.1 (2CH, C-3c/5c), 118.9 (CH, C-

6), 110.9 (CH, C-8), 62.1 (CH, C-5b), 32.7 (CH2, C-3b), 29.8 (CH, C-1a), 19.98 (CH3, C-2a), 

19.95 (CH3, C-3a); HRMS (m/z): calc. for C20H17N4O4S (M - H)-: 409.0971, found: 409.0966.  

*indicates that assignments are interchangeable. 

 

(B6e) 3-(2-(methylthio)ethyl)-7-(4-oxo-2-phenylthiazolidin-3-yl)quinoxalin-2(1H)-one, 

brown solid; mp 258-260 ºC; UV λmax (MeOH) nm (log ε) 230 (3.34), 294 (2.74), 344 (2.98); IR 

υmax 3173 (NH), 1678 (C=O), 1654, 1618 cm-1; 1H NMR (400 MHz, DMSO) δH 12.32 (s, 1H, H-
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1), 7.61 (d, J = 8.7 Hz, 1H, H-5), 7.38 (d, 1H, J = 7.3 Hz, H-2c/6c), 7.33 (d, 1H, J = 2.2 Hz, H-8), 

7.29 (t, J = 7.3 Hz, 2H, H-3c/5c), 7.23 (t, J = 7.3 Hz, 2H, H-4c), 7.21 (dd, J = 8.7, 2.2 Hz, H-6), 

6.58 (s, 1H, H-5b), 4.06 (d, J = 15.9 Hz, 1H, H-3bi), 3.92 (d, J = 15.9 Hz, 1H, H-3bii), 3.01 (t, J = 

7.7 Hz, 2H, H-2a), 2.82 (t, J = 7.7 Hz, 2H, H-1a), 2.07 (s, 3H, H-4a); 13C NMR (400 MHz, DMSO) 

δC 170.8 (C, C-2b), 160.1 (C, C-3), 154.5 (C, C-2), 139.7 (C, C-1c), 138.3 (C, C-7), 131.9 (C, C-

9*), 129.4 (C, C-10*), 128.7 (2C, C, C-3c/5c), 128.6 (CH, C-5), 128.3 (CH, C-4c), 126.9 (CH, C-

2c/6c), 119.3 (CH, C-6), 111.3 (CH, C-8), 63.3 (CH, C-5b), 32.8 (CH2, C-3b), 32.6 (CH2, C-2a), 

29.9 (CH2, C-1a), 14.6 (CH3, C-4a); HRMS (m/z): calc. for C20H18N3O2S2  (M - H)+: 396.0840, 

found: 396.0856.  *indicates that assignments are interchangeable. 

 

(B6f) 7-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-(2-(methylthio)ethyl)quinoxalin-2(1H)-

one, dark brown solid; mp 264-266 ºC; UV λmax (MeOH) nm (log ε) 231 (3.27), 293 (2.68), 343 

(2.92); IR υmax 3173 (NH), 1679 (C=O), 1655, 1618, 1604, 1508 cm-1; 1H NMR (400 MHz, 

DMSO) δH 12.33 (s, 1H, H-1), 7.62 (d, J = 8.7 Hz, 1H, H-5), 7.46 (dd, J = 8.8, 5.4 Hz, 2H, H-

2c/6c), 7.28 (d, J = 2.0 Hz, 1H, H-8), 7.20 (dd, J = 8.7,  2.0 Hz, 1H, H-6), 7.12 (dd, J = 8.8, 8.8 

Hz, 2H, H-3c/5c), 6.59 (s, 1H, H-5b), 4.07 (d, J = 15.7 Hz, 1H, H-3bi), 3.93 (d, J = 15.7 Hz, 1H, 

H-3bii), 3.01 (t, J = 7.0 Hz, 2H, H-2a), 2.83 (t, J = 7.6 Hz, 2H, H-1a), 2.07 (s, 3H, H-4a); 13C NMR 

(400 MHz, DMSO) δC 170.7 (C, C-2b), 161.9 (d, J = 243.7 Hz, C, C-4c), 160.2 (C, C-3), 154.5 

(C, C-2), 138.2 (C, C-7), 135.9 (d, J = 2.9 Hz, C, C-1c), 131.9 (C, C-9*), 129.5 (C, C-10*), 129.3 

(d, J = 8.4 Hz, 2CH, C-2c/6c), 128.3 (CH, C-5), 119.5 (CH, C-6), 115.7 (d, J = 21.2 Hz, 2CH, C-

3c/5c), 111.5 (CH, C-8), 62.6 (CH, C-5b), 32.8 (CH2, C-3b), 32.6 (CH2, C-2a), 29.9 (CH2, C-1a), 

14.6 (CH3, C-4a); HRMS (m/z): calc. for C20H18FN3O2S2Na (M + Na)+: 438.0722, found: 

438.0722.  *indicates that assignments are interchangeable. 
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(B6g) 7-(2-(4-methoxyphenyl)-4-oxothiazolidin-3-yl)-3-(2-(methylthio)ethyl)quinoxalin-

2(1H)-one, yellow solid; mp 258-260 ºC; UV λmax (MeOH) nm (log ε) 230 (3.09), 279 (2.95), 389 

(3.06); IR υmax 3321 (NH), 1685 (C=O), 1616, 1525 cm-1; 1H NMR (400 MHz, DMSO) δH 12.36 

(s, 1H, H-1), 7.61 (d, J = 8.7 Hz, 1H, H-5), 7.32 (d, J = 8.6 Hz, 2H, H-2c/6c), 7.28 (d, J = 2.1, 1H, 

H-8), 7.21 (dd, J = 8.7, 2.1 Hz, 1H, H-6), 6.83 (d, J = 8.6 Hz, 2H, H-3c/5c), 6.53 (s, 1H, H-5b), 

4.03 (d, J = 15.9 Hz, 1H, H-3bi), 3.91 (d, J = 15.9 Hz, 1H, H-3bii), 3.67 (s, 3H, H-8c), 3.16-3.10 

(m, 2H, H-2a), 3.06-2.96 (m, 2H, H-1a), 2.57 (s, 3H, H-4a); 13C NMR (400 MHz, DMSO) δC 170.6 

(C, C-2b), 159.4 (C, C-4c), 159.2 (C, C-3), 154.4 (C, C-2), 138.4 (C, C-1c), 138.4 (C, C-7), 131.9 

(C, C-9*), 131.1 (C, C-10*), 128.7 (2CH, C-2c/6c), 128.2 (CH, C-5), 119.6 (CH, C-6), 113.9 

(2CH, C-3c/5c), 111.6 (CH, C-8), 63.1 (CH, C-5b), 55.0 (CH3, C-8c), 49.3 (CH2, C-3b), 37.9 (CH3, 

C-4a), 32.9 (CH2, C-2a), 25.5 (CH2, C-1a); HRMS (m/z): calc. for C21H22N3O3S2 (M-H)+: 

428.1103, found: 428.1084.  *indicates that assignments are interchangeable. 

 

(B6h) 3-(2-(methylthio)ethyl)-7-(2-(4-nitrophenyl)-4-oxothiazolidin-3-yl)quinoxalin-2(1H)-

one, reddish brown solid; mp 240-242 ºC; UV λmax (MeOH) nm (log ε) 233 (2.92), 344 (2.60); IR 

υmax 3175 (NH), 1681 (C=O), 1655, 1619, 1515 cm-1; 1H NMR (400 MHz, DMSO) δH 12.34 (s, 

1H, H-1), 8.16 (d, J = 8.7 Hz, 2H, H-3c/5c), 7.70 (d, J = 8.7 Hz, 2H, H-2c/6c), 7.63 (d, J = 8.8 Hz, 

1H, H-5), 7.34 (d, J = 2.2 Hz, 1H, H-8), 7.25 (dd, J = 8.8, 2.2 Hz, 1H, H-6), 6.76 (s, 1H, H-5b), 

4.13 (d, J = 15.9 Hz, 1H, H-3bi), 3.96 (d, J = 15.9 Hz, 1H, H-3bii), 3.01 (t, J = 7.6 Hz, 2H, H-2a), 

2.82 (t, J = 7.6 Hz, 2H, H-1a), 2.06 (s, 3H, H-4a); 13C NMR (400 MHz, DMSO) δC 170.8 (C, C-

2b), 160.3 (C, C-3), 154.5 (C, C-2), 147.5 (C, C-4c), 147.4 (C, C-1c), 137.9 (C, C-7), 132.0 (C, C-

9*), 129.5 (C, C-10*), 128.5 (CH, C-5), 128.1 (2CH, C-2c/6c), 124.1 (2CH, C-3c/5c), 119.0 (CH, 
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C-6), 111.0 (CH, C-8), 62.1 (CH, C-5b), 32.7 (CH2, C-3b), 32.6 (CH2, C-2a), 29.9 (CH2, C-1a), 

14.6 (CH3, C-4a); HRMS (m/z): calc. for C20H17N4O4S2 (M + H)+: 441.0691, found: 441.0696.  

*indicates that assignments are interchangeable. 

 

(B6i) 3-(4-hydroxybenzyl)-7-(4-oxo-2-phenylthiazolidin-3-yl)quinoxalin-2(1H)-one, yellow 

solid; mp 134-136 ºC; UV λmax (MeOH) nm (log ε) 228 (3.39), 346 (3.01); IR υmax 3177 (NH), 

1656 (C=O), 1614, 1510 cm-1; 1H NMR (400 MHz, DMSO) δH 12.31 (s, 1H, H-1), 9.19 (s, 1H, H-

8a), 7.60 (d, J = 8.5 Hz, 1H, H-5), 7.38 (d, 2H,  J = 7.0 Hz, H-2c/6c), 7.32 (s, 1H, H-8), 7.28 (dd, 

2H, J = 7.0, 7.0, H-3c/5c), 7.19-7.23 (m, 2H, H-4c, H-6), 7.07 (d, J = 7.6 Hz, 2H, H-3a/7a), 6.64 

(d, J = 7.6 Hz, 2H, H-4a/6a), 6.57 (s, 1H, H-5b), 4.06 (d, J = 15.8 Hz, 1H, H-3bi), 3.93 (bs, 2H, 

H-1a), 3.91 (d, J = 15.8 Hz, 1H, H-3bii); 13C NMR (400 MHz, DMSO) δC 170.8 (C, C-2b), 160.6 

(C, C-3), 155.9 (C, C-2), 154.4 (C, C-5a), 139.7 (C, C-1c), 138.3 (C, C-7), 132.0 (C, C-9*), 130.0 

(2C, CH, C-3a/7a), 129.5 (C, C-10*), 128.8 (2C, CH, C-2c/6c), 128.6 (CH, C-5), 128.3 (CH, C-

4c), 127.2 (C, C-2a), 126.9 (2C, CH, C-3c/5c), 119.3 (CH, C-6), 115.1 (2CH, C-4a/6a), 111.2 (CH, 

C-8), 63.3 (CH, C-5b), 38.0 (CH2, C-1a), 32.8 (CH2, C-3b); HRMS (m/z): calc. for 

C24H18N3O3S (M + H)+: 428.1069, found: 428.1073.  *indicates that assignments are 

interchangeable. 

 

(B6j) 3-(4-hydroxybenzyl)-7-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)quinoxalin-2(1H)-

one, yellow solid; mp 268-270 ºC; UV λmax (MeOH) nm (log ε) 230 (3.03), 286 (2.52), 345 (2.75); 

IR υmax 3384 (OH), 3125 (NH), 1678 (C=O), 1615, 1509 cm-1; 1H NMR (400 MHz, DMSO) δH 

12.31 (s, 1H, H-1), 9.18 (s, 1H, H-8a), 7.61 (d, J = 8.7 Hz, 1H, H-5), 7.44 (dd, J = 8.6, 5.4 Hz, 2H, 

H-2c/6c), 7.27 (d, J = 2.2 Hz, 1H, H-8), 7.19 (dd, J = 8.7, 2.2 Hz, 1H, H-6), 7.11 (dd, J = 8.6, 8.6 
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Hz, 2H, H-3c/5c), 7.08 (d, J = 8.5 Hz, 2H, H-3a/7a), 6.64 (d, J = 8.5 Hz, 2H, H-4a/6a), 6.58 (s, 

1H, H-5b), 4.07 (d, J = 15.7 Hz, 1H, H-3bi), 3.93 (bs, 2H, H-1a), 3.92 (d, J = 15.7 Hz, 1H, H-

3bii); 13C NMR (400 MHz, DMSO) δC 170.7 (C, C-2b), 161.9 (d, J = 238.8 Hz, C, C-4c), 160.6 

(C, C-3), 155.9 (C, C-5a), 154.4 (C, C-2), 138.2 (C, C-7), 135.9 (d, J = 2.8 Hz, C, C-1c), 132.0 (C, 

C-10*), 130.0 (2C, CH, C-3a/7a), 129.5 (C, C-9*), 129.2 (2C, CH, d, J = 8.4 Hz, C-2c/6c), 128.4 

(CH, C-5), 127.2 (C, C-2a), 119.4 (CH, C-6), 115.6 (2C, CH, d, J = 21.7 Hz, C-3c/5c), 115.1 (2C, 

CH, C-4a/6a), 111.4 (CH, C-8), 62.6 (CH, C-5b), 38.0 (CH2, C-1a), 32.8 (CH2, C-3b); HRMS 

(m/z): calc. for C24H18FN3O3SNa (M + Na)+: 470.0951, found: 470.0947.  *indicates that 

assignments are interchangeable. 

 

(B6k) 3-(4-hydroxybenzyl)-7-(2-(4-methoxyphenyl)-4-oxothiazolidin-3-yl)quinoxalin-2(1H)-

one, yellow solid; mp 194-196 ºC; UV λmax (MeOH) nm (log ε) 232 (2.91), 348 (2.56); IR υmax 

3200 (NH), 1659 (C=O), 1609, 1510 cm-1; 1H NMR (400 MHz, DMSO) δH 12.32 (s, 1H, H-1), 

9.21 (d, J = 3.5 Hz, 1H, H-8a), 7.60 (d, J = 8.3 Hz, 1H, H-5), 7.30 (d, J = 8.4 Hz, 2H, H-3a/7a), 

7.27 (bs, 1H, H-8), 7.17 (d, J = 8.3 Hz, 1H, H-6), 7.06 (d, J = 8.3 Hz, 2H, H-2c/6c), 6.81 (d, J = 

8.4 Hz, 2H, H-4a/6a), 6.63 (d, J = 8.3 Hz, 2H, H-3c/5c), 6.52 (s, 1H, H-5b), 4.02 (d, J = 15.8 Hz, 

1H, H-3bi), 3.93 (d, J = 8.3 Hz, 2H, H-1a), 3.92 (d, J = 15.8 Hz, 1H, H-3bii), 3.67 (s, 3H, H-8c); 

13C NMR (400 MHz, DMSO) δC 170.7 (C, C-2b), 160.6 (C, C-3), 159.3 (C, C-4c), 155.9 (C, C-

5a), 154.4 (C, C-2), 138.4 (C, C-7), 131.9 (C, C-9*), 131.1 (C, C-10*), 130.0 (2C, CH, C-2c/6c), 

129.5 (C, C-1c), 128.5 (2C, CH, C-3a/7a), 128.3 (CH, C-5), 127.3 (C, C-2a), 119.7 (CH, C-6), 

115.1 (2C, CH, C-3c/5c), 114.1 (2C, CH, C-4a/6a), 111.5 (CH, C-8), 63.1 (CH, C-5b), 55.1 (CH3, 

C-8c), 38.1 (CH2, C-1a), 32.9 (CH2, C-3b); HRMS (m/z): calc. for C25H20N3O4S (M + H)+: 

458.1175, found: 458.1187.  *indicates that assignments are interchangeable. 
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(B6l) 3-(4-hydroxybenzyl)-7-(2-(4-nitrophenyl)-4-oxothiazolidin-3-yl)quinoxalin-2(1H)-one, 

yellow solid; mp 260-262 ºC; UV λmax (MeOH) nm (log ε) 233 (2.58), 344 (2.37); IR υmax 3185 

(NH), 1660 (C=O) cm-1; 1H NMR (400 MHz, DMSO) δH 12.33 (s, 1H, H-1), 9.18 (s, 1H, H-8a), 

8.14 (d, J = 8.1 Hz, 2H, H-3c/5c), 7.68 (d, J = 8.1 Hz, 2H, H-2c/6c), 7.62 (d, J = 8.4 Hz, 1H, H-

5), 7.32 (bs, 1H, H-8), 7.23 (d, J = 8.4 Hz, 1H, H-6), 7.05 (d, J = 7.7 Hz, 2H, H-3a/7a), 6.74 (s, 

1H, H-5b), 6.63 (d, J = 7.7 Hz, 2H, H-4a/6a), 4.12 (d, J = 15.8 Hz, 1H, H-3bi), 3.94 (d, J = 15.8 

Hz, 1H, H-3bii), 3.92 (bs, 2H, H-1a); 13C NMR (400 MHz, DMSO) δC 170.8 (C, C-2b), 160.8 (C, 

C-3), 155.9 (C, C-2), 154.4 (C, C-5a), 147.5 (C, C-4c), 147.3 (C, C-1c), 137.9 (C, C-7), 132.1 (C, 

C-9*), 129.9 (2C, CH, C-3a/7a), 129.6 (C, C-10*), 128.6 (CH, C-5), 128.0 (2C, CH, C-2c/6c), 

127.2 (C, C-2a), 124.1 (2C, CH, C-3c/5c), 118.9 (CH, C-6), 115.1 (2C, CH, C-4a/6a), 110.9 (CH, 

C-8), 62.1 (CH, C-5b), 38.0 (CH2, C-1a), 32.6 (CH2, C-3b); HRMS (m/z): calc. for 

C24H17N4O5S (M + H)+: 473.0920, found: 473.0935.  *indicates that assignments are 

interchangeable. 

 

6.2.2 In vitro antimicrobial studies 

The microbial cultures were grown overnight at 37 °C in nutrient broth (UKZN Biolab, South 

Africa), adjusted to 0.5 McFarland standard using distilled water and lawn inoculated onto 

Mueller-Hinton agar (MHA) plates.  A volume of 10 µL of each sample (21.08 - 49.20 µM, 1 mL 

DMSO) was inoculated onto antibiotic assay discs (6 mm diameter) and placed on the MHA plates 

which were incubated overnight at 37 °C for 24 hours.  After the incubation period, zones of 

inhibition were measured in mm.  Compounds showing an inhibition zone of > 9 mm were selected 

to determine their MBC values using the broth dilution assay with ampicillin and ciprofloxacin as 
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the controls following the method in Andrews (2001).  Compounds B5a-c, B6a-c, B6f-h, B6j and 

B6k were chosen for the broth dilution method to determine their MBCs. 

 

For the broth dilution method, the microbial cultures (adjusted to 0.5 McFarland) were prepared 

as described previously for the disc diffusion method.  The test compounds were dissolved in 

DMSO (10 mg mL-1) and subject to a 50% serial dilution in 1 mL Eppendorf tubes with Mueller-

Hinton Broth (MHB), inoculated with bacterial cultures (20 µL) and then incubated at 37°C for 18 

h.  The total volume in each Eppendorf was 200 µL.  A volume of 10 µL of each dilution was 

spotted on MHA plates and incubated at 37°C for 18 h to determine the MBC (µM).  Ampicillin, 

ciprofloxacin and tioconazole served as the standard drugs for the antimicrobial and antifungal 

studies respectively.  All experiments were performed in duplicate. 

 

6.2.3 DPPH radical scavenging activity (in vitro antioxidant activity) 

 The total free radical scavenging activity of the tested compounds was determined and compared 

to that of ascorbic acid using a slightly modified method described by Tuba and Gulcin (2008).  A 

0.3 mM solution of DPPH was prepared in methanol and 500 µL added to 50 µL of the compounds 

(dissolved in DMSO) at different concentrations (50-200 µg mL-1).  These solutions were mixed 

and incubated in the dark for 30 min at room temperature.  Absorbance was then measured at 517 

nm against a blank sample lacking scavenger. 
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6.2.4 Antidiabetic activity 

In vitro α-glucosidase inhibitory activity 

The α-glucosidase inhibitory activity was determined according to the method described by 

Ademiluyi et al. (2013) with slight modifications.  Briefly, 50 µL of each compound or acarbose 

dissolved in DMSO at different concentrations (50-200 µg mL-1), was incubated with 100 µL of 

1.0 U mL–1 α-glucosidase solution in 100 mM phosphate buffer (pH 6.8) at 37 °C for 15 min. 

Thereafter, 50 µL of pNPG solution (5 mM) in 100 mM phosphate buffer (pH 6.8) was added and 

the mixture incubated at 37 °C for 20 min.  The absorbance of the released p-nitrophenol was 

measured at 405 nm and the inhibitory activity expressed as a percentage of the control sample 

without inhibitors.  

 

In vitro α-amylase inhibitory activity  

The α-amylase inhibitory activity was determined according to the method described by Shai et 

al. (2010) with slight modifications.  A volume of 50 µL of each compound dissolved in DMSO 

or acarbose at different concentrations (50-200 µg mL-1) was incubated with 100 µL of porcine 

pancreatic amylase (2 U mL–1 ) in 100 mM phosphate buffer (pH 6.8) at 37 °C for 20 min. 50 µL 

of 1 % starch dissolved in 100 mM phosphate buffer (pH 6.8) was then added to the reaction 

mixture and incubated at 37 °C for 1 h. 100 µL of DNS colour reagent was then added and boiled 

for 10 min.  The absorbance of the resulting mixture was measured at 540 nm and the inhibitory 

activity expressed as a percentage of the control sample without inhibitors.  All assays were carried 

out in triplicate. 
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6.3 Results and discussion 

Our synthetic design incorporates two fundamental methodologies; microwave irradiation and 

conventional synthesis.  This project was aimed at synthesizing hybrid molecules of quinoxaline, 

amino acid and thiazolidine core structures.  Variation was introduced in the molecules at the 

thiazolidine ring by varying the aromatic aldehydes used to form the thiazolidine moiety and in 

the amino acid side chains at position 3 on the quinoxaline ring by using different amino acids.  

The phenyl ring on the thiazolidine moiety was either unsubstituted or substituted at the para 

position with an electron donating methoxy group or electron withdrawing groups (F and NO2).  

We used three different amino acids, valine (aliphatic), methionine (sulfur based) and tyrosine 

(aromatic). 

 

6.3.1 Chemistry 

The quinoxaline-thiazolidine-amino acid hybrids were synthesized in a four-step reaction.  This 

reaction series first involved esterification of the amino acids B1a-c with thionyl chloride and 

methanol and then an aromatic nucleophilic substitution of the fluorine on 1-fluoro-2,4-

dinitrobenzene B3 with the various amino acid esters B2a-c under mildly basic conditions forming 

the amino acid ester 2,4-dinitrobenzene intermediates B4a-c.  Reduction of the nitro groups and 

formation of the quinoxalines were carried out in a single step with Pd/C in the presence of H2 and 

methanol.  Under microwave irradiation, the thiazolidine ring was formed with the primary amino 

group in the quinoxaline intermediates with thioglycolic acid and the four different aldehydes 

forming the target molecules as racemic mixtures B6a-l (Scheme 6-1).   
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Formation of the Schiff base with aldehydes and further cyclisation to thiazolidines with 

thioglycolic acid was carried out in a single step under microwave conditions.  An attempt to form 

the product by the conventional method, first forming the Schiff base with aldehydes and 

subsequent cyclisation with thioglycolic acid did not work.  However, the microwave reaction was 

carried out within 10-45 minutes depending on the different substituents used (Table 6-1). 

 

6.3.2 Structural elucidation   

The synthesized products were characterized using NMR and MS analysis. Using B6j as a 

representative sample, 1H and 13C NMR resonances were unambiguously assigned as indicated 

below.  The quinoxaline core structure contained four proton resonances at δH 12.31 for the H-1 

amino group.  The aromatic protons H-5, H-6 and H-8 appeared at δH 7.61 (d, J = 8.7 Hz), δH 7.19 

(dd, J = 8.7, 2.2 Hz) and δH 7.27 (d, J = 2.2 Hz) respectively.  The NH-l resonance was 

distinguished from the OH-8a resonance at δH 9.18 since it showed a NOESY correlation to H-8.  

The resonances at δC 138.2, 132.0 and 129.5 all showed correlations to H-5 and were assigned to 

carbon resonances on the same ring.  The most deshielded resonance (δC 138.2) was assigned to 

C-7 and the resonance at δC 129.5 was assigned to C-9 due to a HMBC correlation with H-6.  The 

remaining resonance at δC 132.0 was assigned to C-10.  

 

There were five deshielded carbon resonances between δC 154.4 and 170.7.  The resonances at δC 

154.4 and 160.6 both showed HMBC correlations to H-1a at δH 3.93 and were assigned to C-2 and 

C-3 respectively, the latter assigned due to an HMBC correlation to H-5.  The resonance at δC 

170.7 showed HMBC correlations to H-3bi, H-3bii and H-5b and was assigned to C-2b.  The H-
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3bi and H-3bii resonances appeared as a pair of doublets with geminal coupling of 15.7 Hz and H-

5b occurred as a singlet.  C-5a was assigned to δC 155.9 due to an HMBC correlation with H-4a/6a 

and H-3a/7a.  The remaining carbon resonance of the five between δC 154.4 and 170.7 was a 

doublet carbon resonance with J = 238.8 Hz and was assigned to the carbon bearing the fluorine 

atom (C-4c).   

 

Table 6-1  Yields and duration of microwave synthesis for the amino acid linked quinoxaline-

thiazolidinones 

Entry R* R1 Yiel
d 

(%) 

Time 
(min) 

B5a val - - - 
B5b met - - - 
B5c tyr - - - 
B6a val Ph 90 10 
B6b val 4-F Ph 85 10 
B6c val 4-OMe Ph 82 30 
B6d val 4-NO2 Ph 80 45 
B6e met Ph 90 10 
B6f met 4-F Ph 86 10 
B6g met 4-OMe Ph 83 30 
B6h met 4-NO2 Ph 80 45 
B6i tyr Ph 87 10 
B6j tyr 4-F Ph 90 10 
B6k tyr 4-OMe Ph 82 30 
B6l tyr 4-NO2 Ph 85 45 

NR: no reaction;  * amino acid side chain;  

val = ;    met =  ;   tyr =   

 

CH3

CH3 SCH3

OH
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The aromatic protons of the benzyl group H-3a/7a and H-4a/6a each occurred as doublets at δH 

7.08 and δH 6.64 respectively with coupling constants of 8.5 Hz.  The singlet C-2a and C-5a 

resonances occurred at δC 127.2 and δC 155.9 respectively.  The H-3c/5c and H-2c/6c proton 

resonances each occurred as doublet doublets with coupling constants of JH-3c/H-5c,F = JH-3c/H5c,H-

2c/6c = 8.6 Hz, JH-2c/6c,H-3c/5c = 8.6 Hz and JH-2c/6c,F = 5.4 Hz, typical for a para fluorinated aromatic 

moiety (Gopaul et al., 2016).  

 

Selected HMBC correlations used in the structural elucidation of B6j are provided in Figure 6-1.  

 

 

Figure 6-1  Selected HMBC correlations of compound B6j (H→C) 

 

6.3.3 Antimicrobial activity 

The tested compounds were evaluated for their antifungal activity against Candida albicans 

(ATCC 10231) with tioconazole as the reference drug and antibacterial activity against two Gram 

+ve strains, S. aureus (ATCC 25923) and methicillin resistant S. aureus (MRSA)(ATCC BAA-

1683) and three Gram -ve strains (Escherichia coli (ATCC 25922), K. pneumonia (ATCC 31488) 

and Pseudomonas aeruginosa (ATCC 27853)) using ciprofloxacin and ampicillin as standards.  
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The disc diffusion assay was used as an initial screen to select potentially active compounds.  

Compounds showing a zone of inhibition >8 mm were chosen to determine their MBC values.  

Compounds B5a-c, B6a-c, B6f-h, B6j and B6k all satisfied this criterion and their MBC values 

were further explored. 

 

Table 6-2  Antimicrobial activity of the synthesized compounds, MBCs in µM 

Compound Gram +ve 
bacteria 

Gram -ve bacteria Fungi 

 S. aureus MRSA E. coli P. 

aeruginosa 

K. 

pneumoniae 

C. 

albicans 

B5a - - - - 658.6 164.7 
B5b 249.0 498.0 - - - 62.3 
B5c 73.1 - - - - 438.5 
B6a - - 851.2 - - - 
B6b 101.4 38.0 202.9 405.7 811.4 50.7 
B6c 49.2 393.4 - 196.7 786.9 - 
B6f 23.4 93.7 46.8 70.3 11.7 35.1 
B6g 90.9 34.1 181.9 136.4 363.8 545.6 
B6h - - - - 706.2 353.1 
B6j 43.5 87.0 32.6 21.7 87.0 65.2 
B6k 15.9 63.8 21.2 680.1 - 85.0 

Ampicillin 55.9 894.4 447.2 1788.7 447.2 447.2 
Ciprofloxacin 1.8 7.4 1.8 1.8 3.7 1.8 
Tioconazole - - - - - 100.8 

- denotes that the compounds were inactive at the highest concentration tested.  The shaded values indicate activity < 
100 µM.  Highlighted values indicate the best results. 

 
Compounds B6b, B6f- B6g and B6j showed broad-spectrum antimicrobial activity, being active 

against all bacterial strains tested against (Table 6-2).  Of these active compounds, B6b, B6f and 

B6j contained a 4-fluorobenzaldehyde moiety on the thiazolidinone ring and were active 

regardless of the amino acid residue present at C-3 on the core structure.  When a 4-

methoxybenzaldehyde moiety was present at the same position, only B6g containing a methionine 

residue showed broad spectrum activity.  Compounds B6f and B6j with methionine and tyrosine 
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residues were particularly active having MBC values < 100 µM against all the strains tested 

against.  It is worth noting that B6b and B6g were active at concentrations < 40 µM against MRSA.  

The best activity was seen with B6f, being active against K. pneumonia at three times that of 

ciprofloxacin. In general, the activity of the synthesized compounds was better than that of 

ampicillin, but 10 fold or greater than that of ciprofloxacin. 

 

Compounds B6b, B6f and B6j discussed above also showed good antifungal activity, being active 

at < 100 µM against C. albicans better than the control, tioconazole, active at 100.8 µM against C. 

albicans.  The other quinoxaline-thiazolidine hybrid showing activity at < 100 µM against C. 

albicans was B6k with a 4-methoxybenzaldehyde moiety on the thiazolidine ring and a tyrosine 

unit at C-3.  The quinoxaline core structure with a methionine residue at C-3 (B5b) also showed 

good antifungal activity, being active at 62.3 µM. 

 

The antibacterial and antifungal activity of the synthesized hybrid compounds showed better 

activity than compounds with either quinoxaline or thiazolidine in its core structure (Ali et al., 

2015; Anh et al., 2015; Issa et al., 2015; Krishna et al., 2015; Liu et al., 2011).  

 

Antioxidant activity 

The free radical scavenging activity of all synthesized amino acid linked thiazolidine-quinoxaline 

compounds B5a-5c and B6a- B6l was carried out in presence of the stable free radical (1,1-

diphenyl-2-picrylhydrazyl) DPPH using ascorbic acid (AA), as a positive control. Although a 

number of methods are available for the determination of the antioxidant activity, the DPPH 
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method is very common, rapid and has been shown to be one of the most appropriate (Bondet et 

al., 1997).  

 

There was no real trend in the structure of the compounds and their antioxidant activity.  Two of 

the four compounds with a tyrosine residue and para methoxybenzaldehyde (B6k) or para 

nitrobenzaldehyde moiety (B6l) on the thiazolidine ring and a third compound with a methionine 

residue and a para nitrobenzaldehyde moiety (B6h) on the thiazolidine ring showed very good 

results with IC50 values of 19.60, 10.53 and 28.95 µM respectively compared to the standard, 

ascorbic acid at 16.86 µM (Table 6-3). 

 
Table 6-3  Antioxidant activity of the synthesized compounds, IC50 (µM)   

Compound DPPH 
(IC50 (µM)) 

Compound DPPH 
(IC50 (µM) 

B5a 469.68±304.64abc B6f 155.74±3.99ab 

B5b 756.87±9.95bc B6g 1307.26±594.08d 

B5c 131.10±27.23ab B6h 28.95±6.28a 

B6a 220.84±2.60abc B6i 550.05±14.72cd 

B6b 320.09±4.11abc B6j 239.16±9.44abc 

B6c 163.64±23.18ab B6k 19.60±3.23a 

B6d 162.19±23.69ab B6l 10.53±1.20a 

B6e 47.82±4.34ab - - 
Ascorbic acid 16.86±9.26a 

Data are presented as mean ± SD values of triplicate determinations. 
a-d Different letters stand for significantly different values from each other within a column (Tukey’s-HSD multiple 
range post hoc test, p < 0.05); the same letters stand for non-significant difference.  The shaded cells indicate IC50 
values of < 30 µM.  Highlighted values indicate the best results. 
 

6.3.4 Antidiabetic activity (α-glucosidase and α-amylase activity) 

Among the synthesized compounds, B5c, B6d, B6g and B6k showed in vitro enzymatic inhibitory 

activity (Table 4).  Compounds B6d and B6k showed significant α-glucosidase activity with 

IC50 values of 301.15 and 276.27 µM respectively.  Compound B6d contains a para 
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nitrobenzaldehyde group on the thiazolidinone moiety and a valine amino acid side chain at C-3 

and B6k contains a para methoxybenzaldehyde moiety on the thiazolidinone portion with a 

tyrosine side chain at C-3. 

 

The quinoxaline core structure with a tyrosine moiety at C-3 and a primary amine at C-7 (B5c) 

and B6g with a methionine residue at C-3 and a para methoxybenzaldehyde moiety on the 

thiazolidinone ring showed moderate α-glucosidase activity compared to acarbose, the reference 

drug, active in the same assay with a IC50 value of 135.34 µM against α-glucosidase.  

 

Compounds B6d and B6k whose structures are discussed above showed significant in vitro α-

amylase inhibitory activity with IC50 values of 356.32 and 301.59 µM respectively, approximately 

twice that of acarbose (IC50 149.11 µM) (Table 6-4).  

 

Table 6-4  α- Glucosidase and α-amylase inhibition of the synthesized compounds, IC50 (µM) 

Compounds α-Glucosidase α-Amylase 
 IC50 (µM) 

B5c 411.67±0.21b - 

B6d 301.15±0.86bc 356.32±3.32a 

B6g 428.72±1.64d - 

B6k 276.27±2.90c 301.59±2.27a 

Acarbose 135.34±0.09a 149.11±4.28a 

Data are presented as mean ± SD values of triplicate determinations. 
a-d Different letters stand for significantly different values from each other within a column (Tukey’s-HSD multiple 
range post hoc test, p < 0.05);  the same letters stand for non-significant difference. 
 

6.4 Conclusion 

This is the first report of a new synthetic procedure to synthesize a new class of amino acid linked 

thiazolidine-quinoxaline hybrid molecules.  These molecules were synthesized by developing an 
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efficient, cost effective and short reaction via microwave methods.  Compounds B6f and B6j were 

the most potent antimicrobials, B6k and B6l the most potent antioxidants and B6d and B6k were 

significant antidiabetic agents.  Compound B6k showing good results in all three assays could be 

a good starting point for the design of lead compounds for the pharmaceutical industry.  
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Chapter 7. Expedient synthesis, antimicrobial, antioxidant activities and 

docking study of 2-substituted methyl 1-(4-fluorophenyl)-1H-

benzimidazole-5-carboxylates 

 

* The compounds referred to in the chapter are referred to elsewhere in the thesis with an C preceding the number of 

the compound.  For example 5a-v is referred to as C5a-v elsewhere in the thesis. 

 

Abstract 

A library of 2-substituted fluorinated benzimidazoles (C5a-C5v) was synthesized by an easy, 

efficient, rapid and inexpensive route for the synthesis of benzimidazoles using microwave 

conditions.  The synthesized compounds were tested for their antimicrobial and antioxidant 

behaviour.  The benzimidazoles C5p and C5r showed strong antimicrobial (MBCs: 14-555 and 

25-446 µM respectively) and antioxidant activities (IC50: 386.55 and 306.71 µM respectively) 

compared to the standards used for comparison.  Docking studies of C5h and C5r (one inactive 

and one active compound) into the active site of topoisomerase II DNA-gyrase were used to 

explain the crucial interaction with the Mn2+ ion in the active site of the enzyme for anti-bacterial 

activity.   

 

Keywords: Benzimidazole, microwave, thermal, antimicrobial, antioxidant, docking. 
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7.1 Introduction 

The development of new, robust, efficient and environmentally friendly chemical processes for 

the synthesis of bis-heterocyclic compounds is needed in the pharmaceutical and chemical 

industries (Dua et al., 2011; Jain s et al., 2013).  Greener and more sustainable chemical syntheses 

focus on minimal or no use of solvents or the use of water as a solvent, reduction of waste, use of 

ambient conditions, shortening of reaction times, and developing easy methods of product 

separation and purification.  

 

Nitrogen containing compounds are important chemical compounds due to their numerous 

applications.  The benzimidazole moiety has gained importance in recent years having anticancer, 

antiviral, antibacterial, antioxidant, antifungal, anthelmintic, antiparasitic, antimycobacterial, 

antidiabetic, antihypertensive, analgesic, antipsychotic, anticoagulant, cardiovascular, and anti-

inflammatory properties (Vazquez et al., 2001; Tomic et al., 2004; Biron et al., 2006; Kuş et al., 

2009; Narasimhan et al., 2010; Vyas et al., 2010; Kalyankar et al., 2012; Barot et al., 2013; 

Gurvinder et al., 2013; Jain S et al., 2013; Yoon et al., 2014; Keri et al., 2015; Singla et al., 2015). 

 

Benzimidazoles are generally synthesized by coupling reactions between o-phenylenediamines 

with carboxylic acids, carboxylic acid chlorides or aldehydes and in some cases esters and amides 

(Panda et al., 2012; Khanna et al., 2012; Prajapti et al., 2015; Saberi et al., 2015; Saleh et al., 2015; 

Rithe et al., 2015; Kattimani et al., 2015; Keri et al., 2015; Carvalho et al., 2015; Azizian et al., 

2016).  They are also synthesized from o-phenylenediamines and reagents other than acid 

derivatives or aldehydes (Khanna et al., 2012).  When two moles of o-phenylenediamines are 

reacted with dicarboxylic acid derivatives, symmetric bisbenzimidazoles are formed (Khanna et 
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al., 2012).  These symmetric bisbenzimidazoles are also formed with o-phenylenediamines and 

hexachloro-2-propanone (Rezende et al., 2001) or with symmetric diacids or dialdhehydes 

(Khanna et al., 2012).  Symmetric bisbenzimidazoles are also synthesized with [1,1'-biphenyl]-

3,3',4,4'-tetraamines and a number of different reagents (Khanna et al., 2012).  

 

There have been numerous reports of benzimidazoles being synthesized using classical organic 

chemistry in the presence of Lewis acid catalysts containing Sn, Ti,
 
Zr, Bi, In, Co, Ce, B, Zn and 

Hf (Zhang et al., 2007), Ir (Tateyama et al., 2016), La (Kamal et al., 2014), acetic acid (Jain et al., 

2013) and p-toluenesulfonic acid (Xiangming et al., 2007; Funel et al., 2014), basic catalysts such 

as NaOH (Rajasekhar et al., 2010), KOH (Al-Mohammed et al., 2013), or inorganic salts for 

example NaHSO3 (Jain et al., 2013) and Na2S2O5 (Yoon et al., 2015).  Although benzimidazoles 

are synthesized widely with the use of a catalyst, several of these catalysts are quite costly such as 

(TiCl4, Ir, HfCl4, Bi(NO3)5 and ZrCl4) (Zhang et al., 2007).  Although several synthetic procedures 

to the benzimidazoles use non-environmentally friendly solvents such as DMF (Yoon et al., 2015), 

CHCl3 (Gupta Atyam et al., 2010) and toluene (Funel et al., 2014), other reported procedures have 

made use of greener solvents such as methanol and water (Borhade et al., 2012; Chen et al., 2012; 

Rao et al., 2014). 

 

The grinding method (Banerjee et al., 2014), ultrasound (Patil et al., 2014) and visible light 

promoted (Park et al., 2014) were all used to synthesize benzimidazoles without the use of a 

catalyst.  In recent years there has been much interest in microwave syntheses (Das et al., 2012; 

Gawande M et al., 2014; Jacob et al., 2012).  Using microwave synthesis, benzimidazoles were 

synthesized without the use of catalysts and organic solvents (Abdullah et al., 2012; Eren et al., 
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2014;).  Its advantages are therefore that it is a green technique, cheaper, carried out in shorter 

times and uses less energy than conventional synthesis.  Benzimidazoles were also synthesized 

under microwave conditions using NaHSO3 as a catalyst (López et al., 2009). 

 

In our study, we have synthesized fluorinated benzimidazole derivatives from the o-

phenylenediamine (methyl 3-amino-4-(4-fluorophenylamino)benzoate) and various substituted 

aldehydes using three methods, conventional organic synthesis with a sodium metabisulphite 

catalyst and ethanol as solvent, the grinding method with iodine as a catalyst and under microwave 

conditions with no catalyst or solvent, and compared the yields and reaction times of these 

methods.  We synthesized a total of twenty-two 2-substituted fluorinated benzimidazoles (C5a- 

C5v) and tested them for their antimicrobial and antioxidant activity. 

 

7.2 Experimental  

7.2.1 General experimental procedures 

All chemicals were supplied by Sigma-Aldrich via Capital Lab, South Africa.  Organic solvents 

were redistilled and dried according to standard procedures. Silica gel 60 F254 plates (Merck) were 

used for thin layer chromatography.  Crude compounds were purified by column chromatography 

using silica gel (60-120 mesh) and a mobile phase of varying ratios of EtOAc : Hexane.  Melting 

points were recorded using a Stuart Scientific SMP3 apparatus.  UV spectra were obtained on a 

Varian Cary UV-VIS spectrometer in MeOH.  IR spectra were recorded on a Perkin Elmer 100 

FT-IR spectrometer with universal attenuated total reflectance sampling accessory.  
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Microwave assisted reaction: All reactions which involved microwave irradiation were performed 

using a CEM Discover, Explorer-12 Hybrid microwave. 1H, 13C and all 2D NMR spectra were 

recorded on a Bruker Avance instrument operating at 400 MHz. Chemical shifts are reported in δ 

values (ppm) relative to an internal standard of tetramethylsilane (TMS) and referenced to the 

solvent line of CDCl3 (7.24 ppm for 1H; 77.0 ppm for 13C), CD3OD (3.31 ppm for 1H; 49.0 ppm 

for 13C) or DMSO-d6 (2.5 ppm for 1H; 39.5 ppm for 13C). High-resolution mass data were obtained 

using a Bruker micro TOF-Q II ESI instrument operating at ambient temperature.  The purity of 

the compounds were determined by analytical HPLC on a Shimadzu-20A5 fitted with a C8 

(150mm x 5µm x 4.6) column using a mobile phase (A) of 0.1M KHPO4 buffer and (B) methanol, 

with a linear gradient of 0 to 70% over a period of 60 minutes at a flow rate of 1 mL min-1.  

 

The general scheme for the reaction is shown below in Scheme 7-1. 

 

 

Scheme 7-1  Synthesis of fluorinated benzimidazoles C5a-v; a MW 110 ºC, 3-8 min; b grinding, 

I2 (10 mol%), 5-45 min; c Na2S2O5 (20 mol%), EtOH, reflux, 8-18 h  
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General procedure for the preparation of methyl 4-fluoro-3-nitrobenzoate (C2)  

4-Fluoro-3-nitrobenzoic acid (0.5 g, 2.7 mmol) was dissolved in methanol (5 mL) and conc. H2SO4 

(0.5 mL) at room temperature.  The reaction mixture was heated with stirring in a 10 mL 

microwave process vial for 10 min at 80 ºC.  After completion of the reaction (as evident from 

TLC), the solvent was evaporated under reduced pressure, the reaction mixture basified by sodium 

bicarbonate and the aqueous layer extracted into ethyl acetate (3 × 5 mL).  The organic layer was 

dried over anhydrous Na2SO4 and concentrated under reduced pressure to yield C2 as a cream-

colored powder (95%). 1H NMR (CDCl3, 400 MHz) δ 8.73 (1H, dd, J = 7.2, 2.2 Hz, H-2), 8.31 

(1H, m, H-6), 7.38 (1H, dd, J = 10.2, 8.8 Hz, H-5), 3.95 (3H, s, H-8); 13C NMR (CDCl3, 100 MHz) 

δ 164.1 (C-7), 158.1 (d, JCF = 270.0 Hz, C-4), 137.3 (C-3), 136.5 (d, J = 9.7 Hz, C-6), 127.8 (C-

2), 127.2 (d, J = 4.2 Hz, C-1), 118.8 (d, J = 21.2 Hz, C-5), 52.9 (C-8); 19F NMR (CDCl3, 376.5 

MHz) δ -110.55. 

 

General procedure for the preparation of methyl 4-(4-fluorophenylamino)-3-nitrobenzoate 

(C3) 

Methyl-4-fluoro-3-nitrobenzoate C2 (0.5 g, 2.34 mmol) and 4-fluorophenyl aniline (0.36 mL, 2.34 

mmol) were mixed in DMF (2 mL).  The reaction mixture was subject to microwave irradiation 

with stirring in a 10 mL microwave process vial for 5 min at 80 ºC. After completion of the reaction 

(monitored by TLC), the reaction mixture was washed with water (2 × 10 mL) followed by 10% 

Na2CO3 (10 mL).  The organic layer was dried over anhydrous Na2SO4 and concentrated under 

reduced pressure to afford C3 as a crude product.  The solid was purified by column 

chromatography (30% ethyl acetate in hexane) to afford the desired product as a vermilion 

(reddish) solid in good yields (90%).  1H NMR (CDCl3, 400 MHz) δ 9.67 (1H, s, NH-10), 8.90 
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(1H, d, J = 2.0 Hz, H-2), 7.95 (1H, dd, J = 9.0, 2.0 Hz, H-6), 7.29 (2H, dd, J =8.8, 4.7 Hz, H-

2a/6a), 7.18 (2H, t, J = 8.8 Hz, H-3a/5a), 7.03 (1H, d, J = 9.0 Hz, H-5), 3.89 (3H, s, H-8); 13C 

NMR (CDCl3, 100 MHz) δ 165.3 (C-7), 161.2 (d, JCF = 245.8 Hz, C-4a), 146.4 (C-4), 136.0 (C-

2), 133.5 (d, J = 3.3 Hz, C-1a), 132.1 (C-3), 129.24 (C-6), 127.5 (d, J = 8.5 Hz, 2C, C-2a/6a), 

119.2 (C-1), 116.9 (d, J = 22.7 Hz, 2C, C-3a/5a), 115.3 (C-5), 52.2 (C-8); 19F NMR (CDCl3, 376.5 

MHz) δ -114.14. 

 

General procedure for the preparation of methyl 3-amino-4-(4-fluorophenylamino) benzoate 

(C4) 

Methyl 4-(4-fluorophenylamino)-3-nitrobenzoate C3 (0.5 g, 1 mmol), Zn (0.06 g, 0.5 mmol) and 

ammonium formate (0.54 g, 5 mmol) were added to methanol (5 mL).  The reaction mixture was 

stirred at room temperature for 10 min.  Upon completion of the reaction (monitored by TLC), it 

was filtered through Celite 545 to remove the zinc.  The filtrate was evaporated under reduced 

pressure and the solid purified by column chromatography (30% ethyl acetate in hexane) to afford 

the desired product as a brown solid in good yield (92%).  1H NMR (CDCl3, 400 MHz) δ 7.50 

(1H, d, J = 1.7 Hz, H-2), 7.47 (1H, dd, J = 8.2, 1.7 Hz, H-6), 7.03 (1H, d, J = 8.2 Hz, H-5), 6.99 

(d, J = 8.3 Hz, 2H, H-2a/6a), 6.95 (2H, dd, J = 9.0, 8.3 Hz, H-3a/5a), 5.55 (s, 1H, NH-10), 3.85 

(3H, s, H-8), 3.16 (2H, s, NH-9); 13C NMR (CDCl3, 100 MHz) δ 167.0 (C-7), 158.3 (d, JCF = 239.4 

Hz, C-4a), 138.3 (C-1a), 137.1 (C-4), 136.0 (C-3), 123.6 (C-1), 122.6 (C-6), 120.6 (d, J = 7.7 Hz, 

2C, C-2a/6a), 118.4 (C-2), 116.7 (C-5), 116.1 (d, J = 22.5 Hz, 2C, C-3a/5a), 51.8 (C-8); 19F NMR 

(CDCl3, 376.5 MHz) δ -121.46. 
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General procedure for the preparation of fluorinated benzimidazole (C5a- C5v) 

Microwave method 

The mixture of methyl 3-amino-4-(4-fluorophenylamino) benzoate C4 (1 mmol) and various 

aldehydes (1 mmol) were heated in a 5 mL microwave process vial for 5-10 min at 110 ºC to obtain 

compounds (C5a-C5v).  After completion of the reaction (monitored by TLC), the reaction 

mixture was washed with water (2 × 5 mL) followed by brine solution (10 mL).  The aqueous layer 

was extracted into ethyl acetate (3 × 5 mL).  The organic layer was dried over anhydrous Na2SO4, 

concentrated under reduced pressure and the obtained solid purified by column chromatography 

(30-50% ethyl acetate in hexane) to afford the desired product in good yield (85-96%).   

 

Grinding (Mechanochemical) method 

A mixture of methyl 3-amino-4-(4-fluorophenylamino) benzoate C4 (1 mmol), various aldehydes 

(1 mmol), and iodine (10 mol %) were ground together using a mortar and pestle at room 

temperature between 5-45 min (Table 1).  After completion of the reaction (confirmed by TLC), 

the mixture was treated with aqueous Na2S2O3.  The aqueous layer was extracted with ethyl acetate 

(3 × 5 mL), and the organic layer dried over anhydrous Na2SO4 and concentrated under reduced 

pressure.  The solid obtained was purified by column chromatography (hexane/ethyl acetate) to 

afford the desired product (C5a-C5v) in moderate to good yields (10-56%).   

 

Conventional method 

3-Amino-4-(4-fluorophenylamino) benzoate C4 (1 mmol), various aldehydes (1 mmol) and 

Na2S2O5 (20 mol%) was refluxed in ethanol (20 mL) between 8-18h.  After completion of the 

reaction (as evident from TLC), the solvent was evaporated under reduced pressure and the crude 
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mass washed with water (2 × 10 mL).  The aqueous layer was extracted with ethyl acetate (3 × 25 

mL), and the organic layer dried over anhydrous Na2SO4 and concentrated under reduced pressure 

to afford C5a-C5v as crude products.  The solid obtained was purified by column chromatography 

(hexane/ethyl acetate) to afford the desired product in good yields (60-90%). 

 

(C5a) methyl 1-(4-fluorophenyl)-2-phenyl-1H-benzo[d]imidazole-5-carboxylate, white solid 

(90% yield); Purity 99%; mp 160-162 oC; UV λmax (MeOH) nm (log ε) 247 (2.63), 302 (2.19); IR 

υmax 3069 (CH), 1713 (C=O), 1357 (C-F), 1185 (C-O) cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.58 

(1H, bs, H-4), 7.98 (1H, d, J = 8.6 Hz, H-6), 7.54 (2H, d, J = 7.4 Hz, H-2b/6b), 7.38 (1H, m, H-

4b), 7.32 (2H, m, H-2a/6a), 7.29 (2H, m, H-3b/5b), 7.23 (1H, m, H-7), 7.20 (2H, m, H-3a/5a), 3.94 

(3H, s, H-11); 13C NMR (CDCl3, 100 MHz) δ 167.4 (C-10), 162.4 (d, JCF = 248.6 Hz, C-4a), 154.0 

(C-2), 142.2 (C-8), 140.2 (C-9), 132.2 (d, J = 3.3 Hz, C-1a), 130.0 (C-4b), 129.2 (C-6b), 129.1 (d, 

J = 8.7 Hz, 2C, C-2a/6a), 129.07 (C-2b), 129.0 (C-1b), 128.5 (2C, C-3b/5b), 125.4 (C-5), 125.1 

(C-6), 122.2 (C-4), 117.1 (d, J = 22.7 Hz, 2C, C-3a/5a), 109.3 (C-7), 52.1 (C-11); 19F NMR 

(CDCl3, 376.5 MHz) δ -108.08; HRMS (m/z): 347.1198 M+ (calculated for C21H16FN2O2: 

347.1196). 

 

(C5b) methyl 1,2-bis(4-fluorophenyl)-1H-benzo[d]imidazole-5-carboxylate, yellow solid 

(90% yield); Purity 98%; mp 130-132 oC; UV λmax (MeOH) nm (log ε)  247 (2.7), 301 (2.4); IR 

υmax 3071 (CH), 1711 (C=O), 1379 (C-F), 1157 (C-O) cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.56 

(1H, bs, H-4), 7.99 (1H, dd, J = 8.6, 1.4 Hz, H-6), 7.54 (2H, dd, J = 8.8, 5.2 Hz, H-2b/6b), 7.29 

(2H, dd, J = 8.9, 4.8 Hz, H-2a/6a), 7.23 (2H, m, H-3a/5a), 7.19 (1H, d, J = 8.6 Hz, H-7), 7.02 (2H, 

t, J = 8.8 Hz, H-3b/5b), 3.95 (3H, s, H-11); 13C NMR (CDCl3, 100 MHz) δ 167.3 (C-10), 163.7 (d, 
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JCF = 250.4 Hz, C-4b), 162.5 (d, JCF = 249.2 Hz, C-4a), 153.0 (C-2), 142.1 (C-8), 140.2 (C-9), 

132.2 (d, J = 3.2 Hz, C-1a), 131.5 (d, J = 8.6 Hz, 2C, C-2b/6b), 129.2 (d, J = 8.7 Hz, 2C, C-2a/6a), 

125.6 (C-5), 125.2 (C-6), 122.1 (C-4), 117.3 (d, J = 23.0 Hz, 2C, C-3a/5a), 115.8 (d, J = 21.8 Hz, 

C-3b/5b), 110.0 (C-7), 52.2 (C-11); 19F NMR (CDCl3, 376.5 MHz) δ -110.71, -109.46; HRMS 

(m/z): 365.1111 M+ (calculated for C21H15F2N2O2: 365.1102). * C-1b could not be detected. 

 

(C5c) methyl 2-(4-chlorophenyl)-1-(4-fluorophenyl)-1H-benzo[d]imidazole-5-carboxylate, 

yellow solid (86% yield); Purity 96%; mp 185-187 oC; UV λmax (MeOH) nm (log ε) 251 (3.23), 

304 (2.85); IR υmax 3059 (CH), 1708 (C=O), 1357 (C-F), 1181 (C-O), 729 (C-Cl ) cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 8.58 (1H, bs, H-4), 8.01 (1H, d, J = 8.5 Hz, H-6), 7.51 (2H, d, J = 8.4 Hz, H-

2b/6b), 7.31 (4H, d, J = 8.5 Hz, H-2a/6a, H-3b/5b), 7.25 (2H, d, J = 6.44 Hz, H-3a/5a), 7.20 (1H, 

d, J = 8.8 Hz, H-7), 3.95 (3H, s, H-11); 13C NMR (CDCl3, 100 MHz) δ 167.3 (C-10), 162.5 (d, JCF 

= 249.2 Hz, C-4a), 152.8 (C-2), 142.0 (C-8), 140.1 (C-9), 136.5 (C-4b), 132.1 (d, J = 3.0 Hz, C-

1a), 130.7 (2C, C-2b/6b), 129.1 (d, J = 8.7 Hz, 2C, C-2a/6a), 128.9 (C-3b), 127.4 (C-1b), 125.7 

(C-5), 125.3 (C-6), 122.2 (C-4), 117.3 (d, J = 22.8 Hz, 2C, C-3a/5a), 110.1 (C-7), 52.2 (C-11); 19F 

NMR (CDCl3, 376.5 MHz) δ -110.35; HRMS (m/z): 381.0818 M+ (calculated for C21H15ClFN2O2: 

381.0806). 

 

(C5d) methyl 2-(4-bromophenyl)-1-(4-fluorophenyl)-1H-benzo[d]imidazole-5-carboxylate, 

cream coloured solid (82% yield); Purity 97%; mp 203-205 oC; UV λmax (MeOH) nm (log ε) 253 

(3.28), 305 (2.92); IR υmax 3072 (CH), 1707 (C=O), 1357 (C-F), 1153 (C-O), 523 (C-Br) cm-1; 1H 

NMR (CDCl3, 400 MHz) δ 8.57 (1H, s, H-4), 8.00 (1H, dd, J = 8.6, 1.4 Hz, H-6), 7.47 (2H, d, J = 

8.6 Hz, H-3b/5b), 7.42 (2H, d, J = 8.6 Hz, H-2b/6b), 7.29 (2H, dd, J = 9.0, 4.8 Hz, H-2a/6a), 7.23 
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(2H, t, J = 10.8 Hz, H-3a/5a), 7.19 (1H, d, J = 8.6 Hz, H-7), 3.95 (3H, s, H-11); 13C NMR (CDCl3, 

100 MHz) δ 167.3 (C-10), 162.6 (d, JCF = 249.2 Hz, C-4a), 152.8 (C-2), 142.1 (C-8), 140.2 (C-9), 

132.2 (d, J = 3.3 Hz, C-1a), 131.9 (2C, C-3b/5b), 130.9 (2C, C-2b/6b), 129.1 (d, J = 8.7 Hz, 2C, 

C-2a/6a), 127.9 (C-5), 125.7 (C-1b), 125.4 (C-6), 124.9 (C-4b), 122.2 (C-4), 117.4 (d, J = 22.8 

Hz, 2C, C-3a/5a), 110.1 (C-7), 52.2 (C-11); 19F NMR (CDCl3, 376.5 MHz) δ -110.53; HRMS 

(m/z): 425.0310 M+ (calculated for C21H15BrFN2O2: 425.0301). 

 

(C5e) methyl 1-(4-fluorophenyl)-2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole-5-

carboxylate, white solid (84% yield); Purity 98%; mp 171-173 oC; UV λmax (MeOH) nm (log ε) 

250 (2.83), 304 (2.5); IR υmax 3081 (CH), 1712 (C=O), 1358 (C-F), 1196 (C-O) cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 8.59 (1H, bs, H-4), 8.01 (1H, dd, J = 8.6, 1.4 Hz, H-6), 7.68 (2H, d, J = 8.3 

Hz, H-3b/5b), 7.58 (2H, d, J = 8.3 Hz, H-2b/6b), 7.30 (2H, dd, J = 8.9, 4.8 Hz, H-2a/6a), 7.24 (2H, 

t, J = 10.5 Hz, H-3a/5a), 7.21 (1H, d, J = 8.6 Hz, H-7), 3.95 (3H, s, H-11); 13C NMR (CDCl3, 100 

MHz) δ 167.2 (C-10), 162.6 (d, JCF = 249.4 Hz, C-4a), 152.3 (C-2), 142.3 (C-8), 140.3 (C-9), 

132.6 (C-1b), 132.1 (d, J = 3.16 Hz, C-1a), 131.8 (q, JCF = 260.0 Hz, C-7b), 129.7 (2C, C-3b/5b), 

129.1 (d, J = 8.7 Hz, 2C, C-2a/6a), 125.8 (C-5), 125.6 (C-6), 125.5 (q, J = 3.9 Hz, 2C, C-2b/6b), 

122.5 (C-4), 117.5 (d, J = 22.8 Hz, 2C, C-3a/5a), 110.2 (C-7), 52.2 (C-11); 19F NMR (CDCl3, 

376.5 MHz) δ - 62.98; HRMS (m/z): 415.1078 M+ (calculated for C22H15F4N2O2: 415.1070). 

 

(C5f) methyl 1-(4-fluorophenyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate, 

yellow solid (70% yield); Purity 98%; mp 214-216 oC; UV λmax (MeOH) nm (log ε) 229 (2.84), 

320 (2.47); IR υmax 3078 (CH), 1714 (C=O), 1510 (N-O), 1380 (C-F), 1204 (C-O) cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 8.60 (1H, bs, H-4), 8.18 (2H, d, J = 8.1 Hz, H-3b/5b), 8.04 (1H, d, J = 8.4 



185 

Hz, H-6), 7.76 (2H, d, J = 8.1 Hz, H-2b/6b), 7.32 (2H, m, H-2a/6a), 7.27 (2H, m, H-3a/5a), 7.23 

(1H, d, J = 8.4 Hz, H-7), 3.96 (3H, s, H-11); 13C NMR (CDCl3, 100 MHz) δ 167.1 (C-10), 162.9 

(d, JCF = 250.2 Hz, C-4a), 151.2 (C-4b), 148.4 (C-2), 142.0 (C-8), 140.3 (C-9), 134.9 (C-1b), 131.8 

(d, J = 3.1 Hz, C-1a), 130.3 (2C, C-2b/6b), 129.2 (d, J = 8.7 Hz, 2C, C-2a/6a), 126.2 (C-5), 126.1 

(C-6), 123.7 (2C, C-3b/5b), 122.6 (C-4), 117.7 (d, J = 22.8 Hz, 2C, C-3a/5a), 110.4 (C-7), 52.3 

(C-11); 19F NMR (CDCl3, 376.5 MHz) δ -109.63; HRMS (m/z): 392.1055 M+ (calculated for 

C21H15FN3O4: 392.1047). 

 

(C5g) methyl 1-(4-fluorophenyl)-2-p-tolyl-1H-benzo[d]imidazole-5-carboxylate,  white solid 

(80% yield); Purity 96%; mp 156-158 oC; UV λmax (MeOH) nm (log ε) 214 (3.21), 250 (3.36), 304 

(2.93); IR υmax 3074 (CH), 1711 (C=O), 1381 (C-F), 1185 (C-O) cm-1; 1H NMR (CDCl3, 400 MHz) 

δ 8.57 (1H, bs, H-4), 7.98 (1H, dd, J = 8.5, 1.3 Hz, H-6), 7.43 (2H, d, J = 8.1 Hz, H-2b/6b), 7.29 

(2H, dd, J = 8.7, 4.8 Hz, H-2a/6a), 7.21 (2H, t, J = 8.7 Hz, H-3a/5a), 7.18 (1H, d, J = 8.5 Hz, H-

7), 7.13 (2H, d, J = 8.1 Hz, H-3b/5b), 3.94 (3H, s, H-11), 2.34 (3H, s, H-7b); 13C NMR (CDCl3, 

100 MHz) δ 167.3 (C-10), 162.5 (d, JCF = 248.7 Hz, C-4a), 154.0 (C-2), 140.6 (C-8), 140.1 (2C, 

C-4/4b), 132.4 (d, J = 3.6 Hz, C-1a), 129.4 (2C, C-3b/5b), 129.3 (2C, C-2b/6b), 129.2 (d, J = 8.7 

Hz, 2C, C-2a/6a), 125.7 (C-1b), 125.5 (C-5), 125.1 (C-6), 121.8 (C-4), 117.2 (d, J = 22.8 Hz, 2C, 

C-3a/5a), 110.0 (C-7), 52.2 (C-11), 21.4 (C-7b); 19F NMR (CDCl3, 376.5 MHz) δ -111.18; HRMS 

(m/z): 361.1354 M+ (calculated for C22H18FN2O2: 361.1352). 

 

(C5h) methyl 1-(4-fluorophenyl)-2-(4-methoxyphenyl)-1H-benzo[d]imidazole-5-carboxylate, 

white solid (78% yield); Purity 98%; mp 138-140 oC; UV λmax (MeOH) nm (log ε) 225 (2.9), 258 

(3.0), 307 (2.75); IR υmax 3080 (CH), 1710 (C=O), 1385 (C-F), 1180 (C-O) cm-1; 1H NMR (CDCl3, 
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400 MHz) δ 8.54 (1H, d, J = 1.5 Hz, H-4), 7.96 (1H, dd, J = 8.5, 1.5 Hz, H-6), 7.48 (2H, d, J = 8.9 

Hz, H-2b/6b), 7.29 (2H, dd, J = 8.7, 4.8 Hz, H-2a/6a), 7.21 (2H, t, J = 8.7 Hz, H-3a/5a), 7.16 (1H, 

d, J = 8.5 Hz, H-7), 6.83 (2H, d, J = 8.9 Hz, H-3b/5b), 3.94 (3H, s, H-11), 3.79 (3H, s, H-7b); 13C 

NMR (CDCl3, 100 MHz) δ 167.6 (C-10), 162.5 (d, JCF = 248.6 Hz, C-4a), 161.0 (C-4b), 154.0 (C-

2), 142.3 (C-8), 140.3 (C-9), 132.6 (d, J = 3.3 Hz, C-1a), 131.0 (2C, C-2b/6b), 129.2 (d, J = 8.7 

Hz, 2C, C-2a/6a), 125.3 (C-5), 124.8 (C-6), 121.8 (C-4), 121.3 (C-1b), 117.2 (d, J = 22.7 Hz, 2C, 

C-3a/5a), 114.1 (2C, C-3b/5b), 109.9 (C-7), 55.3 (C-7b), 52.1 (C-11); 19F NMR (CDCl3, 376.5 

MHz) δ -111.23; HRMS (m/z): 377.1310 M+ (calculated for C22H18FN2O3: 377.1301). 

 

(C5i) methyl 2-(4-aminophenyl)-1-(4-fluorophenyl)-1H-benzo[d]imidazole-5-carboxylate, 

orange solid (75% yield); Purity 97%; mp 225-227 oC; UV λmax (MeOH) nm (log ε) 233 (3.51), 

327 (3.41); IR υmax 3473 (NH), 3077 (CH), 1710 (C=O), 1382 (C-F), 1197 (C-O) cm-1; 1H NMR 

(DMSO-d6, 400 MHz) δ 8.26 (1H, d, J = 1.3 Hz, H-4), 7.83 (1H, dd, J = 8.5, 1.3 Hz, H-6), 7.52 

(2H, dd, J = 8.7, 5.0 Hz, H-2a/6a), 7.44 (2H, t, J = 8.7 Hz, H-3a/5a), 7.21 (2H, d, J = 8.6 Hz, H-

2b/6b), 7.17 (1H, d, J = 8.5 Hz, H-7), 6.49 (2H, d, J = 8.6 Hz, H-3b/5b), 5.61 (2H, s, H-7b), 3.88 

(3H, s, H-11); 13C NMR (DMSO-d6, 100 MHz) δ 166.7 (C-10), 161.8 (d, JCF = 244.9 Hz, C-4a), 

155.1 (C-2), 150.6 (C-4b), 142.4 (C-8), 140.5 (C-9), 132.9 (d, J = 3.0 Hz, C-1a), 130.4 (2C, C-

2b/6b), 129.9 (d, J = 8.9 Hz, 2C, C-2a/6a), 123.9 (C-5), 123.6 (C-6), 120.0 (C-4), 117.0 (d, J = 

22.9 Hz, 2C, C-3a/5a), 115.4 (C-1b), 113.1 (2C, C-3b/5b), 110.0 (C-7), 52.0 (C-11); 19F NMR 

(DMSO-d6, 376.5 MHz) δ -112.32; HRMS (m/z): 362.1307 M+ (calculated for C21H17FN3O2: 

362.1305). 

 



187 

(C5j) methyl 1-(4-fluorophenyl)-2-(4-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate, 

white solid (80% yield); Purity 96%; mp 252-254 oC; UV λmax (MeOH) nm (log ε) 226 (2.88), 259 

(2.92), 308 (2.74); IR υmax 3058 (CH), 1710 (C=O), 1384 (C-F), 1196 (C-O) cm-1; 1H NMR 

(MeOH- d4, 400 MHz) δ 8.41 (1H, d, J = 1.4 Hz, H-4), 7.97 (1H, dd, J = 8.6, 1.4 Hz, H-6), 7.42 

(2H, dd, J = 8.7, 4.9 Hz, H-2a/6a), 7.38 (2H, d, J = 8.7 Hz, H-2b/6b), 7.33 (2H, t, J = 8.7 Hz, H-

3a/5a), 7.27 (1H, d, J = 8.6 Hz, H-7), 6.76 (2H, d, J = 8.7 Hz, H-3b/5b), 3.94 (3H, s, H-11); 13C 

NMR (MeOH- d4, 100 MHz) δ 168.8 (C-10), 164.1 (d, JCF = 246.7 Hz, C-4a), 161.1 (C-4b), 156.6 

(C-2), 143.0 (C-8), 141.5 (C-9), 133.8 (d, J = 3.4 Hz, C-1a), 132.4 (2C, C-2b/6b), 130.9 (d, J = 9.0 

Hz, 2C, C-2a/6a), 126.5 (C-5), 125.9 (C-6), 121.7 (C-4), 120.8 (C-1b), 118.1 (d, J = 23.2 Hz, 2C, 

C-3a/5a), 116.5 (2C, C-3b/5b), 111.5 (C-7), 52.7 (C-11); 19F NMR (MeOH- d4, 376.5 MHz) δ -

113.54; HRMS (m/z): 385.0970 M+ Na+ (calculated for C21H15FN2O3 Na: 385.0964). 

 

(C5k) methyl 2-(4-(dimethylamino)phenyl)-1-(4-fluorophenyl)-1H-benzo[d]imidazole-5-

carboxylate, brown solid (90% yield); Purity 87%; mp 184-186 oC; UV λmax (MeOH) nm (log ε) 

205 (3.18), 235 (3.30), 337 (3.23); IR υmax 3049 (CH), 1707 (C=O), 1363 (C-F), 1196 (C-O) cm-1; 

1H NMR (CDCl3, 400 MHz) δ 8.54 (1H, bs, H-4), 7.94 (1H, dd, J = 8.5, 1.4 Hz, H-6), 7.45 (2H, 

d, J = 8.9 Hz, H-2b/6b), 7.34 (2H, dd, J = 8.8, 4.8 Hz, H-2a/6a), 7.24 (2H, t, J = 8.8 Hz, H-3a/5a), 

7.13 (1H, d, J = 8.5 Hz, H-7), 6.59 (2H, d, J = 8.9 Hz, H-3b/5b), 3.95 (3H, s, H-11), 2.98 (6H, s, 

H-7b/8b); 13C NMR (CDCl3, 100 MHz) δ 167.5 (C-10), 162.3 (d, JCF = 248.0 Hz, C-4a), 154.8 (C-

4b), 151.1 (C-2), 142.4 (C-8), 140.4 (C-9), 133.1 (d, J = 3.2 Hz, C-1a), 130.5 (2C, C-2b/6b), 129.3 

(d, J = 8.7 Hz, 2C, C-2a/6a), 124.9 (C-1b), 124.3 (C-6), 121.3 (C-4), 117.0 (d, J = 22.8 Hz, 2C, C-

3a/5a), 115.7 (C-5), 111.4 (C-3b/5b), 109.4 (C-7), 52.0 (C-11), 40.0 (2C, C-7b/8b); 19F NMR 
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(CDCl3, 376.5 MHz) δ -111.47; HRMS (m/z): 390.1620 M+ (calculated for C23H21FN3O2: 

390.1618). 

 

(C5l) methyl 1-(4-fluorophenyl)-2-(4-(methylthio)phenyl)-1H-benzo[d]imidazole-5-

carboxylate, yellow solid (90% yield); Purity 90%; mp 182-184 oC; UV λmax (MeOH) nm (log ε) 

207 (3.16), 238 (3.21), 277 (2.96), 316 (3.14); IR υmax 3059 (CH), 1697 (C=O), 1377 (C-F), 1155 

(C-O) cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.55 (1H, d, J = 1.4 Hz, H-4), 7.97 (1H, dd, J = 8.5, 

1.4 Hz, H-6), 7.46 (2H, d, J = 8.5 Hz, H-2b/6b), 7.30 (2H, dd, J = 7.2, 4.8 Hz, H-2a/6a), 7.22 (2H, 

t, J = 7.2 Hz, H-3a/5a), 7.19 (1H, d, J = 7.3 Hz, H-7), 7.14 (2H, d, J = 8.5 Hz, H-3b/5b), 3.94 (3H, 

s, H-11), 2.46 (3H, s, H-7b); 13C NMR (CDCl3, 100 MHz) δ 167.3 (C-10), 162.5 (d, JCF = 249.1 

Hz, C-4a), 153.5 (C-2), 142.2 (2C, C-9/4b), 140.1 (C-9), 132.3 (d, J = 3.2 Hz, C-1a), 129.6 (2C, 

C-2b/6b), 129.2 (d, J = 8.7 Hz, 2C, C-2a/6a), 125.6 (C-1b), 125.5 (2C, C-3b/5b), 125.2 (C-6), 

124.8 (C-5), 121.8 (C-4), 117.3 (d, J = 22.8 Hz, 2C, C-3a/5a), 109.9 (C-7), 52.2 (C-11), 14.9 (C-

7b); 19F NMR (CDCl3, 376.5 MHz) δ -110.83; HRMS (m/z): 415.0885 M+ + Na+ (calculated for 

C22H17FN2O2SNa: 415.0892). 

 

(C5m) methyl 1-(4-fluorophenyl)-2-(naphthalen-2-yl)-1H-benzo[d]imidazole-5-carboxylate, 

marigold solid (85% yield); Purity 99%; mp 169-171 oC; UV λmax (MeOH) nm (log ε) 210 (3.33), 

252 (3.62), 311 (3.10); IR υmax 3064 (CH), 1701 (C=O), 1362 (C-F), 1156 (C-O) cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 8.61 (1H, bs, H-4), 8.09 (1H, s, H-2b), 8.01 (1H, dd, J = 8.6, 1.2 Hz, H-6), 

7.80 (1H, d, J = 8.2 Hz, H-9b), 7.75 (2H, t, J = 8.8 Hz, H-4b/7b), 7.58 (1H, dd, J = 8.2, 1.6 Hz, H-

10b), 7.51 (1H, t, J = 7.0 Hz, H-5b*), 7.47 (1H, t, J = 7.0 Hz, H-6b*), 7.33 (2H, dd, J = 8.2, 4.7 

Hz, H-2a/6a), 7.22 (1H, d, J = 8.6 Hz, H-7), 7.20 (2H, t, J = 8.2 Hz, H-3a/5a), 3.96 (3H, s, H-11); 



189 

13C NMR (CDCl3, 100 MHz) δ 167.4 (C-10), 162.5 (d, JCF = 248.8 Hz, C-4a), 154.0 (C-2), 142.4 

(C-8), 140.3 (C-9), 133.7 (C-3b), 132.8 (C-1b), 132.6 (d, J = 3.2 Hz, C-1a), 130.0 (C-2b), 129.2 

(d, J = 8.7 Hz, 2C, C-2a/6a), 128.7 (C-7b), 128.2 (C-4b), 127.5 (C-9b#), 127.7 (C-6b#), 126.7 (C-

5b), 126.4 (C-5), 125.8 (C-10b), 125.5 (C-8b), 125.2 (C-6), 122.2 (C-4), 117.2 (d, J = 22.8 Hz, 

2C, C-3a/5a), 110.0 (C-7), 52.2 (C-11); 19F NMR (CDCl3, 376.5 MHz) δ -110.01; HRMS (m/z): 

397.1349 M+ (calculated for C25H18FN2O2: 397.1352).  * and # assignments may be interchanged. 

 

(C5n) (E)-methyl 1-(4-fluorophenyl)-2-styryl-1H-benzo[d]imidazole-5-carboxylate, white 

solid (87% yield); Purity 97%; mp 210-212 oC; UV λmax (MeOH) nm (log ε) 227 (3.21), 268 (3.04), 

332 (3.06); IR υmax 3078 (CH), 1704 (C=O), 1635 (C=C), 1392 (C-F), 1154 (C-O) cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 8.52 (1H, bs, H-4), 8.05 (1H, d, J = 16.0 Hz, H-1b), 7.95 (1H, dd, J = 8.5, 

1.0 Hz, H-6), 7.46 (2H, m, H-4b/8b), 7.43 (2H, m, H-2a/6a), 7.31-7.35 (5H, m, H-5b, H-6b, H-7b, 

H-3a/5a), 7.13 (1H, d, J = 8.5 Hz, H-7), 6.74 (1H, d, J = 16.0 Hz, H-2b), 3.94 (3H, s, H-11); 13C 

NMR (CDCl3, 100 MHz) δ 167.4 (C-10), 162.8 (d, JCF = 249.1 Hz, C-4a), 152.5 (C-2), 142.3 (C-

8), 139.6 (C-9), 138.9 (C-1b), 135.5 (C-3b), 130.9 (d, J = 3.1 Hz, C-1a), 129.5 (2C, C-5b/7b), 

129.4 (2C, d, J = 8.8 Hz, C-2a/6a), 128.8 (C-6b), 127.4 (2C, C-4b/8b), 125.6 (C-5), 124.9 (C-6), 

121.5 (C-4), 117.3 (d, J = 23.9 Hz, 2C, C-3a/5a), 112.8 (C-2b), 109.6 (C-7), 52.2 (C-11); 19F NMR 

(CDCl3, 376.5 MHz) δ -110.43; HRMS (m/z): 373.1355 M+ (calculated for C23H18FN2O2: 

373.1352). 

 

(C5o) methyl 2-(6-chloroquinolin-2-yl)-1-(4-fluorophenyl)-1H-benzo[d]imidazole-5-

carboxylate, marigold solid (85% yield); Purity 98%; mp 228-230 oC; UV λmax (MeOH) nm (log 

ε) 257 (3.43), 321 (2.94), 336 (2.98); IR υmax 3068 (CH), 1702 (C=O), 1386 (C-F), 1190 (C-O), 
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750 (C-Cl) cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.64 (1H, bs, H-4), 8.47 (1H, d, J = 8.6 Hz, H-

9b), 8.21 (1H, d, J = 8.6 Hz, H-10b), 8.03 (1H, dd, J = 8.6, 1.3 Hz, H-6), 7.72 (1H, d, J = 9.2 Hz, 

H-4b), 7.46 (2H, m, H-5b/7b), 7.38 (2H, dd, J = 9.2, 4.8 Hz, H-2a/6a), 7.24 (2H, t, J = 9.2 Hz, H-

3a/5a), 7.19 (1H, d, J = 8.6 Hz, H-7), 3.96 (3H, s, H-11); 13C NMR (CDCl3, 100 MHz) δ 167.3 (C-

10), 162.5 (d, JCF = 247.3 Hz, C-4a), 151.2 (C-2), 149.2 (C-1b), 147.3 (C-8b), 141.9 (C-8), 141.2 

(C-9), 136.5 (C-10b), 135.8 (C-6b), 133.7 (d, J = 3.1 Hz, C-1a), 129.6 (d, J = 8.7 Hz, 2C, C-2a/6a), 

128.8 (C-7b*), 128.6 (C-5b*), 128.5 (C-4b), 126.2 (C-3b), 126.0 (C-6), 125.8 (C-5), 122.7 (C-4), 

121.6 (C-9b), 116.3 (d, J = 22.8 Hz, 2C, C-3a/5a), 110.7 (C-5), 52.2 (C-11); 19F NMR (CDCl3, 

376.5 MHz) δ -112.10; HRMS (m/z): 432.0931 M+ (calculated for C24H16ClFN3O2: 432.0915). 

*assignments may be interchanged. 

 

(C5p) methyl 1-(4-fluorophenyl)-2-(2-hydroxy-4,6-dimethoxyphenyl)-1H-

benzo[d]imidazole-5-carboxylate,  white solid (65% yield); Purity 99%; mp 68-70 oC; UV λmax 

(MeOH) nm (log ε) 229 (2.86), 267 (2.33), 297 (3.93); IR υmax 3398 (O-H), 3074 (CH), 1712 

(C=O), 1359 (C-F), 1153 (C-O) cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.51 (1H, bs, H-4), 8.00 (1H, 

dd, J = 8.5, 1.0 Hz, H-6), 7.31 (1H, d, J = 8.5 Hz, H-7), 7.26 (2H, dd, J = 8.6, 4.9 Hz, H-2a/6a), 

7.16 (2H, t, J = 8.6 Hz, H-3a/5a), 6.32 (1H, d, J = 1.9 Hz, H-3b), 5.77 (1H, d, J = 1.9 Hz, H-5b), 

3.94 (3H, s, H-11), 3.77 (3H, s, H-8b), 3.15 (3H, s, H-9b); 13C NMR (CDCl3, 100 MHz) δ 167.2 

(C-10), 163.1 (C-4b), 162.2 (d, JCF = 247.1 Hz, C-4a), 160.1 (C-2b), 157.6 (C-6b), 151.8 (C-2), 

140.4 (C-8), 138.5 (C-9), 133.8 (d, J = 2.8 Hz, C-1a), 126.9 (d, J = 8.5 Hz, 2C, C-2a/6a), 125.5 

(C-5), 125.0 (C-6), 120.7 (C-4), 116.3 (d, J = 22.8 Hz, 2C, C-3a/5a), 110.0 (C-7), 96.2 (C-1b), 

94.0 (C-3b), 90.8 (C-5b), 55.4 (C-8b), 54.3 (C-9b), 52.2 (C-11); 19F NMR (CDCl3, 376.5 MHz) δ 

-112.41; HRMS (m/z): 445.1168 M+ Na+ (calculated for C23H19FN2O5 Na: 445.1176). 
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(C5q) methyl 2-(3,4-dihydroxyphenyl)-1-(4-fluorophenyl)-1H-benzo[d]imidazole-5-

carboxylate, cream solid (65% yield); Purity 97%; mp 230-232 oC; UV λmax (MeOH) nm (log ε) 

226 (3.17), 264 (2.91), 313 (2.85); IR υmax 3501 (O-H), 3062 (CH), 1712 (C=O), 1377 (C-F), 1177 

(C-O) cm-1; 1H NMR (MeOH- d4, 400 MHz) δ 8.40 (1H, d, J = 1.5 Hz, H-4), 7.97 (1H, dd, J = 8.5, 

1.5 Hz, H-6), 7.42 (2H, dd, J = 8.7, 4.9 Hz, H-2a/6a), 7.33 (2H, t, J = 8.7 Hz, H-3a/5a), 7.26 (1H, 

d, J = 8.5 Hz, H-7), 7.01 (1H, d, J = 2.1 Hz, H-2b), 6.86 (1H, dd, J = 8.2, 2.2 Hz, H-6b), 6.7 (1H, 

d, J = 8.2 Hz, H-5b), 3.95 (3H, s, H-11); 13C NMR (MeOH- d4, 100 MHz) δ 168.8 (C-10), 164.1 

(d, JCF = 246.8 Hz, C-4a), 156.9 (C-2), 149.2 (C-3b), 146.6 (C-4b), 143.0 (C-8), 141.5 (C-9), 133.8 

(d, J = 2.8 Hz, C-1a), 130.9 (d, J = 8.9 Hz, 2C, C-2a/6a), 126.5 (C-5), 125.9 (C-6), 123.1 (C-6b), 

121.6 (C-4), 121.2 (C-1b), 118.1 (2C, d, J = 23.2 Hz, C-3a/5a), 117.7 (C-2b), 116.3 (C-5b), 111.5 

(C-7), 52.7 (C-11); 19F NMR (MeOH- d4, 376.5 MHz) δ -113.67; HRMS (m/z): 379.1094 M+ 

(calculated for C21H16FN2O4: 379.1110). 

 

(C5r) methyl 1-(4-fluorophenyl)-2-(2,3,4-trihydroxyphenyl)-1H-benzo[d]imidazole-5-

carboxylate, green solid (85% yield); Purity 99%; mp 214-216 oC; UV λmax (MeOH) nm (log ε) 

230 (3.27), 322 (3.0); IR υmax 3483 (O-H), 3069 (CH), 1709 (C=O), 1345 (C-F), 1152 (C-O) cm-1; 

1H NMR (MeOH- d4, 400 MHz) δ 8.34 (1H, d, J = 1.4 Hz, H-4), 7.92 (1H, dd, J = 8.5, 1.4 Hz, H-

6), 7.46 (2H, dd, J = 8.7, 4.9 Hz, H-2a/6a), 7.36 (2H, t, J = 8.7 Hz, H-3a/5a), 7.12 (1H, d, J = 8.5 

Hz, H-7), 6.35 (1H, d, J = 8.9 Hz, H-6b), 6.15 (1H, d, J = 8.9 Hz, H-5b), 3.93 (3H, s, H-11); 13C 

NMR (MeOH- d4, 100 MHz) δ 168.9 (C-10), 164.4 (d, JCF = 247.2 Hz, C-4a), 155.2 (C-2), 149.5 

(C-4b), 149.4 (C-2b), 141.5 (C-8), 141.0 (C-9), 134.6 (C-3b), 134.2 (d, J = 3.3 Hz, C-1a), 131.1 

(d, J = 8.9 Hz, 2C, C-2a/6a), 126.5 (C-5), 125.8 (C-6), 121.0 (C-4), 120.4 (C-6b), 118.3 (d, J = 

23.3 Hz, 2C, C-3a/5a), 111.0 (C-7), 107.8 (C-5b), 106.5 (C-1b), 52.7 (C-11); 19F NMR (MeOH- 
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d4, 376.5 MHz) δ -113.12; HRMS (m/z): 417.0874 M+ + Na+ (calculated for C21H15FN2O5Na: 

417.0863). 

 

(C5s) methyl 1-(4-fluorophenyl)-2-(thiophen-2-yl)-1H-benzo[d]imidazole-5-carboxylate, 

white solid (74% yield); Purity 90%; mp 156-158 oC; UV λmax (MeOH) nm (log ε) 219 (3.26), 254 

(3.28), 322 (3.18); IR υmax 3073 (CH), 1711 (C=O), 1386 (C-F), 1192 (C-O) cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 8.53 (1H, bs, H-4), 7.95 (1H, dd, J = 8.5, 1.0 Hz, H-6), 7.41 (2H, dd, J = 8.2, 

4.8 Hz, H-2a/6a), 7.39 (1H, d, J = 4.4 Hz, H-3b), 7.30 (2H, t, J = 8.2 Hz, H-3a/5a), 7.03(1H, d, J 

= 8.5 Hz, H-7), 7.02 (1H, bs, H-5b), 6.95 (1H, t, J = 4.4 Hz, H-4b), 3.93 (3H, s, H-11); 13C NMR 

(CDCl3, 100 MHz) δ 167.3 (C-10), 163.2 (d, JCF = 249.6 Hz, C-4a), 149.0 (C-2), 142.2 (C-8), 

142.1 (C-1b), 140.6 (C-9), 131.7 (d, J = 3.4 Hz, C-1a), 130.2 (d, J = 8.8 Hz, 2C, C-2a/6a), 129.4 

(C-3b), 129.2 (C-5b), 127.7 (C-4b), 125.5 (C-5), 125.1 (C-6), 121.7 (C-4), 117.5 (d, J = 22.8 Hz, 

2C, C-3a/5a), 109.7 (C-7), 52.1 (C-11); 19F NMR (CDCl3, 376.5 MHz) δ -109.62; HRMS (m/z): 

353.0761 M+ (calculated for C19H14FN2O2S: 353.0760). 

 

(C5t) methyl 1-(4-fluorophenyl)-2-(furan-2-yl)-1H-benzo[d]imidazole-5-carboxylate, dark 

brown solid (76% yield); Purity 98%; mp 139-141 oC; UV λmax (MeOH) nm (log ε) 258 (3.15), 

313 (3.11), 326 (3.01); IR υmax 3069 (CH), 1711 (C=O), 1359 (C-F), 1195 (C-O) cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 8.53 (1H, d, J = 1.4 Hz, H-4), 7.96 (1H, dd, J = 8.5, 1.4 Hz, H-6), 7.48 (1H, 

bs, H-3b), 7.40 (2H, dd, J = 8.5, 4.7 Hz, H-2a/6a), 7.29 (2H, td, J = 8.5 Hz, H-3a/5a), 7.06 (1H, d, 

J = 8.5 Hz, H-7), 6.39-6.40 (2H, m, H-4b/5b), 3.93 (3H, s, H-11); 13C NMR (CDCl3, 100 MHz) δ 

167.3 (C-10), 163.0 (d, JCF = 249.2 Hz, C-4a), 145.7 (C-2), 144.9 (C-3b), 143.6 (C-8), 140.0 (C-

9), 131.7 (d, J = 3.2 Hz, C-1a), 129.8 (d, J = 8.8 Hz, 2C, C-2a/6a), 125.7 (C-5), 125.4 (C-6), 122.0 
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(C-4), 117.2 (d, J = 22.8 Hz, 2C, C-3a/5a), 113.6 (C-5b), 111.8 (C-4b), 109.8 (C-7), 52.1 (C-11); 

19F NMR (CDCl3, 376.5 MHz) δ -110.00; HRMS (m/z): 337.0994 M+ (calculated for 

C19H14FN2O3: 337.0988). 

 

(C5u) methyl 1-(4-fluorophenyl)-2-propyl-1H-benzo[d]imidazole-5-carboxylate, cream solid 

(70% yield); Purity 100%; mp 102-104 oC; UV λmax (MeOH) nm (log ε) 227 (3.16), 267 (2.40); 

IR υmax 3083 (CH), 1715 (C=O), 1360 (C-F), 1166 (C-O) cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.49 

(1H, d, J = 1.4 Hz, H-4), 7.94 (1H, dd, J = 8.5, 1.4 Hz, H-6), 7.34 (2H, dd, J = 8.2, 5.2 Hz, H-

2a/6a), 7.29 (2H, t, J = 8.2 Hz, H-3a/5a), 7.05 (1H, d, J = 8.5 Hz, H-7), 3.92 (3H, s, H-11), 2.76 

(2H, t, J = 7.5 Hz, H-1b), 1.76-1.86 (2H, sestet, H-2b), 0.94 (3H, t, J = 7.5 Hz, H-3b); 13C NMR 

(CDCl3, 100 MHz) δ 167.4 (C-10), 162.8 (d, JCF = 249.3 Hz, C-4a), 156.9 (C-2), 141.7 (C-8), 

139.5 (C-9), 131.2 (d, J = 2.8 Hz, C-1a), 129.2 (d, J = 8.8 Hz, 2C, C-2a/6a), 125.1 (C-5), 124.8 

(C-6), 121.2 (C-4), 117.3 (d, J = 22.8 Hz, 2C, C-3a/5a), 109.6 (C-7), 52.1 (C-11), 29.4 (C-1b), 

21.1 (C-2b), 13.9 (C-3b); 19F NMR (CDCl3, 376.5 MHz) δ -110.53; HRMS (m/z): 335.1161 M+ + 

Na+ (calculated for C18H17FN2O2Na: 335.1172). 

 

(C5v) methyl 1-(4-fluorophenyl)-2-hexyl-1H-benzo[d]imidazole-5-carboxylate, brown solid 

(70% yield); Purity 61%; mp 66-68 oC; UV λmax (MeOH) nm (log ε) 227 (3.53), 264 (2.81); IR 

υmax 3075 (CH), 1708 (C=O), 1399 (C-F), 1156 (C-O) cm-1; 1H NMR (CDCl3, 400 MHz) δ 8.48 

(1H, bs, H-4), 7.94 (1H, dd, J = 8.5, 1.2 Hz, H-6), 7.36 (2H, dd, J = 8.6, 5.0 Hz, H-2a/6a), 7.30 

(2H, t, J = 8.6 Hz, H-3a/5a), 7.06 (1H, d, J = 8.5 Hz, H-7), 3.94 (3H, s, H-11), 2.76 (2H, t, J = 7.5 

Hz, H-1b), 1.77 (2H, quintet, J = 7.5 Hz, H-2b), 1.25-1.35 (2H, m, H-3b), 1.23-1.26 (2H, m, H-

5b), 0.88-0.90 (2H, m, H-4b), 0.84 (3H, t, J = 6.8 Hz, H-6b); 13C NMR (CDCl3, 100 MHz) δ 167.6 
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(C-10), 162.9 (d, JCF = 249.0 Hz, C-4a), 157.2 (C-2), 141.7 (C-8), 139.6 (C-9), 131.5 (d, J = 3.1 

Hz, C-1a), 129.2 (d, J = 8.8 Hz, 2C, C-2a/6a), 124.8 (C-5), 124.5 (C-6), 121.3 (C-4), 117.2 (d, J = 

22.8 Hz, 2C, C-3a/5a), 109.4 (C-7), 52.0 (C-11), 31.3 (C-4b), 28.9 (C-3b), 27.6 (C-1b), 27.6 (C-

2b), 22.4 (C-5b), 13.9 (C-6b); 19F NMR (CDCl3, 376.5 MHz) δ -110.80; HRMS (m/z): 355.1816 

M+ (calculated for C21H24FN2O2: 355.1822). 

1bs-broad singlet. 

 

7.2.2 Single Crystal X-ray Diffraction Analysis 

Crystals suitable for X-ray diffraction were obtained by slow evaporation in a combination of ethyl 

acetate and n-hexane at room temperature.  A cube-shaped single crystal was selected and glued 

onto the tip of a glass fiber and mounted in a stream of cold nitrogen at 173 K and centered in the 

X-ray beam using a video camera.  The crystal evaluation and data collection were performed on 

a Bruker Smart APEX II diffractometer with Mo Kα radiation (λ = 0.71073 Å). The diffractometer 

to crystal distance was set at 4.00 cm.  The initial cell matrix was obtained from three series of 

scans at different starting angles.  Each series consisted of 12 frames collected at intervals of 0.5° 

in a 6° range with the exposure time of 10s per frame.  The reflections were successfully indexed 

by an automated indexing routine built in the APEX II program suite.  The final cell constants 

were calculated from a set of 4762 strong reflections from the actual data collection.  Data 

collection method involved ω scans of width 0.5°.  Data reduction was carried out using the 

program System Administrator’s Integrated Network Tool+. The structure was solved by direct 

methods using SHELXS and refined. Non-H atoms were first refined isotropically and then by 

anisotropic refinement with full-matrix least-squares calculations based on F2 using SHELXS.  All 

H atoms were positioned geometrically and allowed to ride on their respective parent atoms.  All 
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H atoms were refined isotropically.  The absorption correction was based on fitting a function to 

the empirical transmission surface as sampled by multiple equivalent measurements.  The final 

least-squares refinement of 265 parameters against 4762 data resulted in residuals R (based on F2 

for I ≥ 2σ) and wR (based on F2 for all data) of 0.0465 and 0.1048, respectively.  The final 

difference Fourier map was featureless.  The programs Olex-2 and Ortep-3 were used within the 

WinGX software package to prepare artwork representation (Spek et al., 2003; Farrugia et al., 

2012).  Crystallographic data (excluding structure factors) for the structure in this paper has been 

deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge 

CB21EZ, UK.  Copies of the data can be obtained free of charge on quoting the depository number 

CCDC 1454700 (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, 

http://www.ccdc.cam.ac.uk). 

 

7.2.3 In vitro antimicrobial studies 

The microbial cultures were grown overnight at 37 °C in nutrient broth (UKZN Biolab, South 

Africa), adjusted to 0.5 McFarland standard using distilled water and lawn inoculated onto 

Mueller-Hinton agar (MHA) plates.  A volume of 10 µL of each sample (23.20 - 32.04 µM in 1 

mL DMSO) was inoculated onto antibiotic assay discs (6 mm diameter) and placed on the MHA 

plates which were incubated overnight at 37°C for 24 hours. After the incubation period, zones of 

inhibition were measured in mm.  Compounds showing an inhibition zone of > 9 mm were selected 

to determine their MBC values using the broth dilution assay with ampicillin and ciprofloxacin as 

the controls following the method in Andrews (2001).  Compounds C5b, C5e, C5h, C5k-l, and 

C5o-t were chosen for the broth dilution method to determine their MBCs. 
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For the broth dilution method the microbial cultures (adjusted to 0.5 McFarland) were prepared as 

described previously for the disc diffusion method.  The test compounds were dissolved in DMSO 

(10 mg mL-1) and subject to a 50% serial dilution in 1 mL Eppendorf tubes with Mueller-Hinton 

Broth (MHB), inoculated with bacterial cultures (20 µL) and then incubated at 37 °C for 18 h.  The 

total volume in each Eppendorf was 200 µL.  A volume of 10 µL of each dilution was spotted on 

MHA plates and incubated at 37 °C for 18 h to determine the MBC (µM). Ampicillin, ciprofloxacin 

and tioconazole served as the standard drugs for the antimicrobial and antifungal studies 

respectively.  All experiments were performed in duplicate. 

 

7.2.4 In vitro antioxidant studies 

The scavenging activity (antioxidant capacity) of the synthesized fluorinated benzimidazole 

compounds (C5a-v) on the stable radical, DPPH was evaluated according to a method by Murthy 

(Murthy et al., 2012) with some modifications.  A volume of 150 µL of methanolic solution of the 

test compounds at different concentrations (1000, 500, 200, 50, 20 and 10 µg mL-1) was mixed 

with 2850 µL of the methanolic solution of DPPH (0.1 mM). An equal amount of MeOH and 

DPPH without sample served as a control.  After 30 min of reaction at room temperature in the 

dark, the absorbance was measured at 517 nm against methanol as a blank using a UV 

spectrophotometer as mentioned above.  The percentage free radical scavenging activity was 

calculated according to the following equation: 

% Scavenging activity = [(Acontrol – Asample) / Ablank] x 100 

Where 'Acontrol' is the absorbance of the control reaction (containing all reagents except the test 

compound) and 'Asample' is the absorbance of the reagents with a particular test compound. 
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7.2.5 Docking methodology 

The “Prepare Protein” module was used to protonate the amino acid residues of the X-ray structure 

of topoisomerase II DNA-gyrase (PDB ID: 2XCT, resolution 3.35Å).  The native ligand and water 

molecules were removed from the protein, while the manganese ion (Mn+2) present in the active 

site was retained.  Different isomers of the representative compounds (RCs) (C5h and C5r) were 

generated at physiological pH using the “Prepare Ligands” module and subsequently minimized.  

The partial atomic charges on each atom were developed using the CHARMm force field.  A 

binding sphere of diameter 7.6 Å was developed around the active site residues.  The automated 

docking was performed using the CDocker algorithm (Wu et al., 2003) by generating new 

conformations of the ligands using the molecular dynamics method.  The best pose of each RC 

was chosen based on the scoring function (-CDOCKER energy), and subjected further to the 

binding energy calculations.  

 

7.3 Results and Discussion 

7.3.1 Chemistry 

Three fundamental methodologies were used in this study: microwave, conventional and 

mechanochemical synthesis.  A series of 22 benzimidazole molecules (C5a-v) were synthesized 

employing these synthetic methods with different substituents at C-2 on the benzimidazole 

skeleton.  The different substituents were all aldehyde derived and are indicated in Table 7-1.  

These contained para halogenated phenyl groups, phenyl groups with para substituted electron 

donating and withdrawing groups as well as other heterocyclic ring moieties such as quinoline, 

furan, naphthalene and thiophene and the alkyl chains butane and heptane.  In addition to the 

different substituents present on the aromatic ring attached to C-2, an ester moiety was present at 

C-5 and a p-fluoro benzyl moiety at N-1 (Scheme 7-1). 
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The synthesis started with the esterification of 4-fluoro-3-nitrobenzoic acid (C1), since the 

subsequent nucleophilic step is easier to perform with esters rather than acids due to the acidic 

nature of benzoic acids.  The conversion to the ester (C2) occurred in 95% yield.  The fluoro 

substituent on the ester was then substituted with 4-fluoroanilne producing C3 in a 90% yield.  

Prior to the aldehyde being added, the nitro group of the methyl benzoate (C3) was reduced (92% 

yield) with zinc and ammonium formate forming the o-diamino phenyl precursor (C4) to the 

benzimidazoles (Scheme 7-1). 

 

In the last step of the synthesis, different aldehydes were added to the precursor C4 using three 

methods: (i) without the use of solvents or catalysts in a microwave at 110 ºC, (ii) grinding 

equimolar amounts of C4 and the aldehydes in the presence iodine as a catalyst at room 

temperature and (iii) refluxing the amino benzoate (C4) and various aldehydes with ethanol in the 

presence of Na2S2O5 to produce 22 benzimidazoles (C5a-v).  The probable mechanism of the final 

step is imine formation of the aldehyde with the primary amino group followed by nucleophilic 

attack by the secondary amine to the imine carbon.  Proton transfer from one nitrogen to the other 

followed by loss of H2 resulted in the formation of the benzimidazoles C5a- C5v (Scheme 7-2).  

Their structures were confirmed by NMR spectroscopy (1D and 2D NMR) and single crystal X-

ray diffraction.  
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Scheme 7-2  The proposed mechanism for the final step of the benzimidazole synthesis 

 

Three different methods (microwave, mechanochemical and conventional reflux) were employed 

to synthesize the benzimidazoles (C5a-v) to investigate the best possible method for the final step 

of the synthesis.  Using microwave synthesis, the reaction was carried out without the use of 

solvents and a catalyst and performed at 110 ºC for 3-8 minutes with overall yields of between 85-

96% (Table 7-1).  In the grinding method, the reaction was carried out at room temperature in the 

presence of iodine.  This process lasted for between 10-40 minutes.  The yields obtained for this 

reaction was 10-56%.  The conventional reflux method containing ethanol as a solvent and 

Na2S2O5 as the catalyst produced yields of 60-90%.  The time taken for the reaction to occur was 

the longest in the conventional reflux method (8-18 h) followed by the grinding method (10-45 

min) and then the microwave method (3-8 min).  The yields of the microwave reaction were by 

far the best (85-97%) followed by the reflux method (60-90%) and lastly the grinding method (10-
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56%).  In the grinding method starting material was still detected after the reactants were ground 

together in a mortar and pestle, accounting for the low yields of the reaction.  In terms of economy, 

the microwave method was the best, using only the starting materials.  A solvent and catalyst was 

not needed to produce the products in high yields.   

 

7.3.2 Structural elucidation  

Using C5i (methyl 2-(4-aminophenyl)-1-(4-fluorophenyl)-1H-benzo[d]imidazole-5-carboxylate) 

as a representative fluorinated benzimidazole, H-7, H-6 and H-4 on the benzimidazole core 

skeleton occurs at δΗ 7.17 (d, J = 8.5 Hz), δΗ 7.83 (dd, J = 8.5, 1.5 Hz) and δΗ 8.26 (d, J = 1.3 Hz) 

respectively.  The ester methyl resonance (H-11) occurred as a singlet at δΗ 3.89.  The ester 

carbonyl resonance (C-10) was identified from the HMBC correlation to H-11 and appeared at δC 

166.7.  The two aromatic C-N singlet resonances C-8 and C-9 were assigned to δC 142.4 and 

δC 140.5.  The C-8 resonance was distinguished from C-9 due to an HMBC correlation with H-6.   

The C-5 resonance to which the ester group was attached was assigned to δC 123.9.  This resonance 

showed an HMBC correlation to H-7.  The C-2 carbon on the imidazole core skeleton was present 

at δC 155.1.    

 

The aromatic protons of phenyl group H2a/6a appeared as a dd at δΗ 7.52 Hz with J = 9.8, 5.0 Hz), 

coupling to both F and H3a/5a, which resonated at δΗ  7.44 Hz, appearing as a triplet due to the 

same J values (8.6 Hz) for both coupling to the F and to H-2a/6a.  The C-4a fluorinated carbon 

resonance occurred as a doublet at δ 161.8 (J = 244.9 Hz).  These assignments were supported by 

HMBC correlations between C-4a and H-2a/6a as well as H-3a/5a and C-1a which occurred at δ 
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132.9 (d, J = 3.0 Hz).  C-2a/6a appeared as a doublet at δ 129.9 (J = 8.9 Hz) and C-3a/5a appeared 

as a doublet at δ 117.0 (J = 22.9 Hz). 

 

Table 7-1  Comparison of the yields and duration of the final step in the benzimidazole synthesis 

using three methods 

No. R Microwave Grinding Conventional 
  Time 

(min) 
Yielda 
(%) 

Time 
(min) 

Yielda,b 
(%) 

Time 
(h) 

Yielda (%) 

C5a Ph 3 96 10 55 10 90 
C5b 4-F Ph 3 93 10 53 8 85 
C5c 4-Cl Ph 3 89 10 50 10 75 
C5d 4-Br Ph 3 85 10 48 10 74 
C5e 4-CF3 Ph 5 90 10 45 8 70 
C5f 4-NO2 Ph 8 85 45 20 18 60 
C5g 4-CH3 Ph 6 88 20 30 12 72 
C5h 4-OCH3 Ph 6 90 25 25 16 60 
C5i 4-NH2 Ph 5 85 20 10 18 65 
C5j 4-OH Ph 5 90 10 20 16 70 
C5k 4-N(CH3)2 Ph 5 90 20 35 12 87 
C5l 4-S(CH3) Ph  4 90 20 40 16 85 

C5m 2-Naphthyl 5 95 20 56 12 80 
C5n α-(E)-prop-1-en-1-yl Ph  5 97 25 50 12 75 

C5o 2-(6-Chloroquinolinyl) 6 92 25 50 12 73 
C5p 2-OH-4,6-(OCH3)2 Ph 5 90 30 30 16 60 
C5q 3,4-(OH)2 Ph 4 85 35 20 16 60 
C5r 2,3,4-(OH)3 Ph 8 85 40 20 16 76 
C5s 2-Thiophenyl 3 95 30 50 15 75 
C5t 2-Furanyl 3 95 30 50 15 75 
C5u n-Butyl 6 90 25 30 18 70 
C5v n-Heptyl 6 90 25 30 18 70 

aIsolated yield after column chromatography,  bStarting material was not consumed totally and yield was after 
purification; Some amount starting materials and imine were also isolated.  

 

For the phenyl group (B) attached to C-2, the aromatic proton resonance of H2b/6b appeared as a 

doublet at δΗ 7.21 (J = 8.6 Hz) and H3b/5b appeared at δH 6.49 (d, J = 8.6 Hz).  An HMBC 

correlation between the corresponding C-3b/5b carbon resonance at δ 113.1 and the proton 

resonance at δH 5.61 confirmed the assignment of C-3b/5b and allowed the NH2 proton resonance 
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to be assigned to δH 5.61.  The assignment of H-2b/6b was confirmed by a HMBC correlation with 

C-2.  Selected HMBC correlations used in the structural elucidation of C5i are provided in Figure 

7-1. 

 

 

Figure 7-1  Selected HMBC correlations of compound C5i (H→C) 

7.3.3 Antimicrobial activity 

The synthesized compounds were tested for their antibacterial and antifungal activity in vitro 

against the Gram +ve bacterial strains: Staphylococcus aureus (ATCC 25923) and methicillin 

resistant S. aureus (MRSA) (ATCC BAA-1683) and Gram -ve strains (Escherichia coli (ATCC 

25922), Klebsiella pneumonia (ATCC 31488) and Pseudomonas aeruginosa (ATCC 27853)) 

using ciprofloxacin and ampicillin as the standards.  For the antifungal assay C. albicans (ATCC 

10231) was tested against with tioconazole as the reference drug.  A disc diffusion assay was used 

as an initial screening test to select potentially active compounds.  The results were expressed as 

the mean zone of inhibition in mm using a concentration of 10 mg mL-1 of the test samples.  The 

test samples that showed a zone of inhibition between 8-35 mm was selected for further tests using 

the Minimum Bactericidal Concentration (MBC) assay.  The samples chosen were C5b, C5e, C5h, 

C5k-l and C5o-t. 
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Compounds C5r and C5p showed broad spectrum activity against all strains of bacteria with the 

exception of MRSA (Table 7-2).  Their MBC values ranged between 14.45-115.65 µM (C5p) and 

25.55-74.32 µM (C5r).  The activity of both these compounds were 10 fold or greater, higher than 

that of ampicillin in the same assay.  Compound C5r was 2b,3b,4b-trisubstituted with hydroxyl 

groups at each of the positions on the aromatic B ring and C5p was 2b,4b,6b-trisubstituted with a 

hydroxy group at the 2b-position and methoxy groups at the 4b and 6b positions.  Consequently, 

these were the only two trioxygenated molecules from the 22 compounds that was synthesized.  It 

is likely that this oxygenation has something to do with its broad spectrum activity.  However, the 

test compounds were not as active as ciprofloxacin whose MBC was at least one order of 

magnitude better than the test compounds, including C5r and C5p. 

 

The other compound worth mentioning is C5e with a trifluoromethane moiety at the para position 

of the aromatic B ring.  This compound was active against MRSA with an MBC of 70.73 µM and 

against K. pneumonia (24.32 µM) and C. albicans (94.33 µM).  With regard to antifungal activity, 

only C5e showed comparable activity to Tioconozole (MBC of 100.84 µM) against C. albicans. 

 

7.3.4 Antioxidant activity 

For antioxidant activity, the DPPH radical scavenging activity assay was used.  The DPPH radical 

scavenging assay measures the ability to scavenge free radicals in situ (Murthy et al., 2012).  The 

trioxygenated compounds C5r (306.71 µM, IC50) and C5p (386.55 µM, IC50) with hydroxy and 

methoxy groups showed antioxidant activity comparable to ascorbic acid (264.50 µM, IC50) (Table 

7-3).  Two other compounds, C5q (1129.01 µM, IC50) with dihydroxy moieties and C5j with a 

monohydroxy group (1326.93 µM, IC50) was five times worse than ascorbic acid.   All the other 
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compounds were greater than five times worse than ascorbic acid.  Thus, the only compounds that 

could be considered as having antioxidant potential were C5r and C5p.  Other methods to test for 

antioxidant activity was not carried out as this was only a preliminary antioxidant test for these 

compounds. 

 

Table 7-2  Antimicrobial activity of the synthesized compounds, MBCs in µM 

Compound Gram-positive 

bacteria 

Gram-negative bacteria Fungus 

 S. aureus MRSA E. coli P. aeruginosa K. pneumoniae C.albican

s 

C5b 268.19 536.42 321.83 536.42 107.28 214.56 

 C5e 141.49 70.73 282.98 565.98 24.32 94.33 

 C5h 2492.54 1661.69 103.85 623.12 830.85 1246.27 

 C5k 803.02 401.51 200.76 250.93 301.11 803.02 

 C5l 398.18 1992.48 149.43 199.24 149.43 398.18 

 C5o 1087.38 906.13 407.76 362.46 724.92 362.46 

 C5p 115.65 555.21 92.53 115.65 14.45 369.85 

 C5q 206.61 439.06 232.45 - - 3305.99 

 C5r 74.32 446.03 49.56 37.15 25.55 421.24 

 C5s - - 1109.50 - - 443.81 

 C5t - - 348.66 - - 1859.62 

Ampicilin 55.89 894.36 447.18 1788.73 447.18 447.18 

Ciprofloxacin 1.84 7.36 1.84 1.84 3.68 1.84 

Tioconazole - - - - - 100.84 

Highlighted values indicate the best acitivty 
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Table 7-3  Antioxidant activity of the synthesized compounds from the DPPH assay, IC50 in µM 

Compound IC50 (µM) Compound IC50 (µM) 

C5j 1326.93 C5q 1129.01 

C5p 386.55 C5r 306.71 

Ascorbic Acid (AA)  264.50  

Highlighted values indicate the best activity 

7.3.5 Docking discussion 

Several drugs including ciprofloxacin and lomefloxacin exhibit their antibacterial action by 

inhibition of bacterial type II topoisomerases (topoisomerase IV and DNA-gyrase) (Mitscher et 

al., 2005).  In order to support the antibacterial results and to gain some insight into the binding 

characteristics of the compounds with bacterial proteins, two representative compounds (RCs), 

C5r (most potent) and C5h (least potent) were docked into the empty active site of the 

topoisomerase II DNA-gyrase enzyme. 3D-coordinates of the enzyme co-crystallized with its 

inhibitor ciprofloxacin (pdb id: 2XCT (Bax B et al., 2010)) were downloaded from the RCSB 

protein data bank.  A binding sphere covering the active site was generated and docking of the 

RCs was performed using the CDOCKER module (Wu G et al., 2003) implemented in the 

Discovery Studio ver 4.0 (Accelrys) along with ciprofloxacin.  

 

The binding affinity of the docked compounds was assessed by computing their binding energies 

(BEs) [Ecomplex-(Eprotein+Eligand)].  The more negative the BE, the stronger the interaction with the 

enzyme. Compound C5r exhibited stronger interaction (BE = -124.2 kcal mol-1) with the enzyme 

in comparison to C5h (BE = -24.3 kcal mol-1).  This consequently supports the experimental results 

as C5r showed the highest MBC in the experimental assay performed.  The BE of C5r showed a 
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difference of approximately 30 kcal mol-1 compared to the computed BE of ciprofloxacin (-156 

kcal mol-1).  

 

The best docked pose of C5r and C5h in the active site of topoisomerase II DNA-gyrase (Figure 

7-2) showed that both the RCs interacted with similar amino acid residues (Arg458, Lys460 and 

Glu477).  This was also observed for ciprofloxacin (Figure 7-3).  Compound C5r (Figure 7-2), 

which was the most active antibacterial agent formed a classical hydrogen bond with Ser 1084 

(1.98 Å) and four non-classical hydrogen bonds with Arg458 (2.61Å), Lys460 (2.45Å) and Glu477 

(2.71Å, 2.76 Å).  The least active compound (C5h) displayed three hydrogen bonds with Glu477 

(2.61Å) and Lys460 (3.03Å, 3.05 Å) in addition to hydrophobic interactions with Arg458 (Figure 

7-2).  The fewer and relatively longer hydrogen bond distances in C5h could have led to its weaker 

binding with the enzyme and in turn lower activity.  Ciprofloxacin (the native ligand) fitted nicely 

into the active site of the enzyme through five hydrogen bonds with Glu477 (2.78Å, 2.80Å), 

Lys460 (2.34Å, 2.40Å) and Arg458 (2.14Å) amino residues and formed another two co-ordinate 

bonds with Mn2+ (Figure 7-3).  

 

Overall, the present docking result revealed that the interaction with the Mn+2 in the active site is 

crucial for the antibacterial activity.  Both compounds failed to show any interaction with Mn2+, 

which may be responsible for them not being as active as ciprofloxacin.   

 

7.3.6 Crystal structure 

The crystal structure of the parent compound, methyl 2-(4-(dimethylamino)phenyl)-1-(4-

fluorophenyl)-1H-benzo[d]imidazole-5-carboxylate (C5k) was obtained and the refinement data 
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are contained in the supplementary file (Table 7-S1*).  C5k crystallized in the monoclinic P 21/c 

space group with two molecules in the asymmetric unit.  The ester group and N-dimethyl group 

point away from each other and all groups are in the plane except the 4-fluoro phenyl group, which 

is perpendicular to the benzimidazole moiety on N-1.  Weak hydrogen bond interactions (C-H…O, 

C-H…F and C-H…N) were observed in the crystal structure (Table 7-4).  Further selected bond 

length were described in the supplementary file (Table 7-S2*).  An ortep diagram of C5k is given 

in Figure 7-4. 

* Present in the supplementary material 

 

Table 7-4  Hydrogen bond interactions for C5k 

____________________________________________________________________________ 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 C(5b)-H(5b)...O(2)#1 0.95 2.49 3.4101(14) 162.3 

 C(8b)-H(8bi)...O(2)#1 0.98 2.63 3.3278(15) 128.3 

 C(7)-H(7)...F(1)#2 0.95 2.59 3.1002(13) 113.6 

 C(2a)-H(2a)...N(3)#3 0.95 2.46 3.2737(14) 143.3 

 C(6a)-H(6a)...N(3)#4 0.95 2.52 3.4611(14) 171.9 
____________________________________________________________________________ 
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Figure 7-2  The orientation of C5r (A) and C5h (B) in the active site of topoisomerase II DNA-

gyrase. Ligands are shown as sticks (lemon color) and amino acids of the protein as lines.  Green 

dotted lines represent classical H-bonds, yellow dotted lines, non-classical H-bonds and red dotted 

lines hydrophobic interactions  
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Figure 7-3  The orientation of ciprofloxacin in the active site of topoisomerase II DNA-gyrase. 

Ligand is shown in sticks (lemon) and amino acids of protein are depicted in the lines format. 

classical H-bonds (green), non-classical H-bonds (yellow) and co-ordinate bonds (gold) 

 

 

Figure 7-4  Ortep diagram for C5k 
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7.4 Conclusion 

We have developed an efficient, cost effective and faster route for 2-substituted fluorinated 

benzimidazoles via a solvent and catalyst free microwave method.  The synthesized compounds 

were screened for their antibacterial and antioxidant activities.  Of the twenty-two compounds 

tested, eleven compounds showed good antimicrobial activity and two showed good antioxidant 

activity.  Compounds C5p and C5r showed better activity than ampicillin against the microbial 

strains used in the assays.  These two compounds could be good leads for antimicrobial agents.  
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Chapter 8. Conclusion 

Seventeen derivatives of chiral amino acid tethered quinoxalines (A6a-A6n and B5a-c), 12 

derivatives of quinoxaline-amino acid-thiazolidines (B6a-l) and 22 derivatives of benzimidazole 

(C5a-v) were successfully synthesized with yields in excess of 75%.  Each of the synthesized 

compounds were fully characterised using NMR and mass spectrometry along with crystal 

structures of selected compounds.  The synthesis of quinoxaline-amino acid-thiazolidines and 

benzimidazoles under microwave conditions is a quick and efficient way of synthesizing these 

molecules.  In addition, the benzimidazole synthesis under microwave is a solvent free reaction, 

which can be considered a green method for the synthesis of these compounds.  Thermal studies 

supported by DFT and MD calculations on A6d indicated that H-2 was capable of hydrogen 

bonding interactions. 

 

Of the three classes that were synthesized, the best antimicrobial activity was seen by several 

compounds in the quinoxaline-amino acid-thiazolidine class.  Compounds B6b-c, B6f-g and B6j-

k all showed good broad spectrum activity with several MBC values <100 µM against the strains 

tested against.  B6f and B6j were the best overall antimicrobial agents with a broad spectrum of 

activity, being active at <100 µM against all of the strains tested against.  In addition, B6k was 

active at <100 µM against both S. aureus and MRSA with MBC values of 15.9 and 63.8 µM 

respectively.  Both B6f and B6j have a 4-fluorophenyl moiety on the thiazolidine group, but a 

methionine and tyrosine amino acid residue respectively.  B6b also has a 4-fluorophenyl group as 

B6f and B6j, however it has a valine residue instead, indicating that the amino acid interaction is 

also essential for activity since B6b is not as active as B6f and B6j.  The thiazolidine group is 

essential for activity, since the quinoxalines with only amino acids coupled to it (A6a-n and B5a-
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c) did not show as good antimicrobial activity as the thiazolidine hybrids.  In general the 

benzimidazoles were not as active as the quinoxaline-amino acid-thiazolidine hybrids with only 

two compounds (C5p and C5r) showing strain specific activity to Klebsiella pneumoniae with 

MBC values of 14.45 and 25.55 µM respectively.  Thus, the quinoxaline-amino acid-thiazolidine 

core structure with a 4-fluorophenyl moiety on the thiazolidine ring is a good lead for antimicrobial 

activity.  Further work can be explored where different amino acids can be coupled to this core 

structure to identify the amino acid that shows the best activity.  The results can be compared to 

the core structure with valine, methionine and tyrosine, which was carried out in this work. 

 

In general, the quinoxaline-amino acids were more active than the quinoxaline-amino acid-

thiazolidine derivatives in that all of the synthesized compounds of the series A6a-n were active 

in both the α-glucosidase and α-amylase assays.  Specifically, A6a, A6d and A6f have better 

activity than acarbose (IC50 of 88 µM) in the α-glucoside enzyme inhibition assay with IC50 values 

of 56, 12 and 42 µM respectively.  Combining a thiazolidine group to this core structure decreased 

activity as only three compounds were now active in these antidiabetic assays with high IC50 values 

of between 276 to 428 µM. 

 

Two quinoxaline-amino acid-thiazolidine hybrids, B6k and B6l showed IC50 values of 19.60 and 

10.53 µM respectively in the antioxidant assay carried out, comparable to ascorbic acid (IC50 16.86 

µM).  These compounds and their scaffolds, containing a tyrosine residue could be a lead for other 

antioxidant compounds, which have the potential to be anticancer agents.  Future work will involve 

making a series of quinoxaline-tyrosine-thiazolidine hybrids with a variety of substituted phenyl 

rings on the thiazolidine group and testing them for their antioxidant and anticancer activity. 
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Adding a thiazolidine moiety on the quinoxaline-amino acid scaffold only increased the 

antimicrobial activities of the compounds and not the antidiabetic activity.  Future work will 

involve reacting the amino group on the quinoxaline-amino acid scaffold and generate other 

classes of hybrid molecules or other derivatives at this position, for example carboxamides, Schiff 

bases and β-lactams to determine whether or not they have a positive effect in increasing the 

antimicrobial and antidiabetic activity of the compounds. 

 


