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Abstract

The thesis contains a comprehensive theoretical and numerical study of the nonlinear

Benjamin equation posed in the real line. We explore wellposedness of the problem

in weighted settings and provide a detailed study of existence, regularity and orbital

stability of traveling wave solutions. Further, we present a comprehensive study of

the Malmquist-Takenaka-Christov (MTC) computational basis and employ it for the

numerical treatment of the nonstaionary and the stationary Benjamin equations.
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∥u− ū∥L∞([0,T ]×R) (teal, diamond). . . . . . . . . . . . . . . . . . . . 102

6.3 The left diagrams (top to bottom): the numerical solution of the
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Chapter 1

Introduction

Evolution equations appear naturally in mathematical description of various phe-

nomena arising in physics, engineering, technology, biology, social sciences, e.t.c. As

a consequence, rigorous mathematical treatment of these equations (both qualitative

and quantitative) constitutes a large body of pure and applied modern mathematical

research. In the thesis, we focus on the analysis of one such problem, namely on the

nonlinear Benjamin equation (NBE) that describes propagation of internal waves

in a two fluid system [10]. In past two decades, noticeable consideration has been

given to the NBE equation, mainly due to its mathematical complexity and poten-

tial applications in applied science and engineering. In particular, the solvability of

Cauchy problem associated to the NBE is addressed in [29, 63, 64, 95]. Existence

and orbital stability of traveling wave solutions is the main subject of [5, 10, 13, 74].

Numerical treatment of both stationary and non-stationary NBE can be found in

[5, 26, 35, 36, 53]. Nevertheless, despite significant progress, rigorous theoretical and

numerical analysis of the NBE model is far from being complete. In this Chapter,

we provide a survey of the current state of art of theoretical and numerical results

available for the NBE model and describe our contribution to each of these topics.

1.1 The nonlinear Benjamin equation

The nonlinear Benjamin equation was proposed by T.B. Benjamin in his study of

long internal waves propagating in a two-fluid system [10, 11] (see also derivations

1



h2

0

h1

x

y

ρ2

ρ1

Figure 1.1: The sketch showing the wave propagating in a two-fluid system

in [5]) shown in Figure 1.1.

The system is made up of two fluids with densities ρ1 < ρ2 and depths h2 <

0 < h1, |h1| < |h2|, where the interface between two fluids is subject to the tension

T . The system is bounded by the rigid planes y = h2 and y = h1, from below and

above, respectively. The position of the interface at rest corresponds to the plane

y = 0, see Fig. 1.1.

To derive the dispersion relation, connecting the wave number ξ and the fre-

quency ω of a surface harmonic wave, we follow the exposition from [62]. Assuming

that the velocity fields in each fluid are potential, we have

ui(x, y, t) = Ci cosh
[
ξ(y + hi)

]
cos(ξx)eiωt, i = 1, 2. (1.1.1)

Since the interface wave is harmonic, its vertical displacement reads

η = κ cos(ξx)eiωt, (1.1.2)

where κ is the wave amplitude. It is expected that the normal component of the

fluid velocities at the interface surface are equal to the normal velocity of the surface

itself. Hence,

ηt + uiy
∣∣
y=0

= 0, i = 1, 2,

and from(1.1.1) and (1.1.2), we obtain

Ci = − iωκ

ξ sinh(ξhi)
, i = 1, 2. (1.1.3)

The pressures are given by

pi = ρi
(
uit − gκ

)
, i = 1, 2.

2



In the presence of capillarity modeled by the surface tension T , the pressures must

satisfy the following jump condition

p1 − p2 + Tηxx

∣∣∣∣
y=0

= 0.

Upon the substitution of (1.1.3) into the last formula, we deduce

ω2 =
gξ(ρ2 − ρ1) + Tξ3

ρ1 coth(ξh1)− ρ2 coth(ξh2)
,

which, when rewritten in terms of the wave speed c2 = ω2

ξ2
, yields the following

dispersion relation

c2 =
g(ρ2 − ρ1) + Tξ2

ρ1ξ coth(ξh1)− ρ2ξ coth(ξh2)
.

Note that under the assumptions that |ξh2| is extremely large and respectively

coth(ξh2) ≈ − sgn ξ, the above relation becomes

c(ξ)2 =
g(ρ2 − ρ1) + Tξ2

ρ1ξ coth(ξh1) + ρ2|ξ|
.

T.B. Benjamin considered the scenario, where the wave amplitude is much

smaller as compared to h1 and |ξ| is close to zero (long waves). The upper fluid

of the model usually has a vital influence on the dispersive properties of waves at

small finite values of ξ, see [9]. Developing c(ξ) in Taylor’ series in powers of |ξ|, we

have

c(ξ) = c(0)
[
1− 1

2

ρ2
ρ1
h1|ξ|+

1

2

( T

g(ρ2 − ρ1)h21
+

1

2

ρ22
ρ21

− 1

3

)
h21ξ

2 +O(ξ3)
]
,

provided the quantity T
g(ρ2−ρ1)h21

is sufficiently large and h1|ξ| is small. After neglect-

ing the O(ξ3) terms, the approximate dimensionless dispersion relation reads

c(ξ) = α− β|ξ|+ γξ2,

where

α =

√
gh1(ρ2 − ρ1)

ρ1
, β =

α

2

ρ2
ρ1
, γ =

α

2

( T

g(ρ2 − ρ1)h21
+

1

2

ρ22
ρ21

− 1

3

)
.

Hence, approximately the unidirectional propagation of internal long waves is gov-

erned by the dimensionless equation

ut+
(
αu− βH[ux]− γuxx + δ(−u)ℓ

)
x
= 0, (1.1.4)

3



where ℓ ≥ 2 is an integer. The concrete meaning of operator H depends on the

problem settings. In particular, for long waves in an unbounded channel (x ∈ R) or

for 2π-periodic waves (x ∈ [−π, π]), H is the standard Hilbert transform, i.e.

H[u](x) = p.v.
π

∫
R

u(y)

x− y
dy, x ∈ R,

H[u](x) = p.v.
2π

∫ π

−π
u(x− y) cot y

2
dy, x ∈ [−π, π],

where p.v. stands for the principal value integral.

We note that for β = 0 and ℓ = 2, (1.1.4) is equivalent to the classical Korteweg-

de Vries equation (KdV), while letting γ = 0 we recover as special case the well

known Benjamin-Ono (BO) equation. Analysis of both equations received significant

attention in physical and mathematical literature, see e.g. [18, 31, 52, 57, 58, 76,

88, 93] and references therein.

1.2 Wellposedness

Study of Cauchy Problem (1.1.4) in various functional settings has generated a

substantial body of modern research, see [14, 18, 56, 57, 58, 88]. Before we provide

concrete details, we note that (1.1.4) is an extension of the classical KdV equation

(β = 0, ℓ = 2). Since the perturbation term H[uxx] is of low order two, many classical

wellposedness results available for KdV allow verbatim extension to the Benjamin

equation (1.1.4). Among these results, we mention two [14, 56].

Bona and Smith in [14] demonstrated global wellposedness of the KdV equation

on the real line for initial data u0 ∈ Hs(R), with s ≥ 2. Their analysis makes use of

a perturbation technique, coupled with use of the first integrals of the equation. As

a consequence, they established existence of global (in time) classical solutions for

initial data in Hs(R), with s ≥ 3, s is integer. The results were further extended

to s = 2 using a weak compactness argument. The latter solutions (with s = 2)

satisfy the KdV in the weak sense. Generalization of these results to fractional order

Sobolev spaces Hs(R), s ≥ 2, is done in [15].

Independently, the wellposedness analysis of a generalized KdV model (which

covers ℓ ≥ 2 as well) was done by T. Kato in [56]. Using the theory of quasi-linear

4



evolution equations, he demonstrated existence of global mild and weak solution on

the real line for initial data in Hs(R), with s > 3
2
. The above results apply directly

to (1.1.4) and can be formulated as follows:

Theorem 1.2.1. For u0 ∈ Hs(R), s > 3
2

and any fixed T > 0, the pure initial value

problem, associated with (1.1.4), has a unique, globally defined weak solution of class

u ∈ C([0, T );Hs(R) ∩ C1((0, T );Hs−3).

The solution u is classical if s ≥ 3.

The wellposedness results for (1.1.4) with rough initial data (s ≤ 3
2
) were ob-

tained relatively recently using methods different from the classical techniques of J.

Bona, R. Smith and T. Kato. The studies of the Cauchy problem in the periodic

and in the real line settings were done in parallel. We present the concrete details

below.

1.2.1 The periodic settings

The first low regularity results for initial data in L2(T) (and in L2(R)) were obtained

in the paper by F. Linares [64], where the variation of constant formula associated

to the group of unitary operators {etA}t∈R, generated by the linear part of (1.1.4)

(i.e. by the operator A := −α∂x+βH∂xx+ γ∂xxx) was employed. The solvability of

the resulting abstract Volterra-type integral equation is done in the Bourgain space1

Ys,b, whose norm is defined in terms of classical trigonometric Fourier coefficients as

follows

∥u∥Ys,b =
(∑

n̸=0

∫
R
|n|2s(1 + |τ − β|n|n+ γn2|)2b|ûn(τ)|2dτ

) 1
2

, s, b ∈ R. (1.2.1)

The local solvability for initial data in Hs(T), s ≥ 0, is achieved by combining a

bilinear estimates and the classical contraction mapping principle. The global result

follows from the preservation of L2(T) norm of the local solutions. The main results

of [64] can be summarized as follows:
1Since the seminal works of J. Bourgain [17, 18] on low regularity solutions for KdV and the

nonlinear Schrödinger equations (NSE), the approach is standard in the analysis of semi- and

quasi-linear evolution equations.
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Theorem 1.2.2. For u0 ∈ L2(T), with
∫
T u0(x)dx = 0 and any T > 0, the periodic

initial value problem associated to equation (1.1.4), with ℓ = 2, has a unique mild

solution u of class

u ∈ C([0, T ];L2(T)) ∩ Y0, 1
2
, (u2)x ∈ Y0,− 1

2
.

The solution map u0 7→ u(t) is locally Lipschitz continuous from L2(T) to

C([0, T ];L2(T)) ∩ Y0, 1
2
.

In [86] a consideration to small data initial value problem for (1.1.4) in Hs(T),

s ≥ −1
2

is given. The authors improved the crucial bilinear estimate, employed in

[64], and applied the classical Picard-Lindelöf iterations to extend F. Linares results

from s ≥ 0 to s ≥ −1
2
. The main results of their work reads:

Theorem 1.2.3. For s ≥ −1
2

and u0 ∈ Hs(T), there exist T = T (∥u0∥Hs(T)), such

that the periodic initial value problem for (1.1.4) has a unique mild solution u of

class

u ∈ C([0, T ], Hs(T)) ∩ Ys, 1
2
∩ L1([0, T ], Hs(T)).

The solution map u0 7→ u is analytic from Hs(T) to C([0, T ], Hs(T)) ∩ Ys, 1
2
∩

L1([0, T ], Hs(T)).

Theorem 1.2.3 is purely local and its proof cannot be extended to the values of

s below −1
2
, for it is shown in the same paper that the bilinear estimate

∥uxv∥Y
s,− 1

2

≤ c∥u∥Y
s, 12

∥v∥Y
s, 12

,

fails for s < −1
2

in general.

1.2.2 The real line settings

In the real line settings, a variety of approaches, ranging from bilinear estimates to

I-method (see [29, 59, 63, 64]) were employed. As in the periodic case, one of the

standard analytic tools here is the Bourgain spaces Xs,b, whose norm in the case of

R is given by

∥u∥Xs,b
=

(∫
R

∫
R
(1 + |τ − β|ξ|ξ + γξ2|)2b(1 + |ξ|)2s|û(ξ, τ)|2dξdτ

) 1
2

.
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The first low-regularity results in the real line case were obtained in the earlier

cited paper [64]. The analysis of [64] is parallel to the periodic case, and yields the

following result:

Theorem 1.2.4. For u0 ∈ L2(R), b ∈
(
1
2
, 5
6

)
and any T > 0, the initial value

problem associated to equation (1.1.4), with ℓ = 2, has a unique mild solution u

satisfying

u ∈ C([0, T ];L2(R)) ∩X0,b, (u2)x ∈ X0,b−1.

The solution map u0 7→ u(t) is locally Lipschitz continuous from L2(R) to

C([0, T ];L2(R)) ∩X0,b.

In the case of the real line, the original result of [64] was extended in [59] by

observing that the bilinear estimate

∥(u2)x∥Xs,b−1
≤ c∥u∥Xs,b

∥v∥Xs,b

holds for each −3
4
< s ≤ 0, with some 1

2
< b = bs < 1. This yields the following

refinement of Theorem 1.2.4:

Theorem 1.2.5. For u0 ∈ Hs(R), −3
4
< s ≤ 0, there exists T = T (∥u0∥Hs(R))

(T (a) → ∞, as a → 0+) and 1
2
< b < 1, such that the initial value problem

associated to (1.1.4), with ℓ = 2, has a unique mild solution u of class

u ∈ C([−T, T ];Hs(R)) ∩Xs,b, (u2)x ∈ Xs,b−1.

The solution map u0 7→ u is locally Lipschitz continuous from Hs(R) to

C([−T, T ];Hs(R)) ∩Xs,b.

Theorems 1.2.4 and 1.2.5 are purely local. The first global results in Hs(R),

−3
4
< s < 0, are obtained in [63]. The local analysis proceeds along the lines of

[59, 64] but uses a refined bilinear estimate for a frequency cut-off operator I applied

to the quadratic nonlinearity (uv). In addition to local solvability, this gives explicit

estimates for the growth rate of mild solutions and on the lengths of their intervals

of existence. These bounds allows to track the growth rate of the cut-off functional

and, combined with the standard continuation argument, yield global wellposedness.

The analysis of [63] can be summarized as follows
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Theorem 1.2.6. Let u0 ∈ Hs(R), with s > −3
4
. For 1

2
< b < 1 and for any T > 0,

there exist a unique mild solution u to (1.1.4), with ℓ = 2, such that

u ∈ XT
s,b ⊂ C([0, T ];Hs(R)).

The solution map u0 7→ u is continuous from Hs(R) to XT
s,b.

The local and global analysis of [59, 63, 64] does not carry to the critical case of

H− 3
4 (R). The main obstacle is that the bilinear estimate

∥(uv)x∥Xs,b−1
≤ ∥u∥Xs,b

∥v∥Xs,b
,

employed in [59, 64], as well as its I analogue from [63], fail for s ≤ −3
4
. The

critical case was settled recently in [29], where in place of the Bourgain Xs,b space,

a Besov-Bourgain space F̄ s, equipped with the norm

∥u∥F̄ s =

[∑
k≥0

22sk

(∑
j≥0

2
j
2

∥∥ηj(ξ)[ηk(τ − β|ξ|ξ + γξ2) ∗ û(τ, ξ)
]∥∥

L2(R2)

)2]1
2

,

is employed (here η0 is a compactly supported positive cut-off function and ηk(·) =
η0(

·
2k
) − η0(

·
k−1

), k ≥ 1). Long calculations presented in [29] demonstrate that an

analogue of the bilinear estimate holds in F̄− 3
4 . This allows to settle positively the

local well-posedness of (1.1.4) for initial data in H− 3
4 (R). The global analysis then

proceeds along the lines of [63] and yields the following sharp result

Theorem 1.2.7. For u0 ∈ Hs(R), with s ≥ −3
4

and any T > 0, there exist a unique

mild solution u to (1.1.4), with ℓ = 2, such that

u ∈ F̄− 3
4 (R) ∩ C([−T, T ];H− 3

4 (R)).

The solution map is continuous from Hs(R) into C([−T, T ];Hs(R)) for all s ≥ −3
4
.

1.2.3 The weighted settings

Due to the presence of the Hilbert transform H, the Fourier symbol of the group

generated by the linear part of (1.1.4) has finite regularity at the origin. As a

consequence, one cannot expect super-algebraic spatial decay of solutions even for
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the rapidly decreasing initial data u0 from the Schwartz class S(R). Studies of the

interplay between existence, regularity and asymptotic of global solutions to (1.1.4)

are initiated in [95]. In particular, for the weighted Sobolev spaces

Zs,r = Hs(R) ∩ L2(R, |x|2rdx), Z̊s,r = {u ∈ Zs,r : û(0) = 0},

the following result was obtained:

Theorem 1.2.8. Let s ≥ 1, 0 ≤ r ≤ s
2

and r < 5
2
. If u0 ∈ Zs,r then a mild global

solution (if it exists) must be of class C([0,∞);Zs,r). If s > 3
2
, then the initial value

problem associated to (1.1.4) is globally well-posed in Zs,r. In addition, if 5
2
≤ r < 7

2

and r ≤ s
2

the initial value problem is globally well-posed in Z̊s,r.

Theorem 1.2.8 indicates that in the presence of the Hilbert transform the Fourier

symbol of the linear part of the Benjamin equation is irregular near the origin (its

third order derivative develops jump discontinuity at the origin). As a consequence,

one can expect only slow algebraic decay of solutions at infinity (r < 5
2
). The

situation can be slightly improved in the weighted homogeneous Sobolev spaces

Z̊s,r, where the propagation of the discontinuity in the Fourier image of the solution

can be properly controlled for r ≤ s
2
, r ∈

[
5
2
, 7
2

)
(see the last statement in Theorem

1.2.8).

1.3 The stationary Benjamin equation

The main motivation of developing model (1.1.4) in works of Benjamin [11, 10] was

to investigate existence and persistence of small amplitude internal waves that arise

in a two fluid system under a capillarity effect. Such waves are governed by solutions

of the form u(x, t) = −ϕ(x− ct), where ϕ describes the waves profile and c denotes

the propagation speed. Substituting the ansatz into (1.1.4) and integrating over

(−∞, x], we arrive at

Cϕ− βH[ϕ′]− γϕ′′ = δϕℓ, C = α− c. (1.3.1)

For c < α, the latter formula is further simplified by letting ϕ(x) = C
1

ℓ−1

δ
1

ℓ+1
φ
(√

C
γ
x
)

and µ = β
2
√
γC

. In terms of φ, the traveling wave equation reads

φ− 2µH[φ′]− φ′′ = φℓ. (1.3.2)

9



As observed in [10], the pseudo-differential equation (1.3.2) is solvable only when

µ < 1. Furthermore, the solutions (if they exist) are physically relevant only for

µ close to 1. The solvability of the stationary Benjamin equation was examined

in periodic and real line settings by a number of authors [5, 10, 74]. We list the

concrete details below.

1.3.1 The periodic settings

The existence theory for (1.3.2) is quite simple and was carried out originally by

T.B. Benjamin himself in [10]. His analysis uses a combination of the positive-

operator method and the Leray-Schauder degree theory (applied in the spirit of M.A.

Krasnoselskii [61]). In this approach, (1.3.2) is viewed as a fixed point problem

φ̂ = Gµ(φ̂),

where φ̂ = (φ̂n)n∈Z ∈ ℓ2 is the vector of the discrete Fourier coefficients of φ,

Gµ(φ)n = 1
κµ(n)

(φ̂∗ℓ)n, κµ(n) = 1− 2µ|n|+ n2, n ∈ Z

and ∗ℓ represents the Fourier convolution power. Since the nonlinear operator Gµ
preserves the positive cone in ℓ2 and is compact there, the following holds:

Theorem 1.3.1. For each µ ∈ [0, 1), the nonlinear equation φ̂ = Gµ(φ̂), with ℓ = 2,

(and hence the equation (1.3.2), with ℓ = 2) has periodic positive definite, classical

solution φ̂ ∈ ℓs (for any s ≥ 0) different from trivial solutions — φ = C, C ∈ R.

Though Theorem 1.3.1 is proven in [10] explicitly in the quadratic case only

(ℓ = 2), it extension to arbitrary ℓ ∈ N is straightforward and in fact Theorem 1.3.1

holds for all integer powers ℓ ≥ 2.

1.3.2 The real line settings

We note that for µ = 0, (1.3.2) is just an ODE, whose unique L2(R) solution can

be found explicitly and is given by

φ0(x) =
[
ℓ+1
2

sech2
(
ℓ−1
2
x
)] 1

ℓ−1 . (1.3.3)
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Theoretically, for µ near zero the existence of solutions to (1.3.2) can be established

via the standard perturbation argument. This program was executed in [5]. In par-

ticular, using the classical perturbation theory (see [56]) the authors demonstrated

that the solution map µ 7→ φ is analytic in a small neighborhood of 0, with values

in L2(R). This yields the existence of smooth in µ branch of orbitally stable even

traveling waves solutions emanating from φ0(x) of (1.3.3).

The analysis of [5] is purely local, furthermore, it is not very practical as we are

interested in the solutions to (1.3.2) for µ near 1. The major difficulty in dealing

with (1.3.2) posed on the real line is that in the fixed point problem

φ̂ = Ĝµ(φ̂), Ĝµ(φ̂) = αℓ

κµ
φ̂∗ℓ, κµ = 1− 2µ|ξ|+ ξ2, αℓ = (2π)

ℓ
2 , µ ∈ [0, 1),

(1.3.4)

the nonlinear operator Gµ := F−1ĜµF : Hs(R) → Hs(R), s > 1
2
, is no longer

compact. In his treatment (see [10]), T.B. Benjamin used a modification of (1.3.3),

which he compactified by adding a small viscosity term. Unfortunately, the analysis

of [10] contains a gap. Indeed, the denominator ⟨φ̂, φ̂∗2⟩ of the "compactified map"

employed in [10] is not separated from zero in the cone segment

Ct =
{
φ̂ ∈ L2(R)

∣∣ φ̂ ≥ 0 a.e. in R, ∥φ̂∥L2(R) ≥ t
}
,

for any t > 0. The latter renders the "compactified map" unbounded in the positive

cone and as a consequence the Schauder-Leray index theory is inapplicable.

The first successful global treatment of (1.3.2) is presented in the work of J.A.

Pava [74]. His approach is based on the variational formulation of (1.3.2) in the

physical space. Indeed, the original non-stationary model (1.1.4) has two constants

of motion: the Hamiltonian

N (u) = 1
2

∫
R

[
φ2 − 2µφH[φ]x + φ2

x − 2
ℓ+1

(−u)ℓ+1
]
dx (1.3.5a)

and

I(u) = ∥u∥2L2(R). (1.3.5b)

The equation (1.3.2) can be realized as an Euler-Lagrange equation associated to

the variational problem of minimizing the total energy functional N (u) in H1(R),

subject to the constrained total charge I(u) = λ2. As shown in [74], the difficulties
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related to the non-compactness of the embedding H1(R) ↪→ L2(R) can be success-

fully treated via the classical concentration compactness argument of P.L. Lions

[65, 66], yielding the following result

Theorem 1.3.2. For each µ ∈ [0, 1) and ℓ = 2, the variational problem

Iλ = inf
{
N (φ)

∣∣φ ∈ H1(R), I(φ) = λ2
}
, (1.3.6)

attains its minimum at φµ ∈ H1(R). The minimizer φµ (after rescaling) satisfies

(1.3.2).

An alternative approach to the problem (1.3.2) and its extensions is developed in

the paper of H. Chen and J. L. Bona [13]. Similar to the work of J.A. Pava [74], the

approach is variational and is based on the compactness alternative of P.L. Lions

[65, 66]. However, this time the associated variational problem is formulated not in

terms of first integrals N (u) and I(u), but in terms of functionals, associated to the

left and the right-hand sides of (1.3.2). The summary of their results can be stated

as follows:

Theorem 1.3.3. For each µ ∈ [0, 1) and ℓ = 2, the variational problem

Θλ = inf
{
∥φ∥2L2(R) − 2µ⟨φ,H[φ]x⟩L2(R) + ∥φx∥2L2(R)

∣∣φ ∈ H1(R), ⟨φ2, φ⟩L2(R) = λ
}
,

(1.3.7)

attains its minimum at φµ ∈ H1(R). The minimizer φµ is Bochner positive definite

(φ̂µ > 0) and satisfies (1.3.2), with ℓ = 2.

To conclude this section, we mention that even a basic question of existence of

a single traveling wave for µ near 1 is mathematically nontrivial. For that reason

rigorous analysis of coexistence of a system of interacting Benjamin traveling waves

(solitons) remains completely unexplored. Apart from numerical experiments, in-

dicating that the interactions are non-elastic not much is published in the special

literature.

1.3.3 Orbital stability

From physical perspective, existence of traveling wave solutions to idealized model

(1.3.2) does not guarantee that such waves do really exist and can be observed
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experimentally. It might happen that small perturbations, which are unavoidable

in realistic settings, totally destroy the wave in a very short period of time. Hence,

there arises the question of stability of the wave. In the context of the Benjamin

equation (1.1.4), traveling waves are orbits

OT (φµ) =
{
Ttφµ | t ∈ R},

emanating from solutions φµ to (1.3.2) under the action of the translations group

Ttφ(·) = φ(· + t). Hence, traveling wave solutions φµ make physical sense if and

only if the trajectories of (1.1.4) starting at t = 0 near OT (φµ) in the phase space

of (1.1.4) stay close to this orbit for all t > 0.

The general theory of orbital stability as well as some practical stability criteria

can be found in [45, 46]. Applications of this theory to the orbital stability of

traveling waves generated by the KdV equation (β = 0, ℓ ≥ 2) and by the Benjamin-

Ono equation (γ = 0, ℓ = 2) can be found in [16] and [5], respectively. As shown

by Albert et. al. [5], for small values of µ (equivalently, small β) and ℓ = 2, the

former results extend to the Benjamin equation (1.1.4) via the standard perturbation

theory [56]. However, the results of [5] are local in nature and do not apply to the

values of µ near unity as the classical perturbation theory does not allow to control

multiplicity of the second eigenvalue λ = 1 associated to the eigenfunction ∂tTtφµ|t=0

of the linearized operator G ′
µ(φµ)[·], when µ is far away from zero.

A weaker substitute for the orbital stability of the Benjamin traveling waves was

obtained in the work of J.A. Pava [74] as a byproduct of his variational approach

and the general stability considerations related to the concentration compactness

argument noted by P.L. Lions [65, 66].

Theorem 1.3.4. Assume µ ∈ [0, 1) and Uµ ⊂ H1(R) is the set of nontrivial traveling

waves obtained in Theorem 1.3.2. Then for every ϵ > 0 there exist δ > 0, such that

inf
φ∈Uµ

∥u(·, t)− φ∥H1(R) < ϵ, provided inf
φ∈Uµ

∥u0 − φ∥H1(R) < δ.

Theorem 1.3.4 implies that the solution set Uµ is a positive attractor for the

evolution problem (1.1.4). However, the structure of Uµ can be very complicated

and may lead potentially to a dynamical chaos.
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The orbital stability analysis for pseudo-differential equations involving global

operators is known to be very hard. There are very few results of this type known in

the literature. Among them, we mention the stability analyses of the Benjamin-Ono

traveling waves [6, 72] and of the fractional nonlinear Schrödinger traveling waves

[41]. The problem of orbital stability for the Benjamin traveling waves remains open.

1.4 Numerical analysis

The Benjamin equation describes an interesting physical phenomenon (namely prop-

agation of internal waves in a two fluid system driven by the capillarity effect), hence

finding solution to NBE, either exact or numerical, has attracted significant attention

in the special literature [5, 26, 35, 36, 53]. Unfortunately, the presence of global op-

erator in the model, makes it impossible to construct closed form solutions. Hence, a

significant effort is directed to solving (1.1.4) and its stationary counterpart (1.3.2)

numerically. There are two major computational challenges arising in numerical

treatment of the Benjamin equation. The first one is due to the non-locality of the

Hilbert transform whose spatial semi-discretization yields, in general, dense matrices

of large size. The second technical difficulty is connected with the unboundedness

of spatial domain when (1.1.4) or (1.3.2) are treated globally in the real line. Below,

we review several results related to the construction and analysis of computational

schemes suitable for integrating the Benjamin equation numerically.

1.4.1 The non-stationary Benjamin equation

Several authors contributed to the numerical analysis of (1.1.4) in either periodic or

real settings. We list their results in the chronological order.

In [53], H. Kalisch and J. L. Bona proposed a fully discrete numerical scheme

which they use to study interaction of periodic traveling waves. The scheme employs

Fourier-type spectral semi-discretization in space, which allow authors to treat the

global operator ∂xH efficiently (the associated matrix in the frequency space is

diagonal). The semi-discretized solution is then advanced in time with the aid of two-

step linearly implicit numerical scheme of order two. The second order convergence
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of the fully-discrete numerical procedure is demonstrated numerically.

An alternative numerical technique for the periodic Benjamin equation was de-

veloped in [26], where the finite-differences on uniform grids are used for approxima-

tion of spatial derivatives, while the Hilbert transform is recovered via the discrete

Fourier transform. The solution is integrated in time using an explicit predictor-

corrector time-stepping procedure. Unfortunately, paper [26] lack any sort of theo-

retical and/or numerical analysis of the scheme. However, the numerical evolution of

the Benjamin traveling waves on very large spatial intervals is in a good agreement

with earlier results obtained by other authors (see, in particular, [5]).

An extensive numerical treatment of (1.1.4) in context of the real line was under-

taken recently in the papers of V. Dougalis et. al., see [35, 36]. In particular, some

numerical analysis for the non-stationary Benjamin equation (1.1.4) posed in the real

line is presented in [35]. To cope with the unboundedness of the spatial domain, the

authors make use of a simple domain truncation technique – R is replaced with large

interval [−L,L] and periodic boundary conditions are imposed. Exact solutions of

the truncated model are approximated in space using cubic finite-elements on uni-

form grids. The equation is then semi-discretized in space via the standard Galerkin

technique, the semi-discretization of the non-local operator H is obtained by pass-

ing from the physical to the frequency space with the aid of the discrete Fourier

transform. The resulting hybrid finite-element/spectral-Fourier model is integrated

in time using 2-stage symmetric and symplectic Kuntzmann-Butcher Runge-Kutta

method of classical order four. The proposed fully-discrete numerical method is im-

plicit (in time) and requires Newton-type iterations at each time-integration step.

Though the paper contains no formal theoretical convergence and stability analyses

of the proposed numerical algorithm, it presents extensive numerical simulations,

illustrating its accuracy and general computational efficiency.

1.4.2 Stationary Benjamin equation

The stationary equation (1.3.2) has received a significant attention of numerical

community in both bounded or unbounded settings. The most commonly used

computational techniques are based on continuation with respect to parameter µ ∈
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[0, 1). Below, we present brief review of the key results obtained in [5, 26, 35, 36].

The first numerical scheme for computing Benjamin traveling waves, with µ ∈
[0, 1), was proposed by Albert et. al. in [5]. In their approach, the originally un-

bounded spatial domain R is truncated to a large but bounded interval. Equation

(1.3.2), equipped with the periodic boundary conditions, is then approximated in

this interval using the standard spectral-Fourier technique. The spectral Fourier

discretization yields a large nonlinear system of algebraic equations which, in addi-

tion, depends on the parameter µ. Note that for µ = 0 (the KdV case) the exact

solution to (1.3.2) is known. Using this solution as the initial guess, the numerical

traveling wave at µ > 0 is obtained by solving the associated algebraic system via

Newton-type iterations. The procedure is repeated iteratively to produce a sequence

of numerical traveling waves at prescribed grid points µi ∈ [0, 1).

It is common knowledge that the continuation technique of [5] works well, pro-

vided the totality of the exact solutions to (1.3.2) constitutes a smooth functions

of parameter µ. The latter fact is unknown when µ is far away from the origin

(see discussion in Section 1.3.3) and hence any rigorous theoretical analysis of the

scheme is unavailable for large values of µ. Nevertheless, as indicated by the authors

the decay of the numerical solutions for large values of x and µ ≈ 1 is in a good

agreement with the asymptotic theory of Benjamin traveling waves, developed in

[10].

Calvo et. al. [26] provide a numerical study of the even Benjamin interface waves.

Authors proceed by discretizing spatial derivatives with fourth-order-accurate finite

difference on evenly spaced grids. As in [5], the computation of the Hilbert transform

was done via the discrete Fourier transform. Again, similarly to [5], using the known

traveling wave at µ = 0 as the initial guess, the solutions on a fixed µ-grid in [0, 1)

are recovered via incremental use of Newton iterations.

Dougalis et. al., in [36], present compilations of several continuation schemes for

solving nonlinear Benjamin equation (1.3.2). The spatial discretization was accom-

plished in the Fourier space and is equivalent to the techniques used by Albert et. al.

[5]. However, the continuation approach is different. Authors propose two types of

continuation schemes: (i) a Square Operator Method (SOM) and its modification
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(MSOM) where the problem of finding the stationary Benjamin solutions is reduced

to the problem of finding an equilibrium of a specially constructed evolution equa-

tion; (ii) a quasi-Newtonian iterations, where linear systems arising at each iteration

step are solved via the preconditioned Conjugate Gradient algorithm. Extensive nu-

merical simulations, presented by the authors, indicate that the second approach is

the most efficient. Some extensions of these results appeared in the recent work [37]

by the same authors.

1.4.3 Malmquist-Takenaka-Christov (MTC) system

The Benjamin equation (1.1.4) (together with KdV posed on the real line, Benjamin-

Ono and many others) belongs to a large family of quasi-linear hyperbolic equations.

A large number of highly accurate numerical techniques, appropriate for solving

this type of problems in unbounded domains are developed in the special literature.

Among many, we mention methods based on the use of transparent boundary con-

ditions [20, 27, 48] and methods involving various mapping techniques [20, 27, 48].

Unfortunately, due to the presence of non-local operator H, these techniques are

hard to apply in the context of the Benjamin equation. Precisely for that reason,

all available numerical techniques mentioned above use a simple domain trunca-

tion strategy, where R is artificially reduced to a large interval [−L,L] and periodic

boundary conditions are imposed. Note however that the non-local term H leads

to the jump discontinuity in the Fourier symbol associated to the linear part of the

Benjamin equation. As a consequence, the exact solutions to either of the equations

(1.1.4) or (1.3.2) decay at most algebraically for large values of x. This presents

a serious computational challenge, as an accurate numerical approximation of such

solutions requires very large values for the truncation parameter L.

In the thesis, we employ a different approach by seeking approximation to the nu-

merical solution directly on the real line by applying a family of rational orthogonal

functions proposed separately by F. Malmquist [68], S. Takenaka [92] and redis-

covered, in context of spectral methods, by C.I. Christov [30]. The MTC system

possesses a number of attractive computational features:
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(i) the system provides a complete orthogonal basis in L2(R), while functions

comprising the family are uniformly bounded in R, [19, 30, 51, 96];

(ii) the associated differentiation matrices are skew-Hermitian and are tridiago-

nal/block tridiagonal, depending on the ordering of basis function, see [19, 30,

51, 96];

(iii) the MTC members are eigenfunctions of the Hilbert transform in R, [96];

(iv) the MTC system is directly connected (via a simple substitution) to the clas-

sical trigonometric basis and hence computing the discrete MTC expansion

coefficient can accomplished efficiently via the standard Fast Discrete Fourier

Transform (FDFT), [19, 30, 51, 96];

(v) in fact, it is shown in [51] that the MTC system is the only system of rational

functions in R that possesses properties (i)-(iv);

(vi) the MTC system behaves well with respect to the product of its members,

[30].

Due to properties (i)-(vi), the MTC system was applied successfully to solve a wide

range of practical problems arising in the approximation theory, signal processing,

harmonic analysis, numerical analysis, e.t.c. (see for instance [21, 22, 23, 24, 39, 49,

73, 96, 98] and references therein).

Unfortunately, not much is known about the approximation properties of these

functions. Results of this type are known for functions analytic everywhere in

C \ {−i, i} only, see [19, 96] and the discussion in [51]. One of the main purposes

of the present thesis is to establish a solid theoretical background for the MTC ap-

proximation theory that is suitable for numerical applications. We will demonstrate

that, apart from properties (i)-(vi), the MTC system is particularly suitable for

rapid approximation of functions whose Fourier images possess integrable singular-

ities at the origin. Since the latter is a generic situation for the solutions of (1.1.4)

and (1.3.2), the use of the MTC basis leads to fast and efficient numerical schemes

for both the non-stationary and the stationary Benjamin equations.
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1.5 Outline of the thesis

The thesis is organized as follows: Chapter 1 is introductory and contain review of

recent theoretical and numerical results available for the Benjamin equation. Chap-

ter 2 contains technical results pertinent for the subsequent theoretical and numer-

ical analyses of the thesis. In Chapter 3, we present the wellposedness analysis of

equation (1.1.4) in the scale of variable weight Sobolev spaces. Existence, regularity

and orbital stability of Benjamin traveling waves are presented in Chapter 4. The

Malmquist-Takenaka-Christov basis and its computational properties are discussed

in Chapter 5. An MTC-type collocation scheme for the nonstationary Benjamin

equation and its rigorous convergence and stability analyses are presented in Chap-

ter 6. In Chapter 7, an MTC-type continuation scheme for the stationary Benjamin

equation is discussed. Chapter 8 concludes the thesis.
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Chapter 2

Preliminaries

In this chapter, we present some definitions and notations that will be useful through-

out the thesis. Also, we provide detailed proofs of some technical interpolation re-

sults for a scale of variable weight Sobolev spaces for which we have no immediate

references.1 These spaces appear naturally in Chapter 5, in our study of the general

approximation properties of the MTC system. Furthermore, these spaces provide a

natural framework for the study of the interplay between regularity, asymptotic and

existence of global solutions to (1.1.4) as compared to the scale of spaces employed

in [95]. We begin our presentation by fixing notation and citing key results, that

are used in the thesis.

2.1 Notation

2.1.1 Fourier transform

Throughout our work, symbols

F [φ](ξ) = φ̂(ξ) = 1√
2π

∫
R
e−iξxφ(x)dx,

F−1[φ̂](x) = φ(x) = 1√
2π

∫
R
eiξxφ̂(ξ)dξ,

denote the normalized Fourier transform and its inverse. Letters x and ξ are reserved

for the physical and the frequency variables, respectively. Symbol ∗ denotes the
1The results of this chapter are extensions and adaptions of known results from the weighted

interpolation theory, re-proven in the new context by the author of the thesis, see [89].
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standard Fourier convolution. Letter c stands for a generic positive constants, whose

particular value is irrelevant.

2.1.2 Weighted Lebesgue spaces

Let Ω be an open subset in Rn and w ∈ L1,loc(Ω) be almost everywhere positive in

Ω. We employ the symbol

Lpw(Ω;B) := Lpw(Ω, wdx;B), 1 ≤ p ≤ ∞,

to denote the weighted Lebesgue spaces with values in a Banach space B. We write

shortly Lpw(Ω), when B is either R or C. Note that Lpw(Ω) is a Hilbert space if

p = 2. In the sequel, we deal with the power weights wpr(x) = xpr, r > −1
p
. For

such weights we use the shortcut Lpr(R+). When r = 0, we write simply Lp(Ω).

2.2 Complex Interpolation

There are different approaches in constructing interpolation spaces. In this thesis,

we use the complex interpolation method, see e.g. the classical text [12].

We say that a couple [X0, X1] of Banach spaces is compatible if X0, X1 are

two subspaces of a larger topological vector space X. Following A. Calderon [12,

25], to such a couple we associate the class F [X0, X1] of vector valued functions

f : S → X0 + X1 that are uniformly bounded and continuous in the strip S =

{z : 0 ≤ Re z ≤ 1} and holomorphic in its interior S0 = {z : 0 < Re z < 1}. By

virtue of the Hadamard three-lines theorem, the expression

∥f∥F [X0,X1] = max
j=0,1

sup
t∈R

∥f(j + it)∥Xj
,

provides a norm in F [X0, X1], furthermore F [X0, X1], equipped with this norm is

complete. For θ ∈ (0, 1), we let

[X0, X1]θ = {x ∈ X0 +X1|∥X∥[X0,X1]θ <∞},

∥x∥[X0,X1]θ = inf
f∈F [X0,X1]:f(θ)=x

∥f∥F [X0,X1].
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The new space [X0, X1]θ, equipped with the norm ∥ · ∥[X0,X1]θ , is a Banach space

that satisfies

X0 ∩X1 ↪→ [X0, X1]θ ↪→ X0 +X1.

Furthermore for any linear operator T ∈ L(X0, Y0) ∩ L(X1, Y1), where [Y0, Y1] is

another admissible interpolation pair, we have

∥T∥[X0,X1]θ→[Y0,Y1]θ ≤ ∥T∥1−θX0→Y0
∥T∥θX1→Y1

, θ ∈ (0, 1).

The latter implies that for each θ ∈ (0, 1), [X0, X1]θ is indeed an interpolation space

and that the interpolation functor [·, ·]θ is exact, see [12].

Below, we quote several classical results from the complex interpolation theory

which are pertinent for our analysis.

Theorem 2.2.1. [A. Calderon, see [12, Theorem 4.4.1]] Let [X i
0, X

i
1], i = 1, . . . , n

and [Y0, Y1] be compatible Banach couples. Let T ∈ L(X1
0 , . . . , X

n
0 ;Y0)∩L(X1

1 , . . . , X
n
1 ;Y1)

be a bounded multilinear map such that

∥T (x1, . . . , xn)∥Yj ≤Mj

n∏
i=1

∥xi∥Xi
j
, j = 0, 1.

Then for any θ ∈ (0, 1), we have T ∈ L([X1
0 , X

1
1 ]θ, . . . , [X

n
0 , X

n
1 ]θ; [Y0, Y1]θ) and

∥T (x1, . . . , xn)∥[Y0,Y1]θ ≤M1−θ
0 M θ

1

n∏
i=1

∥xi∥[Xi
0,X

i
1]θ
.

Theorem 2.2.2. [see, [12, Theorem 5.1.2]] Assume that X0 and X1 is a compatible

couple of Banach spaces and that p0, p1 ∈ [1,∞) and θ ∈ (0, 1). Then

[Lp0(Ω, dµ;X0), L
p1(Ω, dµ;X1)]θ = Lp(Ω, dµ; [X0, X1]θ),

where 1
p
= 1−θ

p0
+ θ

p1
. In addition, if 1 ≤ p0 <∞, p0 ∈ [1,∞), then

[Lp0(Ω, dµ;X0), L
∞
0 (Ω, dµ;X1)]θ = Lp(Ω, dµ; [X0, X1]θ),

with 1
p
= 1−θ

p0
, where L∞

0 (Ω, dµ;X) is the completion in the uniform norm of the

space of simple X-valued functions.

Theorem 2.2.3. [Stein-Weiss, see [12, Theorem 5.5.3]] Assume that pi ∈ (0,∞),

for i = 0, 1. Then we have with equal norms

[Lp0(Ω, w0dµ), L
p1(Ω, w1dµ)]θ = Lp(Ω, wdµ), θ ∈ (0, 1),

where w = w
(1−θ)p

p0
0 w

θp
p1
1 , 1

p
= 1−θ

p0
+ θ

p1
.
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For s ∈ R, q ∈ [1,∞] and a Banach space X, the symbol ℓqs(X) denotes the space

of vector valued sequences {xj}∞0 ⊂ X, such that

∥xj∥ℓqs(X) =
(∑
j≥0

(2sj∥xj∥X)q
) 1

q
<∞.

Theorem 2.2.4. [see, [12, Theorem 5.6.3]] With the equal norms, we have

[ℓq0s0(X0), ℓ
q1
s1
(X1)]θ = ℓqs([X0, X1]θ), θ ∈ (0, 1), s ∈ R, q ∈ [1,∞],

where 1
q
= (1−θ)q1+θq0

q0q1
and s = (1− θ)s0 + θs1.

2.3 Weighted Bessel potential spaces in half line

The interpolation theory of Sobolev spaces provides an indispensable tool in the

analysis of partial differential equations. Multiple fundamental results related to

existence and optimal regularity and asymptotic of solutions to such problems are

formulated directly in the framework of this theory. In the classical settings of

Euclidean domains equipped with the Lebesgue measure, the theory took its more

or less complete shape at around early 70-s, see e.g. classical texts [3, 12]. However,

it was realized quickly that the direct extensions of the theory to more general

weighted settings is not so straightforward as the underlying constructions such as

Paley-Littlewood decomposition, Mihlin’s multiplier theorem e.t.c, involve passage

to the frequency (Fourier) space, which at that time was hard to justify in the

weighted settings.

Notable progress was achieved in late 70-s early 80-s and is connected with

the rapid development of real methods in the classical Fourier analysis, see e.g.

[42, 43, 44, 90, 91], and the discovery of Ap weights by B. Muckenhoupt in his work

on weighted inequalities for the classical Hardy-Littlewood maximal function [71].

Since the latter function controls a large class of operators arising in the classical

Fourier analysis, technical methods of the unweighted interpolation theory extend

directly to the Ap-weighted context. In particular, it turns out that for weighted

Sobolev spaces over regular Euclidean domains the following complex interpolation
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identity holds

[W s0,p(Rd, w0dx),W
s1,p(Rd, w1dx)]θ = W (1−θ)s0+θs1,p(Rd, (w1−θ

0 wθ1)dx),

s0, s1 ∈ R, 1 < p <∞, w0, w1 ∈ Ap, θ ∈ (0, 1).
(2.3.1)

It is worth to mention that the Ap weight in Rd may have very rough local

behaviour, but have to satisfy the following growth and integrability restrictions

Ap = {w ∈ L1,loc(Rd) | [w]p <∞}, 1 ≤ p <∞, A∞ =
⋃
p≥1

Ap, (2.3.2a)

[w]1 = ess sup
Rd

M[w]

w
, [w]p = ess sup

I∈Rd

w(I)
1
p w̄p(I)

1
p′

λ(I)
, 1 < p <∞, (2.3.2b)

where M[w](x) = supB∋x
1
|B|

∫
B
|w(x)|dx, B ⊂ R is open and connected, is the

standard Hardy-Littlewood maximal function, w̄p = w− p′
p and I is a d-dimensional

cube with sides parallel to the coordinate planes. In particular, (2.3.2b) implies that

(i) Ap weights grow at most algebraically at infinity;

(ii) the local decay is restricted by the integrability exponent p.

For instance, when d = 1, wα := |x|α ∈ Ap if and only if −1 < α < p
p′

. Since,

in general, the Ap condition is sufficient but not necessary for (2.3.1) to hold, a

significant efforts were undertaken to overcome the indicated limitations.

The first problem was resolved successfully in early 2000-s by V.S. Rychkov

[80]. His idea was to restrict measures of Euclidean cubes, appearing in the ess sup-

expression of formula (2.3.2b). This gives a local Aloc
p version of the original Muck-

enhoupt classes and allows for the exponentially growing weights. The new weight

class, combined with an appropriate reproducing formula (see Section 2.3.5 for

details) yields a convenient Littlewood-Paley characterization of the underlying

Sobolev spaces and leads directly to the Aloc
p version of the interpolation iden-

tity (2.3.1). Even more general, Aloc
∞ real and complex interpolation identities for

weighted Triebel-Lizorkin and Besov spaces were established.

The second limitation is more subtle as the local integrability for both the origi-

nal weight w and for its Hölder conjugate w̄p is embedded directly into the condition

(2.3.2b). The requirement seems to be superfluous, the lack of integrability of the
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conjugate weights w̄p shall not affect the basic interpolation properties of the under-

lying function spaces. For the basic weighted Lebesgue spaces this is indeed the case

— the identity (2.3.1), with s0 = s1 = 0, is known to hold for all locally integrable

weights w, without any restrictions on w̄p, see e.g. Theorem 2.2.3 quoted earlier.

Unfortunately, in context of Sobolev spaces such results are unavailable (mainly

due to the lack of suitable weighted Littlewood-Paley theory). In the thesis, we

provide a construction which allow to relax the local integrability restriction for

the Bessel potential spaces in the positive half-line. In particular, we show that for

these spaces the complex interpolation identity (2.3.1) holds for all locally integrable

power weights wα = xα, α > −1.

2.3.1 One-sided local maximal functions

In our exposition, we combine the notion of one-sided A±,p classes of [82] with the

localization ideas of [80].

2.3.1.1 Definition and basic properties

Let X be an open connected subset of R, equipped with a regular, positive Borel

measure µ. For x ∈ X, we define the restricted one-sided Hardy-Littlewood maximal

functions by means of the identities

M+
µ,t[f ](x) = sup

0<µ((x,b)∩X)<t

1

µ((x, b) ∩X)

∫
(x,b)∩X

|f |dµ, (2.3.3a)

M−
µ,t[f ](x) = sup

0<µ((a,x)∩X)<t

1

µ((a, x) ∩X)

∫
(a,x)∩X

|f |dµ. (2.3.3b)

The global version (t = ∞) of these operators was introduced originally by E. Sawyer

[82] in his study of one-weight weak- and strong-type weighted inequalities. Exten-

sions of his original results, including general two-weight estimates, were obtained

by F.J. Martin-Reyes in [69].

Basic properties of operators M±
µ,t are quite similar to those of the classical

Hardy-Littlewood maximal function.
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Lemma 2.3.1. Operators M±
µ,t satisfy

∥M±
µ,t[f ]∥L1,∞(X,dµ) ≤ c±1 ∥f∥L1(X,dµ), (2.3.4a)

∥M±
µ,t[f ]∥Lp(X,dµ) ≤ c±p ∥f∥Lp(X,dµ), 1 < p ≤ ∞, (2.3.4b)

with some c±p > 0 independent on f and t.2

Proof. The proof is standard and goes along the same lines as for the classical Hardy-

Littlewood maximal operator, see e.g. [44, 90]. For the sake of brevity, we consider

M+
µ,t only, the case of M−

µ,t is identical.

(a) To begin, we show that M+
µ,t[f ](x) < ∞ is µ-measurable. Indeed, consider

f ∈ L1,loc(X, dµ) and assume that for some x ∈ X, M+
µ,t[f ](x) < ∞. Then, for

ε > 0 and some (x, b) ⊂ X, with 0 < µ((x, b)) < t, we have

M+
µ,t[f ](x)− ε ≤ 1

µ((x, b))

∫
(x,b)

|f |dµ.

Elementary calculations show

M+
µ,t[f ](x)− ε ≤

 M+
µ,t[f ](x+ δ) + µ((x,x+δ))

µ((x,b))
M+

µ,t[f ](x), 0 < δ < b− x,[
1 + µ((x−δ,x))

µ((x,b))

]
M+

µ,t[f ](x− δ), 0 < µ((x− δ, b)) < t.

Since µ is regular, µ((x− δ, x+ δ)) → 0 as δ → 0. We conclude that

M+
µ,t[f ](x)− cε ≤ M+

µ,t[f ](y), |x− y| < δ,

with some δ > 0 and an absolute constant c > 1. The case M+
µ,t[f ](x) = ∞ is

treated similarly. The calculations indicate that M+
µ,t[f ] is lower-semicontinuous.

Hence, the level sets Eξ = {M+
µ,t[f ] > ξ}, ξ > 0 are open and µ-measurable.

(b) To establish estimate (2.3.4a), for a given cut-off parameters n,m > 0, we

define M+,n
µ,t [f ](x) = sup

{
1

µ((x,b))

∫ b
x
|f |dµ

∣∣∣ 0 < µ((x, b)) < t, 0 < b − x < n
}

. As

in part (a) of the proof, we conclude that the sets Eξ,n = {M+,n
µ,t [f ](x) > ξ} and

Eξ,n,m = Eξ,n ∩ (−m,m) are open. Now, for each x ∈ Eξ,n,m, we pick an interval

(x, bx) ⊂ X with 0 < µ((x, bx)) < t and 0 < bx − x < n, so that

ξ <
1

µ((x, bx))

∫ bx

x

|f |dµ.

2In (2.3.4a), Lp,∞(X, dµ) denotes the classical Lorentz space equipped with the norm

∥f∥Lp,∞(X,dµ) = supt>0 t
1
pµ{|f | > t}.
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The family of open intervals IEξ,n,m
=
{
(x, bx)

}
x∈Eξ,n,m

covers Eξ,n,m. Using the

Besicovitch covering theorem (see [44, 90]), we extract a finite number (say ℓ) of

countable disjoint subcollections Ij = {(xji, bxji)}i≥0, 1 ≤ j ≤ ℓ, that cover Eξ,n,m.

Direct summation gives:

µ(Eξ,n,m) ≤
ℓ∑

j=1

∑
i

µ((xji, bxji)) ≤
1

ξ

ℓ∑
j=1

∑
i

∫ bxji

xji

|f |dµ ≤ ℓ

ξ
∥f∥L1(X,dµ).

Since the cut-off parameters n andm are arbitrary, we arrive at (2.3.4a). To complete

the proof, we note that (2.3.4b), with p = ∞, holds trivially. Hence, (2.3.4b),

with 1 < p < ∞, follows directly form the classical Marcinkiewicz interpolation

theorem.

2.3.1.2 Weighted weak-type inequalities

In the next step, we study weighted inequalities of the form

∥M+
µ,t[f ]∥Lp,∞(X,dν) ≤ κ+p (t)∥f∥Lp(X,dν), 1 ≤ p <∞, (2.3.5a)

∥M−
µ,t[f ]∥Lp,∞(X,dν) ≤ κ−p (t)∥f∥Lp(X,dν), 1 ≤ p <∞, (2.3.5b)

where µ and ν are two regular, positive Borel measures in X. As we shall see shortly,

for a fixed µ inequalities (2.3.5) impose some restrictions on admissible measures ν.

In particular, we have

Lemma 2.3.2. Assume (2.3.5) holds. Then µ and ν are mutually absolutely con-

tinuous.

Proof. The proof follows closely the line of arguments from [91, Chapters I-II].

(a) As before, we consider operator M+
µ,t only. Assume initially that (2.3.5a) is

satisfied. Let (a, b) ⊂ X, 0 < µ((a, b)) < t, x ∈ (a, b), E ⊂ (x, b) be open and χE be

the indicator function of E. Elementary calculations show that M+
µ,t[χE](y) strictly

increases in (a, x) and M+
µ,t[χE](y) = 1, y ∈ E. Therefore, for each y ∈ (a, x) we

have

(y, x) ∪ E ⊂
{
M+

µ,t[χ(x,b)] >
µ(E)
µ((y,b))

}
,

and, in view of (2.3.5a),( µ(E)

µ((a, b))

)p
≤ κ+p (t)

ν(E)

ν((a, x) ∪ E) , x ∈ (a, b), 0 < µ((a, b)) < t, E ⊂ (x, b).

(2.3.6a)
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Similarly, (2.3.5b) implies( µ(E)

µ((a, b))

)p
≤ κ−p (t)

ν(E)

ν(E ∪ (x, b))
, x ∈ (a, b), 0 < µ((a, b)) < t, E ⊂ (a, x).

(2.3.6b)

Since µ and ν are assumed to be outer regular, inequalities (2.3.6) show that µ is

absolutely continuous with respect to ν.

Conversely, assuming that (2.3.6a) holds with E = (x, b), it can be verified

that (2.3.5a) holds for simple functions. Since the latter function class is dense in

Lp(X, dν), 1 ≤ p <∞, it follows that (2.3.5a) and (2.3.6a) are equivalent.

(b) To prove that ν is absolutely continuous with respect to µ, we introduce

the following notation: We say that ν ⋞+ µ, if there exists 0 < α+(t), β+(t) <

1, such that µ((x, b)) ≤ α+(t)µ((a, b)) yields ν((x, b)) ≤ β+(t)ν((a, b)), for all

(a, b) ⊂ X with 0 < µ((a, b)) ≤ t. Similarly, we say that ν ⋞− µ, if there ex-

ists 0 < α−(t), β−(t) < 1, such that µ((a, x)) ≤ α−(t)µ((a, b)) yields ν((a, x)) ≤
β−(t)ν((a, b)), for all (a, b) ⊂ X with 0 < µ((a, b)) ≤ t.

We note that µ ⋞± ν and ν ⋞∓ µ are equivalent. Indeed, assume, for instance,

µ ⋞+ ν. Then µ((a, x)) ≤ 1−α+(t)
2

µ((a, b)) implies α+(t)µ((a, b)) <
1+α+(t)

2
µ((a, b)) ≤

µ((x, b)). Consequently, β+(t)ν((a, b)) < ν((x, b)) and ν((a, x)) < (1−β+(t))ν((a, b)).
Next, we observe that conditions (2.3.6a) and (2.3.6b) imply µ ⋞+ ν and µ ⋞− ν

(or ν ⋞− µ and ν ⋞+ µ), respectively. Our next aim is to show that either of the

implications is reversible.

(c) Let µ ⋞+ ν, i.e. ν((x, b)) ≤ β+(t)ν((a, b)) yields µ((x, b)) ≤ α+(t)µ((a, b)).

We consider (a, b) ⊂ X, with 0 < µ((a, b)) < t and choose x ∈ (a, b) so that

ν((x, b))

ν((a, b))
= δn,

with some n ≥ 1 and 0 < δ < β+(t). For y ∈ [a, b], we define f(y) = ν((y,b)
ν((a,b))

. By our

assumptions, f(y) is continuous and strictly monotone decreasing in [a, x]. Since

f(a) = 1 and f(b) = 0, there exists a monotone sequence a < xn−1 < · · · < x1 <

x0 = x < b, such that f(xi) = δn−i. For the intervals Ii = (xi, b), we have

ν(I0) = δν(I1) = · · · = δn−1ν(In−1) = δnν((a, b)).
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Therefore, when δ < β+(t) the condition µ ⋞+ ν implies

µ(I0) ≤ α+(t)µ(I1) ≤ · · · ≤ αn−1
+ (t)µ(In−1) ≤ αn+(t)µ((a, b)).

Consequently,
µ((x, b))

µ((a, b))
≤ αn+(t) ≤

(ν((x, b))
ν((a, b))

) 1
p
,

with p = max{1, lnβ+(t)
lnα+(t)

}. By virtue of the last estimate, we conclude that for any

x ∈ (a, b), condition µ ⋞+ ν yields (2.3.6a), with κ+p (t) ≤ β−1
+ (t) and 1 ≤ p =

max{1, lnβ+(t)
lnα+(t)

} <∞.

(d) By virtue of parts (b) and (c) of the proof, conditions (2.3.6a) and (2.3.6b)

imply that, for some 1 ≤ q1, q2 <∞, the reverse inequalities hold:(ν((a, x))
ν((a, b))

)q1
≤ c−q1(t)

µ((a, x))

µ((a, b))
, x ∈ (a, b), 0 < µ((a, b)) < t, (2.3.7a)(ν((x, b))

ν((a, b))

)q2
≤ c+q2(t)

µ((x, b))

µ((a, b))
, x ∈ (a, b), 0 < µ((a, b)) < t. (2.3.7b)

By part (a) of the proof, (2.3.7) are equivalent to weak-type estimates similar to

(2.3.5), but with µ and ν interchanged. Hence, repeating the arguments from part

(a) of the proof, we conclude that ν is absolutely continuous with respect to µ.

2.3.1.3 Aloc
p,±(µ) weights

By virtue of Lemma 2.3.2 and the Radon-Nikodym Theorem [78] , the measures ν,

appearing in (2.3.5a), are weighted measures, i.e. dν
dµ

= w for some µ-a.e. positive,

measurable (weight) function w. In the sequel, we use symbol w to denote both:

a weight function and its associated measure, so that w((a, b)) =
∫ b
a
wdµ. Further,

with a given weight w and parameter 1 < p < ∞, we associate new weight w̄p =

w− p′
p . Using this notation, we introduce the quantities

[w]±1,t = ess sup
x∈X

M∓
µ,t[w](x)

w(x)
, (2.3.8a)

[w]+p,t = sup
0<µ((a,b))<t, x∈(a,b)

w
1
p ((a, x))w̄

1
p′
p ((x, b))

µ((a, b))
, 1 < p <∞, (2.3.8b)

[w]−p,t = sup
0<µ((a,b))<t, x∈(a,b)

w
1
p ((x, b))w̄

1
p′
p ((a, x))

µ((a, b))
, 1 < p <∞. (2.3.8c)
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Lemma 2.3.3. Assume 1 ≤ p < ∞ and [w]±p,t0 < ∞ for some fixed 0 < t0 < ∞.

Then [w]±p,t <∞ for any finite t0 < t <∞.

Proof. (a) As before, we consider the case of [w]+p,t0 < ∞ only. Let p = 1 and

x ∈ X be the Lebesgue point3 of the quotient M∓
µ,t[w](x)

w(x)
. Consider an interval

(a, x) ⊂ X, with 0 < µ((a, x)) < 3
2
t0. If a < x1 < x2 < x are chosen so that

µ(a, x1) = µ(x1, x2) = µ(x2, x), then

w((a, x))

µ((a, x))
≤ [w]+1,t0(w(y) + w(x)),

for µ-a.e. y ∈ (x1, x2). We integrate the last inequality over (x1, x2) to obtain

w((a, x))

µ((a, x))
≤ [w]+1,t0

(w((x1, x2))
µ((x1, x2))

+ w(x)
)

≤ [w]+1,t0

(
2
w((x1, x))

µ((x1, x))
+ w(x)

)
≤ [w]+1,t0(1 + 2[w]+1,t0)w(x).

Hence, [w]+
1, 3

2
t0
≤ [w]+p,t0(1 + 2[w]+1,t0) <∞.

(b) Assume 1 < p < ∞. In that case for any (a, b) ⊂ X, with 0 < µ((a, b)) < t0

and any x ∈ (a, b), formula (2.3.8b) (combined with the Hölder inequality) implies

µp((x, b))w((a, x)) ≤ ([w]+p,t0)
pµp((a, b))w((x, b)).

This allow us to conclude that w satisfies (2.3.6a), with κ+p (t0) = ([w]+p,t0)
p + 1.

Similarly, we verify that w̄p satisfies (2.3.6b), with κ−p′(t0) = ([w]−p,t0)
p′ + 1. We

consider now an interval (a′, b′) ⊂ X, 0 < µ((a′, b′)) < 2t0 and choose a′ < a < x1 <

b < b′ so that µ((a′, a)) = µ((a, x1)) = µ((x1, b)) = µ((b, b′)). By virtue of (2.3.6)

and (2.3.8b), we have the estimate

w
1
p ((a′, x1))w̄

1
p′
p ((x1, b

′)) ≤ cµ((a′, b′)),

with c = 2[w]+p,t0
(
([w]+p,t0)

p+1
) 1

p
(
([w]+p,t0)

p′ +1
) 1

p′ . When x ∈ (a′, b′) is arbitrary, the

last inequality yields either

w
1
p ((a′, x))w̄

1
p′
p ((x, b′)) ≤ w

1
p ((a′, x))w̄

1
p′
p ((x, x1)) + w

1
p ((a′, x1))w̄

1
p′
p ((x1, b

′)),

3Given a regular Borel measure µ in Ω and f ∈ L1,loc(Ω, dµ), we say that x ∈ Ω is a Lebesgue

point of f if limµ(B)→0
1

µ(B)

∫
B
|f − f(x)|dµ0, where B ⊂ Ω is µ-measurable and x ∈ B.

30



for a′ < x < x1, or

w
1
p ((a′, x))w̄

1
p′
p ((x, b′)) ≤ w

1
p ((x1, x))w̄

1
p′
p ((x1, b

′)) + w
1
p ((a′, x1))w̄

1
p′
p ((x1, b

′)),

for x1 ≤ x < b′. In both cases, we obtain

w
1
p ((a′, x))w̄

1
p′
p ((x, b′)) ≤ c′µ((a′, b′)),

where c′ = 2[w]+p,t0

(
1+
(
([w]+p,t0)

p+1
) 1

p
(
([w]+p,t0)

p′ +1
) 1

p′

)
. Therefore, using formula

(2.3.8b), we obtain [w]+p,2t0 ≤ c′ <∞.

In view of Lemma 2.3.3, the following weight classes

Aloc
p,±(µ) = {w ∈ L1,loc(X, dµ) | [w]±p,t <∞ for some fixed t > 0}, 1 ≤ p <∞,

are well defined. Directly from the definition, it follows that w ∈ Aloc
p,±(µ) if and only

if w̄p ∈ Aloc
p′,∓(µ). Furthermore, it is easy to verify that Aloc

p,±(µ) ⊆ Aloc
q,±(µ), whenever

1 ≤ p ≤ q <∞.

We remark that the Aloc
p,±(µ) class defined above is essentially a local version

of A±,p weights of E. Sawyer, introduced in connection with one-sided Hardy-

Littlewood maximal functions in [69, 82]. The idea of localizing the Ap condition is

due to V.S. Rychkov, see [80]. Lemma 2.3.3 can be viewed as a one-sided analogue

of [80, Lemma 1.2], note however, that the periodic extension argument employed

in [80] does not apply in the one-sided context due to the asymmetry of conditions

(2.3.8).

Theorem 2.3.4. The weak-type inequalities (2.3.5) hold if and only if w ∈ Aloc
p,±(µ).

Proof. (a) Necessity. Assume initially that p = 1. Then (2.3.5) implies (2.3.6).

Since x ∈ (a, b) is arbitrary, we conclude that M∓
µ,t[w](x) ≤ κ±p (t)w(x) at each

Lebesgue point of w. Hence, [w]±1,t ≤ κ±p (t).When 1 < p < ∞, inequalities (2.3.5a)

and (2.3.5b) applied to f+ = w̄pχ(x,b) and f− = w̄pχ(a,x), respectively, yield the

estimate [w]±p,t ≤ κ±p (t).

(b) Sufficiency. To begin, we establish (2.3.5a) for functions supported in in-

tervals with finite µ-measure. Let f ∈ Lp(w) be supported in (a′′, b′) ⊂ X with

0 < µ((a′′, b′)) < t. In that case, all level sets Eξ = {M+
µ,t[f ] > ξ} are contained in
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some (a′, b′) ⊂ X, with 0 < µ((a′, b′)) < 2t and µ-measures of connected components

of Eξ are uniformly bounded by 2t.

Let (a, b) be a connected component of Eξ. Then

ξµ((x, b)) ≤
∫ b

x

|f |dµ,

for all x ∈ (a, b). We let x0 = a and choose a monotone increasing sequence {xi}i≥0,

xi < b, so that ∫ b

x0

|f |dµ = 2

∫ b

x1

|f |dµ = · · · = 2i
∫ b

xi

|f |dµ = · · · .

For a fixed index i ≥ 0, we obtain

ξw
1
p ((xi, xi+1)) ≤

w
1
p ((xi, xi+1))

µ((xi, b))

∫ b

xi

|f |dµ = 4
w

1
p ((xi, xi+1))

µ((xi, b))

∫ xi+2

xi+1

|f |dµ.

The last inequality, combined with (2.3.6a), yields

ξw((xi, xi+1)) ≤ 4

∫ xi+2

xi+1

w((xi, x))

µ((xi, x))
|f |(x)dµ(x)

≤ 4

∫ xi+2

xi+1

M−
µ,2t[w](x)|f |(x)dµ(x) ≤ 4[w]+1,2t∥fχ(xi+1,xi+2)∥L1(w),

when p = 1. Similarly, using Hölder’s inequality and (2.3.8b), we obtain

ξw
1
p ((xi, xi+1)) ≤ 4

w
1
p ((xi, xi+1))w̄

1
p′
p ((xi+1, xi+2))

µ((xi, b))
∥fχ(xi+1,xi+2)∥Lp(w)

≤ 4[w]+p,2t∥fχ(xi+1,xi+2)∥Lp(w),

when 1 < p <∞. In both cases, direct summation over i gives the inequality

ξw
1
p ((a, b)) ≤ 4[w]+p,2t∥fχ(a,b)∥Lp(w),

for each connected component of Eξ. Adding inequalities for all connected compo-

nents of Eξ, we obtain (2.3.5a), with κ+p (t) = 4[w]+p,2t.

To complete the proof, we note that the set X can be cut into at most countable

number of disjoint intervals Ii = (ai, ai+1), such that µ(Ii) = t − ε, 0 < ε < t
2
. We

let fi = fχIi . By construction, each interval Ii meets the level sets of at most three

maximal functions M+
µ,t[fj], j = i, i+ 1, i+ 2. Consequently,

ξpw({M+
µ,t[f ] > ξ}) ≤ 3ξp

∑
i

w
({

M+
µ,t[fi] >

ξ
3

})
≤ 3p−1(4[w]+p,2t)

p
∑
i

∥fi∥pLp(w) = 3p−1(4[w]+p,2t)
p∥f∥pLp(w),
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and we arrive at (2.3.5a), with κ+p (t) = 3
1
p′ 4[w]+p,2t.

2.3.2 Structure of Aloc
p,±(µ) weights

The internal structure of Aloc
p,±(µ) classes closely resembles that of Ap and Aloc

p

weights, see e.g. [43, 90, 91]. Almost all results (excluding most notably the re-

verse Hölder inequality, see the discussion in [82, 91]) have their analogues in the

one-sided settings.

2.3.2.1 Structure of Aloc
1,±(µ) class

Our presentation follows closely the ideas of [69, 82, 91].

Lemma 2.3.5. Let w ∈ Aloc
p,±(µ), 1 < p <∞. Then v = M∓

µ,t[w] ∈ Aloc
1,±(µ).

Proof. (a) Assume w ∈ Aloc
p,+(µ) for some 1 < p <∞. Consider I = (a, b) ⊂ X, with

0 < µ(I) < t. There are two options: either (i) there exists an interval I ′ = (a′, b) ⊂
X with µ(I ′) = 2µ(I) and such that X ∩ (−∞, b) \ I ′ ̸= ∅ or (ii) there exists an

interval I ′ = (a′, b) ⊂ X with µ(I ′) ≤ 2µ(I) and such that X ∩ (−∞, b) \ I ′ = ∅. In

either case, we denote w1 = χI′w and w2 = χX∩(−∞,b)\I′w. Then∫
I

M−
µ,2t[w]dµ ≤

∫
I

M−
µ,2t[w1]dµ+

∫
I

M−
µ,2t[w2]dµ.

We estimate each term separately.

(b) Consider w1. For each x ∈ I there exists a′ < a′′ < x such that

3

4
M−

µ,2t[w1](x) ≤
w1((a

′′, x))

µ((a′′, x))
.

We choose a′′′ ∈ (a′′, x) so that µ((a′′, a′′′)) = µ((a′′′, x)), then

w1((a
′′′, x))

µ((a′′, x))
≤ 1

2
M−

µ,2t[w1](x).

By virtue of the assumption w ∈ Aloc
p,+(µ), these inequalities, combined together,

yield

M−
µ,2t[w1](x) ≤ 4

w1((a
′′, a′′′))

µ((a′′, x))
≤ 4([w]+p,2t)

p
( µ((a′′, x))

w̄p((a′′′, x))

)p−1

≤ 2(2[w]+p,2t)
pM−

w̄p,2t[χI′w̄
−1
p ](x)p−1.
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Hence with the aid of Lemma 2.3.1, we obtain∫
I

M−
µ,2t[w1]dµ ≤ 2(2[w]+p,2t)

p

∫
I

w̄−1
p M−

w̄p,2t[χI′w̄
−1
p ]p−1w̄pdµ

≤ 2(2[w]+p,2t)
p

∫
I

M−
w̄p,2t[χI′w̄

−1
p ]pw̄pdµ ≤ 2c(2[w]+p,2t)

p

∫
I′
wdµ,

where c > 0 is an absolute constant. Since, µ(I ′) ≤ 2µ(I), we arrive at the inequality∫
I

M−
µ,2t[w1]dµ ≤ 4c(2[w]+p,2t)

pM−
µ,2t[w](b)µ(I). (2.3.9)

(c) The quantities involving w2 vanish when X ∩ (−∞, b)/I ′ = ∅. Therefore, we

assume µ(I ′) = 2µ(I) and such that X∩ (−∞, b)/I ′ ̸= ∅. Let x ∈ I, we estimate the

quotient w((y,a′))
µ((y,x))

, where y < a′ is such that 0 < µ((y, x)) < 2t. If 0 < µ((y, b)) < 2t,

we immediately obtain

w((y, a′))

µ((y, x))
=
w((y, a′))

µ((y, b))

(
1 +

µ((x, b))

µ((y, x))

)
≤ w((y, a′))

µ((y, b))

(
1 +

µ(I)

µ(I)

)
≤ 2M−

µ,2t[w](b).

It remains to consider the case when 2t ≤ µ((y, b)) < µ(I)+3t. We choose y < y′ <

a′ so that µ((y′, a′)) = t− µ(I). Then, in view of (2.3.6a),

w((y, a′))

µ((y, x))
≤ w((y, x))

µp((y, x))
µp−1((y, x)) ≤ [κ+p (2t)]

pw((y
′, x))

µ((y′, x))

( µ((y, x))
µ((y′, x))

)p−1

.

Since µ((y, x)) < 2t, µ((y′, x)) = µ((y′, a′)) + µ((a′, x)) ≥ t − µ(I) + µ(I) = t and

since µ((y′, b)) = t+ µ(I) < 2t, we conclude

w((y, a′))

µ((y, x))
≤ [2κ+p (2t)]

pM−
µ,2t[w](b).

From the proof of Theorem 2.3.4, we know that κp,+(2t) ≤ 4[w]+p,4t, hence,∫
I

M−
µ,2t[w2]dµ ≤ (8[w]+p,4t)

pM−
µ,2t[w](b)µ(I). (2.3.10)

Finally, we combine (2.3.9) and (2.3.10) together to obtain

M−
µ,t[M−

µ,2t[w]] ≤ 8c(8[w]+p,4t)
pM−

µ,2t[w],

µ-a.e. in X. This concludes the proof.

Lemma 2.3.6. Assume w ∈ Aloc
1,±(µ). Then wr ∈ Aloc

1,±(µ) for some r > 1.
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Proof. Consider w ∈ Aloc
1,+(µ) and let I = (a, x) ⊂ X, where 0 < µ((a, x)) < t. For

each ξ > 0, we have∫
I

wrdµ =
(∫

I∩{w≤ξ}
+

∫
I∩{w>ξ}

)
wrdµ

≤ µ(I)ξr + (r − 1)
(∫ ξ

0

+

∫ ∞

ξ

)
sr−2w(I ∩ {w > s} ∩ {w > ξ})ds

≤ µ(I)ξr + w(I)ξr−1 + (r − 1)

∫ ∞

ξ

sr−2w(I ∩ {w > s})ds

≤ µ(I)ξr + w(I)ξr−1 + (r − 1)

∫ ∞

ξ

sr−2w(I ∩ {M−
µ,t[wχI ] > s})ds.

We observe that Es = {M−
µ,t[wχI ] > s} ⊂ I, provided that ξ ≤ M−

µ,t[w](x). Further,

in each connected component Ij = (aj, bj) ⊂ Es we have sµ(Ij) ≤ w(Ij) and sµ(Ij) ≥
w(Ij) as bj /∈ Es and µ(Ij) < t. It follows that sµ(Ij) = w(Ij) and upon summation

over j, we have sµ(Es) = w(Es). With the aid of the last identity and the assumption

w ∈ Aloc
1,+(µ), we infer∫
I

wrdµ ≤ µ(I)ξr + w(I)ξr−1 + (r − 1)

∫ ∞

ξ

sr−1µ({M−
µ,t[wχI ] > s})ds

≤ µ(I)ξr + w(I)ξr−1 +
1

r′

∫
I

(
M−

µ,t[wχI ]
)r
dµ

≤ µ(I)ξr + w(I)ξr−1 +
[w]+1,t
r′

∫
I

wrdµ.

Hence, wr ∈ Aloc
1,+(µ), provided 1 < r <

[w]+1,t

[w]+1,t−1
.

2.3.2.2 The open end property

Lemmas 2.3.5 and 2.3.6 yield the following fundamental result:

Theorem 2.3.7. Assume w ∈ Aloc
p,±(µ), 1 < p < ∞. Then w ∈ Aloc

q,±(µ) for some

1 < q < p.

Proof. Assume that w ∈ Aloc
p,+(µ), 1 < p < ∞ and x ∈ (a, b) ⊂ X, with 0 <

µ((a, b)) < t. For k > 0, we choose a ≤ . . . < x1 < x0 = x so that w̄q((xk, b)) =

2kw̄q((x, b)). If the sequence {xk}k≥0 is finite (k ≤ N − 1), we let xN = a. In that
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case, 2N−1 ≤ w̄q((a,b))

w̄q((x,b))
≤ 2N . In either case, we have

w((a, x))w̄qq((x, b)) ≤
∑
k≥0

2−qkw((xk+1, xk))w̄
q
q((xk, b))

≤
∑
k≥0

2−qk
∫ xk

xk+1

(∫ b

y

M+
µ,t[χ(xk+1,b)w̄p]

p−1
q−1dµ

)q
w(y)dµ(y)

≤ µq((a, b))
∑
k≥0

2−qk
∫ xk

xk+1

M+
µ,t

[
M+

µ,t[χ(xk+1,b)w̄p]
p−1
q−1
]q
wdµ.

Since w̄p ∈ Aloc
p′,−(µ, (xk+1, b)), Lemma 2.3.5 implies v = M+

µ,t[χ(xk+1,b)w̄p] ∈ Aloc
1,−(µ, (xk+1, b)).

Therefore, when 1 < q < p is close to p, we apply Lemma 2.3.6 (with X replaced by

(xk+1, b)) to obtain

M+
µ,t

[
M+

µ,t[χ(xk+1,b)w̄p]
p−1
q−1
]
≤ c1(t)M+

µ,t[χ(xk+1,b)w̄p]
p−1
q−1 ,

with c1(t) > 0 depending on [w]+p,t only. Further, the argument similar to that used

in part (b) of Lemma 2.3.5, indicates that µ-a.e. in (xk+1, b)

M+
µ,t[χ(xk+1,b)w̄p](x) ≤ c2(t)M+

w,t[χ(xk+1,b)w
−1](x)p

′−1,

with c2(t) > 0 depending on [w]+p,t only. The last two inequalities, combined with

Lemma 2.3.1, allow us to conclude that

w((a, x))w̄qq((x, b)) ≤ c3(t)µ
q((a, b))

∑
k≥0

2−qk
∫ xk

xk+1

M+
w,t[χ(xk+1,b)w

−1]q
′
wdµ

≤ c+q′c3(t)µ
q((a, b))

∑
k≥0

2−qkw̄q((xk+1, b))

≤ 2c+q′c3(t)
(∑
k≥0

2−(q−1)k
)
µq((a, b))w̄q((x, b)),

where c3(t) = c1(t)c2(t) depends only on [w]+p,t and c+q′ is the absolute constant from

Lemma 2.3.1. Hence, [w]+q,t <∞ and the proof is complete.

2.3.2.3 Some consequences

Theorem 2.3.7 has a number of important consequences, we mention two, which are

of direct importance for our applications.

Corollary 2.3.8. The strong type inequalities

∥M±
µ,t[f ]∥Lp

w(R+) ≤ c±p (t)∥f∥Lp
w(R+), 1 < p <∞, (2.3.11)
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hold if and only if w ∈ Aloc
p,±(µ).

Proof. By definition of the classes Aloc
p,±(µ) and in view of Theorem 2.3.7, w ∈ Aloc

q,±(µ)

for all p− ε < q <∞ and some ε > 0. Hence, (2.3.11) follow directly from the weak

type inequalities (2.3.5) (see Theorem 2.3.4) and the Marcinkiewicz interpolation

theorem.

Corollary 2.3.9. Let 1 < p <∞. Then Aloc
p,±(µ) = Aloc

1,±(µ)
[
Aloc

1,∓(µ)
]1−p.

Proof. The inclusion Aloc
1,±(µ)

[
Aloc

1,∓(µ)
]1−p ⊂ Aloc

p,±(µ) is trivial. We show that any

w ∈ Aloc
p,±(µ) can be factorized as w = w1w

p−1
2 , with some w1 ∈ Aloc

1,±(µ) and w2 ∈
Aloc

1,∓(µ). For this, we let

T1[·] = w−1M∓
µ,t[w| · |], T2[·] = M±

µ,t[| · |
p′
p ]

p
p′ .

By Corollary 2.3.8,

∥T1[f ]∥Lp′
w (R+)

≤ c∓p′(t)∥f∥Lp′
w (R+)

, ∥T2[f ]∥Lp′
w (R+)

≤ [c±p (t)]
p
p′ ∥f∥

Lp′
w (R+)

.

Hence, the operator

T [·] =
∑
k≥0

(T1 + T2)
k[·]

2k∥T1 + T2∥k
Lp′
w (R+)→Lp′

w (R+)

is bounded from Lp
′
w (R+) to Lp′w (R+). For arbitrary u ∈ Lp

′
w (R+), we have

M∓
µ,t[wT [u]] = wT1[T [u]] ≤ w(T1 + T2)[T [u]] ≤ 2∥T1 + T2∥Lp′

w (R+)→Lp′
w (R+)

wT [u].

Similarly, we obtain

M±
µ,t[T [u]

p′
p ]

p
p′ = T2[T [u]] ≤ (T1 + T2)[T [u]] ≤ 2∥T1 + T2∥Lp′ (w)→Lp′ (w)T [u].

These calculations show that w1 = wT [u] ∈ Aloc
1,±(µ) and w2 = T [u]

p′
p ∈ Aloc

1,∓(µ),

with [w1]
±
p,t and [w2]

∓
p,t depending on [w]±p,t only.

To conclude, we note that Corollary 2.3.9 is the direct one-sided analogue ana-

logue of the P. Jones factorization theorem. In particular, using Corollary 2.3.9 as a

starting point one can build a one-sided version of the operator extrapolation theory

in the spirit of Rubio de Francia (see e.g. the development in [33, 43] in the context

of Ap weights).
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2.3.3 One sided singular integrals

In what follows, we apply the results of Sections 2.3.1 and 2.3.2 to the analysis of a

class of vector valued regular singular integrals posed in the open half line X = R+,

equipped with the standard Lebesgue measure λ. In these settings, we abbreviate

M±
t [·] = M±

λ,t[·].

Further, for vector valued functions f : R+ → B, with values in a Banach space B,

we let M±
t [f ] = M±

t [∥f∥B]. Our exposition here is laconic and follows closely the

line of arguments from [43, 90].

Consider vector valued convolution operators of the form

Tκ± [f ](x) = (κ± ∗ f)(x), x ∈ R+, (2.3.12a)

where B0, B1 are two given Banach spaces, f : R+ → B0 and κ±(x) ∈ L(B0, B1).

As in the classical theory (see [43, 90]), we assume

Tκ± ∈ L(L2(R+;B0), L
2(R+;B1)). (2.3.12b)

In view of our applications, we consider compactly supported kernels only, i.e. ker-

nels with suppκ± ⊂ (−t, t) ∩ R±, which for all x, y, ȳ ∈ suppκ±, with |x| > 0 and

|y − ȳ| ≤ 1
2
|x− y|, satisfy

∥κ±(x)∥B0→B1 ≤
c

|x| , (2.3.12c)

∥κ±(x− y)− κ±(x− ȳ)∥B0→B1 ≤ c
|y − ȳ|
|x− y|2 . (2.3.12d)

In connection with Tκ± , we define

Mκ± [·] = sup
ε>0

∥Tχ|x|>εκ
± [·]∥B1 . (2.3.13)

The following result is an adaptation of the classical "good-λ inequality" to the

one-sided settings, see e.g. [90, Proposition 6, Section V.4.4] or [43, Theorem 9.4.3].

Lemma 2.3.10. Assume f ∈ L1(R+) satisfy supp f ⊂ ∪jIj, where |Ij| < t and

dist(Ij, Ik) ≥ 2t, j ̸= k. For κ± as above and w ∈ Aloc
∞ (see [80]), there exists
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0 < αw < 1 such that for any 0 < β < 1 one can find γ > 0 so that the following

holds

w({Mκ± [f ] > ξ} ∩ {M∓
4t[f ] ≤ γξ}) ≤ αww({Mκ± [f ] > βξ}), (2.3.14)

for all ξ > 0.

Proof. (a) We consider the right-sided operators Mκ− , M+
λ,t only. The proof in the

left-sided case is identical. Standard arguments (see [43, 90]) indicate that under

our assumptions, the level set Eβξ(f) = {Mκ− [f ] > βξ} is open. The support

assumption guarantee that every open connected component I of Eβξ(f) satisfies

|I| < 2t. It is sufficient to establish (2.3.14) for a single component I = (a, b), the

general result follows by summation.

(b) The set Î = (I \ {M+
4t[f ] > γξ}) is closed in the relative topology of I. If

the Lebesgue measure |Î| of Î is zero, (2.3.14) holds trivially. So assume |Î| > 0, let

x = min Î, x̂ = b+ (b− x), f1 = χ[x,x̂]f and f2 = (1− χ[x,x̂])f and observe that

w(Eξ(f) ∩ I) ≤ w(Eτξ(f1) ∩ I) + w(E(1−τ)ξ(f2) ∩ I), 0 < τ < 1.

We estimate each term separately.

To bound w(Eτξ(f1)∩ I), we employ the standard weak-type inequality (see e.g.

[90, Corollary 2, Section I.7.3]) to obtain initially

λ(Eτξ(f1) ∩ I) ≤ c
τξ

∫ x̂

x

∥f∥B0dy ≤ 2c
τξ
|I|M+

4t[f ](x) ≤ 2cγ
τ
|I|,

and then, using the inclusion w ∈ Aloc
∞ ,

w(Eτξ(f1) ∩ I) ≤ αww(I),

with 0 < αw < 1, provided 1 < γ < 0 is sufficiently small.

(c) To bound w(Eτξ(f1)∩ I), we note that in view of (2.3.12c) and (2.3.12d), for

y ∈ (x, b), we have

∥∥Tχ|x|>εκ
− [f2](y)− Tχ|x|>εκ

− [f2](b)
∥∥
B1

= 0,
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if x̂ ≥ b+ t, or∥∥Tχ|x|>εκ
− [f2](y)− Tχ|x|>εκ

− [f2](b)
∥∥
B1

≤
∫ b+t

x̂+ε

∥f(z)∥B0∥κ−(y − z)− κ−(b− z)∥B0→B1dz

≤ c|b− y|
∫ b+t

x̂

∥f(z)∥B0

dz
(z−y)2

≤ c
∑
j≥0

|b−y|
|x̂−y+(2j−1)(b−y)|2

∫ x̂+(2j+1−1)(b−y)

x̂+(2j−1)(b−y)
∥f∥B0χ[x̂,b+t]dz

≤ 4c
∑
j≥0

2−j

|x̂−x+(2j+1−1)(b−y)|

∫ x̂+(2j+1−1)(b−y)

x

∥f∥B0χ[x,b+t]dz

≤ 8cM+
3t[f ](x) ≤ 8cM+

4t[f ](x) ≤ 8cγξ,

when x̂ < b + t. In either case, since b /∈ Eβξ(f), taking supremum over ε > 0, we

obtain

Mκ− [f2](y) ≤ (β + 8cγ)ξ ≤ (1− τ)ξ, y ∈ (x, b),

provided 0 < γ < 1 is small and 0 < τ < 1 is chosen appropriately. Hence,

w(E(1−τ)ξ(f2) ∩ I) = 0 and we conclude that (2.3.14) holds.

Once the basic estimate (2.3.14) is settled, the boundedness of Mκ± and Tκ±
follows almost immediately see e.g. [90].

Corollary 2.3.11. For κ± as above and w ∈ Aloc
p,∓(λ) ∩ Aloc

∞ , 1 < p < ∞, the

following holds ∥∥Mκ±
∥∥
Lp
w(R+;B0)→Lp

w(R+)
<∞, (2.3.15a)∥∥Tκ±∥∥Lp

w(R+;B0)→Lp
w(R+;B1)

<∞. (2.3.15b)

Proof. (a) Consider f ∈ C∞
0 (R+;B0) initially. Without loss of generality, we may

assume that f satisfies the support condition of Lemma 2.3.10 (for any function in

R is a sum of at most four functions satisfying this condition). By our assumptions,

gε = Tχ|x|>εκ
± [f ] is compactly supported and smooth, with ∥gε∥L∞(R,B1) bounded

independently of ε > 0. Since w ∈ L1,loc(R+), we conclude that ∥Mκ± [f ]∥Lp
w(R+) <

∞. Once this fact is established, we make use of Lemma 2.3.10 and Corollary 2.3.8

to obtain ∥∥Mκ± [f ]
∥∥
Lp
w(R+)

≤ c
∥∥M∓

4t[f ]
∥∥
Lp
w(R+)

≤ c′∥f∥Lp
w(R+;B0),
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for all f ∈ C∞
0 (R+;B0). The standard density argument allows one to pass from

C∞
0 (R+;B0) to Lpw(R+;B0). Hence, the bound (2.3.15a) is settled.

(b) Estimate (2.3.15b) is the direct consequence of (2.3.15a), as

∥Tκ± [f ]∥B1 ≤ Mκ± [f ] + c∥f∥B0 ,

a.e. in R+, see e.g. [90, Section I.7.4].

Note that the classical version of "good-λ inequality" is based on the Whitney

decomposition of the level set Eβξ(f). Due to the asymmetry of the operators,

the one-sided analogue of Lemma 2.3.10 requires revision of admissible geometrical

arguments. The proof of Lemma 2.3.10 as it stands seems hard to extend to general

Rn domains. A possible alternative route would be the use of sharp one-sided

maximal functions in the spirit of [42].

2.3.4 Bessel potential spaces with Aloc
p,±(λ) weights

Now we turn our attention to Bessel potential spaces in R+. These are defined as

images of weighted Lebesgue spaces Lp(w) under the action of the Fourier multiplier

J s
−[f ] = F−1[κ̂−s ] ∗ f, κ̂−s =

(i− ξ)s√
2π

, s ≥ 0,

restricted to R+, i.e. Ls,pw (R+) = J s
−[L

p
w(R+)], (see [8]). In particular, for 1 < p <∞

and s ≥ 0, Ls,p(R+) agree with the complex interpolation version of the classical

Sobolev spaces W s,p(R+) as defined in [3].

For a fixed t > 0 and φ± ∈ C∞
0 (R), with suppφ± ⊂ R± ∩ (−t, t), we define

Tφ∓ [f ](x) = φ∓ ∗ f, x ∈ R+.

Trivially, we have

|Tφ∓ [f ]| ≤ t∥φ∓∥∞M±
t [f ], x ∈ R+,

for special cut-off functions φ±, the following one-sided analogue of the Proposition

in [90, Section II.2.1] holds.
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Lemma 2.3.12. Let φ ∈ C∞
0 (− t

2
, t
2
) be radially non-increasing. Assume φ = const,

x ∈ ( t
4
,− t

4
),
∫
R φdx = 1 and define φ±(·) = φ(± t

2
+ ·). Then

∥Tφ∓∥Lp
w(R+)→Lp

w(R+) <∞, (2.3.16)

provided 1 < p <∞ and w ∈ Aloc
p,±(λ).

Proof. (a) Under our assumptions, we have

|Tφ∓ [f ]| ≤ 2M±
t [f ], x ∈ R+. (2.3.17)

Indeed, any function φ that satisfy the above conditions is uniformly approximated

from the above by step functions φn =
∑n

i=0 aiχ(−ti,ti), where 0 < ai, t < 4ti < 2t,

and
∫
R φndx = 1. For such functions, we have

|Tφ∓ [f ]|(x) ≤
n∑
i=0

ai

∫ ∓ t
2
+ti

∓ t
2
−ti

|f |(x− τ)dτ

≤
n∑
i=0

ai2ti
t+ 2ti
4ti

M±
t [f ](x) ≤ 2M±

t [f ](x).

(b) In view of (2.3.17) and the inclusion w ∈ Aloc
p,±(λ), the assertion is the direct

consequence of Corollary 2.3.8.

Operator J s
−, s ≥ 0, is known to be invertible in the class of smooth functions

restricted to R+, [81]. We denote the associated inverses by J̄ −s
− . For 0 < ε < 1

and φ∓ from Lemma 2.3.12, let φ∓
ε (·) = ε−1φ∓(ε−1·), J −s

ε,− = J̄ −s
− Tφ−

ε
and

J −s
− [f ] = lim

ε→0
J −s
ε,−[f ].

Lemma 2.3.13. Operator J −s
− : Ls,pw (R+) → Lpw(R+), 1 < p < ∞, s ≥ 0, is

one-to-one, provided w ∈ Aloc
p,+(λ).

Proof. Straightforward calculations show that Tφ−
ε ,t

and J s
− commute (note that

suppF−1[κ̂−s ] and suppφ− ⊂ R−). Therefore, for each f ∈ Ls,pw (R+) (by definition

f = J s
−[ϕ] for some ϕ ∈ Lpw(R+)), we have

∥J −s
ε,−[f ]− ϕ∥Lp

w(R+) = ∥Tφ∓
ε ,t

[ϕ]− ϕ∥Lp
w(R+) → 0, as ε→ 0.

The conclusion follows from the uniqueness of strong limits.
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Lemma 2.3.13 indicates that J s
−, s ≥ 0, are isomorphisms of the scales Lpw(R+)

and Ls,pw (R+), 1 < p < ∞, w ∈ Aloc
p,±(λ). Hence, Ls,pw (R+), 1 < p < ∞, equipped

with the norms ∥ · ∥Ls,p
w (R+) := ∥J −s

− [·]∥Lp
w(R+), are Banach spaces.

2.3.5 Interpolation

2.3.5.1 Square function characterization

To proceed further, we employ the following local reproducing formula of V.S.

Rychkov (see [80] for the details)

δ =
∑
j≥0

φ±
j ∗ ψ±

j , (2.3.18a)

where φ±
0 , ψ

±
0 ∈ C∞

0 (R), with suppφ±
0 , suppψ

±
0 ⊂ (−t, t) ∩ R± for some t > 0,

have non vanishing zeroth moment; φ±(·) = φ±
0 (·) − 2−1φ±

0 (2
−1·), ψ±(·) = ψ±

0 (·) −
2−1ψ±

0 (2
−1·) and φ±

j (·) = 2jφ±(2j·), ψ±
j (·) = 2jψ±(2j·), j ≥ 1. Furthermore, both

φ±
0 and ψ±

0 can be chosen so that∫
R
xkφ±dx =

∫
R
xkψ±dx = 0, 0 ≤ k ≤ m, (2.3.18b)

for any given positive integer m > 0 (in the sequel, we employ symbol {φ}m to

denote the number of vanishing moments of function φ).

For φ±
0 as above, with {φ±}m ≥ max{0, s}, s ∈ R, we define

Ssφ± [f ] =
(∑
j≥0

22js|φ±
j ∗ f |2

) 1
2
, x ∈ R+.

Theorem 2.3.14. For 1 < p <∞, s ≥ 0 and w ∈ Aloc
p,+(λ) ∩ Aloc

∞ , we have

∥f∥Ls,p
w (R+) ≈ ∥Ssφ− [f ]∥Lp

w(R+), (2.3.19)

where ≈ means the bilateral estimate.

Proof. (a) To begin, we show that

∥f∥Lp
w(R+) ≈ ∥S0

φ± [f ]∥Lp
w(R+), (2.3.20)

provided w ∈ Aloc
p,∓(λ)∩Aloc

∞ . The proof is identical to that of [80, Theorem 1.10], with

the exception that, instead of [90, Theorem 2, Section V.4.2] and its [90, Corollary,

Section V.4.2], we invoke Corollary 2.3.11.
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Define κ± : R+ → ℓ2 by means of the formulas κ±(·) = {φ±
j (·)}j≥0. Operator

Tκ± : Lpw(R+) → Lpw(R+; ℓ2) fells in the scope of Corollary 2.3.11. Hence,

∥S0
φ± [f ]∥Lp

w(R+) = ∥Tκ±f∥Lp
w(R+;ℓ2) ≤ c∥f∥Lp

w(R+),

provided w ∈ Aloc
p,∓(λ) ∩ Aloc

∞ .

The converse inequality follows from the standard duality argument and the local

reproducing formula (2.3.18a). Indeed, for g ∈ Lp
′

w̄p
(R+) supported in R+, we let

g±(·) = g(±·) and note that (g±)− = g∓. Then

|⟨f, g⟩| = |f ∗ g−|(0) =
∣∣∣∑
j≥0

(φ±
j ∗ f) ∗ (ψ±

j ∗ g−)
∣∣∣(0) ≤ ∫

R+

S0
φ± [f ]S0

ψ∓ [g]dτ

≤ ∥S0
φ± [f ]∥Lp

w(R+)∥S0
ψ∓ [g]∥

Lp′
w̄p

(R+)
≤ c∥S0

φ± [f ]∥Lp
w(R+)∥g∥Lp′

w̄p
(R+)

.

Hence, (2.3.20) is settled.

(b) The general result follows from [80, Theorem 2.18], invertibility of J s
−, Lem-

ma 2.3.13 and (2.3.20). Indeed, letting

L̄s,pw (R+) = {f | supp f ∈ R+, ∥Ssφ−∥Lp
w(R+) <∞},

from [80, Theorem 2.18] we infer that J s
−
[
L̄0,p
w (R+)] ⊂ L̄s,pw (R+), β ≥ 0 and the

map is onto, as J s
− is invertible. Hence, by (2.3.20) and Lemma 2.3.13, L̄s,pw (R+) =

J s
−[L̄

0,p
w (R+)] = J s

−[L
p
w(R+)] = Ls,pw (R+) as Banach spaces.

The key feature of Theorem 2.3.14, as compared to its analogue [80, Theo-

rem 1.10], is the use of condition w ∈ Aloc
p,+(λ)∩Aloc

∞ , instead of w ∈ Aloc
p . The former

class is significantly larger than the latter one. For instance, wα(x) = |x|α ∈ Aloc
p if

and only if −1 < α < p
p′

, while wα(x) ∈ Aloc
p,+(λ) ∩ Aloc

∞ , for all α > −1.

2.3.5.2 An interpolation identity

In view of Theorem 2.3.14, we have

Corollary 2.3.15. Assume 1 < p <∞ and w0, w1 ∈ Aloc
p,+(λ) ∩ Aloc

∞ . Then

[Ls0,pw0
(R+), L

s1,p
w1

(R+)]θ = L
(1−θ)s0+θs1,p
w1−θ

0 wθ
1

(R+), s0, s1 ≥ 0, θ ∈ (0, 1), (2.3.21)

where [·, ·]θ denotes the standard complex interpolation functor of A. Calderon [12,

25].
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Proof. Directly from (2.3.8) and the definition of Alocp,+(λ) and Aloc
∞ weights (see [80]),

it follows that w1−θ
0 wθ1 ∈ Aloc

p,+(λ) ∩ Aloc
∞ , while, in view of Theorem 2.3.14, Ls,pw (R+)

is a retracts of Lpw(R+; ℓ
2
s). Hence, combining the arguments of Theorems 2.2.2 and

2.2.3, we have the desired result.

2.4 Variable weight Sobolev spaces

2.4.1 Definition

We define the variable weight Sobolev space Hs
r (R) of real valued functions by

Hs
r (R) = {f ∈ ReS ′ | ∥f∥Hs

r (R) <∞}, s > −1
2
, r ≥ 0, (2.4.1a)

∥f∥2Hs
r (R) =

1
2
∥f∥2L2(R) + ∥P±[κ

±
r,ℓf ]∥2H̊s(R), (2.4.1b)

where ReS ′ is the space of real valued tempered distributions, P± are Fourier

multipliers (projectors) associated with the Heaviside functions ĥ±(ξ) = 1±sgn(ξ)
2

,

κ±r,ℓ(·) = 1√
2π
(iℓ ± ·)r and H̊s(R) is the standard homogeneous Sobolev space of

order s, see e.g. [12]. Note that for s ∈ N, the Hs
r (R)-norm is equivalent to

∥f∥L2(R) +
∑s

m=0 ∥κ±r−s+m,ℓf (m)∥L2(R), i.e. ∥ · ∥Hs
r (R) is a Sobolev-like norm, where

weak derivatives of different orders are integrated against different weights.

2.4.2 Properties

Basic properties of the variable weighted Sobolev space Hs
r (R) are listed below

Lemma 2.4.1. Hs
r (R), with s > −1

2
and r ≥ 0, are Hilbert spaces. The embeddings

Hs0
r0
(R) ↪→ Hs1

r1
(R), (2.4.2a)

are dense and continuous, provided

−1

2
< s1 ≤ s0 ≤ s1 + r0 − r1, 0 ≤ r1 ≤ r0. (2.4.2b)

In addition, the embedding

Hs0
r0
(R) ↪→ Hs1(R), 0 ≤ s1 < s0 < r0, r0 > 0, (2.4.2c)
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is dense and compact. Finally , for s0, s1 > −1
2
, r0, r1 ≥ 0 and θ ∈ (0, 1), we have

[Hs0
r0
(R), Hs1

r1
(R)]θ = H

(1−θ)s0+θs1
(1−θ)r0+θr1 (R), (2.4.3)

where [·, ·]θ denotes the standard complex interpolation functor of A. Calderon [12,

25].

Proof. (a) In terms of Fourier images, (2.4.2b) reads

∥f∥2Hs
r (R) = ∥f̂∥2L2(R±) + ∥J −r

∓ [f̂ ]∥2L2
s(R±), J −r

∓ [f̂ ] =
√
2π
(
κ̂±r,ℓ ∗ f̂

)
. (2.4.4)

Note that supp κ̂±r,ℓ ⊂ R∓. Hence, for real valued distributions (whose Fourier images

are Hermitian, i.e. f̂(ξ) = −f̂(−ξ)) the choice of sign in (2.4.1b), (2.4.4) is irrelevant.

It was shown in subsection 2.3.4 that Lr,2s (R±) = J r
∓[L

2
s(R±)] are Banach spaces

for w ∈ Aloc2,±(λ). Since, |ξ|s ∈ Aloc2,+(λ) in R+ and |ξ|s ∈ Aloc2,−(λ) in R−, for any

s > −1
2

and since L2(R) ∩ ReS ′ distributions are regular, we conclude that the

quantity ∥ · ∥Hs
r (R) is a norm in Hs

r (R). The completeness of Hs
r (R) follows from the

completeness of Lr,2s (R±) ∩ L2(R±). In view of (2.4.4), the bilinear form

⟨f, g⟩Hs
r (R) = ⟨f̂ , ĝ⟩L2(R+) + ⟨J −r

∓ [f̂ ],J −r
∓ [ĝ]⟩L2

s(R+)

is an inner product in Hs
r (R). Hence, the first claim of Lemma 2.4.1 is settled.

(b) The denseness and continuity of the embeddings (2.4.2a)-(2.4.2b) is the direct

consequence of (2.4.4) and the embedding inequality (21) from [8].

To show compactness of (2.4.2c), consider u ∈ Hs0
r0
(R), with ∥u∥Hs0

r0
(R) ≤ 1. In

terms of Fourier images, for s1 < s0, we have∫
|ζ|>|ξ|

(
1 + |ζ|2

)s1|û|2(ζ)dζ ≤ sup
|ζ|>|ξ|

(
1 + |ζ|2

)s1−s0∥u∥2Hs0 (R)

≤ c
(
1 + |ξ|2

)s1−s0 , ξ ∈ R,

uniformly for ∥u∥2W s
r (R)

≤ 1.

Since u is assumed to be real valued, its Fourier image û is Hermitian. Therefore,

for h > 0, we have∫
R

(
1 + |ξ|2)s1

∣∣û(ξ + h)− û(ξ)
∣∣2dξ ≤ 2

∫
R+

(
1 + |ξ|2)s1

∣∣û(ξ + h)− û(ξ)
∣∣2dξ =: 2I1.
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To bound I1, for 0 ≤ r′ ≤ r0, we let û = J +r′

− [v̂r′ ]. The analysis presented in [8]

indicates that

û = J +r′

− [v̂r′ ] ∈ L2
s′(R+), −1

2
< s′ ≤ s0 ≤ s′ + r0 − r′, 0 ≤ r′ ≤ r0, (2.4.5a)

∥v̂r′∥L2
s′ (R)

≤ c∥v̂r0∥L2
s0

(R), −1
2
< s′ ≤ s0 ≤ s′ + r0 − r′, 0 ≤ r′ ≤ r0. (2.4.5b)

Using these facts, the inclusion supp κ̂+−r′,ℓ ⊂ R−, and the standard Minkowski

inequality, we obtain initially

I1 = 2π

∫
R+

(
1 + |ξ|2)s1

∣∣(κ̂+−r′,ℓ ∗ v̂r′)(ξ + h)− (κ̂+−r′,ℓ ∗ v̂r′)(ξ)
∣∣2dξ

≤ 2π

[∫
R

∣∣κ̂+−r′,ℓ(ζ − h)− κ̂+−r′,ℓ(ζ)
∣∣dζ(∫

R+
|v̂r′ |2(ξ)

(
1 + |ξ − ζ|2

)s1dξ) 1
2

]2

and then, using the elementary inequality
(
1 + |ξ − ζ|2)s1 ≤ c[(1 + |ζ|2)s1 + |ξ|2s1 ]

(that holds uniformly for ξ, ζ ∈ R, with some constant c > 0) and formulas (2.4.5),

(2.4.1b),

I1 ≤ c

[∫
R+

(
1 + |ζ|2

)s1∣∣κ̂+−r′,ℓ(ζ − h)− κ̂+−r′,ℓ(ζ)
∣∣dξ] (∥v̂r′∥2L2(R+) + ∥v̂r′∥2L2

s1
(R+)

)
≤ c

[∫
R+

(
1 + |ζ|2

)s1∣∣κ̂+−r′,ℓ(ζ − h)− κ̂+−r′,ℓ(ζ)
∣∣dξ] ∥u∥2

H
s0
r0

(R), (2.4.6)

provided 0 ≤ s0 ≤ r0 − r′ and −1
2
< s1 ≤ s0 ≤ s1 + r0 − r′. We note that the right

hand side of (2.4.6) tends to zero, as h→ 0, as κ̂+−r′,ℓ ∈ L1(R+, |ξ|sdξ), for all s ≥ 0,

provided r′ > 0.

The calculations, presented above, indicate that the the unit ball of Hs0
r0
(R)

is equibounded, equitight and equicontinuous in Hs1(R), provided s1 < s0 and

0 ≤ s0 ≤ r0 − r′, −1
2
< s1 ≤ s0 ≤ s1 + r0 − r′, for some 0 < r′ ≤ r. Hence,

on the account of the Kolmogorov-Riesz theorem, the embedding (2.4.2c) is indeed

compact.

(c) Interpolation identity (2.4.3) follow from Theorem 2.2.4 and formula (2.3.21),

if we view Hs
r (R) as a retract of the vector valued Banach space H̃s

r (R) = {(u, v)|u ∈
L2(R), v̂ ∈ L2,r

s (R−) ∩ L2,r
s (R+)}.

To conclude this section, we note that Hs
0(R) = Hs(R), where Hs(R) is the

standard Sobolev spaces, as defined in [3]. When s > −1
2
, the latter is known to be

47



a Banach algebra. As shown below, the property extends to Hs
r (R), with s > 1

2
and

r ≥ 0, this fact is crucial for the analysis of Chapters 3 and 6.

Lemma 2.4.2. Assume s > 1
2

and r ≥ 0. Then Hs
r (R) is a Banach algebra, i.e. for

any f, g ∈ Hs
r (R)

∥fg∥Hs
r (R) ≤ c∥f∥Hs

r (R)∥g∥Hs
r (R), (2.4.7)

with c > 0 independent of f and g.

Proof. (a) Using the elementary estimate |ξ0 + ξ1|s ≤ c
(
|ξ0|s + |ξ1|s

)
(which holds

for all ξ0, ξ1 ∈ R and s > −1, with an absolute constant c > 0 controlled by s only)

combined with the standard convolution Young inequality, for any two Hermitian

functions

f̂ , ĝ ∈ L2
s(R±) ∩ L2(R±) = L2(R±, (1 + |ξ|2s)dξ) =: L̄2

s(R±),

we have

∥f̂ ∗ ĝ∥L2
s(R±) ≤ c

(
∥f̂∥L1(R±)∥g∥L2

s(R±) + ∥f∥L2
s(R±)∥ĝ∥L1(R±)

)
.

By our assumption s > 1
2
, hence the direct application of the Cauchy-Schwarz

inequality yields

∥f̂∥L1(R±) ≤ ∥(1 + |ξ|2s)− 1
2∥L2(R+)∥f̂∥L̄2

s(R±) ≤ c∥f̂∥L̄2
s(R±)

and we conclude

∥f̂ ∗ ĝ∥L2
s(R±) ≤ c∥f̂∥L̄2

s(R±)∥ĝ∥L̄2
s(R±).

(b) We let

L̄r,2s (R±) := J r
∓[L̄

2
s(R±)] = Lr,2s (R±) ∩ Lr,20 (R±)

and observe that L̄r1,2s (R±) ↪→ L̄r0,2s (R±), whenever 0 ≤ r0 ≤ r1 (see [8, formula

(21)]). By definition, P+ + P− = I, where I is the identity operator. Therefore,

P+[κ
−
r,ℓfg] = P+[κ

−
r
2
,ℓf ]P+[κ

−
r
2
,ℓg] + P+[κ

−
r
2
,ℓf ]P−[κ

−
r
2
,ℓg] + P−[κ

−
r
2
,ℓf ]P+[κ

−
r
2
,ℓg].

Finally, κ−r
2
,ℓ =

∑ r
2
i=0

(
r/2
i

)
(2iℓ)

r
2
−iκ+i,ℓ, provided r

2
is a positive integer. These facts,

combined with part (a) of the proof, yield the bound

∥f̂ ∗ ĝ∥Lr,2
α (R±) ≤ c

r
2∑

i,j=0

∥f̂∥L̄i,2
s (R±)∥ĝ∥L̄j,2

s (R±)

≤ c∥f̂∥
L̄

r
2 ,2
s (R±)

∥ĝ∥
L̄

r
2 ,2
s (R±)

, r
2
∈ N. (2.4.8)
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(c) We note that for any s > −1
2
, w = 1 + |ξ|2s ∈ Aloc

+,2(λ) ∩ Aloc
∞ . Hence, by

Corollary 2.3.9,

[L̄2,r0
s (R+), L̄

2,r1
s (R+)]θ = L̄2,(1−θ)r0+θr1

s (R+),

θ ∈ (0, 1), r0, r1 ≥ 0, s > −1
2
. Viewing the convolution product in the Fourier space

as a bilinear map from L̄
r
2
,2

s (R+)× L̄
r
2
,2

s (R+) to Lr,2s (R+), s > 1
2
, r ≥ 2 and making

use of the classical multilinear complex interpolation theorem of A. Calderon (see

Theorem 2.2.1), we infer from (2.4.8)

∥f̂ ∗ ĝ∥Lr,2
s (R+) ≤ c∥f̂∥

L̄
r
2 ,2
s (R+)

∥ĝ∥
L̄

r
2 ,2
s (R+)

, s > 1
2
, r ≥ 2.

By virtue of [8, formula (21)],

∥f̂∥
L̄

r
2 ,r
s (R±)

≤ ∥f̂∥
L

r
2 ,2

0 (R±)
+ ∥f̂∥

L
r
2 ,2
s (R±)

≤ c∥f̂∥Lr,2
s (R±), 0 ≤ s ≤ r

2
,

while the direct application of the convolution Young inequality in the Fourier space,

followed by [8, formula (21)], for all s > −1
2

and r ≥ 0 gives

∥fg∥L2(R) ≤ c
(
∥f∥L2(R)∥ĝ∥L̄2

s(R±) + ∥f̂∥L̄2
s(R±)∥g∥L2(R)

)
≤ c
(
∥f∥L2(R)∥g∥L2(R) + ∥f̂∥Lr,2

s (R±)∥ĝ∥Lr,2
s (R±)

)
.

Combining the last three inequalities, we conclude that (2.4.7) holds, with 1
2
< s ≤ r

2

and r ≥ 2.

(d) To complete the proof, we remark that in the standard non-weighted Sobolev

settings (r = 0), (2.4.7) holds for any s > 1
2
, see [3]. Hence, the interpolation identity

(2.4.3) and part (c) of the proof, combined together, yield (2.4.7) for any r ≥ 0.

2.5 Auxiliary function spaces

In addition to the variable weigh Sobolev spaces defined in Section 2.4, the existence

analysis of Chapter 4 makes use of the scale Hs,r
µ,ε(R). The latter are Hilbert spaces

of real valued functions, under the inner product

⟨φ, ψ⟩Hs,r
µ,ε

=

∫
R
κsµφ̂ψ̂dξ + ε2

∫
R
∂rξ φ̂∂

r
ξ ψ̂dξ, ε > 0, 0 ≤ γ < 1, s, r ≥ 0,

where the Fourier symbol κµ(ξ) = 1− 2µ|ξ|+ ξ2, is defined in (1.3.4).
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In the case of ε = 0 or r = 0, we write shortly Hs
µ(R).4 Note that (1 − µ)κ0 ≤

κµ ≤ κ0 if ξ ∈ R and 0 ≤ µ < 1, so that Hs
µ(R) = Hs(R) as Banach spaces. In

particular, Hs
µ(R), with s > 1

2
and 0 ≤ µ < 1, are Banach algebras [3]. Observe also,

H0
µ,0(R) = L2(R). In the latter case, we omit all subscripts in the inner product and

the induced norm.

Most of the analysis of Chapter 4 is carried out in the frequency domain F [Hs,r
µ,ε(R)].

We let Ĥs,r
γ,ε(R) = F [Hs,r

µ,ε(R)]. The symbols Re Ĥs,r
µ,ε(R) and Im Ĥs,r

µ,ε(R) denote the

subspaces of even and odd Ĥs,r
µ,ε(R) functions, respectively. Ĥs

µ(R) is naturally iden-

tified with the weighted Lebesgue space L2(R, κsµdξ).

Section 4.2 deals with the regularity of traveling waves. There, C0(R) denotes

the space of continuous functions that vanish at infinity. Symbol W p,s
ρ (Ω) is reserved

for the scale of the exponentially weighted Sobolev space, equipped with the norm

∥φ∥W p,s
ρ

=
s∑
r=0

∥e
ρ|ξ|
p ∂rξφ∥Lp(Ω), 1 ≤ p ≤ ∞, ρ > 0, s ≥ 0.

In the case of s = 0, we write shortly Lpρ(Ω). Also, by definition L∞
ρ (Ω) = L∞(Ω).

4We use Greek subscripts to distinguish these spaces from the variable weight Sobolev spaces

Hs
r (R) of Section 2.4.

50



Chapter 3

Wellposedness in weighted settings

In this Chapter, we discuss the wellposedness of the non-linear Benjamin equation

in the settings of the variable weight Sobolev spaces defined in Section 2.4. In

context of the Benjamin equation, these spaces arise naturally and provide direct

control of the behavior of solutions and their weak derivatives for large values of x.

Our result complements and extends recent research on the global wellposedness of

the Benjamin equation in weighted Sobolev-like spaces and provides a theoretical

foundation for building robust numerical schemes.

3.1 Technical estimates

The wellposedness analysis of (1.1.4) relies on the properties of the scale Hs
r (R)

established in Chapter 2 and on two technical estimates allowing us to control linear

and nonlinear quantities appearing in the Benjamin equation. We begin our analysis

with the linear part of (1.1.4).

Let

A = −α∂x + βH∂xx + γ∂xxx

and let H be a Hilbert space obtained by completion of the Schwartz space ReS

with respect to the inner product ⟨·, ·⟩H . To the couple A and H, we associate the

bilinear form

QH(u, v) = ⟨Au, v⟩H , u, v ∈ ReS.
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Passing to the Fourier images and using the Cauchy-Schwarz inequality, it is not

difficult to verify that

QHs0 (R)(u, v) = −QHs0 (R)(v, u), (3.1.1a)∣∣QHs0 (R)(u, v)
∣∣ ≤ ∥u∥Hs1 (R)∥v∥H2s0−3−s1 (R), s0, s1 ∈ R. (3.1.1b)

Furthermore, we have

Lemma 3.1.1. For s > −1
2
, r > 0, the bilinear form QHs

r (R)(·, ·) satisfies∣∣QHs
r (R)(u, u)

∣∣ ≤ r(1 + r2)cs
(
∥u∥2Hs

r (R) + ∥u∥2Hs+2r(R)
)
, (3.1.2)

with cs > 0 controlled by s > −1
2

and the coefficients of A only.

Proof. (a) Assume initially u ∈ ReS. Then, (2.4.1b) and (3.1.1a) yield∣∣QHs
r (R)(u, u)

∣∣ = ∣∣∣⟨P+

[
[κ+r,ℓ,A]u

]
,P+[κ

+
r,ℓu]⟩H̊s(R)

∣∣∣,
where [κ+r,ℓ,A] = κ+r,ℓA−Aκ+r,ℓ is the commutator of A and κ+r,ℓ.

Direct calculations give

P+

[
[κ+r,ℓ,A]u

]
= P+

[
(A0κ

+
r,ℓ) · u+ ∂x

[
(A1κ

+
r,ℓ) · u

]
+ ∂xx

[
(A2κ

+
r,ℓ) · u

]]
,

with

A0 = −α∂x − βH∂xx + 4γ∂xxx, A1 = 2βH∂x − 3γ∂xx, A2 = 3γ∂x.

The last formula, combined with (2.4.5b) and the standard interpolation inequality1

∥u∥
H

s0(1−θ)+s1θ

r0(1−θ)+r1θ
(R) ≤ ∥u∥1−θ

H
s0
r0

(R)∥u∥
θ
H

s1
r1

(R), s0, s1 > −1
2
, r0, r1 ≥ 0, θ ∈ (0, 1),

yields

∥∥P+

[
[κ+r,ℓ,A]u

]∥∥
H̊s(R)

≤ r(1 + r2)c′s

2∑
j=0

∥∥P+

[
κ+r−1,ℓu

]∥∥
H̊s+j(R)

≤ r(1 + r2)cs

(∥∥P+

[
κ+r,ℓu

]∥∥
H̊s(R)+

∥∥P+

[
κ+r−1,ℓu

]∥∥
H̊s+2(R)

)
≤ r(1 + r2)cs

(
∥u∥Hs

r (R) + ∥u∥Hs+2r(R)
)
,

1The inequality follows directly from (2.4.3), as the complex interpolation functor [·, ·]θ is exact

of exponent θ ∈ (0, 1), see [12].
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where the generic constants cs, c′s > 0 depends on s > −1
2

and the coefficients

α, β and γ of the operator A only. The last bound, together with the standard

Cauchy-Schwarz inequality, completes the proof.

Let H be a Hilbert space employed in the definition of QH(·, ·). To control the

quadratic nonlinearity (u2)x, we define

TH(u, v, w) = 1
2
⟨u,wvx⟩H + 1

2
⟨v, wux⟩H , u, v, w ∈ ReS.

Partial integration, combined with the standard Gagliardo-Nirenberg inequality, in-

dicates that ∣∣TL2(R)(u, v, w)
∣∣ ≤ ∥u∥L2(R)∥v∥L2(R)∥w∥Hs(R), s > 3

2
. (3.1.3)

In addition to (3.1.3), we have

Lemma 3.1.2. For s > 1
2
, r ≥ 0, THs

r (R)(·, ·, ·) extends to a bounded trilinear form

in Hs
r (R)2 ×Hs+1(R). In particular, we have∣∣THs

r (R)(u, v, w)
∣∣ ≤ cs,r∥u∥Hs

r (R)∥v∥Hs
r (R)∥w∥Hs+1(R), (3.1.4)

with cs,r > 0 depending on s and r only.

Proof. (a) To begin, we assume that r = 0. For sufficiently regular distributions

u, v, w ∈ ReS, direct calculations give∣∣THs(R)(u, v, w)
∣∣ ≤ 1

2

∣∣⟨uv, wx⟩L2(R)
∣∣

+ 1
2

∫
R
|ŵ(ξ)|dξ

∫
R

∣∣|ζ|2s−1 − |ζ − ξ|2s−1
∣∣ · |ζ − ξ| · |ζ|

·
[
|û(ζ)v̂(ξ − ζ)|+ |v̂(ζ)û(ξ − ζ)|

]
dζ.

Using the elementary estimate |ξ2s−1
1 − ξ2s−1

2 | ≤ (2s − 1)|ξ1 − ξ2|(ξ2(s−1)
1 + ξ

2(s−1)
2 )

(that holds uniformly for all ξ1, ξ2 ∈ R+ and s > 1
2
), followed by Young’s inequality

(with exponents 2s > 1, 2s
2s−1

> 1), and changing the order of integration, we infer∣∣THs(R)(u, v, w)
∣∣ ≤ 1

2

∣∣⟨uv, wx⟩L2(R)
∣∣

+ 2s−1
2

∫
R
|û(ξ)||ξ|2sdξ

∫
R
|ζŵ(ζ)| · |v(ξ − ζ)|dζ

+ 2s−1
2

∫
R
|v̂(ξ)||ξ|2sdξ

∫
R
|ζŵ(ζ)| · |u(ξ − ζ)|dζ.
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This bound, together with the elementary inequality (|ξ1|+ |ξ2|)s ≤ 2s(|ξ1|s+ |ξ2|s),
yields

∣∣THs(R)(u, v, w)
∣∣ ≤ 1

2

∣∣⟨uv, wx⟩L2(R)
∣∣

+ (2s− 1)2s
∫
R
|ξŵ(ξ)|dξ

∫
R
|ζ|s|û(ζ)| · |ξ − ζ|s|v(ξ − ζ)|dζ

+ (2s− 1)2s−1

∫
R
|û(ξ)|dξ

∫
R
|ζ|s+1|ŵ(ζ)| · |ξ − ζ|s|v(ξ − ζ)|dζ

+ (2s− 1)2s−1

∫
R
|v̂(ξ)|dξ

∫
R
|ζ|s+1|ŵ(ζ)| · |ξ − ζ|s|u(ξ − ζ)|dζ.

On the account of the embedding Hs(R) ↪→ L2(R), the last inequality implies

∣∣THs(R)(u, v, w)
∣∣ ≤ cs,0∥u∥Hs(R)∥v∥Hs(R)∥w∥Hs+1(R), s > 1

2
, (3.1.5)

where the generic constant cs,0 > 0 depends on s > 1
2

only. The estimate (3.1.5)

shows that the trilinear form THs(R)(u, v, w) extends continuously to Hs(R)2 ×
Hs+1(R) and the case of r = 0 is settled.

(b) Next, we let s = 1 and r > 0. Using the identities

P+[uv] = P+[u]P+[v] + P+

[
P+[u]P−[v] + P−[u]P+[v]

]
,

⟨P±[u],P∓[v]⟩H̊s(R) = 0, u, v ∈ H̊s(R), s ∈ R,

and the commutativity of Fourier multipliers P± and ∂x, we infer

TH1
r (R)(u, v, w) = −1

2
⟨wx, uv⟩L2(R)

+
[
⟨P+[κ

+
r,ℓu],P+[w]P+[κ

+
r,ℓv]x⟩H̊1(R)

+ ⟨P+[κ
+
r,ℓv],P+[w]P+[κ

+
r,ℓu]x⟩H̊1(R)

]
− r
[
⟨P+[κ

+
r,ℓu],P+[w]P+[κ

+
r−1,ℓv]⟩H̊1(R)

+ ⟨P+[κ
+
r,ℓv],P+[w]P+[κ

+
r−1,ℓu]⟩H̊1(R)

]
:= I1 + I2 − rI3.

For s > 1
2
, r > 0, the embedding Hs

r (R) ↪→ Hs(R) gives

|I1| ≤ c∥u∥H1
r (R)∥v∥H1

r (R)∥w∥H2(R),

with c > 0 depending on r > 0 only.
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To bound I2, we pass to the frequency space. Calculations similar to those of

part (a) above, yield

|I2| ≤ c∥u∥H1
r (R)∥v∥H1

r (R)∥w∥H2(R),

with an absolute constant c > 0.

It remains to estimate I3. Passing to the Fourier images, changing the order of

summation and using the Cauchy-Schwartz inequality, we obtain

|I3| ≤ c∥u∥H1
r (R)
(
∥J 1−r

− [v̂]∥L2
1(R)∥w∥H1(R) + ∥J 1−r

− [v̂]∥L2(R)∥w∥H2(R)
)

+ c∥v∥H1
r (R)
(
∥J 1−r

− [û]∥L2
1(R)∥w∥H1(R) + ∥J 1−r

− [û]∥L2(R)∥w∥H2(R)
)
,

with an absolute constant c > 0. On the account of (2.4.5b), we have

∥J 1−r
− [û]∥L2

sR) ≤ cs∥J −r
− [û]∥L2

s(R), s > −1
2
,

with a constant cs > 0. Hence, the standard density argument, combined with our

estimates, gives

|
∣∣TH1

r (R)(u, v, w)
∣∣| ≤ c1r∥u∥H1

r (R)∥v∥H1
r (R)∥w∥H2(R), r ≥ 0. (3.1.6)

(c) The proof of the general case s > 1
2
, r ≥ 0, is based on the following straight-

forward modification of the standard interpolation argument:

Given a regular compatible interpolation pair (H0, H1) of Hilbert spaces with H :=

H0∩H1 being dense inHi, i = 0, 1; a regular compatible interpolation pair of Banach

spaces (B0, B1), with H being dense in B := B0 ∩ B1; and the family of trilinear

forms

Tθ(u, v, w) = ⟨u, T (v, w)⟩[H0,H1]θ + ⟨v, T (u,w)⟩[H0,H1]θ , θ ∈ (0, 1),

T ∈ L(H2
i , Hi), i = 0, 1,

defined initially in H3 and satisfying

|Ti(u, v, w)| ≤ ci∥u∥Hi
∥v∥Hi

∥w∥Bi
, i = 0, 1.

We claim that Tθ extends to a bounded trilinear form in [H0, H1]
2
θ × [B0, B1]θ and

|Tθ(u, v, w)| ≤ c1−θ0 cθ1∥u∥[H0,H1]θ∥v∥[H0,H1]θ∥w∥[B0,B1]θ , θ ∈ (0, 1). (3.1.7)

55



To see that (3.1.7) holds, it is sufficient to observe that Hi, i = 0, 1, can be

realized as completions of H with respect to the inner products ⟨·, ·⟩H0 = ⟨·,M·⟩H
and ⟨·, ·⟩H1 = ⟨·, I − M·⟩H , where M, I − M are positive definite bounded and

selfadjoint maps in H. Since the complex interpolation functor [·, ·]θ is exact of

exponent θ ∈ (0, 1), the theory of exact interpolation of Hilbert spaces (see the

classical paper [34]) implies that ⟨·, ·⟩[H0,H1]θ = ⟨·,M1−θ(I −M)θ·⟩H , θ ∈ (0, 1).

Further, the map

z 7→ M1−z(I −M)zu,

u ∈ H, is analytic in the strip S := {0 < Re z < 1} and is continuous and bounded in

its closure S (see e.g., [79] for the standard results on spectral resolution of bounded

normal operators and the associated functional calculus). Hence, for fu(z), fv(z) ∈
F [H0, H1] and fw(z) ∈ F [B0, B1]

2, with values in H the function

g(z) = cz−1
0 c−z1 ⟨fu(z),M1−z(I −M)zT (fv(z), fw(z))⟩H

+ cz−1
0 c−z1 ⟨fv(z),M1−z(I −M)zT (fu(z), fw(z))⟩H

is well defined, analytic in S and continuous and bounded in S. The last assertion

allows to repeat verbatim the standard interpolation and density arguments (see

e.g. [12, Theorem 4.1.2, p.88, or 4.4.2, p. 97]) and thus (3.1.7) is settled.

(d) To complete the proof of (3.1.4), we note that the scale of Hilbert spaces

Hs
r (R) and the family THs

r (R)(·, ·, ·), s > 1
2
, r ≥ 0, of the trilinear forms fall in

the scope of the interpolation argument discussed above. Indeed, any pair (s, r) ∈
(1
2
,∞) × R+ can be realized as a convex combination of two points laying in the

lines ℓ0 = (1
2
,∞)×{0} and ℓ1 = {1}×R+, respectively. Furthermore, the endpoint

spaces, chosen this way, satisfy all the density constraints imposed in item (c) above.3

Hence, the interpolation identity (2.4.3), combined with (3.1.5), (3.1.6) and (3.1.7),

settles the claim.
2The notation F [H0, H1] and F [B0, B1] for the spaces of vector valued analytic functions, with

boundary values in Hi and Bi, i = 0, 1, respectively, is standard, see Section 2.2.
3The claim follows immediately from denseness of embeddings in (2.4.2a).
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3.2 Wellposedness

The main result of this Chapter is the following theorem

Theorem 3.2.1. Assume u0 ∈ Hs
r (R)∩Hs+2r+1(R), with 1

2
< s < r and s+2r ≥ 3.

Then for any finite value of 0 < T <∞, the unique global weak solution u to (1.1.4)

satisfies

u ∈ L∞([0, T ];Hs
r (R) ∩Hs+2r+1(R)). (3.2.1)

Proof. (a) It is well known, that for the initial data u0 ∈ Hs(R), s ≥ 3, the Ben-

jamin equation is classically globally wellposed, see the discussion in Section 1.2.

In particular, for such input data and any finite value of 0 < T < ∞, we have

u ∈ L∞([0, T ], Hs(R)). Furthermore, for any v ∈ L2(R)

⟨ut, v⟩L2 = QL2(R)(u, v)− 2δ⟨uux, v⟩L2(R), t ∈ (0, T ], (3.2.2a)

u(0) = u0, n ≥ 0. (3.2.2b)

Hence, to complete the proof of Theorem 3.2.1, it remains to show that under the

assumption u0 ∈ Hs
r (R) ∩Hs+2r+1(R), the inclusion (3.2.1) holds.

(b) For the sake of brevity, for s > −1
2
, r ≥ 0, we let

W s
r (R) = Hs

r (R) ∩Hs+2r(R), ⟨·, ·⟩W s
r (R) := ⟨·, ·⟩Hs

r (R) + ⟨·, ·⟩Hs+2r(R).

On the account of Lemma 2.4.1, the embedding

W s
r (R) ↪→ L2(R), 0 < s < r, (3.2.3)

is dense and compact. Hence, for 0 < s < r, L2(R) can be realized as a completion

of W s
r (R) with respect to the inner product ⟨·, ·⟩L2(R) = ⟨·,M·⟩W s

r (R), with some

positive definite bounded selfadjoint map M ∈ L(W s
r (R)). It is not difficult to

verify that M extends uniquely to a selfadjoint positive definite bounded linear

map Ms
r ∈ L(L2(R)) and that Ms

rL
2(R) ⊂ W s

r (R). By virtue of (3.2.3), the last

inclusion indicates that Ms
r, with 0 < s < r, is compact.

(c) By part (b) of the proof, the spectrum of Ms
r is discrete, while the collection

of associated eigenfunctions {φk}k≥0 is a complete orthogonal basis in both L2(R)

and W s
r (R), 0 < s < r.
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We denote Pn = span{φk}nk=0 and let Pn : L2(R) → Pn be the associated

orthogonal projector. By the definition of W s
r (R), for s+2r ≥ 3

2
, we have {φk}k≥0 ⊂

H
3
2 (R). Hence, the sequence of linear Galerkin approximations

⟨unt, v⟩L2(R) = QL2(R)(un, v)− 2δ⟨uunx , v⟩L2(R), v ∈ Pn, (3.2.4a)

un(0) = Pn[u0], n ≥ 0, (3.2.4b)

is well defined.

The special choice of the orthogonal basis indicates that

⟨unt, v⟩W s
r (R) = QW s

r (R)(un, v)− 2δ⟨uunx, v⟩W s
r (R), v ∈ Pn. (3.2.5)

Letting v = un in (3.2.5) and using Lemmas 3.1.1-3.1.2, for 1
2
< s < r, we obtain

d
dt
∥un∥2W s

r (R) ≤ 2
[
r(1 + r2)cs + 2δcs,r∥u∥Hs+2r+1(R)

]
∥un∥2W s

r (R). (3.2.6)

Bound (3.2.6), combined with the standard Gronwall’s inequality, indicates that

{un}n≥0 ∈ L∞([0, T ];W s
r (R)), 1

2
< s < r, s+ 2r ≥ 3

2
, (3.2.7a)

uniformly in n ≥ 0, for every finite fixed value of 0 < T <∞. In turn, for s+2r ≥ 3,

using (3.1.1b), (3.1.3), (3.2.7a), (3.2.3), integrating over the interval [0, T ] and using

the Cauchy-Schwarz inequality, we obtain

∥unt∥L2([0,T ]×R) ≤ cT
1
2∥u∥L∞([0,T ];Hs+2r+1(R))∥un∥L∞([0,T ];Hs+2r(R)),

where the generic constant c > 0 depends on the coefficients α, β, γ and δ of (1.1.4)

only. From the last bound it follows that

{unt}n≥0 ∈ L2([0, T ]× R), (3.2.7b)

uniformly in n ≥ 0.

(c) The rest of the proof is standard. Using the uniform inclusions (3.2.7) and

passing to subsequences, we conclude that: (i) {un}n≥0 and {unt}n≥0 converge weak-

∗ to some w and wt in L∞([0, T ];W s
r (R)) and L2([0, T ]×R), respectively; (ii) un(0)

converges weakly to u0 in L2(R); and (iii) in view of (3.2.3), {un}n≥0, converges
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strongly in L2([0, T ] × R). Passing to the weak limit in (3.2.4), we see that for

s+ 2r ≥ 3,

⟨wt, v⟩L2(R) = QL2(R)(w, v)− 2δ⟨uwx, v⟩L2(R), v ∈ L2(R), (3.2.8a)

w(0) = u0. (3.2.8b)

Subtracting (3.2.2), (3.2.8) and letting v = w − u, in view of (3.1.1a) and (3.1.3),

we obtain
d
dt
∥u− w∥2L2(R) ≤ 2δ∥u∥Hs+2r+1(R)∥u− w∥2L2(R).

Since ∥u(0) − w(0)∥L2(R) = 0, Gronwall’s inequality gives ∥u − w∥L∞([0,T ];L2(R)) = 0

and since w ∈ L∞([0, T ];W s
r (R)), (3.2.1) follows. The proof is complete.

Theorem 3.2.1 significantly extends the wellposedness results of [95], discussed

in Section 1.2.3. Indeed, for s ∈ N, we have (see [89] and discussion in Section 2.4.1)

∥u∥Hs
r (R) ≈ ∥(1 + | · |)r−su∥L2(R) + ∥(1 + | · |)ru(s)∥L2(R), s ∈ N, r > 0.

Consequently, for large values of x, the solutions to (1.1.4) behave as O(|x|−p),
x→ ∞, for any given value of 0 < p, provided p ≤ r − s and the asymptotic of the

input data u0 and u(s)0 is properly controlled at infinity (i.e., if u0 ∈ Zs+2r+1,r−s and

u
(s)
0 ∈ Z0,r, 1

2
< s < r, s+ 2r ≥ 3, in the notation of [95]).
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Chapter 4

Traveling waves

In this Chapter, the problem of existence of Benjamin traveling waves is settled

globally for 0 ≤ µ < 1 via a combination of concentration-compactness and a small

viscosity limit techniques. Further, a detailed study of large ξ-asymptotic and reg-

ularity of traveling wave solutions is provided. Finally, the orbitally stability of

quadratic waves (ℓ = 2) for small values of the wavespeed parameter µ is theoreti-

cally confirmed.

4.1 Existence of solitary waves

4.1.1 A small-viscosity variational problem

Given λ, ε > 0, we study the following perturbed/small-viscosity variational prob-

lem:

Iελ = sup{Gε(φ) | ∥φ∥2H1
µ
= λ, φ ∈ H1,1

µ,ε(R), φ(x) = φ(−x)}, (4.1.1a)

Gε(φ) = 1
ℓ+1

⟨φ, φℓ⟩ − ε2

2
∥xφ∥2, (or Ĝε(φ̂) = αℓ

ℓ+1
⟨φ̂, φ̂∗ℓ⟩ − ε2

2
∥φ̂ξ∥2), (4.1.1b)

where ℓ ≥ 2 is an integer and [·]∗ℓ denotes the Fourier convolution power. Below,

we show that the supremum in (4.1.1a) is attained for some φµ,ε ∈ H1,1
µ,ε(R).

We begin with several elementary observations. First, in equation (1.3.2) for a

fixed 0 ≤ µ < 1, the quantities Iελ are uniformly bounded independently of ε, as

H1
µ(R) are Banach algebras. Second, for a fixed λ > 0 the supremum Iελ is strictly
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positive, provided ε is sufficiently small (e.g. if ε < cλ
ℓ−1
4 , with some absolute

constant c > 0). The claim is easy to verify by fixing a function φ ∈ H1,1
µ,ε(R) with

nonnegative Fourier image φ̂ (take for instance φ̂ = e−ξ
2) and then choosing ε so

that Ĝε(φ̂) > 0. Finally, formula (4.1.1b) implies that any maximizing sequence of

(4.1.1a) (i.e. a sequence {φn | ∥φn∥2H1
µ
= λ, φn(x) = φn(−x)}n≥0 ⊂ H1,1

µ,ε(R) that

satisfies limn→∞ Gε(φn) = Iελ) is uniformly bounded in H1,1
µ,ε(R).

The preceding observations ensure that variational problem (4.1.1) is well posed.

To obtain the maximizer φµ,ε, we employ the classical concentration-compactness ar-

gument of P. L. Lions [65, 66]. The first ingredient of the method is super-additivity

of Iελ.

Lemma 4.1.1. For each λ > 0 and any α ∈ (0, λ), we have

Iελ > Iεα + Iελ−α. (4.1.2)

Proof. The supremum Iελ is super-linear. Indeed, let {φn | ∥φn∥2H1
µ
= λ, φn(x) =

φn(−x)}n≥0 be a maximizing sequence for (4.1.1). Then for any θ > 1, we have

θIελ = θ lim
n→∞

Gε(φn) ≤ θ
1−ℓ
2 lim sup

n→∞
Gε(θ

1
2φn) ≤ θ

1−ℓ
2 Iεθλ < Iεθλ.

Inequality (4.1.2) follows directly from this estimate, see [66, Lemma II.1].

The second ingredient is the following adaption of the classical concentration-

compactness principle of P. L. Lions [65, Lemma III.1] to the present settings.

Lemma 4.1.2. Let {φn}n≥0 be a sequence of even functions in H1
µ(R), that satisfies

∥φn∥2H1
µ
= λ and ε2∥φ̂nξ∥ ≤ M , for all n ≥ 0 and some fixed λ > 0, 0 ≤ µ < 1 and

M > 0. There exists a subsequence, still denoted by {φn}n≥0, that satisfies one of

the following three alternatives:

(a) (Compactness) For any δ > 0, one can find ρ > 0 so that

∥χ[−ρ,ρ]φ̂n∥2Ĥ1
µ
≥ λ− δ, for all n ≥ 0. (4.1.3)

(b) (Vanishing) For each fixed value of ρ > 0, the sequence satisfies

lim
n→∞

sup
ξ

∥χ[ξ−ρ,ξ+ρ]φ̂n∥2Ĥ1
µ
= 0. (4.1.4)
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(c) (Dichotomy) There exist two sequences {φn,i}n≥0, i = 1, 2, and α ∈ (0, λ),

such that

lim
n→∞

∥φ̂n,1 + φ̂n,2 − φ̂n∥Ĥ1
µ
= 0, (4.1.5a)

lim
n→∞

∥φ̂n,1∥2Ĥ1
µ
= α, lim

n→∞
∥φ̂n,2∥2Ĥ1

µ
= λ− α, (4.1.5b)

lim
n→∞

dist(supp φ̂n,1, supp φ̂n,2) = ∞, (4.1.5c)

lim sup
n→∞

ε2
(
∥φ̂n,1ξ∥2 + ∥φ̂n,2ξ∥2 − ∥φ̂nξ∥2

)
≤ 0. (4.1.5d)

Proof. The proof of parts (b) and (c) is identical to that of [65, Lemma III.1]. To

prove part (a), we observe that by the same [65, Lemma III.1], there exists a sequence

{ξn}n≥0, such that for any δ > 0, we can find 0 < ρ′ <∞, so that

∥χ[ξn−ρ′,ξn+ρ′]φ̂n∥2Ĥ1
µ
≥ λ− δ.

Since φ̂n are even, it follows that lim supn→∞ |ξn| < ∞. Otherwise, we are able to

choose a subsequence {ξnk
}k≥0, so that [ξnk

− ρ′, ξnk
+ ρ′]∩ [−ξnk

− ρ′,−ξnk
+ ρ′] = ∅

and then obtain λ = ∥φnk
∥2H1

µ
≥ 2λ − 2δ. Which is obviously impossible when δ is

small. Hence, letting ρ = ρ′ + lim supn→∞ |ξn|, we arrive at (4.1.3).

Lemmas 4.1.1 and 4.1.2, combined together, yield existence of a maximizer.

Theorem 4.1.3. Assume ε is sufficiently small so that Iελ > 0. Then any maxi-

mizing sequence {φn | ∥φn∥2H1
µ
= λ, φn(x) = φn(−x)}n≥0 of (4.1.1) contains a sub-

sequence, still labeled by {φn}n≥0 that converges strongly in H1,1
µ,ε(R) to a maximizer

φµ,ε of (4.1.1).

Proof. (a) The proof is standard and consists in ruling out of vanishing and di-

chotomy. So assume the maximizing sequence is vanishing. Then, for ρ > 0 fixed,

we have

(1− µ)
1
2∥χ[ξ−ρ,ξ+ρ]φ̂n∥ ≤ ∥χ[ξ−ρ,ξ+ρ]φ̂n∥Ĥ1

µ
< δn,

with limn→∞ δn = 0, uniformly in ξ. Let Ij = [(j − 1/2)ρ, (j + 1/2)ρ], φ̂n,j = χIj φ̂n,
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j ∈ Z and ξ ∈ Ik. Classical Cauchy-Schwartz inequality implies initially

|φ̂n ∗ φ̂n|(ξ) ≤
∑
i∈Z

1∑
j=−1

|φ̂n,i ∗ φ̂n,k+j−i|(ξ)

≤
∑
i∈Z

1∑
j=−1

∥φ̂n,i∥∥φ̂n,k+j−i∥ ≤ 3δn
1− µ

∑
i∈Z

∥φ̂n,i∥Ĥ1
µ

inf{κ
1
2
0 | ξ ∈ Ii}

≤ 3δn
1− µ

(∑
i∈Z

sup{κ−1
0 | ξ ∈ Ii}

)1/2
∥φ̂n∥Ĥ1

µ
=: c(γ, ρ)λ

1
2 δn,

and then

⟨φ̂n, φ̂∗ℓ
n ⟩ = ⟨φ̂∗2

n , φ̂
∗(ℓ−1)
n ⟩ ≤ ∥φ̂∗2

n ∥L∞∥φ̂n∥ℓ−1
L1

≤ c(µ, ρ)∥κ−
1
2

µ ∥ℓ−1λ
ℓ
2 δn.

Passing to the limit in the last inequality, we conclude that 0 < Iελ ≤ 0, which is

impossible.

(b) Assume the dichotomy occurs. We define two sequences {βn,i}n≥0, i = 1, 2,

so that ∥βn,1φ̂n,1∥2Ĥ1
µ
= α and ∥βn,2φ̂n,2∥2Ĥ1

µ
= λ−α. In view of (4.1.5a) and (4.1.5b),

βn,i → 1, i = 1, 2, and δn := ∥βn,1φ̂n,1 + βn,2φ̂n,2 − φ̂n∥Ĥ1
µ
→ 0, as n → ∞. Further,

by virtue of (4.1.5c), at least one of the quantities |ζ|, |ξ − ζ|, where ζ ∈ supp φ̂n,1

and ξ − ζ ∈ supp φ̂n,2, increases indefinitely with n. Consequently,

lim
n→∞

δ′n := lim
n→∞

sup{κ−
1
2

µ (ζ)κ
− 1

2
µ (ξ − ζ) | ζ ∈ supp φ̂n,1, ξ − ζ ∈ supp φ̂n,2} = 0,

and δ′′n := ∥φ̂n,1∗φ̂n,2∥L∞ → 0 as n→ ∞. Using these facts and the Cauchy-Schwartz

inequality, it is not difficult to verify that

⟨φ̂n, φ̂∗ℓ
n ⟩ ≤ ⟨(βn,1φ̂n,1), (βn,1φ̂n,1)∗ℓ⟩+ ⟨(βn,2φ̂n,2), (βn,2φ̂n,2)∗ℓ⟩+ δ′′′n ,

with δ′′′n ≤ c(α, µ, λ)(δn + δ′′n). The last estimate, combined with (4.1.5d), implies

Iελ ≤ lim sup
n→∞

Ĝε(βn,1φ̂n,1) + lim sup
n→∞

Ĝε(βn,2φ̂n,2)

+ lim sup
n→∞

ε2

2
(∥φ̂n,1ξ∥2 + ∥φ̂n,2ξ∥2 − ∥φ̂nξ∥2) ≤ Iεα + Iελ−α,

and we conclude that the dichotomy does not occur, for the last inequality contra-

dicts Lemma 4.1.1.
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(c) In view of (a) and (b) above, it follows that any maximizing sequence {φ̂n}n≥0

shall satisfy the compactness alternative (4.1.3) of Lemma 4.1.2. Furthermore,

since κµ, κ−1
µ are bounded on compact intervals, any such sequence, restricted to

a nonempty interval [−ρ, ρ], is precompact in the weighted space L2([−ρ, ρ], κµdξ),
see [3]. Therefore, letting δn = 1

n+1
, n ≥ 0, and using (4.1.3), combined with the

standard diagonal argument, we extract a subsequence, still labeled by {φn}n≥0,

that converges strongly to some φµ,ε ∈ H1
µ(R). Straightforward calculations show

that

∣∣⟨φ̂n, φ̂∗ℓ
n ⟩ − ⟨φ̂µ,ε, φ̂∗ℓ

µ,ε⟩
∣∣ ≤ ∥φn − φµ,ε∥H1

µ√
1− µ2

(
∥φ̂∗ℓ

n ∥+
ℓ∑

j=1

∥φ̂∗j
µ,ε ∗ φ̂∗(ℓ−j)

n ∥
)
,

and, since the expression in the round brackets is uniformly bounded,1, we have

lim
n→∞

⟨φ̂n, φ̂∗ℓ
n ⟩ = ⟨φ̂µ,ε, φ̂∗ℓ

µ,ε⟩.

The sequence {φn}n≥0 is uniformly bounded in H1,1
µ,ε(R) and hence has a subse-

quence that converges weakly to the same limit φµ,ε in H1,1
µ,ε(R). Since ∥φ̂µ,εξ∥ ≤

lim inf
n→∞

∥φ̂nξ∥, we have Gε(φµ,ε) ≥ Iελ. Thus, Gε(φµ,ε) = Iελ and φµ,ε maximizes

Gε(·). Finally, the identities Ĝε(φ̂µ,ε) = Iελ and lim
n→∞

⟨φ̂n, φ̂∗ℓ
n ⟩ = ⟨φ̂µ,ε, φ̂∗ℓ

µ,ε⟩ imply

lim
n→∞

∥φ̂nξ∥ = ∥φ̂µ,εξ∥ and lim
n→∞

∥φn∥H1,1
µ,ε

= ∥φµ,ε∥H1,1
µ,ε

. Hence, the convergence is

strong in H1,1
µ,ε(R).

4.1.2 The small-viscosity limit

Let φµ,ε be a nontrivial maximizer obtained in Theorem 4.1.3. In view of the ele-

mentary inequality Ĝε(φ̂) ≤ Ĝε(|φ̂|), it follows that maximizers φµ,ε are translates of

positive definite,2 even functions F−1[|φ̂µ,ε|]. Below, we study the limit behavior of

even positive definite solutions φµ,ε. We start with two elementary observations.

Lemma 4.1.4. The supremum Iελ is a strictly decreasing function of |ε|. The limit

quantity Iλ = lim
ε→0

Iελ is super-linear and, hence, is super-additive. Furthermore,

Iλ = sup{G(φ) | ∥φ∥2H1
µ
= λ, φ ∈ H1

µ(R), φ(x) = φ(−x)}, G := G0. (4.1.6)
1Recall that H1

µ(R), with 0 ≤ µ < 1, are Banach algebras.
2The classical result of S. Bochner asserts that φ is positive definite iff φ̂ ≥ 0.
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Proof. (a) For 0 < ε1 < ε2, we have

Iε2λ = Gε2(φµ,ε2) < Gε1(φµ,ε2) ≤ Iε1λ .

This settles the first claim. Further, since Iελ are uniformly bounded by a constant

independent of ε, it follows that the quantity Iλ = lim
ε→0

Iελ = sup
ε>0

Iελ is well defined.

The super-linearity and super-additivity of Iλ are verified in the same way as in

Lemma 4.1.1.

(b) To prove the second assertion, we let

Īλ = sup{G(φ) | ∥φ∥2H1
µ
= λ, φ ∈ H1

µ(R), φ(x) = φ(−x)}.

Since Gε(φ) ≤ G(φ), for all ε > 0 and φ ∈ H1,1
µ,ε, we have Iλ ≤ Īλ. Assume the strict

inequality holds. By definition of Īλ, for any δ1 > 0 there exists φ ∈ H1
µ(R), such

that G(φ) > Īλ− δ1. Further, since H1,1
µ,1(R) is dense in H1

µ(R), for any δ2 > 0, there

exists an even H1,1
µ,1(R) function ψ, such that ∥ψ∥2H1

µ
= λ and ∥φ− ψ∥H1

µ
≤ δ2. Note

also that H1
µ(R) is a Banach algebra, therefore |G(φ) − G(ψ)| ≤ c(λ, ℓ)∥φ − ψ∥H1

µ
,

with c(λ, ℓ) > 0 that depends on λ and ℓ only. Combining all the inequalities

together, we infer

Gε(ψ) = G(ψ)− ε2∥xψ∥2 > G(φ)−
[
c(λ, ℓ)δ2 + ε2∥xψ∥2

]
> Īλ −

[
δ1 + c(λ, ℓ)δ2 + ε2∥xψ∥2

]
> Iλ,

provided δ1, δ2 and ε are small. However, by definition of Iλ, Gε(ψ) ≤ Iλ. Hence,

Iλ = Īλ, i.e. (4.1.6) holds.

Lemma 4.1.5. Any sequence {φµ,εn}n≥0, with εn → 0, contains a subsequence that

satisfies the compactness alternative of Lemma 4.1.2.

Proof. The result follows from Lemma 4.1.4 in the same way as parts (a), (b) of

Theorem 4.1.3 follow from Lemma 4.1.1.

As evident from the proof of Lemma 4.1.4, any sequence {φµ,εn}n≥0, with εn → 0

is maximizing for the variational problem (4.1.6). Unfortunately, the arguments em-

ployed in part (c) of Theorem 4.1.3 are not applicable in the present situation as we

do not have uniform a priori estimates for ∥xφµ,εn∥. Nevertheless, the compactness

alternative still allows us to extract some useful information.
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Lemma 4.1.6. Let {φn}n≥0 be uniformly bounded in H1
µ(R) (say ∥φn∥H1

µ
≤ M)

and {ψn}n≥0 satisfy the compactness alternative of Lemma 4.1.2. Then there exist

subsequences, still labeled by {φn}n≥0 and {ψn}n≥0, such that φn → [{φn}], ψn →
[{ψn}] and φnψn → [{φnψn}] weakly in H1

µ(R),3 and

[{φnψn}] = [{φn}][{ψn}]. (4.1.7)

Proof. By the assumptions {φn}n≥0, {ψn}n≥0 are uniformly bounded in H1
µ(R),

hence the sequence of products {φnψn}n≥0 is also uniformly bounded and all three

are weakly compact in H1
µ(R). Passing to the subsequences, if necessary, we con-

clude that φn → [{φn}], ψn → [{ψn}] and φnψn → [{φnψn}] weakly in H1
µ(R).

Therefore, for a fixed h ∈ L2(R), we have4

⟨ĥ, φ̂n ∗ ψ̂n⟩ = ⟨ĥ ∗ [{φ̂n}], ψ̂n⟩+ ⟨ĥ ∗ (φ̂n − [{φ̂n}]), ψ̂n⟩.

As n → ∞, the first term approaches ⟨h, [{φn}][{ψn}]⟩, we have to show that the

second term vanishes.

Fix δ > 0 and ρ > 0, so that ∥χ[−ρ,ρ]ψ̂n∥2Ĥ1
µ
≥ λ− δ, for all n ≥ 0, and split the

second term as follows

⟨ĥ ∗ (φ̂n − [{φ̂n}]), ψ̂n⟩ = ⟨ĥ ∗ (φ̂n − [{φ̂n}]), χR/[−ρ,ρ]ψ̂n⟩

+ ⟨ĥ ∗ (φ̂n − [{φ̂n}]), χ[−ρ,ρ]ψ̂n⟩ =: A1,n + A2,n.

The first quantity is easy to estimate. Straightforward calculations yield

|A1,n| ≤ ∥ĥ ∗ (φ̂n − [{φ̂n}])∥L∞∥χR/[−ρ,ρ]ψ̂n∥L1 ≤ ∥κ−
1
2

µ ∥√
1− µ2

2M∥h∥
√
δ.

To bound A2,n, we let Ttĥ(·) = ĥ(t−·) and gn(t) = ĥ ∗ (φ̂n− [{φ̂n}])(t) = ⟨Ttĥ, φ̂n−
[{φ̂n}]⟩. Then

|A2,n| ≤ ∥κ−
1
2

µ ∥
√
λ∥gn∥L∞([−ρ,ρ]).

Since φ̂n → [φ̂] weakly, it follows that gn → 0 pointwise in [−ρ, ρ]. Furthermore,

∥gn∥L∞([−ρ,ρ]) ≤ 2M∥κ−
1
2

µ ∥∥h∥, |gn(t)− gn(τ)| ≤ 2M∥κ−
1
2

µ ∥∥Tt−τ ĥ− ĥ∥.
3Here and everywhere below, we use square brackets to denote the operation of taking weak

limits.
4Note that the operations [·] and ·̂ commute.
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The group of translations {Tt}t∈R is continuous in L2(R), and we conclude that

the sequence {gn}n≥0 is equibounded and equicontinuous in C[−ρ, ρ]. The classical

Arzela-Ascoli theorem [78, Theorem 11.28], combined with the pointwise conver-

gence mentioned earlier on, implies that gn → 0 in the strong topology of C[−ρ, ρ].
Hence,

lim
n→∞

|A2,n| ≤ ∥κ−
1
2

µ ∥
√
λ lim
n→∞

∥gn∥L∞[−ρ,ρ] = 0,

and

lim
n→∞

|⟨h, φnψn⟩ − ⟨h, [{φn}][{ψn}]⟩| ≤
∥κ−

1
2

µ ∥√
1− µ2

2M∥h∥
√
δ.

Since δ > 0 is arbitrary, we conclude that φnψn → [{φn}][{ψn}] in the weak topology

of L2(R). Note that [{φn}], [{ψn}] ∈ H1
µ(R) and so is the product [{φn}][{ψn}],

therefore density of L2(R) in H−1(R) indicates that (4.1.7) holds in H1
µ(R).

Lemmas 4.1.4-4.1.6 yield the main result of the section.

Theorem 4.1.7. For each fixed value of 0 ≤ µ < 1, there exists a nontrivial

even positive definite solution φµ ∈ H1
µ(R) of (1.3.4) that delivers the supremum

to (4.1.6), i.e. G(φµ) = I∥φµ∥2
H1
µ

.

Proof. (a) Our arguments are based on the following observation: in (4.1.1) both

the objective functional Gε(·) and the constraint are of class C1 (in fact analytic).

Since the constraint is regular, the classical principle of Lagrange implies

⟨h, φℓµ,ε⟩ − ε2⟨xh, xφµ,ε⟩ = 2τ⟨h, φµ,ε⟩H1
µ
. (4.1.8)

Identity (4.1.8) holds for all h ∈ H1,1
µ,ε(R), hence

τ = 1
2λ

(
(ℓ+ 1)Iελ + (ℓ− 1) ε

2

2
∥xφµ,ε∥2

)
> (ℓ+1)

2λ
Iε0λ > 0.

In view of Lemma 4.1.4, the inequality holds for all 0 < ε < ε0 and some fixed ε0.

Let θ ∈ C∞
0 (R) be a smooth nonnegative cut-off function with supp θ = [−2, 2],

that satisfies θ(x) = 1, |x| ≤ 1. We denote θρ(·) = θ(·/ρ), ρ > 0, and let h(x) =

x2θρ(x)φµ,ε(x) in (4.1.8), to obtain

1
2τ
⟨θρ(xφµ,ε)2, φℓ−1

µ,ε ⟩ − ε2

2τ
⟨θρx2φµ,ε, x2φµ,ε⟩

= ⟨θρ(xφµ,ε), (xφµ,ε)− 2µH[(xφµ,ε)
′]⟩+ ⟨θρ(xφµ,ε)′, (xφµ,ε)′⟩

+ 2µ⟨θρ(xφµ,ε),H[φµ,ε]⟩ −
1

2
⟨(2θρ + 2xθ′ρ + x2θ′′ρ)φµ,ε, φµ,ε⟩.
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Rearranging the terms and sending ρ to infinity, we arrive at

∥xφµ,ε∥2H1,1
µ,ε̄

= ∥φµ,ε∥2 + 1
2τ
⟨x2φ2

µ,ε, φ
ℓ−1
µ,ε ⟩ − µφ̂µ,ε(0)

2, ε̄ = ε√
τ
. (4.1.9)

(b) Identities (4.1.8) and (4.1.9) have two important consequences. First, for each

fixed value of ε > 0, xφµ,ε ∈ H1,1
µ,ε̄(R), so that every even nonnegative maximizer

φ̂µ,ε satisfies

φ̂µ,ε − ε̄2

2κµ
φ̂µ,εξξ =

αℓ

2τκµ
φ̂∗ℓ
µ,ε, (4.1.10)

in the weak sense of H1
µ(R). Second, it follows that each sequence {φµ,εn}n≥0, with

εn → 0, contains nontrivial weak limit points.

Indeed, passing to subsequences if necessary and using Lemma 4.1.5, we may

assume that the sequence {φµ,εn}n≥0 converges weakly to [φµ] ∈ H1
µ(R) and in

addition, satisfies the compactness alternative of Lemma 4.1.2. That is for any δ > 0

there exists ρ > 0, such that ∥χ[−ρ,ρ]φ̂µ,εn∥2H1
µ
≥ λ − δ, for all n ≥ 0. Taking into

account that 0 < 1−µ2 ≤ κµ and φ̂µ,εn ≥ 0, and using the identity lim|ξ|→∞ |φ̂µ,ξnξ| =
0,5 we multiply both sides of (4.1.10) by κµ and integrate over R to obtain

0 <
( (1−µ2)(ℓ+1)

αℓλ
Iε0λ
) 1

ℓ−1 <
(
1−µ2
αℓ

2τn
) 1

ℓ−1 ≤ ∥φ̂µ,εn∥L1 .

The Cauchy-Schwartz inequality applied to the quantity ∥χR/[−ρ,ρ]φ̂µ,εn∥L1 , yields

the bound

⟨χ[−ρ,ρ], φ̂µ,εn⟩ >
( (1−µ2)(ℓ+1)

αℓλ
Iε0λ
) 1

ℓ−1 − ∥κ−
1
2

µ ∥δ 1
2 > 0,

provided δ > 0 is sufficiently small. Sending n to infinity, we conclude that the

duality pairing ⟨χ[−ρ,ρ], [φ̂µ]⟩ is strictly positive and hence [φµ] does not vanish.

(c) Obviously, we can choose the sequence {φµ,εn}n≥0 so that, in addition to the

assumptions employed in part (b), each {φmµ,εn}n≥0, 1 ≤ m ≤ ℓ, converges weakly

in H1
µ(R) and ε2n

2
∥φ̂µ,εnξ∥2 converges to some 0 ≤ σ < ∞.6 Then Lemma 4.1.6,

applied successively to the pairs ({φµ,εn}n≥0, {φm−1
µ,εn }n≥0), 2 ≤ m ≤ ℓ, implies that

[φmµ ] = [φµ]
m, 2 ≤ m ≤ ℓ. Hence, letting h ∈ H1,2

µ,1(R) in (4.1.8), integrating by parts

5The identity follows from the classical Sobolev embedding H1(R) ⊂ C0(R) (see [3]), the inclu-

sion φ̂γ,εξ ∈ H1,1
γ,ε̄(R) and our definition of the spaces Hs,r

γ,ε(R).
6The latter follows from the inequality 0 < Gε(φµ,ε) < Iλ, indicating that {ε2∥φ̂µ,εξ∥2}n≥0 is

uniformly bounded in R, as ε → 0.
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and passing to the limit, we arrive at the identity

⟨h, [φµ]⟩H1
µ
=M⟨h, [φµ]ℓ⟩, M = λ

(ℓ+1)Iλ+(ℓ−1)σ
. (4.1.11)

Note that H1,2
µ,1(R) is dense in H1

µ(R) and, by virtue of the standard approximation

argument, it follows that (4.1.11) holds for all h ∈ H1
µ(R).

(d) To complete the proof, we observe that

Iλ ≥ lim
n→∞

G0(φµ,εn) = lim
n→∞

Gεn(φµ,εn) + lim
n→∞

ε2n∥φ̂µ,εnξ∥2 = Iλ + σ,

which gives σ = 0 and M = λ
(ℓ+1)Iλ

. By construction, ∥[φµ]∥2H1
µ
≤ λ. On another

hand, letting h = [φµ] in (4.1.11), we obtain

G([φµ]) = Iλ
λ
∥[φµ]∥2H1

µ
.

while, in view of (4.1.6), for ψ =
√
λ

∥[φµ]∥H1
µ

[φµ], we have

G(ψ) =
(

λ
∥[φµ]∥2

H1
µ

) ℓ+1
2 G([φµ]) ≤ Iλ.

The last two formulas give the reverse inequality λ ≤ ∥[φ]∥2H1
µ
. It follows now that:

(i) ∥[φµ]∥2H1
µ
= λ; (ii) the the sequence {φγ,εn}n≥0, defined in part (c) of the proof,

converges strongly in H1
µ(R); and (iii) the limit [φµ] ∈ H1

µ(R) maximizes G(·) subject

to the constraint, listed in (4.1.6). Theorem 4.1.7 is a byproduct of assertions (i)–

(iii); for even, nonzero, nonnegative function φ̂µ :=
(

λ
(ℓ+1)Iλ

) 1
ℓ−1 [φ̂µ] satisfies (1.3.4)

in the sense of H1
µ(R).

Few remarks are in place here. As mentioned in Section 1.3, the global existence

(0 ≤ γ < 1 and ℓ = 2) of traveling waves for (1.3.4) is established by several authors.

In particular, the variational approach was pursued in [13, 74]. Both papers treat

the problem in physical space (in variable x), but differ in setting of the associated

variational problem: in [13], the first integrals of (1.1.4) are used while in [74] the

variational problem is similar to (4.1.6), but with the objective functional and the

constraint interchanged. In either case, it is hard to establish a direct link between

variational problem and eigenstructure of the linearized operator associated with

(1.3.4). Formulation (4.1.6) is free from this drawback — below we show that (4.1.6),

combined with the positivity of φ̂µ, yields simplicity of the first two eigenvalues of
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the linearized operator for small values of µ. The information has important physical

consequences as it controls the orbital stability of the wave. In addition, it implies

local regularity of the solitary waves as functions of the wavespeed parameter µ,

which is a standard assumption in a rigorous analysis of continuation numerical

schemes.

4.2 Regularity

In this section, we study regularity and asymptotic behaviour of the traveling waves

obtained in Theorem 4.1.7. The results form a theoretical foundation for the nu-

merical analysis of Chapter 7.

4.2.1 Large |ξ| asymptotic of φ̂µ

Let φµ, 0 ≤ µ < 1, be a solution obtained in Theorem 4.1.7. Directly from (1.3.4),

it follows that φµ ∈ Hs
µ(R), for all s ≥ 1. A more precise characterization is given

by

Lemma 4.2.1. For any 0 ≤ µ < 1, there exists ρ > 0 such that φ̂µ ∈ Lpρ(R)∩C0(R),

1 ≤ p ≤ ∞. Furthermore, eρ|ξ|φ̂µ ∈ C0(R).

Proof. (a) In view of the inclusion φµ ∈ H1
µ(R), we have φ̂µ ∈ L1(R). Elementary

calculations show that 1+|ξ|
κµ(ξ)

≤ 3
2(1−µ) =: βµ uniformly in R. Consequently,

∥(1 + |ξ|)nφ̂µ∥L1 ≤ βµ∥(1 + |ξ|)n−1φ̂∗ℓ
µ ∥L1

≤ βµ
∑

i1+···+iℓ=n−1

(
n−1
i1,...,iℓ

) ℓ∏
k=1

∥(1 + |ξ|)ikφ̂µ∥L1 .

We let b0 = ∥φ̂µ∥L1 and

bn = βµ
∑

i1+···+iℓ=n−1

(
n−1
i1,...,iℓ

) ℓ∏
k=1

bik , n ≥ 1.

Induction on n shows that ∥(1 + |ξ|)nφ̂µ∥L1 ≤ bn for all n ≥ 1. Straightforward
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calculations give,7

bn = b0
[
(ℓ− 1)βµb

ℓ−1
0

]n( 1
ℓ−1

)
n
, n ≥ 1.

Hence, we conclude that

∥φ̂µ∥L1
ρ
≤
∑
n≥0

ρn

n!
∥(1 + |ξ|)nφ̂µ∥L1 ≤ b0

∑
n≥0

[
2(ℓ− 1)βµb

ℓ−1
0 ρ

]n
= b0

1−(ℓ−1)βµb
ℓ−1
0 ρ

,

provided that ρ < 1

(ℓ−1)βµb
ℓ−1
0

. Further, in view of (1.3.4), the inclusion φ̂µ ∈ L1(R)

and the continuity of L1(R) norm, we infer that φ̂µ ∈ C0(R) and ∥φ̂µ∥L∞ ≤
1

2(1−µ)∥φ̂µ∥ℓ−2
L1 ∥φ̂µ∥2L2 <∞. The above estimates settles the first claim of the Lemma,

as ∥φ̂µ∥Lp
ρ
≤ ∥φ̂µ∥

1
p′

L∞∥φ̂µ∥
1
p

L1
ρ
<∞, when 1 < p <∞.

(b) The second assertion follows directly from part (a) of the proof, for the

inclusion φ̂µ ∈ L1
ρ(R) ∩ C0(R) implies eρ|ξ|φ̂µ ∈ C(R) and eρ|ξ|φ̂µ → 0, as |ξ| →

∞.

4.2.2 Regularity

We present two regularity results. The first one characterizes solutions on the real

line and is similar to the results obtained earlier in [74]. The second one deals

with the regularity of φ̂µ restricted to the positive half line and is relevant for the

numerical analysis of the problem. We begin with the following technical Lemma

(see also [74]).

Lemma 4.2.2. The operator Ĝµ(φ̂) = αℓ

κµ
φ̂∗ℓ, viewed as a map from L1

ρ(R)∩L∞(R)

to L1
ρ(R)∩C0(R), is Frechet differentiable. The differential Ĝ ′

µ(φ̂), viewed as a map

form L1
ρ(R) ∩ L∞(R) to L1

ρ(R) ∩ C0(R), is compact positive and irreducible. Its

dominant eigenvalue ℓ is simple and the associated eigenfunction is given by φ̂µ.

Proof. (a) Elementary pointwise estimate eρ|ξ||φ̂∗ℓ| ≤ |eρ|ξ|φ̂|∗ℓ, combined with Young’s

convolution inequality, shows that Ĝµ(φ̂) is Frechet differentiable and Ĝ ′
µ(φ̂)[·] =

7The identity can be verified either directly (e.g. using induction) or deduced with the aid of

the generating function g(z) =
∑

n≥0
bn
n! z

n.
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ℓ
κµ
φ̂∗(ℓ−1) ∗ [·] : L1

ρ(R) ∩ L∞(R) → L1
ρ(R) ∩ C0(R) is continuous. Furthermore, for

any ψ̂ ∈ L1
ρ(R) ∩ L∞(R) and δ ∈ R, we have

eρ|ξ|
∣∣Ĝ ′

µ(φ̂)[ψ̂]
∣∣(ξ) ≤ | αℓ

κµ(ξ)
φ̂∗(ℓ−2)||eρ|ξ|φ̂||ψ̂|(ξ)

≤ αℓ

κµ(ξ)
∥φ̂∥ℓ−2

L1
ρ
∥eρ|ξ|φ̂∥L∞∥ψ̂∥L1

ρ
,

and

∥(I − Tδ)Ĝ ′
µ(φ̂)[ψ̂]∥Li

ρ
≤ ℓαℓ∥(I − Tδ)[κ−1

µ ]κ−1
µ φ̂∗(ℓ−1) ∗ ψ̂∥Li

ρ

+ ℓαℓ∥κ−1
µ (I − Tδ)[φ̂∗(ℓ−1) ∗ ψ̂]∥Li

ρ

≤ ℓαℓ∥(I − Tδ)[κ−1
µ ]∥L∞∥φ̂∥ℓ−1

L1
ρ
∥ψ̂∥Li

ρ

+ ℓαℓ

2(1−µ)∥φ̂∥ℓ−2
L1
ρ
∥ψ̂∥L1

ρ
∥(I − Tδ)φ̂∥Li

ρ
, i = 1,∞.

Taking into account that κ−1
µ is uniformly continuous in R and that the group of

translations {Tδ}δ∈R is strongly continuous in either of the spaces L1
ρ(R), C0(R), we

infer from the classical Kolmogorov-Riesz and Arzela-Ascoli theorems that, in fact,

Ĝ ′
µ(φ̂) is compact.

(b) In view of (1.3.4) and the inclusion φ̂µ ∈ C0(R), φ̂µ > 0 in R. Conse-

quently, the integral operator Ĝ ′
µ(φ̂µ) is irreducible, positive and compact. Since

L1
ρ(R) ∩ L∞(R) is a Banach lattice, we infer from the Perron-Frobenius theory of

such operators [85, Chapter V, Theorem 5.2] that the derivative Ĝ ′
µ(φ̂µ) has a unique

(up to scaling) positive eigenvector, that corresponds to a simple, dominant posi-

tive eigenvalue. It follows directly from (1.3.4) that (ℓ, φ̂µ) is the dominant positive

eigenpair.

Lemma 4.2.3. Let ρ > 0 be as in Lemma 4.2.1, then φ̂µ ∈ W p,1
ρ (R), 1 ≤ p ≤ ∞,

and φ̂µ ∈ C1
0(R+). Furthermore, φ̂µ can be extended to a continuous function on

the closed half-line R̄+.

Proof. (a) We observe that the subspaces of even and odd L1
ρ(R)∩L∞(R) functions

are invariant under the action of Ĝ ′
µ(φ̂µ). In view of Lemma 4.2.2, the dominant

eigenpair is given by (ℓ, φ̂µ), where the eigenfunction φ̂µ is even. Hence, the classical

Fredholm alternative for compact operators implies that the map B̂ = I − 1
ℓ
Ĝ ′
µ(φ̂µ)

is invertible in the subspace of odd L1
ρ(R) ∩ L∞(R) functions.
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(b) Note that κµ, φ̂µ are even, consequently, ψ̂ = −B̂−1(
κµξ

κµ
φ̂µ) ∈ L1

ρ(R) ∩
L∞(R) ⊂ Lpρ(R), 1 ≤ p ≤ ∞. Let ĥ be a compactly supported C

(∞)
0 (R) function.

If ĥ is even, we have ⟨ψ̂, ĥ⟩ = −⟨φ̂µ, ĥξ⟩ = 0. For ĥ odd, we let B̂v̂ = ĥ
κµ

. Then,(
ĥ
κµ

)
ξ
= B̂v̂ξ + κµξ

κµ

(
v̂ − ĥ

κµ

)
, and we infer

⟨ψ̂, ĥ⟩ =
〈
ψ̂, ĥ

κµ

〉
Ĥ1

µ
= −

〈κµξ

κµ
φ̂µ, B̂−1 ĥ

κµ

〉
Ĥ1

µ
= −

〈
φ̂µ,

κµξ
κµ
v̂
〉
Ĥ1

µ

= −
〈
φ̂µ,
(
ĥ
κµ

)
ξ
+

κµξ
κ2µ
ĥ
〉
Ĥ1

µ
+ ⟨B̂φ̂µ, v̂ξ⟩Ĥ1

µ
= −⟨φ̂µ, ĥξ⟩.

Hence, φ̂µξ = ψ̂ in the sense of distributions and the first claim of the Lemma is

settled.

(c) The inclusion φ̂µ ∈ C1
0(R+) follows from the identity

φ̂µξ =
κµξ
κµ
φ̂µ − 1

ℓ
Ĝ ′
µ(φ̂µ)[φ̂µξ],

where 1
ℓ
Ĝ ′
µ(φ̂µ)[φ̂µξ] ∈ C0(R)8 and κµξ

κµ
φ̂µ ∈ C0(R/{0}), has a simple jump disconti-

nuity at the origin. In particular, it follows that φ̂µξ can be extended to a continuous

function in the closed positive half-line R̄+.

Lemma 4.2.4. Let ρ > 0 be as in Lemma 4.2.1, then φ̂µ ∈ W p,n
ρ (R+) ∩ C(n)

0 (R+),

1 ≤ p ≤ ∞, for all n ≥ 1. Furthermore,

∥∂nξ φ̂µ∥Lp
ρ
≤ n!rn+1

µ , 1 ≤ p ≤ ∞, n ≥ 0, (4.2.1)

where rµ > 0 depends on 0 ≤ µ < 1 only.

Proof. (a) We let ψ̂1 = φ̂µξ and ψ̂m = φ̂
∗(m−1)
µ ∗ φ̂µξ, m ≥ 2. Using this notation,

Lemma 4.2.3 and parity of φ̂µ, for ξ ∈ R+, we write

∂ξ
(
κµφ̂µ

)
= αℓ

∫
R+

[
φ̂µ(|ξ − ζ|)− φ̂µ(ξ + ζ)

]
ψ̂ℓ−1(ζ)dζ, (4.2.2a)

ψ̂m =

∫
R+

[
φ̂µ(|ξ − ζ|)− φ̂µ(ξ + ζ)

]
ψ̂m−1(ζ)dζ, m ≥ 2. (4.2.2b)

In view of Lemma 4.2.3, the quantities φ̂µξ and ψ̂m, 1 ≤ m ≤ ℓ − 1, are regular

D′(R+) distributions. Throughout the proof, the quantities ∂kξ φ̂µ(0) are understood

8See part (a) of the proof.
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as right-handed limits. Using (4.2.2) and integrating by parts, we obtain formal

identities

∂n+1
ξ φ̂µ = −

(
n+ 1

2

)
κ′′µ
κµ
∂n−1
ξ φ̂µ −

(
n+ 1

1

)
κ′µ
κµ
∂nξ φ̂µ

+ αℓ

κµ

∫
R+

[
sgnn(ξ − ζ)∂nξ φ̂µ(|ξ − ζ|)− ∂nξ φ̂µ(ξ + ζ)

]
ψ̂ℓ−1(ζ)dζ

+ αℓ

κµ

n−1∑
k=0

[1− (−1)k]∂kξ φ̂µ(0)∂
n−1−k
ξ ψ̂ℓ−1, n ≥ 1, (4.2.3a)

and

∂nξ ψ̂m =

∫
R+

[
sgnn(ξ − ζ)∂nξ φ̂µ(|ξ − ζ|)− ∂nξ φ̂µ(ξ + ζ)

]
ψ̂m−1(ζ)dζ

+
n−1∑
k=0

[1− (−1)k]∂kξ φ̂µ(0)∂
n−1−k
ξ ψ̂m−1, n ≥ 1, m ≥ 2. (4.2.3b)

By virtue of Lemma 4.2.3, ∂nξ φ̂µ, ψ̂m ∈ Lpρ(R+) ∩ C0(R+), 1 ≤ p < ∞, n = 0, 1.

This fact, combined with (4.2.3) and induction on n, allow us to conclude that

∂nξ φ̂µ, ∂
n
ξ ψ̂m ∈ Lpρ(R+) ∩ C0(R+), for all 1 ≤ p < ∞ and n,m ≥ 1. Furthermore, for

all 1 ≤ p <∞ and n,m ≥ 1, each of the quantities ∂nξ φ̂µ and ∂nξ ψ̂m can be extended

to a continuous function defined on the closed positive half-line R̄+. Hence, the first

assertion of the Lemma is settled.

(b) To obtain L∞(R+) estimates, we let

β = max
1≤m≤ℓ−1

∥ψ̂m∥L1
ρ
, α = max

{∥∥ κ′′µ
2κµ

∥∥
L∞ ,

∥∥κ′µ
κµ

∥∥
L∞ ,

∥∥ 1
κµ

∥∥
L∞

}
,

∥∂nξ φ̂µ∥L∞ = n!an, n = 0, 1, b1,n = an+1 and

an+1 = αan−1 + α(1 + 2β)an +
2α

n+ 1

n−1∑
k=0

akbℓ−1,n−1−k, n ≥ 1, (4.2.4a)

bm,n = 2βan +
2

n+ 1

n−1∑
k=0

akbm−1,n−1−k, n ≥ 0, m ≥ 2. (4.2.4b)

Comparing (4.2.3) with (4.2.4) and using induction on n, we conclude that ∥∂nξ φ̂µ∥L∞ ≤
n!an and ∥∂nξ ψ̂m∥L∞ ≤ (n + 1)!bm,n, for all n ≥ 1 and 1 ≤ m ≤ ℓ − 1. In addition,

defining

r∞ = max{∥φ̂µ∥L∞ , ∥φ̂µξ∥L∞ , 2α(1 + 2ℓβ)},
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and using induction on n one more time, we infer directly from (4.2.4) that an ≤ rn+1
∞ ,

n ≥ 0, and that (4.2.1) holds in L∞(R+) if rµ is replaced with r∞.

(c) L1
ρ(R+) estimates are obtained in a similar manner. Here, we let ∥∂nξ φ̂µ∥L1

ρ
=

n!ān, for n = 0, 1, b̄1,n = ān+1,

ān+1 = αān−1 + α(1 + 2β)an +
2α

n+ 1

n−1∑
k=0

rk+1
∞ b̄ℓ−1,n−1−k, n ≥ 1, (4.2.5a)

b̄m,n = 2βān +
2

n+ 1

n−1∑
k=0

rk+1
∞ b̄m−1,n−1−k, n ≥ 0, m ≥ 2, (4.2.5b)

and rµ = max{r∞, ∥φ̂µ∥L1
ρ
, ∥φ̂µξ∥L1

ρ
}, to infer (using induction on n) that (4.2.1)

holds in L1
ρ(R+). The elementary interpolation inequality ∥f∥Lp

ρ
≤ ∥f∥

1
p′

L∞∥f∥
1
p

L1
ρ

settles (4.2.1) for the remaining values of the exponent p.

4.3 Orbital stability

4.3.1 Local regularity for µ ≈ 0

Equation (1.3.4) is translation invariant and hence cannot have isolated and/or

unique solutions. In Section 4.1, we singled out a particular solution class by re-

stricting problem (1.3.4) to the subspace of even H1
µ(R) functions. The trick ensures

minimal regularity of the solution set S(µ0, µ1) = {(µ, φµ)}µ0≤µ≤µ1 ⊂ R × H1
µ(R),

(or equivalently Ŝ(µ0, µ1) = {(µ, φ̂µ)}µ0≤µ≤µ1 ⊂ R × Re Ĥ1
µ(R)) for small values of

µ1 > µ0, and can be exploited in numerical simulations.

As mentioned earlier, the local structure of S(µ0, µ1) is controlled by the eigen-

structure of G ′
µ(φµ). In the case of even positive solutions φ̂µ, the principle part of

the spectrum can be computed explicitly.

Lemma 4.3.1. Let φµ be an even, positive definite traveling wave obtained in The-

orem 4.1.7. Then the spectrum of G ′
µ(φµ) : H

1
µ(R) → H1

µ(R), 0 ≤ µ < 1, is real and

discrete. The eigenpair pair (ℓ, φµ) is simple and dominant. Any other eigenvalue

λ of G ′
µ(φµ) satisfies λ ≤ 1. In addition, if (1, η) is an eigenpair of G ′

µ(φµ), then

⟨φℓ−2
µ η2, η⟩ = 0. (4.3.1)
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Proof. (a) Linear operator Ĝ ′
µ(φ̂µ), viewed as a map from the weighted Lebesgue

space Ĥ1
µ(R) space to itself, is evidently selfadjoint. The proof of compactness, pos-

itivity and irreducibility goes along the same lines as in Lemma 4.2.2. In particular,

it follows that the spectrum is real and discrete and the dominant eigenpair (ℓ, φ̂µ)

is simple.

For a non-dominant eigenpair (λ, η) of G ′
µ(φµ), with ∥η∥2H1

µ
= ∥φµ∥2H1

µ
, we let

ψ = φµ+tη√
1+t2

, t ∈ R. Since φµ is a constrained maximizer of G(φ) in H1
µ(R) and since

⟨φµ, ψ⟩H1
µ
= 0, for small values of t we have

0 ≤ (1 + t2)
ℓ+1
2 [G(φµ)− G(ψ)]

= G(φµ)
[
ℓ+1
2
(1− λ)t2 +

(
ℓ+1
3

) ⟨φℓ−2
µ η2,η⟩
G(φµ)

t3
]
+O(t4).

(4.3.2)

From (4.3.2) it follows that λ ≤ 1. If λ = 1, the quadratic term in the right-hand

side of (4.3.2) vanishes, hence (4.3.1) holds.

Next, we turn our attention to (1.3.4), with µ = 0. As mentioned in Section 1.3,

in this case the solution is given explicitly by formula (1.3.3). Furthermore, the

following holds

Lemma 4.3.2. The spectrum σ
(
G ′
0(φ0)

)
of the operator G ′

0(φ0) : H
1(R) → H1(R)

is given by

σ
(
G ′
0(φ0)

)
= {0} ∪

{ δ2ℓ(ℓ+ 1)

2(n+ δ)(n+ δ + 1)

}
n≥0

, δ =
2

ℓ− 1
, (4.3.3)

eigenvalues λn = δ2ℓ(ℓ+1)
2(n+δ)(n+δ+1)

, n ≥ 0, are simple and the associated eigenfunctions

ηn ∈ H1(R) satisfy ηn(−x) = (−1)nηn(x), n ≥ 0.

Proof. In view of Lemma 4.3.1, the spectrum σ
(
G ′
0(φ0)

)
is real and discrete. By

virtue of (1.3.3), eigenpairs (λ, ηλ) ∈ C×H1(R) satisfy

ηλ − η′′λ =
ℓ(ℓ+ 1)

2λ
sech2

(ℓ− 1

2
x
)
ηλ.

Upon the substitution t = tanh
(
ℓ−1
2
x
)
, the latter equation reads

(1− t2)η′′λ − 2tη′λ +
(
ν(1 + ν)− δ2

(1− t2)

)
ηλ = 0,
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where δ = 2
ℓ−1

and ν(1 + ν) = δ2ℓ(ℓ+1)
2λ

. The nontrivial H1(R) solutions are given

explicitly by the following family of the associated Legendre functions (see [2])

P̄−δ
n+δ(t) =

1
2

[
e

δπi
2 P−δ

n+δ(t− i0)+e−
δπi
2 P−δ

n+δ(t+ i0)
]
, t ∈ [−1, 1], ν = n+δ, n ≥ 0,

and (4.3.3) is settled. Further, since G ′
0(φ0) is selfadjoint, each λn = δ2ℓ(ℓ+1)

2(n+δ)(n+δ+1)
,

n ≥ 0, is simple. The pairity of the associated eigenfunctions

ηn(x) = P̄−δ
n+δ

(
tanh

(ℓ− 1

2
x
))
, n ≥ 0,

follows from the properties of P−δ
n+δ(t), t ∈ (−1, 1), see [2].

Lemmas 4.3.1 and 4.3.2 yield the following local result

Lemma 4.3.3. For small values of |µ0|, |µ1|, µ0 < 0 < µ1 < 1, there exists an

isolated and analytic in µ branch Ŝ(µ0, µ1) = {(µ, φ̂µ)}µ0≤µ≤µ1 ⊂ R × Re Ĥ1(R) of

even, positive definite solutions to (1.3.4). For each µ ∈ (µ0, µ1), φµ satisfy the

variational problem (4.1.6).

Proof. (a) We let Nµ(φ) = φ − Gµ(φ). It is not difficult to verify that the sub-

space Re Ĥ1
µ(R) of even Ĥ1

µ(R) functions is invariant under the action of Ĝµ(φ̂) and

N̂µ(φ̂) = φ̂− Ĝµ(φ̂). On the account of Lemma 4.3.2,

0 /∈ σ
(
N̂ ′

0(φ̂0)
∣∣∣
Re Ĥ1(R)

)
,

so that the restriction of N̂ ′
0(φ̂0) to Re Ĥ1(R) is invertible. Further, N̂µ(φ̂) is analytic

in φ̂ ∈ H1(R) and in µ, when Reµ < 1. Hence, the first claim follows from the

standard Implicit Function Theorem.

(b) From the compactness of operators Ĝ ′
µ(φ̂µ) : Re Ĥ

1
µ(R) → Re Ĥ1

µ(R), µ < 1,

it follows that the even, positive definite variational solutions φ̂µ of Theorem 4.1.7

satisfy limµ→0 ∥φ̂µ − φ̂0∥Re Ĥ1 = 0, where φ0 is given by (1.3.3). Since the solution

branch Ŝ(µ0, µ1) = {(µ, φ̂µ)}µ0≤µ≤µ1 is isolated in Re Ĥ1(R), for sufficiently small

values of |µ| each element of Ŝ(µ0, µ1) necessarily satisfies (4.1.6).

To conclude this section, we remark that the Fourier symbol κµ, µ ≤ 0 is ra-

dially decreasing. In this situation, the ideas of [41] apply and one can show that

Corollary 4.3.3 holds for µ ∈ (−∞, µ1) and some small 0 < µ1 < 1. However, as

mentioned earlier in Section 1.3, traveling waves with µ < 0 are physically irrelevant

and hence, we refrain ourselves from going into any further technical details.
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4.3.2 Orbital stability

Let 0 ≤ µ < 1 be fixed and let φµ be the even, positive definite traveling wave,

constructed in Theorem 4.1.7, let

uc(x) = −C
1

ℓ−1

δ
1

ℓ+1
φµ

(√
C
γ
x
)
, C = α− c,

be the associated traveling wave of (1.1.4) and let {Tt}t∈R be the group of transla-

tions. We define open ε-neighborhood of the orbit Oc = {Ttuc}t∈R by means of the

identity

Uε,c = {v ∈ H1(R) | inf
t∈R

∥v − Ttuc∥H1 < ε},

and say [45, 46] that Oc is orbitally stable if any other solution to (1.1.4) that starts

near OT (φµ) stay close to it for all t ∈ R.

It is worth to mention that general criteria of orbital stability/instability for a

large class of nonlinear wave equations (including KdV-type evolution problems) are

well known, see e.g. [45, 46] and references therein. In particular, if we define

E(u) =
∫
R

[
α
2
u2 + γ

2
u2x − β

2
uH[ux]− δ

ℓ+1
(−u)ℓ+1

]
dx, (4.3.4a)

Q(u) = 1
2

∫
R
u2dx, (4.3.4b)

then the orbital stability is guaranteed under

(i) a suitable restriction on the eigenstructure of the operator E ′′(uc) − cQ′′(uc)

(see Assumption 2 in [45]);

(ii) positivity of the quantity d′′(c), where d(c) = E(uc)− cQ(uc).

In the present case, the first group of conditions is satisfied automatically for small

values of µ on the account of Lemmas 4.3.1-4.3.2 and the classical perturbation

theory of compact selfadjoint operators, see [55]. The difficulty arises with (ii).

Elementary manipulations show that

d′′(c) = −√
γC

7−3ℓ
2(ℓ−1) ⟨φµ, ψµ⟩ = −√

γC
7−3ℓ
2(ℓ−1)

〈(
I − G ′

µ(φµ)
)
ψµ, ψγ

〉
H1

γ
, (4.3.5a)

ψ̂µ = Ĝ ′
µ(φ̂µ)[ψ̂µ] +

1
κµ
φ̂µ, (4.3.5b)
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and since the selfadjoint map I − G ′
µ(φµ) is sign indefinite, the positivity of d′′(γ)

is not straightforward. As an alternative, one can use part (C) of [45, Theorem 3],

which asserts that condition d′′(c) > 0 holds if and only if uc realizes a constrained

minimum of E(u) in H1(R), subject to Q(u) = Q(uc).

In context of (1.1.4), it is sufficient to verify that φµ solves the following varia-

tional problem

Jλ = sup
{
G(φ)− 1

2
∥φ∥2H1

µ

∣∣ ∥φ∥2 = λ, φ ∈ H1(R)
}
. (4.3.6)

The next result show that this is the case, provided (4.3.6) has nontrivial solutions

ψ.

Lemma 4.3.4. Assume that for some λ > 0, (4.3.6) has a nontrivial solution ψ ∈
H1(R). Then φµ solves (4.3.6), with λ = ∥φµ∥2. Converse is also true. Function ψ

realizes maximum of G(φ) over φ ∈ H1
µ(R), with ∥φ∥H1

µ
= ∥ψ∥H1

µ
.

Proof. (a) To begin, we make two observations. First, the variational solution φµ

maximizes G(φ) over the entire space H1
µ(R), subject to the constraint ∥φ∥2H1

µ
=

∥φµ∥2H1
µ
= λ1. Second, brief inspection of the objective functional in (4.3.6) in-

dicates that under assumptions of Lemma 4.3.4, variational problem (4.3.6) has

nontrivial solutions for all λ > 0. In particular, it is possible to choose λ > 0 so that

(ℓ+ 1)G(ψ) = ∥ψ∥2H1
µ
.

(b) Let ψ be the solution to (4.3.6) that satisfies G(ψ) = ∥ψ∥2H1
µ
. Then

− ℓ−1
2(ℓ+1)

∥φµ∥2H1
µ
= G(φµ)− 1

2
∥φµ∥2H1

µ

≥
(∥φµ∥H1

µ

∥ψ∥
H1
µ

)ℓ+1

G(ψ)− 1
2

(∥φµ∥H1
µ

∥ψ∥
H1
µ

)2
∥ψ∥2H1

µ

=

[
1
ℓ+1

(∥φµ∥H1
µ

∥ψ∥
H1
µ

)ℓ+1

− 1
2

(∥φµ∥H1
µ

∥ψ∥
H1
µ

)2]
∥ψ∥2H1

µ
,

and we conclude that

∥φµ∥2H1
µ
≤ ∥ψ∥2H1

µ
. (4.3.7a)
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On another hand

− ℓ−1
2(ℓ+1)

∥ψ∥2H1
µ
= G(ψ)− 1

2
∥ψ∥2H1

µ

≥
(

∥ψ∥
∥φµ∥

)ℓ+1

G(φµ)− 1
2

(
∥ψ∥
∥φµ∥

)2
∥φµ∥2H1

µ

=

[
1
ℓ+1

(
∥ψ∥
∥φµ∥

)ℓ+1

− 1
2

(
∥ψ∥
∥φµ∥

)2]
∥φµ∥2H1

µ
,

and then
1
ℓ+1

(
∥ψ∥
∥φµ∥

)ℓ+1

− 1
2

(
∥ψ∥
∥φµ∥

)2
≤ − ℓ−1

2(ℓ+1)

( ∥ψ∥
H1
µ

∥φµ∥H1
µ

)2
. (4.3.7b)

It is easy to verify that in the positive half-line R+, function f(t) = tℓ+1

ℓ+1
− t2

2
is

bounded from below by f(1) = − ℓ−1
2(ℓ+1)

. Hence, inequalities (4.3.7) are consistent

if and only if ∥φµ∥H1
µ
= ∥ψ∥H1

µ
and ∥φµ∥ = ∥ψ∥. Hence, G(φµ) = G(ψ), G(φµ) −

1
2
∥φµ∥2H1

µ
= F(ψ)− 1

2
∥ψ∥2H1

µ
and the conclusion of Lemma 4.3.4 follows.

Solvability of (4.3.6) for ℓ = 2, together with a weak form of stability of the

resulting traveling waves, is established in [74].9 This result, combined with Lem-

mas 4.3.1–4.3.4 allow us to settle the question of orbital stability for small values of

µ affirmatively.

Corollary 4.3.5. For ℓ = 2 and µ small, the solitary waves constructed in Theo-

rem 4.1.7 are orbitally stable.

Unfortunately, analysis of (4.3.6) for ℓ > 2 is not an elementary exercise and

fells outside the scope of our work. As illustrated by the inequality below

G(φ)− 1
2
∥φ∥2H1

µ
≤ ∥κ−1

µ ∥ℓ−1

L2

ℓ+1
∥φ∥2L2∥φ∥ℓ−1

H1
µ
− 1

2
∥φ∥2H1

µ
, (4.3.8)

possible unboudedness of the objective functional in (4.3.6) for ℓ > 3 is one of the

potential difficulties that may arise, thought the cases ℓ = 2 and ℓ = 3 are seems to

be identical. As a partial substitute for the lack of rigorous analysis, in Chapter 7

we compute the quantity d′′(µ) = −⟨φµ, ψµ⟩ (see (4.3.5)) numerically.

9The author formulation is different from ours but the result is equivalent to the solvability of

(4.3.6).
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Chapter 5

Malmquist-Takenaka-Christov basis

5.1 Introduction

Spectral methods are special techniques for expressing solutions of differential equa-

tions as finite linear combination of orthogonal basis functions, where we choose

coefficients in the sum to closely satisfy the differential equations. Spectral methods

also refer to as global methods, where necessary information for the computation

at any given point depend on neighboring points and the entire domain. There are

three main types of spectral methods, these are spectral-collocation, Galerkin and

the Tau method. Among these, the most widely used is the spectral collocation

method because in context of nonlinear partial differential equations (PDEs) its im-

plementation is the easiest and it returns suitable results for a sufficiently smooth

problems [20, 27, 40, 48, 84, 94]. Pure spectral-Galerkin methods are used mostly in

context of linear PDEs with simple boundary conditions and with either constant or

polynomial coefficient. In this situation spectral-Galerkin semidiscretization yields

linear systems with sparse matrices, provided basis functions are chosen appro-

priately [83]. For more complicated boundary conditions (BCs), the spectral-Tau

method is the most efficient.

As mentioned in the Subsection 1.4.3, finding solution to the Benjamin equa-

tion (1.1.4) or (1.3.2) is computationally challenging as the problem is posed on

unbounded domain and involves global operator H. In this chapter, we employ the

Malmquist-Takenaka-Christov (MTC) system.

81



The MTC functions {ϕn}n≥0 are defined as Fourier preimages of the classical La-

guerre functions, (see [51, 96, 97] and references therein for an alternative definition

and historical remarks). That is, for k ≥ 0, we have

F [ϕ2k](ξ) = ϕ̂2k(ξ) =
√
ℓ√
2
φ0,ℓ
k (ξ), k ≥ 0, (5.1.1a)

F [ϕ2k+1](ξ) = ϕ̂2k+1(ξ) = −i
√
ℓ√
2
sgn(ξ)φ0,ℓ

k (ξ), k ≥ 0, (5.1.1b)

where

φs,ℓk (ξ) = e−
ℓ|ξ|
2 L

(s)
k (ℓ|ξ|), k ≥ 0, ℓ > 0 (5.1.2a)

and L
(s)
k (·) are the standard generalized Laguerre polynomials see [2]. Note that

for s > −1, the collection {φs,ℓk }k≥0 provides a complete orthogonal basis in the

weighted space L2
s
2
(R+). In particular,

⟨φs,ℓk , φs,ℓm ⟩L2
s
2
(R+) =

∫
R+

φs,ℓk (ξ)φs,ℓm (ξ)ξsdξ = 1
ℓs+1

Γ(n+s+1)
Γ(n+1)

δkm, k,m ≥ 0. (5.1.2b)

Straightforward calculations show that

ϕ2k(x) = 2
√

ℓ
π
Im (2x+iℓ)k

(2x−iℓ)k+1 = 2√
πℓ
sin (2k+1)θ

2
sin θ

2
, (5.1.3a)

ϕ2k+1(x) = 2
√

ℓ
π
Re (2x+iℓ)k

(2x−iℓ)k+1 = 2√
πℓ
cos (2k+1)θ

2
sin θ

2
, (5.1.3b)

where x = ℓ
2
cot θ

2
, θ ∈ (0, 2π) and ℓ > 0. As evident from (5.1.1) and (5.1.2), the

system {ϕn}n≥0 is a complete orthonormal basis in L2(R) and

⟨ϕk, ϕm⟩L2(R) = δkm, k,m ≥ 0.

In context of spectral methods, functions ϕn, n ≥ 0, were discovered by C. I.

Christov [30] in an attempt to obtain a computational basis that behaves well with

respect to the product of its members. In particular, the following holds

ϕ2kϕ2m = 1
2
√
πℓ

(
ϕ2(k+m) − ϕ2(k+m)+2 + ϕ2(m−k) − ϕ2(m−k)−2

)
, (5.1.4a)

ϕ2k+1ϕ2m+1 =
1

2
√
πℓ

(
−ϕ2(k+m) + ϕ2(k+m)+2 + ϕ2(m−k) − ϕ2(m−k)−2

)
, (5.1.4b)

ϕ2kϕ2m+1 =
1

2
√
πℓ

(
ϕ2(k+m)+1 − ϕ2(k+m)+3 + ϕ2(m−k)+1 − ϕ2(m−k)−1

)
. (5.1.4c)

The system {ϕn}n≥0 has a number of attractive computational features, e.g. in view

of (5.1.3), the MTC functions are connected with the trigonometric basis and hence
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direct and inverse spectral transforms can be computed efficiently via Fast Fourier

Transform (FFT) algorithm [19, 30, 51, 96, 97]. Differentiation and computing of

the Hilbert transform are also easy [51, 96, 97]

d
dx
ϕ2k =

k+1
ℓ
ϕ2k+3 − 2k+1

ℓ
ϕ2k+1 +

k
ℓ
ϕ2k−1, (5.1.5a)

d
dx
ϕ2k+1 = −k+1

ℓ
ϕ2k+2 +

2k+1
ℓ
ϕ2k − k

ℓ
ϕ2k−2, (5.1.5b)

H[ϕ2k] = ϕ2k+1, H[ϕ2k+1] = −ϕ2k. (5.1.5c)

In the context of the Benjamin equation, identity (5.1.5c) is particularly important.

This property was explicitly used for the closely related Benjamin-Ono equation in

[21, 22].

As far as we are aware, the only rigorous approximation result related to the

MTC basis is the geometric convergence rate of the continuous MTC-Fourier series

for functions analytic in the exterior of a neighborhood of {i,−i} in C (see [19, 97],

the discussion in [51] and references therein). Unfortunately, in context of differential

equations (and in particular of (1.1.4)) the result is not very informative. In the

sequel, we derive several alternative error bounds directly in Hs
r (R) settings. The

estimates form a necessary theoretical background for the convergence analysis of

an MTC pseudo-spectral scheme, presented in Chapter 6.

5.2 Projection errors

Let n be a positive integer, Pn be the finite dimensional linear space spanned by

{ϕk(x)}nk=0, x ∈ R and P̂n be the finite dimensional space spanned by
{
e−

ℓ|ξ|
2 xξ

}n
k=0

,

ξ ≥ 0. In connection with Pn and P̂n, we define two families of orthogonal projectors

Pn : L2(R) → Pn and P̂s
n : L2

s
2
(R+) → P̂n, s > −1, n > 0:

Pn[f ] =
n∑
k=0

ϕkf̂k, f̂k = ⟨f, ϕk⟩L2(R),

P̂s
n[f ] =

n∑
k=0

ℓs+1Γ(k+1)
Γ(k+s+1)

φs,ℓk f̂
s,ℓ
k , f̂ s,ℓk = ⟨f, φs,ℓk ⟩L2

s
2
(R+).

By virtue of (2.4.4) and (5.1.1), for real valued functions we have

∥(I − Pn)[f ]∥2Hs
r (R) =

∥∥(I − P̂0
⌈n
2
⌉)[f̂ ]

∥∥2
L2(R+)

+
∥∥(I − P̂0

⌈n
2
⌉)[f̂ ]

∥∥2
L2,r
s (R+)

. (5.2.1)
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A comprehensive discussion of the Laguerre-type projectors P̂s
n, s > −1, is found in

[8].1 In particular, for s0, s1 > −1
2

and r0, r1 ≥ 0, Theorems 1 and 2 of [8] give the

bounds,

∥∥(I − P̂s0
n )[f̂ ]∥

L
2,r0
s1
2

(R+)
≤ c(ℓn)r0+

s0−s1−r1
2 ∥f̂∥

L
2,r1
s0+r1

2

(R+)
, (5.2.2a)

s1 ≤ s0 + r0, r1 ≥ s0 − s1 + 2r0 (5.2.2b)

and

∥∥(I − P̂s0
n )[f̂ ]∥

L
2,r0
s1
2

(R+)
≤ c(ℓn)

s1−s0−r1
2 ∥f̂∥

L
2,r1
s0+r1

2

(R+)
, (5.2.3a)

s1 ≥ s0 + r0, r1 ≥ s1 − s0. (5.2.3b)

Combining (5.2.1), (5.2.2), (5.2.3) and (2.4.1), we have

Lemma 5.2.1. Assume s > −1 and r0, r1 ≥ 0. Then

∥(I − Pn)[f ]∥Hs
r0

(R) ≤ c
(
ℓn
2

)r0−r1−s∥f∥Hr1
2r1

(R), −1
2
< s ≤ r0

2
≤ s+r1

2
, (5.2.4a)

∥(I − Pn)[f ]∥Hs
r0

(R) ≤ c
(
ℓn
2

)s−r1∥f∥Hr1
2r1

(R), 0 ≤ r0
2
≤ s ≤ r1. (5.2.4b)

with a constant c > 0 independent of n and/or f .

Lemma 5.2.1 provides a complete description of the MTC projection errors in

Hs
r (R) settings. In particular, it explains a peculiar disparity in the asymptotic of

the MTC-Fourier coefficients of closely related holomorphic functions f(x), g(x) =

eiξ0xf(x), ξ0 ∈ R, see examples and discussion in [51, 96, 97].

Indeed, by virtue of Lemma 5.2.1, |f̂k| → 0 spectrally (faster than any inverse

power of k), provided f̂(ξ) is smooth in R± and decreases faster than any inverse

power of |ξ| at infinity. Since ĝ(ξ) = f̂(ξ − ξ0), the latter condition is violated if

f̂(ξ) has an integrable singularity at the origin. This is particularly the case when

f(x) is rational, with poles in the upper and lower complex half planes.
1The case of ℓ = 1 is treated in [8] explicitly. However, trivial modification of arguments yield

(5.2.2), (5.2.3) for any ℓ > 0.
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5.3 Interpolation errors

Operators Pn are hard to use in practice as the integrals of the form ⟨f, ϕn⟩L2(R)

are impossible to compute in most realistic applications. The practical approach

consists in replacing the inner products with quadratures. In the no-boundaries

setting of the real line R, it is natural to use Gaussian quadratures. The quadrature

approximation leads to a rational interpolation process, whose properties are briefly

discussed below.

For n = 2p− 1, we let

⟨f, ϕk⟩ ≈ f̄k =
π
4ℓp

2p−1∑
m=0

(ℓ2 + 4x2m)ϕk(xm)f(xm), (5.3.1a)

xm = ℓ
2
cot
(
2m+1
4p

π
)
, 0 ≤ m ≤ 2p− 1. (5.3.1b)

The discrete inner product (5.3.1) is exact, provided f ∈ Pn. In practice, we use the

discrete spectral coefficients f̄k and approximate f by

In[f ] =
n∑
k=0

f̄kϕk. (5.3.2)

Directly from (5.1.3), (5.3.1) and (5.3.2), it follows that

In[f ](xm) = f(xm), 0 ≤ m ≤ 2p− 1, (5.3.3)

i.e. In[·] is an interpolation operator.

Computational properties of In are very similar to those of rational Gauss-

Chebyshev interpolants, discussed in [87] and the generalized Gauss-Laguerre in-

terpolants of [8]. In particular, we have

Lemma 5.3.1. Assume f ∈ Pn, s > −1
2

and r ≥ 0. Then

∥f∥Hs
r (R) ≤ c

(
n
2ℓ

)r+|s|−min{0,2s}∥f∥L2(R), (5.3.4)

with a constant c > 0 independent of n and/or f .

Proof. Since f ∈ Pn, n = 2p − 1, we have f̂ ∈ P̂p, ξ ∈ R+. In [8, Lemma 6], it is

shown that for such functions

∥f̂∥L2,r
s (R+) ≤ c(ℓp)r−min{0,2s}∥f̂∥L2

s(R+),

∥f̂∥L2
s(R+) ≤ c(ℓp)|s|∥f̂∥L2(R+).
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In view of (2.4.4), these inequalities imply (5.3.4).

Lemma 5.3.2. Assume s > 1
2
. Then

∥In∥Hs(R)→L2(R) ≤ c
(
ℓn
2

)
, (5.3.5)

with c > 0 independent of n.

Proof. Since the discrete inner product (5.3.1) is exact for f ∈ Pn, we have

∥In[f ]∥2L2(R) =
π
4ℓp

2p−1∑
m=0

(ℓ2 + 4x2m)f
2(xm).

In view of the classical Sobolev embedding [3], we have ∥f∥L∞(R) ≤ cs∥f∥Hs(R),

provided that s > 1
2
. Consequently,

∥In[f ]∥2L2(R) ≤ csπ
4ℓp

[2p−1∑
m=0

(ℓ2 + 4x2m)
]
∥f∥2Hs(R)

= c
[2p−1∑
m=0

ℓ2

sin2
(

(2m+1)π
4p

)]∥f∥2Hs(R) = cS2
n∥f∥2Hs(R).

In [87, Lemma 4] it is shown S2
n = 2(2ℓp)2. Hence, (5.3.5) is settled.

The interpolation error bounds are obtained combining Lemmas 5.2.1, 5.3.1,

5.3.2.

Corollary 5.3.3. Let s > −1
2
, r0 ≥ 0, ε > 0 and r1 ≥ r0 + |s|. Then,

∥(I − In)[f ]∥Hs
r0

(R) ≤ c
(
ℓn
2

) 3
2
+ε+r0+|s|−max{0,2s}−r1∥f∥Hr1

2r1
(R), (5.3.6)

with a constant c > 0 independent of n and/or f .

Proof. In view of Lemmas 5.3.1 and 5.3.2, we have

∥(I − In)[f ]∥Hs
r0

(R) = ∥(I − Pn) + (I − Pn)[f ]∥Hs
r0

(R)

≤ ∥(I − Pn)[f ]∥Hs
r0

(R) + ∥(I − Pn)∥Hs
r0

(R)

≤ ∥(I − Pn)[f ]∥Hs
r0

(R) + ∥In(I − Pn)[f ]∥Hs
r0

(R)

≤ ∥(I − Pn)[f ]∥Hs
r0

(R) + c
(
ℓn
2

)r0+|s|−min{0,2s}∥In(I − Pn)[f ]∥L2(R)

≤ ∥(I − Pn)[f ]∥Hs
r0

(R) + c
(
ℓn
2

)1+r0+|s|−min{0,2s}∥(I − Pn)[f ]∥H 1
2+ε(R)

.

Hence, (5.3.6) is the direct consequence of Lemma 5.2.1.
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Chapter 6

An MTC-type collocation scheme:

The non-stationary Benjamin

equation

In this Chapter, we shift our focus to the numerical analysis of nonstationary Ben-

jamin equation posed on the real line. The main purpose here is to develop an MTC

pseudo-spectral scheme and study its stability, consistency and convergence.

6.1 An MTC collocation scheme

To obtain a spatial semi-discretization, for a given n = 2p − 1, p ∈ N, we ap-

proximate the automorphism J by the finite dimensional skew symmetric map

Jn = −Pn∂xPn : Pn → Pn and replace (1.1.4) with

ūt = Jn∇ūGn(ū), ū(0) = In[u0], (6.1.1a)

Gn(ū) = 1
2

∫
R

(
α|ū|2 − βūH[Jnū] + γ|Jnū|2 + 2δ

3
ūIn[ū2]

)
dx, (6.1.1b)

where ū ∈ Pn. Note that if n = 2p − 1, the operator Jn is non-degenerate. This

follows from identities (5.1.5a)-(5.1.5b) and the fact that the eigenvalues of the

differentiation matrix −Jn are given explicitly by ±i ξn
ℓ
, 1 ≤ k ≤ p, where ξk are

roots of the classical Laguerre polynomial Lp(x) (see the proof of Lemma 6.1.1 below
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and [96]). As a consequence, the finite dimensional semi-discrete system (6.1.1) of

ODEs is again Hamiltonian.

By construction, the semi-discrete vector field ∇Gn(ū) is smooth and hence the

initial value problem (6.1.1a) is locally well-posed. Unfortunately (and in contrast to

the classical solution to (1.1.4), where apart from the Hamiltonian its L2(R) norm

is preserved), the only conserved semi-discrete quantity Gn(ū) is sign indefinite.

As a consequence, we have insufficient amount of a priori information to establish

uniform global bounds on the growth rate of the numerical solution ū. To alleviate

the problem, we proceed indirectly. Instead of estimating ū, we compare it to the

reference solution ũ = Pn[u] ∈ Pn, where u (the exact classical solution to (1.1.4)) is

assumed to be globally defined and regular. Our approach is based on the elementary

observation that in the Cauchy problem y′ = ys, y(0) = y0, s > 1, the blow up time

is inverse proportional to the size of the input data. This observation is widely used

in numerical analysis and, in particular, in the context of spectral methods, see e.g.

[67].

6.1.1 Auxiliary estimates

In our analysis, we make use of three technical estimates. The first one is a discrete

analogue of the classical Gagliardo-Nirenberg inequality, the second is used to esti-

mate discrete power nonlinearities and the last one is an extension of the classical

Gronwall’s Lemma.

Lemma 6.1.1. Let u ∈ Pn, n = 2p− 1. Then

∥ux∥L2(R) ≤ c
(
ℓn
2

) 1
2∥Jnu∥L2(R), (6.1.2a)

∥u∥L∞(R) ≤ c
(
ℓn
2

) 1
4∥u∥

1
2

L2(R)∥Jnu∥
1
2

L2(R), (6.1.2b)

where c > 0 is an absolute constant.

Proof. Identities (5.1.5) imply

∥ux∥2L2(R) = ∥Jnu∥2L2(R) +
p2

ℓ2

[
|û2(p−1)|2 + |û2p−1|2

]
,

where ûk = ⟨u, ϕk⟩L2(R), 0 ≤ k ≤ n. Our main task is to bound the sum |û2(p−1)|2 +
|û2p−1|2.
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Let ûe = (û0, . . . , û2(p−1))
T and ûo = (û1, . . . , û2p−1)

T be Rp vectors that contain

the even and the odd MTC-Fourier coefficients of u ∈ Pn. Then, by virtue of

(5.1.5), the even and the odd MTC-Fourier coefficients of −Jnu are given by 1
ℓ
Dûo

and −1
ℓ
Dûe, respectively, where D = (dij) ∈ Rp×p is the symmetric three-diagonal

matrix, whose entries are given by dii = −2i−1, di,i+1 = di+1,i = i, 0 ≤ i ≤ p. Using

the three-term recurrence formula for the classical Laguerre polynomials Ln(x) (see

[2, 96]), we find that

D = QΛQT , Λ = diag(ξ0, . . . , ξp−1), Qij =

√
ξjLi(ξj)

p|Lp−1(ξj)| ,

where ξi, 0 ≤ i ≤ p − 1, are the (strictly positive) roots of Lp(x) and that matrix

Q ∈ Rp is orthogonal.

Let ep be the standard unit vector in Rp and | · |, · denote the usual Euclidean

norm and the inner product in Rp. With this notation, we obtain

|û2(p−1)|2 + |û2p−1|2 = |ep · ûe|2 + |ep · ûo|2

≤ ℓ2|Λ−1QT ep|2∥Jnu∥2L2(R).

Note that

cξi ≤ (i+1)2

p
≤ Cξi, 0 ≤ i ≤ p− 1,

for some absolute constants c, C > 0 (see e.g. [70, formula (2.3.50), p. 141]). Hence,

|Λ−1QT ep|2 = 1
p2

p−1∑
i=0

1
ξi
≤ c

p

and (6.1.2a) follows. Bound (6.1.2b) follows from (6.1.2a) and the standard Gagliardo-

Nirenberg inequality.

Lemma 6.1.2. Assume v ∈ Pn, m > 0, 2 ≤ k ≤ 5 and 1 ≤ r ≤ 2. Then

∣∣⟨In[ũm], In[vk]⟩L2(R)
∣∣ ≤ c

(
ℓn
2ε

) k−2
6−k ∥v∥

2(k+2)
6−k

L2(R) + ε(k − 2)∥Jnv∥2L2(R), (6.1.3a)∣∣⟨In[ũm], In[vrJnv]⟩L2(R)
∣∣ ≤ cε−

2
3−r

(
ℓn
2ε

) r−1
3−r ∥v∥

2(r+1)
3−r

L2(R) + ε∥Jnv∥2L2(R), (6.1.3b)

where ε > 0 is arbitrary and c > 0 depends on k and ∥ũ∥L∞(R) only.
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Proof. Let wi = π
4ℓp

(ℓ2 + 4x2i ), 0 ≤ i ≤ 2p− 1, where xi is defined in (5.3.1b). Since

quadrature (5.3.1a) is exact in Pn and in view of Lemma 6.1.1, we have

∣∣⟨In[ũm], In[vk]⟩L2(R)
∣∣ ≤ n∑

i=0

wi|ũ(xi)|m|v(xi)|k

≤ ∥ũ∥mL∞(R)∥v∥k−2
L∞(R)∥v∥2L2(R)

≤ c∥ũ∥mL∞(R)∥vx∥
k−2
2

L∞(R)∥v∥
k+2
2

L2(R)

≤ c
(
ℓn
2

) k−2
4 ∥ũ∥mL∞(R)∥Jnv∥

k−2
2

L2(R)∥v∥
k+2
2

L2(R).

Hence, Young’s inequality, with exponents 4
k−2

and 4
6−k , yields (6.1.3a). The proof

of (6.1.3b) is identical.

Lemma 6.1.3. Let u ∈ C[0, T ] be non-negative. Assume that

u(t) ≤ f(t) + a

∫ t

0

u(s)ds+ b

∫ t

0

(t− s)u(s)ds, t ∈ [0, T ], (6.1.4a)

where a, b > 0 and f(t) is integrable and non-negative. Then

u(t) ≤ f(0) + e
a+

√
a2+4b
2

t

∫ t

0

[
1 + b

2
(t− s)2

]
f(s)ds, t ∈ [0, T ]. (6.1.4b)

Proof. Let U(t) = eλt
∫ t
0
(t− s)u(s)ds, where λ = −a+

√
a2+4b
2

is the negative root of

the quadratic equation λ2 + aλ− b = 0. Then (6.1.4a) is equivalent to

U ′′(t) ≤ (a+ 2λ)U ′(t) + f(t), U(0) = U ′(0) = 0, t ∈ [0, T ].

Since a+ 2λ < 0, integrating twice, we obtain

e−λtU(t) =

∫ t

0

(t− s)u(s)ds ≤ e−λt
∫ t

0

(t− s)f(s)ds.

Upon substitution into (6.1.4a), we have

u(t) ≤ f(t) + e−λtb

∫ t

0

(t− s)f(s)ds+ a

∫ t

0

u(s)ds,

which, combined with the standard Gronwall’s inequality, gives (6.1.4b).

6.1.2 Stability

Now, we turn to the study of the numerical error e = ũ− ū. Applying operator Pn
to both sides of (1.1.4), subtracting (6.1.1) and passing to the quadrature (as we
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did in Lemma 6.1.2), we infer

et = Jn∇e

[
Gn(−e) + En(e, t) +Dn(e, t)

]
, e(0) = e0. (6.1.5a)

En(e, t) = 2δ
〈
ũ(t), In[e2]

〉
L2(R), (6.1.5b)

Dn(e, t) =
〈
e, α(I − Pn)

[
u](t) + βH

[
(∂x + Jn)u

]
(t),

− γ(∂xx − J 2
n )[u](t) + δ

(
u2(t)− In

[
ũ2
]
(t)
)〉

L2(R), (6.1.5c)

where ∇e denotes the gradient with respect to variable e. Equation (6.1.5a) is

not Hamiltonian. Nevertheless, differentiating and using the skew-symmetry of the

discrete automorphism Jn, we obtain

d
dt

[
Gn(−e) + En(e, t) +Dn(e, t)

]
= ∂t[En(e, t) +Dn(e, t)],

which, after integration in time, gives

|Gn(−e)| ≤ |Gn(−e0)|+ |En(e0, 0)|+ |Dn(e0, 0)|

+ |En(e, t)|+ |Dn(e, t)|

+

∫ t

0

∣∣∂t[En(e(s), s) +Dn(e(s), s)]
∣∣ds. (6.1.6)

We use (6.1.6) to control the L2(R) norm of Jne.

Lemma 6.1.4. Let γ > 0, 0 < ε < γ
4

and

∥e∥L2(R) ≤
(
ℓn
2ε

)− 1
4 , (6.1.7a)

in some interval [0, T ]. Then for each t ∈ [0, T ], we have

∥Jne∥2L2(R) ≤ c
(
|Gn(−e0)|+ |En(e0, 0)|+ |Dn(e0, 0)|

+ ∥e∥2L2
n(R) +

∫ t

0

∥e∥2L2
n(R)ds

+ ∥∇eDn(e, t)∥2L2(R) +

∫ t

0

∥∇e∂tDn(e, t)∥2L2(R)ds
)
, (6.1.7b)

where c > 0 depends on α, β, γ, δ, ∥ũ∥L∞(R) and ∥ũt∥L∞(R) only.

Proof. We bound each term in (6.1.6) separately. First, we use the Cauchy-Schwarz

inequality, unitarity of H and Lemma 6.1.2 to obtain

Gn(−e) ≥
(
γ
2
− ε
)
∥Jne∥2L2(R) − c1∥e∥2L2(R) − c1

(
ℓn
2ε

) 1
3∥e∥ 10

3 ,
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with c1 > 0 that depends on the parameters α, β, γ and δ only. Using Lemma 6.1.2,

we have also

|En(e, t)| ≤ c2∥e∥2L2(R),

|∂tEn(e, t)| ≤ c3∥e∥2L2(R),

where c2 > 0 depends on δ and ∥ũ∥L∞(R) and c3 > 0 depends on δ and ∥ũt∥L∞(R)

only. The quantity Dn(e, t) is linear in e and by the Minkowski inequality,

2|Dn(e, t)| ≤ ∥e∥2L2(R) + ∥∇eDn(e, t)∥2L2(R),

2|∂tDn(e, t)| ≤ ∥e∥2L2(R) + ∥∇e∂tDn(e, t)∥2L2(R).

Hence (6.1.7b) is the direct consequence of the above bounds, (6.1.6) and assumption

(6.1.7a).

We remark that the assumption γ > 0 appearing in Lemma 6.1.4 is not restric-

tive, for if γ < 0 one can use −Gn(·) instead of Gn(·).

Theorem 6.1.5 (Stability). Assume that for some fixed C > 0, T > 0 and ϵ > 0,

max{∥ũ∥L∞([0,T ]×R), ∥ũt∥L∞([0,T ]×R)} < C, (6.1.8a)

∥e0∥L2(R) + |Gn(−e0)|
1
2 + |En(e0, 0)|

1
2 + |Dn(e0, 0)|

1
2

+ ∥∇eDn(e, t)∥L2([0,T ]×R) + ∥∂t∇eDn(e, t)∥L2([0,T ]×R)

= O
((

ℓn
2

)− 1+ϵ
4

)
, (6.1.8b)

uniformly for large values of n = 2p− 1 > 0. Then there exists c > 0, that depends

on C, T and parameters α, β, γ and δ of (1.1.4) only, such that

∥e∥C([0,T ],L2(R)) ≤ c
(
∥e0∥L2(R) + |Gn(−e0)|

1
2 + |En(e0, 0)|

1
2 + |Dn(e0, 0)|

1
2

+ ∥∇eDn(e, t)∥L2([0,T ]×R) + ∥∇e∂tDn(e, t)∥L2([0,T ]×R)

)
, (6.1.8c)

for all sufficiently large values of n > 0.

Proof. (a) We multiply both sides of (6.1.4a) by e, integrate with respect to x over

R and take into account the skew-symmetry of the automorphism Jn. This gives

1
2
d
dt
∥e∥2L2(R) = −⟨Jn[e], In[e2]⟩L2(R)

− ⟨Jn[e],∇eEn(e, t)⟩L2(R) − ⟨Jn[e],∇eDn(e, t)⟩L2(R).
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Lemma 6.1.2 and the Cauchy-Schwarz inequality give the bounds

|⟨Jn[e], In[e2]⟩L2(R)| ≤ ε∥Jne∥2L2(R) + c1
(
ℓn
2ε

)
ε−2∥e∥6L2(R),

|⟨Jn[e],∇eEn(e, t)⟩L2(R)| ≤ ∥Jne∥2L2(R) + c2∥e∥2L2(R),

|⟨Jn[e],∇eDn(e, t)⟩L2(R)| ≤ ∥Jne∥2L2(R) + c3∥∇eDn(e, t)∥2L2(R),

where c1, c3 > 0 are absolute constants and c2 > 0 depends on ∥ũ∥L∞([0,T ]×R) only.

(b) In view of (6.1.8b) and local continuity of ∥e∥2L2(R), we see that (6.1.7a) holds

locally in some nonempty closed interval [0, τ0], 0 < τ0 ≤ T . Therefore, combining

our estimates from part (a) of the proof and using (6.1.7a) with ε = O(1), 0 < ε < γ
2
,

we conclude that the following holds

1
2
d
dt
∥e∥2L2(R) ≤

(
c1 + c2

)
∥e∥2L2(R)

+ (2 + ε)∥Jne∥L2(R) + c3∥∇eDn(e, t)∥2L2(R),

uniformly in [0, τ0]. Integrating the last formula with respect to time and combining

the result with Lemma 6.1.4, we obtain

∥e∥2L2(R) ≤ ∥e0∥2L2(R) + c4t
(
|Gn(−e0)|+ |En(e0, 0)|+ |Dn(e0, 0)|

)
+ c4

∫ t

0

(1 + t− s)∥e∥2L2(R)ds+ c4

∫ t

0

∥∇eDn(e, t)∥2L2(R)ds

+ c4

∫ t

0

(t− s)∥∇e∂tDn(e, t)∥2L2(R)ds, (6.1.9)

where t ∈ [0, τ0] and c > 0 depends on C > 0 and parameters α, β, γ and δ of the

model (1.1.4) only.

(c) Inequality (6.1.9) falls in the scope of Lemma 6.1.3, hence, definitely (6.1.8c)

holds in the small interval [0, τ0]. Furthermore, from the same Lemma 6.1.3, it follows

that the constant c > 0 in (6.1.8c) behaves like c′(1 + τ
3
2
0 )e

c′′τ0 , where c′, c′′ > 0

are independent of n > 0 and τ0. The observation implies that ∥e(τ0)∥2L2(R) =

O
((

ℓn
2

)− 1+ϵ
4

)
, i.e. for n > 0 sufficiently large, (6.1.7a) is satisfied at the endpoint

τ0. In view of the last fact and by continuity of ∥e∥2L2(R), we conclude that (6.1.9)

can be extended to a larger interval [0, τ1], 0 < τ0 < τ1 ≤ T , without increasing the

size of the constant c4 > 0.

The assertion of Theorem 6.1.5 follows from the standard continuation argu-

ment. Repeating the continuation step described above inductively, we construct
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an ascending sequence 0 < τ0 < τ1 < · · · ≤ T , such that (6.1.9) (with c4 > 0 being

fixed) holds in each [0, τi], i ≥ 0. Assuming τ ∗ = sup τi < T , we arrive at the con-

tradiction; for if τ ∗ < T , the continuation step extends (6.1.9) beyond the maximal

interval [0, τ ∗].

6.1.3 Consistency and convergence

In what follows, we use the results of Chapters 2 and 5 to demonstrate that assump-

tions (6.1.8a), (6.1.8b) are satisfied, provided the exact solution u is sufficiently

regular. We begin with (6.1.8a).

Lemma 6.1.6. Assume u, ut ∈ L∞([0, T ], Hs
2s(R)), s > 1. Then

∥ũ∥L∞([0,T ]×R) ≤ c
[
1 +

(
ℓn
2

)1−s]∥u∥L∞([0,T ],Hs
2s(R)), (6.1.10a)

∥ũt∥L∞([0,T ]×R) ≤ c
[
1 +

(
ℓn
2

)1−s]∥ut∥L∞([0,T ],Hs
2s(R)), (6.1.10b)

where c > 0 is an absolute constant.

Proof. By the standard Gagliardo-Nirenberg inequality,

∥ũ∥2L∞(R) ≤ c∥ũ∥L2(R)∥ũx∥L2(R).

Since the MTC functions form a complete orthogonal basis in L2(R), we have

∥ũ∥L2(R) = ∥Pn[u]∥L2(R) ≤ ∥u∥L2(R). To bound the norm of ũx, we write

∥ũx∥L2(R) ≤ ∥ux∥L2(R) + ∥(I − Pn)[u]∥H1(R),

and apply Lemma 5.2.1. This gives (6.1.10a). Bound (6.1.10b) follows along the

same lines.

Next, we show that each term in (6.1.8b) is small.
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Lemma 6.1.7. Assume u, ut ∈ L∞([0, T ], Hs
2s(R)) and s ≥ 2 and ϵ > 0. Then

∥e0∥L2(R) ≤ c
(
ℓn
2

) 3
2
+ϵ−s∥u0∥Hs

2s(R), (6.1.11a)

|Gn(−e0)|
1
2 ≤ c

(
ℓn
2

) 5
2
+ϵ−s(∥u0∥Hs

2s(R) + ∥u0∥
5
3

Hs
2s(R)

)
, (6.1.11b)

|En(e0, 0)|
1
2 ≤ c

(
ℓn
2

) 3
2
+ϵ−s∥u0∥

3
2

Hs
2s(R)

, (6.1.11c)

|Dn(e0, 0)|
1
2 ≤ c

(
ℓn
2

) 7+2ϵ
4

−s(∥u0∥Hs
2s(R) + ∥u0∥

3
2

Hs
2s(R)

)
, (6.1.11d)

∥∇eDn(e, t)∥L2([0,T ]×R) ≤ c
(
ℓn
2

)2−s(
∥u∥L2([0,T ],Hs

2s(R)) + ∥u∥2L4([0,T ],Hs
2s(R))

)
, (6.1.11e)

∥∂t∇eDn(e, t)∥L2([0,T ]×R) ≤ c
(
ℓn
2

)2−s(
∥ut∥L2([0,T ],Hs

2s(R)) + ∥ut∥2L4([0,T ],Hs
2s(R))

)
. (6.1.11f)

In each inequality the generic constant c > 0 is independent of u, u0, T > 0 and

n > 0.

Proof. (a) Since e0 = In
[
(I −Pn)[u0]

]
, as in the proof of Corollary 5.3.3, we obtain

(6.1.11a).

(b) We employ the Cauchy-Schwarz inequality and Lemma 6.1.2 (with ε = 1) to

obtain

2|Gn(−e0)| ≤ c∥e0∥2L2(R) + c∥Jne0∥2L2(R) + c
(
ℓn
2

) 1
3∥e0∥

10
3

≤ c∥(I − In)[u0]∥2H1(R) + c∥(I − Pn)[u0]∥2H1(R) + c
(
ℓn
2

) 1
3∥e0∥

10
3 ,

with c > 0, depending on parameters α, β, γ and δ only. Hence, (6.1.11a) and

Corollary 5.3.3 imply (6.1.11b).

(c) From the definition of En(e, t) and Lemma 6.1.2, we have

|En(e0, 0)| ≤ 2|δ|∥ũ0∥L∞(R)∥e0∥2L2(R)

and (6.1.11c) is a consequence of Lemma 6.1.6 and (6.1.11a).

(d) The functional Dn(e0, 0) is linear in e0. Consequently,

|Dn(e0, 0)| ≤ ∥e0∥L2(R)∥∇eDn(e0, 0)∥L2(R)

and (6.1.11d) follows directly from (6.1.11a) and the proof of (6.1.11e) below.
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(e) From (6.1.5c) we have

∇eDn(e, t) = α(I − Pn)[u] + βH
[
(∂x + Jn)[u]

]
− γ(∂2x − J 2

n )[u] + δ
(
u2 − In

[
Pn[u]2

])
= αE1 + βE2 + γE3 + δE4.

We bound each term separately. First of all, by Lemma 5.2.1,

∥E1∥L2([0,T ]×R) ≤ c
(
ℓn
2

)−s∥u∥L2([0,T ],Hs
2s(R)).

Further, using the definition of Jn, we obtain

∥E2∥2L2(R) = ∥∂x(I − Pn)[u]∥2L2(R) +
n+1
2ℓ

(
|ûn−1|2 + |ûn|2

)
≤ ∥(I − Pn)[u]∥2H1(R) + c

(
ℓn
2

)
∥(I − Pn−2)[u]∥2L2(R),

so that by Lemma 5.2.1,

∥E2∥L2([0,T ]×R) ≤ c
(
ℓn
2

)1−s∥u∥L2([0,T ],Hs
2s(R)).

Similar calculations give also

∥E3∥L2(R) ≤ ∥(I − Pn)[u]∥H2(R) +
(
ℓn
2

)
∥(I − Pn−2)[u]∥L2(R)

and

∥E3∥L2([0,T ]×R) ≤ c
(
ℓn
2

)2−s∥u∥L2([0,T ],Hs
2s(R)).

Finally,

E4 = (I − In)[u2] + In[u2 − Pn[u]2] = E41 + E42.

First, we employ Lemma 2.4.2 and Corollary 5.3.3 to obtain

∥E41∥L2([0,T ]×R) ≤ c
(
ℓn
2

) 3
2
+ϵ−s∥u∥2L4([0,T ],Hs

2s(R))
.

Second, from Lemmas 2.4.2 and 5.3.1, we infer

∥E42∥L2(R) ≤ c( ℓn
2

)
∥(I − Pn)[u](I + Pn)[u]∥H 1

2+ϵ(R)

≤ c( ℓn
2

)(
2∥u∥

H
1
2+ϵ([R])

+ ∥(I − Pn)[u]∥H 1
2+ϵ(R)

)
∥(I − Pn)[u]∥H 1

2+ϵ(R)
.
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The last bound and Lemma 5.2.1 yield

∥E42∥L2([0,T ]×R) ≤ c
(
ℓn
2

) 3
2
+ϵ−s∥u∥2L4([0,T ],Hs

2s(R))
.

Combining all our estimates together, we arrive at (6.1.11e). To obtain (6.1.11f),

replace u with ut.

Combining Theorem 6.1.5 and Lemmas 6.1.6, 6.1.7, we obtain

Corollary 6.1.8 (Convergence). Assume u, ut ∈ L∞([0, T ], Hs
2s(R)), s > 11

4
and

ϵ > 0. Then the numerical solution ū satisfies

∥u− ū∥L∞([0,T ],L2(R)) ≤ c
(
ℓn
2

) 5
2
+ϵ−s(

∥u0∥Hs
2s(R) + ∥u0∥

5
3

Hs
2s(R)

+ ∥u∥H1([0,T ],Hs
2s(R))

)
, (6.1.12)

uniformly for large values of n > 0, with c > 0 that depends on the terminal time

T > 0, parameters α, β, γ and δ of the model (6.1.1) and on the regularity of the

exact solution u only.

Proof. Note that

∥u− ū∥L2(R) ≤ ∥e∥L2(R) + ∥(I − Pn)[u]∥L2(R).

Hence (6.1.12) follows from Lemma 5.2.1 and the fact that under the assumption

s > 11
4
, the numerical error e = ũ− ū fells in the scope of Theorem 6.1.5.

To conclude this section, we remark that if u, ut ∈ L∞([0, T ], Hs
2s(R)), for any

s > 11
4
, then, according to Corollary 6.1.8, the convergence rate is spectral, i.e. the

semi-discretization error ∥u−ū∥L∞([0,T ],L2(R)) decreases faster than any inverse power

of n > 0.

6.1.4 Implementation and simulations

The semi-discretization (6.1.1) leads to a finite dimensional system of ODEs whose

solution is not known explicitly and itself requires an appropriate numerical treat-

ment. Below, we discuss briefly a suitable time-stepping algorithm and then switch

to simulations.
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6.1.4.1 Implementation

The semi-discretization (6.1.1) can be written in the form

Y ′ = (αJ + βHJ2 − γJ3)Y + JF (Y ) = DY + JF (Y ), Y (0) = Y0, (6.1.13)

where, the neutral symbol Y ∈ Rn+1, n = 2p− 1, represents either the vector

Y = (ū0, . . . , ū2p−1)
T ,

of the discrete MTC-Fourier coefficients or the vector of physical values

Y = (ū(x0), . . . , ū(xn))
T ,

computed at the nodal points xm, 0 ≤ m ≤ n. The square skew-symmetric matrices

J,H ∈ R(n+1)×(n+1) provide suitable realizations of the discrete operators Jn and

PnHPn, respectively. The concrete form of J and H depends on the particular

representation of Y . For instance, in the MTC-Fourier (frequency) space J and H

have simple two-by-two block structure with nonzero three-diagonal, respectively

diagonal, blocks in the reverse block diagonal (see identities (5.1.5)), while both

matrices are dense in the physical space. The nonlinearity F (Y ), representing In[ū2],
is given explicitly by

F (Y ) = δ(ū2(x0), . . . , ū
2(xn))

2,

in the physical space.

Time-stepping The spectrum of operator J , computed explicitly in the proof of

Lemma 6.1.1 (see also [96]), indicates that (6.1.13) is stiff, and hence fully explicit

time-stepping schemes cannot be unconditionally stable. Furthermore, since the

nonlinearity F (Y ) is multiplied by J , the semi-implicit splitting-type schemes that

separate stiff and nonstiff components of the vector field (see e.g. discussion in

[87], in connection with the nonlinear Schrödinger equation) are also not plausible

here. From the prospective of numerical stability, we are forced to use fully implicit

A-stable algorithms.
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In our simulations, we make use of the implicit 4-stage 8-order Gauss-type Runge-

Kutta method (IRK8 in the sequel)

c A

bT
, b, c ∈ R4, A ∈ R4×4,

of J. Kuntzmann and J. Butcher, (for the concrete values of the coefficients A, b

and c see [47, Table 7.5, p. 209]). A single IRK8 time step of length τ , applied to

(6.1.13), reads

Z1 =
(
I − τ [A⊗D]

)−1
(
1⊗ Y0 + τ [A⊗ J ]G(Z1)

)
, (6.1.14a)

Z1 = (Y T
1,1, . . . , Y

T
1,4)

T , G(Z1) = (F (Y1,1)
T , . . . , F (Y1,4)

T )T , (6.1.14b)

Y1 = Y0 + τ
4∑
i=1

biF (Y1,i), (6.1.14c)

where 1 = (1, 1, 1, 1)T and ⊗ is the standard Kronecker product. We observe that the

spectrum of A contains two pairs of complex conjugate eigenvalues with nontrivial

real parts and therefore, from Lemma 4.1.1, we deduce that the spectrum of matrix(
I−τ [A⊗D]

)−1
[A⊗J ] is uniformly bounded with respect to the space discretization

parameter n > 0. Further, the theory of Section 6.1.1 indicates that for smooth exact

solutions of the Benjamin equation (1.1.4), the semi-discrete nonlinearity F (Y ) is

bounded uniformly in n > 0 along the trajectories of (6.1.13). Hence, the fully

discrete scheme (6.1.14) is unconditionally stable. Moreover, it follows that for a

fixed Y0, moderately small values of time step τ and independently of n > 0, the

nonlinear map, defined by the right-hand side of (6.1.14a), is a contraction. As

a consequence, the nonlinear equation (6.1.14a) can be solved efficiently via basic

fixed point iterations. The observation is important from practical point of view as

Newton-type iterations are prohibitively expensive for large values of n > 0. We

note also that the exact flow φt, generated by (6.1.13), is symplectic. The IRK8

scheme is known to be symmetric and symplectic [47], hence, the discrete flow of

(6.1.14) preserves this property automatically.

Computational complexity A single fixed point iteration, applied to (6.1.14a),

involves: solving linear systems with matrix I − τ [A⊗D]; the matrix-vector multi-

plication with matrices D and J and finally; computing the nonlinearity F (Y ). In
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view of the special structure of J and H, in the Fourier-Christov space each matrix-

vector operation requires O(n) flops, while computing of F (Y ) involves the use of

the discrete direct and inverse MTC-Fourier transforms (see formulas (5.3.1a) and

(5.3.2), (5.3.3), respectively). Because of (5.1.3) and (5.3.1b), both operations can

be accomplished in O(n log2 n) flops via the direct and inverse discrete Fast Fourier

Transforms [19, 30, 51, 96, 97] and the cost of a single iteration is O(n log2 n). As

noted earlier, for any given tolerance ε the total number of such iterations is finite

and depends on the time step τ only. Hence, the overall complexity of a single time

step of (6.1.14) is O(n log2 n).

6.1.4.2 Simulations

Below, we provide several simulations illustrating the accuracy of (6.1.1) in several

computational scenarios.

6.1.4.3 Slowly decreasing solutions

We begin with the generic situation where, due to the nature of the Fourier symbol

in the linear part of (1.1.4), solutions decay at most algebraically.

Example 1 First, we simulate (1.1.4) in time interval [0, 2], with α = β = γ = δ =

1. Since for these values of the model parameters, analytic formulas for solutions are

not available, we augment (1.1.4) with a source term f(x, t). The latter is chosen so

that the exact solution reads

u(x, t) =
3∑

k=1

rk
a2k+(x−xk,0−ckt)2

,

r1 = 2, r2 = 1, r3 = 3, a1 = 1, a2 = 1, a3 = 2,

c1 = 1, c2 = −2, c3 = 0, x1,0 = −1, x2,0 = 1, x3,0 = 0.

Note that u(x, t) is smooth (in fact u ∈ Hs(R), s ∈ R), but has a polynomial

decay rate at infinity (u = O(|x|−2) at |x| → ∞). In view of this fact, accurate

approximation of such functions with the aid of standard trigonometric basis requires

huge number of spatial grid points. Nevertheless, straightforward calculations show
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Figure 6.1: The left diagrams (top to bottom): the numerical solution of the Ben-

jamin equation (1.1.4) ū and the pointwise error |u− ū|, with n = 27 − 1. The right

diagram: ∥u−ū∥L∞([0,T ];L2(R)) (orange, pentagon), ∥u−ū∥L∞([0,T ]×R) (teal, diamond).

that the quantity FP+[u] is smooth and decreases exponentially in the positive half

line R+. Hence, u falls in the scope of the theory presented in Chapter 5 and earlier

part of Chapter 6 and we expect rapid error decay already for moderate values of

n > 0.

The numerical results, for 24 − 1 ≤ n ≤ 29 − 1, ℓ = 23 and τ = 2 · 10−2, are

plotted in the right diagram of Fig. 6.1. Both ∥ · ∥L∞([0,T ],L2(R)) and ∥ · ∥L∞([0,T ]×R)

errors decrease spectrally (note that both curves are concave) as n increases. For

n > 27, the numerical errors settle near 10−11. This is a consequence of the inexact

time-stepping procedure employed in our calculations. Simulations, not reported

here, indicate that for n > 27 the error can be further reduced by choosing smaller

time integration steps.

To illustrate the quality of the approximation, we plot the numerical solution ū

and the associated pointwise error |u− ū|, obtained with n = 27 − 1, in the two left
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Figure 6.2: The left diagrams (top to bottom): the numerical solution of the Ben-

jamin equation (1.1.4) ū and the pointwise error |u− ū|, with n = 27 − 1. The right

diagram: ∥u−ū∥L∞([0,T ];L2(R)) (orange, pentagon), ∥u−ū∥L∞([0,T ]×R) (teal, diamond).

diagrams of Fig. 6.1. It is clearly visible that the pointwise error does not exceed

the magnitude of 5 · 10−8 uniformly in the computational domain.

Example 2 In our second simulation, we keep the numerical parameters of Ex-

ample 1 unchanged, but make use of another source term which gives the following

exact solution

u(x, t) =
3∑

k=1

rk(x−xk,0−ckt)
a2k+(x−xk,0−ckt)2

.

In this settings u(x, t) = O(|x|−1), as |x| → ∞. Nevertheless, the truncated Fourier

image FP+[u] has exactly the same qualitative features as in Example 1 and the

resulting convergence rate is spectral (see the left diagram in Fig 6.2). In the partic-

ular case of n = 27 − 1, the numerical solution and the pointwise error are shown in

the top- and bottom-left diagrams of Fig. 6.2, respectively. The observed behavior

is very much alike to the one, reported in Example 1.
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Figure 6.3: The left diagrams (top to bottom): the numerical solution of the Ben-

jamin equation (1.1.4) ū and the pointwise error |u− ū|, with n = 27 − 1. The right

diagram: ∥u−ū∥L∞([0,T ];L2(R)) (orange, pentagon), ∥u−ū∥L∞([0,T ]×R) (teal, diamond).

6.1.4.4 The Korteweg-de Vries scenario

The Benjamin equation (1.1.4) contains two special case γ = 0 and β = 0, which are

of independent interest. The first one corresponds to the Benjamin-Ono equation,

and is not considered here. In the second case, we have the classical Korteweg-de

Vries (KdV) equation. The latter is known to be completely integrable and possesses

a large number of special solutions. For instance, when

α = β = 0, γ = −1, δ = −3,

the inverse scattering transform yields the so called N -solitons (see e.g. [1])

u(x, t) = −2∂xx ln det(I + A(x, t)), (6.1.15a)

A(x, t) =
(
bie

8λ3i t e
−λix−λjx

λi+λj
, 1 ≤ i, j ≤ N

)
, (6.1.15b)

λi =
1
2

√
vi bi = 2λie

2ϕiλi , 1 ≤ i ≤ N, (6.1.15c)
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which describe evolution of N traveling waves, whose velocities and the phases are

controlled by vi and ϕi, respectively. Directly from (6.1.15), it follows thatN -solitons

are smooth and decay exponentially to zero as |x| increases. Hence, such solutions

fall in the scope of the theory developed in Chapters 5 and 6.

Example 3 To illustrate the above statement, in (6.1.15) we let

v1 =
3
2
, v2 =

1
2
, ϕ1 = −3, ϕ2 = 0,

choose u0 according to (6.1.15), take ℓ = 23, τ = 10−2 and integrate (6.1.1) nu-

merically in time interval [0, 5]. The results of simulations (see in Fig. 6.3) are

qualitatively similar to those obtained in Examples 1 and 2. In particular, the plots

of ∥ · ∥L∞([0,T ],L2(R)) and ∥ · ∥L∞([0,T ]×R) errors indicate that the convergence rate is

spectral. Note however that in the bottom-left diagram of Fig. 6.3 the pointwise

error is smaller than in the two previous Examples. This is connected with the

exponential decay of the 2-soliton at infinity (its accurate spatial resolution requires

fewer grid points than in Examples 1 and 2).

By construction, the scheme (6.1.1) is conservative and the semi-discrete Hamil-

tonian Gn(ū) remains constant along the exact trajectories of (6.1.1). In order to

test the conservation properties of the fully discrete scheme, in the right diagram of

Fig. 6.3, we added the plot of the quantity maxt∈[0,T ] |Gn(ū0)−Gn(ū)|, measuring the

largest deviation in the Hamiltonian. We observe that the deviation remains several

orders of magnitude smaller than either of the ∥ · ∥L∞([0,T ],L2(R)) and ∥ · ∥L∞([0,T ]×R)

errors, until the latter settle near 10−11.

Example 4 We repeat calculations of Example 3, but this time with

v1 = 1, v2 = 1, v3 =
1
2
, ϕ1 = −4, ϕ2 = −2, ϕ3 = 0.

This scenario describes an elastic collision of three traveling waves, see the top-left

diagram in Fig. 6.4. The exact 3-soliton has exactly the same qualitative features

as the 2-soliton of Example 3, with the exception that now the exponential decay

rate is slightly slower. This manifests in larger numerical errors, see the bottom-left

diagram in Fig. 6.4.
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Figure 6.4: The left diagrams (top to bottom): the numerical solution of the Ben-

jamin equation (1.1.4) ū and the pointwise error |u− ū|, with n = 27 − 1. The right

diagram: ∥u−ū∥L∞([0,T ];L2(R)) (orange, pentagon), ∥u−ū∥L∞([0,T ]×R) (teal, diamond).

6.1.4.5 Traveling waves

In our last two simulations, we model an interaction of traveling waves. In the

context of the Benjamin equation (1.1.4), the traveling wave solutions are given by

u(x, t) = vσ(x− ct), where vσ satisfies

vσ − 2σ
√

γ
α−cH[∂xvσ]− γ

α−c∂xxvσ +
δ

α−cv
2
σ = 0, x ∈ R, (6.1.16a)

σ = β

2
√
γ(α−c)

, γ, δ, ν > 0, c < α. (6.1.16b)

For a rigorous treatment of (6.1.16), see [5, 10, 26, 35, 36, 53, 74] and references

therein.

The exact solutions to (6.1.16), apart from the trivial case of α = 0, are not

available. In our simulations, the even traveling waves are constructed numerically,

see Chapter 7 also. We employ a simple continuation scheme, which works as follows:
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Figure 6.5: Inelastic collision of two traveling waves, Example 5.

for a given α, β, γ, δ and c, that satisfy (6.1.16b) and 0 ≤ σ < 1; (i) we let

v̄0 = In[v0], v0(x) = −3(α−c)
2δ

sech
(√

α−c
4γ
x
)2
;

(ii) introduce a continuation grid 0 < σ1 < . . . < σN = σ and (iii) apply simplified

Newton’s iterations to the sequence of the discrete nonlinear problems

v̄σj + 2σj

√
γ
α−cH[Jnv̄σj ]− γ

α−cJ 2
n v̄σj +

δ
α−cIn[v̄2σj ] = 0, 1 ≤ j ≤ N, (6.1.17)

where for each j, v̄σj is restricted to be even. The iterations terminate when the

L2(R)-norm of the defect in (6.1.17) drops below the accuracy threshold of εn =

10−12

√
2(1−σ)
n

. We mention only that in all our simulations the simplified Newton’s

process converges rapidly to the discrete solutions v̄σj but, as observed by many

authors, the number of iterations increases when σ approaches its upper bound of 1.

106



Example 5 We let n = 212−1, ℓ = 23, α = γ = δ = 1, c1 = 1
2
, c2 = −1

2
, σ1 = 0.95,

β = σ1
√

4γ(α− c1) and σ2 = β√
4γ(α−c2)

. As an initial condition, we take the sum of

two translated traveling waves

ū0(x) = v̄σ1(x+ 20) + v̄σ2(x− 20)

and integrate (6.1.1) numerically in time interval [0, 80]. With this settings, the

solution describes a collision of two traveling waves moving towards each other. The

collision occurs near t = 40, past that time the waves continue to move in the

opposite directions. The initial profile of the numerical solution and its profiles near

the collision time and at the terminal time are shown in the top three diagrams of

Fig. 6.5. As observed in [35, 53], an interaction of the Benjamin traveling waves is

inelastic — after collisions, numerical solutions develop a persistent small amplitude

oscillating tail. In agreement with these observations, the latter is clearly visible in

the bottom diagram of Fig. 6.5, where the magnified view of the terminal profile is

presented.

Example 6 In our last example, we use n = 212 − 1, ℓ = 23, α = γ = δ = 1,

c1 =
3
4
, c2 = 1

10
, σ1 = 0.95, β = σ1

√
4γ(α− c1), σ2 = β√

4γ(α−c2)
,

ū0(x) = v̄σ1(x+ 30) + v̄σ2(x+ 4)

and [0, 80] for the time integration interval. The scenario describes propagation of

two traveling waves moving in the same direction and colliding near t = 40. The

numerical results are shown in Fig. 6.6, where as before, the top three diagrams

contain the solution profiles at the initial, near collision and the terminal times,

while the bottom diagram contains a magnified view of the solution at terminal

time t = 80. Once again, the small dispersive tails (of the amplitudes ≈ 10−4 before

the slow wave and ≈ 10−3 after the fast wave) are clearly visible.
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ū
(8

0
)

−40 −20 0 20 40 60 80 100 120
−2

0

2

4

·10−3

x

ū
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Figure 6.6: Inelastic collision of two traveling waves, Example 6.
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Chapter 7

An MTC-type continuation scheme:

The stationary Benjamin equation

Numerical analysis of (1.3.2) has generated a considerable body of research in both

physical and numerical literature [5, 26, 35, 36]. The general idea consists in ad-

vancing known solution at µ = 0 using a continuation technique (see, [5, 26, 35, 36]

and references therein). Unfortunately, in most cases the numerical analysis is very

informal. The main purpose of this Chapter is to fill in this gap. Below, we present

a complete analysis of a spectral-type numerical scheme based on the use of MTC

functions. We mention, that similar approach was used successfully in context of

closely related Benjamin-Ono equation, see [21] and references therein.

7.1 An MTC continuation scheme

7.1.1 Spatial discretization

Let Aµ be the operator associated with symbol κµ, and let Pn : L2(R) → Pn
be the MTC-projector, defined in Section 5.2. We denote Aµ,n = PnAµPn. For

computational purposes, we replace (1.3.2) with

Aµ,nφn = Pn[φℓn], φn ∈ Pn, 0 ≤ µ < 1. (7.1.1)

For a fixed value of n problem (7.1.1) is a finite dimensional system of nonlinear

equations that has to be solved iteratively. In view of Lemmas 4.3.1-4.3.3, it is
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natural to expect that the Jacobi matrix of the system is non-degenerate near Pn[φµ],
for small values of µ, where φµ is the variational, even, positive definite solution of

equation (1.3.2) obtained in Theorem 4.1.7. In these settings, Newton’s iterations

are numerically feasible. The detailed analysis of the scheme (7.1.1) is provided

below.

7.1.2 Error analysis

In our analysis, we make use of two technical results from Chapter 5, see [8] also.

The first one is the inverse inequality

∥f̂∥L2
s(R+) ≤ cn|s|∥f̂∥L2(R)+ , f̂ ∈ P̂n, s > −1

2
, (7.1.2a)

that holds with cs > 0 independent on f̂ and n, see [8, formula (37b)] and the proof

of Lemma 5.3.1. The second is the following error estimate

∥(I − P̂n)f̂∥L2(R+) ≤ cn− s
2∥f̂∥L2,s

s
2

(R+), s ≥ 0, (7.1.2b)

which is a particular case of (5.2.3). It is important to note that (7.1.2) holds with

an absolute constant c > 0.

In context of problem (1.3.4), bounds (7.1.2) combined with Lemma 4.2.4 yield

the following basic estimates:

Lemma 7.1.1. If n > 0 is sufficiently large, 0 ≤ µ < 1 and p > 0 is a fixed number,

then

∥Pn[φµ]∥H1
µ
≤ cn√

1−µ , (7.1.3a)

np∥(I − Pn)[φµ]∥ ≤ crµ exp
{
− cµn

1
3

}
, (7.1.3b)

where c > 0 is an absolute constant, cµ = 3
(
ρ

8r2µ

) 1
3 and the quantities ρ and rµ are

defined in Lemmas 4.2.1 and 4.2.4, respectively.

Proof. (a) Direct application of (7.1.2a) yields

∥Pn[φµ]∥H1
µ
= ∥P̂n[φ̂µ]∥Ĥ1

µ

≤
√
2
(
∥P̂n[φ̂µ]∥L2(R+) + 2µ∥P̂n[φ̂µ]∥L2,0

1 (R+) + ∥P̂n[φ̂µ]∥L2,0
2 (R+)

)
≤ cn∥P̂n[φ̂µ]∥L2(R+) ≤ cn∥φ̂µ∥L2(R+) ≤ cn√

1−µ∥φ̂µ∥H1
µ
.
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It is not difficult to verify that

d
dµ
∥φ̂µ∥2L2,0

κµ (R+)
= −2∥φ̂µ∥2L2,0

1 (R+)
< 0.

Consequently, for 0 ≤ µ < 1 the quantity ∥φµ∥H1
µ

is uniformly bounded from the

above by the absolute constant ∥φ0∥H1 . Hence, (7.1.3a) follows.

(b) We employ (7.1.2b), the identity J −s
− [φ̂µ] = (−1)se

ξ
2∂sξ
[
e−

ξ
2 φ̂µ
]
and Lemma 4.2.4

to obtain

np∥(I − Pn)[φµ]∥L2(R) =
√
2np∥(I − P̂n)[φ̂µ]∥L2(R+) ≤ cnp−m∥φ̂µ∥L2,2m

2m (R+)

≤ cnp−m

22m

(
2m
eρ

)m 2m∑
r=0

(
2m
r

)
2r∥∂rξ φ̂µ∥L2

ρ(R+)

≤ crµn
p−m(2m)!

(2mr2µ
eρ

)m
.

Since m > 0 is arbitrary, for n >
8p3r2µ
ρ

, we let m ≤
(
nρ
8r2µ

) 1
3 . Hence (7.1.3b) is

completely settled.

Below, we employ the classical Newton-Kantorovich theorem [54] to show that

the discrete problem (7.1.1) is solvable.

Lemma 7.1.2. Operator Aµ,n is invertible and

∥A−1
µ,n∥L2(R)→L2(R) ≤ 1√

1−µ , 0 ≤ µ < 1. (7.1.4)

Proof. The finite dimensional bilinear form An(·, ·) = ⟨Aµ,n·, ·⟩L2(R) : Pn × Pn → R

is clearly bounded in L2(R) norm. Further, for any φ ∈ Pn

An(φ, φ) = ∥φ∥2H1
µ
≥ (1− µ2)∥φ∥L2(R) ≥ (1− µ)∥φ∥L2(R).

Hence, (7.1.4) is a straightforward consequence of the classical Lax-Milgram lemma.

In view of Lemma 7.1.2, the discrete problem (7.1.1) can be rewritten in the

form

Nµ,n(φn) = φn − Gµ,n(φn) = 0, Gµ,n(φn) = A−1
µ,nPn[φℓn].
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Lemma 7.1.3. For n > 0 sufficiently large and for small values of µ, the derivative

N ′
µ,n(Pn[φµ]) : Pn → Pn is invertible. Furthermore,

∥N ′
µ,n(Pn[φµ])−1

∥∥
H1

µ→H1
µ
≤ 3ℓ−1

2(ℓ−1)−c(|µ|+rµ(1−µ)
ℓ−1
2 exp{−cµn

1
3 })
, (7.1.5)

where c > 0 is an absolute constant and the quantities rµ, cµ > 0 are defined in

Lemmas 4.2.4 and 7.1.1, respectively.

Proof. (a) For φ ∈ Pn, consider the linear operator Ñ ′
µ,n[φ] = I − G̃n,µ[φ], with

G̃n,µ[φ] = ℓA−1
µ,nPn[φℓ−1

µ φ]. Using Lemmas 4.3.1-4.3.2 (see in particular formula

(4.3.3)) and the classical perturbation theory of compact selfadjoint operators [55],

for small values of µ, we have

inf
φ∈Pn, ∥φ∥H1

µ
=1

∣∣〈φ, Ñ ′
µ,n[φ]

〉
H1

µ

∣∣ ≥ inf
φ∈H1

µ(R), ∥φ∥H1
µ
=1

∣∣〈φ, (I − G ′
µ(φµ)

)
[φ]
〉
H1

µ

∣∣
≥ 2(ℓ−1)−c|µ|

3ℓ−1
,

with some uniform constant c > 0. Since Ñ ′
µ,n[φ] : H

1
µ(R) ∩ Pn → H1

µ(R) ∩ Pn is

selfadjoint, it follows that

∥(Ñ ′
µ,n)

−1∥H1
µ→H1

µ
≤ 3ℓ−1

2(ℓ−1)−c|µ| . (7.1.6)

(b) For φ ∈ Pn, we have∣∣〈φ, (Ñ ′
µ,n −N ′

µ,n(Pn[φµ])
)
[φ]
〉
H1

µ

∣∣ ≤ ℓ
∣∣〈φ, (φℓ−1

µ,n − Pn[φµ]ℓ−1)φ
〉
L2(R)

∣∣
≤ ℓ∥κ−

1
2

µ ∥ℓ−1
L2(R)∥φ∥2H1

µ

[
ℓ−2∑
k=0

∥Pn[φµ]∥kH1
µ
∥φµ∥ℓ−2−k

H1
µ

]
∥(I − Pn)[φµ]∥L2(R)

Since ∥κ−
1
2

µ ∥ ≤ (1− µ)−
1
2 , estimates (7.1.3) give

∥Ñ ′
µ,n −N ′

µ,n(Pn[φµ])∥H1
µ→H1

µ
≤ crµ(1− µ)

1−ℓ
2 exp{−cµn

1
3}.

The latter bound, combined with (7.1.6) and the classical Neumann lemma, yields

the result.

Lemma 7.1.4. The derivative N ′
µ,n(·) : Pn → Pn is locally Lipschitz continuous.

Specifically, for any ψi ∈ Pn with ∥Pn[φµ]− ψi∥H1
µ
≤ δ ≤ 1, i = 0, 1, we have

∥N ′
µ,n(ψ0)−N ′

µ,n(ψ1)
∥∥
H1

µ→H1
µ
≤ c(1− µ)1−ℓnℓ−2∥ψ0 − ψ1∥H1

µ
, 0 ≤ µ < 1, (7.1.7)

where c > 0 is an absolute constant.
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Proof. Elementary calculations yield

∥N ′
µ,n(ψ0)−N ′

µ,n(ψ1)
∥∥
H1

µ→H1
µ
≤ ℓ∥ψℓ−1

0 − ψℓ−1
1 ∥

≤ ℓ∥κ−
1
2

µ ∥ℓ−1

[
ℓ−2∑
k=0

∥ψ0∥kH1
µ
∥ψ1∥ℓ−2−k

H1
µ

]
∥ψ0 − ψ1∥H1

µ
.

Hence, (7.1.7) is a direct consequence of (7.1.3a).

Lemma 7.1.5. For n > 0 sufficiently large, the defect Nµ,n(Pn[φµ]) satisfies

nℓ−1∥Nµ,n(Pn[φµ])∥H1
µ
≤ crµ(1− µ)−

ℓ
2 exp

{
− cµn

1
3

}
, (7.1.8)

where c > 0 is an absolute constant and the quantities rµ, cµ > 0 are defined in

Lemmas 4.2.4 and 7.1.1, respectively.

Proof. The exact solution satisfies

Pn[φµ] +A−1
µ,n

[
PnAµ(I − Pn)[φµ]− Pn[φℓµ]

]
= 0.

Hence,

Nµ,n(Pn[φµ]) = A−1
µ,n

[
Pn[φℓµ − Pn[φµ]ℓ]− PnAµ(I − Pn)[φµ]

]
.

Taking the H1
µ(R) inner product with ψ ∈ Pn, ∥ψ∥H1

µ
= 1, we infer

∣∣⟨Nµ,n(Pn[φµ]), ψ⟩H1
µ

∣∣ ≤ 1√
1−µ∥φℓµ−Pn[φµ]ℓ∥L2(R)+

√
2∥κµψ̂∥L2(R+)∥(I−Pn)[φµ]∥L2(R).

Derivations similar to those used in the proof of (7.1.3a) yield

∥κµψ̂∥L2(R+) ≤ cn√
1−µ .

Consequently,

nℓ−1∥Nµ,n(Pn[φµ])∥H1
µ

≤ nℓ−1
√
1−µ

[
∥κ−

1
2

µ ∥ℓ−1

ℓ−1∑
k=0

∥Pn[φµ]∥kH1
µ
∥φµ∥ℓ−1−k

H1
µ

+ cn

]
∥(I − Pn)[φµ]∥L2(R)

≤ c(1− µ)−
ℓ
2n2ℓ−2∥(I − Pn)[φµ]∥L2(R),

and (7.1.8) follows from (7.1.3b).
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Lemmas 7.1.3–7.1.5 combined together yield the main result of this section.

Theorem 7.1.6. For n > 0 sufficiently large and for small values of µ, the discrete

problem (7.1.1) has an isolated solution φµ,n ∈ Pn, that satisfies

∥φµ − φµ,n∥H1
µ
≤ crµ(1− µ)−

ℓ
2 exp

{
− cµ

2
n

1
3

}
, (7.1.9)

where c > 0 is an absolute constant and the quantities rµ, cµ > 0 are defined in

Lemmas 4.2.4 and 7.1.1, respectively. Further, for small values of µ0 ≤ µ < µ1 <

1, the numerical trajectory Sn(µ0, µ1) = {(µ, φµ,n)}µ0≤µ≤µ1 is a smooth parametric

curve in R× Pn that does not meet any other solution branches of (7.1.1).

Proof. (a) We let

ᾱ = ∥N ′
µ,n(Pn[φµ])−1N ′

µ,n(Pn[φµ])∥H1
µ
,

β̄ = ∥N ′
µ,n(Pn[φµ])−1∥H1

µ→H1
µ
,

σ̄ = sup

{
∥N ′

µ,n(Pn[φµ])[ψ0]−N ′
µ,n(Pn[φµ])[ψ1]∥H1

µ

∥ψ0−ψ1∥H1
µ

∣∣∣ψi ∈ Pn, ∥Pn[φµ]− ψi∥H1
µ
≤ 1

}
.

Choosing n > 0 sufficiently large and using Lemmas 7.1.3–7.1.5, we have

ᾱβ̄σ̄ ≤ crµ(1− µ)
2−3ℓ

2 exp
{
− cµn

1
3

}
< 1

2
,

uniformly, for small values of µ. Hence, problem (7.1.1) fells in the scope of the

classical Newton-Kantorovich theorem [54]. It follows that the Newton iterations

φµ,n,j+1 = φµ,n,j −N ′
µ,n(φµ,n,j)

−1[Nµ,n(φµ,n,j)], j ≥ 0,

with φµ,n,0 = Pn[φµ], converge to the unique zero φµ,n of (7.1.1) in the open ball

B(Pn[φµ], δ) =
{
φ ∈ Pn

∣∣ ∥φ− Pn[φµ]∥H1
µ
< δ̄
}
⊂ Pn, δ = 1

β̄σ̄
= O

( (1−µ)ℓ−1

nℓ−2

)
,

and

∥Pn[φµ]− φµ,n∥H1
µ
≤ 2ᾱβ̄ ≤ crµ(1− µ)−

ℓ
2 exp

{
− cµn

1
3

}
. (7.1.10)

In addition, we observe that

∥(I −Pn)[φµ]∥H1
µ
≤
[
∥κµφ̂µ∥L2(R) + ∥κµP̂n[φ̂µ]∥L2(R)

] 1
2∥(I −Pn)[φµ]∥

1
2

L2(R), (7.1.11)
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where ∥κµφ̂µ∥ ≤ ρrµ and ∥κµP̂ [φ̂µ]∥ ≤ cn2
√
1−µ , by virtue of Lemma 4.2.4 and formula

(7.1.2a), respectively. We conclude that the error bound (7.1.9) follows directly from

(7.1.10), (7.1.11) and Lemma 7.1.1.

(b) The nonlinear map Nµ,n(φ) is analytic in φ ∈ Pn and µ. Lemma 7.1.3,

estimate (7.1.10) and the standard perturbation theory of linear operators, indicate

that N ′
µ,n(φµ,n) : Pn → Pn is invertible. Hence, for each fixed value of µ ∈ [µ0, µ1]

the analytic version of the Implicit Function theorem applies. Locally, φµ,n gives

rise to an analytic branch of isolated numerical solutions φµ,n(t), |t − µ| < δ′. In

view of part (a) of the proof φµ,n(t) = φt,n, when δ′ is small. Standard covering

argument shows that local solution branches, glued together, make up an analytic

parametric curve Sn(µ0, µ1) ⊂ R× Pn, for µ0, µ1 small.

Theorem 7.1.6 assures that the numerical scheme (7.1.1) is robust in the sense

that the associated nonlinear equation does not generate spurious numerical branches

bifurcating out of the physically meaningful numerical trajectory Sn(µ0, µ1), when

µ0, µ1 are small. Estimate (7.1.9) indicates that numerical solutions do converge

and the convergence rate is subgeometric in H1
µ(R). In fact, the same is true in

the uniform topology of C0(R), for H1
µ(R) ⊂ C0(R). Further, careful inspection of

Lemmas 4.2.1 and 4.2.4 indicates that ρ = O
(
(1 − µ)ℓ

)
and rµ = O

(
(1 − µ)

1−ℓ
2

)
.

Hence, (7.1.9) is equivalent to

∥φµ − φµ,n∥H1
µ
≤ c(1− µ)

1−2ℓ
2 exp

{
− c′[(1− µ)2ℓ−1n]

1
3

}
, (7.1.12)

where c, c′ > 0 are some absolute constants. In view of (7.1.12), we expect the

accuracy of (7.1.1) to deteriorate when µ is away from zero, and n > 0 being fixed.

The latter phenomenon is observed by a number of authors, see [5, 10, 74, 13].

To conclude this section, we remark that Theorem 7.1.6 is local in nature. At

present, we are unable to control the multiplicity of the second eigenvalue λ1 = 1

of G ′
µ(φµ), for all values of 0 ≤ µ < 1. In view of Lemma 4.3.1, the spectral gap

between the dominant λ0 = ℓ and the second eigenvalue λ1 = 1 of G ′
µ(φµ) persists

and is precisely equal to ℓ− 1. By virtue of Lemma 4.3.2 the spectrum of G ′
0(φ0) is

simple and hence λ1 remain simple for small values of µ. However, we cannot control

the behavior of eigenvalues λn, n ≥ 2, for 0 ≤ µ < 1 away from zero. It may happen
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that for some 0 < µ′ < 1 a finite number of them reaches λ1 and the local analysis,

presented above, fails. The numerical simulations, presented below, indicate that

the second eigenvalue remain simple for all values of 0 ≤ µ < 1, however we do not

have rigorous proof of this fact.

7.2 Simulations

In our simulations, the following basic continuation scheme is employed: we assume

that φµ,n is known, choose δ > 0 so that µ + δ < 1 and solve (7.1.1) numerically

using Newton’s iterations:

φµ+δ,n,0 = φµ,n, (7.2.1a)

φµ+δ,n,j+1 = φµ+δ,n,j −N ′
µ+δ,n(φµ,n+δ,j)

−1[Nµ+δ,n(φµ+δ,n,j)], j ≥ 0. (7.2.1b)

Computations terminate as soon as

∥φµ+δ,n,j − φµ+δ,n,j+1∥L2(R) ≤ ε√
1−µ , (7.2.1c)

where ε > 0 is a user set tolerance. More sophisticated initial guess and/or stopping

criterion can be used, but we do not pursue such a generality here. For µ = 0 the

exact solution is known (see formula (1.3.3)) and is used to initialize the continuation

process. After each continuation step, the identity (5.1.1a) is applied to reconstruct

the Fourier image φ̂µ,n.

Note that solving (1.3.2) directly, when µ→ 1, requires very large values of n, as

oscillations in the exact solutions cannot be properly captured on rough grids. To

circumvent the problem, the original equation (1.3.2) is rescaled. In our simulations,

we solve for the dilate φµ(τx), with τ = 25.

7.2.1 Numerical solutions

We let ε = 10−10 and solve (7.1.1) for 0 ≤ µ ≤ 0.9999 and ℓ = 2, 3, 4, 5, 6. The

numerical solutions φµ,29 and corresponding snapshots for selected values of µ are

plotted Fig. 7.1 and Fig. 7.2, respectively. One can see that independently on a

particular value of ℓ and for large values of µ, all solutions develop oscillations:
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Figure 7.1: The numerical solutions φµ,n and φ̂µ,n, µ ∈ [0, 0.9999], n = 29.

in each case, the number of oscillations is finite; the number of oscillations and

their amplitude increases together with µ. In the case of ℓ = 2, similar qualitative

behavior was predicted theoretically and/or observed numerically by a number of

authors [5, 13, 74]. In particular, our numerical data agrees with computations
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Figure 7.2: The snapshots of φµ,n for selected values of µ, n = 29.

reported in [36].

The plots of φ̂µ,n provide further illustration of this phenomenon. When µ is near

1, the graphs of φ̂µ,n resemble superposition of two δ-like functions supported near

ξ = ±1 (see right diagrams in Fig. 7.2). There is however a significant difference in

the behavior of the amplitudes of the delta-peaks for different values of the parameter
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ℓ. For ℓ = 2 and ℓ = 3 the delta-peak amplitudes, after some short transition stage,

behave as non-increasing functions of µ (see right diagrams in Fig. 7.1), while for

ℓ ≥ 4 the amplitudes increase rapidly as µ → 1. This observation is intimately

connected with the orbital stability of the computed waves, we discuss this issue in

some details below.
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Figure 7.3: The stability indicator d′′(µ), n = 214.

7.2.2 Orbital Stability

For ℓ = 2, 3, 4, 5, 6, the plots of the stability indicator d′′(µ) (see Section 4.3.2) are

shown in Fig. 7.3. The top-left diagram serves as an illustration to Corollary 4.3.5,

which asserts that for ℓ = 2, traveling waves are orbitally stable for small values of

µ ∈ [0, 1). In fact, the numerically computed quantity d′′(µ) remains positive for all
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µ in the computational domain.

We do not have an analogue of Corollary 4.3.5 for ℓ ≥ 3, however, when β = 0,

(1.1.4) reduces to classical KdV equation and stability theory, developed in [16],

applies. In particular, traveling waves with β = 0 (equivalently µ = 0) are stable,

provided that ℓ < 5. Using standard perturbation theory, we expect traveling waves

with ℓ = 3 and ℓ = 4 to be orbitally stable near µ = 0. Similarly, in the case of

ℓ ≥ 6, we expect instability near the origin. The case of ℓ = 5 is special, for then

d′′(0) = 0 and the simple perturbation argument does not apply. We discuss each

particular case separately.

For ℓ = 3, the plot of d′′(µ) is shown in the top-right diagram of Fig. 7.3. As

expected d′′(µ) is positive near the origin, interestingly and similarly to the case

of ℓ = 2, it remains positive for all values of µ ∈ [0, 0.9999]. Taking into account

(4.3.8), we suspect that traveling waves remain stable for all values of µ ∈ [0, 1), it

would be interesting to have a rigorous proof of this assertion.

The case of ℓ = 4 is qualitatively different from the previous two (see the left

diagram in the second row of Fig. 7.3). The quantity d′′(µ) is positive near the

origin but crosses µ-axis as µ increases. The change in sign occurs at µ∗ ≈ 0.977472,

passing this point the curve d′′(µ) rapidly goes down, indicating that associated

traveling waves lose their stability. We cannot claim that the instability persists in

[µ∗, 1), but in view of (4.3.8),1 it is a reasonable assumption.

The question of stability is particularly interesting when ℓ = 5, for in this case

d′′(0) = 0 (see the right diagram in the second row of Fig. 7.3). Numerical simula-

tions show that small perturbations in µ yield orbitally stable waves. The stabilizing

effect persists for µ ∈ (0, µ∗), µ∗ ≈ 0.926735. In the interval [µ∗, 0.9999], the solu-

tions lose their stability. Here again the remark made above applies, it is natural to

expect that the waves φµ remain unstable for µ ∈ [µ∗, 0).

For the sake of completeness, we repeat calculations with ℓ = 6. Here, d′′(0) < 0

[16], and we expect traveling waves to be unstable near the origin. The two bottom

diagrams in Fig. 7.3 show that this is indeed the case. However, as µ increases the

graph of d′′(µ) crosses µ-axis twice (see the bottom-right diagram in Fig. 7.1), which
1For (4.3.8) indicates that variational problem (4.3.6) might be unbounded.
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yields nontrivial stability interval (µ∗
1, µ

∗
2), with µ∗

1 ≈ 0.382645 and µ∗
2 ≈ 0.872382

(see the magnified plot in the bottom-right diagram of Fig. 7.3). As in two previous

examples, the stability is lost once µ passes the threshold value µ∗
2.

We remark that calculations presented above for ℓ ≥ 3 shall be taken with some

caution as the magnitudes of d′′(µ) over large portions of stability regions are very

small (especially for ℓ = 6) and may be easily affected by a numerical noise (caused

by the approximation and the round off errors). Nevertheless, when producing the

above diagrams, we repeated computations with increasing values of n until the

plots stabilize. For 2 ≤ ℓ ≤ 6, this occurs when n ≥ 212. The diagrams displayed in

Fig. 7.3 are obtained with n = 214.

7.2.3 Accuracy

In view of Theorem 7.1.6 and estimate (7.1.12), for small fixed values of µ ∈ [0, 1),

we expect at least sub-geometric convergence rate provided n is sufficiently large. To

illustrate the assertion, we present some accuracy tests for the numerical solutions

φµ,n with µ ∈ [0, 0.9999] and 26 ≤ n ≤ 212. Since the exact solutions are unavailable,

as the reference solution we take φµ,n with n = 214. The work/precision diagrams,

containing L2-errors ∥φµ,n − φµ,214∥, are presented in Fig. 7.4. We observe that

for each value of ℓ and for each fixed value of µ, the errors decrease at least sub-

geometrically (the surfaces are concave in the direction of n-axis). Further, for

moderate values of parameter µ the decay is very rapid. In fact, for the large

range of µ and n, the errors are comparable with the machine epsilon. In complete

agreement with (7.1.12), the accuracy deteriorates as µ→ 1 and/or as ℓ increases.

Quantity ∥φµ,n − φµ,214∥ is not an ideal measure for the numerical accuracy, for

φµ,214 itself is not exact. Nevertheless, when n is large, we have

∥φµ,n − φµ∥ ≤ ∥N ′
µ(φµ)

−1∥L2→L2∥Nµ(φµ,n)∥+O(∥φµ,n − φµ∥2),

i.e the quantities (L2-defects) ∥Nµ(φµ,n)∥ might serve as an adequate reflection of

true numerical errors, see Fig. 7.5. The diagrams shown in Fig. 7.5 are closely

resembling those presented in Fig. 7.4 and hence supporting our theoretical conclu-

sions about accuracy of scheme (7.1.1) and the reliability of presented computational
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Chapter 8

Conclusion

In this thesis, we presented theoretical and numerical analyses of the stationary and

non-stationary Benjamin equation posed on the real line.

Chapter 2 is introductory in nature. Here, we provided a detailed proof of an

interpolation identity for a scale of variable weight Sobolev spaces for which we have

no immediate references. This result is new and extends some recent investigations

in the theory of weighted function spaces. In the context of nonstationary Benjamin

equation, the variable weight Sobolev spaces appear naturally and play fundamental

role in the analysis of Chapters 3, 5 and 6.

Chapter 3 contains wellposedness analysis of the non-linear Benjamin equation

in the settings of the variable weight Sobolev spaces defined in Chapter 2. Our

result is new, extends significantly recent research on the global wellposedness of

the Benjamin equation in weighted Sobolev-like spaces and provides a theoretical

foundation for building robust numerical schemes.

The existence, regularity and orbital stability of traveling waves are considered in

Chapter 4. In particular, the problem of existence is settled globally for 0 ≤ µ < 1

via a combination of concentration-compactness and a small viscosity limit tech-

niques. A detailed asymptotic and regularity analyses (carried out in Section 4.2)

are new and extend earlier results of [5, 10, 13, 74]. Further, it is shown that the

quadratic waves ℓ = 2 are orbitally stable for small values of wavespeed parameter

µ.

The Malmquist-Takenaka-Christov basis and its computational properties are
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discussed in Chapter 5. Rigorous theoretical analysis indicates that the MTC ap-

proximations converge rapidly, provided the Fourier images of the approximated

functions are regular away from the origin and decay rapidly at infinity. This makes

them particularly suitable for solving semi- and quasi-linear problems containing

Fourier multipliers, whose symbols are not smooth at the origin.

An MTC-type collocation scheme for the nonstationary Benjamin equation is

presented in Chapter 6. It is shown that the convergence rate of the scheme is

controlled solely by the regularity and asymptotic of the Fourier images of solutions

in R \ {0}, while allowing square integrable singularities at the origin. As a conse-

quence, and in contrast to the Hermite or algebraically mapped Chebyshev bases in

L2(R), the MTC-type approximations converge spectrally under very mild restric-

tions on the solutions decay at infinity and admit an efficient practical implemen-

tation, comparable to the best spectral-Fourier and hybrid spectral-Fourier/finite-

element methods, described in the literature.

In the final Chapter 7, an MTC-type continuation scheme for the stationary

Benjamin equation is presented. Rigorous error analysis of the scheme indicates

that for small values of the wavespeed parameter µ, the numerical approximations

converge subgeometrically and hence yield very accurate numerical results for mod-

erate values of the discretization parameter n. The computational scheme is used

to study orbital stability of the Benjamin traveling waves numerically. Simulations

suggest that the quadratic (ℓ = 2) and the cubic (ℓ = 3) waves are orbitally stable

for all values of 0 ≤ µ < 1, however, a rigorous proof of this fact is not available.
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