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Abstract

In this study we use linear mixed models to model residential electricity consumption

within the eThekwini municipal area. Utilities around South Africa are required to esti-

mate monthly electricity consumptions for each household within their jurisdiction how-

ever, little work has been done to find models that may be used to do so. As part of

the modelling process we investigate seasonal trends in consumption as well as temporal

and spatial variations. Data for the study were obtained from eThekwini Electricity, a

subsidiary of eThekwini Municipality. Key findings of the research include confirming

the presence of a seasonal pattern in monthly electricity consumption and proving that

variations in consumption of different households are not related to the physical distance

between them. Models developed in this study also have applications in prediction and

may be used to predict future electricity consumption for individual households. Predic-

tions made using the models from this study were found to be closer to the actual value,

than that of the customary eThekwini Electricity predicted values.

Keywords

Electricity consumption, generalized linear mixed models, linear mixed models, prediction,

residential, spatial variations, temporal variance
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Chapter 1

Introduction

eThekwini is situated on the East Coast of South Africa, within the province of KwaZulu-

Natal. A map depicting eThewkini’s precise location is shown in Figure 1.1, eThekwini

is the shaded dark area. eThekwini Municipality covers a land area of approximately

2000 square kilometres and encompasses the city of Durban (eThekwini). According to

Census 2011, the population of Durban (eThekwini) is about 3.4 million (StatsSA, 2012),

accounting for approximately 7% of South Africa’s entire population.

Figure 1.1: The location of eThekwini Municipality

Electricity to the eThekwini Municipality is supplied by eThekwini Electricity. eThekwini

Electricity estimate that they supply electricity to 655 338 households (eThekwini Elec-

tricity, 2013). Of these households, 333 434 are prepaid customers and account for 8% of
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all power sold to the residential sector while, 321 904 are credit customers who account

for 23% of all power sold to the residential sector. The difference between the two types

of customers namely being; prepaid customers purchase their electricity upfront by means

of vouchers whereas, credit customers are charged monthly for the amount of electricity

they consumed during the previous month.

All credit customers have an electricity meter on their property that is read at approxi-

mate 3 month intervals throughout the year. As a result, we expect each household within

eThekwini to have 4 meter readings in a 12-month period. eThekwini Electricity use these

meter readings to calculate the amount of electricity used, and bill customers accordingly.

In the months where meters are not read, customers pay estimated charges (eThekwini

Municipality, 2013). Any differences between actual and estimated charges are accounted

for in the monthly bills of meter-reading months.

Currently, there are too many credit customers over too wide an area, for eThekwini Elec-

tricity to feasibly consider conducting monthly readings and doing away with estimations.

eThekwini Electricity estimates consumption by means of a cumulative total of weighted

previous actual usage. Whereby, the most recent consumptions carry the highest weight-

ings while weightings of older consumptions decrease exponentially. This method may be

summarized by the following formula:

E(yij)eThekwini =
n−1∑
k=1

(
1
2

)k

lagk + 2
(

1
2

)n

lagn

where n is the total number of measurement periods that each household has; yij repre-

sents the current electricity usage for the ith household at time tij , j = 1, . . . , n; and pre-

vious electricity consumption values for the ith household are denoted using lags whereby,

lagk = yij−k for k = 1, . . . , n − 1 and lagn = yij−n.

Based on the understanding that each household has 4 meter readings in a 12-month pe-

riod, it follows that from the current electricity consumption value there would be 4 lags

for the 12-month period prior to it. Similarly, we expect there to be 8 lags over a 24-month

period, 12 lags over a 36-month period, 16 lags over a 48-month period and so on. From

the customary estimation formula given above, we observe that lag1 carries a weighting

of 0.5, lag2 carries a weighting of 0.25, lag3 carries a weighting of 0.125 and lag4 carries
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a weighting of 0.0625. Once these weighted lags are summed, it becomes evident that

the bulk of the estimate for current electricity usage comes from the first 4 lags that a

household has. That is, the most recent previous year’s electricity consumption accounts

for the majority of the eThekwini estimate.

Clearly, this customary estimation method does not allow for any seasonal or cyclical

trends in consumption. Such estimation also does not take into account the individual

customers’ electricity consumption variability and pattern. Despite dwelling type also

being a logical consumption-influencing factor to consider, it too, is not utilized in the

customary method. To date, both in South Africa and other countries research into the

modelling of monthly household electricity consumption at an individual household level

has been limited.

1.1 Literature Review

The national aggregate electricity demand of South Africa and the examination of factors

likely to influence demand has been a primary focus of local research. In the 1980s Pouris

(1987) used annual data for the period 1950-1983 and an unconstrained distributed lag

model to estimate long-run price elasticities of the aggregate electricity demand in South

Africa. Modelling demand as a function of price and GDP, Pouris (1987) found the elastic-

ity of electricity demand to be -0.9 while income remained inelastic. More recently, Inglesi

(2010) sought to specify variables that could be used to explain aggregate electricity de-

mand within South Africa then, used these variables to produce forecasts up to the year

2030. Inglesi (2010) found that there was a long-run relationship between electricity con-

sumption, electricity price and economic growth. Sigauke & Chikobvu (2011) developed a

combination regression-SARIMA-GARCH model to predict short term daily peak aggre-

gate electricity demand in South Africa. The Reg-SARIMA-GARCH model proposed by

Sigauke & Chikobvu (2011) captured various short term demand-influencing factors such

as days of the week, holidays and temperature. Further to their 2011 study, Chikobvu

& Sigauke (2013) employed a piecewise linear regression model and extreme value theory

to model the influence of temperature on South Africa’s daily average electricity demand.

The results of Chikobvu & Sigauke (2013) showed that in South Africa daily electricity

demand was highly sensitive to cold temperatures. Inglesi-Lotz & Blignaut (2011) per-
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formed a sectoral decomposition of South Africa’s electricity consumption and looked at

how factors such as increased production, structural changes and efficiency improvements

affected consumption in different sectors. Consequently, a sectoral approach to energy

policy-making in South Africa was recommended by Inglesi-Lotz & Blignaut (2011) be-

cause they found that the identified factors had varying effects in different sectors.

Following a model akin to that of Pouris (1987), Ziramba (2008) examined electricity de-

mand as a function GDP per capita and electricity price in the South African residential

sector for the period 1978-2005. Ziramba (2008) found that in the long run, income was

the main factor that determined residential electricity demand while the price of electric-

ity was insignificant. A similar study was also carried out using Sri Lankan data for the

period 1960-2007 by Athukorala & Wilson (2010). In addition to modelling residential

electricity demand as a function of per capita income and electricity price, Athukorala &

Wilson (2010) also included the price of alternative energy sources such as kerosene as

a demand-influencing factor. The results of Athukorala & Wilson (2010) were somewhat

alike to those of Ziramba (2008), in that it was determined that increasing electricity price

was not an effective tool to reduce consumption and that increases in household incomes

would likely see increases in consumption. Other studies that have also modelled residen-

tial electricity demand as a function of per capita income, price as well as other additional

factors have been carried out in Australia (Narayan & Smyth, 2005), the United States

(Dergiades & Tsoulfidis, 2008), and Taiwan (Holtedahl & Joutz, 2004).

Narayan & Smyth (2005) used a bounds testing approach to cointegration in an autore-

gressive distributive lag (ARDL) framework to estimate the short and long-run elasticities

of residential electricity demand. Income and price of electricity were found to be the

main determinants of demand, while temperature was found to be only sometimes impor-

tant and prices of alternative fuels were irrelevant (Narayan & Smyth, 2005). Dergiades

& Tsoulfidis (2008) assumed residential electricity demand to be a function of per capita

income, electricity price, weather conditions, prices of alternative sources (e.g. gas or oil)

and stock of appliances within dwellings. Using ARDL cointegration, Dergiades & Tsoul-

fidis (2008) showed that a single cointegration relation existed among these factors.
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In addition to studies where the focus has been price elasticity or forecasting electricity

demand as a function of GDP, research has also gone into other factors affecting electric-

ity consumption. Firth et al. (2008) identified trends between electricity consumption and

appliance usage. Marvuglia & Messineo (2012) used artificial neural networks (ANNs) for

short-term electricity forecasting in Italy and focused on how the use of air-conditioning

affected electricity consumption. Yohanis et al. (2008) carried out a comprehensive study

in Northern Ireland on the patterns of electricity consumption of 27 households. Yohanis

et al. (2008) took into account a wide range of household factors such as dwelling type,

location, dwelling size, household appliances, attributes of the occupants and income, and

found that each factor had an impact on electricity consumption.

Aside from the small study of 27 households by Yohanis et al. (2008), the problem with

studies such as those cited, is that they are not able to describe the individual household

level of electricity consumption. Though such studies are useful to estimate the national

residential electricity usage, the main challenge in the new democratic South Africa is

service delivery at the municipal and ward levels. Hence, our study initiates and moti-

vates further research on estimation of electricity consumption of a typical household in a

given municipality in South Africa. In this regard our study differs from the works already

cited, in that our main focus is at a household-level as opposed to modelling and predict-

ing consumption for the entire residential sector. We also step away from the traditional

time series and econometric modelling approaches, choosing instead an applied statistical

approach. Accordingly, we use linear mixed models to model household electricity con-

sumption as a function of month of meter reading, dwelling type, a household-specific

intercept and lagged consumption.

1.2 Objectives and Significance of the Study

The aim of this study is to model household electricity consumption within the eThekwini

Municipality. Presently, we are aware that lagged consumption values are used to estimate

current electricity consumption, with the 4 most recent lags contributing the most to the

estimate. In this study we will formally assess whether or not lagged consumption values

have an effect on current electricity consumption. Furthermore, if an effect is present we
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intend to ascertain whether all available lags for a household are significant or not, as well

as seek to establish if there is any seasonal pattern occurring within the lags. In addition

to studying the effect of lagged consumption, we also strive to address the shortcomings

of the customary eThekwini Electricity estimation technique by considering dwelling type

and month of meter reading. By including both lags and month of meter reading in the

modelling process, we will be able to assess two different factors. The inclusion of the

month of meter reading enables us to tentatively gauge if some months have higher or

lower electricity consumption than others. The inclusion of lags allows for the assessment

of a potential seasonal pattern occurring within households electricity usage. Both tempo-

ral and spatial variations in households electricity consumption are also to be investigated

in the study. Initially, our focus shall be on temporal variances of electricity usage within

households thereafter, we will examine spatial variations in consumption between house-

holds. To carry out these modelling procedures, we shall use linear mixed models.

The models developed in this study will also have applications in prediction. We can use

our final models to predict monthly electricity consumption for individual households. To

validate our final model/s, we shall compare our predictions to estimates derived from

the customary eThekwini Electricity estimation method, assessing which method renders

results closest to actual monthly consumption values.

Finding a model that enables better prediction of electricity usage is significant, as the

outcome could potentially affect over 300 000 credit customers (households). Even though

differences in estimated and actual charges get reversed every 3 months, hypothetically,

credit customers could be routinely paying too much or too little for electricity on a

monthly basis. Indelibly, this would impact on monthly household budgets. Considering

the wide ranging economic statuses of residents in eThekwini, this could stand to make a

big difference to households on tight budgets.

Of equal importance to improving prediction, is proving whether or not a spatial relation-

ship between electricity consumption of individual households exists. This would enable

us to ascertain how feasible it may be, to base a household’s predicted electricity con-

sumption, on that of their neighbours. Potentially, this would provide a solution to when

meters get skipped during meter-reading months (an event that often occurs if meters are



7

not accessible and house owners are unavailable). It may also suggest that for prediction

purposes, fewer meters need be read every 3 months.

This study is clearly beneficial, both to the energy sector in South Africa and to the

municipality who provided the data. To begin the study, we look at the data in Chapter

2, proceeding to the modelling processes in Chapters 3 to 6. In the final chapter, Chapter

7, we provide a broad summary of our results and discuss our findings.
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Chapter 2

Data Description

The data required for this study were provided by eThekwini Electricity. Two databases,

namely COINS and GIS, were used to compile the data set. COINS stores data relating

to every one of eThekwini Electricity’s customers, including electricity users in the resi-

dential, commercial and industrial sectors. However, for the purposes of this study, only

information pertaining to credit residential electricity users was extracted.

eThekwini Electricity continuously collects data from their credit customers (electricity

consumers). All credit customers have an electricity meter on their property, that is read

by eThekwini Electricity officials at approximate 3 month intervals throughout the year.

This is done, so as to determine the amount of consumed electricity to bill the customer

for. Meter readings as well as, the dates they were taken on are then stored in the COINS

database. As this is an ongoing process, the result is a longitudinal, repeated measures

data set, containing rich historical information for individual electricity consumers, span-

ning several years. With the aid of property identifiers, information regarding the exact

spatial location of all these credit electricity consumers could be linked, and included from

the GIS database.

The final, repeated measures type data set from eThekwini Electricity contained informa-

tion for approximately 300 000 properties of individual credit electricity customers. For

the purposes of this study and simplicity henceforth, we refer to individual credit electric-

ity customers as households. The data covers an approximate five year period, with most

households’ meter readings beginning in late 2007 and ending in mid 2013. As most of

the information was extracted straight from COINS, aside from meter readings, dates and
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GIS co-ordinates, a lot of additional household data was made available to us. We focus

further discussions only on variables pertinent to this study.

2.1 Pertinent Identifiers and Variables

Three different identifiers were given in the data; a property key, electrical connection

ID and meter ID. The property key identifies one property from another, connection ID

identifies each electrical connection from the electricity grid to a dwelling and meter ID is

a number unique to each electricity meter.

For the purposes of this study, we use the electrical connection ID as our household iden-

tifier. The reason for us choosing this identifier, is that it remains unchanging and allows

us to uniquely identify individual electricity consumers. Although we are able to recog-

nize individual properties through the property key, we note that on a single property

may exist several dwellings with several different households. A basic example of such a

scenario would be a block of flats. The block itself has a single property key but, each

individual unit/flat would have its own electrical connection ergo, its own connection ID.

Furthermore, we prefer connection ID over meter ID because, meter ID is linked directly

to the meter and would change in the event of a meter upgrade or replacement.

Household information includes five years worth of repeated meter readings, reading dates,

GIS co-ordinates, suburb and city locations and dwelling type classifications. There are

3 categories of dwelling types; houses, shareblocks ≤ 2 storeys high and shareblocks > 2

storeys high.

We refer to the period between two consecutive readings as a usage period. The amount of

electricity consumed in a usage period is measured in kilowatt hours (kWh), and calculated

by subtracting the previous meter reading from the current one. eThekwini Electricity

uses a built-in algorithm to handle this calculation in the event of a meter roll-over. Meter

roll-over is when a meter reaches its maximum possible reading then begins again from

zero.

In the business and industrial sector, the difference between readings is multiplied by some
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meter coefficient, as their actual consumption is much higher. However, in the residential

sector the meter coefficient is 1, allowing us to simply use the difference between two

consecutive readings. These differences, coefficients and calculated consumptions (includ-

ing eThekwini Electricity’s algorithm for meter roll-overs) are all stored in the COINS

database. As a result, actual electricity consumptions for all usage periods throughout

the 5 years are also included as a repeated measure in our household data. Since we ex-

pect each household to have 4 meter readings in a 12-month period, it follows that each

household should have a minimum of 20 meter readings for the 5-year period. Therefore,

it is possible that each household in the data could have at least 19 lagged electricity

consumption values, with 4 lags occurring in a 12-month period.

Using the reading dates, we were able to add to our already existing household data. We

calculated the length of all the usage periods (in days), and we extracted the months that

each meter was read in. An additional variable, t, starting from zero and counting the

number of measurement occasions within each household, was also created. This data,

combined with the other variables and lags already discussed constitutes the applicable

household information contained in the data set available for use in this study.

2.2 Selecting a Sample from the Data

The original data set received from eThekwini Electricity was exceptionally large, contain-

ing information for approximately 300 000 households across some 10 million rows. The

necessary computing equipment required for processing such large data far exceeds the

available computing facilities in the University of KwaZulu-Natal. Since the main focus is

modelling electricity consumption, so as to later enable future prediction of it, using lim-

ited data serves the purpose. Accordingly, a sample was drawn from the original data set.

We model electricity consumption for the sampled data, demonstrating effective methods

that could be implemented on a larger scale, with the necessary computing capacity.

Before selecting a cohort, the original data set needed to be sorted and cleaned. The data

was sorted by connection ID, then chronologically by reading date. Households that had

unpopulated fields for variables such as dwelling type or GIS co-ordinates were removed.
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Due to the vast area and number of credit customers, it is not possible for eThekwini

Electricity to read every customer’s meter on a monthly basis. Instead, eThekwini Elec-

tricity ideally try to read the majority of their customers’ meters on an ongoing basis, at

approximate 3 month intervals. Therefore, in this study we limit our sampling frame to

households that have measurement periods that are approximately 3 months in length. To

guarantee an approximate 3-month period, we only consider households whose measure-

ment periods are between 80 and 110 days in length. This ensures that we stay within the

“ideal” or norm of eThekwini Electricity, enabling us to later compare typical municipal

estimations to predictions made using models developed in this study.

In addition to limiting the sampling frame by length of measurement period, we also re-

stricted it by city location. Only households that had a city classification of “Durban”,

were considered for sampling. The city of Durban encompasses most suburbs within

eThekwini’s municipal boundaries and incorporates households from wide ranging back-

grounds. When we look back to the original data set from eThekwini Electricity, we also

see that more than two thirds of the households had a city classification of “Durban”.

Consequently, we consider our defined sampling frame to be adequate, in regard to en-

suring a sample that is more or less representative of typical credit electricity consumers

within eThekwini.

The intention of this study is to demonstrate methods of modelling residential electricity

consumption. However, we also wish to avoid computational burdens brought about with

large data. Therefore, for demonstration purposes and for this study, we select a sample

of 1500 households using the method of simple random sampling. To ensure that each

dwelling type would be represented in the sample, we sampled 500 households from each

type.

2.3 Descriptive Statistics

The specification of the sampling frame ensured no anomalies in regard to the regularity

of meter readings/measurement occasions however, no attention was paid to the actual

electricity consumption. It is difficult to simply decide if a consumption value may be

unnaturally high or low, due to the vastly diverse backgrounds and needs of each electric-
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ity consumer within Durban. Therefore, we refrain from looking at any specific expected

range of possible consumption values. However, we acknowledge that it would be consid-

ered “abnormal”, if any usage period had an actual consumption value of zero. It is very

difficult (albeit not impossible) for an average household to consume absolutely no elec-

tricity within 3 months. Zero usage more likely suggests that a dwelling had no occupant

during that time or, measurement error at the time of meter reading or, meter tampering.

Whatever the reasons, zero usage in a measurement period is certainly deemed unusual

for the majority of households. We identified and removed 22 such households within the

sample, leaving us with a sample size of 1478 households. For simplicity purposes, instead

of referring to an 8 digit long connection ID throughout the study, households were labeled

1 to 1478.

For this study it is more practical to work with scaled data that will further minimize the

burden on computing memory. We scaled the consumption data in such a way so as to not

disturb the month of meter reading. The data was scaled by dividing the 3-month con-

sumption values by a factor of 3. These scaled values intuitively created a monthly scale.

In a similar fashion, we scaled the number of days in the usage periods down by a factor

of 3. The creation of such monthly scaled values will simplify later model interpretation

and also ensure the applicability of any results, as we recall that eThekwini Electricity

deal with monthly estimates for all of their customers. The interpretation assumes these

scaled values are the actual consumptions for the months the meter was read.

We are aware that eThekwini Electricity’s customary estimation method does not account

for differences between dwelling types. However, cursory examination of our sampled data

at baseline (t = 0), reveals the mean monthly electricity consumption to be 734.26 kWh

for houses, 564.43 kWh for shareblocks ≤ 2 storeys, and 507.25 kWh for shareblocks > 2

storeys high. This serves as a possible indication that dwelling type does in fact have an

effect on electricity consumption, and further investigation is warranted in the modelling

process.

In addition to not accounting for differences due to dwelling type, the customary esti-

mation method also does not allow for any cyclical or seasonal effect in electricity usage.

The customary estimate is based on a weighted average of previous actual consumption,
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with more than 90% of the estimate coming from the 4 most recent lags which equates

to the most recent previous year’s electricity usage. A focal point of this study includes

determining whether lagged consumption values do in fact affect current electricity con-

sumption and if so, establishing how many and which lags in particular effect significance

on current consumption. By scrutinizing the lags, we are inherently able to assess the

possible presence of a seasonal effect in the electricity consumption data. We begin our in-

vestigation by examining a simple profile plot of a few randomly selected households from

the sample. The profile plot of 15 randomly selected households is displayed in Figure 2.1.

Figure 2.1: Profile plot of monthly electricity consumption for 15 households

Figure 2.1 reveals that there is both between and within household variation. Furthermore,

we can clearly see a recurring pattern taking place within each household. It appears

as though each household’s average monthly electricity usage at the same time in the

year, over the 5-year period, are somewhat similar to one another. That is, monthly

consumption values that are 12 months apart appear similar, suggesting the presence of a

seasonal pattern. Based on this preliminary observation, it is evident that at least some

lags will have an effect on current electricity consumption values. Hence, the presence of a

seasonal pattern as well as, the number of lags affecting current consumption is investigated
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further. This is done in the application section of Chapter 3. However, before proceeding

to deeper analysis of the electricity data, we first explore the distributional properties of

the electricity consumption values. Figure 2.2 displays a histogram that shows how the

monthly electricity consumption values are distributed.

Figure 2.2: Histogram showing the distribution of monthly electricity consumption

From Figure 2.2 we see that the consumption data is skewed to the right. This suggests

that the electricity consumption data is unlikely to satisfy normality assumptions. A com-

mon remedy for non-normally distributed data is to either apply a transformation to the

data or implement a generalized modelling approach. Both avenues are explored in greater

detail in the application sections of subsequent chapters.

Following these rudimentary observations, we proceed to deeper analysis of the electric-

ity data, using a mixed modelling approach. Mixed models are well-suited to handling

repeated measures data, enabling us to model the monthly electricity consumption of

individual households. In addition to modelling both between and within household vari-

ations, with mixed models we also have the ability to model either temporal or spatial

variations.
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Chapter 3

The Linear Mixed Model

In this chapter we look at the linear mixed model and how it may be applied to longitudinal

data analysis. Following discussions on repeated measures analysis and mixed models, we

proceed to the modelling of our sampled electricity data. The application in this chapter

focuses solely on modelling temporal variations within households. To fit linear mixed

models to the data we make extensive use of the statistical software, SAS. Inferences

made from the final model are discussed at the end of the chapter.

3.1 Mixed Effects Model Definition and Estimation

A linear mixed model (LMM) is so named, as it is a linear model containing both fixed

and random effects. It may also be referred to as a linear mixed effects model. A fixed

effect is universal to the whole target population. Whereas, a random effect occurs when

the factor variable being modelled, constitutes only a random sample of all possible factor

levels within the target population. It is a common understanding that we say we predict

random effects and estimate fixed effects (McCulloch et al., 2008). For a detailed historical

account of the development of the mixed model refer to Searle et al. (2006) or West et al.

(2007).

The general form of the LMM is given by

y = Xβ + Zu + ε (3.1)

where y is a vector of response variables; X is a (n × p) known design matrix of fixed
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numbers associated with β; β is a (p×1) vector of unknown constants, the fixed effects of

the model; Z = |Z1|Z2| . . . |Zr|, where Zi is a (n× qi) known design matrix of the random

effect factor i; u′ = |u′
1|u′

2| . . . |u′
r|, where ui is a (qi × 1) vector of the random variables; ε

is a (n× 1) vector of error terms. It is assumed that both the random effect, u, and error

term, ε, are of the multivariate normal distribution, u ∼ N(0,G) and ε ∼ N(0,R), where

G is block diagonal with the ith block being σ2
i Iqi and R is positive definite. It is further

assumed that u and ε are independent. The response variable y is also of the multivariate

normal distribution with E(y) = Xβ and var(y) = V = ZGZ′ + R, or, y ∼ N(Xβ,V).

There are varying opinions and methods as how to best estimate model parameters (see

e.g. Harville, 1977; Laird & Ware, 1982; Robinson, 1991; Searle et al., 2006) however, the

most frequently employed method of estimation is that of maximum likelihood (ML) and

restricted maximum likelihood (REML) (Fitzmaurice et al., 2008).

If we assume that V is known, and employ either the method of ML or, methods of least

squares estimation, we find that the best linear unbiased estimator (BLUE) of β is given

by β̂ = (X′V−1X)−1X′V−1y with β̂ ∼ N(β; (X′V−1X)−1). The realized value of u is

given by ũ = GZ′V−1(y−Xβ), ũ is known as the best linear unbiased predictor (BLUP)

of u.

However, when V is unknown and not a function of β, the log likelihood equation needs

to be maximized with respect to V. Once the estimate of V, V̂, is found it may be sub-

stituted back into the likelihood equation to find the remaining parameter estimates.

Searle et al. (2006) and McCulloch et al. (2008) showed how to find V̂ using the profile

likelihood equation and iterative methods such as Newton-Raphson and Fisher Scoring.

Alternatively, as first introduced by Patterson & Thompson (1971), V can also be es-

timated using the method of restricted maximum likelihood (REML). McCulloch et al.

(2008) recognized the growing popularity in the use of REML estimation over ML estima-

tion when estimating V, as the resulting estimates are less biased.
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3.2 The Linear Mixed Model in Longitudinal Data Analysis

Longitudinal data occurs when a specific characteristic of a subject is measured or ob-

served repeatedly (on two or more occasions) over a period of time. Subjects are regarded

as independent of each other while, observations within subjects are related to one an-

other. Accounting for the correlation of within subject observations as well as, variability

between subjects is of particular importance in longitudinal studies. This allows us to

gain reliable inference on parameters of interest.

One of the most widely used methods for analyzing continuous, longitudinal data is the

linear mixed model (Fitzmaurice et al., 2008). Laird & Ware (1982) were the first authors

who illustrated the analysis of longitudinal data using a more flexible class of mixed-effect

models. Laird & Ware (1982) used the EM (expectation maximization) algorithm in their

iterative mixed model estimation of the variance components and parameters of the mixed

model. Later, Jenrich & Schluchter (1986) suggested several other algorithms, among them

Fisher Scoring (FS) and Newton-Raphson (NR). Subsequently, several authors employed

and built upon using linear mixed models in longitudinal data analysis (see e.g. Laird

et al., 1987; Lindstrom & Bates, 1988; Diggle, 1988).

Repeated measures data may be classified as either balanced or unbalanced. A data set

is considered balanced when each subject has an equal number of repeated observations

that have been measured at the same time points. Conversely and more common in oc-

currence, unbalanced data occurs when the number of repeated observations per subject

are different, and/or have measurements that have been gathered at different time points

(Verbeke & Molenberghs, 2000; Fitzmaurice et al., 2004).

Der & Everitt (2006) said that LMMs for repeated measures data formalized the idea

that a subject’s response pattern would depend on many characteristics of that individual

including, some characteristics that may not have been observed. Verbeke & Molenberghs

(2000) gave a detailed construction of a two-stage mixed effects model for repeated mea-

sures data. Common textbooks such as Verbeke & Molenberghs (2000), Fitzmaurice et al.

(2004) or, McCulloch et al. (2008) explained how the two-stage fitting of the mixed ef-

fects model allowed for the handling of unbalanced data. By combining the steps in the
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two-stage model, one arrives at a similar linear mixed model for longitudinal data, as first

proposed by Laird & Ware (1982).

A linear mixed model, adapted for longitudinal data is given by

yi = Xiβ + Zibi + ei (3.2)

where yi
′ = (yi1, yi2, . . . , yini)

′, if yij represents the response of the ith individual measured

at time tij for i = 1, . . . , N and j = 1, . . . , ni; Xi is an (ni × p) matrix of known covariates

associated with the fixed effects; β is a (p × 1) vector of unknown regression parameters

representing the fixed effects; Zi is an (ni × q) design matrix associated with the random

effects; bi is a (q × 1) vector of random effects, representing the random subject-specific

effects, such that bi ∼ N(0,G) where G is block diagonal with the ith block being σ2
i Iqi ;

ei is an (ni × 1) vector of residual components where it is assumed ei ∼ N(0,R) and R is

positive definite. We assume yi is multivariate normal, yi ∼ N(Xiβ,ZiGZi
′ + R = Vi),

and that bi and ei are independent.

Similar to the results in the LMM, if Vi is known, the BLUE of β is given by β̂ =

(
∑N

i=1(X
′
iV

−1
i Xi))−1

∑N
i=1(XiV−1

i yi) where β ∼ N(β, (
∑N

i=1(X
′
iV

−1
i Xi))−1); the best

linear unbiased predictor (BLUP) of bi is given by b̃i = GZi
′Vi

−1(yi − Xiβ). If Vi is

unknown, following the same procedure outlined in Section 3.1, we find V̂i and substitute

it back into the likelihood equation to find the remaining parameter estimates.

With the marginal model, yi ∼ N(Xiβ,ZiGZi
′+R = Vi), we notice that the fixed effects,

β, are used for modeling the mean while, the random effects govern the variance-covariance

structure. Traditionally in longitudinal analysis, it is often more convenient to proceed

with analysis using this marginal model (Wikle & Royle, 2004). Temporal correlation

is accounted for in the variance-covariance structure of yi however, there is no explicit

interest in the underlying process. Of particular importance, is the correlation between

pairs of repeated measures on the same subject. Therefore, special attention needs to be

given when selecting a covariance structure for R.

The importance of selecting an appropriate covariance model is further highlighted by

Littell et al. (2006). Guerin & Stoup (2000) demonstrated the effect of fitting different
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covariance structures to a repeated measures data set. Their work agreed with the notion

that repeated measures analysis is robust, provided care is taken to ensure the covariance

structure is approximately correct.

Variance may be assumed either homogenous or heterogenous. Jenrich & Schluchter

(1986) gave general information about covariance structures for longitudinal data. Wolfin-

ger (1996) provided discussion on heterogenous covariance structures suited to repeated

measures data. Common covariance structures often fitted to longitudinal data include

autoregressive order one (AR(1)), compound symmetry (CS) and Toeplitz as well as, an

unstructured form (UN). Detailed discussions on these covariance patterns along with

other structures, was provided by common textbooks such as Verbeke & Molenberghs

(2000), Fitzmaurice et al. (2004) or West et al. (2007).

When selecting an appropriate covariance structure, several factors should be taken into

account. To ensure reliable inferences later, a selected structure should result in a con-

verged solution, with both the G and Hessian matrix being positive definite. Insight as to

why there are occasions when these conditions are not always met was given by Kiernan

et al. (2012). Kiernan et al. (2012) also suggested several remedies for the shortcomings.

To select the best model, many authors choose to use information criteria (IC) such as

Akaike IC (AIC), corrected Akaike IC (AICC), or Bayesian IC (BIC) (see e.g. Littell et al.,

2000; Moser & Macchiavelli, 2002). This is done by fitting all possible covariance struc-

tures to the model then, comparing the IC of each of them. IC may either be specified as

smaller-is-better or larger-is-better.

AIC was developed by Akaike (1974), with Burnham & Anderson (1998) later coming up

with a finite-population corrected form of the AIC. Schwarz (1978) introduced the BIC.

Littell et al. (2006) said that models that minimize AIC, AICC or BIC werre preferable

and that simpler models were generally a better choice in the interest of selecting a par-

simonious model. Keselman et al. (1998) compared AIC and BIC for their potential of

selecting the correct covariance model. Guerin & Stoup (2000) conducted a similar study,

and found that when emphasis is on Type I error control, it was best to use AIC whereas,

if loss of power was more important, it was better to use BIC.



20

Other factors to be considered include the number of parameters that require estimating

in the selected structure as well as, how the selected covariance structure compares to

that of the unstructured form. Whereby, a structure similar to the unstructured form is

preferable.

Residuals measure the deviation of responses from the fitted model, they allow us to assess

the normality assumptions of our model (Zewotir & Galpin, 2004). In a good fitting model,

we expect the residuals to have a constant variance and follow a normal distribution.

Following from the model definition of Equation 3.2, the predicted response for the ith

subject is given by ŷi = Xiβ̂ + Zib̃i. The marginal residual, ei = yi − Xiβ̂, aids us in

identifying potential subject outliers. While, the conditional or subject-specific residual,

ei = yi −Xiβ̂ −Zib̃i, helps us to detect possible within-subject case outliers. Definitions

similar to these are used by many standard linear mixed model textbooks (see e.g. Verbeke

& Molenberghs, 2000; Fitzmaurice et al., 2004; Littell et al., 2006; West et al., 2007).

Each residual has its own variance, making raw residuals impossible to compare. To elim-

inate this difficulty, we standardize the residuals. Common standardized residuals are the

studentized residual; ei√
v̂i

where ei is a typical raw residual with estimated variance v̂i

and the Pearson residual; eiq
̂V ar[Yi]

where ei is a typical raw residual and ̂V ar[Yi] is the

estimated variance of the response of the ith subject.

A method that is often employed by authors to assess whether or not residuals satisfy

Gaussian assumptions, is that of probability plots (see e.g. Cook & Weisberg, 1982; Ze-

wotir & Galpin, 2004). Ideally, if the assumption of normality is satisfied, one should

observe an approximate straight line pattern in the Q-Q (probability) plot.

Other plots commonly used to assess model assumptions include the scatter plot and

histogram. For a scatter plot of predicted mean versus residual, one expects a random

scattering about zero, as this suggests a constant variance in the error term. As with

probability plots, histograms indicate whether or not the assumption of normality is vi-

olated. Alternatively, a non-graphical means for assessing normality makes use of the
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Shapiro-Wilk (W ) statistic (Shapiro & Wilk, 1965). Pearson et al. (1977) showed that the

W statistic is a good, omnibus test for normality.

In addition to validating model assumptions, it is also important to assess the robustness

of a model. Of particular interest in repeated measures data, is the influence that an

individual subject may hold. A robust model should not be significantly affected by either

the removal or addition of a particular subject. It should also stand up to being tested

with different data. Influence diagnostics provide us with a tool for checking how robust

a model is.

Cook & Weisberg (1982) suggested a diagnostic measure based on case deletion. Case

deletion involves parameter estimates first being calculated using all the data points then,

cases get removed from the data and the model refitted. This enables us to compute statis-

tics based on the change between the full-data and reduced-data estimations, allowing us

to quantify local influence. Both case deletion and model perturbation are well estab-

lished, practical approaches to influence diagnostics in statistical modelling (Lawrance,

1990) and mixed models (Zewotir & Galpin, 2005; Zewotir, 2007).

Applying the concept of local influence in a linear mixed model setting, Beckman et al.

(1987) assessed the effect of perturbing the random-effects and error covariances as well

as, the effect of perturbing the response vector. Zewotir (2007) studied the influence in-

finitesimal model perturbations had in the linear mixed model. However, for this study

our interest lies in the detection of influential subjects, not influence brought about by

model perturbation. Lesaffre & Verbeke (1998) showed how local influence could be used

to detect influential subjects within longitudinal data analysis.

There are several statistics that may be calculated so as to assess influence in both the

fixed effects and covariance parameter estimates. However, it is wise to first gauge a mea-

sure of overall influence. This is done by measuring changes in the objective functions, and

as Schabenberger (2004) noted, in linear mixed models the objective function is related

to ML and REML estimation. Therefore, a common measure of overall influence is the

(restricted) likelihood distance (RLD) of (Cook & Weisberg, 1982) or, as it is oft termed,

likelihood displacement (Beckman et al., 1987).
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A large (restricted) likelihood distance indicates that a subject may indeed be influential

but, does not indicate the nature of the influence. It is important to investigate further, so

as to determine whether a subject is influencing the fixed effects or covariance parameters

(Schabenberger, 2004).

There are many summary statistics that may be employed to further investigate influen-

tial subjects in either the fixed effects or covariance parameters, namely; Cook’s D (Cook,

1977), multivariate DFFITS (MDFFITS) (Belsley et al., 1980), the PRESS statistic (Allen,

1974), the covariance ratio (CovRatio) and the trace of the covariance matrix (CovTrace)

(Christensen et al., 1992). West et al. (2007) and Zewotir & Galpin (2007) gave concise

summaries of these statistics, as did authors Schabenberger (2004) and Littell et al. (2006).

Using iterative influence analysis, Cook’s D and CovRatio may be recomputed for the

covariance parameters. Cook’s D indicates the degree to which the parameter estimates

may be influenced by a particular subject while, CovRatio indicates how severely preci-

sion of the estimates may be affected by a subject. In the case of Cook’s D, large values

are indicative of an influential subject whereas, the benchmark value for CovRatio is the

value one. Values greater than one suggest higher precision for the full-data parameter

estimates, while values less than one suggest increased precision for the reduced-data es-

timates (Zewotir & Galpin, 2005; Littell et al., 2006).

If an identified influential subject is removed, and there is no significant change in the

model inference, it indicates that the influence of the subject is not substantial. It also

suggests that the subject is in fact a true outlier and not influential hence, it may remain

in the data set. However, such identified subjects should be scrutinized for any possible

cases presenting anomalies.

3.3 Application

The cohort that was randomly selected for this study consisted of 1478 households. The

data contained repeated measures over a 5-year period, with each household having mea-

surement occasions where electricity meters were read. For each meter reading a date and
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consumption value was recorded. From each reading date the month of meter reading was

extracted so as to include in the modelling process. In addition to the recorded consump-

tion values and month of reading, a dwelling type classification for each household was

also provided.

Despite us using a sample of 1478 households, 20 repeated measures for each household

still creates a large data set. Kiernan et al. (2012) provided useful insight as to how to

best approach large data scenarios when using mixed models in SAS. To fit a mixed model

to the electricity data we had a choice of two SAS procedures namely; PROC MIXED and

PROC HPMIXED. SAS (2011) highlighted the pros and cons of each. Although PROC

HPMIXED is preferable to use in large data scenarios, it limits the choices of covariance

structures for R, by always assuming R = Iσ2 (SAS, 2011). For this reason, the use of

PROC MIXED was preferred when carrying out modelling and analysis of the electricity

data.

We assume that for each repeated measurement on the ith household, i = 1, . . . , 1478,

there are ni measurement occasions and that yij is the electricity consumption value at

time tij , j = 1, . . . , ni. As meters are read at 3-month intervals, we expect each household

to have a minimum of 20 measurement occasions for the 5-year period. This means that

each household should have a minimum of 20 consumption values, 1 most recent or cur-

rent consumption value and 19 lagged values. We recall that a focal point of this study is

to determine whether these lagged values affect the current electricity consumption value

and if so, how many and which lags are effecting significance on a household’s current

electricity usage. Cursory examination of a profile plot in Figure 2.1 indicated that a

seasonal pattern was occurring, which in turn confirmed that at least some lags would

have an effect on current consumption.

To explore the possibility that every available lag a household has affects the current

electricity consumption of that household, we tentatively fit a marginal linear regression

model without specifying a specific covariance structure. Current consumption is modelled

as a function of month of meter reading, dwelling type and the 19 lagged values. We then

study the coefficients and significance of each lag, so as to determine whether there is value

in retaining all the lags that a household has in the regression model. The coefficients and
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p-values of the 19 lagged consumption values are displayed in Table 3.1.

Table 3.1: Coefficients and p-values of the 19 lags

Lag Coefficient Estimate Pr > |t|
1 0.4386 <0.0001

2 0.2230 <0.0001

3 0.06617 0.0001

4 0.1685 <0.0001

5 -0.1026 <0.0001

6 -0.06780 0.0001

7 0.07944 <0.0001

8 0.1309 <0.0001

9 -0.01415 0.3798

10 -0.1098 <0.0001

11 0.004017 0.7813

12 0.1882 <0.0001

13 -0.03844 0.0153

14 0.1119 <0.0001

15 -0.05653 0.0049

16 0.1873 <0.0001

17 -0.1367 <0.0001

18 -0.1454 <0.0001

19 0.05585 <0.0001

From Table 3.1 we see that all the lags except for lags 9 and 11 are significant at a 5% level

of significance. However, closer examination of the lag coefficients reveals that after lag12,

the remaining lags in fact have little effect on the overall current electricity consumption

value of a household. That is, we see that the coefficients of lags 13, 14, 15, 16, 17, 18

and 19 contribute very little, with the positive coefficients of lags 14, 16, and 19 and the

negative coefficients of lags 13, 15, 17 and 18 almost canceling each other out. This leads

us to conclude that there is little value in retaining more than 12 lagged values in the

regression model. Hence, in the interests of parsimony we continue the modelling process

using only 12 lags in the model. This equates to all electricity consumption values up to

and including 3 years prior to a household’s current consumption value being used.
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By retaining lags within the model, we are later able to examine their estimated coefficients

in the final model which enables us to formally assess whether or not a seasonal pattern

is present. In addition to assessing seasonal trends, we are also able to make observations

as to how the most recent previous electricity consumption values affect the modelling of

current electricity usage. Along with the 12 lagged values, dwelling type and the month

of meter reading also remain in the model. By including both lags and month of meter

reading in the modelling process, we are able to analyze two different factors. The inclu-

sion of the month of meter reading enables us to tentatively gauge if some months have

higher or lower electricity consumption than others while, lags allows for the assessment

of a potential seasonal pattern occurring within households electricity usage.

Using month of reading, dwelling type and 12 lagged values we specify the following model

E(yij) = β0 + αi0 + β1DwellingTypeHouse + β2DwellingTypeShareblock ≤ 2 storeys +

β3MonthReadJan + β4MonthReadFeb + . . . + β13MonthReadNov

+β14 yij−1 + β15 yij−2 + . . . + β25 yij−12

(3.3)

where E(yij) is the expected electricity consumption for the ith household at time tij ,

j = 1, 2, . . . , ni, if ni is the number of measurement occasions for the ith household. We

also fit a household-specific random intercept, αi0, to the model, so as to account for the

variability of different households within the variance components.

Model Selection

After specifying the model, we next focus on selecting an appropriate covariance structure.

We applied several covariance structures to the data: unstructured (UN), compound sym-

metric (CS), first-order autoregressive (AR(1)), autoregressive moving-average of order

one (ARMA(1,1)), first-order ante-dependance (ANTE(1)) and Toeplitz (Toep). Both the

ANTE(1) and Toeplitz models failed to reach convergence and are no longer considered

viable covariance structures for our data. Table 3.2 displays the corresponding fit statistics

of the structures that converged as well as, the number of iterations until convergence of

the Newton-Raphson algorithm was attained.
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Table 3.2: Fit statistics for selected covariance structures
Covariance Structure Iterations AIC BIC

UN 4 182924.3 183279.2

CS 3 184957.9 184973.8

AR(1) 2 184896.9 184912.7

ARMA(1,1) 6 184286.0 184307.2

From Table 3.2, we see that there are four possible covariance models from which we may

choose. We also note that though these models converge, they converge with a non-positive

definite G matrix. One possible reason for this could be due to model over-specification,

possibly due to the inclusion of a random intercept variance component. Nevertheless,

we refrain from removing the random intercept from the model. Not only is it possible

that an influential household/s could be bringing about such an effect but, we intend to

later use our model to predict electricity consumption for individual households and the

inclusion of a random intercept improves the model’s prediction capabilities.

To select the structure best suited to our data, we go according to the smaller-is-better

information criteria. However, when selecting a covariance structure, another factor to

consider is the number of parameters that require estimating. Too many parameters make

the model less favourable. Based on this, we exclude the unstructured model. Even though

it has the smallest AIC value, it has far too many parameters that require estimating. Of

the remaining structures we see from Table 3.2, that the ARMA(1,1) model clearly has

the lowest fit statistics, having an AIC value of 184286.0. We note that this structure

only has one additional parameter than the CS and AR(1) models, which is not enough

to exclude it from being the best suited covariance structure. Therefore, according to

the smaller-is-better IC, we select the ARMA(1,1) model as the best suited covariance

structure and use it to model R.

Having fitted the model with an ARMA(1,1) covariance structure and random intercept,

we now assess the validity of the normality assumptions in the model, recalling that the

histogram in Figure 2.2 already suggested the that the assumption was violated. To assess

normality we now study a scatter and Q-Q plot of the conditional studentized residuals.

The plots are given in Figure 3.1.
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Figure 3.1: Scatter and Q-Q plot of the conditional studentized residuals

In Figure 3.1, we observe a random scattering about zero in the scatter plot, supporting

the assumption of constant variance in the error term. From the Q-Q plot in Figure 3.1,

we see the majority of points close to and around the straight line, suggesting that the

normality assumption of the model is not severely violated. However, we do note that the

points fail to form a straight line and that there are also several outliers. This confirms

our suspicions from the histogram in Figure 2.2 that is, the electricity consumption data

does not adhere to normality assumptions.

When a model or data fail to adequately satisfy normality assumptions, there are two

possible remedies a statistician may employ. Either, the model can be refitted using a

different approach (often a generalized approach) or, the data may be subjected to a

transformation so as to improve normality.

We elect to use the method of transformation in this chapter. An alternate approach is

demonstrated in Chapter 4, where we refit the model using a generalized linear mixed

model. Various power transformations (y(λ)
ij ) were applied to the data, Table 3.3 displays

the corresponding fit statistics for each transformation.

From Table 3.3, we see that from the positive power side, as λ approaches zero our model

fit improves. That is to say, we observe that the closer λ gets to zero, the faster the model

converges and the fit statistics get smaller. Similarly, from the negative power side, as the

power gets closer to zero we see that the model fit gets better. This suggests to us, that
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Table 3.3: Fit statistics for various data transformations
Transformation Iterations AIC AICC BIC

λ = -2 8 -32947.9 -32947.9 -32926.7

λ = -1.5 6 -47304.6 -47304.6 -47288.4

λ = -1 5 -59718.0 -59718.0 -59696.8

λ = -0.5 5 -67568.7 -67568.7 -67552.8

λ = 0 (natural log) 4 -14.7 -14.7 6.5

λ = 0.5 3 63350.4 63350.4 63371.6

λ = 1 (no transformation) 6 184286.0 184286.0 184307.2

λ = 1.5 7 311215.2 311215.2 311230.4

λ = 2 19 450911.5 450911.5 450932.7

the best convenient transformation for our data is when λ = 0. However, by both Tukey’s

power transformation definition (Tukey, 1957) and the Box-Cox power transformation def-

inition (Box & Cox, 1964), when λ = 0 we instead take the natural log of yij . Further

support for using the natural log transformed data as opposed to the observed data can

be seen when we compare the Q-Q probability plots of each data. Figure 3.2(a) shows

the probability plot of the observed untransformed data while, Figure 3.2(b) displays the

probability plot of the natural log transformed data.

Figure 3.2: Q-Q plots of the conditional studentized residuals for: (a) observed data; (b)

natural log transformed data

When we compare the plots of Figure 3.2(a) and 3.2(b), we can clearly see that the log

transformed data provides a better fitting model and better satisfies the normality as-
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sumption. There is evidence of this both in the improved fit statistics and the fact that

other than one or two outliers, most points lie on the line in the Q-Q plot of Figure 3.2(b).

Therefore, we proceed with our analysis using the convenient natural log transformed data.

Next, we study the effect any influential households may have on the model. As we ex-

pressed earlier, in repeated measures mixed modelling we are particularly interested in the

covariance structure as it accounts for the correlation of observations within a household.

Thus, it follows that we are most concerned about households that exhibit influence in

the covariance parameters.

However, despite this being our interest, we are unable to study the case deletion plots

of Cook’s D and the covariance ratio (CovRatio) for the covariance parameters. This is

because their values were not estimable, due to the variance component of the random

intercept being negative.

Instead, we begin by identifying the 3 outliers that draw our attention in the Q-Q plot

of Figure 3.2(b). We see that they belong to households 46, 202 and 1205. Next, we

study the restricted likelihood (RLD) case deletion plot, looking to see if these same 3

households (as well as any others) stand out as having overall influence in the model. The

RLD case deletion plot is given in Figure 3.3.

Figure 3.3: Plot displaying RLD per deleted household
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From Figure 3.3, we clearly see that in terms of overall influence, households 46, 202 and

1205 stand out as being the most influential. Of all the households in the data, they have

the largest RLD values of 33.976, 18.972 and 16.906 respectively.

Having identified households 46, 202 and 1205 as both outliers in the Q-Q plot and poten-

tially influential according to the RLD plot, we remove them from the data and observe

the effect (Zewotir & Galpin, 2005). If no significant change is observed, we may classify

them as non-influential outliers and keep them in the data set. However, if we observe

significant change in the model fit and covariance parameter estimates, we consider the

household genuinely influential and remove it from the data set. Table 3.4 displays the fit

statistics and the covariance parameter estimates of the full and reduced data models. The

relative error between the full-data and reduced-data covariance parameters is expressed

as a percentage and also displayed in the table.

Table 3.4: AIC statistics and covariance parameter estimates: full-data and reduced-data

models
% % % %

Rel. Rel. Rel. Rel.

Data Set AIC Intercept Error ρ̂ Error γ̂ Error Residual Error

Full-data -14.7 -0.00114 - 0.5308 - 0.2777 - 0.06301 -

46 removed -679.4 0.000424 137.19 0.4877 -8.11 0.2646 -4.72 0.05891 -6.51

202 removed -701.4 -0.00101 11.40 0.5393 1.60 0.2924 5.29 0.06060 -3.82

1205 removed -591.6 -0.00096 15.79 0.5440 2.49 0.2719 -2.09 0.06037 -4.19

46, 202 -1403.0 0.000566 149.65 0.4958 -6.59 0.2797 0.72 0.05647 -10.38

removed

46, 1205 -1289.7 0.000456 140.00 0.5149 -3.00. 0.2572 -7.38 0.05633 -10.60

removed

202, 1205 -1303.3 -0.00087 23.68 0.5567 4.88 0.2869 3.31 0.05798.0 -7.98

removed

46, 202, 1205 -2041.3 0.000541 147.46 0.5314 0.11 0.2724 -1.91 0.05394 -14.39

removed

From Table 3.4, we see that the removal of household 46 brings about an improved AIC

value as well as significant change in the model. We clearly see that whenever household
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46 is removed, whether on its own or with other identified households, the estimate for the

random intercept becomes positive. This shows us that household 46 is very influential

in the model, as it alone determines whether or not the model converges with a positive

definite G matrix. Further to this, we note that the largest changes in both ρ̂ and γ̂ are

witnessed upon household 46’s removal. This leads us to classify household 46 as influ-

ential. Hence, we remove it from the data and continue analysis using the reduced-data

model. However, the fact that household 46 is influential, suggests to us that it ought to

be scrutinized thoroughly and further investigations carried out on its characteristics.

When we re-visit the observed data we see that household 46 differs from the other house-

holds, in that it has 3 consecutive measurement periods where the monthly electricity

consumption is very low. The monthly electricity consumption for these 3 months is

1.00KWh, 2.33kWh and 0.67kWh. This anomaly is then carried over to the transformed

data, where we took the natural log of the observed values. Possible reasons for this

anomaly could include errors in the meter reading process or, that the property was va-

cant during this time.

Next, we look at the other two households identified in Table 3.4, households 202 and

1205. It is clear that their removal does not affect the model as significantly as the re-

moval of household 46. That is to say, regardless of their inclusion or exclusion the model

still does not converge with a positive definite G matrix. Nevertheless, we do note a

significant improvement in the AIC values upon their removal. However, this is to be

expected as we noted them appearing as outliers in the Q-Q plot. Though the removal of

outliers undoubtedly improves the fit statistics of a model, it does not necessarily mean

that these households exercise influence. As we do not see hugely significant changes in

the covariance parameters upon the removal of household 202 and 1205, we classify them

as non-influential outliers in the model and retain them in the data. When we re-visit

the data, we see that a possible reason for them appearing as outliers is that they both

have between 3 and 5 consecutive measurement occasions where their monthly electricity

consumption is very low, compared to those of their other monthly averages.

As we have decided to remove household 46 from the data and re-fit the model, it is

prudent that we re-examine the reduced-data probability plot. We expect to see some
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changes in it as the reduced-data model now converges with a positive definite Hessian

and G matrix. The reduced-data Q-Q plot is given in Figure 3.4.

Figure 3.4: Q-Q plot of studentized residuals for reduced-data model

From Figure 3.4 we see that the majority of points lie on the straight line while the tails

in the plot depart from the line. As the data that we are dealing with are large, we are

satisfied with the fact that clearly most of the points adhere to the normality assumption.

The tails that depart from the line are due to a few outlying households in the data.

So long as these outliers have proven not to be influential we retain them in the data,

such is the case for households 202 and 1205. Having thoroughly studied the 3 identified

households and the reduced-data Q-Q plot, we proceed to making model inferences. Model

inferences are based on the reduced-data model where household 46 has been removed.

Model Inference

We begin our analysis by examining the type 3 tests and solutions for the fixed effects.

Before we look at tables of our results we recall that we are using the convenient natural log

transformation of the response. Thus, it follows that the lagged values in the model are also

logged. That is, using the reduced-data model with y∗ij = ln(yij) and y∗ij−1, . . . , y
∗
ij−12 =

ln(yij−1), . . . , ln(yij−12), our inferences are according to the following model:

E(y∗ij) = β0 + αi0 + β1DwellingTypeHouse + β2DwellingTypeShareblock ≤ 2 storeys +

β3MonthReadJan + β4MonthReadFeb + . . . + β13MonthReadNov

+β14 y∗ij−1 + β15 y∗ij−2 + . . . + β25 y∗ij−12

(3.4)



33

We note for all further inferences, due to ease of explanation, we refer to y∗ij−1, . . . , y
∗
ij−12

as lag∗1, . . . , lag∗12. We begin with the type 3 test results for dwelling type and month of

meter reading, the results are displayed in Table 3.5.

Table 3.5: Type 3 test results for dwelling type and month read

Effect Num DF Den DF F Value Pr > F

Dwelling Type 2 13303 0.30 0.6919

Month Read 11 13303 12.04 <0.0001

From Table 3.5, we see that dwelling type does not appear to be significant in the model.

At a 5% level of significance we fail to reject the type 3 test null hypothesis, H0: β1 = β2,

as we observe a large p-value of 0.6919, indicating that dwelling type does not play an

important role in the model. Further evidence of this is presented in Table 3.6, where it

is clearly seen that relative to shareblocks > 2 storeys high, houses and shareblocks ≤ 2

storeys high are not significant at a 5% level of significance, having p-values of 0.8012 and

0.4047 respectively.

Table 3.6: Solutions for fixed effects: dwelling type

Dwelling Type Estimate Standard Error DF t Value Pr > |t|
[Ref: Shareblocks > 2 storeys]

House -0.00178 0.007053 13303 -0.25 0.8012

Shareblocks ≤ 2 storeys -0.00565 0.006783 13303 -0.83 0.4047

Next from Table 3.5, we consider month of meter reading (month read). At a 5% level of

significance we reject the null hypothesis, H0: β3 = β5 = . . . = β13, as we observe a p-value

of <0.0001. This suggests that at least one month is significant in our model and that

the month in which a meter is read does play a role in modelling the current electricity

usage. Thus, further examination of individual estimates is required. The estimates and

significance of each month are displayed in Table 3.7.

Before we start studying these estimates, we first recall that meters are read at approximate

3 month intervals throughout eThekwini. This implies, that the month that a meter is

read in not only refers to the average consumption of that month, but also two months

prior to it. Therefore, any inferences made ought to also include two months prior to the

month of reading.
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Table 3.7: Solutions for fixed effects: month read
Month Read Estimate Standard Error DF t Value Pr > |t|
[Ref: Dec]

Jan 0.008710 0.01021 13303 0.85 0.3936

Feb 0.006739 0.009328 13303 0.72 0.4700

Mar 0.01886 0.007096 13303 2.66 0.0079

Apr 0.01463 0.01056 13303 1.38 0.1661

May -0.00951 0.009171 13303 -1.04 0.2997

Jun 0.02471 0.007431 13303 3.32 0.0009

Jul 0.02059 0.01157 13303 1.78 0.0750

Aug 0.04700 0.01006 13303 4.67 <0.0001

Sep 0.06388 0.007659 13303 8.34 <0.0001

Oct 0.05999 0.01185 13303 5.06 <0.0001

Nov 0.01060 0.01052 13303 1.01 0.3134

From Table 3.7 we are able to see that relative to December, the months August, Septem-

ber and October are highly significant, having p-values that are <0.0001. We also observe

that these months have the highest coefficient estimates, suggesting that these months

may have higher electricity consumption compared to the reference month, December.

However, our inference ought to also include two months prior to these months. That

is, if August appears to have a high average monthly consumption, we must acknowledge

that this measurement period also included the months June and July. By this logic, as

we found the months August, September and October to be significant and have large

coefficients, we infer that the period from approximately June through to October, rela-

tive to December, is likely to have higher monthly electricity consumption. We note that

this period encompasses approximately winter in South Africa, possibly suggesting that

electricity usage increases during winter.

Lastly, we remind the reader that “month read” is only approximate, in the sense that the

3 month actual usage is distributed to months by means of scaling the 3-month value by a

factor of 3. eThekwini Electricity also do not read meters according to calendar months,

but rather approximate 90 day periods. So, although we gleam interesting inferences based

on the months meters are read in, caution should be exercised when doing so. The final
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fixed effects that we examine are the intercept and lags, their corresponding estimates and

p-values are displayed in Table 3.8.

Table 3.8: Solutions for fixed effects: intercept and lags

Effect Estimate Standard Error DF t Value Pr > |t|
Intercept 0.04818 0.02513 1472 1.92 0.0554

lag∗1 0.3316 0.008167 13303 40.60 <0.0001

lag∗2 0.1134 0.008354 13303 13.58 <0.0001

lag∗3 0.1466 0.008618 13303 17.01 <0.0001

lag∗4 0.1939 0.008740 13303 22.19 <0.0001

lag∗5 -0.02743 0.008802 13303 -3.12 0.0018

lag∗6 -0.04052 0.009002 13303 -4.50 <0.0001

lag∗7 0.03767 0.009231 13303 4.08 0.0001

lag∗8 0.2128 0.009519 13303 22.35 <0.0001

lag∗9 -0.07722 0.009512 13303 -8.12 <0.0001

lag∗10 -0.02966 0.009611 13303 -3.09 0.0020

lag∗11 -0.00992 0.009872 13303 -1.00 0.3151

lag∗12 0.1348 0.009783 13303 13.78 <0.0001

First from Table 3.8, we see that at a 5% level of significance the model intercept, β0, is

not significant in the model. We also see that the only lag not significant at a 5% level

of significance is lag∗11, as it has a p-value of 0.3151. Nevertheless, this is not where our

interest lies. Our main focus is the coefficients of the remaining lags, as we use them to

assess the presence of any seasonal trends.

We see that lag∗1 carries the highest coefficient estimate, 0.3316. This tells us that the

most recent consumption value contributes more to the model than other older consump-

tion values. Additionally, we observe that lag∗2, lag∗3 and lag∗4 also have high coefficient

estimates (0.1134, 0.1466 and 0.1939 respectively). This information, combined with the

coefficient value of lag∗1, indicates that the most recent previous year’s electricity consump-

tion contributes considerably to the model.

We also note that lag∗4 has a larger coefficient than that of lag∗2 and lag∗3. We find this

interesting because, lag∗4 in fact corresponds to 12 months prior to the current electricity
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consumption value, y∗ij . Similarly, we observe large coefficients for lag∗8 and lag∗12 (0.2128

and 0.1348 respectively). Both of these lags also refer to the same period in time as

y∗ij , only 24 and 36 months previously. Therefore, the large and significant coefficients of

lags 4, 8 and 12 provide substantial evidence of there being a seasonal pattern present in

monthly electricity consumptions. It shows that when predicating electricity usage for a

particular month, consumption from the same month in previous years is just as important

to the most recent previous year’s usage. Hence, a seasonal pattern is clearly present and

ought to be taken into account when modelling current household electricity consumption.

Finally, we look at the covariance parameter estimates, recalling that we fitted a first-order

autoregressive moving average (ARMA(1,1)) structure. This allowed us to model the cor-

relation of monthly electricity consumption at different measurement occasions within the

same household. The ARMA(1,1) model ensures that the more time that passes between

measurement occasions, the less correlated consumption values are. Similarly, electricity

usages at consecutive (adjacent) measurement occasions or, measurement occasions close

together in time, are highly correlated. We also recall that a household-specific random

intercept was included in the model. The covariance parameter estimates are displayed in

Table 3.9.

Table 3.9: Covariance parameter estimates

Covariance Parameter Estimate Standard Error Z Value Pr Z

Intercept 0.000424 0.000960 0.44 0.6584

ρ̂ 0.4877 0.06814 7.16 <0.0001

γ̂ 0.2646 0.02619 10.10 <0.0001

Residual 0.05891 0.001358 43.43 <0.0001

The first observation we make from Table 3.9 is that in this reduced-data model, the ran-

dom intercept appears to no longer be significant. Nevertheless, much as we mentioned

at the beginning of this application, we retain the random intercept in the model as it

improves the model’s prediction capabilities.

The covariance parameter γ̂, estimates the lag1 correlation while, remaining consecutive

correlation is partially estimated by ρ̂. From Table 3.8, we see that the estimates for γ

and ρ are 0.2646 and 0.4877 respectively. Following from the ARMA(1,1) structure, we
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see that lag1 correlation is constant and that its corresponding covariance function may be

estimated by (0.000424) + (0.05891)(0.2646), where the random intercept is accounted for

by 0.000424. Subsequent (lag2 and onwards) correlations decrease with the amount of time

that passes between measurement occasions, that is the covariance becomes a function of

the lag and is estimated by (0.000424) + (0.05891)(0.2646)(0.4877)lag.

Summary

The modelling process began with us investigating whether or not it was necessary to

utilize all previous consumption values of a household. We determined that it was only of

value to retain up to and including only 3 years of prior consumption values. That is, we

found it was beneficial to retain 12 lags within the regression model. Following this discov-

ery, we proceeded to fit a linear mixed model to the electricity data. We included month

of reading, dwelling type, 12 lags and a household-specific random intercept in the model.

An ARMA(1,1) covariance structure was used to model R. Residual analysis showed that

for the fitted model, the majority of data appeared to satisfy the assumptions of normal-

ity. However, it was clear that the normality assumption was not entirely satisfied. To

improve upon this, we elected to use the method of transformations. Upon testing several

power transformations, we found the best convenient transformation to be the natural log

transformation. Influence diagnostics revealed that household 46 was influential enough

to warrant its removal from the data. While the other identified households; 202 and 1205

were confirmed as non-influential outliers and retained in the data.

Essentially there were 3 components that we dealt with in our model. We had dwelling

type classification, the months that meters were read in and we had the 12 lags. We

observed that dwelling type did not play a significant role in predicting electricity con-

sumption. The inclusion of 12 lags allowed us to model and assess how the previous

consumption of a household affected their current electricity usage. To this end we found

that the most recent previous year’s electricity consumption, as well as that which was

12, 24 and 36 months prior to the current consumption was also important. However, we

note that each household had their meter read at different months in the year, for example

some may follow a reading pattern of February, May, August, November while, some may

follow a pattern of January, April, July, October. Though the pattern in the lags for these

households remains, using the months we were able to further assess if there were some
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months that had higher consumption than others. We found that the months July, August

and September likely had higher electricity consumption, relative to the reference month

December. We observed that these months also constituted an approximate winter period

in South Africa.

The transformation approach we used improved the fit. However, the normality plot did

not clearly favour the normality of the transformed data. Perhaps directly searching for

the type of distribution might be the solution. In the next chapter we will explore this in

detail.
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Chapter 4

The Generalized Linear Mixed

Model Approach

In the previous chapter, we recall that in order to satisfy the Gaussian assumptions of the

model, we performed a log transformation on the response variable. Such a transformation

approach is often employed in various scenarios (see e.g. Box & Cox, 1982; Gurka et al.,

2006). In a mixed model setup Zewotir & Galpin (2004) recommended such transforma-

tions if the error structure had a constant variance. Interpretation of the parameters on

the transformed scale and the uniqueness of the transformation are some of the concerns

of the transformation approach (see e.g Box & Cox, 1982; Games, 1984; Manning, 1998).

Tabachnick & Fidell (2013) cautioned that although often used to remedy violations in

normality and outliers, transformations should not be universally recommended. Analy-

sis should be interpreted from the variables that are in it and the interpretability of the

parameter estimates should be taken into consideration.

Though the natural log transformation used in Chapter 3 is a commonly used scale trans-

formation and interpretation is not getting sophisticated by the transformation, it is not a

direct modelling of the observed monthly electricity consumption. A viable alternative to

using transformations is that of generalized linear models. Generalized linear models is a

general approach that is not restricted by the assumption of normality (Montgomery et al.,

2012). It assumes a more general family of probability distributions called the exponential

family of distributions, which include the normal, gamma and many other distributions.
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In this chapter, we look at pertinent theory of the generalized linear mixed model (GLMM)

and use this generalized approach to refit the municipal data.

4.1 The Generalized Linear Model (GLM)

The overall idea of generalized linear models is to specify the model

g(E(y)) = Xβ

in terms of the distribution of the data and mean function and to express the mean in

terms of a transformation of Xβ (Littell et al., 2006).

Nelder & Wedderburn (1972) are widely credited for their work that unified a broad class

of existing models into a GLM definition. They did this, by proving that so long as the

response could be classified into the exponential family, the maximum likelihood estima-

tors for all of the models could be obtained using the same algorithm.

Fundamentally, there are three parts to specifying a GLM: a distributional assumption, a

systematic component and a linear predictor (Fitzmaurice et al., 2004).

Under the distributional assumption, we assume that independent observations, Yi for

i = 1, . . . , n, have a probability distribution that belongs to the exponential family. For

the systematic component, we relate the effect of the covariates Xi1, . . . , Xik on the ex-

pected value of Yi by means of a linear predictor. The linear predictor is given by

g(E(Yi)) = ηi = Xiβ, with maximum likelihood methods being used to estimate the

parameter β. Lastly, the link function, g(.), is a monotonic differentiable function that

describes the relationship between the linear predictor, ηi, and the expected value of Yi. If

the expected value of Yi is given by μi, then we may express the link function as g(μi) = ηi.

Having briefly examined the constituents of a GLM, we may now move on to look at the

generalized form of the linear mixed model. For a more detailed, mathematical breakdown

of generalized linear models, refer to common textbooks such as McCulloch & Nelder

(1989), Fitzmaurice et al. (2004), McCulloch et al. (2008) or Montgomery et al. (2012).
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4.2 The Generalized Linear Mixed Model (GLMM)

Fitting a GLMM allows us to extend the GLM by enabling us to incorporate correlations

among responses (Schabenberger, 2005). There are two ways in which we may model

correlation namely, either by adding a random effect inside the linear predictor or, by

modelling the correlations directly within the data itself. It has become commonplace

to refer to the afore mentioned, respectively, as modelling the G-side and R-side random

effects. These terms stem from the definition of the linear mixed model variance com-

ponents given in Chapter 3. A GLMM may contain either a G-side or R-side random

effect, or both, or neither. The modelling in the GLMM assumes the specified covariance

structures of G and/or R.

As with a GLM, a GLMM also has a linear predictor, η, a monotonic differentiable link

function, g(.), and the assumption that the distribution of Y as well as, the conditional

distribution, belong to the exponential family. If we wish to fit a GLMM that contains a

G-side random effect, we specify the conditional model

g(E(y|u)) = Xβ + Zu

where we assume u ∼ N(0,G), select a covariance structure for G, and specify the dis-

tribution of y|u. We may also note, in our model specification we have defined the linear

predictor as η = Xβ + Zu (i.e. we have added a random effect into our linear predictor

of GLM).

However, if we would rather fit a GLMM that only has R-side random effects, we find we

specify a model that resembles that of a GLM

g(E(y)) = Xβ

where we may select the covariance structure of R. Our linear predictor is the same as it

was in a GLM, η = Xβ. With no random effect in the linear predictor, we have nothing

to condition our response on. We may obtain the mean by using the inverse link function,

i.e. E(y) = g−1(Xβ). While, the variance is given by V ar(y) = A
1
2 RA

1
2 where A is a

diagonal matrix that contains the variance functions.
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Of course, it is also possible to specify a GLMM that contains both G-side and R-side

random effects. To do so, we would select the covariance structures for G and R, then

the conditional mean and variance would be given by:

E(y|u) = g−1(Xβ + Zu)

V ar(y|u) = A
1
2 RA

1
2

We recall from Chapter 3, that the method of maximum likelihood or restricted maximum

likelihood was used to estimate the model parameters in the LMM. That is to say, estima-

tions of parameters were found by maximizing the objective (likelihood) function. Similar

estimation approaches also apply to the GLMM whereby, estimation is based on the like-

lihood principle (Schabenberger, 2005). However, in GLMMs the procedure of obtaining

the objective (likelihood) function is somewhat more complex than that of LMMs.

If we define p(u) as the distribution of the random effects and assume it to be multivariate

normal, and define f(y|u) as the conditional distribution of the data and assume it to

belong to the exponential family then, we define the marginal likelihood function as

L(β, θ,y) =
∫

f(y|u)p(u)du.

We already know that in a linear setting it is easy for us to maximize L(β, θ,y), however,

if the random effects are nonlinear in form, it becomes difficult for us to obtain the above

integral. Various solutions have been used and different recommendations have been made,

as to how to get around this estimation problem (see e.g. Kachman, 1998; Fitzmaurice

et al., 2004; Demidenko, 2004; McCulloch et al., 2008). We may group these solutions into

two broad categories, namely, integral approximation and model linearization (Schaben-

berger, 2005).

Integral approximation provides us with an actual objective function we can maximize,

by using a variety of numerical methods to approximate L(β, θ,y). Some of the different

techniques used for integral approximation include; Laplace methods (see e.g. Breslow &

Clayton, 1993; Breslow & Lin, 1995; Raudenbush et al., 2000; Demidenko, 2004), quadra-

ture methods (see e.g. Pan & Thompson, 2003; Fitzmaurice et al., 2004) and Monte Carlo

integration methods (see e.g. Pan & Thompson, 2007). For a concise summary of the afore
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mentioned methodologies refer to Demidenko (2004).

The main benefit of these methods is that by having an approximated objective function,

we may compare nested models using true likelihood ratio tests. However, it is not always

appropriate to use integral approximation. Schabenberger (2005) explained how integral

approximation methods were ill-suited to handle complex R-side covariance structures,

multiple household effects and large numbers of random effects.

While integral approximation focuses on approximating the objective function, lineariza-

tion aims to approximate the model. Linearization is an iteratively intense process,

whereby, pseudo-data (that contains fewer nonlinear components) is used to approximate

the GLMM using an LMM with current parameter estimates. The LMM is fit, and upon

convergence the new parameter estimates update the linearization, leaving a new linear

mixed model. The process continues until the change in estimates, of two consecutive

iterations, reaches a specified level of tolerance (Schabenberger, 2005).

Linearization resolves the setbacks of integral approximation, while also allowing for the

use of REML estimation. The main disadvantage of linearization is that we do not have

an actual objective function, only one based on the pseudo-data after each linearization,

which could lead to biased estimates.

The SAS procedure, GLIMMIX, performs the generalized linear mixed models analyses.

When there are random effects in the model, the default method employed in the pro-

cedure is a pseudo-likelihood linearization approach (Schabenberger, 2005). Both SAS

(2011) and Schabenberger (2005) provided a comprehensive mathematical breakdown of

the pseudo-likelihood linearization method.

Under the distributional assumptions of a GLMM, we assume that the conditional distri-

bution of the response variable is a member of the exponential family.

Generally speaking, there are three types of responses one may expect: continuous re-

sponses, count data or binary outcomes. We find that there are common distributions

that often may be applied to each type of response. For example, we find that in contin-
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uous responses, Y is often normally distributed, a Poisson distribution is used for count

data and the Bernoulli distribution is applicable to binary outcomes. Of course, there are

many other distributions in the exponential family that may be used, however, we shall

not discuss all of them. Instead, as our electricity data is continuous in nature, we shall

focus on distributions that may be applied to continuous data.

We considered five distributions that belong to the exponential family which may be

applied to a continuous response. These are the normal (Gaussian) distribution, the log-

normal distribution, the gamma distribution, the exponential distribution and the Inverse

Gaussian distribution. The general form of the exponential family probability density

function is

f(y) = exp

{
[yθ − b(θ)]

a(φ)
+ c(y, φ)

}

for some functions a(.), b(.) and c(.), where θ is the natural (canonical) parameter and φ

is the scale (dispersion) parameter.

Each distribution (including the five mentioned above) have their own natural (canonical)

link functions. For example, the Normal and Lognormal distributions have the identity

link as their canonical link function, while, the Gamma and Exponential distributions have

a reciprocal link as their canonical link function.

Although each distribution has its own natural link function, we are not obligated to treat

it as the only possible link function we can use. We may choose to fit other link functions

to distributions, so as to attain a better model fit. By default the statistical software

SAS generally uses canonical links for most distributions. However, with the Gamma and

Exponential distributions, it uses the log link to fit a GLMM, while, the reciprocal link

is in fact the natural link function (SAS, 2011). Using various links and the distributions

mentioned, we shall fit a GLMM to our data using available procedures in SAS.

4.3 Application

The explanatory variables we include in the generalized linear model are dwelling type,

month of meter reading and lagged electricity consumption values. Following from our

Chapter 3 finding where we determined that it was unnecessary to include more than 12



45

lagged values in the regression model, we limit the generalized linear model to also only

include 12 lags. This leads to the following GLMM being specified:

g[E(yij)] = ηij = β0 + αi0 + β1DwellingTypeHouse + β2DwellingTypeShareblock ≤ 2 storeys +

β3MonthReadJan + β4MonthReadFeb + . . . + β13MonthReadNov

+β14 yij−1 + β15 yij−2 + . . . + β25 yij−12

(4.1)

where g(.) is the link function, E(yij) is the expected response (monthly electricity con-

sumption) for the ith household, i = 1, . . . , 1478 at time j = 1, 2, . . . , ni, if ni is the number

of measurement occasions for household i; αi0 represents a household-specific random in-

tercept and; ηij represents the linear predictor.

We do not require that the data adheres to the normality assumption as we, ourselves,

specify both the distribution and link function. To carry out model fitting we use SAS

PROC GLIMMIX. PROC GLIMMIX allows us to specify various link functions and dis-

tributions, as well as different covariance structures for R and G. An unfortunate aspect

of PROC GLIMMIX is that it does not allow for advanced diagnostics on the model.

To get around this problem we will rely on the identification of case outliers and the

households that they belong to. These households may then in turn be removed from the

data, the model re-fitted and the resulting effect observed. Before commencing with the

model selection procedure, we remind the reader that all the information criteria (IC) are

interpreted as smaller-is-better.

Model Selection

To begin model selection we fit five distributions suited to continuous data, along with

various link functions. Namely, these are the normal, gamma, lognormal, inverse Gaussian

and exponential distributions. Using the resulting AIC values, we select the best fitting

distribution. In PROC GLIMMIX we invoke the method of REML estimation, using lin-

earization and a Dual Quasi-Newton algorithm. Instead of searching again for the best

suited covariance structure, we use our finding from Chapter 3 and fit an ARMA(1,1)

structure to R. The full-data results for the various fitted generalized models are dis-

played in Table 4.1.
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Table 4.1: The goodness of fit by distribution and link

Distribution Link Convergence Iterations AIC BIC

Normal identity Yes 6 184306.1 184322.0

(G matrix not p.d)

Normal power (λ = −2) No . . .

Normal power (λ = −1.5) No . . .

Normal power (λ = −1) No . . .

Normal power (λ = −0.5) No . . .

Normal log {power (λ = 0)} No . . .

Normal power (λ = 0.5) No . . .

Normal power (λ = 1.5) No . . .

Normal power (λ = 2) No . . .

Gamma log No . . .

Gamma inverse No . . .

Lognormal identity Yes 8 3815.57 3836.76

Inverse Gaussian inverse squared No . . .

Exponential log No . . .

Exponential inverse No . . .

From Table 4.1, we are able to clearly see that there are two possible GLMMs to consider:

the normal distribution with the identity link function and the lognormal distribution

with the identity link function. These are the only two distributions to successfully reach

convergence. However, we discount the normal distribution, as according to the smaller-

is-better AIC, the lognormal distribution has the better fit. Further support for the choice

of the lognormal distribution is the fact that it is a distribution which naturally only takes

non-negative values, making it compatible with electricity consumption data which can

also only take on non-negative values. Therefore, we proceed using the lognormal distri-

bution with the identity link function as our GLMM.

Having selected our GLMM, we next seek to confirm the necessity of retaining a household-

specific intercept in the model. To do so we apply the Wald test to the covariance pa-

rameters. The parameter estimates and p-values from the Wald test are given in Table 4.2.



47

Table 4.2: Covariance parameter estimates and Z and P-values from the Wald test

Covariance Parameter Estimate Standard Error Z Value Pr Z

Intercept 0.2607 0.01081 24.11 <0.0001

ρ̂ 0.6516 0.02783 23.41 <0.0001

γ̂ 0.5302 0.01649 32.15 <0.0001

Residual 0.07834 0.002650 29.57 <0.0001

Based on the p-values in Table 4.2, we see that all the covariance parameters are highly

significant, having a p-values <0.0001. Hence, the necessity of retaining a subject-specific

intercept and accounting for its corresponding variance component is illustrated. Another

reason for retaining a random intercept in the model, regardless of its significance, is that

it improves the model’s prediction capabilities at an individual level.

Next, we perform residual analysis so as to assess the goodness of the underlying distri-

bution and linearity assumptions. Figure 4.1 contains a scatter plot of the studentized

conditional residuals. For the majority of cases there is an evident random scattering

about zero. This supports the non-existence of any systematic pattern not accounted for

by the model. Though we do also observe several cases that drift away from zero, we

reason that relative to the large data these are in fact but a few. Hence, we classify these

cases as outliers.

Figure 4.1: Scatter plot of conditional studentized residuals
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We use the probability plot in Figure 4.2(a), to examine the goodness of the underlying

distribution assumptions. It is clear from this Q-Q plot that most of the points lie approx-

imately on the straight line, favouring the goodness of the lognormal distribution. The

tails that depart from the line are due to a few outlying households in the data.

Based on the plots in Figures 4.1 and 4.2(a) and considering how large our data is (repeated

measures for 1478 households), we feel comfortable in concluding that the distributional

and linearity assumptions have been adequately satisfied, except for a few outliers.

The case outliers that catch our attention in the full-data Q-Q plot belong to households

202 and 1205. We now study the effect of these two outlying households. To do this

we first run the full-data model then, compare it to subsequent reduced-data models.

Influence is measured by the amount of change in covariance parameter estimates as well

as, the observed effect on the AIC values and reduced-data Q-Q plots. Table 4.3 displays

the reduced-data covariance parameter estimates, as well as their change relative to the

full-data estimates, expressed as a percentage. The plots contained in Figure 4.2(a-d)

show both the full-data and reduced-data Q-Q plots.

Table 4.3: AIC statistics and covariance parameter estimates: full-data and reduced-data

models
% % % %

Rel. Rel. Rel. Rel.

Data Set AIC Intercept Error ρ̂ Error γ̂ Error Residual Error

Full-data 3815.57 0.2607 - 0.6516 - 0.5302 - 0.07834 -

202 removed 3174.22 0.2595 -0.46% 0.6569 0.81% 0.5414 2.11% 0.07613 -0.03%

1205 removed 3299.46 0.2605 -0.08% 0.6523 0.11% 0.5080 -4.19% 0.07302 -0.07%

202 & 1205 2636.95 0.2591 -0.61% 0.6604 1.35% 0.5197 -1.98% 0.07087 -0.10%

removed

From Table 4.3, we see that the individual removal of households 202 and 1205, as well

as the simultaneous removal of both households, result in smaller AIC values, suggesting

an improved fit. However, this is what we expect to see when outliers are removed and

the model re-fitted. Therefore, we do not decide whether or not to remove households

202 and 1205 from the model based only on the improved fit statistics. From Table 4.3,
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we also see that upon the removal of households 202 and 1205 only negligible changes in

the covariance parameter estimates occur. This tells us that we should not consider these

households as influential.

Further evidence supporting that households 202 and 1205 are not influential is found

when we first study then, compare the full and reduced-data Q-Q plots in Figure 4.2. In

each of the Q-Q plots in Figure 4.2 (a-d), we see that the majority of points lie on the

straight lines while, the tails in the plots depart from the lines. As the data that we are

dealing with are large, we are satisfied with the fact that clearly most of the points in

each plot adhere to the distributional assumption. The tails that depart from the lines

are due to a few outlying households in the data. So long as these outliers prove not to

be influential we may retain them in the data.

Figure 4.2: Q-Q Plots of conditional studentized residuals when: (a) No households re-

moved (full-data model); (b) Household 202 removed; (c) Household 1205 removed; (d)

Households 202 and 1205 removed
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Let us now compare the observed changes in the Q-Q plots when households 202, 1205 or

both are removed from the data. In Figures 4.2(b) and (d), we see that the removal of

household 202 results in a plot containing more outliers than the full-data plot (see Figure

4.2(a)). This indicates to us that household 202 is better left in the model, as its absence

is adversely affecting the distributional assumption. Second, we see in Figure 4.2(c), when

household 1205 is removed, the resulting Q-Q plot is very similar to that of the full-data

plot in Figure 4.2(a). We also see that the plots in Figure 4.2(b) and 4.2(d) are much

alike. This suggests to us that we may retain household 1205 in the model, as its absence

is neither improving nor adversely affecting the distributional assumption.

If we consider all these factors as a whole, we are able to conclusively confirm that house-

holds 202 and 1205 are not effecting influence in the model and are merely model outliers.

When we go back to the data to examine these two households, we find a possible reason

for them showing up as outliers. Both households have a few consecutive usage periods

where the electricity consumption is very low, compared to the majority of consumption

values in the other usage periods within the same household. Having classified 202 and

1205 as outliers and confirmed they are not influential, we choose to retain them in the

model and proceed with our analysis using the full-data model.

Model Inference

We begin by looking at the type 3 test results for dwelling type and month read. From the

results in Table 4.4, we see that both appear to be significant in our model, at a 5% level

of significance. We reject both null hypotheses; H0: β1 = β2 and H0: β3 = β5 = . . . = β13,

which tells us that at least one of the dwelling types and one of the meter reading months

are significant in our model. Further examination of the individual estimates is required. In

Table 4.5 we look at the individual estimates for dwelling type, followed by the individual

estimates for the month of meter reading in Table 4.6.

Table 4.4: Type 3 test results for dwelling type and month read

Effect Num DF Den DF F Value Pr > F

Dwelling Type 2 13303 62.19 <0.0001

Month Read 11 13303 25.46 <0.0001
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We recall that the 3 dwelling type classifications are: houses; share blocks ≤ 2 storeys

high and; share blocks > 2 storeys high. With share blocks > 2 storeys as the reference

category, from Table 4.5 we see that houses have a parameter estimate of 0.3821 while

share blocks ≤ 2 storeys have a smaller parameter estimate of 0.1790. This suggests that

of the 3 possible dwelling types, households falling under the classification of “house”,

are likely to have a higher electricity consumption, provided that the reference category

remains the same.

Table 4.5: Solutions for fixed effects: dwelling type

Dwelling Type Estimate Standard Error DF t Value Pr > |t|
[Ref: Shareblocks > 2 storeys]

House 0.3821 0.03429 13303 11.15 <0.0001

Share blocks ≤ 2 storeys 0.1790 0.03413 13303 5.24 <0.0001

We next look at the parameter estimates for the months that meters are read in. From

Table 4.6, we see that relative to December, the months May and September are highly

significant (having p-values of <0.0001) in the model. We also note, that out of all the

months, September has the highest positive parameter coefficient estimate of 0.06824

while, May has the highest negative coefficient of -0.05560. This suggests that September

likely sees a rise in electricity consumption while, May likely sees a decrease in electricity

usage, compared to the reference month, December.

However, we recall the nature of eThekwini Electricity’s meter reading procedure whereby,

meters are read at approximate 3 month intervals. Therefore, the month of meter read-

ing not only refers to the electricity consumption of that month, but also includes the

consumption two months prior to it. By this reckoning, our results suggest that we are

likely to see a decrease in electricity usage during the months of March, April and May.

While, an increase in electricity consumption is likely to be observed in the months July,

August and September. It is also worth acknowledging the fact that these latter months

constitute an approximate winter period in South Africa.

Lastly, we remind the reader that “month read” is only approximate, as the 3-month ac-

tual usage is distributed to months by means of scaling the 3-month value by factor of 3.

eThekwini Electricity also do not read meters according to calendar months, but rather
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Table 4.6: Solutions for fixed effects: month read
Month Read Estimate Standard Error DF t Value Pr > |t|
[Ref: Dec]

Jan -0.02419 0.02009 13303 -1.20 0.2286

Feb -0.04400 0.01255 13303 -3.51 0.0005

Mar -0.01110 0.006453 13303 -1.72 0.0853

Apr -0.04079 0.02059 13303 -1.98 0.0476

May -0.05560 0.01221 13303 -4.55 <0.0001

Jun 0.01689 0.006829 13303 2.47 0.0134

Jul -0.01358 0.02082 13303 -0.65 0.5144

Aug 0.01609 0.01246 13303 1.29 0.1967

Sep 0.06824 0.006832 13303 9.99 <0.0001

Oct 0.03689 0.02103 13303 1.75 0.0794

Nov -0.01239 0.01325 13303 -0.93 0.3499

approximate 90 day periods. So, although we gleam interesting inferences based on the

estimated coefficients for the month a meter is read in, caution should be exercised when

doing so.

Following dwelling type and month of meter reading, we move on to examine the lag co-

efficients, looking out for any seasonal patterns that may be occurring. The coefficient

estimates and p-values for both the lags and model intercept are contained in Table 4.7.

The first observation we make from Table 4.7, is that the model intercept has a p-value

of <0.0001 and an estimate of 5.5410. This significance and size tells us that not only is

a starting value universal to all households necessary but, also shows how a household-

specific random intercept is likely to improve the model’s prediction capabilities for indi-

vidual households. The next observation we make from Table 4.7 is regarding the lags.

We see that at a 5% level of significance only half the lags appear to be significant in the

model. Lags 3, 5, 7, 9, 10 and 11 are not significant as they all have p-values >0.05 while,

lags 1, 2, 4, 6, 8 and 12 are significant. We focus our attention on these, the significant lags.
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Table 4.7: Solutions for fixed effects: intercept and lags

Effect Estimate Standard Error DF t Value Pr > |t|
Intercept 5.5410 0.02706 1473 204.78 <0.0001

lag1 0.000046 0.000016 13303 2.93 0.0034

lag2 0.000081 0.000014 13303 5.77 <0.0001

lag3 0.000023 0.000014 13303 1.65 0.0982

lag4 0.000201 0.000014 13303 14.69 <0.0001

lag5 -0.00002 0.000012 13303 -1.75 0.0808

lag6 -0.00004 0.000013 13303 -3.48 0.0005

lag7 1.853E-6 0.000014 13303 0.14 0.8924

lag8 0.000121 0.000014 13303 8.64 <0.0001

lag9 -0.00002 0.000014 13303 -1.82 0.0692

lag10 0.000012 0.000013 13303 0.92 0.3580

lag11 2.392E-6 0.000013 13303 0.18 0.8568

lag12 0.000202 0.000014 13303 14.41 <0.0001

The fact that lag1 and lag2 are significant tells us that the two most recent consumption

value are important in modelling electricity consumption. Next, we note that of the sig-

nificant lags, it’s lags 4, 8 and 12 that have the highest coefficient estimates, 0.000201,

0.000121 and 0.000202, respectively. Showing to us, that these lags are contributing a lot

to the model. This in itself, is very interesting to us. We recall that we expect 4 lags to

occur in a 12-month period. Therefore, we may deduce that lags 4, 8 and 12 all correspond

to the same point in time for previous years. That is to say, lag4 corresponds to 12 months

prior to the electricity consumption we are currently modelling. Lag8 corresponds to 12

months prior to lag4 or, 24 months prior to the electricity consumption we are currently

modelling. This same pattern also applies to lag12. For us, the fact that lags 4, 8 and 12

have large parameter estimates and are all highly significant in the model, suggests that a

seasonal pattern is indeed occurring. In a similar fashion to lags 4, 8 and 12, we see that

the last significant lag, lag6, corresponds to 12 months prior to lag2. This tells us that not

only is the second most recent consumption value important but, so too is the value that

is most likely to be similar to it from a seasonal perspective.
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Based on our observations made from the lag coefficients, we may conclude that a seasonal

effect is present in household electricity consumption. Furthermore, we learned that most

recent consumption values also play a role when modelling household electricity consump-

tion.

To conclude the application in this chapter, we revisit the covariance parameter estimates,

recalling that we included a household-specific random intercept and fitted a first-order au-

toregressive moving average (ARMA(1,1)) structure. As we are using the full-data model,

the significance and estimates for the covariance parameters can be found in Table 4.2.

Following the ARMA(1,1) structure, we see that lag1 correlation is constant, with, the

corresponding covariance function being estimated by (0.2607)+(0.07834)(0.5302), where

the household-specific random intercept is accounted for by 0.2607. Subsequent (lag2 and

onwards) correlations decrease with the amount of time that passes between measure-

ment occasions, that is the covariance becomes a function of the lag, and is estimated by

(0.2607) + (0.07834)(0.5302)(0.6516)lag.

Summary

This chapter focused on re-modelling the data from the cohort used in this study, by fit-

ting a generalized linear mixed model. The reason behind this being, we wanted to fit a

model that did not rely on transformations in order to satisfy the assumption of normal-

ity. We fitted various distributions using different link functions, and found the lognormal

distribution to be the best fit. We used SAS PROC GLIMMIX to fit our GLMM which,

modelled current household electricity consumption as a funtion of dwelling type, month

of meter reading and 12 lags. A household-specific random intercept was also included

and an ARMA(1,1) covariance structure was used to model R. Unfortunately, PROC

GLIMMIX did not allow for advanced diagnostics of the model. However, the residual

plots showed that fewer households were outliers. We also noted that the distributional

assumption was not violated.

Upon drawing model inferences, we observed some similarities and some differences com-

pared to our findings from the LMM. We found that dwelling type was significant and that

the model intercept value was particularly important. There was also evidence to suggest

that electricity usage may increase during the winter months. Using the lag coefficients,
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we confirmed that a clear seasonal pattern was present. We also established that the most

two most recent electricity consumptions were significant when modelling electricity usage.

As similar key inferences can be drawn from both the fitted LMM and GLMM (namely

regarding recent consumption and seasonal trends) and both models were shown to satisfy

model assumptions and robustness, we deem both models viable. We refrain from dis-

counting either model and resolve to carry out any further applications to both modelling

approaches. The temporal correlation structure is accounted for in both the LMM and

GLMM. However, the spatial correlation is not assessed and included in the modelling

and analysis. This is done in the following chapter.
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Chapter 5

Accounting for Spatial Variability

In the previous two chapters, our main focus was on modelling the temporal variance

within each household. We did not take into account possible spatial variations between

households. This chapter provides us with the opportunity to now do so. Here, we inves-

tigate if any spatial relationships exist and seek to determine whether or not households

in the same neighbourhood have similar electricity consumptions. It is in fact a common

practice for utilities to use a neighbourhood estimate if, the household meter reading is

not done for whatever reason.

We look at relevant theory necessary for modelling spatial variations and apply the dis-

cussed methodology to the electricity data. Most discussions are focused on how spatial

data analysis is carried out using linear mixed models however, similar theory applies in

a generalized setting. We use the statistical software, SAS, to carry out spatial applica-

tions for both our fitted linear mixed model and generalized linear mixed model. Findings

relating to both models are discussed in Section 5.3.

5.1 Introduction

Spatial variation occurs when responses are separated/dispersed over space. It is a funda-

mental geographic principal, that responses/observations in close proximity to one another

are more alike, compared to responses/observations that are further apart from one an-

other (Tobler, 1970). We quantify this understanding as spatial autocorrelation (Johnston

et al., 2003).
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Spatially dependent data may be classified as either isotropic or, anisotropic. Isotropy

is defined as being a property of either a process or data, where spatial autocorrelation

changes only with the distance between two locations (Johnston et al., 2003). Whereas,

anisotropy is defined as being a property of either a process or data, when spatial auto-

correlation depends on both the direction and distance between two locations (Johnston

et al., 2003). For the purposes of this study we assume our data isotropic. This is because

our main interest lies in establishing if or how the distance between households relates to

their electricity consumption. In essence our aim is to determine if households in the same

neighbourhood have similar electricity consumptions.

Spatial data can be further subdivided into three broad categories: geostatistical data,

lattice data and point patterns (Cressie, 1991). Geostatistical data are collected over

a continuous space, often from randomly selected sites. Lattice data pertain to equally

spaced locations and point patterns involve the locations of events of interest. As we would

classify our municipal data as geostatistical, we focus all further discussions based on this

type of data.

There are two main approaches to dealing with spatially dependent data. Either, we may

characterize the spatial variance whereby, we find the covariance parameters and describe

the nature of spatial correlation or, we adjust for the presence of spatial variation (Littell

et al., 2006). The emphasis of this chapter is the former, to characterize any relationship

that exists between variance and physical distance between households.

Most statistical methods for dealing with spatial data were developed independently, in

the field of geostatistics (Wikle & Royle, 2004). Diggle et al. (1998) credited much of the

early developments in geostatistical methods to Matheron (see e.g. Matheron, 1963, 1969,

1971). A common application within the realm of spatial data analysis is that of kriging. A

geostatistical term first introduced by Matheron (1963), kriging is the method of optimally

predicting values or responses at unmeasured locations. Cressie (1991) detailed several

variants of kriging, as well as the conditions and assumptions under which they may be

used for prediction. Among those listed are ordinary kriging (Matheron, 1971), robust

kriging (Hawkins & Cressie, 1984) and universal kriging (Matheron, 1969; Huijbregts &

Matheron, 1971). Nevertheless, for this study our focus lies in characterizing any spatial
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variation that exists between households, we have no particular interest in using our data

for kriging purposes. Therefore, we refrain from discussing kriging any further. For a

detailed discussion on kriging and various methods of it, refer to the listed references or

Cressie (1991).

Many authors acknowledge how natural it is to view spatial statistical models from a

linear mixed model perspective (see e.g. Wikle & Royle, 2004; Schabenberger & Gotway,

2005). This approach also gives the added benefit of allowing the option of employing a

generalized approach (see e.g. Zhang, 2002).

As we have already laid a solid theoretical mixed model foundation for longitudinal (re-

peated measures) data, in both a standard and generalized form, the remainder of this

chapter focuses on how we may extend these models to allow for spatial variation. For

a deeper, more mathematical discussion on spatial data analysis refer to Cressie (1991).

A comprehensive historical account of the numerous developments and methodologies of

spatial data analysis was also given by Cressie (1991).

5.2 Spatial Data Analysis using Linear Mixed Models

Spatial data may be thought of as a special case of longitudinal type data (Wikle &

Royle, 2004). Therefore, when attempting to quantify spatial autocorrelation, it is logi-

cal to consider a similar modelling approach to that of other types of longitudinal analysis.

Common textbooks, such as Schabenberger & Gotway (2005) or Littell et al. (2006), high-

lighted similarities between modelling temporal variances in repeated measures data, and

modelling variance in spatial longitudinal data. We employ a similar approach, using lin-

ear mixed models to model spatial dependance.

First, we recall the general form of a linear mixed model (LMM):

y = Xβ + Zu + ε

Let us now consider the LMM in a spatial setting. We assume that the response vector,

y is spatially indexed, such that y = [y(s1), . . . , y(sn)] for spatial locations si, i = 1, . . . , n
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where it is further assumed s ∈ D, if D is some d-dimensional Euclidean space; X is an

(n × p) known design matrix of fixed numbers associated with β; β is a (p × 1) vector of

unknown constants, the fixed effects of the model; Z is a known (n × q) design matrix of

indicator variables; u is a (q × 1) vector of random spatial effects; ε is a (n × 1) vector

of error terms. It is assumed that ε ∼ N(0,R) and u ∼ N(0,G), where R is positive

definite and G is a (q × q) spatial covariance matrix, with q being the number of spatial

locations. We further assume that ε and u are independent.

We recall the importance of selecting an appropriate covariance structure in longitudinal

data analysis, as this ensured adequate modelling of temporal autocorrelation. Similarly,

finding an appropriate covariance function to account for spatial dependance (autocorre-

lation) is just as important.

Spatial correlation relates to the spatial dependance between pairs of responses at differ-

ent locations. Modelling spatial correlation enables us to quantify the spatial relationship

between y(si) and y(sj) for i �= j with si, sj ∈ D.

The general understanding in spatial statistics, is that spatial autocorrelation does not

depend on the location of the responses y(si) and y(sj) but, rather the distance between

them (Cressie, 1991; Johnston et al., 2003). Extending this understanding, we observe

that the covariance between responses at different sites, cov(y(si), y(sj)), is some func-

tion, c(.), of the distance, h, between the locations. There are two underlying assumptions

of cov(y(si), y(sj)) = c(h), namely; a constant mean (E[y(si)] = E[y(sj)]) and second

order stationarity.

Various spatial covariance structures exist and may be fitted to model the R-side co-

variance. Common spatial covariance models include the exponential, Gaussian, Matérn,

power and spherical structures. The method to select the best possible spatial covariance

structure is much the same as that in Chapter 3 whereby, we use the information criteria.

Model estimation is carried out using methods of maximum likelihood. To select the best

fitting model, we rely on information criteria. We use residual analysis and case deletion

diagnostics for model checking and methods of best linear unbiased prediction if we wish
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to use the model for prediction purposes.

Before fitting spatial covariance structures to a linear mixed model, it is wise to first

examine the empirical semivariogram. The semivariogram measures spatial variability as

a function of distance between two locations, it may be defined as one-half the variance of

the difference between two observations made at different locations (Littell et al., 2006).

The empirical semivariogram provides a visual depiction of the actual spatial variability

of the data (Johnston et al., 2003; Kolovos, 2010). The basic elements of a semivariogram

are the nugget, sill and range. Littell et al. (2006) provided a clear illustration of what

an ideal semivariogram would look like, which in turn helped us to clearly define its key

features.

Figure 5.1: Idealized depiction of the semivariogram (Littell et al., 2006)

From Figure 5.1, it is easy for us to define the nugget as the intercept of the semivariogram.

As this is the point where h = 0, the nugget effect is understood to show errors that are

spatially independent or, the variance occurring at a particular location. The sill is the

value that the semivariogram tends towards for large values of h. At large distances

variables cease to be correlated (Johnston et al., 2003). Therefore, we may infer that

when h is very large, the sill in fact corresponds to the variance of an observation (Littell

et al., 2006). From Figure 5.1, we can also clearly see that the range can be defined as

the value of h at which the semivariogram reaches the sill. Intuitively, this tells us that

for all distances less than this value of h, observations are spatially correlated. While,
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at distances greater than or equal to this value of h, observations are no longer spatially

correlated. For more insight on the semivariogram in the context of linear mixed models,

refer to Schabenberger & Gotway (2005) or Littell et al. (2006).

5.3 Application

In this application we explore the possibility of a spatial relationship existing between

the electricity consumptions of different households. We are particularly interested in

determining if differences between electricity consumptions of different households can

be attributed to the distance between them. We recall that to model our electricity

data we implemented two different modelling approaches. First, we applied a natural

log transformation to the data and fitted an LMM to it. Then, we tried a generalized

approach whereby, we fitted a GLMM to the observed data using a lognormal distribution

and identity link function. We now seek to establish if spatial correlation is present and

if so, to include it in our modelling procedure by means of fitting a spatial covariance

structure to the LMM and GLMM specified in Equations 3.4 and 4.1 respectively. We

remind the reader that these models were respectively specified as follows:

E(y∗ij) = β0 + αi0 + β1DwellingTypeHouse + β2DwellingTypeShareblock ≤ 2 storeys +

β3MonthReadJan + β4MonthReadFeb + . . . + β13MonthReadNov

+β14 y∗ij−1 + β15 y∗ij−2 + . . . + β25 y∗ij−12

where y∗ij = ln(yij), y∗ij−1, . . . , y
∗
ij−12 = ln(yij−1), . . . , ln(yij−12); E(y∗ij) is the expected

response for the ith household at time tij , j = 1, 2, . . . , ni, if ni is the number of measure-

ment occasions for household i; αi0 represents a random household-specific intercept.

g[E(yij)] = ηij = β0 + αi0 + β1DwellingTypeHouse + β2DwellingTypeShareblock ≤ 2 storeys +

β3MonthReadJan + β4MonthReadFeb + . . . + β13MonthReadNov

+β14 yij−1 + β15 yij−2 + . . . + β25 yij−12
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where g(.) is the link function, E(yij) is the expected response (monthly electricity con-

sumption) for the ith household, i = 1, . . . , 1478 at time j = 1, 2, . . . , ni, if ni is the number

of measurement occasions for household i; αi0 represents a household-specific random in-

tercept and; ηij represents the linear predictor.

To begin, we first establish whether or not there is any spatial correlation present in the

data. We do this by constructing and studying the empirical semivariogram. As we made

use of both transformed and observed data, we study the empirical semivariogram for

evidence of spatial correlation in both data. For both data we use the GIS co-ordinates

of each household as a measure of distance between properties. To begin the modelling

procedure we first look at the empirical semivariogram of the transformed data.

Before we can start constructing the empirical semivariogram, we need to group locations

into classes. Pairs of locations can be grouped into classes according to the common dis-

tance between them. To construct the empirical semivariogram, PROC VARIOGRAM

requires that we specify both the size of the lag class (i.e. the common distance) and the

maximum number of lag classes to include (SAS, 2011).

To make our specifications, we examined the pairwise distribution of our data using a va-

riety of class numbers, then followed guidelines suggested by Journal & Huijbregts (1978).

Journal & Huijbregts (1978) recommended that lag classes be specified such that each

class contained a minimum of 30 location pairs and only lags up to approximately half

of the extreme distance between points be considered. We elected to group our locations

across 50 classes. Based on the resulting pairwise distribution, the pairs information we

obtained is presented in Table 5.1.

Table 5.1: Pairs information from 50 classes
Number of Lags 51

Lag Distance 7027.22

Maximum Data Distance in Latitude 285473.00

Maximum Data Distance in Longitude 204841.00

Maximum Data Distance 351361.17

Using the information in Table 5.1, to construct the empirical semivariogram we specify a
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common lag distance of 7000 and the maximum number of classes to be 25 (max class =

(350000/2) ÷ 7000). The constructed empirical semivariogram is depicted in Figure 5.2.

Figure 5.2: Empirical semivariogram for the natural logarithm of monthly electricity con-

sumption

Upon studying the empirical semivariogram in Figure 5.2, we observe that a nugget effect

is present. However, this is expected as among other factors, each location is measured

repeatedly resulting in within-household variability. From Figure 5.2, we also see that

as the distance between properties is increasing, the semivariogram remains more or less

constant. This suggests that there is no spatial correlation present between properties,

implying that variance is not a function of distance between dwellings.

Though the empirical semivariogram provides evidence that clearly shows no spatial corre-

lation is present, we elect to continue with the modelling process. That is to find and fit a

spatial covariance structure to the LMM given in Equation 3.4. However, before doing so

we emphasize this to be a demonstrative exercise. The exercise is carried out so as to both

further show the ill-suited nature of a spatial covariance structure and to demonstrate how

we would proceed with the modelling process, had the empirical semivariogram indicated

that spatial correlation was present.

We begin by selecting a spatial covariance to fit to the LMM. To assist with this process
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we use PROC VARIOGRAM. Whereby, selected covariance structures supported by both

PROC MIXED and PROC VARIOGRAM are fitted using PROC VARIOGRAM. The

corresponding fit statistics are presented in Table 5.2.

Table 5.2: Fit Statistics for selected spatial covariance structures also available in PROC

MIXED
Spatial Model Exponential Gaussian Matérn Power Spherical

AIC 285.23592 285.23599 287.23598 285.23628 285.23595

From Table 5.2, we see that the fit statistics for the various models are all very similar,

suggesting that no particular structure is better than another. We note that this agrees

with our initial observations from the empirical semivariogram, by emphasizing the fact

that if variance is not dependent on distance, then no spatial structure will make a signif-

icant difference. Yet according to the smaller-is-better information criteria, theoretically

if we were to select the best suited structure, it would be the exponential model. How-

ever, we note that when comparing a typical semivariogram of the exponential structure

(shown in Figure 5.3) to our empirical semivariogram in Figure 5.2, we clearly see that

the exponential structure is inappropriate for our data.

Figure 5.3: Typical semivariogram of the exponential structure (Cressie, 1991)

Nevertheless we continue with our demonstrative exercise, showing how modelling would

proceed had spatial correlation been present. We now employ PROC MIXED to fit our

linear mixed model, including a nugget effect and using the selected exponential type spa-
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tial covariance structure to model R. The resulting covariance parameter estimates are

displayed in Table 5.3.

Table 5.3: Covariance parameter estimates for the spatial mixed model

Covariance Parameter Estimate Standard Error Z Value Pr Z

Intercept 0.001559 0.000488 3.19 0.0014

Variance (nugget effect) 0.000867 0.000012 75.35 <0.0001

Sp(exp) 0 . . .

Residual 0.05353 0.000710 75.35 <0.0001

From Table 5.3, we see that a p-value for the parameter, sp(exp), was not estimable due to

the final Hessian matrix not being positive definite. This again shows the ill-suited nature

of a spatial covariance structure. Thus ends our demonstrative exercise, having provided

further evidence to support the absence of spatial correlation and having shown how the

modelling process would have proceeded.

As there is no evidence to suggest that spatial correlation is present, it is clearly of little

value to fit a spatial covariance structure to model R. Instead, it is better to model tem-

poral variations in the data. We did this in Chapter 3 by fitting an ARMA(1,1) structure

to R in the LMM. However, it is important that we also account for the nugget effect that

is occurring. We understand in our data, that a nugget effect is in fact referring to the

variance occurring at a particular property.

Before we deal with the nugget effect, let us recall that we fitted a household-specific ran-

dom intercept in the model. From this we understand that in the covariance parameters

we are accounting for the variance of an individual household. We further recall that a

household was defined such that it identified an individual household or dwelling, noting

that some dwellings (such as those of shareblocks like flats or simplexes) shared property

identifiers and GIS co-ordinates. Nevertheless, due to us randomly selecting a sample from

300 000 possible properties, it is highly improbable that we select many households that

happen to share common GIS co-ordinates. Hence, we infer that for almost all the data,

the variance of an individual household is one in the same as the variance at a particular

location. Therefore, by including a household-specific random intercept we are in fact
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already accounting for the observed nugget effect. Adding a nugget effect into the model

will result in the variance being accounted for twice. Therefore, we conclude that for the

transformed data, as no spatial correlation is present, it is best to use an LMM fitted with

a random intercept and ARMA(1,1) covariance structure.

Having assessed spatial variability in the transformed data, we move on to explore spatial

correlation in the observed data. We start by constructing the empirical semivariogram.

To do this we first examine the pairwise distribution of the observed data using a variety

of class numbers. This helps us determine the specifications required to construct the

empirical semivariogram. Table 5.4 displays the pairs information for 100 classes.

Table 5.4: Pairs information from 100 classes
Number of Lags 101

Lag Distance 3513.61

Maximum Data Distance in Latitude 285473.00

Maximum Data Distance in Longitude 204841.00

Maximum Data Distance 351361.17

As we are dealing with GIS coordinates, and not actual units of distances (e.g. kilometers

or miles), we observe the same pairs information for maximum distances as given in Table

5.1. The empirical semivariogram is plotted, specifying a common lag distance of 3000

and the maximum number of classes to be 55.

Upon examination of the empirical semivariogram in Figure 5.4, we see that a nugget ef-

fect is present and that the semivariogram remains more or less constant even as distances

between two properties increase. This is sufficient evidence to suggest an absence of spatial

correlation, telling us that variance is unlikely to be a function of distance. Unlike in the

case of the transformed data we refrain from continuing with the modelling process as it

is clearly of little value to fit a spatial covariance structure to the GLMM. Instead, it is

better to model temporal variance. This was what we did in Chapter 4, where we fitted

a GLMM to the observed data, and used an ARMA(1,1) structure to model R.

However, it is important that we account for the nugget effect that’s observed in the em-
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Figure 5.4: Empirical semivariogram for the observed data

pirical semivariogram. From our data, we understand that the nugget effect is the variance

occurring at a particular location. We also understand, that the inclusion of a random

intercept in the model accounts for the variance of a particular household. As our data was

randomly selected from a large population, we expect the majority of households to have

a GIS co-ordinate unique to them. Therefore, we recognize that for almost all the data,

the variance of an individual household is one in the same as the variance at a particular

location. From this understanding, we see that by including a household-specific random

intercept, we have already accounted for the nugget effect.

The overall inference we gain from the spatial analysis of both the transformed and ob-

served data, is that regardless of how far apart or close together households may be,

the differences in their electricity consumption cannot be attributed to distance between

them. A possible explanation for this might be the co-existence of high and low electricity

consumers in close proximity to one another.

Summary

We observed that spatial correlation is absent in both the transformed and observed data,

though both data have a nugget effect occurring. However, we also established that this

effect is already accounted for in both the LMM and GLMM in the form of a household-

specific random intercept. Therefore, we conclude that it is of more value to use models
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that model temporal variance and include a random intercept.

Though the LMM and GLMM we have fitted so far account for temporal variation and

contain random intercepts, they do not take into account that the number of days in each

measurement period varies slightly. To resolve this oversight and clear any doubts the

reader may have regarding the validity of the LMM and GLMM, we revisit both models

and add weightings to them. This is done in the next chapter.
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Chapter 6

Weighted Model Parameter

Estimates

In this chapter we focus on re-estimating our LMM and GLMM. We revisit these models

because, when initially estimating the model parameters, we did not account for the vary-

ing number of days in each measurement period.

Despite the sample data being carefully selected, so as to ensure approximately evenly

spaced measurement occasions, a small amount of variation was inevitable. We recall that

we only considered sampling households whose measurement periods were between 80 and

110 days then, approximated this to a monthly period by scaling these values by a factor

of 3. Essentially, this equated to the number of days in a measurement period varying

between 26 and 37 days. As we would expect a one month period to be approximately

30 days, we agree that this variation is negligible enough to still use methods for evenly

spaced data. However, this small amount of variation may result in the parameter esti-

mates no longer being efficient. A possible solution to this problem is to add weightings

to the estimation procedure. Whereby, our estimates are weighted by the length of time

(in days) of an approximate monthly measurement period.

We recall the ML estimate of β is given by β̂ = (X′
iV

−1
i Xi)−1(XiV−1

i yi), where Vi =

ZiGZi
′+R. Now, if we add weightings into this estimator, we find that variance-covariance

matrix Vi becomes Vi = ZiGZi
′+W− 1

2 RW− 1
2 , where W is a diagonal matrix containing

known weightings (SAS, 2011). This new Vi is then used to calculate β̂.
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Following this idea, we re-estimate both our LMM and GLMM, by adding weightings to

the estimators. The weighting is based on the number of days in a monthly measurement

period.

6.1 Weighted Estimates for the LMM

In this section we re-estimate the LMM that was fitted to the transformed data. To fit

the LMM we performed a natural log transformation on the data and included the vari-

ables dwelling type, month of meter reading, and 12 lagged consumption values. The final

model used an ARMA(1,1) structure to model R, contained a random intercept and was

a reduced-data model where household 46 had been removed. Now, we add weightings by

number of days in a period and refit our model. According to the smaller-is-better infor-

mation criterion, the weighted LMM with an AIC value of -715.0 renders a better fitting

model than that of the LMM which, had an AIC value of -679.4. The improved model fit

indicates that we should retain the weighted LMM. As our most important findings from

the LMM were centered around the lag coefficients, we focus our attention on studying

the lag coefficients of the weighted model. Weighted estimates for the lags are displayed

in Table 6.1.

From Table 6.1 we see that the only lag not significant to the model is lag∗11, as it has a

p-value of 0.2782. Though the remaining lags are all significant at a 5% level of signifi-

cance, lags 1, 2, 3, 4, 8 and 12 draw our attention as they also have the highest coefficient

estimates. The fact that the coefficients for lags 1, 2, 3 and 4 are all significant and large,

tells us that the most recent previous year’s electricity consumption is both important

and necessary when modelling electricity usage. The fact that lags 4, 8 and 12 are both

large and significant suggests that a seasonal pattern is present. This is because these lags

respectively correspond to 12, 24 and 36 months prior to the current electricity consump-

tion value.

Subsequent to the lag coefficient estimates, we next look at the covariance parameter

weighted estimates. We recall that to model temporal variance we fitted an ARMA(1,1)

structure to R and to allow for better prediction for individual properties we included
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Table 6.1: Weighted estimates of the lag coefficients for the transformed data

Effects Weighted Estimate Pr > |t|
lag∗1 0.3260 <0.0001

lag∗2 0.1140 <0.0001

lag∗3 0.1481 <0.0001

lag∗4 0.1047 <0.0001

lag∗5 -0.02576 0.0033

lag∗6 -0.03988 <0.0001

lag∗7 0.03717 <0.0001

lag∗8 0.2123 <0.0001

lag∗9 -0.07631 <0.0001

lag∗10 -0.02921 0.0023

lag∗11 -0.01069 0.2782

lag∗12 0.1355 <0.0001

a random household-specific intercept. The weighted covariance parameter estimates are

displayed in Table 6.2.

Table 6.2: Weighted covariance parameter estimates for the transformed data

Covariance Parameter Weighted Estimate Pr Z

Intercept 0.000333 0.7344

ρ̂ 0.4911 <0.0001

γ̂ 0.2715 <0.0001

residual 1.7973 <0.0001

From Table 6.2 we see that the random intercept variance component appears not to be

significant however, we retain the random intercept in the model so as improve prediction

later. Following the ARMA(1,1) structure, we see that lag1 correlation is constant with

the corresponding covariance function being estimated by (0.000333) + (1.7973)(0.2715),

where the household-specific random intercept is accounted for by 0.000333. Subsequent

(lag2 and onwards) correlations decrease with the amount of time that passes between

measurement occasions, that is the covariance becomes a function of the lag and is esti-

mated by (0.000333) + (1.7973)(0.2715)(0.4911)lag.
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It’s clear that the addition of weightings to the LMM do not greatly alter our main

model findings. However, as the varying number of days in a measurement period is now

accounted for, the new parameter estimates are more efficient and likely to yield better

predictions. We now look to add weightings to our GLMM, where the observed data was

modelled.

6.2 Weighted Estimates for the GLMM

Following the re-estimation of the LMM, we next look at how weightings may improve the

GLMM estimates. We recall that to fit the GLMM we used a lognormal distribution and

identity link function. We also included a household-specific random intercept and used a

ARMA(1,1) covariance structure to fit the final full-data model. Now, we include weight-

ings by number of days in a period and refit the model. According to the smaller-is-better

information criterion, the weighted GLMM with an AIC value of 3781.15 renders a better

fitting model than that of the LMM which, had an AIC value of 3815.57. The improved

model fit indicates that we should retain the weighted GLMM.

Having established that the GLMM with weighted estimates is better, we proceed much

as how we did for the LMM with weighted estimates. First, we look for any patterns

in the lag estimates then, study the covariance parameter estimates. The lag coefficient

estimates are given in Table 6.3.

From Table 6.3, we see that lags 1, 2, 4, 6, 8 and 12 are all significant at a 5% level of

significance. However, of these lags we observe that lags 1, 2, 4, 8 and 12 have the largest

coefficient estimates. The fact that lags 1 and 2 have high estimates tells us that the two

most recent consumption values are important. The large coefficients of lags 4, 8 and 12

show that a seasonal effect is present, as these lags correspond respectively to 12, 24 and

36 months prior to the current electricity consumption. Following the lags, we next look

at the weighted covariance parameter estimates that are displayed in Table 6.4.

It is clear from Table 6.4 that all variance components are significant at a 5% level of signif-

icance. We recall that to model temporal variance we fitted an ARMA(1,1) structure to R

and to allow for better prediction of individual properties we included a random household-
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Table 6.3: Weighted estimates of the lag coefficients for the observed data

Effects Weighted Estimate Pr > |t|
lag1 0.000044 0.0045

lag2 0.000081 <0.0001

lag3 0.000025 0.0786

lag4 0.000202 <0.0001

lag5 -0.00002 0.0940

lag6 -0.00004 0.0005

lag7 1.578E-6 0.9081

lag8 0.000120 <0.0001

lag9 -0.00002 0.0717

lag10 0.000012 0.3679

lag11 1.841E-6 0.8892

lag12 0.000203 <0.0001

Table 6.4: Weighted covariance parameter estimates for the observed data

Covariance Parameter Weighted Estimate Pr Z

Intercept 0.2607 <0.0001

ρ̂ 0.6506 <0.0001

γ̂ 0.5306 <0.0001

residual 2.3799 <0.0001

specific intercept. From the ARMA(1,1) structure, we see that lag1 correlation is constant

with the corresponding covariance function being estimated by (0.2607)+(2.3799)(0.5306),

where the household-specific random intercept is accounted for by 0.2607. Subsequent

(lag2 and onwards) correlations decrease with the amount of time that passes between

measurement occasions, that is the covariance becomes a function of the lag and is esti-

mated by (0.2607) + (2.3799)(0.5306)(0.6506)lag.

Overall, in both the LMM and GLMM, we see that accounting for the varying number

of days in each measurement period by means of a weighting, improves model fit by

attaining efficient estimates. Our original model inferences remain much the same as those

in Chapters 3 and 4 whereby, we observe that the most recent electricity consumption
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values are important and that a seasonal pattern is present. As the weighted models

are clearly better, we take them to be our final models that we use to make predictions.

Predictions made using both the weighted LMM and GLMM are presented in the Section

6.3.

6.3 Using the Weighted LMM and Weighted GLMM for

Prediction

To conclude the study, we illustrate the effectiveness of our fitted models while demon-

strating their potential for use in prediction. We compare predictions made using the

LMM, GLMM and customary eThekwini method, to actual monthly values that we have

in the data. To carry out the comparison, we randomly select some households from across

the 3 dwelling types then, we remove the most recent electricity consumption value that

each selected household has from the data. Thus, treating this value as that for which we

need to predict. However, we in fact now have an observed value that we may compare

our predictions to.

To make predictions from our LMM and GLMM, we use the weighted estimates of β0, β1,

. . . , β25 as well as, that of the household-specific estimate of αi0. To use the eThekwini

method of prediction, we first need to recall their methodology. eThekwini Electricity

estimate consumption by means of a cumulative total of weighted actual electricity usage

whereby, the most recent consumptions carry the highest weights while weightings of older

consumptions decrease exponentially. Therefore, to make predictions using eThekwini’s

method, we make use of the following formula:

E(yij)eThekwini =
n−1∑
k=1

(
1
2

)k

lagk + 2
(

1
2

)n

lagn

where n is the total number of measurement periods that each household has; E(yij)

represents the electricity usage that is being predicted for the ith household; and previ-

ous electricity consumption values for the ith household are denoted using lags whereby,

lagk = yij−k for k = 1, . . . , n − 1 and lagn = yij−n. However, to distribute the prediction

to a monthly estimate, we divide our answer by 3.

Predictions made using the weighted LMM, weighted GLMM and the eThekwini method
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are displayed in Table 6.5 as well as, the actual observed monthly value. The relative errors

of each method for each household are also given in Table 6.5, where they are expressed

as a percentage. This helps us to see which method performs best.

Table 6.5: Comparison of actual values with various predictions

Weighted LMM Weighted GLMM eThekwini

Household Actual Value Prediction Error Prediction Error Prediction Error

2 467.33 479.24 2.55% 437.06 -6.48% 491.00 5.06%

148 565.33 516.22 -8.69% 532.48 -5.81% 526.28 -6.91%

298 710.00 718.0 1.13% 743.07 4.66% 808.36 13.85%

371 551.67 505.13 -8.44% 531.01 -3.74% 518.85 -5.95%

513 629.33 625.91 -0.54% 632.37 0.48% 667.66 6.09%

660 429.33 392.91 -8.48% 430.64 0.31% 411.86 -4.07%

686 601.00 614.10 2.18% 608.62 1.27% 637.28 6.04%

812 446.33 348.44 -21.93% 466.51 4.52% 342.21 -23.33%

908 203.00 191.71 -5.56% 193.80 -4.53% 186.19 -8.28%

1128 382.00 372.13 -2.58% 370.64 -2.97% 361.75 -5.30%

1182 706.00 740.55 4.89% 678.34 -3.92% 761.85 7.91%

1262 742.00 831.31 12.04% 723.62 -2.48% 886.08 19.42%

1378 69.33 69.25 -0.12% 74.82 7.92% 63.30 -8.70%

1430 264.67 228.30 -13.74% 249.88 -5.59% 226.56 -14.40%

For each household in Table 6.5, according to the smallest absolute value of the relative

errors, the predictions closest to the actual monthly consumptions are indicated in bold.

From this we can see that the mixed models consistently provide better predictions than

those made using the customary eThekwini method. In addition to this, we also see that

the weighted GLMM appears to be outperforming the weighted LMM, having the most

number of predictions closest to the actual value.

To further illustrate which predictions are closest to the actual monthly values, we con-

struct a spider graph. The spider graph is depicted in Figure 6.1 and shows the absolute

value of the relative errors of each method for each household.
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Figure 6.1: Spider graph showing |relative errors| of each prediction method

In Figure 6.1, we see the absolute value of the errors are represented by concentric cir-

cles and that each household is shown along the outside of the outer most circle. The

innermost circle represents the smallest errors, while subsequent outer circles show larger

errors. In the spider graph, we clearly see that the weighted GLMM is the method that is

most closely centered in and around the innermost circle. This shows us that the weighted

GLMM is the best performing model, as across all the households it has the most number

of smallest errors. Meaning, that the weighted GLMM has predictions that are very close

to the actual monthly consumption values, for most of the households. After the weighted

GLMM, from Figure 6.1 we see that the next best performing model is the weighted LMM.

While, the method that results in the highest errors between predicted and observed val-

ues is that of eThekwini.

Based on our observations from Table 6.5 and Figure 6.1, we conclude that models that

account for seasonal patterns in monthly household electricity consumption are clearly

preferable when predicting future electricity consumption at a household level. Having

demonstrated the effectiveness of the weighted LMM and GLMM as well as their predica-

tive capabilities, we proceed to the conclusion of our study in the next chapter.
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Chapter 7

Conclusion

The aim of this research was to model household electricity consumption within the eThek-

wini municipal area. The intention being that later, the developed model/s be used to

predict future electricity consumption values of individual households. As part of the

modelling process, we were interested in determining if or how lagged consumption values

affect current electricity consumption values of a household. Of particular interest to us,

was establishing whether or not a seasonal pattern existed within households electricity

consumption. In addition to seasonality, we also wanted to find out if patterns of spatial

variability between households could be identified.

Data was obtained from eThekwini Electricity, a subsidiary of eThekwini Municipality,

and official supplier of electricity to the municipality. The data consisted of repeated

electricity meter readings, reading dates and electricity consumption values for an approx-

imate five year period. Additional household information contained in the data included

GIS co-ordinates, both the suburb and city the household was located in as well as, clas-

sifications of dwelling type. There were 3 categories of dwelling types; houses, shareblocks

≤ 2 storeys high and shareblocks > 2 storeys high.

For the purposes of this project we worked with only a sample of the whole data set. After

data cleaning and sorting, a random sample of 1500 households was selected whereby, 500

households were randomly selected from each of the 3 dwelling types. The sampling frame

consisted of households that had a city classification of “Durban” and whose measurement

periods were between 80 and 110 days.
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Since we wanted to model ‘typical’, regular residential electricity consumers within eThek-

wini, the selected sample was checked for anomalies before beginning the modelling pro-

cess. A total of 22 households were removed from the sample, as they were found to

have some measurement periods where their electricity consumption was zero, which was

deemed atypical for regular consumers. The final sample consisted of 1478 households.

As we were required to model repeated measures data, it was a natural decision to em-

ploy linear mixed models (LMMs). First, a standard LMM was fitted to the observed

data, modelling monthly electricity consumption for each household and accounting for

temporal variation. We found that lags that extended further than 3 years prior to the

current value had little effect when modelling current electricity consumption. Based on

this finding and the principal of parsimony, we limited our models to include 12 lagged

values. This was equivalent to including all the lags that a household had, up to and

including 3 years prior to the current value. We modelled current household consumption

as a function of dwelling type, month of meter reading, 12 lags and a household-specific

intercept. The inclusion of 12 lagged values enabled us to later assess the presence of

seasonality while, the inclusion of a random intercept enhanced the prediction capabilities

of the model.

The best LMM was found to have an ARMA(1,1) covariance structure. However, we

observed that the assumption of normality was not entirely satisfied. This led us to im-

plement two different modelling approaches. For the first approach we used the method of

transformations. We applied various power transformations to the data, and witnessed an

improvement in the model fit. We found that the natural log transformation was the best

convenient transformation. Upon residual analysis of our model, we observed 3 outlying

households, households 46, 202 and 1205. With the use of case deletion diagnostics we

classified household 46 as influential and removed it from the data. Households 202 and

1205 were confirmed to be non-influential outliers within the model, hence we retained

them in the data.

Several inferences were gleamed from our final reduced-data LMM. We observed that

dwelling type did not appear to play a significant role in predicting electricity consump-

tion while, the months that meters were read in, did. We also saw that the most recent
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previous year’s consumption played an important role in the modelling process. Finally,

upon closer examination of the coefficients of the lagged responses, we observed that lags

4, 8 and 12 had large estimates. We took this as evidence to support the presence of a

seasonal pattern, as lags 4, 8 and 12 each respectively correspond to 12, 24 and 36 months

prior to the current electricity consumption.

Though we saw that the transformation approach improved the model fit, the normal-

ity plot did not clearly favour the normality of the transformed data. This prompted

us to implement our second modelling approach, that of generalized linear mixed models

(GLMMs). The generalized modelling approach allowed us to directly search for the type

of distribution that could best satisfy normality assumptions. We again modelled current

household electricity consumption as a function of dwelling type, month of meter reading,

12 lags and a household-specific intercept. The best GLMM was found to have a lognormal

distribution, used the identity link function and had an ARMA(1,1) covariance structure

modelling the temporal variance. Residual analysis of the GLMM identified two outliers,

households 202 and 1205. However, case deletion diagnostics proved them not influential

therefore, the full-data model was used to fit the GLMM.

Inferences drawn from the GLMM were in some regards similar to those of the LMM,

particularly the finding of a seasonal pattern. In the GLMM we saw that dwelling type,

month of meter reading and the two most recent consumption values were important in

the model. Evidence of a seasonal effect was found upon observing the large coefficient

estimates of lags 4, 8 and 12.

Following the use of standard and generalized approaches to model temporal variations in

monthly electricity consumption, we investigated the possibility of spatial variability be-

tween households. However, examination of the empirical semivariograms for both the ob-

served and transformed data revealed that, variances in electricity consumptions between

households could not be attributed to physical distance between them. Consequently, we

refrained from using any mixed models fitted with spatial covariance structures in further

applications. The empirical semivariograms also showed that a nugget effect was present.

However, we found that we had already accounted for this effect in both the LMM and

GLMM, by means of a random intercept.
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To complete the modelling process we revisited our LMM and GLMM, and added weight-

ings to the parameter estimates. We did this because, we realized that our models had

not taken into account the varying number of days in the measurement periods. Weights

were based on the length (in days) of the electricity consumption period. We found that

weighted estimates for both the LMM and GLMM improved model fit, without drastically

changing the initial model inferences.

The study was concluded by illustrating the effectiveness of the weighted LMM and

weighted GLMM, as well as showcasing their potential for use in prediction. Several

households were randomly selected and their most recent electricity consumption value

removed from the data. This provided us with actual observed values from which to

compare the predicted values. Predictions were made using the weighted LMM, weighted

GLMM and the customary eThekwini method. When comparisons between the predicted

and observed values were drawn, the effectiveness of the models developed in this study

became evident. Overall, predictions made using the weighted GLMM were closest in value

to the observed values. The next best performing model was the weighted LMM while,

the method of eThekwini resulted in the highest errors of predicted versus observed val-

ues. This led us to conclude that models that allow for seasonal patterns within monthly

household electricity consumption are preferable when predicting future consumption at

a household level.

Though the results of this study have applications in prediction, the main objective was to

find a way to model electricity usage at a household level, according to ideal measurement

circumstances. Further studies are required, to find models better suited to prediction.

This includes developing methods that can adapt to less than ideal measurement circum-

stances, such as exceedingly long or, unevenly spaced usage periods.

Other approaches to improving prediction models, could include finding ways to incorpo-

rate additional household information. One possibility that warrants further investigation,

is the linkage of information from StatsSA household surveys to existing household infor-

mation, with the GIS co-ordinates serving as the linking factor.
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Appendix A

SAS Codes

The SAS codes provided in this appendix are for the final LMM fitted in Chapter 3,

the final GLMM fitted in Chapter 4, both the pairs information and the semivariograms

constructed in Chapter 5, and the final weighted models of Chapter 6.

A.1 Coding for the LMM

proc mixed data=durban covtest ic;

class id month_read dwelling_type;

model approx_monthly_avg = dwelling_type month_read lag1-lag12 / s residual;

random int / sub=id s;

repeated / sub=id type=arma(1,1) R Rcorr;

run;

A.2 Coding for the GLMM

proc glimmix data=durban plots=studentpanel(unpack);

class id month_read dwelling_type;

model approx_monthly_avg = dwelling_type month_read lag1-lag12

/ s dist=lognormal link=identity;

random int / sub=id s;

random_residual_ / sub=id type=arma(1,1);

covtest / wald;

run;
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A.3 Coding for the pairs information and empirical semi-

variogram: Transformed data

proc variogram data=durban plots=pairs(mid);

compute novariogram nhc=50;

coordinates xc=latitude yc=longitude;

var approx_monthly_avg;

run;

proc variogram data=durban plots(only)=semivar;

compute lagd=7000 maxlag=25;

coordinates xc=latitude yc=longitude;

model form=auto(mlist=(exp,gau,mat,sph,pow) nest=1 to 2);

var approx_monthly_avg;

run;

A.4 Coding for the pairs information and empirical semi-

variogram: Observed data

proc variogram data=durban plots=pairs(mid);

compute novariogram nhc=100;

coordinates xc=latitude yc=longitude;

var approx_monthly_avg;

run;

proc variogram data=durban plots(only)=semivar;

compute lagd=3000 maxlag=55;

coordinates xc=latitude yc=longitude;

var approx_monthly_avg;

run;
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A.5 Coding for the Weighted LMM

proc mixed data=durban covtest ic;

class id month_read dwelling_type;

model approx_monthly_avg = dwelling_type month_read lag1-lag12 / s residual;

random int / sub=id s;

repeated / sub=id type=arma(1,1) R Rcorr;

weight monthly_weighting;

run;

A.6 Coding for the Weighted GLMM

proc glimmix data=durban plots=studentpanel(unpack);

class id month_read dwelling_type;

model approx_monthly_avg = dwelling_type month_read lag1-lag12

/ s dist=lognormal link=identity;

random int / sub=id s;

random_residual_ / sub=id type=arma(1,1);

covtest / wald;

weight monthly_weighting;

run;
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