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Abstract

Financial data are characterized by stylized facts; this makes it difficult to model
financial assets if these stylized facts are not taken into account. Therefore, the im-
plementation of accurate risk management tools such as value at risk (VaR), which
is crucial in the management of market risk, becomes a futile exercise. This study
aims to compare the performance of the long-memory GARCH-type models with
heavy-tailed innovations in estimating the value at risk of the All Share Index, the
Mining Index, and the Banking Index. This was achieved by investigating the empir-
ical properties of the JSE Indices, fitting the FIGARCH, HYGARCH, and FIAPARCH
with the Student’s t-distribution (STD), skewed Student’s t-distribution (SSTD), and
generalized error distribution (GED). The study further estimates VaR for the short
and long-trading positions on the 95th, 99th, and 99,7th quantiles, as well as back-
tests the results. The main findings indicate that the JSE All Share index returns is
best captured by the FIGARCH-SSTD model, whereas the JSE Mining Index retuns
most robust model is the FIAPARCH-STD model. For the JSE Banking Index re-
turns, the FIAPARCH-STD model is predominantly appropriate at most of different
VaR levels. The findings of the study provide a solution to both risk practitioners
and asset managers for better understanding the behaviour of the financial indices’
returns. Finally, this can assist the role players in fastidiously managing risks and
assets’ returns.
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Chapter 1

Introduction

In this chapter, the background of this study, a review of the relevant literature,
the stylized facts of the financial asset returns, the research problem, the aims and
objectives, and the importance of the study are discussed.

1.1 Background of the study

The empirical studies in finance emphasize some stylized facts such as long memory
process, excess volatility, volatility clustering, heavy-tails, and asymmetry in the as-
set returns. Volatility in the financial assets’ returns has been viewed as an indicator
of vulnerability of the financial markets, where volatility measure has been essen-
tial for value at risk modeling. In many cases, the value at risk (VaR) assumes the
normality, and the crucial setback of the assumption is that model disregards the
presence of heavy-tailed and skewed characteristics in the return distributions.

According to Jorion, (2007), VaR represents the maximum expected loss for a given
time horizon and a pre-specified confidence interval under normal market condi-
tions. Furthermore, the unconditional volatility models assume that the variance
is constant over time, which poses challenges in VaR estimation. The researchers
have established that volatility cannot assume homoskedasticity as it evolves over
time and shocks persist for a long time. In the early 80’s an introduction of Gen-
eralized Autoregressive Conditional Heteroskedasticity (GARCH) models was due
to the need to adequately capture some stylized facts observed on financial markets
returns, more specifically the time-dependent volatility property.

According to Klar et al., (2012), the basic GARCH model is symmetrical and does
not capture the asymmetric impact called the leverage effects that is inherent within
the most market stock returns. In the financial time series context, the asymme-
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1.1. Background of the study

try impact on the asset price refers to when bad news tends to increase volatility
more than good news (Black, 1976). Furthermore, the asymmetric GARCH models
show significant evidence of symmetry in stock returns, confirming the presence of
a leverage effect in the return series. In the recent past, GARCH-type models com-
bined with heavy-tailed distributions, to model the VaR, have become an integral
part of theoretical and time series data analysis to capture the stylized facts, in par-
ticular, the findings of heavy-tailed property observed in asset returns (Chifurira
and Chinhamu, 2019).

The availability of high-frequency data for financial markets, another common be-
haviour, has posed another challenge in estimating VaR. High-frequency data usu-
ally show the presence of long memory patterns, which is the squared returns (Ca-
porin, 2003). Long memory in volatility refers to a slow hyperbolic decay in autocor-
relation functions of the squared returns i.e. autocorrelation function of squared re-
turns slowly convergent toward zero. The squared returns are employed as a proxy
of the volatility of the returns in this study. The autocorrelation of the squared re-
turns seems to decay at a slower rate, slow hyperbolic rate of decay in the autocor-
relation of squared returns. This structure is not compatible with the basic GARCH
model, whose implied theoretical autocorrelations exponentially converge to zero.
Most of the GARCH models employed in many types of research do not account for
long memory in volatility (Wojtowicz and Gurgul, 2009).

The Integrated Generalized Autoregressive Conditional Heteroskedasticity (IGARCH)
model was proposed by Engle and Bollerslev (1986) to address the deficiencies of the
GARCH models, hence it is persistent in variance given that the current informa-
tion remains essential for forecasts on all horizons. The Fractionally Integrated Gen-
eralized Autoregressive Conditional Heteroskedasticity (FIGARCH) model shows
some flexibility processes for the conditional variance, that are accomplished in ex-
plaining and representing the observed temporal dependencies in financial market
volatility. It permits only a slow hyperbolic rate of decay for the lagged squared
returns in the conditional variance function, and over and above accommodate the
time dependence of the variance and a leptokurtic unconditional distribution for
the returns with a long memory behaviour for the conditional variance (Tayeti and
Rammanathan, 2012).

The Fractionally Integrated Asymmetric Power Autoregressive Conditional Heteroskedas-
ticity (FIAPARCH) model was an improvement of the FIGARCH model, even though
the FIGARCH model is capable to capture the long memory process, the FIAPARCH
captures asymmetric response of volatility to positive and negative shocks which FI-

2



1.1. Background of the study

GARCH is not capable of, and also permitting the determination of the power of the
returns for which the predictable structure in the volatility is the strongest. The Hy-
perbolic Generalized Autoregressive Conditional Heteroskedasticity (HYGARCH)
model improves the FIGARCH as proposed by Davidson (2004), by introducing the
hyperbolically decaying response coefficients which address the weakness of the FI-
GARCH. Furthermore, the presence of the long memory structure will (theoretically)
allow the computation of consistent long term forecasts of the volatility. News im-
pact is also affected as in such a model shocks will produce their effects far in the
future, even if not indefinitely as in the IGARCH case. This particular behaviour is
due to the long memory pattern of the conditional variances. A central issue will,
therefore, be choice of the correct model for the series of interest, distinguishing
among the possible short memory (GARCH), and long memory (FIGARCH) speci-
fications for the variances.

The evidence of long memory in volatility within the South African markets is an-
alyzed using three prominent JSE indices, in highlighting the presence of the long
memory properties in the volatility of the returns. In South Africa, it seems to have
little previous research establishing the existence of its long memory properties. In
order to ascertain the presence of the long memory of the indices, this study em-
ploys the long memory tests, which is measured by the d parameter. The presence
of the long memory in these indices will suggest the use of long memory volatility
GARCH models. The crucial area of the study is the computation of the value at
risk, and this approach is used by financial and regulatory agencies (i.e. SARB) to
measure, monitor, and manage market risk factors. Several recent types of research
ignore the long memory which leads to an underestimation of risk posed by volatil-
ity in the returns, and only the heavy-tailed distributions can capture the tail risk.

The South African indices used are JSE All Share index (JSEALSI), JSE Mining in-
dex (JSEJMMNG), and JSE Banking index (JSEBNKS), and are highly volatile. This
research study therefore uses three major indices listed in the JSE. The overall per-
formance of South Africa’s stock market is measured by the JSEALSI, JSEJMMNG,
and JSEBNKS. According to the JSE Bulletin (2006), the indices offer an easy way to
determine the overall performance of the stock market over some time. The JSEALSI
is an index that reflects the movement on the equity market and accounts for 99% of
the full market capital value (i.e., before the application of any investability weight-
ing) of all ordinary securities listed on the Main Board of the JSE that qualify under
the regulations of eligibility. The JSE All Share Index contains the main securities,
measured by way of market capitalization, and includes 166 listed companies across
41 sectors.

3



1.2. Stylized facts of financial asset returns

The Banking Index is a market capitalization-weighted index whose mother index
is JSE All Share index. The index assumed ICB classification (effective since 3 Jan-
uary 2006); historical values before 2006 were related to the FTSE GCS classification.
Capitec, Barclays Africa Group, Standard Bank Group, First Rand, RMB Holdings,
and the Nedbank Group are examples of large companies on this market capitalization-
weighted index. The JSE Mining Index is a market capitalization weighted index
whose mother index is JALSH. It involves platinum, palladium, gold, coal, and iron
ore. A short background of these indices, as well as investigating the mechanisms
in which data returns from the time series data are generated, became part of the
research, given the significance to investors for establishing a way to look ahead.

1.2 Stylized facts of financial asset returns

According to Cont (2001), stylized facts concern taking a common view of the prop-
erties ascertained in studies of various markets and instruments. The stylized facts
of the financial returns are the following:

• Volatility clustering is a measure of volatility showing that a positive auto-
correlation quantifies the fact that high-volatility events tend to cluster in time
over several days. This implies that a period of low volatility follows other
periods of low volatility.

• Long-memory is the statistical dependence that decays more slowly as oppose
to an exponential decay.

• Leverage effect displays a negative correlation between the volatility of an in-
dex and the returns of the indices; in simpler terms, this indicates that volatility
rises when index prices go down and decrease when index prices go up. The
consequence of bad news and index market volatility is greater than the con-
sequence of good news

• Slow decay of autocorrelation is a process during which the autocorrelation
function of absolute returns decays slowly as a function of the time lag, roughly
as a power law with an exponent βε[0.2, 0.4]. This is, on occasion, interpreted
as a signal of long-range dependence

• Heavy-tails are characterized by the distribution’s returns that appear to show
a power-law or Pareto-like tail with a finite tail index greater than two, but
much less than five for most data sets studied. In particular, this excludes
stable laws with infinite variance and normal distribution. The kurtosis tends
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to be extremely sensitive to outliers, which implies that the distribution with
such features is non-normal

• Conditional heavy-tails occur as a result of the correction of the returns ex-
hibiting volatility clustering, but the residuals time series nonetheless show
heavy tails. However, the tails are much less heavy than in the unconditional
distribution of returns; and

• Absence of autocorrelation takes place when the autocorrelation of asset re-
turns is regularly insignificant, barring very small intraday time scales in which
microstructure effects come into play.

1.3 Relevant literature review

In this section, related literature on the JSE indices used in the study will be dis-
cussed, namely the All Share Index, Mining Index, and Banking Index.

Mabrouk, (2016) attempts to conclude the comparisons of the capabilities of the
two integrated GARCH models with a FIAPARCH, employing skew Students’ t-
distribution, and the results are primarily based entirely on MZ regression approach
(Mincer and Zarnowitz, 1969). The results confirm that the FIAPARCH model has
an extremely better property by increasing the flexibility of the conditional variance.
Chkili et al. (2014) investigated the consequences of asymmetric behaviour and long-
memory process models in forecasting the conditional variance of the market risk
factors.

In their study, they used four widely listed commodities, namely gold, gas, crude
oil, and silver, and the study confirms that the FIAPARCH model is superior. Li et
al., (2015) used the daily Hang Seng Index and Koren Won to compare the perfor-
mances of the three innovations, namely HYGARCH, New Generalized Autoregres-
sive Conditional Heteroskedasticity (HGARCH), and FIAPARCH to estimate the
value at risk (according to the internet). Their conclusion was that the FIGARCH
innovation with normal distribution is a robust model to estimate the value at risk
forecasts. Sethaparamote et al. (2014) concluded that value-at-risk estimations us-
ing the FIGARCH model with normal distribution are accurate, as opposed to those
generated by the short-memory GARCH model that appear in the analysis of the ac-
curacy of the value-at-risk estimation in the study of the Stock Exchange of Thailand.

Yaya (2013) attempted to establish the most effective GARCH model for the All Share
Index of the Nigerian Stock Exchange by using HYGARCH, IGARCH, and Frac-
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tionally Integrated Asymmetric Power Autoregressive Conditional Heteroskedastic-
ity (FIEGARCH). Supported by the normality assumptions, HYGARCH parameters
were not considerably exclusive; the HYGARCH was unsuccessful and reverted to
FIGARCH. However, the HYGARCH model exhibits extraordinary stability across
pre-crises and post-crises. In their study of the stock exchange of the United Arab
Emirates, Maghyereh and Awartani (2012) confirmed that value at risk accuracy im-
proves once they used FIAPARCH applied with a skewed Student’s t-distribution.
Mighri et al., (2010) argues against the proposition given by Kasman (2009); the au-
thor proves his assertion by studying the consequences of asymmetric long-memory
volatility models on estimating value at risk by using stock index returns. The
findings are that the VaR model produces better results in both in-sample and out-
sample procedures. Reddy et al.(2017) explore the behavior of the daily JSEALSI
returns using GARCH, IGARCH, GJR-GARCH, and FIGARCH, they conclude that
out-sample results consequences exhibit that structural break model outperforms all
static GARCH models over the forecasting horizon, and GJR-GARCH model stands
to be the robust model. The literature on long-memory GARCH models is presented
in the Table 1.1:
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Table 1.1: Literature on long-memory GARCH-type models

Author Data Methodology Robust Models
Mabrouk(2016) Daily crude oil,gas FIGARCH, HYGARCH, and FIA-

PARCH model
FIAPARCH

Reddy et al.,(2017) Daily closing
JSE All Share
Index(03/01/00-
31/12/12)

IGARCH,FIGARCH, GJR-GARCH GJR- GARCH

Chkili et al,(2014) Daily gas,oil,crude
oil,silver(07/01/97-
31/12/09)

FIAPARCH,IGARCH,and FI-
GARCH

FIAPARCH

Li et al.,(2015) Daily Heng Seng
Index,Koren
Won(31/12/86-
7/01/10)

HYGARCH, HGARCH,and FI-
GARCH

HYGARCH

Sethaparamote et
al.,(2014)

Daily Thailand SE FIAPARCH,FIGARCH,and HY-
GARCH

FIGARCH/Normal
distribution

Yaya(2013) Daily Nige-
rian All Share
Index(01/2007-
12/2011)

HYGARCH,APARCH,and FI-
GARCH

HYGARCH

Maghyereh and
Awartami(2012)

Daily United Arab
Emirates Stock
Exchange(31/12/03-
30/06/09)

FIAPARCH FIAPARCH/skewed
student’s t-
distribution.

Mighri et al.,(2010) Thailand returns
daily(02/01/97-
25/08/08)

FIAPARCH,FIGARCH,and HY-
GARCH

FIAPARCH
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Chifurira and Chinhamu (2017) conducted a study employing the daily JSE Min-
ing Index by using generalized Pareto and Pearson type-IV distributions to measure
value at risk. Their findings concluded that the models provided better results in
comparison with generalized hyperbolic distributions. Reddy et al. (2017) explored
the behaviour of daily JSE All Share Index returns by investigating the empirical
evidence of structural breaks in stock return volatility. Their conclusion was that
leverage effects have to take a quadratic shape when utilized for South Africa’s Eq-
uity Market, given the most suitable overall performance of Glosten, Jagannathan,
Runkle-GARCH models.

Elenjical et al. (2016) revealed that the daily JSE All Share Index indicated a need
for the implementation of model-switching policies that can provide significant im-
provements in forecasting and minimizing chances of value at risk estimates falling
short of actual losses. Katzke and Garbers (2015) used the GARCH (1,1) model to in-
vestigate the existence of asymmetric volatility in the daily JSE All Share Index. The
results ensured that controlling asymmetries and long memory in volatility models
improved risk management calculation. Makhwiting et al. (2014) applied the daily
JSE All Share Index with generalized Pareto distribution; empirical results high-
lighted that the ARMA-GARCH generalized Pareto distribution model produced
more accurate estimates of extreme returns than the ARMA-GARCH model.

Huang et al. (2014a) also used the daily JSE All Share Index for subsequent proba-
bility distributions, particularly hyperbolic distribution, generalized extreme value
distribution, and generalized Pareto distribution. Their findings concluded that the
most effective model choice was not variant; hence, neither the extreme value theory
nor the generalized hyperbolic distribution always produced the effective fit. Toe-
rien et al. (2014) studied the reverse probability distribution model using the daily
JSE All Share Index. The results showed that the matched-pair target, ranging from
± two to ± eight, and the maximum probability of the negative return on a timeline
laid to the left of the maximum probability of the equivalent positive.
Using the IGARCH, Exponentially Generalized Autoregressive Conditional Het-
eroskedasticity (EGARCH), Threshold Generalized Autoregressive Conditional Het-
eroskedasticity (TGARCH), FIGARCH and FIEGARCH models and the VaR mea-
sure on the daily JSE All Share Index, McMillan and Thupayagale (2010) established
that results generated by FIEGARCH proved to incorporate both asymmetric and
long-memory attributes, thus generally outperforming all other methods in estimat-
ing value at risk across three percentiles considered 95%, 97.5%, and 99%. This study
differs in several respects, as the FIGARCH, HYGARCH and FIAPARCH models,
combined with Student’s t-, skewed Student’s t-, and generalized error distribution
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have been employed. Bonga-Bonga and Mutema (2009) analyzed the daily JSE All
Share Index returns by using GARCH and EGARCH models. The results showed
that assumptions of conditional heteroskedasticity ought to have been taken into
consideration when estimating the value at risk in emerging markets.
The Table 1.2 presents a literature on the JSE financial data used in this research.

Table 1.2: JSE financial data used in this research

Author Data Models Fitted Robust Models
Chifurira and Chin-
hamu(2017)

Daily JSE
Mining(20/02/01-
30/12/18)

GARCH-PIVD/GARCH-GPD GARCH-
GPD/GARCH-
Pearson type-IV

Reddy et al.,(2017) Daily JSE All Share
Index(03/01/00-
31/12/12)

IGARCH,GJRGARCH,FIGARCH GJRGARCH

Elenjical et al.,(2016) Daily JSE All Share
Index(03/01/03-
17/08/12)

IGARCH,EGARCH,and FIE-
GARCH

EGARCH

Katzke and Gar-
bers(2015)

Daily JSE All Share
Index

APARCH,FIGARCH,and FIA-
PARCH

FIGARCH

Makhwiting et
al.,(2014)

Daily JSE All Share
Index(2002-2011)

Generalized Pareto, Generalized
Extreme Value

Weibull distribution

Huang et al.,(2014a) Daily JSE All Share
Index(17/12/03-
17/12/13)

Generalized Hyperbolic, Normal
Inverse Gaussian, Generalized
Pareto, and Generalized Extreme
Value

Mixture
distributions/Model-
switching proce-
dures.

Huang et al.,(2014) Daily JSE Mining
Index(02/01/01-
22/08/13)

Hyperbolic, Normal Inverse Gaus-
sian, and Generalized Skew-t

GHSSTD

Toerin et al.,(2014) Daily JSE All Share
Index(1995-2012)

Reverse Probability distribution Reverse statistics
probability distribu-
tions.

McMillan and Thu-
payagale(2010)

Daily JSE All Share
Index

FIGARCH,EGARCH,and FIE-
GARCH

EGARCH.

Bonga Bonga and
Mutema(2009)

Daily JSEALSI GARCH,EGARCH EGRACH
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1.4. Research problem

From literature reviewed, there seems to be limited literature on, modeling the JSE
All Share Index, JSE Mining Index and JSE Banking Index using FIGARCH, HY-
GARCH and FIAPARCH in the South African context. The literature further reveals
that the JSE Banking Index has never been used in any study in South Africa’s finan-
cial market. Reddy et al., 2017 focused on the GARCH(1,1), Glosten, Jagannathan,
and Runkle-GARCH (1,1), and FIGARCH (1,1) combined with Student’s t- distri-
bution to model the value at risk. They concluded that Glosten, Jagannathan, and
Runkle-GARCH (1,1) (GJR-GARCH) combined Student’s t- distribution was the ro-
bust model. In this study, we aim to improve on the work of Reddy et al., (2017)
by using FIGARCH, HYGARCH and FIAPARCH with heavy-tailed distribution on
the All-Share Index, Mining Index and Banking Index combined with heavy tailed
distributions.

1.4 Research problem

The financial data returns are characterized by volatility clustering, leptokurtosis,
leverage effects, and long memory. The research in time series has attracted enor-
mous interest in recent years. This has led to intensive studies in models that have
the ability to capture the properties of the stylized facts. In an attempt to solve and
contribute to the body of knowledge, this study presents a long memory in volatility
to model and forecast the volatilities of JSE indices mentioned in the background of
the study.

1.5 Aim and objectives of study

The study aims to examine the overall performance of the long-memory GARCH-
type models with heavy-tailed innovations in estimating the value at risk of the All
Share Index, Mining Index and Banking Index. This is achieved by:

• investigating the empirical parameters of the JSE Indices

• fitting the FIGARCH, HYGARCH, and FIAPARCH combined with Student’s
t-, skewed Student’s t-, and generalized error distributions

• estimating the value at risk of short and long trading positions on 95th, 99th,
and 99.7th quantiles; and

• backtesting the results as well as comparing the relative performance of the
fitted models at different VaR levels.
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1.6 Significance of the study

The financial turbulence in South Africa’s stock market resulted in the designing of
extra sophisticated risk measurement tools in order to aid risk management. The ac-
tive participation of foreign investors in South Africa’s financial markets provided
important initiatives to improve risk measurement tools. These tools play a signif-
icant role in understanding various financial assets, including indices’ returns be-
haviour. These indices are used as a gauge of the financial markets, which are char-
acterized by high levels of volatilities. The volatility is directly associated with risk,
and value at risk is widely considered to be effective to measure the risks. The finan-
cial indices used in this study account for specific behaviour of the returns series,
which revealed heavy-tailed distributions to model the value at risk. The results of
this study will be of interest to risk managers, researchers and financial statisticians.

1.7 Research study structure

This research thesis is structured as follows. Chapter 1 presents the introduction,
background of study , related literature review stylized facts of financial asset re-
turns, research problem, aims and objectives and significance of the study includ-
ing the research study structure. Chapter 2 delves into econometrics models re-
lated to the research topic, and giving deeper perception into a theoretical review of
GARCH-type models, heavy-tailed distributions, parameter estimation methods.

Chapter 3 discusses the methods used to check for empirical properties of the data,
model adequacy and backtesting VaR. Chapter 4 gives insight to the empirical re-
sults based on the chosen time series data. Chapter 5 concludes the research and
presents recommendations on some ideas.
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Chapter 2

Long process volatility models

2.1 Introduction

In this chapter, the theory of long-memory GARCH-type models used in the study
is provided. The heavy-tailed distributions used in the study are also discussed.

2.2 Long-memory process

Long-memory behaviour is important in the way time-series returns modeling can
be approached, given that it has a significant effect on the financial world. To dif-
ferentiate between short- and long-memory processes, the following definitions are
given below, time series data have a short memory if:

n∑
i=1

|ρ(h)| <∞, (2.1)

then the following exists:
n∑
i=1

|ρ(h)| =∞, (2.2)

then the sequence is said to exhibit long-range dependence, where n is the total
number of time series realizations.
Let, y1, y2, . . . , yn be a stochastically generated observations, the mean is given by

ȳn =
y1 + y2 + · · ·+ yn

n
, (2.3)

then the sample variance of the series is given by:

var(ȳn) =
1

n

(
1− |h|

n

)
ρ(h) =

1

n

∞∑
h=−∞

(
1− |h|

n

)
+

ρ(h), (2.4)
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where (a)+ = max(a, 0) is a if a ≥ 0 and 0 if a < 0. If
∑
|ρ(h)| <∞, then:

var(ȳn) =
1

n

[
1− |h|

n

]
ρ(h) + 0.

(
1

n

)
, (2.5)

as n −→∞, then |h|n −→ 0.

So, nvar(ȳn) −→
∑∞

h=−∞ ρ(h).

var(ȳn) =
1

n

[
1− |h|

n

]
ρ(h) + 0.

(
1

n

)
. (2.6)

Thus, for a short memory time series, var(ȳn) goes to 0 as the size of the sample in-
creases at the rate, σ

2

n but with different multiplier, the integrated fractionally white
noise process is given as:

(1−B)dyt = wt, 0 < d < 0.5, (2.7)

where the fractional difference operator (1−B)d is defined by a binomial series:

(1−B)d =

∞∑
k=0

(
d

k

)
(−B)k = 1− dB − d(1− d)B2

2
− d(1− d)(2− d)B3

6
− . . . . (2.8)

(1−B)d =
∞∑
k=0

Γ(k − d)zk

Γ(−d)Γ(k + 1)
. (2.9)

The autocorrelation of the fractionally integrated series is defined as:

ρ(h) =
Γ(h+ d)Γ(1− d)

Γ(h− d+ 1)Γ(d)
∼ h2d−1. (2.10)

So,that 0 < d < 0.5,
∑∞

h=−∞ |ρ(h)| = ∞. The var(ȳn) decays like n2d−1, so
(

1+α
2

)
,

where α is the slope of variance-time graph, gives a rough empirical estimate of d.
Traditional financial modeling assumes that returns of the series are independent
of each other and have short memories. The existence of long-range persistence is
tested and modeled using long-memory in the mean and in volatility.

2.3 Volatility models

The ARCH models were conceived by Engle, (1982) and were developed specifically
to capture variance that is non-constant over time. These models were enhanced by
Bollerslev, (1986). The deficiency of GARCH-type models is due to the fact that they
do not account for leverage effects. The interesting feature of the volatility models
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is that GARCH models have parameter d = 0, IGARCH has d = 1, and volatility
GARCH type models have 0 < d < 1 which captures long-memory behaviour.

2.3.1 ARCH(p) model

The ARCH model is characterized by symmetric features, that assume, that negative
and positive shocks have the symmetric impact on the conditional volatility. It is
given by:

h2
t = ω +

p∑
k=1

αkε
2
t−k, (2.11)

where α1, · · · , > αp, ω > 0, αk ≥ 0, and 0 ≤
∑p

k=1 αk < 1.

2.3.2 GARCH(p,q) model

The general GARCH (p,q) model conceived by Bollerslev (1986), is defined by the
following:

h2
t = ω +

p∑
k=1

αkε
2
t−k +

q∑
j=1

βjh
2
t−j , (2.12)

where p is the lag on the disturbance term, ε2
t , and q is the lag on the conditional

variance, h2
t . The GARCH specification allows the conditional variance to follow an

autoregressive and moving average process, which is a parsimonious specification
to capture the time series properties in volatility. The lag orders of the AR and MA
components are denoted by p and q, respectively.

2.4 Variants volatility GARCH models

There are many variants of volatility models but for the purpose of the study we
briefly review the IGARCH and APARCH for symmetry.

2.4.1 The IGARCH(p,q) model

The advantage of IGARCH and GARCH type models is the ability to capture non-
linear dynamics presented by financial returns. However, the IGARCH process
which considers infinite memory is not appropriate given that the situation of long-
memory process is very unlikely to happen in the real world.
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h2
t =

ω[
1− β(L)

] + 1− ϕ(L)(1− L)[1− β(L)]−1ε2
t , (2.13)

and
∑p

k=1 αk +
∑q

j=1 βj = 1, with p is the distribution term lag, ε2
t , and q related to

the conditional variance lag, h2
t . The GARCH (p,q) model researched by Bollerslev

(1986) is an extension of the basic ARCH model and it includes lags h2
t to address

the long lag lengths on ε2
t . In the study by Bollerslev and Mikkelsen (1986), they

developed an IGARCH model, that accounted for volatility persistence. If
∑p

k=1 αk+∑q
j=1 βj = 1, then the shocks of the conditional variance are always present and

exhibit the characteristics of persistence, in contrast to where they are dying out
when

∑p
k=1 αk +

∑q
j=1 βj < 1. According to Poon and Granger (2003), the IGARCH

model conditional variance is a hyperbolic function representing a gradual decay in
the effects of shocks.

2.4.2 APARCH(p,q) model

Ding et al., (1993) introduced an asymmetric power ARCH power ARCH (APARCH).
The APARCH (p,q) model can be defined as:

σδt = α0 +

q∑
i=1

(
αi|εt−1| − γiεt−i

)δ
+

p∑
j=1

βjσ
δ
t−j , (2.14)

where δ > 0 and −1 < γi < 1, i = 1, · · · , q. The leverage effect in the model lead
to higher volatility, vice versa. An APARCH (p,q) model of asymmetric differs from
other GARCH-type volatility models with the introduction of the power term, δ,
which is to be estimated. The estimation of the power term is an attempt to account
for the true distribution underlying volatility. The idea behind the introduction of
a power term arose from the fact that in modeling financial data, the assumption
of normality, which restricts δ to either 1 or 2 is often unrealistic due to significant
skewness and kurtosis.

2.5 Long-memory volatility GARCH models

In this section we discuss the long memory volatility models and the estimation
methods of the FIGARCH, HYGARCH, and FIAPARCH models.

2.5.1 The FIGARCH model

Barkoules and Baum (1996) advocated that the existence of long-range persistence
in the time series returns pointed out evidence against a weak form of the finan-
cial market efficiency. A further study conducted by Fama (1965) demonstrated that
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financial markets are called efficient only when asset prices always reflect the avail-
able information fully. Hence, the FIGARCH model was developed by the pioneers
Bailey et al., (1965) to reflect the full available information of the time series data.
The FIGARCH model, is given by the equation:

σ2
t = ω

[
1− β(L)− φ(L)(1− L)d

]
ε2
t + β(L)σ2

t , (2.15)

with backshift or lag operator represented by L, and parameters of the model are ω,
β, φ and d, where d lies within 0 ≤ d ≤ 1. When d = 1, the FIGARCH (p,d,q) model
is reduced to IGARCH(p,q) and GARCH(p,q) model provides the parameter d = 0.

According to Conrad and Haag (2006), they derived ”necessary and sufficient con-
ditions for the non-negativity of the conditional variance in the FIGARCH (p,d,q)
model and sufficient conditions for the general model. Theses constraints of Conrad
and Haag use an ARCH(∞) representation of the FIGARCH (1,d,1), namely the co-
efficients gi and fi are the functions of the fractional differencing parameter d such
that gj = figj−1 = Πj

i=1fi with fj = j − 1− d for j = 1, 2, · · · and g0 = 1.
The conditions are that:

ψi = β2
1 + ψi−2 + [β1(fi−1 − φ1)(−gi−1), i ≥ 2. (2.16)

or else
ψi = β2

1 + ψi−2 + [β1(fi−1 − φ1)(−gi−1), i ≥ 3. (2.17)

Corollary 1:The conditional variance of the FIGARCH(1,d,1) is non-negative if and
only if.

Case 1: 0 < β1 < 1.

Either: ψ1 ≥ 0 and φ1 ≤ f2 or k > 2 with fk−1 < φ1 < fk it holds that ψk−1 ≥ 0.

Case 2: −1 < β1 < 0.

Either: ψ1 ≥ 0, ψ2 ≥ 0 and φ1 ≤ f2(β1+f2)
(β1+f2) or k > 3, with fk−2

(β1+fk−1)
(β1+fk−2) < φ1 ≤

fk−1
(β1+fk)

(β1+fk−1) , then ψk−1 ≥ 0 and ψk−2 ≥ 0. This corollary can be derived from the
recursions as given below:
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−gi > 0 for i ≥ 1,in which it applies when:

Fi = fi − φ1 and F (1)
i = β1(fi−1 − φ1) + (fi − φ1)fi−1 are increasing and when there

exists a k such that Fk−1 < 0 ≤ Fk and
F

(1)
k−1 < 0 ≤ F

(1)
k . The FIGARCH was developed, which takes into account an in-

termediate level of long-memory captured by the parameter d. Therefore, the ad-
vantage of the FIGARCH is that it nests both GARCH (d = 0) and IGARCH (d = 1)
models, as special cases. In contrary, the FIGARCH model does not outline a covari-
ance stationary process.

2.5.2 Estimating FIGARCH model

The maximum likelihood estimation is used to compute the parameters of the FI-
GARCH (p,d,q) model with the normality assumption of yt. The likelihood of a FI-
GARCH (p,d,q) model is then derived on the sample ε1, · · · , εT and can be written
as follows (Baillie, 1996):

LΩ(θ, ε1, · · · , εT ) = −1

2
ln(2π)− 1

2

T∑
t=1

[
ln(ht)−

ε2
t

ht

]
, (2.18)

where θ = (α0, d, β1, · · · , βq, ϕ1, · · · , ϕp). Therefore, the likelihood function is maxi-
mized conditionally on the set of initial values. The maximum likelihood method is
given by:

∂LΩ(θ, ε1, · · · , εT )

∂θ
= −1

2

ln(2π)

∂θ
− 1

2

∑T
t=1

[
ln(ht) +

ε2t
ht

]
∂θ

, (2.19)

where θ is the estimated set of parameter, LΩ is the likelihood function, and T is the
number of observations.

2.5.3 The HYGARCH model

Davidson (2004) advocated the use of the HYGARCH model to capture the long-
range dependence measured by the geometric of hyperbolic decay of the coefficients
in the ARCH(∞) model. The conditional variance of the FIGARCH the model was
extended by incorporating weights to its difference operator. The HYGARCH model
can be defined as:
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σ2
t =

ω

(1− β(L))
+

{
1− φ(L)(1− L)d

(1− β(L))

}
ε2
t , (2.20)

where 0 ≤ d ≤ 1. The HYGARCH model conditional variance can be derived from
FIGARCH (p,d,q) by introducing weights to HYGARCH difference operator. Then

1− [1−β(L)]−1φ(L)(1−L)d, is replaced by 1−
[
1−β(L)

]−1

φ(L)

[
1+α

{
(1− L)d

}]
.

σ2
t = ω

[
1− β(L)

]−1

+

{
1−

[
1− β(L)

]−1

φ(L)

[
1 + d

{
(1− L)d

}]}
ε2
t , (2.21)

where L is the lag operator, ω > 0, β < 1, 0 < d < 1.

The model above yields the properties of volatility clustering, leptokurtosis, and
long memory; however, it disregards asymmetry and the fact that the conditional
volatility is best represented by non-integer powers of the absolute value of the ob-
servations. The HYGARCH reduces to a FIGARCH whenever α = 1.

Inequality constraints of HYGARCH (p,d,q) model (Conrad 2010) states that the con-
ditional variance of the HYGARCH(1,d,1) is nonnegative if and only if.

Case 1: 0 < β < 1.

Either: ψHYi = ιψF1
i +

(
1 − ι

)
ψGAi

(
L
)

and φ1 ≤ f2 for k > 2 with fk−1 < φ1 ≤ fk it
holds that ψHYk−1 ≥ 0.

Case 1: −1 < β < 0.

Either: ψHY1 ≥ 0, ψHY2 ≥ 0 and φ1 ≤ f2(β1+f3)
(β1+f2) or for k = 3 with fk−2(β1+fk−1)

(β1+fk−2) < φ1 ≤
fk−1(β1+fk)
(β1+fk−1) it holds that φHYk−1 ≥ 0 and φHYk−2 ≥ 0.

These are the sufficient conditions for the HYGARCH(1,d,1); more detailed condi-
tions for higher-order HYGARCH can be sourced from Conrad(2010).

2.5.4 Estimating HYGARCH model

The HYGARCH model is given by Davidson(2004):

yt = εt
√
ht, (2.22)

where ht = γ
β(1) + ω

{
1 − δ(B)

β(B)(1 − B)d
}
yt, where 0 < d < 1, γ > 0, α > 0, β(x) =

1 −
∑p

j=1 βjx
j , and δ(x) = 1 −

∑p
i=1 δix

i. Denote the parameter vector by θ =
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2.5. Long-memory volatility GARCH models

(α, δ́, β́, ω, d)
′ ∈ Rp+q+s, where δ = (δ1, · · · , δq)

′
and β = (β1, · · · , βp)

′
. The Gaussian

log-likelihood function is given by:

Ln(θ) =
n∑
t=1

lt(θ), (2.23)

where lt(θ) =
y2t
ht(θ)

+ ln[ht(θ)],and ht(θ) = γ
β(1) +

∑∞
j=1 bj(θ)y

2
t−j with bj(θ)s being

functions of θ. The Gaussian Quasi Maximum likelihood estimation is given by:

θ̂n = argminL̃n(θ). (2.24)

The HYGARCH excels with the GARCH model to outline the required property of
covariance stationarity, while accounting for the decaying impulse response coeffi-
cients as the FIGARCH. HYGARCH further offers a framework for testing geomet-
ric versus hyperbolic decay, and capable of modelling the long-run dynamics in the
second conditional moments of several financial time series returns. Conrad (2010)
studied the HYGARCH in detail and offered specific necessary and sufficient con-
ditions for the non-negativity of the conditional variance of the HYGARCH model.
However, the conditions for the HYGARCH proposed by Conrad (2010) are com-
plex and can be probably violated in applications. Another important limitation of
the HYGARCH model (and other long-memory) exists when structural breaks occur
in time series data when structure breaks are present, d tends to be overestimated.

2.5.5 The FIAPARCH model

The FIAPARCH model is the extension of the FIGARCH model with the APARCH
model of Ding et al., (1993). The APARCH (p,q) model can be defined as:

σδt+h|t = E
(
σδt+h|Ωt

)
= E

[
ω̂ +

∑δ
i=1 σi

(∣∣εt+h−i∣∣− γ̂iεt+h−i)δ +
∑p

j=1 β̂jσ
δ
t+h−j

∣∣Ωt

]
= ω̂ +

∑q
i=1 σiE

[(
εt+h−i − γ̂iεt+h−i

)δ∣∣Ωt +
∑p

j=1 β̂jσ
δ̂
t+h−j ,

where E
[(
εt+k − γiεt+k

)δ∣∣Ωt = kσδt+k|t, for k > 1, and ki = E
(∣∣εt+h−i∣∣− γiεt+h−i∣∣)δ.

If d = 0, the FIAPARCH (p,d,q), specification can be reduced to APARCH (p,q)
specification. The FIAPARCH model(p,d,q) can be written as follows:

σδ = ω +
[
1−

(
1− β(L)

)−1(
1− φ(L)

)(
1− L

)d](∣∣εt∣∣− γεt)δ, (2.25)

where ω > 0, δ > 0, −1 < γ < 1 and 0 < d < 1. When γ > 0, then negative
shock increases volatility than positive shock and vice versa. The FIAPARCH model
becomes a FIGARCH model when δ = 2 and γ = 0. The (1 − L)d is the differ-
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2.6. Heavy tailed distributions

encing operator in terms of a hypergeometric function(Bentes, 2015). When d = 0,
the HYGARCH process reduces to the APARCH(1,1). The model can capture both
long memory and asymmetry in the conditional variance. Conrad and Haag (2006)
outlined the advantages of FIAPARCH model. The FIAPARCH model allows for
an asymmetric response of volatility to positive and negative shocks, so being able
to traduce the leverage effect. However, the statistical properties of the general FI-
APARCH process remain unestablished. The stationarity is not a certainty as well
as the source of long-memory on volatility or even its existence are controversial.
However, in constrast, the statistical properties of the general FIAPARCH process
remain unestablished. The stationarity is not a certainty as well as the source of
long-memory on volatility or even its existence are controversial.

2.5.6 Estimating FIAPARCH model

The FIAPARCH (p,d,q) log-likelihood (L) can be defined as follows (Tse, 2002):

L(ε|θ) = Πn
t=1

1√
πσ2

t

e
−ε2t
2σ2t , (2.26)

where θ = (ω, α, γ, β, δ, d), n is the number of observations and ε =
{
ε1, · · · , εn

}
.

The MLE is given by:

∂L(ε|θ)
∂θ

=
Πn
t=1

1√
πσ2

t

e
−ε2t
2σ2t

∂θ
. (2.27)

2.6 Heavy tailed distributions

In this section, we provide the heavy-tailed distributions used in the study and the
maximum likelihood estimation method of deriving the parameters.

2.6.1 Student’s t- distribution

The Student’s t- distribution has characteristics of the normal distribution, as it is
symmetrical and bell-shaped, but differs from the normal distribution as a result of
heavier tails. The probability density function of the univariate Student t- distribu-
tion is given (Arfken, 2013):

f(y) =
Γ
(
ν+1

2

)
σ
√
νπΓ

(
ν
2

)(1 +
y2

νσ2

)−ν+1
2

, (2.28)

20



2.6. Heavy tailed distributions

for −∞ < y < ∞, with µ being the location parameter, σ > 0 is understood as the
scale parameter, and ν > 0 degrees of freedom.

2.6.2 Maximum likelihood estimation of the Student’s t- distribution

Given that error terms which assume a Student’s t- distribution, it follows that Zt-
distribution also tends to follows symmetric Student’s t- distribution with n degrees
of freedom, and µ=0 with σ2

t = ν
ν−2 for n > 2 (Green, 2005). The log likelihood

function is given by:

lnL
(
µ, σ, ν) = n

(
lnΓ

(
ν + 1

2

)
−lnΓ

(
ν

2

)
−ln(σ

√
νπ)

)
−ν + 1

2

n∑
i=1

ln

(
1+

(yi − µ)2

νσ2

)
.

(2.29)
The partial derivatives of the log-likelihood function are:
then

∂
ln(µ, σ, ν)

∂µ
= (1 + ν)

n∑
i=1

yi − µ
νσ2 + (yi − µ)2

, (2.30)

and

∂
ln(µ, σ, ν)

∂σ
=

1

σ

(
(1 + ν)

n∑
i=1

(yi − µ)2

νσ2 + (yi − µ)2
− n

)
, (2.31)

then

∂
ln(µ, σ, ν)

∂ν
=
n

2

(
ψ

(
ν + 1

2

)
− ψ

(
ν

2

)
− 1

ν

)
+

1

2

n∑
i=1

[
(1 + ν)(yi − µ)2

ν2σ2 + ν(yi − µ)2

]
, (2.32)

where ψ(y) is the digamma function, defined by ψ(y) = d
dy lnΓ(y) = Γ(y)

′

Γ(y) . The max-
imum likelihood is obtained through the application of the numerical optimization
methods.

2.6.3 Skewed Student’s t- distribution

The Student’s t- distribution is capable of capturing the heavier tails, but as a re-
sult of the symmetric nature of this distribution, it is still unable to deal with time
series data that are asymmetric. Hansen (1994) conceived the skewed Student’s t-
distribution in an endeavour to deal with an asymmetry conferred by long-tailed
data series. This distribution includes a random variable with µ=0, and σ2=1, and
then tends towards the Student’s t- distribution if and given that λ=0; through the
generalization of the parent Student’s t- distribution, one will acquire the skewed
Student’s t- distribution, defined by Hansen as follows:
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2.6. Heavy tailed distributions

f(y, λ, z) =
bΓ(ν+1

2 )√
π(ν − 2)Γ(ν2 )

.

(
1 +

ζ2

ν − 2

)(−ν+1
2

)

, (2.33)

where ζ = (by+a)
1−λ if y < −a

b , and (by+a)
1+λ if y ≥ −a

b . The constants terms a and b are
defined by:

a = 4λc z−2
z−1 , and b = 1 + 3λ2 − a2, then c =

Γ( ν+1
2

)√
π(ν−2)Γ( ν

2
)

In this probability density function, 2 < ν < ∞ defines ν (degrees of freedom pa-
rameter), and −1 < λ < 1 is the asymmetry parameter.

2.6.4 Maximum likelihood estimation of the skewed Student’s t- distri-
bution

The log-likehood function of the skewed Student’s t- distribution is defined by (Pe-
ters, 2001):

∂
log(Yt)

∂L
=

κ2 − 1

κ(κ2 + 1)
+
σ
′

σ
+

(
(ν + 1)ωt(sgn(ωt)νt − κω

′
t)

κ
(
ω2
t + (ν − 2)κ2sgn(ωt)

) ), (2.34)

then the maximum likelihood is derived as follows:

∂ log(Yt)∂ν = 1
2

(
2σ
′

σ −
1

ν−2 + ψ

(
ν+1

2

)
− ψ

(
ν
2

)
− log

[
1+κ−2sgn(ωt)

ν−2 ωt

]
−

(ν+1)ωt(2(ν−2))ω
′′
t −ωt

ν−2(ω2
t+(ν−2)κ2sgn(ωt)

)
where ω

′
t = µ

′
+ σ

′
Zt, and ω

′′
t = µ

′′
+ σ

′′
Zt,with µ

′
= ∂ µ

∂κ = (κ2+1)µ
κ(κ2−1)

,

µ
′′

= ∂ µ
∂ν = µ

2

(
1

ν−2 + ψ

(
ν−1

2

)
− ψ

(
ν
2

)
, σ
′′

= ∂ σ
∂ν = −µ2

2

(
1

ν−2 + ψ

(
ν−1

2

)
− ψ

(
ν
2

)
, where ψ(.) indicates the psi function obtained by the logarithmic derivative of the
gamma function.

µsst = Γ

(
ν − 1

2

)√
ν − 2

(
κ− 1

κ

)
, (2.35)

and

σsst =

(
κ2 +

1

κ2

)
− µ2

sst, (2.36)

then gsst(Yt) =

(
2

κ+ 1
κ

) σsstΓ

(
ν+1
2

)
√
π(ν−2)Γ

(
ν
2

)[1 + κ−2sgn(ωt)

ν−2 ω2
t

]− (ν+1)
2

, where ωt = µsst +

σsstYt.
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2.6. Heavy tailed distributions

2.6.5 Generalized Error distribution

The generalized error distribution is a family of distributions which assumes a range
of specific types relying on the value parameter ν, and which consists of the normal
distribution as an exceptional case. The GED is a more flexible generalization of the
normal distribution and consequently defined by the way of three parameters:

• Mean (µ), which determines the peak of the distribution. In the standard nor-
mal distribution, the median and mode are equal to the mean (µ)

• Standard deviation (σ), which determines the dispersion; and

• Shape parameter (β), which refers to as kurtosis, and reveals how much data
is in the tails.

Given the above background, the definition of the generalized error distribution as
follows (Giller, 2005):

f
(
y
)

=
λ.z

2Γ(12)
exp

(
− λz|y − µ|2

)
, for −∞ < y <∞, (2.37)

where Γ(1k) is a Euler function, z a shape parameter, λ a scale parameter, and µ is a
location parameter.

2.6.6 Maximum likelihood estimation of the generalized error distribu-
tion

The new approach to determine the estimates of the generalized error distribution
through MLE estimation was conceived by Bednarz (2012) and is given by Purczyn-
ski and Bednarz-Okrzynska(2014):

f
(
y
)

=
λ.z

2Γ(12)
exp

(
− |λ.y|z

)
, for −∞ < y <∞, (2.38)

then MLE is given by the following:

ln

(
L(λ, z)

)
= N.ln(λ) +N.

(
z

2Γ(1
2)

)
−

N∑
i=1

|λ.y|z, (2.39)

then
∂ln
(

(λ,z)
)

∂λ =0 and
∂ln
(

(λ,z)
)

∂z =0 gives

λ =

(
N

z.
∑N

i=1 |yi|z

) 1
z

, (2.40)
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and z + ψ(1
z ) + ln

(
z
N

∑N
i=1 |yi|z

)
− z.

∑N
i=1 |yi|zln|yi|∑N

i=1 |yi|z
=0 where ψ(p) = d

dp

[
lnΓ(p)

]
.

2.7 Summary

In this chapter we discussed the theory of long-memory GARCH type models used
in this study namel, HYGARCH, FIGARCH, and FIAPARCH models. We also dis-
cussed the three heavy-tailed distributions STD, SSTD, and GED. In the following
chapter we present the methods used to investigate the empirical properties of the
data used in the study.
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Chapter 3

Methodology

3.1 Introduction

In this chapter, the methods used to check for empirical properties of the data and
model adequacy are outlined. These methods include tests for normality, autocor-
relation, ARCH effect, unit roots, and long memory. Value at risk and Kupiec’s LR
tests are also discussed.

3.2 Test for normality

3.2.1 Quantile-quantile (Q-Q) normality plot

The quantile-quantile plot is a graphical tool that assesses if a set of data is plausibly
generated by theoretical distribution such as a normal. It is simply a visible display,
no longer an air-tight proof, so it is incredibly subjective. It allows us, though, to see
at a glance whether our assumption is plausible and if not, how the assumption is
violated and what data points make contributions to the violation. A Q-Q plot is a
scatter plot, created by way of plotting two sets of quantiles against one another. If
both sets of quantiles came from the same distribution, we ought to see the points
forming a roughly straight line. However, if the data points deviate from the straight
line, the conclusion is that the data are non-normally distributed.

3.2.2 Jarque-Bera test

The time series data are only normally distributed when the coefficients of the skew-
ness and kurtosis parameters are observed to be zero and three, respectively. The
leptokurtic is represented by the coefficient of kurtosis greater than three and has a
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3.2. Test for normality

fat tail. The skewness of a random variable Y is defined as:

Skew(Y ) = E

(
y − µ
σ

)3

, (3.1)

and kurtosis of the random variable Y is defined as:

Kurt(Y ) = E

(
y − µ
σ

)4

. (3.2)

The skewness of zero implies that the distribution of Y is symmetrical around its
mean µ, while negative skewness shows that values of Y larger than µ are more
probable. Kurtosis is a measures of how the variance is affected by means of severe
departure from the mean µ. The test ordinarily used to capture normality by us-
ing the third and fourth moments is Jarque-Bera Test (1987). This test measures the
distinction in kurtosis and skewness of a variable in contrast to those of the normal
distribution. Therefore, Jarque Bera test examines whether or not a specific distribu-
tion is normal or not. The Jarque Bera (JB) value is calculated as follows:

JB =
N

6

(
S2 +

(K − 3)2

4

)
, (3.3)

where N is the sample size, S the skewness function, and K the kurtosis function.
The intuition behind this test is that the larger the Jarque Bera value is, the lower the
probability that the given series is drawn from a normal distribution. For large sam-
ple size, the test statistic of the Jarque Bera test is χ2

(2) distribution with two degrees
of freedom under the null hypothesis that the return series is normally distributed.

3.2.3 Shapiro- Wilk test

The Shapiro- Wilk, (1965) test ascertain whether a sample Y1, Y2, · · · , Yn emanates
from a normally distributed population. The null hypothesis is to ascertain whether
the series

{
rt
}T
t=1

is generated by normally distribution; in simple terms, the null
hypothesis states that the population is normally distributed is rejected when the p-
value of the test is below a defined significance value (0.05). The Shapiro- Wilk test
can be calculated as follows:

W =

(∑T
t=1wtrt

)2∑T
t=1

(
rt − r̄

)2 , (3.4)

where rt is the t − th order statistic, r̄ is the sample mean,
(
w1, w2, · · · , wT

)
are

weights.
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3.3. Test for autocorrelation

3.3 Test for autocorrelation

3.3.1 Autocorrelation function plot

An autocorrelation plot shows the value of the autocorrelation function (acf) on the
vertical axis, and the height of each spike shows the value of the autocorrelation
function for the lag.

3.3.2 Ljung-Box test

Ljung and Box, (1978) advocated the test that ascertain the assumption that the resid-
uals contain no autocorrelation up to any order k. Hence, Ljung-Box test is per-
formed to test jointly whether several autocorrelations of data series are significant
or not. The Ljung-Box value is calculated by:

QLB = T
(
T + 2

) k∑
j=1

r2
j

T − j
, (3.5)

where T is sample size, k is number of lags, and rj is the jth autocorrelation. If QLB
is larger than the probability, then the process has an uncorrelated time series data
decline. The null hypothesis for the test is that there exists no correlation and under
that hypothesis, QLB is an χ2

(k) distribution with k degrees of freedom.

3.4 Test for Arch effect

3.4.1 ARCH-LM test

The heteroskedasticity emanates from a series of a random variable with trending
variances. That indicates that the series has a non-constant variance. Therefore,
heteroskedasticity is tested using Engle’s ARCH-LM test (Engle,1982). The test is
defined as:
H0: There is no heteroskedasticity

H1: There is heteroskedasticity

Test statistic:
LM = nR2, (3.6)

where n is the number of observations, and R2 is the coefficient of determination
of the augmented residuals. The rejection of the null hypothesis is when p-value≤
level of significance and the conclusion is then that there is heteroskedasticity.
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3.5. Unit root and stationarity tests

3.5 Unit root and stationarity tests

The stationarity of a returns series will have powerful bearing on its behaviour and
properties, with persistence of the shocks likely to be infinite for non-stationary se-
ries.

Definition 3: Stochastic process {yt : t = 1, 2, · · · } is stationary if, and only if, a set of
indices, 1 ≤ t1,≤ t2 ≤ · · · ; if the joint distribution of a draw {yt1, yt2, · · · } is the same than
{yt1+h, yt2+h, · · · } for h ≥ 1, the sequence is identically distributed. Then, time series yt,
t = 1, · · · , T is known as covariance stationary if the following holds:

• E[yt] = µ, for all t

• V ar[yt] = γ0 (<∞), for all t

• Cov(yt, yt−k) = γk, for all t.

Stationarity suggests that the covariance and correlation of the observations col-
lected at k periods are only a characteristic of the lag k, but not depend on the time
point t. The autocorrelation is given by:

ρk =
γk
γ0
. (3.7)

The covariance stationarity process and autocorrelations, as well as the autocovari-
ances, are symmetrical. This implies that γk = γ−k and ρk = ρ−k.. The at is a white
noise process if, and solely if, following assumptions suffice:

• E[at] = µ, for all t

• var[at] = σ2
u <∞, for all t

• Cov(at, as) = 0, for all t 6= s , and is denoted by at ∼ (µ, σ2
u). The white noise

process assumes that µ = 0 and is stationary process.

3.5.1 Augmented Dickey-Fuller test

An augmented Dickey-Fuller test is solely valid if at is white noise, and at will be au-
tocorrelated if there is autocorrelation. This test was conceived by Dickey and Fuller
(1979). The test ascertains the existence of the unit root and stationarity of the time
series returns over time. The essential difference between the Dickey-Fuller test and
the augmented Dickey-Fuller test is that the latter is employed for an outsized and,
additionally, complicated set of time series models. The augmented Dickey-Fuller
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3.5. Unit root and stationarity tests

statistic could be a negative number and the more negative it is, the more likely the
rejection of the speculation that there is a unit root. The test is based on the preferred
Dickey-Fuller test:

Pt = θPt−1 + at, (3.8)

then
Pt − Pt−1 = θPt−1 − Pt−1 + at

Pt − Pt−1 = (θ − 1)Pt−1 + at,

∆Pt = δPt−1 + at,

where δ = θ − 1, Pt is the level of the index at time t, ∆Pt = Pt − Pt−1 and
at ∼ N(0, σ2). This equation represents the type 1. Type 2 can then be presented
as:

∆Pt = α0 + δPt−1 + at, (3.9)

this equation tests for a random walk with a drift term, where α0 is the drift term,
and the equation below gives the illustration of type 3:

∆Pt = α0 + δPt−1 + α1 + at, (3.10)

test for a random walk with both drift and linear trend. The Augmented Dickey-
Fuller test is given by:

∆yt = α+ βyt−1 + δt + ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζk∆yt−k, (3.11)

where k is the number of lags specified. The non-constant removes the constant
term α from the above equation, and the trend includes the time trend δt, which, by
default is not included. The Augmented Dickey-Fuller test incorporates three types:

Type 1: is a linear model with no drift and linear trend for time.

Type 2: is a linear model with drift but no linear trend.

Type 3: is a linear model with both drift and linear trends.
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3.5. Unit root and stationarity tests

Testing of the Augmented Dickey-Fuller is given as follows:

H0 : γ = 0

H1 : γ < 0

Test statistic is:
Ft =

γ̂

SE(γ̂)
, (3.12)

with SE(γ̂) being the standard error of γ. The computed value, Ft, is compared
with the critical value from augmented Dickey-Fuller to reject or accept the null
hypothesis, and is a lower-tailed test. Thus, if Ft is less than the critical value, the
null hypothesis of unit root is rejected; therefore the conclusion is that the variable
of the series will contain a unit root and is non-stationary.

3.5.2 Phillips- Perron (PP) test

Phillips and Perron, (1988) developed a plausible theory of unit root non-stationarity.
The tests are comparable to augmented Dickey- Fuller tests. One can differenti-
ate Phillips- Perron unit root test from the augmented Dickey-Fuller test based on
how best to understand serial correlation and heteroskedasticity in the errors. The
Phillips- Perron unit root test generally provides similar conclusions to the aug-
mented Dickey-Fuller test, and thus the computation of the test statistic of the Phillips-
Perron unit root test is complicated and given by the following model:

yt = θ0 + φyt−1 + at, (3.13)

then ADF: at ∼ i.i.d and PP: at ∼ serially correlated. The PP test equation:

∆yt = θ0 + ζyt−1 + at, (3.14)

add a correction factor to the Dickey-Fuller test statistics. To add lagged ∆yt to
the augmented Dickey-Fuller is to ”whiten” the serially correlated residuals and the
hypothesis is given:
H0 : δ = 0

H1 : δ < 0

The modified statistics denoted Zt and Zδ are given by:

Zt =

√
σ̂2

λ̂2
tδ̂ −

1

2

(
λ̂2 − σ̂2

λ̂2

)(
n(s.e(δ̂))

σ̂2

)
. (3.15)
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Zδ = nδ̂ − 1

2
n2 s.e(δ̂))

σ̂2

(
λ̂2 − σ̂2

)
. (3.16)

The terms σ̂2 and λ̂2 are consistent estimates of the variance parameters.

σ2 = lim
n→∞

n−1
n∑
t=1

E(a2
t ), (3.17)

and

λ2 = lim
n→∞

n∑
t=1

E

[
1

n

n∑
t=1

a2
t

]
. (3.18)

Under the null hypothesis that δ = 0, the Phillips- Perron Zt and Zδ statistics have
equivalent asymptotic distributions to the augmented Dickey- Fuller t-statistic and
normalized bias statistics. One advantage of the Phillips- Perron tests over the aug-
mented Dickey-Fuller tests is that the Phillips-Perron tests are robust to general
forms of heteroskedasticity within the error term at.

3.5.3 Kwiatkowski-Phillips-Schmidts-Shim (KPSS) test

Kwiatkowski, Phillips, Schmidt and Shim (KPSS), (1992) introduced a stationary test
that assumes that the series has a short memory in the null hypothesis; in other
words, its partial sum satisfies an invariance principle. The KPSS test assesses the
null hypothesis that a univariate time series is trend stationary against the alterna-
tive that it is a nonstationary unit root process. The test makes use of the following
structural model:

yt = ct + δt + u1t, (3.19)

and ct = ct−1+u2t, where δ is the trend coefficient, u1t is a stationary process, and u2t

is an independent and identically distributed process with mean zero and variance
σ2. The null hypothesis is that σ2 = 0, which implies that the random walk term (ct)

is constant and acts as the model intercept. The alternative hypothesis is that σ2 > 0,
which introduces the unit root in the random walk. The KPSS test can be calculated:

η =
1

T 2σ2
T

(
q
) T∑
t=1

S2
t , (3.20)

where S2
t is a consistent estimator of the long run variance of αt. The et = rt −(

β̂t + α̂t
)

are residuals of the regression of rt on an intercept, and time St =
∑t

i=1 et

, t = 1, 2, · · · , T as the partial sum process of the residuals.

31



3.6. Long-memory tests

3.6 Long-memory tests

In this section, we discuss we discuss the long-memory tests used to detect the long-
memory behaviour in returns. The tests used in the study are Geweke and Porter-
Hudak test (GPH), Whittle estimation, and Hurst exponent:R/S test.

3.6.1 Geweke and Porter-Hudak test

The Geweke and Porter-Hudak, (1983) estimator is the widely used to distinguish
between long-memory and short-memory effects and is called spectral regression
method. The spectral density of the fractionally integrated process Yt is:

f(ω) =

[
4sin2

(
ω

2

)]−d
fu(ω), (3.21)

where ω is the Fourier frequency, and fu(ω) is the spectral density corresponding to
ut. The difference parameter d can be estimated as:

ln(f(ωj)) = β − dln

[
4sin2

(
ω

2

)]
+ ej , (3.22)

for j = 1, 2, · · · · · · , nfT , Geweke and Porter-Hudak showed that the least squares
estimate d̂ using regression is normally distributed in large samples if nf (T ) = Tα,
with 0 < α < 1:

d̂ ∼ N

[
d,

π2

6
∑nf

j=1(Uj − Ū)2

]
, (3.23)

where Uj =

[
4sin2

(
ω
2

)]
and Ū is the sample mean of Uj . Under the null hypothesis

of no memory d = 0, the test statistic is:

td=0 = d̂

[
d,

π2

6
∑nf

j=1(Uj − Ū)2

]−0.5

. (3.24)

3.6.2 Whittle estimation

The long-memory process is also characterized in the frequency domain with the aid
of a spectral density function proportional to λ−2d as the frequency λ approaches
zero at a rate dictated by the memory parameter d. The Whittle estimator is akin to
the maximum likelihood estimator (MLE) in the frequency domain. The Whittle es-
timation method has becom famous due to its likelihood interpretation, asymptotic
characteristics (smaller asymptotic variance in contrast to log-periodogram estima-
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tors), and mild assumption (no need for normality assumption). It is described as
follows:

Q(G0, d) =
1

m

m∑
j=1

[
log
(
G0λ

−2d
j

)
+

Iz(λj)

G0, λ
−2d
j

]
, (3.25)

where G0 = G(0), m = m(T ) is the bandwidth which goes to infinity as T →∞, but
at a slower rate than T , λj =

2πj
T are the Fourrier frequencies. The estimator d̂ of d is

obtained by minimizing the equation (3.26) to derived the following:

G.d̂LW = argmind

[
logĜ0(d)− 2dm−1

j=1∑
m

logλj

]
, (3.26)

where Ĝ0(d) = m−1
∑j=1

m λ2d
j Iz(λj).

3.6.3 Hurst exponent: R/S test

The Hurst, (1951) method estimates H via spectral regression in the exploitation of
the relationship between β and the Hurst coefficient. The short-memory process has
H = 0.5, and the autocorrelation function also decays faster, but when it is com-
pletely related to long-memory process, it is characterized by the Hurst exponent in
the interval 0.5 < d < 1. The Hurst exponent will be modeled by the subsequent
equation:

log
(R
S

)
= logk +Hlogm, (3.27)

thus it can be interpreted as follows:

• If H = 0.5, time series assumes a random walk and independent

• If 0 < H < 0.5, time series are anti-persistent and the process occupies only a
small distance in contrast to a random walk; and

• If 0.5 < H < 1, time series is persistent and the process covers larger distance
than a random walk (long-memory process). The Hurst parameter is under-
stood as self-similarity parameter and is defined by H = d+ 0.5.
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3.7 Model selection criteria

3.7.1 Akaike information criteria

The Akaike information criteria (AIC) apply the diagnostic test on residuals to de-
duce which model is most preferable. They propose the measure of the model’s
goodness of fit by balancing the error of fit against the number of parameters in the
model (Tsay, 2005). The criteria offer the measure of information lost when a given
model is used to represent reality. If the entire model fits poorly, AIC will not give
any warning of the poor fit. The AIC criteria are defined as:

AIC(q) = T ln

(
SSR

T

)
∗ 2q, (3.28)

where T is the sample size to which the model is fitted, SSR is the sum of squared
residuals and q is the number of parameters equal to n+ 2.

3.7.2 Bayesian information criterion

The other crucial measure of accuracy that has similarly interpretation as the Akaike
information criteria is the Bayes information criterion, which (BIC) defined as fol-
lows:

BIC(p) = ln

(
SSR(p)

T

)
+ (p+ 1)

ln(T )

T
. (3.29)

It resembles the AIC, where the best model is that with the lowest value of the BIC,
by nature it considers the smallest models, hence BIC is good for the parsimonious
models as oppose to AIC.

3.8 Value at risk

The Value at Risk for given probability p is defined as:

V aRp = infu : F (u) ≥ p. (3.30)

That is, VaR is the quantile of F , exceeded with probability 1− p.
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3.8.1 Value at risk of the skewed Student’s t- distribution

The skewed Student’s t- distribution value at risk of α quantile for long and short
positions are:

V aRL = µ̂t + sstdα,ν,ξσ̂t. (3.31)

V aRS = µ̂t + sstd1−α,ν,ξσ̂t, (3.32)

where sstdα,ν,ξσ̂t is the left quantile at α% for the skewed Student’s t-distribution
and sstd1−α,ν,ξσ̂t is the long position, with ν being the degrees of freedom and ξ an
asymmetry coefficient, and µt is the conditional mean process.

3.8.2 Value at risk of the generalized error distribution

Once ν = 2, the normal distribution could be a special case of the generalized error
distribution. If ν < 2, then the generalized has fatter tails than ordinary normal
distribution. Then, the value at risk is then:

V aRL = µ̂t + φ−1
p (εt)σ̂t, (3.33)

where φ−1
p (εt) is the left quantile of the generalized error distribution at p level.

3.8.3 Value at risk of the Student’s t- distribution

The Student’s t- distribution is typical as an example of a heavy-tailed distribution.
The value at risk:

V aRt(1− α) =

(
µ̂t + t−1

ν (α)

√
ν − 2

ν
σ

)
, (3.34)

where ν denotes degrees of freedom and t−1
ν is the α-quantile of the standard Stu-

dent’s t- distribution with ν degrees of freedom.

3.8.4 Backtesting VaR using Kupiec’s LR test

What is the backtesting Backtesting is a technique for simulating a model or strategy
on past data to gauge its accuracy and effectiveness. In this study, we use Kupiec’s
(1995) to back test value at risk. The failure rate is the number of times return series
exceeds the forecasted value at risk. The assumption is that the range of exceedances
over time follows the binomial distribution and the purpose of the Kupiec’s test is to
establish the consistency of these violations with given confidence level. If the range
of exceedances differs drastically from what is expected, the risk model’s adequacy
is questionable. To perform the test, the wide variety of actual violations E, number
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3.9. Summary

of observations N , and the VaR probability level (p) are needed. Assuming E is dis-
tributed as Bin(N, p) the hypothesis is given as below:

H0 : p = p0,

H1 : p 6= p0,

and p is estimated by E
N . As Kupiec (1998) proposed this test is based on the like-

hood ratio test.

Test statistic is given:

LR = 2log

[(
1− E

N

)N−E EE

N(
1− p0

)N−E
pE0

]
∼ χ2

(1), (3.35)

where N is the number of observations used to forecast VaR values and E is the
observed number of actual exceedances.

3.9 Summary

In this chapter, we explored the diagnostics tests used in the study, model selection
criteria were also discussed. We discussed the theory of value at risk and backtesting
VaR. In the subsequent chapter we outline the empirical results of the study.
————————————————————————————-
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Chapter 4

Empirical Results

4.1 Introduction

In this chapter, data and their sources are discussed. The results of data exploration
are also presented. Finally, the results of fitting the long-memory GARCH-type
model are presented.

4.2 Data and data sources

The data used composed of daily closing indices’ prices of the All-Share Index (JSEALSI),
Mining Index (JSEJMNNG), and Banking Index (JSEBNKS) as defined according the
Global Industry Classification Standard. The data was obtained from INET Bridge
and Bloomberg for period 7 June 2008 to 7 June 2018 with a total of 2 500 day by day
observations for each index. For the cause of this research study, each day’s returns
were calculated, comprising a total of 2 449 return observations for each index.

Let Yt, t = 1, 2, · · · · · · , T , where the return series is denoted by Rt, and the log
returns of the indices are defined as:

Rt = ln

(
Pt
Pt−1

)
=

(
ln
(
Pt
)
− ln

(
Pt−1

))
, (4.1)

with Pt and Pt−1 as the current and one lagged of each index on day t and t − 1,
respectively.
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4.3. Data exploration

4.3 Data exploration

The plots of the time series and return series for the three indices are displayed in
Figure 4.1-4.3. The returns of all the indices exhibit periods of high and low volatili-
ties, which confirm volatility clustering.

Figure 4.1: Graphical representation of the All Share Index series (left) and Returns (right)

Figure 4.2: Graphical representation of the Banking Index series (left) and Returns (right)

Figure 4.3: Graphical representation of the Mining Index series (left) and Returns (right)
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4.4. Q-Q Plots for normality

However, for the mining index the time series plot generally decreases in trends.
This can be attributed to the slowdown in domestic economic conditions includes
factors related to labour unrest, electricity constraints, and the political landscape in
South Africa, which contributed to a downwards shock that took place in the March
2015 period. These difficult conditions were mirrored by the non-stationary of the
returns, which were trending downwards. Generally, the All Share and Banking In-
dices are increasing overtime.

Descriptive statistics, autocorrelation, normality, ARCH-LM, unit roots and station-
arity tests are reported in Table 4.1. Panel A reveals that the JSEBNKS constitutes 2
449 observations, ranging from -0.14521 to 0.08189, with the highest mean returns of
0.00046, followed by the JSEALSI, ranging from -0.07581 to 0.06834, with the mean of
0.00025, and lastly the JSEJMNNG, ranging from -0.11966 to 0.11616, with the mean
of -0.00017. The skewness values of the JSEALSI and JSEBNKS are negative for the
returns; negatively skewed returns suggest a greater probability of large declines in
these stock returns during the sample period. The kurtosis is greater than three for
all the indices, thus revealing heavy-tailed distributions. The kurtosis greater than
three suggests that extreme changes in the prices occurred a lot throughout the sam-
pling period. Furthermore, the return series have standard deviations higher than
the returns of their means, revealing the possibility of volatilities.

From Panel B, the Jarque-Bera and Shapiro-Wilk tests for normality have p-values
less than 0.0001 for all three indices returns, thereby rejecting normality assumptions
for all levels of significance. The ARCH-LM test shows the presence of conditional
heteroskedasticity in all the three daily returns. Further anaalysis was done using
Ljung Box statistics, based on the Ljung Box statistics we reject null hypothesis of
zero autocorrelation in returns and squared returns.

Finally, Panel C reports the ADF and PP unit roots and KPSS as stationarity tests.
The ADF and PP test reject null hypothesis of unit root test for all the three daily
returns. We can conclude that the three daily returns are stationary. The KPSS test
also show that we cannot reject the stationary null hypothesis for daily returns.

4.4 Q-Q Plots for normality

Figures 4.4-4.6 show the normal Q-Q plots for the All Share Index, Banking Index,
and Mining Index, respectively. The normal QQ plots show that the tails of all the
three daily indices’ returns are heavier than the tails of normal distribution.
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Table 4.1: Descriptive statistics and unit roots tests of the log returns of the three indices

JSEBNKS JSEJMNNG JSEALSI

Panel A Descriptive Statistics

Minimum -0.1452 -0.1197 -0.0758

Maximum 0.0819 0.1162 0.0683

Mean 0.0005 -0.0002 0.0002

Std.Dev 0.0169 0.0203 0.0119

Skewness -0.1757 0.0469 -0.1379

Kurtosis 7.6664 6.8978 7.2814

Panel B Testing for correlation, normality, and heteroskedasticity

Statistic p-value Statistic p-value Statistic p-value

Q(5) 44.87 <0.0001 22.34 <0.0001 23.35 <0.0001

Q(10) 55.18 <0.0001 44.85 <0.0001 34.67 <0.0001

Jarque-Bera 2277.2 <0.0001 1582.9 <0.0001 1917.2 <0.0001

Shapiro-Wilk 0.9586 <0.0001 0.9590 <0.0001 0.9509 <0.0001

Q2(5) 344.15 <0.0001 894.55 <0.0001 1085.0 <0.0001

Q2(10) 543.92 <0.0001 1986.8 <0.0001 2417.4 <0.0001

Arch LM Test 48.292 <0.0001 115.49 <0.0001 142.87 <0.0001

Panel C Unit root and stationary tests

Statistic p-value Statistic p-value Statistic p-value

ADF
No constant -48.9 <0.0001 -47.5 <0.0001 -48.5 <0.0001

No Trend -48.9 <0.0001 -47.5 <0.0001 -48.6 <0.0001

With Trend -48.9 <0.0001 -47.5 <0.0001 -48.6 <0.0001

PP
No constant -2079 <0.0001 -2145 <0.0001 -2151 <0.0001

No Trend -2074 <0.0001 -2145 <0.0001 -2149 <0.0001

With Trend -2074 <0.0001 -2145 <0.0001 -2148 <0.0001

KPSS No constant 0.9970 >0.1 0.3340 >0.1 0.5130 >0.1

No Trend 0.0197 >0.1 0.1340 >0.1 0.1230 >0.1

With Trend 0.0815 >0.1 0.0674 >0.1 0.1100 >0.1
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Figure 4.4: Q-Q plot of the All Share Index returns

Figure 4.5: Q-Q plot of the Banking Index returns

Figure 4.6: Q-Q plot of the Mining Index returns

The Q-Q plots show the presence of heavy-tailed distributions and asymmetric dis-
persion of all the indices’ returns. The evidence advocates the use of volatility mod-
els such as asymmetric models or heavy-tailed distribution to account for leptokurtic
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and asymmetric factors. The reason for the series to depart from normality is volatil-
ity clustering that is present in the series data. This was also confirmed by excess
kurtosis in Table 4.1 which indicate the heavy tailness of the three daily returns.
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4.5 ACF and PACF plots of returns

Further analysis was done using sample ACF and sample PACF daily All Share In-
dex returns, Banking Index returns, and Mining Index returns. Figures 4.7-4.12 show
sample ACF and sample PACF of daily returns.

Figure 4.7: ACF plot for All Share Index returns

Figure 4.8: PACF plot for All Share Index returns

The ACF and PACF plots suggest that there is no autocorrelation in the All Share
and Banking Indices, this is rather surprising since Ljung Box suggests that there is
autocorrelation in the daily returns.
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Figure 4.9: ACF plot for Banking Index returns

Figure 4.10: PACF plot for Banking Index returns

Figure 4.11: ACF plot for Mining Index returns
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Figure 4.12: PACF plot for Mining Index returns

4.6 Testing for long-memory in returns and squared returns

Long-memory tests are carried out using Whittle estimator, GHP, and Hurst R/S
methods. The results for the Whittle Estimator are presented in Tables 4.2 and 4.3:

Table 4.2: Whittle estimator (fGn) long-memory test of the returns

Returns Hurst Standard
Error

t-value p-value

JSEBNKS 0.4677 0.0123 38.0386 <0.0001

JSEJMNNG 0.5076 0.0125 40.6302 <0.0001

JSEALSI 0.4899 0.0124 39.4828 <0.0001

Table 4.3: Whittle estimator (fGn) long-memory test of the squared returns

Returns Hurst Standard
Error

t-value p-value

JSEBNKS 0.6373 0.0129 49.1413 <0.0001

JSEJMNNG 0.6564 0.0130 50.3995 <0.0001

JSEALSI 0.6615 0.0130 50.7236 <0.0001

In Tables 4.2 and 4.3, the Whittle estimator is used on both log-returns and squared
log-returns to ascertain the existence of the long-memory process. For the log-returns,
the Hurst index values for the three indices are close to 0.5 and the p-values are
less than a significance level of 0.05, implying the absence of long memory fea-
tures. For the squared log-returns the Hurst indices are significantly greater than
0.5, with p-values at less than significance level of 0.0001, revealing the presence of
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long-memory.

Table 4.4: GPH’s long-memory test for returns

Returns Bandwidths d Standard Error t-value p-value

JSEBNKS
m = T 0.5 -0.1923 0.1008 -11.8332 <0.0001

m = T 0.6 -0.1357 0.0608 -18.6839 <0.0001

m = T 0.7 -0.1455 0.0403 -28.4297 <0.0001

JSEJMNNG
m = T 0.5 -0.0409 0.0681 -15.2742 <0.0001

m = T 0.6 -0.0063 0.0492 -20.3630 <0.0001

m = T 0.7 -0.0153 0.0414 -24.4951 <0.0001

JSEALSI
m = T 0.5 0.0307 0.0945 -10.2155 <0.0001

m = T 0.6 0.0232 0.0731 -13.3656 <0.0001

m = T 0.7 -0.0682 0.0469 -22.7351 <0.0001

Table 4.5: GPH’s long-memory test for long squared returns

Returns Bandwidths d Standard Error t-value p-value

JSEBNKS
m = T 0.5 0.4150 0.0927 -6.3128 <0.0001

m = T 0.6 0.3293 0.0616 -10.8941 <0.0001

m = T 0.7 0.2210 0.0372 -20.9142 <0.0001

JSEJMNNG
m = T 0.5 0.7674 0.0731 -3.1839 0.0007

m = T 0.6 0.6913 0.0533 -5.7867 <0.0001

m = T 0.7 0.5605 0.0419 -10.4649 <0.0001

JSEALSI
m = T 0.5 0.8497 0.0796 -1.8860 0.0297

m = T 0.6 0.7379 0.0511 -5.1375 <0.0001

m = T 0.7 0.6058 0.0412 -9.5639 <0.0001

Tables 4.4-4.6, show the results for the GPH and Hurst tests for the returns and
squared returns. The following bandwidths are employed: m = T 0.5; m = T 0.6;
and m = T 0.7. The squared log-returns show the presence of long-memory process;
this indicates that long-memory possesses mean reverting, but it is not covariance
stationary. The p-values of the squared log-returns are less than 0.0001, indicating
the presence of long-memory in the squared returns.

Table 4.6 shows the results of long memory test, for the returns Hurst values are close
to 0.5 and insignificant, implying the absence of long-memory features in some of the
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indices. For squared log-returns the Hurst values are significantly greater than 0.5
ie, within 0.5 < H < 1 revealing the presence of long-memory. For all three tests
results indicate the presence of long-memory in the squared returns.

Table 4.6: Hurst exponent’s long-memory test

Returns Squared Log Returns

Simple R/S Hurst Estimation
JSEBNKS 0.46249 0.71008
JSEJMMNG 0.49765 0.72270
JSEALSI 0.52956 0.73689

4.7 Summary of empirical properties of daily JSEALSI, Bank-
ing and Mining returns

From data exploration, it can be concluded that daily JSEALSI, JSEJMMNG, and
JSEBNKS returns exhibit the following empirical properties:

• Heavy tails

• Volatility clustering

• Long-memory (squared returns); and

• Stationary

Hence, suggested models are long-memory GARCH-type models with heavy-tailed
innovations. These suggested models are:

• FIGARCH

• HYGARCH; and

• FIAPARCH

The suggested heavy tailed innovations are:

• Student’s t-distribution

• skewed Student’s t-distribution; and

• generalized error distribution.
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4.7.1 Estimating long models with heavy tailed innovations

Tables 4.7-4.14 presents the parameter estimation results of the FIGARCH, HYGARCH,
and FIAPARCH models with normal, STD, SSTD, and GED distributions for all three
daily indices’ returns. For all the models, the long range dependence parameter of
the GARCH-type models are within 0.5 < dv < 1. This suggests strong evidence
of long memory. It further implies that even historical shocks seem to influence the
present shocks (Arouri et al., 2012). It is important to note that FIAPARCH results
for JSEALSI Index could not been obtained, further study must be conducted to as-
certain the reason. Bold values in the Tables 4.7-4.14 indicate that parameters are
insignificant at 5% significance.

Table 4.7: FIGARCH parameter estimation with different innovations(All-Share-Index)

Normal STD SSTD GED
Parameters statistic p−value statistic p−value statistic p−value statistic p−value

Cst(M) 0.0006 0.0013 0.0006 0.0002 0.0005 0.0042 0.0006 0.0002
Cst(V) 0.0174 0.0110 0.0165 0.0164 0.0150 0.0218 0.0171 0.0118
d 0.6937 0.0002 0.6537 0.0001 0.6637 0.0001 0.6662 0.0001
φ1 0.1405 0.1250 0.1397 0.0329 0.1352 0.0676 0.1448 0.0486
β1 0.7652 0.0001 0.7396 0.0001 0.7447 0.0001 0.7477 0.0001
ν - - 11.9096 0.0001 - - 1.6415 0.0001
ξ - - - - -0.1313 0.0001 - -

Q(10) 17.5015 0.0639 17.2867 0.0683 17.3618 0.0667 17.3932 0.0661
Q(20) 27.8493 0.1130 27.5149 0.1214 27.5212 0.1212 27.7095 0.1165
Q(50) 71.0899 0.0266 70.6646 0.0287 70.4997 0.0299 70.9636 0.0272
Q2(10) 8.7385 0.3648 8.8576 0.3545 8.9313 0.3481 8.6626 0.3716
Q2(20) 16.1965 0.5788 16.2393 0.5759 16.5890 0.5515 16.0069 0.5921
Q2(50) 45.7637 0.5649 46.2716 0.5439 46.7294 0.5249 45.8468 0.5615

ARCH(5) 0.8732 0.4982 0.9119 0.4721 0.9535 0.4452 0.8576 0.5089
ARCH(10) 0.8446 0.5855 0.8632 0.5675 0.8714 0.5596 0.8391 0.5908

LL 7975.57 - 7988.61 - 7998.35 - 7986.79 -
AIC -6.3790 - -6.3886 - -6.3956 - -6.3872 -
SBI -6.3673 - -6.3747 - -6.3793 - -6.3732 -

The Ljung Box test, ARCH-LM test, AIC, and SBI are presented in Tables 4.7-4.14.
The diagnostic tests are used to capture the accuracy of the model specifications.
The Ljung Box (Box-Pierce) test is given, and Q statistic on squared standardized
residuals for all models are over 1% level of significance. This implies that one can-
not reject null hypothesis of independently and identically distributed standardized
residuals. Therefore, Ljung Box test on squared standardized residuals shows that
the volatility equations are adequate.
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Table 4.8: HYGARCH parameter estimation with different innovations(All-Share-Index)

Normal STD SSTD GED
Parameters statistic p−value statistics p−value statistic p−value statistic p−value

Cst(M) 0.0005 0.0029 0.0006 0.0003 0.0005 0.0090 0.00062 0.0005
Cst(V) 0.0222 0.1293 0.0251 0.0151 0.0213 0.3879 0.0248 0.1199
d 0.9121 0.0001 0.7553 0.0005 0.8286 0.2225 0.8403 0.0060
φ1 0.0191 0.8852 0.0936 0.3880 0.0573 0.8718 0.0565 0.7344
β1 0.8607 0.0001 0.7855 0.0001 0.8242 0.0180 0.8267 0.0001

Log AlphaHY -0.0191 0.2349 -0.0206 0.1540 -0.0177 0.4994 -0.0215 0.2478
ν - - 12.9624 0.0001 - - 1.6616 0.0001
ξ - - - - -0.1298 0.0001 - -

Q(10) 17.2888 0.0682 17.1919 0.0702 17.3444 0.0671 17.2767 0.0685
Q(15) 28.1752 0.1053 27.6679 0.1175 27.9076 0.1116 28.0265 0.1088
Q(20) 71.7410 0.0236 70.9505 0.0273 71.0117 0.0269 71.4896 0.0247
Q2(10) 9.1853 0.3269 9.3400 0.3144 8.9769 0.3443 9.0850 0.3352
Q2(20) 15.7575 0.6095 16.2284 0.5766 16.3818 0.5660 15.7948 0.6069
Q2(50) 42.8594 0.6829 44.3404 0.6236 44.2695 0.6265 43.2604 0.6671

ARCH(5) 0.6999 0.6235 0.9314 0.4593 0.8879 0.4882 0.8051 0.5458
ARCH(10) 0.8905 0.5413 0.9096 0.5232 0.8779 0.5533 0.8814 0.5500

LL 7978.35 - 7989.43 - 7999.27 - 7988.38 -
AIC -6.3804 - -6.3885 - -6.3956 - -6.3877 -
SBI -6.3665 - -6.3722 - -6.3769 - -6.3714 -

The ARCH-LM tests confirm the absence of heteroskedasticity in the residuals. Fi-
nally, we use Akaike information criterion (AIC) and Schwarz information criterion
(SBI) to identify the best possible model for the conditional dependence in volatil-
ity process. The suitable model is given by the smallest value of the AIC and SBI.
The suitable model for the JSEALSI Index returns that capture the dependence in the
conditional variance is FIGARCH-SSTD confirmed by both AIC and SBI. For Bank-
ing Index returns, both AIC and SBI confirms the FIAPARCH-STD as the adequate
model. In the case of Mining Index returns, both AIC and SBI give the FIAPARCH-
STD as a preferred model.
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Table 4.9: FIGARCH parameter estimation with different innovations(Mining Index)

Normal STD SSTD GED
Parameters statistic p−value statistic p−value statistic p−value statistic p−value

Cst(M) 0.0030 0.8220 0.0001 0.9143 -0.0003 0.9796 0.0017 0.8957
Cst(V) 0.0026 0.0096 0.0024 0.0848 0.0024 0.0906 0.0025 0.0890
d 0.9506 0.0001 0.9574 0.0001 0.9562 0.0001 0.9530 0.0001
φ1 0.0116 0.8671 0.0023 0.9713 0.0039 0.9525 0.0084 0.8993
β1 0.9329 0.0001 0.9363 0.0001 0.9364 0.0001 0.9349 0.0001
ν - - 12.9119 0.0001 - - 1.6609 0.0001
ξ - - - - -0.0196 0.5008 - -

Q(10) 18.0049 0.0549 18.0809 0.0536 18.0797 0.0536 18.0494 0.0541
Q(20) 24.7436 0.2114 24.7892 0.2096 24.7893 0.2096 24.7689 0.2104
Q(50) 54.4706 0.3083 54.5530 0.3056 54.5761 0.3048 54.5301 0.3063
Q2(10) 5.3575 0.7188 5.5879 0.6933 5.5753 0.6947 5.4335 0.7104
Q2(20) 14.7725 0.6775 14.6385 0.6866 14.5739 0.6910 14.5996 0.6893
Q2(50) 62.6929 0.0755 62.9759 0.0722 62.8840 0.0732 62.6927 0.0755

ARCH(5) 0.6923 0.6292 0.7150 0.6121 0.7096 0.6162 0.6910 0.6303
ARCH(10) 0.5475 0.8571 0.5726 0.8376 0.5719 0.8381 0.5568 0.8899

LL -2862.04 - -2852.18 - -2851.96 - -2852.45 -
AIC 2.2936 - 2.2865 - 2.2872 - 2.2868 -
SBI 2.3053 - 2.3005 - 2.3035 - 2.3007 -
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Table 4.10: HYGARCH parameter estimation with different innovations (Mining Index)

Normal STD SSTD GED
Parameters statistic p−value statistic p−value statistic p−value statistic p−value

Cst(M) 0.0032 0.8138 0.0016 0.9068 0.0002 0.9903 0.0019 0.8844
Cst(V) 0.0060 0.0365 0.0053 0.0385 0.0052 0.0415 0.0056 0.0354
d 0.9701 0.0001 0.9737 0.0001 0.9728 0.0001 0.9711 0.0001
φ1 -0.0041 0.9399 -0.0101 0.8540 -0.0087 0.8734 -0.0059 0.9127
β1 0.9324 0.0001 0.9359 0.0001 0.9361 0.0001 0.9345 0.0001

Log(AlphaHY) -0.0096 0.0771 -0.0082 0.0899 -0.0081 0.0931 -0.0089 0.0794
ν - - 14.4532 0.0001 - - 1.6800 0.0001
ξ - - - - -0.1298 0.0001 - -

Q(10) 18.3018 0.0501 18.3313 0.0496 18.3295 0.0497 18.3240 0.0497
Q(20) 25.3856 0.1871 25.3365 0.1889 25.3319 0.1890 25.3650 0.1878
Q(50) 55.1982 0.2847 55.1584 0.2859 55.1688 0.2856 55.1929 0.2849
Q2(10) 5.7018 0.3176 5.8923 0.6593 5.8752 0.6612 5.7729 0.6727
Q2(20) 13.4053 0.7669 13.5545 0.7576 13.5157 0.7601 13.4128 0.7665
Q2(50) 60.8550 0.1008 61.2166 0.0954 61.1626 0.0962 60.9230 0.0997

ARCH(5) 0.7149 0.6122 0.7373 0.5955 0.8879 0.4882 0.7162 0.6112
ARCH(10) 0.5814 0.8304 0.6010 0.8142 0.8779 0.5533 0.5894 0.8239

LL -2858.96 - -2850.22 - -2850.03 - -2850.14 -
AIC 2.2919 - 2.2858 - 2.2864 - 2.2857 -
SBI 2.3059 - 2.3021 - 2.3051 - 2.3020 -
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Table 4.11: FIAPARCH parameter estimation with different innovations (Mining Index)

Normal STD SSTD GED
Parameters statistic p−value statistic p−value statistic p−value statistic p−value

Cst(M) -0.0086 0.5448 -0.0097 0.4835 -0.0115 0.4077 -0.0084 0.5440
Cst(V) 0.0043 0.0436 0.0036 0.0522 0.0034 0.0506 0.0039 0.0468
d 1.0023 0.0001 1.0052 0.0001 1.0065 0.0001 1.0047 0.0001
φ1 -0.0208 0.5701 -0.0234 0.5366 -0.0247 0.5070 -0.0226 0.5409
β1 0.9619 0.0001 0.9624 0.0001 0.9634 0.0001 0.9624 0.0001
Γ1 0.5467 0.0241 0.5264 0.0165 0.5413 0.0166 0.5331 0.0202
∆ 1.2602 0.0001 1.3379 0.0001 1.3317 0.0001 1.2999 0.0001
ν - - 15.6893 0.0002 - - 1.70476 0.0001
ξ - - - - -0.0250 0.3823 - -

Q(10) 20.0740 0.0286 19.9651 0.0296 19.9979 0.0293 20.0240 0.0290
Q(20) 27.6801 0.1172 27.4292 0.1236 27.4630 0.1227 27.5541 0.1204
Q(50) 54.9654 0.2921 54.6952 0.3009 54.7195 0.3001 54.8414 0.2961
Q2(10) 5.3585 0.7187 5.2164 0.7342 5.3468 0.7199 5.3011 0.7249
Q2(20) 11.5124 0.8714 11.5902 0.8677 11.5403 0.8700 11.5319 0.8704
Q2(50) 52.8450 0.2924 53.3513 0.2761 53.2602 0.2790 53.0626 0.2853

ARCH(5) 0.1703 0.9736 0.7373 0.5955 0.1860 0.9680 0.1818 0.9695
ARCH(10) 0.5769 0.8340 0.6010 0.8142 0.5736 0.8367 0.5701 0.8395

LL -2847.011 - -2839.21 - -2838.839 - -2839.672 -
AIC 2.2832 - 2.2778 - 2.2783 - 2.2781 -
SBI 2.2995 - 2.2964 - 2.2992 - 2.2968 -
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Table 4.12: FIGARCH parameter estimation with different innovations (Banking Index)

Normal STD SSTD GED
Parameters statistic p−value statistic p−value statistic p−value statistic p−value

Cst(M) 0.0008 0.0007 0.0113 0.9143 0.0006 0.0217 0.0008 0.0058
Cst(V) 0.0606 0.0035 0.0649 0.0222 0.0639 0.0227 0.0615 0.0097
d 0.6500 0.0001 0.5061 0.0001 0.5063 0.0001 0.5766 0.0001
φ1 0.1429 0.0974 0.2311 0.0001 0.2336 0.0001 0.1898 0.0051
β1 0.7376 0.0001 0.6650 0.0001 0.6666 0.0001 0.7015 0.0001
ν - - 8.2202 0.0001 - - 1.4665 0.0001
ξ - - - - -0.0202 0.4940 - -

Q(10) 25.5177 0.0045 25.7203 0.0041 25.7284 0.0041 25.5940 0.0043
Q(20) 34.9507 0.0204 35.2186 0.01897 35.2245 0.0189 35.0811 0.0197
Q(50) 73.0295 0.0185 73.7149 0.01619 73.7199 0.0162 73.3436 0.0174
Q2(10) 4.2368 0.8351 3.5032 0.8989 3.5178 0.8978 3.7992 0.8748
Q2(20) 7.2819 0.9875 6.3572 0.9945 6.4061 0.9943 6.7009 0.9924
Q2(50) 16.6990 0.9999 15.8556 0.9999 15.8919 0.9999 16.0954 0.9999

ARCH(5) 0.6982 0.6248 0.5897 0.7090 0.5914 0.7066 0.6304 0.6766
ARCH(10) 0.4197 0.9379 0.3447 0.9688 0.3458 0.9684 0.3748 0.9579

LL 6935.403 - 6988.518 - 6988.76 - 6974.52 -
AIC -5.5443 - -5.5860 - -5.5854 - -5.5748 -
SBI -5.5327 - -5.5720 - -5.5691 - -5.5608 -
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Table 4.13: HYGARCH parameter estimation with different innovations (Banking Index)

Normal STD SSTD GED
Parameters statistic p−value statistic p−value statistic p−value statistic p−value

Cst(M) 0.0008 0.0065 0.0007 0.0110 0.0006 0.0190 0.0008 0.0059
Cst(V) 0.0917 0.0077 0.1026 0.0208 0.1014 0.0192 0.0929 0.0741
d 0.7683 0.0001 0.6533 0.0098 0.6492 0.0085 0.7430 0.0086
φ1 0.0904 0.1656 0.1729 0.1117 0.1766 0.0975 0.1181 0.3669
β1 0.7833 0.0001 0.7309 0.0001 0.7298 0.0001 0.7752 0.0001

Log(AlphaHY) -0.0315 0.1615 -0.0434 0.1044 -0.0429 0.1048 -0.0354 0.1966
ν - - 8.6468 0.0001 - - 1.4777 0.0001
ξ - - - - -0.0177 0.5434 - -

Q(10) 25.9290 0.0038 26.1443 0.0036 26.1383 0.0036 26.0541 0.0037
Q(20) 34.9825 0.0202 35.3091 0.0185 35.3111 0.0185 35.1203 0.0195
Q(50) 73.2314 0.0178 73.7946 0.0159 73.7939 0.0159 73.4298 0.0171
Q2(10) 4.1655 0.8419 4.1370 0.8422 4.1387 0.8444 4.1115 0.8469
Q2(20) 7.1202 0.9891 7.0464 0.9897 7.0746 0.9895 7.0759 0.9895
Q2(50) 17.4329 0.9999 17.2976 0.9999 17.2933 0.9999 17.3534 0.9999

ARCH(5) 0.7294 0.6013 0.7218 0.6070 0.7207 0.6078 0.7149 0.6122
ARCH(10) 0.4162 0.9396 0.4072 0.9439 0.4069 0.9440 0.4073 0.9438

LL 6937.42 - 6989.67 - 6989.86 - 6975.95 -
AIC -5.5451 - -5.5861 - -5.5855 - -5.5752 -
SBI -5.5312 - -5.5698 - -5.5668 - -5.5588 -
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Table 4.14: FIAPARCH parameter estimation with different innovations (Banking Index)

Normal STD SSTD GED
Parameters statistic p−value statistic p−value statistic p−value statistic p−value

Cst(M) 0.0004 0.1782 0.0005 0.0898 0.0004 0.1777 0.0005 0.0586
Cst(V) 0.7198 0.6817 0.2004 0.4272 0.2107 0.4468 0.3126 0.4900
d 0.6168 0.0001 0.4964 0.0001 0.4954 0.0001 0.5607 0.0001
φ1 0.1521 0.0087 0.2219 0.0001 0.2233 0.0001 0.1862 0.0004
β1 0.7207 0.0001 0.6516 0.0001 0.6510 0.0001 0.6885 0.0001
Γ1 0.3685 0.2138 0.2346 0.0303 0.2507 0.0307 0.2749 0.0604
∆ 1.5279 0.0017 1.7930 0.0001 1.7846 0.0001 1.6951 0.0001
ν - - 8.6015 0.0001 - - 1.4972 0.0001
ξ - - - - -0.0343 0.2556 - -

Q(10) 25.1990 0.0049 25.0822 0.0052 24.9674 0.0054 25.1400 0.0051
Q(20) 34.1524 0.0251 34.3193 0.0240 34.1892 0.0249 34.2874 0.0242
Q(50) 71.2649 0.0257 71.8164 0.0232 71.5974 0.0242 71.5694 0.0243
Q2(10) 4.4738 0.8120 2.6978 0.9519 2.6339 0.9552 3.2099 0.9205
Q2(20) 7.0588 0.9896 5.2102 0.9985 5.1752 0.9986 5.7610 0.9917
Q2(50) 21.9195 0.9999 18.0808 0.9999 18.2853 0.9999 19.1373 0.9999

ARCH(5) 0.8185 0.5363 0.4413 0.8198 0.1860 0.4279 0.5515 0.7373
ARCH(10) 0.4503 0.9216 0.2677 0.9880 0.2612 0.9891 0.3208 0.9760

LL 6948.28 - 6993.15 - 6993.84 - 6980.79 -
AIC -5.5530 - -5.5881 - -5.5879 - -5.5782 -
SBI -5.5367 - -5.5695 - -5.5669 - -5.5596 -
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4.8 VaR estimation and backtesting models

VaR is calculated at 0.3%, 0.1%, 0.5%, 0.95%, 0.99%, and 0.99.7%. The VaR estimates
are then backtested using the Kupiec LR test. The model with the highest possible
p-value at a given level is selected as the robust model. The p-values of Kupiec LR
test for in sample VaR backtesting are summarized in Tables 4.15-4.17.

Table 4.15: In-sample VaR backtesting: FIGARCH with different innovations for the three
indices

Returns Model
p-values of Kupiec LR test

Long positions Short positions

0.3% 1% 5% 99.7% 99% 95%

JSEALSI

FIGARCH-N 0.0011 0.0003 0.1050 0.9205 0.0529 0.0001

FIGARCH-STD 0.0411 0.0242 0.0077 0.3349 0.0159 0.0003

FIGARCH-SSTD 0.7675 0.8401 0.7803 0.9205 0.1391 0.8915

FIGARCH-GED 0.0183 0.0378 0.0724 0.3349 0.0300 0.0001

JSEJMNNG

FIGARCH-N 0.7682 0.0580 0.2066 0.0861 0.0093 0.0295

FIGARCH-STD 0.0469 1.0000 0.5847 0.9197 0.6836 0.0134

FIGARCH-SSTD 0.0469 0.2079 0.7839 0.7682 0.6915 0.0176

FIGARCH-GED 0.1473 1.0000 0.7839 0.5019 0.8396 0.0056

JSEBNKS

FIGARCH-N 0.0077 0.0580 0.5169 0.1674 0.2450 0.0229

FIGARCH-STD 0.6039 0.6836 0.9269 0.1473 0.6836 0.4034

FIGARCH-SSTD 0.6039 0.5382 0.6442 0.2961 0.8396 0.5789

FIGARCH-GED 0.9197 0.8396 0.4582 0.3444 0.5382 0.0737

4.8.1 FIGARCH models

The FIGARCH-N for the JSEALSI returns is not adequate at 0.3%, 1%, and 95% VaR
levels. While the FIGARCH-SSTD is acceptable at all levels of the long and short
positions. The VaR estimates for the FIGARCH-STD produced the lowest p-values
at 0.3%, 1%, 5%, 95%, and 99% VaR levels, however adequate at 99.7% VaR level.
The FIGARCH-GED produced the similar results to the FIGARCH-STD with simi-
lar VaR levels of lowest p-values and adequate at 99.7% VaR level.

For the JSEJMMNG returns, the FIGARCH-STD and FIGARCH-GED are adequate at
0.3%, 1%, 5%, 99%, and 99.7% VaR levels, respectively. Meanwhile, FIGARCH-SSTD
gives the largest p-values at 0.3%, 1%, 5%, 99%, and 99.7% VaR levels, however not
adequate at 95% VaR level. The FIGARCH-N is adequate at 0.3%, 1%, 5%, 99.7%
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VaR levels, but not acceptable at 99% and 95% VaR levels.

For the JSEBNKS returns, FIGARCH-SSTD is adequate at all VaR levels, further-
more, FIGARCH-GED also produce the same results which indicate that is ade-
quate at all levels. The FIGARCH-STD is also noticeable that it is adequate at all the
VaR levels, meanwhile FIGARCH-N is not adequate at at 0.3% and 95% VaR levels.
The JSEBNKS returns conclude that all the three models namely: FIGARCH-SSTD,
FIGARCH-GED, and FIGARCH-STD are adequate at all VaR levels.

4.8.2 HYGARCH models

Table 4.16 presents the Kupiec LR test results, for JSEALSI returns HYGARCH-SSTD
has the highest p-values at all VaR levels. The HYGARCH-STD has the lowest p-
values at all VaR levels implying that HYGARCH-STD is not an adequate model.
The JSEJMMNG has the largest p-values at all VaR levels, while HYGARCH-STD
has the highest p-values at 0.3%, 1%, 5%, 99%, and 99.7%, however not adequate at
95% VaR level. For the JSEBNKS returns, both HYGARCH-SSTD and HYGARCH-
GED have the highest p-values at all VaR levels. The HYGARCH-STD presents the
highest p-values at all VaR levels.

Table 4.16: In-sample VaR backtesting: HYGARCH with different innovations for the three
indices

Returns Model
p-values of Kupiec LR test

Long positions Short positions

0.3% 1% 5% 99.7% 99% 95%

JSEALSI

HYGARCH-N 0.0004 0.0001 0.0077 0.5012 0.0300 0.0003

HYGARCH-STD 0.0411 0.0151 0.0127 0.3349 0.0159 0.0007

HYGARCH-SSTD 0.3012 0.5527 0.2758 0.5012 0.2986 0.2267

HYGARCH-GED 0.0183 0.0242 0.0162 0.6045 0.0159 0.0002

JSEJMNNG

HYGARCH-N 0.7683 0.0580 0.2066 0.0861 0.0093 0.0295

HYGARCH-STD 0.1473 0.3299 0.1060 0.9197 0.6915 0.0376

HYGARCH-SSTD 0.1473 0.5541 0.2403 0.5019 0.5514 0.1106

HYGARCH-GED 0.1473 0.3299 0.5242 0.3017 0.6915 0.0229

JSEBNKS

HYGARCH-N 0.0184 0.0282 0.7122 0.1674 0.0580 0.0907

HYGARCH-STD 0.3344 0.8417 0.7839 0.3344 0.8396 0.5169

HYGARCH-SSTD 0.3344 0.6836 0.7269 0.3344 0.8396 0.4442

HYGARCH-GED 0.9197 0.6836 0.6442 0.4039 0.8417 0.1106
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4.8.3 FIAPARCH models

As in the Table 4.17, for JSEJMMNG returns, FIAPARCH-N offers the largest p-
values at all VaR levels except at 95% and 99.7% VaR levels. The FIAPARCH-STD
and FIAPARCH-SSTD give the highest p-values at all VaR levels. The FIAPARCH-
GED affords the largest p-values at all VaR levels except 95% VaR level.

For the JSEBNKS returns, the FIAPARCH-STD, FIAPARCH-SSTD, and FIAPARCH-
GED are adequate at all VaR levels, meanwhile, the FIAPARCH-N was not adequate
at 5% and 95% VaR levels. Overall, the long-memory GARCH models combined
with heavy-tailed distributions used in this study were adequate in estimating VaR
of JSEALSI, JSEJMMNG, and JSEBNKS returns at 0.3%, 1%, 5%, 95%, 99%, and 99.7%
levels.

Table 4.17: In-sample VaR backtesting: FIAPARCH with different innovations for the three
indices

Returns Model
p-values of Kupiec LR test

Long positions Short positions

0.3% 1% 5% 99.7% 99% 95%

JSEJMNNG

FIAPARCH-N 0.6039 0.5541 0.4140 0.0412 0.2450 0.0176

FIAPARCH-STD 0.8473 0.8977 0.3193 0.7019 0.8417 0.9029

FIAPARCH-SSTD 0.1473 0.2079 0.5243 0.5019 0.8417 0.0737

FIAPARCH-GED 0.1473 0.0942 0.5243 0.5019 0.8417 0.0134

JSEBNKS

FIAPARCH-N 0.0030 0.0093 0.5169 0.0030 0.0580 0.1603

FIAPARCH-STD 0.9197 0.8915 0.7839 0.8473 0.8417 0.3058

FIAPARCH-SSTD 0.6039 0.8396 0.7823 0.1473 0.6915 0.3442

FIAPARCH-GED 0.5019 0.6915 0.6442 0.1473 0.8322 0.1106

4.9 Summary

This chapter presented the empirical results of fitting FIGARCH, HYGARCH, and
FIAPARCH combined with SSTD, STD, and GED to JSEALSI, JSEJMMNG and JSEBNKS
returns. We further calculated VaR at different levels and backtested using Kupiec
LR test. The chapter gives a detailed conclusion, further study, and limitations of the
study.
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Chapter 5

Conclusion

From a risk management perspective, it is essential to hedge against the losses rather
than the returns, consequently, this study is based on the loss distributions. The cru-
cial issue regarding risk is that financial risk is not directly observable. We analyzed
the statistical properties of the JSEALSI, JSEBNKS, and JSEJMMNG returns. The
three returns exhibited the heavy tails, asymmetry, volatility clustering, and long
memory. The long memory GARCH type models with heavy tailed innovations
were used to capture the silent features of the three returns. VaR estimates were cal-
culated using the long memory GARCH type models with heavy tailed innovations
at 0.3%, 1%, 5%, 95%, 99%, and 99.7% levels. In-sample backtesting was employed
to assess the adequacy of the heavy-tailed distributions and GARCH-type models
used in this study by using the Kupiec LR test. For All Share Index returns, the
FIGARCH-SSTD model seems to be overall adequate model at all the three long and
short positions, in simpler terms provides highest p-values at 0.3%, 1%, 5%, 95%,
99%, and 99.7% VaR levels. This implies that the FIGARCH-SSTD model produces
adequate VaR estimations at both long and short positions. For the Mining Index
returns, the FIAPARCH-STD offers the highest p-values at 0.3%, 1%, 5%, 95%, 99%
and 99.7% VaR levels. Finally, for the Banking Index returns, the FIAPARCH-STD
affords the largest p-values at 0.3%, 1%, 5%, 95%, 99%, and 99.7% one can conclude
that FIAPARCH-STD is the adequate model at all three long and short positions.
The table 5.1 summarized most appropriate model at each VaR levels for each JSE
indices.
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Table 5.1: Most appropriate model selected for JSE Indices

VaR Level JSEALSI JSEJMMNG JSEBNKS
0.3% FIGARCH-SSTD FIAPARCH-STD FIAPARCH-STD

1% FIGARCH-SSTD FIAPARCH-STD FIAPARCH-STD

5% FIGARCH-SSTD FIAPARCH-STD FIAPARCH-STD

99.7% FIGARCH-SSTD FIAPARCH-STD FIAPARCH-STD

95% FIGARCH-SSTD FIAPARCH-STD FIAPARCH-STD

99% FIGARCH-SSTD FIAPARCH-STD FIAPARCH-STD

Our findings confirm the importance of taking into account volatility clustering,
heavy tails, asymmetry, and long memory in the behaviour of JSE indices. The em-
pirical results show that FIGARCH, FIAPARCH, and HYGARCH combined with
STD, SSTD, and GED innovations are suitable for depicting JSEALSI, JSEJMMNG,
and JSEBNKS returns and can be used for VaR estimation.

The results are consistent with the study conducted by Mabrouk (2016), who used
daily crude oil and gas applying the FIGARCH, HYGARCH, and FIAPARCH to ac-
complish the comparisons of the capabilities and concluded that FIAPARCH was the
most suitable model. Similarly, Chkili et al. 2014 used crude oil, gas, and silver ap-
plying IGARCH, FIGARCH, and FIAPARCH, their conclusion was that FIAPARCH
is the robust model. Sethaparamote (2014) used Thailand Stock Exchange time series
data to FIGARCH, HYGARCH, and FIAPARCH and concluded that FIGARCH was
the robust model. In the South African context, Reddy et al., 2017 came to a contrary
conclusion, when applying JSEALSI to IGARCH, FIGARCH, and GJR-GARCH, and
their conclusion indicated that GJR-GARCH was the robust to model the behaviour
of the index.

In a future undertaking, the author intends to explore the multivariate time series
approach using the three indices and applying the bivariate extreme value theory
distributions and copulas.

5.1 Limitations of the study

The main objective of the study was to estimate the VaR using long-memory GARCH-
type models incorporating heavy-tailed distributions to JSE Indices. The scope of the
study was well defined and had no visible limitations in achieving the main objec-
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tive of the study. We could have investigated the relative performance of our models
on other financial indices.
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Vol.6:461-464.

[60] Shapiro, S. and Wilk, M., 1965. ”An analysis of variances test for normality
(complete samples).” Biometrika, Vol.52:3-4.

[61] Tayeti, M. and Rammanathan, T.V., 2012. ”An overview of FIGARCH and re-
lated Time Series Models.” Austrian Journal of Statistics ,Vol.41:44-54.

[62] Toerin, F., Rosenberg, D. and Kruger, R., 2014. ”The asymmetry of gain loss
time horizon on the JSEALSI.” Journal OF Studies in Economics and Econometrics
, No.38(1):65-74.

[63] Tsay, R. S., 2005. ”Analysis of Financial Time Series. 2nd Edition” John Wiley &
Sons.

[64] Whittle, P., 1951. ”Hypothesis testing in time series analysis.” Uppsala:
Almqvist and Wikssells Boktrychen AB.

[65] Wojtowicz, T. and Gurgul, H., 2009. ”Long mem-
ory of volatility measures in time series.” Available at:
https://www.researchgate.net/publication/227653938[Accessed 18th September
2017

[66] Yaya, S., 2013. ”Nigerian Stock Index: A search of optimal GARCH model
using high frequency data.” Journal of Applied Statistics, No.4(2):69-85.

67



Appendix A

Proof 1:The conditional variance of FIGARCH model is given by:

σ2
t = ω + α(L)ε2

t + β(L)σ2
t ,

where L is the operator, α(L) =
∑q

i=1 αiL
i, β(L) =

∑p
j=1 βjL

j , then σ2
t − β(L)σ2

t =

ω + α(L)ε2
t , but νt = ε2

t − σ2
t =⇒ ε2

t = νt + σ2
t , then σ2

t = ε2
t − νt

[1− β(L)]σ2
t = ω + α(L)ε2

t

[1− β(L)](ε2
t − νt) = ω + α(L)ε2

t

[ε2
t − β(L)ε2

t + νt + β(L)νt] = ω + α(L)ε2
t

ε2
t − β(L)ε2

t − α(L)ε2
t = ω − β(L)νt − νt

[1− β(L)− α(L)]ε2
t = ω + [1− β(L)]νt

[1− β(L)− α(L)]ε2
t = ω + [1− β(L)](ε2

t − σ2
t ),

and the differencing operator (1− L)d. The Taylor- expansion formula below is:

(1− L)d =
∑∞

k=0
Γ(d+1)Lk

Γ(k+1)Γ(d−k+1)

= 1− dL− d(1−d)L2

2! − d(1−d)(2−d)L3

3! − · · ·
(1− L)d = 1−

∑∞
k=0Ck(d)Lk

φ(L)(1− L)dε2
t = ω + [1− β(L)ε2

t − φ(L)(1− L)dε2
t ]

[1− β(L)]σ2
t = ω + [(1− β(L)ε2

t − φ(L)(1− L)dε2
t ]

σ2
t = ω[1− β(L)]−1[1− (1− β(L))−1φ(L)(1− L)d]ε2

t
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Proof 2:The HYGARCH is reduced into a GARCH and a FIGARCH by the following equa-
tion:

Θ(L) = 1− ϕ(L)
1−β(L)

Ψ(L) = 1− ϕ(L)(1−L)d

1−β(L)

Ξ(L) = 1− ϕ(L)(1+η(1−L)d−1)
1−β(L)

, this denotes theARCH(∞) lag polynomials for GARCH, FIGARCH and HYGARCH,
respectively, where for Ψ(L)d = 0 holds. Then, it easily follows for Ξ(L) by adding
an absolute zero.

Ξ(L) = η − η φ(L)(1−L)d

1−β(L) + (1− η)− (1− η) φ(L)
1−β(L)

= η

(
1− φ(L)(1−L)d

1−β(L)

)
+ (1− η)

(
φ(L)

1−β(L)

)
The bigger the value for η in this linear combination, the higher the influence of the
long memory FIGARCH part and the less the short memory GARCH part. Secondly,
restrictions must be derived for which the process assures weak stationarity.

E(εt) = 0, ∀t

, and
Cov(εt, εt−j) = 0, ∀t∀j ∈ N (4.13)

GARCH polynomials offer weak stationary if Θ(1) < 1 is fulfilled, which is an al-
ternative definition of the additional common condition ϕ(1) = 1− α(1)− β(1) > 0

from the ARIMA representation of GARCH). Since, FIGARCH is not able to provide
weak stationarity ψ(1) = 1 for d ∈ (0, 1) must hold. Thus, η + (1 − η)Θ(1) < 1, is
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fulfilled if and only if

Θ(1) = 1− 1− α(1)− β(1)

1− β(1)
=

α(1)

1− β(1)
< 1 (4.16)

, and η ∈ (0, 1) constitutes a linear combination as mean between GARCH and FI-
GARCH polynomial. This is true for η = 0 and the parameter restrictions for the
HYGARCH is considered to be weak stationary result, given in the above equation.

1− α(1)

1− β(1)
> 0 (4.17)

Conrad (2010) discovered that a weak stationary HYGARCH under minor modifi-
cations is feasible to be obtained, even for η ≥ 1.
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Derivation of the Student’s t- Distribution

The characteristic function of x is derived as follows:

φ(t) = E
[
exp
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−t2x2

2

)]

=
Γ

(
ν+1
2

)
σ
√
νπΓ

(
1
2

) ∫ ∞
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