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SUMMARY 

An investigation into the feasability of producing optically pure 1,3-diols by the 
method illustrated below was undertaken (Scheme I ). 

Me.___�
✓

H 
u 

Ml \h 
A 

lLAH, THF 

o 0c

BuLi. ooc

◄ 3 R'MgBr, -78 oc

CH2Ch/Et20

A +  4R
§ R'

Me

E 
Scheme I 

M,M 
M/ 1>h 

B 

LDA,-78J Jl 1R X 

The reaction producing the j3-dicarbonyl compounds (Scheme I, structure C) was 
successful with yields ranging from 53 to 20% and de's from 81 to greater than 95%. 

The reaction sequence yielding the hydroxy carbonyl derivatives (Scheme I, structure 
D) was only moderately successful in this regard with yields ranging from 34 to 60%.
The de's associated with the respective product mixtures was however much more
successful and varied between 79% and I 00%.

The reaction sequence producing the optically active 1,3-diols (Scheme I, structure E) 
was most disappointing with yields ranging between a minimum of 5% and a maximum 
of 18,5%. An explanation for this is not available at this time. Optical activity on the 
other hand was achieved with all chiral centers on the 1,3-diols being optically pure. 

Ill 
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I. INTRODUCTION

"The spectacular advances in synthetic organic chemistry of the last decade, during 

which time the achievement of total synthesis of functionally and stereochemically 

complex structures has become almost routine, has placed an added requirement on the 

chemist, i.e. the synthesis of optically pure molecules." 

J E Baldwin 1 FRS 

Oxford 1983 

Optically pure molecules, or more commonly, optically active molecules in vanous 

ratios are borne out of stereochemical control over the reactions which produce them. 

This aspect of stereochemical control assumes even greater significance when the 

different pharmacological properties of the two enantiomeric forms are considered. 

(Fig. I.) 

0 0 

NVO
°i=<lN 

0 0 H H 0 0 

(S) (R) 

Fig. 1. Thalidomide 

The (R)-enantiomer of Thalidomide exhibits a sedative effect on humans whereas the 

racemate has a teratogenic effect on the foetus in expectant mothers2
. 

This project will deal with the stereoselective synthesis of optically active l ,3-diols 

employing to this end the synthetic equivalent of an aldol reaction between an enolate 

and a ketone with the chiral transfer agent being ( -IR, 5.51-1,5-Dimethyl-4-

phenylimidazolidin-2-one. ( 1) 



(1) 

1.1 Strategies used for the synthesis of 1.3-diols 

1.1. I The Aldo! Reaction 

The aldol reaction which yields 1,3 difunctional products can be exploited in - the 

synthesis of 1,3-diols. This is achieved by hydride reduction of these 1,3-difunctional 

products(Scheme 2 ). 

+ 

© 

® © 

Scheme 2. 
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As can be seen the reaction as written is oflittle use unless adequate steps can be taken 

to ensure stereocontrol. Diastereoselection to afford either the .sy,l ((A)/(B)) or ant/ 

((C)/(D)) diastereomeric pair can be achieved by careful choice of the metal 

counterion, the substituents R 1 , R2, R3 and Ri (steric constraints) as well as through 

optimization of the reaction conditions. Further differentiation is however needed to 

ensure enantioselection [((A) vs. (B)) and ((C) vs. (D))] and this requirement is met by 

use of the chiral auxiliary and various catalysts. 

Perhaps the most popular auxiliaries used in this respect and others are the oxazolidin-

2-ones developed by Evans.4·
5
·
6 (Fig. 2.)

Fig. 2. 

Kinetic deprotonation of the N-acyl derivatives (2) yield chiral enolates (3) which 

exhibit a high degree of stereoselection in the aldol reaction. 4 (Scheme 3.) 

3 



(2) 

LDA 

-780 C

500 : l 

60%yield. 

Scheme 3. 

(3) 

lPh-CHO 

Acylation5 of the N-acyloxazolidin-2-ones (2), also proceeds stereoselectively .. 

(Scheme 4.) 

(2) 

LDA ,_ 
PhCOCI 

96 : 4 

Scheme 4. 

Reductive removal of the auxiliary gives the desired diols as well as the auxiliary itself 

in undiminished optical purity.6 (Scheme 5.) 

..j. 



LiBf4 

o 0c + 

OH Rl 

�
R2,,.

OH 
-

Scheme 5. 

Catalysis on the other hand has not met with as much success as the auxiliary 

approach, although Masamune et al. 
7 recently reported on a catalytic aldol reaction 

which formed P-hydroxy esters which are 1,3-diol precursors with ee's of greater"than 

90%.(Scheme 6 ) 

\_J
O& 

;\OTMS

i) Catalyst

ii)RCHO, W

Catalyst: 

Scheme 6. 

Various enzymes,8 the most readily available of which is Rabbit muscle aldolase, 

catalyse the aldol reaction between enolates and aldehydes with a high degree of 

stereoselection. An added bonus with this method is the disappearance of the need for 

protecting groups. 

5 

Ar/"" "·f ---(° 
ArO,S.-N.....,_ /0 
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The classical aldol, as discussed up to now, has over the years spawned a number of 

variations, one of which is the addition of enol borates or Boron enolates to aldehydes. 

Reactions studied by Hoffinan et al. 
9 showed the excellent diastereoselectivities 

achievable with this reaction. It is also interesting to note that both E and Z enol 

borates yield syn products(3). (Scheme 7.) 

(Z) PhCHO 
/

(E) 

OH 0 

Ph¥ 

Syn : Anti = 95 : 5 for both 
E and Z enol borates. 

Scheme 7. 

The ee's, as expected, showed the products to be racemic. This is not surprising if one 

considers that a chiral component was not included in the reaction. 

Introduction of this chiral component i.e. a chiral centre by Masamune el al. w (4) as 

well as Evans et al.4 (5) dramatically increased the degree of optical purity of the 

product mixture. The chiral boron enolates ( 4) and ( 5) are illustrated below. 

R _ �B({

"=:S
,,,,H� 

-l-b+ 
(-t) 

R=Me. H 

6 

"=<fXBu;L 

=<) 
(5)

~ °'!~ l °'~ 

~ 



For the reaction between (4) and benzaldehyde the d.e. between products was 14: 1 

with the major product (6) illustrated below. 

(6) 

Anh diols can surprisingly enough also be accessed via this methodology by use of 

another optically active enol borate (7) development by Masamune et al. 11

R=Me 

(7) 

In reactions with typical aldehydes the .syn : anti ratio did not fall below I :30 , with 

correspondingly high ee's of at least 97: 1.

A second variation of the classical aldol is the allylic boration reaction. (Scheme 8.) 

+ 

l 

Scheme 8. 
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This reaction may be compared with the addition of enol borates to aldehydes on the 

basis of the similarity between the 2 boron species; an oxygen atom has been replaced 

by a carbon atom; and one would therefore expect good diastereoselection but poor 

enantioselection. Despite the fact that the allylic borates are y, y-disubstituted, this was 

indeed the case as shown by Hoffinan et al.
12 (Scheme 9.) 

(8) (E)

(9) (Z)

PhCHO
71% yield

PhCHO
,., 61%yield

Scheme 9. 

'
H 

ll 
Ph�

Me'' Bu 

0.8 99.2 

93.2 : 6.8 

There is, as can be seen, a difference with this reaction, i.e. allylic boration when 

compared with the addition of boron enolates to aldehydes discussed previously 

(Scheme 7). The £-isomer (8) favours the anti diastereomeric pair whereas the Z­

isomer (9) favours the syn pair. With the addition of boron enolates to 

aldehydes(Scheme 7) both E and Z enol borates favour the syn diastereomeric pair. 

Ozonolysis followed by borohydride reduction yields the 1,3-diols from the allylic 

alcohol products ofthis reaction. 12 (Scheme 10.) 

8 

YH ll 
Ph~ 

,,. Bu Me 

& 
0 rH ll 

Ph ~ 
,,.·· Bu Me 



°-3 ,. 

Scheme 10. 

Also applicable here is the reaction between allenylstannates 13 and aldehydes, which for 

a.-branched aldehydes proceeds diastereoselectively in the prescence of Lewis acids 

BF3_0Eti or MgBr2.0Et2 (Scheme 11 ). 

OH 

+ 

BF3.0Et2 
92%yield 

CH2Ch, -78 °c, 30 min. 

99 : 1 

Scheme 11. 

OH 

The diols are produced in three steps from the reaction products, hydrogenation of the 

triple bond to a double bond,followed by ozonolysis and borohydride reduction. 

1.1.2. Olefin Hydroboration 

Olefin hydroboration is another of the methods employed in the synthesis of 1,3-diols. 

(Scheme 12.) 

9 
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Scheme 12. 

Harnessing the reaction has ,however, evolved in two directions. The first of these 

involves boration by common hydroborating agents such as 9-BBN and ThexBH2,

amongst others. A representative example of this approach is taken from work carried 

out by Still and Barrish, 14 with the general reaction illustrated below. (Scheme 13.) 

Me 

Bu, � .,...RI 

__ J_e....;;q_. b_o_n_u_1e_. _T_HF----:1► alkaline-OOH 

y "-'Y O - 25 oc 18 h 

OR R2

Scheme 13. 

Me 

Bu�Rl ' f''''1 R2 

OR OH 
threo 

+ 

erythro 

Variation in the substitution pattern of the starting allylic alcohol and the bulk of the 

hydroborating agent as well as other factors influence the stereochemical outcome of 

the reaction. The best results were achieved with sterically demanding boranes such as 

9-BBN. (Table I.)

10 



Table 1. 

R
I 

R
2 

R Borating Agent Yield Threo: 

Erythro 

H H H 9-BBN 80% l l : 1

Bu H H 9-BBN 48% 9: 1 

H Bu H 9-BBN 31% 15 : l 

H H SiMe3 9-BBN 57% 10.5 : l 

H H COCF3 9-BBN 95% 14 : 1 

The large degree of diastereoselection can be rationalized by the following model. 

(Fig. 3.) 

H:>A 

H
>

A 

H>A 
,,,, 

H OH R 

(10) (11) (12) 

(13) (14) 

Fig. 3. 

Attack of the borane on the least hindered side of olefinic 7t system ( I 0) leads to the 

less sterically hindered transition state ( 13 or 14) and the Lhreo product. The minor 

erythro isomer arises from attack of the borane on the least hindered side of another 

minimum energy conformer, in this case ( 11) and proceeds via transition states 

analogous to 13 and 14. 

11 

I 

-

R 

BuTl 
OH BR2 



Uncatalysed intramolecular hydroboration of allyl vinyl ethers 15 leads to predominantly 

.syn products(Scheme 14).The hydroboration agent employed in this case was 

ThexBH2 .This is contrary to the findings of Still and Barish 1\See Scheme 13 and 

Table 1 )whose results showed that the anti product was favoured. 

2 Eq. ThexBH2 (OJ 
---------� 

-85 oc to R.T., 18 h.
83% yield 

Scheme 14. 

llill 
OH OH 

: 200 

ANTI : SYN 

The second way of exploiting the hydroboration reaction involves the use of a catalyst 

such as Wilkinson's catalyst, Rh (PPhJ)3Cl(Scheme 15).With this catalysed 

hydroboration reaction the products are predominantly .syn. This fact and the 

selectivities shown by the reactions illustrated in schemes 13 and 14 can be reconciled 

if one considers that the mechanisms for each case. are. quite different and will

therefore not show the same responce to the combination of electronic and steric 

factors influencing the reaction. 

�
Me 

n-Pr

1) 3 eq. catecholborane
3 % Rh(PPh3h0

2)THf,20oc
3) H202 

79 %yield 

OH OH 

�Me 

11-Pr

Scheme 15. 

19: 81 

The catalysed vers10n as shown by the above example16 (Scheme I 5.) is, when 

compared to its uncatalysed counterpart, (Scheme 13.) more susceptible to steric 

variation in the form of different substitution patterns on the substrates. (Scheme 16.) 

12 

• . 

OH OH 

Y M• 
n-Pr 



OR 

yM, 1) 3 eq. catecholborane SYN ANTI 
3 % Rh(PPlu)JCI

2) H2O2 R=H 50 : 50 
i-Pr R == Si(lBu)Ph2 97 3 

Scheme 16. 

The origin of the 5y11 selectivity shown by catalysed hydroborations is an enigma in 

contemporary organic chemist1y because the mechanism of the reaction is unknown. 

The following scheme, 
17' 18 an attempt at explaining the mechanism, is reasonable when 

compared with Rhodium catalysed hydrogenations. 
19• 20 

(Scheme 17.) 

Rh-L 

Coordinatively unsaturated 
rhodium complex (L = ligand). 

l 
reductive 
elimination 

oxidative 
addition 

migratory 
insertion 

Scheme 17. 

Ligand exchange
l L = alkene 

H O� 

}-< 0 
::::::-.. 

0 

(15) 

If the major diastereomer of type 15 forms irreversibly and/or reacts quickly to give the 

product, diastereoselection for catalysed hydroboration of certain allylic alcohol 

derivatives ( various protected alcohols) will be determined via the diastereofacial 

selectivity of co-ordination to the alkene. 

13 
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Stereochemical factors govern co-ordination of the alkene to rhodium and are thus 

directly responsible for the diastereoselection shown by the reaction, i.e. rhodium 

catalysed hydroboration of olefins. 

Use of optically pure starting materials by Evans et al. 
21 demonstrated the synthetic · 

utility of this reaction as it was used in a synthesis of the C 1-C11 polypropionate portion 

of the polyether antibiotic, Lonomycin A. (Scheme 18.) 

0 0 QMe 

Me 

X 

Me Me 

Scheme 18. 

.. tv ty
H 

Me Me 

Rh(PPhi13CI (62 %) 96 

9 - BBN (84 %) 8 

4 

92 

Asymmetric hydroboration of olefins as discussed up to now has one major flaw : it 

requires optically pure starting materials. A novel way of overcoming this and also the 

need for the allylic alcohol itself, is double asymmetric hydroboration22 which converts 

a diene to an optically pure 1,3-diol with the requirement for enantioselection being 

met by a chiral catalyst. (Scheme 19.) 

14 

! 
Me 



Ph�

L* = 

Rb/ L* 
THF, -20 oc 

Scheme 19. 

(IS, 3R) - (-) -
ANTI 

61 

Ph

yy 
OH OH 

(IR, 3R) - (+)

SYN 

35 

42 %yield 

Another hydroboration reaction of interest here. even though the products are racemic, 

is hydroboration of metalated alkynes. 23
· (Scheme 20.) 

Ph-...:::::::�-Me 2 BuLi ► [Ph-C=C-CH] Li2 Blli ► 

Ph

il H202 

NaOH 
OH OR 

excess BuLi
_. [Ph-C:=C-C ] Lo _B_H_3-----i,-�

H20:z

NaOH 

Scheme 20. 

Ph

il 
OH OR 

R=H 

Replacement of the propargylic methyl group with an ethyl group yields a l : 2 mixture 

of threo and erythro 1,3 diol products. 

Hydroboration of allylsilanes24
• as with normal alkenes and allylic alcohols, is found to 

be generally regioselective with attachment of the boron to C-3 of the allylsilane 

moiety. It is also stereoselective with attachment of the boron anti to the silyl moiety. 

As with the studies of Barrish and Still, 14 the best results are achieved with the bulky 

boranes such as 9-BBN although the substitution pattern of the allylsilane also plays a 

role in the reaction. (Scheme 21.) 

15 

Phyy 
OH OH 



SiMe,,Ph §iMe2Ph �iMe2Ph 

� 

l) 9-BBN

2)-00H

� 2 93 % yield
OH OH 

(16) (17) 

Regioselectivitv: PhMe2�i QH Phu 
(16) + (17): (18) + (19) = l : 99

Stereoselectivitv:

(18) : (19) = 5 : 95 (18) (19) 

Scheme 21. 

The desired 1,3-diols are easily formed by cleavage of the C-Si bond which occurs 

with retention of configuration. 
24

' 
25 

( Scheme 22.) 

PhMeuH 
Ph 

Hg(OAc)2 

Scheme 22. 

1.1.3. Epoxide/Oxirane ring opening 

By far the most popular method for the synthesis of diols is ring opening of epoxy 

alcohols. This cleavage of the heterocycle can be achieved in two ways, either hydride 

reduction or nucleophilic attack. ( Scheme 23.) 

16 

+ 

~ 

+ 

PhD " 



HO 
�R 

OH 

Scheme 23. 

This immediately poses the problem of regioselectivity, i.e. how to direct attack such 

that one carbon of the heterocycle is favoured above the other. 

Vitti
26 reported on the regioselective reduction of racemic epoxy alcohols using Red­

Al in THF at -15°C. (Scheme 24.) 

u y
0 Red-Al 

R''O�R' THF, -15 oc 
R' R' 

OH
R' == C1H1s ; R" == H 90 %yield ~ 100 1 

R' == C1H1s ; R" = Bn 50 %yield l l.5

Scheme 24. 

The large degree of regioselectivity was explained as follows: Co-ordination of the 

aluminium reagent to the hydroxyl group oxygen followed by intramolecular delivery 

of the hydride ion to C-2 gives the 1,3-diol product. Solvent choice also plays a role in 

the reaction. The reaction, given in Scheme 23 for the unprotected alcohol, was 

carried out in CH2Ch and gave a 1:1 mixture of products. (See Scheme 25.) 

17 

ytR 
Nu 

2 



Meal 7 6
Na

<±l 

0 

MeO---------------
lA1-H ► 

0-: .. H 

W
�

R 

Scheme 25.

The explanation offered for the origin of regioselectivity and shown in scheme 25 is
shown to be correct when the protected alcohol is allowed to react under the· same
conditions as it's free hydroxyl counterpart(Scheme 24 and 25).As can be seen from
scheme 24 protection of the alcohol as the benzyl ether precludes the possibility for co­
ordination between the aluminium atom and the unprotected alcohol moiety. This
reduces the observed regioselectivity.

Reduction of optically pure epoxy alcohols with DIBAL 27 showed a product
composition which mirrored the ratios obtained by Vitti 26 (Scheme 26.)

DIBAL ..,C6H(j.R.T. 
62 %yield 

rH2

Ph�
OH OH

lft-12 OH
� ' OH

Ph� 

> 95 : 5

Scheme 26.

The hydroxyl moiety which plays an integral part in the origins of regioselectivity with
respect to the reduction of epoxides by aluminium containing hydride reagents also
influences bimolecular or nucleophilic ring openings. It now functions as the source of
an electron withdrawing inductive effect which directs nucleophilic attack to C-3 and
thus yields 1,2-diols. This observation was made by Behrens and Sharpless28 who
tested various 2.3-epoxy alcohols with NrLN3, PhSNa and PhSeNa.

18 



Steric constraints are however the dominant influence which usually override the 

aforementioned directing ability of the hydroxyl group. (Scheme 27.) 

47 % yield 

Scheme 27. 

. 

. 

100: 0 

In substrates where there is no significant steric bias between C-2 and C-3 the directing 

influence of the hydroxyl group leads to some regioselectivity, although it is interesting 

to note that the choice of nucleophile also plays a part. (Scheme 28.) 

0 5 eq. NaN3, 
/1 - 2 eq. NH4CI 

R,,---;�"-oH ------► 2 1.8 H20 / 
CH30(CH2)20H 

88 %yield 

PhSNa / PhSH ,. 

NJ OH 

� 
R ! 

OH 

Scheme 28. 

3.5 : 

J:JH 

R i 
SPh 

2.5 : l 

In conclusion therefore it can be said that two factors govern the regioselective ring 

openings of epoxides by nucleophiles. A major steric factor which dictates that 

nucleophilic attack will take place at the least hindered carbon and a secondary 

electronic factor, the electron withdrawing inductive effect of the hydroxyl group 

which favours nucleophilic attack at C-3. The combined effects of these two factors 

direct ring opening. 

19 

OH OH 
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A specialized sub-branch of the general nucleophilic nng openmg chemistry 1s 

nucleophilic oxymethylation of oxiranes29
. (Scheme 29.) 

Scheme 29. 

This method is exceptionally useful because:-

a) The large family of chiral oxiranes make it possible to synthesize a large family

of chiral I ,3-diols.

b) No hydroxyl group is present in the substrate making l ,2- or I, 4-diol formation

impossible.

c) The stereochemistry of two substituents of the 1,3-diol 1s fixed assuming

normal SN2 attack with inversion.

d) The possibility of exercising control over the stereochemistry of the entering

centre relative to those already there.

Murai et al.
29 showed that a combination of Co2(C0)8, HSiEt2Me and CO produces an 

oxymethylative equivalent which on reaction with an oxirane yields a masked 1,3-diol 

silyl ether product. (Scheme 30.) 

MeO� 
0 

HSiEtzMe , CO 

cat. Co2(C0) 8 , 25 oc, l alm. 

75 %yield 

Scheme 30. 

�OSiEt2Me
Meo 

I 
OSiE.t2Me 

The logical "next step" with this approach (oxymethylation) would be the use of 

optically active oxymethylative equivalents. A particularly elegant example of this is 

taken from work done by Chan and Nwe30 who used an optically active organosilane 

20 



containing (S) - (+) - 2(methylmethoxy) pyrollidine as the chiral component. (Scheme 

31.) 

I 

s-BuLi

-78 oc, Et2O

Ph�Rl 

§ i"-R2
OH OH 

1 

Scheme 31. 

The organosilane gave practically complete stereocontrol over the formation of the 

benzylic chiral centre with ee' s of greater than 99% being reported in all the examples 

studied. 

Perhaps the most exotic of all ring opening procedures is the diphenyl diselenide or 

diphenyl ditelluride-mediated31 electroreductive ring opening of a.,j3-epoxy compounds 

and their homologues. This reaction gives �-hydroxy ketones which are easily reduced 

to the 1,3-diol system(Scheme 32). 

The "indirect" PhSe mediated method so called because cell conditions are strongly 

basic is when compared to the more traditional Birch type electroreduction more 

selective,gives better yields and uses less electricity. 

21 

Ph ~ Rl 
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Ph � 

Ph 

TI-IF : H2O (9/1, v/v) -
Bu4NBF 4 (0.1 M); Pt - C. 

Applit!d voltugt! ( 13 - 16 V) -
( 12 mA / cm2) / IO F pt!r molt! 
of electricity. 

OH O OH OH 

Ph� +Ph�

5% 35 % 

OH O OH OH 

(PhSe)i - I nunol . 
CH2(C02Me)2 - 5 mmol 
MeOH / NuCIO4 (0.2 M), 
Pt - C. 
Applit!d voltagt! 3 V -
(30-35 mA. I cm2) / 4.5 F 
per mok of electricity. 

Ph� --1:£. Ph� 

70% 

Scheme 32. 

I. I .4. The use of radicals.

Free radical cyclization is currently looked upon as a potent methodology for ring 

construction via C-C bond forming reactions as can be seen by the following example 

,2 taken from work done by Stork and Khan- (Scheme 33). 
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' 
H,,

��HO 

Br 

NEt3 , F.tO�Br

Scheme 33. 

' 
H,,,,

� >vV 

EtO Br 

EtO 

A specific aspect of this general methodology is the intramolecular reaction of a silyl 

methyl radical such as those derived from (bromomethyl) dimethylsilyl ally! ethers33 

and an intramolecular unsaturated chemical bond. This reaction yields silacycles and 

oxidative cleavage of these compounds produces 1,3-diol products34
. (Scheme 34.) 

�OH 

OH OH 

O
......_ 

.,,,.----Br 
.,.......-si

........._

BUJSnH. AlB
i 

C6H6 . reflux. 

Tamao - Kumada oxidation. 34 

Scheme 34. 
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The 5-exo mode of cyclization predominates in all the cases studied, although some 6-

endo cyclization leading to 1,4-diols was observed in substrates without terminal 

functionality. (Scheme 35.) 

85 % yield 

95 %yield 

;:;h 

OH OH 

100 0 

='Yi 
OH OH 

Scheme 35. 

OH OH 

69 : 15 : 16 

rfoH
OH Ph 

OH 

OH 

As can be seen from the above example (Scheme 35) and all the reactions studied, 

where the possibility for syn and anti exists, the .\)Ill or threo35 isomer always exists as 

the major component. The rationale behind the observed selectivity, although 

speculative, is thought to depend largely on the steric bulk and orientation of the 

terminal substituents R 1 and R2
. (Scheme 36.) 

Rl = H; R2 = Ph 
Rl =Ph; R2 = H 

Bu3SnH . AIBN 

C6H6 • reflux.

(E) - 85 % yield
(Z) - 94 % yield

/Ph 

OH OH 

84 : 16 

lOU � 0 

Scheme 36. 

�h 

OH OH 
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To a lesser degree the bulk of C-3 also plays a role as can be seen from the following 

example. (Scheme 37.) 

R ' 

OH 

... 11 � 
OH OH OH OH OH 

R= Me 69 15 16 

R= 1Pr 82 0 . 18 . 

Scheme 37. 

This particular reaction was also extended to the propargylic equivalent and thus 

allowed entry to diallyl 1,3-diols.36 (Scheme 38.) 

�

R3 

R2'"'"
/ 

O
......_ 

.,,,,,,.,.-Br 
/si, 

PlnSnH . AIBN 
Ph.H , 80 °c , 10 h 

Rl y:: 
H202 

R3 

(E) (Z) 

R l = H : R2 = n - CiH9 ; R3 = n - C4H9 : E : Z = I 00 : 0

Scheme 38

Rl • 

R2,,,,.,.J-rR3
6,) 

Si 
/'\. 

(20) 

l H-Donor

It is important to note that the stereochemical integrity of the chiral centre was 

maintained during the course of this radical cyclization reaction. 
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The exocyclic vinyl radical (20) formed after cyclization has also been employed in the 

synthesis of trisubstituted double bonds, 5-membered unsaturated carbocycles and the 

diquinane system. 

Other radical syntheses such as the chalcogen catalysed radical addition reaction of 

molecular oxygen and activated cyclopropane also produces 1,3-diols. These 1,3-diols 

are however masked as ring systems.37 (Scheme 39.) 

PhSSPh► 
AIBN 

o--o 

' ' 

R
� 

.,,,
(

�"-------◄--=-- R�SPh 

V R' 

R�SPh 

R' 

R�SPh 

o
, R' 

•sPh

o--o 

R½ 
R' 

d' 

R =Ph. CH=CH-C02Et.(:>--Ph 

R' = H. [>--Ph 

Scheme 39. 

26 



1. 1. 5. Rearrangement Reactions.

Claisen rearrangements, which are [3,3] sigmatropic reorganizations of allyl vinyl 

heterosystems, have been employed in numerous aspects of organic synthesis. The 

foundation for this utility lies in the stereo-differentiating ability of these concerted 

rearrangements as can be seen in the following example taken from work done by Chan 

et aI.38 (Scheme 40.)

2 ye 
.5 

l 
Et 

ye 

l 
ye ye 

EtO 

+ 
+ 

H
ye ye 

p-02NC6H4+NH
Me 

(21) 

Scheme 40. 
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HPLC analysis of the amide (21) showed the enantiomeric composition at C3 to be 

99% pure. Thus can be seen the chiral transfer achievable with this reaction. [Both 

starting isomers i.e. 4R, 6S, Zand 4S, 6S, E gave the same product but proceed by 

different versions of the chair transition state.] 

The Claisen rearrangement can also control the introduction of 2 chiral centres. Both 

relative and internal asymmetric induction is possible and this was ably demonstrated 

by Sucrow's39 synthesis of steroid precursors which contain the 25-ethylated side 

chain. 

Armed with this precedent for acyclic stereocontrol, stereoselective synthesis of 1,3-

diols by this method would be very attractive indeed. This was done by using a variant 

ofthe classical Claisen rearrangement, the dianionic Claisen rearrangement. 40 
(Scheme 

41.) 

2 eq. LDA . THF 

OH Me 

l 
OH Me 

Me 
' w -0 

Me� 

C02Me 

e111hro threo 
E starting isomer : 81 : 19 
Z starting isomer : 15 : 85 

Scheme 41 

As can be seen the reaction offers excellent diastereocontrol. The products are 

however racemic due to exclusion of an optically pure chiral centre. 
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Inclusion of said chiral component, achievable in this case by resolution of the starting 

racemate, leads to optically pure products in good diastereomeric excess.41 (Scheme 

42.) 

Me 0 

HO�O 

Me� 

(E) 

2 eq. LOA, THF 
-78 °C to -25 °C 
CH2N2, Et20 

OH Me (JH fyle 

� ' b' Me� 
: 

: b' 
+ Me�

C02Me 

Scheme 42. 

81 19 

C02Me 

The f3-hydroxy ester products are easily transformed to 1,3-diols by simple hydride 

reduction.40<a> (Scheme 43.) 

OH OH 

Me 
LAH 

Me 

Scheme 43. 

A second rearrangement allowing the synthesis of 1,3-diols was put forward by 

Shimazaki et al. 
42 (Scheme 44.) 

(22) 

M.:3Si y 

: R 
&1(.)� 

OH 0 

Me3Si� 

: H 
BnOIY 

OH 0 

Scheme 44. 

Me3Siv

t1 -� ,,,,OH
► BnO 

j 1 

.. 

OH R 
R = alkyl 

Me3Siy·

N- /"-... 1.,,;....._3 ..,Nu 
u., BnO.., ! 2 j 

OH OH 

SiMe3 
Bn< R OSiMe3 

SiMe3 
BnO H OS1Me3 

Lewis., 
acid 

Lewis., 
acid 

2Y 



The reaction is remarkably diastereoselective and those using the epoxy TMS ether 

(22) as starting material display the e,ythro isomer as the major product. (Scheme 45.)

-78 oc , CH2C'2
(22) 

Et:iSiH (3 eq.) and 

TiCJ4 (2.2 eq.) 

89 %yield 

Scheme 45. 

14 

B110IT 

OH OH 

The reaction, although affording 1,3-diol products, also provides a route to 

establishing three and even four contiguous asymmetric centres in one step. 

Another rearrangement yielding 1,3-diols is that undergone by f3-hydroxy alkyl allyl 

ethers. On treatment with BuLi they undergo a (1,2] Wittig rearrangement to give syn 

1,3-diols. The reaction proceeds via a radical intermediate and also yields the 

associated (1,4] Wittig products.43 (Scheme 46.) 

12 

. 

. 

BuLi. -20 oc 

32 %yield 

Scheme 46. 
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Simple acid catalysed deprotection will unmask the 1,3-diol products. (Scheme 47.) 

Scheme 47. 

1 1.6. Hydrogenation. 

OH OH 

OH 

All the synthetic strategies discussed up to now have a common shortcoming : they are 

not amenable to the large scale preparation of �-diols or, as they are more commonly 

known, 1,3-diols. Hydrogenation of suitable precursors is but one method capable of 

such large scale preparations. 

Hydrogenation of �-dicarbonyl skeletons over a Raney nickel catalyst modified with a 

mixture of tartaric acid and sodium bromide yields a mixture of optically active dials · 

substantially richer in one component.44 (Scheme 48.) 

0 0 OH QH OH OH
catalyst 

► ' : AA H2 � 

65 %yield (R*, R*) 87 13 (R*, S*) 

Scheme 48 

In all the cases studied the major stereoisomer (R *, R *) was obtained optically pure 

after recrystallization. Selectivity however falls away slightly as the chain length of the 

substituents increase, i.e. replacing the methyl groups with ethyl groups for example. 

With ethyl groups the product ratio falls to 80:20 but still favours the (R *, R *) 

diastereomer. 

Homogenous asymmetric hydrogenation of ketones with BINAP- Ru(11)45 complexes 

is usually superior to the aforementioned heterogeneous version. (Scheme 49.) 
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substrate : catalyst OH OH OH OH 

mole ratio = 2000 
AA + 

� 72 Atm H2 • 89 h
RuC12 [(R) - BINAPj 
95 %yield (R*. R*) (R*, S*) 

99 (100 % e.e.) : l 

Scheme 49. 

The overall stereochemical outcome of such homogeneous hydrogenations is 

determined by the efficiency of the catalyst/carbonyl chiral transfer( catalyst control) 

process and the stereochemistry of the structures adopted by the initially created 

hydroxy ketones. (Substrate control.) Thus the high degree of optical purity obtained 

for the major diastereomer (R *, R *) can be attributed to double stereoselection. 46 

( stereodifferentiation.) 

l. l.7 Resolution.

Another of the methods amenable to the large scale preperation of f3-diols is 

resolution. Most resolutions involve derivatization of the diol and separation of the 

resulting derivatives, although a procedure put forward by Nakamura et al. 
47 allowed 

enantiomeric separation without derivatization by use of a chiral polysiloxane GC 

column derived from (R, R)-tartramide. 

Conversion of the enantiomeric 1,3-alkane diols into their diastereomeric acetals by 

reaction with a chiral ketone such as /-menthone-111 represents a typical resolution by 

derivatization procedure. (Scheme 50.) 
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l H
+ .MeOH 

92 %yield 

> 95 ¾e.e.

(TMS)zNH. TMSOTf 
91 %yield 

Scheme 50. 

H 

(ycrn,JzPh

OTMS OTMS 

l H
+ . MeOH 

97 %yield 

H 

Ph(CH,)z� 

OH OH 
> 95 % e.e.

Enzyme catalysed resolution of diols is also a viable method as shown by Mattson et

al. 
49 Their use of lipase from Candida anlarctica (Component B) and the acyl donor, 

(.S)-ethyl thiooctanate separated a mixture of all the stereoisomers of 2,5-hexanediol as 

well as other C2-symmetrical diols by selective transesterification. (Table 2.) 

Table 2: 
Sub. Comp Conver. Remaining R-OH Mono Ei.1er Diester 

ss RS RR ss SR RR ee yield ss SR RR ee yield ss SR RR 

22 57 21 50% 98.7 1.3 0 ·99 86% 0.8 98.5 0.7 97 71% 0 0.1 98.9 

The transesterification reaction was rationalized as follows: 

The enantiomer with two highly reactive hydroxyl moieties is transesterified to the 

diester, (R, R), that with one fast reacting and one slow reacting hydroxyl group to the 
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monoester, (R, S) and the isomer with 2 slow reacting hydroxyl groups (S,S) does not 

react at all. 

1.2. Strategies emploved in the synthesis of 1.3-polyols. 

The 1,3-polyol, can to all intents and purposes, be looked upon as a polymer made up 

of discrete 1,3-diol units, the synthesis of which has been discussed up to now .. This 

class of compound, the 1,3-polyol, forms the basis for another very useful class, the 

polyene macrolide antibiotics. 5
0

The synthetic strategies employed in the synthesis of l,3-polyols have recently been 

reviewed by Oishi and Nakata
51 and included amongst others the following examples. 

The diethylphosphate of 4-penten-2-ol (23) affords predominantly, after reaction with 

iodine, the corresponding syn-cyclic phosphate (24 ). 52 Ethoxide induced ring opening 

followed by LAH reduction produces syn 1,3-diols from (24). (Scheme 51.) 

(23) 

R=CH3 

R

yy 
OH OH

(26) 

R = CH2CH2CH=CH2 

SYN I ANTI> 98 % 

87 %yidd

LAH 

90 % yidd

Scheme 51 

Me
�I

o, ,.,,.o 
p 

(·-7 '- E ) () I 

(24) 

lEtO- /THF
75 ¾yidd

(25) 

Another example shows an elegant two step method for the preparation all l ,3-syn-

1,3- polyol systems. 53 The first step involves preparation of (28) from (27) by a 
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modified Cardillo procedure and step two is a two carbon elongation step achieved by 

use of a higher order cuprate derived from vinyllithium and cuprous cyanide. (Scheme 

52.) 

r--------------,
I I 

: OH : 
I 

f 

I 
I I 
I I 

�· I :. ______________ : 
OBn 

(27) 

I) MeLi

2) CO2
3) Ii

83 % yidd 

OH 

�

) 

OBn 
(28) 

I) CH2=CH-Li
j2) (CH2=CH)2-Cu(CN)Li 

96 % yield 

OBn 

,-----------, 

UH : OH : 

(29) 

I 
I 

: 
I 
I 
I 

J 

Scheme 52. 

This method also lends itself to use in a repetitive strategy because the product (29) 

can now be used as the starting material for a second run with the aforementioned two 

step procedure. 
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1.3. Applications of 1,3-diols. 

1.3. l Precursors for the sr2iroacetvl moietv of Avermectins A 11,.,___J;!2t,(30), B 1 1,.,___J;!.L!, Ag,.

A�.,__A2i, and B7a as well as Milbemycins a1 and as. 

The avermectins are a family of macrocyclic lactones which exhibit exceptional 

pesticidal activity toward two major classes of parasite, the arthropods (insects, ticks, 

lice, and mites) and the nematodes (roundworm.) Surprisingly enough these 

macrocycles are devoid of the antibacterial activity shown by similar macrolide 

antibiotics
54

. These compounds act by interfering with invertebrate neurotransmission54 

and Invermectin, available in one step from the fermentation product of Steplomyces 

avermitillis has already been marked for veterinary use.55

(30) 

Retrosynthesis has shown that the spiroketal moiety can be synthesized from an 

optically active acetylene unit (31) and a six membered lactone (32). 

An:nn..:ctin B21, 



OCH:lh 

'
0 

OTBDMS 

The acetylene unit (3 l) can be synthesized in 6 steps from an optically active 1,3-diol. 

(33). (Scheme 53.) 

OH OH 

(33) 

Scheme 53. 

The milbemycin synthesis follows the same pattern except a different 1,3-diol (34) is 

used to afford the required acetylene unit (35). (Fig. 4.) 

(OH 

OH 

(3�) 

(Fig. 4.) 

1.3.2 Precursors for Pseudomonic Acid C (36) 

OH 

(Fig. 5.) 

]7 

' 

� 
OTHP 

(35)

(31 ) 

HO 
Me ' 

0
·······y co,,CH,J,cooH 

(36) 



The strain Pseudomonas jlourescens NCIB I 0586 produces 3 acids, Psuedomonic 

acids A, B and C 56
' 

57
, all of which show antibacterial as well as antimycoplasmal

abilities. Psuedomonic Acid C, by cleavage of the bond between C3 and C4 (Fig. 5.), 

can be synthesized from a derivative of 2R-methylbutan-l,3-S-diol (37)58 and an 

optically active derivative ofD-arabinose (38)56 (Fig. 6.). 

CJ:. 
; Me 

Me 

(37) 

Wittig Reaction 

(36) 

(Fig. 6.) 

0�r 
H6� 

OH 

(38) 

1.3 .3 Precursors for the svnthesis of chiral dienes to be used m the Di els Alder 

Reaction. 

One of the most important molecule building tools known to the modern chemist is the 

Di els Alder reaction. (Fig. 7.) 

� 
d + II
�'--.._/

(Fig. 7.) 
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Chiral compounds which are usually biologically active can be synthesized with this 

reaction, but this necessitates the need for stereocontrol. This need for stereocontrol is 

satisfied in three ways, use of an optically pure diene or dienophile, or a chiral catalyst. 

The 1,3-diol has found a niche in this respect as it forms the basis of a chiral diene.59

(39). (Fig. 8.) 

OH OH 

., 
'••· 

Me 

(39) 

(Fig. 8.) 

Reaction between diene (39) and N-phenylmaleimide (40) forms the endo adduct 

exclusively thus demonstrating the excellent stereocontrol achievable with the diol­

derived chiral diene (39). 

Ph 

ovo 
(-HJ) 

39 
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1.3.4 Precursors for prostoglandin PGF2u 

Prostogladin F 2a ( 41 ), the most commonly occurring member of the prostoglandin 

family, shows potent biological activity. It is able to stop pregnancy in the second 

trimester60 by inducing labour, has bronchoconstriction61 properties as well as being 

able to inhibit platelet aggregation. 62 This makes it useful in the treatment and 

prevention of thrombosis. 

QH 

OH 

(41) 

The cyclopentane ring of PGF2u can be synthesized from the appropriate I ,3-diol ( 42) 

by an intramolecular nitrile oxide cycloaddition reaction.63 (Fig. 9.) 

N-0

OH ,,.•'

·•,,

''OH 
---- - -�►- ----,►� ---•� 

(42) (43) 

Fig. 9. 

The isoxazoline ( 43) 1s then used to synthesize PGF2a by a number. of chemical 

transformations. 63. 64 

1. 3. 5. Precursors for various pharmaceuticals.

The d-isomer of l-benzyl-3-dimethylarnino-2-rnethyl- l-phenyl propylpropionate ( 44) 

[Tradenames: DARVON, PEPRONAL, DEVELIN]°5 is an analgesic used for the 

relief of mild pain. 
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B 

The /-isomer on the other hand is a cough suppressant (anti-tussive agent) 

Both enantiomers are synthesized together with separation being achieved by 

resolution. The enantioselective synthesis of either enantiomer is thus extremely 

attractive because it alleviates the need for a resolution step. This was done for a key 

intermediate ( 45) in the synthesis of ( 44) by Erickson 66
, who achieved this by

harnessing the Sharpless asymmetric epoxidation reaction. (Scheme 54.) 

I 
Ph 

Ph

)C 
OH 

Me 

(-) - DET. Ti(iOPr)-1 
TBHP. CH2Cl2 

90 % yield 

Ph 
Ph

tOH 

, NMe2 
Me � 

A 

(45) 

Ph 
Pl

.

1

:€ 
: OH 

Mc � 

LAH. Et20 
94 %yield 

Ph 
Ph

r

'
H 

. OH 
Me � 

A 

TsCI . pyridin� 
73 %yield 

i 

Me2SO. Me2NH 
R.T. 48 h. 
79 %yield 

Ph 
Ph

t

OH

, OTs 
Me � 

Scheme 54. 

Simple esterification of the alcohol (45) will give the desired product (44). 

With the last two transformations in mind (Scheme 54), it is possible to synthesize 

chlophedianol, (46) [Tradenames: DETIGON, DECTOLIT AN]
67 

a cough suppressant 

from the appropriate 1,3-diol (47). (Fig. 10.) 

H 

.H 
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OH 

(47) (46) 

(Fig. 10.) 

It is also interesting to note that substitution of one of the aromatic rings in ( 46) with 

an alicyclic ring gives a series of anti-cholinergic or anti-spasmodic drugs. (Fig. 11.) 

HCI ·O
68 

Tradenames : ANTI-SPAS. AP ARKANE. 

(HCI salt) BROFLEX. 

Tradenames: PAGITANE HC1
69 

(HCI salt) 

Tradenames : AKINETON. AKINOPHYL 
?O 

(HCI sail) 

(Fig. I 1.) 
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Another 1,3-diol of pharmaceutical importance is 2,2-dichloro-N-[(aR, �R)-�­

hydroxy-a.-hydroxymethyl-4-nitrophenyl] acetamide ( 48), an antibiotic. 

OHR 

>---+--....-1 H20H

H NHCOCHCJi 

(48) 

Tradeuame : CHLOROMYCETIN7 I 

As can be seen from the preceding discussion the 1,3-diol synthon is exceptionally 

useful in the synthesis of various natural products, pharmaceuticals and other 

compounds. 
72

• 
73
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2. DISCUSSION

Chirality is a major phenomenon in nature and molecular asymmetry in particular plays 

a crucial role in science and technology. A variety of significant biological functions 

emerge through molecular recognition which requires strict matching of chirality. 

Accordingly enantioselective synthesis of chiral organic compounds is an important 

task allotted to the synthetic chemist. This concept is realized in a number of ways, an 

example of which is the chiral transfer agent or chiral auxiliary which allows 

stereoselective carbon-carbon bond forming reactions to occur. 

As previously stated, this project will deal with the enantioselective synthesis of chiral 

1,3-diols using a cyclic ephedrine derivative (1) as the chiral auxiliary. (Scheme 55.) 
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Me.._,_�
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M/ \Ph 
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lLAH,THF 
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Scheme 55. 
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Imidazolidin-2-one (1 ), since its original synthesis by Close 74
, has shown itself to be an

extremely potent chiral auxiliary, as can be seen by a few of the more recent examples 

of its use. Helmchen and co-workers 75 used a carbanion derived from the N-allyl 

derivative ( 49) in diastereoselective homoaldol reactions with aldehydes and ketones to 

afford homochiral y-lactones. 

Me
.......,_ )l /""-.... � N N.r � 

Me
""
/ \Ph 

(49) 

Alkylation of N-acylimidazolidin-2-ones76
• 

77
•
7K 

as well as conjugate addition reactions

with organocuprates 
79

' 
80 

all showed themselves to proceed diastereoselectively­

( Schemes 56) 
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LDA.-78 oc 
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R2CuRMet. 

R2 = n-C3H7 

R = n-C3H7 

Met = MgBrMeS 97 % d.e. 

Scheme 56. 

Malissar81 
has also recently shown that the aldol reactions between a carbanion derived 

from (50) and arylaldehydes proceeds stereoselectively. (Scheme 57.) 

Me,

N6 
� 

Bu2BOTf. Et1N 

Mi ·._Ph 
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0 0 OH 
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Scheme 57. 
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Me Ph 

(R = Ph) 

The equivalent reactions with aliphatic aldehydes was however not as selective. A 

novel modification to the auxiliary, hydrogenation of the phenyl ring to a cyclohexyl 

ring
82 

increased the degree of stereoselection. Interestingly enough this increased 

stereoselection for aliphatic aldehydes was not accompanied by a loss of selectivity for 

arylaldehydes. (Scheme 58.) 
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Scheme 58. 
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Me 

Worth mentioning at this point 1s the fact that acyclic ephedrine derivatives are . 

themselves potent chiral inducers. 

Chalconer et al. 
83 used ephedrine as well as N-alkyl derivatives thereof to catalyse the 

enantioselective addition of diethylzinc to benzaldehyde and other arylaldehydes. This 

reaction, catalytic asymmetric alkylation of carbonyl compounds, is an important 

method for the synthesis of enantiomerically pure alcohols. (Scheme 59.) 

Catalyst 

0 

Catalvst , Et2Zn 
► H 25 oc, hexane, N2 , 48 h. 

OH 

-�NMeR

-QJ Je

R=H R=Me R=Et R=Pr R=iPr 
Scheme 59. 
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Compared to other catalytic systems such as (.S)-( + )-pro lino I, quinine, chinchonidine, 

cinchonine and quinidine, (-)-N-methyl ephedrine gave better results for the ethylation 

of benzaldehyde. 84 

Benson and Snydef"s85 synthesis of optically active sulphoxides, for potential use as

chiral solvating agents in 1H Nl\1R spectroscopy also utilized ephedrine, although in

this case the chiral auxiliary was covalently bonded to the starting material. (Scheme 

60) 

+ 

> 99 % e.e.

SOCl2 (1.2 eq.) 

Et3N (2.4 eq.)

HO NHMe 

Ph Me 

minor major 

MeMgBr , -40 oc! 
toluene , Sh. 

PhMgBr, 5 h. 
___ 

A
_
l
_
M
_
e
_3 _

, R
_

.T
_
.
_ 

-70 °c · RT CH2Cl2 , 30 min. 

Me 
.P \ 

HO N-S 

')-( , ......... : 
Me 

Ph Me 

> 99 % <l.e. , 64 % yield.

Scheme 60. 

As can be seen from these precedents, ephedrine in both cyclic and acyclic forms is an 

impressive chiral inducer making the proposed synthesis of 1,3-diols (Scheme 55) 

using ( 1) extremely attractive. 

2.1 The Synthesis of ( 4R.55)- l ,5-Dimethyl-4-phenyl-imidazolidin-2-one.( l) 

Imidazolidin-2-one (1) was prepared according to the method described by Close74 

involving the fusion of the hydrochloride salt of (-)-ephedrine and urea. The yields 

were however low due to a competing condensation reaction which afforded the 

oxazolidin-2-one (51) (Scheme 61.) 
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MeNH.HCI OH 

Me -Ph
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180 - 21:iOC 

Me
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A

/
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Mi \.Ph 

(1) 

Scheme 61. 

+ 

(51) 

Efforts by Malissar, 81 directed towards increasing the yield of ( 1 ), showed that 

magnetic or mechanical stirring optimized the yield of imidazolidin-2-one( 1 ). (Table 

3.) 

Table 3: 

Entry Conditions <a) Yield 

I. A 47% 

2. B 60% 

3. C 58% 

4. D 303/o(b) 

(a) Using the method prescribed by Close \\'ith the following variations:

A. = Urea as both solvent and reactant without stirring. 

B = as with A but magnetic stirring. 

C = as with A but with mechanical stirring for large scale preparations. 

D = nitrobenzene is sol\'ent with magnetic stirring.

(b) isolation of product was difficult.

Based on this investigation by Malissar81 ,(l) was prepared according to variation B 

(See table 3). 

The proposed mechanism for the formation of (I) was a double inversion pathway 

more commonly referred to as the neighbouring group mechanism. 86· 87 

The neighbouring group concept as proposed by Capon87 stated that molecular 

substituents may influence a reaction by stabilizing a transition state or intermediate. 

This stabilization is achieved by said substituents becoming fully or paitially bonded to 

the reaction centre. It is also possible that as a direct result of the increased 

.J.9 

0 

w 
0 

Me-..__ )lo 
H 

Me -Ph 



stabilization, an increased reaction rate may result, in which case neighbouring group 

participation is now known as intramolecular catalysis. (Scheme 62.) 

Without neighbouring group participation: 

Me 

With neighbouring group participation: 

Me Me 
A@I I 

er N N 

SN2' 0oH 
---•- . 

SN2' 

Scheme 62. 

The first step in the proposed mechanism for the formation of ( l ), involves protonation 

of the hydroxyl group on the ephedrine moiety. This can occur either intramolecularly 

or intermolecularly. (Scheme 63) 
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M/ 7:.Ph 
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MeNH OH 

Ml/ \Ph 
(52)
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N ;OH 
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Scheme 63. 

The second step in the proposed mechanism will follow two routes depending on the 

mode of protonation of the hydroxyl group. If protonation is intramolecular, then the 

next step of the reaction involves attack of the nitrogen lone pair (neighbouring group 

- Scheme 62.) on the benzylic carbon to form an intermediate aziridine salt (53)

(Scheme 64.) 

Me 

I T -
jl\CI 

Me Ph 

(53) 

Scheme 64. 

+ 

The existence of the this intermediate aziridine salt (53) is not unusual if one considers 

the following precedents. 88· 89 (Scheme 65 and 66.) 

LAH 

l 

Scheme 65.ii9 
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Ph-CH=CH-C-Ph 

+ 

minor 

+ 

l 

nu�jor 

Scheme 66. 88

Br-N 0 

+ other products

This branch of the mechanism is completed by a second SN2 displacement involving 

attack of one of the lone pairs on the urea nitrogen atoms at the benzylic position. It is 

followed by ring closure to give (1 ). (Scheme 67.) 

52 

Pi ;\ 
\_J 



Me 
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�
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Ph 

(53) 

0 

Me-N�H +

)-{ 
Me Ph 

N�CI 

Scheme 67. 

(54) 

l 
0 

Me-N�H ·er)-{ 2 

Me Ph 

If protonation is intermolecular, the reaction is completed by attack of the hydroxrl

lone pair (52) on the urea carbonyl accompanied by concomitant extraction of the 

hydroxyl proton by a lone pair on the urea moiety. This is followed by ring closure to 

give (5 I). (Scheme 68.) 

I. 
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53 



(52) (55) 

l 

(51) 

Scheme 68. 

The "electrophilic-nucleophilic" process central to both Schemes 67 and 68 

(Intermediates 52, 53, 54 and 55) was shown to be feasible by Bender and co­

workers?> (Scheme 69.) 
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(59) 
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II 
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(58) 

If the hydrolysis of phthalamide ( 56) occurs via the anhydride ( 59) itself formed as a 

result of the aforementioned "electrophilic-nucleophilic" process then the resultant di­

acid should exist as a mixture oflabeled isomers (57) and (58). This was indeed found 

to be the case giving credence to the mechanism of formation of the anhydride and 

thereby supporting schemes 67 and 68. 

Irrefutable proof for the mechanism of formation of (I) would be furnished if the 

intermediate aziridine salt (53) could be isolalcd. Attt:rnpts by Taguchi and Kojima
91
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were unsuccessful yielding only polymeric material. Okada et al. 92 provided the 

required proof by showing that the salt (60) could only be formed if the required 

aziridine (53) was a reaction intermediate. (Scheme 70.) 

Me-NH OH 

Me Ph 

PPlnBn 

Et3N 
M,-u�---► 

Me Ph 

Polymer 

Scheme 70. 

Me-NH.HCI Cl 

Me Ph 

(60) 

Under the conditions of formation of ( 1 ), i.e. the production of NH.1Cl, one would 

expect the aziridine salt (53) to react with the NH.1Cl which is actually a reacting 

equivalent for HCI. This would lead to the formation of a salt similar to (60). This 

reaction does not occur as the NH.1CI is removed from the melt by crystallizing out on

the condenser. 

Last but not least, the 4,5-Cis configuration exhibited by (I) due to the mechanism, i.e. 

double inversion (2 x SN2) was confirmed by Helmchen and co-workers75 whose X-ray

crystal structure of (61) showed the Cis relationship. 

56 

lsol.itc 



2.2. a.-Acvlation of Carbon vi Compounds - Svnthesis of B-dicarbonvl skeletons. 

a.-Acylation of carbonyl compounds represents an important tool for the synthesis of 

�-dicarbonyl skeletons, i.e. compounds with a l,3-heteroatom relationship. (Scheme 

71.) 

Scheme 71. 

RCOX 
,_ 

(RC0)20 

The reaction illustrated in Scheme 71 is not the only means of establishing a l .3-

heteroatom relationship. the aldol reaction is also capable of reproducing the 

aforementioned 1,3-fi.mctionality relationship. (Scheme 72.) 

RCHO 

Scheme 72. 

These heteroatom relationships are manifested in numerous compounds such a 

bleomysin A9:0, an antitumour antibiotic, as well as in synthon (62) an important 

intermediate in the synthesis of oudemansin94
. 

Me 

OMe 

0 

(62) 
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The general outcome of the acylation reaction in question (Scheme 71.) will be the 

formation of2 enantiomers. (Scheme 73.) 

RCOX 

0 0 

Ri�R 

R.2 

+ 

RI = Asynunetric unit. 

Scheme 73. 

Enantioselection leading to preferential formation of one enantiomer can only be 

brought about by incorporation of an asymmetric unit in this case imidazolidin-2-

one. (l ). 

2.2.1. Lithium Amide Enolates. 

The deprotonation of amides (63) and (64) with LDA has shown itself to proceed 

stereoselectivity.95
' 

96 (Scheme 74.)

� 

o·L( o·Lt

LDA 
.. 

G
�

Me 
+ o�H 

-78 oc

(63) (Z) > 95 5 (E) 

�D 
LDA 

... 

��Me + 

�NJyH
-78 oc

AH A Me 

(64) (Z) 81 19 (E) 

Scheme 74 
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Later work by Evans and co-workers97 with N-propionyloxazolidin-2-ones echoed the 

aforementioned observation, with the resultant enolate mixture consisting exclusively 

of the Z-isomer. (Scheme 75.) 

LDA 
► 

Ll 

X l _Me
0 N/ 

I 
\__J H 

(Z) 

Scheme 75. 

lOO (J 

The rationalization for these observations is based on the preferred conformation of the 

starting amide. (Scheme 76.) 

l 

(E) 

Scheme 76. 

H R 

o�r,{
Me H \ 

R 

Mey:�, 
H 

(Z) 

Allylic l,3-strain
98 

interactions between the methyl substituent and R destabilizes 

conformer A which leads to the £-enolate. 

Armed with this precedent it seems likely that the deprotonation of N­

propionylimidazolidin-2-one (50) with LOA will give only the Z-enolate. (Scheme 77.) 
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l l 

(Z) (E) 

Scheme 77. 

Conclusions drawn by Malissar81 showed that the enolization stereoselectivity for (50) 

can be inferred as being >97:3 with the Z-isorner/enolate being favoured. 

2.2.2. The chemistrv of the acylation reaction affording a D-dicarbonyl skeleton from 

0..Q}. 

The acylation reaction depicted in Schemes 71 and 73 only shows the formation of the 

desired f3-dicarbonyl compound. Other products formed due to side reactions are also 

possible. 

The first of these possible side reactions is 0-acylation. (Scheme 78.) 

.. 

Scheme 78. 
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A possible explanation for the lack of O-acylation with the N-propionyl system (50) is 

as follows: 

Back donation of electron density from the imide nitrogen atoms satisfies the electron 

demand of the two carbonyl moieties. With respect to the carbonyl moiety on the side 

chain this allows greater if not total concentration of electron density on the carbon 

atom leading to a greater proportion of C-acylation. 

A second possible answer for the absence of O-acylation lies in the structure of the Li­

co-ordinated enolate (65). 

(65) 

Co-ordination of the Li-cation forms a stable six membered enolate transition state and 

this may negate the possibility for O-acylation. This could be due to the actual co­

ordination between Li and oxygen or the shape of the lithiated species ( 6 membered) 

b. . f b h I . . . h k b J k / 99 rnoor a com mat1on o ot . t 1s mterestmg to note t at wor y ac man et a.. · 

showed that C-alkylation of metal enolates in solution is preferred due to co-ordination 

of the enolate oxygen and the metal cation which decreases the reactivity of the oxygen 

atom relative to the carbon atom. 

A second possible side reaction involves proton exchange between the product and any 

unreacted enolate leading ultimately to disubstitution. (Scheme 79.) 

(>I 



l 
0 O" 

Rl�R2 + 

Scheme 79. 

This reaction is minimized or possibly stopped by the order of addition of reactants,. 

i.e. the enolate is added slowly to the acid chloride or anhydride. Thus the product will

never be in the presence of any unreacted enolate. wi A second barrier to the said 

reaction (Scheme 79.) is applicable when N-propionyloxazolidin-2-ones and probably 

N-propionylimidazolidin-2-ones are a-acylated. (Scheme 80.)

LDA 

RCOX 

(66) 

Scheme 80. 

The remammg proton Ha. is surprisingly enough, not very acidic even though 

conventional wisdom states that it should be so. Those conformations of the 

dicarbonyl (66)5
that contribute to the acidity of Ha are destabilized by Au strain 

interactions. 

Racemization studies carried out with (67) showed the followed results: 

a) Under mildly basic conditions (Et3N + (67), 25 ° C), the dicarbonyl skeleton

(67) reached equilibrium with (68) over a 24h period.
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(67) 

Me, Jl IT IT 

\_J�
Me 

.- ·- Me 

M/ \11

(68) 

This compares well with (69) and (70) which equilibrate under mildly basic conditions 

(Et3N) over an 18h period. 4

(69) (70) 

b) Under acidic conditions which include both silica and HCI, (67) reached

equilibrium with (68) over 48 hours and 16 hours, respectively. Compound

(69) on the other hand is resistant to HCI, CHCb and silica.4 A possible

mechanistic explanation for this acid catalysed racemization is illustrated in 

Scheme 81. 
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Scheme 81. 

Back donation from the imide nitrogen atom will probably mean that the lone pairs on 

carbonyl I will be more loosely bound and therefore more likely to take part m a 

chemical reaction as compared to the lone pairs on carbonyl II. 

2.5. The acylation reaction between enolate (65) and various acylating a2ents. 

(65) 

The chiral auxiliary was smoothly acylated by reaction of its Li-anion with propionic 

anhydride or propionyl chloride yielding (-IR, 5S) - 1,5-dimethyl-4-phenyl-3-

propanoylimidazolidin-2-one (50). Kinetic deprotonation of (50) yielded the expected 

Z-enolate (65) which upon reaction with various acylating agents gave a mixture of

diastereomeric �-dicarbonyl compounds. (Scheme 82.) 
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(1) 

BuLi. O oc Me--._NLN� LDA ► (65) µ - l -780C 

Me--._JNUR 
LJ � .· ·. Me 

Ml -�Ph

Major 

Ml 1>h 

(50) 

Me
--._ 
Jl 

N 

Mt Ph 

Minor 

(RC0)2 

RCOX 

Table 4: d.e. for the acylation reactions 

Entry Major R Major:Minor d .. e. 

I 67 Me 9.7 : I 81.25% 

2 73 Et 27 : I 92.9%(a) 

3 72 Ph 39 : I �95% 

(a) Product not isolated.

Scheme 82. 

2.2.4. The determination of the diastereomeric ratio for the acvlation reaction. 

R 

The d.e. for the acylation reaction (Scheme 82) can to all intents and purpo·ses be

interpreted as an indication of the asymmetric induction achievable with the 

imidazolidin-2-one moiety. 

Physical determination of the d.e. can be achieved by 1H N1vIR analysis of a number of 

peaks which include:-

a) the singlet due to the N-Me

b) the doublet due to H-4

c) The doublet due to the methyl attached to C-2'

<,5 



d) the quartet due to C-2' itself (See structure (71)). 

�--� !,,J R V -1�X_ 3•,
, ._ Me H

Mi \h 
(71) 

Cardillo and co-workers76 used this method of 1H NMR analysis choosing the doublet 

due to the protons on C-4 to determine the d.e. for alkylation reactions with N­

acylimidazolidin-2-ones and stated that an asymmetric induction of � 95% can be 

assumed if only one diastereomer is recognizable from 1H NMR. 

This was done for the reaction yielding (72) and the d.e. determined using possibility 

(b). 

(72) 

The d.e. determination for the reaction yielding (67) was carried out on the crude 

product mixture without removal/separation of precursor (50.) This was possible 

because the peak chosen for analysis, the singlet due to H-4', is found in an uncluttered 

part of the spectrum and is not represented in precursor (50). 

Me .... �M· O 4' ' I' 
3

' 
· Me

\_J i 
.- ·. Me 

Ml -�Ph

(67) 
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The d.e. determination for the reaction yielding (73) was achieved by H 1 NMR analysis 

of the quartet due to H-4'. The reasons governing this choice are akin to those which 

determined the choice for (67). 

0 0 0 
A 11 2' 11 4' • , e 

Me-N N� 
LJ l\iie 

Me Ph 

(73) 

2.2. 5. The ori!!in of stereoselectivity in the acylation reaction. 

The observed enantioselection can be explained by invoking the idea of a planar anion 

or enolate.4· 
76

· 102 (65) 

(65) 

Enolate 1t-facial selection, i.e. whether attack comes from "above" or "below", is 

determined by the steric limitations imposed upon the transition state by the relevant 

substituents. With the enolate in question ( 65) the direction of approach of the 

acylating agent will be such that it nears the enolate from the least hindered side in 

accordance with Cram's Rule. Thus the acylating agent will approach the Enolate re­

face opposite the phenyl ring which is the embodiment of the aforementioned steric 

constraints giving the following product mixture. (Scheme 83.) 
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(65) .. 

Ill 

major 

Scheme 83. 

Ill 

M•,�1/R
: ·. Mc 

M/ \h 

minor 

As previously stated the phenyl moiety is responsible for the directing influence which · 

sees the major component being formed preferentially. It therefore stands to reason 

that if the steric bulk of this substituent could be increased, one would expect the 

product mixture to show an even greater proportion of the major component(See 

scheme 83). 

This prediction was shown to be true by Drewes et af2 who hydrogenated the phenyl 

moiety converting it to a cyclohexyl substituent. The d.e. for the acylation reaction 

using acetic anhydride or acetyl chloride then increased to 96%81 as opposed to the 

81.25% obtained by us. (Scheme 84) 
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........_ A� Nu � Me

(7-l) 

: ·. Me

Ml 

b 
d.e. = 96 ¾: (7-l) : (75) = 49 : l

Scheme 84.

(75) 

This mechanistic explanation for the observed stereoselection also holds true for 

alkylation and acylation of N-propionyloxazolidin-2-ones and shows a similar 

dependance on "steric bulk." (Scheme 85.) 

MeCOCl
► 

Scheme 85. 

R 1 = isopropyl 
R 1 =Me 
R 1 =Ph 

96: 4 
70: 30 
81 : 19 

From this one can see, if such an analogy is possible, that the cyclohexyl substituent is 

at worst as bulky as the isopropyl substituent. 
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It is also important to note that the minor diastereomer (See scheme 82 and83) in the 

context of the mechanism put forward is formed due to approach of the acylating agent 

from the more hindered side and not as a result of acylation of the E-Enolate. (76) 

Me,l)yH 
.. ·. Me 

M/ -�Ph
(76) 

It would thus seem likely that enolate geometry whether E or Z is irrelevant to the 

stereochemical outcome of the reaction (because the enolate is planar.) 

2.2.6. The importance of 13-dicarbonvl compounds. 

Retrosynthetic analysis of Bleomycin A/3, an antitumour antibiotic, has shown that 

(2S, 3S, 4R)-4-amino-3-hydroxy-2-methyl pentanoic acid (77) is a convenient starting 

point for its synthesis. 

(77) 

Syn th on (77) is derived from a [3-dicarbonyl precursor (78 ), itself formed interestingly 

enough by acylation of a N-propionyloxazolidin-2-one (79). (Scheme 86.) 
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99: l 

Scheme 86.

·synthon (62), a key intermediate in the synthesis of oudemansin94 (See Section 2.2), is

also derived from a f3-dicarbonyl precusor (80)

Me 

0 0 

(80) 

OMe 

2.3 The Reductive alkylation of adduct (67) with various Grignard reau:ents.

Adduct ( 67) was allowed to react with 3 equivalents of the relevant Grignard reagent

at -78°C to give the synthetic equivalent of the aldol products which would be

produced by the reaction between ketones and N-propionylimidazolidin-2-one (50).

(Scheme 87, Table 5)
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(67) 

3 RMgBr 
► 

-78 oc 

Table 5: d.e. 's for the various Grignard reactions. 

major R major : minor 
1 (81) Et 8,8: 1 
2 {82) Ph 16: 1 
3 (83) CH2=CH 10,5 : 1 
4 {84) Benzyl Only type (91) 

products. 

Scheme 87 

+ 

0 O OH 

Me, )l II f �Me
'N �-,,,,R 

\_J � 
_. ·. Me 

Mi \h 

(mi)l 

d.e.
79,6% 
88,3% 
82,7% 
100% 

2.3.1. The determination of the diastereomeric ratio in the Grignard reaction. 

With the Grignard reaction in question (Scheme 87.) the d.e. is an indicator of the 

degree of asymmetric induction possible with an a-chiral centre. (Scheme 88.) 

RMgBr 

Scheme 88. 

Various methods are used in the d.e. determination for reactions producing products 

containing a hydroxyl group. These include analysis of the silyl ether by GC/MS and 
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analysis of the trifluoroacetate derivatives by 19F NMR spectroscopy. The most

popular methods are however those which involve the use ofNMR spectroscopy. 

These may involve analysis of the crude product or derivatives thereof Derivitization 

procedures are exceptionally diverse but the most popular ones are acetylation and 

benzoylation. 

All the procedures discussed up to now are, however, subject to one major flaw : they 

require large amounts of pure material. The ideal derivitization/analysis method should 

allow in situ derivitization of small amounts of material. 

Work by Malissar81 and earlier by Goodlet103 addressed this problem. They carried out 

in situ acylations of hydroxyl groups with trichloroacetyl isocyanate (TAI) (85). The 

resultant carbamate (86) is produced qualitatively irrespective of whether the alcohol 

moiety is 1°, 2° or 3°. (Scheme 89.) 

(85) 

Scheme 89. 

IT e coc0,N-T o

H-OR

� 

l 
0 0 

Cb)l�OR 
H 

(86) 

The d. e. 's determined using the TAI protocol showed good agreement with the d. e. 's 

obtained using more traditional methods as can be seen from the following examples 

taken from work done by Malissar.81 (Scheme 90, Table 6.) 
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n-Bu2BOTf, Et3
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M•,�)ytR 
.· -. Me 

Ml "-::.Ph 

major (syn) 

M•,�N1 r
R 

u/ Y.�
.· -. Me 

Ml \)h 
minor (anti) 

Table 6: Comparative d.e.'s obtained by various analytical methods. 

Entry 

(a) 

(b) 

(c) 

1 

2 
3 

4 

R d.e. (Major : minor)
lH Nl\.1R(a) GCIMS(b) 19pNMR<c> 

C6Hs 98: 2 98: 2 99: 1 
4NO2- C6Hs 95: 5 - -

4MeO- C6Hs 96: 4 - -

C2Hs 75: 25 - 72: 28 
1H NMR: analysis of the doublet due to C-4 or singlet due to NMe. 

GC/MS analysis of the TMS ether. 
19F NMR analysis of the trifluoroacetyl derivative. 

Scheme 90. 

TAI 
98: 2 
96: 4 
96: 4 

74: 26 

It was thus decided to employ the TAI protocol because not only are the d.e's 

accurate, but the method also has other advantages. 

The carbamate NH resonance is shifted downfield with a value greater than 8 ppm. 

This means it is found in an uncluttered part of the spectrum and the NH resonance 

does not couple with any other substrate protons. 

Attendant simplification of the spectrum is also possible as the hydroxyl signal 

disappears allowing better resolution of that part of the spectrum where it originally 

resided. 
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Last, but not least, the reagent can be used in excess as it does not contain any 

protons. 

2.3.2. The chemistry of the Grignard reaction. 

Perhaps the most striking feature of the Grignard reaction as illustrated in Scheme 87 

is the selectivity of the reaction. Of the three potential reaction sites, i.e. three 

carbonyl moieties, only one takes part in the chemical reaction. 

A possible explanation for this observation is based on electronic factors, i.e. back 

donation of the nitrogen lone pairs renders the C-2 carbonyl as well as C-1' carbonyl 

less susceptible to nucleophilic attack. (Scheme 91.) 

0 0 0 

Me LJ 11 2, 11 4,
'-�N�Me

� .· ·. Me 
Mi �Ph 

Scheme 91. 

Attempts by Malissar81 to synthesize ketones from (87) by displacing the auxiliary with 

Grignard reagents failed echoing the concept of diminished reactivity for carbonyls C-2 

and C-1' (Scheme 92.) 

R�Me 
RMgBr ► __ ) 

Ph 

+ 

Me 

(87) 
R = Et ; no reaction 

R = PhC==C ; no reaction 

Scheme 92. 
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2.3 .3. The origin of Stereo selectivity for the Grignard reaction. 

The stereochemical outcome of the reaction as illustrated in Scheme 87 is consistent 

with the proposed mechanism which postulates intermediate (88). (Scheme 93. )93
• 

94
' 

4 

Major 

3 RMgBr 
► 

Re Re 
M�r M�r 

o-· ··o·· ··oM'ON�M�,ffi 

Mf 1>h 

(88) 

l 

Minor 

Scheme 93 

As can be seen form Scheme 93 metal ion chelation plays a crucial role in 

diastereoselection with the observed 1,2 asymmetric induction solely due to the 

proximal methyl bearing carbon atom. Approach of the nucleophile from the less 

hindered side of the molecule or Si 10
4 face affords the major adduct, with the minor

adduct being attributed to approach of the nucleophile from the more hindered side or 

Re face. 10
4 

That it was indeed the 2' position and not the chiral centre on the auxiliary which . 

predetermines the configuration of the 3 '-hydroxyl group (Scheme 93) was 

demonstrated by Dipardo and Bock93 who subjected ketones (89) and (90) to identical 

reduction procedures. 
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(89) (90) 

Reduction of (89) afforded alcohol (91) with less than 1 % of the corresponding isomer 

(92) being formed.

(91) 

J 1 J: /�,
�Y.I 

(92) 

Reduction of (90) on the other hand afforded a 50/50 mixture of (93) and (94). 

NHBoc 

(93) (94) 

This observation showed that asymmetric induction was due to the 2' chiral centre and 

not the chiral centre on the auxiliary itself 

2.4. Reductive Removal of the chiral auxiliary from the B-hydroxy carbonyl sidechain 

to afford the 1,3-diol. 

Reductive cleavage of N-acylimidazolidin-2-ones with hydride reagents has previously 

been described by Cardillo and co-workers using both LAH76 and LiBRi.76 (Scheme 

94.) 
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Me......._�
N

�CgH18

\_J i 
_. -. Me 

Ml l>h 
(94 % d.e.) 

0 O 

Me,()/ycrm

_.- -� CH2Ph 
Ml 1>h

(92 % d.e.) 

LAH,o0c
I hr. 

0 

Me......._�
N°""

H +

M/ \Ph 

0 

Me......._
�

N°""
H +

Ml
_. 

\Ph 

Me 

82 % yield 
94 % e.e. 

l H,/Pd

Scheme 94. 

91%yield 
93 o/oe.e. 

As can be seen the reductive cleavage procedure affords the desired product in 

undiminished optical purity and also allows recovery of the auxiliary itself The LAH 

protocol was therefore chosen to effect unmasking of the 1,3-diol. (Scheme 95.) 

T bl 7 R a e esu ts o f h t 

Entry 

1 (95) 
2 (96) 
3 (97) 
4 (98) 

LAH, OJC 

0 

Me...__�
N"'

H +

Me./ \Ph 

"th LAH e c eava_ge reaction w1 

R ee 

Ph 100% 
CH2Ph -

Et 100% 
CH=CH2 100% 

(a) isolation of the diol was difficult and a pure sample was not obtained.
Scheme 95. 
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As can be seen the yields are exceptionally low, contrary to earlier expectations, and 

the reasons for this are unknown at this time. 

2.4.1. Evidence for the relative stereochemistry of the 1,3-diols. 

The relative stereochemistry proposed by us due to mechanistic considerations for the 

1,3-diols (and thus the Grignard adducts) was confirmed by comparison with data 

published by Hoffman and Sander. 105 

Their study of the allylboration reaction yielded two diols (99 and I 00) whose relative 

stereochemistry was unambiguously determined. 

OH OH OH OH 

Me 
(99) (100) 

The Nl\1R data, both 13C and 1H, published for (99) and (100), was identical to that

obtained by us for (97) and (95), respectively. (Table 8 and 9) 

YH JH 

MeJYMe Me 
(97) (95) 
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Table 8: Comparison of the NMR data for the pair (99)/(97) 

1HNMR I3CNMR 
(99) (97) (99) (97) 
0,79 0,80 7,2 728 
0,90 0,90 12,7 12,58 
1, 11 1, 14 21,9 22,00 
1,52 1,54 34,0 34,06 
1,53 40,9 40,96 

1,82 - 1,92 1,8 - 2,0 66,0 66,08 
3,1 (2 x OH) 2,0 - 3,0 (2 x OH) 76,4 76,501 

3,63 3,674 - 3,761 
3,73 

Table 9: Comparison of the NMR data for the pair (100)/(95). 

1
HNMR 13CNMR 

(100) (95) {100) (95) 
0,91 0,95 12,3 12,31 
1,48 1,518 25,7 25,48 

1,94 - 2,05 1,988 - 2,07 44,0 43,86 
2,71 (OH) 3,0 - 3,4 (OH) 66,2 66,12 
3,35 (OH) 3,46 - 3,61 78,1 78,193 
3,43 - 3,58 3, 7 - 3,9 (OH) 125,0 125,03 

7,19 7,195 - 7,46 126,7 126,63 
128, 1 128,08 
148,3 148,26 

As can be seen the diol structures proposed by us differ from those put forward by 

Hoffman et al. 
106 All spectra were obtained using deuterochloroform as solvent.The 

relationship between (99) and (97) as well as (100) and (95) can be found in an 

examination of the fluctional behaviour associated with the diols. (Scheme 96.) 

80 



OH OH 

Me 
2 

l 

Ph � 
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A 
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Me 1 
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D 
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◄ 

The various versions, e.g. 

OH OH Me OH 

► 

Ph� 
.,c .. 

� 
Me � Ph � 

Me Me 

B C 

OH OH Me OH 

► 

� 

.,c .. II0,,6) 
Me/ !e Me Me 

E F 

Scheme 96. 

(100) and (95) are in fact rotational conformers with the 

conformation adopted by the diol being that of lowest entropy. For the pair (100)/(95) 

the correct conformer will probably be (100) as the C2-M�C3-Me interactions 

associated with it will be smaller than the Ci-M�C3-Ph interactions for (95). 

Hydrogen bonding which provides further stability is also possible with (I 00). 

(Scheme 97). 

Scheme 97. 

The same logic also applies to the (99)/(97) pair and will probably see (99) being the 

favoured conformer. 

2. 5. Further Research ideas.

This scheme for preparation of 1,3-diols offers stereocontrol but the overall yields are 

low. Further research will be conducted in this area with particular interest being 



focused on the reduction step (Scheme 95.). Different reducing agents will be tried as 

well as the reduction of a protected analogue ( 101) to see if it increases the yield. 

Me Ph 

(101) 

New uses of the diols will also be explored. One possibility would be the synthesis of a 

chiral oxazine (102) which would serve as the basis of an investigation of the 

stereocontrol achievable with this moiety. (Scheme 98.) 

:)C�M.eR3 
" ___ _,,l HO R4 

.. 

(102) 

R4-CHO 

Scheme 98. 

82 



3. EXPERIMENT AL.

3 .1 Instrumentation and Chemicals. 

1
H N1\1R and 13C N1\1R spectra were recorded on a Varian Gemini 200 Mhz

instrument and, unless otherwise stated, CDCh was used as the solvent with 

tetramethylsilane serving as internal standard. Mass Spectra were recorded on a 

Hewlett-Packard gas chromatographic mass spectrometer (HP 5988 A). Optical 

Rotations were determined using a Perkin-Elmer 241 digital polarimeter. Infra Red 

spectra were obtained using a Shimadzu FTIR - 4300 spectrophotometer. Elemental 

analyses were carried out using a Perkin Elmer 2400 CHN elemental analyser. Melting 

points were measured on a Kofler hot-stage apparatus and are uncorrected. 

Thin layer chromatography was carried out with precoated Kieselgel 60 F254 Merck 

plastic sheets and preparative column chromatography was performed according to the 

principles of Still et al.
106 on Merck silica gel 60(230 - 400 mesh). Solvents were dried 

using standard techniques and distilled prior to use. The imidazolidin-2-one 

derivatives were best visualized on precoated Kieselgel plastic sheets by using the 

cobalt (II) thiocyanate dip. 107 The 1,3-diols were visualized with the vanillin/H2SO4108 

stain which showed the dials as blue-green spots. 

Low temperatures were maintained using dry ice/solvent slush baths according to the 

procedures of Phipps and Hume.109 The alkyl halides utilized in the Grignard reactions 

were dried and purified according to the techniques catalogued by Perrin and co­

workers. 110 
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3 .2. Preparations. 

( 4R, 5S)-l,5-Dimethyl-4-phenylimidazolidin-2-one. (1 ). 

0 

Me-N
�-H

H-)s 4( •II

M/ 0 
(I) 

(-)- Ephedrine HCI (50,00g, 0,29 mol) and urea (45,00g 0, 75 mol) were heated for 30 

mins at l 70-l 75°C. The resultant melt was further heated at 200-210°C for 60 min 

with magnetic stirring. Upon completion of said heating, the mixture was cooled to 

100°C and treated with H20. The resulting solid was then washed with aq. HCl (5%) 

followed by H20. Decolourization with activated charcoal and recrystallzation from 

ethanol afforded ( 1) as white needles. (29, 4g . 61,25% ), m. p. 178°C (lit. 7, 177-

l 790C); (Found: C, 69,50; H, 7,40; N, 14,69. C11H 14N20 requires C, 69.45; H, 7.42;

N, 14.72%) [a]0 = -44,3° (c 0,9., MeOH); (Lit.6 [a]0 = -44,5° (c 3,0 MeOH) Vmax

(CHCh)cm-1 3460 (NH) and 1704 (CO); ◊H (200 MHz)

0.73 (3H, d, J 6.5Hz, 5-Me); 2,72(3H, s, NMe); 3,86 (lH,dq, J 9 and 6,5 Hz, H-5);

4.77 (lH, d, J 9 Hz, H-4); 5.70 (lH, bs, NH); 7,24 - 7,38 (SH, m, Ar-H); Be (50

MHz); 14,30 (q, 5-Me); 28,22 (q, NMe); 57,74 (d, C-5); 58,25 (d, C-4); 127,55;

128,25; 128,77 (5d, Ar-CH); 138,73 (s,Ar-C); 163,22 (s, C-2); m/z 190 (M+, 62%);

175 (100%) and 58 (43%).
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( 4R, 5S)-l,5-Dimethyl-4-phenyl-3-propanoylimidazolidin-2-one (50) 

A stirred solution of (1) (5,00g, 26,28mmol) in dry THF (30 ml) was treated with an 

equimolar amount of n-BuLi at 0°C giving a yellow solution. After 30 min at 0°C 

propionic anhydride (3,39 ml; 26,28mmol) was added and the resultant mixture was 

stirred for a further 60 min at 0°C before being quenched with saturated NaHCO3. 

The THF was removed under reduced pressure and the residue partitioned between 

H2O and CH2Ch. The organic phase was dried (MgSO4) and the solvent removed. 

Recrystallization of the residue from CHCb afforded (50) as white crystals (5,7g, 

88%) m.p. 103,5°C (Lit.7
, 90°C); (Found: C, 68,39; H, 7,62; N, 11,27. C14H18N2O2 

requires C, 68,27; H, 7,37; N, 11,37%); [a]0 =54, 1 ° (c 1,0 CH2Cl2) lit.'·, [a]o = 54,7°

(c 1,0 CH2Ch); Umax (CHCb)cm· 1 1728 (CO) and 1685 (CO); 8H(200 MHz) 0.80(3H, 

d, J 6,7Hz, 5-Me), 1,10 (3H, t, J 7,4Hz, H-3'), 2,82 (3H, s, NMe), 3,00(2H,q, J 7,5 

Hz, H-2'), 3,90(1H, dq, J 6,62 Hz, H-5); 5,30 (lH, d, J 8,58 Hz, H-4), 7, 12 - 7,38 

(SH, m, Ar-H); Cc (50MH) 8,57 (q, C-3'), 14,93(q,5-Me); 28,17(q, NMe); 29,30 (t, C-

2); 54,00 (d, C-5), 59,27(d, C-4), 126,91, 128,02, 128,48 (5d, Ar-CH); 136,7 (s, Ar­

C), 156,00 (s, C-2), 173,86 (s, C-1 '); m/z 246 (M +,35%), 217(1 %), 189(47%) and 

132(100%). 

General Procedure 1. Diastereoselective Acylations of (50) 

n-BuLi (1.00eq) was added dropwise to a stirred, cooled (O°C) solution of DIPA

(1.05eq) in dry THF (10ml). After 30 mins at 0°C the reaction mixture was cooled to 
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-78°C and treated with a solution of (50) (1,00eq) in THF (5 ml). The reaction

mixture was then stirred for an additional 30 min before being treated with the 

appropriate acyl halide or anhydride (1,00 eq) and was kept at -78°C for a further 15 

min. The resultant mixture was then removed from the cooling bath and allowed to 

warm up for 2 min before being quenched with saturated aq. NILCI. The THF was 

then removed under reduced pressure and the residue partitioned between H2O and 

CH2Ch. The organic extract was then dried (MgSO4), concentrated and purified. 

(4R, 5S, 2' S) -l ,5-Dimethyl-4-phenyl-3-(2'methyl-3-oxobutanoyl) imidazolidin-2-one, 

(67). 

The lithum enolate of (50) (10,00g, 39,64 mmol) was allowed to reacted with acetic 

anhydride (3,75 ml, 39.64 mmol) according to general procedure 1. This reaction 

yielded (68) as white needles (6,06 g, 53,02%) m.p. l 16°C (from EtOAc). 

(found : C, 66,58; H, 7,05; N, 9,83%. C 16H20N2O3 requires C, 66,65; H, 6,99; 

N,9,71%); [a.]o -14,125° (c 1,15, CH2Ch); Umax (KBr)cm-1 1724(CO), 1720(CO) and 

1691(CO); 0H(200 :MHz). 

0,78 (3H, d, J 6,6Hz, 5-Me); 1,3 (3H, d, J 7,31 Hz, 2'-Me); 2,27 (3H, s, H-4'); 2,79 

(3H,s, NMe); 3,90 (lH, dq, J 6,6 Hz, H-5); 4,60(1H, q, J 7,24 Hz, H-2'); 5,30 (lH, d, 

J 8,75 Hz, H-4); 7, 19 - 7,36 (SH, m Ar-H); 15c (50 :MHz); 12,42 (q, 2'-Me); 15,00 (q, 

5-Me); 28,04 (q, NMe); 28,41 (q, C-4'); 53,06 (d, C-2'); 54,07 (d, C-5); 59,45 (d, C-

4); 127,13; 128,08; 128,37 (5d, Ar-CR); 135,88 (s, Ar-C); 155,70 (s, C-2); 169,22 (s, 

C-1'); 205,46 (s, C-3'), m/z 288 (M
+
,2%); 246(55%); 217(1%); 188(56%); 175(44%);

58(100%). 
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( 4R,5S,2' S)-1,5-Dimethyl-4-phenyl-3-(2' -methyl-3 '-oxo-3 '-phenylpropanoyl 

imidazolidin-2-one (72) 

The lithium enolate of (50) (l,0g, 3,96 mmol) was allowed to react with benzoyl 

chloride (0,46 ml, 3,96 mmol) according to general procedure I. This reaction yielded 

(75) as white crystals (0,97 g, 70,0¾)m.p. 159-160°C. Purification was as follows:-

(a) Silca column using CH2Ch as eluent.

b) Gradient elution using a 2 mm chromatotron plate with

i) 70/30 Hex/EtOAc

ii) CH2C'2

(Found : C, 71,85; H, 6,30; N, 7,82. C21H22N2O3 requires C, 71,98; H, 6,33;N, 

7,99%); [a]o= + 73,506° (c. 1,0625, CH2Ch); Umax (KBr)cm- 1 1728(OH), 1696(CO) 

and 1683(CO); OH (200 MHz); 0, 78 (3H, d, J 6,6 Hz, 5-Me); 1,40 (3H, d, J 7,3Hz, 2'­

Me); 2,75 (3H, s, NMe); 3,80 - 4,00 (lH, dq J 6.6Hz, H-5); 5,30 - 5,40 (lH, d, J 

8,8Hz, H-4);5,40 - 5,60 (IH, q, J 7.23Hz, H-2'), 7,22 - 8,02 (I0H, m, Ar-H); 8c (50 

MHz); 13,53 (q, 2'-Me); 15,07 (q, 5-Me); 28,14 (q, NMe); 48,52 (d, C-2'); 54,10 (d, 

C-5); 59,50 (d, C-4); 127,11; 128,08; 128,34; 128, 36; 132, 78 (10d, Ar-CH); 135,80

(s, Ar-C); 155,65 (s, C-2); 197,96 (s, C-3'); m/z; 350 (M\ 8%); 245 (15%); 190 (6%); 

189 (25%); 175 (8%); 105( 100%) 

General Procedure 2: Diastereoselective Grignard reactions. 

The appropriate alkyl halide (3,00 eq) was allowed to react with magnesium (3,00 eq) 

under strictly anhydrous conditions in dry Et2O (25 ml). This solution of the freshly 
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formed Grignard reagent was then diluted with CH2Ch, (25 ml) before being cooled to 

-78°C. This mixture was then transferred via a cannular to a solution of (68) (1,00 eq)

in THF (IO ml) also at -78°C. The resultant reaction mixture was then stirred for an 

additional 3 hours at -78°C before being quenched with NH.Cl. All operations to this 

point were carried out under N2. 

The mixture of organic solvents was removed under reduced pressure and the 

remaining residue partitioned beteween H2O and CH2Ch. The organic extracts were 

dried (MgSO4), concentrated and purified. 
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(4R, 5S, 2'S, 3'R)-1,5-Dimethyl-4-Phenyl-3-(2',3'-dimethyl-3'-hydroxypentanoyl) 

imidazolidin-2-one. (81) 

·· ...

©

Me 
,,

QH 

Me 

Me 

A solution of (67) (850 mg, 2,95 mmol) in THF (10 ml) was allowed to react with a 

solution of ethylmagnesium bromide (1,18 g, 8,84 mmol) according to general 

procedure 2. This reaction yielded (93) as white crystals. (562 mg, 59.8%) m.p. = 

84°C (Purified by flash chromatography with Hex/EtOAc (80/20) as the eluent.) 

(Found : C, 67,92; H, 8,19; N, 8,81. C18H26N2O3 requires C, 67,90; H, 8,23; N, 

8,79%); [a.]o = -82,02° (c 0,7599 CH2Ch); Umax (KBr)cm·1 3460(OH), 1710 (CO) and

1685 (CO); OH (200 MHz); 0,80 (3H, d, J 6, 7 Hz, 5-Me); 0,92 (3H, t, J 7,4 Hz, H-5'); 

1,01 (3H, S, 3'-Me); l,17(3H, d, J6,8 Hz, 2'-Me), 1,40 (2H, q, J7,5 Hz, H-4'), 2,83 

(3H, s, NMe); 3,90 (lH, dq, J 6,6 Hz, H-5); 3,99 (lH, bs, OH); 4,2 (IH, q, J 7 Hz, H-

2'), 5,30 (lH, d, J8,7 Hz, H-4); 7,16 - 7,37 (SH, m, Ar-H); Oc (50 MHz); 8,04 (q, C-

5'); 13,16 (q, 2'-Me); 14,93 (q, 5-Me); 22,00 (q, 3'-Me); 28,12 (q, NMe); 34,36 (t, C-

4'), 43,57 (d, C-2'); 53,56 (d, C-5); 59,70 (d, C-4); 74,43 (s, C-3'); 126,92; 128,04; 

128,40; (5d, Ar-CH); 136,39 (s, Ar-C); 156,05 (s, C-2); 176,64 (s, C-1 '); m/z. 245 

(6.%); 189 (20%); 132 (97%); 77 (42%); 58 (100%) 
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( 4R,5S,2' S,3' R)-1,5-Dimethyl-4-phenyl-3-(3 '-hydroxyl-2' -methyl-3' -phenylbutanoyl) 

imidazolidin-2-one. (82) 

OH 

Me 

Ph ... ©Me 
,, 

A solution of (67) (500 mg, 3,47 mmol) was allowed to react with a solution of 

PhMgBr (1,89 g, 10,40 mmol) according to general procedure 2 to afford (94) as 

white crystals. (426 mg, 34,6%) m.p. 140°C. (Purified by flash Chromotography·with 

Hex/EtOAc (80/20) as eluent.) 

(Found : C, 70,91; H, 7,30; N, 7,78; C12H26N2O3 requires C, 71,16; H, 7,39; N, 

7,90%); [a.]n = -145,67° (c 1,645, CH2Ch); Umax (.KBr)cm·' 3462 (OH); 1726 (CO) 

and 1656 (CO); OH (200 MHz); 0,65 (3H, d, J 6,6 Hz, 5-Me); 1,40 (3H, d, J 6,9 Hz, 

2'-Me); 1,40 (3H, s, H-4'); 2,79 (3H, s, Nme), 3,80 (lH, dq, J 6,6 Hz, H-5); 4,86 (lH, 

bs, OH); 4,92 (lH, q, J 7,02 Hz, H-2'); 5, 10 (IH, d, J 8,8 Hz, H-4); 6,44 - 7,45 (l0H, 

m, Ar-H); Oc (50 MHz); 13, 11 (q, 2'-Me); 15,01 (q, 5-Me), 27,70 (q, C-4'); 28,26 (q, 

NMe); 44,42 (d, C-2'); 53,32 (d, C-5); 59,14 (d, C-4); 75,40 (s, C-3'); 124,81; 125,86; 

126,31; 127,24; 128,08; 128,34 (10d, Ar-CTI); 135,38; 148,37; (s, Ar-C); 154,91 (s, 

C-2); 177,75 (s, C-1'); m/z 245 ( 6%); 189 (24%); 132 (97%); 112 (28%); 77 (42%),

58 (100%). 
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( 4R, 5S, 2'S, 3' S)-1,5-Dimethyl-4-phenyl-3(2',3'-dimethyl-3'-hydroxy-4'-pentenoyl) 

imidazolidin-2-one. (83) 

A solution of (67) (500 mg, 1.73 mmol)was allowed to react with a solution of vinyl 

magnesium bromide (682.8 mg, 5.2 mmol) according to general procedure 2 to afford 

(95) as white crystals. (309 mg, 56.5%) m.p. = ll 7°C. (Purified by flash

chromatography with petroleum ether (60-80)/EtOAc (70/30) serving as the eluent.) 

(Found : C, 68,30; H, 7, 70; N, 8,90. C1sH24N2O1 requires C, 68,33; H, 7,65; N, 

8,85%); [a]0 -119,93° (c 0,5253, CH2Ch); Umax (KBr)cm·1 3456 (OH); 1768 (CO);

1658 (CO); and 985 - 1000 (R-CH=CH2); Ott (200 MHz); 0,80 (3H, d, J 6,61 Hz, 5-

Me); 1,17 (3H, s, 3'-Me); 1,25 (3H, d, J 7,03 Hz, 2'-Me); 2,84 (3H, s, NMe); 3,90 

(lH, dq, J 15.2 Hz, H-5); 4, 15 (lH, bs, OH); 4,25 (lH, q, J 6,9 Hz, H-2'); 4,80 (lH, 

dd, J 11,9 Hz, Ha-5'); 5,08 (IH, dd, J 18,5 Hz, Hi,-5'); 5,25 (lH, d, J 8,61 Hz, H-4), 

5,80 - 6,00 (IH, dd, J 10,7 and 18,0 Hz, H-4'), 7,10 - 7,36 (SH, m, Ar-JJ); Oc (50 

:MHz); 12,64 (q, 2'-Me); 14,93 (q, 6-Me), 24,06 (q, 3'-Me), 28,16 (q, NMe); 44,24 (d, 

C-2'); 53,59 (d, C-5); 59,67 (d, C-4); 112,56 (t, C-5'); 127,14; 128,08; 128,29 (5d,

Ar-Of); 144,47 (d, C-4'); 155,69 (s, C-2); 176,79 (s, C-1'); 74,19 (s, C-3'), 135,95 (s, 

Ar-C); m/z. 245 (10%); 189 (25%t 175 (32%); 58 (100%) 
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( 4R,5S,2' S,3 'R)-1,5-Dimethyl-4-phenyl-3-(2',3' -dimethyl-3' -hydroxyl-4' -

phenylbutanoyl)imidazolidin-2-one (84) 

A solution of (67) (850 mg, 2,95 mmol) was allowed to react with a solution ofBenzyl 

Magnesium Bromide (I, 73 g, 8,84 mmol) according to general procedure 2 to afford 

(96) as white crystals (427 mg, 38,04%) m.p. == 168°C. (Purified by flash

chromatography with petroleum ether. (60-80)/EtOAc (80/20) as eluent.) 

(Found : C, 72,58; H, 7,38; N, 7,40. C23H2sN2O3 requires C, 72,61; H, 7,42; N, 

7,36%). [a]o -42,89 (c 0,9023, CH2Ch); Umax (Kbr)cm-1 3548 (OH); 1707 (CO) and 

1652 (CO); 8H (200 MHz); 0,80 (3H, d, J 6,6 Hz, 5-Me); 0,946 (3H, s, 3'-Me); l ,25 

(3H, d J 6,96 Hz, 2'-Me); 2,706 (2H, s, H-4'); 2,812 (3H, s, NMe); 3,90 (lH, dq, J 

6,6 Hz, H-5); 4, 14 (IH, q, J 6, 73 Hz, H-2'), 4, 14 (IH, bs, OH), 5,30 (IH, d, J 8,6 Hz, 

H-4), 7,14 - 7,35 (l0H, m, Ar-H); 8c (50 MHz); 13,52 (q, 2'-Me); 14,90 (q, 5-Me);

22,15 (q, 3'-Me); 28.12 (q, NMe); 47,45 (t, C-4'); 4.5,17 (d, C-2'); 53,63 (d, C-5); 

59,96 (d, C-4); 74,56 (5, C-3); 126,16; 126,90; 127,07; 128,50; 130,64; (d, Ar-CH); 

136,23; 137,45 (s, Ar-C); 156,00 (s, C-2); 176 (5, C-1'); m/z 245 (4.2%); 189 (23%); 

132 (98%); 112 (30%); 77 (42%); 58 (100%) 
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General Procedure 3: Reductive Cleavage of (95) - (98) 

A solution of the appropriate product (1,00 eq) in dry THF (10 ml) was added 

dropwise to a stirred suspension of Li.AIRi (2,50 eq) in THF (5 ml) at 0°C. After 90 

mins at 0°C the reaction mixture was quenched with saturated °NH4CI. The THF was 

then removed under reduced pressure and minimal heat. The remaining residue was 

then partitioned between H2O (saturated with NaCl) and CH2Cb. The organic extracts 

were dried (MgSO4) filtered, concentrated and purified. (Removal of CH2Ch under 

atmospheric pressure and minimal heat.) 
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(2R, 3R)-2-Methyl-3-phenyl-l ,3-butanediol. 

(95) (100) 

Applying general procedure 3 to (82) (477 mg, 1,35 mmol) afforded the diol (107) as 

white crystals which were purified via flash chromatography over silica gel with 

Hexane/EtOAc (80/20) as the eluent. (30,8 mg, 12,66%) 

(Found: C, 73,00; H, 8,85; CuH1602 requires C, 73,28; H, 8,92%) [a.Jo = +35,065° (c, 

0308, CH2Ch); Umax (CH2Ch)cm-1 3612 (OH) and 3496 (OH); OH (200 MHz); 0,95 

(3H, d, J 7, 13 Hz, 2-Me); 1,52 (3H, s, H-4); 1.99 - 2,07 (IH, m, H-2); 3,00 - 3,40 

(IH, bs, OH); 3,46 - 3,62 (2H, m, H-1), 3,70 - 3,90 (lH, bs, OH); 7,20 - 7,46 (SH, m, 

Ar-H); Oc (50 MHz); 12,31 (q, 2-Me), 25,48 (q, C-4); 43,86 (d, C-2), 66,12 (t, C-1), 

78,193 (s, C-3); 125,03; 126,63; 128,08 (5d, Ar-CH); 148,26 (s, Ar-C); m/z 180 

(�,1%); 162 (12%); 121 (100%); 105 (82%); 91 (14%). 

(lit. 105 (2R, 3R)-2-Methyl-3-Phenyl-l,3-butanediol oH (300 MHz); 0,91 (d, J 7, lHz,

3H); 1,48 (S, 3H), 1,94 - 2,05 (m, lH); 2,71 (bs, lH), 3,35 (bs, lH); 3,43 - 3,58 (m, 

2H), 7,19 - 7,41 (m, SH); cSc(75 MHz); 12,3; 25,7; 44,0; 66,2; 78,1; 125,0; 126,7; 

128, l; 148,3. 
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(2R, 3S)-2,3-Dimethyl-l ,3-pentanediol.

q{
M, 

Me 
Me 

(97)

OH OH 

�Me

f �e 
Me

(99) 

Applying general procedure 3 to (81) (562 mg, 1,77 mmol) yielded the diol (109) as a

colourless oil which was purified via flash chromatography over silica gel with

hexane/EtOAc (70/30) as the eluent. (13,6 mg, 5,8%). [a]0 -8,08° (c 0, 136, CH2Ch);

OH (200 MHz); 0.80 (3H, d, J7,14 Hz; 2-Me); 0,90 (3H, t, J7,43 Hz, H-5), 1,14 (3H,

s, 3-Me), 1,54 (2H, q, J 7,00 Hz, H-4); 1,80 - 2,00 ( lH, m, H-2), 2,60 - 3,00 (bs, 2 x

OH); 3,67 - 3, 76 (2H, 2dd, H-1); Oc (50 MHz); 7,28 (q, C-5), 12,58 (q, 2-Me),; 22,00

(q, 3-Me); 34,06 (t, C-4); 40,96 (d, C-2), 66,08 (t, C-1); 76,501 (s, C-3); Umax

(CH2Cl2)cm·1 3496 (OH) and 3616 (OH); m/z 117 (5%); 103 (29 %); 85 (22%); 73

(100%); 57 (27%); 43 (50 %)

(lit. 105 (2R, 3S)-2,3-Dimethyl-l,3-pentanediol OH (300 :MHz); 0, 79 (d, J 7, 1 Hz, 3H);

0,90 (t, J 7,5 Hz, 3H); 1, 11 (S, 3H), 1,52 (q, J 7,4 Hz, lH); 1,53 (q, J 7,6 Hz, lH);

1,82 - 1,92 (m, lH); 3,1 (bs, 2H); 3,63 (dd, J 10,9 Hz and 4,2 Hz, lH); 3,73 (dd, J

10,9 and 42 Hz, lH); Oc (75 MHz); 7,2; 12, 7; 21,9; 34,0; 40,9; 66,0; 76,4.
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(2S, 3R)-2,3-Dimethyl-4-propene-l,3-diol (98) 

Y
H 

Me H� 

H, 

Applying general procedure 3 to (83) (309 mg, 0,98 mmol) afforded the diol (98) as a 

viscous colourless oil which was purified via flash chromatography over silica gel with 

hexane/EtOAc (70/30) as the eluent. (23,4 mg, 18, I%) [a]0 = -4,32° (� 0,231, 

CH2Ch); Um.ax (CH2Ch)cm·1 3608 (OH); 3496 (OH) and 985 - 1000 (R-CH = CH2); 5H 

(200 MHz); 0,95 (3H, d, 17,1 Hz, 2-Me); 1,25 (3H, s, 3-Me); 1,73 - 1,82 (IH, m, H-

2); 2,60 - 3,10 (bs, 2 x OH); 3,62 - 3,80 (2H, m, H-1), 5,08 - 5,14 (IH, dd, J 12,02 Hz 

and 1,34 Hz, H.-5); 5,24 - 5,34 (IH, dd, J 18,60 Hz and 1,325 Hz, Hi,-5); 5,89 - 6,03 

(IH, dd, J 10,705 and 28,02 Hz, H-4); o.:: (50 MHz); 12,14 (q, 2-Me); 23A8 (q, 3-Me); 

29. 70 (d,C-2), 42,54 (t, C-1); 66,00 (s, C-3); 112,30 (t, C-5), 145,11 (d, C-4); m/z

115 (5%); 97 (10 %); 83 (2 %); 71 (100%); 55 (16%); 43 (15 %)
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