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Abstract 

The present study involves the analysis and design optimisation of composite struc­
tures using analytical and numerical methods. Five different problems are consid­
ered. 

The first problem considers the design of laminated plates subject to non-uniform 
temperature distributions. The plates are optimised for maximum buckling tempera­
ture using the fibre angle as the optimising variable. The method of solution involves 
the finite element method based on Mindlin theory for thin laminated plates and 
shells, and numerical optimisation. A computational approach is developed which 
involves successive stages of solution for temperature distribution, buckling temper­
ature and optimal fibre angle. Three different temperature loadings are considered 
and various combinations of simply supported and clamped boundary conditions are 
studied. The effect of plate aspect ratio on the optimal fibre angle and the maximum 
buckling temperature is investigated. The influence of bending-twisting coupling on 
the optimum design is studied by considering plates with increasing number of layers. 

The second problem concerns the optimal design of composite pressure vessels. 
Finite element solutions are presented for the design of hemispherically and flat 
capped symmetrically laminated pressure vessels subjected to external pressure. 
The effect of vessel length, radius and wall thickness, as well as bending-twisting 
coupling and hybridisation on the optimal ply angle and buckling pressure are nu­
merically studied. Comparisons of the optimal fibre angles and maximum buckling 
pressures for various vessel geometries are made with those for hybrid pressure ves­
sels. 

In the third problem, the multiobjective design of a symmetrically laminated 
shell is obtained with the objectives defined as the maximisation of the axial and 
torsional buckling loads. The ply angle is taken as the optimising variable and the 
performance index is formulated as the weighted sum of individual objectives in 
order to obtain Pareto optimal solutions of the design problem. Single objective 
design results are obtained and compared with the multiobjective design. The ef­
fect of weighting factors on the optimal design is investigated. Results are given 
illustrating the dependence of the optimal fibre angle and performance index on the 
cylinder length, radius and wall thickness. 

In the fourth problem, the optimal layup with least weight or cost for a sym­
metrically laminated plate subject to a buckling load is determined using a hybrid 
composite construction. A hybrid construction provides further tailoring capabilities 
and can meet the weight, cost and strength constraints while a non-hybrid construc­
tion may fail to satisfy the design requirements. The objective of the optimisation 
is to minimise either the weight or cost of the plate using the ply angles, layer thick­
nesses and material combinations as design variables . As the optimisation problem 
contains a large number of continuous (ply angles and thicknesses) and discrete (ma-



terial combinations) design variables, a sequential solution procedure is devised in 
which the optimal variables are computed in different stages. The proposed design 
method is illustrated using graphite, kevlar and glass epoxy combinations and the 
efficiency of the hybrid designs over the non-hybrid ones are computed. 

Finally, the minimum deflection and weight designs of laminated composite 
plates are given in the fifth and last problem. The finite element method is used 
in conjunction with optimisation routines in order to obtain the optimal designs, as 
was the procedure in the first problem. Various boundary conditions are considered 
and results are given for varying aspect ratios and for different loading types. 
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Chapter 1 

Introduction 

Structures made of composite materials have found extensive applications due to 

the high strength and stiffness to weight ratios that these materials afford. Another 

advantage of these materials over conventional materials is the possibility of tailor­

ing their properties to the specific requirements of a given application. 

The process of optimising composite structural designs is of importance since 

the cost of advanced composite materials is significantly higher than that of conven­

tional materials. The benefits which these materials offer must thus be maximised 

and better utilised. The optimisation may take the form of designing for a maxi­

mum strength, a minimum deflection, weight or cost for example. In order to achieve 

these aims, one or more geometric or material parameters are varied such that an 

optimum design is obtained, as a function of these parameters. The design variables 

may include the layer fibre angle, layer thickness or layup configuration for example. 

This thesis is made up of various different problems which have a number of 

elements in common. All the structures considered are laminated composites with 

symmetric layups. Apart from one of the problems, which considers bending loads, 

all the other problems deal with buckling loads. All the studies involve the opti­

mal design of the structures considered, either for maximum strength or minimum 

weight. In each case, continuous fibre angles are considered, and form one of the 

optimising variables. 

The design problems considered in the thesis demonstrate how different ap­

proaches may be employed in the optimisation of composite structures. Numerical 

or analytical solutions may be used depending on the nature of the problem. The 
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optimisation may be for one or several variables, or a a sequential design procedure 

may be formulated. 

In order to obtain solutions for the optimal design problems investigated in this 

study, two approaches were considered. The finite element method was employed for 

those problems for which closed form solutions do not exist. Alternatively, analytical 

solutions were obtained using symbolic computation for the problems where closed 

form solutions are available. The analysis of laminated structures manufactured 

from different materials is a demanding area of computational solid mechanics and 

one well suited to the use of symbolic computation. Symbolic computation systems 

are able to mathematically manipulate expressions in symbolic forms and may be 

used to derive analytical results or formulae for numerical computations. 

In recent years the use of composite materials in high temperature environments 

has grown markedly, which has resulted in increased research in thermal loading 

problems of laminated structures. An important subject in this field is thermal 

buckling. The first problem in this study considers the optimal thermal buckling 

design of laminated plates with non-uniform temperature distributions and com­

binations of simply supported and clamped boundary conditions. The effect of 

aspect ratio on the optimal buckling temperature and optimal fibre angle is investi­

gated. First the uniform temperature distributions are considered. With symmetric 

angle-ply laminates, the number of layers is shown to have. an ' effect on the critical 

temperature due to bending-twisting coupling. However this effect decreases as the 

number of layers increases . 

. Little work has been done on the optimal design of composite pressure vessels, 

especially those for which closed form solutions are not available. The second prob­

lem of this study thus adopts a numerical method to determine the optimal buckling 

design of flat and hemispherically capped thin walled, laminated pressure vessels. 

The finite element method, in conjunction with an optimisation routine, is used 

to determine optim.al fibre angles for vessels of various geometries, thicknesses and 

boundary conditions. The effect of hybridisation on the optimal design is also con­

sidered. 

There are many situations where structures are subjected to multiple loading 
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conditions throughout their life. In order to ensure an optimal design of these struc­

tures, the different loading conditions must be taken onto account. Single objective 

designs would not accurately predict the behaviour of the structure and in these 

instances a multiobjective design approach is necessary. When composite structures 

are subjected to multiple buckling loading conditions such as axial compressive and 

torsional loadings, a multiobjective design approach can be formulated in order to 

ensure an optimally designed structure. The third problem of this study considers 

such a case. The buckling strength of laminated shells under multiple loading condi­

tions is optimised with respect to the layer fibre angle and the effect of the structure 

geometry on the optimal design is investigated. Closed form solutions are generated 

using the symbolic computation package MATHEMATICA. 

An effective way to reduce the cost of composite structures is via hybridisation. 

A laminated structure may fulfil the design requirement yet be substantially cheaper 

than a homogeneous structure owing to the use of cheaper materials as filler layers. 

The optimal layup with least weight or cost for a symmetrically laminated hybrid 

plate is determined by admitting hybrid constructions into the design space. The 

design space consists of three continuous variables, namely the layer fibre angle, the 

layer thickness of a reference material and the relative thickness of the layers of the 

different materials. There is also one discrete variable in the design space ie. the 

material combination. The plates are optimised for minimum weight or cost subject 

to a minimum buckling load constraint. For this purpose an optimisation procedure 

is devised such that at every stage of the solution the optimal value of one of the 

continuous design variables is determined .. This value carries off to the next stage 

and several candidate designs with different material combinations are generated. 

The optimal design is chosen from among these candidate designs. 

It is observed that in many cases a non-hybrid design fails to satisfy the design 

constraints and in all cases hybrid constructions perform better than the non-hybrid 

ones. Numerical results on the efficiency of the designs indicate more than 45% 

weight or cost improvement in many cases. As in the third problem, symbolic com­

putation is used to obtain the optimal design. 

Closed form solutions for laminated structures under transverse loading are 

generally unobtainable when boundary conditions other than simply supported or 

clamped are considered and a numerical method must be employed. 

3 



The final design problem of the study considers the optimal design of laminated 

plates for minimum deflection and minimum weight. In the first part of this design 

problem, the ply angle is taken as the optimising variable for the minimum deflec­

tion design and the minimum weight is then obtained using a failure criterion with 

the optimising variable then becoming the plate thickness. Results are presented for 

different loadings both symmetrical and unsymmetrical, and various combinations 

of clamped, simply supported and free boundary conditions are considered. The 

effect of aspect ratio on the minimum deflection and weight, and optimal ply angle, 

is investigated. In the second part of this design problem, only the minimum weight 

is taken as the design objective, and the fibre orientation and the laminate thickness 

are determined to achieve a minimum weight design. Comparative results are given 

to assess the effect of design priority on the deflection and weight . 

• 
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Chapter 2 

Literature Survey 

2.1 Finite Element Method 

2.1.1 Theoretical Formulation of FEM 

Continuum Problems 

In the continuum or Eulerian approach to nature, all processes are characterized by 

field quantities that are defined at every point in space. The independent variables 

in continuum problems are the coordinates of space and time. Continuum problems 

are concerned with fields of temperature, stress, mass concentration, displacement, 

electromagnetic and acoustic potentials, etc. These problems arise from the phenom­

ena in nature that are approximately characterized by partial differential equations 

and their boundary conditions. 

Continuum problems of mathematical physics are often referred to as boundary 

value problems because their solution is sought in some domain defined by a given 

boundary, on which certain conditions called boundary conditions are specified. The 

boundary is said to be closed if conditions affecting the solution of the problem are 

specified everywhere on the boundary and open if part of the boundary extends to 

infinity and no boundary conditions are specified on the part at infinity [1] . 

Problem Statement 

Consider some domain D bounded by the surface ~ [2] . Let <fJ be a scalar function 

defined in the interior of D such that the behaviour of <fJ in D is given by 

L(<fJ)- i = O (2.1) 
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where f is a known scalar function of the independent variables and L is a linear 

or nonlinear differential operator. It is assumed that the physical parameters in the 

differential operator are known constants or functions. In n dimensions, second­

order differential operators can usually be reduced, by a suitable transformation, to 

the form 
n a2 ( ) n a() 

L( ) = L: Ai- 2 + L: Bi- + ( )C + D 
i=l aXi i=l aXi 

(2.2) 

where coefficients Ai, Bi and C and the term D may be functions. The operator 

as given in equation (2.1) is linear if Ai, Bi, C and D are functions only of the 

independent variables (Xl, X2, X3, ••• , xn ), and quasi linear if Ai, B j , C and Dare 

functions of Xi; and the dependent parameter, as well as first derivatives of the 

dependent parameter. An operator is linear only if 

L(f + g) = L(f) + L(g) (2.3) 

The general definition of the operator L( ) in equation (2.1) precludes a discussion of 

appropriate boundary conditions. However, without boundary conditions, equation 

(2.1) does not describe a specific problem. 

Some Methods for Solving Continuum Problems 

From equation (2.1), it is seen that the general problem is to find the unknown func­

tion <p that satisfies equation (2.1) and the associated boundary conditions specified 

on E. 

There are many alternative approaches to the solution of linear and nonlinear 

boundary value problems and they range from completely analytical to completely 

numerical. These can be listed as follows: 

1. Direct integration (exact solutions) . 

a. Separation of variables. 

b. Similarity solutions. 

c. Fourier and Laplace transformations. 

2. Approximate solutions. 

a. Perturbation. 

b. Power series. 

c. Probability schemes. 

d. Method of weighted residuals (MWR). 

e. Finite difference techniques. 
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f. Ritz method. 

g. Finite element method. 

The Variational Approach . 

Often continuum problems have the different, but equivalent, differential and vari­

ational formulations. In the differential equation formulation, the problem is to in­

tegrate a differential equation or a system of differential equations subject to given 

boundary conditions. In the classical variational formulation, the problem is to find 

the unknown function or functions that extremize or make stationary a functional 

such as I( ¢) or system of functionals subject to the same boundary conditions. The 

two problem formulations are equivalent because the functions which satisfy the 

differential equations and their boundary conditions also extremize or make station­

ary the functionals . The classical variational formulation of a continuum problem 

often has advantages over the differential equation formulation from the viewpoint 

of obtaining an approximate solution. 

Firstly, the functional, which may actually represent some physical quantity in 

the problem, contains derivatives of order lower than that of the differential operator 

and an approximate solution can be sought in a larger class of functions. 

Secondly, the problem may possess reciprocal variational formulations, that is, 

one functional must be minimized and another one of a different form must be 

maximized. 

Third, the variational formulation allows us to treat very complicated boundary 

conditions as natural boundary conditions. 

Fourth, from a mathematical viewpoint the variational formulation is helpful 

because it can sometimes be used to prove the existence of a solution by using 

calculus of variations. 

This approach is especially convenient when it is applicable; but before it can be 

used, a variational statement for the continuum problem must be formulated, which 

means that the problem must be posed in a variational form. 

Historically, variational methods are among the oldest means of obtaining so­

lutions to problems in physics and engineering. One general method for obtaining 

approximate solutions to problems expressed in variational form is known as the 

Ritz method. This method is basically a forerunner of the finite element procedure. 

In fact, the finite element method is a special case of the Ritz method when the 
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interpolation functions satisfy certain continuity requirements. 

The Ritz Method 

The Ritz method consists of assuming the form of the unknown solution in terms 

of known functions (trial functions) with unknown adjustable parameters. (The 

trial functions are also called coordinate functions). The procedure is to substitute 

the trial functions into the functional and thereby express the functional in terms 

of the adjustable parameters. The functional is then differentiated with respect 

to each parameter and the resulting equation is set equal to zero. If there are n 

unknown parameters, there will be n simultaneous equations to be solved for these 

parameters. The accuracy of the approximate solution depends on the choice of 

trial functions. The trial functions are defined over the whole solution domain and 

they satisfy at least some and usually all of the boundary conditions. If the exact 

solution is ~ontained in the family of trial solutions, the Ritz procedure gives the 

exact solution. Generally, the approximation improves as the size of the family of 

trial functions and the number of adjustable parameters increase. The process of 

including more and more trial functions leads to a series of approximate solutions 

which converges to the true solution. Often a family of trial functions is constructed 

from polynomials of successively increasing degree, but in certain cases other kinds 

of functions may also offer advantages [3]. 

Relation of FEM to the Ritz Method 

The finite element method and the Ritz method are essentially equivalent. Each 

method uses a set of trial functions as the starting point for obtaining an approx­

imate solution; both methods take linear combinations of these trial functions and 

both models seek the combination of the trial functions that makes a given func­

tional stationary. The major difference between the methods is that the assumed 

trial functions in the finite element method are not defined over the whole solution 

domain and they have to satisfy no boundary conditions but only certain continuity 

conditions. Because the Ritz method uses functions defined over the whole domain , 
it can be used only for domains of relatively simple geometric shape. In the finite 

element method the same geometric limitations exist, but only for the elements. 

Due to the fact that elements with simple shapes can be assembled to represent 

quite complex geometries, the finite element is far more versatile and flexible than 
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the Ritz method. 

Generalising the definition of an element 

The mathematical interpretation of the finite element requires the generalisation 

of the definition of an element which is in less physical terms. The elements are 

interconnected only at imaginary node points at the boundaries or surfaces of the 

elements. For the solid mechanics problems, in general, elements do not deform or 

change shape. They are defined as regions of space where a displacement field exists. 

The nodes of an element are located in space where the displacement and possibility 

of its derivatives are known or sought. The mathematical interpretation of a finite 

element mesh is that it is a spatial subdivision rather than a material subdivision 

[4]. 

Once the element mesh for the solution domain has been decided, the behaviour 

of the unknown field variable over each element is approximated by continuous func­

tions expressed in terms of the nodal values of its derivatives up to a certain degree. 

The functions defined over each finite element are called interpolation junctions, 

shape junctions, or field variable models. The collection of the interpolation func­

tions for the whole solution domain provides a piecewise approximation to the field 

variable. 

Element Equations from the Variational Principle 

The finite element solution to the problem involves determining the nodal values of 

4> so as to make the functional 1(4)) stationary [2]. To make 1(4)) stationary with 

respect to the nodal values of 4>, it is required that 

n 81 
81(4)) = ~ 84>i 04>i = 0 (2.4) 

where n is the total number of discrete values of 4> assigned to the solution domain. 

Since the 04>/5 are independent, equation (2.4) can be satisfied only if 

81 
84>i = O,i = 1,2, ... ,n (2.5) 

The functional 1 (4)) may be written as a sum of individual functionals defined 

for all elements of the assemblage, that is, 

M 
1(4)) = L l(e)(4>(e)) (2.6) 

e=l 
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where M is the total number of elements and the superscript (e) denotes an element. 

From equation (2.6), it follows that 

M 
61 = L61(e) = 0 (2.7) 

e=l 

where the variation of lee) is taken only with respect to the nodal values associated 

with the element (e). Equation (2.7) implies that 

alee) al . 
{--} = - = 0, J = 1,2, ... ,r 

a¢ a¢j 
(2.8) 

where r is the number of nodes assigned to element (e). Equation (2.8) comprises a 

system of r equations that characterize the behavior of element (e). Equation (2.8) 

for element (e) can always be written as [2] 

(2.9) 

where [K](e) is a square matrix of constant stiffness coefficients, {<I>}(e) is the column 

vector of nodal values and {F} is the vector of resultant nodal actions. Symbolically, 

the complete set of equations can be written as 

al M alee) . 
aA.. = L aA.. = 0, 1,1,2, ... , n 

'fJ' e= 1 'fJ. . 

(2.10) 

or 

(2.11) 

The problem is solved when the set of n equations (2.10) is solved simultaneously 

for the n nodal values of ¢. If there are q nodes in the solution domain where <I> is 

specified by boundary conditions, there will be n - q equations to be solved for the 

n - q unknowns. 

Requirements for Interpolation Functions Approximate solutions converge 

to the correct solution where an increasing number of elements are used, that is, 

when the element mesh is refined. Mathematical proofs of convergence assume 

that the process of mesh refinement occurs in a regular fashion, defined by three 

conditions [5]. 

1. the elements must be made smaller in such a way that every point of the 

solution domain can always be within an element, regardless of how small the 

element may be; 
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2. all previous meshes must be contained in the refined meshes; 

3. the form of interpolation functions must remain unchanged during the process . 

of mesh refinement. 

These first two conditions are shown in Figure 2.1. 

(a) (b) (c) 

Figure 2.1. An example of successive mesh refinements. a). Original solution 

domain b). Discretization with four triangular elements c). Discretization with 

sixteen triangular elements. 

To guarantee monotonic convergence in the sense just described and to make the 

assembly of the individual equations meaningful, it is required that the interpolation 

functions N(e) in the expressions 

cP(e) IN(e) J {cP}(e), e = 1,2, ... , M (2.12) 

be chosen so as to satisfy the following general requirements: 

1. At element interfaces (boundaries) the field variable </> and any of its partial 

derivatives up to one order less than the highest order derivative appearing in 

I ( cP) must be continuous. 

2. All uniform states of cP and its partial derivatives up to one order less than the 

highest order derivative appearing in I(cP) should have representation in ¢>(e) 

when, in the limit, the element size shrinks to zero. 

These requirements were given by Felippa and Clough [5] and justified by Oliveira 

[6] . The first one is known as the compatibility requirement, and the second as the 
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completeness requirement. Elements whose interpolation functions satisfy the first 

requirement are called compatible elements, those satisfying the second requirement, 

complete elements. 

In addition to satisfying these requirements, it is also required that the field 

variable representation within an element and hence the polynomial expansion for 

the element remain unchanged under a linear transformation from one Cartesian 

coordinate system to another. Polynomials that exhibit this invariance property are 

said to posses geometric isotropy. 

Domain Discretization 

The first task in a finite element solution consists of discretizing the continuum by 

dividing it into a series of elements. The type of element that should be used depends 

on the problem being considered. Often only one type of element is used to represent 

the continuum, unless the circumstances dictate otherwise. It is easy to imagine 

the problem for which several different types of elements would be necessary. An 

example from solid mechanics would be an elastic body supported by pin connected 

bars. In this case the elastic body would be represented by three dimensional solid 

elements such as bricks, and the bars would be approximated by one dimensional 

elements. The most popular and versatile elements, because of the ease with which 

they can be assembled to fit complex geometries, are triangular elements in two 

dimensions. 

A uniform element mesh is easy to construct, but it may not always provide 

a good representation of the continuum. More elements should be used in regions 

where the boundary is irregular than in regions where it is smooth. More elements 

are also needed in the vicinity of concentrated loads. 

The ratio of elements smallest dimension to its largest dimension should be near 

unity. Long narrow elements should be avoided because they lead to a solution with 

direction bias that may lead to inaccurate results. 

When solving a particular type of problem for the first time, it is good practice 

to obtain several solutions with different numbers of element. By comparing the 

results, it is possible to see whether enough elements are being used in the solution. 

This is known as convergence testing . . 
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Derivation of Finite Element Equations using the Method of Weighted 

Residuals 

The method of weighted residuals is a technique for obtaining approximate solutions 

to linear and non-linear partial differential equations. The method offers another 

means of formulating the finite element equations. 

Applying the method of weighted residuals involves basically two steps. The 

first is to assume the general functional behavior of the dependent field variable to 

approximately satisfy the given differential equation and boundary conditions. Sub­

stitution of this approximation into the original differential equation and boundary 

conditions then results in some error called a residual. This residual is required to 

vanish in some average sense over the entire solution domain. 

The second step is to solve the equations resulting from the first step and spe­

cialize the general function form to a particular function, which then becomes the 

approximate solution sought. 

A typical example given below is to find an approximate functional representation 

for a field variable 4> governed by the differential equation 

L(4)) - f = 0 (2.13) 

in the domain D bounded by the surface E. The function f is a known function of 

the independent variables and it is assumed that sufficient boundary conditions are 

prescribed on E. 

First the unknown exact solution 4> is approximated by ¢ where either the func­

tional behavior of ¢ is completely specified in terms of unknown parameters, or the 

functional dependence on all but one of the independent variables is specified while 

the functional dependence on the remaining independent variables is left unspecified. 

Thus the dependent variable is approximated by 

m 

4>~ ¢ = 'LNiCi (2.14) 
i=l 

where Ni are the assumed functions and the Ci are either the unknown parameters 

or unknown functions of one of the independent variables. The upper limit on the 

summation, m, is the number of unknowns, Ci. The m functions Ni are usually 

chosen to satisfy the global boundary conditions. 

When ¢ is substituted in equation (2.13), viz. 

L(¢) - f = R (2.15) 
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where R is the residual or error that results from approximating </J by~. The method 

of weighted residuals seeks to determine the m unknowns Ci in such a way that 

error R over the entire solution domain is small. This is accomplished by forming 

a weighted average of the error and specifying that the weighted average vanishes 

over the solution domain. Hence m linearly independent weighting functions Wi are 

chosen and the weighted average is computed as 

(2.16) 

In this case R = O. 

The form of the error distribution principle expressed in equations (2.16) de­

pends on the choice of the weighting functions. Once the weighting functions are 

specified, equations (2.16) represent a set of m equations, other algebraic or ordinary 

differential equations to be solved for the coefficients of Ci . The second step is to 

solve equations (2.16) for Ci and hence obtain an approximate representation of the 

unknown field variable </J via equations (2.14). 

There is a variety of weighted residual techniques available because of the broad 

choice of weighting functions or error distribution functions that can be used. The 

error distribution principle most often used to derive finite element equation is known 

as the Galerkin criterion. According to the Bubnow-Galerkin method, the weighting 

functions are chosen to be the same as the approximating functions used to represent 

.</J, that is Wi = Ni for i = 1,2, ... , m. Thus Galerkin's method requires that 

(2.17) 

where the superscript (e) restricts the range to one element, </J(e) = IN(e)J {</J}(e), 

j(e) is a forcing function defined over the element (e) and r is a number of unknown 

p~ameters assigned to the elements. 

Elements and Interpolation FUnctions 

A standard definition and notation to express the degree of continuity of a field 

variable at element interfaces are given next. If the field variable is continuous 

at element interfaces it is said that there is Co continuity. If the field variable is 

continuous for the first derivatives there is Cl continuity; if second derivatives are 

also continuous there is C2 continuity and so on. 
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The functions appearing under the integrals in the element equations contain 

derivatives up to {r + l)th order. Following requirements must be satisfied to have 

assurance of convergence as element size decreases. 

Compatibility requirements: At element interfaces there must be cr continuity. 

Completeness requirements: Within an element there must be cr+! continuity. 

These requirements hold whether the element equations were derived using the 

variational method, the Galerkin method or some other method. 

Basic Element Shapes 

The continuum or solution domain of arbitrary shape can be accurately modeled by 

an assemblage of simple shapes. Most finite elements are geometrically simple. 

For one-dimensional problems with only one independent variable, the elements 

are line segments (Figure 2.2). 

~ • ~x 
2 

~ ~.t: 

3 2 

~ • • . ;. .t: 
3 4 2 

Figure 2.2. A family of one-dimensional line elements. 
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Common two-dimensional element shapes are shown in Figure 2.3. 

Yb-L!:, 
,~ f> 
~, 

y~ 
lj, 

(a) leI 

'10 Ll;, 
y(> 
~, 

(b) (dl 

Figure 2.3. Examples of two dimensional elements a). Three node triangle b). 

Rectangle c). Triangles with six and ten nodes d). General quadrilateral. 

The number of nodes assigned to a particular element depends on the type 

of nodal variables, the type of interpolation function and the 'degree of continuity 

required. For some one-dimensional problems the finite element method is the most 

rational approach, foe example, frame analysis in solid mechanics and flow network 

analysis in fluid mechanics. In elasticity problems where spars are used as stiffeners, 

one-dimensional elements can represent the spars while being connected to other 

two- or three-dimensional elements that represent the rest of the elastic solid. 

The three-node flat triangular element (Figure 2.3a) is the simplest two-dimensional 

element and it enjoys the distinction of being the first and most often used basic 

finite element. The reason is that an assemblage of triangles can always represent 

a two-dimensional domain of any shape. A simple but less useful two-dimensional 

element is the four node rectangle (2.4b) whose sides are parallel to the global co­

ordinate system. 
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Figure 2.4. The quadrilateral element formed by combining triangles. 

This type of element is easy to construct automatically by computer because of 

its regular shape, but is not well suited for approximating curved boundaries. In 

addition to the simplest triangle and the rectangle, other common two-dimensional 

elements are six-node triangle (Figure 2.3c), and the general quadrilateral (Figure 

2.3d). Quadrilateral elements may be formed directly or they may be developed 

by combining two or four basic triangle elements as shown in Figure 2.4. Other 

types of elements that are actually three-dimensional but described by only one 

or two independent variables are axisymmetric or ring-type elements (Figure 2.5). 

These elements are useful when treating problems that possess axial symmetry in 
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cylindrical coordinates. 

z 

8 
"-'----1_ r 

(a) 

z 

(b) 

Figure 2.5. Examples of axisymmetric elements. 

The four-node tetrahedron element in three-dimensions (Figure 2.6a) is the sim­

plest and the most useful element in three-dimensional problems. 
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y 

k::... _________ x 10:::-_______ x 
~______________ x 

(p) (b) (e) 

Figure 2.6. Three dimensional elements a). Tetrahedron b). Right prism c). 

General hexahedron. 

y 

~ 
y 

l:) 
x x 

(a) (b) 

y 
Y 

4;> 
X x 

(e) (d) 

Figure 2.7. Common isoparametric elements a). Triangle b). Quadrilateral c). 

Tetrahedron d). Hexahedron. 

Another simple three-dimensional element is the right hand prism shown in Fig­

ure 2.6b. A general hexahedron (Figure 2.6c) may be constructed from five tetrahe­

dra. Elements which are constructed with curved boundaries are known as isopara­

metric elements. These elements, some examples of which are shown in Figure 2.7 

are most useful when it is desirable to approximate curved boundaries with only a 

19 



few elements. They have especially been useful in the solution of three-dimensional 

problems, where it is necessary to reduce the computations by using fewer elements. 

Basic Element Shape Functions 

Interpolation Functions - Polynomials 

Although it is conceivable that many types of functions could serve as inter­

polation functions, only polynomials have received widespread use. They can be 

integrated or differentiated without difficulty. 

One independent variable 

In one dimension a general complete nth-order polynomial may be written as 

T~l) 

Pn(x) = L aixi 

i=O 

(2.18) 

where the number of terms in the polynomial is TJI} = n + 1. For n = 1, TP} = 2 

and PI(X) = aa + alX; for n = 2, TP} = 3 and P2(X) = aa + alX + a2x2; and so on. 

Two independent variables 

In two dimensions a complete nth-order polynomial may be written as 

T.(2) 
n 

Pn(x,y) = L akxiyi" i + j ::; n (2.19) 
k=O 

where the number of terms in the polynomial is TP} = (n + l)(n + 2)/2. For n = 1, 

Tf2) = 3 and PI(x,y) = al + a2X + a3Yj for n = 2, TJ2} = 6 and P2(x,y) = 
al + a2X + a3Y + a4XY + a5x2 + a6y2j and so on. 

Three independent variables 

In three dimensions a complete nth-order polynomial may be written as 

T~3) 

Pn(x,y,z) = 'Lalxiyizk, i + j + k::; n (2.20) 
1=0 

where the number of terms in the polynomial is 

T(3) = (n + l)(n + 2)(n + 3) 
n 6 (2.21 ) 

For n = 1, TP) = 4 and PI(x,y,z) = al + a2X + a3Y + a4z; for n = 2, TJ3} = 10 

and P2(x,y,z) = al +a2x+a3y+a4z+a5xy+a6xz+a7yz+a8x2+agy2+alQz2j 
and so on. 
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Two-Dimensional Problems 

Elements for CO problems 

The number of elements capable of satisfying CO continuity is infinite since nodes 

and degrees of freedom may be added to the elements to form ever increasing higher­

order elements. In general, as the complexity of the elements is increased by adding 

more nodes and more degrees of freedom and using higher-order polynomials, the 

number of elements and total number of degrees of freedom needed to achieve a given 

accuracy in a given problem are less than would be required if simpler elements were 

used [7]. None the less, this does not suggest that higher-order elements always be 

used in preference to lower order elements. 

There is no general guideline for choosing the optimum element for a gIven 

problem, because the type of element that yields good accuracy with low computing 

time is problem dependent. For Co problems, elements that require polynomials of 

order greater than three are rarely used, since little additional accuracy is gained 

for the extra effort expended. If a complicated boundary is to be modeled, it is 

more advantageous to use a large number of simple elements than a few complex 

elements. 

Triangular elements 

A portion of the family of higher-order elements may be obtained by assigning 

additional external and interior nodes to triangles. Each element in this series 

has a sufficient number of nodes to specify a complete polynomial of the order 

necessary to give Co continuity. The compatibility, completeness and geometric 

isotropy requirements are satisfied. 

For the three-node triangular element, the linear variation of </> is written as 

(2.22) 

and by evaluating this expression at each node, we obtain 

{</>} = [G){a} (2.23) 

According to the procedure of deriving interpolation functions, this can be writ­
ten as 

</> = [P][G]-I{ a} = [N]{ </>} 

[N] = [P][GJ-I 

where the elements of [N], Ni = Li are the area coordinates for the triangle. 
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Rectangular elements 

Interpolation functions for rectangular elements with sides parallel to the global 

axes are easily developed using Lagrangian interpolation concepts. After the local 

coordinates are defined the function may be written as 

where 
N1 (e,77) = L1(e)L 1 (77), 

N2(e,77) = L2(OL 2(77), 

etc. 

(2.25) 

(2.26) 

and the Li are the Lagrange polynomials. Interpolation functions formed as products 

in this way satisfy the requirements of possessing unit value at the node for which 

they are defined and zero at the other nodes. 

Elements for C1 Problems 

Constructing two-dimensional elements that can be used for problems requiring 

continuity of the field variable </> as well as its normal derivative ~ along element 

boundaries is far more complicated than constructing elements for Co continuity 

alone. The field variable </> and ~: are uniquely specified along the element bound­

aries by the degrees of freedom assigned to the nodes along a particular boundary. 

According to Felippa and Clough [5], the difficulties arise from the following princi­

ples: 

1. The interpolation functions must contain at least some cubic terms, because 

the three nodal values </>, ~ and ~ must be specified at each corner of the 

element. 

2. For non rectangular elements Cl continuity requires the specification of at 

I h · d I I £1!. 8<p ~ ~ .E:i east t e SIX no a va ues, </>, 8x' 8y' 8x2 ' 8y2 and 8x8y' at the corner nodes. 

For a rectangular element with sides parallel to the global axes it is necessary 

to specify at the corner nodes only </>, ~, ~ and ::t
y

' 

Three Dimensional Elements 

Elements for CO problems 

Constructing three-dimensional elements to give Co continuity at element inter­

faces follows immediately from a natural extension of the corresponding elements in 
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two dimensions. Instead of requiring continuity of the field variable along the edge 

of the element, continuity is required on the faces of the elements. 

Hexahedral elements 

The concept of Lagrange and Hermite interpolation for two-dimensional elements 

extend also to hexahedral elements in three dimension. Interpolation functions for 

this family of elements may be written as the product of the Lagrange polynomials 

in all of the orthogonal coordinate directions ~, TJ, (, (origin at the centroid of the 

element). Hence for node k 

(2.27) 

where it is understood that each function Lk is properly formed to account for 

number of subdivisions (nodes) in the particular coordinate direction. Zienkiewicz 

et al [8] generated the series of such elements. The interpolation functions for these 

serendipity elements are incomplete polynomials and are derived by inspection. 

Linear element 

Equation 8-node linear element is written as 

(2.28) 

Higher-order elements of this family are seldom considered because interior nodes 

must be introduced to continue the construction of the interpolation functions. 

Triangular prisms 

Modeling complex-shape, three-dimensional solution domains with hexahedral 

elements can cause some difficulties because these brick-shaped elements may not fit 

the boundary. Rather than using a large number of small bricks, it is advantageous 

to mix hexahedra and triangular prisms to obtain a good fit. Lagrange hexahedra 
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or serendipity hexahedra are shown in Figure 2.8. 

fI}/::: 1 (linear) 

~= -1 ---

f?1~:::1 
~t"_l (,"'''';0) 

(a) (b) 

Figure 2.8. Families of triangular prism elements. 

For the quadratic prism of the serendipity type (Figure 2.8b); 

Corner nodes: 

Midsides of triangles 

Midsides of rectangles 
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2.1.2 Elasticity Problems 

An Introduction to EI~sticity Problems 

._--_ ._ --------

Variational Inside 
Model principle each element 

Minimum Continuous 
Compatible potential displacements 

energy 

Minimum Continuous and 
Equilibrium complementary equilibrating 

cnergy stresscs 

Modified Continuous and 
Hybrid I complementary equilibrating 

energy stresses 

Modified Continuous 
Hybrid 2 potential displacements 

energy 

Modified Continuous 
Hybrid 3 potcntial displat:cmcnts 

energy 

Rcissner's Continuous 
Mixed principle stresses and 

(Plate-bending displacements 
problems) 

Along 
Interelement 
boundary 

Displacement 
compatibility 

Equilibrium 
boundary 
tractions 

Assumed 
compatible 
displacements 

Assumcd 
cquilibrating 
boundary ttat:tions 

Assumed boundary 
tractions for cat:h 
c1emcnt and assumt:d 
boundary displaccmcnts 

Combinations 
of boundary displat:e-
ments and tractions 

Unknown 
in final 
equations 

Nodal 
displacements 

Stress 
parameters 

Generalized nodal 
d isplacemen ts 

Nodal 
displacements 

Displacement 
paramcters and 
boundary forces 

Nodal 
displacements 

Combination 
of boundary dis­
placemcnts and 
tractions 

Table 2.1. Classification of finite element methods in elasticity. 

Most applications of the finite element method to solid mechanics problems use 

a variational principle to derive the necessary element properties or equations. The 

three most commonly used variational principles are the principle of minimum poten­

tial energy, the principle of complementary energy and Reissner's principle. When 

the potential energy principle is used, the form of the displacement field within each 

element must be assumed. This is sometimes called the displacement method or 

the compatibility method in the finite element analysis. When the complementary 

energy method is used, the form of the stress field is assumed and this is called 

the force method or equilibrium method_ Pian and Tong [9] tabulated (Table 2.1) 

these and other variational bases of the finite element method in solid mechanics_ 

For particular problems, one principle may be more suitable than another, but for 

a large class of problems the displacement method is the simplest to apply and the 
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most widely used. 

General Formulation for Two-dimensional Problems 

The variational principle 

The potential energy of a two-dimensional elastic body acted upon by surface 

and body forces and in equilibrium can be written as: 

II(u, v) = ~ f fA[lJj [B]T[O]{ o} - 2lJj [B]T[O]{ {~}]tdA 
- f fA l F* J lo J tdA - fe i [T*]{ o}dS 

where t = t( x, y) is the thickness of the body, 

(2.32) 

{o} = { u( x, y) } is the column matrix of the components of the displacement 
v(x,y) 

field measured from some datum, 

[B] = [ a /:x a /Oay ] is the matrix relating strains and displacements, 

a/ax a/ay 
[0] is the material stiffness which takes different forms according to the problem 

considered, 

{{~} is the column vector of initial strains which may be due to nonuniform 

temperature distributions, shrink fits etc. 

l F* J = l X* , y* J are the body force components due to gravity, centrifugal 

action, and the like, 

l T* J = l T;, T; j are the boundary traction components acting on portion 0 1 of 

the boundary; these are defined per unit length for a unit thickness. 

The asterisk superscript denotes known quantities. At equilibrium the displace­

ment field (u, v) in the body is such that the total system potential energy assumes 

a minimum value. 

After using a suitable variat ional principle, general finite element equations for 

the elastic continuum may be developed. First the continuum will be subdivided into 

elements of some shape, then the form of displacement function is assumed over each 

element. For the general formulation, it is not needed to specify the type of element 

nor the particular displacement function. Firstly the equations for the general case 

can be developed. Subsequently they are specialised for particular cases. 
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Requirements for the Displacement Interpolation Functions 

It is assumed that the area A (Figure 2.9) is divided into M discrete elements. 

y, 1/ 
(Ir, yl :> Ihiclo.ness of body 

r" = ~urface tracticns 

Area A 

r" 
L-________________________ -*x. u 

Figure 2.9. Arbitrary two-dimensional elastic body experiencing surface tractions 

and body forces. 

The potential energy of the elements is the sum of the potential energies of 

all elements provided that the interpolation functions expressing the variation of 

the displacement within each element satisfy the compatibility and completeness 

requirements. In other words to write 

M 
II(u, v) = I: II(e)(u, v) (2.33) 

e=l 

and to be assured of convergence as element mesh size decreases, the interpolation 

must satisfy the compatibility and completeness requirements. For plane stress and 

plane strain as well as three-dimensional elasticity problems polynomial interpola­

tions satisfy the compatibility and completeness requirements when the polynomials 

contain at least a constant and linear terms. 

To express II(e) (ti, v), which is the potential energy function for one element, in 

terms of discrete values of displacement components, it is assumed that within each 

element having r nodes, the displacement field is approximately related to its Boda.l 
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values by r interpolating functions Ni(x,y). Thus the distributed displacement field 

can be expressed as 

where {o}(e) denotes the element nodal displacements. 

Element Stiffness Equations Since the displacement field for the element has 

been expressed in terms of known interpolation functions and unknown displace­

ments, the potential energy functional will be similarly expressed. Thus for element 

( e ), the discretised functional is 

(2.35) 

or more explicitly 

n(e)({o}(e)) = ~ I IA(e) [loJ(e) [B]T(e) [c](e)[B](e){o}(e) 

-2loJ (e) [Bv(e) [c](e){ €~}(e)]t(e)dA (e) 

- I IA(e) IF*J(e) {o}(e)t(e)dA(e) (2.36) 

- Ide) IT*J(e) {o}(e)ds(e) 

At equilibrium, the potential energy of the system assumes a minimum value 

when the first variation of the functional vanishes, that is 

M 

oII(u, v) = L on(e)(u, v) = 0 
e=l 

where 

(2.37) 

(2.38) 

But the OUi and the OVi are independent variations and equation (2.38) is satisfied 

only if 
onCe) onCe) 
-r- = -r- = 0, i = 1,2, ... , r (2.39) 

aUi aVi 

for every element (e) of the system. Equations (2.39) express the conditions used 

to find the element equations. Then, considering node q, and using equation (2.36), 

we have at node q 

{o~:) o~(:)} T = {O} = I IA(e) [B]te) [c](e)[Bne){ opt(e)dA(e) 

- I IA(edB];(e) [c](e){ €~He)t(e)dA(e) (2.40) 

- I IA(e) Nq{F*He)t(e)dA(e) - Ide) Nq{T*He)ds~e) . 
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where 

{6}' = { :: } 
(2.41 ) 

is the column vector of the two displacement components at node q. 

(2.42) 

The definition of [B]~e) in equation (2.42), for a two-dimensional elastic follows from 

the definitions of the three nonzero strain components Cx, Cy, and IXY' Since the 

traction vector {T*} is a boundary effect, the last term of equation (2.40) applies 

only if element (e) lies on the boundary where traction is specified. 

Equation (2.40) is the force-displacement relation for node q. In matrix notation 

it can be written as 

(2.43) 

where 
[k]qp = 11 [Bf(e) [c](e){E*}(e)t(e)dA(e) 

A(e) q 0 q 
(2.44) 

is the initial force vector at node q, 

(2.45) 

is the nodal body force vector and 

{FT P = 1 ic(e) Nq(x, y){T*He)ds~e) 
1 

(2.46) 

is the nodal force vector due to surface loading (present only for boundary elements). 

{FP = resultant external load vector at node q (2.47) 

Equation (2.42) expresses the stiffness submatrices associated with a typical 

node, but since each element has r nodes, the complete stiffness for the element is 

a 2r x 2r matrix of the form 

[k]l1 [kp2 [kpr 
[k]21 [k]22 [k]2r 

[I<](e) = 
[k]ql [k]q2 [k]qr 

(2.48) 

[kr 1 [kr2 [krr 
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The arrangement of terms in the element stiffness matrix implies that the column 

matrix of discrete nodal displacements for the elements has the form 

UI 

{oP VI 

{oP 
U2 

{O}(e) = (2.49) V2 

{or 
Ur 

Vr 

thus the force-displacement equations for the element take the standard form 

(2.50) 

where 

{F}(e) = (2.51 ) 

{FY 

It is important to note that {o}(e), defined by equation (2.49), is the column 

vector of discrete nodal displacements for element (e), whereas {8}(e), defined by 

equation (2.34) is the column vector of the continuous displacement field within the 

element. 

The System Equations 

Equation (2.48) with its components given by equation (2.11) is the general form 

of the element stiffness matrix for two-dimensional elasticity problems. The system 

equations have the same form as the element equations except that they are ex­

panded in dimension to include all nodes. Hence, when the discretised system has 

m nodes, the system equations become 

(2m x 2m)[K] (2m x l){o} = (2m x l){F} (2.52) 

where {o} is a column vector of nodal displacement components for the entire system 

and {F} is the column vector of the resultant nodal forces. 
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For the displacement formulation either force or displacement is known in ev­

ery node of the system. If body forces and initial strains are absent, the vector 

{F} has zero components except for the components corresponding to nodes where 

concentrated external forces or displacements are specified. 

For steady-state problems, once the system equations are solved for the nodal 

displacements, the basic relations between stress and strain, and strain and dis­

placement, may be defined to find the stress at any point in any of the elements. A 

general equation for the stress components, including stresses due to displacements 

and initial strains, can be written as 

(2.53) 

If any initial stresses are present, these must also be added. 

2.1.3 Bending of Thin Plates: A C1- Continuity Problem 

In the classic theory of plates, certain approximations are introduced initially to 

simplify the problem to two dimensions. These assumptions concern the linear 

variation of strains and stresses on lines normal to the plane of the plate. So-called 

exact solutions of plate theory are only true if these assumptions are valid. This is 

so when the plates are thin and the deflections small. In the following, the starting 

point will be based on the classical plate theory assumptions. 

The state of deformation of a plate can be described by one quantity. This is the 

lateral displacement w of the midplane of the plate. Continuity conditions between 

elements have to be imposed not only on this quantity, but also its derivative, in 

order to ensure that the plate remains continuous, and does not 'kink'. If kinking 

occurs, the second derivative or curvature becomes infinite and certain infinite terms 

occur in the energy expression. At each node, therefore, three conditions of and 

continuity will usually be imposed. 

Determination of suitable interpolation functions is thus a more complex task. 

It is, however, possible to find interpolation functions which, while preserving con­

tinuity of w, may violate its slope continuity between elements, although not at the 

node where such continuity is imposed. If such chosen functions satisfy the constant 

strain criterion, and in addition pass the patch test, then convergence will still be 

found. These are termed non-conforming interpolation functions. 

The simplest type of element shape is thus the rectangle. The problem of thin 

plates, where the potential energy function contains second derivatives of unknown 
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functions, is characteristic of a large class of physical problems associated with fourth 

order differential equations. 

Displacement Formulation of the Plate Problem 

The displacement of a plate, under the usual thin plate theory is uniquely specified 

once the deflection, w, is known at all points. 

In general 

w = Na(e) (2.54) 

in which the interpolation functions are dependant on Cartesian coordinates x, y, 

and a(e) list the element (nodal) parameters. 

By defining the strain and stress carefully, the product of the two will correspond 

to the internal work requirements. Thus, the strain is defined as 

(2.55) 

The corresponding stresses are the bending and twisting moments per unit lengths 

in the x and y directions: 

(J = { :: } 
Mxy 

(2.56) 

Since the true strains and stresses vary linearly across the plate thickness, these 

can be found from such expressions as: 

12Mx 
(J = --3 -z, etc t . (2.57) 

where z is measured from the plate midplane, and t is the thickness of the plate. As 

the strains are defined by second derivatives, the continuity criterion requires that 

the interpolation functions be such that both wand its slope normal to the interface 

between elements be continuous. 

The criterion of constant strain requires that any constant arbitrary value of 
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second derivative should be reproducible within the element. 

?-_______ x 

z ~
8'(J.') 

. 8,,(!.x) 

W</w) 
Forces and corresponding 
displacements 

Figure 2.10. A rectangular plate element. 

To ensure at least an approximate satisfaction of slope continuity, three displace­

ment components are considered as nodal parameters: the first the actual displace­

ment Wn in the z direction, the second a rotation about the x axis (Ox)n, and the 

third about the y axis (Oy)n. Figure 2.10 shows these rotations with their positive 

directions determined by the right-hand screw rule. 

It is obvious that the slopes of wand the rotation are identical (except for the 

sign), and thus 

(2.58) 

The nodal 'forces' corresponding to theses displacements can be interpreted as 

a direct force and two couples 

{ 
Jwi } 

Ji = JOxi 
ioyi 

(2.59) 

33 



as shown in Figure 2.10. It follows immediately that 

(2.60) 

The elasticity matrix D is given by 

(2.61) 

For an isotropic plate 

(2.62) 

and for an orthotropic slab with principal directions of orthotropy coinciding with 

the x and y axes, four constants are needed to define the behavior: 

(2.63) 

Clearly, for a most complete case of anisotropy, six constants at most will need 

to define D since the matrix has to be symmetric. 

Rectangular Elements with Corner Nodes 

Interpolation functions 

Consider a rectangular element of a plate ijkl coinciding with the x - y plane 

as shown in Figure 2.10. At each node, displacements an are introduced [10]. These 

have three components: the first a displacement in the z direction, W n , the second 

a rotation about the x axis (O:r:)n, the third a rotation about the y axis (Oy)n. 

The nodal displacements are defined by equation (2.58) while the element dis­

placement will, as usual, be given by the listing of the nodal displacements: 
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A polynomial expression is conveniently used to define interpolation functions 

in terms of the twelve parameters. Certain terms must be omitted for a complete 

fourth order polynomial. Expressing 
.' 

W = al + a2X + a3Y + a4x2 + asxy + a6y2+ 

a7x3 + a8x2 y + agxy2 + alOy3 + allx3y + a12xy3 
(2.65) 

has some advantages. In particular, along any x = const or y = const line, 

the displacement w will vary as a cubic. The element boundaries or interfaces are 

composed of such lines. As a cubic is uniquely defined by four constants, the two 

end values of slopes displacements at the ends of the boundaries will therefore define 

the displacements along this boundary uniquely. As such end values are common 

to adjacent elements, continuity of w will be imposed all along any interface. This 

function can be shown to be non-conforming. 

The constants al to al2 can be evaluated. For instance 

Wi = al + a2Xi + a3Yi + .. . 
(-~;)i = {)x, = -a3 + .. . 

(~~)i = By, = -a3 + .. . 
(2.66) 

etc. 

In matrix form 

(2.67) 

where C is a 12 x 12 matrix depending on the nodal coordinates and a is a vector 

of the twelve unknown constants. Thus 

(2.68) 

It is now possible to write the expression for the displacement in the standard 

form as 

where 

P = (1,x,y,x2,xy,y2,x3,x2y,xy2,y3,x3y,xy3) 

For any node, in terms of normalised coordinates 

Ni = H(o + 1](7]0 + 1)(2 + ~o + 7]0 - e - 7]2), 

a~i(~O + 1)2(~0 - 1)(7]0 + 1), 

b1]i(~O + 1)(1]0 + 1)2(~0 - 1)] 
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with 
~ = (x - xc)/a 

~ = (y - yc)/b 

~o = ~.~i 

"10 = "1·"1i 

(2.72) 

The form of B is obtained directly from equations (2.65) or (2.69) using equation 

(2.60). Thus 

{ -2a, -6a 7x - 2asY -6allxy 

6a12y2 } 
E. = -2a6 -2agx -6a lOY -6a12Y 

2a5 4asx 4agy 6allX2 

(2.73) 

and 
E. = Qa = QC-1a(e) (2.74) 

and thus 

B = QC-1 (2.75) 

in which 

Q; [~ 
0 0 -2 0 0 -6x -2y 0 0 -6xy 

-~Xy 1 0 0 0 0 -2 0 0 -2x -6y 0 

0 0 0 2 0 0 4x 4y 0 6x2 6y2 

(2.76) 

Note that the displacement function chosen permits a state of constant strain 

(curvature) to exist. This satisfies one of the criteria of convergence. 

Stiffness and Load Matrices The stiffness matrix relating the nodal forces 

(given by a lateral force and two moments at each node) to the corresponding nodal 

displacement is 

(2.77) 

Substituting equation (2.75) and taking t as constant within the element, 

K(e) = C-1T (J J QT DQdxdy )C-1 (2.78) 

An explicit expression for the stiffness matrix K has been evaluated for the case 

of an orthotropic material and the result is given in Table 2.2. 
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Stiffness matrix 

[k] = 60
l
ab [L]{D.[KI] + D,[K2] + DI[KJ ] + D.,[K.]}[L] 

with 

m'[k1g} 
60 b2 
0 0 p- 2 =_ 

30 0 20 a2 

30 0 15 60 Symmetrical 

0 0 0 0 0 

KI = p - 2 15 0 10 30 0 20 
-60 0 -30 -30 o -IS 60 

0 0 0 0 0 0 0 0 
30 0 10 15 0 5 -30 0 20 

-30 o -15 -60 o -30 30 0 -15 60 
0 0 0 0 0 0 0 0 0 0 0 

15 0 5 30 0 10 - 15 0 10 -30 0 20 

60 a2 
2 = _ 

-30 20 P h2 

0 0 0 Symmetrical 
-60 30 0 60 
-30 10 0 30 20 

K2 = p2 0 0 0 0 0 0 
30 -15 0 -30 -15 0 60 

- 15 10 0 15 5 0 -30 20 
0 0 0 0 0 0 0 0 0 

-30 15 0 30 15 0 - 60 30 0 60 
-IS 5 0 15 10 0 -30 10 0 30 20 

0 0 0 0 0 0 0 0 0 0 0 0 

30 
-15 0 

15 -15 0 Symmetrica l 
-30 0 -15 30 

0 0 0 15 0 

KJ = -15 0 0 15 15 0 
-30 15 0 30 0 0 30 

15 0 0 0 0 o -15 () 

0 0 0 0 0 0 - 15 15 0 
30 0 () -30 -15 0 -30 () 15 30 
0 0 0 - 15 0 0 0 0 0 15 0 
0 0 0 () 0 0 15 0 0 -15 -15 0 

84 
-6 8 

6 0 8 Symmetrical 
-84 6 -6 84 
-6 -2 0 6 8 

K. = -6 0 -8 6 0 8 
-84 6 -6 84 6 6 84 

6 8 0 -6 2 0 -6 8 
6 0 2 6 0 2 -6 0 8 

84 6 6 84 6 -6 -84 6 6 84 
6 2 0 6 8 0 -6 -2 0 6 8 
6 0 2 6 0 2 6 0 8 6 0 I! 

L. [j 0 0 n [~ tl I 0 0 

0 I where 2b 

0 0 0 

Table 2.2. Stiffness Matrix for a Rectangular Element. 
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The corresponding stress matrix for the internal moments of all the nodes IS 

given in Table 2.3. 

6p-' D. -8aD, 8bD. -6pD, -4aD, 0 -6p-' D. 0 4bD. 0 0 0 +6pD, 

6pD, 
-8aD, 8bD, -6pD, -4aD, 0 -6p-'D, 0 4bD, 0 0 0 

+6p-'D, 

-2D., 4hD., -4aD., 2D., 0 4aD., 2D., -4bD., 0 -2D., 0 0 

-6pD, 4aD, 0 6p-' D. 8aD, 8bD. 0 0 0 -6p-' D. 0 4bD. +6pD, 

-6pD, 4aD, 0 
6pD, 

8aD, 8bD, 0 0 0 -6p-'D, 0 4bD, 
+6p-'D, 

-2D., 0 -4aD., 2D., 4bD., 4aD., 2D., 0 0 -2D., -4bD., 0 

-6p-'D. 0 -4hD. 0 0 0 +6p-'D. -8aD 
6pD, ' 

-8bD. -6pD, -4aD, 0 

-6p-' D, 0 -4bD, 0 0 0 6pD, 8 
+6p-'D, - aD, -8bD, -6pD, -4aD, 0 

-2D., 4bD., 0 2D., 0 0 2D., -4bD., -4aD., -2D, 0 4aD., 

0 0 0 -6p-'D. 0 -4bD. -6pD, 4aD, 0 +6p-'D. 
6pD, 8aD, -8bD. 

0 0 0 -6p-'D, 0 -4bD, -6pD, 4aD, 0 
6pD, 

8aD, -8bD., +6 -'D p , 

-2D., 0 0 2D., 4bD" 0 2D" 0 -4aD., -2D., -4bD., 4aD., 

Table 2.3. Rectangular Element of Figure 2.10 (Orthotropic Material). 

If a distributed load q acts per unit area on an element in the direction of w then 

the contribution of these forces to each of the nodes is 

Ii = - J J NT qdxdy (2.79) 

or by equation (2.69) 

Ii = _C- IT J J pT qdxdy (2.80) 

Quadrilateral and Parallelogram Elements 

The rectangular element is not easily generalised into the quadrilateral shape. Trans­

formation of coordinates can be performed, but generally results in the violation of 
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the constant curvature criterion. Thus such elements behave badly, but convergence 

may still occur providing the patch test is passed in the curvilinear coordinates. 

Only for the case of the parallelogram is it possible to achieve constant curvature 

exclusively using functions of ~ and TJ. For a parallelogram the local coordinates 

(Figure 2.11) can be related to the global coordinates by an explicit expression 

~=(x-ycota)la 

TJ = csc alb 

y 

2a --~~ 

Figure 2.11. Parallelogram Element and Skew Coordinates. 

2.2 Theory for Laminated Plates and Shells 

(2.81 ) 

2.2.1 Governing Equations for Laminated Plates: Thermal 

loading 

Consider a symmetrically laminated rectangular plate of length a, width b and thick­

ness H lying in the x, y, z plane and constructed of an arbitrary number [{ of or-
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thotropic layers of equal thickness hk and fibre orientation (h where k = 1,2, .. . , K. 

y 
/ 

CD 

~ 
H 

T 

Y 

Figure 2.12. Geometry and temperature distribution of the plate. 

40 



The plate is subject to a thermal loading T(x, y) which is constant in the thick­

ness direction but variable in the x, y directions as shown in Figure 2.12, where the 

vertical axis indicates the temperature T at a point (x, y). 

The force (Nx, Ny, Nxy ) and moment (Mx, My, Mxy) resultants in a symmetric 

angle-ply laminate are related to the middle surface displacement components (u, v, 

w), thermal forces (N;, N'{, N~) and thermal moments (M;, M'{, M;y) through 

the constitutive equations: 

{ 
Nx 

} [AU 
A l 2 

A'6 ]{ 
U,x 

}-{ 
NT 

} 
x 

Ny = Al2 A22 A 26 V,y NT 
y 

Nxy Al6 A 26 A66 U,y + v,X N~ 

(2.82) 

{ 
Mx 

} [DU 
D12 D'6 ]{ -w,rr } _ { 

MT 

} 
x 

My = D12 D22 MT D 26 -W,yy y 

Mxy Dl6 D 26 D66 -2w,xy M~ 

(2.83) 

in which a comma denotes differentiation with respect to the subscript and where 

K 

Aij = I: Q~;)(hk - h k- l ) (2.84) 
k=l 

and 

_ 1 ~ -(k)( 3 3) 
Dij - 3" w Qij hk - hk_l 

k=l 
(2.85) 

are the extensional and bending stiffnesses, respectively, and Q~;) are components 

of the transformed reduced stiffness matrix for the k - th layer. 

The thermal forces and moments appearing in equations (2.82) and (2.83) are 

defined by 

(2.86) 

where T is the temperature dist~ibution and ax, ay and axy are the coefficients of 

thermal expansion. For a symmetric laminate exposed to a uniform temperature 

distribution, say T = T1 , the thermal moments M;, M; and M~ vanish, while the 

thermal forces N;, N'{ and N~ become functions of TI alone. 
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2.2.2 Governing Equations for Laminated Plates: Trans­

verse loading 

Consider a symmetrically laminated rectangular plate of length a, width b and thick­

ness H under a transverse bending load q(x, y). The plate is located in the x, y, 

z plane and constructed of an arbitrary number K of orthotropic layers of equal 

thickness hk and fibre orientation Ok where k = 1,2, ... , K (Figure 2.14). 

y 

z 

"" ",@ q 
I 

"" 
I 

I I "" I I I 

I I 

X 
CD 

a 

Figure 2.13. Geometry and loading of the plate. 
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The displacement of a point (XO, yO, ZO) on the reference surface is denoted by 

(UO, vO, W O). The governing equation for the deflection w in the z direction under a 

transverse load q is given by [11]: 

Duw,xxxx +4D16W,xxxy +2(D12 + 2D66 )W,xxyy +4D26W,xyyy 

+ D22w,yyyy = q 
(2.87) 

where variables after the comma denote differentiation with respect to that variable, 

and 

j h/2 - (k) 2 
Dij = Qij Z dz 

-h/2 
(2.88) 

are the bending stiffnesses and Q~7) are components of the transformed reduced 

stiffness matrix for the k - th layer. 

2.2.3 Buckling Equation for Laminated Plates 

Consider a laminated rectangular plate of length a, width b and height h lying in the 

Cartesian x - y plane. The plate is constructed of orthotropic layers with fiber angles 

of (h, k = 1,2, ... , K, where K denotes the total number of layers. The coordinate 

system x y z is located in the mid-plane, and the plate is subject to compressive 

forces NxO in the x direction, and NyO in the y direction with the load ratio defined as 

>. = NyO/Nxo . The plate is symmetrically laminated with respect to the mid-plane 

and simply supported on all edges. It may be shown that the buckling load is given 

by [12] 

(2.89) 

where m and n represent the half wave numbers, Q mn = na/mb and Dij are the 

bending stiffnesses. 
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2.2.4 Governing Equations for Cylindrical Shells 

Consider a laminated circular cylindrical shell of length L, radius R, and total 

thickness H 

Tcr 

L 

Figure 2.14. Geometry of Symmetrically Laminated Cylindrical Shell. 

The shell has a symmetric layup consisting of I< layers of equal thickness t. The 

structure is referenced in an orthogonal coordinate system (x, y, z), where x is the 

longitudinal, y the circumferential, and z the radial direction. The displacement 

components u, v and ware for the x, y and z directions respectively. 

The fibre angle is defined as the angle between the fibre direction and the longi­

tudinal (x) axis. The fibre orientations are symmetric with respect to the mid-plane 

of the shell and are given by (h = (-1)k+ 10 for k ~ I</2 and Ok = (_l)kO for 

k ~ I</2 + 1, where k = 1, ... , I< with k being the layer number. The equilibrium 

equations for the mid-plane of this type of shell is [13]: 

All U xx + A 12 ( V,xy + w,x/ R) + A66 ( V,xy + U ,yy) = 0 

A66 (V,xx + U ,xy ) + A12 U,xy + A22 (V,yy + W,y/ R) = 0 

Dll w,xxxx + 2(D12 + 2D66 )W,xxyy + D22 W,yyyy 
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where Aij and Dij are the extensional and bending stiffnesses respectively, and Q~? 
are modulus components for the k - th layer. Owing to the midsurface symmetry of 

the shell, the bending-extension coupling matrix Bij does not appear in eqn. (2.90). 

For a simply supported shell under axial loading, the boundary conditions are given 

as follows: 

W = 0, v = 0 at x = 0, L (2.91 ) 

In this study, since only the axial load is considered, 

Ny = 0 and Nxy = 0 (2.92) 

Simply Supported Shells subject to Axial Buckling For laminated shells 

which are simply supported at x = 0 and x = L, the solution to the system of 

equations (2.90) which satisfies the boundary conditions (2.91) is obtained by taking 

the displacements in the form 

U = Umn cos( >'mx) sin( >'nY) 

v = Vmn sin( >'mX) sin( >'nY) 

W = Wmn sin(>'mx) sin(>'n) 

(2.93) 

where >'m = m7r J L, >'n = nJ R, and Umn, Vmn and Wmn are the amplitudes of 

the displacement components, and 2m and n are numbers of half waves in the 

buckle pattern in the axial and circumferential direction respectively. The buckling 

load Nx corresponding to these wave numbers is obtained as an eigenvalue of the 

linear system of equations obtained by substituting (2.93) into (2.90). The following 

expression results from this [13]: 

Cll Cl2 Cl3 

C2l C22 C23 

1 C31 C32 C33 
Nx ( m, n, B) = >.2 

Cu Cl2 m 
(2.94) 

C21 C22 

45 



where 
0 11 = All'\~ + A66'\; 

0 22 = A22 ,\; + A66'\~ 
0 33 = Dll'\~ + 2(D12 + 2D66)'\~'\; + D22 ,\! + D22/ R2 

0 12 = 0 21 = (A12 + A66)'\m'\n 

0 13 = 031 = AI2'\m/ R 

0 23 = 032 = A22'\n/ R 

(2.95) 

The critical buckling load Ncr(O) is calculated by minimising (2.94) as a function 

of m and n: 

Ncr = min Nt:(m, n; 0) 
m,n 

(2.96) 

Simply Supported Shells subject to Torsional Buckling Load For the same 

shell subject to a torsional load Nt:y, the critical torsional buckling load N;yis given 

as [13]: 

N* = 21 75(D )5/8(An A22 - A~2)3/8R5/4 
xy . 22 A22 £1/2 (2.97) 

subject to 

(2.98) 

Simply Supported Shells subject to External Buckling Pressure For this 

case, the only loading applied is the external pressure and the loading conditions 

are given by 

Nx = qR/2, Ny = qR, Nxy = 0 (2.99) 

where q is the external pressure. 

Equations (2.93) can be used as displacements to solve the eigenvalue problem 

(2.90), (2.91) and (2.99). Substituting (2.93) into (2.90) with the force resultants 

(2.99) gives the eigenvalue corresponding to the wave numbers m and n [13]: 

011 0 12 0 13 

0 21 0 22 0 23 

1 0 31 0 32 0 33 
q(m n 0) -

" - R('\; + '\~/2) On 0 12 
(2.100) 

0 21 0 22 

where Oij are as above (2.95) . 
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2.3 Laminated Plates under Thermal Loading 

In recent years the use of composite materials in high temperature environments 

has grown markedly, which has resulted in increased research both into the thermal 

properties of composites, as well as into the behaviour of laminated structures under 

thermal loads. Studies on the temperature properties of composites include those 

by Ishikawa et al [14], Schapery [15] and Cairns and Adams [16]. There are a 

number of studies concerning thermoelastic behaviour of laminates. Weinstein et al 

[17] established a finite element approach for the analysis of sandwich plates with 

different anisotropic facings. Reddy and Hsu [18] considered the effects of shear 

deformation and anisotropy on the thermal bending of composite plates. A closed 

form solution is also presented to validate their finite element results. A higher order 

thermoelastic theory was developed by Jonnalagadda et al [19] which considered the 

effects of transverse shear and transverse normal strain. The theory is compared with 

several published theories. Optimal thermoelastic design is considered by Tauchert 

and Adibhatla [20] using the Rayleigh-Ritz procedure and a quasi-Newton method 

for the optimisation. 

An important subject in this field is the thermal buckling problem. This field 

has been studied by various researchers, and a survey paper of developments by 

Tauchert [21] reviews the recent work in this area. 

Results given by Tauchert and Huang [22] indicated that buckling temperatures 

can be maximised by means of layup optimisation. In particular, for simply sup­

ported symmetric laminates with alb = 1, the maximum buckling temperature 

occurs at Oopt = 45° for plates of more than three layers but at Oopt ~ 25° (or 65°) 

for single layered laminates. 

Optimal design of anti symmetric laminates under thermal loads was given by 

Adali and Duffy [23] for the non-hybrid and hybrid cases. In the case of hybrid 

laminates, the optimisation is carried over the ply angles and the hybridisation 

parameter, and numerical results are given for simply supported laminates with 

graphite, boron and glass layers under a uniform temperature change. Multiob­

jective designs of antisymmetric laminates under thermal loads was given by Adali 

and Duffy [24] taking the buckling temperature and the maximum deflection as the 

design objectives, and ply angles and thicknesses as design variables. 

Thangaratnam et al [25] studied the thermal buckling of composite laminated 

plates using the finite element method. First the uniform temperature distribu-
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tions are considered. With symmetric cross-ply laminates, the number of layers is 

shown to have an effect on the critical temperature due to bending-twisting coupling 

(D16 #- 0, D26 #- 0). However this effect decreases as the number of layers increases. 

While only thermal force resultants N;, N; are produced in symmetric laminates, a 

thermal moment M;y is also generated in antisymmetric angle ply laminates. While 

NT and NT do not change, MT decreases with total number of layers. This M;y x y xy 

and the bending-twisting coupling cause the critical temperature to depend on the 

number of plies. However as the number of plies increases this effect becomes negli­

gible. In addition, this paper shows that when the temperature varies linearly across 

the thickness, the buckling temperature is double that for the uniform temperature 

case. 

Finite element solutions for the buckling behaviour of laminates subjected to a 

uniform temperature field were given by Chandrashekhara [26]. Transverse shear 

flexibility was accounted for in the analysis using the thermoelastic version of the 

first order shear deformable theory. 

2.4 Multiobjective Design of Symmetrically Lam­

inated Shells 

Various researchers have considered the design of thin laminated cylindrical shells. 

Early studies include Sherrer [27] who presented a theoretical elastic solution for 

filament wound cylinders with any number of layers and for any loading conditions; 

and Reuter [28], who analyzed laminated alternate-ply cylindrical shells using clas­

sicallaminated shell theory. Optimal design of these structures has been considered 

by several authors, using analytical or numerical methods. Hu [29] investigated the 

influence of shell length and thickness on the optimal layer fibre angle. Onoda [30], 

and Tripathy and Rao [31], using the finite element method, considered optimal 

layups for laminated shells under axial buckling loads. Further studies concerning 

buckling of circular shells include Yamaki [32] and Nshanian and Pappas [33]. 

Multiobjective design of composite structures includes that by Adali et al [34], 

Sun and Hansen [35] and Tennyson and Hansen [36], who studied the optimal de­

sign of laminated cylindrical shells under torsional, axial and external and internal 

pressure loadings. Kumar and Tauchert [37], Grandhi and Bharatram [38], and Rao 

et al [39] all considered multiobjective designs for various structures. Shape and 
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material optimisation was investigated by Saravanos and Chamis [40]. 

2.5 Optimal Design of Symmetrically Laminated 

Pressure Vessels 

A fair number of studies dealing with laminated composite shells and vessels have 

been reported in the literature. Authors have considered various approaches for the 

purposes of designing these structures, including Reissner, Urazgil'dyaev, Eckold 

and Fukunaga et al [41], [42], [43], [44]. Karandikar et al [45] propose an approach 

using compromise Decision Support Problems in designing for concept of a pressure 

vessel made of composite materials. Some of these authors used finite element 

methods to model and analyse the structures. Such techniques allow effects like 

bending-twisting coupling to be incorporated in the problem formulation. The 

optimal distribution of fibres in reinforced pressure vessels for minimum strain energy 

was studied by Tauchert [46]. Adali et al [47] investigated the optimal design of 

laminated pressure vessels for maximum burst pressure and minimum weight, using 

fibre angle as the optimising variable. 

2.6 Minimum Weight and Cost Design 

Literature concerning minimum weight and cost design of various composite struc­

tures includes Huang and Alspaugh [48] who studied the optimal design of sandwich 

beams. Their optimisation software was based on the recursive quadratic program­

ming algorithm. Another study to investigate sandwich beams was that of Paydar 

and Park [49] who treated the minimum weight design with a specially developed the­

ory. Triantafillou et al [50] and Phillips and Gurdal [51] detailed the optimal design 

of hybrid box beams and composite panels, respectively. The latter used analysis 

routines in conjunction with an optimisation package to provide design schemes for 

geodesically stiffened minimum weight aircraft wing rib panels. Optimal weight de­

sign of shells is considered by Min and Charanteney [52], who investigated sandwich 

cylinders under combined loadings. A study by Ostwald [53] considered the com­

bined loading cases of external pressure and axial compression in the optimisation 

of thin walled shells. The Bubnov-Galerkin method was used to solve the stability 

problem. 
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The optimal design of plates for minimum weight was considered by various 

researchers. Shin et al [54] designed minimum weight symmetric plates to operate 

in the postbuckling range. It was shown that by operating in the postbuckling range, 

a reduction in the plate weight can be achieved. 

Studies dealing with the concept of hybridisation, whereby the distinctive prop­

erties of different materials are employed in the best way possible, include Adali 

and Duffy [55], which involved the minimum cost design of anti symmetric laminates 

subject to a frequency constraint. Other studies of hybrid laminates include Adali 

and Duffy ([56] to [58]) and Miki and Tonomura [59]. 

2.7 Minimum Deflection Design of Laminated 

Plates 

The optimal design of laminated plates for minimum deflection has been investigated 

by several authors. Jiang and Chiang [60] considered symmetric, simply supported 

angle-ply laminates. Optimal fibre angles for a four-layered laminate under uniform 

pressure loading were determined using a numerical procedure. Johnson and Sims 

[61] studied the optimal design of symmetric simply supported plates for two types 

of loading conditions, uniformly distributed and point loading, applied at the centre 

of the plate. The plate deflection and optimal fibre angles is calculated using a 

one term Rayleigh-Ritz. approximation. Cross-ply, simply supported square plates 

subjected to sinusoidally distributed loads were optimised by Rao and Singh [62]. 

The maximum deflection in this case occurred at the centre of the plate. Iyengar 

and Umeratiya [63] considered symmetrically laminated plates with a combination of 

simply supported and clamped boundary conditions. Maximum deflection, using the 

fibre angle as the optimising variable, was minimised for various hybrid laminates. 

A minimum thickness design for plates with discrete ply angles subject to strength 

and buckling constraints was considered by Kogiso et al [64]. A genetic algorithm 

search technique was used to achieve the optimal design. 

A number of studies concerning the minimum weight design of laminated plates 

appear in the literature. Angle-ply laminates subjected to uncertain loads were con­

sidered by Adali et al [65] who used a convex modelling approach in their analysis. 

The optimal design of symmetrically laminated plates under transverse loads was 

given by Tauchert and Adibhatla [20] using the minimum strain energy criterion, 
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and by Quian et al [66] and by Kengtung [67] using the minimum structural compli­

ance criterion. A maximum stiffness design for both symmetric and antisymmetric 

laminates was considered by Kam and Chang [68] . Adali et al [69] investigated the 

minimum weight and deflection design of thick laminates via symbolic computation. 
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Chapter 3 

Optimal Design Problems 

3.1 Optimal Design of Symmetrically Laminated 

Plates for Maximum Buckling Temperature 

The objective of the first design problem is to maximise the buckling temperature Tb 

for a given plate thickness H by optimally determining the fibre orientations given 

by lh = (-l)k+l(Hor k ~ Kj2 and fh = (-l)kO for k ~ Kj2+1, where K is the total 

number of layers. Let the temperature distribution be given by T(x,y) = nt(x,y) 

where t(x, y) is the temperature distribution corresponding to a unit temperature 

input. The critical buckling temperature Tcr(O) is given by 

Tcr(O) = ~iR[n,mn(m, n; 0)] , (3.1) 

where n,mn is the buckling temperature corresponding to the half-wave numbers m 

and n in the x and y directions, respectively. The design objective is to maximise 

Tcr(O) with respect to 0, viz. 

(3.2) 

where T cr( 0) is determined for a given 0 from the finite element solution of the 

thermal buckling problem defined by 

([ K] + A [f{ G]) { u} = 0 (3.3) 

where [K] is the stiffness matrix, [KG] is the initial temperature matrix and u is 

the required displacement vector. The lowest eigenvalue of the homogeneous system 
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(3.3) yields the buckling temperature. 

The present study [70] allows the temperatures to be described along the edges of 

the plate resulting in a temperature distribution across the plate which is a function 

of x and y. Before the buckling problem (3 .3) can be solved, the temperature 

distribution has to be determined and this computation is again performed using 

the heat conduction module of a finite element program. This calculation yields 

the thermal stress field applicable to that loading condition and this solution is 

incorporated into the eigenvalue problem in order to compute the corresponding 

buckling temperature. 

The optimisation procedure involves the stages of evaluating the buckling tem­

perature Tcr(fJ) for a given () and improving the fibre orientation to maximise Tcr . 

Thus the computational solution consists of successive stages of analysis and opti­

misation until a convergence is obtained and the optimal angle ()opt is determined 

within a specified accuracy. In the optimisation stage, the Golden Section method 

is employed. 

The overall solution strategy involves three stages of computation and can be 

summarised as follows: 

i) The solution of the temperature distribution problem for given temperatures along 

the edges by finite elements. 

ii) The solution of the thermal buckling problem for a given ()opt by finite elements. 

iii) The solution of the optimisation problem to determine ()opt corresponding to the 

maximum buckling temperature by Golden Section method. 

This approach allows the solution of the design optimisation problem under a 

variety of boundary and temperature conditions along the edges. 

3.2 Optimal Design of Laminated Cylindrical Pres­

sure Vessels for Maximum External Pressure 

Consider a symmetrically laminated cylindrical pressure vessel of length L, radius R, 

wall thickness H and total number of layers K . The vessel may be either hemispher­

ically or flat capped as shown in Figure 3.2.1 and is subjected to external pressure 

Pext = P. 
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Figure 3.2.1. Diagram showing geometry and loading of a) hemispherically capped 

b) flat capped pressure vessel. 

The objective of the second design problem is to maximise the buckling pressure 

p = P( 0) for a given thickness H by optimally determining the fibre orientations 

given by Ok = (_1)k+10 for k ~ K/2 and Ok = (_l)kO for k ~ K/2 + 1. This is 

written as [71], [72], [73]: 

(3.4) 

where P( 0) is determined from the fi nite element solution of the eigenvalue prob­

lem of the same nature as that given by equation (3.3). The optimisation procedure 

involves the stages of evaluating the buckling pressure P( 0) for a given 0 and improv­

ing the fibre orientation to maximise P. Thus, the computational solution consists 

of successive stages of analysis and optimisation until a convergence is obtained and 

the optimal angle Oopt is determined within a specified accuracy. In the optimisation 

stage, the Golden Section method is employed. 
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3.3 Multiobjective Design of Laminated Cylin­

drical Shells for Maximum Torsional and Ax­

ial Loads 

This problem, the third in the study, is concerned with the multiobjective optimi­

sation of a laminated shell by determining the Pareto optimal value of the design 

variable (). The concept of Pareto optimality was first introduced by Pareto [74], 

and is basically a maximisation of a weighted sum of the various objectives under 

consideration. Due to conflicting objectives, it is genarally impossible to optimise 

these objectives simultaneously and Pareto optimality provides a concept which is 

physically meaningful and easy to apply. At the beginning of a design process, 

it is impossible for the designer to specify the relative importance of each objec­

tive function in a chosen performance index, which is a weighted combination of 

all the objectives. These may be better determined after studying the response of 

the structure. Optimal trade-off curves, giving the points of optimal response, are 

useful in this process since they show the trade-offs involved in choosing a certain 

design. The reader is directed to Reference [75] for further study. The objectives of 

the design involve the maximisation of the buckling loads N;y and Ncr. In general, 

these objectives conflict with each other necessitating a multiobjective formulation. 

With this situation in mind, the performance index J (0:, /3; ()) of the design problem 

is specified as [76]: 

where 0:, /3 ~ 0, 0:+ /3 > 0 are the weighting factors, and the N; and No denote 

the values of N;y and Ncr at () = 0°. Single objective designs correspond to 0: = 1, 

/3 = 0 for maximum N;y and 0: = 0, /3 = 1 for maximum Ncr. For 0:, /3 > 0, the 

fibre orientation 0 maximising J (0:, /3; 0) gives the Pareto optimal O. 

Thus the design objective can be stated as 

subject to 

00 
~ 0 ~ 900 

The optimisation procedure [77] involves the stages of evaluating the buckling loads 

N;y( 0) and Ncr (0) for a given 0 and improving the fibre orientation to maximise 
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J (Cl, (3j 0) at a given set of weighting factors. Thus, the computational solution con­

sists of successive stages of analysis and optimisation until a convergence is obtained 

and the Pareto optimal angle Oopt is determined within a specified accuracy. In the 

optimisation stage, the Golden Section Method is employed. 

3.4 Minimum Weight and Cost Design of Hybrid 

Laminated Plates 

The objective of the fourth design problem involves minimising the weight and cost 

of a hybrid symmetrically laminated plate subject to biaxial buckling loads. 

The plate is constructed of layers of different materials resulting in a hybrid 

laminate. Let I denote the total number of materials used in the construction, and 

ti the thickness of an individual layer of the i - th material. Then the total thickness 

of the i-th material is Ti = niki where ni is the number of layers of the i-th material. 

For each hybrid construction comprising a combination of different materials, the 

layer thickness of one of the materials is chosen as the reference thickness and is 

denoted by t re!. The layer thicknesses t; of the other materials are expressed in 

terms of tre! by means of thickness parameters 'Yi, viz 

t; = 'Y; tre! i = 1,2, ... , I - 1 (3.6) 

The parameter 'Yi indicates the ratio of layer thicknesses of the i-th and reference 

materials. For 'Yi = 0, the i - th material drops out of the construction. The total 

thickness of the laminate is given by 

I I I-I 

H = I:Ti = I: ni ti = tref(I: ni'Yi + nre! ) (3.7) 
~I ~I ~1 

where nre! is the number of layers of the reference material. 

The weight Wi of the i - th material is given by Wi = abpiT; where Pi is the 

density of the i - th material. The total weight WT of the laminate is given by 

I I 

WT = I: Wi = ab I: Pi Ti (3.8) 
i =1 i=1 

Let Pi denote the cost per unit weight of the i - th material. Then the cost of 

the i - th material is Ci = Pi Wi and the total material cost of the laminate is given 
by 
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I I 

GT = L:Gi = L:Pi Wi (3.9) 
i=l i=l 

Optimal Design problem 

A design problem can be formulated either as a minimum weight or a minimum 

cost problem. However, these problems are not dual because of the fact that al­

though the cost function is a monotonic function of the thickness parameters Ii, the 

weight function mayor may not be a monotonic function of 'Yi depending on the 

material combinations. Thus in the minimum cost problem, the weight constraint 

is always active, ie., it is a boundary point of the feasible region. However, in the 

minimum weight problem, the cost constraint may be a point in the design space 

away from the constraint boundary. Thus, the solutions of these problems may 

not produce dual results. This point will be further illustrated in the discussion of 

method of solution and the numerical results. 

The design space involves four design parameters, namely, the fibre orientations 

(h, k = 1,2, ... , Kj2, thickness parameters Ii, i = 1,2, ... , I - 1, the reference 

thicknesses tre! and the materials i = 1, ... , I. The buckling load Ncr given by 

equation (2.89) depends on all these parameters explicitly. However, the weight and 

cost functions do not depend on Ok explicitly. Their dependence on these variables 

is indirect and by virtue of the minimum buckling constraint given by 

N~No (3.10) 

where No is a specified constant. Similarly the thickness ratios are constrained from 

above by imposing 

Ii ~ 10 , i = 1, 2, ... , I - 1 (3.11) 

in order to limit the thickness ratios of different materials. The inequality constraints 

(3.10) and (3.11) apply to both problems. 

Of the four design parameters, three are continuous variables, namely, (h, Ii and 

t re!. However, the material combination is a discrete variable. The dependence of 

weight and cost functions on theses parameters are shown by using the notation 

WT = WT(lh, Ii, tre!; M) 

GT = GT ( fh , I i, tre!; M) 
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where M denotes the material selection. Furthermore the dependence of WT and 

CT on (h is implicit and is due to the buckling constraint (3.10). 

The formulations of the design problems are given next. 

Problem 1. Minimum weight problem. 

The objective is to minimise the weight of the laminate subject to the symmetry 

condition 

(h = OK+1-k k = 1, . .. ,Kj2 (3.14) 

on the ply angles 0° ~ Ok ~ 90°, and constraints on the buckling load N and the 

material cost CT. The problem can be stated as 

Wmin = min WT(Ok, Ii, tref; M) s 

subject to the constraints (3.10), (3.11) and 

(3.15) 

(3.16) 

where Co is the specified maximum cost. In equation (3.15), S denotes the design 

space of the problem which involves the continuous parameters Ok, Ii, and tref, and 

the discrete parameter M indicating the material combination employed. 

Problem 2: Minimum Cost Problem 

The objective is to minimise the cost of the materials used in the construction of 

the laminate with ply angles satisfying the symmetry condition (3.14). The problem 

can be stated as 

Cmin = minCT(Ok, Ii, tref; M) s 

subject to the buckling constraint (3.10), (3.11) and 

where Wo is the specified maximum weight. 
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3.5 Optimal Design of Symmetrically Laminated 

Plates for Minimum Deflection and Weight 

The final problem in this study consists of two parts. The first (A) considers both 

the minimum deflection and minimum weight design of laminated plates, while the 

second (B) is concerned with only the minimum weight design. 

3.5.1 A: Minimum deflection and weight design 

The objective of the first design problem [78] is to minimise the maximum deflection 

wmax(x, y) and then the weight W of the laminated plate. The minimum deflection 

is achieved by optimally determining the fibre orientations, given by fh = (-1 )k+10 

for k ~ K/2 and Ok = (_1)kO for k ~ K/2 + 1. The first part of the design problem 

may thus be stated as: 

6. 
Wmin . [ (1I)] 0° ~ 1I ~ 90° mIn Wmax U , U 

8 
(3.19) 

where 

W max (0) = max w(x, y; 0) 
x,Y 

(3.20) 

The second part of problem A. involves minimising the laminate thickness H 

subject to a failure criterion. In this study, the Tsai-Wu failure criterion [79] is used 

which stipulates that the condition for non-failure for any particular ply is 

F(O) = FllO"~k)O"~k) + F220"~k)0"~k) + F66r1;)r1;) 
+ 2F120"~k) O"~k) + Fl O"~k) + F20"~k) ~ 1 

where the strength parameters Fll , F22 , F66 , F12 , Fl and F2 are given by 

(3.21) 

Fl = l/Xt -l/Xc; F2 = l/Yt -l/Ve ; F12 = -~..jFllF22 (3.22) 

and Xt, Xc, yt, Ve are the tensile and compressive strengths of the composite material 

in the fibre and transverse directions, and G is the in-plane shear strength. 

The second part of problem A. may thus be stated as 

Wmin = min W(Oopt) 
H 
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subject to constraint (3.21), which is evaluated for all plies. 

The maximum deflection W max is determined from the finite element solution of 

the standard expression given by 

[K]{~} - {F} = {O} (3.24) 

where K and F are the stiffness and force coefficients respectively, and the variable 

~ denotes the nodal values of w,the transverse deflection, and its derivatives. 

The first optimisation procedure involves the stages of determining the maximum 

deflection wmax( X, y) for a given 0 and improving the fibre orientation to minimise 

wmax . The second optimisation stage involves evaluating F(O) using eqn. (3.21) for 

a given H and improving the laminate thickness to minimise the weight. This step 

may be described explicitly as 

mm I F(Oopt) - 11 
H 

(3.25) 

in order to minimise thickness. Thus the computational solution consists of suc­

cessive stages of analysis and optimisation until a convergence is obtained and the 

optimal angle Oopt and then Hmin is determined within a specified accuracy. In both 

optimisation stages, the Golden Section method is employed firstly to determine Oopt 

and then Hmin. 

3.5.2 B: Minimum weight design 

In the second part of the last design problem, the objective is to minimise the weight 

only. The problem can be stated as 

Wmin = min W(Hmin) 
() 

(3.26) 

In this case the minimum thickness Hmin of the plate is evaluated using eqn. (3.21) 

at each value of 0 until Oopt is obtained. As before, Hmin for each value of 0, and Oopt 

are determined using the Golden Section method. Finally the maximum deflection 

wmax(X, y) corresponding to Hmin and Oopt is obtained to compare the results with 

those of the first design problem. 
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Chapter 4 

Results and Discussion 

4.1 Optimal Design of Symmetrically Laminated 

Plates for Maximum Buckling Temperature 

The laminated plates for which the optimal designs are sought have different com­

binations of free (F), simply supported, (S) and clamped (C) boundary conditions 

implemented at the four edges. Also the nonuniform temperature loading rules out 

an analytical solution. The finite element method is thus used to solve the opti­

mal design problem. The FEM formulation is implemented using the commercial 

package COSMOS/M [80]. 

4.1.1 Finite Element Formulation 

We now consider the finite element formulation of the problem. Let the region S of 

the plate be divided into n sub-regions Sr (Sr E S; r = 1,2, ... , n) such that 

n 

II(u) = L II8r(u) ( 4.1) 
r=l 

where II and II8
r are potential energies of the vessel and the element, respectively, 

and u is the displacement vector. Using the same shape functions associated with 

node i (i = 1,2, ... , n), Si(X, y), for interpolating the variables in each element, we 

can write 
n 

U = L Si(X, Y)Ui (4.2) 
i=l 
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where Ui is the value of the displacement vector corresponding to node i, and is 

given by 
U = {u(i) v(i) w(i) .I.(i) .1.(i)}T 

o , 0 . ' 0' o/x 'o/y 
( 4.3) 

The static buckling problem reduces to a generalised eigenvalue problem of the 

conventional form, viz. 

([K] + "[KG]) {u} = 0 (4.4) 

where [K] is the stiffness matrix and [KG] is the initial temperature matrix. The 

lowest eigenvalue of the homogeneous system (4.4) yields the buckling temperature. 

4.1.2 Numerical Results 

The structures considered in this study are four-layered symmetrically laminated 

plates. The material is specified as T300/5208 graphite epoxy for which El = 181 

GPa, E2 = 10.34 GPa, E12 = 7.17 GPa and VI = 0.28. The thermal properties 

are given as 0'1 = 22.3 * 10-6 K- l
, 0'2 = 0.02 * 10-6 K- l

, kl = 4.5 J 1m 10 K, and 

k2 = 0.45 J 1m 1 0 K, where kl and k2 are the coefficients of thermal conductivity 

in the longitudinal and transverse material directions, respectively. 

Three different boundary conditions are implemented along the four plate edges 

(numbered 1 to 4 in Figure 2.12). These are (8,8,8,8), (C,8,C,8) and (C,C,C,C) 

with S representing a simply supported and C a clamped boundary, while the order 

refers to edges 1-4, respectively. Rotations around the x and y axes are denoted by 

rx and ry , respectively. These conditions may be explicitly described as follows: 

(8,8,8,8): v = w = rx = 0 at x = 0, a and u = w = ry = 0 at y = 0, b. 

(C,C,C,C): u = V = W = rx = ry = 0 at x = 0, a and u = v = w = rx = ry = 0 at 

y = 0, b. 

(C,8,C,8): u = v = w = rx = ry = 0 at x = 0, a and u = w = ry = 0 at y = 0, b. 

The results are given for three different thermal loadings to investigate the ef­

fect of temperature distribution on the optimum design and maximum buckling 

temperature. These loadings can be described as follows: 

i) Uniform temperature distribution across the plate. 

ii) Linear temperature distribution across the plate. 

iii) Nonlinear temperature distribution across the plate. 
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In all cases, the temperature remains constant through the thickness of the plate, 

and the results are non-dimensionalised using the following expression 

T = Tactual H ao 
b 

where ao is specified as 1 K-1
, b = 1m and H = O.Olm. 

Uniform temperature loading 

The first case of thermal loading consists of a uniform temperature over the surface 

of the plate. Figure 4.1.1 shows the graph of the critical buckling temperature T cr 

versus the fibre angle for this loading case for a square plate. The maximum buckling 

temperature occurs at a different fibre angle for each support condition. For the case 

(8,8,8,8), the maximum is at 45°. For the clamped plate, the maxima occur at 35.7° 

and 54.3°. For the case (C,8,C,8) , the optimal angle is 53.4°. 

Figure 4.1.2 shows the graph of the maximum buckling temperature Tmax versus 

the plate aspect ratio a/b. The maximum buckling temperatures for the clamped 

plates are seen to be lower than the (8 ,8,8,8) and the (C,8,C,8) plates. Under me­

chanical buckling loads, (C,C,C,C) plates tend to give the highest buckling loads. 

This contrast in the case of temperature loading can be attributed to the fact that 

simple support conditions provide more degrees of freedom and allow the plate to 

buckle at higher temperatures. The corresponding optimal fibre angles are shown in 

Figure 4.1.3. It is observed that the boundary conditions have a distinct influence 

on the optimum fibre orientation. 

Linear temperature distribution 

Loading two involves a linear variation of the temperature across the plate with the 

temperature loading along the first plate edge (edge 1, Figure 2.12) being T and 

that along the edge 3, 0°. The resulting temperature distribution is shown in Figure 
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4.1.4a schematically where the darker shade indicates the higher temperature. 

B) b) 

Figure 4.1.4. Temperature fields for a) loading case 2 and b) loading case 3. 

Figure 4.1.5 shows the buckling temperature versus the fibre angle for various bound­

ary conditions and for a square plate. The second loading condition causes an 

increase in the buckling temperatures, as compared to the first loading case, for 

all boundary conditions a.') well as small changes in the optimal fibre angle. The 

curves of Tmax versus the aspect ratio are shown in Figure 4.1.6. It is observed that 

(8,8,8,8) gives the lowest Tmax for alb ~ 1 while under uniform loading (C,C,C,C) 

gives the lowest Tmax for alb ~ 1.3 as seen from Figure 4.1.2. The corresponding 

fibre angles are shown in Figure 4.1.7. The trends for Bopt are similar to the uniform 

temperature case (Figure 4.1.3) with small changes in the values of Bopt ' 

Nonlinear temperature distribution 

The third loading case is obtained by setting the temperature of the edge 1 to T 

and keeping the edge 2 at 00
• The resulting temperature distribution is shown in 

Figure 4.1.4b. Curves of Tcr versus () are shown in Figure 4.1.8 for square plates. 

It is observed that higher temperatures are needed for buckling as compared to 

the previous cases even though the general pattern of the curves remains the same. 

Curves of Tmax versus alb are shown in Figure 4.1.9. The corresponding optimal 

ply angles are shown in Figure 4.1.10. It is observed that the sharp increase in Oopt 

in the (C,C,C,C) case is moderate as compared to the previous cases . 
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Bending-twisting coupling 

The effect of bending-twisting coupling on the buckling temperatures is shown in 

Tables 4.1.1 to 4.1.3. Results are given for square plates for each of the three loading 

cases. It is noted that as the number of layers increases the effect of bending-twisting 

coupling is reduced as D I6 ) D26 -t 0 and in all cases, for the number of layers K 2: 10, 

the effect becomes negligible. It is interesting to note that the effect on the optimal 

fibre angle is minimal, which is in contrast to the case when the mechanical buckling 

load is being maximised for similar plates as described by Walker et al [81] . In that 

study, it was found that when bending- twisting coupling was neglected, the effect 

on the optimal fibre angle was considerable, particularly when K :s; 10. 
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No. of Tm= Sopt Tm= Sopt Tm= Sopt 

Layers (S,S,S,S) (S,S,S,S) (C,C,C,C) (C,C,C,C) (C,S,C,S) (C,S,C,S) 

4 1.88 35.1° 1.72 44.4° 2.66 53.5° 

8 1.98 35.1° 1.77 44.9° 2.78 54.0° 

10 2.01 355° 1.78 445° 2.80 53 .7° 

20 2.04 354° 1.78 444° 2.81 53 5° 

50 2.05 35.3° 1.79 443° 2.82 53.4° 

Table 4.1.1. The effect of the number of layers on Tmax and Bopt (Uniform 

temperature distribution). 

No. of Tmax Sopt Tmax Sopt Tmax Sopt 

Layers " (S,S,S,S) (S,S,S,S) (C,C,C,C) (C,C,C,C) (C,S,C,S) (C,S,C,S) 

4 3.72 44.4° 3.38 53.3° 5.08 53.3° 

8 3.90 44.2° 3.47 53.3° 5.30 53 .2° 

10 3.94 44.5° 3.50 53.3° 5.32 53.2° 

20 3.96 44.5° 3.52 53.3° 5.33 53.2° 

50 3.97 44.4° 3.52 53.3° 5.34 53.3° 

Table 4.1.2. The effect of the number of layers on Tmax and Bopt (Linear 

temperature distribution). 

No. of Tmax Sopt Tmax Sopt Tmax Sopt 

Layers (S,S,S,S) (S,S,S,S) (C,C,C,C) (C,C,C,C) (C,S,C,S) (C,S,C,S) 

4 7.19 46.1° 6.23 52.1 ° 6.85 54.4° 
8 7.39 46.0° 6.36 52.1° 7.07 54.4° 
10 7.45 46.1° 6.38 52.1° 7.12 54.4° 
20 7.47 46.1° 6.40 52.1° 7.14 54.4° 
50 7.47 46.0° 6.40 52.1° 7.16 54.2° 

Table 4.1.3. The effect of the number of layers on Tmax and Oopt (Nonlinear 

temperature distribution) . 
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4.2 Optimal Design of Laminated Cylindrical Pres­

sure Vessels for Maximum External Pressure 

As in the design problem one, the presence of endcaps rules out an analytical solu­

tion to this design problem. A similar finite element formulation to that in the first 

design problem is used. 

4.2.1 Numerical Results 

The critical buckling loads for the pressure vessels are initially determined using the 

finite element method using a similar formulation to the one in section 4.1.1. The 

optimisation is achieved with a routine written in the C programming language. 

This routine is used to run the FEM software iteratively, and to extract from the 

output the relevant data for use in the optimisation. The buckling load found at 

a certain fibre angle is used in a Golden Section algorithm which maximises the 

buckling load to the accuracy required. 

Verification 

In order to verify the finite element formulation described above, convergence tests 

were carried out. For both the hemispherically and flat capped pressure vessels, the 

convergence testing was carried out with L = 3m, R = 0.5m and () = 30°. Table 

4.2.1 shows the dependence of the buckling pressure on the number of elements. 

The wall thickness is specified as O.Olm, and the material properties are those of 

T300j5208 graphite epoxy. The use of 700 elements for a hemispherically capped 

pressure vessel provided a mesh density which was considered sufficient, and similarly 

for a flat capped pressure vessel 676 elements proved sufficient. Consequently, in 

the present study, vessels of lengths other than given here were meshed with a 

corresponding proportion of these numbers of elements. 

Numerical results 

The buckling loads for the pressure vessels are determined with a finite element soft­

ware package. The optimisation, however, is achieved with a routine written in the 

C programming language. This routine is used to run the FEM software iteratively, 
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and to extract from the output the relevant data for use in the optimisation. 

The thickness of all the pressure vessels considered was H = O.Olm. The de­

pendence of the buckling pressure P on the fibre angle for hemispherically capped 

vessels is shown in Figure 4.2.1. For L = 3m and R = 0.5m the optimal fibre angle 

is 30.80 while for L = 10m, R = 0.5m, the optimal fibre angle has decreased to 

00. For L = 3m, R = 0.75m, ()opt. has increased to 43.2°. Figure 4.2.2 shows the 

equivalent results for the flat capped vessel. For L = 3m and R = 0.5m, the optimal 

ply angle is 44.40, and for the geometry L = 3m, R = 0.75m, ()opt has increased to 

54.40, while for the case L = 10m, R = 0.5m, ()opt decreases to 7.10. These graphs 

illustrate the importance of selecting the optimal fibre angle in order to maximise 

the buckling pressure of these structures. Moreover it is clear that the shape of end 

caps has a distinct effect on the optimal ply angles. 

The effect of the vessel length L on the maximum buckling pressure and optimal 

fibre angles is shown in Table 4.2.2. In this case the radius of the pressure vessel 

is specified as R = 0.5m and the thickness H = O.Olm. The optimal fibre angle is 

found to fluctuate but in general decrease with increasing length and as expected, 

the maximum pressure corresponding ' to the optimal fibre angles decreases as L 

increases. In the case of flat capped vessels of similar lengths, ()opt also decreases 

with increasing length, although not as rapidly as for the hemispherically capped 

vessel. This is also the case for the maximum buckling pressure. 

Table 4.2.3 shows the effect of vessel radius on the maximum pressure and op­

timal angle for vessels with L = 3m, H = O.Olm. In both cases, the maximum 

buckling pressure is found to decrease with increasing radius. For the hemispheri­

cally capped vessel, the fibre angle does not show any trend with increasing radius, 

with a minimum optimal fibre angle ()opt = 00 for R = 0.3m, and a maximum 

()opt = 40.1° for R = 0.8m. Interestingly, for the flat capped vessel, the minimum 

optimal angle ()opt = 00 is also found at R = 0.3m. At radii greater than R ~ 0.7m, 

the optimal angle remains fairly constant at around 540
• 

The effect of vessel wall thickness H is shown in Table 4.2.4 for a pressure vessel 

of length L = 1.5m and radius R = 0.5m. As expected the buckling pressure 

increases with an increase in wall thickness for both vessels. No noticeable trend 

can be seen in the relationship between ()opt and H. For the hemispherically capped 

vessel the minimum optimal angle is ()opt = 0° for H = O.OOlm while for the flat 

capped vessels ()opt = 0° for H = 0.025m. 

The effect of bending-twisting coupling on the maximum buckling pressure and 
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optimal fibre angle is shown in Table 4.2.5. As the number of layers K increases, so 

the strength reducing effect diminishes by virtue of D16 , D26 ~ O. From the table it 

is evident that the effect of bending-twisting coupling is greatest when the pressure 

vessel consists of fqur layers, since the difference in the maximum buckling pressure 

as compared to that of a vessel of fifty layers is the largest. For K ~ 8, the effect is 

almost negligible. 

The optimal fibre angles and maximum buckling pressure of a four layered hybrid 

pressure vessel (hemispherical and flat capped) with various geometries is given in 

Table 4.2.6. The internal layers of each vessel consist of K49 Kevlar epoxy for which 

El = 76 GPa, E2 = 5.50 GPa, E12 = 2.30 GPa and 1112 = 0.34, while the outer 

layers remain T300j5208 graphite epoxy material. The comparison between these 

vessels and the one composed only of graphite epoxy shows that the hybrid vessels 

have slightly lower buckling pressures for all geometries considered. The optimal 

fibre angles also change, which indicates that a non-optimal design may be obtained 

for a hybrid vessel if the optimal results from a single-material design are used. 
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Hemispherical Flat 

No. of P No. of P 
elements (MPa) elements ~a) 

440 0.38 465 0.21 

500 0.46 505 0.29 

540 0.51 588 0.38 

620 0.53 636 0.39 

700 0.54 676 0.39 
.Number of elements around the penphery IS 20 for all cases 

Table 4.2.1. Dependence of critical buckling pressure on the number of elements 

with L = 3.0m, R = 0.5m and () = 300
• 

Hemispherical Flat 

L(m) eopt Pnuv: e opt 
Pmax 

(MPa) (MPa) 
1.50 41.6° 4.07 54.7° 0.65 

1.75 27.7° 2.61 55.2° 0.65 

2.00 22.2° 1.73 55.2° 0.65 

2.25 17.2° 1.11 45.9° 0.57 

2.50 20.1° 0.85 42.0° 0.51 

2.75 25.1° 0.67 38.9° 0.45 

3.00 30.8° 0.54 37.3° 0.39 

3.25 26.0° 0.46 41.3° 0.33 

3.50 18.7° 0.37 44.4° 0.28 

3.75 10.8° 0.31 31.9° 0.24 

4.00 7.6° 0.28 23 .2° 0.23 

4.25 5.3° 0.26 21.5° 0.22 
4.50 4.1° 0.24 20.1° 0.21 
4.75 2.2° 0.23 18.4° 0.20 
5.00 1.0° 0.22 17.2° 0.20 
10.0 0° 0.21 9.2° 0.19 

Table 4.2.2. The effect of length on the optimal fibre angle and maximum buckling 

pressure with R = O.5m. 
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Hemispherical Flat 

R(m) 8 0pt Pmax 80pt Pmax 

(MPa) (MP~ 
0.1 16.50 9.54 21.10 8.11 

0.2 5.70 2.58 4.60 2.31 

0.3 00 1.00 00 0.94 

0.4 11.00 0.60 19.20 0.46 

0.5 30.80 0.54 37.30 0.39 

0.6 18.40 0.47 45.40 0.31 

0.7 15.00 0.40 54.40 0.21 

0.8 40.10 0.39 54.00 0.14 

0.9 33 .50 0.36 54.40 0.10 

1.0 25.80 0.33 54.40 0.07 

Table 4.2.3. The effect of radius on the optimal fibre angle and maximum buckling 

pressure with L = 3.0m. 

Hemispherical Flat 
H(m) 8 0pt Pmax 80pt Pmax 

(MPa) ~a) 
0.001 00 0.0045 55.90 0.00024 
0.01 30.80 0.538 37.30 0.387 

0.025 8.80 3.61 0.00 3.45 
0.05 7.90 19.83 4.60 19.93 
0.075 10.80 51.59 9.10 51.66 

0.1 13.10 97.21 11.50 96.53 

Table 4.2.4. The effect of thickness on the optimal fibre angle and maximum 

buckling pressure with L = 3.0m and R = O.5m. 
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Hemispherical Flat 
K eopt Pmax eopt Pmax 

~a) (MPa) 
4 41.6° 4.07 54.7° 0.654 

8 43.2° 4.22 55.2° 0.699 

10 43.5° 4.26 55.5° 0.705 

20 43 .9° 4.28 55.2° 0.701 

50 44.4° 4.29 54.7° 0.698 

Table 4.2.5. The effect of the number of layers on the optimal fibre angle and 

maximum buckling pressure with L = 3.0m and R = O.5m. 

Hemispherical 
Graphite GraphitelKevlar 

Geometry e opt Pmax e opt Pmax 
(MPa) (MPa) 

L = 3. Om, R = O.5m 30.8° 0.54 22.0° 0.43 
L = 3.0m, R = O.75m 12.1° 0.39 15.6° 0.36 
L = 5. Om, R = O.5m 1.0° 0.22 0° 0.16 

Flat 
Graphite Gr~hitelKevlar 

Geometry e opt Pmax 
(MPa) 

e opt Pmax 
~al 

L = 3. Om, R = O.5m 37.3° 0.39 35.5° 0.38 
L = 3. Om, R = O.75m 54.4° 0.21 41 .0° 0.21 
L = 5. Om, R = O.5m 17.2° 0.20 8.3° 0.18 

Table 4.2.6. The effect of hybrid construction on the optimal fibre angle and 

maximum buckling pressure. 
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4.3 Multiobjective Design of Laminated Cylin­

drical Shells for Maximum Torsional and Ax­

ial Loads 

The results reported in this section are for eight-layered symmetrically laminated 

cylinders with simply supported ends. The material properties used in the design are 

those of T300/5208 graphite epoxy. In the numerical results, the weighting factors 

are constrained as a + {3 = 1 so that {3 = 1 - a, 0 :S a :S 1. In Figures 4.3.1-4.3.12, 

the plate thickness is taken as H = 0.05m and the accuracy is specified as 0.10. 

Single objective designs 

Results for the single objective designs involving the maximisation of either N;y 

or Ncr are given first. Figure 4.3.1 shows the effect of cylinder length on the optimal 

fibre angles for Ncr (a = 0) and maximum N;y (a = 1) with R = 1m. For the axial 

loading case, ()opt generally decreases with increasing length. The discontinuity is 

due to a change in the buckling mode integers m and n. The optimal fibre angle for 

torsional loading is 90° for all L. This is explained by the form of equation (2.97), 

from which it may be seen that, since Land R are independent of the fibre angle, 

the optimal angle is the same for all L, R. Figure 4.3.2 shows the corresponding per­

formance indices plotted against length L. The curves for the optimal fibre angles 

plotted against cylinder radius R are shown in Figure 4.3.3 where L = 15m. The 

curve is stepped, again due to changes in the buckling mode. Figure 4.3.4 shows the 

corresponding curves for the design objectives. It is observed that Ncr/No decreases 

as the length L or radius R of the shell increases. 

Multiobjective designs 

The dependence of the performance index J on the fibre angle is investigated 

in Figure 4.3.5 for four weighting cases with a = 0, 1/3, 2/3, 1 indicating the 

dependence of Ncr and N;y on the fibre orientation. For this figure, the cylinder 

length was specified as L = 15m and the radius as R = 1m For a = 1.0, the graph 

rises monotonically with a maximum at 90° and this is the optimal () for maximum 

N;y . As a decreases the graphs become less monotonic and the maximum is found 
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at decreasing fibre angles. For Q = 2/3, the optimal angle is 77.21°, for Q = 1/3, 

the optimal angle is 74.73°, and for Q = 0, Oopt is 24.22°, which is the optimal () for 

maximum Ncr. It is interesting to note that at 54.78° the four curves intersect. 

Figure 4.3.6 illustrates the effect of cylinder length on the optimal fibre angle 

for a cylinder of radius R = 1m and h = 0.05m, for three different weightings. For 

Q = 1/3, the value of the optimal fibre angle lies between 68° and 83°, whereas for 

Q = 1/2, Oopt varies between 47° and 78°. The optimal fibre angles for Q = 2/3 again 

are correspondingly less, and vary across a greater range. All three of these curves 

show discontinuities at various values of L, and this is due to mode changes. 

Figure 4.3.7 shows the performance index J( Q, {i; ()) corresponding to the optimal 

fibre angles shown in Figure 4.3.6. For Q = 1/3 and Q = 1/2 , the performance 

index J generally decreases with increasing cylinder length L. For Q = 2/3, the 

index remains fairly constant. 

The curves for ()opt versus cylinder radius R are shown in Figure 4.3.8 for the 

three weightings with L = 15m. As Q decreases, the optimal angle is generally lower 

for all values of R. The discontinuities in the graphs of ()opt vs R are once again 

due to mode changes. The corresponding curves for J (Figure 4.3.9) show that the 

performance index fluctuates as Q decreases. The performance index J generally 

decreases with increasing R for all three values of Q. 

Figure 4.3.10 shows the dependence of ()opt on the value of the weighting factor Q 

for three different cases of L and R. As the proportion of the torsional load increases, 

viz. as Q increases, so ()opt correspondingly approaches 90°, and for all three cases 

of Land R, ()opt = 90° at Q = 1, corresponding to maximum N;y. ()opt values for 

Q = 0 are different for different values of Land R indicating that Ncr reaches its 

maximum at different values of ()opt depending on Land R. 

Figure 4.3.11 shows the corresponding values of the performance index J. In all 

three cases, the trends show a minimum between Q = 0.65 and Q = 0.8. At Q = 1, 

the loading is purely torsional, and thus J = N;y/ N;, which is independent of Rand 

L (see eqn. (2.97)). Therefore in all three cases the performance index converges to 

the same value J = 2.05. 

Table 4.3.1 shows the values of the performance index J and ()opt for various 

values of H, with L = 15m and R = 1m. The performance index increases with 

increasing H. Also, ()opt generally decreases with increasing H for both values of Q. 

Figure 4.3.12 shows the trade-off curve for N;y and Ncr with L = 15m and 

R = 1m. The individual loadings Ncr and N;y are evaluated separately at the 
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optimal fibre angles Oopt corresponding to the range of weightings 0 < ex < 1. The 

non-weighted contributions of these loads are plotted against each other to give the 

trade-off between the weightings ex = a and ex = 1. 
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Figure 4.3.1. Oopt versus L with R = 1m (single objective design). 
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Figure 4.3.2. J versus L with R = 1m (single objective design). 
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Figure 4.3.3. Oopt versus R with L = 15m (single objective design). 
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Figure 4.3.4. J versus R with L = 15m (single objective design). 
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Figure 4.3.12. Trade-off curves of ~l versus !ffc;. 

H(m) J(a= 1/3) Bopt(a = 1/3) J(a = 2/3) Bopt (a = 2/3) 

0.001 1.37 88.73° 1.71 90° 

0.005 1.54 78.44° 1.78 90° 

0.01 1.62 76.33° 1.81 84.86° 

0.05 1.75 74.73° 1.85 83 .88° 

0.1 1.88 63.68° 1.84 70.83° 

Table 4.3.1. The design index J versus H with L = 15m and R = 1m, for different 

values of a. 
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4.4 Minimum Weight and Cost Design of Hybrid 

Laminated Plates 

4.4.1 Method of Solution 

The design space S contains a combination of continuous and discrete variables com­

plicating the formulation of an optimisation procedure. Moreover, the high number 

of available design parameters suggests that conventional optimisation algorithms 

will be time consuming and possibly fail to find the global design point. To overcome 

these difficulties and in order to increase the accuracy of the solution, a sequential 

design procedure is formulated. The basic idea in this technique is to determine 

the optimal variables in a sequence and work with these variables (as they become 

available), as the solution progresses. This approach generates several trial solutions 

which are optimal with respect to one or more of the design parameters. The final 

design is chosen among these trial solutions. It is noted that the method of solution 

has no bias toward a hybrid construction and the final solution could produce a hy­

brid or non-hybrid laminate depending on the minimum buckling load or maximum 

cost (weight). 

The procedure involves two stages of optimisation with the first stage yielding 

the optimum fh and tre! and the second stage the optimum Ii and the material 

combinations. Next, the steps in each stage are discussed. 

First stage of optimisation 

Step 1. For a given combination of materials, input the thickness parameters Ii. 

Step 2. For a given set of Ok, k = 1, ... , K/2, compute the lowest tre! satisfying 

the buckling constraint (3.10). 

Step 3. Minimise the weight (cost) over fh by a suitable optimisation routine. 

Note that tre! varies for every set of Ok values and is determined as part of the 

solution at this stage of the optimisation. 

At the end of the first stage, a laminate is obtained which is optimal with respect 

to ply angles and satisfies the buckling constraint by virtue of the computation of tre! 

accordingly. However Ii are not determined optimally as they are input parameters 

at this stage and the material of each layer has been chosen a priori. 

Second stage of optimisation 

Step 4. The weight (cost) of a given laminate is to be minimised over the 

thickness parameters Ii subject to the maximum cost (weight) constraint. This 
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can be done by any constrained optimisation routine which involves solving the 

problem (3.15), (3.16) (or (3.17), (3.18)) with respect to 'Yi only as the optimal Ok 

and t re! are computed in steps 2 and 3 with the buckling constraint (3.10) already 

satisfied. 

For a hybrid laminate with two different materials only, this process is illustrated 

in Figure 4.4.1. In this case 'Y = titre! where t is the layer thickness of the second 

material. The curves of weight versus 'Y and cost versus 'Yare plotted for each 

combination and the cost constraint Go is indicated on the figure. Cross-sections of 

G = Go and G = Gb) curves (lines d, e, f) indicate the points of active constraint 

for laminates 1, 2, 3 and the points to the left are feasible design points to minimise 

the weight. 

Similarly the line W = Wo gives the weight constraint and lines a, band care 

drawn from active constraint points. The cross-sections of lines a, band c with 

C = Gb) curves, gives the optimal 'Y and the corresponding minimum cost for 

laminates 1, 2 and 3, respectively. 

At the end of this step, the optimal 'Y values for minimum weight (cost) are 

determined for every material combination. Note that 'Y = 0 produces a non-hybrid 

laminate as the solution. 

Step 5. The best material combination is determined by comparing the weights 

(costs) of laminates obtained in step 4. For example Figure 4.4.1 shows that mini­

mum weight design is given by laminate 3 with the weight indicated by the line Wmin' 

Similarly, the minimum cost is marked by Gmin corresponding to laminate 3. In this 

step the optimisation results are obtained for all material combinations by applying 

steps 1-4 to different hybrid constructions. A final comparison of Wmin (Gmin) values 

for each construction yields the best design among competing laminates. 

The solution process determines one of the design variables optimally at each step 

of the optimisation and the discrete variable (material combination) is determined 

by a comparison of candidate designs. 

4.4.2 Numerical Results 

The results are given for two-material hybrid constructions with eight layers [82], 

[83]. Three different materials, namely, T300/5208 graphite, Kevlar 49 and E-glass 

epoxies are selected which produces G/K, G/E and K/E combinations with G, K 

and E indicating the graphite (T300/5208), kevlar (Kevlar 49) and glass (E-glass) 
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laminates with epoxy matrix, respectively. The elastic constants, specific densities 

p and cost factors for these materials are given in Table 4.4.1 which are taken 

from Reference [79]. The fibre volume fractions are given as v! = 0.70 for the 

graphite/epoxy, v! = 0.70 for the Kevlar/epoxy and v! = 0.45 for the glass/epoxy. 

Material Specification E1(GPa) E2(GPa) G12(GPa) v p P 

Graphite/Epoxy (T300/5208) 181 10.30 7.17 0.28 1.60 1 

Kevlar/Epoxy (Kevlar49) 76 5.50 2.30 0.34 1.46 1/3 

Glass/Epoxy (E-Glass) 38.60 8.27 4.14 0.26 1.80 1/20 

Table 4.4.1 Elastic Constants of Materials 

In Table 4.4.1, the cost factors Pi are computed as Pi = Pd Pgr where P gr indicates 

the cost per unit weight of graphite/epoxy. The results are given in terms of non­

dimensional quantities by introducing the variables Wand C defined by 

(4.5) 

where Pw .= 1000kg/m3 and To = O.Olm. The buckling load is also nondimension­

ali sed by defining 

. (4.6) 

where Eo = 1 GPa is a reference modulus. The stacking sequences are shown as 

(G/G/K/K)s etc., where the subscript s indicates a symmetric lay-up. It is noted 

that the buckling load (2.89) is a function of Dii which gives the highest value when 

the stronger material is i~ the surface layers and the weak material is in the core 

layers due to sandwich effect (see Ref [55]). Thus two-material combinations out 

of three different materials yield 3 different hybrid constructions to optimise and 

compare, namely, G/ K, G/ E and K/ E combinations. 

In the numerical results the ply angles are taken as (0/ -0/0/ -O)s and ,= titre! 

with tre! taken as the layer thickness of the stronger material. Thus tre! = tgr for 

graphite/kevlar and graphite/glass combinations with t = tk and tg/, respectively. 

In the kevlar/glass combination tre! = tk and t = tg/. In the rest of the paper No is 

specified as No = 103
, .x = 1 (biaxial loading). The thickness constraint is specified 

as I ::; 3.0 in all cases. 

The effect of the fibre orientation on the weight and the cost is investigated 

in Figures 4.4.2 and 4.4.3 which show the curves of Wand C plotted against 0, 
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respectively, with alb = 1.5, / = 1.0 (equal layer thicknesses) for various material 

combinations. In the figures, laminations (G/G/K/K)s, (G/G/E/E)s, etc. are 

indicated as GGKK, GGEE and so on. Note that the buckling constraint (3.10) 

is satisfied at every point by virtue of determining tre! from (3.10). The minimum 

weight and cost occur approximately at the same ply angle for all materials which 

is about () = 620 (Figures 4.4.2 and 4.4.3) . The curves indicate that optimisation 

with respect to () is an important part of the design process as the weight and cost 

at () = 0° and () = ()opt may differ as much as 35% for some laminates. It is observed 

that the G / K combination yields the lowest weight while the lowest cost laminate 

is given by a glass/epoxy one. 

The effect of the buckling constraint on the weight and cost are studied in Figures 

4.4.4 and 4.4.5 which show the curves of weight and cost versus No for alb = 1.5 for 

different layer thicknesses. It is observed that layer thicknesses have varying degrees 

of effect on different material combinations. Furthermore their effect on weight and 

cost also differs with the change in / affecting cost more than weight for all material 

combinations. Note that () = ()opt at every point on the curves given in Figures 4.4.4 

and 4.4.5. This is also the case for Figures 4.4.6 and 4.4.7. 

Next the curves of weight and cost plotted against / are studied. Figures 4.4.6 

and 4.4.7 show these curves for the various material combinations with alb = 1.5. 

Increasing / indicates an increase in the thickness of kevlar and glass layers for G / K 

and G/ E combinations and glass layers for K/ E combinations since tre! = tgr or tk. 

Although the general trend is increasing weight as / increases (Figure 4.4.6), the 

graphite/kevlar combination displays quite a different weight versus / behaviour. 

As / increases, i.e., as tk increases relative to t gr , the weight decreases up to a 

minimum value before increasing again suggesting the existence of an optimal/ 

value for minimum weight design in the graphite/kevlar combination. Figure 4.4.7 

shows the corresponding curves for the cost function. In this case increase in the 

thickness of inexpensive layers leads to decrease in cost. However KKK K and 

GG E E laminates show different cost values at different /. 

The solutions are given in Tables 4.4.2 and 4.4.3 for the minimum weight problem 

and in Tables 4.4.4 and 4.4.5 for the minimum cost problem for different aspect 

ratios. 
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Co H (mm) B opt "f opt optimal layup Wmin 

5 26.0 45° 2.93 KKEE 44.50 

10 20.9 45° 2.90 GGEE 36.52 

15 19.3 45° 1.20 GGEE 33.03 

20 18.9 45° 0.95 GGKK 29.01 

25 18.7 45° 0.67 GGKK 28.94 

30 18.7 45° 0.67 GGKK 28.94 

Table 4.4.2 Minimum weight designs for various cost constraints with alb = 1.0 

and A = 1. 

Co H(mm) Bopt "f opt optimal layup Wmin 

5 - - - - -

10 27.0 60.90° 0.41 KKEE 42.01 

15 21.5 62.01° 1.46 GGEE 36.89 

20 21.1 61.87° 1.40 GGKK 32.09 

25 20.4 61.96° 0.51 GGKK 31.75 

30 20.4 61.96° 0.51 GGKK 31.75 

Table 4.4.3 Minimum weight designs for various cost constraints with alb = 1.5 

and A = 1. 

Tables 4.4.2 and 4.4.3 indicate that as the cost constraint is relaxed graphitelkevlar 

combinations provide the best lay-ups. At lower costs kevlarlglass gives the opti­

mal solution due to the inexpensive nature of E-glass accompanied by higher weight. 

The decrease in weight as the cost increases tapers off as Co exceeds Co = 20 as 

the last column indicates. This shows that higher expenditure on material leads to 

diminished returns as far as the weight is concerned and higher cost is possibly not 

justified after a certain point. 

The increase in the weight constraint leads to an initial drop in cost which again 

tapers off after a certain point as the last columns of Table 4.4.4 and 4.4.5 indicate. 

No constraint was imposed on the total thickness of the laminates and H depends 

on the cost and the weight. Obviously a constraint on H would lead to different 

optimal designs in many cases. 
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Wo H (mm) Oopt lopt optimal layup Cmin 

30 19.9 45° 2.37 GGKK 16.27 

35 20.4 45° 2.28 GGEE 11.21 

40 24.7 45° 0.79 KKEE 7.70 

45 26.0 45° 3.00 KKEE 4.92 

50 26.0 45° 3.00 KKEE 4.92 

Table 4.4.4 Minimum cost designs for various weight constraints with alb = 1.0 

and}, = 1. 

Wo H(mm) Oopt lopt optimal layup Cmin 

30 - - - - -

35 22.4 61. 71 ° 3.00 GGKK 17.01 

40 22.9 62.05° 2.87 GGEE 10.99 

45 27.4 60.99° 1.12 KKEE 7.60 

50 28.5 61.230 3.00 KKEE 5.47 

Table 4.4.5 Minimum cost designs for various weight constraints with alb = 1.5 

and}, = 1. 

The optimal designs are given by hybrid laminates in all cases indicating the 

extra tailoring capability gained by admitting hybrid constructions into the design 

space. At this stage it is useful to compare the optimal designs with optimal non­

hybrid designs in order to assess the differences quantitatively. For this purpose the 

following efficiency indices are introduced: 

_ Wgr - Wmin 100 W k - Wmin 100 
TJgr - TIT. X ,TJk = w. . X , 

I'''mln mIn 
Wgi - Wmin 100 

7JgI = TXT . X 
I'''mln 

(4.7) 

to compute the reduction in weight obtained by choosing a hybrid design. In Equa-

tion (4.7) W gr, W k and W gl denote the weight of one-material optimal laminates 

made out of graphite, kevlar or glass, respectively. The results are shown in Table 

4.4.6 which gives the weight efficiency indices in percentages for various cost con­

straints for the same input parameters as in Tables 4.4.2 and 4.4.3. It is observed 

that hybrid designs lead to substantial weight savings as compared to glass con­

structions. In the case of kevlar constructions, the weight savings are about 20%. In 

many cases, a non- hybrid laminate satisfying the design constraints is not available. 

104 



alb = 1.0 alb = 1.5 

Co T}gr T}k T}gl T}gr T}k T}gl 

5 NA+ NA* 14.50 NA+ NA+ NA* 

10 NA+ NA* 30.08 NA+ NA+ 26.62 

15 NA+ 7.43 36.76 NA+ 5.94 35.56 

20 2.09 18.69 44.46 1.23 18.33 43.98 

25 1.86 18.50 44.32 3.60 20.19 45.33 

30 2.33 18.89 44.59 3.05 19.73 45.01 
• N A mdlcates that a non-hybnd desIgn IS not avaIlable for thIs cost constraint. 

Table 4.4.6. Comparison of minimum weights for hybrid and non-hybrid 

constructions 

Similarly the reduction in cost obtained opting for a hybrid construction can be 

assessed from the indices given by 

_ Cgr - Cmin 100 Ck - Cmin 100 _ Cgl - Cmin 100 (4 8) 
Jigr - C. x ,Jik = x, Jigl - C. x . 

mIn Cmin mIn 

where Cgr , Ck and Cgl denote the costs of the one-material optimal laminates made 

out of graphite, kevlar or glass, respectively. The results are given in Table 4.4.7 

which shows the cost indices for various weight constraints and for the same input 

parameters as Tables 4.4.4 and 4.4.5. Hybrid laminates provide cost savings of more 

than 80% in some cases and highlight the tailoring capabilities obtained by selecting 

optimal material combinations for design purposes. 

alb = 1 alb = 1 

Wo Jigr Jik Jigl Jigr Jik Jigl 

30 45.09 NA* NA+ NA+ NA+ NA* 

35 62.17 5.72 NA+ 47.61 NA* NA+ 

40 74.01 35.24 NA+ 66.15 15.91 NA+ 

45 83.40 58.62 NA+ 76.59 41.85 NA+ 

50 83.40 58.62 NA+ 83.15 58.15 NA+ 
• N A mdlcates that a non-hybnd deSIgn IS not avaIlable for thIS weIght constraint. 

Table 4.4.7. Comparison of minimum costs for hybrid and non-hybrid 

constructions 
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>. = 1, alb = 1.5, and 'Y = 1.0. 

107 



U 

50'-~---'--~--T'--~--'---~-"--~--'---~~ 

40 

30 

20 

10 

r-__ 

-"~ 
..... /-'--- // --- / -------------./ 

GGKK 
. .... 

t-- GGEE .. . ... . ...... .. .......... .. 
_- ._0_.- KKEE 
--- GGGG 
.- ... - ... . KKKK ~------------~ 

EEEE -"'- . . - .•. - .. . - •.. _ ... - ... _ . .• _ ,_ 0 ._ .•. _., _ 

_. -- ,_. .- .-.- ._._.- ._._ ._._ ._.- _._._._._._ .- - - , - ' 

----------------------------------------- ------- ----- --------------- ---- - ---

°0L-~---1L5--~--3LO--~--4L5--~~6LO--~~75--~~90 

8 

Figure 4.4.3. Cost versus () curves for hybrid and non-hybrid laminates with 

.x = 1, alb = 1.5, and, = 1.0. 

108 



50 

40 

/ 

20 .. '. 

')1=2.0 

')1=0.5 

-.-

:::::: . .. 

GGKK 
GGEE 
KKEE 

.-' 

1 0 2L..I....-...l.4-----''---.L6 ---L---lSL--'--1...l.0-----'-1 L2--'---11 4-.l-1~6~-:-1 ~S----'--:::2 0 

No x 1 0- 2 

Figure 4.4.4. Weight versus buckling constraint for hybrid laminates with 

alb = 1.5, and ,\ = 1.0 

109 



30 

U 20 

1 0 

GGKK 
-- GGEE 
._.- ,- .- KKEE 

JI=2.0 

'- '- '-
-'- ' 

- ' - ' - ' ­. - . - . _ ' 

.... 

_ ._ .- ._ .- ._ ._.- .-

JI=0.5 

... . 

...... 
...... 

'1 ' " 

o L-~-L~ __ ~~-L~ __ ~~~ __ ~~~~ __ ~~~~ 

2 4 6 8 10 12 14 1 6 18 20 

No x 1 0-2 

Figure 4.4.5_ Cost versus buckling constraint for hybrid laminates with alb = 1.5, 

and A = 1.0 

110 



60~--------------------------------

-- -- ---------------------------------------------------------- ----- - - - --- ------

55 -- GGKK 
GGEE 

. _ . _ . _ . - KKEE 
50 --- GGGG 

._ ... - . .. KKKK 
EEEE -.--.-

5: 45 -.-

...-
40 ,,:<~ .. _. _ ._ ... _._ .. _.,._ .. _ .. _ ... _ .. _ .. _ ... _. 

35 

------------~~~~--------------..... . .. . . ... . . . . .... . 

30 L-~ __ ~ __ ~ __ -L __ ~ __ ~ __ ~ __ ~ __ ~~~~ __ ~ 

0.0 0.5 1 .0 1 .5 2.0 2.5 3.0 

Figure 4.4.6. Weight versus 'Y curves for various material combinations with 

alb = 1.5, and>' = 1.0 

111 



u 

35~--------------------------------

30 

25 

20 

1 5 

------------ - - ------ ------ ---

_ .. _ .. - ... _ . . -
'-

..... 

GGKK 
GGEE 
KKEE 
GGGG 
KKKK 
EEEE 

1 0 ' . 
-'-.-. - '- .-

5 

OL-~--~--~--~--~--~~--~--~--~--~~ 

0.0 0.5 1 .0 1 .5 2.0 2.5 3.0 

Figure 4.4.7. Cost versus 'Y curves for various material combinations with 

alb = 1.5, and ,\ = 1.0 

112 



4.5 Optimal Design of Symmetrically Laminated 

Plates for Minimum Deflection and Weight 

The plates considered in this design problem are subjected to a combination of free, 

simply supported and clamped boundary conditions. This fact and the presence of 

nonuniform transverse loads necessitate a numerical approach to the solution of the 

problem. The FEM formulation used is given below. 

4.5.1 Finite Element Formulation 

We now consider the finite element formulation of the problem [84]. Let the region 

S of the plate be divided into n sub-regions Sr (Sr E S; r = 1,2, ... , n) such that 

(4.9) 
r=l 

where II and IISr are potential energies of the plate and the element, respectively, 

and U is the displacement vector. Using the same shape functions associated with 

node j (j = 1,2, ... , n), Sj(x, y), for interpolating the variables in each element, we 

can write 
n 

U = 2:Sj(x,y)Uj (4.10) 
j=l 

where Uj is the value of the displacement vector corresponding to node j, and is 

given by 

U = {u(j) vU) wU) ",U) ",U)}T 
, , ''fIl' 'fI2 (4.11) 

The displacements {u, v, w, <PI, <P2} are approximated as 

n n n 

U = L uj'l/)j(x, y) , v = L VjtPj(x, y) , w = L WjtPAx, y) 
j=l j=l j=l 

n n 

<PI = LS}tPj(X,y) , <P2 = 'Ls;tPj(X,y) 
j=l j=l 

( 4.12) 

where 'l/Jj are Lagrange family of interpolation functions. From the equilibrium 

equations of the first order theory, and equations (4.12), we obtain the finite element 

model of the first-order theory, 

5 n 

" " f{0!{36,{3 - per - 0 (rv - 1 2 5) ~ ~ 'J J t - , u - , , • •• , 

{3=1 j=l 
( 4.13) 
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or 

[K]{b.} - {F} = {O} (4.14) 

where K and F are the stiffness and force coefficients respectively, and the variable 

b. denotes the nodal values of wand its derivatives. 

4.5.2 Numerical Results 

The structures considered in this study are four-layered symmetrically laminated 

plates. The material properties used for the analysis of these shells is T300/5208 

graphite epoxy. The strength values used in the Tsai-Wu failure criterion are X t = 
1500 M Pa, Xc = 1500 M Pa, Yt = 40 M Pa, Yc = 68 M Pa and S = 246 M Pa. The 

values for the material properties are taken from reference [79]. 

For the first part of the study, where minimum deflection/minimum weight is 

the design priority (part A.), two loading conditions are considered. The first is a 

uniform pressure over the whole surface of the plate of magnitude q = lOOK Pa. 

The second is a patch load of uniform pressure over one quarter of the plate. In this 

case, the magnitude of the pressure is the same as before. 

Four different boundary conditions are implemented along the four plate edges 

(numbered 1 to 4 in Figure 2.13) . These are (8,8,8,8), (C,8,C,8), (C,C,C,C) and 

(C,8,F,8) with S representing simply supported, C clamped and F free, while the 

order refers to edges 1 - 4, respectively. Rotations around the x and y axes are 

denoted by rx and r y, respectively. These conditions may be explicitly described as 

follows: 

(8,8,8,8): w = rx = 0 at x = 0, a and w = ry = 0 at y = 0, b. 

(C,C,C,C): w = rx = ry = 0 at x = 0, a and w = rx = ry = 0 at y = 0, b. 

(C,8,C,8): w = rx = ry = 0 at x = 0, a and ry = 0 at y = 0, b. 

(C,8,F,8): w = rx = ry = 0 at x = 0 and w = ry = 0 at y = 0, b. 

For the results where the priority is the minimum weight (design problem 2), 

only two cases of boundary conditions, viz. (8,8,8,8) and (C,C,C,C) are studied for 

comparative purposes. 

The accuracy for the optimal fibre angle, ()oPt, is 0.10 and that for the minimum 

laminate thickness, Hmin , is 0.1 mm. 
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Minimum deflection/minimum weight design 

1. Uniform load 

First the maximum deflection of a square plate versus the fibre angle is de­

termined at an arbitrary thickness H = O.Olm in order to study the effect of fibre 

orientation on the deflection. These curves are shown in Figure 4.5.1, which indicates 

that the optimum () depends heavily on the boundary conditions and may be 0°, 45° 

or 90° depending on these conditions. Figure 4.5.2 shows the maximum deflection 

of the plate versus the fibre angle () for a square plate under a uniformly distributed 

load where the thickness at every () is determined subject to the failure criterion. 

Due to the symmetry of the loading and boundary conditions, the minimum deflec­

tion for (C,C,C,C) is found at two fibre angles namely 0° and 90°. For (C,S,C,S) and 

(C,S,F ,S) the optimal fibre angle is found at 0°, while for (S,S,S,S) the minimum de­

flection occurs at 45°. The corresponding minimum thicknesses are shown in Figure 

4.5.3. Figure 4.5.4 shows the curves of minimum deflection plotted against the aspect 

ratio. At low aspect ratios (alb ~ 1.2), Wmin is not monotonic. However at higher 

values of the aspect ratio, Wmin tends to increase for all the boundary conditions. 

The minimum thicknesses corresponding to the deflections shown in Figure 4.5.4 are 

shown in Figure 4.5.5. For all boundary conditions, Hmin generally increases with 

increasing aspect ratio. The optimal fibre angles corresponding to Wmax are shown 

in Figure 4.5.6. At higher aspect ratios, Oopt for (S,S,S,S), (C,C,C,C) and (C,S,F,S) 

all tend to 90° while for (C,S,C,S) the optimal fibre angles are found at 0°. All the 

curves exhibit discontinuities, although no suitable explanation for this can be given. 

2. Patch load 

The curves of maximum deflection versus fibre angle for a square plate of thick­

ness H = O.Olm are shown in Figure 4.5.7. Figure 4.5.8 shows the variation of 

deflection with fibre angle for a square plate with the minimum thickness subject 

to the failure criterion. As expected, the deflections for all boundary conditions 

are slightly less than for the first loading case. Although for the square plate the 

optimal fibre angle for (S,S,S,S), (C,C,C,C) and (C,S,C,S) remain the same as for 

the uniform load, the optimal fibre angle for (C,S,F,S) is found at about 20°. The 

minimum thicknesses are plotted against () in Figure 4.5.9. The minimum deflections 
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versus the plate aspect ratio are shown in Figure 4.5.10. As before, the minimum 

deflections generally increase with increasing alb, although it is interesting to note 

that none of the curves is monotonic, as it could be expected that deflection would 

increase as the plate surface area increases. The corresponding minimum thicknesses 

and optimal fibre angles are shown in Figures 4.5.11 and 4.5.12. It is observed that 

the optimal () displays several jump discontinuities as for the uniform load. 

Minimum weight design 

The results for the minimum weight design under the uniform pressure loading con­

dition are given in Tables 4.5.1 and 4.5.2, together with the equivalent results for 

the first design problem. For the case (8,8,8,8) the second design problem leads to 

a decrease in the thickness of around 10 % for all aspect ratios with an increase in 

the deflection of approximately the same magnitude. In the case of clamped plates 

(C,C,C,C), minimising the weight only results in an increase in the deflection of 

about 170 % for an aspect ratio of alb = 0.5 reducing to an increase of about 25 % 
for alb = 2.0. 
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DESIGN PROBLEM 1 DESIGN PROBLEM 2 

alb Wmill Hmlll ()opt Wmlll Hmlll ()opt 

* JO-2 * JO-3 * JOe} * JO-3 

0.50 3.03 5.09 10.4° 2.79 5.52 0.0° 

0.75 4.57 8.04 0.0° 4.21 8.52 0.0° 

Lob 5.09 11.69 90.0° 2.25 13.09 43.4° 

1.25 5.38 11.68 90.0° 3.11 13.02 61.1° 

1.50 5.89 10.68 90.0° 5.70 11.54 90.0° 

1.75 6.09 10.29 90.0° 5.66 11.54 90.0° 

2.00 6.06 10.29 90.0° 5.64 11.54 90.0° 

Table 4.5.1. Effect of design priority on the maximum deflection and minimum 

weight for simply supported laminates. 

DESIGN PROBLEM 1 DESIGN PROBLEM 2 
alb Wmill Hmill ()opt Wmill Hmill ()opt 

* 10-2 * 10-3 * 10e-2 * 10-3 

0.50 2.28 4.51 37.2° 0.52 8.85 0.0° 
0.75 2.75 7.25 41.3° 0.71 10.21 0.0° 
1.00 3.09 9.19 47.5° 1.12 11.86 90.0° 
1.25 2.35 9.99 62.2° 1.31 12.10 90.0° 
1.50 3.50 9.58 54.2° 1.72 11.85 90.0° 
1.75 3.21 9.58 57.9° 2.64 12.04 90.0° 
2.00 3.33 9.71 60.1° 2.66 12.11 90.0° 

Table 4.5.2. Effect of design priority on the maximum deflection and minimum 

weight for clamped laminates. 
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Chapter 5 

Conclusions 

5.1 Optimal Design of Symmetrically Laminated 

Plates for Maximum Buckling Temperature 

The optimal thermal buckling design for symmetrically laminated plates was deter­

mined. The solutions were obtained using the finite element method in conjunction 

with an optimisation routine to solve the analysis and design problems, respectively. 

Results are presented for various temperature loadings and different combinations 

of boundary conditions. 

The effect of optimisation on the buckling load was investigated by plotting the 

buckling load against the fibre orientation. The results show that the difference in 

the buckling loads of optimal and non-optimal plates could be quite substantial, 

emphasising the importance of optimisation for fibre composite structures. The 

optimal ply angles and the corresponding buckling temperatures were given for the 

aspect ratios 0.5 :::; alb:::; 2.0. It was observed that the boundary conditions have a 

major effect on the optimal ply angle. However, the temperature distributions do 

not show the same influence on Oopt. On the other hand, the temperature distribution 

affects the maximum buckling load considerably. 

The effect of bending-twisting coupling on the maximum buckling temperature 

and optimal fibre angles was also investigated. This effect was found to decrease 

with increasing numbers of layers and become negligible for K 2: 10. Overall, the 

bending-twisting coupling has a minor effect on Oopt and Tmax and this contrasts 

with the results obtained for laminates under mechanical buckling loads [81]. In 

this study it was found that both the maximum buckling load and optimal angle at 
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which it was found changed considerably when the number of layers in the laminate 

was increased. 

5.2 Optimal Design of Laminated Cylindrical Pres­

sure Vessels for Maximum External Pressure 

Finite element solutions for the optimal design of laminated composite pressure 

vessels for maximum buckling pressure are presented. The numerical approach em­

ployed in the study is necessitated by the fact that the inclusion of factors such as 

the effect of end caps and bending-twisting coupling rule out an analytical approach. 

These results were obtained using the finite element method coupled with an 

optimisation routine, and the results are presented for vessels with hemispherical and 

fiat caps of varying length, radius, wall thickness, layer numbers and hybridisation. 

As expected, when the vessel length and radius are increased, the maximum 

buckling pressure corresponding to the optimal fibre angles decreases, while an in­

crease in the wall thickness results in an increase in the buckling pressure. The effect 

of bending-twisting coupling on the optimal fibre angle and buckling pressure was 

demonstrated by increasing the number of layers and the effect was seen to be neg­

ligible when the vessel was composed of eight or more layers. Hybridisation results 

in different optimal fibre angles as opposed to single material designs, in addition 

to causing changes in buckling pressures due to the different materials used. 

5.3 Multiobjective Design of Laminated Cylin­

drical Shells for Maximum Torsional and Ax­

ial Loads 

A multiobjective design is given for simply supported laminated cylindrical shells 

subject to a combination of axial and torsional buckling loads. The objective is 

defined as the maximisation of the performance index specified by the sum of the 

non-dimensionalised weighted loadings. Results for single objective and multiobjec­

tive designs are presented. The effect of cylinder length, radius, wall thickness and 

weighting on the optimal fibre angle is investigated. 

The mode changes which result due to the nature of the loading lead to designs 
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whose trends are not unimodal with regard to parameters such as the length and 

radius. Further, it is noted that the optimal fibre angle has a large effect on the 

maximum buckling load and varies markedly with geometry. 

It is observed that at single-objective designs, the other objective becomes quite 

low. This drawback is overcome by choosing a suitable intermediate value of the 

weighting a in order to achieve the required compromise design. Studies of this type 

are thus essential if an optimal design for a certain shell geometry is to be obtained. 

5.4 Minimum Weight and Cost Design of Hybrid 

Laminated Plates 

Optimal designs of symmetrically laminated plates are obtained taking the weight 

or the cost as the objective function to be minimised and by imposing a minimum 

buckling load constraint. Moreover, the designs are subject to maximum cost or 

weight constraints. By admitting hybrid constructions into the design space, the 

tailoring capabilities of composite materials are expanded and the design require­

ments can be met as one-material laminates fail to satisfy the constraints in many 

cases. 

A sequential optimisation procedure is devised in order to obtain the optimal 

values of the ply angles, total thickness, layer thicknesses as well as to determine 

the best material combinations. At each stage of the solution, one set of the vari­

ables is computed optimally which carries on to the next stage. The final design is 

determined by comparing several material combinations and selecting the one with 

the minimum weight or cost. Initial stages of the design involving continuous design 

variables require constrained optimisation routines to obtain the optimal solutions 

satisfying the problem constraints. Each material combination is subjected to this 

process in order to compare their relative advantages. 

It is found that the use of a limited amount of kevlar reduces the weight of 

graphite constructions leading to not only weight but also to cost savings. How­

ever, if the thickness of kevlar layers exceeds a certain amount, the weight again 

increases as kevlar has lower stiffness as compared to graphite. It was also observed 

that different material combinations affect the weight and cost differently. Thus ex­

perimenting with different hybrid constructions may lead to substantially improved 

designs from either weight or cost viewpoints. 
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It is observed that the optimal material combinations depend on the cost con­

straint leading to the use of more glass layers for low cost constructions and more 

graphite layers for high cost ones. An assessment was made in Tables 6 and 7 in 

order to determine the weight and cost savings obtained by opting for hybrid rather 

than non-hybrid designs. In those cases where a single-material laminate can be 

found, the weight of the corresponding hybrid construction could be up to 45% less 

than its non-hybrid counterpart, and the cost 80% less. 

5.5 Optimal Design of Symmetrically Laminated 

Plates for Minimum Deflection and Weight 

The minimum deflection/minimum weight designs of symmetrically laminated plates 

are given as well as designs for minimum weight only. Plates of various aspect ratios 

and with different boundary conditions are studied. Two loading conditions are 

considered. In the case of the minimum deflection design it is found that for an 

increasing aspect ratio the minimum deflection does not always increase monotoni­

cally. At higher aspect ratios however, for both the loading conditions, the deflection 

generally does increase with increasing plate size. 

The second design problem which involves the minimisation of the weight only 

shows that an entirely different optimal design may result as compared to the first 

design problem especially for certain boundary conditions as a result of taking the 

weight as the only design objective. It is shown that the boundary conditions have a 

substantial effect on the optimal fibre orientation of a plate as well as on its weight. 

This type of study is important since the non-standard loading and boundary 

conditions considered lead to unpredictable trends in both the minimum deflection 

and weight. 
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