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Abstract

Much data-based research are characterized by the unavoidable problem of incom-

pleteness as a result of missing or erroneous values. This thesis discusses some of the

various strategies and basic issues in statistical data analysis to address the missing

data problem, and deals with both the problem of missing covariates and missing out-

comes. We restrict our attention to consider methodologies which address a specific

missing data pattern, namely monotone missingness.

The thesis is divided into two parts. The first part placed a particular emphasis on

the so called missing at random (MAR) assumption, but focuses the bulk of attention

on multiple imputation techniques. The main aim of this part is to investigate various

modelling techniques using application studies, and to specify the most appropriate

techniques as well as gain insight into the appropriateness of these techniques for han-

dling incomplete data analysis. This thesis first deals with the problem of missing

covariate values to estimate regression parameters under a monotone missing covari-

ate pattern. The study is devoted to a comparison of different imputation techniques,

namely markov chain monte carlo (MCMC), regression, propensity score (PS) and last

observation carried forward (LOCF). The results from the application study revealed

that we have universally best methods to deal with missing covariates when the missing

data pattern is monotone. Of the methods explored, the MCMC and regression meth-

ods of imputation to estimate regression parameters with monotone missingness were

preferable to the PS and LOCF methods. This study is also concerned with compar-

ative analysis of the techniques applied to incomplete Gaussian longitudinal outcome

or response data due to random dropout. Three different methods are assessed and

investigated, namely multiple imputation (MI), inverse probability weighting (IPW)

and direct likelihood analysis. The findings in general favoured MI over IPW in the

case of continuous outcomes, even when the MAR mechanism holds. The findings fur-
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ther suggest that the use of MI and direct likelihood techniques lead to accurate and

equivalent results as both techniques arrive at the same substantive conclusions. The

study also compares and contrasts several statistical methods for analyzing incomplete

non-Gaussian longitudinal outcomes when the underlying study is subject to ignorable

dropout. The methods considered include weighted generalized estimating equations

(WGEE), multiple imputation after generalized estimating equations (MI-GEE) and

generalized linear mixed model (GLMM). The current study found that the MI-GEE

method was considerably robust, doing better than all the other methods in terms of

small and large sample sizes, regardless of the dropout rates.

The primary interest of the second part of the thesis falls under the non-ignorable

dropout (MNAR) modelling frameworks that rely on sensitivity analysis in modelling

incomplete Gaussian longitudinal data. The aim of this part is to deal with non-

random dropout by explicitly modelling the assumptions that caused the dropout and

incorporated this additional sub-model into the model for the measurement data, and

to assess the sensitivity of the modelling assumptions. The study pays attention to

the analysis of repeated Gaussian measures subject to potentially non-random dropout

in order to study the influence on inference that might be caused in the data by the

dropout process. We consider the construction of a particular type of selection model,

namely the Diggle-Kenward model as a tool for assessing the sensitivity of a selection

model in terms of the modelling assumptions. The major conclusions drawn were that

there was evidence in favour of the MAR process rather than an MCAR process in

the context of the assumed model. In addition, there was the need to obtain further

insight into the data by comparing various sensitivity analysis frameworks. Lastly,

two families of models were also compared and contrasted to investigate the potential

influence on inference that dropout might have or exert on the dependent measurement

data considered, and to deal with incomplete sequences. The models were based on

selection and pattern mixture frameworks used for sensitivity analysis to jointly model

the distribution of the dropout process and longitudinal measurement process. The

results of the sensitivity analysis were in agreement and hence led to similar parameter

estimates. Additional confidence in the findings was gained as both models led to

similar results for significant effects such as marginal treatment effects.
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Chapter 1

General introduction

1.1 Fundamental concepts

The generic term missing or incomplete data means that we are missing some types

of information about the phenomena of interest in a particular analysis, in the sense

that not all planned or desired data are actually made. In other words, there are values

in the data matrix that are unknown or uncollected. Day (1999) defined missing data

as “data that refer to a data value that should have been recorded but, for some reason,

was not”. This is especially true when studies are applied on human subjects which is

often the case in longitudinal studies, but may as well be on animals, plants or groups

of individuals, to mention some examples. Missing data is one of the most common

statistical and design problem in many fields of research since they are usually not the

focus of any given study but are frequently encountered in empirical studies by statis-

ticians. Missing data, which are typically viewed as a nuisance, cause problems when

it comes to data analysis since most standard statistical techniques and softwares are

designed assuming complete data for each variable included in the analysis. In princi-

ple, the main objective of statistical analysis is to make valid and efficient inferences

about a population of interest. This can be achieved with or without missing data, but

the missing data problems complicate the process. More consideration in planning a

study should therefore be given to minimizing missing data or to avoid this problem

and to make the study scientifically sound. However, the existence of missing data is

common and cannot be avoided in data-based research even if great effort is put into

planning and data collection (Allison, 2002; Carter, 2006; Regoeczi and Riedel, 2003;

1



Rudas, 2005; Stumpf, 1978).

According to McKnight et al. (2007), the problems of missing data occur under

three broad sources affecting either complete subjects or specific items, namely cases,

variables and occasions. In the first source, missing cases, the missing data occur

when the study participants fail to provide data for a study. In the second source,

missing variables, the missing data occur when participants fail to provide data for

some but not all variables. In the third source, missing occasions (i.e., follow-up data),

the missing data occur when participants are available for some but not all of the data

collection periods in a study.

On the other hand, there are various participant and design related reasons for

missing data among them: (1) the study participants, where missing data can occur

when some participants are offended by specific questions in a questionnaire (partici-

pant characteristics); (2) the nature study design, when the nature of the design takes

up the participants time leading to withdrawal (design characteristics); and (3) the

interaction between the participants and the study design participants who are the

sickest are unable to complete the more burdensome aspects of the study (participant

and design characteristics). Generally speaking, data may be almost always missing

regardless of the field of the study due to accidental or data entry errors.

The effects of missing data can be explained in terms of the amounts, the patterns

of missing data and the methods used for handling the missing data which also have

implication for the interpretation of the statistical analysis of the study. Such miss-

ingness can be associated with three possible difficulties. First, loss of information,

efficiency, or power. Second, problems in data handling, computation and analysis due

to irregularities in the data patterns and non-applicability of standard software. Third,

seriously marked bias if there are systematic differences between the observed and un-

observed data (Barnard and Meng, 1999). Particularly, it may mean that there may be

insufficient data to draw any useful conclusions from a study. When data are missing

it is also hard to specify the impact the data might have presented in the statistical

analysis study. The extent of the impact of missing data on study results is dependent

on:
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• The amount of missing data. This is related to its impact on the study conclu-

sions. Large impact on statistical inference can occur where there is a greater

amount of missing data. In other words, the power of the statistical tests can be

severely compromised (De Leeuw et al., 2003).

• The mechanisms of missing data. The process causing missing data can affect

the validity of the statistical inferences. If the process depends on causal effects

factors, the missing data can have dramatic impact on the validity of the results.

• The procedure or method the statistician or data analyst will use to deal with

these missing data (Musil et al., 2002; Streiner, 2002).

Missing data are a fact of life in many disciplines of science including medical stud-

ies (Piantadosi, 1997; Green et al., 1997; Friedman et al., 1998) and epidemiological

studies (Kahn and Sempos, 1989; Clayton and Hills, 1993; Lilienfeld and Stolley, 1994;

Selvin, 1996). Missing data in surveys, psychometry and econometrics are discussed in

Fowler(1988), Schafer et al. (1993), Rubin (1987) and Rubin et al. (1995), to name but

a few literature. Examples are also abound in the context of experimental and observa-

tional data in non-human life setting such as environmental, agricultural and biological

studies. This thesis focuses on both cross-sectional and longitudinal data examples.

There are several earlier studies on the problem of missing data largely concerned with

algorithmic and computational solutions to the induced lack of balance or deviations

from the intended study design (Molenberghs and Verbeke, 2005). Early work on miss-

ing data include, Affifi and Elashoff (1966) and Hartley and Hocking (1971). Shortly

afterward, other applications in the literature, such as Expectation Maximization (EM)

by Dempster et al. (1977), data imputation and augmentation procedures (see, Rubin,

1987; Tanner and Wong, 1987), combined with strong computing resources of solving

the computational difficulties followed. These studies revolutionized the handling of

missing data in statistical analysis.
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1.1.1 Patterns and categories of missing data

1.1.1.1 Patterns of missing data

Missing data pattern describes and explains the geography of the data set where in

the data set the values are observed and where the values are missing. As we will see

later, some procedures to deal with missing data can be applied to any missing data

pattern whereas other procedures are restricted to specific missing data patterns, and

therefore having identified the variables that define the pattern, a suitable analysis

procedure can be derived. To investigate the missing data pattern, it is important

to identify cases and variables that contribute to the incomplete data (Schafer and

Graham, 2002; Allison, 2002). More formally, let Y = (yij) be an (n×K) rectangular

data set containing missing data, with ith row yi = (yi1, ..., yiK), where yij denotes a

value of variable Yj for subject i. Moreover, in the presence of missing data, we define

the missing data indicator matrix, R. We additionally define R as follows: R equals 1 if,

yij is unobserved, and 0 otherwise. The missing data pattern can then be defined by the

matrix R whose (i, j)th element is Rij. Figure 1.1 represents some important examples

of missing data patterns similar to the illustration in Little and Rubin (2002). Figure

1.1a shows a univariate pattern, where missingness is confined only in a single variable.

As illustrated in this figure, for K=4, the missing data arise on variable Y4 but a set of

other variables, i.e., Y1, ..., Y3 is fully observed. In Figure 1.1b, the variables or variable

groups Y1, ..., Yp can be arranged in such a way, that if Yj is missing, then Yj+1, ..., Yp

should be missing as well. This type of pattern is a monotone pattern (Anderson, 1957;

Rubin, 1974; Little and Rubin, 1987). Figure 1.1b illustrates a monotone pattern in

the case of p=4. Monotone missingness is common in longitudinal studies, but can

also appear in other types of data where the ordering of the variables of interest can

be taken into account. This pattern for missing data is common in studies done by the

pharmaceutical industry as in protocols for many conditions, data are not collected

after a study participant discontinues study treatment. This is highlighted in a recent

report on the prevention and treatment of missing data by the National Research

Council. A summary of the report was provided by Little et al. (2012). However,

even in these studies, there typically is both planned and unplanned missing data. A
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predominately monotone pattern for missing outcome data is less common in clinical

outcome studies and in publically-funded trials which are more of a pragmatic nature

(e.g., trials in which the intention-to-treat estimand is the primary objective). Figure

1.1c illustrates another example of missing data pattern, namely an arbitrary pattern

in which missingness may arise at any set of variables for any unit. This type of pattern

also called intermittent missingness, and is more commonly encountered in multivariate

based-data. In the case of combining data that can come from two sources, Figure 1.1d

shows an extreme version of the file matching pattern, with two sets of variables never

observed together. This pattern arises under limited situations, for example, when

the amounts of missing data are large. In the file matching pattern, Y1 denotes a set

of variables that is common to both data sources and observed, Y2 denotes a set of

variables observed for the first data source but not the second, and in contrast to Y2,

the Y3 indicates a set of variables observed for the second data source but not the first.

An excellent discussion of these patterns and others is given in Little and Rubin (2002)

and Schafer and Graham (2002).

Figure 1.1: Examples of patterns of non-response. In each cases, rows correspond to

observational units and columns correspond to variables

1.1.1.2 Categories of missing data

When data are missing for reasons unknown or outside the control of the analyst,

assumptions about the process that generates the data and its implications for statis-

tical inferences need to be made. A major issue concerns missing data mechanisms
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which explain why data are missing. Missing data mechanisms are the properties of

the standard methodologies for incomplete data analysis which depend very much on

the nature of the dependencies in these categories (De Leeuw, 2001; Little and Rubin,

2002). These mechanisms however do not imply knowledge about how the missing

values came to be unavailable. It is noted that the term dropout mechanism can be

used when it relates to subjects dropping out of a clinical trial study prematurely,

particularly in the context of longitudinal studies. The term “dropout” is misused

by many researchers as , in many trials, data are missing not because a participant

chooses to dropout but instead because the protocol is written not to follow partici-

pants following treatment discontinuation. Discontinuation might be due to adverse

effects, lack of efficiency, both of these reasons, or other reasons. As demonstrated

by Rubin (1976) and Little and Rubin (1987), the mechanisms that lead to missing

data can be classified into three basic categories. Data are considered Missing Com-

pletely at Random (MCAR) when the mechanism that generates the missing values

is a truly random process unrelated to any measured or unmeasured characteristic of

the study participants. A second category is Missing at Random (MAR) in which the

missingness mechanism is random meaning, conditional on the observed measurements

characteristics of the study sample, the missingness mechanism is independent of the

unobserved measurements. A third category, Missing Not at Random (MNAR), is one

in which the missingness process depends on unobserved measurements and possibly

on the observed measurement characteristics of the study sample. Figure 1.2 illustrates

the differences between these three mechanisms. This figure is similar to the one given

Figure 1.2: Rubin’s (1976) classifications of missing data mechanisms
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in McKnight et al. (2007) for the description of general missing data mechanisms.

Each of these mechanisms refer to the probability of missingness, given information

about the variable(s) with the missing data, associated variables and a hypothetical

mechanism underlying the missing data. Rubin’s (1976) classifications are related to

the level of bias that missingness may exert on statistical analysis where it is stated

that MCAR has negligible potential impact and MNAR has the greatest potential

impact. Furthermore, it is impossible to distinguish which underlying categories of

missingness are in play, unless one knows the motivation for an individual’s dropping

out. This problem is discussed further in Molenberghs et al. (2008) who show that the

formal-based distinction between MAR and MNAR is not possible. This is because

for any MNAR model there exists an MAR model that fits the data equally well, but

they differ in the prediction of what is unobserved. Hence, it is broadly agreed that

the role of such MNAR model is in sensitivity analysis; that is, if the assumptions are

changed, the conclusions from the primary (typically MAR) analysis are also changed.

According to Molenberghs and Verbeke (2005) and Molenberghs and Kenward (2007),

sensitivity analysis is defined as an analysis in which several statistical models are

considered simultaneously under different missing data scenarios. This point will be

discussed further in Chapter 7.

1.1.2 Ignorability

Determination of the missing data mechanisms is important. According to Rubin

(1976), there are two important broad classes of missing data: missing data that is ig-

norable from the analysis, and missing data that is non-ignorable. If one can reasonably

assume that missing data occur under either MCAR or MAR conditions, the problem is

deemed ignorable, and the missingness process need not be explicitly modelled. More-

over, when data are MCAR or MAR, the likelihood-based and Bayesian frameworks

allow to ignore the missingness process since they use only observed data, conditional

on the model being correctly specified (Little and Rubin, 2002). In contrast, when

data are MNAR, the missingness process cannot be ignored from the analysis (Lit-

tle and Rubin, 2002). In the application to missing data classifications, ignorability,
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as it applies to missingness mechanisms, does not mean that investigators can ignore

missing values. It refers to the fact that factors that cause missingness are unrelated

or weakly related to the estimated intervention effect. In a restricted sense, the term

refers to whether missingness mechanisms must be modelled as part of the parameter

estimation process or not (Allison, 2002). In addition, the importance of ignorability

arises when one needs to evaluate the impact of missing data in the analysis and study

conclusions. Because the way they are missing is random, MCAR data should have

no systematic effect between complete and missing records on results. However, in the

MAR data there is a systematic process underlying the missingness, but this effect can

be modelled using the observed data (McKnight et al., 2007).

For simplicity, let x be the auxiliary variable that is observed for the entire sample, y

the study variable subject to missingness and r the response missingness status variable.

Assume the problem is to find the best prediction model for y in terms of x. In this

setup, the prediction model can be used to predict the missing data if the response

missing data mechanism is ignorable, which is to say that the relationship between

y and x in the respondents also holds for the non-responding part of the sample.

Intuitively, the missing data is ignorable if the study variable, y, is independent of the

value of the status variable, r, given the auxiliary variable, x. Conversely, the missing

data is non-ignorable if the probability of y being missing is dependent on y itself,

even after controlling for x. Hence, it follows that the MNAR mechanism implies a

violation of the ignorability principle and requires appropriate measures to account

for the effects of data that is MNAR which is also referred to as the non-ignorable

situation. Further, the effect of mechanisms that are non-ignorable is unknown which

means there is not enough information from the data set used in the analysis itself

to allow the investigator to model and study the way in which the data are missing.

Thus, non-ignorable missing data is substantially more difficult to deal with and must

be handled with caution. According to Thijs et al. (2002), it is not feasible to make

a satisfactory analysis of the data under non-ignorable missingness. The role of non-

ignorable mechanism has been studied in terms of various applications settings, see, for

example, Belin et al. (1993), Wachtar (1993), Little and Rubin (2002) and Demirtas

and Schafer (2003). According to Verbeke and Molenberghs (2000), to investigate the
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impact of deviations from the ignorability mechanism on the conclusions, one needs to

apply a sensitivity analysis in which models for the non-ignorable process can play a

vital role. The ignorability case will be treated in the first four chapters of this thesis.

In the last two chapters we switch to the non-ignorability setting that occupies the

most prominent role in incomplete Gaussian longitudinal data.

1.2 Techniques for handling missing data

Given the problems that can arise when there are missing data, the following question

is forced upon researchers. What methods can be utilized to handle these potential

pitfalls? The goal is to use approaches that better avoid the generation of biased

results.

Different methods have been suggested for dealing with missing data. A compre-

hensive review of many of these methods is provided by Schafer and Graham (2002)

which includes methods that are no longer recommended and more recent methods

such as multiple imputation and data augmentation methods. A useful discussion in

terms of the technical details of methods for handling missing data is given by Schafer

and Olsen (1998). Additionally, Rubin (1987, 2002), Van der Laan and Robins (2003),

Molenberghs and Verbeke (2005), Tsiatis (2006) and Molenberghs and Kenward (2007)

have all produced rigorous accounts of methods that can be used to deal with missing

data. Some techniques or methods use different approaches to addressing missing co-

variates and missing outcomes. Although the missing data problem is ubiquitous, there

is still no firm consensus on what statistical procedures should be used for analysis or

on the circumstances under which they should be applied. The literature presents

various techniques that can be used to deal with missing data, and these range from

simple classical ad hoc methods to model-based methods. These methods should be

fully understood and appropriately characterized in relation to missing data and should

be theoretically proved before they are used practically. Furthermore, each method is

based on a specific missingness mechanism, but one needs to realize that at the heart

of the missingness problem it is impossible to identify the missing data mechanism.

Prior to 1970s, missing values were solved primarily by editing (Schafer and Graham,
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2002). Until the mid 1970’s, the principal methods that were used to deal with missing

data included case deletion, single imputation and maximum likelihood estimation.

From the 1970’s to the 1980’s, methods like the expectation maximization (EM) algo-

rithm and multiple imputation using maximum likelihood estimation were applied to

a broad range of problems. During this period, a framework of inference from miss-

ing data was developed by Rubin (1976). Then, the Expectation Maximization (EM)

algorithm was formulated by Dempster et al. (1977) as a popular tool for making

full use of maximum likelihood (ML) for dealing with incomplete data analysis. The

breakthrough idea of multiple imputation was introduced by Rubin (1978) and Little

and Rubin (1987), but there were many difficulties concerning the creation of multiple

imputations in terms of the computational resources and capabilities available at the

time (Schafer and Olsen, 1998). The 1980’s did however see the development of many

facilities for solving this problem such as fast computer technology and new methods for

Bayesian simulation (Schafer, 1997). The drawbacks of case deletion and single impu-

tation techniques have been documented by Little and Rubin (1987). Applications to

various problems using maximum likelihood estimation were advanced in the 1990’s. It

was during this period that the EM algorithm was extended to different forms, namely

stochastic EM algorithm (SEM), the expectation conditional maximization algorithm

(ECM) and the stochastic expectation conditional maximization algorithm (SECM).

Bayes simulation techniques such as Markov Chain Monte Carlo (MCMC) and data

augmentation were developed in the same period.

Recently, researchers have shifted their focus to more modern techniques that avoid

the specification of a full parametric model for the population (Robins et al., 1994).

Since 1995 many techniques for dealing with missing data have been discussed and

developed in different applications. Most recently, many techniques have been proposed

to assess the sensitivity of the results to the distribution of missingness (Verbeke and

Molenberghs, 2000). In the context of non-ignorable missingness setting, the primary

focus has been dropout in longitudinal clinical trials data which is where individuals

may drop out of the study for reasons closely related to the outcomes being measured

(Diggle and Kenward, 1994; Little, 1995; Verbeke and Molenberghs, 2000; Molenberghs

and Verbeke, 2005; Molenberghs and Kenward, 2007). We return to this issue in
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Chapters 6 and 7.

What follows now is a brief description of the several methods that are commonly

used to deal with missing data, including a review of the existing literature in which

we examine the effectiveness of these methods in the analysis of incomplete data.

1.2.1 Deletion methods

There are several ways to deal with missing data. One of them is to discard subjects

with incomplete sequences, and then analyze only the units with complete data (Nie et

al., 1975). Methods that use this approach are called deletion methods. These methods

do not replace or impute missing values and do not make other adjustments to account

for missing values. They share many properties in terms of missing data mechanisms

and the inefficiencies inherent in losing data for statistical power, although not all to

the same degree. The main advantage of these techniques is their simplicity and the

ease with which they can be applied using much of the standard statistical softwares.

Brown (1983) states that some of the deletion methods are good options, but only

when used under specific circumstances (i.e., when the amount of missing data is small

and when data are MCAR, for example, the complete case discussed below and the

available case which uses all available cases and discards data only at the level of

the variable, not at observation level). However, because such circumstances are rare,

McKnight et al. (2007) advise that one should avoid the deletion methods whenever

possible. Furthermore, Little and Rubin (2002) do not recommend any of the deletion

methods except in specific situations where the amount of missing data is limited.

Next, we briefly discuss the complete case as a deletion method, explaining its use,

strengths and weaknesses.

1.2.1.1 Complete case analysis

The simplest deletion approach is the complete case analysis or list-wise deletion

analysis in which the analysis uses only those subjects with completely recorded obser-

vations. In other words, for all variables under consideration, the complete case confines

attention to observations that are available. For example, in longitudinal studies, this
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method uses only those individuals with observed responses at each time point.

This method has numerous advantages. The first is simplicity, in that the method

can be quite effective and may be satisfactorily used with small amounts of missing

data. However, it is important to make sure that, even in such situation, the deleted

cases are not unduly influential (Schafer and Graham, 2002). The second advantage

to complete case analysis is that, it is easy to carry out. It is used by default routines

in most statistical software packages, but it has varying details of implementations.

The primary disadvantages of this method are that: (1) it can produce inefficient

estimates, in the sense of loss of statistical power specifically when drawing inferences

for sub-populations; and (2) when data are not MCAR, then the method can lead to

serious biased results. In other words, it is a valid method only when data are MCAR

(Little and Rubin, 1987), but even when MCAR holds, it can still be inefficient (Schafer

and Graham, 2002). Thus, McKnight et al. (2007) state that one should give careful

consideration before the use of this method regardless of its ease of use. Furthermore,

it is easy to envisage situations where complete case can be very misleading. Kenward

et al. (1994) and Wang-Clow et al. (1995) present examples where the complete case

has led to misleading results.

1.2.2 Imputation-based methods

In contrast to the above mentioned techniques, we now discuss methods that do

generate possible values for the missing data. These alternative methods are called

imputation methods, where one “fills-in” (imputes) the missing data to obtain a full

data set, and the resultant data are then analyzed by standard statistical methods

without concern as if the set represented the true and complete data set (Rubin, 1987;

Little and Rubin, 1987). This is the key idea behind commonly used procedures for

imputation which include, simple and multiple imputation (Little and Rubin, 1987).

Multiple imputation fills in more than one value for each missing item to allow for

the appropriate evaluation of imputation uncertainty (Rubin, 1987; Little and Rubin,

1987). In contrast to multiple imputation, simple imputation techniques substitute

one value for every missing value in the data set (Little and Rubin, 1987, 2002). In
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this section, we restrict ourselves to outlining several simple imputation methods which

are valid under the ignorability assumption (Rubin, 1987; Allison, 2002; Schafer and

Graham, 2002).

There are simple imputation methods that include: (1) mean imputation, in which

missing observations are replaced with the estimated mean of the data set; (2) last

observation carried forward (LOCF), which is revisited briefly in Chapter 2; (3) regres-

sion imputation, where the missing data are imputed using the prediction taken from

a multiple regression analysis; (4) Hot Deck imputation, in which the missing data can

be replaced with the observed data taken from a matched data from the variables that

contain non-missing values; and (5) stochastic regression imputation, in which missing

values are replaced by a value that is predicted using regression imputation plus a

residual that is drawn to reflect uncertainty in the predicted value.

Simple imputation methods are general and flexible for handling missing data, and

can be implemented quickly in several statistical softwares (for example, SAS, R, S+

and others). However, with respect to accurately reproducing known population results

(parameter estimates and standard errors), each of these single imputation methods

have been found to be inadequate (Schafer and Graham, 2002). The problems linked

with these techniques include: (1) the performance of these techniques is poor even

when the ignorable missing data assumption (MCAR or MAR) holds, a situation that

limits their suitability to quite a restricted set of assumptions (Allison, 2002); (2)

they produce seriously biased results that may or may not be predictable; (3) when

using these techniques, the standard errors and standard deviations tend to be under-

estimated, and therefore there is a greater likelihood of committing type-I error (see,

Schafer and Graham, 2002). The variability of the estimators is also underestimated

since imputed data are treated as observed data; and (4) these techniques may present

inconsistent point estimates when data are MCAR.

1.2.3 Data augmentation methods

Data augmentation methods avoid many of the inherent shortcomings of deletion

methods. Such methods derive parameter estimates from the available data as well as
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from either the probability model or an underlying distribution. In contrast to some of

the single imputation methods, data augmentation does not replace missing values. In

estimating parameters, this algorithm takes into account the missing data, the observed

data and the relationships between observed data and several underlying assumptions

which is to say that parameter estimates from the observed data are augmented by

the additional information provided by the proposed probability model or underlying

distribution. In the context of missing data, Maximum Likelihood (ML), Expectation

Maximization (EM), Markov Chain Monte Carlo (MCMC) and weighting methods

are considered to be augmentation methods. However, as argued by McKnight et al.

(2007), the classification of several of these methods as augmentation methods is not

clear-cut, specifically for the MCMC, ML and EM methods. The MCMC method has

been referred to as an augmentation method within the context of multiple imputation

(Allison, 2002). The ML and EM methods have been described as model-based methods

by Little and Rubin (1987), while these procedures have also been referred to as data

augmentation by Schafer (1997). We now limit our focus to just a few of these methods

as augmentation methods, namely ML, EM and weighting methods.

1.2.3.1 Maximum likelihood (ML)

ML was not designed specifically to deal with missing data in the same way as do,

for example, LOCF or multiple imputation. ML is an estimation procedure for esti-

mating parameters under different models such as structural equation models (SEM)

and ordinary least squares in regression. We discuss the ML as a method for handling

missing data. Examples for applying ML to missing data problems can be found in

Little and Rubin (2002). Furthermore, in a variety of situations, ML has proven to be

an excellent technique for dealing with missing data. When missing data are ignorable

(MAR or MCAR), ML does well, and it produces unbiased estimates (Arbuckle, 1996;

Allison, 2002). Therefore, the ML is fairly easy to describe under this assumption. If

the assumption is met, ML estimators for missing data produce estimates that have the

following desirable properties: unbiased estimates in large samples, estimates that are

asymptotically efficient (small standard errors) and satisfy asymptotic normality which
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is to say that estimates approximate a normal distribution which can then be used to

exploit a normal approximation for statistical inference, such as finding confidence in-

tervals and p-values (McKnight et al., 2007). ML can furthermore be implemented in

most statistical software including SAS, SPSS, S-Plus and others.

1.2.3.2 Expectation maximization (EM)

The EM algorithm was originally proposed by Dempster et al. (1977). It is the

process of calculating and imputing a value for each missing variable based on best

prediction models. The EM algorithm is a very general iterative algorithm for ML

estimation in missing data problems (Little and Rubin, 2002). This algorithm requires

the less restrictive MAR assumption. The key idea behind EM is to deal with the

missing data problem and the complications of estimates related to the ML estimation

by attempting to solve smaller complete data problems which lead to parameter esti-

mates for the entire data set (missing and complete data). The EM algorithm handles

the missing data using the following steps: (1) fill-in the values for missing data by

using estimated values generated by ML; (2) estimate parameters based on data in step

1; (3) re-estimate parameters based on the parameter estimates from step 2; and (4)

re-estimate parameters based on the re-estimated data from step 3, and so on, iterat-

ing the process until the final step converges on a solution that differs by only a little

amount from the previous solution. Each iteration of the EM algorithm consists of

two steps, namely the expectation step and the maximization step (Little and Rubin,

2002). Each step is completed once within each algorithm cycle which is to say that cy-

cles are repeated until a suitable convergence criterion is satisfied. Further theoretical

justification of these steps can be found in Dempster et al. (1977) and Little and Rubin

(2002). According to Dempster et al. (1977), the fitted parameters (on convergence)

are equal to a local maximum of a likelihood function which is the maximum likelihood

estimate in the case of a unique maximum. The EM algorithm has two disadvantages:

firstly, it is typically very slow to converge, and secondly, it lacks direct provision of

a measure of precision for the maximum likelihood estimates. Several proposals have

been made to overcome these drawbacks, and we refer to the techniques as provided
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by Louis (1982), McLachlan and Krishnan (1997), Rubin (1991) and Baker (1992).

1.2.3.3 Weighting methods

As introduced by Flanders and Greenland (1991) and Zhao and Lipsitz (1992),

weighted methods are based on observed values. In this way, after ignoring all the

missing values from the analysis, the remaining observed values are weighted in ac-

cordance with how their distribution approximates of the full sample or population.

The methods employ the weights in order to correct for either standard errors asso-

ciated with the parameters or the population variability. To derive suitable weights,

the predicted probability of each response is estimated from the data for the variable

with missing values. Generally speaking, weighting methods are a good option under

certain circumstances, for example, when a missing data pattern is monotone or is

under univariate analysis.

In the context of survey data, Rubin (1987) discusses several methods for applying

and estimating weights. Under a suitable joint model for the outcome and covariates,

these weighting methods are, in many instances, expected to produce results similar to

those of multiple imputation (Schafer and Graham, 2002). In the field of biostatistics,

Rubin et al. (1995) developed a weighting regression model that requires an explicit

model for the missingness but relaxes some of the parametric assumptions in the data

model. This new weighting method was an extension of the generalized estimating

equations (GEE) proposed by Liang and Zeger (1986). The newer method is known as

weighted generalized estimating equations (WGEE). The classical GEE method is valid

when data are MCAR, however, the WGEE method can accommodate missing data

if they are MAR, provided that a model for the missing data with regard to observed

outcomes or covariates is correctly specified (Rubin et al., 1995). Further discussion

and extension of this method is given in Rubin et al. (1995) as well as in Robins et

al. (1998). We discuss this method in more detail in Chapters 3 and 5. Currently,

weighting methods can be carried out in most popular packages, such as STATA,

SAS and SUDANA. The weighting methods have been studied in a wide variety of

applications, see, for example, Schluchter and Jackson (1989), Ibrahim (1990), Lipsitz
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and Ibrahim (1996, 1998), Horton and Laird (1999), Carpenter et al. (2006) and

Seaman and White (2011).

1.2.4 MNAR-based models in longitudinal data

All the above methods do not however provide an optimal solution to the problem

of non-ignorable missingness. This kind of missingness poses a major complication, in

particular in terms of longitudinal data setting. In longitudinal studies, observations

that are repeatedly measured over time are bound to be correlated and some may be lost

due to dropout from the study. Missingness occurs as a result of dropout (premature

withdrawal) or attrition, which refers to the special situation arising in longitudinal

studies where individuals fail to complete the study for whatever reason. Dropout is

a special case of monotone missing data pattern (Diggle and Kenward, 1994; Little,

1995; Molenberghs et al., 1997; Michiels et al., 1999). There are several applications in

the literature which argue that it might be necessary to accommodate dropouts in the

modelling process, see, for example, Diggle and Kenward (1994), Little (1993, 1994,

1995), Verbeke and Molenberghs (2000) and Molenberghs et al. (2004). In other words,

it is argued that one must model the measurement process jointly with a model for

dropout which can itself be considered to be of a scientific interest. Arguably, in terms

of non-ignorable dropout, a wholly satisfactory statistical analysis of the data used in

the analysis is not feasible, and therefore more careful consideration is necessary with

regard to dealing with the non-ignorable situation.

In the presence of non-ignorable dropout, advanced modelling strategies have been

developed by modelling the joint distribution of the dropout indicators pattern and

the measurements process (including observed and missing measurements). As summa-

rized by Little (1995), Verbeke and Molenberghs (2000) and Molenberghs and Kenward

(2007), there are at least three factorizations possible to model the joint distribution of

the measurements and dropout indicators. First of all, there is outcome-dependence fac-

torization, in which dropout indicators are conditioned on the measurements. For con-

tinuous longitudinal data, this approach was adopted by Diggle and Kenward (1994),

and more discussion of this approach will be done in Chapters 6 and 7. Secondly, there
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is pattern-dependence factorization, in which the distribution of the measurements is

a mixture of the distribution for individuals of distinct sub-groups as determined by

the dropout patterns. We pay considerable attention to this approach in Chapter 7.

Thirdly, there is parameter-dependence factorization, which is conditional on the group

of parameters shared by the two components so that the measurements process and

dropout indicators are conditional independent. Correspondingly and based on the

above-mentioned factorizations, there are thus three kinds of modelling strategies: se-

lection models, pattern-mixture models and shared parameter models. According to

Vach and Blettber (1995), Molenberghs et al. (2001b) and Verbeke et al. (2001), the

practical limitation of any of these model factorizations is that they are sensitive to the

assumptions made on the measurements model and the dropout mechanisms. Molen-

berghs et al. (2004) state that different analysis models can have a distinct impact on

conclusions drawn from the same study. In Chapter 7 of this thesis, the idea of us-

ing sensitivity analysis is adopted where, given a practical data set, various modelling

frameworks with different dropout mechanisms are applied to the same data.

1.3 Research objectives

The main aim of this research is to investigate various missing data modelling tech-

niques using application examples and to determine the most appropriate technique or

techniques among several as well as to gain insight into the appropriateness of these

techniques for handling incomplete data analysis. The study also aims to deal with

the non-random dropout problem by explicitly modelling the assumptions that cause

dropout and incorporate this additional model into the model for the measurement

data and to assess the sensitivity of the modelling assumptions. The specific objectives

are:

• To study imputation techniques and compare them with others to estimate re-

gression parameters with missing covariates when the missing data pattern is

monotone, with a particular focus on the MAR mechanism.

• To investigate and compare the analysis of likelihood-based, inverse probability
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weighted (IPW) and multiple imputation (MI) procedures applied to incomplete

Gaussian longitudinal outcomes subject to potential dropout, with restriction to

the ignorability assumption.

• To explore the performance of different families of modelling frameworks in terms

of handling dropout that is MAR in non-Gaussian longitudinal outcomes using

weighted generalized estimating equations (WGEE), multiple imputation after

generalized estimating equations (MI-GEE) and generalized linear mixed model

(GLMM).

• To investigate the influence on inference that might be exerted on considered data

by the non-ignorable dropout (MNAR) process using a selection model based on

Diggle-Kenward type approach, as well as dealing with incomplete sequences.

• To demonstrate and contrast the application of two families of MNAR-based

models, namely selection and pattern mixture models for investigating the po-

tential influence that dropout might exert on the dependent measurement of

the considered data as modelling frameworks that could be used for sensitivity

analysis.

1.4 Thesis outline

The thesis is organized as a collection of 6 research papers which have been sub-

mitted for peer review international journals. Of these 6 papers, 1 paper has been

published, 1 paper has been accepted for publication and the others are still in review.

Each paper has been written as a stand-alone article that can be read separately from

the rest of the thesis but draws separate conclusions that link to the overall research

objectives and questions. As a result, a number of overlaps and replications occur in

the sections “missing data mechanisms” and “multiple imputation method” in the dif-

ferent chapters. This problem is negligible when one considers the critical peer review

process and the fact that the different chapters are papers that can be read separately

without losing the overall context. In Chapters 2, 3, 4 and 5 in particular, the MAR
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mechanism in conjunction with ignorability is the central idea, while in Chapters 6 and

7, the main focus is on MNAR-based models. While most chapters are stand-alone,

the study is easier to follow and understand if read in the order that it is presented.

Chapters 3 and 4 can be read in any order. However, Chapters 6 and 7 should be read

in their sequential order. Lastly, Chapter 8 should be read when all the other chapters

have been read as it summarizes the findings. A brief outline follows:

Chapter 1: This chapter serves as an introduction to the study.

Chapter 2: This chapter focuses on missing covariates in regression analysis, with

particular focus on monotone missingness pattern. The patterns and mechanisms of

missingness for continuous data are presented. The methods of imputation are re-

viewed. The imputation-based methods that were considered are: Marckov chain

monte carlo (MCMC), regression, propensity score (PS) and last observation carried

forward (LOCF). For each method a brief literature review is given as well as the

description of the multiple imputation for continuous data. An application study in-

cluding a description of the full data set used in the analysis is presented. The design

of the comparative study used in the analysis is discussed in detail. The results from

the application of the different methods are contrasted. Finally, the chapter concludes

with a discussion of the results.

Chapter 3: In this chapter, the notation and concepts of mechanisms that lead

to the dropout process are presented. The two approaches mentioned above, namely

multiple imputation (MI) and inverse probability weighting (IPW) are then considered

in more detail as principled approaches to be used in the analysis. In addition, the

chapter contains the design of the application study and offers a description of the data

set used in the analysis in detail. The results for the MI and IPW methods based on

the generated dropout of our application study are set out analogous to each other in

terms of bias and efficiency criteria. Lastly, the chapter ends up with a discussion of

the findings.

Chapter 4: This chapter investigates the performance of MI and direct likelihood

methods in handling incomplete Gaussian longitudinal data when there are MAR

dropouts. The chapter begins with the data structure and dropout mechanisms in-

cluding a formal framework for incomplete longitudinal data. An overview of the
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methods to deal with dropout is given. The chapter also presents an application and

a description of the full data set used in the analysis and the study design. The

dropout generation schemes are discussed. A data set consisting of the heart rate used

as illustration material in this chapter is presented. The results from generated data

are compared and contrasted to results based on actual data for detecting inference.

Discussion and conclusions are drawn from the comparison.

Chapter 5: This chapter focuses on techniques that are based on both likelihood-

based inference and non-likelihood inference for analyzing non-Gaussian longitudinal

outcomes subject to potentially random dropout. Data setting and necessary notation

in terms of the random dropout assumptions are introduced. An overview of the meth-

ods for analyzing incomplete longitudinal non-Gaussian data with the focus on the

weighted generalized estimating equations (WGEE), multiple imputation after gener-

alized estimating equations (MI-GEE) and generalized linear mixed model (GLMM)

strategies, is given. The simulation study including the design, data generation and

evaluation criteria used in the analysis are presented. The results of the simulation

from the different methods are compared. The chapter ends with a brief discussion

and concluding remarks.

Chapter 6: In this chapter, the data setting and modelling framework with the

emphasis on dropout mechanisms are described. A background to the selection model is

provided, followed by descriptions of the selection model based on Diggle and Kenward

framework and detailed discussion of the linear mixed model and dropout model. An

application example including a description of the longitudinal data set in the form

of a multi-centre clinical trial data used in the analysis is presented. In the current

application, the implementation code in the original model by Diggle and Kenward

(1994) has been extended to the case of three treatment arms. The results of the

estimation of the selection model are then described. In conclusion, a discussion of the

results is given.

Chapter 7: This chapter deals with non-ignorable missingness due to data MNAR

requiring the use of sensitivity analysis. This approach is needed because it is not

obvious to distinguish between MAR and MNAR as for every MNAR model there

corresponds a MAR counterpart. The only difference being that they differ in the
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manner of prediction of the missing data. The chapter describes necessary notation

and concepts regarding modelling incompleteness as well as the general framework of

longitudinal data. Two families of models for modelling Gaussian longitudinal data

with incomplete measurements are discussed: selection and pattern mixture models.

An application study is carried out using a longitudinal clinical trial data set with

continuous outcomes. This is followed by a discussion of an application scheme to be

used in the analysis. Aggregate results are obtained under the two restriction models.

Based on the application results, the chapter ends with a summary of the key points.

Chapter 8: Finally, this chapter gives a synthesis of the study. The findings are

summarized and conclusions are derived from the preceding chapters. For future work

on the applications of incomplete data analysis, relevant recommendations are made.

Special focus is directed towards the operational use of sensitivity analysis in non-

ignorable missing data mechanism.

A single reference list is given at the end of the thesis.
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Chapter 2

Imputation methods for estimating

regression parameters under a

monotone missing covariate

pattern: A comparative analysis∗

2.1 Abstract

The chapter deals with the problem of missing covariate values in a regression model.

An attractive approach to avoid this problem is to impute the missing covariate values

rather than delete cases with missing covariates. The study is devoted to a comparison

of different imputation techniques or methods. The type of missing data pattern in the

set of independent variables is the monotone data pattern. We assume that the missing

data are missing at random (MAR). Imputation of missing values was achieved using

a multivariate normal model. The main objective of this chapter is to study how some

imputation approaches compare when the missing data pattern is monotone. The tech-

niques that were considered include the Last Observation Carried Forward (LOCF),

∗ A. Satty and H. Mwambi (2012). Imputation methods for estimating regression parameters un-

der a monotone missing covariate pattern: A comparative analysis. South African Statistical Journal,

46, 327-356.
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Propensity Score (PS), Markov Chain Monte Carlo (MCMC) and Regression. In order

to compare the performance of the proposed methods, we used originally complete data

sets (no data are missing), and then we intentionally created missing values to achieve

the intended goal. Missingness was imposed on covariate variables. The performance

of these four methods is compared on three criteria: bias, efficiency and coverage. Data

from a diabetes study are used to illustrate the considered approaches.

Keywords: Missing covariates, Monotone missing data pattern, Multiple imputation,

MCMC, Propensity score, LOCF.

2.2 Introduction

The occurrence of missing data in scientific investigations is quite common. Data

analysis is seldom performed in the absence of missing data which brings to question

efficiency of estimates, validity of analysis and bias due to differences between observed

and unobserved data (Little, 1992). To this end, considerable research has recently

focused on finding appropriate procedures for handling missing data, see, for example,

Zhang (2003), Chen (2004), Horton and Kleinman (2007), Peng and Zhu (2008) and

Chen (2002). One approach for handling incomplete data problems that addresses

these concerns is imputation which was proposed by Rubin (1978) and described in

detail by Little and Rubin (1987), Little and Rubin (2002) and Schafer (1997). Schafer

(1999) provides extensive bibliography on missing data imputation approaches.

Regression analysis users are often faced with the problem of dealing with a number

of missing values in one or more explanatory variables. The easy solution is often to

discard the cases of the missing value variables in the model and to confine attention to

complete case analysis. However, this solution, although simple and straightforward,

usually leads to adverse statistical consequences and is surely not an efficient strategy.

An alternative more efficient approach is to impute new values that replace the missing

ones before carrying out the regression analysis. See, for example, Little (1976) for

basic considerations and Little (1992) for detailed discussion of regression analysis with

imputed values for missing data. The reasons for missing data are commonly called
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missing data mechanisms. According to Rubin (1976) and Little and Rubin (1987), the

missing data mechanisms can be classified as: missing completely at random (MCAR),

missing at random (MAR) and missing not at random (MNAR). The mechanisms are

discussed briefly in later sections.

This chapter focuses on comparison of several imputation techniques applied to an

incomplete data set under MAR. We focus on the problem of missing covariate values in

a regression model. Imputation of missing values was achieved using a multivariate nor-

mal model. The imputation techniques that will be compared include the controversial

Last Observation Carried Forward (LOCF) method and the more sound multiple im-

putation methods implemented in the SAS software PROC MI (Markov Chain Monte

Carlo (MCMC), Regression and Propensity Score (PS)). The main objective of this

chapter is to study how some imputation approaches compare when the missing data

pattern is monotone. In the application, a monotone missing data pattern was created

from complete data. The results from complete data were presented and used as a

references against which these four techniques were contrasted. Data from a diabetes

study is used to illustrate the considered approaches. This data is a cross-sectional

study. MATLAB and SAS programs were used to create the missing data and to im-

plement imputation techniques, respectively. A detailed discussion on the computer

programmes used for implementing missing value imputations can be found in Horton

and Lipsitz (2001) with particular focus on the REG, MI and MIANALYZE procedures

in SAS.

The rest of this chapter is organized as follow: In Section 2.3 we consider the missing

data patterns and missing data mechanisms. In Section 2.4, we review the methods

of imputation to be used: LOCF, Regression, Propensity score and MCMC. For each

method a brief literature review is given, as well as the description of the multiple

imputation for continuous data. In Section 2.5, we present an application including

a description of the full data set used in the analysis. The design of the comparative

study used in the analysis is discussed in details. The results from the application of

the different methods are presented in Section 2.6. Finally, in Section 2.7, we conclude

by a discussion of the results.
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2.3 Missing data patterns and classifications

2.3.1 Missing data patterns

An important concept with missing data, specifically where there are multiple vari-

ables with missing values, relates to the pattern of missing data. There is a need to

identify the pattern of the missing data because some methods apply to missing data

in general, while others are restricted to a specific kind of pattern. In this chapter, we

focus on the monotone missing pattern as defined by Anderson (1957), Rubin (1974)

and Little and Rubin (1987). In their definition, a data matrix is said to have a mono-

tone missing pattern if, whenever an element yij is missing, the element yik are also

missing for all k > j. The notation yij means the ith observation for variable j, where

i = 1, ..., n and j = 1, ..., p. For example, given variables Y1, Y2 and Y3, a data set is

said to have a monotone missing patterns if the missing information in the variables

is ordered in some specific way. For illustration, Table 2.1 represents variables Y1, Y2

and Y3 with observations 1, 2,...,8 assuming n=8, where an X denotes available data

and a dot (.) denotes a missing data value. When an element in Y2 is missing, so is

the corresponding element in Y3, leading to a monotone missing data pattern (Rubin,

1974). In monotone missing pattern the ordering of variables is important.

Table 2.1: Monotone and non-monotone pattern of missingness

Monotone Non-monotone

Obs Y1 Y2 Y3 Y1 Y2 Y3

1 X X X X . X

2 X . . X . .

3 X . . X . .

4 X . . X . .

5 X X . X X .

6 X X . X X .

7 X X . X X .

8 X X X X X X
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Simpler imputation methods can be used if the pattern is monotone, though a mono-

tone pattern is uncommon in most complex investigations. It may be possible however

to create a monotone missingness pattern that separates out a small number of obser-

vations that are non-monotone. In the non-monotone example in Table 2.1, all but

the first observation can be rearranged into a monotone pattern (i.e., 81% of the data

set). This type of hybrid pattern is exploited by a number of computer packages. It is

important to note that, in many realistic settings, data sets may have missing outcomes

as well as missing predictors (Chen, 2004).

2.3.2 Missing data classifications

As mentioned above, in this subsection we discuss three types of missing data mech-

anisms that are used extensively to refer to missing data in literature. These refer to

mechanisms that could have generated the missing data. When a data set has missing

values, the difficulty of obtaining valid parameter estimates depends on the mechanism

that causes values to be missing. A useful classification for missing value mechanisms

was introduced by Little and Rubin (1987). More formally, let Y be an (n × p) data

matrix, Y = (y1, y2, ..., yn)
T , where yi = (yi1, ..., yip)

T is a random sample from a p-

dimensional multivariate probability distribution P (Y | θ) governed by parameters θ.

We refer to the rows of Y as observations, given by yTi (i = 1, 2, ..., n), and the columns

of Y as variables, denoted by Yj(j = 1, ..., p). We now define an (n × p) missingness

indicator matrix R = rij as follows: rij equal 1 when Yij is missing, and equals 0, if

not. Defining P (rij = 0 | yij) = P (yij observed | yij) = pij, then R is subject to a

probability distribution P (R | ψ, Y ) governed by parameter ψ. The joint probability

distribution of the response variables and the missing data indicator variables can be

expressed as

P (Y,R | θ, ψ) = P (Y | θ)P (R | ψ, Y ), (2.1)

where P (Y | θ) and P (R | ψ, Y ) denote the marginal distribution of the response

variables and the conditional distribution of missing data, conditional on the response

variables, respectively. Following Little and Rubin (1987) and Rubin (1987), we as-

sume Yobs and Ymis represent the observed and the missing portions of Y , respectively;
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that is, Yobs = (yij | rij = 0) and Ymis = (yij | rij = 1). We additionally assume Yobs,j

and Ymis,j denote the observed and missing portions of variable Yj, and assume yi(obs)

and yi(mis) denote the observed and missing portions of the ith observation. The prob-

ability model (2.1) has two sets of parameters (θ and ψ) representing the parameters

of interest and the nuisance or missing data parameters, respectively. In model (2.1),

the correct inferences on θ in general need to be conducted. Moreover, this inference

depends on how the probability model for the missing data is defined. In other words,

how the missingness process depends on the full data, Y . Based on the conditional

distribution P (R | ψ, Y ), Rubin (1976, 1987) classified the missing data mechanisms

into the following three categories:

• If the missingness process is independent of the responses (observed and missing),

i.e., P (R | ψ, (Yobs, Ymis)) = P (R | ψ), then the missing data mechanism is defined

as MCAR.

• If the missingness process is independent of the missing responses given the ob-

served values, i.e., P (R | ψ, (Yobs, Ymis)) = P (R | ψ, Yobs), then the missing data

mechanism is defined as MAR.

• If the missingness process depends on both observed and missing responses, i.e.,

P (R | ψ, (Yobs, Ymis)) 6= P (R | ψ, Yobs), then the missing data mechanism is

defined as MNAR.

Note that the parameterization of ψ is not expected to be the same under the three

missingness categories. According to Zhang (2003) and based on the standard defini-

tions of Rubin (1987) and Madow et al. (1983), the two sets of parameters in model

(2.1) (i.e., θ and ψ) are said to be distinct if from a: 1) Frequentist perspective, the joint

parameter space of (θ, ψ) is the Cartesian cross-product of the parameter spaces for θ

and ψ. 2) Bayesian perspective, the joint prior distribution of (θ, ψ) can be factored

into the independent marginal prior distributions for θ and ψ. In many situations,

this assumption is intuitively reasonable as knowing ψ provide no information about

θ and vice versa. When θ and ψ are distinct, and under either MCAR or MAR, the

missing data mechanism is deemed ignorable (Little and Rubin, 1987; Rubin, 1976,
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1987), which is to say that the missing data mechanism can be ignored when making

likelihood-based or Bayesian statistical inferences on the parameters of interest θ. In

contrast, when the missing data mechanism does not satisfy this definition, the process

is called non-ignorable, and the data is said to be MNAR.

2.4 Methods to handle missing covariates

There are a variety of imputation methods that can be used to deal with missing

covariates. The subsections that follow provide a review of the methods that are used

in this study.

2.4.1 Last observation carried forward (LOCF)

The LOCF method is a well-known, commonly used imputation technique. It re-

tains all of the originally randomized subjects, eliminates missing data and produces

a completed data set. In this approach every missing value is replaced by the last

observed value from the same subject or time series, i.e., it is a method that assumes

that the outcomes would not have changed from the last observed value. Very strong

and unrealistic assumptions have to be made to ensure the validity of this method.

LOCF analysis appeals through its simplicity and ease of application, but there are

strong grounds for not using it. Specifically, the method may introduce bias in the

results, and this bias can, according to circumstance, be in either direction (Molnar et

al., 2008). The technique does not itself indicate a particular type of analysis for the

resulting data. Molenberghs and Kenward (2007) noted that LOCF can be applied to

both patterns of missing data (monotone and non-monotone). We refer to Craig et al.

(2003) and Siddiqui and Ali (1998) for more details, and where insightful illustrations

of the issues of this method are provided in Molenberghs and Kenward (2007).

2.4.2 Multiple imputation for continuous data (MI)

MI was first proposed by Rubin (1978), and was originally developed as an alter-

native to earlier single imputation approaches by Madow et al. (1983). It has also
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been discussed thoroughly elsewhere, see, for example, Schafer (1997), Schafer (1999),

Schafer and Graham (2002), Sinharay et al. (2001) and Zhang (2003). MI refers to a

procedure of replacing each missing value by a vector of M ≥ 2 imputed values selected

to reflect the uncertainty in the imputation (Rubin, 1987). The technique accounts for

uncertainty in sampling from a population by introducing randomness to imputations

and creating M imputed data sets, each of which is then subjected to the desired sta-

tistical analysis (for example, regression analysis). MI incorporates information from

other variables into the imputation process in order to provide more accurate values.

The MI method as is used in most common implementations (for example, PROC MI

in SAS software) assumes that the method is valid under MAR. Rubin (1987) described

multiple imputation as a three step process. First, sets of plausible values for miss-

ing observations are created that reflect uncertainty about the stochastic non-response

model. Each of these sets of plausible values can be used to fill-in the missing val-

ues and create a completed data set. Second, each of these completed data sets are

analysed using standard complete-data methods. Finally, the M results are combined

using methods that allow for uncertainty regarding the imputation to be taken into

account.

For continuous data, multiple imputation requires an assumption that the method

is valid under a multivariate normal distribution. Based on this probability model, pa-

rameter estimates are obtained using the Bayesian posterior distribution based upon

the likelihood function of the proposed model, the observed data and a prior distribu-

tion. The Markov Chain Monte Carlo (MCMC) method of data augmentation is used

to obtain this posterior distribution from which the imputed values for the missing

observation are drawn. This imputation process is repeated M times to create inde-

pendent data sets, each of which is then subjected to the analysis of interest, such as

the regression analysis as in this study. The results of the M separate analyses are

then combined into a single value as

Q̄ =
1

M

M∑
m=1

θ̂m, (2.2)

where θ̂m is the parameter estimate of interest from imputation m=1, 2,...,M. The

variance for these estimates is composed of two parts: the between imputation variance
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and within imputation variance. Between imputation variance takes the form

B =
1

M − 1

M∑
m=1

(θ̂m − Q̄)2. (2.3)

The within imputation variance, Ū , is the mean of estimated variances across the M

imputations. The total variance for MI is then calculated as

T = Ū +

(
1 +

1

M

)
B. (2.4)

In this study, we consider only the multiple imputation methods that are imple-

mented in SAS software PROC MI. The following three methods are available in the

MI procedure:

2.4.2.1 Markov chain monte carlo (MCMC)

The MCMC method is a Monte Carlo integration method using Markov Chains

(Zhang, 2003). It has been applied in many statistical situations, see, Gilks et al.

(1996). In the context of multiple imputation techniques, Schafer (1997) applied the

MCMC method by utilizing the data augmentation algorithm developed by Tanner

and Wong (1987). This method is the most popular multiple imputation method for

handling missing data. This is the default method in SAS PROC MI. The technique is

valid under the assumption of multivariate normality (Robins et al., 1994) which im-

plies that valid imputations may be generated by linear regression equations. Next, we

follow the description provided by Zhang (2003) in formulating the MCMC approach

thereby illustrating how MCMC can be conducted to impute the missing data. The

MCMC method is based on draws of pseudo random samples from a target proba-

bility distribution. In the presence of non-monotone missing data pattern, the target

distribution is the joint conditional distribution of Ymis and θ given Yobs,

P (Ymis, θ | Yobs). (2.5)

The MCMC method imputes the missing data as follows: Replace the missing data

Ymis by some assumed values, then θ can be simulated from the resulting complete

data posterior distribution P (θ | Yobs, Ymis). If θ(t) is the current simulated value of θ
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from the complete data posterior distribution, then the next iterative sample of Ymis,

Y
(t+1)
mis , can be drawn from the conditional predictive distribution of Ymis given Yobs and

θ(t), i.e.,

Y
(t+1)
mis ∼ P (Ymis | Yobs, θ(t)). (2.6)

The next simulated value of θ can be drawn from its complete data posterior distribu-

tion, conditional on the Y
(t+1)
mis ,

θ(t+1) ∼ P (θ | Yobs, Y (t+1)
mis ). (2.7)

Repeating the random draws from a starting value of θ(0) using Equations (2.6) and

(2.7) yields a Markov chain {(θt, Y (t)
mis) : t = 1, 2, ...}. Therefore, the stationary distribu-

tion of this chain is the joint distribution of θ and Ymis given Yobs, P (Ymis, θ | Yobs). Con-

sequently, the marginal stationary distribution of the subsequence {θ(t) : t = 1, 2, ...}

is the observed-data posterior distribution P (θ | Yobs), and the marginal stationary

distribution of the subsequence {Y (t)
mis : t = 1, 2, ...} is the posterior predictive distribu-

tion P (Ymis | Yobs). As stated by Zhang (2003), when t is sufficiently large, θ(t) can be

viewed as a single simulation from the observed data posterior distribution P (θ | Yobs),

and Y
(t)
mis can be viewed as a single imputation from the posterior predictive distribution

P (Ymis | Yobs). The random draw of Equation (2.6) is used to impute the missing data

Ymis, and the random draw of Equation (2.7) is used to simulate the unknown param-

eter θ. Therefore, according to Tanner and Wong (1987), Equations (2.6) and (2.7)

denote the Imputation or I-step and the Posterior predictive or P-step, respectively.

This algorithm was first used by Li (1988) who presented an argument for convergence

and used it to impute the missing data Ymis.

2.4.2.2 Regression method

A regression model is fitted for each variable with missing data, using the remaining

variables as covariates (Yuan, 2000). Based on the fitted regression coefficients, a

new regression model is formulated from a Bayesian predictive distribution of the

parameters (regression parameter estimates and associated covariance matrix) which

is then used to impute the missing values for each variable (Rubin, 1987). Let Yj be a
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continuous variable with missing values, satisfying the model

E(Yj) = β0 + β1X1 + β2X2 + ...+ βkXk, (2.8)

which is fitted using observations with observed values for the variable Yj and its

covariatesX1, X2, X3, ...Xk, where k is the remaining numbers of variables, and 0 < k <

p. According to Rubin (1987), this method assumes multivariate normality, therefore,

the above model imply a Normal error model with mean 0 and variance σ2
j . The

fitted model provides the regression parameter estimates β̂ = (β̂0, β̂1, ..., β̂k)
′ and the

associated covariance matrix σ̂2
jVj, where Vj is the usual (X ′X)−1 matrix derived from

the intercept and covariates X1, X2, ..., Xk.

Steps for generating imputed values for each variable:

Step 1: New parameters β∗ = (β∗0, β∗1, ..., β∗(k)) and σ2
∗j are drawn from the pos-

terior predictive distribution of the parameters. That is, they are simulated from

(β̂0, β̂1, ..., β̂k), σ
2
j and Vj. The variance is drawn as

σ2
∗j = σ̂2

j (nj − k − 1)/g, (2.9)

where g is a X2
nj−k−1 random variate and nj is the number of non-missing observations

for Yj. The regression coefficients are drawn as

β∗ = β̂ + σ∗jV
′
hj
Z, (2.10)

where Vhj is the upper triangular matrix in the cholesky decomposition Vj = V ′
hjVhj

and Z is a vector of k + 1 independent random standard normal variates.

Step 2: The missing values are then replaced by

β∗0 + β∗1x1 + β∗2x2 + ...+ β∗(k)xk + zjσ∗j,

where x1, x2, ..., xk are the values of the covariates and zj is a simulated standard normal

deviate.

2.4.2.3 Propensity score method (PS)

Another imputation method available for continuous variables is the propensity score

(PS) method. The PS method for multiple imputations was proposed by Lavori et al.

(1995). In fact, the PS method follows a nonparametric approach in which the missing
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data are imputed by resampling of the observed data (Zhang, 2003). The method is

also valid under the assumption that the data set has a monotone missing pattern.

In medical research it can be defined as the conditional probability of assignment to

a particular treatment given a vector of observed covariates (Rosenbaum and Rubin,

1983). For each variable with missing values, propensity scores are generated for all

observations to estimate the probabilities that each observation is missing. For each

group Bayesian imputation technique is applied.

To discuss the PS method in detail, we will follow the approach provided by Zhang

(2003). As we defined the missingness indicator variables rij, the missingness process

can be applied by a linear logistic regression model. Therefore, the conditional prob-

ability of observing yij, conditional on the previous history yi1, ..., yi,j−1, can be called

a propensity score, sij. According to Rosenbaum and Rubin (1983), definition of the

propensity score can be expressed as follows

sij = Pr(rij = 0 | yi1, ..., yi,j−1). (2.11)

In the presence of monotone missing data pattern, the propensity score can be modelled

by

log

(
sij

1− sij

)
= β0 + β1yi1 + ...+ βj−1yi,j−1, (2.12)

where β0, β1,...,βj−1 are the regression coefficients. Now, based on Equation (2.12) and

after the regression coefficients are estimated from the observed rij for the response

variable Yj and the complete data for the covariates Y1, ..., Yj−1, each observation can

be assigned an estimated propensity score,

ŝij =
exp(β̂0 + β̂1yi1 + ...+ β̂j−1yi,j−1)

1 + exp(β̂0 + β̂1yi1 + ...+ β̂j−1yi,j−1)
, (2.13)

and then all observations are stratified into q strata based on the quantiles of estimated

propensity scores. Within each stratum, a “donor pool” is created by applying the

approximate Bayesian bootstrap (Rubin and Schafer, 1986). That is, a random sample

is created by random draws with replacement from the observed values of Yj within each

stratum. The approximate Bayesian bootstrap method is applied in order to reflect

additional uncertainty about the posterior distribution of the underlying parameters,

given the observed values of Yj within each stratum. As noted by Zhang (2003), the
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MCMC method is roughly equivalent to choosing the values of the parameters θ for the

conditional posterior predictive distribution P (Ymis | Yobs, θ) from the observed-data

posterior distribution P (θ | Yobs). After the donor pools are created, each missing value

of Yj is then imputed by a single random draw from its donor pool. M sets of multiple

imputations are obtained by creating M conditionally independent donor pools for each

individual missing value and then taking a random draw from each donor pool. Note

that imputing a missing value by a random draw from its stratum rather than from

its donor pool would result in an improper multiple imputation in the sense that the

between imputation variance would be underestimated because the uncertainty due to

selecting the imputation model is not incorporated into the imputation.

2.5 Application

2.5.1 Example: Diabetes data

We consider a response variable Y that is fully observed, while all the explanatory

variables X1, X2, ..., Xp contain missing values. Let X be the design or model matrix

of dimension (n×p), while Y represents the vector of response values of length n. The

vectors (Yi, Xi1, ..., Xip) for i =1,...,n are independent. Due to missing observations,

the design matrix can be split into two parts, X = (Xobs, Xmis); Xobs represents the

part of the design matrix X with covariates that are completely observed, and Xmis

is the subset of X with explanatory variables which have at least one value that is

not observed. We assume that Xmis follows a monotone pattern. To illustrate this

application we describe a medical data set as reported by Willems et al. (1997). The

original (diabetes data set example) database consists of 19 variables on 403 subjects

out of 1040 subjects who were originally interviewed in a study to understand the

prevalence of obesity, diabetes and other cardiovascular risk factors in Central Virginia

for African Americans. The 403 subjects were the ones who were actually screened for

diabetes. At this point we have to make it clear that our present study is essentially

a cross-sectional study. We compare the various imputation methods using generated

missing values in a complete subset of the whole database. So, our initial strategy was
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(a)

(b) (c)

Figure 2.1: (a) Scatter plot - complete data set. (b) Scatter plot - 20% missing covari-

ates. (c) Scatter plot - 30% missing covariates

to find a data set with no missing values on certain important continuous variables

and then to use it for our study. We thus ended up with a complete data set with

403 subjects. The variables which we selected are: Y - glycosolated hemoglobin, X1 -

age, X2 - cholestrol, X3 - high density lipoprotin, X4 - cholestrol/HDL ratio and X5 -

stabilized glucose. We use a linear regression model for the response variable, Y , as:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε, (2.14)

where ε ∼ Normal (0, σ2), therefore,

E(Y ) = β0 + β1X1 + β2X2 + β3X3 + +β4X4 + +β5X5, (2.15)
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where E(Y ) denotes the expectation of Y for given X1, ..., X5. The model assumptions

also imply

ε = Y − E(Y | X1, X2, X3, X4, X5) ∼ Normal (0, σ2), (2.16)

where glycosolated hemoglobin (Y ) was used as a surrogate outcome for diabetes be-

cause of its known high predictive capacity with respect to type two diabetes. In this

application, all covariates (X1 − X5) were subjected to missing observations while Y

was left completely observed for all cases. In order to create a monotone missing data

pattern, we assumed that if a datum is missing, all subsequent data on that observa-

tion is also missing. Thus, the incomplete data set is constructed from the complete

data set and the process yields a monotone missing pattern in variables X1-X5. Figure

2.1 represents the relationships between the outcome Y and regression standardized

predicted values of Y before and after creating missing observations.

2.5.2 Study design

To investigate the performance of the proposed methods, five steps were planned

and executed as follows:

Step 1: We fit a linear regression model using the complete data set with the Y as

the dependent variable and X1 −X5 as explanatory variables to obtain the regression

analysis coefficients.

Step 2: From the complete data set, we draw 1000 random samples of N = 400.

We create a monotone missing data pattern in X1 − X5. The monotone pattern of

missingness was created by randomly selecting values from the data matrix, then the

pattern was created by discarding values that lie next to the selected ones. Missing data

for X1−X5 are generated assuming MAR mechanism. To achieve MAR mechanism, we

assume the missing data is related to the observed data (i.e., past responses). Missing

data were created in X1 by randomly deleting 20% and 30% of observations greater

than 55, resulting in monotone missingness pattern in incomplete data. A monotone

missing pattern was used which is to say that for X1, if a X1’s observation was deleted,

the subsequent observations in the other variables for that subject were also deleted.

To generate the missing data, we used a function written in the MATLAB software
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package.

Step 3: We fill in the missing values in X1−X5 to generate completed data sets under

a multivariate normal model using imputation methods described above. For multiple

imputation techniques, we used the SAS software. The MI procedure options were set

so that the program used up to 1000 iterations of the EM method to find the posterior

mode. We used the defaults of the SAS MI algorithm: a Jeffreys prior and initial

sampler values from the EM posterior mode. Then, the method uses Markov-chain

Monte Carlo (MCMC) to generate the actual imputations. PROC MI was applied to

generate M = 5 complete data sets (conventional wisdom suggests taking M = 5, see,

for example, Schafer, 1999). PROC REG was used to set up effect parameterizations

for the variables and the BY statement is also used to allow the analysis to be repeated

for each data set. The simpler LOCF technique replaced the missing data by the last

available observed data, and once the data set has been completed in this way, it is

analysed as if it were fully observed.

Step 4: We re-estimate the regression model using each imputed data set separately

and we record the results of interest. For the MI techniques, we combine the results

of the 5 imputations using formulas that account for variation within and between the

imputed data sets using Equations (2.2), (2.3) and (2.4). We use PROC MIANALYZE

to combine the estimates from the 5 completed data sets to generate valid statistical

inferences about the regression model.

Step 5: Finally, we compare the results of imputation techniques from the fourth

step with the results of the true complete data set from the first step to assess the

performance of the proposed methods.

2.5.3 Criteria of performance

We assess the performance of the methods largely using the criteria recommended

in Schafer and Graham (2002) and Peng and Zhu (2008), namely bias, efficiency and

coverage. In this chapter, we defined bias as the difference between the average of

the 1000 coefficient estimates and the corresponding true coefficient. Thus, a better

approach that does on the average presents a population value with less bias. We
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defined the efficiency as the variability of the estimates around the true population

coefficient. It was measured in this study by the average width of the 95% confidence

interval. Thus, a wider interval implies a less efficient technique. Coverage was defined

as the percentage of 95% confidence intervals estimates across 1000 replicates. If a

method is working well, the actual coverage should be close to the nominal rate (95%).

2.6 Results

Table 2.2 shows the overall performance of the imputation techniques considered in

this study when the missing data rate was 20%. For all covariates the greatest bias, also

the worst, is highlighted. Examining these results we find the following. When com-

pared with the results based on the PS and LOCF methods in Table 2.2, the MCMC

and Regression methods offered better performance than the PS and LOCF methods.

Covariates (X1-X5), were more accurately estimated by MCMC and Regression meth-

ods as compared to those of PS and LOCF. In particular, the regression coefficient for

the covariate X3 was unbiased for MCMC and Regression methods. Furthermore, the

MCMC and Regression methods yielded the same estimates for all covariates, except

for X4. Their respective estimates did not differ significantly from those of the true

actual data. Differences were never more than 0.003, with one exception - the esti-

mate of X4 which was slightly different than that from true complete data. Both, PS

and LOCF contained more biased estimates as compared to MCMC and Regression

methods of imputation used in this study. Covariates which showed most bias were

X5 under the PS method and (X1, X2, X3 and X4) under the LOCF method. Since

a wider interval implied a less efficient, thus the widest also implies the worst, 95%

is highlighted. The LOCF was less efficient most frequently. This should not be a

surprise because intuitively the LOCF’s weakness is that it tends to create inflated ar-

tificial values than truly expected. Between the two LOCF and PS methods, the LOCF

was less efficient than the PS. The exception was with the estimate of X1 for the PS.

For X1-X5, MCMC and regression methods uniformly the best approaches in terms of

efficiency. Therefore, both MCMC and Regression methods were more efficient than

PS and LOCF. In terms of coverage, according to Schafer and Graham (2002), the
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Table 2.2: Bias, Efficiency and Coverage of MCMC, Regression, PS and LOCF, under

20% missing covariates

coverage

Rate Method Parameter Bias Efficiency true level=95%

MCMC

X1 0.002 0.020 0.972

X2 -0.003 0.011 0.978

X3 0.000 -0.001 0.991

X4 0.042 0.120 0.967

X5 0.001 0.007 0.991

Regression

X1 0.002 0.021 0.973

X2 -0.003 0.012 0.978

X3 0.000 -0.004 0.992

X4 0.061 0.120 0.961

X5 0.001 0.007 0.991

PS

X1 -0.005 0.030 0.954

X2 -0.003 0.012 0.968

X3 0.008 -0.014 0.951

X4 -0.139 0.121 0.942

X5 0.004 0.013 0.966

LOCF

X1 -0.011 0.030 0.954

X2 0.016 0.035 0.941

X3 -0.043 -0.113 0.897

X4 -0.630 0.159 0.784

X5 -0.678 0.211 0.677
Note: The largest bias and efficiency for each given estimate appear in bold.

PS=propensity score; LOCF=last observation carried forward; MCMC=markov

chain monte carlo.
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performance of a method can be regarded to be poor if its coverage drops below 90%

and hence leads to substantially increased Type-I error rate. By this rationale, the

MCMC, Regression and PS methods yielded equally acceptable performance across all

covariates. The LOCF’s coverage at 95% was consistently lower than 90%, except for

X1 and X2, thus, this coverage was indicative a seriously low level of coverage because

90% corresponds to a doubling of the nominal rate of error (0.05).

With 30% missingness, the results from the performance of the four methods are

listed in Table 2.3. For all four methods, the MCMC and Regression methods yielded

equally good performance and outperformed the PS and LOCF methods. In terms of

bias condition, the benefits of MCMC and Regression methods over a PS and LOCF are

clearly evident. In particular, the estimates from PS and LOCF for X1 and (X2, X3, X4

and X5), respectively, contain seriously biased estimates. Both MCMC and Regression

methods for X1, X2 and X5 yielded the same estimates of regression coefficients. Thus,

while there appeared to have been little or no bias, they were more efficient than those

obtained from the PS and LOCF. An examination of the efficiency suggested that the

estimates from MCMC and Regression methods were typically lower than those from

the PS and LOCF methods, thus such estimates were more efficient than were those

based on the PS and LOCF methods. Efficiency by PS and LOCF approaches appeared

to be independent of the missingness rate. The worst performance on efficiency occured

with estimates of covariates X1 and X2 for PS, and with estimates of covariates X3, X4

andX5 for LOCF when compared with those based on MCMC and Regression methods.

Consequently, both methods, being asymptotically less efficient. In comparison with

results for PS, LOCF’s efficiency was worst than that of PS. With respect to coverage,

similar to the findings obtained under 20% missing data, the MCMC, Regression and

PS method produced uniformly acceptable coverage; none was less than 90%. On

the other hand, coverage rates obtained by the LOCF method in most cases were

unsatisfactory with two exceptions - coverage rates for X1 and X2. It is appeared that

its low coverage rates can also be attributed to its large biases.
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Table 2.3: Bias, Efficiency and Coverage of MCMC, Regression, PS and LOCF, under

30% missing covariates

coverage

Rate Method Parameter Bias Efficiency true level=95%

MCMC

X1 0.006 0.021 0.982

X2 -0.001 0.008 0.984

X3 0.001 0.003 0.977

X4 -0.059 0.361 0.955

X5 0.001 0.008 0.987

Regression

X1 0.006 0.022 0.981

X2 -0.001 0.008 0.984

X3 0.000 0.003 0.994

X4 -0.051 0.345 0.952

X5 0.001 0.007 0.984

PS

X1 0.013 0.033 0.950

X2 -0.002 0.010 0.969

X3 -0.005 -0.011 0.965

X4 0.001 0.206 0.947

X5 0.010 0.006 0.959

LOCF

X1 -0.012 0.030 0.952

X2 -0.021 -0.046 0.933

X3 -0.046 0.126 0.877

X4 -0.738 0.240 0.653

X5 -0.556 0.216 0.755
Note: The largest bias and efficiency for each given estimate appear in bold.

PS=propensity score; LOCF=last observation carried forward; MCMC=markov

chain monte carlo.
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2.7 Discussion and conclusion

In this chapter, we have studied the comparison of four imputation techniques applied

to user-made incomplete data sets with missing covariates. The missingness pattern

considered is the monotone pattern. The imputation techniques compared included

the last observation carried forward (LOCF) method and three imputation techniques,

namely markov chain monte carlo (MCMC), regression and propensity score (PS). In

order to compare the performance of the methods, we used the originally complete

data set (actual data), and then we artificially created missing values to achieve the

intended goal. Missingness was imposed on covariates. The results of the regression

analysis of the imputed models were compared under three criteria: bias, efficiency

and coverage. Data from a diabetes study is used to investigate the performance of

the considered approaches.

Generally, comparing the analysis based on 20% and 30% missing data rate, among

the imputation techniques examined here, the PS and LOCF techniques were notable

for consistently producing more biased estimates versus those in the MCMC and Re-

gression methods, regardless of the missing data rate. This agrees with known theo-

retical findings that PS can give biased estimates of regression coefficients when data

on predictor variables are missing (Allison, 2000). Schafer (1999) found that the PS

technique is not appropriate for analyses involving relationships among variables, such

as a regression analysis. It would appear that Schafer’s (1999) recommendation to not

use PS for regression analyses with missing values is strongly supported by the results

presented here. On the other hand, in this particular data set, the LOCF technique

gave worse results and thus a less efficient technique, in terms of bias, efficiency and

coverage than other imputation techniques considered in the current study. LOCF can

be justified from the fact that the method is used primarily for analyses of longitudinal

studies that have experienced attrition (Little and Rubin, 1987). Also, Schafer (2000)

refers to the LOCF as inferior to regression problems because it ignores regression to

the mean. In addition, Molenberghs and Kenward (2007) argued against the method

and noted that the technique makes the strong assumption that there is no change in

the subject response between the observed time points and the missing time period
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which can lead to biased estimates. However, the LOCF may be appropriate for the

particular data set when the pattern of missingness is monotone.

Findings in general favored the MCMC and Regression methods over the PS and

LOCF methods. As expected, the MCMC and Regression methods yielded better re-

sults, regardless of the missingness rate. Both, MCMC and Regression methods yielded

acceptable performance of parameter estimates, and obviously have an advantage over

PS and LOCF methods. Furthermore, MCMC and Regression methods yielded esti-

mates closer to each other for bias, efficiency and coverage, and in some cases they

yielded the same estimates. This confirmed the theoretical findings from Rubin (1987)

and Schafer (1997) who concluded that to handle missing values for a continuous vari-

ables in data sets with monotone missingness pattern, we should use methods that

assume multivariate normality as MCMC and Regression.

In conclusion, the results show that we have universally best methods to deal with

missing covariates under monotone missing data pattern. From the results, it appears

that either MCMC or Regression methods of imputation for estimating regression mod-

els with monotone missingness are preferable to PS method (which is a non-parametric

technique) and LOCF method (which is a single imputation technique).
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Chapter 3

An analysis for handling dropout in

longitudinal data using multiple

imputation and inverse probability

weighting∗

3.1 Abstract

Missing data is a pervasive problem in longitudinal studies, and it is the result

mainly of non-responses due to individuals who leave the study and are therefore lost

to follow-up. This chapter deals with incomplete longitudinal data when there are

dropouts. Statistical methods that ignore the mechanism for dropouts are susceptible

to biased inference. This study focuses on dropouts missing at random (MAR). We

demonstrate application and the performance of inverse probability weighting (IPW)

and multiple imputation (MI) in handling dropouts in longitudinal data with continu-

ous response. The main objective of this study is to compare the performance of the

above approaches for handling missing outcomes in longitudinal data under different

dropout rates. Data from a study with individual heart rate as the outcome is used

∗ A. Satty and H. Mwambi (In review). An analysis for handling dropouts in longitudinal data

using multiple imputation and inverse probability weighting. Statistics and its inference.
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to investigate the performance of the two approaches considered in the current study.

Based on this longitudinal data, results from the IPW approach will be compared with

those obtained from the MI approach. The performance of these two approaches are

compared in terms of bias and efficiency.

Keywords: Incomplete longitudinal data, Dropout, Inverse probability weighted (IPW),

Continuous outcomes.

3.2 Introduction

Despite the fact that longitudinal studies are frequently designed to collect data

on every individual within a sample at each assessment or measurement occasion,

incompleteness or missingness often arises. Incompleteness for longitudinal data often

occurs as dropout which is when individuals fail to complete a study for some reasons.

A common problem with the analysis of longitudinal data is that, subjects may dropout

of the study before the end of the follow-up period resulting in a monotone missingness

pattern. This chapter only pays attention to the monotone missing data pattern, in the

sense that if a subject drops out from the study prematurely, then on that subject no

subsequent repeated measurements of the outcome are obtained. The potential impact

of missing data is best understood by considering the process (i.e., the mechanisms)

leading to the incompleteness. Rubin (1976, 1987) classified these mechanisms into

three basic categories: missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR).

Two general methods are used for handling incomplete longitudinal data with dropout

under MAR. One is the so-called multiple imputation (MI) which imputes values for

the incomplete data and carries out the analysis as if the imputed values were ob-

served data. MI was first proposed by Rubin (1978), and a comprehensive treatment

is given in Little and Rubin (1987). The method has been recognized as an attractive,

important and influential technique for handling missing data, and has become very

practical for dealing with dropout in longitudinal settings (Schafer, 1999). A useful

summary of MI is presented by Schafer (1997). For more references, see, for exam-
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ple, Rubin and Schenker (1986), Little and Rubin (2002), Rubin (1986) and Horton

and Lipsitz (2001). The second approach is the inverse probability weighted (IPW)

estimating equations in which complete cases are weighted by the inverse of their prob-

abilities of being observed in order to adjust for dropouts. IPW was first described by

Robins et al. (1995) who noted that it deals with incomplete longitudinal data arising

from a MAR mechanism. The roots of this approach in survey analysis have been

presented by Horvitz and Thompson (1952). IPW has been recognized as an attractive

approach because it does not require complete specification of the joint distribution

of the longitudinal responses, but rather is based only on specification of the first two

moments (Grace and Wenqing, 2009). Several methodological research papers in the

literature (Robins et al., 1995; Robins and Rotnitzky, 1995; Scharfstein et al., 1999)

have proposed improved IPW estimates that are theoretically more efficient, these are

estimates where the MAR may be assumed. The IPW method is discussed in more de-

tail in Fitzmaurice et al. (1995), Yi and Cook (2002a, 2002b), Carpenter et al. (2006)

and Seaman and White (2011).

MI and IPW are two approaches to use for handling missing data that provide

unbiased estimates under MAR mechanism. These approaches can often give similar

results when the mechanism causing the missing data is MAR. The main difference

between IPW and MI is that IPW needs a model for the missingness mechanism,

whereas MI needs the analyst to specify the variables to be used as regressors in the

imputation model. For more detail, see Seaman and White (2011). In addition, unless

a monotone missing data pattern is used, the missingness model for IPW can only

use complete variables. Both methods can be used for all types of outcomes, but a

great deal of work has been devoted to binary response data. However, comparisons

between IPW and MI are not common because they come from two opposing schools of

thought. Therefore, it is not surprising that essentially little has been done in terms of

comparing them for continuous responses data. A recent comparison of these methods

in a cross sectional setting found the performance of these methods to be similar, with

MI only slightly more efficient than the IPW (Carpenter et al., 2006). In the context

of survey data, Seaman and White (2011) compare the performance of MI with IPW.

In their paper, they illustrate why, despite MI generally being more efficient, IPW

47



may sometimes be preferred. Using marginal structural models, a comparison of these

approaches found that MI was slightly less biased and considerably less variable than

IPW (Moodie et al., 2008).

In this chapter, our focus will be on the comparison of MI and IPW approaches

to analyze longitudinal data with dropouts, and application will be confined to the

continuous outcome case. Our strategy to achieve this goal will be to compare the

performance of these two methods in handling incomplete Gaussian longitudinal data,

under three different dropout rates. In both methods the dropout mechanism is as-

sumed to be MAR. In order to compare the performance of these methods, the data

set we used was originally complete (no missing values) and the dropouts were created

by generating missing data at random. The comparison was based on a heart rate

trial data which gives heart rate observations for individuals exposed to three differ-

ent treatments. The performance of these two approaches are assessed on two criteria

namely bias and efficiency. Because the likelihood-based inference is valid under the

MAR mechanism (Verbeke and Molenberghs, 2000; Mallinckrodt et al., 2003a, 2003b),

its results were presented and used as references against which these two approaches

were contrasted. In Section 3.3, we present the notation and concepts of possible

mechanisms that can lead to the dropout process. In Section 3.4, the two approaches

mentioned above are then considered in more detail as the principle approaches to be

used in the analysis. Section 3.5, contains the design of the application study and

offers a description of the data set used in the analysis in detail. The results based

on the generated dropout data in our application study are set out in Section 3.6. We

conclude with a discussion of the results in Section 3.7.

3.3 Notation and dropout mechanisms

To describe the different dropout mechanisms and definitions, we follow the notations

that is commonly used in the missing data literature. So, suppose that N individuals

are to be observed at n occasions. Then for the ith individual (i = 1, 2, ...N) we can

form a (n × 1) vector Yi=(Yi1, ..., Yin)
′, where Yij is the jth outcome for individual i,

which can be continuous or discrete depending on the study problem. Each individual
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also has a (n×p) covariate matrix Xi. The covariates may be both time stationary and

time varying. In longitudinal studies, individuals can be unobserved at all n occasions

on account of some stochastic missing data mechanism. Now, suppose Ri is a (n× 1)

random vector for the ith individual, whose jth component Rij equals 1 when Yij

is fully observed, and equals 0, if not. The purpose of the random vector Ri is to

aid in modelling the missingness process. Thus, the full data information for the ith

individual are given jointly by Yi and Ri, with a joint distribution that can be expressed

as

fy,r = (yi, ri | Xi, θ, γ) = fr(ri | yi, Xi, γ)fy(yi | Xi, θ), (3.1)

where θ and γ are vectors that parameterize the joint distribution. The “missing

data mechanism”, fr(ri | yi, Xi, γ) is parameterized by γ. In general, the mechanism

of missing data can depend on the full vector of responses, Yi (including possibly

unobserved component of Yi) and the matrix of covariates Xi. We denote the observed

and unobserved components of Yi by Y o
i and Y m

i , respectively. Rubin (1976, 1987)

specified three distinct missing data mechanisms. First, we have data that is missing

completely at random (MCAR), meaning that the missingness process does not depend

on Yi, i.e., P (Ri | Y o
i , Y

m
i , Xi, γ) = P (Ri | Xi, γ). Second, the missing data is said to

be missing at random (MAR) if, the missingness process depends on the observed

responses and probably on measured covariates but not on the unobserved responses,

i.e., P (Ri | Y o
i , Y

m
i , Xi, γ) = P (Ri | Y o

i , Xi, γ). The third missing data mechanism is

that which allows the missingness process to depend on the unobserved responses, and

here such a process is called missing not at random (MNAR), or in probability terms,

P (Ri | Y o
i , Y

m
i , Xi, γ) = P (Ri | Y m

i , Xi, γ). In terms of likelihood based inference for

parameters of the complete data vector Yi, Rubin (1987) showed that the contribution

to the likelihood attributable to the missingness mechanism can be ignored under MAR

assumption. In the context of likelihood based analysis, an MCAR is a special case of

MAR, and these two mechanisms are referred to as being “ignorable”. In contrast, an

MNAR mechanism is often referred to as a “non-ignorable” mechanism.

The focus of this chapter is on missing data due to subject dropouts, in the sense

that all components of Yi will be missing and all components of Ri will be 0 starting
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from the dropout time. The dropout time for the ith individual can be defined by

introducing a quantitative variable

Di = 1 +
n∑
t=1

Rit, (3.2)

and hence the model for missing data or dropout process can be rewritten as

ιidi
= f(ri | yi, Xi, γ) = Pr(Di = di | yi, Xi, γ). (3.3)

where di is a realization of the variable Di. In Equation (3.2), it is assumed that all

subjects are observed on the first occasion so that Di takes values between 2 and n+1.

The maximum value (n+ 1) corresponds to a complete measurement sequence. Using

Equation (3.3), a dropout missing completely at random (MCAR) model reduces to

P (Di = di | Yi, Xi, γ) = P (Di = di | Xi, γ), while the dropout missing at random

(MAR) model is given by: P (Di = di | Yi, Xi, γ) = P (Di = di | Y o
i , Xi, γ), where

dependence on Yi is only through Y o
i .

3.4 Methods for handling dropouts

3.4.1 Multiple imputation (MI)

This method is a simulation-based approach that imputes missing values multiple

times (Little and Rubin, 1987). The method is valid under the assumption that the

data are MAR (Little and Rubin, 1987). The key idea of this approach is to fill in the

missing values multiple times in order to construct multiple complete data sets. MI

involves three distinct phases or using Little and Rubin’s (1987) terminology: In the

first step, the missing values are filled in M times to generate M complete data sets.

In the process of filling in missing values, a joint distribution for the complete data

set (including observed and unobserved data) and a prior distribution of parameters

are assumed for the data augmentation algorithm to simulate random draws from

the missing data distribution. Under the MAR mechanism, M independent random

numbers can, given the observed values, be generated from the stationary conditional

distribution of the missing values, as in the Bayesian estimation technique. After the
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first step (the imputation step), M complete data sets are obtained. In the second

step, each of the M complete data sets are analyzed using standard procedures, such

as ordinary least squares regression analysis, linear mixed model, generalized linear

model, generalized linear mixed models, etc, depending on the types of response and

assumptions used for the model. Finally, in the third step, the estimates from the M

analyses are then combined to produce a single estimate that incorporates the usual

sampling variability as well as the variability due to the missing data.

There is an important question to be solved when applying MI approach; that is,

what variables should be included in the imputation model. The MI inference assumes

that the model that is used to analyze the multiply imputed data (the analysis model)

is the same as the model used to impute missing values in MI (the imputation model).

However, practically, the two models might not be the same (Schafer, 1997). The qual-

ity of the imputation model will influence the quality of the analysis model results, so

it is important to carefully consider the design of the imputation model. Therefore, to

obtain high-quality imputations for a particular variable, the imputation model should

include variables that are potentially related to the imputed variable and variables that

are potentially related to the missingness of the imputed variable (Schafer, 1997). Van

Buuren et al. (1999) recommended to include the following covariates in the imputa-

tion model: variables in the analysis model, variables associated with missingness of

the imputed variable and variables correlated with the imputed variable. However, one

can include auxiliary variables which may or may not have missing values. Generally,

including variables that do not have missing values are required in the imputation

model. For more details of the imputation model, we recommend Schafer and Graham

(2002), Schafer (1999) and Van Buuren et al. (1999). We now consider the theo-

retical justifications of the MI method provided by Verbeke and Molenberghs (2000)

in describing the MI processes for data analysis. Recall that the observed data are

Y o
i and the complete data are Yi. MI uses Y o

i to fill in Y m
i , leading to the complete

data Yi = (Y o
i , Y

m
i ). If we knew the distribution of Y m

i , with parameter vector γ,

then we could impute Y m
i by drawing from the conditional distribution f(Y m

i | Y o
i , γ).

Since γ is unknown, we estimate it from the data, yielding γ̂, and use the distribution

f(Y m
i | Y o

i , γ̂). Because γ̂ is a random variable, we must also take its variability into
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account in drawing imputations. In Bayesian terms, γ is a random variable of which

the distribution depends on the data. So, we first obtain the posterior distribution

of γ from the data, a distribution which is a function of γ̂. After formulating the

posterior distribution of γ, the following imputation algorithm can be used: (1) Draw

γ∗ from the posterior distribution of γ, f(γ | Xi, Y
o
i ). We approximate this posterior

distribution by the normal distribution. (2) Draw Y m
i from f(Y m

i | Xi, Y
o
i , γ

∗). (3)

Use the complete data Yi and the model to estimate the parameter of interest (β∗) and

its variance (Σ(β∗)) called the within-imputation variance. The steps described earlier

are repeated independently M times, resulting in β∗k , Σ(β∗), k = 1, ...,M . Steps 1 and

2 are referred to as the imputation task, and step 3 is the estimation task. Finally, we

combine the estimates obtained after M imputations. The overall estimated parameter

vector is the average of all individual estimates:

β∗ =
1

M

M∑
k=1

β∗m. (3.4)

We obtain the variance as a weighted sum of the within-imputation variance and the

between-imputations variability:

Σ∗ = W +

(
M + 1

M

)
B, (3.5)

where

W =
1

M

M∑
k=1

Σ(β∗k), (3.6)

is the average of the within-imputation variances, and

B =
1

M − 1

M∑
k=1

(β∗k − β∗)(β∗k − β∗)′, (3.7)

is the between-imputations variance (Little and Rubin, 1987). According to Verbeke

and Molenberghs (2000), γ is an easily estimated set of parameters characterizing the

distribution of Yi, and in this situations MI is most useful. In contrast, β is complicated

to estimate in the presence of non-response and obtaining a correct estimate for the

variability is nontrivial.
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3.4.2 Inverse probability weighting (IPW)

IPW is a standard method used for handling dropouts. This method is valid under

MAR assumption (Robins et al., 1995), but requires specification of a dropout model

in terms of observed outcomes and/or covariates. IPW is more generally used in

marginal models for discrete outcomes than for continuous outcomes, however in this

study, IPW is adopted for dealing with continuous outcomes in order to correct the

bias that is caused by dropout under MAR assumption. The primary idea behind IPW

is that, if individual i has a probability of being observed at occasion t of λit, then, this

individual should be given weight, ωij, so as to minimize the bias caused by dropouts

in the analysis. The weight ωij for the ith individual at time j is assigned as inverse of

the cumulative product of fitted probabilities, ω̂ij(α̂)=(λ̂i1(α̂)× λ̂i2(α̂)× ...× λ̂ij(α̂))−1,

where α is a (q×1) vector of unknown parameters. In order to discuss the idea of what

these weights are, we follow illustration provided by Carpenter et al. (2006). Suppose

that we have the following data, then the average response is 3. However, if we have

Group: A B C

Response: 222 333 444

missing values as shown below, then the average response is 19/6 which is biased.

Group: A B C

Response: 2?? 333 ?44

In order to correct this bias, we calculate the probabilities of being observed in each

group corresponding to 1/3 in group A, 1 in group B and 2/3 in group C. We thereafter

calculate a weighted average where each observation is weighted by 1/[Probability of

observed response]. In this case the weighted average is given by

2× 3
1

+ (3 + 3 + 3)× 1 + (4 + 4)× 3
2

3
1

+ 1 + 1 + 1 + 3
2

+ 3
2

= 3, (3.8)

which now corrects the bias. The conclusion to be drawn from this simple illustration is

that IPW has eliminated the bias by reconstructing the full population by up-weighting

the data from individuals who have small chance of being observed. Generally, it may
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give biased but consistent parameter estimates (Carpenter et al., 2006). To discuss

the above mentioned idea of IPW in longitudinal data setting, we now describe the

IPW approach thereby illustrating how IPW can be incorporated into the conventional

generalized estimating equations (GEE) by Liang and Zeger (1986) as based on the

article by Robins et al. (1995). The primary idea behind GEE methodology is to gen-

eralize the usual univariate likelihood equations by introducing the covariance matrix

of the vector of response, Yi. The GEE methodology is used to model the marginal

expectation of responses as a function of a set of covariates. We briefly introduce the

classical form of GEE (Liang and Zeger, 1986). Let Xi = (xi1, ..., xin)
′ denote an (n×p)

covariates matrix, where its tth row is given x′it = (xit1, ..., xitp)
′ based on p predictor

variables or covariates, Yit denote the response variable and hence yi = (yi1, ..., yin)
′ the

(1 × n) observed response vector and µit = E(yit), i = 1, ..., N and t = 1, ..., n. Now,

assume the marginal regression model is given as

g(µit) = x′itβ, (3.9)

where β is the (p × 1) regression parameters of interest and g(.) is a link function,

a function of the mean response. Assume the (n × n) covariance matrix for Yi is:

Σ(ϕ) = φA
1/2
i R(ρ)A

1/2
i , where Ai is a diagonal matrix of variance functions, R(ρ) is

the working correlation matrix of Yi as a function of ρ the correlation parameter and

φ is the dispersion parameter. The collection of parameters in the covariance matrix

are assumed to contained in the parameter vector ϕ. Then, the GEE estimators for

regression parameters are the solutions of

n∑
i=1

DiΣ(ϕ)−1(Yi − µi) = 0, (3.10)

where Di = ∂µi

∂β
is the derivative matrix of the mean vector µi with respect to β.

The GEE methodology is very popular especially for analysis of marginal models for

discrete responses than for continuous responses. However, in this study, we restrict

our attention to the continuous responses. Consequently, the following assumptions

can be made for the marginal models with the continuous response, Yit

• The mean of Yit is related to the covariates by an identity link function: µit =

ηit = x
′
itβ. The link function g(.) generally relates the expected values, µi of
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the response vector, Yi to the covariate matrix, Xi. It takes the general form

g(µi) = ηi = Xiβ, where ηi denotes the linear predictor vector whose tth row

is g(µit) = β1xit1 + β2xit2 + · · · + βpxitp. This function, i.e., g(.), should be

monotone and differentiable. Thus, in the case of monotonicity, we can define

the inverse function g(.)−1 by the relation g−1(g(µi)) = µi. Here, we note that

the choice of link function depends on the distributional assumptions on the data.

Therefore, for a continuous response with normal assumption, as in our case, the

link function is an identity link: g(µi) = µi and the inverse simply µi = g(µi).

Under this identity link, the expected value of the response is simply a linear

function of the covariates multiplied by their regression coefficients.

• The variance of each Yit, conditional on the effects of the covariates, is φ and

does not depend on the mean response. Namely, ν(µij) = 1 is a known “variance

function”, therefore V ar(Yit) = ν(µit)φ = φ. Here φ denotes the variance of

the conditional normal distribution of the response, given the covariates. The

assumption that the variance is constant over time may be unrealistic and to

relax it, a separate scale parameter, φt could be estimated at the tth occasion if

the longitudinal design is balanced on time.

• The within-individual correlation among repeated responses is modelled by as-

suming, for example, a first-order autoregressive AR(1) covariance structure,

Corr(Yij, Yik) = ρ|k−j|, which stand for the pairwise correlation between observa-

tions, for all j and k and 0 ≤ ρ ≤ 1. The AR(1) specifies homogeneous variances.

In addition, it specifies that the correlations between observations on the same

subject are not equal, but decrease toward zero with increasing length of the time

interval between observations.

For marginal models with an identity link function, the generalized least square

means (GLS) of β can be considered as a special case of the GEE. Therefore, the

estimates of parameters in marginal model for continuous response with an identity

link are

β̂ = {
n∑
i=1

X
′

iΣ̂
−1
i Xi}−1

n∑
i=1

(X
′

iΣ̂
−1
i Yi), (3.11)
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where Σ̂i is the REML (Restricted Maximum Likelihood Estimation that can be used

to find the best unbiased estimates (Verbeke and Molenberghs, 2000)) estimate of Σi

and

Cov(β̂) = {
n∑
i=1

X
′

iΣ̂
−1
i Xi}−1

n∑
i=1

(X
′

iΣ̂
−1
i V̂iΣ̂

−1
i Xi){

n∑
i=1

X
′

iΣ̂
−1
i Xi}−1, (3.12)

where V̂i = (Yi − Xiβ)(Yi − Xiβ) is an estimate of V ar(Yi) which yields a robust

estimator of Cov(β̂) when substituted in Equation (3.12). With incomplete data that

are MAR, the GEE method provides inconsistent estimates of the model parameters

(Liang and Zeger, 1986). In weighted generalized estimating equations (WGEE), an

individual’s contribution to the usual GEE is weighted by the inverse probability of

dropout at particular time point, given the individual did not leave or dropout in any

of the periods occasions (Robins et al., 1995). Therefore, setting all assumptions that

are made in this section together, we will get valid parameter estimates in longitudinal

studies with MAR dropout by solving the weighted estimating equations
n∑
i=1

(Yi −Xiβ)
′
Σ−1
i Wi(α̂)(Yi −Xiβ) = 0, (3.13)

where Wi(α̂) is a diagonal matrix which contains inverse probability weights for ith pa-

tient,Wi(α̂) = diag{ŵi1(α̂), ..., ŵini
(α̂)} for j = 2, ..., ni, ŵi1 = 1, and Σi = A

1/2
i R(ρ)A

1/2
i

is a (n × n) working covariance matrix for Yi and R(ρ) is a (n × n) working cor-

relation matrix which are assumed known. The missingness is taken into account

through specification of a (n × n) diagonal weighting matrix of Wi(α̂), Wi(α̂) =

diag(Ri1ŵi1(α̂), ..., Rinŵin(α̂)) and Rit = 1 if the ith subject is observed at time t,

and 0 for the unobserved time. The weight, wij is the inverse of the probability that

the ith subject is observed at the jth time which is often unknown and needs to be

estimated. It requires modelling the missingness process in order to obtain the weights

wij. We denote λij(α) = P (Rij = 1 | Ri(j−1) = 1, Xi, Yi, α) as the probability of a

response being observed at time j for the ith subject given the subject is observed at

the time j − 1. If the missingness is assumed to be MAR, we have

λij(α) = P (Rij = 1 | Ri(j−1) = 1, Xi, Yi1, ..., Yi(j−1), α), (3.14)

where the missingness mechanism only depends on observed data and may be specified

up to a (q×1) vector of unknown parameters, α. Here, λij can be modelled as a logistic
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regression model of Zij, a vector of predictors which may include missingness indicator

variables, covariates and previous responses:

logitλij(α) = Z ′
ijα, (3.15)

or by inverting the logit function we have:

λij(α) =
eZ

′
ijα

1 + eZ
′
ijα

. (3.16)

The log partial likelihood for ith subject takes the form

`(α) =
n∑
j=1

ji∑
i=2

Ri(j−1)log{λij(α)Rij [1− λij(α)]1−Rij}. (3.17)

Differentiation of (3.17) in terms of α gives the estimating equations

Si(α) = {
N∑
i=1

ji∑
j=2

Ri(j−1)[Rij − λij(α)]}. (3.18)

Setting (3.18) equal to zero yields α̂, therefore we can obtain estimate of λij(α) which

is λ̂ij(α̂). According to Hogan et al. (2004), in addition to MAR dropout, two assump-

tions must be fulfilled to provide consistent estimates of parameters β in weighted

method. First assumption (Non-zero probability of remaining in study): Condition-

ally on past history of observed responses and covariates, the probability that in-

dividual i is still in the study at time j is bounded away from zero or formally,

p[Rij = 1 | Ri(j−1) = 1, Xi, Yi] > δ > 0. Second assumption (Correct specification

of dropout model): The probability of dropout model must be correctly specified,

i.e., λ̄ij(α) = p[Rij = 0 | Ri(j−1) = 1, Xi, Yi(j−1)]. Thus, it should be noted that

λij(α) = 1 − λ̄ij(α). When MAR and monotone missingness assumptions hold, the

probabilities of remaining in the study,

πij(α) = p[Rij = 1 | Ri(j−1) = 1, Xi, Yi1, ..., Yi(j−1), α] =

j∏
k=1

{1− λ̄ik(α)}. (3.19)

Thus, the weight ŵij(α̂), the inverse of the unconditional probability of being observed

at time j, can be calculated as,

ŵij(α̂) =
1

1× (1− ˆ̄λi2(α̂))× ...× (1− ˆ̄λij(α̂))
, i = 2, ..., J, (3.20)
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and ŵij(α̂) = 1 for j = 1. Therefore, if the above two assumptions due to Hogan

et al. (2004) hold, and if dropout occurs according to the MAR mechanism, then

the estimators of the parameters β̂ in the weighted marginal model for a continuous

response with an identity link will be of the form

β̂ = {
n∑
i=1

X
′

iΣ̂
−1
i Wi(α̂)Xi}−1

n∑
i=1

(X
′

iΣ̂
−1
i Wi(α̂)Yi), (3.21)

and

Cov(β̂) = {
n∑
i=1

X
′

iΣ
−1
i Wi(α̂)Xi}−1(

n∑
i=1

X
′

iΣ
−1
i Wi(α̂)Wi(α̂)

′
Xi){

n∑
i=1

X
′

iΣ
−1
i Wi(α̂)Xi}−1,

(3.22)

where β̂ is consistent for β and α̂ is a consistent estimator of α under a correctly

specified model, λij(α).

3.5 Application study

3.5.1 Description of the data

In this section, we describe the application of the aforementioned methods for han-

dling dropouts in longitudinal data. The methods are applied to data from heart rate

experiment for which there were no dropouts. Our current study is an application

study rather than a case study, that we tested the performance of the two approaches

by generating dropouts from a complete data. So, our main interest was to generate

a random sample of the whole data set and then to use it for the analysis. The data

set to be analyzed in this study originates from the clinical trial to study the effect of

three treatments on heart rate of humans. Full details of this experiment are given in

Millikin and Johnson (2009). It is an experiment involving three drugs (AX23, BWW9

and CTRL) and where each subject was measured repeatedly at four different time

points (j = 1, 2, 3, 4). After the drug was administered, each patient’s heart rate was

measured every five minutes for a total of four times. To be precise, each patient’s

heart rate was measured 5, 10, 15 and 20 minutes after administering the treatment.

This experiment illustrates the layout for a simple repeated measures experiment. The

large size of experiment units is the subject and the smaller size experiment unit is
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the time interval when using the split-plot in time notation. At the start of the study

n female human subjects were randomly assigned to each drug. Figure 3.1 shows the

Figure 3.1: Box-plot for the distribution of heart rate across all four time points for all

three drug groups.

distribution of measurements in terms of box-plots at all four time points by all three

drug groups. The objective of this experiment was to investigate the drug-response

effects; that is, if the drugs have an effect on heart rate, compare drug groups with

each other including time effects and to find the least-square means. In this chapter,

we consider the significance of drug main effects, time main effects and the interaction

of time and drug effects, and we are also interested in investigating the differences

between the drug and time effects in least-square means.

3.5.2 Model formulation

In the proceeding, we analyze the data from the clinical trial introduced above by

formulating a model based on the data with heart rates. According to the study design,

we include the fixed categorical effects of drug, time and drug-by-time interaction.

Therefore, the continuous outcome for the analysis reported here was heart rate, or

as we will denote it in the remainder of this study, HR. Let HRijk denote the heart
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rate of patient i at time j on drug k, where i=1,...,8, j=1,...,4, and k=1, 2, 3. In the

following, we consider the linear model for HRijk, where the response of the subject i

at time j:

HRijk = β0 + β1Timej + β2Drugk + β3(Time ∗Drug)jk + εijk, (3.23)

where (Time ∗ Drug) denotes the drug-by-time interaction and εijk are unknown in-

dependent and identically distributed normal random error, with mean 0 and variance

σ2
ε . The fitted model 3.23 is not a simple multiple linear regression model but a GEE

model as the two are not the same under a GEE model requires a correlation structure

to be specified i.e. εijk is not ∼ N(0, σ2). As mentioned above, in this data set, there

are no actual dropouts. This provides us with an opportunity to generate dropouts

missing at random in order to compare the performance of MI and IPW methods to

deal with dropouts.

3.5.3 Generating dropouts and the MAR mechanism

We used the full data set to artificially generate missing values by mimicking the

MAR mechanism. From the complete data set described above, 1000 random samples

of n=96 were drawn. The dropouts in HR were created according to the MAR as-

sumption, assuming the missingness in HR is related to observed values, in the sense

that patients with higher HR at one measurement occasion tend to dropout out of

the experiment at the next occasion. The implication of the MAR assumption in our

case is that, patients who are observed to be weaker (deduced by way of their previous

observed outcome) are more likely to dropout when they reach a certain value of the

HR as long as their probability of dropout does not further depend upon their missing

responses. The other predictor variables other than HR were however kept intact. For

the MAR mechanism, three dropout rates were implemented. The dropout rates were

set at 10%, 20% and 30%. Dropouts were created in HR by randomly deleting 10%,

20% and 30% of all observations greater than 75 as a threshold indicating high heart

rate. The observations that triggered the missing data were kept but all other subse-

quent observations were deleted. This scenario was generated or replicated 1,000 times.

Each generated samples was analyzed using MI, IPW and direct likelihood analysis to
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derive parameters of interest. A monotone missing pattern was assumed which is to

say that for each patient, if a HR’s observation was deleted for a third time point, the

subsequent observation in the fourth time point for that patient was also deleted.

3.5.4 Implementation of MI

The MI approach was carried out using SAS PROC MI to fill in all the missing

values for each generated sample. Under the MAR setting, MI requires the analyst

to specify which variables are to be used as regressors in the imputation model. The

imputation model was fitted using the above data set of all patients who had both time

and drug data available. The imputation model is based on model (3.23) that assumes

multivariate normality of the variables. In the imputation model, the variables that

are included in Y o
i should be those that make the HR (the response variable) missing at

random so that P (Y m
i is observed | Y o

i ) does not depend on Y m
i . Thus, to increase the

plausibility of the MAR assumption as well as to improve the accuracy and efficiency

of the imputation, we used all the available data, including the HR variable, to predict

the missing values since they are potentially related to the imputed variable as well

as to the missingness of the imputed variable. This in line with the recommendation

provided by Van Buuren et al. (1999) to include the following covariates in the im-

putation model: variables in the analysis model, variables associated with missingness

of the imputed variable and variables correlated with the imputed variable. In the

analysis, PROC MI was then applied to generate M = 5 complete data sets. Note

that the choice of M=5 was considered adequate and the efficiency of the parameter

estimate based on imputation given by (1 + ξ/M)−1, where ξ is the rate of missing

data (Rubin, 1987). This formula shows that the relative efficiency of the MI inference

is related to the missingness rate (ξ) in combination with the number of imputations

(M). Rubin’s (1987) simulation indicates that the number of imputations can generally

be constrained to fewer than 10. Many statistical practices tend to support Rubin’s

heuristics of 3 to 10 imputations. In general however Schafer and Olsen (1998) and

Peng et al. (2006) recommended the use of M=5 before the results are combined.

In this study, for 10%, 20% and 30% rates of missing data and estimates based on
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M=5 implies we will have at least 98%, 96% and 94% efficiency, respectively. Each

data set that was produced thus consists of 96 outcomes (HR) with complete data at

all four times. This MI method used Markov Chain Monte Carlo (MCMC) sampling

to draw imputations. We used a burn in of period of 200 iterations, 100 iterations

between each step and five imputations. The defaults of the SAS MI algorithm are

used for the MCMC computation, namely a Jeffreys prior and initial sampler values

from the EM posterior mode was also used. The linear mixed model was then fitted to

each imputed data set, and therefore the results combined for final inference. We used

PROC MIXED to generate the fixed-effect parameter estimates and covariance matrix

for each imputed data set. Additionally, we used the ODS statement to create an out-

put data sets that matches PROC MIANALYZE for combining the results from the 5

completed data sets and generating valid statistical inferences about the parameters.

However, to obtain the effect means associated with the drug and contrasts between

drug groups from PROC MIXED, PROC MIANALYZE cannot directly pool the least

square means and their differences. Therefore, the LSMEANS table (the LSMEANS

statement computes least squares means of fixed effects) has been sorted differently

so that PROC MIANALYZE can then be invoked using the BY statement in order to

derive the pooled least square means for each effect.

3.5.5 Implementation of IPW

The IPW approach was applied to each generated sample using the SAS macros

provided by Molenberghs and Verbeke (2005). These macros presented DROPOUT

and DROPWGT macros to construct the variables “dropout” and “previous measure-

ments” and to pass the weights (predicted probabilities) to be used for WGEE. In

contrast to the MI approach, the IPW approach requires a model for the missing data

mechanism. Thus in the MAR setting, we assume the IPW models the missingness

mechanism via logistic regression model, introduced in model (3.24) which requires the

data to be MCAR or MAR. The IPW was used according to the following three steps:

Step 1: The dropout model was fitted within logistic regression using DROPOUT

macro. The outcome variable “dropout” indicator for HR was generated, and it was
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binary taking the value 1 when the HR is observed, 0 if not, thereby indicating whether

or not dropout occurred at a given time from the start of the measurement until the end

of the study period (Molenberghs and Verbeke, 2005). In the dropout model, predictor

variables were the outcomes at previous occasions (yi,j−1), supplemented with genuine

covariate information. To estimate the dropout probabilities, we used the following

logistic regression of dropout indicators

logit[P (Di = j | Di ≥ j)] = ψ0 + ψ1yi,j−1 + γdrugj, (3.24)

where yi,j−1 is the binary indicator at the previous occasion.

Step 2: Using data and fitted probabilities from step (1), a weighted regression of the

response variable in model (3.13) was fitted based on the inverse of the “probability of

a patient dropping out at a given time and was not missing in all the previous times”

as weights. This was done by using the DROPWGT macro in SAS. These weights

were defined at the individual measurement level and were equal to the product of the

probabilities of not dropping out up to the measurement occasion (Molenberghs and

Verbeke, 2005). The last factor was the probability of either dropping out at that time

or continuing with the study.

Step 3: Once the selected model (3.24) is fitted and the weight distribution checked,

we formulate the full-data regression model using inverse probability weighting. The

weighted regression model is formulated by re-defining the response as Y ∗
ij = ŵij(α)Yij

and covariate as x∗ij = ŵij(α)xij. Now, let HRij denote the heart rate from patient i at

time j for j = 1, 2, 3, 4. Further, let x∗ij be a vector of covariates with length p, where

p = 1, 2, 3. Then, the mean response model can be expressed as follows

E(HR∗
ij | x∗ij) = µ∗ij = β0 + β1x

∗
ij1 + β2x

∗
ij2 + β3x

∗
ij3, (3.25)

where the covariate x∗ij1 denotes the time, the covariate x∗ij2 denotes the drug group,

the covariate x∗ij3 denotes the drug by time interaction, β0 is the population average

intercept and β1, β2, β3 is the average rate of change due to the time, drug main effects

and their interaction. Since the response variable of interest at each occasion was the

HR which is continuous, we used the identity link function and the scale parameter, φ.

In addition to the marginal model in (3.25), the covariance structure of the correlated
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HR weights on a given patients should be modelled. In the application of IPW only first

order-autoregressive AR(1) and compound symmetry covariances can be implemented.

The other structures such as unstructured covariance, toeplitz and heterogeneous (AR),

may easily present computational problems. Therefore, we used the AR(1) covariance

structure since it is the most reasonable in longitudinal data analysis problems. Using

model (3.25), the parameter estimates can be calculated as the root of the weighted

estimating equations

n∑
i=1

= (Yi −Xiβ)
′
Σ−1
i Wi(α̂)(Yi −Xiβ) = 0, (3.26)

where Yi and Xi are vectors of HR and covariates, respectively, for ith patient and

Wi(α̂) is a diagonal matrix consisting of inverse probability weights for the ith patient.

Model (3.25) was fitted using SAS procedure GENMOD with a WEIGHT statement.

3.5.6 Assessment criteria

In this study, the performance of MI and IPW was assessed on two criteria, namely

bias and efficiency. Schafer and Graham (2002) used these criteria to study the per-

formance of list-wise deletion, single imputation, maximum likelihood and MI. With

small multivariate data sets, Graham and Schafer (1999) used these criteria to evaluate

the the performance of MI. In this chapter, we defined these criteria as follows: bias

refers to the differences between the average of the 1,000 coefficient estimates and the

corresponding true coefficient obtained from a mixed model analysis of the original

complete data. Thus, a better technique is that which does on average approach the

population value is one which has less bias, i.e., there is a small difference between the

true population value and estimated value. Efficiency was defined as the variability of

the estimates around the true population coefficient. It was calculated by the average

width of the 95% confidence interval. The 95% confidence interval width is approxi-

mately four times the magnitude of the standard error. Thus, a wider interval implies

a less efficient method.
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Table 3.1: Bias and efficiency of MI, LMM and IPW approaches, under different

dropout rates: MIXED least squares means - (interaction terms are not shown)

Bias Efficiency

dropout rate parameters MI LMM IPW MI LMM IPW

AX23 0.27 0.28 -1.20 0.83 0.89 1.15

BWW9 -0.18 -0.18 -1.75 0.83 0.90 1.13

CTRL 0.27 0.29 1.25 0.83 0.89 1.10

10% time1 0.50 0.50 0.48 0.97 0.96 1.61

time2 0.50 0.50 1.45 0.97 0.96 1.13

time3 -0.01 -0.08 1.22 0.97 1.09 1.26

time4 -0.39 -0.49 0.46 0.97 1.07 1.12

AX23 0.25 0.41 1.40 0.84 0.93 1.14

BWW9 0.50 0.38 1.40 0.84 0.94 1.07

CTRL 0.62 0.64 1.90 0.84 0.94 1.04

20% time1 0.08 0.08 1.90 0.98 0.96 1.37

time2 0.48 0.48 2.33 0.98 0.99 0.78

time3 1.22 1.10 1.37 0.98 1.27 1.54

time4 0.06 0.24 0.14 0.98 1.27 1.34

AX23 0.57 1.24 1.46 0.86 1.08 1.20

BWW9 0.89 1.14 1.01 0.86 1.08 1.08

CTRL 0.73 1.13 1.20 0.86 1.09 1.20

30% time1 0.56 0.56 1.41 1.01 0.97 1.16

time2 0.71 0.71 1.07 1.01 0.98 0.74

time3 1.16 1.05 2.27 1.01 1.55 1.68

time4 1.20 1.64 -0.83 1.01 1.58 1.66

Note: The largest bias and efficiency for each given estimate presented in bold.

MI=multiple imputation; LMM=linear mixed model; IPW=inverse probability

weighting.
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3.6 Results

The results of the bias and efficiency of the MI, LMM and IPW approaches under

different dropout rates are presented in Table 3.1. Note that we do not show full

output as the results of interactions terms are excluded. In terms of the biasedness of

the estimates, the performance of MI was unsurprisingly, better than those of LMM and

IPW. Among the three approaches examined here, IPW was notable for consistently

producing the most biased estimates vis-a-vis those estimates in the MI and LMM.

This advantage for MI and LMM is well documented in terms of continuous outcomes

(Verbeke and Molenberghs, 2000; Mallinckrodt et al., 2003a, 2003b). Consequently, it

appears that the greatest bias of the estimates by the IPW approach was independent

of the dropout rates. The results based on MI and LMM were generally similar for the

10% and 20% dropout rates, and in some cases they produced the same estimates. We

refer here to estimates of BWW9, time1 and time2 for the 10% dropout, and estimates

of time1 and time2 for the 20% dropout. There appears to be little differences between

the MI and LMM methods for 10% and 20% dropout rates in terms of the bias of the

estimates.

As we have noted earlier, a wider interval implies a less efficient approach, thus

the widest and hence the worst, 95% confidence intervals are highlighted. In terms of

efficiency, across all three dropout rates, the IPW was uniformly the worst approach,

regardless of the dropout rates, except for estimates of time2 for the 20% and 30% rates.

When compared with the IPW approach, MI and LMM yielded acceptable performance

for all dropout rates. Both approaches being asymptotically more efficient, except in

estimating time2 under 20% and 30% rates for LMM and MI, respectively. Relatively,

LMM yielded wider intervals than did MI. The degree of difference in the width of the

intervals between the two methods increased with increasing dropout rate. Thus, MI

was more efficient than LMM. Therefore, the MI method is more robust against loss

of efficient due to increased dropout rate compared to the LMM method and therefore

between all the three methods considered.

We now compare and discuss the different approaches by looking at Table 3.2 which

shows the results of bias and efficiency for pairwise comparisons among drug and time
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Table 3.2: Bias and efficiency of MI, LMM and IPW approaches, under different

dropout rates: Pairwise comparisons among drug main effect means and time main

effect means : Differences of least squares means
Bias Efficiency

dropout rate effect drug time drug time MI LMM IPW MI LMM IPW

drug AX23 BWW9 0.46 0.47 0.55 1.18 1.27 1.61

drug AX23 CTRL 0.01 0.02 0.04 1.18 1.27 1.60

drug BWW9 CTRL -0.45 -0.47 -0.50 1.18 1.27 1.58

time 1 2 0.00 0.00 0.97 1.36 1.37 1.89

10% time 1 3 0.50 0.58 0.74 1.36 1.44 2.03

time 1 4 0.89 0.99 -0.02 1.36 1.44 1.97

time 2 3 0.50 0.58 -2.23 1.36 1.42 1.75

time 2 4 0.98 0.99 -2.99 1.36 1.46 1.60

time 3 4 0.48 0.49 -0.76 1.36 1.52 1.69

drug AX23 BWW9 0.24 0.33 0.73 1.20 1.33 1.56

drug AX23 CTRL 0.21 0.22 0.39 1.20 1.33 1.54

drug BWW9 CTRL -0.14 -0.26 0.21 1.20 1.33 1.49

time 1 2 0.39 0.39 0.43 1.38 1.38 1.54

20% time 1 3 0.68 1.28 1.02 1.38 1.57 2.02

time 1 4 -0.14 -0.15 2.04 1.38 1.59 1.93

time 2 3 0.89 0.62 1.10 1.38 1.67 1.84

time 2 4 -0.54 -0.24 2.46 1.38 1.62 1.54

time 3 4 -1.43 -0.86 1.35 1.38 1.83 2.09

drug AX23 BWW9 0.23 0.32 -0.32 1.22 1.53 1.62

drug AX23 CTRL 0.25 0.12 -0.15 1.22 1.54 1.71

drug BWW9 CTRL -0.06 -0.12 0.16 1.22 1.53 1.63

time 1 2 0.15 0.15 1.33 1.41 1.35 1.36

30% time 1 3 0.49 0.60 0.85 1.41 1.82 2.03

time 1 4 1.64 2.08 2.25 1.41 1.84 2.01

time 2 3 0.33 0.45 1.19 1.41 1.90 1.94

time 2 4 0.91 1.93 1.48 1.41 1.94 1.83

time 3 4 1.15 1.47 2.11 1.41 2.62 2.37

Note: The largest bias and efficiency for each given estimate presented in bold.

MI=multiple imputation; LMM=linear mixed model; IPW=inverse probability

weighting.

main effect means, under the three dropout rates. Overall, the bias for the MI approach

is negligible regardless of the dropout rate, except for the estimate of the comparison

involving the time pair (time3, time4) for the 20% dropout rate as well as the estimate

of the comparison involving drug pair (AX23, CTRL) for 30% dropout rate which

are asymptotically more biased. This, additionally to the validity of MI approach
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under MAR dropouts and hence its divergence from IPW for dealing with incomplete

longitudinal continuous outcomes, provides a strong justification for the MI approach.

As was the case with the results in Table 3.1, the bias associated with IPW’s estimates

were typically more than with MI and LMM, though this pattern did not hold in all the

estimates. However, MI outperformed both LMM and IPW in most cases. When the

dropout rate decreased to 10%, the results from MI became nearly indistinguishable

from those of LMM as they yielded similar estimates, but in one case more bias was

evident regarding the time pairwise comparison (time1, time4) for LMM. However, the

LMM estimates appeared to have resulted in fairly minor bias compared to the IPW

estimates. Both MI and LMM gave exact estimates with reference to the complete

data for the time pairwise comparison (tim1, tim2). This is not surprising since there

were no missing observations at this time.

In terms of efficiency condition investigated, the results displayed in Table 3.2 reveal

that, as expected, the results were very comparable to what was found from the Table

3.1. Once again narrow intervals are desirable provided that their coverage is near to

95%. On the basis of these results, we make the following general observations. On the

one hand, MI and LMM gave more efficient estimates for most cases under all three

dropout rates than does IPW. On the other hand, the confidence intervals calculated

for the MI, were slightly narrower than does LMM, except for (time1, time2) under

30%, thus the MI method is more efficient than the LMM method for all dropout

rates. Furthermore, LMM was uniformly the least efficient approach in estimating

pairwise comparison among (time2, time4) for 20% and (time2, time4 and time3, time4)

for 30%. In nearly all cases, the performance of estimated intervals by IPW was worst

for all dropout rates. The only exceptions to this rule occur for estimates of (time2,

time4) for 20% and (time1, time2), (time2, time4) and (time3, time4) for 30%, but for

10% it has seriously less efficient estimates. Thus, overall, IPW was a less efficient

approach.
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3.7 Discussion and conclusion

In this chapter, we have discussed the performance of using MI and IPW approaches

for handling continuous outcomes when there are MAR dropouts in longitudinal data.

Both of the approaches were selected for their solid foundations on the dropout under

MAR mechanism, and both methods can be used for continuous outcomes, but that

work applying the IPW has been devoted to binary responses data. However, little

comparison has been done between IPW and MI as they come from two opposing

schools of thought. Our main objective was to compare the performances of MI and

IPW for handling incomplete longitudinal data based on a continuous outcomes under

three different dropout rates. From the complete data set, we generated the MAR

dropouts under three dropout rates (10%, 20% and 30%). The comparison between

the two methods was based on a heart rate trial data and the estimates corresponding

to the MI method were then compared to those obtained from the IPW method. The

performances of these two approaches was assessed in terms of bias and efficiency. The

results were also compared with those obtained by direct-likelihood analysis. Since di-

rect likelihood analysis is valid under the MAR mechanism (Verbeke and Molenberghs,

2000; Mallinckrodt et al, 2003a; Liang and Zeger, 1986; Molenberghs and Kenward,

2007), its results were presented and used as references against which these two ap-

proaches were contrasted.

Findings in general favoured MI over IPW. MI consistently outperformed IPW in

terms of bias and efficiency. By considering both criteria simultaneously, MI and LMM

approaches performed best under all three dropout rates when compared with the IPW

approach. This is to be expected as both approaches are, respectively, Bayesian and

likelihood model based which are valid under the assumption of MAR (Molenberghs

and Kenward, 2007). Schafer and Graham (2002) stated that because MI relies on

Bayesian arguments, its performance is similar to that of a likelihood method that

makes similar assumptions. The MI approach was less biased and considerably less

variable than the IPW approach. The lower variability achieved by the MI approach

makes it desirable in most statistical analyses. This agrees with the theoretical results

in that IPW can be less efficient and less powerful than Bayesian estimators under a well
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specified parametric model, see, Seaman and White (2011) and Schafer and Graham

(2002). Given these results, it appears that either the MI or the LMM approaches for

MAR dropouts with continuous outcomes are preferable to the IPW approach. The

latter approach was irrespective of the type of parameter of interest, associated with

greater estimation bias as well as less efficiency.

Our results further suggested that even though the mechanism of dropout was MAR,

the performance of the IPW approach was unsatisfactory. This demonstrates that the

IPW approach has shortcomings as shown clearly in current analysis results. This

situation can be justified by some previous studies which show that IPW is more

widely used in marginal models for discrete outcomes than for continuous outcomes,

see, for example, Robins et al. (1995) and Fitzmaurice et al. (1995). Despite these

shortcomings, the IPW approach has been the longitudinal binary approach of choice

for the primary analysis for handling MAR dropout because of its simplicity as well

as the ease with which it can be implemented. Here we refer to statistical softwares

such as SPSS, STATA and SAS. Thus, the IPW approach might become attractive in

specific circumstances. In particular, with regard to marginal structural models with

discrete outcomes. We here believe that MI approach can be recommended over IPW

as the default analysis for longitudinal data with continuous outcomes when MAR

dropouts are valid.

In conclusion, we note that the use of the MI and the IPW approaches must be

undertaken with care when the longitudinal data analyses have dropouts in continuous

outcome. In addition, it is clear from our findings that the dropout has a substantial

impact on the type of outcome. Thus, to sufficiently address dropout using MI and

the IPW approaches, the effect must be thoroughly investigated by way of carefully

designed simulation studies as well as a theoretical investigation.
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Chapter 4

A comparative analysis of

likelihood based and multiple

imputation methods for incomplete

longitudinal data with ignorable

missingness∗

4.1 Abstract

In this chapter, we carry out an application for analyzing incomplete longitudinal

data with missing outcomes. Explanatory variables of interest are assumed to be com-

pletely observed. The chapter focuses on two methods, namely direct likelihood and

multiple imputation, both based on the MAR assumption. We implement these tech-

niques to data for a study with a continuous outcome. The analysis is done using

PROC MIXED and PROCs (MI and MIANALYZE) in SAS. In order to explore the

performance of the suggested methods, analysis is first performed on the complete

∗ A. Satty and H. Mwambi (In review). A comparative analysis of likelihood based and mul-

tiple imputation methods for incomplete longitudinal data with ignorable missingness. REVSTAT

Statistical Journal - Presented October 28-30, 2011. Brague: Czech Republic, NC.
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data (no data are missing). Next, we create missing values in the form of dropout

then re-analyze the data in the presence of missing values to compare with the analysis

with no missing values. The chapter is motivated by the need to assess the strength

of the multiple imputation approach in comparison to direct likelihood approach. The

advantages of the direct likelihood and multiple imputation approaches are discussed.

The results show that both direct likelihood and multiple imputation methods offer

high efficiency under ignorable non-response mechanism.

Keywords: Ignorable missingness, Likelihood-based, Direct likelihood, Dropout miss-

ing at random (MAR), Missing outcomes.

4.2 Introduction

Longitudinal studies represent one of the main design strategies employed in med-

ical and social research. In longitudinal studies the response of interest is scheduled

or planned to be measured repeatedly over time for each subject, experimental or ob-

servation unit. Observations that are repeatedly measured over time are bound to be

correlated and some may be missing. Dropouts arise in longitudinal data whenever

one or more of the measurements scheduled for participating subjects are not taken or

not available due to reasons known or unknown to the researcher. Understanding the

pattern of missing data is important before any analysis of data with missing values

is attempted. The pattern of missing data is said to be monotone if subjects leave

the study prematurely, i.e., any missing value is never followed by an observed value

(Diggle, 1989; Heyting et al., 1992; Little, 1995). In the context of longitudinal stud-

ies, missingness predominantly occurs in the form of dropout in which subjects fail to

complete the study for one reason or another. Dropout will be the form of missing

data assumed in the current chapter.

Analyses of missing data depends very much on the assumptions made about the pro-

cess that creates the missing values. The classification of missing values or nonresponse

process proposed by Rubin (1976) gives three possible different mechanisms. A nonre-

sponse process is defined as missing completely at random (MCAR) if the probability
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of the missingness does not depend on the measurements, observed or unobserved.

A nonresponse process is defined as missing at random (MAR) if the probability of

missingness does not depend on the unobserved measurements. A nonresponse process

is defined as non-random if the probability of a missing value depends on unobserved

measurements and may be on the observed measurements. Specific names for these

mechanisms for the case of longitudinal data were coined by Diggle and Kenward

(1994). In the following section, these classifications of missing data will be discussed

briefly.

Proposed approaches for handling missing data in longitudinal studies use meth-

ods that are valid under the MAR assumption (Little and Rubin, 2002; Verbeke and

Molenberghs, 2000; Molenberghs and Verbeke, 2005; Molenberghs and Kenward, 2007;

William, 2000). Imputation strategies for longitudinal continuous responses have been

an active area of research. Examples of this can be found in Schafer (1997), Schafer and

Yucel (2002), Liu et al. (2000), Demirtas and Schafer (2003) and Van Burren and Van

Rijckevorsel (1992). This chapter focuses on two approaches proposed by Mallinckrodt

et al. (2003a, 2003b) and Lavori et al. (1995) to deal with incomplete longitudinal

data. One of these methods is direct likelihood analysis. In this method, the observed

data are used without deletion nor imputation. The strength of this method relies on

the accurate formulation of the likelihood of the data as it is. To do so, under valid

MAR mechanism, suitable adjustments can be made to parameters sometimes when

data are prone to incompleteness due to the within-patient correlation. For incomplete

longitudinal data, a mixed model only needs missing data be MAR (Mallinckrodt et

al., 2003a, 2003b; Verbeke and Molenberghs, 2000). These mixed effects models per-

mit the inclusion of subjects with missing values at some time points, including both

dropout and intermittent missingness patterns (Verbeke and Molenberghs, 2000). For

continuous outcome data, this leads to the general linear mixed model (Verbeke and

Molenberghs, 2000).

A MAR-based method that has seen a number of applications recently is multiple

imputation (Rubin, 1978; Rubin, 1987; Rubin and Schenker, 1986; Little and Rubin,

2002; Schafer, 1999). This method involves constructing a fixed number of complete

data sets from an incomplete one by drawing from the conditional distribution of the
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unobserved outcomes, given the observed ones. These complete data sets are then anal-

ysed and the results combined to produce reliable inferences. The method is discussed

in the context of continuous longitudinal data in Verbeke and Molenberghs (2000),

while Molenberghs and Verbeke (2005) and Yuan (2000) illustrated how the SAS pro-

cedures (MI and MIANALYZE) can be used in this context. Multiple imputation is

valid under the MAR condition as for direct likelihood, and therefore does not suffer

from the problems encountered in most single imputation methods.

In this chapter, we carry out an application for analyzing incomplete longitudinal

data with missing outcomes. The models considered here assume that the missing

data are confined to the repeated measures outcome, and covariates information is

fully observed. We assume that the dropouts are MAR. The chapter is concerned

with the comparison of two techniques applied to incomplete longitudinal data set

with missing outcome. The techniques discussed are: direct likelihood and multiple

imputation methods. In order to investigate the performance of the methods, analysis

is first performed on the full data (no data are missing). Then the results from the

analysis of incomplete generated data using the two proposed methods are compared,

and also with reference to results based on the complete data. The incomplete data

was created by generating new data sets with missing observations which have a similar

distributional properties as the original data set. This is done by generating dropout,

assuming the dropout occurred at random. The data used is based on a clinical trial

to compare three drugs on the heart rate of an individual as the outcome.

The outline of this chapter is as follows: The data structure and the missingness

mechanisms are introduced in Section 4.3, as well as a formal framework for incom-

plete longitudinal data. In Section 4.4, an overview of methods for analyzing incomplete

longitudinal data are given. In Section 4.5, we present an application including a de-

scription of the full data set used in the analysis and the study design. The dropout

generation scheme is also discussed. Section 4.6, contains the results based on incom-

plete data and those based on actual-data. Finally, the chapter ends with a discussion

and conclusion in Section 4.7.
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4.3 Data structure and notation

Some notation is necessary to describe methods for analyzing incomplete longitudinal

data with dropout. We will follow the terminology based on the standard framework of

Rubin (1976) and Little and Rubin (1987) in formulating definitions for data structure

and missing data mechanisms. Let Yi=(Yi1, ..., Yini
)′ = (Y o

i , Y
m
i )′ be the outcome vector

of ni measurements for subject i, i=1,...,n, where Y o
i represents the observed data part

and Y m
i denotes the missing data part. Let Ri = (Ri1, ..., Rini

)′ be the corresponding

missing data indicator vector of the same dimension as Yi, defined as

Rij =

 1 if Yij is observed,

0 otherwise.
(4.1)

Complete data refers to the vector Yi of planned measurements. This is the outcome

vector that would have been recorded if no data had been missing. The vector Ri and

the process that generates it are referred to as the missingness process. The Ri can be

designed to represent participant dropout, and so it has a monotone pattern (Verbeke

and Molenberghs, 2000; Xu and Blozis, 2011). The full data for the ith subject can

be represented as (Yi, Ri) and the joint probability for the data and missingness can

be expressed as: f(yi, ri | Xi,Wi, θ, ξ) = f(yi | Xi, θ)f(ri | yi,Wi, ξ), where Xi and Wi

are design matrices for the measurements and dropout mechanism, respectively, θ is

the parameter vector associated with the measurement process and ξ is the parameter

vector for the missingness process. According to the dependence of the missing data

process on the response process, Little and Rubin (1987) and Rubin (1976) classified

missing data mechanisms as: missing completely at random (MCAR), missing at ran-

dom (MAR) and not missing at random (NMAR). The missingness process is defined

as MCAR if the probability of non-response is independent of the response; that is,

f(ri | yi,Wi, ξ) = f(ri | Wi, ξ) and the missingness process is defined as MAR when the

probability of non-response is depends on the observed values of the response; that is,

f(ri | yi,Wi, ξ) = f(ri | yoi ,Wi, ξ). Finally, the missingness process is defined as MNAR

if neither the MCAR nor the MAR assumptions hold. That is, the probability of non-

response depends on the missing outcomes and possibly on the observed outcomes. In

this study, we assume a MAR mechanism for the dropout process.
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When missingness is restricted to dropout or attrition, we can replace the vector Ri

by a scalar variable DRi, the dropout indicator, commonly defined as

DRi = 1 +
n∑
j=1

Rij. (4.2)

For an incomplete dropout sequence, DRi denotes the occasion at which dropout oc-

curs. In the formulation described above, it is assumed that all subjects are observed

on the first occasion so that DRi takes values between 2 and n + 1. The maximum

value n+ 1 corresponds to a complete measurement sequence. According to Equation

(4.2), an MCAR dropout mechanism occurs when f(DRi = dri | yi,Wi, ξ) = f(DRi =

dri | Wi, ξ), MAR dropout mechanism, when f(DRi = dri | yi,Wi, ξ) = f(DRi = dri |

Y o
i ,Wi, ξ) and MNAR dropout mechanism, when f(DRi = dri | yi,Wi, ξ) = f(DRi =

dri | Y m
i , Y

o
i ,Wi, ξ).

4.4 Methodology for incomplete longitudinal data

Much of the literature involving missing data (or dropout) in longitudinal data per-

tain to the various techniques developed to handle the problem. This section is devoted

to providing an overview of the various strategies in handling missing data in longitu-

dinal studies. The techniques used in this chapter for dealing with missing data and

for comparisons are: multiple imputation and direct likelihood analysis.

4.4.1 Multiple imputation

Multiple imputation was introduced by Rubin (1978). It has been discussed in some

details in Rubin (1987), Rubin and Schenker (1986), Tanner and Wong (1987) and

Little and Rubin (1987), they give excellent description of the technique. The key idea

behind multiple imputation is to replace each missing value with a set of M plausible

values (Rubin, 1996; Schafer, 1997). The resulting incomplete data sets obtained

through imputation are then analyzed by using standard procedures for complete data

and combining the results from these analyses. The technique require the assumption

that the missingness mechanism be MAR. Thus, the multiple imputation procedure is

accomplished through three distinct phases:
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Step 1: Imputation - create M data sets from M imputations of missing data drawn

from a different distribution for each missing variable.

Step 2: Analysis - analyze each of the M imputed data sets using standard statistical

analysis.

Step 3: Data pooling - combine the results of the M analyses to provide one final

conclusion or inference.

To discuss these steps in detail, we will follow the approach provided by Verbeke and

Molenberghs (2000). Recall that we partitioned complete data (Yi) into Y o
i and Y m

i to

indicate observed and unobserved data, respectively. Multiple imputation fills in the

missing data Y m
i using the observed data Y o

i several times, and then the completed

data are used to estimate ξ. If we know the distribution of Y = (Y o
i , Y

m
i ), depends

on the parameter vector ξ, then we could impute Y m
i by drawing a value of Y m

i from

the conditional distribution f(ymi | yoi , ξ). Because ξ̂ is a random variable, we must

also take its variability into account in drawing imputations. In Bayesian terms, ξ̂ is a

random variable of which the distribution depends on the data. So we first obtain the

posterior distribution of ξ from the data, a distribution which is a function of ξ̂. Given

this posterior distribution, imputation algorithm can be used to draw a random ξ∗ from

the distribution of ξ, and to put this ξ∗ in to draw a random Y m
i from f(ymi | yoi , ξ∗),

using the following steps: (1) Draw ξ∗ from the distribution of ξ, (2) Draw Y m∗
i from

f(ymi | yoi , ξ∗), and (3) Use the complete data (Y o, Y m∗) and the model to estimate β,

and its estimated variance, using the complete data, (Y o, Y m∗):

β̂m = β̂(Y ) = β̂(Y o, Y m∗), (4.3)

where the within-imputation variance is Um = ˆV ar(β̂). The steps described earlier are

repeated independently M times, resulting in β̂m and Um, for m = 1, ...,M. Steps 1

and 2 are referred to as the imputation task, and step 3 is the estimation task (Verbeke

and Molenberghs, 2005). Finally, the results are combined using the following steps

also repeated for pooling the estimates obtained after M imputations (Rubin, 1987;

Verbeke and Molenberghs, 2000). With no missing data, suppose the inference about

the parameter β is made by (β−β̂) ∼ N(0, U). The overall estimated parameter vector
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is the average of all individual estimates:

β̂∗ =

∑M
m=1 β̂m
M

, (4.4)

with the normal-based inferences for β based upon (β − β̂∗) ∼ N(0, V ) (Verbeke

and Molenberghs, 2000). We obtain the variance as a weighted sum of the within-

imputation variance and the between-imputations variability:

V = W +

(
M + 1

M

)
B, (4.5)

where

W =

∑M
m=1 Um
M

(4.6)

defined to be the average within-imputation variance, and

B =

∑M
m=1(β̂m − β̂∗)(β̂m − β̂∗)′

M − 1
(4.7)

defined to be the between-imputation variance (Rubin, 1987).

4.4.2 Direct likelihood

An alternative method for handling missing data in longitudinal studies is the

likelihood-based approach of using available data instead of imputation. Likelihood-

based mixed effects models which are valid under the MAR assumption were proposed

by Laird and Ware (1982) for continuous outcomes. This likelihood-based MAR anal-

ysis is also termed likelihood-based ignorable analysis, or direct likelihood analysis

(Verbeke and Molenberghs, 2005). In contrast to the MI approach, direct likelihood

analysis uses the observed data without the need of neither deletion nor imputation.

In other words, no additional data manipulation is necessary when a direct likelihood

analysis is envisaged, provided the software tool used for analysis is able to handle

measurement sequences of unequal length (Molenberghs and Kenward, 2007). To do

so, under valid MAR assumption, suitable adjustments can be made to parameters

at times when data are prone to incompleteness due to the within-subject correlation.

Thus, even when interest lies in a comparison between two treatment groups at the last

measurement time, such a likelihood analysis can be conducted without problems since
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the fitted model can be used as the basis for inference. When a MAR mechanism is

valid, a direct likelihood analysis can be obtained with no need for modelling the miss-

ingness process. It is increasingly preferred over ad hoc methods, particularly when

tools like the generalized linear mixed mixed effect models (Molenberghs and Verbeke,

2005) are assumed. The major advantage of this method is its simplicity, it can also

be fitted in standard statistical software without involving additional programming,

using such tools as SAS software, PROCs MIXED, GLIMMIX and NLMIXED. The

use of these procedures have been illustrated by Verbeke and Molenberghs (2000) and

Molenberghs and Verbeke (2005). A useful summary for these procedures is presented

by Molenberghs and Kenward (2007). Despite the flexibility and ease of implementa-

tion of direct likelihood method, there are fundamental issues when selecting a model

and assessing its fit to the observed data which do not occur with complete data. The

method is sensible under linear mixed models in combination with the assumption of

ignorability. Such an approach, tailored to the needs of clinical trials, has been pro-

posed by Mallinckrodt et al. (2001a, 2001b). For incomplete longitudinal data context,

a mixed model only needs missing data to be MAR. According to Verbeke and Molen-

berghs (2000), these mixed-effect models permit the inclusion of subjects with missing

values at some time points for both missing data patterns, namely monotone and inter-

mittent. Since direct likelihood ideas can be used with a variety of likelihoods, in this

study we consider the general linear mixed-effects model (Laird and Ware, 1982) as

a key modelling framework which can be combined with the ignorability assumption.

For Yi the vector of observation from individual i, the model can be written as follow

Yi = Xiβ + Zibi + εi, (4.8)

where bi ∼ N(0, D), εi ∼ N(0,Σi) and b1, ..., bN , ε1, ..., εN are independent. The mean-

ing of each form in Equation (4.8) are described as follows. The outcome Yi is the ni

dimensional response vector for subject i, containing the outcomes at ni various mea-

surement occasions, 1 ≤ i ≤ N , N is the number of subjects, Xi and Zi are (ni × p)

and (ni × q) dimensional matrices of known covariates, β is the p-dimensional vector

containing the fixed effects, bi is the q-dimensional vector containing the random effects

and εi is a ni dimensional vector of residual components, combining measurement error

79



and serial correlation. Finally, D is a general (q × q) covariance matrix whose (i, j)th

element is dij = dji and Σi is a (ni × ni) covariance matrix which generally depends

on i only through its dimension ni, i.e., the set of unknown parameters in Σi will not

depend upon i. This means marginally

Yi ∼ N(Xiβ, ZiDZ
′
i + Σi). (4.9)

Thus, if we define Vi = ZiDZ
′
i + Σi as the general covariance matrix of Yi, then,

f(yij, β, Vi) = (2Π)
−n
2 |Vi|

−1
2 exp{−(yi −Xiβ)′V −1

i (yi −Xiβ)/2}, (4.10)

from which a marginal likelihood can be constructed to estimate β. In the likelihood

context, Little and Rubin (1987) and Rubin (1976) stated that when the MAR as-

sumption and mild regularity conditions hold, parameters θ and ξ are independent,

and that likelihood based inference is valid when the missing data mechanism is ig-

nored. In practice, the likelihood of interest is then based on the factor f(yoi | ξ)

(Verbeke and Molenberghs, 2000). This is referred as ignorability.

4.5 Application example

Next, we consider the application of the methods described earlier for handling

missing data in longitudinal studies with continuous outcomes. We present the details

of the study design, data set and the generation of missing values used in this chapter.

The methods are applied to data from a published clinical trial data on the effect of

the three drugs on individuals heart rate. This data comes from Milliken and Johnson

(2009).

4.5.1 The design of the study

To examine the performance of direct likelihood and multiple imputation methods,

four steps were planned. The steps were as follow: First, a model was fitted to the

full data (no data are missing), thus producing what we refer as true full data esti-

mates. Second, we generated incomplete data at 10%, 15% and 20% dropout rates in

the outcome (selected at random) variable using defined rules to achieve the required
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mechanism under MAR assumption. Third, the resulting incomplete data was ana-

lyzed using the two different methods using multiple imputation and direct likelihood.

Fourth, results from the complete and incomplete data analysis were compared. The

true full data results were presented and used as references. The study aimed to in-

vestigate how direct likelihood and multiple imputation compare to each other and

to the true analysis. Note that we adopt the use of “true full data” terminology to

differentiate this from full data from multiple imputed data sets. These are clearly

different complete data sets.

4.5.2 Data set - heart rates trial

This example is not intended to be an extensive simulation study, but rather simple

scenarios for comparison of the methods. The results are presented to demonstrate

the potential advantages or disadvantages of the two strategies for handling missing

data. Like designed experiments using split-plot designs, experiments utilizing repeated

measures designs have structures that involve more than one size of experimental unit.

A subject may be measured over time where time is one of the factors in the treatment

structure of the experiment. By measuring the subject at several different times,

the subject is essentially being split into parts (time intervals) and the response is

measured on each part. However, the subtle distinction with the split plot design is

that for repeated measures the subplot treatments (time intervals) can not be randomly

applied to subplot units. The larger experimental unit is the subject or the collection

of time intervals. The smaller unit is the interval of time during which the subject is

exposed to a treatment or an interval just between time measurements. As a typical

longitudinal example, we analyze the effect of three drugs on heart rate, while taking

account of within subject correlation. The study was reported in detail in Milliken and

Johnson (2009). Repeated measures designs can be applied in clinical trials involving

two or more treatments.

This example investigates the effects of three treatments involving two active treat-

ments and a control (AX23, BWW9 and CTRL) on heart rates, where each treatment

was randomized to female individuals and each patient observed over four time pe-

81



riods. Specifically, each patient’s heart rate was measured 5, 10, 15 and 20 minutes

after administering the treatment. The only constraint is that the time intervals are

not randomly distributed within an individual. The example was used in Milliken

and Johnson (2009) to demonstrate analyses of repeated measures designs and to show

how to determine estimates of effects of scientific interest and provide methods to study

contrasts of interest. In our case, we use the data to achieve a comparative analysis of

two methods to deal with missing data. A model which is used to describe the data is

similar to a split-plot in a completely randomized design. The model is

Hijk = µ+ Timej + δik +Drugk + (Time ∗Drug)jk + εijk, (4.11)

where Hijk is the heart rate of individual i at time j on drug k, i = 1, ..., 8, j = 1, 2, 3, 4

and k = 1, 2, 3. The model has two error terms: δik represents a subject within drug

random effect, and εijk represents a time error component. The ideal conditions for a

split-plot in time analysis is that: (1) the δik are independently and identically N(0, σ2
δ ),

(2) the εijk are independently and identically N(0, σ2
ε), and (3) the δik and εijk are all

independent of one another.

The main purpose of this example is to investigate the effects of the three drugs.

Thus, the type III tests of fixed effects and the differences between effects were the

quantities of interest in the study. The primary null hypothesis (the difference between

the drug main effects) will be tested. The null hypothesis is that of no difference among

drugs. The significance of differences in least-square means is based on Type III tests.

These tests examine the significance of each partial effect; that is, the significance of

an effect with all the other effects in the model. In the analysis results we present the

significance of drug main effects, time main effects and the interaction of time and drug

effects.

4.5.3 Analysis of missing values

Since there are no missing values in the example data set described above, it provides

us a convenient platform to design a comparative study to compare the two methods

to deal with missing data using the results from the true complete data analysis as the

reference. We carry out an application study to generate the data set with dropouts.
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In this application, we distinguish between two stages: (1) The dropout generation

stage. (2) The analysis stage.

4.5.3.1 Generating missing data

In the first stage, we use the full data set to artificially generate missing values by

mimicking the dropout at random. From the complete data, we draw 1000 random

samples of N=96. The incomplete data was generated with 10%, 15% and 20% dropout

rate. A dropout rate was implemented via a missing data generation process, assuming

the dropout depends only on the observed data. Furthermore, a monotone dropout

pattern was imposed in the heart rate (outcome of interest); that is, if Hij is missing,

then His is missing for s ≥ j. The explanatory variables drug, time and interaction

between drug and time are assumed to be fully observed. In addition, in order to

create our dropout model, we assume that dropout can occur only after the first two

time points. Namely, dropout is based on values of H, assuming the H is fully observed

in the first two time (time = 1, 2), while for the later times (time = 3, 4) some

dropouts may occur. We assume an MAR mechanism for the dropout process and

the dropout mechanism depends on individual previously observed values of one of the

endpoints. For MAR mechanism, H was made missing if its measurements exceeded

75 (the baseline mean for heart rate) at the previous occasion time period, beginning

with the second post baseline observation. Thus in the generation, the missingness at

time = 3, 4 was dependent on the most recently observed values. This was done to

achieve the required mechanism under MAR assumption.

4.5.3.2 Computations and handling missing data

After implementing the missing data mechanism and thus generating the data set

with dropout, the next step was to deal with the dropout. Handling dropout was carried

out using direct likelihood analysis and multiple imputation methods with functions

available in the SAS software package. Ultimately, likelihood, multiple imputation and

analysis results from the true full data set can be compared in terms of their impact

on various linear mixed model aspects (fixed effects and least squares means). The
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proposed methods dealt with the dropout according to the following steps:

• Imputing dropouts using multiple imputation techniques. This was achieved us-

ing PROCs MI, MIXED and MIANALYZE with an LSMEANS option. The

imputation model is based on model (4.11) which assumes normality of the out-

comes. For the dropout under MAR, the imputation model should be specified

(Rubin, 1987). Thus, in the imputation model, we included all the available data

(including the outcome, H) to predict the dropouts since they were potentially

related to the imputed variable as well as to the missingness of the imputed

variable. This means we used variables in the analysis model, variables associ-

ated with missingness of the imputed variable and variables correlated with the

imputed variable. This was done to increase the plausibility of the MAR as-

sumption, as well as to improve the accuracy and efficiency of the imputation.

Once the multiple imputation model is chosen, the number of imputations must

be decided. PROC MI was applied to generate M=5 complete data sets. We

fixed the number of multiple imputations at M=5, since the 5 imputed data sets

are sufficient (see, Schafer and Olsen, 1998; Schafer, 1999). PROC MIXED was

used to set up effect parameterizations for the class variables and we used ODS

statement output to create output data sets that match PROC MIANALYZE

for combining the effect means estimates from the 5 imputed data sets. While

PROC MIANALYZE cannot directly combine the least square means and their

differences to obtain the effect means of drug and contrasts between drug groups

from PROC MIXED, the LSMEANS table was sorted differently so that we used

the BY statement in PROC MIANALYZE to read it in.

• For comparison, the data was analyzed as they are, consistent with ignorability

for direct likelihood analysis implemented with PROC MIXED with LSMEANS

option. The REPEATED statement was used, and obtained the effect means es-

timates from the generated data set. Parameters were estimated using Restricted

Maximum Likelihood with the Newton-Raphson algorithm.
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4.6 Results

As mentioned earlier, the purpose of the chapter is to present a comparative study

of two strategies dealing with incomplete longitudinal data with missing outcomes.

This section illustrates results of our example in the tables below. Overall, we find

that the performance of the direct likelihood and multiple imputation methods shows

sufficiently strong similarities and in many cases yielded similar results to those based

on the true complete data set, with few exceptions. Note that due to the similarities in

the findings under three dropout rates, the results for the 10% and 20% dropout rates

are not presented.

Table 4.1: Statistical test for drug, time and drug × time effects of complete data,

direct likelihood and multiple imputation, under 15% dropout rate

Type III tests of fixed effects

Effect Num df Den df F -value Pr > F

Actual-data

drug 2 21 5.99 0.0088

time 3 63 12.96 < 0.0001

drug x time 6 63 11.80 < 0.0001

Direct likelihood

drug 2 17.1 7.78 0.0040

time 3 15.8 18.13 < 0.0001

drug x time 6 15.8 25.74 < 0.0001

Multiple imputation

drug 2 21 7.14 0.0043

time 3 447 84.15 < 0.0001

drug x time 6 447 76.00 < 0.0001

The results which show the significance of the effects using direct likelihood and

multiple imputation to handle dropout are presented in Table 4.1. Compared with

the results based on the complete data set, we see that type III tests of fixed effects

show that both direct likelihood and multiple imputation methods yielded statistically

similar results. The analysis shows that the drug effect has significant p-values of
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< 0.0040 and < 0.0043 for direct likelihood and multiple imputation, respectively,

indicating a rejection of the null hypothesis of equal drug means. The p-value of the

drug effect under multiple imputation (0.0043) was slightly higher in comparison to that

of the direct likelihood analysis (0.0040), but both methods indicate strong evidence

of significance compared to the p-value of 0.0088 for the original complete data set.

Evidently, there are no extreme differences between the direct likelihood and multiple

imputation methods. However, the p-value for the drug effect was significantly reduced

by about 50% compared to the actual data p-value. This indicates a real problem with

dropout, both multiple imputation and direct likelihood may lead to rejection of the

null hypothesis with a higher probability than would be the case if the data were

complete. The test of significance for the time effect in type III tests of fixed effects

produced significant p-values of < 0.0001 in both methods. The test for the interaction

between drug and time effects gave a p-value of < 0.0001 in both methods, indicating

a strong evidence of time dependence on the drug effects. Generally, the proposed

methods presented acceptable performance with respect to estimates of p-values in all

cases when compared to that based on actual data. In two cases, namely p-values of

time effect and interaction drug × time, the methods yielded the same results as those

for complete data.

The drug main effect means, the time main effect means and the drug time two-

way means are given in Tables 4.2, 4.3 and 4.4 for actual-data, direct likelihood and

multiple imputation analysis, respectively. When compared with the main effect means

based on the actual data set, treating the data with direct likelihood and multiple

imputation methods appeared to have resulted either in the same main effects means

(with regard to p-values) or closer to each other (with regard to parameter estimates

and standard errors). The p-values of < 0.0001 for drug, time and drug × time main

effects means were the same for both methods. Both methods yielded significant p-

values for all cases. Furthermore, the parameter estimates for direct likelihood and

multiple imputation analysis were generally (though not always) closer to each other.

In some cases (estimates of time 1, time 2 and interactions between all drugs and time

1 and time 2), the methods offered the same estimates as compared to the estimates

from complete data. Such results are expected considering the fact that the first and
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Table 4.2: Drug main effect means, time main effect means and drug × time main

effect means of the complete data

MIXED Least Squares Means

Effect Drug Time Estimate Standard Error Pr > |t|

drug AX23 76.2813 1.8652 < 0.0001

drug BWW9 81.0312 1.8652 < 0.0001

drug CTRL 71.9062 1.8652 < 0.0001

time 1 75.0000 1.1800 < 0.0001

time 2 78.9583 1.1800 < 0.0001

time 3 77.0417 1.1800 < 0.0001

time 4 74.6250 1.1800 < 0.0001

drug x time AX23 1 70.5000 2.0438 < 0.0001

drug x time AX23 2 80.5000 2.0438 < 0.0001

drug x time AX23 3 81.0000 2.0438 < 0.0001

drug x time AX23 4 73.1250 2.0438 < 0.0001

drug x time BWW9 1 81.7500 2.0438 < 0.0001

drug x time BWW9 2 84.0000 2.0438 < 0.0001

drug x time BWW9 3 78.6250 2.0438 < 0.0001

drug x time BWW9 4 79.7500 2.0438 < 0.0001

drug x time CTRL 1 72.7500 2.0438 < 0.0001

drug x time CTRL 2 72.3750 2.0438 < 0.0001

drug x time CTRL 3 71.5000 2.0438 < 0.0001

drug x time CTRL 4 71.0000 2.0438 < 0.0001

second time points contained observed data for all patients considered in the analysis.

The standard errors associated with both methods were much closer to those from the

complete data set, and only slightly different from each other.

As discussed above, we find significant drug effects in the data, thus one would

ideally need to compare various means with each other. If there is no drug × time

interaction, then we will often need to make comparisons between the drug main effect

means and the time main effect means. Since the interaction effect means is significant

(as shown in our results), we need to compare the drugs with one another at each
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Table 4.3: Drug main effect means, time main effect means and drug × time main

effect means of the direct likelihood analysis, for 15% dropout rate

MIXED Least Squares Means

Effect Drug Time Estimate Standard Error Pr > |t|

drug AX23 76.2666 1.8341 < 0.0001

drug BWW9 81.5009 1.8447 < 0.0001

drug CTRL 71.1112 1.8816 < 0.0001

time 1 75.0000 1.1277 < 0.0001

time 2 78.9583 1.1785 < 0.0001

time 3 76.8235 1.1868 < 0.0001

time 4 74.3898 1.2297 < 0.0001

drug x time AX23 1 70.5000 2.9533 < 0.0001

drug x time AX23 2 80.5000 2.9533 < 0.0001

drug x time AX23 3 81.0873 2.8143 < 0.0001

drug x time AX23 4 73.9793 2.0075 < 0.0001

drug x time BWW9 1 81.7500 2.9533 < 0.0001

drug x time BWW9 2 84.0000 2.2145 < 0.0001

drug x time BWW9 3 78.7494 2.8518 < 0.0001

drug x time BWW9 4 80.5040 2.0751 < 0.0001

drug x time CTRL 1 72.7500 2.9533 < 0.0001

drug x time CTRL 2 72.3750 2.2145 < 0.0001

drug x time CTRL 3 70.6338 2.9775 < 0.0001

drug x time CTRL 4 70.6860 2.2962 < 0.0001

time point and/or times to one another for each drug. Comparisons of the time means

within a drug are given in Figure 4.1. Since the levels of time are quantitative and

equally spaced, orthogonal polynomials can be used to check for linear and quadratic

trends over time for each drug. The linear and quadratic trends in time for all drugs

reveal that drug BWW9 shows a negative linear trend, and drug AX23 shows a strong

quadratic trend in all methods. Evidently, the differences occurred with drug CTRL

in graphs (b) and (c) for direct likelihood and multiple imputation, respectively. Both

methods yielded slightly different linear trends as compared to that from actual data.
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Table 4.4: Drug main effect means, time main effect means and drug × time main

effect means of multiple imputation, for 15% dropout rate

MIXED Least Squares Means

Effect Drug Time Estimate Standard Error Pr > |t|

drug AX23 76.2202 1.8528 < 0.0001

drug BWW9 81.3778 1.8528 < 0.0001

drug CTRL 71.2641 1.8528 < 0.0001

time 1 75.0000 1.1793 < 0.0001

time 2 78.9583 1.1793 < 0.0001

time 3 77.7089 1.1793 < 0.0001

time 4 74.4822 1.1793 < 0.0001

drug x time AX23 1 70.5000 2.0213 < 0.0001

drug x time AX23 2 80.5000 2.0213 < 0.0001

drug x time AX23 3 81.9468 2.0213 < 0.0001

drug x time AX23 4 73.9339 2.0213 < 0.0001

drug x time BWW9 1 81.7500 2.0213 < 0.0001

drug x time BWW9 2 84.0000 2.0213 < 0.0001

drug x time BWW9 3 78.4915 2.0213 < 0.0001

drug x time BWW9 4 80.2697 2.0213 < 0.0001

drug x time CTRL 1 72.7500 2.0213 < 0.0001

drug x time CTRL 2 72.3750 2.0213 < 0.0001

drug x time CTRL 3 70.6885 2.0213 < 0.0001

drug x time CTRL 4 71.2429 2.0213 < 0.0001

The graph in Figure 4.1 displays these relationships.

We continued to explore the pairwise comparisons among drug main effect means

and time main effect means by comparing the estimates, standard errors and p-values

under the both methods in Table 4.5. We obtained a non-significant effect means from

all our different models with respect to pairwise comparisons between drugs (AX23,

BWW9) and (AX23, CTRL), indicating that there is no overall drug effect means

difference among (AX23, BWW9) and (AX23, CTRL). However, assessment of the

effect means among time 1 and time 4 leads to p-value=0.6357, p-value=0.5354 and
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(a) (b)

(c)

Figure 4.1: (a) Actual data - Means over time for each drug for the heart rate data. (b)

Direct likelihood - Means over time for each drug for the heart rate data. (c) Multiple

imputation - Means over time for each drug for the heart rate data

p-value=0.5969 for actual data, direct likelihood and multiple imputation, respectively,

where all three strategies yielded non-significant effect means. Both approaches yielded

very similar estimates and standard errors of pairwise comparisons among drug main

effect means and time main effect means compared to those from the complete data

set. Nevertheless, the estimates of pairwise comparisons among effect means of (time

1, time 4), (time 2, time 3) and (drug AX23, drug CTRL) were somewhat slightly

different from those of the complete data. Whereas, the other estimates from both

methods were very close to the actual estimates, and in one case (pairwise comparison
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among effect mean of time 1 and time 2), their estimates were the same as that from

the actual data. This is to be expected as there were no unobserved data in the first

and second time points for all patients.

Table 4.5: Pairwise comparisons among drug main effect means and time main ef-

fect means of complete data and generated data using direct likelihood and multiple

imputation methods, for 15% dropout rate: Differences of least squares means

Method Effect Drug Time Drug Time Estimate Standard Error Pr > |t|

Actual data

drug AX23 BWW9 -5.7500 2.6378 0.0861

drug AX23 CTRL 4.0050 2.6378 0.1121

drug BWW9 CTRL 9.1250 2.6378 0.0023

time 1 2 -3.9583 0.7878 < 0.0001

time 1 3 -1.0417 0.7878 0.0119

time 1 4 0.3750 0.7878 0.6357

time 2 3 1.9167 0.7878 0.0178

time 2 4 4.3333 0.7878 < 0.0001

time 3 4 2.4167 0.7878 0.0032

Direct likelihood

drug AX23 BWW9 -5.2342 2.6013 0.0607

drug AX23 CTRL 5.1554 2.6276 0.1661

drug BWW9 CTRL 9.2896 2.6350 0.0010

time 1 2 -3.9583 0.7201 < 0.0001

time 1 3 -1.0235 0.7601 0.0139

time 1 4 0.5102 0.7650 0.5354

time 2 3 2.1349 0.7417 0.0252

time 2 4 4.3686 0.7583 < 0.0005

time 3 4 2.4337 0.7501 0.0055

Multiple imputation

drug AX23 BWW9 -5.7576 2.6768 0.0776

drug AX23 CTRL 4.9961 2.6768 0.1282

drug BWW9 CTRL 9.1137 2.6768 0.0011

time 1 2 -3.9583 0.7713 < 0.0001

time 1 3 -1.0389 0.7713 < 0.0001

time 1 4 0.4178 0.7713 0.5969

time 2 3 2.0494 0.7713 < 0.0001

time 2 4 4.4762 0.7713 < 0.0001

time 3 4 2.4267 0.7713 < 0.0001
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4.7 Discussion and conclusion

In this chapter, we have discussed a common problem encountered in longitudinal

studies namely that of missing data when some variables have missing values in some

units. In particular, we consider the problem of longitudinal missing data when the

outcome has missing values due to dropout. The chapter is concerned with comparison

of two techniques applied to an incomplete longitudinal data set with continuous out-

comes. The techniques we compared were direct likelihood and multiple imputation

methods. In order to investigate the performance of the proposed methods, analysis

was first performed on the complete data and then the results from the two methods to

handle missing data were compared to those based on complete data. We generated a

new data set with missing outcome values which had similar distributional properties

to the original data set. This was done by generating a dropout process, assuming the

dropout was at random. The model considered assumed that dropouts are confined to

the repeated measures outcome and covariates information is fully observed. We used

data to study the effect of three treatments on heart rates.

The findings of our application in general noted that both direct likelihood and

multiple imputation performed best under all three dropout rates, and they are more

broadly similar in results. This is to be expected as both approaches are likelihood

based and Bayesian analysis, respectively, and therefore valid under the assumption of

MAR (Molenberghs and Kenward, 2007). The findings of direct likelihood are in line

with the findings that likelihood-based analyses are appropriate under ignorability sit-

uation (Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005; Mallinckrodt

et al., 2001a, 2001b). Because of simplicity, and ease of implementation using many

statistical tools such as the SAS software procedures MIXED, NLMIXED and GLIM-

MIX, direct likelihood might be adequate to deal with dropout data when the MAR

mechanism holds, provided appropriate distributional assumptions for a likelihood for-

mulation of the data also hold. Moreover, a method such as multiple imputation can

be conducted without problems using statistical software such as SAS procedures MI

and MIANALYZE, and if done correctly, is a versatile, powerful and reliable technique

to deal with dropouts that are MAR in longitudinal data with continuous outcomes.

92



It would appear that the recommendation of Mallinckrodt et al. (2003a, 2003b) to

use direct likelihood and multiple imputation for dealing with incomplete longitudinal

data with continuous outcomes is strongly supported by the current analysis.

At this point, we have to make it clear that the scope of this chapter is limited to

direct likelihood and multiple imputation strategies. We note that there are several

other strategies available to deal with incomplete longitudinal data with continuous

outcome under the ignorability assumption however these methods are not covered

in this study. For instance, the EM algorithm by Dempster et al. (1977) which is

an alternative method to use for handling incomplete longitudinal data, as well as

the Mixed-effects Model Repeated-Measures analysis (MMRM) by Mallinckrodt et al.

(2001a, 2001b) which is a particular form of a linear mixed model fitted within direct

likelihood analyses, since they are valid under the MAR assumption.
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Chapter 5

Different methods for handling

non-Gaussian longitudinal outcome

subject to potentially random

dropout∗

5.1 Abstract

The present chapter compares and contrasts several statistical methods for analyzing

incomplete non-Gaussian longitudinal outcomes when the underlying study is subject

to dropout. We focus here on binary outcomes. The methods that are considered

include weighted generalized estimating equations (WGEE), multiple imputation af-

ter generalized estimating equations (MI- GEE) and generalized linear mixed models

(GLMM). The chapter aims to explore the performance of the above methods in terms

of handling dropouts that are missing at random (MAR). The methods are compared

on simulated data. The correlated binary variables are generated from a random effects

model. Dropouts are generated under several different dropout rates and sample sizes.

∗ A. Satty, H. Mwambi and G. Molenberghs (In review). Different methods for handling non-

Gaussian longitudinal outcome subject to potentially random dropout. Communications in Statistics

- Simulation and Computation.
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The comparison will be made through the evaluation of bias, accuracy and mean square

error. MI-GEE was considerably robust, doing better than all the other methods in

terms of the small and large sample sizes, regardless of the dropout rates.

Keywords: Multiple imputation GEE, Weighted GEE, Generalized linear mixed

model (GLMM), Incomplete non-Gaussian longitudinal outcome, Random dropout.

5.2 Introduction

Longitudinal non-Gaussian studies repeatedly measure the outcome and covariates

over a series of time. However, data arising from such studies often show inevitable

incompleteness due to dropouts or lack of follow-up. To be precise, an individual’s

outcome can be missing at one follow-up time and be measured at the next follow-up

time. This leads to a large class of missing data patterns. The current chapter, how-

ever, focuses on the monotone missing data pattern that results from attrition, in the

sense that when an individual drops out from the study, no more measurements are

obtained on that individual. Where there are dropouts, the choice of statistical meth-

ods for handling incompleteness has important implications on the estimation of the

results since several statistical methods are appropriate only for certain missing data

mechanisms. Thus, it is important to address the mechanisms that govern dropout.

Based on definitions given by Rubin (1976) and Little and Rubin (1987), dropout

mechanisms can be classified as missing completely at random (MCAR) which means

the dropout process is independent of both unobserved and observed data, missing at

random (MAR) if, given the observed outcomes, the dropout process is independent of

the unobserved outcomes, i.e., depends only on the observed outcomes and possibly on

covariates, and missing not random (MNAR) when the dropout process is dependent

on the unobserved data and possibly on the observed data.

Molenberghs and Verbeke (2005) distinguished between various families of models to

model longitudinal non-Gaussian data, namely marginal, random effects (or subject-

specific) and conditional models. In this article, we consider the generalized linear

mixed model (GLMM) (Breslow and Clayton, 1993) as a random effects model that
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is typically estimated through maximum likelihood (Jansen et al., 2006). An early

instance of a random-effects model is the beta-binomial model (Skellam, 1948). Thor-

ough discussions on GLMM can be found in Fitzmaurice et al. (2004), Molenberghs

and Verbeke (2005) and Jansen et al. (2006). In the GLMM, the measurement model

and the dropout model are both specified, and the inference is based on maximizing the

likelihood function, conditional on the observed data as well as the dropout process.

Such models give valid inferences under the restrictive assumption of MAR, where the

specification of a dropout model is not necessary, and inference is based on the like-

lihood function conditional on the observed data alone (Molenberghs and Kenward,

2007). In other words, when data are MAR, parameters of the measurement process

are not involved in the dropout process which is to say that a likelihood based analysis

provides valid inferences, with no need to impute, delete, or weight.

In the case of non-likelihood marginal models, the semi-parametric method of gener-

alized estimating equations (GEE) by Liang and Zeger (1986) has been widely applied

for handling dropouts (Liang and Zeger, 1986). However, GEE requires the stronger

MCAR mechanism to hold (Laird, 1988; Liang and Zeger, 1986). This can be seen

by the fact that GEE no longer has zero expectation when a MAR mechanism holds.

So, GEE requires the strong MCAR assumption for the missing data mechanism to

be ignorable. Two subsequent modifications of the GEE method were proposed to

make it valid under the more general MAR condition: weighted generalized estimat-

ing equations (WGEE) and multiple imputation after generalized estimating equations

(MI-GEE). Robins et al. (1995) devised WGEE extending GEE and which requires

MAR rather than the much stronger MCAR mechanism, but needs the specification of

a dropout model with regard to observed outcomes or covariates, in view of specifying

the weights. WGEE involves weighting response measurements by their inverse prob-

ability of being observed, estimated from some assumed dropout model (Robins et al.,

1995). The idea of WGEE was first discussed in Cochran (1977) where estimation is

based on the observed responses after weighting them to account for the probability

(propensity) of dropout. Early account of WGEE can be found in Robins et al. (1995)

and Fitzmaurice et al. (1995).

An alternative approach that is valid under the weaker MAR assumption is multiple
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imputation after generalized estimating equations, or, as we will term it in the remain-

der of this article, a (MI-GEE). MI-GEE denotes a method based on a combination of

MI and GEE model analysis. The primary idea of the combination of MI and GEE

comes from Schafer (2003). He proposed an alternative mode of analysis based on the

following steps:

Step 1: Impute the missing outcomes multiple times using a full-parametric model,

such as a random effects type model.

Step 2: After drawing the imputations, analyze the so-completed data sets using a

conventional marginal model, such as the GEE method.

Step 3: Finally, perform MI inference on the so-analyzed sets of data.

As pointed out by Beunckens et al. (2008), MI-GEE comes down to first using the

predictive distribution of the unobserved outcomes, conditional on the observed ones

and covariates. Thereafter, when MAR is valid, the missing data can be ignored in the

analysis. In terms of the dropout mechanism, in the MI-GEE method, the imputation

model needs to be specified. This specification can be done by an imputation model

that imputes the missing values with a given set of plausible values (Beunckens et

al., 2008). Details of this method can be found in Molenberghs and Kenward (2007),

Beunckens et al. (2008), Yoo (2009) and Birhanu et al. (2011).

In closely related studies, Beunckens et al. (2008) studied the comparison between

the two GEE versions (WGEE and MI-GEE), and Birhanu et al. (2011) compared the

efficiency and robustness of WGEE, MI-GEE and doubly robust GEE (DR-GEE). In

this chapter, however, we restrict attention to study how the two types of GEE (WGEE

and MI-GEE) compare to the likelihood-based GLMM for analyzing non-Gaussian

longitudinal outcomes with dropout. The primary objective of the present study is to

investigate the performance of WGEE, MI-GEE and GLMM for handling incomplete

non-Gaussian longitudinal data. The dropout mechanism is assumed to be MAR. The

methods are compared using simulated data sets under several different dropout rates

and sample sizes. A comparison will be made through the evaluation of bias, efficiency

and mean square error. Note that the parameters in a marginal model, such as GEE,

and a hierarchical model, such as GLMM, do not have the same interpretation. Indeed,

the fixed effects in the latter are to be interpreted conditional upon the random effect.
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While there is no difference between the two in the linear mixed model, this is not the

case for non-Gaussian outcomes, in particular for binary data. Fortunately, as stated

in Molenberghs and Verbeke (2005) and references therein, the GLMM parameters

can be approximately transformed to their marginal counterpart. In particular, when

the random-effects structure is confined to a random intercept bi, normally distributed

with mean 0 and variance σ, then the ratio between the marginal and random effects

parameter is approximately equal to
√

1 + c2σ, where c = 16
√

3/(15π). This ratio

will be used in our simulation study to make the parameters comparable. We focus

here on binary outcomes. Similar results will likely apply to other data types as

well but should, ideally, be the subject of additional research. The outline of this

chapter is as follows. In Section 5.3, the data setting and necessary notation in terms

of the dropout mechanism are introduced. In Section 5.4, an overview of methods for

analyzing incomplete longitudinal non-Gaussian data is given with the focus on WGEE,

MI-GEE and GLMM. Section 5.5 presents the simulation study scheme including the

study design, data generation and the evaluation criteria used in the analysis. The

results of the simulation are presented in Section 5.6. Finally, a brief discussion and

concluding remarks are provided in Section 5.7.

5.3 Data setting and notation

Let Yij be the response measurement of individual i at time j, where i = 1, 2, ...N

and j = 1, 2, ...ni, which can be observed or missing. Let Rij be an indicator variable,

where Rij = 1 if Yij is observed and Rij = 0 if Yij is missing. Therefore, corresponding

to the ith individual’s set of measurements, denoted by Yi = (Yi1, Yi2, ..., Yini
), there is

a (1 × ni) vector for the dropout indicators, Ri = (Ri1, Ri2, ..., Rini
). Considering the

missingness due to dropout, we split Yi as Yi = (Y o
i , Y

m
i ), representing observed and

unobserved measurements, respectively. We additionally define Di to be the dropout

indicator for each individual i, where Di = 1 + Σni
j=1Rij which measures the occasion

when the dropout occurs. In principle, one often needs to consider the density of

full data f(yi, ri | Xi, θ, γ). So, we use the parameter vectors θ and γ to indicate

the measurement and dropout process, respectively. Thus, the full data for the ith
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individual are given by Yi and Ri, with distribution

f(yi, ri | Xi, θ, γ) = f(yi | Xi, θ)f(ri | yi, Xi, γ), (5.1)

where Xi is the design matrix of covariates for the ith individual. As mentioned earlier,

the current chapter focuses only on missing data caused by dropout. This gives rise to

a monotone missing data pattern, meaning that if Yij is missing, then Yi(j+1),...,Yin are

also missing. According to Rubin (1976) and Little and Rubin (1987), three general

categories of dropout mechanisms can be distinguished. The taxonomy of Rubin (1976)

is based on the second factor of (5.1), i.e., f(ri | yi, Xi, γ). First, the dropout mechanism

is defined as missing completely at random (MCAR) if the probability of non-response

is independent of the response; that is, f(ri | yi, Xi, γ) = f(ri | Xi, γ). Second, missing

at random (MAR) means that the probability of non-response is dependent on the set

of observed values of the response; that is, f(ri | yi, Xi, γ) = f(ri | yoi , Xi, γ). Third,

missing not at random (MNAR) means that the probability of non-response depends

on the missing outcomes. However, an MNAR process is also allowed to depend on the

observed outcomes; that is, f(ri | yi, Xi, γ) = f(ri | yoi , ymi , Xi, γ). In the context of a

likelihood formulation, inference is based on

L(θ, γ | Xi, yi, ri) ∝ f(yoi , ri | Xi, θ, γ) = f(yoi , ri | θ, γ) =

∫
f(yi, ri | Xi, θ, γ)dy

m
i .

(5.2)

Therefore,

f(yoi , ri | θ, γ) =

∫
f(yoi , y

m
i | Xi, θ)f(ri | yoi , ymi , Xi, γ)dy

m
i . (5.3)

Under dropout MAR process, the likelihood contributions factor is:

f(yoi , ri | θ, γ) =

∫
f(yoi , y

m
i | Xi, θ)f(ri | yoi , Xi, γ)dy

m
i = f(yoi | Xi, θ)f(ri | yoi , Xi, γ).

(5.4)

The likelihood in (5.4) factorizes into two components of the same functional form as

the general factorization of the full data (Yi, Ri) given in (5.1). If, further, the parame-

ters θ and γ are disjoint (i.e. orthogonal) which is to say the parameter space of the full

vector vector (θ′, γ′)′ is the product of the individual parameter spaces, the so-called

separability condition, then inference can be based on the marginal observed data
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density only. Hence, when the separability condition is satisfied via a likelihood frame-

work, ignorability is equivalent to MAR and MCAR. However, an MNAR mechanism

is defined as a “non-ignorable” mechanism in the context of the likelihood framework.

See, Little and Rubin (2002) for details on the derivation of the contribution to the

likelihood attributable to the missingness mechanisms.

5.4 Dropout analysis strategies in non-Gaussian lon-

gitudinal data

There are a limited range of statistical methods for handling incomplete non-Gaussian

longitudinal data, particularly when the missingness is not MCAR. The methods of

analysis to deal with dropout comprise three broad strategies: semi-parametric regres-

sion, multiple imputation (MI) and maximum likelihood (ML). In what follows, we

utilize three common statistical methods in practice, namely WGEE, MI-GEE and

GLMM. First, we compare the performance of the two types of GEE approach, and

then show how they compare to the likelihood-based GLMM approach.

5.4.1 Weighted generalized estimating equations (WGEE)

Next, we follow the description provided by Verbeke and Molenberghs (2005) in for-

mulating the WGEE approach, thereby illustrating how WGEE can be incorporated

into the conventional GEE method. Generally, if inferences are restricted to the popu-

lation averages, the marginal expectations E(Yij) = µij can be modelled with respect

to covariates of interest. This can be done using the model h(µij) = x′ijβ, where

h(.) denotes a known link function, for example, the logit link for binary outcomes,

the log link for counts, and so on. Further, the marginal variance depends on the

marginal mean, with V ar(Yij) = v(µij)Ω, where v(.) and Ω denote a known variance

function and a scale (overdispersion) parameter, respectively. The correlation between

Yij and Yik, where j 6= k for i, j = 1, 2, ..., ni, can be given through a correlation matrix

Ci = Ci(ρ), where ρ denotes the vector of nuisance parameters. Then, the covariance

matrix Vi = (Vi, ρ) of Yi can be decomposed into the form ΩA
1/2
i CiA

1/2
i , where Ai is a
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matrix with the marginal variances on the main diagonal and zeros elsewhere. Without

missing data, the GEE estimator for β is based on solving the equation

S(β) =
N∑
i=1

∂µi
∂β ′ (A

1/2
i CiA

1/2
i )−1(yi − µi) = 0, (5.5)

in which the marginal covariance matrix Vi contains a vector ρ of unknown parameters.

For practical purposes, the vector ρ is replaced by a constant estimator. Now, assume

that the marginal mean µi has been correctly modelled, then it can be shown that using

Equation (5.5), the estimator β̂ is asymptotically normally distributed with mean equal

to β and covariance matrix equals

V ar(β̂) = I−1
0 I1I

−1
0 , (5.6)

where

I0 =

(
N∑
i=1

∂µ′i
∂β

V −1
i

∂µi
∂β′

)
, (5.7)

and

I1 =

(
N∑
i=1

∂µ′i
∂β

V −1
i V ar(yi)

∂µi
∂β′

)
. (5.8)

For practical purposes, in Equation (5.6), V ar(yi) can be replaced by (yi−µi)(yi−µi)′

which is unbiased on the sole condition that the mean was again correctly specified

(Birhanu et al., 2011). This leads to the so called empirical standard errors for inference

purposes. Note that the GEE arises from non-likelihood inferences, therefore “ignor-

ability” discussed above, cannot be invoked to establish the validity of the method

when dropout under MAR holds (Liang and Zeger, 1986). Only, when the dropout

are MCAR; that is, f(ri | yi, Xi, γ) = f(ri | Xi, γ), the estimating Equation (5.5)

yields consistent estimators (Liang and Zeger, 1986). However, when the dropout de-

pends on the outcome Yi, which is the case for MAR, the classical GEE estimator is

biased (Fitzmaurice et al., 1995; Liang and Zeger, 1986). Under MAR, Robins et al.

(1995) proposed the WGEE approach to make the GEE possible to model data under

the MAR missingness mechanism. The weights used in WGEE, also termed inverse

probability weights, reflect the probability for an observation of subject to be observed

(Robins et al., 1995). Therefore, the incorporation of these weights reduces possible

bias in the regression parameter estimates. As illustrated by Molenberghs and Verbeke
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(2005), we discus the idea of what these weights are. According to these authors, such

a weight can be calculated as

ωij ≡ P [Di = j] =

j−1∏
k=2

(1− P [Rik = 0 | Ri2 = ... = Ri,k−1=1])×

P [Rij = 0 | Ri2 = ... = Ri,j−1 = 1]I{j≤ni}, (5.9)

where j = 2, 3, ..., ni + 1, I{} is an indicator variable, and Di is the dropout variable.

The weight is obtained from the inverse probability providing the actual set of mea-

surements are observed. In terms of the dropout variable Di, the weight probabilities

are written as

ωij =



P (Di = j | Di ≥ j) for j=2

P (Di = j | Di ≥ j)

j−1∏
k=2

[1− P (Di = k | Di ≥ k)] for j = 3, ..., ni

ni∏
k=2

[1− P (Di = k | Di ≥ k)] for j = ni + 1.

(5.10)

Now, from Section 2 recall that we partitioned Yi into the unobserved components

(Y m
i ) and the observed components (Y o

i ). Similarly, the mean µi can be partitioned

into observed (µoi ) and missing components (µmi ). In the WGEE approach, the score

equations to be solved are:

S(β) =
N∑
i=1

ni+1∑
d=2

I(Di = d)

ωid

∂µi
∂β ′ (d)(A

1/2
i CiA

1/2
i )−1(d)(yi(d)− µi(d)) = 0, (5.11)

where yi(d) and µi(d) are the first d−1 elements of yi and µi respectively. In Equation

(5.11), ∂µi

∂β′
(d) and (A

1/2
i CiA

1/2
i )−1(d) are defined analogously, in line with the definitions

of Robins et al. (1995). Provided that the ωid are correctly specified, the WGEE pro-

vides consistent estimates of the model parameters under a MAR mechanism (Robins

et al., 1995).

5.4.2 Multiple imputation after GEE (MI-GEE)

MI is a simulation-based technique for filling in the missing values multiple times to

construct multiple complete data sets. Details of this method can be found in Rubin
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(1987), Schafer (1999) and Schafer and Graham (2002). Following is a brief description

of MI and its application. According to Rubin (1987), MI consists of three steps:

Step 1: Each missing value is replaced by M > 1 simulated values.

Step 2: Each of the M complete data sets are analysed using standard statistical

methods, such as logistic regression.

Step 3: The results from the M analyses have to be combined into a single inference

by means of the method laid out in (Rubin, 1978).

The MI method requires the missingness mechanism to be MAR (Rubin, 1987;

Molenberghs et al., 1997). The use of the number of the imputation (M) need not

be very large since, in practice, 3 - 10 imputed data sets often provided satisfactory

results. See, for example, Schafer (1997, 1999) and Schafer and Olsen (1998). Figure

5.1 shows an example of multiple imputation where M = 5.

Figure 5.1: Multiple imputation flow Chart: Imputation - Impute the missing entries

5 times, drawing from distribution. Analysis - Analyze each of the 5 imputed data sets

using standard complete-data techniques. Pooling - Combine the 5 estimates into a

final results, accounting for within-and-between-imputation variance

We assume that the vector of repeated measurements Yi is described by the parameter

vector β. In the first imputation step, the objective is to impute the missing values

with draws from the conditional distribution f(ymi | yoi , β). Since β is unknown, an

estimate for it denoted by β̂, has to be obtained from the data, after which f(ymi |

yoi , β̂) is used to fill in the missing values, meaning that in the process, we generate

draws from the distribution of β̂, thus taking sampling uncertainty of estimating β

into account. Alternatively, a Bayesian approach in which uncertainty about β is
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incorporated by means of using some prior distribution for β. After formulating the

posterior distribution of β, the following imputation algorithm is used: A random β∗

is first drawn from the posterior distribution of β, then a random Y m
i is selected from

f(ymi | yoi , β∗). This posterior distribution is approximated by the normal distribution.

The so-imputed missing values are next augmented to the observed data, yielding

complete data, Y = (Y o
i , Y

m
i ), which are then used to obtain β̂ and its variance,

V = ˆV ar(β̂). The steps mentioned above are independently repeated a number of

times, say M times, yielding β∗m and V m, for m = 1, ...,M . Finally, in the last step,

the results of the analysis from the M completed (imputed) data are combined into a

single inference. The overall estimated parameter for β and its estimated variance V

are

¯̂
β =

1

M

M∑
m=1

β̂m, (5.12)

and

V = W +

(
M + 1

M

)
B, (5.13)

where

W =
M∑
m=1

V m

M
, (5.14)

and

B =
M∑
m=1

(β̂m − ¯̂
β)(β̂m − ¯̂

β)′

M − 1
, (5.15)

with W and B representing the average within-imputation variance and the between-

imputation variance, respectively (Rubin, 1987). Since we consider the MI-GEE method,

the M imputed data sets combined with GEE on the imputed data, is an alternative

technique to likelihood inference and WGEE. It requires MAR for valid inferences.

Note that the term (1/M)B term in Equation (5.13) allows the overall variance to

account for simulation error. Obviously, this error is minimal for large M . Thus the

term is crucial for small M .

5.4.3 Generalized linear mixed model (GLMM)

When outcomes are of a non-Gaussian type, an alternative approach to deal with

dropout under MAR is to use the likelihood-based inference (Verbeke and Molenberghs,
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2000). A commonly encountered random effects (or subject-specific) model is the

GLMM which is based on specifying a regression model for the responses conditional

on an individual’s random effects and assuming that within-subject measurements are

independent, conditional on the random effects. The marginal likelihood in the GLMM

is used as the basis for inferences for the fixed effects parameters, complemented with

empirical Bayes estimation for the random effects (Molenberghs and Kenward, 2007).

As pointed out by Alosh (2010), the random effects can be included as a subset of the

model for heterogeneity from one individual to another. Integrating out the random

effects induces marginal correlation between the responses through the same individual

(Laird and Ware, 1982). Next, we briefly introduce a general framework for mixed

effects models provided by Jansen et al. (2006b) and Molenberghs and Kenward (2007).

It is assumed that the conditional distribution of each Yi, given a vector of random

effects bi can be written as follows

Yi | bi ∼ Fi(θ, bi), (5.16)

where Yi follows a prespecified distribution Fi, possibly depending on covariates, and

is parameterized via a vector θ of unknown parameters common to all individuals. The

term bi denotes the (q×1) vector of subject-specific parameters, called random effects,

which are assumed to follow a so-called mixing distribution Q. The distribution Q

depends on a vector of unknown parameter, say ψ; that is, bi ∼ Q(ψ). In terms of

the distribution of Yi, the bi reflect the between unit-heterogeneity in the population.

Further, given the random effects bi, it is assumed that the components Yij in Yi are

independent of one another. The distribution function (Fi) provided in model (5.16)

becomes a product over the ni independent elements in Yi. Inference based on the

marginal model for Yi can be obtained by integrating out the random effects across

their distribution Q(ψ), provided one is not following a fully Bayesian approach. Now,

assume that the fi(yi | bi) represents the density of the random effects function and

corresponds to the distribution Fi, while q(bi) represents the density function and

corresponds to the distribution Q. Thus, the marginal density function of Yi can be

written as follows

fi(yi) =

∫
fi(yi | bi)q(bi)dbi. (5.17)
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The marginal density is dependent on the unknown parameters θ and ψ. By assum-

ing the independence of the units, the estimates of θ̂ and ψ̂ can be obtained using

the maximum likelihood function that is built into model (5.17). The inferences can

be obtained following the classical maximum likelihood theory. The distribution Q is

assumed to be of a specific parametric form, for example a multivariate normal distri-

bution. An integration in model (5.17), depending on both Fi and Qi, may or may not

be analytically possible. However, there are some proposed solutions based on Taylor

series expansions of either fi(yi | bi) or on numerical approximations of the integral, for

example, adaptive Gaussian quadrature. Verbeke and Molenberghs (2000) noted that

for the classical linear mixed model, E(Yi) equals Xiβ, meaning that the fixed effects

have a subject-specific as well as a population-averaged interpretation. However, for

nonlinear mixed models, the interpretation of random effects has important ramifica-

tions for the interpretation of the fixed effects regression parameters. The fixed effects

only reflect the conditional effect of covariates, and the marginal effect is difficult to

obtain, as E(Yi) is given by

E(Yi) =

∫
yi

∫
fi(yi | bi)q(bi)dbidyi. (5.18)

In the GLMM, a general formulation can be expressed as follows. It assumes that

the elements Yij of Yi are conditionally independent, given a (q × 1) vector of random

effects bi, with density function based on a classical exponential family formulation

with conditional mean depending on both fixed and random effects. This leads to

the conditional mean E(Yij | bi) = a′(ηij) = µij(bi), and the conditional variance is

assumed to depend on the conditional mean according to V = (Yij | bi) = Θa′′(ηij).

One needs a link function, say h (for binary data, a canonical link is the logit link),

and typically uses a linear regression with parameters β and bi for the mean, i.e.,

h(µi(bi)) = Xiβ + Zibi. Here, we note that the linear mixed model is a special case

with an identity link function. The random effects bi are again assumed to be sampled

from a multivariate normal distribution, with mean 0 and (q × q) covariance matrix,

Cov. The canonical link function is usually used to relate the conditional mean of Yij

to ηi; that is, h = a′−1, such that ηi = Xiβ + Zibi. In principle, any suitable link

function can be used (Fitzmaurice et al., 2004). In considering the link function of the
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logit form and assuming the random effects to be normally distributed, the familiar

logistic-linear GLMM follows. For a more detailed overview, see, Jansen et al. (2006b)

and Molenberghs and Verbeke (2005).

5.5 Simulation study

5.5.1 Design

The main objective of this study was to compare WGEE, MI-GEE and GLMM for

handling dropout missing at random in non-Gaussian longitudinal data. To do so, we

used the following steps:

Step 1: An empirical data set was generated in the form of non-Gaussian longitudinal

binary data. A marginal logistic regression was fitted to the complete data, thus

producing true regression coefficients.

Step 2: Once the complete data sets were generated, 1000 random samples of N=250

and 500 subjects were drawn.

Step 3: The missing at random data were generated for various dropout rates.

Step 4: The above methods were applied to each simulated data set. The results from

the simulated data were then compared with those obtained from the complete data.

Step 5: The performances of WGEE, MI-GEE and GLMM were evaluated in terms of

bias, efficiency and mean square error (MSE). The GLMM estimates were first adjusted

for comparability before this evaluation of performance.

5.5.2 Data generation

Simulated data were generated in order to emulate data typically found in longi-

tudinal non- Gaussian clinical trials data. The non-Gaussian longitudinal data with

dropout were simulated by first generating complete data sets. Then, 1000 random

samples of sizes N =250 and 500 subjects were drawn. We assumed that subjects were

assigned to two arms (Treatment=1 and Placebo=0). We also assumed that measure-

ments were taken under four time points (j = 1; 2; 3; 4). The outcome (Yij) which is

the measurement of subject i, measured at time j, was defined as 1 if the measurement
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is positive, and 0 if otherwise. The two levels of the outcome represent anything, but

generically we labeled one outcome “success”, i.e., “1” and the other “failure”, i.e.,

“0”. Then, we looked at logistic regression as modeling the success probability as a

function of the explanatory variables. The main interest here is in the marginal model

for each binary outcome Yij, which we assumed follows a logistic regression. Conse-

quently, longitudinal binary data were generated according to the following random

effects model with linear predictor

logitE(yij=1|Tj ,trti,bi) = β0 + bi + β1Tj + β2trti + β3(Tj ∗ trti), (5.19)

where β = (β0, β1, β2, β3), and the random effects bi’s are assumed to account for the

variability between individuals and assumed to be i.i.d with a normal distribution,

i.e., bi ∼ N(0, σ2). In this model, fixed categorical effects include treatment (trt),

times (T ) and treatment-by-time interaction (T ∗ trt). For this model, throughout,

we fixed β0 = −0.25, β1 = 0.5, β2 = 1.0 and β4 = 0.2. We also set a random

intercept bi ∼ N(0, 0.07). For each simulated data set, after the complete longitudinal

binary data had been generated, dropouts were created by deleting different rates of

the responses chosen stochastically (conditional on time), namely the dropouts were

imposed on Yij. To achieve MAR mechanism, dropouts were generated from the full

(i.e., no missing) simulated data, using the following strategy. We assumed that the

dropout can occur only after the second and third time points. Consequently, there are

three possible dropout patterns. That is, dropout at the third time point, dropout at

the fourth time point, or no dropout. The dropouts were generated at time j and the

subsequent times were assumed to be dependent on the values of outcome measured

at time j − 1. Under model (5.19), we simulated a case where the MAR specification

was different for the two treatments. In particular, for time point, j=3, we retained

the criterion that if the dependent variable (Yij) was positive (i.e., Yij = 1), then the

subject dropped out at the next time point, i.e., j+1. Dropouts were selected to yield

approximate rates of 10%, 20% and 30%. A monotone missing pattern (i.e., data for

an individual up to a certain time) was considered, thus simulating a trial where the

only source of dropout was an individual’s withdrawal.
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5.5.3 Analysis

In the analysis, different strategies were used to handle dropout: by weighting, by

imputation and analyzing the data as they are (i.e., without the need to impute or

weight), consistent with MAR assumption, for WGEE, MI-GEE and GLMM, respec-

tively.

5.5.3.1 WGEE

As discussed above, the WGEE method requires a model for the dropout mechanism.

Consequently, we first fitted the following dropout model using a logistic regression,

logitP (Di = j | Di ≥ j) = γ0 + γ1yi,j−1 + γ2trti, (5.20)

where the predictor variables were the outcomes at previous occasions (yi,j−1), supple-

mented with genuine covariate information. Model (5.20) is based on logistic regression

for the probability of dropout at occasion j for individual i, conditional on the indi-

vidual still being in the study. Note that mechanism (5.20) allows for the one used to

generate the data and described in Section 5.5 only as a limiting case. This is because

our dropout generating mechanism has a deterministic flavor. Strictly speaking, the

probabilities of observation in WGEE are required to be bounded away from zero, to

avoid issues with the weight. The effect of our choice is that WGEE is subjected to a

severe stress test. It will be seen in the results section that, against this background,

WGEE performs rather well. To estimate the probabilities for dropout as well as to pass

the weights (predicted probabilities) to be used for WGEE, we used the “DROPOUT”

and “DROPWGT” macros described in Molenberghs and Verbeke (2005). Note that

no modification needed to apply these macros. The “DROPOUT” macro is used to

construct the variables dropout and previous. The outcome dropout is binary and in-

dicates if individual had dropped out of the study before its completion, whereas, the

previous variable refers to the outcome at previous occasions. After fitting a logis-

tic regression, the “DROPWGT” macro is used to pass the weights to the individual

observations in the WGEE. Such weights, calculated as the inverse of the cumulative

product of conditional probabilities, can be estimated as wij = 1/(λi1× ...×λij), where
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λij represents the probability of observing a response at time j for the ith individual,

conditional on the individual being observed at the time j−1. Once the dropout model

(5.20) was fitted and the weight distribution was checked, we included the weights by

means of the WEIGHT statement in SAS procedure GENMOD. As mentioned earlier,

the marginal measurement model for WGEE should be specified. Therefore, the model

that we considered takes the form of

logitE(yij) = β0 + β1Tj + β2trti + β3(Tj ∗ trti). (5.21)

Here, we used the compound symmetry (CS) working correlation matrix. A random

intercept bi was excluded when considering WGEE.

5.5.3.2 MI-GEE

The analysis was conducted by imputing missing values using the SAS procedure

MI, which employs a conditional logistic imputation model for binary outcomes. For

the specification of the imputation model, an MAR mechanism is considered; that is,

the imputation model comprises dichotomous covariates as well as longitudinal binary

outcomes values at times j = 1, 2, 3, 4. To be precise, for the multiple imputation as

well as for the MAR imputation model, we used a logistic regression with measurements

at the second time point as well as the two key covariates to fill in the missing values

occur at the third time point. In a similar way, the imputation at the fourth time

point is done using the measurements at the third time point including both imputed

and observed, as predictors, as well as the measurements at the second time point

which is always observed and the two key covariates. Note that we describe here

multiple imputation in a sequential fashion, making use of the time ordering of the

measurements. Therefore, the next value is imputed based on the previous values,

whether observed or already imputed. This is totally equivalent to an approach where

all missing values are imputed at once based on the observed sub-vector. This implies

that the dropout process was accommodated in the imputation model. It appears that

there is potential for misspecification here. However, multiple imputation is valid under

MAR. Whether missingness depends on one or more earlier outcomes, MAR holds, so

the validity of the method is guaranteed. In terms of the number of the imputed
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data sets, we used M = 5 imputations. This is often sufficient to obtain satisfactory

results (Rubin, 1987; Schafer, 1999; Verbeke and Molenberghs, 2007). The GEE was

then fitted to each completed data set using SAS procedure GENMOD to estimate the

overall parameters and their variances. The GEE model that we considered is based

on (5.21). The results of the analysis from these 5 completed (imputed) data sets were

combined into a single inference using Equations (5.12), (5.13), (5.14) and (5.15). This

was done by using SAS procedure MIANALYZE. Details of implementation of this

method are given in Molenberghs and Kenward (2007) and also in Beunckens et al.

(2008).

5.5.3.3 GLMM

Conditionally on a random intercept bi, the logistic regression model is used to

describe the mean response, i.e., the distribution of the outcome at each time point

separately. Specifically, we considered fitting model (5.19). This model assumed that

there is natural heterogeneity across individuals and accounted for the within-subject

dependence in the mean response over time. Model (5.19) was fitted using the likelihood

method by applying the macro NLMIXED in SAS software. This procedure relies on

numerical integration and includes a number of optimization algorithms (Molenberghs

and Verbeke, 2005). Given that the evaluation and maximization of the marginal

likelihood for GLMM needs integration, over the distribution of the random effects,

the model was fitted using maximum likelihood (ML) together with adaptive Gaussian

quadrature (Pinheiro and Bates, 2000) based on numerical integration which works

quite well in procedure NLMIXED. The procedure is valid as long as the dropouts

are MAR (Stubbendick and Ibrahim, 2006). The NLMIXED procedure allows the use

of the Newton-Raphson instead of Quasi-Newton algorithm to maximize the marginal

likelihood, and adaptive Gaussian quadrature was used to integrate out the random

effects. The adaptive Gaussian quadrature approach makes Bayesian approaches quite

appealing because it is based on numerical integral approximations centered around

the empirical Bayes estimates of the random effects, and permits maximization of the

marginal likelihood with any desired degree of accuracy (Anderson and Aitkin, 1985).
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An alternative strategy to fit mixed models is the penalized quasi-likelihood (PQL)

algorithm (Stiratelli et al., 1984). However, in this study this algorithm is not used as

it often provides highly biased estimates for the longitudinal binary responses (Breslow

and Lin, 1995). Also, we ought to keep in mind that the GLMM parameters need to

be re-scaled in order to have an approximate marginal interpretation and to become

comparable to their GEE counterparts.

5.5.4 Evaluation criteria

In the evaluation, the inferences are made on the data before dropouts are created

and the results used as the main standard against those obtained from applying WGEE,

GLMM and MI-GEE approaches. We evaluated the performance of the methods being

studied largely using criteria which included the evaluations of bias, efficiency and

mean square error (MSE). These criteria are recommended in Collins et al. (2001) and

Burton et al. (2006). (1) Evaluation of bias: we defined the bias as the difference

between the average estimate and the true value; that is, π = (
¯̂
β − β), where β is the

true value for the estimate of interest,
¯̂
β = ΣS

i=1β̂i/S, S is the number of simulations

performed and β̂i is the estimate of interest within each of the i = 1, ..., S simulations.

(2) Evaluation of efficiency: we defined the efficiency as the variability of the estimates

around the true population coefficient. In the current chapter, it was calculated by

the average width of the 95% confidence interval. The 95% interval is approximately

four times the magnitude of the standard error. Therefore, a narrower interval is

always desirable because it leads to more efficient methods. (3) Evaluation of accuracy:

the MSE provides a useful measure of the overall accuracy, as it incorporates both

measures of bias and variability (Collins et al., 2001). It can be calculated as follows:

MSE=(
¯̂
β − β)2+(SE(β̂))2, where SE(β̂) denotes the empirical standard error of the

estimate of interest over all simulations (Burton et al., 2006). Generally, small values

of MSE are desirable (Schafer and Graham, 2002).
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5.6 Results

A few points about the parameter estimates obtained by the proposed methods

through the three evaluation criteria may be noted for each estimate in Tables 5.1 and

5.2. First, the greatest bias, also the worst, are highlighted. Second, for the efficiency

criterion, the widest confidence interval, also the worst, 95% interval are highlighted.

Third, for the evaluation of MSEs, the greatest values, also the worst, are highlighted.

5.6.1 Sample size, N=250

The results of WGEE, MI-GEE and GLMM in terms of bias, efficiency and MSEs,

under N=250 sample size are presented in Table 5.1. By looking at this table, we

observed that for 10% dropout rate, bias was least in the estimates of MI-GEE than in

both WGEE and GLMM. In particular, the worst performance of WGEE and GLMM

on bias permeated through the estimates of β2 and (β0, β1, β3), respectively, indicating a

discrepancy between the average and the true parameter (Schafer and Graham, 2002).

Between the two MI-GEE and WGEE methods, the WGEE estimates were slightly

different from those obtained by MI-GEE, although the degree of these differences

was not very large. The efficiency performance was acceptable for both methods and

comparable to each other, but low for most parameters under WGEE. The efficiency

estimates associated with GLMM were larger than with WGEE and MI-GEE. In terms

of MSEs, both WGEE and MI-GEE outperformed GLMM as they tend to have smallest

MSEs. In addition, they yielded MSEs much closer to each other, but in most cases,

were smallest for WGEE.

Considering the 20% dropout rate, the results shown in Table 5.1 revealed that

in nearly all cases, GLMM consistently produced the most biased estimates (the only

exception to this rule occurred for estimate of β2). However, some bias was also evident

under WGEE in estimating the parameter β2. For estimating all parameters, efficiency

estimates by WGEE and MI-GEE were similar to each other and smaller than GLMM’s

estimates. The WGEE outperformed MI-GEE and GLMM on the MSE criterion.

Comparing both WGEE and MI-GEE, the MSEs associated with both methods were

closer to each other and in one case - MSE of β3 - they gave the same values. The
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lone exception to these MSEs occurred for MI-GEE regarding the estimate of β0. In

comparison with WGEE and MI-GEE, GLMM gave larger MSEs in magnitude than

the two, except for estimate of β0.

For the 30% dropout rate, Table 5.1 showed that the results based on GLMM typ-

ically displayed greater estimation bias than did WGEE and MI-GEE, indicating a

difference between the average estimate and the true values. Compared to those of

WGEE, the MI-GEE estimates were less substantially biased, but was somewhat more

biased for β3. For the effciency criterion, the MI- GEE based results were smaller than

those from WGEE. In general, both WGEE and MI-GEE yielded estimates which did

not differ too much to each other, with a preference for MI-GEE in all cases. Partic-

ularly, MI-GEE was more efficient than WGEE, yet more efficient than GLMM. The

MSEs by both WGEE and MI-GEE for all cases were smaller than those from GLMM,

as the latter yielded the largest values in most cases. MI-GEE tends to have the small-

est MSEs. In general, across various dropout rates and when increasing dropout rate,

the performance of MI-GEE was better than that for WGEE and GLMM. However,

the method was less efficient than did WGEE with respect to efficiency criterion, yet

more efficient and accurate than GLMM.

5.6.2 Sample size, N=500

Table 5.2 displays the results of bias, efficiency and MSE when the sample size

was 500. For 10% dropout, when compared with the results based on the WGEE

and GLMM, treating the data with MI-GEE appeared to have resulted in fairly less

bias. However, GLMM notably produced the most biased estimates. The exception for

GLMM estimates occurred for β2 which was more biased under WGEE. An examination

of efficiency revealed that MI-GEE yielded more efficient estimates. As was the case

with N=250, most GLMM estimates were less efficient, compared to those obtained by

WGEE and MI-GEE. A comparison of efficiency between WGEE and MI-GEE showed

no systematic differences in their estimates, although the performance of MI-GEE was

better. Moreover, in all cases, GLMM led to large MSEs than those from WGEE and

MI-GEE. Overall, the MSEs were smaller for MI-GEE.
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With respect to 20% dropout, the results revealed the same findings as in the case

of 10% dropout. Across all cases, MI-GEE outperformed both WGEE and GLMM in

terms of bias criterion, except for β2. The greatest bias for the WGEE and GLMM

methods occurred for the estimates of β3 and (β0, β1), respectively. The efficiency

estimates associated with MI-GEE were typically smaller than those associated with

the WGEE and GLMM methods. Thus, the MI-GEE method was more efficient. In

case of the MSEs, the results suggested that GLMM’s values were larger than were

those for MI-GEE and WGEE. Its MSEs tended to be worse, with a larger MSE for

WGEE in terms of the value of β2.

A comparison of 30% dropout rate again suggested that the estimates associated

with MI-GEE were less biased than for WGEE and GLMM. Specifically, estimates

which showed most bias were (β0, β3) and (β1, β2) for WGEE and GLMM, respectively.

Efficiency by MI-GEE appeared to be independent of the dropout rate, meaning the MI-

GEE method yielded more efficient estimates across all dropout rates. Comparing the

efficiency results, WGEE resulted in smaller estimates than estimates of GLMM, with

one exception: the estimate of β3. With respect to MSE, results that are computed

by GLMM yielded largest values, showing no substantial improvement over GLMM

under different dropout rates when compared with the results computed by WGEE

and MI-GEE . It can also be observed that, in terms of the estimate of β3, the MSE

value for WGEE was equal to that based on GLMM, and they gave larger MSEs than

did MI-GEE, whereas compared to WGEE, the MI-GEE still resulted in smaller MSEs.

5.7 Discussion and conclusion

In this chapter, we investigated the performance of different families of approaches

for handling dropout that are MAR in non-Gaussian longitudinal outcomes. Our focus

was on binary outcomes. Similar results will likely apply to other data types as well

but should, ideally, be the subject of additional research. The models considered

include WGEE, MI-GEE and GLMM representing different strategies to deal with

dropout under MAR. In the analysis, different ways were used to handle dropout: by

weighting, by analyzing the data as they are (i.e., without need to weight or impute),
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consistent with the MAR assumption and by imputation, for WGEE, GLMM and MI-

GEE, respectively. We compared the MI-GEE method under an imputation model

based on regression of the dropout measurement on previous observed measurement

with the WGEE method for the correctly specified dropout probability model, in the

sense that both the dropout and the measurement models are correctly specified. The

methods were compared on simulated data in the form of binary longitudinal clinical

trial data. The correlated binary variables were generated from a random effects model.

The dropouts missing at random were generated under several different dropout rates

as well as samples sizes. The comparisons were made through the evaluation of bias,

efficiency and mean square error. Based on the results of the comparative analysis, we

reached the following conclusions.

The findings in general favoured MI-GEE over both WGEE and GLMM. This MI-

GEE advantage is well documented in Birhanu et al. (2011) and Molenberghs and

Kenward (2007). Furthermore, the bias for MI-GEE based estimates in this study was

fairly small, demonstrating that the imputed values did not produce markedly more

biased results. This was to be expected as many authors, for example, Beunckens et

al. (2008) noted that the MI-GEE method may provide less biased estimates than a

WGEE analysis when the imputation model is correctly specified. From an extensive

small and high sample sizes (i.e., N=250 and 500) simulation study, it emerged that

MI-GEE is rather efficient and more accurate than other methods investigated in the

current chapter, regardless of dropout rate which also shows that the method does

well as the dropout rate increases. Overall, the MI-GEE performance appeared to

be independent of the sample sizes. However, in terms of efficiency, in some cases, it

was less efficient than WGEE, yet more efficient and accurate than GLMM. This was

specially true for WGEE when the rate of dropout was small and the sample size was

small as well. In summary, the results further recommended MI-GEE over WGEE.

However, both MI-GEE and WGEE methods may be selected as the primary analysis

methods for handling dropout under MAR in non-Gaussian longitudinal outcomes, but

convergence of the analysis models may be affected by the discreteness or sparseness

of the data.

Molenberghs and Verbeke (2005) stated that the parameter estimates from the
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GLMM are not directly comparable to the marginal parameter estimates, even when

the random effects models are estimated through marginal inference. They also sug-

gested that the GLMM parameter estimates can be approximately transformed to

their corresponding GEE, using a ratio that makes the parameter estimates compara-

ble. Therefore, an appropriate adjustments need to be applied to GLMM estimates in

order to have an approximate marginal interpretation and to become comparable to

their GEE counterparts. Using this ratio in the simulation study, the findings showed

that, although all WGEE, MI-GEE and GLMM are valid under MAR, there were slight

differences between the parameter estimates and never differed by a large amount, in

most cases. As a result, it appeared that for both sample sizes, the GLMM based

results were characterized by the larger estimates for nearly all cases, although the

degree of the difference in magnitude was not very large. In addition, it did not appear

that the magnitude of this difference differed between the three dropout rates.

Although there was a discrepancy between the GLMM results on the one hand, and

both the WGEE and MI-GEE results on other hand, there are several important points

to consider in the GLMM analysis of incomplete non-Gaussian longitudinal data. The

fact is that the GLMM may be applicable in many situations and offers an alternative

to the models that make inferences about the overall study population when one is

interested in making inferences about individual variability to be included in the model

(Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005). Furthermore, it

is important to realize that GLMM relies on the assumption that the data are MAR,

provided a few mild regularity conditions hold, and it is as easy to implement and

represent as it would be in contexts where the data are complete. Consequently, when

this condition holds, valid inference can be obtained with no need for extra complication

or effort, and the GLMM assuming an MAR process, is more suitable (Molenberghs and

Verbeke, 2007). In addition, the GLMM is very general and can be applied for various

types of discrete outcomes when the objective is to make inferences about individuals

rather than population averages, and is more appropriate for explicative studies.

As a final remark, recall that MI-GEE has been the preferred method for analysis as

it outperformed both the WGEE and GLMM estimations in the simulation study re-

sults. Despite this, the current study has focussed on handling dropout in the outcome
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variable, and the MI-GEE can be well conducted in terms of the missingness in the

covariates in the context of real-life, and can yield even more precise and convincing

results since the choice for the WGEE method can be ruled out. This can be justified

by the fact that, in the imputation model, the covariates that are conditioned on the

analysis model are not included. The other available covariates can be included in the

imputation model without being of interest in the analysis model, therefore yielding

better imputations as well as wider applicability. Additionally, multiple imputation

methods such as MI-GEE avoid some severe drawbacks encountered using direct mod-

elling methods such as the excessive impact of the individual weights in the WGEE

estimation or potential poor fit of the random subject effect in the GLMM analysis.

For further discussion, see, Beunckens et al. (2008).

In conclusion, we submit that the scope of this chapter is limited to three approaches.

This work is not intended to provide a comprehensive account of analysis methods

for incomplete non-Gaussian longitudinal outcome. We acknowledge that there are

several methods available for incomplete non-Gaussian longitudinal outcomes under

the dropouts that are MAR. However, these methods are beyond the scope of the

study. This article exclusively deals with the WGEE, MI-GEE and GLMM paradigms

that represent different strategies to deal with dropout under MAR.
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Chapter 6

An analysis of incomplete

longitudinal data with application

to multi-centre trial data: A

selection model for non-ignorable

missingness∗

6.1 Abstract

The present chapter deals with the analysis of longitudinal continuous measurements

with incomplete data due to non-ignorable dropout. In repeated measurements data,

as one solution to handle non-ignorable dropout, the selection model assumes a mech-

anism of outcome-dependent dropout and jointly both the measurement together with

dropout process of repeated measures. We consider the construction of a particular

type of selection model that uses a logistic regression model to describe the depen-

dency of dropout indicators on the longitudinal measurement. We focus on the use of

∗ A. Satty, H. Mwambi and M. Kenward (In review). An analysis of incomplete longitudinal data

with application to multi-centre trial data: A selection model for non-ignorable missingness. South

African Statistical Journal.
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the Diggle-Kenward’s (1994) model as a tool for assessing the sensitivity of a selection

model in terms of the modelling assumptions. Our main objective here is to investigate

the influence on inference that might be exerted on the considered data by the dropout

process. We restrict attention to a model for repeated Gaussian measures, subject to

potentially non-random dropout. To investigate this, we analyze incomplete longitu-

dinal clinical trial with dropout using a multi-centre clinical trial data.

Keywords: Gaussian longitudinal data, Selection models, Diggle and Kenward model,

non-ignorable missingness, Missing not at random (MNAR).

6.2 Introduction

A typical characteristic of longitudinal studies is that study subjects are measured

repeatedly over time. The dropout of subjects along the time scale is common. The

dropout process is assumed to be stochastic in nature and dependent upon observed and

unobserved outcomes. It also may depend upon covariates, such as the treatment arm

an individual is allocated to. The dropout may be regarded as a “failure” outcome in

certain limited settings. Of prime concern to this study, is the more general situation

that characterizes the statistical behavior of the original outcome, while dropout is

treated as a “nuisance” occurrence that must be tolerated. As a result of this, the

distinction between the outcome and the dropout processes needs to be simultaneously

maintained.

Rubin (1976) and Little and Rubin (1987) introduce different mechanisms for de-

noting dropout or non-response. A dropout, or non-response process is said to be

missing completely at random (MCAR) if the non-response process is a random event

independent of both unobserved and observed outcomes, missing at random (MAR) if,

conditional upon the observed outcomes, the non-response process is independent of

the unobserved outcomes and missing not at random (MNAR) when the non-response

process depends only upon the unobserved outcomes. In the context of likelihood and

Bayesian inferences, and when the parameters describing the measurement process are

functionally independent of the those describing the non-response process, MCAR and
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MAR are ignorable, while a non-random process is non-ignorable (Rubin 1976; Little

and Rubin, 1987).

It is possible to consider more general models when one assumes random missingness

mechanism to be untrue (Jansen et al., 2006a). Examples on work of MNAR modelling

include Diggle and Kenward (1994), Molenberghs et al. (1997), Jansen et al. (2003)

and Verbeke e al. (2001). These belong to the so-called selection models family (Heck-

man, 1976; Little and Rubin, 1987). A selection model factors the joint distribution

of the measurement and dropout mechanism into two parts; that is, a marginal mea-

surement model that describes the distribution of the underlying complete data, and

a dropout mechanism that describes the distribution of the missing data indicators,

conditional upon the complete data. For more details, see, for example, Diggle and

Kenward (1994) and Verbeke and Molenberghs (2000). This is intuitively appealing

since the marginal measurement distribution would be of interest also with complete

data (Molenberghs and Kenward, 2007). Furthermore, the missing data mechanisms

(MCAR, MAR and MNAR) are most easily developed within the selection setting.

However, it is often argued, especially within the context of non-random missingness

model, that selection models, although identifiable, should be approached with cau-

tion (Glynn et al., 1986). Indeed, one has to make untestable assumptions about the

missing data process. Selection models originated from the Tobit model of Heckman

(1976) in econometrics to correct for selection bias. The theoretical translation from

the Heckman’s (1976) model to Diggle and Kenward’s (1994) selection model have been

addressed by Verbeke and Molenberghs (2000). Diggle and Kenward (1994) consider

a selection model for the study of longitudinal measurements when data are MNAR

by letting the probability of dropout depend on unobserved measurements. They use

a linear mixed model for the longitudinal measurement and logistic regression model

for the dropout process to describe the dependency between dropout indicators and

measurements. The dropout indicators are used to indicate participant dropout. How-

ever, the intermittent missing data is assumed to be missed at random, and it can be

ignored in the model. For alternatives for the missing data processes, see, Molenberghs

and Kenward (2007).

Earlier work on the selection model analysis is given by Heckman (1976) and Glynn
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et al. (1986). Selection models that are applied to the regression analysis of cate-

gorical variables with outcomes subject to non-ignorable non-response are applied by

Baker and Laird (1988), while Robins et al. (1994) used a selection perspective for

the conditional expectation model in a semi-parametric approach. For the ignorable

non-response hypothesis, Robins and Gill (1997) proposed a general class of selection

models under non-monotone missing data pattern. In the case of the selection models

for repeated measurements, sensitivity of the conclusions to the assumptions about

the dropout mechanism has been illustrated by Kenward (1998). A semi-parametric

approach of missing data mechanism is proposed by Scharfstein et al. (1999) in order

to avoid the impact of the parametric missing data specification in a selection model

perspective. With regard to the non-monotone pattern, selection models have been

extended by Troxel et al. (1998). In addition to Troxel’s work, within the selection

model framework, models have been proposed for non-monotone pattern as well, for

instance, see, Jansen and Molenberghs (2008). In the context of categorical data, se-

lection models have been developed by Fitzmaurice et al. (1995) and Nordheim, E.V.

(1984). Additionally, a number of proposals have been made for non-Gaussian out-

comes (Molenberghs and Verbeke, 2005). Further details in selection models can be

found in Robins et al. (1995), Rotnitzky and Robins (1997), Robins et al. (1998),

Verbeke and Molenberghs (2000), Molenberghs and Verbeke (2005) and Molenberghs

and Kenward (2007).

This chapter deals with the analysis of longitudinal data when there are non-ignorable

dropout. We illustrate this analysis by considering the problem of missing data that

occurs with a continuous outcome. We focus on the use of the Diggle and Kenward’s

(1994) model as a tool for assessing the sensitivity of a selection to the modelling

assumptions. We restrict attention to a model for repeated Gaussian measures, sub-

ject to dropout possibly depending upon missing outcomes, i.e., MNAR. A monotone

missing pattern has been constructed in the model. Similar to Diggle and Kenward

(1994), a selection model is specified that uses a logistic regression model to describe

the dependency of missing data indicators upon the longitudinal response. In the cur-

rent application, we modify the analysis software to accommodate the case of more

than two treatment arms as a computational extension. Our main objective here is to
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investigate the influence that might be exerted on the considered data by the dropout

process. In order to investigate our objective, we analyze incomplete longitudinal data

with dropout. We outline the fitting of the selection model which is based on the linear

mixed model for the measurement process as well as a logistic regression for dropout

process. The model will be fitted using standard statistical software (SAS version 9.2,

IML macro). This is done by using a practical example in the form of a multi-centre

clinical trial data.

The remainder of the chapter is organized as follows: the data setting and modelling

framework are introduced in Section 6.3. In Section 6.4, a background for the selection

model is provided, followed by descriptions of the selection model based on Diggle and

Kenward model frameworks as well as detailed discussion of the linear mixed model

and dropout model. In Section 6.5, we present an application including a description

of the data set used in the analysis. The results of the estimation of the model are

then described in Section 6.6. We conclude with a discussion of the results in Section

6.7.

6.3 Modelling longitudinal data with dropout

To introduce some necessary notation, we follow the terminology provided by Verbeke

and Molenberghs (2000) and Molenberghs and Kenward (2007) based on the standard

modelling frameworks of Rubin (1976) and Little and Rubin (2002). So, assume that

for each independent subject i = 1, ..., N in the study a sequence of responses Yij

is designed to be measured at a fixed set of occasions j = 1, ..., n. The outcomes are

grouped into a vector Yi = (Yi1, ..., Yin)
′. It is often necessary to split the outcome vector

Yi into two sub-vectors, Y o
i and Y m

i , indicating the observed and missing components,

respectively. Additionally, one can define an indicator Rij for each occasion j as follows:

Rij=1, if Yij is observed, and Rij=0, if not. The indicators of missing data (Rij) can be

grouped into a vector Ri which is of parallel structure to Yi. The processes generating

the vectors Yi and Ri are referred to as the measurement and missing data, respectively.

We now pay attention to the dropout setting which is a particular case of monotone

pattern of missingness in which a missing value whenever it occurs to any subject in the
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sequence of repeated measurements of the outcome is never followed by any observed

measurement on that subject. Alternatively, when dropout occurs, one could use a

scalar variable Di called the dropout indicator, rather than the missing data indicator

Ri, defined as Di = 1 +
∑ni

j=1Rij, indicating the occasion at which dropout occurs.

Next, we consider the density of the full data (Yi, Ri), denoted by

f(yi, ri | Xi,Wi, θ, ψ), (6.1)

where Xi and Wi are covariate matrices for the measurement and missing data mech-

anism, respectively, and the parameter vectors θ and ψ describe the measurement and

missingness processes, respectively. The taxonomy, constructed by Rubin (1976) and

Little and Rubin (2002), is based on the following factorization

f(yi, ri | Xi,Wi, θ, ψ) = f(yi | Xi, θ)f(ri | yi,Wi, ψ), (6.2)

where the first and second factors denote the marginal density of the measurement

process and the density of the missing data process, conditional upon the outcomes,

respectively. Factorization (6.2) forms the basis of selection modelling as the second

factor corresponds to the self-selection of individuals into observed and missing groups.

Using the reversed factorization, an alternative taxonomy which can be considered is

called pattern mixture models. They have the following form

f(yi, ri | Xi,Wi, θ, ψ) = f(yi | ri, Xi, θ)f(ri,Wi, ψ). (6.3)

In fact, Equation (6.3) can be described as a mixture of different populations, char-

acterized by the observed missing data pattern. An initial attention of these models

were provided by Little and Rubin (1987) and Glynn et al. (1986), while further atten-

tion later was provided by many authors, see, for example, Little (1993, 1994). As we

mentioned above, Rubin’s taxonomy (Rubin, 1976; Little and Rubin, 2002) of missing

data process is based on the second factor of Equation (6.2), thus within the selection

modelling framework

f(ri | yi,Wi, ψ) = f(ri | yoi , ymi ,Wi, ψ). (6.4)

In Equation (6.4), the covariates for the measurement process are assumed measured

but suppressed for simplicity sake. The form in Equation (6.4) can be discussed as
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follows: when the missingness is independent of the responses, i.e.,

f(ri | yi,Wi, ψ) = f(ri | Wi, ψ), (6.5)

then this process corresponds to the case of missing completely at random (MCAR).

If the missingness process is only independent of the unobserved responses Y m
i , but

depends on the observed responses Y o
i , consequently, assuming the form

f(ri | yi,Wi, ψ) = f(ri | yoi ,Wi, ψ), (6.6)

then the process corresponds to the case of missing at random (MAR). Finally, when

the missingness process depends on the missing data Y m
i , the process corresponds to

the case of missing not at random (MNAR).

As pointed out by Rubin (1976) and Little and Rubin (1987), when MAR mechanism

holds, the parameters θ and ψ are functionally independent. In practice, the likelihood

of interest then depends upon the factor f(yoi | θ). For this reason, when using a

likelihood based analysis under the MAR assumption, the missing value mechanism is

sometimes said to be “ignorable”. In contrast, if the likelihood of interest only depends

upon the factor f(ymi | θ), then this is referred to as “non-ignorable” setting. Therefore,

when ignorability holds, likelihood-based and Bayesian inferences are valid (Verbeke

and Molenberghs, 2000; Molenberghs and Verbeke, 2005).

6.4 Selection models for non-ignorable dropout

In the framework of the selection models, it is not always reasonable to assume

that MAR holds, and a wide range of modelling approaches for MNAR data have

been proposed. One such is the model proposed by Diggle and Kenward (1994) for

continuous outcomes with dropout. In this section, we first describe the Diggle and

Kenward’s (1994) selection model for continuous longitudinal data. We then discuss

in detail the linear mixed model and the dropout model.
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6.4.1 Diggle and Kenward’s (1994) model for continuous lon-

gitudinal outcomes

A model for longitudinal Gaussian data with non-random dropout was proposed by

Diggle and Kenward (1994). Their model assumes that the missingness mechanism

is MNAR which combines the multivariate normal model for longitudinal Gaussian

data with a logistic regression for the dropout process. From the notation presented

in Section 6.3 recall that for subject i, i = 1, ..., N , a sequence of responses Yij is

designed to be measured at time points tij, j = 1, ..., n, resulting in a vector of observed

outcomes Yi = (Yi1, ..., Yini
)′ of measurements for each subject. Note that although n

measurements per subject were planned the vector Yi is of size ni < n because of missing

observation. In the case of dropout, the vector Yi is only partially observed. If we let

Di be the occasion where dropout occurs, then Di > 1 since the first observation is

assumed to be always observed, and Yi can be partitioned into the (Di−1)-dimensional

observed component Y o
i and the (ni −Di + 1)-dimensional missing component Y m

i . If

no dropout occurs, then Di = ni+1, and Yi equal Y o
i . For the ith subject, the observed

data is (Y o
i , di), thus, the likelihood contribution is proportional to the marginal density

function

f(yi, di | θ, ψ) =

∫
f(yi, di | θ, ψ)dymi =

∫
f(yi | θ)f(di | yi, ψ)dymi . (6.7)

In Equation (6.7), a marginal model for Yi can be combined with a model for the

dropout process, conditional upon the measurement, and the measurement process

model including the vectors of unknown parameters, θ and ψ, respectively. More

formally, we denote the conditional probability of dropout by gj(yij, hij) at time j given

the response at time j, and hij = (yi1, ..., yij−1) which denotes a possibly observed

history of subject i until time ti,j−1. According to Diggle and Kenward (1994), the

dropout process allows the conditional probability for dropout at occasion j, given

that the subject was still observed at the previous occasion, to depend upon the history

hij and the possibly unobserved current outcome yij, but not upon future outcomes

yik, k > j. Now, for calculating the dropout probability for each occasion, we use

the conditional probabilities P (Di = j | Di ≥ j, hij, yij, ψ) which can be expressed as
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follows:

P (Di = j | yi, ψ) = P (Di = j | hij, yij, ψ)

=



P (Di = j | Di ≥ j, hij, yij, ψ) j=2

P (Di = j | Di ≥ j, hij, yij, ψ)

×
j−1∏
k=2

[1− P (Di = k | Di ≥ k, hik, yik, ψ] j = 3, ..., ni

ni∏
k=2

[1− P (Di = k | Di ≥ k, hik, yik, ψ)] j = ni + 1,

(6.8)

assuming no missing values at occasion j = 1. As mentioned above, Diggle and Ken-

ward (1994) combine a multivariate normal for the measurement process together with

a logistic model for the dropout process. To obtain parameter and precision estimates

from the combined measurement/dropout model, they use maximum likelihood that

involves marginalization over the unobserved components, i.e., Y m
i . In fact, under

repeated measurements for the ith subject, the measurement model assumes that the

vector Yi satisfies the general linear regression model Yi ∼ N(Xiβ, Vi), where i = 1, ...N

in which β is a vector of population-averaged regression coefficients. Further, Verbeke

and Molenberghs (2000) pointed out that the matrix Vi can be left unstructured or

assumed to be of a specific form, for example, resulting from a linear mixed model,

a factor-analytic structure, or spatial covariance structure. As Molenberghs and Ken-

ward (2007), there are some advantages to using an unstructured covariance matrix.

More details of these advantages can be found in Molenberghs and Kenward (2007). In

the following, we introduce the measurement and dropout models that can be combined

for the dropout process.

6.4.1.1 Measurement model

For continuous outcomes, Laird and Ware (1982) proposed linear mixed-effects model,

which can be written as follows

Yi = Xiβ + Zibi + Si + εi, (6.9)
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where Yi is the ni-dimensional response vector for subject i, 1 ≤ i ≤ N , N is the

number of subjects, Xi and Zi are (ni × p) and (ni × q) known design matrices, β is

the p-dimensional vector containing the fixed effects, bi ∼ N(0, G) is the q-dimensional

vector containing the random effects. The residual components εi ∼ N(0, σ2Ini
), and

b1, ..., bn, ε1, ..., εn are assumed to be independent. The serial correlation is captured

by the realization of a Gaussian stochastic process, Si which is assumed to follow a

N(0, τ 2Hi) law. Here, the serial covariance matrix Hi dependent upon i through the

number ni of observations and through the time points tij at which measurements are

taken. Using the autocorrelation function ρ(tij − tik), the structure of the matrix Hi is

determined. A first simplifying assumption is that Hi depends upon the time interval

between two measurements Yij and Yik, i.e., ρ(tij − tik) = ρ(u), where u = |tij − tik|

represents the time lag. The autocorrelation function monotonically decreases such

that ρ(0) = 1 and ρ(u) → 0 as u → ∞. Finally, G is a general (q × q) covariance

matrix with its (i, j) element given by dij = dji. The random effects in model (6.9)

stem from heterogeneity between subjects, in the sense that various aspects of their

behavior may exhibit inter-subject random variation. It follows from model (6.9) that,

given the random effect bi, Yi is normally distributed with mean vector Xiβ+Zibi and

covariance matrix Vi. Thus, after integrating over random effects, inference for the

marginal distribution of the outcome Yi can be written as follows

Yi ∼ N(Xiβ, Vi), (6.10)

where Vi = ZiGZ
′
i + σ2Ini

+ τ 2Hi is a (ni × ni) covariance matrix which combine

both the measurement error and serial components. A simpler case of bi is a model

which includes various fixed effects, a random intercept and allowing Gaussian serial

correlation. In this case the covariance matrix Vi becomes

Vi = dJni
+ σ2Ii + τ 2Hi, (6.11)

where Jni
is an (ni×ni) matrix with all elements equal to 1, Ii is the (ni×ni) identity

matrix, and Hi is determined through the autocorrelation function ρujk , where µjk the
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Euclidean distance between tij and tik, thus

Hi =



1 ρu12 · · · ρu1n

ρu12 1 · · · ρu2n

...
...

. . .
...

ρu1n ρu2n · · · 1


where σ2 > 0 and 0 ≤ ρ ≤ 1. The covariance structure Vi in Equation (6.11) combines

both serial autocorrelation and a shared random effect variance in the estimation.

The main problem with this approach, which is due to Diggle and Kenward (1994),

is that it assumes stationarity. In practice, if times of measurement are common, the

unstructured matrices can be used (aside from very small trials) and for unbalanced

times, a random coefficient model.

6.4.1.2 Dropout model

As noted previously, we focus only on incompleteness due to dropout, and thus we

assume that the first measurement Yi1 is measured for all subjects in the study. In

agreement with notation introduced in Section 6.3, the selection model arises when the

joint likelihood of the measurement process and the dropout process is factorized as

follows

f(yi, ri | Xi,Wi, θ, ψ) = f(yi | Xi, θ)f(ri | yi,Wi, ψ). (6.12)

We use the linear mixed-effects model introduced in Equation (6.9) to model the

measurements process, together with a logistic regression to describe the dropout pro-

cess. According to Diggle and Kenward (1994), the model for dropout process is based

on a logistics regression for the conditional probability of dropout at occasion j, given

the subject is still in the study. Again, the gi(yij, hij) denotes this probability of

dropout at time j in which hij = (Yi1, Yi2, ..., Yij−1) is a vector possibly containing all

observed measurements up to including occasion j-1 as well as relevant covariates in

the conditional probability of dropout model. Theoretically, the dependence on future

unobserved measurements is possible to justify but not straightforward, for simplicity,

we model dependence only on the first order history. Therefore, modelling the dropout

131



mechanism may be simplified by allowing dropout to depend upon the current mea-

surement and immediately preceding measurement only with corresponding regression

coefficients, i.e., ψ1 and ψ2. In particular, for subjects with observed measurements,

dropout depends on measurement prior to the last measurement (yi,j−1) and the current

unobserved measurement (yij). A commonly used version of such a logistic dropout

model is

logit[P (Di = j | Di ≥ j, hij, yij, ψ)] = ψ0 + ψcWi + ψ1yi,j−1 + ψ2yij, (6.13)

where ψ0 and ψc denote the intercept and the vector of parameters for covariatesWi, re-

spectively. The model in Equation (6.13) contains special cases corresponding to MAR

and MCAR mechanism that can be obtained from (ψ2 = 0, ψ1 > 0) and (ψ1 = ψ2 = 0),

respectively. As pointed out by Diggle and Kenward (1994) and Verbeke and Molen-

berghs (2000), a likelihood ratio test (LRT) can be used to compare the model fit under

a model that assumes the missing data due to dropout are MCAR versus MAR; that

is, the LRT for MCAR versus MAR has an approximate χ2
1 distribution. The LRT

statistic is used to test the hypothesis of ψ2 = 0 (i.e., MAR), where dropout is no longer

dependent upon the current measurement, and similarly to test the hypothesis of ψ1 =

ψ2 = 0 (i.e., MCAR), where dropout is assumed to occur completely at random, where

dropout therefore, does not depend upon the outcome altogether. However, the use of

the LRT is inappropriate for hypothesis test for MNAR versus MAR when all the other

modelling assumptions hold, due to the fact that the behavior of the LRT statistic for

the MNAR parameter ψ2 is non-standard since the availability of the information on

ψ2 is very rare and interwoven with other features of both measurement and dropout

models (Jansen et al., 2006a). In addition, Rotnitzky et al. (2000) illustrated that

the limiting distribution is a χ2 mixture with characteristics controlled by the singular

information matrix. Therefore, for the ψ2 associated with MNAR model, the score

equation creates a quasi-linear dependence structure in the system of score equations.

This issue is studied in detail by Jansen et al. (2006a), while in the context of an

onychomycosis study, Verbeke et al. (2001) have stated that excluding a small amount

of measurement error can change drastically the LRT statistic for the MAR null hy-

pothesis, see also for example, Verbeke and Molenberghs (2000). In practice, such a
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distinction (MAR/MNAR) can only be made using untestable modelling assumptions.

(Kenward, 1998). This problem is really laid bare by Molenberghs et al. (2008) which

it was show that the formal-based distinction between MAR and MNAR is not possible

as for any MNAR model there exists an MAR model that fits the data equally well.

The similarity of the MAR and MNAR models with respect to fitting to the observed

data, may present different predictions of the unobserved outcomes, conditional upon

the observed ones. Hence, it is broadly agreed that the role of such MNAR models is

in sensitivity analysis; that is, if the assumptions are changed, the conclusions from

the primary (typically MAR) analysis are also changed. Further detail on the precise

nature of sensitivity analysis can be found in Molenberghs and Verbeke (2005) and

Molenberghs and Kenward (2007).

6.5 Application to the multi-centre trial data

Below we describe the data set that is used in the analysis as well as the application

schemes that are used in the analysis of the selection models based on Diggle and

Kenward (1994) approach. In terms of the application of the statistical techniques

considered in this study, we use the SAS statistical software.

6.5.1 Data set - multi-centre trial data

The example that is used here concerns the analysis of repeated measures designs

and demonstrates how to investigate a specific scenario based on dealing with lon-

gitudinal data that has a non-ignorable dropout mechanism. The data is based on

experiments that rely on the split-plot design assumptions. Such experiments which

include repeated measures designs have structures that involve more than one size of

experimental unit. In this case, a subject is measured over time where time is one of

the factors in the treatment structure of the experiment. By measuring the subject

at several different time occasions, the subject is essentially being (split) into parts

(time intervals), and the response for each part is measured. The larger experimental

unit is the subject or the collection of time intervals which constitute a cluster. The
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smaller unit is the interval of time during which the subject is exposed to a treatment

or an interval just between time measurement. The only departure from the classical

split-plot assumptions is because in this case the subplot treatments (time intervals)

are not randomized. The data used is from a multi-centre experiment data which is

a typical longitudinal example. This data is described and reported in Milliken and

Johnson (2009). This example considers an experiment that involves three drugs where

each subject was measured repeatedly at three different time points (j = 1, 2, 3), where

the outcome is described only as a measure of a continuous blood component. The

Table 6.1: Numbers of dropouts in the multi-centre trial

time centre-R centre-S centre-T

drug1 drug2 drug3 drug1 drug2 drug3 drug1 drug2 drug3

1 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 2 0 3 3

3 2 3 0 1 0 2 3 4 3

total 3 4 0 1 0 4 3 7 6

total 7 5 16

data were collected by three different investigators (or in three different centres) and

contains 51 patients. There are 17 patients assigned to each drug. All of the 51 patients

were observed at the first occasion, whereas 8 and 10 patients were not seen at the third

occasion and at both the second and third occasions, respectively. In Table 6.1, we

present the numbers of dropouts by time, centre and drug. The dropouts occur for all

drugs and centres. It is clear that drug2 contains more percentages of missing values.

The observed data for all subjects are shown in Figure 6.1. The main purpose of this

experiment has been to estimate the effects of the drugs on the blood component over

time as well as to investigate the relationship between drugs and blood component. In

this study, we restrict attention to the influence that might be caused on these effects

by the dropout mechanisms. The full results of the analysis of this trial using a like-

lihood based linear mixed models approach have been reported elsewhere by Milliken

and Johnson (2009).
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Figure 6.1: Multi-centre data. Observed data for all subjects

6.5.2 Diggle-Kenward model applied to the multi-centre trial

data

When data are MNAR, an estimation of a selection model can be a complicated issue

since the dropout process depends on the unobserved measurements. For example,

based on the above mentioned selection model, the dropout process depends in part

on the unobserved measurement at the time of dropout. This can be seen as a major

complication in assessing a likelihood function but one that can be handled (Diggle

and Kenward, 1994). To apply the selection models due to the Diggle-Kenward model

based on continuous longitudinal data, in the current computations, we modified the

SAS macro that was reported in Dmitrienko et al. (2005) that maximizes the log-

likelihood for the model using PROC IML to the case of three drugs as opposed to

most applications which are based on two drugs. We carried out an application to the

above modelling strategy to the multi-centre data as earlier described. We fit the Diggle

and Kenward model in accordance with the MCAR, MAR and MNAR assumptions

to our own data set. The three post-baseline visits correspond to the measurements
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taken at times 1, 2 and 3. In the linear mixed model in Equation (6.9), we allow the

inclusion of a variety of fixed effects, a random intercept and Gaussian serial correlation.

Furthermore, the dropout model in Equation (6.13) is considered, assuming that the

dropout does not depend upon the covariates. Apart from the explicit MCAR, MAR

and MNAR versions of this model, we will also conduct an ignorable analysis; that is,

an analysis based on the measurement model only, ignoring the dropout model. Firstly,

we fit a linear mixed model (LMM) of the form in Equation (6.9) in order to obtain

initial values for the parameters estimation of the measurement model. Assuming that

the first measurement Yi1 is observed for every subject in the study. We thus assume a

linear time trend of the response within each drug group. This implies that each profile

can be described using two parameters, namely the intercept and a slope. The error

matrix is chosen to be of the form (6.11). Since the multi-centre trial data contains

fifty-one subjects (i = 1, ..., 51) observed at three time points (j = 1, 2, 3) for three

drugs (p = 1, 2, 3), the model can be written as follows

Yijp = β0 + Ap + β1Tj + β1p(TA)jp + εijp, (6.14)

where Yijp is the blood component of subject i at time j on drug p, Ap denotes the pth

drug effect, Tj denotes the jth measurement time effect, (AT )jp denotes the interaction

effect between time and drug and εip ∼ N(0, Vi), where Vi = dJ3 + σ2I3 + τ 2Hi, with

Hi =


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

 .

Using the set to zero constraint (A1=0), β0 is the intercept for the drug1 group, (β0+α2)

is the intercept for the drug2 group and for drug3, the intercept is (β0 + α3), where

α denotes the drug fixed effects. These are, respectively, referred to as β01, β02 and

β03 in the results, as we will see in Tables 6.3 and 6.4. The slopes are β1, (β1 + β12)

and (β1 + β13) for drug1, drug2 and drug3, respectively, referred to as β11, β12 and

β13 in the results presented in Tables 6.3 and 6.4. The SAS PROC MIXED with

REPEATED statement can be used to obtain the initial values. In conforming to the

model introduced in Equation (6.13), we use the following logistic regression model for
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the dropout model probabilities

logit[P (Di = j | Di ≥ j, hij, yij, ψ)] = ψ0 + ψ1yi,j−1 + ψ2yij, j = 1, 2, 3, (6.15)

where ψ1 and ψ2 denote the logistic regression coefficients for current and immedi-

ately previous observations, respectively, and j denotes the time points. In practice,

the combined model for measurement and dropout can be fitted to the data using a

generic function maximization routine in the maximum likelihood (Kenward, 1998). In

doing so, Diggle and Kenward (1994) used the simplex algorithm of Nelder and Mead

(1965) to maximize the log-likelihood. However for the same purpose, we use another

optimization method that is available in SAS software, so-called Newton-Raphson ridge

optimization. For more detail of this method, see, Dmitrienko et al. (2005). Therefore,

we use SAS IML macro which maximizes the likelihood for the model, so as to fit the

selection models for the dropout process. The results of initial values for the parameter

estimates of the logistic dropout model can be obtained as in Table 6.2 (Dmitrienko et

al., 2005).

Table 6.2: Initial values for the parameters of the dropout model

parameter

Dropout mechanism ψ0 ψ1 ψ2

MCAR 1

MAR ψ̂0,MCAR 1

MNAR ψ̂0,MAR ψ̂1,MAR 1

6.6 Results

Next, we present the results of the application that was discussed earlier. The

initial values for the parameters of the linear mixed model are listed in Table 6.3.

The results of maximum likelihood for the parameter estimates (standard errors) from

the measurement model as well as the results of the variance model under the three

missingness mechanisms are presented in Table 6.4. Examining these results, we see

that as expected, the parameters estimation and corresponding standard errors of
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Table 6.3: Multi-centre data. Parameter estimates of the linear mixed model, used as

initial values for the Diggle-Kenward model

Effect Parameter Estimate Rounded to initial value

Fixed-effects parameters

drug1 intercept β01 13.9102 13.91

drug2 intercept β02 -3.6667 -3.67

drug3 intercept β03 0.6853 0.69

drug1 slope β11 1.1980 1.20

drug2 slope β12 1.5146 1.51

drug3 slope β13 1.3481 1.35

Variance parameters

Random-intercept variance d 8.9976 9.00

Serial process variance τ2 3.4068 3.41

Serial process correlation ρ 1.0000 1.00

Measurement error variance σ2 0.7423 0.74

p-value

drug1 effect 0.0061

drug2 effect 0.6004

the fixed effects of the measurement model and the variance model were the same

under ignorability, MCAR and MAR mechanisms. This confirms what is expected in

theory, see, Molenberghs and Kenward (2007), for example. We now study factors

that influence dropout. As discussed above we fit the three dropout models in turn,

under the mechanisms MCAR (ψ1=ψ2=0), MAR (ψ2 = 0), and MNAR, respectively.

Table 6.5 shows the results of the three dropout models that were considered. Here, the

evidence for the MNAR setting is only borderline. Thus, under the MNAR assumption,

the maximum likelihood estimates for ψ1 (-0.29) and ψ2 (0.30) were more or less equal,

but with opposite signs, pointing to a relationship between the incremental change and

probability of dropout. This finding agrees with the theoretical findings of Molenberghs

and Kenward (2007), noting that the dropout often depends upon the increment yij −

yi,j−1. This can be justified by the fact that two subsequent measurements are usually
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Table 6.4: Multi-centre data: Maximum likelihood for the parameter estimates (stan-

dard errors) under MCAR, MAR and MNAR assumptions without covariate in the

dropout model

Effect Parameter MCAR MAR MNAR

Measurement model

drug1 intercept β01 13.91 (0.92) 13.91 (0.92) 13.90 (0.92)

drug2 intercept β02 -3.67 (1.30) -3.67 (1.30) -3.71 (1.30)

drug3 intercept β03 0.69 (1.30) 0.69 (1.30) 0.61 (1.32)

drug1 slope β11 1.20 (0.17) 1.20 (0.17) 1.24 (0.17)

drug2 slope β12 1.51 (0.19) 1.51 (0.19) 1.60 (0.20)

drug3 slope β13 1.35 (0.18) 1.35 (0.18) 1.38 (0.18)

Variance model

Random-intercept variance d 8.99 (2.63) 8.99 (2.63) 8.99 (2.63)

Serial process variance τ2 3.41 (0.56) 3.41 (0.56) 3.35 (0.57)

Serial process correlation ρ 1.00 (0.00) 1.00 (0.00) 1.00 (0.01)

Measurement error variance σ2 0.74 (0.12) 0.74 (0.12) 0.76 (0.12)

-2` 596.99 591.43 595.56

positively correlated (Kenward and Molenberghs, 1999). Furthermore, as can be seen

in the dropout model, the parameter estimate (ψ2 = 0.30) in our model is positive

indicating a strong association between the dropout and the increment in the outcome

variable (blood component) between two successive times. In addition, as mentioned

previously, the maximum likelihood estimates of ψ1 and ψ2 have different signs, and

furthermore, although there is a strong positive association between ψ1 and ψ2, the

likelihood based 95% confidence interval for these two parameters (ψ1, ψ2) is largely

contained in the negative-positive quadrant; that is, the intervals for the parameter

space where ψ1 < 0 and ψ2 > 0. The full dropout model estimated from the MNAR

process is as follows:

logit[P (dropout)] = −2.03− 0.29yi,j−1 + 0.30yij. (6.16)

One of our interests is to investigate whether the dropout process is MAR or MCAR,
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Table 6.5: Dropout model: Comparison of the Parameter estimates (standard errors)

for MCAR, MAR and MNAR models

Dropout mechanism

Parameter MCAR MAR MNAR

ψ0 -1.41 (0.31) -1.52 (0.85) -2.03 (0.89)

ψ1 0.01 (0.12) -0.29 (0.40)

ψ2 0.30 (0.41)

in other words, whether or not ψ1=ψ2=0 in Equation (6.15). The likelihood ratio test

is used to compare the model fit under a model that assumes the missing data due

to dropout are MCAR versus MAR. The maximum likelihood parameter estimates

and minus twice the maximized log-likelihood from the MCAR, MAR and MNAR

models appears in Table 6.4. Comparing the log-likelihood estimates from the MAR

and MCAR models, we see that the likelihood ratio for the null hypothesis ψ1=ψ2=0 is

596.99-591.43=5.56 which is significant with p < 0.01 on 1 degree of freedom. The test

suggests that an MAR dropout process cannot be ruled out, i.e., there is an evidence

in favour of the MAR; that is, dropouts are not completely at random in the context

of the assumed model. However, great care has to be taken regarding the sensitivity

of the MNAR model to modelling assumptions fit here. To assess the mechanism that

the dropout are MNAR, a problem occurs in that neither an LRT statistic between

the models that assume the dropout is MAR against MNAR nor an assessment of ψ2

relative to its standard error is reliable (Jansen et al., 2006a). Therefore, it is impossible

to verify that the dropout mechanism is MNAR (Molenberghs et al., 2008).

From the dropout model in Equation (6.15), it is possible to extend the model by

using more observed outcomes. According to Diggle and Kenward (1994) and Molen-

berghs et al. (1997), the dropout in the non-ignorable models tends to depend upon

the increment (i.e., the difference between the current and previous measurements,

yij − yi,j−1). Including this effect implies a switch to the MAR framework. Some in-

sight into this fitted model can be obtained by rewriting it in terms of the increment.

In our case, we obtain the following

logit[P (dropout)] = −2.03 + 0.30(yij − yi,j−1) + 0.01yi,j−1, (6.17)
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which indicate that dropout is related to the increment yij − yi,j−1, rather than to any

of the actual observations yij or yi,j−1, and such that individuals that improve most

(large increments) are very likely to dropout from the study. On the other hand, it is

useful also to rewrite this with respect to the increment and the sum of the successive

measurements. Thereby, by rewriting Equation (6.15), the fitted dropout model equals

logit[P (Di = j | Di ≥ j, hij, yij, ν)] = ν0+ν1(yi,j+yi,j−1)+ν2(yij−yi,j−1), j = 1, 2, 3,

(6.18)

where ν1 = (ψ1 + ψ2)/2 and ν2 = (ψ1 − ψ2)/2. The parameters ν1 and ν2 represent

dependence on level and increment in the outcome (blood component), and these quan-

tities are likely to be much less strongly correlated than yi,j and yi,j−1. Thus, from the

fitted MNAR model in Equation (6.18), we have

logit[P (dropout)] = −2.03 + 0.005(yi,j + yi,j−1)− 0.295(yij − yi,j−1), (6.19)

which is to say that the probability of dropout increases with larger negative incre-

ments. In the other words, those patients who showed or would have shown a greater

decrease in the overall level of the blood component from the previous time have a

higher probability of dropout. This is said, given the fact that those patients who have

a large improvement compared with the previous time and, a sudden shift in profile,

are more likely to drop out of the study.

In terms of the significance of the drug effects, the corresponding p-values are dis-

played in Table 6.6. The p-values of the drug effects at the first point in time does

not change much, it being significant in all the three models. However for all cases,

the p-values of the drug2 effects were not statistically significant. It is clear from the

different dropout models that the drug effects do not differ to a large extent, the im-

pact caused by drugs might be only on the dropout rate through their effects on the

blood component. This is similar to the results from Diggle and Kenward (1994) which

stated that the drug effects should be integrated directly into the dropout model, either

by using it as constants or allowing the relationship between dropout and outcome to

differ between the drugs.
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Table 6.6: Multi-centre data: p-values for drug effects under MCAR, MAR and MNAR

assumptions

p-value MCAR MAR MNAR

drug1 effect 0.0062 0.0061 0.0025

drug2 effect 0.6002 0.6006 0.6012

6.7 Discussion and conclusion

In this chapter we have discussed the performance of the selection models based

on the Diggle-Kenward approach in terms of the analysis of longitudinal continuous

measurements when the dropouts are MNAR. We considered the use of the Diggle

and Kenward (1994) model as a tool to assess the sensitivity of a selection model with

regard to the modelling assumptions. A model for repeated Gaussian measures, sub-

ject to a possibly MNAR assumption were considered. Similar to Diggle and Kenward

(1994), a selection model is specified that uses a logistic regression model to describe

the dependency of missing data indicators on the longitudinal measurement. In par-

ticular, we have investigated the influence on inference that might be caused by the

dropout process. In doing so, we carried out an application for analyzing incomplete

longitudinal data with dropout. The model was fitted by using an example from a

multi-centre clinical trial data involving three treatment arms.

The application notably reveals that dropout increases with one element, i.e., large

increments. This implied an occurrence of unfavorable values at the previous time.

In fact, this case is, in practical terms, very common in fitting selection models of

Diggle-Kenward, we refer to, Verbeke and Molenberghs (2000), Diggle and Kenward

(1994) and Molenberghs et al. (1997). Our findings were similar to those of Verbeke

and Molenberghs (2000), Diggle and Kenward (1994) and Molenberghs et al. (2001b)

in that the example followed in the study yielded parameter estimates for the dropout

model that present different signs for current and previous observations indicating

the relationships between incremental changes and the probability of dropping out.

The results further suggested that there is an evidence in favour of the prevalence

of an MAR process rather than an MCAR process in the context of the assumed
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model. However, Verbeke and Molenberghs (2000), Molenberghs and Verbeke (2005)

and Diggle and Kenward (1994) advise one to take care in interpreting the evidence

for such conclusions using only the data under analysis.

On the other hand, when all the other modelling assumptions can be guaranteed

to hold, the use of the LRT, in a well-defined sense, is inappropriate for hypothesis

test for MNAR versus MAR (Jansen et al., 2006a). This is certainly true for the

model based on Diggle and Kenward (1994) who investigated the tests of MAR null

hypothesis against MNAR, but it is important to note that their tests are conditional

on the alternative model holding. Kenward (1998) noted that, in practice, such a

distinction (MAR/MNAR) can only be made using untestable modelling assumptions

such as a distributional forms. This problem is really laid bare in Molenberghs et al.

(2008) which showed that for any MNAR model there exists an MAR model that fits

the data equally well, but they differ in the prediction of what is unobserved. Further,

they stated that it is not possible to use the fit of an MNAR model for or against an

MAR model, unless one puts a priori belief in the posited MNAR model. In other

words, as the original MNAR model, the MAR model can give the same estimates of

predictions to the observed data, and depending on the same parameter vector. This

in line with previous study conducted by Gill et al. (1997). Therefore, this problem of

model identifiability can be seen as a complicated issue when considering models for

the dropout mechanism. As Molenberghs and Kenward (2007) stated, one suggestion

is to conduct a sensitivity analysis of the parameter estimates of the longitudinal model

across varying model assumptions about the dropout. Hence, the role of MNAR is in

sensitivity analysis; that is, if the assumptions are changed, the conclusions from the

primary (typically MAR) analysis are also changed, as the nature of sensitivity comes

due to the non-verifiability in the MNAR model from the data. For more discussions

of examination the differences between an MNAR model and its MAR counterpart, we

recommend Molenberghs et al. (2008) and Kenward (1998) articles.

Finally, in line with previous studies, for example, Verbeke and Molenberghs (2000),

Molenberghs and Kenward (2007), Kenward and Molenberghs (1999) and Molenberghs

et al. (2003), the selection model of Diggle and Kenward is viewed as a member of

the sensitivity analysis framework. An alternative approach to modelling incomplete
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longitudinal data under a non-ignorable assumption has frequently been proposed in

the literature are the pattern mixture models (Little, 1993, 1994). There is also what is

known as influence tools to deal with incomplete longitudinal data with non-ignorable

missingness and these are useful for detecting subjects that cause non-ignorable dropout

as well as other subjects that lead to non-random missingness. Hence, in order to assess

sensitivity it is useful to obtain further insight into the data by comparing both the

selection and the pattern mixture models, for instance, see, Kenward and Molenberghs

(1999) and Molenberghs et al. (2003). While it is not the focus of our current study,

sensitivity analysis is an important issue of modelling incomplete longitudinal data

and should be routinely conducted. To this end, special attention should go to the

comparisons between the various sensitivity analysis frameworks.
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Chapter 7

Selection and pattern mixture

models for modelling longitudinal

data with dropout: An application

study∗

7.1 Abstract

Incomplete data is unavoidable in studies that involve data measured or observed

longitudinally on individuals, regardless of how they are well designed. Dropout can

potentially cause serious bias problems in the analysis of longitudinal data. In the

presence of dropout, an appropriate strategy for analyzing such data would require

the definition of a joint model for dropout and measurement processes. This chapter

is primarily concerned with selection and pattern mixture models as modelling frame-

works that could be used for sensitivity analysis to jointly model the distribution for

the dropout process and the longitudinal measurement process. We demonstrate the

application of these models for handling dropout in longitudinal data where the de-

pendent variable is missing across time. We restrict attention to the situation in which

∗ A. Satty and H. Mwambi (Accepted). Selection and pattern mixture models for modelling

longitudinal data with dropout: An application study. International Journal of Biostatistics.

145



outcomes are continuous. The primary objectives are to investigate the potential influ-

ence that dropout might have or exert on the dependent measurement process based

on the considered data as well as to deal with incomplete sequences. We apply the

methods to a data set arising from a serum cholesterol study. The results obtained

from these methods are then compared to help gain additional insight into the serum

cholesterol data and assess sensitivity of the assumptions made. Results showed that

additional confidence in the findings was gained as both models led to similar results

when assessing significant effects, such as marginal treatment effects.

Keywords: Identifying restrictions, Under-identification, Selection models, Pattern

mixture models, Sensitivity analysis.

7.2 Introduction

In most longitudinal studies where data are collected over a sequence of time points,

missing data are caused by individuals dropping out of the study prior to the time

at which the primary endpoint data would be collected. Missingness for longitudinal

data often occurs as dropout that is a particular case of missing data. Furthermore,

the resulting data obtained from such studies would have a particular type of missing

data pattern; that is, a monotone missingness pattern, in which if an individual has

missing values for a given time, no data can be obtained for all subsequent times for

that individual. In this chapter, our focus will be on this type of missing data pattern.

Other types of missingness patterns are possible, such as intermittent missingness, but

we focus on dropout which occurs most often in longitudinal studies. The mechanisms

that lead to missing data are varied. Rubin (1976) and Little and Rubin (1987) classi-

fied these mechanisms into three possible categories, namely data missing completely

at random, at random, or not at random. For longitudinal data, when data are missed

at random or completely at random, available cases analysis, such as mixed models can

be used. In contrast, when data are missed not at random, then using a standard mixed

model without accounting for the missingness may lead to biased and inconsistent as-

sessment of study results. Standard strategies of analysis currently assess non-random
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dropout by performing sensitivity analysis using analytical methods that incorporate

non-random dropout in longitudinal data with and without a non-random component.

Common families of models for data that are subject to dropout are selection and

pattern mixture models.

Selection and pattern mixture models are two alternative and important approaches

for dealing with longitudinal data when there are dropouts. They make empirically

unverifiable assumptions and require extra constraints to identify the parameter esti-

mates. Both models differ in the way the joint distribution of the measurement and

dropout processes are factorized. However, other models that drive both the measure-

ment process and dropout process, such shared-parameter models by Wu and Carrol

(1988) and Wu and Bailey (1988, 1989) are also available. We restrict ourselves to

the selection and pattern mixture models with dropout that falls under the monotone

missing data pattern. A selection model factors the joint distribution into the marginal

measurement model that describes the distribution of the complete measurements, and

the dropout model that describes the conditional distribution of the dropout indica-

tors, given the observed and unobserved measurements (Diggle and Kenward, 1994).

However, in many discussions, for example, Diggle and Kenward (1994), Verbeke and

Molenberghs (2000) and Molenberghs and Verbeke (2005), the conclusions obtained

from selection models depend on the assumptions made some of which cannot be in-

vestigated from the data under analysis. Early reference to such models is found in

Heckman (1976) in the econometrics area. The use of pattern mixture models, on

the other hand, was originally proposed by Little (1993, 1994) as a viable alternative

to selection models. In this approach, models are under-identified; that is, for each

dropout pattern the observed data does not provide direct information to identify the

distributions for the incomplete patterns. Therefore, to overcome this problem, Little

(1993, 1994) solves the under-identification problem through the use of identifying re-

strictions. Early applications concerning selection and pattern mixture models can be

found in Marini et al. (1980) and Glynn et al. (1986). Selection and pattern mixture

models are somewhat opposite to each other. That is, these models exploit the con-

ditional probability rule, but they do so in opposite ways. The marginal estimates in

selection models can be derived directly, while pattern mixture models estimate the
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marginal parameters as a weighted average through pattern specific estimates (Little,

1995).

There are several studies in the literature which provide a comprehensive review of

these models. The differences between selection models and pattern mixture models

have been discussed in many works, for example, Glynn et al. (1986) and Little (1993,

1994). Little (1995) also made an important distinction between selection and pattern

mixture models. A comparison of the conclusions based on the selection model with

those based on the pattern mixture models have been discussed in Verbeke et al. (2001)

and Michiels et al. (2002). Molenberghs et al. (1998a) contrast selection and pattern

mixture models. Further discussion of these models can be found in McArdle and

Hamagami (1992), Little and Wang (1996), Hedeker and Gibbons (1997), Hogan and

Laird (1997), Kenward and Molenberghs (1999), Verbeke and Molenberghs (2000),

Molenberghs and Verbeke (2005), Molenberghs and Kenward (2007) and Daniels and

Hogan (2008). However, the approach by Daniels and Hogan (2008) is Bayesian based

which is not the focus of the current study.

This chapter is primarily concerned with two attractive modelling frameworks to ac-

count for non-random dropout, namely selection and pattern mixture models. We

demonstrate the application of selection and pattern mixture models for handling

dropout in longitudinal data where the dependent variable is missing across time. In

particular, we illustrate the application and results of analysis with these models. The

under-identification in pattern mixture models is addressed through identifying restric-

tions, while the use of the selection model is based on Diggle and Kenward’s (1994)

model. We restrict our attention to the situation in which linear models are used and

the outcomes are continuous. The primary objectives are to investigate the potential

influence that dropout might exert on the dependent measurement on the considered

data as well as how to deal with incomplete sequences. We relate the identified re-

strictions estimates using a pattern mixture model framework to their corresponding

estimates using a selection model framework. We apply the methods to a data set

arising from a serum cholesterol study.

Section 7.3 describes the notation and general concepts based on the selection and

pattern mixture models. In Section 7.4, we give a discussion of the two families of
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models that are used in the analysis, namely selection and pattern mixture models.

An application study is provided in Section 7.5 including the description of the serum

cholesterol data to which our methods will be applied. Full analysis and results of

the application is given in Section 7.6. Section 7.7 presents concluding remarks and

discussion.

7.3 Notation and concepts

We introduce modelling incompleteness notation which is largely due to Rubin (1976)

and Little and Rubin (1987). Let yij be the response of interest, for the ith study

subject, where i = 1, ...N , designed to be measured at occasion tj, where j = 1, ..., n. In

other words, the original intention was to have n observations per individual. However,

due to dropout some individuals end up contributing less than n intended observations.

Therefore, generally, we can assume that the ith individual is actually observed ni

times. For subject i and occasion j, define Rij=1, if yij is observed, and 0, if not. We

split yij into two sub-vectors, yoi and ymi , representing those yij for which Rij=1, and

Rij=0, respectively. In addition, suppose the missing data occur due to dropout, then,

the measurements for each subject can be recorded up to a certain time point, after

which all data are unobserved. In this case, a dropout indicator can then be defined as

Di, given by Di = 1 +
∑n

j=1Rij, denoting the occasion at which dropout first occurs.

In modelling a missing data process, it is often necessary to consider a joint model for

the measurement process together with the dropout process. Therefore, we assume the

full data density is given by

f(yi, ri | Xi, Zi, θ, ψ), (7.1)

where Xi denotes the design matrix for fixed effects, Zi denotes the design matrix for

random effects, while θ and ψ represent the vectors of parametrization for the joint

distribution. In considering the above model in expression (7.1), we can factorize this

joint density function in two possible ways that can facilitate modelling. Specifically,

the selection and pattern mixture models mentioned earlier are defined by the condi-

tional factorizations of the joint distribution of Y and R, and both are discussed in

more detail in Little (1995) and stated briefly below. A selection model is based on
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the following factorization

f(yi, ri | Xi, Zi, θ, ψ) = f(yi | Xi, Zi, θ)f(ri | yi, Xi, ψ), (7.2)

where the first factor in the above factorization represents the marginal density of the

measurement process, while the second factor represents the density of the dropout

process, conditional on the measurements. An alternative factorization based on the

pattern mixture models (Little 1993, 1994) is of the form

f(yi, ri | Xi, Zi, θ, ψ) = f(yi | ri, Xi, Zi, θ)f(ri | Xi, ψ). (7.3)

This factorized density (7.3) can be seen as a mixture of the conditional distributions,

and the model for the measurements depends on the particular missing data pattern.

An excellent review of these models is given in Glynn et al. (1986), Little and Rubin

(1987), Little (1993, 1994), Hogan and Laird (1997) and Ekholm and Skinner (1998).

The missing data processes have been developed by Rubin (1976) and Little and Rubin

(1987) through the selection model framework. They make distinctions among different

missing data processes. These processes can be formulated based on the second factor

of model (7.2), i.e,

f(ri | yi, Xi, ψ) = f(ri | yoi , ymi , Xi, ψ). (7.4)

Thus, if the distribution of missingness process is reduced to f(ri | yi, Xi, ψ) =

f(ri, Xi, ψ), i.e., the process is independent of the measurements, then the process

is defined as missing completely at random (MCAR). If the missingness probabil-

ity depends on the observed measurement yoi , but not on the unobserved measure-

ments ymi , i.e, f(ri | yi, Xi, ψ) = f(ri | yoi , Xi, ψ), then the process is termed miss-

ing at random (MAR). Finally, data are missing not at random (MNAR) or ex-

hibiting an informative process, when the missingness probability depends on the

unobserved measurement, ymi , and possibly on the observed measurement, yoi , i.e.,

f(ri | yi, Xi, ψ) = f(ri | yoi , ymi , Xi, ψ). In other words, an informative process in

expression (7.4) cannot be reduced.
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7.4 Selection and pattern mixture models for mod-

elling dropout

We consider the comparison between the selection and pattern mixture models con-

cerning the significant characteristics, such as marginal treatment effects since such

a comparison is a useful form of a sensitivity analysis. Specifically, we are interested

in parametric selection and pattern-mixture models for modelling dropout. In the

following, we briefly review these models.

7.4.1 Selection models for dropout

As mentioned above, a selection model factors the joint distribution into two parts:

the marginal measurement model that describes the distribution of the complete mea-

surements and the missingness model that describes the conditional distribution of

the response indicators given the observed and unobserved measurements. In other

words, in a selection model, we first specify a distribution for the measurement, then

propose a manner in which the probability of being observed depends on the data. For

continuous outcomes, using a selection model formulation as in equation (7.2), Diggle

and Kenward (1994) combine the multivariate Gaussian linear model together with

the dropout model. Similarly, we consider the measurement model to be of the linear

mixed effects model (Laird and Ware, 1982). Recall that yij is the response of interest

for the ith study subject, where i = 1, ...N , at time point j, where j = 1, ..., ni. More

generally, the model for yi the (ni × 1) vector of responses for the ith subject can be

written as

yi = Xiβ + Zibi + εi, (7.5)

where Xi and Zi are known (ni× p) and (ni× q) design matrices for fixed and random

effects, respectively, β is the (p × 1) vector of fixed effects, bi is the (q × 1) vector

of the random effects distributed as N(0, G), εi is the (ni × 1) vector of the residual

components distributed independently as N(0,Σi), G is the general (q × q) covari-

ance matrix with (i, j)th element dij = dji and Σi is the (ni × ni) error covariance

matrix. Then, marginally, the responses yi are distributed as independent normal
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yi ∼ N(Xiβ, ZiGZ
′
i +Σi). Here, Σi = σ2Hi+ τ 2I, where σ2 denotes the variance of the

serially correlated process, Hi = (hjk) = (ρ(tj, tk)) denotes the associated correlation

matrix, τ 2 pertains to the measurement error variability and I is a (ni × ni) identity

matrix.

We assume the missingness is due to dropout only, and that the first measurement

yi1 is observed for each individual. Again, recall that Di was defined as the dropout

indicator which denote the occasion at which dropout first occurs. Now, let Di = di

identify the dropout time for subject i, whereDi = n+1, if the sequence of measurement

is complete. Therefore, the selection models introduced in equation (7.2) arise when

the joint likelihood of the measurement and dropout processes is factorized as following

f(yi, Di | Xi, Zi, θ, ψ) = f(yi, | Xi, Zi, θ)f(di | yi, ψ).

The model for dropout process is based on a logistic regression for the probability

of dropout at occasion j, given the subject was still in the study at the previous

occasion. Let gi(yij, hij) denote this probability, where hij represent the history of the

measurement process. Thus, one can assume that gi(yij, hij) satisfies the model

logit[g(hij, yij)] = logit[p(Di = j | Di ≥ j, hij, yij)] = η(hij, yij), (7.6)

where η(hij, yij) is the linear predictor depending on hij and yij. Modelling the dropout

mechanism may be simplified in the expression in equation (7.6) by assuming η(hij, yij)

depends only on the current measurement and the previous measurement yij−1, but

not on future measurements or higher order history, with corresponding regression

coefficients, ψ1 and ψ2. Dependence on future unobserved measurements is not easy to

justify therefore it is not modelled here. Higher order history can be included, but we

assume first order history for simplicity. This leads to the following logistic expression

logit[g(yi,j−1, yij)] = logit[p(Di = j | yi,j−1, yij)] = ψ0 + ψ1yi,j−1 + ψ2yij. (7.7)

Note that the linear predictor in equation (7.7) may depend on other covariates but in

the current model we only include the constant ψ0. According to Little and Rubin’s

(1987) terminology introduced in the previous section, and based on the expression in

equation (7.7), it is clear that when both parameters ψ1 and ψ2 are equal to 0, the
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dropout mechanism should be MCAR. However, when ψ1 is not equal to 0, but ψ2

equal to 0, the dropout mechanism is referred to as MAR, and finally, when ψ2 is not

equal to 0, dropout mechanism is referred to as MNAR. Here, we note that a likelihood

ratio test (LRT) can be used to compare model fit under a model that assumes the

missing data due to dropout are MCAR versus MAR (Diggle and Kenward, 1994). The

LRT test statistic follows a null asymptotic χ2
1 distribution. See, Diggle and Kenward

(1994) and Molenberghs et al. (1997) for details on the derivation of this statistic.

When the LRT test statistic is significant, then it suggests that the least restrictive

of the two models is preferred; that is, the model that assumes the dropout is MAR.

However, based on the argument of Jansen et al. (2006), we restate that the test

for MAR against MNAR is not recommended using the LRT statistic via a model

based on the Diggle and Kenward’s (1994) type. This is because the behavior of the

LRT statistic for the MNAR parameter ψ2 is non-standard since the availability of the

information on ψ2 is very rare and interwoven with other features of both measurement

and dropout models (Jansen et al., 2006). This is specially true when one considers the

model based on Diggle and Kenward type, but it is important to realize that their tests

are conditional on the alternative model holding. According to Kenward (1998), such

a distinction, between a MAR mechanism or a MNAR mechanism, can only be made

using untestable modeling assumptions, such as the distributional form. Molenberghs

and Kenward (2007) stated that the assumption giving arise to the dropout in a sample

cannot be verified by the observed measurements and any test regarding the dropout

process can be invalidated. This can be justified by the fact that parameters of the

dropout model are dependent in part on dropout. Furthermore, unless one puts a priori

belief in the posited MNAR model, the distinction (MAR/MNAR) is not possible, due

to the fact that for any dropout model that assumes dropout are MNAR, there is a

MAR model that provides exactly the same fit to the data, but the two models differ in

the prediction of what is unobserved (Molenberghs et al., 2008). This problem of model

identifiability poses a major complication when considering models for the dropout

mechanism. Thus, one recommendation is to conduct a sensitivity analysis of the

parameters of the measurement model across models that make different assumptions

about the dropout process (see, Molenberghs and Kenward, 2007). Therefore, although
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the dropout process cannot be known via empirical examination, the analysis can be

carried out to study differences in parameters estimates of the measurement process

across varying assumptions about the dropout.

7.4.2 Pattern mixture models for dropout

Now, we shift our attention to the pattern mixture models that stratify subjects

according to their missingness pattern. Under these models, the thinking is that, a

separate model is fit for each pattern and then the results can be combined across

the different patterns in order to derive an average estimate of the model parameters.

Thus, in these models the joint distribution of the longitudinal measurements as well as

the missing data indicators is divided into response pattern so that the distribution of

the longitudinal measurements depends on the pattern of responses. As mentioned ear-

lier, pattern mixture models are under-identified, or possess non-estimable parameters.

Therefore, some identifying constraints are required. Little (1993, 1994) proposed the

use of the identifying restrictions in which inestimable parameters of the incomplete

patterns are set equal to (functions of) the parameters describing the distribution of

the completers to deal with under-identifiability of these models. In fact, there is an

alternative major strategy simplified to deal with the under-identifiability of pattern

mixture models, called model specification in which the different pattern allows for

sharing of certain parameters so that the missing pattern can borrow information from

patterns with more data points (Verbeke and Molenberghs, 2000). The advantage of

this strategy is that the number of parameters decreases which is in general an issue

with pattern mixture models. Detailed strategies of pattern mixture modelling are

given in Verbeke and Moleberghs (2000), Molenberghs et al. (2003) and Molenberghs

and Kenward (2007).

Our primary concern in this study is to apply a pattern mixture model including the

identifying restriction strategy. In doing so, we follow Verbeke and Molenberghs (2000)

in illustrating the use of this strategy based on the results obtained by Molenberghs

et al. (1998b). We are restricting attention to dropout which is a special case of

monotone missingness. Let us assume that there are t = 1, ..., T dropout patterns,
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where the dropout indicator, introduced in Section 2, is d = t+ 1. The complete data

density, for pattern t, can be expressed as

ft(y1, ..., yT ) = ft(y1, ..., yt)ft(yt+1, ..., yT | y1, ..., yt). (7.8)

It is clear from equation (7.8) that the first factor ft(y1, ..., yt) is identified from the

observed data assuming the first factor is known, and modeled using the observed

data. Whereas the second factor is not identifiable from the observed data. In order

to identify the second component, the identifying restriction can be applied (Verbeke

and Molenberghs, 2000). It is often necessary to base identification on all patterns for

which a given component is identified. We denote this component by ys. Thus, this

can be described as

ft(ys | y1, ..., ys−1) =
T∑
j=s

ωsjfj(ys | y1, ...ys−1), s = t+ 1, ..., T. (7.9)

We denote the set of ωsj used by the vector ωs, components of which are typically

non-negative. Every ωs that sums to 1 provides a valid identification scheme. Hence,

by incorporating equation (7.9) into (7.8), we have

ft(y1, ..., yT ) = ft(y1, ..., yt)
T−t−1∏
s=0

[
T∑

j=T−s

ωT−s,jfj(yT−s | y1, ..., yT−s−1)

]
(7.10)

To establish the complete data density, it is clear in equation (7.10) whose information

can be used to complement the observed data density in pattern t. There are three sets

of identifying restrictions associated with such choices of ωs. Complete case missing

values (CCMV) that were proposed by Little (1993) use the following identification

ft(ys | y1, ..., ys−1) = fT (ys | y1, ..., ys−1), s = t+ 1, ..., T,

corresponding to ωsT = 1 and all others equal 0, which is to say that identification

is always done from the completers’s pattern. Alternative restrictions are based on

so called neighboring case missing values (NCMV). In these restrictions, the nearest

identified pattern can be used as follows

ft(ys | y1, ..., ys−1) = fs(ys | y1, ..., ys−1), s = t+ 1, ..., T.
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The NCMV restriction follows from setting ωs = 1 and all others equal 0. Finally, the

third case for equation (7.10) is the available case missing values (ACMV). With regard

to the corresponding ωs for ACMV, there always is a unique choice. Molenberghs et

al. (1998b) show that the corresponding ωs can have the following components

ωsj =
αjfj(y1, ..., ys−1)∑T
`=s α`f`(y1, ..., ys−1)

, j = s, ..., T, (7.11)

where αj is the fraction of observations in pattern j. Clearly, ωsj defined by (7.11)

contains positive components and sum to 1. That is, a valid density function is defined.

The selection and pattern mixture families can be connected using this MAR-ACMV

link. The ACMV is reserved for a counterpart of MAR in the pattern mixture setting.

A specific counterpart to MNAR selection models has been studied by Kenward et al.

(2003).

7.5 Application to the NCGS data

7.5.1 The data

In this section, we describe the application of the selection and pattern mixtures

models to data from the National Cooperative Gallstone Study (NCGS). Further back-

ground details of this experiment are given in Schoenfield and Lachin (1981) and in its

accompanying discussion. In this study, 103 patients were randomly assigned to three

treatment groups corresponding to two doses; that is, high-dose (750 mg per day), low-

dose (375 mg per day) and placebo, and were to be treated for four weeks. The current

analysis is based on a subset of the data on patients who had floating gallstones and

who were assigned to the high-dose and placebo groups. In the NCGS it was suggested

that chenodiol would dissolve gallstones but in doing so might increase levels of serum

cholesterol. As a result, serum cholesterol (mg/dL) was measured at baseline and at

6, 12, 20 and 24 weeks of follow-up. In this experiment, many cholesterol measure-

ments contain missing values because of missed visits, laboratory specimens were lost

or inadequate, or patient follow-up was terminated. In addition, all subjects have ob-

served values at time 6. One group of individuals received study treatment (drug and
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placebo), but dropped out of the study before the scheduled post-baseline time. These

individuals dropped out of the study at time point 12. However, other individuals

dropped out of the study either at time point 20 or 24. Therefore, the data presents

three possible dropout patterns (dropout at time points 12, 20, or 24). All 103 patients

are observed at the first occasion, whereas there are 93, 78 and 67 patients seen at the

second, third and fourth weeks, respectively. The percentage of patients that are still

in the study after each week is tabulated in Table 7.1 by treatment arm. Figure 7.1

Table 7.1: NCGS data: Percentage of patients still in study, by treatment arm

(Drug=high-dose (750 mg per day))

week drug placebo

6 100 100

12 45 62

20 57 63

24 46 69

represents the means across weeks by treatment group. A primary objective of this

trial was to study the safety of the drug chenodiol for the treatment of cholesterol gall-

stones. In what follows, we restrict our attention to examination of more than just this

association between treatment and cholesterol. That is, we investigate the potential

influence of dropout on the outcome of interest, the serum cholesterol, as well as the

interactive effect of dropout with week and treatment-related influences on the serum

cholesterol. The focus here will be on the parameter estimates, standard errors and

p-values.

7.5.2 Fitting selection model

First, we consider fitting the selection model. In line with Diggle and Kenward

(1994), we fit the selection models to the serum cholesterol data by combining the mea-

surement model with the logistic regression for dropout model. The combined model

for measurement/dropout will be fitted to the serum cholesterol by maximum likelihood

using a generic function maximization routine. We use the linear mixed effects model
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Figure 7.1: Serum cholesterol data. Means across weeks by treatment

of the form in Equation (7.5) in order to obtain initial values for the parameters of the

measurement model. In the fitted model, we assume different intercepts and treatment

effects for each of the four time points, with a (4×4) unstructured variance-covariance

matrix. Specifically, we consider a multivariate normal model, with unconstrained time

trend under placebo and an occasion-specific treatment effect. Since serum cholesterol

data consist of 103 subjects (i=1,...,103) on four time points (j=6, 12, 20 and 24), the

model can be written as

Yij = βj1 + βj2Gi + εij, (7.12)

where Gi = 0 for placebo and G1 = 1 for active drug. In this way, the parameter

estimates and standard errors as well as p-values for the eight mean model parameters

can be obtained. To fit this model, we use SAS procedure MIXED with REPEATED

statement. Next, we consider the dropout model. The dropout will be allowed to be

independent of covariates. We fit the model with an intercept, an effect for previ-

ous outcome and an effect for the current unobserved measurement, corresponding to

MCAR, MAR and MNAR, respectively. Dependence on future unobserved measure-

ments is theoretically possible, but for simplicity, we model dependence on the current

unobserved measurements. The probability of serum cholesterol is assumed to follow

the logistic regression model (a commonly used model for dropout process, see, Molen-

berghs and Verbeke, 2005) in Equation (7.7). Therefore, the logistic regression model
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consists of three parameters; that is, an intercept (ψ0), the effect of the measurement

prior to dropout (ψ1) and the effect of the measurement at the time of dropout (ψ2).

Consequently, for the four time points j=6, 12, 20 and 24, the model can be expressed

as follows

logit[g(yij−1, yij)] = logit[p(Di = j | yij−1, yij)] = ψ0+ψ1yij−1+ψ2yij, j = 6, 12, 20, 24.

(7.13)

Estimation of a selection model for MNAR can be seen as major complication as

the dropout indicators depend on the unobserved measurement. For example, in the

selection model mentioned above, the dropout indicators depend in part on the unob-

served longitudinal measurements at the time of dropout. This leads to complexity in

assessing the likelihood function, however, one that can be handled (Diggle and Ken-

ward, 1994). Virtually, the parameters were estimated using a code written in SAS

provided by Dmitrienko et al. (2005) that maximizes the log-likelihood for the model

using PROC IML.

7.5.3 Fitting pattern mixture models

Now, we turn our attention to fitting the pattern mixture models using the strategy

outlined in Section 7.4, making CCMV, NCMV and ACMV identifying restrictions. To

fit pattern mixture models through identifying restrictions, three steps in the analysis

procedure are needed (for details of implementation, see Molenberghs and Kenward,

2007).

Step 1: Fit the initial model to the observed data within each of the patterns:

ft(y1, ..., yt), (7.14)

where t = 1, ..., T indicate the observed dropout times in the data set. In this step, we

fit a separate model within each pattern, then the resulting parameter estimates and

their estimated variance-covariance matrices were used to extrapolate the patterns.

Step 2: Select an identification scheme to determine the conditional distributions of

the unobserved measurements, given the observed ones

ft(yt+1, ..., yT | y1, ..., yt). (7.15)
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As stated earlier, each of such conditional distributions is a mixture of known normal

densities for continuous repeated measures. According to the weights ws introduced

in Equation (7.9), an easy way to simulate values from the mixture distribution is

to randomly select a component of the mixture and then draw from it. In this re-

gard, we choose an identifying restriction, mentioned earlier, to define the conditional

distributions of the unobserved measurements, conditional upon the observed ones.

Step 3: Fit a model to the so-augmented data. Multiple imputation (MI) can be used

to fit such models by aiding to draw values for the unobserved components, conditional

upon the observed outcomes and correct pattern-specific density in model (7.15). Here,

we notice that MI is a technique that imputes the dropouts multiple times in order to

construct multiple complete data sets. For more detail of this technique, we recommend

Rubin’s (1987) book. Analytically, MI involves three steps, imputation, analysis and

combination. Thus, the identifying step corresponds to the so-called imputation step,

and the final model corresponds to the analysis step.

Step 4: The combination step, is where the inferences from a number of imputations

are drawn together and combined into a single one. The goal being to pool the sim-

plicity of imputation strategies, without bias in both point estimates and measures

of precision. After applying each of the three restrictions, as above introduced, the

same model as before being fitted (7.12) is analyzed. The model is parameterized as

follows: different intercepts and treatment effects for each of the four time points, with

(4 × 4) unstructured covariance matrix for each pattern. The number of imputations

(M) must be decided. The established advice by Rubin (1987) is that the number

of imputations can generally be constrained to fewer than 10 under most realistic cir-

cumstances. Also, many researches tend to support Rubin’s (1987) results (Schafer,

1999). We draw multiple imputations 5 times, since a small number of imputed data

sets (typically 5) can be substantial enough to materially affect conclusions (Schafer,

1999). In addition, Schafer and Olsen (1998) recommended the use of M=5 before

the results are combined. Thus the option M=5 gives the desired relative efficiency

in estimating the parameters for the analysis model (7.12). In this way, we ended up

with totally five multiply-imputed data sets for each choice of identifying restriction

strategy which can be analysed using several possible models. Once the imputations
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have been generated, the final analysis model from each completed data sets is fitted

and MI inference conducted. The parameter and precision estimates can be obtained

using classical MI machinery. In particular, the asymptotic covariance matrix of the

form

V = W +

(
M + 1

M

)
B, (7.16)

whereW denotes the average within-imputation variance andB the between-imputation

variance (Rubin, 1987). The analysis of identifying restrictions, fitting of imputed data,

and a combination of the results into a single inference was implemented using the SAS

macro. This SAS macro dealt with the analysis of the three types of identifying restric-

tions as follows. First, fit the linear mixed model per pattern using SORT and MIXED

procedures. Second, complete the data using ACMV, CCMV and NCMV restrictions.

This is done by using IML and MI procedures. Third, analyze the 5 completed data

sets using a linear-mixed model using PROC MIXED. Fourth, combine the results from

the 5 analyzed models using PROC MIANALYZE.

7.6 Results

Table 7.2 shows the parameter estimates, standard errors and p-values of the fixed

effects for the selection model, including the eight mean model parameters, all into the

marginal measurement model as well as in the logistic dropout model. Interestingly, the

comparison of the MCAR and MAR produces the same results when compared to those

of the ignorable analysis, except for negligible differences, as seen in the standard errors.

These results are in line with theoretical findings, see, for example, Molenberghs and

Kenward (2007). In the context of the assumed model, when examining the statistical

significance of the results in the dropout model, the LRT test statistic for comparing

the MAR and MCAR models is 17.1. The corresponding tail probability from χ2 on

1 degree of freedom is p < 0.001 which is significant. This indicates that there is a

significant evidence for MAR. In other words, dropout completely at random can be

ruled out in the context of the assumed model. However, great care has to be taken

with such a conclusion (Molenberghs et al., 1997; Molenberghs and Verbeke, 2005). To

assess the mechanism that the dropout are MNAR, a problem occurs in that neither
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an LRT statistic between the models that assume the dropout is MAR against MNAR

nor an assessment of ψ2 relative to its standard error is reliable (Jansen et al., 2006a).

Consequently, it is not possible to verify the mechanism that the dropout is MNAR

(see, Molenberghs, et al., 2008). One of our interests lies in the marginal treatment

effect. There is no overall treatment effect and p-values between the three models

do not vary too much. However, the situation is different for the occasion-specific

treatment effects considered here. For all weeks, all four p-values for the treatment

effects indicate non-significance, whereas for all cases the p-values are certainly highly

significance (p < 0.0001) for all intercepts. Now, we discuss factors which influence

dropout. In doing so, in the full selection models, the logistic regression for dropout

is modelled based on (7.13). As can be seen in Table 7.2, the maximum likelihood

estimates for ψ1 (0.04) and ψ2 (-0.16) are not necessarily equal, however, their signs

are different. This finding is not surprising. It confirms the argument put forward by

Molenberghs et al. (2001a). They pointed out that since two subsequent measurements

are usually positively correlated, the dropout model can depend on the increment, i.e.,

yij − yi,j−1. The dropout estimated from the MNAR model is as follows

logit[p(Di = j | yij−1, yij)] = −1.64− 0.12yi,j−1 − 0.16(yij − yi,j−1). (7.17)

However, some insight into this fitted model can be obtained by the re-parameterizing

the dropout parameters with respect to increment and the sum of the successive mea-

surements. Therefore, we re-parameterize the dropout probabilities from the dropout

model as in Equation (7.13) to obtain

logit[p(Di = j | yij−1, yij)] = ϑ0 +ϑ1(yi,j +yi,j−1)+ϑ2(yij−yi,j−1), j = 6, 12, 20, 24.

(7.18)

Here, ϑ1 = (ψ1 +ψ2)/2 and ϑ2 = (ψ1−ψ2)/2. These parameters represent dependence

on level and increment in the serum cholesterol, and these quantities are likely to be

much less strongly correlated than are yij and yi,j−1. Rewriting the fitted MNAR model

as in Equation (7.18),

logit[p(Di = j | yij−1, yij)] = −1.64− 0.06(yi,j + yi,j−1) + 0.10(yij − yi,j−1), (7.19)

suggests that the probability of dropout increases with larger negative increments. In
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other words, those patients with a greater increase in the overall level of the serum

cholesterol from the previous week have a higher probability of dropping out of the

experiment.

Turning to the pattern mixture model, the results of the three types of identifying

restrictions are listed in Table 7.3. Examining these results we see that the estimates

for the corresponding parameters are comparable and their numerical values are in-

deed very close to each other under the three possible restrictions, namely ACMV,

CCMV and NCMV. It can be seen from the analysis that the association p-values for

the marginal effect assessments are all nonsignificant, their p-values being all greater

than 0.05. However, the association p-values for the intercepts are highly significant

(p < 0.0001), in line with the p-values obtained from the selection model analysis. In

summary, no significant treatment effect is obtained. These findings confirm those ob-

tained from the selection model formulation which gives more weight to this conclusion.

These results can be justified by the fact that pattern mixture models using identifying

restrictions play a very similar role to the modelling assumptions in the selection model

case (Michiels et al., 1999). Furthermore, the parameter estimates and standard errors

for the first marginal effect are equal for all the three restrictions CCMV, NCMV and

ACMV, see the effects for intercept6 and treatment6. Such results should be expected

considering the fact that the first outcome contained observed data for all subjects that

were considered in the analysis.

As shown in the results in Table 7.3, the model building using CCMV, NCMV

and ACMV restrictions in contrast to selection model did not allow an estimation of

whether the dropout process is MNAR or not, because of differences in the modelling

assumptions. This agrees with previous studies (see, for example, Molenberghs et al.,

1998b), in that the identifying restrictions in a pattern mixture models context can

be used only to relate the model to a MAR mechanism. Consequently, an important

issue is to equate results for both the ACMV and MAR to make a clear and useful

connection between the selection model and the pattern mixture model frameworks

(Verebeke and Molenberghs, 2000; Kenward et al., 2003). With this in mind, the

same is true for the selection model, MAR-based ACMV restrictions indicating non-

significant treatment effects at all weeks. This result means that the treatment effects
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appear to be independent of the ACMV (MAR) assumption. Although corresponding

models include the same effects, the estimates for ACMV are slightly different to those

for MAR. These slight differences are to be expected as argued in Kenward et al.

(2003) that both models are similar in spirit but not necessarily identical. On the

other hand, the parameter estimates and standard errors for the treatment effects

obtained by applying NCMV are smaller than those of CCMV and ACMV as seen in

some cases. This is to be expected as somewhat CCMV and ACMV pattern mixture

models use data from different patterns to multiply impute new values, whereas in

NCMV, pattern mixture models take information from the neighboring case patterns

only. Further, ACMV and CCMV estimates are closer to each other since many more

completers are available than does NCMV. Therefore, additional variability may be

introduced because, depending on the nature of the conditional distributions sampled

from, data have been borrowed from more distant patterns.

7.7 Discussion and conclusion

In this study, we demonstrated the application of two families of models for analyzing

incomplete longitudinal data, where the dependent variable is missing across time. In

particular, we illustrated the application and compared results of analysis using these

models. We focused on the situation in which outcomes are continuous. The models

that were considered were the selection model and the pattern mixture model. Many

authors have recommended fitting both families of models to be able to gain extra

insight into the data to assess sensitivity to the modelling assumptions and to assess

the extent of agreement in results as well (see, Molenberghs and Verbeke, 2005). The

study focused on the specific cases of selection model and pattern mixture models;

that is, a Diggle and Kenward’s (1994) model and an identifying restrictions strategy

(Little, 1993, 1994), respectively. In applying the selection model, we used logistic

regression for modelling dropout, however, a number of other probabilities can be used,

for example, using survival analysis techniques, the length of duration on treatment

or placebo before dropout can also be modelled. However, in this study, the survival

model for dropout cannot be used because the time to event (dropout) is not exactly
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determined by design. For example, if someone is not seen at week 12, the exact time to

dropout could theoretically be any time between week 6 and 12. The objective was to

investigate the potential influence that dropout might have or exert on the dependent

measurement on the considered data and to deal with incomplete sequences. The

results from the pattern mixture models were analogous to those from the selection

model to obtain additional insights into the serum cholesterol data. The application

was based on an example from a longitudinal clinical trial data.

Findings in general suggested that the conclusion obtained under both modelling

frameworks practically coincide. Thus, one can put more confidence in these results

as argued by many authors. For example, Michiels et al. (1999, 2002) have argued

that greater confidence in a conclusion can be reached when the analysis of joint appli-

cations of these models leads to essentially similar inference. Both families of models

were compared and noticeable similarities in results were found. Hence, this begs the

question as how, depending on the scientific question of interest such as conditional

measurement probabilities, to choose between them. Michiels et al. (1999) argued that

the selection model can be recommended as a natural choice when the interest is in

the population as a whole, i.e., marginal effects. Whereas, pattern mixture models can

be considered, when investigating the differences between subgroups that are identified

by their measurement patterns, i.e., pattern-specific.

The selection models suggested that the dropout mechanisms were not completely

at random. In other words, in the context of the assumed model, there was a lot

of evidence in favour of the prevalence of an MAR rather than an MCAR dropout

process. However, many authors, Diggle and Kenward (1994) and Molenberghs and

Verbeke (2005) for example, stated that careful consideration is necessary with such a

conclusion when using only the data under analysis. A problem arises for dealing with

dropout that are MNAR. Given this problem in a longitudinal study, it is important to

realize that this assumption gives rise to the dropout that is not likely to be known in

the application setting. Therefore, any of the different proposed application methods to

address dropout that are MNAR cannot easily be verified. For example, one often does

not know if the dropout process is accurately captured by a particular method used.

Molenberghs and Kenward (2007) suggested that one should apply several approaches
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to the same data problem. This is the case when the sensitivity of parameters esti-

mates to the different mechanisms about the dropout process may be investigated, for

example, by applying models that allow for the dropout to be MNAR. According to Xu

and Blozis (2011), if parameter estimates are comparable under different methods, this

can indicate that the dropout process may be ignored. However, if different methods

give different parameters estimates of the longitudinal model, this can indicate that

the dropout process is a vital element for the description of the data in the analysis.

The structure of the selection dropout model adopted that dropout increases with

a unit change in the serum cholesterol; that is, the dropout is related to the larger

negative increments (yij − yi,j−1) rather than to any actual observation (yij + yi,j−1),

which implies that patients with a greater decrease in the overall level of the serum

cholesterol from the previous week have a higher probability of dropping out of the

experiment. This situation is very common in practice within a model of the Diggle

and Kenward type, and we refer to Molenberghs and Kenward (2007), Diggle and

Kenward (1994) and Molenberghs et al. (1997) as examples. Under the modeling

scheme applied in this study, it can be seen from the analysis that the treatment effects

over all weeks under all ACMV, CCMV and NCMV restrictions were non-significant,

and the same is true for the selection model analysis. Therefore, it is clear that there is

a strong evidence for no significant treatment in the context of serum cholesterol data.

It appeared that the non-significant treatment effects were not conditional upon any

dropout mechanism holding. As a result, the conclusions obtained from CCMV, NCMV

and NCMV restrictions did not differ considerably. As argued in Molenberghs et al.

(2008), the choice between them is not always clear. Although they fit the observed

data equally well, the difference between them only becomes clear with respect to

estimation of the missing data, conditional upon the observed data.

On the other hand, the use of different models in which the data were analysed,

can be considered as a sensitivity analysis. In particular, the use of pattern mixture

models including identifying restrictions can be seen as a first tool for assessing the

sensitivity of the assumptions made. Further, other more complex or flexible sensitivity

analysis are also possible, under new models for the probability of dropout. The

analysis conducted here is a typical sensitivity analysis as the serum cholesterol data
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were analyzed using different assumptions concerning the longitudinal measurements

and dropout mechanisms. In particular, both models compared well concerning some

aspects, for example, marginal treatment effects. Such comparisons as these can play a

vital role in sensitivity analysis by providing additional motivation, for example, when

considering the choice between selection and pattern mixture models. In conclusion,

because the true model and measurement process as well as dropout process are often

unverifiable, the recommendation that in many settings, multiple strategies or models

such as selection and pattern mixture models be applied to the same data set in order

to investigate the impact of assumption on dropout or missingness is supported.
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Chapter 8

Conclusions and recommendations

for future work

8.1 Summary and conclusions

This thesis discussed some of the key modelling strategies and basic issues in statis-

tical data analysis to address the missing data problem. The study dealt with both the

problem of missing covariates and missing outcomes. The main focus of this thesis was

on missing data with a monotone pattern. The different methodologies presented in

this thesis have been considered to highlight two ways. On the one hand, Chapters 2, 3,

4 and 5 served to demonstrate comparison of existing approaches providing useful and

important information regarding their applications. Chapters 6 and 7, on the other

hand, provided techniques that might serve as tools in the context of a sensitivity anal-

ysis thereby broadening the possibilities under such. The thesis has been divided into

two parts. The first part placed strong emphasis on ignorable missingness area which is

often used synonymously with MCAR and MAR. In principle, the MCAR assumption

is too strong to generally hold (Molenberghs and Kenward, 2007). In this regard, the

scope of the first part was limited to MAR missingness rather than the much stronger

assumption, MCAR. This was not intended to be an extensive investigation including

conventional methods, such as deletion methods which are valid under MCAR. Rather,

the discussion paid attention to modern procedures that can be useful at least under
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most circumstances in missing data analysis. The aim of this part was to investigate

various modelling techniques using application studies, and to specify the most appro-

priate techniques as well as gain insight into the appropriateness of these techniques for

handling incomplete data. The second part focused on MNAR modelling that can be

used to deal with the change over time in the outcome score and factors that influence

this change in modelling incomplete longitudinal data with continuous outcomes. The

aim of the second part was to deal with non-random dropout by explicitly modelling

the assumption that caused the dropout and incorporated this additional model into

the model for the measurement data, and to assess the sensitivity of the modelling

assumptions. What follows is a brief overview of the resulting conclusions from the

pertinent chapters.

The focus of Chapter 2 of this thesis was on the comparison of various techniques

for the imputation of missing covariates with monotone missingness to estimate re-

gression parameters. The imputation methods investigated were: Markov chain monte

carlo (MCMC), regression, propensity score (PS) and last observation carried forward

(LOCF). The results of the regression analysis of the imputed models by these impu-

tation routines were assessed not only with respect to resulting estimates for the pre-

scribed model, but also in terms of the imputation bias, efficiency and coverage. The

application study was carried out under different missing data rates. The missing data

mechanism was assumed to be MAR and the missingness was imposed only on covari-

ates. A concise conclusion of this chapter is that we have universally best methods to

deal with missing covariates in estimating regression parameters with monotone miss-

ingness. From the results, it appeared that either the MCMC or regression methods of

imputation for estimating regression models with monotone missingness are preferable

to the PS method which is a non-parametric technique, and the LOCF method which

is a single imputation technique. Further, the performance of these methods seemed to

be independent of the amount of missing data rates as well as the amount of variability

in the covariates.

The work in Chapter 3 dealt with missing data on the outcome or response variable

showed that MI is the best approach when compared to IPW with regard to handling or

modelling incomplete longitudinal data subject to dropout with continuous outcomes.
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Generated missing data were used to investigate the performance of these methods,

and the dropout assumed to depend on observed responses. This application study

was carried out under different dropout rates and focused on a monotone missing

data pattern. The techniques were assessed in terms of the statistical measures that

focussed on bias and efficiency. The results corresponding to MI were compared to those

based on the IPW. The results were also compared with those obtained from linear

mixed model analysis (LMM) since LMM is appropriate for dropout under MAR. This

was done so that LMM results could be reference against which MI and IPW were

contrasted. The results showed that MI should be the method of choice since it has

good properties regarding statistical validity, bias and efficiency. In addition, it became

clear that the IPW method does not always produce the best results, even though the

mechanism of dropout is MAR, unless it is used in the context of marginal models for

discrete outcomes.

Chapter 4 was concerned with comparing the two techniques applied to incomplete

Gaussian longitudinal data with MAR dropouts, namely direct likelihood and multiple

imputation (MI) methods. For comparison, an application study was conducted under

10%, 15% and 20% dropout rates. The MAR dropout was generated from the complete

original data. Furthermore, the results from the multiple imputation (MI) and direct

likelihood analysis were analogous to those from the complete data. Overall, both

methods offered acceptable performance and yielded similar conclusions. The chapter

recommended MI and direct likelihood analysis as a solution for handling incomplete

Gaussian longitudinal data due to ignorable dropout. Despite MI needing more com-

puting effort, and it is that more difficult to implement than direct likelihood analysis,

it greatly improves the results compared to other methods, such as the deletion family

of methods. Furthermore, direct likelihood analysis ignores the missing values and

estimates the model using only observed data, and the software tool used must be able

to deal with more complicated missing data problems.

Up to this point, it has been made clear that inference of the different methodologies

presented in this thesis was heavily based on the continuous outcomes assumption of

normally distributed data. However, Chapter 5 dealt with discrete outcome data with

missing values requiring the use of another distribution apart from the normal distribu-
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tion. The chapter compared and contrasted different statistical methods for analyzing

incomplete non-Gaussian longitudinal outcomes when the underlying study is subject

to dropout. The methods considered included WGEE, MI-GEE and GLMM, repre-

senting different strategies to deal with dropout under MAR. These strategies dealt

with dropouts using different routes: by weighting, by imputation and by analyzing

the data as they were (i.e., without the need to weight or impute, consistent with MAR

assumption) for WGEE, MI-GEE and GLMM, respectively. The chapter aimed to ex-

plore the performance of these methods in terms of handling dropouts that are MAR.

The methods were compared using simulated data sets under several different dropout

rates and sample sizes. The correlated binary variables were generated from a logistic

marginal model. The comparison was made through the evaluation of bias, efficiency

and mean square error. MI-GEE was robust, doing better than all the other methods in

terms of small and large sample sizes, regardless of the dropout rates. In addition, care

is needed when comparing the GLMM estimates to marginal estimates. Appropriate

adjustments need to be applied to GLMM estimates in order to have an approximate

marginal interpretation and to become comparable to their GEE counterparts.

All the above methods did not have the capacity to provide an optimal solution to the

problem of non-ignorable missingness. This kind of missing data can be seen as a major

complication, in particular in the context of longitudinal studies. Selection models in

terms of the analysis of incomplete longitudinal continuous measurements due to non-

ignorable dropout were the subject of Chapter 6. Attention was paid to sensitivity

analysis framework in order to deal with MNAR modelling. A review of MNAR-based

models namely selection models were conducted. For selection models, the use of the

Diggle-Kenward model was also discussed as a tool to assess the sensitivity of a selection

model with regard to modelling assumptions. The fitting of the selection models which

is based on linear mixed model for the measurement process and the logistic regression

for dropout process was outlined. The main aim of this chapter was to investigate the

influence on inference that might be exerted on the considered data by the dropout

process. An application study was carried out using data from a multi-centre clinical

trial. In this work, the Diggle-Kenward analysis code was extended to be able to handle

three treatment arms in contrast to the two arms code commonly used. The conclusions

173



drawn from this chapter were that there was evidence in favour of the prevalence of

an MAR process rather than an MCAR process in the context of the assumed model.

In addition, there is need to subject incomplete data to different families of models for

successful missing data estimation and inference in order to derive more insight into

the data.

Chapter 6 placed emphasis on the influence of the selection models framework on

the dropout mechanisms and can be seen as a first step in the direction of more formal

sensitivity analysis. Selection models in Chapter 6 can be compared to other frame-

works, such as pattern mixture models, since the comparison between different models

using sensitivity analysis can be useful in terms of the performance and reliability

of the final inference. Chapter 7 dealt with two modelling strategies for incomplete

longitudinal data using selection and pattern mixture models and demonstrated their

applications within the sensitivity analysis framework. Both were jointly applied under

certain model assumptions. A selection model based on Diggle-Kenward’s type, and

the pattern mixture models based on the idea of identifying restrictions. The primary

objective in this chapter was to examine the sensitivity analysis of the outcomes of

interest in terms of the assumptions used in the estimation procedures. By contrasting

these two families of models on a single set of data, a range of conclusions were obtained

which provides insight into sensitivity analysis with regard to the assumptions made.

The results of the sensitivity analysis were identical and led to coinciding estimates.

This explained the assurance that the models have an important impact on the overall

study conclusion. Additional confidence was gained in the results of the application

as both models led to similar results in significant characteristics, such as marginal

treatment effects.

8.2 Recommendations for future work

In the context of planning data collection, study designers must think of study or

research designs and data collection strategies that minimize missing data since data

collection plays an important role in the problem of missing data for a specific study.

This means that careful planning can reduce the amount of missing data although

174



there is no rule concerning the level of missing data that can be acceptable. Thus, at

the analysis stage, how to handle the missing data and how to minimize the amount

of missing data are main issues that must be considered when planning and design-

ing a study for data collection. In the presence of missing data or dropout, knowing

the reasons why the data were missing, as well as exploring the missing data pattern

become very important and helpful in choosing the right statistical procedures to ap-

proximate missingness. In fact, there is no universal technique for handling all missing

data situations, however, there are some rules that can be considered. As such, it is

necessary to design a study where the potential pattern of missingness is considered

when specifying the primary analysis.

The scope of this thesis was limited to several modelling techniques with monotone

missing data pattern. However, there is still a considerable amount of research that

needs to be undertaken in the field of missing data. The following recommendations

could serve as an agenda for future work. Most of these aspects have been already

mentioned in the summaries of each chapter.

• Further research could be undertaken to investigate sensitivity analysis since it

is an important issue in modelling incomplete longitudinal data when MNAR

holds and should be routinely conducted. To this end, the main idea should be

to compare the various sensitivity analysis frameworks. While not a focus of

our current study, shared parameter models and local and global influence are

other alternative approaches. In this context, a comparison between different

sensitivity analysis models need further investigation.

• All fitted modelling techniques in this thesis are discussed under assumption

of monotone missing data pattern. Alternative patterns, such as intermittent

missingness pattern, could be an important future research area.

• The inference in this thesis is heavily based on the continuous outcomes assump-

tion of normally distributed data. However, other types of data and the use of

other distributions need to be further explored.

• In the context of identifying restrictions, we restricted our attention to the contin-
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uous data setting. However, an extension of this strategy in the case of categorical

data deserves further research.

• When the missing data are particulary problematic, for example, when it is hard

to specify that at least some of the missing data are not MNAR, sensitivity

analysis that deals with specific types of missing data should be conducted.

• In conclusion, we submit that in the literature review there are several relevant

incomplete data areas which seem to attract very little attention. Some of these

are: identifiability issues for local and global influence techniques, multiple im-

putation for recurrent event data and sensitivity of inference to data transforma-

tions. In addition, a further route for sensitivity analysis should be investigated

particularly the latent-class mixture models which are an extension of the shared

parameter models need further examination as it can serve as another tool for

sensitivity analysis.
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