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ABSTRACT 

Exposure to past stress and trauma during early developmental stages can permanently affect 

the performance and advancements of core systems in humans. Whilst many studies are 

investigating the lasting effects of maternal prenatal stress, there is a paucity of information on 

the long-term effects of paternal prenatal stress. Therefore, the present study sought to 

investigate the effects of parental prenatal stress on the offspring’s psychiatric behaviour, 

particularly the fathers, whether these can be transferred to offspring and a number of 

parameters commonly associated with prenatal stress. Furthermore, we evaluated the effects of 

parental prenatal stress on body weight, feeding behaviour and stress response.  Animals had 

access to food and fluids ad libitum during experimentation and were randomly assigned to 

different groups (n=8 per group). We found that the behavioural and neurochemical 

manifestations in the offspring of prenatally stressed fathers suggest that stressed fathers can 

transfer feelings of anhedonia and social anxiety to their offspring mediated, in part, by 

offspring behavioural changes of depression and social anxiety as well as, a blunted serotonin 

response. Furthermore, when both parents were prenatally stressed their stress effect to their 

offspring’s behavioural and neurochemistry is augmented. This was confirmed by the 

behavioural manifestations of extreme anxiety, depression and social anxiety as well as, the 

subdued serotonin concentration. Additionally, we found that prenatally stressed fathers can 

impact on offspring feeding behaviour and body weight changes mediated, in part, by the 

offspring’s reduced food intake and body weight as well as, a dysregulated corticosterone 

response. Moreover, when both parents were prenatally stressed their stress effect to their 

offspring’s development is intermediary. This was confirmed by metabolic manifestations of 

increased food intake and body weight which may have primarily been accomplished by 

modifying the glucocorticoid system. Therefore, the prenatally stressed fathers decreased the 

offspring’s sociability and increased anhedonia however, they did not transfer their anxiogenic 

behaviour. The prenatally stressed fathers also decreased the offspring’s appetite and as a 

consequence their however, they did not affect the stress response.  
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CHAPTER 1: LITERATURE REVIEW 

Stress is a primary factor in the onset of depression and anxiety [1]. Although several studies 

have shown and discussed the effects that chronic stress can induce neurochemically and 

behaviourally during adulthood, the impact of chronic stress conferred from parent to offspring 

has not been explicitly discussed. In addition, it has not been methodically studied as to which 

parent confers the stress to its offspring.  

 

Therefore, this study used a standard chronic stress animal model to induce symptoms in the 

parental generation and study these effects in the first filial generation. From this, we 

specifically observe if parental stress causes a dysfunction in the offspring stress response and 

metabolism with corresponding neurochemical fluctuations. Furthermore, we investigate if 

parental exposure, specifically paternal exposure, to chronic stress triggers neurochemical 

manifestations and exacerbates the onset of social anxiety, anhedonia and anxiety in the 

offspring. 

 

EPIDEMIOLOGY OF STRESS IN SOUTH AFRICA 

Stress can be described as a common experience that causes feelings of anxiety and frustration 

[2]. In a stressful situation, the body reacts by activating the hypothalamic-pituitary-adrenal 

axis, which stimulates the body’s “fight or flight” reaction [3, 4]. An estimated 50% of adults 

have experienced a traumatic, stressful event in their lifetime, which places a significant burden 

of disease on society [5]. South Africa’s rates of psychiatric morbidity are at a record high due 

in part to the country’s history of violence during the apartheid era [6].  

 

In addition to the remnant physical effects of the apartheid era, such as structural violence, 

inequality, socioeconomic challenges and poverty, citizens continue to be impacted and 

affected by declining mental health and behavioural challenges [6]. The older generations of 

South Africa have further reported memory impairments during their life course, which has 

been linked to chronic psychosocial stress [7]. Epidemiological studies have also shown that 

women are more susceptible to depression [8], stress and post-traumatic stress disorder [9, 10]. 

 

South African data has suggested that one in six citizens experience anxiety, depression, or 

substance abuse, 40% of human immunodeficiency virus patients have a comorbid 
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psychological disorder, 41% of pregnant mothers suffer from depression, approximately 60% 

may be recovering from post-traumatic stress disorder [11]. In light of this, only 27% of South 

Africans with severe psychological conditions acquire therapy [11]. The fact that only 27% of 

South Africans with extreme psychological conditions receive treatment is a sign of the dire 

health system within South Africa. Furthermore, the Life Esidimeni incident reminds us how 

brutal and inhumane the South African mental health systems are [12-15]. A global correction 

is needed, as the lack of mental health institutions and programmes is not unique to South 

Africa but is a universal trend [15]. 

 

A study conducted during the first lockdown period (March 2020) of SARS-CoV-2 showed 

that 33% of South Africans were depressed, 45% were anxious, and 29% were desolate [16]. 

This correlated with  at least 3 million citizens being retrenched within the first four months of 

lockdown [17]. A month after the study was conducted, there were approximately 87,000 cases 

of gender-based violence reported nationally in the first week of lockdown [18].  

 

Evidence has shown that exposure to past stress and trauma during early developmental stages 

can permanently affect the performance and advancements of core systems in humans, 

including the neuroendocrine pathways, neurobiological function, immune system and 

cardiovascular system [6]. Upon encountering a stressor, the body reacts by employing several 

modifications of the normal homeostatic reaction, including regulating the hypothalamic-

pituitary-adrenal  axis [19]. Therefore, the following section discusses in detail the 

pathophysiology of stress.  

 

PATHOPHYSIOLOGY OF STRESS  

Under normal conditions, organisms indulge in the pleasures that drive their species survival, 

growth and development, such as eating and sex. However, in unfavourable conditions, 

activation of the stress response can be linked to melancholy and emotional or physical 

disorders [19]. During a stressed state, the brain redirects its attention to the threat by increasing 

cardiac output, stimulating the respiratory system and catabolism thereby, redirecting blood 

flow to mobilise energy in the direction of the active brain, heart and muscles [19]. The two 

systems involved in reacting to a stressor are the sympathetic adreno-medullary and the 

hypothalamic-pituitary-adrenal  axis [20].  
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During sympathetic adreno-medullary activity, the cerebral cortex categorizes an unknown 

threat as a stimulus, information that is sent to the hypothalamus to activate the body’s “fight 

or flight” response. This response stimulates the adrenal medulla to secrete catecholamine, 

norepinephrine, and epinephrine which produces physiological effects such as increased blood 

pressure, perspiring, tremors, vasoconstriction etc. [20]. The secretion of norepinephrine 

stimulates the hypothalamic-pituitary-adrenal axis [21]. This produces a cascade of hormonal 

activity, commencing with the secretion of corticotropin-releasing hormone from the 

hypothalamus, which stimulates the pituitary gland to release adrenocorticotropic hormone 

(ACTH) [21]. This culminates in releasing glucocorticoids (cortisol in humans and 

corticosterone in rodents) into the bloodstream by adrenal glands. The glucocorticoids 

stimulate mineralocorticoid receptors and glucocorticoid receptors in the hypothalamus and the 

pituitary, providing a feedback signal to regulate hypothalamic-pituitary-adrenal  axis activity 

[21-23].   

 

The hypothalamic-pituitary-adrenal  axis has been designed to help an organism survive 

adverse conditions and is regulated by three main structures: the hippocampus, amygdala and 

medial prefrontal cortex  [23, 24]. The amygdala, known for its role in fear detection, activates 

the hypothalamic-pituitary-adrenal  axis compared to the prefrontal cortex and hippocampus, 

which has an inhibitory role [24]. The hippocampus is the most distinct regulator of the 

hypothalamic-pituitary-adrenal axis from the three structures attributable to its role in 

prominent mental health disorders such as depression, post-traumatic stress disorder, and 

Alzheimer’s Disease [24]. The hippocampus is involved in terminating pre-emptive 

hypothalamic-pituitary-adrenal  axis responses, concurrent with its role in memory and 

emotional processing [22]. Activation of the hypothalamic-pituitary-adrenal  axis induced by 

stress concludes with the adrenal glands releasing glucocorticoids [19]. These processes are 

keenly regulated by the neuronal activity of the hippocampus and prefrontal cortex, which elicit 

negative feedback on the hypothalamic-pituitary-adrenal  axis activation [25]. 

 

An important consideration is that corticosterone and cortisol secretion alone cannot be used 

to assume the reactivity of the hypothalamic-pituitary-adrenal axis [23]. For example, 

desensitised adrenal glands can impede the activation of the hypothalamus and pituitary 

components, thereby miscalculating the stress response [23]. 
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Exposure to stressors in daily life is necessary for the development of the brain as it allows the 

body to adapt to challenges faced and prepare for bodily harm and injury in the future [26]. 

However, in cases where an individual cannot react to a stressful encounter or avoid injury, 

this may have damaging effects and impair cognition later in life [26]. It has been documented 

that a dysregulated hypothalamic-pituitary-adrenal axis and glucocorticoids secretion can 

exacerbate the likelihood of developing depression/anxiety disorders [27, 28] and susceptibility 

to drug abuse; however, further studies are needed to test this statement [28-30]. Therefore, the 

following section discusses in detail the complex nature of stress hormones.   

 

STRESS HORMONES 

Glucocorticoids are the final products when activating the hypothalamic-pituitary-adrenal  

axis, released upon encountering a stressor [24]. Glucocorticoids are lipophilic, meaning they 

can cross the blood-brain barrier and bind to glucocorticoid receptors in various brain regions 

[24]. The release of glucocorticoids allows the hypothalamic-pituitary-adrenal  axis to mobilise 

energy and prepare for a real (“reactive” response) or predicted insult (“anticipatory” reaction) 

[23]. Glucocorticoids signal through their receptor types, namely, mineralocorticoid receptors 

and glucocorticoid receptors [24]. 

 

Mineralocorticoid receptors guide the hypothalamic-pituitary-adrenal  axis responsivity in 

relation to the day and have a superior binding affinity to glucocorticoids than glucocorticoid 

receptors [23]. Mineralocorticoid receptors sense aldosterone in the kidneys and other tissues 

via the inactivation of corticosterone (or cortisol) by elevated 11b-hydroxysteroid 

dehydrogenase (11b-HSD1) enzyme [31]. Contrastingly, in other tissues such as the brain, 

11b-HSD1 acts as a reductase and can, in certain conditions, increase glucocorticoid 

concentrations [31].  

 

Elevated glucocorticoid concentrations activate the lower-affinity glucocorticoid receptors, 

which mediate the outcome of glucocorticoid secretion by mobilising energy stocks, 

inflammation and neural action [23]. Glucocorticoid receptors  also encourage the forming of 

memory to prepare for future scenarios [1]. Glucocorticoid receptors decipher and interpret 

stress levels and, as such, are presumed to be responsible for regulating the feedback loop [23]. 

During gestation, maternal and foetal glucocorticoid levels increase, as a prenatal 

developmental mechanism [32]. Foetal exposure to glucocorticoids during the third trimester 
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is necessary for development of the lungs, brain and to prepare for birth and delivery [32]. 

Increased levels of glucocorticoids have been linked to diminished cognition and poor 

sociability, as well as anxiety-like behaviours [32, 33]. Likewise, an upregulation of 

glucocorticoid receptor influences anxiety and depression-like behaviours in the elevated plus 

maze [32].  

 

Glucocorticoids have been shown to decrease pro-inflammatory cytokines whilst increasing 

the expression of anti-inflammatory cytokines [34]. On the other hand, recent studies have 

shown that glucocorticoids also have a pro-inflammatory influence on the immune system [35]. 

This was seen in rats, following an acute stress regimen, they presented with an increased basal 

plasma corticosterone and prostaglandin E2 with less anti-inflammatory factor [36]. Therefore, 

the following section discusses the role of cytokines in the stress response.  

 

CYTOKINES 

Cytokines are chemical messengers of immune cells which facilitate inflammatory reactions 

and immune responses. They are also involved in mediating the signalling in non-immune 

tissues such as the nervous system and are fundamental players in the natural and pathological 

systems [37-39]. Cytokines can either be pro-inflammatory or anti-inflammatory, which is 

dependent on their biological reactions [39]. They each exert different responses on synapsis, 

neurological development and neurogenesis [37, 39]. An abundance of cytokines can influence 

the neurodevelopment of the foetus by directly interacting with the foetus glial cells, and is 

also associated with the transmission of stress between the mother and foetus via cortisol and 

reactive oxygen species [40]. 

 

Elevated serum pro-inflammatory cytokines (including interleukin (IL)-1b) have been noted in 

patients with major depressive disorder to anti-inflammatory cytokines (such as IL-10, IL-4). 

Cytokines have complex interactions where they can act in either a synergistic manner or 

antagonistically. The impact of cytokines within a network is associated with a particular 

immunological process. Pro-inflammatory cytokines can trigger the HPA axis whilst, cortisol 

attenuates production of cytokines and other inflammatory indicators [41].  Circulating pro-

inflammatory factors directly triggers the HPA axis, producing serum adrenocorticotropic 

hormone and glucocorticoids, which subsequently prevents the production of these pro-

inflammatory factors [42]. 
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Maternal stress has been shown to increase expression of pro-inflammatory placental genes 

namely, IL-6 [40]. In rat animal studies, the use of Il-6 was shown to produce structural 

modifications in offspring hippocampus and learning deficiencies as well as increased body 

weight [40]. Further studies have provided the link between a prolonged increase in IL-6 

concentration and acute mental stress in expecting mothers [43]. The exact method of cytokine 

maternal-foetal transference of cytokines is still being established however; some animal 

models have documented that the cytokines are able to travel through the placenta towards 

foetal circulation [44]. It has been suggested that in addition to maternal-foetal transference, 

the placenta itself may potentially be a source of cytokines and actively secrete cytokines into 

foetal circulation in response to maternal stress [40]. 

 

Chronic stress has been shown to attenuate the production of pro-inflammatory cytokines, 

which regulate the cellular immune response, whilst it stimulates the secretion of anti-

inflammatory cytokines, which mediate the humoral immune response [45, 46] From this, it 

was hypothesised that chronic stress could lead to disease onset by suppressing the immune 

system [45-47]. Glucocorticoid’s and catecholamines affect glucocorticoid receptors and 

adrenergic receptors on immune cells extracellularly or intracellularly which subsequently 

impede the secretion of pro-inflammatory cytokines and stimulate anti-inflammatory cytokine 

secretion [45, 48]. Contrary to this, some researchers have found that chronic stress stimulates 

the secretion of pro-inflammatory cytokines [49-51]. This conflict between the role of chronic 

stress on inflammation is said to be linked to the period and force of the stressor, exposure and 

phenotypic variances [45, 50]. Therefore, the following section discusses the different types of 

stressors with specific interest to chronic stress. 

 

CHRONIC STRESS 

Stress can be acute or chronic depending on the duration of and exposure to a stressor [52]. An 

inability to terminate an acute stress response can lead to persistent changes indicative of a 

chronically stressed state [52]. Exposure to chronic stress is reported to be highly toxic as it is 

likely to result in long-term changes in emotional, physiological and behavioural responses, 

which influence exposure to and the course of disease [53]. Chronic stress is a cumulative 

process in which the hypothalamic-pituitary-adrenal  axis responds to each individual “threat” 
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through recurrent and hyperbolic exposure and consequently increases the glucocorticoid 

discharge [23].  

 

Chronic stress has been linked to conformational and physical adaptations of neural networks 

in the brain [54]. This was reported through imaging studies which showed structural 

impairments in the brain of patients suffering from stress-related disorders [54]. Consequently, 

these impairments in one particular brain region can extend to other functionally interconnected 

areas and result in cognitive, emotional and behavioural dysfunctions associated with chronic 

stress, which may exacerbate the likelihood of developing psychiatric disorders [54]. A study 

by Monti Voss, further attested to this by demonstrating that mild head trauma during the early 

stages of development resulted in impaired memory and diminished hippocampal volumes 

during adulthood [55]. 

 

Chronic stress is a renowned risk factor for numerous psychiatric disorders, such as anxiety 

and depression [1]. In addition, exposure to uncontrolled chronic stress weakens the reward 

system through stimulation of the mesocortical dopaminergic system by impeding dopamine 

release in several terminals, including the hypothalamus [1]. Since the perinatal life is 

especially sensitive to stressors, as these periods have increased plasticity for the stress system, 

hostile activity during this time can produce changes to behaviour and physiological 

mechanisms such as inflammatory response, growth, metabolism and reproduction [28, 56]. 

Therefore, the following section discusses the physiological responses to stress. 

 

PHYSIOLOGICAL RESPONSES TO STRESS 

Metabolism 

Chronic stress or repeated activation of the stress response is associated with excessive visceral 

adiposity, reduced body muscle and bone mass and a defeated osteoblastic system [19]. These 

symptoms are shared by patients who present with a dual-diagnosis of Cushing’s syndrome (or 

hypercortisolism) and depression or chronic-anxiety disorder and metabolic disorders such as 

diabetes, hypertension, cholesterol [19, 57]. Elevated hepatic gluconeogenesis is attributable 

to the stress response [19]. Since glucocorticoids increase insulin resistance, it can be assumed 

that diabetic patients in stressful circumstances may find it harder to regulate their 

hypothalamic-pituitary-adrenal  axis [19]. 
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Obese patients exposed to chronic stress and present with additional signs of depression or 

anxiety are generally diagnosed with Cushing’s syndrome, whilst patients who present with 

obesity and no indicators of depression or anxiety are eucortisolemic [19]. Recording body 

weight after birth is important for predicting neuropsychiatric ad metabolic complications later 

in life [58].  Patients who encounter stressful situations have been shown to adopt unhealthy 

food patterns with most eventually presenting with obesity, metabolic syndrome and type 2 

diabetes [59, 60]. 

 

Prolonged stimulation of the hypothalamic-pituitary-adrenal  axis has been linked to other 

conditions, namely, anorexia nervosa, panic attacks, alcoholism, an overactive thyroid, 

obsessive physical activity, juvenile sexual assault, obsessive-compulsive behaviours and 

poorly managed diabetes [19]. Therefore, the following section discusses the social problems 

a dysregulated hypothalamic-pituitary-adrenal axis can produce.  

 

Sociability 

Chronic stress conducted on rodents using an animal stress model has been reported to lessen 

social interactions and motivation, which correlates with symptoms expressed by depressed 

patients [61]. A previous study showed that after exposing their rodents to the chronic restraint 

stress paradigm, the stressed animals preferred fewer social engagements; however, their social 

perception, learning, and memory were not significantly affected [61]. 

 

In humans, fostering attachment is critical during early development as losing these 

attachments through neglect, the death of a parent or abuse exacerbates the onset of emotional 

disorders as the child grows [62].  

 

A previous study reported that social deprivation in male mice could adversely affect 

childhood, adolescence and adulthood [25]. For example, paternal separation blights sociability 

and social recognition, reduces parental behaviours, and hinders one resolve to develop social 

bonds [62]. In humans, separation manipulates mental and psychological development and 

aggravates the inception of substance abuse and mental disorders [62]. Therefore, the following 

section discusses the psychiatric problems associated with a dysregulated hypothalamic-

pituitary-adrenal axis. 

 



 9 

Memory, Mental Illnesses and Early Life Adversity  

Sequelae develop as the body’s exposure to a chronic stressed state increases, such as anxiety, 

depression and infertility [52]. A previous study showed that unfavourable prenatal 

environments could affect the development of neuroendocrine systems, thus exacerbating 

stress-related and physical complications later on in life [63].  

 

Chronic stress has been found to induce cognitive dysfunction in psychiatric patients, 

subsequently leading to the loss of synaptic connectivity and possibly neuronal networks in 

brain structures, including the hippocampus and cortex [52]. This further leads to loss of 

cholinergic neurons and results in a state of dementia [52]. A previous study using a sample of 

South African older adults, noted that psychosocial stress was more prominent in patients who 

presented with Alzheimer’s Disease than healthy individuals [7]. This study further 

corroborated that these heightened stress levels were associated with poorer memory 

performance and a predicted state of Alzheimer’s Disease [7]. Building social connections can 

expedite procreation, improve and modify survival, offer a feeling of security, and lower stress 

and anxiety in many species [62]. 

 

It has been documented that early life adversities are linked to prolonged and detrimental 

changes to the individuals hypothalamic-pituitary-adrenal  axis, producing elevated 

glucocorticoid responses to a stressor with a  diminished glucocorticoid expression in brain 

regions, incited by maternal neglect [24, 64] early life adversity , through human studies, has 

also been linked to memory, learning and recall deficits including emotional abuse and neglect 

[24, 65]. Furthermore, it was reported by Grassi-Oliveira and colleagues (2008) that patients 

with depressive disorders who were exposed to neglect as children had poor memory recall, 

thereby validating theories that early life adversity  is a critical risk factor for major depressive 

disorder. The link between early life adversity  and depression has been broadly studied, and it 

was shown that the early life adversity  phenotype is remarkably similar to depression. It has 

also been linked to impaired hippocampus, prefrontal cortex and amygdala functionality which 

are target brain regions for depression studies and models [24, 66]. Hence, the following 

section discusses the influences of the perinatal life on anxiety and depression. 
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Depression and Anxiety 

The World Health Organisation published a report stating that major depressive disorder will 

be a primary factor in disability by 2030 globally [67]. The fundamental elements in major 

depressive disorder are lack of motivation, inability to experience pleasure, mood swings, sleep 

apnea, loss of appetite and cognition [68]. In animal models, prenatal stress during late 

gestation has been linked to anxiety- and depression-like behaviours in offspring [69]. 

 

Brain imaging studies conducted on humans have reported changes in the blood flow of vessels 

and other parameters in brain regions of hippocampus, prefrontal cortex, amygdala and more 

which have further been corroborated by autopsies performed on depressed patients  [67, 70]. 

Relatedly, decreased neuronal activity has been reported in defeat-induced depression mice 

models [71], structural and neurochemical alterations of the hippocampus have been reported 

in autopsies conducted on depressed patients [72] and, serotonin innervation in brain regions 

reportedly related to depression such as the prefrontal cortex and amygdala, to which increased 

levels have been linked to the antidepressant effect [73]. During the gestational period, the 

placenta acts as an exogenous source of serotonin to enable the development of the foetal 

forebrain [40]. Serotonin, which is detectable from seven weeks in human foetuses is vital for 

the development of the placenta and embryo, as well as foetal and postnatal brain and 

cardiovascular maturation in humans and animals [74]. Hence, it is conceivable that alterations 

in the foetal serotonergic homeostasis due to prenatal stress can have sustained physiological 

ramifications in adulthood [40]. Serotonin is synthesised from tryptophan and is implicated in 

the pathophysiology of several neuropsychiatric diseases including depression and anxiety 

[40]. 

 

Depressed patients have presented with increased concentrations of cortisol in their urine, an 

inflated response to psychosocial stress, reduced hippocampal volume and impaired memory 

[21, 75]. Furthermore, links between inflammatory markers and depressive symptoms such as 

fatigue, cognitive impairments and abnormal sleep patterns linked to the expression of IL-6 

have been described [76]. Pro-inflammatory factors are known to cross the blood-brain-barrier, 

and either to direct or indirect intervention of the HPA axis, are involved in the 

pathophysiology of depression [77].  
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The pro-inflammatory cytokines located in the central nervous system attenuate the secretion 

of neurotransmitters, serotonin and dopamine [45]. This blockage is significant in the 

pathogenesis of depression and is used when deciding on suitable therapies [78]. The pro-

inflammatory cytokines then activate the corticotrophin-releasing hormone  from the 

paraventricular nucleus, which exacerbates the secretion of ACTH and cortisol [45]. The 

connection between increased expression of corticotrophin-releasing hormone  and chronic 

stress is being exploited to relate chronic stress and depression [45]. 

 

A previous study reported that low birth weight in older men was linked to depression and 

suggested that permanently amplified cortisol concentrations in depressive illnesses could link 

the programming of low birth weight and depression in parenthood [79]. Depression is a 

common comorbidity of anxiety [80]. Hence, the next section looks at the relationship between 

depression and anxiety.  

 

The diagnostic and statistical manual of mental disorders has linked anxiety to panic attacks, 

extended anxiety, phobias, post-traumatic stress disorder and obsessive behaviours [81]. 

Experiments have shown how early-life exposure to stress can be linked and exacerbate the 

person's likelihood of developing the condition described above [20, 82, 83]. Activation of the 

hypothalamic-pituitary-adrenal  axis produces cortisol which has been shown to affect mood 

and behaviour [20, 84, 85]. Traumatic childhood events exacerbate the likeliness of developing 

anxiety disorders by 1.9-3.6 fold [86, 87]. 

 

The coexistence of depression-anxiety has been connected to poor health, dysfunctional 

cognitive and emotional capabilities, and post-traumatic stress disorder [87-89]. A hyperactive 

amygdala has been shown to exacerbate depressive and anxiety-like indicators [87, 90]. 

 

A study examined the link between anxiety proneness after exposure to early life traumas and 

the consequences in a South African population [91]. This study has shown a noticeable 

increase in glucocorticoid receptor and corticotrophin-releasing hormone  expression. These 

physiological features correspond with both post-traumatic stress disorder and depression, 

disorders to which anxiety is a known comorbidity [91, 92]. Therefore, the following section 

discusses the prenatal maternal stress connexion. 
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PRENATAL MATERNAL STRESS 

Prenatal stress refers to all types of stress experienced by the parent, e.g., physical or emotional, 

during the gestational period [2, 93, 94]. When the mother is prenatally exposed to stress, it 

causes a twofold reaction, that is, an increase in maternal cortisol and a decrease in the 

expression of 11β-hydroxysteroid dehydrogenase type 2 (11b-HSD2), the foetus’ natural 

barrier enzyme to maternal cortisol [95, 96]. 11b-HSD2 converts excess cortisol 

(corticosterone in rodents) to its inactive form cortisone (dehydrocorticosterone in rodents) 

[56] however, it does not completely block-off maternal-foetal transmission [32]. 11b-HSD2 

decreases naturally during the third trimester to allow for foetal lung maturation and parturition, 

thereby increasing the risk of exposure of the foetus and placenta to glucocorticoids [95, 96]. 

Glucocorticoids are lipophilic and can easily cross the placenta, which is further weakened due 

to decreased 11b-HSD2 hormone [2, 93], where prenatal stress has been shown to increase 

glucocorticoid receptor in the placenta [32]. 

 

Activity of 11b-HSD2 naturally decreases in uncomplicated pregnancies during late gestation, 

exposing the foetus to programming influences of cortisol during this time [40].  Due to the 

increased cortisol expression in the placenta, the growing foetus can respond with a 

dysregulated hypothalamic-pituitary-adrenal  axis [28, 96]. This dysregulation leaves the 

neonate prone to compromised stress response and increased susceptibility to disease [28, 96]. 

 

The long-term effects of prenatal stress are unspecified however, literature suggests that 

prenatal exposure to stress can affect the progression, performance and sensitivity of the stress 

system [6, 21]. Importantly, it has been noted that the impact of maternal stress on the 

intrauterine environment is not the only factor in poor child development but rather, maternal 

involvement during upbringing plays a core role in the child’s neurodevelopment [97]. It is 

therefore conceivable that maternal stress experienced during pregnancy and early parenting 

can programme the physiological and lifelong course of the infant which ultimately determines 

their health [97]. 

 

Prenatal maternal stress increases the risk of cortisol exposure to the foetus which subsequently 

produces adverse birth consequences such as, low birth weight, reduced gestational period, and 

smaller head circumference[6, 21]. Increased neonatal cortisol exposure can permanently alter 

the growth and physiological sensitivity of the foetal systems such as, the hypothalamic-



 13 

pituitary-adrenal  axis, immune response, and cognitive functioning development [6]. Prenatal 

maternal stress has also been shown to exacerbate the onset of febrile seizures [93, 98, 99], and 

the risk for developing psychiatric disorders such as,  autism spectrum disorders,  schizophrenia 

and attention deficit hyperactivity disorder [100], which can durably affect the child’s 

physiological stress response across their life course [6]. These effects depend on the type of 

stressor, the time during the gestational period, the sex of the foetus and, the stage of foetal 

brain development [101]. Foetal brain development occurs through three phases namely, 

embryonic period, early foetal period, and late foetal period [102]. Therefore, the foetal brain 

is continuously maturing throughout the gestational period and its development can be affected 

by any biological signal it receives [101, 103]. 

 

Whilst many studies are investigating these lasting effects of prenatal maternal stress on infant, 

child, adolescence and adulthood, there is a paucity of information on the long-term effects of 

prenatal paternal stress overall. The most recent documented studies on germ cell epigenetic 

transmission have mainly been studied in paternal models [100]. Therefore, the following 

section discusses the role of prenatal paternal stress.  

 

PRENATAL PATERNAL STRESS 

Most documented paternal models have focused on germ cell epigenetic transmission and the 

phenotypic effects that stress programming on sperm produces in offspring [100]. During 

spermatogenesis, sperm histones are replaced by protamine’s, which are highly charged 

proteins that reduce sperm chromatin to one-tenth that of somatic cells. Consequently, mature 

sperm become transcriptionally inactive and are believed to resist external forces [100]. 

Nonetheless, recent studies have demonstrated that sperm are responsive to homeostatic 

changes such as dietary changes, stress, trauma, and exposure to drugs [100]. A study showed 

that male mice exposed to prenatal stress present with an amplified hypothalamic-pituitary-

adrenal  stress response and altered stress coping behaviours, which were reportedly transferred 

phenotypically to their male but not female offspring [100].  

 

A significant sex difference has been documented in both the magnitude and duration of the 

stress response influenced by male (testosterone) and female (oestradiol, progesterone) sex 

hormones [23]. In particular, testosterone inhibits stress reactivity whilst oestradiol  was 

reported to augment hypothalamic-pituitary-adrenal  axis responses [23]. In rat studies, females 
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in dioestrus (low oestradiol  secretion) display inadequate resting glucocorticoid secretion and 

interchangeable reactions to stressors, similar to those observed in males [23]. Animals in 

oestrus (high oestradiol ) and proestrus (high oestradiol, high progesterone) have elevated basal 

corticosterone and exacerbated corticosterone release [23]. 

 

The transfer of epigenetic information through multiple generators has been referred to as 

intergenerational epigenetic inheritance, many of which have been documented in humans 

[104]. This was seen in the offspring of Holocaust survivors who were deemed more likely to 

suffer from anxiety and depression, and in the offspring of Australian veterans who fought in 

the Vietnam war were diagnosed as suicidal [105, 106]. Furthermore, smoking in young males 

were reportedly linked to the onset of asthma in their offspring, even if the fathers who started 

smoking before the age of fifteen had quit for five years prior to fertilisation [107]. These 

studies show the susceptibility of sperm cells to environmental stressors which encourages the 

onset of disease in the offspring [104]. 

 

Prenatal stress models vary in their types and duration of exposures, such as restraint stress, 

foot shock therapy, social isolation or repetitive social stressors [1]. Restraint stress is the most 

adaptive and reproducible form of a stressor and directly affects the foetus by limiting all forms 

of movement [108]. Exposing animals to a prenatal state of chronic stress has increased 

offspring susceptibility to disease and behavioural dysfunctions; hence we included a stress 

factor in this study [100]. Therefore, the following section discusses the different types of 

chronic stress animal models and their significance to clinical studies. 

 

ANIMAL MODELS AND THEIR SIGNIFICANCE  

Developing animal models is critical to the development of drugs, treatments and disease 

progression. However, because many disorders focus on human pathophysiological responses, 

it is not always easy to mimic these exact conditions in an animal. To control this, animal 

models are designed to highlight specific symptoms related to that disease which allows 

progression in pharmacological treatments [28]. Rodents, rats (Rattus Norvegicus) and mice 

(Mus Musculus) are the preferred animals used in modelling as they have similar genetic 

markers to humans, are easier to handle and accommodate, reproduce quickly and have shorter 

lifespans [109]. 
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Animal Models of Chronic Stress 

A previous study proposed three principles to be followed when designing animal models; they 

should have face, construct and predictive validity [110]. Chronic stress models have 

commonly been designed to mimic depression but are now also being used to reflect and 

understand the physiological expressions of post-traumatic stress disorder [109]. 

 

In the late 1960s, a study led to the “learned helplessness” paradigm, a concept centred on 

classical conditioning first demonstrated on dogs [111]. Van der Kolk adapted this model, 

known as the “Inescapable Shock-Learned Helplessness”, by exposing the animals to drug-

related and non-drug-related stressors [112]. Antelman, in 1988, depicted the time-dependent 

sensitization protocol, which follows a quick, powerful stimulus followed by a prolonged 

response to stressors [113].  Rats were subjected to different stressors ranging from restriction 

to injections of drugs [109, 113]. 

 

The foot shock paradigm is commonly depicted in animal models of anxiety and depression 

[114]. This paradigm exposes the animal to sequential foot shocks of wavering strength and 

intervals, the effects of which have been shown to last up to 3 weeks [109, 114]. The single 

prolonged stress model exposes the animal to the forced swim test, then 2 hours of restraint 

stress, a rest period, and exposure to fumes until the animal loses consciousness [114]. The 

social defeat model is used to examine behavioural and physiological responses to stress, which 

has been reported to produce social anxiety and passive behaviours [109, 115].  

 

The model used in this study was the chronic prenatal restraint stress paradigm used by Qulu 

et al. (2012). This stress model exposes pregnant female rats to restraint stress which has been 

shown to affect the developing foetus [93]. This paradigm was adapted to fit within the aims 

and objectives of our study. Our animals were exposed to 1 hour of restraint stress, using a 

cylindrical plexiglass restraint, for seven days to induce chronic stress symptomology in the 

offspring. Previous work conducted in our laboratory successfully employed this animal model 

to induce signs of prenatal stress in rodents. Hence, we replicated the same conditions to ensure 

comparable indicators of prenatal stress in our animals. 
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Justification of the study 

In this study, we investigate physiological repercussions in the first filial generation after 

exposing the parental generation to a chronic stress regime.  

 

This study will be a first step in elucidating how stressors such as oppression, race and 

inequality experienced by older generations can be transferred to offspring and how it affects 

their well-being. These are individuals who have never primarily been exposed to such 

stressors. It will provide insight into the physiological connection linking lineages exposed to 

trauma and the effects in the subsequent generations. In addition, it may provide a basis for 

post-traumatic stress disorder being expressed in respective generations of the same lineage. 

 

It is evident that maternal influences have been extensively documented; however, much less 

is known regarding the specific role paternal factors play in the programming of offspring. 

Hence, our study aims to bridge this gap by using a standard chronic stress animal model to 

induce symptoms in the parental generation and study these effects in the first filial generation. 

This chronic stress study will enable us to document maternal and paternal influences on the 

offspring, with specific emphasis on neurochemical and behavioural adaptations. Our findings 

can be translated to a human cohort to understand the pathophysiological implications 

surrounding the transference of traumatic experiences in older generations to offspring. This 

can then be used to improve the diagnosis, prevention and treatment of disease and control the 

physiological outcomes of posttraumatic generational traumas. 

 

Aims 

This study uses a standard chronic stress animal model to induce symptoms in the parental 

generation and study these effects in the first filial generation. Therefore, we will specifically 

observe if parental stress causes a dysfunction in the offspring stress response and 

neurochemical changes in the brain. Furthermore, we will investigate if this exacerbates the 

onset of depression, anxiety, metabolism and anhedonia in the offspring. 

Objectives 

1. To verify if chronic parental stress causes a dysfunction in the offspring stress response, 

we measured the corticosterone concentration present in the adrenal glands, the expression 

of IL-6 and glucocorticoid receptor in the prefrontal cortex and ACTH in the hippocampus.  
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2. To assess offspring metabolism, we compared body weight and food intake across the 

groups. 

3. To determine if chronic parental stress influences depression, we measured dopamine 

expression in the hippocampus after exposing the offspring to the sucrose preference test. 

4. To determine if chronic parental stress influences anxiety in offspring, we measured 

serotonin expression in the amygdala after exposing the offspring to the elevated plus-

maze. 

5. To establish if chronic parental stress influences social interaction in offspring, we 

assessed the expression of serotonin in the amygdala after exposing the offspring to the 

social novelty test. 

 

Methodology Overview 

Following approval from the Animal Research Ethics Committee (AREC) of the University of 

KwaZulu-Natal (UKZN), sixteen male and eight female Sprague Dawley rats weighing 

approximately 250-300 g were obtained.  These rats were housed under standard laboratory 

conditions of ± 22°C room temperature, 70% humidity and a 12-hour light/dark cycle (lights 

on at 06h00, off at 18h00). Food and water were available on an ad libitum basis for the rats. 

The rats were first separated into stressed groups, i.e., non-stressed mother (NS-M) and stressed 

mother (S-M) and non-stressed father (NS-F) and stressed father (S-F). After that, they were 

assigned to one of four following groups, each group containing four males and two females 

as follows: (1) control (C) group: non-stressed mother and stressed father (NS-M + NS-F) 

(n=6); (2) non-stressed mother and stressed father (NS-M+S-F) (n=6); (3) stressed mother and 

non-stressed female (S-M+NS-F) (n=6); and (4) stressed mother and stressed father (S-M+S-

F) (n=6). Once the rats had been assigned their groups, they were left to acclimatise for seven 

days. Following the acclimatisation period, the male chronic stress protocol was initiated. The 

NS-F were left in their cages whilst the S-F was exposed to the chronic restraint stress protocol 

for 1 hour over seven days. Succeeding the stress period, we began mating the animals 

according to their groups; a female rat was introduced into a male cage to encourage mating. 

The male rat was removed after successful mating. On gestational day (GND) 14, the S-M was 

subjected to the chronic restraint stress paradigm for 1 hour over seven days. The NS-F, S-F 

and NS-M remained in their home cages during the female prenatal restraint protocol. 

Concurrently, the S-F groups were again exposed to the chronic stress protocol to ensure that 

the fathers expressed stressed symptoms before exposure to the elevated plus-maze. Both NS-
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F and S-F were exposed to the behavioural test. The males were sacrificed 24 hours after the 

behavioural test to collect the amygdala to measure serotonin concentration and the adrenal 

glands for ACTH corticosterone concentration. Succeeding birth, the pups were weaned off 

their mothers for 22 days, and on postnatal day (PND) 23 they were exposed to behavioural 

tests which were compared across their parental groups (1) C group, (2) NS-M+S-F; (3) S-

M+NS-F; and (4) S-M+S-F. The pups were scored on the following behavioural tests: (i) the 

sucrose preference test; (ii) the elevated plus maze, and (iii) the social novelty test. The pups 

were sacrificed using a sharpened guillotine 24 hours after the behavioural tests. The adrenal 

glands were collected to measure the concentration of corticosterone, trunk blood to measure 

plasma ACTH concentration the hippocampus for dopamine, the amygdala for serotonin 

concentration and the prefrontal cortex for IL-6 and glucocorticoid receptor expression. All 

samples were immediately snap-frozen after extraction using liquid nitrogen and then stored in 

a bio freezer at -80°C until neurochemical and biochemical analysis was performed. Statistical 

analysis using GraphPad prism was performed to analyse data and confirm statistical 

significance. 
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CHAPTER 2 

 

Prologue 

Manuscript 1 

Chapter 1 provided an overview into the influences of parental stress on offspring 

neurochemistry and behaviour, highlighted the gaps in literature regarding the effects on 

offspring anxiety, depression and sociability as well as defined the clinical relevance of this 

study.  

 

“The influences of paternal stress on offspring neurochemistry and behaviour: Effects on 

offspring anxiety, depression and sociability” 

 

Contributions of this chapter  

This chapter is comprised of a scientific manuscript that investigated the influences of parental 

stress on offspring neurochemistry and behaviour, and documented the effects on offspring 

anxiety, depression and sociability as well as described the paternal contributions to these 

manifestations. The results of this study were compared across parental groups to determine 

statistically significant relationships.  

 

  

Note: This chapter has been prepared according to the guidelines outlined by PONTE Journal 

(Appendix D). 
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ABSTRACT 

Stress during gestation has been associated with the exhibition of depression and anxiety-like 

behaviour in the offspring. However, the effect of a stress father on the offspring is not well 

understood. The present study sought to investigate the effects of parental stress on the 

offspring. To achieve this, male and female Sprague Dawley rats, weighing 250 – 300 g, were 

assigned to one of four groups (n=6 per group) viz: (1) control, (2) non-stressed mother and 

stressed father, (3) stressed mother and non-stressed father, and (4) stressed mother and 

stressed father. The fathers were subjected to a chronic restraint protocol after which they were 

allowed to mate. To observe the influence of chronic parental stress on anxiety, sociability and 

depression-like behaviour in the offspring, we subjected all offspring to behavioural tests and 

measured serotonin and dopamine concentration in the hippocampus and amygdala. A stress 

effect on sociability and anhedonic behaviour in offspring from the NSM-SF group, SM-NSF 

group and SM-SF group was present. This was accompanied by decreased serotonin 

concentration in the amygdala. Altogether, our findings show that the prenatally stressed 

fathers did not transfer their anxiogenic behaviour, however, they affected the offspring’s 

sociability and anhedonia. This was mediated in part by decreased serotonin concentration in 

amygdala. Furthermore, when both parents are prenatally stressed their stress effect to their 

offspring’s behavioural and neurochemistry is augmented. This was confirmed by the 

behavioural manifestations of extreme anxiety, depression and social anxiety as well as, the 

subdued 5-HT concentration. 

 

Keywords: prenatal stress, chronic stress, depression, anxiety, sociability, serotonin, dopamine 
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1. INTRODUCTION 

In South Africa, psychiatric morbidity is alarmingly high due in part to the country’s history 

of violence during the apartheid era (1). Exposure to stressors such as oppression, racial 

discrimination, and social inequality has resulted in psychological distress and other mental 

health issues (1, 2). Despite these challenges, only 27% of patients experiencing severe mental 

illnesses seek treatment (3). Consequently, the magnitude of the past traumatic experiences on 

the parents and their progeny is less understood. Furthermore, it is not clear whether the effects 

of the posttraumatic experiences can be transferred to the offspring. 

 

Chronic stress has been associated with numerous psychiatric disorders, including anxiety and 

depression (4). The serotonergic system is a key player in modulating social behaviour and 

depression (5). It has also been suggested that augmented serotonin concentration exacerbates 

anxiety and amygdala sensitivity in social anxiety (5-7). Serotonin, which is detectable from 

seven weeks in human foetuses is vital for the development of the placenta and embryo, as well 

as foetal and postnatal brain and cardiovascular maturation in humans and animals (8). Hence, 

it is conceivable that alterations in the foetal serotonergic homeostasis due to prenatal stress 

can have sustained physiological ramifications in adulthood (9). An increased synthesis rate 

and reuptake may be responsible for the heightened serotonergic function in sociability and 

anxiety (5). Furthermore, increased cortisol levels decrease the functioning of serotonin in the 

brain which can lead to a depressive state (10). Permanently increased cortisol concentrations 

had been linked to low birth weight and depression during adulthood (11). Depression is a 

common comorbidity of anxiety, seizures, cancer, dementia, Parkinson’s disease and pain (12, 

13). Exposure to chronic stressors induces dysfunctions in the endocrine and immune system 

resulting in a permanent low-grade inflammation which has been associated with depression-

like behaviour (14, 15). The perinatal life is especially sensitive to stressors; therefore, 

aggressive activity can elicit changes in behavioural and physiological mechanisms (16, 17). 

In major depressive disorder, there is an augmented dopamine secretion which activates 

homeostatic mechanisms (18). These include the overexpression of postsynaptic dopamine 

receptors and reducing dopamine transporter intensity, which together raise dopamine signal 

transduction ensuing from amphetamine-induced dopamine secretion into the synapse (18). 

Animal studies have shown that exposure to acute stressors stimulates the entire dopaminergic 

system targeting the striatum, particularly the dorsal striatum where object prominence is vital. 
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On the other hand, exposure to chronic stressors blunts the neurons in the ventromedial 

striatum, where reward processing is important (19). 

 

The long-term effects of prenatal stress are unspecified however, literature suggests that 

prenatal exposure to stress can affect the progression, performance and sensitivity of the stress 

system (1, 20). Elevated cortisol during pregnancy, enters maternal circulation, cross the 

placental barrier, and influence the gestational environment and the physiological development 

of the offspring’s stress response system (1, 20). Increased neonatal cortisol exposure can 

permanently alter the growth and physiological sensitivity of the foetal systems such as, the 

hypothalamic–pituitary–adrenal axis, immune response, and cognitive functioning 

development (1). These effects depend on the type of stressor, the time during the gestational 

period, the sex of the foetus and, the stage of foetal brain development (21). Foetal brain 

development occurs through three phases namely, embryonic period, early foetal period, and 

late foetal period (22). Therefore, the foetal brain is continuously maturing throughout the 

gestational period and its development can be affected by any biological signal it receives (21, 

23). Whilst many studies are investigating these lasting effects of maternal prenatal stress on 

infant, child, adolescence and adulthood, there is a paucity of information on the long-term 

effects of paternal stress on the offspring. 

 

The present study sought to investigate the effects of parental stress on the offspring’s 

psychiatric behaviour, particularly the fathers, and whether these can be transferred to offspring 

or if they can affect the offspring psychiatric/psychological behaviour. This was executed by 

evaluating the onset of anxiety, depression, sociability in the offspring through behavioural 

observations and the assessment of neurochemical markers.  

 

2. METHODOLOGY 

2.1 Materials 

All chemicals and reagents used were of analytical grade and were purchased from standard 

commercial suppliers. 

 

2.2 Animals 

Sixteen male and eight female Sprague Dawley rats, each weighing between 250 - 300 g, were 

obtained from the Biomedical Resource Centre of the University of KwaZulu-Natal. The rats 
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were moved to a new room and housed under standard laboratory conditions of ± 22°C room 

temperature, 70% humidity and a 12-hr light/dark cycle (lights on at 06h00, off at 18h00), food 

and water were available ad libitum. The rats were housed in standard conventional 

polycarbonate 1291H tecniplast (type III) cages (425 x 266 x 185 mm, floor space: 80 cm2). 

The rats were separated into four groups and allowed to acclimatise for one week. The 

experimental protocols and procedures performed in this study were approved by the Animal 

Research Ethics Committee (AREC) of the University of KwaZulu-Natal (AREC/024/020M) 

 

2.3 Experimental Design 

Chronic stress was induced in parents using the chronic restraint stress protocol (24-26), 

detailed below. The rats were first separated into non-stressed and stressed groups, i.e., non-

stressed mother (NS-M) and stressed mother (S-M) and non-stressed father (NS-F) and stressed 

father (S-F). After that, they were assigned to the following groups, each group containing four 

males and two females as follows: (1) control (C) group: non-stressed mother and father (NS-

M + NS-F) (n =6); (2) non-stressed mother and stressed father (NS-M+S-F) (n =6); (3) stressed 

mother and non-stressed father (S-M+NS-F) (n =6); and (4) stressed mother and stressed father 

(S-M+S-F) (n =6). Following acclimation, the S-F were exposed to chronic restraint stress 

protocol for 1 hr over seven days. Succeeding the stress period, the animals were mated 

according to their groups. On gestational day (GND) 14, the S-M group was subjected to the 

chronic restraint stress protocol for 1 hr over seven days.  

 

On GND 14, the S-F groups were again exposed to the chronic stress protocol, and then the 

NS-F and S-F were exposed to the elevated plus maze (EPM). The fathers were sacrificed 24 

hrs after the behavioural test to collect the amygdala to measure serotonin concentration. 

Following birth, the pups were weaned off their mothers on postnatal day (PND) 22, and on 

PND 23, they were exposed to behavioural tests. The pups were scored on the sucrose 

preference test, EPM and the social novelty test. The pups were sacrificed using a sharpened 

guillotine 24 hrs after the last behavioural test. Hippocampal and amygdala tissue were 

collected to measure dopamine and serotonin concentration. All samples were immediately 

snap-frozen after extraction using liquid nitrogen and then stored in a bio freezer at -80°C until 

neurochemical analysis was performed.  
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2.4 Paternal chronic stress protocol  

The fathers were equally divided into stressed fathers (S-F) (n=8) and non-stressed fathers (NS-

F) (n=8). The S-F were exposed to daily chronic restraint stress before mating. The S-F was 

taken to a separate room and placed in rodent restrainers for one hr between 11 am and 12 pm, 

for a total of 7 days (24, 27). After the stress protocol for each day had concluded, the S-F were 

returned to their home cages, and the restrainers were washed and sanitised with 70% ethanol 

to prevent odour signal interference in the behaviour of the animals. The NS-F remained 

undisturbed in their home cages.  

 

2.5 Mating 

The mothers were equally divided into stressed mothers (S-M) (n=4) and non-stressed mothers 

(NS-M) (n=4). The mothers were paired and allowed to acclimatise for one week to minimise 

stress and synchronise their oestrous cycles. Following this, vaginal smears were performed 

daily to assess the females’ oestrous cycle, and once in pro-oestrous, a male rat was introduced 

until mating was successful (28). Vaginal smears were performed to determine if mating was 

successful by identifying the presence of sperm. The male was moved to its home cage upon 

positive confirmation, and this marked gestational day (GND) 0. 

 

2.6 Maternal Chronic prenatal stress protocol 

On GND 14, the pregnant S-M rats were exposed to chronic restraint stress daily. The S-M 

were exposed to the same chronic restraint stress protocol as the fathers. The stress paradigm 

occurred on GND 14 as this is the age when neural structure development begins in a foetal 

brain (29).  

 

2.7 Paternal testing and tissue collection 

Following successful mating, the S-F groups were again exposed to the same chronic stress 

protocol to confirm that the fathers were indeed stressed. The NS-F groups remained 

undisturbed in their home cages throughout this period. After that, the NS-F and S-F were 

exposed to the EPM to monitor their anxiety (protocol detailed below).  

 

2.7.1 Paternal tissue collection 

The fathers were sacrificed 24 hrs after the behavioural test and were taken to the autopsy room 

1 hr before decapitation. The fathers were decapitated using a sharpened guillotine, and the 
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amygdala was collected into 2 ml Eppendorf tubes. All tissue samples were weighed before 

snap freezing in liquid nitrogen and stored in a bio freezer at -80°C for biochemical analysis.  

 

2.8 Postnatal Behavioural Tests 

2.8.1 Elevated Plus Maze (EPM) 

The apparatus comprised of a maze with two open (50×10 cm) and two enclosed (50x10 cm) 

arms. The arms radiated from a 10 cm central square. The entire apparatus was elevated by 50 

cm off the floor. The fathers were exposed to the EPM 24 hrs after the first chronic restraint 

stress protocol, and offspring on PND 59. Briefly, a single animal was placed at the junction 

of the open and closed arms and left to explore the maze for 5 mins. Anti-anxiety behaviour 

was indicated by more time being spent in the open arms than the closed arms, whilst anxiety-

like behaviour was indicated by more time spent in the closed arms of the maze than the open 

arms (30). An entry was defined only when all four paws of the animal were in the arm. After 

each session, the maze was cleaned with 70% ethanol in distilled water to prevent odour signal 

interference in the behaviour of the animals. The time spent in the open and closed arms were 

recorded and the footage uploaded to the BORIS software (version 7. 10. 7) (31). This 

behaviour was scored by third-party observants blinded to the study protocol. 

 

2.8.2 Sucrose Preference Test (SPT) 

To investigate anhedonia and depression-like behaviour, the pups were exposed to the sucrose 

preference test on PND 60, using an established protocol with minor modifications (32, 33). 

Briefly, the pups were habituated over four days, with two bottles of pure water available on 

days 1 and 2, two bottles of 1% sucrose on day 3, and one bottle of pure water and one bottle 

of 1% sucrose on day 4. The positions of the two bottles were switched daily to reduce any 

bias elicited by familiarity. After 12 hrs of food and water deprivation, the pups were separated 

(one per cage) and presented with 200 mL of pure water and 200 mL of 1% sucrose solution. 

The quantities of pure water and sucrose consumed were recorded after 12 hrs. According to 

the equation below, the sucrose preference (SP) was calculated as a percentage of the volume 

of sucrose intake over the total volume of fluid intake (32). 

 

𝑆𝑃 = 	
𝑠𝑢𝑐𝑟𝑜𝑠𝑒	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	(𝑔)

𝑆𝑢𝑐𝑟𝑜𝑠𝑒	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	(𝑔) + 𝑤𝑎𝑡𝑒𝑟	(𝑔) 	× 	100 
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2.8.3 Social Novelty Test  

The social novelty test was used to assess the animals’ preference for sociability on PND 61 

(34, 35). The pups were transferred to a behavioural room 1 hr before the testing for the 

habituation period. The apparatus used in this test was divided into three chambers (100 ´ 30 

´ 30 cm3), one central and two lateral, with wire cups placed on the lateral chambers. The 

subject rat was placed in the centre compartment to habituate for 5 min and roam the three 

chambers freely. After that, the subject was removed, and the novel rat was placed inside a 

wire cup in one of the side chambers, and a familiar rat was placed inside a wire cup in the 

corresponding chamber. The subject rat was allowed free access to explore all three chambers. 

After each trial, the chambers were cleaned with 70% ethanol in distilled water to prevent 

odour signal interference in the behaviour of the animals. The placement of the “stranger” and 

“familiar” rats was alternated between the left and right lateral sides of each run to eliminate 

the element of bias by the subject rat. The time spent in each compartment with the novel rat, 

familiar rat or alone was recorded for 5 min, and the footage was uploaded to BORIS (version 

7. 10. 7) (31). To represent inquisitorial behaviours, we noted the total time spent in each 

chamber, the number of physical interactions with the wire cups and the total time spent with 

each cup by the subject (36). The behaviour was scored by third-party observants blinded to 

the study protocol. To evaluate the subject’s preference for sociability, we calculated the social 

preference index (SPI) in the following manner (36): 

 

𝑆𝑃𝐼 =
𝑡𝑖𝑚𝑒	𝑠𝑝𝑒𝑛𝑡	𝑒𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔	𝑛𝑜𝑣𝑒𝑙	𝑟𝑎𝑡 − 𝑡𝑖𝑚𝑒	𝑠𝑝𝑒𝑛𝑡	𝑒𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔	𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟	𝑟𝑎𝑡
𝑡𝑖𝑚𝑒	𝑠𝑝𝑒𝑛𝑡	𝑒𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔	𝑛𝑜𝑣𝑒𝑙	𝑟𝑎𝑡 + 𝑡𝑖𝑚𝑒	𝑠𝑝𝑒𝑛𝑡	𝑒𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔	𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟	𝑟𝑎𝑡 

 

2.9 Offspring tissue collection 

On PND 30, 24 hrs after the behavioural tests, the pups were taken to the autopsy room and 

left to acclimatise for 1 hr before decapitation. The pups were decapitated using a sharpened 

guillotine. The hippocampal and amygdala tissue were collected into 2 ml Eppendorf tubes. 

All tissue samples were weighed before snap freezing in liquid nitrogen and stored in a bio 

freezer at -80°C for biochemical analysis.  

 

2.9.1 Biochemical Analysis   

Amygdala serotonin concentration from both the fathers and pups was measured using the 

enzyme-linked immunosorbent assay (ELISA) kit (DEE8900) (Kiel, Germany) according to 
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the manufacturer’s protocol. Hippocampal dopamine concentration from the pups was 

measured using the ELISA kit (E-EL-0046) (Elabscience, Wuhan, China) according to the 

manufacturer’s procedure.  

 

2.10 Analysis of data 

All data analyses were performed with GraphPad Prism version 7 (GraphPad Software Inc., 

California, USA) using the two-way analysis of variance (ANOVA) test followed by the 

Tukey-Kramer post hoc comparison test. An n=8 for offspring analysis and n=4 for paternal 

analysis were assessed per group. p < 0.05 was considered statistically significant. All Data are 

expressed as the mean ± standard error of the mean (SEM).  

 

3. RESULTS 

The EPM was employed to evaluate the degree of anxiety in the fathers and offspring, and the 

time spent in the open arms and closed arms were used to assess their anxiogenic behaviour. 

The sucrose preference test was used to investigate depression-like behaviour in offspring, by 

monitoring the quantity of pure water and sucrose consumed. The social novelty test was used 

to assess the offspring preference for sociability by recording the time spent with a novel rat, 

familiar rat or alone. 

 

3.1 EPM – fathers  

There was a difference between the time spent in the open and closed arms of the EPM, which 

was measured to assess paternal anxiety (F (1, 20) = 542.8, p<0.0001, Figure 1a). There was a 

paternal stress effect on time spent in the closed arms in the S-F group compared to the NS-F 

group β(S-F closed arms vs NS-F closed arms, p<0.0001, Figure 1). 
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Figure 3: The sociability preference of offspring from the Control, NSM-SF, SM-NS-F and 

SM-SF groups. A comparison of the time spent by offspring with a familiar rat, novel rat or 

alone as per the social novelty test. *p<0.05 when compared to Control familiar rat; #p<0.05 

when compared to Control novel rat; αp<0.05 when compared to NSM-SF familiar rat; βp<0.05 

when compared to NSM-SF novel rat. 

 

3.1.2 Social novelty preference 

There was a difference in the time spent with the novel rat or familiar rat within each group 

(Table 1) and the SPI (Figure 3) during the social novelty test, which were measured to assess 

offspring sociability (F (3,36) = 76.09, p<0.0001). There was an offspring sociability effect 

between the novel rat and the familiar rat within the groups #(Control-novel rat vs Control-

familiar rat, P<0.0001, Table 1), #(NSM-SF novel rat vs NSM-SF familiar rat, p<0.05, Table 

1), #(SM-NSF novel rat vs SM-NSF familiar rat, p<0.0001, Table 1) and #(SM-SF novel rat vs 

SM-SF familiar rat, p<0.0001, Table 1). Indeed, the preference index shows that there was an 

offspring effect on the preference for novelty in other groups when compared to the control 

group *(NSM-SF vs Control, p<0.0001, Figure 4), *(SM-NSF vs Control, p<0.0001, Figure 

4), *(SM-SF vs Control, p<0.0001, Figure 4). There was also an offspring effect on the 

preference for novelty in the SM-NSF and SM-SF groups when compared to the NSM-SF 

group α(SM-NSF vs NSM-SF p<0,05, Figure 4), α(SM-SF vs NSM-SF p<0.0001, Figure 4). 

There was a parental stress effect on the sociability in the offspring on the preference for 

novelty in the SM-SF group compared to the SM-NSF group β(SM-SF vs SM-NSF p<0,05, 

Figure 4). 
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Figure 4: The SPI of offspring from the Control, NSM-SF, SM-NS-F and SM-SF groups. A 

comparison of the time spent by offspring with a familiar rat, novel rat or alone as per the social 

novelty test. *p<0.05 when compared to Control; αp<0.05 when compared to NSM-SF; βp<0.05 

when compared to SM-NSF.  

 

Table 1: Time spent by offspring with a familiar rat or novel rat within each group (n=8, per 

group).  

Group 

(n=8) 

Interaction (secs) 

Familiar Rat Novel Rat 

Control 101 ± 25,3 168 ± 28,5# 

NSM-SF 92,3 ± 11 133 ± 13,4# 

SM-NSF 96,6 ± 12,8  163 ± 28,4# 

SM-SF 99,4 ± 10,8 177 ± 15,2# 

Values are presented as means ± SEM. #p<0.05 when compared to familiar rat. 

 

3.4 Sucrose preference test – offspring 

There was a difference in water and sucrose intake between the groups (Figure 4)  (F(3, 46) = 

13.39, p<0.0001) and the sucrose preference (Table 2) within the groups, which was measured 

to assess offspring anhedonia (F (3, 18) = 15,11, p<0.0001). There was a control group and SM-

NSF group effect on fluid consumption *(Control-SI vs Control-WI, p<0.0001, Table 2), 

*(SM-NSF SI vs SM-NSF WI, p<0.0001, Table 2). There was a prenatal stress effect on 

offspring’s water intake in the SM-NSF WI and SM-SF WI when compared to the control WI 
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Table 2: Offspring consumption of sucrose or water within each group (n=8, per group). 

Group (n=8) 
Consumption (ml) 

Water Intake (WI) Sucrose Intake (SI) 

C 1,75 ± 0,16 5,13 ± 0,35* 

NSM-SF 7,63 ± 1,00 4,38 ± 0,71α 

SM-NSF 2,75 ± 0,70# 8 ± 1,05* 

SM-SF 4,5 ± 1,77# 4,38 ± 0,53α 

Values are presented as means ± SEM. *p<0.05 when compared to WI; #p<0.05 when 

compared to Control-WI; αp<0.05 when compared to SM-NSF. 

 

3.5 Serotonin concentration in fathers 

The amygdala serotonin concentration as above, was measured to assess paternal anxiety (F(5, 

6)=6,129, p<0.05). There was a stress effect on amygdala serotonin concentration in the fathers 

*(S-F vs NS-F, p<0.0001, Figure 6). 

  
Figure 6: Amygdala serotonin concentration in NS-F and S-F 24 hours following EPM activity. 

*p<0.05 when compared to NS-F. 
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3.6 Serotonin concentration in offspring 

The amygdala serotonin concentration, as above was measured to assess offspring anxiety (F 

(3, 19) = 23.67, p<0.0001). There was a SM-SF group effect on serotonin concentration compared 

to the control group *(SM-SF vs Control, p<0.0001, Figure 7). There was a prenatal stress 

effect in the offspring on the amygdala serotonin concentration when compared to NSM-SF 

group #(SM-NSF vs NSM-SF, p<0.05, Figure 7), #(SM-SF vs NSM-SF, p<0.0001, Figure 7). 

There was also a SM-SF stress effect in the offspring amygdala serotonin concentration when 

compared to SM-NSF group α(SM-SF vs SM-NSF, p<0.05, Figure 7). 

  
Figure 7: Amygdala serotonin concentration in offspring from the Control, NSM-SF, SM-NS-

F and SM-SF groups.*p<0.05 when compared to Control; #p<0.05 when compared to NSM-

SF; αp<0.05 when compared to SM-NSF. 

 

3.7 Dopamine concentration in offspring 

The hippocampal dopamine concentration was measured to assess offspring depression (F (3, 20) 

= 0.1721, p<0.05). No stress effect on dopamine concentration in the Control, NSM-SF, SM-

NSF and SM-SF groups was found (Figure 8). 
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Figure 8: Hippocampal dopamine concentration in offspring from the C, NSM-SF, SM-NS-F 

and SM-SF groups. 

 

4. DISCUSSION 

There is enough literature linking maternal prenatal stress to alterations in offspring 

behavioural, psychiatric and neurological modifications (1, 37). These are associated with the 

onset of anxiety, depression, impaired memory, sociability, elevated serotonin and cortisol and 

dysfunctional physiological systems like the HPA axis (1, 37, 38). In addition, to these effects, 

studies on South Africans and other population groups have shown that stressors and past 

traumas, especially during early development, can durably impact psychological health and 

behaviour (1). However, they have not examined the contribution of paternal traumas to 

adaptations in offspring behavioural, psychiatric and neurological modifications. These 

findings were matched to changes in brain neurochemistry. Altogether, our findings show that 

the stressed fathers did not transfer their anxiogenic behaviour however, they did affect 

sociability and anhedonia. This was mediated in part by decreased serotonin concentration in 

the offspring. These findings were more prominent when S-F were mated with S-M.  

 

The behaviour observed in the fathers during the elevated plus maze test following exposure 

to chronic restraint stress was customary of anxiogenic demeanour. This was confirmed by the 

time spent in the closed arms of the EPM by the S-F when compared to the NS-F. This 

behaviour signifies the S-F preference for exploring protected areas rather than novel 
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environments thereby confirming that the fathers were anxious (30). The lack of anxiogenic 

behaviour observed in the S-F offspring was noted and could in part be due to the intensity of 

the stress paradigm employed on the fathers which didn’t reflect in their offspring. Anxiety is 

portrayed by increased fear and apprehension; however, this can also be accompanied by a 

withdrawal from common behaviours and other physiological effects (39). Stressing the 

mothers during pregnancy resulted in an increase in anxiogenic effects in the offspring, evident 

by a tendency of the offspring to spend more time in the closed arms when compared to the 

open arms of the elevated plus maze. A rat animal model has shown that prenatal stress induced 

signs of anxiety-like behaviour (40). Likewise, an upregulation of glucocorticoid receptor 

influences anxiety and depression-like behaviours in the elevated plus maze (41). Our EPM 

results further support previous results which show that prenatal and postnatal stress models 

have shown a tendency for rats to spend more time in the closed arms, indicating anxious 

behaviour (38, 42). Furthermore, it has been documented that early life adversities are linked 

to prolonged and detrimental changes to the individual’s hypothalamic–pituitary–adrenal axis 

(43, 44), which can impact the ability to explore unfamiliar environments (26, 45). Therefore, 

when mothers are stressed during pregnancy the resultant anxiogenic effects are transferred to 

the offspring.  

 

Social anxiety was observed in offspring from the SM-NSF and SM-SF groups after exposure 

to the social novelty test. This was confirmed by SM-NSF and SM-SF pups’ preference for 

engaging with a familiar rat rather than the novel rat when compared to the NSM-SF group. 

This agrees with studies that have reported behavioural adaptability in chronically stressed 

rodents (46-48). Furthermore, our findings agree with the results of a different study which 

reported a reduction in social interaction of prenatally stress rats (49).  Exposure to chronic 

stress has been linked to a reduced motivation for social engagements, which is customary in 

depressed patients (50, 51). Our results suggest that the offspring of stressed parents attenuated 

social novelty behaviour, which requires recognition memory. The animals' ability to 

distinguish familiar from unfamiliar denotes social recognition (52), which is fundamental in 

novelty-seeking behaviour (46). The preference index value suggests, that on their own 

prenatally stressed parents are able to affect their offspring’s sociability, but this effect is 

exacerbated when the S-F are mated with S-M. These findings infer that as the number of 

stressed parents increase, the desire for sociability decreases. This was confirmed by the lower 

preference for a novel rat when compared to the offspring from the NSM-SF group and SM-
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NSF group. Our results concur with previous studies which show that increasing the duration 

or intensity of chronic restraint stress impairs the animals’ sociability (51, 52). This validates 

our results because the offspring that experienced the lowest sucrose preference index were the 

progeny of equally stressed parents and therefore, had a higher stress factor. Therefore, we 

speculate that offspring from prenatally stressed fathers have an apparent aversion to 

sociability. 

 

The anxiogenic behaviour exhibited by S-F were confirmed by lower serotonin concentration 

in the amygdala found in the S-F when compared to NS-F. The anxiogenic behaviour exhibited 

by pups was also confirmed by a decreased serotonin concentration in the amygdala of pups 

from the SM-NSF and SM-SF. Our findings agree with other studies which reported that 

prenatal stress selectively decreased serotonin levels (53). Systemic depletion of serotonin, 

reported in patients with emotional disorders, has been shown to attenuate glutamate activity 

in the amygdala and exacerbate fear behaviours (54, 55). Furthermore, following a decrease in 

serotonin, animal models have reported anxiety-like behaviours (56). Therefore, we speculate 

that offspring from prenatally stressed parents were more susceptible to feelings of fear and 

anxiety than the NSM-SF offspring. The social anxiety exhibited by the pups were confirmed 

by lower serotonin concentration in the amygdala of pups from the SM-NSF and SM-SF when 

compared to NSM-SF. This suggests that offspring from the SM-NSF and SM-SF were 

predisposed to anxious behaviour when compared to the NSM-SF offspring. Our results agree 

with a study conducted by Frick et al. which reported an increased serotonin synthesis in 

patients with social anxiety using neuroimaging of the amygdala when compared to controls 

(5). Therefore, we speculate that offspring exposed to early life stress present with 

dysfunctional neural activity in the amygdala, which plays a key role in modulating anxiety 

(5). For that reason, prenatally stressed parents could have, in part, attenuated serotonin 

concentration in offspring which exacerbated the onset of social anxiety.  

 

Our sucrose preference test results showed that S-F increased the occurrence of offspring 

anhedonic behaviour, which is a primary symptom of depression (57). These offspring 

preferred water over sucrose, which indicates their neutrality to pleasurable activities, in 

contradiction to offspring from S-M who preferred sucrose. These findings agree with literature 

which showed that stressed rodents have a lower preference for sucrose than unstressed (53, 

58). From these results, we speculate that prenatally stressed fathers exacerbated feelings of 
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anhedonia in offspring. Paradoxically, higher sugar consumption has also been linked to an 

increased prevalence of depression in many cross-sectional studies (59-62). Since literature has 

already reported an association between maternal prenatal stress and risk for depression in 

offspring (63-66), we do not discredit this result. Our findings instead relate to another cross-

sectional study that investigated if there is a positive association between prevalent mood 

disorders and sugar intake. This study concluded that sugar intake has unfavourable effects on 

psychological stability, and a lower sugar intake may lead to better psychological well-being 

(59). Early life adversities are toxic chronic stressors, that result in sustained psychological and 

biological changes to the body which increase the likelihood of developing depression (15, 67). 

Therefore, we further speculate that prenatally stressed parents could have, in part, exacerbated 

the anhedonic behaviour in their offspring. 

 

The anhedonia exhibited by the pups were confirmed by measuring the concentration of 

dopamine in the hippocampus. Anhedonia has been associated with an altered dopamine 

reward system which is accompanied by a decrease in dopamine release and lower dopamine 

binding in depressed patients (62). Our discrepant findings show that there were no significant 

differences in the hippocampal dopamine concentrations between offspring. Our findings are 

likely to reflect fluctuations  in the stress paradigm used, as exposure to mild stressors 

intensifies dopaminergic action whilst chronic stressors attenuates dopaminergic action (19). 

Therefore, we speculate that these discrepant findings are likely a result of the stress paradigm 

employed and as such, there was minimal effect found in the neural circuitry. We recommend 

that a follow-up study be conducted to investigate the role of dopamine sensitivity in prenatally 

stressed parents and in offspring exposed to early life adversities.  

 

Altogether, the behavioural and neurochemical manifestations in the offspring of prenatally 

stressed fathers suggest that S-F can transfer feelings of anhedonia and social anxiety to their 

offspring. This was mediated, in part, by offspring behavioural changes of depression and 

social anxiety as well as, a blunted serotonin response. Furthermore, when both parents are 

prenatally stressed their stress effect to their offspring’s behavioural and neurochemistry is 

augmented. This was confirmed by the behavioural manifestations of extreme anxiety, 

depression and social anxiety as well as, the subdued serotonin concentration. Our study adds 

to the literature on the effects that S-F infer to offspring, which has not been comprehensively 

explored. It is recommended, that psychological succour be given to fathers and expectant 
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parents be screened for markers of psychological behaviours to protect their foetus. These 

findings warrant further investigation into causative mechanisms. Additionally, it is 

recommended that this study be modelled to investigate the long-term effects of traumatic 

experiences across multiple generations to, using a larger subset.  

 

5. CONCLUSION 

Altogether, our findings show that the prenatally stressed fathers did not transfer their 

anxiogenic behaviour however, they decreased the offspring’s sociability and increased 

anhedonia. This was mediated in part by decreased amygdala serotonin concentration in the 

offspring. These findings were more prominent when prenatally stressed fathers were mated 

with prenatally stressed mothers, which yielded an additive effect. Our findings, are beneficial 

when understanding the relationship between historic human experiences and current societal 

problems, specifically how this contributes to the pressures and consequences on the current 

generation. We therefore, suggest that this study be used to further investigate the evolution of 

historical traumas through multiple generations to understand the mechanisms behind 

behavioural and neurological behaviours, which will successively advance therapeutic 

strategies, and minimise the burden of mental illness on society. 
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CHAPTER 3 

 

Prologue 

Manuscript 2 

Chapter 2 provided a scientific manuscript that investigated the influences of parental stress on 

offspring neurochemistry and behaviour, by documenting the effects on offspring anxiety, 

depression and sociability as well as defined the clinical relevance of this study.  

 

“Paternal prenatal stress alters offspring metabolism and stress regulation” 

 

 

Contributions of this chapter  

This chapter is comprised of a scientific manuscript that investigated the influences of parental 

stress on offspring neurochemistry and behaviour, by documenting the effects on offspring 

body weight, feeding behaviour and stress response as well as described the paternal 

contributions to these manifestations. The results of this study were compared across parental 

groups to determine statistically significant relationships.  

 

  

Note: This chapter has been prepared according to the guidelines outlined by PONTE Journal 

(Appendix D). 
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ABSTRACT 

Studies have shown that the perinatal environment plays a critical role in the development and 

growth of offspring. However, there remains a paucity in literature on the effects a stressed 

father confers to the offspring’s metabolic, behavioural and neurochemical systems. The 

present study sought to investigate the influence of chronic parental stress on offspring 

metabolism and stress regulation. To achieve this, male and female Sprague Dawley rats, 

weighing 250 – 300 g, were assigned to one of the following four groups (n=6 per group) viz: 

1) control, (2) non-stressed mother and stressed father, (3) stressed mother and non-stressed 

father, and (4) stressed mother and stressed father. The fathers were subjected to a 7 day chronic 

restraint protocol and then mated. Following pregnancy confirmation, the stressed-mothers 

were subjected to a chronic restraint stress protocol on gestation day fourteen. Altogether, the 

metabolic, behavioural and neurochemical manifestations in the offspring of prenatally 

stressed fathers suggest that stressed fathers can impinge on offspring feeding behaviour, body 

weight changes as well as disruption of the hypothalamic-pituitary-adrenal axis. This was 

mediated, in part, by the offspring’s reduced food intake and body weight as well as, a 

dysregulated corticosterone response and upregulated glucocorticoid receptor expression. 

Moreover, when both parents are prenatally stressed, their stress effect increased offspring food 

intake but decreased body weight which was mediated, in part, by upregulating corticosterone 

secretion. In summation, stressed fathers did not explicitly affect the offspring stress response 

however, they did illicit changes to their appetite and growth.  

 

Keywords: perinatal, prenatal stress, metabolism, chronic stress, glucocorticoid receptor, 

corticosterone 
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1. INTRODUCTION 

Exposure to past stress and trauma during early developmental stages can permanently affect 

the performance and advancements of core systems in humans, including the neuroendocrine 

pathways, neurobiological and metabolic functioning, and immune system (1). Upon 

encountering a stressor, the body reacts by deploying several modifications of the normal 

homeostatic reaction, including regulating the sympathetic adreno-medullary and 

hypothalamic pituitary adrenal (HPA) axis (2). 

 

Chronic stress is a cumulative process in which the HPA axis responds to each individual 

“threat” through persistent exposure and consequently results in the release of catecholamines 

and glucocorticoids (3-5). Glucocorticoids are lipophilic, meaning they can cross the blood-

brain barrier and bind to glucocorticoid receptors in various brain regions (6). The 

glucocorticoids stimulate mineralocorticoid receptors and glucocorticoid receptors in the 

hypothalamus and the pituitary gland, providing a feedback signal to regulate HPA axis activity 

(3-5). The feedback process terminates prolonged secretion of glucocorticoids thereby limiting 

exposure to glucocorticoids, which promote pathological effects in the body (4). 

Glucocorticoids can influence the brain genomically and non-genomically using various sites 

and pathways (7). 

 

During gestation, maternal and foetal glucocorticoid levels increase, as a prenatal 

developmental mechanism (8). Foetal exposure to glucocorticoids during the third trimester is 

necessary for development of the lungs, brain and to prepare for birth and delivery (8). 

Increased levels of glucocorticoids have been linked to diminished cognition and poor 

sociability, as well as anxiety-like behaviours (8, 9). Glucocorticoids and catecholamines affect 

glucocorticoid receptors and adrenergic receptors on immune cells extracellularly and 

intracellularly which subsequently impede the secretion of pro-inflammatory cytokines and 

stimulate anti-inflammatory cytokine secretion (10, 11). An abundance of cytokines can 

influence the neurodevelopment of the foetus by directly interacting with the foetus glial cells, 

and is also associated with the transmission of stress between the mother and foetus via cortisol 

and reactive oxygen species (12). Chronic stress has been shown to decrease the production of 

proinflammatory cytokines, whilst it stimulates the secretion of anti-inflammatory cytokines 

(10). From this, it was hypothesised that chronic stress could lead to disease onset by 

suppressing the immune system (10, 13).  
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Following a chronic stress period, the elevated glucocorticoids in the bloodstream activate 

lipoprotein lipase in adipose tissue thereby, increasing fatty deposits (14). Through this 

mechanism, chronically elevated cortisol concentration leads to an accumulation of fat (14). 

Glucocorticoids can influence food intake by increasing or decreasing appetite-regulating 

hormones such as, insulin, ghrelin and leptin and can stimulate food intake by encouraging the 

desire for “comfort foods (14).” Insulin has an oppressive effect on the reward pathways, this 

means that food has to be more rewarding for it to have the same effect, therefore, in a stressed 

state, rats are more inclined to choose foods high in fat and sucrose (14).  

 

Prenatal stress refers to all types of stress experienced by the parent (15-17). The long-term 

effects of prenatal stress are unspecified however, literature suggests that prenatal exposure to 

stress can affect the progression, performance and sensitivity of the stress system (1, 5). 

Maternal prenatal stress increases the risk of cortisol exposure to the foetus which subsequently 

produces adverse birth consequences (1, 5). Whilst many studies are investigating these lasting 

effects of maternal prenatal stress, there is a paucity of information on the long-term effects of 

paternal prenatal stress overall. 

 

Hence, the present study sought to investigate the effects of prenatal stress on metabolism and 

stress regulation, particularly the fathers, and whether these can be transferred to offspring or 

if they can affect the offspring development. This was executed by evaluating the stress 

response, appetite and growth in the offspring through behavioural observations and the 

assessment of neurochemical markers. 

 

2. METHODOLOGY 

2.1 Materials 

All chemicals and reagents used were of analytical grade and were purchased from standard 

commercial suppliers.  

 

2.2 Animals 

Sixteen male and eight female Sprague Dawley (SD) rats, each weighing between 250 - 300 g, 

were obtained from the Biomedical Resource Centre of the University of KwaZulu-Natal. The 

rats were moved to a new room and housed under standard laboratory conditions of ± 22°C 

room temperature, 70% humidity and a 12-hour light/dark cycle (lights on at 06h00, off at 
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18h00), food and water were available ad libitum. The rats were housed in standard 

conventional polycarbonate 1291H tecniplast (type III) cages (425 x 266 x 185 mm, floor 

space: 80 cm2). The rats were separated into four groups: (1) control (C) group: non-stressed 

mother and father (NS-M + NS-F) (n =6); (2) non-stressed mother and stressed father (NS-

M+S-F) (n =6); (3) stressed mother and non-stressed father (S-M+NS-F) (n =6); and (4) 

stressed mother and stressed father (S-M+S-F) (n =6), and allowed to acclimatise for one week. 

The experimental protocols and procedures performed in this study were approved by the 

Animal Research Ethics Committee (AREC) of the University of KwaZulu-Natal 

(AREC/024/020M). 

 

2.3 Experimental Design 

Chronic stress was induced in parents using the chronic restraint stress protocol (15, 18, 19), 

detailed in the next section. The rats were first separated into non-stressed and stressed groups, 

i.e., non-stressed mother (NS-M) and stressed mother (S-M) and non-stressed father (NS-F) 

and stressed father (S-F). After that, they were assigned to the following groups, each group 

containing four males and two females as follows: (1) control (C) group: non-stressed mother 

and father (NS-M + NS-F); (2) non-stressed mother and stressed father (NS-M+S-F); (3) 

stressed mother and non-stressed father (S-M+NS-F); and (4) stressed mother and stressed 

father (S-M+S-F). Following acclimation, the S-F were exposed to chronic restraint stress 

protocol for 1 hour daily over seven days. Succeeding the stress period, the animals were mated 

according to their groups. On gestational day (GND) 14, the S-M group was subjected to the 

chronic restraint stress protocol for 1 hour daily over seven days.  

 

On GND 14, the S-F groups were again exposed to the chronic stress protocol. Following birth, 

the pups were weaned off their mothers on postnatal day (PND) 22. 

 

Body weight was measured in offspring from PND 24 until the end of the experimental period 

and food intake was measured in offspring on PND 24. The prefrontal cortex, adrenal glands 

and plasma were collected to measure interleukin (IL)-6, corticosterone and 

adrenocorticotropic hormone (ACTH) concentration respectively. All samples were 

immediately snap-frozen after extraction using liquid nitrogen and then stored in a bio freezer 

at -80°C until neurochemical analysis was performed. An n=8 for offspring analysis were 

assessed per group. 
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2.4 Paternal chronic stress protocol  

The fathers were equally divided into stressed fathers (S-F) (n=8) and non-stressed fathers (NS-

F) (n=8). The S fathers were exposed to daily chronic restraint stress before mating. The S-F 

was taken to a separate room and placed in rodent restrainers for one hour between 11 am and 

12 pm, for a total of 7 days (15, 16). After the stress paradigm for each day had concluded, the 

S-F were returned to their home cages, and the restrainers were washed and sanitised with 70% 

ethanol to remove odour cues. The NS-F remained undisturbed in their home cages.  

 

2.5 Mating 

The mothers were equally divided into stressed mothers (S-M) (n=4) and non-stressed mothers 

(NS-M) (n=4). The mothers were paired and allowed to acclimatise for one week to minimise 

stress and synchronise their oestrous cycles. Following this, vaginal smears were performed 

daily to assess the females’ oestrous cycle, and once in pro-oestrous, a male rat was introduced 

until mating was successful (20). The non-mated males remained in their home cages until 

successful mating. Vaginal smears were performed to determine if mating was successful by 

identifying the presence of sperm. The male was moved to its home cage upon positive 

confirmation, and this marked GND 0. The offspring in this study were obtained from the 

successful mating of these animals.  

 

2.6 Maternal Chronic prenatal stress protocol 

On GND 14, the pregnant S-M rats were exposed to the same chronic restraint stress protocol 

as the fathers. The stress paradigm occurred on GND 14 as this is the age when neural structure 

development begins in a foetal brain (21).  

 

2.7 Offspring tissue collection 

On PND 40, the pups were taken to the autopsy room and left to acclimatise for 1 hour before 

decapitation. The pups were decapitated using a guillotine. The prefrontal cortex, adrenal 

glands and plasma were collected into 2 ml Eppendorf tubes. All tissue samples were weighed 

before snap freezing in liquid nitrogen and stored in a bio freezer at -80°C until biochemical 

analysis.  

2.7.1 Biochemical Analysis    

2.7.1.1 Corticosterone concentration from both the fathers and pups was measured using the 

enzyme-linked immunosorbent assay (ELISA) kit (E-EL-0160) (Elabscience, Wuhan, China) 
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according to the manufacturer’s guidelines. ACTH concentration from the pups was measured 

using the ELISA kit (E-EL-R0048-96T) (Elabscience, Wuhan, China), according to the 

manufacturer’s guidelines.  

2.7.1.2 IL-6 and glucocorticoid receptor expression from the pups was quantified in prefrontal 

cortex tissue using the Real-Time Polymerase chain reaction (qPCR). Primers for the target 

genes and house-keeping gene (HKG) glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

were designed on Primer-BLAST (sequences shown in Table 1), and were obtained from 

Inqaba Biotechnical Industries (Pty) Ltd. Primers were reconstituted to a 100mM stock solution 

by adding nuclease-free water as per manufacturer instructions. Primers base pairs were 

designed according to the MIQE guidelines (22).  

 

Total RNA was isolated using the Zymo Research Quick-RNATM MiniPrep Kit (ZR1054). 

Eluted RNA concentrations were measured for purity using a Nanodrop 2000 (Thermo 

Scientific, Roche, South Africa). purity ratio (A260/A280) of 1.7 – 2.1 was considered 

satisfactory for conversion to cDNA. cDNA was synthesised from 1 μg RNA using the BioRad 

iScriptTM cDNA Synthesis Kit (1708891), in 20 μl of reaction volume according the 

manufacturer’s guidelines using a thermocycler 2.0 (Roche, Switzerland). Real-time PCR was 

performed with the BioRad iTaqTM Universal SYBRâ Green Supermix (172-5120. 

Amplification was run in duplicate in a Roche LightCycler96 (Roche, Switzerland).  

Expression of IL-6 & GR relative to GAPDH was calculated using the 2−(∆∆𝐶𝑞) method (49).  

 

Table 1. PCR Target and Reference primers.  

Primer Forward Reverse 

NCBI 

Sequence 

GAPDH AGTGCCAGCCTCGTCTCATA GATGGTGATGGGTTTCCCGT  NM 017008.4 

IL-6 GGGTAGAAGGCAAGGAGTCG GGACGCACTCACCTCTTGTT  NC 051339.1 

GR TGGGTACTCAAGCCCTGGAA ACATGTCAGCACCCCGTAAT NM_012576.2 

 
2.8 Analysis of data 
All data was analysed with GraphPad Prism version 7 (GraphPad Software Inc., CA, USA). 

The data was subjected to column statistics to determine distribution, and thereafter further 

analysed using the two-way analysis of variance (ANOVA) test followed by the Tukey-Kramer 

post hoc comparison test. The gene expression was analysed using the one-way ANOVA test 
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followed by the Tukey-Kramer post hoc. An n=8 for offspring analysis were assessed per 

group. p < 0.05 was considered statistically significant. All data are expressed as the mean ± 

standard error of the mean (SEM). 

 

3. RESULTS  

3.1 Food Intake 

There was a difference in food intake between the groups (Table 2) which was measured on 

PND 39, to assess offspring appetite (F(3, 23) = 9.596, p<0.05). The prenatal stress effect on 

offspring food intake was present in the NSM-SF and SM-NSF when compared to the Control 

*(NSM-SF vs. Control, p<0.05, Table 2), *(SM-NSF vs. Control, p<0.05, Table 2). There was 

also a parental stress effect on offspring food intake in the SM-SF when compared to the NSM-

SF #(SM-SF vs. NSM-SF, p<0.05, Table 2).  

 

Table 2: Food intake in the final week by offspring within each group (n=8, per group).  

Values are presented as mean ± SEM. *p<0.05 when compared to Control, #p<0.05 when 

compared to NSM-SF. 

 

3.2 Body Weight 

There was a difference in body weight between the groups (Table 3) which was measured on 

PND 39, to assess offspring growth (F(3, 112) = 79.15, p<0.0001). There was a paternal stress 

effect on offspring body weight in the NSM-SF and SM-SF when compared to the Control 

*(NSM-SF vs. Control, p<0.05, Table 3), *(SM-SF vs. Control, p<0.0001, Table 3). There was 

a maternal stress effect on offspring body weight in the SM-NSF and SM-SF when compared 

to the NSM-SF #(SM-NSF vs. NSM-SF, p<0.05, Table 3), #(SM-SF vs. NSM-SF, p<0.0001, 

Table 3). There was a parental stress effect on offspring body weight in the SM-SF when 

compared to the SM-NSF a(SM-SF vs. SM-NSF, p<0.0001, Table 3).  

 

 

 

 

Group (n=8) Control NSM-SF SM-NSF SM-SF 

Food Intake (g) 32.14  ± 1.44  21.4 ± 1.60* 25.25 ± 1.45*  29.71 ± 1.32# 
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3.4 Adrenocorticotropic hormone concentration 

The plasma ACTH concentration was measured to assess offspring stress response (F(3, 20) = 

2.296, p<0.05). There was a SM-NSF effect on ACTH concentration compared to the control 

group *(SM-NSF vs Control, p<0.05, Figure 2). 

 
Figure 2: Plasma ACTH concentration in offspring from the Control, NSM-SF, SM-NS-F and 

SM-SF groups.*p<0.05 when compared to Control.  

 

3.5 Glucocorticoid receptor expression 

The prefrontal cortex glucocorticoid receptor expression was measured to assess offspring 

stress response (F (3, 11) = 21.27, p<0.0001). There was an increase in the glucocorticoid receptor 

expression in SM-NSF offspring compared to the control group *(NSM-SF vs Control, p<0.05, 

Figure 3). There was a decrease in the glucocorticoid receptor expression in the SM-NSF group 

and SM-SF group compared to the NSM-SF group #(SM-NSF vs NSM-SF, p<0.0001, Figure 

3), #(SM-SF vs NSM-SF, p<0.05, Figure 3). 
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4. DISCUSSION 

Prenatal exposure to chronic stress can affect the progression, performance and sensitivity of 

foetal metabolism and its stress response (1, 5). Maternal prenatal stress increases the risk of 

cortisol exposure to the foetus which subsequently produces adverse birth effects such as low 

birth weight, and reduced gestational period (1, 5). However, the contribution of paternal stress 

to adaptations in offspring birth effects and stress response has not been examined. The present 

study investigated the stress response, food intake and body weight in the offspring through 

behavioural observations and the assessment of neurochemical markers.   

 

A lower food intake was observed in offspring of the NSM-SF and SM-NSF groups after, 

suggesting that stressed fathers influenced food intake behaviour in the offspring.  Elevated 

cortisol concentration is associated with reduced appetite and has further been linked to a 

depressive state (14). Increased glucocorticoid production after a chronically stressed state is 

linked to an accumulation of energy and increased appetite (14, 23). Findings in the present 

study show that offspring from the SM-SF group presented with an increased food intake. 

Patients who encounter stressful situations have been shown to adopt unhealthy food patterns 

with most eventually presenting with obesity, metabolic syndrome and type 2 diabetes (24, 25). 

Changes to the offspring HPA axis during early development can further influence the feeding 

patterns of offspring by lowering or elevating voluntary food intake and weight (26). Our 

findings agree with other studies which showed that stressors of specific severity have been 

shown to affect the appetite of rats (27). Therefore, we speculate that prenatally stressed fathers 

are capable of modifying their offspring food intake.  

 

The reduced appetite in offspring from the NSM-SF group and SM-SF group was confirmed 

by the lower body weight when compared to offspring in the control group. Our findings are 

in agreement with other studies which showed that prenatal exposure to chronic stress is related 

to anorexia or low body weight (28, 29).  Furthermore, it has been suggested that the increased 

serum cortisol in patients with anorexia is a biological acclimatisation to starvation caused in 

part by, restricted food intake (28, 30, 31). Hence, we speculate that prenatally stressed fathers 

are capable of restricting their offspring body weight and feeding behaviour. Noticeably, we 

observed a higher body weight in offspring from the SM-NSF group when compared to 

offspring in the NSM-SF group. These findings relate to studies which showed that prenatally 

stressed pups had a discernibly higher body weight (32, 33). Increased glucocorticoid 
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production after a chronically stressed state is linked to increased appetite, as consuming high 

caloric foods leads to weight gain as seen in offspring from the SM-NSF group (14, 23). In 

humans it has been reported that exposure to stressors during late gestation, the period in which 

foetus growth is accelerated, produces low birthweight but can also contribute to the 

development of obesity later on in life (34).  Therefore, we speculate that prenatally stressed 

fathers can predispose their offspring to the risk of developing abnormal feeding behaviours.  

 

The low body weight observed in offspring from the NSM-SF group was confirmed by 

decreased adrenal corticosterone concentration however, no obvious changes to plasma ACTH 

were noted. It has been reported that patients with exposure to childhood trauma and stress, 

exhibited an attenuated cortisol response (35). Children exposed to early life adversities have 

presented with a smaller hippocampal volume and lower cortisol concentration which have 

been associated with mental disorders later on in life (36). It was postulated that over-

stimulation of glucocorticoids with increased cortisol concentration during extreme trauma 

contributed to the hypocortisolism during adulthood which may lead to hippocampal atrophy 

and neuronal damage (36). We also observed elevated adrenal corticosterone concentration in 

offspring from the SM-NSF group, who presented with increased body weight. Our findings 

agree with another study which reported increased body weight in offspring exposed to higher 

than normal corticosterone during pregnancy (37). Both abnormally increased and decreased 

glucocorticoids lead to behavioural changes similar to depressive behaviour. This can be 

confirmed by the anhedonia behaviour exhibited by the offspring from the NSM-SF group, 

SM-NSF group and SM-SF group which was shown in another study, in this project. Therefore, 

we speculate that offspring from prenatally stressed parents present with a dysfunctional 

glucocorticoid response which is related to body weight, appetite and depression like 

behaviours (35). For that reason, prenatally stressed parents could have, in part, influenced 

plasma corticosterone concentration in offspring which exacerbated the onset of low birth 

weight, appetite and depression-like behaviour.   

 

The increased adrenal corticosterone concentration observed in offspring from the SM-NSF 

group when compared to the Control was confirmed by elevated plasma ACTH concentrations. 

It has been reported that prenatal maternal stress activates the HPA axis which increases 

cortisol and ACTH secretion (38). Our findings agree with this, as the stressed mothers 

triggered an increased secretion of both ACTH and corticosterone in the offspring. Our findings 
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agree with another study which showed that chronic stress stimulates a maximum adrenal 

secretion as a consequence of ACTH stimulation, in response to encouraging stimuli (39). On 

the other hand, our results did not confirm that stressed fathers manipulated the offspring 

ACTH secretion. This could have occurred due to the time elapsed since the trauma exposure; 

the severity of the stress paradigm and physiological differences in the offspring. 

 

The dysregulated HPA axis stress response was confirmed by measuring the expression of 

glucocorticoid receptor in the prefrontal cortex in offspring from the C, NSM-SF, SM-NSF 

and SM-SF. Lesions in the ventromedial prefrontal cortex exacerbate reactions to psychogenic 

stressors, and stimulation of the prefrontal cortex reduces the scale of the psychogenic 

glucocorticoid response thereby, implicating the prefrontal cortex in stress inhibition (4, 40). 

Since the prefrontal cortex is able to manipulate the magnitude and duration of a stress 

response, prefrontal glucocorticoid receptors may be intricately involved in feedback 

responses. These interactions imply that the prefrontal cortex when mediated by glucocorticoid 

feedback can inhibit HPA axis responses (4). The prefrontal cortex expresses glucocorticoid 

receptors and mineralocorticoid receptors in high abundance (4), implicating it in HPA axis 

regulation (4). Implants of corticosterone into the prefrontal cortex dampen stress responses 

(4). Our findings agree with this, as offspring from the stressed fathers exhibited a 3 fold 

increase in glucocorticoid receptor expression. It has been documented that glucocorticoid 

receptors in the prefrontal cortex are highly sensitive to disruptions in endogenous 

glucocorticoid secretion implying that prefrontal cortex dysfunction is present in chronically 

stressed rats (41). This data is in agreement with this study, as offspring from stressed mothers 

expressed a fold decrease in glucocorticoid receptor expression. Therefore, we speculate that 

stressed fathers are able to dysregulate the offspring’s glucocorticoid receptor expression. The 

attenuation of glucocorticoids in response to an upregulation of glucocorticoid receptor 

indicated that offspring of stressed fathers exhibit a disrupted negative control feedback.  

 

The inflammatory response was confirmed by measuring the expression of IL-6 in the 

prefrontal cortex in offspring from the C, NSM-SF, SM-NSF and SM-SF. Pro-inflammatory 

cytokines can trigger the HPA axis whilst, cortisol attenuates production of cytokines and other 

inflammatory indicators (42). Our findings show that there were no significant differences in 

the prefrontal cortex IL-6 expression between offspring. Circulating pro-inflammatory factors 

directly triggers the HPA axis, producing serum adrenocorticotropic hormone and 
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glucocorticoids, which subsequently prevents the production of these pro-inflammatory factors 

(43). In rat animal studies, the use of Il-6 was shown to produce structural modifications in 

offspring hippocampus and learning deficiencies as well as increased body weight (12). Stress-

induced cytokine secretion can lead to glucocorticoid resistance (44). Therefore, we speculate 

that our conflicting findings could be due to a variety of factors such as the stress paradigm 

employed, gender, age, and emotional well-being which are recognised for affecting cytokine 

concentration. 

 

Overall, the metabolic, behavioural and neurochemical manifestations in the offspring of 

prenatally stressed fathers suggest that stressed fathers can impinge on offspring feeding 

behaviour, body weight changes as well as disruption of the HPA axis. This was mediated, in 

part, by the offspring’s reduced food intake and body weight as well as, a dysregulated 

corticosterone response and upregulated glucocorticoid receptor expression. Moreover, when 

both parents are prenatally stressed their stress effect to their offspring’s development is 

exacerbated. This was confirmed by metabolic manifestations of increased food intake and 

body weight which may have primarily been attained by modifying the glucocorticoid system. 

Our findings add to the literature on the effects that stressed fathers infer to their offspring, 

which has not been comprehensively explored. These findings warrant further investigation 

into causative mechanisms. It is recommended, that this study be modelled to investigate the 

possible ways stressed fathers affect their offspring, particularly the different life stages in 

which behavioural, metabolic and neurochemical deviations first appear in offspring and the 

long lasting physiological adaptions of these stimuli.  

 

5. CONCLUSION 

Given the anecdotal evidence, the prenatally stressed fathers did not affect the stress response 

in its entirety however, they affected the offspring’s appetite and growth. This was mediated 

in part by decreased adrenal corticosterone concentration and upregulated glucocorticoid 

receptor expression in the offspring. On the other hand, when prenatally stressed fathers were 

mated with prenatally stressed mothers it produced an intermediate effect in the offspring with 

the behavioural, metabolic and neurochemical outcomes averaging the other two groups. Our 

findings encapsulates the effects that familial trauma imposes on the growth and development 

in offspring, specifically how these dysfunctions can manipulate the way in which youth react 

to challenges and hostilities faced in everyday life. This will aid in advancing therapeutic 
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strategies for treatment and management of mental illness, and minimise the negative societal 

impact this might have on society and community.  
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CHAPTER 4: SYNTHESIS 

Exposure to past stress and trauma during early developmental stages can permanently affect 

the performance and advancements of core systems in humans. In South Africa, exposure to 

stressors such as oppression, and racial discrimination, during the apartheid era has resulted in 

mental anguish and other psychological issues. Furthermore, South Africa’s older generation 

have recounted memory impairments, and one in six citizens experience anxiety, depression, 

or substance abuse. Stress can be acute or chronic depending on the duration and exposure to 

a stressor. A chronic stressed state occurs due to prolonged exposure to an acute stressor 

without cessation. This exposure can be lethal because it results in permanent changes to 

emotional, physiological and behavioural aspects, which influence the onset and progression 

of disease. Since the perinatal life is exceptionally sensitive to stressors, adverse conditions can 

produce abnormal changes to behaviour and physiological mechanisms. These include 

permanent alterations to the growth and cognitive functioning, the onset of febrile seizures, 

and the risk for developing psychiatric disorders such as,  autism spectrum disorders,  

schizophrenia and attention deficit hyperactivity disorder. 

 

Prenatal stress refers to any type of stressor experienced by a parent during gestation. The 

lasting effects of prenatal stress are uncertain however, literature has shown that exposure to 

stress prenatally can impact the development, functioning and vulnerability of the stress 

system. Maternal prenatal stress continues to be extensively studied and has been shown to 

affect the growth and sensitivity of core systems such as the hypothalamic-pituitary-adrenal 

axis, immune response, and cognitive development as well as, exacerbate the onset of 

psychiatric conditions such as anxiety and depression. Whilst many are investigating the 

ramifications of maternal prenatal stress on the infant, child, adolescence and adult, there is a 

scarcity of information on the long-term effects of paternal stress on the offspring. 

 

The extent of past traumatic experiences on the parents and their progeny is poorly understood. 

Consequently, it is not certain whether the effects of the experiences can be transferred to the 

offspring. Hence, this study investigated the physiological repercussions in the first filial 

generation after exposing the parental generation to a chronic stress regimen. Therefore, we 

investigated the repercussions of prenatal stress in the offspring by considering the onset of 

anxiety, depression, and sociability. Furthermore, we looked at the influence of prenatal stress 

on the offspring stress response and metabolism. This study will be a first step in elucidating 
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how stressors such as oppression, race and inequality experienced by older generations can be 

transferred to offspring and how it affects their well-being. It will provide insight into the 

physiological connection linking lineages exposed to trauma and the effects in the subsequent 

generations. In addition, it may provide a basis for post-traumatic stress disorder being 

expressed in respective generations of the same lineage. 

 

The findings of this study, which investigated the effects of paternal prenatal stress on offspring 

behaviour, were matched to changes in brain neurochemistry. We found that the fathers 

displayed anxiogenic behaviour which was confirmed by the lower amygdala serotonin 

concentration. We found that exposing the fathers to chronic restraint stress for one hour over 

seven days produced significant behavioural and neurochemical changes in the offspring. We 

noted anhedonia and social anxiety indicators, reduced food intake, and body weight. These 

instabilities were mediated, in part, by blunted serotonin, a sporadic corticosterone response 

and upregulated glucocorticoid receptor expression in the offspring. These findings suggest 

that offspring from prenatally stressed fathers have an apparent aversion to sociability, 

increased likelihood of developing depression and can also pave the way for eating disorders.  

We also found that prenatally stressing both parents enhanced the stress effect seen in their 

offspring’s behaviour and neurochemistry. This was evident by the metabolic, neurochemical 

and behavioural manifestations in the offspring of prenatally stressed parents. 

 

When prenatally stressed fathers were mated with prenatally stressed mothers it produced an 

intermediate effect in the offspring. We found that when both parents were prenatally stressed, 

it produced extreme bouts of anxiety, depression, social anxiety, increased food intake and 

body weight. A suppressed serotonin discharge accompanied these disturbances. This suggests 

that when both parents are prenatally stressed, they can significantly influence their offspring’s 

onset of psychiatric and physiological changes. The beginning of these physiological disorders 

can be averted by monitoring any neurochemical fluctuations to baseline serotonin and 

glucocorticoids in the offspring. This can pre-emptively prepare the parents for any conditions 

that may arise, allowing for adequate therapeutic interventions. 

 

CONCLUSION 

Given the anecdotal evidence, paternal prenatal stress led to the onset of depression-like 

behaviour, sociability, food intake and body weight. In addition, prenatal stress preceded the 
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onset of anxiety, depression, sociability, food intake and body weight in all offspring. 

Prenatally stressed fathers manipulated offspring’s physiological development by way of 

reduced food intake, and body weight, and behavioural indicators of anhedonia and social 

anxiety, which was evident in adolescence. Furthermore, when both parents are prenatally 

stressed, they significantly influence the development of anxiety, depression and sociability in 

their offspring, which from a very young age was evident through discernible changes in the 

growth and development of offspring.  

 

BENEFITS OF THE STUDY  

Our findings can be translated to a human cohort to understand the pathophysiological 

implications surrounding the transference of traumatic experiences in older generations to 

offspring. This can then be used to improve the diagnosis, prevention and treatment of disease 

and control the physiological outcomes of posttraumatic generational traumas. 

 

RECOMMENDATIONS 

Given the findings of our studies, it would be interesting to further investigate the long-term 

effects of traumatic experiences across multiple generations, particularly the different life 

stages in which behavioural, metabolic and neurochemical deviations first appear in offspring 

and the long lasting physiological adaptations of these stimuli. 

 

We recommend that a follow-up study be conducted to investigate the role of dopamine and 

glucocorticoid receptor sensitivity in prenatally stressed parents and in offspring exposed to 

early life adversities. 
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APPENDIX D: SUMMARY OF GUIDELINES TO AUTHORS 

PONTE Journal 

ARTICLE STRUCTURE 

Subdivision - numbered sections 

Divide your article into clearly defined and numbered sections. Subsections should be 

numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). 

Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any 

subsection may be given a brief heading. Each heading should appear on its own separate line. 

Abstract 

A concise and factual abstract is required. The abstract should state briefly the purpose of the 

research, the principal results and major conclusions. An abstract is often presented separately 

from the article, so it must be able to stand alone. For this reason, References should be avoided, 

but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon 

abbreviations should be avoided, but if essential they must be defined at their first mention in 

the abstract itself. 

Keywords 

Immediately after the abstract, provide a maximum of 6 keywords. Be sparing with 

abbreviations: only abbreviations firmly established in the field may be eligible. These 

keywords will be used for indexing purposes. 

Introduction 

State the objectives of the work and provide an adequate background, avoiding a detailed 

literature survey or a summary of the results. 

Material and methods 

Provide sufficient detail to allow the work to be reproduced. Methods already published should 

be indicated by a reference: only relevant modifications should be described. 
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Theory/calculation 

A Theory section should extend, not repeat, the background to the article already dealt with in 

the Introduction and lay the foundation for further work. In contrast, a Calculation section 

represents a practical development from a theoretical basis. 

Results 

Results should be clear and concise. 

Discussion 

This should explore the significance of the results of the work, not repeat them. A combined 

Results and Discussion section is often appropriate. Avoid extensive citations and discussion 

of published literature. 

Conclusions 

The main conclusions of the study may be presented in a short Conclusions section, which may 

stand alone or form a subsection of a Discussion or Results and Discussion section. 

Appendices 

If there is more than one appendix, they should be identified as A, B, etc. Formulae and 

equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a 

subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, 

etc. 

Acknowledgements 

Collate acknowledgements in a separate section at the end of the article before the references 

and do not, therefore, include them on the title page, as a footnote to the title or otherwise. 

Tables 

• Be sure you have cited each table within the text.

• Enter a short descriptive caption at the top of each table, preceded by an identifying Arabic

numeral. 
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• Columns and their headings are normally used to display the dependent variable(s) being

presented in the table. 

• Footnotes should be identified by lowercase letters or numbers (e.g., a, b, c; 1, 2, 3)

appearing as superscripts in the body of the table and preceding the footnote below the 

table. The same data should not appear in both tables and figures. 

Figures 

• Each figure should have a caption. The caption should be concise and typed separately,

not on the figure area; If figures have parts (for example, A and B), make sure all parts 

are explained in the caption. 

• All figures are to be sequentially numbered with Arabic numerals. Figures should always

be cited in text in consecutive numerical order. 

Equation Format 

• Please use earlier versions of Microsoft Word or the legacy equation editor in Word to

create equations. 

• Long equations should be set apart from the text and numbered sequentially. After an

equation is introduced, refer to it by number (e.g., "Eq. 1," "Eqs. 3 and 4"). 

• If some or all of your equations are simple (on a single baseline), use normal text and

fonts. 

• Complex equations should be embedded using standard plug-ins like Math type or the

Word Equation Editor contained in versions of Microsoft Word up to 2003 or the legacy 

equation editor in Word 2007, 2008 for Mac, or 2010. 

• If the paper includes many equations or schemes, these can be collected in a table of

equations. 
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References can be listed in any standard referencing style as long as it is consistent with 

references within a given article. However, key points include: 
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available through public e-print/preprint servers/data repositories, may be cited. 

Unpublished abstracts, papers that have been submitted but not yet accepted, and 

personal communications should instead be included in the text, and should be referred 

to as ‘personal communications’ or ‘unpublished reports’ and the researchers involved 

should be named. It is the responsibility of the authors to ensure they obtain permission 

to quote any personal communications from the cited individuals. 

• The list of references should be arranged alphabetically by authors' names and

chronologically per author. If the author's name is also mentioned with co-authors the 

following order should be used: publications of the single author, arranged 

chronologically - publications of the same author with one co-author, arranged 

chronologically - publications of the author with more than one co-author, arranged 

chronologically. Publications by the same author(s) in the same year should be listed as 

2004a, 2004b, etc. Reference lists not conforming to this format will be returned for 

revision. 

• Web links, URLs, and links to the authors’ own websites should be included as

hyperlinks within the authors' manuscript, and not as references. 




