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ABSTRACT 

Soil aggregation is an important mechanism, which plays a significant role in soil 

fertility as it decreases soil erosion and mediates air permeability, water infiltration, 

and nutrient cycling.  Aggregation depends on a variety of aggregate binding agents, 

including carbon and its fractions, interrelating concurrently at different spatial scales. 

However, biologically active fractions of organic matter, such as microbial biomass 

carbon (MBC) and water-extractable organic carbon (WOC) could better reflect the 

changes in soil quality. Recent studies have highlighted the existence of a 

thermostable, water-insoluble soil glycoprotein operationally referred to glomalin-

related soil protein (GRSP) that is crucial for preserving SOC. However, the 

relationship between SOM fractions and GRSP, and effects of different land uses on 

these parameters and relationships in humid environments are not clearly understood. 

The study sought to determine the relationships between soil organic carbon fractions, 

GRSP and aggregate stability under different management practices. The study was 

conducted on a farm located in the south-east of Howick, in the  uMgungundlovu 

District Municipality, KwaZulu Natal province of South Africa. Soil samples were 

collected at 0-5, 5-10, 10-20 and 20-30 depths from three management practices i.e. 

long-term no till (NT), conventional tillage (CT), and native Forest (F). The native forest 

soils served as the control. Glomalin was assayed. The soils were further analysed for 

Ca, Mg, K, and Na, microbial biomass carbon (MBC), water soluble organic carbon 

(WSOC), soil bulk density (BD). Interaction between land-use and soil depth had 

significant effects on SOC content. There was general decrease in SOC as depth 

increased for all management practices except for no till, where no significant 

differences were observed in SOC across the four soil depth layers. The interaction 

between land-use and soil depth had significant effects (p < 0.05) on both easily 

https://en.wikipedia.org/wiki/UMgungundlovu_District_Municipality
https://en.wikipedia.org/wiki/UMgungundlovu_District_Municipality
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extractable (EE-GRSP) and total (T-GRSP) glomalin related soil proteins. The NT 

treatment had the lowest concentration of EE -GRSP than the other two treatments in 

the 0-5 cm depth whilst no differences among the management practices at deeper 

soil layers were observed. The concentration of T-GRSP for soils under forest and NT 

tended to decrease with depth, while in CT the 10-20 and 20-30 cm depths had higher 

concentrations than the 0-5 and 5-10 cm depths. Land use also had significant effects 

(p < 0.05) on soil aggregate stability. Soils under Forest were the most stable with an 

MWD of just over 3, whilst soils under Conventional Tillage had the lowest MWD value 

of 1.24. The observed aggregate stability was significantly influenced by GRSP as 

evidenced by a significant positive relationship between both EE-GRSP (R2 = 0.72) 

and T-GRSP (R2 = 0.82). Therefore, management practices that mimic natural forest 

favour the accumulation of SOC and T-GRSP and should be widely adopted. 

 

Keywords: microbial biomass carbon, organic matter, water soluble carbon,  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background  

Soil degradation is of major concern in most parts of Africa. Lal (1994) defined soil 

degradation as the loss of actual or potential productivity or utility of soil because of 

natural or anthropogenic factors.  The most severe soil degradation, particularly 

erosion, occurs in communal croplands, grazing lands, and rural settlements of Africa 

(Laker, 2004). The ensuing loss of fertile top soil causes extreme degradation of soil 

quality (Lal, 2001) with negative effects on agricultural productivity (Scherr and Yadav 

1996; Mukhebi et al., 2011; Blaikie, 2016). Le Bissonnais (2003) summarised the soil 

erosion process as a three-step event starting with aggregate disintegration followed 

by transportation and deposition by overland flow. Disintegration of a soil aggregate 

under the influence of raindrops is largely a function of aggregate stability (Le 

Bissonaiss, 1996; Amezketa, 1999). Soil aggregate stability thus gives a measure of 

the ability of aggregates to resist disintegration and maintain their integrity when 

exposed to breakdown forces (Le Bissonnais, 1996). Stable soil aggregates play a 

pivotal role in soil functions, such as, protection and stabilisation of organic matter, 

stabilisation of microbial community structure, control oxygen diffusion, regulate water 

flow (Six et al., 2000; Diaz-Zorita et al., 2002), determine nutrient adsorption and 

desorption (Linquist et al., 1997; Wang et al., 2001), and reduce run-off and erosion 

(Barthes and Roose, 2002).  
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Soil aggregation, the process by which aggregates of different sizes are joined and 

held together by different organic and inorganic materials and the stability thereof is a 

function of intricate interactions between biological, chemical and physical factors 

(Amezketa, 1999).  This process is controlled by inherent soil properties such as 

texture, structure, SOM content, clay mineralogy, sesquioxides exchangeable cations, 

and water retention and transmission properties (Lal, 2001; Six et al., 2004). In 

addition, Norton et al. (2006) reported that aggregate stability also depends on CaCO3, 

Fe and Al oxides. There is a plethora of literature widely highlighting the role of SOM 

and sesquioxides on soil aggregate stability (Barthès et al., 2008; Peng et al., 2015). 

However, there are contradictions in the role and interactions between the various 

aggregating agents in different soils especially soils varying in weathering levels 

(Bronick and Lal, 2005; Wei et al., 2016). It is generally agreed that SOM acts as a 

cementing agent, binding together primary particles in the aggregates, both physically 

and chemically, and hence increasing the stability of the aggregates and ultimately 

limiting their breakdown during wetting (Wuddivira and Camps-Roach, 2007). 

However, the role of SOM in stabilizing soil aggregates has been elaborated for young 

soils (Nciizah and Wakindiki, 2012). In contrast, its role in highly weathered soils is not 

clear (Denef et al., 2002), with most researchers suggesting that aggregation is less 

related to SOM in these soils (Six et al., 2000). Instead, it is generally hypothesised 

that in highly weathered soils iron oxides act as the cementing agents between the 

surfaces of clays and as charged discrete particles (Briedis et al., 2012). It is also often 

argued that where SOM is low, oxides of Fe and Al are the dominant factors 

responsible for soil aggregation (Barthes et al., 2015). The authors further reported 

that in tropical soils from sub-Saharan Africa and Brazil the Al containing sesquioxides 
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had a more important aggregating role than did SOM. Similarly, Duiker et al. (2003) 

highlighted that poorly crystalline iron oxides are more effective than free forms in 

stabilizing soil aggregates whilst Barthès et al. (2008) noted that Al-containing 

sesquioxides play a more significant role than SOM in the aggregation of tropical soils. 

According to Peng et al. (2015), Fe/Al oxides are the major agents in micro-aggregates 

while SOM plays a primary role in stabilizing the macro-aggregates in Ultisols. 

Moreover, where SOM is high it could interact with sesquioxides and the effects of 

such interactions on aggregate stability are not clearly understood (Peng et al., 2015).  

 

It is generally agreed that consequences of unsustainable practices such as intensive 

long-term cultivation of highly weathered soils results in their degradation resulting in 

degradative processes such as soil acidification, SOM depletion and extreme erosion 

(Jien and Wang, 2013). However, highly weathered soils are known for their large 

content of 1:1 clay minerals and oxides, resulting in a variable (pH dependent) charge 

and both positive and negative surface charges at field pH (Oades and Waters, 1991; 

Six et al., 2002). Therefore, electrostatic interactions between oxides and 1:1 clay 

mineral can lead to aggregate formation through mineral–mineral bonding (Six et al., 

2000; Denef et al., 2002) Hence the suggestion that aggregation is less related to 

SOM in highly weathered soils (Six et al., 2000 Duiker et al., 2003; Briedis et al., 

2012).Instead, as earlier alluded to, the Al containing sesquioxides play a more 

important aggregating role than SOM (Barthes et al., 2015). However, there is also 

high possibility that the contribution of SOM in highly weathered soils could depend on 

the organic matter fractions including POM-C, water soluble C and the microbial 

fraction (Franzluebbers et al., 1995; Sainju et al. 2007). Therefore, measurement of 

total SOC alone does not adequately reflect soil quality and nutrient status 
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(Franzluebbers et al., 1995). Instead, measurements of biologically active fractions of 

organic matter, such as microbial biomass carbon (MBC) and water-extractable 

organic carbon (WOC) could better reflect the changes in soil quality and productivity 

that alter nutrient dynamics in these soils (Sainju et al., 2007). MBC is particularly 

important since it reflects a soil’s ability to store and cycle nutrients and organic matter 

(Carter et al., 1999). Essentially, MBC is the pool of SOC that contributes cyclically to 

immobilization and release of minerals during formation and breakdown (Hassink, 

1995).  Moreover, MBC is related to biologically derived processes such as soil N 

mineralisation and soil aggregation. It is generally postulated that Microbial mucilages 

and polysaccharides produced by some groups of bacteria as well as many fungi can 

play an important role in the stabilization of aggregates (Gupta and Germida, 2015). 

Addition of crop residue rapidly stimulates microbial growth and activity which 

generate transient binding agents mostly polysaccharides in the first few weeks 

(Mupambwa and Wakindiki, 2012). These binding agents contribute to aggregate 

stabilisation. 

 

In addition to the inherent soil aggregation agents discussed above alteration of soil 

conditions by tillage practices has complex effects on soil characteristics thereby 

affecting structural conditions (Borie et al., 2008), and number, diversity or activity of 

microorganisms. Decades of intensive agriculture have diminished SOM content, 

thereby reducing fertility and biodiversity of arable lands (Moore et al., 2004; Gardi et 

al., 2013). In contrast practices such as No-tillage (NT) which comprise land 

preparation with little or no soil surface disturbance the only disruption during planting 

(Bai et al., 2018) result in enhancements in soil quality in the upper soil layer by 

improving soil structure and enhancing soil biological activity, nutrient cycling and 
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reducing bulk density (Hamza and Anderson, 2005).   This improves soil water holding 

capacity, water infiltration, water use efficiency (Islam and Weil, 2000; Pittelkow et al., 

2015) and aggregate stability (Aziz et al., 2013). Accumulation of organic matter and 

nutrients near the surface under NT produces beneficial effects on soil physical, 

chemical and biological properties (Beare et al., 1997; Tebrugge and During, 1999), 

including enhanced rhizosphere biological activities (Kladivko, 2001). Fungal biomass 

is enhanced in the topsoil under NT (Frey et al., 1999), including arbuscular 

mycorrhizal fungi (AMF), which are important mediators of soil aggregation (Borie et 

al. 2008). Many reports have shown that AMF are able to counteract soil degradation 

by increasing the stability of soil aggregates (Bethlenfalvay et al., 1999; Miller and 

Jastrow, 2000) through the combined action of extraradical hyphae and their exudates 

and residues (Miller and Jastrow, 1992, 2005).  The AMF are mutualistic symbionts 

living in association with roots of most terrestrial plants and they influence soil fertility 

and plant nutrition (Smith and Read, 2008).  

 

Soil aggregation by AMF is through the combined action of extraradical hyphae 

exploring soil to form an aggregate network and an insoluble, hydrophobic, recalcitrant 

glycoprotein, called “glomalin” operationally known as glomalin related soil protein 

(GRSP) which has binding properties (Bedini et al., 2009). Haddad and Sakar (2003) 

reported that GRSP detaches from the hyphae, moves into the soil, and becomes a 

distinct component of the SOM. GRSP is an immunoreactive glycoprotein, which is 

produced by hyphae of AMF (Wright et al., 1996). Wright and Upadhyaya (1996) 

described GRSP using a monoclonal antibody Mab32B11 raised against crushed 

AMF. GRSP is an insoluble in water and resistant to heat degradation and hence very 

stable (Wright and Upadhyaya, 1996). Several studies have shown a significant 
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relationship between the amount of GRSP present in soil and aggregate stability 

(Wright and Upadhyaya, 1998; Wright et al., 2007). However, (Piotrowski et al. 2004) 

argues that the relationship is not that close. They stated that mechanisms underlying 

aggregation were not explained by measuring root biomass and total hyphal lengths 

alone, signifying that other physiological or architectural mechanisms may be 

responsible. Hence the need for more studies.  

 

Soil disturbance leads to increased hydrolysis of the GRSP molecule and reduced 

production of GRSP due to disruption of the network of mycorrhizal hyphae (Wright et 

al., 2000). Significant differences in soil glomalin have been observed among different 

land use types and soil layers (Tang et al., 2009). GRSP exhibits vertical distribution 

pattern, which decreases with increasing soil depth. Despite evident importance of 

glomalin in maintaining soil aggregate stability, little remains known about soil profile 

distribution patterns and influencing factors of glomalin under different land use type. 

Generally, GRSP levels are affected by cropping systems and land management 

practices such as tillage despite its recalcitrance (Wright et al., 2007). For instance, in 

a study to determine glomalin content in aggregate size classes from three different 

farming systems, Wright et al. (2007) observed greater GRSP under no tillage than 

chisel tillage and intensive tillage for the whole soil. Moreover, larger proportions of 

GRSP were noted in macro-aggregates of no tillage than chisel tillage. In another 

study, Wright et al. (2009) observed substantial increases in GRSP concentration 3 

years after converting from conventional to no-till. Therefore, practices such as No-till 

are likely to enhance the concentration of GRSP in cultivated soil, which will in turn 

improve soil structural properties particularly aggregate stability. It is particularly 
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important to determine how management practices are likely to influence GRSP 

concentrations.  

 

The importance of GRSP on C-sequestration and aggregate stability and its huge 

potential as a biotechnology approach to control soil degradation particularly erosion 

is evident. However, relationships between GRSP and SOM fractions, and effects of 

land uses on these parameters, their relationships and influence on soil aggregation, 

are not clearly understood especially in highly weathered soils. Therefore, this study 

sought to determine the relationships between GRSP, SOC, WSOC, and MBC and 

aggregate stability under different land uses in highly weathered soils.  

 

1.2 Objectives 

The general objective of this study was to determine the changes in GRSP, SOC, 

WSOC, and MBC and aggregate stability under different soil management a 

subtropical region of South Africa after 15 years. The specific objectives were: 

 

1. To determine the effects of soil management and depth on the soil organic 

carbon and glomalin related protein (GRSP) in a subtropical region of South 

Africa after 15 years.  

2. To determine the effects of soil management and depth on aggregate stability 

of soil in a subtropical region of South Africa after 15 years. 

3. To determine the relationships between GRSP, soil organic carbon fractions 

and aggregate stability under different management practices in a subtropical 

region of South Africa after 15 years.  
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1.3 Hypothesis  

i. Soil management and depth, significantly affects soil organic carbon and 

GRSP in a subtropical region of South Africa. 

ii. Soil management and depth significantly increase aggregate stability in 

a subtropical region of South Africa.  

iii. GRSP and aggregate stability increase with an increase in SOC, MBC 

and WSOC depending on management practices in a subtropical region 

of south Africa. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

  

2.1 Soil degradation in South Africa 

Land degradation is one of the most serious global environmental issues, connected 

to food security, poverty, urbanization, climate change, and biodiversity (Reynolds and 

Stafford Smith, 2002; Scholes and Biggs, 2004). Soil erosion is a chief soil degradation 

problem, challenging land and water resource management throughout South Africa 

(Rosenberg,2007). Eroded soil particles carry vital plant nutrients such as nitrogen, 

phosphorus, potassium and calcium (Meenar et al., 2017), resulting in nutrient 

depletion and decline in overall soil productivity (Pimentel et al., 2006; Cronk et al., 

2012). Approximately 60% of the land in South Africa is currently degraded (UNEP, 

1997), with severely degraded areas being closely associated with the distribution of 

communal rangelands, precisely in the steeply sloping environments in Limpopo, 

KwaZulu-Natal, and the Eastern Cape (Rosenberg, 2010). Several communal areas 

in the Limpopo, North West, Northern Cape, and Mpumalanga provinces are also 

severely degraded (Rosenberg, 2007). Commercial farming areas with the most 

severe degradation are located in the Western and Northern Cape Provinces (State 

of the Environment South Africa, 2008).  
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The vulnerability of soil to erosion, is related to soil aggregate stability, and aggregate 

breakdown leads to detachment of particles and small aggregates, resulting in 

crusting, then runoff and transport of the particles (Le Bissonnais, 1996: Torri et al 

1998). Soil aggregates can be defined as groups of soil particles that bind to each 

other more strongly than to adjacent particles (Lal et al., 2004; Kibblewhite et al., 2008; 

Siddique et al., 2017). Soil aggregate stability is the consequence of complex 

interactions between biological, chemical and physical processes in the soil (Levy et 

al., 2003; Six et al., 2004; Regelink et al., 2015), as well as other environmental factors 

such as climate.  A number of authors have documented the importance of soil 

aggregate stability in the ecosystem as it is strongly correlated to soil services such as 

carbon storage (Balabane and Plante 2004; John et al., 2005), organic matter 

stabilization (Six et al., 1998), water holding capacity (Shukla et al. 2003) and 

resistance to erosion (Barthes and Roose, 2002). Raindrop impact triggers soil erosion 

through breakdown of aggregates and transportation of the resulting micro-aggregates 

and soil particles by flowing water (Lal, 2001). Disintegration of soil aggregates under 

the influence of raindrop impact is largely a function of aggregate stability (Le 

Bissonaiss, 1996; Amezketa, 1999).  

 

South Africa is subject to soil erosion, owing to poor farming practices, climate and 

topography, south African soils are easily eroded (Garland et al.,1999; Laker, 2004). 

Soil degradation is perceived as more of a problem in KwaZulu-Natal, Limpopo and 

the Eastern Cape (Hoffman et al., 1999; Hoffman and Todd, 2000) and less of a 

problem in the Free State, Western Cape and Northern Cape (Le Roux et al., 2007). 

South Africa have soil parent materials that yield in soils inherently susceptible to 

various forms of soil degradation, such as crusting, compaction, and water and wind 
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erosion. Soils derived from basic igneous rocks, especially dolerite, have higher 

stability against erosion as compared with the majority of other soils, mainly those from 

sedimentary rocks of the Beaufort and Ecca groups (D'Huvetter, 1985). The Beaufort 

(i.e. shales and mudstone) and Ecca groups are associated with substantial amounts 

of magnesium, sodium and the clay mineral illite and as a result they produce soils 

with silt percentages. Moreover, they produce unstable duplex soils that are erodable. 

It is well known that high Mg give rise to very poor structure resulting in very compact 

soils and high erodable soils. sodium is by far the most dispersive major cation in soils. 

Soils in the Eastern Cape Province are dominated by quartz minerals and are prone 

to crusting (Mandiringana et al., 2005; Nciizah and Wakindiki, 2012). The low specific 

surface area of quartz promotes rapid soil organic matter (SOM) mineralisation 

resulting in poor aggregate stability (Buhman et al., 2006) 

 

 A number of researchers reported that there is an interaction between aggregation 

and clay content and its mineralogy (Lado et al., 2004; Denef and Six, 2005; Norton 

et al. 2006). Calcium ions associated with clay generally promote aggregation, 

whereas sodium ions promote dispersion (Siddique et al., 2017). Soils with at least 

five percent iron oxides, expressed as elemental iron, tend to have greater aggregate 

stability. Soils that have a high content of organic matter have greater aggregate 

stability (USDA,1996).  

 

2.2 Factors affecting aggregate stability 

Soil aggregation and soil structure are important properties of natural and managed 

environments (Miller and Jastrow, 1992). A stable soil structure is vital not only for 
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increasing soil productivity and soil quality but also improving nutrient availability and 

water use efficiency (Byung et al., 2007). The processes of aggregation depend on a 

variety of aggregate binding agents interacting simultaneously at different spatial 

scales (Six et al., 2004; Bronick and Lal, 2005).  

 

Factors affecting aggregate stability can be grouped as abiotic, biotic and 

environmental (Chen et al., 1998). The stability of aggregates is affected by soil 

texture, the predominant type of clay, extractable iron, and extractable cations. Soil 

organic matter and texture particularly clay content are the chief abiotic binding agents 

in the formation and stabilization of aggregates (Duchicela et al., 2012; Portella et al., 

2012), whereas soil microbes (bacteria and fungi) and plant roots have been reported 

as key biotic aggregating agents (Chaudhary et al., 2009; Duchicela et al., 2013). 

Plants contribute to water-stable aggregates, with exudates from roots and soil 

microbes contribute to the formation of microaggregates, whereas fine roots and 

mycorrhizal hyphae contribute to the stabilization of macroaggregates (Amezketa, 

1999; Six et al., 2004). A study by Amezketa (1999) found that microaggregates 

comprise mostly of associations of free primary particles bound together by persistent 

binding agents that comprise of metal oxy(hydr)oxides, polyvalent cations, Ca- and 

Mg- carbonates, CaSO4 and organic molecules (Amezketa, 1999). Six et al. (2004) 

and Bronick and Lal (2005) also reported that SOC and microbial biomass acts as 

important binding agents for aggregation. However, some interaction between binding 

agents may negatively influence soil aggregation. For instance, Manyevere et al. 

(2016) indicated that in arid areas soils with high clay content and high Na, on long 

and steep slopes were vulnerable to erosion. They further noted that soils with high 

fine sand and very fine sand content are extremely vulnerable, especially where the 

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000100075#B14
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000100075#B29
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000100075#B29
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000100075#B5
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000100075#B15
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clay content also contains quartz, which reduces the aggregating potential of the clay. 

These effects are particularly worse for soils low in organic matter. 

 

Aggregates that have high water resistance tend to have high organic carbon content 

within aggregates and directly influences soil structure and physical properties 

(Simansky and Bajcan, 2014). Simansky (2011) noted that microaggregates tend to 

be easily eroded and more influenced by soil management compared to macro-

aggregates. Particles in small aggregates (<0.25 µm) are bound by older and more 

stable forms of OM (Oades and Waters,1991; Bossuyt et al., 2001; Six et al., 2004). 

Microbial decomposition of fresh organic matter release less stable products that bind 

small aggregates into large aggregates (>2-5 µm). When the proportion of large to 

small aggregates increases, soil quality increases. Manyevere et al. (2016) reported 

that the role of texture, cations and organic matter are less important in subhumid and 

humid areas where oxyhydroxides of Fe and Al dictate the aggregation of soils. While 

the effects of organic matter in highly weathered soils could be minimal, the 

interactions of organic matter with oxyhydroxides of Fe and Al is a well-known 

mechanism (Lutzou et al., 2006). The effects of such interactions on aggregation is 

not clearly understood. Studying changes in organic matter fractions and soil 

aggregate stability, as a result of tillage management can give an opportunity to 

understand the role of organic matter in aggregation in highly weathered soils. 

 

2.3 Organic Matter and its labile fractions 

A number of researchers (Yu et al., 2015; Peng et al., 2015; Somasundaram et al., 

2016) suggests that SOM can improve the formation of soil aggregates and increase 
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the mechanical stability of aggregates by binding soil mineral particles. The influence 

of SOM on aggregate formation and stability is proven, although the existing fractions 

act differently in these processes (Baldock, 2002). These fractions may be arbitrarily 

established on the basis of location, composition or stability degree of the organic 

material (Baldock and Nelson, 2000). Costa et al. (2004) found differential 

contributions of total organic and particulate organic carbon (more labile) in the 

formation of soil aggregates. 

 

Labile organic matter pools can be considered as fine indicators of soil quality that 

influence soil function in specific ways and that are much more sensitive to changes 

in soil management practice (Haynes, 2005). Particulate organic matter (POM) is 

composed of readily available material for decomposition by microbial attack, e.g., 

leaves, roots and animal remain (Amezketa, 1999; Six et al., 2004). This fraction 

responds more sensitively to soil management changes (Vieira et al., 2007; Campos 

et al., 2011)  than to the total soil organic carbon (OC) (Figueiredo et al., 

2013; Quanying et al., 2014.). This is especially true for occluded POM that may be 

lost from soil aggregates due to intense cultivation (Golchin et al., 1994). The 

particulate fraction acts as a cementing agent, to stabilize macroaggregates and as 

intra-aggregate protection of the proper organic matter (Six et al., 2002).  

 

Water soluble organic carbon (WSOC) is the fraction of organic carbon that is soluble 

in water and is either sorbed on soil or sediment particles or dissolved in interstitial 

pore water (Tao and Lin, 2000). The WSOC accounts for a small portion of the total 

soil organic carbon content (Tao and Lin, 2000; Ohno et al., 2007; Barbara ad Fabrizio, 

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000600535#B9
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000600535#B27
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000600535#B5
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000600535#B5
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000600535#B8
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000600535#B8
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000600535#B18
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2009).  Some researchers (Boyer and Groffman, 1996; Stevenson, 1994) consider it 

as the most vital labile and mobile form in soil organic matter pools since it is the main 

energy source for soil microorganisms (Schnabel et al., 2002; Marschner and Kalbitz, 

2003), a primary source of mineralizable N, P, and S, and it influences the availability 

of metal ions in soils by forming soluble complexes. The contribution of WSOC may 

not easily be separable from the contribution of soil microbial biomass. 

 

Soils with more labile C tend to have a higher microbial biomass. Microbial biomass 

comprises mostly of bacteria and fungi, which decompose crop residues and organic 

matter in soil and make up 1-5% total SOC (Haynes, 2005). Microbial biomass carbon 

is a measure of the carbon (C) contained within the living component of soil organic 

matter (i.e. bacteria and fungi). Unlike total organic C, microbial biomass C responds 

quickly to management changes (Vema et al., 2011). A change to more disruptive 

practices can quickly deplete soil carbon in the topsoil, particularly microbial biomass. 

 

Arbuscular mycorrhizal fungi (AMF) are among the most widespread and important 

components of the soil microbiota in natural and agricultural systems (Finlay, 2008). 

Rillig (2004) noted that AMF directly contributes to soil aggregate stability through a 

physical effect of a network around soil particles, and indirectly by means of the hyphal 

exudation glomalin as an aggregate binding agent. AMF physically stabilize soil 

through the enmeshment of soil particles by means of hyphal networks and the 

production of glomalin operationally defined glomalin-related soil protein (GRSP) 

Miller and Jastrow 2000, Rillig 2004). Wright and Upadhyaya (1998) and Rillig (2004) 
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reported that GRSP confers stability to soil aggregates (Wright and Upadhyaya, 1998; 

Rillig, 2004).  

While different organic matter fractions make an essential contribution on soil 

chemical, biological and some physical properties, the relationships with aggregate 

stability are not clearly understood. Although the different fractions of soil organic 

matter vary with soil management, management effects on GRSP are not clearly 

understood, especially in humid regions where nutrient cycles occur at high rates. 

2.4 Glomalin related soil protein 

Glomalin was discovered by Sara E. Wright in 1996 at the Agricultural Research 

Service, United States Department of Agriculture (USDA) and was firstly mistaken for 

an unidentifiable constituent of soil organic matter (Nichols, 2002; Nichols and Wright, 

2004). It was identified during attempts to produce monoclonal antibodies reactive with 

AMF. It was recognized as a unique fungal glycoprotein secreted only by spores and 

extraradical mycelium of arbuscular mycorrhizal fungi in the taxon Glomales, including 

the genera Acaulospora, Entrophospora, Gigaspora, Glomus, and Scutellospora 

(Wright et al., 1996). The protein was named glomalin, because it is secreted by fungi 

belonging to Glomales.  Glomalin either coats on the surface of extraradical mycelium 

or remains as a component of spore and hyphal walls (Wright and Upadhyaya, 1996), 

probably released into the soil by mycelium turnover (Driver et al., 2005), where it 

subsequently contributes to linking soil particles and stabilizing aggregates (Rillig and 

Mummey, 2006). Driver et al. (2005) reported that glomalin is only released into the 

soil environment during AMF hyphal turnover, after the death of the fungus.  

Glomalin is a hyphal glycoprotein produced on the hyphae and spores of AMF (Wang 

et al., 2015) as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic 
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materials (Jia et al.,2006) that has been found to make a significant contribution 

to SOM and to play a key role in the process of soil aggregation (Ariza, 2008).  

Immediately after degradation of the mycorrhizal hyphae, glomalin enters into the soils 

where it gets incorporated into the soil organic matter pool (Driver et al., 2005). It was 

named glomalin-related soil protein (GRSP), as per a grouping of proteins of AMF and 

non-AMF origin, together with soil-related heat-stable proteins (Rillig, 2004; Gillespie 

et al., 2011). However recent studies claim that GRSP is a mixture of many 

compounds and cannot be related to AMF (Wang et al., 2015). For instance, Snhindler 

et al. (2007) discovered that GRSP has variances in the aromatic carboxyl groups, 

which exhibited similar nuclear magnetic resonance spectra to humic acid. Similarly, 

Gillespie et al. (2011) detected that GRSP is a mixture of proteinaceous, humic, lipidic 

and inorganic substances and with a consortium of proteins and other impurities.  

 

Glomalin related soil protein exists in large amounts in soils and is certainly a distinct 

component of soil organic matter. The GRSP is insoluble in water and resistant to heat 

degradation and hence very stable (Wright and Upadhyaya, 1996). GRSPs resistant 

to most chemical used in routine and characterization methods (Wright and 

Upadhyaya, 1996). Moreover, it has high cation exchange capacity and high affinity 

for polyvalent cations (Seguel et al., (2013) and has the potential to immobilize high 

amounts of metals (Gonzalez-Chávez et al., 2004; Vodnik et al., 2008; Cornejo et al., 

2008). Because it is glue-like in nature and attaches to horticultural film and soil 

surfaces, glomalin is likely hydrophobic in its native state (Wright and Upadhyaya, 

1998, 1999). However, GRSP has not yet been biochemically defined but it is a N lined 

glycoprotein which comprises of 5% N, 36 to 59% C, 4 to 6 % hydrogen, 33 to 49% 

oxygen (Lovelock et al. 2004; Schindler et al., 2007), and 0.03 to 0.1% P (Schindler et 
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al., 2007; Singh, 2011). Rillig et al. (2001) found that glomalin accounted for 4 to 5% 

of total C and N in Hawaiian soils. In another study in the tropical forest soils of Costa 

Rica and Hawaii, Lovelock et al. (2004) noted that 3.2% of total soil C and 5% of soil 

N was in glomalin (Fig 2.1). However, both C and N declined linearly with increasing 

total concentration of glomalin in the soil, whereas the opposite was true for protein 

and C: N.  Glomalin is dark red-brown color and soil after extraction loses the brown 

color associated with organic matter. According to Wright and Upadhyaya, (1998) the 

reddish colour of glomalin extracts may be due to the presence of Fe (0.8 - 8.8 %). 

Glomalin accumulation in soils is assumed to result from the insolubility, 

hydrophobicity and high Fe content of the molecule.  
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Figure 2.1: The protein (a), nitrogen (b)and carbon (c)concentration, and C : N ratio 

(d)of glomalin extracted from soils within old-growth tropical wet forest (Lovelock et 

al., 2004). 

 

 

 

Hammer and Rillig (2011) characterized glomalin as a putative homolog of heat shock 

protein (hsp) 60. Wright and Upadhyaya (1998, 1999) and Nichols (2003) noted that 

GRSP is found abundantly (2 to 60 mg/ g) in a wide array of soils ranging from 

agricultural, grasslands, forest, desert and non-cultivated. The largest amount of 

GRSP has been reported in undisturbed forest soils, suggesting that tillage may affect 

the concentration of GRSP and associated aggregate stability. Rillig et al. (2001) 

reported concentrations of over 100 mg/g in Hawaiian tropical forests and up to 21 

mg/g in woodland soils (Wright and Upadhyaya, 1996).  

  

A number of authors have established the roles of glomalin in soil aggregate 

stabilization (Rillig et al., 2002; Wright et al., 2007). Glomalin contributes to the 

stabilization of aggregates by sloughing off hyphae onto the surrounding organic 

matter, binding to clays perhaps by means of cation bridging by iron, and providing a 

hydrophobic coating (Wright and Upadhyaya, 1999). The hydrophobic properties of 

glomalin contribute to aggregate stability by reducing the disruptive force of water 

movement within the pores of aggregates (Wright and Upadhyaya ,1998).  Wright and 

Upadhyaya (1998) reported that glomalin content is highly correlated to soil aggregate 

stability and that the most stable aggregates had higher concentrations of extractable 

glomalin and immunoreactive extractible glomalin than less stable aggregates.  
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Nichols (2003) claims that the correlation between glomalin concentration and soil 

aggregation is possibly influenced by iron. Iron- and Al-(hydr) oxides are involved in 

aggregate formation by bridging organic matter with clay minerals hence contributing 

to the persistence of aggregates (Bird et al., 2002; Wright and Upadhyaya, 1998). This 

contribution could be of great importance particularly in high rainfall areas where soil 

Fe is high. Etcheverría (2009) showed that GRSP has the capacity to sequester 

substantial quantities of Al (4.2 to 7.5% by weight) in acidic soils of a temperate forest 

in southern Chile. Glomalin may have a crucial role in soil aeration and drainage, plant 

nutrient uptake, and productivity through its contribution in aggregation (Nichols and 

Wright, 2004; Rillig and Mummey, 2006). By virtue of its role in aggregate stability, 

glomalin enables soil C storage (Zhu and Miller, 2003, Rillig et al., 2004). 

  

 

2.5 Relationship between glomalin and selected soil physicochemical 

properties  

It is universally acknowledged that GRSP performs a vital role in making soil structure 

(Wright et al. 1996). The content of glomalin in soil particles is significantly correlated 

with aggregate stability (Driver et al. 2005, Koide and Peoples, 2013). GRSP have a 

role in both forming and stabilising microaggregates. Wright and Upadhaya (1998) 

assessed the association between the quantities of glomalin present in small 

aggregates (1-2 mm) with the water stability of those aggregates; results disclosed 

relatively strong part-whole correlations between the different fractions of glomalin. 

Correlation was relatively highly significant between aggregate stability and numerous 

fractions of glomalin, with the highest correlation coefficient found between 



 

21 
 

Immunoreactive easily extracted glomalin (IREEG) and aggregate stability. As in 

Wright and Upadhaya (1996) correlation between TG and soil carbon was very high 

(r=0.82, p≤ 0.01). 

 

In a study on Bradford-reactive soil proteins and aggregate stability under abandoned 

versus tilled olive groves in a semi-arid calcisol, Hontoria et al. (2009) discovered that 

there was twice as much glomalin in stable than in unstable aggregates under different 

land management and abandonment. Emran et al. (2012) noted that after deposition 

of glomalin on soil particles soil micro- and macro-aggregates are progressively 

stabilized, so that larger contents of glomalin produce better structure. This in turn 

increases soil porosity, water storage and root development, and a more consistent 

resistance to surface crusting and sealing, and hence erosion (Wright and Anderson, 

2000). Additionally, the ability of glomalin to maintain a stable structure can preserve 

organic compounds in soil microsites, which are able to protect organic carbon from 

mineralization processes, thereby favoring carbon sequestration against carbon 

dioxide production (Rovira and Vallejo, 2003). 

 

Wang et al., (2015) noted that the relationship between GRSP composition and soil 

properties were not only in concentration but also its compositional characteristics. 

They state that SOC content (R2 = 0.89) and N content (R2 = 0.62) have great impact 

on both GRSP concentration and composition. Yang et al., (2017) noted that T-GRSP 

and EE-GRSP had significant positive relations (P<0.01) with SOC and TN. The highly 

significant correlation between SOM and GRSP confirmed that glomalin was a 

significant component of the soil organic matter, which was in agreement with the 
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findings of Rillig et al. (2003) who demonstrated that glomalin was a significant 

component of soil C and N and accounted for about 27% of SOM. 

  

Neutral or slightly acidic soils are suitable for accumulation of GRSP due to it being 

suitable for plant roots and fungi. Soil pH directly affects effectiveness of AMF for 

improving plant viability and synthesis and secretion of GRSP from AMF (Wang et al., 

2014).  Soils low in pH have more TG due to increased organic activity (Bird et al., 

2002). Fungi tend to prevail in more acidic soils. In higher pH soil environments, fungi 

still grow, nonetheless, they meet competition from bacteria and other organisms and 

as a result they may not be as active as they are in acid soils (Brady, 1990). Glomalin 

is produced by AMF, therefore, more protein is anticipated in the more acidic soils 

because of an increase in the activity of AMF and lower competition. 

 

The C/N ratio is one of the indicators of soil aggregate stability (Bird et al., 2002). They 

established a strong, positive correlation between the C/N ratio and immunoreactive 

glomalin and noted that inorganic carbon demonstrated a significant positive 

correlation with the immunoreactive fractions of glomalin. Plants use inorganic carbon 

in the form of carbon dioxide from the atmosphere (Rillig et al., 1999). Plants in turn 

assign a great portion of their photosynthetically fixed carbon to root-infecting 

symbionts, such as mycorrhizal fungi (Rouhier and Read, 1998; Bonkowski, 2003). 

Because of this, there is improved nutrient uptake from the soil, causing the hyphae 

to become more active (Haddad and Sarkar, 2003) and therefore produce glomalin, 

which helps to improve soil structure, easing the passage of air and water and 

increasing resistance to erosion. This as well leads to an increased ability for the soil 

to hold on to valuable organic matter and soil carbon (Haddad and Sarkar, 2003). A 
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study by Fokom et al. (2013) in a humid forest zone south of Cameroon where he 

measured TG and C in soil from three-different land used systems (native forest, fallow 

and continuous growing fields systems), found a positive correlation between TG and 

C concentration in the three land use systems. This observation agrees with those 

from other studies showing strong correlation between TG and C pool in natural and 

cultivated soils (Rillig, 2003; Nichols and Wright, 2005). Similarly, in an evaluation of 

12 acidic soils of tropical and temperate zone in America, TG was strongly correlated 

with soil C the essential atoms found in OM (R2 = 0.84; Wright and Upadhyaya, 1996). 

Fokom et al. (2013) also noted a positive correlation between the EEGRP, carbon and 

nitrogen concentration (r.= 0.76, 0.55; P < 0.01) across the three systems. As a result, 

they concluded that the positive correlation might explain the insinuation of GRSP to 

the restoration of soil stock of C and N for the reason that glomalin molecules are 

made with a relatively high proportion of C and N atoms. The relationship between 

GRSP with soil C and N indicate that the factors that affect this soil component also 

affect SOC. However, the relationship between GRSP and different labile fractions of 

SOC is not clear. 

 

2.6 Influence of soil management on aggregate stability 

Soil aggregate stability is an important ecosystem property which deteriorates 

overtime due to agricultural practices. Soil aggregate stability is often deteriorated by 

agricultural practices through directly breaking the soil particles or indirectly by the 

disturbance of potential aggregate binding agents (Barto et al., 2010; Duchicela et al 

2013). The main disruptors of aggregate stability are tillage (Six et al., 2002; Lal, 

2013)., subsoil compaction due to equipment (Pulleman et al., 2003)  and traffic 

from livestock (Oades, 1993).  Tillage can disrupt soil aggregation in several ways: (i) 

https://en.wikipedia.org/wiki/Tillage
https://en.wikipedia.org/wiki/Agricultural_machinery
https://en.wikipedia.org/wiki/Livestock
https://en.wikipedia.org/wiki/Tillage
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it brings subsoil to the surface, thereby exposing it to precipitation and freeze-thaw 

cycles, and (ii) it changes soil moisture, temperature, and oxygen level, thereby 

increasing decomposition and carbon loss (Six et al., 2000). An increasing number of 

studies have found that tillage results in degradation of aggregate stability (Wright et 

al.1999; Pikul et al., 2007). In addition, tillage alters soil microbial community dynamics 

(Jansa et al., 2002; Wang et al., 2010) and modifies AMF density and composition 

(Jansa et al., 2002; Yuan-Ying and Liang-Dong, 2007) which can disrupt soil 

aggregate stability. 

 

In the view of Filho et al. (1998), NT with accumulation of plant organic residues on 

the surface improves aggregation by increasing organic carbon levels in the topsoil in 

so doing raising the percentage of aggregates > 2. mm. Reduced tillage or NT permits 

the possible recovery of soil aggregate binding agents such as soil micro-organisms 

and biochemical properties (Portella et al., 2012). In addition, cover cropping 

physically protect the soil form erosive forces such as water and wind while building 

up more SOM as they enhance biomass to the soil and also increase biological activity, 

thus improves soil aggregate stability (Liu et al. 2005; USDA, 2008).  

 

2.7 Effects of management on soil organic matter and its fractions 

Human activities also contribute to disruption of aggregate stability. When stable soils 

are subjected to continuous arable cultivation (CT) there is a deterioration in the 

physical properties which, has been shown to be a result of loss of organic matter and 

the stability of the aggregates (Six et al., 2002; Lal, 2013).In the view of, Borie et al. 

(2006) CT abrades the network of mycelium by mechanical breakdown of 

https://en.wikipedia.org/wiki/Subsoil
https://en.wikipedia.org/wiki/Decomposition
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macroaggregates, which reduces the content of SOM, microbial biomass and faunal 

activities ( Sainju et al., 2009; Curaqueo et al., 2011). Farming systems that maximise 

organic matter return to soil and minimise soil disturbance tend to increase the 

microbial biomass. Minimising tillage increases microbial biomass by protecting soil 

aggregates formed by fungal networks pore spaces in the aggregates are an important 

habitat for the microbial biomass in soil. 

 

The use of conservation agriculture (CA) has proved to be a viable alternative to 

improving soil quality. Conservation agriculture is achieved through (a) minimal soil 

movement, (b) permanent cover with crop residues or growing plants and (c) crop 

rotations (Thierfelder et al., 2009, Murungu et al., 2010). As a means of improving soil 

productivity and crop production, crop residues are left on the soil surface. However, 

when the gap between harvesting one crop and establishing the next is too long, cover 

cropping is recommended (Lal, 2015). Cover crops are important as they conserve N 

for grain crops; reduce soil erosion; and increase crop yields and reduce moisture 

stresses (Pretty 2008; Miller, 2017). Cover crops with deep roots can alleviate soil 

compaction in NT systems (Williams and Weil, 2004) and suppress weeds (Moyer et 

al., 2000; Triplett and Dick 2008; Lal, 2015). Moreover, cover crops impact soil 

chemical properties (Calegari and Alexander, 1998) and affect N mineralization and 

availability (Schomberg and Endale, 2004).   Prevailing farming systems are not 

disturbed by introduction of winter cover crops. Cover crops such as canola (Brassica 

napus), hairy vetch (Vicia villosa), lupins (Lupinus albus), broad-beans (Vicia faba), 

Japanese raddish (Raphanus sativus) and black oats (Avena strigosa) are grown in 

the Eastern Cape (Allwood, 2006).The selection of the best cover crop species has 

been mainly based on their ability to produce high and persisting biomass and the 
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ability to meet part of the nutrient requirement of the subsequent crop. However, no 

single cover crop species is able to adequately achieve both objectives. Growing of a 

mixture of legume and non-legume cover crops (bicultures) has been identified as an 

ideal method of fulfilling both the objectives of cover cropping (Sainju et al., 2005; 

Odhiambo et al., 2001). In contrast some authors advocate for monocultures instead 

of bicultures (Haynes et al., 1997; Ramos et al., 2010). Organic matter (OM), one of 

the main products of cover crops, is the most widely acknowledged indicator of soil 

quality (Ramos et al., 2010). OM strongly influences soil structure stability and water 

retention (Holland, 2004). Decomposing plant material releases organic material that 

directly stabilizes soil particles. According to dos Reis Martins et al., (2009), easily 

hydrolysable polysaccharides, which originate from decomposing plant material, 

represent the most active binding agents in aggregation of soil particles. 

 

Winter cover crops do not only protect the soil from direct raindrop impact, they also 

add to SOM. Land management systems like winter cover cropping that prevent soil 

disturbance, improve soil fertility, increase organic materials and decrease organic 

matter losses from the soil, significantly improve soil aggregation (Pagliai et al., 2004; 

Wei et al., 2006).  

 

Improvement of SOM content of degraded agricultural soils could enhance physical 

and chemical properties, and biological activity (Salazar et al., 2011), and promote 

productivity of the soil. The SOM content influences, largely the activities of soil 

organisms, which in turn influence the SOC dynamics. Accumulation of organic matter 

and nutrients near the surface under no-tillage produces beneficial effects on soil 

physical, chemical and biological properties (Beare et al., 1997; Tebrugge and During, 
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1999), including enhanced rhizosphere biological activities (Kladivko, 2001). Fungal 

biomass including arbuscular mycorrhizal fungi (AMF), which are important mediators 

of soil aggregation (Borie et al., 2008). is enhanced in the topsoil under NT (Frey et 

al., 1999), Many reports have shown that AMF are able to counteract soil erosion by 

increasing the stability of soil aggregates (Bethlenfalvay et al., 1999; Miller and 

Jastrow, 2000) through the combined action of extraradical hyphae and their exudates 

and residues (Miller and Jastrow, 1992, 2005).  The AMF are mutualistic symbionts 

living in association with the roots of most terrestrial plants and are vital for the soil–

plant system as they influence soil fertility and plant nutrition (Smith and Read, 2008). 

However, there are limited studies on effects of CA on AMF and associated organic 

compounds in soil.  

 

Soil aggregation by AMF is through the combined action of extraradical hyphae 

exploring soil to form an aggregate network and an insoluble, hydrophobic, recalcitrant 

glycoprotein, called “glomalin” which has binding properties (Bedini et al., 2009). 

Haddad and Sakar (2003) reported that the glomalin related soil protein (GRSP) 

detaches from the hyphae, moves into the soil, and becomes a distinct component of 

the SOM. By virtue of impacting soil aggregate stability, GRSP is a crucial component 

of soil that significantly affects its structure (Haddad and Sakar, 2003).  

 

 

2.8 Effects of management on glomalin-related soil protein concentration 

Glomalin has been found in agricultural, grassland, forest, desert, and non-cultivated 

soils (Nichols and Wright, 2004; Antibus et al., 2006; Bai et al., 2009). Pools of glomalin 

are responsive to ecosystem disturbances, these consist of factors of global change, 
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such as elevated atmospheric carbon dioxide, leading to increased GRSP 

concentrations (Rillig et al., 1999, 2000, 2001) or warming which was observed to lead 

to decreased levels of GRSP (Rillig et al., 2002) and land use change (Rillig et al., 

2002), tillage practices (Wright et al., 1999), and crop rotation systems (Wright and 

Anderson, 2000).  A study by Wright et al. (1999) on the conversion from plough till to 

no till in maize in relation to a control grassland on a single soil type, found that 

glomalin concentrations increased with transition to NT. They noted that the correlation 

amongst the two-varied depending on the sampling location but was generally high 

(0.82 ≤ r ≤0.88. p < 0.001). They discovered that the glomalin concentrations and 

aggregate stability were lower in all cases in the cornfield than in the surrounding 

grass.  Similarly, Wright and Anderson (2000) found that aggregate stability correlated 

well with glomalin concentration under various crop rotations in the Great Plains. 

Whilst Wright et al. (1999) reported the highest correlation to be between T-GRSP and 

aggregate stability, Wright and Anderson (2000) observed the highest correlation 

between immunoreactive glomalin (IRTG) and aggregate stability. However, 

Franzluebbers et al. (1999) conducted a long-term study of conservation tillage and 

grazing on aggregate stability and soil glomalin concentration and found that these 

measures were weakly related. 

  

Effects of CA, with no-till and residue retention relative to conventional tillage, on 

GRSP, are not clearly understood. These effects will have implications on aggregation 

of soils and overall soil quality. This is particularly essential in dryland CA systems in 

sub humid and humid areas, where the practice is more feasible due to high rainfall 

and the soils are also highly weathered, with high oxyhydroxides of Fe and Al. In South 

Africa, CA practices with no-till, residue retention and rotations, are practiced mainly 
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in high rainfall areas to support high biomass input. Aggregation in highly weathered 

soils is mainly due to the oxides of Fe and Al, and the effects of GRSP and other SOC 

fractions are not clearly understood under these conditions. The understanding of 

effects of management on GRSP and its relationship with aggregate stability and SOC 

fractions requires that the protein is extracted and analysed  

 

Glomalin levels can also be affected by other management practices such as the 

application of fungicides and pesticides. According to Kabir (2005), implementation of 

these practices perhaps will recover soil physical properties at the macroscopic level, 

however this will in due course affect chemical and biological properties of soil at the 

microscopic level as well as AMF. A study by Rillig and Mummey (2006) in long-term 

grassland plots from which application of fungicide resulted in in the elimination of 

AMF, as a result GRSP concentrations were drastically decreased. In addition, Wilson 

et al. (2009) in their study that was done over a six years’ period of suppressing 

mycorrhizal symbioses through fungicide application, discovered that easily 

extractable Bradford reactive soil protein (EE-BRSP) and Bradford reactive soil protein 

(BRSP) levels were reduced by 18% and EE-IRSP and immunoreactive soil protein 

(IRSP) reduced by 53 and 76%, respectively. 

 

Most farmers are inclined to agricultural practices such as the application of and 

organic manures owing to the fact that they improve soil aggregation as well as other 

soil characteristics such as increases in porosity, infiltration capacity, hydraulic 

conductivity, and decreases in bulk density (Haynes and Naidu, 1998; Brar et al., 

2015). Thus, there have been an increase in interests on how these practices affect 

glomalin. Long term application of manure and straw increased soil GRSP 
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accumulation in China (Dai et al., 2015). Their study concluded that long-term 

fertilisation significantly increased GRSP concentration. In contrast, a study by 

Lovelock et al. (2004) showed that soils in old growth forests of Costa Rica that were 

higher in residual fertility correlated with lower levels of T-GRSP and EE-GRSP. Thus, 

even though low nutrient status has been made known to improve AMF associations 

(Liu et al., 2000; Bohrer et al. 2001), high soil nutrient content can enhance glomalin 

production by increasing the fungal turnover (Lovelock et al., 2004a). 

 

In addition to agricultural practices, abiotic and biological factors such as elevated CO2 

global warming, climate conditions, vegetation types, could affect GRSP concentration 

in soils. According to Rillig et al. (2002) elevated CO2  can only indirectly affect AMF, 

since soil serves mostly as a buffer against changes in atmospheric gas composition. 

AMF are obligate symbionts and hence depend on their host plant for carbon and 

variations in the availability of carbon may affect the amount of glomalin that is 

produced (Hernandez 2001). A decrease in carbon below ground possibly will limit the 

carbon availability to AMF, which might result in lower rates of glomalin production 

(Rillig et al., 1999, 2000, 2001). Rillig et al. (2001)   conducted a study on an irrigated 

sorghum field and found an increase in EE -GRSP and no change in T -GRSP in 

response to artificially elevated carbon dioxide, while Rillig et al. (2000) discovered an 

increase in EE -GRSP and T-GRSP along a naturally occurring carbon dioxide 

gradient near a carbon dioxide spring in New Zealand. Warming can directly affect 

AMF and the decomposition of their products (such as glomalin) but warming can also 

indirectly affect the fungi by altering carbon allocation from the host to the mycobiont 

(Rillig et al., 2002). They found that artificial warming in a grassland decreases 

glomalin concentration. Rillig et al., (2002) found that IRTG and IREEG decreased in 
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response to artificial climate warming, whereas T -GRSP and EE-GRSP did not 

change. Warming can increase decomposition of soil organic matter (Buol et al., 

1990), consequently reducing glomalin pools in soil. 

 

 

2.9 Extraction of GRSP. 

Glomalin   is usually fractionated into total glomalin related soil protein (T-GRSP), 

easily extractible glomalin related soil protein (EE -GRSP), Immunoreactive total 

glomalin (IRTG) and Immunoreactive easily extracted glomalin (IREEG). 

 

Glomalin-related soil protein is extracted from field soil, roots, mesh strips or bags, or 

pot culture media (Wright and Jawson, 2001; Rillig, 2004; Wright et al., 2006). The 

extract solution is then used in further analyses such as the ELISA and Bradford total 

protein assay. Glomalin is extracted from hyphae and soil in sodium citrate solution by 

autoclaving for thirty to sixty minutes or more (Wright and Upadhyaya, 1996). A 

substitute to using an autoclave is to use a pressure cooker. This methodology was 

tested and verified to be possible by Wright and Jawson (2001). The procedure that is 

used in the extraction process varies depending on what fraction of glomalin is of 

interest; either easily extractable or total glomalin. Easily extractable glomalin related 

soil protein (EE -GRSP) is extracted with 20mM citrate, pH 7.0 at 121 °C for 30 

minutes, whereas Total glomalin related soil protein (TG) is extracted with 50 mM 

citrate, pH 8.0 at 121 ◦C  for  an hour (Rillig, 2003) ,though, additional time may be 

required depending on the soil horizon (Wright and Upadhyaya, 1998).T-GRSP is 

extracted up until the supernatant is colourless or straw-coloured, which can be 

achieved after autoclaving for three to five cycles, though up to seven (Wright and 
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Upadhyaya, 1998) and nine (Rillig et al., 2003) extraction cycles have been reached. 

By means of a centrifuge, soil from which glomalin is extracted is pelleted soon after 

autoclaving to ensure the glomalin extract is free of soil particles when decanting the 

supernatant. For the reason that it is proteinous in nature, extracts are stored at 4˚C 

(Wright et al., 1996). They recommended that any analysis ought to be done within 

two to four weeks as glomalin does degrade.  

 

Two detection methods are frequently used to quantify glomalin, that is the Bradford 

protein assay, yielding the EE-GRSP and the T-GRSP fractions, and an ELISA assay 

(Wright and Upadhyahya 1998), yielding the Immunoreactive easily extractable 

glomalin (IREEG) and Immunoreactive total glomalin (IRTG) fractions. (Rillig and 

Steinberg, 2002; Gadkar and Riling, 2006). Bradford assay, originally described by 

Dr.Marion Bradford in 1976, is one of the common methods to determine GRSP 

concentration. According to Wright et al. (1996) the Bradford essay depends on the 

formation of a complex between Coomassie brilliant blue G-250 dye and proteins in 

the acidic environment of the reagent, protein binds to the Coomassie dye. The colour 

changes are read by a spectrometer at a wavelength of 590nm (A590) as optical 

density can be related to protein concentration in GRSP extract using a standard of 

known concentration of protein. A number of studies (Jonathan and Javier, 2006; 

Schindler et al., 2007; Whiffen et al., 2007) have shown that polyphenolic compounds, 

such as soil tannins and humic acids, might be coextracted with glomalin and interfere 

with the Bradford quantification, indirect enzyme-linked immunosorbent assay (ELISA) 

is relatively specific (Wright et al., 1996).  
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Total glomalin quantified using ELISA is regarded as Immunoreactive soil protein 

(IRSP) and the easily extractable fraction is named easily extractable Immunoreactive 

soil protein (EE-IRSP) (Wright and Upadhyaya 1998; Rillig 2004b). The procedure 

involves using monoclonal antibody MAb32B11 developed against crushed spores of 

G. intraradices antibody as the primary antibody and biotinylatedanti-mouse IgM 

antibody as the secondary antibody (Wright et al., 1996). The procedure is done as 

explained by Adeleke (2010), MAb32B11 is added to the glomalin extract and 

subsequently binds to an antigenic site (i.e., a site in which antibodies are induced) of 

glomalin. A solution containing a protein (e.g., ExtAvidin) and an enzyme (e.g., 

peroxidase) is added, followed by the addition of fifty microliters of 2,2~-azino-bis -(3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS) colour developer. The protein molecules 

bind to the biotin in the anti-mouse IgM antibody, and the enzyme reacts with a 

substrate molecule in the colour developer to produce a blue-green colour. The degree 

of colour change is determined using a spectrophotometer at 405 or 410 nm and 

compared with a standard to calculate glomalin concentrations. The standard curve in 

a range of 0.005 and 0.04 μg is prepared using glomalin obtained from soil samples 

with 100% immunoreactivity (Wright et al., 1996; Nichols and Wright, 2004; Rillig, 

2004).  

 

Even though the Bradford assay is not specific for glomalin, positive and significant 

correlations are usually found between Bradford and ELISA values (Wright and 

Upadhyaya, 1996, 1998, 1999; Harner et al., 2004).  Rosier et al., (2008) claims that 

the Bradford assay is more accurate than the ELISA technique for the reason that the 

Bradford assay entails less pipetting. Apart from this, the Bradford assay is economical 

and faster, and not as technical and laborious compared with the ELISA technique 
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(Adeleke 2010). Glomalin values attained from the ELISA technique are compared 

with the Bradford values to determine percentage of Immunoreactive protein in 

glomalin extract (Adeleke 2010). Immunoreactivity is calculated by dividing ELISA 

values by the Bradford values and multiplying by 100. A number of researchers (Wright 

et al., 1996; Nichols and Wright, 2004 Rillig, 2004) concluded that the higher the 

percentage, the more Immunoreactive the glomalin fraction.  

 

CONCLUSION 

Soil organic matter and glomalin, operationally referred to as GRSP, were shown to 

be important determinants of soil structural stability and hence and important 

indicators of soil health. It was also shown that just like SOM, GRSP quantities are 

negatively affected by such unsustainable practices like continuous conventional 

tillage. However, little has been reported on the relationship between SOM fractions 

particularly the labile fractions and GRSP, in humid regions where the interaction with 

sesquioxides and clays could result in stabilisation, is not clearly understood.  
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1.1 Site description  

The study was conducted on a farm located in the south-east of Howick, in 

the  uMgungundlovu District Municipality, KwaZulu-Natal (Fig 3.1)..The area lies at 

altitudes ranging 950 to 1540 m and receives average annual rainfall of up to about 

1400 mm, with most rainfall occurring mainly during mid-summer. The topography is 

made up mostly from frequent occurrences of dolerite dykes that pierce Karoo system 

shale and often resulting in isolated hills within the general incline of the Drakensberg 

escarpment (Wiese et al. 2016). Most of the profiles that were identified were deep red 

apedal soils, with medium to high clay content.  The soils are derived from Ecca shale 

and to a lesser extent dolerite. For the reason that the area of research is such a large 

and dissected area (1 Ha), a dominant soil form was not identified which could have 

been used as a reference for all the observations  

 

 

 

 

https://en.wikipedia.org/wiki/UMgungundlovu_District_Municipality
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Figure 3.1: Map of study site 

 

3.1.2 Soil management practices 

The study site was situated in the Karkloof area, on a farm called Denleigh. No-till has 

been practiced on a portion of the farm for 15 years. These fields did not get ploughed 

at all, though the soil gets aerated with a special aerating implement to a 10 cm depth 

once in a decade. No weed control practices were practiced on the farm, neither 

chemical nor mechanical. After every three years Lime was applied with a spreader 

behind the tractor at a rate of between 2 – 3 tons per hectare. The lime was not get 

worked into the soil in any way after application.  The soils were applied with nitrogen, 

first nitrogen application for the season was applied during the planting of maize (Zea 

mays) with the no-till planter and it varied between 40 – 50 kg/ha of nitrogen band 

placed with the seeds. After emergence of the maize plants the top dressing was split 
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into two applications of 60 – 70 kg of nitrogen per hectare each. The nitrogen was 

always applied in the form of urea with a 46% N. In total the farmer applied between 

130 – 150 kg/ha of nitrogen each year during the maize growing season.  Cover crops 

were planted within the first week of the maize harvest; these cover crops were either 

oats (Avena sativa orx.Triticosecale  (a rye-wheat/triticale hybrid). Cattle were allowed 

to graze the cover crop from June to September each year and the following year’s 

maize was planted in the mulch.  

 

Conventional tillage has been practiced on a portion of the farm for over 15 years 

producing maize and soy beans (Glycine max). The plant residues were incorporated 

into the soil each year with the disc harrowing practices for maize and soy beans. After 

every harvest in May – June the fields got ripped up to 50 cm and disc harrowed to 

aerate the sub soil and break up all the clods on the soil surface. In total the 

conventional farmer aimed to apply 150 kg of nitrogen to the plants per growing 

season. With planting 20 – 30 kg of nitrogen was placed with the seeds in a mixture 

of urea and Monoammonium Phosphate. The planter was used to place the fertilizer 

in granular form in a band with the seeds during planting. Six weeks after planting 

when the plants have emerged successfully a top dressing was be applied. A tractor 

pulled a spreader and the spreader applied the fertilizer at a rate of between 100 – 

120 kg/ha in a granular urea (46%) form. Lime was not applied often on this farm, in 

the last 10 years lime was only applied twice once in 2008 and once in 2014 only on 

selected fields as well. When lime was needed it was applied with a spreader behind 

the tractor at a rate of 2 tons per hectare and then worked into the soil with a disc 

harrowing practice. Where maize was planted for two seasons in a row soils were 

ripped once after harvest up to a depth of 50 cm. After the first rain late in winter or 
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early spring a mouldboard plough was used to plough the soils up to a depth of 20 cm. 

Depending on the soil moisture; the fields were disc harrowed up to a depth of 15 cm 

at least once to incorporate the stubble as well as prepare the seedbed. The native 

forest (F) lands are a home to the native trees and shrubs which are dense. 

 

3.1.3 Soil sampling 

Soil samples were collected at 0-5, 5-10, 10-20 and 20-30 depths from three 

management practices i.e. long-term no-till (NT), native forest (F), conventional tillage 

(CT) in August 2017. The native forest served as the control. Sampling was done 

following procedures described by Filho et al. (2016). Briefly, nine centering points 

were georeferenced in 100 m x 100 m grid sampling plot, at a distance of 30 m from 

each other and 20 m from the edge in each tillage system (Figure 3.2). Around the 

centering point, nine soil samples were collected and used for microbiological, 

physical, and chemical analyses of the soil. For samples intended for microbiological 

analysis, samples were collected from a depth of 10 cm, sieved using a <0.002 m 

sieve, and then kept refrigerated at 4 °C for analyses. For chemical analysis, samples 

were collected from a depth of 10 cm, air-dried, sieved (<0.004 m), and stored until 

analysis. For physical analysis, disturbed and undisturbed samples were collected 

(from a depth of 0.30m). Disturbed samples were air-dried, sieved (<0.004 m), and 

stored. Undisturbed samples were collected using a core sampler and kept intact and 

sealed to prevent loss of moisture and used to determine soil bulk density. Samples 

for aggregate stability determination were transported to the laboratory in rigid 

containers to avoid further disruptions of the aggregates (Le Bissonnais, 1996) 
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Figure 3.2: Soil sampling map 

 

3.1.4 Soil characterisation 

Soil pH was measured in water at soil-water ratio of 1:2.5, using a pH meter (model 

pH 25, Crison Instruments, South Africa) after shaking the suspensions for 30 minutes 

and equilibrating for 10 min (Okalebo et al., 2000). The dry combustion method was 

used to determine total C and N determined using a LECO® TruSpec C/N auto 

analyser (LECO Corporation, St Joseph, MI, USA). Available phosphorus was 

 

100 m  
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determined using Bray-1 [0.03 M NH4F + 0.025 M HCl] at 1:10 soil/solution ratio 

(Okalebo et al., 2000).   Exchangeable cations (Ca2+, Mg2+, K+, and Na+) were 

extracted with and ammonium acetate (pH 7). Briefly, a 5 g air dry soil sample was 

placed in a 100 cm3 extraction bottle, 50 cm3 of ammonium acetate cooled to 20 +/- 2 

°C was added to the soil. The bottle was then shaken on a reciprocating shaker at 180 

oscillations per minute for 30 minutes. The extract was then rapidly filtered through a 

buschner funnel with suction (Helmke and Sparks, 1996) and their concentrations 

determined using a Varian 700-ES Model inductively coupled plasma-optical emission 

spectrometer (ICP-OES, Varian, Inc., USA).  Exchangeable acidity was determined 

using 1 mol dm-3 KCl on a volume basis.  A 2.5 g soil sample was transferred into an 

extraction bottle into which 25 cm3 of 1 mol dm-3 KCl was added. The mixture was 

stirred for 10 min at 400 rpm. The solution was filtered into a 150 cm3 capacity 

Erlenmeyer flask. A 10 cm3 aliquot was taken to which 10 cm3 deionised water was 

added. The solution was titrated with 0,01 mol dm-3 NaOH with phenolphthalein as 

indicator. A 10 cm3 KCl blank was included. Extractable acidity was calculated using 

the formula below: 

 

( )
( ) ( )

( ) volumesamplecm

fblankNaOHcmsampleNaOHcm
soildmcmol

3

33
3 100−

=+ −

 [Equation 1] 

Where f = concentration of NaOH (mol dm-3) 

 

Particle size distribution (7 classes) was determined after decomposition of organic 

matter with 30% hydrogen peroxide (H2O2), followed by dispersion with sodium 

hexametaphosphate. The sand fraction was separated by sieving and the coarse silt 

(0.05–0.02 mm effective diameter), fine silt (0.02–0.002 mm) and clay (<0.002 mm) 
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fractions were determined by the pipette method. The sand fractions were then 

separated by sieving, into coarse sand (2–0.5 mm), medium sand (0.5–0.25 mm), fine 

sand (0.25–0.1 mm), and very fine sand (0.1– 0.05 mm) (Soil Classification Working 

Group, 1991).  

 

Soil bulk density was determined using the core method (Grossman and Reinsch, 

2002). Briefly, soil samples were collected in triplicate at 0-5, 5-10, 10-20 and 20-30 

depths in each of the three tillage treatments using a core sampler. The fresh weight 

of soil plus core was recorded. The cores along with soil sample were dried in an oven 

at 105°C for 24 hours. Dry bulk density was determined from the ratio of mass of dry 

soil per unit volume of soil cores using the following formula; 

 

( )
)( 3cmsoilofvolumetotal

gsoildryovenofmass
b =

         [Equation 2] 

3.1.5 Aggregate stability determination 

The fast wetting method described by Le Bissonnais (1996) was used to determine 

the stability of aggregates between 3 and 5 mm diameters. The aggregates were oven 

dried at 40 °C for 24 h to ensure that all samples were at a constant matric potential. 

A 5 g sample of aggregates was gently immersed into a 250-ml beaker filled with 50 

ml deionised water for 10 min. The water was then sucked off with a pipette to leave 

behind slaked aggregates. The slaked aggregates were then gently transferred onto 

a 0.053 mm sieve previously immersed in ethanol, to avoid re-aggregation during 

drying. The sieve was gently moved up and down in ethanol five times to separate the 

aggregates <0.053 mm from those >0.053 mm. The remaining <0.053 mm fraction 
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was oven dried at 40 °C for 24 h and its size distribution was measured manually. The 

aggregate fraction sizes were determined by sieving the soil in a net of sieves of 2, 1, 

0.5, 0.25, 0.1- and 0.05-mm diameter. The soil in each sieve was then weighed and 

expressed as a percentage of the total weight of the soil. The aggregate stability was 

expressed by calculating the mean weight diameter (MWD) of the seven classes: 

 


=

=
7

1i

ii wxMWD

        [Equation 3] 

 

where wi is the weight fraction of aggregates in the size class i with diameter x . xi is 

mean diameter of each size fraction (mm) (Le Bissonnais, 1996).  

 

3.1.6 Determination of water-soluble organic carbon 

Water Soluble organic carbon (WSOC) was determined following the procedure 

described by McGill et al. (1986). The concentration of WSOC was measured from the 

top 5 cm only. Briefly, WSOC was extracted from field-moist samples within 24 h of 

sampling by shaking 10 g soil with 20 mL deionized water for 60 min, followed by 

centrifugation at 10 000 x g for 30 min. The supernatant was then filtered using 0.45 

µm membrane filters. The filtrates were stored at - 10°C until they were analysed using 

the Walkley-Black Method (McGill et al., 1986) 
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3.1.7 Determination of soil microbial biomass and organic carbon. 

The soil microbial biomass was determined using the chloroform fumigation – 

incubation technique outlined by Vance et al. (1987). Microbial biomass carbon was 

measured from the top 5 cm only. Two 10 g sieved (2 mm sieve) wet samples were 

weighed from each of the soil sample into small plastic containers and labelled (t1) and 

(t2).  A third 10 g sample was weighed into a 125 ml watertight plastic bottle.  Sample 

(t1) was used for the determination of percent water content in order to express the 

results on a dry-weight basis. Sample (t2) was fumigated with chloroform free alcohol 

in a desiccator prior to incubation, and subsequent extraction of dissolved organic 

carbon. Sample (t3) was used for the extraction of dissolved organic carbon in 

unfumigated soil.  Ten samples for fumigation were arranged simultaneously on a wire 

gauze in a vacuum desiccator containing 300 ml alcohol free chloroform (Hobbie, 

1998) in a shallow dish beneath the gauze.  The lid of the desiccator was closed and 

vacuum applied through a pressure pump until the chloroform evaporated.  The tap 

on the desiccator was closed and placed in the dark for 5 days at room temperature.  

The desiccator was removed and each sample transferred into the respective 125 ml 

watertight extraction bottles.  Fifty millimeters of potassium sulphate (0.5M) was added 

into each of the bottles, tightly stopped and shaken on a rotary shaker for 30 minutes.  

The samples were then filtered through a Whatman No.1 filter paper.  Each of the 

extracts were analysed for dissolved organic carbon by titration following procedure 

described by Anderson and Ingram (1993). 

 

The titration method was commenced with 30 minutes placement on a pre-heated 

block (150°C) of l litre glass beaker containing tap water and eleven test tubes; and 
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thereafter removed.  Ten of the test tubes contained a mixture of 4.0 ml sample 

extraction, 1.0 ml of 0.0667 M K2Cr2O7 and 5.0 ml conc. H2SO4; while the last (blank) 

tube contained similar mixture but without sample.  The content of each heated tube 

was cooled together with one unheated blank tube and transferred into labeled 100 ml 

Erlen Meyer flasks and 4 drops of phenanthroline indicator added.  Extracts were 

titrated with acidified Fe (NH4)2SO4 solution through a green/violet color change to a 

red end point; ant the titre of each flask recorded.  Estimation of extracted organic 

carbon was done according to the equation: 

( )  100/0037.0% 







=

S

E
gMACOrganic

    [Equation 4] 

where 

A = (mL Hb-sample) (mL Hb-Ml Hb/mL uHb + (Ml Hb-sample) 

With Hb indicating heated blank and uHb indicated unheated blank. 

M = Molarity of Fe (NH4)2SO4 = 0.4/T 

T = Standardised titre obtained daily by titrating 1.0 ml 0.0667M 

 K2Cr2O7 in an Erlen Meyer flask with acidified Fe (NH4)2SO4 for the purpose of 

establishing its molarity. 

G = weight of dry soil 

E = Extraction volume (50 ml K2SO4) 

S = digest sample volume (4.0 ml) 

Estimate of the microbial biomass C of each sample as described by Vance et al. 

(1987) using the equation: 
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Microbial biomass C = (Extracted Ct2 – Extracted C t3) x 2.64  

  

3.1.8 Determination of GRSP Content  

The glomalin-related soil protein (GRSP) was determined as easily extractable 

glomalin (EE -GRSP) and total glomalin (T-GRSP) according to the method of Wright 

and Upadhyaya (1998). Briefly, EE-GRSP was extracted from 1 g of air-dried and 

sieved soil (<2 mm) by suspending in 8 mL of 20 mM citrate buffer at pH 7.0 and 

autoclaved for 30 min at 121°C. Samples were centrifuged immediately at 5000 rpm 

for 15 mins. The protein in the supernatant were determined using a Bradford protein 

assay with bovine serum albumin as the standard (Wright and Upadhyaya, 1998). The 

EE-GRSP concentration in aggregates was calculated as: 

 

( ) ( )
( )aggregatesofmassinitial

addedextractofvolumeGRSPEEofionconcentrat
GRSPEE

−
=−

 [Equation 5] 

The concentrations were expressed as mg g-1 dry soil aggregates. 

 

The T-GRSP was obtained by repeated extraction from 1 g of air-dried soil with 8 ml 

of 50 mM citrate, pH 8.0 at 121oC for 60 min. After each autoclaving cycle supernatant 

were removed by centrifugation at 5000 rpm for 20 min and stored. The extraction of 

T-GRSP was repeated until the glomalin content of supernatant was under the method 

detection limit (ca. 2 mg/ml). Extracts from each cycle were pooled, centrifuged at 

10,000 rpm for 10 min to remove soil particles and then and protein in the supernatant 

were determined using a Bradford protein assay with bovine serum albumin as the 
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standard (Wright and Upadhyaya, 1998). The T-GRSP concentration of aggregates 

was likewise calculated as: 

 

( ) ( )
( ) GRSPEEaggregatessoilofmassinitial

addedextractGRSPTofvolumetotalGRSPTpooledofionconcentrat
GRSPT

−+

−−
=−

 

          [equation 6] 

The concentrations were expressed as mg g-1 dry soil aggregates. 

 

 

3.1.9 Statistical Analysis 

The data for WSOC and MBC were subjected to one-way analysis of variance 

(ANOVA), while a two-way ANOVA was used for organic C, glomalin related soil 

protein and aggregate stability, using JMP 12.1 (SAS Institute, 2016). Mean 

separations were done using Fisher’s protected least significant differences (LSD) at 

P < 0.05. The coefficient of determination (R2) was used to measure the strength of 

relationships between SOC and both EE-GRSP and T-GRSP, WSOC and both EE-

GRSP and T-GRSP, MBC and both EE-GRSP and T-GRSP, aggregate stability and 

both EE-GRSP and T-GRSP as well as between aggregate stability and SOC, WSOC 

and MBC. 
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CHAPTER 4 

RESULTS 

 

4.1 Initial soil characterization 

Some of the chemical and physical properties measured for the soils used in this study 

are shown in table 4.1. All management practices had acidic soils with pH values 

ranging between 4.9 and 5.5. The EC values varied from 3 to 5 mS/m and decreased 

in the order NT >CT> F. Soil P ranged between 1.73 and 39.36 mg/kg CT had medium 

P, NT hand low and F had the lowest P content. Forest soils had the highest OC 

content averaging 5.6% whilst soils under RT had the lowest with an average value of 

2.04%. Clay content was highest in NT soil (23.1%) and lowest in soil under F (18.7%). 
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Table 4. 1 Selected physical and chemical soil properties of the three soil 

management practices after 15 years 

 Management practice 

Soil Property NT CT F 

Exchangeable acidity (cmol 

/kg) 0.94 b 0.72 b 2.27 a 

pH 5.5 a 5.4 a 4.9 b 

EC (dS m−1) 5.0 a 4.43 a 3.33 a 

CEC (cmol(+)/kg) 14.7 ab 9.9 b 17.4 a 

P (mg/kg) 12.4 b 36.1 a 2.5 b 

Clay (%) 23.1 a 21.0 a 18.7a 

Coarse Silt (%) 18.8 a 6.60 c 11.8 b 

Fine Silt (%) 31.05 a 19.6b 28.7a 

Coarse sand (%) 2.42 b 6.83 a 7.70 a 

Medium sand (%) 5.35 b 14.2 a 8.04 b 

Fine sand (%) 10.7 b 19.3a 12.1b 

Very fine sand (%) 9.61 a 7.9 b 9.57 f 

OC (%) 3.8 b 2.9 c 5.6 a 

Mean values and standard errors for the three land uses. Values in the same row 

with the same letter are not significantly different at p < 0.05. EC = Electrical 

conductivity, OC = Organic carbon, NT = Native forest, CT = Conventional tillage, F 

= Forest 
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4.2. Effects of soil management on soil aggregate stability 

Land use had significant effects (p < 0.05) on soil aggregate stability measured as 

MWD. Soils under F were the most stable with an MWD of just over 3, whilst soils 

under CT had the lowest MWD value of 1.24 (Fig 4.1). The differences in MWD 

between NT and CT were statistically significant. MWD in F was more than twice that 

of CT (61%), whilst that of NT was 41 % less.No till was 34% greater than CT. 

 

 

Figure 4. 1 Effect of soil management on aggregate stability in the top 0-5 cm depth. 

F = Native forest, NT = No till, CT = Conventional tillage. 

 

4.3 Effect of land use and soil depth on soil organic carbon content 

Both land-use and soil sampling depth had significant effects on SOC content (p < 

0.05). However, the SOC content among the three land-uses varied with depth as 

indicated by statistically significant interaction between land-use and soil depth. There 

was a general decrease in SOC as depth increased for all land-uses except for NT, 
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where no significant differences were observed in SOC across the four soil depth 

layers (Fig 4.2). Within each soil depth, soils under F had the highest SOC content, 

whilst soil under CT had the lowest. The greatest percentage difference in the top 5cm 

was found between F and CT (45%) whilst F and NT had 35%.the same trend was 

observed for all depths, that is greater percentage difference was found between F 

and CT. The lowest percentage difference was observed in the top 10-20cm depth 

between NT and CT (16%). The greatest percentage difference was observed in the 

top 5cm between F and CT (51%). 

 

Figure 4. 2 Effects of soil management and depth on soil organic carbon. Treatment 

means with the same letter are not significantly different. F = Native forest, NT = No 

till, CT = Conventional tillage. 

 

4.4 Effect of land use on microbial biomass carbon 

Soil management had significant effects (p < 0.05) on MBC, with higher values under 

F than CT and NT, which had similar levels (Figure 4.3). forest had 34% more MBC 
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than CT which had 12% more MBC than NT. The greatest percentage difference was 

amongst F and NT (42%). 

 

 

Figure 4. 3 Effects of soil management on microbial biomass in the 0-5 cm depth. 

Treatment means with the same letter are not significantly different. F = Native forest, 

NT = No till, CT = Conventional tillage. 

 

4.5 Land use effects on water-soluble organic carbon 

The WSOC significantly (p < 0.05) differed with land-use, with forest resulting in the 

highest concentrations of WSOC (200.63 µg g-1), whilst NT had the lowest (92.52 µg 

g-1) (Fig 4.4). However, there were no significant differences in WSOC concentration 

between NT and CT. Generally, concentrations of WSOC exhibited a similar response 

to that of MBC i.e. a gradual decrease in the following order F> CT >NT. The greatest 

percentage difference was obtained between F and NT (54%) and the least between 

CT and NT (24%). The difference between F and CT was 39%. 
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Figure 4. 4 Effect of soil management on water soluble organic carbon in the 0-5cm 

depth. Treatment means with the same letter are not significantly different. F = 

Native forest, NT = No till, CT = Conventional tillage. 

 

4.6 Soil management effects on bulk density 

Soil management and soil depth had significant interaction effects (p < 0.05) on soil 

bulk density. Soil bulk density was in the order CT = NT > F in the 0-5 and CT > NT > 

F in the 5-10 cm depths (Fig 4.5). Soil under CT had higher bulk density than both F 

and NT in both the 10-20 cm and 20-30 cm depths. There was no change in bulk 

density in the CT treatment with depth, while in the NT treatment the 0-5 cm depth had 

higher density than the other depths.  

.  
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Figure 4. 5 Effect of soil management and depth on bulk density. Treatment means 

with the same letter are not significantly different. F = Native forest, NT = No till, CT = 

Conventional tillage. 

 

4.7 Effects of soil management and depth on glomalin related soil proteins 

The interaction between land-use and depth also had significant effects (p<0.05) on 

the concentration of easily extractable (EE-GRSP) and total (T-GRSP) glomalin 

related soil proteins (Figure 4.7). The NT treatment had the lowest concentration of 

EE -GRSP than the other two treatments in the 0-5 cm depth, and there were no 

differences among the management practices at deeper soil layers (beyond the 0-5 

cm depth).  
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Figure 4. 6 Effect of soil management and depth on easily extractable glomalin 

related protein (EE-GRSP). Treatment means with the same letter are not 

significantly different. F = Native forest, NT = No till, CT = Conventional tillage. 

 

Interaction between management practice and depth also had significant (p < 0.05) 

effects on T-GRSP concentration. For NT, the highest T-GRSP was observed in the 

0-5 cm depth than other depths. No significant differences were observed on T-GRSP 

concentration across the remaining three soil sampling depths for NT. In contrast, 

under CT, the highest concentration of T-GRSP was observed in both the 10-20 cm 

and 20-30 cm depths than the 0-5 cm and 5-10 cm layers. The T-GRSP concentration 

was in the order F > NT > CT in the 0-5 and F>NT=CT in the 5-10 cm depth. The 

concentration of T-GRSP for soils under forest and NT tended to decrease with depth, 

while in CT the 10-20 and 20-30 cm depths had higher concentrations than the 0-5 

and 5-10 cm depths. The concentrations were in the order CT=F>NT in the 10-20 cm 

depth and CT>F=NT in the 20-30 cm depth. 

 



 

55 
 

 

Figure 4. 7 Effect of soil management and depth on total glomalin related soil protein 

(T-GRSP). Treatment means with the same letter are not significantly different. F = 

Native forest, NT = No till, CT = Conventional tillage. 

 

4.8 Relationships of glomalin related soil protein with organic C fractions and 

aggregate stability 

There were strong positive linear relationships between SOC and both EE-GRSP (R2 

= 0.84) (Figure 4.8) and T-GRSP (R2 = 0.83) (Figure 4.8). The linear relationships 

were moderate between WSOC and EE-GRSP (R2 = 0.71) (Figure 4.10) and T-GRSP 

(R2 = 0.6) (Fig 4.10).  However, the relationships between MBC and EE-GRPSP (R² 

= 0.36) and T-GRSP (R² = 0.32) (Fig 4.9, were weak. There were strong positive linear 

relationships between aggregate stability and both EE -GRSP (R2 = 0.72) and T-GRSP 

(R2 = 0.82) (Figure 4.12). There were strong positive linear relationships between SOC 

and WSOC (R² = 0.71) (Figure 4.11).  
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Figure 4. 8 Relationship between soil organic carbon with easily extractible (EE-

GRSP) and total (T-GRSP) glomalin related soil protein. F = Native forest, NT = No 

till, CT = Conventional tillage. 
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Figure 4. 9 Relationship between soil microbial biomass carbon with easily extractible 

(EE-GRSP) and total (T-GRSP) glomalin related soil protein. F = Native forest, NT = 

No till, CT = Conventional tillage. 
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Figure 4. 10 Relationship between water soluble organic carbon (WSOC) and total 

(T-GRSP) and easily extractible (EE-GRSP) glomalin related soil protein in the top 0-

5 cm depth. F = Native forest, NT = No till, CT = Conventional tillage. 
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Figure 4. 11 Relationship between organic carbon content and WSOC in the top 0-5 

cm depth. F = Native forest, NT = No till, CT = Conventional tillage. 
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Figure 4. 12 Relationship between aggregate stability with EE-GRSP and T -GRSP in 

the 0-5 cm depth. F = Native forest, NT = No till, CT = Conventional tillage. 

 

4.9 Relationships of aggregate stability with organic C fractions  

There were strong positive linear relationships between aggregate stability and SOC 

(R2 = 0.92). However, the relationships between aggregate stability and WSOC (R² = 

0.48) and MBC (R² = 0.41) (Fig 4.13) were weak 
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Figure 4. 13 Relationship between aggregate stability with organic C fractions in the 

top -cm depth. F = Native forest, NT = No till, CT = Conventional tillage. 
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CHAPTER 5 

 

DISCUSSION 

 

5.1 Soil organic carbon and glomalin related soil proteins effects on soil 

aggregate stability under different land-uses 

 Soil structure is an important indicator of soil quality due to its effects on water 

retention, infiltration capacity, porosity, and penetration resistance (Bronick and Lal, 

2005), hence water availability to crops and susceptibility to erosion (Six et al 2000).  

Soil aggregate stability is a commonly used as an indicator of soil structure (Bronick, 

Lal, 2005; Six et al., 2000). Aggregate stability is related to MWD (Nimmo and Perkins, 

2002), the higher the MWD the more stable the aggregates are (Le Bissonnais, 1996). 

Le Bissonnais (1996) classified aggregates into 5 groups i.e. when MWD is > 2.0 mm, 

very stable; 1.3-2.0 mm, stable; 0.8 to 1.3 mm, medium; 0.4-0.8 mm, unstable and < 

0.4 mm, very unstable. 

 

Land use and soil management have been shown to affect soil aggregate stability 

through their effects on soil aggregate binding agents and physical breakdown of 

macro-aggregates into micro aggregates (Six et al., 2002; Ashagrie et al., 2007; 

Emadodin et al., 2009). Increased soil disturbance through such practices as continual 

tillage has been shown to reduce aggregate stability through breakdown of macro 

aggregates into macro-aggregates (Ashagrie et al., 2007). In this study soils under F 

had the highest aggregate stability as shown by their higher MWD than the soils under 

other land uses with soil under Conventional Tillage having the lowest. Moreover, the 
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MWD values fell within the very stable to stable categories (Le Bissonnais, 1996).  

MWD for soils under F was more than two times higher than that for those under 

Conventional Tillage. Similar findings were reported by Emadi et al. (2008) and Saha 

et al. (2010). This was attributed to conventional tillage mechanically breaking down 

macro-aggregates into micro-aggregates (Six et al., 2000) and also disruption of 

binding agents such as roots, fungal hyphae, and by-products of microbial synthesis 

and decay (Kabir et al., 1997; Jastrow et al., 1998). On the other hand, reduced soil 

disturbance maintains the integrity of macro-aggregates (Jastrow et al., 1998) hence 

the higher MWD observed for soils under forest. 

 

A study by Wright et al. (1999) examined the influence of no till and conventional tillage 

systems on aggregate stability and observed higher MWD under no till. This was 

attributed to a higher organic carbon content in soils under no till compared to those 

under conventional tillage. Similarly, in this study, higher SOC was observed in soils 

under native Forest and No Till than those under Conventional Tillage (Fig 4.3). This 

finding proposes that tillage can significantly decrease aggregate stability due to 

exposing SOM to decomposition. The resultant low SOM increases soil wettability 

resulting in slaking and rapid breakdown of soil aggregates upon wetting (Le 

Bissonnais, 1996). Under dry conditions, organo-mineral coatings may decrease the 

wettability of aggregate surfaces due to an increased hydrophobicity of the soil organic 

matter (Goebel et al., 2005; Vogelmann et al., 2013). 
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Soil organic carbon and microbial biomass all act as important binding agents for 

aggregation (Six et al., 2004; Bronick and Lal, 2005). Amongst these binding agents 

SOC is considered the most important agent for aggregate stability (Six et al., 2002). 

This is owed to processes such as direct binding of metals by CEC or SOM, or metal-

cation bridges with SOC (Lal et al., 2007). Continuous tillage results in increased loss 

of organic matter by exposing it to decomposition by soil microbes and hence poor 

aggregation. In this study there were highly significant differences (p < 0.0001) in SOC 

among the different land uses as such propose that SOC was amongst the dominant 

mechanisms stabilizing soil aggregates. Soils under Forest had the highest SOC and 

MBC, which agreed with findings by Six et al. (2004) and Bronick and Lal. (2005) who 

showed that SOC and MBC act as binding agents for aggregates. Soil management 

practice had significant effects (p < 0.05) on both SOC and MBC. Conventional tillage 

had the lowest MWD because tillage interrupts the network of mycelium and 

mechanical breakdown of macro-aggregates (Borie et al., 2006), and reduces the 

content of soil organic matter, microbial biomass and faunal activities (Mikha and Rice, 

2004; Sainju et al., 2009; Curaqueo et al., 2011). 

 

The observed aggregate stability was also significantly influenced by GRSP as 

evidenced by a significant positive relationship between both EE-GRSP (R2 = 0.72) 

and T-GRSP (R2 = 0.82). This was in agreement with a number of studies that showed 

that GRSP significantly increases the stability of soil aggregates (Wright and 

Upadhyaya, 1998; Wu et al., 2015; Wright et al., 2007). Glomalin acts as glue, 

cementing aggregates together hence increasing stability. Moreover, glomalin is a 

hydrophobic glycoprotein which reduces wettability of aggregates hence increasing 

stability. Similarly, in this study, the highest MWD was observed in forest soil which 
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coincidentally had the highest EE-GRSP. Conversely, the lowest MWD was observed 

in conventionally cultivated soils, which had lower amounts of GRSP.  

 

5.2 Effects of land use and depth on Soil Organic Carbon 

Concentrations of soil organic carbon decreased significantly with depth under all land 

uses except for no till, which resulted in no significant OC changes with depth. This 

was in contrast to Zhao et al. (2015) who observed decreasing organic level with depth 

under No Till. This was attributed to stratification of OC due to non-perturbation. 

Similar results were obtained by Lopez-Fando and Pardo (2011) who noted that soil 

organic carbon in the 0 – 5 cm was 48 % and 60 % higher in No Till soils compared to 

conventional tillage soils after a period of 17 years. This was due to intensive use of 

mouldboard plough Likewise, Hernanz et al. (2009) observed 14% higher SOC in no-

till soils than in conventional Tillage soils after a period of 20 years.  

 

The top 5 cm depth had the highest OC with native Forest, no till (6.08%and 3.93% 

respectively) having higher concentrations than both CT (3.33%). Forest soils had 

approximately 35% more OC than no Till. In addition, F had the greatest OC for all 

depths studied. The results are similar to those found by Guggenberger and Zech 

(1999) who noted that soils under permanent vegetation with large returns of litter 

(forests and grassland) showed the greatest proportions of SOC. 

 

SOC generally decreases with depth under no till because the non-disturbance of soil 

causes nutrients to accumulate in the top layers of the soil. Similar observations were 
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reported by Zhao et al. (2015) who reported a significant concentration of SOC in the 

surface-soil layers under no till due to high stratification ratios. High stratification ratios 

are key in soil carbon sequestration (Zhao et al., 2015).  However, in this study, there 

were no differences in SOC among the four soil depths for soil under no till. SOC was 

however distributed relatively evenly through the soil profile under conventional tillage. 

This is probably due to the mixing effect of tillage operations which bury residues deep 

in the soil and expose any remaining residue to rapid decomposition.  

 

5.3 Effects of land use on microbial biomass carbon 

The microbial biomass of soil is recognised as a sensitive indicator of soil quality. It is 

highly sensitive to any changes in land-use due to alterations of natural soil 

characteristics brought about by tillage Kara and Bolat (2008). The decrease in tillage 

improves physical, chemical and trophic habitat characteristics of microorganisms, 

consequently enabling microbial growth and enhancing mycorrhizal hyphal density 

and effectiveness (Zhang et al., 2012). In a study on the effect of different land uses 

on soil MBC and nitrogen in Turkey, Kara and Bolat (2008) observed significantly 

higher MBC contents in forest than pasture and cultivated soils thus indicating 

differences in soil microbial activities. In this study, soils under forest had the highest 

MBC than the other two agricultural systems. Moreover, soil under forest had higher 

contents of SOC, which could have contributed to the high MBC content since SOC 

has significant influence on soil microbial activity (Wright et al., 2005). A significant 

positive correlation was observed between SOC and MBC in this study (r2 = 0.59). 

Generally, soil under natural forests tend to have a higher accumulation of plant litter 

and fine roots which promotes growth of soil microbes. Furthermore, the higher MBC 
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under natural forest is possibly due to the significant influence non-disturbance has on 

the quality of soil root environment. It is generally agreed that the high contents of 

MBC generally indicate better soil quality (Xiangmin et al., 2014). Generally, active 

pools of SOM like microbial biomass, are important for soil metabolism, chiefly for the 

turnover of organic matter and the cycling of nutrients in soils. This fraction serves also 

as a short-term reservoir of plant nutrients (Fliebbach and Mader, 2000). 

 

 

 However, there were no differences in the MBC content of soils under no till and 

conventional tillage despite higher SOC in soils under NT than CT. This finding could 

be due to the formation of stable substances such glomalin, which are resistant to 

microbial degradation. In this study, a significant positive relationship was observed 

between SOC and both GRSP fractions. The similarity in MBC content between soils 

under no till and conventional tillage could also be due to the influence of such soil 

properties as soil pH, which was similar among these two land uses. Soil pH is known 

to correlate negatively with MBC, with maximum activity of microbial activity at about 

6.5 (Acosta-Martinez and Tabatabatai, 2000). However, results in this study showed 

that the highest MBC was in forest soil which had the lowest soil pH. This indicates 

that other soil properties have more influence on MBC than soil pH.   

 

5.4 Effects of land use on Water Soluble Organic Carbon 

Water soluble organic carbon is one of the most important active fractions of SOC. It 

is the most labile and mobile form in soil organic matter pools and serves as a potential 
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nutrient source for soil microorganisms and plants (Gregorich et al., 2003). However, 

it is highly sensitive to any changes in land use. Buscot (2005) noted that WSOC in 

the top soil sustains microbial activity in the lower soil layers through its downward 

movement. Therefore, activities such as tillage that reduce soil organic matter inputs 

into the soil reduce the concentration of WSOC (Burton et al., 2007). Soon et al. 2007 

reported higher WSOC under no till than Conventional Tillage. However, in this study, 

there were no differences in WSOC among Conventional Tillage and No Till although 

forest soils had much higher WSOC levels (Fig 4.4). The significantly higher levels of 

WSOC in forest soil were probably due to the high SOC levels observed in these soils 

(Fig 4.2). It has been widely reported that natural systems have less disturbance and 

high concentration of litter which accumulates at the surface thus high SOC levels 

(Novara et al., 2015). Lu et al. (2011) carried out a study aimed at analysing variations 

in WSOC under three types of alpine grasslands and study their relationships with 

environmental factors like moisture and temperature. They observed varying levels of 

WSOC within the same alpine area and concluded that environmental conditions like 

soil temperature and moisture are important factors influencing soil WSOC content. 

Some studies revealed that high soil temperature results in the utilisation of WSOC as 

a microbial substrate since the soluble fraction of organic carbon is the main energy 

substrate for soil microbes (Marschner and Bredow, 2002). The similarity in WSOC 

between soils under no till and conventional tillage contradicts most findings, which 

have shown greater accumulation of WSOC under no till. The lack of differences in 

content of WSOC between the two management systems could be due accumulation 

of fresh residues and less decomposition.   
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5.5 Effects of land use and soil depth on bulk density 

The lower values of bulk density near the surface were likely associated with inputs of 

organic matter from vegetation and were particularly evident for forest soils. Low bulk 

densities were found under no till than Conventional Tillage at all soil depths apart 

from the top 0-5 cm depth. The generally lower bulk density under no till than 

Conventional Tillage at is consistent with findings from several other studies 

(Osunbitan et al.,2005). No tillage reduces soil disturbance as much as possible, which 

in turn maintains and improves soil structure. This is evidenced by the high aggregate 

stability observed under forest and no till than conventional tillage (Fig 4.1). The higher 

OC (Fig 4.2) MBC (Fig 4.3) and WSOC (Fig 4.4) under NT than Conventional Tillage 

also contributed to improved soil structure and hence lower BD values 

Several authors noted that there was greater BD in cultivated soils than those under 

forests (Galantini. and Rosell 1997; Batjes and Dijkshoorn 1999). In all land-uses, bulk 

density except conventional tillage significantly varied with depth. Higher bulk density 

can be attributed to compaction and degradation of soil structure (Igwe, 2001).  

5.6 The effect land use and soil depth on glomalin related soil proteins 

Glomalin related soil protein, a component of soil organic matter, has received much 

attention since the first description by Wright and Upadhyaya (1996). This thermo-

stable protein is reported to play significant roles in the stabilization of soil aggregates 

due to its recalcitrance nature (Treseder and Turner 2007). In this study, the EE-

GRSP, was highest in the 0-5 cm depth in soils obtained from conventionally tilled and 

forest soils than no till.  This contradicted some findings, which showed EE-GRSP is 

affected by tillage (Tang et al., 2009; Rillig et al., 2003). In contrast, T-GRSP was 

highest in soils under forest in both the 0-5 cm and 5-10 cm depths. This finding was 
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in agreement with most findings reported in literature. For instance, Rillig (2003) 

reported lower T-GRSP concentrations in agricultural soils relative to native forest and 

afforested soils. Mechanical disturbances by tillage decrease vegetation and AMF 

abundance, which in turn decreases glomalin production (Treseder and Turner 2007). 

Therefore, cropping systems and land management practices affect T-GRSP levels 

(Wright et al., 2007). In another study Wright et al. (1999) detected substantial 

increases in GRSP concentrations, after a 3-year period of converting from ploughed 

tillage to no-till. In addition, results on the conversion from conventional tillage to no 

till, showed that T-GRSP levels in the studied soil were lower than levels in undisturbed 

grassland. This was also attributed to tillage decreasing glomalin production and 

enhancing its decomposition by decreasing plant litter and AMF abundance (Treseder 

and Turner, 2007). T-GRSP was higher in the lower depth for conventional tillage due 

to indirect effects via soil physiochemical properties and soil nutrients (Wang et al 

2017). In their study they concluded that in deeper soils the higher soil bulk density 

and lower soil water might have contributed to lower EE-GRSP but higher T-GRSP. 

Also, the deeper soils could directly result in a lower SOC, and this nutrient shortage 

in the deep soils in turn resulted in the higher T-GRSP. 

 

  

Both EE-GRSP and T-GRSP were strongly and positively correlated with SOC at each 

depth (Fig 4.6and Fig 4.7), but negatively correlated with soil bulk density. The two 

glomalin fractions were also positively albeit weakly correlated to all SOC fractions. 

This positive relationship between both GRSP fractions and all measured SOC 

fractions showed that GRSP significantly contributes to SOC sequestration. However, 
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the poorer relationship between labile SOC fractions than total indicates that glomalin 

is more recalcitrant than these fractions. Zhang et al. (2017) observed higher 

recalcitrance index of GRSP than that of SOC, thus indicating that GRSP is vital for 

SOC sequestration. These results are similar to the findings of Rillig et al. (2003), 

Emran et al. (2012), Gispert et al. (2013) and; Vasconcellos et al. (2013), who noted 

glomalin to be positively correlated with soil C and N but negatively correlated with soil 

bulk density. Soil C highly correlated with glomalin across all soils and within each 

land-use type, indicating that glomalin may be under similar controls as soil C. The 

higher concentration of T-GRSP under forest, and no till observed in this study is 

consistent with numerous studies (Wright and Anderson 2000; Rillig et al. 2001; 

Harner et al. 2004; Staddon 2005). Glomalin production is usually greater under 

environments that favour AMF activity (Ryan and Graham 2002) or diversity (Helgason 

et al. 1998), such as minimal physical disruption of the soil (Wright et al. 1999; Borie 

et al. 2000; Wright and Anderson 2000), higher levels of plant diversity, or low to 

moderate soil fertility (Treseder and Allen 2002; Lovelock et al. 2004a; Treseder 2004).  

Minimal or no soil disturbance improves soil structure thus promoting actively growing 

mycelia, which freely penetrate the soil and produce higher amounts of total glomalin. 

These differences may be accredited to no soil disturbance in no till system, improving 

the amount and the activity of AMF hyphae in relation to conventional tillage (Cornejo 

et al., 2009; Kabir et al., 1997), and, subsequently, the levels of glomalin (Kabir, 2005). 

The pattern is similar to that observed by other authors. Similarly, Tang et al. (2009) 

found that GRSP decreased with increasing soil depth in farmland (1.60–2.94 mg/g), 

artificial grassland (1.82–3.18 mg/g), and orchard (1.41–1.91 mg/g). This was 

attributed to soil available phosphorus. In their study glomalin was significantly directly 

related with soil available phosphorus and protease (p<0.01). Hence, they concluded 
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that soil available phosphorus, to a large degree, determined the content and 

distribution of soil glomalin.  

 

The highest amount of T-GRSP was found at the top layer (0-5 cm) in Forest (Fig 4.7), 

which had the lowest pH (4.9). Soils with lower pH had significantly higher 

concentrations of GRSP as a consequence of increased organic activity at lower pH 

values.  Fungi tend to thrive better in acidic soils due to less competition from bacteria 

and other organisms. For the reason that glomalin is produced by AMF more GRSP 

is expected in the more acidic soil due to increase activity of AMF (Sarkar, 2003). 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

 

6.1 Conclusions 

1. This study demonstrated that greater accumulation of GRSP could cause the 

accumulation of SOC, particularly under native forest. Therefore, land use practices 

that mimic natural forest favour the accumulation of SOC and T-GRSP and should be 

widely adopted. 

 

2. This study also demonstrated that soil disturbance reduced SOC as evidenced by 

higher SOC in soils under forest and no till than those under conventional tillage. This 

observation was consistent at all the sampling depth used in this study. In addition, 

SOC decreased with depth for forest and conventional tillage whilst no differences 

were observed for No Till.  

 

3. The study also showed that GRSP played a greater role in soil aggregate stability 

than labile fractions of SOC. This is especially true for soils under forest had the 

highest MWD values whilst soils under conventional tillage were the least stable. 

Therefore, minimizing disturbance in these soils is likely to increase their stability 

 

4. GRSP concentrations in the sampled soils changed with changes in land use 

and soil depth. There washigher concentration of T-GRSP under forest and no 

till in soil under conventional tillage. It is therefore ideal to mimic natural 

systems in order to increase the concentration of this important natural glue. 
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So, agronomic practices like zero or minimum tillage may improve T-GRSP 

thus ultimately increasing soil structure 

 

6.2 Recommendations 

Clear understanding of the mechanism by which GRSP might influence soil physical 

characteristics is still lacking. It is necessary to determine the relationships between 

GRSP and such important soil properties as clay content across different soil types. It 

is also generally agreed that, mineralogy of the clay fraction has significant influence 

on soil behavior and interacts with other soil properties. It is therefore prudent that 

future studies focus on the influence of clay mineralogy on the concentration of GRSP 
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