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Summary

In Chapter One the theoretical basis for infinitesimal transformations is

presented with particular emphasis on the central theme of this thesis which

is the invariance of ordinary differential equations, and their first integrals,

under infinitesimal transformations. The differential operators associated with

these infinitesimal transformations constitute an algebra under the operation

of taking the Lie Bracket. Some of the major results of Lie's work are recalled.

The way to use the generators of symmetries to reduce the order of a differential

equation and/or to find its first integrals is explained. The chapter concludes

with a summary of the state of the art in the mid-seventies just before the

work described here was initiated.

Chapter Two describes the growing awareness of the algebraic properties of

the paradigms of differential equations. This essentially ad hoc period demon­

strated that there was value in studying the Lie method of extended groups

for finding first integrals and so solutions of equations and systems of equa­

tions. This value was emphasised by the application of the method to a class of

nonautonomous anharmonic equations which did not belong to the then pan­

theon of paradigms. The generalised Emden-Fowler equation provided a route

to major development in the area of the theory of the conditions for the lin­

earisation of second order equations. This was in addition to its own interest.

The stage was now set to establish broad theoretical results and retreat from

the particularism of the seventies.

Chapters Three and Four deal with the linearisation theorems for second

order equations and the classification of intrinsically nonlinear equations ac­

cording to their algebras. The rather meagre results for systems of second

order equations are recorded.

In the fifth chapter the investigation is extended to higher order equations

for which there are some major departures away from the pattern established
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at the second order level and reinforced by the central role played by these

equations in a world still dominated by Newton. The classification of third

order equations by their algebras is presented, but it must be admitted that

the story of higher order equations is still very much incomplete.

In the sixth chapter the relationships between first integrals and their alge­

bras is explored for both first order integrals and those of higher orders. Again

the peculiar position of second order equations is revealed.

In the seventh chapter the generalised Emden-Fowler equation is given a

more modern and complete treatment.

The final chapter looks at one of the fundamental algebras associated with

ordinary differential equations, the three element 8£(2, R), which is found in all

higher order equations of maximal symmetry, is a fundamental feature of the

Pinney equation which has played so prominent a role in the study of nonau­

tonomous Hamiltonian systems in Physics and is the signature of Ermakov

systems and their generalisations.
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Prologue

The diversity of subject matters which attract the intellectual interests of man

is extraordinary. Many times there is a practical bent which supplies the

incentive to pursue a particular interest. At others it is the sheer delight

of intellectual activity. In this instance there is a blending of the two. I

solve differential equations as a service to others or, even, as a self-serving

occupation. I also play with differential equations to see what secrets lie within,

which makes me a plaything of ordinary differential equations except when I

make demands of them and they become my playthings. The blending is more

than just the juxtaposition of two activities. What may one day be a little bit

of pleasure with an obscure differential equation can well turn to a purposeful

investigation the next when one of one's 'practically minded' colleagues has

come up with the same equation in a situation which is the very opposite of

'airy fairy'. Whatever it is, it is always a pleasure to solve a differential equation

and the methodical means afforded by Lie symmetries provide a gateway to

that pleasure. In fact it accentuates the pleasure because of its very system.

The parlor tricks of old have been replaced by a new rationalism! One is

reminded of Lagrange's proud boast in the introduction to his Mechanique

A nalytique in 1788 that the avid reader would not find a single diagram in his

tome [35, p 333]. Deceitful suggestiveness had been exiled to the yellow pages!

In a similar fashion the recipes of the old artizens' have been replaced by the

systematic application of a principle which does not call on arcane trickery for

its implementation.

One of the major methods used to solve differential equations is to trans­

form them into other differential equations of a more recognisable variety. This

is simply the differential equations version of transformation theory in Hamil­

tonian Mechanics. In the latter one uses the technique of canonical transfor­

mations which have lead to very interesting and useful results, particularly for
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the nonautonomous systems so beloved of plasma physicists. The Lie theory is

deeply rooted in transformation theory. The algebras of differential equations

are invariant under point transformations. Find an equation with a particular

algebraic structure and there will be a canonical form for it which has proba­

bly been solved. The point transformation between the two representations of

the algebra will lead to the solution of the original equation from that of its

transformed equivalent.

This thesis is not concerned with partial differential equations. That is a

separate area with many particular considerations which do not arise in the

field of ordinary differential equations. Nevertheless it is a field in which the

concept of the symmetries of differential equations enjoys wide usage.

Some thirty-five and more years ago a guest speakers addressed the senior

scholars on counting systems both primitive and sophisticated, old and new.

An oft reiterated point was the primitive concept of counting as being one,

two, man,!!. In many respects this work is concerned with the particularity of

early representatives of classes of equations and the generic properties of those

classes. Does the transition occur from one to two, two to three or ...? We

shall see that it varies.

Mathematics is often thought of as a dry subject and yet within just the

area of differential equations there is such a wonderland of enchantment. The

beautiful structures imposed by the divers algebras which persist from trans­

formation to transformation are a marvel in themselves. More recent results

on the appearance and disappearance of symmetries as one transforms in a

more ambitious mode makes one wonder if the alchemists of old had ideas as

strange as we tend to believe.

5Sent out by the Mathematical Association, I presume. My recollections of the speaker

are of a man of medium height and middle years with a black beard and a slight tendency

to portliness. It may have been Fred Syer, but, as he died in 1993 at the age of 92, direct

verification is not as easy as it once was.

6Clearly a hidden warning to those who were heading off to varsity in the near future!
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Chapter 1

Introduction

1.1 Infinitesimal Transformations

The basis of the Lie theory is invariance under transformation. In principle the

transformation may be finite, but the great advantage of the Lie theory is its

infinitesimal formulation!. One does not have to do Lie theory infinitesimally

and in 1988 Aguirre and Krause [7,8,9] treated the simple harmonic oscillator

in terms of finite transformations. This had the advantage of demonstrating

directly that the symmetry group was 8£(3, R). It had the disadvantage of

being horrendously boring in its calculation with nonlinear partial differential

equation piled upon nonlinear partial differential equation. The infinitesimal

approach obtains local results and so leads only to the algebra 8£(3, R) for the

simple harmonic oscillator, but it has the advantage of requiring the solution

of linear partial differential equations only. This is true whether the equation

being examined be linear or not. In fact the whole beauty of the Lie method is

that it makes nonlinear equations linear as far as the analysis is concerned and

it is for nonlinear equations that the Lie method produces the richest rewards2 •

1All treated in exhaustive detail by Lie in six volumes published between 1888 and 1896

[133, 134, 135, 136, 137, 138].

2The results may not be the richest in terms of the number of symmetries, but it is

generally easier to determine the functional form of the symmetries precisely whereas in
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As we are going to be considering transformations of ordinary differential

equations, it makes some sense to commence with the transformations of func­

tions of two variables. Suppose that we have an infinitesimal transformation

x = x +ee
y = y + eT].

Under this transformation a function, f(x,y), becomes

f(x, y) = f(x +ee, y +eT])

(
of of)=f(x,y)+e eox +T]oy

to the leading order in e. This can be rewritten as

f(x,y) = f(x) +e (e:x +T]:y) f

= (1 + eG)f(x, y),

where the differential operator, G, is defined by

The function, f(x, y), is said to possess the symmetry, G, if

(e~ + T]~) f(x,y) = 0ox ay

(1.1.1)

(1.1.2)

(1.1.3)

(1.1.4)

(1.1.5)

and is said to be invariant under the infinitesimal transformation generated

by G. It is from this basis that we consider the invariance of functions and

equations involving derivatives. The first task is to establish how derivatives

transform given a transformation in the dependent and independent variables.

This is easily done. Consider the transformed first derivative

dy d(y + eT] )
dx = d(x+ee}

the case of linear equations it is necessary to be able to obtain an explicit solution for the

equation before the symmetries can be displayed.

2



dy + ed1]
-

dx + ede
y' + e1]'

= 1 +ee'

=y' +e(1]' - y'e') (1.1.6)

(1.1.7)

to the first order in c. An infinitesimal transformation of a function containing

x, y and y' is generated by the differential operator

[1) a a (' ,c') aG =e- +1]- + 1] - Y I" -.
ax ay ay'

The differential operator, G[l), is called the first extension of G. The presence

of higher derivatives is accommodated by further extensions of G. The nth

extension [153] is given by

(1.1.8)

In the case of a differential equation invariance under the appropriate ex­

tension of a generator of symmetry must take into account the existence of the

equation. Thus, for a function j(x, y, y', . .. , y(n)), invariance under a symmetry

means

G[n)j ( , (n)) 0x,y,y, ... ,y =

whereas the differential equation

j (x,y', ... ,y(n») = 0

possesses a symmetry if

G[n)j(x,y,y" ... ,y(n))/ =0.
f( %,y,yl , ... ,y(n) )=0

(1.1.9)

(1.1.10)

(1.1.11)

Included in the class of functions containing derivatives are first integrals.

As there is some variation of understanding of the expressions first integral,

constant of the motion3 and invariant4 we adhere to the more mathematical

3In the context of Mechanics.

40r even worse that favourite of the Physicist, exact invariant!
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usage of the expression 'first integral' by which is meant a function of the

independent variable, dependent variable and its derivatives (including one at

level (n - 1) for a differential equation of order n) which, if differentiated with

respect to the independent variable, is zero when the differential equation is

taken into accounts. One point, which should be realised, is that a first integral

is not a function which contains the first derivative, but is one which contains a

derivative of order one less than that of the differential equation whence it was

derived. This creates an interesting situation as a first integral can be regarded

as a differential equation. Indeed this is the usual way to regard them for they

are used as an intermediate stage in the process of reduction to quadratures.

Suffice for the moment to state that a differential equation of given order has a

number of symmetries greater than or equal to the number of symmetries which

the corresponding first integral has. We treat this matter further in the chapter

on symmetries of first integrals. For the moment we enjoy the amusement of

the one object having different algebraic properties depending upon whether

it is treated as a function or an equation6 • More seriously we relate it to the

generally undeveloped field of configurational invariants [76, 195].

1.2 Lie AIgebras

A Lie algebra consists of a vector space 9 over a field F together with a binary

operation [,] called the Lie Bracket which is defined on 9 such that the axioms

(a) Bilinearity: for any u, v, wE 9 and a, bE F

[au + bv, w] = a[u, w] + b[v, w]

[u, av + bw] = a[u, v] + b[u, w]j

(b) Skew-symmetry: for any u, v E 9

[u, v] = -[v, u]j

50r system of equations if there is more than one dependent variable.

6In the context of the same class of symmetries.
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and

(c) Jacobi Identity: for any u, v, wE g

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0 (1.2.2)

are satisfied. It is usual to take :F to be the field of real numbers, but it could

equally well be the field of complex numbers especially if one wishes to work

with differential equations in the complex plane.

The Lie Bracket [,] on a set S of vector fields of the form (1.1.4) is defined

as

[X, Y] = XY - Y X (1.2.3)

for any X, YES. The definition (1.2.3) introduces a binary operation into the

space of vector fields S which makes it into a Lie algebra since the definitions

(a), (b) and (c) above hold7
.

If a differential equation admits the vector fields X and Y in the sense of

§1.1, it also admits their commutator, [X, Y], as the Lie Bracket is often called.

The set of all vector fields admitted by a given differential equation generates

a Lie algebra. The largest admitted Lie algebra is called the full Lie algebra of

the equation. The algebras one encounters in the study of ordinary differential

equations are for the most part finite dimensional real algebras. We meet

an exception in the infinite dimensional algebra associated with the Ermakov

invariant8 .

1.3 Integrals and Reduction of Order

Suppose that a differential equation has a symmetry of the form

(1.3.1)

70vsiannikov (1982) [168].

8See Chapter Eight.
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where the functions eand 1] are restricted to be of x and y only, ie, we confine

our consideration to point transformations. Then we can look for new variables

in which the order of the equation is reduced by one and also to the determina­

tion of a first integral from the integration of the reduced form of the equation.

There are two ways to introduce new variables.

The first takes the expression for the first extension

[1) a a (' ,c' ) aG =e- +1]- + 1] - Y ':. -ax ay ay' (1.3.2)

and looks for the characteristics by solving the associated Lagrange's system

dx dy dy'
T = -:;j = 1]' - y'e" (1.3.3)

The characteristics are called invariants in the language of Lie theory as each

is invariant under the transformation induced by the symmetry. Since eand 1]

are functions of x and y only, the characteristic obtained by the solution of the

first and second of (1.3.3) above is called the zeroth order invariant. When the

third of (1.3.3) is brought in, the second characteristic will contain y' and so is

called the first differential invariant. From these two invariants expressions for

the higher derivatives can be found. If we call the first u and the second v, in

principle the expression for v can be inverted to give y' in term of u, v and x.

Higher derivatives are obtained by successive differentiation and substitution

of the results obtained for the lower derivatives. Eventually the differential

equation is used to stop the process. What is left is a differential equation of

order one lower than the original.

If the new equation has any symmetry, this can be used to reduce the order

of the equation yet further. A 'good' equation will have symmetries sufficient

to reduce it to the zeroth order, ie to an algebraic equation9 . In this respect

one needs to be careful with the symmetries which are used to reduce the

order of the differential equation. The reduction of order of an equation may

9 Usually one does not bother to reduce as far as the algebraic equation, but stops at the

last quadrature.
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or may not cause the loss of other symmetries depending upon the Lie Bracket

properties of the symmetries. Clearly we are concerned with the case for which

there is more than one symmetry. Let two of those symmetries be G1 and G2 •

Then, if

(1.3.4)

where .x is some constant, reduction of order via G1 will result in the reduced

equation inheriting a point symmetry derived from G2 • If the constant, .x, is

nonzero, this is not the case if reduction is based on G2• If an equation has

more than two symmetries, the choice of the route for the reduction of order

can be made with less concern in the case of a second order equation. Clearly

the higher the order of the equation the more parsimonious one must be in the

unnecessary discarding of symmetries.

The equation which results after the reduction of order may be integrable,

in which case a first integral is obtained for the original equation. One must

note that there is a difference between reduction of order using symmetries and

that obtained by using integration.

The second route is to change variables in the original differential equation.

This is achieved by finding the zeroth order and first differential invariants and

seeing what transformation of the independent variable will make the derivative

of u a function of v and u only. The original equation is then written in terms

of u as dependent variable and the new independent variable. The order is

unchanged, but the variables can be made more user friendly at that order.

Typically an equation with just the one symmetry would be transformed to

autonomous form. This need not necessarily be the simplest form, but would,

for example, be optimal for an application of the Painleve analysis1o .

We have here confined ourselves to consideration of point symmetries and

the way to make best use of them in the process of reducing the order of a

lOStrictly speaking the Painleve analysis is outside the scope of this work which is dedicated

to symmetry, but recent developments, to which brief mention is made in the Epilogue, make

it seem evident that the one cannot be considered without the other.
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differential equation. The unnecessary loss of symmetry by the injudicious use

of a symmetry for the reduction of order is easily explained in terms of the

algebraic properties of the generators. However, there are times when the re­

duction of order does not result in the reduction of the number of symmetries,

but can even lead to an increase in their number. The typical example is the

reduction of a third order equation with the maximal number of point symme­

tries, seven, to a linear second order equation which has eight symmetriesll .

To be specific the third order equation

y'" = 0

has seven symmetries, one of which is

a
G=­ay

for which the zeroth order invariant is

u=x

and the first differential invariant is

I
V = y.

The reduced equation is

v" = 0

(1.3.5)

(1.3.6)

(1.3.7)

(1.3.8)

(1.3.9)

and this has eight symmetries.

This example is very simple and tends not to be considered by those who look

at the apparently mysterious appearance of unexpected, or hidden, symmetries.

The original equation is effortlessly integrable and so does not really need

to be examined closely. The equations of interest are those which have a

limited number of symmetries, perhaps even an inadequate number, and yet are

reducible to quadratures because of the appearance of new symmetries during

11In the following we are specifically concerned with the existence of point symmetries.
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the process of reduction of order. The source of the new symmetries appears

to be in what are called nonlocal symmetries, ie symmetries which contain

integrals as coefficients in the generator. The story of their appearance, and

disappearance, can be found in the works of Barbara Abraham-Shrauner [1, 4]

and her student, Ann Guo [2, 3, 74].

1.4 The Stage Is Set

The modern knowledge and use of the symmetries of ordinary differential equa­

tions can be effectively traced to the paper of Anderson and Davison [10] in

1974. The mathematicians had looked deeply into the subject at the time of

Lie and shortly thereafter. Then the mathematical content of the area seemed

to be exhausted and the mathematicians moved on to newer lode. For the

practitioners of the usage of mathematics in divers disciplines the area had

not been greatly explored until the Russian School under the leadership of L

V Ovsiannikov12 developed in the late fifties and then the thrust was towards

partial differential equations, in particular those relating to gas dynamics which

for some unfortunate reason was then a subject of current interest. Anderson

was the link between East and West. Anderson's paper with Davison [10], fol­

lowed shortly by that of Wulfman and Wybourne [214], sparked off a cascade

of papers which explored the symmetries of specific ordinary differential equa­

tions. In the process Lie and Noether symmetries were intermingled although

they have separate provenances.

The ordinary differential equations treated were the standard paradigms

of oscillator, Kepler problem, damped particle and the like. Then in 1981

Leach [106] wrote about the symmetry of an anharmonic problem and its use

in finding a first integral for that problem which lead to the reduction of the

12He still contributes actively in his mature years and has been a keynote speaker at

recent meetings in Russia (Ufa 1991, Sezryn 1993), Italy (Acireale 1992) and South Africa

(Johannesburg 1994).
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original differential equation to quadratures. This moved the goal posts in a

positive fashion. Symmetries could be used for useful purposes and not just to

give alternative solutions to problems already solved.

The Emden-Fowler equation had received attention from various sources

and it was natural that Leach should again apply symmetry methods to this

problem. In the process of this investigation a certain nonlinear second order

equation occurred. The observation that this particular nonlinear second order

equation possessed eight symmetries with the Lie algebra 8£(3, R) and was

linearisable via a point transformation sparked off a large part of the work

which is reported here. It lead to the systematic study of the conditions for

a second order nonlinear differential equation to be linearisable. It was then

natural to consider the forms of scalar second order equations invariant under

algebras of smaller dimension. Higher order equations and systems of second

order equations were considered next almost at the same time13. The algebraic

properties of linear higher order equations were established in friendly rivalry

with a Franco-Chilean team14
• The consideration of systems of linear equations

can only be described as limited and the literature has stayed that way for some

years for the simple reason that it is a very complicated problem.

The properties of the first integrals of some equations proved to be of al­

gebraic interest in their own right. Again it was found that what applied for

second order equations was not the rule for higher order equations.

The paradigm of the nonlinear second order equation is the Emden-Fowler

equation. Considerable attention has been given to it for two reasons. It per­

sists in occuring in applications and it has mathematically interesting features.

In its generalised form it is also very frustrating, but even in frustration new

features emerge.

In the world of symmetry there are certain algebras which stand out because

13During the course of a week in which the author was immobilised by a large plaster cast.
14Jorge Krause of the Pontifical University in Santiago, Chile, and Louis Michel of the

IHES at Bures-sur-Yvette, near Paris.
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of the implications of their possession. In Physics the rotation algebra, 80(3),

is doubtless notorious. In the field of ordinary differential equations one such

algebra is 8£(2, R). It is common to all linear equations of order greater than

the first which possess maximal symmetry. It is the algebra of the Pinney

equation which plays a major role in the story of the time-dependent oscillator

and its generalisations. It is the algebra of Ermakov systems which themselves

possess an integral which has an infinite number of symmetries.

We see that there has been a great flowering of work on the symmetries

of ordinary differential equations which was sparked by some very elementary

beginnings. Had it not been for Geoffrey Prince's knowledge of the seventies

papers on symmetries a lot of the research reported here would not have taken

place. Had it not been for Ralph Lewis' constant search for more complicated

time-dependent systems for which first integrals could be found a lot of the

research reported here would not have taken place. Had it not been for the fact

that I am fascinated by invariance under transformation none of the research

reported here is likely to have ever taken place.
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Chapter 2

The Ad Hoc Period

2.1 Introduction

The papers of Anderson and Davison [10] and Wulfman and Wybourne [214]

created an amount of interest in the Mathematics and Physics communities

which was really far beyond their fundamental merits. Anyone familiar with

the works of Lie would have known that it should be so, but such persons were l

not common in the world of applications. It is for this reason that these two

papers are important. They brought back to life an area which had been left

to moulder and so opened up the way to the recent explosion of interest in

the symmetries of ordinary differential equations and their applications. It is

true that partial differential equations have been more consistently supported

due to the work of the doyen of the Russian School, Laurentiev Ovsiannikov,

and his coterie, but there does seem to have been an accretion of more diverse

mathematical expertise since the 'extension' to ordinary as opposed to partial

differential equations was made.

In hindsight the progress which was made make reinventing the wheel look

technologically advanced. However, the work of the old masters was not known

in detail. Some general principles were and that was about it. This chapter is

1And still are although the situation is improving.
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dedicated to the period of the reinvention of the wheel. In a sense there was

some merit in this even though we had to plough again the already harrowed

field. The curious peculiar interests of those who came as neophytes to the

subject affected the way the subject of ordinary differential equations and their

symmetries was interpreted. In the present instance the interest was that of

non-autonomous Hamiltonian systems because of their possible applications

in the Plasma Physics which lay behind the theoretical work which attempted

to explain and direct2 experimental work on controlled thermonuclear fusion.

Curiously, as time has passed, it has been the interest in the group theoretical

properties of the equations which has persisted even as the hope of controlled

thermonuclear fusion in our lifetimes has diminished and the wish for it to

happen may also have decreased from fear of a radiative Armageddon.

In this chapter we consider the process of moving from the what should have

been known to respectable, if paradigmic, applications to what is, as far as we

know, the first instance of putting Lie's theory to work. In the process we find

that there had been a certain amount of humbug in a couple of the early papers

of this period. We conclude with consideration of a problem which has had

considerable impact on the study of the theory of linear equations and those

equations which are linearisable by a point transformation.

2.2 Linear Scalar Second Order Ordinary Dif­

ferential Equations

2.2.1 The Time-Dependent Oscillator

The first problem we consider is the time-dependent oscillator which has played

an important role in classical and quantum mechanics. It has been around a

long time, in fact rather longer than some of the not quite recent literature

would suggest. At the first Solvay Conference in 1911 [140, 208] Lorentz pro-

20ne is reminded of Eddington's dictum that theory must mould experiment.
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posed an adiabatic invariant for the lengthening pendulum, modelled in the

standard approximation by the linearised form3

(2.2.1)

(2.2.2)

where as usual the overdot denotes differentiation with respect to time, to be

'2

I:= <L +wq2
w

in the case that w(t) was slowly varying. Some fifty years later Littlewood [140,

141] provided a rigorous treatment. In particular he quantified the approximate

constancy of the adiabatic invariant, I, by proving that I(t) - I(oo) = O(f)

when w(t) has the form </>( Et).

A few years later while on sabbatical in Heidelberg Ralph Lewis found4 an

exact invariantS for (2.2.1) in an application of Kruskal's asymptotic method

[91]. The motivation for the study was from Plasma Physics in which the

equation for the time-dependent oscillator arises as the linear approximation

for the motion of a particle in an electromagnetic field6
. The exact invariant

of Lewis is

1:= i {(pq - pq)2 + (;:) } ,

where the auxiliary function, p(t), is a solution of the equation

p+w2p = p-3.

(2.2.3)

(2.2.4)

Some years later a computationally less complicated derivation was provided

by Leach [95] although the same auxiliary equation had to be solved. The

3The model is not appropriate for a pendulum of shortening string length as the approx­

imation, sin 0 ~ 6, eventually breaks down. This case was analysed by Ross [188].
4Ralph was developing the asymptotic expansion in the parameter, t. The first order

correction was zero, then the second. Most would have stopped there, but he persisted,

convinced himself that he had a first integral and then calculated d!/ dt.
5The physicists' term. The invariant has to be labelled 'exact' lest anyone think it 'in-

exact'. The remark is not without point when one considers the terminology introduced by

Hall [76] in his treatment of configurational invariants. Mathematicians tend to prefer 'first

integral'.

6See also the cyclotron studies of Seymour [198].
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derivation was in the context of Hamiltonian Mechanics and was simply the

transformation from the time-dependent Hamiltonian

(2.2.5)

to the autonomous form

via the generalised canonical transformation [24, 25]

(2.2.6)

q
Q=­

p
p = pp- pq (2.2.7)

and it is the same p(t) as above. The only problem was to determine the

function, p(t). Fortunately the solution of (2.2.4) had been provided by Pinney

in 1950 [172]. The solution of the auxiliary equation is

ab - c2 = 1, (2.2.8)

where a, b, c € nand Ul and U2 are two linearly independent solutions of

(2.2.9)

Unfortunately a particular solution of the original equation of interest is re­

quired to obtain its general solution. When students first meet this happy

circumstance, they tend to react negatively. However, the mere knowledge of

the formal solution is often enough to keep a realistic problem on course to

the next to bottom line. Furthermore the real problem at hand is usually not

the lengthening pendulum, but something from a nonclassical context which

reduces to the time-dependent oscillator when the final equations are obtained.

Frequently this is a considerable advance, particularly in the case of quantum

mechanical problems where a nonseparable partial differential equation is re­

placed by a separable partial differential equation and an ordinary differential

equation.

There is, of course, the matter of extension to higher dimensions [73], but we

are wandering somewhat from the theme of this work. We hope that enough has
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been said of the time-dependent oscillator to indicate that it is an important

problem7
.

Our interest at the moment is the Lie algebra of (2.2.1). Leach [101] gives a

full discussion of it from the point of view which existed at the time in his then

work. Here we present a more current treatment. The differential equation

(2.2.1) possesses a Lie point symmetry

8 8
G = r(q, t) 8t + T/(q, t) 8q (2.2.10)

(2.2.11)

if the action of the second extension of G, G[2), on (2.2.1) when (2.2.1) holds

gives zero. The calculation, like most associated with Lie symmetries, is notable

more for its tediousness than its content of elegant deductions. Suffice to say

that the eight symmetries are

G1 = p2 sin 2T ~t +q(pp sin 2T + cos 2T) ;q

G2 = p2 cos 2T ~t +q(pp cos 2T - sin 2T) ;q

8
G3 = qpcosT 8q

G4 = qpSinT;q

G 2 8 .8
5 = p 8t +qpp8q

8
G6 =q-

8q

G7 = p-lq sin T :T + (p sin T +p-l cos T)q2 ;q

G8 = p-lq cos T :T + (p cos T - p-l sin T)q2 ;q'

where p(t) is a solution of (2.2.4) and the 'new time' [24, 25], T, is given by

(2.2.12)

7No mention has been made of applications in Quantum Optics as evinced by the many

papers of Abdalla and co-workers (eg [29, 30, 31]) as this is essentially the same as Leach's

treatment [108] even if the physical parameters are somewhat different.
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The Lie Brackets of these symmetries coincide with those of the time­

independent problem8 and so the algebra is s£(3, R).

2.2.2 The Damped Free Particle

The damped free particle was considered by Prince et al [177] as an example to

illustrate some of the ideas behind the concept of 'Lie admissibility' as espoused

by Santilli [191]. It has the equation of motion

x+ ,x = 0,

the symmetries are calculated in the usual way and are found to be

The algebra is s£(3, R).

2.2.3 The Forced Harmonic Oscillator

(2.2.13)

(2.2.14)

It may come as no surprise that the algebra of the forced harmonic oscillator

is also s£(3, R) when the forcing term is a function of time only. Thus the

symmetries of the equation of motion

8Leach (1980) [101]

ij +q + f = 0,
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where f(t) is a continuous function of time over the interval of interest, are9

G1 = sin 2t~ + Hq - g) cos 2t - h sin 2t} aa
at q
a . a

G2 = cos 2t- - Hq - g) sm2t + hcos 2t}-a
at q
a

G3 = cost aq

G . a
4 = smt aq

a a
Gs = --h-

at aq
a

G6 = (q - g) aq

G1 = (q - g) sint~ + Hq - g)2 cos t - (q - g)h sin t aa
at q

Gg = (q-g)cost~t - Hq-g)2sint+(q-g)hcost;q' (2.2.16)

where

g(t) = I t

sin(r - t)f(r)dr

h(t) = I t
cos(r - t)f(r)dr. (2.2.17)

It is perhaps worth noting that in this paper10 transformation from one

equation to another by point transformations was understood to preserve the

algebra! It was observed that 'the use of point transformations may make the

investigation of the symmetries of other systems easier' and that 'the problem

of determining whether a given dynamical system possesses this symmetryll is

reduced to finding a point transformation relating it to a system which does.'

The naivete of the observation is almost beyond comprehension in the light of

current understanding, but the situation was somewhat different then.

9Leach (1980) [103]

lOLeach (1980) [103].

llThe Lie algebra 8£(3, R). At that time linear systems were the chief ones under investi-

gation although the situation was to change not much later.
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2.2.4 The Repulsive Oscillator

In the course of what may, with little breach of the code of charity, be described·

as experimental work on the symmetries of equations of long familiarity the

repulsor was one of the last of the linear scalar equations to be studiedl2 . It

is, perhaps, amusing to note that even still there was a reluctance to apply the

method for the direct calculation of the Lie point symmetries and Noether's

theorem was frequently used to find five of the eight symmetries and then the

Lie method was used for the remaining three. Part of the responsibility for this

can be attributed to Lutzky [143, 144] who had used the theorem to obtain

the five Noetherian symmetries and so set a patternl3 . The remaining part can

be squarely identified through the interests of the more active investigators at

the time. They were motivated by the search for first integrals. Apart from

first integrals being on the route to the solution of a problem they were the

functions of interest to the physicists as the first integrals were going to provide

a source of observables in quantum mechanics or particle distribution functions

in plasma physics.

The symmetries of the equation of motionl4

were found to be

ij-q=O

Gl = sinh 2t ~t +qcosh 2t ;q
a

G2 =­at
a

G3 = cosh t aq

(2.2.18)

12Leach (1980) [104].

13It did have to be shown that the Noether symmetries which were associated with the

Variational Principle and not necessarily with the differential equation were in fact symme­

tries of the differential equation. More recent studies, cl Kara and Mahomed(1992) [87] have

emphasised the need for care in identifying the number of symmetries of an equation with

those of an Action Integral if only because of the variety of inequivalent Lagrangians.

14Leach (1980) [104].
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G4 = sinh t ;q
a 'h aGs = cosh2t at +qsm 2t aq

a
G6 =q-

aq

G 'ha 2 ha
7 = q sm t at + q cos t aq

Gs = q cosh t ~t + q2 sinh t ;q (2.2.19)

and, as should be evident by now, the Lie algebra of the symmetries is s£(3, R).

If it is felt that there needs to be some relief from the naivete of these re­

sults, Leach [104] does join the known results together and points out that

all the linear scalar second order ordinary differential equations considered

had s£(3, R) symmetry. Indications from linear systems were that the sym­

metry was sf(n +2, R) provided that the systems were uncoupled, undamped

and unforced. In particular Prince and Eliezer [175] had demonstrated that

the complete symmetry group of the n-dimensional time-dependent oscillator

was s£(n +2, R) and to be honest much was inferred from that. It was not

until sometime later that the somewhat more complex situation of systems of

linear equations was explored separately by Gorringe and Leach [58], Gonzalez­

Lopez [56] and Gonzalez-Gascon and Gonzalez-Lopez [57]. Even now it would

be reasonable to state that the situation for linear systems is one of serious

underdevelopment.

2.3 The Classical Systems

It comes as no surprise that after the few standard and a couple of not so

standard linear scalar equations were investigated the major multi-dimensional

syetems were treated. There is not an excessive number of them, just the

oscillator and the Kepler problemIS.

150ne could extend the oscillator to the repulsor, but the experience with the two in

the one-dimensional case suggests that there would be little sense in it. In fact the only
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At the time there was something of a debate between the use of Noether's

Theorem and the Lie Theory of Extended Groups. The advantage of the

former was that the integral followed without effort once the symmetry was

known whereas in the latter case the remaining calculations could be highly

nontriviaP6. However, Noether's Theorem was unable to produce the Jauch­

Hill-Fradkin tensor11 for the multi-dimensional oscillator or the Laplace-Runge­

Lenz veetor18 for the Kepler Problem. This was in the context of point transfor­

mations. They could be found when velocity-dependent transformations were

admitted, but the price of generality was that of nonclosure. An infinite num­

ber of velocity-dependent transformations required an ansatz on the nature of

the velocity-dependence in the symmetry. As this is related to the velocity­

dependence in the integrap9, one is back at the chief obstacle to Bertrand's

method [20]. It is also known as the direct method following its extension to

time-dependent integrals by Lewis and Leach (1982) [130], Gonzalez-Gascon

et al (1982) [55] and Moreira (1984) [160]. The Lie method had the advantage

that there was no such fixed relationship between symmetry and integral.

In fact there is much more to the story, but it should be told at the closing

of this work for that is where its thoughts exist.

The use of the Lie method for the two paradigms, three-dimensional os­

cillator and Kepler problem, was championed by Leach [105] for a reason of

real difference between the two is to be found in the roles played by the different conserved

tensors. This was described by Leach (1980) [98], but is not directly related to the symmetry

problems considered here. Naturally the relationship between symmetries and first integrals

as pursued in Chapter Six does make them relevant to the study of the algebraic properties

of differential equations but not in the context of the present chapter.

16See Gorringe and Leach (1990) [59] for an example from a later period.

I1Jauch and Hill (1941) [83]; Fradkin (1965) [48,49] .

. 18Laplace (1798) [94]; Runge (1922) [189, p 79]; Lenz (1919) [124]. However, Goldstein

[52, 53] points out that a special form was derived by Hermann in 1711 and the general form

by Bernoulli in 1712. As vector notation had not been invented at that time, the vector was

given in component form.

19See Sarlet and Cantrijn (1981) [194] for a very clear discussion.
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consistency. In particular the latter problem had been a source of some dis­

quiet. Levy-Leblond [125] had produced the velocity-dependent symmetry

which leads to the Laplace-Runge-Lenz vector with even more sleight-of-hand

than the average magician would care to expose to the public gaze. Prince and

Eliezer [176] were slightly subtler in that they had Lie point symmetries rather

than a Noetherian velocity-dependent symmetry, but they did not demonstrate

a direct derivation of the first integrals from the symmetries.

Perhaps the most significant result of Leach [105] was that the classical

integrals for the two paradigms were obtained from the basic symmetry of

both systems, that of invariance under time translation. It is possible that at

the time the general concept was to associate an integral with a characteristic

symmetry. Thus conservation of energy with invariance under time translation

and conservation of angular momentum with invariance under the rotation

group were typical of what was understood. Levy-Leblond (1971) [125] moved

away from the point symmetries when he associated Kepler's Third Law with

invariance under what was the first extension of self-similarity in rand t. It

had to be extended to give the right results, but Levy-Leblond did not exactly

explain the situation in great detail. More recently the fortuitous connection

has been made painfully obvious20 . In the case of an autonomous system

possessed with a number of autonomous integrals they could be obtained from

the characteristic symmetry21

a
G=-.at (2.3.1)

Suppose that the system is one of n degrees of freedom. A first integral in­

variant under a particular generator of a symmetry transformation satisfies the

equation

(2.3.2)

and in the first extension of G there are 2n + 1 independent variables so that

2oGorringe and Leach (1993) [61].

21There is nothing special about the choice of this symmetry apart from its relevance to

the examples under consideration. The following argument is general.
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(2.3.2) has 2n characteristics. The further requirement of invariance under

total time differentiation leads to a second linear partial differential equation.

This time the 2n characteristics are the variables and so the first integral ends

up as an arbitrary function of 2n - 1 new characteristics, each of which is a

constant of the motion22 • In the case of the autonomous three-dimensional

oscillator and the Kepler problem all of the autonomous integrals were derived

from the single Lie point symmetry, O/ot23
•

To a large extent Leach [105] was making a point rather than promoting a

radical change of strategy in the approach to the search for first integrals which

was the basic interest behind the investigation of symmetries at the time. In

fact we are not even using hindsight as we read 'It must be emphasized that

we are not promoting the use of the generator, B/ot, to obtain all of the time­

independent first integrals. This might require considerable ingenuity, rather

more, in fact, than is required when the generator directly associated with

the particular first integral is used. What we do wish to demonstrate is that,

in the Lie method, such first integrals are implied in the generator of time

translation. '

We would like to amend that statement a little. A symmetry is a local

operator. A first integral is a nonlocal expression. A symmetry will have asso­

ciated with it the solution of a first order differential equation. This solution

will exist under the usual conditions. However, this existence is local and does

not guarantee that there does exist a 'global' function which is invariant under

the symmetry. Thus a chaotic system such as the Henon-Heiles system [78] is

autonomous, but only the one integral - the energy - is known and the system

exhibits chaos.

22The connection with Hamilton-Jacobi theory and Liouville's theorem on complete inte­

grability is somewhat obvious.

23 See Leach (1981) [105] for the details.
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2.4 Anharmonic Systems

The symmetries of the systems described so far could be described as inter­

esting, but it would be difficult to claim more than that as the solutions of

the problems treated were already well-known from other approaches. Here

we consider the application of the Lie theory to the actual solution of unsolved

problems. This story must be told in two parts as this chapter is concerned

with the early period. In Chapter Seven we shall take up the story with more

recent work. Here we consider the problems of the time-dependent oscillator

with a cubic anharmonicity and the autonomous equation which is sometimes

known these days as Mahomed's equation.

2.4.1 The Time-Dependent Anharmonic Oscillator

In the investigation of the behaviour of plasma one of the models which was

early adopted was that of the motion of a charged particle in an axially sym­

metric field. Apart from'the imposition of the symmetry which produces con­

siderable simplification in the governing equations it was also easy to assume

that the radial equation reduced to that of a simple harmonic oscillator when

suitable approximations were made. In this context the word 'suitable' is used

in the sense of making the resulting mathematics easy. Long familiarity has

made the simple harmonic oscillator one of those problems which is considered

to be mathematically simple. The only disadvantage of this model was that the

Zeta machine and its ilk did not actually work that way. A more refined model

was required. The replacement was the time-dependent oscillator which did

have the attraction of paying some attention to the presence of time-varying

fields. The linearity of the spatial component of the oscillator field was not

really sufficient to the demands made on the model and Lewis [128] suggested

that a time-dependent anharmonic oscillator with cubic anharmonicity in the

Hamiltonian would be suitable as a starting point and that an invariant for

sUch a system could be informative. It was this study of the time-dependent
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anharmonic problem24 which lead to a new approach to the Lie theory in that

it now became a tool in the search for solutions of new problems governed by

ordinary differential equations.

A little explanation of the context will help explain the interest in the exis­

tence of an invariant for such models25
• The motion of a charged particle in a

plasma is governed by the Vlasov-Poisson equations in one dimension and the

Vlasov-Maxwell equations in more than one dimension. We confine our atten­

tion to the case of one dimension and shall ignore the second named equation.

The Vlasov equation describes the distribution of particles in a collisionless

plasma. It can be written variously and we take the form

(2.4.1)

which carefully ignores any Hamiltonian structure. Usually the system is

Hamiltonian. The particle distribution function, f(t, q, q), is normally a func­

tion of (2n + 1) variables, where n is the number of degrees of freedom of the

system. We contain our attention to the case n = 1. The distribution of the

particles is known when f is known. Since (2.4.1) is a linear partial differential

equation in three variables, the number of characteristics is two. It so hap­

pens that the Vlasov equation, (2.4.1), is also Liouville's equation in Classical

Mechanics and describes the condition which a function must satisfy in order

for it to be a first integral, or invariant as the physicists would prefer, of the

system. The solution of Liouville's equation, and so Vlasov's, should provide

both integrals. This is certainly the manifest desire of the physicists26 although

24Leach (1981) [106].

25Strictly speaking this lies outside of the subject matter proper to this thesis, but research

is rarely neatly packaged. It will be recalled that the starting point for the work reported

here was in the theoretical study of plasmas as they occur in confinement devices. That

the applicability of the results is much wider than that of fusion experiments should come

as no surprise. The Physics is already more general than the Engineering context of the

experiment and, naturally, the Mathematics must perforce be even more general.

26Leach et al (1993) [114].
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the mathematician would be content to find one integral as then the one degree

of freedom system is integrable and that is all the mathematician wants. In

contrast the physicist needs both invariants explicitly so that the electrical side

of the system can be solved27
.

The general form of the equation to be considered is

ij +a(t)q +b(t)q +c(t)q2 + d(t) = O. (2.4.2)

This equation contains a spurious generality which can be reduced by means

of suitable transformations28 to

ij +q+B(t)q2 = O. (2.4.3)

It is assumed that the original equation justifies the positive sign in the trans­

formed equation. As far as the subsequent treatment is concerned, it does not

matter to any serious extent, but in terms of the initiating physical model a

negative sign could lead to kinking in the plasma.

After some calculation we find that (2.4.3) possesses the symmetry

G = a %t + {~(iL +a) q+d} :q
provided that

B(t) = J(a-S
/

2 exp { -~a Jt dt' / a(t') }

d(t) = Dsint +Ecost

and the function, a(t), satisfies the third order equation

'iL' +4iL +2Bd = O.

(2.4.4)

(2.4.5)

(2.4.6)

As an aside we note that the corresponding result for Noether's theorem de­

mands that a be zero.

27See Lewis et al (1992) [131].

28Keeping to the spirit of the original work the model is not reduced to its elemental form.

In Chapter Seven this is done in a more recent treatment of the anharmonic problem with

an arbitrary power.
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The original equation (2.4.3) with its symmetry (2.4.4) can be transformed

to an autonomous one by requiring that the symmetry take the form

a
G=­aT

in suitable coordinates. The transformation is

and the transformed equation has the autonomous form

where the constants M and N are given by

M = ~ {aii - ~(a +a)2 +a(a +a) +2ci - 4/{h}

N = h(M + /{h) +g{Ha - a)d - ad}

(2.4.7)

(2.4.8)

(2.4.9)

(2.4.10)

and g(t) and h(t) are the coefficients of q and the non-q term in (2.4.8) respec­

tively. The constancy of these expressions is verified by direct differentiation

and the use of the differential equation.

Since (2.4.9) is autonomous, it can be written as the Abel's equation of the

second kind,
dQ'

Q' dQ +aQ' + /{Q2 +MQ +N = 0, (2.4.11)

and the invariant be obtained by quadrature. In the case a = 0 the quadrature

is immediate and we have the energylike integral

(2.4.12)

This is a Noether invariant and the result can be put in Hamiltonian form.

The form of the first integral in the original coordinates is recovered by use of

the transformation (2.4.8) in (2.4.12). The case a#-O is not so simple, but

some progress was made in later work which is discussed in §7.7.
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2.4.2 The Lane-Emden Equation

The Lane-Emden equation29 was introduced by Lane in an investigation of the

equilibrium configuration of a spherical gas cloud under the influence of gravity

and thermodynamic forces. It was re-introduced by Emden nearly thirty years

later30 in the form

~~ (e dO
) = -fr, (2.4.13)e2 de de

subject to the initial conditions 0(0) = 1,0'(0) and e2: O. The index n is

related to the specific heats. Chandrasekhar (1957) [27] discusses the equation

extensively and reports complete solutions in the cases n = 0,1,5.

The Lane-Emden equation may be considered as an equation in dynamics,

VZZ.

ij + ~q +qn = 0,
t

(2.4.14)

which represents an anharmonic oscillator subject to velocity-dependent damp­

ing. The case n = 5 was treated by Logan (1977) [142, p 52] using Noether's

theorem and he found the first integral

(2.4.15)

This integral was also found by Sarlet and Bahar (1980)31 who extended their

treatment to the more general equation

ij + (3(t)q +a:(t)qm = 0, m i--1 (2.4.16)

and found a first integral under certain constraints on a:(t) and (3(t).

Moriera (1984) [160], as an example of the application of the Lewis-Leach

direct method [130] to Newtonian equations of motion, studied the equation

ij + a:(t)q + qn = 0 (2.4.17)
------------

29Kelvin (1860-62) [203], Lane (1869-70) [93], Emden (1907) [37], Chandrasekhar (1957)

[27, Chapter IV].

300ne assumes that this was independent. After all Emden wrote in German and could

not be expected to be familiar with the American literature.

31They introduced a time-dependent integrating factor to the equation of motion [193].
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and found the first integral

1= exp (m Jt a(t')dt') x

{

2qn+1 1 . }il + aqq(2 - m) +-- + _q2(m - 2) [(m - 1)a2+ a] ,
n+1 2

(2.4.18)

where m = 2(n+1)/(n+3), provided that a(t) satisfied the differential equation

a+ (3m - 2)aa + a 3m(m - 1) = O. (2.4.19)

Moreira did not provide the general solution of (2.4.19), but gave the two

particular solutions

2
a(t) = -,

mt

1
a(t) - ~-.,....­

-(m-1)t
(2.4.20)

Feix and Lewis (1985) [41] examined the equation

x + f3(t)x + 8</>(x, t) = 0
8x

(2.4.21 )

in which they took f3(t) to be proportional to t- l and used a specific power

law expression for the x dependence in </>. Their approach was from the point

of view of rescaling which has been a favourite method of the Orleans school

[75, 26] and which is the equivalent in Newtonian mechanics of generalised

canonical transformations in Hamiltonian mechanics [24, 25].

Moreira's equation (2.4.17) is a generalisation of the Lane--Emden equation.

It can be thought of as arising in a circumstance under which the constant in

the equation of state,

p = [(p(n+l)/n (2.4.22)

is replaced by a function depending upon the radial distance r32 • Leach (1985)

[109] applied the guage--variant form of Noether's theorem33 to the Lagrangian

32As is commonly used, P is the pressure and p is the density.
33The reader is referred to the excellent review of Noether's theorem by Sarlet and Cantrijn

(1981) [194].
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for the equation considered by Moreira, viz.

1 ()'2 A(t) n+l
L(t, q, q) = 2A t q - n +1q ,

where

A(t) = exp (Jt a(t')dt') .

(2.4.23)

(2.4.24)

During the course of the analysis we find that the function, a(t), is required

to satisfy (2.4.19?4.

The first integration of this equation is straightforward35 and yields

(2.4.25)

If one of Cl or C2 is zero, the integration of (2.4.25) is easy and we obtain, up

to scaling and translation terms, the results given by Moreira (1984) [160] and

the first integrals follow directly.

The integration of (2.4.25) is not simple in the general case. In parametric

form36 it is

where

u = k [( TJ + (n +1) j (n +3))n+l ] 1/
4

(TJ + (n - 1)j(n +3))n-l

t = ~J7J [(TJ' + (n + l)j(n +3))n+l]l/4 d '
2 (TJ' + (n - 1)j(n + 3))n-l TJ ,

(2.4.26)

(2.4.27)

The integral can be evaluated when n is an odd integer, but it is only in the

case n = 3 that inversion is possible so that a can be expressed as an explicit

function of t. This feature is considered in more detail in Chapter Seven.

34Strictly speaking in the case n # 2. As the case n = 2 comes under the exhaustive

treatment of the Emden-Fowler equation of Chapter Seven, we do not consider it here.

35particularly if one is a Kamke [84] afficiando.

36 cfKamke (1971) [84, p 30, §4.17].
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The case n = 2 is special because n - 1 = 1, ie the nonlinearity is connected

to the linear term. For the moment it suffices to note that special results were

obtained. This case is very specialised and the details are best left to the

consolidated treatment of the Emden-Fowler equation in Chapter Seven.

It is perhaps interesting to recall the Conclusion to Leach (1985) [109]. The

differential equation

(2.4.28)

was shown to possess first integrals for more general a(t) than had been pre­

viously reported. Only in the case n = 3 was it possible to write a(t) as an

explicit function of time. For other values of n only a parametric solution was

possible. The case n = 2 was particularly difficult. Then we calmly reported

that the equation for a(t) had been investigated for Lie symmetries. For n =1= 3

there were only two and they yielded the same information as the analysis con­

sidered here. However, for n = 3 there existed eight symmetries. As (2.4.19)

was rather nonlinear, its possession of the maximum number of point symme­

tries permitted to a second order ordinary differential equation was unexpected

although Jim Reid had observed a similar result some time earlier37
•

It was evident that the Lie analysis of (2.4.19) should be undertaken at some

depth.

2.4.3 Mahomed's Equation

The Lie analysis of (2.4.19) was reported in detail by Mahomed and Leach

(1985) [149] and such has been the impact of that study in the area of the theory

of the linearisation of differential equations that the equation is sometimes

37J L Reid, private communication dated 20 August 1981. The equation to which he

referred is

y// + 4y' + 2Ky-5/2 exp { -~ JZ y-l(X')dX'} x (M sin x + N cos x) =o. (2.4.29)

It is not obvious which type of symmetries he meant as the treatment of nonpoint symmetries

was not well established at the time.

31



referred to as Mahomed's equation. The equation does occur in applications38
,

but its properties as a differential equation per se are more than sufficient to

attract the attention of those interested in the properties of ordinary differential

equations. For the moment it suffices to say that the equation

.. 4n . 2(n2 -1) 3-0
a + n +3aa + (n + 3)2 a -

possesses only the two symmetries

a
G1 =­at

a a
G2 = t- -a­at aa

(2.4.30)

(2.4.31 )

(2.4.32)

for general values of n. However, when n = 3, which is a special case as noted

above, there are eight. It is convenient to introduce the rescaling

3(n+3)a
y=

4n

x = t.

Then, for n = 3, the equation becomes

y" + 3yy' + y3 = 0

which has the eight symmetries

(2.4.33)

(2.4.34)

38Apart from the astrophysical connection, it is also found in studies of univalued functions

defined by second order differential equations [54], the Riccati equation [28] and in the

modelling of the fusion of pellets [39].
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(2.4.35)

(2.4.36)

The generators are in the main complicated. However, when the Lie Brackets

are calculated, it is seen that the algebra is that of 8£(3, R)39. This is the same

algebra as possessed by all linear second order equations40 and, as algebras are

preserved a under point transformation, it is evident that there exists a point

transformation from (2.4.19) to the archtypallinear equation

d2y
dX2 = o.

It is observed that

where

and

1
p( x, y) = x - -,

y

(2.4.37)

(2.4.38)

(2.4.39)

Thus these symmetries fall into Type IV of Lie's classification of all two di­

mensional algebras possessed by second order equations. The canonical form

of the symmetries is

and the transformation between the two sets of coordinates is

x 2 X
y= --+­

2 y
1

X = x --.
y

(2.4.40)

(2.4.41 )

39See Table 2 of Mahomed and Leach (1985) [149].

40Leach (1980) [102]. This appeared in print in Leach and Mahomed (1988) [121].
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In the new variables (2.4.19) takes the canonical form

(2.4.42)

the solution of which is quite trivial. It is then straightforward to find that the

solution of the original equation, (2.4.19), is

2(1 + Ax)
y = Ax2 +2x +C'

(2.4.43)

where A and C are the arbitrary constants of integration.

The solution of (2.4.19) using the heavy machinery of the Lie analysis, com­

plicated tables of Lie Brackets and the identification of the appropriate sym­

metries to obtain the correct transformation of coordinates does seem to be a

little overdone when (2.4.19) can be reduced to

VIII = 0

by the Riccati transformation
v'

y= -.
v

(2.4.44)

(2.4.45)

However, that is not the point. A nonlinear equation of unexceptional prove­

nance turned out to have the 8£(3, R) of linear second order equations. The

question which it immediately raised was what other nonlinear equations had

the same property? This leads us in to the general problem of determining the

criteria which establish whether or not a second order equation has 8£(3, R)

symmetry and so is linearisable by means of a point transformation. It is this

question which is addressed in Chapter Three.

34



Chapter 3

Linearisation of Second Order

Scalar Ordinary Differential

Equations

3.1 Introduction

Ordinary differential equations present themselves as either linear or nonlinear

equations. The linearity one must accept as real. There is a battery of theorems

which apply to linear equations of which the most valuable must be that,

if Ui(X), i = 1, n, are linearly independent solutions of a linear differential

equation of order n, then Ei=laiui(x), where the ai are arbitrary constants,

is the general solution. This does not actually help to find the n particular

linearly independent solutions, but it does provide the consolation that the task

is finished when one has. The problems associated with the solution of linear

second order equations and the vast literature which is devoted to the subject

do suggest that the task is passingly nontrivial, indeed so nontrivial that there

are those who resort to using a computer to obtain a numerical solution. All

one needs is two solutions1 for independent initial conditions and the general

1 For a second order equation of course. One more is needed for each increment in the

order.
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solution is at hand. This happy situation does not occur in the case of nonlinear

equations for which the computer must be given its burden for each set of initial

conditions. A serious study of a nonlinear equation is devastatingly expensive

by comparison with a linear equation of the same order2 and it makes sense to

assure oneself that the equation under consideration is really nonlinear.

The nonlinearity need not necessarily be real. The equation

yy" _ ~y'2 + f(X)y2 = 0

is nonlinear, but it is not inherently nonlinear since the transformation

(3.1.1)

y = y2 x=X (3.1.2)

reduces (3.1.1) to the normal form for a second order linear equation, viz.

y" + f(X)Y = O.

On the other hand the equation

although it can be rendered into the more attractive form3

Y" + f(X)y2 = 0

(3.1.3)

(3.1.4)

(3.1.5)

2In the research world one tends not to think of the actual monetery cost of a computer

computation. The guiding cost is that of time. However, it does cost money to run computers

and one must be sensitive to the real cost of computation. At one university, at least, budgets,

in a nominal sense, were allocated to departments. For those who were interested it seemed

to be a matter of how much more my department had used than cognate ones and how

uncomputed some funny departments were.

3Lemmer and Leach (1993) [123]. In Ranganathan (1988) [178] and (1989) [179] this

equation and some similar ones were presented. The discussion was more appropriate in

the less exotic form obtained through transformation by Lemmer and Leach [123]. Without

wishing to be more than reasonably uncharitable to quasi-mathematical savants they do tend

to forget that simpler versions of their equations may exist and be accessible via elementary

transformations.
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by means of a Kummer-Liouville transformation [92, 139, 17, 18], is essentially

nonlinear. We recognise (3.1.4) as the generalised Emden-Fowler equation of

index two4 which has been of some interest in recent relativity5.

We have the problem of whether the nonlinearity of. an equation is apparent

or inherent. In some cases, such as the one above, it is easy to spot a trans­

formation which linearises the equation. Life tends to be not that easy. In

this chapter we study second order nonlinear equations for linearisability con­

ditions. The emphasis on second order equations is motivated simply on the

basis of their commonness because of the persistent influence of Newton. In a

sense it is the prelude to a far more extensive study which has by no means been

implemented completely. We have the criteria for scalar equations of higher

order, but the results for systems of equations are essentially non-existent.

We commence with Lie's classification scheme for second order equations.

Then we prove some results about the linearisability of nonlinear equations.

The equivalence of all second order linear equations in an algebraic sense is

proven in a very simple way. We conclude with the elements of the studies so

far of systems of second order equations. We note the presently unsatisfactory

state of work in systems of linear equations or linearisable systems and end our

discussion by pointing out the obvious. There is still much to be done in the

establishment of fundamental results in this area.

3.2 Lie's Classification Scheme

The possession of a Lie point symmetry enables the order of an equation to

be reduced by one. In the case of a second order equation this leads to the

reduced equation being of the first order and hence integrable. Unfortunately

the integrability is formal as the determination of the integrating factor re­

quires a knowledge of the solution of the equation for which one is seeking

4This equation is discussed at some length in Chapter Seven.

5Leach et al (1992) [119].
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the integrating factor so that it can be solved. However, if there is a second

symmetry of the second order equation and reduction is performed by the nor­

mal subgroup so that the first order equation inherits the other symmetry, the

first order equation can be transformed to autonomous form and be reduced

to quadratures. It was this simple consideration which led Lie to start off with

the properties of second order equations invariant under a two-dimensional

algebra6
.

Second order ordinary differential equations possessing two point symme­

tries have four canonical forms for the representations of the two-dimensional

algebras. They and their associated differential equations are given in Table

3.1. There are two canonical forms for each of the two Lie algebras, 2A1 and

A2• In the Table they are called Types I, 11, III and IV and we refer to each

by its appropriate type number.

Table 3.1 is easily explained. Suppose that a second order ordinary differ­

ential equation admits a two-dimensional Lie algebra. The two symmetries

have either the Abelian algebra, 2AI, or the solvable algebra, A 2 • There is not

much choice when it comes to two-dimensional algebras. However, the two

symmetries can be either connected, as in the cases of Types 11 and IV, or

unconnected, as for Types I and Ill. If the two symmetries have the properties,

say, of being unconnected and having zero Lie Bracket, ie they belong to Type

I, there exists a point transformation which will reduce them to the canoni­

cal form associated with Type I and the differential equation to one with the

structure of the entry in the last column of the table7
•

Lie deduced that any differential equation of Type 11 or IV is linearisable

by means of a point transformation. Hence it has the algebra, 8£(3, R), for its

point symmetries and can be transformed to the free particle equation by means

of a point transformations. This means that the Type 11 and IV equations

6Lie (1891) [133].

7Naturally it need not be as general in appearance.

8These details are covered in §§3.3 and 3.4.
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Table 3.1

Type Algebra Conneetedness Canonical forms Form of

of G1 and G2 of G1 and G2 equation

I 2A1 Vp G2 =I p(x,y)G1
- a

Y" = F(Y')G1 = ax

(unconnected)
- a
G2 = ay

11 2A1 ::Jp: G2 = p(x,y)G1
- a

Y" = F(X)G1 = ay

(connected)
- a
G2 = X ay

III A2 Vp G2 =I p(x,y)G1
- a
G1 = ay XY" = F(Y')

(unconnected)
- a a
G2 =Xax+Yay

IV A2 ::Jp: G2 = p(x, y)G1
- a
G1 = ay Y" = Y'F(X)

(connected)
- a
G2 =Y-ay
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have an additional six symmetries. These can be found from those of the

free particle equation using the inverse of the transformation which takes the

original equation to the free particle equation.

This leaves the two unconnected realisations to be e.xplored for the condition

or conditions under which they will have the extra symmetries to make up the

numbers for possessing 8£(3, R). The next two sections are devoted to this end.

Before we proceed to further consideration of these two cases we can give

a general result for the necessary and sufficient condition for a second order

equation to possess the maximal 8£(3, R) algebra. It is that the equation have

the nilpotent algebra

(3.2.1)

to which we refer as the algebra N. Sufficiency proceeds by construction and

necessity follows from N being a subalgebra of 8£(3, R)9. To anticipate the

discussion of higher order equations below the second order equations differ

from those of higher order in that the dimension of the algebra sufficient for

linearisability in the latter case equals the order of the equation whereas for

second order equations it is three. This is because there are two inequivalent

representations of the algebras 2A1 and A2 • One pair of representations gives

linearity immediately and the other does not, but provides the cause for the

next two sections.

3.3 Linearisation of Type I Equations

We assume that we have an equation with two independent commuting symme­

trieslO and that they and the equation are written in canonical form. In par­

ticular the equation is

y" = f(y')· (3.3.1)

9Sarlet et al (1987) [196].

laThe discussion follows Sarlet et al (1987) [196] without dwelling overly much on minor

details.
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A generator of the form

is a symmetry of (3.3.1) if

a a
G=e-+7J-ax ay (3.3.2)

(3.3.3)

where suffices refer to partial derivatives, which follows from the action of G[2]

on (3.3.1).

For general f it is evident from a casual perusal of (3.3.3) that at most only

two symmetries exist. These are the two we assumed. A slightly less general

situation applies if we take f(y') to be a polynomial in y' of degree greater

than three. The lower order terms are not of much importance here. There

can now be at most three symmetries. However, when f(y') is of degree no

higher than the third, there is no immediate loss of symmetry. Accordingly we

consider the equation

y" = gy,3 +ay'2 +by' +c, (3.3.4)

where all coefficients are constants and g is non-zero. In this form (3.3.4) has

a certain illusory degree of generality which can be removed by a rescaling of

independent variable and a translation of dependent to leave the essential form

" '3 b'y = y + y +c. (3.3.5)

It is perhaps proper to reflect that we are not concerned here with the

solution of (3.3.5) for it is apparent that it can be reduced to quadraturesll with

the information already at our disposal. What we really wish to determine is

the circumstances under which (3.3.5) can be linearised. For then the solution

is trivial rather than something which smacks like a double dose of elliptic

integrals. The extraordinary thing is that the equation is linearisable no matter

llThat is what those two symmetries are for!
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the values of the coefficients12 . There are always the eight symmetries of the Lie

algebra, 8£(3, R). It is only the representations which vary with the properties

of the roots of the cubic. We note that in the particular case for which the

polynomial is a quadratic a similar analysis holds13
.

The important thing to remember is that the equation can be no more than

cubic in the first derivative if it is to be linearisable. It is interesting to note

that the 'free particle' equation

y" = 0,

when subjected to the point transformation

(3.3.6)

becomes

x = F(x,y) Y = G(x, y), (3.3.7)

[F, G]x,yy" + [F, G]y,y2y'3 + ([F, G]x,y2 +2[F, G]y,Xy)y,2

+([F, G]y,X2 +2[F, G]x,XY)y' + [F, G]x,x2 = 0,

where, for example, [F, G]y,y2 is a shorthand notation for

8F82G 82F8G
[F,G] yy2 = -8-82 - -82 -8., y y y y

(3.3.8)

(3.3.9)

The application of a further point transformation to (3.3.9) does not increase

the degree of y' in the equation.

3.4 Type III Linearisation

We recall that the second order equation of Type III has the form

XY" = F(Y') (3.4.1)

l2The details are in Sarlet et al (1987) [196]. The treatment depends upon the factorisation

of the cubic on the right side of the equation except that the signs change just as in the case

of linear second order partial differential equations.
l3The quadratic case can be attained by a fibre-preserving transformation instead of the

more general point transformation. Hsu and Kamran [80] congratulated themselves on the

generality of their result compared with the linearisation of equations cubic in the first

derivative achieved by Sarlet et al [196]!
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and the two symmetries

(3.4.2)

We can make some simplifications to the discussion by employing the results

of Tressel4 • The equation

y" = H(x, y, y')

is linearisable if and only if the relative invariants defined by

11 = Hylylylyl
d2 d

12 = - (Hyly/) - 4- (Hyl y) - 3HyHylyl +6Hyy
dx2 dx

+H" (4Hy ,y - d~ (H",,))

both vanish for the equation. The vanishing of 11 imposes the form

y" = A(x, y)y,3 + B(x, y)yf2 +C(x, y)y' +V(x, y)

(3.4.3)

(3.4.4)

(3.4.5)

on the differential equation. The vanishing of 12 imposes the following condi­

tions on the four coefficient functions

3Axx + 3AxC - 3AyV + 3ACx +Cyy - 6AVy + BCy

- 2BBx - 2Bxy = 0

6AxV - 3ByV +3AVx +Bxx - 2Cxy - 3BVy+ 3Vyy

+ 2CCy - CBx = o.

(3.4.6)

(3.4.7)

Given these two conditions and the general form of an equation invariant

under Type III symmetries we need only consider the equation

xy" = ay,3 + by'2 +cy' + d, (3.4.8)

where the coefficients a through d are constants. The two equations above,

(3.4.6) and (3.4.7), do not permit linearisation if a = O. The general cubic can

be transformed to the elemental form

" '3 , dxy = y +cy + . (3.4.9)

. 14Tresse (1896) [207]. Poincare [173] published his paper on the existence of a conserved

vector of angular momentum type for the classical magnetic monopole in the same year.

43



Further use of (3.4.6) and (3.4.7) reduces (3.4.9) to simply

xy" = y,3 + y' (3.4.10)

as the only equation of this type which can be linearised by means of a point

transformation.

The transformation itself is found from an analysis of the point symmetries

of (3.4.10) and comparison of them with the standard set for the free particle15
.

The generators of the algebra, N, are easily identified and the required trans­

formation is

x =y. (3.4.11)

3.5 The General Theorem

In the previous two sections we have treated the two cases of second order

equations possessing algebras of dimension two which were not automatically

linear. In this way we have treated all four cases16 of equations admitting two­

dimensional algebras of symmetries which are linearisable. If an equation of

the form (3.4.3) passes the linearisation test, ie conditions (3.4.6) and (3.4.7)

hold, one need only obtain two symmetries of the equation in order to construct

a linearising point transformation for the equation. Of course it may be just

as easy to calculate the full complement of symmetries as to calculate two11,

but this is to miss the point of what is possible in theory.

A simple example helps to illustrate what the procedure is. The equation

y" + 3yy' + y3 = 0 (3.5.1)

15See Mahomed and Leach (1985) [149] Tables 11 and III for a listing of the symmetries

and their Lie Brackets.

16Types I through IV.

17This is particularly the case when the equation is fed to the machine and the tender

mercies of Program LIE [77]. It is not obvious how the machine can be instructed to stop

when the two appropriate symmetries have been found.
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anses In the study of the generalised Emden-Fowler equation18 and in the

investigation of univalued functions defined by second-order equations19. The

equation satisfies both conditions (3.4.6) and (3.4.7). Hence it is linearisable.

By observation it is invariant under time-translation and, if one looks a little

more carefully, under a similarity transformation20 . We have the two non­

commuting and non-proportional symmetries

The transformation

a
G1 =­ax

x=~
y

a a
G2 =x--y-.ax ay

1
Y=x+­

y

(3.5.2)

(3.5.3)

transforms the generators to the canonical form and (3.5.1) to21

Xy" = _y,3 +6y,2 - llY' +6.

The further transformation

(3.5.4)

- 1x=x-­
Y

(3.5.5)

yields a linear equation.

There are times when it is easier to determine two commuting symmetries.

Consider the differential equation of the conic sections, viz.

" y' y,2
Y =---.

X Y

It has the two commuting symmetries

(3.5.6)

a
G1 =x­ax (3.5.7)

18Leach (1985) [109] and Lemmer and Leach (1993) [122]. See Chapter Seven.

19Golubev (1950) [54].

20This can be obtained by assuming the structure of a similarity transformation and de-

termining the coefficients. It can also be found by performing the first step of the Painleve

analysis.

21We did not claim that the canonical form was the simplest form!
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The transformation which converts these to a/ay and a/ax is

x = log x Y = logy. (3.5.8)

The equation becomes

Y" = 2Y' - 2y,2. (3.5.9)

The free particle comes after the transformation

- 1
Y = 2exp(2X) x = - exp(2Y - X). (3.5.10) .

3.6 The Equivalence of all Linear Second Or-

der Ordinary Differential Equations

In Chapter Two we recalled the many ad hoc investigations of the symmetries

of various equations, particularly the second order linear ones, which, one by

one, revealed themselves to be in possession of the symmetry algebra, 8£(3, R).

By the end of the seventies it was accepted folklore that all linear equations had

8£(3, R) symmetry22 although the first proof of which we are aware is due to

Mahomed23• Here we offer a very simple proo£24 which really does not require

much understanding nor knowledge of anything25
•

The general second order linear differential equation

y" +a(x )y' +b(x)y = c(x) (3.6.1)

22Recall that Lie had shown that the maximal algebra was 8£(3, R). This is not the same

result and, as we shall see in the case of higher order equations, does not even follow.

23 Mahomed (1986) [147]. The present writer appreciates the contribution made by Dr

Mahomed in converting folklore to proven theorem as it saved him the difficulty of coming

up with a proof when confronted whilst evoking folkloristic recollections at the IHES in 1988.

24See Govinder and Leach (1994) [67].
25Nevertheless it is important to make the statement loudly and clearly as there are many

out there who are unaware of the commonality of 8£(3, R) symmetry for all linear sodes and

those which are linearisable.
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is transformed to

v(ut,2) + v(2u't' + ut" + aut') + v(u" + au' + bu) + w" + aw' + bw = c (3.6.2)

under the generalised Kummer-Liouville transformation26

y = u(x)v(t) +w(x) t = t(x), (3.6.3)

where, as usual, ' denotes d/dx and . denotes d/dt. The coefficient of v in

(3.6.2) becomes zero if

2 ' , t" t' 0ut +u +au = ,

the coefficient of v becomes zero if

u" +au' + bu = 0

and the nonhomogeneous term vanishes if

w" +aw' + bw = c.

(3.6.4)

(3.6.5)

(3.6.6)

Each of (3.6.4), (3.6.5) and (3.6.6) have continuous solutions provided that

the functions a(x), b(x) and c(x) are continuous and satisfy a Lipschitz condition27 .

Hence (3.6.1) is equivalent to

(3.6.7)

under a point transformation. Eq (3.6.7) has the Lie algebra 8f(3, R) of its

point symmetries and hence (3.6.1) does since the transformation is a point

transformation. The point transformation may only have local validity, but we

are here concerned with the algebra and not the group.

This proof is very elementary and it is surprising that it has not been pre­

sented before28 •

26Kummer (1887) [92], Liouville (1837)[139].

27Ince (1927) [82, p 63].

28It is perhaps not so surprising that no journal wants to publish it. The proof is far too

easy to understand!
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3.7

3.7.1

Systems of Linear Second Order Ordi­

nary Differential Equations

Introduction

The study of the symmetry properties of systems of second order ordinary

differential equations cannot be claimed to have the completeness associated

with that of scalar equations. There have been studies of some particular vari­

eties of nonlinear systems such as the Kepler problem and variations thereon29
•

When it comes to linear systems, there has been very little work30 and it must

be admitted that the present situation is not only under-developed, but it is

scandalously so. The reason for the scandal is easy to see. It is the same old

story. Linear equations are cheap to solve.. Nonlinear ones are expensive to

solve. The situation for scalar equations has been resolved31 , but the knowl­

edge of the situation for systems is almost non-existent. The cause is simple.

We do not know what the symmetry algebras of systems of linear equations

are in general. Hence the knowledge of the algebra of a nonlinear system is

not necessarily going to point the direction towards the determination of the

29For example Prince and Eliezer (1981) [176] on the Kepler problem, Moreira et al (1985)

[161] on the magnetic monopole, Leach and Gorringe (1990) [117] on the equation r+ f(r)L+

g(r))r =0, Gorringe and Leach (1991) [59] on central force problems and Gorringe and Leach

(1993) [60] on Kepler's Third Law.
30The only studies known to us are those of Gonzalez-Gascon and Gonzalez-Lopez (1983)

[57] and Gonzalez-Lopez (1988) [56] apart from the one by Gorringe and Leach (1988)

[58] to be summarised here. The coincidence of two groups independently working on the

same problem at about the same time is not so unusual. Even within the experience of the

present writer it is not unique as both Gonzalez-Gascon and Leach, with different sets of co­

authors, sent almost the same papers to Journal of Mathematical Physics in early 1982 and

they appeared in the same issue [55, 130] towards the end of the year. We are satisfied that

the two works were independent studies although some doubts were raised at the IUTAM

meeting in Torino in June, 1982, without corroboration.

31The same is more or less true for higher order scalar ordinary differential equations.
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possible existence of a linearising transformation32
•

Here we report what can only be described as the first, tentative, steps

towards a classification of the symmetries of systems of ordinary differential

equations. The systems are of the second order and are linear with a very

simple structure. Future routes of investigation to pursue are more complicated

linear equations and systems of higher order. The latter are not encountered

commonly in applications, but results found for them could cast some light on

the properties of systems of second order equations in much the same way that

studies of higher order scalar equations have contributed to our understanding

of scalar second order equations33• Another area of interest is the relationship

between the symmetries of a system of equations and an equivalent higher

order equation. It may be more accurate to add 'or lack of' as the two sets of

equations are related via a non-point transformation. Rapidly a plethora of

questions is raised which suggests that there is still much life left in the area.

However, we leave the area of speculation over lines of future research and hark

back to those of the not too distant past.

3.7.2 Two dimensions of a limited variety

To make the discussion as transparent as possible we commence with the two

linear equations

x= ax +by

Y= ex +dy, (3.7.1)

where a, b, e and d are constants and overdot denotes differentiation with

respect to the independent variable, t. By means of elementary similarity

32For a system of n second order equations possessing the symmetry algebra sl(n + 2, R),

linearisation is obvious. It has been argued by Marc Feix (during a seminar at PMMS, CNRS,

Orleans in July, 1987) that partiallinearisation would be useful, but to our knowledge the

criteria for that have not been addressed.

33For which see Chapters Five and Six.
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transformations34 , which do not affect the number of symmetries since they

are point transformations, (3.7.1) may be written in the upper triangular form

x = ax + by

y= dy (3.7.2)

and it is this system which we analyse. We write the generator as

(3.7.3)

where T, eand TJ are functions of x, y and t. The application of the second

extension of G to the system (3.7.2) leads to fifteen partial differential equations

to be satisfied by the functions T, eand TJ. Several cases emerge.

Case (i) The coefficients of (3.7.2) are d = a and b = O.

There are the fifteen generators35

a
G1 =­at

a
G2 =x­ax

a
G3 =y­ax

a
G4 =x­ay

a
G5 =y­ay
G6 = eat~ax
G -at a

7=e -ax
GB = eat l!..-ay
G -at a

9=e -ay
G 2at (a a a)

10 = e at + ax ax + ay ay

34Wilkinson (1965) [210, p 46].

35y'a is written as a. Were a negative, the exponentials should be replaced by circular

functions.
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G = e-2ot (~- ax~ - ay~)
11 at ax ay

t(a a a)Gl2 = xeo at - ax ax - ay ay

ot (a a a)Gl3 = xe- at - ax ax - ay ay

ot (a a a)Gl4 = ye at +ax ax +ay ay

-ot (a a a)Gl5 = ye at - ax ax + ay ay . (3.7.4)

(3.7.5)

The algebra under the operation of taking the Lie Bracket is sf(4, R)36

Case (ii) The coefficients of (3.7.2) are d =I a and b = O.

We write va = a and Vd = f3 in the case that a and b are positive. If either

or both are negative, the exponentials below are replaced by circular functions

as appropriate. There are seven symmetries and they are

a
GI = at

a
G2 =x­ax

a
G3 =y­ay
G4 = eot~ox
G -ot a

5 =e -aX
[3t aG6 =e -oy

G - -[3t a
7 - e ay'

When this list is compared with that of Case (i), we see that we have lost the

interchange operators, G3 and G4 , plus G lO - G15 • The first two signify that

the variables x and y are no longer equivalent. The second set is more or less

the equivalent of the loss of sf(2, R) symmetry that one finds with higher order

equations37
•

36See Prince and Eliezer (1981) [176].

37See Chapters Five and Six.
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Case (iii) The coefficients of (3.7.2) are a = 0 = d and b i- O.

There are now eight generators which take the forms

a
G1 = ­

at
a a

G2 = 2x- +t-
ax at
a a

G3 =2y--t-
ay at
a

G4 =y-
ax
a

Gs =­
ax
a

G6 =t­
ax
2 a a

G7 = bt - +2-
ax ay

3a a
G8 = bt ax +6t ay . (3.7.6)

The change in the coefficients of the symmetries is rather dramatic. That this

case is very easily written as a fourth order equation of the eight symmetries

variety does not explain these symmetries. Indeed the connection, if any, be­

tween the symmetries of a system of equations and those of a corresponding

single equation of higher order is unknown, although it is a worthy subject of

investigation.

Case (iv) The coefficients are b i- 0 and a, d not both zero.

This is similar to Case (ii) in that seven symmetries are found. Their precise

expression depends upon the relationship between a and d. In the case that

a i- d and both are non-zero they are38

38The convention for both a and d as above is maintained. To keep the expressions

moderately compact we write k = b/(d - a).
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(3.7.7)

It so happens that the commutation relations in this case are the same as those

for Case (ii).

We observe that for the two-dimensional system under consideration

(i) There are three possible numbers of symmetries, viz. fifteen, eight and

seven.

(ii) The maximal number of generators is obtained only if the coefficient

matrix is a scalar multiple of the identity. This scalar may be zero. It may

be time-dependent. The Lie algebra is s£(4, R). This was already known from

other studies [176].

(iii) When the coefficient matrix is diagonal with unequal entries (zero is

not an excluded value), the number of generators is reduced to seven. This is

also the case when the matrix is fully triangular. That the two were afforded

separate consideration is a consequence of the hindsight generated by the next

subsection.

(iv) When the matrix is strictly upper triangular, an additional symmetry

is introduced to make eight in all.

The investigation of the simplest forms of systems of linear second order

equations has indicated that there is an even more profound change in the

algebraic properties of differential equations in going from one to several than

there is in going from scalar linear sodes to scalar linear nodes. The variations

in the algebras mean that the identification of linearisable systems will have a

broader set of criteria. It will also mean that there will be a broader range of

systems which can be linearised. It also suggests that there may be different

degrees of difficulty in the solution of linear systems just as there are in the
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case of linear equations of higher order39
•

3.7.3 A system of n second order linear equations.

The n second order differential equations generalisation of (3.7.2) is

x=Ax

i = 1, n. (3.7.8)

In the sequel the summation convention is used except where specifically ex­

cluded. When the symmetry is written as

a a
G=T-+"lk-,

at aXk
(3.7.9)

the terms of the third and second degree in the first derivatives give that

(3.7.10)

and

(3.7.11)

The equations which come from the terms linear in the Xi and those free of

derivatives lead to a number of cases. The important thing to do is to take

care not to become bogged down in details. Rather the spirit of the results

ought to be stressed. The general result is that there are 2n symmetries of the

form
a

Gk = ek -a k = 1, 2n, (3.7.12)
Xk

where ek(t) is a solution of the original equation, (3.7.8)40. For the rest we

must consider particular cases.

Case (i) A = al.

There are 2n symmetries which come from b(t) of the form

a· a
Gk = b·x·- +b'X'Xk-

t tat t t aXk

39See Chapter Six.

40There is no summation required in (3.7.12).
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where the bs are the solutions of

m = 1,n. (3.7.14)

Three symmetries of the form

k = 1,3 (3.7.15)

come from the solutions of

'c' - 4ac = O.

Finally there are n 2 symmetries of the form

(3.7.16)

i,j = 1,n (3.7.17)

which come from the functions dij(t) in the expression for 1/, (3.7.11). In

all there are (n + 1)2 - 1 generators and one can identify the Lie algebra as

sf(n + 2, R).

Case (ii) A = D.

The bs now all vanish. There is only one c and it is a constant. The dij(t)

can only be constants. The diagonal elements, lfli' are arbitrary41. The off­

diagonal terms satisfy

(3.7.18)

so that they are zero whenever Dkk and Dii differ. Since at least one of the

Dij must differ from the rest, there are at most [en - 1)2 + 1] lfljS' If all the

elements of D differ, only the n diagonal elements of DO persist, where DO is

the constant part of [dij ]. The minimum number of generators is 3n + 1 and

the maximum number is n2 + n + 2. If k of the diagonal elements of Dare

equal, there are an additional k( k - 1) symmetries from the lfljs.

Case (iii) A general matrix A.

It is more than apparent from Case (ii) that the possible plethora of cases

increases dramatically with the increase in dimension of the system. In the

41The superscript, 0, indicates a constant.
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case of a general, albeit constant, matrix A we firstly transform the system to

upper triangular form. The bs are zero. There is only one c, a constant. The

number of independent elements of DO depends upon the multiplicities of the

eigenvalues of A. Since A is in upper triangular form, the multiplicities are

given by the number of repeated elements on the leading diagonal. Unfortu­

nately they are not independently associated with one eigenvalue and it does

not appear to be possible to give a concise, general, statement about the num­

ber of symmetries in all cases. Furthermore there is an increase in the number

of symmetries as the coefficient matrix becomes increasingly upper triangular.

We saw the initial effect of this in (3.7.2) for the two-dimensional system.

3.7.4 General comments

Thus far the investigation has been confined to autonomous systems. We give

a sampling of the results for nonautonomous systems by quoting the results for

the two~dimensionalsystem

x = A(t)x. (3.7.19)

When an = a22 and a12 = 0, the algebra remains as sf(4, R) which is not

unexpected42 . When an =I- a22 and al2 = 0, there are only six symmetries

since the symmetry associated with c must disappear unless an(t) ex: a22(t)Vt

in which case there are seven symmetries.

If an = °= a22 and a12 =I- 0, there can be ten symmetries for a suitable

a12(t). In general there will be seven symmetries although there can be eight

under special circumstances. For a general matrix A the number of symmetries

can drop to five simply because of the incompatibility of the nature of the time­

dependence in the elements of A.

It is curious that the introduction of a single function of time, as in the

42Since this is just the two-dimensional version of the case studied by Prince and Eliezer

(1981) [176].
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system

x= a(t)x, (3.7.20)

has no effect on the number of symmetries43. However, when there is more

than one function of time present, the reduction in symmetry is not surprising

unless there is a special relationship between the functions. Without that

special relationship there will not be a point transformation to transform the

time-dependent system into an autonomous one and so clearly the number of

point symmetries must be different and lower seems to be the way to go.

We must conclude with the observation that the present knowledge of sys­

tems of linear equations leaves much more to be studied and understood. We

shall see in the chapters on equations of higher order that the ideas to be found

in scalar second order equations have to be modified. What we have seen here

is that the change from a scalar second order equation to a system of second

order equations with both being linear leaves us with a lot that is not easily

incorporated into a general theory. Within systems there is still much to be

investigated. The connection between systems and higher order equations is

another matter altogether, maybe.

43However, it is not surprising as this time-dependent system can be transformed to an

autonomous system by means of a simple Kummer-Liouville [92, 139] transformation of the

type used to render the time-dependent oscillator free of explicit dependence on time.

57



Chapter 4

Classification of Second Order

Ordinary Differential Equations

by AIgebras

4.1 Introduction

When one realises a real low-dimensional Lie algebra in terms of vector fields in

two coordinates, more than one canonical form may occur. We have observed

this feature in the two canonical forms of generators obtained for each of the two

real two-dimensional Lie algebras 2Al and A2 in §§3.2 and 3.3. Lie [133, Kap

18] showed that, if a second order ordinary differential equation admits a two­

dimensional algebra of point symmetries, then the two elements can either be

connected or disconnected l . This gives four representations of two-dimensional

algebras which are the Types I - IV of Chapter Three. There we saw that

the connected algebras give immediate linearisation whereas the unconnected

lit should be obvious that the algebras are either Abelian or solvable. There is not much

scope when there are only two elements. The connectivity or otherwise depends on the

existence or not of a function, p(x, y), such that G l =p(x, y)G2 •
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ones need further constraint on the form of the differential equation2
• These

considerations were given in the previous chapter.

In this chapter we examine scalar second order equations admitting real Lie

algebras of dimension greater than or equal to two3
. A complete treatment of

the three-dimensional Lie algebras is given for the case of vector fields in the

plane. The canonical realisations enable us to give the equivalence classes of

all second order ordinary differential equations which admit point symmetry

algebras and those specifically of dimension three. Of these there are five. A

major result is that a scalar second order ordinary differential equation can

admit zero, one, two, three or eight point symmetries.

4.2 Representations in two coordinates

We use the Mubarakzyanov classification of Lie algebras4 and its notation.

In the case of three- and four-dimensional algebras the list includes the de­

composable algebras. An algebra is denoted by A~.j which represents the jth

algebra of dimension r and the algebra depends upon a parameterS, a. The

range of the parameter(s) is restricted to avoid double counting and algebraic

sums of lower algebras. The assignment of a specific value to a parameter sin­

gles out a specific algebra within a class. These may be well-known or have

some special property.

There are eleven Lie algebras of dimension three (decomposable or other­

wise), two of which depend upon parameters. Their algebraic properties are

2This is another instance of the vagaries of going one, two, many. For equations of order

higher than the second the mere existence of an Abelian algebra of the same order means

linearisation. See Chapter Five.

3Naturally with eight as the upper limit since that is the maximum number of symmetries

which a second order equation can have.

4See Patera and Winternitz (1975) [169], Patera et a/ (1976) [170] and Patera and Win-

ternitz (1977) [171]. The original ":ork is found in the papers of Mubarakzyanov (1963)

[163, 164, 165] and Morozov (1958) [162].

sOr parameters.
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Table 4.1 Algebras of Dimension Three

Algebra Nonzero commutation relations

3AI

Al E9 A2 [Gl, G2] = GI

Aa,l (Weyl) [G2 , Ga] = GI

Aa,2 [Gl, G3 ] = Gl, [G2 , G3 ] = GI +G2

Aa,a (D ®s T2 ) [Gl, G3 ] = Gl, [G2 , G3 ] = G2

Aa,4 (E (1, 1)) [Gl, G3 ] = Gl, [G2 , Ga] = -G2

A3,5 (0 < lal < 1) [Gl, G3 ] = Gl, [G2 , G3 ] = aG2

A3 ,6 (E(2)) [Gl, G3 ] = -G2 , [G2 , G3 ] = GI

A~,7 (b > 0) [Gl, Ga] = bGI - G2 , [G2 , G3 ] = GI + bG2

A3,s (SL(2, R)) [Gl, G2 ] = Gl, [G2 , Ga] = G3 , [G3 , GI ] = -2G2

A3 ,9 (SO(3)) [Gl, G2] = Ga, [G2 , G3 ] = GI , [G3 , GI ] = G2

presented in Table 4.1. The decomposable algebras are the Abelian algebra,

3Al, and the non-Abelian algebra, Al E9 A2
6 .

A number of theorems can be proved7
• They make use of the identities

a) [Gl,G2] = (-G2P)G2 if GI = p(x,y)G2 for a suitable function p and

b) [Gl,Ga] = (GI "p)G2 +"p[Gl,G2] if G3 = "p(x,y)G2 for a suitable function

"p,

where GI , G2 and G3 are operators of the form

a a
G=~(x'Y)ax +TJ(x,y)ay· (4.2.1)

THEOREM 1 A second order ordinary differential equation does not admit

the Abelian Lie algebra 3A I .

6The groups listed in parentheses are the Weyl group, the semidirect product of dilations

and translations D ®, T2 , the Euclidean group E(2), the pseudo-Euclidean group E(l, 1),

the special linear group SL(2, R) and the special orthogonal group SO(3).

7The details are given in Mahomed and Leach (1989) [152].
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An immediate consequence is that a second order ordinary differential equa­

tion does not admit a Lie algebra which contains the the three-dimensional

Abelian algebra, 3AIl as a subalgebra. This means that we do not have to con­

sider all twenty-four real Lie algebras of dimension four. The nine which need

to be considered are listed in Table 4.2. There are only three five-dimensional

algebras which need be considered and they are listed in Table 4.3.

We discuss the Lie algebras listed in Tables 4.2 and 4.3 after considering the

three-dimensional Lie algebra realisations of Table 4.1.

4.3 Equations invariant under three-dimensional

algebras

The next theorem concerns the Lie algebra 8£(2, R) which features in most of

the following chapters because of the central role it plays in the theory of linear

differential equations of higher order and its association with an important class

of nonlinear equations.

THEOREM 2. If a second order equation admits the Lie algebra 8£(2, R)

(A3,s), it has either three or eight symmetries.

The proofS reduces to the identification of two canonical forms of 8£(2, R)

which can be admitted by a second order differential equation9 . They are

a
G1 =­

ay
a a

G2 =x-+y-
ax ay

G a (2 2 a
3a = 2xy ax + y - x ) ay

8See Mahomed and Leach (1989) [152] for the details.
9There exists a third representation which is not admitted by a second order equation.

It requires an equation of at least the third order and is intimately associated with the

Kummer-Schwartz equation [82, p 394] [84, p 602] introduced in §5.2.1
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Table 4.2 Algebras of Dimension Four

Algebra N onzero commutation relations

2A2 [GI , G2] = G2 , [G3 , G4 ] = G4

A3 ,8 EB Al [Gb G3 ] = 2G2 , [Gb G2] = Gb [G2 , G3 ] = G3

A3 ,9 EB Al [Gb G2] = G3 , [G2 , G3 ] = GI , [G3 , GI ] = G2

A 4 ,7 [Gb G4 ] = 2GI , [G2 , G4 ] = G2 , [G3 , G4 ] = G2 + G3

[G2 , G3 ] = GI

A 4 ,8 [G2 , G3 ] = Gb [G2 , G4 ] = G2 , [G3 , G4 ] = -G3

A: 9 [G2 , G3 ] = Gb [G,G4 ] = G2 , [GI , G4 ] = (1 + b)GI.
(0 < Ibl < 1) [G3 , G4 ] = bG3

A~,9 [G2 , G3 ] = Gb [G2 , G4 ] = G2 , [Gb G4 ] = 2GI

[G3 , G4 ] = G3

A~9 [G2 , G3 ] = Gb [Gb G4 ] = Gb [G2 , G4 ] = G2,

A4 ,lO [G2 , G3 ] = GI , [G2 , G4 ] = -G3 , [G3 , G4 ] = G2

A: n [G2 , G3 ] = Gb [Gb G4 ] = 2aGI , [G2 , G4 ] = aG2 - G3,

(a > 0) [G3 , G4 ] = G2 +aG3

A412 [GI ,G3] = Gb [G2 , G3 ] = G2 , [Gb G4 ] = -G2,

[G2 , G4 ] = GI
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Table 4.3 Algebras of Dimension Five

Algebra Nonzero commutation relations

AS ,36 [G2 , G3] = Gt, [G!, G4 ] = GI , [G2 , G4 ] = G2 ,

[G2 , Gs] = -G2 , [G3 , Gs] = G3

AS,37 [G2 , G3 ] = GI , [G!, G4 ] = 2Gt, [G2 , G4 ] = G2 ,

[G2 , Gs] = -G3 , [G3 , G4 ] = G3 , [G3 , Gs] = G2

AS,40 [GI , G2 ] = 2GI , [G!, G3 ] = -G2 , [G!, G4 ] = Gs,

[G2 , G3 ] = 2G3 , [G2 , G4] = G4 , [G2 , Gs] = -Gs,

[G3 , Gs] = G4

The differential equations associated with each representation are

xy" = y'3 + y' +A(1 + yI2)!

and

" 13 I 1
xy = Y -"2Y

(4.3.1 )

(4.3.2)

(4.3.3)

respectively. It is evident that (4.3.2) is linearisable whenever the constant,

A, is zero. In that case there are eight symmetries and so 8£(3, R). Otherwise

there are only the three symmetries of 8£(2, R).

THEOREM 3. If a second order differential equation admits the Lie algebra

Ah(b> 0) or A3,6, it has either three or eight symmetries.

The canonical forms are

a
GI =­ax

a
G2 =­ay

a a
G3 = (bx + y) - + (by - x)-ax ay
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for the differential equation

y" = A(1 + y'2) t exp(barctan y')

and

a
G1 =x­ay

a
G2 =­ay

a a
G3 = (1 + x2)-a + (xy + bY)-a

x - y

for the differential equation

y" = B(l + x 2)-t exp(barctanx),

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

where A and B are constants. It is evident that the first equation is linear

only when A is zero whereas the second is always linear. Furthermore the first

equation is not linearisable for A nonzero.

Two remarks are in order. The canonical forms of the equations (4.3.5)

and (4.3.7) were first presented by Mahomed and Leach (1989) [152]. The

realisations of the Lie algebras A~,7(b > 0) and A3 ,6 do not appear to have

been considered by Lie. If the equation (4.3.5) contains a negative value of

b, the basis can be changed to Vi = G2 , V2 = G1 and 113 = -G3 so that the

algebra is of the desired form, A3,~ (-b > 0).

THEOREM 4. If an equation admits the Lie algebra A3,2, it has either three

or eight generators of symmetry.

The two canonical forms of the algebra are [152]

a
G1 =­ay

a
G2 =­ax
G3 = x :x + (x + y)~

and

a
G1 =-­ay
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o
G2 =x­oy

o 0
G3 = -+y­OX oy

for the two differential equations

y" = A exp(-y')

and

y" = Bexp(x)

(4.3.9)

(4.3.10)

(4.3.11)

respectively. It is obvious that (4.3.10) is linearisable only if the constant A is

zero whereas there is no constraint on the constant B in (4.3.11).

THEOREM 5. If an equation admits the Lie algebra A~,5 (0 < lal < 1), A3 ,4

or Al EI7 A 2 , it has either three or eight symmetries.

The proof proceeds as for the abovelO
•

We are now in a position to state the generallinearisation theorem for second

order equations.

THEOREM 6. For a second order ordinary differential equation,

y" = N(x, y, y'), to possess the Lie algebra, 8£(3, R), it is necessary and suf­
I

ficient that it have the algebra (a) Al EI7 A 2 or AJ,5' (b) A3,3, (c) A3 ,I or (d)

A3 ,9 (80(3)).

The proofs of (a), (b) and (d) are found in Mahomed and Leach (1989) [152]

and of (c) in Sarlet et al (1987) [196].

4.4 Four- and higher-dimensional algebras

We now turn our attention to algebras of dimension higher than three. The

four-dimensional algebras of interest were listed in Table 4.2. Each one of them

contains a three-dimensional subalgebra which implies linearisation by Theo­

rem 6. Hence, if a second order equation admits a four-dimensional algebra,

lOSee Mahomed and Leach (1989) [152].
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it is linearisable. However, there are four-dimensional algebras which are not

admitted by any second order equation and we have

THEOREM 7. A second order equation does not admit the Lie algebra (a)

A3 ,9 Ef) Ab (b) A4 ,7, (c) A4 ,10 or (d) A~,ll (a> 0) respeetivelyll.

Each of the five-dimensional algebras listed in Table 4.3 has a four-dimen­

sional subalgebra and hence implies linearisation for a second order equation

which admits it. Other five-dimensional algebras are not admitted by second

order equations. The same situations apply for six- and seven-dimensional

algebras. Either they are not admitted by a second order equation or the

equations are linearisable. We summarise these results in

THEOREM 8. A second order ordinary differential equation does not admit

exactly an r E {4, 5, 6, 7}-dimensional point symmetry algebra.

We should remark that there is scope for further investigation here in the

form of when does an algebra become a symmetry algebra of a differential

equation. It is possible that some interesting equations could emerge in the

case of higher order equations because then the algebra does not have to be a

subalgebra of the maximal algebra as it does for second order equations12.

4.5 Equivalence classes of equations

A second order ordinary differential equation has 0, 1, 2, 3 or 8 Lie point

symmetries. We exclude the case of equations possessing no point symmetry

as we cannot write representatives of equivalence classes for such equations. If

an equation has one point symmetry, it can be reduced to autonomous form by

means of a point transformation which brings the symmetry to the generator

of translations in the independent variable. Thus an equation with a single

point symmetry belongs to the equivalence class

y" = !(y, y'),

11 Mahomed and Leach (1989) [152].

12See Chapter Five.
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where f will be a specific function, and the symmetry is

a
G-­- ax' (4.5.2)

G realises the algebra Al.

Before considering the case of equations possessing two point symmetries we

look at the three symmetry case for a reason which will soon become apparent.

There are five equivalence classes and their representatives are

" A,3 ly'xy = Y - 2"

"( ) , ,2a-Ixy = a-I y +Ay a-I

xy" = -1 +A exp( -y') or

or " ,!!=1.Y = Y a-I

y" = A exp( -y')

a # O,~, 1,2

y" = A(1 + y'2) ~ exp(a arctan y'), (4.5.3)

where A cannot be zero and a E R. The two symmetry case is now obvi­

ous. An equation admitting two point symmetries belongs to either of the two

equivalence classes

or

y" = f(y')

" (')xy = 9 Y ,

(4.5.4)

(4.5.5)

where f is not a polynomial which is at most cubic in y' and it is not of the

form given in (4.5.3e) and 9 is not linear in y' and is not one of the forms

given in (4.5.3a - d) or the eight-symmetry form given in Mahomed and Leach

(1987) [150].

Equations admitting the greatest number of symmetries all belong to the

equivalence class of the 'free particle' equation

" 0y = .
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4.6 Conclusion

In this chapter we have summarised how second order ordinary differential

equations can be classified by investigating the realisations of real low-dimensional

Lie algebras in terms of vector fields in two coordinates. In this way we are

able to associate differential equations with those realisations which are the

generators of symmetries of a second order equation. For all of the admissible

dimensions of the algebra - 1, 2, 3 and 8 - we obtained the canonical repre­

sentative for each possible algebra. This representative stands for all equations

derivable from it by a point transformation. As the number of symmetries

increases, the freedom of the form of the equation decreases. For a single sym­

metry there is the general function, f(Y, Y'). For two symmetries there are

two possible equivalence classes, but the general function, f(Y'), is now of one

variable13 . For three symmetries the number of equivalence classes increases

to five, but the only arbitrariness is to be found in the parameters A and a.

Finally the case of eight symmetries has just the single representative.

Here we have reported the generaP4 structure theory for second order equa­

tions which admit Lie point symmetry algebras.

There is a number of open questions. It would be of great interest to com­

pare the Lie classification of equations we have discussed here with the Painleve

classification which produces a catalogue of fifty equations15 • The transforma­

tion up to which the Painleve classification was performed is given by [32]

X =a(x) y= ,B(x)y+,(x)
o(x)y + r(x)"

(4.6.1)

There is the natural question. Is there an overlap between the Lie classification

and the Painleve classification? A first step towards answering this question

would be to determine the symmetries of the Painleve equations. Alternatively

l3Do not be confused by the use of f and 9 in (4.5.4) and (4.5.5) respectively.

14Albeit local, but we are concerned with algebras rather than groups.

15See Ince (1927) [82], Graham et al (1985) [72], Steeb and Euler (1988) [200] and references

cited therein.
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one could attempt to reduce some of the Lie equations to the Painleve ones.

.This cannot be said to be a trivial task. For example how would 0Il:e go about

reducing (4.5.3e) with its transcendental function to a Painleve equation? If the

reduction cannot be performed, this suggests that the Painleve classification is

inexhaustive16 and requires supplementation. We put it this way because the

Painleve classification was achieved under the restriction of the homographic

transformation, a special case of a fibre-preserving transformation, of (4.6.1)

and so one could presume incompleteness. However, the Lie classification also

requires supplementation in the case of equations without symmetry as we

cannot write the representative of the equivalence class of such equations. Even

in the case of equations possessing one symmetry the Lie classification is too

general. Clearly further investigation is required. Nevertheless we remark that

a preliminary investigation reveals that the Painleve classification does provide

representatives for equations having no or one point symmetry.

Recent investigations17 using Cartan's method of equivalence have examined

the equivalence of differential equations of the form

y" = F(x, y, y') (4.6.2)

under the restricted point transformation X = </>(x), Y = t/;(x,y). This ap­

proach was motivated by the Painleve classification and as such should be

viewed against the Painleve background discussed above.

Perhaps the greatest question overhanging the matter of the comparison of

the Lie classification and the Painleve classification and also the possession of

the Painleve property is this. Should one be restricting attention to the Lie

point symmetries? Contact symmetries and nonlocal symmetries may have to

be taken into account to determine the correct relationships18.

16In the sense of providing information about the integrability or otherwise of classes of

nonlinear ordinary differential equations.

17Kamran et al (1985) [85] and Kamran and Shadwick (1986) [86].
18At which point a line must be drawn lest this work never be finished. Both types of

symmetry are the subjects of current investigations [5, 69].

69



Chapter 5

Higher Order Equations

5.1 AIgebras of linear nodes

5.1.1 Introduction

In the revival of interest in the study of the point symmetries of ordinary dif­

ferential equations over the last two decades or so the initial investigations

were motivated by physical problems such as the one-dimensional harmonic

oscillator!. Most of the earlier works dealt with second order linear equations

which all have the symmetry algebra s£(3, R)2. This means that any second

order linear equation belongs to the equivalence class of the free particle equa­

tion

(5.1.1)

The classification of second order equations has been treated in Chapters

Three and Four. In this chapter we investigate the Lie algebraic properties

IFor example Wulfman and Wybourne (1976) [214], Aguirre and Krause (1988) [7, 8, 9]

and Mahomed and Leach (1988) [151].

2In Mahomed and Leach (1990) [153] the comment made is that 'as is now well known'

with reference to Mahomed (1986) [147], Aguirre and Krause (1988) [7, 8, 9] and Mahomed

and Leach (1989) [152]. It may not be as well-known amongst the general mathematical

fraternity as one would expect. A particularly simple proof has been given by Govinder and

Leach (1994) [67] for which see §3.4.
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of nth order equations, where n ~ 3. In fairness one must refer the reader

to the papers of Krause and MicheP. There is a difference in substance be­

tween equations of order two and those of greater order. The former have

at most eight point symmetries\ ie 2 + 6, whereas the latter have at most

n +4 symmetries5• As in all situations in which one goes one, two, many, it

is a matter of determination when the generic behaviour is established. With

scalar ordinary differential equations we shall see that it is at the third order6
•

A first order equation has an infinite number of point symmetries. A second

order equation has at most eight point symmetries and, if it has the maxi­

mal number of symmetries, there exists a transformation which converts it to

(5.1.1). For third and higher order equations we shall see that such economy of

property fails to persist. Linear nth order equations can have (n +4), (n +2)

or (n + 1) symmetries. Not only can a linear equation not have (n +3) sym­

metries, but, in contrast to second order equations, an equation having (n +3)

symmetries has an algebra which is not a subalgebra of the maximal algebra

of point symmetries7
•

The study of higher order equations does not find universal favour because

the Newtonian world is based on second order equations. One could make

3Krause and Michel (1988) [89, 90]. The survey paper by Neuman (1987) [166] contains

several of the recent as well as the classical references on the topic of nth order linear

equations.

4Lie (1893) [134].

5Lie (1891) [133].
6In this respect we must emphasise that the behaviour is that of the number of point

symmetries for the scalar ordinary differential equation. We do not refer to the number of

contact symmetries nor make any claims about the number of symmetries associated with

first integrals of those equations.

7An example of this type was provided by Louis Michel in a private communication in

1988 [156] with a certain degree of glee. One can easily assume that this was engendered by

being able to find a chink in the virtuous armour of the present writer and his valued colleague

after they had pointed out that not all nth order linear ordinary differential equations were

members of the equivalence class of y(n) = 0 as had been 'proven' in the 1988 preprint of

Krause and Michel [89].
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a plea for systems such as those found in biological modelling, which are not

essentially founded in Mechanics, to be worthy of consideration and this should

be a compelling plea. However, on the one hand one can be cast in the ancient

ways and still be obliged to look at the higher order equations for a very simple

reason. To fully utilise the properties of second order differential equations one

needs to understand why they are so. For this understanding to develop it is

necessary to understand the properties of differential equations in general. On

the other hand there is a simpler rationale. We are so used to looking at second

order equations that we tend to evaluate the merits of others in terms of them.

This means that we are hidebound by a tradition which may not have been

tested against the fullness of knowledge8 or our perception of it9
.

In this section we treat the point symmetries of linear nth order ordinary
",.

differential equations. The following section deals with the classification of

third order ordinary differential equations by algebras. In the next chapter we

look at the algebraic properties of their integrals. We do not consider contact

symmetries because they are confined to third order equations as far as is

known lO
• The story for nonlinear equations is not known in general. However,

in the case of third order equations it is known that the Kummer-Schwartz

equation

2 '''' 3"20Y Y - Y = (5.1.2)

which possesses the Lie point symmetry algebra, 8£(2, R) ffi 8£(2, R), has four

purely contact symmetries [138]. Thus in terms of contact symmetries it is

equivalent to the linear equation of maximal symmetry although it is very

different in terms of point symmetries. This is an area which is not at all un­

derstood. However, for the present we write about that which is understoodll .

8Whilst I am obliged to accept responsibility for the way these sentiments are expressed,

I must thank K S Govinder for pointing out the writer's blinkers.
9Which, if we are to accept Popper's compelling argument, must always be limited and

tentative. Popper (1984 ) [174, p7 DJ.
lOCertainly in the case of linear equations, cl Mahomed and Leach (1991) [154].

llThere has been some recent work on this subject [5], but it falls beyond the terminus
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5.1.2 Symmetry conditions for linear equations

In the case of a general linear second order equation

y" +a(x)y' + b(x)y = c(x) (5.1.3)

we have seen12 that a generalised Kummer-Liouville transformation13 trans­

forms it to the free particle equation. This is simply because there are three

degrees of freedom in the transformation and three unwanted parts in (5.1.3).

When we come to higher order equations, it is immediately evident that it is

not going to be possible, generically, to reduce all nth linear order equations

to the simple form

y(n) = 0 (5.1.4)

as Krause and Michel [89] implied. The difference between second order and

higher order equations, even at the linear level, is immediately explained. What

can be done for second order equations is generically impossible for higher order

equations.

However, this does not mean that the Kummer-Liouville transformation

should be neglected. On the contrary it enables one to transform a general

linear equation into the normal form

n-2

y(n) + LBi(x )y(i) = 0,
i=O

(5.1.5)

which is referred to as the canonical form of a linear nth order differential

equation. The point symmetry algebra of any equation related to the canonical

form, (5.1.5), by a Kummer-Liouville transformation is isomorphic to that of

(5.1.5).

If the generator of a point symmetry of (5.1.5) is

a a
G = ~(x,y) ax +T/(x,y) ay'

ad quem of the present discussion.

12§3.4.

13Kummer (1887) [92], Liouville (1837) [139].
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the nth extension of G, which is necessary to deal with the transformations of

all derivatives of y up to and including the nth, is

where

(5.1.7)

[k] d [k-l] (k) d~
TJ = -TJ - Y -,

dx dx
TJ[O] = TJ.

k = 1,n

(5.1.8)

The terms, TJ[k] , can also be written in terms of a sum of total time deriva­

tives which is very similar to the Leibnitz formula for the kth derivative of a

product14 . The condition for G to be a symmetry of the nth order equation

is formally written as

E( , (n)) -- 0x,y,y, ... ,y -- (5.1.9)

(5.1.10)

When this is applied to the canonical form, (5.1.5), there is an awful mess

because of the generality of the system. However, because the coefficient func­

tions depend upon x and y only, it is possible, in all generality, to equate

the coefficients of the terms y"y(n-l), y'y(n-l) and y(n-l) separately to zero to

obtain a subset of the determining equations, viz.

TJyy = 0,
n-1

TJxy = -2-~xx. (5.1.11)

These three equations provide the forms of the coefficient functions ~ and TJ

and we have

e= a(x)

(
n -1 )TJ = -2-a (1) + ex y +b(x),

where a and b are as yet arbitrary functions of x and ex is a constant.

14Mahomed and Leach (1990) [153].
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The presence of the constant Q in (5.1.12) should not come as a surprise

as it is simply a reflection of the linearity and homogeneity of the canonical

equation, (5.1.5). All such equations possess the symmetry

(5.1.13)

The substitution of the general expressions for eand T/ back into the determin­

ing equations does provide some modicum of simplification, but it is unwise to

exaggerate its extentl5 . However, the substitution does show that the function,

b(x), in T/ separates from both the function, a(x), and the constant, Q. It is

required to satisfy the linear equation

n-2

b(n) + :LBi(X)b(i) = O.
i-O

(5.1.14)

Eq (5.1.14) has n linearly independent solutions and consequently there are

n symmetries of the form

i = 2,n +1 (5.1.15)

which means that the differential equation (5.1.5) has the symmetry algebra,

nAI . In addition to GI above, (5.1.13), the symmetries which are obtained

from the solutions of the differential equation give every nth ordinary linear

differential equation the algebra Al EEls nA I .

The virtue of looking beyond the traditional second order equations is al­

ready becoming manifest as the way the symmetries are being produced is

becoming very compelling in the sense of stating that there is a pattern or hi­

erarchy of symmetries. We have the dilatation symmetry, GI , which expresses

the linearity and homogeneity of the equation. We have the 'solution' sym­

metries, G2 to Gn+!, which simply state that, if the dependent variable, y, is

replaced by one of the solutions to the equation, then the equation is satisfied.

So far we have avoided the symmetries containing the function a(x) for it is

in the symmetries which depend on this function that the distinctions amongst

15Eq (2.14) of Mahomed and Leach (1990) [153] may be consulted by those who doubt.
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linear equations of given order higher than the second becomes manifest. In the

sequel we shall see, perhaps in what may be perceived as a formal sense, that

there are linear equations and there are other linear equations. This departure

from the properties of second order equations is, in itself, sufficient to warrant

the investigation of higher order equations if only to find why the second order

equations are so peculiar. Needless to say it is this source of symmetries which

causes the greatest trouble in terms of computation, but it does enable one to

see how the differences amongst linear equations of higher order do arise.

After some rearrangements of the original equation the function a(x) satisfies

the set of differential equations

(n + l)!(i - 1) (i+l) + . (1) B . + B(I)
(n _ i)!(i + 1)!2 a

ta n-t a n-i

+~B .(n-j)![n(i-j-1)+i+j-1] (i-j+l)_O . 1
~ n-J (n-i)!(i-j+1)!2 a -, z= ,no

(5.1.16)

Clearly (5.1.16) vanishes identically for i = 1 (Bn - 1 = 0). This is to be expected

since the result ~ = a(x) follows from the equation of terms containing y(n-l)

to zero. It should be quite obvious that (5.1.16) is not going to be simple to

treat as it comprises a set of conditions on a single function and we divide the

treatment into bits to make each somewhat simpler.

5.1.3 The n+4 dimensional symmetry algebra for linear

equations

To set the flavour of the maximal symmetry case it is instructive to look at the

point symmetries of the simplest equation of our general approach although it

was the equation considered by Krause and Michel (1988) [89]. The equation

IS

y(n) = 0, (5.1.17)

(5.1.18)

From (5.1.16) we find that the functions a(x) are simply the solutions of

a(3) = 0
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(5.1.20)

which is the first non-vanishing member of the set. Thus we have three possible

functions a(x) and so three symmetries which happen to have the Lie algebra

8£(2, R). All in all (5.1.17) has n + 4 point symmetries which constitute the

Lie algebra nAI Efls (8£(2, R) Efl AI) which is isomorphic to the algebra nAI Efls

g£(2, R)16.

We now revert to the general case for which the functions Bi(x) are not

identically zero. For i = 2 (5.1.16) becomes

(n + I)! (3) (I)B ~B(l) - 0 (5 119)
(n_2)!4!a +a n-2+ 2 n-2a - . ..

This is closely related to the Lewis-Pinney equationl7 which is obtained by

integrating (5.1.19) after multiplying it by the integrating factor a(x) and then

making the substitution a(x) = p2(X). Since (5.1.19) has three solutions, we

still have n +4 symmetries provided the remaining coefficients Bi are consistent

with the solutions of (5.1.16) for i = 2. When the conditions of consistency

are satisfied, the differential equation has the same algebra as (5.1.17). A

whole sequence of equations of increasing order with maximal symmetry can

be developed. The first three arel8

y(3) + Bly(l) + ~B~l)y = 0
2

Y(4) +B 2y(2) +B(l)y(l) + (~B(2) +~B 2) Y = 0
2 10 2 100 2

Y(S) +B 3y(3) + ~B(I)y(2) + (~B(2) +~B 2) y(l) +
2 3 10 3 100 3

(~B(3) +~B B(l)) = o.
5 3 100 3 3 Y

Even though only a single function occurs in the equations of various orders,

the equations are not particularly simple in appearance. However, each one of

them can be transformed to

y(n) = 0 (5.1.21)

16EEl denotes the direct sum and EEl. the semidirect sum.

1
7Lewis (1968) [127], Pinney (1950) [172]. The considerably earlier provenance of this

equation is considered in Chapter Eight.

18A more complete listing is given by Mahomed and Leach (1990) [153]. Presumably the

whole process could be reduced to an algorithm and fed to the computer for its consideration.
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by means of a point transformation. It should not be thought that the trans­

formation is easy to find. When the coefficients are constants, the equation

with maximal symmetry can be written as

d {(n-I)/2 ( d2 (2i)2 ) } _- IT -+ B 2 y-o
dx i-I dx2 (n + 1/3) n-

when n is odd and

(5.1.22)

(5.1.23)

(5.1.24)

when n is even. Evidently both series (odd and even) are derivable from a

second order equation.

5.1.4 The n+l and n+2 dimensional symmetry algebras

for linear equations

We have seen that a linear equation possesses n + 4 symmetries under ex­

ceptional circumstances. If the coefficient functions do not have the relations

prescri\>ed by (5.1.16), the number of symmetries will be lesser. We investigate

the situation more closely to determine just what numbers of symmetries can

be expected. We consider the case of n +2 symmetries first.

The only place where there can be a reduction in the number of symmetries is

from the source of the s£(2, R) subalgebra since the other part of the algebra,

nA I EBs AI, comes from the very linearity of the equation and its n linearly

independent solutions. The elements of the s£(2, R) algebra come from the

three linearly independent solutions of the third order equation (5.1.19). The

existence of the three solutions requires the vanishing of (5.1.16) for all i ~ 3.

We look at the conditions under which this does not occur. Setting i = 3 in

(5.1.16) we have

(n + I)! (4) 3 (1) 1 (1) (2)
(n _ 2)!4!a + n _ 2a Bn- 3 + n _ 2aBn- 3 + a Bn - 2 = O.

The substitution of d(5.1.19)/dx into (5.1.24) gives

(5.1.25)

78



where
1 (1) 1 )

f 3 = "2Bn-2 - n _ 2Bn- 3 • (5.1.26

A whole sequence of fs can be defined similarly and the condition of the van­

ishing of (5.1.16) becomes

(5.1.27)

for i = 4, .... The maximal symmetry case follows when each of the fs is zero

for then the conditions (5.1.16) do not impose any additional constraints on

(5.1.19) and the three solutions persist.

If not all of the fs are zero, (5.1.27) becomes a first order equation for

a for some first value of i, say, k. The solution of this equation fixes a. If

subsequent non-vanishing fs lead to the same solution, the single a persists

and there are n + 2 symmetries of the original differential equation with the

algebra nA1 EB" (A1 EB Ad. The s£(2, R) subalgebra has been reduced to the

one-dimensional Abelian subalgebra Al. We conclude that the linear equation

(5.1.14) admits exactly n +2 point symmetries when each one of its coefficients

can - in principle - be expressed in terms of one arbitrary function of the

independent variable.

The case of the possible existence of exactly n + 3 point symmetries for

(5.1.14) is easily treated. For (5.1.14) to possess exactly n + 3 symmetries

(5.1.24), which is a condition on a, must be implied by a second order equation

in a in the sense that we have had (5.1.16) implied by the third order equation

(5.1.19) for the maximal symmetry case. This cannot happen since at each

stage, ie i ~ 3 in (5.1.27), one either has the first order equation (5.1.25) being

nontrivial or being trivial. In the latter case the third order equation (5.1.19)

applies. Hence there cannot be just two symmetries from this source and the

case of exactly n +3 symmetries cannot arise.

Evidently the general linear equation will have n+1 symmetries for there will

be no consistency between the various equations (5.1.27) for different i unless a

is identically zero. Effectively this means that (5.1.14) will contain at least two
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arbitrary functions in its coefficients. In the case of constant coefficient linear

equations there will always be at least n + 2 symmetries. There will be only

n + 2 symmetries if the equation is not one of the constant coefficient forms

of (5.1.22) or (5.1.23). This suggests that there may be some difference in the

ease of solution of the two different types of constant coefficient equations which

clearly is related to the factorisation of polynomial equations. It is also evident

that equations of exactly n + 1 symmetries are an altogether different class

and of far greater degree of complexity of solution than the more symmetrical

casesl9 .

5.1.5 Linearity and Abelian structure

From the above we see that all linear equations have at least n + 1 point

symmetries with the Lie algebra nAI EBs Al. Contained within this is the result

that all linear equations20 have a generic Abelian structure in the form of the

Abelian n-dimensional algebra nAI . It is a small step to assert that, if an nth

order equation

y(n) = H(x, y, . .. , y(n-l)) (5.1.28)

is linearisable via a point transformation, it admits the Abelian algebra nA I .

The proof follows from the invariance of the Lie Bracket under a point trans­

formation. It is probably not surprising that the converse also applies21 .

19As far as we know, there has been no exploration of this point to any extent. Some

of the examples given in Chapter Six do provide an illustration of the increasing degree of

complexity in the solution of these three classes of linear equations, but that is all. Whether

there is anything of interest in these differences is an open question.
20Naturally we mean equations written in the canonical form (5.1.14) to keep matters

precise.

21See Mahomed and Leach (1990) [153] for the details of this and other related theorems.
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5.1.6 Nonexistence of an n + 3 dimensional subalgebra

of nA1 EB s g£(2, R)

In the case of second order equations we have seen that the number of symme­

tries is 0, 1, 2, 3 or 8. So far the investigation of lin~ar nodes22 has revealed

that higher order equations have different classes near the top end of the num­

ber of symmetries range. The missing algebra is of dimension n + 3, ie one

below that of the maximal number of point symmetries. This algebra is not

found because of a theorem the statement of which is that there does not exist

any nth (n 2:: 3) order ordinary differential equation having exactly an n +3

dimensional point symmetry algebra which is a subalgebra of nA1 EBs g£(2, R).

The basis of the proof is that the only algebra which has to be considered is

(n - 1)A1 EBs (8£(2, R) EB A1 )23.

This has no bearing on the existence of algebras of dimension n + 3 for

nonlinear equations of order n. Indeed, at the third order there exist some

interesting equations with algebras of dimension six. For example the equation

2 '''' 3"20Y Y - Y =

has the algebra 8£(2, R) EBs8£(2, R)24.

(5.1.29)

22A fairly transparent abbreviation of nth order ordinary differential equations. One has

fode(s), sode(s) and tode(s) in common usage.

23It is dealt with at length in Mahomed and Leach (1990) [153].

24This was originally brought to our attention by Professor Louis Michel of the IHES at

Bures-sur-Yvette (1988) [156]. Subsequently the equation has been found to have a more

ancient lineage and is known as the Kummer-Schwartz equation, for which see Govinder

and Leach (1995) [71]. Somewhat similar equations have the algebras s£(2, R) $8 so(2, 1)

and 80(2,1) $8 50(2,1) although they were reported by Mahomed (1989) [148] as examples

of equations with four-dimensional algebras. It is true that they do have four-dimensional

subalgebras. An interesting feature of the three equations is that they all have ten contact

symmetries which is the maximal number for a third order equation. This remains one of

the many details of the properties of non-point symmetries of ordinary differential equations

which await elucidation. See, however, Abraham-Shrauner et al [5].
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5.2 Classification of third order ordinary dif-

ferential equations by algebras

5.2.1 Introduction

The study of the algebraic properties of ordinary differential equations initiated

by Lie towards the end of the nineteenth century [133] was directed towards

the integrability of equations which admit a one- or multi-parameter group

of invariance point transformations, be the equations linear or nonlinear. The

algebraic properties of the infinitesimal generators of these transformations un­

der the operation of taking the Lie Bracket, or commutator as this operation

is commonly termed, have an intrinsic interest of their own. It is almost com­

forting to come across a representation of a familiar group which is the set of

symmetries of a differential equation25
• In the last section those two amazing

algebras, 8£(2, R) and 80(2, 1)(the noncompact version of 80(3)), showed that

their capacity has not yet been exceeded.

In the previous chapter we considered the classification of all second order

ordinary differential equations by means of their algebras. One of the impe­

tuses for this study was to identify those equations which were really linear

equations in disguise. For those which did not fall into that class there was the

value of knowing the forms of the representative equations of each admissible

algebra. In the case of second order equations Lie26 established the canonical

forms of the two-dimensional algebras27
• In this section28 we consider the anal-

25In all of this we take the symmetries to be point symmetries and so the algebraic prop­

erties are invariant under point transformations. We admit that this is a restriction, but

the more general area has not been explored to the extent required to provide a cohrerent

theory. The more than somewhat scatter-brained ideas of Bluman and Kumei (1989) [21,

379 ffJ on potential symmetries are typical of the case in point.

26See Mahomed and Leach (1988) [151].
27Recall that an algebra of dimension equal to that of the order can lead to reduction of

the equation to quadratures as far as the solution of the equation is concerned.

28Which is based on Mahomed and Leach (1988) [151].
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ogous problem for third order ordinary differential equations. We commence

with linear equations and their Abelian structure thereby supplementing the

material of the previous section. We then move to the consideration of equa­

tions invariant under the admissible algebras of dimension three. Naturally

this includes the Abelian case which we have already discussed.

5.2.2 Linearity and Abelian structure

Consider the general third order linear equation

'" B" B' B ()y + 2Y + IY + oY = 9 x , (5.2.1)

where the coefficients may depend upon the independent variable, x. Under

a generalised Kummer-Liouville transformation29 this equation is reduced to

the canonical form30

'" B' B 0Y + IY + oY = .

The Lie point symmetries of (5.2.2) have the form

a a
G = a(x) ax + (b(x)y + c(x)) ay'

where the functions a(x), b(x) and c(x) satisfy

b' = a"

3b" - a'" +2BI a' +aB~ = 0

b'" +3a'Bo+ aB~ + BIb' = 0

'" B' B 0c + IC + oC = .

(5.2.2)

(5.2.3)

(5.2.4)

As we saw in the previous section31
, there will be the four symmetries which

correspond to the three solutions of the linear equation and the symmetry due

29Vide §3.6. Kummer (1887) [92] and Liouville (1837) [139].

3
0The coefficients B1 , Ba of (5.2.1) are not to be identified with those of (5.2.2).

31When the restriction to third order equations is made.
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to its linearity and homogeneity. If we substitute (5.2.4a) into (5.2.4b) and

(5.2.4c), we obtain

2alll + 2Bla' + aB~ = 0

d III 'B B' B 1/ '0-a +3a 0 +a 0 + la = .
dx

There are two possible outcomes. If B~ =/:- 2Bo,

(5.2.5)

(5.2.6)

where A is a constant. On the other hand, if Bo = BU2, (5.2.5b) is simply

the derivative of (5.2.5a) and so there is the single condition, (5.2.5a). In

this case there are seven symmetries whereas in the other case there are five.

The role of (5.2.5a) in its integrated form as the Lewis-Pinney equation has

already been noted in §2.2.1. When there are seven symmetries, the algebra is

3A1 EDs (8£(2, R) ED Ad and, when there are five, it is 3Al EDB (AI ED Ad. The

three-dimensional Abelian algebra persists, but the three-dimensional 8£(2, R)

is reduced to the one-dimensional Abelian algebra, Al.

The important result is that a third order linear equation is reducible to

yll/ = 0

only when the coefficients are related by32

1 ,
Bo = 2Bl '

(5.2.7)

(5.2.8)

As a physical example of an equation of the third order for which the analysis

above applies consider the Langevin equation33

mx = eE(t) + F(t, x, x) + mr 'x' , (5.2.9)

where r = 2e2 /3mc3
, m is the mass and e the charge of the particle, F is the

given external field and E is the electric field. For a force defined by34

(5.2.10)

32Krause and Michel (1988) [90], Mahomed and Leach (1990) [153].

33de la Pefia-Auerbach and Cetto (1977) [33].

34 cfSoares Neto and Vianna (1988) [199].
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(5.2.9) takes the form of (5.2.2) and can be analysed in terms of the generallin­

ear equation35 and so its invariance properties are just those delineated above.

5.2.3 Equations with three symmetries

Here we give the canonical forms of all third order equations possessing three

point symmetries. All equations of the third order which have a three-dimen­

sional point symmetry algebra can be transformed to one of these forms by

means of a point transformation. The realisations of real three-dimensional

Lie algebras in terms of vector fields in two coordinates are given by Mahomed

and Leach (1988) [151] and all we need do is to associate with each realisation

its canonical third order differential equation. We assume that the equation is

in the standard form

/If H( ''')36Y = x,y,y,y . (5.2.11)

To determine the structure of an equation invariant under a particular algebra

we simply solve the partial differential equation

G[31(ylll - H(x, y, y', y")) = 0
I(1/'" -H(:Z'lI'I/' ,1/"))=0

(5.2.12)

for each G belonging to the algebra. There is no necessity for a given realisation

of an algebra to leave invariant any third order equation37
• Such happens in

the case of the realisations of so(3) (A3,9) found in Table 5.2.

35An area which has not been explored is the relative ease ofthe solution oflinear equations

with, in the case of third order equations, four, five and seven symmetries. The question of

ease is probably very much in the eye of the beholder. However, the examples of §6.2 are

suggestive.

36We could take the more general expression E(x, y, y', y", y''') =0, but we are then always

caught up with the requirements of the implicit function theorem. These are not onerous in

equations of practical origin for they tend to have the standard form anyway. There does

not seem to be much sense in making matters more difficult for what is really a nominal gain

in generality.

37The same was noted in the case of second order equations in §4.2.
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There are eleven real Lie algebras of dimension three38
• They are listed

in Table 5.1. The realisations of these algebras in terms of vector fields in

two coordinates are given in Table 5.2. In the table the notations p and r

represent the operators a/ax and a/ay respectively. We note that most of the

algebras have more than one realisation. To distinguish amongst the different

realisations we adopt the notation AI, AII etc whenever there is more than

one.

We associate third order ordinary differential equations with each of the re­

alisations except that of A3 ,9 which is not a subalgebra of 3Adl7"(sl(2, R)EBAI).

This involves the solution of a system of three linear first order partial differen­

tial equations which arise from the imposition of the symmetry requirement for

each of the three operators of a given realisation. The results are summarised

in Table 5.3. In Table 5.3 1 is an arbitrary function of its argument. There

are fifteen classes of equations. Each is reducible to a second order equation

and some are reducible to a first order equation. Four of them depend upon

a parameter. The representation of the generators in canonical form does not

necessarily yield the simplest form of the differential equation invariant under

a given algebra. By way of example the equation associated with A~~8 in Table

5.3 takes the simpler and more elegant form

in which ' denotes d/dT, under the transformation

(5.2.13)

Q =t T= q. (5.2.14)

We note that two of the classes of equation in Table 5.3 are linear and

have the result that, if a third order ordinary differential equation possesses a

three-dimensional algebra with the properties that G1 = p(x, y)G2 and G3 =
'l/J(x, y)G2 for some functions p and 'l/J with p'l/J =I 1, it is linearisable by a point

transformation. There are only three algebras with proportional generators,

38Patera and Winternitz (1977) [171].
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TABLE 5.1

Algebra Nonzero commutation relations

3A1

Al E9 A 2 [Gt, G3 ] = GI

A3 ,1 (Weyl) [G2 , G3 ] = GI

A 3 ,2 [Gt, G3 ] = Gt, [G2 , G3 ] = GI +G2

A3 ,3 (D 08 T2 ) [GI , G3 ] = GI , [G2 , G3 ] = G2

A 3 ,4 (E(1, 1)) [Gt, G3 ] = Gt, [G2 , G3 ] = -G2

Aj,5 (0 < lal < 1) [Gt, G3 ] = Gt, [G2 , G3 ] = aG2

A3 ,6 (E(2)) [Gt, G3 ] = -G2 , [G2 , G3 ] = GI

A~.7 (b > 0) [Gt, G3 ] = bGI - G2 , [G2 , G3 ] = GI + bG2

A 3 ,8 (8£(2, R)) [Gt, G2 ] = Gt, [G2 , G3 ] = G3 , [G3 , Gd = -2G2

A 3 ,9 (80(3)) [Gt, G2] = G3 , [G2 , G3 ] = GI , [G3 , GI ] = G2
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TABLE 5.2

Algebra Elements of the realisation

3Al r tr h(x)r

Aa,l r p xr

Aa,2 r p xp+(x+y)r

r -(log x)r xp+yr

AIEB A2 (a = 0) p r xp + ayr

Aa,a (a = 1)

Aa,4 (a = -1) r xr " (1 - a)xp + yr

A~,5 (0 < lal < 1)

Aa,6 (b = 0) p r (bx + y)p + (by - x)r

At7 (b > 0) xr r (1 + x2)p + (xy + by)r

Aa.8 r yr y2r

r xp+yr 2xyp + y2r

r xp+yr 2xyp + (y2 - x2)r

Aa,9 i(siny)r r -i(cos y)r i=yCT

(1 + x 2)p + xyr xyp + (1 + y2)r yp-xr
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TABLE 5.3

Realisation Canonical Equation

a # 1, ~

a # 1,2

,,2-3a (2a-1 )y'" = y 1-2a /' x a-I y"

xy'" = /'(Y") a = ~

y'" = 3y'y"2(1 + y'2t1 + (1 + y'2)2 exp(2b tan -1 y') X

/,(y"(1 + y'2)-3/2 exp( -btan-1 y'))

y'" = 3xy"(1 + x 2t 1 + (1 + x2t 5
/

2 exp(btan-1 x)x

/,(y"(1 +x2)3/2 exp( -b tan -1 x))

lIa-3 ,2-a
y'" = y a-2/,(y"y a-I)

y'y'" = /'(y") a = 2

y'" +a(x )y" +/,(x) = 0

y'" = /'(yll)

y'" = y"2/'(yl exp y')

x2y'" = /,( xy" + y') +2y'

y'" = y"2/,(y')

y'" = y"/,(x)

A3 ,1

A~,2

All
3,2

A~,3

All
3,3

Al EB A~, A~,4' A3;5
AtI

3,5

A ill All All AaIl
1 IJ:7 2' 3,4' 3,5

AtIl
3,5

All All
36' 31, ,

A I AbI
36' 31, ,

A~,8

All
3,8

AlII
3,8

y'y'" = ~y1l2 + yl2/'(x)

x2y'y'" = y,5/,((xy" + h')jy'3) + 3x2yl/2

x2(1 + yl2)y'" = (1 + yl2)3/'((xy" _ y' _ y'3)j(1 + y'2)3/2)

+3X2 y"2 y'
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Vtz. 3A1, Af3 and A~,8 and the last is excluded by violation of the condition

p1/J f. 1.

5.2.4 Conclusion

The classification of differential equations by means of their algebras is useful

for identifying the equivalence class to which a particular equation belongs by

virtue of the algebra of its symmetries. Although it need not be an elementary

task to solve the equations for the transformation, the procedure is simple

enough in principle. One looks at the Lie Bracket relations of the canonical

form and those of the symmetries of the equation in question and identifies

which symmetries are which and uses these to determine the transformation.

If the algebra is small, it is easy to identify the relationships amongst the two

sets of symmetries. If the number of symmetries is large, the identification

is not necessarily so simple39• On the other hand a thin algebra does not

bode well for reduction of order to quadratures whereas a generous one has

an amplitude of routes to its solution. The ideal would seem to be an algebra

of dimension equal to the order of the equation provided that the Lie Bracket

relations do not cause ruin to the descending symmetries. It is for this reason

that the Abelian algebras of the correct dimension are so useful. There is no

loss of descendants. It may be that there is no accident in the association of the

nA1 algebra with linear equations. They are solvable by a linear superposition

of linearly independent solutions. The sad part is that one has to be able to

solve the equation to find those Abelian symmetries40 •

39Do bear in mind that one is dealing with the symmetries as they come out of the

calculation and some imaginative reconstruction is usually required.

40As always we except nonlinear equations from this difficulty. The determining equations

for the symmetries of a nonlinear equation are linear.
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Chapter 6

The Algebras of first integrals

6.1 Introduction

We saw in §1.1 that with a symmetry of a differential equation there can he

associated a first integral of the differential equation. We recall that, if the

symmetry is1

a a
G = ~(x,y) ax +7](x,y) ay

and the differential equation

(n) f( (n-l))y = x,y, ... ,y ,

(6.1.1)

(6.1.2)

the first integral, I(x, y, ... , y(n-l)), in which the dependence on the (n - 1)th

derivative is nontrivial, satisfies the two conditions

G[n-l) I = 0

dI
- =0.
dx

(6.1.3)

(6.1.4)

The former represents the invariance under the infinitesimal transformation

induced by the symmetry and the latter the fact that I is a first integral.

In this chapter we look at the symmetries associated with first integrals. In

a way this is not related to matters of integrability of the differential equation

1As usual we confine our attention to point symmetries from practical considerations.
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or the like, but is an investigation of the properties of first integrals and, in

a very real sense, was motivated more from considerations of resthetics rather

than utilitarianism2 • In particular we look at the symmetries of a certain class

of first integrals, viz. those which belong to linear or linearisable differential

equations. Not surprisingly the first class of integrals and associated symme­

tries considered are those of second order equations with 8£(3, R) symmetry,

which were first discussed by Leach and Mahomed3
. The extension to higher

order equations was only made recently by Govinder and Leach [66] and Flessas

et al [43]. The results show the typical atypicality of second order equations

which themselves already demonstrate the atypicality of first order equations.

There is always some point of separation in going from one to many whether

it be in the order of a differential equation, from a scalar equation to a system

of equations, from one to many physical dimensions or, indeed, in the very

process of counting. In the case of scalar differential equations it is not until

one has reached third order equations that the pattern for the higher order

equations is established. In this the integrals follow the equations themselves.

The results reported here are necessarily sketchy once we move to higher or­

der equations although in the case of second order equations they are complete.

There is a simple explanation. All second order equations possess an algebra of

symmetries which is a subset of the maximal symmetry algebra, 8£(3, R). This

is not the case for equations of higher order. Consequently what is said of the

integrals associated with linear equations of higher order cannot be applied to

integrals associated with nonlinear equations4 • They remain an open subject

for investigation as there has not even been speculation about them.

For the first part we consider the first integrals of second order equations of

maximal symmetry. We follow with a detailed discussion of linear third order

2For which no apology is made. The whole concept of symmetry reeks of resthetics.
3Leach and Mahomed (1988) [121]. The genesis of the paper goes back several years

before the year of publication [102].

4As always this use of nonlinear means nonlinearisable by a point transformation.
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equations and conclude with a brief discussion of the general nth order linear

equation. As we have remarked above, there is a change in behaviour when

one moves from second order to third. It is, we believe, interesting. We also

believe that an explanation would be even more interesting.

6.2 Second order ordinary differential equa-

tions

As all linearisable second order differential equations are equivalent, it really

does not matter which linear or linearisable equation we consider. The free

particle equation says it all. However, we give a variation to avoid the necessity

to see how the free particle results need to be transformed. The example

considered5 is that work horse of Mechanics, the simple harmonic oscillator

with equation of motion

ij + q = O. (6.2.1)

J3 = q sin t + qcos t

J4 = q cos t - qsin t

J7 = (q cos t - qsin t) / (q sin t +qcos t)

J5= !(q2 + q2)

J6 = t + arctan ~

Js = (q cos t - qsin t) / (qsin t +qcos t).

We summarise the symmetries of this equation and their associated first inte­

grals.

G1 = sin 2t ~t + qcos 2t ;

a aq

G2 = cos 2t at - qsin 2t aq
a

G3 = costa
aq

G4 = sinta{j q
G5 =-

aD
G6 =q-

aq a a
G7 = qsin t at + q2 cos ta

a aq

Gs = qcos t at - q2 sin t aq

(6.2.2)

5The reader is referred to Leach and Mahomed (1988)[121].
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Now we reverse the inquiry and ask what symmetries are associated with the

various first integrals listed above. In each case we solve the equations given in

§6.1. For each of JI, J2 and Js only one generator is found. For each of J3 , J4

and, not surprisingly, J6 , J7 and Js a three parameter solution is found. Our

interest is in those integrals of maximum symmetry and we list the integrals

I _ q cos t - qsin t
1 - q sin t + qcos t

13 = qcos t - qsin t X 31 = sin t ;

X . 2 a . a
32 = sm t at +qsm t cos t a

a qa
X 33 = - sin t cos t-a +qsin2 t-

t aq

a
12 = qsint+qcost X 21 = costa

q a a
X 22 = sin t cos t at +qcos2 t

aa qa
X 23 = - cos2 t-a +qsin t cos t-

t aq

and symmetries in (6.2.3).

a
Xll = -q­

aq

X . a 2 a
12 = -qsmt- - q cost-

at aq

X a 2' a
13 = q cos t -a - q smt-at q

(6.2.3)

We compare these symmetries with those of the differential equation, (6.2.1),

given above in (6.2.2) and see that

Gs = -X23 +X 32

G7 = -X12

G6 = -Xll = X 22 +X 33

Gs = X 13 • (6.2.4)
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The linear dependence of the X s is seen in the expressions for G6 which are

equivalent to the relation

(6.2.5)

This relationship is necessary as there are only eight linearly independent gen­

erators of symmetry for a linear second order equation whereas the integrals

throw up nine symmetries.

The symmetries of the integrals have their own relations amongst each other

and we see that

Xli + q cos tX2i +qsintX3i = 0,

i = 1,3

i = 1,3. (6.2.6)

By inspection the first integrals listed in (6.2.2) and (6.2.3) are related accord­

ing to

1
J1 = --12132

1 2 2
J2 = 2(13 - 12)

J3 = 12

J4 = 13

1 2 2
J5 = 2(12 + 13)

J6 = 11(= J7 = J8 ). (6.2.7)

The members of each of the three classes of first integrals - linear, quadratic

and quotient - constitute a complete set in each case. In the case of the

quotient set, III it will be appreciated that the theory of the determination of

the integral does not distinguish between 11 and its reciprocal.

Leach and Mahomed (1988) [121] go on to discuss the damped free particle

with equation of motion

the differential eq~ation

ij + kq = 0,

ij + 3qq + q3 = 0,
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which occurs in the study of the modified Emden-Fowler equation6 of astro­

physical relevance, as well as other problems of a more mundane nature, and

the equation7

t ·· ·3 + .q = q q. (6.2.10)

In all cases results of like nature to those given here for the oscillator are

obtained. This is not surprising as each of these systems is related to the free

particle equation by means of a point transformation.

Each of the triplets {X1d, {X2d and {X3i } constitutes a Lie subalgebra.

The commutation relations are

[Xll , X 12 ] = -X12

[X2b X 22 ] = ±X21

[X31 , X 32 ] = 0

[Xll , X13] = -X13

[X21 , X 23 ] = 0

[X3b X 33 ] = ±X31

[X12 ,Xd = 0

[X22 , X 23] = =FX23

[X32 , X 33] = ±X32

(6.2.11)

Clearly each of the three sets of commutation relations given above can be

written in the form

(6.2.12)

and so the algebraic properties of the triplets are identical.

The Lie algebra represented by the commutation relations (6.2.12) is de­

noted by A3 ,3
8

• The question now arises as to whether the three triplets of

generators, having isomorphic algebras (6.2.11a), (6.2.11b) and (6.2.11c), asso­

ciated with the integrals considered above can be transformed into a canonical

triplet of generators by a point transformation. Not surprisingly the answer

is yes since Mahomed and Leach (1989) [152] prove that for a second order

ordinary differential equation to possess s£(3, R) symmetry it is necessary and

sufficient that it have the algebra A3 ,3.

6Leach (1985) [109]; Mahomed and Leach (1985) [149]; Duarte, Duarte and Moreira

(1987) [34].

7Mahomed and Leach (1989) [152].

8Patera et al (1976) [170] and Patera and Winternitz (1977) [171]

96



This last result has its own importance as far as the algebras of the symme­

tries of the first integrals is concerned. For a second order ordinary differential

equation the only possibility for the existence of symmetries is as a subset of

those which have the algebra 8£(3, R). We have seen that the maximal num­

ber of symmetries is three for those particular integrals, the set of which is

composed of the initial conditions and their ratios. We have also seen that the

possession of these three symmetries is necessary and sufficient for a second

order equation to have the maximal symmetry given by the algebra, 8£(3, R).

Consequently we can confidently claim that only the first integrals of linear or

linearisable second order equations will have three symmetries and they will

have to be the particular integrals referred to above9 •

6.3 Third order ordinary differential equations

6.3.1 Introduction

Third order equations are the first in which the pattern for higher order equa­

tions becomes manifest. To summarise these lO an nth order ordinary differ­

ential equation possesses at most (n + 4) point symmetries. This is achieved

In

(6.3.1)

and any equation related to it by a point transformation. When n = 3, the

algebra is 3A1ffis(8£(2, R)ffiAd. Unlike the case of second order equations third

order equations of lower symmetry need not have an algebra which is a subset

of the maximal algebra. The best-known example is the Kummer-Schwartz

9Subject, as always, to a point transformation. Mahomed and Leach (1989) [152] consider

the matter in further detail.

10A very detailed treatment is given in Mahomed and Leach (1990) [153]; see also Chapter

Five.
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(6.3.2)
1 y'" 3 y"2
--- -- =02 y/ 4 y/2

which has the beautifully symmetric algebra s£(2, R)EB s s£(2, R) with generators

equationll

(6.3.3)

As Mahomed and Leach (1990) [153] prove, the number of symmetries for

even linear systems is not uniform. Thus linear equations of the third order can

have four or five symmetries instead of the maximal seven. They cannot have

six which further emphasises the difference in nature of the Kummer-Schwartz

equation12.

6.3.2 The general case

The treatment of the symmetries of the first integrals of linear third order

equations13 has been done in a more systematic fashion than that of the second

order equationsl4
. The greater complexity of the subject demanded it. We

assume that the original differential equation has been cast into normal form

before the analysis is commenced. We therefore confine our analysis to the first

integral

I = ay" - a/y/ + cy (6.3.4)

llBerkovic and Nechaevsky (1985) [19].

12This is in the context of point symmetries. For contact symmetries see Lie (1896) [138,

p 148] and Abraham-Shrauner et at (1994) [5].

13Govinder and Leach (1994) [66].

14Leach and Mahomed (1988) [121].
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and its differential equation

" ,", c-a , c 0y + y + -y = .
a a

For a general third order linear equation in normal form

y'" + f(x)y' +g(x)y = 0

(6.3.5)

(6.3.6)

it follows that a(x) and c(x) are determined from the third order system

a" + fa = c

,
c = ag,

(6.3.7a)

(6.3.7b)

(6.3.8)

ie the solution set contains three arbitrary functions.

On application of the procedure explained in §6.1 we find that the first

integral (6.3.4) has a symmetry of the form (6.1.1) iff

c ' "_c " '+c ' + { 02TJ +2 ' 02TJ + ,2
02

TJ + "OTJ _ 2 ,,(oe + ,oe)
<,.a y <,.a Y e"C Y a oxoy Y oxoy Y oy2 Y oy Y ox Y oy

_ ' (02e 2' o2e ,2 02e "oe)}
y ox2+ Y oxoy +Y oy2 +Y oy

, (OTJ ,OTJ ,oe '2 0e)
- a ox + y oy - y ox - y oy + CTJ = O.

The coefficient of y" in (6.3.8) gives the functional forms of eand TJ as

e= p(x)

( pa')TJ = 2p' - ---;; y +q(x)

(6.3.9)

(6.3.10)

which imply that the coefficient of y,2 in (6.3.8) is identically zero. The terms

in (6.3.8) that do not involve y or any of its derivatives now give

" " 0aq - a q + cq = , (6.3.11)

which always has two solutions. Thus (6.3.4) will always have at least two

symmetries of the form

(6.3.12)
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where Ql{X} and Q2{X} are the solutions of {6.3.11} and a{x} is a solution of

{6.3.7}. Note that {6.3.11} can be differentiated to give an equation of the

form {6.3.5}. Thus Ql{X} and Q2{X} are also solutions of {6.3.5}. In fact all

three solutions of {6.3.5} are applicable. We choose them pairwise for a given

integral. Hence the three independent first integrals of {6.3.5} will each have a

pair of solutions of {6.3.5} in their symmetries.

The coefficient of y' in {6.3.8} gives a second order equation for p with

solution

p = Aa+ Ba J~, {6.3.13}

where A and B are constants of integration. We will in general, then, obtain

two symmetries from p of the form

G
8 ,8

3 =a-+ay-
8x 8y

J18 ('J1 ) 8G4 = a -- + a - +2 y-.
a 8x a 8y

However, the solutions of {6.3.13} must be consistent with

( ')" ( ')' ( '), ,pa "pa ,pa
pc +a 2p - --;; - a 2p - --;; - e 2p - --;; = 0,

{6.3.14a}

{6.3.14b}

{6.3.15}

the coefficient of y in {6.3.8}. Substitution of {6.3.13} into {6.3.15} gives

A [a'e + ae' + aa'" - a'a"]

{ I [ '2]}, , '" ,,, " a
+ B [a e + ae +aa - a a ]J-;, +2 a - -;; + e = O. {6.3.16}

For both solutions of p to persist {and hence lead to two symmetries} the

coefficients of both A and B must vanish, ie,

From {6.3.18}

a'e +ae' +aa'" - a'a" = 0
a'2

a" - - + e = O.
a
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and (6.3.17) is satisfied identically. Thus, if (6.3.19) holds, p gives rise to two

symmetries. Note that (6.3.18) is a second order equation and so only two of

the three solutions for a(x) in (6.3.7) apply. This implies that we obtain two

first integrals with four symmetries. Note further, tha~ (6.3.19) implies that

in (6.3.5) which is now

(6.3.20)

y'" - [(:)'+ :'] y' - ~ [a (:H y =O. (6.3.21)

The relationship (6.3.20) implies that (6.3.21) has maximal (seven) symmetry

[153].

Suppose, now, that (6.3.17) is satisfied giving

where k is a constant.

(a')' kc = -a ~ +~,

Clearly, for k i- 0, (6.3.18)

(6.3.22)

is not satisfied and p

has only one solution. Note that (6.3.22) still gives (6.3.20). Hence a third

order equation with maximal symmetry has two first integrals which have four

symmetries and one with three. The first integral with three symmetries will

involve the remaining solution for a(x) (in (6.3.7)) that does not satisfy (6.3.18).

The differential equation now becomes

[( ), ] [ ( )'] , [ ]a' a" 1 a' y' a'y
y'" - . ~ +-; y' - ~ a ~ y + k ~ - a 2 = O. (6.3.23)

The three independent first integrals of (6.3.23) have the symmetries (for k =0)

(6.3.24a)

(6.3.24b)

(6.3.24c)

(6.3.24d)
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and (for k -# 0)

- a
GI = ql(X) ay
- a
G2 = q2(X) ay
- a a

G3 = a3(X) ax + a~y ay'

(6.3.25a)

(6.3.25b)

(6.3.25c)

(6.3.25d)

(6.3.26a)

(6.3.26b)

(6.3.26c)

where ql(X) and q2(X) are solutions of (6.3.11) and hence (6.3.23) and the ais

(i = 1,2,3) are solutions of (6.3.7).

In a constructive approach one firstly solves (6.3.7) for a(x) and c(x) and

then substitutes into (6.3.18) to find the relationship which the constants of

integration must satisfy for p(x) and hence yield four symmetries. There is a

doubly infinite family of integrals with four symmetries, but only two linearly

independent ones. The third linearly independent integral, obtained by a selec­

tion of constants of integration which does not satisfy (6.3.18), has only three

symmetries.

Suppose, now, that the coefficient of B in (6.3.16) is zero. This gives

(a')' k
c = -a ;: + a(J a-I )2· (6.3.27)

When k -# 0, the coefficient of A in (6.3.16) is not zero. This implies that p

produces only one symmetry of the form

J1 a ('J 1 ) aG3 = a - - + a - +2 y-.
a ax a ay
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Note that, while c and a are related via (6.3.27), (6.3.20) does not hold in

(6.3.5). This is the case for which (6.3.5) has five symmetries [153]. The three

independent first integrals of a third order linear equation with five symmetries

have the symmetries

(6.3.29a)

(6.3.29b)

(6.3.29c)

(6.3.30a)

(6.3.30b)

(6.3.30c)

and

(6.3.31a)

(6.3.31b)

(6.3.31c)

where the qiS and aiS (i = 1,2,3) are solutions of (6.3.11) and (6.3.7) respec­

tively.

Finally, when both the coefficients of A and B in (6.3.16) are nonzero,

p = 0 and contributes no symmetries. This implies that the coefficients of

y' and y in (6.3.5) are unrelated. This is the case for which (6.3.5) has four

symmetries [153]. The three independent first integrals of (6.3.5) then have the

pairs of symmetries (6.3.29a-6.3.29b), (6.3.30a-6.3.30b) and (6.3.31a-6.3.31b)

respectively.
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6.3.3 Example I: n = 7

We firstly consider the generic third order equation with maximal (seven) sym-

rnetry, viz.

with syrnrnetries [77]

y'" = 0

8
G1 =­

8y
8

G2 =x­
8y
2 8

G3 =x -
8y

8
G4 =y­

8y
8

Gs =­
8x

8 8
G6 =x-+y-

8x 8y
28 8

G7 = x -+2xy-
8x 8y

(6.3.32)

(6.3.33)

which has the Lie algebra 3A1 EBa (8f{2, R) EB At} [153]. It is easily verified that

(6.3.32) has the three independent first integrals

I "l=y

I '"2 = xy - y

I 1 2 " ,
3 = 2X Y - xy + y. (6.3.34)

We call the first integrals (6.3.34) initial condition first integrals as, for x = 0,

we have

I "1 = Yo

In (6.3.34) 11 has the syrnrnetries

8
G1 =--

8y
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8
Yi =x­

8y

2 8
Y2 =x-

8y
28 8l'3 = x - +2xy-
8x 8y

8
14 = x 8x'

(6.3.38)

(6.3.39)

(6.3.40)

The Zl and the Z2 symmetries (where Z refers to G, X and Y in turn) contain

the solutions of the equations (6.3.32) and correspond to the two symmetries

in (6.3.12). Note that the linear solution implies that k = 0 in (6.3.22) and

hence does not appear in the three symmetry case (6.3.39). Note further that

the Za and Z4 symmetries also contain solutions of the original equation. This

is because the functions ai{x) are solutions of the adjoint equation of (6.3.5)

and in the case of maximal symmetry this equation is self-adjoint.

The Lie Brackets of the symmetries of 11 are

[Gl , G2] = 0

[Gt, Gal = 0

[Gt, G4 ] = 2Gl

[G2 , Ga] = -Gl

[G2 , G4 ] = G2
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(which is the Lie algebra A~,g [147]) and of hare

[Yi,1'2] = 0

[Yi, Y3] = 1'2

[Yi,Y4] = -Yi.

[Y2' Y3 ] = 0

(Y2 , 1'4] = -21'2 (6.3.42)

Clearly the correspondence is

and (6.3.42) is also the Lie algebra Atg. If we let the coordinates in h be (x, y)

and in It, (X, Y), the transformation which converts 13 to 11 (and vice versa)

IS

1
X=-­

x

yy=--.
x 2

(6.3.43)

This transformation just maps 12 to itself and

Note that (6.3.39) forms the Lie algebra A3,4 which is better known as the

algebra of the pseudo-Euclidean group £(1,1). Equation (6.3.32) is obviously

invariant under (6.3.43) and, in the new variables, is

Y'" = o. (6.3.44)

It is instructive to consider a slightly less trivial example of an equation

with seven symmetries to see how the constructive approach works in practice.

Consider

"'+' 0y y =
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for which (ef (6.3.6)) f = 1 and g = O. Then

a = Al sin x +A2 cos X +Co

c= Co.

Four symmetries exist when (6.3.18) is satisfied, ie

(6.3.46)

(6.3.47)

Two choicesI5 are Co - 1 and A2 = ±1 which give the integrals with four

symmetries

11 = (1 + cosx)y" + sinxy' + y

h = (1 - cosx)y" - sinxy' + y.

(6.3.48)

(6.3.49)

A integral with three symmetries can be obtained by the choice, say, of Al = 1

and Co = 0 is

I ." ,3 = sm xy - cos xy . (6.3.50)

The symmetries follow from (6.3.24), (6.3.25) and (6.3.26) respectively.

6.3.4 Example 11: n = 5

Consider now the linear equation

with the five symmetries

ylll - Y = 0 (6.3.51)

(6.3.52)

15Provided the constraint (6.3.47) is satisfied, the choice of values is one of taste.
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where 1 +w +W 2 = O. The Lie brackets of (6.3.52) constitute the Lie algebra

3A1 EEls (2A1 ). We choose the three independent first integrals of (6.3.51) to be

/1 has the symmetries

and h,

/1 = e-x (y + y' + y")

/2 = e-wx (wy + y' +w2y")

I -w2x ( + 2' + If)3 = e wy w y y . (6.3.53)

(6.3.54)

(6.3.55)

(6.3.56)

Yi = eWx !!,,­ay
1'2 = eX !!"­ay

a a
Y3 = ax + y ay'

The Lie brackets of (6.3.54), (6.3.55) and (6.3.56) each form the Lie algebra

A3 ,3 which is the algebra of the group comprising the semi-direct product of

dilations and translations D ®s T2 • We can transform the first integrals (and

hence their symmetries) in a cyclic manner by setting

x~wX.

This transformation leaves (6.3.51) invariant.
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6.3.5 Example Ill: n = 4

As the final linear example we consider16

ylll + f(x)y" + y' + f(x)y = 0,

where f(x) is an arbitrary function of x, with symmetries

G
. a

1 = smx ay
a

G2 = cos x ay
a

G3 = z(x) ay
a

G4 = y ay'

where

z(x) = l X

exp ( - / f(u)du) sin(x - u)du,

(6.3.57)

(6.3.58)

(6.3.59)

which possess the Lie algebra 3A1 EEls Al. Three independent first integrals of

(6.3.57) are

11 = y' sin x - y cos x - z(x)(y" + y) exp (/ f(u)du)

12 = y' cos x + y sinx - z(x)(y" + y) exp (/ f(u)du)

13 = (y" + y) exp (/ f(u)du)

with the symmetries

G . a
1 = sm ay

a
G2 = z(x) ay'

16Kamke [84, p 512, 3.23].
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(6.3.63)

and

v . a
L1 = smx ay

a
1'2 = cos x ay

respectively. Each pair forms the Lie algebra 2A1 and contains the solutions

of the original equation. The search for the transformation to cycle through

the first integrals (6.3.60) requires an Abel's formula for third order equations

which, to our knowledge, has yet to be discovered.

6.3.6 Nonlinear examples

The situation in respect of nonlinear equations of the third order is not at all

clear. We return to the Kummer-Schwarz equation mentioned above, viz.

with the symmetries

2y'y'" - 3y,,2 = 0 (6.3.64)

a
G1 =­ax

a
G2 =x­ax

2 a
G3 =x -ox

a
G4 =­ay

a
Gs=y­ay

2 a
G6 = y ay (6.3.65)

which form the Lie algebra s£(2, R)EBs£(2, R). Three independent first integrals

are

(6.3.66)

110



with the symmetries

and

a
G1 =­ay

a
G2 =­ax

a a
G3 = x--y-,ax ay

ax1 =­ax
a

X 2=x­ax

a
Yi =y­ay

(6.3.67)

(6.3.68)

(6.3.69)

respectively.

Consider also a nonlinear third order equation with four symmetries17
, viz.

The symmetries of (6.3.70) are

a
G1 =­

ax
a

G2 =­ay
a a

G3 =x-+y-
ax ay
a a

G4 =y--x-.
ax ay

Three independent first integrals are

y" ,
11 = (1 + y'2)3/2 exp (- arctan y )

(1 + y')(1 + y'2)
12 = 2y +-'-----'-'----'-

y"
(1 + y'2)(1 - y')

13 = 2x +-'-----'-"'----'­
y"

17Kamke [84, P 603, 7.12].
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with the symmetries

and

a
Gl =­

ax
a

G2 =­
ay

a a
G3 = (x + y) ax + (y - x) ay ,

a
X l =­

ax

a
Yi=­

ay

(6.3.73)

(6.3.74)

(6.3.75)

respectively. It is apparent from the above that the relationship between the

first integrals (6.3.66) and (6.3.72) and their respective symmetries (6.3.67­

6.3.69) and (6.3.73-6.3.75) is not at all obvious. Indeed there is some question

as to where the beginning of the resolution of this problem lies. Similar to

the linear case, each nonlinear equation will have a different normal form that

depends on its Lie algebra. However, while there is just one Lie algebra for

a particular dimension (anyone of four, five or seven) that relates to third

order linear equations, in the case of nonlinear equations the number is as yet

undetermined. This needs to be resolved before a search for a relationship

similar to the linear case can be commenced. It would seem that Gat [50] has

provided some classification for third order nonlinear equations that could be

used as a starting point.

As a further illustration of the importance of first integrals of third or­

der equations we mention that (6.3.70) can be solved using the first integrals

(6.3.72). Setting

x = 13 - 2x

Y = 12 - 2y

we have (using the ratio of 12 to 13 and integrating)

1
I<X = (1 + V2)l/2 exp (aretan V),
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where J{ is a constant of integration and Y = V X. The solution (6.3.77) is

implicit, but is still an improvement over the parametric solution provided in

Kamke18.

6.3.7 Conclusion

We have shown that the symmetries of first integrals of third order linear

equations are related to the number of symmetries of the equation. For the

maximal case two first integrals have four symmetries and one has three. When

the equation has five symmetries, all three first integrals have three symmetries

and for four symmetries the first integrals have two symmetries each. The rela­

tionship is rather intriguing and bears further investigation in a generalization

of the result to higher order linear equations. Unfortunately the relationship

for nonlinear equations is not as yet obvious.

In the case of second order ordinary differential equations with the maxi­

mal symmetry, 8£(3, R), there are three first integrals which each have three

symmetries19. To take the example of the free particle with equation

those integrals are

y" = 0

/2 = Y - xy'

Y/3 = - - x.
y'

(6.3.78)

(6.3.79)

In each case the algebra of the symmetries is A3 ,3 (or D EBs T2 ). We note that

the first integrals with this property are y(O), y'(O) and their ratio.

Third order linear equations (and others transformable to one by a point

transformation) differ in two respects. In the first instance all such equations

18Kamke [84, p 603, 7.12].

19See §6.2.
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do not have the same number of symmetries, but have four, five or seven

depending on the internal structure of the equation. In the case of four the

maximum number of symmetries for the first integrals is two; five, three and

seven, four. The last of these is the closest to the second order case in that it

is the case of maximal symmetry. It could be anticipated that the maximum

number of symmetries would be four. What is unexpected is that this occurs

only for two first integrals because the equation, (6.3.18), acts as a constraint.

The third integral has only three symmetries. It is also of interest to note that

the maximum number of symmetries does not necessarily occur for the initial

condition integrals (cf the second of the maximal symmetry examples). The

property of the ratio of the two first integrals also having the same number of

symmetries is also lost as can easily be seen from an analysis of Id I z of the

second of the maximal symmetry examples. In fact the ratio has only the two

symmetries

G
. a

1 = smx ay

a
Gz = y ay· (6.3.80)

The significance and theoretical basis behind this are not obvious, but become

more transparent under an investigation of the first integrals of higher order

linear equations which is reported below.

6.4 nth Order Ordinary Differential Equations

6.4.1 Introduction

A scalar ordinary differential equation

E(x, y, y', . .. , y(n») = 0, (6.4.1)

where I denotes differentiation of the dependent variable, y, with respect to

the independent variable, x, and y(n) the nth derivative, possesses a Lie point

114



symmetry
a a

G =~- +1]-ax ay
if

G[n] EIE=O = 0,

where G[n] is the nth extension of G given by [153]

(6.4.2)

(6.4.3)

(6.4.4)

(The extension is needed to give the infinitesimal transformations in the deriva­

tives up to y(n) induced by the infinitesimal transformations which G produces

in x and y.) The symmetries of (6.4.1) constitute a Lie algebra under the

operation of taking the Lie Bracket

(6.4.5)

A first integral of (6.4.1) associated with the symmetry (6.4.2) is a function,

f(x, y, y', . .. , y(n-l»), in which the dependence on y(n-l) is nontrivial, satisfying

the two conditions

and

G[n-l]f = 0 (6.4.6)

df
= O. (6.4.7)

dx IE=O

The association of f with G, as stated in (6.4.6), and (6.4.7) means that f is a

first integral of (6.4.1). Equally a first integral, f(x, y, y', ... , y(n-l»), of (6.4.1)

has a symmetry of the form of (6.4.2) if

G[n-l]f = o. (6.4.8)

In recent years a number of papers has been devoted to the algebraic proper­

ties of first integrals of scalar ordinary differential equations associated with its

symmetries. The number of symmetries associated with a differential equation

depends upon its internal structure up to an upper limit which is fixed by the
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order of the equation and the type of symmetry under consideration. Here we

are concerned with point and contact symmetries only. The symmetry (6.4.2)

is a Lie point symmetry if the coordinate functions ~ and 1] are functions of

x and y only. It is a contact symmetry if ~ and 1] depend upon x, y and y'

subject to the constraint that [138, p 94]

aj I ,aj I

a1]y = y a~y
(6.4.9)

which means that the first extension of G also depends upon x, y and y' only.

A point symmetry is always a contact symmetry. Note that we do not restrict ~

to be a function of x only which is the case for the so-called Cartan symmetries

[80].

Lie showed that the maximum number of point symmetries of a scalar or­

dinary differential equation was infinite for equations of the first order [133, p

114], eight for equations of the second order [133, p 405] and n+4 for equations

of the nth order [134, p 298]. He also [137] classified all the invariance alge­

bras of dimension one, two and three for second order. equations. Mahomed

and Leach [153] showed that higher order linear equations could have n + 1 or

n + 2 point symmetries instead of the n +4 for the maximal symmetry case.

Note that, whenever reference is made to linear equations, we include nonlin­

ear equations which are linearisable by a point (resp contact) transformation

when point (resp contact) symmetries are being considered. Lie also showed

that second order equations possessed an infinite number of contact symme-

tries [138, p 84] and third order at most ten [138, p 241]. For higher order (in

standard form) it has been shown [148] that equations of maximal symmetry

only admit n +4 contact symmetries. Abraham-Shrauner et al [5] showed that

the maximal number of contact symmetries of third order equations could be

found in equations which did not have seven (the maximum) point symmetries

in addition to the Kummer-Schwarz equation given by Lie [138, p 148].

Leach and Mahomed [121] discussed the algebraic properties of the first

integrals of equations of maximal point symmetry which are represented by
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the single equivalence class

" 0y = .

It was found that the two functionally independent first integrals

(6.4.10)

(6.4.11)

(6.4.12)

each possessed three symmetries with the three-dimensional algebra A3 ,3 in the

Mubarakzyanov classification [163, 164, 165, 162, 169, 170, 171]. Furthermore

the related integral

13 = 11 (6.4.13)
12

also possessed three symmetries with the same algebra. In the case of (6.4.13)

the three symmetries are

(6.4.14)

(6.4.15)

(6.4.16)

G1 is the homogeneity symmetry and for any integral to possess it the integral

must be homogeneous of degree zero in y. G2 and G3 are the nonCartan

symmetries of (6.4.10). Note that, although the integrals have nine symmetries

in all, there are only eight linearly independent symmetries. The interesting

algebraic structure of the symmetries associated with the linear integrals of

(6.4.10) led to the study of the corresponding algebras of third order equations

with four, five and seven symmetries [66] and nth order equations with n + 1,

n + 2 and n + 4 symmetries [70]. The pattern of the second order equations

was not maintained. The demonstration by Abraham-Shrauner et al [5] that

contact symmetries are the appropriate ones to be used in treatments of third

order equations led to a study [42] of the algebraic properties of the contact

symmetries associated with the integrals of third order equations with the
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symmetry algebra sp(4) which was more extensive than the comparable study

of second order equations by Leach and Mahomed [121].

Second and third order ordinary differential equations have properties which

are peculiar to each and which mark them off fro~ the general nth order

equation. This is the case even for the representative equations of maximal

symmetry. For

y" = 0 (6.4.17)

there are eight point symmetries, six of which are of Cartan form and two of

which are not. In the case of

y'" = 0 (6.4.18)

the seven point symmetries are all of Cartan form, but there are three addi­

tional purely contact symmetries and the consideration of third order equations

without contact symmetries is as incomplete as the consideration of second or­

der equations without the nonCartan point symmetries. However,

(6.4.19)

has only n +4 point symmetries all of which are of Cartan type [134, p 298].

It is this variation in the type, rather than in the number (apart from the fact

that it is maximal), of symmetries which suggests that the generic behaviour

for ordinary differential equations of maximal symmetry is not to be found at

the second or third order, but at the fourth order. It is the intention of this

section to demonstrate this feature and to describe the generic properties of

the algebras of the symmetries of first integrals of scalar ordinary differential

equations.

6.4.2 Methodology

There is a certain ambiguity in the treatment of the symmetries of the first

integrals. In the case of the second order equation, (6.4.10), we recalled that

the three first integrals, (6.4.11), (6.4.12) and (6.4.13) each had three point
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symmetries and that the algebras were isomorphic. However, this is not the

case for any combination of (6.4.11) and (6.4.12) [121]. We do seek those first

integrals which have, in some sense, a maximal number of symmetries. To

make comparison from one order to another feasible it is necessary to use as

much of the common structure for the algebras of the differential equations

as is possible. To this end we use the form given by Mahomed and Leach

[153], nA l EBs (s£(2, R) EB Ad, to which the two nonCartan symmetries are to

be added when n = 2 and the three purely contact symmetries are to be added

when n = 3. To each of these symmetries there corresponds a first integral

and it is the symmetries of these integrals which we consider. For an nth order

equation there are n - 1 integrals associated with each symmetry of the nth

order equation and the first integral mentioned above is an arbitrary function

of these. We select n - 1 of these arbitrary independent functions in such a

way as to have the maximum number of symmetries possible.

In the case of (6.4.18) there are three functionally independent first integrals

which we take to be [42]

I '"2 = xy - y

I "a=Y

(6.4.20)

(6.4.21 )

(6.4.22)

which have been shown [66] to possess maximal symmetry. In terms of 11 , 12

and la the integrals associated with the symmetries of (6.4.18) are given [42]

in Table 6.1. Note that each symmetry has two integrals (denoted by p and

q) since the equation is of the third order. In Tables 6.2 and 6.3 we list the

symmetries [42] associated with each integral given in Table 6.1 in terms of

the symmetries of (6.4.18) (and combinations thereof) and the corresponding

algebra according to the Mubarakzyanov classification. We observe that the

algebras are either three-dimensional or four-dimensional. The latter is always

Atg, but the former are either Aa,4 (also known as E(1, 1), the algebra of the

pseudo-Euclidean group in the plane) or Aa,s (much better known as s£(2, R)).
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Table 6.1: The first integrals associated with the ten contact symmetries of

ylll = 0

Symmetry p q

G1 12 13

G2 11 13

G3 11 12

G4 13 1113 - ~Ii

Gs 12 1113 - ~I?

G6 11 1113 - ~I?

G7 Idh 13 /11

G8 h/13 (11 13 - ~In/13

G9 13 /11 (11 13 - ~In/11

GlO Id 12 (11 13 - ~In/12

This already indicates two departures from the results for (6.4.17) in that the

dimensions of the algebras are not the same and also the three-dimensional

algebras differ not only from that of the second order case, A3•3 , but within

themselves. Perhaps even more surprising is that A3 ,3 is not a subalgebra of

A~,9 [147].

With the example of the third order equation before us we shall present the

results for the fourth order equation of maximal symmetry, viz.

y~V = 0, (6.4.23)

in §§6.4.3 and 6.4.4. In §6.4.5 our concluding remarks address, amongst a

number of observations, the matter of the general equation

y(n) = O.
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Table 6.2: The contact symmetries and algebras of the integrals 11 through Is

Integral Symmetries Nonzero Lie Brackets Algebra

11 X l1 = G2 [X111 X 13 ] = X 12 A~,g

X 12 = G3 [X111 X 14 ] = -Xl1

X 13 = G7 [X121 X 14 ] = -2X12

X 14 = G6 - G4 [X131X14] = -X13

12 X 21 = G1 [X2I, X 23 ] = X 21 A3 ,4 (E (1 , 1))

X 22 = G3 [X221 X 23 ] = -X22

X 23 = G6

13 X 31 = G1 [X311X 34 ] = 2X31 Atg

X 32 = G2 [X321X33] = -X31

X 33 = Gs [X32 , X 34 ] = X 32

X 34 = G6+G4 [X331 X 34 ] = X 33

14 = h/I2 X 41 = G1 [X4I, X 42 ] = X 41 A3 ,4 (E(1, 1))

X 42 = G4 [X421 X 43 ] = X 43

X 13 = Gs

Is = 13 //1 XS1 = G4 [XS11 XS2] = - XS2 A3,s (sf(2,R))

XS2 = G2 [XS1 , XS3] = XS3

XS3 = Gg [XS21 XS3] = -2X51
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Table 6.3: The contact symmetries and algebras of the integrals h through /10

Integral Symmetries Nonzero Lie Brackets Algebra

/6 = /2//1 X 61 = G4 [X6b X 62 ] = -X62 A 3 ,4 (E(I, 1))

X 62 = G3 [X61 , X 63 ] = X 63

X 63 = GlO

/7 = /1/3 - !/? X71 = Gs [X71 , X 72 ] = X71 A 3,s (se(2, R))

X 72 = G6 [X71 , X 73 ] = 2X72

X 73 = G7 [X72 , X 73 ] = X 73

/s = h//3 X S1 = Gs [XSb X S2 ] = X S1 At9

X S2 = G6 - G4 [XS1 ' X S4 ] = 2X83

X S3 = Gs [XS2 ,XS3 ] = -XS3

X S4 = G9 [XS2 ' X S4 ] = -XS4

/9 = /d/2 X 91 = Gs [X9b X 92 ] = X 91 A 3 ,4 (E(I, 1))

X 92 = G6 [X92 , X 93 ] = X 93

X 93 = GlO

/10 = hiIt X 101 = G6 + G4 [XlOl, X 102 ] = X 102 A~,9

X 102 = G7 [XlOb X 103 ] = X103

X103 = G9 [XlOb X 104] = 2X104

X 104 = GlO [X102 , X103] = -2X104
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(6.4.25)

(6.4.26)

6.4.3 Symmetries and their integrals

Eq (6.4.23) is the representative equation of the fourth order with the maxi­

mum number of symmetries which is eight with the algebraic structure (AI EB

8£(2, R)) EB" 4AI . The symmetries are

a
GI =­ay

a
G2 =x­ay

I 2 aG3 = -x -
. 2 ay

I 3 aG4 = -x ­
6 ay
a

Gs =­
ax
a 3 aG6 = x-+ -y­
ax 2 ay

2a a
G7 = x -+3xy-

ax ay
a

Gs = y ay·

The first four symmetries are called the solution symmetries since the coeffi­

cient of a/ay is a solution of the original differential equation. (This is one of

the banes of linear differential equations. It is necessary to be able to solve

the equation before most of the symmetries can be determined. In this respect

nonlinear equations are more amenable to treatment provided they are treat-

able.) Gs through G7 are the elements of 8£(2, R) appropriate to (6.4.23). For

an nth order equation of maximal symmetry they have the form [153]

a n - 1, a
G = a(x) ax +-2-a (x)y ay'

where a(x) is one of the three solutions of the self-adjoint equation

(n+1)! III '1'
(n _ 2)!4!a + Bn- 2a + 2Bn-2 a = 0, (6.4.27)

where Bn- 2 is the coefficient of y(n-2) when the equation is cast into normal

form. The final symmetry, Gs, follows from the homogeneity of the differential

equation which happens to coincide with linearity in this case.
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Table 6.4: The first integrals associated with the eight point symmetries of

yiv = 0

Symmetry First integrals

G1 12 13 14

G2 13 14 11

G3 14 11 12

G4 11 12 13

Gs 14 hI4 - ~Ij 121314 - ~I~ - I1 Il
1 1

G6 1114 1211 13I~3

GT 11 1113 - ~li 111213 - ~I? - If14

Gs Idh 12/13 13 /14

In calculating the first integrals associated with each of G1 through Gs

according to eqq (6.4.6) and (6.4.7) we find that four functionally independent

linear first integrals occur. To make the reportage of our results more compact

we express all other integrals in terms of them. The four integrals are

1 13111 12" ,
1 = 6X Y -"2 X Y + xy - y

I 1 2 III "+'2 = "2 X Y - xy Y

I Ill"
3 = xy - y

(6.4.28)

With each symmetry there will be associated three functionally independent

first integrals. This follows from the solutions to the two first order partial

differential equations (6.4.6) and (6.4.7) for the first integral associated with a

particular symmetry. In (6.4.6) there are five variables, x, y, y', y" and ylll, and

so four characteristics. This means that (6.4.7) has four variables and hence

three characteristics each of which is a first integral. The integrals belonging

to the symmetries are listed in Table 6.4.
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(6.4.29)

In comparison with the integrals listed in Table 6.1 (less those associated

with the purely contact symmetries, Gs - GlO ) for y'" = 0 we note a number

of similarities and differences. The solution symmetries, G1 - G4 , simply form

a permutation with three of the linear integrals. (The labeling was chosen to

highlight this feature.) The homogeneity symmetry, Gs, has the three inde­

pendent ratios of the linear integrals. Any other independent set of three could

be equally be chosen. The ratios are the only integrals possible for GB since

any integral associated with it must be of zero degree in y.

These are the anticipated generalisations of the corresponding results for

y'" = 0 and, indeed, for y" = O. For (6.4.24) we may infer that each of the n

solution symmetries will have n - 1 of the n functionally independent linear

integrals associated with it and that, by a suitable choice of labels as was made

for (6.4.18) and (6.4.23), the one symmetry label and the n - 1 integral labels

will be a permutation of the integers 1 through n. Equally confidently we infer

that the homogeneity symmetry, GnH , will have n - 1 independent ratios of

the linear integrals associated with it.

In the case of the representation of 8£(2, R), which is common to all linear

equations of maximal symmetry, the situation is not so clear. To give more

scope for observation we list the corresponding relationships for y" = O. They

are
_ f)

G3 - OX

G = x f) + ly f)
4 OX 2 ay

G = x 2 f) + lxy f)
5 OX 2 ay

where, in the spirit adopted for (6.4.18) and (6.4.23), the 8£(2, R) symmetries

have been listed after the solution symmetries and

11 = xy' - y

(6.4.30)

One point should be made before we continue. Since the first and third of the
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two symmetries in s£(2, R) are related by the transformation

1
x --+-­

x

y
y --+-­

x n - 1
(6.4.31)

and the second is invariant under (6.4.31), we need only consider the first two

symmetries, invariance under translation in the independent variable and a

self-similar transformation. (The integrals of the so-called conformal symme­

try follow from those of invariance under translations in x by the application

of (6.4.31).)

(6.4.32)

There are two problems. The first is the form of the expressions for the

more complicated integrals associated with 0/ox. Under the labeling scheme

adopted In can always be taken as the first representative. The first represen­

tative for the self-similar symmetry differs from the even order equations to

the odd order equation. This provides the necessary hint and we have

Proposition 1: One of the integrals associated with the self-similar symmetry

o n -1 0
G=x-+--y­ox 2 ay

of

(6.4.33)

tS

(6.4.34)

when n is even and

(6.4.35)

(6.4.36)i = 1, n.

when n is odd, where the numbering of the functionally independent linear first

integrals of (6.4.33) is according to the scheme

n-i (l)k
Ii = L ( _-. _k)' xn-i-ky(n-l-k),

k=O n t .

The result follows trivially from Proposition 3.

Associated with the self-similar symmetry there is another problem. We

choose this symmetry so that the subalgebra 8£(2, R) occurs naturally within

the list of symmetries of the equation. However, the homogeneity symmetry,

GnH , can be added without changing the nature of the self-similar symmetry.
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6.4.4 Integrals and their symmetries

The Lie point symmetries associated with each of the first integrals listed in

Table 6.4 are calculated following the prescription of (6.4.6) using the symbolic

code Program LIE [77]. The integrals, symmetries, nonzero Lie Brackets and

algebras are given in Tables 6.5 and 6.6. The symmetries are written as Xii

in which the label i refers to the integral number and the label j to the num­

ber of the symmetry within the integral's algebra. The relationship of these

symmetries to those of the differential equation (6.4.23) is also given.

6.4.5 Discussion

The linear integrals, as expected [70], have either five or four symmetries.

Three of these are solution symmetries and, in the way the labeling has been

arranged, the solution symmetry not included is the one of the number of the

integral. (The action of the omitted symmetry on the integral is a constant,

+1 for hand /4 and -1 for /1 and /3 due to the way the integrals have been

defined. The integrals with five symmetries have either Gs or G7 which are

equivalent under the transformation

1
x --+-­

x

y
y --+ 3".

x
(6.4.37)

The remaining symmetry is a combination of the self-similar G6 and the ho­

mogeneity GB of the form

i = 1,4. (6.4.38)

Similar combinations occur for some of the other integrals. This does suggest

that the choice of the form of the self-similar symmetry is at our disposal and

that we should not be constrained by the form of G6 as it occurs in the list

of symmetries for (6.4.23). This has some impact on the expressions for the

integrals associated with the self-similar symmetry. If we take it to be of the

form
a a

G=x--ay-ax ay'
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Table 6.5: The point symmetries and algebras of the integrals 11 through h

Integral Symmetries Nonzero Lie Brackets Algebra

11 Xn = G2 [Xn , X 14]= -Xn A~9,

X 12 = G3 [Xn , XIS] = 4X12

X 13 = G4 [X12 ,X14]= -2X12

X 14 = G6 - ~Gs [X12 , XIS] = ~X13

XIS = Gr [XI4 , XIS] = XIS

12 X 21 = GI [X21l X 24 ]= X 21 A3,4 (E (1, 1))

X 22 = G3 [X22 , X 24 ]= -X22

X 23 = G4 [X23 , X 24] = -2X23

X 24 = G6 - ~Gs

13 X31 = G1 [X31l X 34] = 2X31 A~9,

X 32 = G2 [X32 , X 34]= X 32

X 33 = G4 [X33, X 34 ] = -X33

X 34 = G6+ ~Gs

14 X 41 = G1 [X41 , X 4S ]= 3X41 At9

X 42 = G2 [X42 , X 44]= -X41

X 43 = G3 [X42 , X4S] = 2X42

X 44 = Gs [X43 , X 44 ]= -2X42

X4S = G6+ ~Gs [X43 , X 4S] = X 43

[X44 , X4S ] = X 44

Is = Id12 XSI = G3 [XSll XS2] = XSI A3,4 (E(I, 1))

XS2 = G4 [XS2, XS3] = XS2

X 33 = Gs

16 = 12/13 X61 = GI [X61 , X 63 ] = X 61 A3,3 (D ®s T2)

X 62 = G4 [X62 , X 63 ]= X62
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Table 6.6: The point symmetries and algebras of the integrals 17 through 114

Integral Symmetries Nonzero Lie Brackets Algebra

X 63 = Gs

17 = 13/14 X 71 = G1 [X71 , X 73 ] = X 71 A3,4 (E(l, 1))

X 72 = G2 [X72 , X 73 ] = X 73

X 73 = Gs
1

Is = 12/4 - ~/~ X S1 = G1 [XS1 ' X S3 ]= X S1 Al s,

X 82 = Gs [X82 , X 83]= ~X82

X 83 = ~(G6 + ~Gs)

19 = 12Ia/4 - ~ I; X 91 = Gs [X91 , X 92 ]= X 91 2A1

-/1/1 X 92 = G6 + ~G8

110 = /114 X 101 = G2 [X1OI, X 103] = X 101 A3,4

X 102 = G3 [X102 , X 103] = -X102

X 103 = 2G6 (E(l,l))
1 1

I u = I!13 X ll1 = G1 [XUI, X U3] = X U1 A;'f

X U2 = G3 [XU2 , X 113] = ~X112

X U3 = ~G6
1 1

112 = 1;'3/2 X 121 = G1 [X12I, X 123] = X 121 AI,s

X 122 = G2 [X122 , X 123] = ~X122

X 123 = ~G6

/ 13 = 11/3 - ~/i
1.

X 131 = G4 [X13I, X 133] = X 131 Al s,

X 132 = G7 [X132 , X 133] = ~X133

X l33 = -HG6 - ~G8)

/ 14 = 11/2/3 - ~/i X 141 = G6 - ~G8 [X14I, X 142] = X 142 2A1

-1;/4 X 142 = G7
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where a is a parameter, the three integrals are

(6.4.40)

(6.4.41)

(6.4.42)

Equivalently other combinations may be taken. For example, if 11 were taken

as the integral to have the fractional power associated with it, we would have

(6.4.43)

(6.4.44)

(6.4.45)

In the cases of the four forms of the self-similarity symmetry found in the

algebras we find the following sets of integrals

X 14 : J l = 11
1

J2 = r;312
2

J3 = r;3I3

1

X 24 : J1 = IlIl

J2 = 12
1

J3 =f;213

(6.4.46)

X 34 : J1 = 1111

J2 = 1412

J3 = 1413

X 44 : Jl = 14
2

J2 = 1;312
1

J3 = 1;3h.

The ratio integrals all have the same algebras of their symmetries. There

are three symmetries with the algebra A3 ,3 which represents dilatations and

130



translations in the plane. Two of the symmetries are the solution symmetries

of subscript not that of the two integrals in the ratio and the third is the ex­

pected homogeneity symmetry, G8 • We note that this algebra is the same as

for the ratio integral of (6.4.17) although that algebra used nonCartan sym­

metries. The three ratio integrals of (6.4.18) are different. Although they are

three-dimensional, the algebras are A3,4 (the algebra of the pseudo-Euclidean

group E(1, 1)) for the ratios Id12 and 13/12 , For Idh it is A3,8 (or s£(2, R)).

These algebras involved one truly contact symmetry. Given the conflicting

information from the three equations as far as the algebras of their ratio in­

tegrals are concerned it is not immediately evident what the general situation

is. However, if we consider just the Cartan symmetries, we find the following

pattern for the algebras of the ratio integrals. If we denote a ratio integral by

Rfj' where i and j are the labels of the two linear integrals comprising the ratio

integral and k is the order of the equation, we have

R2 •
12 •

R3 .
ij .

R4 •
ij .

where Srn and Sn are solutions of (6.4.18) or (6.4.23). Thus we are led to

Proposition 2: The number of symmetries associated with the ratio of any two

linear first integrals of an nth order scalar linear ordinary differential equation

is n - 1, where n ~ 4. The symmetries consist of the homogeneity symmetry
{)

y ay and n - 2 solution symmetries. The Lie algebra of the symmetries is

(n - 2)Al E9s Al.

Proof: Since the linear integrals are each homogeneous of degree one in y, the

ratio integral is of degree zero in y and so possesses ya/ ay as a symmetry.

Let the linear integrals be labeled 11 - In and the solution symmetries G l ­

Gn in such a way that
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(as noted above G!n-l] I i = ±1 depending on the value of i). Then

provided

(6.4.47)

If i #- j, k, this is true. Hence there are at least n - 2 solution symmetries for

I j / h. There are also at most n - 2 solution symmetries since j #- k and, if

i = k (say), (6.4.47) would require I j to be zero. The symmetries of the ratio

integral comprise solution symmetries of the form sm(x)8/8y, where Sm(X) is

one of the fundamental solutions of y(n) = 0, and the homogeneity symmetry,

y8/8y. The algebra of the solution symmetries admitted by the ratio integral

is (n - 2)A1 and, since

the algebra is (n - 2)A1 EBs Al. QED

We have now been able to explain the algebras of the linear and ratio inte­

grals in general. It now remains to deal with those associated with the three

symmetries of s£(2, R). It is well to recall them. For y" = 0 we have

G - 8
3 - OX

G = x 8 + !y8
4 OX 2 ay

G = x2 8 + xy8
5 OX ay J3 = xy' - y.

J l and J3 are the two linear integrals and have three Cartan symmetries
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whereas J2 has only one Cartan symmetry. They are

a
X ll = ay

X 12 = §X
a aX 13 = X ox +Yoy

J X 010
2 : 21 = X ox + 2Yoy

J3 : X 31 = x§y
X 20 + a

32 = X ox XYOij

X 33 = x§X.
The algebras are A3 ,3 for the symmetries of J1 and J3 and Al for that of J2 •

The situation for the third order equation presents an anomaly due to the

behaviour of the symmetries of 8£(2, R) and the solution integrals under the

transformation (6.4.35) for which

Gs ---+ G7 G6 ---+ G6 G7 ---+ Gs

11 ---+ 13 12 ---+ 12 13 ---+ 11 ,

This does not have much effect on the single integrals, III 12 and 13 , but it

does on the quadratic integral, 1113 - ! I?, which is invariant under the trans­

formation (6.4.37). (The reader will appreciate the resemblance to the gener­

alised Kummer-Schwarz equation [71].) This is why this integral possesses the
1

8£(2, R) algebra of its symmetries in contrast to the A3 ,3, A3 ,4 and Als found

for the integrals of the second and fourth order equations. In fact this labeling

is a little misleading. The nonzero Lie Brackets of the three algebras, A3 ,3, A3 ,4
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!
and Ai,s, are respectively

By expanding the range of definition of a to unit modulus these three algebras

are variations of the one form which we denote by A~,s with Lie Brackets

to avoid confusion with the more standard notation. In this way we obviate

a plethora of labels for what is essentially the one algebra. The numerical

coefficient other than 1 depends upon the order of the equation and the number

of the integral being considered.

We have noted that for n ~ 4 the treatment of the two symmetries,8 j8x and

x28j8x + (n -1)xy8j8y, and their associated integrals is equivalent under the

transformation (6.4.37). Consequently the only two symmetries with which we

must deal are 8 j8x and x8 j8x +Hn - 1)y8j8y. It is not surprising that these

should be the most complex of all the symmetries. In fact there is insufficient

information in the cases considered and we add the results for y(v) = 0 and

y(vi) = o. We firstly note some of the properties of the linear integrals as they

are defined in (6.4.36). For the linear integrals of y(n) = 0 we have

G(n-l] J. - (_l)n+ j h··
t J - IJ

for Gi a solution symmetry,

G[n-l]J. _ { Jj +!
n+l J-

o

where Gn+! = 8j8x, and

i,j = 1,n

J = n,

(6.4.48)

(6.4.49)

G[n-l] J. _ n + 1 - 2j J.
n+2 J - 2 J'
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where Gn+2 = x8/8x + ~(n - 1)y8/8y. This accounts for the two members of

8£(2, R) with which we must treat. In addition we have

c!n-I] I· - [n - J·]I·
sI J - J'

where GsI = x8/8x + (n - 1)y8/8y, and

(6.4.51)

(6.4.52)

where Gs2 = x8/8x +(n - 2)y8/8y. The necessity for considering GsI and Gs2

becomes evident shortly.

As we do not have labels for all of the algebras to be considered, we simply

label them by the two subalgebras they contain. The first subalgebra consists

of solution symmetries and the second of elements of 8£(2, R). In Table 6.7

we list the integrals associated with Gn+! for n = 4, 5 and 6 and the algebras

associated with the integrals. The A2 algebra consists of Gn+I and GsI for the

Gn+! first integral and Gn+! and Gs2 for the subsequent integrals. We note

that all of the integrals have both Gn+! and Gn+2 as symmetries. The number

of solution symmetries decreases as the number of linear integrals included in

each integral increases. To take the case of y(v) = 0, for example, Is is invariant

under four solution symmetries, the second integral contains three of the linear

integrals and these can only have two solution symmetries in common. Hence

the number of these drops from four to two. The third integral introduces the

linear integral h and the number of solution symmetries is reduced to one.

This single symmetry is lost in the fourth integral when 11 is introduced.

The pattern for the algebraic structures of the integrals associated with

Gn+! is clear from Table 6.7. It is also evident that, as the order of the

equation increases by one, an additional integral is added to the list for the

previous equation and that the subscripts for the existing ones are increased

by one. Hence the problem of determining the integrals is reduced to finding

a homogeneous polynomial of degree n - 1 in 11 - In which is invariant under

th t · f G[n-I]e ac Ion 0 n+I'
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Table 6.7: Integrals and associated algebras of Gn+! for yiv = 0, yV = 0 and

yvi = 0

Equation Integrals Algebras

yiv = 0 14 3Al EBs A 2

1214 - ~I~ Al EBs A 2

hI314 - ~I~ - IlIl A2

yV = 0 Is 4Al EBs A 2

13Is - ~Il 2Al EBs A 2

1314Is - ~Il- 12 1; Al EBs A 2

~13Il Is - ~ It - 12141; + Itl~ A 2

yvi = 0 h 5Al EBs A 2

14h - ~I; 3Al EBs A 2

1414h - ~I~ - 13I~ 2Al EBs A 2

~141;h - ~ It - hIsI~ +12Il Al EBs A 2

~I4I;I6 - 3~I~ - 13I;IJ +12 IsIJ - lIlt A 2
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Table 6.8: Integrals and associated algebras of Gn +2 for yiv = 0, yV = 0 and

yvi = 0

Equation Integrals Algebras

yiv = 0 I l I 4 2Al EEls G6(A3,4)
1 1

I 2I1 2A l EEls G6(AI,s)
1 1

I3r;I 2Al EEls G6(AI,s)

yV = 0 IlIs 3Al EEls G7
1

I 2It 3Al EEls G7

h 4Al EEls G7
1

I 4[;2 3Al EEls G7

yvi = 0 Ilh 4A l EEls GB
3

hIj 4Al EEls GB
1

I 3Il 4A l EEls GB
1

I4[;5 4A l EEls GB
3

I 5 [;5 4Al EEls GB

We turn now to the self-similar symmetry, Gn +2' The integrals and the

algebras of their symmetries are listed in Table 6.8, also for the three equations

yiv = 0, yV = 0 and yVi = O. Recalling that in the case of y" = 0 the integral

was Il I2 with the single Cartan symmetry G4 = x8/8x + !y8/8y and for

y'" = 0 the integral was I2 with the anomalous A3,4 algebra the pattern for the

self-similar symmetry is clear to see. We have

Proposition 3: For

there are n - 1 integrals associated with the symmetry

8 n -1 a
G=x-+--y­

8x 2 8y

of the form

(6.4.53)

(6.4.54)

.f: = 11(n+l-2i)/(n-l)
~ ~ n ,
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Proof: We first confirm that (6.4.54) is a symmetry of (6.4.53). The nth

extension of (6.4.54) is (using (6.4.4)),

G[n] 0 ~ (n - 1 0) (i) 0= x- + L.J -- - z y --.'
Ox i=O 2 oy(l)

Operating on (6.4.53) with (6.4.56) gives

(n; 1 _ n) y(n) = 0,

(6.4.56)

(6.4.57)

which, given (6.4.53) is identically satisfied.

For the determination of the first integrals associated with (6.4.54) we re­

quire the (n - 1)th extension of G, viz.

G[n-l] _ ~ ~ (n -1 _ 0) (i)~
- x!:l + L.J Z Y !:l (i)'

uX i=O 2 uy

If we assume the form

I f( , (n-l))= x,y,y, ... ,y

for the first integral, the associated Lagrange's system of

IS

(6.4.58)

(6.4.59)

(6.4.60)

dx dy dy(i) dy(n-l)
-= = ... = = ... =---=----
x (n-1)yj2 ((n-1)j2-i)y(i) -(n-1)y(n-l)j2'

(6.4.61 )

The first set of (n) characteristics are (taking combinations of the first and i th

terms in (6.4.61))

Ul = x(l-n)/2y

U2 = x(3-n)/2y'
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· _ (2i- n+l)/2y(i)
U,+l - X

_ X(n-3)/2 y(n-2)
Un-l -

_ x(n-l)/2 y(n-l)
Un - •

The first integral (6.4.59) now has the form

(6.4.62)

i = 1, ... ,n (6.4.63)

where the Ui are given in (6.4.62).

The final requirement

~~ L<n)=o = 0

gives the linear first order partial differential equation

(6.4.64)

(6.4.65)

(6.4.66)

where we have substituted for y(n) from (6.4.53). Multiplying (6.4.65) by x and

using (6.4.62) we obtain

[(
2i - n - 1) ] 8f [(2i - n + 1) ] 8f+ 2 Ui +Ui+l 8 f Ui + 2 Ui+l +Ui+2 8 f Ui+l +...

[(n-3) ]8f [(n-l) ]8
f

+ -2- Un-2 +Un 8fUn - 1 + -2- Un 8fun = 0

with the associated Lagrange's system

139



dUi+t dUn-l dUn

- (2i - n + l)ui+t/2 +Ui+2 = ... = (n - 3)un-d2 +Un - (n - 1)/2un ·

(6.4.67)

The second set of (n - 1) characteristics are obtained by taking combinations

of the ith and final terms in (6.4.67). Starting with i = n - 1 we have to solve

dUn-l n - 3 Un-l 2
-- = ---- +--.

dUn n - 1 Un n - 1

This linear equation is easily integrated to

U (3-n)/(n-l) - u2/(n-l) +V
n-lUn - n n-l,

(6.4.68)

(6.4.69)

where Vn-l is the constant of integration which we take to be the first charac­

teristic

V - U u(3-n)/(n-l) _ u2/(n-l)n-l - n-l n n·

Substituting for Ui from (6.4.62) we have

(6.4.70)

(6.4.71 )

(n-3)/2 (n-2) ( (n-l)/2 (n_l))(3-n)/(n-l) (n-l)/2 (n_l))2/(n-l)
Vn-l = X Y X Y - x Y

= (yn_l/3-n)/(n-l) (y(n-2) _ xy(n-l))

=-I I(3-n)/(n-l)n-l n ,

where we have used (6.4.36) to determine the h which is just (6.4.55) with

i=n-l.

In general, the equation to be solved for the ith characteristic is

2i - n - 1 Ui 2 Ui+t----- +----.
n -1 Un n -1 Un

(6.4.72)

We can write Ui+t in terms of Vi (i = i + 1, ... , n - 1) and Un. Thus (6.4.72) is

always a linear equation in Ui. However, it is not at all obvious as to how the

general formula for Ui+t can be determined as a repeated substitution needs

to be effected. It can be verified, from (6.4.67), that (6.4.55) holds by using a

symbolic manipulation package, for example, Mathematica [211].

For our purposes we will simply demonstrate that (6.4.54) is a symmetry of

(6.4.55). To this end we operate on (6.4.55) with the (n - l)th extension of
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(6.4.54), viz.

G[n-l]Ji = G[n-l] (IJ~n+l-2i)/(n-l))

= (G[n-l] I
i
) I~n+l-2i)/(n-l) + n ~ ~~ 2i IiI~2-2i)/(n-l) (G[n-l] In)

= I~2-2i)/(n-l) [ ( G[n-l] I i ) In + n : ~~ 2i I i ( G[n-l] In) ]

_ ( (n-l)) (2-2i)/(n-l) {~ ( -1 )k [( _. _ k) (n-i-k) (n-l-k)
- y L..J ( _. _ k)' n z X y

k=O n z •

(
2k - n + 1) (n-i-k) (n-l-k)]+ 2 X Y

+ (n + 1 - 2i) I: (_.1)k x(n-i-k) (1 - n) y(n-l-k)}

n - 1 . k=O (n - z - k)! 2

= O. (6.4.73)

QED

Each of the integrals, Ji has n - 1 symmetries with the 'algebra' (n ­

2)A1 EBs Gn+2 unless n is an odd integer in which case J(n+l)/2 has the 'algebra'

(n -1 )A1 EBs Gn +2. The algebraic properties follow directly from the symmetries

of the constituent linear integrals. The solution symmetries are those apart

from the two (one if n is odd) associated with the two (one) integrals in the

expression for Ji . We note that the structure given for the integrals is not

unique. For example we could equally use 1411, 131:/3 and hI~1/3 for y(iv) = O.

6.4.6 Conclusion

In this section we have treated at length the integrals and the algebras of

the symmetries associated with them in the case of scalar ordinary differential

equations of maximal symmetry. The pattern for the general equation y(n) = 0

has been established with the exception of a formula for the integral associated

with the symmetry 8/8x of homogeneous degree n - 1. To elaborate this

formula does not appear to be a feasible proposition. We have seen that the

cases n = 2 and n = 3 are anomalous and that the pattern is established at

n = 4 when the only symmetries are of Cartan form. However, there is still
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a distinction between equations of even and odd degree of a number theoretic

origin. In the context of linear equations this problem has, in a sense, been

the easier one since equations of maximal symmetry are equivalent to y(n) = 0

and so the solution symmetries are trivial to determine. This is not the case

with linear equations of lower symmetry, particularly in the case of the linear

equation of least symmetry. That one had to contend with the additional

complications of the 8£(2, R) subalgebra did compensate for the ease of solution

of the equations.
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Chapter 7

The Emden-Fowler Equation

7.1 Introduction

In Chapter Twol the Emden-Fowler equation was given a brief treatment.

Here we consider it in greater detail and with the benefit of the considerable

insight which has developed as a result of several studies of the equation from

the viewpoint of applications in Cosmology [119, 120]. It is an equation of

great interest in its own right and has prompted investigations of extensions

to more complex equations [146, 120].

The generalised Emden-Fowler equation

y" +p(x)y' +r(x)y = f(x)yn (7.1.1)

is the simplest second order ordinary differential equation which contains a

single nonlinear term. It arises frequently in the modelling of problems in one

dimension and as the radial equation in spherically symmetric problems2 • The

1§2.3.3.
2See Wong (1975) [213] for a review which, even then, was very selective in its list of

references. Leach et al (1992) [119] note that Wong listed 144 references. One of them was

in Vol 91 of the Monthly Notices of the Royal Astronomical Society in which Fowler (1930)

[46] provides an astrophysically motivated discussion. Wong failed to mention that in the

same volume there were also papers by Milne (1930,1931) [157, 158], Fairclough (1930) [40],

Hopf (1931) [79] and Russell (1931) [190] which doubtless reflect the strong interest in stellar
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origin of the name is found in the works on stellar structure by Lane3 and Em­

den (1907) [37] and the more mathematical analyses initiated by Fowler4
• The

more generalised form of (7.1.1) can be found in the papers of Feix and Lewis

(1985) [41], Leach (1981) [106] and Basu and Ray (1990) [22]. Variations on

(7.1.1) have been considered by RanganathanS and further discussed by Kara

and Mahomed (1992) [87], but they do not constitute any real generalisation

as was clearly demonstrated by Lemmer and Leach (1994) [123]. We follow the

exhaustive treatment given by Mellin et al (1994) [155].

Indeed the degree of generalisation is a real question. It is a well-known

fact that the second and third terms of (7.1.1) can be removed by a Kummer­

Liouville transformation [92, 139]

y(x) = u(x)v(t) t = t(x) (7.1.2)

and this approach is found in, for example, the papers of Leach6 and Leach et

al (1992) [119]. In this treatment we do not remove these terms by means of a

preliminary transformation for a very specific reason. By keeping these terms

we find that the analysis gives rise to a particular type of third order linear

differential equation which provides significant insight into the properties of

the mathematical problem under consideration. This is by no means critical

to the analysis, but it is a nice point to be appreciated by those who enjoy the

study of the structure of differential equations.

The purpose of our treatment is to solve (7.1.1) in the sense of reduction to

quadratures. To this end we examine the equation for Lie point symmetries.

We are well-familiar with the concept that the possession of a point symmetry

structure at the time and the value of Emden's model.
3Lane (1870) [93]. His name did not stick to the equation, possibly because the American

literature was not well-known in Europe at the time. It is a not unusual occurrence although

these days it tends to be due to an oppositely directed lack of knowledge of the literature.

4Fowler (1914) [45] and (1931) [47]

5Ranganathan (1988) [178] and (1989) [179].

6Leach (1981) [106] for the particular case n =2.
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enables one to reduce the order of an ordinary differential equation by one.

Equally, if unfortunately, well-familiar to us is that this does not guarantee

integrability and, indeed, in the case of second order equations the reduction

usually leads to an Abel's equation of the second kind from which little joy is

to be expected. However, the exceptional case occurs, as we well know, when a

second order equation possesses two symmetries, G I and G2 , with the property

that [Gb G2] = (cst)G2 , for then reduction of order using G2 leads to a first

order equation which inherits a symmetry from G I and so is reducible to zeroth

order, ie the solution is given by a quadrature1
. Consequently we look for the

subset of equations of type (7.1.1) which have two symmetries.

The requirement that (7.1.1) possess one symmetry imposes a relationship

amongst the functions p(x), r(x) and f(x) which we shall regard as a constraint

on the last, ie, we require the nonlinearity to fit in with the linear structure8 .

Under this constraint (7.1.1) can be transformed to autonomous form by re­

quiring that the symmetry take the form 0/oX in the new coordinates. This

is the approach found in several papers on the subject9 • In this chapter we in­

vestigate the conditions under which the autonomous form of (7.1.1) possesses

a second point symmetry. When this does occur, it is this second symmetry

which plays the role of G2 referred to above. The reduction to quadratures

becomes very simple.

The price of integrability is the imposition of a further constraint on the

freedom of choice of the function, f(x)lO.

We find that the analysis naturally separates into two cases, n =J 2 and

n = 211
• The latter gives a richer result compared with a general value of n.

7In general two symmetries with this algebra reduce an nth order equation to one of

(n - 2)th order.

8This is simply a matter of arbitrary choice. One could equally demand that the damping

term be consistent with the 'potential' terms.

9 c/Leach (1981) [106], Feix and Lewis (1985) [41] and Leach et al (1992) [119].

lOIn the sense noted below at the end of §7.7.

11We exclude n = 0, 1for obvious reasons. Linear equations were given more than adequate
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However, when n = -3, the results are distinct from all other values of n.

Two symmetries simply cannot occur. Either there is one and the problem of

dealing with an intractable Abel's equation of the second kind remains or there

are three. In the latter case the equation is of Ermakov-Pinney type12 and the

quadrature is reduced to an explicit formula.

We should note that recently Berkovich13 has also mentioned the existence

of a second symmetry, but as an aside and in a context of intent different to

that of the present discussion.

7.2 The basic equations

We recall that a second order differential equation

N(x, y, y', y") = 0

possesses a Lie point symmetry

a a
G = e(x, y) ax +TJ(x, y) ay

if

where

(7.2.1)

(7.2.2)

(7.2.3)

G[2) := G + (TJ' - y'() :y' + (TJ" - 2y"( - y'e") ~II (7.2.4)

is the second extension of G which is necessary to deal with the infinitesimal

transformations in y' and y" induced by the action of G. It is a standard

procedure to show that the application of (7.2.4) to (7.1.1) requires that G

necessarily take the form14

a a
G = a(x)-a + (c(x)y +d(x))-.

x ay

attention in the earlier chapters.

12Ermakov (1880) [38], Pinney (1950) [172].

13Berkovich (1992) [17, 18].

14 e/Leach (1981) [105].
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Two possible cases emerge immediately. They are

(i) n =I- 2, for which

2c' - a" + ap' + a'p = 0

CIf + c'p +ar' +2a'r = 0

aJ' + [2a' + (n -l)c]f = 0

d" + d'p + dr = 0

dnf = 0

and

(ii) n = 2, for which

2c' - a" +ap' +a'p = 0

e" + c'p +ar' +2a'r = 2df

aJ' + (2a' + c) f = 0

d" +d'p +dr = O.

We consider each in turn.

7.3 Case n =12

(7.2.6)

(7.2.7)

From the last of (7.2.6) it is immediately evident that d = O. The functions

a and c satisfy the system of equations

and f is given by

From (7.3.1)

2c' - a" +ap' + a'p = 0

CIf + c'p + ar' +2a'r = 0

f' __ 2a' + (n - 1)c
f - a

c' = ~a" - ~ (ap' +a'p)

147

(7.3.1)

(7.3.2)

(7.3.3)

(7.3.4)



so that (7.3.2) is

(7.3.5)

Eq (7.3.5) is a linear equation of the form

(7.3.6)

which is self-adjoint and has the maximal symmetry for a third order ordinary

differential equation, viz. 3A1 EEls (8£(2, R) EEl A1)15. Eq (7.3.6) has an inte­

grating factor, y, and the integrated equation reduces to the Ermakov-Pinney

equation16 on the substitution y = p2.

Eq (7.3.4) is readily integrated to give

C l' 1
C = 0 + -a - -ap2 2

and (7.3.3) becomes

f' { n +3 a' Co n - 1 }7=- -2-;+(n-1)~--2-P .

7.4 The special case n = -3, Co =-0

(7.3.7)

(7.3.8)

From (7.3.8) it is evident that the case n = -3 and Co = 0 is special since then

f'7 = -2p,

ie, f is independent of a and there are the three symmetries

(7.4.1)

(7.4.2)

where the three functions, ai(x), are the linearly independent solutions of the

third order equation (7.3.5). The algebra of the symmetries is 8£(2, R).

15Mahomed and Leach (1990) [153].

16Ermakov (1880) [38], Pinney (1950) [172].
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Under the standard representation of 81(2, R) the three symmetries have

the form

and the equation is

The solution of (7.4.3) is

y" = Ky-3.

1

Y = [A +2BX +CX2]2 ,

(7.4.3)

(7.4.4)

where AC - B 2 = K. This follows from the well-known result11 that, if u(x)

and v(x) are linearly independent solutions of

the solution of

IS

" 2() Ky +W XY=3
Y

1

Y = [Au2 +2Buv +Cv2
] 2

(7.4.5)

(7.4.6)

(7.4.7)

with AC - B2 = K jW2, where W is the value of the Wronskian of the solutions

u(x) and v(x).

The solution of (7.4.1) is

f(x) = Kexp [-2 Jpdx]

and (7.1.1) becomes

y" +py' + ry = K exp [-2Jpdx] Y-3 .

17Pinney (1950) [172].
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The transformation from (7.4.9) to the autonomous form, (7.4.3), is

x = 1 exp [2J-Mj dX]
2J-M a

Y = exp [J-MX] ya-! exp [! j pdx] ,

where M is a parameter, and the solution follows18
.

The value of M is found from the integration of (7.3.5), viz.

(7.4.10)

(7.4.11)

When (7.3.5) is multiplied by the integrating factor a, it is trivially integrated

to give

1 " 1'2 1 (' 1 2 2) 2 M-aa - -a - - p + -p - r a =2 4 2 2 .

7.5 Case n = -3 and Co =I O.

In this case (7.3.8) yields

f = J( exp [-2j (p - 2~0) dX]

and there is the single symmetry

(7.4.12)

(7.5.1)

(7.5.2)G = a~ + (Co + 1 (a' - ap)) y~.ax 2 ay
However, recall that there are three functions, a(x), from the solution of (7.3.5)

and so three independent functions, f(x), for a given Co.

With f as in (7.5.1) the autonomous form of (7.1.1) is

Y" + 2CoY' + (M +C6) Y = J(y-3

and the transformation is

X= J~
Y = ya-! exp [!J(p - 2~0) dX] .

(7.5.3)

(7.5.4)

18For M > 0 the relevant exponentials are replaced by trigonometric functions. The usual

adjustment is made for the particular case M =O.
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Eq (7.5.3) has only the one symmetry given by ajaX and the standard reduc­

tion of order via TJ = V and ( = V' gives

((' +2Co( + (M + C~) TJ = KTJ-3 (7.5.5)

which is an Abel's equation of the second kind and no closed form solution is

apparent.

7.6 Case n i= -30r2

We return to the consideration of the case for general index n(=I 0,1,2, -3).

We recall that we have the equation

", f ny + py + ry = y

with the symmetry
a a

G=a-+cy-ax ay
and that

c=Co+~(a'-ap)

f = Ka-(n+3)/2 exp [n ~ 1J(p _2~0)] ,
where a(x) is a solution of

1 III (' 1 2 2)' 1 (' 1 2 )'2a - p + 2P - r a - 2 P + 2P - 2r a = 0

or, equivalently, the integrated form

1 " 1'2 1 (' 1 2 2) 2-aa - -a - - p + -p - r a - M2 4 2 2 - •

The autonomous form of (7.6.1), with f as given in (7.6.4), is

V" + 2CoV' + (M + C~) Y = KVn
,

where the transformation from (7.6.1) to (7.6.7) is

X= J~
Y _1 [1 J( 2CO

) ]= ya 2 exp 2 p - -;- dx .
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The symmetry (7.6.2) now has the form

(7.6.9)

The standard reduction of (7.6.7) under (7.6.9) leads to an Abel's equation

of the second kind from which very little joy can be expected. However, it is

valid to pose the question "Are there any circumstances under which (7.6.7)

has two symmetries?". Any symmetry of (7.6.7) apart from (7.6.9) must have

the form

(7.6.10)

where a(X) and c(X) have to be determined. Such a symmetry exists if there

is a nontrivial solution to the system

2c' - a" +2Coa' = 0

(n - l)c = -2a'

c" +2Coc' +2 (M +C6) a' = O.

Eqq (7.6.11) and (7.6.12) combine to give

n+3" It'--a - 2voa = 0
n-l

(7.6.11)

(7.6.12)

(7.6.13)

(7.6.14)

which explains the peculiarity of the n = -3 case. Either Co is zero which

leads to the three symmetries given in (7.4.2) or a' is zero which leads to only

one symmetry.

In the general case (n =I -3) we solve (7.6.14) for a and c follows from

(7.6.12). We find

a = Ao +Al exp [2Co (: ~ ~) X]

4CoAI [ (n-1)]
c = - n +3 exp 2Co n +3 X .

(7.6.15)

(7.6.16)

However, we also require consistency with (7.6.13) and this imposes the con­

straint

M= _C2(~)2
o n + 3
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Hence

y" +2C y' + 8(n +1) C2y = I<yn
o (n + 3)2 0

has the two symmetries

a
Gl = ax

[ (
n -1) ] ( a 4Co a)

G2 = exp 2Co n +3 X ax - n +3Y ay .

(7.6.18)

(7.6.19)

(7.6.20)

Since [Gb G2] = (cst)G2 , reduction should be done using G2
l9

. This is made

easier by the change of variables

which gives

1 (n +3) [ (n +1) ]X = - -- exp -2Co -- X
2Co n -1 n - 3

Y = Yexp [2CoX]
n+3

(7.6.21)

(7.6.22)

(7.6.23)

and

Y" = I<yn.

The reduction to quadratures is obvious.

For the existence of one symmetry a(x) is a solution of

1 '" (' 1 2 2)' 1 (' 1 2 2)' 02"a - p + 2"P - r a - 2" P + 2"P - r a =

or its integrated version

(7.6.24)

(7.6.25)

(7.6.26)

and there are three such functions, a(x). For the existence of two symmetries

a(x) is a solution of

1 " l,2 (' 1 2 2) 2 C2 (n - 1) 2-aa - -a - p + -p - r a = - --
2 4 2 0 n+3

1901ver (1993)[167, p 148].
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(7.6.28)

which, with a = p2, has the Ermakov-Pinney form

" (' 1 2 ) C~ (n - 1) 2P - P + -p - 2r p = -- -- ,
2 p3 n+3

ie, a(x) is now a two parameter function (excluding Co). Note that the two

parameter function, a(x), which is the solution of (7.6.27) satisfies (7.6.25), but

it is not a general solution.

7.7 The case n == 2

Eq (7.1.1) is now

y" +py' +ry = f y2

and it has a symmetry of the form

a a
G = a(x) ax + [e(x)y + d(x)]ay

provided

2 ' " , , 0e - a + ap +ap =

e" + e'p + ar' + 2a'r = 2df

aJ' + (2a' + c) f =0

d" + d'p + dr = O.

(7.7.1)

(7.7.2)

(7.7.3)

(7.7.4)

(7.7.5)

(7.7.6)

Note that the fifth equation for the n =f:. 2 case is now not separate, but coalesces

with the second. The solution of(7.7.6) gives d. From (7.7.3) we have

e=Co+~(a'-ap)

and from (7.7.5)

f = l{a-t exp [~J (p _2~o)] .

The remaining equation, (7.7.4), is now

1 '" (' 1 2 2)' 1 (' 1 2 )''2 a - p + '2P - r a - '2 P + '2P - 2r a

=2l{da- ~ exp [~ J(p _2~o)] .
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Multiplication of (7.7.9) by a and integration gives

M = !aa" - ~a'2 - ! (p' + !p2 - 2r) a2

- 2KJa:/2 exp [!J(p - 2~o)] .

Multiplication of (7.7.9) by a I d/a3
/

2 and integration gives

The autonomous form of (7.7.1) with f as given in (7.7.8), viz.

Y" +2CoY' + (M +C6) Y +N = Ky2,

is obtained by the transformation

x=J~

y = yexp ( - J~) -J[~exp ( - J~)],
where, as usual,

c=Co+~(a'-ap).

(7.7.10)

(7.7.11)

(7.7.12)

(7.7.13)

(7.7.14)

The standard analysis of (7.7.12) shows that it has two symmetries if the

constraint

( C2) ( 49C
2)M + 2~ M + 25 0 +4KN = 0

applies. The symmetries of

(7.7.15)

Y" +2CoY' + (M +C6) Y - 4~{ (M + ~:) (M + 4~~ci) = Ky2 (7.7.16)

are

a
G1 = ax (7.7.17)

G - [2CoX] { a [4Co 2Co ( Cci)] a }
2 - exp -5- ax - -5-Y - 5K M +25 ay . (7.7.18)
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The transformation (X, Y) to (X, y) which gives

a
G2 = ax

transforms (7.7.16) to the standard form

the solution of which is straightforward.

7.8 Conclusion

(7.7.19)

(7.7.20)

In this Chapter we have examined the Emden-Fowler equation in some detail.

During the course of our investigations we have seen that for n =f. -3or2 the

nonlinear equation

y" +py' + ry = fyn

has a Lie point symmetry provided that

f = J(a-(n+3)/2 exp [n ; 1 J(p _2~0)] ,
where

I 11/ (' I 2 2)' I (' I 2 2)' 02a - p + 2P - r a - 2 P + 2P - r a =

or

I " 1'2 I (' I 2 2) 2 M-aa - -a - - P + -p - r a =2 4 2 2 .

Eq (7.8.1) has two point symmetries provided the constraint

M = _C2 (~)2
o n +3

(7.8.1)

(7.8.2)

(7.8.3)

(7.8.4)

(7.8.5)

be satisfied. The solution of eq (7.8.1) is then trivially reduced to a quadrature.

In general there are five parameters, viz. Co, J(, AI, A2 and A3 • Two symme­

tries exist on the family of hypersurfaces in the five dimensional parameter

space defined by (7.8.5).

For n = 2 the equation

y" +py' + ry = f y2
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has

where

and

!a'" - (p' + !p2 _2r) a' - ! (p' + !p2·- 2r)' a
= 2I<da-S

/
2 exp [~ J(p _2~o)]

d" +pd' +rd = O.

(7.8.7)

(7.8.8)

(7.8.9)

(7.8.10)

Eq (7.8.6) has two symmetries provided the constraint

( M +~n (M + 4;;~) +4KN = 0,
where M and N are the values of two of the integrals of (7.8.8), be satisfied.

Since (7.8.8) can be rewritten as a fourth order ordinary differential equation,

the two symmetries exist on the family of hypersurfaces defined by (7.8.10) in

an eight dimensional parameter space.

The case n = -3 has either one symmetry (Co :I 0) or three symmetries

(Co = 0). In the former case a solution in closed form via the reduction of

order to an Abel's equation of the second kind is not at all obvious. In the

latter case the solution is trivial as the equation is now an Ermakov-Pinney

equation.

One can consider the question of the integrability of (7.1.1) from the view­

point of Lie point symmetries of the differential equation as a matter of levels

of constraints. If there is no constraint imposed on the relationship amongst

p(x), r(x) and f(x), there is no inference provided by considerations of sym­

metry. When f(x) is constrained by (7.6.4) and (7.6.5) 20, a single symmetry

exists. When n # 2, the parameter space is five dimensional and, when n = 2,

it is eight dimensionaPl. In both cases integrability is guaranteed on a hy­

persurface in each of the parameter spaces. In this respect the additional

20For n "# 2; for n =2 the relevant equations are (7.7.8) and (7.7.9).

21There are two parameters in d(x).
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constraint plays a role similar to that of a first integral of prescribed value in

the case of configurational invariants22
•

As a final remark we note that n = 2 marks a transitional case from the inte­

grable linear equation to general values of n. This is indicated by integrability23

on a hypersurface in an eight dimensional parameter space whereas for general

values of n the space is only five dimensional. The exception to this is when

n = -3 and Co = o. The equation is then the Ermakov-Pinney equation

which can be interpreted as arising from the integration of a third order linear

equation of maximal symmetry or the radial equation of a higher order system

with rotational symmetry24

22Sarlet et al (1985) [195].

23In the sense of reduction to quadratures.

24As was proposed by Eliezer and Gray (1976) [36].
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Chapter 8

The Algebra 8£(2, R)

8.1 Introduction

In this chapter we consider differential equations which are invariant under

the algebra sf(2, R). This algebra has already featured several times l and

we are quite prepared to make a case for it to be one of the more significant

of the elementary algebras2 • The first instance of the global nature of the

algebra is that all linear equations with maximal symmetry of order greater

than one possess it3
• The second is that it is the algebra of the Pinney equation

which plays such a significant role in the study of first integrals for time­

dependent Hamiltonian systems4 , but which also has an important position in

the algebraic theory of differential equations of maximal symmetry5. Finally

it is the characteristic feature of Ermakov systems6 . This chapter is mainly

lSee §§5.1.3; 6.3; 7.4.

2See Znojil and Leach (1992) [217] and the references cited therein for its role in the

context of quasi exact solutions of the Schrodinger equation.

3Mahomed and Leach (1990) [153].

4Lewis (1967,1968) [126, 127]; Lewis and Riesenfeld (1969) [132]; Lewis and Leach (1982)

[129, 130]; Eliezer and Gray (1976) [36].

5The third order version provides the three generators with the sl(2, R) algebra. See

§5.1.3.

6Certainly that is the opinion expressed in Leach (1991) [112). Other writers on this

fascinating topic have not been known to express an opinion on this rather obvious feature.
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devoted to Ermakov systems, but begins with the first two features noted

above.

8.2 Linear equations of maximal symmetry

The study of the symmetries of differential equations of order greater than one

has been detailed in Chapters Three, Four and Five at least to the extent of

all third order equations and all nth order linear equations. It would be useful

to have a complete classification of all algebras and the differential equations

associated with them, but the calculations are tedious and the algebras many.

It is always dangerous to claim that equations of only limited order need be

considered. It is almost a dare to the physicist, engineer or whomever to come

up with an equation of higher order. As a simple example the Emden-Fowler

equation of index two1 ,

y" + f(X)y2 = 0, (8.2.1)

has a symmetry in which the main function is a(x). The f(x) of (8.2.1) is

defined in terms of a(x) and a constant Q. The equation satisfied by a(x) is of

the fourth order and is

2aa"" +5a'a'" +Qa'" = o. (8.2.2)

A knowledge of the algebraic properties of fourth order equations plays an

important role in the discussion of the solution of a second order equation.

Even though the models of natural phenomena tend to produce differential

equations of the second order, the standard for all equations is not necessarily

to be found in second order equations. The case of the algebras of the first

integrals8 is an obvious instance of two not being many.

Given the above considerations there is no doubt that it would be of mathe­

matical interest to know just what are the algebraic properties of all differential

7The Eroden-Fowler equation is studied in detail in Chapters Two and Seven. The

discussion here is based on the approach found in Govinder and Leach (1994) [68].

8See Chapter Six.
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equations. It would also be of potentially practical use. We walk before we

run. The study of linear equations is easier by comparison with nonlinear

equations9 and yet the higher order equations have not been kind. However,

Mahomed and Leach (1990) [153] proved that the detailed algebraic structure

of an nth order equation of maximal symmetry was nA1 EBs (sf(2, R) EB Ad.

This required the linear differential equation to have a certain structure as far

as the coefficients of its lower derivatives were concernedlO. A curious feature

is that in the case of linear equations with fewer than the maximal number of

symmetries it is the s£(2, R) symmetry which goes first.

8.3 The Pinney Equation

Pinney's half page paperll in which he states that the solution of

IS

( )
1/2

Y = Au2 +2Buv +Cv2
,

where u(x) and v(x) are two linearly independent solutions of

the constants A, Band C are related by

(8.3.1 )

(8.3.2)

(8.3.3)

(8.3.4)

and W is the Wronskian of u and v, and omits the proof as trivial is an oft­

quoted masterpiece intended to send the neophyte into paroxysms of disbelief

at the blatant mendacity of mathematicians and their fellow travelers12 • Part of

9As always we mean fundamentally nonlinear equations and not equations which are

linearisable by means of a point transformation.

lOIn a sense this point was missed by Krause and Michel (1988) [89, 90].

llPinney (1950) [172].
l2The sentiments if not the actual words are common to all students when they first come

upon this delectable result.
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the problem is that the paradigmatic example presented is that of the classical

time-dependent oscillator which can be solved provided it can be solved. To be

honest it is the tendency of the instructor to take pity on the instructed which

is the major cause of the problem. The real applications of the Pinney equation

are not in the time-dependent oscillator of classical mechanics. Rather it is

in time-dependent and generally nonlinear problems of virtually every other

mathematically quantifiable subject in which the transformation

q
Q=­

p
(8.3.5)

or its Hamiltonian equivalent13 plays a useful rolel4
.

The beauty of these problems, in which the essence that remains is the Pin­

ney equation, is that almost all conclusions needed can be obtained without

any knowledge of the solution of the equation15 subject to a numerical compu­

tation at the last but one line. Apart from the resthetic appeal of obtaining an

analytical solution to a problem16 there can be a tremendous saving in com­

puter time especially if the type of transformation contemplated here occurs

somewhere in the central parts of the calculations relevant to the solution of

the problem. The lack of necessity to resort to numbers early in the calculation

means that many different cases can be subsumed into one.

The value of the Pinney equation was first realised when Lewis17 applied

Kruskal's asymptotic method (1962) [91] to the time-dependent oscillator which

he was using as a model for the radial part of an axially symmetric magnetic

field in the study of the motion of a charged particle in a plasmal8 . An in-

l3The generalised canonical transformation (GeT) of Burgan [24, 25].

l4See, for example, Leach (1977) [95, 96, 97] (1978) [99, 100] and (1983) [118]; Lewis and

Leach (1982) [129, 130].

l5The treatment of Berry's Phase as it affects time-dependent systems is a case in point.

See Leach (1990) [111].

l6The solution is regarded as analytical if only a 'trivial' numerical implementation to

obtain a solution is required.

l7Lewis (1967) [126], (1969) [127]; Lewis and Riesenfeld (1969) [132].

l8The calculations, which Ralph Lewis recalls as horrendously long and complicated, were
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terpretation of the equation and a number of solutions in addition to those

given by Lewis were given by Eliezer and Grey (1976) [36] in a paper which

has often been cited and has provided inspiration for further investigations19
•

The interpretation was that the Pinney equation is the radial equation of a two

dimensional time-dependent oscillator for which the value of the conserved an­

gular momentum is 1. It was a very pretty interpretation, but it did not stand

the generalisation to three dimensions2o in which the conserved quantity was

not the square of the angular momentum in four space, but a combination of

components which is best left unmentioned, such is its inelegance.

With one of those curious twists the idea of the Pinney equation as being

part of a system of higher dimension was not in the least bit original even if the

identification of the system was. In the coming sections we deal with the role of

the Pinney equation and its generalisations in systems. However, to conclude

this discussion we should point out that the symmetries of the Pinney equation

are

(8.3.6)

(8.3.7)

(8.3.8)

performed in Heidelberg in 1966 while he was there on sabbatical leave. The well-known

Lewis invariant for the time-dependent oscillator came out as the first part of the expansion

in terms of the function p(t) in (8.3.5) above. For the first order in the expansion parameter

{ the correction was zero. For the second order in the expansion parameter { the correction

was zero. For the third order in the expansion parameter { the correction was zero. Ralph

was becoming excited. The calculations were increasingly complex, but he persisted for a

few more terms until he was convinced that the zeroth order result was the result. This

insipid prose fails miserably to do justice to the sense of excitement of one man's discovery,

particularly one with a sense of history. Unfortunately this work is not the place in which

to trace the influence of Lewis' result.

190ne need only mention the present author's works on time-dependent systems, cl Leach

(1977) [95, 96, 97]; (1978) [99, 100] and (1983) [108].

20Giinther and Leach (1977) [73].
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where aI, a2 and a3 are the linearly independent solutions of

alii + 2w2a' + 2ww'a = 021

and that the algebra is 8£(2, R).

8.4 Ermakov Systems

(8.3.9)

Some eighty-six years before Ralph Lewis laboured long and hard over his exact

invariant for the time-dependent oscillator high above the swiftly flowing Rhine

V P Ermakov, in the style typical of a mathematician, solved the problem. In

1880 Ermakov[38] obtained a first integral for the time-dependent oscillator

with equation of motion

(8.4.1 )

by introducing the auxiliary equation

(8.4.2)

eliminating the w2 term between (8.4.1) and (8.4.2), multiplying the resulting

equation by the integrating factor pq - pq and performing a trivial integration.

The integral is

I ; ~ [(pq _ pq)' + (;) '] . (8.4.3)

In the West this integral is usually called the Lewis invariant after Ralph Lewis

whose derivation of the integral at a later stage has been mentioned above.

Ermakov's prior claim was hindered by the lack of wide dissemination of the

Reports of the University of Kiev, a general inability amongst non-Russians

to read Russian, the Cold War and a time gap. Lewis' work in the sixties was

in a new field and, as often happens, it was almost necessary that the result

be rediscovered. Ermakov was not forgotten by those at the University of

2lThis is the same equation as that which provides the s£(2, R)part of the algebra of an

nth order linear equation of maximal symmetry. See eq (5.1.19).
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(8.4.4)

Kiev who had a love for differential equations. As far as can be gleaned from

contemporary sources22 , L M Berkovich can be held responsible for keeping

alive the knowledge of Ermakov's work and passing it on to James Reid who

was a mature-age student of John Ray23.

Ray and Reid spotted a veritably untouched lode of new results and pro­

ceeded both to popularise Ermakov systems in the West and to extend and

generalise them. The first generalisation was to introduce the two equations

X+w2(t)x = ~!(y/x)
x

y+w
2(t)y = ~9(Y/X),

Y

where! and 9 are arbitrary functions of the argument y/x. The w2 terms are

eliminated a la Ermakov as related above. Two points can be made on this

context. In the first instance the w2 can be replaced by anythin!f4 and the

anything can still be eliminated in the same way between the two equations.

The second is that the presence of the w2 term is suggestive of a generality

which is more apparent than real since the transformation

(8.4.5)

(8.4.6)

where p(t) is a solution of the Pinney equation (8.4.2), transforms (8.4.4) to

- 1
X = X3!(Y/X)

- 1
y = Y3 9(Y/ X).

22Basically conversations with John Ray and James Reid of Clemson University, South

Carolina, in 1990 and Lev Berkovich, formerly of the University of Kiev and now at Samara

State University, in 1991, 1993 and 1994. The second set presented some technical difficulties

since Professor Berkovich has no English and the present writer essentially has only English.

23Somewhere along the line the Library of Congress comes into the story, but precisely

where has been forgotten by the present writer.

24An observation of no great originality in Leach (1991) [112] as it had already been made

by Ray (1980) [180]; Ray and Reid (1980) [183, 184] and Goedert (1989) [51].
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The elimination procedure yields the second order equation in two dependent

variables

xii - xy = X39(Y/X) - Y3!(Y/X)
Y x

for which the first integral is

(8.4.7)

(8.4.8)

Ermakov systems and their generalisations attracted much interest partic­

ularly in the late seventies and early eighties with significant contributions by

Wollenberg, Ray, Reid and others25 although interest continues with solidly

mathematical contributions by Athorne and his collaborators26 . As far as is

known the first study of the Lie symmetries of Ermakov systems was made by

Leach27 although Korsch (1979) [88] had considered the role of the dynamical

group 50(2,1) in a study of the Hamiltonian form of (8.4.4).

If we confine our attention to the fundamental equations (8.4.6) in which the

distraction of a time-dependent oscillator has been removed, there are three

Lie symmetries, viz.

a
G1 = at'

2sWollenberg (1980) [212]; Ray (1980) [181]; Ray and Reid (1981) [185]; Ray, Reid and

Lutzky (1981) [186]; Korsch (1979) [88]; Lutzky (1980) [145]; Sarlet (1981) [192] and Sarlet

and Ray (1981) [197].

26Athorne (1990) [11] and Athorne et al (1990) [14].

27Leach (1991) [112]. In fact the present author kept well clear of Ermakov systems for the

whole period of intense attention by the various authors referenced above. It appeared that

the serious work had been done and that Ermakov systems were the province of Ray and

Reid. The work which completes the remainder of this chapter had its origins in a few quiet

weeks between the end oflectures and the the script-marking season in late 1990. It is more

than a little unfortunate that there was not some more time available as the calculations

were set aside for a time. When they were resumed, some not so minor details were lost and

there is an understatement ofresults in Leach (1991) [112]. Fortunately the lost details were

recovered by K S Govinder in his M Sc dissertation of 1993 [63] and the parallel publications,

Govinder et al (1993) [64] and Govinder and Leach (1993) [65]. See also Govinder (1992)

[62].
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a a a
G2 = 2t- +x- +y-at ax ay

2a a a
G3 = t at + tx ax + ty ay

which have the Lie Brackets

(8.4.9)

(8.4.10)

The Lie algebra is A3 ,8, better known as 8£(2, R).

One observes that the equation which is integrated to give the Ermakov

invariant and the invariant itself are very suggestive of a modification of the

equation for angular momentum and the angular momentum itself. Recasting

of the equations in terms of plane polar coordinates is very informative. The

differential equations are

r _ r02 = F(O)
r 3

.. . G(0)
rO + 2i-O = -­

r 3

and~the Lie point symmetries are

a
G-­

1 - at
a a

G2 = 2t-+r-at ar
2a a

G3 = t at + tr ar .

(8.4.11)

(8.4.12)

(8.4.13)

The symmetries represent, respectively, invariance under the time-translation

transformation, under the self-similar transformation and under the so-called

conformal transformation28. The proper representation for the Ermakov system

is in plane polar coordinates29 and the Ermakov invariant takes the form

(8.4.14)

28The three symmetries may be divided into the two classes {Cl, C3 } and {C2}. Cl and

C3 are essentially the same. It is C 2 which is different. This is seen most easily in the

reduction of order of the Kummer-Schwartz equation which has a double lot of s£(2, R)

symmetry. Reduction by G I or G3 leads to a linear sode whereas reduction by G2 leads to

the Pinney equation.

29In the case of two dimensions.
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The correct interpretation of the Ermakov invariant is that of a generalisation

of the conservation of the magnitude of angular momentum30
.

There is a certain irony in that the angular momentum interpretation of

the Lewis invariant proposed by Eliezer and Grey (1976) [36] has been re­

vived for the situation in which the two variables can be identified with space

coordinates31 •

8.5 Ermakov Systems: the algebraic approach

The algebraic approach to the study of differential equations takes a repre­

sentation of an algebra and finds the general form of the differential equation

which is invariant under the action of the appropriate extensions of the ele­

ments of the algebra. There is no necessity for a particular representation to

have an associated differential equation of given order. A notable example is

the set of operators

8
G1 =­

8q
8

G2 =2q
8q

2 8G3 =q ­
8q

(8.5.1)

(8.5.2)

(8.5.3)

which does not have a scalar second order equation associated with it even

though it is a representation of the algebra 8£(2, R). It does have a third order

equation which is invariant under its action, viz.

24 'ii - 3;/ = f(t), (8.5.4)

30In this respect the study of Ermakov systems can be placed in the context of the wider

problem of the study of systems in which some feature of the conservation of angular momen­

tum is relaxed. Several of these systems have been treated by Leach (1987) [110]; Gorringe

and Leach (1987) [60] and Leach and Gorringe (1987) [116].

31 However, this should not be interpreted as a departure from the identification of the

invariant with the Hamiltonian in a suitable space-time frame when one of the variables is

time. See Leach (1977) [96].
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where f(t) is an arbitrary function of its argument. The close relationship

with the Kummer-Schwartz equation is evident. That equation has a second

8£(2, R) algebra of the form above but with q replaced by t.

We have already seen that Ermakov systems are best expressed in terms of

(plane) polar coordinates. The form that 8£(2, R) takes is

a
G1 =­at

a a
G2 =2t-+r-at ar

2a a
G3 = t - +tr­at ar (8.5.5)

when we take the form of the algebra of the generalised Ermakov system in

which the w2r term has been transformed away. The natural question of the

most general form of second order equation invariant under (8.5.5) is easy to

answer. One assumes an equation of the form

f(t,r,O,r,O,r,O) = 0 (8.5.6)

and applies the second extension of each of (8.5.5) in turn. We find32 that the

general structure of a second order differential equation invariant under this

representation of 8£(2, R) is

(8.5.7)

With an eye to applications in Classical Mechanics33 we need two equations

in two dimensions and each should have the appropriate acceleration term.

Thus we consider the system of equations

(8.5.8)

32Govinder and Leach (1993) [65].

33That is where Ermakov systems started and is the primary area of our interest, if not

necessarily the most valuable.
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The usual Ermakov systems have! and 9 free of r2 iJ. Note that the system

(8.5.8) is not strictly equivalent to (8.5.7) and another equation of like form

since inversion of the latter two to give the system (8.5.8) assumes that the

implicit function theorem applies more than locally if one is to have (8.5.8)

represent a meaningful classical system.

In order to make the structure of these equations more transparent we in­

troduce new time T defined by

(8.5.9)

and the inverse radial distance X = 1fr. If derivatives with respect to Tare

denoted by', " etc, the system (8.5.8) becomes

x" + [0'2 + !(O, O')]X = 0

Oil = g(0,0').

(8.5.10)

(8.5.11)

Eq (8.5.11) is effectively a first order equation for 0' with 0 as dependent

variable. In terms of the Lie theory for the integration of a first order ordinary

differential equation an integrating factor can be found such that

(0 0') = _O,aM(O,O') jaM(O,O')
9 , ao ao'

so that (8.5.11) integrates to

M(O, 0') = h,

(8.5.12)

(8.5.13)

where h is a constant34
• Given the structure assumed for 9 the implicit function

theorem35 guarantees inversion36 of (8.5.13) to

0' = N(O, h)

34Note: We are here concerned with principle. In practice there may be technical

difficulties!

35Brand (1955) [23, p 165].

36At least locally.
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so that

J
dO

7 - 70 = N (a, h)"

This can also be inverted37 to give

a= J( 7, h, 70)'

(8.5.14)

(8.5.15)

Now that ais known, (8.5.10) becomes the differential equation in (X,7) space

of the classical time-dependent linear oscillator if the coefficient of Xis positive,

the free particle if zero and the linear repulsor if negative. We remark that the

new time defined in (8.5.9) is almost familiar except that r(t) is used instead

of p(t)38. Another way to look at the definition of new time is as

7 =Jr-2 dt =Jr-21~dO =J(r 20t 1dO (8.5.16)

so that 7 is the measure of time in which the time rate of change of angle is

the angular momentum. This angular momentum interpretation and resulting

oscillator equation (8.5.10) remind one of the interpretation of the Pinney

equation [172] by Eliezer and Gray [36].

Eq (8.5.8) reduces to that for a Newton-Cotes spiral in the case f = constant

and 9 = 039 • The qualitative features of a spiral are maintained for the gen­

eralized Ermakov system in the cases that (i) 0'2 + f( a, a') < 0 since X(7) is

unbounded and so r ~ 0 and (ii) 0'2 + f(O,O') > 0 since X(7) passes through

zero and so r ~ 00. However, it is possible to obtain closed orbits40 •

Some general comments are in order. The reduction of the nonlinear equa­

tion (8.5.8) to that of the linear time-dependent oscillator combines the method

of Whittaker [209, p 83] and the introduction of the 'new time' 7. In the case

that the angular momentum L (:= r20) is conserved, the new time is just La

which Whittaker uses. In the general case the procedure adopted here is very

similar to that found in Athorne et al [14].

37Again locally.

38Leach et a/ (1988) [115] and Lewis and Leach (1982) [130].

39Whittaker (1944) [209].

40See Govinder and Leach (1993) [65].

171



8.6 Ermakov Systems in Three Dimensions

8.6.1 Introduction

In this section we extend the consideration of systems of differential equations

invariant under 81(2, R) to three dimensions41
• The generalisation of the con­

siderations of the previous section to higher dimensions is trivial. However, we

find that the imposition of rotational invariance by making the invariance al­

gebra 81(2, R) E9 80(3) yields an interesting class of differential equations which

includes the classical equation for the magnetic monopole. The invariance of

this equation under the elements of the algebra 81(2, R) E9 80(3) has already

been reported42 • The monopole is also known to possess a conserved vector43
•

We shall see that the general system to be discussed here possesses three such

vectors and that the solution of the system of equations reduces to the deter­

mination of the three Poincare vectors and the solution of the radial equation

corresponding to (8.5.10). We should point out that in the case of the monopole

the vector usually referred to as the Poincare vector is obtained by elementary

vectorial manipulation of the equation of motion. The derivation of the two

other vectors which, because of their nature, we also term Poincare vectors

is by no means transparent even in this simple case. We also consider weak

generalized Ermakov systems in three dimensions.

8.6.2 Equations invariant under 81(2, R) EB 80(3).

In spherical polar coordinates the equation invariant under the representation

(8.5.5) of 8£(2, R) is

(8.6.1)

41Govinder et a/ (1993) [64].

42Moreira et a/ (1985) [161]. They preferred to use the isomorphic algebra 80(2, 1) EEl 80(3).

43Poincare (1896) [173].
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To make reasonable sense as a system of second order differential equations in

three dependent variables we need a system of three equations of the form44

r 3 r: = !((), 4>, r2iJ, r2~)

r4jj +2r3riJ = g((}, 4>, r2iJ, r2~)

r4~ + 2r3r~ = h((}, 4>, r2iJ, r2~).

(8.6.3)

(8.6.4)

(8.6.5)

In terms of the new time T and inverse radial distance X eqq (8.6.3 - 8.6.5)

are

x" = - !((), 4>, ()', 4>')X

()" = g((}, 4>, ()', 4>')

1jJ" = h((), 4>, ()', 4>').

(8.6.6)

(8.6.7)

(8.6.8)

In contrast to the pair of equations (8.5.10) and (8.5.11) for which (8.5.11)

was 'in principle' integrable and so (8.5.10) reduced to the time-dependent

oscillator, the situation with the system (8.6.6 - 8.6.8) is much more complex.

Given () and 4> as functions of T, (8.6.6) is straightforward enough as it is linear

InX·

We confine our attention to systems for which, in addition to invariance

under 81(2, R), there is also rotational invariance, ie, the system of equations

is also invariant under the action of the generators of 80(3), viz.

(8.6.9)

440ne could conceive of variations on this. By way of example - not definitive nor intended

to be exclusive - (8.6.5) could be replaced by

2' 2'H(O, <P, r (), r <p, I) = 0, (8.6.2)

where I is a parameter which may be taken to be the value of a first integral. If I has a

particular value, 1o, in which case it could just as well be omitted from (8.6.2), we are in the

realm of configurational invariants. To keep the discussion concise we do not digress into

this specialized area. The reader is referred to Sarlet et at (1985) [195] for a discussion of the

relationship between systems of second order equations, first integrals and configurational

invariants.
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a a
Gs = sin </> aa + cot acos </> a</>

a a' ",a
G6 = cos </> ao - cot sm If' a</> .

(8.6.10)

(8.6.11)

We add this constraint from considerations of possible physical applications.

We find that the most general system of the form (8.6.3 - 8.6.5) invariant under

81(2, R) Efl 80(3) is

r3r= A1(L) (8.6.12)

r4{j +2r3 rO = r4~2sinOcosO + B(L)r20- C(L)r2~sinO (8.6.13)

r4~ +2r3r~ = -2r4iJ~cotO +~O [B(L)r2~sinO +C(L)r2iJ] ,
sm

(8.6.14)

where All Band C are arbitrary functions of their argument, L, and

(8.6.15)

is the square of the magnitude of the angular momentum. The three equations

(8.6.12 - 8.6.14) may be written in the compact vectorial form

r = :3 {A(L)r + B(L)w + C(L)i} , (8.6.16)

where we have replaced At(L) by A(L) + L2
• In an obvious notation rand

i are the unit vectors in the direction of the radius vector and the angular

momentum vector L (:= r x r). The unit vector w:= i x r is in the direction

of the rate of change of r and is the natural generalization of {) in plane polar

coordinates.

In terms of the definition of generalized and weak generalized Ermakov sys­

tems (8.6.3 - 8.6.5) represents the three-dimensional form of the generalized

Ermakov system. The addition of some extra term to (8.6.3) would be in

the spirit of the meaning of weak generalized Ermakov system as given by

Leach[112]. However, two points should be made. The first is that under

suitable (for example analyticity) conditions (8.6.3 - 8.6.5) have integrals, ie
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constants of integration, defined over some local neighbourhood. The exis­

tence of one or more global first integrals for (8.6.4), (8.6.5) or a combination

of (8.6.4) and (8.6.5) would require some constraints on the functions 9 and

h. The second is that we have chosen the radial equation to be the one which

leads to the symmetry breaking. It made sense in two dimensions as we were

guaranteed the 'in principle' existence of an Ermakov-Lewis invariant provided

that the system maintained sl(2, R) symmetry in the angular equation. This of

course is lost in the general three-dimensional case and further thought needs

to be given to a correct terminology.

To conclude this subsection we make some observations about (8.6.16). For

Band C zero and A(L) a constant (L is conserved) we have the equation for

a Newton-Cotes spiral45 which, in essence, is the free particle in the plane

with an excess or deficit of angular momentum. For A and B zero and C(L)

proportional to L (= AL) a constant46 we have the classic equation of a particle

moving in the field of a magnetic monopole. In this case it is well-known that

there exists the first integral

P = L+ Ar (8.6.17)

and the motion is on the surface of a cone of semi-vertex angle given by

arccos(C/ P L)47. It is only more recently that Moreira et al [161] demonstrated

that the algebra was so(2, 1) E9 so(3) 48. We note that the classical monopole is

a Hamiltonian system and the components of the Poincare vector possess the

algebra so(3) under the operation of taking the Poisson Bracket49•

45Whittaker (1944) [209, P 83].

46L is again conserved.

47Poincare (1896) [173].

48Which is isomorphic to 8£(2, R) EI1 80(3). We prefer this version of the algebra since the

8£(2, R) part has no real semblance to physical rotation.

49Mladenov (1988) [159].
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8.6.3 Poincare vector for (8.6.16)

The combination of the existence of the Poincare vector, (8.6.17), and the

symmetry algebra 8£(2, R) EB 80(3) for the classical monopole equation

.. C(L )L
r=

r 3
(8.6.18)

suggests that it may be fruitful to look for a similar vector for the general

equation (8.6.16). We assume the existence of a vector of Poincare type given

by

P:= Ir+ Jw + J{L, (8.6.19)

where I, J and J{ are functions to be determined. Requiring that P be zero

when (8.6.16) is satisfied leads to the system of equations

d
dt

I

J

J{

-2=r

o
-L

o

L

o
-C/L

o
C/L

o

I

J

J{

(8.6.20)

which, in terms of new time T, is

I

J

J{

o
-L

o

L

o
-C/L

o
C/L

o

I

J

J{

(8.6.21 )

Equations (8.6.21) have a geometrical interpretation. They are the Serret­

Frenet formulre50 associated with a curve of curvature L and torsion C(L)/L,

parametrized by T. An orthonormal triad of solution vectors represents the

principle triad of the curve, consisting of tangent, normal and binormal vectors.

As an aside we note that this approach is not feasible for the two dimensional

system of equations since then f and 0are multiples of iJ and each multiple is

a property of the geometry of the plane and is independent of the mechanics.

The only way to make progress would be to specify the rand iJ dependence in

50Struik (1961) [201, p 18].
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P. This has not been necessary in the present case because the dynamics is

introduced via w.
The scalar product of (8.6.16) with r is

r - r(iP + ~2 sin2 0) = r-3 A(L)

which in terms of X and T is

x" +{L2 + A(L) } X =o.

The vector product of r with (8.6.16) gives

so that

or L' = B(L)

which gives the first integral

J dL
M = T - B(L)'

(8.6.22)

(8.6.23)

(8.6.24)

(8.6.25)

(8.6.26)

(8.6.27)

This can be interpreted as an equation defining T in terms of L or L in terms of

T. Naturally, if B is zero, the magnitude of the angular momentum is constant.

By virtue of (8.6.27), (8.6.23) becomes the by now familiar time-dependent

oscillator which characterizes the radial equation for generalized Ermakov sys­

tems expressed in the appropriate coordinates.

In like fashion (8.6.21) is now a three-dimensional nonautonomous first order

system of differential equations. Its structure is suggestive of a time-dependent

oscillator written as a system of first order equations. However, the analogy

only helps for a constant 1. Without going into the details of the method of

solution of (8.6.21) one comment is appropriate. As a three-dimensional first

order linear system it has three linearly independent solutions. This means
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that there are in fact three 'Poincare' vectors51
• We, of course, would expect

to find three conserved vectors as the form posited for P spans the space52
•

By construction P is a constant vector and I, J and [{ are not independent

when the magnitude of P is specified53
• Only two dependent variables are

needed and we introduce the transformation54

e= 1+ iJ
1- [{

7]=
1+ iJ
1 +[{. (8.6.28)

(8.6.29)

Together with the normalisation of P, (8.6.28) leads to a common differential

equation for eand 7] which is of Riccati form, viz.

I' iL ( 2)w + zLw + 2C 1 - w = 0,

where w stands for eand 7] in turn. The transformation

2iCy'
w=--

Ly

yields the linear second order equation

" (Cl L' .) I L
2

Y + - - - + zL y +-y = 0C L 4C2

which is trivially related via

y = (~) 1/2 ue- i / 2 JL

to the standard time-dependent harmonic oscillator (TDHO)

u" + { ~ (~ - f +iL) 2 - ~ (~ - f + iL)' + 4~2 } U =O.

(8.6.30)

(8.6.31)

(8.6.32)

(8.6.33)

51Some examples are given in Govinder et a/ (1993) [64].
52Apart from exceptional points where degeneracy occurs. One is reminded of the work

of Fradkin (1965) [48] and (1967) [49] and Yoshida (1987) [215] and (1989) [216] on the exis­

tence of Laplace-Runge-Lenz vectors for central force and other three-dimensional problems.

There does seem to be more of an element of reality in the present context compared with

their attempts at complete generality. The main problem is that their results are very much

local and useful results need to be global, cfBacry (1991) [15].
53In the case of the single vector there is not much point to it, but, when there are three

vectors spanning the space, there is no small appeal in specifying unit vectors.
54The so-called Weierstrass transformation of Forsyth (1904) [44, Part IV, p 280]; see also

Kamke (1971) [84, p 618, 8.50].
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Given the solution for u, ~ and 7J follow through (8.6.30) and (8.6.32). The

components of P are given by

]{=~+7J.
~-7J

(8.6.34)

Needless to remark the tricky business is always the solution of the TDHO

equation (8.6.33).

8.6.4 Some 'weak' considerations

Leach [112] proposed that systems with Ermakov invariants which did not

possess 81(2, R) symmetry should be termed 'weak'. Athorne [12], although

not disagreeing with the distinction, noted that other classifications - such as

Hamiltonian and non-Hamiltonian - were also important. Indeed, the point

of that letter was that those (non-Hamiltonian) systems described, which had

only one global invariant, could be understood as 'linear extensions' of an

underlying Hamiltonian system with appropriate choice of time-variable. Here

we wish to consider a few examples of systems for which only the angular

equations possess 8£(2, R) symmetry. We maintain 80(3) symmetry overall so

that the radial equation has the form

r - L: = ~A(L) + f(r, L),
r r

(8.6.35)

where f(r, L) is the symmetry-breaking term. The analysis of the angular

equations is the same which means that 'in principle' we have L = L(T) and

the three Poincare vectors. In terms of the inverse radial variable X and new

time (8.6.35) is

(8.6.36)

When f is zero, (8.6.36), as the equation for the TDHO, is transformed to

autonomous form by the transformation

J= ~
p
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where p is a solution of the Pinney equation [172]

(8.6.38)

and L = L{T) through (8.6.27). One could hope that for some functions f that

the transformation (8.6.37) would render it autonomous. For this to happen it

is necessary for p = g{L) and the argument of f to be X-1g{L), where 9 is a

solution to a Pinney-type equation with L as independent variable containing

A{L) and B{L).

8.6.5 Some open questions

In the case that (8.6.16) has a Hamiltonian representation the Poincare vec­

tors will have the Lie algebra so(3) under the operation of taking the Poisson

Bracket. The question is under what circumstances does it have a Hamiltonian?

One would not expect the usual Poisson Bracket relation [zJl' ZII]PB = JJlIl S5,

but more the monopole type of relation, ie, one should seek an H : q= [q, H]PB

and p = [p, H]PB lead to the equations of motion). There are two cases of

(8.6.16) to consider: (i) when (8.6.16) is itself Hamiltonian, and (ii) when

(8.6.16) possesses a global invariant which is not, however, a Hamiltonian func­

tion for the system. In the latter case the possibility arises that this invariant

is a Hamiltonian function for a subsystem on an appropriate phase spaceS6 •

55 Zi =qi, Zn+i =Pi and J is the 2n x 2n symplectic matrix.

56Athorne (1991) [13].
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8.7 Integrals with an Infinite Number ofSym-

metries

8.7.1 Introduction

We have seen that the study of the equation of motion for the harmonic oscil­

lator with variable frequency, viz.

(8.7.1)

is part and parcel of the study of Ermakov systems and their generalisations

which have the form

x+ w2(t)x = ~!(y/x)
x

fj +w2(t)y = ~g(y/x),
y

(8.7.2a)

(8.7.2b)

where! and 9 are arbitrary functions of their argument. One can obtain a first

integral for the system (8.7.2) in a manner similar to that used by Ermakov by

eliminating the w2 term and multiplying by an integrating factor, viz.

xy - xy.

The first integral obtained is

(8.7.3)

Leach [112] showed that the presence of the w 2 terms in (8.7.2) is misleading.

Firstly the transformation

together with (8.4.2), transforms (8.7.2) to

.. 1 (Y)
X = X3! X

- 1 (Y)Y = y39 X .
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(8.7.5)

Secondly, the w2 can be replaced by anythin/7 and the terms can still be

eliminated giving

.... x (Y) Yf(Y)xy - xy = -9 - - - -.
y3 x x x

It is only recently that the Lie algebra of the Ermakov system (8.7.2) was

calculated as 8£(2, R)58. However, in that paper, Leach also stated that the

Lie algebra of the Ermakov-Lewis invariant was also 8£(2, R). That was mis­

leading and in this section we set the record straight. We also find the general

second order ordinary differential equation invariant under the Lie algebra of

the Ermakov-Lewis invariant. Finally we provide the remaining three first

integrals for Ermakov systems.

8.7.2 Lie algebra of Ermakov systems

We use the standard Lie method to analyse what we call the compact form of

the Ermakov system (8.7.5) by requiring

(8.7.6)

(8.7.8)

(8.7.7)

where

F - .. x (Y) Yf (Y)=xy - xy - -9 - +- - = o.
y3 X X x

After a lengthy calculation we find that the equation (8.7.7) has the symmetry

G al. a 1. a
=a at + 2ax ax + 2ay ay .

As a is an arbitrary function of time, (8.7.7) admits an infinite dimensional Lie

algebra59 •

Recalling that (8.7.7) was obtained by eliminating the w2(t) terms from the

equations

x+w
2
(t)x = :31 (;) (8.7.9a)

---=-=------------
57Ray (1980) [181]; Ray and Reid (1980) [184]; Leach (1991) [112] and Goedert (1989)

[51].

58Leach (1991) [112].

59Thereby making it a somewhat larger class than that reported by Leach (1991) [112].
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(8.7.9b)

we examine these equations for invariance under the symmetry (8.7.8). We do

this by applying the second extension of G (8.7.8) to (8.7.9) and obtain that

a(t) must be a solution of the equation

(8.7.10)

the third order form of the Ermakov-Pinney equation60
• As the w2 can be

transformed away, we can take it to be zero without any loss of generality to

obtain

'it" = o.

Hence the system (8.7.9) (with w2 = 0) has the symmetries

o
Gl =-

ot
000

G2 = 2t- +x- +y-
ot ox oy

20 0 0
G3 = t - + tx- + ty-,

ot ox oy

(8.7.11a)

(8.7.11b)

(8.7.11c)

which is just the Lie algebra 8£(2, R) as reported by Leach [112]

The above development would have been greatly simplified had we used the

plane polar form of (8.7.9), viz.

r _ riP = F((})
r 3

().. 2 .(). G( ())
r + r = --.

r 3

(8.7.12a)

(8.7.12b)

The change to plane polar coordinates is suggested by the fact that the Er­

makov system has an integral which is of angular momentum type6l . The

Ermakov-Lewis invariant is obtained from the angular component of (8.7.12)

60Leach (1993) [113].

61Leach (1991) [112].
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and is

I = ~ (r20) 2 - JG(O)d()

= ~ [p~ +F(())J (8.7.13)

if the system is Hamiltonian.

We proceed with our analysis in this coordinate system and rewrite our

symmetries (8.7.11) as

a
G1 =­

at
a a

G2 = 2t- +r-
at ar

2a a
G3 = t at + tr ar .

(8.7.14a)

(8.7.14b)

(8.7.14c)

8.7.3 Equations invariant under a generalised similar­

ity symmetry

We now find the class of general second order ordinary differential equations

invariant under the symmetry

G a l' a=a- + -ar­at 2 ar
(8.7.15)

of the Ermakov-Lewis invariant (the so-called 'inverse problem'). The proce­

dure is the exact opposite of the standard Lie method. We require that the

second extension of (8.7.15), viz.

G[2] a l' a (1 .. 1. .) a .()' a= a- + -ar- + -ar - -ar - - a -.at 2 ar 2 2 ar a()

(
1 ... 3 ...) a ( . .. .. .) a+ - a r - -ar - + -2a() - a() --=
2 2 ar a()

act on some arbitrary function

!(t,r,(),r,O,r,O) = O.

(8.7.16)

(8.7.17)

This results in a partial differential equation with associated Lagrange's system

dt dr d() r () :,: ()
- = -1'- = -0 = 1" 1" =-. = -.. '. (8.7.18)a 2"ar -2ar - -ar -a() 1 ... 3' .. -2a() - aO

2 2" a r - 2"ar
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(We keep the dBIO to remind us that Bis a characteristic.) The system (8.7.18)

requires that (8.7.17) have the form

If we set
_ 2

a - p ,

we have

where

u = rip,

!(u,v,w,x,y,z) = 0,

v=B

(8.7.20)

w = pr - pr,

and

However, the original equation (8.7.5) that gave rise to the symmetry (8.7.15)

is autonomous. If we impose this condition on (8.7.20), becomes

(8.7.21)

This is just the functional form of the general autonomous second order ordi­

nary differential equation invariant under the Lie algebra 8£(2, R)62.

8.7.4 First integrals for the Ermakov system

We have obtained a restriction on a(t) in (8.7.8) by requiring that (8.7.7) and

(8.7.9) be invariant under the same symmetries. We now investigate the possi­

bilities of restrictions imposed on a(t) by the the alternative method of finding

the first integrals (and in so doing attempt to find all (four) first integrals for

(8.7.12)).

62Govinder and Leach (1993) [65].
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(8.7.22)

We calculate the first integrals for an nth order system having the symmetry

G by taking the (n - l)th extension of G and applying it to some arbitrary

function. In this way we obtain the functional form of the first integrals and

by requiring that its total derivative be zero we obtain the first integrals. For

our problem we require the first extension of our symmetry (8.7.8), viz.

G[I) a I' a 0 a ( I .. I .. ) a . ()' a= a- + -ar- + - + -ar - -ar - - a -.
at 2 ar a() 2 2 aT a()

to operate on the function

!(t, r, (), 1', 0).

Proceeding in a manner similar to that in §8.5 we find that the first integrals

have the functional form

[= !(u,v,w,x),

where u, v, wand x are the characteristics

I I I
U = ra- 2, v = (), w = 1'a2 - !ita-2r, x = r20.

The requirement that

[=0

results in a partial differential equation with associated Lagrange's system

du dv dw dx

w/a = x/r2 = a I / 2r - !a-I / 2(ir + ~a-3/2a2r = G(v )/r2'

where we have substituted for ij from (8.7.12). Using the second and fourth

terms we obtain one first integral as

(8.7.23)

(8.7.24)

which is just our Ermakov-Lewis invariant (8.7.13). This implies that (8.7.23)

has an infinite-dimensional Lie algebra (as expected) as no restriction on a is

imposed. It is the calculation of another first integral (using the first and third

terms of (8.7.22))

J = a (! (1'2 + r2( 2) _ JG(())) _ !arr + !r2(i
. 2 r 2 2 4
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that imposes a restriction on a, viz.

(a1/ 2)" = ~
a3/ 2

~ 'ii = O.

Hence

(Note that this development is only possible if the system is Hamiltonian (ie

F = -2 JG). If we set

To - r02 = F(O) = ~ (-2JG(O)) = _av
r 3 r 3 ar

.. . 1 1av
rO + 2rO = -G(O) = -"--,

r 3 r ao
we find the Hamiltonian to be

(8.7.25a)

(8.7.25b)

(8.7.26)

We pause for a moment to consider the physical interpretations of both the

Ermakov-Lewis invariant (8.7.23) and the Hamiltonian (8.7.26). The former

has always been considered as an expression for the energy of a particle moving

in a time-dependent linear field63
. However, if we consider it to be (more

correctly) the equation for the angular momentum of the particle, we realise

that we need to rewrite it as

I' = 21 = (r20f - 2JG(O)dO. (8.7.27)

63Loosely speaking. Another way to look at it is as follows. What one means by an energy

integral when the particulate energy is not conserved needs careful consideration. The most

satisfactory explanation, in the understanding of the present writer, is that it does represent

the conservation of energy in a particular time-space in which the time variation of the

frequency is zero. One could ask, 'Will the argument ever cease?'
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(Later calculations also bear this out.) Our Hamiltonian can be rewritten as

H' H ·2 l'=2 =r +-
r 2

(8.7.28)

(However, we do not call H' the 'new' Hamiltonian.) which is just the Hamil­

tonian for the Newton-Cotes spira164
• Replacing J by ~J' gives

J' ; a [(':' +r'O') - 2~,G] _ar': + ~i.ir'

= 2aH - arr + ~iir2. (8.7.29)

The expression for our third first integral {obtained from the first and second

terms of (8.7.22)) is

1 . J r
2 ja - 21 J 1/{ = --arcsm - -dt2v'2i {r2ja)JJ2-2Ia r2 '

which we can rewrite as

1 J'r2 - 2aI' 1/{' = 2/{ = fTj"arcsin - 2J-dt.
V I' r2J J'2 - 4aI' r 2

(8.7.30)

(8.7.31)

Note that both J' and /(' depend on a(t). We therefore have seven first inte­

grals, viz.

l' = (r2li) 2
- 2JG{O)dO

J~ = tH' - rr

1.(' 1 . ( 21' ) J 1
l' 1 = fTj"arcsm 1 - -- - 2 -dt

v l' r2J{ r2

64Whittaker (1944) [209, p 83].
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(8.7.32)

(8.7.33)

(8.7.34)

(8.7.35)

(8.7.36)



(8.7.38)

(8.7.37)f{~ = ~arcsin [~ (J~ - 2I~t)] - 2J \dt
y I' J~J~ r r

f{' = _l-arcsin (1 - 2I't2
) - 2J~dt.

3 yYi r2J~ r 2

(Note that J~ is twice the Hamiltonian.) However, we can relate three of these

first integrals to the others in the following manner:

1'2 + I'1
3
' _ 2 (8.7.39)

J~ ,

(8.7.40)

(8.7.41)
, , 17: . 2JTiJ~

f{3 = f{t - Y I'arcsm J~ J~ .

Thus the system (8.7.12) possesses the four independent first integrals I', J~, J~

and f{~ where I' has an infinite-dimensional Lie algebra given by (8.7.8), J~,

and f{~ have the symmetry a/at and J~ has the symmetry 2ta/at +ra/ar. We

remark that while there have been other attempts to find first integrals, other

than the Ermakov-Lewis invariant, for (8.7.12) (or its cartesian equivalent)65,

these efforts impose artificial constraints on the system which the above ap­

proach does not.

8.7.5 Conclusion

The fact that the Ermakov-Lewis invariant has an infinite-dimensional Lie

algebra is quite peculiar. The reason for this is not obvious, but it may be due

to the presence of the Wronskian in the expression for the integral which is quite

obvious when the cartesian form is used.. This is just conjecture and requires

further investigation that includes other first integrals of angular momentum

type.

The search for first integrals was confined to Hamiltonian Ermakov systems.

This was suggested by the fact that the original Ermakov system (eqq (8.4.1)

65Ray and Reid (1979) [182]; Ray (1980) [180]; Goedert (1989) [51].
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and (8.4.2)) was Hamiltonian. To persist beyond Hamiltonian systems when

the algebra is the same would be to depart from the algebraic, in contrast to

integral, theme of this work.
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Epilogue

In a subject in which one is actively engaged in research and which itself is

evolving through the efforts of dedicated savants it is impossible to close off a

discussion with any air of finality. Even as these pages were being written new

developments occurred.

There are some exciting current developments. The use of contact symme­

tries as the norm for third order equations has been promoted in a recent study

by Abraham-Shrauner et al (1994) [5] in which the maximal algebra of contact

symmetries has been shown to be sp(4). This can be possessed by equations

which are generically nonlinear when regarded in the light of point symmetries

and point transformations. Contact symmetries can be used for linearisation

purposes. Hidden symmetries and their nonlocal or contact manifestations

have been used for the reduction of order by Abraham-Shrauner et al (1995)

[6] and a systematic approach to their determination for sodes with one point

symmetry has been developed by Govinder and Leach (1995) [69]. One looks

for further interesting developments in this area.

A theme which has lurked on the sidelines of this work has been the connec­

tion between the Painleve Property and Lie symmetries. It has been observed

by Lemmer and Leach (1993) [122] that a class of sodes with two point sym­

metries (and thereby integrable) dependent upon a parameter possesses the

Painleve Property only for certain values of the parameter. In another prob­

lem Richard and Leach (1994) [187] observed that there occurred an increase

in the number of point symmetries to two and the possession of the Painleve

Property when a parameter took a precise value. Govinder and Leach (1994)
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[69] have reported that an equation with only one point symmetry possessed

the Painleve Property. It was found to possess a 'useful' nonlocal symmetry as

well. These are simply suggestive, but a connection between the number of Lie

symmetries of an equation and the possession of the Painleve Property may

exist. It is evident that the possession of a suitable number of point symme­

tries is not the answer. The actual criteria - assuming the correctness of the

statement - remain an open question. That it may not be a valid statement is

suggested by recent results of Hua et al (1994) [81] in which possession of the

Painleve Property was not necessary for the existence of an invariant in certain

Lotka-Volterra and Quadratic Systems or, indeed, integrability in particular

cases. The Lie symmetries of these systems have still to be identified.

An area which is in a poor state of development and lack of current atten­

tion is that of systems of equations. The meagre results of §3.7 call out for

a systematic and concerted approach to the classification of linear systems by

means of their algebras and particularly the fundamental criteria for a system

to be linear. We have referred to Marc Feix' comment that even partiallin­

earisability would be a boon to the world of large scale computation. In a sense

a related subjeet is that of the connection between the symmetries of systems

of equations and those of higher order equations from which the systems are

derived or to which the systems are reduced. Here we have referred only to

point symmetries. The world of nonlocal symmetries of systems of ordinary

differential equations has not begun to be explored.

In terms of expanding approaches to the determination of symmetries the

papers of Torrisi et al (1994) on equivalence symmetries [204, 205] and on the

elucidation [206] of the mysteries of the potential symmetries as expounded by

Bluman and Reid (1988) [22] display a delicacy which is a joy to behold.

Karlovassi

February

1995
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