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Abstract 
 

Phase equilibrium data is vital for designing chemical separation equipment.  

Traditionally, such data is obtained through laboratory experiments by sampling and 

analysing each phase of an equilibrated chemical mixture.  An alternative means of 

generating such data is via molecular simulations, which also gives insight into the 

microscopic structure of the phases.  This project was undertaken due to the lack of work 

on molecular simulations in predicting vapour-liquid-liquid equilibrium (VLLE). 

 

Gibbs Ensemble Monte Carlo molecular simulations were performed in the isochoric-

isothermal (NVT) and isobaric-isothermal (NVT) ensembles to determine the ability and 

limitations of the Transferable Potentials for Phase Equilibria (United-Atom) and Extended 

Simple Point Charge (SPC-E) force fields in predicting three-phase fluid equilibrium for 

two binary and three ternary industrially relevant mixtures: n-hexane/water (1), 

ethane/ethanol (2), methane/n-heptane/water (3), n-butane/1-butene/water (4) and n-

hexane/ethanol/water (5). 

 

The NPT ensemble proved inadequate for predicting VLLE for binary mixtures, as for 

both binary mixtures (1 and 2), the simulations reverted to two phases.  This was due in 

part to the unlike-pair interactions between pseudoatoms in different molecules not being 

accurately predicted at the specified simulation conditions to reproduce experimental 

mixture densities and vapour pressures.  It was also due to the sensitivity of the NPT 

ensemble to perturbations which probably removed the system from its three-phase 

trajectory in Gibbs phase space, since specifying even the correct pressure corresponding to 

the potential models was unsuccessful in obtaining stable VLLE.  Furthermore, ternary 

VLLE could not be obtained for a mixture exhibiting an extremely narrow three-phase 

region (4) and simulations for a miscible, non-ideal mixture (5) gave mole fractions that 

were in poor agreement with experiment.  Good results were obtained for mixture 3 which 

exhibits limited mutual solubilities and a large three phase region. 
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The NVT ensemble overcame the shortcomings of the NPT ensemble by producing 

three stable phases for the binary mixtures, revealing that the three-phase pressures were 

shifted by as much as 12%.  Also, the narrow three-phase region of mixture 4 was 

overcome by adjusting the total system volume, producing three stable phases. 

 

These were also the first successful binary VLLE simulations involving complex 

polyatomic molecules. 
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1. Introduction 

 

The acquisition of phase equilibrium data for chemical systems is of vital importance in 

the chemical industry for the various chemical separation processes that are used, for 

example, distillation, stripping and solvent extraction.  The most common method for 

acquiring such data is through laboratory experimentation, in which the data is generated 

by sampling the different phases and then analyzing the composition of each phase, usually 

through an analytical technique such as gas chromatography.  However, the use of 

mechanical equipment in the laboratory is limited, especially in situations where one 

wishes to obtain data at high pressures or high temperatures since the material of 

construction may not endure such pressures or temperatures.  An attractive, alternative 

method in the form of molecular simulation has been making steady progress since 1953 

when Metropolis et al. (1953) performed the first liquid Monte Carlo simulations at the Los 

Alamos Laboratory, using only computers.  Since then, a large number of studies have been 

undertaken to develop the molecular simulation of phase equilibrium (and other molecular 

phenomena) so as to eventually drastically reduce the need for conventional laboratory 

experimentation.  These studies have been greatly aided by the rapid development and 

advancement of cheaper yet faster computational power, and nowadays, a simple computer 

cluster can be built from off–the–shelf components in conjunction with free open–source 

software. 

 

This work, titled “Molecular Simulation of Vapour–Liquid–Liquid Equilibrium”, 

was carried out at the University of KwaZulu-Natal (South Africa) and the University 

College of Borås (Sweden) under the supervision of Professor D. Ramjugernath and 

Professor K. Bolton, respectively.  There is a wealth of literature on the molecular 

simulation of vapour–liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE) of 

binary and ternary mixtures (see Panagiotopoulos (1989); Smit et al. (1995); Potter et al. 

(1997); Nath et al. (1998); Siepmann et al. (1997); Martin and Siepmann (1999); Potoff  

and Siepmann (2001); Chen et al. (2001); Stubbs et al. (2001); Nath (2003) and Khare et 

al. (2004), amongst others).  There are, however, very few studies which have explicitly 
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examined the vapour–liquid–liquid equilibrium (VLLE) behaviour of chemical mixtures.  

Thus, it was the purpose of this work to exclusively examine the VLLE of binary and 

ternary mixtures, containing industrially relevant compounds – simple, unbranched alkanes, 

alkenes and alcohols were investigated, along with water, in a qualitative manner.  

 

This dissertation is structured as follows:  In Chapter 2, a brief literature review is 

presented detailing previous three-phase simulation studies.  In Chapter 3, the basic link 

between the behaviour of matter at the microscopic level and the consequent phenomena 

observed in the macroscopic world of thermodynamics, namely, statistical mechanics is 

discussed.  Thereafter, a discussion ensues in Chapter 4 on the various statistical ensembles 

that are available.  Chapter 5 presents the various methods and force field models employed 

in modeling the interaction energies of the molecular systems of interest, while Chapter 6 

gives insight into the Gibbs ensemble method, which formed the crux of the simulations 

that were carried out.  Chapter 7 discusses some of the modern standard molecular 

simulation techniques that are applied to polyatomic molecular systems, while Chapter 8 

reviews the computation resources that were used in this study.  Chapter 9 provides the 

details of the simulations and the consequent results and Chapter 10 provides an analysis of 

the findings of this work.  Finally, Chapter 11 presents the conclusions resulting from the 

study along with a few recommendations for related future work. 
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2. Literature Review 
 
While there has been numerous simulation studies concerning the two-phase equilibrium of 

various chemical mixtures, there is a scarcity in the literature of three-phase fluid 

equilibrium work. 

 

Lopes and Tildesley (1997) proposed a method that extended the Gibbs ensemble 

simulation technique to multiphase1 equilibrium for simple model systems in the canonical 

ensemble.  Using simple monatomic Lennard-Jones beads all having the same size 

parameter, σ, they demonstrated for several simple model systems that attaining three 

phases was indeed possible.  Phase diagrams for two-component, three-phase and three-

component, three- and four-phase mixtures were generated by varying only the 

compositions of each mixture and energy parameters (ε), for each different bead type. 

 

Using the method proposed by Lopes and Tildesley (1997), Kristof et al. (2002) 

investigated the high-pressure phase equilibrium of a ternary mixture containing carbon 

dioxide, methanol and water in the isobaric-isothermal (NPT) ensemble.  Site-site potential 

models of the Lennard-Jones 6-12 type to model intra- and intermolecular interactions 

along with Coulomb potentials to represent the electrostatic contribution to the total energy 

were used; the Elementary Physical Models 2 (EPM2) force field (Harris and Yung, 1995) 

was used to represent carbon dioxide, a model proposed by van Leeuwen and Smith (1995) 

to represent methanol, and the Transferable Intermolecular Potentials – 4 Point (TIP4P) 

force field along with the Simple Point Charge (SPC) potential model were used in separate 

simulations to model water interactions.  The multiphase Gibbs ensemble Monte Carlo 

method was used to test regions where three phases were observed experimentally.  It was 

observed that the simulation boxes approached three distinct phases at higher pressures 

than the experimental pressures. 

Chen et al. (2002) investigated the adsorption, surface tension and molecular ordering at 

the vapour-liquid interfaces of mutually saturated 1-butanol/water mixtures in the NVT 

                                                   
1 In this context, ‘multiphase’ means ‘greater than two’ since the original Gibbs ensemble method, proposed 
by Panagiotopoulos, used two simulation boxes. 
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ensemble; here, liquid boxes were elongated along one axis to create vapour-liquid 

interfaces.  The TIP4P force field was used to represent water interactions and 1-butanol 

was represented by the united-atom variant of the Transferable Potentials for Phase 

Equilibria (TraPPE-UA) family of force fields.  Strictly speaking, this was not a three-

phase fluid equilibrium simulation per se, since the ‘vapour’ phase simulation box was 

merely used to facilitate the transfer of molecules between the two liquid phases since this 

‘avoids concurrent energy penalties associated with removal and insertion of a 

molecule from/into liquid phases’ (Chen et al., 2002). 

 

Zhang and Siepmann (2004) used Configurational-Bias Monte Carlo simulations in the 

Gibbs ensemble to investigate the vapour-liquid-liquid equilibria and microscopic 

structures for two ternary perfluoroalkane/alkane/carbon dioxde mixtures using the 

TraPPE-UA force field; n-decane/n-perfluorohexane/carbon dioxide and n-hexane/n-

perfluordecane/carbon dioxide were studied.  However, prior to the three-phase 

simulations, special mixing parameters for the unlike interactions between CHx and CFy 

pseudoatoms were obtained from two-phase simulations of perfluoromethane and methane 

to obtain significantly better predictions for the solution critical temperature.  This was 

done by implementing two multiplying, or correction factors for the Lennard-Jones size and 

energy cross-terms which were adjusted until good agreement with experimental data was 

obtained: 

 

( )jjii

ij

ij

a
σσσ +

+
=

2

1
, 

(

2.1) 

 

and 

 

( ) jjiiijij b εεε −= 1 . (

2.2) 

 

The calculated upper critical solution temperatures for the three-phase mixtures were in 

excellent agreement with experimental data. 
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Wick et al. (2004) produced molecular-level information on the retention mechanism in 

reversed-phase liquid chromatography using the Gibbs ensemble method for a three-phase 

system consisting of helium vapour as the reference state, n-hexadecane as the retentive 

phase and a mobile phase consisting of water and methanol, for which the composition was 

allowed to vary for four different methanol/water ratios.  To decrease computation time, n-

hexadecane was not allowed to swap into the mobile or vapour phases due to its aqueous 

solubility being extremely low and its saturated vapour pressure being low as well.  The 

TIP4P force field was used to model water interactions whist the TraPPE-UA force field 

was used to model alkane, alcohol and helium molecules.    For other three-phase 

chromatography work, see Rafferty et al. (2007), Sun et al. (2007a), Sun et al. (2007b), 

Zhang et al. (2006) and Sun et al. (2006). 

 

Finally, Chen and Siepmann (2005) studied octanol/water partition coefficients for eight 

solute molecules (methane, ethane, propane, n-butane, methanol, ethanol, 1-propanol and 1-

butanol), as well as the structure of, and solvation in the two liquid phases.  Again, 

simulations were performed in the NPT variant of the Gibbs ensemble using the TIP4P and 

TraPPE-UA force fields at 1 atmosphere and 298 K.  Initially, all solute molecules were 

placed in the vapour phase simulation box and pure octanol and water were placed in 

separate simulation boxes as well.  The simulation results reconciled the structure of 1-

octanol which was initially deduced from spectroscopic measurements and diffraction 

experiments. 

 

It is now apparent that there are a limited number of three-phase fluid equilibrium studies.  

Thus, it was the purpose of this work to assess the ability and limitations of certain force 

fields in, first and foremost, essentially producing three phases in molecular simulations 

and consequently predicting the VLLE of several industrially-relevant binary and ternary 

mixtures.  To this end, the ubiquitous TraPPE-UA force field was used to model the alkane, 

alkene and alcohol molecules, while the Simple Point Charge - Extended (SPC-E) potential 

model was used to model water.  The SPC-E model was selected because there have 

already been several studies in which the TIP4P water model was used in conjunction with 
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TraPPE-UA for three phases yielding acceptable results, as discussed in the preceding 

paragraphs.  Furthermore, simulations involving water and alkanes may be compared to a 

recent extensive biphasic study on the solubility of water in alkanes and the vapour phase 

clustering of water (Johansson, 2007).  It is interesting to note, considering the extensive 

survey of the literature, that there have been no studies based on binary three-phase fluid 

equilibrium for complex polyatomic molecules. 
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3. Statistical Mechanics 
 

Real chemical systems contain an extremely large number of molecules, of the order of 

Avogadro’s number (~1023).  With current computational power, to simulate even one mole 

of any substance would take hundreds, if not thousands, of years to obtain results.  Clearly, 

a means to obtain credible results from a drastically smaller number of molecules is needed.  

Quantum mechanics enables the calculation of molecular properties at the most basic level 

(e.g. equilibrium geometries and potential energy surfaces); more importantly, the 

mechanical description of a system of molecules fully specifies its microscopic behaviour, 

while thermodynamics is used to calculate the macroscopic (or bulk) ‘observable’ 

properties of a collection of these molecules.  Intuitively, there must be a link between 

these two worlds of vastly different sizes.  This link is statistical mechanics. 

Statistical mechanics is a formalism which aims at explaining the physical properties of 

matter in bulk on the basis of the dynamical behavior of its microscopic constituents 

(Pathria, 1972). 

 

3.1 Basic postulates of statistical mechanics 

 

Central to the study of statistical mechanics is the notion of an ensemble.  An ensemble 

is a hypothetical collection of an infinite number of non-interacting systems, each of which 

is in the same thermodynamic state as the system of interest (Levine, 2003).  Although the 

members of the ensemble are thermodynamically identical, they exhibit a vast number of 

microstates2, since many different microstates are compatible with a given macrostate (or 

thermodynamic state).  This may be explained simply as follows:  consider a collection of 

non–interacting particles confined to an isolated 3–dimensional space of arbitrary shape.  

Each particle possesses a definite, though not unique, kinetic energy.  Being monatomic, 

this kinetic energy will be manifested as translational energy for each particle in each of the 

three spatial dimensions.  Evidently, the total energy of this system is constant.  However, 

there are numerous ways of partitioning or distributing this energy amongst all the particles 
                                                   
2 The term ‘microstate’ is here understood to be the same as a ‘quantum’ state. 
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in the system, and for each particle, its own kinetic energy can be further distributed 

amongst the three Cartesian coordinates.  Mathematically, this translates to 

 

E
N

i

i =∑
=1

ε  
(

3.1) 

 

where N is the total number of particles in the system, εi is the total kinetic energy of 

particle i and E is the total energy of the system of particles.  This idea can be extended 

further to a simple experiment.  Consider an isolated water bath, of which we wish to 

determine the temperature.  One method is to take temperature measurements at discrete 

time intervals using a thermometer and thereafter taking a time–weighted average to obtain 

the average water temperature, according to the formula 

 

( )∫∞→
=

t

time
ttT

tt
T

0

'd'
1lim

 
(

3.2) 

 

where the 
time

... denotes the time–averaged value of a macroscopically observable 

property, t is the total observation time and the prime denotes the dummy variable of 

integration.  At this point, it is instructive to introduce the phase space formalism of J. 

Willard Gibbs. 

 

The microscopic state of a model system is uniquely determined by the specification of 

the complete set of microscopic variables (Vesely, 2007). The number of such variables is 

of the same order as the number of particles. In contrast, the thermodynamic state is 

specified by a small number of measurable quantities such as mass, pressure, temperature 

or volume.  It was explained earlier in this chapter that a huge number of different 

microstates are compatible with a single macrostate.  The microscopic variables may be 

viewed as coordinates in a high–dimensional space; a particular microstate may be 

represented as a vector in that space. This high–dimensional space is called Gibbs phase 

space and the state vector is symbolized asΓ
�

.  Thus, for the ideal gas, the state vector is 

defined by all position and momentum coordinates (Vesely, 2007): 
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�

Γ  (

3.3) 

 

where ir
�

and iv
�

refer to the position and velocity vectors of the i–th particle, respectively, 

and α refers to the three spatial dimensions. 

 

Going back to determining the temperature of the water bath, the second method that 

may be used is one in which the time average is replaced by an ensemble average.  

Consider the same water bath (with the same thermodynamic state).  In this method, there 

exists a large number of the same macroscopic system, i.e., an ensemble.  Indeed, there are 

a huge number of microstates compatible with the given macrostate since water is a 

polyatomic molecule, and with the addition of bond–stretching and bond–bending energies, 

more degrees–of–freedom are introduced to the molecular configuration of the system.  

Noting that each of these microscopic states may be represented as a particular point in 

phase space, the ensemble average may be written as 

 

)()( ΓΓ
Γ

��

�

TpT ensens ∑=  (

3.4) 

 

where )(Γ
�

ensp  is the probability density of observing a particular point in Γ
�

space in an 

ensemble.  Obviously, one cannot create an infinite number of copies of the same 

macroscopic chemical system in something as finite as the memory of a computer, thus, for 

Equation 3.4 to be valid, a necessary condition is that of ergodicity.  Instead of considering 

an ensemble of systems, consider just one single system as it evolves in time according to 

the laws of mechanics.  The ergodic hypothesis states that “in the course of such a 

‘natural evolution’ of the system any permitted microstate will be reached (or closely 

approximated) with the same relative frequency” (Vesely, 2007). 

 

The ergodic hypothesis has an important consequence: for the calculation of average 

values over the microstates it does not matter if averages are taken over states randomly 
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picked from an ensemble, or over the successive states of one single, isolated system.  The 

corollary of the ergodic hypothesis is succinctly stated as: 

 

ensemble average = time average (

3.5) 

 

Thus, one would expect that for the simple experiment described above, provided that 

sufficient sampling time and correct sampling of phase space occurred, respectively, in 

each method, the two average temperatures would be identical. 

 

3.2 Ensemble averages and ensembles used in molecular simulations 

 

The most common ensembles used in the molecular simulation of chemical 

thermodynamics will be briefly discussed.  First, the nature of the probability of finding a 

chemical system in a particular microstate, namely )(Γ
�

ensp , shall be explained. 

 

Allen and Tildesley (1987) defined a ‘weight’ function )(Γ
�

ensw  in place of )(Γ
�

ensp  

which satisfies the following equations: 

 

 

∑
=

Γ

Γ
Γ

�

�

�

ens

ens
ens

w

w
p

)(
)(  

(

3.6) 

∑=
Γ

Γ
�

�

)(ensens wQ  (

3.7) 

 

where 
ensQ  is the ensemble partition function which is a sum over states, and is unique 

for each ensemble (discussed later in this chapter).  It may also be thought of as a 

normalizing factor for the probability pens.  Thus, any thermodynamic property may be 

calculated by using the following equation: 
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3.8) 

 

3.2.1 Internal Energy 

 

In general, the internal energy of a molecular configuration may be expressed in terms of 

the kinetic and potential energies.  Using the Hamiltonian formalism, this translates to: 

 

( ) ( ) ( )qpqp UKEH +==, , (

3.9) 

 

where K is the total kinetic energy, U is the potential energy, p refers to the momenta of 

all molecules and q is the generalized coordinate system that is conjugate to the momenta.  

This splitting allows ease of calculation of thermodynamic averages, since the kinetic 

energy may be factored out and integrated analytically in isothermal systems as it is a 

quadratic function of momentum (du Preez, 2005).  In fact, intuition dictates that since a 

Monte Carlo molecular simulation can be crudely seen as a series of snapshots where 

unphysical moves are permissible, the kinetic energy is of no consequence.  Accordingly, it 

is the correct calculation of the potential energy that forms the backbone of an accurate and 

reliable Monte Carlo simulation since it is a function of the molecules’ spatial coordinates. 

 

3.2.2 Pressure 

 

Molecular simulations are performed using periodic boundary conditions, wherein no 

conceptual boundaries exist through which molecules can pass and be detected.  As such, it 

is not possible to measure the momentum flux against the boundaries in the simulation box 

(du Preez, 2005).  There are two methods available for calculating the pressure during a 
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simulation: the first method uses the thermodynamic definition of pressure from a Maxwell 

relationship whilst the second method is derived from the virial theorem.  It is important to 

note that pressure calculations are important even if the pressure has been specified prior to 

the simulation (for example, the NPT ensemble), since one of the condition for 

thermodynamic equilibrium is equality of pressure across all phases. 

 

Thermodynamic pressure 

 

Starting with the thermodynamic definition of pressure, where A is the Helmholtz free 

energy, 

 

TNV

A
P

,

therm 






∂
∂

−= , 
(3.

10) 

 

it can be shown that the pressure may be split into an ideal component and a component 

that is due to intermolecular forces (Hummer and GrØnbech–Jensen, 1998) as follows: 

 

V

U
TkP B ∂

∂
−= ρtherm , 

(3.

11) 

 

If the potential energy does not depend explicitly on V, then the thermodynamic pressure 

is rewritten as: 
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(3.

12) 

 

Virial pressure 

 

Allen and Tildesley (1987) showed that starting with the virial theorem, 
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(3.

13) 

 

one may derive an expression for the system pressure that is split into ideal and 

intermolecular–force components: 

 

V

W
TkP B

int
virial += ρ , 

(3.

14) 

 

where Pvirial is the instantaneous pressure and Wint is the internal virial.  For a three–

dimensional system, the internal virial is defined as: 

 

∑∑
−
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(3.

15) 

 

where rij is the distance vector between molecular centres and fij is the force that 

molecule j exerts on molecule i.  It is convenient to define the intermolecular pair virial 

function as: 

 

( ) ( )
ij

ij

ijij
r

rU
rrw

d

d
−= , 

(3.

16) 

 

In which case, the final expression for the virial pressure is: 
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(3.

17) 

 

Since V has been factored out of the summation, this expression is to be used when the 

potential energy does not depend explicitly on the volume.  If there is indeed volume 

dependence, then the thermodynamic definition of pressure must be used (du Preez, 2005). 
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3.2.3 Chemical potential 

 

Evaluating the chemical potential is another important calculation since the condition for 

thermodynamic equilibrium requires the chemical potential for a species to be the same in 

all coexisting phases.  Calculation of the chemical potential requires a special ‘particle–

insertion’ method, developed by Widom (1963).  The chemical potential of species i  in 

phase I in a molecular system in the NVT–Gibbs Ensemble, in which the probability that 

either of the boxes contains zero molecules is small in addition to the boxes not changing 

identities, is given by: 

 

+
I,iI

I,i 3
I,i

1
ln exp

1
B

B

UV
k T
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  ∆
= − −   Λ +     

(3.

18) 

 

where +∆ iU I,  is the potential energy change due to an insertion of particle type i in phase 

I.  Strictly speaking, this method is not necessary in the Gibbs ensemble, since a particle 

transfer trial move is inherent to the Gibbs ensemble technique (McKnight, 2005).  The 

remainder of this chapter is based largely on Chapter 3 of Frenkel and Smith (2002). 

 

3.3 Molecular Simulation and the Monte Carlo Method 

 

Thus far, the basic concepts of statistical mechanics have been discussed.  This section 

discusses the role of the Monte Carlo scheme as used in molecular simulation.  

Specifically, emphasis is placed on the canonical (constant NVT) ensemble; however, these 

ideas are easily extended to other ensembles (see Chapter 4). 

 

In the classical limit, the partition function for the NVT ensemble becomes an integral: 

 

[ ]∫ −= NN

BTkEcQ rp dd/exp  (3.

19) 
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where rN and pN stand for the coordinates and corresponding momenta, respectively, of 

all N particles.  E is the total energy of the isolated system as a function of the coordinates 

and momenta of the particles, while c is a constant of proportionality that renders the 

partition function dimensionless. 

 

Thus, using the definition of an ensemble average, the average of any observable A  may 

be written as: 

 

( ) [ ]
[ ]∫

∫
−

−
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NN

B

NN
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dd/exp

dd/exp,
 

(3.

20) 

 

In this equation, the observable A is expressed as a function of momenta and 

coordinates.  It was discussed early in the chapter that the kinetic energy is a quadratic 

function of the momenta, so that integration can be carried out analytically.  The problem 

arises when computing averages of functions A(rN).  Only in simple cases can this 

multidimensional integral be solved analytically; in most cases, numerical techniques are 

required. 

 

At first glance, it would appear that a numerical quadrature technique such as Simpson’s 

Rule be used to evaluate A .  However, such a method is useless even if the number of 

independent coordinates D×N is very small.  For example, in a 3-dimensional system 

consisting of 100 particles with 5 equidistant points along each axis, the integrand would 

have to have been evaluated at 10210 points.  Such computations cannot be performed with 

current computational power; furthermore, the answer would be subject to large statistical 

error (Frenkel and Smith, 2002).  This is due to numerical quadratures working best on 

functions that are smooth over distances corresponding to the specified mesh size.  For 

most intermolecular potentials, the term exp(–E/kBT) (the Boltzmann factor) is a rapidly 

varying function of a system’s molecular configuration.  Thus, accurate quadrature requires 

extremely small mesh spacing as far as molecular simulation is concerned.  It is interesting 
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to note that for the evaluation of the integrand for a dense liquid the majority of points the 

Boltzmann factor is extremely small. 

Indeed, better numerical techniques are required to compute statistical thermodynamic 

averages. 

 

3.3.1 Random Sampling 

 

The simplest Monte Carlo method used in the evaluation of integrals is random 

sampling.  Consider the one-dimensional integral I: 

 

∫=
b

a

xxf d)(I  
(3.

21) 

 

which can be rewritten as 

 

)()(I xfab −=  (3.

22) 

 

where )(xf  is the unweighted average of f(x) over the interval [a, b].  Thus, the 

average can be determined by evaluating f(x) at a large number of x values randomly 

distributed over [a, b].  As explained earlier in the chapter, for the integrals we wish to 

evaluate in determining thermodynamic averages, a large amount of computational time 

would be spent in those areas of phase space where the Boltzmann factor is extremely 

small.  It would be more efficient to sample those points in phase space where the 

Boltzmann factor contributes significantly to the integral.  This is the basic idea of 

importance sampling. 

 

3.3.2 Importance Sampling 
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The problem that arises is how the sampling should be distributed in phase space.  One 

method would be to sample from a non–uniform distribution over the range of integration 

and then correct for it.  Frenkel and Smith (2002) showed that using a probability density 

ζ(x) one may obtain an improved prediction of the integral.  Thus, using ζ(x), the integral I 

becomes: 
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(3.

23) 

 

(3.

24) 

 

(3.

25) 

 

where τ is the number of random sample points taken from the distribution ζ(x).  

Unfortunately, the probability distributions and the partition functions are not known a 

priori, and thus the simple importance sampling scheme described above cannot be used to 

sample the multidimensional integrals of interest. 

 

3.3.3 The Metropolis Method 

 

In general it is not possible to evaluate integrals of the form NNU rr d)](exp[∫ −β  when 

using direct Monte Carlo sampling.  The Metropolis method of sampling involves the 

construction of a random walk through phase space where the probability distribution is 

non-negligible. Frenkel and Smit (2002) use the analogy that this method is akin to 

determining the average depth of the river Nile by taking measurements within the Nile 

only, whereas the method of random sampling would sample the entire African region to 

determine the same average depth. 
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In order to generate points in phase space that contribute significantly to the integrals of 

interest, a relative probability proportional to the Boltzmann factor is used.  The general 

approach is to prepare the system in a certain configuration which is denoted o (old).  A 

new trial configuration is generated which is denoted as n (new).  A decision must now be 

made whether to accept or reject the new configuration, based on the Boltzmann factor 

(which is a function of the molecular configuration). 

 

Consider the integral for computing the thermal average of a macroscopic property A: 
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26) 

 

The probability density of finding the system in a configuration rN shall be denoted as 

 

Q

U N
N )](exp[
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r
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(3.

27) 

 

while the probability of a transition from the old configuration (o) to the new 

configuration (n) is the transition probability matrix .  The matrix elements ( )no→π  must 

satisfy the condition of not destroying an equilibrium distribution once it is reached 

(Frenkel and Smit, 2002)3.  A much stronger condition known as the condition of detailed 

balance states that in equilibrium the average number of accepted trial moves from o to any 

n is exactly cancelled by the number of reverse moves.  This implies: 

 

( ) ( ) ( ) ( )onnnoo →Ω=→Ω ππ , (3.

28) 

                                                   
3 The average number of accepted trial moves that result in the transition o → n must be identical to the 
average number of accepted trial moves from n → o (Frenkel and Smith, 2002).   
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A Monte Carlo move consists of two stages: a trial move from state o to state n is first 

performed, and the probability of performing this trial move is denoted by the 

matrix ( )no →α ;4 the next stage is to decide whether to accept or reject this trial move, and 

the probability of accepting this trial move from o to n is ( )noacc → , 

 

Thus, one may write 

 

( ) ( ) ( )noaccnono →×→=→ απ . (3.

29) 

 

An important concept, namely, that of symmetry, is necessary for further development.    

It shall be assumed that the probability of performing a trial move from o to n is equal to 

the probability of the reverse move, i.e. 

 

( ) ( )onno →=→ αα . (3.

30) 

 

Therefore, Equation (3.28) may be written as 

 

( ) ( ) ( ) ( )onaccnnoacco →Ω=→Ω . (3.

31) 

 

Recalling the definition of Ω(rN), it follows that 

 

( )
( )

( )
( )

( ) ( )[ ]{ }oUnUβ
o

n

noacc

noacc
−−=

Ω
Ω

=
→
→

exp . 
(3.

32) 

 

Metropolis et al. devised an efficient strategy for sampling of phase space using the 

following acceptance criteria: 

                                                   
4 α is referred to as the underlying matrix of the Markov chain. 
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( ) ( ) ( ) ( ) ( )
( ) ( )on

ononnoacc

Ω≥Ω=

Ω<ΩΩΩ=→

if1

if
. 

 

(3.

33) 

 

Thus, if the new molecular configuration has a lower energy than the old configuration, 

the move is accepted with probability ( ) ( )on ΩΩ , otherwise, the move is accepted with a 

probability of one.  In practice, however, a random number5 is generated in the interval [0, 

1].  The trial move is accepted if the random number is less than ( )noacc → , and rejected 

otherwise.  This ensures an equilibrium state is continuously approached in the chemical 

system, since the potential energy of each new state progressively decreases (provided that 

the trial move is accepted).  It is important to note that if a trial move is not accepted, then 

the original state must be accounted for again, since 

 

( ) ( )∑ ≠
→−=→

on
nooo ππ 1 . (3.

34) 

 

Clearly, this is a positive number meaning that the original state needs to be recounted. 

                                                   
5 Random numbers shall be discussed in the Chapter 7. 
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4. Ensembles 

 

4.1 Canonical (NVT) Ensemble 

 

In the context of statistical mechanics, ‘canonical’ means standard.  This is the ensemble 

that was originally used by Metropolis et al. (1953) in the first Monte Carlo simulations.  

The total number of molecules (N), system temperature (T) and system volume (V) are 

fixed, and as such, only particle displacement moves (translational and orientation) are 

permitted (for the sake of simplicity, only monatomic molecules shall be used in the 

illustrations in the remainder of this chapter). 

 

 

Figure 4-1 - The Canonical Ensemble. The number of molecules, system volume and temperature are 

constant.  Only particle displacements are allowed (translational or orientation, in the case of 

polyatomic molecules). 

 

The partition function for the NVT ensemble is 
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( )[ ] NN

NNVT dU
N

Q rr∫ −
Λ

= βexp
!

1
3

, 
(

4.1) 

 

where Tmkh Bπ2/2=Λ  is the thermal de Broglie wavelength, roughly the average de 

Broglie wavelength of the gas particles in an ideal gas at the temperature T;  when it is 

much smaller than the interparticle distance, the gas can be considered to be a classical gas. 

Otherwise, quantum effects will dominate and the gas must be treated as a Fermi gas or a 

Bose gas.  From Equation 4.1 it is clear that the probability of finding the system of interest 

in a configuration Nr , in terms of the potential energy is 

 

( ) ( )[ ]NN
U rr β−∝Ω exp , (

4.2) 

 

which is the distribution that must be sampled during a simulation.  The following 

procedure is used when carrying out simulations in the NVT ensemble: 

 

1. Select a particle at random and calculate the potential energy of this 

configuration, ( )oU . 

2. Displace the particle from its current position, i.e. ( )or , using 

 

( ) ( ) ( )5.0RND −∆+= on rr , (

4.3) 

 

where 2∆  is the maximum displacement, RND is a random number in the 

interval [0,1] and ( )nr  is the new trial position.  Then calculate the potential energy 

of this new configuration, ( )nU . 

3. The acceptance probability is 

 

( ) ( ) ( )[ ]{ }( )oUnUnoacc −−=→ βexp,1min . (

4.4) 
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If the move is rejected, the old configuration is maintained, and recounted. 
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4.2 Isobaric–Isothermal (NPT) Ensemble 

 

The isobaric–isothermal ensemble has become very popular in molecular simulations 

due to real experiments being performed under constant pressure and temperature 

conditions, and importantly, in generating phase diagrams for multicomponent chemical 

systems.  This ensemble offers added flexibility due to system volume changes also being 

possible, aside from the displacement moves used in the NPT ensemble. 

 

 

Figure 4-2 - The Isobaric–Isothermal Ensemble.  The number of molecules, system pressure and 

temperature are constant.  In addition to particle displacements being allowed (translational or 

orientation, in the case of polyatomic molecules) volume changes of the simulation box are also 

permitted. 

 

The volume is allowed to fluctuate so as to keep the system pressure constant.  It is 

useful to define scaled coordinates for each particle: 
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{ }NiL ii ,...,2,1for == sr , (

4.5) 

 

where 3/1VL =  is the length of the cubic box.6  For a system containing N identical 

atoms, constant pressure P, with a total volume V and an imaginary piston that has a 

variable volume V0, the partition function is 

 

( ) ( )[ ]∫∫ −−
Λ

≡ NNN

NNPT LUVPVV
N

P
Q ss d;expdexp

!3
ββ

β
, 

(

4.6) 

 

where ( )LU N ;s  has been written to indicate that U depends on the real distances 

between the atoms.  Now, the probability that the N-particle piston subsystem has a volume 

V is given by 

 

( )
( ) ( )[ ]

( ) ( )[ ]∫ ∫

∫
−−

−−
=Ω

0

0

d';exp'd'exp'

d;expexp
V

NNN

NNN

NPT

LUVPVV

LUPVV
V

ss

ss

ββ

ββ
, 

(

4.7) 

 

while the probability density of finding the subsystem at the given volume V in a 

particular molecular configuration, using scaled coordinates is: 

 

( ) ( ) ( )[ ]LUPVVV NNN

NPT ;expexp; ss ββ −−∝Ω  

                    ( )[ ]{ }VNPVVUV NN ln;exp 1−−+−= ββ s . 

 

(

4.8) 

 

In the NVT ensemble, it was shown that the particle coordinates were the only variables 

taken into account for the trial moves.  In the NPT ensemble, V is treated as an additional 

coordinate since it is allowed to vary; concordantly, there are acceptance rules for such a 

change which must satisfy the underlying Markov chain.  If the new trial move consists of a 

                                                   
6 In this work, all simulations have been performed in cubic boxes. 
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volume change ( ) ( ) VoVnV ∆+= , where ∆V  = {–∆Vmax, –∆Vmax), then this move will be 

accepted with the following probability: 

 

( )
( )( ) ( )

( )( ) ( )







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




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



−−+

−
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−

V

nV
NVnVP

VUnVU

noacc

NN

ln

;;
exp,1min

1β
β

ss

. 

 

 

 

(

4.9) 

 

It is now clear why scaled coordinates are used:  each time a volume change is 

attempted, the potential energy for the system must be recalculated, which is a 

computationally expensive calculation.  However, in this work, the potential energy 

function used to calculate the non–bonded intermolecular is the Lennard–Jones 12–6 model 

for which the potential energy of the new state is easily determined when scaled 

coordinates are used: 

 

( )( )
( )

( )LU
nL

L
nLU

n

interinter 







= . 

 

(4.

10) 

 

4.3 Grand–Canonical (µVT) Ensemble 

 

Thus far, the ensembles that have been presented have had the total number of particles 

held constant.  In contrast, the grand-canonical ensemble maintains a constant chemical 

potential whilst the number of particles is allowed to vary. 
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Figure 4-3 - The Grand–Canonical Ensemble.  The system (enclosed by the inner rectangle) has a 

constant chemical potential, volume and temperature.  In addition to displacement type moves, particle 

insertions are also permitted. 

 

Particle insertions and deletions are allowed so as maintain a constant chemical potential 

within the volume V.  Once again, it is useful to use scaled coordinates.  The partition 

function may be written as: 

 

[ ] ( )[ ]∫∑ −
Λ

=
∞

=

NN

N
N

N

VT U
N

VN
Q ss dexp

!

exp

0
3

β
βµ

µ , 
(4.

11) 

 

while the probability density is: 

 

( ) [ ] ( )[ ]N

N

N
N

VT U
N

VN
N ss β

βµ
µ −

Λ
∝Ω exp

!

exp
,

3
. 

(4.

12) 

 

The acceptance criteria for a displacement trial move in the grand–canonical ensemble 

are identical to those proposed for the canonical ensemble.  Additionally, the acceptance 

criteria when particles are inserted or removed, respectively, are: 
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( )
( )

( ) ( )[ ]{ }







++−

+Λ
=+→ NUNU

N

V
NNacc 1exp

1
,1min1

3
µβ  

(4.

13) 

 

and 

 

( ) ( ) ( )[ ]{ }







−−−−

Λ
=−→ NUNU

V

N
NNacc 1exp,1min1

3

µβ  
(4.

14) 

 

The grand-canonical ensemble is seldom used in the study of phase equilibrium and is 

more suited to adsorption studies (Frenkel and Smit, 2002). 

 

4.3.1 Histogram–reweighting grand canonical Monte Carlo simulations 

 

At the outset of the development of molecular simulation it was theorized that a single 

calculation could be used to obtain information on the properties of a system for a range of 

state conditions, though at the time the lack of adequate computational power deterred 

further investigation into this concept.  With the rapid development in computing 

technologies in recent times, several researchers have proven the usefulness of histogram–

reweighting.  The method was originally used to perform simulations near the critical point, 

after which new states near the critical point were calculated using reweighting. 

 

4.4 Tracing Coexistence Curves – Gibbs–Duhem Integration
7
 

 

Much like the histogram–reweighting method, the Gibbs–Duhem integration method of 

studying phase coexistence relies on knowing a single point on the coexistence curve a 

priori.  Kofke proposed a method that is the same as numerically integrating the Clausius–

Clapeyron equation: 

 
                                                   
7 This method of determining phase diagrams relies on simulation performed in the ensembles that have been 
discussed, and deserves to be mentioned in this chapter. 



 

 

29 
 

TVP

H

T

P

∆
∆

=
d

d
 

(4.

15) 

 

where ∆H is the difference in enthalpy of two phases.  All quantities on the right hand 

side of the Clausius–Clapeyron equation can be computed during a simulation; thus, dP/dT 

may also be calculated.  Gibbs–Duhem integration is potentially a highly efficient method 

for tracing coexistence curves (Frenkel and Smith, 2002), but errors in the integration of the 

Clausius–Clapeyron equation can result in significant errors when comparing the simulated 

coexistence curve with the true coexistence curve.  Bolhuis and Frenkel (1997) assumed 

that the coexistence curve could be fitted to a polynomial in T: 

 

∑
=

=
3

0d

d

j

i

iT
T

P
α . 

(4.

16) 

 

The integration scheme is performed as follows: 

 

1. The original Gibbs–Duhem integration is carried out to obtain an initial 

estimate for the coexistence curve; at every point, the right–hand side of the 

Clausius–Clapeyron equation is calculated. 

2. The numerical data is then fitted to the coefficients of the polynomial, 

Equation (4.16).  A new estimate of the of the coexistence pressures is thus 

obtained. 

3. The newly calculated pressures from Step 2 and the initial pressures are 

combined to improve stability. 

 

The aforesaid scheme is iterated until convergence is achieved. 

 



 

 

30 
 

4.5 Semi-grand Ensemble 

 

This method, yet another method for studying the phase behaviour of chemical mixtures 

uses a new type of ‘move’ called an identity change.  The semi–grand ensemble is a variant 

of the grand–canonical ensemble that uses a fixed chemical potential on one particle type, 

thus imposing the chemical potential of other types of particles. 

 

 

Figure 4-4 - The Semigrand Ensemble.  In this ensemble, molecular identity changes are allowed.  

Shown in the schematic is an attempt to transform a small particle into the larger type. 

 

Frenkel and Smith (2002) provide an elegant derivation for the semi–grand partition 

function starting with the grand–canonical particle function for an n–component mixture: 

 

[ ] ( )[ ]∑ ∏ ∫
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−=
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NNN
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i
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i
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N
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!

exp
ssβ

βµ
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(4.

17) 

 

where ∑≡
i i
NN  and qi is the kinetic contribution to the partition function from species 

i.  Finally, the probability of accepting an identity change is: 

( ) ( )[ ]








∆−
′

=′→ N

i

i
ii Uacc sβ

ξ
ξ

ξξ exp,1min , 
 

(4.
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18) 

 

where 
iξ  is the fugacity fraction of species i. 
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5. Potential Energy Models 

 

Thus far, methods have been presented on determining what moves may be accepted in 

order to ensure that the points being sampled are in equilibrium phase space (typically, 

these would be points on an energy hypersurface).  However, methods for calculating the 

intra- and intermolecular potential energies for a given configuration of molecules in a 

chemical system need to be discussed. 

 

The total potential energy of the molecular system may be written as a sum of 

intramolecular and intermolecular energies: 

 

interintratotal UUU += , (

5.1) 

 

where Uintra refers to the intramolecular interactions and Uinter refers to the 

intermolecular interactions. 

5.1 Intramolecular Interactions 

 

5.1.1 Bond Stretching 

 

The stretching or distortion of bonds between atoms leads to a certain deformation 

energy, which is typically modelled as a Taylor series expansion around a natural bond 

length l0.  This energy is described as 

 

sorder termhigher )(
d

d

!2

1
)(

d

d 2
02

2

00str +−+−+= ll
l

U
ll

l

U
UU . 

(

5.2) 
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The term 0U  is usually set to zero as a reference point, whilst the second term is zero 

since the gradient lU dd  at 0ll =  is zero.  It is common practice to exclude terms higher 

than the quadratic term in the expression given above, since they contribute very little to 

the bond–stretching energy.  Thus, the stretching energy is described by a harmonic 

potential: 

 

2
0strstr )(

2

1
llkU −= , 

(

5.3) 

 

where kstr is the stretching constant. 

 

5.1.2 Bond Bending 

 

The bond bending component of the intramolecular interactions is only valid when a 

molecule has three or more atomic groups present.  The bond angle is defined as the acute 

angle formed by two bonds that are connected to a common atomic group (see Figure 5-1).  

The functional form of bond bending term, like the bond stretching term, is harmonic: 

 

2
0bendbend )(

2

1
θθ −= kU , 

(

5.4) 

 

where kbend is the bending constant and θ0 is the equilibrium bending angle. 
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Figure 5-1 - The various intramolecular interactions that contribute towards the potential energy of a 

given molecular configuration.  From top left (clockwise): (a) Bond Stretching (b) Bond Bending (c) 

Torsion Energy. 

 

5.1.3 Torsion Energy 

 

In order for torsion or ‘twisting’ energy to be present, there must be at least four bonded 

atomic groups in the molecule (see Figure 5-1).  The angle formed by the planes A and B in 

the figure is referred to as the dihedral angleφ , i.e. the angle formed by atoms A-B-C and 

atoms B-C-D.  Since the orientation of the molecule does not matter when measuring the 

dihedral angle, it is clear that the energy interactions may be defined by a periodic function, 

specifically, a cosine series of the following standard form: 

 

B 

C 

A 

D 

X Y 

(a) (b) 

(c) 



 

 

35 
 

Utors = c0 + c1[1 + cosφ ] + c2[1 – cos2φ ] + c3[1 + cos3φ ], (

5.5) 

 

where the ci are constants that are determined (usually) by ab initio methods.  This form 

of the torsion energy is implemented by many recently parameterized potential models, 

including the Tranferable Potentials for Phase Equilibria – United-Atom (TraPPE-UA) 

force field (to be discussed later in this chapter). 
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Figure 5-2 - Representation of the variation of the torsion energy for the C―C―C―C bonded group in 

perfluoroalkanes as parameterized by Watkins and Jorgensen (2001) 

 

5.2 Intermolecular Interactions 
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The intermolecular interactions are split into two parts – a van der Waals component that 

describes the non–polar interactions, and a Coulombic component that describes the 

charged (or polar) interactions.  Thus, the contribution of each both parts may be summed 

to obtain the total intermolecular potential: 

 

CoulvdWinter UUU += . (

5.6) 

 

5.2.1 van der Waals interactions 

 

All molecules are subject to two distinct forces, namely, an attractive force at long 

distances (termed the van der Waals or dispersion force) and a repulsive force at short 

distances.  The latter force is as a result of overlapping electron orbitals, referred to as Pauli 

repulsion8. The Lennard-Jones 12–6 potential (Lennard-Jones, 1931) is a simple 

mathematical formula that models this behavior: 
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(

5.7) 

 

where εij, σij and rij are the depth of the potential well, the distance at which the force is 

zero, and the separation between two atomic sites i and j, respectively. 

 

                                                   
8 From the Pauli Exclusion Principle. 
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Figure 5-3 - Illustration of the potential energy well of a Lennard–Jones fluid. 

 

The r–12 term represents the repulsion between atoms when they are brought close to 

each other.  The exponent 12 was chosen entirely for practical purposes and has no physical 

basis, though, theoretically, exponential behavior would be more appropriate.  The long–

range attractive forces are represented by the r–6 term.  The εij and σij terms are obtained 

from quantum chemistry calculations for each molecule type, and are thus unique. 

Recently, more accurate methods of calculating the van der Waals interaction energy 

have been proposed, of which the most notable is the Buckingham exponential–6 model: 
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(

5.8) 

 

where the cut–off distance rmax is the smallest positive value for which 

( ) 0dd 6exp =− rrU ij
 (obtained by iterative solution). 
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5.2.2 Coulombic Interactions 

 

The Coulombic interactions, relevant to systems of molecules that contain charged or 

partially charged species, are calculated using Coulomb’s law of electric interaction 

between two charged bodies: 

 

ij

jiij

r

qq
U

0

Coul
4πε

= , 
 

(

5.9) 

 

where qi and qj are the charges on interacting sites i and j, while ε0 = 8.854×10
−12 C2 N-1 

m-2 (also F m-1) is the permittivity of free space. 

 

5.2.3 Mixing Rules 

 

To account for the heterogeneity between the atomic interaction sites of different 

molecules, the well–established Lorentz–Berthelot mixing rules provide a convenient 

means for calculating the cross–term (ij) parameters: 

 

jjiiij
εεε = , and (5.

10) 

 

( )
ijiiij σσσ +=

2

1
. 

(5.

11) 

 

The energy cross-term is based on a geometric average (with no physical significance) 

whilst the size parameter cross-term is based on an average diameter of the interacting sites. 

5.3 Potential Models 
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The two force fields used in this work are the united atom description of the TraPPE model 

developed by Martin and Siepmann (1998) and the extended SPC model, developed by 

Berendsen et al. (1987). 

 

5.3.1 Transferable Potentials for Phase Equilibria – United Atom description 

(TraPPE-UA) 

 

TraPPE-UA, developed by Martin and Siepmann (1998), models linear alkanes by 

representing each functional group i.e. methyl (―CH3) and ethyl (―CH2) groups, as single 

Lennard-Jones interactions sites, although separate parameters were developed for methane 

and ethane.  The Lennard-Jones size and energy parameters were fitted to experimental 

critical temperatures and saturated liquid densities in the canonical ensemble; simulations 

revealed that the vapour pressures and liquid densities for the pure components were in 

good agreement with experimental data, showing small, systematic deviations. 

 

 

Figure 5-4 – An illustrative example using n-propane, showing the philosophy of united-atom force 

fields.  The hydrogen atoms are ‘lumped’ onto the carbon atoms; thus, hydrogen interactions are 

implicitly accounted for in this force field methodology. 

 

TraPPE-UA utilizes rigid bonds; as such, there are no vibrations between the pseudoatoms 

in any molecule that is described by this force field.  Thus, all inter- and intramolecular 

interactions that were described in the previous subchapter, with the exception of the 

vibration term, are applicable to this potential model. 
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In further studies, the model was extended to implement a variety of functional groups and 

also bonds types, including alcohols (Chen et al., 2001) and alkenes (Wick et al., 2000), 

respectively. 

 

A list of TraPPE-UA pseudoatoms used in this work is shown in the table below9: 

 

Pseudoatom Description 

  

CH4 Methane 

CH3 (sp
3) methyl group; one sp3 carbon bonded to three hydrogen atoms and 

one non-hydrogen atom. 

CH2 (sp
3
) ethyl group; one sp3 carbon bonded to two hydrogen atoms and two 

other non-hydrogen atoms. 

CH2 (sp
2) sp2 carbon atom that is bonded to two hydrogen atoms and double-

bonded to a non-hydrogen atom. 

O (sp3) sp3 oxygen atom that is single bonded to one carbon atom and 

single bonded to one hydrogen atom, used in alcohols. 

H Hydrogen atom bonded to one oxygen atom. 

 

Table 5-1 - List of pseudoatoms implemented in the TraPPE-UA force field that relevant to this study. 

 

5.3.2 Simple Point Charge – Extended, model of water molecule 

 

The SPC-E force field (Berendsen et al., 1987) is a reparameterized form of the SPC force 

field (Berendsen et al., 1981).  In this model, the water molecule is represented as single 

interaction site, that is to say, the Lennard-Jones size and energy parameters describe water 

as one pseudoatom.  However, three charge sites are used to characterize the electrostatic 

interactions.  These interaction sites model the molecules’ Coulombic interactions and as 

                                                   
9 A comprehensive list of pseudoatoms implemented in TraPPE-UA is available at 
http://towhee.sourceforge.net/forcefields/trappeua.html 
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such are key in predicting such phenomena as water clustering and association.  For details 

on the values of this potential model’s parameters, refer to Appendix A. 

 

 

Figure 5-5 – Schematic representation of the SPC-E water model. 

 

The SPC model has been found to give better predictions than SPC-E for the saturated 

vapour pressure of water, but SPC-E was found to better-predict the saturated liquid 

densities over the temperature range of interest (Boulougouris et al., 1998).  The 

justification of this model’s use in this study is briefly discussed in Chapter 10. 
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6. The Gibbs Ensemble 

 

The condition for the coexistence of two or more phases I, II, … is that the pressure and 

temperature for all coexisting phases must be equal, in addition to the chemical potential of 

each species i being the same for that species in all phases (Frenkel and Smith, 2002): 

 

( )I II= ...P P P= = , ( )I II= ...T T T= =  and ( )I,i II,i i= ...µ µ µ= = . (

6.1) 

 

It would seem appropriate to devise a constant µPT ensemble to simulate phase 

equilibrium but such an ensemble is not possible.  The reason is twofold:  firstly, if only 

intensive parameters are specified, then there is no physical limit on the size of the system 

(Frenkel and Smit, 2002)10, and secondly, one cannot stipulate all intensive variables a 

priori as it would correspond to an over–specification of the state of the system (McKnight, 

2005).  The Gibbs ensemble method has emerged as the technique of choice for 

determining the phase coexistence curves of fluid mixtures (Panagiotopoulos, 2000).  Prior 

to the introduction of the Gibbs ensemble, molecular simulations had to locate phase 

coexistence indirectly.  By performing several simulations and subsequently evaluating the 

macroscopic properties of each phase, a point where the temperature, pressure and the 

chemical potentials of all species are equal in each phase would be located (Widom, 1963, 

Lofti et al., 1992, Kofke, 1993a and Kofke, 1993b). 

 

A Gibbs ensemble simulation is performed in microscopic regions within each bulk 

phase, using periodic boundary conditions.  Figure 6-1 is a schematic of a one–component 

two–phase system at constant N, V and T, for which the trial move acceptance rules were 

originally derived (Panagiotopoulos, 1987). 

 

                                                   
10 The set of parameters µ, P and T is said to be linearly dependent. 
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Figure 6-1 - Schematic of the Gibbs ensemble technique for a single component, two–phase system. 

 

The partition function for this system is: 
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6.2) 

 

where N = nI + nII.  The three possible trial moves in the Gibbs ensemble are: 

 

1. Particle displacements 

 

The acceptance rule can be derived by imposing the condition of detailed 

balance, ( ) ( )onKnoK →=→ .  Assume that the new state n is obtained from the 

original state o by displacing a randomly selected particle within a single simulation 

box.  The acceptance rule for a particle displacement is: 

 

( ) ( ) ( )[ ]{ }( )II

oldnewexp,1min nn
UUnoacc ss −−=→ β , (

6.3) 

 

where snew and sold refer, respectively, to the particle coordinates of the new and 

old configurations using the scaled coordinates formalism and the nI superscript 

PHASE I 

PHASE II 
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denotes that the randomly displaced particle resides in box I.  This acceptance rule 

is identical to the conventional NVT ensemble acceptance criterion. 

 

2. Volume changes 

 

For a mutual exchange of volume of two randomly selected boxes, chosen here 

as boxes I and II, the acceptance rule is: 
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VVV
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6.4) 

 

where VVV ∆+= I
old

I
new  is the new volume of box I, I

oldV  is its original volume 

and II
old

I
old VVV += .  This is the original method of changing the volume as derived 

by Panagiotopoulos et al. (1987 and 1988). 

 

3. Particle insertions 

 

The acceptance rule for removing a particle of species i from box I and inserting 

it in box II is written for a multi–component mixture as (Frenkel and Smit, 2002): 
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Figure 6-2 - Gibbs ensemble Monte Carlo trial moves. (a) the original configuration. (b) particle 

displacements (c) volume changes (d) particle swaps. 

 

For the purposes of this work, both NVT and NPT variants of the Gibbs ensemble are 

used.  Usually the NPT–Gibbs ensemble is implemented in phase equilibrium simulations 

since this is analogous to carrying out a real experiment under constant temperature, 

pressure and compositions conditions.  The NVT analogue may also be used in multi-

component, multi-phase simulations, but requires judicious selection of the total system 

volume.  An important point to note is that the constant–P method is best applied to 

chemical systems that contain two or more components, since in a one–component system, 

the two–phase region is a line in the P–T plane, whilst in a two–component system, this 

region constitutes a plane (or a hypersurface, when more than two components are present). 

 

In the original article whence the Gibbs ensemble was introduced, the partition function 

and corresponding acceptance rules were derived for the two–phase coexistence of a pure 

component.  The partition function for the NVT variant of three– and multi–phase systems 

were derived by Canongia Lopes and Tildesley (1997), and are presented here, followed by 

the acceptance rules for the isobaric–isothermal  ensemble for binary and ternary mixtures. 

 

Consider a 3–phase chemical system at equilibrium, enclosed in a volume V and 

consisting of N identical particles, with temperature T: 

 

(a) (b) (c) (d) 
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Figure 6-3 - Schematic of the Gibbs ensemble simulation technique for a three-phase (vapour-liquid-

liquid) system. 

 

The NVT–Gibbs ensemble partition function can be written as a combination of the 

canonical partition functions of each phase.  For two phases, the Gibbs ensemble partition 

function is: 
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d , 

(

6.6) 

 

where nI is the number of particles in phase I and VI denotes the volume of phase I.  

Note that the partition functions for each subsystem (
TVnTVn QQ

IIIIII
 and ) refer to the canonical 

ensemble. 

 

For s subsystems, with ∑ =
=

s

j jVV
I

 and ∑ =
=

s

j jNN
1

, a recursive argument is used to 

develop the Gibbs partition function.  The Gibbs ensemble partition function is first written 

for the last two simulation boxes with total number of particles N2 = ns–1 + ns and total 

volume V2 = Vs–1 + Vs, which is equivalent to a single N2V2T canonical ensemble: 

 

PHASE I (Vapor) 

PHASE II (Liquid) 

PHASE III (Liquid) 
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6.7) 

 

A third simulation box may now be added with the total number of particles becoming 

N3 = ns + ns–1 + ns–2, so that the new partition function is: 
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6.8) 

 

(

6.9) 

 

In general, for s phases, the final expression, after substituting the expression for the 

canonical ensemble (Equation 3.1) is: 
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(6.10) 

 

 

where inr  refers to all particle coordinates in box i, ( )in
iU r  is the total potential energy 

of box i and 
( ) !!

!

111 nnN

N

n

N

−
=








 counts the number of ways of choosing n1 molecules from 

N  total molecules.  Clearly, three phases will be present when, during the course of a 

simulation, each box has a different density.  Obviously, when two boxes have the same 

density a first–order phase transition will have occurred.  From Equation 6.10, the 
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statistical weight of a particular molecular configuration with n1, n2 and n3 molecules in 

each box V1, V2 and V3 will occur with the following probability distribution: 

 

( ) ( ) ( ) ( )[ ]{ }332211
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321 exp
!!!

,
321

rrrr UUU
nnn

VVV
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nnn
N ++−×∝Ω β . 

 

(6.11) 

 

Canongia Lopes and Tildesley (1997) showed that because all trial moves performed 

during a Gibbs ensemble Monte Carlo simulation occur between a pair of simulation boxes 

or within a single simulation box, the acceptance criteria for these trial moves will remain 

unchanged however many phases are present. 

 

Thus, the acceptance criteria for producing a Markov chain of configurations with a 

probability distribution equivalent to Equation 6.11  and for the NPT version are the same 

as the rules that were originally derived by Panagiotopoulos et al. (1988), whether two or 

more simulation boxes are present (Canongia Lopes and Tildesley, 1998), since any trial 

move involves, at most, two simulation boxes. 

 

The particle insertion and particle displacement acceptance criteria for the NPT–Gibbs 

ensemble are identical to the acceptance criteria for its NVT counterpart; however, for 

mutual exchange of volume between any two phases (here denoted as phases I and II), the 

acceptance criterion is different.  For an increase in the volume of phase I of IV∆ , 

new old
I I IV V V= + ∆  (Panagiotopoulos et al., 1988): 
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(6.16) 

 

It is important to note that the volume of any simulation box may now also vary 

independently, since a constant, specific pressure needs to be maintained across all phases 
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to fulfill the mechanical–equilibrium criterion.  Note that for both the NVT and NPT 

versions of the Gibbs ensemble, that the probability distributions for the binary and ternary 

three-phase mixtures are not required.  Rather, the acceptance rules form the backbone of 

the simulations. 
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7. Standard Molecular Simulation Techniques 

 

This focus of this chapter is on the standard methods used in the algorithms that are 

implemented in the simulation of phase equilibrium.  Since the theory that has been 

presented thus far has focused on monatomic systems, the techniques that are used in the 

simulation of polyatomic molecules will be explained here as well. 

 

7.1 Random Number Generation 

 

A random number generator is a computational device designed to generate a sequence 

of numbers that lack any pattern.  RANLUX is an advanced pseudo–random number 

generator that is implemented by the Towhee Monte Carlo program, and was proposed by 

Luescher (1994) and is based on the RCARRY algorithm. The latter used a subtract–and–

borrow algorithm with a period on the order of 10171 (more than adequate for molecular 

simulations, considering the number of Monte Carlo cycles typically used) but still had 

detectable correlations between numbers.  RANLUX generates pseudo–random numbers 

using RCARRY but throws away numbers to destroy correlations.  In doing so, there is a 

slight decrease in the speed of generation of random numbers but a higher quality is 

obtained. 

 

7.2 Periodic Boundary Conditions and the Minimum Image Convention 

 

Typically, a molecular simulation uses less than 10000 molecules (Allen and Tildesley, 

1987) and the time required for a simulation is generally dependent on the square of the 

number of molecules, since, for a system of N molecules, there will be ( )12
1 −NN  

intermolecular interactions11.  For a three–dimensional simulation box with free boundaries 

the number of molecules at the surface of this box is proportional to 3
1

N .  Thus, a 

                                                   
11 This is true if all interactions are truncated at two–body interactions. 



 

 

51 
 

significant number of molecules reside at the simulation box surface.  These molecules will 

experience different forces compared with molecules in the bulk phase, making it is 

necessary to choose boundaries which mimic the behaviour of an infinite bulk fluid. 

 

 

Figure 7-1 Illustration of the method of periodic boundary conditions and minimum image convention 

for a 2–D system (Allen and Tildesley, 1987). 

 

Surface effects are usually overcome by implementing periodic boundary conditions.  A 

two–dimensional periodic system is shown in Figure 7-1.  The centre cell is called the 

primitive cell, and an exact copy of it is tiled infinitely in 2–D space.  When a molecule 

moves through a boundary in the primitive cell, its corresponding images in the remaining 

cells move across their corresponding boundaries (McKnight, 2005).  Therefore, only the 

coordinates of molecules in the central box need to be stored in computer memory.  

Assuming pair–wise additivity of molecular interactions, the expression for the total 

potential energy of N molecules for a three–dimensional system is written as (Frenkel and 

Smit, 2002): 
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( )∑ +=
n

nr
,,

'total

2

1

ji

ij LuU , 
 

(7.1) 

 

where 
jiij rrr −= , ( )

zyx nnn ,,=n  is a arbitrary three – dimensional vector, L  is the 

length of the cubic periodic box and the prime on the n–sum indicates that when 0=n , the 

i = j–terms are not to be counted.  This form of calculating the potential energy is not very 

useful as it is not a finite sum.  To overcome this problem the molecular interactions are 

split in two types: long– and short–range interactions.  Above a certain cut–off radius, 

denoted
cr , all intermolecular interactions are truncated.  Methods describing the truncation 

of short–range interactions are discussed in the next section. 

 

The minimum image convention requires that an interacting molecule must not interact 

with molecules outside of a box that has the same size as the simulation box centred on the 

interacting molecule of interest.  A molecule should not interact with a periodic image of 

itself, that is to say, molecule 1 in the primitive cell in Figure 7-1 should not interact with 

its corresponding molecules (1A → 1H), and neither should it interact with two periodic 

images of the same molecule as this introduces an artificial periodicity to the simulation 

(McKnight, 2005). 

 

7.3 Analytical Tail Corrections 

 

Before discussing the method of analytical tail corrections, it is instructive to introduce 

the radial distribution function.  The radial distribution function describes the radial 

packing in an atomic or molecular system and provides a suitable means to correctly 

estimate the contribution to the potential energy from the long–ranged interactions when 

( ) 1d 2 <
ijijij
rUrr  (Allen and Tildesley, 1987), as well as to calculate the ensemble average of 

an observable.  The general form of the RDF is: 
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( ) ( ) ( )
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∆
=

24
, 

 

(7.2) 

 

where ( )rn  is the mean number of atoms with a shell of width r∆  (at a distance r) and 

ρ  is the bulk system density.  An ensemble average in terms of the RDF is written as: 
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(7.3) 

 

Thus, using the Lennard–Jones potential, one may obtain the contribution to the 

system’s total potential energy beyond a cutoff radius rc as follows: 
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(7.4) 

 

 

(7.5) 

 

The RDF is also used in thermodynamic modeling in order to take into account the 

density of molecules around one molecule. 

7.4 Hard–inner cutoff radius 

 

A hard–inner cutoff radius is used to ensure that any attempt to either insert an atomic 

group at a point in space that is already occupied, or to move a molecule too close to such a 

point, will be rejected.  Such insertions or moves would automatically be rejected upon 

calculation of the new potential energy of the molecular configuration; thus the hard–inner 

cutoff radius assists in the reduction of simulation times.  The radius is centered at the 

middle of an atomic group, and ranges typically from 0Å to 2Å. 
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7.5 Long–Range Interactions – The Ewald summation for point charges 

 

Compared with the nature of the van der Waals interaction energy for which analytical 

tail corrections are added after truncation, the Coulombic interaction cannot be treated in a 

similar manner.  Consider the tail contribution of the potential U*(r) in three dimensions: 

 

( ) 2*
tail 4

2
rrdrU

N
U

cr

π
ρ
∫
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= , 
 

(7.6) 

 

which, for the Coulomb potential becomes: 
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2
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(7.7) 

 

Clearly, tail corrections cannot be used, for Equation (7.7) confirms that Coulomb forces 

are long–ranged.  Several techniques exist for the calculation of long–range interactions, of 

which the Ewald summation method is the most widely used (Frenkel and Smith, 2002).  A 

rigorous discussion is presented by de Leeuw et al. (1980a, 1980b and 1983). 

 

The force fields used in this work model the electrostatic interactions based on point 

charges.  These charges are not necessarily placed at the center of a pseudo – atomic group 

(for example, a methyl —(CH3)— group), since for highly polar species, the central point 

charge of the entire pseudoatomic group will be located off–center (see Figure 7-2). 

 

 

Figure 7-2 - Schematic of a polar molecule.  For the two atoms shown, which constitute a pseudoatomic 

group, the point charge is located somewhere between the two atoms at point ‘X’. 

 

  

δ+ δ- 
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Consider an electrically neutral ( )∑ =
i iq 0  system of N charged molecules in a cubic 

box of volume V (= L3).  It is assumed that periodic boundary conditions are applicable to 

this system.  The total contribution of the Coulomb potential to the total potential energy of 

the system is: 

 

∑ ∑∑
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= = = +
=
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n nr
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ji
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qq
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(7.8) 

 

The prime on the summation indicates that i = j–terms are not to be counted when n = 

[0, 0, 0].  As it stands, Equation 7.8 cannot be used since it is conditionally convergent.  

The Ewald summation method splits this equation into a real–space part and a Fourier–

space part.  Every point charge qi is assumed to be surrounded by a diffuse charge 

distribution of opposite sign but of an equal magnitude.  A Gaussian distribution (Allen and 

Tildesley, 1987) is used as a screening distribution for each charge: 
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(7.9) 

 

where rd is the distance to the point charge qi and κ is a parameter that determines the 

width of the Gaussian distribution. 

 

The contribution to the electrostatic potential due to screened charges can be computed 

by direct summation; however, the contribution of interest is that due to point charges, 

specifically point i.  Thus, a correction is needed.  Figure 7-3 is a schematic of the screened 

point charges: 
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Figure 7-3 - Ewald summation splitting of a charge. 

 

The compensating charges vary smoothly in real space, and are exactly cancelled by 

their Fourier–spaced counterpart.  There are now three contributions to the electrostatic 

potential: 

 

1. The potential due to point charge qi, 

2. The potential due to Gaussian screening charge –qi, and 

3. The compensation charge with charge qi (Fourier – space component) 

 

Frenkel and Smit (2002) provide a detailed derivation of all the terms described above, 

and a correction term to exclude Coulomb self–interactions.  The final expression for the 

total Coulombic potential contribution is: 
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where erfc is the complementary error function and k = 2πn/L.  Clearly, the larger the κ 

term is made the faster the convergence of the real–space summation term.  However, this 

results in a sharper distribution that requires more Fourier–space terms, which in turn 

necessitates larger computation time.  

 

7.6 Configurational Bias Monte Carlo Methods 

 

The theory presented so far has focused on simple monatomic molecules.  The 

acceptance rules for monatomic molecules are equally valid for complex polyatomic 

molecules, but there will be a large number of rejections before a large molecule’s insertion 

or displacement moves are accepted.  To overcome this computationally expensive 

scenario, the configurational–bias Monte Carlo method was introduced by Siepmann 

(1990), and was derived from a lattice–based method developed by Rosenbluth and 

Rosenbluth (1955).  Essentially, a molecule is grown atom–by–atom into those areas of a 

dense fluid that have a lower energy position, and this ‘bias’ is then corrected for 

afterwards effectively leading to a large increase in acceptance rates for polyatomic 

molecule insertions.  This method also prevents overlapping with other molecules in space 

(Siepmann et al., 1991), (de Pablo et al., 1992), (Frenkel and Smith, 1992). 
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Figure 7-4 - The configurational–bias Monte Carlo method.  To complete the growth of the molecule, 

the next atomic group is placed at the most energy–favorable position in space. 

 

7.6.1 Standard CBMC
12
 

 

In general, the calculation of the non–bonded interactions for a collection of molecules 

is time consuming.  It was shown that the potential energy may be split into an 

intramolecular component and an intermolecular component. 

Suppose that a molecule is to be grown atom–by–atom (the word ‘atom’ here refers to a 

pseudoatomic group) in a dense liquid.  The Rosenbluth weight of the first segment is: 

 

( ) [ ]∑
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=
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j

jUnw
1

ext
11 exp β , 

 

(7.11) 

 

where f is the total number of trial insertions for the first atom at random positions in the 

simulation box and ext
1 jU  is the non–bonded potential due to the insertion of this first atom, 

                                                   
12 This sub–section is based mostly on Siepmann & Frenkel (1992). 
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for the jth attempt.  Thus, using the definition of a probability, a particular position where 

the atom will be placed is selected using: 
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(7.12) 

 

where bi is the position of the center of mass of the atomic group.  For the l remaining 

groups, k trial orientations are generated according to the Boltzmann weight of the internal 

potential of that atomic group: 
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(7.13) 

 

The trial orientation that is eventually selected is: 
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(7.14) 

 

according to the Boltzmann weight of its external potential.  The procedure outlined 

above is continued until the entire molecule has been grown.  Thus, the Rosenbluth weight 

of the new configuration is written as: 
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(7.15) 

 

where Nseg is the number of atomic groups/segments in the molecule.  The Rosenbluth 

weight of the old configuration, W(o) is similarly defined, but the kth or f th trial orientation 

is the old configuration: 
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(7.16) 

 

From the original acceptance criterion for a particle displacement, namely, 

 

( ) ( ) ( )[ ]{ }( )oUnUβ,noacc −−=→ exp1min , 

 

the probability of accepting the configurational–bias regrowth is: 
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(7.17) 

 

7.6.2 Dual–cutoff CBMC 

 

Vlugt et al. (1998) introduced an improved CBMC algorithm called dual–cutoff 

configurational–bias Monte Carlo (DC–CBMC).  These algorithms sped up the calculations 

for systems of 144 octane and 3,4–dimethylhexane  molecules by factors of 3 and 4 

respectively, resulting in a decreased difference in simulation time between a linear 

molecule and a branched–isomer.  It was observed that during a molecule re–growth, the 

CBMC selection process is hard–core in nature, that is to say, the selection of a trial 

orientation is strongly affected by molecules in close proximity.  Therefore, one could 

consider only the nearby interactions during the growth phase and correct for the bias 

afterwards. 

 

Let *cutr  be the cutoff radius beyond which potential contributions to the DC–CBMC re–

growth are truncated.  The external potential may then be split into two components13: 

 

                                                   
13 This is an arbitrary separation; the potential can, in general, be split in any manner as long as the 
interactions are independent (du Preez, 2005). 
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( ) ( )cut*cut
ext

*cut
extext rrrUrrUU <<+<= δ , (7.18) 

 

where ext
U  is the computationally less–expensive potential, ext

Uδ  is the difference 

between the two potential energies and rcut is the cutoff radius for non–bonded interactions, 

as described in Chapter 4.  Since extU  is a shortened potential, the Rosenbluth weights are 

calculated faster and consequently, molecule growths occur faster.  However, this leads to a 

bias that must be corrected.  The acceptance rule is derived as such: 
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(7.20) 

 

 

where ( )oW  and ( )nW  are the Rosenbluth weights that are calculated using extU .  

Thus, the DC–CBMC acceptance criterion is: 
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(7.21) 

 

7.6.3 Coupled–Decoupled CBMC 

 

In 1999 Vlugt et al. revealed a flaw in the Boltzmann rejection technique if a molecule 

contains any atom that is bonded to three or more other atoms.  To this end, the coupled–

decoupled CBMC algorithm, which is a generalization of the standard CBMC method, was 

developed by Martin and Siepmann (1999) which also avoid problems for sequentially 

generating dihedral and bond bending angles.  At the time, bond lengths were still rigid, but 

the algorithm later included decoupled flexible bond lengths (Martin and Thompson, 2004) 

for force fields such as NERD (Nath et al., 1998).  It is currently implemented in the 

MCCCS Towhee code, and it is important to remember that this method of particle re–
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growth is only effective when the appropriate parameters are chosen carefully, since 

simulation times can increase without judicious setting of the parameters.  This is due to 

more calculations being performed per trial compared with standard CBMC, because 

dihedral and bond bending angles are also generated (du Preez, 2005). 

 

For the biased regrowth of a molecule, Martin and Siepmann (1999) initially proposed 

the inclusion of bond bending and dihedral energies with the Lennard–Jones energy.  

However, it was proven to be computationally inefficient since it takes a large number of 

trials to find reasonable bond angles.  Similar inefficiencies were reported for molecular 

conformations when dealing with dihedral energies, since once the dihedral angles were 

chosen in a biased approach, only one possible trial site could be used for the Lennard–

Jones selection.  Eventually, the approach used was to couple the biased selections so that 

each biased selection sent several possible conformations to the subsequent selection step.  

Thus, the probability of generating a conformation is: 

 

( )( ) ( )
( )

( )( ) ( )
( )

( )( )
( )

∏
=








 −
×

×






 −







 −

=
step

1

B

bend

T

B
tors

L

T
LJ

gen

exp
...

...
expexp

n

n

jW

kU

iW

jWjU

nW

iWiU

P
β

ββ

, 

 

 

 

(7.22) 

 

where 

 

( ) ( )( ) ( )∑
=

−=
chLJ

1
T

LJ
L exp

n

i

iWiUnW β , 

 

 

 

(7.23) 

( ) ( )( ) ( )∑
=

−=
chtor

1
B

tors
T exp

n

j

jWjUiW β , and 
 

(7.24) 

 

( ) ( )( )∑
=

−=
chbend

1

bend
B exp

n

j

kUjW β . 
 

 



 

 

63 
 

 (7.25) 

 

In Equations 7.13 to 7.25, chtorn , chLJn  and chbendn  are the number of trial sites for the 

torsional, Lennard-Jones and bond-bending interactions, respectively, and ( )nWL , ( )iWT  

and ( )jWB  are the corresponding Rosenbluth weights.  The move is then accepted with the 

following probability: 
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One disadvantage of coupling the different energy types is that chbendchtorchLJ nnn ××  trial 

vectors need to be generated for the bond angle bias selection, compared with (f + k) 

vectors for the standard CBMC method (Martin and Siepmann, 1999). 

 

7.6.4 Arbitrary Trial Distributions 

 

Yet another formulation of the original CBMC method, this technique uses arbitrary 

distributions, different from the standard Boltzmann distribution, to generate trial bond 

lengths, angles and dihedral angles (Martin and Frischknecht, 2006).  Arbitrary trial 

distributions have been shown to provide acceptance rates similar to the standard CBMC 

method, but are computationally less expensive and have subsequently been implemented 

in the coupled–decoupled algorithm. 

 

The concept of arbitrary trial distribution CBMC is based upon the energy bias schemes 

developed by Snurr et al. (1993) in adsorption studies.  Martin and Frischknecht (2006) 

showed that that scheme is applicable to any trial generation and selection steps used in a 

CBMC move.  A particular trial position (
ir ) is generated according to a positive arbitrary 
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trial distribution ( ( )
ip rarb

trial ) that is normalized over the range of trial positions.  The 

selection probability for one of the generated trials being used for further growth during 

step k is: 
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where ( )
ip rideal

trial  is the distribution of trials in an ideal system where no intermolecular 

forces are present, ( )
iU r  is the potential energy of the trial position and 

kW  is a modified 

Rosenbluth weight which contains the ratio of trial distribution probabilities: 
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where kntrial  is the number of trials generated during step k of the CBMC growth.  A 

CBMC growth consisting of stepn  growth steps obeys the following acceptance probability: 
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Arbitrary trial distribution CBMC uses a truncated Gaussian trial probability 

distribution: 
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on the interval ( )maxmin ,mm .  Gauss
x  is the mean, Gaussσ  is the standard deviation and 

Gauss
C  is an integration constant defined as: 

 

( ) ( )[ ]minmax
Gauss erferf5.0 mmC −= , (7.31) 

 

all referring to either a bond length, bond angle or dihedral angle.  This distribution is 

now used in the generation of trial bond lengths, bond angles and dihedral angles. 
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8. Computational Aspects 

 

Molecular simulations are computationally expensive and thus require intensive computing 

capability.  To this end, simulations were performed using the MCCCS (Monte Carlo for 

Complex Chemical Systems) Towhee code (Martin, 2007), which is written in the 

FORTRAN language and compiled with the C programming language, on Beowulf cluster 

Ruby (University College of Borås).  In general, a computer cluster refers to a group of 

computers that work quite intimately to the extent that the entire group may be viewed as a 

single entity.  A Beowulf cluster is a type of high–performance computing cluster that has 

become popular in scientific computing and was originally developed by Thomas Sterling 

and Donald Becker at NASA.  One of the main attractions of a Beowulf cluster is that it is 

significantly cheaper than conventional supercomputers, since a Beowulf cluster uses free 

and open source software (e.g. Linux) and off–the–shelf (commodity) hardware 

components.  Figure 8-1 illustrates the basic set–up of a Beowulf computer cluster. 

 

 

Figure 8-1 – Schematic of a typical Beowulf cluster setup 
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8.1 Hardware 

 

8.1.1 Nodes 

 

In general computer network terminology, a node refers to a device that is connected as part 

of a computer network; in a Beowulf cluster, these devices are computers and the various 

network subcomponents (to be discussed later in this chapter).  Two types of computer 

nodes exist in a Beowulf cluster – these are the master node and the slave nodes.  The 

master node’s key function is to direct different computational tasks to the slave nodes, and 

then retrieve the results from the slave nodes and direct it to the end–user.  It must be borne 

in mind that the master node may also function as an additional computational node, but 

this tends to decrease the calculation speed of the entire cluster.  Thus, the sole purpose of 

the master node in this work is to oversee the correct distribution of computational tasks to 

the slave nodes. 

The sole purpose of a slave node is to perform the calculation tasks that have been assigned 

to it, and then to pass the results back to the master node.  It is here that one of the cost–

saving aspects of a Beowulf cluster is most evident; since the slave nodes are dedicated 

computational devices, it is not necessary for these nodes to have their own display devices 

except during the software installation process. 

 

8.1.2 Network Subcomponents 

 

The network subcomponents along with the correct software and protocols (or means of 

communication), allow for the exchange of data between each slave node and the master 

node.  These subcomponents constitute the private network, and include the Ethernet 

switch, network interface cards (NIC) on each node and the links (standard moulded copper 

cabling).  Each network interface card has a unique MAC address, which allows a 

particular node to be identified on the private network.  Ruby utilises a standard 100Megbit 

Ethernet connection and consists of one master and six slave nodes. 
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 Master Node Slave Nodes 

CPU 
AMD Opteron 156 single core with 

1MiB L2 Cache 

AMD Opteron 146 single core with 1MiB 

L2 Cache 

RAM 1GiB DIMM RAM 512MiB PC 133 SDRAM 

Hard Disk 80GiB SATA HDD 40GiB Hard Drive 

CD-ROM 12x DVD-ROM Drive - 

Graphics Card 32MiB Onboard SiS Chipset 8MiB Graphics Card 

Network Card Onboard LAN connection Onboard LAN connection 

Table 8-1 – Master and Slave Node Hardware Specifications. 

 

Network Switch 3Com Superstack 3 3250 48-PORT 

Keyboard and Mouse One set each for the master node and for slave node administration 

Monitor One for the master node and one for slave node administration 

Table 8-2 – Network and Display Hardware 

 

8.2 Software 

 

For any Beowulf cluster to be fully functional, the following software is required: 

 

1. Operating system 

2. Parallel processing software (if parallel computation is enabled) 

3. Resource management software 

 

8.2.1 Operating system 

 

The operating system of choice for most Beowulf clusters is the Unix–based Linux 

operating system.  Linux is an open–source operating system that comes in different 

variants or distributions, each suited to a particular application.  The Linux source code for 

the kernel is free to modify by developers thus providing for a continual improvement of 

the software.  Furthermore, some Linux distributions are available free on the Internet and 

this increases the cost:performance ratio for Beowulf clusters. 
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8.2.2 Parallel processing software 

 

The purpose of parallel processing is to split a computational task into multiple processes 

or threads, and execute each thread on its own processor and in doing so, obtain results 

faster.  It is instructive to note that not every computational algorithm may be parallelized, 

since the different portions of a program must be independent to be executed separately on 

its own processor (although some serial algorithms may be redesigned to run in parallel).  

This may be summed up as: 

 

“One woman can have a baby in nine months, but nine women can't have a baby in one 

month.” (Brooks, 2005) 

 

Parallel computing is achieved through communication amongst the nodes of the cluster 

setup, using a Message Passing application programmer Interface14 (MPI), designed to 

provide access to parallel hardware.  Two popular MPI implementations are LamMPI15 and 

MPICH16. 

 

8.2.3 Resource Management Software 

 

The processing power that is afforded by a Beowulf cluster is a resource that needs to be 

efficiently managed and controlled.  Several users may have access to the cluster and will 

require computational power to perform calculations; thus, a queuing system is used to 

store user jobs until processing power is available.  Scheduling is used to balance job 

priorities and to have as many jobs running at any given time; it is also important that each 

job is distributed to the correct node.  A user should also be able to terminate or suspend a 

job if required (McKnight, 2005).  To this end, the Sun Grid Engine (SGE) which is 

distributed under the open source license is used on Ruby as a resource management tool 

                                                   
14 http:///www.mpi-forum.org 
15 www.osc.edu/lam.html 
16 www.mcs.anl.gov/mpi/mpich 
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that requires a user to only know how to submit jobs and get results.  SGE is resource 

management software that: 

 

1. Accepts jobs submitted by users 

2. Schedules them for execution on appropriate systems based on resource 

management policies 

3. Can submit 100s of jobs without worrying where or when it will run (‘Inside SGE’, 

http://www.rocksclusters.org/) 

 

Two versions of SGE exist; they are Sun Grid Engine, which is distributed under the open 

source license (SISSL license) and Sun N1 Grid Engine. 

 

8.3 Rocks Cluster Suite 

 

The software components that have been discussed in the preceding sections can be 

installed independently; however, for organizations that do not have access to a full–time 

dedicated cluster administrator, the installation process can be difficult; moreover, 

maintaining the cluster presents an even greater problem.  High–performance computer 

clusters are now the computing tool of choice for a myriad of scientific disciplines 

(Sacerdoti et al., 2003), so one can imagine the lack of adequately skilled cluster experts.  

The Rocks cluster suite (http://www.rocksclusters.org/), comprises all of the necessary 

software to install and maintain a cluster and supports a variety of commodity architectures, 

including the ubiquitous x86 architectures that are implemented by the Intel Pentium 4 and 

AMD Athlon chipsets.  Rocks Version 3.3.0 (Fuji distribution) is used on Ruby.  Rocks 

v3.3.0 is built on the Linux distribution based on the Red Hat Enterprise line, and allows 

users to add additional software modules called ‘rolls’ that plug into the base program.  

Thus, aside from the operating system, all other software utilities that were mentioned in 

the preceding sections would be classified as rolls.  Rocks provides a good solution for 

computer clusters in that the same software configuration is installed and maintained across 

the entire network on all computers. 

 



 

 

71 
 

In order to install a barebones cluster, the Rocks Base CD, the HPC Roll CD and the Kernel 

Roll CD are required.  Additionally, for Ruby, the Ganglia Cluster Toolkit, SGE, Intel and 

Java rolls were installed. 

 

The XML–based cluster monitoring tool named Ganglia functions as the ‘nervous’ system 

in the cluster that alerts the user to components that might be damaged.  It also enables the 

user to monitor loads on each slave node CPU, thus providing a valuable tool in tuning the 

performance of parallel programs (Sacerdoti et al., 2003).  

 

Figure 8-2 is a snapshot of the Ganglia cluster monitoring tool.  This snapshot presents to 

the user an overall picture of the ‘health’ of the cluster, with information such as the 

average workload on each CPU and the current status of each CPU (i.e. whether it idle, 

active or not working).  Additionally, detailed information on each node may be viewed. 
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Figure 8-2 – Screenshot of the Ganglia cluster monitoring tool. 

 

Ganglia was designed at Berkeley by Matt Massie (University of California) in 2000, and is 

currently developed by an open source partnership between Berkeley, the San Diego 

Supercomputer Centre and others. It is distributed through Sourceforge.net 

(http://sourceforge.net) under the GPL software license  

(http:// www.gnu.org/copyleft/gpl.html). 

 

Rocks also has a web database application that lists all active computers that are installed in 

the cluster.  Based on SQL, the database allows Queries, Inserts, Updates, and Deletes; any 

changes made within the web application immediately take effect on services that rely on 
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the database.  Thus, only hosts on the internal network are permitted to access to this page 

(see Figure 8-3). 

 

 

Figure 8-3 – Snapshot of the Rocks SQL database. 

 

8.3.1 Installation 

 

Prior to commencing the installation, mandatory checks were made on the cluster hardware 

setup.  The power cables to each computer’s power supply were checked, along with the 

LAN cables to each computer’s network interface card to ensure that they were correctly 

plugged–in. 

Furthermore, since all slave (or in Rocks terminology, ‘compute’) nodes did not have CD–

ROM drives, installing the software on these nodes required the installation to be 

performed via a network boot, using the software images on the CD–ROM in the master (or 

‘frontend’) node.  To this end, the default boot option on each node was set to PXE boot 

(Preboot EXecution Environment).  Naturally, once the installation of the software was 

successful on each node, the default boot option was reverted to the hard drive disk. 

 

8.3.1.1 Frontend Node Installation 
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The frontend installation was initiated by first selecting the CD–ROM as the default boot 

device.  The base CD, along with all the necessary rolls was inserted at the onscreen 

prompts.  The user only truly interacts with the computer during the installation process 

when prompted to enter the hard disk drive partitioning options (default values were used) 

and to enter the cluster information at the ‘Cluster Information Screen’.    During this part 

of the process, the default values for the public network (eth0) interface were used, whilst 

the values for the public network (eth1) variables, i.e. the IP Address, Netmask, Gateway 

and Primary DNS were changed. 

 

The IP address is a unique address that is assigned to the computer’s network card’s MAC 

address (which in turn is a hexadecimal number unique to every network interface card that 

is manufactured).  This is important for the master node as it allows the user to access the 

cluster from a remote location that has internet connectivity, but is not part of the cluster 

network.  The IP addresses for the slave nodes however, are automatically assigned via 

DHCP within the cluster setup.  Finally, a root password was chosen for the root user who 

has authority over the entire cluster (e.g. to create and delete user accounts and to edit 

system files). 

 

8.3.1.2 Slave Node Installation 

 

Once the frontend installation was successful, the compute nodes were installed.  All 

compute nodes were initially switched off, after changing the default boot option to PXE 

boot).  The # insert-ethers command was executed – this invoked a program that 

captured compute node DHCP requests and added their information to the Rocks MySQL 

database (http://www.rocksclusters.org).  During this process, the monitor was connected to 

each node in succession; each node was switched on and detected by the frontend node and 

the clustering software was installed on all nodes.  This can be a highly efficient process if 

there are no hardware or boot configuration problems, since multiple nodes may have 

Rocks software installed simultaneously.  On average, this process lasts for approximately 

fifteen minutes per node. 
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9. Simulation Details and Results 

 

Two binary mixtures and three ternary mixtures were investigated; these were: n-

hexane/water, ethane/ethanol, methane/water/n-heptane, n-butane/1-butene/water and 

water/ethanol/n-hexane.  All organic molecules were modeled by the TraPPE-UA force 

field, while the SPC-E potential model was used to represent water; the justification for 

their use was given in Chapter 2.  However, a very brief discussion on the use of the SPC-E 

force field is also given in Chapter 10.  Literature data for the articulated mixtures is listed 

in Appendix B.  This section presents the simulation settings used in each Monte Carlo 

simulation along with reasons as to why they were chosen.    

 

9.1 Simulation Details 

 

The MCCCS Towhee code was used in all simulation work in this study, utilizing the 

coupled-decoupled CBMC algorithm.  Estimates for the initial simulation box volumes for 

liquid phases were obtained by using a temperature-dependent density correlation (Perry 

and Green, 2007), while vapour phase box volumes were estimated using the ideal gas 

equation of state.  It must be stressed that for NPT simulations, the initial estimates for the 

box volumes are important only from a computational time perspective, since this ensemble 

spontaneously finds the equilibrium values of the box volumes by constantly varying their 

sizes independently, for each phase.  However, for NVT simulations, more accurate 

methods are required.  Fortunately, due to the nature of this study being a qualitative one, 

experimental densities, where available, were used as a starting point in constant volume 

simulations.  Each simulation was performed in duplicate using different integer seeds to 

initialize the random number generator.  Molecules were initially arranged on a cubic 

lattice.  For all simulations, block averages were calculated every 5MCN  cycles, where 

MCN  is the total number of Monte Carlo cycles used in a simulation.  In all simulations, the 

criteria used in deciding the mixtures to be equilibrated were the densities, compositions 

and pressures not showing increasing or decreasing trends over the block averages obtained 
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from the simulations; in other words, the statistical uncertainties (standard deviations) for 

the final values of the properties of interest were not large.  It will be seen in Chapter 10 

that lengthy equilibration times were required especially for the ternary simulations 

involving water and ethanol, due to there being many charged sites present.  Unless 

otherwise stated, the same simulation parameters, as discussed for the n-hexane/water 

mixture, including move probabilities were used in all simulations. 

 

Coupled-decoupled CBMC settings 

 

The default values suggested by Martin (2008) were used in all simulations.  This caused 

no problems since the coupled-decoupled algorithm was initially designed to address 

problems regarding the sequential generation of torsion and bond bending angles in 

branched alkanes (Martin and Siepmann, 1999), while this study dealt with straight chain 

molecules.  For clarity, the main parameters of this molecule re-growth algorithm will be 

summarized. 

Trial bond lengths were generated according to a bounded 2r  probability distribution 

within a range of 85% to 115% of the equilibrium bond length between two pseudoatoms.  

Ten trial positions were sampled for the first pseudoatom inserted in a simulation box 

during CBMC swap moves and ten trial positions each for the remaining pseudoatom(s).  

Dihedral angle trials were generated uniformly on ( )ππ ,− , with 360 trial dihedral angles 

sampled.  Since all molecules used in the simulations were unbranched and short-chained, 

no further dihedral angles needed to be sampled once each molecule was fully grown 

(except for n-hexane and n-heptane).  To sample bending angles, one thousand trial angles 

were generated on ( )ππ ,−  for each pseudoatomic triplet. 

 

To calculate the contribution of electrostatically charged sites to the potential energy of 

each box, Ewald summations with tin-foil boundary conditions were used with 5=×Lκ  

and 5max =k .  The tin-foil boundary condition essentially amounts to a neutralizing system 

boundary (du Preez, 2005).  Values of the parameters used in this study were taken directly 

from work done by Zhang and Siepmann (2004).  These are typical values used in most 
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Monte Carlo molecular simulations.  As discussed in Chapter 7, the Ewald summation 

technique is used to determine the contribution of the Coulomb potential energy which is a 

long-ranged force and thus should not be truncated like the Lennard-Jones non-bonded 

interactions. 

 

9.1.1 Binary Simulations 

 

9.1.1.1 n-hexane/water 

 

NPT-Gibbs ensemble Monte Carlo simulations were used to study the three-phase 

coexistence of n-hexane and water at two different state points, viz., P = 4116.41 kPa with 

T = 482 K and P = 4882.55 kPa with T = 492 K, using an overall n-hexane composition zn-

hexane = 0.614.  A total of N = 600 molecules was used in each simulation, comprising 369 

n-hexane and 231 water molecules.  This is a reasonable system size since in a study of the 

mutual solubilities of long-chain alkanes and water, Johansson (2007) used no less than 200 

water and 100 alkane molecules in each simulation.  Additionally, the pressures and 

corresponding temperatures and compositions of interest were selected based on isochoric 

heat capacity measurements done by Kamilov et al. (2001). 

These simulations required the use of both TraPPE-UA and SPC-E force fields; for model 

parameters, refer to Appendix A.  The minimum allowable size of a simulation box was set 

to 17.0 Å; that is to say, all Lennard-Jones non-bonded interactions were truncated beyond 

8.5 Å, in keeping with the minimum image convention.  This value was chosen due to the 

small volume occupied by the water molecules.  Even doubling the number of water 

molecules does not significantly change the box volume and would thus serve to only 

increase the simulation times without affecting the thermodynamic averages.  A hard-inner 

cutoff radius of 0.8 Å was used as well so that any attempts to insert or move a molecule 

within this spherical region were automatically rejected, thereby improving the simulation 

efficiency.  Care was taken to ensure that the volume of any box did not drop below that of 

the corresponding minimum box length, thus, the total number of molecules had to be 
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judiciously selected to ensure that the simulation was simultaneously efficient (in terms of 

computation time) as well as producing reliable results. 

 

During the pre-equilibration runs, the pure phases were allowed to equilibrate in separate 

simulation boxes – all water molecules were placed in one box, while 309 n-hexane 

molecules were placed in a second simulation box and the remaining 60 n-hexane 

molecules were placed in a large third simulation box.  For this part of the simulation, only 

volume, translation and rotation moves were allowed, along with configurational-bias re-

growths with the following probabilities: volume:translation:rotation:configurational-bias 

re-growth = 0.01:0.33:0.33:0.33.  It was discussed in Chapter 4 that the volume move is 

computationally expensive, thus, this move accounted for only 1% of all moves used in the 

simulations.  The configurational-bias regrowth move effectively amounts to being a 

conformational move for chain-like molecules.  Values for the other move types were 

chosen based on simulations done by previous workers (Martin and Siepmann, 1998).  It 

was found that equilibrating pure phases in their respective simulation boxes sped up the 

ensuing equilibration period, especially for mixtures exhibiting a high degree of mutual 

insolubility, since, when swap moves were finally enabled in the equilibration period, not 

that many large molecules would be transferred to denser phases. 

 

The pre-equilibration runs consisted of at least 4105.2 ×  Monte Carlo cycles, where one 

Monte Carlo cycle consists of N moves, where N is the total number of molecules used in a 

simulation.  Thereafter, swap moves were allowed with equal probabilities between each 

pair of simulation boxes with the total probability set to 10% and the remaining 

probabilities were equally distributed among translation, rotation and CBMC re-growths 

(the volume-change probability remained at 1%). 

Equilibration runs consisted of at least 5105.1 ×  MC cycles during which the densities, 

potential energies, pressures and compositions were monitored for convergence.  It is worth 

mentioning that during the pre-equilibration runs, the maximum allowable centre-of-mass 

translations, rotations and volume displacements were updated every ten cycles for the first 

two thousand cycles, to roughly yield acceptance rates of 50% for each move type.  This 

preserved symmetry in the underlying Markov chain, that is to say, once equilibrium was 
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realized in each simulation, the average number of accepted trial moves that resulted in the 

system leaving an old state were identical to the number of trial moves that would result 

from all other new states going to the ‘old’ state. 

 

9.1.1.2 ethane/ethanol 

 

Simulations for this mixture were performed in the NPT-Gibbs ensemble for 400 ethane 

and 100 ethanol molecules at 169.5=P  MPa and 15.311=T K, as well as two other 

simulations using 800 ethane and 200 ethanol molecules.  These temperature and pressure 

values were obtained from a high pressure phase equilibrium study by Kato et al. (1999).  

Move probabilities were the same as those used for the n-hexane/water mixture. 

 

9.1.2 Ternary Simulations 

 

9.1.2.1 methane/water/n-heptane 

 

Simulations at 275=T K for two pressures, 120 kPa and 2000 kPa, were performed in the 

NPT ensemble for a mixture consisting of 400 methane, 350 water and 250 n-heptane 

molecules.  A pre-equilibration run of 3105×  cycles was used to obtain a 50% acceptance 

rate for molecular translations, box volume changes and molecular rotations (except for 

methane, which is monatomic in the TraPPE-UA potential model).  No swaps were allowed 

during this period; thereafter, 4105.2 ×  cycles were used to further equilibrate the pure 

components before swap moves were allowed for equilibration runs of at least 5101×  

cycles.  Move probabilities were the same as those used in the binary simulations.  Aside 

from using a hard inner cut-off radius of 0.7 Å and truncating non-bonded Lennard-Jones 

beyond 10 Å, all other simulation parameters remained unchanged. 
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9.1.2.2 n-butane/1-butene/water 

 

Simulations were performed at 93.310=T  K and 72.404=P  kPa for a mixture of 300-

butane, 450 1-butene and 250 water molecules in the NPT-Gibbs ensemble as well as the 

NVT-Gibbs ensemble. 

 

9.1.2.3 water/ethanol/n-hexane 

 

Four state points at atmospheric pressure at temperatures of 329.45 K, 329. 51 K, 329.77 

K and 330.54 K were investigated for mixtures of compositions { }hexanenethanolwater ;; −zzz  

={ }49.0;31.0;2.0 , { }555.0;245.0;2.0 , { }655.0;145.0;2.0  and { }74.0;06.0;2.0 , respectively, for 

a total of 750 molecules in each NPT-Gibbs ensemble simulation.  Equilibration periods 

consisted of at least 5101×  Monte Carlo cycles, followed by production runs of at least 

4105×  cycles. 

 

It shall be clear in the next Chapter that not all simulations in the NPT variant of the 

Gibbs ensemble were successful in achieving three distinct coexisting phases.  To this end, 

the unsuccessful simulations were then attempted in the NVT-Gibbs ensemble.  Compared 

to its NPT counterpart, the only difference here is that the total volume of the system is 

now a constant and must be distributed accordingly amongst the three simulation boxes in 

order to achieve mechanical equilibrium. 

The simulation parameters remained exactly the same as those for the constant pressure 

simulations.  However, better estimates of the box volumes were required; this is discussed 

in the next chapter.  The ternary simulations used no less than 750 molecules in each 

simulation, while the binary simulations used at least 500 molecules; this ensured that 

converged statistics were obtained during a run. 
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9.2 Numerical results 

 

This section lists the numerical results obtained from all simulation work that was 

undertaken in this study.  The uncertainties (standard deviations) in these values are listed 

below each thermodynamic average. 

 

9.2.1 n-hexane/water 

 

 Mole fractions   

Phase n-hexane Water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.761 
 

0.241 
 

974 
 

366380 
 

n-hexane-rich 
liquid 

0.9581 
 

0.0421 
 

4134 
 

361373 
 

water-rich 
liquid 

0.000124 
 

0.999884 
 

8213 
 

2237390 
 

Table 9-1 - Final simulation results for n-hexane/water mixture at 482 K in the NVT-Gibbs ensemble.  

The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 

 Mole fractions   

Phase n-hexane Water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     

Vapor 0.93419 0.06619 37726 4531367 
n-hexane-rich 
liquid 0.958918 0.041118 4243 4071124 
water-rich 
liquid 0.000126 0.999886 8266 21522007 

Table 9-2 - Simulation results for n-hexane/water mixture at 482 K and 4116.41 kPa using 213 water 

and 369 hexane molecules.  The statistical uncertainty in the final digit(s) of each value are shown as 
subscripts. 
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 Mole fractions   

Phase n-hexane water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     

Vapor 0.9405 0.0605 3975 4882334 
n-hexane-rich 
liquid 0.9406 0.0606 39411 4892152 
water-rich 
liquid 0.000122 0.999882 8157 39211790 

Table 9-3 - Simulation results for n-hexane/water mixture at 492 K and 48826.55 kPa using 213 water 

and 369 hexane molecules.  The statistical uncertainty in the final digit(s) of each value are shown as 

subscripts. 

 
 

 Mole fractions   

Phase n-hexane water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
n-hexane-rich 
liquid 

0.93765 
 

0.06365 
 

4019 
 

1065117737 
 

water-rich 
liquid 

0.00007119 
 

0.99992919 
 

8383 
 

5079776010 
 

Table 9-4 - Preliminary LLE simulation results for 250 water and 200 n-hexane molecules at 3516 kPa 

and 473.15 K.  The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 
 Mole fractions   

Phase n-hexane water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.44921 
 

0.55121 
 

68.33 
 

37941325 
 

n-hexane-rich 
liquid 

0.46012 
 

0.54012 
 

67.13 
 

2499460 
 

water-rich 
liquid 

0.43812 
 

0.56212 
 

66.81 
 

24532329 
 

Table 9-5 - Example of a simulation where the systems enters a metastable single phase state at 3516 

kPa and 473.15 K.  The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 
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 Mole fractions   

Phase n-hexane water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.88067 
 

0.12067 
 

295106 
 

369195 
 

n-hexane-rich 
liquid 

0.9574 
 

0.0434 
 

4194 
 

367157 
 

water-rich 
liquid 

0.00018 
 

0.99998 
 

8262 
 

2142826 
 

Table 9-6 – Results for n-hexane/water simulation in the NPT ensemble using the ‘shifted’ pressure 
(3663 kPa) obtained from a successful NVT ensemble simulation.  The statistical uncertainty in the 

final digit(s) of each value are shown as subscripts. 
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9.2.2 ethane/ethanol 

 

 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.99623 
 

0.00383 
 

14018 
 

5600190 
 

ethane-rich 
liquid 

0.9455 
 

0.0555 
 

29210 
 

5756213 
 

ethanol-rich 
liquid 

0.37655 
 

0.62455 
 

62524 
 

6085407 
 

Table 9-7 – Results for 3-box NVT simulation at 311.15 K using 400 ethane and 100 ethanol molecules.  

Box identity swaps occurred periodically in this simulation, hence the large uncertainties in the 

densities.  The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 

 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.990352 
 

0.009752 
 

1682 
 

5721165 
 

ethane-rich 
liquid 

0.96315 
 

0.03715 
 

2732 
 

5696149 
 

ethanol-rich 
liquid 

0.60954 
 

0.39154 
 

51319 
 

581570 
 

Table 9-8 - Results for 3-box NVT simulation at 311.15 K using 800 ethane and 200 ethanol molecules.  
The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 

 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.99722 
 

0.00282 
 

1085 
 

466581 
 

ethane-rich 
liquid 

0.92821 
 

0.07221 
 

34913 
 

4664101 
 

ethanol-rich 
liquid 

0.51853 
 

0.48253 
 

55324 
 

4584180 
 

Table 9-9 – Results for 3-box NVT simulation at 311.15 K using 800 ethane and 200 ethanol molecules 

and the NERD force field.  The statistical uncertainty in the final digit(s) of each value are shown as 
subscripts. 
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 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.93848 
 

0.06248 
 

62.89 
 

512232 
 

ethane-rich 
liquid 

0.9404 
 

0.0604 
 

61.37 
 

526471 
 

ethanol-rich 
liquid 

0.16336 
 

0.83736 
 

71418 
 

79841880 
 

Table 9-10 – Results for a 3-box NPT simulation using 1000 molecules, which reverted to two phases.  

The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 

 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.99528 
 

0.00488 
 

103.21 
 

518149 
 

Liquid 
 

0.34689 
 

0.65489 
 

5771 
 

4887397 
 

     

Table 9-11 – VLE results for ethane/ethanol using 500 molecules at 311.15K in the NVT ensemble.  The 

statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 

 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.9951 
 

0.0051 
 

70.9489 
 

422946 
 

Liquid 
 

0.28637 
 

0.71437 
 

65818 
 

4533498 
 

     

Table 9-12 - VLE results for ethane/ethanol using 500 molecules at 311.15K in the NVT ensemble.  

Same as Table 11, except that a slightly larger total volume was used in the simulation.  The statistical 

uncertainty in the final digit(s) of each value are shown as subscripts. 
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 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.9926197 
 

0.0073997 
 

48.1244 
 

323030 
 

Liquid 
 

0.18319 
 

0.81719 
 

701.49.7 
 

3928489 
 

     

Table 9-13 – VLE results for ethane/ethanol using 500 molecules at 311.15 K in the NVT ensemble.  

Same as Table 12, except that an even larger total volume was used in the simulation.  The statistical 

uncertainty in the final digit(s) of each value are shown as subscripts. 

 
 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

Liquid 
 

 
0.995520 
 

0.004520 
 

26536 
 

6225224 
 

Liquid 
 

0.60155 
 

0.39955 
 

52325 
 

6841340 
 

Table 9-14 – LLE results for ethane/ethanol using 500 molecules at 311.15 K in the NVT ensemble.  The 

statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 

 Mole fractions   

Phase ethane ethanol 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

     
Vapor 
 

0.9696 
 

0.0316 
 

368.37.7 
 

10399581 
 

Liquid 
 

0.60373 
 

0.39773 
 

53534 
 10680611 

     

Table 9-15 - LLE results for ethane/ethanol using 500 molecules at 311.15 K in the NVT ensemble.  

Same as Table 14, except that a much smaller total volume was used in the simulation.  The statistical 
uncertainty in the final digit(s) of each value are shown as subscripts. 
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9.2.3 methane/water/n-heptane 

 

 Mole fractions  

Phase methane n-heptane water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

      
Vapor 
 

0.983932 
 

0.01545 0.00066 
 

0.91116 
 

119.9719 
 

Hydrocarbon-
rich liquid 

0.008336701 
 

0.991663701 0.0000011 
 

702.51 
 

92.816.7 
 

water-rich 
liquid 

0.000021 
 

0 0.999981 
 

100863 
 

-781.1226 
 

Table 9-16 – Results for 3-box NPT simulation at 275.5 K for methane/n-heptane/water at 120 kPa.  

The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 
 Mole fractions  

Phase methane n-heptane water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

      
Vapor 
 

0.9982257 
 

0.0017258 0.00005975 
 

14.7859 
 

199416 
 

Hydrocarbon-
rich liquid 

0.1252 
 

0.874625 0.0000022 
 

685.29 
 

51692474 
 

water-rich 
liquid 

0.000074 
 

0 0.999934 
 

101623 
 

1334511081 
 

Table 9-17 - Results for 3-box NPT simulation at 275.5 K for methane/n-heptane/water at 2000 kPa.  
The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 
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9.2.4 n-butane/1-butene/water 

 

 Mole fractions  

Phase n-butane 1-butene water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

      
Vapor 
 

0.3725 
 

0.6245 0.00408 
 

13.5659 
 

54822 
 

Hydrocarbon-
rich liquid 

0.4194 
 

0.5814 0.000041 
 

563.29 
 

790133 
 

water-rich 
liquid 

0.0000051102 
 

0.000001938 0.999991 
 

9937 
 

533.32055 
 

Table 9-18 – Results for a successful 3-box NVT ensemble simulation for n-butane/1-butene/water at 

310.93 K.  The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 

 

 Mole fractions 

Phase n-butane 1-butene water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

      
Vapor 
 

0.3973 
 

0.598438 0.00447 
 

9.577 
 

4195 
 

Hydrocarbon-
rich liquid 

0.4028 
 

0.58716 0.003718 
 

9.5338 
 

265310 
 

water-rich 
liquid 

0.000011 
 

0.000023 0.999973 
 

0.9916 
 

-541316356 
 

Table 9-19 – Results for NPT ensemble simulation for n-butane/1-butene/water at 310.93 K and 404.72 

kPa.  This simulation reverted to two phases.  The statistical uncertainty in the final digit(s) of each 
value are shown as subscripts. 

 

 Mole fractions 

Phase n-butane 1-butene water 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

      
Vapor 
 

0.59713 
 

0.3907 0.0136 
 

2.233.05 
 

177130 
 

Hydrocarbon-
rich liquid 

0.5799399 
 

0.4077324 0.012474 
 

2.247.21 
 

211801 
 

water-rich 
liquid 

0.0000815 
 

0.000047 0.9998822 
 

9839 
 

-392815599 
 

Table 9-20 - Results for NPT ensemble simulation for n-butane/1-butene/water at 310.93 K and 101.33 
kPa.  This simulation reverted to two phases.  The statistical uncertainty in the final digit(s) of each 

value are shown as subscripts. 
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9.2.5 water/ethanol/n-hexane 

 

 Mole fractions  

Phase water ethanol n-hexane 
Specific Density 

[kg.m-3] 
Virial Pressure 

[kPa] 

T = 330.540 K 
Vapor 
 

0.063739 
 

0.066412 0.869928 
 

3.015256 
 

101.667 
 

Hydrocarbon-
rich liquid 

0.000216 
 

0.0030525 0.996743 
 

6216 
 

96552457 
 

water-rich 
liquid 

0.964259 
 

0.035858 7
9 104 −×  

 
9656 
 

-2183214326 
 

 

T = 329.770 K 
Vapor 
 

0.053533 
 

0.169635 0.776938 
 

3.0152563 
 

101.685 
 

Hydrocarbon-
rich liquid 

0.00054 
 

0.013140 0.986444 
 

6216 
 

64561383 
 

water-rich 
liquid 

0.95016 
 

0.049616 00 
 

9656 
 

-13232633 
 

 
T = 329.510  K 
Vapor 
 

0.047018 
 

0.228347 0.724736 
 

2.82516 
 

101.7216 
 

Hydrocarbon-
rich liquid 

0.2089108 
 

0.6953156 0.0958220 
 

7309 
 

-11491345 
 

water-rich 
liquid 

0.9517164 
 

0.0483164 00 
 

9618 
 

8951790 
 

 

T = 329.450  K 
Vapor 
 

0.057044 
 

0.231059 0.712027 
 

2.801 
 

101.669 
 

Hydrocarbon-
rich liquid 

0.1332207 
 

0.7084242 0.1584437 
 

7148 
 

-869725 
 

water-rich 
liquid 

0.9129132 
 

0.0871132 00 
 

9388 
 

-4546024036 
 

Table 9-21 – NPT simulation results for water/ethanol/n-hexane at 101.33 kPa at four different mixture 

compositions.  The statistical uncertainty in the final digit(s) of each value are shown as subscripts. 
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9.3 Graphical Results 
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Figure 9-1 - Plot of the total potential energy in each simulation box during the pre-equilibration period 

for n-hexane/water in the NVT ensemble.  The vapour phase is shown as the upper-most graph, n-

hexane  phase as the middle graph and water phase as the bottom graph. 
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Figure 9-2 - Plot of the variation in the liquid-phase box volumes versus the number of Monte Carlo 
cycles for n-hexane/water.  The n-hexane box is shown on the left, while the water box is shown on the 
right.  The variation has been shown here for the first 50 000 cycles. 
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Figure 9-3 - Plot of the total potential energy in each simulation box during a production run for n-
hexane/water in the NVT ensemble.  Vapour: top graph; n-hexane phase: middle; water phase: bottom. 
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Figure 9-4 - Plot of the variation of the number of n-hexane molecules in each phase during a 
production run in the NVT ensemble for n-hexane/water.  Vapour: top graph; n-hexane phase: middle; 

water phase: bottom. 
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Figure 9-5 - Plot of the pressure within each simulation box versus the number of Monte Carlo cycles 
during a production run.  Vapour: top graph; n-hexane phase: middle; water phase: bottom. 

 



 

 

95 
 

0 2 4 6 8 10 12 14

x 10
4

0

5

10
x 10

4

0 2 4 6 8 10 12 14

x 10
4

0

0.5

1

1.5

2
x 10

5

T
o
ta
l 
v
o
lu
m
e
 (
A
n
g
s
tr
o
m
s
3
)

0 2 4 6 8 10 12 14

x 10
4

0

5000

10000

Number of Monte Carlo cycles

 

Figure 9-6 - Plot of the variation of individual box volumes during a production run.  Vapour: top 
graph; n-hexane phase: middle; water phase: bottom. 
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(b) 

Figure 9-7 - Comparison of box energies for ethane/ethanol in the NVT ensemble before and after box identity swaps. (a) Just before the identity swap 
(b) After the identity swap. 
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(b) 

Figure 9-8 - Comparison of number of ethane molecules in each simulation box for ethane/ethanol in the NVT during an identity swap between the 
vapour and ethane-rich liquid phases. (a) Just before the identity swap (b) After the identity swap. 
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(b) 

Figure 9-9 - Comparison of number of volume changes in each simulation box for ethane/ethanol in the NVT during an identity swap between the 
vapour and ethane-rich liquid phases. (a) Just before the identity swap (b) After the identity swap. 
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Figure 9-10 - Phase diagram for ethane/ethanol at 311.15 K.  The experimental phase envelope is shown 

as a solid line (Kato et al., 1999), with the experimental VLLE line joined by hollow diamonds (◊).  
Simulations using the TraPPE-UA force field in the two phase regions as well as those which reverted 
to two phases are shown as squares (□).  The simulated VLLE region for 500 molecules is marked by 

circles (○), while for 1000 molecules, the phase compositions are marked by triangles, with points being 

joined by dotted lines.  The VLLE line predicted by the NERDv3 force field is shown by a dashed line, 

joining circles marking the three phases. 
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Figure 9-11 - VLLE ternary composition diagram for methane/water/n-heptane at 275.5 K and 120 

kPa.  The experimental three phase region is shown as a solid triangle (Susilo et al., 2005), while the 

region predicted by NPT simulations is plotted using squares (□). 

n-Heptane

Methane Water

0
01

0.2

0.20.8

0.4

0.40.6

0.6

0.60.4

0.8

0.80.2

1

10
HYDROCARBON-RICH PHASE

VAPOR AQUEOUS PHASE 



 

 

101 
 

 

Figure 9-12 - VLLE ternary composition diagram for methane/water/n-heptane at 275.5 K and 2000 

kPa.  The experimental three phase region is shown as a solid triangle (Susilo et al., 2005), while the 

region predicted by NPT simulations is plotted using squares (□). 
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Figure 9-13 - VLLE ternary composition diagram for n-butane/1-butene/water at 310.93 K and 404.72 

kPa.      The experimental three phase region is shown as a dashed triangle (Wehe and McKetta, 1961), 

while the region predicted by NPT simulations is plotted using triangles.  This simulation reverted to 
two phases, hence the close proximity of the bottom two triangle symbols. 
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Figure 9-14 - VLLE ternary composition diagram for n-butane/1-butene/water at 310.93 K and 101.33 
kPa.    The experimental three phase region is shown as a dashed triangle (Wehe and McKetta, 1961), 
while the region predicted by NPT simulations is plotted using squares (□).  This simulation also 

reverted to two phases, hence the proximity of the bottom two square symbols. 
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Figure 9-15 - VLLE ternary composition diagram for n-butane/1-butene/water at 310.93 K in the NVT 
ensemble.  The experimental three phase region is shown as a dashed-triangle (Wehe and McKetta, 

1961), while the region predicted by simulation is plotted using circles (○). 
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Figure 9-16 - VLLE diagrams for water/ethanol/n-hexane at 101.33 kPa obtained from NPT-Gibbs ensemble simulations using a total 750 molecules.  (a)  

329.45 K using 232 ethanol molecules. (b) 329.51 K using 184 ethanol molecules. (c) 329.77 K using 108 ethanol molecules (d) 330.54 K using 45 ethanol 

molecules.  Experimental three-phase envelopes are shown as solid lines (Gomis et al., 2007), while simulation envelopes are shown as dashed lines 
joining the symbols which indicate phase compositions. 
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10. Discussion and Analysis of Results 

 

The chosen mixtures were investigated due to the availability of reliable experimental 

data (see Appendix B).  However, for the n-hexane/water mixture, no literature solubility 

data was available at the temperatures of interest; nevertheless, comparisons for the 

coexisting liquid phases were possible using temperature-dependent solubility correlations 

reported by Tsonopoulos and Wilson (1983). 

 

10.1 Binary Simulations 

 

10.1.1 n-hexane/water 

 

It is worth mentioning that prior to conducting the three phase simulations, two phase 

simulations in the NPT-Gibbs ensemble were undertaken to reproduce liquid-liquid 

equilibrium data reported by Johansson (2007), in order to validate the TraPPE-UA and 

SPC-E force fields as they are implemented in Towhee (see Table 9-4).  The solubilities 

and densities obtained from these two phase simulations were in excellent agreement with 

previously reported simulations at similar conditions and consequently this model was used 

for the three systems studies here.  However, two-phase formation was observed, with 

liquid-liquid equilibrium at slightly lower pressures and vapour-liquid equilibrium at much 

lower pressures and some simulations produced metastable states with three identical 

phases (Table 9-5).  Nevertheless, this was promising as it suggested that an intermediate 

pressure existed between the two VL and LL state points which should produce three 

phases. 

 

A study by Kamilov et al. (2001) on the isochoric heat capacities during liquid-liquid-

vapour to liquid-vapour and liquid-liquid transitions of aqueous n-hexane/water mixtures 

provided a better starting point for the three-box NPT simulations.  At the temperatures of 



 

 

107

interest (that is to say, those which yielded three phases during experiments; see Chapter 9), 

the corresponding three-phase pressures were obtained from a temperature-dependent 

correlation reported by Tsonopoulos and Wilson (1983). 

Using 369 n-hexane and 231 water molecules, the first seventy thousand cycles 

suggested three-phase formation, but it was observed that the density in the vapour box was 

steadily increasing along with a decrease in the water mole fraction in the same box.  After 

an initial 5101×  cycles, the mixture was left to equilibrate for a further 4105×  cycles.  

Analysis of the simulation results revealed that these simulations reverted to two liquid 

phases i.e. a water-rich liquid phase in one box and n-hexane rich liquid phases in the other 

two boxes.  The n-hexane/water simulations in the NPT-Gibbs ensemble both reverted to 

two phases in four independent simulations (each simulation was performed in duplicate).  

Although no emptying of any of the simulation boxes occurred, two boxes having identical 

densities and compositions, rich in n-hexane, were obtained.  The density values of these 

two boxes were very close to that of pure n-hexane liquid, hence the assertion that the 

simulation reverted to two liquid phases (see Tables 9-2 and 9-3).  This suggested that the 

specified pressure was too high to produce an additional vapour phase; in other words, the 

input pressure should have been lower. 

Clearly, using the TraPPE-UA and SPC-E force fields in the NPT-Gibbs ensemble 

would not produce vapour-liquid-liquid equilibrium for this mixture, even when specifying 

the exact three-phase experimental conditions (pressures, temperatures and compositions) 

during a simulation.  This is probably due to the simplicity of the Lorentz-Berthelot 

combining rules for unlike-pseudoatoms, which in this case underestimates the interactions 

between n-hexane and water atomic groups at the simulation conditions.  Another 

possibility for not being able to obtain three phases in the NPT ensemble lies in the 

ensemble itself – the ensemble may be highly sensitive to large perturbations during the 

course of a simulation.  These perturbations would result in sampling of points in Gibbs 

phase space where two phases exist, as opposed to sampling points where three phases 

would have been realized. 

  

As outlined earlier in the chapter, progressively decreasing the simulation pressure until 

three phases were obtained would have been a cumbersome task.  To this end, the overall 
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composition used in the constant pressure simulations was used in an NVT-Gibbs ensemble 

simulation at 482 K.  The total system volume, now constant, was estimated by using the 

liquid density of the experimental mixture at 482 K ( expρ = 312.50 kg.m-3 and 614.01 =z ), 

along with temperature dependent liquid density correlations (Perry & Green, 2007).  An 

equilibration run consisting of 4107×  cycles suggested the formation of three distinct 

phases – a n-hexane-rich vapour phase (~ 75 mole % n-hexane) and n-hexane-rich and 

water-rich liquid phases.  At this stage of the simulation, the standard deviations of the 

densities of each simulation box between the calculation ‘blocks’ were promising.  An 

unsigned deviation of 7.85 kg.m-3 for the vapour phase (ρ = 103.6 kg.m-3) was obtained.  A 

further 4107×  cycles yielded thermodynamic averages which confirmed stability in the 

three distinct coexisting phases, followed by a production run of 5104.1 ×  cycles in which 

the final equilibrium averages were obtained (Table 9-1).  Figures 9-1 and 9-2 illustrate the 

fluctuations of the potential energy and liquid box volumes, respectively, versus the 

number of Monte Carlo cycles during the pre-equilibration period.  A significant decrease 

in the potential energy (by approximately 50%) occurred in the n-hexane-rich box and a 

similar trend is seen in the box volume.  The stability of the simulation during the 

equilibration period, i.e. when points in equilibrium phase space are sampled, is apparent in 

Figures 9-3 to 9-6, which show changes for the potential energies; number of n-hexane 

molecules; pressures and box volumes in the simulation boxes. 

Thus, the NVT-Gibbs ensemble proved to be effective in overcoming the shortfalls of its 

constant pressure counterpart in binary three-phase simulations.  The vapour phase mole 

composition ( 11 75.0=y ) could not be compared with any literature data, since no vapour 

phase experimental mole fractions for n-hexane/water mixtures have been reported.  

However, comparisons were possible for the liquid phases.  At 482 K, a correlation of the 

form ( )TCTBAx lnln hc ++=  (Tsonopoulos and Wilson, 1983) for the solubility of n-

hexane (expressed as a mole fraction) in the water-rich phase predicts hcx  to be 

410749.2 −× .  This is in very good agreement with the simulation value, 4sim
hc 10194.1 −×=x , 

with a deviation of 56.6%.  In the context of these simulations, ‘good agreement’ is 

understood to mean that the simulated mole fractions are of the same order of magnitude as 

those stated in the literature.  A similar correlation for the solubility of water in the n-
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hexane-rich liquid gives 1334.0w =x , while the simulation solubility is 0417.0sim
w =x  

giving a 68.7% deviation.  In both cases, the simulations in this work slightly under-

predicted the mutual solubilities.  At 450 K, Johansson (2007) reported the solubility of 

water in n-hexane as 0132.0w =x , also using the TraPPE-UA and SPC-E force fields – as 

expected, the mutual solubilties follow the trend of being greater at higher temperatures.  

Johansson (2007) obtained densities of 488.9 kg.m-3 and 877.9 kg.m-3 for the n-hexane- and 

water-rich phases respectively, while the corresponding simulation densities in this work 

were 412.9 kg.m-3 and 821.2 kg.m-3.  This is to be expected, since the NVT simulations 

were performed at a higher temperature, thus lower densities were obtained.  The NVT 

simulation, besides producing three distinct phases, was also able to qualitatively agree 

with correlation-based solubility data, where available. 

The average virial pressure during the NVT simulation was 3663 kPa ± 80 kPa; as 

predicted earlier in this discussion, the actual simulation pressure that would have predicted 

three-phase formation was much lower than the experimental pressure, 4116.41 kPa, at 482 

K by approximately 12%.  Hence, only liquid phases were obtained from the NPT 

simulations. 

For completeness a simulation in the NPT ensemble using the new ‘shifted’ pressure of 

3663 kPa, obtained from the NVT simulations, was performed (again at 482 K; see Table 

9-6).  An equilibration run consisting of 120 000 Monte Carlo cycles was performed, 

followed by a 150 000-cycle production run.  It was found that specifying the correct three-

phase pressure (along with temperature and composition) did not produce a stable vapour 

phase – the density and composition of this phase fluctuated between those of the vapour 

and liquid phases corresponding to the NVT simulations, even when using vastly different 

box sizes for the ‘vapour’ and hexane-rich liquid boxes.  Thus, the NVT ensemble is 

evidently more reliable than the NPT ensemble in predicting the VLLE of binary mixtures, 

provided that the potential models used in the simulations can adequately model the unlike-

pair interactions especially in regions of high mutual solubility.  This reconciles with an 

earlier discussion that the NPT ensemble is most probably very sensitive to perturbations in 

phase space even when the exact three-phase simulation pressure which corresponds to the 

articulated force fields (obtained from NVT simulations) is used. 
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10.1.2 ethane/ethanol 

 

NPT-Gibbs ensemble simulations for mixtures of ethane/ethanol also produced two 

phases: an ethanol-rich liquid phase and a vapour phase, present in two simulation boxes, 

which was rich in ethane (Table 9-10).  Using densities reported by Kato et al. (1999), 

simulations were performed using the experimental densities from liquid-liquid and 

vapour-liquid regions to get estimates for the total volume to use in the NVT ensemble; the 

total volumes used in these simulations were the sums of the individual experimental phase 

volumes within each liquid-liquid and vapour-liquid region.  The results of these 

simulations indicated that the calculated densities were in agreement with the 

corresponding densities in the LL and VL experimental regions.  Thus, there was a total 

system volume between the simulated LL and VL regions which would result in three-

phase formation. 

 

Using the experimental densities of the vapour and ethane- and ethanol-rich liquid 

phases, the total volume that was used in an NVT ensemble simulation was calculated 

using methods described earlier in this chapter.  Using 400 ethane and 100 ethanol 

molecules, a simulation at 311.15 K was done in the NVT-Gibbs ensemble.  Three distinct 

phases were obtained, although there was periodic swapping of identities between the 

vapour and ethane-rich liquid boxes.  Hence, the final block averages obtained from this 

simulation were not very reliable since knowing when the start of an identity switch 

occurred was not possible; even if it was possible, there would not be a sufficient number 

of Monte Carlo cycles between each switch for calculating reliable thermodynamic 

averages (see Table 9-7).  Figures 9-7 to 9-9 show comparisons of the total energies, 

number of ethane molecules and volumes, respectively, for the vapour and ethane-rich 

liquid phases.  These fluctuations have a direct effect on the densities of the phases of 

concern and thus affect three-phase stability.  The swapping phenomenon was initially 

attributed to being a system size effect; to investigate this, another simulation was 

performed using 800 ethane and 200 ethanol molecules, scaling the other simulation 

parameters and total system volume accordingly.  Once again, an identity swap was 

observed between the vapour and ethane-rich liquid boxes.  Upon analyzing the volumes of 
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these two boxes, it became apparent that the two volumes were nearly identical.  Thus, yet 

another simulation was attempted, this time using vastly different volumes for the aforesaid 

boxes.  This overcame the identity-swapping behaviour and vapour-liquid-liquid 

equilibrium was obtained in this simulation.  The simulation results (Table 9-8) indicate 

reasonable agreement with experimental data (Kato et al., 1999) for compositions as well 

as densities; Table 10-1 lists the experimental and simulation compositions and densities of 

each phase, as well as unsigned percent deviations. 

 

 

 

 Mole fractions Densities 

 Experiment Simulation Deviation Experiment Simulation Deviation 

Phase       

Vapour 0.990 0.9903 0.030 % 155.8 168 7.83 % 

Ethane-rich 

liquid 

0.921 0.963 4.56 % 355.1 273 23.1 % 

Ethanol-rich 

liquid 

0.677 0.609 4.28 % 491.3 513 4.42 % 

Table 10-1 – Comparison of the simulation and experimental results for phase compositions and 

densities for ethane/ethanol at 311.15 K for a successful NVT simulation using 1000 molecules.  Mole 
fractions refer to those of ethane.  Experimental data was obtained from a study by Kato et al. (1999). 

 

As can be seen, the differences between the experimental and simulations values for the 

compositions are in fair agreement, although for the densities, slightly larger deviations for 

the vapour and ethane-rich liquid phases are observed.  This is due to a fair amount of 

swapping of ethane molecules between these two phases (although box identity swaps were 

not observed). 

 

Again, there is a significant difference between the calculated virial pressure and the 

experimental pressure which produced three phases, with the three-phase simulation 

pressure of 5.889 MPa being 13.93% higher than the experimental value of 5.169 MPa, 

hence only vapour-liquid equilibrium was observed in the NPT simulations.  This agrees 
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with previous VLE simulation work done by Chen et al. (2001) in which azeotropic 

pressures for mixtures of n-hexane/methanol and n-hexane/ethanol were over-predicted by 

as much as 30%, due to unlike pair interactions between alkane and alcohol molecules 

being weak.  Furthermore, pure component vapour pressures were over-predicted by as 

much as 10%. 

For completeness sake, several other VLE and LLE points were calculated in the NVT 

ensemble; these results are listed in Tables 9-11 through to 9-15.  Figure 9-10 shows that 

there is indeed a pressure shift of the entire phase diagram for the ethane/ethanol mixture. 

 

As a matter of interest, the NERD Version 3 force field (Nath et al., 1998) was used in a 

once-off NVT simulation for the same ethane/ethanol mixture.  Although no standard 

deviations were reported in a VLE study using this force field (Khare et al., 2004), there is 

qualitative agreement since for a mixture consisting of n-heptane and 1-pentanol, the mole 

fraction of n-heptane was over-predicted in both phases causing the simulated envelope to 

shift to lower pressures; in this study, the three-phase VLLE line was shifted to 4.665 MPa 

(see Table 9-9 and Figure 9-10) – this value is 9.75% lower than the experimental pressure 

(5.169 MPa). 

 

Although the results of the NVT-Gibbs ensemble simulations revealed deviations from 

experiment, this ensemble nevertheless provided a step in the right direction for further 

binary three- and multi-phase work for fluid phase equilibria.  The deviations from 

experiment for the successful simulations (those which produced three phases) arose due to 

the Lorentz-Berthelot combining rules for unlike-interactions for the molecules of interest 

not being adequate in predicting their corresponding mixture properties except in dilute 

composition regions.  Considering the extensive literature survey carried out prior to and 

during this study, it is believed that these are the first successful binary vapour-liquid-liquid 

equilibrium atomistic simulations involving complex molecules (Lopes and Tildesley 

(1997) performed simulations for simple, model Lennard-Jones beads). 

 

A simple trial-and-error scheme for attaining three-phase binary equilibrium in the NVT 

ensemble would be as follows: 
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• Step 1: Using estimates for phase volumes in the experimental liquid-liquid 

and vapour-liquid regions for a given composition, perform simulations to ascertain 

whether the predicted regions indeed correspond to the experimental regions, or 

previous simulation work. 

 

• Step 2: If successful, progressively decrease the volume used in the VLE 

simulation from Step 1 and increase the volume used in LLE simulation, in 

subsequent simulations that implement three boxes, until three phase formation 

becomes apparent in either of the simulations. 

 

If Step 1 is unsuccessful, the following should be done: if Step 1 produced VLE in both 

simulations, then the total volume used in the simulation which gave the highest pressure 

should be further decreased so that two liquid phases are obtained; the opposite is true if 

two liquid-liquid regions were obtained in Step 1.  Then proceed to Step 2. 

 

10.2 Ternary simulations 

 

10.2.1 methane/water/n-heptane 

 

Simulations in the NPT ensemble for this mixture were successful with very good 

quantitative agreement at both pressures (see Tables 9-16 and 9-17), although at 2000 kPa 

the mole fraction of n-heptane in the hydrocarbon liquid phase was significantly under-

predicted.  This may be attributed to the fact that as the system pressure increases, more 

methane molecules will be transferred to the hydrocarbon liquid phase; furthermore, due to 

the densities in the other two phases increasing, there would be very low acceptance rates 

for swap moves for a large molecule such as n-heptane.  Thus, while the number of 

methane molecules increases in the hydrocarbon liquid phase, the number of n-heptane 

molecules would be nearly constant in this phase, hence the under-prediction of the mole 
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fraction of n-heptane.  n-Heptane is virtually insoluble in water at the temperature of 

interest (275.5 K) and considering the lengthy simulation times, it is only reasonable that 

there were no configurational-bias regrowths of this large molecule in the aqueous phase.  

The experimental solubilities (expressed as mole fractions) at 275.5 K for n-heptane in 

water, at 120 kPa and 2000 kPa, are 6101 −×  and 5101.1 −×  respectively; thus, simulation 

times could have been drastically reduced if swap moves for n-heptane from the 

hydrocarbon liquid box to the aqueous phase box were disallowed, since the coupled-

decoupled regrowth procedure uses multiple trial sites during the growing of chain 

molecules. 

 

The success of these simulations is due to the high degree of mutual insolubility 

amongst the three components, especially at ambient conditions –  simulations in dilute 

regions for highly non-ideal mixtures such as alkanes and water usually yield excellent 

liquid densities and compositions, due to the unlike-pair interactions being less prominent; 

this is why the SPC-E force field was used instead of the SPC force field, since SPC-E 

better-predicts water liquid densities than SPC, which better-predicts the vapour density  

(Boulougouris et al., 1998).  Furthermore, in all of the mixtures that were simulated, water 

was the least volatile component.  Thus, better results were obtained at 120 kPa than at 

2000 kPa.  Although the deviations of the simulation mole fractions from experiment are 

significant especially in those phases which are rich in one component (mole fraction > 0.9; 

see Table 10-2 for a list of percent deviations), these simulations are considered successful 

due to overall phase stability and mole fractions obtained from the simulations being of the 

same order of magnitude as those reported by experimental work. Furthermore, considering 

that the experimental mole fractions for those components that weren’t in high 

concentrations in a given phase were very small, e.g. methane in the aqueous phase, one 

would expect a significant statistical uncertainty from the simulations.  More so, since there 

were no regrowths of large n-heptane molecules in the dense aqueous phases, large 

deviations were obtained.  Better comparisons could have been made if uncertainties in the 

experimental measurements were reported. 
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The methane/water/n-heptane mixture is a good example of a ternary mixture that 

exhibits highly non-ideal behaviour with a very large three-phase composition region.  In 

such mixtures, one is free to choose from many combinations of the number of molecules 

of each type to use in a simulation, at the same time staying far from the phase boundaries.  

There is thus very little risk of a simulation reverting to two (or fewer) phases. 

 

  

Mole fractions 610×  

Methane n-Heptane 
Experiment Simulation Deviation Experiment Simulation Deviation 

Pressure 
[kPa] 

Phase         

120 Vapour 963987 983955.5 -2.07 % 29214 15431.8 47.18 % 

 HC 15111 8335.5 44.84 % 984045 991663.4 -0.77 % 

 Aqueous 47 19 59.57 % 1 0 100.00 % 

2000 Vapour 994973 998221.4 -0.33 % 4291 1719.4 59.93 % 

 HC 76446 125422.9 -64.07 % 922922 874575.1 5.24 % 

 Aqueous 523 72.1 86.21 % 11 0 100.00 % 

Table 10-2 - Comparison of the simulation and experimental results for phase compositions for 

methane/water/n-heptane at 275.5 K.  HC refers to the hydrocarbon-rich liquid phase.  Experimental 
data was obtained from a study by Susilo et al. (2005). 

 

10.2.2 n-butane/1-butene/water 

 

This mixture exhibits an extremely narrow three-phase region (see Figure 34) and 

proved challenging to simulate in the NPT ensemble.  Two simulations at 404.72 kPa and 

101.33 kPa (both at 310.93 K) yielded a water-rich liquid phase in one box and a 

hydrocarbon-rich liquid phase in the remaining two simulation boxes (each having almost 

identical densities and compositons; see Tables 9-19 and 9-20).  It must be noted that the 

initial compositions were selected by locating the central point of the triangular three-phase 

region to stay as far as possible from the phase boundaries.  The initial analyses of these 

simulations during the equilibration periods suggested three distinct phases had formed but 

the uncertainties in the densities were not promising. 
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The final equilibrium values of the volumes of each simulation box from the NPT 

simulation at 404.72 kPa were used as a starting point in a constant volume simulation.  

The total volume from the NPT simulation was decreased by 15% and used as the volume 

in the NVT ensemble, keeping all other simulation conditions, except pressure, the same as 

in the NPT simulations.  This proved successful as three phases were obtained albeit at a 

much higher pressure (548 kPa) with satisfactory uncertainties in the coexisting phase 

densities (see Table 9-18).  The predicted compositions were in excellent agreement with 

experimental data (see Figure 9-15), almost completely reproducing the experimental three-

phase composition boundary. Thus, it was shown that the NVT-Gibbs ensemble may also 

be used to overcome extremely narrow three-phase composition regions for ternary 

mixtures. 

 

The excellent agreement for the phase compositions was due to n-butane and 1-butene 

having low solubilties in water (the experimental mole fractions are 51025.2 −×  and 

51069.12 −× , respectively), so one would expect reasonable results in the dilute region, 

although the mole fraction of water in the vapour and hydrocarbon phases.  The vapour and 

hydrocarbon-rich phases were also in excellent agreement with experimental data.  This is 

due to the unlike-pair interactions between saturated alkane pseudoatoms and vinylic 

alkene pseudoatoms being well accounted for (Wick et al., 2000), so that there is no need 

for special interaction parameters to simulate mixtures of alkanes and alkenes to good 

accuracy.   Wick et al. (2000) obtained excellent results for a supercritical mixture of 

ethene and n-heptane. 

 

 

 

 

 

 

 

 

 



 

 

117

 
 

Mole fractions 

n-Butane 1-Butene 
Experiment Simulation Deviation Experiment Simulation Deviation 

Phase       

Vapour 0.373 0.372 0.17 % 0.614 0.62397 -1.62 % 

HC 0.42 0.419 0.32 % 0.579 0.581281 -0.39 % 

Aqueous 51025.2 −×  51051.0 −×  77.33 % 5107.12 −×  6109.1 −×  98.50 % 

 
 

Water 
Experiment Simulation Deviation 

Phase    

Vapour 0.0128 0.00368 71.25 % 

HC 0.0012 51043.4 −×  96.31 % 

Aqueous 0.9998506 0.999993 -0.01 % 

Table 10-3 – Comparison of the simulation and experimental results for phase compositions for n-

butane/1-butene/water at 310.93 K.  HC refers to the hydrocarbon-rich liquid phase.  Experimental 

data was obtained from a study by Wehe and McKetta (1961). 

 

10.2.3 water/ethanol/n-hexane 

 

Due to the availability of multiple VLLE state points for this mixture, four simulations at 

the conditions stated in Chapter 9 were performed in the NPT-Gibbs ensemble.  The sizes 

of the three-phase composition regions were reasonable at each state point of interest, thus 

the number of water molecules in each simulation was kept constant at 150 molecules to 

ensure reasonable statistics for the aqueous phase in each simulation. 

 

The equilibration runs for these mixtures, especially at high ethanol concentrations, 

required at least 5105.1 ×  Monte Carlo cycles in order to obtain reasonable statistical 

uncertainties in the mole fractions of each component in each phase, more so for the 

organic and aqueous phases.  Figure 9-16  shows the ternary composition diagrams for the 

four NPT simulations that were performed, each time increasing the number of ethanol 

molecules (while decreasing the number of n-hexane molecules to preserve the total 

number of molecules used in each simulation). 
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As can be seen, at very low ethanol concentrations the shape of the three-phase region is 

predicted somewhat qualitatively.  An increase in the number of ethanol molecules 

progressively decreases the experimental three-phase region.  This was not true for the 

simulations, as the simulated three-phase regions became progressively larger.  This was 

due to there being very few ethanol molecules being transferred to the aqueous phase, 

essentially rendering the composition of the aqueous phase constant over all simulations, as 

there were also n-hexane molecules transferred to the water phase only at the highest 

simulation temperature used here (330.54 K), with a mole fraction 0.00000043 =x .  This is 

in poor agreement with the corresponding experimental solubility ( 0.001exp
3 =x ).  Due to 

there being virtually no n-hexane transferred to the aqueous phase, poor agreement with 

experiment in all simulations for the water-rich phase was obtained.  Considering the 

reasonable statistical uncertainties in the densities and compositions of each phase, it was 

assumed that the simulations had converged, so no further equilibration cycles were 

necessary. 

 

Thus, an increase in the number of alcohol molecules here diminished the ability of the 

force fields to even qualitatively predict the equilibrium solubilities and hence the three-

phase regions.  This may be attributed again to the simplicity of the Lorentz-Berthelot 

mixing rules and the unlike-pair interactions being strong enough.  As mentioned earlier in 

this Chapter, previous two-phase studies show systematic deviations for alcohol/alkane 

mixtures by over-estimating the alkane solubility in both phases.  This is evident in this 

particular ternary mixture in the vapour and ethanol rich phases.  Clearly, good agreement 

was obtained only at low concentrations of ethanol.  In a quantitative study, better results 

would have been obtained if the binary simulations were carried out to better-predict the 

vapour-liquid and liquid-liquid phase envelopes of mixtures of alkanes/alcohols, 

alkanes/water and alcohols/water over large composition ranges.  This would have required 

successive modifications of the unlike-pair interactions for the size and energy parameters 

in many simulations for each mixture until satisfactory agreement with experimental data 

was obtained.  This certainly is an arduous task and was not attempted in this work due to 

limited time and computational resources (discussed in the next sub-section). 
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10.3 Simulation Times 

 

The purpose of this work was to determine whether vapour-liquid-liquid equilibrium 

could be predicted by two common force fields.  For binary mixtures, this proved 

oftentimes impossible using the NPT ensemble, until the NVT variant of the Gibbs 

ensemble was used.  In both cases, extremely long equilibration times were required to 

obtain acceptable statistical uncertainties for compositions, pressures and densities.  The 

virial pressure calculation for pressures in liquid simulation boxes, especially those rich in 

water, would have required an extremely large number of Monte Carlo cycles in order to be 

similar to that of the vapour phase.  Thus, in all simulations, the final simulation pressure 

was taken to be equivalent to the vapour phase virial pressure as this is usually a very 

reliable estimate of the equilibrium pressure for a mixture (Martin, 2008).  As can be seen 

from the tabulated numerical results (Chapter 9), some simulations which reverted to two 

phases were terminated as soon as there were similarities in the phase compositions and 

densities of any two boxes; hence there were slightly larger uncertainties in these 

compositions compared to successful runs.  Experience from previous three-box 

simulations for binary and ternary mixtures in this work showed that they would eventually 

converge upon two phases and this was necessary since only six computational nodes were 

available for simulation purposes. 

 

Considering that each simulation was duplicated to ensure that metastable states were 

not obtained on six computational nodes (the figures listed in Table 10-4 above are not 

exaggerations!), one obtains a better appreciation of the qualitative nature of this study.  

Furthermore, to obtain accurate results for the virial pressures in the simulations, pressure 

calculations were performed after each Monte Carlo cycle. 

 

Table 10-4 lists typical simulation times for the mixtures that were studied. 
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Mixture 

Ensembl

e Time [Days] NMC  

  

Equilibratio

n 

Productio

n  

n-hexane/water NPT 10.68 5.34 60 000 

 NVT 13.79 13.79 

140 

000 

ethane/ethanol NPT 6.10 3.81 50000 

 NVT 15.26 5.72 75 000 

n-hexane/ethanol/water NPT 13.85 5.77 50 000 

methane/n-heptane/water NPT 21.12 8.80 50 000 

n-butane/1-butene/water NPT 13.18 6.59 75 000 

 NVT 20.73 8.29 80 000 

          

Table 10-4 - Typical simulation times for mixtures studied in this work.  MCN  refers to the number of 

cycles used during a production run. 

 

An issue that arises when performing simulations of highly immiscible mixtures, where 

the experimental solubility of a chemical species can be of the order of magnitude -4 (and 

lower), is the trade-off between the total number of molecules that are used in the 

simulation and the length of the simulation i.e. the total number of Monte Carlo cycles that 

are used.  If one uses, say, 600 total molecules in a simulation, then it is difficult to imagine 

how solubilities of orders of magnitudes -4 or lower in the dilute region will be calculated.  

However, the number of swap moves that are carried out in a simulation is directly 

proportional to the number of Monte Carlo cycles, which in turn is equal to the number of 

molecules multiplied by the number of MC cycles.  Thus, if 100 000 MC cycles are used, 

then a total of 75 106101600 ×=××  moves will occur.  If 10% of these moves are 

interphase swaps, then a total of 6106×  swap moves will have occurred.  It is now clear, 

depending on the rate of accepted swaps, that for the scenario presented here, mole 

fractions of the order of magnitude -6 may be predicted by the simulation.  Obviously, for 
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simulations in which much lower solubilities are expected then a greater number of MC 

cycles must be used. 
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11. Conclusions and Recommendations 

 

The aim of this study was to investigate the ability of the Gibbs ensemble, using Monte 

Carlo molecular simulations, in predicting the three-phase fluid equilibrium for several 

industrially-relevant mixtures using two common potential models, TraPPE-UA and SPC-

E.  The simulation results for each mixture were then compared to the corresponding 

experimental data. 

 

The first successful binary liquid-liquid-vapour equilibrium simulations for complex 

molecules were performed for two mixtures in the NVT-Gibbs ensemble: n-hexane/water 

and ethane/ethanol.  The simulations in the NPT ensemble were unsuccessful and reverted 

to two-phase liquid-liquid equilibrium for n-hexane/water and vapour-liquid equilibrium 

for ethane/ethanol due to there being significant under- and over- predictions, respectively, 

in the simulation pressures (as confirmed by the virial pressures obtained from the NVT 

simulations).  This was due to the unlike-pair interactions for each different molecular pair 

not being well-accounted for.  Even using the three-phase virial pressure obtained from the 

NVT ensemble simulations for n-hexane/water as the input pressure in the NPT ensemble 

did not produce three distinct phases since the density and composition of the vapour box 

periodically changed, making it impossible to obtain meaningful ensemble averages.  This 

suggests, aside from limitations in the unlike-pair interactions, that the NPT ensemble is 

very sensitive to perturbations when sampling regions of phase space which should give 

three phases. 

The NVT ensemble has also been shown to overcome an extremely narrow VLLE 

ternary composition envelope, in which the NPT ensemble produced only two distinct 

phases.  Excellent agreement with experimental data was obtained for a ternary n-butane/1-

butene/water mixture. 

 

For the water/ethanol/n-hexane mixture, experimental data indicated a fair degree of 

solubility amongst the components across all phases, especially as the proportion of ethanol 

molecules increased.  However, the simulations showed large deviations from experiment, 
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especially when the number of ethanol molecules in the mixtures became higher.  There 

were hardly any accepted swap moves and configurational-bias regrowths for n-hexane into 

the dense water-rich phase, as well as the solubility of ethanol in water also being under 

estimated.  Thus, while the NPT-Gibbs ensemble produced three distinct phases, the 

limitations in these simulations were the unlike-pair interactions. 

 

The NPT and NVT variants of the Gibbs ensemble are thus adequate in predicting three-

phase formation.  However, the NVT variant is clearly the ensemble of choice when 

performing simulations for ternary mixtures that exhibit very narrow three-phase regions 

and also for simulations involving binary mixtures.  Furthermore, one is more likely to 

obtain VLLE in an NVT simulation than in an NPT simulation as the total volume is easier 

to control than using a shifted pressure in the NPT ensemble; Gibbs phase rule states that 

for VLLE in binary mixtures, there is all but one degree of freedom.  Thus, once the 

pressure is fixed, there are no additional degrees of freedom; hence, the simulation pressure 

specified in the NPT ensemble would have to be extremely close to the experimental three-

phase pressure, assuming that the unlike-pair interactions are accurate enough. 

 

The greatest limitations arose from the force fields and the NPT ensemble.  In regard to 

the force fields, the combining rules that were used could not accurately predict the mixture 

behaviour.  For ternary mixtures, provided that a set of force fields can adequately 

reproduce the liquid-liquid and vapour-liquid phase envelopes for each binary pairing, there 

would be better predictions which are in qualitative and quantitative agreement with 

experimental data.  The way forward is to re-parameterize existing force fields, or develop 

improved mixing rules so that better quantitative agreement is obtained with the two-phase 

regions of binary mixtures.  One would then expect more accurate results for the simulation 

of vapour-liquid-liquid equilibrium.  Furthermore, more work needs to be done to ascertain 

whether the NPT ensemble is viable for predicting three-phase fluid equilibrium of binary 

mixtures. 
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Appendix A 
 

Potential Model Parameters 
 

This appendix lists the parameters for the force fields that were used in this work; for 

TraPPE-UA (Martin and Siepmann (1998), Wick et al. (2000) and Chen et al. (2001)) and 

NERDv3 (Nath et al. (1998) and Khare et al. (2004)), only values for molecules studied in 

this work are listed.  For a more comprehensive list, refer to the relevant papers cited 

above. 

 

A.1 TraPPE 

 

Non-bonded parameters 

United-Atom ε⁄kB [K] σ [Å] Charge, q 

CH4 147.9 3.73 - 

CH3 (Ethane) 104.1 3.775 - 

CH3 98 3.75 - 

CH2 (sp
3) 46 3.75 - 

CH2 (sp
2) 85 3.95 - 

CH (sp2) 47 3.73 - 

α-CH2 (sp
3) 46 3.75 +0.265 

O 93 3.02 -0.700 

H 0 0 +4.35 

Table A-1 - TraPPE-UA Non-bonded parameters for pseudoatoms used in this work. 
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Bond-length parameters 

Bond l0 

CHx-CHy 1.54 

CHx-OH 1.43 

O-H 0.945 

CHx=CHy 1.33 

Table A-2 - TraPPE-UA bond lengths for bonded-pairs used in this work. 

 

Torsional parameters 

Torsion 

c0/kB 

[K] 

c1/kB 

[K] 

c2/kB 

[K] 

c3/kB 

[K] 

CHx-(CH2)-(CH2)-CHy 0.0 335.03 -68.19 791.32 

CHx-(CH2)-(CH2)-OH 0.0 176.62 -53.34 769.93 

CHx-(CH2)-(O)-H 0.0 209.82 -29.17 187.93 

CHx=(CH)-(CH2)-CHy 688.5 86.36 -109.77 -282.24 

Table A-3 - TraPPE-UA torsion constants for dihedral angles. 

 

Bond-bending parameters 

Bend θ0 [deg.] kθ/kB 

CHx-(CH2)-CHy 114 62500 

CHx-(CHy)-O 109.47 50400 

CHx-(O)-H 108.5 55400 

CHx=(CH)-CHy 119.7 70420 

Table A-4 - TraPPE-UA equilibrium angles and bending constants used in this work. 

 

A.2 SPC-E 

 

The SPC-E force field models Water as a single site when calculating non-bonded 

interactions with other molecules (Berendsen, Grigera and Straatsma, 1987).  As such, 

there are no bond-bending, stretching or dihedral terms. 
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Non-bonded and parameters 

ε[kcal/mol] σ [Å] Charge, q H-O-H angle (deg.)  

0.155 3.166 H: +0.4238 O: -0.84760 109.47 

Table A-5 - SPC-E parameters used to represent Water in this work. 

 

A.3 NERDv3 

 

Non-bonded parameters 

United-Atom 

ε⁄kB 

[K] σ [Å] Charge, q 

CH3 (Ethane) 100.6 3.825 - 

CH3 104 3.91 - 

α-CH2 (sp
3) 45.8 3.93 +0.290 

O 108 2.98 -0.710 

H 3.89 0.98 +4.20 

Table A-6 - NERDv3 Non-bonded parameters for pseudoatoms used in this work. 

 

Bond-stretching parameters 

Bond l0 kr⁄kB [K] 

CHx-CHy 1.54 168380 

CHx-OH 1.43 198448 

O-H 0.961 312706 

CHx=CHy 1.34 48250 

Table A-7 - NERDv3 bond-stretching parameters for bonded-pairs used in this work. 

 

Torsional parameters 

Torsion c0/kB [K] c1/kB [K] c2/kB [K] C3/kB [K] 

CHx-(CH2)-(O)-H 0.0 359.25 59.053 220.82 

Table A-8 - NERDv3 torsion constants for dihedrals. 
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Bond-bending parameters 

Bend θ0 [deg.] kθ/kB 

CHx-(CHy)-O 108 60136 

CHx-(O)-H 107.5 27662 

Table A-9 - NERDv3 equilibrium angles and bending constants used in this work. 
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Appendix B 
 

Experimental Data 
 

B.1 water (1) + ethanol (2) + n-hexane 

 

Tb [K]  Organic phase  Aqueous Phase  Vapour phase 

    x1 x2 x3   x1 x2 x3   y1 y2 y3 

334.440  0.002 0.000 0.998  1.000 0.000 0.000  0.214 0.000 0.786 

332.570  0.001 0.004 0.995  0.965 0.035 0.000  0.159 0.076 0.765 

330.800  0.002 0.015 0.983  0.893 0.106 0.001  0.139 0.150 0.711 

330.540  0.002 0.021 0.976  0.869 0.131 0.001  0.137 0.162 0.702 

330.050  0.003 0.028 0.969  0.791 0.208 0.001  0.128 0.185 0.688 

329.920  0.003 0.039 0.958  0.754 0.244 0.002  0.124 0.195 0.681 

329.820  0.004 0.049 0.947  0.732 0.266 0.002  0.123 0.197 0.680 

329.770  0.005 0.060 0.935  0.704 0.293 0.003  0.122 0.202 0.676 

329.710  0.006 0.065 0.930  0.674 0.322 0.004  0.120 0.207 0.673 

329.510  0.008 0.087 0.905  0.555 0.433 0.012  0.114 0.221 0.665 

329.480  0.010 0.101 0.889  0.524 0.461 0.014  0.112 0.225 0.663 

329.450  0.012 0.113 0.875  0.489 0.492 0.019  0.110 0.229 0.661 

329.420  0.015 0.133 0.852  0.431 0.541 0.029  0.107 0.235 0.658 

329.280  0.022 0.172 0.806  0.353 0.593 0.053  0.103 0.242 0.656 

329.500  0.037 0.235 0.728  0.296 0.624 0.079  0.100 0.248 0.653 

329.530  0.047 0.272 0.680  0.248 0.620 0.132  0.096 0.253 0.652 

329.550  0.055 0.297 0.648  0.234 0.609 0.157  0.096 0.254 0.650 

329.560  0.061 0.316 0.622  0.219 0.604 0.178  0.095 0.256 0.649 

                          

Table B-1 - Experimental VLLE data for Water (1) + Ethanol (2) + n-Hexane (3) at 101.3 kPa (Gomis 

et al., 2007). 
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B.2 methane (1) + water (2) + n-heptane (3) 

 

P [kPa]  Organic phase  Aqueous Phase  Vapour phase 

    x1 x2 x3   x1 x2 x3   y1 y2 y3 

120  15111 844 984045  47 999953 1  963987 6800 29214 

2000  76446 632 922922  523 999466 11  994973 737 4291 

                          

Table B- 2 - Experimental VLLE data for Methane (1) + Water (2) + n-Heptane (3) at 277.5 K (Susilo et 

al., 2005). Mole fractions have been multiplied by
6101× . 

 

B.3 n-butane (1) + 1-butene (2) + water (3) 

 

P [Pa]  Organic phase  Aqueous Phase  Vapour phase 

    x1 x2 x3   x1 x2 x3   y1 y2 y3 

404.72

0  

0.4

2 

0.57

9 

0.001

2  

2.2

5 

12.6

9 

0.999850

6  

0.37

3 

0.61

4 

0.012

8 

                          

Table B-3 - Experimental VLLE data for n-Butane (1) + 1-Butene (2) + Water (3) at 310.93 K (Wehe 

and McKetta, 1961).  The mole fractions of n-Butane and 1-Butene in the aqueous phase have been 

multiplied by 
5101× . 

 

B.4 ethane (1) + ethanol (2) 

 

 Ethanol-rich liquid  Ethane-rich liquid  Vapour 

T [K] x1 x2   x1 x2   y1 y2 

311.15 0.677 0.323  0.921 0.079  0.990 0.010 

         

Table B-4 - Experimental VLLE data point for Ethane (1) + Ethanol (2) at 5.169 MPa (Kato, Tanaka 
and Yoshikawa, 1999). 
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B.5 n-hexane (1) + water (2) 

 

The predictive correlations that were used in to determine experimental solubilities of n-

Hexane in Water and Water in n-Hexane were taken from Tsonopoulos and Wilson (1983): 

 

The solubility of n-Hexane in Water (expressed as the logarithm of the mole fraction of n-

Hexane is: 

 

[ ] [ ]( )Kln820813.52K646.1612898497.367ln hc TTx ++−= , B1 

 

while the solubility of Water in n-Hexane is expressed as: 

 

[ ] [ ]( )Kln53503.7K73.16351714.45ln w TTx +−−= . B2 

 

Additionally, the three-phase pressures at the temperatures of interest were obtained using 

the following temperature dependent correlation (Tsonopoulos and Wilson, 1983): 

 

[ ]K70.40478127.9ln 3 TP −= . B3 

 

B.6 Liquid Density Correlations 

 

Estimates for the pure-phase box volumes were obtained from the following predictive 

equation (Perry and Green, 1997): 

 

[ ] ψρ 21
3kmol.m CC=− , B4 

 

where [ ]{ }( )4

3K11 C
CT−+=ψ .  Values for the C  constants are listed in Table B-5. 

 

 



 

 

140

Chemical Species C1 C2 C3 C4 Molecular Weight 

Ethane 1.9122 0.27937 305.32 0.29187 30.07 

Ethanol 1.2400 0.27342 508.30 0.23530 46.07 

n-Hexane 0.7082 0.26411 507.60 0.27537 86.18 

n-Heptane 0.6126 0.26211 540.2 0.2814 100.13 

1-Butene 1.0972 0.26490 419.95 0.29043 87.80 

1-Propanol 1.2350 0.27136 536.78 0.24000 60.10 

n-Butane 1.0677 0.27188 425.12 0.28688 58.12 

Methane 2.9214 0.28976 190.56 0.2888 16.043 

Water 5.4590 0.30542 647.13 0.08100 18.02 

Table B-5 - Constants used in the in the liquid density correlations for pure components (Perry and 

Green, 2007).
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Appendix C 

 

Sample Input and Output Files 
 
This appendix lists an abridged output file for a n-Hexane/Water simulation in the NVT-

Gibbs ensemble.  Matlab® was used to extract information from the output files to generate 

the graphs presented in this study. 

 

C.1 Printout of simulation settings and parameters 

 

In this section, the first part of the output file is shown, listing the simulation settings as 

well as the interaction parameters for each molecules type. 

 
Reading from towhee_input file: towhee_input                                                                                 
 in directory: current directory 
inputformat:Towhee          
 random_luxlevel:            3 
 random_allow_restart:  T 
 ensemble: nvt                                                
 temperature:  483.020     
 nmolty:            2 
 nmolectyp:          231          369 
 numboxes:            3 
 stepstyle: cycles                                             
 nstep:       140000 
 printfreq:            1 
 blocksize:        28000 
 moviefreq:       100000 
 backupfreq:         1000 
 runoutput: full                                               
Full output of updates and block averages 
 pdb_output_freq:        70000 
 loutdft:  F 
 loutlammps:  F 
 pressurefreq:            1 
 trmaxdispfreq:        14000 
 volmaxdispfreq:        14000 
 chempotperstep:            0            0 
 potentialstyle: internal                                           
 ffnumber:            2 
 ff_filename: 
/home/SUREN/towhee-5.2.3/ForceFields/towhee_ff_TraPPE-UA                                        
/home/SUREN/towhee-5.2.3/ForceFields/towhee_ff_SPC-E                                            
 classical_potential: Lennard-Jones                                      
 READCLASSICAL: pot_num:     1 potential name: Lennard-Jones                  
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 classical_mixrule: Lorentz-Berthelot                                  
 lshift:  F 
 ltailc:  T 
 rmin:  1.00000     
 rcut:  9.00000     
 rcutin:  7.00000     
 electrostatic_form: coulomb                                            
 coulombstyle: ewald_fixed_kmax                                   
 kalp:  5.60000     
 kmax:            5 
 dielect:  1.00000     
 Setting up force field parameters from files 
 opening forcefield file:    1 
 opening forcefield file:    2 
 Lorentz-Berthelot Mixing rules 
 Arithmetic mean of sigma terms 
 Geometric mean of epsilon term 
 nfield:            0 
 solvation_style: none                                               
 No solvation model used 
 linit:  F 
 initboxtype: dimensions                                         
initstyle Box:    1 
 full cbmc            full cbmc            
initstyle Box:    2 
 full cbmc            full cbmc            
initstyle Box:    3 
 full cbmc            full cbmc            
Box:  1 initlattice: simple cubic         simple cubic         
Box:  2 initlattice: simple cubic         simple cubic         
Box:  3 initlattice: simple cubic         simple cubic         
Box:  1 initmol:         0        100 
Box:  2 initmol:         0        269 
Box:  3 initmol:       231          0 
Box:  1 inix,iniy,iniz:         4          7          4 
Box:  2 inix,iniy,iniz:         6          7          7 
Box:  3 inix,iniy,iniz:         6          6          7 
Box idim hmatrix:    1 1   44.85000    0.00000    0.00000 
Box idim hmatrix:    1 2    0.00000   44.85000    0.00000 
Box idim hmatrix:    1 3    0.00000    0.00000   44.85000 
Box idim hmatrix:    2 1   45.36000    0.00000    0.00000 
Box idim hmatrix:    2 2    0.00000   45.36000    0.00000 
Box idim hmatrix:    2 3    0.00000    0.00000   45.36000 
Box idim hmatrix:    3 1   19.52000    0.00000    0.00000 
Box idim hmatrix:    3 2    0.00000   19.52000    0.00000 
Box idim hmatrix:    3 3    0.00000    0.00000   19.52000 
itest:  1 pairbox:  1   2 
itest:  2 pairbox:  1   3 
itest:  3 pairbox:  2   3 
 pmvol: 0.100000E-01 
 pmvlpr: 0.330000    0.667000     1.00000     
 rmvol: 0.100000     
 tavol: 0.500000     
 pm2boxrbswap:  0.00000     
 pm2rbswmt: 0.400000     1.00000     
 pm2rbswpr: 0.400000    0.800000     1.00000     
 pm2boxcbswap: 0.105000     
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 pm2cbswmt: 0.450000     1.00000     
 pm2cbswpr: 0.330000    0.670000     1.00000     
 pm1boxcbswap:  0.00000     
 pm1cbswmt:  1.00000     1.00000     
 pmavb1:  0.00000     
 pmavb1in: 0.500000     
 pmavb1mt: 0.500000     1.00000     
moltyp:  1 pmavb1ct: 1.000000  1.000000 
moltyp:  2 pmavb1ct: 1.000000  1.000000 
 avb1rad:  4.50000     
 pmavb2:  0.00000     
 pmavb2in: 0.500000     
 pmavb2mt:  1.00000     1.00000     
moltyp:  1 pmavb2ct: 1.000000  1.000000 
moltyp:  2 pmavb2ct: 1.000000  1.000000 
 avb2rad:  4.50000     
 pmavb3:  0.00000     
 pmavb3mt:  1.00000     1.00000     
moltyp:  1 pmavb3ct: 1.000000  1.000000 
moltyp:  2 pmavb3ct: 1.000000  1.000000 
 avb3rad:  4.50000     
 pmcb: 0.330000     
 pmcbmt: 0.500000     1.00000     
 pmall: 0.600000     1.00000     
 pmback:  0.00000     
 pmbkmt:  1.00000     1.00000     
 pmpivot:  0.00000     
 pmpivmt:  1.00000     1.00000     
 pmconrot:  0.00000     
 pmcrmt:  1.00000     1.00000     
 pmcrback:  0.00000     
 pmcrbmt:  1.00000     1.00000     
 pmplane:  0.00000     
 pmplanebox: 0.500000    0.700000     1.00000     
 planewidth:  3.00000     
 pmrow:  0.00000     
 pmrowbox: 0.500000    0.700000     1.00000     
 rowwidth:  3.00000     
 pmtraat:  0.00000     
 pmtamt: 0.500000     1.00000     
 rmtraa: 0.300000E-01 
 tatraa: 0.500000     
 pmtracm: 0.670000     
 pmtcmt: 0.580000     1.00000     
 rmtrac: 0.500000     
 tatrac: 0.650000     
 pmrotate:  1.00000     
 pmromt: 0.500000     1.00000     
 rmrot: 0.800000E-01 
 tarot: 0.800000     
cbmc_style: coupled-decoupled              
coupled_decoupled_form: Martin and Siepmann JPCB 1999  
 Coupled-decoupled form from M.G. Martin; 
 J.I. Siepmann; J. Phys. Chem. B 103 2977-2980 (1999) 
cbmc_setting_style: default ideal                  
 input_style: basic connectivity map                             
 nunit:            3 



 

 

144

 nmaxcbmc:            3 
 lpdbnames:  F 
   using the SPC-E      force field 
 charge_assignment: manual                                             
   Building the input file for molecule type:     1 
unit:    1 name:HW         charge:   0.42380 
unit:    2 name:OW         charge:  -0.84760 
unit:    3 name:HW         charge:   0.42380 
 input_style: basic connectivity map                             
 nunit:            6 
 nmaxcbmc:            6 
 lpdbnames:  F 
   using the TraPPE-UA  force field 
 charge_assignment: bond increment                                     
   Building the input file for molecule type:     2 
unit:    1 name:CH3*(sp3)  
unit:    2 name:CH2**(sp3) 
unit:    3 name:CH2**(sp3) 
unit:    4 name:CH2**(sp3) 
unit:    5 name:CH2**(sp3) 
unit:    6 name:CH3*(sp3)  
Charges assigned for Molecule Type:    2 
Unit:    1 nbname: CH3*(sp3)  Charge:    0.00000 
Unit:    2 nbname: CH2**(sp3) Charge:    0.00000 
Unit:    3 nbname: CH2**(sp3) Charge:    0.00000 
Unit:    4 nbname: CH2**(sp3) Charge:    0.00000 
Unit:    5 nbname: CH2**(sp3) Charge:    0.00000 
Unit:    6 nbname: CH3*(sp3)  Charge:    0.00000 
Total charge for Molecule Type:    2 is:    0.00000 
 Verifying input structures are consistent 
 Determining cyclic subunits for molecule type          1 
 Determining cyclic subunits for molecule type          2 
Default total charge on molecule   1 is   0.00000 
Default total charge on molecule   2 is   0.00000 
Total charge in the simulation system:   0.00000 
Bond Types 
Type:      1 Style: Fixed  Length: 1.5400 
Type:     16 Style: Fixed  Length: 1.0000 
Angle Types 
Type:   1 Style: Standard Harmonic  Angle:    114.000 Constant:    
31250.0 
Type:  20 Style: Fixed Angle  Angle:    109.470 
Torsion Types 
Type:   1 Style: Old UA OPLS Cosine Series 
          k0:       0.0 k1:     355.0 k2:     -68.2 k3:     791.3 
          with 1-4 vdw and scaled (0.500) 1-4 coulomb 
Improper Torsion Types 
   No Improper Types 
 Canonical Gibbs ensemble 
 3-dimensional periodic box 
 Additional Center-of-Mass cutoff 
 Dual Cutoff Configurational-bias Monte Carlo 
 Coupled-decoupled Configurational-bias MC 
 Coulombic inter- and intra-molecular interactions 
     with an Ewald sum  
     including the real-space terms up to half the shortest box length 
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Molecular mass for molecule type     1 is    18.0148 g/mol 
Molecular mass for molecule type     2 is    86.1766 g/mol 
 Reading in initial conformation from towhee_inital 
Initial version:    5 
 PROPER RESULTS ONLY WITH INITIALISATION FROM         25 INTEGERS 
OBTAINED WITH RLUXUT 
 FULL INITIALIZATION OF RANLUX WITH 25 INTEGERS: 
          6915574    15881122    13997077     9983268     4960010 
          3644328     1571928     4909142     9882476    14341548 
          2170679    12379367     9490550    13341825    11496213 
          8390550    11244060     3121403     7265867    12619516 
           980763     7280783     1877264     9421043     3100115 
 RANLUX LUXURY LEVEL SET BY RLUXIN TO:  3 
 new maximum displacements read from towhee_initial 
box:     1 
molecule type:     1 
 Max displacement for Atom translate:   0.030000 
 Max displacement for COM translate:   4.033061 
 Max displacement for rotation:   0.831536 
molecule type:     2 
 Max displacement for Atom translate:   0.030000 
 Max displacement for COM translate:   2.430330 
 Max displacement for rotation:   0.355826 
box:     2 
molecule type:     1 
 Max displacement for Atom translate:   0.030000 
 Max displacement for COM translate:   1.480958 
 Max displacement for rotation:   0.953631 
molecule type:     2 
 Max displacement for Atom translate:   0.030000 
 Max displacement for COM translate:   0.828284 
 Max displacement for rotation:   0.124619 
box:     3 
molecule type:     1 
 Max displacement for Atom translate:   0.030000 
 Max displacement for COM translate:   0.318994 
 Max displacement for rotation:   0.108494 
molecule type:     2 
 Max displacement for Atom translate:   0.030000 
 Max displacement for COM translate:   0.589077 
 Max displacement for rotation:   0.085825 
 Max disp. for 3D Volume:             0.5957E-01  0.3457E-01  0.3267E-01 
 Max disp. for unit cell perturbation 
    Boxes   1 and   2 idim 1 rmcell:   0.1000E+01  0.0000E+00  0.0000E+00 
    Boxes   1 and   2 idim 2 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
    Boxes   1 and   2 idim 3 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
    Boxes   1 and   3 idim 1 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
    Boxes   1 and   3 idim 2 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
    Boxes   1 and   3 idim 3 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
    Boxes   2 and   3 idim 1 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
    Boxes   2 and   3 idim 2 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
    Boxes   2 and   3 idim 3 rmcell:   0.0000E+00  0.0000E+00  0.0000E+00 
 
 new box dimensions read from towhee_initial 
 Box  1 hmatrix(1,x):       41.65034       0.00000       0.00000 
 Box  1 hmatrix(2,x):        0.00000      41.65034       0.00000 
 Box  1 hmatrix(3,x):        0.00000       0.00000      41.65034 
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 Box  2 hmatrix(1,x):       48.09488       0.00000       0.00000 
 Box  2 hmatrix(2,x):        0.00000      48.09488       0.00000 
 Box  2 hmatrix(3,x):        0.00000       0.00000      48.09488 
 Box  3 hmatrix(1,x):       19.55866       0.00000       0.00000 
 Box  3 hmatrix(2,x):        0.00000      19.55866       0.00000 
 Box  3 hmatrix(3,x):        0.00000       0.00000      19.55866 
 
Box:     1 Initial calp:    0.13445 
Box:     1 Initial kmax:     5 
Box:     2 Initial calp:    0.11644 
Box:     2 Initial kmax:     5 
Box:     3 Initial calp:    0.28632 
Box:     3 Initial kmax:     5 
 Energies exclusively from internal potentials 
Nonbonded Force Field 
Lennard-Jones 12-6 potential 
    with tail corrections 
u(r) = 4*epsilon[(sigma/r)^12 - (sigma/r)^6] - shift 
Num. Atom(i)    Num. Atom(j)         sigma    epsilon      shift     1-4sig     1-4eps 
   3 CH3*(sp3)     3 CH3*(sp3)      3.7500    98.0000     0.0000     0.0000     0.0000 
   3 CH3*(sp3)     4 CH2**(sp3)     3.8500    67.1416     0.0000     0.0000     0.0000 
   3 CH3*(sp3)    30 OW             3.4578    87.5403     0.0000     0.0000     0.0000 
   3 CH3*(sp3)    31 HW             1.8750     0.0000     0.0000     0.0000     0.0000 
   4 CH2**(sp3)    4 CH2**(sp3)     3.9500    46.0000     0.0000     0.0000     0.0000 
   4 CH2**(sp3)   30 OW             3.5578    59.9755     0.0000     0.0000     0.0000 
   4 CH2**(sp3)   31 HW             1.9750     0.0000     0.0000     0.0000     0.0000 
  30 OW           30 OW             3.1656    78.1970     0.0000     0.0000     0.0000 
  30 OW           31 HW             1.5828     0.0000     0.0000     0.0000     0.0000 
  31 HW           31 HW             0.0000     0.0000     0.0000     0.0000     0.0000 

 
Number of MC cycles:               140000 
Number of molecules:                  600 
Temperature [K]:       483.02000 
 
Initial Energies for Box     1 
Total molecules in this box         69 
Molecules of type   1 :         16 
Molecules of type   2 :         53 
 total vibration            0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    bond-bond(1-2)          0.000 [K]         0.00000 [kcal/mol] 
 total angle            46990.474 [K]        93.38021 [kcal/mol] 
    regular             46990.474 [K]        93.38021 [kcal/mol] 
    angle-angle             0.000 [K]         0.00000 [kcal/mol] 
 total torsion          75766.515 [K]       150.56442 [kcal/mol] 
    regular             75766.515 [K]       150.56442 [kcal/mol] 
    improper                0.000 [K]         0.00000 [kcal/mol] 
 total nonbond         -37428.472 [K]       -74.37845 [kcal/mol] 
    intramolecular      -6339.668 [K]       -12.59829 [kcal/mol] 
    2-body nonbond     -27581.904 [K]       -54.81120 [kcal/mol] 
    3-body nonbond          0.000 [K]         0.00000 [kcal/mol] 
    tail correct.       -3506.901 [K]        -6.96897 [kcal/mol] 
 total coulombic       -17506.969 [K]       -34.79013 [kcal/mol] 
    real space         -17334.254 [K]       -34.44690 [kcal/mol] 
      intramolec.           0.000 [K]         0.00000 [kcal/mol] 
      intermolec.      -17334.254 [K]       -34.44690 [kcal/mol] 
    self              -218556.590 [K]      -434.31912 [kcal/mol] 
    correction         217963.990 [K]       433.14149 [kcal/mol] 
    recip sum             419.885 [K]         0.83440 [kcal/mol] 
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 external field             0.000 [K]         0.00000 [kcal/mol] 
 solvation                  0.000 [K]         0.00000 [kcal/mol] 
 total classical         67821.54717498 [K]       134.7760530455 
[kcal/mol] 
Initial Energies for Box     2 
Total molecules in this box        332 
Molecules of type   1 :         16 
Molecules of type   2 :        316 
 total vibration            0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    bond-bond(1-2)          0.000 [K]         0.00000 [kcal/mol] 
 total angle           302605.503 [K]       601.34245 [kcal/mol] 
    regular            302605.503 [K]       601.34245 [kcal/mol] 
    angle-angle             0.000 [K]         0.00000 [kcal/mol] 
 total torsion         434499.189 [K]       863.44367 [kcal/mol] 
    regular            434499.189 [K]       863.44367 [kcal/mol] 
    improper                0.000 [K]         0.00000 [kcal/mol] 
 total nonbond        -593509.834 [K]     -1179.43215 [kcal/mol] 
    intramolecular     -32410.519 [K]       -64.40670 [kcal/mol] 
    2-body nonbond    -484272.758 [K]      -962.35450 [kcal/mol] 
    3-body nonbond          0.000 [K]         0.00000 [kcal/mol] 
    tail correct.      -76826.557 [K]      -152.67095 [kcal/mol] 
 total coulombic        -3578.049 [K]        -7.11035 [kcal/mol] 
    real space          -3502.923 [K]        -6.96106 [kcal/mol] 
      intramolec.           0.000 [K]         0.00000 [kcal/mol] 
      intermolec.       -3502.923 [K]        -6.96106 [kcal/mol] 
    self              -189270.811 [K]      -376.12195 [kcal/mol] 
    correction         188887.095 [K]       375.35943 [kcal/mol] 
    recip sum             308.590 [K]         0.61324 [kcal/mol] 
 external field             0.000 [K]         0.00000 [kcal/mol] 
 solvation                  0.000 [K]         0.00000 [kcal/mol] 
 total classical        140016.80874348 [K]       278.2436206268 
[kcal/mol] 
Initial Energies for Box     3 
Total molecules in this box        199 
Molecules of type   1 :        199 
Molecules of type   2 :          0 
 total vibration            0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    bond-bond(1-2)          0.000 [K]         0.00000 [kcal/mol] 
 total angle                0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    angle-angle             0.000 [K]         0.00000 [kcal/mol] 
 total torsion              0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    improper                0.000 [K]         0.00000 [kcal/mol] 
 total nonbond         122286.953 [K]       243.01057 [kcal/mol] 
    intramolecular          0.000 [K]         0.00000 [kcal/mol] 
    2-body nonbond     127069.920 [K]       252.51536 [kcal/mol] 
    3-body nonbond          0.000 [K]         0.00000 [kcal/mol] 
    tail correct.       -4782.967 [K]        -9.50479 [kcal/mol] 
 total coulombic      -976478.272 [K]     -1940.47309 [kcal/mol] 
    real space        -911726.452 [K]     -1811.79725 [kcal/mol] 
      intramolec.           0.000 [K]         0.00000 [kcal/mol] 
      intermolec.     -911726.452 [K]     -1811.79725 [kcal/mol] 
    self             -5788638.952 [K]    -11503.27504 [kcal/mol] 
    correction        5714660.958 [K]     11356.26479 [kcal/mol] 
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    recip sum            9226.175 [K]        18.33440 [kcal/mol] 
 external field             0.000 [K]         0.00000 [kcal/mol] 
 solvation                  0.000 [K]         0.00000 [kcal/mol] 
 total classical       -854191.31893204 [K]     -1697.4625219678 
[kcal/mol] 
 initial virial pressure in box  1 =        4940.79 
 initial virial pressure in box  2 =        -171.34 
 initial virial pressure in box  3 =      -76109.48 
 

C.2 Runtime Printouts 

 
The runtime printouts for the first 30 Monte Carlo cycles, along with the updating of 
maximum displacements for translation, rotation and volume moves  after every 14 000 
cycles is shown here; the total number of cycles used in this simulation was 140 000. 
 
+++++ start of markov chain +++++ 
 
Cycle      Box   Energy [K]  Volume [A^3] Press. [kPa] Molecules 
         1 B: 1  0.6222E+05  0.7413E+05       2914.2    17   53 
           B: 2  0.1286E+06  0.1094E+06      13406.4    15  316 
           B: 3 -0.8503E+06  0.7482E+04     -13045.1   199    0 
         2 B: 1  0.6763E+05  0.7413E+05       2335.3    15   57 
           B: 2  0.1381E+06  0.1095E+06      14218.6    17  312 
           B: 3 -0.8513E+06  0.7314E+04     198810.7   199    0 
         3 B: 1  0.7891E+05  0.7413E+05       4056.0    15   58 
           B: 2  0.1461E+06  0.1096E+06      13770.2    17  311 
           B: 3 -0.8554E+06  0.7290E+04     209840.0   199    0 
         4 B: 1  0.8006E+05  0.7221E+05       5965.7    17   59 
           B: 2  0.1593E+06  0.1113E+06      -2280.7    14  310 
           B: 3 -0.8563E+06  0.7449E+04      29003.1   200    0 
         5 B: 1  0.7823E+05  0.7123E+05       6368.9    18   56 
           B: 2  0.1550E+06  0.1124E+06      -6038.0    13  313 
           B: 3 -0.8607E+06  0.7396E+04      43607.0   200    0 
         6 B: 1  0.8153E+05  0.7293E+05       5827.6    18   55 
           B: 2  0.1450E+06  0.1107E+06        652.1    13  314 
           B: 3 -0.8632E+06  0.7396E+04      61288.6   200    0 
         7 B: 1  0.7391E+05  0.7291E+05       7017.1    17   53 
           B: 2  0.1397E+06  0.1106E+06       2211.3    14  316 
           B: 3 -0.8625E+06  0.7445E+04      30345.8   200    0 
         8 B: 1  0.8261E+05  0.7288E+05       4466.5    14   54 
           B: 2  0.1380E+06  0.1106E+06       7458.2    16  315 
           B: 3 -0.8726E+06  0.7467E+04     -71597.1   201    0 
         9 B: 1  0.8511E+05  0.7208E+05       2355.1    15   57 
           B: 2  0.1419E+06  0.1115E+06        351.5    15  312 
           B: 3 -0.8733E+06  0.7390E+04     -10508.8   201    0 
        10 B: 1  0.7098E+05  0.7213E+05       1814.1    15   54 
           B: 2  0.1359E+06  0.1115E+06      -1222.2    15  315 
           B: 3 -0.8779E+06  0.7337E+04      41874.0   201    0 
        11 B: 1  0.6716E+05  0.7213E+05       6310.5    17   53 
           B: 2  0.1431E+06  0.1115E+06       1225.0    13  316 
           B: 3 -0.8742E+06  0.7337E+04      75107.0   201    0 
        12 B: 1  0.6882E+05  0.7180E+05       4705.6    14   53 
           B: 2  0.1453E+06  0.1116E+06       1711.9    16  316 
           B: 3 -0.8724E+06  0.7572E+04    -159109.0   201    0 
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        13 B: 1  0.6382E+05  0.7459E+05        703.1    12   50 
           B: 2  0.1319E+06  0.1090E+06      22132.7    18  319 
           B: 3 -0.8709E+06  0.7447E+04     -15509.2   201    0 
        14 B: 1  0.6210E+05  0.7344E+05       1031.2    13   52 
           B: 2  0.1300E+06  0.1101E+06       5703.2    18  317 
           B: 3 -0.8718E+06  0.7464E+04     -89878.5   200    0 
        15 B: 1  0.6444E+05  0.7171E+05       3438.7    14   54 
           B: 2  0.1333E+06  0.1119E+06      -6482.0    17  315 
           B: 3 -0.8736E+06  0.7409E+04    -107979.6   200    0 
        16 B: 1  0.6657E+05  0.7171E+05       2621.2    16   54 
           B: 2  0.1580E+06  0.1120E+06      -6999.8    15  315 
           B: 3 -0.8796E+06  0.7256E+04      92115.8   200    0 
        17 B: 1  0.6792E+05  0.7159E+05       3043.0    18   53 
           B: 2  0.1616E+06  0.1121E+06      -5935.4    13  316 
           B: 3 -0.8772E+06  0.7269E+04     106093.4   200    0 
        18 B: 1  0.6309E+05  0.7159E+05       1898.6    17   52 
           B: 2  0.1590E+06  0.1119E+06      -2369.7    14  317 
           B: 3 -0.8768E+06  0.7473E+04    -122751.3   200    0 
        19 B: 1  0.6557E+05  0.7256E+05        539.8    19   52 
           B: 2  0.1559E+06  0.1110E+06       4329.4    12  317 
           B: 3 -0.8768E+06  0.7414E+04     -61155.3   200    0 
        20 B: 1  0.6448E+05  0.7278E+05       -336.5    18   52 
           B: 2  0.1579E+06  0.1112E+06       3292.0    13  317 
           B: 3 -0.8828E+06  0.7053E+04     362873.3   200    0 
        21 B: 1  0.6665E+05  0.7260E+05        420.3    18   53 
           B: 2  0.1559E+06  0.1113E+06      -1742.9    13  316 
           B: 3 -0.8855E+06  0.7091E+04     259264.1   200    0 
        22 B: 1  0.6335E+05  0.7188E+05       2370.0    19   52 
           B: 2  0.1634E+06  0.1118E+06       3063.1    12  317 
           B: 3 -0.8792E+06  0.7267E+04      22700.4   200    0 
        23 B: 1  0.6285E+05  0.7172E+05       3564.1    18   54 
           B: 2  0.1619E+06  0.1121E+06      -1515.8    13  315 
           B: 3 -0.8808E+06  0.7185E+04     114450.2   200    0 
        24 B: 1  0.6613E+05  0.7207E+05       3329.7    17   54 
           B: 2  0.1540E+06  0.1115E+06       2351.5    13  315 
           B: 3 -0.8812E+06  0.7407E+04    -133476.5   201    0 
        25 B: 1  0.6557E+05  0.7357E+05       -488.8    17   53 
           B: 2  0.1428E+06  0.1100E+06       8750.8    12  316 
           B: 3 -0.8854E+06  0.7424E+04    -186347.6   202    0 
        26 B: 1  0.6418E+05  0.7270E+05       1440.2    16   53 
           B: 2  0.1384E+06  0.1109E+06       2077.7    14  316 
           B: 3 -0.8796E+06  0.7380E+04    -114491.5   201    0 
        27 B: 1  0.6468E+05  0.7303E+05       1844.8    15   51 
           B: 2  0.1369E+06  0.1107E+06       2320.7    15  318 
           B: 3 -0.8778E+06  0.7229E+04      64429.7   201    0 
        28 B: 1  0.6419E+05  0.7340E+05       1990.8    15   51 
           B: 2  0.1354E+06  0.1102E+06      12374.9    15  318 
           B: 3 -0.8765E+06  0.7376E+04     -29473.0   201    0 
        29 B: 1  0.6304E+05  0.7328E+05       1980.5    16   52 
           B: 2  0.1432E+06  0.1103E+06      17872.4    13  317 
           B: 3 -0.8811E+06  0.7391E+04     -33633.2   202    0 
        30 B: 1  0.6614E+05  0.7172E+05       5599.3    16   53 
…… 
     13999 B: 1  0.3067E+05  0.5270E+05       6028.4     6   17 
           B: 2  0.1388E+06  0.1301E+06      -9417.0     8  352 
           B: 3 -0.9412E+06  0.8182E+04     -71609.6   217    0 
              Updating maximum translational/rotational displacements 
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 Box: 1 Molecule:  1  Attempts   Accepted   New Displacement 
 Translate COM          91746.     61251.   4.142357 
         Rotate         76933.     62457.   0.843839 
 Box: 1 Molecule:  2  Attempts   Accepted   New Displacement 
 Translate COM         144078.     96853.   2.513433 
         Rotate        165786.    134725.   0.361450 
 Box: 2 Molecule:  1  Attempts   Accepted   New Displacement 
 Translate COM          93252.     60833.   1.486314 
         Rotate         78191.     63006.   0.960540 
 Box: 2 Molecule:  2  Attempts   Accepted   New Displacement 
 Translate COM        1055527.    685446.   0.827504 
         Rotate       1219878.    976565.   0.124703 
 Box: 3 Molecule:  1  Attempts   Accepted   New Displacement 
 Translate COM        1469957.    956522.   0.319344 
         Rotate       1232269.    986113.   0.108527 
 Box: 3 Molecule:  2  Attempts   Accepted   New Displacement 
 Translate COM            106.        64.   0.547183 
         Rotate           106.        87.   0.088051 
 Updating 3D volume maximum displacements 
 Boxes  1 and  2 Tries:    27373 Accepted:    13863 Max Disp.: 0.603E-01 
 Boxes  1 and  3 Tries:    28429 Accepted:    14359 Max Disp.: 0.349E-01 
 Boxes  2 and  3 Tries:    28056 Accepted:    14214 Max Disp.: 0.331E-01 

     14000 B: 1  0.2959E+05  0.5279E+05       5430.2     7   16 
           B: 2  0.1404E+06  0.1300E+06     -10285.8     7  353 
           B: 3 -0.9405E+06  0.8182E+04    -102268.7   217    0 
 

Block averages were taken calculated after every 28 000 cycles.  The averages for the first 
block are shown below: 
 
Block Averages (BA) for block     1 
BA Box: 1 Volume [A^3] 0.66109288E+05 
BA Box: 1 Specific density [g/ml] 0.89369983E-01 
BA Box: 1 Virial Pressure      [kPa] 0.35238882E+04 
BA Box: 1 Total Classical 0.61942107E+05 
BA Box: 1 Inter vdw       -.18895639E+05 
BA Box: 1 Angle           0.37736613E+05 
BA Box: 1 Torsion         0.53682946E+05 
BA Box: 1 Intra vdw       -.47131615E+04 
BA Box: 1 External Field  0.00000000E+00 
BA Box: 1 Vibration       0.00000000E+00 
BA Box: 1 Coulomb         -.58686522E+04 
BA Box: 1 Tail vdw        -.22743594E+04 
BA Box: 1 Solvation       0.00000000E+00 
BA Box: 1 u (Gibbs Total) [K] Type   1 -.66615535E+04 
BA Box: 1 u (Gibbs Total) [K] Type   2 -.89472252E+03 
BA Box: 1 Number density [nm-3] Type   1 0.19410954E+00 
BA Box: 1 Number density [nm-3] Type   2 0.58394230E+00 
BA Box: 1 Mol Fraction Type   1 0.25525204E+00 
BA Box: 1 Mol Fraction Type   2 0.74474796E+00 
BA Box: 1 Stress Tensor Virial S_xx          [kPa] 0.44054323E+04 
BA Box: 1 Stress Tensor Virial S_yy          [kPa] 0.44801484E+04 
BA Box: 1 Stress Tensor Virial S_zz          [kPa] 0.44437142E+04 
BA Box: 1 Stress Tensor Virial S_xy          [kPa] 0.52732231E+04 
BA Box: 1 Stress Tensor Virial S_xz          [kPa] 0.53112387E+04 
BA Box: 1 Stress Tensor Virial S_yz          [kPa] 0.52677490E+04 
BA Box: 1 Stress Tensor Virial P_tail        [kPa] -.91921008E+03 
BA Box: 1 Radius of Gyration Type:  1        0.32821 
BA Box: 1 Radius of Gyration Type:  2        2.09567 
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BA Box: 2 Volume [A^3] 0.11742170E+06 
BA Box: 2 Specific density [g/ml] 0.40772154E+00 
BA Box: 2 Virial Pressure      [kPa] 0.35740909E+04 
BA Box: 2 Total Classical 0.12933469E+06 
BA Box: 2 Inter vdw       -.58859883E+06 
BA Box: 2 Angle           0.31661379E+06 
BA Box: 2 Torsion         0.44764523E+06 
BA Box: 2 Intra vdw       -.39692029E+05 
BA Box: 2 External Field  0.00000000E+00 
BA Box: 2 Vibration       0.00000000E+00 
BA Box: 2 Coulomb         -.66334643E+04 
BA Box: 2 Tail vdw        -.79478619E+05 
BA Box: 2 Solvation       0.00000000E+00 
BA Box: 2 u (Gibbs Total) [K] Type   1 -.66843137E+04 
BA Box: 2 u (Gibbs Total) [K] Type   2 -.88827452E+03 
BA Box: 2 Number density [nm-3] Type   1 0.12559729E+00 
BA Box: 2 Number density [nm-3] Type   2 0.28229141E+01 
BA Box: 2 Mol Fraction Type   1 0.42946117E-01 
BA Box: 2 Mol Fraction Type   2 0.95705388E+00 
BA Box: 2 Stress Tensor Virial S_xx          [kPa] 0.22539774E+05 
BA Box: 2 Stress Tensor Virial S_yy          [kPa] 0.22333695E+05 
BA Box: 2 Stress Tensor Virial S_zz          [kPa] 0.22386792E+05 
BA Box: 2 Stress Tensor Virial S_xy          [kPa] 0.19689935E+05 
BA Box: 2 Stress Tensor Virial S_xz          [kPa] 0.19932077E+05 
BA Box: 2 Stress Tensor Virial S_yz          [kPa] 0.19529815E+05 
BA Box: 2 Stress Tensor Virial P_tail        [kPa] -.18845996E+05 
BA Box: 2 Radius of Gyration Type:  1        0.32821 
BA Box: 2 Radius of Gyration Type:  2        2.09629 
BA Box: 3 Volume [A^3] 0.74530525E+04 
BA Box: 3 Specific density [g/ml] 0.81780645E+00 
BA Box: 3 Virial Pressure      [kPa] 0.20749198E+04 
BA Box: 3 Total Classical -.88006299E+06 
BA Box: 3 Inter vdw       0.13483533E+06 
BA Box: 3 Angle           0.24371526E+02 
BA Box: 3 Torsion         0.36185876E+02 
BA Box: 3 Intra vdw       -.29638195E+01 
BA Box: 3 External Field  0.00000000E+00 
BA Box: 3 Vibration       0.00000000E+00 
BA Box: 3 Coulomb         -.10149559E+07 
BA Box: 3 Tail vdw        -.50332405E+04 
BA Box: 3 Solvation       0.00000000E+00 
BA Box: 3 u (Gibbs Total) [K] Type   1 -.71797356E+04 
BA Box: 3 u (Gibbs Total) [K] Type   2 0.92261749E+03 
BA Box: 3 Number density [nm-3] Type   1 0.27321551E+02 
BA Box: 3 Number density [nm-3] Type   2 0.34168876E-02 
BA Box: 3 Mol Fraction Type   1 0.99987074E+00 
BA Box: 3 Mol Fraction Type   2 0.12926346E-03 
BA Box: 3 Stress Tensor Virial S_xx          [kPa] 0.20962007E+05 
BA Box: 3 Stress Tensor Virial S_yy          [kPa] 0.20373219E+05 
BA Box: 3 Stress Tensor Virial S_zz          [kPa] 0.20944554E+05 
BA Box: 3 Stress Tensor Virial S_xy          [kPa] 0.19978573E+06 
BA Box: 3 Stress Tensor Virial S_xz          [kPa] 0.19975309E+06 
BA Box: 3 Stress Tensor Virial S_yz          [kPa] 0.20051925E+06 
BA Box: 3 Stress Tensor Virial P_tail        [kPa] -.18685007E+05 
BA Box: 3 Radius of Gyration Type:  1        0.32821 
BA Box: 3 Radius of Gyration Type:  2        2.08554 
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C.3 Final printouts 

 
+++++ end of markov chain +++++ 
 
 Final hmatrix (general box dimensions)  
Box:     1 
  hmatrix(1,x)      40.49474       0.00000       0.00000 
  hmatrix(2,x)       0.00000      40.49474       0.00000 
  hmatrix(3,x)       0.00000       0.00000      40.49474 
Box:     2 
  hmatrix(1,x)      48.93848       0.00000       0.00000 
  hmatrix(2,x)       0.00000      48.93848       0.00000 
  hmatrix(3,x)       0.00000       0.00000      48.93848 
Box:     3 
  hmatrix(1,x)      19.46351       0.00000       0.00000 
  hmatrix(2,x)       0.00000      19.46351       0.00000 
  hmatrix(3,x)       0.00000       0.00000      19.46351 
 
* 3D Volume Change Moves * 
 Box  1 and  2 Tries:   277340 Accepted:   138992 Acp. Ratio:  0.501 Max Disp.: 
0.602E-01 
 Box  1 and  3 Tries:   284099 Accepted:   142304 Acp. Ratio:  0.501 Max Disp.: 
0.352E-01 
 Box  2 and  3 Tries:   279181 Accepted:   140148 Acp. Ratio:  0.502 Max Disp.: 
0.340E-01 
 
* Configurational-Bias SWAP Moves * 
Molecule type:     1 
  From box  2 to box  1 Attempted:  593713 Grown:  593713 Accepted:  130275 
  From box  3 to box  1 Attempted:  610616 Grown:  610616 Accepted:    8057 
  From box  1 to box  2 Attempted:  593033 Grown:  593031 Accepted:  130344 
  From box  3 to box  2 Attempted:  592842 Grown:  592840 Accepted:    7549 
  From box  1 to box  3 Attempted:  610788 Grown:  610708 Accepted:    7984 
  From box  2 to box  3 Attempted:  591718 Grown:  591638 Accepted:    7624 
Molecule type:     2 
  From box  2 to box  1 Attempted:  724365 Grown:  724365 Accepted:  191145 
  From box  3 to box  1 Attempted:  745899 Grown:  745899 Accepted:    1284 
  From box  1 to box  2 Attempted:  725587 Grown:  725587 Accepted:  191163 
  From box  3 to box  2 Attempted:  724054 Grown:  724054 Accepted:     864 
  From box  1 to box  3 Attempted:  745548 Grown:  742187 Accepted:    1274 
  From box  2 to box  3 Attempted:  726149 Grown:  722921 Accepted:     874 

 
* Configurational-Bias REGROWTH Moves * 
 Molecule type:    1 Box:    1 
     Length  Attempts  Regrown  Accepted  %Regrown   %Accep. 
        1     75338     75338     61385    100.00     81.48 
        2    491519    491519    309205    100.00     62.91 
 Molecule type:    2 Box:    1 
     Length  Attempts  Regrown  Accepted  %Regrown   %Accep. 
        5   1172480   1172480    739593    100.00     63.08 
 Molecule type:    1 Box:    2 
     Length  Attempts  Regrown  Accepted  %Regrown   %Accep. 
        1     76853     76853     64655    100.00     84.13 
        2    502753    502753    315907    100.00     62.84 
 Molecule type:    2 Box:    2 
     Length  Attempts  Regrown  Accepted  %Regrown   %Accep. 
        5   8282589   8282589   2615709    100.00     31.58 
 Molecule type:    1 Box:    3 
     Length  Attempts  Regrown  Accepted  %Regrown   %Accep. 
        1   1107236   1107236    611899    100.00     55.26 
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        2   7196944   7196934    784665    100.00     10.90 
 Molecule type:    2 Box:    3 
     Length  Attempts  Regrown  Accepted  %Regrown   %Accep. 
        5       638       638        75    100.00     11.76 
 
* COM Translation Moves * 
Molecule:  1 Box: 1 Attempts:         991680. Accepted:         642872. Accepted:  
64.827 % 
Molecule:  2 Box: 1 Attempts:        1483778. Accepted:         966248. Accepted:  
65.121 % 
Molecule:  1 Box: 2 Attempts:        1015301. Accepted:         657620. Accepted:  
64.771 % 
Molecule:  2 Box: 2 Attempts:       10506984. Accepted:        6833143. Accepted:  
65.034 % 
Molecule:  1 Box: 3 Attempts:       14556126. Accepted:        9460839. Accepted:  
64.996 % 
Molecule:  2 Box: 3 Attempts:            803. Accepted:            502. Accepted:  
62.516 % 
 
* Rotation Moves * 
Molecule:  1 Box: 1 Attempts:         831592. Accepted:         664375. Accepted:  
79.892 % 
Molecule:  2 Box: 1 Attempts:        1713047. Accepted:        1372352. Accepted:  
80.112 % 
Molecule:  1 Box: 2 Attempts:         851250. Accepted:         678461. Accepted:  
79.702 % 
Molecule:  2 Box: 2 Attempts:       12141464. Accepted:        9719195. Accepted:  
80.050 % 
Molecule:  1 Box: 3 Attempts:       12175831. Accepted:        9742350. Accepted:  
80.014 % 
Molecule:  2 Box: 3 Attempts:            862. Accepted:            678. Accepted:  
78.654 % 

 
Final Energies for Box     1 
Total molecules in this box         65 
Molecules of type   1 :         20 
Molecules of type   2 :         45 
 total vibration            0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    bond-bond(1-2)          0.000 [K]         0.00000 [kcal/mol] 
 total angle            36745.319 [K]        73.02088 [kcal/mol] 
    regular             36745.319 [K]        73.02088 [kcal/mol] 
    angle-angle             0.000 [K]         0.00000 [kcal/mol] 
 total torsion          57383.269 [K]       114.03294 [kcal/mol] 
    regular             57383.269 [K]       114.03294 [kcal/mol] 
    improper                0.000 [K]         0.00000 [kcal/mol] 
 total nonbond         -36899.516 [K]       -73.32730 [kcal/mol] 
    intramolecular      -5802.707 [K]       -11.53123 [kcal/mol] 
    2-body nonbond     -28264.675 [K]       -56.16801 [kcal/mol] 
    3-body nonbond          0.000 [K]         0.00000 [kcal/mol] 
    tail correct.       -2832.134 [K]        -5.62806 [kcal/mol] 
 total coulombic        -4254.334 [K]        -8.45428 [kcal/mol] 
    real space          -3980.130 [K]        -7.90938 [kcal/mol] 
      intramolec.           0.000 [K]         0.00000 [kcal/mol] 
      intermolec.       -3980.130 [K]        -7.90938 [kcal/mol] 
    self              -280991.908 [K]      -558.39157 [kcal/mol] 
    correction         280185.356 [K]       556.78878 [kcal/mol] 
    recip sum             532.347 [K]         1.05789 [kcal/mol] 
 external field             0.000 [K]         0.00000 [kcal/mol] 
 solvation                  0.000 [K]         0.00000 [kcal/mol] 
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 total classical         52974.73788527 [K]       105.2722384064 
[kcal/mol] 
Final Energies for Box     2 
Total molecules in this box        334 
Molecules of type   1 :         10 
Molecules of type   2 :        324 
 total vibration            0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    bond-bond(1-2)          0.000 [K]         0.00000 [kcal/mol] 
 total angle           321534.762 [K]       638.95897 [kcal/mol] 
    regular            321534.762 [K]       638.95897 [kcal/mol] 
    angle-angle             0.000 [K]         0.00000 [kcal/mol] 
 total torsion         431934.113 [K]       858.34631 [kcal/mol] 
    regular            431934.113 [K]       858.34631 [kcal/mol] 
    improper                0.000 [K]         0.00000 [kcal/mol] 
 total nonbond        -602101.252 [K]     -1196.50515 [kcal/mol] 
    intramolecular     -38274.386 [K]       -76.05947 [kcal/mol] 
    2-body nonbond    -487486.965 [K]      -968.74182 [kcal/mol] 
    3-body nonbond          0.000 [K]         0.00000 [kcal/mol] 
    tail correct.      -76339.901 [K]      -151.70386 [kcal/mol] 
 total coulombic         -714.114 [K]        -1.41910 [kcal/mol] 
    real space           -746.377 [K]        -1.48321 [kcal/mol] 
      intramolec.           0.000 [K]         0.00000 [kcal/mol] 
      intermolec.        -746.377 [K]        -1.48321 [kcal/mol] 
    self              -116255.088 [K]      -231.02395 [kcal/mol] 
    correction         116027.526 [K]       230.57174 [kcal/mol] 
    recip sum             259.825 [K]         0.51633 [kcal/mol] 
 external field             0.000 [K]         0.00000 [kcal/mol] 
 solvation                  0.000 [K]         0.00000 [kcal/mol] 
 total classical        150653.50958014 [K]       299.3810410470 
[kcal/mol] 
Final Energies for Box     3 
Total molecules in this box        201 
Molecules of type   1 :        201 
Molecules of type   2 :          0 
 total vibration            0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    bond-bond(1-2)          0.000 [K]         0.00000 [kcal/mol] 
 total angle                0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    angle-angle             0.000 [K]         0.00000 [kcal/mol] 
 total torsion              0.000 [K]         0.00000 [kcal/mol] 
    regular                 0.000 [K]         0.00000 [kcal/mol] 
    improper                0.000 [K]         0.00000 [kcal/mol] 
 total nonbond         142490.978 [K]       283.16033 [kcal/mol] 
    intramolecular          0.000 [K]         0.00000 [kcal/mol] 
    2-body nonbond     147442.486 [K]       293.00004 [kcal/mol] 
    3-body nonbond          0.000 [K]         0.00000 [kcal/mol] 
    tail correct.       -4951.508 [K]        -9.83972 [kcal/mol] 
 total coulombic     -1024585.149 [K]     -2036.07184 [kcal/mol] 
    real space        -957871.661 [K]     -1903.49774 [kcal/mol] 
      intramolec.           0.000 [K]         0.00000 [kcal/mol] 
      intermolec.     -957871.661 [K]     -1903.49774 [kcal/mol] 
    self             -5875400.536 [K]    -11675.68903 [kcal/mol] 
    correction        5799544.344 [K]     11524.94640 [kcal/mol] 
    recip sum            9142.704 [K]        18.16853 [kcal/mol] 
 external field             0.000 [K]         0.00000 [kcal/mol] 
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 solvation                  0.000 [K]         0.00000 [kcal/mol] 
 total classical       -882094.17083708 [K]     -1752.9115113394 
[kcal/mol] 
Averages               Units Type       Box  1      Box  2      Box  3 
 Volume                 nm^3       0.70040E+02 0.11354E+03 0.74071E+01 
 Molecule Number                1       13.844      14.169     202.987 
 Molecule Number                2       45.675     323.301       0.024 
 Molar Volume         ml/mol       0.71924E+03 0.20183E+03 0.21946E+02 
 Specific Density       g/ml        0.09744633  0.41292673  0.82121825 
 Number Density         nm-3    1      0.19764     0.12411    27.43676 
 Number Density         nm-3    2      0.63964     2.85960     0.00317 
 Mole Fraction                  1    0.2428917   0.0417471   0.9998806 
 Mole Fraction                  2    0.7571083   0.9582529   0.0001194 
 Radius of Gyration        A    1    0.3282120   0.3282120   0.3282120 
 Radius of Gyration        A    2    2.0955485   2.0963818   2.0798137 
 Virial Pressure         kPa       0.36632E+04 0.36131E+04 0.22365E+04 
 Virial S_xx             kPa       0.47447E+04 0.22853E+05 0.22127E+05 
 Virial S_yy             kPa       0.47793E+04 0.23033E+05 0.21024E+05 
 Virial S_zz             kPa       0.47581E+04 0.22920E+05 0.20074E+05 
 Virial S_xy             kPa       0.56682E+04 0.20075E+05 0.19831E+06 
 Virial S_xz             kPa       0.56915E+04 0.20013E+05 0.19927E+06 
 Virial S_yz             kPa       0.56847E+04 0.19926E+05 0.19982E+06 
 Virial P_tail           kPa       -.10975E+04 -.19322E+05 -.18838E+05 
 Virial p_i <x_i><p_v>   kPa    1  0.88976E+03 0.15084E+03 0.22363E+04 
 Virial p_i <x_i><p_v>   kPa    2  0.27734E+04 0.34623E+04 0.26699E+00 
 Ideal Pressure          kPa       0.55853E+04 0.19904E+05 0.18305E+06 
 Ideal p_i <N/V>kT       kPa    1  0.13184E+04 0.82790E+03 0.18303E+06 
 Ideal p_i <N/V>kT       kPa    2  0.42669E+04 0.19076E+05 0.21175E+02 
 -<dU/dV>                kPa       -.19581E+04 -.16102E+05 -.17655E+06 
 Thermodynamic Pressure  kPa       0.36272E+04 0.38014E+04 0.64940E+04 
 Thermo p_i <x_1><p_t>   kPa    1  0.88102E+03 0.15870E+03 0.64932E+04 
 Thermo p_i <x_1><p_t>   kPa    2  0.27462E+04 0.36427E+04 0.77522E+00 
 Total Classical           K        0.6978E+05  0.1201E+06 -0.8792E+06 
 Inter vdw                 K       -0.2429E+05 -0.5841E+06  0.1345E+06 
 Angle                     K        0.4381E+05  0.3106E+06  0.2320E+02 
 Torsion                   K        0.6223E+05  0.4387E+06  0.3361E+02 
 Intra vdw                 K       -0.5491E+04 -0.3891E+05 -0.2875E+01 
 External Field            K        0.0000E+00  0.0000E+00  0.0000E+00 
 Vibration                 K        0.0000E+00  0.0000E+00  0.0000E+00 
 Coulomb                   K       -0.6483E+04 -0.6227E+04 -0.1014E+07 
 Tail vdw                  K       -0.2890E+04 -0.7897E+05 -0.5045E+04 
 Solvation                 K        0.0000E+00  0.0000E+00  0.0000E+00 
 u (Density)               K    1    -6548.023   -6770.173   -4165.824 
 u (NVT Insertion)         K    1     -118.364     107.422   -2475.009 
 u (NpT Insertion)         K    1     -113.591     105.537   -2470.636 
 u (Den. + NVT Insert)     K    1    -6666.387   -6662.752   -6640.833 
 u (Den. + NpT Insert)     K    1    -6661.614   -6664.636   -6636.460 
 u (Gibbs Total)           K    1    -6665.683   -6668.134   -6639.089 
 u (Density)               K    2    -7105.499   -6393.538   -9664.765 
 u (NVT Insertion)         K    2     6231.890    5510.218    8794.210 
 u (NpT Insertion)         K    2     6224.994    5510.507    8782.623 
 u (Den. + NVT Insert)     K    2     -873.610    -883.320    -870.555 
 u (Den. + NpT Insert)     K    2     -880.506    -883.031    -882.142 
 u (Gibbs Total)           K    2     -882.114    -881.311     935.108 
 G: Sum{<u_i><N_i>}   kJ/mol       -0.1102E+04 -0.3154E+04 -0.1120E+05 
 U                    kJ/mol        0.5802E+03  0.9985E+03 -0.7310E+04 
 pV: <p><V>           kJ/mol        0.1545E+03  0.2470E+03  0.9973E+01 



 

 

156

 H: <U> + <p><V>      kJ/mol        0.7346E+03  0.1245E+04 -0.7300E+04 
 H: <U + pV>          kJ/mol        0.7355E+03  0.1241E+04 -0.7304E+04 
 S: (<H> - <G>)/T   kJ/K mol        0.3803E+01  0.9109E+01  0.8083E+01 
 Z: <p><V>/<N>RT                      0.646203    0.182225    0.012233 
 
Block Averages (5 blocks)        Units Type Box Average      Standard Deviation 

 Specific Density            g/ml        1  0.97446E-01  0.47975E-02 
 Specific Density            g/ml        2  0.41293E+00  0.39006E-02 
 Specific Density            g/ml        3  0.82122E+00  0.33363E-02 
 Virial Pressure              kPa        1  0.36632E+04  0.80471E+02 
 Virial S_xx                  kPa        1  0.47447E+04  0.17455E+03 
 Virial S_yy                  kPa        1  0.47793E+04  0.17802E+03 
 Virial S_zz                  kPa        1  0.47581E+04  0.17425E+03 
 Virial S_xy                  kPa        1  0.56682E+04  0.23207E+03 
 Virial S_xz                  kPa        1  0.56915E+04  0.22973E+03 
 Virial S_yz                  kPa        1  0.56847E+04  0.25155E+03 
 Virial P_tail                kPa        1 -0.10975E+04  0.10917E+03 
 Virial Pressure              kPa        2  0.36131E+04  0.72650E+02 
 Virial S_xx                  kPa        2  0.22853E+05  0.48465E+03 
 Virial S_yy                  kPa        2  0.23033E+05  0.43225E+03 
 Virial S_zz                  kPa        2  0.22920E+05  0.37106E+03 
 Virial S_xy                  kPa        2  0.20075E+05  0.24854E+03 
 Virial S_xz                  kPa        2  0.20013E+05  0.20965E+03 
 Virial S_yz                  kPa        2  0.19926E+05  0.23951E+03 
 Virial P_tail                kPa        2 -0.19322E+05  0.35807E+03 
 Virial Pressure              kPa        3  0.22365E+04  0.39016E+03 
 Virial S_xx                  kPa        3  0.22127E+05  0.24562E+04 
 Virial S_yy                  kPa        3  0.21024E+05  0.22899E+04 
 Virial S_zz                  kPa        3  0.20074E+05  0.19816E+04 
 Virial S_xy                  kPa        3  0.19831E+06  0.19403E+04 
 Virial S_xz                  kPa        3  0.19927E+06  0.11727E+04 
 Virial S_yz                  kPa        3  0.19982E+06  0.15799E+04 
 Virial P_tail                kPa        3 -0.18838E+05  0.14714E+03 
 Thermodynamic Pressure       kPa        1  0.36273E+04  0.76944E+02 
 Thermodynamic Pressure       kPa        2  0.38013E+04  0.93927E+02 
 Thermodynamic Pressure       kPa        3  0.64933E+04  0.24528E+03 
 Total Classical                K        1  0.69783E+05  0.46579E+04 
 Inter vdw                      K        1 -0.24288E+05  0.31376E+04 
 Angle                          K        1  0.43810E+05  0.35191E+04 
 Torsion                        K        1  0.62234E+05  0.49196E+04 
 Intra vdw                      K        1 -0.54908E+04  0.44509E+03 
 External Field                 K        1  0.00000E+00  0.00000E+00 
 Vibration                      K        1  0.00000E+00  0.00000E+00 
 Coulomb                        K        1 -0.64827E+04  0.47281E+03 
 Tail vdw                       K        1 -0.28903E+04  0.36121E+03 
 Solvation                      K        1  0.00000E+00  0.00000E+00 
 Total Classical                K        2  0.12010E+06  0.61269E+04 
 Inter vdw                      K        2 -0.58409E+06  0.46148E+04 
 Angle                          K        2  0.31061E+06  0.33981E+04 
 Torsion                        K        2  0.43871E+06  0.51082E+04 
 Intra vdw                      K        2 -0.38907E+05  0.44478E+03 
 External Field                 K        2  0.00000E+00  0.00000E+00 
 Vibration                      K        2  0.00000E+00  0.00000E+00 
 Coulomb                        K        2 -0.62268E+04  0.26892E+03 
 Tail vdw                       K        2 -0.78965E+05  0.63096E+03 
 Solvation                      K        2  0.00000E+00  0.00000E+00 
 Total Classical                K        3 -0.87922E+06  0.45576E+04 
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 Inter vdw                      K        3  0.13446E+06  0.11350E+04 
 Angle                          K        3  0.23197E+02  0.76853E+01 
 Torsion                        K        3  0.33611E+02  0.11627E+02 
 Intra vdw                      K        3 -0.28750E+01  0.10483E+01 
 External Field                 K        3  0.00000E+00  0.00000E+00 
 Vibration                      K        3  0.00000E+00  0.00000E+00 
 Coulomb                        K        3 -0.10137E+07  0.56636E+04 
 Tail vdw                       K        3 -0.50450E+04  0.17621E+02 
 Solvation                      K        3  0.00000E+00  0.00000E+00 
 u (Gibbs Total)                K    1   1    -6664.228       36.759 
 u (Gibbs Total)                K    1   2    -6668.019       10.798 
 u (Gibbs Total)                K    1   3    -6443.531      398.312 
 u (Gibbs Total)                K    2   1     -882.066        6.673 
 u (Gibbs Total)                K    2   2     -881.297        3.610 
 u (Gibbs Total)                K    2   3     1006.109      304.285 
 u (NpT Insertion)              K    1   1     -112.505       34.917 
 u (NpT Insertion)              K    1   2      105.981       16.406 
 u (NpT Insertion)              K    1   3    -2277.931      395.064 
 u (NpT Insertion)              K    2   1     6225.868       18.839 
 u (NpT Insertion)              K    2   2     5510.485        3.456 
 u (NpT Insertion)              K    2   3     8855.070      307.128 
 u (NVT Insertion)              K    1   1     -116.737       39.085 
 u (NVT Insertion)              K    1   2      107.713       17.095 
 u (NVT Insertion)              K    1   3    -2277.694      399.782 
 u (NVT Insertion)              K    2   1     6232.258       18.819 
 u (NVT Insertion)              K    2   2     5510.231        3.523 
 u (NVT Insertion)              K    2   3     8867.741      310.693 
 Number Density              nm-3    1   1  0.19764E+00  0.80142E-02 
 Number Density              nm-3    1   2  0.12411E+00  0.39623E-02 
 Number Density              nm-3    1   3  0.27437E+02  0.11480E+00 
 Number Density              nm-3    2   1  0.63964E+00  0.33174E-01 
 Number Density              nm-3    2   2  0.28596E+01  0.27523E-01 
 Number Density              nm-3    2   3  0.31742E-02  0.10705E-02 
 Mole Fraction                       1   1    0.2428917    0.0103509 
 Mole Fraction                       1   2    0.0417471    0.0014701 
 Mole Fraction                       1   3    0.9998806    0.0000403 
 Mole Fraction                       2   1    0.7571083    0.0103509 
 Mole Fraction                       2   2    0.9582529    0.0014701 
 Mole Fraction                       2   3    0.0001194    0.0000403 
 Molarity                       M    1   1  0.32830E+00  0.13313E-01 
 Molarity                       M    1   2  0.20616E+00  0.65819E-02 
 Molarity                       M    1   3  0.45576E+02  0.19071E+00 
 Molarity                       M    2   1  0.10625E+01  0.55106E-01 
 Molarity                       M    2   2  0.47502E+01  0.45718E-01 
 Molarity                       M    2   3  0.52728E-02  0.17783E-02 
 Radius of Gyration             A    1   1      0.32821      0.00000 
 Radius of Gyration             A    1   2      0.32821      0.00000 
 Radius of Gyration             A    1   3      0.32821      0.00000 
 Radius of Gyration             A    2   1      2.09555      0.00021 
 Radius of Gyration             A    2   2      2.09638      0.00020 
 Radius of Gyration             A    2   3      2.08175      0.00653 
 
 -----block averages ------ 
Box:    1 
Block Energy         Density        Virial Press.  Mol fracs 
    1 0.61942107E+05 0.89369983E-01 0.35238882E+04 0.25525204 0.74474796 
    2 0.67507182E+05 0.95672216E-01 0.36528888E+04 0.23963390 0.76036610 
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    3 0.75020024E+05 0.10377270E+00 0.36578969E+04 0.22773154 0.77226846 
    4 0.73340158E+05 0.98723117E-01 0.37199679E+04 0.23804220 0.76195780 
    5 0.71103183E+05 0.99693644E-01 0.37612480E+04 0.25379901 0.74620099 
Box:    2 
Block Energy         Density        Virial Press.  Mol fracs 
    1 0.12933469E+06 0.40772154E+00 0.35740909E+04 0.04294612 0.95705388 
    2 0.12385573E+06 0.41052175E+00 0.35391594E+04 0.04134731 0.95865269 
    3 0.11893838E+06 0.41253580E+00 0.35612898E+04 0.04125681 0.95874319 
    4 0.11126945E+06 0.41927620E+00 0.36561529E+04 0.03948080 0.96051920 
    5 0.11710338E+06 0.41457836E+00 0.37350143E+04 0.04370453 0.95629547 
Box:    3 
Block Energy         Density        Virial Press.  Mol fracs 
    1 -.88006299E+06 0.81780645E+00 0.20749198E+04 0.99987074 0.00012926 
    2 -.88072047E+06 0.81804136E+00 0.30122064E+04 0.99985110 0.00014890 
    3 -.88140730E+06 0.81981531E+00 0.19975450E+04 0.99985474 0.00014526 
    4 -.88349740E+06 0.82531069E+00 0.21033966E+04 0.99995992 0.00004008 
    5 -.87039878E+06 0.82511744E+00 0.19946574E+04 0.99986662 0.00013338 

 
real 19851m4.599s 
user 19808m31.349s 
sys 0m7.414s 
  Source code :  /home/erj/SUREN/towhee-5.2.3/Source 
  Wed Mar 26 04:07:23 CET 2008 
 

The “real 19851m4.599s” string shown above refers to the total running time of this 
particular simulation, i.e. ~ 14 days. 
  


