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Abstract 

 

Ultrasonic extraction (UE), Soxhlet extraction (SE) and solid phase extraction (SPE) have been 

developed and applied for the simultaneous determination of the five most commonly used 

triazine pesticides. The extraction parameters that affect the recovery of the analytes for SPE, 

SE and UE methods were optimized before the application of the methods. The SPE optimized 

parameters were conditioning solvent and sample volume. The UE optimized parameters were: 

extraction solvent, the volume of extraction solvent and extraction time. The SE optimized 

parameters were extraction solvent and sample wetting. The analyses were conducted using a 

high-performance liquid chromatography-diode array detector (HPLC-DAD) which was also 

optimized to improve the limit of quantification and detection.  

 

The methods validation was performed using the mixture of triazine pesticides spiked distilled 

water and soil samples. The recoveries obtained were 107 - 111 %, 75 - 100% and 71 – 87% 

for SPE, UE, and SE respectively. The limits of detection (LOD) and limits of quantification 

(LOQ) obtained ranged between 0.67 –1.2 µg/L and 2.0 – 3.5 µg/L for SPE respectively. For 

UE, they ranged from 1.0-2.0 µg/kg and 3.2 – 6.1 µg/kg and for SE, they ranged from 0.092-

0.22 µg/kg and 0.28 – 0.69 µg/kg respectively. A good precision with a relative standard (RSD) 

less than 20% in all compounds was achieved for all methods.  

 

The developed and validated methods were then applied to river water, wastewater, sludge, 

soil and sediment samples from around KwaZulu-Natal. The concentrations obtained were 3.0 

- 65 µg/L in river water, 2.5 - 49 µg/L in wastewater, 8.4 -2820 µg/kg in liquid sludge, 17 - 

1017 µg/kg in soil and 1.1 – 123 g /kg in sediment samples. The most dominant triazine was 

found to be simazine. In Gilboa Farm soil samples, simazine was found to be above the 

Maximum Residual Limits (MRLs). In Darvill sludge samples, simazine, atrazine, and ametryn 

were above MRLs. In Amanzimtoti wastewater samples, atrazine was above MRLs. In 

Bishopstowe river water samples, simazine was above MRLs. 
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Chapter 1 

This chapter covers the introduction, the problem at hand that led to the aim of this project as 

well as the objectives followed to achieve the aim. Research questions that the project was 

opting to answer as well as research justification have also been covered. 

 

1.1 Introduction  

This world is packed with chemicals that contaminate air, water, soil, and food, thus cause 

profound changes in the quality of the environment in which human beings live. The effects of 

these chemicals are due to their persistence which allows them to remain for years in the 

environment, as well as their environmental toxicity and thus they are called persistent organic 

pollutants (POPs). POPs are organic chemicals containing carbon in their structure. POPs are 

semi-volatile compounds, which enables them to move all over the atmosphere, dispense the 

pollutants across the earth, and hence they can be found in places where they never generated 

or applied. They have low water solubility and highly soluble in fat and hence they 

bioaccumulate in the living organism`s fatty tissues. They are lipophilic and they biomagnify 

as they are transferred over the food chain, hence they have been measured in various 

organisms These chemicals include pesticides, polycyclic aromatic hydrocarbons, 

pharmaceuticals, etc. (WHO, 2010, Buccini, 2003). 

 

Pesticides are divided into various groups, which are named after their application, these 

include herbicides, insecticides, fungicides, etc. The target pesticide compounds in this project 

were triazines such as simazine, atrazine, ametryn, propazine and terbuthylazine which fall 

under herbicides family. They are widely applied in agricultural (croplands) and non-

agricultural sectors (playgrounds, roadsides, and railways) to control weed (Rodríguez-

González  et al., 2014). They are also used in wastewater treatment plants and in domestic 

activities as they are the active ingredient (Nyoni, 2011). Pesticides can be introduced in the 

environment in various ways such as application during farming, manufacturing process, 

sanitation processes and natural sources such as volcanic eruptions, unauthorized dumping of 

pesticide products or their containers, accidental spillages during manufacturing and 

transportation and pesticides drifting and they can contaminate target and non-targets 

components (Adeyinka, 2014). During pesticide application 20 – 30% of pesticides drift as a 

result of the environmental conditions, unskilled operators, type of equipment used for the 

application as well as the preparation of the pesticide solutions (Nascimento  et al., 2018).  
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There are more than 3000 registered pesticides in South Africa. Pesticides are applied to soil 

or crops and from the point where application occurs, they can be transported into the non-

targeted environment including surface water and groundwater through leaching from the soil, 

surface, and crop run-off, volatilization, rain deposition, etc. Hence, they can affect humans, 

aquatic life and organisms (Damalas and Eleftherohorinos, 2011). Previous studies have 

indicated the presence of different pesticides in the South African environment (Quinn  et al., 

2011). In South Africa, there are limited studies that have prioritized pesticide threats to 

environmental and human health (Dabrowski, 2015, Ntow  et al., 2006).   

 

Pesticides evaluation in the environment requires their extraction from the matrix in order to 

allow their effective determination. Since environmental matrices are complex, the preparation 

step is significant. There are common extraction techniques that have been used for the 

extraction of triazines in water, soil, sediment and sludge including the traditional methods 

(Soxhlet extraction, liquid-liquid extraction, etc.) and the modern methods (ultrasonic 

extraction, solid phase extraction, solid phase microextraction, hollow fiber liquid phase 

extraction, etc.). The use of modern extraction techniques is associated with environmentally 

friendly solvents, low solvent consumption, and sample size without losing the sensitivity of 

the instrument. Also, reduced analysis time has been reported which allows for a number of 

analyses to be done (Nascimento  et al., 2018). The extraction step is then followed by the 

separation and detection of the analytes where the chromatographic techniques have played a 

major role in the analysis of pesticides. There are diverse groups of chemicals that characterize 

the variety of pesticides used in modern agriculture. Therefore, it is significant to select a 

suitable chromatographic technique, which will be able to determine as many pesticides as 

possible. Gas chromatography (GC) and liquid chromatography (LC) are the most widely used 

chromatographic techniques associated with different detectors e.g. LC with universal 

detectors such as such as photodiode array, UV/Vis Absorbance and for GC such as electron 

capture detector, flame ionization detector, etc. In this work, solid phase extraction, ultrasonic 

extraction, and Soxhlet extraction methods followed by liquid chromatography with 

photodiode array detector were developed/modified and then applied for the determination of 

triazine pesticides in river water, wastewater, soil, sludge and sediment samples. 
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1.2 Problem Statement 

Pesticides are of special interest because of their toxicity and high biological activity (Quinn  

et al., 2011). Due to their wide usage, they are widely spread in the environment. Pesticides 

constitute one of the most hazardous groups of contaminants. Some of these compounds are 

persistent in the environment and resistant to degradation, they are volatile and thus can be 

found in non-target places. They bio-magnify as they move through the food web and they are 

lipophilic, thus they bioaccumulate in fatty tissues. Due to these behaviors, they pollute the 

environment and also pose a potential risk to humans and other life forms. Thus, death and 

chronic diseases have been reported worldwide as a resulted of pesticide poisoning. In South 

Africa there is insufficient reliable data on levels and distribution of pesticides and the 

maximum residue limits (MRLs) used in this work were adopted from other countries (London  

et al., 2005, Bol’shakov  et al., 2014). These compounds are present in low concentrations that 

are below detection limits of our instrument of use. Therefore, there is a need to employ sample 

clean-up and /or preconcentration techniques. Also, continuous analysis is important to 

generate more reliable data in order for the policymakers to be able to set the MRL values 

specific for South Africa. Therefore, in this work solid phase extraction, ultrasonic extraction 

and Soxhlet extraction techniques have been optimized and then applied to river water, 

wastewater, soil, sediment and sludge samples for the extraction of triazines. The analyses were 

conducted using liquid chromatography coupled with a photodiode array detector (HPLC-

DAD). 

 

 

1.3 Aim 

To develop solid phase extraction (SPE), ultrasonic extraction (UE) and Soxhlet extraction 

(SE) followed by liquid chromatography coupled with photodiode array detector (HPLC-DAD) 

methods for the determination of pesticides in water, soil, sediments, and sludge. 

 

1.4 Objectives 

• To develop an HPLC-DAD method for the separation and detection of triazine 

pesticides. 

• Validate the developed HPLC-DAD method for the separation and detection of triazine 

pesticides. 
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• To optimize SPE, UE and SE methods for the extraction of pesticides using spiked 

distilled water and soil sample in order to obtain conditions that will permit higher 

recoveries of all the analytes.  

• To apply the optimised methods to water, sediment, soil and sludge samples for the 

analysis of pesticides. 

• To identify and quantify the pesticides present in water, soil, sediment and sludge 

samples. 

• To compare the extraction efficiencies for UE and SE methods. 

 

1.5 Research questions 

• What parameters can be optimised to extract pesticides at lower concentration levels in 

the environment sample? 

• Are pesticides under study present in the chosen study areas and at what concentration 

levels are they present? 

• Are the pesticides found in water samples associated with pesticides in sediment 

samples? 

• Are WWTPs able to eradicate pesticides in water during the process of water treatment?  

• Are pesticides concentrations in the influent water higher compared to the effluent point 

of WWTPs?   

• Are pesticides concentrations in wastewater effluent higher compared to river water 

where the effluent is discharged? 

 

1.6 Research justification 

The contamination of the environment by pesticides is due to the increase in their usage in pest 

management and increase of food production. Obtaining applicable and reliable information 

on the concentrations of pesticides in the environment is important for the formulation of 

environmental protection policy (Akoto  et al., 2016). Micro pollutants are counted as the 

biggest problem, where the analyst is confronted with several diverse compounds occurring at 

trace concentrations. As a result, the necessity for reliable information on the occurrence of 

organic micro pollutants in the environment is the driving force for the introduction and 

development of the present analytical techniques and procedures. 

The analytical method used to determine the organic compound in the environmental samples 

requires many steps including clean-up and/or pre-concentration steps, this is due to the low 
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concentration at which the compound exists. Also, the development of extraction techniques 

that are fast, cheap, consume a small amount of solvents and sample mass, give higher 

recoveries of the analytes, provide low limits of detection and quantification is of importance 

for effective determination of the compounds at low concentration levels (Kumar and Vijayan, 

2014).  

In South Africa there is insufficient information regarding the levels and distribution of 

pesticides in the environment, therefore, it is important to develop the method of extraction 

techniques that are supreme for the analysis of pesticides in the environment (Tadeo, 2008). 

Also, there are very few studies that have been done on the development and application of 

analytical methods for the determination of pesticides in the South African environment 

especially KwaZulu Natal. In this project, three methods (SPE, UE, and SE) were developed/ 

modified then validated and applied for the analysis of pesticides in river water, wastewater, 

soil, sludge and sediment samples in KwaZulu Natal (Durban and Pietermaritzburg areas). 
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Chapter 2 

 

Introduction 

In this section, findings by other researchers concerning pesticides in the environment are 

discussed. Discussed aspects include the uses, exposure pathways as well as health and 

environmental effects of pesticides. A review of the various sample preparation, separation, 

and detection techniques that have been used worldwide for the analysis of pesticides in liquid 

and solid samples has been highlighted.  

 

2.1 What are pesticides? 

Pesticides are compounds that are used to kill pests and prevent or reduces the damages that 

pests may cause (Kim  et al., 2017). Pesticides can contaminate by touch or ingestion and can 

lead to death immediately or over a long period of time depending on the type of pesticides and 

concentration. There are different types of pesticides that were made for different purposes, 

including insecticides, herbicides, fungicides, rodenticides. Triazines are a class of pesticides 

that fall under herbicides family and they are the most commonly used pesticide compounds. 

Currently, there are 25 different types of triazines which are commercially available and used 

herbicides to control weeds or undesirable plants. Other herbicides can destroy any plant they 

are applied on while others are designed for selected species (Jurewicz  et al., 2006). Their 

mode of action is to inhibit the photosynthetic transportation of electrons on the unwanted 

plants in agricultural and non-agricultural sectors (Waxman, 1998). The commonly used 

herbicides include simazine, atrazine, ametryn, propazine, etc. 

 

2.1.1 Simazine  

Simazine is a white crystalline powder and Its name according to IUPAC is 6-chloro-2-N,4-N-

diethyl-1,3,5-triazine-2,4-diamine, with the molecular formula of C7H12ClN5 (Figure 2.1) and 

the molecular weight of 201.66 g/mol. This compound was the first produced triazine 

herbicide. It was registered and sold in 1956 in the United State for noncropland to be used on 

Swiss railroad, corn and right of way. It was then ratified for the entire vegetation control in 

noncropland areas. Due to the extended facts on simazine practice, it was recognized by the 

United State food administration as well as the United States Department of agriculture and 

drug administrator to be used in corn. It was also approved as an aquatic herbicide since it was 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C7H12ClN5&sort=mw&sort_dir=asc
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found to be more effective in aquatic conditions and it was used to control algae in swimming 

pools (LeBaron, 2011). It is more effective when it is applied in summer and later in winter.  

N

N

N

N
H

N
H

Cl

 

Figure 2. 1: Chemical structure of simazine 

Source: (Donati and Funari, 1993) 

 

2.1.2 Atrazine  

 Atrazine is an odorless white crystalline powder and its name according to  IUPAC is 6-chloro-

4-N-ethyl-2-N-propan-2-yl-1, 3, 5-triazine-2, 4-diamine with the chemical formula of 

C8H14ClN5 (Figure 2.2) and the molecular weight 215.62 g/mol. Atrazine was introduced and 

registered later in the 1950s at the United State to be used in corn (LeBaron, 2011). Atrazine 

managed to make the maize growing possible and increased the number of acres in maize 

farming in the United State and thus improved the economy (Amadori  et al., 2013). It is 

selective for corn as it is metabolised quickly by corn via a conjugation reaction with 

glutathione. Its effectiveness is independent of agronomic and environmental conditions 

(Donati and Funari, 1993).   

. 

N

N

N

N
H

N
H

Cl

 

Figure 2. 2: Chemical structure of atrazine 

Source: (Kaufman and Kearney, 1970) 

 

2.1.3 Ametryn 

Ametryn is a snowy powdered methythiotriazine herbicide that is slightly soluble in water and 

soluble in an organic solvent. Its molecular formula is C9H17N5S with the IUPAC name of 4-

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C9H17N5S&sort=mw&sort_dir=asc
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N-ethyl-6-methylsulfanyl-2-N-propan-2-yl-1, 3, 5-triazine-2, 4-diamine (Figure 2.3), with a  

molecular weight is 227.33 g/mol. It was first introduced in the United State in 1964 and it is 

extensively used in sugarcane (Santos  et al., 2015). The poisonousness of this compound is 

class (III) meaning that it is moderately poisonous in both mammals and fish. However, it is 

more toxic to mollusks and crustaceans.   

 

N

N

N

N
H

N
H

S

 

Figure 2. 3: Chemical structure of ametryn 

 

Source: (Farré et al., 2002) 

 

2.1.4 Propazine 

Propazine is a chlorotriazine herbicide, which is a white powder with a putrid odor. It has low 

water solubility but highly soluble in organic solvents.  Its name according to IUPAC is 6-

chloro-2-N,4-N-di (propan-2-yl)-1,3,5-triazine-2,4-diamine with the molecular formula of 

C9H16ClN5 (Figure 2.4) and a molecular weight of 229.71 g/mol. United State first introduced 

propazine known as Milogard. Its spectrum activity was found to be almost the same as that of 

simazine and atrazine. However, its advantage over simazine and atrazine is the acceptance by 

Umbelliferae species, which allows it to be used in celery and carrot. It is selective for sorghum 

and can be the product of choice for sorghum (LeBaron, 2011).  

 

N

N

N

N
H

N
H

Cl

 

Figure 2. 4: structure of propazine 

Source: (Thurman and Scribner, 2008) 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C9H16ClN5&sort=mw&sort_dir=asc
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2.1.5 Terbuthylazine 

Terbuthylazine is a chlorotriazine herbicide characterised by the tert-buthylamino and 

ethylamino side chain. Its IUPAC name is 2-N-tert-butyl-6-chloro-4-N-ethyl-1, 3, 5-triazine-

2, 4-diamine with the molecular formula of C9H16ClN5 (Figure 2.5) and molecular weight of 

229.71 g/mol. It is utilized in more than 45 countries including South Africa. In the United 

States, it is only registered for use in cooling towers. It was found to be a better replacement 

for chloro-s-triazine herbicides (atrazine and simazine) to control weed in maize, orchard, and 

vineyards in Ireland, United Kingdom, Spain, and Portugal, as atrazine usage discontinued 

since it was found in groundwater at a concentration higher than the arbitrary of 0.1 ppb. 

Terbuthylazine is normally applied in the winter and spring seasons (LeBaron, 2011).  

 

N

N

N

Cl

N
H

N
H  

Figure 2. 5: Chemical structure of terbuthylazine 

 

Source: (Du Preez et al., 2005) 

 

2.2 Physical properties of triazine herbicides 

The behavior of triazines herbicides in the environment dependent on their physical properties 

mainly the solubility, pKa, polarity (XLogP3), melting point, octanol-water coefficient (log 

Kow), and vapor pressure (Table 2.1). The water solubility of triazines is low while their 

octanol-water coefficient values are relatively high above 2.5 (except simazine) thus, their 

concentration levels are expected to be low in water and high in solid samples (sediment, 

sludge, and soil) due to their relatively high adsorption (Goodwin  et al., 2017). Triazines are 

weak base compounds with pKa values range from 1.60 to 4.10 and they are medium polar, 

which increases their chances to be present in water. Triazines are unlikely to be found in the 

air because of their low vapor pressures (Tsai, 2010).  

 

 

 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C9H16ClN5&sort=mw&sort_dir=asc


 

10 
 

Table 2. 1: Physico-chemical properties of triazine herbicides 

Pesticides  Solubility 

(mg/L) 

pKa  XLogP3 Melting 

Point (˚C) 

LogKow Vapour pressure 

(mmHg) 

Simazine 5.0 1.62 2.2 225 2.38 2.2x10-8 

Atrazine 34 1.60 2.6 173 2.61 2.89x10-7 

Ametryn 209 4.10 3 83.6 2.98 2.74x10-6 

Propazine 8.6 1.7 2.9 229.7 2.93 1.31x10-7 

Terbuthylazine  9.0 2.0 3.1 175 3.40 6.75x10-7 

Source: (Oliveira et al., 2013; Halmilton et al., 2003) 

 

2.3 The uses of pesticides 

Pesticides are used in different places for different purposes. Table 2.2 summaries the uses of 

the targeted triazines under this study.  

 

Table 2. 2: Some uses of major triazine herbicides 

Triazine                                                   Uses 

Ametryn Sugarcane, corn,  pineapple 

Atrazine Corn, sorghum, sugarcane 

Propazine Sweet sorghum 

Simazine Pear, citrus, filbert, apple, peach, almond, grape, walnut, corn 

Terbuthylazine  Grape, sorghum, corn 

Source: (LeBaron, 2011) 

 

Pesticides are used in a wide range of settings and mostly in agriculture. They are used virtually 

in all sides of our daily lives to ensure the quality and the quantity of nutrition we consume and 

to manage the insect and rodents in household etc., (Nasrabadi  et al., 2011). The use of 

pesticides allows more food production in a given area of land (Wanwimolruk  et al., 2015). 

Even though a variety of climate changes has an effect on increasing harvests, as of tropical 

fruit, vegetable to corn and plantations of trees but they are not consistent as pesticides. The 
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variation of planted crops are not all responsive to one or any type of pesticides applied but 

they are susceptible to a different host of pests therefore individual crop need a different 

chemical mixture of pesticides (Buccini, 2003). Pesticides usage also improves farm revenues; 

therefore, agriculturalists apply pesticides to guard harvests from fungal diseases pests and 

weeds. They also inhibit mice, rats, fliers and additional inserts from polluting food while they 

are being stored. Pesticides protect human health by protecting food harvests from pollution by 

fungi and likewise protect people from disease-carrying organisms (Quinn  et al., 2011).  

 

In business, pesticides are also employed in many ways unnoticeable such as in paints and 

plastics, waterproofs may also contain fungicides to prevent mold. Focusing on herbicides, they 

are used along highways and in road crews to control vegetation for safety reasons. This is 

done to allow efficient water escape during flooding or downpour to clear the roadsides and to 

enlarge the visibility for drivers. Also, they are applied in parks, natural areas and wetlands to 

prevent them from invasive unwanted plants (Damalas, 2009). Herbicides are active 

ingredients, therefore they are used in some household cleaning materials and other products 

including sunscreen, ace laundry bleach detergent powder, radical power ultra-dawn hand 

soap-old product, abhushane, jewelry, absorbine refresh mint natural body wash and leg brace 

AFM safe choice supper clean (Crittenden  et al., 2012, Weinberg and Teodosiu, 2012). 

Triazines are used as coupling agents for the synthesis of the peptide in a solid phase, also in 

solution as a side chain of anti-biotic in pharmaceutical industries. They are also used in oil 

fields for preservatives purposes (Nyoni, 2011).  

 

Pesticides are also extensively used worldwide because of their economic benefits. Farmers 

use them for the protection of products as well as the increase in yield and quality. Their usage 

also decreases other expensive inputs such as labor due to that fewer people are employed to 

apply pesticides than people which could be employed to hand remove weed in farms 

(Damalas, 2009). The global estimates losses of crops indicated that pest- persuaded losses 

were above 50%. Therefore, if pesticides are not used the production of food would drop and 

prices of food would increase thus no competition of major commodities from farmers in the 

global market (Oerke  et al., 2012). It has been reported that Taiwan's agricultural environment 

has applied a large amount of pesticides in fruits and vegetables than in other countries 

followed by China, where pesticides are widely applied in rice crops (Pariona, 2017 April 25 ) 

as presented in Figure 2.6, (Nai  et al., 2017).  
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Figure 2. 6: Worldwide consumption of pesticides 

Source: (Yadav et al., 2015) 

 

2.4 Human’s exposure pathways to pesticides  

Even-though pesticides protect ornament plants and crops from the harmful organisms and 

unwanted pests, they have the capacity to harm people as well as other non-targets and the 

environment. More exposure occurs during pesticide application and 97% of the whole 

physique is exposed during the application of pesticides.  In our everyday lives, we are exposed 

to pesticides either conventional or incidental. Incidental exposure occurs through both eating 

and drinking and eating contaminated water and food or the use of insect repellent in our houses 

or on our body membrane. The conventional exposed occurs via work-related exposure such 

as a farmer applying a pesticide in non-closed fields and glasshouses, labors in the pesticide 

industries and exterminators of the pests (Singh  et al., 2018). The pesticide exposure increases 

when the agriculturist does not follow the instructions on how to apply pesticides or safety 

guidelines on protecting the body and fundamental sanitation practice while others are exposed 

in them due to the nature of their work for instance during loading, transportation, mix and 

application of formulated pesticides. Pesticides can reach into people in many routes including 

oral, dermal, respiratory, eye contact (Damalas and Eleftherohorinos, 2011, Kim  et al., 2017, 

Singh  et al., 2018). 

 

2.4.1 Oral exposure 

Oral exposure refers to drinking or eating contaminated water or food. It occurs either 

accidental because of carelessness or intentional for specific motives. Damalas and 

Eleftherohorinos (2011) reported the increase in the degree of oral exposure where human 
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poisoned cases occurred due to pesticides transfer from their original labeled container into 

soft drink containers and thereafter accidentally drunk or drinking water kept in pesticides 

containers (Damalas and Eleftherohorinos, 2011).  

 

2.4.2 Respiratory exposure 

Respiratory exposure is where the mist or dust or the fumigant vapor is inhaled. This occurs 

when prolonged in contact with pesticides or when using inadequate or old pesticides 

application apparatus (Kim  et al., 2017). Pesticides have volatile components, as a result, they 

have the potential for inhalation exposure (Amaral, 2014). The degree of exposure increase 

when the pesticides are sprayed in the small droplet as there will be more toxic chemicals that 

are applied in small quantities thus the better are those which are applied in the large droplet. 

Also, the temperature has an effect on respiratory exposure as pesticide evaporation increase 

with the increase in temperature (Amaral, 2014, Damalas and Eleftherohorinos, 2011).  

 

2.4.3 Dermal exposure 

Dermal exposure can be defined as a multifaceted process of contamination between the skin 

and pesticide for a long period. This exposure is a dominate route through which farm workers 

get in contact with these compounds (Anderson and Meade, 2014). This complex process can 

cause significant impact on fauna and it may result in skin disease such as dermatitis. Dermal 

exposure predominately results from splashes, drift, and spill of pesticide on uncovered skin, 

tiring polluted clothes, touching of surface treated with pesticides, and also applying them on 

windy weather can also increase chances of exposure (Singh  et al., 2018, Anderson and Meade, 

2014, MacFarlane  et al., 2013). Dermal exposure, especially in developing countries, is due 

to low regulated safety rules in workplaces, the use of old or leaking machines, working with 

pesticides without hand gloves, etc (WHO, 2015). In general, there is a various form of 

pesticide formulation such as solid form (granules, dust or powders) and aqueous form which 

readily absorbed through the body membrane and tissue (Kim  et al., 2017).  

 

2.4.4 Eye exposure 

Eye exposure occurs when pesticide splash on the eye, use of contaminated hands to rub eyes, 

application during windy weather and pesticides split back into the eye and also pouring 

formulation without eye protection (Singh  et al., 2018). Eye tissues are vulnerable and fragile 

therefore they are easily injured by chemicals. Most chemicals have been reported to injure eye 

tissue after the absorption of a sufficient quantity of the chemical. Both powdered/palates and 
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liquid form of pesticides are potentially hazardous and capable of results in serious disease 

even mortal illness (Gilden  et al., 2010). During pesticides, the application is where the 

exposure is likely to occur usually when they are applied using powerful equipment and at 

windy weather. Therefore, googles should be worn always to protect the eyes during spraying 

of pesticides and to protect eyes from dust. The pesticide effect on farm workers was tested in 

India during and after pesticide application. Ocular symptoms such as swollen eyes, blurry 

vision, itching and pain in eyes, watering and burning sensation were identified (Mohammed  

et al., 2012). 

  

2.5 Effect of pesticides in the human body 

Epidemiology studies have indicated an association of occupational exposure to pesticides with 

various diseases. The effect of pesticides in the human body includes acute and chronic effects. 

The pesticide effect in the human body depends on the period and quantity of exposure and 

also on the properties of the pesticide. 

 

2.5.1 Acute effects 

These effects might immediately appear after inhalation, ingestion or skin contact in a day after 

exposure to pesticides. Acute effects can cause respiratory problems, coughing, sore throat, 

eyes and skin irritation, loss of consciousness, headache, diarrhea, vomiting, nausea, contact 

dermatitis, tremendously weakness and neurotoxic effect. Inhaling pesticides can cause serious 

illness or damages on the lungs, throat, and nose (Amaral, 2014).  

 

2.5.2 Chronic effects 

 These refer to effects that appear over a long period. The low dose of pesticides does not have 

an effect at the same time after exposure but over an extended period, they cause serious illness 

in the human body. These include carcinogenic effects, meaning they have the potential to 

cause cancer in fauna, mutagenic effect, this refers to genes altering (Dieter, 2018). Pesticides 

can also cause asthma, a common chronic disease that can present as wheezing, coughing and 

breathless. In the United States, pesticide poisoning was identified to be linked with asthma 

(Owens  et al., 2010, Hernández  et al., 2011, Amaral, 2014). It can also result in Parkinson’s 

disease, a brain disorder disease, which affects movement, loss balance and cell movement 

regulator. Epidemiology studies in the French population have suggested that Parkinson`s 

disease increases due to occupational contact with pesticides (Moisan  et al., 2015). In 
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groundwater, it has been found that each 1.0 µg/L of these compounds increases to about a 3% 

risk of Parkinson`s disease (James and Hall, 2015). Pesticides also have a teratogenic effect 

and can lead to birth and fatal defects. Owens, (2010) reported the birth and fatal defects rate 

to be high during the summer and spring which are seasons when pesticides are intensively 

applied and when their concentrations are high in surface water. The effect includes Down`s 

syndrome, cleft lip, spine bifida and clubfoot among females who conceive while atrazine, 

nitrate and other variety of pesticide were in high concentrations (Owens  et al., 2010). 

 

2.6 The pesticides effect on the environment 

Pesticides are used to safely guide human health by preventing food crops from pest and fungi 

contamination. However, they have an impact on the environment as they can contaminate the 

environment (turf, water, soil, and other flora). Killing insects, fungi, larvae, bacteria, and weed 

using pesticides can be poisonous to the host of the other organism, including bird, fish, non-

target plants and beneficial insects.  

 

Pesticides may enter the environment from point of application or point source of 

contamination via crop run off and reach drainages where they can seep and leach to 

groundwater and pollute it. They can also diffuse via land runoff where they evaporate into the 

atmosphere. From the atmosphere, they can dissociate by water and sunlight or settle to the 

earth and precipitate. Depending on the weather conditions, some of the pesticides can be 

transported to short or long distances away from their point of application. Pesticides, which 

are dissociated into the atmosphere can stay for a short period while some can last longer. 

Those that last longer can be deposited by rain into environmental water, which serves as 

drinking water. This is due to dynamically adsorption and desorption between different 

environmental samples and water. By environmental sample that refers sediments consisting 

mud and dead organisms discharged from the underground of the rivers or lakes, algae, 

marshes,  dissolved organic matters such as inorganic compounds counting clay minerals and 

microorganisms (Tanaka and Katagi, 2008). The distribution cycle of pesticides in the 

environment is displayed in Figure 2.7. 
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Figure 2. 7: The distribution cycle of pesticides in the environment 

Source: (Abhiram et al., 2018) 

 

2.6.1 Soil contamination 

The major important source of exposure to pesticides is through pesticide-polluted soil (Yadav  

et al., 2015). From the soil, the residues of pesticides leach, get absorbed by the plant's roots 

or volatilize from the ground into the atmosphere. The residues are found in soil as it acts as a 

natural basin for different accumulating and intent contaminants, which terminate in the soil 

from different sources (Ali  et al., 2014). The amount of accumulated pollutants spreads 

significant concentration and discharge persistent toxic compounds through photodegradation 

or microbial degradation resulting in soil pollution. Soil contamination occurs when the 

application of pesticides surpasses the threshold values. When pesticides are applied to the soil, 

they undergo various reactions. They may evaporate and vanish to the atmosphere without the 

chemical change or they can be absorbed by the soil colloids, leach through soil and be 

degraded by soil microbes. Pesticides have an impact on soil enzymes that are important 

substances for controlling the value of soil lifetime. Soil enzymes help to control cycles of 

nutrients, and in turn, fertilization (Riah  et al., 2014). 
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2.6.2 Water contamination 

Water is essential to all living organisms on earth and its quality is significant to take care of 

the physical activity of biological cells. Water contamination is a measure problem. 

Contaminants alter the natural feature of water through an addition of strange substances that 

may therefore generate some toxic and greenhouse gases, which may subsequently contribute 

to global warming activities or more severe environmental threats as a result water cannot be 

consumed or be able to support aquatic organisms including fish, frogs, etc. It is the main cause 

of worldwide concern as it results in the commencement of various fatal diseases, which are 

responsible for the death of more than 14000 people every day (Oerke and Dehne, 2004). Due 

to chemical leaching and chemicals mixing from agricultural practice more than 50% of water 

get polluted (Damalas, 2009). The pesticide may reach the river through many routes. They 

may drift outer of the target area during their application, leach over the soil to contaminate 

groundwater and surface water or they may be accidentally spilled (Singh  et al., 2018). After 

application 0.2% is lost per day due to evaporation as a result of precipitation. In several 

countries, triazines have been quantified in surface and groundwater (WHO, 2003). 

  

Due to many effects caused by triazine herbicides. The maximum residue limits (MRLs) of 

triazines corresponding to each environmental sample were set by the European Union. MRLs 

are maximum concentrations that are accepted or legally permitted by the European Union as 

a standard dose to be detected at certain matrices which has no effect into ecosystem 

(MacLachlan and Hamilton, 2010). These concentrations are safe, meaning they cannot pose 

risk to humans and other life forms. MRLs setting is a balancing act: the MRLs are ideally set 

at a level which are high enough to prevent a rational probability for legally applied of triazines 

to result in commodity residues that surpass the MRLs yet not too high that there are little 

chances of sensible likelihood of finding illegal application or misuse (MacLachlan and 

Hamilton, 2010, Solecki  et al., 2005). The MRLs of the targeted triazines under study are 

given in Table 2.3. 
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Table 2. 3: Triazines allowable concentrations in water and soil. 

Triazine herbicides Maximum Allowable Limits 

 Water (µg/L) Soil (µg/kg) 

Simazine 100 200 

Atrazine 20 66 

Ametryn 50 200 

Propazine 50 200 

Terbuthylazine 7 200 

Source: Hamilton et al., 2003 

 

2.7 Triazine degradation 

Triazine degradation involves biotic and abiotic reactions, which both occur under anaerobic 

and aerobic conditions and therefore, these processes can be influenced by several factors. 

Abiotic reactions involve photo degradation, oxidation and hydrolysis. These abiotic reactions 

can be affected by environment restrictions such as temperature, pH and moisture of the soil 

(Donati and Funari, 1993). Biotic reactions include a variety of enzymatic reactions, which are 

catalysed by microorganisms. The environmental conditions that affect the enzymatic reactions 

are the nature of soil (i.e. organic matter, amount of oxygen and pH), temperature and moisture, 

and agronomic conditions (i.e. nature and addition of manure), (Donati and Funari, 1993). 

Hydrolysis and N-dealkylation reactions are the main degradation reactions of triazine 

herbicides that occur in soil. Both biological and chemical degradation can be relevant in the 

first soil layers. Whereas there are few pathways of metabolic that seemed possible under 

anaerobic conditions and also hydrolysis at longer depth does not have the potential to occur.  

 

Atrazine undergoes a transformation in both soil and water. The well-known mechanism of 

atrazine microbial degradation is an N-dealkylation. The removal of ethyl sidechain is 

preferential to some microorganisms, while side chain isopropyl is removed by others 

(Giardina  et al., 1982). Atrazine metabolites are deisopropylatrazine, deethylatrazine, and 

hydroxyatrazine. In atrazine bacterial degradation, the first observed products are 

deisopropylatrazine and deethylatrazine metabolites. Hydroxyatrazine metabolite is absorbed 

strongly on the soil and it is resistant to degradation in submerging than in aerated soils. The 

well understood degradation pathway of hydroxyatrazine is N-dealkylation whereas others are 

not known. Hydroxyatrazine low mobility has been reported; hence, more attention has been 
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given into the parent pesticide and the other two metabolites (deisopropylatrazin and 

deethylatrazine). Parent pesticide and metabolites in groundwater and superficial water have 

been reported to be present (Mahía  et al., 2008).  

 

Simazine has low water solubility and therefore it is considered as a persistent triazine 

herbicide. The reported approximation of its persistent in moist soil in summer conditions is 

about 3-6 months (Reinert and Rodgers, 1987). Simazine undergoes degradation like other 

triazines via microbial, N-dealkylation and chemical hydrolysis. The metabolites that result in 

simazine transformation include hydroxysimazine, deisopropylatrazine, and 

deethyldeisopropylatrazine. Some soil microorganisms use simazine as an energy source 

(Kaufman and Kearney, 1970). However, simazine does not quickly mineralize (Fournier  et 

al., 1977).  

 

Terbuthylazine degradation is via N-dealkylation of the side chain, chlorine group hydrolysis, 

after dealkylation the amino group and ring cleavage. The terbuthylazine degradation results 

in deethylterbuthylazine metabolite. In soil, its volatilization seems not to be an applicable 

dissipation process of the herbicide (Hartley and Kidd, 1987). Ametryn in soil undergoes 

microbial degradation and it results in two metabolites 1,3,5-triazine-2-amine and N-ethyl-N′-

(1-methylethyl)-6-(hydroxy)-1,3,5-triazine-2,4-diamine (Farré  et al., 2002). Propazine also 

undergoes degradation in soil and water. Its transformation results in deethylatrazine. It was 

determined that in sorghum, propazine metabolism takes place by the reactions: N-

dealkylation, hydrolytic of the group glutathione with 2-chloro. Conjugation and 

dehalogenation were the major pathways since the residues of chloro-s-triazines were 

quantified (Simoneaux and Gould, 2008). 

 

2.8 Chemistry of triazines 

2.8.1 Triazine interaction mechanism with soil and water 

 Nitrogen atoms from the triazine ring donate electrons due to that triazines are Lewis bases 

compounds.  Depending on the pH of the system and pKa of the compounds, triazines can be 

either be in the protonated or neutral form in the aqueous system. Position 5 in the middle of 

nucleophiles side chains which are alkylamino is where the site of protonation and basic ring 

nitrogen are located (LeBaron, 2011). The pH of the scheme is the pKa of an organic base 

where the compound halves are present in a different form, meaning the other part of the 
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compound is existing in protonated and another part is present in the neutral form. Most 

triazines are very weak bases and chloro-s triazines are one of the very weak bases (Fuscaldo  

et al., 1999). They have low pKa values ranging between 1.6 to 1.9 and the methythio-s-triazine 

and methoxy-s-triazine range between the pKa value of 4.0 to 4.8 whereas hydroxy-s –triazine 

consists of greater, above 5 pKa values. The chloro-s- triazines in the soil solution are present 

in the neutral form at pH 4.8 to pH 8. The methythio-s-triazine and methoxy-s-triazine are 

existing as neutral species in alkaline and neutral soil solution however in acidic soil solution 

they could be present as protonated or neutral species or both (Fuscaldo  et al., 1999).  

 

The hydrophobic and hydrophilic characteristics of the triazine compounds are indicated by 

the microscopic property, which is the water solubility. The position 2, 4 and 6 of the 

substituents and nature are the ones responsible for compound solubility but in general, the 

triazines are soluble in neutral water at 20˚C. The formation of hydrogen bond by a water 

molecule and the nitrogen atom lone pair result to a hydrophilic triazine ring while the 

nucleophilic side chain alkylamino in position 6 and 4 are hydrophobic. Due to hydrophobic 

and hydrophilic functionalities of triazines, they display dual solubility equivalent to that 

displayed by the phospholipid and detergents. According to the sorption, energy is minimalized 

to allow the interaction of hydrophobic surface and the hydrophobic moiety same thing applies 

in the water or other polar compound interacts with hydrophilic moiety. The increase of 

solubility and the triazines protonation occurs when pH approaches the pKa of the compound 

(LeBaron, 2011). 

 

2.8.2 Fate of triazines in sediment/soil 

There are three basic processes that control the fate of triazine herbicides in the soil, these are 

retention, transformation, and transportation (Bailey and White, 1970). Soil and sediments are 

very complex mixtures of living organisms. The triazines absorption on the soil surface occurs 

as a primary means by which they are retained in soil or sediments.  There are different types 

of mineral particles and organic matter consisting of different surface sites namely non-polar, 

polar and ionic surface sites. The polar triazine molecules functional group interact with the 

polar and ionic sites and they have a high affinity for water, therefore they turn out to compete 

with water for this site. However, water out-compete the chlorotriazines for the polar and ionic 

surface. Other triazines such as methoxymethylthio-triazine and hydroxytriazine are more 

competitive in polar and ionic sites than chlorotriazines. Alkyl side chain which is a non-polar 
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side chain of triazine molecule interact with the nonpolar site on the soil surface (LeBaron, 

2011). They have a low affinity for water (Kumar  et al., 2013). The strong interaction between 

soil and triazine occurs when the triazine functional groups are closely related or matches with 

the soil surface active site. The sorption of triazines is affected by the pH and aging where the 

decrease of pH increases the triazine sorption. The longer the period triazines remain in the 

soil, make it become challenging to extract them because they strongly bound in the soil 

matrices. The triazines sorption by soil may be affected by various parameters such as 

concentration, temperature, soil, water content, amount of dissolved organic carbon (LeBaron, 

2011). Atrazine is mostly found in groundwater due to its high mobility in soil and because it 

is frequently used than the other triazine (Fuscaldo  et al., 1999). Ametryn is a persistent 

compound, in soil, it can travel both laterally and vertical due to that it is more soluble in water. 

It may be percolated by high floods, furrow irrigation and rainfall (Briggs, 1992). 

 

2.9 Extraction techniques used for triazines in environment samples 

There is a variety of methods used for triazines extraction from water and solid samples. 

Techniques that are used to extract solid samples include microwave-assisted extraction (MAE) 

ultrasonic extraction (UE), Soxhlet extraction (SE), etc. For liquid samples, the techniques used 

are liquid-liquid extraction (LLE), solid phase extraction (SPE),  hollow fiber-liquid phase 

microextraction (HF-LPME), etc., (Trtic-Petrovic  et al., 2010).  

  

2.9.1 Liquid-liquid extraction (LLE) 

LLE is the method which involves the analyte partitioning between the two immiscible phases 

(organic and aqueous) that are selected to increase differences in solubility, the analyte is then 

recovered from one of the two phases (Brito  et al., 2002). LLE is usually used to determine 

the amount of organochlorine pesticides in sediments and water (Sibali  et al., 2009). The 

factors that affect the distribution of the analytes between the two phases include solvent type 

as well as the pH which is an adjustment to prevent basic and acidic ionization of target 

compounds (Dean, 2010). This is important as the ionization can hinder effective extraction of 

the compounds. The advantages of LLE are that it is easy to apply and cheap to perform, also 

a variety of organic solvent that can be used. It is a multipurpose sample preparation technique, 

and LLE is recommended in several ordinary analytical techniques. However, the procedure is 

time consuming and tedious, it requires a larger amount of toxic solvents and prior to analysis, 

it requires pre-concentration of the sample (Bello-López  et al., 2012).  
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2.9.2 Solid phase extraction (SPE) 

SPE is the utmost commonly method for the preparation, clean up, pre-concentration, and 

isolation of target compounds from the matrices. The SPE technique involves retention 

mechanisms such as adsorption, ion exchange, the partition between the liquid and the solid 

where the solid materials are the sorbent material. This method involves the passing of a liquid 

sample containing the analyte into the conditioned SPE sorbent. The target analyte binds onto 

the sorbent of the cartridge prior to elution (Dean, 2010). SPE is usually used for liquid samples 

to remove analytes but it also can be used for solid samples that are prior-extracted into solvents 

(Aznar, 2010). SPE has been used to extract pesticides in different aqueous samples which is 

due that it can concentrate analytes for better sensitivity, good robustness and high percentage 

recovery (Donato  et al., 2015, Radovic  et al., 2015). Also, it has a fast analysis time, it requires 

a smaller volume of organic solvent, and it gives high enrichment factors. In addition, it can 

extract many samples at the same time and it can be applied to a wide variety to sample 

matrices. However, the plugging of the cartridge may occur. Also, it includes many stages thus 

it requires a long time for method optimisation (Donato et al., 2015). 

 

2.9.2.1 Principle of SPE extraction 

SPE consists of four stages which are; the Sorbent conditioning, loading of a sample, washing 

of the impurity and analyte elution as shown in  Figure 2.8 (Zdravkovic, 2015).  

 

Conditioning of the sorbent: This is the first step of SPE, which is also called wetting step, 

the sorbent is wetted with a solvent to activate its functional groups and thus prepare for a good 

interaction with the analyte. After this stage, the sorbent is not allowed to dry out before the 

washing step as it could result in low recoveries (Dean, 2010). 

Sample loading: the sample is loaded or passed through the cartridge where the analyte with 

some interfering compounds is adsorbed in the sorbent bed. In this step, a breakthrough volume 

is an important parameter to be considered in order to prevent loss of analyte. Breakthrough 

volume refers to a stage whereby the analyte is no longer absorbed due to no active site 

available for the analyte to bind as enough sample volume has been loaded (Dujaković  et al., 

2010).  

Washing of impurities: it is the removal of additional compounds interfered from the sorbent 

which is done by passing the suitable solvent through the sorbent. The solvent used must not 

be too resilient to elute the analyte of the interest or too weak to leave additional compounds 
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behind. This is an important step to be considered since it ensures that the compounds eluted 

are only a target analyte with no additional interfering compounds (Berrueta  et al., 1995). 

Elution of analyte: the compound of interest is eluted by a solvent, which is resilient enough 

to break the bond between sorbent and analyte and thus completely remove all the adsorbed 

compounds from the cartridge sorbent bed with a small enough volume. It can be determined 

by mostly on the intermolecular forces formed between the sorbent and the target analyte. 

Figure 2.8 shows the schematic diagram for SPE (Berrueta  et al., 1995). 

 

 

 

Figure 2. 8: Schematic diagram showing the four stages involved in SPE. 

 

In SPE, the sorbent is packed in in the middle of two fritted disks in a polypropylene cartridge 

(Berrueta  et al., 1995). The analyte retention in the sorbent and removal from the sorbent 

depends on the formed intermolecular forces within an analyte, the matrix, and the SPE. The 

analyte should have a low affinity for the sample matrix than the SPE sorbent (Masque  et al., 

1998). There are different sorbents used which include, Strata TM-X sorbent, ENVI-18, Strata 

C18, and Oasis HLB, etc. The new sorbents (molecularly imprinted polymers and 

immunosorbents) are made of chemicals together with functional groups including o-

carboxybenzoyl, hydroxymethyl, benzoyl, acetyl also extremely cross-linked polymers. These 

sorbents have shown an improvement on recoveries for most polar compounds including the 

triazine herbicides. The Strata TM-X sorbent, Strata C18, and Oasis HLB are all able to extract 

acidic, neutral and basic compounds due to their properties. Oasis HLB can be used to extract 

equally non-polar and polar substances due to its chemical composition including hydrophilic 
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N-Vinylpyrrolidone and combination of lipophilic divinylbenzene polymers (Gros  et al., 

2006). Strata TM-X has a surface which made up of a pyrrolidone group with styrene (Babić  et 

al., 2010). It has been reported that the C18 sorbent is good sorbents to extract the triazine and 

their metabolite efficiently.  

 

2.9.3 Hollow fiber liquid phase microextraction (HF-LPME) 

Hollow fiber liquid phase microextraction involves the analyte partitioning between solution 

and organic solvent. It is a new mode of LPME, which was introduced upon the usage of a 

cost-effective and disposal hollow fiber. This technique was modified to increase the 

effectiveness, which resulted in a reduction of extraction time. It also resulted in high 

enrichment factors, recovery percentage, and extraction throughput. This technique comprises 

of a capillary porous hydrophilic fiber saturated by organic solvent and its interior filled with 

the acceptor phase (Figure 2.9) (Sharifi  et al., 2016). HF-LPME can be used in two of three 

phases. With two phases, the analyte is extracted from an aqueous to an organic phase 

immobilized in the membrane pores and in the lumen of the hollow fiber. With three phases an 

organic phase is placed in the membrane pores and two aqueous are placed at the opposite side 

of the membrane (Menezes  et al., 2016). HF-LPME has been used for the clean-up and 

concentration step of triazines analysis in water (Xiong and Hu, 2008). 

 

 HF- LPME was developed by Perdesen-Bjegaard and Rasmussen and has been used by 

numerous researchers in the latest years because of its advantages such as its simple process 

and the clean-up step is not necessary. The sample can be stirred without loss of extracting 

liquid because it is sheltered in HF-LPME. It is very selective and uses a smaller amount of 

solvent. It is fast, simple and it is inexpensive. It has high enrichment factors. The hollow fiber 

can prevent interference. However, it is not suitable for a non-polar organic compound. In 

addition, clogging of the pores for the sample with high dissolved solids may occur (Letseka 

and George, 2017). 
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Figure 2. 9: Illustration of hollow fiber liquid phase micro extraction 

Source: (Rodríguez et al., 2013). 

 

2.9.4 Soxhlet extraction (SE) 

Soxhlet is a traditional technique widely used for the extract of persistent organic pollutants 

from a variety of environmental samples with complex matrices such as soil, sediments, biota`s 

tissues, dust, etc. The Soxhlet extraction method is one of the leaching methods (Saadati  et al., 

2013). In the Soxhlet extraction method, a solid sample is placed in a thimble. The thimbles 

then loaded into a chamber of Soxhlet extractor, which is placed into a flask that having an 

extraction solvent. Soxhlet is fitted out by the condenser and heat is applied to reflux (Figure 

2.10). As a solvent vaporise its vapor moves up a distillation arm and overflow into a chamber 

that loaded with a thimble containing the solid sample. When the solvent is almost full in a 

chamber it is then removed by the siphon side arm automatically back to a distillation flask. 

Cycles can be repeated many times and in any cycle quota of solvent which contains a non-

volatile compound till the analyte is intense in a distillation flask (Jensen, 2007).  

 

SE method advantages are that it can analyse the larger amount of environmental samples. It 

can be conducted unattended, it is also a resilient method and considered as well-established 

as its extraction can only be affected by few parameters (Saadati  et al., 2013, Guo and Kannan, 

2015). SE is still widely used as the sample is repetitively carried into an interaction with a new 

portion of the solvent, which improves extraction efficiencies (Halfadji  et al., 2013). The core 
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drawbacks of conventional SE are; use of non-environmentally friendly solvents that the time 

for extraction is long. It cannot speed up the process by providing agitation. There is an option 

of thermal decay of the selected target analytes that cannot be overlooked as extraction usually 

occurs at the boiling point of the solvent for a prolonged time (Masia  et al., 2015). A large 

quantity of solvent is used which then involves vaporization before analysis resulting in the 

long extraction process (Oluseyi  et al., 2011).   

 

 

 

 

Figure 2. 10: The Soxhlet extraction apparatus 

Source: (Azwanida, 2015) 

 

2.9.5 Microwave-assisted extraction (MAE) 

In MAE, the sample containing the analytes contained in a vessel with an appropriate solvent 

and placed in a microwave. The energy from microwaves is used to warm the solvent that is 

interacting with the sample and thus help the partitioning of the analyte removal from its matrix 

into the solvent. Microwaves frequency ranges from 0.3 to 300 GHz, which results in a 

molecular movement by the relocation of ions and dipole rotation. The second application is 

the straight act of the microwaves on the sample that is able to engross the energy of 

electromagnet and to convert it into hotness (Sanchez-Prado  et al., 2015). After extraction, the 
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vessel is cooled for a few minutes. The solvent is then filtered to remove the matrix and dried 

out with anhydrous sodium sulphate to remove water (Onuska and Terry, 1993). Figure 2.11 

shows the microwave assisted apparatus. The parameters such as extraction time, extraction 

solvent volume, extraction solvent, etc., need to be optimized for effective extraction of the 

MAE. 

The advantages of MAE close vessel are that the volatile substances are avoided from being 

lost during the microwave radiation. There is no evaporation that occurs during extraction, 

therefore, a smaller amount of solvent required (no need for solvent addition unlike open 

vessel). Contamination is strongly avoided, thus there are few chances of floating 

contaminants. It uses elevated temperature (which cannot be attained with an open vessel), 

(Tatke and Jaiswal, 2011). However, it only uses solvents, which can absorb microwaves. It 

requires time to cool the vessels and a clean-up step is required (Mandal  et al., 2007, Eskilsson 

and Björklund, 2000). 

 

 

Figure 2. 11:  Typical microwave-assisted extraction 

Source: (Tatke and Jaiswal, 2011) 

 

2.9.6 Ultrasonic Extraction (UE) 

Ultrasonic extraction is a method used to extract the chemical residues in different solid 

samples. The sample is deepened in the solvent in a glass container and then positioned in the 
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sonication bath (Eskilsson and Björklund, 2000). It removes the chemical residues by shaking 

the solid sample containing the target analyte with an appropriately chosen solvent, which is 

the one that penetrates into solid matrices to disintegrate the solid aggregates. It has been 

reported to be more efficient in extracting traces of triazines in sediment and soil when 

compared with other refluxing methods. Ultrasonic extraction has been recommended due to 

its minimum extraction time and also, it is relatively cheap (Oluseyi  et al., 2011). Figure 2.12 

displays the setup of ultrasonic extraction.  

UE advantages are that it is inexpensive, small organic solvent intake and extraction time is 

reduced. However, it also has some drawback such as the necessity of clean up phase and also, 

repeated extraction may be required (Eskilsson and Björklund, 2000). 

 

 

Figure 2. 12: Typical ultrasonic extraction illustration 

Source: (González-Centeno et al., 2014) 

 

2.9.7 QuEChERS method 

QuEChERS which is a quick, easy, cheap, effective, rugged and safe technique has been used 

for the removal and clean-up of triazines. Initially, the QuEChERS was presented for pesticide 

residues investigation in high moistness vegetables and fruits, however, it is attaining important 

approval in the examination of a comprehensive range of analytes in a huge variety of samples. 

QuEChERS includes liquid-liquid partitioning by means of particular solvent (usually 

acetonitrile, however, the solvent used to depend on the type of the target analyte is being 

extracted) and uses dispersive solid-phase extraction (d-SPE) to purify the extract. The wide 

series of QuEChERS application is likely because of introducing many different modifications 
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established on the use of different d-SPE sorbents for clean-up step and the use of buffer 

additions for salting-out partitioning step, salt formulation, and various extraction solvent and 

(Rejczak and Tuzimski, 2015). The QuEChERS method is shown in Figure 2.13. In principle, 

a sample is homogenised and the appropriate solvent is added and hand mixed. Thereafter, the 

QuEChERS content is added and the mixture is vortexed followed by centrifugation. The 

sample is then washed up using the dispersive solid phase prior to the analysis of the extract. 

This method is inexpensive, rapid, simple, requires small solvent volume and produces a small 

amount of hazardous waste (Schenck and Hobbs, 2004).    

 

 

 

Figure 2. 13: Schematic diagram of the QuEChERS method 

Source: (Paíga et al., 2015) 

 

2.10 Separation and Detection techniques 

Separation techniques are used to separate compounds in a sample mixture. Chromatographic 

techniques such as liquid chromatography (LC) and gas chromatography (GC) are commonly 

used for the separation of pesticide mixtures for qualitative and quantitative analysis. 

Chromatography is an analytical technique, wherein a sample mixture under test is separated 

into different component under the influence of mobile phase over the stationary phase 

(Glueckauf and Coates, 1947). After the separation of analytes, a suitable detector identifies 

them. There are different types of detectors that have been used with these chromatographic 
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techniques for the determination of pesticides. These includes ultraviolet (UV), fluorescence 

(Fl), electron capture detector (ECD), mass spectrometry (MS) detector and flame ionised 

detector (FID) (Giddings, 2002). 

 

2.10.1 Separation techniques 

2.10.1.1 High-Pressure Liquid Chromatography (HPLC) 

High-performance liquid chromatography (HPLC) is a form of liquid chromatography, which 

is used to separate mixtures that are dissolved in a solution. HPLC is used for identification, 

quantification and to purify the individual components in a mixture. The instrument consists 

of a detector, solvent reservoir, an injector, a pump, and a separation column. The HPLC 

detector included ultraviolet (UV), Fluorescence (Fl), Mass spectrometry (MS), DAD detector.  

In this instrument, the analytes are separated by inserting a socket of the sample mixture on top 

of the column (Snyder  et al., 2012).  

 

2.10.1.1.1 Principle of HPLC  

In HPLC, a small sample volume is injected into the stream of the mobile phase and slowly 

moved down the column by a specific interaction with the stationary phase present within the 

column. The different compounds in the mixture distribute between the stationary phase and 

the liquid mobile phase. The time at which the eluent is eluted is called a retention time which 

differs under particular condition (Engelhardt, 2012). 

 

2.10.1.1.2 Normal phase 

A normal phase is also known as adsorption chromatography, as the separation of the analytes 

is based on adsorption to the stationary phase and by polarity. In a normal phase, the mobile 

phase is non-polar, the stationary phase is polar, hence it effectively works in separating 

analytes which are decipherable in non-polar solvents (Peng  et al., 2007). There are few 

separations carried out in normal phase because its stationary phase is more polar so it results 

to absorption of more compounds. The strength of adsorption upsurge with the upsurge of 

analyte polarity, and the interaction between the polar stationary phase and polar analyte 

increase elution time. Therefore, the polar analytes will be retained as the polarity of the 

stationary phase, the analyte has the same polarity, and the non-polar analyte will be eluted 

first. The strength of interaction does not only depend on the functional groups in the analyte 

molecules but also on the steric factor which allows this method to separate structural isomers. 
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In a mixture, the too polar solvents tend to deactivate the stationary phase by forming a 

stationary phase bound water layer on the surface of the stationary phase. This behavior to 

some extent is unusual to a normal phase because it is the most virtuous and adsorptive 

mechanism, the hard layer on a surface is preferable in the interaction than the soft layer 

(Carabias-Martínez  et al., 2005).  

 

2.10.1.1.3 Reverse phase 

In a reverse phase, the stationary phase is modified silica. The silica is derivatised with 

Me2SiCl, where R presents a straight chain alkyl group, for instance, C8H17 or C18H37.  In this 

phase to increase retention time, more water can be added than the organic phase. The analyte 

structural properties have an influence on the retention time. The mobile phase is polar 

therefore non-polar analyte will be retained as a result of the increase in the molecule`s non-

polar stationary phase, which is not interrelating with the structure of water. The polar analyte 

will be eluted first. In a reverse phase, the predominately elution of the analytes is classified 

into two modes, which are gradient and isocratic elution. Isocratic elution involves the same or 

continuous mobile phase composition to elute solutes while gradient elution involves changing 

mobile phase composition with time (solvent programming). In that way, making a strong 

relative affinity of a hydrophobic stationary phase for the hydrophobic analyte to a mobile 

phase that is more hydrophilic (Carabias-Martínez  et al., 2005). Likewise, to decrease the 

retention time, the more organic solvent should be added to the eluent than water (Peng  et al., 

2007).  The schematic diagram of the HPLC instrument in Figure 2.14. 
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Figure 2. 14: A schematic diagram of the HPLC instrument 

Source: (Dobson, 2016 september 09) 

 

UV/Vis absorbance detector  

There are three types of HPLC UV detectors which are a single wavelength, variable 

wavelength and photodiode array detector (PDA) (Snyder  et al., 2012). 

Single wavelength detector: the absorbance of only one given wavelength is monitored by the 

system at all times. In the 1970s there was only a single wavelength detector and there was no 

other option. The mercury lamp of a low vapor pressure was used as an optical source of a 

single wavelength detector and it consists of a strong line at 254 nm.  It is a sensitive detector 

that has the ability to measure the subnanogram amount of an aromatic ring containing 

components. However in addition of phosphor lamp in the system, there are another two lines 

observed at a wavelength of 280 nm and 365 nm and at the addition of zinc lamp, the line was 

observed 214 nm (Dolan, 2016). Single wavelength is cheap and simple when compared to 

other UV detectors. It is limited in types of compounds that can be monitored and inflexibility 

(Swartz, 2010). Figure 2.15 shows the typical diagram of single wavelength detector. 
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Figure 2. 15: Typical diagram of single wavelength detector 

Source: (Dolan, 2016) 

 

Variable wavelength detector at any given time, only a single wavelength is monitored, 

however, any wavelength in a wide spectral range can be designated. The monitored 

wavelengths range from 190-900 nm. It requires more advanced optics, used for a wider range 

of compounds and it is more expensive and versatile (Swartz, 2010). In a variable-wavelength, 

a deuterium lamp releases a light that passes over the slit onto a movable diffraction grating. 

From a movable diffraction grating white lights at different wavelength spreads. The rough 

surface is rotated to direct the chosen portion of the range over the added slit which consists of 

a slit width approximately 5 nm. From that point, the light is focused through the flow cell onto 

a photodiode. As the sample passes over the flow cell, the amount of transmitted light to the 

photodetector is diminished, and this change in transmittance is transformed into the detector 

output in absorbance units. Ordinarily, a beam splitter is involved, pointing part of the light to 

the next photodiode. This configuration permits the electronics to create corrections for 

vacillations in the lamp intensity (Dolan, 2016 August 01). Therefore, improve the instrument 

optical performance. Figure 2.16 shows the schematic diagram of the variable-wavelength 

detector. 
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Figure 2. 16: Schematic diagram of the variable-wavelength detector 

Source: (Dolan, 2016) 

 

UV-PDA Detector differs from the other two UV-Vis detectors, light from the W and D2 lamps 

is excelled straight onto the flow cell, light that passes through the flow cell is spread by the 

deflection grating, and the amount of the dispersed light is estimated for each wavelength in 

the photodiode arrays. PDA operates by simultaneously monitoring absorbance of solutes at 

several different wavelengths. It uses either a series or an array of several detector cells within 

the instrument, with each responding to changes in absorbance at different wavelengths 

(Swartz, 2010). Photodiode array detectors provide a good sensitivity throughout the 

UV/Visible spectral range and highly sensitive at a low light level (Abrahamsson  et al., 2018). 

The PDA detector illustration is shown in Figure 2.17. 

 

 

Figure 2. 17: Illustration of a photodiode array detectors detector 

Source: (Abrahamsson, 2018) 
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Fluorescence detector (FLD) 

Fluorescence is the most sensitive detector among the other existing detector HPLC detectors, 

it is approximately 10-100 times more sensitive than the UV-Visible detectors. In the flow cell, 

this detector can measure even a single analyte molecule. Flourescence is selective and specific 

among the other optical detectors. It measures the ability of eluting solutes to fluoresce at a 

given set of excitation and emission wavelengths as it intensity relies on both the emission and 

excitation wavelength (Dolan, 2016). It is specific for highly condensed molecules with 

conjugated pi-bonds especially aromatic compounds and others such as alicyclic and aliphatic 

compounds with highly conjugated double bonds fluoresce and carbonyl groups (Lingeman  et 

al., 1985) figure 2.18 show Fluorescence detector. 

 

 

Figure 2. 18: Schematic diagram of fluorescence detector 

Source: (Dolan, 2016) 

 

2.10.1.2 Gas Chromatography (GC) 

GC is a separation method that is normally used for volatile mixture separation. It is used for 

several fields including pharmaceuticals and other environmental toxins (Grob and Barry, 

2004).   

 

2.10.1.2.1 Principle of gas chromatography 

GC is a separation technique where the mobile phase is gaseous and the stationary phase is 

classified into two, liquid and solid. Separation is achieved via two modes; volatility of the 

solute, i.e. boiling points or polarity.  Helium gas is dominant over other gases because it has 
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a long range of flow rate, it is a safer gas in comparison with hydrogen and it is well suited for 

a large variety of detectors. The alternative gases used include Argon hydrogen and Nitrogen, 

but each is liable upon the detector utilized and the required performance. There are various 

injectors that are used in GC and the septum injectors are the most used. There are two 

classification columns for GC, which are the capillary column and packed column. The 

capillary column has got a coated stationary phase while for packed column consist of a solid 

substance that is finely inert, divided and which is covered with the liquid stationary phase 

(Karasek and Clement, 2012).  

The separation of compounds is based on the diverse strengths of the interaction of a stationary 

phase with the compounds. The more the compounds interact with the stationary phase the 

stronger the interaction. Therefore, the compounds take long to migrate through the column 

resulting in long retention times. The poor interaction concerning the compounds and the 

stationary phase results into a quick migration of the compounds and shorter retention times, 

however, the separation is affected (Piantanida and Barron, 2014). GC can be operated either 

at isotherm or gradient temperature programs. Temperature programmed improves resolution 

and also decreases the retention times because it accommodates the separation of compounds 

with a variety of boiling points as it is consistently ramped. In isotherm, the temperature used 

is constant therefore it cannot be able to efficiently separate analytes with a broad series of 

boiling points and different polarities. At a high isotherm temperature, the quality of separation 

deteriorate and at a low isotherm temperature, the broad peaks are achieved (Karasek and 

Clement, 2012). The schematic diagram of the GC instrument is presented in Figure 2.19. 
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Figure 2. 19: The schematic diagram of the GC instrument 

Source: (Dobson, 2016 September 09) 

 

Flame ionization detector (FID) 

FID operation is based on the chemical ionization of carbon-based substances burned in the 

hydrogen diffusion flame. The jet is fed with hydrogen gas and it is enclosed by purified air of 

high pressure in a coaxial (Zimmermann  et al., 2002). The combustion decay of a carbon-

based compound forms carbon-hydrogen radicals and allows the reaction of chemical 

ionization. The produced flame-induced is then measured. The flame is directly proportional 

to the process of the flowing compounds. Usually, the FID flow rate is 30 mL/min for both 

helium and hydrogen and 300-400 mL/min air (Amirav and Tzanani, 1997). FID has been used 

for the detection of triazines (Xiong and Hu, 2008). The advantages of FID are that it has a 

large linear dynamic range, it is a simple, robust operation and it has high sensitivity. However, 

it consumes a high amount of gas and thus expensive operation costs (Amirav and Tzanani, 

1997). Figure 2.20 shows the typical diagram for an FID detector. 
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Figure 2. 20: Diagram of flame ionisation detector 

 Source: IKTS, 2019 February 07 

 

Electron capture detector (ECD) 

ECD is used for the detection of halogenated compounds, nitroaromatic compounds and other 

species containing the electron withdrawing functional groups (Kim  et al., 2008b, Poole, 

2013). The sample eluate from a column is passed over a radioactive β emitter, usually nickel-

63. An electron from the emitter causes the ionization of the carrier gas and the production of 

a burst of electrons (Poole, 2015). ECD sensitivity is estimated to 1000 times more sensitive 

than FID thus, it is often used for the analysis of triazines and other compounds in 

environmental samples (Muendo  et al., 2012). ECD has been used in complex matrixes for the 

screening of chlorinated triazines. It has been reported to be sensitive to hydrocarbons, amine, 

and alcohols (Kim  et al., 2008b). Figure 2.21 shows the diagram of ECD. 
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Figure 2. 21: Electron Capture Detector diagram 

Source: (Singh, 2017 April) 

 

Mass spectrometry detector (MS)  

MS is a technique used to measure the m/z ratio of charged particles. MS is known as the better 

detector over the other GC detectors. In a GC-MS separation of compound is achieved by 

scanning compound`s mass until the separation is completed. After separation, the sample is 

then ionized and split into fragments, naturally by an electron-impact ion source or chemical 

ion source. In. In the process, the energetic electrons are used to bombard the sample. Energetic 

electrons ionize the molecule by allowing them to drop an electron due to electrostatic 

repulsion. Additional bombardment changes the ions into fragments. The ions are transferred 

into an analyser which sorts them according to their mass to charge ratio(m/z) (Skoog  et al., 

2007). This detector has been used in the detection of triazines where better detection limits 

and improved signal/noise for target triazines were achieved (Cahill  et al., 2011). MS 

advantages include a quick data acquisition, ruggedness and simplicity, and analysis of 

limitless masses. However, it is not capable of separating compounds with the same m/z and 

molecular formula with low-resolution mass spectrometry also a peak broadening that limits 

resolution can be achieved due to the difference in ion velocity  (Herbert and Johnstone, 2002, 

El-Aneed  et al., 2009).  
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2.12 Analysis of pesticides 

SPE method has been used for the extraction of 20 pesticides in surface water using Oasis HLB 

cartridges (60 mg, 3 mL), (Peček  et al., 2013). 3 mL methanol followed by 3 mL water was 

used as a conditioning solvent. The cartridge was loaded with 100 mL of the sample and the 

analyte was rinsed with water 3 mL and it was eluted with methanol 10 mL. GC-MS was used 

for the separation and determination of pesticides. The LOD and LOQ attained ranged between 

0.001- 0.5 μg/L and 0.005-1 μg/L, respectively. The concentration obtained ranged between 

0.224-3.509 μg/L (Peček  et al., 2013). 

 

A multiclass method for the determination of 70 pesticides using Strata TM-X SPE sorbent 

followed by GC–MS/MS has been reported by Donato et al., (2015). The cartridge was 

conditioned by 3 mL of methanol. 3 mL of ultrapure water was used to rinse the column 

followed by 3 mL of ultrapure water with the pH adjusted to 2.5. For elution of pesticides from 

cartridge was conducted using the mixture of dichloromethane: methanol (1:1 v/v) 2 mL LOD 

and LOQ found ranged from 0.006-0.15 μg/L and 0.02-0.5 μg/L respective. The recoveries 

ranged from 70-117.3% and RSD value of 19.7%. The obtained concentration range between 

<LOQ - 0.55 mg/L (Donato  et al., 2015).  

 

Oasis HLB® cartridge has been employed for pesticide determination in ground and surface 

water in Belgrade, Serbia (Dujaković at al., 2010). The cartridges were preconditioned with 

methanol: dichloromethane mixture followed by deionised water 10 mL. It was loaded with 

250 mL sample volume and washed with 5 mL distilled water. 10 mL methanol: 

dichloromethane mixture was used to elute the analyte. The SPE extracts were injected into 

LC-MS to separate the extracted compounds. The obtained recoveries, LOD, and LOQ ranged 

between 72–129%, 0.0004–0.0055 µg/L and 0.0011– 0.018.2 µg/L respectively. The obtained 

concentration in surface water range between 0.0059 -0.0178 µg/L and not detected in 

groundwater (Dujaković  et al., 2010). 

 

SPE with C18 as extraction sorbent followed by LC-MS/MS has been used for the determination 

of pesticides in wastewater effluent. The cartridge was conditioned with 3 mL methanol 

followed by 6 mL distilled water. A sample of 10 mL was passed through the cartridge and 

washed with methanol: water 10/90 v/v 10 mL. Analytes were eluted with methanol 5 mL. The 

obtained analyte recoveries were within the range of 80–95%, %RSD ranged from 3.2-8.2%. 

LOD ranged from 0.016 µg/L-0.017 µg/L and LOQ was found to be 0.05 µg/L (Cahill  et al., 
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2011). Demoliner  et al., (2010) also used SPE with C18 sorbent for the extraction of pesticides 

in groundwater. The cartridge was conditioned with methanol 3 mL followed by ultrapure 

water 3 mL and acidified pH 3 ultrapure water 3 mL. A sample of 250 mL was loaded into a 

cartridge and the analyte was eluted with methanol 1 mL. Separation and quantification were 

performed using LC-DAD and LC-MS/MS. The obtained LOQs, RSD% and recoveries found 

to be 0.20 µg/L for all compounds, 1-20% and 60.3-107% in LC-DAD respectively. In LC-

MS/MS, LOQs, RSD% and recoveries found at a ranged between 0.2-10.40 µg/L, 1-20% and 

67-108% respectively (Demoliner  et al., 2010). 

 

HF-LPME technique has been used for pesticide extraction in tap water followed by GC-FID. 

The extraction solvent used was o-xylene at a stirring speed of 1200 rpm, extraction time of 35 

min and the hollow fiber length of 1 cm. The LOD obtained were between 1.16-48.48 µg/L, 

RSDs ranged from 3.4-8.0, the enrichment factors were between 27 -530 and the concentrations 

ranged from 15-150 µg/L (Xiong et al. 2008). HF-LPME followed by LC/MS technique has 

been used for pesticide analysis of natural water. The extraction solvent used was n-octanol at 

a stirring speed of 100 rpm, extraction time of 120 min and the hollow fiber length of 35 cm. 

The LOD obtained were between 0.026-0.237 µg/L, RSDs were between 0.2-11.8, enrichment 

factors were approximately 2000% and the concentrations ranged from 1 to 1.27 µg/L (Trtic-

Petrovic  et al., 2010). 

 

HF-LPME technique has been used for the extraction of pesticides and metabolites in soil and 

water samples followed by HPLC with fluorescence detection. The extraction solvent used was 

1-octanol, agitation speed was 1440 rpm, hollow fiber length of 2.0 cm and extraction time of 

30 min. The obtained recoveries ranged from 85-117 %. The LOD ranged from 0.0002 to 0.57 

µg/L for water samples and 0.001 to 6.94 µg/kg for soil samples (Asensio-Ramos  et al., 2012). 

Determination of atrazine, desethyl atrazine and desisopropyl atrazine in environmental water 

samples has been done using the HF-LPME technique followed by HPLC with diode array 

detector (DAD). The extraction solvent used was [bmim]PF6 and extraction time was 20 min, 

stirring speed was 1000 rpm and hollow fiber length of 3.5 cm. The obtained recoveries ranged 

from 93.8 to 104.0% and LOD were 0.0001 µg/L. The concentrations quantified in the fish 

pond, river, irrigation, and wastewater are 0.00628 µg/L, 0.00439 µg/L, 0.00786 µg/L and 

0.00577 µg/L, respectively (Peng  et al., 2007). HF-LPME has been used for pesticide analysis 

of river water and sewage. The extraction solvent used was toluene with a magnetic stirring 

speed of 600 rpm, extraction time of 10 min and the hollow fiber length of 1 cm. GC-FID was 
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used for analysis. The LOD obtained were between 0.0081 to 0.0169 µg/L, RSDs were between 

6.9 to 7.6%, enrichment factors were between 127 to 142%. The target analytes were not 

detected (Letseka and George, 2017). 

 

UE method has been used to determine pesticides in sediment samples. A solvent mixture of 

dichloromethane-methanol (1:1) was used for extraction and extraction time was 45 min. It 

was then centrifuged for 10 min at 4000 rpm. The analysis was done by LC-MS/MS. The 

obtained recoveries ranged between 77-87% while the LOD and LOQ values ranged from 

0.001-0.005 μg/kg and from 0.003-0.1 μg/kg. The obtained concentration ranged between 0.24-

0.3392 μg/kg (Radovic  et al., 2015). 

 

UE and SE were used for the extraction of atrazine herbicide from the soil. Thin layer 

chromatography was used for separation of analytes and the spots were observed under UV 

light at 254 nm wavelength. Quantitative analysis was done by measuring absorbance using 

TLC scanner II UE was carried out with 250 mL of acetone for 15min. The obtained recovery 

was 103.5% and LOD was 0.005 μg/kg. For SE 250 mL of acetone, solvent was used and the 

extraction was carried out for 4 hours. The obtained recovery and LOD were 201.9% and 0.005 

μg/kg respectively (Babić  et al., 1998). 

 

SE was used for the determination of atrazine in soil and sediment samples. Extraction was 

carried out with 250 mL of methanol for 8 hours.  Separation and detection were performed by 

HPLC-UV. The obtained recovery and LOD were 87% and 0.078 μg/kg respectively. The 

obtained concentration was 0.74 µg/kg (Muendo  et al., 2012).   

 

Pesticides concentration has been measured in sediment samples by Soxhlet extraction. The 

extraction solvent used was hexane-acetone 1:1 (150 mL) for 16 hours in the water bath 

maintained at 60 degrees. The remaining extract was cleaned by a silica gel cartridge prior to 

GC-MS. The recoveries obtained were greater than 80.7%. The concentration obtained ranged 

between 0.02- 0.04 μg/kg (Lang  et al., 2005). 

 

MAE method has been used by Miyawaki et al (2017) to extract organochlorine pesticide and 

polycyclic aromatic hydrocarbons in soil and sediment. The identification/quantification 

system used was gas chromatography-mass spectrometry. 3 g of the sample was extracted with 

a 3:2 hexane-water mixture (10 mL) for 30 min at 120°C. The hexane extract was cleaned using 
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silica gel. The concentration obtained ranged from 9.2 to 408 ng/g. RSD was found at a range 

of 2.6 to 8.2% (Miyawaki  et al., 2017). 

 

LC-MS/MS was used for the separation and detection of triazines in soil sediment and sludge. 

Extraction was carried out by the QuEChERS extraction method. The obtained recoveries 

ranged between 62-75%, 69-72% and 82-96% in soil, sediment, and sludge respectively. LOQ 

were found to be 0.0026 μg/kg, 0.003 μg/kg and 0.005 μg/kg for soil, sediment and sludge 

respectively. The obtained concentration in soil was 0.00948 μg/kg and not detected in 

sediment and sludge (Masia  et al., 2015). 

 

GC-MS analysis was used for the separation and determination of pesticides in sediments. The 

extraction method was carried out with Soxhlet extraction and ultrasonic extraction.  Soxhlet 

extraction was carried out with 250 mL solvent hexane: acetone mixture for 16 h. the extract 

was cleaned up by silica gel cartridges. The recoveries and concentrations obtained ranged 

between 80.7-96.1% and 0.12-119.13 μg/kg (Lang  et al., 2005).  For ultrasonic extraction, the 

5 g sample was sonicated for 2 h using the 30 mL hexane: acetone solvent mixture. The soil 

mixture was by centrifuging for 10 min at 200 rpm. The obtained recoveries and concentrations 

ranged between 81.4-92.0% and the concentrations obtained ranged from 0.13-117.3 μg/kg 

(Lang  et al., 2005).  

 

Chapter 3 – Materials and Methods  

 

This chapter presents the material and methods that were used to carry out this study. The 

sampling areas, sampling procedures as well as the sample pre-treatment, preparation and 

analysis methods followed are described in details. The quality assurance procedure followed 

is also discussed. 

 

3.1 Analytical reagents  

Simazine (98.7%), atrazine (97.4%), ametryn (98.5%), propazine (99.3%) and terbuthylazine 

(98.6%) were purchased from Sigma Aldrich (Riedel-de-Haen, Germany). All solvents used 

were of HPLC grade: acetonitrile (99.9%), acetone (99.8%), dichloromethane (99.8%) and 

methanol (99.9%) and they were also purchased from Sigma Aldrich and supplied by 

Honeywell (Steinheim, Germany). Formic acid (≈98%) was purchased from Fluka (Steinheim, 
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Germany). Oasis hydrophilic-lipophilic balance (HLB) cartridges, (60 mg, 3 mL) supplied by 

Waters (Milford, USA) were used as solid phase extraction sorbent. 

 

3.2 Instrumentation 

SPE vacuum manifolds purchased from Sigma Aldrich (Steinheim, Germany) were used for 

extraction and pre-concentration of pesticides from water and sludge samples. It was also used 

for the clean-up of sediments and soil extracts after SE and UE extraction. The vacuum pump 

connected to the SPE manifold was purchased from Edwards (Munic, Germany). Ultrasonic 

bath purchased from Science Tech (Durban, South Africa) was used for the extraction of 

pesticides from soil and sediment. Soxhlet extractor purchased from UKZN Glassblower 

(Pietermaritzburg, South Africa) was also employed for the extraction of pesticides in solid 

samples. Centrifuge purchased from Shalom Laboratory (Durban, South Africa) was used for 

the separation of supernatant liquid and solid. Buchi Rotavapor R114 purchased from Labotec 

(Flawil, Switzerland) was used to concentrate the extracts. 1 mm sieve purchased from 

Endecotts LTD (London, England) was used to sieve and homogenise the soil/sediment 

samples. Furnace purchased from United Science (Gauteng, South Africa) was used to 

determine the organic matter in soil/sediment samples. The analysis was performed using an 

LC 2020 system purchased from Shimadzu (Tokyo, Japan). It was connected to a quaternary 

pump, a degasser, auto-sampler and an LC-2030/2040 PDA detector (Germany, Europe). The 

chromatographic separation was performed on a Shim-Pack GIST analytical HP column C18 

(3.5µm, 4.6 mm x 150 mm ID) purchased from Shimadzu (Tokyo, Japan) kept at 40°C. The 

mobile phase composition used was acetonitrile-water at a flow rate of 0.6 mL/min and the 

data was acquired at a detection wavelength of 223 nm. The LC gradient program followed 

was 0 – 10 min (45-55%, acetonitrile:water) and 10 – 25 (30-70%, acetonitrile:water).   

 

3.3 Preparation of stock solution 

The stock solution containing pesticides mixture was prepared by dissolving 10 mg of 

individual powdered standards in acetonitrile to make up a concentration of 100 mg/L. The 

stock solution was stored away from the sunbeams at 4°C in the refrigerator. Working standards 

ranging from 0.2 to 1 mg/L were prepared from the stock for calibration curves which were 

used for quantification purposes. 
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3.4 High Performance Liquid chromatography –Photodiode array detector (HPLC-

DAD) method development 

The HPLC-DAD method published by (Caldas  et al., 2010) was adopted and further 

optimized. The method was optimised based on mobile phase composition, mobile phase flow 

rate and detector wavelength. 1 mg/L standard solution of analytes mixture was used for 

method optimization. After obtaining the optimum analysis conditions, standards with 

concentration ranging from 0.2 to 1 mg/L were analysed to calibrate the instrument.  

 

The mobile phase composition was tested to achieve a good separation and elution of triazines 

analytes at a reasonable retention time. 

 

The flow rate was monitored to identify the flow rate which is fast enough to give analytes 

enough time interaction with the stationary phase and not too fast or too slowly to result into 

poor separation or broad peaks and long retention time. The investigated flow rates were 0.3 

and 0.6 mL/min. 

 

Detector wavelength was investigated to determine the optimum wavelength which 

appropriately detects all the target analyte. The investigated wavelengths were 220 and 223 

nm. 

 

3.5 Sampling  

The study area was KwaZulu-Natal which is one of the South African Provinces. The sampling 

areas were in Pietermaritzburg and Durban which are KwaZulu-Natal cities.  KwaZulu-Natal 

is the second largest populated South African province with approximately 10.27 million 

people. Durban is the province's industrial and economic centre. It consists of most of 

KwaZulu-Natal's factories and it is one of South Africa's most important industrial regions. Its 

factories are mainly for clothing and textiles, food processing, sugar refining, chemicals, and 

oil refining. Pietermaritzburg is a provincial capital city. It also has a number of industries, 

including several footwear factories, aluminum plant, and food-processing plants (Britannica, 

2017 April 19).  Hence, these two cities were targeted to be investigated under this study.  

Wastewater samples were collected in five wastewater treatment plants (WWTPs) including 

Darvill, Amanzimtoti, Umhlathuzana, Umbilo, and Northern. The four WWTPs are situated 

around Durban while Darvill is in Pietermaritzburg. The river water samples were collected in 
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the rivers where these investigated WWTPs discharged their treated effluent (Mbokodweni, 

Umhlathuzana, Umbilo, and Umgeni River) as well as along Msunduzi River (Camps Drift, 

College Road, Woodhouse, Bishopstowe. Water and sludge samples were collected in amber 

glass bottles. Soil and sediment samples were collected in an aluminum foil. The sludge 

samples were collected at Amanzimtoti, Northern and Darvill WWTPs. Sediment samples were 

collected at Camps Drift, College Road, Woodhouse, Bishopstowe, Mbokodweni River and 

Umgeni River. Soil samples were collected at Umgeni Valley, Curry Post, Donny Brook and 

Gilboa Farm which are agricultural lands. Water and sediment samples were collected during 

the cold season and hot season in order to investigate the seasonal effect on the concentrations 

of pesticides. Soil samples were collected in the hot season. The Global Positioning System 

(GPS) system was used to accurately appoint the sampling sites. The coordinates are given in 

Table (3.1).  

 

 

 

Table 3.1: GPS coordinates for the sampling sites along Msunduzi River, Durban Rivers, 

WWTPs and agricultural areas around Pietermaritzburg  

Sampling areas Sampling points GPS Coordinates 

  

Camps Drift 

 

-29.630º  - 30.365º 

  

College Road 

 

-29.612º  - 30.377º 

Msunduzi River (PMB)  

Woodhouse 

 

-29.602º  - 30.413º 

  

YMCA 

 

-29.611º  - 30.387º 

  

Bishopstowe 

 

-29.618º  - 30.447º 

 

  

Mbokodweni 

 

-30.307º - 30.997º  

  

Durban Rivers Umhlathuzana -29.873º - 30.879º 

 Umbilo -29.845º - 30.891º 

 Umgeni -30.195º - 30.999º 

  

Donny Brook 

 

-29.885º - 29.905º 
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Agricultural areas (PMB) Curry Post -29.419º - 30.200º 

 Gilboa farm 

 

Mgeni Valley 

 

-29.260º -30.334º 

 

-29.490° -30.274° 

  

Darvill  

 

-29.601º   – 30.428º 

 

WWTPs Amanzimtoti -30.007º - 30.917º   

 Umhlathuzana -29.876º - 30.881º 

 Umbilo -29.845º - 30.891º 

 Northern -29.795º - 30.995º 
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3.5.1 Sampling areas 

Msunduzi River 

Msunduzi River has a length of 21.55 Km and it is meandering between the residential areas 

with a high population, therefore, lots of places along the Msunduzi River are polluted due to 

illegal disposal of waste as well as chemicals used in households (Openstreetmap Organisation, 

2012 November 27). It has been reported that the Msunduzi River has many items floating in 

the water such as logs, plastic bottles, empty condom wrappers, twigs, headless chickens and 

shoes (Shamase, 2010 January 04). Another thing which has the influence in the cleanness of 

the Msunduzi River is the sewer pipes which burst and leak into the river (WWF Organisation, 

2016 February 29 ). Camps Drift is situated up of Msunduzi River and it is located near the 

steel company (Hulamin) and other small companies. College Road is mainly residential areas 

and it is also surrounded by places like the football ground, turf on spot pitch and it is used for 

canoeing (WWFOrganisation, 2016 February 29 ). YMCA is located next to the bridge in the 

middle of the residential area, there are a Gym and petrol filling station around it. Woodhouse 

is near the golf course and many companies including the Tiger brand, Meadow feeds, Albany 

bakery, urban connate, etc. Bishopstowe is located down the Msunduzi River and it near the 

smallholding farms and residential areas. The Agriculturist might be using the triazine to 

control weed on the farm and residents might be using them in the household premises which 

could result in their presence in the river and WWTP. They can also be contributed by illegal 

dumping of containers that may be used to contain triazines from households. Figure A3.1 

shows points along the Msunduzi River.   

Umgeni Valley is the smallest area located in Pietermaritzburg. It is filled with a high 

population, as well as smallholding agricultural areas. It consists of shacks.  Donny Brook, 

Carry Post, and Gilboa Farm are pine trees and timber farms. In Gilboa farm, there are other 

activities taking place including informal agricultural areas and timber farming(White, 2012 

October 22)  
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Figure 3. 1: Sampling points along the Msunduzi River 

Source: (Kunene, 2018) 

 

In each and every treatment plant samples were collected in the influent (where water from 

domestic and companies’ sources to be treated in WWTP comes in) and in the effluent (where 

treated water from treatment plant discharged out of the WWTP to the nearby river) to 

investigate the removal efficiency of triazines during the treatment process. The rivers where 

the effluents are discharged in were also investigated because it has been reported that triazines 

are not completely removed with the solid sludge during water treatment and they are resistant 

to biodegradation, hence they are discharged with the treated effluent to the rivers (Monteith  

et al., 1995). Therefore, the aim was to investigate loads of pesticides contributed to the 

environment water from WWTPs. Also, sludge from WWTPs is used as bio-solid in croplands, 

therefore sludge samples were also analysed to determine the pesticides that can be transferred 

into croplands by bio-solids when they are applied (Kinney  et al., 2006). 
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Amanzimtoti WWTP 

 

It is located in the middle of Southern N2 North and Mbokodweni in Isipingo, which is 

occupied by residential and industrial areas. This WWTP receives water from the industries 

(South gate and Prospecton) and semi-Urban areas (Isiphingo, Amanzimtoti, Folweni, 

KwaMakhutha, and Athlone park) (Madikizela  et al., 2014). The treated effluent from 

Amanzimtoti is discharged in the Mbokodweni River (Madikizela and Chimuka, 2017). The 

sampling points are shown in Figure 3.2.  

 

 

Figure 3. 2: Sampling spot in Amanzimtoti WWTP and the nearby river 

Source: (Kunene, 2018) 

 

Umhlathuzana WWTP 

 

It is located along the Umhlathuzana River. This WWTP consists of two influent points, which 

are Marianridge and Shallcross. After the influents have been treated they are combined as one 

effluent which is then discharged into the Umhlathuzana River. Marianridge influent receives 

about 8 000 m3/d wastewater from both sources. Marianridge receives wastewater from both 

domestic (70%) and industrial (30%). Whereas Shallcross receives about 2 000 m3/d  of 100% 

domestic wastewater (Madikizela and Chimuka, 2017). The Umhlathuzana River length and 

catchment areas are 50 Km and 113 Km2, respectively. The sampling points are shown in 

Figure 3.3.  
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Figure 3. 3: Sampling point in Umhlathuzana WWTP and river 

Source: (Kunene, 2018) 

 

Umbilo WWTP 

 

It is located in Pinetown, which one of the suburbs of Durban City. The treatment plant was 

designed to treat a capacity of approximately 10 000 m3/day. After the treatment of wastewater, 

the effluent discharged into the Umbilo River, which is meandering in between the WWTP. 

Umbilo River sources are around Richmond Farm and they are joining the suburban area of 

Ashley and then meandering through Durban and Pinetown Queensburgh before canalized to 

Umbilo River. There are many industries around Umbilo WWTP including two mental 

finishing companies, two large textile companies, printing companies, storing dyes companies. 

The waste discharged from these companies can possibly disturb the performance of a WWTP 

as their discharged wastewater contains enormous amounts of organic compounds. Therefore, 

there are higher chances for the organic compounds not to be completely removed by WWTP 

(Pitts, 1993). The sampling points are shown in Figure 3.4.  
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Figure 3. 4: Sampling point in Umbilo WWTP 

Source: (Kunene, 2018) 

 

Northern WWTP 

 

It is occupied by the industries (textile, detergents, pharmaceutical, constructions, 

petrochemical, and cosmetic) and domestic sources (Nzimande, 2014). It was designed to treat 

about 53 000 m3/d wastewater. This WWTP discharge effluent to Umgeni River which has a 

catchment of 4416 Km2  and a length of 225 Km. Umgeni River has undergone modifications 

to accommodate human activities such as commercial, large scale urbanization, and 

modification of river course (Abafe  et al., 2018). The effluent is discharged in the Umgeni 

River. The sampling points are shown in Figure 3.5. 
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Figure 3. 5: Sampling point in Northern WWTP and Umgeni River 

Source: (Kunene, 2018) 

 

Darvill WWTP 

 

Darvill WWTP is located in Pietermaritzburg near the New England landfill site and the 

sugarcane farms. It has a length of 1.58 Km (Eddy, 2010 December 12). WWTPs receive 

industrial and domestic wastewater, there is a high possibility of receiving amounts of triazines 

since they are active ingredients used in a household cleaning product and in other industrial 

processes. Darville WWTP discharges the effluent in the Msunduzi River which could transfer 

triazines into the river via effluent discharge. Also, sugarcane farms could possibly be treated 

with triazines to remove unwanted plants therefore, via crop runoff triazine residues can be 

transported into the river. The waste from the landfill site could also contribute via surface 

runoff. They can also be contributed by illegal dumping of containers that may be used to 

contain triazine from houses. The sampling points are shown in Figure 3.6.  
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Figure 3. 6: Sampling spots in Darvill WWTP 

 

3.6 Sample pre-treatment 

Water samples were filtered through a 55 mm filter paper using a vacuum frit filter to remove 

particulate matter from the background matrix. Hence prevent blockage of SPE sorbent. Soil 

and sediment samples were air dried in a fume hood to remove moisture. They were then 

grounded using pestle and mortar and sieved using 1 mm sieve to remove the plants, roots, 

gravel and other wreckage and to remix the soil or sediment sample to guarantee homogeneity. 

This was done to increase the surface contact between the extraction solvent and sample 

(Azwanida, 2015). 

 

3.7.1 Solid phase extraction (SPE) procedure  

The Oasis HLB cartridge (60 mg, 3 mL) were used as SPE sorbent. The SPE sorbent was 

conditioned with 3 mL of methanol to allow effective interaction with the analytes. 100 mL of 

water sample spiked with pesticide mixture to make a final concentration of 7 µg/L was loaded 

into the cartridge to allow the analytes to be trapped by the sorbent. The impurities were washed 
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with 3 mL of distilled water and the trapped analytes were eluted with 7.5 mL of methanol. 

The eluent was reduced to 1 mL under a nitrogen stream and then analysed using LC-PDA. 

 

Optimization of SPE 

The method reported by Peček, (2012) was used as a starting point and further optimised to 

improve the efficiency of all the analyte of interest. The SPE parameters that were optimized 

were conditioning solvent and sample loading volume. 

 

Conditioning solvent 

Conditioning solvent was optimised to activate the functional groups of the sorbent and thus 

ensure consistent interaction between the sorbent and the analyte. The investigated 

conditioning solvents were methanol, dichloromethane, and acetonitrile. 

 

Sample volume 

A sample loading volume was investigated because pre-concentration factors should be as high 

as possible, however, there was a high possibility of losing the analyte when it is no longer 

retained by the sorbent. This occurs when the sorbent is saturated, the non-adsorbed analytes 

is washed away leading to error in the results. This shows that the breakthrough volume has 

been reached (Donato  et al., 2015). The sample volumes investigated were 50 and 100 mL. 

 

3.7.2 Ultrasonic extraction (UE) procedure 

5 mL of water was added to 1 g of soil/sediment sample for hydration of the active site thus 

allowing the analyte to evenly dispense over the soil and interrelate with the active sites 

(Zambonin and Palmisano, 2000). The sample was then ultrasonicated in an ultrasonic bath for 

15 minutes to allow the pesticide penetration into soil matrixes. 25 mL of the solvent was then 

added and further ultrasonicated for 15 minutes. The mixture was centrifuged for 5 minutes, 

the supernatant liquid was rota-vapored to 1 mL and then diluted to 100 mL with distilled 

water. Thereafter, the analytes clean-up was done using SPE. 
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Optimization of UE 

 

The method published by Asensio-Ramos  et al (2009) was used as a starting point and further 

optimized (Asensio-Ramos  et al., 2009). The effect of parameters such as type of extraction 

solvent, solvent amount and the extraction time was examined. The recovery experiments were 

used to investigate the efficiency of the extraction procedure. 

 

The extraction solvent was investigated because the extraction efficiency is influenced by the 

solubility of the target analytes into a solvent used. To determine the effective extraction, 

methanol, acetonitrile, and mixture of methanol: dichloromethane (1:1 v/v) were investigated. 

 

Solvent volume is one of the parameters that need to be considered to ensure a good interaction 

of solvent and soil sample which results in effective extraction and hence higher recoveries of 

the analytes. The investigated volumes of a solvent were 15 mL, 25 mL, and 40 mL. 

 

The extraction time was investigated to determine the optimum sonication time which is long 

enough to extract analyte completely but not degrade it. The investigated extraction times were 

15 minutes, 30 minutes and 45 minutes. 

 

3.7.2 Soxhlet extraction (SE) procedure 

10 g soil sample was placed in a thimble which was then loaded into a chamber of Soxhlet 

extractor and placed into a flask containing 100 mL of methanol. Soxhlet was fitted with the 

condenser and refluxed at 85˚C for 24 hours. Thereafter, the extract was reduced to 1 mL using 

a roto-evaporator. It was then transferred into a 100 mL volumetric flask then top up with 

distilled water. SPE was then applied under optimum conditions for analytes clean up. 

 

Soxhlet extraction optimization 

Soxhlet extraction was adopted from Mutua et al, (2015) and further optimized. The optimised 

parameters were extraction solvent and sample wetting(Mutua  et al., 2015).  

 

Selection of extraction solvent 

Extraction solvent was investigated to determine the solvent which can penetrate into soil 

matrices and dissolve target analyte to increase extraction efficiency. The investigated solvents 
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were methanol, methanol: acetonitrile mixture (50:50 v/v), methanol: acetone mixture (80:20 

v/v) and the mixture of methanol: acetone (50:50 v/v).  

 

Effect of sample wetting  

The effect of sample wetting was investigated to determine if the addition of water can improve 

analyte transportation. Two experiments were done, in the first experiment the soil sample was 

extracted without water added. In the second experiment, 5 mL of the water sample was added 

before extraction. 

 

3.8 Method validation  

The optimized analytical method was validation based on linearity, precision, the limit of 

quantification (LOQ), the limit of detection (LOD), and recovery. 

Linearity was estimated through the coefficient determination (R2) of the analytical curves at 

concentration levels 0.2- 1.0 mg/L. The precision of the method was investigated with regards 

to repeatability and reproducibility and expressed as percentage relative standard deviation 

(%RSD). The precision of the extraction method was determined by repeating (n=3) extraction 

and the analysis of the same standard/extract. LOD and LOQ, which is defined as the lowest 

concentration of the analyte that can be detected or quantified with accuracy and precision were 

calculated using a signal to noise ratio (S/N) ratio of 3 and 10, respectively. Recovery 

investigation was done using distilled water or soil samples spiked with a known concentration 

of triazines. 

 

3.9 Application to real samples 

The methods were then applied to river water, wastewater, sludge, soil and sediment samples 

after optimization and validation. 
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Chapter 4- Results and discussion 

 

Introduction 

This chapter reports on the results and discussion of the HPLC-DAD technique, SPE, UE, and 

SE methods optimization, validation as well as their application to river water, wastewater, 

soil, sediment, and sludge samples.   

 

4.1 Optimization of LC-PDA instrument 

The analysis was performed using an HPLC-DAD instrument. The HPLC-DAD method was 

adopted from Caldas et al., (2010) and further optimized. Instrumental parameters such as the 

mobile phase composition, detector wavelength and flow rate were optimized in order to 

improve the instrument's limit of detection and quantification. The isocratic mode was first 

applied, where the flow rate of 0.3 mL/min, mobile phase composition (acetonitrile: water, 

42:58%) and a detector wavelength 220 nm were used. Under these conditions, ametryn and 

propazine peaks did not completely separate and the analysis time was too long (47 minutes). 

Therefore, the gradient mode was applied and the mobile phase was programmed as 0 - 15 

minutes (acetonitrile: water, 60:40%), 15 - 45 minutes (acetonitrile: water, 40:60%). The flow 

rate and detector wavelength were kept constant. These conditions resulted in the reduction of 

the analysis time to 26 minutes, however, the peaks of ametryn and propazine were co-eluting. 

The LC program was then changed to 0 - 12 minutes (acetonitrile: water, 40:60%), 12 - 16 

minutes (acetonitrile: water, 50:50%) and 17 - 30 minutes (acetonitrile: water, 30:70%). The 

flow rate and detector wavelength were changed to 0.6 ml/min and 223 nm, respectively. These 

conditions separated all the peaks with the analysis time of 24 minutes. However, the first peak 

(simazine) eluted at 10 minutes which is a longer retention time for the first peak to elute, also 

the gap between simazine and atrazine retention times was longer ≈ 6 minutes. The conditions 

were changed to improve their separation, 0 - 10 minutes (acetonitrile: water, 45:55%) and 10 

- 25 minutes (acetonitrile: water, 30:70%). The flow rate of 0.6 mL/min and 223 nm detector 

wavelengths were used. This resulted in better peak separation at a reasonable retention time 

of 25 minutes and was thus taken as the optimum instrumental conditions. The obtained 

chromatogram is shown in Figure A4.1.  
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4.2 Optimization of SPE method 

4.2.1 The effect of conditioning solvent on the recoveries of the analytes 

The conditioning step is where the selected solvent is passed through the SPE cartridge in order 

to wet the sorbent bed. This results in the activation of the sorbent's functional groups and thus 

increase the surface area available for the analytes to bind. Conditioning is a very essential step 

for the SPE method as it has an effect on the interaction of analytes with the SPE sorbent and 

hence affects the amount of analytes recovered. Therefore, the effect of the conditioning 

solvent was investigated using dichloromethane, acetonitrile, and methanol. 100 mL was used 

as the sample volume. The recoveries above 80% were achieved for all compounds with all the 

solvents investigated (Figure 4.1). Highest recoveries (107-111%) were obtained when 

methanol was used which indicated that it was more effective in activating the functional 

groups of the sorbent than dichloromethane and acetonitrile. This could be due to higher 

polarity and less viscosity of methanol compared to both other solvents. These properties 

resulted in it being more effective in penetrating through the sorbent to open up the pores which 

resulted in effective interaction with the analytes and thus increased the amount of analytes 

recovered (Masque  et al., 1998). Therefore, methanol was then selected as the optimum 

conditioning solvent. 

 

 

Figure 4.1:  Effect of conditioning solvent on triazines recoveries. 
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4.2.2 The effect of sample loading volume on the analytes recoveries 

During the sample loading, a liquid sample containing analyte is passed through the cartridge 

in order for the analyte to be trapped into the sorbent bed. Sample loading volume was therefore 

optimised to determine the breakthrough volume because when the breakthrough is reached 

the SPE sorbent can no longer retain the analytes. As a result, the analyte could be removed in 

the sorbent before the eluting step due to sample overloading (Dujaković  et al., 2010). The 

sample loading volumes of 50 mL and 100 mL distilled water spiked at 7 µ were used in order 

to examine its effect on the recoveries of the analytes. Higher recoveries (107 – 111%) were 

obtained. The lower recoveries obtained when 50 mL sample volume was percolated through 

the sorbent could indicate that there was an insufficient amount of triazines available for 

interaction with the sorbent hence lower amount was recovered. The results are shown in Figure 

4.2. Therefore, 100 mL sample volume was taken as a sufficient sample volume. 

 

Figure 4. 2: Effect of sample loading volume on triazines recoveries. 

 

4.3 Validation of the analytical method 

To validate the optimized SPE/HPLC-DAD analytical method, linearity, LOD, LOQ, precision 

and recoveries were evaluated to ensure accurate quantification. The calibration curves for all 

analytes showed a good level of linearity with correlation coefficients (R2) ranging from 0.9987 

- 0.9995. The typical calibration curves are shown in Figure A4.2. The LOD and LOQ obtained 

ranged from 0.67 - 1.2 µg/L and 2.0- 3.5 µg/L. The recoveries were between 107-111% with 

the RSDs values of less than 6% which indicated good precision of the optimized method 

(Donato  et al., 2015). The obtained results are shown in Table 4.1.  
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Table 4.1: The LOD, LOQ and recoveries, R2 and %RSD values (n = 3) attained for 

SPE/HPLC-PDA  

Compound LOD (µg/L) LOQ (µg/L) % Recoveries and (RSD) R2 

Simazine 0.77 2.3 109 ± 4 0.9993 

Atrazine 0.67 2.0 111 ± 4 0.9995 

Ametryn 1.2 3.5 107 ±4 0.9987 

Propazine 1.1 3.2 107 ± 5 0.9988 

Terbuthylazine 0.94 2.9 110 ± 5 0.9989 

 

3.7 Sample preparation 

Sample preparation is the most vital step in any analytical procedure. This step has an impact 

on accuracy and precision. The purpose of extraction is to remove analyte from the original 

matrix to an appropriate medium that can be easily introduced into the analytical instrument 

for analysis. Analytes are found at a very small concentration thus pre-concentration step is 

essential for the analyte quantification and detection. Also, the sample might have background 

components, therefore, the clean-up step is essential for the separation of the analyte of the 

interest. The extraction techniques used were solid phase extraction (SPE) for water and sludge 

samples, while ultrasonic (UE) and Soxhlet extractions (SE) were used for sediment and soil 

samples. SPE was also used as a clean-up step of extracts from SE and UE. All the extraction 

techniques were optimised before application to real samples in order to improve their 

extraction efficiencies. 

 

4.4 Application to liquid samples 

The optimised and validated SPE/HPLC-DAD method was then applied to wastewater and 

sludge samples collected from Darvill, Amanzimtoti, Umhlathuzana, Northern and Umbilo 

WWTPs and river water samples collected at Mbokodweni, Umhlathuzana, Umbilo and 

Umgeni River where the investigated WWTPs discharge their effluents as well as in five 

sampling points along Msunduzi River (Camps Drift, College Road, YMCA, Woodhouse, and 

Bishopstowe). 
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Physico-chemical properties 

The physicochemical properties for all samples were measured using Bante900P multi-

parameter water quality purchased from Bante instruments (Shanghai, China). The 

physicochemical properties of all samples were measured due to their effect on concentrations 

of triazines. Measured properties were conductivity, salinity, pH, dissolved oxygen, 

temperature and total dissolved solids.  

 

Physico-chemical properties of water samples  

The pH has an effect on the presence and concentration levels of triazines in water. A neutral 

pH does not have an effect on the triazines concentrations, however, the microbes do as their 

activity occurs at pH 7 which results in concentration reduction or absence of triazines, rather 

than that neutral pH has no effect. At an acidic media, the triazines protonate, and at a basic 

pH, the triazines hydrolyse which results in the reduction of triazines concentration or absence 

of triazines (LeBaron, 2011).  The measured pH for all samples ranged between 5.9 - 8.2 (Table 

4.2 – 4.4)  which is within the acceptable limit of 5.5 - 9.5 (Weinberg and Teodosiu, 2012). 

Instability of pH has an effect on aquatic organisms, at alkaline pH (9), the fish membrane is 

denatured while at an acidic pH (below 4.5) the fish eggs do no hatch. Also, at a low pH, the 

organic substance decomposes and the metals that may contain toxins are released from rocks 

and all over the river, hence pose health risks in aquatic organisms (Dallas and Day, 2004).  

The measured sample temperatures ranged between 10-24°C indicating that they were all 

within the acceptable limits as they are less than 35˚. High temperature has the ability to 

increase the degradation of triazines as a result triazine concentrations decreases (Nannou  et 

al., 2015). High levels of temperature in water also stimulate the sludge decomposition, 

saprophytic bacteria multiply, fungi and sludge gas formation and the ingestion of oxygen due 

to decomposition processes as a result affecting the aesthetic value of waterway, therefore 

decreases triazines concentrations (Nannou  et al., 2015). 

 

Total dissolved solids (TDS) measured ranged between 566 - 829 mg/L which was within the 

allowable limit (< 1000 mg/L) and conductivity was between 1140 - 1657 µS/cm which was 

below the limits of 1700 µS/cm (Pitts, 1993, Wanda  et al., 2016). High TDS and conductivity 

concentrations indicate high concentrations of pollutants (Nyoni, 2011). Water with high 

concentrations of TDS has been reported to cause mortality, coronary heart disease, cancer, 

arteriosclerotic heart disease, cardiovascular disease (Crittenden  et al., 2012).  
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The salinity in (psu) unit was measured to determine the amount of dissolved organic 

compounds and salt (Zhang  et al., 2012).  It was found to range between 0.3-1.6 psu and were 

within the acceptable limit (≤ 1 psu) except in the Mbokodweni River (1.5 psu) and 

Amanzimtoti sludge (1.6 psu) where they were slightly higher. The high concentration of 

salinity increases the sorption of triazines and decreases their water solubility. Thus, the 

concentrations of triazines are expected to decrease in water due to being highly absorbed in 

sediments (Mao and Ren, 2010, Shen and Lee, 2002).  

The measured dissolved oxygen (DO) ranged between 8 -19 mg/L which was found to be above 

the maximum limit of 8.14 mg/L as reported by South Africa water quality in most of the 

samples (Munyika  et al., 2014). In all the investigated WWTPs it was observed that DO in 

influent samples was higher than in the effluent samples which could be due to the courtesy of 

the aeration process (Madikizela and Chimuka, 2017). High DO indicate a high population of 

microorganisms available, thus triazines concentrations are expected to be low due to microbial 

degradation, however, this can be dominant at pH 7 which is where the microbes are active, 

(Benvenuto  et al., 2010). Low DO in water results into unsustainable aquatic life as well as 

the extreme algae growth caused by phosphorus and decomposition of submerged plants 

(Kramer, 1987). 
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 Table 4.2: Physical properties of wastewater samples collected during cold seasons in Pietermaritzburg and Durban 

Sampling Point  DO (mg/L) Temp (°C) Salinity (psu) TDS (ppm) pH Conductivity (µS) 

  Inf Eff Inf Eff Inf Eff Inf Eff Inf Eff Inf Eff 

Northern  10 18 18 19 0.4 0.3 450 276 8 7 899 568 

Amanzimtoti  18 18 11 12 0.8 0.5 829 566 7 8 1657 1140 

Umbilo  15 15 14 14 0.4 0.4 468 414 7 8 935 830 

Darvill  13 14 24 23 0.4 0.3 387 312 7 8 773 751 

Umhlathuzana 

 

M 17  

19 

12  

10 

0.4  

0.3 

456  

298 

7  

7 

915  

597 
S 15 15 0.3 262 7 528 

Eff – Effluent 

Inf – Influent 

M-Marianridge  

S-Shallcross



 

65 
 

Table 4.3: Physical properties of sludge samples collected during the cold season in Pietermaritzburg and Durban 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sampling Point DO 

 (mg/L) 

Temp  

(°C) 

Salinity 

(psu) 

TDS 

(ppm) 

pH Conductivity 

(µS) 

Northern  16 12 0.4 466 6 932 

Amanzimtoti  12 13 1.6 1551 7 3 

Darvill Activated sludge - 22 - - 7 758 

Darvill Digested Sludge - 31 - - 7 5 
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Table 4.4: Physical properties of river water samples collected during hot and cold seasons in Pietermaritzburg and Durban 

Sampling Areas Sampling Point pH Temp 

(°C) 

Salinity 

 (psu) 

TDS 

(ppm) 

Conductivity 

(µS) 

DO 

(mg/L) 

  Cold Hot Cold Hot Cold Hot Cold Hot Cold Hot Cold Hot 

 Camps Drift 8 7 18 12 0.2 0.1 191 124 188 248 15 17 

Pietermaritzburg College Road 8 8 19 145 0.1 0.1 82 118 194 235 16 17 

 YMCA 8 7 18 13 0.1 0.1 89 120 190 241 14 16 

 Woodhouse 8 8 15 19 0.1 0.1 76 110 201 220 14 12 

 Bishopstowe 8 8 18 20 0.2 0.2 160 200 351 404 14 8 

 

 

 

Mbokodweni 

 

8 

 

- 

 

11 

 

- 

 

1.5 

 

- 

 

1503 

 

- 

 

3 

 

- 

 

17 

 

- 

Durban Umhlathuzana 8 - 11 - 0.2 - 225 - 451 - 18 - 

 Umbilo 7 - 12 - 0.4 - 367 - 733 - 16 - 

 Umgeni 7 - 12 - 0.6 - 639 - 1276 - 18 - 

- = No sampling was done
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4.4.1 Application to wastewater samples 

Wastewater and sludge samples were collected in four WWTPs in Durban (Amanzimtoti, 

Umhlathuzana, Umbilo, and Northern) and Darvill WWTP in Pietermaritzburg during the 

winter season. The obtained results are given in Table 4.5. In most wastewater samples, 

simazine was found to be present and was quantified at higher concentrations than the other 

compounds. Simazine's highest concentration (28 µg/L) was found in Darvill WWTP effluent 

however, it was below the allowable limits (100 µg/L), (Edition, 2011). Simazine 

quantification could be due to its selective usage in the aquatic environment as it is used in the 

swimming pool to prevent the formation of algae (LeBaron, 2011). Higher concentrations of 

triazines obtained in Darvill WWTP could also be contributed by the agricultural activities that 

are taking place as the runoff from croplands results to higher concentrations of triazines in 

WWTPs (Ji et al., 2008). Also, the industries nearby Darvill that might be using triazines could 

contribute towards higher concentrations obtained. The second most detected compound was 

atrazine with the maximum concentration of 49 µg/L in Amanzimtoti effluent, which is above 

the allowable limit of 20 µg/L (London  et al., 2005). The high pollution in Amanzimtoti 

WWTP was also predicted by the higher amounts of TDS and conductivity measured in the 

sample as these parameters indicate the high concentrations of pollutants (Mahananda  et al., 

2010). WWTPs receive loads of domestic wastewater for treatment, therefore the presence of 

atrazine could be highly influenced by the products containing atrazine that are used in 

households such as sunscreen, ace itch bleach detergent powder, abhushane (Crittenden  et al., 

2012), jewelry, absorbine refresh mint natural body wash and leg brace AFM safe choice 

supper clean (Loraine and Pettigrove, 2006, Weinberg and Teodosiu, 2012). In all the samples 

analysed propazine was not detected. This could have been triggered by its selective usage. It 

was only registered for use in sorghum, however, it is also applied in other crops but not that 

much as those crops have their own standard pesticides used. For instance, propazine can be 

used in carrot, however, the specific herbicide which works well in carrot is terbuthylazine 

(LeBaron, 2011) and there are no/fewer farms that plant sorghum in KwaZulu-Natal, as a result, 

low concentration of propazine is expected.  

 

Amanzimtoti WWTP was found to be the most polluted plant. It high pollution could be caused 

by the high yield of raw water received from the Nungwane dam which is 9.04 MI/day which 

is way greater than expected from each water resource (Umngeniwater, 2016). The 

concentration obtained in this work for simazine (28 µg/L) in Darvill WWTP and atrazine (49 
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µg/L) in Amanzimtoti WWTP are higher than those reported by Odendaal et al., (2015) from 

the same treatment plants. The previously reported concentrations for simazine and atrazine 

ranged between 0.01 – 0.04 µg/L and  0.03 – 0.045 µg/L, respectively (Odendaal  et al., 2015).  

 

High concentrations are expected from the influent as it is receiving from different resources 

that may contain massive loads of these compounds. However, in this study high concentrations 

were obtained in the effluent than in the influent which was not expected. Therefore, the 

industrial and urban areas can end up receiving substantial loads of these compounds as they 

use the effluent from WWTPs (Petrović  et al., 2003). The reason for the high concentration 

attained in effluent could be due to atmosphere deposition (Köck-Schulmeyer  et al., 2013). 

However, some compounds were detected in the influent and not detected in the effluent. 

Lower concentrations in the effluent could be due to their retention in solid sludge as triazines 

have high Log Kow, which results in their high adsorption capacity to solid sludge. Hence they 

are removed during the treatment process when the sludge is removed (Goodwin  et al., 2017). 

Higher concentration in the effluent (0.075-19.9 µg/L) than in the influent (0.00174 – 0.24 

µg/L) has been reported by (Köck-Schulmeyer  et al., 2013) which they associated sample 

preservation, sampling, atmosphere deposition and method biases (Köck-Schulmeyer  et al., 

2013). This indicated that herbicides are poorly removed in wastewater treatment plants 

compared to other compounds such as pharmaceuticals which are removed at a high rate 

(Kermia  et al., 2016, Stamatis  et al., 2010). It has been reported that the agricultural areas and 

WWTPs affect the natural aquatic environment as pesticides that escape from croplands or 

discharged by wastewater treatment plants enter the aquatic environment. Hence, it was 

significant to also analyse river water where the treatment plants discharge their effluent 

(Petrović  et al., 2003).  

 

The maximum concentrations of triazines that have been previously reported in WWTPs were 

0.24 µg/L in the influent and 19.9 µg/L in the effluent in South Africa at Johannesburg (Köck-

Schulmeyer et al., 2013). 0.026 µg/L in the effluent was reported in Germany (Münze et al., 

2017), 0.020 µg/L in the effluent was reported in Italy, 0.210 µg/L and 0.29 µg/L in the effluent 

and influent, respectively were obtained in Spain (Benvenuto et al., 2010). The maximum 

concentrations of triazines quantified in South African WWTPs are higher than triazines 

concentrations quantified worldwide. However, they were below the MRLs except for atrazine 

in Amanzimtoti WWTP obtained in this work. The results reported indicate that triazines resist 

biodegradation during the water treatment process, hence they are discharged into the 



 

69 
 

environment with the effluent. These findings also imply that triazines need to be continuously 

monitored in the environment.  

 

The removal rates of triazines were calculated using the following formula: 

R = 
𝐶𝑖−𝐶𝑒

𝐶𝑖
100………… (1) 

Where R is the removal of the rate (%), Ci is influent concentration and Ce is an effluent 

concentration in mg/L (Campo  et al., 2013). Elimination refers to the change of a load of 

triazines in the inlet (influent) compared to a load of triazines in the outlet (effluent). The 

negative elimination efficiencies result if a load of triazines obtained in the inlet is low 

compared to the load obtained in the outlet (Kovalova  et al., 2012). In this case, most of the 

triazines were detected at high concentrations in the effluent and therefore the negative 

elimination efficiencies were obtained. The highest negative values of removal rate (%) were 

obtained in Amanzimtoti WWTP where they were found at this range from -106 to -1920. 

Simazine was found to have negative elimination in all WWTPs and that could be due to that 

simazine does not readily absorb in organic matter and hence has higher chances to remain in 

water (Heri  et al., 2008). Many compounds resulted in negative elimination efficiencies which 

indicated that the WWTPs are underperforming on removing these triazines, as a result of their 

ability to resist degradation. However, some removal of triazines occurred for terbuthylazine 

(65%) and ametryn (100%) in Amanzimtoti and Umhlathuzana, respectively. This indicated 

that some terbuthylazine and ametryn residues received in the influent were eliminated during 

the treatment process. The undefined results were obtained in cases where the compounds were 

quantified in effluent and not detected or quantified in influent. This occurred in Umbilo and 

Northern WWTPs, where simazine was detected in the effluent and not in the influent.     
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Table 4. 5: Concentration of triazines obtained in wastewater (µg/L) collected during the 

cold season (n = 3) 

 Simazine Atrazine Ametryn Propazine Terbuthylazine 

Sampling sites Inf Eff Inf Eff Inf Eff Inf Eff Inf Eff 

Darvill 9.7±10 28 ±4 7.8±1 9.0±0.6 nd nd nd nd nd nd 

Amanzimtoti 8.2±1 17±0.3 2.5±1 49±1 6.2±6 17±2 nd nd 8.0±2 2.9±0.1 

Umbilo nq 12.3±2 nq nd nd nd nq nd nd nd 

Northern nd 5.0±1 nd nd nd nd nq nd nd nd 

Umhlathuzana 

Marianridge 

nq  

25±2 

nd  

13±2 

nd  

nd 

nd  

nd 

nd  

nd 

Umhlathuzana 

Shall cross 

17±3 nd 11±4 nd nd 

Inf – influent, eff - effluent 

 

4.4.1 Application to liquid sludge samples 

The liquid sludge samples were collected at Darvill, Amanzimtoti and Northern WWTPs. The 

results are shown in Table 4.6. Simazine was present in all investigated WWTPs with the 

highest concentration at Darvill (2820 µg/L) which was above the MRL value (200 µg/L).  

Simazine and atrazine presence could be due agricultural activities around Darvill WWTP 

which results in a firm loads contributed from runoff and hence they could end up swiped into 

WWTPs (Heri  et al., 2008). Simazine and atrazine presence in refractory to activated sludge 

has been previously reported (Monteith  et al., 1995). It has also been reported that the triazines 

absorption into solid sludge during sewer purification is less than 40% hence, not all the 

triazines residues are expected to be removed with the solid sludge and hence they were 

detected in liquid sludge (Monteith  et al., 1995).  

Darvill WWTP was found to be the most polluted WWTP as all the compounds were detected, 

however, propazine and terbuthylazine were below the quantification level. This could be due 

to that they are not used as much as the other triazines as a result of their selective use (LeBaron, 

2011). The concentrations for all quantified compounds in Darvill WWTP were above MRLs 

range which is between 66 - 200 µg/L. Since the sludge is removed at an earlier stage during 

wastewater treatment that could results in eliminating some triazines with it, which could be 

the reason for high concentrations detected in sludge samples (Benvenuto  et al., 2010). 
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Table 4.6: The concentration (µg/L) of triazine detected in activated sludge sample, n=3 

 

4.4.3 Application to river water samples 

In sampling points along the Msunduzi River (Pietermaritzburg), Bishopstowe was found to be 

the only contaminated point with simazine (27 µg/L) and atrazine (65 µg/L), Table 4.7. This 

could be due to that Bishopstowe sampling point is after Darvill WWTP and the dumping site 

(New England Landfill site) which could play a role in increasing the pesticide concentration 

levels in the river via effluent discharge and runoff. Also, the agricultural areas around 

Bishopstowe could contribute to pesticides contamination via crop and surface runoff. In 

Durban, Rivers simazine was detected in all sampling sites, while atrazine was detected only 

in Umgeni and Mbokodweni (Table 4.7). More compounds were detected in the Mbokodweni 

River followed by the Umgeni River which could be due to illegal dumping of waste which 

could contain triazines near or in these rivers. Also, there many industrials and residential sites 

around the Mbokodweni River which could contribute these compounds. The results obtained 

agree with those previously reported by Rimayi et al., (2018) in Johannesburg, where a higher 

concentration of atrazine was obtained in Jukskei River (923 µg/L), Kylami (0.210 µg/L) and 

N14 (0.923 µg/L). However, the concentrations obtained in this work are higher than the 

concentration obtained in Johannesburg. The triazines concentrations detected in the effluent 

were higher than those obtained in the rivers, where the WWTPs discharged their effluent into 

which could be due to dilution.  

 

4.4.3.1 Seasonal effect on the detected concentrations of triazines 

The seasonal effect on the levels of triazines concentrations was investigated in the samples 

collected along the Msunduzi River during the hot and cold seasons. High concentrations were 

detected in a cold season than in a hot season and this trend has been previously reported by 

Compounds Darvill WWTP Sampling sites 

Amanzimtoti WWTP 

 

Northern WWTP 

Simazine  2820 ± 7 8.4 ± 4 nq 

Atrazine 1380 ± 4 nd nq 

Ametryn 1070 ± 5 nq nd 

Propazine nq nd nd 

Terbuthylazine nq nd nd 
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(Stamatis  et al., 2010). Only simazine and atrazine were quantified in Bishopstowe during the 

cold season. High concentrations of triazines in a cold season could be due to the cold weather 

ability to decrease triazines degradation (Nannou  et al., 2015). Also, the water level is low 

during the cold season that could also increase the triazines concentrations due to pre-

concentration (Du Preez  et al., 2005). The increase in triazines concentrations in Bishopstowe 

could also be explained by the measured high conductivity and total dissolved solids which is 

one of the signals of pollution (Gakuba  et al., 2018, Mahananda  et al., 2010). Simazine was 

detected in all sampling points during the hot season while atrazine was detected in College 

Road and Bishopstowe, however, their concentration levels were below the quantification 

limits. Propazine, terbuthylazine, and ametryn were not detected in all sampling points. The 

reason for low concentrations could be due to rain dilutions (Masiá  et al., 2013, Du Preez  et 

al., 2005).  

The other reasons for low quantification could be due to triazines transformation which results 

in a decrease in concentration. Triazine compounds undergo degradation processes such as 

biodegradation, oxidation, hydrolysis, and photolysis, resulting to a dealkylation of the amino 

groups, dechlorination and consequent hydroxylation (Thurman  et al., 1994). The dominant 

triazines transformation is via the abiotic and biotic mechanisms. The transformation products 

in surface and groundwater through biotic mechanisms are the dealkylated chloro metabolites, 

for example, desethyl-terbuthylazine, deisopropyl-atrazine, desethyl-atrazine, and 

desethylterbumeton. The major abiotic degradation product in water and soil are hydroxy-

simazine, hydroxy-atrazine and hydroxy-terbuthylazine (Benvenuto  et al., 2010, Gasser  et al., 

2007). The recorded pH for all samples was approximately 7 indicating a neutral pH. At neutral 

pH the microbes are active, therefore there are higher chances for microbial degradation to 

occur, which could result in the reduction or absence of triazines (Oh  et al., 2016, LeBaron, 

2011).  
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Table 4. 7: Triazines concentrations (n = 3) obtained in river water from Pietermaritzburg 

during cold and hot seasons. 

 

Triazines 

Concentration (µg/L) 

Camps Drift College Road YMCA Woodhouse Bishopstowe 

Cold Hot Cold Hot Cold Hot Cold Hot Cold Hot 

Simazine Nd nq nd nq nd nq nq nq 27 ± 1 nq 

Atrazine  Nd nd nd nq nd nd nq nd 65 ±5 nq 

Ametryn Nd nd nd nd nd nd nd nd Nd nd 

Propazine  Nd nd nd nd nd nd nd nd Nd nd 

Terbuthylazine Nd nd nd nd nd nd nd nd nd nd 

 

Higher concentrations were obtained in Durban Rivers (Table 4.8) than in Pietermaritzburg 

Rivers (Table 4.7). In Durban Rivers, simazine was quantified in all sampling points and it was 

followed by atrazine. The possible reason for high concentration obtained could be due to many 

industries situated near the rivers, more activities taking places such as commercial, 

modification of river course, the large scale of urbanization and quarrying operations. Hence, 

they could contribute the pollutants into the rivers. 

 

The maximum concentration of triazines (65 µg/L) obtained in river water in this work is lower 

than the concentrations obtained in Johannesburg (923 µg/L) by (Rimayi  et al., 2018). 

However, it is higher than the levels reported in Nigeria (0.43 µg/L) by (Ogbeide  et al., 2015) 

and in Kenya (0.14 µg/L) by (Muendo  et al., 2012). In Europe, the reported concentration is 

0.008 µg/L (Radovic  et al., 2015), while in Italy it is 0.10 µg/L (Benvenuto  et al., 2010) which 

are lower than the results obtained in African countries. The obtained results indicated that 

African countries are more polluted than in overseas countries. This could be triggered by that 

Africa is a developing country and it has a high population, therefore larger amounts of triazines 

are applied in croplands in order to obtain high yield and to protect crops from pests.   
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Table 4.8: Triazines concentrations obtained in river water from Durban during the cold 

season (n = 3)  

Sampling Sites Concentration(µg/L) 

Simazine Atrazine Ametryn Propazine Terbuthylazine 

Mbokodweni  3.0 ± 0.09 5.9 ± 1 nq nd nd 

Umhlathuzana 9.4 ± 2 nd nd nd nd 

Umbilo  3.2 ± 1 nd nd nd nd 

Umgeni  18 ± 2 5.2 ± 1 nd nd nd 

 

4.5 Optimization of ultrasonic extraction 

4.5.1 The effect of extraction solvent on the recoveries of the analytes 

The solubility of the target analytes in the solvent used for the extraction process is known to 

influence the recoveries of the analytes from the solid samples, also the analyte and solvent 

polarities play a role in the recoveries (Annegowda  et al., 2012). Therefore, it is important to 

investigate the type of solvent that could allow high recoveries of the analytes. The extraction 

solvents that were examined for their effect in the recoveries of the analytes were methanol, 

acetonitrile, and mixture of dichloromethane: methanol (1:1 v/v). Based on the results obtained, 

the mixture of dichloromethane: methanol showed to be more effective and gave recoveries 

ranging from 62-71% (Figure 4.3). These higher recoveries could be due to the mixture of 

solvents polarities as methanol is more polar and dichloromethane is least polar, hence their 

different polarities were able to accommodate the various polarities of the analytes. This 

allowed the efficient extraction for both more and less polar analytes. The mixture was 

therefore taken as the ideal extraction solvent. 
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Figure 4.3: Effect of extraction solvent on the recoveries of triazines 

 

4.5.2 The effect of extraction solvent volume on the recoveries of the analytes 

The aim of the extraction method’s optimization is to obtain the high extraction efficiency for 

the analytes with the small amount of solvent and at a minimum period of extraction time. 

Therefore, the effect of dichloromethane: methanol (1:1 v/v) solvent volume was studied using 

15 mL, 25 mL, and 40 mL, the other parameters were kept constant. From the results obtained 

15 mL solvent volume gave lower analytes recoveries which could be due to poor mass transfer 

of the analytes from the sample to the solvent as a result of a small quantity of the solvent (Silva  

et al., 2005). The increase in solvent volume has been reported to increase the analytes mass 

transfer from the soil sample to the solvent, however, the contact between the soil sample and 

the solvent need to be considered. The increase in solvent volume from 15 mL to 25 mL 

resulted in an increase in the recoveries of the analytes. However, the recoveries decreased with 

a further increase to 40 mL solvent volume which could be due to poor interaction between the 

soil sample and the extraction solvent. The soil sample settled at the bottom of the flask while 

the solvent impartially floats which caused the ineffective interaction between the soil and the 

solvent. This resulted in the poor transfer of the analytes from the sample to the solvent and 

hence low analytes amount was recovered. This effect could be the reason why multiple 

extractions in each sample using smaller portions of solvent are performed to allow good 

interaction between the solvent and the soil (Kim  et al., 2008a). To confirm this statement, 40 

mL solvent volume was halved into two portions (20 mL×2) and the same procedure was used 

to carry out the extractions for both portions. Recoveries between 48 - 71% were obtained 
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which were higher than those achieved by 1 x 40 mL of solvent volume (45 – 51%). However, 

they were not higher than the recoveries obtained by 25 mL (Figure 4.4). This observation is 

in agreement with the previously reported study where the increase in extraction solvent 

volume increased the recoveries of the analytes but further increase in solvent volume resulted 

in decreased recoveries (Babić  et al., 1998). Therefore, 25 mL was taken as the best solvent 

volume. 

 

 

Figure 4. 4: Effect of solvent volume on the recoveries of triazines 

 

4.5.3 The effect of extraction time on the recoveries of the analytes 

The extraction time has an influence on the amount of analyte extracted, however, when 

extraction time is too long it can result in the degradation of the analytes. 15 minutes, 30 

minutes and 40 minutes were therefore employed to investigate the effect of extraction time on 

the analytes recoveries. The results showed an increase in the recoveries with an increase in 

extraction time from 15 - 30 minutes and then decreased at 40 minutes (Figure 4.5). The lower 

recoveries obtained at 15 minutes could be due to that it was not long enough to permit effective 

interaction between the soil and the solvent and a hence lower amount of the analytes was 

transferred to the solvent. The higher recoveries obtained at 30 minutes could be due to the 

extraction time was long enough to allow the solvent to penetrate into soil matrices and 

breakdown the soil aggregates and thus removed the analytes into the solvent. The lower 

recoveries at 40 minutes could be due to degradation of the analytes as a result of prolonged 
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extraction time (Naczk and Shahidi, 2006). A similar trend was observed in the previous study 

where longer extraction time resulted in degradation of the analytes and hence lower recoveries 

(Babić  et al., 1998). At 30 minutes extraction time, all analytes were attained at high recoveries 

ranging between 75 - 100%, and it was therefore chosen as the optimum extraction time. 

  

 

Figure 4.5: Effect of extraction time on the recoveries of triazines 

 

4.6 Optimization of Soxhlet extraction 

4.6.1 The effect of extraction solvent on the recoveries of the analytes 

The extraction solvent was investigated in order to obtain the appropriate solvent that will 

effectively leach into the soil matrix and adequately remove the analytes of interest and thus 

increase the analytes recoveries. The solvents that were explored are methanol, acetonitrile: 

methanol (1:1 v/v), methanol: acetone (1:1 v/v) and methanol: acetone (4:1 v/v). Methanol 

alone gave recoveries between 71 - 87%. Lower recoveries were obtained with a mixture of 

acetone: methanol (20:80 v/v) and acetonitrile: methanol (50:50 v/v) extraction solvents 

(Figure 4.6). The lower recoveries obtained with the mixture of acetone: methanol (20:80 v/v) 

could be due to lower vapor pressure which results from the mixture of two organic solvent. 

Soxhlet extraction principle considers the vapor pressure and boiling point of the solvent for 

effective extraction and low vapor pressure increases chances to obtain low recovery of the 

analyte. In the case of mixture acetonitrile: methanol (50:50 v/v) low recoveries could be due 

to slightly low polarity and high viscosity of acetonitrile compared to methanol, this could be 

the reason for low removal of triazines from the soil matrix. This is due to that triazines strongly 
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bind to soil due to their high octanol-water partitioning coefficient (Kotowska  et al., 2012), 

therefore, the viscous solvent could result in low analyte transportation and hence lower 

recoveries (Elbashir and Aboul‐Enein, 2015). Methanol was then used as the optimum 

extraction solvent.  

 

 

Figure 4.6: Effect of extraction solvent on the recoveries of triazines 

 

4.6.2 The effect of sample wetting on the recovery of the analytes 

The wetting step was done in order to hydrate the active site of the soil thus allowing the analyte 

to evenly dispense over the soil and interrelate with the active sites (Zambonin and Palmisano, 

2000). The effect was examined by adding 5 mL of distilled water before transferring the soil 

sample into the thimble. The sample with added water gave lower recoveries of the analytes 

which could be due to higher polarity of water that was used for wetting compared to methanol 

solvent that was used for extraction, (Figure 4.7). This indicated that triazines preferred to 

remain in water than being transferred to methanol. The hydrophobic and hydrophilic 

characteristics of the triazine compounds are indicated by water solubility. The position 2, 4 

and 6 of the substituents are accountable for the solubility of the triazines but generally, the 

triazines are soluble in neutral water. In the sample with water added, the formation of 

hydrogen bonds by water molecules and the nitrogen atom lone pair occurred, resulting into 

the hydrophilic triazine ring and hydrophobic nucleophilic alkylamino side chain in position 4 

and 6. This resulted in the strong binding of triazines to the soil and hence the water molecules 
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outcompete the methanol as water is more polar than methanol and the investigated triazines 

are also polar (LeBaron, 2011). 

 

 

Figure 4. 7: Effect of sample wetting on the recoveries of triazines 

 

4.7 Methods validation 

The intra-day precision was achieved by performing three replicate analyses on the same day. 

The inter-day precision was achieved by performing three replicate the analysis in three 

different days. Standard deviation (% RSD) ranging between 0.1 to 5 and 2 to 7 for intra and 

inter-day, respectively were obtained for UE and 2-7 for SE which are in the desirable range 

as they are less than 20% (Radovic  et al., 2015). The obtained recoveries of the methods were 

between 71 - 87% and 75- 100%, for SE and UE method, respectively. The recoveries obtained 

for SE and UE are comparable and only simazine and terbuthylazine were high in UE. This 

could indicate that the mixture of dichloromethane and methanol was more effective in 

extracting these compounds than methanol alone that was used in SE. The LOD and LOQ 

ranged between 1.0 - 2.0 µg/kg and 3.2 - 6.1 µg/kg, 0.092- 0.22 µg/kg and 0.280- 0.69 µg/kg, 

for UE and SE, respectively. The LOD and LOQ obtained indicated that the developed methods 

are sensitive and hence will be able to detect the target analytes at lower concentration levels 

real samples. In comparison, the LOD and LOQ obtained for SE are lower compared to those 

of UE, indicating that SE is more sensitive than UE. The results are summarised in Table 4.9
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Table 4. 9: The LOD, LOQ, recovery and RSD% value (n=3) obtained from soil samples  

 

Compounds  

Ultrasonic extraction Soxhlet extraction  

R2 

 

MRLs 

LOD LOQ %Recovery  %RSD 

 Intra-day  

%RSD 

Inter-day  

LOD LOQ %Recovery %RSD  

Intra-day 

Simazine 1.8 3.7 100 5 0.1 0.12 0.37 80 6 0.9993 200 

Atrazine 1.0 3.2 81 4 0.1 0.092 0.28 87 4 0.9995 66 

Ametryn 2.0 6.1 75 1 0.3 0.20 0.63 74 7 0.9987 200 

Propazine 1.8 5.6 75 0.1 0.7 0.22 0.69 71 2 0.9978 200 

Terbuthylazine 1.1 3.5 91 3 1 0.18 0.55 73 4 0.9989 7 
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4.8 Application of the optimized UE method to soil samples 

The optimized UE method was applied for the extraction of triazines in soil samples from 

agricultural lands (Umgeni Valley, Gilboa Farm, Curry Post, and Donny Brook) as well as 

along the Msunduzi River (Camps Drift, College Road, Woodhouse, and Bishopstowe). 

 

Physical properties soil and sediment samples  

The measured Physico-chemical properties of soil and sediments are presented in Table (4.10 

and 4.11). The pH of the soil samples from Curry Post, Donnybrook and Umgeni Valley and 

sediment sample from Mbokodweni were found to be at acidic media with pH less than 6. 

Hence, triazine concentration levels were expected to be low due to protonation. Whereas in 

other soil and sediment samples pH was neutral, therefore, concentrations were expected to be 

found at their original levels unless if microbial degradation occur. The temperature measured 

in all the samples was between 19 - 23˚C   and they were within the acceptable range between 

10 ˚C and 35.6˚C (Florides and Kalogirou, 2005). A temperature range of -28 ˚C to 10 ˚C has 

been reported to have an influence in the respiration of microbial. It increases decomposition 

and extracellular enzyme activity that enhance breakdown organic matter and increases 

mineralization of nitrogen and rate of microbial respiration in soil, as a result, the concentration 

of triazines decreases (Onwaka, 2016). High-temperature soil improves plant roots growth due 

to an increase of plants metabolite activities, whereas at the low temperature they behave 

otherwise. Hence at low soil temperature triazines concentrations increase due to low 

metabolite activities that can play a role in reducing their concentrations (Onwaka, 2016). 

 

The concentration of salt and other inorganic compounds which are expressed as salinity was 

practically measured and found to be between 0.01-0.45 psu which indicated that there was 

less dissolve salt in all of the investigated samples. Salinity results in flocculation which is a 

positive effect in terms of stability, root growth, and soil aeration. However, at high 

concentrations (8-15 psu), it can have a lethal effect (Warrence  et al., 2002).  

The TDS measured was found at a range of 24-476 mg/L, which were below the highest range 

of 750-1500 mg/L. TDS concentration is used to indicate the broad arrays of pollutants in water 

as they are transported into the rivers through run off to where they result in the death of 

microorganisms (DeZuane, 1997). This can result in the presence of high concentrations of 

triazines in sediment samples due to limited microbial degradation (Donati and Funari, 1993).  
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The conductivity of the soil was found at a range of 46-581 µS, which was within the acceptable 

limits of 14-1288 µS (Visconti and de Paz, 2016). The high concentration of conductivity above 

the limits has been reported to have an effect on soil texture, the productivity of crops and 

organic matter levels. Thus decreases the concentration of triazines in soil and sediment as it 

affects the organic matter (Jimoh and Mohammed, 2014).  

DO in the soil is crucial for plant and animal health as the depletion of dissolved oxygen in soil 

results in micro-organism suffocation (Morgan, 2000). The measured DO was found at a range 

of 3 - 10 mg/L. In Donny Brook, Woodhouse, Umgeni Valley, and Curry Post, the DO was 

found to be below the acceptable range which is 8 - 35 mg/L, (Scott and Evans, 1955).  

 

Organic matter refers to carbon-based compounds that are generated from organism remains 

such as animals, plants and their waste products. It is essential for nutrient (nitrogen, potassium, 

and phosphorus) movement in the environment and also plays an important role in retaining 

water in the surface of the earth  (Shahid and Hussain, 2019). The organic matter measured in 

the collected samples ranged between 6-37 and 1-5 for soil and sediment samples, respectively. 

The organic matter has an effect on the sorption capability of triazines in soil/sediment. 

Therefore, the soil/sediment samples with a higher amount of organic matter are expected to 

have a higher amount of triazines.
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Table 4. 10: The physical properties of the soil samples collected in the hot season  

Sampling Point  pH Temp 

(°C) 

Salinity 

(psu) 

TDS 

(ppm) 

Conductivity 

(µS) 

DO 

(mg/L) 

Organic content 

Camps Drift 8 23 0.14 145 291 9 6 

College Road 6 23 0.17 175 351 8 6 

Woodhouse 7 23 0.11 115 230 2 2 

Bishopstowe 7 23 0.11 114 229 8 7 

Donny Brook 5 22 0.02 23 52 4 12 

Gilboa Farm 8 18 0.10 26 401 10 37 

Umgeni Valley 4 21 0.01 25 45 4 11 

Curry Post 5 20 0.03 24 46 3 19 
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Table 4.11: Physical properties of river sediment samples collected during hot and cold seasons in Pietermaritzburg and Durban 

Sampling 

Point 

pH Temp  

 (°C) 

Salinity  

(psu) 

TDS  

(ppm) 

Conductivity 

(µS) 

DO 

 (mg/L) 

Organic content 

Cold Hot cold Hot cold Hot cold Hot Cold hot Cold hot  

Woodhouse 7 6 21 22 0.07 0.04 75 34 206 68 10 10 5 

Bishopstowe 7 7 21 23 0.5 0.04 476 39 1057 77 10 8 4 

Umgeni 7 - 21 - 0.1 - 105 - 222 - 10 - 5 

Mbokodweni 6 - 22 - 0.2 - 303 - 581 - 10 - 1 

-  Samples were not collected
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In most of the sampling points, simazine was detected with the highest concentration in Gilboa 

Farm (1017 µg/kg) which was above the maximum residue level (MRL) value of 200 µg/kg 

(Bol’shakov  et al., 2014). This high concentration could be due to the pre and post emergency 

application of simazine (LeBaron, 2011). These results were predicted by the low temperature 

measured in the Gilboa Farm sample which indicated that there was no or low photolysis that 

occurred resulting in no degradation of triazines and hence high concentrations were observed. 

High pollution was also indicated by the high conductivity (401 µS) measured which was 

higher than in other sampling points. However, the conductivity was within the acceptable limit 

of 700 µS, (Mahananda  et al., 2010). The other reason for high concentration could be the 

high organic matter which was measured in Gilboa Farm soil sample as it has been reported 

that triazines retain in the soil with high organic matter (Shahid and Hussain, 2019). Also, the 

sampling was done in a hot season (spring) which is when these compounds are often applied. 

The obtained results for the analyzed samples are given in Table 4.12.  

 

In a study conducted to examine the absorptivity of atrazine and simazine in soil, it was 

observed that a high amount of triazines were adsorbed in the soil with organic matter than that 

without organic matter (Amadori  et al., 2013, Dunigan and McIntosh, 1971). In sampling 

points along the Msunduzi River, Bishopstowe and by Woodhouse had higher concentrations 

of triazines that were detected. In Bishopstowe, higher concentrations may be possibly due to 

contribution from agriculture lands and a dumping site (New England fill site) around the 

sampling point could contribute high concentrations in. In addition, simazine is applied in the 

vineyard during the hot season, which could be the reason for its high concentration quantified 

in soil. Atrazine and simazine quantification at a high concentration than the other analytes 

could also be due their often used during the hot season. Atrazine has been recognized as one 

of the best two herbicides that play a major role in the production of corn during the hot season 

in South Africa. This could, therefore, be the reason for the high concentration of atrazine 

detected in Woodhouse and Bishopstowe (Du Preez  et al., 2005).  

Ametryn, propazine, and terbuthylazine were not detected in all the samples analysed. The 

reason for triazines not to be detected in the hot season could be that in a hot season the UV 

light levels are higher and hence the soil temperature is high due to the long sunshine period. 

High-temperature soils results in the increase in pesticides breakdown and their persistence in 

the soil are reduced (Ehrig  et al., 1991). The other reason for ametryn not to be detected could 

be due to that its low absorption in soil (Lin  et al., 2018). Triazines undergo a different 

transformation in the soil which results in complex metabolites, hence their concentrations 
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decrease. The pH of the samples collected in Donny Brook, Umgeni Valley, and Curry Post 

were acidic (Table 4.10), therefore the reason for no triazines detected in these samples could 

be due to their protonation (Fuscaldo  et al., 1999). In addition, the soil surface site could also 

be the reason for not detected, as triazines tend to bind strongly into soil matrices if the 

functional groups of the compound match with a surface site of the soil. For instance, polar 

functional groups of the compound strongly bind if they are in match with the polar or ionic 

surface sites of the soil (LeBaron, 2011).  

The maximum concentration reported for terbuthylazine in Germany is 0.056 µg/kg (Modrá  et 

al., 2018), whereas in Spain the maximum concentration reported for terbuthylazine is 0.00948 

µg/kg (Masia  et al., 2015). In China, the maximum concentration obtained for atrazine was 

0.00230 µg/kg (Wang et a.,l 2011), while the other compounds were not detected. These 

reported concentrations are lower compared to those obtained in this current study which 

indicates the importance for continuous monitoring of these compounds in South Africa and to 

have the MRL values set specifically for SA. 
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Table 4.12: The concentrations of triazines detected in soil samples (n = 3) 

 

Sampling sites 

 

Sampling sites 

Detected concentration (µg/kg) 

Simazine Atrazine Ametryn Propazine Terbuthylazine 

 Donny Brook nd nd nd nd nd 

Agricultural areas (PMB) Umgeni Valley nd nd nd nd nd 

 Gilboa Farm 1017±7 nd nd nd nd 

 Curry Post nd nd nd nd nd 

 Camps Drift 17±6 nd nd nd nd 

Msunduzi River (PMB) College Road nd nd nd nd nd 

 Woodhouse 87±9 34±7 nd nd nd 

 Bishopstowe 245±5 19±4 nd nd nd 

nd – not detected
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4.9 Application of the optimized UE and SE methods to sediment samples 

The optimized UE and SE methods were applied for the extraction of triazines in sediment 

samples collected from Mbokodweni, Umgeni, Bishopstowe and Woodhouse Rivers. Samples 

were collected in winter and spring seasons referred to as cold and hot, respectively. 

 

During the cold season, the concentrations of triazines detected in sediment ranged between 

1.1 - 123 µg/kg, whereas in a hot season they were between 4.3 - 35 µg/kg (Table 4.13). The 

presence of triazines in sediments could be due to that triazines are likely to bind to organic 

matter since they have lower water affinity (high lipophilic and hydrophobic character) due to 

the stronger carbon to chlorine bond of the chlorinated pesticides (Kumar  et al., 2013).  

In this study, triazines exhibited higher concentrations in the cold season compared to those 

quantified in the hot season. Triazines concentrations in the environmental media have been 

reported to be dependent on desorption and absorption in sediment based on temperature 

changes. Low temperature and low rainfall in the cold season result to low water flow which 

could be the measure influence of the high concentrations in cold season as no photo-

degradation and dilution occurs (Cheng  et al., 2007). Also, the application of triazines is 

recommended during the hot period due to high temperatures, which increases the triazine 

breaking down reaction resulting in a low risk of accumulation. These could be the reasons for 

more compounds quantified during the hot season, as corn and vineyard which are normally 

treated with triazines are planted in the hot season (Ehrig  et al., 1991).  

 

Maximum concentrations of simazine were detected in Mbokodweni sediments during the cold 

season, while Woodhouse and Bishopstowe were found to be the most polluted sampling 

points. The reason for high concentrations could be due to illegal dumping near the rivers as 

the dumped garbage could contain triazines contaminants as they are used in different cases as 

the active ingredient. Triazines are used as coupling agents for the synthesis of the peptide in 

the solid phase, also in solution as the side chain of anti-biotic in Pharmaceutical industries. 

They are also used in WWTPs as disinfectants (Nyoni, 2011), and hence they are discharged 

with the effluent into the rivers. They are used as an industrial deodorant, disinfectant, and 

biocide and hence can find their way into the rivers (Weinberg and Teodosiu, 2012). Higher 

concentrations in the Umgeni River could also be added by discharges and runoff from the 

companies around the river as they could be using triazine herbicides or oil that is contaminated 

by triazines, as these triazines are used in oil fields for preservatives purpose (Nyoni, 2011).  
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In a study conducted by Modrá et al., (2018) in Germany, atrazine (7.3 µg/kg) and simazine 

(4.6 µg/kg) were detected while terbuthylazine was not detected during the cold season. In 

Nigeria and Europe, atrazine was found at a maximum concentration of 0.94 µg/kg (Ogbeide  

et al., 2015) and 0.74 µg/kg (Muendo  et al., 2012), respectively in a cold season. The presence 

of these compounds during the cold season was reported to be due to the absence of photolysis 

as a result of low temperatures which leads to low degradation of triazines (Modrá  et al., 2018). 

The results obtained in this work are higher than those reported in Nigeria (African country) 

and worldwide (Europe and Germany) for simazine, however, for atrazine they are comparable 

but lower compared to those obtained in Germany. This could be suggesting that simazine is 

widely used in SA. Ametryn was not detected in this study, however, it was quantified in a 

sediment sample in Australia at a concentration of 0.002 µg/kg (Lin  et al., 2018). 

 

In this study, the performance of SE and UE methods was compared using sediment samples. 

The trend of quantified concentrations, especially for simazine, terbuthylazine, and atrazine 

was similar for both methods. However, low concentration levels for more compounds were 

detected by SE and not detected by UE. This could be due to that SE has lower LOD and LOQ 

values which make it be more sensitive than UE. Also, high temperature is used in SE, which 

could result in more compounds being extracted compared to UE (McGlamery  et al., 1967).  
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Table 4.13: The concentration (µg/kg) of triazines detected in sediment samples (n = 3) 

 

 

Compounds  

Soxhlet Extraction Ultrasonic Extraction 

WH BS MK UG WH BS MK UG 

Cold Hot Cold Hot Cold Hot Cold Hot Cold Hot Cold Hot Cold Hot Cold Hot 

Simazine 39 ±1 24±5 47±8 30±7 116±0.8 - 65±2 - 31±8 35±5 44±11 37±4 123±9 - 94±1 - 

Atrazine nq 18±8 1.6±9 4.3±4 nd - 1.1 ± 1 - nd 25±5 nd 29±6 nd - nd - 

Ametryn 5.2±5 nd nd 7.2±6 nd - nd - nd nd nd nd nd - nd - 

Propazine  18±9 nd 28±7 4.3±3 nd - nd - nd nd nd nd nd - nd - 

Terbuthylazine nd nd nd nd nd - nd - nd nd nd nd nd - nd - 

nd – not detected; nq –not quantified 

WH- Woodhouse River, BS-Bishopstowe River 

MK- Mbokodweni River, UG- Umgeni River 

- = No sampling was done 
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A comparison of triazines concentration levels in different matrices was conducted and the 

obtained results agree with the expected trend. The highest concentration of simazine was 

obtained in soil followed by sediment matrices were expected because simazine has low water 

solubility. Therefore, it is likely to adsorb in soil/sediment than to be found in the water matrix 

(Bol’shakov  et al., 2014).  Also, the concentrations of atrazine were expected to be high in 

water followed by sediment matrices because it is highly water soluble (Benito  et al., 2019). 

The analytes ametryn, propazine, and terbuthylazine were not detected in all the investigated 

matrices and that could be explained by their limited application as they are selectively used. 

The observed trend is shown in Figure 4.7. 

 

 

Figure 4.8: Comparison of triazines concentrations in different sample matrices 
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Chapter 5-Conclusions and recommendations 

 

5.1 Conclusions 

The proposed SPE, UE, SE and LC-PDA methods were successfully developed and were found 

to be appropriate for the determination of pesticides in soil, sediment, water, and sludge 

samples. The LOD and LOQ obtained for the SPE method ranged between 0.67 - 1.2 and 2.0 - 

3.5 µg/L with the recoveries ranging from 107-111%. For UE, the LOD and LOQ ranged from 

1.0-2.0 µg/kg and 3.2 – 6.1 µg/kg with recoveries between 75 - 100%. For UE, LOD and LOQ 

were 0.092-0.22 µg/kg and 0.28 – 0.69 µg/kg with the recoveries between 71 – 87%. In 

comparison between UE and SE, the obtained recovery results were comparable. However, SE 

was considered as more efficient than UE due to more compounds quantified which could be 

due to its lower LOD and LOQ than UE.  

 

The concentrations quantified in the effluent (2.9 - 49 µg/L) were high than those found in the 

influent (2.5-17 µg/L) which indicates that high concentrations of triazines were discharged 

from WWTPs into the rivers. All the obtained concentrations were below the MRLs except 

atrazine in the Amanzimtoti wastewater effluent sample. However, the concentrations obtained 

in the corresponding river water were below concentration obtained in the effluent which could 

be due to dilutions in the rivers. The rate removal (%) results for most compounds were 

negative which indicated that the WWTPs are underperforming and hence almost all of the 

target compounds were discharged with the effluent. Therefore, it was concluded that the 

applied treatment technologies are not effective in removing triazines. The concentrations 

obtained in river water were between 3.0 - 65 µg/L and were all below the MRLs except 

atrazine and in Bishopstowe. The concentrations obtained in liquid sludge were between 8.4 -

2820 µg/kg and they were above the MRLs. Simazine was found to be present in most water 

sampling points and Amanzimtoti WWTP was found to be the most polluted WWTP as more 

analytes were detected. The obtained concentrations in WWTPs were below the MRLs except 

for atrazine in Amanzimtoti WWTPs effluents, which could be contributed by domestic, 

industrial and agricultural sources. 

 

Concentrations ranging between 1.1 – 123 µg/kg were obtained in sediment samples with the 

maximum concentration obtained for simazine in Mbokodweni River sediment. The analytes 

concentration levels obtained in sediments and river water were higher in samples collected in 
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cold season than those obtained in the hot season. This could be due to the no/low degradation 

process because of low temperatures as well as low dilution and low water flow due to low 

rain. The concentrations obtained in soil were between 17 - 1017 µg/kg and Bishopstowe was 

the most polluted sampling point. The obtained concentrations were all below the MRLs except 

for simazine and atrazine in Gilboa Farm. In a comparison of matrices (soil, water, and 

sediment), it was found that atrazine exhibit high concentrations in water whereas simazine 

exhibit high concentration in soil. This could be due to the high solubility of atrazine in water 

as well as the high affinity of simazine to the soil which results in high adsorption. 

 

The obtained concentrations in this work were above the previously reported concentrations 

worldwide, which indicate the importance of continuous monitoring of these compounds in the 

environment. This will help to draw a valid conclusion on triazines concentration levels in 

KwaZulu-Natal environmental samples. Also, to generate more reliable data in the order set 

the specific MRLs for South Africa and look for a reliable method for their removal in the 

environment. 

 

5.2 Recommendation for future work 

• The use of micro extraction techniques because they require small samples and solvent 

volume, hence they are more environmentally friendly. However, most of the micro 

extraction techniques are expensive thus, the use of hollow fiber liquid phase micro 

extraction (HF-LPME) is recommended because it is more efficient, fast and cheaper. 

• Continuous monitoring of triazines in various parts of KwaZulu Natal in order to draw 

a valid conclusion on their overall overview of triazines pollution in KwaZulu Natal as 

a whole. 

• Continuous monitoring of triazines in WWTPs to monitor their rates of removal as 

WWTPs have been reported to be the main source of pollutants into the environment. 

• Studies on triazines in soil, water, sludge and sediments and other environmental 

samples in all seasons have to be conducted in order to have an idea of the seasonal 

effect on the triazines levels. 

• More studies have to be conducted in river water especially in rural areas as they use 

rivers as the main source water in order to investigate human health risks associated 

with triazines. 
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APPENDIX 

 

Figure A 3.1: A map of sampling spots for water and sediment around Pietermaritzburg 
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Figure A 4. 1: Chromatogram of the 1ppm mixture of triazines standard solution.  

Simazine (A), Atrazine (B), ametryn (C), Propazine (D) and Terbuthylazine (E). Mobile phase: 

acetonitrile - water. LC gradient program was from 0-10 min 45:55 v/v, and 10-25 min 30:70 

v/v, Column: C18 (150 mm x 4.6 mm ID), flow rate: 0.6 mL/min, injection volume 10 µL, 

detection wavelength: 223 nm. 

 

 

Figure A 4. 2: Typical calibration curves for analytes obtained using LC-UV-PDA. 
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Figure A 4. 3: Chromatogram of Mbokodweni River spiked water sample 

Mobile phase: acetonitrile - water. LC gradient program was from 0-10 min 45:55 v/v, and 10-

25 min 30:70 v/v, Column: C18 (150 mm x 4.6 mm ID), flow rate: 0.6 mL/min, injection volume 

10 µL, detection wavelength: 223 nm. 

 

 

Figure A 4. 4: Chromatogram of Darvill sludge sample.  

Mobile phase: acetonitrile - water. LC gradient program was from 0-10 min 45:55 v/v, and 

10-25 min 30:70 v/v, Column: C18 (150 mm x 4.6 mm ID), flow rate: 0.6 mL/min, injection 

volume 10 µL, detection wavelength: 223 nm. 
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Figure A 4. 5: Chromatogram of Bishopstowe spiked soil sample.  

Mobile phase: acetonitrile - water. LC gradient program was from 0-10 min 45:55 v/v, and 10-

25 min 30:70 v/v, Column: C18 (150 mm x 4.6 mm ID), flow rate: 0.6 mL/min, injection volume 

10 µL, detection wavelength: 223 nm. 

 

 

Figure A 4. 6: Chromatogram of Bishopstowe spring sediment sample 

Mobile phase: acetonitrile - water. LC gradient program was from 0-10 min 45:55 v/v, and 10-

25 min 30:70 v/v, Column: C18 (150 mm x 4.6 mm ID), flow rate: 0.6 mL/min, injection volume 

10 µL, detection wavelength: 223 nm. 


