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ABSTRACT 

This dissertation describes the development of an energy model of a battery electric vehicle 

(BEV) to assist designers in evaluating the impact of overall energy efficiency on vehicle 

performance. Energy efficiency is a crucial metric for BEVs as it defines the driving range of the 

vehicle and optimises the limited amount of energy available from the on-board battery pack, 

typically the most expensive component of the vehicle. Energy modelling also provides other 

useful information to the designer, such as the range of the vehicle according to legislative drive 

cycles and the maximum torque required from the motor. An accurate, fast and efficient model is 

therefore required to simulate BEVs in the early stages of design and for prototype validation. 

An extensive investigation into BEV modelling and the mechanisms of energy losses within 

BEVs was conducted. Existing literature was studied to characterise the effect of operating 

conditions on the efficiency of each mechanism, as well as investigating existing modelling 

techniques used to simulate each energy loss. A complete vehicle model was built by considering 

multiple domain modelling methods and the flow of energy between components in both 

mechanical and electrical domains.  

Simscape™, a MathWorks MATLAB™ tool, was used to build a physics based, forward facing 

model comprising a combination of custom coded blocks representing the flow of energy from 

the battery pack to the wheels. The acceleration and speed response of the vehicle was determined 

over a selected drive cycle, based on vehicle parameters. The model is applicable to normal 

driving conditions where the power of the motor does not exceed its continuous rating. The model 

relies on datasheet or non-proprietary parameters. These parameters can be changed depending 

on the architecture of the BEV and the exact components used, providing model flexibility.  

The primary model input is a drive cycle and the primary model output is range as well as the 

dynamic response of other metrics such as battery voltage and motor torque. The energy loss 

mechanisms are then assessed qualitatively and quantitatively to allow vehicle designers to 

determine effective strategies to increase the overall energy efficiency of the vehicle. 

The Mamba BEV, a small, high-power, commercially viable electric vehicle with a 21 kWh 

lithium-ion battery was simulated using the developed model. As the author was involved in the 

design and development of the vehicle, required vehicle parameters were easily obtained from 

manufacturers. The range of the vehicle was determined using the World-Harmonised Light Duty 

Vehicles Test Procedure and provided an estimated range of 285.3 km for the standard cycle and 

420.8 km for the city cycle. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation and context 

Electric vehicles (EVs) have only recently become a contender to the internal combustion (IC) 

vehicles that dominate the automotive sector. EVs were in fact the first powered vehicles available 

to the public. In the 1830s electric vehicles using non-rechargeable batteries dominated the market 

until re-chargeable lead acid batteries were developed towards the end of the century (Larminie 

& Lowry, 2013). By the early 1900’s, most privately owned cars, although rare, where in fact 

electric (Larminie & Lowry, 2013). They were more reliable than their IC counterparts, produced 

no road-side emissions and started instantly without the need to be hand-cranked. Later, as the 

price of oil declined and with the invention of the starter motor in 1911, IC vehicles soon began 

to dominate the market (Larminie & Lowry, 2013).  

The main advantage of IC vehicles is that the specific energy of petroleum is far superior to 

batteries, even taking into consideration the relative inefficiency of an IC engine. IC vehicles can 

also be refuelled quickly as opposed to batteries which must be charged over longer periods. 

However, with the commercialisation of lithium-ion (li-ion) batteries with specific energies far 

greater than lead acid batteries as well as a global drive for reduction in greenhouse gas (GHG) 

emissions to mitigate the effects of global warming, electric vehicles are again seeing 

popularisation. 

Although EVs produce zero roadside emissions, they can be indirectly responsible for GHG 

emissions through the generation of electricity used to charge their on-board batteries. However, 

IC vehicles still produce more CO2 per kilometre than EVs (even when charged from a coal-

dominated grid) and EVs do not produce toxic PM10 and NO2 emissions released from an IC 

engine (Donateo et al., 2015). Also, it is easier to mitigate harmful emissions and GHGs emitted 

from a power station on a macro level than it is from a multitude of vehicle engines each operating 

at different efficiencies (Larminie & Lowry, 2013). EVs offer greater energy efficiency, have the 

potential to recover braking energy through regenerative braking and most crucially, have the 

ability to be re-charged from renewable energy sources (Fiori, Ahn, & Rakha, 2016; Juul & 

Meibom, 2012). They are also cheaper to run, it terms of both re-fuelling and maintenance costs 

owing to their inherent simplicity. 

The global transport sector accounts for 14 % of all GHG emissions (United States Environmental 

Protection Agency, 2014). The landmark Paris Agreement, effective from 4 November 2016 saw, 

for the first time since climate change entered onto our radar, a global consensus on reducing our 
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impact on the environment (UN Framework Convention on Climate Change, 2016). With 196 

countries signing the agreement under the auspices of the United Nations Framework Convention 

on Climate Change, they agreed to decrease their GHG emissions with the aim of keeping global 

warming to an average temperature which is lower than 1.5°C above pre-industrial levels (UN 

Framework Convention on Climate Change, 2016). To achieve these goals, an analysis by Global 

Climate Tracker (2016) revealed that in two decades, 100 % of all new vehicles sold should be 

electric (Climateactiontracker.org, 2016). Thus the importance of electric vehicle design and 

development should not be under-estimated. 

Modelling and simulation are two of the most important tools for electric vehicle designers. They 

have many uses for designers from the vehicle concept evaluation stage all the way through to 

prototype analysis and diagnosing issues of the final production vehicle (Gao, Mi, & Emadi, 

2007). EV models allow for numerous design combinations to be tested relatively quickly and 

with little expense (Gao et al., 2007). This allows designers to make informed decisions to 

improve the energy efficiency of the vehicle and enhance its safety and dynamic performance by 

comparing the gain in system performance against the cost of implementing the design (Gao et 

al., 2007). The designer must then weigh up the simulated benefit of a particular decision against 

how it will affect the cost of the finished vehicle.  

The range of an electric vehicle is a crucial metric in determining the success of the vehicle. 

Increasing the size of the battery pack, typically the most expensive component of an EV, 

increases the cost and weight of the vehicle. Therefore it is important for electric vehicle designers 

to optimise the energy efficiency of the vehicle such that the size of the battery pack can be 

reduced without reducing the range of the vehicle. However it is also important to assess the cost 

of energy reduction strategies such that these strategies do not escalate the cost of the vehicle 

excessively in themselves. 

1.2 Mamba EV 

TR Tec, in association with the University of KwaZulu-Natal, has developed a small, high 

performance, two-seater electric vehicle with a true carbon fibre monocoque chassis named the 

Mamba (Figure 1.1). The vehicle is a prototype that aims to spur interest in EVs in South Africa 

as well as stimulate local EV manufacture. This work aims to assist in the design and analysis of 

the vehicle and the Mamba will be used as a means of validating the model presented in this work. 

Although the model is used to simulate the Mamba’s performance, it can also be used to simulate 

other pure battery electric vehicles with different designs and architectures. The exact 

specifications of the vehicle are presented later in this work.  
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Figure 1.1. The Mamba EV. 

1.3 Aims and objectives 

A complete EV energy model is developed in this work to serve as a tool that can be used by EV 

designers during the design and evaluation of prototype development. The primary aim of this 

energy model is to fully characterise and quantify the mechanisms of energy losses within the 

vehicle and thereby attempt to mitigate these losses through energy reduction strategies and 

component selection and integration. The effectiveness of these strategies can then also be 

quantified using the model. The model is also be able to provide the designer with other important 

metrics such as the range of the vehicle according to standardised drive cycles and the power and 

energy requirement for the motor and battery pack. The energy model thus developed is intended 

to be: 

1. Simple, accurate and efficient 

2. Fast enough to ensure vehicle design can be iteratively optimised 

3. Flexible in that various battery electric vehicle (BEV) architectures and combinations of 

components can be analysed 

4. Based on non-proprietary parameters available from manufacturers or from component 

datasheets 
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The objectives of the work are: 

1. To assess the various mechanisms of energy losses within BEVs and how these losses 

vary over the full operational envelope of the vehicle under typical driving conditions 

2. To assess methods and techniques used for predicting the energy loss in components via 

readily available input parameters 

3. To build a complete and accurate energy model of the vehicle which can be used to 

computationally simulate the range of the vehicle according to specific vehicle 

parameters, driving conditions and drive cycles 

4. To implement the model using suitable computer software capable of simulating the 

developed model and maintaining adaptability.  

5. To use the complete energy model to analyse the energy losses of the Mamba EV and to 

characterise these losses over different drive cycles which represent typical driving 

conditions 

6. To predict the range of the Mamba EV according to international electric vehicle testing 

standards and legislation 

1.4 Overview of chapters 

This chapter provides the background and motivation for this work as well as outlining its aims 

and objectives. A literature survey follows in Chapter 2. The survey aims to familiarise the reader 

with electric vehicle modelling as well as the various energy losses within EVs. Modelling of 

each sub-system and energy loss mechanism of an EV is analysed. Relevant drive cycles used for 

range estimation are also explored. 

The design and construction of a complete energy model using Simscape™ is detailed in Chapter 

3. The parameters required to simulate the Mamba are then presented followed by a brief 

description of the simulation settings used. In Chapter 4, the results of the Mamba energy 

simulations are presented. The energy model is used to characterise the energy losses of the 

vehicle over highway, city and hybrid drive cycles. Chapter 5 discusses the results obtained, the 

limitations of the work and offers recommendations for future research. The dissertation is 

concluded in Chapter 6.  
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CHAPTER 2: LITERATURE SURVEY 

2.1 Electric vehicle architecture 

Figure 2.1 shows the flow of energy within a BEV while the vehicle is being driven. The battery 

can be considered as the centre of the system as it provides the energy needed to power the vehicle. 

Green arrows indicate a flow of energy that acts to charge the battery and red arrows indicate a 

flow of energy that acts to discharge the battery. Blue arrows indicate a flow of liquid or air used 

to extract excess heat from a component. The battery powers a brushless motor through the motor 

controller which converts a direct current (DC) voltage from the battery pack to a three phase 

alternating current (AC), which causes motor rotation and torque. This torque is transferred to 

one or more wheels through a mechanical transmission system known as a drivetrain. Power can 

also flow backwards from the wheels to the battery during regenerative braking when the motor 

acts as a generator (Larminie & Lowry, 2013). 

 

 

Figure 2.1. Typical BEV architecture showing the flow of energy between components. 

 

The battery also powers a DC to DC convertor (DC/DC) which steps down the high voltage of 

the battery to a lower voltage (typically 12 V). This lower voltage is used to power auxiliary 

systems such as the motor cooling system and a battery cooling system to control the temperature 

of these components. A power supply such as an AC grid supply and an AC to DC converter 

(charger) is not shown in Figure 2.1 but would result in a charging current directed into the battery 

while the vehicle is stationary.  

Multiple EV architectures, other than the BEV architecture shown in Figure 2.1 exist, such as 

hybrid electric vehicles, plug in hybrid electric vehicles and range extended battery electric 
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vehicles. Hybrid electric vehicles use a small battery pack to power an electric motor to drive the 

vehicle at low speeds where an IC engine is inefficient. The electric drivetrain can also be used 

to realise regenerative breaking which further increases vehicle efficiency. The plug in version 

has a larger battery pack that is charged through AC mains. A range extended EV has the same 

architecture as the BEV with the addition of a small IC engine coupled to a generator to charge 

the battery pack and extend driving range. This research focuses on BEV architectures and 

therefore where the general term EV is used, it refers to BEVs. 

 Drivetrain topologies 

The drivetrain of the vehicle can be defined as the group of components that generate power and 

deliver it to the road (Eriksson & Nielson, 2014). The drivetrain block shown in Figure 2.1 can 

take on many different architectures to implement front-wheel drive, rear-wheel drive or all-wheel 

drive using a variety of different drivetrain topologies. Mechanical constituents of the powertrain 

may include one or more of the following; motors, gearboxes (fixed or variable ratio), 

differentials, axle shafts, constant velocity joints (CVJs) and wheels (Park, Lee, Jin, & Kwak, 

2014). 

In the case of front or rear-drive vehicles, six different configurations can be identified, as 

shown in Figure 2.2 (Park et al., 2014). If one motor is used (Figure 2.2 (a), (b) or (c)), a 

differential is required such that the wheels can rotate at different speeds when cornering (Park 

et al., 2014). If one motor is used with a fixed gear ratio, it can be rear mounted, as shown in 

Figure 2.2 (b), or front mounted, as shown in Figure 2.2 (c). Figure 2.2 (a) resembles the 

drivetrain of most conventional IC engine vehicles (Park et al., 2014). 

 

 

Figure 2.2. Front-wheel drive EV configurations (a) Conventional (b) No transmission, rear 

mounted motor (c) No transmission, front mounted motor (d) No differntial (e) In-wheel drive 

with FG (f) In-wheel without FG (Park et al., 2014). 
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Many different types of gearboxes are available which are classified into two broad categories, 

either fixed ratio or variable ratio. If a variable gearbox is used without an automatic transmission, 

a clutch is required to disengage the drive to change gears. Configurations employing one motor 

are sometimes preferred as they can be used with components readily available for the IC engine 

market, however in the case of EVs, the drivetrain can be greatly simplified by using two motors 

which are either centrally mounted or in-wheel mounted using hub motors (Park et al., 2014). The 

use of two motors eliminates the need for a differential as motor speed can be independently 

controlled (Park et al., 2014).  

In some cases, an electric motor can be used with no gearbox if the top speed of the motor is 

greater than the desired top speed of the vehicle and if the torque output of the motor is sufficient 

for vehicle traction and gradeability. The elimination of a gearbox can greatly simplify the 

drivetrain and consequently increase its efficiency. 

All configurations shown in Figure 2.2 can be also be implemented as rear-wheel drive vehicles. 

All-wheel drive topologies should also be considered, which can use any combination of the six 

configurations, although they are typically achieved using four in-wheel hub motors in order to 

simplify the drivetrain. 

2.1.1.1 Constant velocity joints 

In all configurations, except where an in-wheel (hub) motor is used (Figure 2.2(e) and (f)), an 

inboard and outboard CVJ with a half shaft is required for the final connection to the wheel to 

allow for suspension movements, steering movements (in the case of front wheel drive vehicles) 

and alignment offsets (Hildebrandt, Horst, & Rickell, 2006). Most modern vehicles achieve this 

with the use of two Rzeppa joints that use balls and tracks to allow for the transmission of torque 

up to angles of 50° (Hildebrandt et al., 2006). Energy losses in these joins are a result of contact 

friction between the tracks and balls, and depend on the angle of the joint (Fujio, 2013). Fujio 

(2013) reported a linear increase in energy loss rate from approximately 0.25 % at a joint angle 

of 4° to 1.25 % for a joint angle of 12° for standard Rzeppa joints. 

2.2 Energy modelling and simulation of EVs 

It can be seen from Figure 2.1 that to model and simulate the flow of energy in an EV requires 

the characterisation of both electrical and mechanical components and the flow of energy between 

them. Each component has an associated efficiency which refers to the amount of energy that is 

lost in transferring or converting an energy input to an energy output. This efficiency varies on a 

large number of variables which change constantly as the vehicle’s operating conditions change. 
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Before considering how to simulate and model an EV, it is important to consider the primary 

motive for developing the model. Models developed in literature can be used for various purposes 

such as (Gao et al., 2007): 

1. Analysing the vibration, handling and noise response of the vehicle 

2. Predicting, evaluating and optimising vehicle fuel economy or energy efficiency 

3. Analysing the safety, stability and crash worthiness of the vehicle 

4. Modelling vehicle controls 

5. Analysing structural integrity of the chassis 

6. Component testing and validation 

7. Preliminary concept design and evaluation 

An energy model with the primary aim of predicting, evaluating and optimising energy efficiency 

will be discussed in this work. 

 Definitions 

A system can be defined as an object or group of objects of interest, for example an EV (Gao et 

al., 2007). A model is a surrogate for a real system which can be used to conduct “experiments” 

of interest and these experiments are called simulations (Gao et al., 2007). Because a particular 

model has a limited number of simulations which can be carried out on it, more than one model 

may be required for a single system (Gao et al., 2007). Models require a simulator or tool capable 

of preforming the simulation typically a computer program capable of solving ordinary 

differential equations (ODEs), such as MATLAB™ (Gao et al., 2007). 

 Model fidelity and computation time 

Modelling is often a trade-off between the accuracy of the model, known as fidelity and the time 

required to simulate the system, known as computation time or complexity. It is important to 

assess the importance of each of these metrics depending on the uses and aims of a particular 

model. For example, in models used for efficient routing prediction that rely on running multiple 

iterations over a short space of time to compare energy consumption, fidelity is not critical, but 

computation time is (Genikomsakis & Mitrentsis, 2017; Fiori et al., 2016).  

 Modelling approaches 

Models can fall into one of three categories; the model can be steady sate, quasi-steady or dynamic 

(Guzzella & Sciarretta, 2013). Steady-state models employ an average operating point approach, 

where the variation in vehicle energy efficiency is captured as single average value (Guzzella & 

Sciarretta, 2013). Such an approach is considered a high level model which does not contain 
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separate component models (Gao et al., 2007). This approach also requires that the mean 

mechanical energy consumed per distance travelled for the chosen drive cycle is known (Guzzella 

& Sciarretta, 2013). The energy used per distance travelled can then be calculated to yield an 

approximation of the vehicle’s range (Guzzella & Sciarretta, 2013).  

In order to improve the accuracy of the solution, a model which implements sub-second transient 

simulations might be employed (Gao et al., 2007). Such models can use a quasi-steady or a 

dynamic modelling approach. The quasi-steady approach is similar to the average operating point 

approach, except the time domain is discretised into time steps and the drivetrain efficiency and 

mechanical energy required is computed at each time step (Guzzella & Sciarretta, 2013). The 

efficiency of drivetrain components is simulated by interpolating data in look-up tables or maps 

that contain empirical data of efficiency across the operational envelope of the component (Gao 

et al., 2007). The vehicle is assumed to run for a short time period at this constant speed, 

acceleration and gradient and the energy losses are calculated for the short time period based on 

efficiency at the given operating conditions (Guzzella & Sciarretta, 2013). 

The second transient approach, dynamic modelling, describes the system as a set of differential 

equations based on the physical principals governing the conversion of energy within each 

component (Gao et al., 2007). This approach is known as a physical modelling approach as it 

respects the physical causality of the system and therefore the inputs and outputs of the system 

are the same as those present in the real system (Guzzella & Sciarretta, 2013). The full system is 

represented as a set of ODEs which can be represented in a state space form (Guzzella & 

Sciarretta, 2013). Dynamic models require computational tools which implement numerical 

integration in order to solve the set of equations. 

Steady-state modelling offers a simple approach to modelling the efficiency of EVs and 

simulation can be carried out quickly, however this approach offers the lowest model fidelity. 

This approach is therefore particularly well suited to preliminary estimations however it does not 

offer the potential to optimise the energy consumption of EVs through the assessment energy 

management strategies (Guzzella & Sciarretta, 2013).  

Quasi-steady models can be used to optimise the energy efficiency of EVs however they may not 

capture losses that occur at higher frequencies (Guzzella & Sciarretta, 2013). They offer higher 

fidelity than steady-state models however computation time is increased. As the time period is 

reduced, model fidelity is increased at the expense of computation time. A constant or time 

varying time period may be used, for example a longer time period may be used during periods 

of idling or slow speeds (Guzzella & Sciarretta, 2013). 
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Whilst dynamic models have the highest model fidelity, they have slower execution times than 

steady and quasi-steady models which run more quickly but are less accurate (Fiori et al., 2016). 

They are capable of capturing losses at all time frequencies, although most of the effects related 

to energy efficiency change relatively slowly with time (Guzzella & Sciarretta, 2013). 

 Direction of calculation 

Transient models can be simulated using three different approaches to the direction of calculation; 

forward looking modelling, backward facing modelling or a combination (Fiori et al., 2016; Gao 

et al., 2007). Forward looking models begin at the motor and require a driver model to determine 

the torque requested by the driver from the motor to match a target duty cycle (Gao et al., 2007). 

A simple driver model can be implemented as a PID control loop where a reference torque is 

generated using the difference between requested and actual vehicle speed (Eriksson & Nielson, 

2014). This torque is then transferred to the wheels where a tractive force is generated and the 

speed and acceleration of the vehicle can be determined. 

A backward facing model begins rather at the wheels, where a required tractive force is calculated 

which is then translated to a required motor torque (Gao et al., 2007). Backward facing models 

typically have a speed versus time profile as an input and the tractive effort required to follow this 

cycle is computed. Hybrid forward-backward models employ a backward model architecture 

where a torque or current is requested based on a backward calculation and then is compared to 

the maximum available value, for example to ensure the torque requested does not exceed the 

maximum possible torque output of the motor. 

Forward facing models are preferred for hardware in the loop (HIL) setups or controls 

development as they better represent the true physical causality of the system, however they have 

slower simulation times than backward facing models (Gao et al., 2007; Guzzella & Sciarretta, 

2013). Backward models have quicker execution times while still accurately capturing vehicle 

energy consumption (Gao et al., 2007). They can also be implemented easily into simulation 

environments such as Simulink™ and higher level models (Fiori et al., 2016). 

 Simulation-based optimisation methods 

EV energy models can be used to achieve specific targets, such as vehicle range, by optimising 

system parameters (Nguyen, Reiter, & Rigo, 2014). Due to the complexity of models, it is often 

difficult to generate a target function that can be optimised. This has led to the development of 

iterative computational methods to solve optimisation problems. The simplest method is the 

parametric method, where all parameters are kept constant except one which is varied in a trial 

and error approach to assess the effect on a design objective (Nguyen et al., 2014). This approach 
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is time-consuming and therefore algorithms have been developed to automatically iterate towards 

an optimum solution by building infinite sequences of progressively better approximations of the 

solution (Nguyen et al., 2014). Optimisation methods commonly used for EV optimisation are 

(Gao et al., 2007): 

1. Divided RECTangle  

2. Simulated annealing  

3. Genetic Algorithm 

4. Particle Swarm Optimisation 

2.3 Modelling tools 

Numerical computer tools provide a reliable and efficient approach to building models and 

running dynamic simulations (Guzzella & Sciarretta, 2013). Various modelling tools are available 

however the program available to the author was MATLAB™ and therefore an overview of the 

program is discussed in the subsequent section. MATLAB™ is a numerical computing 

environment designed by MathWorks which allows for easy manipulation of matrices using a 

proprietary coding language. A toolbox within MATLAB™, Simscape™ will be used to build 

the model developed in this work and therefore an overview of this toolbox is also provided, in 

particular the ability for the user to build custom blocks. 

 Numerical methods for solving ODEs 

Physical systems are typically described by a set ODEs which can be defined as equations 

containing one or more derivatives of some dependant variable, 𝑦 with respect to a single 

independent variable, which in the case of physical systems is time, 𝑡 (MathWorks™, 2017c). 

ODE’s used to model physical systems are initial value problems in the time domain where time 

is the independent variable (Houcque, n.d.). A general form of an initial value ODE is given in 

Equation 2.1 and Equation 2.2 where the initial value is given by 𝑐 (Lei & Hongzhou, 2012). A 

system of equations containing ODEs as well as equations containing dependant variables without 

their derivatives (algebraic equations) falls into a special class of systems known as differential 

algebraic equations (DAEs) (MathWorks™, 2017c). 

 

 𝒚′ = 𝑓(𝑡, 𝒚) Equation 2.1 

 𝒚(0) = 𝒄 Equation 2.2 
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Most first order, initial value problems cannot be solved analytically and therefore an approximate 

solution must be obtained using numerical methods which can be easily implemented 

computationally (Houcque, n.d.). The first method introduced to this end was Euler’s method, 

introduced in 1978 (Houcque, n.d.). Three types of Euler’s method exist; forward, modified 

(makes use of the trapezoidal rule) and backward methods (Houcque, n.d.). Euler’s method 

discretizes the differential function into multiple time steps with a duration of 𝑥 and the value 

computed at each time step is given by Equation 2.3 and Equation 2.4 (Davis, 1984). 

 

 
𝑦𝑛+1 = 𝑦𝑛 + 𝑥 ∙ 𝑓(𝑡𝑛, 𝑦𝑛) Equation 2.3 

where, 

 
𝑡𝑛 = 𝑡0 + 𝑛 ∙ 𝑥 Equation 2.4 

 

 MATLAB™ ODE solvers 

MathWorks™ has an array of solvers and careful selection is required to meet the accuracy, 

stability and computational efficiency requirements of simulations. These solvers can be split into 

a variety of categories as shown by the flowchart in Figure 2.3. They can be classified as either 

continuous or discrete. A continuous solver can solve both continuous and discrete elements 

however a discrete solver can only solve discrete elements (MathWorks™, 2017b). Therefore a 

discrete solver should only be used where the system is purely discrete. 

MATLAB™ can implement both fixed step and variable step solvers. For fixed step solvers, the 

time period is specified by the user and does not change throughout the simulation. Variable step 

solvers are used to decrease computational time by continuously varying the step size throughout 

the simulation. In regions where the solution changes rapidly, a smaller time step is used and in 

regions of slow change, a longer time step is used. In order to compute the time step an embedded 

Runga-Kutta solver is used and the accuracy of the solution is kept within error tolerances set by 

the user (MathWorks™, 2017b).  

The various solvers available within MATLAB™ are shown in Figure 2.3. The number after the 

“ode” term indicates the order of the solver. A single digit indicates a fixed step solver and two 

digits indicates a variable step solver. Variable step solvers compute the value of the ODE 

according to two different RK approaches of different orders. For example ode45 indicates a 

fourth and fifth order approximation is computed in order to determine the size of the time step.  
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Variable step, continuous solvers designed to solve stiff systems are also available. A stiff system 

is a system where the desired solution varies slowly but there are closer solutions that vary rapidly 

(MathWorks™, 2017b). Implicit solvers are designed specifically to simulate stiff systems and 

are denoted by an “s” in MATLAB™ solvers, such as the ode23s (MathWorks™, 2017b). Whilst 

implicit solvers are more accurate and particularly well suited to stiff systems, they are difficult 

to implement and are computationally expensive (MathWorks™, 2017b). MathWorks suggest 

trying the ode45 solver first and if this solver does not work, a stiff solver should be tried. If a 

desired solution is achieved with ode45, lower order solvers such as ode23 can be tested 

(MathWorks™, 2017b). Higher order solvers are more accurate however they are more complex 

and therefore computation time is higher (Moler, 2011). Although such models require more work 

per step, less steps may be required to reach a solution and therefore simulation time can be 

quicker (Moler, 2011). 

 

Figure 2.3. MATLAB™ solver selection flowchart (MathWorks™, 2017b).  

 Simscape™ 

MATLAB™ has various toolboxes which can be used for specific tasks. One such toolbox is 

Simulink™ which is a graphical, block based environment that support multi-domain simulations 

and includes various libraries of common components with the ability for user-defined blocks 
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(MathWorks, n.d.). Simulink is tightly integrated into the MATLAB™ environment and 

establishes a set of equations and matrices which can be used to solve dynamic systems. 

Integration with the MATLAB™ environment allows model variables to be manipulated within 

the MATLAB™ environment using various toolboxes available within the native MATLAB™ 

environment. 

Table 2.1 shows a comparison of two EV modelling tools built using MATLAB™/Simulink™ 

which provide a graphical interface as well as a library of component parameters. More detail on 

each tool appears in Table 2.1. Other vehicle modelling tools also exist such as Virtual Test Bed, 

FASTSim (an Excel based tool) and Simplorer (Gao et al., 2007). 

 

Table 2.1. Comparison of Autonomie and ADVISOR (Gao et al., 2007). 

 Autonomie  
Advanced VehIcle SimultOR 

(ADVISOR) 

Developer Argonne National Laboratory.  U.S. National Energy Laboratory.  

Open source No.  Yes. 

Types of 

vehicles 
IC, electric, hybrid and fuel cell.  IC, electric, hybrid and fuel cell. 

Uses/outputs 

Analysis of performance, fuel 

economy, optimisation routines 

and HIL. 

 

Analysis of performance, fuel 

economy and emissions. 

Linear scaling of components. 

Model type Forward looking.  Backward-forward approach. 

Modelling 

approach 
Quasi-steady.  Steady-state. 

Flexibility 

Yes – look-up table or dynamic 

model. Models must maintain 

same number of input and 

output parameters. 

 

Users may alter each sub-model 

as long as inputs/outputs kept the 

same.  

Other Notes 

Previously called Powertrain 

System Analysis Toolkit 

(PSAT)  

which was phased out in 2010. 

 
Allows links to other software - 

Saber and Simplorer. 

 

 

Simulink™ itself also has various toolboxes that offer various benefits over the native Simulink 

environment. One such example is Simscape™ that allows users to model physical systems by 

connecting blocks together as they would be connected in a real system. A Simscape™ language 
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is also available which enables text based authoring of physical components. Simscape™ also 

allows for more solver settings which are useful in physical simulation and allows for the 

implementation of HIL testing and real-time simulation. Simscape™ is well suited to multi-

domain modelling with ten different domains available as standard as well as the option for user 

generated domains. 

Simscape™ has the following advantages (MathWorks™, 2014): 

1. Simscape™ language simplifies the construction of components making use of 

predefined domains such as the electrical and mechanical domain 

2. Components are connected as actual components are connected making the model easy 

to reconfigure and easier to build on for future iterations 

3. Real-time simulation can be implemented which allows for hardware in the loop (HIL) 

implementation 

4. All physical units and conversions are easily handled by the software 

5. Physical causality of the system is respected 

6. The system is bi-directional which allows for implementation of regenerative braking 

7. Custom components can be generated using the Simscape™ language 

8. Simscape™ can log all variables throughout the simulation and graphically display all 

results 

Simscape™ employs a physical network approach in order to simplify the construction of the set 

of ODEs defining a physical system (MathWorks™, 2017a). This simplification is achieved using 

computational tools to build the model as a set of blocks which represent mathematical models of 

sub-systems. Sub-systems typically represent a single component of the system, although they 

may also represent a combination of components or parts of components. Blocks are able to 

exchange energy with other blocks in the same physical domain through non-directional ports 

(MathWorks™, 2017a). When blocks are correctly connected together, the resultant model is 

equivalent to a mathematical model of the complete system (MathWorks™, 2017a). Because the 

connection between blocks mimics physical connections, blocks are connected as they would be 

in the physical system (MathWorks™, 2017a). 

Energy flow between blocks is characterised by an across and through variable which are unique 

to each physical domain. Simscape™ considers the transfer of energy using across and through 

variables, which are unique to each domain (MathWorks, 2017e). The product of through and 

across variables is usually power (MathWorks, 2017a). Through variables are defined as variables 

which are measured with a gauge connected in series with an element and across variables with a 
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gauge connected in parallel (MathWorks, 2017a). In the case of electrical components, the effort 

(across) variable is voltage and the flow (through) variable is current and for mechanical systems 

the effort (across) variable is torque and the flow (through) variable is speed (Gao et al., 2007). 

 Simscape™ solvers 

Simscape™ allows for the use of a local solver to simulate physical networks in conjunction with 

the global Simulink solvers discussed earlier. Local Simscape™ solvers provide solvers best 

suited to solving physical systems and provide further functionality such as real-time fixed cost 

simulation and the ability to use different solvers for each physical network (MathWorks™, 

2014). Two local solvers are available to simulate physical systems, a backward Euler approach 

or a trapezoidal rule approach. Although the backward Euler approach is more stable, it can damp 

oscillations in systems where high frequency oscillation is expected (MathWorks™, 2014). 

A local solver also allows the model designer to select between the use of sparse or full linear 

algebra which refers to the manipulation of the matrices used to implement the numerical 

modelling approach. Sparse linear algebra is recommended for large systems, with a large number 

of states, as it increases the efficiency of the simulation (MathWorks™, 2014).  

The local solver also allows for a fixed-cost runtime simulation approach, where time step and 

number of per-step iterations is fixed (MathWorks™, 2014). This enables real-time simulation 

for HIL testing and comparison of simulation time across different platforms (MathWorks™, 

2014). It must be ensured that the local and global solvers are harmonised. If a local fixed-cost 

solver is selected, a fixed-step global solver is required (MathWorks™, 2014). 

 Simscape™ language 

The Simscape™ language allows users to create new component blocks using a programming 

language based on the MATLAB™ programming language. The language is adapted to physical 

modelling to make programming custom blocks easier and more intuitive (MathWorks™, 2017e). 

Models can be created across various physical domains, which define how energy and data is 

transmitted. Component blocks are coded as text files and represent the physical component to be 

modelled (MathWorks™, 2017e). The text file consists of various sections which define the 

component, as shown in Table 2.2, which also presents a brief description of each section. 
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Table 2.2. Simscape™ language members (MathWorks™, 2017e). 

Section Description 

Parameters Constants which define the physical components. Appear in 

the block dialog box. 

Nodes Physical conserving ports associated with a particular 

domain. Carries through and across variables and writes a 

conserving equation for through variables. Only nodes of the 

same domain are connected together. 

Inputs and Outputs Directional physical signal ports carrying physical signals 

and their associated units.  

Variables Domain or component variables. 

Branches Establish relationship with through variables and nodes. Also 

establishes the direction of positive flow.  

Setup Executed once at start of simulation. Used for error checking 

and to set the priority of initial values of variables. 

Equations First equation defines the relationship between component 

across variables and nodes. Other equations define the 

relationship between component across and through 

variables. Uses double equal signs to represent a 

symmetrical mathematical relationship rather than an 

assignment. 

 

 

Simscape™ blocks interact with other blocks in the system through two types of ports, physical 

conserving (PC) ports and physical signal (PS) ports (MathWorks™, 2017a). PC ports represent 

actual physical connections. They are non-directional and are connected using physical 

connection lines which exchange energy between blocks by carrying through and across variables 

(MathWorks™, 2017a). Physical connection lines can be branched and any lines connected to the 

same branch point will carry the same across variable but through variables are split among the 

branches (MathWorks™, 2017a). The vector sum of all through variables at any branch point 

must always be zero (MathWorks™, 2017a). PS ports are unidirectional ports which carry 

physical signals which may or may not have units associated to them (MathWorks™, 2017a). 
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2.4 Vehicle dynamics and motion 

In order to drive a vehicle forward, a prime mover (the electric motor in EVs) must apply a torque 

to the vehicle’s wheels through a mechanical drivetrain which may consist of a combination of 

one or more of the following; a clutch, a gearbox, axles and a differential (Park et al., 2014). This 

applied torque is then transmitted to the road through the tyre contact patch, generating a force 

which must overcome external resistive forces acting on the vehicle. It is important to consider 

the influence of the moment of inertia of rotating parts and the inertia of the vehicle’s mass on the 

dynamics of the vehicle (Park et al., 2014). Figure 2.4 shows a two-wheel based vehicle model 

with the various forces and moments acting on it as it accelerates up a hill for a front-wheel-drive 

vehicle. 

 

 

Figure 2.4. Two-wheel based vehicle model. 

 

The first consideration should be the relationship with the torque applied at the wheel, 𝑇𝑤ℎ in 

terms of the torque output of the motor, 𝑇𝑚. It is therefore critical to consider the flow of 

mechanical power from the motor to the wheels which is summarised in Figure 2.5. The transfer 

of power from motor to wheels is through rotational energy and therefore the equivalent rotational 

inertia, 𝐽 should be considered as well as the energy efficiency,  of each component. The energy 

efficiency represents energy lost due to damping and friction and can be represented as a constant 

value (Park et al., 2014). The gearbox and differential have an associated gear ratio, 𝐺 which 

increases output torque, 𝑇 and decreases angular speed, . 
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Figure 2.5. Flowchart showing the transmission of mechanical power from motor to wheels. 

 

The torque and power output of each component can be calculated as a function of the torque and 

angular speed inputs from the previous component, an example is shown for the output torque 

and speed of the gearbox in Equation 2.5 and Equation 2.6 (Park et al., 2014). 

 

 𝑇𝑔𝑏 = (𝑇𝑐𝑙 − 𝐽𝑔𝑏

̇𝑚

𝐺𝑔𝑏
) ∙ 𝑔𝑏𝐺𝑔𝑏 Equation 2.5 

 
𝑔𝑏 =

𝑚

𝐺𝑔𝑏
 Equation 2.6 

 

By taking a similar approach for each component and substituting the output torque of one 

component as the input of the subsequent component, Equation 2.7, Equation 2.8, Equation 2.9 

and Equation 2.10 can be derived for the entire drivetrain (Park et al., 2014). An additional term, 

𝑇𝑏 has been included in Equation 2.7 in order to account for the braking torque applied due to the 

mechanical braking system. An axle shaft efficiency has also been included in Equation 2.9 to 

consider the efficiency of the CVJs.  

 

 𝑇𝑤ℎ = 𝐺𝑡𝑜𝑡𝑎𝑙𝑡𝑜𝑡𝑎𝑙𝑇𝑚 − 𝐽𝑡𝑜𝑡𝑎𝑙̇𝑚 + 𝑇𝑏 Equation 2.7 

where, 

 
𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑔𝑏𝐺𝑡𝑜𝑡𝑎𝑙𝑔𝑏𝑑𝑓 + 𝐽𝑑𝑓𝑑𝑓 +

𝐽𝑎𝑠 + 𝐽𝑤ℎ

𝐺𝑡𝑜𝑡𝑎𝑙
 Equation 2.8 

 𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑙𝑔𝑏𝑑𝑓𝑎𝑠 Equation 2.9 

 𝐺𝑡𝑜𝑡𝑎𝑙 = 𝐺𝑔𝑏𝐺𝑑𝑓 Equation 2.10 

 

The driving force applied to the road, 𝐹𝑑 is therefore given by Equation 2.11. 

 

 
𝐹𝑑 =

𝑇𝑤ℎ

𝑅𝑤ℎ
 Equation 2.11 
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In the above, 𝑅𝑤ℎ is the effective radius of the driven wheels.  

Newton’s second law can then be used to determine the linear acceleration of the vehicle, 𝑣𝑥̇ as 

shown in Equation 2.12 and Equation 2.13. 

 

 𝑚𝑣𝑥̇ = 𝐹𝑑 − 𝐹𝑡𝑒 Equation 2.12 

where, 

 𝐹𝑡𝑒 = 𝐹𝑎𝑑 + 𝐹𝑟𝑟 + 𝐹ℎ𝑐 Equation 2.13 

 

In the above, 𝑚 is vehicle mass, 𝐹𝑡𝑒 is the tractive effort required to overcome resistive forces, 

𝐹𝑎𝑑 is the force due to aerodynamic drag, 𝐹𝑟𝑟 is the force due to rolling resistance and 𝐹ℎ𝑐 is the 

hill-climbing force given by Equation 2.14. Resistive forces due to rolling resistance and 

aerodynamic drag are discussed in greater detail in subsequent subsections. 

 

 𝐹ℎ𝑐 = 𝑚𝑔 ∙ 𝑠𝑖𝑛 (𝜖) Equation 2.14 

 

In the above, 𝑔 is the gravitational constant and 𝜖 is the angle of inclination or declination of the 

road. 

The weight of the vehicle acts vertically down through its centre of gravity (COG). By considering 

the horizontal distance between the front and rear wheels and the COG, 𝑓 and 𝑟 respectively and 

the vertical distance from the road to the COG, ℎ, a sum of moments can be computed about the 

COG. This gives the normal forces on the front and rear wheels, 𝐹𝑧𝑓  and 𝐹𝑧𝑟  respectively and the 

results are shown in Equation 2.15 and Equation 2.16 (Jazar, 2014). 

 

 
𝐹𝑧𝑓 =

𝑚𝑔

𝑓 + 𝑟
(𝑟 ∙ 𝑐𝑜𝑠(∈) − ℎ ∙ 𝑠𝑖𝑛 (∈)) −

𝑚𝑎 ∙ ℎ

𝑓 + 𝑟
 Equation 2.15 

 
𝐹𝑧𝑟 =

𝑚𝑔

𝑓 + 𝑟
(𝑓 ∙ 𝑐𝑜𝑠(∈) + ℎ ∙ 𝑠𝑖𝑛 (∈)) +

𝑚𝑎 ∙ ℎ

𝑓 + 𝑟
 Equation 2.16 

 

 Longitudinal tyre dynamics 

Acceleration and braking forces applied to a vehicle’s wheels must interact with the ground 

through the tyre contact patch. Vehicle longitudinal forces are imparted to the road through tyre 

deformation which can cause the rubber parts to partially slide even when the wheel is not locked 
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(Miller, Youngberg, Millie, Schweizer, & Gerdes, 2001; Reif, 2014). This phenomenon is known 

as longitudinal tyre slip,  and is defined by Equation 2.17 (Gao et al., 2007). 

 

 
 =

𝑤ℎ ∙ 𝑅𝑤ℎ − 𝑣𝑥

𝑚𝑎𝑥 {𝑣𝑥,  𝑤ℎ ∙ 𝑅𝑤ℎ} 
 Equation 2.17 

 

Under normal driving conditions  is greater than zero which causes a friction force in the 

direction of forward motion (Gao et al., 2007). During breaking  < 0 which causes a friction 

force opposite to the direction of forward motion (Gao et al., 2007). 

Tyre slip is an important property as literature shows a correlation between the tyre adhesion 

coefficient,  and tyre slip (Gao et al., 2007). Tyre adhesion allows the torque applied to driven 

wheels to impart a force to the road through a friction force, 𝐹𝑅 which is related to the adhesion 

coefficient as shown in Equation 2.18. The relationship between the adhesion coefficient and tyre 

slip for different road conditions is shown in Figure 2.6. As slip increases,  increases rapidly to 

a maximum value representing the maximum friction force.  

 

 𝐹𝑅 = ()𝑚𝑔 Equation 2.18 

 

 

Figure 2.6. Adhesive coefficient versus slip ratio for various road conditions (Gao et al., 2007). 

 

The friction force is a measure of the tyre’s ability to transmit a force through the contact patch 

to the surface it is travelling on (Reif, 2014). It is therefore a critical metric when considering 

braking and is a critical variable for the implementation of systems such as an Antilock Braking 

System (ABS) and a Traction Control System (TCS) which maximise vehicle grip (Reif, 2014).  
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Tyre slip must be considered for dynamic vehicle simulations as the wheel will accelerate faster 

than the vehicle (Gao et al., 2007). If there is no slip, the linear acceleration of the vehicle can be 

related to the angular acceleration of the wheel according to Equation 2.19. 

 

 
𝑣̇𝑥 = 𝑅𝑤ℎ

̇𝑚

𝐺𝑡𝑜𝑡𝑎𝑙
 Equation 2.19 

 

However, under slip conditions, Equation 2.19 is no longer valid and Equation 2.17 must be 

differentiated to solve for the relationship between 𝑣̇𝑥 and ̇𝑚 which becomes a function of tyre 

slip (Fujii & Fujimoto, 2007). 

2.5 Rolling resistance 

Tyres are an important part of any vehicle as they are responsible for a vehicle’s traction to the 

road during driving and steering, its handling characteristics and ride comfort (Michelin, 2003). 

Tyres are typically constructed from vulcanized, reinforced polymers which are visco-elastic 

materials. The flexible nature of this type of material is important as it allows the development of 

a contact patch with the road, as opposed to making contact at a single point which enables the 

tyre to grip better and absorb asperities in the road surface (Michelin, 2003). 

Visco-elastic materials exhibit the property of hysteresis which means that when the material is 

deformed it takes longer to return to its initial position, as some energy is dissipated as heat 

(Michelin, 2003). Hysteresis has two important side effects in tyres: rolling resistance and grip 

(Michelin, 2003). Rolling resistance is defined in the ISO 8767 standard as “energy consumed by 

a tyre per unit of distance covered” (Evans et al., 2009). This loss in energy means more energy 

must be applied to the tyre as increased torque, to keep the tyre rotating at the same speed. Rolling 

resistance losses do not include spindle or bearing losses as these losses are not a result of the tyre 

(Evans et al., 2009). 

Rolling resistance on hard surfaces is caused by three main phenomena; deformation of the tyre 

as it is deformed in the area of the contact patch, aerodynamic drag and rotational drag and 

slippage between the tyre and the road or between the tyre and the rim (Michelin, 2003). 

Deformation of the tyre is the primary cause and accounts for 80 to 95 % of rolling resistance 

(Michelin, 2003). When a tyre is moving over a surface covered with water or snow additional 

tyre deflection is induced as the tyre moves or compresses the water or snow (Sandberg, 2011). 

A car tyre does not make contact with the road at a single point but rather in the area of a contact 
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patch caused by flattening of the tyre, as shown in Figure 2.7. Therefore the reaction force of the 

tyre due to the weight of the vehicle acts across this patch.  

 

Figure 2.7. Reaction forces at the contact patch (Michelin, 2003). 

 

It has been found that the reaction forces are larger in the front of the tyre as compared to the rear 

(Michelin, 2003). Hysteresis means that the tyre does not recover in the same time it took to 

deform which means the reaction forces are smaller toward the rear of the contact patch (Michelin, 

2003). The resultant pressure force therefore acts some distance in front of the centreline of the 

wheel as seen in Figure 2.8. This causes a moment to act about the axle of the wheel which 

opposes the direction of the torque applied to the wheel to drive it forward (Michelin, 2003). 

 

 

Figure 2.8. Resultant pressure and weight vectors acting on a tyre during rotation (Michelin, 

2003). 

 

Following the definition of rolling resistance as energy lost per unit distance, it can be expressed 

as J/m or N·m/m, as 1 N·m is equivalent to 1 J, or as a force in Newtons. However, Schuring and 
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Futamura (1990) emphasise that although dimensionally equivalent to a force, rolling resistance 

is a scalar value and therefore it is not a force but rather an energy lost per distance travelled. 

It has been found that there is a very close linear relationship between the load on the tyre and 

rolling resistance (Evans et al., 2009). Therefore rolling resistance is often expressed in terms of 

the rolling resistance coefficient, 𝐶𝑅𝑅 as given in Equation 2.20. 

 

 𝐹𝑟𝑟 = 𝐶𝑅𝑅 ∙ 𝐹𝑍 Equation 2.20 

 

The rolling resistance force, 𝐹𝑟𝑟 and the load on the tyre, 𝐹𝑍 are both expressed in Newtons and 

the rolling resistance coefficient, 𝐶𝑅𝑅, is a dimensionless number. This equation is useful for 

comparing tyres to be used for the same application and under the same operating conditions such 

as tyre pressure and speed. This is because rolling resistance is not only dependent on the load on 

the tyre but also on its operating conditions; speed, temperature, rolling time and inflation pressure 

(Hall & Moreland, 2001; Michelin, 2003). 

 Effect of speed 

Rolling resistance is typically tested according to International Standard Organisation (ISO) 

standards at a speed of 80 km/h (Evans et al., 2009). Aerodynamic drag is usually included in 

rolling resistance tests and because aerodynamic drag increases with the square of speed, the 

effect of speed will be greater at higher speeds (Hall & Moreland, 2001).  Centrifugal forces 

within the tyre also increase as tyre speed increases and therefore more energy is consumed. 

Standing waves within the structure of the tyres can also develop at higher speeds which causes 

rolling resistance to increase exponentially (Hall & Moreland, 2001). 

It should be noted that there are also phenomena which act to reduce rolling resistance at higher 

speeds. At higher speeds the frequency of deformation increases, which reduces rolling resistance 

as the phase lag of all vulcanised polymers drops with increased frequencies (Hall & Moreland, 

2001). Also, as the frequency of deformation increases, so does tyre temperature which lowers 

rolling resistance. However these effects are not significant enough to counteract the mechanisms 

acting to increase rolling resistance at higher speeds (Hall & Moreland, 2001). Figure 2.9 shows 

the values of rolling resistance force versus speed on a 1.2 tonne car with 4 wheels with a 𝐶𝑅𝑅 of 

0.0085. It can be seen that speed has little effect up to 100 to 120 km/h (Michelin, 2003). 
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Figure 2.9. Relationship between rolling resistance and vehicle speed (Michelin, 2003). 

 

 Effect of temperature 

The temperature of a vehicle’s tyre does not remain constant throughout its journey. The heat lost 

from the hysteresis of the tyre deformation causes heat build-up and ultimately a rise in tyre 

temperature. This causes its rolling resistance force to decrease as the tyre material becomes less 

visco-elastic at higher temperatures (Janssen & Hall, 1980). The increased temperature will also 

increase tyre pressure which will in turn decrease the rolling resistance force further. Janssen and 

Hall (1980) conducted rolling resistance tests at different ambient temperatures and measured the 

rolling resistance at the start of the test until tyre shoulder temperature reached equilibrium. The 

results are displayed in Figure 2.10 and show that the final rolling resistance can be significantly 

lower, especially at lower ambient temperatures.  

 

 

Figure 2.10. Effect of ambient temperature on initial and final rolling resistance (Janssen & 

Hall, 1980). 
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Clark and Dodge (1979) report that for passenger car tyres, a temperature equilibrium is reached 

after 20 to 30 minutes under steady-state conditions such as highway driving. For urban drive 

cycles however, tyres do not reach an equilibrium point but rather fluctuate around an average 

temperature (Clark & Dodge, 1979).  

 Effect of tyre inflation pressure 

It can be shown that a decrease in tyre inflation pressure (at 80 km/h, 80 % maximum load and at 

25°C) by 1 bar from the ISO standardised 2.1 bar used in rolling resistance tests, causes a 30 % 

increase in rolling resistance (Michelin, 2003). As inflation pressure decreases, a tyre will deform 

more which increases tread bending a shear forces (Michelin, 2003). 

 Effect of tyre load 

A very close relationship exists between tyre load and rolling resistance. As load is increased 

rolling resistance increases due to more bending and shearing in the contact patch (Evans et al., 

2009).  It has however been shown by other authors that the rolling resistance coefficient 

decreases as load increases as a result of an increase in tyre temperature as load is increased 

(Michelin, 2003).  

 Effect of tyre material 

The reinforced vulcanised elastomers used in modern tyres contain over 200 raw materials and 

are made up of polymers combined with reinforcing fillers and sulphur (Michelin, 2003). The 

hysteretic energy loss within tyres is only due to the properties of the polymers they are 

constructed from (Michelin, 2003). Because hysteresis in a tyre leads to both grip and rolling 

resistance, polymers with low hysteresis cannot be chosen as safety will be compromised 

(Michelin, 2003).  The challenge is for manufactures to decrease rolling resistance without 

compromising tyre grip.  

Although hysteresis leads to grip and rolling resistance, the frequency is different for each 

mechanism (Michelin, 2003). Michelin (2003) found they could decrease hysteresis in the domain 

of rolling resistance (lower frequencies) and increase hysteresis in the domain of grip (higher 

frequencies) by altering the layout of reinforcing aggregates within the tyre.  

Reinforcing fillers such as carbon black or silica increase tyre rigidity and decrease tyre wear, 

thereby extending the life of tyres, however these compounds also amplify energy dissipation, 

especially carbon black (Michelin, 2003). By using silica and increasing the distance between 

filler aggregates by ensuring the they are equally spaced, this effect can be reduced (Michelin, 

2003). Tyre manufacturers have reduced rolling resistance significantly in recent years as shown 
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by Figure 2.11, which depicts the rolling resistance index of the lowest tyre produced in a year 

from 1980 to 2000. 

 

 

Figure 2.11. Reduction of rolling resistance of Michelin tyres since 1979 (Hall & Moreland, 

2001). 

 

 Effect of tyre dimensions 

Michelin (2003) report that an increase in rim diameter of 10 mm results in approximately 1 % 

reduction in rolling resistance. The primary cause of rolling resistance is the result of tyre bending 

in the region of the contact patch and therefore as tyre diameter increases, less deflection is 

required to create the contact patch as the curvature of the tyre will be less than that of a smaller 

diameter tyre (Michelin, 2003). A multivariate statistical analysis of 170 tyres, presented in a 

report by the National Research Council Transportation Research Board (2006), concluded that 

increasing rim diameter by 1 inch would cause a 5 to 8 % loss in rolling resistance which is on 

average 2.3 times greater than the loss predicted by Michelin (2003). 

 Effect of speed category 

The analysis of 170 tyres by the National Research Council Transportation Research Board (2006) 

also found that tyres with a lower speed rating showed a lower rolling resistance coefficient. Tyres 

with the highest speed ratings (W, Y, Z) were found to have 10 to 22 % higher rolling resistance 

coefficients as compared to tyres with the smallest speed rating (S, T). 
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 Tyre labelling 

Regulation EC 1222/2009 requires that all new tyres sold from 1 November 2012 be labelled with 

the tyre’s noise level, wet skid resistance and fuel efficiency (Sandberg, 2011). The fuel efficiency 

of the tyre is determined directly from the rolling resistance coefficient measured according to 

ISO 28580 (Sandberg, 2011). The energy efficiency is reported as an efficiency class which 

corresponds to a rolling resistance coefficient as shown in Table 2.3. 

 

Table 2.3. EC 1222/2009 energy efficiency classes and corresponding rolling resistance 

coefficients (Sandberg et al., 2011). 

𝐶𝑅𝑅 [kg/t] Energy efficiency class 

𝐶𝑅𝑅 ≤ 4.0 A 

4.1 ≤ 𝐶𝑅𝑅 ≤ 5.0 B 

5.1 ≤ 𝐶𝑅𝑅 ≤ 6.0 C 

6.1 ≤ 𝐶𝑅𝑅 ≤ 7.0 D 

7.1 ≤ 𝐶𝑅𝑅 ≤ 8.0 E 

𝐶𝑅𝑅 ≥ 8.1 F 

 

 Measurement methods 

Tyre rolling resistance can be grouped into two main categories; testing of tyres on a laboratory 

drum or testing of tyres on actual road surfaces. In the drum method, a large drum, typically 1.7 

m in diameter, with a smooth or textured surface is rotated by an electric motor (Sandberg, 2011). 

The tyre to be tested is allowed to spin freely on an axle and is held against the rotating drum with 

a specific force corresponding to the tyre load. The rolling resistance of the tyre causes a breaking 

effect on the drum which can be used to quantify rolling resistance by measuring a spindle force 

or a torque required to maintain constant drum speed and subtracting parasitic losses (Sandberg, 

2011). Figure 2.12 is an example of a laboratory drum testing apparatus used at a testing facility 

in Poland. 
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Figure 2.12. Rolling resistance testing apparatus used in a Polish testing facility (Sandberg, 

2011). 

 

Both the Society of Automotive Engineers (SAE) and ISO have defined standardised laboratory 

testing methods to measure rolling resistance using drums. The testing standards cover both 

passenger car and truck tyres however only passenger car tyres will be discussed as truck tyres 

are not pertinent to the aim of this research. 

 Testing standards 

2.5.10.1  SAE standards 

SAE standard J1269, introduced in 1979, is a multi-point test where the rolling resistance of a 

tyre is measured at combinations of three tyre pressures and two loads at 80 km/h (Evans et al., 

2009). This results in four discreet measurement points at specific pressure/load combinations 

and skim loads must be subtracted from the data at each testing point (Evans et al., 2009). The 

data can then be fitted to a least squares regression model to predict the rolling resistance at any 

tyre pressure and load combination (Evans et al., 2009).  

In 1999 a new testing standard, SAE J2452, was introduced which measures rolling resistance 

under coast down conditions where the speed is reduced from 115 km/h to 15 km/h in a step-wise 

fashion (Grover, 1998). The speed of the tyre must be reduced according to a defined coastdown 

curve, shown in Figure 2.13. A 1.7 m drum with a medium surface texture (80 grit) is used. The 

data is then fitted to an empirical model, as shown in Equation 2.21 (Grover, 1998). 

 

 𝐹𝑟𝑟 = 𝑃𝛼𝐹𝑍
𝛽(𝑎 + 𝑏𝑣𝑥 + 𝑐𝑣𝑥

2) Equation 2.21 

 

In the above, 𝑃 is tyre inflation pressure in kPa, 𝐹𝑍 is applied vertical load in N, 𝑣𝑥 is speed in 

km/h, α, β, 𝑎, 𝑏 and 𝑐 are coefficients. 
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Figure 2.13. Curve for coastdown rolling resistance testing (Grover, 1998). 

 

Equation 2.21 can be used to predict the rolling resistance force at any tyre inflation pressure, 

load and speed combination. Grover (1998) compared the measured rolling resistance of tyres at 

a wide range of load/pressure conditions with values calculated using Equation 2.21. The results 

showed a correlation of greater than 0.99 between measured and calculated values which indicates 

that this model should be preferred for modelling rolling resistance test data. The range of α for 

modern radial construction pneumatic tyres is 0.3 to 0.5 and β is 0.8 to 1.1 but is mostly less than 

1 (Hall & Moreland, 2001). 

The standard also defines a mean equivalent rolling force (MERF) which computes an average 

rolling resistance of a particular tyre at a certain inflation pressure and load over the duration of 

a particular drive cycle, from time 𝑡0 to time 𝑡𝑓. MERF can be computed using Equation 2.22 

(Hall & Moreland, 2001). 

 

 

𝑀𝐸𝑅𝐹 =  
∫ 𝑃𝛼𝐹𝑍


 (𝑎 + 𝑏𝑣𝑥 + 𝑐𝑣𝑥

2)𝑑𝑡
𝑡𝑓

𝑡0

∫ 𝑑𝑡
𝑡𝑓

𝑡0

 Equation 2.22 

 

2.5.10.2 ISO standards 

In 2005, the ISO 18164 standard was published for measuring rolling resistance which is very 

similar to SAE J1269 except this standard only uses a multi-point test. ISO 28580 was then 

released in 2009 which tests rolling resistance at a single test point at a standard load, pressure 

and speed on a 2.0 m smooth drum. The advantage of this standard is that results are standardised 

across all laboratories by a Round Robin Test where two test tyres are tested on a reference 
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machine and then sent to a candidate laboratory for calibration. This standard is used extensively 

to compare the rolling resistance of tyres as the values are standardised and easier to compare as 

it is a single value (Sandberg, 2011).  

2.6 Suspension losses 

A vehicle’s suspension system is one of the most critical parts of any vehicle. It is responsible for 

absorbing road asperities as well as proper vehicle handling and ride comfort. The energy 

absorbed by the suspension system, in the form of vibrational energy, is ultimately dissipated to 

the environment in the form of heat (Zhang, Guo, Wang, Chen, & Li, 2017). Although this energy 

loss is caused by road roughness, the original energy source is the vehicle’s powertrain (Zhang et 

al., 2017). Therefore in vechicles, suspension energy losses ultimately result in the reduction of 

overall vehicle energy efficiency. Vibrational loads are absorbed by three mechanisms in 

passenger vehicles; the tyre, the spring and the damper. Most of the energy is absorbed by the 

damper through the conversion of linear motion to thermal energy by dampening oil (Zhang et 

al., 2017). 

Tests conducted by Audi AG, revealed that cars travelling on typical German roads have an 

average recovery power potential of 150 W, ranging from 3 W on newly paved roads to 613 W 

on uneven country roads (Zhang et al., 2017). Energy recovery is directly proportional to the 

speed of the vehicle and is strongly dependant on the roughness of the road (Zhang et al., 2017). 

Figure 2.14 shows the potential energy to be recovered from suspension energy losses based on 

vehicle speed and road roughness class for light passenger vehicles (Zhang et al., 2017). The 

analyses focused only on the vertical motion of the vehicle and does not consider vehicle pitch 

and roll. Also, energy dissipated by the tyre and spring and the efficiency of the conversion 

process is ignored as these losses are small compared to damper losses (Zhang et al., 2017). 

 

 

Figure 2.14. Average regenerative power of light vehicle suspension systems (Zhang et al., 

2017). 
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Proper interpretation of Figure 2.14 requires an understanding of the road types represented by 

the various classes. Class A is classified according to the ISO Power Spectral Density as a very 

good road surface, class C as an average road surface and class D as a poor road surface 

(Ngwangwa, Heyns, Breytenbach, & Els, 2014). These can be further interpreted by the 

International Roughness Index where class A roads are considered as new road surfaces and class 

B as maintained but damaged or unpaved road surfaces (Ngwangwa et al., 2014). 

 Implementing suspension regeneration 

Various technologies are being explored to recover damping losses from vehicles. One such 

technology is an electromagnetic damper, where a traditional damper is replaced with a magnet 

which is allowed to move within a coil (Wei & Taghavifar, 2017). Movement of the magnet 

within the coil generates an electrical potential according to Faraday’s Law and can charge the 

battery pack (Wei & Taghavifar, 2017). Another technology being investigated is the use of 

piezoelectric materials in place of a damper. Piezoelectric materials allow for the conversion of 

mechanical stress into electrical energy and therefore also show promise for harvesting energy 

losses from tyre vibrations (Wei & Taghavifar, 2017). 

2.7 Aerodynamic drag 

The final resistance force to consider is aerodynamic drag. As any vehicle moves forward, it must 

overcome the resistive forces imparted by the surrounding air as the vehicle moves through it. 

These resistive forces, known collectively as aerodynamic drag, comprises three parts for vehicles 

(Guzzella & Sciarretta, 2013; Vodovozov, Raud, Lehtla, Rassolkin, & Lillo, 2014): 

1. Viscous skin friction in the boundary layer of the vehicle surface 

2. Induced drag due to vortices generated behind the vehicle 

3. Pressure drag due to pressure differences at the front and rear of the vehicle caused by air 

separation 

Pressure drag dominates aerodynamic losses and therefore the first two components are typically 

neglected (Vodovozov et al., 2014). In standard passenger vehicles 65 % of the aerodynamic 

losses are a result of the car body bulk geometry and the remaining comprises 20 % due to wheel 

housings, exterior mirrors, antennae, window housings, etc. and engine ventilation accounts for 

the remaining 5 % (Guzzella & Sciarretta, 2013). For EVs, the proportion of engine ventilation 

will decrease as electric motors require less heat removal than IC engines (Larminie & Lowry, 

2013).  
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Computational fluid dynamics (CFD) can be used to determine the aerodynamic losses at 

particular flow conditions however this is a computationally expensive process and it is therefore 

impractical to calculate the force at multiple loading points such as wind speed and direction 

(Guzzella & Sciarretta, 2013). Typically, the vehicle is represented as a simplified prismatic body 

with frontal area, 𝐴𝑓 and the aerodynamic force opposing this body is estimated by multiplying 

the pressure drag by an aerodynamic drag coefficient 𝐶𝑑, which accounts for actual flow 

conditions (Guzzella & Sciarretta, 2013). The resulting approximation of the force due to 

aerodynamic drag, 𝐹𝑎𝑑 can be computed using Equation 2.23 (Guzzella & Sciarretta, 2013). 

 

 
𝐹𝑎𝑑 =


𝑎𝑖𝑟

𝐶𝑑𝐴𝑓

2
∙ (𝑣𝑥 ± 𝑣𝑤𝑖𝑛𝑑)2 Equation 2.23 

 

In the above,  𝑎𝑖𝑟  is the density of the ambient air and 𝑣𝑤𝑖𝑛𝑑 is headwind speed. 

𝐶𝑑 is computed using CFD and can be assumed as constant across vehicle drive cycles (Guzzella 

& Sciarretta, 2013). It typically ranges from 0.3 to 0.5 for passenger vehicles (Vodovozov et al., 

2014). EVs can have typically lower values, as low as 0.19, due to reduced under-vehicle piping, 

flexibility in the placement of components and the reduced need for engine cooling (Larminie & 

Lowry, 2013). 𝐶𝑑 can also be expressed as a function of the apparent wind angle in relation to the 

direction of travel, known as yaw angel (Altinisik, Yemenici, & Umur, 2015; United Nations, 

2015). The effect of yaw angle on 𝐶𝑑 can be determined empirically and fitted to a four term 

polynomial, with a typical characteristic shown in Figure 2.15 (Altinisik et al., 2015). 

 

Figure 2.15. Typical effect of yaw angle on aerodynamic drag coefficient (Altinisik et al., 

2015). 
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If a constant aerodynamic force is assumed, as yaw angle increases, 𝐶𝑑 is expected to increase 

according to Equation 2.23 as the free stream velocity decreases with an increase in yaw angle 

(Altinisik et al., 2015). However experimental data has shown a decrease in 𝐹𝑎𝑑 as the yaw angle 

increases and therefore 𝐶𝑑 begins to decrease after a critical yaw angle, usually 20° to 35° 

(Altinisik et al., 2015). 

The density of air can vary with altitude, humidity and temperature but is typically assumed as a 

constant value of 1.25 kg·m-3 which is a reasonable approximation for vehicle modelling 

(Larminie & Lowry, 2013). 

2.8 Traction motor 

Electric motors have historically been involved in a vast array of stationary applications, 

particularly in the industrial sector. Induction motors are commonly used as they can be operated 

directly off a three phase AC grid supply and they are robust and relatively inexpensive as they 

have no permanent magnets (Guzzella & Sciarretta, 2013). This has led to the design and 

development of a wide range of induction motors suitable for the industrial sector. The 

requirements of electric motors for EVs are however different to stationary applications. The 

design objectives of motors for EVs are (Vodovozov et al., 2014): 

1. To have high energy efficiency over typical EV drive cycles to reduce the demand on the 

battery pack and increase vehicle range 

2. To operate efficiently at a large range of operating points over a wide operational 

envelope 

3. To provide a peak torque output of at least four times the continuous rating for hill 

climbing or short periods of high acceleration 

4. To operate within a speed range suitable for both city driving and high speed highway 

driving (up to four times rated speed) 

5. To offer high specific power to optimise vehicle mass 

6. To withstand the harsh operating environment of automobiles 

7. To offer high controllability during both dynamic and steady-state operation 

8. Allow for multiple starts and stops during city and high traffic driving 

9. Allow for the recovery of energy during braking (operate as a generator) 
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The most commonly used electric drives to fulfil the above requirements are (Nanda & Kar, 2006; 

Vodovozov et al., 2014): 

1. Permanent magnet synchronous machines (PMSM) 

2. Asynchronous induction machines (ICM) 

3. Switched reluctance machines (SRM). 

4. Brushed DC motors. 

All electric motors require a rotating magnetic field which can be achieved through either 

electrical or mechanical commutation. In the case of brushed DC motors, mechanical 

commutation is implemented through brushes and collectors and for PMSM, SRM and ICM 

motors, electrical commutation is achieved through a multi-phase AC supply. Friction between 

the brushes and collectors in DC motors causes a drop in motor efficiency and service life due to 

wear on the brushes (Guzzella & Sciarretta, 2013). A comprehensive comparison of all motor 

properties for each type of motor is considered in Table 2.4, where a higher score is considered 

more desirable. 

 

Table 2.4. Comparison of EV motor technologies (Nanda & Kar, 2006; Yildirim, Polat, & 

Kürüm, 2014). 

 Efficiency Reliability Cost Availability Power density Controllability 

PMSM 5 4 3 4 5 4 

ICM 4 5 5 5 4 5 

SRM 4 5 4 3 4 3 

DC 2 2 4 5 3 5 

 

Brushed DC motors are seldom selected for EV applications due to the low energy efficiency of 

the motors. This leaves EV designers with the choice of PMSM, ICM and SRM motors. SRM 

motors have been identified as a promising technology for EVs however they are not readily 

available and suffer from high noise and torque ripple (Yildirim et al., 2014). Therefore PMSM 

and ICM are the most common drives used for EV applications. Induction motors are relatively 

inexpensive due to a high utilization factor in stationary grid applications and have high 

efficiencies (Vodovozov et al., 2014). However PMSM motors have the highest efficiency and 

have increased power density but are typically more expensive than induction drives due to the 

utilisation of rare-earth permanent magnets (Goss, Mellor, Wrobel, Staton, & Popescu, 2012).  

Although ICM motors are readily available, most commercially available designs are high speed 

and low torque designs and therefore a gearbox is required to step up the torque. The addition of 
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a gearbox reduces the total drivetrain efficiency and increase cost and complexity of the 

drivetrain. Therefore when considering the full EV drivetrain, PMSM motors are often the best 

choice and are commonly used for EVs (Park et al., 2014). Therefore only PMSM motors are 

considered further.  

It should be noted that another class of motors exists, brushless DC (BLDC) motors, which are 

similar in construction to a PMSM motor and require a similar three phase AC current source to 

PMSM motors despite what their name implies. The difference between PMSM and BLDC is the 

type of winding used, for PMSM motors, the stator windings are distributed and for BLDC the 

windings concentrated, which causes a sinusoidal and trapezoidal back electromotive force 

(BEMF) response respectively (Guzzella & Sciarretta, 2013). PMSM motors are a preferred 

choice over BLDC motors as they have a higher power density, less torque ripple and higher peak 

efficiencies (Torres, 2009). 

 PMSM structure 

Three phase PMSM motors consist of a stator with one or more sets of three phase windings, 

which produce a rotating magnetic field when a three phase sinusoidal AC source is applied. The 

rotor consists of pairs of permanent magnets which generate a stationary magnetic field which 

interacts with the rotating stator field to cause rotation of the rotor. The number of sets of windings 

and pairs of rotor poles is called the number of motor poles (Guzzella & Sciarretta, 2013). This 

structure is shown in Figure 2.16, as well as the difference in structure between interior and 

exterior rotor topologies. Exterior-rotor motors can be used as hub motors where the rotor is 

connected directly to the wheel. 

 

Figure 2.16. PMSM structure (Meier, 2001). 
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There are two main types of PMSM motors, surface PMSM (SPM) and interior PMSM (IPM) 

(Kulkarni & Thosar, 2013). In SPM, magnets are mounted on the surface of the rotor whilst for 

IPM motors magnets are buried within the rotor as depicted in Figure 2.17. Buried magnets are 

more robust and therefore suited to high speed operation and result in a more uniform air gap 

however they increase the cost and complexity of the design (Kulkarni & Thosar, 2013). 

 

 

Figure 2.17. Cross sections of PMSM motor types (Meier, 2001). 

 

 PMSM operating regions 

The three operating regions of a PMSM motor are shown in Figure 2.18. The first mode, Mode I 

is a constant torque region where the motor operates at rated flux. As the speed of the motor is 

increased, BEMF opposes the applied stator voltage. When the BEMF reaches the maximum 

voltage of the inverter, the speed of the motor can no longer be increased. The speed at this point 

is defined as the base speed of the motor (Goss, Mellor, Wrobel, Staton, & Popescu, 2012).  

 

 

Figure 2.18. Operation regions of a BLAC PM motor (Goss et al., 2012). 
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In order to increase speed beyond the base speed, a strategy known as field weakening can be 

employed where a demagnetising current is used to decrease the permanent magnet flux which in 

turn decreases the BEMF and torque output of the motor (Goss et al., 2012). When field 

weakening is employed, the motor enters its second stage of operation, Mode II. Any increase in 

speed in this region will cause a decrease in motor torque.  

As the speed of the motor is increased, a higher demagnetising current is required. At some point 

the total current vector will exceed the maximum current output of the motor drive and therefore 

the demagnetising current will be at a maximum value and the motor will enter the final 

operational mode, Mode III. To increase the speed of the motor beyond this point the 

demagnetising current is kept at maximum and the torque producing current component is 

decreased, thereby reducing the total current vector (Goss et al., 2012). 

 PMSM energy loss characterisation 

Energy losses in PMSM motors can be considered in terms of losses that increase with the speed 

of the motor, losses that increase with the torque of the motor and losses that increase with both 

torque and speed at extremes of motor operation (Petro, 2011). Losses that increase with the speed 

of the motor are iron or core losses comprising eddy and hysteresis losses and frictional bearing 

and windage losses (Groschopp, 2015). Windage losses are associated with air turbulence acting 

against the motion of the rotor. Mechanical losses due to windage and bearing friction are 

typically ignored as they negligible compared to the magnitude of eddy and hysteresis losses. It 

is difficult to find an accurate analytical expression for core power losses, 𝑃𝐶𝑜𝑟𝑒 and it is therefore 

typically estimated using the empirical approximation shown by Equation 2.24 (Rabiei, Thiringer, 

& Lindberg, 2012).  

 

 𝑃𝐶𝑜𝑟𝑒 =  𝑘𝑒𝑑𝑑𝑦𝑓𝑚
2𝐵2 + 𝑘ℎ𝑦𝑠𝑡𝑓𝑚𝐵2 + 𝑘𝑒𝑥𝑓𝑚

1.5𝐵1.5 Equation 2.24 

 

In the above, 𝑓𝑚 and 𝐵 are the motor frequency and peak flux density and 𝑘𝑒𝑑𝑑𝑦, 𝑘ℎ𝑦𝑠𝑡 and 𝑘𝑒𝑥 

are coefficients relating to eddy current, hysteresis and excess losses. 

The coefficients in Equation 2.24 must be experimentally determined, calculated according to a 

magnetostatic finite element field or determined using an analytical solution (Mellor, Wrobel, & 

Holliday, 2009). A commonly used experimental technique is a no-load loss approximation where 

it is assumed that losses at no-load are dominated by core losses and power loss is measured at 

discrete points across the speed range of the motor (Rabiei et al., 2012). In the case of finite 
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element or analytical approaches, the exact motor geometry and design must be known (Mellor 

et al., 2009). A typical iron loss versus motor frequency curve is shown in Figure 2.19. 

 

 

Figure 2.19. Iron losses compared to PMSM motor speed (Amjad, Rudramoorthy, 

Neelakrishnan, Sri Raja Varman, & Arjunan, 2011; Mellor et al., 2009). 

 

Winding or copper losses relate to the ohmic resistance of the stator windings. As  ohmic power 

losses are directly proportional to the square of current, which increases proportionally with 

torque, these losses are dependent on motor torque (Rabiei et al., 2012). 

In Mode I, losses are dominated by copper losses as core losses only become significant in Mode 

II, as the speed of the motor is increased (Mellor et al., 2009). In Mode II, where field weakening 

is employed, magnetic excitation is decreased which causes a decrease in iron losses (Mellor et 

al., 2009). The shift in dominant losses from low to high speed operation is evident in the 

experimental data obtained from an IPM motor operating at rated torque shown in Table 2.5. 

 

Table 2.5. Comparison of performance at 1500 rpm and 6000 rpm of a PMSM motor (Dorrell, 

Knight, Popescu, Evans, & Staton, 2010). 

Speed = 1500 rpm 

Torque [Nm] Current [Arms] Iron loss [W] Copper loss [W] Eff. [%] 

303 141.1 198 4328 91.3 

Speed = 6000 rpm 

Torque [Nm] Current [Arms] Iron loss [W] Copper loss [W] Eff. [%] 

45.6 31.8 953 219 96.1 
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 Quasistatic PMSM modelling 

The motor is one of the most complicated components of an EV to model and simulate (Gao et 

al., 2007). The primary concern of motor modelling is to compute the efficiency of the motor at 

each operating point (shaft torque and angular speed combinations) of the motor. Efficiency 

contour maps, for example that of Figure 2.20, are often used as means of populating a look-up 

table of efficiency values. These maps define motor efficiency at a particular torque and speed 

value based on a particular control strategy (Stipetic & Goss, 2016). Whilst these maps allow for 

quick and accurate estimation of motor efficiency, they are not often provided by manufactures 

and they do not allow for the simulation of dynamic motor properties (Gao et al., 2007).  

 

 

Figure 2.20. Generated contour efficiency map for a 2004 Toyota Prius motor (Goss, Mellor, 

Wrobel, Staton, & Popescu, 2012). 

 

Another challenge presented by using efficiency contour maps is that the efficiency values are 

only true for operation in the positive torque region and not during regenerative braking when 

torque is negative (Guzzella & Sciarretta, 2013). Therefore the efficiency map for positive torque 

values cannot be mirrored to the negative torque region. This can be seen from Figure 2.21 which 

shows measured efficiency values of a typical EV traction motor. A more suitable approach is to 

mirror the power losses at each operating point, which yields Equation 2.25 (Guzzella & 

Sciarretta, 2013). 

 

 
𝑚

(𝑚, −|𝑇𝑚|) = 2 −
1

𝑚
(𝑚, |𝑇𝑚|)

 Equation 2.25 
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Figure 2.21. Efficiency map of a typical traction motor for both positive and negative torque 

values (Guzzella & Sciarretta, 2013). 

 

 PMSM dynamic modelling 

A second approach to modelling PMSM motors is through dynamic modelling which models the 

speed and torque capabilities more accurately than the quasi-steady approach (Gao et al., 2007). 

Figure 2.22 shows two common reference frames used in the analysis of PMSM motors. The 

stationary stator reference frame, where u, v and w represent the direction of positive flux 

produced by each stator winding (Dajaku & Gerling, 2007). The rotating dq reference frame can 

also be used where the d axis is an axis of symmetry which intersects a rotor pole and the q axis 

is an axis of symmetry between poles, as shown in Figure 2.22 (Dajaku & Gerling, 2007). 

 

 

Figure 2.22. Schematic of a PMSM (Dajaku & Gerling, 2007). 
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Dynamic motor models are typically modelled in the rotating dq reference frame to simplify 

dynamic relationships and to simplify the control of motor torque. The dq axes voltage 

components, 𝑢𝑑(𝑡) and 𝑢𝑞(𝑡) for a three phase PMSM motor can be solved by applying 

Kirshoff’s law to the equivalent circuit shown in Figure 2.23 to give Equation 2.26, Equation 2.27 

and Equation 2.28 (Park et al., 2014).  

 

 

Figure 2.23. Equivalent PMSM circuit. 

 

 

𝑢𝑞(𝑡) = 𝑅𝑠𝑖𝑞(𝑡) +
𝑑𝑞𝑠

𝑑𝑡
+ 𝑟𝑑𝑠 Equation 2.26 

 𝑢𝑑(𝑡) = 𝑅𝑠𝑖𝑑(𝑡) +
𝑑𝑑𝑠

𝑑𝑡
− 𝑟𝑞𝑠 Equation 2.27 

 𝑑𝑠 = 𝐿𝑑𝑖𝑑 + 𝑓 ,𝑞𝑠 = 𝐿𝑞𝑖𝑞 Equation 2.28 

 

In the above, 𝑖𝑑(𝑡) and 𝑖𝑞(𝑡) are the dq axes components of the stator current, 𝑅𝑠 is the stator 

resistance, 𝐿𝑑 and 𝐿𝑞 are the dq axes inductances, 𝑟 is the electrical angular speed of the rotor, 

𝑞𝑠 and 𝑑𝑠 are the dq axes stator flux linkage components, 𝑓 is the flux linkage due to the rotor 

magnets and 𝑁 is the number of pole pairs.  

If the motor is operated in the field weakening region or under high current conditions, the linear 

approximations given by Equation 2.28 become inaccurate due the effects of cross coupling and 

saturation (Qi et al., 2008). An example is shown in Figure 2.24. Also the stator resistance 

increases with an increase in temperature and the permanent magnet flux decreases (Goss et al., 

2012). 
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Figure 2.24. Variation of 𝑞𝑠 with 𝑖𝑞 and 𝑖𝑑 (Goss et al., 2012). 

 

By expanding Equation 2.26 using Equation 2.28, it can be seen that a term, 𝑟 ∙ 𝑓, will oppose 

the applied 𝑞 axis voltage resulting in the phenomenon known as BEMF. The electromagnetic 

torque produced by the motor, 𝑇𝑒𝑚 can be expressed as Equation 2.29 (Goss et al., 2012). 

 

 
𝑇𝑒𝑚 =

3𝑁

2
[𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] Equation 2.29 

 

For a non-salient machine, where 𝐿𝑑  = 𝐿𝑞, the term (𝐿𝑑 − 𝐿𝑞) falls away and in the case of salient 

machines where 𝐿𝑑  < 𝐿𝑞, torque is generated as a result of the difference of 𝑑 and 𝑞 axis 

inductance, known as reluctance torque (Goss et al., 2012). SPM motors are non-salient motors 

as the effect of the permanent magnets on dq inductance is independent of rotor position. The 

relationship between the line inductance in the uvw frame to inductance in the dq frame is given 

by Equation 2.30 for non-salient machines (MathWorks™, 2017d). 

 

 
𝐿𝑑 = 𝐿𝑞 =

𝐿𝑙𝑖𝑛𝑒(𝑢𝑣𝑤)

2
 Equation 2.30 

 

The dynamic equation of a PMSM motor can be used to compute the output torque of the motor, 

𝑇𝑚 using Equation 2.31 and Equation 2.32 (Park et al., 2014).  

 

 
𝑇𝑚 = 𝑇𝑒𝑚 − 𝐵𝑚𝑚 − 𝐽𝑚

𝑑𝑚

𝑑𝑡
 Equation 2.31 

 𝑚 =
𝑟

𝑁
 Equation 2.32 
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In the above, 𝑚 is the rotor angular speed, 𝐵𝑚 is the viscous friction coefficient and 𝐽𝑚 is the 

rotor moment of inertia. 

The above equations consider only the stator copper losses and mechanical friction but ignore 

core losses. Core losses can be represented an extra resistance, 𝑅𝑐 as shown in Figure 2.25 which 

is typically determined through experimental measurements (R. Palka, 2016). According to 

Equation 2.24, core losses are function of motor speed and therefore 𝑅𝑐 must increase with motor 

speed. Figure 2.26 shows the relationship between speed and 𝑅𝑐 for a 50 kW PMSM measured 

through a no-load experimental analysis. 

 

 

Figure 2.25. Equivalent PMSM circuit with core losses. 

 

 

Figure 2.26. Relationship between 𝑅𝑐 and motor speed (A. Rabiei, 2012). 

 

 Regenerative braking limitations 

When the motor acts as a generator, torque becomes negative as it acts in a direction to oppose 

the motion of the vehicle. It can be assumed that the torque and speed limits can be mirrored to 

the negative torque region (Genikomsakis & Mitrentsis, 2017). The magnitude of regenerative 

braking is further limited by the SOC and temperature of the battery as the battery must be able 
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to accept the energy produced from braking (Yeo, Kim, Hwang, & Kim, 2004). The maximum 

charging current into the battery, and therefore the magnitude of regenerative braking, may be 

decreased linearly to zero as the battery reaches a 100 % SOC (Yeo et al., 2004). Alternately 

regenerative braking can be set to zero when the SOC of the battery is above a certain SOC 

threshold. 

At low speeds, little regenerative energy is available and driver comfort may be infringed (Yeo et 

al., 2004). Therefore regenerative braking is often disabled at low speeds (Day, 2014; Larminie 

& Lowry, 2013; Yeo, Kim, Hwang, & Kim, 2004). Regenerative braking is also be disabled under 

emergency braking or when an ABS or TCS acts to maintain vehicle stability. 

 PMSM control 

Various control strategies can be implemented to control PMSM motors. One such strategy is the 

maximum torque per ampere (MTPA) strategy which aims to minimise the stator current vector 

for a given torque value.  It can be easily inferred from Equation 2.29 that 𝑖𝑑 does not increase 

the torque output of the motor for non-salient motors and therefore the MTPA strategy is simply 

achieved by setting the value of 𝑖𝑑 to zero (Guzzella & Sciarretta, 2013). In order to operate the 

motor in Mode II and Mode III the value of 𝑖𝑑 can be set to a non-zero value to magnetise the 

permanent magnet field. 

This strategy does not however ensure the motor operates at the highest efficiency over the full 

torque speed envelope, especially at higher speeds where iron losses become dominant (Goss et 

al., 2014; Stipetic & Goss, 2016). Maximum efficiency control strategies may be implemented, 

such as increasing the demagnetising current (𝑖𝑑) at higher speeds, to reduce the iron losses which 

increase with motor speed (Goss et al., 2014). Although an increase in 𝑖𝑑 causes an increase in 

the total current vector, and therefore copper losses, there is a point where the decrease in iron 

losses exceeds the increase in copper losses (Goss et al., 2014). 

As the power source in an EV is a battery pack which provides DC power, power electronics are 

required to convert the DC voltage to a three phase AC voltage to drive the motor. A voltage 

source inverter with variable amplitude voltage and frequency is typically used as this also allows 

for control of the motor torque and speed (Iqbal, Lamine, Ashraf, & Mohibullah, 2006). In an EV, 

the combination of an inverter and control loop is known as the motor controller. The motor 

controller receives a requested torque input from the driver or speed control system which can be 

used to determine a reference dq current using Equation 2.29, which is then transformed into the 

uvw reference frame to drive the motor. 
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In order to set the motor current to the requested current, the input voltage is varied to achieve the 

desired current using a proportional-integral (PI) feedback control loop as shown in Figure 2.27. 

The output voltage of the stator must be transformed back to the dq reference to allow feedback 

in the PI loop, which requires the position of the rotor for the transformation. The motor must 

therefore use a position determining devise such as Hall Effect sensors. The variable voltage and 

frequency of the inverter is achieved using pulse width modulation (PWM) (Park et al., 2014). 

 

 

Figure 2.27. PMSM control loop. 

 

PWM is realised using fast semiconductor switches such as insulated-gate bipolar transistors 

(IGBTs) used for higher power controllers or metal–oxide–semiconductor field-effect transistors 

(MOSFETs) used for lower power controllers (Guzzella & Sciarretta, 2013). Six of these switches 

are used in a configuration shown in Figure 2.28. The on/off duty of the switches determines the 

voltage of the output and the switching sequence determines the frequency of the output. The 

on/off control signal for each switch is commonly determined using a technique called Space-

Vector Modulation (SVPWM) (Guzzella & Sciarretta, 2013).  This technique will not be 

disccused in this work however the imposed limitation of the DC bus voltage, 𝑉𝐵𝑎𝑡𝑡 on the 

maximum motor phase voltage, 𝑉𝑝ℎ𝑎𝑠𝑒,𝑚𝑎𝑥  must be considered according to Equation 2.33 

(Maamoun, Alsayed, & Shaltout, 2010). 

 

 
𝑉𝑝ℎ𝑎𝑠𝑒,𝑚𝑎𝑥 =

𝑉𝐵𝑎𝑡𝑡

√3
 Equation 2.33 
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Figure 2.28. Three phase variable voltage and frequency inverter schematic (Iqbal et al., 2006). 

 

2.8.5.1 Inverter losses 

Voltage source inverters implemented using modern power electronics typically have high 

efficiencies in the range of 97 % to 99 % (Mazgaj, Rozegnal, & Szular, 2015). Losses in such 

inverters are dominated by losses from the semiconductor switching devise used and its associated 

free-wheeling diodes (Mazgaj et al., 2015). Losses in these components comprise switching losses 

and conduction losses (Mazgaj et al., 2015). 

Switching losses are due to energy lost during both the switch-on and switch-off periods and 

depend on the DC voltage applied to the inverter, the load current and the dynamic characteristics 

of the semiconductor (Mazgaj et al., 2015). Conduction losses arise due the ohmic resistance of 

the semiconductor whilst in an on-state and depend on collector current, collector-emitter voltage 

and junction temperature (Mazgaj et al., 2015). Conduction power losses, 𝑃𝑐𝑜𝑛 can be estimated 

using the drain-source on state resistance, 𝑅𝑜𝑛 and Equation 2.34 (Graovac, Marco Pürschel , & 

Kiep, 2006). 

 

 

𝑃𝑐𝑜𝑛 =
1

𝑇𝑝
∫ (𝑅𝑜𝑛 ∙ 𝑖𝑑𝑟𝑎𝑖𝑛

2 (𝑡))

𝑡𝑐𝑜𝑛

0

𝑑𝑡 Equation 2.34 

 

In the above, 𝑇𝑝 is the switching period, 𝑖𝑑𝑟𝑎𝑖𝑛(𝑡) is the drain current, and 𝑡𝑐𝑜𝑛 is the transistor 

conduction time. 

If the RMS value of the semiconductor on-state current, 𝑖𝐷𝑟𝑚𝑠 is used, Equation 2.34 can be 

simplified to give Equation 2.35 (Graovac et al., 2006).  
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 𝑃𝑐𝑜𝑛 = 𝑅𝑜𝑛 ∙  𝑖𝐷𝑟𝑚𝑠
2  Equation 2.35 

 

In order to analyse inverter losses, the current and voltage waveforms of the semiconductor device 

must be understood and this usually requires a simplification in order to use datasheet values to 

characterise these dynamics (Mazgaj et al., 2015). A simplified approach is to use the rated 

switching loss energy, 𝐸𝑠𝑟 from the device’s datasheet for a rated collector voltage, 𝑉𝑟 and current, 

𝐼𝑟 (Hassan, 2011). The switching loss power for current and voltages other than the rated values 

can be linearly scaled according to Equation 2.36 (Hassan, 2011). 

 

 
𝑃𝑠𝑤 =

𝐸𝑠𝑤,𝑟

𝑇𝑝
∙

𝑉

𝑉𝑟
∙

𝐼

𝐼𝑟
 Equation 2.36 

 

2.9 Li-ion batteries 

Li-ion battery modelling has received a great deal of interest recently as li-ion batteries are 

becoming the preferred choice of energy storage for a vast array of applications (Erdinc, Vural, 

& Uzunoglu, 2009). Li-ion batteries offer very high energy and power densities making them 

superior to older chemistries such as lead acid and Nickel-Metal-Hydride (Seaman, Dao, & 

McPhee, 2014). Therefore li-ion batteries are being embraced by the EV industry. The battery 

pack is the most expensive component of an EV and therefore it is of critical importance to ensure 

that the cells operate within conditions that maximise the range of the vehicle as well as the usable 

life of the cells (Tie & Tan, 2013). It is also important to ensure that the cells are capable of 

meeting the demanding operating conditions of EV applications (Seaman et al., 2014). 

Battery models are used for various applications in the EV sector, namely on-line state of charge 

estimation, control system development and drive cycle simulations (Seaman et al., 2014). This 

study will focus on battery modelling for drive cycle simulations as the other applications are not 

within the scope of this research. For such simulations the aims of the battery model should be 

the following (Min & Rincon-Mora, 2006): 

1. Predict run-time and I-V performance for different load profiles 

2. Optimise system performance 

3. Improve battery energy efficiency 
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Researchers have developed a plethora of model types in attempt to model these effects, with 

different levels of model fidelity and complexity (Seaman et al., 2014). The three most prevalent 

methods for modelling li-ion cells are electrochemical modelling, equivalent circuit modelling 

and analytical models (Seaman et al., 2014). 

 Li-ion performance characteristics 

Li-on batteries exhibit a variety of unique performance characteristics that must be accurately and 

efficiently represented by any battery modelling effort. 

2.9.1.1 Dynamic voltage response 

In its simplest form, a li-ion battery can be represented as an ideal voltage source. However in 

reality, numerous non-idealities exist which cannot be ignored when building an accurate system 

level EV battery model. All batteries exhibit the properties of an equivalent series resistance 

which causes an instantaneous drop in terminal voltage when discharging a cell and an increase 

whilst charging (Seaman et al., 2014). This effect is depicted in Figure 2.29 by the dashed 

“Voltage without depletion” line.  

 

Figure 2.29. Charge depletion and recovery (Seaman et al., 2014). 

 

Figure 2.29 also depicts the phenomena of charge depletion and recovery. Charge depletion and 

recovery are caused by the change in concentration of chemical products at the cathode and anode 

(Seaman et al., 2014). Charge depletion can be observed during discharge when the concentration 

of chemical products decreases over time and causes a drop in voltage. Once charging has 

stopped, the concentration increases as chemical products diffuse to the anode and cathode 
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causing a rise in cell voltage, a process known as charge recovery (Seaman et al., 2014). These 

effects can be observed in Figure 2.29 which compares the voltage response of a cell with and 

without the effects of depletion.  

These effects result in a hysteretic effect which implies that a cell exposed to two different load 

profiles, with the same average current, can have very different runtimes (Petricca et al., 2013). 

Therefore a dynamic model is required to accurately predict the response of a cell under a different 

temporal current profiles (Petricca et al., 2013).  

2.9.1.2 Usable capacity 

The usable capacity of a cell can be defined as the energy that can be extracted from a cell under 

specific operating conditions (Min & Rincon-Mora, 2006). The usable capacity of a cell is 

affected by cycle number, storage time, temperature and discharge current (Min & Rincon-Mora, 

2006). Figure 2.30 (a), (c) and (d) show that an increase in cycle number, discharge current and 

storage time causes a drop in the usable capacity of the cell. An increase in temperature however, 

increases the usable capacity of the cell (Figure 2.30(b)) but also accelerates electrode oxidation 

which reduces the service life of the cell (Seaman et al., 2014).  

 

 

Figure 2.30. Typical effects of cycle number (a), temperature (b), discharge current (c) and 

storage time (d) on usable capacity of li-ion batteries (Min & Rincon-Mora, 2006). 
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 Electrochemical models 

Electrochemical models are the most accurate models as they explicitly represent the chemical 

processes within the cell as a series of highly non-linear differential equations (Seaman et al., 

2014). The most widely used and accepted model is based on porous electrode theory and in many 

cases is used to validate other theoretical models (Seaman et al., 2014). Although these equations 

offer high model fidelity and are useful for optimising physical design aspects of batteries, they 

have high computational complexity making these models impractical to model multiple charge–

discharge cycles (Min & Rincon-Mora, 2006). They also require a vast number of parameters 

which can be difficult to measure or obtain due to the proprietary nature of the cells (Min & 

Rincon-Mora, 2006). 

 Mathematical models 

Mathematical or analytical models can be empirical or stochastic models that predict battery run-

time, efficiency or capacity with an accuracy range of 80 to 95 % (Min & Rincon-Mora, 2006). 

Most of these models can only be applied to a specific system and can only predict system level 

parameters such as battery runtime, efficiency or capacity (Min & Rincon-Mora, 2006). The most 

common model is the Peukert Equation (Equation 2.37) which estimates the runtime of a battery 

empirically based on a constant current discharge (Min & Rincon-Mora, 2006). 

 

 

𝐿𝑇 =  
𝐶𝑃

𝐼𝐵𝑎𝑡𝑡
𝑘

 Equation 2.37 

 

In the above, 𝐶𝑝 is the Peukert capacity in Ah, 𝑘 is the Peukert coefficient, 𝐿𝑇 is battery runtime 

in hours and 𝐼𝐵𝑎𝑡𝑡 is battery current in Amperes. 

 Equivalent circuit models 

Equivalent circuit or electrical models represent the battery as a set of electrical components 

which can be structured in various ways to simulate the performance characteristics of li-ion cells. 

Although the fidelity of these models is lower than electrochemical models they are less 

computationally expensive (Seaman et al., 2014). The accuracy of these model types are typically 

95 to 99 %, lying between electrochemical and mathematical models (Min & Rincon-Mora, 

2006). Electrical models also offer other advantages such as ease of implementation, as they make 

use of basic circuit components, they are intuitive (Min & Rincon-Mora, 2006) and can be easily 

incorporated into system level EV models (Seaman et al., 2014). A disadvantage of these models 

is that they cannot be used to optimise physical design parameters of the cell such as the electrode 

size and composition (Seaman et al., 2014). Electrical models can be further broken down into 
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three sub categories, namely impedance, Thėvenin and run-time based models (Min & Rincon-

Mora, 2006). 

2.9.4.1 Impedance models 

Impedance models are based on a parameter extraction technique known as electrochemical 

impedance spectroscopy (EIS). EIS is a process whereby a battery’s voltage response to a range 

of low frequency AC signals is measured (Seaman et al., 2014). The batteries complex impedance 

can then be determined by analysing the magnitude and phase of this response (Seaman et al., 

2014). EIS is not often used as a stand-alone model but rather to calculate the state of charge 

(SOC) or state of health (SOH) of a resting cell and it can be used in conjunction with a Kalman 

filter for online parameter estimation (Seaman et al., 2014). 

2.9.4.2 Thėvenin models 

The circuit diagram of a Thėvenin based electrical battery model is shown in Figure 2.31. 𝑅𝑆  is a 

resistor placed in series which represents the equivalent internal series resistance of a battery. A 

number of resistor capacitor parallel networks (𝑅𝑖𝐶𝑖) are also placed in series to model the 

exponential decay of the voltage response with respect to current due to depletion (Seaman et al., 

2014). The open circuit voltage (OCV) is represented as a constant ideal voltage source and 

simulates the OCV at a particular SOC. Whilst these models can capture the dynamic voltage 

response of a battery at a certain SOC they cannot predict battery runtime or steady-state voltage 

variations (Min & Rincon-Mora, 2006). 

 

 

Figure 2.31. Thėvenin model of a li-ion cell (Seaman et al., 2014). 

 

The fidelity of Thėvenin based models can be increased by making the components of the model 

dependant on internal states of the cell such as SOC and temperature or increasing the number of 

resistor-capacitor (RC) pairs (Seaman et al., 2014). As the number of RC pairs are increased the 

complexity and computational complexity of the model is also increased. Hanlei and Mo-Yuen 

(2010) studied the relationship between model fidelity and computational efficiency as the 
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number of RC pairs is increased and found that two RC pairs were a good compromise between 

model fidelity and computational complexity. However Kroeze and Krein (2008) found that the 

two RC pairs did not accurately predict the SOC of a hybrid electric vehicle (HEV) during a drive 

cycle simulation because accuracy for short duration loads (less than 1 s) which are expected from 

HEV drive cycles are lost.  

2.9.4.3 Run-time models 

Min and Rincon-Mora (2006) developed a comprehensive run-time model which added elements 

from Thėvenin models to existing run-time based models. The model developed is considered as 

a standard among equivalent circuit models (Petricca et al., 2013). The model consists of two 

separate circuits, a battery lifetime circuit on the left and a voltage response circuit on the right, 

as seen in Figure 2.32. The battery lifetime circuit consists of capacitor with capacitance, 

𝐶𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 which is equal to the usable energy of the battery converted to a charge in coulombs. 

𝐶𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 can be calculated by Equation 2.38 (Min & Rincon-Mora, 2006). 

 

 

Figure 2.32. Modified run-time based model (Min & Rincon-Mora, 2006). 

 

 𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 3600 × 𝐶𝑁 × 𝑓1(𝑐𝑦𝑐𝑙𝑒) × 𝑓2(𝑡𝑒𝑚𝑝) Equation 2.38 

 

In the above, 𝐶𝑁 is the nominal cell capacity in Ah and 𝑓1(𝑐𝑦𝑐𝑙𝑒) and 𝑓2(𝑡𝑒𝑚𝑝) are correction 

factors used to adjust the capacity of the cell according to temperature and the number of cycles. 

When the voltage across the capacitor, 𝑉𝑆𝑂𝐶 is 1 V the SOC of the battery is 100 % and at 0 V it 

is 0 % (Min & Rincon-Mora, 2006). Therefore 𝑉𝑆𝑂𝐶  is not a physical voltage but rather a 

quantitative indication of the SOC (Min & Rincon-Mora, 2006). The capacitor acts as a current 

integrator as the voltage across a capacitor is the first time integral of current flowing through it 

and so SOC is determined by Equation 2.39 (Seaman et al., 2014).  
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) +
1

𝐶𝑁
∫ 𝐼𝐵𝑎𝑡𝑡(𝜏)𝑑𝜏

𝑡

𝑡0

 Equation 2.39 

 

In the above, 𝑆𝑂𝐶(𝑡) is the state of charge after a time period 𝑡 where 1 is a fully charged battery 

and 0 is an empty battery. The initial state of charge is taken at time, 𝑡0 and 𝐼𝐵𝑎𝑡𝑡 is the net current 

flowing through the battery at time instant τ. 

The circuit on the right contains traditional RC pairs from Thėvenin based models to simulate the 

dynamic voltage response of the cell. The circuit uses a variable voltage source as the OCV, 𝑉𝑂𝐶 

to represent the change in 𝑉𝑂𝐶  as a function of SOC. The value of current flowing through the 

battery, 𝐼𝐵𝑎𝑡𝑡 is used to set the current in the battery lifetime circuit through the variable current 

source. This current source can charge or discharge the capacitor such that SOC changes 

dynamically which in turn changes the OCV in the voltage response circuit (Min & Rincon-Mora, 

2006). If two RC pairs are used to characterise the transient voltage response, 𝑅𝑇𝑟𝑎𝑛𝑠,𝑆,  𝐶𝑇𝑟𝑎𝑛𝑠,𝑆, 

𝑅𝑇𝑟𝑎𝑛𝑠,𝐿 and 𝐶𝑇𝑟𝑎𝑛𝑠,𝐿 are used to capture the short and long-time constants as shown Figure 2.33. 

 

 

Figure 2.33. Transient response to a step current (Min & Rincon-Mora, 2006). 

 

Battery run-time is the time when 𝑉𝐵𝑎𝑡𝑡 reaches the end-of-discharge voltage, 𝑉𝑚𝑖𝑛 and not when 

𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 reaches 0 V. This is because 𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 does not take into account the loss of energy 

caused by the internal resistance of the cell. Once the end-of-discharge voltage is reached some 

charge will be left in the capacity which will indicate this loss of energy. 

The model presented by Min and Rincon-Mora (2006) does not fully take into account the 

reduction in usable capacity as discharge current is increased as shown in Figure 2.30. Although 

the model does consider the energy loss through the resistance of the cell which increases with 

current, further losses are incurred due to an increase in the rate of unwanted side reactions which 

cause a further drop in the usable capacity of the cell (Min & Rincon-Mora, 2006). Kroeze and 

Krein (2008) propose adding a rate factor, 𝑓3 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) to Equation 2.38 to overcome this 

shortcoming.  
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𝑅𝑆𝑒𝑙𝑓−𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is in place to model the loss of battery capacity while no current is being drawn 

from the cell. This effect is typically ignored in EV applications as the vehicles are frequently 

recharged and li-ion batteries have very low self-discharge (Seaman et al., 2014). 

All the parameters presented in Figure 2.32 are in fact multivariable functions of SOC, 

temperature, cycle life and current (Min & Rincon-Mora, 2006). Also, although ignored by Min 

and Rincon-Mora (2006), each parameter has a different value when the battery is being charged 

and when the battery is being discharged (Kroeze & Krein, 2008). Some of these dependencies 

can be ignored under certain conditions. The effect of cycle life can be ignored when analysing 

the energy efficiency of an EV in its new state and not throughout its service life. Temperature 

can be ignored when thermal management systems are in place to maintain battery temperature 

and when discharge currents are kept relatively low (Min & Rincon-Mora, 2006).  

The dependency on SOC and current however cannot be ignored as SOC and current will vary 

throughout any run-time simulation. Min and Rincon-Mora (2006) tested the effect of SOC and 

discharge current on OCV and the parameters of the RC networks. The results are shown in Figure 

2.34 and show that the RC parameters are mostly independent of SOC between 20 to 100 % SOC 

and vary exponentially between 0 to 20 % SOC. The discharge current however has little effect 

on model parameters.  

 

 

Figure 2.34. Extracted parameters of a lithium polymer cell at room temperature (Min & 

Rincon-Mora, 2006). 
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Min and Rincon-Mora (2006) tested the accuracy of the proposed run-time model by comparing 

the simulated response of polymer li-ion cells to experimental data from the same cell under the 

same load profile and operating conditions. It was found that the maximum predicted voltage 

error was 30 mV and the maximum runtime error was 0.4 % (Min & Rincon-Mora, 2006). Figure 

2.35 shows the simulated voltage response to periodic four step discharge overlaid on 

experimental data from the same test. 

 

 

Figure 2.35. Comparison of simulation data and experimental data for a periodic 4 step 

discharge (Min & Rincon-Mora, 2006). 

 

2.9.4.4 Parameter extraction 

The structure of the chosen model largely depends on the parameters that can be calculated from 

data sheet values or that can be extracted experimentally (Seaman et al., 2014). Petricca et al. 

(2013) analyse various datasheets from various battery manufacturers with the aim of 

automatically selecting and generating a model based on available data. As some manufactures 

provide more data than others, the accuracy of the model ultimately depends on the data available. 

Most data sheets contain voltage versus SOC plots for a range of discharge currents and these 

curves can be used to calculate 𝑅𝑆𝑒𝑟𝑖𝑒𝑠 (Petricca et al., 2013). 

In order to model the dynamic behaviour of batteries due to the recovery effect, a discharge curve 

for a pulsed discharge current is required, as shown in Figure 2.36. Three regions can be observed, 

the instantaneous voltage drop, 𝑉𝑅, a short-time effect voltage drop, 𝑉𝑆 and a long-time effect 

voltage drop, 𝑉𝐿. The instantaneous voltage drop is characterised by a resistor, 𝑅𝑆𝑒𝑟𝑖𝑒𝑠 and the 

short and long-time effect dynamics are characterised by the RC pairs, 𝑅𝑇𝑟𝑎𝑛𝑠,𝑆, 𝐶𝑇𝑟𝑎𝑛𝑠,S and 

𝑅𝑇𝑟𝑎𝑛𝑠,𝐿 , 𝐶𝑇𝑟𝑎𝑛𝑠,𝐿 respectively. A tangent line, 𝑡𝑠 is drawn at the beginning of the short-time effect 

curve. The time constant 𝜏𝑆 is taken as the intersection of the asymptote 𝑠 and the line 𝑡𝑠. The end 
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of the short-time region is defined as 5 ∙ 𝜏𝑆 after the instantaneous voltage drop and is used to 

define 𝑉𝑆 . The values of the short-time effect can then be calculated from Equation 2.40 and 

Equation 2.41 (Petricca et al., 2013). 

 

 

Figure 2.36. (a) Discharge curve for a pulsed current train and (b) extraction of RC parameters 

(Petricca et al., 2013). 

 

 

𝑅𝑇𝑟𝑎𝑛𝑠,𝑆 =
𝑉𝑆

𝐼𝐵𝑎𝑡𝑡
 Equation 2.40 

 
𝐶𝑇𝑟𝑎𝑛𝑠,𝑆 =

𝜏𝑆

𝑅𝑇𝑟𝑎𝑛𝑠,𝑆
 Equation 2.41 

 

The long-time effect region begins at the end of the short-time effect region and a tangent line, 𝑡𝐿 

is generated at this point. The time 𝜏𝐿  is taken as the time from the beginning of the long-time 

effect region to the intersection of 𝑡𝐿 and the asymptote 𝑠. The values of the long-time effect can 

then be calculated from Equation 2.42 and Equation 2.43 (Petricca et al., 2013). 

 

 

𝑅𝑇𝑟𝑎𝑛𝑠,𝐿 =
𝑉𝐿

𝐼𝐵𝑎𝑡𝑡
 Equation 2.42 

 
𝐶𝑇𝑟𝑎𝑛𝑠,𝐿 =

𝜏𝐿

𝑅𝑇𝑟𝑎𝑛𝑠,𝐿
 Equation 2.43 

 

The model also requires the generation of an OCV function based on the SOC of the battery, 

𝑉𝑂𝐶(𝑆𝑂𝐶). A least squares approximation can be used to create a function from an OCV versus 

SOC polynomial curve up to the sixth order as shown in Equation 2.44 (Kroeze & Krein, 2008). 

Figure 2.37 shows an example of an OCV versus SOC curve as well as the voltage response of a 

1C charge and 1C discharge. The C-rate of a battery is defined as the discharge current divided 
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by the theoretical current draw which would result in a one hour discharge (Battery University, 

2017). 

 

 
𝑉𝑂𝐶(𝑆𝑂𝐶) = 𝑎0 + 𝑎1 × 𝑆𝑂𝐶 + 𝑎2𝑥𝑆𝑂𝐶2 … Equation 2.44 

 

 

 

Figure 2.37. Voltage response of a li-ion cell with a 1C charge and discharge current (Nelson, 

Bloom, Amine, & Henriksen, 2002). 

2.10 Auxiliary systems 

While all major system losses have been discussed, auxiliary electrical loads must also be 

considered for a complete energy analysis of an EV. An EVs battery pack is largely responsible 

for powering a high voltage traction motor which enables vehicle motion. This same battery pack 

is also required to power a low voltage auxiliary system which can account for 15 % or more of 

vehicles energy consumption (Vražić, Barić, & Virtic, 2014). This auxiliary system is responsible 

for both essential systems such as cooling and heating of the battery pack and traction motor as 

well as non-essential luxury systems such as electric windows, mirrors and infotainment systems. 

Power to the low voltage system is typically provided by a DC/DC buck convertor which steps 

down the high voltage of the battery pack to 12 V.  

Some of the auxiliary systems have a minor impact on energy consumption of the entire vehicle 

however other systems, especially heating and air conditioning can significantly increase overall 

energy consumption of the vehicle (Fiori et al., 2016). The total auxiliary power consumption 

comprises a base load from components in constant use and a peak load from components which 

are used in certain circumstances, such as the use of turning signals. 
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 Heating, ventilation and cooling (HVAC) 

2.10.1.1 Cabin 

Cabin air conditioning and heating systems are commonly present in electric vehicles to ensure 

driver comfort. Heating, which is traditionally sourced from excess heat produced by an IC 

engine, must be provided electrically in EVs using energy from the battery. Electric heaters can 

be powered by the high voltage or low voltage auxiliary system and can draw up to 4 kW 

depending on operating demands (Randall, 2006). The air conditioning system uses a 3 kW to 5 

kW electric compressor and is also powered by either the high voltage or low voltage system. 

Figure 2.38 shows the auxiliary power load at various ambient temperatures as measured on 7375 

Nissan Leaf vehicles. The auxiliary power demand considers the cabin heater and fan, battery 

heater, headlights, power steering, radio etc. (Allen, 2014). It can be seen that there is increase in 

energy consumption the further the ambient temperature increases or decreases beyond the 

“comfortable temperature range” of 60 to 75°F (15 to 24°C) (Allen, 2014). 

 

 

Figure 2.38. Auxiliary power consumption of the Chevrolet Volt versus ambient temperature 

(Allen, 2014). 

 

2.10.1.2 Battery 

EVs are typically powered by li-ion battery packs which must be operated within a certain 

temperature range to prevent reduced cycle life and reduced charge and discharge performance. 

Heating is critical during low temperature charging as li-ion cells cannot be charged below 0°C. 
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Cooling is typically required during peak power discharge and to reduce the rapid cycle life 

capacity fade li-ion cells experience at higher temperatures. 

2.10.1.3 Motor cooling 

Traction motors can also be cooled to increase the peak output power of the motor and to increase 

the longevity of the motor (Karim & Yusoff, 2014). Cooling can be achieved through forced air 

cooling or through a liquid cooling system. Forced air cooling systems typically consist of a fan 

attached to the output shaft of the motor which will draw power from the battery, although not 

directly, through an increased load on the motor. A liquid cooling system however requires power 

for pumps to circulate the coolant through a cooling system, and radiator fans.  

 Lighting 

Lighting can be split into two categories, internal lighting and exterior lighting. Exterior lighting 

includes turn signal lights, head lights (low and high beam), side markers, stop lights, tail lights, 

reverse light/s and a number plate light. Some cars may also be fitted with daytime running lights 

which are only active during the day. LED lighting can be used to significantly decrease the power 

consumption of the entire lighting system (Vražić et al., 2014). Certain lights are only required at 

night, during the day or during both day and night and only at certain intervals, for example 

indicators are powered for an average of 50 s per trip (Vražić et al., 2014). 

 Miscellaneous electronics 

Various other electrical systems consume power from the auxiliary system. These systems include 

electric windows, instrumentation, entertainment/sound system, electric mirrors and seats, battery 

management systems, motor controllers, windscreen wipers, relays, contactors, hooter, power 

steering and brake vacuum pump. The power consumption of these components can be relatively 

easily determined from manufacturer’s datasheets, for example power steering can consume 2 – 

3 kW (Vražić et al., 2014). 

 DC/DC efficiency 

Most auxiliary loads will be powered through the DC/DC convertor which also has an associated 

energy loss. DC/DC convertors used in EVs are switch mode buck convertors which use power 

electronics to step down voltage. Typical peak efficiency of these convertors is greater than 90 % 

at rated load however efficiency drops as the power output of the converter decreases (Keeping, 

2013). 
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2.11 Drive cycles 

Drive cycles have been developed for a number of different purposes but ultimately their aim is 

to represent real-world driving conditions as a velocity-time profile. This velocity time profile 

can then be used to simulate driving conditions on a laboratory chassis dynamometer or through 

a computer model (Brady & O’Mahony, 2016). Various different drive cycles exist which are 

intended to represent different driving conditions such as urban driving, sub-urban driving or 

highway driving. Standard drive cycles can be used for the following purposes (Brady & 

O’Mahony, 2016): 

1. Assist in understanding the requirements of the vehicle’s powertrain 

2. Provide standard measurement procedures for the fuel or energy consumption of vehicles 

3. Assist in analysing EVs impact on the electricity grid 

4. Analysing a vehicle’s lifecycle 

Two types of drive cycles can be identified, transient cycles which have a wide range of velocities 

and accelerations and modal cycles which have periods of constant acceleration and velocity 

(Brady & O’Mahony, 2016). Two categories of drive cycles also exist, drive cycles used for 

legislative purposes and those used for non-legislative purposes (Brady & O’Mahony, 2016). 

Legislative drive cycles such as the New European Drive Cycle (NEDC) and the Federal Test 

Procedure 75 (FTP-75) are used to certify that new vehicles comply to emission and fuel 

consumption limits within their jurisdictions (Brady & O’Mahony, 2016). Non-legislative cycles 

can be used for other purposes such as vehicle design, for example the Athens cycle (Tzirakis, 

Pitsas, Zannikos, & Stournas, 2006). 

Many drive cycles, especially modal cycles, used for legislative purposes, are good for 

comparison purposes however they have been found to have very little accuracy in comparison 

to real-world driving conditions (Brady & O’Mahony, 2016). Tzirakis et al. (2006) found that 

fuel consumption values tested with the NEDC cycle varied 7 to 79 % from real-world driving 

conditions and emissions were reported to be up to 300 % higher.  

 New European Drive Cycle (NEDC) 

The NEDC test is a legislative cycle used in Europe to measure the emissions and fuel 

consumption of vehicles on a laboratory dynamometer (Fiori et al., 2016). The cycle runs for   

1180 s over an equivalent 11 km route with an average speed of 33.6 km/h and is conducted in a 

20 to 30°C environment with a simulated wind and inertial load (Genikomsakis & Mitrentsis, 

2017). The cycle, as shown in Figure 2.39 consists of four ECE-15 low speed urban cycles 
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followed by a single highway driving cycle (Genikomsakis & Mitrentsis, 2017). The cycle is 

however a stylised cycle and is not indicative of real-world driving conditions. 

 

 

Figure 2.39. NEDC drive cycle (Barlow, Latham, McCrae, & Boutler, 2009). 

 

 Environmental Protection Agency (EPA) cycles 

The EPA is a legislative body in the United States which defines various legislative drive cycles. 

Two Federal Test Procedure (FTP) cycles are defined, the FTP-72 and the FTP-75, shown in 

Figure 2.40 (Barlow et al., 2009). The FTP-72 cycle, also known as the Urban Dynamometer 

Driving Schedule (UDDS) is 1874 s in duration and covers 17.8 km with an average speed of 

34.2 km/h. This cycle represents city driving conditions with frequent stops. The Highway Fuel 

Economy Test (HWFET) was designed to represent highway driving conditions over a 16.6 km 

route with an average speed of 77.7 km/h (Barlow et al., 2009).  

 

 

Figure 2.40. FTP-75 drive cycle (Barlow et al., 2009). 
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 Electric vehicle cycles 

As EV drive cycles have only recently been developed, EV manufacturers have relied on existing 

IC vehicle drive cycles to test the range of EVs under laboratory conditions (Brady & O’Mahony, 

2016). This is problematic as these drive cycles were developed for IC vehicles which have 

inherently different performance characteristics to EVs (Brady & O’Mahony, 2016). For instance, 

torque in an IC vehicle is not delivered instantly but only within a defined power band range 

where an electric motor can provide maximum torque immediately.  

2.11.3.1 Dublin Drive Cycle 

Brady and O’Mahony (2016) have developed a drive cycle based on real-world data extracted 

from a large number of EVs being used in Dublin over a six month period. This data was 

processed and synthesised to form the cycle shown in Figure 2.41. The accuracy of the cycle was 

measured by comparing some key statistics of the drive cycle against the same statistics from the 

real-world data. It was found that the Dublin City Drive cycle varied by 4 % from the real-world 

data. Other legislative drive cycles were also compared to the data and the FTP-75 and NEDC 

cycles differed by 8 % and 66 % respectively (Brady & O’Mahony, 2016). 

 

 

Figure 2.41. Dublin drive cycle (Brady & O’Mahony, 2016). 

 

2.11.3.2 World-Harmonised Light Duty Vehicles Test Procedure (WLTP) 

In 2009, the United Nation’s World Forum for Harmonization of Vehicles Regulations (WP.29) 

proposed a roadmap for the development of a worldwide harmonised drive cycle which accurately 

represents real-world driving conditions (International Council on Clean Transportation, 2013). 
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The harmonised system will have many advantages such as (International Council on Clean 

Transportation, 2013): 

1. Vehicle manufacturers will only be required to test a model under one set of conditions 

reducing testing time and cost 

2. The results of the drive cycle will be more indicative of actual driving conditions allowing 

consumers to make more informed decisions 

3. The test prevents manufacturer’s proposed energy reduction strategies from being 

effective only under drive-cycle conditions and not real-world driving conditions 

4. The results will be comparable on a global scale 

The proposed cycle was developed from more than 765 000 km of driving data from a broad 

range of vehicle types, driving conditions and road types (International Council on Clean 

Transportation, 2013). Three different cycles were developed based on the vehicle’s maximum 

speed and power-to-mass ratio such that the acceleration and speed of the cycle will not exceed 

the vehicle’s capability. Each cycle consists of four distinct speed phases; low, medium, high and 

extra-high, as seen in Figure 2.42, which shows the cycle for the highest speed and power class, 

a class 3 vehicle (International Council on Clean Transportation, 2013). 

 

 

Figure 2.42. WLTP drive cycle for a Class 3 vehicle (International Council on Clean 

Transportation, 2013). 

 

After testing the proposed cycle in laboratories throughout the world, the consensus is that the 

new cycle accurately represents real-world driving conditions and can be easily simulated on 

existing dynamometer platforms (International Council on Clean Transportation, 2013). EVs 

introduced to the market after September 2017 will be required to publish vehicle driving range 

based on this new cycle (as well as existing cycles such as FTP-75) and from September 2018 it 

will be required for all new vehicles sold (Cunningham, 2017). 
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The WLTP is also unique in that it has provisions for electrified vehicles which are differentiated 

from IC vehicle’s testing methods. The term “electrified” vehicles covers not only pure BEVs but 

also vehicles containing both electric drivetrains and IC such as hybrid EVs. The testing procedure 

defines the range and the energy/fuel consumption under charge depletion and charge sustaining 

modes (International Council on Clean Transportation, 2013). For BEVs only the charge 

depletion mode is applicable.  

All electric vehicles are considered class 3 vehicles regardless of the power-to-mass ratio of the 

vehicle (United Nations, 2015). The class 3 drive cycle is separated into two subcategories, class 

3-1 for vehicles with a top speed of 120 km/h and class 3-2 where the top speed exceeds 120 km/h 

(United Nations, 2015). A city cycle variation of the standard cycle is also available where the 

vehicle is tested only with the low and medium phases of the full cycle (United Nations, 2015). 

When testing the range of an EV, consecutive cycles are implemented until the break-off criterion 

is reached. The break-off criterion is defined as when the actual speed of the vehicle differs from 

the reference speed by 2 km/h or more within a one second step (United Nations, 2015). If four 

or more consecutive cycles are required because the range of the EV exceeds the distance of four 

cycles, a shortened test procedure may be implemented (United Nations, 2015).  

The shortened test procedure consists of two dynamic sections, DS1 and DS2 and two constant 

speed sections, CSSM and CSSE as shown in Figure 2.43. The dynamic sections comprise a 

standard WLTP cycle followed by the city cycle version and the constant speed sections simulate 

a constant speed of 80 km/h (United Nations, 2015). The duration of CSSE must be set such that 

10 % or less of the battery energy is available at the beginning of the CSSE section and the duration 

of CSSM must be set to make up the balance of the full range of the EV (United Nations, 2015). 

This requires an estimation of the EV range before simulations are run and may require an 

iterative process of selecting the length of the constant speed sections. 

 

 

Figure 2.43. Shortened WLTP drive cycle (United Nations, 2015). 
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2.12 Chapter summary 

A thorough investigation of the literature pertaining to EV modelling was presented in this 

chapter. EV modelling and its implementation was first considered in a broad sense followed by 

an analysis of each energy loss mechanism experienced by EVs. A critical analysis of the 

modelling techniques and equations for each loss mechanism was detailed including the accuracy 

and limitations of the available modelling approaches. Lastly, an investigation into standardised 

drive cycles was carried out. The findings of the survey will be used to develop a complete energy 

model of an EV in the following chapter. 
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CHAPTER 3: MODEL DESIGN 

The development of a dynamic, physics based EV model is discussed in this chapter using the 

insights gained from the literature survey conducted. A graphical physical network modelling 

tool, Simscape™, is used to build and simulate the model numerically. The chapter begins with 

an overview of the model’s aims and its high level design approach and assumptions leading into 

a motivation for the selection of Simscape™ as a modelling tool. An overview of the complete 

system is presented before discussing the development of custom Simscape™ component blocks 

coded using the Simscape™ coding language as well as composite blocks built using standard 

Simscape™ libraries. A model of the Mamba EV is then presented using the blocks developed 

and the parameters for the Mamba are discussed as well as the simulation settings used. 

3.1 Modelling aims 

The aims and objectives of the model developed in this work have already been presented in 

Section 1.3. The primary aim of the energy model is to fully understand and quantify the 

mechanisms of energy losses within the vehicle and to attempt to mitigate these losses through 

energy reduction strategies and component selection. In order to meet these objectives, the 

following should be considered in the construction of the model: 

1. The range of the vehicle, according to standard drive cycles. This will be used to 

quantitatively assess the energy efficiency of the vehicle. 

2. In order to assess different components during the selection process, it is important that 

the model is built based on parameters commonly published in manufacturer’s data sheets 

or non-proprietary data which may be requested from manufactures. Consequently, a 

model which relies on empirical data or experimental analysis of component parameters 

should be avoided. 

3. The developed model will be used to simulate the architecture of the Mamba EV, however 

care must be taken to ensure the model is as universal as possible, such that a variety of 

topologies and components can be tested in keeping with the aim of energy optimisation 

through iteration. 

3.2 Simscape™ 

In order to model and simulate an electric vehicle using a dynamic approach, a modelling tool is 

required which is capable of numerically solving the system of ODEs used to represent the 

system. Graphical programming environments can be used to not only solve this system of 



 

68 

 

equations but also to generate the global set of equations based on smaller sub sections of the 

entire system. In graphical modelling, this is achieved by using a set of blocks and signals where 

a block defines the governing equations and signals are used to transfer variables between blocks. 

Blocks are therefore connected together in a “drag-and-drop” approach in order to form a 

schematic which models an entire system.  

A graphical modelling approach allows large and complex systems, with many different 

components across multiple physical domains, such as electric vehicles, to be efficiently modelled 

and simulated. This approach also allows the model designer to quickly and easily reconfigure 

the model or improve sections of the model in future iterations. Such software should also allow 

for graphical presentation, manipulation and post-processing of simulation results. 

Simscape™ is a toolbox in Simulink™, the graphical modelling tool in MATLAB™, which uses 

a graphical modelling approach focused on modelling physical systems. It was selected to build 

the model due to this adaptation to physical modelling which provides many useful features to 

the model designer. Such features include the automatic handling of units, pre-defined physical 

domains and the ability to generate custom components. 

 Custom components 

Simscape™ has a variety of standard blocks across many different physical domains. Although 

some of these blocks were useful in the development of the model, they were not sufficient to 

model the EV and they do not allow for a bi-directional model that can simulate regenerative 

braking. Therefore custom blocks were written using the Simscape™ text-based programming 

language which allows users to develop custom blocks. This allowed full flexibility in the creation 

of the model in order to optimise the model and ensure that the model met the aims and objectives 

of this work. This was especially beneficial in ensuring that component models were built using 

readily available parameters and to set the level of detail of each block to reduce computational 

cost whilst ensuring model fidelity. The format and language used to build custom blocks was 

defined in Section 2.3.5. 

3.3 Physical network overview 

In the graphical modelling approach, the EV is modelled as a set of blocks connected to represent 

the whole system. The blocks used in the model are presented in Table 3.1, which lists each block, 

its corresponding physical domain and weather a standard or custom Simscape™ block was used. 

Figure 3.1 shows a high level schematic of the EV model developed, as well as the flow of energy 

and data between blocks. Blue coloured blocks indicate the block is a signal block, yellow 
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indicates the electrical domain, red indicates the mechanical (rotational) domain, orange is a 

combination of mechanical and electrical and green is the mechanical (translational) domain. 

Solid blue lines represent bi-directional physical conserving connections and dotted brown lines 

indicate directional physical signal connections. 

 

Table 3.1. Block domains. 

Block Domain Type 

Motor Electrical/Mechanical (rotational) Custom Simscape™ 

Battery Electrical Composite block 

Current sensor Electrical Standard Simscape™ 

MPTA Controller Signal Custom Simscape™ 

Inverter Electrical Custom Simscape™ 

Longitudinal Dynamics Mechanical (translational) Custom Simscape™ 

Rotational Dynamics Mechanical (rotational) Custom Simscape™ 

Wheel Mechanical (rotational) Standard Simscape™ 

Driver model Signal Composite block 

 

 

Figure 3.1. High level model schematic. 

 

An electric vehicle is fundamentally a torque controlled system. A driver must set the requested 

or reference torque value through the accelerator pedal and adjusts this request according to the 

desired speed, driving conditions and the response of the vehicle. In effect, a driver acts as a 

proportional-integral-derivative (PID) speed control loop, regulating the speed of the vehicle 

(Eriksson & Nielson, 2014). This can also be achieved electronically, where the driver requests a 
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speed and a PID loop is implemented on a microcontroller which computes the torque required 

to maintain this speed. 

The drive cycle block implements a speed versus time curve, where requested speed is fed into 

the driver model which computes a torque request which is fed into the MTPA controller. The 

controller computes the required three phase AC voltage to generate the requested motor torque 

and feeds this gating signal to an inverter. The inverter inverts the DC voltage from the traction 

battery pack to the requested AC motor voltage. The motor drives the wheels of the vehicle 

through a drivetrain which transfers the motor torque to the driven wheels and in some cases 

changes the ratio of torque and speed through a gearbox. During regenerative braking the flow of 

energy is reversed in order to recover kinetic energy into the battery to slow the vehicle. 

The torque at the wheels is transmitted to the road at the contact patch which imparts a linear 

force on the vehicle. In the event of braking, a negative torque is requested and the motor will act 

as a generator and current will flow into the battery pack and the speed will decrease accordingly. 

Two feedback loops exist, a PI controller for the MTPA block and a PID controller for the driver 

model. As the torque output of the motor is directly proportional to current, the requested torque 

is converted to a current value in the dq reference domain. An inverter acts as a voltage source 

and therefore the voltage to achieve this desired current must be set using a feedback control loop. 

3.4 High level model structure 

The possible high level model structures were presented in Section 2.2. The selection of a suitable 

structure is a crucial step in ensuring the designed model meets the aims and objectives of this 

work. Selection and motivation of the chosen model structure is discussed in the following 

subsections.  

 Modelling approach 

Three broad modelling approaches were identified in Section 2.2.3; steady-state modelling, quasi-

steady modelling and dynamic modelling. The selection of a suitable approach is important, as it 

has a strong influence on the fidelity and computational complexity of the model. Although 

dynamic modelling has the highest computational expense, it was selected as the most suitable 

approach. Dynamic, physics based modelling was chosen as it offers the highest modelling 

fidelity and it allows for the vehicle to be effectively modelled based on parameters published by 

manufactures.  

Steady-state modelling is the simplest approach however in the case of electric vehicles, that are 

characterised by a set of dynamic ODEs, steady-state modelling will provide very little accuracy 
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and flexibility. Quasi-steady modelling can offer the best of both approaches, with increased 

model fidelity and reduced computation time, however it is impractical to implement in the 

vehicle design phase. This is because efficiency maps and look-up tables, which provide energy 

efficiency over the full operational envelope of the component, are seldom provided by 

manufactures. Therefore this approach would require an experimental approach to generate this 

data which is impractical when a designer is required to make a decision based only on data 

available from the manufacturer. Such an approach also limits the ability to understand the effect 

on energy efficiency through manipulating fundamental component design parameters. 

Although the broad approach considered is dynamic modelling, sub-sections of the model can be 

implemented as steady-state or quasi-steady sub-models. Approaches can also be taken to reduce 

computational complexity by simplifying high frequency switching devises such as the motor 

inverter. Also, the complexity of model design and execution can be greatly simplified through 

the use of modelling tools based on numerical integration software especially adapted to dynamic 

physical systems, such as Simscape™.  

 Direction of calculation 

In order to respect physical causality of the model, a feed-forward approach was implemented. 

This approach requires the inclusion of a driver model which is implemented as a PID controller. 

Feed-forward modelling provides many advantages, such as HIL implantation and control 

development and tuning, as discussed in Section 2.2.4. It also provides a true representation of 

the actual EV as opposed to a backward facing approach which does not respect the physical 

causality of the system. 

3.5 Model assumptions 

The assumptions made in order to generate the set of equations used to model an EV will be 

discussed for each block in the following chapter. However, some general assumptions must first 

be considered as they will have a strong influence on the selection and implementation of the 

physical models used. 

The model will consider a BEV travelling on a smooth, dry tar road according to a pre-defined 

speed and elevation versus time profile. A set of parameters will be used to define the vehicle 

under consideration and the main input to the model will be a speed versus time profile. The 

primary output of the model will be the distance the vehicle covers, to determine the range of the 

vehicle.  
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Although elevation is considered to compute the angle of inclination of the road, the absolute 

height above sea level will be assumed constant throughout simulations. The ambient temperature 

will be assumed as nominal temperature and the internal temperature of components will be 

assumed constant throughout the simulation. Although many parameters are functions of 

temperature, the internal temperature of components will only increase significantly under high 

accelerations and decelerations. Therefore the model will be limited to driving profiles which do 

not consider harsh driving conditions which is in line with the aim of simulating the efficiency of 

the vehicle under typical driving conditions. Furthermore, some components, such as the motor, 

battery and motor controller are likely to have thermal management systems in place which 

regulate the temperature of these components. 

3.6 Rotational dynamics 

In order to propel the vehicle, the motor applies a tractive torque to the ground through the 

drivetrain which comprises various components that propagate tractive power from the motor to 

the driven wheels through rotational motion and vice versa during regenerative braking. The 

rotational dynamics block considers the dynamics and energy efficiency of all the constituents of 

the drivetrain in order to compute the torque available at the driven wheels. The block comprises 

three PC nodes in the mechanical (rotational) domain (indicated by green lines), as shown in 

Figure 3.2. Node R connects to the rotor of the motor, node C is the rotational reference node and 

node Wh connects to the wheel block. 

 

 

Figure 3.2. Rotational dynamics block. 

 

The code used to build the block using the Simscape™ language is shown Appendix A.1 where 

each line is numbered for ease of reference. The three PC nodes and their domains are declared 

in lines 5 to 9. The block also comprises PS inputs (indicated by brown lines), Tb which defines 

the braking torque from the driver block, and a PS output port, th which provides rotor angular 

position to the torque controller. The PS inputs are declared in 25 to 27 and the outputs in lines 
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29 to 31. The declaration of PC nodes and PS ports follows this same straight forward coding 

format for all components and therefore will not be discussed for subsequent blocks. 

The branch equations shown in lines 45 to 48 defines the positive direction and associated variable 

for the flow of through variables in relation to the blocks nodes. The flow of torque is separated 

as a flow from the input to ground and a flow from ground to the output in order to model the 

relationship between output and input torque due to the gear ratio of the gearbox. 

Equation 2.7 is the governing equation for this block as it computes the torque output of the wheel 

as a function of motor torque considering the efficiency, rotational inertia and gear ratio of each 

drivetrain component. Equations referenced in this chapter are repeated in Appendix B for ease 

of reference. The equation considers a drivetrain where torque is transmitted from the motor 

through a clutch, fixed ratio gearbox, differential, axle shaft and CVJs and finally through the 

driven wheels. The efficiency of each constituent represents energy lost due to friction and 

damping and can be modelled as a constant efficiency, as discussed in Section 2.4. 

Equation 2.7 is implemented in line 59 for positive motor torque and line 61 for negative motor 

torque and a conditional if statement is used to switch between the two equations.  If the motor 

torque is negative, the reciprocal of the total drivetrain efficiency must be considered to ensure 

the inefficiency is remains computed as a loss. Equation 2.8, Equation 2.9 and Equation 2.10 are 

implemented in line 52, 53 and 54 respectively. Line 63 and 64 integrates the angular speed of 

the rotor in order to compute its angular position for feedback to the MTPA controller block. The 

relationship between the motor and wheel speed, defined by Equation 2.6 is realised in line 56.  

 Assumptions and limitations 

Various drivetrain topologies are available, as discussed in Section 2.1.1, depending primarily on 

how many motors are used and which wheels are driven. Equation 2.7 considers one complete 

path from the motor to a pair of wheels and with drive shafts of the configuration depicted in 

Figure 2.2 (a). Figure 2.2 is repeated here as it is referenced multiple times throughout this section.  

Although the efficiency, gear ratio and rotational dynamics of the differential are considered, it is 

assumed the torque is applied to the entire rear axle and not split between the left and right drive 

shafts and that there is no speed differential between the left and right wheels. Therefore the 

rotational inertia and efficiency of constituents after the differential should include all the 

rotational parts. In order to model the drivetrains presented in Figure 2.2 (b) or (c), the efficiency 

of the clutch can be set to 100 % and the rotational inertia set to zero. Similarly, if any other 

constituent is not used, such as the absence of a gearbox, the same approach can be taken. 
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Figure 2.2. Front-wheel drive EV configurations (a) Conventional (b) No transmission, rear 

mounted motor (c) No transmission (front mounted motor) (d) No differntial (e) In-wheel drive 

with fixed gearing (f) In-wheel without fixed gearing (Park et al., 2014). 

 

If a two motor configuration is used, such as Figure 2.2 (d), (e) or (f), two motor blocks can be 

used in the model in conjunction with two rotational dynamics, inverter and MTPA controller 

blocks. Again, constituents not present in the drivetrain can be ignored using the approach 

discussed earlier. This approach can be further extended to topologies consisting of four motors 

for all-wheel drive vehicles. The wheel torque nodes can then be connected in parallel to represent 

the total wheel torque transmitted to the longitudinal dynamics block. 

Constant gear ratios are considered for both the gearbox and the differential. A positive ratio acts 

to increase torque and consequently decrease rotational speed, as shown by Equation 2.5 and 

Equation 2.6. In practise, a variable ratio gearbox may be used, in which case both equations 

remain valid, however the value of 𝐺𝑔𝑏 must be changed throughout the simulation according to 

some control strategy which defines gear changes. This may be implemented electronically or it 

may be a driver input in which case gear selection should be included in the driver model. 

 Parameter acquisition 

A summary of the parameters required for the rotational dynamics block (line 12 to 22) is 

presented in Table 3.2. The rotational inertia of rotating components may be provided by 

manufacturers otherwise it can be determined analytically, especially in the case of axle shafts 

which have a simple geometry. In cases where the geometry is more complex and the geometry 

and mass distribution of the component is known, a computer aided design (CAD) package can 

be used to determine the value. The gear ratios of components will also be provided by 

manufacturers. The efficiency of CVJs is not typically provided however an estimation can be 
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obtained from the data presented in Section 2.1.1.1. The acquisition of the efficiency of the clutch, 

differential and gearbox is not within the scope of this work. 

Table 3.2. Rotational dynamics block parameters. 

Symbol Description Unit 

Jas Axle shaft rotational inertia kg·m2 

Jwh Wheel rotational inertia kg·m2 

Jdf Differential rotational inertia kg·m2 

Jgb Gearbox rotational inertia kg·m2 

Ggb Gearbox ratio - 

Gdf Differential ratio - 

df Differential efficiency % 

gb Gear box efficiency % 

cl Clutch efficiency % 

as Axle shaft efficiency % 

3.7 Longitudinal dynamics 

The longitudinal dynamics block considers the two wheel vehicle model shown in Figure 2.4. The 

torque applied to the road by the wheels imparts a linear driving force on the vehicle, as described 

by Equation 2.11, which acts to overcome resistive forces acting against the motion of the vehicle. 

The block models the resistive forces as a result of aerodynamic drag, rolling resistance, hill-

climbing force as well as the dynamic effects due to the inertia of the vehicle.  

The block contains two PC nodes in the mechanical translational domain (indicated by dark green 

lines), node Fd which connects to the wheel block and node G which is the translational reference 

node, as shown in Figure 3.3. A standard wheel model block is used from the Simscape™ library 

which implements Equation 2.11 and converts the rotational torque output of the rotational 

dynamics block to a linear driving force imparted on the road. 
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Figure 3.3. Longitudinal dynamics block. 

 

The block’s code appears in Appendix A.2. The block comprises one PS input, Inc which sets the 

road inclination and two PS outputs, vx and sx which output vehicle speed and displacement 

respectively. The speed of the vehicle is used as a feedback signal for the speed control loop 

realised in the driver model block. The displacement is calculated by integrating the speed in line 

83 and 84 in order to determine the range of the vehicle over the drive cycle. 

Equation 2.12, executed in line 79, defines the linear acceleration or deceleration of the vehicle 

as a function of the driving force and the resistive forces which are summed together in line 81. 

The hill-climbing force models the energy required to increase the potential energy of the vehicle 

and can be easily computed using Equation 2.14, implemented in line 66. The computation of 

aerodynamic drag and rolling resistance involve more complex phenomena which vary on a large 

number of operating variables and therefore a more detailed discussion is presented in Section 

3.7.1 and 3.7.2 respectively. 

In the vehicle model shown in Figure 2.4, body roll is considered along the longitudinal axes only 

and lateral body roll is ignored. Equation 2.15 and Equation 2.16, appearing in line 67 and 68, 

compute the normal forces on the front and rear wheels respectively and define the lateral weight 

shift under vehicle acceleration or deceleration. This is an important consideration particularly in 

cases where different tyres are used on the front and rear wheels, as the rolling resistances forces 

will be differ as their magnitudes are a function of the normal force acting on the tyre. 

The block ignores tyre slip and assumes that all the wheel torque is transferred to the road through 

the contact patch. Tyre slip is an important consideration when harsh acceleration and braking is 

modelled and when safety systems to maximise vehicle grip, such as ABS, are to be simulated. 

Consideration of these phenomena is not within the scope of this work. The energy losses due to 

suspension are also ignored as it is assumed the vehicle is travelling on a smooth tar road and 

therefore the losses are negligible, as shown by Figure 2.14. 
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 Rolling resistance 

Rolling resistance is represented as a force opposing the motion of the vehicle, acting through the 

COG. This force is commonly computed using the rolling resistance coefficient measured 

according to ISO 28580 at a constant speed and tyre pressure, as discussed in Section 2.5.10.2. 

Equation 2.20 can then be used to approximate the rolling resistance force as a function of tyre 

load and the rolling resistance coefficient. Although this approach is beneficial for comparison of 

tyres’ energy efficiency, it was found in Section 2.5 that rolling resistance varies with other 

variables such as speed, temperature and tyre pressure. 

A more accurate approach to capture the energy losses would be the use of empirical data from 

testing carried out by manufacturers according to SAE J2452, discussed in Section 2.5.10.1. 

Experimental data is fitted to an empirical model (Equation 2.21) which then defines the rolling 

resistance force in terms of tyre inflation pressure, tyre load and vehicle speed for a particular tyre 

type. This model does however not take into account the increase in rolling resistance at lower 

temperatures during tyre warm up as testing is conducted after the tyre has been through a warm 

up phase, as shown in Figure 2.13.  

Equation 2.21 is implemented in line 70 for the front wheels based on the front normal force and 

in line 71 for the rear wheels based on the rear normal force. As an empirical approximation is 

used, the units of the equation do not commensurate to a force. Therefore values are converted to 

a unitless number using the “value” expression. The speed is converted to km/h separately in line 

69 as it used in multiple locations. The empirical approximation does not produce zero rolling 

resistance at zero speed which is physically impossible and therefore a conditional if statement is 

used in lines 72 to 76 to set the total rolling resistance value to zero when vehicle speed is zero. 

By using Equation 2.21, temperature is ignored and therefore some error may be introduced. In 

the case of urban drive cycles, tyre temperature fluctuates about some mean temperature and in 

the case of highway driving equilibrium is reached after 20-30 minutes (Clark & Dodge, 1979). 

For urban drive cycles, if nominal temperature is assumed, the rolling resistance force will 

consider the average temperature and will ignore fluctuations about nominal conditions. During 

less transient cycles, such as highway driving, the simulated rolling resistance during warm up 

will be approximately one third lower than the actual value (Clark & Dodge, 1979). The error 

introduced on a system level will however be small as rolling resistance losses account for a small 

proportion of losses at higher speeds.  

Only tyre deformation is considered in the rolling resistance force as it is the primary mechanism 

of energy loss in the tyre (Michelin, 2003). Bearing losses are also ignored as the losses are 
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negligible where high efficiency bearings are used (Michelin, 2003). It is also assumed that the 

vehicle is driven over a smooth tared surface with no tyre slip. Any aerodynamic losses will be 

taken into account with the aerodynamic model of the entire vehicle.  

 Aerodynamic drag 

The resistance of the vehicle to move through air can also be expressed as a force opposing vehicle 

motion, known as aerodynamic drag. Drag can be calculated using a CFD analysis which accounts 

for actual flow conditions. As it is impractical to compute this value across the operational 

envelope of the vehicle, Equation 2.23 can be used to compute drag as a function of vehicle speed, 

wind speed, air density, frontal area and a drag coefficient as shown in line 77. The drag 

coefficient is computed using CFD at nominal conditions and can be assumed constant across a 

drive cycle, as discussed in Section 2.7. As wind speed is highly unpredictable it was ignored in 

Equation 2.23 and it therefore follows that the effect of yaw angle is also ignored. Air density was 

taken at a nominal value assuming sea level and nominal temperature.  

 Parameter acquisition 

A summary of the parameters (line 6 to line 18) required for the linear dynamics block is presented 

in Table 3.3. It is assumed the vehicle’s bulk geometry, chassis and suspension have been 

designed and modelled separately from the current model and therefore the chassis mass, the 

position of the COG and the frontal area of the car are known. The total mass of the vehicle can 

be computed by summing the masses of the various components used, the chassis mass and the 

mass of the driver and passengers. 

Table 3.3. Linear dynamics block parameters. 

Symbol Description Unit 

m Vehicle mass kg 

f Distance from COM to front axle m 

r Distance from COM to rear axle m 

h Distance from COM to ground m 

P Tyre inflation pressure bar 

, , a,b,c SAE J1269 rolling resistance coefficients  - 

Rwh Wheel radius  m 

air Air density kg·m-3 

Cd Aerodynamic drag coefficient - 

Af Frontal area m2 
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The SAE J1269 rolling resistance parameters can be requested from the tyre manufacturer. If 

these values are not available, the ISO 28580 value can be used and in a worst case scenario, the 

value can be estimated using Table 2.3 and the published fuel efficiency class required by 

legislation. The upper bound of the class should be considered as a conservative estimate. In order 

to use the ISO 28580 rolling resistance coefficient all the coefficients should be set to zero, except 

𝑎 and   which should be set to the rolling resistance coefficient and 1 respectively.  

The tyre pressure should be set within the limits of the tyre set by the vehicle manufacturer. The 

WLTP testing procedure stipulates that the tyre pressure shall be set to the lower value of the tyre 

inflation pressure range specified by the vehicle manufacturer (United Nations, 2015). 

The aerodynamic drag coefficient can be computed from a CFD analysis. If the geometry of the 

vehicle differs to the model used for the CFD analysis due to manufacturing differences or minor 

features, the actual drag coefficient may be higher than the modelled value and it may therefore 

be necessary to increase the simulated value. 

3.8 Motor 

The motor block models a non-salient PMSM motor which transforms electrical energy to 

mechanical rotational energy. The block considers SPM motors with an exterior or interior rotor 

architecture, operated below the continuous power rating and at speeds below the motor’s base 

speed. The block comprises four nodes in the electrical domain and three nodes in the mechanical 

translational domain, as shown in Figure 3.4. The three phase power inputs, u, v and w connect to 

the inverter and n is the electrical reference node. Node R represents the rotor and connects to the 

rotational dynamics block and node C is the mechanical reference node.  

 

 

Figure 3.4. Motor block. 
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The code used to build the block is shown in Appendix A.3. Equation 2.26, Equation 2.27 and 

Equation 2.28 can be used to model the dynamics of the stator coils in the dq reference frame as 

implemented in lines 68 and 69. As the dynamics are considered in the dq reference frame, the 

phase voltages must be transformed from the uvw domain, as shown in lines 64 and 65. The 

computed dq current values must then be transformed back to the uvw domain to feed back to the 

controller block, which is achieved in lines 72 to 74. The zero axis dynamics are considered 

although in the majority of cases they can be ignored if a balanced three phase load is present and 

the zero axis inductance is assumed as L0 = 0.1 x L (Narkhede, 2016). 

The branch equations in line 45 to 47 defines the flow of current according to a three phase wye 

connection. The direction of positive torque flow from the case of the motor to the rotor is defined 

in line 48. 

The equations used consider copper losses in the stator windings due to the stator resistance 

however they ignore windage and core losses. These losses can be ignored when the motor is 

operated at low speeds (at or below base speed) as copper losses are dominant at low speeds. This 

is shown in Table 2.5 and is further supported by Equation 2.24 which shows the dependency of 

core losses on motor speed.  

If a motor is used beyond its base speed and a field weakening control strategy is implemented, 

then the core losses must be considered. Core losses can be approximated using Equation 2.24 or 

a parallel resistance as shown in Figure 2.26. Equation 2.24 is difficult to implement in the design 

phase of the EV. This is because the coefficients are seldom provided by manufacturers and 

determination requires experimentation, an analytical approach or finite element field analysis. 

Experimentation cannot be achieved before the motor is procured and the analytical and finite 

element field approach requires comprehensive details of the motor geometry and design which 

is usually proprietary data.  

The electromagnetic torque output of the motor can then be computed using Equation 2.29 and 

the and in the case of non-salient machines, the second term of the equation falls away. Equation 

2.31 considers the dynamics of the rotational inertia of the rotor as well as the viscous friction 

coefficient of the bearing used. These two equations are combined to give the motor torque in line 

62. The viscous friction coefficient is often ignored if low friction bearings are used as the losses 

are negligible. 

Motors are rated according to continuous and peak ratings which are dependent on the thermal 

management system in place. The stator coils can be cooled using liquid cooling channels or using 

a fan attached to the rotor. If the motor is operated at or below continuous ratings the temperature 
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of the stator will not exceed the temperature limits of the insulation. In this model, temperature is 

ignored under the assumption that the motor is operated according to a duty cycle with a peak 

power below the continuous rating and that a thermal management system is in place. Therefore 

the nominal ratings of the permanent magnet flux linkage and resistance can be taken as constant 

values. Also the effects of cross coupling and saturation can be ignored, assuming the motor is 

not operated in the field weakening region. 

 Parameter acquisition 

The parameters (lines 6 to 11 of Appendix A.3) required for the motor block are presented in 

Table 3.4. The stator inductance is typically always provided by motor manufactures in either the 

dq reference frame or the uvw reference frame. In the case of non-salient motors, such as SPM 

motors, Equation 2.30 can be used to calculate the dq inductances from the line inductance in the 

uvw frame. 

 

Table 3.4. Motor block parameters. 

Symbol Description Unit 

N Number of pole pairs - 

Ld/Lq d/q axis inductance H 

Rs Phase to neutral resistance R 

f Flux linkage induced by permanent magnets Wb 

Bm Viscous friction co-efficient Nms/rad 

Jr Rotor moment of inertia kg·m2 

 

The permanent magnet flux linkage at nominal temperature may be provided by the manufacturers 

and in cases where the value is not provided, it may calculated for non-salient machines from the 

commonly published velocity constant 𝐾𝑣 [rad/sV] or the torque constant, 𝐾𝑡 [Nm/A] using 

Equation 3.1 or Equation 3.2. 

 

 

𝐾𝑡 =
3𝑁

2
𝑓 Equation 3.1 

 

𝐾𝑣 =
1

𝑁𝑓
 Equation 3.2 
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Rotor inertia must be provided by manufacturers or it can be estimated from a CAD model of the 

rotor. The viscous friction coefficient can be ignored if a low friction bearing is used or it may be 

acquired from the bearing or motor manufacture’s data sheet. Park et al. (2014) report a viscous 

friction coefficient of 0.005 Nm/rad/s for a 100 kW PMSM which can be considered negligible, 

especially if the motor is operated at low speeds. 

3.9 MTPA controller 

The MTPA block computes the three phase voltage which should be applied to the motor in order 

to achieve the requested motor torque. The block does not consider any energy losses in the 

system however it affects the efficiency of the motor over its operational envelope. A MTPA 

control strategy is considered as it is the most common strategy used by controller manufacturers 

(Goss et al., 2014). The assumptions of the motor block are assumed here too and therefore the 

block controls non-salient motors operated below their base speed with no field weakening. The 

block only processes PS data and uses no PC nodes, as shown in Figure 3.5. 

 

 

Figure 3.5. MTPA controller. 

 

Four PS inputs are used, per the code appearing in Appendix A.4. The requested motor torque, 

Tm* is received from the driver model block, the rotor’s angular position, th is received from the 

rotational dynamics block, the voltage of the battery, Vdc is received from the battery block and 

the motor current vector, I is received from a current sensor in series between the inverter and 

motor. The remaining three ports are PS outputs, u*, v* and w* which transmit a request for the 

correct three phase AC voltage to the inverter block. 

The MTPA control strategy is discussed in Section 2.8.5. When a motor is operated below its base 

speed and core losses can be considered negligible, a MTPA control strategy is the most efficient 

way to control a PMSM motor (Goss et al., 2014). The control strategy is implemented in the dq 

reference domain in order to simplify calculations. Therefore the feedback currents, measured in 

the uvw domain, must be transformed to the dq domain, which is achieved in lines 33 and 34 and 
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the requested dq voltage must then be transformed back the uvw domain, per lines 57 to 59. The 

control strategy and reference frame transformations are depicted in Figure 2.27. 

Motor current must be set by varying the voltage applied to the stator coils until the desired current 

is achieved and therefore a PI control loop must be implemented, as discussed in Section 2.8.5. 

The value of 𝑖𝑑 (demagnetising current component) is set to zero, per line 36. Therefore in order 

to control motor torque, the value of 𝑖𝑞 (torque producing current component) is determined using 

Equation 2.29 and the requested current is then computed in line 37.  The error signal is integrated 

in lines 46 and 47 and the PI control loop is implemented in lines 39 and 40 in order to compute 

the required three phase voltage to achieve the requested current. 

As discussed in Section 2.8.5, the requested uvw voltage is transformed to a gating signal using 

SVPWM in order to drive the semiconductor switching devices to achieve the required phase 

voltages. Because the inverter is modelled as an average value inverter, the reference voltage 

values are not transformed to gating signals but are rather transmitted as actual voltage values. 

Therefore, in order to respect the voltage limit of the inverter imposed by the relevant PWM 

strategy, the reference voltages should be limited according to the DC bus voltage which is 

achieved using a conditional if statement in lines 49 to 55. For SVPWM, the maximum phase 

voltage realisable from the supplied DC voltage is set in line 42 according to Equation 2.33. 

 Parameter acquisition 

The parameters (lines 6 to 9) required for the MTPA control block are presented in Table 3.5. In 

order to calculate the requested torque from the requested current, the motor’s parameters used in 

Equation 2.29 are required, as discussed in Section 3.8.1. The PI constants are typically set by the 

vehicle designer based on the dynamics of the vehicle under consideration and the desired stability 

and acceleration response of the system or they can be obtained from the motors controller’s 

documentation. 

 

Table 3.5. MTPA control block parameters. 

Symbol Description Unit 

N Number of motor pole pairs - 

f Permanent magnet flux linkage Wb 

kp Proportional PI constant  - 

ki Integral PI constant - 
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3.10 Inverter 

The inverter block is responsible for inverting the DC supply of the battery pack to a three phase 

AC supply suitable to drive the motor. The inverter is modelled as an average value inverter and 

therefore it ignores the dynamics of the high frequency switching devices whilst still capturing 

the associated power losses. 

The block comprises five PC nodes in the electrical domain (indicated by blue lines), as shown 

in Figure 3.6. The B+ and B- nodes on the DC side connect to the respective nodes of the battery 

block, and the u, v and w nodes on the AC side of the block, connect to the motor’s stator coils. 

The block also comprises three PS input ports, u*, v* and w* which receive the reference voltage 

signal from the MTPA controller block. The code used to build the block appears in Appendix 

A.5. 

 

 

Figure 3.6. Inverter block. 

 

The implementation of an inverter using power electronics is detailed in Section 2.8.5. In order 

to model the dynamics of the switching devices, a simulation time step of an order of magnitude 

greater than the switching frequency, typically in the order of 10 kHz (Kelly Controls, 2015), is 

required in order to capture the switching transients. This will significantly increase the 

computational complexity of the entire model as the global time step must be reduced to capture 

the high frequency response. In order to reduce the computational complexity of the model, an 

average value inverter model is considered. This model ignores the dynamics of the switching 

devices and considers only the phase voltage limit and the energy losses of the semiconductor 

devices. 

The three phase current flow is defined in the branch equations shown in lines 41 to 43 and the 

DC current flow in line 40. The three phase voltages on the AC side of the inverter are set to the 

values requested by the MTPA controller block in lines 49 to 54. The DC power drawn from the 

battery is then equated to the sum of AC power and the inverter power losses, as shown in line 
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64.  The inverter losses considered are the switching losses and conduction losses as these are the 

dominant losses in motor drives, as discussed in Section 2.8.5.1.  

The switching losses are considered as an average power value which can be scaled from the 

datasheet using Equation 2.36. A conditional if statement is used in lines 56 to 62 in order to 

invert the switching power losses when the inverter feeds DC current back into the battery such 

that they remain computed as losses. The statement also sets the losses to zero when the inverter 

is not drawing a current and therefore is not in use. 

The conduction losses are approximated using Equation 2.34 which uses the equivalent series 

resistance of the semiconductor device. The resistance of these devices increases with an increase 

in temperature (Graovac et al., 2006). This effect is not considered as it is assumed that the inverter 

has a thermal management strategy in place and the heat generated by the inverter will be small 

as the motor is operated below its continuous power rating. 

 Parameter acquisition  

A summary of the parameters (lines 5 to 8) required for the inverter block is presented in Table 

3.6. The inverter block requires the on state resistance of the semiconductor device used. The 

controller manufacturer may provide this resistance value or the exact model of the MOSFET or 

IGBT device used in which case the value can be extracted from the device’s datasheet. The 

switching losses can be extracted from the MOSFET or IGBT datasheet and scaled using Equation 

2.36 or requested directly from the motor controller manufacturer. 

 

 Table 3.6. Inverter block parameters. 

Symbol Description Unit 

Ron On state MOSFET/IGBT resistance  Ω 

Psw Rated switching losses W 

 

3.11 Battery 

The battery block models a li-ion traction pack comprising cells connected in parallel and series 

using an equivalent circuit, run-time based model. Although electrochemical models are the most 

accurate, they are difficult to implement and require a large number of parameters which are 

usually proprietary (Seaman et al., 2014). The developed model assumes that all cells within the 

pack have equal parameters and therefore no cell balancing is required. A li-ion chemistry was 

chosen as it the preferred choice for EVs, as discussed in Section 2.9.  
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The battery block was not developed using the Simscape™ language but rather as a composite 

block using standard Simscape™ components connected to form an electrical circuit. Some 

Simulink blocks were also used to process PS data. A mask was then used to create an interface 

for the sub-model, as shown in Figure 3.7. The sub-model of the battery block is shown in 

Appendix C.1. The block consists of two PC nodes in the electrical domain which represent the 

positive and negative terminals of the battery, B+ and B- respectively. The block also comprises 

three PS outputs which output the voltage of the battery, Vdc to the MPTA controller, the SOC of 

the battery, SOC to the driver model and the battery current, Ib to a display block. 

 

 

Figure 3.7. Battery block. 

 

The literature used to build this model is presented and discussed in Section 2.9.4.3 and the 

equivalent circuit topology is shown in Figure 2.32, repeated here for ease of reference. The figure 

is repeated here as multiple references are made to it in this section. The sub-model was built 

using the Simscape™ electrical library and components were connected according to the two 

equivalent circuit topologies presented in Figure 2.32. The OCV is modelled as a variable voltage 

supply which is set according to the output of a Simulink function block that computes the OCV 

based on the SOC of the battery obtained from the battery lifetime circuit, using Equation 2.44. 

 

 

Figure 2.32. Modified run-time based model (Min & Rincon-Mora, 2006). 
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As discussed in Section 2.9.4.3, the battery run-time is determined when the voltage of the battery 

reaches the end-of-discharge voltage. The end-of-discharge voltage is dependent on the exact li-

ion chemistry used however it may be set to a higher value in order to extend the cycle life of the 

battery (Muenzela et al., 2015). An assertion block was used to ensure that the battery voltage 

exceeds the minimum battery voltage specified throughout the simulation. When this criterion 

fails, the simulation is automatically stopped, indicating the battery is depleted. 

 Assumptions and limitations 

Figure 2.34 shows how the values of the circuit elements vary with discharge current and SOC. 

The OCV varies over the full SOC range of the battery, but is largely independent of discharge 

current. The values of the resistors and capacitors remain fairly constant for SOC values above 

10 % and do not differ significantly for different discharge values. The value of the long-time 

effect capacitance varies periodically above a SOC of 10 %. Therefore, an acceptable approach 

to reduce the complexity of the model whilst maintaining model fidelity, is to assume constant 

values for the RC pairs and the equivalent series resistance. 

Although this could induce significant error from 0 % to 10 % SOC, it will have little effect on 

the accuracy of the complete solution. Also, the SOC range of li-ion cells is often restricted to 

exclude low SOC values so as to prolong cell life (Muenzela et al., 2015). It is however important 

to model the change in OCV with SOC as this relationship will be used to predict voltage during 

the simulation. In the voltage-current characteristic circuit, more than two RC pairs may be used 

to increase model fidelity however computational cost is increased. Two RC pairs will be used as 

literature has shown this to be a good compromise between model fidelity and computational cost 

for BEVs, as discussed in Section 2.9.4.2.  

The usable energy of the battery is modelled using a capacitor in the battery lifetime circuit and 

the relationship between the capacitance and the usable capacity of the pack is given by Equation 

2.38 which includes a cycle and temperature factor. A rate factor should also be included to model 

the decrease in usable capacity as discharge rate increases, as shown in Figure 2.30. The effect of 

capacity decay over time will be ignored as this phenomenon does not fall within the aims of the 

model and therefore the cycle factor is ignored. 

If the discharge current from the battery is low and seldom exceeds 1C, temperature can be 

ignored during the simulation (Barreras, Schaltz, Andreasen, & Minko, 2012). Therefore, the rate 

and temperature factors are ignored. The effects of self-discharge will also be ignored as this does 

not have an effect on the energy efficiency of the battery and therefore the capacity is taken as the 

nominal capacity of a new cell. 



 

88 

 

The battery under consideration may consist of one or more battery modules connected in a series 

string to increase the pack voltage, where 𝑁𝑆 defines the number of modules in series. Each 

module may consist of one or more cells connected in parallel to increase the pack capacity, where 

𝑁𝑃 is the number of cells connected in parallel. Therefore the circuit elements appearing in Figure 

2.32 should consider the equivalent values for the entire pack (such that each element is 

representative of the entire pack). If it is assumed that each cell is identical, the well-known rules 

for calculating the equivalent resistances and capacitances can be used (Avison, 1989). Equation 

3.3 and Equation 3.4 can therefore be easily derived in order to determine the equivalent 

resistance, 𝑅𝑒𝑞 and equivalent capacitance, 𝐶𝑒𝑞 values. 

 

 

𝑅𝑒𝑞 =
𝑁𝑆

𝑁𝑃
∙ 𝑅𝑐𝑒𝑙𝑙 Equation 3.3 

 

𝐶𝑒𝑞 =
𝑁𝑃

𝑁𝑆
𝐶𝑐𝑒𝑙𝑙 Equation 3.4 

 

The equivalent OCV voltage, 𝑂𝐶𝑉𝑒𝑞 is given by Equation 3.5, the equivalent end-of-discharge 

voltage, 𝑉𝑚𝑖𝑛𝑒𝑞
 is given by Equation 3.6 and the nominal capacity of the pack, 𝐶𝑁𝑒𝑞

 is given by 

Equation 3.7. 

 

 
𝑂𝐶𝑉𝑒𝑞 = 𝑁𝑆 ∙ 𝑂𝐶𝑉 Equation 3.5 

 
𝑉𝑚𝑖𝑛𝑒𝑞

= 𝑁𝑆 ∙ 𝑉𝑚𝑖𝑛 Equation 3.6 

 
𝐶𝑁𝑒𝑞

= 𝑁𝑃 ∙ 𝐶𝑁 Equation 3.7 

 

 Parameter acquisition 

A summary of the parameters required for the battery block is presented in Table 3.7. The values 

of the RC pairs are not provided by cell manufacturers however the procedure outlined in Section 

2.9.4.4 can be used to determine the values if the voltage response of a cell or pack pulse discharge 

test is given. The value of the series resistance may be provided on the cell datasheet or it can be 

determined from a pulse discharge test. The value may also be determined if voltage versus SOC 

data is given for multiple discharge rates (Petricca et al., 2013). 
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Table 3.7. Battery block parameters. 

Symbol Description Unit 

RSeries Equivalent series resistance Ω 

RTrans,S Short transient response resistance Ω 

CTrans,S Short transient response capacitance F 

RTrans,L Long transient response resistance Ω 

CTrans,S Long transient response capacitance F 

CN Nominal cell capacity Ah 

NS Number of cells in series - 

NP Number of cells in parallel - 

Vmin End-of-discharge voltage V 

a0, a1, a2, a3 OCV versus SOC equation coefficients - 

 

The coefficients for the OCV versus SOC equation can be determined using a curve fitting tool 

such as the MATLAB™ Curve Fitting Toolbox if the cell manufacturer has provided an OCV 

curve. Alternatively a discharge versus voltage curve with a low C-rate, 0.05C or lower, provides 

a good estimate of the OCV voltage (Weng, Sun, & Peng, 2014).  

The end-of-discharge voltage can be determined by measuring the cell voltage when the battery 

is depleted or it may be set by the vehicle designer in accordance with the limits set by the cell 

manufacturer and cycle life requirements. 

3.12 Auxiliary load 

The auxiliary load block models the electrical loads drawn by the auxiliary system as well as the 

energy losses of the DC/DC used to stepdown the voltage of the battery pack. The various relevant 

auxiliary loads have been discussed in Section 2.10. The block comprises two nodes in the 

electrical domain, B+ and B- which connect to the battery block, as shown in Figure 3.8. The 

code used to build the block is presented in Appendix A.6. 

 

 

Figure 3.8. Auxiliary load block. 
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The DC/DC block is modelled under steady-state conditions and considers the average auxiliary 

power draw. The load is split into components that draw power through the DC/DC, and therefore 

the DC/DC efficiency is considered for these loads, and high voltage loads that draw power 

directly from the battery. The efficiency of the DC/DC is assumed as a constant efficiency which 

is typically greater than 90 % (Keeping, 2013).  

Line 29 computes the current drawn from the battery pack and the branch equation in line 22 

defines the flow of current from the positive terminal of the block to ground. The efficiency of 

the DC/DC is considered for the low voltage power draw only. A conditional if statement is 

employed in lines 28 to 32 in order to delay the power draw from the battery pack to improve 

simulation stability during initialisation. 

With the exception of heating and cooling, the auxiliary load of EVs is typically significantly 

lower than the tractive power output, especially when steps are taken to reduce the auxiliary load 

such as the implementation of LED lighting (Vražić et al., 2014). If a full cabin HVAC system is 

considered it may be necessary to model the compressor dynamically. 

 Parameter acquisition 

The parameters (lines 6 to 8) required for the auxiliary load block are shown in Table 3.8. The 

low voltage auxiliary power draw can be estimated by summing all constant loads such as 

normally open contactors, driver displays and instrumentation and adding an estimated average 

power draw of components that draw auxiliary power periodically. The same approach should be 

considered for high voltage auxiliary components which draw power directly from the battery 

pack. The efficiency of the DC/DC can be determined from the manufactures datasheet. The load 

drawn from the DC/DC should be considered relative to its rated load to consider the decrease in 

efficiency as this ratio drops, as discussed in Section 2.10.4. 

 

Table 3.8. Auxiliary block parameters. 

Symbol Description Unit 

PLV Low voltage auxiliary power draw W 

PHV High voltage auxiliary power draw W 

conv DC/DC efficiency  % 
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3.13 Driver model 

The driver model block computes the requested torque in order to achieve the desired speed as 

set by a pre-defined drive cycle. In order to control the torque to achieve the desired speed, a PID 

control loop is used which replicates the action of a human driver controlling the speed of the 

vehicle through the accelerator pedal. The block comprises a sub-model built using Simulink 

components, shown in Appendix C.2, as well as a torque limiter block built in Simscape™, shown 

in Appendix A.7. A mask was used to create an interface for the sub-model, which appears in 

Figure 3.9. 

 

 

Figure 3.9. Driver model block. 

 

A look-up table outputs the requested speed throughout the simulation based on a predefined drive 

cycle. A number of relevant drive cycles are presented in Section 2.11. The block receives the 

simulation time as an input and uses linear interpolation to compute the requested speed at each 

time step. The actual vehicle speed, received from the linear dynamics block, is then subtracted 

from the speed request to generate an error signal which is fed into a Simulink PID block.  

The PID block outputs a requested torque value to the torque limiter block based on the PID 

constants. The outputs of the PID block are saturated according to the maximum motor torque 

such that the torque request does not exceed the limits of the physical system. It is assumed that 

the absolute value of the maximum motor torque applies to positive and negative torque values. 

The torque limiter block limits the torque request output based on vehicle speed and battery SOC 

and will be discussed further in Section 3.13.1. A positive torque request implies a positive 

tractive force to accelerate the vehicle and a negative torque request implies a braking force to 

decelerate the vehicle. 

If a drive cycle which includes road inclination is implemented, the look-up table data should be 

extended to include the road gradient at each time step which can be outputted to the inclination 

port of the linear dynamics block. It may also be necessary to implement a gear changing 
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algorithm which defines gear changes when a variable speed gear box is used, as discussed in 

Section 3.6.1. 

 Torque limiter 

The torque limiter block receives the requested reference torque from the PID loop and outputs a 

requested torque to the MTPA controller after applying limits to the signal based on the speed of 

the vehicle and SOC of the battery. The torque output of the PID loop is saturated according to 

the maximum motor and regenerative torques however further limitations must be applied based 

on the speed of the vehicle and SOC of the battery.  

The block comprises three PS inputs, SOC which receives the SOC of the battery, vx which 

receives the speed of the vehicle and Tm_r which receives the requested torque reference signal 

from the PID block. The block also comprises two outputs, Tm* which outputs the positive or 

negative reference torque to the MTPA controller block and Tb which output the mechanical 

braking torque to the rotational dynamics block, as shown in Figure 3.10. The code used to build 

the block appears in Appendix A.7. 

  

 

Figure 3.10. Torque limiter block. 

 

In cases when the speed of the vehicle needs to be reduced, a negative torque value is required to 

reduce the speed of the vehicle. If the negative torque request is fed to the MTPA controller block, 

the motor will act as a generator and the direction of the current will change such that the battery 

is charged. This effect is known as regenerative braking. If the negative torque request is fed to 

the rotational dynamics block, a negative torque is applied to the drivetrain such that no energy is 

recovered. This is representative of the mechanical braking system in a vehicle where the kinetic 

energy of the vehicle is lost as waste heat (Guzzella & Sciarretta, 2013).  

In both cases a negative braking torque acts to resist the motion of the vehicle and therefore a 

negative torque may only be requested when the speed of the vehicle is above zero. In reality the 

electric vehicle can achieve negative speeds by reversing the direction of electrical commutation 
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of the motor, however this effect is not modelled. During regenerative braking the battery acts as 

an energy sink in order to recover the kinetic energy of the vehicle. Therefore, when the battery 

is fully charged it cannot accept a charging current. A buffer region is also often implemented in 

order to mitigate the safety hazard of overcharging li-ion batteries which can cause thermal 

runaway.  

The torque limiter restricts the torque of the motor to the regions shown in Figure 3.11. In order 

to prevent the speed of the vehicle becoming negative, a negative torque request is only allowed 

when the speed of the vehicle is positive. When the SOC of the battery exceeds a limit set by the 

model designer, the negative torque request is sent through the Tb port to achieve mechanical 

braking, as depicted in Figure 3.11(a). If the SOC is below the SOC limit, the negative torque 

request is sent through the Tm* port such that regenerative braking is realised, as depicted in 

Figure 3.11(b). This logic is implemented in lines 21 to 33 using a conditional if statement.  

 

  

Figure 3.11. Torque operating regions and limits when the battery (a) can accept a charging 

current and when (b) the battery cannot accept a charging current. 

 

 Parameter acquisition 

A summary of the parameters required for the driver model block is given in Table 3.9. The drive 

cycle speed and time points are not shown in Table 3.9 as this data is not considered as parameters 

but rather the main input to the model. The maximum motor and generator torque can be 

determined by considering the lower value of the maximum continuous power ratings of the 

motors and motor controllers.  
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Table 3.9. Driver model parameters. 

Symbol Description Unit 

Tm, max Maximum motor torque Nm 

Tg, max Maximum generator torque Nm 

Kp Proportional PID constant  - 

Ki Integral PID constant - 

Kd Derivative PID constant  - 

 

The PID constant of the driver can be set using the heuristic Zeigler-Nichols approach. In this 

approach the integral and derivative gains are set to zero and the proportional constant is increased 

until it reaches the ultimate gain, 𝐾𝑢 where the speed of the vehicle has consistent and stable 

oscillations  (Ziegler & Nichols, 1993). The oscillation period, 𝑇𝑢 is then used with 𝐾𝑢 to set the 

PID constants according to Table 3.10 (Ziegler & Nichols, 1993).  

 

Table 3.10. Ziegler-Nichols PID tuning (Ziegler & Nichols, 1993). 

Kp Ki Kd 

0.6 ∙ 𝐾𝑢  

1

2
 ∙ 𝑇𝑢 

1

8
 ∙ 𝑇𝑢 

3.14 High voltage cabling 

Copper losses in cabling from the battery to the inverter and from the inverter to the motors were 

considered by computing the equivalent resistance of the battery and motor cabling. A resistor 

from the Simscape™ electrical library was placed in series for each length of wire and the 

resistance can be computed using Equation 3.8 (Avison, 1989). Resistance of auxiliary cabling 

was ignored as the losses are negligible. 

 

 

𝑅 =


𝑐𝑎𝑏𝑙𝑒
∙ 𝐿

𝐶𝑆𝐴
 Equation 3.8 

 

In the above, 𝑅 is the resistance of the conductor, 𝑐𝑎𝑏𝑙𝑒 is the resistivity of the cable conductor 

and 𝐶𝑆𝐴 is the cross sectional area of the cable. 
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 Parameter acquisition 

A summary of the parameters required for the cable loss resistors is presented in Table 3.11. The 

lengths of cable can be measured if they are not known and the cross sectional area of the cable 

can be read of the markings on the cabling. The resistivity of the cabling can be determined based 

of the conductor material. 

 

Table 3.11. High voltage cabling parameters. 

Symbol Description Unit 

Lbatt Battery cable length (total) m 

CSAbatt Battery cable cross sectional area m2 

Lmotor Motor cable length (per phase) m 

CSAmotor Motor cable cross sectional area m2 

cable Conductor material resistivity Ω·m 

3.15 Parameter initialisation 

A MATLAB™ script, shown in Appendix A.8, was written to initialise all the model parameters. 

This allows parameters to be analysed and easily changed across the entire model. The script file 

also reads the speed and time points of the selected drive cycle from an excel file in line 32 and 

33. Once the script file is run, all the parameters are loaded as variables in the MATLAB™ 

workspace which can be read by Simulink and Simscape™. 

3.16 Modelling of the Mamba EV 

Figure 3.12 presents the topology of the complete model used to simulate the Mamba EV, 

presented in Section 1.2, using the Simulink and Simscape™ blocks discussed above. A larger 

image of the model also appears in Appendix C.3 to ensure readability of the text. The Mamba 

uses two motors each driving a rear wheel through separate drivetrains. Each motor is driven by 

a separate motor controller. Therefore, two rotational dynamics blocks, two motor blocks, two 

inverter blocks and two MTPA controller blocks were used and the motor torque nodes where 

connected in parallel to a single linear dynamics block. 

Although the battery pack of the Mamba is physically split between the rear and front of the 

vehicle it may considered as one component in the electrical domain. The inputs of the inverter 

blocks and the auxiliary load block are paralleled as power is provided from a single battery pack. 

Finally, a driver model block is used to implement a drive cycle in order to determine the range 



 

96 

 

of the vehicle. Various drive cycles are implemented to simulate the Mamba EV and the results 

are presented in Chapter 4. 

 

 

Figure 3.12. Complete Simscape™ model of the Mamba EV. 

3.17 Mamba parameters 

In order to simulate the Mamba, all the parameters presented in the preceding sections are 

required. In the following sections the parameters of the Mamba are presented per component or 

general category as well as the source of each parameter. All parameters also appear in Appendix 

A.8, where parameters are arranged according to their respective blocks. 

 Motor 

Two EnerTrac Corp. Dual-603 motors with dual stator coils are used to drive the rear wheels of 

the Mamba. The stators are treated as a single stator in the model and therefore the parameters 

appearing in Table 3.12 are for each dual motor. Limited data was available on the datasheet 

however missing parameters were easily obtained from the motor manufacturer through e-mail 

communication with the owner. The viscous friction coefficient could not be obtained however 

Park et al. (2014) provide a value for a similar motor and the sensitivity of this parameter is very 

low. The rotor’s moment of inertia was obtained from the CAD model of the motor supplied by 

the manufacturer. 
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Table 3.12. Motor parameters. 

Symbol Description Value Unit Source 

N Number of pole pairs 12 - 

E-mail (M. Gelbien, personal 

communication, August 2, 

2016) 

𝐾𝑣 Velocity constant 0.733 rad/sV Datasheet (Enertrac Corp., n.d.) 

Lu, Lv, Lw 

Stator uvw phase 

inductance 
350 H 

Communication (M. Gelbien, 

personal communication, 

September 7, 2016) 

Ld, Lq 

Stator dq phase 

inductance 
87.5 H Calculated using Equation 2.30 

Rs Phase resistance 0.0544 Ω  

E-mail (M. Gelbien, personal 

communication, October 6, 

2016) 

f 

Flux linkage induced by 

permanent magnets 
0.11367 Wb Calculated using Equation 3.2 

Bm 

Viscous friction co-

efficient 
0.005 Nm·s/rad Literature (Park et al., 2014) 

Jr Rotor moment of inertia 0.368 kg·m2 CAD model 

 Motor controller 

Four Kelly Controls LLC KLS14301-8080I sinusoidal wave brushless motor controllers were 

used to drive the motors. The motor controller is represented by the inverter and MTPA controller 

blocks. Two controllers are used to drive each set of motor coils and each set is represented as 

one controller block in the model. Therefore the parameters shown in Table 3.13 are for a set of 

two controllers. Limited data was obtained from the manual of the controller however other 

technical data was available from the manufacturer through e-mail communication, this is shown 

in Table 3.13. 

 

 

 

 



 

98 

 

Table 3.13. Motor controller parameters. 

Symbol Description Value Unit Source 

kp Proportional PI constant  80 - Manual (Kelly Controls, 2015)  

ki Integral PI constant 1000 - Manual (Kelly Controls, 2015) 

Ron On state MOSFET resistance  9.7 mΩ 

E-mail (F. Chen, personal 

communication, September 7, 

2016) 

Psw Rated switching losses 40 W 

E-mail (F. Chen, personal 

communication, November 8, 

2017) 

Imax Maximum continuous current 240 A Manual (Kelly Controls, 2015) 

 

 Battery 

The author was involved in the design and manufacture of the battery pack and therefore 

parameters could be easily obtained. A quantity of 2016 Panasonic NCR18650PF cells were 

assembled together to form the pack. The parameters used appear in Table 3.14. The voltage 

response of a pulse discharge current was not available and therefore the transient resistor and 

capacitor values could not be obtained without testing. The experimental procedure presented in 

Section 2.9.4.4 could not be used as the author did not have access to the necessary testing 

equipment.  

The data presented for li-polymer cells by Min and Rincon-Mora (2006) was used to estimate the 

transient resistor and capacitor values as the cell chemistry is similar. It was assumed that the 

NCR18650PF cells would have a similar dynamic response to the cells tested by Min and Rincon-

Mora (2006) however the total internal resistance of the NCR18650PF cell is 43 mΩ (Panasonic, 

2013) as opposed to 175 mΩ of the cell used by Min and Rincon-Mora (2006). Therefore the 

same capacitor values were used however the resistor values were scaled linearly to ensure the 

total resistance equalled that of the PF cells and the results are shown in Table 3.14.  

An OCV versus SOC curve could not be provided by the manufacturer and the lowest discharge 

voltage versus SOC curve was for a 0.2C rate. A discharge curve may be used only if it represents 

a discharge rate lower than 0.05C (Weng et al., 2014). Therefore a REVOLECTRIX PowerLab 

8x2 battery analyser was used to obtain a voltage versus SOC curve at a discharge rate of 0.14 A 

(0.046C) which will provide an accurate estimation of the OCV as discussed in Section 3.11.2. 

The curve was then fitted to an analytical expression using the MATLAB™ Curve Fit toolbox. 
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An exponential function of the form of Equation 3.9 was determined to fit the data closer than the 

least squares approximation discussed in Section 2.9.4.4. The results of the curve fitting are shown 

in Table 3.14 and a screenshot of the curve fitting toolbox is shown in Appendix D. 

 

 
𝑂𝐶𝑉 = 𝑎𝑜 ∙ 𝑒𝑎1∙𝑆𝑂𝐶 + 𝑎2 ∙ 𝑒𝑎3∙𝑆𝑂𝐶 Equation 3.9 

 

Table 3.14. Battery parameters. 

Symbol Description Value Unit Source 

RSeries Equivalent series resistance  0.019 43mΩ 
Scaled data from Literature 

(Min & Rincon-Mora, 2006) 

RTrans,S 

Short transient response 

resistance 
0.012 Ω 

Scaled data from Literature 

(Min & Rincon-Mora, 2006) 

CTrans,S 
Short transient response 

capacitance 
700 F 

Literature(Min & Rincon-

Mora, 2006) 

RTrans,L 
Long transient response 

resistance 
0.012 Ω 

Scaled data from Literature 

(Min & Rincon-Mora, 2006) 

CTrans,L 
Long transient response 

capacitance 
4500 F 

Literature (Min & Rincon-

Mora, 2006) 

CN Nominal cell capacity 2.9 Ah Datasheet (Panasonic, 2013) 

NS Number of cells in series 42 - - 

NP Number of cells in parallel 48 - - 

Vmin End-of-discharge voltage 2.5 V - 

a0 

OCV versus SOC equation 

coefficients 

3.672 - 

MATLAB™ curve fitting 

toolbox and experimental 

data 

a1 0.06615 - 

a2 -1.907e-11 - 

a3 -14.22 - 

 

 Drivetrain 

The drivetrain is of a simple topology comprising only axle shafts and two Rzeppa CVJs per 

motor. Therefore the rotational inertia and efficiency of components not present in the drivetrain 

are set to zero and one respectively, as discussed in Section 3.6.1. The rotational inertia of the 

axle shaft was calculated using Equation 3.10 (Young & Freedman, 2012). The resultant 

parameters appears in Table 3.15. 
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𝐽𝑎𝑠 =
1

2
𝑚𝑎𝑠 ∙ 𝑅𝑎𝑠

2  Equation 3.10 

 

Table 3.15. Drivetrain parameters. 

Symbol Description Value Unit Source 

Jas Axle shaft rotational inertia 6.15x10-4 kg·m2 Calculation 

Jwh Wheel rotational inertia 1.06 kg·m2 
Literature (Automotive 

Forums, 2017) 

Jdf Differential rotational inertia 0 kg·m2 - 

Jgb Gearbox rotational inertia 0 kg·m2 - 

Ggb Gearbox ratio 1 - - 

Gdf Differential ratio 1 - - 

df Differential efficiency 1 % - 

gb Gear box efficiency 1 % - 

cl Clutch efficiency 1 % - 

as Axle shaft efficiency 99.5 % Literature (Fujio, 2013) 

 

The efficiency of the CVJs was not available from the manufacturer and therefore an 

approximation of the energy losses was used. The approximation used is the linear increase in 

energy loss rate from approximately 0.25 % at a joint angle of 4° to 1.25 % for a joint angle of 

12° for standard Rzeppa joints (Fujio, 2013). Under maximum and neutral suspension deflection, 

the angle of the Mamba’s CVJs is 12.66° and 1.19° respectively (Sim, Woods, Mons, & Chetty, 

2016). Therefore the minimum listed loss value (at 4°) was considered which will also include 

further losses as the angle of the drive shaft changes due to road asperities. The reported loss is 

for one joint and therefore the energy losses were doubled to determine the total efficiency shown 

in Table 3.15. 

 Tyres 

The Mamba uses Continental EcoContact 5 tyres with different sizes on the front and rear axles. 

Two 185/55 R15 tyres are used on the front and two 225/45 R17 are used on the rear axle. The 

ISO28580 rolling resistance coefficients were obtained for the front and rear tyres from the 

manufacturer through e-mail communication with the head of rolling resistance testing at 

Continental AG. However the SAE J1269 coefficients, which appear in Table 3.16, were only 

available for the front tyres. These values were used for both the front and rear tyres in order to 

capture the effects of speed and tyre pressure on the rolling resistance force. This is a reasonable 
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approximation as the ISO28580 coefficient of the rear tyres is only 1.3 % greater than the front 

tyres (C. Struebel, personal communication, October 18, 2016). 

 

Table 3.16. Tyre parameters. 

Symbol Description Value Unit Source 

P Tyre inflation pressure 2.5 bar Assumed 

a 

SAE J1269 rolling resistance 

coefficient (185/55 R15) 

0.111 - 

E-mail (C. Struebel, 

personal communication, 

October 18, 2016) 

b 2.53x10-4 - 

c 8.67x10-7 - 

 -0.388 - 

 0.940 - 

Rwh Wheel diameter 0.3172 m 
Literature (Errol's Tyres, 

n.d.) 

 

 Car mass and weight distribution 

The total mass of the car was obtained by weighing the car (with no driver) and adding an 

estimated driver mass achieving the total vehicle mass, as shown in Table 3.17. The weight 

distribution of the car was determined from the CAD model. 

 

Table 3.17. Car mass parameters. 

Symbol Description Value Unit Source 

m Vehicle mass 657 kg 572 kg (measured) + 85 kg driver 

f Distance from COM to front axle 1.2563 m CAD model 

r Distance from COM to rear axle 1.0937 m CAD model 

h Distance from COM to ground 0.3809 m CAD model 

 

 Aerodynamics 

The aerodynamic drag coefficient was computed from a CFD analysis carried out by another 

vehicle designer and the results appear in Table 3.18 (Wieringen, Gyasi-Agyei, & Reddy, 2017). 

The drag coefficient was taken at nominal conditions at a simulated speed of 80 km/h. 
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Table 3.18. Aerodynamic parameters. 

Symbol Description Value Unit Source 

 Air density 1.25 kg·m3 Literature (Larminie & Lowry, 2013) 

Cd 

Aerodynamic drag 

coefficient 
0.33725 - CFD analysis (Wieringen et al., 2017) 

Af Frontal area 1.55 m2 CAD model 

 

 DC/DC 

An Elcon TDC-144V-12V converter is used in the Mamba. The efficiency of the DC/DC is 

assumed as its maximum efficiency as this is the only efficiency data available from the 

manufacturer, as shown in Table 3.19. The auxiliary system of the Mamba does not include any 

high voltage components and therefore the high voltage auxiliary draw is set to zero. The low 

voltage auxiliary load was estimated by summing the power draw of auxiliary components which 

draw a continuous load whilst the car is driving. 

 

Table 3.19. DC/DC parameters 

Symbol Description Value Unit Source 

PLV Low voltage auxiliary loads 100 W Calculated 

PHV High voltage auxiliary loads 0 W - 

conv DC/DC efficiency  92 % Datasheet (Elcon, n.d.) 

 

 Driver model 

The parameters used for the driver model appear in Table 3.20. The PID constants were tuned 

using the Zeigler-Nichols approach introduced in Section 3.13.2, to ensure the speed of the vehicle 

did not differ from the requested speed throughout the simulation. The maximum SOC at which 

regenerative braking is allowed was set according to the battery management system of the 

vehicle. The maximum motor and generator torque values were set according to the maximum 

continuous torque of the motor which was obtained from the manufacturer. This value was used 

as it was lower than the maximum continuous torque rating of the controllers. 
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Table 3.20. Driver model parameters. 

Symbol Description Value Unit Source 

Kp Proportional PID constant  200 - Tested 

Ki Integral PID constant 100 - Tested 

Kd Derivative PID constant  25 - Tested 

SOCregen 

Maximum SOC at which 

regenerative braking is 

permitted 

96 % - 

Tm, max Maximum motor torque 400 Nm 

(M. Gelbien, personal 

communication, January 12, 

2016) 

Tg, max Maximum generator torque 400 Nm - 

 

 High voltage cabling 

The parameters of the high voltage cabling were either known by the author or were measured 

and calculated to attain the values shown in Table 3.21. All cabling used copper conductors and 

therefore the resistivity of copper was utilised. 

 

Table 3.21. High voltage cabling parameters. 

Symbol Description Value Unit Source 

Lbatt Battery cable length (total) 8 m Measured 

CSAbatt Battery cable cross sectional area 95x10-6 m2 - 

Lmotor Motor cable length (per phase) 0.8 m Measured 

CSAmotor Motor cable cross sectional area 16 x10-6 m2 - 

Cu Copper resistivity 1.68x10-8 Ω·m 
Literature (Young & 

Freedman, 2012) 
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3.18 Simulation setup 

A local solver was used to simulate the Simscape™ model with the configuration parameters 

shown in Figure 3.13. A backward Euler approach is more stable than a trapezoidal rule approach 

and is recommended when no oscillations are expected (MathWorks™, 2014). Therefore, 

Backward Euler was selected as a solver type. As sample time is decreased, both the 

computational cost and model fidelity increases. As an average value inverter is used (and is thus 

not the limiting factor), the sample time should be small enough to ensure that the dynamics of 

the three phase motor supply are captured according to 𝑟. The electrical period at maximum 

motor speed (considering a vehicle speed of 120 km/h) can be calculated using Equation 2.32 to 

be 0.005 s. The sample time was therefore set to 0.0003 s which was is approximately 15 times 

smaller than the period. 

 

 

Figure 3.13. Simscape™ solver configuration settings. 

 

A variable time step solver was selected as opposed to a fixed-cost solver to allow for a decrease 

in simulation time during not transient periods. The global solver used was an ode45 solver which 

is a variable step solver as is recommended by MathWorks™ in line with the flowchart presented 

in Figure 2.3.  
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3.19 Chapter summary 

This chapter discussed the implementation of the equations presented in the previous chapter to 

model each subsection of the EV and the interconnection of the sub-models to build a complete 

energy model. The complete energy model was built using custom coded SimscapeTM component 

blocks which represent a component or subsystem of the EV. The development of each block was 

outlined including a motivation for the selection of the primary modelling equations, supported 

by the literature survey. The limitations and assumptions of each block and the chosen modelling 

technique was discussed as well as possible parameter acquisition approaches. The 

interconnection of these blocks into a complete model to represent the Mamba EV was also 

shown.  

The parameters of the Mamba EV are presented followed by a motivation for the SimscapeTM 

simulation settings and parameters chosen. The results of the simulations of the Mamba EV during 

various different drive cycles will be presented in the following chapter using the developed 

energy model.  
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CHAPTER 4: RESULTS 

The primary input to the model developed in this work is a set of speed and time points defined 

by a particular drive cycle. Numerous different drive cycles are available as discussed in Section 

2.11. The WLTP drive cycle was chosen to simulate the energy consumption and range of the 

Mamba EV as it accurately represents real driving conditions and electric vehicle manufacturers 

are required by legislation to use the WLTP cycle when advertising the range of the vehicle, as 

discussed in Section 2.11.3.2. This drive cycle consists of four regions, a low speed region, a 

medium speed region, a high speed region and an extra-high speed region, as shown in Figure 

2.42, which is repeated here for ease of reference. A city version of the cycle is also available 

which includes only the low and medium sections (International Council on Clean Transportation, 

2013). 

 

 

Figure 2.42. WLTP drive cycle for a Class 3 vehicle (International Council on Clean 

Transportation, 2013). 

 

If the legal speed limit of the country does not exceed 120 km/h, then the extra-high speed region 

may be ignored (International Council on Clean Transportation, 2013). In order to test the range 

of an EV the full cycle followed by a city cycle is run repeatedly until the battery is depleted. If 

the range of the vehicle exceeds the distance of four repeated cycles, a shortened test procedure 

must be used to determine the range of the vehicle (International Council on Clean Transportation, 

2013). The shorted test procedure consists of the full cycle followed by the city version of the 

cycle as well as two constant speed sections of 80 km/h and is discussed in detail in Section 

2.11.3.2. A shortened version of the city cycle is not available and therefore the city cycle must 

be repeated until the battery is depleted in order to determine the range of the vehicle.  
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In the following chapter three different variations of the WLTP cycle are run in order to compare 

the range and energy consumption of the Mamba under different driving conditions. A city cycle 

was first run, consisting of the WLTP city cycle repeated until the battery was depleted. Secondly 

a hybrid cycle was run, which consists of repetitions of the full cycle in order to simulate a 

combination of city and highway driving. Finally, the shortened WLTP cycle was run. As a large 

portion of this cycle consists of a constant speed range of 80 km/h, this cycle can be considered a 

highway driving cycle. The result of this cycle also provides an estimate of the vehicle range 

which can be advertised in accordance with the WLTP regulations. 

The Simscape™ model discussed in this chapter was run using the parameters presented in 

Section 3.17, and the simulation setup outlined in Section 3.18, for each of the three drive cycles. 

The results of each simulation appear in the following subsections and the chapter is then 

concluded with a summary of the results. 

4.1 WLTP city cycle 

Table 4.1 shows the main simulation results and simulation statistics of the full city cycle 

simulation. A Sankey diagram showing how the battery energy is used during the drive cycle 

appears in Figure 4.1. 

 

Table 4.1. City WLTP simulation results and statistics. 

Metric Value 

Range 420.8 km 

Driving time 54885.46 s 

Average speed 27.6 km/h 

Maximum absolute speed error 0.70 m/s 

Simulation time 11:55:06 hours 

Average step size 3.00 x10-4 s 

Total steps 182969852 
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Figure 4.1. Sankey diagram showing the distribution of battery energy [kWh] during a WLTP 

city cycle. 

 

The battery voltage and SOC over the entire simulation is shown in Figure 4.2. In order to ensure 

readability of the graphs, only the first city subcycle is shown for the remaining variables as the 

dynamic response of the repeated subcycles will be similar throughout the entire simulation as 

the same city subcycle is repeated. The actual and requested speed and vehicle displacement 

appear in Figure 4.3 and actual vehicle speed and power at the wheels appears in Figure 4.4. 

Requested motor and mechanical braking torque, torque at the wheels and battery current appear 

in Figure 4.5 before regenerative braking is allowed.  
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Figure 4.2. Battery voltage and SOC versus time over the full city cycle. 

 

 

Figure 4.3. Actual and requested vehicle speed and displacement versus time over one city 

cycle. 
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Figure 4.4. Power at the wheels and vehicle speed versus time over one city cycle. 

 

 

Figure 4.5. Requested torque, actual torque and battery current versus time over one city cycle 

with no regenerative braking. 
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The requested torque, actual torque and battery current versus time is also shown for the third city 

subcycle of the simulation as the battery SOC at this stage of the simulation was below the 

threshold to allow regenerative braking, as seen in Figure 4.6. 

 

 

Figure 4.6. Requested torque, actual torque and battery current versus time over one city cycle 

with regenerative braking. 
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4.2 WLTP hybrid cycle 

Table 4.2 shows the main simulation results and simulation statistics of the full hybrid cycle 

simulation. A Sankey diagram showing how the battery energy is used throughout the drive cycle 

appears in Figure 4.7. 

 

Table 4.2. Hybrid WLTP simulation results and statistics. 

Metric Value 

Range 366.8 km 

Driving time 40224.54 s 

Average speed 32.8 km/h 

Maximum absolute speed error 0.71 m/s 

Simulation time 8:31:04 hours 

Average step size 3.00 x10-4 s 

Total steps 134095225 

 

Figure 4.7. Sankey diagram showing the distribution of battery energy [kWh] during a WLTP 

hybrid cycle. 
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The battery voltage and SOC over the entire simulation is shown in Figure 4.8. In order to ensure 

readability of the graphs, only the first hybrid subcycle is shown for the remaining variables as 

the dynamic response of the repeated subcycles will be similar throughout the entire simulation 

as the same hybrid subcycle is repeated. The actual and requested speed and vehicle displacement 

appear in Figure 4.9 and actual vehicle speed and power at the wheels appears in Figure 4.10. 

Requested motor and mechanical braking torque, torque at the wheels and battery current appear 

in Figure 4.11. 

 

 

Figure 4.8. Battery voltage and SOC versus time over the full hybrid cycle. 
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Figure 4.9. Actual and requested vehicle speed and displacement versus time over one hybrid 

cycle. 

 

 

Figure 4.10. Power at the wheels and vehicle speed versus time over one hybrid cycle. 
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Figure 4.11. Requested torque, actual torque and battery current versus time over one hybrid 

cycle. 

 

It can be observed in Figure 4.11 that the battery SOC falls below the threshold to allow 

regenerative braking during the first subcycle and therefore a separate graph is not required to 

show the results of regenerative braking.   
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4.3 WLTP highway cycle 

Table 4.3 shows the main simulation results and simulation statistics of the shortened WLTP drive 

cycle simulation representing highway driving conditions. A Sankey diagram showing how the 

battery energy is used throughout the drive cycle is shown in Figure 4.12. 

 

Table 4.3. Highway WLTP simulation results and statistics. 

Metric Value 

Range 285.3 km 

Driving time 15776.5 s 

Average speed 64.8 km/h 

Maximum absolute speed error 0.88 m/s 

Simulation time 3:13:58 hours 

Average step size 3.00 x10-4 s 

Total steps 55217874 

 

Figure 4.12. Sankey diagram showing the distribution of battery energy [kWh] during a 

highway WLTP cycle. 
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The battery voltage and SOC over the entire simulation is shown in Figure 4.13.  

 

 

Figure 4.13. Battery voltage and SOC versus time over the full highway cycle. 

 

The actual and requested vehicle speed and displacement versus time over the full highway cycle 

is shown in Figure 4.14, which also shows the two constant speed sections of 22.22 m/s (80 km/h). 

The first constant speed section was run for 10500 s and the second constant speed section was 

started when 2.9 % of the battery energy was available. Therefore the cycle meets the criteria set 

out by the regulation which states that the amount of charge in the battery should be 10 % or less 

when the second constant speed section is started (International Council on Clean Transportation, 

2013). 

 

 

Figure 4.14. Actual and requested vehicle speed and displacement versus time over the full 

highway cycle. 
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Other results are not shown for this cycle as the results of the dynamic phases of the simulation 

will be the same as the results presented for the hybrid cycle in the previous section as the same 

subcycle is used. 

 Increase in vehicle mass 

Table 4.4 shows the main simulation results and simulation statistics of the same cycle with a     

50 % increase in vehicle mass. A Sankey diagram showing how the battery energy is used 

throughout the drive cycle is shown in Figure 4.15. 

Table 4.4. Highway WLTP simulation (50 % increase in vehicle mass) results and statistics. 

Metric Value 

Range 243.7 km 

Driving time 12439.50 s 

Average speed 70.63 km/h 

Maximum absolute speed error 0.88 m/s 

Simulation time 2:31:11 hours 

Average step size 2.88 x10-4 s 

Total steps 43538315 

 

 

Figure 4.15. Sankey diagram showing the distribution of battery energy [kWh] during a 

highway WLTP cycle with a 50 % increase in vehicle mass. 
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 Increase in step size 

A highway simulation was also run using the original vehicle mass with the time step increased 

to 0.0005 s. The simulated range remained the same at 285.3 km and the simulation time 

decreased to 2:50:05 hours. 

4.4 Summary of results 

A summary of the range and average speed for each of the three drive cycles is shown in Table 

4.5 and a summary of the energy losses in Table 4.6. 

 

Table 4.5. Range and average speed of each drive cycle. 

 City Hybrid Highway 

Range 420.8 km 366.8 km 285.3 km 

Average speed 27.6 km/h 32.8 km/h 64.8 km/h 

 

 

Table 4.6. Summary of energy losses for each drive cycle. 

 

City Hybrid Highway 

Highway 
 

(50% mass 

increase) 

Loss 

[kWh] 
% 

Loss 

[kWh] 
% 

Loss 

[kWh] 
% 

Loss 

[kWh] 
% 

Rolling resistance 6.75 32 6.04 29 5.00 24 6.27 30 

Aerodynamic drag 6.49 31 8.41 40 11.79 56 10.44 50 

Motor  2.67 13 2.02 10 0.560 3 0.592 3 

Drivetrain 0.530 2 0.438 2 0.374 2 0.456 2 

Braking 0.340 2 0.277 1 0.277 1 0.362 2 

Inverter 0.502 2 0.436 2 0.350 2 0.326 2 

HV Cable 1.57 7 1.15 5 0.444 2 0.354 2 

Auxiliary 1.66 8 1.22 6 0.476 2 0.376 2 

Battery 0.540 3 1.06 5 1.78 8 1.87 9 
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4.5 Chapter summary 

This chapter presented detailed results of the simulation of the Mamba EV across three different 

drive cycles; a city drive cycle, a highway drive cycle and a hybrid drive cycle. The dynamic 

response of crucial variables was graphically presented for each drive cycle. The most important 

result of these simulation was the range which was predicted using the model and the associated 

Sankey diagrams which provided a visual representation of how energy is lost during a drive 

cycle. Key simulation statistics such as runtime and number of steps was also provided for each 

drive cycle. The results will be discussed in the following chapter followed by concluding remarks 

in the final chapter. 
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CHAPTER 5: DISCUSSION 

The primary aim of this work was to characterise and quantify the energy consumption and 

efficiency of the Mamba EV. The crucial objective to achieve this aim was developing and 

building a model to simulate the range of the vehicle in order to quantify energy usage for a 

particular drive cycle. To this end, a Simscape™ model was developed using primarily custom 

coded components. Custom coded components were used in order to allow complete flexibility 

in building a model that met the exact aims and objectives of this work as well as ensuring a freely 

available design which can be improved and altered in future iterations and adapted to other EV 

architectures and designs. By using the Simscape™ language, a well-documented and universal 

approach to physical modelling, a strong foundation was available to not only further develop the 

model but also to allow for future improvement and modification.  

A further requirement of the model was the ability to assist vehicle designers in optimising the 

EV through selecting or designing the vehicle’s chassis and its components to increase the overall 

efficiency of the EV. In order to achieve this, various important considerations were identified. 

Firstly, in order to select the most suitable components, the vehicle designer must rely only on 

non-proprietary data obtainable either through communication with the manufacturer, directly 

from datasheets or through calculation or manipulation of available data. Secondly, the model 

should be universal, as energy optimisation may not only involve the selection of components but 

also the adjustment of the architecture and topology of the EV. This is especially true for the 

drivetrain, as EVs can employ a wide range of different topologies making use of different 

components. Finally, the model should be able to simulate the energy consumption quick enough 

to ensure optimisation through iteration whilst still maintaining model fidelity. 

This work began with an in-depth and thorough survey of the available literature to assess the 

energy loss mechanisms of the vehicle and how each mechanism could be modelled. The 

investigation was thorough in two senses, firstly an extensive range of energy loss mechanisms 

were considered and secondly each mechanism of energy loss was considered in detail to ensure 

it was accurately captured by the modelling approach chosen. This led to the consideration of 

energy losses often ignored in other models and by other authors such as losses due to suspension 

and auxiliary loads. Also, the complexities of rolling resistance are often ignored through the use 

of a simple approximation intended to allow for the comparison of tyres which does not accurately 

model energy loss phenomena. 
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5.1 Model development 

Two primary choices were made in developing the energy model presented in this work. Firstly, 

the use of Simscape™ as a modelling tool and secondly, the use of a dynamic physics based 

modelling approach. The merits of this approach and the modelling tool have already been 

discussed in depth and it was found these approaches provided the greatest flexibility and 

accuracy in modelling each sub-system of the EV.  

Although the broad modelling approach chosen is dynamic physics based modelling, not all 

components employ a true physics model. The battery model relies on the physical simulation of 

an electrical circuit which models the behaviour of a li-ion cell. The rolling resistance and 

aerodynamic drag model rely on empirical approaches, however crucially the empirical data can 

be easily obtained and does not require experimental testing. The auxiliary load block relies on a 

steady-state modelling approach which is sufficient to model the Mamba as no HVAC system is 

used. The motor is modelled with a physics based model which considers operation up to the base 

speed of the motor as core losses are not considered. The motor inverter is modelled as an 

equivalent circuit which ignores the dynamics of the high frequency switching devices whilst 

ensuring the energy losses resulting from these devices is captured. This significantly reduces the 

computational complexity of the model without reducing model fidelity. 

As li-ion batteries have only recently begun to become popular in vehicle design, many models 

rely on simplified battery models designed for older chemistries or assume a constant efficiency 

approach. Also, many models do not accurately capture the voltage response of the battery. The 

voltage response of the battery is important in determining when the battery is depleted as well 

as determining the energy losses of the battery which is a function of battery current and therefore 

battery voltage. Also, the battery voltage limits the voltage applied to the motor as the inverter 

can only step down voltage. The battery model developed in this work relies on the parameters of 

a single cell to represent the entire battery pack which usually comprises a number of cells 

connected together in series and parallel to form the complete pack.  

An extremely universal drivetrain model was employed which considers a variety of different 

components even though this was not necessary for the Mamba EV, which employs a very simple 

drivetrain. The modelling approach also allows for different drivetrain topologies to be easily 

modelled by utilising the “drag and drop” approach to rearrange the topology of the model. This 

is an important consideration in developing a universal EV model as the drivetrain of EVs can 

vary drastically due to the simplicity of electric drivetrains and the use of hub motors.  
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5.2 Analysis of results 

The developed model was then used to run various simulations of the Mamba EV. This was shown 

in Section 3.17, where the procurement of each parameter of the Mamba was detailed. This 

section evidenced that all of the parameters of the Mamba were obtainable without experimental 

testing, ensuring the vehicle can be simulated early in the design phase. The only exception was 

the coefficients of the OCV curve which were determined experimentally in order to increase the 

fidelity of the simulation. Typically, the OCV curve of a cell is provided by a manufacturer 

however in the case of the cells used for the battery of the Mamba, a curve was not provided and 

the lowest discharge voltage versus capacity curve was a 0.2C curve. Testing of battery 

parameters only requires the acquisition of at least three sample cells (to achieve a statistical 

average) and therefore experimental testing of battery parameters is feasible. 

The results show that the model is able to compute the range of each drive cycle as well as the 

energy consumption of each component or energy loss mechanism, as shown by the Sankey 

diagrams presented in Chapter 4. Furthermore, the model is able to capture the dynamic response 

of many other variables throughout the simulation. Such variables include the vehicle speed, 

torque, power, battery voltage, current and SOC as shown by the graphs presented in Chapter 4. 

Conventional IC vehicles typically have lower fuel consumption for highway driving compared 

to city driving due to the losses of braking energy and the relative inefficiency of an IC engine at 

low power and varying speed. EVs however are able to recuperate the energy lost during braking 

through regenerative braking and therefore they are expected to have a greater range during city 

driving as the aerodynamic losses are significantly reduced. This was evidenced through the 

simulated range of each driving cycle. The highest range, of 420.8 km was observed during city 

driving and the lowest range of 285.3 km was observed during highway driving. The hybrid cycle 

showed a range between these two values, 366.8 km. 

The Sankey diagrams provide a wealth of information when characterising the energy losses of 

the EV according to different driving styles. They provide a clear and graphical means of 

comparing the energy losses across different drive cycles. The highway and city cycles show the 

most variation as they simulate two very different driving conditions and are shown side by side 

in Figure 5.1 for ease of comparison.  
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Figure 5.1. Sankey diagrams of the (a) highway and (b) city cycle. 

 

For the highway cycle, the losses are dominated by aerodynamic drag as the energy is proportional 

to the third power of speed. On the contrary, during the city cycle, the greatest loss resulted from 

rolling resistance although the aerodynamic loss was only marginally smaller. As the city drive 

cycle is a highly transient cycle, the motor losses contribute a significantly greater portion than 

the highway cycle as losses are increased under acceleration and deceleration (regenerative 

braking), which is proportional to motor current which results in an exponential increase in copper 

losses. For this same reason the HV cabling losses during the city cycle are significantly greater.  

Because battery energy losses are also a function of current, due to the internal resistance of the 

battery, it was expected that the battery losses for the city cycle should be greater. However, the 

results showed a greater energy loss during highway driving. The reason for this phenomenon is 

due to the voltage drop caused by a discharge current and because the simulation is terminated 

when the battery reaches its end-of-discharge voltage. When the highway cycle ended the vehicle 

was travelling at a higher speed and therefore drawing more current from the battery. This in turn 

caused a voltage drop and the cycle was terminated even though the battery could still deliver 

power at a reduced rate. Therefore, the usable capacity of the battery during the highway driving 

cycle was less and this resulted in a greater energy loss figure. 

The auxiliary loss is a function of time only and therefore the loss is greater for the city cycle as 

the driving time during the city cycle is 71 % greater than the highway cycle due to the increased 

range of the vehicle. Drivetrain and inverter losses are very similar largely because the energy 

losses through these components is relatively very small. The braking energy is also very low and 
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shows little difference between simulations. This is because mechanical braking is only 

implemented during the first 3 % of the battery SOC until regenerative braking is employed. The 

hybrid cycle showed values roughly in between the other two cycles, somewhat closer to the city 

cycle as the average speed was closer to the city cycle (27.6 km/h versus 32.8 km/h). 

The graph showing actual vehicle speed and requested vehicle speed indicates a close correlation 

with very little error. Some overshoot and undershoot was observed however it was limited to 

sections of rapid acceleration and deceleration. The requested and actual torque values also show 

good correlation. The battery current was plotted on the same set of axes as torque is directly 

proportional to current and also to show the effect of regenerative braking. It can be observed that 

when mechanical braking is employed (when the SOC of the battery is above the charging 

threshold) the battery current does not fall below zero. However, when a negative motor torque 

is requested, the battery current turns negative which indicates a flow of energy into the battery.  

The highway WLTP cycle, which is the legislative cycle, had the shortest simulation time due the 

large constant speed sections of the model and the variable step solver employed. The other two 

cycles, which simulated highly transient cycles, had significantly longer simulation times. 

Simulations were run on a laptop PC with an Intel Core i7 2.60 GHz processor with 16.0 GB 

RAM. Therefore, the model can be simulated on high performance computers usually available 

to vehicle designers to decrease simulation time significantly. A highway drive cycle was also 

run with an increased time step of 0.0005 which resulted in the same predicted range however 

only a small reduction in simulation time due to the use of a variable solver. 

The weight of the vehicle was increased by 50 % over a highway drive cycle to show the effect 

of the vehicle’s mass on range. This provides an example of how the model might be used to 

optimise the design of the EV by assessing how changes in the design, such as reducing the 

vehicle’s mass, would affect the energy efficiency of the vehicle. As expected, the rolling 

resistance losses increased due the increase in weight, which caused a decrease in the range of 

14.6 %.  

5.3 Limitations and future research 

The model does not consider temperature, in line with the aims of simulating regular driving 

conditions and not harsh/high acceleration driving conditions. This was shown to be true for all 

three WLTP drive cycles as the requested torque never exceeded the maximum continuous rating 

of the motor. Inclusion of temperature in the model will allow the designer to simulate the vehicle 

under all driving conditions and can provide other important information beyond the aims of this 
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work. Modelling temperature will aid in understanding how the vehicle will perform in different 

climates, which may be especially important in considering colder climates where the temperature 

drops below freezing. Inclusion of temperature would also allow the designer to asses and design 

thermal management systems.  

The effect of wind might also be considered in future models to improve the accuracy of the 

aerodynamic losses. Although wind is highly unpredictable, it has a significant effect on the 

aerodynamic drag of the vehicle which was shown to have significant effect on the overall energy 

consumption of the vehicle. Inclusion of the effect of wind speed into the aerodynamic model can 

be implemented easily, however determining the actual wind speed and direction versus time 

profile would require a comprehensive investigation into the average wind speed which would 

vary based on location and weather conditions. 

The motor block considers only a PMSM motor operating up to its base speed. In reality some 

vehicles may operate above the base speed of the motor, especially if a gearbox is used. In these 

cases the core losses due to eddy and hysteresis must be considered. Typically, this is achieved 

using experimental techniques to determine the coefficients of an empirical approximation. 

Therefore an approach should be investigated which allows for the losses to be estimated without 

experimental testing. 

Once the Mamba has been fully tested for safety and has received its road-worthiness certificate, 

it is intended that the vehicle be tested and the data compared to that predicted by the model 

developed in this work. Each sub-model within the model developed has already been validated 

against modelling methods proven in literature; but it is necessary to later validate the model as a 

whole by comparing it to a real-life system. This is expected to be achieved by recording time, 

vehicle speed, altitude and wind speed and direction whilst the car is driven along a given route. 

This physical route data can then be inputted to the model to compare the simulated range against 

the actual measured range, among other parameters. Some inaccuracy can be expected since the 

model will not perfectly capture all environmental factors, such as instantaneous wind speed and 

direction; and if the driver relies on mechanical braking instead of regenerative braking even when 

the SOC is below the threshold, there will be further inaccuracy if the model is not adjusted to 

account for this (note that this is not required for standardised drive cycles). The model in its 

current form is expected to predict relevant parameters, particularly range, to a degree of accuracy 

entirely acceptable for its purpose, assisting in the design and optimisation of battery electric 

vehicles.  
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CHAPTER 6: CONCLUSION 

As the impetus to reduce the impact of the transport sector on the environment reaches critical 

levels, EVs are enjoying increasing popularity. This popularisation is driving the need for design 

tools and methods to ensure successful EV designs. At the core of a successful and commercially 

viable EV design, is the management of the energy consumption and efficiency of the EV to 

ensure the battery energy is used to its fullest. To this end, the simulation of EVs is a critical 

requirement to ensuring these objectives are met. 

The energy model developed in this work is able to assist vehicle designers with this task early in 

the design process, from design inception and improvement to prototype manufacture. A 

comprehensive literature survey was completed at the start of this work in order to assess the 

mechanisms of energy losses in an EV and current methods used to model and simulate these 

losses. This ensured that the developed model of the EV captures all energy losses in an efficient 

and accurate manner. 

A significant advantage of the model is that it relies almost entirely on datasheet values or non-

proprietary values that can be obtained from the manufacturer and therefore no experimental 

testing is required. This allows vehicle designers to make design decisions before the procurement 

of components which ensures that the components selected and the topology and architecture of 

the EV can be fully optimised throughout the design process. 

The model was also built on a robust and efficient physical modelling platform, Simscape™, 

using a dynamic physics based modelling approach. It was developed using mostly custom coded 

blocks to guarantee complete flexibility in the design and construction of the model. Although 

the model was built principally to simulate the Mamba EV it was ensured the model was universal, 

allowing a designer to assess a variety of components and topologies and to ensure the model can 

be used by other EV designers. Simscape™ is a universal and well documented modelling tool 

which also allows for the model to be improved and adapted where required in future iterations. 

The computational cost of the model was optimised without jeopardising the fidelity of the model 

through the use of an average value inverter and a variable time step solver. 

The model was used to simulate the Mamba EV and the acquisition of all its parameters was 

discussed at length as a means of satisfying the parameter acquisition requirements. The results 

evidenced that the model was able to produce the require metrics set out in the objectives of this 

work. The model was able to quantify the range of the vehicle, the relative magnitude of each of 
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the energy losses, as well as capturing the dynamics of important metrics such as battery voltage 

and current and motor torque and power.  

The simulations of the Mamba EV showed an official range of 285.3 km according to the 

legislative WLTP drive cycle which simulates highway driving. The city version of the cycle 

resulted in a significantly increased rang of 420.8 km due to the lower aerodynamic losses and 

the ability to recover braking energy through regenerative braking. The simulations were also able 

to provide a comprehensive summary of the relative magnitudes of each energy loss mechanism 

over each drive cycle in order to best assess how to mitigate energy losses to improve vehicle 

efficiency. 

The developed energy model has a variety of applications and uses for the EV designer. Vehicle 

designers can efficiently compare different components to determine and compare the effect on 

vehicle energy efficiency in conjunction with comparing different drivetrain topologies and 

architectures. The relative magnitude of each energy loss throughout a drive cycle can also be 

assessed to determine which energy losses are most important to mitigate. The range of the vehicle 

can be simulated against legislative drive cycles to predict the range of the vehicle that will be 

advertised by the EV manufactures. The model can also be used to tune PID parameters and 

develop control strategies as it employs a dynamic physics based approach which also allows for 

HIL implementation. The model can therefore be considered an invaluable tool for EV design and 

in ensuring that the energy efficiency of newly designed EVs is maximised.  
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APPENDIX A: SIMSCAPE™ CODE 

A.1 Rotational dynamics 

1  component Rotational_dynamics 

2  %Rotational Dynamics 

3  %Models rotational dynamics of the drivetrain. 

4    

5  nodes 

6      M = foundation.mechanical.rotational.rotational;   %R: left 

7      C = foundation.mechanical.rotational.rotational;   %C: left 

8      Wh = foundation.mechanical.rotational.rotational;  %Wh: right 

9  end 

10    

11  parameters 

12      J_as = {0, 'kg*m^2'};           %Axle shaft rotational inertia 

13      J_wh = {0, 'kg*m^2'};           %Wheel rotational inertia 

14      J_df = {0, 'kg*m^2'};           %Differntial rotational inertia 

15      J_gb = {0, 'kg*m^2'};           %Gearbox rotational inertia 

16      G_df = {1, '1'};                %Differntial ratio 

17      G_gb = {1, '1'};                %Gearbox ratio 

18      N_as = {1, '1'};                %Axle shaft efficiency 

19      N_df = {1, '1'};                %Differntial efficiency 

20      N_gb = {1, '1'};                %Gearbox efficiency 

21      N_cl = {1, '1'};                %Clutch efficiency 

22      init_pos = {0, 'rad'};          %Initial rotor position  

23  end 

24    

25  inputs 

26      T_b = {0, 'N*m'};               %Tb: right 

27  end 

28    

29  outputs 

30      A = {0, 'rad'};                 %th: left 

31  end 

32    

33  variables (Access = protected)   

34      w_m = {0, 'rad/s'};             %Motor angular speed 

35      theta_m = {0, 'rad'};           %Motor angular position 

36      t_m = {0, 'N*m'};               %Motor torque 

37      t_wh = {0, 'N*m'};              %Wheel torque 

38  end 

39    

40  function setup 

41      theta.value = init_pos; 

42      theta.priority = priority.high; 

43  end 

44    

45  branches 

46      t_m : M.t -> C.t; 

47      t_wh : C.t -> Wh.t; 

48  end 

49    

50  equations 

51      let 

52         G_total = G_gb*G_df; 

53         N_total = N_cl*N_gb*N_df*N_as; 

54         J_total = J_gb*G_total*N_gb*N_df + J_df*N_df +  

      (J_as +  J_wh)/G_total; 



 

130 

 

55      in 

56         Wh.w == G_total*M.w; 

57         w_m == M.w - C.w; 

58         if t_m > 0 

59         t_wh == G_total*N_total*t_m - J_total*w_m.der + T_b; 

60         else  

61         t_wh == G_total*1/N_total*t_m - J_total*w_m.der + T_b; 

62         end 

63         w_m == theta_m.der; 

64         A == theta_m; 

65      end 

66  end 

67  end 
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A.2 Longitudinal dynamics 

1  component Longitudal_dynamics 

2      %Longitudinal Dynamics 

3      %A two axle vehicle model considering longitudinal dynamics of a 

     vehicle. 

4       

5      parameters 

6          m = {1000, 'kg'};           %Vehicle mass 

7          f = {1.5, 'm'};             %Distance from COM to front axle 

8          r = {1.5, 'm'};             %Distance from COM to rear axle 

9          h = {0.4, 'm'};             %Height of COM above ground plane 

10          P = {2, 'bar'};             %Tyre inflation pressure  

11          a = {1.1e-1, '1'};          %J2452 coefficient - a 

12          b = {2.5e-4, '1'};          %J2452 coefficient - b 

13          c = {8.7e-7, '1'};          %J2452 coefficient - c 

14          alpha = {3.8e-1, '1'};      %J2452 coefficient - alpha 

15          beta = {-9.4e-1, '1'};      %J2452 coefficient - beta 

16          rho = {1.25, 'kg*m^-3'};    %Air density 

17          Cd = {0.4, '1'};            %Drag coefficient 

18          Af = {1.5, 'm^2'};          %Frontal area 

19      end 

20       

21      nodes 

22         Fd = foundation.mechanical.translational.translational; %Fd: left 

23         G = foundation.mechanical.translational.translational;  %G: right 

24      end 

25           

26      outputs 

27          Vx = {0, 'm/s'};        %vx: right 

28          Sx = {0, 'm'};          %sx: right 

29      end 

30       

31      inputs 

32          e = {0, 'rad'};         %Inc[rad]: left 

33      end 

34       

35      variables      

36          fd = {0, 'N'};          %Driving force  

37          vx = {0, 'm/s'};        %Vehicle speed 

38          sx = {0, 'm'};          %Vehicle displacement 

39          fte = {0, 'N'};         %Tractive effort 

40          frr_f = {0, 'N'};       %Rolling resistance (front wheels) 

41          frr_r = {0, 'N'};       %Rolling resistance (rear wheels) 

42          frr = {0, 'N'};         %Total rolling resistance 

43          fad = {0, 'N'};         %Aerdoynamic drag 

44          fhc = {0, 'N'};         %Hill climbing force 

45          fzf = {0, 'N'};         %Normal forces (front wheels) 

46          fzr = {0, 'N'};         %Normal forces (rear wheels) 

47          vx_kph = {0, '1'};      %Velocity [km/h]   

48      end 

49       

50      function setup 

51          vx.value = 0; 

52          vx.priority = priority.high; 

53          sx.value = 0; 

54          sx.priority = priority.high; 
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55      end 

56       

57      branches 

58          fd: Fd.f -> G.f   

59      end 

60       

61      equations 

62          let  

63              g = {9.81, 'm/s^2'}; 

64              l = f+r; 

65          in 

66              fhc == m*g*sin(e); 

67              fzf == m*g*((r/l)*cos(e) - (h/l)*sin(e)) - (fd-fte)*h/l; 

68              fzr == m*g*((f/l)*cos(e) + (h/l)*sin(e)) + (fd-fte)*h/l; 

69              vx_kph == {value(vx, 'km/hr'), '1'}; 

70              frr_f == {(value(P, 'kPa')^alpha) * (value(fzf, 'N')^beta) *    

            (a + b*vx_kph + c*vx_kph^2), 'N'}; 

71              frr_r == { (value(P, 'kPa')^alpha) * (value(fzr, 'N')^beta) *  

            (a + b*vx_kph + c*vx_kph^2), 'N'}; 

72              if vx > 0 

73                  frr == frr_r + frr_f; 

74              else  

75                  frr ==0; 

76              end 

77              fad == (rho*Cd*Af)/2 * vx^2; 

78               

79              fd == m*vx.der + fte; 

80              vx == Fd.v - G.v; 

81              fte == fhc + fad + frr; 

82              vx == Vx;   

83              vx == sx.der; 

84              sx == Sx; 

85          end          

86      end 

87  end 
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A.3 Motor 

1  component Motor 

2      %PMSM Motor 

3      %Models a non-salient PMSM motor operating below base speed 

     including bearing friction and rotor dynamics 

4       

5      parameters 

6        N = {12, '1'};                    %Number of pole pairs 

7        Rs = {9e-3, 'Ohm'};               %Stator resistance - line? 

8        L = {0.14e-3, 'H'};               %Stator Inductance 

9        Lamda_f = {60, 'Wb'};             %Permanent magnet flux linkage 

10        B_m = {2.7e-5, '(N*m)*s/rad'};    %Motor viscous friction 

11        J_r = {0, 'kg*m^2'};             %Motor (rotor) rotational inertia 

12      end 

13       

14      nodes 

15          u = foundation.electrical.electrical;               %u:left 

16          v = foundation.electrical.electrical;               %v:left 

17          w = foundation.electrical.electrical;               %w:left 

18          n = foundation.electrical.electrical;               %n:left 

19          R = foundation.mechanical.rotational.rotational     %R:right 

20          C = foundation.mechanical.rotational.rotational     %C:right 

21      end 

22       

23      variables 

24          vU = {0, 'V'};              %U phase voltage 

25          vV = {0, 'V'};              %V phase voltage 

26          vW = {0, 'V'};              %W phase voltage 

27          omega = {0, 'rad/s'};       %Angular velocity 

28          iU = {0, 'A'};              %U phase current 

29          iV = {0, 'A'};              %V phase current 

30          iW = {0, 'A'};              %W phase current 

31          T_m = {0, 'N*m'};           %Motor torque 

32          id = {0, 'A'};              %d axis current 

33          iq = {0, 'A'};              %d axis current 

34          vd = {0, 'V'};              %d axis voltage 

35          vq = {0, 'V'};              %q axis voltage 

36          theta = {0, 'rad'};         %Rotor position 

37      end 

38       

39      variables(Access = protected) 

40          v0 = {0, 'V'}; 

41          i0 = {0, 'A'}; 

42      end 

43       

44      branches 

45          iU: u.i -> n.i; 

46          iV: v.i -> n.i; 

47          iW: w.i -> n.i; 

48          T_m: C.t -> R.t; 

49      end 

50       

51      equations  

52          let 

53              lamda = sqrt(3/2)*Lamda_f; 

54              L0=0.1*L; 

55          in 

56              vU == u.v - n.v; 
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57              vV == v.v - n.v; 

58              vW == w.v - n.v; 

59              omega == R.w - C.w; 

60               

61              omega == theta.der; 

62              T_m == N*lamda*iq - B_m*omega - omega.der*J_r 

63    

64              vd == sqrt(2/3)*(vU*cos(N*theta) + vV*cos(N*theta – 

            (2*pi/3)) + vW*cos(N*theta+(2*pi/3))); 

65              vq == sqrt(2/3)*(-vU*sin(N*theta) - vV*sin(N*theta – 

            (2*pi/3) - vW*sin(N*theta+(2*pi/3))); 

66              v0 == sqrt(1/3)*(vU + vV +vW); 

67               

68              L*iq.der == vq-Rs*iq - N*omega*(L*id+lamda); 

69              L*id.der == vd-Rs*id + N*omega*L*iq; 

70              L0*i0.der == v0-Rs*i0; 

71               

72              iU == sqrt(2/3)*(id*cos(N*theta)-iq*sin(N*theta)  

            + (i0/sqrt(2))); 

73              iV == sqrt(2/3)*(id*cos(N*theta-(2*pi/3))- 

            iq*sin(N*theta-(2*pi/3)) + (i0/sqrt(2))); 

74              iW == sqrt(2/3)*(id*cos(N*theta+(2*pi/3)) 

            -iq*sin(N*theta+(2*pi/3)) + (i0/sqrt(2))); 

75          end 

76      end 

77  end       
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A.4 MPTA controller 

1  component MTPA_controller 

2  %MTPA controller 

3  %This block generates a three phase AC voltage command for a three phase 

inverter to power a non-salient PMAC motor below base speed. 

4    

5  parameters 

6      N = {6, '1'};               %Number of pairs of rotor poles 

7      lamda_f = {30e-3, 'Wb'};    %Flux linkage induced by rotor magnets 

8      kp = {60, 'Ohm'};           %PI control - Proprtional gain 

9      ki = {3000, 'Ohm/s'};       %PI control - Integral gain 

10  end 

11    

12  outputs     

13      vU_ref = {0.0, 'V'};        %u*: right 

14      vV_ref = {0.0, 'V'};        %v*: right 

15      vW_ref = {0.0, 'V'};        %w*: right    

16  end 

17    

18  inputs 

19      iUVW = {[0,0,0], 'A'};      %I: right 

20      Tm_ref = {0, 'N*m'};        %Tm*: left 

21      theta = {0, 'rad'};         %th: left  

22      v_dc = {0, 'V'};            %Vdc: right 

23  end 

24    

25  variables (Access = protected)  

26    xd = {value={0, 'A*s'},priority=priority.high};%d-axis integral error 

27    xq = {value={0, 'A*s'},priority=priority.high};%q-axis integral error 

28    vq_ref = {0, 'V'}; 

29  end 

30    

31  equations 

32      let 

33         id = sqrt(2/3)*(iUVW(1)*cos(N*theta) +  

       iUVW(2)*cos(N*theta-(2*pi/3))+ iUVW(3)*cos(N*theta+(2*pi/3)));             

34         iq = sqrt(2/3)*(-iUVW(1)*sin(N*theta) – 

       iUVW(2)*sin(N*theta-(2*pi/3)) - iUVW(3)*sin(N*theta+(2*pi/3))); 

35           

36         id_ref = {0, 'A'}; 

37         iq_ref={sqrt(2/3)*value(Tm_ref,'N*m')/ 

       (value(lamda_f,'Wb')*N),'A'}; 

38     

39          vd_ref = -kp*(id-id_ref) - ki*xd; 

40          vq_ref_ = -kp*(iq-iq_ref) - ki*xq; 

41           

42          v_lim = v_dc/sqrt(2/3); 

43                

44      in  

45           

46          xd.der == (id-id_ref); 

47          xq.der == (iq-iq_ref); 

48           

49          if vq_ref_ >= v_lim 

50          vq_ref == v_lim; 

51          elseif vq_ref_ <= -v_lim 

52          vq_ref == -v_lim; 

53          else 

54          vq_ref == vq_ref_; 
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55          end 

56           

57          vU_ref == sqrt(2/3)*(vd_ref*cos(N*theta) – 

        vq_ref*sin(N*theta)); 

58          vV_ref == sqrt(2/3)*(vd_ref*cos(N*theta-(2*pi/3))  

        -  vq_ref*sin(N*theta-(2*pi/3))); 

59          vW_ref == sqrt(2/3)*(vd_ref*cos(N*theta+(2*pi/3))  

        - vq_ref*sin(N*theta+(2*pi/3))); 

60    

61      end  

62  end 

63  end 
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A.5 Inverter 

1  component Inverter 

2  %Three Phase Inverter 

3  %Average value inverter transforming a direct current to a 3 phase AC 

current with according to a reference 3 phase voltage. 

4    

5  parameters 

6      R_on = {9.7e-3, 'Ohm'};         % MOSFET/IGBT on-state resitance 

7      P_sw = {20, 'W'};               % Switching power losses 

8  end 

9    

10  inputs   

11      vU_ref = {0.0, 'V'};    %u*: left 

12      vV_ref = {0.0, 'V'};    %v*: left 

13      vW_ref = {0.0, 'V'};    %w*: left   

14  end 

15    

16  nodes 

17      p = foundation.electrical.electrical;   %B+: left 

18      n = foundation.electrical.electrical;   %B-: left 

19      u = foundation.electrical.electrical;   %u: right 

20      v = foundation.electrical.electrical;   %v: right 

21      w = foundation.electrical.electrical;   %w: right  

22  end 

23    

24  variables  

25      iU = {0, 'A'};                                      %U phase current 

26      vU = {0, 'V'};                                      %U phase voltage 

27      iV = {0, 'A'};                                      %V phase current 

28      vV = {0, 'V'};                                      %V phase voltage 

29      iW = {0, 'A'};                                      %W phase current 

30      vW = {0, 'V'};                                      %W phase voltage 

31      idc = {0, 'A'}                                      %DC side current     

32      P_sw_ = {0, 'W'};                                   

33  end 

34    

35  function setup 

36      vcap = v0;   

37  end 

38    

39  branches 

40      idc: p.i -> n.i; 

41      iU: n.i -> u.i; 

42      iV: n.i -> v.i; 

43      iW: n.i -> w.i; 

44  end 

45    

46  equations 

47      vdc == p.v - n.v; 

48       

49      vU == u.v - n.v; 

50      vU == vU_ref; 

51      vV == v.v - n.v; 

52      vV == vV_ref; 

53      vW == w.v - n.v; 

54      vW == vW_ref; 

55       
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56     if idc > 0 

57          P_sw_ == P_sw 

58      elseif idc < 0 

59          P_sw_ == -P_sw; 

60      else 

61          P_sw_ == 0 

62      end 

63   

64      vdc*idc == (vU*iU + R_on*iU^2 + vV*iV + R_on*iV^2 + vW*iW + 

    R_on*iW^2)+ vdc*icap + P_sw_; 

65   

end 

66  end 
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A.6 Auxiliary load 

1  component Auxiliary_load 

2  %Auxiliary load 

3  %Models high voltage auxiliary loads and low voltage auxiliary loads 

powered through a DC/DC buck converter 

4    

5  parameters 

6      P_HV = {100, 'W'};     %HV Auxiliary Power 

7      P_LV = {100, 'W'};     %LV Auxiliary Power 

8      N_conv = {92, '1'};    %DC/DC converter efficiency % 

9  end 

10    

11  nodes 

12      p = foundation.electrical.electrical;   %B+: right 

13      n = foundation.electrical.electrical;   %B-: right 

14  end 

15    

16  variables 

17      i_aux = {0, 'A'}; 

18      vdc = {0, 'V'}; 

19  end 

20    

21  branches 

22      i_aux: p.i -> n.i; 

23  end 

24       

25  equations 

26      vdc == p.v - n.v; 

27       

28      if value(time, 's')>1.0 

29          i_aux == (P_LV/vdc)/(N_conv/100) + (P_HV/vdc); 

30      else 

31          i_aux == 0; 

32      end 

33  end  

34  end 
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A.7 Torque limiter 

1  component Torque_limiter 

2  %Negative torque limiter 

3  %Limits negative motor torque when vehicle speed drops below zero and 

when SOC is above its limit. 

4    

5  parameters 

6      SOC_lim = {0.9, '1'};       %Maximum SOC at which regen is possible 

7  end 

8    

9  inputs 

10      vx = {0, 'm/s'};            %vx: right 

11      Tm_ref_r = {0, 'N*m'};      %Tm_r: right 

12      SOC = {0, '1'};             %SOC: left 

13  end 

14    

15  outputs 

16      Tm_ref = {0, 'N*m'};        %Tm*:left 

17      Tb = {0, 'N*m'};            %Tb:left  

18  end 

19    

20  equations 

21      if Tm_ref_r > 0 

22          Tb == 0; 

23          Tm_ref == Tm_ref_r; 

24      elseif Tm_ref_r < 0 && vx >= 0 && SOC < SOC_lim 

25          Tb == 0; 

26          Tm_ref == Tm_ref_r; 

27      elseif Tm_ref_r < 0 && vx >= 0 && SOC > SOC_lim 

28           Tb == Tm_ref_r; 

29           Tm_ref == 0; 

30      else 

31          Tb == 0; 

32          Tm_ref == 0; 

33      end 

34  end 

35  end      
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A.8 Parameter initialisation 

1  % PARAMETER INITIALISATION 

2    

3  %Linear Dynamics 

4  m = 657;                        %Vehicle mass [kg] 

5  f = 1.2563;                     %Distance from COM to front axle [m] 

6  r = 1.0937;                     %Distance from COM to rear axle [m] 

7  h = 0.3809;                     %Height of COM above ground plane [m] 

8  P = 2.5;                        %Tyre inflation pressure [bar] 

9  a = 1.11e-1;                    %J1269 coefficient - a 

10  b = 2.53e-4;                    %J1269 coefficient - b 

11  c = 8.67e-7;                    %J1269 coefficient - c 

12  alpha = -0.388;                 %J1269 coefficient - alpha 

13  beta = 9.40e-1;                 %J1269 coefficient - beta 

14  rho = 1.25;                     %Air density [kg/m^3] 

15  Cd = 0.33725;                   %Drag coefficient 

16  Af = 1.55;                      %Frontal area [m^2] 

17    

18  %Rotational Dynamics 

19  Jas = 6.15e-4;                    %Axle shaft rotational inertia [kg*m^2] 

20  Jwh = 1.06;                     %Wheel rotational inertia [kg*m^2] 

21  Jdf = 0;                        %Differntial rotational inertia [kg*m^2]              

22  Jgb = 0;                        %Gearbox rotational inertia [kg*m^2] 

23  Gdf = 1;                        %Differntial ratio 

24  Ggb = 1;                        %Gearbox ratio 

25  Ndf = 1;                        %Differntial efficiency 

26  Ngb = 1;                        %Gearbox efficiency 

27  Ncl = 1;                        %Clutch efficiency 

28  Nas = 0.995;                    %Axle shaft efficiency 

29  th0 = 0;                        %Initial rotor position [rad] 

30  R_wh = 0.3172;                  %Wheel radius [m] 

31    

32  % Drive Cycle 

33  time = xlsread('WLTP Full.xlsx', 'Time'); 

34  speed = xlsread('WLTP Full.xlsx', 'Speed'); 

35    

36  %Driver 

37  Kp = 200;                       %Speed PID control - Proprtional gain 

38  Ki = 100;                       %Speed PID control - Integral gain 

39  Kd = 25;                        %Speed PID control - Derivative gain 

40  Tm_max = 400;                   %Maximum motor torque [Nm] 

41  Tg_max = 400;                   %Maximum regeneration torque [Nm] 

42  SOC_regen = 0.96;               %SOC regen limit 

43    

44  %MTPA Torque Controller 

45  kp = 80;                        %PI control - Proprtional gain 

46  ki = 1000;                      %PI control - Integral gain 

47    

48  %Inverter 

49  Ron = 9.7e-3;                   %MOSFET/IGBT on-state resistance [Ohm] 

50  Psw = 40;                       %Switching power loss [W] 

51    

52  %Motor 

53  N = 12;                         %Number of pairs of rotor poles 

54  lamda_f = 0.11367;              %Permanent magnet flux linkage [Wb] 

55  L = 0.0875e-3;                  %Inductance [H]        

56  Rs = 0.0544;                    %Stator phase resistance [Ohm] 

57  Bm = 0.005;                      %Viscous friction coefficient [Nm/rad/s] 
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58  Jm = 368479.77e-6;            d%Rotor rotational inertia [kg*m^2] 

59    

60  %Battery 

61  R_series = 0.019;               %Equivalent series resistance [Ohm] 

62  R_trans_short = 0.012;          %Transient resistance (short) [Ohm] 

63  R_trans_long = 0.012;           %Transient resistance (long) [Ohm] 

64  C_trans_short = 700;            %Transient capacitance (short) [Ohm] 

65  C_trans_long = 4500;            %Transient capacitance (long) [Ohm] 

66  a0 = 3.278;                     %OCV versus SOC curve coefficient - a  

67  a1 = 0.2279;                    %OCV versus SOC curve coefficient - b 

68  a2 = -0.7642;                   %OCV versus SOC curve coefficient - c 

69  a3 = -49;                       %OCV versus SOC curve coefficient - d 

70  C_nom = 2.9;                    %Nominal cell capacity [Ah] 

71  Ns = 42;                        %Number of cells in series 

72  Np = 48;                        %Number of cells in parallel 

73  V_min = 2.55;                   %End of discharge cell voltage [V] 

74    

75  %Auxiliary load 

76  P_hv = 100;                     %HV Auxiliary Power [W] 

77  P_lv = 0;                       %LV Auxiliary Power [W] 

78  N_conv = 92;                    %DC/DC converter efficiency [%] 

79    

80  %Cable losses 

81  L_batt = 8;                  a%Total battery cable length [m] 

82  CSA_batt = 95e-6;              %Battery cable cross sectional area [m^2] 

83  L_motor = 0.8;                a%Motor cable length (total per phase) [m] 

84  CSA_motor = 16e-6;           a%Motor cable cross sectional area [m^2] 

85  Rho_cu = 1.68e-8;             %Copper resistivity [Ohm*m] 
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APPENDIX B: MODELLING EQUATIONS 

Rotational dynamics: 

 𝑇𝑔𝑏 = (𝑇𝑐𝑙 − 𝐽𝑔𝑏

̇𝑚

𝐺𝑔𝑏
) ∙ 𝑔𝑏𝐺𝑔𝑏 Equation 2.5 

 𝑔𝑏 =
𝑚

𝐺𝑔𝑏
 Equation 2.6 

 𝑇𝑤ℎ = 𝐺𝑡𝑜𝑡𝑎𝑙𝑡𝑜𝑡𝑎𝑙𝑇𝑚 − 𝐽𝑡𝑜𝑡𝑎𝑙̇𝑚 + 𝑇𝑏 Equation 2.7 

 
𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑔𝑏𝐺𝑡𝑜𝑡𝑎𝑙𝑔𝑏𝑑𝑓 + 𝐽𝑑𝑓𝑑𝑓 +

𝐽𝑎𝑠 + 𝐽𝑤ℎ

𝐺𝑡𝑜𝑡𝑎𝑙
 Equation 2.8 

 𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑙𝑔𝑏𝑑𝑓𝑎𝑠 Equation 2.9 

 𝐺𝑡𝑜𝑡𝑎𝑙 = 𝐺𝑔𝑏𝐺𝑑𝑓 Equation 2.10 

 

Longitudinal dynamics 

 
𝐹𝑑 =

𝑇𝑤ℎ

𝑅𝑤ℎ
 Equation 2.11 

 𝑚𝑣𝑥̇ = 𝐹𝑑 − 𝐹𝑡𝑒 Equation 2.12 

 𝐹ℎ𝑐 = 𝑚𝑔 ∙ 𝑠𝑖𝑛 (𝜖) Equation 2.14 

 
𝐹𝑧𝑓 =

𝑚𝑔

𝑓 + 𝑟
(𝑟 ∙ 𝑐𝑜𝑠(∈) − ℎ ∙ 𝑠𝑖𝑛 (∈)) −

𝑚𝑎 ∙ ℎ

𝑓 + 𝑟
 Equation 2.15 

 
𝐹𝑧𝑟 =

𝑚𝑔

𝑓 + 𝑟
(𝑓 ∙ 𝑐𝑜𝑠(∈) + ℎ ∙ 𝑠𝑖𝑛 (∈)) +

𝑚𝑎 ∙ ℎ

𝑓 + 𝑟
 Equation 2.16 

Rolling resistance 

 𝐹𝑟𝑟 = 𝐶𝑅𝑅 ∙ 𝐹𝑍 Equation 2.20 

 𝐹𝑟𝑟 = 𝑃𝛼𝐹𝑍
𝛽(𝑎 + 𝑏𝑣𝑥 + 𝑐𝑣𝑥

2) Equation 2.21 

 

Aerodynamics 

 
𝐹𝑎𝑑 =


𝑎𝑖𝑟

𝐶𝑑𝐴𝑓

2
∙ (𝑣𝑥 ± 𝑣𝑤𝑖𝑛𝑑)2 Equation 2.23 
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Motor 

 𝑃𝐶𝑜𝑟𝑒 =  𝑘𝑒𝑑𝑑𝑦𝑓𝑚
2𝐵2 + 𝑘ℎ𝑦𝑠𝑡𝑓𝑚𝐵2 + 𝑘𝑒𝑥𝑓𝑚

1.5𝐵1.5 Equation 2.24 

 

𝑢𝑞(𝑡) = 𝑅𝑠𝑖𝑞(𝑡) +
𝑑𝑞𝑠

𝑑𝑡
+ 𝑟𝑑𝑠 Equation 2.26 

 

𝑢𝑑(𝑡) = 𝑅𝑠𝑖𝑑(𝑡) +
𝑑𝑑𝑠

𝑑𝑡
− 𝑟𝑞𝑠 Equation 2.27 

 
𝑑𝑠 = 𝐿𝑑𝑖𝑑 + 𝑓 ,𝑞𝑠 = 𝐿𝑞𝑖𝑞 Equation 2.28 

 
𝑇𝑒𝑚 =

3𝑁

2
[𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] Equation 2.29 

 
𝐿𝑑 = 𝐿𝑞 =

𝐿𝑙𝑖𝑛𝑒(𝑢𝑣𝑤)

2
 Equation 2.30 

 

MTPA Controller 

 
𝑇𝑒𝑚 =

3𝑁

2
[𝑓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] Equation 2.29 

 
𝑉𝑝ℎ𝑎𝑠𝑒,𝑚𝑎𝑥 =

𝑉𝐵𝑎𝑡𝑡

√3
 Equation 2.33 

 

Inverter 

 

𝑃𝑐𝑜𝑛 =
1

𝑇𝑝
∫ (𝑅𝑜𝑛 ∙ 𝑖𝑑𝑟𝑎𝑖𝑛

2 (𝑡))

𝑡𝑐𝑜𝑛

0

𝑑𝑡 Equation 2.34 

 
𝑃𝑠𝑤 =

𝐸𝑠𝑤,𝑟

𝑇𝑝
∙

𝑉

𝑉𝑟
∙

𝐼

𝐼𝑟
 Equation 2.36 

 

Battery 

 𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 3600 × 𝐶𝑁 × 𝑓1(𝑐𝑦𝑐𝑙𝑒) × 𝑓2(𝑡𝑒𝑚𝑝) Equation 2.38 

 
𝑉𝑂𝐶(𝑆𝑂𝐶) = 𝑎0 + 𝑎1 × 𝑆𝑂𝐶 + 𝑎2𝑥𝑆𝑂𝐶2 … Equation 2.44 
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APPENDIX C: SIMSCAPE™ IMAGES 

C.1 Battery 
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C.2 Driver model and drive cycle 
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C.3 Mamba EV model 
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APPENDIX D: OCV CURVE FITTING 
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