SOME ASPECTS OF PHOSPHORUS CYCLING

16

VOLUME 2. FIGURES AND TABLES

bу

ALLAN JOHN TWINCH

VOLUME 2

CONTENTS

. *		PAGE
Chapter 1	Introduction	
Figures		
1.1	The Mgeni Catchment	. 1
1.2	Bathymetric map of Midmar Dam	2
Tables		
1.1	Morphometric data	3
Chapter 2	Materials and Methods	
Figures		
2.1	A diagrammatic representation of an isolatio column	n 4
Chapter 3	In Situ Enrichment Experiments using Isolation Columns	
Figures		
3.1 A-E	Weekly temperature, oxygen and light penetration in the open water and columns.	5-7
3.2	Temperature and oxygen regimes d <mark>uring a</mark> 48 hour period in April 1977.	8
3.3	Water and air temperatures during a 48 hour period in April 1977.	9
3.4	Water content and inflow into Midmar Dam	10
3.5	Chlorophyll, NO_3 -N, SRP and total P in the open water	11
3.6	Chlorophyll, NO_3-N , SRP and total P in the unenriched column	12
3.7	Chlorophyll, NO_3-N , SRP and total P in the column +P	13
3.8	Chlorophyll, NO3-N, SRP and total P in the column +N	14
3.9	Chlorophyll, NO3-N, SRP and total P in the column N+P	15
3.10	Periphyton standing crop and P content	16
3.11	Bioassay yields	17

3.12	The relative contribution of NO_3-N to soluble available N at different concentrations of NO_3-N in the water	18
3.13	Extraction of sediment P fractions from enriched sediment samples	19
3.14	Sediment parameters in stratified cores	20
Tables		
3.1	Growth limiting nutrients in the open water and isolation columns	21
3.2	A comparison of soluble available nitrogen calculated from bioassays with measured NO ₃ -N concentrations	22
3.3	A comparison of soluble available phosphorus calculated from bioassays with measured SRP concentrations	23
3.4	Ratios of SRP to SAP (soluble available phosphorus) at different SRP concentrations in the water	24
3.5	Correlation between sediment parameters measured in stratified cores	24
Chapter 4	Laboratory Studies of Sediment/Water P Exchange	
Figures		
4.1	PO ₄ -P adsorption isotherms for stratified Nidmar Dam sediment cores	25
4.2	Langmuir plots of the adsorption data	25
4.3	Uptake of ³² P by intact sediment cores	26
4.4	Semilog plots of the uptake data	27
4.5 A-D	The influence of increased PO ₄ -P enrichment of sediment/water systems on various parameters measured during the ³² P uptake experiments	28
4.6	Uptake of different soluble P fractions by intact sediment cores	29
4.7	Release of ³² P by intact sediment cores	30
4.8	Semilog plots of the release data	31
4.9	Distribution of ^{32}P , H_2O and dry material in stratified sediment cores	32

Tables

4.1 Langmuir constants and other parameters measured in stratified Midmar Dam sediment cores	33
4.2 Data describing ³² P uptake in the control systems containing no sediment	34
4.3 Data describing uptake of the PO ₄ -P fraction obtained from Midmar Dam water	34
4.4 Data describing ³² P uptake in the sediment/ water systems	35
4.5 Data describing ³² P release in the sediment/ water systems	36
4.6 A comparison of P release rates measured in a variety of lake sediments	37
Chapter 5 <u>Cycling of P_within the Water_Column</u>	
Figures	
5.1 Examples of ³² P transfer curves	38
5.2 A-F Semilog plots of the ³² P transfer data	39-41
5.3 Chlorophyll, TSS and P turnover times in the open water and isolation columns	42
5.4 Distribution of ³² P in stock solution, follow- ing fractionation	43
5.5 A-B Fractionation of soluble P during a ³² P trans- fer experiment on water from column 5 in October, 1978	43
5.6 Distribution of ³² P in 9 hour filtrate from the open water and isolation columns in November, 1978, following fractionation	44
5.7 A-B Fractionation of soluble P during a ³² P transfer experiment on water from column 5 in March, 1979	45
5.8 A-C Fractionation of soluble P during the growth of an <i>Anabaena flos-aquae</i> culture	46
5.9 A-D A comparison of the exchange kinetics of PO ₄ -P and colloidal P with the particulate fraction	47
5.10 ³² P transfer in filtered Midmar Dam water	48

.

Tables

С

5.1 a-b	Data describing the ³² P transfer curves obtained in the open water and isolation columns	49-50
5.2	Data describing the diphasic ³² P transfer curves obtained during the study	51
5.3	Changes in soluble P fractions during a transfer experiment on column 5 water in October, 1978	51
5.4	Phosphorus fractions measured in the water during 1977-78	52
5.5	Relative proportions of soluble P fractions in 9 hour filtrate from the open water and isolation columns on November 14, 1978	53
5.6	Correlation between the proportions of soluble P fractions and other parameters measured in the open water and isolation columns	e 54
5.7	Changes in the soluble P fractions during a ³² P transfer experiment on Column 5 water in March 1979	54
5.8	Changes in the soluble P fractions in an <i>Anabaena flos-aquae</i> culture	55
5.9	Retention of colloidal P on refiltration	55
5.10	Correlation between P turnover time and chlorophyll and TSS concentrations	56
Chapter	6 General Discussion	
Figures		

	6.1	А	conceptual	model	of	the	Ρ	cvcle
--	-----	---	------------	-------	----	-----	---	-------

Fig. 1.2. Bathymetric map of Midmar Dam showing the experimental area. Depth contours in metres.

TABLE 1.1. Some characteristics of Midmar Dam. (After Walmsley, 1976 and Archibald *et al.*, 1979). FSL = Full supply level.

Volume (FSL)	$177.2 \times 10^6 m^3$
Area (FSL)	15.59 km²
Maximum Depth (FSL)	22.3 m
Mean Depth (FSL)	11.4 m
Mean Annual Inflow	198.1 x 10 ⁶ m ³
Mean Annual Outflow	191.8 x 10 ⁶ m ³
Mean Retention Time	0.87 years
Shoreline	41.0 km
Shoreline Development	2.9 (Hutchinson, 1957)

- Fig. 2.1. A diagrammatic representation of an isolation column in position showing :
 - (1) The upper metal ring
 - (2) The drums providing floatation.
 - (3) The system of floats designed to hold the columns in position.
 - (4) The "sterkolite" (reinforced PVC) column.
 - (5) Anchors used to secure the bottom metal ring and the floats.
 - (6) Metal pegs used to ensure a good seal between the columns and the sediments.

Fig. 3.1. A-B

Weekly temperature (°C), oxygen concentration (mg &⁻¹) and secchi disc transparency (cm) in the open water (A) and in an unenriched isolation column(B).Week 0 started on April 26, 1976. Solid lines represent surface values and broken lines bottom values.

WEEKS

Fig. 3.1. C-D

Weekly temperature (°C), oxygen concentration (mg l^{-1}) and secchi disc transparency (cm) in the column +P (C) and the column +N (D). Week O started on April 26, 1976. Solid lines represent surface values and broken lines bottom values.

Weekly temperature (°C), oxygen concentration (mg z^{-1}) and secchi disc transparency (cm) in the column N+P. Week O started on April 26, 1976. Solid lines represent surface values and broken lines bottom values.

· 7

Fig. 3.2. Temperature (°C) and oxygen (% saturation) regimes over a 48 h period between weeks 52 and 53 (April 27-29, 1977) in the open water (a), unenriched column (b), column +P (c), column +N (d) and column N+P (e). Shaded and unshaded areas represent light and dark periods.

Fig. 3.3.

A. Mean water temperature between surface and bottom recorded during a 48 h period of monitoring on 27 - 29 April in the open water (dotted line) and in the four isolation columns $(\bar{x} \pm \text{standard deviation})$.

B. Air temperatures recorded during the 48 h period.

Shaded and unshaded areas represent light and dark periods.

10

Water content (\cdot) and water inflow (o) into Midmar Dam. Data for the period 1964 - 1974 from Walmsley (1976). Data for the period after 1974 from the Department of Water Affairs.

Changes in chlorophyll (A), NO_3-N (B), SRP and total P (C) concentrations at the open water station. A break in the vertical axis reflects a change from a linear to a doubling scale.

Changes in chlorophyll (A), NO_3-N (B), SRP and total P (C) in the column +P. A break in the vertical axis reflects a change from a linear to a doubling scale.

Fig. 3.8.

Changes in chlorophyll (A), NO₃-N (B), SRP and total P (C) concentrations in the column +N. Total load applied (TL) during the winter period of enrichment and during the first eighteen weeks of the summer period are indicated. Shaded areas represent periods of enrichment A break in the vertical axis represents a change from a linear to a doubling scale.

Changes in chlorophyll (A), NO_3-N (B), SRP and total P (C) concentrations in the column N+P. Total loads applied (TL) during the winter period of enrichment and during the first eighteen weeks of the summer period are indicated. Shaded areas represent periods of enrichment. A break in the vertical axis represents a change from a linear to a doubling scale.

Fig. 3.10.

Standing crop as dry mass, total P bound by,and the average phosphorus concentration of the periphyton in the upper 2,5m of the columns and an equivalent area in the open water. Shaded areas represent organic content estimated by loss on ignition. A - May 20, 1976; B - June 16; C - August 17; D - September 28; E - January 5, 1977; F - March 23; G - May 5, 1977. No phosphorus data available for May 20, 1976.

17

Algal growth potentials (AGP), PAAP-P spike yields and PAAP-N spike yields in the open water (A), unenriched column (B), the column +P (C) the column +N (D) and the column N+P (E). Vertical bars represent 95% confidence limits and shaded areas represent periods when enrichment was temporarily stopped. Yields for N+P spikes always exceeded 120 mg ℓ^{-1} .

A scattergram showing the relationship between the analytically determined NO_3-N concentration and the relative contribution of NO_3-N to the soluble available N (SAN) calculated from bioassay yields.

Fig. 3.13.

Acid extractable P (A), expected increase in P content (B), measured (\mathcal{D}) increase in P content (C) and available P, in subsamples of air dried Midmar Dam sediments following equilibration with PO₄-P solutions of varying concentration. The following regression equations were obtained for the data :

(A)	Ŷ	H	0.51x + 483.6	r	=	0,99
(B)	Y	II .	1.0x + 0	r	Ĩ	1,00
(C)	Y	=	0.5x + 9.96	r	11	0.99
(D)	Y	=	0.18x - 3.5	r	=	0.99

Fig. 3.14.

Available P (AP), acid extractable P (AEP), organic carbon (OC), pH and exchangeable $A1^{+++}(Ex A1^{+++})$ concentrations measured in stratified sediment cores from the open water (A), the unenriched column (B), the column +P (C), the column +N (D) and the column N+P (E). TABLE 3.1 Growth limiting nutrients in the open water, unenriched column, column +P, column +N and column N+P.

N indicates nitrogen is limiting

P indicates phosphorus is limiting

= indicates nitrogen and phosphorus equally limiting.

The shaded area represents the period during which enrichment was temporarily stopped.

SITE				1	WEEKS					
	1	_7	12	16	20	25	31	37	44	52
Open water	=	Р	Р	Р	=	Р	Ρ	=	=	Р
Unenriched column	=	=	Р	=	E	=	RI	=	· #	N
Column +P	=	=	N	N	N	N	N	Р	N	=
Column +N	=	Р	Р	P	*	=	Р	N	N	E
Column N+P	N	=	N	×	N//	=	Р	N	N	N

TABLE 3.2.

Yields in PAAP-N spikes (A), soluble available N (SAN) calculated from PAAP-N spike yields (B), NO_3-N concentrations (C) and the percentage of SAN represented by NO_3-N (D) in the open water and isolation columns.

		OPEN	WATER		Ļ	ENRICHE	D COLUI	MN		ÇOLUMI	N +P			COLUM	N +N			COLUM	N N+P	
	A	В	С	D	A	В	С	D	A	В	C	D	А	В	С	D	А	В	С	D
IEEKS	mg l ⁻¹	mg.1-1	mg 1-1	x 100	mg 1-1	mg l ⁻¹	mg] ⁻¹	x 100	mg]-1	1-1 Ew	m3 1 ⁻¹	x 100	mg 1 ⁻¹	mg l-1	mg l ⁻¹	x 100	i-l Guu	mg l ⁻¹	mg 1-1	x 100
	YIELD	SAN	NO ₃ -N	NO3-N SAN	VIELD	SAN	NO3-R	NO3 -N	YIELD	SAN	N-°ON	NO3-N SAN	VIELD	SAN	N-E ON	NO3-N SAN	YIELD	SAN	N-EON	NO ₃ -N
1	22	0.63	0.18	29	21	0.60	0.15	25	17	0.49	0.14	29	18	0.51	0.30	59	22	0.63	0.25	40
7	33	0.94	0.18	19	36	1.03	0.19	18	19	0.54	0.15	28	84	2.40	1.54	64	65	1.86	0.99	53
12	21	0.60	0.29	48	18	0.51	0.28	55	18	0.51	0.21	41	89	2.54	2.04	80	83	2.37	1.94	82
16	22	0.63	0.23	37	20	0.57	0.22	39	15	0.43	0.12	28	60	1.71	1.40	82	39	1.11	0.65	59
20	18	0.51	0.30	59	10	0.29	0.20	69	17	0.49	0.03	6	25	0.71	0.86	121	16	0.46	0.13	28
25	28	0.80	0.37	46	27	0.77	0.31	40	14	0.40	0.07	18	18	0.51	0.23	45	2.4	0.69	-	-
31	39	1.11	0.09	8	37	1.06	0.26	25	21	0.60	0.12	20	23	0.66	C.04	6	27	0.77	0.24	31
37	14	0.40	0.25	63	24	0.69	0.11	16	49	1.40	0.04	3	26	0.74	0.19	26	28	0.80	0.23	29
44	12	0.34	0.08	24	6	0.17	0.04	24	2	0.06	0.02	33	11	0.31	0.13	. 42	5	0.14	0.06	43
52	10	0.29	0.05	17	11	0.31	0.05	16	11	0.31	0.05	16	17	0.49	0.15	31	14	0.40	0.08	20
x				35				33				22				56				43

TABLE 3.3.

Yields in PAAP-P spikes (A), soluble available P (SAP) calculated from PAAP-P spike yields (B), SRP concentrations (C) and the percentage of SAP represented by SRP (D) in the open water and isolation columns.

- indicates no data available.

		OPEN	WATER		UN	ENRICHED	COLU	IIIN	Ī	COLUMN	I +P			CCLUM	N ->-N			COLU	MN N+P	
	A	·B	С	D	A	В	С	D	A	В	C	D	A	В	С	D	А	В	C	D
	I I	1-1	1-1			1-1	1-1		1-1	1.1	1_1		17	1. L]-1		1-1	1	1-1	
EEKS	Бш	бл	βп	100	Бш	бл	рц	100	6m	6п	бr.	100	ßw	61	бл	100	bш	61	6п	100
M	VIELD	SAP	SRP	SRP X	VIELD	SAP	SRP	SRP X	YIELD	SAP	SRP	<u>SRP</u> X	YIELD	S,àp	SRP	<u>SRP</u> ×	YIELD	SAP	SRP	<u>SRP</u> X
1	15	19	21	111	19	24	21	88	18	22	27	123	16	20	17	85	85	106	17	16
7	21	26	17	65	28	35	15	43	20	25	20	125	21	26	10	38	50	62	700	1129
12	12	15	10	67	s	10	10	100	32	40	40	100	9	11	15	118	240	2 98	1096	368
10	13	1.6	22	138	14	17	17	100	36	45	70	156	11	14	20	143	90	112	248	221
20	18	22	20	91	20	25	20	80	115	143	78	55	18	22	20	91	36	45	75	167
25	17	21	25	119	28	35	25	71	28	35	52	149	17	21	23	133	18	22	15	68
31	12	15	-	-	11	14	-	-	10	12	-	-	11	14	-	-	13	16	-	-
37	11	14	UD	8 5	13	16 ·	3	19	30	37	3	8	54	67	77	115	86	107	220	206
44	11	14	12	86	5	6	3	50	9	11	3	27	42	52	132	254	38	47	179	381
52	6	7	UD	5	21	26	UD	5	12	15	UD	5	15	19	. 10	53	46	57	64	112
x				75				61				83				114			199	296

Frequency of occurrence of selected SRP to SAP (soluble available P calculated from bioassay yields) proportions expressed as a percentage and grouped according to arbitrarily selected ranges of SRP. Samples from the open water and all columns are included.

SRP µg l⁻	n	0-49%	SRP as a p 50-99%	roportion of 100-149%	SAP 150-200%	>200%
>100	6	0	0	0	0	1.00
25-100	11	0	0.18	0.64	0.18	0
10-25	20	0.15	0.60	0.25	0	0
<10	8	1.00	0	0	0	0

TABLE 3.5.

Correlation coefficients (r) between sediment parameters measured in stratified sediment cores from the open water and isolation columns. A significant correlation (P = 0.001) is indicated

by * (n = 25)

AEP = Acid extractable P

AP = Available P

OC = Organic carbon

A1⁺⁺⁺ = Exchangeable A1⁺⁺⁺

A1 ⁺⁺⁺	AEP	AP	00	A1 ⁺⁺⁺
рH	+0.33	+0.24	+0.62	-0.83 *
\1 ⁺⁺⁺	-0.37	0.16	-0.79 *	
00	+0.65 *	+0.23		
AP	+0.72	1		

Fig. 4.1. PO₄-P adsorption isotherms for the loose surface material (LS) O-1cm, 1-3cm and 3-5cm strata in the Midmar Dam sediments.

Fig. 4.2. Langmuir plots of the adsorption data. The following regression lines for the first linear regions of the plots were obtained.

LS
$$y = 0.00227x + 1.06$$
 $r^2 = 0.90$
0-1 $y = 0.00233x + 0.80$ $r^2 = 0.99$
1-3 $y = 0.00232x + 1.05$ $r^2 = 0.93$
3-5 $y = 0.00186x + 0.343$ $r^2 = 0.97$
 $c/x/m = \frac{SRP \text{ at equilibrium (mg } 2^{-1})}{PO_4 - P \text{ adsorbed by sediment (mg } g^{-1})}$

Fig. 4.3.

Uptake of ³²P from solution in an unenriched control containing no sediment (A), an enriched control containing no sediment (100ug $PO_4-P \ l^{-1}$) (B), in unenriched sediment/water systems (C), and in a series of sediment/water systems enriched as follows: $50ug \ PO_4-P \ l^{-1}$ (D), 100ug $PO_4-P \ l^{-1}$ (E) and 200ug $PO_4-P \ l^{-1}$ (F).

Fig. 4.4.

Semilog plots of the percentage of ³²P in solution minus the percentage of ³²P in solution at equilibrium (Y - Y_{asymp}) against time for the data from ³²P uptake experiments in unenriched sediment/water systems (A) and in a series of sediment/water systems enriched as follows: 50 μ g PO₄-P ℓ^{-1} (B), 100 μ g PO₄-P ℓ^{-1} and 200 μ g PO₄-P ℓ^{-1} (D). The broken lines represent the data for the rapid phase of uptake adjusted as described in the methods (section 2.2.2).

28

Fig. 4.5.

The influence of increasing PO₄-P enrichment in sediment/water systems

- on : A) asymptote levels attained in solution as a percentage of total ^{32}P (\overline{X} and range),
 - B) the time required for equilibrium to be established (\overline{x} and range),
 - C) the rate constants (k) for the rapid and slow phases of uptake $(\overline{x} \text{ and range })$
 - D) the PO₄-P uptake rates (solid line obtained by linear regression analysis, broken lines indicate 95% confidence limits).

Fig. 4.6.

- A) Uptake of labelled PO₄-P and colloidal P from Midmar Dam filtrate by intact sediment cores.
- B) Semilog plots of the percentage of ${}^{32}P$ in solution minus the percentage of ${}^{32}P$ in solution at equilibrium (Y Y_{asymp}) against time for the labelled PO₄-P uptake data. The broken line represe data for the rapid phase of uptake adjusted as described in the methods (section $\bar{2}.2.2$).

Release of ³²P from intact sediment cores into solution following previous enrichment with PO₄-P as follows : no enrichment (A), 50 µg PO₄-P ℓ^{-1} (B), 100 µg PO₄-P ℓ^{-1} (C) and 200 µg PO₄-P ℓ^{-1} (D). Expressed as counts per minute per ml of solution.

Semilog plots of the ³²P concentration in solution at equilibrium (CPM ml⁻¹) minus the ³²P concentration in solution ($Y_{asymp} - Y$) against time for the data for ³²P release experiments in sediment/ water systems following previous enrichment with PO₄-P as follows: no enrichment (A), 50 µg PO₄-P ℓ^{-1} (B), 100 µg PO₄-P ℓ^{-1} (C) and 200 µg PO₄-P ℓ^{-1} (D). The broken lines represent the data for the rapid phase of release adjusted as described in the methods (section 2.2.2)

- A) Vertical distribution of ${}^{32}P$ in Midmar Dam sediment cores after 1 and 3 weeks equilibration under unenriched conditions (A) and and during enrichment with 50 (B), 100 (C) and 200 (D) $ug \ l^{-1}PO_4 - P$.
- B) Vertical profile of water content in Midmar Dam sediment cores. Mean for all values plotted with one standard deviation (horizontal bars).
- C) Dry mass content of the strata used during this investigation. Mean for all values plotted with one standard deviation (horizontal bars)
TABLE. 4.1. P adsorption maxima (b), bonding energy constants (k), organic carbon (OC), exchangeable Al³⁺ (Al³⁺), pH, available P (AP) and acid extractable P (AEP) in stratified Midmar Dam sediment cores, and the correlation between b and k and the other parameters measured. r_b = correlation coefficients between b and the other parameters, r_k = correlation coefficients between k and the other parameters

$\begin{array}{ccc} k & 0C \\ g^{-1} & \% \\ 10^{-2} & & \\ .21 & 2.85 \\ .29 & 2.30 \\ .22 & 2.20 \end{array}$	A1 ⁺⁺⁺ meq% 0.28 0.10	рН 4.75 4.40	AP μg g ⁻¹ 1.45 1.35	AEP μg g ⁻¹ 415 330
.21 2.85 .29 2.30	0.28	4.75 4.40	1.45 1.35	415 ⁻ 330
.29 2.30	0.10	4.40	1.35	330
22 2 20	0.60	1 25		
	0.00	4.35	2.63	390
.54 1.65	1.15	3.80	2.37	360
**	0.00	*	0.41	0.170
-0.70	0.09	-0.00	0.41	-0.172
0.86	0.17	-0.92	0.33	-0.462
	0.76 0.86	** 0.76 0.09 * 0.86 0.17	** * 0.76 0.09 -0.85 * 0.86 0.17 -0.92	** * 0.76 0.09 -0.85 0.41 * 0.86 0.17 -0.92 0.33

** significant P = 0.10

LS = Loose surface material

TABLE 4.2. Data describing uptake of ³²PO₄-P in control systems containing no sediment

 r^2 = coefficient of determination, Y_0 = Y intercept k = rate constant

PO -P added µg ℓ ⁻¹	r ²	Ү ₀ % ³² р	k hr ⁻¹
0	0.920	98.6	.0024
100	0.320	96.7	.0008

TABLE 4.3. Data describing the uptake of the PO_4 -P fraction from Midmar Dam filtrate by intact sediment cores. r^2 = coefficient of determination, Y_0 = Y intercept, k = rate constant and n = number of data points.

Phase of uptake	r ²	Y₀ %32p	k min ⁻¹	n
Rapid Phase	1.0000	42.0	14.73	2
Slow Phase	0.9810	38.4	0.7662	5

34 -

-TABLE 4.4. Data describing the two phases of ${}^{32}P$ uptake by sediments in intact sediment water systems receiving varying loads of PO₄-P. r^2 = coefficient of determination, Yo = Y intercept, k = rate constant, n = number of data points, MPFR = maximum possible fixation rate. * indicates steady state conditions where MPFR represents exchange rate not uptake rate.

P a	0 -P dded	Equil. Time	SRP in	solution	Asymp.		FAST F	PHASE				SLOW PH	IASE		
μ	g £ ⁻¹	min	t ₀	t _{asymp}		r ²	¥0 % ³² P	k hr ⁻¹	n	MPFR µg cm ⁻² hr ⁻¹	r²	¥0 %32р	k hr ⁻¹	n	MPFR µg cm ⁻² hr ⁻¹
	1	31	16	16	19.0	1.00	57.9	16.05	2	1.7 *	1.00	23.1	.1011	6	.010' *
0	2	30	16	16	34.0	1.00	41.2	17.47	2	1.9 *	0.99	24.7	.1241	5	.013 #
	x	31.5	16	16	26.5	1.00	49.6	16.76	2	1.8 *	1.00	23.9	.1126	6	.011 .*
	1	65	67	14	21.5	1.00	15.2	10.62	2	3.73	1.00	63.3	0535	8	019
50	2	65	67	16	17.0	1.00	28.6	32.64	2	11.02	1.00	54.4	0563	8	.019
	x	65	67	15	19.3	1.00	21.9	21.63	2	7.37	1.00	58.9	.0549	8	.019
	1	90	115	16	10.0	1.00	39.0	11.37	2	7.46	1 00	51.0	0388	0	0.25
100	2	85	115	16	11.0	1.00	28.4	14.20	2	9.31	1.00	51.0 60.6	0300	9	.025
	x	87.5	115	16	10.5	1.00	33.7	12.79	2	8.39	1.00	55.8	.0394	9	.026
1923	1	122	210	18	6.0	1.00	40.3	10.72	2	13.63	1.00	53.8	.0302	10	.038
200	2	110	210	16	6.0	1.00	57.0	14.83	2	19.06	1.00	37.1	.0387	10	050
	×	116	210	17	6.0	1.00	48.7	12.78	2	16.34	1.00	45.5	.0345	10	.044

35

TABLE 4.5. Data describing the release of ${}^{32}P$ by sediments in intact sediment water systems following enrichment with varying loads of PO₄-P. r^2 = coefficient of determination, Yo = Y intercept, k = rate constant, n = number of data points, MPRR = maximum possible release rate.

PO -P added	PO -P Asym. SRP 32p added µg 2 ⁻¹ Released		32p Released		RAPID PHASE				SLOW PHASE				
µg 2-1	CPM m] ⁻¹		as a % of total ³² p applied	r²	Yo CPM me-1	k min ⁻¹	n	MPRR ug cm ² hr ⁻¹	r ²	Yo CPM me-1	k min ⁻¹	n	MPRR µg cm ² hr ⁻¹
Q	1500	7	0.70	1.00	600	1.7509	2	4.87	0.9641	909	0.0869	6	0.242
50	1900	9	0.80	1.00	875	2.0118	2	7.19	0.7730	1053	0.0317	6	0.113
100	2600	7	1.00	1.00	1200	2.4643	2	6.85	0.9721	1384	0.0467	6	0.130
200	1600	9	0.70	1.00	925	3.2737	2	11.71	0.9287	698	0.0191	7	0.053
×	1900	8.0	0.80	1.00	900	2.3752	2	7.655	0.9095	1011	0.0461	6	0.134

TABLE. 4.6. A comparison of P release rates measured from a variety of lake sediments

A = aerobic ; AA = anaerobic ; * = whole lake study

Sediment Source	Oxygen Status	P Release Rate mg m ⁻² d ⁻¹	Reference
Lake Warner (U.S.)	A	1.2	Fillos and Swanson (1975)
11 II	AA	26 (max)	u .
Gnadensee(Germany)	А	1.2 - 9.4	Banoub (1975)
Lake Esrom(Denmark)	А	8 - 9	Kamp Nielsen (1975a)
н н	AA	16.2	Kamp Nielsen (1975b)
Lake Furesø(Denmark)	AA	17.0	Kamp Nielsen (1974)
Lake Erie (U.S.)	AA	13.0	Burns (1976)
Lough Neagh(Ireland)	12	20 - 48	Stevens et al.(1976)
11 11	А	9.7 - 18.7	Rippey (1976)
Lake Mohegan(U.S.)	AA	3 - 11	Fillos (1976)
п н	А	2 - 9	II
Lake Glaningen (Sweden)	A	47	Ryding and Forsberg(1976)
Lake Ramsjön (Sweden)	A	13	
Lake Ryssbysjön (Sweden)	A	9	0 U
Lake Sadra Bergundasjön(Sweden) AA	22 - 49	Bengtsson (1975)
East Twin Lake(U.S.)	*	0.7 - 2.3	Cooke <i>et al</i> . (1977)
West Twin Lake(U.S.)	*	0.8 - 2.6	0 H
Lake Mossø (Denmark)	А	4.5 - 8.6	Van Bo Riemann (1977)
Lake Trumen(Sweden)	AA	0.65 - 14.0	Bengtsson et al.(1975)
Lake Mendota(U.S.)	А	0 - 51	Gallepp (1979)
Midmar Dam (S.A.)	А	0 - 32	This study

Fig. 5.1.

Examples of ^{32}P transfer curves in the open water and in column 3 on May 23, 1978.

38

C-D. Semilog plots of the percentage of ${}^{32}P$ in solution minus the percentage of ${}^{32}P$ in solution at equilibrium (Y - Y_{asymp}) against time for the ${}^{32}P$ uptake data obtained in water sampled in column 2 (C) and column 3.(D). When the uptake was diphasic the rapid phase was adjusted as described in the methods (section $2{}^{-3}$ L) and plotted uping busker lines

E-F. Semilog plots of the percentage of ³²P in solution minus the percentage of ³²P in solution at equilibrium (Y - Y_{asymp}) against time for the ³²P uptake data obtained in water sampled in column 4 (E) and column 5 (F). When the uptake was diphasic the rapid phase was adjusted as described in the methods (section 2.3.1) and plotted using broken lines.

۲[`]

Chlorophyll (Chl), TSS and P turnover time (Ptt) measured in the open water (OW) and in the columns (C1 - C5) during 1977-78 and 1978-79. NO₃-N loading rates during 1977-78 were as follows : C1 - unenriched, C2 - 25 μ g l⁻¹ week⁻¹, C3 - 50 μ g l⁻¹ week⁻¹, C4 - 100 μ g l⁻¹ week⁻¹ and C5 - 200 μ g l⁻¹ week⁻¹. During 1978-79 C1 remained unenriched and the other columns were enriched with 200 μ g NO₃-N l⁻¹ week⁻¹. Measurements were made on the following dates: 13-2-78 (a), 27-2 (b), 13-3 (c), 28-3 (d), 11-4 (e), 24-4 (f), 23-5 (g), 26-9 (h), 17-10 (i), 15-11 (j), 12-12 (k) and 7-2-79(1)

Fig. 5.4.

Distribution of ³²P in ³²PO₄-P stock solution following fractionation.

Fig. 5.5.

- A) Proportions of total ³²P, ³²PO₄-P and colloidal ³²P remaining in solution during a ³²P uptake experiment undertaken on water sampled from column 5 in October, 1978.
- B) Distribution of the soluble P fractions at different times during the experiment, following fractionation.

Distribution of ${}^{32}P$ in 9 hour filtrate from the routine ${}^{32}P$ uptake experiments in the open water and isolation columns on November 14, 1978, following fractionation. (Column 1 remained unenriched while the other columns were enriched with 200 $ug \ l^{-1}NO_3$ -N week⁻¹. Delays between filtration and fractionation are indicated).

44

- A) Proportions of total soluble ³²P, ³²PO₄-P and colloidal ³²P remaining in solution during a ³²P uptake experiment undertake on water sampled from column 5 in March, 1979.
- B) Distribution of the soluble P fractions at different times during the experiment, following fractionation. Delays between filtration and fractionation are indicated.

- Fig. 5.8.
 - A) Growth curve for Anabaena flos-aquae. Arrows indic points at which fractionations were undertaken.
 - B) Proportion of ³²P remaining in solution during/
 - C) Distribution of soluble P fractions at differ the experiment, following fractionation.

Fig. 5.9.

- A) ³²P transfer curve obtained from Midmar Dam surface water on February 8, 1979. The arrow indicates the point at which soluble P was fractionated.
- B) Distribution of soluble P fractions following fractionation.
- C) Transfer curve for the ³²PO₄-P fraction (a) in the original dam water sample.
- D) Transfer curves for the colloidal ³²P fraction (5 and c) in the original dam water sample.

Fig. 5. 10.

 ^{32}P transfer in filtered Midmar Dam water. Linear regression equation y = -0.035x + 99.98,

$$r^2 = 0.97$$

TABLE 5.1a.

Data describing the exponential ³²P transfer curves obtained in the open water and isolation columns during 1977-78. The following NO₃-N enrichment regimes were used : Column 1 - unenriched, Column 2 - 25 μ g ℓ^{-1} week⁻¹, Column 3 - 50 μ g ℓ^{-1} week⁻¹, Column 4 - 100 μ g ℓ^{-1} week⁻¹ and Column 5 -200 μ g ℓ^{-1} week⁻¹. Coefficient of determination = r², rate constant (min⁻¹) = k, P turnover time (min) = tt and asymptote (% ³²P) = Asymp. NR indicates that asymptotic levels were not attained during the experiment and - indicates that no mean was calculated.

Site	•	12.2.78	27.2.78	13.3.78	28.3.78	11.4.78	24.4.78	23.5.78	x
0per	r ²	0.95	0.99	0.98	1.00	80.0	0.99	0.98	0.98
Water	k	.0014	.0517	.0839	.0374	0.291	.0035	.0040	.0301
	tt	714	19	12	27	34	286	250	192
	Asymp	NR	5.0	8.0	10.0	19.0	NR	NR	-
llner	2	0.93	0.99	0.99	1.00	0.90	0.99	0.93	0.27
riched	k	.0334	.0519	.1833	.1198	.0128	.0154	.0171	.0621
column	tt	30	19	6	8	78	61	59	37
(1)	Asymp	9.5	5.0	7.0	13.0	21.0	13.0	10.0	11.2
Culumn	r ²	0.94	<u>ე</u> ყე	0.99	1.00	0 97	C.99	J.99	0.93
(2)	k	.0201	.0278	.1739	.1113	.0243	.0074	.0127	.0539
(-7,	it.	50	36	5	9	41	135	79	51
	Asymp	55.0	10.0	14.0	6.5	12.0	21.0	10.0	18 4
Column		0.91	1.00	1.00	0.97	0.99	0.99	0.86	0.96
(3)	k	.0481	.2211	.0727	0.560	.0391	.0572	.0282	.0746
• •	it	21	5	14	18	26	18	35	20
	Asymp	80	8.0	10.0	3.5	7.0	16.5	10.0	9.0
Column	r²	0.94	0.98	0.94	0.98	0.99	ù.97	1.00	0.98
(4)	k	.0025	.0553	.0550	.1936	.1815	.0923	.0399	.0886
	tt	500	18	18.2	5	6	11	25	69
	Asymp	NR	1.3	23.0	11.5	17.0	9.0	8.0	-
Úclumn		0.86	0.97	0.99	0,90	0.98	1.00	0.83	0.93
(5)	k	.0005	.0428	.0756	.1734	.2780	.0861	.1159	.1103
	tt	2000	23	13	6	4	5	9	294
	Asymp	NR	<1	13.0	15.5	17.5	14.0	16.0	
		•						• • • • • • • •	N. I

49.

Data describing the exponential uptake curves obtained in the open water and isolation columns during 1978-79. Column 1 was unenriched and all other columns received 200 μ g NO₃-N ϵ^{-1} week⁻¹. Coefficient of determination = r², rate constant (min⁻¹) = k, P turnover time (min) = tt and asymptote (% ³²P) = Asymp..

Site		20.9.78	17.10.78	14.11.78	12.12.78	7.2.79	x
	r ²	1.00	0.98	0.88	0.99	1.00	0.97
0pen	ķ	.0195	.0105	.0167	.0591	.1226	.0457
Water	tt	51	95	60	17	8	46
	Asymp	b 18.0	50.0	11.0	4.5	15.0	19.7
Uneu-	r ²	0.99	0.99	0.81	0.99	1.00	0.96
riched	k	.0111	.0372	.0859	.0437	.0366	.0443
Column	tt	90	27	12	21	26	35
(1)	V s And	7.9	14.0	8.0	13.5	26.0	13.7
folumn	rŻ	0.98	0.95	0.98	1.00	C.95	0.97
(2)	k	.0647	.0123	.1036	.0621	.0433	.0572
	tt	16	81	10	16	23	29
	Asymp	6.0	5.0	9.2	17.0	22.0	11.3
Column	r²	C.92	0.99	0.79	0.99	1.00	0.94
(3)	k	.2246	.2793	.0600	.0376	.0352	.1273
	tŧ	5	4	17	27	28	16
	Asymp	8.0	11.0	4.5	16.0	15.0	10.9
Column	r ²	0.96	1.00	0.82	0.60	0.97	0.89
(4).	k	.0896	.0693	.0335	.0236	.1238	. 0680
	tt	11	14	30	42	8	21
	Asymp	8.0	14.0	10	10.5	25.0	13.5
Column	r ²	0.97	0.95	0.89	0.81	1.00	.0.92
(5)	k	.1291	.1455	.0215	.1739	.1220	.1184
	tt	8	7	47	5	8	15.2
	Asymp	14.0	15.0	< 1	30.0	25.0	17.0

TABLE 5.2. Data describing the diphasic ³²P uptake kinetics detected during the routine ³²P uptake experiments. $k = rate constant (min^{-1}) and tt = P$ turnover time.

COLUMN	DATE	RAPID k [.]	PHASE tt	SLOW k	PHASE tt	
3	23.5.78	.2714	3.7	.0189	52.9	
4	15.11.78	.1669	6.0	.154	64.9	
4	12.12.78	.1874	5.3	.0067	149.2	
5	11.11.78	.4652	2.2	.0184	54.3	
x			4.3		80.33	

TABLE 5.3. Changes in the relative proportions of soluble P fractions during the ³²P uptake experiments conducted on water sampled from column 5 during October 1978. (Expressed as a % of total ³²P eluted).

Fraction	Time of fractionation (h)							
	Q	0.03	6.5	20				
P04-P	100	99	31.3	8.5				
Colloidal P	0	0.8	60.1	84.8				
Intermediate P	0	0.2	8.6	6.7				

51.

TABLE 5.4.

Soluble reactive phosphorus (SRP), total dissolved phosphorus (TDP) and particulate phosphorus (PP) measured in the open water and isolation columns at the times P turnover times were determined during the 1977-78 enrichment experiment. All units $\mu g \ \ell^{-1}$.

					DATE				
SITE		13.2.78	27.2.78	13.3.78	28.3.78	11.4.78	24.4.78	23.5.78	x
^	SRP		1	1	t	1	1	1	-
Upen	TDP	-	3	10	6	8	6	2	5.83
water	PP	-	20	8	5	12	9	18	12.0
Unonuiok	- SRP	-	1	t.	t	2	t	t	
column(1)	TDP	-	5	7	4	8	5	1	5.00
	PP	-	17	17	8	7	8	22	13,17
Column(/	SRP	-	1	1	1	1	1	2	-
	TDP	-	?	8	4	6	3	3	5.17
	PP	-	11	13	10	17	27	-	15.60
	SRP	÷	t	1	1	1 <u></u>	1	1	(
	TDP	-	5	8	6	6	4	1	5.00
	PP	\$m	13	15	3	14	11	-	1 1.2u
ົດໄມສາກ (SRF		t	1	t	t	1	1	
orenar (TD?	-	5	7	6	5	4	3	4.83
• · · · ·	PP	••	13	11	ś	16	17	18	13.00
Column (SRP	-	t		t	1	t,	0	-
Column (5) T Pi	TDP	- '	6	5	4	5	4	1	4.17
	PP	-	12	12	12	14	15	-	13.00

TABLE 5.5 Relative proportions of PO₄-P, colloidal P and intermediate P fractions in 9 hour filtrate from routine ³²P uptake experiments in the open water and isolation columns on November 14, 1978, together with other parameters measured in the samples.

Paramotor			Site			1
r ar ame cer	Open water	Column 1	Column 2	Column 3	Column 4	Column 5
PO ₄ -P % of Total	2.8	0.7	4.2	0.9	2.4	< 1
% of Soluble	23	33	42	17	30	28
Colloidal P % of Tot	8.2	1.1	5.0	3.6	5.0	< 0.1
% of Sol	68	53	50	72	63	59
Intermediate P % of Soluble	9	14	8	11	7	13
Asymptote %	11.0	8.0	9.2	4.5	10	< 1
P Turnover Time(min)	60	12	10	17	30	47
SRP µg ℓ ⁻¹	2	t	t	t	t	t
TSP µg ℓ ⁻¹	10	5	8	5	7	7
TP µg ℓ ⁻¹	22	20	19	18	18	26
TSS mg ℓ ⁻¹	20.4	8.1	9.1.	13.2	12.4	13.8
Chlorophyll µg l ⁻¹	2.5	5.1	6.9	4.0	4.2	14.2

SRP = soluble reactive phosphorus

TSP = total soluble phosphorus

TP = total phosphorus

TSS = total suspended solids

t = trace

TABLE 5.6 Correlation coefficients (r) for the proportions of soluble P (as a % of the total ³²P eluted) versus total phosphorus (TP), total soluble phosphorus (TSP), total suspended solids(TSS), P turnover time (tt), chlorophyll and asymptote level (Asymp), measured in the open water and columns on November 14, 1978.

Fraction	TP	TSP	TSS	tt	Chlorophy11	Asymp
PO4-P	-0.064	0.135	-0.636	-0.428	0.240	0.274
Colloidal P	0.095	0.049	0.718	0.456	-0.386	-0.066

* significant at 0.05

n = 6

TABLE 5.7 Changes in the relative proportions of soluble P fractions during the ³²P uptake experiments on water sampled from column 5 during March, 1979.

(Expressed as a % of the total ^{32}P eluted).

Fraction	Time of fractionation (h)					
	0	0.17	1	2		
P04-P	100	89.9	11.4	9.3		
Colloidal P	0	8.9	84.0	87.9		
Intermediate P	0	1.2	4.6	2.0		

54.

TABLE 5.8 Changes in the relative proportions of soluble P fractions during the ³²P uptake experiment in an Anabaena flos-aquae culture (expressed as a % of the total ³²P eluted)

Fraction		Time of fractionation (days)							
	0	0.75	1.5	4	6	11	17	22	
PO ₄ -P	100	71.4	32.1	40.0	43.7	46.0	35.0	48.4	
Colloidal P	0	28.7	47.0	36.0	39.0	30.0	52.0	39.4	
Intermediate P	0	0	21.9	24.0	17.3	24.0	13.0	12.2	

TABLE 5.9 Retention of colloidal P, obtained from a routine solutle P fractionation of Midmar Dam water, on refiltration through 0.45µ membrane filters.

	CPM ml ⁻¹ before filtration	CPM ml ⁻¹ after filtration	% Retained		
1	4004	1395	65		
2	3103	1385	55		
x	<u> </u>	-	60		

TABLE 5.10 Correlation between P turnover time (tt) and chlorophyll(Chl) and total suspended solid (TSS) concentrations in the open water and isolation columns during the 1977-78 (n = 42) and 1978-79 (n = 30) enrichment experiments.

Period	1977-78					
Correlated	Chl. vs tt	TSS vs tt				
r	0.283	.0232				
Period	1978	3-79				
r	0.095	.0502				

Fig. 6.1 A conceptual model of P compartments and their interactions in a shallow area of Lake Midmar. (The relative proportions of the soluble P fractions represent mean values from all gel filtration analyses undertaken on water from the dam and isolation columns).

Fig. 5.1.

Examples of ³²P transfer curves in the open water and in column 3 on May 23, 1978.

C-D. Semilog plots of the percentage of ³²P in solution minus the percentage of ³²P in solution at equilibrium (Y - Y_{asymp}) against time for the ³²P uptake data obtained in water sampled in column 2 (C) and column 3.(D). When the uptake was diphasic the rapid phase was adjusted

E-F. Semilog plots of the percentage of ³²P in solution minus the percentage of ³²P in solution at equilibrium (Y - Y_{asymp}) against time for the ³²P uptake data obtained in water sampled in column 4 (E) and column 5 (F). When the uptake was diphasic the rapid phase was adjusted as described in the methods (section 2.3.1) and plotted using broken lines.

4

Chlorophyll (Chl), TSS and P turnover time (Ptt) measured in the open water (OW) and in the columns (C1 - C5) during 1977-78 and 1978-79. NO₃-N loading rates during 1977-78 were as follows : C1 - unenriched, C2 - 25 μ g &⁻¹ week⁻¹, C3 - 50 μ g &⁻¹ week⁻¹, C4 - 100 μ g &⁻¹ week⁻¹ and C5 - 200 μ g &⁻¹ week⁻¹. During 1978-79 C1 remained unenriched and the other columns were enriched with 200 μ g NO₃-N &⁻¹ week⁻¹. Measurements were made on the following dates: 13-2-78 (a), 27-2 (b), 13-3 (c), 28-3 (d), 11-4 (e), 24-4 (f), 23-5 (g), 26-9 (h), 17-10 (i), 15-11 (j), 12-12 (k) and 7-2-79(1)

Fig. 5.4.

Distribution of ${}^{32}P$ in ${}^{32}PO_4-P$ stock solution following fractionation.

Fig. 5.5.

- A) Proportions of total ³²P, ³²PO₄-P and colloidal ³²P remaining in solution during a ³²P uptake experiment undertaken on water sampled from column 5 in October, 1978.
- B) Distribution of the soluble P fractions at different times during the experiment, following fractionation.

43

Distribution of ${}^{32}P$ in 9 hour filtrate from the routine ${}^{32}P$ uptake experiments in the open water and isolation columns on November 14, 1978, following fractionation. (Column 1 remained unenriched while the other columns were enriched with 200 $ug \ l^{-1}NO_3$ -N week⁻¹. Delays between filtration and fractionation are indicated).

- A) Proportions of total soluble ³²P, ³²PO₄-P and colloidal ³²P remaining in solution during a ³²P uptake experiment undertake on water sampled from column 5 in March, 1979.
- B) Distribution of the soluble P fractions at different times during the experiment, following fractionation. Delays between filtration and fractionation are indicated.

46.

- A) Growth curve for Anabaena flos-aquae. Arrows indicate points at which fractionations were undertaken.
- B) Proportion of ³²P remaining in solution during the experiment.
- C) Distribution of soluble P fractions at different times during the experiment, following fractionation.

Fig. 5.9.

- A) ³²P transfer curve obtained from Midmar Dam surface water on February 8, 1979. The arrow indicates the point at which soluble P was fractionated.
- B) Distribution of soluble P fractions following fractionation.
- C) Transfer curve for the ³²PO₄-P fraction (a) in the original dam water sample.
- D) Transfer curves for the colloidal ³²P fraction (5 and c) in the original dam water sample.

Fig. 5. 10.

 32 P transfer in filtered Midmar Dam water. Linear regression equation y = -0.035x + 99.98,

 $r^2 = 0.97$

TABLE 5.1a.

Data describing the exponential ³²P transfer curves obtained in the open water and isolation columns during 1977-78. The following NO₃-N enrichment regimes were used : Column 1 - unenriched, Column 2 - 25 µg l^{-1} week⁻¹, Column 3 - 50 µg l^{-1} week⁻¹, Column 4 - 100 µg l^{-1} week⁻¹ and Column 5 -200 µg l^{-1} week⁻¹. Coefficient of determination = r^2 , rate constant (min⁻¹) = k, P turnover time (min) = tt and asymptote (% ³²P) = Asymp. NR indicates that asymptotic levels were not attained during the experiment and - indicates that no mean was calculated.

Site	,	12.2.78	27.2.78	13.3.70	28.3.78	11.4.78	24.4.78	23.5.78	x
0per.	r ²	0.95	0.99	0.98	1.00	80.0	0.99	0.98	0.98
Water	k	.0014	.0517	.0839	.0374	0.291	.0035	.0040	.0301
	tt	714	19	12	27	34	286	250	192
	Asymp	NR	5.0	8.0	10.0	19.0	NR	NR	-
Unen-	i ^{.2}	0.93	0.99	0.99	1.00	0.99	0.99	0.93	0.07
riched	k	.0334	.0519	.1833	.1198	.0128	.0154	.0171	.0621
column	tt	30	19	6	8	78	61	59	37
(1)	Asymp	9.5	5.0	7.0	13.0	21.0	13.0	10.0	11.2
Culumn	r ²	0.94	U 49	0.99	1.00	0 97	C.99	J.99	52.0
(2)	k	.0201	.0278	.1739	.1113	.0243	.0074	.0127	.0539
· · · · · · · · · · · · · · · · · · ·	t t	50	36	5	9	41	135	79	51
	Asymp	53.0	10.0	14.0	6.5	12.0	21.0	10.0	18 1
Column		0.91	1.00	1.00	0.97	0.99	0.99	0.86	0.96
(3)	k	.0481	.2211	.0727	0.560	.0391	.0572	.0282	.0746
	٤t	21	5	14	18	26	18	35	20
	Asymp	80	8.0	10.0	3.5	7.0	16.5	10.0	9.0
Column	r ²	0.94	0.98	0.99	0.98	0.99	ú.97	1.00	0.98
(4)	k	.0025	.0553	.0550	.1936	.1815	.0923	.0399	.0886
	tt	500	18	18.2	5	6	11	25	69
	Asymp	NR	1.3	23.0	11.5	17.0	9.0	8.0	-
Úclumn	r ²	0.86	0.97	0.99	0.90	0.98	1.00	0.83	0.03
(5)	k	.0005	.0428	.0756	.1734	.2780	.0861	.1159	1103
	tt	2000	23	13	6	4	5	9	294
	Asymp	NR	<1	13.0	15 5	17 5	14 0	10.0	

49.
TABLE 5.1b.

Data describing the exponential uptake curves obtained in the open water and isolation columns during 1978-79. Column 1 was unenriched and all other columns received 200 μ g NO₃-N &⁻¹ week⁻¹. Coefficient of determination = r², rate constant (min⁻¹) = k, P turnover time (min) = tt and asymptote (% ³²P) = Asymp..

Site	2	20.9.78	17.10.78	14.11.78	12.12.78	7.2.79	x
	r ²	1.00	0.98	0.88	U.99	1.00	0.97
0pen	k	.0195	.0105	.0167	.0591	,1226	.0457
Water	tt	51	95	60	17	8	46
	Asymp	18.0	50.0	11.0	4.5	15.0	19.7
Unen-	r ²	0.99	0.99	0.81	0.99	1.00	0.96
riched	k	.0111	.0372	.0859	.0487	.0366	.0443
Column	tt	90	27	12	21	26	35
(1)	Λsynnp	7.0	14.0	8.0	13.5	26.0	13.7
ົດງານຫາ	rż	6.98	0.95	0.98	1.00	C.95	0,97
(2)	k	.0647	.0123	.1036	.0621	.0433	.0572
	tt	16	81	10	16	23	29
	Asymp	6.0	5.0	9.2	17.0	22.0	11.3
Column	r ²	C.92	0.99	0.79	0.99	1.00	0.94
(3)	k	.2246	.2793	.0600	.0376	.0352	.1273
	tt	5	4	17	27	28	16
	Λsymp	8.0	11.0	4.5	16.0	15.0	10.9
Column	r ²	0.96	1.00	0.82	0.60	0.97	0.89
(4)	k	.0896	.0693	.0335	.0236	.1238	. 0680
н. 1	tt	11	14	30	42	8	21
	Asymp	8.0	14.0	10	10.5	25.0	13.5
Column	r ²	0.97	J.95	0.89	0.81	1.00	.0.92
(5)	k	.1291	.1455	.0215	.1739	.1220	.1184
	tt	8	7	47	5	8	15.2
	Asymp	14.0	15.0	< 1	30.0	25.0	17.0

TABLE 5.2. Data describing the diphasic ³²P uptake kinetics detected during the routine ³²P uptake experiments. $k = rate constant (min^{-1}) and tt = P turnover time.$

COLUMN	DATE	RAP I D k	PHASE tt	SLOW k	PHASE tt
3	23.5.78	.2714	3.7	.0189	52.9
4	15.11.78	.1669	6.0	.154	64.9
4	12.12.78	.1874	5.3	.0067	149.2
5	11.11.78	.4652	2.2	.0184	54.3
x			4.3		80.33

TABLE 5.3. Changes in the relative proportions of soluble P fractions during the ³²P uptake experiments conducted on water sampled from column 5 during October 1978. (Expressed as a % of total ³²P eluted).

Fraction	Time of fractionation (h)				
	Q	0.03	6.5	20	
PO 4-P	100	99	31.3	8.5	
Colloidal P	0	0.8	60.1	84.8	
Intermediate P	0	0.2	8.6	6.7	

51.

TABLE 5.4.

Soluble reactive phosphorus (SRP), total dissolved phosphorus (TDP) and particulate phosphorus (PP) measured in the open water and isolation columns at the times P turnover times were determined during the 1977-78 enrichment experiment. All units $\mu g \ \ell^{-1}$.

				_	DATE		4		
SITE		13.2.78	27.2.78	13.3.78	28.3.78	11.4.78	24.4.78	23.5.78	x
	SRP	· -	1	1	t	1	1	1	-
Upen	TDP	-	3	10	6	8	6	2	5.83
water	PP	-	20	8	5	12	9	18	12.0
Inonrick	SRP	-	1	t	t	2	t	t	-
column()	TDP	-	5	7	4	8	5	1	5.00
<u></u>	* PP	-	17	17	8	7	8	22	13.17
Column()	SRP	-	1	1	1	1	1	2	-
	TDP	-	?	8	4	6	3	3	5.17
	PP	-	11	13	10	17	27	-	15.60
Column (SRP	•	t	1	1	1	1	1	
CO Summer (TDP	-	5	8	6	6	4	1	5.00
	PP	-	13	15	3	14	11	-	11.20
ແດງການ (SRF	-	t	1	t	t	1	1	
corenar (TDS	-	5	7	6	5	4	3	4.83
	PP	••	13	11	ś	16	17	18	13.00
Column (5	SRP	-	t	t	t	1	t	0	_
	TDP	- '	6	5	4	5	4	1	4.17
	PP	-	12	12	12	14	15	-	13.00

TABLE 5.5 Relative proportions of PO₄-P, colloidal P and intermediate P fractions in 9 hour filtrate from routine ³²P uptake experiments in the open water and isolation columns on November 14, 1978, together with other parameters measured in the samples.

Danamoton			Site			
F al ane cel	Open water	Column 1	Column 2	Column 3	Column 4	Column 5
PO ₄ -P % of Total	2.8	0.7	4.2	0.9	2.4	< 1
% of Soluble	23	33	42	17	30	28
Colloidal P % of Tot	8.2	1.1	5.0	3.6	5.0	< 0.1
% of Sol.	68	53	50	72	63	59
Intermediate P % of Soluble	9	14	8	11	7	13
Asymptote %	11.0	8.0	9.2	4.5	10	< 1
P Turnover Time(min)	60	12	10	17	30	47
SRP µg ℓ-1	2	t	t	t	t	t
TSP µg ℓ-1	10	5	8	5	7	7
TP μg ℓ ⁻¹	22	20	19	18	18	26
TSS mg ℓ ⁻¹	20.4	8.1	9.1 .	13.2	12.4	13.8
Chlorophyll µg L ⁻¹	2.5	5.1	6.9	4.0	4.2	14.2

SRP = soluble reactive phosphorus

TSP = total soluble phosphorus

TP = total phosphorus

- TSS = total suspended solids
- t = trace

53.

TABLE 5.6 Correlation coefficients (r) for the proportions of soluble P (as a % of the total ³²P eluted) versus total phosphorus (TP), total soluble phosphorus (TSP), total suspended solids(TSS), P turnover time (tt), chlorophyll and asymptote level (Asymp), measured in the open water and columns on November 14, 1978.

Fraction	TP	TSP	TSS	tt	Chlorophy11	Asymp
P04-P	-0.064	0.135	-0.636	-0.428	0.240	0.274
Colloidal P	0.095	0.049	0.718	0.456	-0.386	-0.066

* significant at 0.05

n = 6

TABLE 5.7 Changes in the relative proportions of soluble P fractions during the ³²P uptake experiments on water sampled from column 5 during March, 1979.

(Expressed as a % of the total ^{32}P eluted).

Fraction	Time of fractionation (h)				
	0	0.17	1	2	
P04-P	100	89.9	11.4	9.3	
Colloidal P	0	8.9	84.0	87.9	
Intermediate P	0	1.2	4.6	2.0	

TABLE 5.8 Changes in the relative proportions of soluble P fractions during the ³²P uptake experiment in an Anabaena flos-aquae culture (expressed as a % of the total ³²P eluted)

Fraction		Time	e of fract	ionation	(days)			
	0	0.75	1.5	4	6	11	17	22
PO4-P	100	71.4	32.1	40.0	43.7	46.0	35.0	48.4
Colloidal P	0	28.7	47.0	36.0	39.0	30.0	52.0	39.4
Intermediate P	0	0	21.9	24.0	17.3	24.0	13.0	12.2

TABLE 5.9 Retention of colloidal P, obtained from a routine solutle P fractionation of Midmar Dam water, on refiltration through 0.45µ membrane filters.

	CPM ml ⁻¹ before filtration	CPM ml ⁻¹ after filtration	% Retained
1	4004	1395	65
2	3103	1385	55
x	<u> </u>	-	60

55.

TABLE 5.10 Correlation between P turnover time (tt) and chlorophyll(Chl) and total suspended solid (TSS) concentrations in the open water and isolation columns during the 1977-78 (n = 42) and 1978-79 (n = 30) enrichment experiments.

Period	1977-78					
Parameters Correlated	Chl. vs tt	TSS vs tt				
r	0.283	.0232				
Period	1978	3-79				
r	0.095	.0502				

56.

Fig. 6.1 A conceptual model of P compartments and their interactions in a shallow area of Lake Midmar. (The relative proportions of the soluble P fractions represent mear values from all gel filtration analyses undertaken on water from the dam and isolation columns).