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Abstract

In the last few decades, we have seen a wealth of information being extracted from a wide

range of astronomical observations. CMB experiments and galaxy surveys have pioneered

most of the advances made in understanding the current cosmological paradigm. As successful

as these surveys have been, the prospects of intensity mapping of the 21cm line emission

from neutral hydrogen (HI) provides an exciting new probe to map out the three dimensional

cosmological modes over a large redshift range. Intensity mapping of the 21cm signal provides

a biased tracer of the large scale structure distribution of the universe. Intensity mapping

experiments have the advantage of being cheaper and able to map out larger volumes of

the universe much faster than conventional galaxy surveys since we don’t need to resolve

individual galaxies.

In this thesis we study the cosmological constraints from the HI intensity mapping ex-

periment, HIRAX, which is currently being developed to measure the cosmic 21cm signal in

the 400 � 800 MHz frequency band. We examine the ability of the HIRAX experiment to

detect the 21cm signal and we forecast the constraints this detection can place on the bary-

onic acoustic oscillation signal, the HI parameters and the cosmological parameters. We find

that HIRAX will be able to obtain high precision measurements of the 21cm signal with a

cumulative signal to noise ratio of 900 over the full bandwidth. Combined with Planck priors,

we find that these measurements can constrain the dark energy equation of state parameters

below the 5% level at 1� confidence, with a corresponding dark energy figure of merit of 436.
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We also examine how the HIRAX interferometer array layout a↵ects the sensitivity of the

instrument as a function of angular scale and frequency, which is relevant to the foreground

removal. We quantify di↵erent metrics based on the distribution of the baseline redundancy

for the di↵erent layouts to compare the data rate, date volume, calibration, sensitivity and

foreground removal performance. We wish to optimise the array layout to best balance these

constraints to achieve the HIRAX science goals.

We then study the cross-correlation of the HIRAX 21cm measurements with other large

scale structure probes. We first compute the cross-correlation of the 21cm signal with the

CMB lensing convergence field. We find that the two point cross-correlation of the 21cm

intensity mapping with the CMB lensing convergence vanishes due to a loss of large scale

line of sight modes in 21cm foreground subtraction. We then compute the integrated bis-

pectrum B2121
` and find that we can obtain a strong detection of this signal. We show how

the bispectrum in combination with the 21cm autocorrelation measurement can break the

degeneracy between f⌦HI and �8 thus independently constraining them. In addition the

bispectrum can improve the constraints on dark energy parameters, improving the dark en-

ergy figure of merit for HIRAX to 927 in combination with Planck priors. In addition to the

CMB lensing convergence cross-correlation, we demonstrate that HIRAX measurements can

be cross-correlated with spectroscopic and photometric galaxy surveys obtaining high signal

to noise ratios. We find that the spectroscopic survey cross-correlation can constrain the HI

and galaxy parameters to below the percent level.
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Chapter 1

Introduction

Cosmologists in recent decades have made considerable strides to produce a consistent stan-

dard model which describes the observations of the universe we live in. Some of the probes

used by cosmologists to learn about the nature and content of our universe includes the cos-

mic microwave background (CMB) radiation [1, 2, 3], galaxy clustering counts [4, 5], type Ia

supernova [6], Cepheid distances to galaxies [7], baryonic acoustic oscillations (BAOs) [8, 9],

cosmic shear [10] and Ly↵ forest [11] observations. These measurements suggest we live in a

universe which expanded from some primordial singularity about 13.7 billion years ago and is

currently made up of 70% dark energy, 25% dark matter and 5% baryonic (ordinary) matter.

We currently understand that at present times, dark energy (DE) and dark matter (DM)

dominate the energy budget of the universe but these are virtually unknown quantities. Dark

energy drives the accelerated expansion of our universe. The first evidence for the accelerated

expansion of our universe was provided by type Ia supernova measurements [6, 12, 13]. Type

Ia supernova events were used to track the expansion of the universe because they serve

as a standard candle of known brightness. These measurements suggest that the universe

is undergoing an accelerated expansion at late times but was in fact decelerating at earlier

times indicating that dark energy only dominates at late times.

Dark matter remains a long standing mystery in our universe [14, 15]. First inferred by
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Zwicky in 1933 [16] by studying the dispersion velocity of the Coma cluster, where he obtained

an inconsistently high dispersion velocity given the visible matter of the cluster. Subsequent

observations such as rotation curves of the Andromeda galaxy in 1970 gave the same evidence

for the existence of dark matter [17]. Dark matter has since been described as the missing

matter that holds galaxies together and evidently it only interacts gravitationally with no

pressure and no electromagnetic interactions. Gravitational lensing also provides indirect

evidence for dark matter (see [18] for a review). We know from general relativity (GR)

that gravity will influence the path trajectory of photons and this implies that light from

distant objects can be lensed by intervening mass along the line of sight to an observer. The

e↵ect of lensing by galaxy clusters has been used to infer dark matter contributions to many

known galaxy clusters and individual galaxies’ showing again that there exists gravitationally

interacting matter that we cannot see [19]. In recent times, CMB measurements have put

forward strong arguments for the existence and content of dark matter in our universe. The

position of the acoustic peaks in the CMB spectra helps pin down the contribution to the

overall matter content by dark matter [20].

At early times (10�36 seconds after the Big Bang singularity to about 10�33 � 10�32

seconds) cosmic inflation rapidly expanded the size of our universe by a factor of 1026 [21].

Cosmic inflation is understood to have magnified the quantum field fluctuations that exist into

density fluctuations of the matter field which seeded the large scale structure perturbations

we observe today [22, 23]. The density fluctuations produced from cosmic inflation can be

seen in the temperature variations in the observed CMB light that was emitted around 380

000 years after the Big Bang. Following the inflationary period, the universe has continued

to expand outward but at a much slower rate. At late times however, the expansion rate of

the universe has accelerated which we believe to be caused by the influence of dark energy.

Detailed studies of CMB measurements have already provided a wealth of high precision

constraints on the current cosmological parameters (see [24] for a review). The CMB is

referred to as the ‘afterglow’ of the big bang because it is the primordial light in the universe.

Studies of the CMB temperature maps reveal slight fluctuations in the early universe. These

temperature fluctuations in the CMB are thought to seed the large scale density fluctuations
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that would eventually form. The CMB temperature is quite low, about 3 degrees above

absolute zero and hence requires sensitive measurements at low temperatures, with such

experiments including ground based [25, 26], balloon borne [27, 28, 29] and space based

[1, 2, 3] surveys. We provide more details on the CMB and the information that can be

extracted from it in Section 2.2.1.

Measurements from the CMB as well as galaxy clustering have also provided evidence

for baryonic acoustic oscillations. The BAO is the characteristic length scale in the matter

density field. This preferred clustering scale came about due to the coupled photon-baryon

fluid which underwent oscillations due to the opposing forces of gravity and radiation pressure

in an expanding universe before recombination. Evidence for the BAO can be seen as a

bump in the correlation function of galaxy surveys like SDSS [8] and 2dFGRS [9] and as

indirect evidence from the acoustic peaks of the CMB temperature power spectrum. Other

galaxy survey detections of the BAO were made by the 6DF [30], WiggleZ [31] and Baryon

Oscillation Spectroscopic Survey (BOSS) [32] projects. Since the BAO has a characteristic

length scale preserved in the matter distribution of the primordial universe that has been

calibrated by CMB measurements it provides an excellent candidate as a standard ruler to

measure the cosmic expansion history. Measuring how the BAO scale evolves with time will

provide constraints for dark energy models since dark energy influences the expansion rate

of the universe. Historically, there has been significant interest in using BAOs to constrain

cosmological parameters, and it has already been demonstrated how the detection can be

used to measure cosmological parameters [33, 34]. Apart from detecting galaxies in BAO

surveys using their optical emissions, galaxies can also be detected through their neutral

hydrogen content.

The advent of star formation has meant that much of the neutral hydrogen (HI) in our

universe would undergo reionization therefore leaving the remaining HI to be found mostly

in the dense regions of galaxies and the intergalactic medium. For this reason HI is believed

to be a good tracer of the underlying large scale structure (LSS) and why intensity mapping

(IM) of the 21cm line is such a promising field. Intensity mapping is a technique for measuring

integrated line emission from radio sources in the universe over a large range of frequencies.
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These IM surveys can survey larger volumes much quicker than traditional galaxy surveys

and at lower cost. HI (or 21cm) IM experiments are a promising path for improved large

scale structure measurements of our universe [35, 36, 37]. Future IM experiments plan to

measure the neutral hydrogen distribution through the spin flip transition line emission in

our universe. This will provide a biased measurement of the underlying large scale structure

(LSS) distribution. Measurements of the LSS from HI surveys will be able to pick out the

BAO signal in the epochs of the universe when dark energy starts to dominate the expansion

rate. Planned and current IM experiments includes SKA [38], MeerKAT [39], CHIME [40],

HIRAX [41], Tianlai [42], BINGO [43] and FAST [44]. These experiments are showing great

promise in their forecast for making precise cosmological measurements and in early results

related to their detection of fast radio bursts (FRBs). In this thesis we study the cosmological

forecasts for the HIRAX experiment and investigate how the survey design can be used to

optimise the constraints.

In addition to the individual probes that can be used to study the universe we can also

employ the technique of cross-correlations between di↵erent tracers to improve the infor-

mation we get. Cross-correlation studies of CMB lensing and galaxy surveys can constrain

the galaxy population distributions and the LSS biases. The cross-correlation here can also

independently constrain the neutrino mass and optical depth information as shown by [45].

By cross-correlating CMB lensing with quasars it has also been shown that the quasar pop-

ulation traces the matter distribution and constrain the quasar bias [46]. Cross-correlation

surveys for CMB lensing and HI measurements have also been considered showing that this

signal would be able to constrain HI parameters such as the bias and HI fraction however

this signal seems to be too small and detection is unlikely [47]. HI surveys have also been

cross-correlated with galaxy surveys which has been successful in making the first indirect

detections of HI intensity mapping [48, 49]. HI cross-correlations with photometric galaxy

surveys can also be used to calibrate the galaxy redshifts in photometric surveys [50]. In

this thesis we show how HI measurements from HIRAX can be cross-correlated with CMB

lensing surveys and find that this correlation will in fact be too weak for detection but by

using higher order correlations like the bispectrum we can recover the bispectrum signal.
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We also show how HI cross-correlation with galaxy surveys will provide high signal to noise

measurements that can be used to constrain HI and galaxy parameters.

The rest of this thesis is structured as follows. In Chapter 2 we discuss the current stan-

dard model of cosmology and introduce the theoretical background needed for the subsequent

chapters. We also highlight some of the observational probes used by cosmologists which are

most relevant to this thesis. In Chapter 3 we discuss the 21cm line emission and the HIRAX

experiment designed to measure this signal. We investigate how the HIRAX experiment will

be able to make strong detection of the 21cm signal and show high signal to noise ratio

(SNR) estimates. We then compute forecasts constraints on the BAO and constraints on the

cosmological and HI model parameters. We further show how optimising the array layout can

improve our overall sensitivity and foreground mitigation. In Chapter 4 we investigate the

prospects for cross-correlation surveys between HIRAX and CMB lensing and galaxy surveys.

We show how we can obtain improvements on the HI parameter constraints by computing

a bispectrum with the CMB lensing convergence field. We also show improved cosmolog-

ical parameter constraints. We then compute the cross-correlation for HIRAX and galaxy

surveys. We consider both spectroscopic and photometric surveys showing the promising

detection in both cases in the form of the signal to noise ratio. We conclude in Chapter 5

where we summarise the significance of the results and discuss the context of this work in

the broader field. We also discuss ideas for future work that will follow on from the results

presented in this thesis.
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Chapter 2

Cosmological Model and Observational Probes

2.1. Standard Model of Cosmology

It has become evident through current observations that we are living in a universe that

is dominated by dark energy and dark matter. Present information also suggests that the

universe is spatially flat and can be quantified by a few observable cosmological parameters.

In this section we discuss the theoretical foundations of the standard model of cosmology.

2.1.1 Friedmann-Lemâıtre-Robertson-Walker Model

In 1915, Albert Einstein completed his theory of general relativity which describes space-time

as a 4-dimensional manifold that can be influenced by the presence of matter. The Einstein

field equations are

Rµ⌫ �
1

2
gµ⌫R =

8⇡G

c4
Tµ⌫ , (2.1)

whereRµ⌫ andR is the Ricci tensor and Ricci scalar respectively. The metric tensor is denoted

by gµ⌫ which describes the line element of a given manifold. Here G is the gravitational

constant, c is the speed of light and Tµ⌫ is the momentum-energy tensor. The left hand side

of the field Equation 2.1 is purely geometric describing the curvature of space and the right
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hand side is purely physical describing the matter distribution of a particular fluid. For a

perfect isotropic fluid with energy density ⇢ and pressure p, T µ
⌫ is given by

T µ
⌫ =

0

BBBBBB@

�⇢c2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1

CCCCCCA
. (2.2)

According to our most recent observations, we are living in a smooth, expanding, spatially

flat universe whose energy content is dominated by dark energy and dark matter. The

cosmological principle states that on large scales the universe is homogeneous and isotropic.

This simply means that the universe looks the same in all directions and is the same at

every point. Weyl’s postulate says that the world lines of galaxies form a 3-bundle of non-

intersecting geodesics orthogonal to a series of space-like hypersurfaces. The cosmological

principle together with Weyl’s postulate suggest the form of the line element for our universe

as

ds2 = �c2dt2 + a(t)


dr2

1� kr2
+ r2(d✓2 + sin2 ✓d�2)

�
(2.3)

where a(t) is the scale factor which relates the fixed comoving separation between two co-

moving observers to the physical distance between. For some real distance r and comoving

distance x the scale factor relates these two distances by r = a(t)x. The parameter k above

is the curvature parameter. For a flat universe k = 0, whereas for a ‘closed’ universe k = 1

and for an ‘open’ universe k = �1. CMB measurements suggest we live in a spatially flat

universe with k = 0. The line element in Equation 2.3 is known as the Robertson-Walker

(RW) metric. To account for the e↵ects of dark energy in the Einstein field equations one

is free to add a constant term ⇤ on the left hand side of the equation without violating the

conservation of the stress-energy tensor to give

Rµ⌫ �
1

2
gµ⌫R + ⇤gµ⌫ =

8⇡G

c4
Tµ⌫ . (2.4)
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Solving the field equations with the RW metric shown in Equation 2.3 we get the Friedmann

and acceleration equations respectively which describes the evolution of the scale factor of

the universe ✓
ȧ

a

◆2

=
8⇡G

3
⇢� Kc2

a2
+
⇤c2

3
, (2.5)

ä

a
=

�4⇡G

3

✓
⇢+

3p

c2

◆
+
⇤c2

3
. (2.6)

H(t) = ȧ
a is referred to as the Hubble parameter. The Hubble parameter describes how the

scale factor changes with time. The value of the Hubble parameter today, H(t0) = H0 is

known as the Hubble constant and was described initially by Edwin Hubble in 1929 when

he discovered that there exist a linear relation between the recessional velocities of Cepheid

variable stars and their proper distances [51].

Given the Friedmann Equations 2.6 and 2.5, we only further require an equation which

relates the pressure to density to solve for the time evolution of these quantities. An equation

which relates the pressure of a fluid to its energy density is referred to as an equation of state

and is generally given by

p(r, t) = w⇢(r, t) (2.7)

where the constant w is the equation of state parameter. For dust, which has no pressure

w = 0 and for radiation or relativistic matter w = 1/3. For the cosmological constant

associated with the cosmological expansion w = �1. By combining the Friedmann Equations

2.5 and 2.6 we can get the pressure - density equation

d

dt
(a3pc2) = p

d

dt
a3. (2.8)

Equation 2.8 solved for a universe comprised of mainly dust with no pressure w = 0 gives

⇢m(t) = ⇢m,0a�3 and for a radiation dominated universe with w = 1/3 we get ⇢r(t) =

⇢r,0a�4(t). For a universe dominated by a cosmological constant w = �1 the density remains

constant throughout the evolution of the universe.

Conceptually we can understand the above density solutions in a physical way. If we have
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a fixed density of fluid in an expanding volume then the density of that fluid would decrease

by the increasing volume which is proportional to the scale factor. Hence the density of the

matter dominated universe falls of as ⇢m(t) / ⇢m,0a�3(t). For a radiation dominated fluid

however, the wavelength of the photon is stretched by expansion by a factor of a meaning

the energy decreases by a�1. This means that the total energy density for radiation scales

as ⇢r(t) / ⇢r,0a�4. Substituting the density solutions back into the Friedmann equations we

can solve for the scale factor of the universe to get for a matter or dust dominated universe

a(t) / t2/3 and for radiation dominated a(t) / t1/2. This indicates that the density in

the radiation dominated era falls o↵ faster than in the matter dominated era. This implies

that a universe which starts out radiation dominated will not remain radiation dominated

forever. No matter how small the initial matter contribution is, it will eventually overtake

the radiation. For the dark energy contribution in the form of a cosmological constant, the

density remains constant throughout. From the above solution one can see how a universe

which may initially be dominated by radiation with small amounts of matter and dark energy

will transition to become matter dominated and eventually dark energy dominated. This is

exactly what we observe in our universe today.

Given our description for the standard model of cosmology there still remains quantities to

be determined by observation. The Hubble constant H0 was an example of such a quantity

which measures the expansion rate. Another important quantity of interest would be the

density of the universe. The critical density is defined to be the density which makes a

universe flat (k = 0), which from Equation 2.5 neglecting ⇤ is

⇢c =
3H2

0

8⇡G
. (2.9)

It is then customary to quote the density of a species ⇢x relative to the critical density by

defining the dimensionless density parameter

⌦x =
⇢x
⇢c
. (2.10)
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The Friedmann equation in terms of the dimensionless density parameters can be written as

H2(t) = H2

0

�
a�4(t)⌦r,0 + a�3(t)⌦m,0 + a�2(t)(1� ⌦m,0 � ⌦⇤) + ⌦⇤

�
, (2.11)

where ⌦⇤ = ⇤c2

3H2
0
. It is important to remember that these solutions describe a smooth and

homogeneous universe.

2.1.2 Cosmological Distances

We discuss the various distance measures used to quantify distances to objects based on

di↵erent types of observations. We first define the concept of redshift. Due to the expansion

of the universe, light travelling to an observer from distance objects will have its wavelength

stretched. The result of increasing wavelength means a decrease in frequency or energy.

Hence when we observe distant light we can expect it to be shifted towards the red end of

the electromagnetic spectrum. This phenomenon is referred to as redshift. Therefore the

redshift z of an object can be defined in terms of the fractional change in the wavelength

z =
�obs � �emit

�emit
=

�obs
�emit

� 1, (2.12)

where �obs is the observed wavelength and �emit is the emitted wavelength. Redshift can also

be related to the scale factors at the time of emission and observation as

1 + z =
�obs
�emit

=
a(tobs)

a(temit)
=

1

a(t)
. (2.13)

The last equality follows from setting a(tobs) as 1 and taking temit to be any general time.

Given that light travels at a constant speed of c, the proper distance Dprop can be defined

as the travel time of a light ray between two points

Dprop(z) = c

Z t0

t(z)

dt =
c

H0

Z a(z0)

a(z)

dap
a�1⌦m,0 + (1� ⌦m,0 � ⌦⇤) + a2⌦⇤

. (2.14)

By the definition of comoving co-ordinates we can also define the comoving distance. We
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denote the comoving distance by �k and it is related to the proper distance by Dprop = a�k.

The comoving distance can then be written as [52]

�k(z) =

Z z

0

cdz0

H(z0)
. (2.15)

The angular diameter distance is the apparent distance an object appears to be based on

its apparent angular size on the sky DA = l/✓. Here l is the physical length of the object

and ✓ is the angle it subtends. In a flat universe the angular diameter distance is given as

DA = a�k =
�k

1 + z
. (2.16)

Another way to measure cosmological distances is by using the flux emitted by an observed

object provided the object has a well known luminosity. The flux measured over some distance

d is simply

F =
L

4⇡d2
(2.17)

where L is the luminosity. The picture however gets more complicated in an expanding

universe. To account for the expansion we consider the problem in comoving co-ordinates

F =
L(�k)

4⇡�2

k
. (2.18)

where L(�k) is the luminosity through some comoving spherical shell with radius �k. If we

assume that the object emits photons which all have the same initial luminosity we can

relate the measured luminosity through an expanding universe to the known luminosity by

L(�k) = a2L. This then gives

F =
La2

4⇡�2

k
(2.19)

where we can see that if we now define the luminosity distance as

DL =
�k

a
(2.20)
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Figure 2.1: A comparison of three cosmological distance measures. From top to bottom
luminosity distance, comoving distance and angular diameter distance. This plot is for a
universe with ⌦m = 0.3, ⌦⇤ = 0.7 and ⌦k = 0.

we recover an expression for the flux like that of the form in Equation 2.17. We show in

Figure 2.1 how the comoving distance, angular diameter distance and luminosity distance

change with redshift. We see that at low redshifts they evolve in a similar way meaning

that these distance measures give the same results for nearby objects. For distant objects

they behave di↵erently. The comoving distance asymptotically approaches a constant 2c/H0

for large z. The angular diameter distance reaches a maximum then falls o↵ making more

distant objects appear larger. The luminosity distance increases indefinitely with redshift.

2.1.3 Cosmological Perturbations

The solutions described in Section 2.1.1 describes a smooth homogenous universe. In reality,

we observe a universe with perturbations in the form of large scale structure formation. To

12



obtain the solutions for a perturbed universe we perturb the field equations

gµ⌫ = ḡµ⌫ + �gµ⌫

Gµ⌫ = Ḡµ⌫ + �Gµ⌫

Tµ⌫ = T̄µ⌫ + �Tµ⌫

(2.21)

to linear order. We can write the form of the perturbed metric tensor as [53]

ds2 = a2(⌘)
⇥
�(1 + 2A)d⌘2 + 2Bid⌘dx

i + (�ij + hij) dx
idxj

⇤
(2.22)

where the conformal time is describes as ⌘ =
R t

0

cdt0

a(t0) . Here �ij is the spatial part of the metric

tensor and hij = 2
h
C�ij +DiDjE +DiÊj + Êij

i
where DiÊj = 0 and DiÊij = 0 = Êi

j. The

tensor Êi
j is not only divergenceless but also traceless. Essentially we have now split the 10

degrees of freedom of the metric tensor into four scalars A, B, C and D, two vectors Bi and

Ei of two degrees of freedom each and one tensor Eij also having two independent degrees of

freedom.

General relativity is constructed such that a coordinate transformation leaves physical

equations unchanged. Phrased in another way, the physical equations are invariant under

coordinate transformation. When applied to the special background and perturbations case,

this invariance is no longer an actual coordinate transformations since the background is kept

fixed. This is called a gauge transformation. For a given coordinate xa and a coordinate in

the perturbed spacetime x̃a we relate them by x↵ = x̃↵ + ⇠↵ where we only keep the linear

terms of ⇠a since it and its derivatives are small enough to do so. The perturbations to

covariant and mixed tensors of rank 2 transform in the following way [54]

�B̃µ⌫ = �Bµ⌫ � ⇠↵,µB̄↵⌫ � ⇠�, ⌫B̄µ� � B̄µ⌫,�⇠
�

�B̃µ
⌫ = �Bµ

⌫ � ⇠µ,↵B̄
↵
⌫ � ⇠�,⌫B̄

µ
� � B̄µ

⌫,�⇠
�

(2.23)

To complete our description of the perturbed cosmological solutions we need to perturb

the stress-energy tensor for our field equations. For a perfect fluid we can described the
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perturbed stress-energy tensor in terms of its components

⇢ = ⇢̄+ �⇢, p = p̄+ �p and ui = ūi + �u. (2.24)

We know that the metric tensor can be used to raise and lower indices and the velocity field

is ui = vi

a = dxi

d⌘
1

a thus we can write uµ = 1

a (1� A, vi) and uµ = a (�1� A, vi � B � i).

Like we did for the metric tensor, we can divide the stress energy perturbation. In linear

perturbation theory the scalar, vector and tensor perturbations evolve independently and

can be treated separately. The scalar perturbations are most relevant to structure forma-

tion. Vector perturbations decay with time and do not have a large influence at later times.

The tensor perturbations have interesting cosmological significance since these correspond to

gravitational waves.

Scalar Perturbations

We can obtain the evolution of the scalar perturbations A,B,D and E using Equation 2.23 to

get

Ã = A� ⇠0
0 � a0

a
⇠0

B̃ = B + ⇠0 � ⇠0

D̃ = D � 1

3
�2⇠ +

a0

a
⇠0

Ẽ = E + ⇠

(2.25)

and for scalar perturbations with vi = �v,i we get

�̃⇢ = �⇢� ⇢̄⇠0, �̃p = �p� p̄⇠0 and ṽ = v + ⇠0 (2.26)

14



Bardeen Potential

The Bardeen potentials are invariant under gauge transformations [55]

 = A+H(B � E 0) + (B � E 0)0

� = D +
1

3
�2E �H(B � E 0)

(2.27)

where H is the conformal Hubble parameter.

Conformal - Newtonian Gauge

A common gauge used to compute the cosmological perturbations is the Newtonian gauge.

Here we set EN = BN = 0 , where the superscript N is used to refer to the conformal-

Newtonian gauge. The transformation to the conformal Newtonian gauge is given by

⇠ = �E (2.28)

⇠0 = �B + E 0. (2.29)

which gives

AN =  (2.30)

DN = �. (2.31)

We see in the conformal Newtonian gauge the non zero scalar potentials are just equal

to the Bardeen invariant potentials. In this gauge these potentials have straight forward

interpretations where  describes how the Newtonian potential is perturbed and � gives the

perturbation to the spatial curvature. We can now write the perturbed metric and stress-

energy tensors in this gauge respectively as

ds2 = a2(⌘)
⇥
�(1 + 2 )d⌘2 + (1� 2�) �ijdx

idxj
⇤

(2.32)
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and

�T µ
⌫ =

0

@ ��⇢N �(⇢̄+ p̄)(vN,i )

(⇢̄+ p̄)vN,i �pN�ij

1

A . (2.33)

Synchronous Gauge

Another common gauge used is the synchronous gauge where A = Bi = 0 [56]. The choice of

gauge may depend heavily on the situation one is solving for but in general the synchronous

gauge may be preferred in most computational cases due to its numerical advantages.

Evolution Of The Perturbations

In the conformal Newtonian gauge the scalar perturbation equations for a perfect fluid are

given by

�2 =
3

2
H2
⇥
�N + 3H(1 + w)vN

⇤
(2.34)

 0 +H =
3

2
H2(1 + w)vN (2.35)

 00 + 3H 0 + (2H0 +H2) =
3

2
H2

�pN

⇢̄
. (2.36)

We know that the stress-energy tensor is divergenceless and hence

T µ
⌫;µ = 0 (2.37)

which we use to get first order evolution equations for � and v

�
�N
�0
= (1 + w)

�
�2vN + 3�0�+ 3H

✓
w�N � �p

⇢̄

◆
(2.38)

�
vN
�0
= �H (1� 3w) vN � w0

1 + w
vN +

�N

p̄+ ⇢̄
+ �. (2.39)
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To obtain the full set of perturbation equations we consider the total energy density as a

combination of various contributions

⇢ = ⇢b + ⇢DM + ⇢� + ⇢⌫ + ⇢⇤. (2.40)

In the above, ⇢b is the density of baryons which includes the electron contribution, ⇢DM is

the dark matter density contribution, ⇢� is the photon energy density, ⇢⌫ is the neutrino

contribution and ⇢⇤ is the contribution from dark energy. The various pressure contributions

are pb = 0 = pDM , p� = ⇢�/3, p⌫ = ⇢⌫/3 and p⇤ = �⇢⇤. Decomposing the fields into

their Fourier modes and solving we get the full set of perturbation equations. For linear

perturbations di↵erent Fourier modes are uncorrelated so we can treat each mode separately

and work with their amplitudes. Note that we consider dark energy to be homogenous in

the universe, i.e. it does not have any perturbations.

�0DM = �kvDM + 3�0 (2.41)

v0DM = �HvDM + k� (2.42)

�0b = �kvb + 3�0 (2.43)

v0b = �Hvb + k� (2.44)

�0� = �4

3
kv� + 4�0 (2.45)

v0� =
1

4
k�� + k�+ collision term (2.46)

�0⌫ = �4

3
kv� + 4�0 (2.47)

v0⌫ =
1

4
k�� + k�. (2.48)

These equations describe the evolution of the perturbation to all components of the universe.

Note that in the above equations we have neglected most collision terms since the only

collision e↵ect that is turns out to be important is the momentum transfer between photons
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and baryons, captured in the collision terms in the velocity equations [54].

2.2. Observational Probes

Here we discuss some of the observable probes in our universe and highlight the key theoretical

features of these observables.

2.2.1 CMB Anisotropy

Here we discuss the description of the CMB anisotropies from temperature maps. CMB ex-

periments measure temperature fluctuations over the sky. Figure 2.2 shows the 2018 Planck

CMB map [57]. The figure shows hot and cold spots in the temperature field of the early

universe. We use these hot and cold spots to infer density fluctuations in the matter distri-

bution which seeded the large scale structure formation we observe today. We briefly outline

the thermal description of the CMB anisotropy and the statistics (see [24] for a review).

Consider a temperature fluctuation in the CMB measurement as

⇥(n̂) =
T (n̂)� T̄

T̄
=
�T

T̄
(2.49)

where n̂ is the positional vector on the observed sky and T̄ is the mean CMB temperature.

We decompose the temperature fluctuations using spherical harmonics over the angular sky

⇥(n̂) =
X

`m

a`mY`m(n̂) (2.50)

where all the information about the temperature field is now contained in the a`ms. For a

Gaussian random field all of the statistical information is contained in the power spectrum

and for the measured CMB temperature fluctuation on the sky we consider the angular power

spectrum as

ha`ma⇤`0m0i = �``0�mm0C`. (2.51)

The angular temperature fluctuation is nothing but a projection of the initial spatial tem-
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Figure 2.2: Planck 2018 temperature map. Temperature fluctuations here indicates density
variations in the early universe. The grey outline shows the masking region of the galactic
plane where the foreground residual is expected to be. Figure taken from [57].

perature fluctuation over the line of sight [58]

⇥(n̂) =

Z
d�k⇥(x)�D(�k � �⇤

k) (2.52)

where the spatial temperature fluctuation would be ⇥(x) =
�
T (x)� T̄

�
/T̄ . Like we did for

the angular temperature fluctuation, we can decompose the spatial field at the last scattering

surface into its harmonic modes which for a flat geometry would just be described by the

Fourier transform

⇥(x) =

Z
d3k

(2⇡)3
⇥(k)eik·x. (2.53)

We can now compute the primordial temperature power spectrum for the CMB

h⇥(k)⇥⇤(k0)i = (2⇡)3�3D(k� k0)P (k) (2.54)

which we use to compute the two point correlation function in real space as

h⇥(x)⇥(x)i =
Z

d3k

(2⇡)3
P (k) =

Z
dk

k2P (k)

2⇡2
. (2.55)
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Finally to relate the angular temperature fluctuation to the spatial fluctuation we decompose

the angular field into Fourier modes

⇥(n̂) =

Z
d3k

(2⇡)3
⇥(k)eik·�kn̂ (2.56)

and write the exponential function using the spherical Bessel functions j` as

eik·�kn̂ = 4⇡
X

`m

i`j`(k�k)Y`m(n̂)Y`m(k̂). (2.57)

With Equation 2.56 and Equation 2.57 put together we can compute the a`ms needed for the

C` computation in Equation 2.51 which gives

ha`ma⇤`0m0i = �``0�mm0

Z
dkj2` (k�

⇤
k)
k2P (k)

⇡
= �``0�mm0C`. (2.58)

Finally, we approximate the expression for the CMB temperature fluctuation angular power

spectrum by assuming the spatial power spectrum P (k) is slowly varying and we can remove

it from the integral. In this approximation we also have k�k ⇠ `. The integral can then be

evaluated as
R1
0

j2` (x)d ln x = 1/2`(`+ 1) to give the result

C` ⇡
`2P (`/�k)

⇡�k(`+ 1)
. (2.59)

It is common practice to plot the power spectrum in the flat sky limit as

`(`+ 1)

2⇡
C` ⇡ �2

T (2.60)

where �2

T = k3P (k)/2⇡2. In Figure 2.3 we show the power spectrum of the CMB fluctuations

along with observational data sets. The COBE [1] experiment made the first measurements of

the CMB anisotropy but newer experiments are able to make measurements on much smaller

scales. The acoustic peaks in the CMB power spectrum arise from the pressure - gravity

balance. Solving the basic fluid equations for the universe before recombination which we
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Figure 2.3: The Planck, ACT and ACTPol CMB temperature and polarization data. The
grey dashed lines show the theoretical spectra. Figure taken from [59]

show in Section 2.2.3 one recovers the key features of the CMB spectrum which are the height

of the acoustic peaks, the distance between acoustic peaks, the location of the first peak, the

Sachs-Wolfe plateau and damping tail. Hence, the measurements of these features can give

information on their dependency on the cosmological model. In other words measurements

of the acoustic peaks can give constraints on the initial conditions and energy content of the

universe. For example, precision measurements on the first acoustic peak suggests that the

universe is flat, i.e. no curvature (k=0 in the field Friedmann equations) [60, 61].

Thompson scattering is expected to generate polarization of the CMB. Polarization signals

can be described by their conventional Stokes parameters Q and U however in cosmology

the CMB polarization is usually described with the scalar E-mode and pseudo-scalar B-mode

parameters [62]. The scalar E-mode polarization arises from the acoustic peaks in the density

field and is sometimes referred to as acoustic polarization. This symmetry can been seen in

Figure 2.3 as the EE power spectrum follows the shape of the temperature power spectrum

TT, be it out of phase and lower in amplitude by a factor of about ten as expected from

the process of Thompson scattering [63]. The symmetry occurs in the absence of the BB

signal which makes measurements of this signal an area of great interest in physics. The
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BB polarization signal can be induced by gravitational waves in the primordial universe

and a detection of the BB signal in the CMB signal will provide evidence for primordial

gravitational waves.

2.2.2 Cosmological Matter Power Spectrum

The growth of structures in our universe can be attributed to gravitational instability. Re-

gions with slight excess in the matter distribution of the early universe will eventually grow

by the e↵ect gravity to form the structure we see today. Our measurements of the LSS mainly

constrain the distribution of matter in the current epoch. We can relate the potential of the

matter distribution today to the primordial potential by

�(k, z) = �p(k)T (k)D(z) (2.61)

where �p(k) is the primordial gravitational potential of the universe, T (k) is the transfer

function and D(z) is the growth function. The transfer function and growth function carry

the scale dependent and epoch dependent information on the structure formation process

which drives the primordial potential towards the observed potential. The transfer function

is given as [52]

T (k) = �(k,alate)
�Large-Scale(k,alate)

. (2.62)

The growth function is D(z) = a �(a)
�(alate)

where a = 1

1+z describes the growth of the matter

perturbations in the universe obtained from solving the evolution equation for the matter

density contrast. At matter dominated times D(a) / a is the scale factor of the universe. At

later times when the e↵ect of dark energy becomes more prevalent in the cosmic evolution,

the growth function is altered in a more complicated way as the growth of structures becomes

suppressed by the expansion of space. In this regime the growth function takes the form

D(a) =
5⌦m0H2

0
H(a)

2

Z a

0

da0[a0H(a0)]�3. (2.63)
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(a) (b)

Figure 2.4: (a) The transfer function verse scale showing how the primordial fluctuations
evolve in length scale. (b) Growth function verse redshift showing how the primordial fluc-
tuations evolve in time. Plots produced using the Cosmolopy package.2

Solving for the potential we get [52]

�(k, z) =
9

10
�p(k)T (k)D(z)(1 + z). (2.64)

In Figure 2.4 we show the transfer function and the growth function. The transfer function

shows how the perturbation in the primordial universe evolves as a function of scale. The

growth factor describes the growth of structures as a function of redshift and is defined to

be unity for z=0.

In the case of CMB and LSS surveys the two point correlation function is used to probe

the statistical nature of the distribution of quantities. The two point function in Fourier

space gives the power spectrum. For example in the case of galaxy surveys, the two point

correlation function gives the excess probability of finding two galaxies separated by a given

distance scale. The two point correlation function can be written as

⇠(r) = h�(x)�⇤(x0)i (2.65)

2http://roban.github.io/CosmoloPy/
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where here �(x) would be any Gaussian random field and x would describe a positional vector.

Here ⇠ depends on r = |x�x0| due to statistical isotropy. Equivalently we can take the power

spectrum in Fourier space as

h�(k)�⇤(k0)i = (2⇡)3�3D(k� k0)P (k). (2.66)

The angular brackets denotes the ensemble average and �D is the Dirac delta function which

constrains k = k0. For the primordial matter power spectrum we relate the gravitational

potential to density contrast using the Poisson equation

� = 4⇡G⇢m
a2

k2
�m (2.67)

where the matter density is ⇢m = ⌦m⇢crit/a3 and ⇢crit = (3/8⇡G)H2

0
. This gives the matter

density contrast as

�m(k, z) =
3

5

k2

H2

0

�p(k)T (k)D(z) (2.68)

where the primordial potential is calculated as �p(k) = (50⇡2/9k3)(k/H0)n�1�2H(⌦m/D(z))2

where �H is the amplitude at horizon crossing. For the above, a scale invariant solution

with n ⇡ 1 [3] is usually considered and is referred to as the Harrison-Zel’dovich-Peebles

spectrum [64, 22, 65]. Putting the above solutions together we get the theoretical matter

power spectrum as

Pm(k, a) = 2⇡2�2H
kn

Hn+3

0

T 2(k)

✓
D(a)

D(a = 1)

◆2

(2.69)

We plot the primordial matter power spectrum in Figure 2.5. Non-linear e↵ects cause the

power spectrum to deviate from the linear approximation only at small scales.
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Figure 2.5: Theoretical matter power spectrum at z = 0, i.e. the primordial matter power
spectrum. Black dashed lines show non-linear corrections to the matter power spectrum.

2.2.3 Baryonic Acoustic Oscillations

Here we provide a basic overview of baryonic acoustic oscillations. The acoustic peaks in

the CMB temperature maps provide indirect evidence for the BAOs. We understand that

prior to recombination the photons (or radiation field) and baryons were tightly coupled and

therefore behaved as a single fluid. For this reason, the acoustic peak features we observe in

the radiation field of the CMB are most likely to be imprinted on the matter density field. We

now have evidence from galaxy surveys which gives evidence of the BAO scale in the matter

distribution. We show the results from the SDSS survey in Figure 2.6 which gives evidence

for the BAO scale which occurs around a 100h�1Mpc spatial separation. The evidence shows

up here as a ‘bump’ in the correlation function of the galaxy clustering. The BAO signal

has also been measured and constrained by subsequent galaxy surveys [66] and further used

to obtain cosmological parameters [67]. Studies have also been carried out to obtain model

independent errors on the BAO using the SDSS’s Baryon Oscillation Spectroscopic Survey

[68].
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Figure 2.6: Evidence for the BAO length scale from the clustering of the SDSS LRG galaxy
sample. The ‘bump’ in the correlation function at comoving separation of about 100 h�1Mpc
shows there exist a preferred clustering scale at this separation. Figure taken from [69]

We can obtain a simple model for the BAO scale by solving the basic fluid dynamic

equations for the photon-baryon fluid prior to recombination [70]. Similar to the CMB

temperature anisotropy case we decompose the field into its Fourier modes but we only look

at the monopole term here

⇥`=0,m=0(x) =

Z
d3k

(2⇡)3
eik·x⇥(k), (2.70)

where we have left out the 00 subscript on the Fourier amplitude. The temperature pertur-

bations in the Fourier space obey

⇥̇ = �1

3
kv�. (2.71)

Here the derivative is with respect to conformal time. This equation is the usual continuity

equation. We can also consider the Euler equation assuming pressure gradients supply the
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only force [70]

v̇� = k⇥. (2.72)

Di↵erentiating the continuity equation and inserting the Euler equation we get the familiar

form of a basic harmonic oscillator

⇥̈+ c2sk
2⇥ = 0, (2.73)

where c2s = 1/3 is the sound speed in the fluid. This equation indicates that the pressure

gradient provides a restoring force to any initial perturbation in the fluid which then oscillates

at the sound speed. To get a sense of the scales these corresponds to consider the fluid at

recombination. A temperature variation of wavelength � appears as an angular anisotropy

of scale ✓ ⇡ �/D where D(z) is the angular diameter distance. For a flat universe, D(�⇤
k) =

⌘0�⌘⇤ ⇡ ⌘0. In harmonic space this implies a series of acoustic peaks in anisotropy spectrum

corresponding to

`n ⇡ n`a, `a ⌘ ⇡D(�⇤
k)/s⇤ (2.74)

where s =
R
csd⌘ ⇡ ⌘/3 is the distance sound can travel by ⌘. To see how this simple

model can give insight into where the oscillation features should be, consider a flat matter

dominated universe ⌘ / (1 + z)�1/2 so that ⌘⇤/⌘0 ⇡ 1/30 ⇡ 2� or equivalently ` ⇡ 200. In

any spatially curved universe the angular diameter distance does not equal the coordinate

distance which means measurements of the position of the oscillation peak can constrain the

curvature of the universe. Deviations of the position of the first peak from ` = 200 would

indicate a universe which is not spatially flat, however, thus far measurements on the acoustic

peaks suggest a flat universe.

2.2.4 Redshift Space Distortions

All measurements of the sky are made in redshift space due to the expansion of the universe.

Redshift space distortion (RSD) is the description of spatial distortions that are induced into

the real space measurements by the redshift space observations. This e↵ect and the modelling
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for it was described by Kaiser in 1987 [71]. In Figure 2.7 we see the e↵ect of RSD on the

shape of an observed object. We see how a seemingly circular object or distribution can be

flattened in the redshift space. We also see from Figure 2.7 how in the case of non-linear

collapse the RSD e↵ect can be so severe as to completely flip the opposing ends from the real

space to the measured redshift space.

To understand this e↵ect consider the simplest form for a galaxy’s radial position out to

a redshift z [52]

�s(z) =
z

H0

(2.75)

where the subscript s denotes redshift space and z << 1. Redshift space then corresponds

to assigning cartesian coordinates to a galaxy equal to

xs =
z

H0

(sin ✓ cos�, sin ✓ sin�, cos✓). (2.76)

Redshift space induces an apparent quadrupole moment in an otherwise circular overdensity.

This means that redshift space distorts overdensities that we observe. As a region becomes

more overdense the nature of the redshift space distortion changes. Thus, accounting for the

redshift space distortion can be a tricky task. A qualitative treatment can be given as follows

[71]. Firstly, we should note that the number of galaxies in a particular region is the same

regardless of whether we use redshift space or real space coordinates. Therefore,

ns(xs)d
3xs = n(x)d3x (2.77)

where n is the number density of galaxies. The volume element in redshift space is d3xs =

dx2

s sin ✓d✓d� while for real space it is d3x = dx x2 sin ✓d✓d�. The angular volume elements

are identical so

ns(xs) = n(x)J (2.78)
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Figure 2.7: The redshift space distortion e↵ect. In each case a circular contour of constant
density is distorted in the redshift space. Figure taken from [52].

where J is the Jacobian given by

J ⌘
����
d3x

d3xs

���� =
dx

dxs

x2

x2
s

. (2.79)

To compute the Jacobian we use the definition of the observed redshift

z = H0x+ v.x̂. (2.80)

The first term comes from Hubble’s law and the second term is the velocity along the line of

sight. Dividing Equation 2.80 by H0 and using Equation 2.75 we obtain

xs = x+
v.x̂

H0

. (2.81)

The Jacobian then becomes

J =

✓
1 +

@

@x


v.x̂

H0

�◆�1✓
1 +

v.x̂

H0x

◆�2

. (2.82)
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Figure 2.8: This figure shows how redshift space distortions can a↵ect clustering and LSS
experiments. In redshift space objects appear more squashed and the apparent overdensities
appear to be much larger at the center than it is in real space, as viewed from the bottom of
the page. Figure taken from [52].

Equation 2.82 can be further simplified following the treatment of Kaiser [71]. Kaiser realized

that the correction term due to the derivative of the velocity is much more important than the

v · x̂/H0x term. This is because for a plane wave perturbation, the term with the derivative

of the velocity is of order v0/H0 ⇠ kv/H0, while the other correction is of order v/H0x.

That is, the first correction term is larger than the second by a factor of order kx. This is

generally the case since x is of order the size of the survey, while k is of order the Fourier

modes we can hope to measure in the survey. Perturbations on the largest scale probed by

the survey k ⇠ x�1 are very poorly determined, since there are only a handful of Fourier

modes with wavelength of order the survey size. Modes with smaller wavelength are much

easier to measure since there are many such modes, and we e↵ectively average over all of

them to get an estimate of the power spectrum. Therefore, we are really interested only in

modes with kx >> 1. Expanding the remaining denominator about v = 0, we see that

J '
✓
1� @

@x


v.x̂

H0

�◆
. (2.83)

The number densities in real and redshift space is given as n = n̄(1 + �) and ns = n̄(1 + �s)

respectively and n̄ is the average number density. With the aid of Equation 2.78 we then get

1 + �s = [1 + �]

✓
1� @

@x


v.x̂

H0

�◆
. (2.84)
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Expanding this result to first order shows us that the overdensity in redshift space is just the

sum of the overdensity in real space and a correction for peculiar velocity,

�s(x) = �(x)� @

@x


v(x).x̂

H0

�
. (2.85)

Now using the distant observer approximation, which says that the direction vector x is fixed,

and transforming to Fourier space we get

�s(k) = [1 + fµ2

k]�(k), (2.86)

where the linear velocities are v(k) = ifH0�(k)
k
k2 , f is the linear growth rate and µk =

kk
k

[52]. The linear growth rate f is related to the growth function by f = d logD(a)/d log a.

We use the parametric form f(z) = ⌦�
M(z) for the growth rate, where ⌦�

M(z) is the matter

density parameter as a function of redshift and � ⇡ 0.55 for the ⇤CDM model [72].

In Figure 2.8 we see how the RSD e↵ect can a↵ect clustering measurements by inducing

an apparent clustering in some measurements about the central point. This kind of induced

squashing of the matter distribution can adversely a↵ect our LSS results if we had not

considered it in our modelling.

2.2.5 Gravitational Lensing

According to general relativity, light rays can be influenced by a gravitational potential. This

phenomena whereby light rays are deflected by a massive object that lies along the trajectory

of the photons is referred to as gravitational lensing. We show a schematic diagram of the

gravitational lensing process in Figure 2.9 which shows how distance objects can appear

distorted or lensed by a gravitational lens which lies along the line of sight between the

source and the observer. Gravitational lensing provides astronomers with a powerful tool for

observing our universe. One application of the lensing e↵ect is to use strong gravitational

objects as a magnifying lens to observe the distant universe. In the cosmological context,

gravitational lensing can be used to constrain the large scale structure distribution. Since
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light is deflected by intervening matter, measuring the gravitational lensing of distant galaxies

or the CMB can provide us with information on the matter distribution along the line of sight

[73, 74, 75]. Here we discuss the theoretical description of a lensed photon by a gravitational

potential well.

The deflection angle of a photon which is being influenced by a gravitational potential in

a flat universe is given by [76, 77]

↵ = �2

Z �⇤
k

0

d�
�⇤
k � �k

�⇤
k

r? (�kn̂, ⌘0 � �k) (2.87)

where  (R) is the gravitational potential and ⌘0��k represents the conformal time at which

the photon was at position �kn̂. In the equation above, r? defines the gradient of the

potential. As discussed previously, �⇤
k is the comoving distance to the last scattering surface.

The derivative of the deflection angle defines a magnification matrix [78]

Aij = �ij +
@↵i

@xj
=

0

@ 1� � �+ ��⇥
��⇥ 1� + �+

1

A . (2.88)

The convergence field is defined as  = 1

2
r ·↵. The components of shear, given by

�+ =
1

2

✓
@2 

@x2

1

� @2 

@x2

2

◆
and �⇥ =

@2 

@x1@x2

, (2.89)

determines the shape of a source at di↵erent axes due to the influence of tidal gravitational

forces. Here x1 and x2 defines the two component coordinate system of the image axes. The

lensing potential is defined such that ↵ = r . The convergence field  = 1

2
r · ↵ = 1

2
r2 

encodes the e↵ects of gravitational lensing and can be described in terms of the integrated

projection of the matter density [79, 80]

(✓) =

Z
d�k W(�k) �m (r; z) (2.90)

32



Figure 2.9: Schematic representation of gravitational lensing of a distant source S by some
intervening lens L. We see the lens causes light rays traveling to us from the source the be
deflected resulting in the formation of two images S1 and S2. Figure taken from [81].

where r = [�k✓,�k] and the lensing kernel is

W(�k) =
3

2
⌦m0

✓
H0

c

◆2

�2

k

 
�⇤
k � �k

�⇤
k�k

!
(1 + z). (2.91)

This expression for the convergence field describes the total integrated sum of the matter

density contrasts from the last scattering surface to us today.

Cross-correlating di↵erent lensing probes such as CMB lensing maps and galaxy lensing

surveys are also very useful providing constraints on the lensing biases [82]. Galaxy lensing

measurements can also be used to constrain dark energy [83]. In Chapter 4 we study the cross-

correlation of the 21cm signal with the CMB lensing convergence field. The CMB lensing

convergence is deflected by the large scale structure between the surface of last scattering

and us today. For this reason CMB lensing surveys provides an excellent projected tracer of

the matter distribution of the universe.
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Chapter 3

21cm Intensity Mapping

In this chapter we introduce the 21cm signal from neutral hydrogen (HI) which presents a

new probe to measure the LSS of the universe. We compute the power spectrum for the 21cm

signal and thereafter discuss the HIRAX [41] experiment which is currently being built to

measure the 21cm signal in the 400-800 MHz frequency band. We then forecast constraints

for the HIRAX experiment focusing on BAO detectability and constraining the cosmological

and HI model parameters. We also investigate the HIRAX sensitivity, focusing on the array

layout optimisation and how this translates into a 21cm signal detection in the presence of

astrophysical foreground contaminants.

Neutral hydrogen is the simplest atomic species and the most abundant. HI can be used

to trace the underlying structure of the universe o↵ering a 3D map of the global LSS through

cosmic history [84]. The crucial phenomena which enables us to track the HI distribution is

the spin-flip transition which the HI atom undergoes. The spin-flip transition occurs when

an electron and proton of an HI atom are bound in the unfavourable configuration with their

intrinsic spins aligned. This configuration of the HI atom happens to be at a higher energy

level than if the electron and proton were bound together with their spins in the opposite

direction. Therefore an electron in an HI atom may undergo a spin-flip to allow the lower

energy configuration of the atom and this process releases a 21cm signal. In reality the 21cm
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emission line of hydrogen is a ‘forbidden’ transition which means the probability of a 21cm

emission from an individual atom is quite low. However, given the sheer abundance of the

hydrogen atom in the universe we have a statistically favourable chance of detecting the 21cm

emission. The 21cm emission has been be directly detected in nearby galaxies [85, 86].

The 21cm intensity mapping (IM) technique has a wide range of advantages over con-

ventional galaxy surveys and for this reason HI surveys are generating a large interest in the

cosmological community. The 21cm signal can allow us to accurately measure scales which

were previously inaccessible [87]. CMB and galaxy surveys mainly probe the very early or

late universe respectively. With 21cm surveys we can observe a large period in the cosmic

history of the universe since HI has been around since the recombination era. These surveys

also makes much faster measurements of large portions of the sky since we are not required

to resolve individual objects.

There is currently a wide range of next generation 21cm experiments around the world,

either in preparation or currently online around to measure the 21cm signal such as the

SKA [38], MeerKAT [88], CHIME [89], HIRAX [41], BINGO [90] and Tianlai [42]. The first

successful application of HI intensity mapping was done by cross-correlating the Green Bank

Telescope 21cm maps with the DEEP2 optical galaxy surveys [48].

One of the major challenges facing 21cm IM surveys will be recovering the cosmological

signal in the presence of the galactic and extragalactic foreground contamination [91]. These

foregrounds are generally many orders of magnitudes larger than the 21cm signal but fortu-

nately the foregrounds have smooth frequency dependence and can in principle be filtered

out [92, 93, 94, 95, 96].

In this chapter we obtain a fair amount of new results on the 21cm intensity mapping

ability of the HIRAX experiment. In Section 3.2 we show how the HIRAX experiment will be

able to make a significant detection of the 21cm power spectrum quantified through the signal

to noise estimate. In Section 3.3 we show how the high signal to noise ratio measurements

can then be used to obtain tight constraints on the BAO signal and dark energy parameters.

In Section 3.4 we show how the choice of the array layout can improve or hinder 21cm

measurements. We also look at how the array layout a↵ects the data rate, data volume,
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calibration and foreground mitigation e↵orts.

3.1. Theoretical Model

In the Rayleigh-Jeans limit we can relate the intensity I⌫ to a brightness temperature Tb by

[87]

I⌫ =
2kB
c

Tb⌫
2 (3.1)

where as before c is the speed of light and kB is the Boltzmann’s constant. The 21cm

brightness temperature can be expressed as [97]

Tb(z) =
TEX � TCMB

1 + z
(1� e�⌧21) (3.2)

where TEX is the excitation temperature of the spin-flip transition, also referred to as the

spin temperature. TCMB is the background temperature of the CMB which pervades the

universe and ⌧21 is the 21cm optical depth which describes the scattering of 21cm photons

by intervening electron clouds given by

⌧21 =
3h̄c3

16kB⌫221

xHInH

TEX(dvk/d�k)(1 + z)
(3.3)

where xHI is the fraction of HI and nHI is their number density. The dvk/d�k function

describes the gradient of the velocity field along the line of sight �k. In principle one can

estimate the global 21cm signal using a spherically averaged brightness temperature which

can be approximated as [36]

T̄b(z) ⇡ 566h

✓
H0

H(z)

◆✓
⌦HI(z)

0.003

◆
(1 + z)2 (3.4)

where ⌦HI(z) is the HI density contrast parameter as a function of redshift.

In statistical studies, the quantity of interest is the brightness temperature fluctuations or

contrast. To get an expression for the brightness temperature fluctuation of the 21cm signal
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we first consider the HI density fluctuations which we define as a biased tracer of the matter

fluctuations

�HI(k, z) =
�
bHI(z) + f(z)µ2

k

�
�m(k, z) (3.5)

where bHI is the HI bias term which quantifies how HI traces the matter density and we take

into consideration the RSD term discussed in Section 2.2.4. The HI bias is given as [98]

bHI(z) =

RMmax

Mmin

dMM dn
dM b(M, z)

RMmax

Mmin

dMM dn
dM

(3.6)

where Mmin and Mmax are the lower and upper limits of the masses and b(M, z) is the halo

bias. We now calculate the 21cm brightness temperature fluctuations by converting the

density fluctuations into a temperature estimate by multiplying the density filed with the

21cm mean brightness temperature

�T21(k, z) = T̄b(z)�HI(k, z) = T̄b(z)
�
bHI(z) + f(z)µ2

k

�
�m(k, z). (3.7)

With the expression for the 21cm brightness temperature fluctuations in Equation 3.7 we are

now in a position to compute the 21cm brightness temperature power spectrum which we

discuss in the next section.

3.1.1 The 21cm Power Spectrum

Like in CMB studies we can extract a wealth of information on the statistics of the large scale

universe from a power spectrum for the 21cm signal. We will compute the 21cm signal in

some comoving volume element cube which we center at some point and choose our bins fine

enough that the signal is mostly constant in the given volume element. In this formalism the

21cm signal we compute will have some value centered at co-ordinates (zi, ✓i) which accounts

for the radial and angular position of the volume element.

We can now express the 21cm intensity signal in observational coordinates, in some co-

moving volume centered at redshift zi, with width �zi corresponding to a frequency range
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�⌫̃i, in the flat sky as [36]

�T21(`, y; zi) =

Z
d2✓ d⌫̃ e�i(`·✓+y⌫̃) �T21(✓, ⌫̃; zi). (3.8)

Note that ⌫̃ = 1/(1 + z) varies over the width of the bin and need not correspond to the

central redshift zi. The radial modes y are defined such that y = c(⌫̃p � ⌫̃i)(1 + zi)2/H(zi) =

r⌫(zi)(⌫̃p � ⌫̃i) where ⌫̃ = ⌫/⌫21 = 1/(1 + z). Here ⌫p denotes the frequency values varying

in the volume and vi is the frequency corresponding to the central redshift. It is clear that

y defines the radial modes because it decomposes the frequency direction which in 21cm

measurements represents the distance to a given object or basically the radial direction to

a given point in the universe. Decomposing the 21cm intensity field into plane waves in the

comoving volume (where r = [�k,i✓,�k,i]), and simplifying, gives

�T21(`, y; zi) =
1

Vp(zi)
�T21 (k; zi) (3.9)

where we have defined the comoving volume factor as Vp(zi) = �2

k,i r⌫,i which converts the

physical field into the observable field. In Equation 3.9 we have explicitly defined the re-

lation of the Fourier wavenumbers to the observational harmonic space radial and angular

wavenumbers k? = `/�k,i and kk = y/r⌫,i.

We now define the HI angular power angular spectrum as a function of angular and radial

wavenumbers as

h�T21(`, y; zi)�T
⇤
21
(`0, y0; zi)i = (2⇡)3 �2D(`� `0) �D(y � y0)C21

`,S(y; zi), (3.10)

which we compute to get
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Figure 3.1: The 21cm power spectra for various y modes vs `. The blue dot-dashed curve
shows the HIRAX interferometer noise which we discuss in Section 3.2. From the plot we
can see that the HIRAX experiment will be able to make a significant detection of the 21cm
signal where the HIRAX noise is minimized which happens at the most relevant scales for
the BAOs (` ⇠ 100� 1500).
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2

k

�2
D2(zi)

Pm(k; z = 0)

Vp(zi)
=

P21 (k; zi)

Vp(zi)
.

(3.11)

Here we have used the growth function D(z) to remove the redshift dependence on the matter

power spectrum and defined P21(k; zi) = T̄ 2

b (z) (bHI(z) + f(z)µ2

k)
2 D2(z)Pm(k; z = 0). The

21cm power spectrum will have to be measured in the presence of foreground contamination

and some instrumentation noise. We discuss the foreground signal in Section 3.1.2. In

Section 3.2 we discuss the HIRAX interferometer noise contribution which limits our survey

sensitivity. In Figure 3.1 we show the computed 21cm power spectrum shown in Equation

3.11 and we show the HIRAX interferometric noise model which we describe in Section 3.2.

We see that the HIRAX experiment will be able to make a significant detection of the 21cm

signal where the HIRAX noise is minimized. The scales on which the HIRAX noise drops
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below the signal is where we expect to make our best measurements and we can see how the

design specifications of HIRAX ensure these scales are where the BAO signals reside in the

21cm power spectrum. This corresponds to the range ` ⇠ 100� 1500 in Figure 3.1 where the

HIRAX noise is lowest and the wiggles in the 21cm power spectrum from the BAO feature is

visible. We quantify the actual constraint on the BAO parameters this detection will provide

in Section 3.3.

3.1.2 Foregrounds

A major challenge facing HI 21cm surveys are the astrophysical foregrounds which contami-

nate radio measurements of the sky. The main types of foreground contaminants are thought

to be from galactic synchrotron, galactic free-free, extragalactic di↵use free-free and extra-

galactic point source emissions. These foreground signals can be up to 6 orders of magnitudes

larger than the cosmological 21cm signal [95]. In Figure 3.2 we see how the 21cm signal is

significantly smaller than the various foreground components. Even though the 21cm signal

may be much smaller in magnitude than the foregrounds, a key feature of the foreground

signal is that it is expected to be smoothly varying in frequency as opposed to the 21cm

signal. This means we can e↵ectively separate these signals. Modelling and removing the

foreground contamination has been studied using many di↵erent methods and techniques

[91, 94, 99, 100].

The foreground signal is usually modelled as a power law function of the form [99]

CF
` = A

✓
1000

`

◆� ⇣⌫f
⌫

⌘2↵
(3.12)

where ⌫f = 130MHz, A and � are parameters that define the type of foreground emission and

↵ is the spectral index. In Table 3.1 we show the foreground parameters discussed in [99].

Figure 3.2 shows the various foreground model signals and how they dwarf the 21cm signal in

amplitude. A clear understanding of the various foreground models and the characterization

of our instrument is vital if we hope to e�ciently extract a cosmological signal. If we lack

a decent understanding of our instrument it can cause a leakage of foreground contaminant
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Figure 3.2: The 21cm signal (blue) versus the foreground models as modelled in Eq 3.12 using
the foreground parameters specified in Table 3.1. The red dotted line represents the galactic
synchrotron emission signal, the red solid line is the point sources, the red long dashed line
galactic free-free emission and the red short dashed line is the extragalactic free-free. The
green curve shows the CMB signal level for comparison. Figure from [99].

into the 21cm signal unbeknown to us. This can then force foreground power into our 21cm

signal giving incorrect results.

A(mK)2 ↵ �
Extragalactic point sources 57 1.1 2.07

Extragalactic free-free 0.0014 1.0 2.10
Galactic synchrotron 700 2.4 2.80
Galactic free-free 0.088 3.0 2.15

Table 3.1: Fiducial foreground parameters at ` = 100 and ⌫ = 130 MHz for the various
foreground sources, taken from [99].

For the purpose of this work, we assume all measurements have undergone some e�cient

foreground cleaning method at a cost of removing slowly varying frequency modes. This

means we expect to lose some of the cosmological signal at the low radial wavenumbers

y < yFG. For the modes which are lost in foreground subtraction we consider the low-cut

from [36]. Here they assume that the smooth variation of the foregrounds in frequency

is di�cult to separate from cosmological modes on scales comparable to the total survey
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bandwidth, kFG ⇠ 1/(r⌫�⌫̃tot). The corresponding value for the minimum cut of radial

modes for the HIRAX experiment corresponds to about kFG ⇠ 0.01 Mpc�1.

3.2. The HIRAX Survey

Here we discuss the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) which

is a planned HI intensity mapping experiment to be located at the SKA site in the Karoo,

South Africa [41]. HIRAX will be a 1024 6m dish interferometer array which will observe

the HI signal in the 400-800 MHz frequency band which corresponds to redshift of about

z ⇡ 0.755 � 3.5. HIRAX will map the universe using the BAO as a standard ruler to

constrain the nature of dark energy as a function of time. These measurements can then

be turned into tight constraints on the dark energy EOS parameters. We show the HIRAX

survey strategy details in table 3.2.

Experiment HIRAX
Sarea[deg

2] 15000
Tobs[years] 4

Redshift range 0.755-2.55
Tinst[K] 50
Ndish 1024

Ddish[m] 6
Dmin [m] 6
Dmax [m] 270

Table 3.2: Experimental specifications for HIRAX.

In radio astronomy we require instruments which can e�ciently measure the cosmological

signals of interest. As we seek to measure larger wavelength signals we require larger dish

sizes to obtain more angular resolution. This naturally leads to a problem whereby we may

require to build a single dish telescope too large for all practical purposes. This is where

radio interferometry can improve the angular resolution. Interferometry works by measuring

a signal using two smaller dishes separated by some distance. The separation from dish center

to dish center is referred to as a baseline. In radio interferometry we make measurements of
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the sky with the given baselines of some array configuration. This means that we can measure

really large wavelength signals with a number of small dishes with some large separation.

The visibility measured by an interferometer is simply the cross-correlation of the electric

field measured on the sky between antennas [101]

Vij(⌫) =

Z
d2✓hAi(✓, ⌫)E(✓, ⌫)A⇤

j(✓, ⌫)E
⇤(✓, ⌫)e�2⇡i[(ri�rj)⌫/c]·✓i (3.13)

where E(✓, ⌫) is the actual sky electric field and Ai(✓, ⌫) is the electrical sensitivity of the

ith antenna. The quantity ri � rj is the physical separation of the two antennas and is the

given baseline between those antennas. We can simplify Equation 3.13 by using the fact

that hEE⇤i just gives the intensity or brightness I and hAA⇤i gives the the antenna power

sensitivity or antenna beam pattern B. Therefore, we can write the visibility as

Vij(⌫) =

Z
d2✓I(✓, ⌫)B(✓, ⌫)e2⇡iuij(⌫)·✓ (3.14)

where uij(⌫) = (ri � rj)⌫/c is just the spatial separation of any two antennas in wavelength

units.

Most experimental instruments have some intrinsic noise that contributes to the final

measurements. The noise term for interferometer experiments comes from the response

towards the sky measurements which depends on the survey parameters and importantly the

array layout configuration. For a given measured visibility along some baseline |u| = D/�

we have the apparent sky intensity as [50]

�2

T =
h|V (`/2⇡)|2i
n(`/2⇡)d2u

(3.15)

where the variance per visibility is h|V (`/2⇡)|2i = [�2T 2

sys/Ae

p
�⌫tp]2. We now approximate

the noise power spectrum for an interferometer by using d2u ⇠ 1/FOV and relating the

visibility to a noise power spectrum

C21

`,N(y; zi) = hN`N
⇤
` i ⇡ (�⌫/⌫21)�

2

T (3.16)
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to obtain [36]

C21

`,N(y; zi) =
T 2

sys
(⌫̃i) FOV(⌫̃i) 4⇡

⌫21 npol Nb ttot n (u = `/2⇡)
, (3.17)

where the pointing time is just tp = ttotSarea/FOV , Ae is the e↵ective dish area and the

bandwidth is �⌫. The system temperature is given as Tsys = Tinst + Tsky, where Tsky ⇡

60K
�

⌫i
300 MHz

��2.5
. The function n(u) is the baseline density function in uv co-ordinates.

The baseline density function for an interferometer experiment sets the scales to which the

experiment is sensitive since u = D
� whereD is the physical length of the baselines. Therefore,

for an experiment with a given maximum and minimum baseline we get the scales which is

accessible as Dmin = �umin, Dmax = �umax . In the above expression we have also included

for the sake of generality the proportionality of the noise spectrum on the number of beams

Nb and number of polarizations of the antenna feeds npol. We use Sarea/fsky = 4⇡ since we

find it more convenient to set fsky = 1 in the noise expression above, i.e., consider the full sky

noise, and to include the fsky factor in the SNR expression when doing the mode counting

on a smaller patch of sky. Note that the number of ` modes decreases to fsky(2` + 1) on a

smaller patch of the sky.

To quantify the signal detection by a given experiment one can compute the signal to noise

ratio (SNR). Here we compute the SNR for the modelled HIRAX noise vs the theoretical

signal model. The SNR is calculated by

(SNR)2 = 0.5 (�⌫̃i Sarea)

Z ymax

ymin

dy

(2⇡)

Z `max

`min

d`

(2⇡)
`

"
C21

`,S(y; zi)

C21

`,S(y; zi) + C21

`,N(y; zi)

#2
. (3.18)

This equation estimates the statistical detection expected given some intrinsic noise term as-

sociated with the HIRAX experiment. In Figure 3.3 we show the SNR per pixel for 4 redshift

bins in the HIRAX range computed in the k? � kk plane. We compute the SNR integral

by subdividing the total k? � kk plane into 15 bins in each direction of width �k = 0.01

Mpc�1 and computing the SNR in each bin. We can see in Figure 3.3 that the HIRAX

experiment will be able to access many modes with high sensitivity measurements, with cu-

mulative signal-to-noise values of around 800. This can be translated into very high precision
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(a) zc,i = 0.81 (b) zc,i = 0.95 (c) zc,i = 1.27 (d) zc,i = 1.95

Figure 3.3: HI SNR in kk and k? bins of width 0.01 Mpc�1 for all four redshift bins. We see
how the HIRAX experiment is designed to maximize the SNR at the scales most important
for BAO measurements.

measurements on the BAO signal as well as be turned into tight parameter constraints which

we show in Section 3.3. We see how interferometer experiments will be restricted to the scales

that are accessible due to the baseline lengths and the foreground limits. We also restrict

our analysis to only the linear regime where we have a good understanding of the physical

processes. We list below a summary of accessible scales for the HIRAX experiment

`min = 2⇡umin = 2⇡
Dmin

�

`max = 2⇡umax = 2⇡
Dmax

�
,

ymin = yFG ⇠ 1

�⌫̃tot
,

ymax = yNL = r⌫kNL.

We take the non-linear scale to be kNL ⇠ 0.14Mpc�1.

3.3. HI Intensity Mapping BAO Constraints

In this section we transform our HIRAX signal detection estimates into constraints on the

cosmological and HI model parameters. To obtain the expected errors on a given measured

parameter we use the Fisher forecasting formalism. The Fisher formalism is based on a like-

lihood function which gives the expected measurements of an experiment for some associated

underlying theory.
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3.3.1 Fisher Formalism

The preferred method of parameter estimation in cosmological surveys is the maximum like-

lihood estimation. For some underlying theory and a given measurement the likelihood

function can be simply stated as: what is the probability of making a given measurement on

a parameter given some underlying theory

L ⌘ P [data|theory]. (3.19)

A key quantity of interest here is the Fisher matrix which quantifies the expectation value of

the likelihood function at a given data point. One way to intuitively understand the Fisher

matrix is to consider a Taylor expansion of the likelihood function about the peak value up

to second order. If we use x to represent some random distribution of our observed samples

and x0 is the value for x where the likelihood function peaks then we have

L(x) ⇡ L(x0) +
@L
@x

(x� x0) +
1

2

@2L
@x2

(x� x0)
2. (3.20)

In the above expression however, the linear term is zero since x0 is a maximum point and hence

the first derivative here vanishes. This essentially leaves us with a quadratic approximation

for the likelihood function. In general the distribution of a likelihood function can be any

function and not just quadratic. It is common practice to describe the likelihood as Gaussian

since most fields of interest are assumed to be Gaussian and furthermore a Gaussian function

helps visualize a spread and variance of some distribution about a point x0 more intuitively.

Therefore we take the Fisher matrix to be Gaussian by di↵erentiating the natural log of the

likelihood function instead (see [102] for a review). From here on for our forecasts we use the

Fisher matrix in the form [103]

F↵� = (�⌫̃i Sarea)

Z ymax

ymin

dy

(2⇡)

Z `max

lmin

d`

(2⇡)2
`
�
@↵ lnX

tot@� lnX
tot
�

(3.21)
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where X tot = XSignal + XNoise and XSignal is the signal spectra for a given probe with the

corresponding noise or variance XNoise. The inverse of the Fisher matrix gives the covariance

matrix which contains the uncertainty or errors on the parameters.

We now turn our attention to the Fisher forecasts for the HI case. The 21cm power

spectrum we computed in Equation 3.11 can be written explicitly as

C21

l (y; zi) = A2

b(zi)[bHI(zi)⌦
2

HI(zi) + f(zi)⌦
2

HI(zi)µ
2

k]
2D2(zi)

✓
�8

�fid
8

◆2 P fid
m (k, z = 0)

Vp(zi)
(3.22)

where we have definedAb(z) =
566h
0.003

H0
H(z)(1+z)2µK such that we can write T̄ (z) = Ab(z)⌦HI(z).

For 21cm experiments the ⌦HI function is usually degenerate with most parameters since

they enter the signal expression as a product. This means we actually measure a single quan-

tity which is a product of various parameters and cannot di↵erentiate the information on the

individual parameters unless we have some external knowledge on some of the parameters.

For this case where the parameters are combined or degenerate with each other we can either

fix certain parameter values by assuming we have complete knowledge of it or we can combine

parameters to obtain a combined constraint. In this work we combined ⌦HI into the bias

and RSD growth function terms bHI and f to get constraints on bHI⌦HI and f⌦HI . It is

also worth pointing out that constraints on the RDS growth function can be made using a

multipole expansion of the power spectrum [104].

The amplitude of the matter power spectrum �8 is defined as the normalization of the

matter power spectrum

Pm(k) =

✓
�8

�fid
8

◆2

P fid
m (k). (3.23)

For 21cm IM surveys modelled in Equation 3.22 we can constrain the following set of pa-

rameters: { ABAO, �8, ⌦HIbHI , ⌦HIf , ↵k, ↵? }. Note that here we have dropped the explicit

redshift dependence for brevity. It is necessary to vary as much of the parameters as we can to

keep the forecasts realistic. Forecast constraints on all parameters can have some covariance

between them meaning that uncertainty on one parameter propagates uncertainties into the

others.
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One can test the expansion of the universe and its geometry using the Alcock-Paczynski

test [105]. This method evaluates the ratio of the observed angular size to radial/redshift

size. The distance scale parameters ↵k and ↵? are defined as [36, 106]

↵? =
�fid
k

�k
=

Dfid
A (z)

DA(z)
, ↵k =

rfid⌫

r⌫
=

H(z)

Hfid(z)
. (3.24)

Here the angular diameter distance and expansion rate DA(z) and H(z) respectively measure

the distance in the transverse and radial directions. To include constraints on the distance

scales we replace ` ! ↵?` and y ! ↵ky and include the derivatives for ↵?,↵k in our Fisher

matrix. A common quantity of importance in studies of the distance scales is usually the

distance volume scale which is a combination of DA(z) and H(z). Many forecasts and survey

measurements are done directly on the redshift dependent volume scale which is defined as

[107]

DV (z) =

✓
(1 + z)2D2

A

cz

H(z)

◆ 1
3

. (3.25)

We can see that the distance volume scale in Equation 3.25 does in fact describe a volume

element as a function of redshift and serves as a tracer of the volume expansion through

cosmic time.

To include constraints on the amplitude of the BAO wiggles we follow the details outlined

in [36] based on the approach by [106]. Firstly we have to define the BAO wiggle function

by separating the matter power spectrum into a smooth part and the oscillatory part

fbao(k) =
P (k)� P smooth

m (k)

P smooth
m (k)

. (3.26)

We then have to define the parameter Abao to quantify the amplitude of fluctuations such

that

P (k) = [1 + Abaofbao(k)]P
smooth
m (k). (3.27)

Therefore, constraints on Abao can account for the errors on the BAO fluctuation amplitudes.

Here P smooth
m represents the smooth matter power spectrum which has the oscillatory part
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Figure 3.4: Forecast constraints on the HI model parameters in the zi = 1.27 redshift bin.
We show here the comparative constraints from the HIRAX experiments for 256, 512 and
1024 dish stages. Here we have fixed �8 since it is degenerate with the other parameters but
show in Chapter 4 how we can break the degeneracy with cross-correlation.

removed in any arbitrary way. From Equation 3.21 we see that for constraints on a given

parameter we have to compute the derivatives of the probe with respect to each of the

parameters we varying. Consider a given parameter p↵ for which we compute the derivative

as

@p↵ lnX
tot = @p↵ ln

�
XSignal +XNoise

�
. (3.28)

Here it must be pointed out that the noise terms of surveys are usually independent of the

parameters. In other words the parameters we are constraining from the cosmological surveys

only enter through the contributions of the signal terms. Therefore we get the Fisher matrix

derivatives as

@p↵ lnX
tot =

@p↵X
Signal

(XSignal +XNoise)
=
@p↵X

Signal

X tot
. (3.29)

From Equation 3.29 we see that for the fisher matrix entries we only require the derivatives

of the signal terms of each probe with respect to the parameters. We show the Fisher matrix

derivative for the 21cm power spectrum in Appendix A.

In Figure 3.4 we show the forecast constraints in one redshift bin on the HI model pa-
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rameters ABAO, bHI⌦HI and f⌦HI for the HIRAX experiment considering 256, 512 and 1024

dishes. Here we fix �8 since it is degenerate with f and we marginalize over the distance

parameters. In Chapter 4 we show how we can break the degeneracy between �8 and f using

a three point function correlation with the CMB lensing convergence field. We see how the

increased number of dishes would improve our sensitivity to the HI model parameters and

improve the constraints. We would expect this e↵ect since the number of dishes scales up

the baseline density which improves our response towards the 21cm signal.

In Figure 3.5 we show the constraint errors expected to be obtained from the HIRAX

survey on the BAO wiggles and distance volume scale. The errors on the BAO wiggles are

computed by accounting for the total sensitivity to the measured power spectrum in narrow

bins over the entire survey redshift range. We must account for how the uncertainty in all

the parameters a↵ect the BAO measurements. We therefore compute the full Fisher matrix

in these bins and take the fractional errors on the power spectrum at each bin. We see in

Figure 3.5(a) how HIRAX is designed to minimize its noise particularly on the scales relevant

to BAO cosmology. Here again we compare the ability of the HIRAX experiment to measure

the BAO for 256, 512 and 1024 dishes.

The constraints on DV (z) shown in 3.5(b) is relatively straightforward to compute. We

simply replace the original distance scale parameters with DA(z) and H(z) then transform

these into DV (z) according to Equation 3.25. In Figure 3.5(b) it is clear how the tight

constraints on the volume scale by HIRAX will be able to pick up small variations between

the distance models.

We see from these constraints how HIRAX can tie down the oscillation features as a

function of scale and redshift. The errors on both the BAO and volume scale shown in

Figure 3.5 particularly for the 1024 dish experiment is extremely promising, showing that

HIRAX 1024 will be highly sensitive to these quantities. We can then turn these promising

constraints into cosmological constraints and of particular interest for the HIRAX experiment

would be to constrain the expansion history and dark energy parameters.
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(a) (b)

Figure 3.5: (a) Constraints on the BAO wiggles for the HIRAX survey combined over all
redshift bins. (b) Constraints on the distance volume scale as a function of redshift in the
HIRAX range.

3.3.2 Dark Energy Constraints

To obtain the Fisher matrix with forecasts on the cosmological parameters we need to trans-

form our constraints on the redshift function parameters to the cosmological parameters.

The constraints on the cosmological parameters would be summed over the entire survey

redshift range. From the Fisher matrix consisting of the cosmological parameters we can

obtain constraints on the dark energy equation of state parameters and FOM estimates.

To do this we use a simple linear transformation matrix of the form

⇥
F 0
↵0�0
⇤
= [M↵�]

T [F↵�] [M↵�] (3.30)

where F↵� is the fisher matrix with parameters p = {f(z),↵?,↵k} and F 0
↵0�0 is the new

fisher matrix with cosmological parameters p0 = {⌦k,⌦⇤, w0, wa, h, �}. Here ⌦k and ⌦⇤ are

the density contrast parameters for curvature k and dark energy ⇤ and M↵� =
@pi
@
p
0
j

is the

transformation matrix. The density contrast parameters satisfy the dimensionless Friedmann

equation ⌦⇤+⌦m+⌦k = 1 where ⌦m is the matter density contrast. We show the derivatives

of the di↵erent probes with respect to the distance parameters ↵? and ↵k in Appendix A. The
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parameter h here is a scaling commonly used in astronomy defined in terms of the Hubble

constant H0 = 100h kms�1Mpc�1. The � parameter is defined from the linear growth

rate f = ⌦m(z)�. Strong constraints on � can put limits on modified gravity theories and

alternative GR models [108].

The dark energy equation of state parameters w0 and wa we obtain from assuming a vary-

ing cosmological constant. We assume that dark energy varies over time in the universe and

we parameterize the equation of state for the dark energy according to a redshift expansion

[109]

w(z) = w0 + wa
z

1 + z
. (3.31)

The dark energy equation of state parameters are of particularly high interest to many

LSS surveys. One can obtain constraints on the dark energy parameters by high precision

measurements on f , H(z) and DA(z) through a range of redshifts. Though the parametric

form for the dark energy equation of state may vary according to models and interest, an

overall estimator to an experiment sensitivity to dark energy EOS parameters are quantified

through the Figure of Merit (FOM) as defined by the Dark Energy Task Force (DETF) [110].

The FOM can be calculated from the Fisher matrix containing the cosmological parameter

forecasts by

FOM = 1/
q
det(F�1|w0,wa

). (3.32)

where F�1|w0,wa
is the inverse of the 2x2 sub Fisher matrix containing only the dark energy

parameters w0 and wa.

The measurements made by a given survey may in the end be insu�cient to constrain

all the parameters of interest at once. For 21cm measurements this is certainly the case

and one needs to combine measurements which may have already been conducted by other

surveys. The most common of these is to add Planck CMB results into the constraints

of a given survey because the CMB measurements has already given such high precision

cosmological results. Adding an existing constraint to the new constraints is referred to as

adding ‘priors’ or ‘prior information’. Here we combine Planck priors with our cosmological

parameter constraints to break degeneracies and help obtain overall improvements on the
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Figure 3.6: HIRAX constraints on the cosmological parameters for the 256, 512 and 1024
dish cases.

measurements. Understanding the improvement on the current constraints we have can give

more insights into the capabilities of an upcoming survey.

In Figure 3.6 we show the cosmological parameter constraints for the HIRAX experiment

over the entire survey redshift range. Here again we compare the e↵ect of increasing the

number of dishes. We compare the HIRAX 1024 measurements by adding in Planck priors

on the cosmological parameters in Figure 3.7. We see here how the Planck priors help to

make the HIRAX constraints much tighter on the cosmological parameters. We should note

that the constraints on the dark energy EOS parameters may not be well measured by Planck

but by combining both surveys we obtain overall improvements to all the varying parameters.

Once we obtain data from the HIRAX survey it will be possible to construct a HIRAX +

Planck likelihood which we can use to obtain a combined constraint on the cosmological

parameters.

We show in Figure 3.8 the zoomed in constraints on the dark energy parameters. Here

we show the concurrent constraints on both the dark energy EOS parameters showing how

the constraints on one parameter influences the constraints on the other parameter for the

HIRAX experiment alone and then with Planck priors added. We see in Figure 3.7 how
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Figure 3.7: Cosmological constraints by HIRAX with Planck priors added in.

adding Planck priors to HIRAX measurements can improve the cosmological constraints.

We see in Figure 3.8 how the prior information tightens the errors particularly on the linear

EOS term w0. We compute the FOM for the HIRAX experiment with Planck priors to

be around 436. We show in Chapter 4 how by using the CMB lensing convergence cross

bispectrum we can greatly improve this estimate. In [36] they estimate that the best SKA

phase 1 FOM is about 444. In [111] they compute the SKA phase 2 weak lensing dark energy

FOM with a Planck Prior to get the FOM to be around 305. In [112] they compute forecasts

for the FAST experiment and show that the best constraints by FAST on the dark energy

EOS parameters are �w0 = 0.04 and �wa
= 0.10. In comparison our forecasts for HIRAX

gives very similar constraints with �w0 = 0.0472 and �wa
= 0.1068. We further note that the

HIRAX dark energy constraints greatly improves the current Planck constraints. The latest

Planck results with combined Planck lensing and BAO information gives an error on w0 as

�w0 = 0.2 [113]. This is an improvement of about 9% in the parameter error. Hence we see

how competitive the HIRAX dark energy measurements can be in autocorrelation mode with

other survey forecasts.
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Figure 3.8: DE constraints on the EOS parameters for the HIRAX experiment. We show the
improvement by adding in Planck priors to the cosmological set of parameters.

3.4. HIRAX Array Layout Optimisation

We have seen in the interferometer noise power spectrum equation that the sensitivity of the

survey is a↵ected by the array layout. Here we examine the e↵ect of the array layout on the

HIRAX experimental noise response as well as how it a↵ects the calibration and foreground

mitigation e↵orts. The array layout can also determine the data rate and data volumes of

the experiment and hence choosing the optimal arrangement for the array is an important

task that balances the HIRAX science goals, systematics and challenges.

The main task that follows this exercise is the ability of these layouts to extract the

21cm cosmological signal in the presence of a foreground contaminant. We seek to best

set up the sensitivity of the baselines by minimizing the leakage of foreground signal into

the cosmological signal. This means that given our final choice of array layout we hope to

e↵ectively recover and separate out the foregrounds and 21cm signals in frequency.

55



3.4.1 Array Layout Strategies

Here we simulate various array layouts to compare their abilities in the context of the HIRAX

science goals and physical constraints such as data rate and volume. We compare the simula-

tions for five proposed array layouts which we have labelled as the: ‘standard grid’, ‘subgrid’,

‘alternate spacing grid’, ‘extended grid’ and finally ‘Hera like grid’. The Hydrogen Epoch of

Reionisation Array (HERA) experiment is designed to detect the distinctive signature that

would allow us to understand the formation and evolution of the first stars and galaxies in

the Universe [114]. HERA is located in the South African Karoo Astronomy Reserve and is

expected to be the most sensitive SKA pathfinder to study the EOR. The HERA telescope

will be constructed in an hexagonal closed packed arrangement and we consider this type of

layout for our ‘Hera like grid’ case.

We discuss each of these grid arrangements below and we compare their baseline redun-

dancies and uv coverage or sensitivity [115]. We will show the array layouts in the real

space on an East-West (EW) and North-South (NS) grid arrangement and we show their uv

redundancy coverage at the 600 MHz frequency channel.

The Standard Grid Layout

The standard grid layout is the proposed compact square closed packed grid. Here we assume

compactness, i.e the dishes are packed such that their edges touch but in reality this may

not be practical. Hence, a follow-up application of these simulations would be to study the

e↵ect of dish separation on the sensitivity.

The choice of a compact grid, which we consider in most of our simulations is to take

advantage of redundancy and maximize small scale sensitivity needed for BAOmeasurements.

The redundancy helps in calibrating the instrument because if we have many measurements of

the same baseline we can calibrate that measurement more accurately. Redundancy also helps

to keep the data rates and volume lower since if you more redundancy you have less unique

baselines and hence less data. We see in Figure 3.9 the standard grid has its redundancy

highly compact in the uv space mainly concentrated towards the lowest uv modes. This is
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Figure 3.9: Compact square grid layout. On the left we show the layout in real space laid
in EW and NS spacing. On the right we show the uv redundancy in the 600 MHz frequency
channel.

expected since the standard grid is highly compact and samples many of the smallest baseline

separations really well.

The Subgrid Layout

Figure 3.10: The Subgrid layout and uv redundancy in the 600MHz frequency channel.

In this layout arrangement we split the entire HIRAX 1024 array into 16 smaller subgrids

of 64 dishes (8x8) in each segment. Here we seek to improve our redundant calibration e↵orts

for most baselines by splitting the grids into smaller grids which we can sample individually.
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We also investigate how this layout would a↵ect the overall uv coverage which we can see

from Figure 3.10. The uv redundancy shows a lot more structure which is created from sub

diving the single grid. This would be a problem for any imaging e↵orts but the HIRAX

experiment science goals do not require good imaging capabilities. The advantage of this uv

sampling would be to improve our overall uv sensitivity as a function of frequency as we shall

see in Section 3.4.2.

Alternate Spacing Grid

Figure 3.11: Alternate Spaced grid and uv coverage in the 600MHz frequency channel.

The alternate spaced grid layout or ‘fat vs skinny aisles’ layout is a variation of the subgrid

layout. In this version we alternate the spacing between the dish edges using a 2m vs 5m

alternating gaps. The idea here is to sample grids at half dish size spacing (3m) to help fill up

the uv coverage for calibration and especially foreground treatment. We see in Figure 3.11

the layout of this strategy and the uv redundancy in the 600MHz channel. We see that the uv

coverage does spread power more evenly throughout the uv space compared to the compact

grids which has more redundancy at the smaller uv scales. This is a trade o↵ between overall

sensitivity for better uv sampling. As we discuss in Section 3.4.2 it may be of no benefit

to have good sensitivity but lack the ability to remove the foregrounds e�ciently. In other

words it may be necessary to trade o↵ overall sensitivity for uv sampling to e↵ectively remove
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the foreground signal.

Extended Grid Layout

Figure 3.12: Extended grid layout and uv redundancy in the 600MHz range.

The extended grid layout is a slightly more complicated idea. Here we extend the region

of the standard grid array into four larger segments or basically we double the length of

the sides both in the EW and NS directions to create four quadrants of HIRAX standard

grid outlines. We then take each of the 1024 dishes in the standard grid and assign them

randomly in each of the four quadrants. In this way they preserve their initial position in the

standard grid but move around to a di↵erent quadrant randomly. Here we greatly improve

the uv sampling as compared to the compact grids as seen in Figure 3.12 however as we shall

see in Section 3.4.2, for the extended grid and the alternate spacing grid we would su↵er

increased data rates and volume since we have spread the redundancy more uniformly from

the shorter baselines to longer baselines.

HERA Like Grid

Here we consider placing the 1024 6m HIRAX dishes in a similar way that has been done

for the HERA experiment. HERA has performed many tests and simulations on their array

layout and proposed their hexagonal shape as an ideal way to sample the uv space and
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obtain excellent redundancy [115]. The HERA experiment also uses outliers to improve their

uv coverage and imaging but we do not consider outliers in our case. We show the layout

and uv redundancy in Figure 3.13.

Figure 3.13: HERA-like array layout and uv redundancy in the 600MHz frequency channel.

3.4.2 Grid Layout Comparison and Analysis

We now summarise the results of the various grid layouts and show how they compare by their

redundancy, data rates/volumes, sensitivity and redundant calibration. We also show how

we can turn the redundancy information of the above layouts into sensitivity measurements

which we can use to study the foreground removal and signal extraction capabilities.

To now compare the various layouts and how they challenge each other in the various

aspects of uv coverage, data volume, data rates, calibration and noise sensitivity we have

compiled a summary of plots shown in Figure 3.14.

In Figure 3.14 we first plot the redundancy against unique baseline index. This plot counts

number of baselines for every unique baseline separation. This plot shows us the amount of

data we expect to obtain for the di↵erent layouts. The maximum unique baseline index for

each grid also indicated the total data volume for the di↵erent grids. From these plots we get

a metric to compare the data rate and data volume for the di↵erent array layouts. The plot

shows that the standard grid and HERA grid are very similar in their data performances.
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Figure 3.14: Grid layout summary plots computed in the 600 MHz frequency channel. We
plot the redundancy vs unique baseline index which quantifies the data rate and volume.
We plot the baseline density function which quantifies the sensitivity and can be converted
into a noise estimate comparing the various grids. The mean square root of the redundancy
quantifies the calibration e�ciency.

These two grids are the best performers in this metric with the lowest expected data rate and

data volume. The alternate grid, subgrid and extended grid are much higher in the maximum

unique baseline index and redundancy for each unique baseline. The plot indicates that the

extended grid is about four times higher in data volume than the standard and HERA grids.

The Alternate spacing grid and subgrids are about two to three times higher in its data

volume than the standard and HERA girds.

We then plot the redundancy against |u| for the various grids. Here we show the redun-

dancy as a scatter plot as a function of |u| were |u| =
p
u2 + v2. This plot shows the spread

of the redundancy for di↵erent baseline lengths |u|. We see here in this metric also that

the standard grid and HERA grid are very similar in their redundancy over uv coverage.

These two scatter plots basically overlay each other. The subgrid case spreads the redun-

dancy around more on the lower |u| values and this is due to the grid being subdivided into

smaller squares. The alternate spacing and extended grids both spread the concentration of
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the redundancy points from the smaller baselines to the larger ones.

The baseline density plot verse |u| gives the measure of a layouts sensitivity. We recall

from Section 3.2 that the interferometer noise depends on the baseline density function n(u).

Here we have plotted this baseline density function for the di↵erent array layouts. The

baseline redundancy is an histograms of the redundancy scatter plot and we expect to see

the same features. Here we see the standard grid, Hera grid and subgrid are more sensitive

to the lower |u| scales. The dashed black lines show the BAO scales in this frequency band.

We see that the extended grid and alternate spacing grid pushes out sensitivity from the

BAO scales outward toward the higher |u| scales.

Since we know that the HIRAX interferometer noise depends on the baseline redundancy

we can easily compute this noise for the various array layouts with their baseline density

functions. We show the HIRAX noise for the di↵erent array layouts. Here again we plot the

BAO scales in the black dashed lines. The e↵ect on the overall noise amplitudes by the array

layouts is not too severe. We see how the alternate spacing and extended grids which spreads

the redundancy from shorter baseline lengths to longer baselines lose overall sensitivity since

the total baseline density peak is flattered but we see that for these cases the noise extends

out to higher ` = 2⇡|u| modes.

Finally we plot the mean square root of the redundancy. Here we compute a mean value

in |u| bins for the redundancy scatter and the shaded region shows the variance in each

bin. This metric quantifies the calibration e↵orts for the arrays. We know that if we have

higher redundancy it means we have many measurements of the same baseline length. This

makes calibrating this baseline easier and more accurate. The caveat here is that we may

naively expect the higher redundancy layout to be better for calibration. This may not be

true, for example consider the standard grid and HERA grid cases, here they have the best

mean square root redundancy in amplitude but only for lower u values u < 400. For array

layouts with larger maximum separations we see that calibration on the longest baselines are

improved well outside the BAO scales, however this may not improve our BAO constraints.

The extended grid does the best at maintaining a constant calibration metric for most |u|

values.
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Figure 3.15: The uv coverage for the di↵erent array layout cases convolved with the primary
beam. Here we see the alternate grid uv coverage is very similar to the standard grid case.
The subgrid case induces much more structure into the redundancy at a single frequency
snapshot. The extended grid spreads the redundancy over a wider uv range.

We now examine the uv coverage sensitivity for the grid layouts showing how we can

obtain an estimate for the foreground characterisation and signal extraction. In Figure 3.15

we convolve the uv redundancy with the primary beam model for the dish. We assume the

primary beam is Gaussian with a width corresponding to the HIRAX dish FWHM given by

B(✓, ⌫) = e�16 ln (2)✓2✓2
b (3.33)

where ✓b ⇡ Ddish/� is the FWHM of a single dish with diameter Ddish. This convolution with

the primary beam accounts for the response of the dish to the sky measurements which we

show in Figure 3.15. We see how the primary beam causes the discrete dish points in the uv

plane to be tapered o↵ at the edges and it diminishes the overall sensitivity at the edge of the

arrays according to the beam size. This is a more realistic simulation of our sensitivity given

a dish beam pattern. We now look at one dimensional slices of this sensitivity estimate and

how it evolves in the frequency direction. We do this to understand and compare how the

63



Figure 3.16: One dimensional slices of the array layout sensitivity as a function of frequency.
We have sliced the coverage along v = 0 for u = 30 and u = 100. We see that our sensitivity
along frequency oscillates in give uv modes which means we have ‘holes’ in our frequency
coverage.

di↵erent array layouts will measure the 21cm signal. We show in Figure 3.16 the uv coverage

sensitivity as a function of frequency at v = 0 for u = 30 and u = 100. This plot shows how

the redundancy coverage fans out as a function of frequency. This happens because of the

decreasing wavelength, i.e. at higher frequency the baseline separation in wavelength units

gets larger. This frequency dependence a↵ects the way a given array layout can measure the

21cm signal in frequency. If we consider a given curve in Figure 3.16 which represents a given

uv mode, we see peaks and troughs in the frequency coverage. These peaks and troughs shows

where the layouts sensitivity is for uv modes in frequency direction. We can only measure

the signal where we have sensitivity and this means we can not measure the signal where

there are troughs in Figure 3.16. Given a high amplitude smoothly varying foreground mode

and an oscillating low amplitude 21cm signal along the 1D slices of sensitivity vs frequency

we are required to recover the signal by each array layout. In this way we can compare the

ability of the grids in the foreground mitigation e↵ort by simulating a foreground signal and

cosmological signal along our sensitivity and performing a signal reconstruction for each case.

In Figure 3.16 we can see that the subgrids but more especially the extended grid does

the best in terms of reducing the peak to through ratio resulting in a smoother sensitivity.
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This is the type of array we want to optimise to. We would like to preserve our redundancy

and BAO sensitivity as much as possible while creating an array that would smooth out the

sensitivity oscillations in the frequency direction.

Overall we see that the standard and the HERA grids are the best layouts in terms of

redundancy, noise sensitivity and data challenges. However, our early results on the frequency

sensitivity suggest that these array layouts may su↵er from foreground leakage. In order to

quantify the foreground leakage we plan to pass simulated foreground and 21cm signals to

each array layout and see how well each layout can extract the 21cm signal. We can then

compare these layouts for the final questions of interest which is the foreground subtraction

and decide which is the best optimal layout.
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Chapter 4

Cross-Correlations With HI Intensity Mapping

Cross-correlation surveys can be used as a powerful tool to probe the large scale structure. In

cross-correlation surveys we can mitigate systematic e↵ects and suppress uncorrelated noise.

For these reasons, cross-correlations surveys may be able to make more precise measurements

or recover information that may be inaccessible in the autocorrelation measurements. Here

we consider cross-correlating the HIRAX 21cm survey with other large scale structure probes

such as CMB lensing measurements by the AdvACT telescope, photometric galaxy surveys

from LSST or DES and spectroscopic galaxy surveys from WFIRST or DESI. We discuss

the prospect of each cross-correlation below showing the promising potential to make these

detections and obtain high precision parameter constraints.

In this chapter we obtain new results on the prospects of cross-correlating the HIRAX

experiment measurements with other large scale structure surveys. In Section 4.1 we show

that the two point cross-correlation survey of HIRAX measurements with CMB lensing mea-

surements vanishes after foreground removal. We then show that by considering the 21cm

field up to second order we can compute a three point function cross-bispectrum between

the 21cm position dependent power spectrum and the mean CMB lensing convergence field

to recover a high signal to noise detection of this signal. We also show how the bispectrum

parameter constraints can significantly improve the HIRAX 21cm constraints. In Section
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4.2 we show the cross-correlation prospects for HIRAX with WFIRST spectroscopic galaxy

measurements and for LSST photometric galaxy measurements. We show that for HIRAX

cross-correlated with WFIRST measurements we can make high precision signal detection

and put tight constraints on the HI model parameters as well as the galaxy bias terms. We

also find that the HIRAX-LSST cross-correlation will be measured with high a signal to noise

ratio.

4.1. HI IM-CMB Lensing Cross-Correlation

The lensing of CMB photons by intervening matter provides a projected estimator for the

matter distribution of the universe. The lensing of the CMB photons means that the mea-

sured CMB we observe today is not actually the primordial CMB but rather a lensed version

which encodes information of the matter distribution of the universe. We now investigate

the possibility of measurements from HIRAX to be cross-correlated with CMB lensing mea-

surements. For the CMB lensing measurements we consider the AdvACT experiment. The

AdvACT is the planned upgrade for the 6m aperture Atacama Cosmology Telescope (ACT).

The AdvACT will observe the CMB in five frequency bands and over a larger area of the sky

with extremely high precision [116]. The specifications for the AdvACT telescope are given

in Table 4.1 below.

Experiment AdvACT
Channel 150 GHz
Beam size 1.4 arcmin

Temp Sensitivity 7 µK-arcmin
Pol Sensitivity 10 µK-arcmin

Table 4.1: AdvACT survey specifications [117].
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4.1.1 CMB Lensing Convergence

As we have discussed in Section 2.2.5 the CMB lensing convergence is given by [79, 80]

(✓) =

Z
d�k W(�k) �m (r; z) (4.1)

where the lensing kernel is

W(�k) =
3

2
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✓
H0

c

◆2

�2
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k�k

!
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This expression for the convergence field describes the total integrated sum of the matter

density fluctuation from the surface of last scattering to us today. This gives the statistical

measure of the overall degree of deflection in the CMB measurements. Decomposing the

convergence field into plane waves in the comoving volume gives

(`) =

Z
dkk
(2⇡)

Z
d�k e

ikk�k K(�k)
�m
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�k
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⌘
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(4.3)

where we have defined the lensing convergence kernel and its harmonic space counterpart as

K(�k) = W(�k)D(�k) (4.4)

K(kk) =

Z
d�ke

ikk�kW(�k)D(�k). (4.5)

respectively. In Figure 4.1 we show the CMB lensing kernel in real space as well as the

overlapping redshift bins we are considering. Using Equation 4.3 we compute the CMB
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Figure 4.1: The CMB lensing kernel in real space which shows the CMB lensing power as a
function of comoving distance. We also plot here the HIRAX redshift range split into four
bins centred at the indicated zi which we have used in the cross-correlation study.

lensing convergence angular power spectrum as
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In the Limber approximation the CMB lensing convergence power spectrum reduces to [46]

C,Limber
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d�kK
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k
. (4.7)

To obtain the lensing convergence noise we use the harmonic space minimum variance
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estimator for the lensing potential [118]

 ̂XY (`) = NXY (`)
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where X, Y represents the temperature or polarization components of the CMB spectra T ,

E and B. For the temperature field TT the lensing potential becomes

 ̂TT (`) = NTT (`)
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where the function gXY (`0, `) is a weight function and for the TT case is
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For the polarization cross term X = E and Y = B the weight function becomes
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where � is the angle between ` and `� `0. The normalization which ensures the estimator is

unbiased for the TT case is
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where C̃tot
` = CTT

`,S + CTT
`,N . Similarly for the polarization cross term the normalization is
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The noise of the lensing potential reconstruction is given by the inverse of the normalization

factor. There are other contributions to the reconstruction such as the TB, EE and BB terms

but we only consider the TT and EB combinations here since they provide a close to optimal

reconstruction [118]. The convergence noise can be obtained from the lensing potential noise
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(a) (b)

Figure 4.2: (a) CMB lensing convergence power spectrum (blue) versus the CMB reconstruc-
tion noise (orange). (b) The SNR calculated for the CMB lensing convergence. We use the
CAMB code to compute the CMB lensing convergence power spectrum [76].

using the relation (`) = 1

2
`2 . This gives the convergence noise power spectrum as

C
`,N =

`4

4
N(`)�1 . (4.14)

To compute the signal to noise ratio we use

(SNR)2 =
X
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2`�`fsky
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`

C
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`,N

!2

. (4.15)

where `�`fsky factor accounts for the number of modes accessible by a measurement.

In Figure 4.2 we show the CMB lensing convergence autocorrelation power spectrum and

reconstructed noise. Here we consider the EB noise reconstruction which we also use in later

sections to compute the cross-correlation. We calculate the convergence signal and the noise

using an AdvACT like [117] setup. Figure 4.2(b) shows the cumulative signal to noise ratio

we obtain by summing the SNR at every ` in quadrature. The SNR shows how experiments

like the AdvACT will be able to make a significant detection of the CMB lensing convergence.
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4.1.2 Vanishing Of The Two Point Cross-Correlation

In this section we calculate the two point cross-correlation between the HIRAX 21cm survey

and the CMB lensing convergence field. We show that the two point function vanishes

following a foreground subtraction of low radial modes. In the CMB lensing measurements

most of the information is contained at low radial modes but in 21cm measurements such as

HIRAX these modes are lost at the cost of foreground removal.

We now calculate the cross-correlation signal between the CMB lensing convergence and

the 21cm brightness temperature in a given redshift bin centered at redshift zi corresponding

to central frequency ⌫̃i with width �⌫̃i = ⌫̃max

i � ⌫̃min

i . The cross-correlation signal as a

function of radial modes, y = kk r⌫,i, can be calculated by
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We can compute a signal to noise ratio estimator for the cross-correlation as
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Figure 4.3: Cross-correlation signal as a function of removed kk modes. In the inset plot
we show the CMB lensing convergence kernel in harmonic space which accounts for the
significant drop in the signal as a function of radial wavenumber.

where we calculate the cross-variance as

var[C�T21
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We show in Figure 4.3 how the cross-correlation signal drops sharply with kk < kcut modes

removed. This feature can be explained by the CMB lensing convergence kernel in harmonic

space shown in the inset plot in Figure 4.3. We see how the kernel drops sharply in magnitude

as you go to higher kk modes.

In Figure 4.4(a) we show the SNR in the k? � kk plane for the cross-correlation without

removing any kk modes. We see that in theory any statistical detection of the cross-correlation

signal would occur at low kk modes. In practice, this cross-correlation signal is not detectable

because HI intensity mapping experiments like HIRAX cannot access these modes. In 4.4(b)

we see show how the cross-correlation SNR is drastically reduced by a foreground treatment.

Here we assume a foreground removal treatment would cost us the low kk modes. We remove
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(a) (b)

Figure 4.4: (a) The cross-correlation SNR as a function of k? and kk modes for all HIRAX
modes. (b) The cross-correlation SNR after removing modes kk < 0.001Mpc�1 to accommo-
date a foreground removal treatment.

modes kk < 0.001Mpc�1 which is a optimistic value relative to the nominal kcut = 0.01Mpc�1

value. Even at this optimistic level of kcut we see the cross-correlation SNR drops significantly.

This result is our motivation to construct the higher order correlation between the 21cm field

and the CMB lensing convergence. In the next section we compute the 21-21- bispectrum

by going to second order in the 21cm field and show that we can recover the lost signal using

this configuration.

4.1.3 The Bispectrum Estimator

We have seen in the previous section how the two point cross-correlation function su↵ers

signal loss due to foreground subtraction. Here we attempt to recover the cross-correlation

using higher order correlations. We compute a three point function integrated bispectrum

between the 21cm signal and CMB lensing convergence field. The integrated bispectrum

is obtained by correlating the local power spectrum in some volume VL,j = Lk ⇤ L2

? (or

position dependent power spectrum) with the mean overdensity of that volume [119]. Using

this configuration we can reconstruct the information on the modes which are lost in 21cm

measurements. To take advantage of this correlation we have to go to second order in the

21cm field since the first order bispectrum would vanish because these are Gaussian fields.
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Here we correlate the 21cm position dependent power spectrum with the mean CMB

lensing convergence field. We now need to compute the average CMB lensing convergence

in a volume VL,j centered at rj along the past line cone. This corresponds to the volume

covered by a given 21cm redshift bin with central redshift zi and with length Lk in the radial

direction which corresponds to a given sub-band within the total bandwidth and width L?

in the transverse direction set by the telescope field-of-view. We first define radial and

angular window functions, which we take to be top-hat functions in position space, hence,

W k
L(k) = sinc(kkLk) andW?

L (k) = sinc(k?L?). To obtain the average CMB in a given volume

we use the integral convention for an average overdensity in a given region as
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which gives us the average CMB convergence in a volume as
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Using the expression for the convergence field Equation 4.3 we compute the average CMB
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?L?). We will correlate the average lensing conver-

gence with the (local) 21cm power spectrum in the volume VL,j. Now we have the local 21cm

field as
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L,21(k1). The leading order term

vanishes in cross-correlation with the lensing convergence due to it being a bispectrum of
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Gaussian fields so we need to consider higher order terms in the 21cm field i.e. the cross-

correlation between the ‘12’ and ‘21’ terms below.

The 21cm intensity field at second order is given by [120]
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The second order short-wavelength mode is given by a coupling between a long-wavelength

and small-wavelength mode
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and the first order RSD term we have written compactly as
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The directional cosines µi are
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and the functions F2 and G2 are the kernels which depends on the matter density [120]
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We now compute the contribution from the two short-wavelength 21cm modes that enter the
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bispectrum signal which is referred to as the position dependent power spectrum [119]. We

calculate this contribution as
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(4.29)

We now calculate the integrated bispectrum signal, which correlates the convergence field

with the position dependent power spectrum in a sub volume centered at rj [121]. We

calculate the 21-21- bispectrum signal as
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where we have set k0 = k�k1�q. The expectation value of the other combinations vanishes

in the squeezed triangle limit due to them being short mode-long mode combinations. Also

note that
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L,21(k1 + q) = WL,21(q)/VL,j. Now if the wavenumber k is much

larger than the lensing wavenumber, q, which is the case, then we can use the squeezed

triangle approximation to simplify the term in brackets to obtain

B2121̄
` (y; zi) =

"
VL,jW(�k,i)D4(�k,i)

Vp(zi)�2

k,i

#
P21 (k, z = 0)

Z
d3q

(2⇡)3
WL,(q)WL,21(q)Pm(q; z = 0)

⇥
(
b(2)HI(�k,i) + 2 (2µ2

k � 1) f(�k,i)(1 + f(�k,i)µ2

k)

b(1)HI(�k,i) + f(�k,i)µ2

k

+
1

2
(1 + f(�k,i)µ

2

k)

✓
3� d logPm

d log k

◆)
.

(4.31)

We show the detailed calculation of the squeezed approximation in Appendix B.1. In Figure

4.5 we show the bispectrum signal as a function of radial and transverse modes. We see

that even though the bispectrum may be a weaker signal in amplitude than the two point
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(a) (b)

Figure 4.5: a) HI-HI- integrated bispectrum as a function of ` and y. (b) HI-HI- signal vs
an e↵ective leading order term in the instrument/reconstruction noise.

cross-correlation, it shows more promise for detection in relation to the leading order term

of the bispectrum variance curve shown in blue. The leading order term in the bispectrum

variance comes from the auto-noise terms and with the e↵ective number of modes included.

We now discuss the bispectrum variance and its detectability in the next section.

4.1.4 Detectability Of The Bispectrum

We now calculate the detectability of the bispectrum signal. We see from Figure 4.5 that the

bispectrum in general is a weaker signal in amplitude than the two point cross-correlation but

it is higher in relation to its variance. We now show the calculation of the bispectrum variance

and thereafter use that to obtain signal to noise estimates for the bispectrum detectability.

We first describe the variances of the individual CMB lensing convergence and 21cm

intensity probes respectively over their survey areas. The average CMB convergence variance

is calculated as

var[̄(rj, zi)]survey = fsky ⇥ var[̄(rj, zi)]sky = fsky h(` = 0, zi),
⇤(` = 0, zi)irj,sky

= fskyVL,j

Z
d3q

(2⇡)3
|WL,(q)|2 Ctot,sky

`, (y)
(4.32)
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where Ctot,sky
`, (y) = C,sky

` +N ,sky
` . The 21cm variance is

var[�T21(`, y; zi)]survey = h�T21(`, y; zi), �T
⇤
21
(`, y; zi)isurvey = fsky

⇣
C21,sky

`,S (y) + C21,sky
`,N (y)

⌘

(4.33)

The integrated bispectrum signal over the survey area is just the signal in a patch multiplied

by the number of patches:

B2121̄
`,sky (y; zi) = NpatchB

2121̄
`,patch(y; zi). (4.34)

Now we can calculate the variance of the integrated bispectrum as

var
⇥
B2121̄

`,sky (y; zi)
⇤

= h�T21(`, y; zi)�T21(`, y; zi) ̄(zi) �T21(`
0, y0; zi)�T21(`

0, y0; zi) ̄
0(zi)i

= 3var[�T21(`, y; zi)]
2 ⇥ var[̄(zi)] + 12 var[�T21(`, y; zi)] (4.35)

⇥
�
C ̄ �T21

` (y; zi)
�2

+ 6
�
B2121̄

`,sky (y; zi)
�2

where var[�T21(`, y; zi)] and ⇥var[̄] have been computed in previous chapters. The full

calculation for the variance is shown in Appendix B.1. For the bispectrum variance we require

the cross-correlation spectrum between HI and the average lensing convergence, C21̄
` (y; zi),

which is given by

C21̄
` (y; zi) =

"
VL,jW(�k,i)D2(�k,i)

Vp(zi)�2

k,i

#
T̄b(zi)Z

(1)

HI(k)WL,(k)WL,21(k)Pm(k, z = 0) (4.36)

With the variance of the bispectrum at hand, we can now calculate the signal to noise ratio

by

(SNR)2 = (�⌫̃i Sarea)

Z ymax

ymin

dy

(2⇡)

Z `max

`min

d`

(2⇡)
`

�
B2121̄

`,sky (y; zi)
�2

var
⇥
B2121̄

`,sky (y; zi)
⇤ . (4.37)

In 4.6 we plot the bispectrum signal to noise ratio in the four bins over the HIRAX range.

We plot the pixelized SNR computed by subdividing the k? � kk plane into 15 sub bins of

width 0.01Mpc�1 and performing the SNR integral in Equation 4.37 in each bin. We find

that in this case the SNR is much higher than the two point function cross-correlation case
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(a) zi = 0.81 (b) zi = 0.95 (c) zi = 1.27 (d) zi = 1.95

Figure 4.6: HI-HI- SNR in kk and k? bins of width 0.01 Mpc�1. We see how the bispectrum
has much higher SNR values as compared to the two point correlation.

we showed in Figure 4.4. The SNR is not only larger in value but also extends further in the

k? � kk plane. The SNR value in each of the four bins shows great promise for the detection

of this signal as well as the potential to use this detection to constrain parameters. Another

interesting feature of the bispectrum in constraining HI model parameters is that we model

this signal to second order in the 21cm field. This means that we can constrain second order

e↵ects such as the second order HI bias.

4.1.5 Parameter Constraints

We now compute the parameter forecast constraints for both the cosmological and HI model

parameters using the Fisher formalism method which we discussed in Section 3.3. We can

use the bispectrum to add information to the HI autocorrelation constraints. With the

bispectrum we can constrain the HI model parameters and include constraints on the HI

bias at second order. We can also convert constraints of the distance scale parameters into

cosmological constraints over the entire redshift range.

We di↵erentiate the bispectrum shown in Equation 4.31 with respect to the linearly

independent parameters [Abao, �8 , ⌦HIb1, ⌦HIf , b2] similar to the HI case in Section 3.3.

Note that here we drop the redshift dependence in the text for brevity like we did in Section

3.3 and we also rewrite the first and second order HI biases as b(1)HI = b1 and b(2)HI = b2. We

show the bispectrum Fisher matrix derivatives for the cosmological and HI model parameters

in Appendix A.
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Figure 4.7: Forecast errors on the redshift dependent functions computed in the zi=1.2
redshift bin.

We plot in Figure 4.7 the forecast constraints for the bispectrum on the HI model pa-

rameters. We also plot the 21cm autocorrelation constraints and the combined 21cm au-

tocorrelation and bispectrum constraints. We show in Appendix B.2 that we can add the

constraints from the 21cm autocorrelation and 21-21- together as if they are independent

quantities because we get a negligible covariance between the probes. We see how by the

adding the constraints from both probes we can make the constraints tighter particularly if

the constraint ellipses are at di↵erent angles. This means that if a parameter enters each

probe in a di↵erent way it can be constrained better by combination. One particularly inter-

esting case of this is the f � �8 degeneracy. In most surveys this quantity enters as a single

product f�8 and cannot be independently constrained. Here we see how the bispectrum

together with the 21cm autocorrelation probe breaks this degeneracy. This happens because

the parameters enter each probe di↵erently. In the 21cm autocorrelation case the signal is

proportional to f�2

8
but in the bispectrum it enters as f�4

8
. This means the degeneracy angles

are di↵erent which we see in Figure 4.7 and these parameters, with ⌦HI combined in f , can

be independently constrained. We show in Figure 4.9(a) a close up view of the f⌦HI � �8

constraint. We note the combined constraints on the BAO amplitude is around 10%. We
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Figure 4.8: Cosmological parameter contour errors.

also see a stringent constraint on the second order bias of around 5%.

In Figure 4.8 we show how the bispectrum together with the 21cm autocorrelation can

improve the constraints on cosmological parameters. We also show the impact of adding the

CMB lensing convergence information on the cosmological parameters. For the purpose of

this work we only consider the convergence constraints on �8 and the distance measures. We

see that the cosmological constraints with Planck priors can improve the overall constraints

considerably. We show in Figure 4.9(b) the close up plot of the dark energy equation of state

parameter constraints. In this case with the bispectrum information the dark energy figure

or merit value is around 927. This is an improvement by more than a factor of 2 on the 21cm

autocorrelation constraint alone. This gives a fractional constraint on the equation of state

parameters of 5%. The 21cm autocorrelation errors on the equation of state parameters were

�21

w0
= 0.047 and �21

wa
= 0.107 but with the combined constraint here we get the errors down

to �comb
w0

= 0.031 and �comb
wa

= 0.081. The combined curvature constraint on ⌦k is around

0.01% which would provide a significant measurement of the curvature of the universe.
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(a) (b)

Figure 4.9: (a) Forecast constraints on f and �8. (b) Forecast constraints on dark energy
equation of state parameters.

4.2. HI IM-Galaxy Survey Cross-Correlation

Galaxy surveys have been used for a long time to measure the LSS and clustering of the

baryonic matter in the universe. Measurements from the Two-degree-Field Galaxy Redshift

Survey (2dFGRS) [4] and Sloan Digital Survey Sky Survey (SDSS) [5] for example show the

cosmic web structure which the galaxy distribution follows. We expect the distribution of

galaxies to trace the underlying dark matter distribution just as in the 21cm case. Clustering

measurements of galaxy surveys have already given us measurements on the BAO in the LSS

autocorrelation functions [69] and in the matter power spectrum [9]. These galaxy clustering

measurements have also provided some of the early high precision cosmological parameter

constraints [8] as well has RSD constraints [122].

Galaxy surveys can be done using either spectroscopic surveys or photometric surveys.

Spectroscopic galaxy surveys use spectral emissions from galaxy processes to identify galaxy

populations. Spectroscopic instruments can be expensive to build and measurements of

the sky requires longer observation times but we get higher resolution measurements and

precise redshift information. Photometric galaxy surveys measure the optical light emitted
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by galaxies by imaging through broadband filters. These surveys can measure the sky faster

than spectroscopic surveys and are cheaper. One of the drawbacks of photometric surveys is

that the redshift information is not well measured.

Cross-correlations between galaxy surveys and 21cm surveys can be used to make precision

measurements on parameters like the galaxy and 21cm biases as well as the HI density frac-

tion [37]. The first detection of the 21cm signal was made in cross-correlation with the optical

galaxy survey DEEP2 and the Green Bank Telescope (GBT) [48]. Subsequent measurements

were improved by the GBT and WiggleZ Dark Energy Survey [123]. Cross-correlating pho-

tometric measurements with 21cm surveys can be used to calibrate the photometric galaxy

redshifts [50]. For these reasons, there is a lot of interest in cross-correlating the 21cm

measurements with planned and recently developed next generation galaxy surveys such as

the Dark Energy Survey (DES) [49], Dark Energy Spectroscopic Instrument (DESI) [124],

Large Synoptic Survey Telescope (LSST) [125] and the Wide Field Infrared Survey Telescope

(WFIRST) [126].

4.2.1 Spectroscopic Survey Cross-Correlations

We now study the prospects of cross-correlating HIRAX 21cm measurements with a spectro-

scopic galaxy survey like WFIRST. The WFIRST High Latitude Spectroscopic (HLS) survey

will map out the distribution of galaxies covering a sky area of around 2000 deg2 using the

H↵ and Oiii emission line of galaxies [127]. Here we consider the Oiii emission at its primary

wavelength of 5007 Angstrom. The primary redshift range targets for the HLS are around z

⇠ 1.05� 2.77.

Since we can access the redshift information of spectroscopic surveys we can obtain a 3D

map of the universe. For this reason we can also obtain the power spectrum for all redshifts

accessible to a given survey. We can therefore approximate the power spectrum in a given

narrow redshift bin with central redshift zi as

�gal(k; zi) = Wgal(�k(zi))�m(k, zi) (4.38)

85



where zi is the central redshift of a narrow bin. The galaxy density kernel is given as [46]

Wgal(�k) = N0

gal

dN(z)

dz

dz

d�k
(bgal(�k) + fµ2

k) +MB(�k) (4.39)

where dN(z)
dz describes the galaxy density of a sample population as a function of redshift and

we normalize the galaxy density of a sample with the total number of galaxies measured so

that N0

gal =
1R

dz0 dN(z0)
dz0

. We show the simulated galaxy density distributions expected for a

WFIRST-like experiment for both the H↵ and Oiii probes in Figure 4.10. Figure 4.10(a)

shows that the H↵ probe will perform much better at lower redshifts and gives an overall

larger galaxy density measurement but the Oiii probe will be able to obtain measurements

up to much higher redshifts. The magnification bias is

MB(�k) =
3

2
⌦m0

✓
H0

c

◆2

(1 + z)(5s� 2)fg(�k), (4.40)

where fg(�) denotes the normalized weight function described in [128] and is given as

fg(�k) = �k

Z �k⇤

�k

d�0
k
�0
k � �k

�0
k

dN(z)

dz

dz

d�0
k
. (4.41)

The logarithmic slope s of the number counts with some limiting magnitude m is given by

s =
d logN(< m)

dm
. (4.42)

The e↵ect of the magnification is much smaller as compared to the galaxy distribution term

dN(z)/dz for scales relevant to our calculations and so we ignore it in our analysis. We use

a parametric form for the galaxy bias from [129] as bgal(z) = b(0)gal(1 + b(1)galz) where fiducial

values for b(0)gal and b(1)gal are given in table 4.2.
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(a) (b)

Figure 4.10: (a) Normalized galaxy density distribution for WFIRST. The plot shows how
the H↵ probe is expected to give a larger sample size in lower redshifts however, the Oiii

probe will be able to obtain measurements up to much higher redshifts. (b) Galaxy density
kernel monopole (µk = 0) as a function of comoving distance.

Sarea 2000 deg2

Tobs 0.59 years
Redshift range 0.45-1.85 [H↵] 0.9-2.75 [OIII]

Ngal 5182/deg2 [H↵] 685/deg2 [OIII]

b(0)gal 0.902

b(1)gal 0.444

Table 4.2: Specifications for WFIRST high latitude survey.

We first calculate the autocorrelation power spectra for the galaxy density probe using

h�gal(k, zi)�⇤gal(k0, zi)i = (2⇡)3�3D(k� k0)Pgal(k, zi)

=) Pgal(k, zi) =

Z
d3k0

(2⇡)3
h�gal(k, zi)�⇤gal(k0, zi)i

=

Z
d3k0

(2⇡)3
⇥
Wgal(�k(zi))D(�k(zi))

⇤2 h�m(k, z = 0)�⇤m(k
0, z = 0)i

=

Z
d3k0

(2⇡)3
[Kgal]

2�3D(k� k0)Pm(k, z = 0)

= Kgal(�k)
2Pm(k, z = 0).

(4.43)

where we have defined Kgal(�k) = Wgal(�k(zi))D(�k(zi)) like we did in Section 4.1. We have

plotted the galaxy kernel Kgal(�k) in Figure 4.10(b) which shows that probes will have the
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Figure 4.11: Galaxy density autocorrelation power spectrum and shot noise (dashed) com-
puted for one redshift bin centered at zi=1.2 with bin width �z=0.4.

same magnitude kernels however they di↵er in their redshift comoving scales probed. This

is expected since the galaxy distribution that enters the kernel is normalized by the total

number of measured galaxies.

The noise associated with galaxy surveys is given by the shot noise contribution

P Shot
N =

1

n̄
=

1

Ng/Vsur
(4.44)

where n̄ is the galaxy number density in a redshift bin, Ng is the number of galaxies in a

redshift bin and the survey volume is given by [130]

Vsur = Sarea

Z zmax

zmin

dz
dV

dzd⌦
= Sarea

Z zmax

zmin

dz
c�2

k(z)

H(z)
. (4.45)

We show in Figure 4.11 the galaxy density autocorrelation power spectra spherically averaged

over k and the shot noise for the H↵ and OIII probes. We compute the power spectra at

zi = 1.2 with a bin width of �z = 0.4. We can see from Figure 4.10 that at this redshift the

galaxy densities and kernels are quite similar hence we expect that in Figure 4.11 the power

spectra are quite similar in amplitude. The shot noise curves however are quite di↵erent
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(a) zi=0.65 (b) zi=1.05 (c) zi=1.45 (d) zi=1.85

Figure 4.12: Galaxy density autocorrelation SNR for WFIRST for the H↵ survey centered
at the indicated redshift bins with redshift bin width of �z=0.4. The plots show promising
SNR levels in each redshift bin for the H↵ probe up to z=2.

(a) zi=1.1 (b) zi=1.5 (c) zi=1.9 (d) zi=2.3

Figure 4.13: Galaxy density autocorrelation SNR for WFIRST for the OIII survey centered at
the indicated redshift bins with redshift bin width of �z=0.4. The plots show promising SNR
levels in each redshift bin for the OIII probe which extends further than the H↵ measurements
out to z=2.5.

since the overall number of galaxies for the H↵ probe is almost eight times the OIII case. For

both cases however, we note the shot noise terms are well below the level of signal and we

expect to make a significant detection of both probes. We quantify this level of detection

now by computing the signal to noise ratio.

We estimate the signal to noise ratio for the galaxy density autocorrelation survey by

(SNR)2 =
Vsur

2

Z kkmax

kkmin

dkk
2⇡

Z k?max

k?min

dk?
(2⇡)2


Pgal(k; zi)

Pgal(k; zi) + P Shot
N

�2
. (4.46)

For the spectroscopic galaxy survey we restrict our kmax to the linear scales k < 0.14Mpc�1.

We show in Figures 4.12 and 4.13 the SNR computed for the spectroscopic survey auto-

correlation measurements. Both spectroscopic probes show promise in their autocorrelation

measurements. Here we see high SNR in each of the four bins and these can be used to
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constrain the galaxy biases and the BAO signal. Due to the nature of the probes, the OIII

measurements can extend further out in redshift and we see how the SNR values are promis-

ing out to z > 2.3. The H↵ probe on the other hand will be able to obtain high precision

measurements of the lower redshift universe down to z < 0.65. We now focus on calculating

the cross-correlation signal between the 21cm measurements and the spectroscopic galaxy

surveys.

We calculate the 21cm-spectroscopic galaxy cross-correlation power spectrum as

h�T21(k; zi)�
⇤
gal(k

0)i = (2⇡)3�3D(k� k0)P21�gal(k; zi) (4.47)

to get

P21�gal(k; zi) = T̄ (zi)[bHI + fµ2

k]D(zi)
2Wgal(zi)

Z
d3k0

(2⇡)3
h�m(k)�⇤m(k0)i

= T̄ (zi)[bHI + fµ2

k]D(zi)
2Wgal(zi)Pm(k; z = 0).

(4.48)

where this derivation assumes that the galaxies perfectly trace the HI distribution. We

relax this assumption when computing forecast constraints by introducing the correlation

coe�cient r21�gal.

The error on the cross-correlation is obtained from the variance estimator

var[P21�gal(k; zi)] = P 2

21�gal(k; zi) + P Tot
21

(k; zi)P
Tot
gal (k; zi) (4.49)

where P Tot
21

= P21+N21 and P Tot
gal = Pgal+Ngal. Recall that the 3D power spectrum in Fourier

space is related to the observational space power spectrum by the volume factor Vp(zi) such

that

P21(k, zi) = C21

`,SVp(zi), N21(k, zi) = C21

`,NVp(zi). (4.50)

In Figure 4.14 we show the spherically averaged cross-correlation signal versus the cross-

correlation variance term shown by the dashed curves. The variance drops below the cross-

correlation signal at around k ⇡ 0.03hMpc�1, which indicates we can make our detection of
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Figure 4.14: The 21cm-spectroscopic galaxy cross-correlation power spectrum and cross-
correlation variance (dashed) for both the H↵ and Oiii probes. The power spectra is com-
puted for a redshift bin centered at zi=1.2 and bin width �z=0.4.

this signal only on these scales. We restrict our analysis to the linear regime, meaning we

don’t consider the spectra above k > 0.2hMpc�1 even if there may be significant signal here.

The variance for the cross-correlation can be used to determine the signal to noise ratio

as

(SNR)2 =
Vsur

2

Z kkmax

kkmin

dkk
2⇡

Z k?max

k?min

dk?
(2⇡)2

"
(P21�gal(k; zi))

2

var[P21�gal(k; zi)]

#
(4.51)

In Figures 4.15 and 4.16 we show the SNR for the cross-correlation measurements. For the

21cm-H↵ cross-correlation we only consider 3 redshift bins of width �z = 0.4 because of the

limited redshift overlap between the two probes. For the cross-correlation with both H↵ and

0III probes there is good SNR which is promising for high precision measurements and signal

detection. These SNR levels indicates there can be significant constraints on galaxy and

21cm parameters as well as the underlying cosmological parameters. From Figures 4.15 and

4.16 we see that the cross-correlation measurements improve the overall range of detection

for the 21cm autocorrelation signal. The cross-correlation signal to noise also shows that the

detection for the galaxy density is higher in this cross-correlation than in the autocorrelation

measurements.
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(a) zi=0.95 (b) zi=1.35 (c) zi=1.75

Figure 4.15: The cross-correlation SNR plots in three redshifts bins of width �z=0.4 for the
21cm-H↵ survey.

(a) zi=1.1 (b) zi=1.5 (c) zi=1.9 (d) zi=2.3

Figure 4.16: The cross-correlation SNR plots in the four redshifts bins of width �z=0.4 for
the 21cm-OIII survey.

Parameter Constraints

Here we show the possible parameter forecast constraints to the HI and galaxy parameters

from the 21cm-spectroscopic cross-correlation. We compute the constraints using the Fisher

matrix discussed in Section 3.3. Here we constrain the parameters {ABAO, r
(0)

21�gal, r
(1)

21�gal,

�, A(0)

HI , A
(1)

HI ,A
(0)

gal, ,A
(0)

gal} where r21�gal(z) = r(0)
21�gal + r(1)

21�galz is the correlation coe�cient

which multiplies the cross-correlation signal. We have also defined A(0)

HI = b(0)HI⌦
(0)

HI�8 and

A(1)

HI = b(1)HI⌦
(0)

HI�8. We use a similar parameterisation for the galaxy density parameters

A(0)

gal = b(0)galN
(0)

gal�8 and A(1)

gal = b(1)galN
(0)

gal�8. Here we have parameterised the biases and HI

fraction as

bHI(z) = b(0)HI + b(1)HIz (4.52)

bgal(z) = b(0)gal + b(1)galz (4.53)

⌦HI(z) = ⌦
(0)

HI

⇣
1 + ⌦(1)

HIz + ⌦
(2)

HIz
2

⌘
. (4.54)
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We have included quadratic terms in our fiducial model for ⌦HI(z) but we only vary the

leading term. The reason we consider a redshift parameterisation here is because we want

to constrain the redshift evolution of the cross-correlation and overall amplitude parameters.

The galaxy density normalization N (0)

gal is just the total number of galaxies for the given survey

integrated over its entire redshift range. We list the parameter values of our parameterisation

in Table 4.3

b(0)HI 0.666

b(1)HI 0.178

⌦(0)

HI 4.830⇥ 10�4

⌦(1)

HI 3.886⇥ 10�4

⌦(2)

HI 6.512⇥ 10�5

N(0)

gal 1/5182deg2[H↵], 1/685deg2 [OIII]

b(0)gal 0.902

b(1)gal 0.400
r0
21�gal 1.0
r1
21�gal 0.0

Table 4.3: HI and spectroscopic galaxy parametric model values.

We expand the galaxy power spectrum and cross-correlation in terms of the explicit

dependencies like we did in the 21cm case to get

Pgal(k, zi) = n2(zi)
�
bgal(zi) + f(zi)µ

2

k

�2
D2(zi)(�8/�

fid
8

)2(1 + Abaofbao(k))P
smooth
m (k) (4.55)

and the cross-correlation signal as

P21�gal(k, zi) = T̄ (zi)
�
bHI(zi) + f(zi)µ

2

k

�
n(zi)

�
bgal(zi) + f(zi)µ

2

k

�
⇥

✓
�8

�fid
8

◆2

r21�gal(zi)(1 + Abaofbao(k))D
2(zi)P

smooth
m (k).

(4.56)

In Figures 4.17 and 4.18 we show the combined constraints on the HI and galaxy density

model parameters. We also show (green curves) the constraints if we only constrain the

constant terms in our parametric form and fix the linear order (r(1)
21�gal, b

(1)

HI , b
(1)

gal) terms. We
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see that even if we vary all parameters up to linear order in redshift we can obtain extremely

tight constraints on the model parameters. This suggests that the cross-correlation can

measure redshift evolution in the cross-correlation and overall amplitude parameters. We

can constrain the combined quantities AHI and Agal well below the percent level. We can

obtain a 4% constraint on ABAO and �. We can also constrain the correlation coe�cient

parameters to below 2%. The high precision constraints on the model parameters from this

cross-correlation is promising for constraints on the cosmological parameters which we plan

to study in future work.

Figure 4.17: Forecast constraints on the HI and H↵ galaxy survey parameters from the
combined 21cm autocorrelation, spectroscopic galaxy density autocorrelation and cross-
correlation probes. The yellow contours show 1� errors and the blue contours show 2�
errors. The green curves show the constraints if we only vary the leading order terms in the
parametric equations.
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Figure 4.18: Forecast constraints on the HI and OIII galaxy survey parameters from the
combined 21cm autocorrelation, spectroscopic galaxy density autocorrelation and cross-
correlation probes. The yellow contours show 1� errors and the blue contours show 2�
errors. The green curves show the constraints if we only vary the leading order terms in the
parametric equations.

4.2.2 Photometric Survey Cross-Correlations

The modelling of the photometric galaxy survey is done in the same way as the spectroscopic

case. The di↵erence between the way we model these surveys is mainly in the galaxy density

distribution. We also model the photometric signal in the angular space like the CMB lensing

convergence since the redshift distributions are not tightly constrained. Here we consider an

LSST type galaxy distribution as discussed in the LSST science book [125]. We summarise

the LSST photometric survey specifications in Table 4.4. LSST will survey the souther sky

meaning we expect to have excellent observational overlap with HIRAX.

Sarea 20 000 deg2

E↵ective aperture 6.7 m
Redshift range 0 < 4
Field of view 9.6 deg2

Table 4.4: Specifications for LSST photometric galaxy survey.
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In the angular space we can write the photometric galaxy density field as
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We then calculate the autocorrelation angular power spectrum for the photometric galaxy

survey as
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(4.59)

The photometric survey noise is just the angular projection of the shot noise which is just

scaled by the volume factor Vp(zi) to give

N gal
` (zi) =

P shot
N

Vp(zi)
. (4.60)

With the power spectrum and noise expressions in hand we can then compute our signal to

noise estimator as

(SNR)2 =
X

`

2`�`fsky

 
Cgal

`

Cgal
` +N gal

`

!2

. (4.61)

We show in the Figure 4.19 the photometric galaxy survey power spectrum and the SNR for
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(a) (b)

Figure 4.19: (a) Photometric galaxy survey power spectra computed in 100MHz bins over
the HIRAX frequency range. The corresponding shot noise levels for each bin is shown by
the dashed curves.(b) The cumulative SNR in the 100MHz bins for the Photometric galaxy
survey with LSST experimental specifications.

the LSST experiment. We compute the signal and SNR in redshift range overlap with HIRAX

of 0.755 < z < 2.55 here since it is the relevant range for the cross-correlation. We consider

four bins in this range for the photometric autocorrelation and the cross-correlation. In

Figure 4.19(b) we show the large SNR detection level that the LSST experiment is expected

to make with a cumulative SNR around 800. We sum the SNR at individual ` modes in

quadrature to obtain the cumulative SNR. This gives us information tells us over what range

of ` the cross-correlation signal builds up the most.

We now calculate the 21cm-photometric galaxy survey cross-correlation power spectrum

as

h�T21(`, y; zi)�
⇤
gal(`

0)i = (2⇡)2�2D(`� `0)C21�gal
` (4.62)
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to get the cross-correlation signal as
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Like in the CMB lensing convergence case we have defined the harmonic space kernel as

Kgal(kk) =

Z
d�0

ke
�ikk�

0
kWgal(�
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k)D(�0

k). (4.64)

The variance for this cross-correlation will also be similar to the CMB lensing convergence

given by
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We then compute our signal to noise estimates for the cross-correlation as

(SNR)2 =
X

`

2`�`fsky

⇣
C21�gal

`

⌘2

var
h
C21�gal

`

i . (4.66)

In Figure 4.20 we show the cross-correlation signal between the photometric galaxy survey

and 21cm HIRAX survey and the cumulative SNR as a function of angular wavenumber.

The cumulative SNR is obtained by summing the SNR at each mode in quadrature. We

compute the cross-correlation in four 100 MHz bins in the HIRAX frequency range. We
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Figure 4.20: (a) The cross-correlation signal and noise for the HIRAX 21cm measurements in
combination with the LSST photometric galaxy survey in the HIRAX frequency band binned
in 100 MHz channels.(b) The cumulative SNR for the cross-correlation estimator in HIRAX
frequency bins.

also show the cross-correlation variance (dashed lines). We see the cross variance term drops

below the signal on scales of ` ⇡ 100 leading to possible detection only above these modes.

The cross-correlation SNR in each bin shows good statistical detection that can be used to

obtain parameter constraints for the photometric galaxy bias and the HI model parameters.

In the photometric case, going to finer bins can improve our overall SNR up to a certain

threshold where our number density becomes too small. We will explore the possibility of

parameter constraints from this cross-correlation signal in future work and show how finer

binning can improve our results over the entire range. Another interesting application for

this study is to use the cross-correlation to constrain the photometric redshifts of the galaxy

survey. Since the redshift information in photometric surveys is not well constrained we can

use HI surveys like HIRAX to help calibrate the photometric redshifts [50]. We will study

photometric redshift calibration from HI surveys in future work in particular using the 21-

21-�gal bispectrum to improve the redshift calibration by constraining the low kk 21cm modes

lost in foreground removal.
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Chapter 5

Conclusion

We have now entered the realm of precision cosmology with astronomical observations already

placing stringent constraints on the cosmological parameters that describe the universe. Next

generation experiments will survey even larger volumes of the universe than ever before and

this provides an exciting prospect for improved precision on the cosmological model. In this

thesis we examined the planned HIRAX experiment and performed forecasts on its ability

to detect the cosmological 21cm signal and constrain the HI and cosmological parameters.

We also investigated the cross-correlation prospects with other planned large scale structure

surveys like CMB lensing and galaxy surveys.

In Chapter 2 we introduce the theoretical framework which describes the standard model

of cosmology. We reviewed the solutions of a smooth homogenous universe then introduced

the perturbations which we observe today in the form of large scale structure and CMB

anisotropies. We then reviewed the observational probes used to measure the key features of

the universe that are most relevant to this thesis.

In Chapter 3 we introduced the 21cm line emission and described the theoretical mod-

elling of this signal. We showed that the HIRAX experiment will be able to make a strong

statistical detection of this signal that can then be transformed into tight constraints on

cosmological parameters. In this chapter we also investigated the HIRAX array layout op-
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timisation. We showed how the layout strategy can a↵ect our sensitivity and data volume

of the experiment. By changing the array layout we can also examine the e↵ect on signal

extraction and foreground separation by a given layout design. Ideally, we would like to

sample the uv space smoothly as a function of frequency which will allow us to e�ciently

remove the foreground contaminants but we also have to consider the data challenges and

optimise for this. We have found that the standard compact grid layout is the best option

in terms of redundancy and data volume. The standard grid also gives the best sensitivity

at small scales for the BAO detection. We have also found however that by subdividing the

standard grid into smaller grids or considering the extended grid which evenly spreads out

the uv coverage we can smooth out the sensitivity as a function of frequency. For future work

we plan to continue the investigation of the array layout optimisation. We look to turn the

sensitivity as a function of frequency information into a signal recovery estimate. We plan to

simulate a cosmological signal and foreground signal as a function of frequency and then for

each array case see how well a given array layout can reconstruct both these signals along

its sensitivity. We would be interested in identifying which cases can construct both these

signals independently so that we can separate the foreground signal from the cosmological

signal without leakage.

In Chapter 4 we studied what we can learn from cross-correlation surveys with HIRAX.

Here we cross-correlated the 21cm signal with both the CMB lensing convergence and galaxy

surveys. We found the CMB lensing two point cross-correlation signal is not detectable after

foreground removal but we show that the three point bispectrum B2121
` can be detected with

high signal to noise ratio in each of four HIRAX redshift bins. We have also shown how the

bispectrum can be used in combination with the 21cm autocorrelation measurement to inde-

pendently constrain parameters that are usually degenerate in large scale structure surveys.

We have shown an independent constraint on the f⌦HI and �8 parameter combination. We

also used the bispectrum to improve our cosmological parameter constraints. Here we ob-

tained a dark energy parameter figure of merit of 927, which is almost three times the 21cm

autocorrelation case. We have also found that a 21cm-spectroscopic cross-correlation survey

can be detected with high signal to noise in a given redshift bin and with this detection
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we show how we can constrain the HI and galaxy parameters to below a percent level. We

also showed that the 21cm-photometric galaxy cross-correlation is also promising in terms of

its signal to noise ratio which can then be used to constrain parameters and the photomet-

ric redshift information. For future work we plan to turn the cross-correlation constraints

obtained here into constraints on modified gravity theories and investigate non-Gaussianity

parameters. We will also turn the promising 21cm-spectroscopic cross-correlation results into

constraints on the cosmological parameters and cross-BAO forecasts. We also plan to use the

21cm-photometric cross-correlation to constrain the HI and photometric parameters as well

as the cosmological parameters. For this case we also want to show how we can use the 21cm

information to calibrate the photometric redshift information. For both the galaxy surveys

we also plan to compute the bispectrum in a similar way to the CMB lensing convergence

case to see how we may improve our parameter constraints.
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Appendix A

Fisher Matrix Derivatives

A.1. The 21cm Signal Derivatives

Here we compute the Fisher matrix derivatives on the 21cm signal which can be written

explicitly as
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where Ab(z) =
566h
0.003

H0
H(z)(1 + z)2µK such that T̄ (z) = Ab(z)⌦HI(z). We now di↵erentiate the

21cm power spectrum with respect to each of the linearly independent parameters {ABAO,

�8 , ⌦HIbHI , ⌦HIf} to get:
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For the derivative on the distance scale parameters we replace l, y with ↵?`,↵ky and write

the 21cm power spectrum as

C2121

`,S (y; zi) = T 2

b (z)
↵2

?↵k

�2

k,ir⌫,i

⇥
bHI + fµ2

k↵

⇤2
D2Pm

✓
↵?`

�k,i
,
↵ky

r⌫,i
; z = 0

◆
(A.6)

where

µk↵ =
↵k

y
r⌫,ir

↵2

k

⇣
y

r⌫,i

⌘2
+ ↵2

?

⇣
`

�k,i

⌘2 . (A.7)

We now calculate the derivatives as
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A.2. The Bispectrum Derivatives

The bispectrum expression is given by
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we di↵erentiate the bispectrum with respect to the linearly independent parameters [Abao,

�8, ⌦HIb1, ⌦HIf , b2, ↵k, ↵?] to get

@B2121
l (y; zi)

@�Abao

= B2121
l

"
fbao

1 + Abaofbao
+

R
d3q
(2⇡)3WL,(q)WL,21(q)

@Pm(q,z=0)

@AbaoR
d3q
(2⇡)3WL,(q)WL,21(q)Pm(q, z = 0)

�1

2

�
1 + fµ2

k

� @

@Abao

✓
dlogPm

dlogk

◆� (A.13)

@B2121
l (y; zi)

@�8
=

4B2121
l (y; zi)

�8
(A.14)

@B2121
l (y; zi)

@b1⌦HI
=

B2121
l (y; zi)

b
(2)
HI

+2f(2µ2
k
�1)(1+fµ2

k
)

b
(1)
HI

+fµ2
k

+ 1

2

⇣
3� dlogPm

dlogk

⌘�

⇥

2

664

2


b
(2)
HI

+2f(2µ2
k
�1)(1+fµ2

k
)

b
(1)
HI

+fµ2
k

+ 1

2

⇣
3� dlogPm

dlogk

⌘�

(b(1)HI + fµ2

k)

�b(2)HI + 2f(2µ2

k � 1)(1 + fµ2

k)

(b(1)HI + fµ2

k)
2

#
⇥
✓

1

⌦HI

◆

(A.15)

@B2121
l (y; zi)

@b2
=

B2121
l (y; zi)

b
(2)
HI

+2f(2µ2
k
�1)(1+fµ2

k
)

b
(1)
HI

+fµ2
k

+ 1

2
(1 + fµ2

k)
⇣
3� dlogPm

dlogk

⌘�
⇥
⇣
b(1)HI + fµ2

k

⌘ (A.16)

105



@B2121
l (y; zi)

@f⌦HI
= B2121

l (y; zi)⇥
(

2µ2

k

(b(1)HI + fµ2

k)

+

0

BB@
[2(2µ2

k � 1)(1 + 2fµ2

k)] (b
(1)

HI + fµ2

k)� µ2

k[b
(2)

HI + 2(2µ2

k � 1)(1 + fµ2

k)f ]

(b(1)HI + fµ2

k)
2 ⇥


b
(2)
HI

+2(2µ2
k
�1)(1+fµ2

k
)f

b
(1)
HI

+fµ2
k

+ 1

2
(1 + fµ2

k)
⇣
3� dlogPm

dlogk

⌘�

1

CCA

�
µ2

k

⇣
3� dlogPm

dlogk

⌘

2


b
(2)
HI

+2(2µ2
k
�1)(1+fµ2

k
)f

b
(1)
HI

+fµ2
k

+ 1

2
(1 + fµ2

k)
⇣
3� dlogPm

dlogk

⌘�

9
>>=

>>;
⇥
✓

1

⌦HI

◆
.

(A.17)

The derivatives for both distance scale parameters are
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A.3. The Convergence Field Derivatives

For the CMB lensing convergence signal we only consider forecasts on {Abao, �8 ,↵k, ↵?}.

The derivatives are given as
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A.4. Transformation Matrix Derivatives

Here we show the derivatives that go into the transformation matrix that converts the redshift

function and distance scale parameters into cosmological parameter constraints.

We start with the derivatives of linear growth rate function f , which are
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For ↵k the derivatives are
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for all cosmological parameters. The derivatives of E(a) are
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= 0. (A.37)
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Appendix B

The Bispectrum Derivation

B.1. The Squeezed Limit Bispectrum

Here we show the expansion of the bispectrum in Equation 4.30 under the squeezed triangle

approximation. The bispectrum expression is

B̄�T21�T21
` =


VL,j

Vp(�k)

�2 ⇥
W(�k)D

4(�k)�k,i
⇤
⇥
Z

d3q

(2⇡)3
WL,(q)Pm(q; z = 0)

⇥
Z

d3k1
(2⇡)3

WL,21(k1)W
⇤
L,21(k1 + q)

(
P21 (k

0, z = 0)
Z(2)

HI(q,k
0)

Z(1)

HI(k
0)

+ P21 (k� k1, z = 0)
Z(2)

HI(�q,k� k1)

Z(1)

HI(k� k1)

)
(B.1)

where we have set k0 = k � k1 � q. The expectation value of the other combinations

vanishes in the squeezed triangle limit due to them being short mode-long mode combinations.

Also note that
R

d3k1
(2⇡)3WL,21(k1)W ⇤

L,21(k1 + q) = WL,21(q)/VL,j. Now if the wavenumber k

is much larger than q and k1, which is the case, then we can use the squeezed triangle

approximation for the term in curly brackets. We start by setting

k0 = k� k1 � q = k(1� ✏1 � ✏2) (B.2)
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where k1 = ✏1k and q
1
= ✏2k. This also gives k� k1 = k(1� ✏1). We now expand about ✏1

and ✏2 up to leading order. The expansion of each term is given as follows

Firstly we expand the 21cm power spectra,

P21(k� k1 � q) = P21(k(1� ✏1 � ✏2))

= P21(k)

✓
1� (✏1 + ✏2)

@ lnP21(k)

@ ln k

◆ (B.3)

and

P21(k� k1) = P21(k(1� ✏1))

= P21(k)

✓
1� ✏1

@ lnP21(k)

@ ln k

◆
.

(B.4)

Now we expand the first order redshift distortion functions

Z(1)

HI(k
0,�k) = bHI(�k) + f(�k)

✓
kk
k

◆2

= bHI(�k) + f(�k)

✓
kk(1� ✏1 � ✏2)

k(1� ✏1 � ✏2)

◆2

= bHI(�k) + f(�k)µ
2

k

= Z(1)

HI(k,�k).

(B.5)

and

Z(1)

HI(k� k1,�k) = bHI(�k) + f(�k)

✓
kk
k

◆2

= bHI(�k) + f(�k)

✓
kk(1� ✏1)

k(1� ✏1)

◆2

= bHI(�k) + f(�k)µ
2

k

= Z(1)

HI(k,�k).

(B.6)

Now for the second order functions Z(2)

HI(k1,k2,�k) we get
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Z(2)

HI(q,k� k1 � q,�k) = Z(2)

HI(✏2k,k(1� ✏1 � ✏2),�k)

= 1/2b(2)HI(�k) + b(1)HI(�k)F2(✏2k,k(1� ✏1 � ✏2)) + f(�k)

✓
kk
k

◆2

G2(✏2k,k(1� ✏1 � ✏2))

+ 1/2f(�k)kk(1� ✏)⇥
"
µk

✏2k

 
b(1)HI(�k) + f(�k)

✓
kk
k

◆2
!

+
µk

k(1� ✏1 � ✏2)

 
b(1)HI(�k) + f(�k)

✓
kk
k

◆2
!#

= 1/2b(2)HI(�k) +
⇣
b(1)HI(�k) + f(�k)µ

2

k

⌘
⇥


F2(✏2k,k(1� ✏1 � ✏2)) + 1/2f(�k)µ

2

k

✓
1� ✏1
✏2

+
1� ✏1

1� ✏1 � ✏2

◆�
.

(B.7)

The kernel functions are expanded as follows

F2(✏2k,k(1� ✏1 � ✏2)) = G2(✏2k,k(1� ✏1 � ✏2))

=
5

7
+

2

7

✓
✏2(1� ✏1 � ✏2)k.k

k2✏2(1� ✏1 � ✏2)

◆2

+
1

2

✓
✏2(1� ✏1 � ✏2)k.k

k2✏2(1� ✏1 � ✏2)

◆
✏2

1� ✏1 � ✏2
+

1� ✏1 � ✏2
✏2

�

⇡ 5

7
+

2

7
(1) +

1

2
(1)


✏2(1 + ✏1 + ✏2) +

1

✏2
(1� ✏1)� 1

�

= 1 +
1

2


✏2 +

1

✏2
(1� ✏1)� 1

�
+O(✏2

1
, ✏2

2
, ✏1✏2)

=
1

2

✓
1 + ✏2 +

1

✏2
(1� ✏1)

◆

(B.8)

and where
1� ✏1
✏2

+
1� ✏1

1� ✏1 � ✏2
⇡ 1

✏2
(1� ✏1) + (1� ✏1)(1 + ✏1 + ✏2)

= ✏2(1� ✏1) + 1 + ✏1 + ✏2 � ✏1 � ✏2
1
� ✏2✏1

= ✏2 +
1

✏2
(1� ✏1) + 1 +O(✏2

1
, ✏2✏1).

(B.9)
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Then Z(2)

HI(q,k� k1 � q,�k) becomes

Z(2)

HI(q,k� k1 � q,�k) = Z(2)

HI(✏2k,k(1� ✏1 � ✏2),�k)

= 1/2b(2)HI(�k) +
⇣
b(1)HI(�k) + f(�k)µ

2

k

⌘ �
1 + 1/2f(�k)µ

2

k

�✓
✏2 +

1

✏2
(1� ✏1) + 1

◆ (B.10)

and

Z(2)

HI(�q,k� k1,�k) = Z(2)

HI(�✏2k,k(1� ✏1),�k)

= 1/2b(2)HI(�k) + b(1)HI(�k)F2(�✏2k,k(1� ✏1)) + f(�k)µ
2

kG2(�✏2k,k(1� ✏1))+

f(�k)µ
2

k (1� ✏1 � ✏2)

✓
�1

✏2
+

1

1� ✏1

◆�
b(�k) + f(�k)µ

2

k

�

= 1/2b(2)HI(�k) +
�
b(�k) + f(�k)µ

2

k

�
⇥

✓
F2(�✏2k,k(1� ✏1)) +

1

2
fµ2

k

✓
�1 + ✏1 + ✏2
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◆◆

(B.11)

where µ�q =
⇣

�✏2kk
✏2k

⌘
= �µk. We now compute the response function

F2(�✏2k,k(1� ✏1)) = G2(�✏2k,k(1� ✏1)) =
5

7
+

2

7
(1) +

1

2
(�1)


✏2

1� ✏1
+

1� ✏1
✏2

�

⇡ 1� 1

2


✏1(1 + ✏1) +

1

✏2
(1� ✏1)

�

=
1

2


2� ✏2 �

1

✏2
(1� ✏1)

�
+O(✏1✏2)

(B.12)

and where
1� ✏1 � ✏2

�✏2
+

1� ✏1 � ✏2
1� ✏1

⇡ � 1

✏2
(1� ✏1) + 1 + 1� ✏2(1 + ✏1)

= 2� 1

✏2
(1� ✏1)� ✏2 +O(✏1✏2)

(B.13)

which gives us

Z(2)

HI(�q,k� k1,�k) = Z(2)

HI(�✏2k,k(1� ✏1),�k)

= 1/2b(2)HI(�k) +
1

2

�
b(�k) + f(�k)µ

2

k

� �
1 + f(�k)µ

2

k

�✓
2� ✏2 �

1

✏2
(1� ✏1)

◆ (B.14)
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Now we can expand the curly brackets in B.1

P21 (k
0, z = 0)

Z(2)

HI(q,k
0)

Z(1)

HI(k
0)

+ P21 (k� k1, z = 0)
Z(2)

HI(�q,k� k1)

Z(1)

HI(k� k1)
(B.15)

which becomes
P21 (k)�

b(�k) + f(�k)µ2

k0

� ⇥ B (B.16)

where we have defined

B =


1/2b(2)HI(�k) +

1

2

⇣
b(1)HI(�k) + f(�k)µ

2

k

⌘ �
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2
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�✓
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(1� ✏1) + 1
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@ lnP21(k)
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�

+


1/2b(2)HI(�k) +

1

2

⇣
b(1)HI(�k) + f(�k)µ

2

k

⌘ �
1 + f(�k)µ

2

k

�✓
2� ✏2 �

1

✏2
(1� ✏1)

◆�


1� ✏1

@ lnP21(k)

@ ln k

�
.

(B.17)

We now simplify these terms and note that the divergence terms cancel and we get

=P21 (k)

(
b(2)HI(�k)�

b(�k) + f(�k)µ2

k

� + 3

2
(1 + f(�k)µ

2
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�
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)
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b(2)HI(�k)�

b(�k) + f(�k)µ2

k

� + 1

2
(1 + f(�k)µ

2
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3� @ lnP21(k)

@lnk

�)

=P21 (k)

(
b(2)HI(�k) + 2 (2µ2
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2
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(B.18)
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B.2. The 21cm Autocorrelation and Bispectrum

Covariance

Here we calculate the covariance between the three probes from the 21cm - CMB lensing con-

vergence cross-correlation. In general the 21cm autocorrelation, bispectrum and the CMB

convergence autocorrelation probes may not be strictly independent. The bispectrum in

particular would measure the same 21cm and  convergence modes as the respective auto-

correlations. This means that simply adding the matrices as though they were independent

may not be correct. In general, the Fisher matrix in terms of the likelihood function is defined

as

Fij(`, y) = @iC(`, y)T cov�1@jC(`, y) (B.19)

where for our case

C =

0

BBB@

C2121

`

B2121�
`

C
`

1

CCCA
. (B.20)

We now adopt the notation P = C2121

` , B = B2121�
` , = C

` for convenience in the following

computation. The covariance matrix is given by

Cov =

0

BBB@

ĈPP ĈPB ĈP

ĈPB ĈBB ĈB

ĈP ĈB Ĉ

1

CCCA
. (B.21)
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where

ĈPP =C2121

`,S + C2121

`,N

ĈBB =var[B2121
`,sky ]

Ĉ =C
`,S + C

`,N

ĈP =(C2121

`,S + C2121

`,N )(C
`,S + C

`,N)

ĈB =3var[B2121
`,sky ](C

`,S + C
`,N)

ĈPB =6var[B2121
`,sky ](C2121

`,S + C2121

`,N ).

(B.22)

This gives us our full Fisher matrix as

Fij(`, y) = (1/det[cov])⇥
⇥
[@2ijP

2]D11 � 2[@iP ][@jB]D12 + 2[@iP ][@j]D13 + [@2ijB
2]D22 � 2[@iB][@j]D32 + [@2ij

2]D33

⇤

(B.23)

where det[cov] = ĈPPD11 � ĈPBD12 + ĈPD13 and

D11 =ĈBBĈ � Ĉ2

B

D12 =ĈPBĈ � ĈBĈP = D21

D13 =ĈPBĈP � ĈBBĈP = D31

D22 =ĈPP Ĉ � Ĉ2

P

D23 =ĈPP ĈB � ĈPĈPB = D32

D33 =ĈPP ĈBB � Ĉ2

PB

(B.24)

In Figure B.1 we show the e↵ect of adding in the covariance terms to our Fisher forecasts.

Our analysis suggests the covariance is negligible and we can treat the 21cm autocorrelation,

bispectrum and convergence field autocorrelation as independent. The reason for this is due

to the convergence field which is integrated over the line of sight whereas the 21cm modes

oscillate over this range which leaves no covariance or dependence between how they combine

in the bispectrum.
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Figure B.1: Forecast constraints on the HI model parameters first for independently adding
the 21cm autocorrelation, the bispectrum and the convergence autocorrelation versus the full
covariance calculation with and without the covariance terms. We see that the covariance
terms appear to be negligible in this study. For the purpose of this comparison we have fixed
⌦HI .
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B.3. The Bispectrum Variance

Here we show the full calculation of the bispectrum variance explicitly showing all terms. We

compute the variance as

var
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This gives us
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