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You learn how to cut down trees by cutting them down.
Bateke proverb



Abstract

Upcoming 21 cm observations promise to open a new window in our understanding of the uni-

verse from the epoch of recombination down to redshift of z ∼ 1. However, measurements of

21 cm signals come at a high cost since the 21 cm signals are buried under galactic and extra-

galactic foregrounds that are 4 to 5 orders of magnitude brighter. To overcome this challenge,

instruments with high sensitivity and large fields of view are required to detect 21 cm signals.

Furthermore, robust techniques are required to perform high precision calibration and foreground

removal. Studies have shown that per-frequency antenna gain calibration errors of 1 part 103 will

easily swamp the desired signal if an incomplete point source catalogue is used in calibrating

the 21 cm instruments. To enhance sensitivity and lower the computational cost, the design

and construction of a new generation of 21 cm instruments characterized by maximally redun-

dant array configuration has been under undertaken. The Donald C. Backer Precision Array for

Probing the Epoch of Reionization (PAPER) has been successfully calibrated using redundancy

in an array configuration, which assumes that in a perfect redundant array, nominally identical

baselines measure the same sky signal. In this work, we show that imperfectly redundant arrays

produce per-frequency antenna gain calibration errors that can swamp the 21 cm power spectrum

measurement. For a test case done using the observed antenna gain auto-correlations from early

HERA data, applying correlation calibration in a way that accounts for primary beam variations
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in the array improves the per-frequency antenna gain amplitude and phase residuals by a factor

of 11.4 and 2159 over the redundant calibration for 5% noise level in primary beam variations

adopted in simulations. Including 30 bright sources with known positions, significantly improves

the per-frequency antenna gain amplitude and phase calibration errors by a factor of 16 and 2317

respectively over redundant calibration. The flexibility of correlation calibration will play a sig-

nificant role in quantifying and mitigating the per-frequency antenna gain calibration errors that

can make 21 cm power spectrum reconstruction impossible. Furthermore, correlation calibration

will be useful in solving for instrumental parameters of 21-cm instruments such as Hydrogen

Epoch of Reionization Array (HERA), Hydrogen Intensity and Real-time Analysis eXperiment

(HIRAX), Canada Hydrogen Intensity Mapping Experiment (CHIME), The Tianlai project and

SKA-low.
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CHAPTER 1

Introduction

Despite the great progress that has been made in understanding cosmology, the history of the

universe between recombination and the redshift of z ∼ 6 is almost unconstrained observation-

ally. Observations of the 21 cm line from neutral hydrogen (HI) promise to open a new window

in cosmology to study structure formation at high redshift and to help constrain cosmological

parameters (Furlanetto et al., 2006). However, the 21 cm signal from high redshifts is very weak

compared to the foreground signals, which can be 4 to 5 orders of magnitude brighter. In addition

to foregrounds, the Earths atmosphere (particularly the ionosphere) and instrumental systematics

can contaminate the 21 cm signal. These challenges for high-redshift 21-cm observations re-

quire robust techniques to perform a high precision calibration and to remove foregrounds from

the 21 cm signal. A new generation of instruments with high sensitivity and large fields of view

is required to meet such demands for 21 cm observations. 21 cm instruments such as the Pre-

cision Array to Probe the Epoch of Re-ionization (PAPER) (Ali et al., 2015) and the upcoming

instruments such as Hydrogen Epoch of Reionization Array (HERA) (DeBoer et al., 2017), the

Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) (Newburgh et al., 2016), the

Canadian Hydrogen Intensity Mapping Experiment (CHIME) (Bandura et al., 2014) and The
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a)

b)

Figure 1.1: 21-cm instruments. a) PAPER-128 telescope at SKA site, Karoo, South Africa.3 b)

HERA-19 Telescope and behind it, it PAPER-128 telescope.4

Tianlai project (Chen, 2012) are designed to meet 21 cm signal detection requirements, see Fig-

ures 1.1 and 1.2. These instruments are generically laid out in redundant arrays, with the same

baseline measured by many pairs of antennas. The redundant array configuration in these upcom-

ing 21 cm instruments meets the criteria of high sensitivity over large scales, which is essential in

computing statistical measurements of 21 cm signal. Furthermore, the redundant feature makes

the calibration analysis more computationally efficient, since these instruments have 100 -1000

elements.

The 21 cm signal is dominated by diffuse galactic emission along with extra-galactic bright
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a)

b)

Figure 1.2: 21-cm instruments. a) Chime Telescope at Dominion Radio Astrophysical Obser-

vatory (DRAO) near Penticton, British Columbia, Canada.7b) Artist’s conception of the Hirax

telescope which is currently under construction and will be deployed in 2018/19 in the South

African Karoo, near the SKA site.8
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radio sources, so constructing a sensible sky model with the necessary quality is challenging

for traditional calibration schemes such as self-calibration (Cornwell, 2004). This is because an

algorithm such as CLEAN (Cornwell, 1986; N. OOZEER, 2014) used in self-calibration, tra-

ditionally requires a sufficient number of point-like source/s in the initial sky model to give a

sensible calibration solution. In the limit of a Gaussian random field sky, in Fourier space each

uv point is independent. So, there is no correlation between visibilities that do not overlap in

uv space. Therefore, there is no sensible structure in UV-space that spans across all uv points

for a diffuse signal. Self-calibration is a powerful tool, but its power ceases in this instance. An

alternative approach is to do self-calibration in UV-space.

In traditional redundant baseline calibration (Liu et al., 2010), the sky model is just a single value

at each uv point, and a set of visibilities at unique uv points are assigned a single sky value. This

is based on the assumption that the same baselines with identical primary beams measure the

same sky value. Redundant baseline calibration has been applied in power spectrum reconstruc-

tion analysis in one of the 21 cm instrument pathfinders, PAPER (Ali et al., 2015; Ali et al.,

2015). In the redundant baseline calibration scheme, the sky is measured at the distinct uv points

where the number of distinct uv points is much less than the total visibility points. The values

for the antenna-based gains and the sky at these distinct uv points are solved for simultaneously.

In the case of a perfectly redundant array, with no prior knowledge of the sky, redundant baseline

calibration solutions are optimal. Unfortunately, in real life, imperfections in antenna arrays such

as those due to the variations in antenna primary beams and antenna positions will break perfect

redundancy. Such instrumental systematics have the potential to produce calibration errors that

will swamp the desired 21 cm signal. Barry et al. (2016), for instance, illustrates that 1 part in

103 per-frequency antenna calibration errors due the incompleteness of the calibration catalogue

introduce excess power in the Epoch of Reionization (EoR) Power Spectrum (PS) measurement,

making the detection of EoR signal impossible. Therefore, quasi-redundancy in an array must

be accounted for in the calibration analysis. In this work, we focus on determining the level of

calibration errors produced by variations due to antenna primary beams variations. Furthermore,

we explore how we can reduce those calibration errors using an alternative calibration technique

that can account for the variations in the primary beams, called correlation calibration (Sievers,
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2017). This work is arranged as follows: in Chapter Two, we discuss 21-cm cosmology and

recent results on 21 power spectrum measurements. Basic interferometry and different calibra-

tion techniques are discussed in Chapter Three. In Chapter Four, we review redundant baseline

calibration and present calibration analysis from simulations. In Chapter Five, we briefly review

correlation calibration method and apply correlation calibration to simulations. In Chapter Six,

we conclude by highlighting our findings, their implications, and discuss future research ideas.
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CHAPTER 2

21 cm Cosmology

Our universe contains a large amount of atomic hydrogen present in the intergalactic medium

(IGM) at high redshift. Hence, hydrogen serves as a convenient tracer of the properties of the

gas in the history of the universe. Our focus is on the 21 cm line, which is produced by the

hyperfine splitting of the 1S due to the interaction of the magnetic moments of the proton and of

the electron (Pritchard & Loeb, 2012). This process leads to two distinct levels with an energy

difference ∆(E) = 5.9 × 10−6eV , which corresponds to a frequency of 1420 MHz or a wave-

length of 21.1 cm, see 2.1 1. In the following section, we briefly review basic concept of 21 cm

line Spin Temperature, details are discussed in Field (1959).

2.1 21 cm line Spin Temperature

The hyperfine state of 21 cm line has two levels: singlet (ground state) and triplet (excited state)

states. Singlet and triplet states have angular momentum F values of F = 0 and F = 1 respec-

tively. In a triplet state, orientation between electron and proton magnetic moment is parallel.

1http://skatelescope.org/radio-astronomy/
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Figure 2.1: The hyperfine splitting of 1S state of hydrogen atom.2
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And a ground is an anti-parallel orientation between electron and proton magnetic moment. The

de-excitation from triplet state to singlet state result into an anti-parallel orientation, this termed a

’spin-flip’ and 21 cm radiation is emitted. In a spontaneous transition, a lifetime of de-excitation

(from triplet state to singlet state) and excitation (from singlet state to triplet state) is 1.1 × 107

years. Such a long lifetime makes the background radiation and collisions in hydrogen gas cloud

important in studying the evolution of 21 cm line. A beam of 21 cm radiation passing through a

hydrogen cloud, results in absorption and induced emission of 21 cm radiation. If the hydrogen

cloud were in thermodynamic equilibrium at T , a hydrogen Spin temperature TS is equal to ther-

modynamic temperature if the gas is in the thermal equilibrium, then according to Boltzmann’s

law, ratio of number of electrons in an excited versus ground state is

n1/n0 = g1/g0 exp(−hν10/kTS) (2.1)

where g1 = 3 and g0 = 1 are statistical weights of the upper triplet state and lower singlet

state respectively. h is Planck constant and k is Boltzmann constant. TS is set by dynamical

processes in hydrogen cloud. If the dynamic process is dominated by collisions with associated

the kinetic temperature Tk, then TS −→ Tk or TS −→ TCMB or TS > TCMB, where TCMB is

Cosmic Micro-background temperature. 21-cm instruments measures a redshifted 21 cm line,

ν21cm(z) = ν21cm/(z + 1), where is a ν21cm(z) is frequency of 21 cm line at redshift z.

Qualitatively, we understand the evolution of TS at different z given the standard of cosmological

model (Pritchard & Loeb, 2012). At the surface of last scatter, z ≈ 1000, TS = TK = TCMB

and just after the last scatter, TS = TK . In the adiabatic expansion Tk ∝ a−2 and TCMB ∝ a−1,

where a is expansion scale factor. An epoch when TS = TK < TCMB is called Dark ages. A

time goes by after the CMB last scatter, Tk drop fast that TCMB as the universe is expanding with

a scale factor a. When the time scale to absorb a photon is short than the time scale of atomic

hydrogen to loss temperature physical through collisions, the absorption of CMB photons by

hydrogen cloud starts and eventually,TS −→ TCMB.

After millions of years after recombination, over-dense regions start to collapse under gravity,

when their reach critical temperatures to start nuclei fusion reaction, first stars are formed and

then galaxies.. The 100 of times repeated absorption and re-emission of Lyα photons ( from first

8



stars and galaxies) by neutral hydrogen gas, this process couples TS to Tk. This process is called

Wouthuysen-Field Effect (Pritchard & Loeb, 2012). As the universe expands, Tk goes below

TCMB while neutral hydrogen gas absorbed Lyα and CMB photos at a fast rate. Eventually, the

energy output heat the gas again, so that Tk > TCMB and the gas is still coupled to Tk, therefore

TS > TCMB and 21 cm radiation emission start around z ∼ 15. This epoch is called Epoch of

Reionization (EoR).

Quantitatively, to study the evolution of the 21 cm, we look at the evolution of an observable dif-

ferential brightness temperature Tb due to the redshifted 21-cm signal from a cloud of hydrogen

gas in the IGM (Ali et al., 2015):

δTb(z) ≈ 27(1 + δ)xHI

(
1− TCMB

TS

)(1 + z

10

)1/2

mK (2.2)

δ is the local matter over-density of the gas, xHI is the neutral fraction of the gas. Equation

(2.2) tells us that we observe δTb when TS 6= Tγ . Figure 2.2 displays the evolution of the sky-

averaged 21 cm signal as a function of redshift. The top plot demonstrates the history of hydrogen

ionization as a function of redshift. The bottom plot displays the evolution of 21 cm brightness

temperature as a function of frequency at different epoch. At high redshift z ∼ 1000 − 50,

there is a high amount of neutral hydrogen. About z ∼ 40 − 30, the formation of first stars and

galaxies occurs leading to the first hydrogen ionization (Pritchard & Loeb, 2012). Absorption

of Lyα photons and CMB photons by hydrogen gas in IGM around z ∼ 30 − 18. The epoch

of Reionization occurs around z ∼ 18 − 7. Hydrogen gas in IMG is almost completely ionized

from z ∼ 6 up to today (z = 0) Furlanetto et al. (2006). In following section, we briefly discuss

how we can learn about the formation of first stars and galaxies from EoR signal.

2.2 First Stars and Galaxies

After the dark ages, areas of higher-gas density inside dark matter halos began to collapse under

gravity, and the neutral gas in the universe began clump together. After sometime, these regions

continue to collapse until they reach high temperatures to start igniting nuclear fusion in their

9



Figure 2.2: The evolution of 21 cm signal. The top plot demonstrates the history of structure

formation as a function of redshift. The bottom plot displays the evolution of 21 cm brightness

temperature as a function of frequency at different epoch (Pritchard & Loeb, 2012).

cores and leading to the first stars and galaxies. The high energy light from these newly formed

stars start to ionize the neutral hydrogen gas around them, forming small bubbles of ionized gas

As these bubbles grew and punched ever-larger holes into the neutral universe, they eventually

began to overlap, enabling ionizing radiation to travel farther and farther through space. Cos-

mologists believe that the primordial stars and galaxies are primary sourcing for the Epoch of

Reionization of neutral hydrogen gas in IGM. 21 cm power spectrum measurement will help to

put constrains on the EoR period, ∆z and the evolution HI cloud during EoR (Norman, 2016). To

do this amazing science with the 21-cm signal, astronomers need to solve the two main problems

which are; foregrounds removal and high precision calibration of 21-cm data from the 21 cm

instrument. In the following section we briefly review recent results on 21 cm Power Spectrum

measurement.

2.3 21 cm Power Spectrum Measurement

In the previous sections, we reviewed different component of 21 cm average temperature as

function of redshift. 21 cm signal can be studied statistical through Power Spectrum (PS) anal-
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ysis. 21 cm PS is measured in three-dimensions, two angular dimensions and one frequency

dimension. Figure 2.3 shows the expected 21 cm power spectrum temperature fluctuations as a

function of redshift at different scale | k | in Mpc−1 (Pritchard & Loeb, 2012), | k | is lenght of

a wavenumber k = kx, ky, kz) . Diagonal lines in Figure 2.3 tells us about the required effort to

remove foreground and sensitivity to detect 21 cm power spectrum in different redshift epoch.

About 10−5 level sensitivity in foreground required to be mitigated in order to detect EoR sig-

nal. Figure 2.4 compares 21 cm telescopes sensitivities as a function of redshift to models of the

evolving, dimensionless power spectrum parameter ∆2k = k3P (K)/2π2 at k = 0.2 h Mpc−1

(DeBoer et al., 2017). In Figure 2.4, we note that the sensitivity of HERA − 350 (350 dish

elements) is expected to high then the current 21 cm telescopes. Furthermore, HERA − 350

will be able to measure EoR with high a precision. A recent study on 21 cm EoR power spec-

trum analysis reveals that simulation values of the intrinsic foregrounds of 1014mK2h−3Mpc3

and per-frequency antenna amplitude deviations of about 10−3 introduce excess power of 107

mK2h−3Mpc3 into Epoch of Reionization window (Barry et al., 2016). Figure 2.5 shows the

power spectrum (PS) as a function of modes perpendicular to the line-of-sight (k⊥ ) and modes

parallel to the line-of-sight (k‖ ) for an incomplete source catalogue (far left), complete source

catalogue (middle) and the residual (far right). Axes are displayed in units of Hubble constant (h)

times inverse megaparsec (Mpc−1 )” as described in Barry et al. (2016). In general, any instru-

mental systematic that leads to calibration errors of 1 part 103 has a potential introduce excess

power in Epoch of Reionization window. We desire to determine the size of calibration errors

due to variations in antenna’s primary beams. Furthermore, we look at calibration techniques

to reduce the calibration errors to a level below the targeted EoR detection. The next chap-

ter is dedicated to discussing the basic interferometer and brief review of traditional calibration

techniques.
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Figure 2.3: A plot of evolution of power spectrum fluctuations as function z at different slices of

k, for k = 0.01, 0.1, 1, 10Mpc−1. Different curves show P(k,z) as function of reddshift z at fixed

k for. Diagonal lines displays εTfg(ν), the foreground temperature reduced by a factor ranging

from 10−3-10−9 indicate the level of foreground removal required to detect the signal (Pritchard

& Loeb, 2012). EoR power spectrum detection requires 10−5 level of foreground mitigation.
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Figure 2.4: A plot of 21 cm dimensionless power spectrum ∆2k at at k = 0.2 h Mpc−1 for

different heating and reionization models (red, orange and brown). For a 1σ thermal noise errors

on ∆2k with 1080 hr of integration, telescope sensitivity as function of redshift for different

21 cm instruments is shown, in which HERA-350 has highest sensitivity (black) DeBoer et al.

(2017)
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Figure 2.5: A plot of 2D power spectrum (PS) obtained from a traditional per-frequency antenna

calibration methods (left) with incomplete source catalogue, a reference 2D PS without simulated

calibration effects (middle) and their difference 2D PS (right). On the residual plot (right), red

indicates a relative excess of power, and blue indicates a relative depression of power. Spectral

contamination power at all modes in the EoR window is evident. The most sensitive, theoret-

ically contaminant-free EoR modes have excess power on levels of 107 mK2h−3Mpc3 , when

per-frequency antenna calibration errors are 103 order of magnitude, making the measurement

impossible (Barry et al., 2016).
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CHAPTER 3

Traditional Calibration

To understand the how to calibrate the 21 cm observations; in this chapter we review the basics

of interferometry and traditional calibration.

3.1 Basics of Interferometry

The resolution of a single telescope is characterized by ∼ λ/D, where D is dish diameter and λ

is a wavelength of observation. For 21-cm observations, we need a telescope with the resolution

corresponding to a dish diameter of about 100-1000 meters (Furlanetto et al., 2006). To build

such a single dish telescope is highly expensive. An alternative is to use an array of telescopes,

which will collectively act as a single telescope. Such a technique is called interferometry. An

interferometer measures the correlation of electric field at two different observation locations

say, ri and rq for antennas i and q respectively. Hence, the correlation equation:

cν(ri, rq) =< E∗ν(ri), Eν(rq) > (3.1)
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where Eν is the electric field measured at antennas i and q, at frequency ν. Integrating over the

sky, we have

cν(ri, rq) =

∫
Ω

Iν(s) exp(−2πjνb · s/c)dΩ (3.2)

where b = ri − rq the baseline (the distance between antennas i and q) and s is the vector to

a small patch of sky, and Iν(s) is the brightness of that patch of sky at frequency ν. In the flat

sky approximation, and cν becomes the Fourier transform of the intensity Iν(s) of source. We

redefine a baseline vector as u = bx/λ, v = by/λ, w = b̂z/λ, measured in wavelengths at the

centre of frequency of the observation band, and, in the directions towards East, North and the

phase center of the region of interest respectively. The visibility measured by antennas i and q is

(N. OOZEER, 2014):

Vν(u, v, w) =

∫ +∞

−∞

∫ +∞

−∞
Aν(l,m)Iν(l,m) exp[−2πjν(ul+vm+w

√
1− (l2 +m2))]dldm/

√
1− (l2 +m2)

(3.3)

where l andm are the project coordinate of the sources in the sky. Aν(l,m) = Aνi(l,m)Aνq(l,m)

is a primary beam response measured by antenna i and q. Figure 3.1, shows the example of ra-

dio interferometry for two antennas. According to van Cittert-Zenike Theorem, for a spatially

incoherence source, the interferoetry correlation function3.1 is equivalent to complex visibility

function 3.3, a detail derivation is discussed in Intereforemeter and Synthesis in Radio Astron-

omy 1. The next section will briefly review traditional calibration.

3.2 Traditional Calibration

Calibration can be simply explained as a process of solving the complex correction factors that

must be applied to each visibility in order to get as close as possible to a true sky visibility that

we would measure, such that the data image gives an accurate picture of the sky. The observed

visibility viq measured by antennas i and q is given by (N. OOZEER, 2014)

vobservediq = Jiqv
True
iq (3.4)

1Intereforemeter and Synthesis in Radio Astronomy by A. Richard Thompson,James M. Moran, and George W.

Swenson Jr, chapter 15, 767-781 pg
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Figure 3.1: (Cornwell, 2004) describe the above example f a two element radio interferometry

as bλ is baseline vector, σ is angular distance between the position s of source in the sky and the

phase centre position s0, of the interferometry.”
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where Jiq represents the accumulation of all complex correction factors affecting visibility

measurement on baseline (i, q) and vTrueiq is a true visibility of the sky . The complex correction

factors are due to a signal propagating through atmosphere and ionosphere, interact with gas and

get attenuated, through a process called Faraday rotation (Moore et al., 2013). The main object

of calibration is to find Jiq. Once Jiq has been found, we invert it in Equation (3.5), then vTrueiq is

given by:

vTrueiq = J−1
iq v

Observed
iq (3.5)

In general, Jiq is a function of frequency, polarization and time. Both vObservediq and Jiq are

in general complex numbers. We assume that Jiq is antenna-based , then Jiq we can decompose

Jiq = Ji ⊗ Jq . The 2× 2 matrixes Ji and Jq are known as Jones matrixes in optical polarimetry

and represent the outer product (J.P. Hamaker, 1996). Ji can be further factorized into different

factors that affect the radio signal. This factorization is(J.P. Hamaker, 1996)

Ji = GiDiCiEi (3.6)

HereGi,Di,Ci,Ei represent 2×2 antenna-based gain, leakage terms, nominal feed configuration

and parallactic angle rotation In the following section, we review different calibration techniques.

3.2.1 Point Source Calibration

In calibrating a radio telescope, astronomers are mostly interested in these parameters; position

(of a source/s in the sky), intensity, and polarization as function of frequency and time. When

observing a point source/s, Equation (3.5) becomes

vObservediq = JiqS (3.7)

where S is the visibility of a point source of interest. A basic approach to is to use a known

bright sources (calibrator/s) near the region of interest to solve Jiq’s using least-square algorithm
2. Thereafter, apply Jiq solutions to observation data set, vObservediq .This produce a raw image, S

2Basically, least-squared it a minimization technique that minimizes the sum of squared residual, the difference

between an observed value, and the fitted value provided by a model
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. This is called point source calibration. This technique works well for resolved point source/s

calibration and for small field observations. If a complex object or a large field is observed,

standard calibration produces a raw image that is dominated by noise, called a dirty image.

Self-calibration is a technique that reconstructs the initial visibility model from the bright point

sources in the observed data using an algorithm called CLEAN (Högbom, 1974). CLEAN is way

of making a sky image, there are other techniques such Maximum Entropy Method (Cornwell &

F. Evans, 1985). For instance in CLEAN algorithm, a clean image of the sky is obtained through

an iterative process, where in each step optimum gain solution are applied to the visibility data

until the final image is clean. Clean is the one way of making clean image but there other ways

such Maximum entropy. Mathematical, a model visibility, vmodeliq is created iteratively from the

observed intensity visibilities, as follows:

vObservediq = Jiqv
model
iq (3.8)

Below we quote self-calibration steps as presented in Cornwell (2004):

1. Create an initial source model, typically from a dirty image (or else a point source)

2. Use full resolution information from the clean components or MEM image NOT the re-

stored image.

3. Find antenna gains using least squares fit to visibility data

4. Apply gains to correct the observed data.

5. Create a new model from the corrected data. For example, using Clean or Maximum

Entropy.

6. Go to step 2, unless current model is satisfactory

Self-calibration has proved to be a useful technique in producing great scientific results such

as recent KAT-7 Science verification (Carignan et al., 2013). However, the power of tradi-

tional self-calibration ceases when it comes to 21-cm observations. For instance, algorithm such

CLEAN (Cornwell, 1986; Högbom, 1974) used in self-calibration scheme, requires sufficient
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number of point-like source/s in the initial sky model gives a sensible solution. This mainly be-

cause the Fourier Transform of the a point-like source/s is flat in UV-space and it spans all uv

points. In the limit where the sky is a Gaussian random field, in Fourier space each uv point

is independent, so there are no correlation between uv points that are not overlapping. Hence,

there is no sensible structure in uv-space for a diffuse signal. An alternative approach could be

to do self-calibration in UV-space. In the next chapter, we discuss an alternative approach called

redundant baseline calibration.
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CHAPTER 4

Redundant Baseline Calibration

4.1 Redundant Baseline Calibration Formalism

To understand redundant baseline calibration, we reintroduce redundant baseline calibration for-

malism as discussed in Liu et al. (2010). Suppose antenna i measure a electric field ei from the

sky at a given instant:

ei = gixi + ni (4.1)

where gi = e(ηi+jφi) is complex gain of an antenna ( η is amplitude angle and φ is the phase

angle), xi is a true electric field and ni antennas instrumental noise contribution. Assuming that

the instrumental noise is uncorrelated with the sky signal and it is antenna based, then correlation

of the two signals from two participating antennas is given by:

ciq ≡< s∗i sq >

= g∗i gq < x∗ixq > + < n∗inq >

= g∗i gqsiq + nres

(4.2)
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Figure 4.1: Antenna positions for a 3× 3 array. Labels 0-8 are antenna indices. For an example

baselines 0-1, 1-2,3-4, 4-5, 6-7 and 7-8 all have the same length and orientation, these form a

unique redundant set 1. In total there are 12 unique sets of redundant baselines. Each colour

represents a unique redundant baseline set.
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where siq is true sky visibility seen by baseline i− q and nres is residual iq noise.

Our main objective is to solve for true correlations siq from the measured correlations ciq . With

Nants number of antennas, anNants(Nants−1)/2 system of non-linear equations formed in terms

of antenna gain amplitude and phase parameters η ,φ respectively, and the true sky visibility si−q

is unconstrained. This because the number of parameters to solve is greater than the measured

correlations. However, if we evoke the power of redundancy in antennas layout, Equation 4.2

becomes over-determined. If an array has a large number of redundant baselines, then the number

of unknowns on the right hand side of Equation 4.1 can be reduced by demanding that the true

sky visibilities siq for a set of identical baselines be the same. In each redundant baseline set, we

measure one sky value, sk. The system of Equation 4.2 becomes over-determined, now the task

is to solve for Nants antenna gains gi and approximately 2Nants ( for a square grid but in general

the number of redundant baseline dependants on an array configuration) unique true correlations

sk :

ciq = g∗i gqsk + nres (4.3)

As an example, let us consider a 3 × 3 antenna array equally spaced (15 meters apart), see

Figure 4.1. From a 3× 3 array, we can form 12 unique baselines, and 36 measured correlations.

Hence, one must fit for 24 complex numbers ( from the true visibilities of the 12 unique baselines)

and 9 complex numbers from antenna gains factors from 36 complex measured correlations:

c01 = g∗0g1s1 + n01

c12 = g∗1g2s1 + n12

...

c03 = g∗0g3s2 + n03

c35 = g∗3g5s2 + n35

...

c82 = g∗8g2s12 + n82

(4.4)

As a tradition, we omit baselines of length zero. Hence, auto corrections are not considered. In

the following sections we introduce two tradition redundant baseline calibration techniques.
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4.2 Logarithmic and Linear Redundant Baseline Calibration

There are two traditional techniques to solve for g∗i , gq and sk: Logarithmic Redundant Calibra-

tion and Linear Redundant Calibration (Liu et al., 2010). In logarithmic calibration, we take the

logarithm of both sides of Equation 4.3 and obtain a decoupled linearized equation in phase and

amplitude:

ln |ciq| = ηi + ηq + ln |sk|+ Rewiq

arg|ciq| = φq − φi + arg|sk|+ Imwiq

(4.5)

where wiq is weighting noise. We then perform a least squares fit for the system of Equation 4.5,

where we solve for η’s, φ’s, ln |sk| and arg|sk|:

X̂ = (ATN−1A)−1ATN−1d (4.6)

where X̂ least-squared estimator of length m, A is matrix determined by the array configuration,

d is data from measured correlations and N is noise covariance matrix. Although logarith-

mic calibration proves to simplify minimization problem but it comes with two main drawback:

Phase wrapping and noise bias. Recovering correct phases of g∗i ,gq and sk is challenging if the all

antenna phases are not close to zero (Liu et al., 2010). This because logarithmic calibration can

not differential between zero radians and the multiplies of 2π. However, amplitudes are correctly

recovered since the in system of equations in Equation 4.5, phases and amplitudes decoupled

completely. The logarithmic method is not unbiased, in the sense that ensemble averages of

noisy simulations do not converge to the true simulated parameter values (Liu et al., 2010).

The logarithm calibration solution are taken initial guess parameters for linearize redundant cal-

ibration method. In linearized redundant baseline calibration, as in (Liu et al., 2010) paper, a

Taylor expansion of Equation 4.3 around initial estimates g0
i , g0

qand s0
k and a system of linearized

equations is:

δiq ≈ exp(η0
i + η0

q − j(φ0
i − φ0

q))
[
(s1
k + s0

k(∆ηi + ∆ηq − j(∆φi + ∆φq)
]

(4.7)

where is ∆η = η − η0 and ∆φ = φ− φ0. Again performing a least squared fit, we solve for ∆η,

∆φ and s1
k.
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All traditional redundant baseline calibration schemes have four degeneracy’s; absolute ampli-

tude and phase calibration and phase gradient (x-direction and y-direction). To demonstrate the

nature of degeneracy in absolute amplitude and phase, let consider χ2

∑
i,q,k

(ciq − g∗i gqsk
σiq

)2

(4.8)

Suppose a new solution is g′i = lgi, g
′
q = lgq and s

′

k = sk/l
2, then χ2(g′, s′) = χ2(g, s).

This implies that there is direction in which χ2 is not changing. Physically, this means that we

can multiply gain calibration solution by a constant factor and simultaneously divide the sky

calibration solution by the same factor. This mathematical degeneracy is due to the sky model

Independence of redundant baseline calibration scheme. To remove this degeneracy, we divide

gain calibration solution by average gain at each frequency. This gain calibration is crucial step

prior to bandpass calibration. The last two additional degeneracies are due to the sky model

independence of redundant calibration scheme, the calibration solution is insensitive to tilts of

the entire telescope in either the x or the y direction, since such tilts are equivalent to rotations of

the sky. To remove this phase gradient degeneracy fit for ∇̂φ,

∇̂φ = (XTX)−1XTφsol (4.9)

where X is an 3-dimension vector of antenna positions and φsol is vector of antenna gain phases

from the calibration solution. We compute φmodel = ∇̂φX, therefore φcorrect = φmodel − φsol.

Once all four generacies are removed, the next calibration steps follows. In this section, one

can see that traditional redundant calibration is self-calibration in UV-space, if the sky model

was just a sky values at each uv point and a set of unique uv points are assigned a single sky

value. In the next section, we introduce an alternative minimization technique (equivalent to

linear redundant baseline method, known as omncal/lincal ) for calibrating gi, gq and sk called

Newton Multivariate Method.
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4.3 Newton Multivariate Method Formulation

When we are calibrating for gi, gq and sk ≡ si−q (for k is an index of a unique redundant set of

true sky visibilities), the minimizing quantity between Nants(Nants− 1)/2 measured data points,

viq and the model ciq is

χ2 =

Nants(Nants−1)/2∑
i,q

((viq − g∗i gqsi−q
σij

)2

= (v − c)TW(v − c)

(4.10)

where σiq is the measured error for viq and W is a diagonal matrix with Wiq = 1/σ2
iq as diagonal

elements, v and c are (Nants(Nants−1)/2)×1 column vectors. Since Equation 4.10 is non-linear

in model of an m vector of parameters p = p(g, s), then the minimization of χ2(p) with respect

to the parameters will be carried out iteratively. The goal of each iteration is to find a deviation δ

to the parameters p that minimizes χ2(p).

To find the parameters δ that give p which minimizes χ2, we approximate Equation 4.10 near p

using a second-order Taylor expansion,

χ2(p + δ) = χ2(p) +∇χ2(p)δ +
1

2
δT∇2χ2(p)δ (4.11)

where∇χ2(p) is given by

∂χ2(p)

∂p
= −2(v − c(p))TW

∂

∂p
c(p)

= −2(v − c(p))TWJ

(4.12)

where J is 1×m Jacobian matrix is which contains the derivatives of χ2 with respect to p. And

∇2χ2(p) is given by

∂2χ2(p)

∂p′∂p
= 2JTWJ

= H(p)

(4.13)

where H(p) is m × m Hessian matrix. We want to find δ such that ∂χ2(p+δ)
∂δ

= 0 where H(p)

is semi-positive definite. This because of four degeneracies discussed in previous section. Now,
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Equation 4.11 becomes
∂χ2(p + δ)

∂δ
= ∇χ2(p) + H(p)δ (4.14)

Therefore, δ

δ = −(H(p))+∇χ2(p) (4.15)

We take pseudo inverse +, since H(p) is a singular matrix. A H(p) = UΛV where U contains

the orthogonal eigenvectors of H(p) and U = V T and, Λ is a diagonal matrix that contain the

eigenvalues H(p). H(p). In taking a pseudo inverse of UΛV , eigenvalues less than 10−6 are

replaced by zero when taking the inverse of Λ.

As mentioned above, to find the δ from parameters p that reduces χ2, we iterate starting from p0

and take steps in a steepest descent direction δ with H(p) being positive definite. The iteration

procedure is given by Newton Multivariate Method

Pn+1 = Pn − (∇2χ2(pn))+∇χ2(pn) (4.16)

Here is brief outline of the Newton Multivariate Method:

• Start with initial guess parameters for antenna gain factors g0 and true sky signal s0 at

n = 0, P0 = (g0, s0).

• Iterate to a new step through Pn+1 = Pn − α(H(pn))+∇χ2(pn), where α is scaling

constant .

• Iterate for N steps until χ2(Pn) ≤ ε, where ε is the required minimum χ2.

We provide a reference Python implementation available from github, located at this site 1. We

call this code lincal and it should produce the same results as linear redundant calibration dis-

cussed in (Liu et al., 2010).

4.3.1 Gradient and Curvature Test

In this section, we briefly discuss gradient and the curvature test of χ2 in Equation 4.10. To

perform a gradient test to χ2, we Taylor expand χ2 it to first order around point X0:
1https://github.com/Mdlalose/lincal
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Figure 4.2: A Plot of χ2 true, χ2 predicted from second-order approximation and residuals be-

tween true and predicted χ2 for both real and imaginary part of antenna gain. From the two

above plots the second-order approximation of χ2 predict true χ2 when we vary one parameter,

antenna gain (ant7), fixing other parameters. The size of residuals between true and predicted χ2

are 10−20.
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Figure 4.3: A Plot of χ2 true, χ2 predicted from second-order approximation and residuals be-

tween true and predicted χ2 (log scale) for both real (top) and imaginary (bottom) part of true

visibility. From the two above plots the second-order approximation of χ2 predict true χ2 when

we vary one parameter, a true sky visibility V8 (from an 8th set of unique true sky visibility) ,

fixing other parameters. The size of residuals between true and predicted χ2 are about 10−20.
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χ2 ≈ χ2
0 + (X −X0)

(∂χ2

∂X

)
+O(X2) (4.17)

If we take random steps around X0 ∈ X0, say X = X0 + β, where β is a random number, then

the error residual between χ2 Equation 4.10 and first-order approximation of χ2 Equation 4.17

are quadratic, O(X2) and the minimum point is at x0. The linear approximation of χ2 given by

Equation 4.17 is tangent χ2 at X0.

To test the curvature, we approximate χ2 to second-order around X0:

χ2 ≈ χ2
0 + (X −X0)

(∂χ2

∂X

)
+ (X −X0)T

(∂2χ2

∂X2

)
(X −X0) +O(X3) (4.18)

Note that the χ2 second-order approximation at a critical point X0, ∂χ2

∂X0
= 0,

χ2 ≈ χ2
0 + (X −X0)T

(∂2χ2

∂X2

)
(X −X0) +O(X3) (4.19)

In the second-order approximation, the curvature of χ2 captures all the relevant information

about the shape of χ2in a local neighbourhood. If again we take random steps around x0 ∈

X0, χ2 is quadratic x0 and it can be predicted using first-order approximation and second-order

approximation of χ2. Figures 4.2 and 4.3 displays the plots of true χ2 and the predicted χ2 using

a second-order approximation. We note that predicted χ2 predict true χ2 well with residual size

are of about 10−20. This shows us that with gradient and curvature of χ2 in 4.12 and 4.13 we do

converge to an optimum solution. In the next section, we present the results from simulations

and discussion.

4.4 Results and Discussion

A case study on the calibration requirement to detect 21 cm EoR power spectrum, shows that 1

part to 103 calibration errors due to the incompleteness in the calibration source catalogue makes

the 21 cm power spectrum measurement impossible (Barry et al., 2016). Different instrumental

systematic that lead to same calibration errors will swamp the desired signal. In this analysis, we

desire to determine the level of calibration errors we get due to variations in antenna’s primary
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beams. We run redundant baseline calibration code on two cases of simulations: a perfect redun-

dant array and quasi-redundant to 5% variations in antenna’s primary beams as observed from

HERA antenna gain auto-correlations.

4.4.1 Simulation

We simulate a HERA like 8×8 antenna array, with antennas place at 10 meters apart located at the

PAPER site, Karoo South Africa, see Figure 4.4. For computational simplicity, we use Gaussian

primary beams with a 7 deg Full-Width-Half-Maximum each. A more realistic antenna primary

beam model will be consider in future, we use Gaussian distribution function to model the main

lobe with cut off at 8.59 deg. For further simplification, we consider a flat-sky approximation on

visibility simulations. However, the results of the analysis are independent of the curvature of the

sky. We simulate true sky visibility of a all point sources with position ŝ measured by baseline

bi−q at frequency ν as follows:

V true(bi−q, ν) =
∑

allsources

B(z · ŝ)F (ŝ)(ν/ν0)−α exp
(
− 2πj(

bi−q · ŝ
λ

)
)

(4.20)

And observed visibility:

V observed(bi−q, ν) = g∗i (ν)gq(ν)V true(bi−q, ν) (4.21)

Gaussian primary beam with a Full-Width-Half-Maximum size θFWHM = 2.35σiq and σiq =

0.5(1.22λ)
D

;

B(θ) = exp(− θ
2

σ2
) (4.22)

where θ is given by

θ = cos−1(z · ŝ) (4.23)

here z is zenith vector (perpendicular to 8 × 8 array), F (ŝ) is the flux of the point source at

position s in the sky, ν0 central frequency and α is a source spectral index, α ∼ N (−0.8− 3.5) at

frequencies. g∗i and gq antenna gain factor from antenna i and q respectively. Out of 307455 point

sources taken from Murchison Widefield Array (MWA) point source catalogue at 170 MHz- 231

MHz frequency (Hurley-Walker et al., 2017); we simulate visibility data with 1877 point sources
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that lies within 32 deg2 field-of-view, we pick a representative phase centre to be at (21.4278,-

30.7224) deg. In this analysis the per-visibility noise σiq = 1 is taken to a unit (or a diagonal

noise weight matrix W = I), so that we can determine the calibration errors level with high

precision.

A plot on the bottom of Figure 4.4 shows antenna’s primary beam pattern as function of the sky

position θ.

4.4.2 Calibration Errors for Redundant Array

The true gains g∗i and gq are simulated from amplitudes and phases from a uniform distributions

U(0.1, 1.2) and U(0.0, π) . The initial guess parameters for both gains and sky visibility are

offset by 20% scatter from true parameter values.

In practice the logarithm calibration solution are taken as initial guess for linear redundant

baseline calibration algorithm. Here we take an arbitrary 20% offset scatter from the true solu-

tion. In this work, we use Newton Multivariate minimization method to converge to the minimum

point and the results should be the same as linear redundant method implemented in (Liu et al.,

2010). Figures 4.5 - 4.6 shows the calibration solution for 170MHz-230MHz with initial guess

parameters offset by 20% from true gains and sky visibilities. Here we report gain calibration

solution after removing absolute gain and phase gradient degeneracies. To remove absolute am-

plitude and phase degeneracy, we divide by the absolute of the average gain across all antennas

at each frequency. In the absence of the sky information, we set the phase to be zero across the

array, by fitting the phase gradient (using 4.9 ) and subtracting the fitted phases from the phase

calibration solutions. With same cut-off value of χ2 = 10−20, an optimum calibration solution

is reached after 10 iterations with an average gain amplitude/phase calibration error across all

antennas and frequency, 0.5× 10−11 and 0.13× 10−11 respectively. From the above analysis, we

can conclude that lincal is able to give calibration solution within few iterations (five-ten itera-

tions ) with the calibration errors below the EoR signal detection requirement. In the following

sections we will look at how the lincal performance in the case of simulations with 5% variations

in antenna’s primary beams.
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Figure 4.4: Top:A 8×8 HERA like antenna array, located at SKA site, Karroo, South Africa. We

pick a representative phase centre to be at (21.4278,-30.7224) deg. Bottom: Gaussian primary

beam pattern with a Full-Width-Half-Maximum of 7 deg.
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Figure 4.5: Top : A scatter plot of antenna gain amplitude residual for 64 antennas at 170-

230 MHz. Bottom : A scatter plot of phase residual at for all 64 antennas at 170-230 MHz.

An optimum solution is reached after 10 iterations with the average amplitude/phase calibration

errors across all antennas and frequency, 0.5× 10−11 and 0.13× 10−11 respectively. Each colour

represents the antenna gain residuals from each individual antenna.
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Figure 4.6: Top:A plot of true visibilities (red dots) and best fit visibilities (blue stars) on the

complex plane at 170 MHz. With a cut-off χ2 of 10−20, an optimum solution is reach after

10 iteration with significantly small residuals of order 10−11 and 10−19 for real and imaginary

components respectively, see the bottom plot of Figure 5.5.
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4.4.3 Quasi-Redundant Array Simulations

In Chapter Four, Equation 4.1, we defined correlations measured by antenna i and q as

ciq = g∗i gqsi−q + niq (4.24)

where gi and gq are antenna gain factors. si−q ≡ Vi−q is true sky visibility seen by baseline

i − q, and niq is per-visibility noise associated with measurement Vi−q. For a primary beam

Biq = B∗iBq and sky intensity I , Vi−q is defined as:

Vi−q =

∫
sky

BiqI exp(−j2πbi−q · ŝ
λ

)dΩ (4.25)

where bi−q is baseline vector and ŝ source positions in the sky. In traditional redundant baseline

calibration, the key assumption is that the equal baseline with identical primary beam should

measure the same sky value. However, in reality imperfections in the array exist, due to either

variations in antenna’s positions or primary beams.

In this case, we look at the case where Bi and Bq are not identical. Supposed that Bi and Bq are

Gaussian primary beam given by:

Bi = exp(− θ2

2σ2
i

) (4.26)

And

Bq = exp(− θ2

2σ2
q

) (4.27)

and σi = σ0 ∗ (1 + εi) and σq = σ0(1 + εq) are antenna’s primary beam size ( related to Full-

Width-Half-Maximum θFWHM = 2ln
√

2σi and εi and εq beam variations for antenna i and q

respectively . If primary beams are identical, then σi = σ0 and σq = σ0. Biq is given by:

Biq = exp
(
− θ2

2

( 1

σ2
i

+
1

σ2
q

)
)
)

(4.28)

And

V
′′

i−q =

∫
sky

exp
(
− θ2

2

( 1

σi
+

1

σq

)2)
I exp(−j2πbi−q · s

λ
)dΩ (4.29)

To determine the impact of quasi-redundant on the calibration solutions recovered by lincal,

we simulate the visibility with 5% beam variations observed on the HERA-19 data. Figure 4.7
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shows the antenna auto-correlation of three antennas (10,11,73) from HERA19 data. The top

plot on Figure 4.7 displays the antenna gain correlation functions at the Galactic Centre for three

antennas (10,11,73); one can note that antenna correlation functions are not identical as expected.

Similarly, at high latitude the correlation function are not identical. In both observations, there

are 5% variations at a scale of 10 MHz. These variations are not from the atmospheric effect

or poor calibration solution. These variations might be caused by the cable reflections as the

signal moves from antenna to correlators. These ripples might reduce if the antenna gain cross-

correlation is taken. In this work, we wish to determine the level of calibration errors due to these

5% beam variations.

Assuming σi(ν) from antenna i has correlation function in frequency ν that follows a Gaus-

sian distribution with correlation length of 10 MHz:

< σi(ν)σi(ν
′
) >= exp(−ν2/2(10MHz)2) (4.30)

Therefore, σi(ν) can be written as√
Re(F(< σi(ν)σ

′
i(ν) >)) (4.31)

here F is Fourier Transform. Henceforth, a fake data, ε is generate as

ε = 5%
F−1(σ(ν)

standard− deviation(σi(ν))
(4.32)

Figure 4.8 on the left show the ε as function of frequency for each 64 antennas. A plot on the

right of Figure 4.8, shows a product of primary beam response from antenna 1 and 2 in a case of

identical beam and a case of 5% beam variation.

We carry a noiseless simulation analysis at 170 MHz -230 MHz with 5% beam variations pre-

sented in Figure 4.8. The calibration results, plotted in Figures 4.9 and 4.10, are obtained after

50 iterations with a minimum χ2 value of 10−7. From Figure 4.9, the amplitude/phase residual

are 10−3 orders of magnitude. These residuals are highly correlated between frequencies at the

scale of 10 MHz. Comparing per-frequency antenna gain calibration solutions from perfect re-

dundant array on Figure 4.5 and quasi-redundant on 4.9 , one can note that introducing 5% beam

variations increases both the gain amplitude and phase residuals by 4 − 5 orders of magnitude.
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Figure 4.7: Top: A plot of gain amplitude auto-correlations as function of frequency for three

HERA antennas (10,11,73) at different times . At Galactic Center.Bottom: A plot of gain am-

plitude auto-correlations as function of frequency for three antennas (10,11,73) at high latitude.

Data is from HERA19, [courtesy of HERA/Christ Carilli].
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Figure 4.8: Top: A plot of ε as function of frequency for all 64 antennas. Here ε is primary beam

variation. Bottom: A plot of a product of beam responses from antenna 1 and 2 as function θ

in radians for i) identical primary beams, ε1 = ε1 = 0 (blue curve) and , ii) ε1 = 0.0664 and

ε1 = 0.0520 (green curve). There is significant difference in power response between a case of

identical primary and 5% beam variations in range of 0.01− 0.10 radians.
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21 cm signal fluctuate as function of position in the sky and frequency. We expect the calibration

errors due to random instrumental systemic to average down as we have longer time integration

observations. However, the calibration errors that are due to instrumental systemic that correlated

in frequency do not average down with long time integration observation. Figure 4.8 displays

calibration errors that are correlated at a frequency scale of about 10MHz.

To further quantify the calibration errors introduced by antenna’s beam variations, we com-

pute gain amplitude and phase auto-correlations at lag k:

G(k) =
1

N − k

N−k∑
ν=1

(G(ν)− Ĝ)(G(ν + k)− Ĝ) (4.33)

And

Φ(k) =
1

N − k

N−k∑
ν=1

(Φ(ν)− Φ̂)(Φ(ν + k)− Φ̂) (4.34)

where ν is frequency range from 170 MHz - 230 MHz and N is number of antennas. Here Ĝ and

Φ̂ are the average of the gain amplitude and phase calibration solutions respectively. We quantity

the calibration error by computing the squared root the auto-correlation function at k = 0:

E(G) =

√√√√ 1

N

N∑
ν=1

(G(ν)− Ĝ)(G(ν)− Ĝ) (4.35)

And

E(Φ) =

√√√√ 1

N

N−k∑
ν=1

(Φ(ν)− Φ̂)(Φ(ν)− Φ̂) (4.36)

A plot from Figures 4.13 and 4.14, shows antenna gain amplitude and phase auto-correlation

averaged cross all 64 antennas for perfect redundant array and quasi-redundant. The average

antenna gain amplitude and phase calibration errors are 1.6× 10−2 and 9.5× 10−3 respectively.

These calibration errors will make the 21 cm EoR measurement impossible since they are in

order of 1 part 103. Therefore, to reconstruct 21 cm power spectrum, it is essential that we

minimize these calibration errors. The auto-correlation functions of gain amplitude and phase

are correlated up-to about 10MHz for 5% beam errors, see Figure 4.13 and 4.14. In the limit of

perfect redundancy, we expect the The maximum power of amplitude and phase auto-correlations

to be is about 10−12. The maximum amplitude of auto-correlations is larger by about 5-6 orders of
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Figure 4.9: Top: A plot of gain amplitude calibration solution as functions of frequency.

Bottom: A plot of gain phase as function frequency. The amplitude/phase calibration errors

are ∼ 10−2/10−3 and highly correlated between frequencies. Each colour represents ampli-

tude/phase residuals for each antenna, with a total of 64 antennas.
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Figure 4.10: A plot of true visibilities (red dots) and best fit visibilities (blue stars) on the complex

plane at 170 MHz. With optimum solution after 10 iterations, χ2 = 10−20

magnitude. From this analysis, one can see that the inability of redundant baseline calibration to

account for the quasi-redundant in an antenna array introduces per-frequency antenna calibration

errors of same order of magnitude as the desired 21 cm signal. Therefore, now the objective is to

reduce these calibration errors by including the information about the variations due to antenna’s

primary beams and sky in χ2 minimization process. In the next Chapter, we briefly review

correlation calibration scheme (corrcal) that takes into account the instrumental imperfections

and the statistical sky information in χ2 minimization.
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Figure 4.11: A plot of gain amplitude auto-correlation as functions of frequency. At optimum

solution amplitude calibration error is 3.7× 10−12.

43



Figure 4.12: A plot of gain phase auto-correlation as functions of frequency. At optimum solution

amplitude calibration error is 2.2× 10−12.

Figure 4.13: A plot of gain amplitude auto-correlation as functions of frequency. At optimum

solution amplitude calibration error is 1.6× 10−2.
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Figure 4.14: A plot of gain phase auto-correlation as functions of frequency. At optimum solution

amplitude calibration error is 9.5× 10−3.
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CHAPTER 5

Correlation Calibration

5.1 Introduction

We saw in the last chapter that ignoring antenna’s primary beam variations in redundant cali-

bration analysis produce per-frequency calibration errors that can make the EoR signal detection

impossible. In this chapter, we focus on reducing these calibration errors using the correlation

calibration formalism presented in Sievers (2017). Consider a measured visibility by baseline

bi−q from antenna i and q:

V (bi−q) = g∗i gq

∫
sky

Biq(θ)I(θ) exp(−j2πbi−q · θ
λ

)d2θ (5.1)

where I(θ) is the intensity of the sky signal from θ direction andBiq(θ) = B∗i (θ)Bq(θ) is product

of the primary beam electric field responses from antenna i and q. Supposed now we define the

perceive sky ¯I(θ) = Biq(θ)I(θ) and writing this terms of Fourier Transform;

¯I(θ) =

∫
˜̄I(k) exp(−j2πk · θ)d2k (5.2)
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Inserting this into Equation 5.1, we get

V (bi−q) = g∗i gq
˜̄I(bi−q/λ) (5.3)

In traditional redundant baseline calibration, the key assumption is that the same baseline with

identical antenna primary beams measures the same sky value. Assuming uncorrelated noise

between visibilities, the form of χ2

χ2 =
∑
i,q

(viq − g∗i gqsi−q
σiq

)2

(5.4)

A gain and sky visibility solutions are obtained by minimizing χ2 as described in section 4.3.

With enough number of unique baselines such that the number of visibilities much greater than

the number of antennas plus the number of unique baselines, the solution is determined. How-

ever, traditional redundant schemes suffers from four degeneracies; the overall gain amplitude

and the global phase. The phase gradient due to the shift in x-direction and y-direction of an-

tennas and the rotation of the sky is indistinguishable from each other and thus resulting into a

phase gradient degeneracy. In the following section, we review a correlation calibration method.

We consider a simplistic case where antenna primary beams are Gaussian and a co-planar

array. Perfect redundant assumption holds: i) if the baselines deviations δbi−q = bk0 −bi−q = 0,

where bk0 is a single baseline for a redundant set k (for a large array, k run from 1 toNants(Nants−

1)/2) ) and, ii) if σi = σq, where σi = σ0 ∗ (1 + εi) and σq = σ0(1 + εq), then εi = εq = 0.The

question becomes; how do we calibrate quasi-redundant array due to δbi−q and (εi, εq) variations?

The proposed idea from Liu et al. (2010), is to fit for gradients in UV-space due to these variations

in each redundant block. In Liu et al. (2010) to account for the quasi-redundant due position

errors, ˜̄I(bi−q/λ) in Equation 5.3 is approximated by a First order Taylor expansion:

V (bi−q) = g∗i gq

[ ˜̄
)I(

bk0
λ

+∇u

˜̄
I(
bi−q

λ
)|b=bk0

· δbi−q
λ

]
(5.5)

where ∇u is a two-dimensional gradient in uv-plane. Taking the logarithm of Equation 5.3, for

example real part is given by:

ln |V (bi−q)| = ηi + ηq + ln |ck0|+Re(hk0u) ln(
δbi−q
λ

) +Re(hk0v) ln(
δbi−q
λ

) (5.6)
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where ck0 ≡ ˜̄I(
bk0
λ

), (hk0u) = ∇u ln( ˜̄I)|b=bk0
(hk0v) = ∇v ln ˜̄I|b=bk0

. A calibration can be performed

by solving for hk0 and ck0 simultaneous with antenna gain parameters. However, there are two

main problems with this approach: i) Not all the variations can be described as the gradient in

uv-plane. For instead, if the beams are getting bigger/smaller as the function of frequency due to

variations in antenna’s primary beams, that is not gradient type operation. However, it is true that

the misplacement of antenna’s positions can be described as gradient type operation in uv-plane.

To overcome this problem, we need a better description of what the variations will look like

and which variations will be big or small. The alternative approach is to weight the observed

visibilities by the expected covariance of baselines in each redundant block. Quantitatively, we

need to compute the size of the errors due to antenna’s primary beam variations and add as

noise in noise covariance matrix. The calibration scheme that use visibility covariance to obtain

calibration solution is called correlation calibration (Sievers, 2017). In the next section, we

briefly review correlation calibration formulation.

5.2 Correlation Calibration

In this section, we briefly review a new calibration scheme that has the benefits of traditional

redundant calibration while also allows the inclusion of more realistic models for the instrument

and sky. Furthermore, we will show that traditional redundant calibration is one limit case for

correlation calibration as discussed in Sievers (2017). We briefly discuss correlation calibration

formulation developed in Sievers (2017). Removing the explicit dependency on sky from the

redundant baseline calibration scheme is one of the key steps in correlation calibration formalism.

In traditional redundant calibration if gains solutions are given, one can easily solve for the sky

values V true
iq by computing Viq

g∗i gq
at every UV point. If we assume that all calibrated visibility in a

redundant block have the same per-visibility noise σk, then the best fit sky estimate is

v̂k =
1

n

∑
i

vi (5.7)
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where n is a total number of visibility within a redundant block . Hence, the χ2 corresponding to

the best sky estimate v̂k is

χ2 =
∑
i

(vi − v̂k)2

σ2
k

=
∑
i

(v2
i − 2viv̂k + v̂k

2)

σ2
k

=
∑
i

v2
i

σ2
k

− 2

∑
i viv̂k
σ2
k

+

∑
i v̂k

2

σ2
k

=
∑
i

v2
i

σ2
k

− 2
nv̂kv̂k
σ2
k

+
nv̂k

2

σ2
k

=
∑
i

v2
i

σ2
k

− nv̂kv̂k
σ2
k

(5.8)

where in the cross-term we use v̂kn =
∑

i vi. An alternative approach is to compute the covari-

ance between two visibilities, < V ∗p Vf >= α∗α, and add them to a per-visibility noise matrix

Nvis, where α is sky value measure a set of all redundant baselines. In the case of zero ex-

pectation in the measured signal and in the presence of noise correlated between visibilities, χ2

is

v†N−1v (5.9)

where N is an effective noise, a sum of a diagonal per-visibility noise matrix Nvis and the sky

covariance, an outer product of the vector α times a vector of ones with itself:

N = Nvis + (α1)†α1 (5.10)

Where 1 is vector of ones. Since we assumed that all visibilities within a redundant block have

the same per-visibility noise σk, then Nvis = σ2
kI. To compute the inverse of N, we use Wood-

bury identity:

N−1 = σ−2k I− σ−2k I1(α−2 + 1†σ−2k I1)−11†σ−2k I (5.11)

. Hence, the full χ2 is

v†(σ−2
k I− σ−2

k I1(α−2 + 1†σ−2
k I1)−11†σ−2

k I)v (5.12)
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In traditional redundant calibration, any sky value α for a redundant block is equally likely,

meaning a best fit sky value can be very large. This is because redundant baseline calibration

is sky model independent. Taking the limit where the sky covariance is approaching infinity or

where the sky value is very large α→∞, χ2 becomes

v†(σ−2
k I− σ−2

k I1†(1†σ−2
k I1)−11σ−2

k I)v (5.13)

Focusing on the middle term,

σ−2
k I− σ−2

k 1†(1†σ−2
k 1)−11σ−2

k I

= σ−2
k I(I− 1†(

σ2
k

n
)1σ−2

k I)
(5.14)

where 1†1 = n. Substituting Equation 5.10 back to Equation 5.9, we get

v†(σ−2
k I(I− 1†1/n))v

= v†σ−2
k v − σ−2

k (v†1)(1†v/n)

=
1

σ2
k

v†v − 1

σ2
k

nv̂v̂

=
∑
i

v2
i

σ2
k

− 1

σ2
k

nv̂v̂

(5.15)

where nv̂ ≡ v†1, v̂ ≡ 1†v and v†v ≡
∑

i v
2
i . Equation 5.11 is identical to expression of χ2 in

Equation 5.4, therefore the two methods are equivalent. In this work example, we have demon-

strated that traditional redundant is limit case of correlation calibration. On the next section, we

explore correlation calibration in the case of Gaussian Random Field sky.

5.2.1 Correlation of Visibility

As highlighted in previous section, using covariance-based approach in χ2 minimization allows

us to include realistic models of the instrument and sky. Furthermore, this allows us to quantify

the errors due to instrument imperfections and to add them as noise in a noise covariance matrix.

In order to run correlation calibration (a.k.a corrcal), we need to compute correlation of visibili-

ties. In this section, present a calculation of correlation of visibilities. In Chapter 2, section 2.1,
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we expect the visibility between antenna i and q to be

V (u, v) =

∫ ∫
A∗i (l,m)Aq(l,m)I(l,m) exp(−j2π(ul + vm))dldm (5.16)

where u and v are baseline vectors in of wavelength, I(l,m)is the sky intensity (where l and m

direction cosine angles), Ai(l,m) and Aq(l,m) are Gaussian primary beams, given by

Ai(l,m) =
1√

2πσ2
i

exp(−(l2 +m2)

2σ2
i

) (5.17)

And Aq(l,m)

Aq(l,m) =
1√

2πσ2
q

exp(−(l2 +m2)

2σ2
q

) (5.18)

In this calculation, we take antenna’s primary beams to be Gaussian because they are analytically

in both real and Fourier space. Traditionally, we combine the antenna beams into a single beam

Aiq(l,m) = A∗i (l,m)Aq(l,m), that describe the power pattern of the sky response. In this case,

Aiq(l,m) is
1

2πσiσq
exp(−(l2 +m2)/σiq) (5.19)

σiq = 1
σ2
i

+ 1
σ2
q
. In Fourier space V (u, v) is rewritten as convolution of Fourier Transform of

Aiq(l,m) and I(l,m)

F(Aiq(l,m))⊗F(I(l,m)) (5.20)

here F(Aiq(l,m)) is given by

exp(−(| u |2)/2σ̃iq) (5.21)

where σ̃iq = 1/πσiq And F(I(l,m))

I(| u |) (5.22)

To obtain visibility in Fourier space, we centre the primary beam on baseline spacing b and

integrate over the sky Fourier transform:

V (b) =

∫ ∫
exp(−(| u− b |2)/2σ̃iq)I(| u |)du2 (5.23)

The correlation of visibilities between baseline bα and bβ , Cαβ ≡< V ∗(bα)V (bβ) >

Cαβ =< (

∫ ∫
exp(−((| u− bα |2)

2σ̃α
)I(| u |)du2)∗

∫ ∫
exp(−((| u− bβ |2)

σ̃β
)I(| u |)du2 >

(5.24)

51



where iq is replaced by α and β.

Assuming that the sky I is the Gaussian Random Field, then in Fourier space each mode

independent. Therefore, different modes u are uncorrelated. Hence, the expectation of off-

diagonal component disappear and the expectation of the variance is the sky power spectrum

S(| u |) =< I(| u |)∗I(| u |) >,

Cαβ =

∫ ∫
exp(−((| u− bα |2)

2σ̃α
) exp(−((| u− bβ |2)

2σ̃β
)S(| u |)d2u (5.25)

We consider case where there are imperfections in antenna’s positions, that is, antenna’s array is

perfectly redundant. If the visibility are from the same redundant block, we recentre the beam to

the origin such that u− bα = u
′ and u− bβ = u

′ ,

Cαβ =

∫ ∫
exp

(
− σ̃αβ | u

′ |2
)
S(| u′ |)d2u

′
(5.26)

where σ̃αβ = 1
2σ̃α

+ 1
2σ̃β

In the case of the sky with point sources, S(| u′ |) = Sν is constant for

all | u′ | within a frequency ν ( the power of poisson sky is flat). Hence, we can factor it out of

the integral:

Cαβ(ν) = Sν

∫ ∫
exp

(
− σ̃αβ | u

′ |2
)
d2u

′
(5.27)

Let’s transform to polar coordinate, r2 = u
′ |2,

Cαβ(ν) = Sν

∫ 2π

0

∫ ∞
0

exp(−σ̃αβr2)rdrdθ (5.28)

Integrating, we get

Cαβ(ν) = Sν
π

σ̃αβ
(5.29)

While Sν can be calculated directly from the source count and the beam areas, we instead make

pure numerical estimate from the correlations primary beam errors and visibilities as follows:

The sum is over the correlation of visibilities within redundant block.

Ŝν =

∑
V ∗ν (bα)Vν(bβ)∑

σ̃αβ
(5.30)

where σ̃αβ = 1
2σ̃α

+ 1
2σ̃β
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5.2.2 χ2 Minimization

For n-element array, one can solve for antenna gains, G, by minimizing this χ2

χ2 = d†(N +H†CH)−1d (5.31)

where H = G−1, C is the expected data covariance and N is noise covariance matrix. We

minimize χ2 using gradient information only and the minimization is performed using conjugate-

gradient method, a Python package. In future work, a curvature information shall be incorporated

in solving for antenna gain solution. The gradient with respect to antenna gains is

∇χ2 = 2dT (N +H†CH)−1d(H ′
T
CH)(N +HTCH)−1d (5.32)

To simplify the computation of ∇χ2, we evaluate this form p ≡ (N + HTCH)−1d first then

q ≡ CHp. The simplified form of gradients is

∇χ2 = 2qTH
′
p (5.33)

. In the next section we explore correlation calibration solutions from simulations with 5%

primary beam errors.

5.3 Correlation Calibration Simulations

In this section, we run correlation calibration in 5% beam errors simulation. To run correlation

calibration, located at 1, visibility data with real and imaginary are separated ([r1, i1, r2, i2...])

and grouped according to redundant blocks. The following fields are required: i) The noise vari-

ance of visibilities, N = I, ii) Vector that contains the indices that set off the redundant blocks,

iii) The vectors describing the sky covariance’s within blocks, C = QTQ andQ = vλ1/2, v) Col-

umn the per-visibility response to sources with known positions and lastly, vi) Antenna indices

grouped according to redundant blocks.

Since we want calibration errors much better than 10−3, since EoR is has a magnitude of 10−3mK

1https://github.com/sievers/corrcal2
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. Therefore, any eigenvalue bigger than 10−6 is important. This guided us to set a threshold

eigenvalue, λmin = 10−8 for the number of modes we use to approximate C from Q = vλ1/2,

λmin ≤ λ ,in each redundant block. With λmin = 10−8, a maximum of 4 eigenmode are ob-

tained. We could use the whole exact covariance matrix but using only the 4 largest eigenvalues

give everything important to 1 part 104. We set noise level to 10−7 and start with initial gains

offset by 20% from unit for amplitude and phase components. We present results from two cases,

i) 5% beam errors without bright point source include into covariance matrix and ii) 5% beam

errors with bright point sources with known positions included into covariance matrix. To re-

move degeneracy in absolute gain, we divide by the absolute average gain at each frequency.

Phase gradient degeneracy is removed by fitting gradient across the array and subtracting it off

the phase calibration solution. Figure 6.1, shows the antenna gain calibration solution as function

of frequency. We present results from two cases, i) 5% beam errors without bright point source

include into covariance matrix and ii) 5% beam errors with bright point sources with known

positions included into covariarance matrix. To remove degeneracy in absolute gain, we divided

by the absolute average gain at each frequency. Phase gradient degeneracy is removed by fitting

gradient across the array and subtracting it off the phase calibration solution. Figure 5.1 and 5.2

, shows the antenna gain calibration solution as function of frequency.

The amplitude/phase standard deviations of the calibration solution without source treatment in

covariarance are 1.4 × 10−3 and 4.40 × 10−6.The amplitude/phase standard deviations of the

calibration solution with source treatment in covaraince are 1.0 × 10−3 and 4.0 × 10−6. The

calibration errors obtained from lincal are are 1.6 × 10−2 and 9.5 × 10−3 for amplitude/phase

respectively. Without bright sources treatment, correlation calibration improves the calibration

errors by a factor of 11.4 and 2159 for amplitude/phase components. The amplitude/phase Cali-

bration errors improved by a factor of 16/2317 for 30 bright point sources treatment.

Figures 5.3 and 5.4, shows the antenna gain amplitude and phase auto-correlation from lincal,

corrcal and corrcal with source treatment in covariance. We can note that the gains are correlated

between frequencies up to about k ≤ 10MHz for all cases. However, the gain correlation length

decreases for both corrcal cases. Figure 5.3, displays the antenna amplitude and phase auto-

correlation with y-axis in log scale . It can be seen clearly that applying corrcal to simulations
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Figure 5.1: Top: A plot of gain amplitude calibration solution as functions of frequency without

source treatment. Bottom: A plot of gain amplitude calibration solution as function frequency.

The calibration errors without/with source treatment in covariance are 1.4×10−3 and 1.0×10−3.
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Figure 5.2: Top: A plot of gain phase calibration solution as functions of frequency without

source treatment. Bottom: A plot of gain phase calibration solution as function frequency. The

calibration errors without/with source treatment in covariance are 4.40× 10−6 and 4.0× 10−6.
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reduces the calibrations errors for both amplitude and phase gain solution. In conclusion, for a

5% variation in antenna’s primary beams simulation, using corrcal, we have been being able to

significantly reduce amplitude/phase calibration errors by a factor of 16 and 2317 respectively.
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Figure 5.3: Top: A plot of lincal (blue curve), corrcal (green curve) and corrcal + bright sources

(red curve) gain amplitude auto-correlation as functions of frequency. Bottom : A plot of corrcal

(green curve) and corrcal + bright sources (red curve) gain amplitude auto-correlation as func-

tions of frequency. Without a bright source treatment, the calibration errors reduced significantly

reduced by a factor of 11.4 and for 30 bright source treatment, it improved by a factor of 16.
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Figure 5.4: Top: A plot of lincal (blue curve), corrcal (green curve) and corrcal + bright sources

(red curve) gain phase auto-correlation as functions of frequency. Bottom : A plot of corrcal

(green curve) and corrcal + bright sources (red curve) phase auto-correlation as functions of

frequency. Without a bright source treatment, the calibration errors reduced significantly reduced

by a factor of 2159 and with bright source included, phase calibration errors reduced by 2317
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CHAPTER 6

Conclusion

Antenna primary beams variations are common in 21-cm instruments and a high precision cali-

bration is an essential step in EoR power spectrum analysis (Barry et al., 2016). In this work, we

have demonstrated that traditional redundant calibration (Liu et al., 2010)in a noiseless case is

able to recover exactly redundant simulated data with arbitrarily small calibration errors. How-

ever, for a test case of 5% beam errors that was based on observed HERA antenna gain auto-

correlations, redundant calibration gives amplitude/phase calibration errors that will swamp the

desired 21 cm signal. These findings imply that the inability of traditional redundant calibration

to account for array imperfections will present a challenge in calibrating precisely the data from

upcoming 21 cm instruments. By relaxing the assumption of perfect redundancy in an array

and (optionally) including statistical information about the sky, correlation calibration is able to

significantly reduce the calibration errors. We run correlation calibration on the same simula-

tions, and find that correlation calibration improves the amplitude/phase residuals by a factor of

11.4 and 2159 over redundant calibration. By including the position information of just the 30

brightest sources, we have been able to improve the amplitude/phase calibration errors by a fac-

tor of 16 and 2317 but the phase calibration only marginally improves. We still have to do more
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investigations with more realistic simulations and real data. However, from these simulations re-

sults we can conclude that correlation calibration may be able to calibrate imperfect arrays with

calibration errors below the 21 cm EoR signal.

In future work, we will consider more realistic primary beams and include the diffuse emis-

sion from the Milky Way. We will also extend correlation calibration to take advantage of the

spectral smoothness of sources to derive a bandpass calibration. Furthermore, we will explore

the impact of quasi-redundancy from 21 cm instruments in EoR power spectrum estimation.

We expect the flexibility of correlation calibration to play a significant role in mitigating the

impact of inevitable deviations from redundancy in 21-cm instruments. In principle, correlation

calibration can be extended to solve for instrument parameters for 21-cm instruments such as the

Hydrogen Epoch of Reionization Array (HERA) (DeBoer et al., 2017), the Hydrogen Intensity

and Real-time Analysis eXperiment (HIRAX) (Newburgh et al., 2016), the Canadian Hydrogen

Intensity Mapping Experiment (CHIME) (Bandura et al., 2014) and The Tianlai project (Chen,

2012). In the future, once we have incorporated some of these improvements into correlation

calibration we will apply it to the real data.
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