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Abstract 

Anxiety and anxiety-related disorders are common psychiatric disorders that are responsible 

for high disease burden. The pathogenesis of anxiety involves dysfunction in the limbic brain 

regions including the amygdala, prefrontal cortex, and hippocampus. The current 

pharmacological treatments for anxiety target the modulation of the activity monoamine 

neurotransmitters such as dopamine, serotonin, gamma-aminobutyric acid, norepinephrine and 

glutamate. These neurotransmitters are key in the regulation of the maladaptive responses of 

anxiety. Primary pharmacotherapies demonstrate limitations in drug efficacy as well as adverse 

side effects, highlighting the need for novel therapeutics for anxiety and anxiety-related 

disorders. Cannabidiol (CBD), a non-psychoactive cannabinoid from the Cannabis sativa 

plant, has been considered a potential anxiolytic treatment as a result of its interaction in the 

endocannabinoid system, which regulates synaptic plasticity and neuronal activity implicated 

in the anxiety response.  The therapeutic potential of CBD against neuropsychiatric disorders 

have been reported in preclinical and clinical studies. Since the global increase in cannabis 

legalization, there remains a need to supplement the available literature related to the neural 

effect of cannabis use on behavioural, neurochemical and biochemical changes. There are gaps 

in the knowledge of the pharmacokinetics and behavioural effects of CBD. This study will 

contribute to increasing the knowledge of the effect of cannabis on neurotransmitters and 

molecular changes in the brain.  

In this thesis, chapter 1 is a literature review focusing on the neurobiology and pharmacological 

treatments of anxiety, cannabidiol as a treatment for anxiety, and the neurotransmitters and 

genes implicated in anxiety. In addition to this, chapter 1 also reviews the theory of the 

experimental processes performed in this study. Chapter 2 is the publication “Evaluation of 

the use of cannabidiol in the treatment of anxiety related disorders by assessing changes 

in neurotransmitter levels and expression of CREB/BDNF in the rodent brain” submitted 

to The Journal of Neuroscience Research. Chapter 3 is the summary and conclusion of the 

thesis.  
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1. Anxiety  

Anxiety is characterized by an emotional response that occurs in anticipation of potential 

threats or dangers (Sartori & Singewald, 2019). Anxiety is an incessant feeling of dread, 

trepidation and imminent disaster (Kaur & Singh, 2017; Pilkington, 2010). Most people 

experience anxious feelings when faced with stress, however this anxiety is adaptive to inform 

and prepare the person for the latent threat (Sartori & Singewald, 2019). Anxiety is deemed 

pathological when it becomes uncontrollable, persistent and maladaptive (Sartori & Singewald, 

2019). According to the World Health Organisation, anxiety disorders are estimated to have a 

global prevalence of 3.6 % and is more common in females (4.6 %) than in males (2.6 %) 

(WHO, 2017). In 2017, there were 1 768 851 reported cases of anxiety disorders in South 

Africa, which represents 3.4 % of the national population (WHO, 2017). The disease burden 

of anxiety disorders is reported as 2.8% of the total years living with disability in the South 

African population (WHO, 2017).  

Anxiety disorders may arise from a multifaceted set of risk factors including genetics, brain 

chemistry, personality and life events (Kaur & Singh, 2017).  Anxiety disorders are categorized 

by the International Statistical Classification of Diseases and Related Health Problems into 

generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic disorder (PD) 

(Kogan et al., 2016; Reed et al., 2019). Social Anxiety Disorder, also known as social phobia, 

is a common anxiety disorder characterized by an individual fearing and avoiding the scrutiny 

by others (Stein & Stein, 2008). Patients with SAD have a persistent fear in social situations 

with exposure to unknown people (Stein & Stein, 2008). The individuals experience intense 

emotional and physical anxiety symptoms which may lead to them avoiding social situations, 

which could interfere with their personal life (Stein & Stein, 2008). Panic disorder is diagnosed 

by repeated unpredicted panic attacks, anxiety about imminent panic attacks, or significant 

behavioural changes because of the panic attacks (Craske & Barlow, 2014). Generalized 

Anxiety Disorder is one of the most common and debilitating conditions. GAD is described by 

an uncontrollable, multifocal chronic worry that persistently occurs for periods of longer than 

6 months (Stein & Sareen, 2015).  

Patients with anxiety display a variety of cognitive, physiological and behavioural symptoms 

(Lang & Schlien, 1968). The cognitive factor of anxiety is associated with cognitive distortions 

in the components of attention, interpretation, and memory for information processing (Hollon 

& Beck, 2013; Kaur & Singh, 2017). The physiological symptoms of anxiety incorporate 

autonomic or somatic sensations, including sleep avoidance, insomnia, headaches, muscle 
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tension, gastrointestinal problems nightmares, heart palpitations, tachycardia and shortness of 

breath (Alfano, Ginsburg, & Kingery, 2007). The behavioural component of anxiety indicates 

the actions performed by an individual to prevent exposure to the feared stimuli. The 

behavioural symptoms involve avoidance of a particular stimuli or situation by the individual, 

thus impairing ones daily routines as well as family, academic and social functions (Hayes, 

Villatte, Levin, & Hildebrandt, 2011). Anxiety related disorders are accompanied by 

psychological symptoms including depression, alcohol and substance abuse (Sareen et al., 

2006; Stein & Sareen, 2015). Anxiety-related disorders are associated with a decreased sense 

of well-being, elevated rates of unemployment and relationship breakdown, and increased 

suicide risk (Stein & Sareen, 2015)  

1.1.  Neuronal circuitry of anxiety  

There are many brain regions implicated in the identification and modulation of adverse 

emotional stimuli and in the generation of cognitive, behavioural or somatic responses to the 

stimuli (Nuss, 2015). Human and rodent studies have contributed to identifying brain regions 

implicated in anxiety by developing worry, tension and apprehension due to an aversive 

stimulus (Duval, Javanbakht, & Liberzon, 2015). The amygdala nuclei situated within the 

temporal lobe and is considered as the central orchestra in the control of anxiety related 

responses (Linsambarth, Moraga-Amaro, Quintana-Donoso, Rojas, & Stehberg, 2017; Nuss, 

2015). The basolateral amygdala complex (BLA) and the central amygdala (CeA), within the 

central nucleus, are two groups of nuclei that are critical in anxiety (Etkin, 2009). The BLA 

receives incoming information and determines the threat value of potentially negative 

emotional signals from the thalamus and the sensory association cortex (Davis & Whalen, 

2001; Nuss, 2015). The CeA is vital in the species-specific defensive responses associated with 

fear (Davis & Whalen, 2001).  

The CeA is directly activated by the BLA through an excitatory glutamatergic pathway 

(Pitkänen, Savander, & LeDoux, 1997). The BLA initiates a relay of inhibitory GABAergic 

interneurons situated between the BLA and the CeA, which employs an inhibitory effect on 

the CeA (Royer, Martina, & Pare, 1999). The somatic manifestation of anxiety occurs due to 

activation of the GABAergic neurons from the CeA to the hypothalamus and brainstem 

(Jongen‐Rêlo & Amaral, 1998). Inhibitory GABAergic neuron projections from the CeA to the 

locus coeruleus (LC) and other forebrain nuclei may be involved in anxiety-related dysphoria 

(Forster, Novick, Scholl, & Watt, 2012). The bed nucleus of the stria terminalis (BNST), 

adjacent to the amygdala, is activated by the inhibitory neurons from the BLA which also may 
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have a role in dysphoria (Forster et al., 2012; Linsambarth et al., 2017). Studies suggest that 

the pharmacological activation of the BLA and CeA are anxiogenic, whereas its inhibition is 

anxiolytic (Flores-Gracia et al., 2010; Truitt, Johnson, Dietrich, Fitz, & Shekhar, 2009). 

 

Figure 1: Structure of amygdala involved in the regulation of anxiety (sourced from 

(Mah, Szabuniewicz, & Fiocco, 2016). 

Forebrain areas, including the medial prefrontal cortex (PFC) and the anterior cingulate cortex 

(ACC) are activated concurrently with the amygdala during the presence of an emotional 

stimuli (Figure 1) (Kober et al., 2008; Mah et al., 2016). These areas receive and convey 

excitatory glutamatergic projections to and from the BLA (Kober et al., 2008). The expression 

of anxiety is controlled by the PFC through the changes of neuronal activity in the BLA (Etkin, 

2009; M. J. Kim et al., 2011). The neuronal circuitry of anxiety includes bottom-up activity 

from the amygdala, showing the presence of potentially threatening stimuli, and top-down 

control mechanisms originating in the PFC, signalling the emotional salience of stimuli as 

depicted in Figure 2 (Nuss, 2015). It is critical in understanding the factors that control these 

bottom-up/top-down mechanisms so that more effective anxiolytic interventions can be 

developed (Nuss, 2015). 
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Figure 2: Neuronal circuitry of anxiety disorders highlighting the role of the amygdala 

(adapted from (Nuss, 2015). 

Key: orange arrow: negative emotional stimulus received from thalamus and sensory 

association cortex; green arrow: excitatory glutamatergic pathways; blue arrows: GABAergic 

inhibitory neurons are activated leading to the somatic manifestation of anxiety in the 

brainstem, hypothalamus and basal forebrain  

Abbreviations: ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; BLA, 

basolateral amygdala; BNST, bed nucleus of the stria terminalis; CeA, central nucleus of the 

amygdala; PFC, prefrontal cortex. 

2. Pharmacological treatment of anxiety  

The treatment of anxiety disorders should include psychological therapy, pharmacotherapy, or 

a combination of both (Bandelow, Michaelis, & Wedekind, 2017). The current 

pharmacological treatments include serotonin reuptake inhibitors, benzodiazepines, 

monoamine oxidase inhibitors, tricyclic antidepressant (TCA) drugs, and partial 5-

hydroxytryptamines (5-HT) 1A receptor agonists (Bandelow et al., 2017). The serotonin 

reuptake inhibitors (SSRIs) and the serotonin norepinephrine reuptake inhibitors (SNRIs) are 

the recommended first-drugs as a result of their positive benefit to risk balance ratio (Bandelow 

et al., 2017; Sartori & Singewald, 2019). SSRIs produce side effects such as jitteriness at the 

onset of therapy, gastrointestinal problems, insomnia, and sexual dysfunction which may or 

may not improve over time (Stübner et al., 2018). The TCAs are second-generation drugs 

which include imipramine and clomipramine (Thanacoody & Thomas, 2005). The TCAs have 
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a higher frequency of adverse effects and tolerability issues in comparison to the SSRIs and 

SNRIs (Bandelow et al., 2017). One of the shortcomings of the SSRIs and the TCAs is the 

delayed therapeutic action, rendering antidepressants ineffective as an acute anxiolytic 

treatment (Gomez et al., 2018). Benzodiazepines are efficacious in treating GAD, an acute 

anxiety disorder, but produces a range of side effects in long-term treatment, for example, 

dependence, withdrawal symptoms, impaired cognition and overdose deaths (Baandrup et al., 

2018; Bachhuber, Hennessy, Cunningham, & Starrels, 2016). Therefore there is a need to 

develop or investigate novel pharmacological anxiolytic treatments due to the many 

shortcomings of the current treatments including increased cost of drug development, a 

diminished rate of successful drug discovery and development and long-term adverse side 

effects (Guina & Merrill, 2018; Nutt & Attridge, 2014; Sartori & Singewald, 2019). 

3. Cannabis sativa 

Cannabis sativa, also commonly known as marijuana, is a plant with a wide range of medicinal 

properties which has been extensively used throughout human history (Zou & Kumar, 2018). 

The Cannabis plant is classified into three species, C. sativa, C. indica and C. ruderalis 

(Akatan, 2012). The extracts of this ancient medicinal plant were reported to be first used as 

cramp and pain relief in China as early as 6000 BC (Mechoulam, 1986). Cannabis has a wide 

range of therapeutic uses including anti-inflammation, anti-nociception, anti-emetic and 

anticonvulsant activities (Iversen, 2003; Mechoulam, 1986; Wallace, Wiley, Martin, & 

DeLorenzo, 2001). However, the clinical application of the therapeutic action of Cannabis is 

limited due to the recreational use (Zou & Kumar, 2018). Cannabis contains in excess of 400 

chemical constituents, including cannabinoids and other psychoactive phytochemicals, which 

are responsible for its biological effects (Atakan, 2012). Cannabinoids are found in the stalk, 

leaves, flowers and seeds of the cannabis plant (C. H. Ashton, 2001). Delta-9-

tetrahydrocannabinol (Δ-9-THC) is one of the principle psychoactive component of 

approximately 70 phytocannabinoids identified in the plant (Atakan, 2012; Pacher, Bátkai, & 

Kunos, 2006). Some of the other identified phytocannabinoids also have individual biological 

effects which may mediate the psychoactive effects of THC (Mechoulam & Parker, 2013). It 

has been suggested in preclinical studies that the individual effects of phytocannabinoids are 

multiphasic and dose-dependent, which can be demonstrated by Δ-9-THC which has anxiolytic 

effects at low doses and anxiogenic effects at higher doses (Rey, Purrio, Viveros, & Lutz, 

2012). There are minor cannabinoids which also display a range of biological activities such 

as cannabigerol which has antibacterial activity, cannabinol has sedative properties, and 
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tetrahydrocannabivarin has antiepileptic effects (Aizpurua-Olaizola et al., 2014), however the 

therapeutic roles of many of them remain unknown. 

3.1. Cannabidiol (CBD) 

Cannabidiol is a metabolic by-product and major cannabinoid of Cannabis sativa (Citti et al., 

2018). Cannabidiol, shown in Figure 3, is the principle non-intoxicating component of 

Cannabis sativa, which is produced in high concentrations in the plant making up 

approximately 40% of the total cannabinoid content (Deiana et al., 2012). In contrast to THC, 

cannabidiol does not exhibit psychotropic effects (Alline Cristina Campos, Moreira, Gomes, 

Del Bel, & Guimaraes, 2012). Cannabidiol is a promising therapeutic agent which can be 

observed in its anxiolytic (Crippa et al., 2009), anti-psychotic (Moreira and Guimaraes, 2005), 

anti-inflammatory (Juknat, Rimmerman, Levy, Vogel, & Kozela, 2012), anti-convulsant 

(Wallace et al., 2001), and immunomodulatory (Costa, Trovato, Comelli, Giagnoni, & 

Colleoni, 2007) properties of CBD. The properties of cannabidiol allow it to be utilized in the 

treatment of a wide range of psychiatric and non-psychiatric disorders such as psychosis, 

anxiety and depression(Alline Cristina Campos et al., 2012). The anxiolytic and anti-psychotic 

effects of CBD can offset the anxiety and psychotomimetic effects induced by THC (Douglas 

Lee Boggs, Peckham, Boggs, & Ranganathan, 2016). 

 

Figure 3: Structure of cannabidiol (CBD) 
 

Previous literature has suggested that this non-psychotomimetic compound has a relatively low 

affinity for cannabinoid (CB) receptors (Pertwee, 1997; Pertwee et al., 2010). However, studies 

by (Thomas et al., 2007) reported that CBD has the ability to act as a partial antagonist at 

cannabinoid-1 (CB1) receptors and as an inverse agonist at cannabinoid-2 (CB2) receptors.  

Cannabidiol has a complex pharmacological profile as more than 20 different mechanisms of 

action has been described (Douglas L Boggs, Nguyen, Morgenson, Taffe, & Ranganathan, 
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2018; Deiana et al., 2012). There are two well-researched mechanisms of action by which CBD 

exerts its antipsychotic effects: the facilitation of endocannabinoid signalling, and the 

administration of an exogenous CB receptor agonist. There is an increase in research depicting 

the beneficial effects of cannabidiol in the brain, concluding CBD as a promising novel therapy 

for various neurological disorders. 

3.2 Delta-9-tetrahydrocannabinol 

The discovery of THC resulted in the generation of a range of synthetic cannabinoids that are 

similar in structure to phytocannabinoids, which finally led to the identification and successful 

cloning of the CB1 receptor, and the CB2 receptor (Pertwee et al., 2010). THC, depicted in 

Figure 4, is a partial agonist of the CB1 and CB2 receptors, that are G protein coupled receptors 

which are part of the endocannabinoid system (Atakan, 2012). THC produces hypothermia, 

hypoactivity, spatial and verbal short-term memory impairment, in a dose-dependent manner 

(Hayakawa et al., 2008). It is suggested that the pharmacological effects of Δ -9-THC can be 

potentiated by CBD via a CB1R-dependent mechanism (Hayakawa et al., 2008). Delta-9-THC 

has the ability to activate the CB1 and CB2 receptors, similar to the endocannabinoids 

(Pertwee, 2008). THC produces in vivo effects in healthy rodents via the activation of the CB1 

receptors which inhibit the ongoing neurotransmitter release (Howlett et al., 2002; Pertwee, 

2008). In mice, Δ-9-THC generates a ‘tetrad’ of effects including the suppression of locomotor 

activity, hypothermia, immobility during the ring test and antinociception in the tail-flick test 

(Pertwee, 2008). In a study performed by (Atakan, 2012), it was reported that Δ-9-THc caused 

transient psychotic symptoms, augmented the levels of anxiety, intoxication and sedation in 

healthy volunteers whilst CBD had no significant effect on these parameters. During brain 

imaging, THC reduced the action of brain regions that typically mediate response inhibition, 

whilst CBD controlled activity in regions not implicated during verbal learning tasks 

(Borgwardt et al., 2008).  

 

Figure 4: Structure of delta-9-tetrahydrocannabinol 
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4. The Endocannabinoid System 

The endocannabinoid system is responsible for mediating the physiological changes, such as 

motor function, pain perception, cognition, appetite, and sleep cycles, that occur after cannabis 

administration (Mechoulam & Parker, 2013). This system is comprised of endogenous 

cannabinoids (endocannabinoids), anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), 

cannabinoid-1 receptors and cannabinoid-2 receptors, and enzymes which synthesize and 

degrade endocannabinoids (Dhopeshwarkar & Mackie, 2014). Anandamide is synthesized by 

the enzyme, N-acylphosphatidylethanolamine-selective phospholipase D, and degraded by 

fatty acid amide hydrolase (FAAH) (De Aquino et al., 2018). The other endocannabinoid, 2-

arachidonoylglycerol, is synthesized by diacylglycerol lipase and monoacylglycerol, whereas 

2-arachidonoylglycerol hydrolase degrades 2-AG (De Aquino et al., 2018). These 

endocannabinoids differ from other neurotransmitters as they are synthesized on demand which 

is initiated by the activation of G-protein- coupled receptors or depolarization (Mechoulam & 

Parker, 2013). The precursors of endocannabinoid are found in the lipid membranes of post 

synaptic neurons (De Aquino et al., 2018; Mechoulam & Parker, 2013). Cannabinoids interact 

with cannabinoid receptors, as well as, other G protein-coupled receptors, nuclear receptors 

and ion channels (Howlett et al., 2002). The endocannabinoids act as endogenous agonists of 

the cannabinoid receptors and have varying intrinsic efficacies to the cannabinoid receptors 

(Lu & Mackie, 2016). Anandamide is a low efficacy agonist at CB1 receptors and an extremely 

low efficacy agonist at CB2 receptors (Lu & Mackie, 2016; Luk et al., 2004). 2-Arachidonoyl 

glycerol is a high efficacy agonist at both CB1 and CB2 receptors (Gonsiorek et al., 2000; Luk 

et al., 2004).  

The cannabinoid receptors are members of the superfamily of G-protein-coupled receptors 

(GPCR’s) which mainly couple to Go and Gi protein classes(Howlett et al., 2002). Hence, the 

activation of these receptors exerts various effects on cellular physiology such as the inhibition 

of adenylyl cyclases and voltage dependent calcium channels, as well as the activation of many 

MAP kinases (Howlett et al., 2002). The regulation of cannabinoids is primarily based on 

retrograde signalling where the endocannabinoids are synthesized and released on demand, 

which differs from other neurotransmitters that are produced in advanced and stored in vesicles, 

from post synaptic sites to active the CB receptors on the presynaptic membranes in neurons 

(Figure 5) (Alger, 2002; Navarro et al., 2016). The synthesis of endocannabinoids is promoted 

by depolarization or the activation of the G-protein-coupled receptors (De Aquino et al., 2018). 
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Exogenous cannabinoids have a distinction from endocannabinoids as they are metabolized 

over several hours before being excreted (De Aquino et al., 2018).  

 

 

 

 

 

 

 

 

 

 

 

Endocannabinoids act as neuromodulators that inhibit the release of other neurotransmitter 

systems such as GABA and glutamate. The endocannabinoids are retrogrades which are 

released on demand from the postsynaptic sites and exert their effects by binding to CB1Rs on 

the presynaptic membrane. The CB receptors are activated and inhibit the release of 

neurotransmitters through the various ion channels. The interaction between endocannabinoid 

system with multiple neurotransmitters, such as acetylcholine, dopamine, GABA, serotonin, 

glutamate, and norepinephrine, mediates many pharmacological effects of cannabinoids. 

4.1 Cannabinoid-1-receptor 

The CB1 receptors are the most abundant cannabinoid receptors and are primarily expressed 

in the central and peripheral nervous system. These receptors have a fundamental role in the 

mammalian central nervous system (CNS) in regulating neuronal activity as endocannabinoids 

rely on the receptors for higher brain function activity (Marcu & Schechter, 2016; Navarro et 

al., 2012). In rodent brain models, CB1 receptors are found in higher densities in the basal 

ganglia, substantia nigra, globus pallidus, cerebellum and hippocampus (Mechoulam & Parker, 

2013). CB1 receptors are also expressed in the heart, bones, lung, thyroid liver, uterus, 

Figure 5: The endocannabinoid system (Fundacion, CANNA 

(https://www.fundacion-canna.es/en/endocannabinoid-system) 
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testicular tissue and the vascular endothelium (Pertwee, 2006; Russo & Guy, 2006). CB1 

receptors are located at both the GABAergic and glutamatergic terminals of the central and 

peripheral neurons, suggesting their involvement on GABA and glutamate neurotransmission 

and both inhibitory and excitatory activity (Atakan, 2012; Howlett et al., 2002; Mechoulam & 

Parker, 2013). They are also found in the central nervous system of the brain areas that are 

related to the body’s stress response (Atakan, 2012; Kaur & Singh, 2017). These brain areas 

include the central amygdala, basal ganglia, limbic system, hippocampus, frontal cortex, 

substantia nigra and the cerebellum (Pertwee, 2006). In the brain, CB1 receptors mediate 

inhibitory actions by the ongoing release of excitatory and inhibitory dopaminergic, gamma-

aminobutyric acid (GABA), glutamatergic, serotoninergic, noradrenalin and acetylcholine 

neurotransmitter systems (Atakan, 2012). The involvement of the neurotransmitter systems and 

the high density of CB1 receptors in the sensory and motor brain regions contribute to the 

motor movement, pain perception and cognition functions (Howlett et al., 2002). The activation 

of CB1 receptors results in a decline in the accumulation of cyclic adenosine monophosphate 

(cAMP), subsequently the inhibition of cAMP-dependent protein kinase (PKA) (Mechoulam 

& Parker, 2013). The potential of CB1 receptors as targets for CNS diseases are limited by the 

psychotropic side effects of its natural agonists, such as delta-9-tetrahydrocannabinol, on the 

animal models (Navarro et al., 2012). Therefore, there is an increasing research performed on 

CB2 receptors as targets for diseases of the CNS (Navarro et al., 2012). 

4.2 Cannabinoid-2 receptors 

The CB2 receptors are abundantly expressed on the surface of cells involved in the peripheral 

immune system (Atkinson & Abbott, 2018). In the brain, the CB2 receptors are localized to 

some extent in the neurons of the brainstem, the cerebellum, internal and external segments of 

the globus pallidus, substantia nigra, and in the microglial cells (Atkinson & Abbott, 2018; 

Lanciego et al., 2011; Stella, 2004). However, the CB2 receptors are expressed at a lower level 

compared to CB1 receptors in the central nervous system (J. C. Ashton, Friberg, Darlington, & 

Smith, 2006; Mechoulam & Parker, 2013). Consequently, there are fewer side effects that are 

expected when drugs are targeting CB2 receptors, which has limited expression in the CNS, 

compared to drugs targeting the abundantly expressed CB1 receptors in the CNS (Navarro et 

al., 2016). CB2 receptors are upregulated in the activated microglial cells in a variety of CNS 

diseases, making it a promising candidate in diseases with neuroinflammatory components 

(Navarro et al., 2016). There is some controversy pertaining to the degree of CB2 receptor 

expression in resting verses activated microglial cells as there is a difference in the phenotypes 
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of microglial that are filtered from blood into the CNS, and in resident microglial which 

becomes activated by accumulation of proteins (Navarro et al., 2016). An improved 

understanding of the expression and the role of CB2 receptors in the various microglial 

phenotypes will assist in designing CB2 receptor ligands with the potential to induce the anti-

inflammatory-skewed phenotypes (Franco & Fernandez-Suarez, 2015). A review by 

(Mechoulam & Parker, 2013) discussed the possibility of CB2 receptors as a component of a 

general protective system of the mammalian body, particularly the immune system. The CB2 

receptors are also involved in CNS inflammation which is an increasingly researched aspect of 

the pathophysiology of schizophrenia (Müller, Weidinger, Leitner, & Schwarz, 2015).  

Cannabinoids, such as cannabidiol, that target CB2 receptors have potential therapeutic 

properties such as the preservation of neuronal integrity and survival (Atwood, Straiker, & 

Mackie, 2012). Accordingly, cannabidiol has a promising potential in pain, and acute and 

chronic neuroinflammatory conditions (Micale, Mazzola, & Drago, 2007). The neuroprotective 

potential of the CB2 receptor-targeting cannabinoids is mediated by their various locations in 

the CNS (Chung et al., 2016; Navarro et al., 2016). This enables the cannabinoids to selectively 

activate the CB2 receptors to apply a selective control over the particular functions performed 

by these cells in protection, degeneration and repair (Fernández-Ruiz et al., 2014). The 

pharmacological action of anxiolytic treatments, including cannabidiol and standard drugs such 

as benzodiazepines, implicate the neurotransmitters within the central nervous system 

(Bandelow et al., 2017; Sartori & Singewald, 2019).  

5. Neurotransmitters and anxiety 

Neurotransmitters (NT’s) are signalling molecules, which have vital roles in neuronal 

communications within the central nervous system (CNS) (Liu, Zhao, & Guo, 2018). Previous 

literature has reported that modifications in the quantification of NT’s in many brain regions 

involve the development of several neurodegenerative and psychiatric diseases such as 

Parkinson’s disease, Huntington’s disease, multiple sclerosis (Bandelow & Michaelis, 2015; 

Hussain, Zubair, Pursell, & Shahab, 2018). Neurotransmitters are categorized based on their 

chemical structures: (i) small molecules and (ii) neuropeptide (Liu et al., 2018). The small 

molecules consist of dopamine (DA), norepinephrine (NE), glutamate (Glu), serotonin (5-HT), 

epinephrine (EP), gamma-aminobutyric acid (GABA) and endocannabinoids (Kaur & Singh, 

2017). The neuropeptides include enkephalin, endorphin and substance P (Kaur & Singh, 

2017). The irregular functioning of neurotransmitters such as dopamine, GABA, 
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norepinephrine, serotonin, acetylcholine and, chemoreceptor activity results in anxiety (Kaur 

& Singh, 2017).   

5.1 The function of dopamine in anxiety  

Dopamine (Figure 6), is the principle catecholamine in the mammalian brain and is vital in 

various cerebral functions including reward, motor control, learning, cognition, and emotion 

(Ko & Strafella, 2012; Zarrindast & Khakpai, 2015). The dopaminergic system is also involved 

in the pathogenesis of many psychiatric and neurological disorders such as Parkinson disease 

(PD), depression, anxiety, schizophrenia, Huntington disease and behavioural/chemical 

addiction (Ko & Strafella, 2012). The dopaminergic system plays a vital role in anxiety-like 

behaviour via the transmission in the mesolimbic, mesocortical and nigrostriatal pathways 

(Melis & Pistis, 2012).  Dopamine is produced in the substantia nigra and is important in the 

reward system for anxiety (Nasehi, Mafi, Oryan, Nasri, & Zarrindast, 2011). This 

neurotransmitter is released from the substantia nigra and the VTA, via the dopaminergic 

pathways, to all brain regions involved in anxiety such as the amygdala, hippocampus, septum, 

prefrontal cortex and nucleus accumbens (Melis & Pistis, 2012; Zarrindast & Khakpai, 2015).  

 
 

Figure 6: Structure of Dopamine 

 

5.2 The function of serotonin in anxiety  

Serotonin (5-hydroxytryptamine; 5-HT) (Figure 7) is involved in the regulation of emotion 

(Kaur & Singh, 2017). This neurotransmitter system has complex and multifaceted functions 

in cognition, learning, memory and reward (Young, 2007). Serotonin has an essential role in 

the development of anxiety disorders which is modulated by its effect on the locus coerulus 

and amygdala in the brain (Graeff, 2002; Jia & Pittman, 2014). The serotonergic pathways are 

activated by components of anxiety including fear and stress (Akimova, Lanzenberger, & 

Kasper, 2009). Previous literature demonstrates an increase in 5-HT levels in the brain 

corresponds to an increase in anxiety, whereas an attenuation in the levels of 5-HT reduces 

anxiety (Murphy et al., 2013).The extensive range of actions of 5-HT neurons are regulated at 
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a series of 5-HT receptors (5-HTR) (Staes et al., 2019). In humans, genetic polymorphisms in 

the serotonin receptor subtype 1A receptor (5-HT1A receptor), 5-HT subtype 2A receptor (5-

HT2A receptor) and the 5-HT transporter (SLC6A4) are associated with anxiety disorders, 

impulsivity and neurotic personalities (Golimbet, Alfimova, & Mityushina, 2004; Gordon & 

Hen, 2004; Lesch & Gutknecht, 2005; Staes et al., 2019).  

 

Figure 7: Structure of Serotonin 

 

5.3 The function of glutamate in anxiety 

Glutamate (Figure 8), is the principle excitatory neurotransmitter ubiquitous in the mammalian 

central nervous system, specifically in the cortex and subcortical brain regions (Lujan, 

Shigemoto, & Lopez-Bendito, 2005). The glutamatergic system has pivotal roles in various 

brain functions such as, neurodevelopment, learning, information transfer, acute and chronic 

neurodegeneration, response to stress and anxiety disorders (Kew & Kemp, 2005). The actions 

of glutamate are regulated via four glutamate receptors: N-methyl-d-aspartate (NMDA), 

kainite, G protein-coupled metabotropic receptors (mGluR1-8) and a-amino-3-hydroxy-5-

methyl-4-isoxazole (AMPA) (Kew & Kemp, 2005; Zhou & Danbolt, 2014). Recent studies 

have demonstrated the important function of the glutamatergic transmission in the pathogenesis 

of anxiety disorders (Zhou & Danbolt, 2014). Glutamate excitotoxicity is the excessive 

activation of glutamate receptors that can excite nerve cells to their death, and this occurs 

during extreme stress and anxiety exposure (Zhou & Danbolt, 2014). An increase in glutamate 

results in excitotoxicity, which subsequently results in anxiety due to cell death. Anxiolysis 

can be stimulated by a reduction in endogenously released glutamate (Kaur & Singh, 2017; 

Zhou & Danbolt, 2014). 
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Figure 8: Structure of Glutamate 

 

5.4 The function of Gamma-Aminobutyric acid (GABA) in anxiety 

GABA (Figure 9), is a principle inhibitory neurotransmitter which is abundantly distributed 

throughout the mammalian brain (Watanabe, Maemura, Kanbara, Tamayama, & Hayasaki, 

2002). Neurons containing GABA establish interneuronal populations in the cortex regions 

(Rudy, Fishell, Lee, & Hjerling‐Leffler, 2011). The neurotransmission of GABA is believed to 

strongly modulate excitatory neurotransmission, regulate the processing of information and 

neuroplastic events through polysynaptic communication with glutamatergic neurons (Kelsom 

& Lu, 2013)  This neurotransmitter system is considered to be the core of the regulation of 

anxiety and is the primary target of anxiolytic drugs and benzodiazepines (Lydiard, 2003). The 

regulation of neuronal activity is influenced by GABA controls the excitability states in brain 

areas (Lydiard, 2003). Anxiety disorders are linked to the dysfunction of the GABA system 

(Lydiard, 2003). The pathogenesis of anxiety has been associated with the GABAergic brain 

regions such as the amygdala, hippocampus and hypothalamus(Kalueff & Nutt, 2007). The 

onset of anxiety in animal models were correlated with a decrease in the expression of GABA 

receptors and the synthesis of GABA (Mei et al., 2005). Clinical and pre-clinical studies have 

shown that anxiolytic effects are produced from positive modulators of GABA receptors, 

whereas the negative modulators cause anxiogenic activity (Nutt, 2001). An early study by 

(Study & Barker, 1981) proved that GABA receptors are a target for benzodiazepines, which 

augment the inhibitory action of GABA.   

 

Figure 9: Structure of GABA 
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5.5 The function of norepinephrine in anxiety  

Norepinephrine (NE) (Figure 10) is an essential monoamine neurotransmitter that has broad 

effects across brain areas to regulate arousal and environmental and internal stress responses 

(Goddard et al., 2010). The central norepinephrine system is labelled as a modulator with 

anxiogenic or anxiolytic effects which changes according to acute of chronic conditions of 

stress (Goddard et al., 2010). Norepinephrine neurons are distributed in small clustered groups 

in the brainstem, including the locus coeruleus (LC) (Pacak & Palkovits, 2001). The LC-NE 

system provides an optimal and adaptable mechanism for offsetting vigilance with focused 

attention based on the novelty of environmental stimuli (Goddard et al., 2010). The response 

of norepinephrine to acute and chronic stress involve neuroendocrine and autonomic 

adaptations (Goddard et al., 2010). According to early literature, the activity of LC-NE 

neuronal firing transpires in phasic bursts whilst responding to an acute threat signal 

(Abercrombie & Jacobs, 1987). An unexpected surge in the autonomic and neuroendocrine 

response can elicit acute panic attacks in humans (Koob, 1999). Prolonged and repeated stress 

may result in the development of anxiety. The amygdala and the prefrontal connections are 

vital as neural substrates of fear and anxiety states in animals and humans (Bishop, 2007). 

Under chronic stress, the NE system activity dysregulation of various brain regions may change 

a homeostatic stress response into a pathological stress response (Goddard et al., 2010). The 

hyperactivity of norepinephrine in the CNS can cause symptoms of anxiety by the activation 

of the corticotropin-releasing factor (Martin, Ressler, Binder, & Nemeroff, 2009). 

Pharmacological treatments for anxiety disorder patients that affect the NE system result in 

anxiolytic outcomes (Goddard et al., 2010). 

 

Figure 10: Structure of Norepinephrine 
 

5.6 The function of acetylcholine in anxiety 

Acetylcholine is pivotal to the learning and memory processes in the brain. Acetylcholine 

(Figure 11) levels are regulated by stress in many brain regions. Cognitive impairment is 
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induced by an increase in cholinergic transmission as a result of the activation of presynaptic 

(nicotine) and post-synaptic (muscarinic) cholinergic receptors (Dall'Acqua, 2013). The 

hyperactivity of the brain cholinergic systems can contribute to the pathophysiology of 

depression and anxiety (Mineur et al., 2013). Clinical and pre-clinical studies have 

demonstrated that cholinergic receptor blockers can induce anti-depressant-like and anti-

anxiety-like responses (Furey & Drevets, 2006). The presynaptic nicotinic receptor facilitates 

GABAergic neurons which induced anxiety (Anderson & Brunzell, 2012). 

 

Figure 11: Structure of Acetylcholine 

 

5.7 The implication of neurotransmitters in anxiolytic treatments  

GABA agonists, or benzodiazepines, are one of the most recognized and commonly prescribed 

and anxiolytic treatments (Linsambarth et al., 2017). In the amygdala, the anxiety neuronal 

circuitry is considered to be comprised of GABAergic interneurons (Marowsky, Yanagawa, 

Obata, & Vogt, 2005; Palomares-Castillo et al., 2012).  Infusions of GABA agonists into the 

amygdala reduces fear and anxiety in many animal species, whereas GABA antagonist 

infusions upsurge fear and anxiety (Barbalho, Nunes-de-Souza, & Canto-de-Souza, 2009). This 

is supported by studies by (Moghaddam, Roohbakhsh, Rostami, Heidary-Davishani, & 

Zarrindast, 2008) and (Jiménez-Velázquez, López-Muñoz, & Fernández-Guasti, 2010), which 

demonstrated the anxiolytic effects of microinjections of GABA agonists into the basolateral 

amygdala (BLA), whilst microinjections of GABA antagonists elicited anxiogenic effects. 

Anxiolytic drugs classes, such as benzodiazepines, bind to the allosteric sites on the GABAA 

receptors which permits the precise regulation of the neuron inhibition (Mody & Pearce, 2004; 

Nuss, 2015). The inhibition of GABAergic neurons is important for the maintaining the 

equilibrium between neuronal excitation and inhibition (Mody & Pearce, 2004). During 

anxiety states, the GABAergic neuronal inhibition is downregulated (Nuss, 2015). The 

mechanism of this downregulated may be explained by fluctuations in the levels of the 

endogenous modulators of the allosteric sites and alterations in the subunit structure of the 

GABAA receptors (Nuss, 2015).  
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Mononamine neurotransmitters mutually interact with each other in the central nervous system 

(Quesseveur, M Gardier, & P Guiard, 2013). NE is essential in the regulation of the release of 

5-HT (Liu et al., 2018). Studies suggest that the 5-HT2A receptors can enhance the release of 

NE under the anxiolytic SSRIs treatment (Sullivan et al., 2005).The serotonin 5-HT1A receptor 

(5-HT1aR) is a metabotropic G protein-coupled receptor which is involved in the pathogenesis 

of anxiety and depression (Rupprecht et al., 2009). The anxiolytic effect of SSRI’s, a first-line 

clinical treatment for anxiety, is reliant on the activation of 5-HT1aR (Rupprecht et al., 2009; 

Santarelli et al., 2003). The acute anxiolytic actions of acute CBD administration are proposed 

to be mediated by 5-HT1A receptors (Alline C Campos et al., 2017). Acute and chronic CBD 

administration into brain regions such as the basal ganglia, the BNST, prelimbic PFC and the 

dorsal raphe nucleus appear to mediate CBD effects via the 5-HT1A receptors (Espejo-Porras, 

Fernández-Ruiz, Pertwee, Mechoulam, & García, 2013; Fogaça, Reis, Campos, & Guimaraes, 

2014; Gomes, Resstel, & Guimarães, 2011; Katsidoni, Anagnostou, & Panagis, 2013). This 

was supported by the 5-HT1A receptor antagonist, WAY-100635, preventing the anxiolytic 

effects of CBD administration (Alline C Campos et al., 2013; Zanelati, Biojone, Moreira, 

Guimaraes, & Joca, 2010). The mechanism of activation of 5-HT1A receptor by CBD is unclear. 

Literature suggests that the mechanism may involve a rise in 5-HT release and/or reuptake 

inhibition, or an indirect formation of heterodimers consisting of 5-HT1A and other receptors, 

such as CB1 (Linge et al., 2016; Mato et al., 2010). 

6. Gene expression and anxiety 

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is involved in many affective 

disorders including depression and anxiety (Bergami, Berninger, & Canossa, 2009; 

Martinowich, Manji, & Lu, 2007). BDNF has a neuroprotective effect, supports the 

proliferation, differentiation, maturation and survival of neurons in the nervous system, as well 

as stimulates and regulates neurogenesis (Binder & Scharfman, 2004; Huang & Reichardt, 

2001). BDNF levels are reduced in neurodegenerative diseases including multiple sclerosis, 

Parkinson’s diseases, depression and anxiety (Bathina & Das, 2015; Scalzo, Kümmer, Bretas, 

Cardoso, & Teixeira, 2010).  BDNF enhances neurogenesis via the tyrosine kinase B (TrkB) 

receptor, which activates a variety of downstream signalling pathways (Palomares-Castillo et 

al., 2012). The serum and plasma BDNF levels are reduced in patients with an anxiety disorder 

compared to patients without an anxiety disorder (Dell'Osso, Buoli, Baldwin, & Altamura, 

2010; dos Santos et al., 2011; Maina et al., 2010; Ströhle et al., 2010; Wang, Mathews, Li, Lin, 

& Xiao, 2011). The expression of BDNF messenger RNA (mRNA), in the hippocampus and 
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prefrontal cortex, can be considerably increased by multiple classes of anti-depressant and 

anxiolytic treatments (Duman & Monteggia, 2006). CBD induces anti-depressant-like effects 

associated with elevated BDNF levels in the medial prefrontal cortex (mPFC) and 

hippocampus (Sales et al., 2019). The effects may be related to rapid changes in synaptic 

plasticity in the mPFC through activation of the BDNF-TrKB signalling pathway (Sales et al., 

2019).  

Cyclic AMP response element binding protein activation (CREB) is one of the long-term 

transcriptional factors that is considered to mediate the effects of anti-depressants on BDNF 

expression (Malberg & Blendy, 2005). CREB is well-known for its implication in memory and 

learning (Carlezon Jr, Duman, & Nestler, 2005; Herdegen et al., 1997). Hippocampal CREB 

activity is enhanced due to a variety of anti-depressant treatments (Carlezon Jr et al., 2005; 

Gourley et al., 2008; Thome et al., 2000). Anxiety-like behaviours can be modulated by 

changing the function or expression of CREB as studies demonstrated that CREB knock-out 

mice displayed an increase in anxiety-like behaviours (Valverde et al., 2004; Vogt et al., 2014). 

The mechanism of the modulation of anxiety-like behaviours are poorly understood. A report 

by demonstrated that anxiety-like behaviours can be modulated by the 5-HT1A   activation via 

CREB in the hippocampus which promotes neurogenesis and synaptogenesis (Zhang et al., 

2016). A disruption in CREB activity stopped the anxiolytic effect of the 5-HT1aR agonist, 

whereas an increase in CREB activity reversed the anxiogenic effect of the 5-HT1aR antagonist 

(Zhang et al., 2016). There is inadequate understanding of the effects of CBD administration 

on the expression of BDNF and CREB.  

7. Liquid Chromatography- Mass Spectrometry 

Liquid chromatography – tandem mass spectrometry (LC-MS/MS) is a specific and sensitive 

technique used to detect and identify organic and inorganic compounds (Bianchi et al., 2018).  

It is widely used in analytical laboratories as it can be used to provide molecular weight and 

structural information of targeted analytes, and simultaneously determine endogenous 

compounds (Kind & Fiehn, 2010). Mass spectrometers work by converting the analyte 

molecules into an ionized state (Pitt, 2009). Electrospray ionization (ESI) is a soft ionization 

technique that produces ions suitable for mass analysis of biological molecules (Bianchi et al., 

2018). Heated electrospray ionization (H-ESI) is a modification of ESI whereby the ionization 

efficiency of analytes is augmented by the increasing the heating vapourizer temperature to 

quickly evaporate droplets (Kourtchev et al., 2020). The liquid samples are pumped through a 

metal capillary maintained at 3 to 5 kV and nebulized at the tip of the capillary to form a fine 



19 

 

spray of charged droplets (Pitt, 2009). The triple quadrapole mass spectrometer is comprised 

of a collision cell between two quadrapole mass analysers (Figure 12) (Pitt, 2009). Each mass 

quadrapole analyser contains a set of four parallel metal rods (Pitt, 2009). The transmission of 

a narrow band of m/z along the axis of the rods is a result of constant and varying voltages 

(Pitt, 2009). Collision induced dissociation (CID) is a process where ions can be induced to 

undergo fragmentation by collision with an inert gas (Pitt, 2009). There are various operational 

modes of the triple quadrapole mass spectrometers such as product scan, precursor scan and 

multiple reaction monitoring (MRM) (Pitt, 2009). The triple quadrapole analysers are widely 

used in LC-MS applications due to the ease of scanning and the good quality quantitative data 

obtained (Bianchi et al., 2018).  

 

Figure 12: Schematic representation of the LC-MS/MS process (adapted from (Mertens, 

2016) 

Key: LC: Liquid Chromatography; MS/MS: Mass Spectrometer/Mass Spectrometer; Q1: 

Quadrapole 1; Q2: Collision Cell; Q3: Quadrapole 3. 

8. Polymerase Chain Reaction (PCR) 

Polymerase chain reaction is a technique used to amplify specific DNA fragments a billionfold 

(Hindson et al., 2013; Pierce, 2012). PCR is based on replication catalysed DNA polymerase 

to synthesis a new complementary strand of DNA to the original template (Y. Kim, Flynn, 

Donoff, Wong, & Todd, 2002). PCR uses a temperature modulation process consisting of 

heating and cooling cycles, called thermal cycling. PCR usually consists of three steps: 

denaturation, annealing and elongation, which is performed in repeated cycles as shown in 

Figure 13 (Chen et al., 2019). During denaturation, the DNA solution is heated at 94°C - 96°C 

for 1 – 2 minutes to separate double-stranded DNA complexes and produce single strands 

(Chen et al., 2019). The strands are then rapidly cooled to between 30°C - 65°C to allow single-
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stranded primers to anneal to their complementary sequences (Chen et al., 2019). In the final 

step of elongation, the solution is heated to 72°C and DNA polymerase synthesizes new DNA 

strands by allowing the primers to extend into the new complementary strands (Chen et al., 

2019). After one cycle of PCR, there are two double-stranded DNA molecules produced for 

each original molecule of target DNA, doubling the amount of target DNA in each cycle 

(Pierce, 2012). As PCR progresses, the cycles are repeated, and the amount of target DNA are 

exponentially increased (Pierce, 2012).  

 

Figure 13: The three steps of PCR and exponential amplification of the target DNA 

(adapted from (Pierce, 2012) 

Key: Blue bars: target DNA; Green bars: New DNA; Green blocks: Primers 

 

9. Aims and objectives: 

Aim: to investigate the potential use of CBD in the treatment of anxiety by assessing NT levels 

and molecular changes in BDNF and CREB signalling in a healthy rodent model. 

Objectives: 

1. To develop an LC-MS/MS method for the simultaneous detection of dopamine, GABA, 

serotonin, norepinephrine and glutamate. 

2. To determine the pharmacokinetic parameters (pK) of CBD in a healthy rodent brain. 

3.  To investigate the neurotransmitter changes in response to CBD administration. 
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4. To determine the expression levels of BDNF and CREB in response to CBD 

administration. 

10.  Thesis outline 

Chapter 2 presents the results of the research study. 

Chapter 3 presents the general discussion and conclusion.  
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related disorders by assessing changes in neurotransmitter levels and 

expression of CREB/BDNF in the rodent brain 
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Abstract 

Cannabidiol (CBD), a non-psychoactive component of the Cannabis sativa plant, has gained 

pharmacological interest due to its therapeutic potential in the treatment of neurological 

disorders. Anxiety-related disorders are some of the most prevalent mental health disorders. 

However, the current pharmacological anxiety treatments display shortcomings in drug 

efficacy, side effects and therapeutic action. Studies have reported the use of CBD in the 

management of anxiety-related disorders however its exact neurological action remains 

unknown, making it crucial to understand the effect of CBD on neurotransmitter levels and the 

expression of CREB/BDNF expression in the brain. Twenty-seven male Sprague-Dawley rats 

received an acute treatment of 10 mg/kg body weight of CBD via intraperitoneal injection. The 

pharmacokinetics of CBD, neurotransmitter concentrations, and CREB/BDNF expression in 

the brain were measured in the brain over 24 hours via LC-MS and qPCR respectively. CBD 

reached a Cmax of 152.801 ± 1.541 ng/ml at 1-hour post drug administration. The results showed 

that GABA and glutamate were significantly decreased between 4 hours and 24 hours in 

response to CBD administration with norepinephrine diminishing over the 24 hours period. 

The concentration of serotonin peaked at 1-hour post drug administration, whereas dopamine 

levels increased at 30 minutes and 2 hours. CBD significantly increased BDNF at 2 hours 

following administration, and CREB expression was upregulated when compared to the control 

over the 24 hours. This study contributes to the understanding of the pharmacodynamic effects 

of CBD in the brain by demonstrating its effects on target neurotransmitters and important 

expression factors.  

Significance statement 

The legalization of cannabis products in many regions of the world has seen it receive interest 

in the treatment of mental health disease, neurodegenerative disorders and inflammatory 

diseases. Despite showing clinical efficacy in the management of these disorders, the exact 

mechanisms remain to be fully elucidated. Therefore assessing the pharmacodynamic effects 

of CBD in the brain, by evaluating neurotransmitter changes, and its effect on the expression 

of CREB/BDNF will contribute to increasing the knowledge of the neurological action of CBD 

and can assist clinicians in better understanding its effects allowing them to make more 

informed choices in the management of patients suffering from neurological disorders.  
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1. Introduction  

Anxiety disorders are the most prevailing neuropsychiatric disorders and are concomitant with 

a high burden of disease and substantial health care expenses (Bandelow & Michaelis, 2015). 

Patients with anxiety experience an immense burden on societal resources which contribute to 

the pathogenesis of depression and the development of physical illnesses (Kariuki-Nyuthe & 

Stein, 2015). Anxiety-related disorders are associated with a decreased sense of well-being, 

elevated rates of unemployment and relationship breakdown, and increased suicide risk (Stein 

& Sareen, 2015). Anxiety can be conceptualized by the inappropriate emotional responses to 

potential threats or danger and sub-divided based on the type of anxious stimuli (A Rabinak & 

Phan, 2014; Sartori & Singewald, 2019). Anxiety disorders include Generalized Anxiety 

Disorder (GAD), Panic Disorder (PD), Social Anxiety Disorder (SAD), and specific phobias 

(Kogan et al., 2016; Reed et al., 2019). Social anxiety disorder is the most prevalent anxiety 

disorders where people display fear and avoidance of the scrutiny of others (Stein & Stein, 

2008). The onset of social anxiety disorder by age 11 is 50 % prevalence and reaches up to 80 

% prevalence in 20-year olds (Stein & Stein, 2008). Generalized Anxiety Disorder is one of 

the most common and most impairing anxiety conditions, it is defined by an insistent, multi-

focal chronic worry (Stein & Sareen, 2015). Neurological disorders, such as depression and 

anxiety, are a result of impairments in the modulation of neural circuits in many limbic brain 

regions including the amygdala, bed nucleus of the stria terminalis, hippocampus and thalamus 

(Nuss, 2015).  

Dysfunction in various brain areas viz. the amygdala, hippocampus and the prefrontal cortex 

are responsible for anxiety (Bremner, 2002). The etiology of anxiety disorders also involve 

dysfunction of the mono-aminergic neurotransmitter systems such as the norepinephrine (NE), 

dopamine (DA) and serotonin (5-HT) systems and their receptors (Liu, Zhao, & Guo, 2018). 

These neurotransmitter systems have a mutual interaction in the central nervous system, 

modulating human emotion, anxiety and depression (Quesseveur, M Gardier, & P Guiard, 

2013). The serotoninergic system consists of differentially expressed multiple 5-HT receptors 

which produce both anxiolytic and anxiogenic effects via differential neurotransmission 

(Albert, Vahid-Ansari, & Luckhart, 2014). Anxiety may be caused by the suppression of the 

postsynaptic 5-HT receptors, upregulation of 5-HT1A receptors or a decreased 5-HT 

neurotransmission (Albert et al., 2014). The 5-HT1A receptor plays an important role in 

mediating the effects of 5-HT in the etiology and treatment of anxiety (Akimova, 

Lanzenberger, & Kasper, 2009). The hyperactivity of norepinephrine in the central nervous 
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system is proposed to cause anxiety symptoms (Liu et al., 2018). During stress conditions, the 

activation of the NE energy pathway by corticotrophin-releasing factors, releases NE, inducing 

anxiety symptoms (Liu et al., 2018). Studies have also demonstrated DAergic 

neurotransmission in the processing of anxiety (Vicario, Rafal, Martino, & Avenanti, 2017). 

The emergence of fear and anxiety occurs due to a deficiency in DA receptor function (Liu et 

al., 2018). The DA receptors are inhibited in the prefrontal cortex and the amygdala which 

induces the hyperexcitability of the amygdala (Liu et al., 2018). Patients with anxiety disorders 

are reported to have decreased DA transporter density and D2 receptor binding in the striatum 

(Shin & Liberzon, 2010).  

A combination of pharmacotherapy and psychotherapy is used to treat anxiety disorders 

(Bandelow, 2017). Traditional pharmacotherapeutic approaches target specific neurochemical 

imbalances (Sartori & Singewald, 2019). Monoaminergic neurotransmitter systems such as the 

endocannabinoid, GABA-ergic and glutamatergic systems, as well as their receptors are 

responsible for the regulation of anxiety and fear ((Bandelow, Michaelis, & Wedekind, 2017); 

Maron et al., 2018).  Recent pharmacological anxiolytic treatments include selective serotonin 

(5-HT) reuptake inhibitors (SSRIs), benzodiazepines, selective noradrenalin reuptake 

inhibitors (SNRIs) such monoamine oxidase inhibitors, tricyclic antidepressant drugs, and 

partial 5-hydroxytryptamines (5-HT) 1A receptor agonists (Bandelow et al., 2017). SSRIs are 

reported to be the first-line pharmacotherapeutics due to their favourable benefit/risk ratio 

(Bandelow et al., 2017). Acute administration of SSRIs stimulates the presynaptic 5-HT 

receptors, which subsequently yield anxiogenic-like effects (Liu et al., 2018) The current 

pharmacological anxiolytic treatments are suboptimal with regards to efficiency and 

tolerability of the drug, abiding adverse side effects, expensive drug development and a reduced 

rate of successful drug discovery (Guina & Merrill, 2018; Sartori & Singewald, 2019). These 

shortcomings highlight the need for improved and novel pharmacological treatments for 

anxiety disorders (Sartori & Singewald, 2019). 

Cannabidiol (CBD), a non-psychoactive phytocannabinoid, is a constituent of the Cannabis 

sativa plant, which has become increasingly popular as a proposed treatment for a spectrum of 

neuropsychiatric disorders (Blessing, Steenkamp, Manzanares, & Marmar, 2015). Existing 

preclinical evidence displays the extensive range of action of CBD: anxiolytic (Campos, 

Moreira, Gomes, Del Bel, & Guimaraes, 2012; Izzo, Borrelli, Capasso, Di Marzo, & 

Mechoulam, 2009) reduction of conditioned fear expression (Resstel, Joca, Moreira, Corrêa, 

& Guimarães, 2006), augmentation of fear extinction (Bitencourt, Pamplona, & Takahashi, 
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2008), the prevention of the abiding anxiogenic effects from stress (Campos, Ferreira, & 

Guimarães, 2012) and the reconsolidation blockade of adverse memories (Stern, Gazarini, 

Takahashi, Guimarães, & Bertoglio, 2012). The anxiolytic action of cannabidiol is mediated 

by the Cannabinoid-1-receptors (CB1R), 5-HT1A receptors and the TRPV1 receptors (Blessing 

et al., 2015).  The complex activation of CB1R produces anxiolytic effects relevant to multiple 

anxiety disorder symptoms (McLaughlin, Hill, & Gorzalka, 2014; Ruehle, Rey, Remmers, & 

Lutz, 2012). CB1R activation in different brain loci may augment or reduce fear expression, 

enhance fear extinction and prevent the reconsolidation of fear (Llorente-Berzal et al., 2015). 

CBD functions as an indirect agonist of CB1R by either decreasing its constitutional activity, 

or increasing the endocannabinoid, anandamide, through the inhibition of fatty acid amide 

hydrolase (FAAH) (McPartland, Duncan, Di Marzo, & Pertwee, 2015). The 5-HT1A receptor 

is an anxiolytic target which prevents the negative effects of stress and increases fear extinction 

(Saito et al., 2013; Zhou et al., 2014). The anxiolytic effects of 5-HT1A have complex 

mechanisms that vary between brain region and pre-versus postsynaptic locus (Celada, 

Bortolozzi, & Artigas, 2013). In vitro studies suggest that CBD acts as a direct 5-HT1AR 

agonist, whilst in vivo studies are more consistent with CBD acting as an allosteric modulator, 

or facilitator of 5-HT1A signalling (Rock et al., 2012; Russo, Burnett, Hall, & Parker, 2005). 

Brain derived neurotrophic factor (BDNF) is a neurotrophin implicated in anxiety and 

depression. BDNF exhibits a neuroprotective effect and has decreased levels in patients with 

anxiety. Studies have shown that anti-depressant effects induced by CBD are associated with 

an upregulation in BDNF levels. The nuclear transcription factor, cyclic AMP response 

element binding protein (CREB) is crucial in memory and learning (Bourtchuladze et al., 1994; 

Josselyn et al., 2001), drug addiction (Pliakas et al., 2001), and anti-depressant effects 

implicated in mood disorders (Gourley et al., 2008; Nestler et al., 2002) The expression and 

function of CREB in the hippocampus, amygdala, hypothalamus and thalamus is increased as 

a result of anti-depressant and anti-anxiety therapeutics such as SSRIs (Carlezon Jr, Duman, & 

Nestler, 2005; Pandey, Zhang, Roy, & Xu, 2005; T. L. Wallace, Stellitano, Neve, & Duman, 

2004). SSRIs induces anxiolytic effects via the 5-HT1A receptors, which elevates CREB 

expression in the hippocampus (Zhang et al., 2010) Despite the demonstrated clinical efficacy 

and increasing knowledge surrounding the use  of CBD as an anxiolytic treatment, the effects 

of CBD on neurotransmitter systems contributing to the treatment of anxiety, BDNF and CREB 

expression remain unknown. 
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Therefore, this study aimed to evaluate the pharmacodynamic effects of acutely administered 

cannabidiol (10 mg/kg body weight) by assessing brain neurotransmitter levels and the 

expression of BDNF and CREB in the healthy rodent brain in order to better understand its role 

in the treatment and management of anxiety-related disorders.  

2. Materials and Methods 

2.1 Experimental subjects   

Twenty-seven male Sprague-Dawley rats (110 – 120 g) were sourced from the University of 

KwaZulu-Natal Biomedical Resource Unit (Westville campus). The animals were collected 

two weeks prior to the experimental procedures to allow for acclimatization. The animals 

were housed in well-ventilated cages, located in temperature and humidity-controlled housing 

units, with a 12-hour/ 12-hour light-dark cycle. Environmental enrichment, in the form of 

shredded paper and plastic tunnels, were added to the cage. The animals were provided with 

commercially pelleted feed and clean water ad libtium. 

2.2 Ethical approval 

The experimental protocols used in this study were approved by the University of KwaZulu-

Natal institutional Animal Research Ethics Committee (approval reference: AREC/010/019M). 

This was in accordance with the regulations of the South African National Legislations for 

animal husbandry, welfare and experimentation using laboratory animals.  

2.3 Experimental design and procedure 

2.3.1. Drug treatment and animal experiments 

The animals were treated with 10 mg/kg body weight of pure cannabidiol (CBD) was extracted 

from the Cannabis sativa plant and its identity confirmed via LC-MS and NMR. The CBD was 

dissolved in a 1:9 mixture of hexane: ultrapure water (Milli-Q water). A volume of 1 ml/ 250g 

body weight was administered via intraperitoneal (i.p.) injection to the animals (Deiana et al., 

2012; Long et al., 2010; Taffe, Creehan, & Vandewater, 2015; Wiley, O'Connell, Tokarz, & 

Wright, 2007). The animals were sacrificed at different time points (Table 1) to determine the 

pharmacokinetics of CBD in the brain, as well as associated neurotransmitter changes at 

different time points. These time intervals were determined based on previous pharmacokinetic 

studies involving CBD following various lengths of exposure (Deiana et al., 2012).  
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Table 1: Acute exposure group and the number of animals to be terminated at the time 

points of euthanasia 

 Time post CBD administration (hours) Total number of animals 

 0 0.25 0.5 1 2 4 6 8 24  

N 3 3 3 3 3 3 3 3 3 27 

 

Experimental animals were euthanized by decapitation, following which the brain tissues were 

surgically removed, cooled on ice for 15 minutes, and subsequently frozen using liquid nitrogen 

vapour. Blood was collected into heparinized tubes and centrifuged at 10 000 rpm for 7 minutes 

to obtain the blood plasma. The brain tissues and plasma samples were stored at -80 °C until 

analysis.  

2.3.2. Liquid chromatography – Mass Spectrometry/ Mass Spectrometry (LC-

MS/MS) analysis  

2.3.2.1 Neurotransmitter analysis 

LC-MS/MS analysis was conducted using a Thermo Scientific Quantis Triple Quadrupole 

Mass Spectrometer (Thermo Scientific, Massachusetts, USA) coupled to a Thermo Scientific 

Vanquish Ultra High-Performance Liquid Chromatography (UHPLC) System (Thermo 

Scientific, Massachusetts, USA). The system was controlled using the Thermo Scientific SII 

Xcalibur 1.3 (version: 3.0.20389) and Thermo Trace finder General (version: 4.1 SP5) software 

packages. Liquid chromatographic separation was achieved using the Poroshell 120 EC-C18 

(50 mm x 4.6 mm, 2.7 µm) column (Agilent technologies) to assay serotonin (5-HT), GABA, 

norepinephrine (NE), glutamate (GLU), and dopamine (DA). The column compartment 

temperature was maintained at 25 °C.  Mobile phase A was ultrapure water (0.1 % Formic 

Acid) and mobile phase B was methanol (0.1 % Formic acid). A flow rate of 0.800 ml/min was 

utilized, with a sample injection volume of 20 µl. The Heated Electrospray Ionizer (H-ESI) 

mass spectrometer was operated in the positive mode. The source parameter MS settings 

included: Spray voltage, 4809 V; Sheath gas, 50 Arbitrary units; Auxiliary gas, 15 Arbitrary 

units; Sweep gas, 1.2 Arbitrary units; vapourizer temperature, 400 °C; and ion transfer tube 

temperature, 325 °C. The MS scan parameters were as following: cycle time, 0.6 seconds; Q1 

and Q3 resolution, 0.7; collision induced dissociation (CID) gas pressure, 1.5 mTorr; and 

chromatographic peak width, 12 seconds. The mass transitions monitored via selected reaction 
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monitoring (SRM) and ion optic parameters are defined in Table 2. The gradient profile used 

for the elution of neurotransmitters is  -1.00 min(pre-injection equilibration): 15 % B; 0.00 

mins: 15 % B; 1.00 min: 70 % B; 1.10 mins: 95 % B; 5.50 mins: 95 % B; 5.60 mins:15% B; 

5.60 – 8 mins: 15 % B; with a total run time of 8 mins. 

Table 2:Selected Reaction Monitoring (SRM) and Ion optic parameters of 

neurotransmitters and CBD 

Compound Precursor 
(m/z) 
[M+H]+ 

Product 
(m/z) 

Quantifier/ 
Qualifier 
Ions (m/z) 

Collison 
Energy (V) 

RF Lens 
Voltage (V) 

Dwell Time 
(msec) 

Dopamine 
 

 
154.08 

 

137 Quantifier 14.55 78 9.473 

90.946 Qualifier 27.51 78 9.473 

118.929 Qualifier 15 78 9.473 

GABA  
104.05 

87 Quantifier 13.41 30 9.473 

46 Qualifier 55 30 9.473 

85.875 Qualifier 15 30 9.473 

Glutamate 148.05 84.071 Quantifier 18.98 30 9.473 

131 Qualifier 23.72 30 9.473 

Norepinep
hrine 

 
170.088 

 

152.054 Quantifier 10.23 79 9.473 

107.018 Qualifier 23.99 79 9.473 

135.018 Qualifier 14.63 79 9.473 

Serotonin  
177.000 

 

159.982 Quantifier 10.23 30 9.473 

114.929 Qualifier 46.7 30 9.473 

132.929 Qualifier 55 30 9.473 

D4-
Serotonin 

 
181.175 

 

164.02 Quantifier 10.23 192 9.473 

78.557 Qualifier 34.57 192 9.473 

118.042 Qualifier 26.49 192 9.473 

Cannabidi
ol (CBD) 

 
 

315.125 
 

193.083 Quantifier 32.56 95 13.115 

259.137 Qualifier 27.17 95 13.115 

135.173 Qualifier 29.64 95 13.115 

235.167 Qualifier 28.16 95 13.115 

123.071 Qualifier 48.37 95 13.115 

 

2.3.2.2. Cannabidiol analysis 

The liquid chromatographic separation of CBD was achieved using the Biphenyl Pinnacle DB 

column (50 mm x 2.1 mm, 5 µm) (Restek, USA). The column compartment temperature, 

mobile phases and injection volume, and MS source and scan parameters are according to 

section 2.3.2.1. The gradient profile for the elution of CBD was -1.00 min: 50 % B; 0.00 mins: 

50 % B; 1.50-5.00 mins: 98 % B, 5.10 mins; 50 % B, 5.10-8 mins: 50 % B; with a flow rate of 

0.300 ml/min and a total run time of 8 mins.  
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2.3.3. Sample preparation of brain tissue 

Frozen brain samples were swiftly dissected on an ice bath, into hemispheres, using surgical 

blades. One hemisphere of the brain was subsequently homogenized using the OMNI tissue 

homogenizer (OMNI international, Kennesaw Georgia, USA). The brain tissue homogenates 

were diluted with a 1:1 v/v of MilliQ water.  100 µl of brain tissue homogenate was added to 

850 µl methanol spiked with 50 µl of internal standard (10 µg/ml). The solutions were 

centrifuged at 10 000 rpm for 10 minutes at 4°C. The supernatants were carefully transferred 

to the conditioned Solid Phase Extraction (SPE) Discovery® DSC18-100mg cartridges 

(Merck, Gauteng, South Africa) for extraction.  

2.3.4. Solid Phase Extraction  

A SPE diaphragm vacuum pump manifold with Discovery® DSC18-100mg 1 ml cartridge 

tubes (Merck, Gauteng, South Africa) were utilized. Prior to the elution of samples, the C18 

cartridges were conditioned with 1000 µl of 100% methanol under vacuum pressure. The 

supernatants were eluted at a rate of 1 ml/minute under vacuum pressure and the flow through 

collected for LC-MS/MS analysis. 400 µl of the collected eluent samples were dried in a 

nitrogen evaporator, ZipVap (Glass-Col, Indiana, USA) at 55°C for 15 – 17 minutes at a 

constant flow of nitrogen gas at 2 bars. The samples were then reconstituted in 400 µl of 

ultrapure water and vortexed for 30 seconds.   

2.3.5. Preparation of neurotransmitter and internal standards stock solutions  

A 1 mg/ml multi-mix stock solution of neurotransmitters (DA, GABA, GLU, NE and 5-HT) 

and their respective internal standards was prepared by accurately weighing 1 mg of each 

compound and dissolving it in 100 µl water: 900 µl methanol. The multi mix solution of 

neurotransmitters and internal standards was then diluted with methanol to 10 µg/ml and 1 

µg/ml working solutions  

2.3.6. Preparation of calibration standards for the calibration curve 

The samples for the calibration curve were prepared by spiking the blank solution (methanol) 

with the appropriate volume of the multi-mix neurotransmitter stock solution. Yielding final 

concentrations of 50, 150, 250, 500, 750, 1000 ng/ml which were used to construct a calibration 

curve. The neurotransmitter multi-mix was spiked with internal standard at a concentration of 

500 ng/ml in each calibration sample. Cannabidiol (CBD) calibration standards were prepared 

in solution at final yielding concentrations of 0.98, 1.95, 3.9, 7.8, 15.625, 31.25, 62.5, 125, 250 
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and 500 ng/ml. The CBD samples in solution were prepared by spiking methanol with the 

appropriate volume of CBD.  

2.4. Gene expression analysis 

2.4.1. RNA extraction 

Brain tissue homogenates were centrifuged at 10 000 x g at 4°C for 10 minutes. The 

supernatants were transferred into autoclaved micro-centrifuge tubes containing 500 µl of 

Qiazol reagent (Qiagen, Hilden, Germany) and stored at -80°C until extraction. RNA 

extractions were performed by adding 100 µl of chloroform to the tissues stored in Qiazol. The 

solutions were then vortexed for 15 seconds and incubated at room temperature for 2 – 3 

minutes. The tubes containing the organic phase in Qiazol and chloroform were centrifuged at 

12 000 x g for 12 minutes at 4 °C, and 250 µl of the aqueous phase, containing crude RNA, 

was transferred to a micro-centrifuge tube. 250 µl of isopropanol was added to each aqueous 

sample and mixed by flicking. The samples were incubated overnight at -80 °C. The samples 

with isopropanol were centrifuged at 12 000 x g for 20 minutes at 4 °C. The supernatant was 

discarded and 500 µl of 75% cold ethanol was added to release the pellet. The pellet in ethanol 

was centrifuged (7 400 xg, 15 minutes, 4°C). The ethanol was discarded, and the pellet allowed 

to air dry. The pellets were resuspended in 15 µl of nuclease-free water and incubated at room 

temperature for 2-3 minutes. The samples were stored at -80 °C and the Nanodrop 2000 

spectrophotometer (Thermo-Fisher Scientific, Massachusetts, USA) was used to quantify 

RNA, which was standardized to 1000 ng/µl and the A260/ A280 absorbance ratio was used to 

assess RNA purity. 

2.4.2. cDNA synthesis  

The RNA templates were reverse transcribed into cDNA using Maxima H Minus First Strand 

cDNA Synthesis Kit (Thermo-Fisher Scientific, California, USA). The master mix (excluding 

template RNA) consisted of 0,25 µl Oligo (dT)18 primer (25 p mol), 1 µl 10 mM dNTP mix 

and 12,75 µl nuclease-free water. 1000 ng/µl template RNA was added and gently mixed and 

incubated for 5 minutes at 65 °C. The samples were stored on ice. The second master mix 

consisted of 4 µl of 5x RT Buffer and 1 µl Maxima H Minus enzyme mix.  This master mix 

was added to all samples and incubated in the Applied Biosystems Viia real time PCR system 

thermo-cycler (Thermo-Fisher Scientific, USA) (10 minutes at 25°C, then 15 minutes at 50 

°C). The reaction was terminated by incubating at 85 °C for 5 minutes. 60 µl of nuclease-free 

water was added to the samples and stored (-80 °C) until qPCR processing. 
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2.4.3. qPCR analysis 

The primers used for qPCR analysis were BDNF: Sense: 5'-

GAATTCATGACCATCCTTTTCCTTACTATG-3', Anti-sense: 5'-

AAGCTTTCTTCCCCTTTTAATGGTCAG-3'; and CREB Sense: 5'-

CCAAACTAGCAGTGGGCAGTATATT-3', Anti-sense: 5'-

GGTACCATTGTTAGCCAGCTGTATT-3' were used at a final concentration of 25 µM. The 

PowerUp™ SYBR™ Green Master Mix (Thermo-Fisher Scientific, California, USA) 

contained 5 µl SYBR Green, 2 µl nuclease-free water, 1 µl sense primer (25 µM), and 1 µl 

anti-sense primer (25 µM). The master mix was added to the well, along with 1 µl of 1000 ng 

cDNA. The plate was centrifuged at 1000 xg at 24 °C for 1 minute. The mRNA amplification 

of BDNF and CREB were performed on the Applied Biosystems Viia 7 Real-Time PCR system 

(Thermo-Fisher Scientific, California, USA). The thermal cycling profile for PCR for BDNF 

and CREB was as follows: initial denaturation (1 cycle) at 95 °C for 8 minutes, PCR (40 cycles) 

consisting of denaturation  at 95 °C for 15 seconds, annealing  at 60 °C for 40 seconds, and 

extension at 72 °C for 30 seconds . The samples were run as triplicates. The housekeeping gene 

GAPDH (Sense: 5’-GGCACAGTCAAGGCTGAGAATG-3’,Anti-Sense: 5’–

ATGGTGGTGAAGACGCCAGTA-3’) was used to normalized the variances in gene 

expressions and the data was presented as fold change (2^CCT) relative to the control (Livak 

& Schmittgen, 2001). 

2.5.  Materials 

The neurotransmitter standards were purchased from Sigma-Aldrich (St. Louis, USA): (-)-

Norepinephrine, Serotonin, L-Glutamic acid monosodium salt monohydrate, γ-Aminobutyric 

acid (GABA), and Dopamine hydrochloride (Steinheim, Germany). The internal 

neurotransmitter standard Serotonin D4 hydrochloride was obtained from ClearSynth® 

Research Chemicals Inc (Ontario, Canada). Hexane was obtained from Merck (Darmstadt, 

Germany) and formic acid (Merck, Gauteng, South Africa). LC-MS grade Methanol was 

purchased from Honeywell (Steinheim, Germany). Milli-Q water was purified using the Milli-

Q® water purifying system (Merck Millipore, Burlington, MA).  

 

2.6 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism v8.4.3  (GraphPad Software, San 

Diego, California USA, www.graphpad.com). GraphPad Prism Software was used to analyse 

data using the unpaired multiple t-test with statistical significance determined using the Holm-

http://www.graphpad.com/
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Sidak t-test method (alpha = 0.05). Results were expressed as mean ± standard deviation (SD). 

Level of significance (p) was established at a p < 0.05 The pharmacokinetic (pK) parameters 

were calculated using Stata/IC 15.0 (StataCorp LLC, Texas, USA, www.stata.com). 

3. Results 

Following i.p. administration of 10 mg/kg b.w. CBD to Sprague-Dawley rats, the concentration 

of CBD, and neurotransmitters (DA, 5-HT, NE, GLU and GABA) were measured using LC-

MS/MS analysis. The results of the drug concentration, neurotransmitter levels and molecular 

changes in the brain were analysed using unpaired multiple t-tests to determine the statistical 

significance between the time intervals post administration compared to the control. 

(A) the concentration-time curve of CBD over time following i.p. administration (B) GABA 

brain concentrations following acute i.p. CBD administration. (C) Glutamate brain 

concentrations over 24 hours post i.p. CBD administration (D) DA brain concentrations 

following i.p. CBD administration (E) the effect of CBD on brain Serotonin concentration over 

24 hours (F) Brain NE concentration against time post CBD administration. Unpaired multiple 

t-tests were conducted using the Holm-Sidak t-test method. * P < 0.05, ** P < 0.01, *** P < 

Figure 14: Mean brain concentration-time profile of cannabidiol and neurotransmitters following i.p. 

administration of CBD 
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0.001, **** P < 0.0001 compared to the control, where T = 0 hours represented the control 

in all graphs. (data presented as mean ± SD, n = 3). 

In Figure 14A, CBD was first detected in the brain at (0.25 hours) post-administration (5.87 ± 

2.441 ng/ml, P < 0.05). The Tmax of CBD (the time at which the maximum concentration was 

reached) was at 1-hour post administration with a Cmax of 152.801 ± 1.541 ng/ml (P < 0.0001) 

was reached (Table 3). After 1 hour, the concentration of CBD in the brain steadily decreased 

until it reached a concentration of 6.904 ± 2.174 ng/ml (P < 0.01) at 24 hours post-

administration. The CBD concentration in brain is statistically different among the groups 

where P < 0.05 for all time points against the control.  

The effect of cannabidiol on the level of neurotransmitters in the brain is depicted in Figure 14. 

GABA (14B) is downregulated, with the lowest concentration of 891.98 ± 58.71 ng/ml at 4 

hours (P < 0.05). The levels of GABA in the brain were then elevated from 6 hours (944.35 ± 

146.65 ng/ml, P < 0.05) to 24 hours (1144.49 ± 24.99 ng/ml, P < 0.05). Glutamate (14C) levels 

were significantly decreased from the control (1297.25 ± 120.04 ng/ml, P > 0.05) to 4 hours 

(659.96 ± 47.91 ng/ml, P < 0.001), 6 hours (771.10 ± 37.80 ng/ml, P < 0.01) and 8 hours 

(822.72 ± 47.54 ng/ml). Glutamate experienced a decline from 1 hour to 4 hours post CBD 

administration, and thereafter displayed a rise in levels from 6 hours onwards. The Cmax of 

dopamine (14D) in the brain was 41.34 ± 3.82 ng/ml at 0.5 hours, followed by a decrease that 

occurred at 1 hour (Tmax of CBD) with a concentration of 28.797 ± 0.36 ng/ml. The levels of 

dopamine spiked at 2 hours (35.39 ± 2.57 ng/ml), and thereafter diminished at 4 hours (28.10 

± 2.90 ng/ml) and remained at similar levels until 24 hours (27.45 ± 1.34 ng/ml) post dosing. 

The Cmax of serotonin (14E) (22.746 ± 1.40 ng/ml) was achieved at 1 hour, which corresponds 

to the Tmax of CBD. Serotonin brain concentration over time did not have a significant 

difference against the control. Norepinephrine (14F) was decreased over time from the control 

(1281 ± 199.19 ng/ml) to 24 hours (775.82 ± 76.43 ng/ml) post administration, without any 

significant difference. 
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Table 3: A summary of the pharmacokinetic parameters of CBD following acute i.p. 

administration of 10 mg/kg b.w. CBD 

Cmax (ng/ml) 152.8 

Tmax (hour) 1 

T1/2 (hour) 8.35 

Kel 0.0830 

AUC0-inf (ng min/ml or ng min/g) 605.015 

 

 

Figure 15A displays the fold changes in BDNF expression in the brain over 24 hours post i.p. 

CBD administration. Figure 15B shows the CREB expression levels in the brain over 24 hours 

post i.p. CBD administration. T = 0 hours is the control. Unpaired multiple t-tests were 

performed to detect differences in BDNF expression (15A) and CREB expression (15B) 

respectively, between the control and time points post CBD administration. * P < 0.05, ** P 

< 0.01, *** P < 0.001, **** P < 0.0001. Data are expressed as mean ± SD (n = 3). 

In figure 15A, CBD (10 mg/kg body weight significantly augmented BDNF at 30 minutes 

(1.637 ± 0.13, P < 0.001) and at 2 hours (29.517 ± 3.21, P < 0.0001). The drastic increase of 

BDNF at 2 hours can be correlated with a high CBD brain concentration (102.82 ng/ml ± 15.44) 

at 2 hours (Figure 14A).  BDNF levels were significantly decreased at 15 minutes (0.810 ± 

0.020, P < 0.0001), 8 hours (0.770 ± 0.142, P < 0.05) and 24 hours post administration (0.387 

Figure 15: The effect of CBD administration on the expression of CREB and BDNF at 

various time intervals. 
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± 0.126, P < 0.001). CREB levels (15B) in the brain were significantly increased at 4 hours 

(1.837 ± 0.025, P < 0.0001), 6 hours (1.373 ± 1.37, P < 0.05), 8 hours (1.413 ± 0.189, P < 0.05) 

and 24 hours (1.930 ± 0.235, P < 0.01) post administration.  

4. Discussion 

The therapeutic use of CBD in the treatment of anxiety has been increasingly studied in both 

preclinical and clinical studies (Bandelow et al., 2017). The primary objective of this study was 

to investigate the neurochemical effects induced by acute exposure of CBD. The mechanism 

of action of CBD in anxiety related disorders was evaluated by assessing the changes in brain 

neurotransmitter concentration, BDNF and CREB expression in male Sprague Dawley rats. 

The Cmax of CBD at 1 hour (Figure 14A) is supported by previous studies (Deiana et al., 2012) 

and (Hložek et al., 2017), who showed that varying routes of CBD administration have a half-

life of 60 – 120 minutes, thereafter experiences a continuous decline towards 24 hours. Based 

on these findings CBD has been shown to attenuate anxiety levels in healthy individuals 2 

hours post-administration (Martin-Santos et al., 2012). 

Cannabidiol acts as an indirect agonist at the CB1R and may inhibit the release of 

neuromodulatory systems such as, 5-HT, NE and DA,  thus reducing its concentration in the 

brain (Rubino et al., 2008). A deficiency of serotonin (5-HT) in the brain is strongly associated 

with negative emotions involved in anxiety disorders and major depressive disorders (Liu et 

al., 2018). The overlap of pharmacological treatment of anxiety and depression, such as SSRIs 

which are 5-HT partial agonists, exert their therapeutic potential by facilitating 5-HT 

neurotransmission and upregulating extracellular 5-HT concentrations (Artigas, 2013; 

Gartside, Umbers, Hajos, & Sharp, 1995). The agonistic action of CBD at the 5-HT1ARs 

causes a suppression in glutamatergic and GABAergic transmission (Russo et al., 2005). A 

study by (De Gregorio et al., 2019) concluded that acute dosing of CBD (0.1 – 1.0 mg/kg) 

reduced the firing rate of 5-HT neurons. However, repeated administration of CBD resulted in 

an increase in 5-HT activity and reduced anxiety-like behaviour through the agonism of 5-

HT1A receptors (De Gregorio et al., 2019; Russo et al., 2005). The reduced concentration of 

serotonin in this study can be attributed to the acute administration of CBD, thus only 

increasing when CBD was at its maximum concentration (Figure 14E). The anxiolytic effects 

of the 5-HT1A receptors are activated during chronic treatment of SSRIs and CBD, whereas 

anxiogenic effects may be produced in response to acute SSRIs and CBD administration (De 

Gregorio et al., 2019; Liu et al., 2018). In a previous study, an acute, single dose of CBD 

produced an increase in 5-HT levels through a 5-HT1A receptor-dependent mechanism in the 
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OBX murine model of depression (Linge et al., 2016). Behavioural and neurochemical studies 

by (Sales, Crestani, Guimarães, & Joca, 2018) suggest that the anti-depressant and anti-anxiety 

like effects of CBD are dependent on the concentration of serotonin.  

CBD acts on molecular targets that correspond to targets of neurological disorder treatments, 

such as benzodiazepines (Bih et al., 2015). The inhibition and activation of the main inhibitory 

neurotransmitter system, GABA, can be facilitated by CBD agonism at the transient receptor 

potential vanilloid type 1 (TRPV1) receptor (Ho, Ward, & Calkins, 2012; Musella et al., 2009). 

Our findings reported a gradual decrease in the GABA levels in healthy rats as the 

concentration of CBD decreased over time (Figure 14B). A study by (Kaplan, Stella, Catterall, 

& Westenbroek, 2017) demonstrated an anti-seizure effect of CBD in mice with Dravet 

syndrome which was associated with an upregulation of GABA neurotransmission. It is 

suggested that CBD may upregulate the neurotransmission of GABA through the antagonist 

action in the basal ganglia, at the G protein-coupled receptor 55 (GPR55) (Kaplan et al., 2017). 

The exact role of GABA remains unclear as an in vivo study reported an increase in GABA 

levels in healthy control patients, and a decrease of GABA in patients with autism spectrum 

disorder 5 hours post CBD administration (Pretzsch et al., 2019). 

A study by (Pretzsch et al., 2019) also presented a decrease in of glutamate in the dorsomedial 

prefrontal cortex in both healthy and autism spectrum disorder individuals, following the 

administration of 600 mg of CBD p.o. The decline of glutamate levels may have been a result 

of inhibition of the activity of the prefrontal glutamatergic neurons by CBD via the 5-HT1A 

receptors (Russo et al., 2005; Santana, Bortolozzi, Serrats, Mengod, & Artigas, 2004). The 

levels of glutamate also decreased as the concentration of CBD in the brain decreased 2 hours 

post administration (Figure 14C). However, a preclinical study by (Linge et al., 2016) showed 

an augmentation of glutamate in OBX mice. The increase of glutamate release was mediated 

by the action of CBD on 5-HT1A receptors (Linge et al., 2016). The anti-seizure properties of 

CBD were investigated by co-administration of CBD with cocaine (Gobira et al., 2015). The 

results of the study by (Gobira et al., 2015) indicated that CBD attenuates glutamate levels in 

the hippocampus via 5-HT1A receptors..  

During stressed conditions, the hyperactivity of norepinephrine (NE), by corticotrophin 

releasing factors, in the CNS can result in the manifestation of anxiety symptoms (Liu et al., 

2018). The NE levels showed no significant changes after CBD administration (Figure 14F), 

thus postulating that CBD has no significant effect on NE in a healthy rodent model.  This is 
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supported by a study by (Sales et al., 2018) which showed that NE levels were reduced by 

DSP-4, a noradrenalin neurotoxin. The effect of CBD on anxiety-related behaviour during the 

forced-swimming test was dependent of the facilitation of 5-HT  levels rather than NE itself 

(Sales et al., 2018). These results were corroborated as a DSP-4 did not inhibit the anti-

depressive effects of CBD (Ross & Stenfors, 2015). There is a mutual interaction between NE 

and 5-HT neurotransmission as the NE mediated activation of the α2- adrenergic receptors can 

prevent the release of 5-HT (Liu et al., 2018; Quesseveur et al., 2013). 5-HT systems can also 

negatively influence NE neurotransmission through the action of 5-HT2A and 5-HT2C systems 

(Hamon & Blier, 2013). The mutual interaction between NE and 5-HT is a possible explanation 

for the results obtained in this study, as there is a high concentration of NE, whilst the 

concentration of 5-HT remains fairly low (Figure 14E and 14F).  

The dopaminergic system, consisting of different dopamine receptors, is crucial in the 

modulation of anxiety in the amygdala (de la Mora, Gallegos-Cari, Arizmendi-García, 

Marcellino, & Fuxe, 2010) . Previous literature mostly reports the effect of CBD on the 

dopamine receptors, D1 and D2, rather than the concentration of dopamine in the brain 

(Seeman, 2016; Shin & Liberzon, 2010). Studies have provided evidence that the activation of 

the dopamine D1 receptor elicits anxiogenic effects, whereas antagonists induce anxiolytic 

effects in models of anxiety (de la Mora et al., 2010; Kupferschmidt, Newman, Boonstra, & 

Erb, 2012; Zarrindast, Sroushi, Bananej, Vousooghi, & Hamidkhaniha, 2011). The dopamine 

D2 receptors are involved in anxiety-like behaviour in the ventral tegmental area (de la Mora 

et al., 2010; de Oliveira et al., 2011). A decrease in dopamine levels can induce anxiety and 

depression-like behaviours (Jaunarajs, George, & Bishop, 2012). An insufficient function of 

DA receptors may result in failure in inhibition from the PFC to the amygdala, promoting 

hyperexcitability of the amygdala which results in the pathogenesis of anxiety (Liu et al., 2018). 

However, elevated levels of  DA are related to an increase in anxiety and depression in patients 

with paraganglinomas (Bonomaully, Khong, Fotriadou, & Tully, 2014). A study by (Seeman, 

2016) reported the partial agonist activity of CBD on dopamine D2 receptors as CBD prevented 

the binding radio-domperidone, contributing to the anti-psychotic effect of CBD. A study by 

(Murillo-Rodríguez, Palomero-Rivero, Millán-Aldaco, Mechoulam, & Drucker-Colín, 2011) 

demonstrated that perfusion of CBD in a sleep deprived rats increased extracellular DA 

concentrations during and after sleep deprivation, as sleep deprivation is associated with 

diminished DA levels. It can be speculated from our results that the anti-anxiety action of CBD 

as a dopamine agonist occurs at 0.5 and 2 hours post CBD administration as the DA levels are 
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increased (Figure 14D). At the 1-hour following drug dosing, there was a sudden decrease of 

DA (Figure 14D) with a concentration of 28.797 ± 0.356 ng/ml, whilst the level of 5-HT 

(Figure 14F) reached its Cmax of 22.746 ± 1.404 ng/ml. This could be explained by the action 

of 5-HT system via 5-HT2A and 5-HT2C receptors which can inhibit the DAergic system and 

induce short-term motor changes (Clausius, Born, & Grunze, 2009; Liu et al., 2018).  

Diminished BDNF levels are associated with stress, anxiety and depression (Castrén & 

Rantamäki, 2010). CBD, as an anti-depressant therapeutic, has been reported to increase BDNF 

levels in the brain (Giacoppo, Pollastro, Grassi, Bramanti, & Mazzon, 2017). Our results show 

a significant 25-fold increase of BDNF level at 2 hours, which could be a result of the high 

CBD concentration between 1 and 2 hours (Figure 15A). This rapid increase in BDNF is 

supported by (Sales et al., 2019) as BDNF levels in the prefrontal cortex and hippocampus, 

were increased 30 minutes following acute CBD administration (10 mg/kg). The augmentation 

of BDNF in neurodegenerative rodent models is also presented by (Mori et al., 2017) as acute 

CBD treatment increased BDNF levels in the hippocampus. The mechanism of action of CBD 

causing the upregulation in BDNF mRNA levels is unknown, however it is suggested to be a 

result of CBD demonstrating agonism at 5-HT1A receptors (Jiang et al., 2016). The activity of 

CREB in the hippocampus is upregulated in response to anti-anxiety and anti-depressant 

therapies (Carlezon Jr et al., 2005). The mRNA levels of CREB are upregulated post CBD 

administration when compared to the control (Figure 15B). At 1 hour following the 

administration of CBD, 5-HT reached the highest concentration and the expression of CREB 

increased from the control. This is supported by an increase in CREB expression in response 

to anti-depressants, such as SSRIs. The modulation of CREB expression can affect anxiety-

like behaviour as the anxiolytic effect of the 5-HT1A receptor agonist, such as CBD, is 

inhibited by a decrease in CREB activity (Zhang et al., 2016). The agonistic action of SSRIs 

and CBD at 5-HT1A receptors upregulates the phosphorylation of CREB in the hippocampus, 

which results in anti-anxiety behaviour by promoting neurogenesis and synaptogenesis (D. L. 

Wallace et al., 2009; Zhang et al., 2016; Zhang et al., 2010). 

5. Conclusion  

This study demonstrates the pharmacokinetic properties and pharmacodynamic effects of CBD 

in a healthy rodent brain. The findings show that CBD significantly alters the glutamatergic 

and GABAergic neurotransmitter systems in the brain while also significantly increasing 

BDNF expression. The findings of this study are important in not only improving the 
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understanding of the anxiolytic mechanisms of action of CBD but also by contributing to our 

currently limited knowledge on the neurological effects of CBD.  
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Chapter 3 – General discussion and Conclusion 

 

The anti-anxiety properties of CBD have been reported in many clinical and preclinical studies 

(Bandelow, Michaelis, & Wedekind, 2017). Since the legalization of Cannabis in many 

countries, CBD is receiving more attention for its medical properties and as an alternative 

treatment for many ailments, including neurological disorders. The pharmacological profile of 

the psychoactive cannabinoid, THC has been extensively studied, whilst the mechanism of 

CBD is not fully understood (Morales, Hurst, & Reggio, 2017). This study examined the 

pharmacodynamic properties of CBD following acute i.p. administration by evaluating the 

brain concentration of neurotransmitters and BDNF/CREB mRNA expression in a healthy 

rodent model. Our findings show that CBD reached its Cmax at 1-hour post drug administration 

which is consistent with literature as (Deiana et al., 2012) and (Hložek et al., 2017) reported 

the Tmax to be between 1 – 2 hours. A low dose, such as 10 mg/kg used in this study, CBD has 

been reported to induce anxiolytic effects in neurobehavioural studies. This mechanism of 

action can be explained by the agonism of CBD on serotonin 5-HT1A receptors (Campos, 

Ferreira, & Guimarães, 2012; Lee, Bertoglio, Guimarães, & Stevenson, 2017; Russo, Burnett, 

Hall, & Parker, 2005). The anti-anxiety and anti-depressant-like effects of CBD are associated 

with increased BDNF levels, which are usually reduced in anxiety and depression (Castrén & 

Rantamäki, 2010; Sales et al., 2019). The significant 25-fold increase of BDNF found in this 

study, 2 hours post CBD administration is indicative of the rapid effect of CBD on BDNF 

signalling. This increase in BDNF enhances neurogenesis, neuroplasticity and synaptic 

transmission through the activation of the TrKB-mTOR signalling pathway, contributing to the 

sustained anxiolytic effects of CBD (Autry & Monteggia, 2012; Palomares-Castillo et al., 

2012; Sales et al., 2019). The results of this study found an increase in CREB expression 

following acute CBD exposure (Figure 15B). The elevated levels of CREB are known to 

promote synaptogenesis and neurogenesis in response to CBD agonism at 5-HT1A receptors 

(Zhang et al., 2016), while the upregulation of hippocampal CREB expression results in anti-

anxiety effects (Zhang et al., 2016).  

This study demonstrated an increase in 5-HT levels 1-hour post CBD, thereafter, declining over 

time. This could be explained by the anxiolytic effects of CBD being mediated by 5-HT during 

chronic drug exposure  (De Gregorio et al., 2019). Acute treatment of CBD reacts similarly to 

SSRIs, by attenuating 5-HT neuron firing which decreases 5-HT levels as reported in our study 

(Figure 14E), whereas chronic treatment increases 5-HT transmission via desensitization of 5-
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HT1A receptors (De Gregorio et al., 2019; Russo et al., 2005). Norepinephrine is not 

significantly implicated during acute CBD administration, which is also seen in our study 

(Figure 14F)  (Sales, Crestani, Guimarães, & Joca, 2018). 5-HT has been reported to adversely 

affect NE transmission via the 5-HT receptors (Hamon & Blier, 2013). Modifications in 

dopaminergic systems that are responsible for anti-anxiety effects may be mediated by 

increases or decreases in 5-HT and NE signalling (Liu, Zhao, & Guo, 2018). Since diminished  

DA levels are related to anxiety-like behaviour, the increase in DA concentrations at 0.5 hours 

and 2 hours following drug exposure (Figure 14D) suggests that CBD exhibits anxiolytic 

effects by partial agonist action at dopamine D2 receptors and could be extremely beneficial in 

the treatment of anxiety (Seeman, 2016). The primary inhibitory, GABA, and excitatory, 

glutamate, neurotransmitters were significantly reduced from 4 hour following CBD exposure 

(Figure 14B and 14C). The decline in GABA is supported by a decrease in GABA seen in 

autism spectrum disorder (ASD) patients (Pretzsch et al., 2019), whereas an increase in GABA  

promotes anti-seizure affects observed in a Dravet syndrome murine model (Kaplan, Stella, 

Catterall, & Westenbroek, 2017). There are opposing theories regarding the mechanisms of 

action of CBD on GABA sand need to be supplemented with further research. Reports show 

that CBD has contradicting effects on glutamate as reduced levels are reported in ASD patients 

(Pretzsch et al., 2019) and elevated levels in a murine model after CBD p.o. (Linge et al., 2016). 

Glutamate attenuations and elevations are mediated via the 5-HT1A receptors as CBD either 

inhibits or activates the glutamatergic neurons (Gobira et al., 2015; Linge et al., 2016; Russo 

et al., 2005).  

The pharmacological action of CBD is dependent on many mechanisms of action, such as the 

mediation of the 5-HT1A receptors. However, from this study, the implications of other 

neurotransmitter systems have been highlighted. Further pre-clinical studies are required to 

investigate the pathways and receptors involved in the anxiolytic effects of CBD on 

neurotransmission and molecular expression. The acute administration of CBD, without the 

addition of anxiety behavioural models remains a limitation of this study. Future studies into 

the mechanism of action of CBD in the brain should consider the: (1) acute and chronic dosing 

of CBD at varying low-dose concentrations; (2) behavioural tests in anxiety models, such as 

elevated-T-maze, open field test, elevated plus maze, and  forced swimming test; (3) 

administration of  CBD with neurotransmitter receptor antagonists to confirm the action of 

CBD, such as WAY100635 antagonist of 5-HT1A receptors; and (4) investigations of other 

genes associated with anxiety, such as 5-HTT, 5-HT1A, and MAOA, to improve the 
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understanding of CBD as an anxiolytic therapeutic. Ultimately, the findings of this study 

contribute to understanding the pharmacological and neurological effects of CBD on the brain 

and its mechanism of action in the management of neurological disorders. 
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APPENDIX 

 

Evaluation of the use of cannabidiol in the treatment of anxiety related 

disorders by assessing changes in neurotransmitter levels and expression of 

CREB/BDNF in the rodent brain 
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Figure 16: Chromatograms of neurotransmitters and internal standard in solution. 
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Figure 18: Precursor and product ion [M+H]+ mass spectra of cannabidiol. 
 

 

Figure 19: Precursor and product ion [M+H]+ mass spectra of dopamine. 

Figure 17: Chromatogram of cannabidiol in solution. 
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Figure 20: Precursor and product ion[M+H]+ mass spectra of GABA 
 

 

Figure 21: Precursor and product ion [M+H]+ mass spectra of glutamate. 
 

 

Figure 22: Precursor and product ion [M+H]+ mass spectra of norepinephrine. 
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Figure 23: Precursor and product ion [M+H]+ mass spectra of serotonin. 
 

 

Figure 24: Precursor and product ion mass [M+H]+ spectra of D4-serotonin internal 

standard. 
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Figure 25: : Quantifier and confirming ion chromatograms of (A) dopamine, (B) 

GABA, (C) glutamate, (D) serotonin, (E) norepinephrine and (F) serotonin internal 

standard 
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ANIMAL ETHICS SUB-COMMITTEE 

 

APPLICATION FOR APPROVAL OF RESEARCH PROTOCOLS USING ANIMALS 

 

Please note that approval must be obtained for ALL work involving animals irrespective of 

the source of funding. DO NOT CHANGE THE FORMAT OF THIS FORM. 

 
This form is to be completed in typescript and one signed, hard copy to be submitted to 
Animal Ethics, Research Office, Govan Mbeki Bldg, Westville Campus AND an electronic 
copy submitted to animalethics@ukzn.ac.za. Please enter your surname between the marks 
at the top of each page. 
 
 

1. TITLE OF PROJECT 

The in vivo effects of cannabinoids on brain neurotransmitter levels and tissue epigenetic changes 

 

2. DETAILS OF APPLICANT 

 2.1 Title (e.g. Dr): Miss 

 2.2 Surname: Haripershad 

 2.3 Full name: Advaitaa Meera 

 2.4 Student / Staff Nr: 216001483 

 2.5 Applicant’s Race & Gender: Indian Female 

 2.6 Existing Qualifications: BSc Biological Sciences, BSc (Hons) 

 2.7 Proposed Qualifications / Position: MSc Medical Sciences   

 2.8 School: Health Sciences  

 2.9 Campus: Westville 

 2.10 Internal mailing address for sending hard copy of approval letter:  

Catalysis and Peptide Research Unit, Department of Pharmacy, Rm 016-060, E-Block 6th – 

Floor, University of KwaZulu-Natal, Westville Campus  

 2.11 Cell No: 0745291707   

 2.12 Email: 216001483@stu.ukzn.ac.za 

 2.13 Supervisor’s Details (if applicable) 

  Full Name: Dr. Sooraj Baijnath 

       Telephone Number:031 260 1799/ 084 562 1530         Email: Baijnaths@ukzn.ac.za 
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3. STAFF, RESEARCH ASSOCIATES, STUDENTS AND TECHNICIANS AUTHORISED 
TO CARRY OUT THE PROPOSED HANDS-ON ANIMAL STUDIES. 

Full name of team members 

(Exclude animal facility staff and technicians) 

 Academic qualification       Animal training                  
(If Yes, PROOF* to be 
attached) 

Advaitaa Haripershad BSc, BSc (Hons) Yes 

Dr S. Baijnath  B Med Sci, B Med Sci Hons, M 
Med Sci, PhD 

Yes  

   

   

   

*Proof can be a certificate of animal training, a first authored publication using animals, reference letter from relevant authority etc. 

4. EXPERIENCE IN WORKING WITH ANIMALS RELEVANT TO THE APPLICATION 

The Catalysis and Peptide Research Unit (CPRU) has performed numerous experiments 

utilizing the same experimental design. Dr, S. Baijnath is registered with the SAVC 

(registration number AR18/17074) for para-veterinary procedures and worked under the 

supervision of Dr. S.D. Singh and Dr. L. Bester.  

 

Publications by team member:  

Naidoo, V., Mdanda, S., Ntshangase, S., Naicker, T., Kruger, H.G., Govender, T., Naidoo, P., 

Baijnath, S. 2019. Brain penetration of ketamine: Intranasal delivery VS parentetal routes of 

administration. Journal of Psychiatric Research, 112: 7 -11.  

 

I have experience working with Sprague-Dawley rats during my BSc (Hons) in School of Life 

Science in 2018 under the approved ethical clearance number (AREC 040 018 H). I have 

attended the Animal Ethics Training course presented by University of Kwa-Zulu Natal’s 

Biomedical Resource Unit (2018) which entailed: Introduction to laboratory animal sciences. 

Bioethics and Animal experimentation. Animal Research Methodology. Experimental design, 

environmental enrichment and occupational safety. I have successfully completed the Animal 

Handling course presented by the BRU.  

5.    ANIMAL HOUSING FACILITIES WHERE WORK WILL BE CARRIED OUT 
 

 5.1. University of KwaZulu-Natal Centres 

  Biomedical Resource Unit (Westville)  

  School of Life Sciences (SLS) (PMB) Animal House 

   Ukulinga Research Farm (PMB) 

   Other (specify below under 5.2)  
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 5.2 Non-University of KwaZulu-Natal Centres* 

  PLEASE SPECIFY in FULL__________________________________________ 

 

 *N.B. If ALL of your work involving animals is performed at a Non-University of 
KwaZulu-Natal Centre, you need not complete the rest of this form, but you HAVE TO 
attach a letter of ethical approval obtained from the relevant authority at the Non-
University of KwaZulu-Natal Centre. 

6. BACKGROUND, OBJECTIVES AND POTENTIAL BENEFITS OF THE PROJECT 

 (Please give a clear and succinct statement of the background, objectives and potential benefits of 
the project under three separate headings - 3 pages allocated for this section including references) 

Background 

The plant, Cannabis sativa, comprises of more than 400 compounds, of that at least 

60 are cannabinoids which mediate its wide range of effects (Atakan, 2012). Delta- 9 

– tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main phytocannabinoids 

which are the most commonly researched (Huestis, 2007). Cannabidiol (CBD) is the 

main non-psychoactive constituent and is reported to have both therapeutic and 

adverse effects (Alexander, 2016). The pharmacological action of CBD is elicited 

through the binding of these compounds to the cannabinoid-1 receptor (CB1) and 

cannabinoid-2 receptors (CB2), which are located in the cannabinoid system (Boggs 

et al., 2016). The CB1 receptors are primarily expressed in the central and peripheral 

nervous system, as well as in the heart, bones, lung, thyroid liver, uterus, testicular 

tissue and the vascular endothelium (Pertwee, 2006; Russo and Guy, 2006). CB1 

receptors are located at the GABAergic terminals and on glutamatergic terminals of 

the central and peripheral neurons and, in the central nervous system of the brain 

areas that are related to the body’s’ stress response (Atakan, 2012; Kaur and Singh, 

2016). These brain areas include the central amygdala, basal ganglia, limbic system, 

hippocampus, frontal cortex, substantia nigra and the cerebellum (Pertwee, 2006). 

Cannabinoid-2 receptors are mainly expressed in the gastrointestinal system, immune 

cells and spleen, and are also expressed at low levels in the central and peripheral 

nervous system (Pertwee, 2006).   

 

In the brain, CB1 receptors mediate inhibitory actions by the ongoing release of 

excitatory and inhibitory dopaminergic, gamma-aminobutyric acid (GABA), 

glutamatergic, serotoninergic, noradrenalin and acetylcholine neurotransmitter 

systems (Atakan, 2012). The involvement of the neurotransmitter systems 

subsequently affects functions such as pain perception, memory, cognition and motor 

movements (Howlett et al., 2002). Cannabis influences the activities of 

neurotransmitters in the brain, as GABA, glutamate and dopamine are generally higher 

in rats treated with cannabis (Owolabi et al., 2017). Cannabidiol (CBD) has complex 

pharmacological mechanisms of action involving neurotransmitter systems and 

receptors. Most of the evidence suggests that CBD reduces many of the psychoactive 

effects of THC (Morgan et al., 2012; Boggs et al., 2016). Recent literature has 

described the anxiolytic and antipsychotic properties of CBD (Atakan, 2012; Deepak 

et al., 2012). A study performed by Owolabi et al. (2017) investigated the relationship 
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in the modifications in neurotransmitter levels and enzymes caused by cannabis 

exposure in rats. The findings of this study reported that higher doses of CBD can 

potentiate the lower doses of d-9-THC by increasing the level of expression of CB1 

receptor in the hippocampus and the hypothalamus (Owolabi et al., 2017).  

 

In addition to cannabis-induced neurotransmitter modifications, the global increase in 

cannabis legalization has resulted in evolving scientific interest on the impact of 

cannabis on epigenome modification (Dobs and Ali, 2019). Epigenetics can be defined 

as the process that alters gene regulation, without changes in the DNA sequence, that 

may result in a specific phenotype (Berger et al., 2009). Molecules, that influence gene 

constitution, can express or supress genes if frequently exposed to a stimulus such as 

cannabis (Dobs and Ali, 2019).   

There remains a need to supplement the available literature related to the neural effect 

of Cannabis use on behavioural changes, with the accompanying in situ 

neurochemical and biochemical changes (Owolabi et al., 2017). There are gaps in the 

knowledge of the pharmacokinetics and behavioural effects of THC and CBD, as well 

as its combination, across the various administration forms (Hlozek, et al., 2017). The 

dose effects of cannabinoids in vivo against in vitro have not been fully described 

(Hlozek et al., 2017). There are many unanswered questions relating to the use of 

epigenetics in cannabis use disorders and the extent of epigenetic modifications (Dobs 

and Ali, 2019). The outcome of cannabis exposure to adolescents and adults is 

unknown due to the limited knowledge pertaining to cannabinoid-mediated epigenome 

modulations (Dobs and Ali, 2019).  

This study aims to investigate the effect of cannabinoids on the neurotransmitters in 

the brain.  

AIM: 

1. To determine the concentration of cannabidiol in the brain  

2. To evaluate the effect of cannabinoids on neurotransmitters in the brain 

3. To investigate the impact of cannabinoid exposure on epigenome modulation  

OBJECTIVES: 

1. To utilize LC-MS to quantify cannabidiol concentration in the brain 

2. To identify the epigenetic biomarkers associated with cannabis exposure using 

Western Blots and PCR  

POTENTIAL BENEFITS: 

Recently, cannabidiol has been punted as a solution to many neuropsychiatric 

disorders including anxiety, depression, epilepsy and panic disorders. 

Neurotransmitters are implicated in the pathogenesis of these disorders, but this has 

not been substantiated with scientific evidence. This study will understand the role of 

CBD and its effects on neurotransmitters in the brain. This can be potentially used in 

studies to develop novel therapeutic strategies for mental health disease as well as 

leading to the identification of possible genetic targets for the treatment of substance 

abuse.  
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7. DESCRIPTION OF YOUR PLAN OF WORK
 (Read the notes on this section – Apart from detail description, a mandatory flow diagram of 
experimental design to be attached in separate sheets, 4 pages allocated for this section including 
references) 

7.1. Source of Animals 

The Sprague-Dawley rats are sourced from the University of KwaZulu-Natal (Westville 

campus). The animal requisition process has been established within the BRU and 

there will be random selection of the animals.  

7.2. Animal care: 

The animals will be provided with commercially pelleted food and clean water ad 

libtium. The well-being of the animals, as well as the food and water supplies, will be 

overseen by the facility veterinarian and laboratory supervisor including weekends and 

vacation periods. The animal holding area is visited daily by a registered veterinarian. 

7.3. Housing and enrichment  

The animals will be collected two weeks prior to the procedure to allow for 

acclimatization. The rats will be weighed to confirm that they weigh 110 – 120g. The 
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animals will be housed in well-ventilated cages, located in temperature and humidity-

controlled housing units. Environmental enrichment, in the form of shredding paper 

and plastic tunnels, will be added to the cage.  

7.4. Reagents 

Cannabidiol will be administered via intraperitoneal injection at a dose of 10mg/kg 

body weight, which is reported to have no toxic effect on the animal according to 

literature. A chronic cannabinoid exposure study by Long et al. (2010) effectively 

administered cannabidiol in a saline solution vehicle, via intraperitoneal injection, at 

doses of 1, 5, 10 and 50 mg/kg body weight. Dieana et al. (2012) successfully 

intraperitoneally injected cannabidiol at a dose of 120 mg/kg body weight. The dose 

was based on the maximal concentration of cannabidiol that can be diluted in solvent 

(Dieana et al., 2012). There was no reported drug toxicity in both studies. Studies 

have shown that CBD administration causes slight sedation and slowed motor 

movements. CBD administration has not reported adverse psychological or 

cardiovascular effects.  

 

 

7.5. Drug treatment  

The animals will be treated with 10mg/kg body weight of pure cannabidiol which will 

be suspended in a 1:1:18 mixture of ethanol: Tween 80: saline (Long et al., 2010). A 

volume of 1ml/ 250g body weight will be administered via intraperitoneal injection to 

the animals in both the acute and chronic group. There are number of preclinical 

studies which have administered cannabinoids (d-9-tetrahydrocannabinol and 

cannabidiol) via intraperitoneal injection (Wiley et al., 2007; Long et al., 2010; Dieana 

et al., 2012; Taffe et al., 2015).  

 

Number of animals  Cannabinoid exposure Route of administration 

27 Acute  Intraperitoneal injection  

18 Chronic  Intraperitoneal injection  

7.6. Humane endpoints 

A humane endpoint sheet (attached) will be used to record the well-being of the 

animals for each experiment and kept on file. If any animal appears to be in severe 

discomfort prior to the experimental time point, that animal must be euthanized. 

Animals will be monitored twice daily. Should an animal display a sign of discomfort or 

abnormal behaviour, the supervising vet (Dr S. Singh. SAVC registration number DA 
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93/3378 ) will be consulted and deem if necessary, to euthanize the animal. This will 

then be formally reported to AREC via the Adverse Events Form.  

 

7.7. Study design 

Forty-five male Sprague-Dawley rats (110-120g) will receive 10mg/kg body weight via 

intraperitoneal injection. The animals will be randomly selected and assigned to the 

specified groups. The rats will be housed in polycarbonate cages, with a cage density 

of 646cm2. There will be 15 cages with 3 rats per cage: 9 cages will be used for the 

acute treatment and 6 cages will be used for the chronic treatment.  

The quantification of cannabidiol in the brain will be determined after acute and chronic 

dosing plans. This will allow the quantification of cannabidiol as well as its effect on 

the neurotransmitters at different time points following various lengths of exposure. 

The time intervals were determined based on previous pharmacokinetic studies 

involving cannabidiol (Deiana et al., 2011).  

Acute: the quantification of cannabidiol will be determined at intervals of 0, 15, 30, 60, 

120, 240, 360, 480 minutes and 24 hours. 

Chronic: the quantification of cannabidiol will be determined at intervals of 0, 7, 14, 

21 and 28 days.  

A. Acute exposure  

Each Sprague-Dawley rat will be intraperitoneally administered a single dose of 

10mg/kg cannabidiol. Three rats will be terminated from the acute group at the 

respective time interval (table 1), to determine the concentration of cannabinoids in the 

brain tissue and its effect on the neurotransmitters.  

 

Table 4: Acute exposure group and the number of animals to be terminated at the 
time points of euthanasia.  

Group Time points after administration (minutes) Number of rats 

 0 15 30 60 120 240 360 480 24hr  

Acute 3 3 3 3 3 3 3 3 3 27 

 

B. Chronic exposure 

Each Sprague-Dawley rat will be intraperitoneally administered a daily dose of 

10mg/kg cannabinoid, 6 days of the week. Three rats will be terminated from the 
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chronic group at the respective time interval (table 2), to determine the concentration 

of cannabinoids in the brain tissue and its effect on the neurotransmitters.   

 

Table 5: Chronic exposure group and the number of animals to be terminated at the 
time points of euthanasia. 

Group Time points after administration (days) Number of rats  

 0 7 14 21 28 28 
 (control)  

 

Chronic 3 3 3 3 3 3 18 

 

7.8. Euthanasia  

The animals will be euthanized by isoflurane overdose followed by cardiac puncture to 

collect blood. The blood will be collected in heparin tubes. The carcass will be disposed 

of in an appropriate bag, which will be handed over to the BRU for appropriate disposal. 

 

 

 

7.9. Anaesthetic 

Isoflurane will be utilized as an anaesthetic, which will be administered to the animals prior 

to intraperitoneal injection to reduce any discomfort and pain caused to the animals.  

 

7.10. Tissue Harvest  

Following euthanasia of the animal, the brain tissues will be removed from the animal.  

The brain tissue will be cooled on ice for 15 minutes, before gradually freezing using 

liquid nitrogen vapour. Tissues will be stored at -80ºC until analysis. The carcass will 

be disposed of in an appropriate bag, which will be disposed by the BRU according to 

suitable disposal procedures. 

  

7.11. Analysis of tissue samples 

The analysis will be performed using Liquid chromatography-Mass Spectrometry, in 

combination with Bruker QTOF-II (Bruker Daltonics, Bremen, Germany), to quantify the 

concentration of cannabidiol in the brain, as well as the neurotransmitters, in both the 

acute and chronic groups.  
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8. INDEX OF PROCEDURES 

Consult the Approved Standard Protocols Booklet (available from the Research office 
website under “Research Ethics” at 
http://research.ukzn.ac.za/Libraries/Notices2011/Animal_Ethics-
Approved_standard_protocols_booklet_and_appendices_2007_sflb.sflb.ashx ) 

 

8.1  Experimental procedures (other than antibody production-see Table 8.2) included in the 
Approved Standard Protocols Booklet: Using the Approved Standard Protocols Booklet, 
note by title and code the protocols to be used for each of the experimental procedures 
other than antibody production in your proposed studies. 

 

Species1 Rat     

Strain Sprague-
Dawley 

    

Age/weight 110-120g     

Sex Male     

Number of animals  45     

Handling (code) RH 

 

    

http://research.ukzn.ac.za/Libraries/Notices2011/Animal_Ethics-Approved_standard_protocols_booklet_and_appendices_2007_sflb.sflb.ashx
http://research.ukzn.ac.za/Libraries/Notices2011/Animal_Ethics-Approved_standard_protocols_booklet_and_appendices_2007_sflb.sflb.ashx
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Code(s) for procedure(s) RIIP 

 

 

    

Pain level Moderate  

 

 

 

    

Euthanasia (code) REOD 

 

 

 

    

Name of anaesthetic/ analgesic Isoflurane  

 

    

1 In the case of amphibians and reptiles, indicate genus and fish genus or other convenient 
grouping. 

 

 

 

 

 

 

8.2  Antibody production:  Antibody production follows the general format of animal handling, 
immunisation, bleeding and eventually euthanasia, with each researcher using a number 
of unique schedules. To expedite review, use the Approved Standard Protocols Booklet 
code numbers and simply indicate the species, route of injection, total number of injections, 
type of adjuvant, method of bleeding, including volume and frequency, and method of 
euthanasia. 

Species1      

Strain      

Age/weight      

Sex      

Number of animals/immunogen      

Handling (code)  

 

 

 

    

Injection (code)  
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Total number of immunisations      

Adjuvant(s)       

Bleeding route (code)  

 

 

 

    

Blood volume      

Bleeding frequency      

Euthanasia (code)  

 

 

 

    

List of immunogens to be used: 

 

 

Will non-physiological, unusually painful, or harmful material be injected?  If so, explain and 
justify (see pain categories). 

 

 

 

 

 

 

 8.3  Experimental procedures NOT included in the Approved Standard Protocols Booklet. Please 
give details of all procedures using the same format as that in the Booklet.  Please use 
additional sheets if necessary. 

 

Yes, all procedures have been accounted for under section 7.9 Tissue Harvest.  

 

 

 

 

 

9. What is your assessment of the overall severity of this project? 

 Please tick in one box only to indicate your assessment. 
 

  Substantial  

  Moderate 

  Mild 

  Unclassified 

 

 



87 

 

9.1  Have all surgical and non-surgical procedures been clearly and completely described, 

consistent with the experimental design outline? – Explain briefly. 

Yes, all the procedures have been described in accordance with the Animal Ethics Approved Standard 

Protocols.  

 

 

9.2 Has pain, discomfort and distress to the animal(s) been minimized or avoided to the fullest 

extent possible? – Explain briefly. 

Yes, the experimental design has been developed with the 3R’s in consideration.  

Replacement: This study will investigate the effect of cannabinoids on the neurotransmitters in the 

brain, as well as the related epigenetic changes. Therefore, the use of animals in this project cannot 

be replaced as the changes in neurotransmitters cannot be observed using cell cultures or cell lines. 

There were efforts made to reduce the number of animals and refine the protocol whilst ensuring the 

number of animals per group can be used for statistical analysis  

 

Reduction: To reduce the number of animals used, the LC-MS will be conducted by utilizing half of 

the cerebral hemisphere, and the other half will be used to conduct epigenetic tests, instead of 

sacrificing a single animal for each experimental analysis. 

 

Refinement: The rats will be injected with a 27-gauge needle to reduce pain and discomfort 

experienced by the animal. The chronic treatment will be administered 6 days a week, allowing one 

day for the recovery and rest of the animal During the chronic treatment, there will be swapping of the 

peritoneum sides during intraperitoneal injection to minimize discomfort to the animal.  Environmental 

enrichment, in the form of shredding paper and/or plastic tunnels, will be added to the cages to 

minimize stress caused to the animal. Upon termination, the animals will be euthanized by an 

isoflurane overdose, before collecting tissue samples, thereby preventing pain and discomfort to the 

animal.  

 

9.3 Is there any appropriate plan for monitoring animals for pain, discomfort and distress, including 

criteria for determining early euthanasia (humane endpoint)? – Explain briefly. 

 

Yes, the humane endpoint form is attached to the application to record the well-being of the animal 

and will be kept on file.  
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SUBMISSION CHECK LIST (Click on the appropriate boxes to complete) 
 

  YES NO N/A 

1 Is your supervisor’s (if not self-supervised) progress reports for 
all applications / renewals approved since January 2017 up to 
date (if applicable)? 

☒ ☐ ☐ 

2 Are the contact details of the applicant and main supervisor 
supplied?  

☒ ☐ ☐ 

3 Are the members of the research team qualified and 
experienced in the procedures to be performed?  

☒ ☐ ☐ 

4 Are the PROOFs of animal training for main applicant 
(mandatory) and other members in the application enclosed as 
mentioned in section 3? 

☒ ☐ ☐ 

5 Is a clear and succinct statement of the background, objectives 
and potential benefits of the project given under section 6? 

☒ ☐ ☐ 

6 Are all housing, feeding, surgical and non-surgical procedures 
clearly and completely described, and are they consistent with 
the experimental design? 

☒ ☐ ☐ 

7 Is there adequate statistical or technical justification provided 
for the number of requested animals? 

☒ ☐ ☐ 

8 Are the following mandatory items attached to the application 
form? 

a) a complete flow diagram of experimental design;  
b) a humane endpoint form / table specific to you project. 

☒ ☐ ☐ 

9 Have you discussed your experimental design with an expert 
animal facility staff/technician? 

☒ ☐ ☐ 

10 Have you obtained all necessary permits for your experimental 
procedures? 

☐ ☐ ☒ 

11 Do you need a provisional approval letter from AREC to apply 
for any permits/site approval? 

☐ ☒ ☐ 

12 Has scientific content of the application been thoroughly 
reviewed by your supervisors (if applicable)? (mandatory for all 
application submitted by postgraduate students and 
postdoctoral / research fellows) 

☒ ☐ ☐ 

13 Are all sections of the applications completed and signed by all 
parties? 

☒ ☐ ☐ 
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10. DECLARATION BY THE APPLICANT AND HEAD OF SCHOOL 
 I have considered the feasibility of achieving the purpose of the project by means other than 

those using animals and, in my opinion, no such alternatives would achieve the objectives 
of this project. I agree to follow the Approved Standard Protocols Booklet and any delineated 
modifications as approved by the Animal Ethics Sub-committee.  I will also supervise and 
assure compliance and training by my co-workers and students as listed above. 

 
 
  ____________________________    
   SIGNATURE OF APPLICANT DATE 
 
 

 __________________________________  
                 INITIALS & SURNAME OF SUPERVISOR*  
     (Please complete – required for mailing copy of approval letter.) 

 
 

  _________________________________  _______________________ 
    SIGNATURE OF SUPERVISOR*        DATE 
  
 

  ____________________________________  
               INITIALS & SURNAME OF D&HoS / ALR  
     (Please complete – required for mailing copy of approval letter.) 
 

 
 __________________________________         _______________________ 
        SIGNATURE OF D&HoS / ALR                    DATE 
 
*Name and signature of supervisor required if application submitted by postgraduate & postdoctoral students 

 

 
FOR ANIMAL RESEARCH ETHICS COMMITTEE USE 

 
  
    AREC REVIEW/APPROVAL DATE  ______________________  
 
 
 APPROVAL AREC  ______________________  
 
  SIGNATURE 
 
 REFERRED BACK TO APPLICANT   
 FOR REASONS SHOWN  ______________________________________  
   
  ____________________________________________________________________  
 
 

 

 

 23 August 2019  

S. Baijnath 


