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DISSERTATION ABSTRACT 

Dry bean is an important legume crop worldwide. In South Africa it is a major source of plant 

protein and income among growers. The crop is mainly produced in the Free State, 

Mpumalanga, Gauteng, KwaZulu-Natal, North-West, Limpopo and Eastern Cape provinces, 

all exhibiting different agro- ecological conditions such as temperature, humidity, soil fertility 

and rainfall. Crop productivity is low such that national demand outstrips production. The main 

attributing factors to low production include abiotic and biotic stresses. Yield instability due to 

environmental changes and common bacterial blight disease (CBB) caused by Xanthomonas 

axonopodis pv phaseoli (Xap) (Smith) Vauterin, Hoste, Kosters & Swings and its fuscans 

variant, X. fuscans sbsp. fuscans (Xff) are considered to be major attributing factors to low 

productivity. The overall goal of the research was to contribute to the improvement dry bean 

production in South Africa through identifying stable and high yielding cultivars from the 

released cultivars, identifying mega environments for dry bean production and  conducting pre-

breeding experiments that will results in the generation of information relevant to common 

bacterial resistance breeding in South Africa.  

Yield stability and adaptation was studied using data of 30 released cultivars from the national 

cultivar trials planted in 21 locations of which 17 are in South Africa, two in Swaziland and two 

in Lesotho. Additive main effect multiplicative interaction (AMMI) statistical model was used to 

investigate yield stability and adaptation in the study. The results revealed that variances due 

to environment, genotype and genotype by environment interaction were all significant 

(P<0.01). The AMMI analysis also showed that interaction principal components (IPCA1, 

IPCA2 and IPCA3) were all significant (P<0.01). Based on the AMMI stability value, cultivars 

G6 and G14 were both identified as stable and high yielding. Their yield exceeded the grand 

mean yield of 1.3 t ha-1. Cultivars G20, G26 and G29 were high yielding with mean yield 

exceeding the grand mean, but exhibiting specific adaptation.  

A total of 60 genotypes were evaluated for both CBB resistance and grain yield. Eight of the 

evaluated genotypes were from the local dry bean breeding programmes. These local cultivars 

were considered as checks in the experiment. The evaluation study was conducted at two 

localities in South Africa (Cedara and Potchefstroom) under artificial inoculation using a 

mixture of two local isolates (Xf260 and Xf410).  Relative area under disease progress curve 

(RAUDPC) was used to determine reaction to CBB. The evaluated germplasm exhibited 

different reactions to CBB. Approximately 20% of genotypes exhibited resistance across the 

two locations, 43% and 37% showed moderate and susceptible reaction to CBB, respectively. 
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Mean grain yield was 1.29 t ha-1. The majority of susceptible genotypes yielded below the 

mean. However, there was a weak negative correlation (r = -0.48, P = 0.05) between disease 

reaction and yield. Genotypes ADP-0041, ADP-0790, M-125, ADP-0096, ADP-0544 and M-

191 were selected as both high yielding and resistant. These genotypes exhibited good levels 

of resistance and yielded above 1.7 t ha-1. Genotypes ADP- 0055, ADP-0099 and ADP-0103 

were selected on the basis of yield. These genotypes yielded above 1.7 t ha-1 but showed 

susceptible reaction to CBB. 

A study was initiated using two crosses from South African market class cultivars (Teebus- 

RCR 2 x Teebus-RR 1 and RS 7 x Tygerberg) to investigate the mode of gene action governing 

inheritance, estimate heritability, establish the significance of maternal effects in CBB 

resistance and determine the efficacy of marker assisted selection (MAS) in CBB resistance 

breeding using two SCAR markers BC420 and SU91. Beside additive-dominant gene effects, 

epistatic gene effects were also detected. Dominant gene effect was of more significance than 

additive gene effects in both crosses. Duplicate epistasis was detected in the Teebus-RCR 2 

x Teebus-RR 1 cross. Gene dispersion was detected in both crosses. Heritability of CBB 

resistance was moderate in both crosses, maternal effect was of significance in the two 

crosses and lastly, resistance was found to be linked to two QTL SCAR markers (BC420 and 

SU91) in Teebus- RCR2. Both markers were absent in RS 7. SU91 was found to be the only 

marker that could be effectively utilized in MAS. The implication of these findings for CBB 

resistance breeding is that it will affect the selection strategy to be deployed and also the choice 

of a female parent in resistance breeding programme. Backcross breeding, recombinant 

breeding, delayed selection, choosing a resistant parent as a female parent and using MAS 

especially in crosses involving Teebus-RCR 2, could yield positive result in CBB resistance 

breeding programme if these parents are to be used. 

In general, the study confirmed the existence of genotype by environment interaction in South 

African dry bean growing environment, and valuable common blight resistant and high yielding 

dry bean lines, which could be used in dry bean breeding, were identified. Lastly, the 

inheritance mechanism of common blight resistance and the efficacy of marker assisted 

breeding for the trait were established.   

 

 

  



 

 

iii 

 

DECLARATION  

I, Wilson Nkhata, declare that, 

The research reported in this dissertation, except where otherwise indicated, is my original 

work. 

This dissertation has not been submitted for any degree or examination at any university. 

This dissertation does not contain other person’ data, pictures, graphs or other information 

unless specifically acknowledged as being sourced from other persons. 

This dissertation does not contain other persons’ writing unless specifically acknowledged as 

being sourced from other researchers. Where other written sources have been quoted, then: 

Their words have been rewritten or rephrased, but the general information attributed them has 

been referenced. 

Where exact words have been used, then their writing has been placed in italics and inside 

quotation marks and referenced 

This dissertation does not contain text, graphic or tables copied from the internet unless 

specifically acknowledged and the source being detailed in the dissertation and in the 

reference sections 

 

Signature   Date: 14th March 2017 

                                                   Wilson Nkhata 

As the candidate’s supervisors, we agree the submission of this dissertation: 

Signature  Date: 14th March 2017 

Prof Rob Melis (Main Supervisor) 

 

 

Signature                                                          Date: 14th March 2017     

Dr Deidré Fourie (Co-Supervisor) 

 



 

 

iv 

 

 

ACKNOWLEDGEMENTS 

First and fore most I would like to express my sincere gratitude to my supervisors, Prof Rob 

Melis and Dr Deidré Fourie for their outstanding guidance and support from the field to the time 

of dissertation write up. I have reached this far because of your untiring efforts and inspiration. 

I would also like to thank Dr Julia Sibiya the manager of the Improvement Masters in Cultivar 

Development for Africa (IMCDA) at the University of KwaZulu-Natal (UKZN) and the former 

manager Prof John Derera for their outstanding managerial expertise that resulted into the 

smooth facilitation of the study.  

I would also like to thank Jayshree Singh the administrative personnel for the MSc programme 

for highly contributing to my academic education and wellbeing during the study. 

This study would not have been possible if there was no financial support from AGRA. 

Therefore I sincerely thank AGRA for the assistance. 

Special thanks to ARC GCI and Pro-Seed for providing data and germplasm that was used in 

the study. 

I am also grateful to Agricultural Research Council-Grain Crop Improvement (ARC-GCI) for 

giving me the opportunity to do my research using their facilities and also work there as an 

intern. Special mention goes to Fihliwe Kubeka, Josephine Mokoatsane, Innocentia Gwili, 

Daniel Mohohlo, Petros Macu and Nondumiso Mahlalela for their tireless effort during field 

research. In additional I would also like to thank Dr Edmore Gasura for assistance in data 

analysis. 

Lastly I would like to thank my parents, brothers and sisters and everyone who has contributed 

to the success of this research 

 

 

 

 

 

 

 



 

 

v 

 

 

 

 

 

DEDICATION 

The dissertation is dedicated to the work and contribution of Prof Rob Melis and Dr Deidré 

Fourie to research of dry bean in Africa 

 

 

 

  



 

 

vi 

 

TABLE OF CONTENTS 

Dissertation abstract ............................................................................................................... i 

Declaration ............................................................................................................................ iii 

Acknowledgements ............................................................................................................... iv 

Dedication .............................................................................................................................. v 

Table of Contents ................................................................................................................. vi 

Abbreviations .......................................................................................................................... i 

Introduction to Dissertation .................................................................................................... 1 

1 Background............................................................................................................ 1 

2 Importance of dry bean .......................................................................................... 2 

3 Dry bean production constraints in South Africa ..................................................... 2 

4 Problem statement and justification ....................................................................... 3 

5 Overall research goal ............................................................................................. 3 

6 Dissertation outline ................................................................................................ 4 

7 References ............................................................................................................ 5 

Chapter 1 .............................................................................................................................. 6 

Literature review .................................................................................................................. 6 

1.1. Introduction ................................................................................................. 6 

1.2. Botany and genetic diversity of dry bean .................................................... 6 

1.3. Taxonomy of dry bean ................................................................................ 7 

1.4. Morphology of dry bean .............................................................................. 7 

1.5. Dry bean growth habit ................................................................................ 8 

1.6. Genetic diversity of dry bean ...................................................................... 8 

1.7. Dry bean production ................................................................................... 9 

1.8. Dry bean yield limiting factors ................................................................... 10 

1.9. Common bacterial blight of dry bean ........................................................ 11 

1.9.1. Epidemiology of common bacterial blight .................................................. 12 



 

 

vii 

 

1.9.2. Taxonomy of common bacterial blight pathogen ....................................... 13 

1.9.3. Modes of penetrations .............................................................................. 13 

1.9.4. Genetic variability of common bacterial blight pathogen ........................... 14 

1.9.5. Host plant resistance ................................................................................ 15 

1.9.6. Sources of resistance ............................................................................... 16 

1.9.7. Inheritance mechanism............................................................................. 17 

1.9.8. Marker assisted selection in common bacterial blight resistance .............. 17 

1.9.9. Screening for resistance ........................................................................... 18 

1.10. Mating designs and genetic analysis and generation mean analysis ........ 19 

1.11. Genotype by environment interaction ....................................................... 20 

1.12. Methods for analysing yield stability in multi-environment trials ................ 21 

1.13. Conclusion................................................................................................ 22 

1.14. References ............................................................................................... 23 

Chapter 2 ............................................................................................................................ 32 

Yield stability and adaptation analysis of South African dry bean cultivars ................. 32 

Abstract ............................................................................................................................... 32 

2.1. Introduction ............................................................................................... 33 

2.2. Materials and methods ............................................................................. 34 

2.3. Agronomic characteristics of the cultivars ................................................. 36 

2.4. Results ..................................................................................................... 38 

2.4.1. Combined analysis of variance for grain yield ........................... 38 

2.4.2. Additive multiplicative main effect analysis of variance for grain 

yield .......................................................................................... 38 

2.4.3. Mean yield and AMMI stability values for cultivars .................... 39 

2.4.4. Mean yield and AMMI stability values for environments ............ 40 

2.4.5. Interaction principal components scores for cultivars and 

environments ............................................................................ 41 

2.4.6. First four selections per environment ........................................ 41 



 

 

viii 

 

2.4.7. Additive multiplicative main effect interaction bi-plot ................. 42 

2.5. Discussion ................................................................................................ 43 

2.6. Conclusion................................................................................................ 45 

2.7. References ............................................................................................... 46 

Chapter 3 ............................................................................................................................ 48 

Evaluation of newly introduced dry bean germplasm for yield and common 

bacterial resistance .................................................................................................... 48 

Abstract ............................................................................................................................... 48 

3.1. Introduction ............................................................................................... 49 

3.2. Materials and methods ............................................................................. 50 

3.2.1. Plant materials .......................................................................... 50 

3.2.2. Experimental sites .................................................................... 50 

3.2.3. Experimental design and management ..................................... 50 

3.2.4. Field inoculation ........................................................................ 50 

3.2.5. Data collection .......................................................................... 51 

3.2.6. Data analysis ............................................................................ 51 

3.3. Results ..................................................................................................... 52 

3.3.1. Weather data ............................................................................ 52 

3.3.2. Analysis of variance .................................................................. 52 

3.3.3. Correlations among traits .......................................................... 53 

3.3.4. Relative life time ....................................................................... 54 

3.3.5. Relative area under disease progress curve ............................. 54 

3.3.6. Genotypes reaction to common bacterial blight disease ........... 54 

3.3.7. Relationship between disease reaction and grain yield ............. 55 

3.3.8. Relationship between selected morphological traits and reaction 

to common bacterial blight ........................................................ 55 

3.4. Discussion ................................................................................................ 56 

3.5. Conclusion................................................................................................ 58 



 

 

ix 

 

3.7. Reference ................................................................................................. 59 

3.8. Appendices ............................................................................................... 62 

Chapter 4 ............................................................................................................................ 71 

Heritability and efficacy of marker assisted selection in breeding for common 

bacterial blight resistance in South African dry bean germplasm ......................... 71 

Abstract ............................................................................................................................... 71 

4.1. Introduction ................................................................................................... 72 

4.2. Materials and methods .................................................................................. 73 

4.2.1 Greenhouse inoculation ............................................................ 73 

4.2.2 Leaf sample preparation and deoxyribonucleic acid (DNA) 

extraction .................................................................................. 74 

4.2.3 SCAR markers and PCR reactions ........................................... 74 

4.2.4 Data collection .......................................................................... 75 

4.2.5 Data analysis ............................................................................ 76 

4.2.6 Gene effect estimation .............................................................. 76 

4.2.7 Heritability estimation ................................................................ 77 

4.3. Results .......................................................................................................... 79 

4.1.1. Generation mean analysis of variances for reaction to common 

bacterial blight .......................................................................... 79 

4.1.2. Maternal effects generation analysis of variance for reaction to 

common bacterial blight ............................................................ 80 

4.1.3. Gene action .............................................................................. 80 

4.1.4. Heritability estimate .................................................................. 82 

4.1.5. Confirming the presence of markers in parental genotypes ...... 83 

4.1.6. Proportionality of individual plants with markers in progenies of 

Teebus-RCR 2 and Teebus-RR 1 ............................................. 83 

4.1.7. Confirming the efficiency of marker assisted selection using F2 

plants of Teebus-RCR 2 x Teebus-RR 1 ................................... 85 

4.4. Discussion .................................................................................................... 86 



 

 

x 

 

4.5. Conclusion .................................................................................................... 89 

4.5. Reference ..................................................................................................... 91 

Chapter 5 ............................................................................................................................ 95 

Overview of the study ........................................................................................................ 95 

Yield stability and adaptation analysis of South African dry bean cultivars ........... 95 

Evaluation of newly introduced dry bean germplasm for resistance to common 

bacterial blight and for yield ...................................................................... 96 

Heritability and efficacy of marker assisted selection in breeding for common 

bacterial blight resistance in South Africa dry bean germplasm ................ 96 

Breeding implications and recommendations ....................................................... 97 

References .......................................................................................................... 99 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

i 

 

ABBREVIATIONS  

ADP  Andean Diversity Panel 

AFLP  Amplified Fragment Length Polymorphism  

AMMI  Additive Main Effect Multiplicative Interaction 

ANOVA Analysis of Variance 

ARC-GCI Agricultural Research Council-Grain Crop Institute 

ASV  AMMI Stability Value 

CBB  Common bacterial blight 

CIAT  Centre for International Tropical Agriculture 

CV  Coefficient of Variation 

DAFF  Department of Agriculture, Forestry and Fisheries 

DDAP  Days to each disease assessment after planting 

DF  Degrees of freedom 

DNA  Deoxyribonucleic acid  

DPM  Days to physiological maturity 

FD  Days to flowering 

GEI  Genotype by environment interaction 

GGE  Genotype main effects and genotype by environment interaction 

IMCDA  Improvement Masters in Cultivar Development for Africa 

IPCA  Interaction principal components Axis 

LSD  Least significance difference 

Masl  Metres above sea level 



 

 

ii 

 

MAS  Marker assisted selection 

MS  Mean sum of squares 

NCT  National Dry Bean Cultivar Trials  

PCR  Polymerase chain reaction  

PIC  Phaseolus improvement cooperative 

QTL  Quantitative trait loci 

RAPD  Random amplified polymorphic DNA  

RAUDPC Relative area under disease progress curve 

REML  Residual maximum likelihood 

RLT  Relative lifetime  

SCAR  Sequence conserved amplified repeats 

SS  Sum of squares 

 

 

 

 



 

 

1 

 

INTRODUCTION TO DISSERTATION  

1 Background 

Dry bean (Phaseolus vulgaris L.) (2n =22) is the third most important grain legume crop in the 

world and represents 50% of grain legumes for direct consumption (Zhang et al., 2008; Blair et 

al., 2009). The crop is grown on all continents between 52 o N and 32 o S, from sea level to as 

high as 3000 m above sea level. Production in Africa is mainly concentrated in East and Southern 

Africa where a total of 3.7 million ha of arable land is devoted to the crop annually (Kimani et al., 

2001). Mean annual production in South Africa is 56,411 metric tons (2006-2015) on an area of 

47,677 ha which does not meet the annual demand of 120,000 metric tons (Kleingeld, 2015). In 

South Africa, the crop is mainly produced in the Free State, Mpumalanga, Gauteng, KwaZulu-

Natal, North West, Limpopo and Eastern Cape provinces. 

Table 1.  Dry bean production from 2006-2015 in South Africa 

Year Harvested area (ha) Quantity (MT) 
Average yield 

(t ha-1) 

2006 60,000  61,500  1.0 

2007 51,000  35,290  0.7 

2008 40,000  52,223  1.3 

2009 42,000  62,520  1.5 

2010 41,600  47,899  1.2 

2011 41,900  40,992  1.0 

2012 37,050  47,689  1.3 

2013 43,550  60,600  1.4 

2014 55,670  82,129  1.5 

2015 64,000  73,330  1.1 

Source; Kleingeld, C. (2015) 
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Figure 1. National dry bean consumption for South Africa 2005-2015 

Source; Kleingeld, C. (2015) 

2 Importance of dry bean 

Dry bean is rich in proteins, carbohydrates and vitamins. It is also rich in minerals such as 

phosphorus, copper, manganese and magnesium. The crop is ideal in enhancing food security 

and in combating nutritional deficiencies. Due to its high protein content, dry bean has been 

described as “the meat for the poor” as it is the best substitute of animal protein, which is 

expensive (Kimani et al., 2001). In sub-Saharan Africa, dry bean is mainly used as relish (sauce). 

The leaves, green pods, fresh seeds and dry grains of this crop can be consumed. Dry bean 

improves soil fertility by fixing nitrogen in the soil, an intrinsic feature of legumes (Rondon et al., 

2007). This is an added advantage, especially when intercropped with maize because it reduces 

amounts of inorganic fertilizers to be applied, as these are expensive, especially for the resource 

limited farmers. Apart from being a source of food and improving soil fertility, dry beans also 

provide a supplementary source of income to farmers, especially rural women. 

3 Dry bean production constraints in South Africa 

The mean yield (1.2 t ha-1) of dry bean in South Africa is much less as compared to achievable 

yields in North America (3 t ha-1) (Graham and Ranalli, 1997). Apart from low yield per ha, dry 

bean production in South Africa is further characterised by yield instability. The causes of low 
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yield and yield instability are abiotic stresses (unreliable rainfall, adverse temperatures and low 

soil fertility) and biotic stresses (diseases and insects). Among the diseases, common bacterial 

blight (CBB), caused by Xanthomonas axonopodis pv phaseoli (Xap) (Smith) Vauterin, Hoste, 

Kosters & Swings and its fuscans variant, X. fuscans sbsp. fuscans (Xff) is considered as one of 

the most important bacterial diseases in South Africa. The disease occurs in almost all dry bean 

producing areas in the country (Fourie, 2002) and may result in yield loss of up to 60% under 

severe conditions (Marquez et al., 2007). 

4 Problem statement and justification 

The demand for dry beans in South Africa outstrips the production. Yield instability and CBB are 

major causes of low production. Thus the need of identifying cultivars that are stable, high yielding 

and resistant to CBB. This study was, therefore, undertaken to evaluate local cultivars for yield 

stability and adaptation and to screen new introductions for yield factors and the reaction to CBB.  

In addition, the study investigated the efficacy of marker assisted selection in breeding for CBB 

resistance in South Africa. 

5 Overall research goal 

The overall goal of the research was to contribute to the improvement of dry bean production in 

South Africa through identifying stable and high yielding cultivars and conducting pre-breeding 

experiments that will result in generation of information relevant to common bacterial resistance 

breeding in South Africa.  

The specific objectives for the research were as follows: 

 To determine the grain yield stability and adaptability of 30 South African dry bean cultivars 

grown in 21 environments. 

 

 To evaluate newly introduced dry bean germplasm for yield and resistance to common 

bacterial blight. 

 

 To investigate the heritability of common blight resistance and the efficacy of marker 

assisted selection for the trait in breeding for common bacterial blight resistance. 
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6 Dissertation outline 

The dissertation is in the form of discrete research chapters, each following the format of a stand-

alone research paper. This is the dominant dissertation format adopted by the University of 

KwaZulu-Natal. As such, there is some non-avoidable repetition of references and some 

introductory information between the chapters. The advantage of this format is that it facilitate 

publication of research papers since each paper stands as a research article. The referencing 

system used in this dissertation is based on the “Crop Science Society of America (CSSA)”, 

referencing style and follows the specific style in the “Crop Science Journal”. 

Table 2. The outline of the dissertation is as follows 

Chapter               Title  

Dissertation introduction 

1    Literature review  

2    Yield stability and adaptation of analysis of South African dry bean cultivars 

3 Evaluation of newly introduced dry bean germplasm for resistance to common 

                         bacterial blight and for yield 

4                       Investigating heritability and efficacy of marker assisted selection in breeding 

                         for common bacterial blight resistance in South African dry beans 

5                       General overview of the study and implications for breeding 
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CHAPTER 1 

LITERATURE REVIEW 

1.1. Introduction 

This chapter is a review of the origin, domestication, botany and diversity of dry beans. It also 

highlights constraints associated with dry bean production in brief and specifically of the common 

bacterial blight, its epidemiology and the taxonomy of the pathogen causing the disease. Efforts 

on breeding resistance to common bacterial blight and achievements are also reviewed, which 

includes the genetics of the common bacterial blight disease resistance and defence mechanisms 

to the disease in a plant. The chapter further discusses the mating designs and their importance 

in genetic studies in brief and application of generation mean analysis and how it has been 

exploited by breeders in genetic studies. The effect of genotype by environment interaction in 

plant breeding programme and its analytical techniques used in quantifying it, is also highlighted. 

1.2. Botany and genetic diversity of dry bean 

Dry bean (Phaseolus vulgaris .L) is native of America and two gene pools of wild dry beans exist, 

namely, Mesoamerican and Andean gene pools (Singh and Schwartz, 2010). The Andean dry 

beans are large seeded, while the Mesoamerican are small seeded (Singh, 2001). It is believed 

that domestication of the two gene pools, started almost at the same time, between 7000 to 8000 

years back around the Andean and Mexican highlands, respectively (Gepts and Debouck, 1991). 

The domesticated dry bean evolved over time from wild dry bean through continuous selection, 

mutation and migration. Growth habit, seed size, seed retention, and maturity are some of the 

distinct features that distinguish the modern cultivated dry bean from their ancestral wild form 

(Gentry, 1969). In terms of distribution from the two centres of origin to the rest of the world, the 

Andean beans are presently predominantly grown in Africa, Europe and north-eastern United 

States, while Mesoamerican beans are predominately grown in South America, an indication that 

the distribution of the two gene pools followed two different routes (Gepts and Bliss, 1985). A 

comparison of the genetic diversity of the two gene pools based on molecular analysis showed 

that Mesoamerican dry beans have a wider genetic diversity than Andean dry beans, although 

the latter have a remarkable morphological diversity (Santalla et al., 2004). Another prominent 

and  interesting feature of these two gene pools is that hybridization between them can result in 

weak F1 plants which is reported to be an attribute of independent evolution (Gepts and Bliss, 

1985; Gepts and Debouck, 1991). 
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1.3. Taxonomy of dry bean  

The dry bean (Phaseolus vulgaris L.) belongs to the family Fabaceae (Leguminosae) sub-family 

Papilionoideae and genus Phaseolus. The genus is found in the Mexican mountains, containing 

50 species of which five are being cultivated, namely, dry bean (Phaseolus vulgaris L.), lima bean 

(Phaseolus lunatus L.), scarlet runner bean (Phaseolus coccineus L.), year-bean (Phaseolus 

polyanthus Greenman) and tepary bean (Phaseolus acutifolius A.Gray). Among these five, dry 

bean (Phaseolus vulgaris L.) is the most cultivated and widely distributed. It is cultivated both in 

the tropical and subtropical environment and approximately 90% of the total global land for the 

production of the Phaseolus genus is allocated to dry bean (Phaseolus vulgaris L.) (Singh, 1989). 

The crop is a diploid and has uniform chromosomal number, 2n=2x=22. Diploid is a common 

feature among all species of Phaseolus genus (Mercado-Ruaro and Delgado-Salinas, 2000). Dry 

bean has a complete flower and it is a self-pollinated crop.  

1.4. Morphology of dry bean 

Dry bean is a typical herbaceous dicot plant having primary tap roots where secondary roots 

emerge. The other distinct feature of dry bean roots are root hairs which emerge later on the 

secondary and primary root covering an area of 10 cm. It has a shallow tap root, which does not 

go beyond 20 cm (Debouck, 1991; Graham and Ranalli, 1997). Like any other member of the 

sub-family Papilionoideae, dry bean has nodules which are distributed on the lateral roots of the 

upper and middle parts of the root system. The nodules are usually 2 mm to 5 mm in diameter 

and are colonized by Rhizobium bacteria which fix atmospheric nitrogen to the soil (Debouck et 

al., 1986). The main stem is cylindrical or slightly angular in cross section. The stem is larger in 

diameter than any branch. It can be either erect, semi-prostrate or prostrate, but it tends to be 

vertical, either when the bean is growing alone or with support. Stem colour and hairiness varies 

from one variety to the other and also to some extent with the age of the plant. The primary leaves 

of dry bean are unifoliate and secondary leaves are trifoliate. These are inserted at the nodes of 

the stem and branches. Flower initiation is within 28-42 days from the day of planting, though it 

may take longer than this in climbing beans grown at higher altitude. Flowers rise from the axially 

bud complexes (triad) located in the axil of the leaves. As typical example of the Papilionoideae 

flower, the flower is initially enveloped by the oval or round bracteoles which open at a later stage. 

Flowers have different colours; white, pink and purple. Flower colour is reported to be genetically 

independent to seed colour. Flowers are zygomorphic with ten stamen and a single multi-ovuled 

ovary. This floral morphology favors self-pollination. The ovaries, which are future seeds, arise 

alternately on both sides of the placenta suture and the seed that arises is non- endospermic and 

its nutritional reserves are stored in the two cotyledons. About 3 to 10 seeds can be achieved 
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from one pod. Dry bean seeds are of various shapes and colour with seed size ranging from 50 

mg/seed in wild species to 2000 mg/seed in large Colombian cultivars (Debouck, 1991; Graham 

and Ranalli, 1997). 

1.5.  Dry bean growth habit 

Dry bean cultivars may be classified based on their growth habit. Essentially dry bean has two 

growth habits, namely determinate and indeterminate. Determinate type growth ceases when an 

inflorescence appears and usually the bean plant has few nodes and internodes. With the 

indeterminate type, the stem remains vegetative and it continues to develop, forming nodes and 

internodes even during the reproductive phase. Studies on dry bean growth habit at CIAT, 

resulted in classification of the growth habit into four groups namely; Type I which has determinate 

growth habit characterized with well-developed stem and lateral branches. Growth ceases once 

inflorescence is formed and the plants are usually short with few branches. Type II indeterminate 

which has an erect stem with more nodes and internodes than type I though it has inability to 

climb and continue to grow during flowering. Type III has indeterminate prostrate growth habit. 

The stem is prostrate or semi-prostrate with well-developed branches and if provided with support, 

it can climb, hence are also referred to as semi-climbers. Type IV indeterminate which has a 

climbing growth habit with a long main stem. The stem develops double twisting capacity from 

the first trifoliate leaves and it is poorly branched with a prolonged flowering period (Graham and 

Ranalli, 1997). 

1.6.  Genetic diversity of dry bean  

The initial parallel domestication of the two dry bean gene pools, intensive selection and dispersal 

during domestication, have resulted in a large genetic diversity of the crop (Acosta-Gallegos et 

al., 2007; Blair et al., 2009; Kwak and Gepts, 2009). Studies on genetic diversity has utilized 

morphological markers such as seed size, geographical and ecological distribution, biochemical 

markers for example isozymes, allozymes and phaesolin seed proteins and molecular markers 

such as microsatellites, random amplified polymorphic DNA (RAPD) and inter simple sequence 

repeats (ISSR) (Singh et al., 1991b; Galvan et al., 2003; Blair et al., 2009). Blair et al. (2009) used 

microsatellite markers and seed characteristics such as seed length, width and thickness in 

assessing the genetic diversity of 604 genotypes from the CIAT germplasm and core collections. 

A similar method was used to establish the genetic diversity of dry bean in China (Zhang et al., 

2008). It was found that French dry beans have lower genetic diversity than those from Argentina 

using ISSR and also that ISSR markers were more reliable than RAPD in identifying beans by 

gene pool. These ISSR markers were reported to be limited in revealing variations between 
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genotypes (Galvan et al., 2003). In Italy two types of DNA markers, namely ISSRs and SSRs, 

were used to establish the diversity of local genotypes and the results from all markers revealed 

that 71% of genotypes were from the Andean gene pool (Sicard et al., 2005).  

Genetic diversity studies have also been used in classifying the crop on the basis of 100 seed 

mass into three categories namely; large seeded (>40 g 100-seed weight-1) medium seeded (25–

40 g 100-seed weight-1) and small-seeded (<25 g 100-seed weight-1) (Evans, 1980). The large 

seeded belonged to the Andean pool, while the medium and small seeded were Mesoamerican 

(Zhang et al., 2008). Similar studies have led to further classification of these primary gene pools 

into seven races. Races are a group of genotypes which are clustered together and members of 

each race have distinct features  which include, morphology traits and agro-ecology adaptation 

(Singh et al., 1991a; Acosta-Gallegos et al., 2007). The races in the Andean gene pool are Nueva 

Granada, Peru and Chile, while for Mesoamerican are Mesoamerica, Durango, Jalisco and 

Guatemalan (Beebe et al., 2000; Zhang et al., 2008). Acosta-Gallegos et al. (2007) reported that 

in the Mesoamerican gene pool, Mesoamerica and Durango races are the most widely grown dry 

beans and on the other hand Jalisco and Guatemalan have received little attention by researchers 

in terms of improvement. Knowledge and access on genetic diversity have been reported to be 

useful in the breeding programme as it broadens the genetic base thus assuring continued crop 

improvement (Acosta-Gallegos et al., 2007; Zhang et al., 2008). 

1.7.  Dry bean production 

Dry bean is the third most important grain legume crop in the world and it represents 50% of grain 

legume for direct consumption (Zhang et al., 2008; Blair et al., 2009). It is the main source of 

dietary protein in Latin America and East Africa (Graham and Ranalli, 1997). Wortmann (1998) 

reported that annual consumption of dry bean exceeds 50 kg per person in the African Great 

Lakes Region. The crop is grown on all continents between 52 o N and 32 o S, from sea level to 

as high as 3000 m above sea level. However, production is largely concentrated in Latin America 

and Eastern and Southern Africa (Pachico, 1989; Graham and Ranalli, 1997). The total area 

under production worldwide is estimated to be over 18 million ha (Graham and Ranalli, 1997; 

FAO, 2015). In developing countries small farmers, especially women, are primary producers of 

the crop and it is cultivated both as a sole and secondary crop in association with staple crops 

such as maize, sorghum, millet, banana, root and tubers (Wortmann, 1998). Production among 

small holder farmers is low per unit area and reported to be less than 0.5 t ha-1 in Latin America 

and Africa when compared to yield achieved in highly mechanized commercial farms in North 

America (3 t ha-1) and also in experimental field (5 t ha-1) (Graham and Ranalli, 1997). 
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1.8. Dry bean yield limiting factors 

There is a great variation in terms of factors that limit production in large commercial farms of dry 

bean in the USA and Europe compared to those of small scale farmers of Latin America and 

Africa (Graham and Ranalli, 1997). Production constraints of dry bean in Latin America and Africa 

which limit yields have been reported by several authors (Saettler, 1989; Wortmann, 1998; Kimani 

et al., 2001). These include abiotic and biotic stresses.  

Abiotic factors that limit dry bean production include a range of physical environmental factors 

and these are either climatic or soil related. The most predominant climatic related factor is 

inadequate rainfall which result in moisture deficit and under severe condition the problem causes 

complete crop loss (Wortmann, 1998). Soil related production limiting problems includes essential 

nutrient deficiency (low nitrogen, phosphorus and potassium), poor exchangeable bases and 

aluminum and manganese toxicity (Kimani et al., 2001).  

Diseases and insect pests, are major biotic factors that limit dry bean production. Diseases are 

reported to impact more in the tropics than in cool temperate climate. Farming systems in the 

tropics allow two to three planting cycles per year, which results in a continuing presence of 

pathogen inoculum. Similarly, under field conditions, insect pests cause more damage in Africa 

and Latin America than in USA and Europe (Graham and Ranalli, 1997). The important dry bean 

diseases include angular leaf spot (Phaeoisariopsis griseola), anthracnose (Colletotrichum 

lindemuthianum), bacterial brown spot (Pseudomonas syringae pv. syringae), bean common 

mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), beet curly top virus 

(BCTV), bean golden mosaic virus (BGMV), bean golden yellow mosaic virus (BGYMV), common 

bacterial blight (Xanthomonas axonopodis pv phaseoli (Smith) Vauterin, Hoste, Kosters & Swings 

and its fuscans variant, X. fuscans sbsp. fuscans ), halo blight (Pseudomonas savastanoi pv. 

phaseolicola), root rots (Aphanomyces, Fusarium, Pythium, Rhizoctonia, Thielaviopsis species), 

rust (Uromyces appendiculatus), web blight (Thanatephorus cucumeris) and white mold 

(Sclerotinia sclerotiorum) (Beebe et al., 1991; Miklas et al., 2006; Singh and Schwartz, 2010). 

Insect pests that are of economic importance in dry bean production include, bean pod weevil 

(Apion godmani Wagner), bruchids (Coleoptera: Bruchidae), leafhoppers (Empoasca spp.; 

Homoptera cicadellidae), thrips palmi Karny (Thysanoptera thripidae), stem maggot (Ophiomyia 

phaseoli O. spencerella, and O. centrosematis) and aphid (Aphis fabae, and A. craccivora) 

(Graham and Ranalli, 1997; Wortmann, 1998; Miklas et al., 2006). Apart from abiotic and biotic 

factors, agronomic factors such as late planting, poor weed management, continuous cropping 

and use of unimproved seed have been reported to limit dry bean production (Kimani et al., 2001). 
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Table 1.1. Losses to dry bean production in Africa, ranked in descending order of 

importance, by constraint 

Constraint 
Eastern and 

central Africa 
Southern 

 Africa 
Sub-Saharan 

Africa 

 Losses in tons/year 

Biotic    

Angular leaf spot 281,300 93,500 384,200 

Anthracnose 247,400 69,800 328,000 

Bean stem maggot 194,400 96,400 297,100 

Bruchids 163,000 77,600 245,600 

Root rots 179,800 31,000 221,100 

Common bacterial blight 145,900 69,800 220,400 

Aphids 136,300 58,900 196,900 

Rust 118,700 72,400 191,400 

Bean common mosaic 144,600 29,900 184,200 

Abiotic    

Drought 291,200 94,600 396,000 

N deficiency 263,600 125,200 389,900 

P deficiency 234,200 120,400 355,900 

Exchangeable bases 152,700 65,800 220,000 

Al/Mn toxicity 97,500 60,300 163,900 

Source : Kimani et al. (2001) 

1.9. Common bacterial blight of dry bean 

Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv phaseoli (Xap) (Smith) 

Vauterin, Hoste, Kosters & Swings and its fuscans variant, X. fuscans sbsp. fuscans (Xff), is an 

important disease of dry bean (Phaseolus vulgaris L.) worldwide. The disease was first described 

in the United States of America in the 1800s (Zaumeyer and Thomas, 1957; López et al., 2006). 

Presently, CBB is prevalent in tropical and sub-tropical production regions worldwide (Singh and 

Schwartz, 2010; Viteri and Singh, 2014). The range of yield losses due to CBB is poorly 

documented, although some researchers have reported that it ranges from 20 to 60% (Marquez 

et al., 2007; Fourie et al., 2011). The extend of yield loss is dependent on favorable weather 

conditions, disease pressure and susceptibility of the cultivars (Zaumeyer and Thomas, 1957; e 

Silva et al., 1989). The disease is of world economic importance due to its epidemiology and yield 

losses. Apart from dry bean, CBB also occurs in scarlet runner beans (Phaseolus coccineus L.), 

mung bean (Vigna radiate L.), tepary bean (Phaseolus acutifolius A.), soybean (Glycine max L.) 

and cowpea (Vigna unguiculata L. Walp) (Zaumeyer and Thomas, 1957; Saettler, 1989). 
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1.9.1. Epidemiology of common bacterial blight 

The common bacterial blight pathogen is a warm temperature pathogen, with an optimum 

temperature of 28 oC (Saettler, 1989). Growth stops at temperatures below 16 oC and above 32 

oC. High relative humidity also favors condition for the pathogen growth (e Silva et al., 1989; 

Saettler, 1989). The severity of common bacterial blight is partially controlled in the tropics by 

maize-bean intercrop farming systems. Maize offers a physical barrier and thereby hinders the 

spread of the pathogen in the field (Saettler, 1989; Fininsa, 2003).  

Common bacterial blight is a  seed borne disease of dry beans and the pathogen survives in the 

seed as long as the seed is viable (Fininsa and Tefera, 2001; Karavina et al., 2008). The mode 

of transmission of the pathogen is primarily seed and the pathogen can be present internally or 

externally. Infested debris and soil are also important as sources of primary inoculum due to the 

fact the pathogen has the ability of overwintering in these for long periods (Arnaud-Santana et al., 

1991; Fininsa and Tefera, 2001). Several factors have been reported to affect the concentration 

of inoculum, including initial inoculum present, favorable temperatures, relative humidity and rain 

during overwintering. Fininsa and Tefera (2001) reported that soil factors, such as rate of 

decomposition and activities of microorganism, influence the growth rate of the pathogen. 

Volunteer plants present in the field may also harbor the pathogen and is a threat to the new crop. 

Saettler (1989) reported that spread of CBB is affected by rain, windblown soils, irrigation water, 

humans, animals and insects such as whitefly and beetles. Implements and humans operating in 

the field injure plants and thereby create passages for the entry of the pathogen. 

Factors influencing the quantity of inoculum from primary sources include, concentration of 

inoculum initially present, favorable temperatures, relative humidity and rain during overwintering, 

location of debris and effectiveness of seed treatment (Fininsa and Tefera, 2001). The stage of 

the epidemic is mainly determined by the initial source of inoculum. Fininsa and Tefera (2001) 

reported that primary inoculum from infested seed and infested debris causes earlier epidemics 

resulting in larger yield losses than inoculum from the soil which causes later epidemics.  

Symptoms caused by CBB usually appear on leaves, pods, stem and seeds. On leaves, initial 

symptoms appear as water-soaked spots which eventually enlarge and coalesce with adjacent 

lesions (Saettler, 1989). Infected tissues appear flaccid and lesions are often encircled by a 

narrow zone of lemon yellow tissue. These lesions, which are irregular in shape, develop either 

on the edges of the leaf or on the leaf surface. Premature defoliation of heavily infected leaves is 

a typical symptom of the disease. Pod lesions appear as water-soaked which may enlarge and 

become dark, red and slightly sunken (Saettler, 1989). In stems the predominant symptom is 

hypertrophy and darkening of the stem at an early stage of vegetative growth. In seed the 
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predominant symptoms are buttered yellow spots on white or light coloured seeds. These are 

difficult to observe on dark coloured seeds. The seed shape can be deformed and damaged, 

resulting in poor germination and reduced vigour (Zaumeyer and Thomas, 1957; Saettler, 1989). 

Common bacterial blight can be controlled chemically or by good agricultural practices. The use 

of certified pathogen free seed, crop rotation, deep ploughing and practising field hygiene, have 

been recommended for control of CBB. However, these measures have failed to register success 

in Africa because the majority of dry bean farmers are poorly resourced and usually use on-farm 

saved seed or seed from fellow farmers, which is mostly infested by the pathogen. Additionally, 

farmers have small arable lands making it hard for them to practise crop rotation and in general 

they use simple implements in land preparation restricting deep ploughing. Use of various 

chemicals such as copper hydroxide and potassium methyldithiocarbamate, particularly when 

applied early, have been reported to control foliage infection. However, spraying chemicals does 

not significantly reduce pod infection and increase grain yield but increases the cost of production 

(Saettler, 1989; Mkandawire et al., 2004). The use of resistance cultivars, and integrating cultural 

and chemical control methods, is the most effective way of controlling the disease.  

1.9.2. Taxonomy of common bacterial blight pathogen 

Xanthomonas axonopodis pv phaseoli (Xap) (Smith) Vauterin, Hoste, Kosters & Swings and its 

fuscans variant, X. fuscans sbsp. fuscans (Xff) (Smith) Dye belongs to the kingdom bacterial; 

phylum proteobacteria; class gammaproteobacteria; order Xanthomonadales; Family: 

Xanthomonadaceae; genus Xanthomonas. The genus was classified in 1939 (Dowson, 1939) 

and has been subjected to many taxonomic studies as it causes many plant diseases which are 

of economic importance (Vauterin et al., 1990). Genetic studies have established that the genus 

has  a separate rRNA branch in the Proteobacteria gamma taxon (De Vos and De Ley, 1983). 

Morphologically, Xap is a non-spore forming, motile, aerobic, gram-negative rod, 0.4-0.9 x 0.6-

2.6 μm, with a single polar flagellum. Agar colonies are convex, yellow and wet-shining. In culture, 

on complex media or media containing tyrosine, a brown, diffusible pigment is produced by so-

called fuscans strains (Xff). Several methods have been developed over the years to test its 

presence in the seeds and other parts of the plants (Ednie and Needham, 1973). 

1.9.3. Modes of penetrations 

The CBB pathogen enters leaves via stomata or wounds created by mechanical damage due to 

wind-blown soil particles, leaf feeding insects and humans. Subsequently, the pathogen invades 

the intercellular spaces, causing a gradual dissolution of the middle lamella. Cell disintegration 

occurs due to formation of bacterial pockets (Zaumeyer and Thomas, 1957; Kaiser and Vakili, 
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1978; Saettler, 1989; Akhavan et al., 2013). Apart from entering into the leaves, the pathogen can 

also enter the stem directly through the stomata of the hypocotyl and epicotyl for the leaf vascular 

structures and infected cotyledons (Kaiser and Vakili, 1978; Akhavan et al., 2013). The pathogen 

can invade the pod through the pedicel into funiculus through the raphe leading into the seed 

coat, where it either remains in the seed coat or in the cells of the seed and from there spread to 

the cotyledon region. The pathogen found in the seed is the source of infection to the germinating 

young plants (Zaumeyer and Thomas, 1957; Akhavan et al., 2013). The pathogen can remain 

viable in the seed coat for several years and a single inoculum can contaminate an area of more 

than 8 m around it, translating to one diseased plant in 10 000 plants being sufficient to cause a 

severe epidemic under favorable conditions (Akhavan et al., 2013). Direct penetration of the 

pathogen into the seed coat has not been observed (Zaumeyer and Thomas, 1957; Saettler, 

1989). 

1.9.4. Genetic variability of common bacterial blight pathogen 

Extensive research on the genetic diversity of the common bacterial blight pathogen has been 

conducted in different dry bean growing regions and it has offered a prerequisite for developing 

CBB resistant cultivars adapted to a specified area (Mkandawire et al., 2004; López et al., 2006; 

Alavi et al., 2008; Zamani et al., 2011). Studies have reported that the common bacterial blight 

pathogen exhibits genetic diversity and that there is correlation between the gene pool 

predominantly grown in the area and the pathogen strain due to co-evolution. Mkandawire et al. 

(2004) reported that Xap and Xff dominate in Malawi, whereas Xff dominate in Tanzania. In 

Tanzania Xff strains were associated with Andean and Mesoamerican dry beans (Mkandawire et 

al., 2004). The findings were in line with what was reported in a similar study, where it was found 

that 60% of CBB was caused by Xff and the remaining was due to Xap in East Africa (Opio et al., 

1996). Though very aggressive, Xff has been reported to exhibit lower genetic diversity than Xap 

(Mkandawire et al., 2004). 

Host pathogen co-evolution has similarly been reported in the fungal dry bean diseases i.e. 

Colletotrichum lindemuthianum (causal agent of anthracnose), Phaeoisariopsis griseola (causal 

agent of angular leafspot) and Uromyces appendiculatus (causal agent of bean rust),in which 

genetically distinct pathogens tend to be more pathogenic to genotypes of one gene pool than 

the other (Guzmán et al., 1995; Sicard et al., 1997; López et al., 2006). Contrary to these results, 

López et al. (2006) conducted a study to determine the diversity of CBB bacteria in the north-

central part of Spain  in order to establish whether Spanish CBB strains were similar with those 

from other geographical regions. They found that there was no genetic diversity and that strains 

were similar to those from other geographical regions, an indication that there was no co-evolution 
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of bacterial strain in Spain as was the case in Eastern Africa. Different techniques have been 

used to study diversity of the Xanthomonas genus. These include biochemical, physiological, 

pathogenicity, polymerase chain reaction (PCR) and repetitive polymerase chain reaction (rep- 

PCR). However, the inability of biochemical and physiological techniques to classify the bacteria 

beyond specie level, has resulted in less exploitation of the techniques in classifying 

Xanthomonas bacteria. Pigmentation has been used to distinguish Xap from Xff. Several studies 

on genetic diversity of pathogens have utilized molecular markers such as random amplified 

polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), rep-PCR and 

restriction fragment length polymorphism (RFLP) (Mkandawire et al., 2004; López et al., 2006; 

Alavi et al., 2008; Zamani et al., 2011). In Iran, rep- PCR  and RFLP  were used (Zamani et al., 

2011) and in Spain, rep-PCR and RAPD were used in pathogen genetic diversity studies (López 

et al., 2006). The rep PCR technique is useful in studying genetic diversity of bacterial pathogens 

due to its ability in fingerprinting gram negative bacteria such as Xanthomonas, Pseudomonas, 

Ralstonia and Agrobacterium (De Bruijn, 1992) 

1.9.5. Host plant resistance 

Plant diseases are caused by malfunction of host cells and tissues from an injurious physiological 

process, resulting from continued irritation by a pathogenic agent or environmental factor, leading 

to development of pathological condition called symptoms (Agrios, 2005). Two outcomes can be 

expected when pathogens invade a host plant, depending mainly on whether the plant is able to 

hinder the growth, development and spread of the pathogens (Agrios, 2005). Plants may be 

susceptible due to their inability to recognize the pathogen or to offer a desired defense 

mechanism that could restrict development and spread of the pathogen. On the other hand, plants 

may have the ability to hinder the growth, development and spread of the pathogen and these 

are classified as resistant (Dempsey and Klessig, 1995; Parlevliet, 2002). Host plants have 

developed several defense mechanisms that enables them to restrict the development of 

infections. These include the presence of physical barriers that inhibit the pathogen to penetrate 

the plant, i.e. thick cuticle layer, size and location of stomata, among others. Host plants can also 

release chemical compounds into its environment that inhibits pathogen development, for 

example fungitoxic exudates in certain plant species inhibits fungi development. Compounds such 

as phenols, tannins and avenacin present in cells offers a good chemical defense mechanism in 

plants (Heath, 1981; Agrios, 2004). Heath (1981) reported a non-host resistance, a form of 

resistance where plants are not considered to be host of the pathogen in question. The other form 

of resistance is referred to as true resistant, which is genetically controlled through incompatibility 

between itself (host) and the pathogen (Agrios, 2004). According to  Agrios (2004), true resistance 
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can either be horizontal resistance or vertical resistance. Horizontal resistance is the form of 

resistance that is non-specific but rather quantitative and controlled by many  genes, hence 

referred to as polygenic resistance (Agrios, 2004).  

Common bacterial blight resistance is an example of polygenic resistance since it is controlled by 

more than one gene (Saettler, 1989; Chataika et al., 2011). In this form of resistance, a single 

gene may not play a role in resistance alone, but in combination with other genes. Horizontal 

resistance does not protect plants from being infected, but rather slows the development of the 

disease, hence slowing the spread of the disease in the field (Agrios, 2004). Vertical resistance 

is a race-specific form of resistance usually controlled by one major gene (monogenic resistance) 

or very few genes. In this form of resistance, a cultivar may be resistant to some races of the 

pathogen and susceptible to other races of the same pathogen (Agrios, 2004). Vertical resistance 

is characterized by incompatibility between the host and pathogen and when attacked, the host 

responds by hypersensitive reaction. Hypersensitive reaction is the rapid localized death of host 

cells in response to infection. Horizontal resistance is more durable and difficult to overcome, 

while vertical resistance is easy to overcome due to continuous pathogen co-evolution resulting 

in the existing of new races. In order to overcome polygenic resistance, a pathogen race needs 

to possess virulence genes that can overcome all resistance genes present (Agrios, 2004). 

1.9.6. Sources of resistance 

The availability of good sources of resistance is a prerequisite for a successful resistance 

breeding programme. Exploration of resistant sources has not been limited to P. vulgaris but 

across Phaseolus species. The first source of CBB resistance was transferred from P. acutifolius 

to P. vulgaris using embryo rescue technique (Honma, 1956). To date sources of resistance have 

been identified from the primary, secondary and tertiary gene pools. These sources have different 

levels of resistance (Singh and Munoz, 1999; Singh and Miklas, 2015). Some of the resistant dry 

bean germplasm, with pyramided CBB resistant genes, include Calima 9, Montana No 5, ICB3, 

ICB6, XAN 159, XAN 160, VAX-3, -4, -5, and -6, Badillo, Chase and Coyne  (Beebe and Corrales, 

1991; Singh and Miklas, 2015). The primary gene pool possesses low level of resistance, while 

the secondary and tertiary gene pools possess intermediate and high level of resistance 

respectively (Beebe and Corrales 1991; Singh et al., 2001; Marquez et al., 2007; Singh and 

Miklas, 2015). The above sources have been extensively used in common bacterial blight 

breeding programmes (Fourie and Herselman, 2002; Mutlu et al., 2005; O'Boyle et al., 2007; 

Tryphone et al., 2012). 



 

 

17 

 

1.9.7. Inheritance mechanism 

The mode of inheritance to CBB has been extensively studied by several researchers (Valladares-

Sanchez et al., 1979; e Silva et al., 1989; Arnaud-Santana et al., 1994; Chataika et al., 2011; 

Zapata et al., 2011). In most of these genetic studies, it has been established that inheritance to 

CBB resistance is quantitative and the mode of gene action is mainly additive, often with 

dominance and epistasis effects (Saettler, 1989). Eskridge and Coyne (1996) reported that up to 

five genes were responsible in controlling CBB. In a similar study two major genes were reported 

to control CBB in parental genotypes, used as sources of resistance in Malawi dry bean breeding 

programme (Chataika et al., 2011). Apart from major genes, CBB resistance has been associated 

with minor genes (e Silva et al., 1989; Chataika et al., 2011). Contrary to reports that CBB 

resistance is controlled by many genes, Zapata et al. (2011) reported that a single dominant gene 

was responsible in controlling CBB after crossing PR0313-58 9 x Rosada Nativa. Similar results 

were also reported in Tanzania after crossing Kablangenti, a local adapted variety with VAX 4 a 

resistant breeding line  (Tryphone et al., 2012). Heritability of CBB resistance ranges from low to 

high (Tryphone et al., 2012).  

Genetic studies on inheritance to CBB resistance have been extended to secondary and tertiary 

gene pools. Urrea et al. (1999) reported that in some tepary genotypes such as in Neb-T-6-s and 

PI 321637-s have resistance to CBB that is governed by one dominant gene, while in Neb T-8a-

s resistance is governed by two dominant genes with complementary effects. In other related 

studies within P. acutifolius, resistance was governed by a single dominant gene (Drijfhout and 

Blok, 1987). Due to the inconsistency of the results on inheritance mechanism, the genetics of 

CBB resistance seems to be complex and remains unclear, especially in crosses with the 

secondary and tertiary gene pools. This justifies the importance of studying the mode of 

inheritance of genotypes that are used as sources of resistance for CBB in a breeding 

programme. 

1.9.8. Marker assisted selection in common bacterial blight resistance 

Marker assisted breeding has advantages over classical breeding and these includes, ability to 

screen resistance at seedling stage, screening for resistance even when there are disease 

escapes and high efficiency in screening for environment dependent traits (O'Boyle et al., 2007). 

There has been an increase in application of markers in breeding for CBB resistance over the 

past two decades. This indirect selection of CBB resistance has been possible due to great 

progress registered in development of markers used to identify quantitative traits loci (QTL) 
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conditioning resistance (Fourie, 2002). The QTLs conditioning resistances to CBB are from 

primary, secondary and tertiary gene pools of Phaseolus (Vandemark et al., 2009). 

At present four QTL markers linked to CBB resistance are available and these are SU19, BC420, 

SAP6 and X11.4 (Viteri et al., 2014). All these are sequenced characterized amplified region 

(SCAR) markers. SU91, BC420, SAP6 and X11.4 are located on linkage groups B6, B8, B10 and 

B11, respectively (Viteri et al., 2014; Singh and Miklas, 2015). These QTLs have been associated 

with undesirable traits. For example SU 91 with low yields (O'Boyle et al., 2007) and BC40 with 

undesirable seed coat colour (Mutlu et al., 2005). Epistatic interaction among these QTL has been 

observed (O'Boyle et al., 2007; Vandemark et al., 2009). Genotypes pyramided with both SU91 

and BC420 have shown to exhibit lower resistance than genotypes that possess either of the two 

(O'Boyle et al., 2007). Expression of resistance of these has been linked with environment, dry 

bean population and bacterium race (Park et al., 1999). SAP 6 was found to be susceptible in 

other populations (Singh and Miklas, 2015). To date, markers have been used to develop and 

test populations, pyramiding and confirming resistance in developed progenies (Fourie, 2002; 

Mutlu et al., 2005; O'Boyle et al., 2007). Confirming the efficacy of markers prior to their use in a 

breeding programme is of importance (Park et al., 1999; Fourie, 2002).    

1.9.9. Screening for resistance 

Inoculation is the method used to bring the plants in contact with the pathogen. The pathogen 

itself is referred to as inoculum. For a disease to occur the inoculum has to initiate infection 

(Agrios, 2004). The reaction of common bacterial blight in dry beans depends on the host 

genotype, the bacterial strains, inoculum concentration and the environment (e Silva et al., 1989). 

Several inoculation techniques have been developed that are being used in screening for CBB 

resistance (Saettler, 1989). Some of the techniques have been reported to be effective in green 

house screening trials, while others are effective in field screening experiments (Saettler, 1989). 

Most of the techniques involve injuring the plants in order to introduce the inoculum in the plant 

through the wounds. Instruments such as scissors, needles and razors are used to injure plant 

organs such as cotyledon, leaves, stems and pods. Techniques that do not injure plants include 

soaking leaves in a bacterial solution and vacuum infiltration. All these techniques are used for 

both greenhouse and field evaluation, though the techniques with artificial injury are primarily 

used in greenhouse evaluations as they are labor intensive and ideal for small population. Manual 

or motorized sprays can be used to spray the inoculum to the plant at a distance of approximately 

30 to 60 cm (Zapata 1985). 
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Reports indicate that optimal inoculation requires a highly concentrated inoculum of between 10 

million to 100 million cells/ml from an aggressive isolate must be used (Zapata et al., 1985). In 

order to get good infection, isolates from infected leaves can be cultured on a yeast-extract-

dextrose-calcium-carbonate (YDC) nutrient agar at 27 o C for 48 to 72 h (Zapata et al., 1985; 

Fourie, 2002). In most studies, inoculation is done  at 21 to 28 days after planting (Mutlu et al., 

2008). Apart from artificial inoculation some field evaluation studies have relied on natural 

inoculum (Chataika et al., 2011). The disadvantage of relying on natural inoculum is that in the 

absence of favorable conditions for the pathogen, disease development will be slow or 

insignificant.  

1.10. Mating designs and genetic analysis and generation mean analysis 

Several mating designs can be used in developing improved varieties including bi-parental, North 

Carolina (I, II, III), line X tester, polycross, topcross and diallel designs. A reliable choice of the 

mating design and good parent selections are important factors in a successful CBB breeding 

programme (Khan et al., 2009). Apart from being tools for developing improved cultivars, mating 

designs are used in generating genetic information on mode of gene action. This encompasses 

general combining ability and specific combining ability associated with the trait and also 

determines the genetic gain in the breeding programme (Acquaah, 2009). Progenies developed 

from these mating design have a defined genetic relationship with their parents and preceding 

generation, which is easily established once studied (Kearsey and Pooni, 1998). A bi-parental 

mating design, which simply involves mating of two parents selected from large population, is the 

simplest design (Acquaah, 2009; Nduwumuremyi et al., 2013). 

Quantitative traits are governed by several genes and it becomes difficult to estimate the effect 

of a single gene on a trait, but rather all genes associated with the inheritance of that particular 

trait (Acquaah, 2009; Shashikumar et al., 2010). The traits can be governed by various gene 

actions namely additive, dominance, epistasis and over dominance. It is important to test the 

significance of the gene action model to establish relationship between generations and to 

estimate gene effect (Ajay et al., 2012).  

Generation mean analysis (GMA), first proposed in 1949, is one of the methods used to estimate 

the type of gene action associated with the inheritance of the trait by establishing the relationship 

between generations (Mather, 1949). According to Mather and Jinks (1982) the principle of GMA 

is that parents must be unrelated and homozygous. The model assumes that when the data does 

not fit the simple additive-dominance model then epistasis is present (Mather and Jinks, 1982). 

Several researchers have used the model in studies of inheritance mechanism of different traits 
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in different crops (van Ginkel and Scharen, 1987; e Silva et al., 1989; Ajay et al., 2012; Bitaraf 

and Hoshmand, 2012). Extensive exploitation of the model in studies of gene effects is due to its 

ability to partition the effects into additive, dominance and epistasis (Ajay et al., 2012). 

Scaling test have been developed that establishes generation relationships between means and 

variances (Mather, 1949; Cavalli, 1952). The first scaling test was proposed in 1949 and was 

referred to as the A,B,C and D or Mather scaling test (Mather, 1949). The scale was limited to six 

generations only and used the six parameter model:  P1, P2, F1, F2, BCP1 and BCP2. Though 

the scaling test is limited to six generations, it accounts for additive, dominance and epistasis 

gene actions. To address the weakness of Mather scaling test, Cavalli (1952) developed the joint 

scaling test, a test that is not limited to a specified number of generations (Cavalli, 1952). The 

notations used in the joint scaling test are [m] which is the mean of F2, [d] additive gene effect 

and [h] dominance gene effect (Hayman and Mather, 1955). The Cavalli’s scaling test involves 

two steps. Firstly, the gene effect is estimated from the available families using weighted square 

method to get expected values. Thereafter, using statistical tools, the expected values are 

compared with the observed and significance indicates presence of epistasis. 

1.11. Genotype by environment interaction 

Genotype by environment interaction (GEI) is defined as differential genotypic expression across 

environments. Genotype by environment interaction is problematic when it is significant and larger 

than the genotype main effect, which is a common scenario in yield trials (Romagosa and Fox, 

1993). It reduces association between phenotypic and genotypic values and may cause 

selections from one environment to perform poorly in another, forcing plant breeders to combine 

selection and stability in one criterion (Kang, 1993; Romagosa and Fox, 1993; Fox et al., 1997). 

Regardless of complicating the process of selection, it is regarded as a major element in 

determining many key aspects of a breeding programme which includes; whether to aim at wide 

adaptation or specific adaptation selection programme to be deployed and choice of evaluation 

sites (Fox et al., 1997). The most important GEI is the crossing over type which result in changes 

in the ranking of genotypes across environments (Fox et al., 1997). Becker (1981) proposed the 

concept of genotype stability and distinguished stability into biological stability, in which a 

genotype maintains a constant yield across environments, and agronomic stability, which is 

defined as genotype’s ability to respond to improved environmental conditions. The latter is 

related to ranking. A stable genotype is the one that is consistently well ranked. In trials, which 

the same location and genotypes are included over years, the GEI term from the analysis of 

variance is partitioned into genotype x location (G.L), genotype x years (G.Y) and genotype x 

location x years (G.L.Y) (Fox et al., 1997). 
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1.12. Methods for analysing yield stability in multi-environment trials 

Several statistical methods have been exploited to quantity GEI and the available techniques for 

assessing yield stability have been reviewed by several authors. The focus has been on their 

advantages and disadvantages in comparison to each other (Romagosa and Fox, 1993; Fox et 

al., 1997; Farshadfar, 2008; Yang et al., 2009). These techniques include analysis of variance, 

regression analysis and multivariate techniques among others. In analysing the yield stability of 

cultivars the use of two or more statistical techniques must be employed for a reliable decision in 

a breeding programme. An example is the recommendation that 50% of GEI should be explained 

before linear regression is used (Seif and Pederson, 1978; Romagosa and Fox, 1993).  

In analysis of variance, the magnitude of sum of squares of relevant terms as well as the variance 

components are used to quantify sources of variation. The majority of plant breeders do a pairwise 

analysis of variance between test genotypes and standard check varieties to detect which 

genotypes show the same adaptation pattern with checks in multi-environment trials (Fox et al., 

1997). However, this method is labor demanding when dealing with many genotypes. Failure of 

showing a detailed exploration of the patterns of variance by GEI variance is reported as a major 

shortfall of the technique (Romagosa and Fox, 1993; Fox et al., 1997).  

In linear regression (Finlay and Wilkinson’s 1963), the observed values of all genotypes are 

regressed on the environmental indices. The slope of the regression of an individual genotype 

value against an environment index, estimates genotypic stability. The method partitions GEI term 

from analysis of variance into heterogeneity of regressions and deviations from regressions 

(Crossa, 1990). Linear regression, though widely used, has received some criticism (Romagosa 

and Fox, 1993). 

Additive main effect multiplicative interaction (AMMI) is one of the powerful multivariate 

techniques for multi-environment trials (Romagosa and Fox, 1993).  The technique is a very useful 

tool in GEI trials as it gives a quick visualization and exploration of patterns (Yang et al., 2009). 

In addition, being user friendly, with the readily availability software, it has contributed to extensive 

exploitation by breeders, as reported in several publications (Crossa et al., 1991; Gauch Jr, 1992; 

Annicchiarico, 1997; Worku and Zelleke, 2007; Abuali et al., 2014). It has the ability to extract 

genotype and environment effect and uses the principal component analysis (PCA) to explain the 

interaction (Zobel et al., 1988). AMMI is categorized into different families on the basis of whether 

it has PCA or not, for example AMMI without PCA is AMMI0 and only measures GEI effects, while 

an AMMI with PCA1 is AMMI1 (Fox et al., 1997). AMMI is a daughter technique of PCA. 

Farshadfar (2008) pointed out that the analysis is effective where the assumption of linearity of 

responses of genotype to a change environment is not fulfilled. Similarly, Yang et al. (2009), in 
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their review paper, highlighted the limitation of AMMI and concluded that it has to be used with 

caution. Regardless of the limitations, AMMI has the ability to reveal adequately about the 

complex relationships among locations or among genotypes (Farshadfar, 2008) and reveals more 

information of GEI than the regression methods (Romagosa and Fox, 1993). The failure of the 

AMMI model to make provision for a quantitative stability measure, which is essential in 

quantifying and ranking genotypes in terms of yield stability, resulted in the development of AMMI 

stability value (ASV) (Purchase et al., 2000). Low ASV indicates that the genotype has a wider 

adaptation and high ASV indicates specific adaptation (Farshadfar, 2008). 

1.13. Conclusion 

The reviewed literature provides evidence that common bacterial blight is one of the major 

production constraint in dry bean production globally. The disease has been well researched 

compared with other dry bean diseases from breeding standpoint, and reliable sources of 

resistance have been identified. However, due to continuous evolution of the pathogen there is a 

need of continuous research in breeding for common bacterial blight resistance. 
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CHAPTER 2 

YIELD STABILITY AND ADAPTATION ANALYSIS OF SOUTH AFRICAN 

DRY BEAN CULTIVARS 

ABSTRACT 

Genotype by environment interaction is a common phenomenon in plant breeding and usually 

contributes to selections from one environment to perform poorly in another environment. The 

study was initiated to determine grain yield stability and adaptability of South African dry bean 

cultivars using additive main effect multiplicative model (AMMI) technique. A field experiment that 

constituted 30 dry bean cultivars was conducted in 21 locations of which 17 were in South Africa, 

two in Swaziland and two in Lesotho. A row by column design with three replications was used to 

lay out the experiment. The results revealed that variances due to environment, genotype and 

genotype by environment interaction were all significant (P<0.01). Additive main effect 

multiplicative model (AMMI) analysis also revealed that interaction principal components (IPCA1, 

IPCA2 and IPCA3) were significant (P<0.01). Based on the AMMI stability value, cultivars G6 and 

G14 were both stable and high yielding and recorded yield of 1.46 t ha-1 and 1.45 t ha-1 

respectively.  Cultivars G20, G26 and G29 were high yielding and recorded yield of 1.46 t ha-1, 

1.48 t ha-1 and 1.54 t ha-1 respectively. However, these cultivars exhibited specific adaptation to 

selected environments. 

Key words: Additive multiplicative main effect interaction, AMMI stability value, Dry bean, 

Genotype by environment interaction and Cultivars  
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2.1. Introduction 

Dry bean (Phaseolus vulgaris L.) (2n =22) is the third most important grain legume crop in the 

world and represents 50% of grain legumes for direct consumption (Zhang et al., 2008; Blair et 

al., 2009). The crop is grown on all continents between 52 o N and 32 o S, from sea level to as 

high as 3000 m above sea level. Production in Africa is mainly concentrated in East and Southern 

Africa where a total of 3.7 million ha of arable land is devoted to the crop annually (Kimani et al., 

2001). Mean annual production in South Africa is 56,411 metric tons (2006-2015) on an area of 

47,677 ha which does not meet the annual demand of 120,000 metric tons (Kleingeld, 2015). Dry 

bean production in South Africa is further characterised by yield instability due to changes in 

environmental conditions. The crop is mainly produced in the Free State, Mpumalanga, Gauteng, 

KwaZulu-Natal, North West, Limpopo and Eastern Cape provinces, all exhibiting different agro-

ecological conditions such as temperature, soil fertility and rainfall. The Grain Crops Institute of 

the Agricultural Research Council (ARC-GCI), in collaboration with the Department of Agriculture, 

Forestry and Fisheries (DAFF) and seed companies, annually conducts multi-location trials in the 

most important dry bean producing provinces to evaluate the stability and adaptation of all the 

released dry bean cultivars. Information from these trials enables the identification of superior 

cultivars that are widely or specific adapted. 

Genotype by environment interaction (GEI) is the differential genotypic expression across 

environments. Genotype by environment interaction is problematic when it is significant and larger 

than the genotype main effect, which is a common scenario in yield trials (Romagosa and Fox, 

1993). It reduces association between phenotypic and genotypic values and may cause 

selections from one environment to perform poorly in another, forcing plant breeders to combine 

selection and stability in one criterion (Romagosa and Fox, 1993; Fox et al., 1997). The most 

important GEI is the crossover type, which results in changes in the ranking of genotypes across 

environments (Fox et al., 1997). Becker (1981) proposed the concept of genotype stability and 

distinguished stability into biological stability (a genotype maintains a constant yield across 

environments), and agronomic stability (a genotype’s ability to respond to improved 

environmental conditions). The latter, relates to ranking, whereas a stable genotype consistently 

has a high ranking. With trials that have been conducted on the same locations and genotypes 

over years, the GEI term from the analysis of variance can be partitioned into genotype x location 

(G.L), genotype x years (G.Y) and genotype x location x years (G.L.Y) (Fox et al., 1997). 

Genotype by environment interaction and stability analysis are very important in dry bean 

breeding programmes (Kang et al., 2006). In dry bean, GEI has been associated with plant growth 

habit, seed size and plant architecture (Kelly et al., 1987). Apart from identifying cultivars that are 
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both high yielding and stable, multi-location trials have also played a role in identifying redundant 

or non-informative locations, which has resulted in efficient utilization of the limited resources by 

excluding these  environments from the dry bean evaluation trials (Kang et al., 2006). Several 

statistical methods are exploited in quantify GEI. These techniques include analysis of variance, 

regression analysis and multivariate techniques. The additive main effect multiplicative interaction 

model (AMMI) is a very powerful multivariate technique for quantifying GEI. The technique has 

the advantage of estimating GEI interaction of a genotype and partitioning it into interaction effects 

due to the environment (Abuali et al., 2014). It is a recommendation that when analyzing data for 

yield stability, two or more statistical techniques are required to make a reliable decision in a 

breeding programme, due to some shortfalls these techniques have individually. For example it 

is recommended that 50% of GEI should be explained before linear regression is used (Seif and 

Pederson, 1978; Romagosa and Fox, 1993). The study was, therefore, initiated to determine grain 

yield stability and adaptability of thirty South African dry bean cultivars grown in 21 environments.  

2.2. Materials and methods 

Data used in the analysis is from the National Dry Bean Cultivar Trials (NCT) conducted during 

the 2014/2015 growing season on 21 locations in three countries namely: South Africa, Swaziland 

and Lesotho. The dry bean genotypes used in the study and their agronomic traits are shown in 

Table 2.1. Detailed geographical information of each location is shown in Table 2.2. Cultivars 

were planted in a 5 X 6 latinized row by column design with three replications. Plots consisted of 

four rows of 5 m in length with inter- and intra-row spacing of 75 cm and 7.5 cm respectively. 

Inorganic fertilizer was applied based on the recommendations from the soil analysis results in all 

locations. Both chemical and manual weeding were conducted to control weeds. At crop maturity, 

the middle two rows of each plot were harvested and the yield recorded. The combined ANOVA 

model (Equation 2.1) for multi-environment trials was used in the analysis using GenStat 17th 

edition (Payne et al., 2014). The model includes additive terms for main effects of genotype and 

environment collectively as well as extra additive terms that accounts for interaction.  

Equation 2.1. Combined ANOVA model for multi-environment trials 

𝑌𝑖𝑗 =  𝜇 + 𝑔𝑖 + 𝑒𝑗 + (𝑔𝑒)𝑖𝑗 +∈𝑖𝑗  

Where 𝑌𝑖𝑗  is the yield of the genotype 𝑖 in environment 𝑗, 𝜇 is overall yield mean, 𝑔𝑖 and 𝑒𝑗 are 

genotypic and environmental effect, (𝑔𝑒)𝑖𝑗 is the effect of interaction between the 𝑖𝑡ℎ genotype 

and 𝑗𝑡ℎ environment, ∈𝑖𝑗  is the mean random error of the 𝑖𝑡ℎ genotype and 𝑒𝑗  environment.  
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Yield stability and adaptation was determined by AMMI. Both AMMI ANOVA table and AMMI 

biplot were generated. The AMMI analysis was based on the model as described by Crossa et 

al., (1991) (Equation 2.2). The analysis was performed in GenStat 17th edition (Payne et al., 2014). 

Equation 2.2. Additive multiplicative main effect interaction model 

𝑌𝑖𝑗 =  𝜇 + 𝑔𝑖 + 𝑒𝑗 + Ʃ𝑘=1𝜆𝑘𝛼𝑖𝑘 𝛾𝑗𝑘 + 𝜖𝑖𝑗 

Where, 𝑌𝑖𝑗  is the yield of  genotype 𝑖𝑡ℎ in the 𝑗𝑡ℎ environment,  𝜇 is the grand mean, 
 𝑔𝑖  is the mean 

of 𝑖𝑡ℎ genotype minus the grand mean, 𝑒𝑗  is the mean of 𝑗𝑡ℎ environment minus the grand mean. 

𝜆𝑘   is the square root of the eigen value of the principal component analysis (PCA) axis, 𝛼𝑖𝑘  and 

𝛾𝑗𝑘  are the principal component scores for  PCA𝑘 of the 𝑖𝑡ℎ genotype and 𝑗𝑡ℎ environment 

respectively and 𝜖𝑖𝑗 is the residual error. AMMI stability value (ASV)  (Equation 2.3) (Purchase et 

al., 2000) was used to determine which cultivars showed specific or general adaptation. 

Equation 2. 3. Additive main effect multiplicative stability value 

𝐴𝑆𝑉 = √[
𝑆𝑆𝑃𝐶𝐴1

𝑆𝑆𝑃𝐶𝐴2
(𝐼𝑃𝐶𝐴1 𝑠𝑐𝑜𝑟𝑒)]

2 

+   (𝐼𝑃𝐶𝐴2 𝑠𝑐𝑜𝑟𝑒𝑠)2 

Where, 
𝑆𝑆𝑃𝐶𝐴1

𝑆𝑆𝑃𝐶𝐴2
 is the weight given to IPCA 1 (interaction principal component axis 1) value by 

dividing IPCA 1 and sum of squares with IPCA2 (interaction principal component axis 2) sum of 

squares. Larger IPCA scores regardless of signage indicated specific adaptation and lower IPCA 

scores regardless of signage indicated general adaptation. Different signage of IPCA scores 

indicate crossover GEI (Romagosa and Fox, 1993). 
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2.3. Agronomic characteristics of the cultivars 

The evaluated cultivars (Table 2.1) had different agronomic characteristics. Out of 30 genotypes 

only four were small white (SW) canning beans. The rest were red speckled sugar dry beans 

(RSS). All RSS dry beans, except G9, were of type II indeterminate growth habit. The SW were 

all of type I determinate growth habit. Number of seed per 100 g ranged from 178 to 512. 

Table 2.1.  List of cultivars evaluated and their agronomic characterisics 

Genotype Code Type Growth habit Seed  /100 g 

G1 RSS II 239 

G2 RSS II 250 

G3 RSS II 224 

G4 RSS II 233 

G5 RSS II 205 

G6 RSS II 204 

G7 RSS II 212 

G8 RSS II 239 

G9 RSS I 223 

G10 RSS II 237 

G11 SW I 512 

G12 RSS II 246 

G13 RSS II 220 

G14 RSS II 209 

G15 RSS II 245 

G16 RSS II 241 

G17 RSS II 202 

G18 RSS II 202 

G19 RSS II 220 

G20 RSS II 229 

G21 RSS II 245 

G22 RSS II 316 

G23 RSS II 178 

G24 RSS II 217 

G25 RSS II 226 

G26 SW I 450 

G27 SW I 398 

G28 SW I 401 

G29 RSS II 204 

G30 RSS II 232 

RSS = Red speckled beans, SW = Small white beans, I = Determinate type I beans and II = Indeterminate type II 

beans. 
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Table 2.2. List of trial locations and their geographical information 

Province/Country Location Name 
Location 

code 
Altitude 
(Masl) 

Latitude 
(0S) 

Longitude 
(0E) 

North West      

 Biesiesvlei BI 1532 26.37 26.00 

 Grootpan GN 1557 22.77 28.68 

 Lichtenburg LG 1504 26.65 26.17 

 Potchefstroom PM 1340 26.70 27.10 

Mpumalanga      

 Middleburg MG 1476 25.77 29.47 

 Delmas DS 1550 26.15 28.68 

 Ermelo EO 1788 26.53 29.98 

 Loskop LP 1489 30.50 24.10 

Free State      

 Clarens CS 1942 28.51 27.88 

 Harrismith HH 1661 28.28 29.13 

 Ficksburg FG 1590 28.87 27.88 

 Kransfontein KN 1666 30.28 26.03 

 Petrussteyn PN 1715 27.65 28.13 

KwaZulu-Natal      

 Grey town GU 1021 29.10 30.60 

 

Nqutu- 
Zizameleni NQ 1207 28.30 30.74 

 Kosktad KD 1229 30.55 29.24 

Swaziland      

 Hebron HB 1243 26.19 31.07 

 Mangcongo MO 1400 31.00 26.35 

      

Lesotho Maseru MU 1673 29.32 27.48 

 Leribe LE 1642 28.88 28.05 

 Masl =Metres above sea level. 
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2.4. Results 

2.4.1.  Combined analysis of variance for grain yield 

The analysis of variance for grain yield (Table 2.3) revealed significant differences (P<0.01) for 

environment, genotype and genotype x environment interaction. The combined ANOVA 

partitioned the treatment as follows; sources of variance due to environment, genotype, and 

genotype by environment interaction were; 77.1%, 1.1% and 9.3% of total sum of squares 

respectively. The grand mean yield was 1.33 t ha-1. The combined coefficient of variation (CV) for 

all trials across the 21 testing environments was 29.9%. 

Table 2.3  Combined analysis of variance for grain yield over different environment 

Source of Variation     DF      SS      MS 

Genotype     29     17.45     0.6** 

Environment     20 1229.12   61.46** 

GEI   580   147.50     0.25** 

Residual 1260   200.31     0.16 

Total 1889 1594.38  

Yield mean (t ha-1) 1.33 CV    29.9% 

** Significant at P<0.01. DF = Degrees of freedom, CV = Coefficient of variation, SS = Sum of squares, MS = Mean of 

squares, GEI = Genotype x Environment interaction. 

2.4.2. Additive multiplicative main effect analysis of variance for grain yield 

The results from additive multiplicative main effect interaction (AMMI) analysis of variance (Table 

2.4) was significantly different (P<0.01) for all cultivars and for all environments. The partitioning 

of variance components by AMMI ANOVA revealed that 1.1% was due to genotype, 77.1% due 

to environment main effect, 9.3% was due to genotype x environment interactions of the total sum 

of squares. Furthermore, the three interaction principal components (IPCA1, IPCA2 and IPCA3) 

accounted for 29%, 15.6% and 11.8%, respectively of the total of genotype by environment 

interaction sum of squares and were significantly different (P<0.01). The interaction principal 

components IPCA1, IPCA2 and IPCA3 cumulatively accounted for 56.4% of the total genotype 

by environment interaction sum of squares. 
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Table 2.4. AMMI analysis of grain yield in dry bean cultivars over environments 

Source of variation    DF       SS     MS 

Total 1889  1594.40   0.84 

Treatments   629  1394.10   2.22** 

Genotypes     29      17.50   0.60** 

Environments     20  1229.10 61.46** 

Block     42      39.40   0.94** 

GEI   580    147.50   0.25** 

 IPCA 1      48      42.80   0.89** 

 IPCA 2      46      23.00   0.50** 

 IPCA 3      44      17.40   0.40** 

 Residuals    442      64.20   0.16 

Error 1218    160.90   0.13 

** Significant at P<0.01, DF = Degrees of freedom, SS = Sum of squares, MS = Mean sum of squares, GEI = Genotype 

x Environment interaction, IPCA 1 = Interaction principal component axis 1, IPCA 2 = Interaction principal components 

axis 2, IPCA 3 = Interaction principal component 3. 

2.4.3. Mean yield and AMMI stability values for cultivars 

Mean yield for the 30 cultivars ranged between 1.07 t ha-1 and 1.54 t ha-1 (Table 2.5). Cultivar 

G24 had the lowest yield and cultivar G29 the highest.  Forty percent of the cultivars (G10, G14, 

G15, G18, G20, G21, G28, G29, G30, G6 and G8) yielded above the grand mean of 1.33 t ha-1. 

Additive main effect multiplicative interaction stability value (ASV) for cultivars ranged from 1.55 

to 0.20 (Table 2.5). Cultivar G13 had the highest ASV, while G14 had the lowest. 
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Table 2.5. Mean yield, first, second and third IPCA scores and ASV of cultivars evaluated 

Cultivar code Mean GY (t ha-1) IPCAg[1] IPCAg[2] IPCAg[3] ASV 

G1 1.26 -0.23 -0.61 0.19 0.74 

G10 1.35 0.10 0.08 -0.14 0.21 

G11 1.27 0.43 0.18 -0.56 0.82 

G12 1.28 -0.34 -0.28 -0.49 0.70 

G13 1.32 0.83 0.15 0.35 1.55 

G14 1.45 0.10 0.04 0.08 0.20 

G15 1.38 0.27 -0.08 0.23 0.51 

G16 1.30 0.07 -0.23 -0.04 0.26 

G17 1.26 0.23 -0.06 0.25 0.43 

G18 1.43 0.21 0.13 0.12 0.41 

G19 1.27 0.37 -0.64 0.50 0.93 

G2 1.27 -0.30 0.07 -0.29 0.55 

G20 1.46 -0.44 0.39 0.20 0.90 

G21 1.43 -0.19 0.48 0.28 0.60 

G22 1.30 0.05 -0.24 -0.11 0.26 

G23 1.18 0.32 -0.17 -0.22 0.63 

G24 1.07 -0.29 -0.37 -0.09 0.66 

G25 1.33 -0.14 0.30 0.41 0.40 

G26 1.48 0.50 0.31 0.11 0.98 

G27 1.30 0.49 0.35 -0.36 0.98 

G28 1.35 0.24 0.21 -0.45 0.50 

G29 1.54 -0.43 0.48 -0.31 0.93 

G3 1.30 -0.40 0.02 0.17 0.74 

G30 1.42 0.39 -0.11 -0.22 0.73 

G4 1.32 0.01 -0.47 -0.22 0.47 

G5 1.31 -0.27 -0.19 0.19 0.53 

G6 1.46 -0.14 0.06 0.35 0.27 

G7 1.32 -0.59 0.34 0.06 1.15 

G8 1.34 -0.32 0.24 0.24 0.64 

G9 1.23 -0.54 -0.37 -0.24 1.07 

IPCAg [1] = Interaction principal component axis for genotype scores 1, IPCAg [2] = Interaction principal component 

axis for genotype scores 2, IPCAg [3] = Interaction principal component for genotype scores 3, ASV = AMMI stability 

value, Mean GY = Mean grain yield. 

2.4.4. Mean yield and AMMI stability values for environments 

Yield across environments ranged from 0.23 t ha-1 to 3.49 t ha-1 (Table 2.6). Thirty-eight percent 

of the environments (LE, LP, GU, CS, BA, GN, KD, and DS) recorded mean yield above the grand 

mean of 1.33 t ha-1. KN recorded the lowest yield, while DS was the highest yielding environment. 

Additive main effect multiplicative interaction stability value (ASV) for environments ranged from 

2.83 to 0.15 (Table 2.6). Environment DS had the highest ASV, while MG had the lowest. 
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Table 2.6. Mean yield, first, second and third IPCA scores and ASV of environments 

Environment Mean GY (t ha-1) IPCAe[1] IPCAe[2] IPCAe[3] ASV 

BA 1.82 0.96 0.55 0.67 1.87 

BI 0.95 -0.09 -0.12 -0.06 0.21 

CS 1.71 0.05 0.80 0.10 0.81 

DS 3.49 -1.50 0.39 0.19 2.83 

EO 1.04 0.25 0.03 -0.09 0.47 

FG 0.95 -0.08 -0.24 -0.28 0.28 

GN 2.07 -0.25 0.50 0.39 0.69 

GU 1.71 -0.05 -0.26 0.09 0.28 

HH 1.20 0.27 -0.02 -0.53 0.49 

HN 0.23 -0.08 -0.15 0.03 0.21 

KD 3.24 -0.06 -0.83 0.77 0.83 

KN 0.23 0.19 -0.04 -0.23 0.35 

LE 1.46 -0.33 -0.02 -0.19 0.62 

LG 0.86 0.10 -0.01 -0.19 0.19 

LP 1.51 0.38 0.00 -0.22 0.71 

MG 1.28 0.08 0.03 -0.25 0.15 

MO 0.79 0.05 -0.23 0.42 0.25 

MU 0.77 -0.07 -0.46 0.12 0.48 

NQ 0.81 0.02 -0.42 -0.34 0.43 

PM 1.03 -0.02 0.32 -0.49 0.32 

PN 0.85 0.20 0.14 0.10 0.41 

IPCAe[1] = Interaction principal component axis for environment scores 1, IPCAe[2] = Interaction principal component 

for environment scores 2, IPCAe[3] = Interaction principal component for environment scores 3, ASV = AMMI stability 

value, Mean GY = Mean grain yield. 

2.4.5. Interaction principal components scores for cultivars and environments 

The results of IPCA scores for cultivars and environments had both positive and negative 

scores for the cultivars and environments respectively (Tables 2.5 and 2.6). The IPCAs scores 

for both cultivars and environment varied. Some cultivars recorded higher IPCAs scores than 

others, similarly, some environments had higher IPCAs scores than others. 

2.4.6. First four selections per environment 

The AMMI analysis identified the best four cultivars per location (Table 2.7). In terms of ‘which 

won where’ cultivar G29 was the highest and won in seven environments followed by G26 and 

G19, which won in four environments each. Cultivars G30, G20, G13, G11, G7, G6 and G7 won 

in one environment each. Differential ranking of cultivars across the environments indicated the 

presence of crossover type of GEI.  
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Table 2.7. First four selections per enviroment 

 
Environment 

 
Mean GY (t ha-1) 

 
Score 

Ranking per environment 

1st 2nd 3rd 4th 

BA 1.82 0.9619 G13 G26 G18 G15 

LP 1.51 0.383 G26 G30 G27 G13 

HH 1.20 0.2651 G11 G28 G30 G27 

EO 1.04 0.2534 G26 G30 G13 G18 

PN 0.85 0.2048 G26 G13 G18 G29 

KN 0.23 0.1866 G30 G26 G29 G28 

LG 0.86 0.101 G29 G30 G26 G28 

MG 1.28 0.077 G29 G30 G26 G28 

MO 0.79 0.0524 G19 G6 G15 G26 

CS 1.71 0.0456 G29 G21 G20 G26 

NQ 0.81 0.0182 G4 G12 G30 G9 

PM 1.03 -0.0221 G29 G28 G11 G27 

GU 1.71 -0.0501 G6 G19 G1 G14 

KD 3.24 -0.0648 G19 G1 G6 G5 

MU 0.77 -0.0745 G19 G1 G4 G6 

FG 0.95 -0.0767 G29 G12 G4 G30 

HN 0.23 -0.0789 G29 G6 G20 G14 

BI 0.95 -0.0909 G29 G6 G20 G14 

GN 2.07 -0.2525 G20 G21 G29 G25 

LE 1.46 -0.3336 G29 G20 G7 G12 

DS 3.49 -1.5049 G7 G20 G29 G8 

Mean GY =Mean grain yield. 

2.4.7. Additive multiplicative main effect interaction bi-plot  

The AMMI bi-plot analysis (Figure 2.1) revealed that environment DS, KD, BA and CS had the 

greatest effect on GEI interaction. Cultivar G19 had specific adaptation with high yielding 

environments. Cultivars G7, G8, G20, G21 and G29 had a positive interaction with environment 

DS, hence were specifically adapted to DS. Cultivar G29 showed better specific adaptation to DS 

than cultivars G7, G8, G20 and G21, because it has the longer vector to DS than that of the latter.  

Cultivar G13 interacted positively with environment BA and was the only cultivar that showed 

better specific adaptation to BA among the cultivars that were adapted to BA, namely, G11, G18, 

G28 and G27. All cultivars in the fourth quadrant of bi-plot displayed specific adaptation to KD. 

The following cultivars; G6, G10, G14, G16, G18 and G22 were all close to the centre of the bi-

plot revealing general adaptation to the testing environments. Cultivar G2 had an angle of less 

than 900 with environment GN. Other cultivars showed similar relationship with other 
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environments. Environments that are close to each other in a bi-plot have similar response. 

Environments (BI, HN, FG, GU and MO; MG, LP, EO KN and PN) exhibited this relationship in 

the bi-plot. The bi-plot analysis of GEI based on the AMMI2 model for the first two interaction 

principal component scores, namely IPCA1 and IPCA2, revealed that the two IPCAs cumulatively 

contributed 44.6% of the GEI.  

 

Figure 2.1. Bi-plot analysis of GEI based on AMMI2 for the first two interaction principal 

component scores 

2.5. Discussion 

The combined analysis of variance revealed that the highest source of variation was due to 

environment. This clearly indicates that the testing environments were diverse, which suggest 

that the 21 locations had different biotic and abiotic production limiting factors. Similar results 

were also reported in previous studies focused on yield stability for other crops (Annicchiarico, 

1997; Worku and Zelleke, 2007; Farshadfar, 2008; da Silveira et al., 2013). The magnitude of the 

source of variation of GEI was 8.5 larger than that of genotype. This reveals that there was 
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significant genotypic response across testing environments and that this response was the main 

contributor of inconsistency in ranking of tested dry bean cultivars across the environments. Fox 

et al. (1997) reported that GEI results in selections from one environment performing badly in 

another environment due to crossover. These results are in line with the results which previous 

investigators found in similar studies (Kang et al., 2006; Farshadfar, 2008; Mehari et al., 2014). 

Farshadar (2008) found that the GEI was 2.5 larger than that of genotypes in a yield study for 

bread wheat grain in Iran. In another similar study conducted on malt barley, the magnitude of 

GEI was 4.7 larger than that of genotypes (Mehari et al., 2014). 

The AMMI ANOVA table revealed that GEI was significant and it contributed less than 50% to the 

total sum of squares justifying that the AMMI model was sufficient in determining stability. 

Romagosa and Fox (1993) recommended that regression analysis should be performed on 

stability studies when GEI account for more than 50%. The first three principal component 

analysis (IPCAs) were significant and sufficient in explaining the additive main effects and that 

the data fitted the model. Zobel et al. (1988) found that IPCA1, IPCA2, and IPCA3 accounted 76% 

of the variation in yield stability of soybean cultivars evaluated and argued that such a large value, 

though statistically sufficient, was undesirable in describing the additive main effect. The IPCA1 

contribution was larger than the subsequent IPCAs, though all of them being significant means 

that genotypic variation was more important among dry bean cultivars than the remaining 

variations, which are associated with other IPCAs. IPCA1 account for genotypic variation and the 

subsequent IPCAs account for the remaining variation (Crossa, 1990). 

The study reveals that among the tested dry bean cultivars, some were specifically adapted to 

selected environments and some showed general adaptation. These results are in line with 

previous similar studies (Kang et al., 2006; Pereira et al., 2009). Cultivars that had large IPCA1 

scores were specifically adapted to environments with IPCA1 score of the same sign. For example 

G11, which had a positive IPCA1 score of 0.43, was specifically adapted to LP with a positive 

IPCA1 score of 0.38. Similarly, G2, with a negative IPCA1 score of -0.30, was adapted to GN with 

a negative IPCA1 score of -0.25. The majority of the tested cultivars demonstrated this 

relationship. Romagosa and Fox (1993) reported that a large genotypic PCA1 score reflects more 

specific adaptation to environments with PCA1 scores of the same sign. Cultivar G2 showed 

specific adaptation to environment GN so was G11 to environment LP. These two cultivars had 

angles of less than 900 to the respective environments as displayed on the bi-plot. Fox et al. 

(1997) reported that a genotype with an angle less than 900, has specific adaptation and positive 

interaction with that particular environment. Environment MG is the largest contributor to yield 

stability among tested environments as it has the lowest ASV. Environments with the largest 
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contribution to phenotypic stability are ideal for conducting preliminary tests in the selection 

scheme (da Silveira et al., 2013). 

Stable cultivars have low ASV and are close to the centre in a bi-plot (Fox et al., 1997; Purchase 

et al., 2000).  Cultivars G6, G10, G14, G18 and G22 had low ASV, exhibiting general adaptation 

to the testing environments and therefore were regarded as stable cultivars. The AMMI bi-plot 

groups environments with similar response together (Fox et al., 1997).  KN and NP were among 

environments that had similar responses. Environments with similar responses could be clustered 

together into mega-environments and replaced with other testing environments that are 

representative of the region where the cultivar will be grown or could be excluded as testing 

environments (Hongyu et al., 2014). Kang et al. (2006) reported similar results independently, 

using genotype main effects and genotype by environment interaction (GGE) bi-plot and 

recommended that it is possible to drop some of these environments and non-informative ones 

as a measure of controlling the scarce resources in breeding programme that goes with trial 

management. It was observed that all the type I cultivars were unstable. Kelly et al. (1987) 

reported that stability in dry bean is associated with growth habit. 

2.6. Conclusion 

The study reveals the presence of GEI in South African dry bean cultivars, which justify that dry 

bean breeding programmes should consider breeding for both wide adaptation and specific 

adaptation. Furthermore, the breeding programmes can reduce the number of testing 

environments in order to save resources incurred in trial management. Cultivars G6 (1.46 t ha-1) 

and G14 (1.45 t ha-1) were both stable and high yielding and can be recommended for general 

adaptation. On the other hand, cultivars G20 (1.46 t ha-1), G26 (1.48 t ha-1) and G29 (1.54 t ha-1) 

can be recommended for high potential dry bean growing environments as they demonstrated 

specific adaptation to such environments. 
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 CHAPTER 3 

EVALUATION OF NEWLY INTRODUCED DRY BEAN GERMPLASM FOR 

YIELD AND COMMON BACTERIAL RESISTANCE 

ABSTRACT 

Common bacterial blight (CBB) caused by Xanthomonas axonopodis pv phaseoli (Xap) (Smith) 

Vauterin, Hoste, Kosters & Swings and its fuscans variant, X. fuscans sbsp. fuscans (Xff) is a 

disease of economic importance in South Africa. Identifying genotypes that are both high yielding 

and resistant to the disease, will contribute to the improvement of national dry bean production. 

The study aimed at identifying resistant, high yielding genotypes from introduced germplasm. 

Sixty cultivars and lines were evaluated at two localities in South Africa (Cedara, KZN and 

Potchefstroom, North West) under artificial inoculation, using a mixture of two local isolates (Xf260 

and Xf410).  Eight local cultivars were included as checks. Relative area under disease progress 

curve (RAUDPC) was used to determine the reaction of these genotypes to CBB. The evaluated 

germplasm exhibited different reactions to CBB. Approximately 20% of genotypes exhibited 

resistance across the two locations, 43% and 37% showed moderate and susceptible reaction to 

CBB, respectively. The mean grain yield was 1.29 t ha-1, with the majority of susceptible 

genotypes yielding below the mean. There was, however, a weak negative correlation (r = - 0.49, 

P<0.001) between disease reaction and yield. Genotypes ADP-0041, ADP-0790, M-125, ADP-

0096, ADP-0544 and M-191 were selected as both high yielding and resistant. These genotypes 

exhibited good levels of resistance and yielded above 1.7 t ha-1. Genotypes ADP-0055, ADP-

0099 and ADP-0103 were selected on the basis of their high yield. These genotypes yielded 

above 1.7 t ha-1, but showed susceptible reaction to CBB. Disease onset on genotypes was 

detected using relative life time (RLT). The onset of disease varied significantly among genotypes. 

Disease was first detected in RS 7. Strong positive correlation (r = 0.54, P = 0.001) between 

RAUDPC and RLT was noted. In general, genotypes with white flowers and those with 

indeterminate growth habit showed a high level of resistance reaction to CBB.   

Key words:  Common bacterial blight (CBB), Dry bean, Relative area under disease progress 

curve (RAUDPC), Relative life time (RLT)  
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3.1. Introduction  

Dry bean (Phaseolus vulgaris. L) is a crop of significance worldwide. In Africa it is considered to 

be the main legume crop, especially among smallholders. It is more important in East and 

Southern Africa, where it is a major source of dietary proteins among the rural people. In South 

Africa, dry bean is consumed both by the poor and rich people. Despite its importance, production 

is still low due to a number of production constraints associated with the crop. Production 

constraints include both abiotic and biotic stresses. Among these constraints, common bacterial 

blight (CBB), a seed borne disease caused by Xanthomonas axonopodis pv phaseoli (Xap) 

(Smith) Vauterin, Hoste, Kosters & Swings and its fuscans variant, X. fuscans sbsp. Fuscans is 

considered to be of significant economic importance across the dry bean production environment 

worldwide (Arnaud-Santana et al., 1994). It is more severe in areas of high temperature and 

humidity (Saettler, 1989; O'Boyle et al., 2007). The disease reduces yield up to 60% and also 

lowers the quality of the grain (Jung et al., 1996; Marquez et al., 2007). All aerial parts of the bean 

plant are affected by the CBB pathogen. 

It has been established that planting infected seeds, continuous cropping, infected volunteer 

plants and plant debris are primary sources of inoculum for CBB in dry bean (Saettler, 1989; 

Fininsa and Tefera, 2001). The majority of dry bean farmers in Africa are poorly resourced 

smallholder farmers who plant farm saved seeds contaminated with seed borne diseases such 

as CBB. They have limited land to practice crop rotation in order to break the life cycle of the 

pathogen and little capital to invest in practices that maintains high field hygiene or purchase 

bactericides that can control the disease in the field (Mkandawire et al., 2004). Chemical control 

using agro-chemicals has not proved to be highly effective and just raises the production cost 

(Mkandawire et al., 2004; O'Boyle et al., 2007; Fourie et al., 2011). Planting resistant dry bean 

varieties is the only viable solution to control CBB in dry bean production, especially in smallholder 

agriculture (Mkandawire et al., 2004). 

Evaluation of the reaction to common bacterial blight in dry bean germplasm is very important 

since it allows identification of genotypes that are resistant and also establishes their level of 

resistance (Singh and Munoz 1999; Duncan 2010). Genotypes can be grouped into three 

categories based on their reaction to CBB namely susceptible, moderate resistant (intermediate) 

and resistant. Such information has great value in dry bean breeding research as it informs 
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researchers about which genotypes should be either used as parental materials in the breeding 

programme, or released to farmers. In summary, CBB screening studies are a prerequisite for a 

successful resistance breeding programme. The aim of the study was, therefore, to evaluate 

newly introduced dry bean germplasm in order to identify genotypes that are both high yielding 

and resistant to CBB. 

3.2. Materials and methods 

3.2.1. Plant materials 

The reaction to CBB was evaluated in the field using 60 dry bean genotypes of diverse genetic 

background, including 39 lines from the Andean Diversity Panel (ADP) and 13 from the Phaseolus 

Improvement Cooperative (PIC) lines. Five cultivars from the Agricultural Research Council-Grain 

Crop Improvement (ARC-GCI) dry bean breeding programme and three from Pro-Seed, a seed 

company based in KwaZulu-Natal South Africa were used as checks in the study. 

3.2.2. Experimental sites  

The germplasm accessions were screened for resistance to CBB under artificial infection at 

Potchefstroom and Cedara during the 2015/2016 growing season. Potchefstroom is located in 

North West province of South Africa at an altitude of 1321 metres above sea level (masl), while 

Cedara is located in KwaZulu-Natal province and is at an altitude of 1053 masl. 

3.2.3. Experimental design and management 

The experiment was laid using 10 x 6 alpha lattice design with three replications. The number of 

rows per plot at both locations was two, which were spaced at 75cm apart. The length of a plot at 

Potchefstroom was 5 m and 4 m at Cedara. The intra-row spacing for Potchefstroom trial was 7 

cm and 5 cm for the Cedara trial. At both locations spreader rows of the highly susceptible cultivar, 

Teebus, were planted around the trial. Both fields were weeded twice manually and no fertilizer 

was applied. 

3.2.4. Field inoculation 

A mixture of two local isolates (Xf260 and Xf410) was used for inoculation. Inoculum was prepared 

by suspending 48 to 72 h old cultures in tap water. The suspension was adjusted to 108 CFU/ml. 

Culture plates used at Cedara were transported at room temperature and suspensions were made 

on site, while at Potchefstroom due to closeness to the field, suspensions were made in the 

laboratory. Inoculation was done immediately after preparing the suspension. The Potchefstroom 

trial was irrigated after inoculation in order to increase humidity, while the Cedara trial was rain 
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fed. Both trials were inoculated at 28, 35 and 42 days after planting using a Stihl SR 430 mist 

blower. 

3.2.5. Data collection 

Disease severity was based on the percentage of leaf area infected for the whole plot using a 

standardised CIAT scale of 1 to 9 (Corrales and van Schoonhoven, 1987). The evaluations were 

conducted three times at an interval of 14 days after first inoculation. The scores were transformed 

into percentages 1 = 5%, 2 =15%, 3 = 25%, 4 = 35%, 5 = 45%, 6 = 55%, 7 = 65%, 8 = 75% and 

9 = 85%. The percentage values were used to calculate the relative area under disease progress 

curve (RAUDPC). Both days to each disease assessment from planting (DDAP) and days to 

physiological maturity (DPM) were recorded and used to quantify relative life time (RLT) for each 

genotype (Tschanz, 1984) (Equation 3.1). The function of RLT was to standardise the growth 

stage of genotypes. Relative area under disease progress curve was calculated according to 

Campbell and Madden (1990) (Equation 3.2) using RLT as the independent variable and 

percentage severity scores as dependant variable. Grain yield (Appendix 3.4) and other non-yield 

traits (growth habit, days to 50% flowering, flower colour, bean type) were recorded (Appendix 

3.1). 

 Equation 3.1. Formular for calculating relative life time 

𝑅𝐿𝑇 = [(𝐷𝐷𝐴𝑃/𝐷𝑃𝑀) ∗ 100] 

Where RLT is relative life time, DDAP is days to each disease assessment from planting and 

DPM is days to physiological maturity. 

Equation 3.2. Formular for calculating area under disease progress curve 

𝑅𝐴𝑈𝐷𝑃𝐶 = ∑ (
𝑦1  + 𝑦𝑖+1

2
)

𝑛−1

𝑖

(𝑡𝑖+1  + 𝑡𝑖) 

Where RAUDPC is relative area under disease progress curve, "𝑛" is the number of evaluations, 

"𝑦" is the disease percentage for each assessment and "𝑡"  is the relative life time (RLT) of each 

assessment 

3.2.6. Data analysis 

 Data were analysed using analysis of variance in REML (Residual maximum likelihood) in 

GenStat 17th edition (Payne et al., 2014). Means were separated by least significant difference 
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(LSD) at P = 0.05. Phenotypic correlation analysis was performed in Genstat 17th edition (Payne 

et al., 2014) using two way model at P = 0.05. Relationship between CBB reaction and growth 

habit, CBB reaction and flower colour were also performed using t-statistic assuming unequal 

variance at P = 0.05 in excel, Microsoft office 2013. 

3.3. Results  

3.3.1. Weather data 

The mean seasonal temperature (Table 3.1) for the two environments varied. Potchefstroom 

recorded higher mean temperature than Cedara. Potchefstroom recorded the best optimum 

favourable mean monthly temperatures for common bacterial blight disease development 

compared with Cedara. Cedara, however, recorded higher rainfall (Table 3.1) during the growing 

season than Potchefstroom. 

Table 3.1. Rainfall and mean temperature of Cedara and Potchestroom during growing 

season 

Month 
Cedara Potchefstroom 

Mean Temp(oC) Total Rain (mm) Mean Temp (oC) Total Rain(mm) 

Nov-15 24.8   54.1 30.5 36.6 

Dec-15 27.9   84.6 33.4 64.7 

Jan-16 26.5 158.3 30.8 94.7 

Feb-16 27.5 115.3 31.6 80.0 

Mar-16 26.8   95.5                28.7 60.2 

Apr-16 25.4   20.1 26.5 77.0 

May-16 22.5   18.5 22.1 42.4 

Average 25.9 - 29.1 - 

Total - 546.4 - 455.6 

Source; Agricultural research council.  

3.3.2. Analysis of variance 

A summary of analysis of variance (ANOVA) for the two environments (Cedara and 

Potchefstroom) and combined ANOVA for relative life time (RLT), relative area under disease 

progress curve (RAUDPC) and grain yield (GY at t ha-1) is presented in Table 3.2.There were 

large significant differences (P<0.001) between genotypes for RLT and RAUDPC at both location 

and in the combined analysis. Highly significant differences (P<0.001) between genotypes for 

grain yield in Potchefstroom were observed. 
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Table 3.2.  Analysis of variance for relative life time, relative area under disease progress 

curve and grain yield for the genotypes evaluated at two locations in South Africa 

Source of  
variation 

 DF 
RLT RAUDPC GY 

MS F.pr MS F.pr MS F.pr 

Cedara 

Replication     2     3.427   0.232   803005   0.496   

Block     5   13.020 <0.001 3351143   0.016   

Rep*Block   10   11.068 <0.001 6176693 <0.001   

Genotype   59   12.829 <0.001 5926578 <0.001 
  

Residual 103     2.311  1138868    

Total 179     6.579  3056425    

Potchefstroom 

Replication     2    8.590   0.506 6035509 <0.001 0.2654 0.467 

Block     5  22.680   0.117 2146813    0.008 0.5778 0.149 

Rep*Block   10  55.060 <0.001 2577149 <0.001 0.3991 0.332 

Genotype   59  41.750 <0.001 9599908 <0.001 1.1288  <0.001 

Residual 103  12.530 
 

  645268 
 

0.3463 
 

Total 179  24.770  3806892   0.6127  

Combined 

Environment      1  1350.540 <0.001 71254584     <0.001   

Replication      2   2.049   0.806   5437572       0.025   

Env*Rep     2   9.971   0.352   1400942       0.384   

Genotype   59 47.177 <0.001 13303378      <0.001   

Residual 295   9.507    1457483    

Total 359      19.395 
   3620581    

DF = Degrees of freedom, RLT = Relative lifetime RAUDPC = Relative area under disease progress curve, GY= Grain 

yield in t ha-1, MS = Mean of squares. 

3.3.3. Correlations among traits 

Table 3.3 is a summary of correlations of relative area under disease progress curve (RAUDPC), 

relative life time (RLT), grain yield (t ha-1) and other traits among the 60 evaluated dry bean 

genotypes.  Both significant positive and negative correlations between traits were observed. 

RAUDPC was significantly positively correlated with RLT (P<0.001). Days to flowering was highly 

significantly (P<0.001) positively correlated with DPM and GH. Grain yield was highly significantly 

(P<0.001) positively correlated with GH. RAUDPC was highly significantly (P<0.001) negatively 

correlated with DPM and grain yield. RLT was highly significantly (P<0.001) negatively correlated 

with FD and DPM. 
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Table 3.3. Correlations among traits 

Traits   FD DPM RAUDPC RLT GY 

FD  -     

DPM    0.76*** -    

RAUDPC  -0.58 -0.53*** -   

RLT  -0.76*** -0.99*** 0.54*** -  
GY   0.23    0.21        -0.49*** -0.22 - 

Significant at: * P<0.05; ** P<0.01; *** P<0.001.  FD = Days to flowering, DPM = Days to physiological 

maturity, RAUDPC = Relative area under disease progress curve, RLT = Relative life time, GY = Grain yield. 

3.3.4. Relative life time  

The RLT pooled mean (Appendix 3.2) for the two locations was 65.2%. The RLT means for 

Cedara and Potchefstroom were 63.3 and 67.2% respectively. Pooled RLT ranged from as 71.6% 

to 56.2%. Pooled data indicated that genotype ADP-0601 recorded the highest RLT, while 

Tygerberg recorded the lowest with the majority of genotypes in the range of 63% to 67%. At 

Cedara RS 7 recorded the lowest RLT of 51.2% and ADP- 0376 recorded the highest 66.4%, 

while at Potchefstroom M-24 had the lowest RLT of 58.4% and ADP-0601 recorded the highest 

RLT of 76.7%. Using the RLT scale the disease was first detected at Cedara.  At Cedara the 

disease was first detected on genotype RS 7 and latest detection was found on ADP-0376. At 

Potchefstroom it was detected first in M-24 and last on ADP-0601.  

3.3.5. Relative area under disease progress curve 

The combined mean (Appendix 3.2) for RAUDPC of the two environment was 3531. Relative area 

under disease progress curve ranged from 6442 in ADP-0601 to 869 in RS 7 with 37% of 

genotypes having RAUDPC of above 4001, 43% between 2001 and 4000 and 20% with less than 

2000. Mean RAUDPC was lower at Cedara than at Potchefstroom with a difference of 890. Gadra 

recorded the highest RAUDPC at Cedara and Werna the lowest. Genotypes, ADP-0611 and RS 

7 had the highest and lowest RAUDPC of 7123 and 774 at Potchefstroom, respectively. 

Approximately 30% and 27% of genotypes recorded RAUDPC of less than 2000 at Cedara and 

Potchefstroom, respectively. In addition, there was a strong positive significant correlation (r = 

0.54, P<0.001) between RAUDPC and RLT (Table 3.3). 

3.3.6. Genotypes reaction to common bacterial blight disease 

Genotypes with RAUDPC of less than 2000 were considered resistant to CBB, genotypes with 

RAUDPC values between 2001 and 4000 were considered to exhibit moderate resistance and 
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genotypes with RAUDPC of greater than 4001 were considered susceptible to CBB. Based on 

pooled RAUDPC data (Appendix 3.3), approximately 20% of genotypes exhibited resistance 

across the two locations, while 43% and 37% showed moderate and susceptible reaction to CBB 

respectively. Five of eight South African dry bean genotypes showed resistance reaction to CBB 

(Werna, RS 7, Teebus-RCR 2, Caledon and Ukulinga). Four ADP lines showed resistant reaction 

across the two locations (ADP-0531, ADP-0041, ADP-0211 and ADP-0790). Only three PIC lines, 

M-139, M-145 and M-197 showed resistant reaction to CBB at both locations. Teebus-RR 1 and 

Gadra were the two local genotypes that exhibit susceptibility to CBB among the local dry bean 

genotypes across two locations. Tygerberg, also a local genotype, exhibited moderate resistance 

at both locations.  Pooled data revealed that 19 ADP genotypes were susceptible at both locations 

and only one PIC line exhibited the same reaction to CBB. The majority of genotypes exhibited 

susceptible reaction at Potchefstroom than at Cedara. The proportional distribution to CBB 

reaction among genotypes at Cedara was 30% resistant, 42% moderate and 28% susceptible 

while at Potchefstroom the distribution was 27, 15 and 58% respectively. Genotypes M-126 and 

ADP 0540 showed resistance to CBB at Cedara only. 

3.3.7. Relationship between disease reaction and grain yield 

Grain yield was recorded at Potchefstroom only (Appendix 3.4). Grain yield at Cedara was not 

recorded due to a hailstorm that occurred during the flowering stage and also high severity of 

Ascochyta blight disease. Almost all genotypes showed susceptibility to the disease. The most 

susceptible genotypes showed a high level of leaf defoliation. The mean grain yield at 

Potchefstroom was 1.29 t ha-1. Yield ranged from 2.91 t ha-1 to 0.08 t ha-1. Genotypes ADP-0041 

and ADP-0611 recorded the highest and lowest yield, respectively. Five of the eight local dry bean 

genotypes were among the top ten high yielding genotypes and these were Caledon (2.4 t ha-1), 

Teebus-RCR 2 (2.3 t ha-1), Teebus-RR 1 (2.29 t ha-1), Tygerberg (2.17 t ha-1) and Werna (1.79 t 

ha-1). ADP-0790 and Teebus RR 1 were the only two susceptible genotypes among the top ten 

high yielding genotypes. Gadra and Ukulinga were the two local cultivars yielding below the mean 

yield. Only five genotypes that exhibit resistance to CBB yielded below the mean. A negative 

correlation was noted (Table 3.3) (r = - 0.49, P<0.001) between RAUDPC and grain yield.  

3.3.8. Relationship between selected morphological traits and reaction to common 

bacterial blight 

The analysis output for t-statistic for two sample assuming unequal variance (Table 3.4) showed 

that the RAUDPC mean for genotypes with white flowers was lower than that of genotypes with 

purple flowers. Dry bean genotypes with a determinate growth habit had a higher mean of 
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RAUDPC than indeterminate genotypes. This is therefore, an indication that both white flower 

and indeterminate genotypes exhibited higher level of resistance as compared to purple flower 

and determinate genotypes among the evaluated genotypes. 

Table 3.4. Relationship between flower and growth habit with reaction to common bacterial 

blight 

Trait Type Number of genotypes RAUDPC Mean 

Flower colour 
White 28 2816.321 

Purple 32 4155.813 

Growth habit 
Determinate 24 3815.615 

Indeterminate 36 3312.853 

P<0.05 t-statistic; Two sample assuming unequal variance 

3.4. Discussion 

High significant variation of RAUDPC between genotypes is an indication that these genotypes 

had different levels of resistance to CBB. A great variation in terms of resistance levels within dry 

bean genotypes has been reported (Singh and Munoz, 1999; Duncan et al., 2011). Difference in 

RAUDPC values of genotypes between two environments is an indication that the two testing 

environments exhibited different favourable climatic conditions for CBB development. 

Environmental conditions have been reported to influence CBB development (Singh and Munoz, 

1999; Mutlu et al., 2005). The RAUDPC values for the majority of genotypes were higher at 

Potchefstroom than at Cedara. Potchefstroom had optimum environmental conditions for CBB 

development compared to Cedara, which included high temperatures and humidity (Saettler, 

1989; Singh and Munoz, 1999; Fourie, 2002) . The optimum temperature for CBB development 

ranges from 28 oC to 32 oC (Saettler, 1989).  Irrigation at Potchefstroom increased humidity, 

favouring CBB development. High significant differences of RLT between genotypes is an 

indication that onset of the disease varied among genotypes despite that all genotypes were 

inoculated at the same time. The explanation of this phenomena is that the evaluated genotypes 

reached the critical susceptible stage differently (Hartman et al., 1991). Plant age is reported to 

be among the major factors that influence reaction to CBB in dry beans (Singh, 1991). Dry bean 

plants are reported to be more susceptible at flowering stage (Fourie D. Personal communication). 

High significant difference between the environments for RLT is an indication that the onset of 

CBB disease varied between the two environments. The disease appeared earlier in Cedara than 

in Potchefstroom. Favourable temporal conditions for CBB development might be the main 

attributing factors to the phenomena. Yang et al. (1991) reported that disease onset varies 

between environment.   
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In addition, strong positive correlation between RAUDPC and RLT is an indication that disease 

development was directly linked with plant growth stage. These results are similar to previous 

studies (Beebe and Corrales, 1991; Singh and Munoz, 1999). Fei et al. (1997) Indicated that 

temporal changes in plant physiology are associated with changes in host reaction to infection 

and colonisation.  Using RLT in calculating RAUDPC could be the best strategy in selection for 

disease resistant genotypes in plant breeding programmes as it factors in the time the disease 

was first detected. Earlier CBB infection has greater impact on yield loss than late infection (Singh 

and Munoz, 1999). Using this selection criteria, Teebus-RCR 2 was resistant, which  confirms 

findings of previous studies (Fourie and Herselman, 2002). Werna, and RS 7 exhibited resistance 

to CBB which confirms multiple season unpublished data (Fourie D. Personal Communication). 

However, Tygerberg, known to be susceptible genotype in previous investigations using other 

selection criteria, was moderately resistant using the present selection criteria and yielded above 

the mean yield. The possible reason for high yield in Tygerberg is that the disease was detected 

late, supporting the concept that late epidemic causes less yield loss (Singh and Munoz, 1999). 

Flower colour has been associated with CBB resistance (Park et al., 1999). In this study 

genotypes with white flowers exhibited a higher level of resistance than those with purple flowers. 

These results contradict reports from previous investigations, which reported positive association 

of purple flower and CBB resistance (Mutlu et al., 2005; Vandemark et al., 2008). A good example 

to cite is Teebus-RCR 2, a white flowered genotype bred for resistance to CBB through backcross 

breeding with XAN 159 (Fourie and Herselman, 2002). Park et al. (1999) emphasized the 

importance of investigating the association of flower colour and resistance to CBB in specific 

populations. Indeterminate genotypes were observed to exhibit more resistance than determinate 

genotypes. The suggested reason is that extended vegetative growth in indeterminate genotypes 

improves plant immunity. These results are similar to a previous report (Singh, 1991) 

There were highly significant differences between genotypes for yield, an indication that these 

genotypes had varying yield potentials. The reason for the variation in yield was due to divergence 

of the genotypes in terms of agronomic characteristics. All small seeded genotypes were among 

the high yielding genotypes regardless of being susceptible or not to CBB, which confirms 

previous report that small seeded genotypes generally tend to yield more than large seeded 

genotypes (Beaver, 1999). The other attributing factor to the high yields obtained from these small 

seeded genotypes, is that they are well adapted to local growing environments, since they were 

all from local breeding programmes. In this study, a weak negative correlation between yield and 

severity to CBB was noted.  Negative correlations have been reported between yield and disease 

severity in similar studies ( Fourie, 2002; Scott and Michaels, 1992;). Correlations values of -0.48 

and -0.72 between CBB severity and yield were reported in independent studies (Fourie, 2002; 
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Scott and Michaels, 1992). The suggested attributing factors for such findings are; presence of 

tolerant genotypes, different agronomic characteristics, variation in adaptability to the growing 

conditions, different yield potential and inaccuracies associated with visual rating of diseases. 

Agrios (2005) indicated that tolerant genotypes may exhibit disease symptoms but still yield well. 

An example of such genotypes is ADP-0055. Small seeded genotypes usually yield higher than 

large seeded genotypes (Beaver, 1999). O'Brien and Van Bruggen (1992) pointed out that low 

level of precision associated with foliar disease rating contributes to lack of reliability of yield-

disease correlation results and concluded that mostly there is no relationship between the two 

variables. Other investigators also reported that measurement of disease severity based on leaf 

area usually relate less to yield (Waggoner and Berger, 1987; Filho et al., 1997). 

3.5. Conclusion 

The use of RAUDPC with consideration of RLT proved to be a good strategy in measuring disease 

reaction, which enabled the identification of resistant, moderate resistant and susceptible 

genotypes in the study. Approximately 20% of the genotypes exhibited resistance reaction while 

43 and 37% showed moderate and susceptible reaction respectively across both locations. 

Genotypes ADP-0041, ADP-0790, M-125, ADP-0096, ADP-0544 and M-191 were selected as 

both high yielding and resistant. These genotypes had RAUDPC values of less than 2000 and 

yielded above 1.7 t ha-1. Genotypes; ADP- 0055, ADP-0099 and ADP-0103 were selected on the 

basis of yield. These genotypes yielded above 1.7 t ha-1, but showed susceptible reaction to CBB. 

Selected genotypes, either on the basis of reaction to CBB or yield, need to be evaluated further 

to confirm the results. Once confirmed they can be used in the breeding programme to improve 

resistance or yield in already available market class cultivars or released as new cultivars.  
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3.8. Appendices 

Appendix 3.1. Characteristics of 60 dry bean genotypes evaluated for resistance to 

common bacterial blight and yield 

Genotype GH FD FLCOR Bean type DPM 

Werna I 44 White Red Speckled Sugar 89 

ADP-0560 D 37 Purple Red mottled 83 

ADP-0457 I 45 White Red mottled 90 

ADP-0553 D 36 White Red mottled 89 

Teebus-RCR 2 I 48 White Small White Canning 89 

ADP-0023 I 36 Purple Red mottled 85 

Teebus RR 1 I 42 White Small White Canning 85 

ADP-0544 D 44 White Red mottled 89 

Tygerberg I 46 White Red Speckled Sugar 101 

M-24/PIC-005 I 46 Purple Red mottled 93 

ADP-0099 D 39 Purple Red mottled 84 

ADP-0754 D 37 Purple Red mottled 84 

ADP-0022 D 34 Purple Red mottled 80 

ADP-0036 D 43 White Red mottled 86 

ADP-0601 I 34 White Red mottled 78 

ADP-0055 I 41 Purple Red mottled 85 

ADP-0577 D 44 Purple Red mottled 86 

ADP-0186 I 42 Purple Red mottled 85 

ADP-0096 I 37 Purple Red mottled 81 

M-191/PIC-098A I 41 Purple Red mottled 88 

ADP-0053 I 40 Purple Red mottled 85 

ADP-0540 D 45 Purple Red mottled 88 

ADP-0612 D 40 White Red mottled 83 

ADP-0435 I 39 White Red mottled 85 

ADP-0103 I 36 White Red mottled 82 

ADP-0751 D 43 Purple Red mottled 87 

Caledon I 44 White Small White Canning 89 

ADP-0437 D 39 Purple Red mottled 81 

M-126/PIC-029 I 43 White Red mottled 89 

Gadra D 36 Purple Red Speckled Sugar 79 

ADP-0211 I 43 White Red mottled 86 

M-125/PIC-029 I 45 White Red mottled 87 

M-139/PIC-029 D 41 White Red mottled 87 

ADP-0013 D 38 Purple Red mottled 84 

ADP-0041 I 42 Purple Red mottled 91 

ADP-0758 I 41 Purple Red mottled 86 

ADP-0390 D 40 Purple Red mottled 83 

ADP-0324 I 37 Purple Red mottled 83 

M-128/PIC-029 I 43 White Red mottled 87 

M-124/PIC-029 I 44 White Red mottled 88 

ADP-0376 D 38 Purple Red mottled 85 

M-12/PIC-001 I 40 Purple Red mottled 90 
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Genotype GH FD FLCOR Bean type DPM 

ADP-0531 D 46 White Red mottled 92 

ADP-0750 I 39 Purple Red mottled 84 

ADP-0765 D 39 White Red mottled 88 

M-190/PIC-098A I 41 Purple Red mottled 87 

ADP-0790 I 47 White Red mottled 93 

M-23 D 46 White Red mottled 87 

ADP-0208 D 39 Purple Red mottled 86 

ADP-0447 I 42 White Red mottled 88 

ADP-0611 D 38 Purple Red mottled 82 

ADP-0752 I 40 Purple Red mottled 83 

M-127/PIC-029 I 44 White Red mottled 87 

Ukulinga D 48 White Red Speckled Sugar 91 

M-145/PIC-029 I 45 White Red mottled 89 

RS 7 I 45 White Red mottled 92 

ADP-0427 I 42 Purple Red mottled 84 

ADP-0561 D 36 Purple Red mottled 81 

M-197/PIC-098 I 43 Purple Red mottled 86 

ADP-0006 I 36 Purple Red mottled 82 

GH = Growth habit, FD = 50% days to flowering, FLCOR = Prominent flower colour, DPM = Days to physiological 

maturity. 
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Appendix 3.2. Common bacterial blight disease relative life time (RLT) and relative area 

under disease progress curve (RAUDPC) of 60 dry bean genotypes evaluated in artificially 

inoculated field trials at Cedara and Potchefstroom 

Genotype 

RLT 

 

RAUDPC 

Cedara Potch Mean 

 

Cedara Potch Mean 

Werna 62.69 63.48 63.08  781 961 871 

ADP-0560 64.65 70.91 67.78  5879 4507 5193 

ADP-0457 62.82 63.16 62.99  1381 5475 3428 

ADP-0553 63.64 63.02 63.33  1830 4334 3082 

Teebus-RCR 2 61.09 64.99 63.04  813 1237 1025 

ADP-0023 64.12 68.67 66.4  3819 5406 4612 

Teebus RR 1 63.64 66.95 65.29 
 

4852 5577 5215 

ADP-0544 60.08 65.5 62.79 
 

1142 3261 2201 

RS 7 51.38 60.97 56.17 
 

963 774 869 

M-24 61.72 58.44 60.08  2283 4698 3490 

ADP-0099 64.13 69.49 66.81  3484 4197 3841 

ADP-0754 64.12 69.83 66.98  3925 5050 4488 

ADP-0022 65.64 74.42 70.03  4600 5628 5114 

ADP-0036 64.39 65.24 64.81  1296 3066 2181 

ADP-0601 65.88 76.71 71.3  5875 7010 6442 

ADP-0055 64.39 67.48 65.93  4762 4940 4851 

ADP-0577 65.4 63.4 64.4  3223 5413 4318 

ADP-0186 63.88 68.43 66.16  4343 5991 5167 

ADP-0096 64.39 73.08 68.73  5367 2110 3738 

M-191 61.77 66.41 64.09  4543 1446 2994 

ADP-0053 65.4 65.65 65.52  1922 4998 3460 

ADP-0540 61.6 65.96 63.78  1141 4807 2974 

ADP-0612 65.4 68.38 66.89  2571 5423 3997 

ADP-0435 64.39 66.31 65.35  2896 4328 3612 
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Genotype 

RLT 

 

RAUDPC 

Cedara Potch Mean 

 

Cedara Potch Mean 

ADP-0103 63.88 72.2 68.04  4475 5144 4809 

ADP-0751 62.01 66.24 64.13  2506 4648 3577 

Caledon 62.04 63.75 62.89  1012 1475 1244 

ADP-0437 64.37 73.74 69.06  2935 5242 4089 

M-126 61.15 64.9 63.03  3825 1620 2722 

Gadra 66.41 75.06 70.73  5921 6791 6356 

ADP-0211 62.69 68.31 65.50  1181 1560 1371 

M-125 62.22 66.48 64.35  3319 1749 2534 

M-139 62.5 67.49 64.99  1066 1743 1404 

ADP-0013 65.38 69.83 67.61  3774 5253 4514 

ADP-0041 62.61 61.72 62.16  1174 1481 1328 

ADP-0758 62.71 66.82 64.77  2517 4857 3687 

ADP-0390 66.14 69.78 67.96  4491 5710 5100 

ADP-0324 63.16 72.8 67.98  3727 5802 4764 

M-128 62.24 65.42 63.83  4357 3442 3900 

M-124 62.69 64.18 63.43  2941 3533 3237 

ADP-0376 66.41 65.69 66.05  5005 6423 5714 

M-12 61.32 63.95 62.63  2632 3869 3250 

ADP-0531 60.9 60.58 60.74  1131 916 1024 

ADP-0750 65.38 69.14 67.26  3142 5983 4563 

ADP-0765 64.87 64.65 64.76  2564 5106 3835 

M-190 62.24 68.69 65.46  4107 2711 3409 

ADP-0790 60.08 60.58 60.33  1536 1461 1499 

M-23 65.14 66.05 65.59  4750 5197 4974 

ADP-0208 63.64 69.15 66.39  3712 4414 4063 

ADP-0447 63.64 65.49 64.56  2519 4481 3500 

ADP-0611 64.89 72.86 68.87  3766 7123 5445 
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Genotype 

RLT 

 

RAUDPC 

Cedara Potch Mean 

 

Cedara Potch Mean 

ADP-0752 62.07 73.71 67.89  2120 5687 3903 

M-127 63.16 66.93 65.05  3478 3143 3311 

Ukulinga 61.9 62 61.95  1427 959 1193 

M-145 62.94 63.95 63.44  1816 1707 1761 

Tygerberg 62.94 60.21 61.57  3680 3552 3616 

ADP-0427 63.16 70.98 67.07  2277 1850 2063 

ADP-0561 65.4 73.84 69.62  5646 5669 5658 

M-197 63.88 66.2 65.04  1516 1771 1643 

ADP-0006 65.63 70.59 68.11 
 

5414 5827 5620 

Mean 63.31 67.18 65.24 
 

3086 3976 3531 

Potch = Potchefstroom. 
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Appendix 3.3. Common bacterial blight reaction at Cedara and Potchestroom field trials 

and overall reaction averaged over the two locations 

Genotype Cedara Potch 
Pooled 

reaction 

Werna R R R 

RS 7 R R R 

ADP-0531 R R R 

Teebus-RCR 2 R R R 

Ukulinga R R R 

Caledon R R R 

ADP-0041 R R R 

ADP-0211 R R R 

M-139 R R R 

ADP-0790 R R R 

M-197 R R R 

M-145 R R R 

ADP-0427 R R R 

ADP-0036 R R R 

ADP-0544 R R R 

M-125 R R R 

M-126 R M M 

ADP-0540 R M M 

M-191 M M M 

ADP-0553 M M M 

M-124 M M M 

M-12 M M M 

M-127 M M M 

M-190 M M M 

ADP-0457 M M M 

ADP-0053 M S M 

M-24 M S M 

ADP-0447 M S M 

ADP-0751 M S M 

ADP-0435 M S M 

Tygerberg M S M 

ADP-0758 M S M 

ADP-0096 M S M 

ADP-0765 M S M 

ADP-0099 M S M 

M-128 M S M 

ADP-0752 M S M 

ADP-0612 M S M 

ADP-0208 M S S 



 

 

68 

 

Genotype Cedara Potch 
Pooled 

reaction 

ADP-0437 M S S 

ADP-0577 M S S 

ADP-0754 M S S 

ADP-0013 M S S 

ADP-0750 S S S 

ADP-0023 S S S 

ADP-0324 S S S 

ADP-0103 S S S 

ADP-0055 S S S 

M-23 S S S 

ADP-0390 S S S 

ADP-0022 S S S 

ADP-0186 S S S 

ADP-0560 S S S 

Teebus RR 1 S S S 

ADP-0611 S S S 

ADP-0006 S S S 

ADP-0561 S S S 

ADP-0376 S S S 

Gadra S S S 

ADP-0601 S S S 

Reaction Summary (%)  R   30 27 20 

                 M 42 15 43 

                                        S 28 58 37 

Potch = Potchefstroom. 
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Appendix 3.4. Grain yield performance and reaction to common bacterial blight of the 60 

evaluated genotypes using artificial inoculation at Potchestroom trial 

Yield Ranking Genotype Grain yield ( t ha-1) RAUDPC Reaction 

1 ADP-0041 2.91 1481 R 

2 ADP-0790 2.62 1461 R 

3 ADP-0055 2.51 4940 S 

4 Caledon 2.36 1475 R 

5 Teebus-RCR 2 2.30 1237 R 

6 Teebus RR 1 2.29 5577 S 

7 Tygerberg 2.17 3552 M 

8 M-125 2.00 1749 R 

9 ADP-0096 1.84 2110 M 

10 Werna 1.79 961 R 

11 ADP-0544 1.76 3261 M 

12 ADP-0099 1.76 4197 S 

13 ADP-0103 1.75 5144 S 

14 M-191 1.73 1446 R 

15 ADP-0211 1.68 1560 R 

16 M-128 1.65 3442 M 

17 M-12 1.64 3869 M 

18 ADP-0560 1.62 4507 S 

19 ADP-0013 1.58 5253 S 

20 ADP-0437 1.56 5242 S 

21 M-197 1.56 1771 R 

22 ADP-0758 1.45 4857 S 

23 M-190 1.44 2711 M 

24 ADP-0752 1.42 5687 S 

25 M-124 1.37 3533 M 

26 M-126 1.34 1620 R 

27 RS 7 1.34 774 R 

28 ADP-0053 1.25 4998 S 

29 M-127 1.24 3143 M 

30 ADP-0006 1.23 5827 S 

31 ADP-0427 1.20 1850 R 

32 ADP-0036 1.20 3066 M 

33 ADP-0531 1.19 916 R 

34 ADP-0447 1.18 4481 S 

35 M-145 1.18 1707 R 

36 ADP-0754 1.17 5050 S 

37 ADP-0561 1.09 5669 S 

38 ADP-0324 1.08 5802 S 

39 ADP-0023 1.05 5406 S 

40 ADP-0750 1.01 5983 S 
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Yield Ranking Genotype Grain yield ( t ha-1) RAUDPC Reaction 

41 ADP-0612 0.98 5423 S 

42 ADP-0751 0.97 4648 S 

43 ADP-0540 0.95 4807 S 

44 ADP-0457 0.94 5475 S 

45 ADP-0022 0.93 5628 S 

46 M-24 0.83 4698 S 

47 ADP-0765 0.81 5106 S 

48 ADP-0186 0.77 5991 S 

49 Ukulinga 0.70 959 R 

50 ADP-0208 0.70 4414 S 

51 Gadra 0.68 6791 S 

52 ADP-0601 0.65 7010 S 

53 ADP-0435 0.62 4328 S 

54 ADP-0553 0.59 4334 S 

55 M-23 0.51 5197 S 

56 ADP-0577 0.48 5413 S 

57 M-139 0.42 1743 R 

58 ADP-0390 0.28 5710 S 

59 ADP-0376 0.16 6423 S 

60 ADP-0611 0.084 7123 S 

Mean Mean 1293 3976  
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CHAPTER 4 

HERITABILITY AND EFFICACY OF MARKER ASSISTED SELECTION IN 

BREEDING FOR COMMON BACTERIAL BLIGHT RESISTANCE IN 

SOUTH AFRICAN DRY BEAN GERMPLASM 

ABSTRACT 

Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv phaseoli (Xap) (Smith) 

Vauterin, Hoste, Kosters & Swings and its fuscans variant, X. fuscans sbsp. fuscans (Xff) is an 

important disease of dry beans (Phaseolus vugalis L.).  Although several sources of resistance 

to CBB have been identified, the disease remains a major challenge in dry bean production 

worldwide. The study was initiated using two crosses between South African market class 

cultivars (Teebus-RCR 2 x Teebus-RR 1, and RS 7 x Tygerberg) to: investigate the mode of gene 

action governing inheritance, estimate heritability, establish the role of maternal effects in CBB 

resistance and determine the efficacy of marker assisted selection (MAS) in CBB resistance 

breeding using two SCAR markers BC420 and SU91. Both additive-dominant and epistatic gene 

effects were detected. Dominant gene effects were of more significance than additive gene effects 

in both crosses. Duplicate epistasis was detected in Teebus-RCR 2 x Teebus-RR 1 cross. Gene 

dispersion was detected in both crosses. Heritability of CBB resistance was moderate in both 

crosses, maternal effect were of significant in the two crosses and lastly resistance was found to 

be linked to two QTL SCAR markers (BC420 and SU91) in Teebus-RCR 2. Both markers were 

absent in RS 7. SU91 was found to be the only marker that could be effectively utilized in MAS. 

The implications of these findings for CBB resistance breeding is that it will affect the selection 

strategy to be deployed and also the choice of a female parent in resistance breeding 

programmes. Backcross breeding, recombinant breeding, delayed selection, choosing a resistant 

parent as a female parent and using MAS, especially in crosses involving Teebus-RCR 2, could 

yield positive results in CBB resistance breeding programmes if these parents are to be used. 

Key words: Common bacterial blight (CBB), dry bean, Gene effects, Heritability, Maternal effects, 

Variance components, Marker assisted selection (MAS)  
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4.1. Introduction 

Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv phaseoli (Xap) (Smith) 

Vauterin, Hoste, Kosters & Swings and its fuscans variant, X. fuscans sbsp. fuscans (Xff) is an 

important disease of dry beans (Phaseolus vugalis L.). The disease occurs in all dry bean growing 

environments worldwide (Singh and Schwartz, 2010; Viteri et al., 2014). The common bacterial 

blight pathogen is a motile gram negative bacteria which attacks dry bean stems, leaves, pods 

and seeds. The symptoms of the disease to some extent depends on the plant organ attacked. 

Though not well documented, CBB results in yield loss that can exceed 60% (Marquez et al., 

2007). The extent of yield loss depend mainly on weather, disease pressure, susceptibility of the 

cultivars, and time of the epidemic (Arnaud-Santana et al., 1994; Singh and Munoz, 1999). 

Common bacterial blight is a seed borne disease of dry bean and the pathogen survives as long 

as the seed is viable. Its mode of transmission is mainly through infected seed. Both internally or 

externally infested seed are a good inoculum source of the disease. Other sources of inoculum is 

plant debris. In Africa, CBB control through planting disease free seeds and high field hygiene 

has failed to register success due to limited resources (Mkandawire et al., 2004). Planting 

resistant varieties is reported to be the most viable method of control as it is cheap and effective 

(Fourie, 2002b; Vandemark et al., 2009). Efforts in breeding for CBB resistance has resulted in 

identification of resistant sources both in the primary and other gene pools (Singh and Miklas, 

2015).  

Common bacterial blight in dry bean has been reported to be quantitatively inherited (Chataika et 

al., 2011; Tryphone et al., 2012). The inheritance is governed by additive gene action with 

dominance and epistatic effects (Rava et al., 1987; e Silva et al., 1989; O'Boyle et al., 2007). 

Heritability is dependent on dry bean population, bacterial isolates, inoculation method and plant 

organs (e Silva et al., 1989; Arnaud-Santana et al., 1994). Heritability values ranging from low to 

high, have been reported in independent studies (Arnaud-Santana et al., 1994; Tryphone et al., 

2012).  High complexity of the genetics of CBB resistance has been reported in dry bean (Park 

et al., 1999). At present there are no reports that CBB resistance is under influence of maternal 

effect. 

Molecular markers linked to quantitative trait loci conditioning resistance to CBB have been 

identified through genetic studies of CBB resistance. The identified markers offer a promising 

alternative to disease screening for identifying resistant genotypes (Vandemark et al., 2008). At 

present four characterized sequence repeats (SCAR) markers, SU19, BC420, SAP6 and X11.4, 

are available (Viteri et al., 2014). These markers are being utilized in CBB resistance breeding 

programmes to speed up selection through marker assisted selection (MAS) (Fourie, 2002a; 
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Mutlu et al., 2005). Success of these markers has been associated with environment, dry bean 

population and bacterium race, hence, testing their efficacy prior to utilization has been 

recommended (Park et al., 1999; Fourie, 2002a).   

Generation mean analysis has been utilized before to study the genetics of common bacterial 

blight (Rava et al., 1987; e Silva et al., 1989). The objectives of this study were to determine the 

mode of gene action governing common bacterial blight resistance, establish the significance of 

maternal effects in CBB resistance, estimate heritability and determine the efficacy of MAS using 

two SCAR markers BC420 and SU91 linked to QTL derived from XAN 159 in South African dry 

bean cultivars.  

4.2. Materials and methods 

The inheritance of resistance to common bacterial blight was studied using two susceptible 

cultivars, Teebus-RR 1 and Tygerberg, and two CBB resistant cultivars, Teebus-RCR 2 and RS 

7, selected from the local breeding programme. The selected genotypes are used as parents in 

dry bean improvement programme in South Africa. Teebus-RCR 2 and Teebus-RR 1 are small 

white canning dry bean cultivars and RS 7 and Tygerberg large red speckled sugar bean cultivars. 

The four parents were crossed using a simple bi-parental mating design. Teebus-RCR 2 was 

crossed to Teebus-RR 1 and RS 7 to Tygerberg, with reciprocals. In total eight generations were 

generated for each cross. The generations were as follows: P1, P2, F1, RF1, F2, RF2, BCP1 and 

BCP2. RF1 and RF2 were reciprocals of F1 and F2 respectively. BCP1 and BCP2 were 

backcrosses to P1 and P2 respectively. In the study P1 were the resistant parents and P2 were 

susceptible parents. Crosses were conducted in the greenhouse at ARC-GCI in Potchefstroom 

from July 2015 to February 2016. 

4.2.1 Greenhouse inoculation 

Reaction to CBB was evaluated in a greenhouse at ARC-GCI, Potchefstroom during the 

2015/2016 growing season. Mean day- and night temperatures of the greenhouse were 24 0C 

and 18 0C, respectively. The trial was planted on 30th March 2016 and laid out in a randomised 

complete block design (RCBD) with three replications. The eight generations of each cross were 

raised in polythene plastic pots of 30 cm in diameter. The pots were filled with sterilized pot mix 

as a growth media. The number of plants varied depending on generation. A mixture of two 

aggressive local isolates (Xf260 and Xf410) were used for inoculation. Inoculum was prepared by 

suspending 48 to 72-h-old cultures in distilled water. The colony density was determined with a 

spectrometer. The inoculum density was 108 CFU/ml (Colony Forming Units/ml). The multiple 

needle technique was used to inoculate fully first expanded trifoliate leaves (Andrus, 1948). 
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4.2.2 Leaf sample preparation and deoxyribonucleic acid (DNA) extraction  

Young leaves from parents and progenies were harvested and washed with sterile distilled water. 

Washed leaves were freeze dried separately for each plant and kept at -20 0C for further use. 

Deoxyribonucleic acid (DNA) was isolated using a modified version of the method described by 

Graham et al. (1994). Freeze dried leaves were ground to fine powder for DNA extraction and a 

volume of 750 μl CTAB buffer (100 mM Tris [tris (hydroxymethyl) aminomethane], pH 8.0; 20 mM 

EDTA (ethylenediaminetetraacetate), pH 8.0; 1.4 mM NaCl; 2% (w/v) CTAB 

(hexadecyltrimethylammonium bromide); 0.2% (v/v) ß-mercaptho-ethanol added to 

approximately 250 μl of the fine leaf powder in a 1.5 ml microfuge tube. The suspension was 

thoroughly mixed and the tube incubated at 65°C for one hour. A 500 μl volume of chloroform: 

isoamyl alcohol (24:1) was added and the suspension mixed by gentle inversion. After 

centrifugation at 14 000 rpm for 3 min, the upper aqueous layer was transferred to a fresh tube 

containing 500 μl isopropanol, mixed by gentle inversion and incubated at room temperature for 

20 min. The suspension was centrifuged at 14 000 rpm for 5 min, 500 μl 70% (v/v) ethanol added 

and incubated at room temperature for 20 min. DNA was precipitated at 14 000 rpm for 5 min, the 

pellet air-dried for 1 hr, and resuspended in TE buffer (10 mM Tris-Cl, pH 8.0; 1 mM EDTA, pH 

8.0). Resuspended DNA was extracted with 1/10 volume 7.5 M ammonium acetate and an equal 

volume of chloroform: isoamyl alcohol (24:1). The aqueous layer was transferred to a fresh tube 

containing two volumes of cold absolute ethanol. Precipitated DNA was washed three times in 

cold 70% (v/v) ethanol, the pellet air-dried, and resuspended in TE buffer. DNA was treated with 

RNase for 2 hr at 37°C, after which concentration and purity were estimated by measuring 

absorbances at A260 and A280. DNA samples were diluted to a working solution of 200 ng/μl. 

4.2.3 SCAR markers and PCR reactions 

SCAR primers, SU91 and BC420 (Table 4.1) were synthesized by GibcoBRL (Life Technologies, 

Glasgow, United Kingdom), based on primer sequences obtained from Miklas et al. (2000).  

Primers were suspended in TE buffer to a concentration of 200 pmol/μl. A work solution of 10 

pmol/μl was prepared. SCAR markers were used for the polymerase chain reaction (PCR) based 

on the protocol of Williams et al. (1990) with minor modifications. Amplification reactions were 

performed in a 25 μl reaction volume containing Promega (Promega Corporation, Madison, 

Wisconsin) reaction buffer (500 mM KCl; 100 mM Tris-HCl, pH 9.0; 1% (v/v) Triton X-100), 2 mM 

MgCl2, 100 μM of each dNTP (dATP, dCTP, dGTP, dTTP), 10 pmol primer, 1 unit Taq DNA 

polymerase (Promega) and 15 ng template DNA.  Reactions were performed using a PCR Sprint 

Thermal Cycler (Hybaid Limited, UK) programmed for 5 min at 94oC, 30 cycles of 1 min at 94oC, 
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1 min at 58oC for SU91 and BC420 primers, and 1.5 min at 72oC, followed by one cycle of 5 min 

at 72oC. 

Amplification products were analysed by electrophoresis in 1.5% (w/v) agarose gels (Seakem LE) 

at 80V for 2 h using UNTAN buffer (0.4 M Trisbase, 0.02 M EDTA, pH 7.4) and detected by 

staining with 1 μg/ml ethidium bromide. Gels were photographed under UV light with Polaroid 667 

film. 

Table 4.1. SCAR markers used to screen population 

Primer Sequence(5'-3') PCR product  size 
Resistance  

source 
Linkage group 

SU91-1 CCACATCGGTTAACATGAGT 
700 bp XAN159 B8 

SU91-2 CCACATCGGTGTCAACGTGA 

BC420-1 GCAGGGTTCGAAGACACATGG 
900 bp XAN159 B6 

BC420-2 GCAGGTTCGCCCAATAACG 

 

4.2.4 Data collection 

Common bacterial blight severity was rated once at fourteen days after inoculation using the 1 - 

9 scale (Aggour and Coyne, 1989; Vandemark et al., 2009) to describe disease symptoms: 1 = 

no necrotic lesions and/or chlorosis; 2 - 3 = 1-25.5% leaf area affected; 4 - 6 = 26-64.5% leaf area 

infected and 7- 9 = 65 -100% leaf area infected.  
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Resistant reaction Susceptible reaction 

Figure 4.1.  Common bacterial blight reaction in the greenhouse 

4.2.5 Data analysis 

Data for the generations was analysed using unbalanced analysis of variance in GenStat 17th 

edition (Payne et al., 2011). Means were separated by least significant difference (LSD) test at P 

= 0.05. 

4.2.6 Gene effect estimation 

A generation mean analysis was conducted on each of the two crosses separately to estimate 

additive, dominance and epistasis gene effects using the joint scaling test (Cavalli, 1952). Gene 

effects were defined by Gamble (1962) notations as follows; [m] = mean of homozygotes parents, 

[a] = pooled additive gene effect, [d] = pooled dominance gene effect, [aa] = pooled additive x 

additive epistatic gene effects, [ad] = pooled additive x dominance epistatic gene effects, [dd] = 

pooled dominance x dominance epistatic effects. Means of various generation were unequal due 

to large differences in family sizes and as such they were adjusted through weighting as described 

by Kearsey and Pooni (1998). Coefficients that determine the degree of relationship of various 

generations was used to calculate gene effects variables for individual generations. Regression 

analysis in GenStat 17th edition (Payne et al., 2011) for sets of variables was performed to test 

for significance at P = 0.05. 
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Table 4.2. Generalised genetic and interaction model of the generation mean 

Generation 

Genetic effects coefficients 

[m] [a] [d] [aa] [ad] [dd] 

P1 1 1 0 1 0 0 

P2 1 -1 0 1 0 0 

F1 1 0 1 0 0 1 

F2 1 0 0.5 0 0 0.25 

BCP1 1 0.5 0.5 0.25 0.25 0.25 

BCP2 1 -0.5 0.5 0.25 0.25 0.25 

Source; Kearsey and Pooni (1998) 

Maternal effect was determined using generation mean analysis following similar procedure 

described earlier on generation mean analysis. Maternal gene effects were defined using Kearsey 

and Pooni (1998) notations as follows; [c] = cytoplasmic effect, [am] = additive maternal gene 

effect, [dm] = dominance maternal gene effect, [aam] = additive x additive maternal gene effect, 

[adm] = additive x dominance maternal gene effects, [dam] =dominance x additive maternal gene 

effects and [ddm] = dominance x dominance maternal gene effects. 

Table 4.3. The generalized genetic, maternal and interaction effect model of the generation 

means 

Generation 

Progeny genotype Maternal genotype Genotype/maternal interaction 

[m] [a] [d] [am] [dm] [c] [aam] [adm] [dam] [ddm] 

P1 1 1 0 1 0 1 1 0 0 0 

P2 1 -1 0 -1 0 -1 1 0 0 0 

F1(P1 x P2) 1 0 1 1 0 1 0 0 1 0 

RF1(P2 x P1) 1 0 1 -1 0 -1 0 0 -1 0 

F2(F1 x F1) 1 0 0.5 0 1 1 0 0 0 0.5 

RF2(RF1x RF1) 1 0 0.5 0 1 -1 0 0 0 0.5 

Source; Kearsey and Pooni (1998) 

4.2.7 Heritability estimation 

Broad sense heritability (h2
b) was calculated as a ratio of genetic variance to phenotypic variance, 

while narrow sense heritability (h2
n) was calculated as a ratio of additive variance to phenotypic 

variance. Variance components ( 𝑠2 ) were calculated using equations 4.1, 4.2, 4.3. and 4.4. 

(Kearsey and Pooni, 1998) Both broad and narrow sense heritability equations 4.5 and 4.6, 

respectively, were expressed in percentage. Heritability was classified as suggested by Robinson 

et al. (1949). Where 0 - 30% low, 30.1 - 60% moderate and greater than 60.1% high.  
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Equation 4.1. Formula for calculating environmental variance 

𝑉𝐸 =
1 

3
 [𝑠2 𝑃1 + 𝑠2 𝑃2 + 𝑠2 𝐹1] 

 

 𝑉𝐸 = Environment variance, 𝑠2 𝑃1 = P1 population variance, 𝑠2 𝑃2 = P2 population variance, 

𝑠2 𝐹1 = F1 population variance. 

Equation 4.2. Formula for calculating additive variance 

𝑉𝐴 = 2𝑠2 𝐹2 − 𝑠2 𝐵𝐶𝑃1 − 𝑠2 𝐵𝐶𝑃2  

 𝑉𝐴 = Additive variance, 𝑠2 𝐹2 = F2 population variance, 𝑠2 𝐵𝐶𝑃1 = BCP1 population variance, 

𝑠2 𝐵𝐶𝑃2 = BCP2 population variance. 

Equation 4.3. Formula for calculating dominance variance 

𝑉𝐷 = 𝑠2 𝐵𝐶𝑃1 + 𝑠2 𝐵𝐶𝑃2 − 𝑠2 𝐹2 − 𝑉𝐸  

 𝑉𝐷 = Dominance variance 

Equation 4.4. Formula for calculating additive x dominance variance 

 

 

 

𝑉𝐴𝐷 = Additive x dominance variance 

Equation 4.5.  Formula for calculating broad sense heritability 

Equation 4.6. Formula for calculating narrow sense heritability 

𝑁𝑎𝑟𝑟𝑜𝑤 𝑠𝑒𝑛𝑠𝑒 ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (ℎ2 𝑛 ) = [(𝑉𝐴)/(𝑉𝐴 + 𝑉𝐷 + 𝑉𝐸)] × 100%  

𝑉𝐴𝐷 =  
1 

2
 [𝑠2 𝐵𝐶𝑃1  − 𝑠2 𝐵𝐶𝑃2] 

   

𝐵𝑟𝑜𝑎𝑑 𝑠𝑒𝑛𝑠𝑒 ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (ℎ2 𝑏 ) = [(𝑉𝐴 + 𝑉𝐷)/(𝑉𝐴 + 𝑉𝐷 + 𝑉𝐸)] × 100%  
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4.3. Results 

4.1.1. Generation mean analysis of variances for reaction to common bacterial blight 

The analysis of variance (ANOVA) for severity to CBB among generations (Table 4.4) of Teebus-

RCR 2 x Teebus-RR 1 revealed a high significant difference (P<0.001). The generation grand 

mean score was 4.79. Among the generations, P1 had the lowest mean score followed by BCP1 

with mean scores of 1.57±0.64 and 2.45±0.64, respectively. P2 and BCP2 had the highest mean 

scores of 7.08± 0.59 and 6.38 ±0.64 respectively. Both F1 and F2 progenies had means higher 

than the mid parent value.  

The ANOVA (Table 4.4) for severity to CBB among generations of RS 7 x Tygerberg revealed 

highly significant differences (P = 0.001). The generation grand mean score was 3.64. Among 

generations, P1 had the lowest score followed by BCP1 with mean scores of 2.37±0.49 and 

2.62±0.37 respectively. P2 and F2 had the highest mean scores of 6.19±0.51 and 4 ±0.24 

respectively. The mean scores of backcross progenies were close to their recurrent parents for 

Teebus-RCR 2 x Teebus-RR 1 and RS 7 x Tygerberg. In both crosses large coefficient of variation 

was detected an indication that there was great divergence between generations. 

Table 4.4. Generation means and ANOVA of severity to CBB in two dry bean crosses 

Generation  
Teebus RCR 2 x Teebus-RR 1 RS 7 x TYGERBERG 

CBB mean severity score±SE  CBB mean severity score±SE 

P1 1.57±0.63  2.37±0.49 

P2 7.08±0.60  6.19±0.51 

F1 5.51±0.44  3.25±0.29 

F2 5.74±0.28  4. 00 ±0.24 

BCP1 2.45±0.52  2.62±0.37 

BCP2 6.38±0.60  3.39±0.57 

Grand mean                  4.79                   3.64 

Generation MS              111.76                 45.57 

Error MS                  7.11                   5.18 

P-Value                  <.001                   <.001 

CV (%)                51.91                 63.28 

Repeatability                  0.83                   0.90 

LSD0.05                  1.45                   1.17 

CV = Coefficient of variation, Error MS = Error mean of squares, Generation MS = Generation mean of squares, LSD 

= Least significant difference, SE = Standard error, CBB = Common bacterial blight. 
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4.1.2. Maternal effects generation analysis of variance for reaction to common bacterial 

blight 

Analysis of variance for maternal effects of severity to CBB (Table 4.5) for a cross between 

Teebus-RCR 2 and Teebus-RR 1 revealed high significant differences (P<0.001) among  

generations. The generation grand mean score was 4.5. The mean scores of CBB in F1 and F2 

progenies were closer to the mean score of the susceptible parent (P2) and higher than their 

reciprocals. Common bacterial blight disease mean scores of RF1 and RF2 were 3.07±0.60 and 

4.09±0.32, respectively. The mean scores of generations ranged from 7.05±0.61 to 1.55±0.64. 

P2 having the highest mean score and P1 having the lowest.  

Analysis of variance for maternal effects of severity to CBB (Table 4.5) for a cross between RS 7 

and Tygerberg revealed high significant differences (P<0.001) among generations. The 

generation grand mean score was 3.66. P1 had the lowest CBB mean score of 2.36±0.49 

followed by RF1 with mean scores of 2.90±0.30. P2 had the highest mean score of 6.20±0.51. 

The mean scores of F1 and F2 were higher than their reciprocals.  

Table 4.5. Generation means and ANOVA of maternal effect for severity to CBB of two dry bean 

crosses 

Generation 
Teebus-RCR 2 x Teebus-RR 1 RS 7 x TYGERBERG 

CBB mean severity score±SE CBB mean Severity score±SE 

P1        1.55±0.64   2.36±0.49 

P2        7.05±0.61   6.20±0.51 

F1        5.48±0.45   3.25±0.30 

F2        5.73±0.29   4.00±0.24 

RF1        3.07±0.60   2.90±0.30 

RF2        4.09±0.32   3.29±0.26 

Grand mean        4.50   3.66 

Generation MS      97.49 45.37 

Error MS        7.42  5.24 

P-Value       <.001  <.001 

CV (%)     56.38 64.96 

Repeatability       0.80   0.72 

LSD0.05       1.38   1.00 

CV = Coefficient of variation, Error MS = Error mean of squares, Generation MS = Generation mean of squares, LSD 

= Least significant difference, SE = Standard error, CBB = Common bacterial blight. 

4.1.3. Gene action  

Data for reaction to CBB (Table 4.6) of Teebus-RCR 2 x Teebus-RR 1 did not fit a simple additive- 

dominance model, but the six parameter model which include interactions (i.e. additive, 



 

 

81 

 

dominance, additive by additive, additive by dominance and dominance by dominance). The high 

significant differences (P<0.001) for all variables of the six parameter model, indicated that data 

was sufficient and fitted the di-genic model well. Dominance and dominance x dominance gene 

action had different signs indicating the presence of duplicate type of epistasis. Since dominance 

was positive and highly significant it indicates that the type of dominance present is directional. 

In addition, negative signs associated with gene effects were also observed, revealing 

significance in the direction of susceptible parent. Data for reaction to CBB (Table 4.6) in a cross 

between RS x Tygerberg did not fit both simple additive dominant model and the di-genic six 

parameter model. Additive gene effects were non-significant. Both dominance and additive x 

additive gene effects were significant (P<0.05). However, additive x additive gene effects 

predominate dominance gene effect. Additive x dominance gene effects were significant (P<0.01) 

in the direction of susceptible parent. In both crosses dominance gene effect predominate additive 

gene effects indicating the presence of gene dispersion. 

Table 4.6. Estimates of gene effects of reaction to CBB for the two crosses of dry bean 

Gene action Teebus-RCR 2 x Teebus-RR 1 RS 7 x TYGERBERG 

[m] 

Estimates ±SE Estimates±SE 

-35.76±6.25***    5.371±0.407*** 

[a]    8.73±2.43***    2.31±2.32 

[d]  21.69±1.04***    3.19±1.57* 

[aa]  28.6±4.69***    9.65±4.78* 

[ad] -31.08±5.75*** -15.01±5.49** 

[dd] -9.252±0.822*** - 

Epistasis type Duplicate - 

Significant at: * P<0.05; ** P<0.01; *** P<0.001. SE = Standard error, [m] = Mid parent, [a] = Additive gene action, [d] 

= Dominance gene action, [aa] = Additive x additive gene action, [ad] = Additive x dominant gene action, [dd] = 

Dominant x dominant gene action. 

Cytoplasmic effects were significant (P<0.01) for Teebus-RCR 2 x Teebus-RR 1 and for RS x 

Tygerberg (P<0.001) in both crosses (Table 4.7). Data for both crosses could not fit both the 

simple and the six parameter model for maternal effects. For Teebus-RCR 2 x Teebus-RR 1 

additive and additive x additive maternal effects were significant (P<0.001). Only additive 

maternal gene effects were significant (P<0.001) in RS 7 x Tygerberg. The absence of dominance 

and its epistasis gene effects indicated that maternal inheritance of common bacterial blight 

resistance is governed by fixable gene effects only. 
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Table 4.7.  Estimates of maternal gene effects of reaction to CBB for the two crosses of dry   bean  

Maternal gene effects Teebus -RCR 2 x Teebus-RR 1  RS 7 x TYGERBERG 

 
[m] 

Estimates ±SE  Estimates ±SE 

-58.22± 3.98***   5.76±0.17*** 

[a]    1.62±0.58**  -4.02±0.25*** 

[d]  20.44±0.85***  -0.94±0.18*** 

[c]    0.27±0.11**   0.79±0.06*** 

[am]    -3.53±0.32***   0.41±0.10*** 

[aam]                           27.19±16.73***  - 

Significant at: * P<0.05; ** P<0.01; *** P<0.001. SE = Standard error, [m] = Mid parent, [a] = Additive gene action, [d] 

= Dominance gene action, [c] = Cytoplasmic effect, [am] = Additive maternal gene action, [aam] = Additive x additive 

maternal gene action. 

4.1.4. Heritability estimate 

Heritability estimate using variance components for both broad and narrow sense heritability of 

common bacterial blight resistance in two crosses is presented in Table 4.8. Broad sense 

heritability was high in both Teebus-RCR 2 x Teebus-RR 1 (74%) and RS 7 x Tygerberg (78%) 

crosses. Narrow sense heritability was moderate in both crosses (36% for Teebus-RCR 2 x 

Teebus-RR 1 and 59% for RS 7 x Tygerberg). Due to significant epistatic interaction (Table 4.6), 

the effective number of genes governing resistance was not calculated. Since narrow sense 

heritability was moderate, CBB resistance in both crosses was shown to be a quantitative 

inherited trait. 

Table 4.8. Genetic variance components, broad sense heritability and narrow sense heritability  

for reaction to CBB 

Parameter Teebus-RCR 2 x Teebus-RR 1 RS 7 x Tygerberg 

VA 6.43 2.98 

VD 6.77 7.85 

VE 4.63 2.49 

VAD 3.18 0.68 

h2
b (%) 74 78 

h2
n(%) 36 59 

VA = Additive variance, VD = Dominance variance, VE = Environment variance, VAD = Additive x Dominance variance, 

h2
b = Broad sense heritability, h2

n = Narrow sense heritability. 
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4.1.5. Confirming the presence of markers in parental genotypes 

Polymerase chain reaction (PCR) results revealed both the presence and absence the two QTL 

linked SCAR markers (SU91 and BC420) associated with CBB resistance (Table 4.9). Both 

markers were present in the Teebus-RCR 2 dry bean cultivar. The markers were absent in 

Teebus-RR 1, RS 7 and Tygerberg dry bean cultivars. The presences of the two QTL markers in 

Teebus-RCR 2 indicates their effect on resistance to CBB. Teebus-RCR 2 exhibited good 

resistance to CBB in the greenhouse experiment (phenotypic data). The absence of markers in 

Teebus-RR 1 and Tygerberg confirms greenhouse evaluation results. These two cultivars were 

susceptible to CBB and recorded higher mean score of CBB (Table 4.4). Though the two QTL 

linked markers were absent in RS 7, the cultivar exhibited good resistance to CBB in the 

greenhouse (Table 4.4). 

Table 4.9. Presence and absence of molecular markers in genotypes based on PCR results 

Genotype 
                                  Marker 

SU91 BC420 

Teebus-RCR 2 + + 

Teebus-RR 1 - - 

RS 7 - - 

Tygerberg - - 

4.1.6. Proportionality of individual plants with markers in progenies of Teebus-RCR 2 and 

Teebus-RR 1 

Table 4.10 is a summary of results of the agarose gel for the PCR (Figures 4.2, 4.3 and 4.4) for 

individual segregating plants of respective generation of a cross between Teebus-RCR 2 x 

Teebus-RR 1. SU91 was present in all generations, while BC420 was only present in F2 and RF2. 

The percentage of SU91 markers in individual plants for respective generation was as follows; 

BC1 (96%), BC (50%), F1 (72%), RF1 (100%), F2 (60%) and RF1 (91%). The percentage 

distribution of BC420 in F2 and RF2 was 1 and 9% respectively. 
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Table 4.10. Number of individual plants with markers in segregating generation of Teebus-RCR 

2 x Teebus-RR 1 

Generation 
Total number of 

plant  

Marker 

SU91 BC420 

Present Percentage Present Percentage 

BC1 26 25 96 - - 

BC2 16 8 50 - - 

F1 29 21 72 - - 

RF1 23 23 100 - - 

F2 72 43 60 1 1 

RF2 65 59 91 6 9 

 

 

Figure 4.2: Agarose gel showing SCAR markers of primer BC420 and SU91 in F1, BCP1, BCP2 

and F2 of Teebus-RCR 2 and Teebus-RR 1 



 

 

85 

 

 

Figure 4.3: Agarose gel showing SCAR markers of primer BC420 and SU91 in RF2 and RF1 of 

Teebus-RCR 2 and Teebus-RR 1 

 

Figure 4.4: Agarose gel showing SCAR markers of primer BC420 and SU91 in RF2 of Teebus-

RCR 2 and Teebus-RR 1 

4.1.7. Confirming the efficiency of marker assisted selection using F2 plants of Teebus-

RCR 2 x Teebus-RR 1 

There was a high significant difference (P<0.001) in reaction to CBB using Chi square between 

the expected and the observed confirming that inheritance to CBB in Teebus-RCR 2 and Teebus-
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RR 1 is governed by many genes with epistatic gene effects (Table 4.11). Phenotypic data against 

SCAR marker SU91 indicated that there was no significant difference between the observed and 

expected plants with SU91 marker. All plants that were phenotypically resistant had SU91 SCAR 

marker. However, there was a high significant difference (P<0.001) between the phenotype data 

and the SCAR marker BC420. BC420 was absent in the majority of plants, but the plants were 

phenotypically resistant. 

Table 4.11. Inheritance of common bacterial blight and the SCAR markers SU91 and BC420 in 

F2 population of Teebus-RCR 2 x Teebus-RR 1 

 Phenotype Observed Expected Chi-Square DF FPr Significant 

Reaction 
Resistant 35 54 

26.74 1 7.879 *** 
Susceptible 37 18 

Marker        

SU91 Present 43 35 
3.56 1 3.851 NS 

 Absent 29 37 

BC420 Present 1 35 
34.75 1 7.879 *** 

 Absent 29 37 

Significant at:  *** P<0.001, NS = Non significant, DF = Degrees of freedom, FPr = F-probability value.  

4.4. Discussion 

Highly significant differences between generations for reaction to CBB in both crosses is an 

indication that the generations were different from each other. The large difference in mean score 

for CBB reaction between the parents P1 and P2 used in both crosses is an indication that parents 

used in the study were divergent in the trait investigated, which is desirable for a generation mean 

analysis (Jinks and Mather, 1982). The mean score for reaction to CBB was lower in F1 than F2. 

This was due to an increase in proportion of susceptible plants to resistant plants in F2. Backcross 

generations had their means close to their recurrent parent because backcrossing increases the 

frequency of recurrent parent alleles in the genome of the progeny (Xu, 2010). The higher mean 

scores of F1 and F2 than their reciprocals indicate the role of maternal effects. Plants generated 

from reciprocal crossing exhibited high level of resistance. This implies that the choice of a female 

parent will be of paramount importance in common bacterial blight resistance breeding. Maternal 

effects have been reported in foliar diseases in other crops. Derera et al. (2007) reported that 

grey leaf spot in maize was under the influence of maternal effects. The frequency of susceptible 

plants increases from RF1 to RF2 evident by higher mean score in RF2 than RF1.  

A clear understanding of mode of gene action conditioning expression of traits of interest is 

fundamental in breeding programmes. It helps in developing breeding strategies for crop 

improvement (Zalapa et al., 2006). The joint scaling test (Cavalli, 1952), which was used to 
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determine gene action for reaction to CBB in this study, was significant for both crosses. For 

Teebus-RCR 2 x Teebus-RR 1, data adequately fitted the six parameter model. e Silva et al. 

(1989) reported similar results in a cross between Rio Doce and XAN 112. For the cross RS 7 x 

Tygerberg, data failed to fit both the six parameter model and the simple additive model, but 

epistatic gene effects was present.  Rava et al. (1987) reported similar results in two crosses CNF 

0010 x Cornell and Jules x CNF 0010. The failure of the model to fit the simple additive dominance 

model indicated that resistance to CBB is governed by many genes. Despite that, both additive 

and dominant gene actions were significant in Teebus-RCR 2 x Teebus-RR 1. Dominant gene 

action was predominant over additive.  

In RS 7 x Tygerberg dominant gene effects were significant, while additive were not. These results 

do not agree with earlier reports where additive gene action was found to be more of significant 

in CBB resistance (Rava et al., 1987; e Silva et al., 1989). This implies that selection should be 

delayed in both crosses until homozygosity has increased in the population (Ajay et al., 2012).  

All epistatic interactions were significant, however, additive x additive epistatic effect was more 

significant in Teebus-RCR 2 x Teebus-RR 1 than the RS 7 x Tygerberg cross. This is consistent 

with the previous studies by Rava et al. (1987). This suggest that transgressive segregants of 

higher resistance than parents can be achieved in advanced generations. Additive x additive 

interactions are fixable, hence can be utilised in selecting a pure line (Rava et al., 1987). Likewise, 

the significance of additive by additive gene effects in RS 7 x Tygerberg indicates an opportunity 

that resistance can be fixed and exploited. The presence of duplicate epistasis in Teebus-RCR 2 

x Teebus-RR 1 is an indication that variability in segregating generations will be reduced, making 

the selection process difficult and rigorous, justifying the need of incorporating marker assisted 

selection (Kumar and Patra, 2010; Ajay et al., 2012). High total significant magnitude of non-

fixable epistatic effects for both crosses also indicates that selection is likely to be very ineffective 

and rigorous. Dominance gene effect predominated additive gene effect in both crosses, 

supporting the presence of gene dispersion. This implies that transgressive segregants can be 

developed easily if these dispersed genes are brought together (Kearsey and Pooni, 1998). 

Maternal effects have not been reported before in CBB resistance studies and generation mean 

analysis has not been exploited in investigating maternal effects. In the study, maternal effects 

were found to be of importance in both crosses. Maternal effects on foliar diseases in other crops 

have been reported. Derera et al. (2007) found that resistance to Phaeosphaeria leaf spot in 

maize disease was conditioned by maternal genes. Data could not fit both the simple maternal 

additive-dominance and the six parameter model for Teebus-RCR 2 x Teebus-RR 1. In RS 7 x 

Tygerberg data fitted the simple additive-dominant model. Additive maternal effects were 



 

 

88 

 

significant for both crosses, however, in Teebus-RCR 2 x Teebus-RR 1 it was to the direction of 

susceptible parent. Kearsey and Pooni (1998) indicated that a negative maternal gene effect is 

an indication that the stronger parent is a poor maternal parent. However, additive x additive 

maternal epistatic effects were predominant over additive maternal effects and positive. This 

indicates that Teebus-RCR 2 is a good maternal parent. The presence of fixable maternal effects 

in both crosses is encouraging in that it can be fixed and exploited in breeding for resistance. 

Narrow sense heritability is the most important due to its implication in breeding programmes 

(Acquaah, 2009). The magnitude of heritability of a trait determines the selection method. Low 

heritable traits do not permit early generation selection. Selection for high heritable traits is 

effective in F2. Unlike high heritable traits, low heritable traits are influenced by the environment. 

Besides determining the method of selection to be deployed, the success of selection also 

depends on the magnitude of heritability. Selection for traits with high values of narrow sense 

heritability is likely to be successful and easy. Selecting low heritable trait is rigorous, difficult and 

with low chances of success (Sleper and Poehlman, 2006; Ajay et al., 2012). Heritability values 

are also used in determining the response to selection in plant breeding programmes (Nyquist 

and Baker, 1991; Sleper and Poehlman, 2006; Said, 2014). When dealing with low to moderate 

heritable traits, breeders rely on transgressive segregants to register progress (Sleper and 

Poehlman, 2006). Using values of genetic means generated from generation mean analysis to 

estimate heritability values has been discouraged (Hallauer and Miranda, 1981). Variance 

components have been recommended to be used in estimating heritability of traits in crop 

improvement programme. Kearsey and Pooni (1998) indicated that variance components reveal 

the true genetic variation, while means reveal the breeding potential of source material.  

Narrow sense heritability for resistance to CBB in both crosses was moderate. These results 

agree with those reported previously by other investigators on inheritance of CBB resistance (e 

Silva et al., 1989; Arnaud-Santana et al., 1994; Tryphone et al., 2012). This is an indication that 

resistance to CBB is controlled by multiple genes (Tryphone et al., 2012). The implication of these 

results in a breeding programme is that selection could be delayed to advanced stages where 

plants have reached some homozygosity. High resistance could be fixed through selection of 

transgressive segregants that are more resistant than the more resistant parent.  

The presence of markers for a particular trait in breeding populations, eases the process of 

selection if utilised in the breeding programme (O'Boyle et al., 2007), particularly in traits with low 

to moderate heritability like CBB. Indirect selection using markers is reported to be of value when 

the marker positively correlates with phenotypic data (Tryphone et al., 2012). In this study the 

SU91 and BC420 SCAR markers were both present in Teebus-RCR 2. These results are 
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consistent with previous results (Fourie and Herselman, 2002; Vandemark et al., 2008). Common 

bacterial blight resistance in Teebus-RCR 2 was derived from XAN159, which has both markers 

(Vandemark et al., 2008). The presence of these two QTL markers linked to CBB resistance in 

Teebus-RCR 2 is evidence that resistance was successfully transferred into Teebus, a 

commercial parent cultivar for Teebus-RCR 2 (Vandemark et al., 2008). The study also 

established that both markers were absent in RS 7. BC420 is reported to be linked to the V gene 

which affect the seed colour of red speckled beans (Mutlu et al., 2005). Its absence in RS 7 

confirms these previous results, since RS 7 maintained the red speckled colour. The suggested 

reason for the absence of SU91 in RS 7 is that the original source of resistance in the cultivar 

might not have SU91. RS 7, despite the absence of the two markers, exhibited good resistance 

in the greenhouse study. This suggest that resistance might be conditioned by other QTL linked 

markers or minor genes not linked to these major known QTL linked markers (Viteri et al., 2014). 

Since RS 7 is a good source of resistance (greenhouse data) there is a need of conducting further 

investigations to establish the QTL markers in this genotype so that MAS can also be utilised. 

The presence of markers in segregating generations derived from a cross between Teebus-RCR 

2 and Teebus-RR 1 indicates that resistance was successfully transferred into these progenies. 

There was a direct relationship between numbers of plants with markers and the mean phenotypic 

reaction to the disease. Generations with low disease mean score had higher number of plants 

with markers. This confirms the relationship between the markers and CBB resistance (Mutlu et 

al., 2005). The significant relationship between the expected and observed CBB reaction 

indicates that resistance to CBB in Teebus-RCR 2 is governed by several genes. For marker 

assisted selection in CBB resistance breeding to be effective, high levels of positive correlation 

between markers and CBB resistance is needed (Yu et al., 2004). The indirect selection through 

using markers allows for early generation selection and improved response to selection (Xu, 

2010). The insignificant correlation between the expected and observed plants with the marker 

BC420 indicates that it is not an effective marker in CBB resistance breeding. This support the 

need to test the marker before using it in the breeding programme (Park et al., 1999; Fourie, 

2002a).  

4.5. Conclusion 

The study has established that common bacterial blight is governed by additive, dominance and 

epistatic gene effects. It has also been found that the disease is a moderately heritable trait and 

governed by many genes. Maternal effects play a significant role in common bacterial blight 

resistance breeding. Furthermore, resistance in Teebus-RCR 2 is linked to two markers (SU91 

and BC420), however only SU91 could be used for indirect selection. The overall implications of 
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these finding in CBB resistance breeding programme is that it will affect the selection strategy to 

be deployed and also the choice of a female parent in resistance breeding programme. Backcross 

breeding, recombinant breeding, delayed selection, choosing a resistant parent as a female 

parent and using MAS, especially in crosses involving Teebus-RCR 2, would register positive 

result in CBB resistance breeding programme. 
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CHAPTER 5 

OVERVIEW OF THE STUDY 

Dry bean is an important legume crop worldwide. In South Africa dry bean is a major source of 

plant protein and also an important source of income among growers. The crop is mainly, 

produced in the Free State, Mpumalanga, Gauteng, KwaZulu-Natal, North West, Limpopo and 

Eastern Cape provinces, all exhibiting different agro-ecological conditions such as temperature, 

humidity, soil fertility and rainfall. Crop productivity is low and national demand outstrip production. 

The main contributing factors to low production includes both abiotic and biotic stresses. Yield 

instability due to environmental changes and common bacterial blight disease, caused by 

Xanthomonas axonopodis pv phaseoli (Xap) (Smith) Vauterin, Hoste, Kosters & Swings and its 

fuscans variant, X. fuscans sbsp. fuscans (Xff) are considered to be major contributing factors to 

low productivity. Breeding for stable high yielding and common bacterial blight resistant cultivars 

is of importance in South Africa. The study aimed at investigating yield stability, adaptation and 

breeding for common bacterial blight resistance in dry bean. This chapter highlights the study 

objectives with summary of major findings and their implications in South Africa dry bean 

breeding. 

 Yield stability and adaptation analysis of South African dry bean cultivars 

Data from the National Dry Bean Cultivar Trials (NCT) conducted during the 2014/2015 growing 

season in 21 locations in three countries, namely South Africa, Swaziland and Lesotho, was used 

to investigate grain yield stability and adaptability of thirty South African dry bean cultivars. Data 

was subjected to additive main effect and multiplicative interaction model (AMMI). The findings 

were as follows: 

 The presence of crossover genotype by environment interaction effects. 

 Cultivars G6 and G14 were identified by AMMI as high yielding and stable with mean yield 

1.46 t ha1 and 1.45 t ha-1 respectively. These genotypes were selected for general 

adaptation. 

 Cultivars G26 and G29 were identified as high yielding in selected environments. These 

genotypes were selected for specific adaptation to high potential environments. 

 Environments with similar response were identified by AMMI bi-plot. For example KN and 

NP had similar response. 
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Evaluation of newly introduced dry bean germplasm for resistance to common 

bacterial blight and for yield 

The reaction to CBB and yield was evaluated in the field using 60 dry bean genotypes of diverse 

genetic background, of which 39 were from the Andean Diversity Panel (ADP) and 13 from the 

Phaseolus Improvement Cooperative (PIC). Five were from the Agricultural Research Council- 

Grain Crop Improvement (ARC-GCI) dry bean breeding programme and three were from Pro-

Seed, a seed company based in KwaZulu-Natal South Africa. Lines from the ARC-GCI and Pro-

Seed were used as checks in the study. The findings were as follows; 

 The reaction of dry bean genotypes to CBB varied across the two environments and 

between genotypes. At Cedara the reaction among genotypes was 30% resistant, 42% 

moderate and 28% susceptible, while at Potchefstroom the figures were 27, 15 and 58% 

respectively. Seven ADP lines showed resistant reaction across the two locations (0531, 

0041, 0211, 0790, 0427, 0036 and 0544). Only three PIC lines, M-139, M-145 and M-197 

showed resistant reaction to CBB across the two locations. 

 Only five of the eight local cultivars which were included as checks (Werna, RS 7, Teebus-

RCR 2, Caledon and Ukulinga) were resistant. 

 Yield ranged from 2.91 t ha-1 to 0.08 t ha-1 with ADP-0041 and ADP-0611 recording the 

highest and lowest yield respectively. Five of the eight local dry bean genotypes were 

among the top ten high yielding genotypes and these were Caledon (2.36 t ha-1), Teebus-

RCR 2 (2.30 t ha-1), Teebus-RR 1 (2.29 t ha-1), Tygerberg (2.17 t ha-1) and Werna (1.79 t 

ha-1). ADP-0790 and Teebus RRI were the only two genotypes among the top ten high 

yielding that were susceptible to CBB. 

 Genotypes ADP-0041, ADP-0790, M-125, ADP-0096, ADP-0544 and M-191 were 

selected as both high yielding and resistant. These genotypes had RAUDPC values of 

less than 2000 and yielded above 1.7 t ha-1. Genotypes ADP- 0055, ADP-0099 and ADP-

0103 were selected on the basis of yield. These genotypes showed susceptible reaction 

to CBB, but yielded above 1.7 t ha-1. 

Heritability and efficacy of marker assisted selection in breeding for common 

bacterial blight resistance in South Africa dry bean germplasm  

The study to investigate mode of gene action, heritability and efficacy of marker assisted selection 

in common bacterial blight resistance was conducted using two susceptible cultivars Teebus-RR 

1 and Tygerberg and two resistant cultivars Teebus-RCR 2 and RS 7. All parental genotypes 
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were selected from the local germplasm. The four parents were crossed using a simple biparental 

mating design. Teebus-RCR 2 was crossed to Teebus-RR 1 and RS 7 to Tygerberg with 

reciprocals. In total eight generations were generated. The generations were as follows: P1, P2, 

F1, RF1, F2, RF2, BCP1 and BCP2. Generations for each cross were evaluated separately in the 

greenhouse under artificial inoculation. Leaf samples were collected for molecular analysis. Two 

SCAR QTL linked markers BC420 and SU91 were used to test the efficacy of marker assisted 

selection. The findings were as follows; 

 Dominant gene action predominated additive gene action indicating the presence of gene 

dispersion. This implies that selection could not be effective in early generations and also 

the need to bring the dispersed genes together for easy development of transgressive 

segregants. 

 The presence of duplicate epistasis is an indication that variability will be very low in 

segregating populations resulting in selection difficulties. 

 Additive by additive gene effects were significant in both crosses which implies that 

transgressive segregants of higher resistance than parents can be achieved in advanced 

generations and also resistance can be exploited and fixed. 

 Narrow sense heritability was moderate (36 and 59%) in both crosses and this implies that 

resistance to CBB is conditioned by several genes. 

 Maternal effects were significant and governed by fixable gene effects. This implies that 

choice of female parent is important and also that resistance governed by maternal effects 

can be fixed and exploited. 

 The two QTL linked SCAR markers BC420 and SU91 are present in Teebus-RCR 2 only. 

 Only SU91 QTL linked SCAR was found to be effective in MAS breeding for CBB 

resistance involving Teebus-RCR 2. 

Breeding implications and recommendations 

Yield stability and adaptation study: The dry bean breeding programmes in South Africa 

usually release cultivars first before testing in multi-location trials. Several released cultivars are 

withdrawn from the list every year following their poor performance in national cultivar trials. 

Among the contributing factors of poor performance are, inappropriate testing sites prior to 

release and yield instability. In this study, through subjecting the data to AMMI analysis, high 

yielding cultivars that showed general adaptation and specific adaptation were identified. Sites 

with similar response were also identified. The identification of these sites implies that in future it 
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could be possible for the national cultivars trials to drop certain sites in order to reduce the cost 

associated with multi-location trials. On the other hand, the identification of representative 

(informative) environment implies that breeding programmes should utilise these locations in 

preliminary variety selection trials.  

Disease and yield evaluation study: The fundamental basis of a successful breeding 

programme lies in the genetic resources of available germplasm (Beebe and Corrales, 1991). 

The identified superior genotypes from the introduced germplasm could be ideal in improving dry 

bean production in the country in a number of ways; firstly the genotypes could be used in 

developing pre-breeding populations for yield and CBB resistance breeding. Secondly genotypes 

could be utilised directly as parental genotypes in both yield and CBB resistance breeding and 

lastly these superior introduced genotypes could be released as commercial cultivars. The study 

established that introduced germplasm has a potential to improve dry bean production. Therefore 

it is recommended that the germplasm should be evaluated for other important traits over multiple 

seasons.  

Heritability and efficacy of marker assisted selection: A clear understanding of mode of gene 

action conditioning expression of traits of interest is fundamental in breeding programmes. It helps 

in developing breeding strategies for crop improvement (Zalapa et al., 2006). The overall 

implications of these findings in CBB resistance breeding is that it will affect the selection strategy 

to be deployed and also the choice of a female parent in resistance breeding programme. 

Backcross breeding, recombinant breeding, delayed selection, choosing a resistant parent as a 

female parent and using MAS, especially in crosses involving Teebus-RCR 2, could be options 

which could register positive results in a CBB resistance breeding programme. In this study, the 

selected progenies have been advanced to F3 generation. Pedigree selection will be employed 

up to F7 so that market class cultivars that are high yielding and resistant to CBB might be 

identified. 
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