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Abstract

The objectives of this thesis is to explore different approaches of modelling
clustered correlated data in the form of repeated or longitudinal counts data
leading to a replicated Poisson process. The specific application is from re-
peated epileptic seizure time to events data. Two main classes of models
will be considered in this thesis. These are the marginal and subject or
cluster specific effects models. Under the marginal class of models the gener-
alized estimating equations approach due to Liang and Zeger (1986) is first
considered. These models are concerned with population averaged effects
as opposed to subject-specific effects which include random subject-specific
effects such that multiple or repeated outcomes within a subject or cluster
are assumed to be independent conditional on the subject−specific effects.
Finally we consider a distinct class of marginal models which include three
common variants namely the approach due to Anderson and Gill (1982), Wei
et al (1989) and Prentice et al. (1981)
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Chapter 1

Introduction

There is increasing interest, and need, to extend and apply the theory of
the analysis of time to event data to data sets with multiple events per sub-
ject. The types of multiplicity can either be multiple events per subject or
events of different type. Examples of the former include recurrent infections
in AIDS patients (such as recurrent bacterial pneumonia and ), recurrent
epileptic seizures for individuals who are epileptic. Examples of the latter
include recurrent side effects such as toxicity and worsening symptoms in
the management of chronic diseases. Such type of processes give rise to a
replicated Poisson process since each subject can be considered as generat-
ing its own single Poisson process. With the need to evaluate the success of
treatment strategies such as HAART (highly active antiretroviral treatment)
in the management of HIV/AIDS patients and other dilapidating diseases
such analyses are becoming increasingly necessary.

A major issue in the extension of time to event technique such as the Cox
proportional hazards regression models is the intra-subject correlation for
events from the same subject. Other complexities include multiple time
scales, discontinuous intervals of risk, stratum by covariate interactions, and
the structure of risks sets.

The counting process modelling approach in this thesis was motivated by
the need to more accurately model the disease process of interest which is
epilepsy in this case. There is a growing need to understand this condition
more and more in order to design better strategies of care for persons having
such a dilapidating condition (Madekurozwa, 2009).

This thesis investigates two main categories of modelling approaches to such
data. The first category is the marginal models which include three common
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variants namely the approach due to Anderson and Gill (1982), Wei et al.
(1989) and Prentice et al. (1981). Within the class of marginal models we
also consider the class of marginal models for general longitudinal data is the
generalized estimating equations approach by Zeger et al. (2002).

A second category of models that the project will be concerned with is the
random effects or subject-specific models which include a random subject-
specific effect, where multiple outcomes are assumed to be independent con-
ditional on the subject-specific effect. An example of random specific effects
model in time to event modelling is the frailty model described by Oakes
(1992).

In this thesis the aim is to

• model multiple events per subject as a replicated Poisson process

• Generalize the intensity function generating the events to include the
effect of treatment and other subject and/or population specific covari-
ates

• Extend the models to capture the correlation structure of events per
subject

• Apply the models to real data in medical research

• Compare the two categories of modelling approaches

• Recommend future extensions

To attain the above aims we need to first look at some preliminary concepts
and these are discussed in Chapter two.
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Chapter 2

Preliminary concepts

2.1 Longitudinal data

Longitudinal data occurs when a response Y is observed repeatedly on the
same individual over time (Verbeke and Molenberghs, 2000; Diggle, Hearg-
erty, Liang and Zeger, 2002). Often in clinical trials we need to examine the
effect of a new treatment compared to an existing or standard treatment in
curing or alleviating pain on study individuals. In this a set of individuals
are randomly allocated to the two treatments then the response of interest
measured over time on the two groups of patients with an aim of comparing
the benefit accrued from the two treatments. In addition to measuring the
response variable other covariates are also measured alongside the response.

The main advantage of longitudinal studies over cross sectional studies is
that longitudinal studies can separate the marginal or population averages
and individual specific effects in population studies for example cohort and
age effects. The changes within individuals over time is what is known as age
or time effect. The cohort effect is the differences among people in their base-
line values or covariates. Longitudinal studies can distinguish these time and
cohort effects while cross-sectional studies cannot. In cross-sectional data,
only a single response is available for each of the experimental units (for
example human subjects or plants). The following are some of the specific
advantages of longitudinal studies:

• They economise on subjects thus they cut on costs.

• Subjects can serve as own control.

• The between-subject variation can be modelled by including a random
effect to account for subject to subject variability or heterogeneity.
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• They can provide more efficient estimators than cross-sectional designs
with the same number and pattern of observations.

• They can provide information about individual change.

Just like any other study, longitudinal studies have challenges of which some
of them are listed below:

• Observations are not, by definition, independent implying they are usu-
ally correlated, hence it is important to take account of possible asso-
ciation among repeated measurements.

• In most cases analysis methods are not well developed, especially for
more sophisticated models, such as models for non-Gaussian data.

• Lack of readily available computational procedures and software.

• The cases of unbalanced designs, missing data and attrition which make
analysis of data slightly difficult.

• Time varying covariates.

2.2 Types of correlation structures

In the previous section we mentioned that in longitudinal studies the ob-
servations are correlated. Of which they are different types of correlation
structures longitudinal data exhibit, some of the structures are :

• Independence: which means observations within an individual or clus-
ter are assumed independent which is somewhat unrealistic in practical
terms.

• Exchangeable: that is all measurements on the same unit are equally
correlated. This type of correlation structure is sometimes referred to as
the compound symmetry or spherical structure. It is used when one is
dealing with clustered data. Examples include the case of observations
accrued from individuals from the same family or geographic area.

• Completely unstructured: here no assumptions are made about the cor-
relations. Thus there are many parameters to estimate. One problem
with using this correlation structure is that the correlation estimates
may not converge.
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• Autoregressive structure: this kind of correlation structure is used in
the cases when one knows that the correlation declines over time.

The above list is not exhaustive because much more structures exist depend-
ing on the nature of the data.

2.3 Notation

In the text that follows we will denote the response variable by Y and the
explanatory variables, or covariates by X. To specify the longitudinal or
repeated measurements data setting we let Yij denote the jth observation for
the ith individual for i=1,. . . ,n. The actual observation times are tij where
j = 1, . . . , ni assuming individual i is observed or measured ni times. If
we have two treatment groups then N = N1 + N2 where N1 is the number
of individuals allocated to treatment 1 (for example a placebo) and N2 the
number of those allocated to the second treatment (for example a new or
active treatment).

2.4 Incomplete data

Longitudinal data may involve a time to event response. In this context of
time to event analysis we distinguish between uncensored (complete) and
censored (incomplete) data or observations for both life and non-life studies.
In many cases, life data contains uncertainty as to when exactly an event
happened (i.e. when the unit failed). Data containing such uncertainty as to
exactly when the event happened is termed as censored data or incomplete
data depending on the context of application. Under survival analysis it is
referred to as censored data and under longitudinal data settings incomplete
data (Verbeke and Molenberghs, 2000). Analysis of time to event data or
survival analysis is a very popular methodology in health research (Therneau
and Grambosch, 2000).

Complete Data

Complete data means that the value of each sample unit is observed or known.
For example, if we had to compute the average test score for a sample of ten
students, complete data would consist of the known score for each student.
Likewise in the case of life data analysis, our data set (if complete) would be
composed of the time-to-failure of all units in our sample. Consider a situ-
ation in which we are testing 5 (non repairable) units taken randomly from
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a population. We are investigating the population to determine if its failure
rate is acceptable. In the typical test scenario, we have a fixed time interval
T to run the units to see if they survive or fail. If the tested five units all
failed and their times-to-failure were recorded, we would then have complete
information as to the time of each failure in the sample. Missing or incom-
plete longitudinal data theory is still an active area of research particularly
with reference to clinical trials (Molenberghs and Kenward, 2007).

Censored Data

In many cases when life data are analyzed, all of the units in the sample
may not have failed (i.e. the event of interest was not observed) or the exact
times-to-failure of all the units are not known. This type of data is commonly
called censored data . There are three types of possible censoring schemes,
namely right censored (also called suspended data), interval censored and
left censored.

Right Censored (Suspended)

The most common case of censoring is what is referred to as right censored
data, or suspended data. In the case of life data, these data sets are composed
of units that did not fail. For example, if we tested five units and only three
had failed by the end of the test, we would have suspended data (or right
censored data) for the two units which did not fail. The term “right censored”
implies that the event of interest (i.e. the time-to-failure) is to the right of
our data point. In other words, if the units were to keep on operating, the
failure would occur at some time after our data point (or to the right on the
time scale).

Interval Censored

The second type of censoring is commonly called interval censored data.
Interval censored data reflects uncertainty as to the exact times the units
failed within an interval. This type of data frequently comes from tests or
situations where the objects of interest are not constantly monitored. If we
are running a test on five units and inspecting them every 100 hours, we only
know that a unit failed or did not fail between inspections. More specifically,
if we inspect a certain unit at 100 hours and find it is operating and then
perform another inspection at 200 hours to find that the unit is no longer
operating, we know that a failure occurred in the interval between 100 and
200 hours. In other words, the only information we have is that it failed in a
certain interval of time. This is also called inspection data by some authors.
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For infectious diseases such as HIV, an individual may test negative when
tested at time t1 then later test positive at time t2 then the actual time of
sero-conversion lies between t1 and t2. Then the time to event is interval
censored.

Left Censored

The third type of censoring is similar to the interval censoring and is called
left censored data. In left censored data, a failure time is only known to have
occurred before a certain time. For instance, we may know that a certain
unit failed sometime before 100 hours but not exactly when. In other words,
it could have failed any time between 0 and 100 hours. This is identical
to interval censored data in which the starting time for the interval is zero.
Alternatively we may be interested in age at infection with a disease such as
HIV/AIDS. But because individuals are not followed continuously if an indi-
vidual tests positive at age a then this means the age at infection is a′ < a.
The age at infection is left censored. If not the age at infection is a > a′

which in this case it will be right censored. This type of data is generally
known as current status data.

Ignoring the different forms of censoring can lead to biased results partic-
ularly if the censored observations are very different from those remaining.
(Therneau and Grambosch,2000 ; Pawitan, 2006)

2.5 Types of longitudinal studies

Some types of longitudinal studies are:

• panel studies

• time series analysis where a single variable(s) is measured at different
time points for example monthly for several years.

• cohort data sets, this is where individuals are followed over time and a
disease outcome or certain event of interest occurs or until the end of
study.

• event history data sets. These are also known as survival data analysis.

• repeated cross sections. This is the most common type of study in
longitudinal survey studies. It involves whole surveys with the same
variable measured repeatedly at different time points.
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At times observation gaps occur in longitudinal studies. This happens when
study subjects can be out of the study for a period of time for various reasons
and then come back again and this may occur more than once. This is
also called intermittent missingness. In the following section other types of
missingness will be discussed.

2.6 Missingness and Incompleteness

Longitudinal studies usually suffer from incompleteness even though they
are designed to collect information for every subject on each planned occa-
sion. Incompleteness of longitudinal studies results in missing observations.
These missing observations maybe due to, for example causes that are not
related to the responses (observed or not observed) or the nature of the study
procedure. This type of missingness is usually referred to as missing com-
pletely at random (MCAR). In most clinical trials the reason for missingness
depends on the response variables themselves therefore MCAR assumption
rarely holds in clinical trials.

Rubin (1976) classified the missing data mechanism into three types based
on how the missing-data processes depend on the responses: missing com-
pletely at random (MCAR), missing at random (MAR) and missing not at
random (MNAR). In the context of longitudinal data, the term MAR refers
to the case in which the probability that a response measurement is missing
may depend on other observed parts of the response profile, but does not
depend on the unobserved response(s). When the missingness depends on
the unobserved response(s) then the missing data is said to be MNAR. The
type of incompleteness addressed in the current work is from a Poisson pro-
cess for counts. Individuals are observed over different lengths of time Ti,
i = 1, . . . , n and the number of events experienced by the individual over this
duration of time counted. The type of incompleteness occurring here is that
the number of observations per individual is not the same for all individuals
n and further the time between events is not constant between and within
individuals. This leads to unbalanced incomplete data that complicates its
analysis within the longitudinal data framework.
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Chapter 3

Data Description

In this project we consider modelling a special type of a disease process where
the underlying generation process is in the form of a replicated Poisson pro-
cess. The disease of interest is epilepsy where individuals are randomized
into a treatment arm and a placebo arm and then observed repeatedly over-
time. This generates a form of repeated or longitudinal non-Gaussian data.
Generally each individual generates his/her own short time series as opposed
to the classical time series analysis where we have one long time series data
(Talke, 2003; Diggle et al, 2002).

3.1 Epilepsy

Epilepsy is a neurological condition that from time to time produces brief
disturbances in the normal electrical functions of the brain [2]. Epilepsy is
also known as seizure disorder. Normal brain function is made possible by
millions of tiny electrical charges passing between nerve cells in the brain
and to all parts of the body. When someone is epileptic, the normal pattern
may be interrupted by intermittent bursts of electrical energy that are much
more intense than usual. This may lead to the person’s consciousness, bodily
movements or sensations being affected for a short time.

These physical changes are called epileptic seizures, hence epilepsy is some-
times called a seizure disorder. The unusual bursts of energy may occur in
just one area of the brain (partial seizures), or may affect nerve cells through-
out the brain (generalized seizures)[2]. Normal brain function cannot return
until the electrical bursts subside. Conditions in the brain that produce
these episodes may have been present since birth, or they may develop later
in life due to injury, infections, structural abnormalities in the brain, expo-

10



sure to toxic agents, or for reasons that are still not well understood. Many
illnesses or severe injuries can affect the brain enough to produce a single
seizure. When seizures continue to occur for unknown reasons or because
of an underlying problem that cannot be corrected, the condition is known
as epilepsy. Epilepsy affects people of all ages, all nations, and all races.
Epilepsy can also occur in animals, including dogs, cats, rabbits, and mice.
In this project two epilepsy data sets will be considered. The first data set
which is printed in Table 3.1 is about a clinical trial where a placebo and
an active treatment are compared. The data is a typical example of real
replicated Poisson process (Pawitan,2006). Individual specific information
included in the first data set is the number of epileptic seizures ni over a
period Ti the individual was followed up. The treatment group (placebo or
active treatment) was the only covariate in the model. The different time
points where the epileptic seizures occurred (ti1, ti2, . . . , tini

) are also avail-
able where 0 ≤ tij ≤ Ti.

The second data set is similar to the first one but now the patients were
followed for the same period of time and all patients have the same number
of observations. The patients were randomized to receive a control (placebo)
and a test drug (progabide) in a two period crossover trial. The second data
set was first analyzed by Thall and Vail (1990). These data are reprinted in
Table 3.2. From the box plots in Figure 3.1 one can see that there seems to
be a strong variation in the count of seizures among the people at the base-
line level. The medians for the seizures at the baseline level are higher than
the medians at subsequent visits. Figure 3.2 shows the subject profiles of
the individuals and from the figure we can see that there is great variability
across time among individuals.

The aim in both cases is to model the intensity of epileptic events for in-
dividuals under placebo and treatment and to test whether the intensity of
occurrence are significantly different between the two treatment groups.
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Table 3.1: The epilepsy data example 1: Patient i was followed for Ti weeks,
and there were ni events during the follow-up period.

Subject i xi Ti ni Time of events
1 active 12 3 2.6 3.3 7.2
2 active 5 2 3.5 4.4
3 active 7 4 1.5 1.6 2.2 6.1
4 active 14 3 12.1 12.4 13.4
5 active 10 5 0.7 2.6 3.9 6.9 7.8
6 active 10 2 5.3 6.3
7 active 12 1 10.2
8 active 8 3 0.2 3.2 7.7
9 active 11 3 0.1 2 3.2
10 active 8 3 0.1 3.2 3.7
11 placebo 11 4 2.3 7.9 8 8.8
12 placebo 11 7 5.1 5.2 6.1 6.5 7.9 9.9 10.9
13 placebo 8 6 0.5 0.8 1.9 2.7 5.4 7.2
14 placebo 16 8 1.4 4.3 5 6 7.8 8.4 9.2 11.2
15 placebo 11 11 0.3 0.3 1.9 1.9 2.7 3.1 3.9 5.3 7 8.8 10.1
16 placebo 7 8 1.2 2.6 3.5 4.7 5.3 5.7 5.9 6.1
17 placebo 15 7 0.8 1.5 4.3 4.4 5.1 12.1 14
18 placebo 9 7 0.1 0.1 1 3.6 5.4 6.3 8.7
19 placebo 7 4 0.9 2.2 5.2 6.6
20 placebo 4 2 2.2 3.2
21 placebo 6 6 0.5 1.3 1.3 1.7 2.9 5.6
22 placebo 4 1 1.4
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Table 3.2: The epilepsy data example 2: Patient i was followed for Ti weeks,
and there were ni events during the follow-up period.

Subject i Trt Age Base Y1 Y2 Y3 Y4

1 0 31 11 5 3 3 3
2 0 30 11 3 5 3 3
3 0 25 6 2 4 0 5
4 0 36 8 4 4 1 4
5 0 22 66 7 18 9 21
6 0 29 27 5 2 8 7
7 0 31 12 6 4 0 2
8 0 36 52 40 20 23 12
9 0 37 23 5 6 6 5
10 0 28 10 14 13 6 0
11 0 36 52 26 12 6 22
12 0 24 33 12 6 8 5
45 1 35 38 19 7 6 7
46 1 25 7 1 1 2 4
47 1 26 36 6 10 8 8
48 1 25 11 2 1 0 0
49 1 22 151 102 65 72 63
50 1 32 22 4 3 2 4
51 1 25 42 8 6 5 7
52 1 35 32 1 3 1 5
53 1 21 56 18 11 28 13
54 1 41 24 6 3 4 0
55 1 32 16 3 5 4 3
56 1 26 22 1 23 19 8
57 1 21 25 2 3 0 1
58 1 36 13 0 0 0 0
59 1 37 12 1 4 3 2

13



Figure 3.1: Box plots os square-root transformed seizure rates for epileptics
at the baseline (0) and for four subsequent two-week periods: (a)control
(placebo); (b) test drug (progabide).
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Figure 3.2: Subject profiles from (a) placebo (b) progabide.
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Chapter 4

The General Linear Mixed
Model for Longitudinal Data

4.1 Introduction

The following chapter summarizes the key ideas about linear mixed models
for longitudinal data following the approach in Verbeke and Molenberghs
(2000). This is a more general approach to fitting linear models where some
covariance structure is expected between observations from the same unit
or cluster (e.g. a patient observed repeatedly over time in a clinical trial) of
measurement. For example the monotonically declining correlation structure
between two observations as the distance between them in time increases. In
particular if Yij and Yik are two observations from individual i measured at
times tij and tik respectively we could hypothetically assume that the co-
variance between the two observations is σ2ρ|tij−tik| where σ2 is the constant
variance of any individual observation hence ρ|tij−tik| is the correlation be-
tween them. If the observations are equally spaced such a covariance model
is also known as the auto-regressive model of order one or AR(1. The book
by Diggle et al. (2002) among others is also a good references for both bal-
anced and unbalanced incomplete longitudinal data for continuous Gaussian
outcomes. There are a number of statistical computing software available
to handle the analysis of longitudinal data, from a continuous response. In
SAS such models are fitted using proc MIXED. Other correlation structures
also exist among them the compund symmetry (CS) where the covariance
between any two observations within a cluster is constant. The unstructured
(UN) covariance structure is where the covariance between any two observa-
tions for example Yij and Yik is left completely free. The disadvantage here
is that the number of parameters to estimate may be too large particularly
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if the number of observations per individual is large.

4.2 The Multivariate Regression Model

To specify the longitudinal or repeated measurements data we let Yij denote
the jth observation for individual i = 1, . . . , N . The actual observation times
are tij where j = 1, . . . , ni assuming the response of interest is observed
or measured ni times from individual i. Furthermore we let Yi be the ni-
dimensional vector of all repeated measurements for the ith subject, that is,
Yi = (Yi1, Yi2, . . . , Yini

)′. Assuming an average linear trend for Y as a function
of time, a multivariate regression model can be obtained by assuming that
the elements Yij in Yi satisfy the model

Yij = β0 + β1tij + εij,

with the assumption that the error components εij are normally distributed
with mean zero. Putting this in vector notation we have

Yi = Xiβ + εi (4.1)

for a design matrix Xi of dimension ni × p, with β being a p- dimensional
vector of regression parameters including the intercept β0 and εi is an n-
dimensional vector of error terms εij, j = 1, 2, . . . , ni. The complete mul-
tivariate model is then obtained by assuming that εi ∼ N(0,Σi) and that
ni = n for all i so that for the multivariate model the Yi are independent
∼ N(Xiβ,Σi) with a common variance-covariance matrix that is Σ equal to
σ2I where I is the identity matrix of dimension n. However this assumption
is not necessarily true in the context of repeated or longitudial data settings.
Making this assumption means that we ignore the fact that measurements
made on the same individual may be (highly) correlated. To take into ac-
count the fact the repeated measurements are correlated “one” could assume
special forms of Σ depending on the nature of the data and the most appropri-
ate covariance structure that best describes the data. Some of the covariance
structures one could assume include the compound symmetry structure (CS)
where the covariance between any two observations within a cluster is con-
stant say equal to σ2

b , the autoregressive (AR) covariance structure similar to
that described in the introduction above and many others. The CS structure
arises assuming the model

Yij = β0 + β1tij + εij + si,

where now we assume si are iid N(0, σ2
b ). Thus

V ar(Yij) = σ2 + σ2
b
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and
Cov(Yij, Yik) = E(s2

i ) = σ2
b .

Thus

Corr(Yij, Yik) =
σ2

b

σ2 + σ2
b

where ρ is also known as the intra cluster correlation (ICC) in the context
of clustered data. Assuming independence across individuals, β and the
parameters in Σi can be estimated by maximizing the likelihood given by

LML =
N∏

i=1

(2π)
ni
2 |Σi|−

1
2 exp(−1

2
)(Yi −Xiβ)′Σ−1

i (Yi −Xiβ)) (4.2)

where yi is the observed vector of responses from the ith individual or cluster.
Inference on the regression parameters β and covariance parameters in Σ are
based on classical maximum likelihood theory such as the likelihood ratio
(LR) test and asymptotic Wald test. More details on inference will follow in
the next section. For now it suffices to say that the multivariate regression
model is primarily suitable when measurements are taken at relatively small
number of fixed time points and the data is balanced in the sense that each
individual contributes equal number of observations n. The model can still
be applied even if some measurements are missing provided the software al-
lows for unequal number of measurements per individual or cluster. In SAS
procedure MIXED, repeated and unequal number of observations per subject
is handled by the REPEATED statement. For example if the repeated time
of measurements are held in a categorial variable ‘timef’ then the statement
‘repeated timef/...’ is used from which outcomes that have been repeatedly
observed and which are missing can be identified. Other software such as
GenStat follow the same reasoning but the syntax is software specific.

However in the case of large number of repeated measurements, multivariate
regression models can only be applied under very restrictive and very specific
covariance structures, even in the case of complete data. The reason for this
is obvious since in the case of the unstructured mean and/or unstructured
covariance models there will be very many parameters requiring estimation.
On the other hand in the case of highly unbalanced unequally spaced obser-
vation data, multivariate regression models can again only be applied under
very specific mean and covariance structures. For example the AR(1) struc-
ture is not directly meaningful since the time points are not equally spaced.
Likewise the CS covariance structure is meaningful subject to very strong
assumptions. This therefore requires that the above model be modified and
extended to address some of these deficiencies and data complexities. In the
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following the problem of formulating the general linear model for longitudinal
data is addressed.

4.3 A model for Continuous Longitudinal Data

From the Multivariate Regression Model section above one can see that this
kind of model can only be used when one is working with a balanced data set
but then in most practical cases one usually ends up with unbalanced data,
that is either the data set will have unequal number of measurements per
subject or measurements in the data set will not have been taken at fixed
time points or equally spaced. One can however estimate subject-specific
longitudinal profiles using linear regression functions. This leads to the con-
cept of the 2-stage model formulation approach which is discussed in the next
subsection. This approach will immediately lead to the general linear mixed
effect(s) model. Inference on fixed effects parameters, variance components
and random effects will be discussed. A model for residual covariance will
also be presented. A motivation for the above model arises from the fact
that in most cases longitudinal data is unbalanced due to (i) unequal num-
ber of measurements per person and (ii) measurements not taken at same
fixed time points and equally spaced (because a situation may arise where
individuals contribute equal number of observations but not equally spaced)
for all individuals or both. Thus balanced data under such a model is just
a special case. Because of (i) and (ii) classical multivariate techniques are
often not applicable. The two-stage model formulation or reasoning arises as
follows. Often, subject specific longitudinal profiles are well approximated
by linear regression functions. This is done under stage 1 part of the for-
mulation. In stage 2 one then builds a mean model to explain variability
in the subject specific regression coefficients using covariates. Thus stage 2
formulation is in a way linking individual specific information to population
level information.

The linear mixed model for longitudinal data was first described in Laird
and Ware (1982). In order to formally derive a model relevant in the anal-
ysis of longitudinal data we adopt the two-stage formulation approach also
described in Verbeke and Molenbergh (2000) and Diggle et al. (2002).

4.3.1 The two State formulation

Recall that to model longitudinal or repeated measurements data we let Yij

denote the jth observation for individual i = 1, . . . , N . The actual observa-
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tion times are tij where j = 1, . . . , ni assuming individual i is observed or
measured ni times. Furthermore we let Yi be the ni dimensional vector of all
repeated measurements for the ith subject, that is, Yi = (Yi1, Yi2, . . . , Yini

)′.
In the first stage of the two-stage formulation we assume a linear regression
model for each subject separately is given by:

Yi = Ziβi + εi (4.3)

where Zi is a (ni × q) matrix of known individual specific covariates, βi is a
q-dimensional vector of unknown subject specific regression coefficients and
εi is a vector of residual components εij, j = 1, . . . , ni. Without loss of
generality we assume that all εi are independent and normally distributed
with mean vector zero, and covariance matrix σ2Ini

, where Ini
is the ni-

dimensional identity matrix. Note that the model in equation (4.3) above
is describing within subject variability. In the second stage of the two stage
formulation, between-subject variability is now modelled by relating βi to
known population level covariates such that

βi = Kiβ + bi (4.4)

Ki is a (q ∗ p) matrix of known covariates, β is a p-dimensional vector of
unknown regression parameters and the bi are assumed to be independent
following a q-dimensional multivariate normal distribution with mean vector
zero and general covariance matrix G. Next we substitute equation (4.4) into
equation (4.3) which then leads to the general linear mixed model general
linear mixed model (gLMM) given by

Yi = Xiβi + Zibi + εi (4.5)

where Xi = ZiKi is a ni× p matrix of known covariates while the rest of the
terms remain as defined in model (4.3) and (4.4). Thus we finally get the
gLMM model which can be specified as

Yi = Xiβ + Zibi + εi

bi ∼ N(0, G),
εi ∼ N(0,Σi),
i = 1, 2, . . . , N

(4.6)

where β denotes the fixed effects, bi are the subject specific random effects
and the elements in G and Σi are known as variance components. There are
two ways of specifying model (4.4). Under the conditional model we specify
the model for Yi given the random effects bi that is

Yi|bi ∼ N(Xiβ + Zibi,Σi)
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Thus
E(Yi|bi) = Xiβ + Zibi

and
V ar(Yi) = Σi.

In contrast under the marginal model specification

Yi ∼ N(Xiβ, ZiGZ
′
i + Σi).

Thus here

E(Yi) = Xiβ and V ar(Yi) = ZiGZ
′
i + Σi = Vi.

It should immediately be noted that intrinsically the marginal model allows
negative variance components provided Vi is positive semi-definite while in
the conditional model negative variance components do not make sense. As
stated earlier variance components generally refer to elements in G and Σi.

4.4 Estimation under the General Linear Mixed

Effects Model

In this section the estimation problem for fixed effects, variance componets
and random effects in the general linear model is addressed. First we discuss
estimation in the marginal model where the relative merits of two likeli-
hood estimation procedures namely the maximum likelihood (ML) and the
restricted maximum likelihood (REML) will be discussed. Inference on fixed
effects and variance components will be given attention distinguishing be-
tween non-boundary and boundary values in testing hypotheses about vari-
ance components. An outline on how to fit linear mixed models using statis-
tical software with reference to SAS will briefly be outlined. Statistical tests
about hypotheses concerning both fixed and random effects will be also be
discussed. Although the current chapter is based on the normal distribution
assumption on Y some of the ideas carry over to the non-Gaussian case (the
focus in this work) in subsequent chapters. In particular Chapter 7 where
the linera mixed model for non-Gaussian data is described.

4.4.1 Estimation under the Marginal Model

As stated above we consider the estimation for fixed parameters of the
marginal model stated again below. The marginal model implied by equation
(4.6) translates to

Yi ∼ N(Xiβ, ZiGZ
′
i + Σi) (4.7)
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where we assume the fixed parameters are contained in the vector β and
the variance component in G and Σi are contained in the vector α. One
should note that inferences based on the marginal model does not explicitly
assume the presence of random effects representing the natural heterogeneity
between subjects. The interest here is more on the mean model E(Yi) = Xiβ
and inference on the parameters in β. However correct inference about the
covariance parameters is necessary to ensure efficient inference about the
mean model.

Let α denote the vector of all variance and covariance parameters (usually
called variance components which are elements in the matrices G and Σ).
Thus α consists of the q(q + 1)/2 different elements in G and of all parame-
ters in Σ. Let θ = (β′, α′)′ be the the s-dimensional vector of all parameters
in the marginal model for Yi. Suppose Θ = Θβ × Θα denote the parameter
space for θ, with Θβ and Θα the parameter spaces for fixed effects and for
the variance components respectively.

The estiamtes of β and α are obtained from maximising the marginal likeli-
hood function given by

LML(θ) =
∏N

i=1{(2π)ni/2|Vi(α)|− 1
2 exp(−1

2
(Yi −Xiβ)′V −1

i (α)(Yi −Xiβ))}
(4.8)

with respect to θ′ = (β′, α′)′ over Θ.

Maximum Likelihood Estimation

The maximum likelihood estimate of β (MLE) obtained by maximising equa-
tion (4.8) is given by

β̂ = (
N∑

i=1

X ′
iWiXi)

−1
N∑

i=1

X ′
iWiyi (4.9)

where Wi = V −1
i , a result which was first derived by Laird and Ware (1982)

when they first proposed the linear mixed model for longitudinal data. Note
that the expression for β̂ implicitly assumes α is known otherwise we need
to replace α by its ML or REML estimate.

Restricted Maximum Likelihood Estimation (REML)

To develop the REML concept consider the simple case of a sample of N
observations Y1, . . . , YN , from N(µ, σ2). Given µ is known the MLE of σ2 is
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given by

σ̂2
ML =

N∑
i=1

(Yi − µ)2/N (4.10)

In this case σ̂2
ML is an unbiased for σ2. However if µ is unknown, the MLE

of σ2 is now given by

σ̂2
ML =

N∑
i=1

(Yi − Y )2/N (4.11)

and now σ̂2
ML is biased downwards for σ2 because,

E(σ̂2
ML − σ2) = (−N−1)σ2, where N , σ2 > 0.

Thus σ̂2
ML is an underestimate of σ2. However we can note that the bias

shrinks as the sample size increases that is as N → ∞ this bias goes to
zero asymptotically. The biased expectation leads to the conclusion that an
unbiased estimate for σ2 when µ is unknown should be

s2 =
N∑

i=1

(Yi − Y )2/(N − 1) (4.12)

The above discussion shows that having to estimate µ introduces bias in
the maximum likelihood estimation of σ2. Thus one way to circumvent this
problem is to find a way of estimating σ2 without having to estimate µ first.
This idea can be generated as follows. Note that all the data can be combined
into one vector Y such that

Y =


Y1
...
YN

 ∼


µ
...
µ

 , σ2IN

 (4.13)

which means Y ∼ N(µ1N , σ
2IN) where 1N is a N -dimensional vector full

of 1′s and IN the N-dim identity matrix. To avoid the estimation of µ
we transform the vector of observations Y such that µ vanishes from the
likelihood. Define

U =


Y1 − Y2

Y2 − Y3
...

YN−1 − YN

 = A′Y ∼ N(0, σ2A′A) (4.14)

Based on this transformation the MLE of σ2 is exactly as given by s2 thus
unbiased for σ2. The transformation operator A which is independent of s2
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defines a set of N − 1 linearly independent error contrasts and s2 is called
the REML estimate of σ2. The above formulation can be extended to the
case of the linear regression model. To this extension consider a set of N
observations Y1, Y2, . . . , YN from a normal linear regression model such that
Y ∼ N(Xβ, σ2IN) where Y is a N -dim vector of observations given Y =
(Y1, Y2, . . . , YN)′, X is the design matrix for the fixed vector β (vector of
regression parameters) and σ2 the residual variance. Following the above
arguments the MLE of σ2 for the linear regression model is

σ̂2
ML = (Y −Xβ̂)′(Y −Xβ̂)/N (4.15)

while the REML estimate is given by

σ̂2
REML = (Y −Xβ̂)′(Y −Xβ̂)/(N − p) (4.16)

where p is the number of parameters in β including the intercept if any. The
REML estimate can also be obtained by transforming the data orthogonal
to X to yield the vector U given by

U = A′Y ∼ N(0, σ2A′A)

such that the estimate proceeds in terms of U and not Y . Note that X is
an N × (p+ 1) matrix whose ith row is (1, Xi1, . . . , Xip) assuming the model
involves p explanatory or predictor variables.

4.4.2 REML Estimation for longitudinal data model

We now show how the REML estimation works for the longitudinal data
model. Let Yi denote the individual ni-dim vector of repeated observa-
tions from individual i that is Yi = (Yi1, . . . , Yini

)′ where it is assumed that
Yi ∼ N(Xiβ, Vi). The strategy is first to combine the N individual specific
information into one augmented vector Y such that Y ∼ N(Xβ, V ) where

Y =


Y1
...
YN

 , X =


X1
...
XN

 , V (α) =


V11 0 . . . 0
0 V22 . . . 0
...

...
...

...
0 0 . . . VNN

 . (4.17)

Next the data are transformed orthogonal to X to U = A′Y ∼ N(, σ2A′A)
where U is a vector of error contrasts defined earlier. The MLE of α, based
on U is called the REML estimate and is denoted by α̂REML. The resulting
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estimate for β will be denoted by β̂REML. Alternatively α̂REML and β̂REML

can also be obtained from maximizing

LREML(θ) = |
N∑

i=1

X ′
iWi(α)Xi|−

1
2LML(θ) (4.18)

or equivalently the log-likelihood

`REML(θ) = −1
2
ln|∑N

i=1X
′
iWi(α)Xi|+ `ML(θ)

w.r.t. θ (i.e α and β simultaneously). Note that the expression above for
LREML(θ) is LML(θ) but subjected to a penalty. Importantly note that
LREMl(α, β̂(α)) is the likelihood of the error contrasts, U, often called the
REML likelihood function. Thus LREML(θ) is not a likelihood of the original
data Y , but it is rather based on u. This has an implication when comparing
the likelihood of two nested marginal models, because it means under REML
they are not comparable as we will see later.

Fitting Linear Mixed Models Using a Statistical Software

A number of statistical software now have capability to fit linear mixed mod-
els with ease. These include SAS, GenStat, S-Plus and SPSS among others.
In this thesis most of the analysis is carried out in SAS. Thus in this sec-
tion we will discuss how one would fit the linear mixed models using SAS.
For estimation of fixed effects and variance components one uses SAS Proc
MIXED statement to primarily specify the data set and method of estima-
tion. PROC MIXED has three options for the method of estimation. They
are: ML (Maximum Likelihood), REML (Restricted or Residual maximum
likelihood, which is the default method) and MIVQUE0 (Minimum Variance
Quadratic Unbiased Estimation). ML and REML are based on a maximum
likelihood estimation approach as discussed in subsection 4.4.1. The CLASS
statement is used to declare categorical variables or factor variables in the
data. The MODEL statement is used to specify the regression models or to
state any other model relating the response to the fixed effects variables. This
statement also has an option of whether to call or not to call for solutions and
whether to fit a model with an intercept or not. To define the random effects
(the intercepts and slopes) and their distributions one uses the RANDOM
statement. This statement also has options used to specify which variable
identifies the subjects, assuming independence across subjects and the form
of the matrix G (random effects matrix). The option ‘g’ and ‘gcorr’ in the
random statement are used when one wants to print the matrix G and the
corresponding correlation matrix, option ‘v’ and ‘vcorr is used to print the
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matrix Vi and the corresponding correlation matrix. The REPEATED state-
ment is used to first identify the factor variable used for ordering the repeated
measurements within a subject e.g. ‘time’, ‘age’, ‘birth order’ in a family and
so on. There is also an option within the REPEATED statement to spec-
ify which variable identifies the individual or subject, the type of residual
covariance matrix Σi, option r and rcorr to print Σi and the correspond-
ing correlation matrix. Most frequently used covariance structures available
to the RANDOM and REPEATED statement are the unstructured (UN),
simple independence (SIMPLE), compound symmetry (CS), first-order au-
toregressive (AR(1)), an so on. A more exhaustive list of possible covariance
structures can be found in the books by Verbeke and Molenberghs (2000),
Diggle et al.(2002), Molenberghs and Verbeke (2005) among others.

The following is a general form of PROC MIXED statement:
PROC MIXED options;
CLASS variable-list;
MODEL dependent=fixed effects/ options;
REPEATED repeated effects / options;
RANDOM random effects / options;
RUN;

The CONTRAST, ESTIMATE, LSMEANS and RANDOM statements can
appear multiple times, all other statements can appear only once. The con-
trast statement is used if one is interested in testing the significance of a
treatment, while the estimate statement is for a linear combination of effects.
The random statement contains the list of random effects. The LSMEANS
statement is used to request for least square means.

The MODEL statement must appear after the CLASS statement if CLASS
statement is used.

4.4.3 Inference for the Marginal Model

In this section we briefly discuss inference for the estimated parameters in
the marginal model both for the mean model (fixed effects) and the vari-
ance components. In particular the Wald tets, the t-test, the F-test, Robust
inference and the LR test for fixed effects will be discussed. For variance com-
ponents the methods that will be given attention are the Wald test and the
LR test. The information criteria (IC) for making inference on non-nested
models will also be discussed. Recall that the estimate for β is given by
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β̂(α) = (
∑N

i=1X
′
iWiXi)

−1∑N
i=1X

′
iWiYi

with α replaced by its ML or REML estimate and Yi is the subject-specific
vector of observations. It follows that conditional on α, β̂(α) is multivariate
normal with mean β and covariance

var(β̂) = (
N∑

i=1

X ′
iWiXi)

−1(
N∑

i=1

X ′
iWivar(Yi)WiXi)(

N∑
i=1

X ′
iWiXi)

−1 (4.19)

Using the standard result that if G is a matrix of constants and Y is a random
vector valued random variable

var(GY ) = GV ar(Y )G′

where G′ is the transpose of the matrix G of compatible dimension to the
vector Y .

We note that given var(Yi) = Vi = W−1
i holds then the expression for var(β̂)

reduces to

var(β̂) = (
N∑

i=1

X ′
iWiXi)

−1 (4.20)

which is what gives rise to model based standard errors in contrast to em-
pirical or robust standandard errors which will be discussed in section 4.4.5.

4.4.4 Approximate wald, t- and F-Tests

The Wald statistic is an alternative test which is commonly used to test the
significance of individual regression coefficients for each independent variable
(that is, to test the null hypothesis in a regression model that a particular
coefficient is zero). Consider any known matrix of constants L and associated
hypothesis H0 : Lβ = 0 versus Ha : Lβ 6= 0. Then the Wald test statistic for
testing such a hypothesis is given by

Ws = β̂L′[L(
N∑

i=1

X ′
iV

−1
i Xi)

−1L′]−1Lβ̂ (4.21)

which is asymptotically distributed as χ2 with d.f. equal to rank(L) under
H0. Note that the Wald test is based on

var(β̂) = (
∑N

i=1X
′
iWiXi)

−1.
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However it should be noted that the variability introduced by replacing α
by some estimate (ML or REML) is not taken into account in Wald tests.
Robust and empirical standard errors are obtained by finding var(β̂) based
on expression (4.19) with var(Yi) replaced by the estimate from the data.
This therefore implies that the Wald test will only provide valid inferences
in sufficiently large samples. In practice this is often resolved by replacing
the χ2 distribution by an approximate F-distribution in a similar manner the
standardized normal statistic z is replaced by the central t statistic when the
variance is unknown and instead estimated by the sample variance s2 with
n− 1 degrees of freedom. Thus in the above to test H0 versus Ha the F-test
statistic is given by

Fs =
β̂L′[L(

∑N
i=1X

′
iV

−1
i Xi)

−1L′]−1Lβ̂

rank(L)
(4.22)

where approximate null-distribution of FS is the F distribution with numer-
ator degrees of freedom equal to rank (L) but the denominator degrees of
freedom are to be estimated. There are several methods to calculate the
denominator d.f. but the most frequently used ones are: the containment,
Satterthwaite and the Kenward- Roger methods of approximation. In the
context of longitudinal data nearly all methods lead to a large number of
denominator degrees of freedom therefore leading to very similar p-values.
For a univariate hypothesis rank(L)=1 and the F-test reduces to a t-test.

4.4.5 Robust Inference

Since

β̂(α) = (
∑N

i=1X
′
iWiXi)

−1∑N
i=1X

′
iWiYi

with α replaced by its ML or REML estimate, it implies that E[β̂(α)] = β
provided E(Yi) = Xiβ. In other words in order for β̂ to be unbiased it is
sufficient that the mean of the response is correctly specified regardless of
the assumed structure of Vi. Further still conditional on α, β̂ has covariance
matrix given by

var(β̂) = (
N∑

i=1

X ′
iWiXi)

−1 = CN (4.23)

provided var(Yi) is correctly modelled as Vi = ZiGZ
′
i + Σi. The covariance

estimate CN is called the naive estimate. The so-called robust or sand-
wich estimate for var(β̂) which we denote as CR does not require a cor-
rect specification of var(Yi) rather it is obtained by replacing var(Yi) by
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(Yi −Xiβ̂)(Yi −Xiβ̂)′ = Ṽi 6= Vi in (4.19). It follows that

var(β̂) = (
N∑

i=1

X ′
iWiXi)

−1
N∑

i=1

X ′
iWiṼiWiXi(

N∑
i=1

X ′
iWiXi)

−1 = CR

The robust variance estimate of Var(β̂) is also called the sandwich estimator.
Based on the sandwich estimate of Var(β̂), robust versions of the Wald, t-
and F- tests can be derived.

Note that the above analysis suggests that as long as interest is only on
inference of the mean structure, little effort may be spent in modelling the
actual covariance structure of Y, provided the data is sufficiently large. How-
ever this is not to say an appropriate covariance modelling is not of interest.
An appropriate covariance structure may still be of interest for gaining effi-
ciency in parameter estimation. In addition, in the presence of missing data,
robust inference is only valid under very restrictive assumptions about the
underlying missingnes process such as data be missing completely at random
(MCAR).

4.4.6 The Likelihood Ratio Test

The likelihood ratio (LR) test is the most appropriate test to compare nested
models with different mean structures, but with equal covariance structure.
The general null hypothesis in this case is

H0 : β ∈ Θβ,0;Vi = Voi versus Ha : β ∈ Θβ;Vi = Voi (4.24)

The second part of the statement of each hypothesis is to emphasize that the
covariance structure of the data is the same in both cases. As before we let
LML denote the ML function and let the ML estimate under H0 and Ha of
θ be θ̂ML,0 and θ̂ML respectively. Then the likelihood ratio test statistic is
given by

Tβ,LR = −2lnλN = −2ln[
LML(θ̂ML,0)

LML(θ̂ML)
] (4.25)

where

λN =
LML(θ̂ML,0)

LML(θ̂ML)
(4.26)

is the ratio of the likelihoods under H0 and Ha. Values of λN close to 1
indicate that H0 is true while values near 0 are in support of the alternative
hypothesis rather than H0. Thus when H0 is not true Tβ,LR will be large and
postive indicating evidence against H0.
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Note that the LR tests are not valid under REML because here the re-
sponse vector Y is first transformed into error contrasts U = A′Y, for some
matrix of constants A such that A′X = 0. Then ML estimation is done on
U as the data. Thus the likelihood value LREML(θ̂) which is the likelihood
at the maximum based on the error contrasts U which are different for dif-
ferent mean models under the null and alternative hypothesis. Thus because
two models with different mean structures lead to different REML error con-
trasts it follows that the subsequent likelihoods are not comparable leading
to a breakdown of the apllicabilty of the LR test. Thus the LR test is valid
only under ML estimation because both the numerator and denominator are
based on the same data Y .

4.5 Inference for the variance Components

Most often it is the inference for the mean structure that is usually of pri-
mary interest. However, inferences for the covariance structure could be of
interest as well for obvious reasons among them the interpretation of the
random variation in the data. A test for a variance component also helps in
establishing whether we really do need the inclusion of the random effects
or not. It is also important to note that an over-parameterized covariance
structure (e.g. the UN structure) may lead to inefficient inferences for the
mean model (due to overspending of degrees of freedom in estimating the
variance-covariance components). On the other hand a too restrictive co-
variance model will invalidate inferences for the mean structure. The best
covariance model is therefore a balance between a fully unstructured model
and the independence assumption.

4.5.1 Approximate Wald Test

Asymptotically, ML and REML estimates of α are normally distributed with
correct mean and inverse Fisher information matrix as covariance. Therefore
approximate s.e.’s and Wald tests can easily be obtained. However there
is need for caution in the context of the hierarchical model in relation to
the marginal model interpretation. A null hypothesis of a zero variance
component is meaningful only under the marginal model that is when no
underlying random effects structure is believed to describe the data. The
quality of the normal approximation for α̂ML and α̂REML estimates strongly
depends on the true value of α. The approximation is poor once α is relatively
close to the boundary of the parameter space. If α is a boundary value, the
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normality approximation fails completely. Under the hierarchical normal
interpretation a null hypothesis of a zero variance component implies the
p-value is based on an incorrect null distribution for the Wald test statistic.
The test is only correct, when the null hypothesis is not a boundary value.
However even under the hierarchical model interpretation a Wald test is valid
for testing a zero covariance parameter such as g12 = 0 versus g12 > 0 testing
dependence between two random effects since a zero covariance is admissible
between any two random variables.

4.5.2 The Likelihood Ratio Test

The LR test is here meant to compare two models with the same mean
structure but different variance and covariance parameter structures. The
null hypothesis of interest is similar to that of the mean structure, namely

H0 : α = Θα,0 versus Ha : α ∈ Θα (4.27)

where Θα,0 ⊂ Θα. Let α̂ML,0 and α̂ML,0 be the MLEs under H0 and Ha.
Then the LR test statistic is given by

Tα = −2lnλN = −2ln

[
LML(α̂ML,0)

LML(α̂ML)

]
(4.28)

The asymptotic null distribution of Tα is χ2 with d.f. equal to the difference
in dimension of Θα and Θα,0. Not that now as long as the comparison is
under the same mean structure, a valid LR test can still be obtained under
REML since the error contrasts U are the same in both cases, namely under
H0 and Ha.

4.6 Inference for the Random Effects

In this section the problem of making inference on the random effects bi
is addressed briefly. In particular the idea of empirical Bayes (EB) and
best linear unbiased predictors will be given attention (BLUP). The concept
of shrinkage estimators will be derived and the normality assumption for
random effects discussed. The random intercepts and slopes model will be
used as a special case.

4.6.1 Empirical Bayes (EB) Inference

Consider the linear mixed model
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Yi = Xiβ + Zibi + εi

where bi ∼ N(0, G), εi ∼ N(0,Σi) and that bi and εi are independent stated
in equation (4.5). The random effects bi reflect how the evolution for the ith
subject deviates from the expected evolution Xiβ. Estimation of the random
effects bi is helpful for detecting outlying profiles from the expected profile.
Thus inference on random effects is only meaningful under the hierarchical
model assumptions where

Yi|bi ∼ N(Xiβ + Zibi,Σi) and bi ∼ N(0, G)

implying that
E(Yi|bi) = Xiβ + Zibi.

Since the bi here behave like random ‘parameters’ it is most natural to con-
sider Bayesian approaches where the prior distribution of the random param-
eters (here random effects) is bi ∼ N(0, G). Thus using the Bayes rule we
can express the posterior distribution of the bi given the data Yi = yi as

f(bi|yi) =
f(yi|bi)f(bi)∫
f(yi|bi)f(bi)dbi

(4.29)

Since we know the marginal distribution of bi and the conditional distribu-
tion Yi|bi we can after some algebraic manipulation show that the posterior
distribution of bi is given by

bi|yi ∼ N(GZ ′
iWi(yi −Xiβ),Λi) (4.30)

for some positive definite matrix Λi. Thus we can use the posterior mean of
bi as an estimate of bi that is

b̂i(θ) = E(bi|Yi = yi) =
∫
fi(bi|yi)dbi = GZ ′

iWi(α)(yi −Xiβ̂ (4.31)

and the variance of this estimate is given by

var(b̂i(θ)) = GZ ′
iWi −WiXi(

∑
X ′

iWiXi)
−1X ′

iWiZiG (4.32)

However inference on bi aught to take into account the variability in bi there-
fore inference for bi is usually based on

var(b̂i(θ)− bi) = G− var(b̂i(θ)) (4.33)

Thus for inference purposes once the corrected variance in equation (4.33)
is found Wald tests can be constructed to test hypotheses about bi(θ). Pa-
rameters in θ are replaced by their ML or REML estimates, obtained after
fitting the marginal model. The estimate b̂i = b̂i(θ) is called the empirical
Bayes estimate of bi. Approximate t and F tests to account for the variability
introduced by replacing θ by θ̂ can be constructed similar to tests for fixed
effects.
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4.6.2 Best Linear Unbiased Prediction (BLUP)

Often, parameters of interest are linear combinations of fixed effects in β and
random effects in bi. For example a subject specific slope is the sum of the
average slope for subjects with same covariate values, and the subject-specific
random slope for that subject. In general such a linear combination will be
of the form

γ = `′ββ + `′bbi (4.34)

is the quantity of interest. Then conditionally on α,

γ̂ = ˆ̀′
ββ̂ + ˆ̀′

bb̂i (4.35)

is the best linear unbiased predictor of γ. Note that γ̂ is linear in the obser-
vations Yi, unbiased and minimizes the variance among all unbiased linear
estimators. In SAS estimates of random effects are obtained by adding the
‘solution’ option to the RANDOM statement. However in practice one is also
interested in properties of these estimates and as a starting point histograms
and scatter plots of certain components of b̂i can be used to visually detect
subjects with exceptional or extreme evolutions over time. Note that the
predicted evolution of the ith subject is given by

Ŷi = Xiβ̂ + Zib̂i

= Xiβ̂ + ZiGZ
′
iV

−1
i (yi −Xiβ̂)

= (Ini
− ZiGZ

′
iV

−1
i )Xiβ̂ + ZiGZ

′
iV

−1
i yi

= ΣiV
−1
i Xiβ̂ + (Ini

− ΣiV
−1
i )yi

(4.36)

which is a weighetd average of the population-averaged profile Xiβ̂ and the
observed individual data yi, with weights Σ̂iV

−1
i and Ini

−Σ̂iV
−1
i respectively.

Note that Xiβ̂ gets more weight if the residual variability is large compared
to the total variability given by Vi = ZiGZ

′
i +Σi. This phenomenon is the so

called shrinkage effect meaning that the observed data are shrunk towards
the prior average profile Xiβ depending on the degree of how much within
individual variability there is. This is also reflected in the fact that for any
linear combination `′bi of random effects

var(`′b̂i) ≤ var(`′bi) (4.37)

33



We now consider a simple example to demonstrate some of the concepts
raised above for purposes of clarity. Consider the random intercepts model
given by

yij = β0 + b0i + β1tij + εij (4.38)

where yij is the jth observation from the ith individual in the study for
i = 1, . . . , N and j = 1, . . . , ni, β0 is the average intercept, b0i is the sub-
ject specific intercept which is a random effect assumed to be distributed as
N(0, g2

0), β1 is the common average slope for all individuals which assumed
not to be affected by individual to individual variability, tij is the actual
measurement occasion time and εij is the measurement error or residual.
Following the above model derivations it follows that the EB estimate for
the random intercept b0i is given by

b̂0i = GZ ′
iWi(α)(yi −Xiβ)

= g2
01

′
ni

(σ21ni
1′ni

+ σ2Ini
)−1(yi −Xiβ)

=
g2
0

σ2 1
′
ni

(Ini
− g2

0

σ2+nig2
0
1ni

1′ni
)(yi −Xiβ)

=
nig

2
0

σ2+nig2
0

1
ni

∑ni
j=1(yij −X

[j]
i β)

(4.39)

Then we note that b̂0i is a weighted average of 0 (the prior mean) and the
average residual for individual i. Thus the larger ni is the less the shrinkage
effect. Likewise the smaller σ2 relative to g2

0 the lesser the shrinkage.

4.6.3 Modelling fitting and choice

A more inclusive model for longitudinal data from a continuous response
assumed to be from a Gaussian distribution is given by

Yi = Xiβ + Zibi + εi(1) + εi(2) (4.40)

where now the residual term is split into two components εi(1) and εi(2) to
account for measurement error such that εi(1) ∼ N(0, σ2Ini

) and serial corre-
lation for example AR(1) such that εi(2) ∼ N(0, τ 2Hi). Thus the probability
marginal model of the general linear mixed model for Yi can be written as

Yi ∼ N(Xiβ, ZiGZ
′
i + σ2Ini

+ τ 2Hi) (4.41)

while conditionally

Yi ∼ N(Xiβ, ZiGZ
′
i + σ2Ini

+ τ 2Hi). (4.42)
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The structure of the matrix Hi can take several forms depending on the
serial correlation structure envisaged in the data. A detailed account about
the selection of an appropriate structure for Hi can be found in Diggle et al.
(2002) with examples.
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Chapter 5

Generalized Linear Models for
Cross sectional data

5.1 Introduction

The gaussian regression model discussed in section (4.2) assumed that the
error terms where normally distributed of which this is not always the case.
Generalized linear models (GLMs) were formulated as a way of unifying
various other statistical models, including linear regression (gaussian regres-
sion model), logistic regression and Poisson regression, under one framework
(Nelder and Wedderburn, 1972). A more intensive treatment of GLMs is
given by McCullagh and Nelder (1989). This allowed them to develop a
general algorithm for maximum likelihood estimation in all these models. It
extends naturally to encompass many other models as well. To make use of
the algorithm they had to assume that all of the models have distributions in
the exponential family. Specifically the algorithm for fitting GLMs used in
most statistical packages such as SAS and Genstat is the iterative weighted
least squares (IWLS). Applications of GLMs and their extension include the
work by Diggle et al. (2002) and Molenberghs and Verbeke (2005) in the
context of longitudinal data analysis.

5.2 The Exponential Family

Consider n independent observations each from a distribution in the expo-
nential family with probability density function

f(yi) = exp
{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
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for some specific functions a(.), b(.) and c(.,.). The parameters θi and φ are
essentially location and scale parameters, respectively. It will be shown in the
text that follows that if Yi has a distribution in the exponential family then
it has mean and variance E(Yi) = µi = b′(θi)and var(Yi) = σ2

i = b′′(θi)a(φ),
where b′(θi) and b′′(θi) are the first and second derivatives of b(θi). Since the
mean depends only on θi, in a standard GLM the term c(yi, φ) can be left
unspecified without affecting the likelihood-based estimation of regression
parameters. The exponential family just defined includes as special cases the
normal, binomial, Poisson, exponential, gamma and inverse Gaussian dis-
tributions. From this common class of distributions McCullagh and Nelder
(1989) were able to generalize the Gaussian Linear model to the generalized
linear model (GLM). The reason for this is that the family includes several
important distributions, and also has ‘good’ properties which are discussed
below. Without loss of generality let a(φ) = φ where φ is known as the
dispersion parameter.

Using the property that
∫
f(y|θ, φ)dy = 1 the mean and variance can easily

be derived by taking the first and second-order derivatives of the integral
with respect to θ. Thus one can easily find the mean and variance to be

E(Y ) = µij = b
′
(θ)

V ar(Y ) = b
′′
(θ)φ

where b
′
(θ) and b

′′
(θ) are the first and second order derivatives of b(θ) with

respect to θ. Thus under the exponential family of distributions the mean and
variance are both determined by the function b(.).The reason for restricting
GLMs to the exponential family of distributions for Y is that the algorithm
applies to the entire family, for any choice of link function. For example
suppose that Y ∼ Bin(n, p) then

f(y|p) =

(
n
y

)
py(1− p)n−y = exp

{
y ln

(
p

1− p

)
+ n ln(1− p) + ln

(
n
y

)}

In this case
θ = ln

p

1− p

which means

p =
eθ

1 + eθ

thus the link function is

ln
(

p

1− p

)
= logit(p) and b(θ) = n(1 + eθ).
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Therefore

b′(θ) =
neθ

(1 + eθ)

and

b
′′
(θ) =

neθ

(1 + eθ)2
= np(1− p)

thus in this case φ = 1 and c(y, φ) = ln

(
n
y

)
.

5.3 The Generalized Linear model

The generalized linear model (GLM) is a flexible generalization of ordinary
least squares regression. It relates the random distribution of the measured
variable of the experiment (the distribution function) to the systematic (non-
random) portion of the experiment (the linear predictor) through a function
called the link function.

Suppose we have Y1, Y2, . . . , YN independent response observations with mean
µ1, µ2, . . . , µN , respectively. Further suppose the observation Yi has a distri-
bution that is a member of the exponential family. The basic idea of a GLM
is to develop a linear model for the appropriate function of the expected
value of the response variable. In order to specify the GLM let ηi denote the
linear predictor relating E(Yi) to the predictor variable or covariates. Then
the relationship can be written as

ηi = g(E(Yi)) = g(µi)

where we allow the linear predictor to be a monotone function of the mean.
The function g is called the link function. The term ‘link’ is derived from the
fact that the function is the link between the mean and the linear predictor.
We assume that the link function is a monotonic differentiable function. In
the sense that

ηi = β0 + β1xi1 + β2xi2 + . . .+ βpxip

where the xik’s are the values of the p predictor variables. The parameter
β = (β0, β1, . . . , βp) is the vector of the unknown regression parameters. The
goal is to estimate these unknown parameters, including making inferences
about them. Note that βj measures the change in Y (on the link function
scale) for every unit increase in Xj given all other predictor variables are held
constant. If ηi = θi, the canonical parameter, we have the canonical link.
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The three fundamental components of a GLM are (i)the response distri-
bution, (ii)the link function and (iii) a set of parameters β and covariates X.
We can view the selection of the link function as being similar to the choice
of a transformation on the response. However it is the population mean, not
the data that is transformed hence the significance of the pioneering work
by Nelder and Wedderburn (1972). The link function takes advantage of the
natural distribution of the response. If g(µi) = θi(µi) then we have what
is known as a canonical link function. The canonical link function simpli-
fies computations with GLMs greatly which otherwise can be complex. For
example in the case of the Binomial GLM the canonical link function is

g(µi) = ln
(

p

1− p

)
= ln

(
µi

ni − µi

)
.

Thus in this case θi = ln( p
1−p

) and in general the Binomial GLM is

ln
(

p

1− p

)
= β0 + β1x1 + . . .+ βpxp.

5.4 Estimation - Maximum Likelihood

The log-likelihood function of N independent observations from a distribu-
tion under the exponential family is

` =
N∑

i=1
lnf(yi, θi, φi)

=
N∑

i=1
{yiθi−b(θi)

a(φ)
+ c(yi, φ)}

(5.1)

where θi = θi(µi) a function of the model mean and µi = µi(β).

Our main aim is to estimate β, and the first step as is in any maximum
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likelihood estimation is to differentiate ` with respect to β so

∂`
∂β

= 1
a(φ)

N∑
i=1

[yi
∂θi

∂β
− ∂b(θi)

∂β
]

= 1
a(φ)

N∑
i=1

[yi
∂θi

∂β
− b′(θi)

∂b(θi)
∂β

]

= 1
a(φ)

N∑
i=1

∂θi

∂β
(yi − µi)

= 1
a(φ)

N∑
i=1

∂θi

∂µi

∂µi

∂β
(yi − µi)

= 1
a(φ)

N∑
i=1

∂θi

∂µi

∂µi

∂g(µi)
∂g(µi)

∂β
(yi − µi)

= 1
a(φ)

N∑
i=1

∂θi

∂µi
[g′(µi)]

−1 ∂g(µi)
∂β

(yi − µi)

(5.2)

But we know that

∂µi

∂θi
= V ar(yi)

a(φ)
= v(µi)

which implies that

∂θi

∂µi
= [v(µi)]

−1
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where v(µi) is called the variance function. Let wi = [v(µi)[g
′(µi)]

2]−1. From
this we deduce that:

∂`
∂β

= 1
a(φ)

N∑
i=1

wig
′(µi)

∂g(µi)
∂β

(yi − µi)

= 1
a(φ)

N∑
i=1

∂g(µi)
∂β

wig
′(µi)(yi − µi)

= 1
a(φ)

N∑
i=1

Xiwig
′(µi)(yi − µi)

(since ∂g(µi)
∂β

=
∂X′

iβ

∂β
= Xi)

= 1
a(φ)

[X1w1g
′(µ1)(y1 − µ1) + . . . , XNwNg

′(µN)(yN − µN)]

⇒ ∂l
∂β

= 1
a(φ)


1 1 . . . 1
X11 X21 . . . XN1
...

...
...

...
X1p X2p . . . XNp




w1g
′(µ1)(y1 − µ1)

w1g
′(µ2)(y2 − µ2)

...
wNg

′(µN)(yN − µN)]


= 1

a(φ)
X ′W 4 (y − µ)

(5.3)

where,
W= diag (wi)
4= diag(g′(µi))
y = [y1, . . . , yN ]′

µ = [µ1, . . . , µN ]′

Therefore the ML estimating equations are given by equating the score equa-
tion U = ∂`

∂β
to zero that is

U =
∂`

∂β
=

1

a(φ)
X ′W 4 (y − µ) = 0 (5.4)

and by further rearrangement of the terms the following identity is obtained
namely

X ′W 4 y = X ′W 4 µ (5.5)

where W,4 and µ are functions of β. Typically this is a non-linear equation
which needs to be solved numerically. To estimate β̂ the score statistic need
to be solved using iterative methods such as the Newton Raphson’s method,
Fisher scoring method or Iterative Reweighted least squares (IRWLS). These
methods are briefly discussed in the next section.
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5.4.1 Numerical techniques

Before we discuss the numerical techniques we first define the information
matrix. The likelihood function for a GLM also determines the asymptotic
covariance matrix of the ML estimator β̂. This matrix is the inverse of the
information matrix J . The information matrix J is given by

J = −E
(
∂2`

∂β2

)
(5.6)

From equation (5.4) we know that

∂`
∂β

= 1
a(φ)

X ′W 4 (y − µ)

and by differentiating the above equation with respect to β once more yields

∂2`

∂β2
= − 1

a(φ)
X ′WX +

1

a(φ)

∂(W4)

∂β
(y − µ) (5.7)

Substituting equation (5.7) into equation (5.6) we have

J = −E( ∂2`
∂β2 )

= 1
a(φ)

X ′WX − 1
a(φ)

∂(W4)
∂β

E(y − µ)

= 1
a(φ)

X ′WX

(5.8)

Thus we have

J =
1

a(φ)
X ′WX

since var(β̂) = J−1 it implies that

Var(β̂) = J−1 = a(φ)(X ′WX)−1.

Three most commonly used methods to estimate β are briefly presented
below.

Newton Raphson method

In general the Newton-Raphson method of finding the root of the equation
f(x) = 0 is given by

xt+1 = xt − [f ′(xt)]−1f(xt) (5.9)

where, xt is the current known x-value, f(xt) represents the value of the
function at xt, and f ′(xt) is the derivative (slope) at xt. xt+1 represents the
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updated value of x and the process proceeds in this manner until convergence.
Now in our case the objective function of interest is the score statistic U(β)
thus on the (t+1)th iteration, the algorithm updates the parameter vector β
by

β(t+1) = β(t) − [H(t)]−1U (t) (5.10)

where β(t+1) is the updated solution given β(t). H is the hessian matrix and
is given by,

H = ∂2`
∂β2

The iteration will be stopped when the parameter estimate does not change
significantly anymore, that is when |β(t+1) − β(t)| < ε where ε is called the
tolerance or convergence limit. We denote the final parameter estimate by
β̂. Thus the Newton-Raphson method is a purely mathematical procedure
using the required score statistic as the objective function.

Fisher scoring method

The method of Fisher scoring is a variant of the Newton-Raphson that re-
places the Hessian by its expectation with respect to the observations Yi:

β(t+1) = β(t) − [E(H(t))]−1U (t)

= β(t) + J (t)U (t)

(5.11)

Since E(H) = −J where J is the Fisher information matrix.

Iterative Reweighted least squares (IRWLS)

According to [1] the method of iteratively re-weighted least squares (IRLS) is
a numerical algorithm for minimizing any specified objective function using
a standard weighted least squares method such as Gaussian elimination.

Suppose we set
Z = Xβ + ε (5.12)

where ε = 4(y−µ) is the vector of residuals or error terms. It can be shown
that

E(ε) = 0, Var(ε) = 4a(φ)v(µ)4,
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where v(µ)=diag(v(µi)) and4 = g′(µi) as earlier defined. Therefore Var(ε)=a(φ)W−1

and if we apply the general least squares method to equation (5.12) we get:

β̂ = (X ′WX)−1X ′WZ

= (X ′WX)−1X ′W (Xβ +4(y − µ))

= β + (X ′WX)−1X ′W 4 (y − µ))

(5.13)

The second step in equation (5.13) is obtained by substituting equation
(5.12). Thus the IRWLS is given by

β(t+1) = β(t) + (X ′W (t)X)−1X ′W (t) 4 (y − µ(t)) (5.14)

With these new weights W , the weighted least squares equation is re-solved
and the residuals are re-calculated. The process is then iterated many times
until convergence is achieved.

5.5 Inference

Our primary interest is to test the following general hypothesis about the
vector of parameters β:

H0 : Lβ = 0 vs Ha : Lβ 6= 0

Since β̂ is the MLE of β it follows that L̂β is the MLE of Lβ. Furthermore,

L̂β ∼ N(Lβ, L Var(β̂) L′)

where L is a matrix of known constants of dimension say r × p. Three
commonly used statistics for inference are the Wald test, score test and the
likelihood ratio test.

5.5.1 Wald Test

The Wald statistic is a test statistic which is commonly used to test the
significance about the regression coefficients for each independent variable
or a linear combination involving a subject of them. To test the general
hypothesis

H0 : Lβ = 0 versus Ha : Lβ 6= 0
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the Wald test statistic for testing such a hypothesis is given by

Ws = (Lβ̂ − Lβ)′[LV ar(β̂L′]−1(Lβ̂ − Lβ) (5.15)

which underH0 is asymptotically distributed as χ2 with d.f. equal to rank(L).
Note that the Wald test is based on

Var(β̂) = (
N∑

i=1

X ′
iWiXi)

−1

where Wi=diag(wi), wi = [v(µi)[g
′(µi)]

2]−1 and X
′
i = (1, Xi1, Xi2, . . . , Xip).

Thus to test the hypothesis that

H0 : βj = 0versusHa : betaj 6= 0

we let L take the form of a row vector with all components equal to zero
except the (j + 1) position which takes value 1 assuming β = (1, β1, . . . , β2).

5.5.2 Likelihood Ratio Test

The likelihood ratio test is a widely used procedure for testing hypotheses
involving nested models. It rejects the null hypothesis when the maximum
likelihood under the null hypothesis is significantly smaller than the max-
imum likelihood under the alternative hypothesis. In some situations, its
p-value can be calculated exactly, but, in general, the p-value must be ap-
proximated, usually by using a chi-square approximation.

Suppose that we are interested in comparing two nested models, a full model
(which will be denoted as L1) and a reduced model (which will be denoted
as L0). Suppose that one model (the reduced model) is a special case of
the other (the full model). That is, the reduced model is simpler than the
full model, so that when the reduced model holds the full model must nec-
essarily hold. The reduced model is then said to be nested within the full
model. We can compare the two nested models by comparing their maxi-
mized log-likelihoods, say `0 and `1. The former is at least as large as the
latter i.e `0 ≤ `1. The larger the difference between L0 and L1 the stronger
the evidence that the reduced model is inadequate or inappropriate.

In general L1 ≥ L0 since L0 results from maximising over the restricted
set of values thus we have

∧
= L0

L1
≤ 1. As the sample size increases -2ln

∧
becomes approximately χ2 with degrees of freedom equal to the difference
in the parameters under H0 and H0 ∪ H1. Formally, this test is called the
likelihood ratio test.
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The Score statistic

The score U of a likelihood function is the first derivative of ` with respect
to the model parameters, given by

U =
1

a(φ)
X ′W 4 (Y − µ).

The expected value and variance of U can be calculated as follows:

E[U ] = 1
a(φ)

X ′W 4 E(Y − µ) = 0

V ar(U) = [ 1
a(φ)

]2X ′W4 Var(Y − µ)4WX

= [ 1
a(φ)

]2X ′W4 Var(Y )4WX

= [ 1
a(φ)

]2X ′W 4 (a(φ)W−1)4WX

= 1
a(φ)

X ′WX

= J

(5.16)

where J is the information matrix. Since U ∼N(0, J) it follows that U ′J−1U ∼
χ2

rank(J).

The main interest is to test the hypothesis:

H0 : β = β0 vs H1 : β 6= β0

thus under H0 we have

U ′(β0)[J(β0)]
−1U(β0) ∼ χ2

rank(J).

Thus if T > χ
2(α)
rank(J), where α is a chosen significance level then H0isrejected.

When the interest is

H0 : βj = β0j vs H1 : βj 6= β0j

under H0 we have

U ′
j(β0j)[Jjj]

−1Uj(β0j) ∼ χ2
rank(1),

46



that is
[Uj(β0j)]

2

Jjj

∼ χ2
rank(1),

where Uj(β0j) is the jth element of U and Jjj is the jth diagonal element of
the information matrix (J). Thus this implies that

Uj(β0j)√
Jjj

∼ N(0, 1).

However it can easily be shown that as N −→ ∞ the Wald test, likelihood
ratio test and the score test, have certain asymptotic equivalences. For small
to moderate sample sizes, the likelihood ratio test is usually more reliable
than the Wald test.

5.6 Adequacy of the GLM Model

In this section we are going to discuss how one can check the adequacy of a
model. Usually one wants to know how well a particular GLM describes a set
of data. To answer this question let `(µ, y) denote the log likelihood function
expressed in terms of the mean µ = [µ1, µ2, . . . , µN ] and `(µ̂, y) denote the
maximized log-likelihood for the model g(µ) = Xβ. For all possible models,
the maximum achievable log-likelihood is `(y, y). This occurs when we fit a
separate parameter for each observation and the perfect fit is µ̂ = y. Such a
model is called the saturated model. This model is not useful, since it does
not provide any parameter reduction. However, it serves as a baseline for
comparison with other model fits.

5.6.1 The deviance

The deviance function is very useful for comparing two models when one
model has parameters that are a subset of the second model. The deviance
denoted by D∗ is the log-likelihood statistic for testing new models against
the saturated model and it is expressed as

D∗ = 2(`(y, y)− `(µ̂, y))

This has an asymptotic χ2 distribution with degrees of freedom N−k, where
k is number of parameters in the reduced model. We use the deviance for
model checking and for inferential comparison of models. To show how the
deviance is used to compare two nested models let us suppose that D0 is the
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deviance resulting from fitting a GLM and D1 is the deviance from fitting a
submodel. Then the asymptotic distribution of (D1 − D0) is χ2

r where r is
the difference in the number of parameters between the two models. Note
that when µ is replaced by µ̂ from the estimated model we get what is called
observed deviance in some references.

5.6.2 Estimation of the scale parameter

When the scale parameter is unknown, an estimate is obtained using one of
the following methods:

• The Deviance method: φ̂ = D
N−(p)

.

• Pearson χ2: φ̂ = χ2

N−(p)
.

• Maximum likelihood estimation (also in agreement with the method of
moments)where the estimate obtained is

φ̂ =
V ar(yi)

V (µ̂)
=

∑
(yi − µ̂)2

(n− p)V (µ̂)
(5.17)

and p is the number of parameters estimated.

5.7 Quasi-Likelihood Estimation

In some statistical investigations we are uncertain about the distribution of
the data and further it might not necessarily be a member of the exponential
family. Uncertainty about the distribution makes it impossible to directly
use the techniques discussed earlier. Thus it is not possible to directly exploit
the nice properties associated with GLMs.

It would therefore be useful to have inferential methods which work as well
(or almost as well) as maximum likelihood but without having to make spe-
cific distributional assumptions. This is the basic idea behind the Quasi-
likelihood. That is to derive the likelihood like quantity whose construction
requires few or less restrictive assumptions. Let us restate the score equation
as

U = ∂l
∂β

= 1
a(φ)

N∑
i=1

(yi − µi)wig(µi)Xi

= 1
a(φ)

N∑
i=1

(yi−µi)
v(µi)g′(µi)

Xi
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It is clear that the likelihood on the assumed distribution for yi is constructed
through µi and v(µi). The choice of the distribution determines the mean-
variance relationship. The idea of quasi-likelihood estimation is to use the
relationship of the mean and variance in a similar manner as above. In con-
trast to full likelihood method of estimation we do not specify a probability
distribution, but only the mean and variance function.

The quasi-likelihood is defined as

Qi(µi; yi) =
∫ µi
yi

yi−µi

φv(µi)
ds

which by definition has a derivative with respect to µi equal to

qi = yi−µi

φv(µi)

The qi satisfies the same conditions satisfied by ∂`i

∂µi
where

∂li
∂µi

=
∂lnf(yi, θi, φ)

∂µi

for the exponential family distributions.

Since the components of Y are independent by assumption, the quasi-likelihood
for the complete data is the sum of the individual contributions:

Q(µ; y) =
∑
Qi(µi; yi).

By analogy, the quasi-deviance function for a single observation is

Q(yi;µi) = −2σ2Q(µi; yi) = 2
∫ µi
yi

yi−µi

φv(µi)
ds

(One should note the reversal of the order of integration). The total deviance,
D(y;µ), is the sum of the individual components, and only depends on y and
µ, but not σ2. It should also be noted that the complete quasi-likelihood
only depends multiplicatively on σ2, so that it does not affect the MLEs of
β.

Let us restate the log likelihood of an exponential family as

`i = yiθi−b(θi)
φ

+ c(yi, φ)

It can be shown that

E[qi]=0, E[ ∂li
∂µi

]=0
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and that

var( ∂`i

∂µi
)= 1

φv(µi)
.

Thus the roles played by the log-likelihood and ∂li
∂µi

can be taken up by Qi

and qi respectively.

The φ occurring in qi is mainly the constant of proportionality relating var(yi)
to v(µi). The Maximum Quasi-likelihood method assumes that var(yi) is pro-
portional to v(µi). That is var(yi) = φv(µi) where

v(µi) = ∂`i

∂µi
.

Note that v(µi) is not exactly the same as the earlier definition. The variance
function v(µi) is specified using information about how the variance changes
with the mean and nothing more.

To find the maximum Quasi-likelihood (MQL) estimator of β, we solve the
MQL equation, given by

∂

∂β
(
∑

Qi) = 0 (5.18)

Evaluating the derivative we have

∂
∂β

(
N∑

i=1
Qi) =

∑N
i=1

∂Qi

∂β

=
N∑

i=1

∂Qi

∂µi

∂µi

∂β

=
N∑

i=1
[ yi−µi

φv(µi)
]∂µi

∂q
∂q
∂β

=
N∑

i=1
[ yi−µi

φv(µi)
] 1
g′(µi)

Xi = 0

(5.19)

In matrix notation we have

1

φ
X ′W 4 (Y − µ) = 0 (5.20)

This is the same as the score statistic U under the GLM, but here v(µi) is
determined from the mean-variance relationship, not from distributional as-
sumptions. Thus the QL model can be fitted using exactly the same method
as for fitting a GLM to obtain β̂. AS in the case of GLMs the estimate of β
is not affected by φ.
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5.8 Extended quasi-likelihood function

The quasi-likelihood can be extended to include terms for the variance. This
will allow us to compare different variance functions, and opens up the pos-
sibility of modelling the dispersion as a function of covariates.

For a single observation, y, we want to construct a function Q+(µ;σ2; y)
that, for known σ2, is the same as Q(µ; y), but which also has the properties
of a log likelihood with respect to derivatives of σ2. Thus we have to have

Q+(µ;σ2; y) = Q(µ; y) + h(σ2; y)

= −D(y;µ)
2σ2 + h(σ2; y)

(5.21)

for some function h(σ2; y), which we assume to be in the form

h(σ2; y) = −1

2
h1(σ

2) + h2(y). (5.22)

If Q+ is to behave like a log likelihood with respect to σ2, we must have
E(∂Q+/∂σ2) = 0. Thus

0 =
1

2σ4
E(D(y;µ))− 1

2
h′1(σ

2). (5.23)

If we make E(D(y;µ)) the subject of the formula in equation (5.23) we have

E(D(y;µ)) = σ4h′1(σ
2) (5.24)

To a rough first order approximation we have E(D(y;µ)) = σ2, giving
h′1(σ

2) = log(σ2)+ const. Thus the extended quasi-likelihood is given by

Q+(µ;σ2; y) = −1

2
D(y;µ)/σ2 − 1

2
log(σ2). (5.25)

If we have information about the higher order moments, we can improve the
approximation. It can be shown that

E(D(y;µ)) ' σ2 +
1

12V 2
6σ4V V ′2 − 3σ4V 2V ′′ − 4V κ3. (5.26)

where V is the variance function, and κ3 is the third order cumulant. Mem-
bers of the exponential family of distributions (and averages from these),
have the property
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κr+1 = κ′rκ2, for r≥ 2.

Cumulants

Cumulants are constants that, like moments, can be used to describe a prob-
ability distribution. Formally,

exp(
∑∞

r=1 κr
tr

r!
) =

∑∞
r=1 µ

′
r

tr

r!

where µ′r is the rth moment (about the origin). The first four moments and
their cumulants are related like this:

µ′1 = κ1

µ′2 = κ2 + κ2
1

µ′3 = κ3 + 3κ2κ1 + κ3
1

µ′4 = κ4 + 4κ3κ1 + 6κ2κ
2
1 + κ4

1

where κ2 = σ2V (µ), and the differentiation is with respect to µ. From
this we get

E(D(y;µ)) ' σ2(1 +
5(κ2

3/κ3
2)2−3(κ4/κ2

2)

12
)

= σ2(1 + σ2(2V ′2/V−3V ′′)
12

)
(5.27)

as well as
V ar(D) ' 2κ2

2/V
2 = 2σ4

Cov(D, Y ) ' (κ3 − κ2κ
′
2)/V

(5.28)

The covariance obviously reduces to 0 under the property of exponential fam-
ily cumulants above. If we use the simpler assumption that σ2 is sufficiently
small that E(D(y;µ)) ' σ2 , we find that the derivatives

∂Q+

∂µ
=

Y − µ

σ2V (µ)
and

∂Q+

∂σ2
=
D(y;µ)

σ4
− 1

2σ2
(5.29)

have zero mean and approximate covariance matrix
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
1

σ2V (µ)

κ3−κ2κ′2
2σ6V 2

κ3−κ2κ′2
2σ6V 2

1
2σ4


The off-diagonal terms are zero under the property above, and even if it does
not hold, they are often negligible. The expected value of the second deriva-
tive matrix is the same as above, except that the off-diagonal terms are zero.
From this we can see that, Q+ has the properties of a quasi-likelihood with
respect to both mean and dispersion parameter.

The idea of quasi-likelihood was extended to deal with correlated data in
the context of longitudinal data by Liang and Zeger (1986) and Zeger and
Liang (1986). This led to the generalized estimating equations (GEEs) which
are discussed in the next chapter. A more recent extensive treatment of GEEs
is given by Diggle et al. (2002).
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Chapter 6

Generalized Linear Models for
Longitudinal data

6.1 General Estimating Equations (GEEs)

The basic ideas of GEEs was first introduced by Liang and Zeger in 1986.
GEEs are used to model correlated data from longitudinal or repeated mea-
sure studies and from clustered or multilevel studies. GEEs can be regarded
as an extension of quasilikelihood models for independent measurements.
The emphasis is on modelling the expectation of the dependent variable in
relation to the covariates (just like with GLMs). The correlation structure
is considered to be a nuisance (not of interest in itself), which is accounted
for by the method. One should recall that for quasilikelihood models we
specify how the mean of the responses depends on the explanatory variables
(the link function) and how the variance depends on the mean (the variance
function). The setting is as follows, on each of i = 1, . . . , N subjects or
clusters, there are ni measurements yi = (yi1, . . . , yini

). Measurements on
different subjects are assumed to be independent and measurements on the
same subject or cluster are allowed to be correlated. The model specification
of a GEE involves three elements:

• Systematic part: This relates the expectation E(yij) = µij to the
linear predictor through the link function

g(µij) = ηij = x
′

ijβ

• Random part: which specifies how the variance Var(yij) is related to
the mean E(yij) by specifying a variance function V (µij) such that

V ar(Yij) = φV (µij).
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• The correlation part: This is the part which differentiates the GEE
model from the GLM. One needs to allow for a correlation structure for
observations on the same subject or cluster. This is done by specifying
a working correlation matrix.

Hence the specification of a GEE model involves the same steps as specifica-
tion of a GLM but with the additional specification of a working correlation
structure. In the text that follows we will discuss how GEEs are derived and
solved.

6.1.1 Deriving GEEs

The score equations for GLM’s have been derived in the univariate indepen-
dent observation case as

U =
∑
i=1

∂µi

∂β
v−1

i (yi − µi) = 0

with vi = Var(Yi). In the case where the outcome Yi is multivariate that is
Yi = (Yi1, . . . , Yini

)′ with independent components the score function becomes

U =
∑
i=1

∑
j=1

∂µij

∂β
v−1

ij (yij − µij)

=
∑
i=1

∂µ′i
∂β
V −1

i (yi − µi)
(6.1)

where µi=E(Yi) and Vi=Var(Yi)=diag(Var(Yij)). One should note that, when
fitting the GLM the same equations had to be solved. GEEs are obtained by
allowing a non-diagonal Vi in equation (6.1). Vi is now a ni × ni covariance
matrix with diagonal elements given by υjj and will be of the form

Vi(β, α) = φA
1
2
i (β)Ri(α)A

1
2
i (6.2)

in which A
1
2
i is a diagonal matrix with diagonal elements given by

√
υi(µij(β)).

Ri(α) is the correlation matrix of the vector Yi which depends on a vector
α of unknown parameters. The correlation matrix is usually unknown, so
therefore one specifies a “working correlation matrix”. In GEE models, if
the mean is correctly specified, but say the variance and correlation struc-
ture are incorrectly specified, then GEE models will still provide consistent
estimates of the parameters and thus the mean function as well, while consis-
tent estimates of the standard errors can be obtained via a robust sandwich

56



estimator. Similarly, if the mean and variance are correctly specified but the
correlation structure is incorrectly specified, the parameters can also be esti-
mated consistently and the standard errors can be estimated consistently via
the sandwich estimator. If all three are specified correctly, then the estimates
of the parameters are more efficient.

GEEs are obtained by solving the score equations in (6.1) allowing for non-
zero off diagonal elements for Vi. In order to solve these equations we need
to use numerical methods and some of the numerical methods that can be
used are explained briefly in the text that follows.

Iteratively Reweighted Least Squares Algorithm

The IRWLS algorithm used to fit models with GEE is an extension of the
algorithm to fit generalized linear models. In the score equation (6.1)we let

Di =
∂µi

∂βi

=
∂µi

∂ηi

∂ηi

∂βi

=
∂µi

∂ηi

Xi = D∗−1
i Xi (6.3)

So that estimation of β is done with iteratively reweighted least squares by
regressing the working response vector

Z = Xβ̂ +D∗(Y − µ̂) (6.4)

on X with block diagonal weight matrix W , whose ith block, corresponding
to the ith cluster is

Wi = (D∗
i )
−1A

− 1
2

i R−1
i (α)A

− 1
2

i (D∗
i )
−1 (6.5)

such that D∗
i = diag(∂ηi1/∂µi1, . . . , ∂ηµini

/∂µini
), and D∗ is the block diag-

onal matrix with diagonal matrices D∗
i . To update β the equation below is

used

β̂(t+1) = (
N∑

i=1
X

′
iW

(t)
i Xi)

−1
N∑

i=1
X

′
iW

(t)
i Z

(t)
i

β̂(t+1) = (
N∑

i=1
D

′(t)
i V

−1(t)
i D

(t)
i )−1

N∑
i=1

D
′(t)
i V

−1(t)
i D

∗(t)
i Z

(t)
i

(6.6)

According to Liang and Zeger (1986) the solution is obtained by alternat-
ing between estimation of φ, α, and β using method of moments (MoM)
estimators for φ and α. Thus in summary the IRWLS proceeds as follows:

• Step 1: Assuming R = I and φ = 1, provide initial estimate of β with
GLM algorithm.
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• Step 2:Estimate φ and α.

• Step 3:Use updated φ and α to estimate β.

• Step 4:Return to step 2. Repeat steps 2 and 3 until convergence.

A MoM estimator of φ

φ̂ =
N∑

i=1

ni∑
j=1

r̂ij

K − p
(6.7)

where K =
N∑

i=1
ni and rij = yij−µij√

v(µij)
. Given φ̂, a MoM estimator for the

exchangeable parameter α is

α̂ = φ̂
N∑

i=1

N∑
j>j′

r̂ij r̂ij′/[
N∑

i=1

1

2
ni(ni − 1)− p] (6.8)

Newton Iteration

To solve the system of equations using the Newton Iteration method the
following steps must be followed:

• Compute an initial estimate of β from a GLM (i.e. by assuming inde-
pendence)

• Compute an estimate R(α) of the working correlation on the basis of
the current Pearson residuals and the current estimate of β

• Compute an estimate of the variance as

Vi = φA
1
2
1 R̂(α)A

1
2
1

• Compute an updated estimate of β based on the Newton-step

β = β + [
∑

i

∂µ′i
∂β

V −1
i

∂µi

∂β′
]−1[

∑
i

∂µ′i
∂β

V −1
i (yi − µi)] (6.9)

One should iterate through steps 2-4 until convergence. Note that φ needs
not to be estimated until the last iteration.
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6.1.2 The estimate of β

The GEE estimate β̂ is often very similar to the estimate obtained if obser-
vations were treated as being independent. In other words, the estimate β̂
for GEEs is often very similar to the estimate obtained by fitting a quasi-
likelihood model to the data. However the GEE estimate β̂ is generally a
good estimate in the sense that

• The estimator is asymptotically consistent, that is, when the sample
size n increases then β̂ becomes (almost) indistinguishable from the
true value β.

• The estimator is asymptotically normal,

β̂ ∼ N(β,Σ)

In practice, an estimate of Σ is obtained as a by product of the esti-
mation procedure.

The asymptotic normality holds even if

• the variance function V (µ) is incorrectly specified

• the working correlation matrix R is NOT the true correlation matrix.

The variance Σ depends on the correlation structure in data and this is the
whole point in incorporating a working correlation matrix. One should note
that if we have a good estimate for Σ then we can test hypotheses about
model parameters, construct and test hypotheses about linear contrasts, and
make confidence intervals for the estimated parameters on their functions.
The following section explains the estimation of Σ.

6.1.3 Estimating Σ

The covariance matrix Σ is generally unknown and must be estimated from
data. In GEEs one can choose between two different forms of estimates. Both
depend on the form of the working correlation matrix. The two estimates
are:

• The empirical, robust or sandwich estimator which is given by

V (β̂) = M−1
0 M1M

−1
0
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where

M0 =
N∑

i=1

D′
iV̂

−1
i Di and M1 =

N∑
i=1

D′
iV̂

−1
i (yi − µ̂i)(yi − µ̂i)

′V −1
i Di

This estimate tends asymptotically to the true Σ, even if the working
correlation is misspecified. Let

(yi − µ̂i)(yi − µ̂i) = Ṽi

• If the working correlation is correct, a better estimate is the so-called
model-based estimator which is given by V(β̂) = [

∑N
i=1D

′
iṼ

−1
i Di]

−1

One should notice that if V̂i = (yi − µ̂i)(yi − µ̂i)
′ then the two are equal

(this occurs only if the true correlation structure is correctly modelled). In
practice the empirical estimate is often quite good. If one has no idea about
the structure of the correlation, the independence working correlation is often
a good choice.

6.1.4 Working correlations discussed

As already mentioned the correlation matrix is usually unknown and must
be estimated. It is estimated in the iterative fitting process using the current
value of the parameter vector β to compute appropriate functions of the
Pearson residual

rij = yij−µij√
v(µij)

There are several specific choices of the form of the working matrix Ri(α) to
model the correlations of the individual responses. For additional appropri-
ate choices we refer to Liang and Zeger (1986). Other recent equally good
references include Verbeke and Molenberghs (2000), Diggle et al. (2002), and
Molenberghs and Verbeke (2005).

The following descriptions present a few of the common choices of work-
ing correlations in SAS supported by PROC GENMOD and the resulting
covariances.

Autoregressive AR(1) working correlation

Autoregressive is a term derived from times series analysis that assumes
observations are related to their own past values through one, two, or a
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higher order dependencies. An autoregressive correlation structure indicates
that two observations taken close in time (or space) within an individual
tend to be more highly correlated than two observations taken far apart
in time from the same individual. Formally, Corr(yij, yij) = ρjj = 1 and
Corr(yij, yik) = ρjk(j 6= k) decreases in value as the absolute difference be-
tween j and k gets larger. A first-order autoregressive correlation struc-
ture (AR (1)) specifies that ρjk = ρ|j−k| = where ρ is the correlation when
|j − k| = 1. One should note that the AR(1) working correlation matrix is
not helpful when the time points at which measurements are recorded are not
equidistant and unequal observations per individual. Thus the AR (1) struc-
ture is mainly used when one has balanced data. For illustration purposes
consider the case n=4 observations per person and equidistance between two
consecutive measurements. Then the AR(1) working correlation for n=4 is
given by

R =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1


The exchangeable working correlation

The exchangeable working correlation structure assumes non-zero, yet uni-
form correlations for all pairs of within-subject variables, that is every ob-
servation within an individual is equally correlated with every other obser-
vation from that individual. In other words it means that one can swap
the order of any two measurements without changing the correlation struc-
ture. This choice of correlation structure may not be reasonable with mul-
tiple measurements collected over time, since the correlations most likely
will diminish as the time lag between observations increases. This type of
correlation structure is sometimes referred to as the compound symmetry
or spherical structure. The exchangeable working correlation assumes that
ρ12 = ρ13 = . . . = ρjj′ = α say which is analogous to applying the compound
symmetry assumption of repeated measures with PROC GENMOD or PROC
MIXED. It is used when one is dealing with clustered data where particular
ordering of observation is not presented. For illustration purposes suppose
we consider the case of n=4, then the exchangeable working correlation is
given by

R =


1 α α α
α 1 α α
α α 1 α
α α α 1


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Note that in both the AR(1) and the compound symmetry structures only a
single correlation parameter needs to be estimated.

The unstructured working correlation

Unstructured working correlation structure assumes unconstrained pair-wise
correlations where each correlation is estimated from the data (the most com-
plex model) and is applied to balanced data sets. No assumption is made
about the relative magnitude of the correlation between any two pairs of
observations. Formally, ρjj = 1 and ρij is free to take any value between -1
and +1. The unstructured working correlation matrix estimates n∗(n−1)/2
correlations from the data. Thus care should be taken when the unstructured
working correlation is being used since the number of parameters to estimate
becomes large even for moderate n. In practice this means that the correla-
tion parameters can be poorly estimated or that the statistical program may
fail to produce a result(converge). For illustration purposes consider the case
n=4, then the unstructured working correlation is given by

R =


1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1


The independence working correlation

GEE provides a general approach for analyzing discrete and continuous re-
sponses with marginal models. Given that a data set consists of repeated
measurements within individuals, the simplest possible correlation structure
is to (usually incorrectly) assume independence. This assumption is equiv-
alent to observations collected from the same individual being completely
uncorrelated with every other observation measured from that individual;
correlations are assumed to be 0 for all pair-wise combinations of the within-
subject variables. If ρjk is the correlation between observations j and k, then
ρjj = 1 and ρjk = 0, j 6= k. Since all off-diagonal correlations are zero, a
working correlation matrix is not estimated for this situation. Thus the GEE
reduces to the independence (GLM) estimating equation. For the case where
n=4 the independence matrix is given by:

R(α) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Other working correlations are available depending on the data pattern and
problem under consideration. The references by Verbeke and Molenberghs
(2000), Diggle et al. (2002) and Molenberghs and Verbeke (2005) among
others can be consulted for detailed discussion of the different working cor-
relations and supporting arguments for them.

6.2 Inference

Because the fitting of a model by GEE is not based on a likelihood there is
no likelihood ratio test available. Thus the Wald test statistic is often used
when making inferences. The hypothesis of primary interest is to test the
following general statement about the vector of parameters β namely

H0 : Lβ = 0 versus Ha : Lβ 6= 0

where L is a known matrix of known constants of dimension say r × p. To
use the Wald test we need the variance of L̂β which is given by L(Var(β̂))L′.
The Wald test statistic is then given by

Ws = (Lβ̂ − Lβ)′[LV ar(β̂L′]−1(Lβ̂ − Lβ) (6.10)

which underH0 is asymptotically distributed as χ2 with d.f. equal to rank(L).

One compares two nested models using the distributional result β̂ ∼ N(β,Σ).
Let M0 be a sub-model of M1, where M1 has the parameter vector β. M0

is derived from M1 by setting some parameters in β equal to 0. This can
generally be written as a matrix equation with a matrix L such that one has
model M0 if the equation Lβ = 0 is fulfilled. The test of model M0 against
the larger model M1 is obtained by the Wald statistic

β′L′(LΣ̂L′)−1Lβ̂ ∼ χ2
p2

where p2 = p1 − p0 and p1 and p0 are the number of parameters of model
M1 and M0. We note that this statistic is not exact because under GEE the
distributional properties of the correlated data is not fully discernible.

6.3 Application to epileptic data

6.3.1 Application to the Thall and Vail data

We are going to apply the method of GEE to the Thall and Vail data which
is displayed in Table 3.1 on page 12.
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We consider the following model:

log(E(Yij)) = β0 + β1Age+ β2Ti + β3tij + β4Titij

where Yij= number of epileptic seizures in interval j, tij= length of interval
j and Ti is the treatment group.

Below is a SAS code for the standard GEE model:

proc genmod data=elisha;
CLASS ID Trt Tclass;
MODEL y = Age Trt Time Trt*Time /
dist = poisson link = log;
REPEATED subject= ID / WITHINSUBJECT=Tclass type=un corrw mod-
else;
run;

It should be noted that here the model is fitted in exactly the same way
as in a standard GLM but the difference is that the code accounts for the
correlation structure in the data via the repeated statement of SAS. The
statements in the code first produce the usual output from fitting a gener-
alized linear model (GLM) to these data. The estimates are used as initial
values for the GEE solution. The REPEATED statement defines the GEE
character of the model. In the REPEATED statement the option subject
option gives the name of the variable that contains a unique identification of
code for each cluster. Since this variable is a categorical variable it must first
be named in the CLASS option. The WITHINSUBJECT option names the
variable that distinguish different items within a cluster. In this application
they are differentiated by different time points. This variables must also be
named in the CLASS option. The TYPE option is used to specify the corre-
lation structure. In the SAS code above the unstructured correlation type is
specified. The default working correlation type is the independent. Some of
the possibilities of type= include autoregressive (AR), exchangeable (EXCH
or CS), independent (IND), and user specified correlation matrix (USER or
FIXED). The option MODELSE in the REPEATED option tells SAS to
print out model based estimates of the standard errors as well as the default
empirically corrected standard errors. Corrw displays the estimated working
correlation matrix. The COVB option prints out the estimated covariance
matrix of the estimate of beta, both the usual estimate and the “robust”
version are printed.
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Results

Table 6.1: Parameter estimates and standard errors from GEE models for
the Thall and Vail (1990) data.

Correlation Parameter Estimate Error p-value
Structure

β0 4.0648 0.4003(0.4091) <.0001
β1 -0.0308 0.0134(0.0133) 0.0207

UN β2 -0.0073 0.1940(0.2024) 0.9711
β3 0.066 0.0286(0.0246) 0.2008
β4 -0.0289 0.0397(0.0302) 0.3373

β0 3.8063 0.5774(0.4924) <.0001
β1 -0.0241 0.0194(0.0175) 0.1683

EXCH β2 -0.0297 0.2446(0.2183) 0.8917
β3 -0.3872 0.0678(0.0593) <.0001
β4 -0.0784 0.1012(0.0929) 0.3984

β0 4.0862 0.5045(0.4831) <.0001
β1 -0.0240 0.0170(0.0169) 0.1570

AR(1) β2 0.0061 0.2129(0.2089) 0.9768
β3 -0.4623 0.0857(0.0450) <.0001
β4 -0.0877 0.1239(0.0863) 0.3095

β0 3.6958 0.3701(0.6413) <.0001
β1 -0.0180 0.0120(0.0199) 0.3668

IND β2 0.0092 0.2038(0.2145) 0.9660
β3 -0.3702 0.0802(0.0593) <.0001
β4 -0.0642 0.1136(0.0793) 0.4178

Interpretation of results

Table 6.1 summarizes the GEE results of the four working correlation speci-
fications. The interpretation of the parameters in the marginal (population
averaged) and random (mixed) effects model is analogous to the standard
logistic regression model, however there are differences (as noted above) in
how we adjust for the correlations. In this section we will discuss the results
of the AR(1) model of which similar conclusions are reached for the other
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models. The p-value for the interaction effect (Titij) is 0.3095 which is not
significant at the 5% significance level. Time (tij) is the only significant ef-
fect in the AR(1) model at the 5% significance level. The p-value under the
UN correlation structure are not in the same structure as those under other
correlation structure therefore one is bound to have less reliance in them.

6.3.2 Application to the unbalanced data

We are going to apply the method of GEE to the data set which is displayed
in Table 3.2 on page 13.

For a brief discussion of missing values in longitudinal data see section 2.6 .
Suppose that you intend to take measurements Yi1, . . . , Yini

for the ith unit.
Missing values for which Yij are missing whenever Yik is missing for all j > k
are called dropouts. Otherwise, missing values that occur intermixed with
non missing values are intermittent missing values. The GENMOD proce-
dure can estimate the working correlation from data containing both types of
missing values by using all available pairs method, in which all non missing
pairs of data are used in the moment estimators of the working correlation
parameters defined previously. The resulting covariances and standard errors
are valid under the missing completely at random (MCAR) assumption.

Thus, because these data are not balanced, we use the SUBJECT option
of the REPEATED statement to give SAS the subject variable ID as a class
or factor variable so that it can figure out where the missing values are and
use this information in estimating the correlation matrix. This time the
model of interest is:

log(E(Yij)) = β0 + β1Ti.

Below is SAS code for the standard GEE model:

proc genmod data=epilepsy;
CLASS ID Trt ;
MODEL y = Trt /
dist = poisson link = log;
REPEATED subject= ID / type=un corrw modelse;
run;
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Table 6.2: Parameter estimates and standard errors from GEE models for
the unbalanced data.

Correlation Parameter Estimate Error p-value
Structure

UN β0 -2.0625 0.0533(0.0863) <.0001
β1 -0.0308 0.0134(0.0133) <.0001

EXCH β0 1.7778 0.1101(0.1298) <.0001
β1 -0.7131 0.2045(0.1726) <.0001

AR(1) β0 1.7778 0.1101(0.1298) <.0001
β1 -0.7131 0.2045(0.1726) <.0001

IND β0 1.9480 0.0356(0.0928) <.0001
β1 -0.7615 0.0868(0.1410) <.0001

Results

From the results in table 6.2 we can see that choosing the AR(1) or exchange-
able correlation yields the same results. In all cases the empirical standard
errors are close to the model based standard errors. Regardless of the chosen
correlation the treatment effect is significant.

6.4 Summary

The GEE works best if the number of observations per subject is small and
the number of subjects is large or if in longitudinal studies (e.g. growth
curves), the measurements are taken at the same time for all subjects. The
main advantage of GEE models is that, if the mean is correctly specified, but
the variance and correlation structure are incorrectly specified, then GEE
models still provide consistent estimates of the parameters and hence the
mean function as well, further consistent estimates of the standard errors
can be obtained via a robust sandwich estimator. If the mean and variance
are additionally correctly specified but the correlation structure is the only
incorrectly specified, then both regression parameters and the standard er-
rors can be estimated consistently with the sandwich estimator. If all three
are specified correctly, then the estimates of the parameters are even more
efficient.
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Chapter 7

Modelling Non-Normal
Longitudinal Data with random
effects

7.1 Introduction

The generalized linear mixed models (GLMM) extend GLMs by allowing for
random, or subject-specific, effects in the linear predictor. These models are
useful when the interest of the analyst lies in the individual response profiles
rather than the marginal mean E(Yij). The random effects not only deter-
mine the structure of correlation between observations on the same subject,
they also take account of heterogeneity among subjects, due to unobserved
characteristics. Thus proper use of random effects can account for extra vari-
ability which cannot be fully accounted for through measured covariates and
the dispersion parameter φ.

7.2 Generalized linear mixed models (GLMM)

Given a vector bi of random effects for a unit or cluster i, it is assumed that
all responses Yij are independent, with density

f(yij|θij, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(yij, φ)

}
in which θij, the natural parameter is now modelled as

θij = x
′

ijβ + z
′

ijbi
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where xij is a vector of covariates for fixed effects and Zij is a vector of
covariates for random effects. Similar to GLMs, the following (conditional)
relations hold

µij = E[Yij|bi] = ψ′(θij) and Var[Yij|bi] = φψ′′(θij) = φV (µij)

where θij = g(µij) = xij′β + zij′ bi. As before, g(.) is called the link function
and V (.) the variance function. The p-dimensional vector β denotes the fixed
effects parameter vector while the q-dimensional vector bi denotes the subject
specific random effects parameter vector. The p and q dimensional vectors
xij and zij contain subject i′s covariate information for the fixed and random
effects, respectively. The specification of the GLMM is completed by assum-
ing that the random effects, bi(i = 1, . . . , N), are mutually independent and
identically distributed with density function f(bi|α). Hereby α denotes the
unknown parameters in the density. Following the notation used in Chapter
4, it is assumed that

bi ∼ N(0, G)

Let fij(yij|bi, β, φ) denote the conditional density of Yij given bi, we then have
that the marginal distribution of Yi is given by

fi(yi|β, β, φ) =
∫ ni∏

j=1

fij(yij|bi, β, φ)f(bi|G)dbi (7.1)

where f(bi|G) is the density of the N(0, G) distribution. The likelihood
function for β, G, and φ now equals

L(β,G, φ) =
N∏

i=1

fi(yi|β,G, φ) =
N∏

i=1

∫ ni∏
j=1

fij(yij|bi, β, φ)f(bi|G)dbi (7.2)

Under the non-Gaussian linear mixed model, the integral cannot be worked
out analytically because the random effects enter into the integrand non-
linearly. In general, approximations are required and three possible ap-
proaches can be followed. These are either an approximation of the integrand,
approximation of data or approximation of the integral. Roughly speaking,
under the first approach,

∏
j=1

fi(yi|β,G, φ) is approximated by a normal den-

sity such that the integral can be calculated analytically, as in the normal lin-
ear mixed model. In practice, this approximation will be accurate whenever
the response yij is ‘sufficiently continuous’ and/or if all the ni are sufficiently
large. The likelihood of the observed data is a marginal likelihood where
the random effects have been “integrated out”. Unfortunately, this marginal
likelihood does not generally have a closed-form expression and approximate
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methods of estimation must be used. The most commonly used methods
include marginal quasi-likelihood (MQL), penalized quasi-likelihood (PQL),
Markov Chain Monte Carlo (MCMC), and Gaussian quadrature (GQ). An
added improvement of Gaussian quadrature is adaptive Gaussian quadrature
(AGQ).

7.3 Approximation of the Integrand

Since the integral in equation (7.2) cannot be solved analytically one can con-
sider an approximation of the function to be integrated. One of the method
that can be used to estimate the integrand is the Laplace approximation of
integrand. Laplace’s method is an elementary technique for approximating
an integral of the form

I =
∫
e(Q(b))db, (7.3)

where Q(b) is a smooth real-valued function and has a single maximum in
the interior of the domain of integration. One should note that the integrals
in L(β,G, φ) can be written in the form I =

∫
exp(Q(b))db. Letting b̂ denote

the value that maximizes Q(b), the formula produced by Laplace’s method
is

I ≈ (2π)
q
2 | −Q

′′
(b̂)|−

1
2 e(Q(b̂)). (7.4)

where q is the dimension of b and Q
′′
(b̂) is the Hessian matrix of Q(b) at b̂.

Taking, for simplicity, the one-dimensional case (q = 1) as an example with
the domain of integration being the whole real line, a second-order Taylor
series expansion of Q(b) about b̂ produces the factor

Q(b) ≈ Q(b̂) +
1

2
(b− b̂)′Q

′′
(b̂)(b− b̂) (7.5)

in the integrand. One should note that, as n −→∞, the integrand becomes
increasingly concentrated near b̂. Now equation (7.3) upon substituting equa-
tion (7.5) becomes approximated by∫

e(Q(b))db ≈ e(Q(b̂))
∫

exp(
1

2
(b− b̂)′Q

′′
(b̂)(b− b̂))db (7.6)

of which the integral of the right hand side of equation (7.6) can be found
analytically. This gives the one-dimensional version of equation (7.3). Ex-
amination of the remainder terms in the Taylor series expansions shows that
the order of accuracy of the approximation is as given in equation (7.4). This
method is a good approximation in the case of many repeated measures per
subject.
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7.4 Approximation of the model parameters

Using a Taylor series the pseudo-likelihood technique approximates the orig-
inal GLMM by a linear mixed model for pseudo-data. In this linearized
model the maximum likelihood estimators for the fixed effects and BLUPs
for the random effects are obtained using the well-known theory for linear
mixed models (as outlined in Chapter 4). The advantage of this approach
is that a large number of random effects but also crossed and nested ran-
dom effects can be handled. A disadvantage is that no true log-likelihood is
used. Therefore likelihood-based statistics should be interpreted with great
caution. Moreover the estimation process is doubly iterative; a linear mixed
model is fit, which is an iterative process, and this procedure is repeated until
the difference between subsequent estimates is sufficiently small. In SAS the
procedure PROC GLIMMIX enables pseudo-likelihood estimation.

According to Molenberghs and Verbeke (2005), this method of approxima-
tion is based on a decomposition of the data into the mean and appropriate
error term, with a Taylor expansion of the mean that is a non-linear function
of the linear predictor. The methods briefly discussed in this section differ in
either the order of the Taylor approximation or the point around which the
approximation is expanded.

We will consider the following decomposition of the data (Yij)

Yij = µij + εij = h(x
′

ij + z
′

ijbi) + εij (7.7)

where h(.) is the inverse link function and the error terms have the appro-
priate distribution with

V ar(Yij|bi) = φυ(µij)

for υ(.) the usual variance in the exponential family. Several methods of
implementing the approximation of the data technique have been proposed.
Here we discuss two of the commonly referred ones namely the penalized and
the marginal quasi-likelihood formulations.

7.4.1 Penalized Quasi-Likelihood (PQL)

The penalized quasi-likelihood (PQL), is based on first-order Taylor expan-
sions around the maximum of current estimates β̂ and b̂i of the fixed and
random effects via the first-order Laplace approximations to the integrals.
This approach produces biased estimates for both the regression and vari-
ance components parameters. Breslow and Lin (1995) provided a correction
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factor for the estimates of the univariate variance components derived from
the second-order Laplace approximations. Breslow and Lin (1996) extend
this bias correction to the GLMM with multivariate random effects. This
method is implemented in the SAS macro GLIMMIX. To see how the PQL
method works consider a linear Taylor expansion of Yij around β̂ and b̂i then

Yij ≈ h(x
′
ijβ̂ + z

′
ij b̂i) + h

′
(x

′
ijβ̂ + z

′
ij b̂i)x

′
ij(β − β̂) + h

′
(x

′
ijβ̂ + z

′
ij b̂i)z

′
ij(bi − b̂i) + εij

≈ µ̂ij + υ(µ̂ij)x
′
ij(β − β̂) + υ(µ̂ij)z

′
ij(bi − b̂i) + εij

(7.8)
Thus in vector notation equation (7.8) can be written as

Yi ≈ µ̂i + V̂iXi(β − β̂) + V̂iZi(bi − b̂i) + εi (7.9)

Finally re-ordering terms in equation (7.9) yields

Y ∗ = V̂ −1
i (Yi − µ̂i) +Xiβ̂ + Zib̂i ' Xiβ + Zibi + ε∗i (7.10)

where ε∗i = V̂ −1
i εi. Model fitting proceeds by iterating between updating the

pseudo responses (Y ∗
i ) and fitting the above approximate model in equation

(7.10) similar to a linear mixed model (covered in chapter 4) until conver-
gence.

7.4.2 Marginal Quasi-Likelihood (MQL)

The MQL is similar to the the PQL, the difference is that the MQL is based
on a linear Taylor expansion of the mean µij in equation (7.7) around the

maximum of current estimate of β̂ for the fixed effects and around bi = 0 for
the random effects. Thus under the MQL

Y ∗ = V̂ −1
i (Yi − µ̂i) +Xiβ̂ ' Xiβ + Zibi + ε∗i (7.11)

otherwise the fitting iteration is exactly the same as in equation (7.10).

The MQL performs reasonably well if a priori the random-effects variance
is very small. Both the PQL and MQL perform badly for binary outcomes
with few repeated measurements per cluster. With large ni the PQL provides
consistent estimate values while the MQL remains biased. Improvements are
possible with higher order Taylor expansions.
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7.5 Approximation of the Integral

The likelihood contribution of every subject is generally of the form∫
f(z)φ(z)dz

where φ(z) is the density of the (multivariate) normal distribution. Gaussian
quadrature methods replace the integral by a weighted sum:

∫
f(z)φ(z)dz ≈

Q∑
q=1

wqf(zq)

Q is the order of the approximation. The higher Q is the more accurate the
approximation will be. The nodes (or quadrature points) zq are solutions
to the Qth order Hermite polynomial. The wq are well-chosen weights. The
nodes zq and weights wq are available in tabulated form Alternatively, an al-
gorithm is available for calculating all zq and wq for any value Q. With Gaus-
sian quadrature, the nodes and weights are fixed, independent of f(z)φ(z).
With adaptive Gaussian quadrature, the nodes and weights are adapted to
the ‘support’ of f(z)φ(z). Typically, adaptive Gaussian quadrature needs
(much) less quadrature points than the classical Gaussian quadrature. On
the other hand, adaptive Gaussian quadrature is much more time consuming.
It should also be noted that adaptive Gaussian quadrature of order one is
equivalent to Laplace transformation (Molenberghs and Verbeke, 2005).

It is clear in summary that all three methods available to handle random
effects in correlated non-Gaussian linear models are highly computer inten-
sive in comparison to the linear mixed model (LMM) which was presented in
chapter 4. Thus the fact that the random effects affect the mean response in
a non-linear manner makes the non-Gaussian problem much more computa-
tionally demanding than in the Gaussian case.

7.6 Inference

In section 7.4 we showed that generalized linear mixed models can be es-
timated by fitting linear mixed models to the pseudo-data. Since we will
be fitting linear mixed models then we can use the same estimation methods
used for linear mixed models. Thus we can use the same inference techniques
discussed in sections 4.4.3 and 4.6.
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7.7 Application to count data

7.7.1 Application to the Thall and Vail data

Background for this data set is given in Chapter 3 and displayed in Table
3.2 on page 13 . We analyse the data using generalized linear mixed models.
Since the data are frequency counts interest lies in testing whether the in-
tensities of occurrences are significantly different between the two treatment
groups. The covariates used in the analysis are treatment and week. First we
assume that conditionally on random effects Yij is Poisson distributed that
is

Yij|bi ∼ Poisson(µij).

Then the following to models are considered namely

log(µij) = β0 + β1Ti + β2tij + β3Titij + bi0 (7.12)

log(µij) = β0 + β1Ti + β2tij + β3Titij + bi0 + bi1tij. (7.13)

Hereby Yij represents the number of epileptic counts measured on subject i
in interval j, tij is the time point at which the jth count is taken for the ith
subject and Ti is the treatment indicator for subject i. β0, β1, β2 and β3 are
fixed effects and bi0 versus bi1, is the subject specific (random) intercept and
slope.

The commands to fit the model in SAS code for penalized quasi-likelihood
for GLMM with no slope are

Proc glimmix data=Titanic method=RSPL;
Class Subject Treatment;
model Count= Treatment week Treatment*week
/dist= Poisson link=log solution ;
random intercept / subject=subject;
run;

The MODEL statement is required and it specifies the dependent variable
versus the fixed effects. The fixed-effects determine the X matrix of the
model. The option method in the proc glimmix statement specifies the esti-
mation method. The PQL is obtained with the option method=RSPL and
the MQL is obtained with the option method=RMPL.

Table 7.1 shows the GLMM results when we do not consider the random
slope. Results of GLMM-Repeated Measures Analysis for epileptic patients
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Table 7.1: GLMM with intercept only

Parameter DF Estimate Std Error t value p-value
β0 57 2.8750 0.1532 18.77 < .0001
β1 234 -0.00103 0.2114 -0.0 0.9961
β2 234 -0.3702 0.01797 -20.60 < .0001
β3 234 -0.06424 0.2545 -2.52 0.0123

Table 7.2: Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error
bi0 Subject 0.6159 0.1201

(Thall and Vail, 1990) indicate that epileptic seizures did not significantly
differ between treatment and control patients since the p-value for treatment
is 0.4186. The interaction between treatment and period of visit was also
significant, meaning that epileptic seizures did change over time or between
control versus treatment patients. The time effect is significant meaning
there is a significant variability in the rate of seizure occurrence with time
independent of the treatment arm. The estimate of the time parameter is
negative which means that an increase in time by one unit implies that the
log of mean seizure rate declined by −0.3702 or the mean seizure rate is
0.6906 times that of the time before.

Since β̂1 = −0.00103 it follows that the hazard of epilepsy for those on treat-
ment declined by 1.0010 and its 95% confidence interval is (0.5867;1.4154)
and since 1 is included in the confidence interval the result that treatment
has no effect is further confirmed.

The variance component estimate for model (7.12) is displayed in table 7.2.
The variance component was estimated to be 0.6159 with its z Wald statistic
of 5.12 which is significant at the 5% level. Thus we conclude that there is a
significant individual to individual variability in slope.

The following SAS code was used to fit the GLMM with a random inter-
cept and slope.

SAS code for penalized quasi likelihood (PQL) for GLMM with slope
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Proc glimmix data=Titanic method=RSPL;
Class Subject Treatment;
model Count= Treatment week Treatment*week
/dist= Poisson link=log solution ;
random intercept week / subject=subject;
run;

Table 7.3: GLMM with intercept and slope

Parameter Estimate Std Error t value p-value
β0 2.9253 0.1430 20.46 < .0001
β1 0.06110 0.1971 0.31 0.7569
β2 -0.4098 0.04159 -9.85 < .0001
β3 -0.1356 0.5815 -2.33 0.0209

Table 7.4: Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error
bi0 Subject 0.5293 0.1059
bi1 Subject 0.03589 0.009022

Table 7.3 shows the GLMM results when we consider the random slope.
Just like with the GLMM model with the random intercept only results of
GLMM with an intercept and slope indicate that epileptic seizures did not
significantly differ between treatment and control patients since the p-value
for treatment is 0.7569. The interaction between treatment and period of
visit was significant, meaning that epileptic seizures evolution over time did
significantly differ between those on treatment and the control treatment.
The time effect is significant in this model and it was also significant under
the random intercept only model.

Table 7.4 gives the results for a GLMM with both the random intercept
and slope effects. Compared to the results with only the intercept as random
(Table 7.1) we see that we come to the same conclusion. Thus accounting
for variability in time via random slope renders the same conclusions. Vari-
ance component for random slope is estimated as 0.03589 with a standard
error of 0.009072 which gives an approximate z-value (Wald) of 3.96 which
is clearly significant at 5% level. Thus we conclude that there is a significant
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individual to individual variability in slope as was depicted by the individual
profile plots in chapter 3. The two variance components under model (7.13)
are shown in Table 7.3 which are both significant based on the Wald statistic,
z=5.00 and z=3.96.

The following SAS code was used to fit the GLMM with a random inter-
cept and slope.

SAS code for marginal quasi likelihood (MQL)for GLMM with slope
Proc glimmix data=Titanic method=RMPL;
Class Subject Treatment;
model Count= Treatment week Treatment*week
/dist= Poisson link=log solution ;
random intercept week / subject=subject;
run;

Table 7.5: GLMM with intercept and slope

Parameter Estimate Std Error t value p-value
β0 3.1993 0.2016 15.87 < .0001
β1 0.02275 0.2781 0.08 0.9349
β2 -0.3691 0.08621 -4.28 < .0001
β3 -0.04568 0.1193 -0.38 0.7022

Table 7.6: Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error
bi0 Subject 1.1013 0.2130
bi1 Subject 0.1970 0.03929

Table 7.5 shows the GLMM results when we consider the random slope
using the marginal quasi-likelihood (MQL) estimation method. Just like
with the GLMM model with the random intercept and slope using the PQL
method of estimation the results of GLMM with a intercept and slope us-
ing MQL method indicate that epileptic seizures did not significantly differ
between treatment and control patients since the p-value for treatment is
0.9349. The interaction between treatment and period of visit was not sig-
nificant, meaning that epileptic seizures evolution over time did not signif-
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icantly differ between those on treatment and the control treatment. The
time effect is significant in this model and it was also significant under the
PQL approach.

Table 7.5 gives the results for a GLMM with both the random intercept
and slope effects. Compared to the results with the PQL approach (Table
7.3) we see that now the interaction effect is no longer significant. Thus
accounting for variability in time via random slope renders the same conclu-
sions. Variance components estimates are interpreted in the same way the
where interpreted under the PQL approach.

This example shows that the significance of model terms can depend on the
structure of the random effects. Thus, one must decide upon a reasonable
model for the random effects as well as for the fixed effects. A commonly rec-
ommended approach for this is to perform a sequential procedure for model
selection. First, one includes all possible covariates of interest into the model
and selects between the possible models of random effects using likelihood
ratio tests and model fit criteria. Then, once a reasonable random effects
structure is selected, one trims model covariates in the usual way.
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Chapter 8

Multiple Events per subject

8.1 Stochastic Process

8.1.1 Introduction

According to Ross (1989) and also in Feller (1957) a stochastic process
X(t), t ∈ T is a collection of random variables. That is, for each t ∈ T ,
X(t) is a random variable. The index t is often interpreted as time. For
example, X(t) might equal the total number of customers that have entered
a bookshop by time t; or the number of disease episodes by time t; or the
total amount of sales that have been recorded in the market by time t, etc.
Sometimes a stochastic process is also called a random process. In this re-
gard X(t) is a counting variable.
The following are some of the most important stochastic processes:

• Poisson process

• Markov process in continuous time or discrete time (Markov Chain)

• Renewal process.

Every stochastic process is associated with an index set denoted T in most
literature. A discrete-time process is a stochastic process with a set T, of
which T is a countable set. On the other hand if T is an interval on the real
line, the stochastic process is called a continuous-time process.

The state space of a stochastic process is defined as the set of all possi-
ble values that the random variables X(t) can assume.
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In a nutshell one could say a stochastic process is a family of random vari-
ables that describe the evolution through time of some physical process or
phenomenon.

8.1.2 Counting Process

A stochastic process N(t), t ≥ 0 is said to be a counting process if N(t) rep-
resents the total “events” that have occurred up to and inlcuding time t.
From the above definition one can infer that a counting process N(t) must
satisfy:

• N(t) ≥ 0.

• N(t) is integer valued.

• If s<t, then N(s)≤ N(t), that is N(t) is a monotonically increasing
function or conforms to a natural ordering in the non-negative integer
space.

• For s<t, N(t) - N(s) equals the number of events that have occurred in
the interval (s, t].

A counting process is said to possess independent increments if the numbers
of events which occur in disjoint time intervals are independent (Ross, 1989).
For example suppose N(0)= 0 then independent increment means:

P (N(t1)−N(t0) = u|N(t0) = v) = P (N(t1)−N(t0) = u).

since the intervals (0, t0] and (t0, t1] are disjoint. A counting process is said
to possess stationary increments if the distribution of the number of events
which occur in any interval of time depends only on the length of the interval
(Ross, 1989). This is also known as the time homogeneity property.

8.1.3 Poisson Process

The Poisson process was named after the French mathematician Siméon-
Denis Poisson (1781 - 1840).

A counting process N(t), t ≥ 0 is said to be a Poisson process having rate
λ > 0, if:

• N(0) = 0. (This means that the counting of events starts at t=0.)

• The process has independent increments.
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• The number of events in any interval of length t is Poisson distributed
with mean λt. That is, for all s, t ≥ 0

P [N(t+ s)−N(s) = n] = e−λt (λt)n

n!
, n = 0, 1, . . .

From the third condition one can conclude that the Poisson process has
stationary increments and that

E[N(t)] = λt

of which this explains why λ is called the event rate of the process.

General characteristics of the Poisson process

In its most general form, we require these two conditions for a stochastic
process to be a Poisson process are [4]:

• Orderliness: which roughly means for small ∆t

P [N(t+ ∆t)−N(t) > 1|N(t+ ∆t)−N(t) ≥ 1] = 0

which implies that arrivals don’t occur simultaneously (but this is ac-
tually a mathematically-stronger statement).

• Memorylessness (also called evolution without after-effects): the num-
ber of arrivals occurring in any bounded interval of time after time t is
independent of the number of arrivals occurring before time t.

Some real examples of Poisson processes include the number of telephone
calls arriving at a switchboard per hour, the number of epileptic attacks in a
person in a given interval of time and customer arrival to a queue in a service
facility.

8.1.4 Generalizations of the Poisson Process

Further generalizations of the Poisson process include the non-homogeneous
Poisson process and the Spatial Poisson process. These are briefly described
below.
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Non-homogeneous Poisson process

This counting process is sometimes referred to as the non-stationary Poisson
process if the event rate (parameter) λ is a function of time t. This is because
in general, the rate parameter may not be constant over time. Hence in this
case the generalized rate function is given as λ(t). Thus the expected number
of events between time a and time b is

λa,b =
∫ b
a λ(t)dt.

Thus, the number of arrivals in the time interval (a,b], given as N(b)- N (a),
follows a Poisson distribution with associated parameter λa,b

P [N(b)−N(a) = n] = e−λa,b
(λa,b)

n

n!
, n=0,1, . . .

This generalized form is clearly more realistic because very rarely do real
processes in real time such as epileptic attacks behave homogeneously due
to individual specific changing characteristics or changing levels of care in
general.

Spatial Poisson process

The spatial Poisson process is a type of non-homogeneous process that intro-
duces a spatial dependence on the rate function and is given as λ(x, t) where
x ∈ D for some vector space V (e.g. R2orR3). For any set S ⊂ V (e.g. a
spatial region) with finite measure, the number of events occurring inside this
region can be modelled as a Poisson process with associated rate function
λs(t) such that

λs(t) =
∫
S λ(x, t)dx.

In the special case where this generalized rate function is a separable function
of time and space, we have:

λ(x, t) = f(x)λ(t)

for some function f(x). Without loss of generality, let∫
V f(x)dx = 1

otherwise we may scale f(x) and λ(t) appropriately. Now f(x), represents
the spatial probability density function of these random events in the fol-
lowing sense. The act of sampling this spatial Poisson process is equivalent
to sampling a Poisson process with rate function λ(t), and associating with
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each event a random vector x sampled from the probability density function
f(x). A similar result can be shown for the general (non-separable) case.
The above two dimensional generalization is a reasonable model to capture
the occurrence of disease events in space and time. Of particular applications
are problems involving diseases which depend on a point source of exposure
which is spatially distributed. The epilepsy problem in the context of the
current study may not deserve such an analysis. The only discernable het-
erogeneity is where the epileptic attack rate in an individual is a function
due to for example changing treatment modes.

8.2 Poisson Point Process

Poisson point processes have two aspects: the counting process, which fol-
lows the number of events in a fixed time interval, and the interval process,
which deals with the time intervals between subsequent events.

In most stochastic processes the events being studied happen at particu-
lar points in time for example times of epilepsy attacks in a person. In this
case counting or Poisson point processes form a rich class of models to deal
with such data.

Let N(t) be the number of events up to time t, dt a small time interval,

and o(dt) a quantity of much smaller magnitude than dt in the sense o(dt)
dt
→

0 as dt → 0. The function N(t) captures the point process and we say N(t)
is a Poisson point process with intensity λ(t) if

N(t+ dt)−N(dt) =


1 with probability λ(t)dt
0 with probability 1− λ(t)dt
> 1 with probability 0(dt)

and N(t+dt)−N(t) is independent of N(u) for u < t; the latter is called the
independent increment property, which is a continuous version of the concept
of independent trials.

The intensity function λ(t) in a Poisson point process is really a general-
ization of the hazard function for time to event or survival analysis data. For
this reason we briefly review how to estimate the hazard function assuming a
constant hazard model that is assuming the survival times are exponentially
distributed. The Cox proportional hazard and the Cox partial likelihood
models to deal with measured covariates are also discussed in the subsequent
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sections (Cox, 1972, 1975). A further advantage of the Poisson process mod-
els is that they are more general than survival models because they allow
multiple end points per subject. For this reason the current chapter is also
dedicated to dealing with multiple events per subject using the epilepsy data,
the focus in this project.

8.3 Censored Data in Survival Analysis

According to Lee (1992) many researchers consider survival analysis to be
merely the application of two conventional statistical methods to a special
type of problem: parametric if the distribution is known and nonparametric
if the distribution is unknown. This assumption would be true if the survival
times of all the subjects were exact and known. However in most reliability
studies or clinical trials some survival times are not known. One of the rea-
sons being that at times it is not possible to wait for all experimental units to
reach their end points simply because every study has a specific study time
determined a priori. Thus there is a need for statistical techniques which
handle such incompleteness. One of such techniques is discussed in this sec-
tion. We are going to use the following example to illustrate the technique.

Example 8.1: Two groups of rats were exposed to carcinogenic DBMA,
and the number of days to death due to cancer was recorded (Kalbfleisch
and Prentice, 1980)

Group 1 : 143, 164, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230,234,
246, 265, 304, 216+, 244+
Group 2 : 142, 156, 163, 198, 205, 232, 232, 233, 233, 233, 233,239, 240, 261,
280, 296, 296, 323, 204+, 344+

The censoring times in the two groups of rats carcinogen example (Kalbfleisch
and Prentice, 1980) are said to be right censored. In other words the indi-
vidual is known to be event free up to time yi but the actual event time is
ti > yi. There is also a possibility of left censored times. A good example
is age at infection for a certain disease. If an individual is tested positive
for HIV at age yi then clearly age at infection is ai < yi hence we say that
the infection age is left censored. Interval censored data occurs when the
actual event time lies between two known time points. For example in follow
up studies an individual may be disease free at time t0 and disease positive
at time t1. Then the actual time of infection is t′ where t0 < t′ ≤ t1. If
an individual did not test positive at known age yi then clearly the age at
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infection is age ai > yi thus the age at infection in this case is right censored.

In this example four rats were ‘censored’ at times 216, 244, 204 and 344;
i.e. known not to have died of cancer by those times. Possible reasons for
censoring are

• Deaths due to other causes,

• Being alive when the study ends

There are three possible ways (assumptions) of modelling such data:

• ignore the censoring information, i.e. treat all the data as if they are
genuine deaths

• drop the censored cases, so we are dealing with genuine deaths

• model the censored data properly

The first two methods can be very biased and misleading if the censoring
patterns in the groups differ. The second method is inefficient even if the
censoring patterns in the two groups are not similar. With a correct model,
the last method is potentially the best as it would take into account whatever
information is available in the censored data. However results from the third
approach can be very misleading under a mis-specified model. Thus model
identification is a key step in analyzing time to event data. On the other
hand models which are less dependent on distributional assumptions may
become handy at times leading to semi-parametric or fully non-parametric
approaches.

In general censored data can be denoted as (y1, δ1), . . . , (yn, δn), where δi
is the last-known status or event indicator: δi = 1 if yi is a true event time,
and zero otherwise. If ti is the true lifetime of subject i, then δi = 0 if and
only if ti > yi where ti here denotes the unknown true event time for individ-
ual i. Our concern would be modelling the true lifetime ti rather than the
observed yi, since censoring is usually a nuisance occurrence that does not
have any substantive meaning, for example it can be determined by the the
study design.

Suppose t1, . . . , tn are and iid sample from fλ(t). Let the cumulative den-
sity function (cdf) of T be F (T ) and S(T ) = 1 − F (T ) then the function
S(T ) is called the survivor or simply the survival function. The likelihood
contribution of the observation (yi, δi) is
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Li(λ) = Pλ(Ti > yi) = s(yi) if δi = 0

or

Li(λ) = fλ(yi) if δi = 1.

The contribution Pλ(Ti > yi) is therefore given by S(yi) where S(.) is the
survival function. Thus the overall likelihood as a function of λ involving
both contributions can be written as

L(λ) =
n∏

1=1
Li(λ)

=
n∏

1=1
S(yi)

1−δifλ(yi)
δi .

(8.1)

To illustrate this let us consider an exponential model, which despite its
simplicity is used regularly in survival studies, defined by

fλ(t) = λe−λt

Pλ(T > t) = e−λt.

Hence we have the likelihood function as a result of applying equation (8.1)

L(λ) = (λ)
∑

δi exp(−λ∑ yi).

Upon taking the derivative of the log-likelihood we get the score function to
be

U(λ) = ∂
∂λ

lnL(λ) =
∑

δi

λ
−∑ yi

and setting it to zero, we get

λ̂ =
∑

δi∑
yi

In the above equations one can note that
∑
yi is the total observation time

(person days) including both the censored and uncensored cases, while
∑
δi

is the number of events. In this case λ̂ is the sample hazard rate given by
the rate of event occurrence per unit time per person. In epidemiology such
a quantity would estimate the incidence rate or equivalently the force of in-
fection (Mwambi, et al., 2009) of a disease.

With some algebra the observed Fisher information of λ is

I(λ̂) =
∑

δi

λ̂2 ,

so that the standard error of λ̂ is

86



se(λ̂) = λ̂(∑
δi

) 1
2
.

Example 8.1: continued. Assuming an exponential model for excess life
over 100 days (in principle this cutoff can be set to any unknown parameter),
so for Group 1 we get n=19,

∑
yi = 2195,

∑
δi = 17 and

L(λ1) = (λ)17exp(−2195λ).

which yields λ̂1 = 17
2195

= 0.00774 (se=0.00188). Equivalently λ̂2 = 19
2923

=
00.00650 (se=0.00149).The approximate 95% intervals are (0.004063,0.011427)
and (0.003577,0.009423) respectively. Since the two intervals overlap we con-
clude that the death rates in the two groups of rats are not significantly
different. Alternatively a Wald statistic can be calculated to test the same
hypothesis. A similar approach was used in Mwambi et al (2009) using lon-
gitudinal binary disease outcomes for a respiratory disease affecting children
within the age of one year to estimate the force of infection and recovery
rates of the disease. Thus the above analysis although fairly basic is appli-
cable to relatively complex problems in practice. In Mwambi et al. (2009)
piecewise constant monthly rates were estimated to capture the time varying
occurrence of the respiratory events in the cohort of children.

8.4 Cox Proportional Hazards Model

The model was first introduced by Cox (1972) and has come to be known as
the Cox regression model. It is also sometimes described simply as propor-
tional hazards regression. It is probably the most widespread model used in
survival analysis.

According to the Cox proportional hazard model, the failure rate of a sys-
tem is affected not only by its operation time, but also by the covariates
under which it operates. For example, a unit may have been tested under a
combination of different accelerated stresses such as humidity, temperature,
voltage, etc. It is clear then that such factors affect the failure rate of a unit.

The instantaneous failure rate (or hazard rate) of a unit as a function of
time only is given by:

h(t) =
f(t)

S(t)
(8.2)

where:
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• f(t) is the probability density function, of the event time T .

• S(t) is the survival function, i.e P(T > t) the probability of failure
occurring after time t or the probability of surviving up to time t.

To accommodate the fact that the failure rate of a unit being dependent
not only on time but also on other covariates, the above equation must be
modified in order to be a function of time and of the covariates.

The proportional hazards model assumes that the failure rate (hazard rate)
of a unit is the product of two components stated below

• an arbitrary and unspecified baseline failure rate, h0(t), which is a
function of time only.

• a positive function ψ(x, β), independent of time, which incorporates
the effects of a number of covariates such as humidity, temperature,
pressure, voltage, etc.

Thus the hazard (failure) rate of a unit is then finally given by:

h(t,x, β) = h0(t)ψ(x, β) (8.3)

where:

• x is a column vector consisting of the measurable covariates

• β is a column vector consisting of the unknown parameters (also called
regression parameters) of the model.

It can be assumed that the form of ψ(x, β) is known and h0(t) is unspecified.
Different forms of ψ(x, β) can be used. However, the exponential form due
to Cox (1972,1975) is mostly used which ensures the hazard as a function of
the measured covariates maintains positivity which is given by:

ψ(x, β) = ex
′β (8.4)

The failure rate can then be written as:

h(t,x, β) = h0(t)e
x′β

The form of dependence on covariates also ensures as stated above that the
hazard is always positive in order to make practical sense.

A remarkable property of the model that avoids the need to specify h0(t)
can be shown as follows. If lifetimes T1 and T2 have proportional hazards say
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hi(t) = h0(t)ηi

for i = 1, 2, respectively, then

P (T1 < T2) =
η1

η1 + η2
(8.5)

regardless of the shape of the baseline hazard function. Here ηi can be
defined as the risk score for unit i = 1, 2 entering as a function of individual
specific covariates. The result in equation (8.5) is also similar to the case of
two independent exponential random variables with parameters λ1 and λ2

stating that

P (X1 < X2) =
λ1

λ1 + λ2

The intervals between successive death times convey no information about
the effect of the explanatory variables on the hazard function of death, since
the baseline hazard function has an arbitrary form.

So we could have h0(t) and h(t) equal to zero in those time intervals in
which there are no deaths. In other words only the ordered statistic of times
of deaths is required.

It is sufficient to consider the probability that that the jth individual who dies
at tj, conditional on tj being one of the observed set of death time t1, t2, . . . , tr.
Where we assume that the data available has n individuals amongst whom
there are r distinct death times and n − r right censored survival times.
We further assume that there are no tied death times and that the r deaths
are ordered, that is t1 < t2 < . . . < tr, so that tj is the jth ordered death time.

If the vector of explanatory variables for the individual who dies at tj is
Xj then extending the result stated in equation (8.5) we deduce that

P [individual with Xj dies at tj|One death at tj]

=
P [individual with Xj dies at tj]

P [One death at tj]

= hi(tj)∑
l∈Rtj

hi(tj)

= e
X′

j
β∑

l∈Rtj

e
X′

j
β

(8.6)
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Taking the product of the conditional probabilities over the r death times we
have:

P (Ti1 < Ti2 < . . . < Tir) =
∏r

j=1
e
X′

j
β∑

l∈Rtj

e
X′

j
β (8.7)

where Rtj is the number at risk just before the death at time tj also known
as the risk set at time tj. Expression (8.7) is what is popularly known as
the Cox partial likelihood (CPL) because (i) the baseline hazard need not
be explicitly specified and (ii) no distributional assumption is made about
event times (Cox, 1975). The only problem with CPL is that analytical
maximization of the log-likelihood to estimate the vector of parameters β
is complex. However most statistical computing system such as SAS and
Genstat have numerical procedures for estimating the parameters such as
proc PHREG in SAS and RPHFIT in Genstat.

8.5 Replicated Poisson Process

In this section methods suitable for modelling disease processes such as
epilepsy data will be developed in increasing order of complexity, pointing
out the benefits and deficiencies of each method in a progressive manner.
The occurrence of epilepsy events is modelled as a replicated Poisson pro-
cess. Table 3.1 shows a data set from a study of treatment of epilepsy, where
the patients were randomized to either active or placebo groups. Because
of staggered entry to the study, patients have different follow up periods.
The patients’ or their care givers were asked to record the time of epileptic
attacks during follow up. Note that each individual sequence of events is a
Poisson process. The parameter of interest in these methods is the event rate
or hazard rate in the context of survival analysis.

8.5.1 Method One

This method will only make use of the different follow-up periods among
patients, but will make no use of the times of attacks hence it can not be
generalized if one needs to consider more covariates.

The following assumptions are going to be made:

• Event occurrence within each patient follow a Poisson point process.

• The rate or intensity is constant over time.
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• λa and λb will be the rate of attacks in the active and placebo groups
respectively.

• The aim is to compare λa and λb from the repeated measurement or
longitudinal data.

Let ni denote the total number of attacks for patient i while ya and yp denote
the total number of events in the active and placebo treatment groups. Thus
ya =

∑
a
ni and yp =

∑
p
ni where

∑
a

and
∑
p

means summations over the active

and placebo groups respectively. Thus following the assumptions above we
can infer the following distributional assumptions.

ni ∼ Poisson(Tiλ) (general) (8.8)

ya ∼ Poisson(
∑
a

Tiλa) (active) (8.9)

yp ∼ Poisson(
∑
p

Tiλp) (placebo), (8.10)

using the known result that the sum of Poisson random variables is itself
Poisson distributed. The parameter λ in the first equation is either λa or λp

depending on whether individual i is from the active or placebo groups. The
parameter of interest here is

θ =
λa

λp

(8.11)

Conditional on ya + yb it can be shown that ya is Binomially distributed

Table 8.1: Table of Summaries

Active Placebo
ya or yp 29 71∑

Ti 97 109

with probability of success given by

p(θ) =

∑
a

Tiλa∑
a

Tiλa+
∑
p

Tiλp
=

θ
∑
a

Ti

θ
∑
a

Ti+
∑
p

Ti

thus the conditional likelihood for θ can be written as:

L(θ) = ( 97θ
97θ+109

)29(1− 97θ
97θ+109

)71,
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since
∑
a
Ti = 97 and

∑
p
Ti = 109. Note that the constant terms which are

independent of θ are omitted in the likelihood expression.

The maximum likelihood estimate (MLE) of θ is calculated by maximising
the function

lnL(θ) = 29 ln(97θ)− 29ln(97θ + 109) + 71ln
(
1− 97θ

97θ + 109

)
(8.12)

and since
∂ lnL(θ)

∂θ
=

29

θ
− 100

(
97

97θ + 109

)
equating ∂lnL(θ)

∂θ
to zero the equation that yields the maximum likelihood

estimate of θ is:
29

θ̂
= 100(

97

97θ̂ + 109
) (8.13)

leading to

θ̂ =
109

97(100
29
− 1)

θ̂

that is

=
(29

97
)

( 71
109

)
= 0.459

The standard error is se(θ̂) = 0.10. The likelihood of the null hypothesis
H0 : θ = 1 is very small, hence we conclude that the active treatment leads
to fewer attacks of epilepsy. In other words the hazard of epilepsy for the
treatment group is less than that for the placebo group. The 95% interval
for θ̂ is (0.263,0.655). Clearly the interval does not include one which further
confirms the result.

8.5.2 Method Two

This time we will use the Poisson regression which can easily accommodate
some covariates. Just like method one this method will make no use of the
information about event times. We will use the same assumptions we used
in method one. Let xi = 1 if the patient i belongs to the active treatment
group and zero if patient i belongs to the placebo group. We will further
assume that the number of attacks ni is Poisson with mean event rate

µi = Ti exp(β0 + βixi)
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of which the above equation is equivalent to the linear model

lnµi = lnTi + β0 + βixi.

with a log link function. This model can be fitted as a GLM for a Poisson
distributed response where the term logTi is declared as an OFFSET. The
parameter estimates obtained by using proc GENMOD in SAS are shown in
Table 8.2 below. One can note that eβ̂1 = e−0.7787 = 0.46 = θ̂ as computed
by method one. The 95 % confidence for θ is

(exp(β̂1 − 1.96 ∗ s.e(β̂1)), exp(β̂1 + 1.96 ∗ s.e(β̂1))) = (0.280, 0.707)

which is slightly shifted to the right compared to the direct likelihood one.
It is important to note the similarity between the Cox proportional hazard

Table 8.2: Epilepsy data.

Effect Parameter Estimate se Chi-Square p-value
Intercept βo -0.4287 0.1187 13.05 0.0003
Treatment β1 -0.7787 0.2204 12.49 0.0004

model and the Poisson regression. In fact we can state the following result
relating the two.

Theorem
The poisson regression is a special case of the Cox proportional hazards
model.

Proof
Let the common event baseline rate be µ0(t) in both groups. The

log µi(x = 1) = log Ti + log µ0(t) + β0 + β1

log µi(x = 0) = log Ti + log µ0(t) + β0

Then log hazard ratio

log
µi(x = 1)

µi(x = 0)
= β

which is independently baseline rate µ0(t).
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8.5.3 Method Three

Unlike the other two methods mentioned in the previous sections this method
makes use of the times of attacks and it does not assume constant intensity
for the Poisson processes for each individual, hence it can be generalized.

We assume that the attacks for a patient follow a Poisson point process with
intensity λx(t), where x is the covariate vector. We will use the following
proportional intensity model

λx(t) = λ0(t, α)g(x, β), (8.14)

where λ0(t, α) is the baseline intensity function dependent on an unknown
parameter α. The effect of covariate x is to modify the baseline intensity
proportionally on a time independent function g(x, β). The function g(x, β)
depends on β an unknown parameter which expresses the effect of the covari-
ate on the intensity function, for example using the log linear or equivalently
the multiplicatively Cox proportional like model gives rise to the following
expression for λx(t);

λx(t) = λ0(t, α)ex′β.

The baseline intensity λ0(t, α) requires a parameter α, which is like a nui-
sance parameter since it is not the parameter of interest.

Denoting the ni recurrent event times of subject i by ti1, . . ., tini
, implies

that the contribution of this subject to the likelihood is given by

Li(α, β) = e−Λxi (Ti)
ni∏

j=1

λxi
(tij), (8.15)

where

Λxi
(Ti) =

∫ Ti

0
λxi

(t)dt

= g(xi, β)
∫ Ti

0
λ0(t, α)dt

= g(xi, β)Λ0(Ti, α).

(8.16)

So

Li(α, β) = e−g(xi,β)Λ0(Ti,α){g(xi, β)Λ0(Ti, α)}ni

ni∏
j=1

λ0(tij, α)

Λ0(Ti, α)

≡ L1i(α, β)L2i(α)

(8.17)
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where

L1i(α, β) = e−g(xi,β)Λ0(Ti,α){g(xi, β)Λ0(Ti, α)}ni . (8.18)

Expression (8.17) is obtained by using result in equation (8.16) in equation
(8.15) and writing λxi

(tij) in the general form given in equation (8.14). The
total likelihood from all, say m, individuals is

L(α, β) =
m∏

i=1

Li(α, β)

=
m∏

i=1

L1i(α, β)
m∏

i=1

L2i(α)

= L1(α, β)L2(α).

(8.19)

Hence one can see that the information about β is contained only in the first
term L1(α, β); of which this is the likelihood based on the number of events
Ni from each individual following the model

Ni ∼ Poisson(Λ0(Ti, α)g(xi, β)). (8.20)

Note that method one in section (8.5.1) is obtained by assuming a constant
intensity.

Since α is a nuisance parameter having to model Λ0(Ti, α) is a nuisance,
since it is not directly relevant to the question of interest namely to assess
the treatment effects and comparisons. The data structure makes it difficult
to specify an appropriate model for Λ0(Ti, α); for example, we cannot sim-
ply plot the histogram of the event times because some of the event times
are truncated times and not actual event times. The decomposition of the
likelihood suggest the following possible method of estimation.

• Estimate α from L2(α), which is a conditional likelihood given n′is.This
component is fully determined by the set of event times t′ijs.

• Use α̂ to compute Λ0(Ti, α̂).

• Estimate β in the Poisson regression based on the data (ni, xi) with
Λ0(Ti, α̂) as an offset term.

To avoid dealing with the nuisance parameter let us further assume that
Ti ≡ T . We first need the result that if Xi for i = 1, . . . ,m, are independent
Poisson(λi), then the conditional distribution of (X1, . . . , Xm) given

∑
Xi is

multinomial with parameters (π1, . . . , πm), where πi = λi∑m

j=1
λi

. Applying this

result to
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Ni ∼ Poisson(Λ0(Ti, α)g(xi, β)).

i = 1, 2, . . . ,m and letting n =
∑
i
ni, we now have

L1(α, β) = P (N1 = n1, . . . , Nm = nm)

= P (N1 = n1, . . . , Nm = nm|
∑

Ni = n)P (
∑

Ni = n)

=
m∏

i=1

(
g(xi, β)∑m

j=1 g(xi, β)

)ni

P (
∑

Ni = n)

≡ L10(β)L11(α, β),

(8.21)

where

L10(β) =
m∏

i=1

(
g(xi,β)

m∑
j=1

g(xj ,β)

)ni

.

If we use the common log linear model

λx(t) = λ0(t, α)ex′β,

then

L10(β) =
m∏

i=1

(
ex′

i
β

m∑
j=1

e
x′

j
β

)ni

,

which is exactly the Cox partial likelihood for this particular setup.

In general when Ti 6= T , and assuming a Poisson process with proportional
intensity, the Cox partial likelihood is defined as follows. One should note
that this formulation allows the covariate to change over time. Let tij denote
the jth event of subject i, xij the associated covariate vector and Rij the set
of subjects still at risk or the risk set at time tij.
Then

L10(β) =
m∏

i=1

ni∏
j=1

(
ex′ijβ∑

k∈Rij

ex
′
kj

β

)
.

To apply this approach to the epilepsy data we first need to consider the
approximate Cox partial likelihood, first assuming the the follow-up period
Ti’s are the same for all subjects. Let the covariate xi = 1 if i belongs to the
active therapy group and xi = 0 otherwise. Then

L10(β) =
m∏

i=1

(
ex′ijβ

m∑
j=1

ex′
kj

β

)ni

,

where ex′iβ = θ if xi = 1 and ex′iβ = 1 otherwise; then
∑m

j=1 e
x′kjβ = 10θ + 12,

so
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L10(β) = ( θ
10θ+12

)ya( 1
10θ+12

)yp ,

The maximum likelihood estimate of θ is calculated as follows:

lnL10(β) = yalnθ − yaln(10θ + 12)− ypln(10θ + 12)

∂lnL10(β)
∂θ

=
ya

θ
− 10yp + 10ya

10θ + 12

ya

θ̂
=

10yp + 10ya

10θ̂ + 12

θ̂(10yp + 10ya) = (10θ̂ + 12)ya

θ̂ =
12ya

10yp

θ̂ = 0.490.

(8.22)

The standard error of θ̂ is 0.103 and the 95% confidence interval of θ̂ is
(0.288;0.692). Since 1 is not in the interval we can conclude that the active
treatment has led to fewer epilepsy attacks.

Comparing the three methods

Table 8.3 is a summary of the estimates of θ from the three different methods.
Method one and two give the same estimate of θ̂, whereas the third method
gives a slightly different estimate, this is because in method three we assumed
that the patients were followed for the same number of weeks (Ti = T ) of
which this was not the case. The confidence intervals are closer for method
two and three. Methods one and three seem to be less conservative than
method two which explicitly controlled for variable exposure times by using
logTi as an offset in the regression model. Thus the smaller standard errors
in methods one and three may arise due to the assumption Ti = T of which
this was not the case.

8.6 Recurrent Events

Recurrent events occur frequently in longitudinal studies involving multiple
subjects. Some examples are seizures in epileptic patients , successive tumors
in cancer studies, attacks by opportunistic infections for HIV/AIDS patients
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Table 8.3: The following table compares the estimates of θ̂ obtained from
the three methods mentioned earlier.

Method θ̂ se 95% Confidence interval
Method One 0.459 0.10 (0.263,0.655)
Method Two 0.46 0.1187 (0.280;0.707)
Method Three 0.490 0.103 (0.288,0.692)

and many more. Treatment strategies such as HAART (Highly Active Anti-
Retroviral Therapy) are being implemented in order to reduce the intensity
of such attacks. However models for recurrent events or multiple events in
a subject are necessary in order to better compare different treatment or
intervention strategies in such circumstances.

Models for recurrent events are usually discussed through one of the fol-
lowing three related functions namely,

• their intensity functions

• their hazard functions

• or their cumulative mean function.

For example if one chooses to use the intensity function approach then the
kind of approach that can be used is the Andersen and Gill (1982) model
which is discussed in section 8.7.

If we are dealing with multiple events in the presence of death one might
want to model both events and death following appropriate suggestions by
Ghosh (2000). Ghosh (2000) gives an overview on how the models for re-
current events can be modified so that they can incorporate death into the
analysis. Here as expected death is treated as an absorbing state as in the
Markov chain formulation (Feller, 1957).

For the analysis of multiple events with observation gaps Zhao and Sun (2006)
discuss the cumulative mean function and regression analysis approaches for
analysis.

Sturmer (2000) shows how the logistic, Poisson, and two different Cox pro-
portional hazards regression approaches for the analysis of multiple events
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can be applied in the field of epidemiology.

The following sections focus on discussing methods for the analysis of re-
current events where the main focus is on the three widely used variance-
correction models: the “independent increments” model developed by An-
derson and Gill (1982), the marginal risk set model of Wei et al.(1989),
and the conditional risk-set model (Prentice et al.,1981), which may be es-
timated in either total or gap time. All are related in that, compared to
the standard Cox model, they use the non-independence caused by repeated
events to empirically correct the standard error estimates. The key distinc-
tion among these models is “the way that the risk sets are defined at each
failure” (Cleves, 1999). The risk set defines which observation may fail at a
particular time; as a result of the different risk-set definitions, very different
processes are modelled by the three alternatives. Thus the estimated coeffi-
cients will vary among these three variance corrected models because of the
different underlying assumptions.

8.7 Andersen-Gill model

The simplest variance-corrected model is that of Andersen and and Gill
(1982) (hereafter AG). The key characteristic of the AG model is “the as-
sumption that the risk of an event for a given subject is unaffected by any
earlier events that occurred to the same subject, unless terms that capture
such dependence are included explicitly in the model as covariates” (Oakes,
1992). That is, multiple events for any particular observation are assumed to
be conditionally independent; for this reason, the AG model is often referred
to as the “independent increment” model. When events are not independent,
robust variance estimates allowing for clustering within units may be used
(for this see for example, White, 1980).

When the time scale is duration since entry (exposure), the intensity pro-
cess for the ith subject is

Yi(t)λ0(t)exp(Xi(t)β) (8.23)

In practical terms, the Cox and AG models are essentially indistinguishable,
and in fact the former can be shown to be a special case of the latter. That
is in the definition of the indicator variable Yi(t) for survival data is that the
individual ceases to be at risk when an event occurs and Yi goes to zero, but
for the AG model for recurrent events, Yi(t) remains one as events occur.
Thus, while the AG approach is straightforward to estimate, the assumption

99



of independent increments is strong, particularly if the ordering of events
may be important. Also, unlike the other models considered here, the AG
model restricts the baseline hazard rate for all events to be the same. For
many applied problems, the assumption of independent increments will not
be acceptable, at least not without empirical testing.

8.8 Wei, Lin and Weissfeld model

The marginal risk-set approach of Wei, Lin, and Weissfeld (1989) (hereafter
WLW) applies the traditional competing risks set up for multiple events to
repeated events. Ordered events data are treated as if they presented a typi-
cal competing risks problem: each individual is “at risk” for the first, second,
third, etc., event from the beginning of the study period. The data are then
stratified by event number, and separate baseline hazards are estimated at
the first occurrence of the event under study, the second, etc. The approach
is thus referred to as the “marginal risk set” model because, within these
event defined strata, marginal data are used. As a result, at any point in
time, all individuals that have not yet experienced k events are assumed to
be “at risk” for the kth event.

The intensity or hazard function for the jth event for the ith subject is:

Yij(t)λ0j(t)exp(Xi(t)βj) (8.24)

Unlike the AG model, stratification by event allows baseline hazards for each
event to differ; as in the AG model, however, covariate effects are assumed
to be constant across event ranks. The signature characteristic of the WLW
approach is that all observations or individuals are at risk for all events at
all times prior to experiencing that event. That is, in the case of repeated
events of the same type, the “fifth” event can (in theory) occur at any time,
even prior to the “first,” “second,” etc. events.

8.9 Prentice, Williams and Peterson model

In the conditional model of Prentice, Williams, and Peterson (1981) (here-
after PWP), an observation is not at risk for a later event until all prior
events have already occurred. That is gap times between recurrent events
are modelled equivalently and the data are stratified by the number of pre-
vious events.

100



Accordingly, the “risk set” at time t for the kth occurrence of an event is lim-
ited to those observations under study at time t who have already experienced
k − 1 events of that type. As in the WLW model, estimates are then strati-
fied by event rank, so that the different events have varying baseline hazards.
As in the previous models, however, covariate effects are again assumed to
be constant across strata, though as in the WLW model strata-by-covariate
interactions may be estimated. An additional feature of the conditional risks
model is that the model may be estimated in either total time (i.e., time
from each unit’s entry into the observation set) or in gap-time (also referred
to as “interevent time ”), defined as the duration since the previous event.

8.10 Comparing the three methods

The similarities and differences of the variance-corrected models are summa-
rized in table 8.4 below. All three models use robust variance estimates (Wei
et al; 1989) to address the potential for interdependence due to repeated
events. Robust standard errors assume that observations are independent
across units (or “clusters”) but not necessarily within those units. (For more
information on the robust variance computation see Therneau and Gramb-
sch, 2000.)

8.11 Fitting the three models

For us to be able to fit the models we need to create appropriate data sets.
Creation of appropriate data sets is done using the counting process pioneered
by Andersen and Gill (1982). We will illustrate this using the following
extract of the data set being modelled as shown in table 8.5, where we assume
that subject 19 experiences the maximum number of attacks.

AG model data setup

As an example, let us use the response values for subject 9 (with time-
independent indicator covariates treatment = 1 for the active treatment
group and 0 for the placebo group) who experiences an event on week 0.1, 2
and 3.2 and has now been followed to week 11. This subject would be coded
as having contributed four observations or “lines” of data whose intervals are
(0,0.1], (0.1,2], (2,3.2], (3.2,11] with corresponding exit status codes of 1, 1,
1 and 0. The data file for this subject is shown below in Table 8.6 where the
pair of variables Tstart, Tstop define the time exposure interval or the risk
interval.
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Table 8.4: Comparison of Variance-Correction Models for Repeated Events

Model Properties
Risk set for Time Robust Stratification
Event k at Scale Standard by Event

Time t Errors
AG Independent Duration since Yes No

Events starting observation
WLW All subjects that haven’t Duration since Yes Yes

experienced event k starting observation
at Time t

PWP All subjects that have Duration since Yes Yes
Total time experienced event k − 1 starting observation

and haven’t experienced
event k, at Time t

PWP All subjects that have Duration since Yes Yes
Gap time experienced event k − 1 previous event

and haven’t experienced
event k, at Time t

Table 8.5: Data being used to illustrate how to create appropriate data sets

Subject i Treatment Ti ni Time of events
8 active 8 3 0.2 3.2 7.7
9 active 11 3 0.1 2 3.2
10 active 8 3 0.1 3.2 3.7
11 placebo 11 4 2.3 7.9 8 8.8
19 placebo 7 4 0.9 2.2 5.2 6.6
20 placebo 4 2 2.2 3.2

The following gives the SAS code that uses the above data in the PHREG
procedure, where Status(0) indicates that an event of interest has not oc-
curred at that exit time, and that the subject is still at risk for the event(s)
of interest at that time. SAS assumes that the other exit status values pro-
vided in the data set are the event(s) of interest.
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Table 8.6: AG model data

Subject Tstart Tstop Status Treatment
9 0 0.1 1 1
9 0.1 2 1 1
9 2 3.2 1 1
9 3.2 11 0 1

proc phreg;
model (Tstart, Tstop) * Status(0) = Treatment;
run;

WLW model

The WLW data set contains 5 lines of data for each subject since the maxi-
mum number of events recorded for any one of the participants is 4. As an
example, let us use the response values for subject 9 (with time-independent
indicator covariates treatment = 1 for the active treatment group and 0 for
the placebo group) who experiences an event on week 0.1, 2 and 3.2 and has
now been followed to week 11. This subject would be coded as four obser-
vations or “lines” of data whose intervals are (0,0.1], (0.1,2], (2,3.2], (3.2,11]
with corresponding exit status codes of 1, 1, 1 and 0. The data file for this
subject is shown below in Table 8.7 where the variable CT defines the cu-
mulative time since exposure (origin) and enum is the variable to index the
multiple events :

The following gives the SAS code that uses the above data in the PHREG

Table 8.7: WLW model data

Subject CT Status Treatment Enum
9 0.1 1 1 1
9 2 1 1 2
9 3.2 1 1 3
9 11 0 1 4
9 11 0 1 5

procedure to fit the the WLW model:
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proc phreg covs(aggregate);
model CT*Status(0)=Trt1 Trt2 Trt3 Trt4 ;

strata Enum;
id ID;
Trt1= Trt*(enum=1);
Trt2= Trt*(enum=2);
Trt3= Trt*(enum=3);
Trt4= Trt*(enum=4);
Trt5= Trt*(enum=5);
run;

The variable Enum is specified in the STRATA statement so that there
is one marginal Cox model for each distinct value of Enum. The variables
Trt1, Trt2, Trt3, Trt4, and Trt5 in the MODEL statement are event-specific
variables derived from the independent variable treatment by the given pro-
gramming statements. One can avoid using the programming statements in
PROC PHREG if you create these event-specific variables in the input data
set by using the same programming statements in a DATA step.

PWP model

To illustrate how the data for the PWP model is setup we will use subject 9
again. The data structure for this subject is shown below in Table 8.8 where
the variable gaptime defines the time interval between consecutive events:

The following gives the SAS code that uses the above data in the PHREG

Table 8.8: PWP model data

Subject Tstart Tstop Gaptime Status Treatment Enum
9 0 0.1 0.1 1 1 1
9 0.1 2 1.9 1 1 2
9 2 3.2 1.2 1 1 3
9 3.2 11 7.8 0 1 4
9 3.2 11 7.8 0 1 5

procedure to fit the the PWP model for total time:
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proc phreg covs(aggregate);
model (Tstart,Tstop)*Status(0)=Trt1 Trt2 Trt3 Trt4 ;

strata Enum;
Trt1= Trt*(enum=1);
Trt2= Trt*(enum=2);
Trt3= Trt*(enum=3);
Trt4= Trt*(enum=4);
Trt5= Trt*(enum=5);
run;

8.12 Application: Fitting the three models

to the Epileptic data

In this section we will fit the AG, WLW, and PWP models to the epilepsy
data set with treatment as the only covariate given in table 3.1 using proc
phreg in SAS. We can not fit these models to the Thall and Vail data because
in the Thall and Vail data set does not record the time at which a single event
occurs. That is the counting process form is necessary; one observation per
time interval or event.

AG model

Table 8.9 shows the results for the treatment effect in the AG model. The
coefficient of the AG model is −0.71990, thus the hazard ratio is e−0.71990 =
0.487 = θ̂. A 95% confidence interval for θ̂ is (0.258; 0.702). Since 1 is not
in the interval we can conclude that the active treatment has led to fewer
epilepsy attacks.

Table 8.9: AG model

Parameter DF Estimate Std Error χ2 p-value θ
Treatment 1 -0.71990 0.22296 10.4253 0.0012 0.487
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Marginal risk set or WLW

Out of the 22 patients, all patients have at least one epileptic seizure episode,
20 patients have two recurrences, 17 patients have three recurrences, 12 pa-
tients have four recurrences, 9 patients have 5 recurrences and so on. These
figures are shown in table 8.10. Parameter estimates for the eleven marginal

Table 8.10: Summary of the Number of Event and Censored Values

Percent
Stratum Visit Total Event Censored Censored

1 1 22 22 0 0.00
2 2 22 20 2 9.09
3 3 22 17 5 22.73
4 4 22 12 10 45.45
5 5 22 9 13 59.09
6 6 22 8 14 63.64
7 7 22 6 16 72.73
8 8 22 3 19 86.36
9 9 22 1 21 95.45
10 10 22 1 21 95.45
11 11 22 1 21 95.45

Total 242 100 142 58.68

models are shown in table 8.11. The p-values in table 8.11 indicate a lack
of evidence of a treatment effect in the first three recurrences at the 5% sig-
nificance level. But then the treatment effect is significant in the rest of the
strata. The optimal weights for estimating the parameter of the common
treatment effect are 0.51546, 0.49266, -0.53580, 0.25013, -0.04812, 0.55946,
-0.25160, 0.12184, 0.55716, -0.33300 and -0.32830 for Trt1, Trt2, Trt3, , Trt4,
Trt5, Trt6, Trt7, Trt8, Trt9, Trt10, and Trt11, respectively, which gives a pa-
rameter estimate of -6.2062 with a standard error estimate of 0.2651. A more
sensitive test for a treatment effect is the 1 degree of freedom test based on
this common parameter; of which there is sufficient evidence for such effect
at the 5% level (< 0.0001). This 1 degree of freedom estimate is obtained by
specifying the following option in the model statement
TREATMENT: test trt1,trt2,trt3,trt4,trt5,trt6,
trt7,trt8,trt9,trt10,trt11/average e;

Table 8.11 shows the treatment effects within strata for the WLW model.
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Table 8.11: WLW model

Parameter DF Estimate Std Error p-value θ
Trt1 1 -0.78174 0.48508 0.1071 0.458
Trt2 1 -0.62714 0.41647 0.1321 0.534
Trt3 1 -0.92881 0.49663 0.0615 0.395
Trt4 1 -2.51403 0.70428 0.0004 0.081
Trt5 1 -2.62655 0.98041 0.0074 0.072
Trt6 1 -16.49074 0.47705 < .0001 0.000
Trt7 1 -16.34941 0.53072 < .0001 0.000
Trt8 1 -16.37891 0.62425 < .0001 0.000
Trt9 1 -16.20289 1.00000 < .0001 0.000
Trt10 1 -16.20289 1.00000 < .0001 0.000
Trt11 1 -15.99848 1.02470 < .0001 0.000

For strata one, the estimated coefficient is close to the AG model. Thus the
hazard ratios are close that is 0.487 for the AG model and 0.458 for the WLW
model. The relative risk of having a second epilepsy attack (0.534) is lower
than that of experiencing the first epileptic attack (0.458). The data seems to
suggest that after a person in the treatment group has had 5 epilepsy attacks
they become risk free compared to the placebo group since the hazard ratio
becomes 0. However this needs to be interpreted with caution because not
all individuals have equal number of events.

PWP model for gap time

Results of the analysis of the PWP gap-time model are shown in table 8.12.
The p-values in table 8.12 indicate a lack of evidence of a treatment effect
in all the recurrences at the 5% significance level. For strata one the PWP
for gap time and the WLW have the same hazard ratio thus the estimated
coefficient of the PWP model for gap time is also close to the AG model, the
relative risk of having a second epilepsy attack (0.860) is higher than that of
having the first epileptic attack (0.458). The data seems to suggest that a
person is not at risk of having a fourth epilepsy attack but is at risk of having
a fifth epilepsy attack. This does not make sense. Maybe such discrepancies
are due to the fact that not all individuals have equal number of events.
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Table 8.12: PWP model for gap time

Parameter DF Estimate Std Error p-value θ
Trt1 1 -0.78174 0.49834 0.1167 0.458
Trt2 1 -0.62714 0.46156 0.7433 0.860
Trt3 1 -0.81502 0.55636 0.1288 0.430
Trt4 1 -2.22264 1062 0.9875 0.000
Trt5 1 -0.69137 1.15719 0.8586 1.229
Trt6 1 -14.40644 1924 0.9936 0.000
Trt7 0 0 . . .
Trt8 0 0 . . .
Trt9 0 0 . . .
Trt10 0 0 . . .
Trt11 0 0 . . .

Table 8.13: PWP model for total time

Parameter DF Estimate Std Error p-value θ
Trt1 1 -0.78174 0.49834 0.1167 0.458
Trt2 1 -0.62714 0.46920 0.1321 0.534
Trt3 1 -0.81502 0.52869 0.1232 0.443
Trt4 1 -2.22264 0.79841 0.0054 0.108
Trt5 1 -0.69137 1.07104 0.5186 0.501
Trt6 1 -14.40644 1205 0.9888 0.000
Trt7 0 0 . . .
Trt8 0 0 . . .
Trt9 0 0 . . .
Trt10 0 0 . . .
Trt11 0 0 . . .
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PWP model for total time

Table 8.13 shows the results of the PWP model for total time. One should
note that the regression coefficients for the first epileptic seizure are the same
as those of the gap time model, since the total time and the gap time are the
same for the first recurrence. There is no significant treatment effect on the
total times for any of the recurrences except the fourth recurrent event.
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Chapter 9

Conclusion

The modelling approaches discussed in this project have shown that there
are many options available when one is modelling multiple events of the same
type. When choosing the appropriate model “one” should bear in mind the
objectives of the study and the type of data to be used. In this project we
mainly focused on methods which used the counting process theory because
the data we were dealing with was in the form of counts.

The GEE works best if the number of observations per subject is small and
the number of subjects is large or if in longitudinal studies (e.g. growth
curves), the measurements are taken at the same time for all subjects. In
chapter 6 we mentioned that main advantage of GEE models is that, suppose
the mean is correctly specified, but the variance and correlation structure are
incorrectly specified, then GEE models still provide consistent estimates of
the parameters and hence the mean function is correctly estimated, further
consistent estimates of the standard errors can be obtained via a robust sand-
wich estimator. Hence when one’s main interest is the population averaged
estimates one can safely choose the GEE approach. One might also choose
to use the Andersen and Gill(1982) model method in this situation.

On the other hand if one’s interest is in modelling the different hazard func-
tions for different strata then the WLW or PWP models maybe the most
appropriate choices.

Generalized linear mixed models (GLMMs)are variable when the interest is
in the lies in the individual response profiles. When one is looking at random
effects which encompass variation among individuals one should choose gen-
eralized linear mixed models. Generalized linear mixed models (GLMMs)
combine the properties of two statistical frameworks that is, linear mixed
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models (which incorporate random effects) and generalized linear models
(which handle non-normal clustered/repeated data. GLMMs are the best
tool for analyzing non normal data that involve random effects: all one has
to do, is to specify a distribution, link function and structure of the random
effects.

In a nutshell the methods discussed are very useful when it comes to mod-
elling epidemics and relevant parameters such as forces of infection. In par-
ticular the analysis of multiple events of the same type per subject can be
applied when it comes to the issue of HIV/AIDS. Since HIV/AIDS patients
do not usually die because of HIV/AIDS but due to opportunistic diseases
such as TB(Tuberculosis) and PCP (Pneumocystis carinii pneumonia). Of
which these diseases are recurrent thus the effect of treatment on these dis-
eases can be modelled using the methods discussed in this dissertation. The
project has addressed a very important problem in Biostatistics namely the
analysis of repeated data.

Future work will include modelling the missingness pattern and their effect
to parameter estimation and inferences and including a frailty term in the
Cox proportional hazards model.

111



Bibliography

[1] http://en.wikipedia.org/wiki/Iteratively re-weighted least squares

[2] http://www.epilepsyfoundation.org/about/faq/

[3] http://en.wikipedia.org/wiki/Generalized linear model

[4] http://en.wikipedia.org/wiki/Poisson-process

[5] http://support.sas.com/documentation/cdl/en/
statug/63033/HTML/default/statug phreg sect041.htm

[6] Ake C.F., Carpenter A. L. Extending the Use of PROC PHREG in Sur-
vival Analysis. SAS Conference Proceedings: WUSS 2003, San Fran-
cisco, California

[7] Allison P.D., Logistic regression using the SAS system : theory and ap-
plication SAS Institute.

[8] Andersen P. K. and Gill R. D. (1982) Cox’s Regression Model for Count-
ing Processes: A Large Sample Study. Annals of Statistics, 10, 4:1100-
1120.

[9] Balshaw R. F. (2002)A Semiparametric Model for the Analysis of Re-
current - Event Panel data. Biometrics, 58, 324-331.

[10] Box G. E. P.,Jenkins G. M., and Reinsel G. C.3rd edition, (1994)
Time Series Analysis: Fore-casting and Control. Englewood Cliffs, NJ:
Prentice-Hall.

[11] Breslow N.E. and Clayton D.G.(1993) Approximate inference in gener-
alized linear mixed models, Journal of the American Statistical Associ-
ation 88,9-25.

[12] Breslow N.E. and Lin X.(1995) Bias correction in generalized linear
mixed models with a single components of dispersion, Biometrika 82,
81-91.

112



[13] Breslow N.E. and Lin X.(1996) Bias correction in generalized linear
mixed models with a multiple components of dispersion, Journal of the
American Statistical Association 91, 1007-1016.

[14] Cleves M. (1999) Analysis of Multiple Failure-Time Data with Stata.
Stata Technical Bulletin 49, 30-39.

[15] Cook R.J. and Lawless J.F. (2002). Analysis of repeated events. Statis-
tical Methods in Medical Research,11, 141-166.

[16] Cox D.R. (1972) Regression models and life-tables (with discussion).
Journal of Royal Statistical Society, Series B, 74, 187-220.

[17] Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269-276.

[18] Cox D.R. and Miller H.D. (1965) The Theory or Stochastic Processes.
London : Chapman & Hall.

[19] Cowling B.J., Hutton J.L. and Shaw J.E.H. (2006). Joint modelling of
event counts and survival times. Journal of the Royal Statistical Society,
Series C, 55, 1-39.

[20] Diggle P.J.(1983) Statistical analysis of spatial point patterns. London:
Academic Press

[21] Diggle P.J, Liang K-Y and Zeger S.L. (1994) Analysis of Longitudinal
data. Oxford: Oxford University Press.

[22] Diggle, P.J., Heargerty, P., Liang, K-Y. and Zeger, S.L. 2nd Edition,
(2002) Analysis of longitudinal data. Oxford University Press, Oxford.

[23] Feller W. 2nd Edition, (1957). An introduction to probability theory and
its applications Wiley, (New York).

[24] Ghosh D. (2000). Methods for Analysis of Multiple Events in the Pres-
ence of Death. Controlled Clinical Trials21, 2: 115-126.

[25] Henderson R., Diggle P. and Dobson A. (2000). Joint modelling of lon-
gitudinal measurements and event time data. Biostatistics, 1, 465-480.

[26] Kalbfleisch, J. D. and Prentice R.L (1980) Statistical analysis of failure
time data. New York: Wiley.

[27] Laird M.N. and Ware J.H. (1982) Random effects models for longitudinal
data. Biometics, 38, 963-974. In [52]

113



[28] Lee E.T. 2nd Edition, (1992) Statistical Methods for Survival Data Anal-
ysis New York : Wiley.

[29] Liang K.Y. and Zeger S.L. (1986) Longitudinal data analysis for discrete
and continuous outcomes. Biometrics 42, 121-130.

[30] Little R.J.A. and Rubin, D.B. (2002) Statistical with Missing Data. New
York: Wiley Interscience.

[31] Madekurozwa M.N.(2008) A Quality of Care Audit of Children Referred
with Suspected Epilepsy to Two Hospitals in Pietermaritzburg, KwaZulu-
Natal. University of the Witwatersrand.

[32] McCullagh P. and Nelder J.A. (1989) Generalized Linear Models. Chap-
man and Hall: London.

[33] Molenberghs G. and Kenward M.G. (2007) Missing DAta in Clinical
Trials Wiley: England.

[34] Molenberghs G. and Verbeke G. (2005) Models for Discrete Longitudinal
Data. New York: Springer.

[35] Mwambi H., Ramroop S., Shkedy Z. and Molenberghs G. (2009) A
frequentist approach to estimating the force of infection and recovery
rate for a respiratory disease among infants in coastal Kenya. Statistical
Methods in Medical Research.

[36] Nelder J.A. and Pregibon D. (1987) An extended quasi-likelihood func-
tion. Biometrika 74,2: 221-232.

[37] Nelder J.A. and Wedderburn R.W.M (1972) Generalized Linear Models.
Journal of Royal Statistical Society, Series A (General), 135,3:370-384.

[38] Oakes D.A. (1992) Frailty Models for Multiple Event Times. In Dura-
tion Models for Repeated Events. Box-Steffensmeierm J.M. and Zorn C.
(2002) Journal of Politics,64, 4:1069-1094.

[39] Pawitan Y. (2006) In all likelihood: Staistical Modelling and Inference
Using Likelihood Oxford: Oxford University Press.

[40] Pedroso de Limab A.C, Paes A.T. (2004) A SAS macro for estimating
transition probabilities in semiparametric models for recurrent events.
Computer Methods and Programs in Biomedicine 75, 1:59-65.

114



[41] Phipson B. (2006) Analysis of Time-To-Event Data Including Fraility
Modelling. University of KwaZulu-Natal.

[42] Prentice R. L.,Williams B. J. and Peterson A. V . (1981) On the Re-
gression Analysis of Multivariate Failure Time Data. Biometrika 68, 2:
373-79.

[43] Ross S. M.(1989) Introduction to Probability Models London: Academic
Press, Inc.

[44] Ross S. M. 2nd Edition, (1996) Stochastic Processes New York: John
Wiley & Sons, Inc.

[45] Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-
592.

[46] Schall R. (1991). Estimation in generalized linear models with random
effects. Biometrika 78, 719-727.

[47] Seber, G.A.F (1984) Multivariate Observations New York: John Wiley
& Sons.

[48] Sturmer T., Glynn R. J., Kliebsch U., Brenner H. (2000) Analytic strate-
gies for recurrent events in epidemiologic studies: background and ap-
plication to hospitalization risk in the elderly. Journal of Clinical Epi-
demiology 53, 1: 57 - 64.

[49] Talke, I.S. (2003) Modelling Votality In Time Series Data.University of
KwaZulu-Natal.

[50] Thall, P.F. and Vail, S.C. (1990). Some covariance models for longitu-
dinal count data with overdispersion. Biometrics, 46, 657-671.

[51] Therneau T.M. and Grambosch P.M.(2000) Modeling Survival Data: Ex-
tending the Cox Model. New York: Springer-Verlag.

[52] Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Lon-
gitudinal data.Springer

[53] Wedderburn, R.W.M (1974) Quasi-likelihood functions, generalized lin-
ear models, and the Gauss-Newton method. Biometrika 61,3: 439-447.

[54] Wei L. J., Lin D. Y. and Weissfeld L. (1989) Regression Analysis of Mul-
tivariate Incomplete Failure Time Data by Modeling Marginal Distribu-
tions. Journal of the American Statistical Association 84, 408: 1065-73.

115



[55] White, Halbert. (1980) A Heteroskedasticity-Consistent Covariance Ma-
trix and a Direct Test for Heteroskedasticity. Econometrica 48, 4: 817-
38.

[56] Zhao Q., Sun J. (2006) Semiparametric and nonparametric analysis of
recurrent events with observation gaps. Computational Statistics and
Data Analysis 51, 1924-1933.

116


