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ABSTRACT 

Often, the focus of research into paraffin wax as a hybrid rocket motor fuel is based on its 

combustion and regression rate performance, while very little focus is given to the structural 

performance of paraffin wax as a solid fuel grain during in-flight loading conditions. An in-

depth review of the existing use cases and testing techniques applied to paraffin wax as a hybrid 

rocket motor fuel was conducted as the first objective of this thesis, highlighting the significant 

potential in its application while indicating areas which could benefit from further development. 

Much of the literature was found to be focused on combustion and regression rate performance, 

while very little focus was given to the structural performance of paraffin wax as a solid fuel 

grain during in-flight loading conditions. To adequately describe the state of development, the 

review assessed the progress made in paraffin wax combustion testing and the effects that 

different measurement techniques and geometries had on the combustion properties. The 

differences in results between sources highlight that aspects often overlooked, such as the grade 

of paraffin wax or the casting techniques used, yield different performance results. 

Additionally, the approach to regression rate measurement and the nature of the grain geometry 

affect the quantification of these performance metrics.   

 

The clear deficiency in structural performance data led to an objective of developing a structural 

testing regime aimed at addressing the complex nature of paraffin wax material structural 

performance during flight. The thesis investigates the material characterisation of SASOL 0907 

microcrystalline paraffin wax, with and without a 40 wt% aluminium powder additive. The 

thermal conductivity of paraffin wax containing the aluminium additive was found to be 

approximately three times higher than that of pure wax, creating some concerns regarding the 

extent of thermal penetration during combustion. Structural testing was conducted in the form 

of tensile and compression tests, at three different strain-rates and for three different 

temperatures. The structural test results indicated a strong strain-rate dependency and 

temperature dependency. The stress-strain curves for paraffin wax with the aluminium additive 

showed similar trends to that of pure paraffin wax, but with higher ultimate tensile strength 

values and lower allowable strain. It is also clear that the strain-rate dependency of the material, 

while still evident, is less at higher temperatures. 

 

The material characterisation results indicated that complex computational modelling would be 

required for analysing the structural performance of a paraffin wax fuel grain. Specifically, a 
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model which could adequately capture the strain-rate and temperature dependency of the 

material was required. The use of the Johnson-Cook material constitutive model and the 

Johnson-Cook failure model was found to be appropriate in approximating the material 

response within the tested range. The model is defined by material constants extracted from the 

mechanical testing data. Verification of the model’s validity was achieved by modelling the 

tensile tests and plotting simulated stress-strain curves against the experimental data. The 

verification yielded close agreement between the simulated and actual responses, and on this 

basis, the study proceeded onto detailed fuel grain response modelling.  

 

The grain modelling exercise considered only the ignition pressurisation transient, which is 

considered the worst-case loading condition in a hybrid rocket motor for the purposes of this 

study. The inclusion of theoretical ignition pressure spikes, or hard starts, resulted in a predicted 

failure. The extent of the resultant stresses is highly dependent on the aspect ratio and outer 

diameter of the fuel grain. The results of these simulations indicated that the pressure profiles 

expected in these motors are nearing the limit of the grains’ ability to endure the ignition 

pressurisation.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The need for rockets, and thus rocket propulsion has steadily increased due to our reliance on 

advances such as satellite technology for telecommunications, as well as our drive for 

understanding in fields such as space-based research and space exploration.  

 

In general, chemical propulsion has, over the years, dominated the field of rocket propulsion 

(Sutton and Biblarz, 2001). There are three types of chemical propulsion methods which are 

commonly referred to as solid, liquid and hybrid propulsion systems and are defined by the 

propellants’ state of matter and mixing method during storage or combustion. A schematic of 

the representative configurations of these vehicles is illustrated in Figure 1 - 1.  

 

 

 

 

 

 

 

 

 

 

Hybrid motor propellants generally comprise a liquid or gaseous oxidiser and solid fuel which 

are stored separately until the ignition sequence is initiated. A reverse configuration, liquid fuel 

and solid oxidiser is also possible but is rarely used (Sutton and Biblarz, 2001). Combustion of 

the propellants and the subsequent generation of thrust only occurs when the oxidiser and fuel 

come into contact with each other. This occurs by allowing the oxidiser stream to flow over the 

surface of the solid fuel in the presence of a heat source which initiates combustion. Solid fuel 

grains are generally constructed in a cylindrical form, with one or more axial ports where the 

Figure 1 - 1: Chemical rocket propulsion systems (Leverone, 2013)   
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oxidiser can flow towards the nozzle and react with the fuel surface as it passes, depending on 

nature of the propellants and the motor performance required. 

 

The paramount advantage of this type of combustion method, when compared to that associated 

with both solid and liquid propellants, is the inherent safety during motor transportation and 

handling as a consequence of the separation (both in location and in state of matter) of the 

propellants. Additionally, there are safety and handling advantages during  fuel manufacture 

when compared to solid rocket motors due to the generally inert nature of the hybrid fuel (Sutton 

and Biblarz, 2001). These advantages make the use of this propulsion technology intriguing for 

low-cost launch applications and university research. However, their applicability is not limited 

to just these fields; significant developments in the areas of space tourism and off-Earth space 

operations, such as the development of the Mars Ascent Vehicle (Chandler et al., 2010) have 

been achieved.  

 

Unfortunately, there are also numerous shortfalls associated with the technology. One of the 

major drawbacks to the classical hybrid technology is the relatively slow fuel combustion 

mechanism. In this regard, the measure of performance is often referred to as the regression 

rate, which is the rate at which the fuel port burns perpendicular to the oxidiser flow. This has 

typically limited mission options to those that only require low thrusts, and inherently requires 

the development of complex fuel grain geometries to increase fuel surface area, taking away 

from many of the manufacturing and cost advantages that the technology presents.  

 

Multi-port fuel grain designs, such as the wagon wheel design, act to increase the combustible 

surface area by increasing the number of ports, as shown in Figure 1 - 2. This solution has the 

potential to increase the overall regression of the fuels sufficiently for use in higher thrust 

applications, however, the increased number for ports results in additional complexity. Multi-

port fuel grain designs require residual fuel to remain between the ports after the burn, or the 

inclusion of structural matrices (McKinney and Kniffen, 1994), to ensure the maintenance of 

the structural integrity of the fuel grain throughout the mission. Both options result in a heavier, 

larger vehicle, taking away many of the performance-enhancing attributes resulting from the 

multi-port design (Humble, Henry and Larson, 1995).  

 

Multi-port fuel designs generally require a significant amount of fuel to remain after the burn 

in order to prevent premature collapsing of the ports. This material is referred to as the unused 
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fuel sliver mass. An example of the remaining fuel slivers and thus unused mass fraction of a 

wagon wheel type HTPB hybrid fuel after firing can be seen in Figure 1 - 2.  

 

 

Noting that many of the advantages of hybrid technology were counteracted by the required 

complexity of grain geometries, research in the field progressed towards discovering new 

hybrid fuel options, which would allow for an increased regression rate without having complex 

port geometries. The focus on this venture was to overcome the restrictions associated with the 

classical hybrid combustion mechanism.   

 

Classical hybrid combustion relies on the vaporisation of the fuel on the surface, thus creating 

a narrow flame zone within the oxidiser boundary layer (Marxman, 1965). There are limitations 

to the speed of fuel burning, known as regression rate, with this form of combustion. The flame 

zone only occurs within the oxidiser boundary layer, restricting combustion to only the exposed 

surface. Newer fuels were discovered which allowed the formation of a liquid layer upon the 

exposed grain surface, becoming unstable under the oxidiser flow.   

 

This mechanism is referred to as non-classical combustion and is initiated when fuels within a 

certain liquid viscosity range allow for the formation of waves on the liquefied fuel surface. 

These waves grow and allow droplets of fuel to be mechanically entrained into the oxidiser 

stream, effectively increasing the combustible surface area and thus the rate at which the fuel 

Figure 1 - 2: Before and after images of an HTPB multi-port hybrid fuel grain (Humble, 

Henry and Larson, 1995). 
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is combusted. Fuels which permit this phenomenon are referred to as liquefying fuels. A more 

detailed description of the fuel combustion methods, with images, is discussed in Chapter 2. 

 

The increased regression rate of these non-classical hybrid fuels offers hybrid propulsion 

technology an opportunity to increase the scope of mission applications, and in some cases, be 

competitive with other chemical propulsion technologies. The regression rate is improved 

sufficiently to allow fuel grain to be developed with a single oxidiser port, thus reducing 

manufacturing flow complexities associated with  complex port geometries significantly.  

 

A fuel that has been specifically identified as a high regression rate hybrid fuel is paraffin wax. 

Paraffin wax will be the focus of this research as it is one of the primary liquefying fuels in use. 

An example of a single port, paraffin wax-based hybrid fuel grain which is considered in this 

research can be seen in Figure 1 - 3.  

 

(a) (b) 

Figure 1 - 3: (a) Single port blackened paraffin wax grain segment, and (b) fuel grain 

cartridge with four segments inside (Genevieve et al., 2012) 

Unfortunately, paraffin wax is considered to be brittle, and its ability to withstand pressurisation 

and launch loads is unknown  (Freund et al., 1983; Kim et al., 2010, 2015); especially at large 

motor scales. Numerous researches have considered this an important step in the development 

of paraffin wax fuels, and have initiated with research into this area with basic structural testing, 

and structural enhancement additives (Wang, Severtson and Stein, 2006; Cantwell, 

Karabeyoglu and Altman, 2010; Zaseck et al., 2012; Piscitelli et al., 2015; Cardoso et al., 2017; 

Paravan, Galfetti and Maggi, 2017). While there is little risk of catastrophic motor failure if the 

fuel grain was to crack, as in the case of solid rocket motors, there is still a risk of not meeting 
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the mission requirements due to fuel loss, which, in the scope of space launch missions, may 

well contribute to mission failure (Marxman and Gilbert, 1963).  

 

There are several possible means to increase the structural performance of paraffin wax as a 

hybrid rocket fuel. It is possible to embed structural matrices within the fuels grains to ensure 

the rigidity of the structure during combustion (McCulley, Bath and Whitmore, 2012; Hill et 

al., 2019), however, whatever material is used could negatively affect the fuel regression, and 

would increase manufacturing complexity, potentially taking away from the advantages of 

using a liquefying fuel. Other structural enhancement methods include the use of additives, such 

as polymers (Mengu and Kumar, 2018; Pal and Ravikumar, 2019). However, if these additives 

affect the melt viscosity of a liquefying fuel, droplet entrainment would be hindered, and thus 

the regression rate would decrease. Metallised additives have been used in classical hybrid fuels 

to increase energetic performance (Risha et al., 2007; Merotto et al., 2011; Pal and Kumar, 

2017; Maharaj, 2018), but so far, it is not yet comprehensively known what effect their presence 

has on the structural performance.  

 

While some structural testing has been conducted on paraffin wax fuels, there is little 

investigation on complex structural testing and enhancements of paraffin wax fuels for hybrid 

rockets (Veale et al., 2017). In most existing researched cases, the extent of the testing has 

considered only basic quasi-static tensile tests, with some metallised or polymer additives to 

increase structural properties. While these tests are useful in determining the effect of various 

additives on the basic structural properties of the fuel material, they are not sufficiently 

conclusive in offering insight to the fuel grain’s structural response to dynamic loading. There 

is a clear requirement at this point in hybrid fuel development to determine a fuel grain’s 

structural properties under conditions similar to that of the loading experienced, and to define 

a method of structural response modelling which is capable of considering these properties. 

 

1.2 The Phoenix Program 

The University of KwaZulu-Natal’s Aerospace Systems Research Group initiated their research 

into the field of hybrid rockets with the development of the HYROPS (Hybrid Rocket 

Performance Simulator) software, which is a multipurpose hybrid motor design tool and 

trajectory simulator (Chowdhury, 2012; Genevieve, Pitot de la Beaujardiere and Brooks, 2017). 

This tool can be used to optimise the motor design of a hybrid rocket and then simulate its 
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expected trajectory. The tool is capable of reporting simulated combustion values such as the 

chamber pressure, burn time and port geometrical changes due to regression rate.  

 

Simultaneously, the research group conducted several laboratory-scale motor hot-fire tests as a 

concept verification for the use of paraffin wax and nitrous oxide as a hybrid rocket propellant 

combination. Shortly after that, the Phoenix-1A hybrid sounding rocket was developed. This 

was a vehicle designed to reach an altitude of 10 km and was to be used as a technology 

demonstrator. The Phoenix-1A vehicle can be seen on its launch rail in Figure 1 - 4. 

Unfortunately, due to a nozzle failure, the Phoenix-1A did not reach its target altitude, however, 

it fully demonstrated the capabilities of the technology in use.  

After this launch, the group continued to develop vehicles with varying mission objectives, such 

as the Phoenix-2A, 100 km apogee sounding rocket, and the Phoenix-1B 15 km apogee 

sounding rocket. Each of these vehicles is in varying stages of development, with the Phoenix 

Figure 1 - 4: The Phoenix-1A hybrid sounding rocket on the mobile launch platform 

prior to launch 
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1B being successfully hot-fire tested and planned for launch in 2020. The Phoenix-2A vehicle 

is currently only at the paper design stage due to its significant size, and associated technology 

and budgetary constraints. In addition, concerns have arisen in terms of the limited 

understanding of the ability of paraffin wax fuel grains to survive the launch conditions. More 

detailed information about each of the vehicles above will be discussed in Chapter 4.  

 

The development fuel grains for the vehicles within the Phoenix program, and most other 

paraffin wax-based hybrid motors, has thus far been guided solely by combustion performance 

considerations, with little consideration given to the structural performance of the paraffin wax 

fuel. When considering the Phoenix-1A vehicle, vehicles of similar sizes and propellants have 

been launched before with no mention of grain failure. However, the launch and recovery of 

the Phoenix-1A vehicle offered an opportunity to review the remaining grain sliver after flight 

to determine if in flight or ignition failure has occurred.  

1.2.1 Post-launch investigation 

in an earlier publication (Veale, Brooks and Pitot de la Beaujardiere, 2015), the Phoenix-1A 

hybrid fuel grain structural response was modelled after launch using limited quasi-static tensile 

data in a transient analysis using simplified loading conditions. The model predicted the grain 

would survive without reaching the material structural limit. 

 

Unfortunately, due to complications with the recovery system, the Phoenix-1A vehicle did not 

land under its parachute, resulting in most of the vehicle being destroyed. The orientation of 

landing and the crumpling of the aluminium oxidiser tank on impact did, somewhat 

surprisingly, allow the combustion chamber to support the remaining fuel grain, almost in its 

entirety allowing a post launch analysis to still be conducted on the remaining fuel grain sliver, 

with the knowledge that any cracks or fractures due to impact would show no crack healing or 

melted fuel ingress.  

 

The regions in the vicinity of the grain segment interfaces showed slight circumferential 

indentations, noted as areas of increased regression likely caused by the fuel grain discontinuity. 

This is an effect that would be expected due to the melt layer combustion method causing 

turbulent regions undercutting the fuel. Similar, and likely more exaggerated flaws, would have 

resulted in unexpected regression indentations in regions where cracks were present. This grain 

investigation showed very little indication of grain uneven radial burning. If uneven burning 
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had been evident, it would have implied that cracks or flaws were present during the burn, thus 

it was taken that this grain likely did not crack at ignition. Grain failures which were a result of 

the impact were easily identified as they did not experience any melting and appeared as a clean 

failed surface similar to brittle failures. An annotated image of the inner port of the recovered 

Phoenix-1A fuel grain can be seen in Figure 1 - 5. There is no indication of failure, as predicted, 

except the clear post-burn impact failure.  

1.3 Problem statement 

The structural performance of paraffin wax hybrid rocket fuel grains under launch conditions 

is not well understood. Numerous published sources make mention of the need to determine the 

structural feasibility of paraffin wax fuel grains during the design phase of a vehicle. This is 

discussed in detail in Chapter 2. Additionally, basic structural testing has been conducted on 

Figure 1 - 5: Inner port of Phoneix-1A grain after launch, taken from aft end 

Radial indentation from segment gap 

Fuel melt collecting at  

fore end after burn 

Brittle failure after impact 
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paraffin wax fuels doped with materials aimed at improving the grains structural performance. 

The structural performance of a grain becomes more of a concern as motors tend to the larger 

scale range of paraffin wax fuel grains, such as those associated with the Peregrine hybrid 

sounding rocket from NASA Ames (Zilliac et al., 2014) and the Phoenix-2A rocket from the 

University of KwaZulu-Natal (Leverone, 2013), which are both designed to achieve an altitude 

of 100 km.  

 

The application of this fuel type requires a full understanding and analysis method of the grain 

structural feasibility before the need to investigate additives to improve the currently 

inconclusive structural measure. If the analysis determines that a grain would not remain 

structurally sound during the specific loading conditions, then the need for structural 

performance enhancing additives should be considered and understood that they could 

negatively affect the combustion performance. 

 

It is necessary to investigate the existing research into paraffin wax fuel grains and determine 

the current state-of-the-art in hybrid rocket fuel grain structural integrity analysis, and 

performance-enhancing methods. The work conducted on solid rocket fuel grain structural 

feasibility studies can offer insight into the complexities associated with the material behaviours 

and the loading conditions expected. In addition, there should be an understanding of the 

relationship, if any, between additives or structural enhancement methods and their resultant 

effect on structural response and combustion performance.  

 

Concerns relating to structural failure include the possibility of grain material breaking off and 

being wastefully ejected from the motor, or potentially blocking the nozzle and resulting in a 

chamber over-pressurisation failure. This research intends to provide a methodology for 

comprehensively evaluating the structural characteristics of paraffin wax fuel grains and 

assessing the structural impact of additives or design modifications. 

 

Important factors to consider when investigating the plausibility of grain failure include 

material strengths and moduli, combustion characteristics, failure propagation and other aspects 

that may affect the fuel material characteristics, such as temperature, strain-rate and additives. 

It is necessary to characterise the fuel material structural properties, particularly in terms of 

strain-rate or thermal dependencies. Associated investigations require significant experimental 

testing under specific conditions to ascertain the response of the material in the various loading 
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situations. Further, the information obtained from experimental testing should enable the 

formulation of accurate material response models for use in diverse grain structural simulations. 

 

There is currently no existing procedure for structurally characterising and analysing hybrid 

rocket fuel grains, offering a clear gap in the technological development of paraffin wax hybrid 

fuels with regard to the structural performance and response modelling. This research aims to 

develop a procedure for attending to these development deficiencies in order to increase the 

Technology Readiness Level (TRL) of hybrid rockets. The objective of this research is to focus 

specifically on the structural aspects of paraffin wax for use in geometrically different fuel 

grains.  Specifically, it is necessary to determine and characterise the complex structural nature 

of paraffin wax as a fuel and make use of more representative methods of modelling its 

structural response.  The output of this work, while focusing on the Phoenix Hybrid Sounding 

Rocket Program, should be applicable to all paraffin wax hybrid rocket fuel grains as long as 

adequate material characterisation is achieved. 

1.4 Research objectives 

The overall aim of this research is to develop methods and parameters for characterising 

paraffin wax hybrid fuels, with and without aluminium additives, and applying the information 

obtained experimentally to an FEA (Finite Element Analysis) structural model in order to 

determine the feasibility of the material being used in specific hybrid motor designs. The 

research objectives associated with this aim are as follows: 

 

1. Investigate the current paraffin wax-based hybrid rocket state-of-the-art, and identify 

the deficiencies associated with fuel grain structural assessment. This investigation 

should include structural and performance-enhancing additives and the effect these have 

on the performance of the motor.  

This objective creates an in-depth understanding of the current TRL of hybrid rockets 

and the degree of research focussed on fuel grain structural assessment and identifies 

shortfalls in existing fuel grain structural and performance analyses. 

 

2. Develop an experimental testing regime to fully characterise paraffin wax fuel as an 

input to a structural FEA model.  

This objective identifies and defines empirically the material-specific response 

considerations, such as the temperature dependence of the material as well as the 
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strain-rate dependency. Both factors should be considered in a structural analysis that 

is to accurately represent the structural response of a paraffin wax fuel grain. 

 

3. Verify the use of material constitutive and failure models for structural response 

modelling considering the specific characteristics of paraffin wax. 

This objective critically analyses the use case of material constitutive and failure models 

to represent the material properties of paraffin wax for use within the tested range of 

material characterisation. The defined response models require verification through 

experimental testing to ensure adequate representation of the material response under 

load. 

 

4. Develop a computationally efficient structural response model to represent the ignition 

pressurisation loading condition associated with a set of hybrid rocket motor designs.  

This objective makes use of both theoretical (modelled) motor performance data and 

experimental motor performance data to predict and compare the structural 

performance of paraffin wax hybrid rocket fuel grains in response to the transient load 

of ignition pressurisation. 

 

5. Apply the findings from the above studies to propose recommendations for future work 

and development. 

1.5 Motivation 

Hybrid rocket research has been advancing rapidly since the development of high regression 

fuels such as paraffin wax. The primary objective of most researchers is to consider the 

combustion performance, often in the form of regression rate, and apply it to their specific 

mission requirements. This objective often does not consider the structural performance of the 

fuel grain. Research into fuel grain structural properties has previously been conducted, but 

only considers the quasi-static tensile properties of paraffin wax with the inclusion of potential 

structural enhancement additives. Unfortunately, the use of structural enhancement additives 

generally reduces the advantages of using paraffin wax fuels and may not therefore offer the 

desired result.  

 



12 

To date, there has been very little research into the structural response modelling of hybrid fuel 

grains. This seems to be an unusual situation since the response modelling of solid rocket 

motors is of vital importance in the context of overall motor development.  

 

The lack of research into this field has offered an opportunity to develop a structural modelling 

methodology for hybrid rocket fuel grains, and wax-based fuel grains in particular. This 

research will thus focus specifically on applications involving paraffin wax and paraffin wax 

with aluminium additives, which have frequently been identified to increase combustion 

performance.  

1.6 Presentation of the thesis 

The thesis is presented in a manuscript-based format, where each of the core chapters is a 

manuscript that has either been published or is currently under review. Only small formatting 

changes have been made to each manuscript, however, the body of the text and the 

arrangements of headings are as per the original publication. The thesis consists of two articles 

published in a peer-reviewed journal, and one manuscript currently under review with a peer-

reviewed journal. In addition, the work includes this introductory chapter and a concluding 

chapter which serve to integrate the aspects covered in the publications. Each manuscript was 

arranged sequentially within the research and aimed to address at least one of the objectives 

stated above.  

 

The current chapter introduces the research topic, with a brief introduction into hybrid rocket 

technology development and the use of paraffin wax as a hybrid fuel. It addresses the 

deficiencies associated with structural response modelling and defines the objectives of this 

research. 

 

Chapter 2 presents the article “A review of the performance and structural considerations of 

paraffin wax hybrid rocket fuels with additives” which was published in Acta Astronautica 

(Veale et al., 2017). The article accumulates all of the available data associated with paraffin 

wax hybrid fuel combustion and structural testing, including with a variety of additives. The 

work detailed the current extent to which paraffin wax fuel has been investigated in the context 

of structural concerns. It details a clear deficiency in the development of comprehensive 

structural testing and modelling methodologies. 
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Chapter 3 presents the article “The structural properties of paraffin wax based hybrid rocket 

fuels with aluminium particles” which was published in Acta Astronautica (Veale et al., 2018). 

This article details the full material structural characterisation testing of paraffin wax and 

paraffin wax containing aluminium particles. This includes assessing the strain-rate 

dependencies, temperature dependencies and the quasi-isotropic nature of paraffin wax.  

 

An earlier publication, “Structural Performance of Large Scale Paraffin Wax Based Fuel 

Grains”, which was presented at the 51st AIAA Joint Propulsion Conference, detailed the initial 

aspects of this study, reporting on the structural properties of paraffin wax tensile specimens 

machined directly from a fuel grain (Veale, Brooks and Pitot de la Beaujardiere, 2015). A 

comparison of the results presented in the more recent publication addresses the question of the 

isotropic nature of paraffin wax crystal structures.  

 

Chapter 4 presents the manuscript “Explicit modelling of the ignition transient structural 

response of a paraffin wax hybrid rocket motor fuel grain”, which is under review with the 

Journal of Aerospace Technology and Management. This manuscript details the application of 

the Johnson-Cook material constitutive and failure models in explicit FEA modelling of 

paraffin wax. It presents a methodology for determining the model’s material parameters and a 

verification of the results. After the model use case is confirmed, the chapter then proceeds to 

addresses the specific motor structural response against both theoretical and hot-fire tested 

motor combustion test cases.  

 

Chapter 5 provides concluding remarks concerning the scope and findings of the research. This 

chapter brings together the work from each core chapter and addresses the contributions this 

research has made to the field. Future research and recommendations are also addressed. 

 

Each chapter has its own abstract, nomenclature and conclusion. This was left as per the format 

of the publications for completeness. The individual reference lists were moved to the end of 

the thesis and listed as a single list to prevent duplicate referencing.  
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CHAPTER 2: A REVIEW OF THE PERFORMANCE AND STRUCTURAL 

CONSIDERATIONS OF PARAFFIN WAX HYBRID ROCKET FUELS WITH 

ADDITIVES 

(MANUSCRIPT PUBLISHED: ACTA ASTRONAUTICA VOL 141, PAGES 196-208, 2017) 

2.1 Abstract 

Paraffin wax as a hybrid rocket fuel has not been comprehensively characterised, especially 

regarding the structural feasibility of the material in launch applications. Preliminary structural 

testing has shown paraffin wax to be a brittle, low strength material, and at risk of failure under 

launch loading conditions. Structural enhancing additives have been identified, but their effect 

on motor performance has not always been considered, nor has any standard method of testing 

been identified between research institutes. A review of existing regression rate measurement 

techniques on paraffin wax-based fuels and the results obtained with various additives are 

collated and discussed in this paper. The review includes 2D slab motors that enable 

visualisation of liquefying fuel droplet entrainment and the effect of increased viscosity on the 

droplet entrainment mechanism, which can occur with the addition of structural enhancing 

polymers. An increased viscosity has been shown to reduce the regression rate of liquefying 

fuels. Viscosity increasing additives that have been tested include EVA and LDPE. Both these 

additives increase the structural properties of paraffin wax, where the elongation and ultimate 

tensile strength are improved. Other additives, such as metal hydrides, aluminium and boron 

generally offer improvements on the regression rate. However, very little consideration has 

been given to the structural effects these additives have on the wax grain. A 40% aluminised 

grain, for example, offers a slight increase in the ultimate tensile strength but reduces the 

elongation of paraffin wax. Geometrically accurate lab-scale motors have also been used to 

determine the regression rate properties of various additives in paraffin wax. A concise review 

of all available regression rate testing techniques and results on paraffin wax-based hybrid 

propellants, as well as existing structural testing data, is presented in this paper. 

Keywords: Hybrid rocket; regression rate; paraffin wax; additives 
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2.2 Introduction 

Hybrid rocket technology has advanced since the discovery of liquefying fuels, also referred to 

as non-classical fuels. Hybrid rockets are named as such due to their propellants, which often 

comprise a solid fuel and a liquid or gaseous oxidiser. The physical and state separation of the 

fuel and oxidiser offer an increased safety aspect to rocket design and fuel handling. However, 

there is compromised performance due to the limiting boundary layer combustion method. The 

measure of regression rate of the solid fuel is a good indicator of the combustion performance 

of a propellant combination, which defines how quickly the solid fuel burns, however, the 

density of the propellant should also be considered. Hybrid fuels, particularly traditional 

variants such as hydroxyl-terminated polybutadiene (HTPB) are known to have very low 

regression rates. The regression rate is often improved through the use of performance-

enhancing additives, such as high-energy metal particles. The degree to which these additives 

improve the combustion performance and the effect they have on the structural performance on 

a solid fuel grain has not been comprehensively determined and is dependent on factors such 

as particle size and density, as well as the original binder material. Although we can consider 

the propellant performance independently, the performance of the rocket itself is dependent on 

various design parameters, such as vehicle size, design thrust, mass and fuel density. In this 

paper, we review the current state of paraffin wax fuelled hybrid rocket motor performance 

testing with specific reference to the role of additives in improving metrics such as specific 

impulse and density impulse. The purpose of this review is to create a link between existing 

regression testing results, with various additives, in comparison to the available structural 

characterisation data on those fuel mixtures of paraffin wax-based hybrid fuels to determine 

their feasibility in launch applications.  

 

Nomenclature 

a   regression rate coefficient 

Ab  combustion area (m2) 

Go  oxidiser mass flux (kg/m2s) 

ID  inner diameter 

Isp  specific impulse 

m   mass (kg) 

n   flux exponent 

OD  outer diameter 

O/F  oxidiser to fuel ratio 
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𝑟̇   regression rate (mm/s) 

𝑟𝑓   regression rate (mm/s) 

tb  combustion time (s) 

𝜌𝑓    fuel density (kg/m3) 

HTPB  hydroxyl-terminated polybutadiene 

HRM  hybrid rocket motor 

SRM  solid rocket motor 

LRM  liquid rocket motor 

PMMA polymethyl methacrylate 

GOX  gaseous oxygen 

2.3 Hybrid combustion models 

Combustion within a hybrid rocket motor (HRM) differs from that within a solid rocket motor 

(SRM) with the separation of the oxidiser from the solid fuel grain, which resides in the 

combustion chamber. Combustion initiates when the oxidiser is either pumped or allowed to 

flow under pressure past the fuel grain surface, through either a single port or multiple ports. 

The number of ports is determined by the regression rate of the fuel material, and the required 

thrust. This combustion mechanism allows for the development of a flame zone above the 

exposed fuel surface and varies along the length of the port due to the changing O/F ratio. 

Classical fuels such as HTPB have very low regression rates as a result of the dominant 

boundary layer combustion mechanism. Non-classical fuels, such as paraffin wax have a 

mechanical combustion mechanism referred to as droplet entrainment in addition to the 

boundary layer mechanism, which promotes faster regression of the fuel. The focus of this 

review is the effect of additives on the non-classical combustion mechanism of paraffin wax 

through empirical means. However, a brief overview of both mechanisms is included for 

reference. 

2.3.1 Classical hybrid combustion 

Boundary layer combustion is a result of fuel vaporisation. The primary combustion region is 

shown to be within a relatively narrow flame zone located within the boundary layer (Marxman, 

1965), depicted in Figure 1 - 1. The various forms of heat transfer allowing for fuel vaporisation 

include convection and radiation from the flame zone. Vaporised fuel is transferred away from 

the heated fuel surface towards the flame zone. Un-combusted oxidiser is moved from the main 
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oxidiser stream to the flame by turbulent diffusion. The stoichiometric conditions of the reaction 

define the position of the flame within the boundary layer. The rate of the combustion reaction, 

which is dependent on pressure and temperature, determines the flame thickness. Other factors 

which affect the development of the boundary layer include chamber pressure, gas temperature, 

gas composition, mass flow rate, port length, and port diameter (Sutton and Biblarz, 2001). 

Classical combustion is limited by the diffusive heat transfer to the fuel surface, resulting in 

slow regression rates. There has been significant work conducted in the diffusion-limited 

classical combustion mechanism defining the regression rate of these types of fuels and the 

reliance on the position of the flame zone within the boundary layer as well as the heat of 

gasification. This problem is highly complex and is beyond the scope of this review, however 

detailed work on the heat and mass transfer between chemically reacting liquids has been 

conducted by numerous researchers leading to adequate regression rate laws (Marxman and 

Gilbert, 1963; Smirnov, 1985). 

 

 There have been some methods discussed for testing and enhancing the regression rate of 

classical hybrid fuels. To name a few, authors such as Gariana et al. developed a 2D 

HTPB/GOX slab motor to compare combustion results to a numerical simulation developed 

(Gariani, Maggi and Galfetti, 2011). Li et al. investigated the increase in the average regression 

rate when using swirl injectors. The impinging injectors and oxidiser swirl resulted in an uneven 

burn (Li, Cai and Tian, 2016). Pei et al. considered the effect of altering the combustion 

Figure 2 - 1: Schematic of the classical hybrid fuel combustion mechanism 

(Cantwell, 2007) 
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chamber port geometry on the regression rate and combustion efficiency of the motor (Pei and 

Hou, 2014). These modifying techniques indicated an increase in performance measures, but 

the effects did not result in a performance enhancement similar to that of high regression rate 

fuels which do not rely primarily of diffusive heat transfer. 

2.3.2 Non-classical hybrid combustion 

The identification of higher regression rate fuels has allowed hybrid rocket motor technology 

to develop further, addressing more practical requirements. The fundamental difference 

between the classical and non-classical combustion mechanisms is the formation of a low 

viscosity liquid layer on the regressing surface. These fuels, known as liquefying fuels, produce 

a thin, low viscosity, low surface tension liquid layer on the fuel surface during combustion. 

Instability of this liquid layer caused by the flow of oxidiser over the liquid surface results in 

the formation of waves, which promote the entrainment of droplets into the gas stream, 

increasing the overall mass transfer rate and combusting surface area. A schematic of this 

combustion mechanism can be seen in Figure 2 - 2 (Cantwell, 2007).  

 

 

The droplet entrainment significantly enhances the speed of regression, and thus addresses 

some of the classical hybrid performance concerns. The increased regression rate of these fuels 

reduces the need for multi-port designs, and thus overly complex geometries and manufacturing 

techniques. This fuel diffusion invention was patented by Karabeyoglu et al. (Karabeyoglu, 

Figure 2 - 2: Liquefying fuel entrainment mechanism (Cantwell, 2007) 
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Cantwell and Zilliac, 2005, 2007) in which they developed a method of identifying hydrocarbon 

fuels that are solid at room temperature, have a mean carbon number between 15 and 80, and 

have a low molecular weight (Karabeyoglu, Cantwell and Zilliac, 2005, 2007). An additional 

advantage of this regression enhancing combustion mechanism is that droplet entrainment is 

not affected by blowing as it is not a mechanism of the flame zone heat transfer (Karabeyoglu, 

Cantwell and Altman, 2001). Mazzetti et al. have conducted an extensive market review on the 

plausibility of hybrid rocket propulsion in the mid-term future, particularly since the discovery 

of liquefying fuels such as paraffin wax (Mazzetti, Merotto and Pinarello, 2016). There has 

been extensive research conducted on the modelling of droplet formation and the combustion 

process of liquefying fuels considering non-equilibrium and quasi-equilibrium evaporation 

conditions. The equilibrium model can be considered for large droplet size. However, a non-

equilibrium model is necessary for accuracy in the case of small droplets (Tyurenkova, 2012; 

Guendugov, Smirnov and Tyurenkova, 2013; Tyurenkova, Smirnov and Guendugov, 2013). 

The development of the droplet formation and the size of the droplets formed for paraffin wax 

fuels will determine the increased regression rate of the fuel due to droplet entrainment. The 

focus of this review is the empirical solution to the regression rates of liquefying fuels, but test 

data should be validated against accurately determined liquid combustion models.     

2.4 Performance enhancing additives 

An advantage of making use of hybrid propellants with a solid fuel is the ability to include 

energetic additives in the casting process. Although liquefying fuels already show an improved 

regression rate, the use of energetic additives can further improve this, and potentially offer 

control over the regression rate (Cantwell, Karabeyoglu and Altman, 2010). While, metal 

additives, such as aluminium can increase nozzle erosion, certain metal hydrides, such as 

magnesium hydride, can reduce this effect, by reducing the oxidising species in the nozzle 

(Calabro et al., 2007; Cantwell, Karabeyoglu and Altman, 2010). Additives which affect the 

material strength could be added to improve the structural performance of the fuel grain if it is 

prone to failure. However, this may alter the fuel liquid viscosity, and reduce the effect of 

entrainment regression. Consideration should be given to the effect on both the structural and 

performance properties of a fuel with the addition of any additive. This is apparent from studies 

where additives offered structural benefits, but in turn increased the melt layer viscosity, 

reducing entrainment and thus regression rate (Kim et al., 2010). Classical hybrid fuels have 

little risk of structural failure due to their toughness and strength (Risha et al., 2007). Newer 

fuels, such as paraffin wax, are comparatively brittle and weak and may be more likely to fail 
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in use, necessitating a further investigation into their performance in the presence of thermal, 

pressure and dynamic loading (Risha et al., 2007).  

2.4.1 Aluminium 

Aluminium additives, both on a micro- and nano-scale have been shown to increase the 

regression rate of hybrid fuels while serving as a dense energy source (Vickland, 1967; Lips, 

1976, 1977b, 1977a; Strand et al., 1992; Strand, Ray and Cohen, 1993; George et al., 1998; 

Chiaverini et al., 2000; Risha et al., 2001, 2002). The effectiveness of the additive creates an 

opportunity to make use of other oxidisers, such as nitrous oxide. Data has shown that the use 

of nitrous oxide with an aluminised HTPB grain can yield a similar regression rate to that of 

pure HTPB in gaseous oxygen (GOX) (Evans et al., 2009). There are numerous advantages to 

using nitrous oxide (N2O) such as self-pressurisation, low cost and availability. An added 

benefit of using aluminium powder is the reduced O/F ratio, resulting in a reduced oxidiser tank 

size (Cantwell, Karabeyoglu and Altman, 2010).  

 

The inclusion of aluminium particles within fuels can lead to an increase in specific impulse, 

volumetric heat of oxidation, adiabatic flame temperature, heat of combustion, and radiative 

heat transfer (Thomas et al., 2015). On a micro-scale, aluminium particles increase the 

regression rate by improving the radiative heat flux from the diffusion flame zone to the fuel 

surface as a result of the radiating metallic particulate matter and the higher gas-phase 

temperature (Risha et al., 2007). Particles also improve the regression rate through the release 

of energy during metal oxidation (Thomas et al., 2015). In some studies, the addition of 

aluminium particles in the fuel grain does not significantly benefit the regression rate due to the 

high melting temperatures associated with the aluminium oxide layer, which coats the 

aluminium surfaces. The fuel often melts before the aluminium, creating a protective film 

around the particles, and further impeding the combustion process. The aluminium can be lost 

in the exhaust, and have little benefit on the regression rate. This scenario is particularly 

prevalent in oxygen-rich environments, such as the use of a GOX oxidiser. The use of fluorine-

based oxidisers reduced the build-up of the oxide layer and allowed for easier combustion (Lips, 

1977b). 

 

Nano-sized aluminium particles are known to react differently to micro-sized particles. This 

can result in higher combustion efficiencies, better heat transfer, and a reduced ignition delay 

and burn time when compared to micro-sized particle-enriched grains (Risha et al., 2007). The 
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cost and manufacturing complexities involved are some of the disadvantages associated with 

the use of nano-sized particles. The reactive effect is similar to that of the micro-sized 

aluminium particles, however, with the lower ignition time and temperature due to the high 

specific surface area, the energy release is closer to the fuel surface (Thomas et al., 2015). 

Production is further complicated by the unreactive, oxide mass fraction which can develop 

around each particle if not processed in inert environments.  

 

There is a limit to how much aluminium can be introduced to a propellant. The inclusion of 

aluminium particles increases the regression rate of that propellant combination, but when an 

excessive amount is added, the near-surface combustion becomes less efficient due to a build-

up of particles at the fuel surface (Risha et al., 2007). The mechanism behind the combustion 

of the aluminium particles themselves relies on their entrainment into the oxidiser stream. The 

particles can collect on the regressing fuel surface before they are forced into the oxidiser 

stream, resulting in a reduced regression rate due to limited heat transfer, especially in larger 

hybrid motors (Thomas et al., 2015). It is also noted that reducing the aluminium particle size 

increases regression rate insofar as the oxide layer formation is prevented. If methods of altering 

the oxide layer and coating the particles are used, the regression rate can be increased (Thomas 

et al., 2015). The inclusion of aluminium additives in hybrid fuels has been considered in 

applications such as the proposed hybrid design of the Europa and Uranus mission by Jens et 

al. and the Mars Ascent vehicle design by Chandler et al. The first design considers the addition 

of 30% micron-sized aluminium particles in PE wax (Jens, Cantwell and Hubbard, 2016), while 

the second considers the addition of 40% micron-sized aluminium particles to paraffin wax 

(Chandler et al., 2011). The intended advantage is such that the specific impulse and density 

impulse will increase, and the optimal O/F ratio will change. They note, however, that the 

theoretical performance may not be applicable due to the inefficiency attributed to aluminium 

combustion, reducing the overall combustion efficiency, and the slag formation in the post-

combustion chamber.  

2.4.2 Boron 

Boron is considered to improve regression due to its higher volumetric heat release than 

aluminium, but its use is limited due to its difficulty with ignition which can lead to low 

combustion efficiencies (Karabeyoglu and Arkun, 2014).  Small amounts (5%) of boron 

additives in HTPB have shown a reduction in regression rates due to this ignition complexity 

(Thomas et al., 2015). Tests conducted at Pennsylvania State University (PSU) include the use 
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of boron and boron carbide particles within HTPB fuels. When the additive amount in HTPB 

is near 10%, there is an increase in regression rate as compared to pure HTPB combustion 

(Evans et al., 2009). Extensive boron testing has been conducted by the Israel Institute of 

Technology for use in solid fuel ramjets (Gany and Netzer, 1986; Natan and Gany, 1993a, 

1993b). The difficulties in the combustion of boron and boron carbide is a known problem with 

the utilisation of this additive. An afterburner can be introduced to assist with full combustion. 

The boron particles can also be coated with materials such as magnesium, to assist with the 

combustion process. 

2.4.3 Metal hydrides 

Metal hydrides, such as magnesium hydride (MgH2) and lithium aluminium hydride (LiAlH4) 

have been considered for performance enhancement and their use results in an increase in the 

regression rate of paraffin wax (Galfetti et al., 2013). Lithium-based particles are extremely 

reactive. However, the volumetric heat of oxidation is low compared to that of aluminium or 

boron. Testing which includes LiAlH4 as an additive in paraffin wax has shown a noticeable 

increase in regression rate (Schultz, 2013).  Tests conducted by Smoot and Price (Smoot and 

Price, 1966) show that the amount of lithium hydride (LiH) added to an HTPB fuel affects the 

primary combustion mechanism and the pressure dependence of the combustion. At increasing 

oxidiser mass flow rates, the combustion mechanism moves from the pressure independent 

diffusion controlled combustion to the pressure dependent kinetic controlled combustion. In 

this case, higher levels of LiH within the fuel grain cause the transition range to extend, and the 

pressure sensitivity of the combustion to reduce.  

2.4.4 Magnesium 

Magnesium is a readily available and affordable metal which has similar thermal capabilities 

to that of LiAlH4, although it is slightly less reactive. It is easily ignited and burns with a hot 

flame, which can aid in the development of a liquid layer on the fuel surface (Schultz, 2013). 

Testing conducted by Schultz (Schultz, 2013) revealed that the regression rate of paraffin wax 

could be improved with the addition of more than 10% MgH2. Amounts less than this result in 

a slight reduction in the regression rate as a consequence of the newly opaque grain surface 

reducing radiative heat transfer into the fuel.  
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2.4.5 Polymers 

Polymers such as low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) have 

been investigated with paraffin wax. In small amounts, they showed an improvement in the 

structural properties of the grains, but the regression rate was affected (Nakagawa and Hikone, 

2009; Kim et al., 2010; Maruyama et al., 2011). These polymers increase the melt viscosity of 

the wax, reducing the effect of droplet entrainment, and thus the regression rate. The increase 

in the structural performance of grains with LDPE indicates a reduced risk of grain slumping 

due to storage (Kim et al., 2010). 

2.5 Density Impulse 

Density impulse is a secondary measure of propellant performance. The specific impulse (Isp) 

of a system is defined as the total impulse per unit weight, while the density impulse is defined 

as the total impulse per unit volume (Gordon, 1962), and is often used as a performance measure 

in volume-strict designs (Karabeyoglu et al., 2011; Karabeyoglu, 2014). Propellants with 

similar specific impulses can result in a different density impulse based on the propellant 

density. This results in a correlation between the size of the vehicle that is necessary to house 

the propellant. Energetic additives can be used to change this measure of performance, either 

resulting in a higher or lower density fuel. Generally, HRMs have a higher Isp than SRMs, and 

a higher density impulse than liquid rocket motors (LRMs) (Pastrone, 2012). The advantage of 

the density impulse may be negligible due to the grain sliver fraction, but this is dependent on 

the HRM port geometry (Pastrone, 2012). 

 

Karabeyoglu et al. (Karabeyoglu et al., 2011) considered an upper stage hybrid motor design 

to advance the technology readiness level (TRL) of advanced hybrid motors. In doing so, they 

derived a correlation between performance measures such as Isp and density impulse to 

determine the performance comparison between HRMs, LRMs, and SRMs. With the addition 

of energetic particles to HRMs, there is a noticeable increase in Isp, and density impulse, making 

them feasible for use when compared to LRMs (Karabeyoglu et al., 2011).  

 

Further investigation into performance enhancement of metal additives has led to a comparative 

study on the theoretical specific impulse at the optimal O/F ratio, and resultant density impulse 

for a 40% weight addition of various additives. The addition of metal additives (Al, B, Mg, 

Mg1B3) into a paraffin wax has been shown to slightly decrease the optimal specific impulse 
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when using high-performance oxidisers, such as liquid oxygen (LOX) (Karabeyoglu, 2017). 

This is attributed to the increased dissociation effect at high temperatures, and the average 

molecular weight of the combustion products. There is, however, a noticeable increase in the 

specific impulse for medium- and low-performance oxidisers (N2O4 and N2O respectively) 

(Karabeyoglu, 2017). The density impulse for these metals, determined with the O/F ratio for 

the optimal specific impulse, increases for the high- and low-performance oxidisers, while 

decreases slightly for the medium-performance oxidiser. Metal hydrides (AlH3, MgH2, LiAlH4, 

LiAlH4) indicate an increase in specific impulse for all the oxidisers. However, the Li-based 

additives tend to decrease the density impulse, most likely because of the element’s low density 

(Karabeyoglu, 2017).   

2.6 Combustion testing 

Often the regression rate of a propellant is used as a measure of propellant performance. 

Although this is not the only performance metric, it offers a useful basis for comparison between 

fuels. The regression rate is dependent on design-specific properties as well as propellant 

performance properties. A simplified equation which can be used to estimate regression rate, 𝑟̇, 

as a function of oxidiser mass flux, Go, on the basis of empirically derived ballistic coefficients, 

a and n:  

 

𝑟̇ =  𝑎𝐺𝑜
𝑛             (1) 

 

Techniques for quantifying the regression rate of fuels include the instantaneous measurement 

of fuel depletion throughout the burn or the time-averaged regression rate which is estimated 

based on the burn time, fuel mass, and flow rate.   Instantaneous regression is determined with 

the use of slab motor test stands that allow a small section of propellant to be combusted with 

visualisation by transparent windows or x-ray to measure the instantaneous fuel regression 

(George et al., 1998; Karabeyoglu, Cantwell and Zilliac, 2005; Evans et al., 2009). The fuel 

grain height is assessed continuously throughout the combustion process. This technique has 

several disadvantages, not least that the resultant ballistic coefficients are affected by the 

geometry of the fuel slab as well as the interaction of the oxidiser flow and the side walls, or 

the effect of side burning (Nakagawa and Hikone, 2009). Inaccuracies may also arise from the 

short burn times due to ignition transients. The primary use of a slab motor, however, is to 

compare the regression behaviour of pure fuels and those with additives and to determine the 

mechanisms behind the combustion process visually. This is especially informative when 
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considering the liquefying fuel entrainment mechanism, which has since been visually 

identified in numerous slab motor tests.   

 

A more physically representative method of determining the regression rate of a propellant 

combination is through the use of small-scale or full-scale static motors. The regression rate 

determined through cylindrical motors is an approximation due to the lack of accurate real-time 

measurements. The regression rate in a cylindrical motor can be determined by measuring the 

fuel grain before and after the burn and noting the combustion properties throughout the burn. 

Such measurements are not instantaneous but are rather time- and space-averaged, leading to 

some errors (Karabeyoglu, Cantwell and Zilliac, 2005, 2007). Sacrificial regression rate 

measuring devices can be used for an instantaneous result. These sensors are cast within the 

fuel grain and make use of electrical resistance to determine their total height. As the fuel 

regresses, the combusting fuel erodes the sensor resulting in a change in resistance and an 

estimation of the fuel height. This technique has been tested (Thomas et al., 2015) but was 

found to under-read the regression rate of the grain. 

 

The regression rate data presented in this section include the averaged regression rate for an 

averaged oxidiser mass flux over the full burn time. Axial variation in regression rate is 

expected in hybrid combustion (Smirnov, Tyurenkova and Smirnova, 2015; Tyurenkova and 

Smirnova, 2016), but was not considered in the empirical regression rate data as the difference 

was either noted to be very small or not mentioned at all. 

2.6.1 Slab motor testing  

Slab motor test stands are a useful testing apparatus for both flow visualisation and regression 

rate analysis. Numerous institutions have constructed them with varying testing objectives for 

the development of hybrid technology. These objectives include either visualising the 

combustion process through hot gas pyrolysis or full boundary layer combustion, or direct 

visual regression rate measurements. Hot gas pyrolysis allows the user to visualise the melt 

layer and any mechanical entrainment that may occur without any combustion. It can be used 

to define the amount of regression that is attributed to droplet entrainment (Lestrade, Anthoine 

and Lavergne, 2011).   

 

Table 2 - 1 and Table 2 - 2 include a summary of the existing slab motor test stands that have 

been developed primarily for paraffin wax and have yielded useful results to date. Each test 
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stand has been used to capture specific data for the various grades of fuel. In some cases, 

significant regression rate data has been determined, particularly with the inclusion of additives.  

Table 2 - 1 addresses the design parameters, including the chamber geometry, fuel, oxidiser and 

any additives that were included in the fuel.  

 

The French Aerospace Lab (ONERA) and Korea Aerospace University both investigated hot 

gas pyrolysis to assess the effect of liquid layer entrainment on regression (Pelletier, 2009; Kim 

et al., 2010, 2015; Lestrade, Anthoine and Lavergne, 2011; Lestrade, 2012). By removing 

combustion, the effect of normal boundary layer combustion was eliminated, leaving only the 

effect of the unstable wave formation. In addition to this, Korea Aerospace University 

compared the pyrolysis result to full combustion results. Tokai University (Nakagawa and 

Hikone, 2009; Maruyama et al., 2011) and the Korea Aerospace University both investigated 

the effects of the fuel viscosity on liquid layer formation, and subsequent droplet entrainment. 

The viscosity was modified by mixing either EVA (ethylene vinyl acetate) or LDPE (low-

density polyethylene) into paraffin wax respectively. Stanford University (Chandler, 2012) 

used a slab motor to study droplet entrainment visually. For clear droplet visualisation, a space 

was included between the windows and the fuel grain. This introduced side burning but reduced 

the number of droplets that interacted with the window, distorting vision. The resultant slow 

motion videos clearly show droplet entrainment of the paraffin wax fuel into the oxidiser stream 

through the formation of waves in the liquid layer. The boundary layer formation and flame 

zone are clearly visible and useful in assisting with the understanding of the physical 

mechanisms at play during combustion. This test stand was not intended to measure fuel 

regression. Finally, SPLab (Galfetti et al., 2013) and Penn State University (Chiaverini et al., 

2000; Evans et al., 2009) both investigated the regression rate effects of fuels doped with 

metallised particles, specifically aluminium, magnesium and lithium hydride.  The various 

pressure and oxidiser mass flux ranges can be seen in Table 2 - 2. 

 

ONERA yielded an average regression rate result of 0.65 mm/s for pure paraffin wax under hot 

gas pyrolysis conditions. This is very low compared to commonly high results and is attributed 

to the lack of combustion regression (Pelletier, 2009). The regression rate was measured 

through visualisation and an ultrasonic sensor, generating the instantaneous solid and liquid 

fuel thicknesses (Lestrade, Anthoine and Lavergne, 2011, 2015). The ultrasonic measurements 

were reported, but due to the lack of combustion within the chamber, the gas temperature did 

not stabilise affecting the measured regression rate (Lestrade, 2012).  
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Table 2 - 1: Slab motor design parameters 

Institution Fuel Oxidiser Additives Wall interaction Slab dimensions 

(mm) 

Windows 

ONERA  

(Pelletier, 2009; Lestrade, Anthoine 

and Lavergne, 2011; Lestrade, 2012) 

 

Paraffin wax 

(C31H64) 

None 

(pyrolysis) 

None No 40 x 24.82 x 350 Yes 

TU  

(Nakagawa and Hikone, 2009; 

Maruyama et al., 2011) 

 

Paraffin wax 

(C51H104) 

GOX EVA (C5H7O2(CH3)) Yes 10 x 10 x 100 Yes 

KAU  

(Kim et al., 2010, 2015) 

HDPE, LDPE, 

Paraffin wax 

(C28H58) 

GOX LDPE Yes Width of 50 mm Yes 

SU  

(Chandler, 2012) 

Paraffin wax 

(C32H66), HTPB 

and HDPE 

GOX Carbon Black No 25 x 9.5 x 127 Yes 

SPLab  

(Galfetti et al., 2013) 

HTPB,  

Gel wax (C12H26), 

Solid wax (C24H50) 

GOX Nano-aluminium (Alex50) and 

(Alex 100), MgH2 powder (50 

to 150 µm particle size) and 

LiH 

Not specified 10 x 4 x 50 Yes 

PSU  

(Chiaverini et al., 2000; Evans et al., 

2009) 

 

HTPB GOX  UFAL Yes 76.2 x 42.8-44.5 x 

584.4 

None 

DLR  

(Kobald, Ciezki and Schlechtriem, 

2013; Kobald et al., 2014, 2016; 

Kobald, Verri and Schlechtriem, 

2015) 

Sasol Wax 6003, 

6805, 0907, 1276  

GOX Carbon Black, SA, Nanoclay, 

Common Polymer 

Not Specified 90 x 14 x 180 Yes 

* ONERA – Le centre français de recherche aérospatiale * SU – Stanford University    * DLR – Institute of Space Propulsion 

* TU – Tokai University     * KAU – Korea Aerospace University  * SPLab – Politecnico di Milano 

* PSU – Pennsylvania State University 
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Table 2 - 2: Slab motor operating conditions 

Institution Operating 

pressures  

(bar) 

Oxidiser 

mass flux 

range 

(kg/m2s) 

Regression 

error 

interval 

Testing objective 

ONERA 

(Pelletier, 2009; Lestrade, 

Anthoine and Lavergne, 2011; 

Lestrade, 2012) 

10-30 50-300 Not stated Liquid layer visualisation, and effect on regression rate through hot gas pyrolysis. 

Regression rate measured with window visualisation with high-speed cameras and 

ultrasonic sensor, generating the instantaneous solid and liquid fuel thicknesses. 

TU  

(Nakagawa and Hikone, 2009; 

Maruyama et al., 2011) 

Atmospheric 10-30 Not stated Control the regression rates of fuels by changing their viscosities with the use of 

additives. Regression rate determined through window visualisation with high-speed 

cameras 

KAU  

(Kim et al., 2010, 2015) 

1.1-2.6 4-15 Not Stated Manipulate the liquid layer viscosity of paraffin wax fuels.  Tested with both hot gas 

Pyrolysis and Full boundary layer combustion. 

SU  

(Chandler, 2012) 

Up to 17.2 Up to 40 Regression 

not 

measured 

Visualise the droplet entrainment in liquefying fuels 

SPLab  

(Galfetti et al., 2013) 

1.5 100-350 Not stated Double slab (top and bottom) configuration motor for testing the regression rates of 

various fuels with additives 

PSU  

(Chiaverini et al., 2000; Evans 

et al., 2009) 

23-46 175-225 ±5% Double slab (top and bottom) configuration motor for testing the regression rates of 

different fuels with performance additives. Thermocouples were embedded into the 

fuel during some of the tests to measure surface temperature during combustion 

DLR 

(Kobald, Ciezki and 

Schlechtriem, 2013; Kobald et 

al., 2014, 2016; Kobald, Verri 

and Schlechtriem, 2015) 

Atmospheric 6-8 ±10% Determine a relationship between liquid layer viscosity and regression rate. 

* ONERA – Le centre français de recherche aérospatiale  * SU – Stanford University    * DLR – Institute of Space Propulsion 

* TU – Tokai University     * KAU – Korea Aerospace University  * SPLab – Politecnico di Milano  

* PSU – Pennsylvania State University 
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Both Tokai University and the Korea Aerospace University utilised slab motor test stands to 

develop an understanding of the effect of the fuel liquid layer viscosity of paraffin wax on 

regression rate, and if additives could be used to control this property (Nakagawa and Hikone, 

2009; Kim et al., 2010, 2015). In the case of the Korea Aerospace University, this was done 

with the intention of improving structural performance and was tested using both non-reactive 

hot gas pyrolysis and reactive boundary layer combustion.  

 

Paraffin wax is known to be brittle, and there is a risk of fuel failure in the case of large scale 

vehicles (Kim et al., 2010, 2015). The addition of LDPE was hypothesised to increase the 

tensile strength of paraffin wax. The regression rate of paraffin wax with 5% and 10% LDPE 

addition resulted in a progressive decrease in regression rate to that of pure paraffin wax. This 

decrease in regression rate still results in a higher overall regression rate to that of pure LDPE. 

Additionally, the LDPE doped paraffin wax samples showed an improvement in tensile and 

compressive strength of 24.8% and 34% respectively for the 5% doped samples, and 42.4% and 

42.2% for the 10% doped samples (Kim et al., 2010, 2015). The results obtained from Tokai 

University showed similarly that the addition of EVA in paraffin wax increases the melt layer 

viscosity, resulting in a lowered regression rate due to a reduction in droplet entrainment 

(Nakagawa and Hikone, 2009).  

 

Pennsylvania State University and The Space Propulsion Lab (SPLab) from the Politecnico di 

Milano’s Aerospace Engineering Department both used a double slab motor, which has a slab 

on the top and bottom of the combustion chamber, while still allowing for direct visualisation. 

The tests conducted by SPLab were extensive and included fuels such as gel wax, solid wax 

and HTPB, and additives at a wide range of oxidiser mass fluxes. The regression rate was 

determined based on the fuel volume and burn time (Galfetti et al., 2013) as follows: 

 

𝑟̇ =
∆𝑚

𝜌𝑓𝑡𝑏𝐴𝑏
           (2) 

The SPLab tests were conducted on each fuel with varying percentages of nano-aluminium 

powders of 50 and 100 nm average particle size (named Alex50 and Alex 100 respectively) and 

MgH2 powder (50 to 150 µm particle size) (Galfetti et al., 2013). The results indicated a 

superior regression rate for the pure solid wax over the pure gel wax and HTPB fuels. At a mass 

flow rate of 350 kg/m2s, HTPB regression rate is measured to be about 0.6 mm/s, gel wax is 

1.1 mm/s and solid wax is 2 mm/s (Galfetti et al., 2013). Carbon black (0.2%) was added to the 
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wax to increase the surface radiation heat transfer and limit the sub-surface radiation 

penetration, thus reducing the effect of sloughing (Dean, 1995). The results indicate only a 

slight drop in the regression profile over the oxidiser mass flux range, while still also indicating 

the superiority of solid wax over the HTPB fuel. At 350 kg/m2s the blackened solid wax 

regression rate measures about 1.94 mm/s (Galfetti et al., 2013). 

 

With the addition of 5% Alex100 aluminium particles to solid and gel wax, the regression rates 

at 350 kg/m2s increased to 2.2 mm/s and 1.9 mm/s respectively. There was a substantial increase 

in regression performance of the gel wax (71%), and only a slight increase in performance for 

the solid wax (10%) when compared to their pure forms (Galfetti et al., 2013). Regression rates 

with the addition of 5% magnesium hydride (MgH2) into HTPB, gel wax and solid wax at 350 

kg/m2s were measured to be about 1.28 mm/s, 1.64 mm/s and 2.5 mm/s respectively. The 

performance increase for the solid wax and gel wax (relative to the pure fuels at 350 kg/m2s) 

was 38% and 25% respectively. These results indicate that the performance increase with the 

addition of MgH2 has a lower dependency on the binder material (DeLuca et al., 2011; Merotto 

et al., 2011; Galfetti et al., 2013).  

 

Pennsylvania State University used their slab motor for analysing the regression rate of HTPB 

with the addition of ultrafine aluminium particles (UFAL). These particles have an average size 

of 0.05 to 0.10 µm. This data was later correlated to other cylindrical motor tests and showed 

very similar results (Chiaverini et al., 2000; Evans et al., 2009). Results from these slab motor 

tests indicate a large regression rate advantage for fuels with certain additives, which is a similar 

conclusion to that drawn by SPLab. The addition of 20% (by weight) UFAL to HTPB increased 

the fuel mass flux by 70% (Chiaverini et al., 2000). The regression rate data obtained from the 

Institute of Space Propulsion revealed a slight increase in regression rate with the addition of 

2% nanoclay, but a significant decrease in regression rate with 5 and 10% of a common 

polymer. The regression rate data was measured on a short burn slab motor, and therefore the 

regression rates are not comparable to the results presented in Figure 3 due to the large ignition 

transients and should only be used for comparative tests on the same test apparatus (Kobald, 

Ciezki and Schlechtriem, 2013; Kobald et al., 2014, 2016; Kobald, Verri and Schlechtriem, 

2015). The regression rate data obtained from some of these slab motor tests have been plotted 

on a common set of axes for comparison, as shown in Figure 2 - 3.  
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2.6.2 Laboratory-scale motor testing 

Laboratory (Lab)-scale motor testing is one of the most commonly used methods of generating 

regression rate data. The advantage over a slab motor is the use of a more realistic grain 

geometry. Regression rate is often determined by time-averaging based on the grain dimensions 

before and after the burn time, as well as the averaged combustion properties. Numerous 

institutions have conducted lab-scale motor testing with varying objectives behind their motor 

designs and testing methodologies. These design attributes are given in Table 2 - 3and Table 2 

- 4. The data within these tables were extracted from a number of sources, and is either directly 

specified as a test condition, or indicated as a design range of the equipment. A shared objective 

of most of the tests conducted was the determination of the performance characteristics of a 

propellant combination, and the effect various additives have on the fuel regression rate. 

 

Table 2 - 3 includes the different geometrical properties of the lab-scale motors designed. Some 

of the tests conducted were either on the same or modified versions of existing lab-scale motors. 

Table 2 - 4 lists the operating conditions and testing objectives. Before the inception of paraffin 

wax as a hybrid fuel, a common hybrid fuel was HTPB (Natan and Gany, 1993b). Significant 

research went into the regression rate improvement of this fuel, in particular with the inclusion 

Figure 2 - 3: 2D regression rate results for various wax samples with additives 
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of energetic additives. Since the advantages of liquefying fuels were discovered, researchers 

began to investigate the improvement of paraffin wax over a doped HTPB fuel (Risha et al., 

2001, 2002; Evans et al., 2004, 2009). Finally, to further the regression rate improvement of 

liquefying fuels, energetic additives were then added to paraffin wax. This gradual development 

of fuel regression rate improvement has advanced hybrid rocket fuels substantially.  

 

The regression rate data extracted from the publications referenced in Table 2 - 3 and Table 2 - 

4 is presented graphically in Figure 2 - 4 and  Figure 2 - 5. Figure 2 - 4 includes the pure paraffin 

and blackened paraffin results from each institution. A trend line has been used to represent the 

point results from Doran et al. (Doran et al., 2007). This work did not present a regression curve 

due to insufficient and inconclusive tests. The data was included regardless, as it was the only 

pure paraffin wax data graphically represented that makes use of N2O as the oxidiser over a 

range of oxidiser mass fluxes. The University of Brazil (Santos et al., 2005) has conducted tests 

on pure paraffin wax with nitrous oxide, but this data is tabulated, and the oxidiser mass flux is 

uncertain due to doubt in the flux measurement technique. The remaining tests make use of 

gaseous oxygen (GOX). 

 

The regression rate data for most of the tests result in a similar regression profile except for the 

two distinct outliers from Larson et al. (Larson et al., 2015). These two datasets, although 

obtained from the same LGCP motor as Evans et al. (Evans et al., 2009), had a critical 

adjustment to the grain dimensions while keeping the motor dimensions the same.  The grain 

only made up about one-quarter of the chamber length, affecting the flow and regression 

properties. The short burn times and small diameter design of this motor made its design 

purpose for comparative tests only (Larson et al., 2015). Additionally, there was a difference 

between the Pennsylvania State University and Aerospace Corporation paraffin wax 

compositions. The paraffin wax/N2O  experimental data plotted as a trend line from the set test 

points are noted to be much higher than expected for a nitrous oxide propellant when compared 

to the GOX propellants (Doran et al., 2007). There is uncertainty in the regression rate data 

measurements from this set of tests (Doran et al., 2007). The remaining regression profiles 

correlate closely to each other and do not seem to be affected by the carbon chain length of the 

known waxes used. 
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Table 2 - 3: Lab-scale motors design parameters 

Institution Fuel Oxidiser Grain OD 

(mm) 

Grain ID  

(mm) 

Grain Length 

(mm) 

Chamber 

Length (mm) 

Regression 

error interval 

SU   

(Karabeyoglu, 1998; 

Karabeyoglu, Cantwell 

and Altman, 2001) 

 

Paraffin Wax (C32H66), 

Plexiglass, HTPB 

GOX 60 12.7 - 

30.48 

177.8 177.8 - 482.6 Not stated 

NASA AR  

(Karabeyoglu et al., 2003, 

2004) 

 

Paraffin Wax (C32H66), 

Plexiglass and HTPB 

GOX 195 76.2 - 

152.4 

838.2 - 1117.6 1200 ± 3 – 8% 

SU   

(Lohner et al., 2006) 

 

HTPB, PMMA, HDPE, Sorbitol N2O 50.8 19.05 127, 152.4 and 

228.6 

152.4, 177.8, 

254 

0.044 

SU  

(Doran et al., 2007) 

 

Paraffin Wax (C32H66), HDPE, 

PMMA, HTPB 

N2O 50.8 12.7 - 

19.05 

101.6 - 228.6 up to 254 Not stated 

UB 

(Santos et al., 2004, 2006) 

 

Macrocrystalline Paraffin wax N2O 71 23 220 - Not stated 

UB  

(Santos et al., 2005) 

 

Macrocrystalline Paraffin wax N2O 71 23 220 - Poor results 

IIT 

 (Weinstein and Gany, 

2013) 

 

MW-704 Paraffin Wax, PMMA GOX 
 

21 190 310 ± 8% 

KAU 

 (Kim et al., 2015) 

Paraffin Wax (C28H58), LDPE, 

HDPE 

GOX 70 20 200 - Not stated 
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Institution Fuel Oxidiser Grain OD 

(mm) 

Grain ID  

(mm) 

Grain Length 

(mm) 

Chamber 

Length (mm) 

Regression 

error interval 

PSU LGCP 

(Risha et al., 2001, 2002; 

Evans et al., 2004, 2009) 

  

Paraffin Wax (C32H66), HTPB GOX 38 8.86 410 - ± 3% 

PSU XTC 

(Evans et al., 2004, 2009) 

  

Paraffin Wax (C32H66), HTPB GOX 114 64 457 - ± 3% 

PSU LGCP 

(Larson et al., 2015) 

Paraffin Wax (C32H66), 

Paraffin Wax (Aerospace 

Corporation) 

GOX 38 8.89 - 

12.97 

101.6 - 139.7 - ± 3 – 7% 

UN  

(Scaramuzzino et al., 

2013) 

 

HTPB, Paraffin Wax (C24H50) GOX/N2O 69.2 19.1 - 28.8 220 - 240 350 Only defined for 

failed tests 

IITM 

 (Kumar and 

Ramakrishna, 2013, 2014) 

 

30% Micro-Crystalline wax, 70% 

Paraffin Wax 

GOX 42 9 134 134 ± 2.4 – 4% 

IITM  

(Kumar and Ramakrishna, 

2013) 

30% Micro-Crystalline wax, 70% 

Paraffin Wax 

GOX 100 20 300 300 ± 1.7 – 2.5% 

* SU – Stanford University   * NASA AR – NASA Ames Research Centre  * PSU – Pennsylvania State University 

* UB – University of Brazil  * IIT - Israel Institute of Technology   * KAU – Korea Aerospace University 

* UN – Università di Napoli  * IITM – Indian Institute of Technology Madras 
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Table 2 - 4: Lab-scale motors operating conditions 

Institution Additives Operating 

pressures 

(bar) 

Oxidiser 

Mass flux 

range 

(kg/m2s) 

Objective 

SU   

(Karabeyoglu, Cantwell 

and Altman, 

2001)(Karabeyoglu, 1998)  

None 3.8 - 13.8 5 - 150 Lab scale motor was designed to fulfil the experimental requirements of 

determining the transient combustion properties, as well as the regression rates 

of liquefying hybrid fuels 

NASA AR  

(Karabeyoglu et al., 2003, 

2004)   

None 10 - 68 74.3 - 

368.7 

Designed as a scaled up version of the above lab scale motor to determine the 

effect pressure, oxidiser mass flux, and fuel grain length have on the regression 

rate  
SU   

(Lohner et al., 2006) 

None 20 - 45 25 - 270 Lab scale motor designed to characterise the regression rate of traditional and 

novel hybrid fuels using nitrous oxide as the oxidiser 

SU  

(Doran et al., 2007)   

5 um aluminium 27.5 - 48 25 - 300 Utilising the same lab scale motor as above, these tests were conducted to 

characterise the effect of aluminium particles on the regression rate of some 

hybrid fuels. 

UB  

(Santos et al., 2004, 2006)  

Carbon black 12 - 20 200 - 700 This lab scale motor was developed with the intention of investigating and 

comparing the ignition of solid fuels, regression rates, and combustion 

performance of paraffin wax with nitrous oxide and HTPB and gaseous oxygen  
UB  

(Santos et al., 2005) 

Carbon black 12 - 20. 96 - 585 The further testing conducted on the above lab scale motor was conducted with 

the intention of presenting a mathematical correlation for the combustion 

velocity as a function of the oxidiser mass flux.  

IIT  

(Weinstein and Gany, 

2013)  

None 12 - 18. 5 - 100 Experimental testing conducted for the correlation of test data to a theoretical 

model for liquefying fuels 

KAU  

(Kim et al., 2015)  

LDPE Unknown 33 - 475 Testing conducted to determine the performance of paraffin wax doped with 

varying percentages of LDPE with the intention of increasing the structural 

properties of paraffin wax. 
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Institution Additives Operating 

pressures 

(bar) 

Oxidiser 

Mass flux 

range 

(kg/m2s) 

Objective 

PSU LGCP 

(Risha et al., 2001, 2002; 

Evans et al., 2004, 2009) 

 

Carbon black in paraffin 

wax, aluminium in HTPB 

23 - 46 140 - 850 Compare the differences between aluminium loaded HTPB and paraffin wax as 

a means to improve regression rate in hybrid rockets 

PSU XTC 

(Evans et al., 2004, 2009)  

 

Silberline nano-sized 

aluminium in paraffin wax 

21.7 - 42.4 163 - 320 Determine the regression rate of aluminised paraffin wax fuel grains. 

PSU LGCP  

(Larson et al., 2015)  

Lithium aluminium hydride 

(LiAlH4), 

cyclotrimethylenetrinitramin

e (RDX) (C3H6N6O6), and 

multi-walled carbon 

nanotubes (MWNT). 

13.8 - 24.1 49 - 115 The addition of LiAlH4 and RDX for regression rate and performance 

enhancement. Addition of MWNT for structural enhancement 

UN 

 (Scaramuzzino et al., 

2013) 

 

SEBS in Paraffin Wax, 

aluminium powder in HTPB 

4 - 18 30 - 130 Compare the differences between aluminium loaded HTPB and paraffin wax 

with SEBS as a means to improve regression rate in hybrid rockets 

 

IITM  

(Kumar and Ramakrishna, 

2013, 2014) 

 

None 9 - 160 Comparing regression rate measuring techniques. Weight measurement vs. 

pressure measurement  

IITM 

 (Kumar and Ramakrishna, 

2013) 

None 9 - 350 Measure the regression rate  

* SU – Stanford University   * NASA AR – NASA Ames Research Centre  * PSU – Pennsylvania State University 

* UB – University of Brazil  * IIT - Israel Institute of Technology   * KAU – Korea Aerospace University 

* UN – Università di Napoli   * IITM – Indian Institute of Technology Madras 
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The data presented by Karabeyoglu et al. (Karabeyoglu, 1998; Karabeyoglu, Cantwell and 

Altman, 2001), investigated transient combustion within hybrid rocket motors. A choked sonic 

orifice placed in the feed line was used to control the mass flow rate.  The regression rate data 

were obtained for very low oxidiser mass fluxes but remains useful in indicating the regression 

rate advantage of paraffin wax over a standard HTPB/GOX system. The NASA Ames Research 

Centre established a scaled-up test facility for further regression rate testing at higher oxidiser 

mass fluxes (Karabeyoglu et al., 2003, 2004).  Their results indicate that scale has little effect 

on the regression rate of paraffin wax, thus small-scale motor data can be applied to larger scale 

motors. Also, the oxidiser mass fluxes and chamber pressures observed in these scaled-up tests 

are more realistic when compared to those expected in a flight motor. Additional data obtained 

from these scale-up tests indicate that grain length and chamber pressure do not affect the 

regression rate of the fuels (Karabeyoglu et al., 2004).   

 

Rajiv and Ramakrishna from the Indian Institute of Technology Madras conducted lab-scale 

motor testing with the intention of comparing combustion chamber pressure and weight change 

regression rate measuring techniques (Kumar and Ramakrishna, 2013, 2014). Their tests were 

conducted on two motors of 134 mm and 300 mm grain length. The regression rate 

measurement techniques correlated well to existing data. However, there is a noticeable 

difference as a result of scale. The fuel used in their testing was a mixture of 30% 

microcrystalline and 70% paraffin wax. The carbon chain length was not noted in their 

publications. 

 

For the purposes of this review, further regression rate data was obtained with the inclusion of 

a variety of additives within a paraffin wax binder and other novel hybrid fuels. The various 

regression data from Table 2 - 3 and Table 2 - 4 are given in Figure 2 - 5 to allow for the 

graphical comparison of the effects of additives. Stanford University designed a new lab-scale 

motor for the regression rate testing of HTPB, polymethyl methacrylate (PMMA), high-density 

polyethylene (HDPE) and sorbitol (Lohner et al., 2006). This apparatus was later used for the 

regression rate testing of aluminised grains, as well as paraffin wax (Doran et al., 2007). The 

system was designed to be modular in an attempt to fit different grain diameters and lengths, 

accommodating a variety of fuels. Tests were conducted with nitrous oxide as the oxidiser due 

to its safety advantages over GOX. Trend lines for the 5, 10, and 20% aluminised paraffin wax 

fuels grains are given in Figure 2 - 5 (Doran et al., 2007) and compared against the most 

conclusive pure paraffin wax regression sample from Karabeyoglu et al. (Karabeyoglu et al., 
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2003, 2004). The scattered data does not show a conclusive increase in regression rate with 

each percentage of aluminium. Doran et al. (Doran et al., 2007) attribute this to the short burn 

times and few results. A similar conclusion was drawn for the pure paraffin results represented 

in Figure 2 - 4.  

 

Other energetic additives such as LiAlH4 were tested by Larson et al. (Larson et al., 2015). 

Results of a 5 and 10 % addition of this hydride are plotted in Figure 2 - 5. There is a 7 to 10 % 

increase in the regression rate of this fuel over that of the pure paraffin tests conducted. Larson 

et al. (Larson et al., 2015) attribute a portion of this increased regression rate to the lower fuel 

density when compared to pure paraffin wax. However, there is still an increase in fuel mass 

burn rates in fuels with additional LiAlH4. Evans et al. (Evans et al., 2009) demonstrated a 30% 

increase in regression rate with the inclusion of 13% Silberline aluminium particles. It was 

hypothesised that the aluminium flakes are encapsulated with molten wax when they leave the 

fuel surface and burn rapidly near the fuel surface promoting the ignition of the aluminium 

particles.  

 

Kim et al. (Kim et al., 2015) conducted tests to increase the structural performance of the 

paraffin wax with the addition of LDPE. Figure 2 - 5 indicates the resultant regression rate data, 

Figure 2 - 4: Regression rate results for pure paraffin wax samples 
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showing a reduction of the average regression rate at increasing percentages on LDPE. The 

addition of LDPE increased the liquid layer viscosity, reducing the regression due to droplet 

entrainment. Scaramuzzino et al. (Scaramuzzino et al., 2013; Carmicino, Scaramuzzino and 

Russo Sorge, 2014)  added an energetic additive referred to as SEBS, which is a thermoplastic 

polymer. These test results indicated a higher regression rate when compared to aluminised 

HTPB, however many of the results were uncharacteristically high due to structural failure of 

the grain, resulting in fragment loss. A new casting method was then considered which reduced 

the fragment loss occurrence, but the wax still did not meet structural requirements.  

 

Other performance testing with the inclusion of aluminium particles includes the work done by 

Sun et al. (Sun et al., 2016) and Li et al. (Li et al., 2014) where the regression rate of aluminium 

and aluminium and magnesium doped HTPB fuels grains were tested. The results show a 

noticeable increase in the regression rate of the fuel with up to 35% Al, and 10% Mg over that 

of pure HTPB. 

 

Figure 2 - 5: Lab-scale regression rate results for various wax samples with additives 
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The results presented indicate similar regression trends, with most metalized additives 

improving the regression rate, polymer additives reducing the regression rate, as well as a 

general increase in regression rate with an increasing oxidiser mass flux. There is unfortunately, 

very little consistency across testing platforms, due to the differences in measurement methods, 

averaging techniques and testing procedures. Rajeshwar and Gany (Swami and Gany, 2003) 

investigated the effects of similarity and scaling in hybrid testing and concluded that for a test 

motor to accurately simulate a full-scale motor, geometric similarity, oxidiser fuel combination, 

and scaling of the oxidiser mass flux to the port diameter is required. Further, recent testing 

conducted by Cai et al. demonstrated the significant effect the length-to-diameter ratio has on 

the regression rate and combustion efficiency (Cai et al., 2016) of a hybrid motor. It is advised 

that a set of testing standards be determined for regression rate testing of hybrid rocket motors 

so that results can be reasonably compared.  

2.7 Structural assessment of fuel grains 

Both HRMs and SRMs make use of a solid fuel in the combustion chamber. This solid fuel 

mass is geometrically designed to meet the mission thrust requirements. There are numerous 

publications available defining the structural assessment of a SRM due to the high-risk nature 

of a failure (Fitzgerals and Hufferd, 1971; Simo, 1987; Sutton and Biblarz, 2001; Ho, 2010; 

Kumar and Rao, 2014). The development of a crack in a solid propellant can result in motor 

over pressurisation or vehicle loss (Gondouin, 1993). There is, however, very little information 

on the structural performance of hybrid fuels grains. This has not been a primary concern in the 

development of hybrid technology. Hybrid fuel cracks do not carry as much risk of explosive 

failure as those in solid fuels. The separation of the fuel and oxidiser limits the fuel reaction to 

surfaces directly exposed to the oxidiser stream. Further, liquefying fuels may offer a crack 

healing phenomenon, where the liquid fuel is allowed to flow into any void created as a result 

of structural failure. The primary failure concern in hybrid fuels is the loss of fuel through the 

nozzle, which is then at risk of damage or of nozzle blockage resulting in a partial mission 

altitude (Sutton and Biblarz, 2001). Multiport fuel grain designs commonly used with classical 

hybrid fuels are at high risk of failure due to sliver fracture of thin-walled ribs. High regression 

fuels such as paraffin wax do not require multiple ports and can offer some structural rigidity 

with a single port geometry. However, the brittle nature and low material strength of paraffin 

wax create uncertainty in its ability to withstand launch loads in its pure form.  
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Paraffin wax is known to be a soft, weak material. Its low strain failures make its use in high 

load launch situations concern for structural failure (Wang, Severtson and Stein, 2006; 

Karabeyoglu and Arkun, 2014). Karabeyoglu (Karabeyoglu, 2017) and Cantwell et al. 

(Cantwell, Karabeyoglu and Altman, 2010) have commented on the negative impact that metal 

additives will have on the structural properties of paraffin wax; however little work has been 

conducted to verify this.  

2.7.1 Material testing 

Characterising the structural response of propellants is necessary to determine the feasibility of 

a fuel for the launch conditions, and numerous sources have conducted tensile tests on paraffin 

wax fuels, with additives. A full characterization is required to determine the temperature and 

strain rate dependency, but most tests to date are less comprehensive than this. The lab scale 

tests conducted by Scaramuzzino et al. (Scaramuzzino et al., 2013; Carmicino, Scaramuzzino 

and Russo Sorge, 2014) documented many fragment losses due to structural failure which 

resulted in nozzle damage. They attributed this failure to the poor mechanical properties of the 

SEBS doped paraffin wax grain as a consequence of the low-temperature casting method. 

Additives such as LDPE have been added to paraffin wax with the intention of improving the 

structural performance. The effect of this material is to lower the regression rate, as discussed. 

DeSain et al. (Desain et al., 2009) conducted structural tests on paraffin wax with 0 to 4% LDPE 

addition following the ASTM 638-03 international standard. The results indicated that LDPE 

increases the stiffness of the material and increases the ultimate tensile strength (UTS) to a 

similar range of HTPB. Unfortunately, the stiffness is higher than HTPB, resulting in a fragile 

grain. They determined the optimal LDPE addition to be 2%, which increases the UTS of 

paraffin wax to an average of 2.5 MPa at a strain rate of 5.1 mm/min (Desain et al., 2009). This 

is an improvement of 150% over the pure paraffin wax average UTS of 0.94 MPa. Kim et al. 

(Kim et al., 2015) conducted tests of a similar nature but followed the procedure stipulated in 

ASTM D1320-73. This standard has a vastly different testing geometry and has been withdrawn 

with no replacement.  LDPE percentages of 5 and 10% were tested in compression and tension. 

Similar to DeSain et al. (Desain et al., 2009) the UTS increased with an increasing proportion 

of LDPE. The average UTS at 0, 5 and 10% LDPE is 1.57, 1.96, and 2.23 MPa respectively at 

a rate of 5 mm/min.  

 

Kobald et al. (Kobald et al., 2014) conducted extensive mechanical testing on various paraffin 

wax formulations (Sasol,6003, 6805, 0907, 1276) both macro and microcrystalline, with the 
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additives such as nanoclay, stearic acid (SA), and what is referred to as a common polymer. 

The results presented offer the tensile properties of Sasol 6805 with the various additives, 

normalised to Sasol 6805 + 10% SA. A 2% addition of nanoclay doubles the elongation of the 

wax but does not significantly improve the tensile strength. It does however slightly increase 

the regression rate. The addition of 5 and 10% polymer increased the strength by two and three 

times respectively and the elongation by three and five times respectively. The regression rate 

of the paraffin wax doped with the polymer had a reduced regression rate. Finally, the addition 

of a combination of 5% polymer and 2% nanoclay gave an increase similar to that of the 10% 

polymer (Kobald et al., 2014). A similar evaluation of the effects of organically modified 

montmorillonite (OMMT) on the structural properties of paraffin wax was conducted by Wang 

et al. (Wang, Severtson and Stein, 2006) where percentages between 0 and 5% were added to 

paraffin wax. The structural properties of pure paraffin wax were identified as a ductile failure 

at low strain rates. The addition of 2% OMMT increased the elongation by 450% (Wang, 

Severtson and Stein, 2006).  

 

Other additives such as EVA were structurally tested. The addition of 0 to 20% EVA was 

characterised by Maruyama et al. (Maruyama et al., 2011) who followed the JANAF standards 

for tensile tests. These tests yielded an increasing UTS with an increasing percentage of EVA 

addition. The addition of 20% EVA increased the UTS by 1.6 times and the strain by 2.3 times 

(Maruyama et al., 2011). The effects of the structural properties of paraffin wax grains with 

aluminium particles were investigated by Veale et al. (Veale, Brooks and Pitot de la 

Beaujardiere, 2015) and Ryu et al. (Ryu et al., 2016). Veale et al. noted a slight increase in the 

UTS of Sasol 0907 with a 15% drop in elongation with the 40% aluminised grain. Ryu et al. 

considered the effect of varying percentages of nano- (100 nm) and micro- (8 µm) sized 

aluminium particles at varying weight percentages. It was noted that the grains doped with 

nano-AL displayed a noticeable improvement in structural properties, while the micro-AL 

doped grains showed less of an improvement, although the tensile strength was still improved. 

 

Table 2 - 5 lists the average UTS obtained from these sources. It can be noted that there are no 

sources that have conducted a conclusive characterization of the material. Most cases include 

room temperature tensile and occasionally compressive tests. In this case, each of the sources 

made use of different standards for testing, none of which are specifically suited to this material.  
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Table 2 - 5: UTS for paraffin wax tensile tests 

Sample (+wt% additive) Pull rate 

(mm\min) 

Average UTS (MPa) Experimental standard 

followed 

PW (Desain et al., 2009) 5.1 0.9395  ASTM D638-03 

PW  508 0.8915 ASTM D638-03 
PW + 2% LDPE  5.1 2.5 ASTM D638-03 

PW + 4% LDPE  5.1 1.81 ASTM D638-03 

PW + 5% PE (Kim et al., 

2010, 2015) 

5 1.96 ASTM D1320-73 

PW + 10% PE  5 2.23 ASTM D1320-73 

PW (Wang, Severtson and 

Stein, 2006) 

10 0.77 ASTM D638-95 

PW + 0.5% OMMT  10 0.91 ASTM D638-95 

PW + 1% OMMT  10 1 ASTM D638-95 

PW + 2% OMMT  10 1.06 ASTM D638-95 

PW + 3% OMMT  10 1.15 ASTM D638-95 

PW + 4% OMMT  10 1.13 ASTM D638-95 

PW + 5% OMMT 10 1.22 ASTM D638-95 

PW (Ryu et al., 2016) 5 2.118 ASTM D638-95 

PW + 10% Nano Al 5 2.759 ASTM D638-95 

PW + 20% Nano Al 5 3.068 ASTM D638-95 
PW + 30% Nano Al 5 2.764 ASTM D638-95 

PW + 5% Micro Al 5 1.768  ASTM D638-95 

PW + 10% Micro Al 5 2.014 ASTM D638-95 

PW + 15% Micro Al 5 2.601 ASTM D638-95 

PW (Maruyama et al., 2011) 1 0.8 JANAF 

PW + 10% EVA  1 1.1 JANAF 

PW + 20% EVA  1 1.42 JANAF 

PW (Veale, Brooks and Pitot 

de la Beaujardiere, 2015) 

1 1.73 JANAF 

PW + 40% AL (Veale, Brooks 
and Pitot de la Beaujardiere, 

2015) 

1 1.86 JANAF 

 

The results available are not sufficient to accurately represent the loading conditions that a 

hybrid rocket fuel grain would encounter during flight. It is advised that once a suitable additive 

is found to meet the performance requirements, comprehensive structural testing is conducted 

to characterise the nature of the propellant fully. These tests should follow similar procedures 

used in solid rocket motor analysis, and include properties such as strain rate dependence, 

temperature dependence, and creep to name a few.  

2.8 Conclusion 

Hybrid fuels, particularly liquefying fuels, have shown potential as an applicable form of 

chemical propulsion. Despite the advances in this technology, no detailed review of the existing 

performance and structural test results or methods are available for paraffin wax in particular. 
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In this work, an extensive review of paraffin wax hybrid fuel structural properties versus its 

regression rate has been presented. This was done with the intention of creating a link between 

existing structural additives, and performance measures. The density impulse in conjunction 

with the regression rate as a performance measure is a good indication of the expected 

performance of a propellant combination in volume-limited designs. 

 

The regression rate data presented indicates a strong link between regression rate improvements 

in paraffin wax with the addition of metalized additives. Unfortunately, very little testing has 

been conducted in the structural performance of the grains with these additives. The structural 

tests that have been conducted have been done under varying conditions, with numerous 

inconsistencies between sources. In general, there seems to be an improvement in the UTS of 

the material with small percentages of aluminium, while some report an improvement in 

elongation, and others report a reduction in elongation. Paraffin wax with a small percentage of 

a polymer additive, such as EVA or LDPE was investigated with the objective of improving on 

the materials naturally brittle nature. Small percentages of both EVA and LDPE showed an 

increase in the UTS and the elongation of paraffin wax. Performance testing of these additives 

resulted in a reduction in the regression rate. This was due to the increased liquid viscosity, 

reducing the number of droplets that are entrained into the oxidiser stream. This has been 

verified in 2D slab motor tests. The structural tests performed have only been conducted at 

room temperature and at slow speeds, limiting the use of the results. High strain rate tests and 

temperature dependence of the material should be considered for in-flight loading conditions, 

while creep and relaxations testing should be considered for storage-related structural analysis. 

The data presented in this paper indicates a gap in the development and use of paraffin wax 

hybrid fuels for launch applications. It is important to consider both the propellant performance 

and its ability to withstand the loads induced during launch. A fuel structural analysis requires 

comprehensive material characteristics before the structural feasibility can be determined. 

When considering a new additive, the fuel formulation should be tested with considerations to 

strain rate dependence and temperature effects. Additionally, the performance of any propellant 

combination needs to be determined. There are numerous inconsistencies between the test 

procedure presented above, including chamber size, fuel dimensions, burn times, measurement 

techniques, averaging methods, and finally, the number of tests conducted.  

 

The next step in the development of paraffin wax-based hybrid fuels and their feasibility in 

propulsion is to develop a standard procedure for testing which considers which variables need 
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to be reported, how they should be measured, and finally how they should be reported. The 

ballistic coefficients, a and n, in hybrid propulsion can often only be determined empirically, 

and then used to model flight size motors. These flight size motors also need to carry a 

structurally sound solid fuel grain, which shows no risk of in-flight cracking or failure. This is 

a similar process to that used in solid rocket propellants, which should be applied to enhance 

the future development of hybrid fuels.  
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CHAPTER 3: THE STRUCTURAL PROPERTIES OF PARAFFIN WAX 

BASED HYBRID ROCKET FUELS WITH ALUMINIUM PARTICLES 

(MANUSCRIPT PUBLISHED: ACTA ASTRONAUTICA VOL 151, PAGES 864-873, 2018) 

  

3.1 Abstract 

Paraffin wax has been identified as a feasible high regression rate hybrid fuel. For this reason, 

paraffin wax needs to undergo stringent performance measures to qualify it to meet the 

requirements necessary for a large-scale launch vehicle. Energetic additives such as aluminium 

powders have been considered for their performance-enhancing possibilities. This research 

focusses on measuring the structural performance of the fuels similar to what would be required 

for a solid propellant. Thus, the structural properties of both pure and 40 wt% aluminised fuels 

are investigated. Additionally, both elastic and plastic structural properties of the fuel need to 

be determined for complete material characterisation. Strain rate and temperature dependence 

of the material structural properties are investigated in this work through compression and 

tension testing. Results indicate that the addition of aluminium increases the strength of the 

fuel. Also, a slight increase in temperature was seen to decrease the structural performance 

significantly. This means that the rate of thermal propagation within the fuel grain is an 

important consideration. Finally, strain rate dependence is evident in paraffin wax. Higher strain 

rates result in higher Ultimate Tensile Strength (UTS) failure points, at lower levels of strain. 

Keywords: Hybrid rocket; paraffin wax; additives; structural properties 

3.2 Introduction 

The structural performance of solid rocket fuel grains has been considered important for many 

years (Kelley, 1969; Fitzgerals and Hufferd, 1971; Douglass et al., 1973; Ho, 2010). This is 

due to the stringent structural requirements of solid rocket propellants, where any unintentional 

fuel area exposure from crack formation or case debonding could result in catastrophic failure 

and loss of the vehicle due to over-pressurisation (Gondouin, 1993). Throughout the years, 

methods of material characterisation and structural simulations have been developed, 

particularly for solid propellant grains. The primary concern for solid propellant grains is 

attributed to the fuel and oxidiser being premixed into a single grain. In the case of hybrid 
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propellants, the solid fuel and liquid (or gaseous) oxidiser are separate, and in different phases. 

It is not yet known to what extent a vehicle might fail, if at all, if a large crack was to form in a 

hybrid fuel grain, however, there is still at the least the risk of fuel loss if fuel fragments were 

to be ejected through the nozzle.  Over-pressurisation as a result of excess fuel exposure is less 

of a concern due to the separation of fuel and oxidiser, and the boundary layer combustion 

process, however, if a large enough fragment was to break away from the fuel grain, there is a 

risk of it blocking the nozzle resulting in over-pressurisation. This would result in a pressure 

shock throughout the motor which may result in motor failure or an altered motor burn 

performance. In the case of both hybrid and solid fuel grains, a few small surface cracks may 

not affect the structural integrity of the fuel grain. However, numerous small cracks, a few deep 

cracks, or large areas of debonding may result in motor failure (Sutton and Biblarz, 2001). With 

the recent interest in hybrid technology since the inception of high regression rate liquefying 

fuels, considerations need to be made for the full functionality of the fuels in question.  

 

Paraffin wax has been identified as a viable fuel for large scale hybrid rockets. In addition, 

additives such as aluminium powders are considered for their theoretical performance-

enhancing properties. SasolWax 0907, which is used in this research, has been identified as a 

brittle material, which allows for relatively little deformation before failure. Before any 

structural analysis can be conducted, similar to that which would be done for a solid propellant, 

material characterisation is required to develop a sufficiently accurate constitutive model for 

the material (Zalewski and Wolszakiewicz, 2011). This paper will detail the experimental 

technique conducted to determine material properties such as the strain rate and temperature 

dependencies of paraffin wax, as well as paraffin wax with aluminium additives. 

 

Testing has been conducted over the years on various hybrid fuels with and without additives, 

and the effects these have on structural properties. Pal and Kumar (Pal and Kumar, 2017) 

recently conducted a study on the effects of aluminium and polyethylene as additives in paraffin 

wax hybrid fuels. The study considered only the compressive strength for various combinations 

of the additives. The fuels were then also compared to view the effects the additives had on the 

ballistic performance. Ryu et al. (Ryu et al., 2016) investigated the tensile and compressive 

strength of SasolWax 0907 (Sasol Wax GmbH, 2010) with varying percentages of aluminium 

additive, however, did not investigate the thermal and strain rate dependence. The results 

presented in this work, when compared to the results obtained from Ryu et al. (Ryu et al., 2016), 

show a strong correlation.  
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A number of other researchers have also conducted introductory-level structural and thermal 

testing of paraffin-based hybrid fuels, with additives such as hydroxyl-terminated 

polybutadiene (HTPB), ethylene vinyl acetate, low-density polyethylene (LDPE) and nanoclay. 

All sources show potential for an improvement in the structural properties of the material with 

certain amounts of these additives. However, the extent of the mechanical testing was limited 

in all cases (Wang, Severtson and Stein, 2006; Desain et al., 2009; Maruyama et al., 2011; 

Kobald et al., 2014; Kim et al., 2015; Sinha, Sridhar and Kishnakumar, 2016; Cardoso et al., 

2017; Paravan, Galfetti and Maggi, 2017).  Zalewski and Wolszakiewicz (Zalewski and 

Wolszakiewicz, 2011) presented their findings on the strain rate and temperature dependence 

of a solid propellant, indicating the importance of this type of investigation beyond just the 

room temperature, single strain rate scenario, for a complete material characterisation.  

 

Nomenclature 

E   modulus of elasticity (MPa) 

s  stress (MPa) 

e  strain (%) 

3.3 Specimen preparation 

Before approaching structural testing of a material, its expected structural response needs to be 

understood. In the case of SasolWax 0907, the effects of the casting technique on the quality of 

the specimen also need to be considered. To understand the necessary casting techniques 

required for an adequate test specimen, the crystallisation process should be investigated.  

 

SasolWax 0907, a branched hydrocarbon with the chemical formula of C50H102, is defined as a 

microcrystalline paraffin wax (Piscitelli et al., 2015). These waxes generally have higher 

densities, molecular weights and refractive indices than macrocrystalline paraffin waxes 

(Freund et al., 1983).  Microcrystalline paraffin waxes can be separated into two categories, 

these being brittle and ductile. SasolWax 0907 has a congealing range of 83 – 94°C with an 

overall melting point of 108°C according to the supplier datasheet. This puts it in the category 

of a brittle paraffin wax, which by definition will offer very little deformation when stressed 

(Freund et al., 1983). Existing structural properties of paraffin wax indicate that the wax, which 

is crystalline at room temperature, behaves like a viscoelastic material within the range of -

20°C to +40°C. The structural testing conducted here falls within this temperature range. 
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In order to make use of the paraffin wax, it needs to be formed into the dimensions required for 

its application. In the case of hybrid motors, this will generally be a cylindrical shape, with a 

circular port running through the length. For material characterization, specific specimen 

shapes, defined by testing standards, need to be created. In both cases, the paraffin wax has to 

be fully melted and poured into a mould of the desired shape. The crystallization of the paraffin 

wax begins with the formation of nuclei. These nuclei are small crystals with atoms or 

molecules effectively exerting a force of attraction onto other atoms or molecules from the 

melted wax. This allows the crystal structure to grow at what is defined as the rate of 

crystallization. It is important that the nuclei remain randomly orientated, and therefore the 

anisotropy of the crystals defines the wax as a quasi-isotropic material (Freund et al., 1983). 

This means that the orientation of casting does not affect the crystal formation, and thus the 

material properties. Initial test specimens were machined directly from full-size fuel grains. 

However, this was later shown to be unnecessary due to the crystal formation process, and 

individual test specimens were then cast for the test campaign. When the structural properties 

of the machined specimens and the individually cast specimens were compared, no noticeable 

difference was found.  Saccone et al. (Saccone et al., 2015) have detailed the effect various 

casting procedures can have on the formation of internal cracks in paraffin wax. They have 

shown that for large grains, slow cooling is not sufficient to prevent internal voids, and thus a 

force should be applied to the grain during solidification to prevent shrinkage voids. The 

necessity of this is dependent on the volume of the cast and is not the case for the smaller test 

specimens. This was however found to be important during the full grain casting, and void 

formation was often a problem.  

 

The addition of impurities, such as aluminium powder can affect the formation of the crystal 

nuclei and will inevitably modify the coarseness of the crystal formation. The rate of cooling 

also affects the crystal formation, with slower cooling rates resulting in a coarser structure. Fast 

and uneven cooling can also result in internal stresses or voids, and this must be avoided. The 

shape and size of the crystal formation, however, is defined by a number of factors such as the 

chemical composition of the wax and the cooling rate. There are three general shapes of crystal 

formation in paraffin waxes. These are plate, mal and needle shapes (Freund et al., 1983). The 

properties of SasolWax 0907 paraffin wax indicate that the crystal formation is characterised 

by needle and mal shapes based on its melting temperature and branched hydrocarbons. The 

crystal size of needle- and plate-shaped crystals is affected by the cooling rate, while for mal-
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shaped crystals, there is only a slight dependency. Slower cooling rates, particularly for needle 

and plate shapes, result in larger crystal structures. This means that for any specimen casting, 

temperature rates should be carefully controlled and kept consistent between specimens, based 

on the casting procedure used for the full-scale grain. The randomly orientated formation of the 

crystal nuclei also allows for the structural test specimens to be cast individually, instead of 

being cut out of a full-scale grain.  

 

The testing which was conducted for this research included a range of tensile and compressive 

tests. There are multiple testing standards available for various materials. However, none 

specifically define the testing criteria for paraffin wax or a similar material. For that reason, the 

ASTM tensile and compression testing standards for plastics were employed. These standards 

are the ASTM D 638 (ASTM International, 2014) and D 695 (ASTM International, 2015) for 

tension and compression testing, respectively. The specimens were cast individually in purpose-

made moulds, depicted in Figure 3 - 1. The tensile specimens used were the Type III plate dog-

bone-shaped specimens manufactured as per the dimensions indicated in Figure 3 - 2, with a 

thickness of 10 mm. The compression specimen shapes were the standard cylindrical specimens 

defined in the ASTM standards, with a diameter of 12.7 mm and a length of 25.4 mm. 

 

The moulds were manufactured as split moulds so that the specimens could be easily removed 

without any damage or stresses being induced. Specimens of pure paraffin wax and paraffin 

wax doped with 40 wt% aluminium power (referred to as aluminised specimens) were 

investigated. Numerous applications for the use of aluminised fuels have been identified, such 

as the Mars ascent vehicle proposed by Chandler et al. (Chandler et al., 2011) and the propulsion 

system for outer planet exploration proposed by Jens et al. (Jens, Cantwell and Hubbard, 2016).  

The aluminium power used in these tests has an average size of 100 µm and is not treated in an 

inert environment.  

 

Figure 3 - 1: Half of the specimen split mould 
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The casting procedure for the pure specimens is slightly different to that of the aluminised fuel 

specimens, due to the complexities associated with settling of the aluminium power within the 

paraffin melt.  The two casting procedures were as follows: 

 

Pure specimen casting procedure 

1. Melt paraffin wax pellets at 110°C in temperature-controlled kiln – visually inspect until 

a clear liquid is obtained 

2. Preheat specimen mould to 110°C - clean and prepare prior to use, ensuring interaction 

surface between mould halves are clear of all impurities before assembly to prevent 

leaking 

3. Pour wax melt into now-assembled preheated specimen mould 

4. Allow wax to cool slowly within the preheated kiln (now off) – cooling time ±12 hours 

5. After cooling, remove specimen mould assembly bolts  

6. Pour boiling water (±95°C) on the underside of the mould to allow softening of 

specimen surface and easy removal from the mould 

7. Inspect for damage and shrinkage 

8. Prepare surface to remove any shrinkage effects or surface stress concentrations 

 

Aluminised specimen casting procedure 

1. Melt paraffin wax pellets with aluminium powder at 110°C in temperature-controlled 

kiln – visually inspect until a clear liquid is obtained 

2. Preheat specimen mould to 90°C - clean and prepare prior to use, ensuring interaction 

surface between mould halves are clear of all impurities before assembly to prevent 

leaking 

Figure 3 - 2: Type III ASTM638 specimen dimensions (mm) 
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3. Remove paraffin wax melt from kiln and continuously stir until it reaches a temperature 

of 90°C 

4. Pour wax melt into now assembled preheated specimen mould 

5. Follow steps 4-8 as above 

 

If the cooling procedure for the aluminised grains is not followed carefully, the resultant 

specimen will not form homogenously. In the case of cooling from too hot a pour temperature, 

the aluminium particles will settle to the bottom. If left to cool from too low a pour temperature, 

the specimen will have distinct layer separation or void formation, or if not continuously mixed 

during the initial cooling phase, small localised solidification regions will be present. This is 

evident in Figure 3 - 3. Figure 3 - 3 (a) shows the layer formation from pouring the mix too 

cold, while (b) shows the resultant settling from pouring the aluminised mix too hot. Figure 3 - 

3 (c) shows an image of localised solidification from inadequate mixing and (d) shows the 

resultant void formation from pouring a mix too cold. 

 

 

 

 

a) 

 

 

 

b) 

 

 

 

c) 

 

 

 

d) 

Figure 3 - 3: Photographs of rejected specimens due to a) layer formation, b) settling, c) 

localised solidification, and d) void formation. 

A sufficient number of specimens were cast to ensure that five or more tests could be conducted 

for each scenario. While the specimen preparation procedure was kept as consistent as possible, 

there was a rejection of five percent of the cast specimens as a result of the inconsistencies 

discussed above. An image of a fully prepared tensile and fully prepared compressive specimen, 

in the testing configuration, can be seen in Figure 3 - 4. 
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b) 

Figure 3 - 4: (a) Tensile and (b) compression specimens 

3.4 Testing procedure 

The primary objective of the testing regime is to determine the material’s structural response 

under the loading conditions induced during launch. This means that properties for a full, non-

linear characterisation need to be considered for the dynamic and thermal loads applied to the 

fuel grain during launch. Testing was conducted with tensile tests at three different temperature 

points, and at three different strain rates. The compression testing was conducted at different 

strain rates only.  

 

The ASTM standards referenced for this testing require a constant temperature environment, 

with the specimens held at the test temperature for at least 8 hours prior to testing to ensure 

thermal equilibrium. For all the tests, particularly the elevated temperature tests, the test 

environment needed to be held at the set temperature for the full duration.  

 

The testing was conducted on an Instron 5500R testing machine with a 5 kN load cell and a 50 

mm gauge length extensometer. A purpose-built thermal chamber was installed and used to 

preheat the grips and environment prior to mounting the test specimens. The test specimens 

were allowed to preheat for at least 8 hours at the test temperature in a separate kiln, and were 

then moved directly to the testing machine. The specimen was then checked with a thermal 

imaging camera to ensure a consistent surface temperature was present prior to testing. 
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The maximum testing temperature and crystallisation temperature was determined from the 

Differential Scanning Calorimetry (DSC) results of a paraffin wax sample. The DSC heating 

result can be seen in Figure 3 - 5. The DSC test measures the heat flow (heat per unit time) 

required for a sample to maintain a set heating rate when compared to a control volume. The 

difference in heat flow reveals a phenomenon that either releases or absorbs extra heat.   The 

melting onset temperature, which is taken as a tangent to the average melt curve, is given as 

39.75 °C. Temperatures above this will likely result in the wax being too soft for mechanical 

testing. The crystallisation onset temperature was determined to be 89.27°C by the DSC cooling 

cycle.  

 

Tensile tests were conducted at room temperature (23°C), 30°C and 40°C, while compression 

tests were only performed at room temperature. The extension rates considered were 1, 10 and 

100 mm/min for tension, and 1 and 10 mm/min for compression. Some testing was outsourced 

to verify the results obtained on the testing machine. These results came back as a match to the 

tests conducted in-house. 

Figure 3 - 5: Differential Scanning Calorimetry results for SasolWax 0907 
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Additional material properties such as the difference in thermal conductivity between the pure 

paraffin wax samples and the aluminised paraffin wax samples were determined. The potential 

thermal penetration into the grain due to combustion would need to be a consideration during 

structural modelling of a fuel grain, especially considering the material’s low melting onset 

temperature. It was determined through the use of a TIM Tower testing apparatus, that the 

thermal conductivity of pure wax is 0.46 (±0.03) W/mK and for the aluminised grains, 1.36 

(±0.03) W/mK.  

 

Santi et al. (Santi et al., 2017) conducted tests to determine the thermomechanical properties of 

paraffin wax by embedding thermocouples into a motor designed to burn for up to 80 seconds. 

The results of these tests showed no measurable thermal propagation radially into the grain. 

The thermal diffusivity of paraffin wax is known to be relatively low, and propagation is further 

limited by the formation and subsequent removal of the liquid layer on the fuel surface. Their 

observation, however, may not necessarily be the case for aluminised grains, which may suffer 

a higher level of thermal penetration due to the three times higher thermal conductivity. 

Combustion testing is necessary to empirically determine the heat flux at the fuel surface in 

order to accurately determine the thermal penetration into the fuel. 

 

For the purposes of this work, it is beneficial to determine the degree of heat penetration due to 

conduction from the melted fuel on the surface. In the case of this base approximation, radiation 

and convective heat transfer effects were neglected. The known thermal data of the materials 

were applied to a semi-infinite 1D transient conduction model where a temperature boundary 

condition of 120°C (DSC upper melting temperature) was applied to the fuel surface. After one 

second, the temperature wave of 30°C reached a depth of 1.37 mm for the pure wax and 1.69 

mm for the aluminised wax. The resultant thermal penetration depths are not significant, and 

less than the theoretical regression rates for pure and aluminised wax, which are dependent on 

the oxidiser mass flow rate. This estimation is corroborated by the work conducted by Santi et 

al. (Santi et al., 2017), which indicates no measurable temperature increase into the pure wax 

grain. The development of a nitrous oxide lab-scale motor using these fuel types predicted a 

time-averaged theoretical regression rate of 1.63 mm/s and 1.82 mm/s for the pure and 

aluminised fuels, respectively. The actual combustion testing of this motor designs yielded a 

measured time-averaged regression rate of ~1.4 mm/s and ~1.6 mm/s for the pure and 

aluminised wax grains, respectively, which is slightly lower than estimated in both cases 
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(Maharaj, 2018). However, the regression rate for the aluminised motor was not determined at 

peak performance. Regression rates for these fuels can generally be significantly higher for 

higher oxidiser mass flow rates and higher performance oxidisers.  In the case of the aluminised 

grain, it appears that there may be a risk of grain structural deficiency due to heat penetration 

and that this matter should be considered experimentally in a study similar to that of Santi et al. 

(Santi et al., 2017). 

3.5 Results and discussion 

3.5.1 Tensile testing 

The first set of testing was aimed at determining the strain rate dependence of the fuels. The 

graphs of the room temperature results for a 1, 10 and 100 mm/min extension rate for both the 

pure and aluminised paraffin wax are presented in Figure 3 - 6 and Figure 3 - 7 respectively. 

Table 3 - 1 summarises the important values of the test results. The standard deviation for each 

set of test data has been provided to indicate the accuracy of the result grouping at certain points. 

In all the results presented below, 5 samples of each type cast from the same batch of wax were 

tested in each case. 

 

In both the pure and aluminised specimens, the strain rate dependence is evident in that at higher 

strain rates, the ultimate tensile strength (UTS) of the material increases, while the allowable 

elongation or strain decreases. When comparing the pure and aluminised results, it is evident 

that the maximum strain is similar for each material at the respective pull rates, with pure wax 

being slightly higher. However, the UTS is between 10% to 20% higher for the aluminised 

grain, when compared to pure wax, at the various pull rates. What is also evident from the 

results is the change in the modulus of elasticity (E) with pull rate, with that of the aluminised 

specimens being higher, but also with an increase in the linear slope at higher pull rates. 
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Figure 3 - 6: Impact of the rate of extension on the stress-strain curve of pure SasolWax 

0907 at room temperature 

Figure 3 - 7: Impact of the rate of extension on the stress-strain curve of 40% aluminised 

SasolWax 0907 at room temperature 
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The material thermal dependency was also investigated, with specimens tested at 30 and 40 °C 

and at pull rates of 1 and 10 mm/min. The results of the tests for pure paraffin wax at 1mm/min 

and 10mm/min pull rate can be seen in Figure 3 - 8 and Figure 3 - 9. Both materials show a 

trend of decreasing UTS and increasing strain with an increasing temperature. A higher pull 

rate still increases the UTS, however at elevated temperatures, the increase is noticeably less. 

This implies that the strain rate dependence of this material is less evident at higher 

temperatures. 

 

A list of notable results extracted from the graphs can be seen in Table 3 - 2, along with that of 

the aluminised grain results which will be discussed next. A noticeable difference between the 

elevated temperature tests and the room temperature tests is the location of the UTS point. In 

the case of room temperature, the UTS point is located at the failure point. This is to be expected 

in the case of brittle failure. In the case of the elevated temperature tests, the UTS point is not 

located at the failure point, and the material is able to elongate significantly before failure 

occurs. The implication of this result is that failure occurred in a ductile manner, with necking 

present. The results depicted in Figure 3 - 8 and Figure 3 - 9 show the engineering stress, while 

true stress would include the necking effects. However, the extent of the necking was minimal, 

and none was visibly evident during this extended elongation. 

 

The 40% aluminised tests conducted at elevated temperatures follow the same trend observed 

for the pure wax test specimens. The results are presented in Figure 3 - 10 and Figure 3 - 11. 

Similarly, to the room temperature results, the UTS is noticeably higher for all aluminised 

scenarios when compared to the pure wax counterparts. The strain rate dependence is also less 

prominent at elevated temperatures. What is particularly interesting is the significant increase 

in the peak strain for the 40°C, 1mm/min scenario. The increase in temperature, although 

decreasing the allowable maximum stress, significantly improves the ductility of the material. 

The estimated modulus of elasticity rapidly decreases at elevated temperatures, indicating the 

material’s inability to resist plastic deformation at higher temperatures. 
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Figure 3 - 8: Impact of the temperature effects on the stress-strain curve of pure 

SasolWax 0907 at a pull rate of 1 mm/min 

Figure 3 - 9: Impact of the temperature effects on the stress-strain curve of pure 

SasolWax 0907 at a pull rate of 10 mm/min 
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Figure 3 - 10: Impact of the temperature effects on the stress-strain curve of 40% 

aluminised SasolWax 0907 at a pull rate of 1 mm/min 

Figure 3 - 11: Impact of the temperature effects on the stress-strain curve of 40% 

aluminised SasolWax 0907 at a pull rate of 10 mm/min 
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Table 3 - 1: Comparison of room temperature tensile results for pure and aluminised fuel samples 

Material Pull rate 

(mm/min) 

Temperature 

(°C) 

σ  

UTS (MPa) 

σ StdDev  

UTS 

ε  

UTS (%) 

ε StdDev  

UTS 

E (MPa) No. tests 

PW00 1 23 1.78 0.07 1.05 0.24 512 5 

PW00 10 23 2.27 0.1 0.86 0.12 678 5 

PW00 100 23 2.97 0.32 0.8 0.22 781 5 

AL40 1 23 2.02 0.088 1.01 0.28 1025 5 

AL40 10 23 2.71 0.064 0.82 0.094 1162 5 

AL40 100 23 3.30 0.15 0.68 0.12 1282 5 

 

 

Table 3 - 2: Comparison of elevated temperature tensile results for pure and aluminised fuel samples 

Material Speed 

(mm/min) 

Temp 

 (°C) 

σ  UTS 

(MPa) 

σ StdDev 

UTS 

ε UTS (%) ε StdDev 

UTS 

σ Failure 

(MPa) 

σ StdDev 

Failure 

ε Failure 

(%) 

ε StdDev 

Failure 

E (MPa) 

PW00 1 30 1.07 0.04 1.86 0.16 1.03 0.05 2.6 0.81 308 

PW00 1 40 0.57 0.008 1.59 0.31 0.51 0.02 4.2 1.24 156 

PW00 10 30 1.43 0.04 1.56 0.26 1.37 0.07 2.43 1.3 368 

PW00 10 40 0.64 0.03 1.51 0.44 0.55 0.025 4.17 0.46 189 

AL40 1 30 1.24 0.038 1.28 0.15 1.14 0.088 2.45 0.611 583 

AL40 1 40 0.51 0.04 2.3 0.36 0.41 0.042 7.06 1.64 171 

AL40 10 30 1.75 0.059 1.29 0.18 1.7 0.064 1.73 0.36 677 

AL40 10 40 0.74 0.042 1.42 0.182 0.58 0.044 4.55 0.82 272 
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3.5.2 Compression testing 

The compression testing was conducted at room temperature and at compression rates of 1 and 

10 mm/min for both the pure and aluminised fuel samples. As expected for a compression test, 

the ultimate compressive strength (UCS) is higher than the UTS of the same material at the 

same pull rates. These results are presented in and in Figure 3 - 12 and in Table 3 - 3. The 

compressive modulus of elasticity, however, is lower than the associated tensile property. This 

indicates the material’s reduced resistance to deformation under compression compared to 

tension. 5 samples cast from the same batch of wax were tested for each load case. 

 

Table 3 - 3: Comparison of compression stress results for pure and aluminised fuel 

samples 

Material Pull-rate 

(mm/min) 

Temperature 

(°C) 

σ  

UCS 

(MPa) 

σ StdDev  

UCS 

ε  

UCS (%) 

ε 

StdDev  

UCS 

E 

(MPa) 

No. 

Tests 

PW00 1 23 2.36 0.075 0.81 0.086 483 5 

PW00 10 23 3.34 0.433 1.01 0.11 547 5 

AL40 1 23 3.11 0.29 0.75 0.02 700 5 

AL40 10 23 4.03 0.45 0.71 0.09 882 5 

Figure 3 - 12: Impact of the strain rate effects on the compressive strength of 40% 

aluminised and pure SasolWax 0907 
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The deformation of the material under compression is evident throughout the load application. 

The material begins its deformation by bulging out, with cracks forming along the base region. 

After a short period of time, the material shears at an angle to the applied force and fails, similar 

to what would be expected during a brittle failure. A series of photographs of the compression 

tests on both the pure and aluminised fuel samples can be seen in Figure 13. The photographs 

show the initial deformation, the formation of the angled cracks, and finally the complete failure 

of the material. The failure point is where the compression stress-strain curve reached its 

maximum. Thereafter, the material proceeds to crush beyond failure, however, beyond the point 

of UCS, the results are of no use. 

 

In general terms, the overall structural behaviour of the wax was as expected for a 

microcrystalline paraffin wax. Distinct temperature and strain rate dependence is evident in the 

above tests. An important observation is the dramatic deterioration in structural properties with 

such a small increase in temperature. This generates concern with regard to the combustion 

temperatures encountered with hybrid motors. Although the fast-acting shedding of the liquid 

layer does reduce the level of thermal penetration, it should still be investigated experimentally 

as a next step. 

 

Results presented by Ryu et al. (Ryu et al., 2016) for varying percentages of aluminium at room 

temperature and 5 mm/min pull rate correlates well with the results presented in this paper. This 

is particularly evident in the tensile test, where the UTS of paraffin wax was found to be 2.118 

MPa, while in this set of test data it is 2.27 MPa. The compression tests conducted by Ryu et 

al. (Ryu et al., 2016) made use of different specimen dimensions. These results were also quite 

similar for the pure wax, but with a larger discrepancy for the aluminised fuel. The average 

UCS determined by Ryu et al. (Ryu et al., 2016) for pure paraffin wax was 3.503 MPa, while 

for this study it was only 3.34 MPa. 

 

Kobald et al. (Kobald et al., 2014) also investigated the thermal effects on the structural 

performance of paraffin wax, who conducted tests at temperatures of 15°C, 25°C and 30°C. 

These results were on a different grade of paraffin wax which resulted in a significant difference 

in elongation before failure. An in-depth review on all existing structural tests on paraffin wax 

hybrid fuels has been conducted by Veale et al. (Veale et al., 2017) as a prelude to this research. 
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What can be deduced from this accumulation of data is that the paraffin wax reacted similarly 

in that at elevated temperatures the UTS decreases and the elongation increases significantly. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 3 - 13: The process of compression failure for paraffin wax and aluminised fuel 

samples. a) PW00 initial mounting, b) PW00 application of load, c) PW00 nearing 

failure, d) PW00 failure point, e) AL40 initial mounting, f) AL40 application of load, g) 

AL40 nearing failure, h) AL40 failure point. 

3.6 Conclusion 

The data presented in this research detail some important structural properties of paraffin wax 

and aluminised paraffin wax that should be considered prior to use in any large-scale hybrid 

motor. The material itself is very susceptible to rapid load application and thermal effects. This 

should be considered for launches in areas with high ambient temperatures. Additionally, with 

combustion temperatures reaching 2000-3000 K, the thermal propagation into the grains should 

be considered, especially for long-duration burns. It is particularly important to experimentally 

determine the relationship between regression rate and thermal penetration into the grain to 

determine what level of fuel softening occurs throughout the burn.   
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The results presented show a strong strain rate dependency of the material which is an important 

aspect when considering ignition pressure and high inertial loads. The UTS increases by 60-

70% between a pull rate of 1 and 100 mm/min for both the pure and aluminised samples at 

room temperature. The strain rate effect is not as evident at elevated temperatures, due to the 

thermal softening of the material. The results from the elevated temperature tests show a UTS 

drop of 65 – 75% between temperatures of 23°C and 40°C for the pure and aluminised samples, 

while the strain increased significantly.  

 

The results obtained from these set of tests are to be utilised for a dynamic analysis of a fuel 

grain considering actual launch and thermal considerations. This is a standard analysis 

conducted on solid propellant grains due to the inherent danger associated with grain cracking. 

Although a failure in a hybrid grain may not have as catastrophic an impact, any failure should 

be avoided. Full material characterisation followed by computational modelling and full-scale 

experimental testing should be the next steps in determining the structural feasibility of these 

fuels. 
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CHAPTER 4: EXPLICIT MODELLING OF THE IGNITION TRANSIENT 

STRUCTURAL RESPONSE OF A PARAFFIN WAX HYBRID ROCKET 

MOTOR FUEL GRAIN  

(MANUSCRIPT UNDER REVIEW: JOURNAL OF AEROSPACE TECHNOLOGY AND 

MANAGEMENT, 2020)  

4.1 Abstract 

Paraffin wax has been identified as a hybrid rocket motor fuel which offers enhanced regression 

rates and improved combustion performance. While various investigations into the performance 

of this class of fuels are being conducted around the world, the consideration of its structural 

performance is often overlooked. The grain geometry and design chamber pressure are often 

defined early on in the motor design process, and without adequate verification. The research 

presented here establishes a simplified, yet accurate method of defining the structural 

performance of a paraffin wax hybrid fuel grain to be introduced early in the design phase of a 

motor. The use of the Johnson-Cook material model has been verified to work within the ‘low 

speed’ ignition range experienced in paraffin wax/N2O hybrid motors, and therefore is used to 

predict failure in a variety of motors designed and tested by our group. The resultant stress 

profiles within the grains indicate that the grain outer- to inner-diameter (OD/ID) ratio as well 

as the OD itself play an important role in the grain’s ability to withstand the loading conditions 

applied. Additionally, the grain structural properties and the stiffness of the combustion 

chamber affect the severity of the internal stresses in the grain. The feasibility of large-scale 

pure paraffin wax grains without structural enhancement additives is thus found to be poor. 

Fuel additives should thus be considered for structural enhancement.  

Keywords: Hybrid rocket; paraffin wax; mechanical properties, structural integrity 

4.2 Introduction 

The structural performance of a solid fuel grain is a necessary factor to consider for the 

propulsion of any solid rocket motor. In the past, solid rocket fuel structural performance has 

been investigated to reduce any risk of in-flight failure due to the development of cracks from 

flight loading and fuel storage (Kelley, 1969; Fitzgerals and Hufferd, 1971; Douglass et al., 

1973; Ho, 2010). A simple crack in the body of a solid rocket fuel is considered a structural 

failure due to the risk of exceeding the design grain surface exposure. The rapid exposure of 
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combustible surface area, in this case, where the fuel and oxidiser are premixed,  can result in 

a catastrophic failure of the vehicle due to over pressurisation (Gondouin, 1993). The boundary 

layer combustion mechanism of hybrid rocket motors means that there is less risk associated 

with crack formation in terms of vehicle loss. However, there are still concerns attributed to 

fuel loss, which can result in an incomplete mission if fuel fragments were to dissociate from 

the grain body. Additionally, if the fuel fragments were to block the nozzle, over pressurisation 

of the combustion chamber may occur, and the vehicle may be lost. While a few small surface 

cracks may not cause failure, many small cracks or few large cracks can cause a potential failure 

situation in hybrid fuel grains (Sutton and Biblarz, 2001).  

 

The propellant combination of interest in this research is SASOL 0907 paraffin wax as fuel 

with nitrous oxide as the oxidiser. This propellant combination is utilised as the primary 

propulsion mechanism for the University of KwaZulu-Natal’s Phoenix Hybrid Sounding 

Rocket Program (Genevieve et al., 2012, 2015; Leverone et al., 2013, 2019; Balmogim et al., 

2015). Additionally, the Phoenix program plans to utilise aluminium powder additives in the 

paraffin wax at varying percentages to improve the performance and density specific impulse 

of the motors (Maharaj et al., 2016). Paraffin wax has been selected as the base fuel due to the 

high regression rate when compared to classical hybrid fuels (Karabeyoglu, Cantwell and 

Altman, 2001). Nitrous oxide is used as the oxidiser due to the less stringent safety and handling 

requirements when compared to oxygen, as well as its self-pressurisation nature. Energetic 

additives such as aluminium add some performance advantages such as higher combustion 

efficiencies and better heat transfer, while they may also result in excessive nozzle erosion 

(Calabro et al., 2007; Cantwell, Karabeyoglu and Altman, 2010). The effects of aluminium 

powders on the combustion performance have shown a dependency on the particle size (Risha 

et al., 2007). Numerous performance tests have been conducted on various aluminium doped 

grains, and have generally shown an increase in regression rate while increasing the density 

specific impulse of the vehicle. When considering aluminium as an additive, it is primarily 

viewed as a performance enhancer, while little attention is given to its effect on the structural 

performance of the fuel grains, in which it makes the wax more brittle (Veale et al., 2018). A 

comprehensive review between existing combustion performance testing and mechanical 

testing conducted by various researchers was conducted and presented in (Veale et al., 2017).  
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List of Symbols 

A  Quasi-static yield stress 

a  Grain inner diameter 

B  Hardening constant 

b  Grain outer diameter 

C  Material speed of sound 

c  Strain rate dependency constant 

Dc  Critical damage 

D1  Strain at initiation of necking 

D2,3  Triaxility constant 

D4  Strain rate dependency failure constant 

D5  Temperature dependency failure constant 

E  Modulus of elasticity 

𝜀𝑓  Fracture strain 

𝜀𝑝
  Accumulated plastic strain 

𝜀𝑝,𝑑  Damage threshold 

𝜀𝑜̇  Reference strain rate 

𝜀𝑝̇  Plastic strain rate 

𝜀̇∗  Dimensionless strain rate 

l  Length of element 

m  Thermal softening constant 

n  Hardening exponent 

Po  Reaction pressure 

ρ  Density 

𝜎𝑒𝑞  Equivalent stress 

𝜎𝑟   Radial stress 

𝜎𝑡  Tangential Stress 

𝜎∗  Triaxility 

T  Working temperature 

Tm  Melting temperature 

To  Room temperature 

T*  Homologous temperature 

Δt  Time step 



69 

4.3 Structural considerations 

Throughout the life cycle of a motor, it will undergo numerous loads which can be split into 

two categories. These are the specified loads and induced loads (Fitzgerals and Hufferd, 1971). 

These loads are fixed by the mission requirements, and the propellant properties, respectively 

(Simo, 1987; Kumar and Rao, 2014). Specified loads are caused by effects such as 

environmental temperature, gravity, vibration, shock, transportation and handling, as well as 

ageing conditions and humidity (Fitzgerals and Hufferd, 1971). Induced loads are influenced 

by the propellant selection, manufacturing methods, cure shrinkage, chamber pressure, and the 

combined loads during a flight (Fitzgerals and Hufferd, 1971). 

 

The loading conditions which are considered in the present research are the pressurisation loads. 

The chamber pressurisation is a result of the combustion process within the combustion 

chamber of the motor. This begins at the ignition of the motor and terminates at the end of the 

burn sequence, with compressive hydrostatic loading on the grain surface, as well as tensile 

hoop stresses (Fitzgerals and Hufferd, 1971). Ignition pressurisation can be significantly higher 

than that of the mean operating pressure, and this can cause grain failure before launch, 

however, prolonged exposure to higher temperatures and high pressures can result in mid-flight 

grain failure too. Chamber pressure is generally considered a static load with a magnitude equal 

to that of the initial maximum pressure measured from a static firing, or a theoretically modelled 

prediction (Ho, 2010). Depending on the propellant combination and ignition sequence, ignition 

pressurisation times can vary from 0.005 to 0.5 s (Douglass et al., 1973). The speed of this 

transient pressure load can affect the grain’s structural response, and thus, strain rate 

dependence must be investigated during the grain material characterisation.   

 

In general, the fuel material is stronger but more brittle at lower temperatures such as 20°C than 

it is at temperatures as low as 30°C (Veale et al., 2018). Low-temperature firing could be a 

concern due to the rigidity of the propellant, residual cure stresses, and the high ignition 

pressures. If a fuel grain was to remain intact after the pressurisation load, any resulting flaws 

and cracks might fail after exposure to a temperature increase and the in-flight inertial loading. 

When analysing the effects of in-flight combined loads, the effect of thermal softening should 

be considered (Fitzgerals and Hufferd, 1971). A number of paraffin structural enhancement 

techniques with the use of polymer additives have been researched by various institutions 

(Mengu and Kumar, 2018) which generally show that these additives reduce the regression rate 

of the fuel, often by increasing the melt viscosity, resulting in reduced fuel entrainment. Other 
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research has been conducted into the effect that structural discontinuities will have on the 

combustion performance of a motor (Andrianov et al., 2019). The preliminary analysis shows 

that induced cracks do not lead to immediate failure of the grain but there is a clear regression 

inconsistency which can lead to chamber burn through if the burn time is long enough. 

Innovative structural matrices embedded within the grain are also being investigated in an 

attempt to minimise the inclusion of regression dampening materials. Initial tests indicate a 

reduced regression, yet the performance and structural properties are matrix material and 

geometry dependant (Hill et al., 2019).  

 

Paraffin wax is considered a brittle material, which has a very low ultimate tensile strength 

(UTS). This will likely reduce the fuels ability to withstand the pressurisation and inertial loads, 

without cracking, during flight. The structural performance of a fuel grain is dependent on a 

number of factors such as the size, length-to-diameter ratio and OD/ID ratio of the fuel grain. 

These design parameters of the fuel grain are often determined during the design phase to 

control the thrust,  O\F ratio and mass flow rate of the motor (Karabeyoglu, Cantwell and 

Altman, 2001). Karabeyoglu (Karabeyoglu, 2011) has determined that the failure boundary is 

approached more rapidly with fuel grains with larger OD/ID ratios. In addition to the low 

strength of paraffin wax, the material has a low melting point and a large melting onset 

temperature range. This can be a problematic aspect to consider during analysis to ensure that 

the thermal penetration into the grain during combustion does not cause the fuel to prematurely 

melt or soften significantly. 

 

Comprehensive material characterisations tests have been performed in an earlier publication 

of this work (Veale et al., 2018). All test data used in this publication refer to this work. These 

tests were performed for pure paraffin wax (PW00) and paraffin wax with 40 wt% aluminium 

powder (PW40AL). This publication details the tensile and compression testing conducted at 

various strain rates and temperatures. These results show a distinct strain rate dependency of 

paraffin wax. Additionally, small temperature changes in the material result in a significantly 

weaker, more ductile material. This is a result of the long transition temperature before the 

material begins to melt, which initiate at temperatures as low as 30°C.  

4.4 Material models 

The strain-rate dependency of a material generally results in an increased yield stress at a lower 

strain at high strain rate. Generally, standard FEA packages make use of quasi-static material 
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properties when considering standard use failures, meaning that the internal forces of the 

material can be neglected. In the case of impact analysis, where there would be a rapid 

deformation of the material, such as an explosion, these internal forces significantly change the 

response of the material. Simulations on ignition pressurisation would be more appropriate if 

the strain rate dependency of the material can be accurately modelled. 

Due to the low melting point, and low melting onset temperature, the thermal effects on the 

structural performance of paraffin wax are evident at temperatures as low as 30°C. Paraffin wax 

hybrid motors burn within a boundary layer formed between a melted fuel layer and the oxidiser 

stream. The liquid layer is constantly being stripped away throughout the burn and replenished 

with newly melted fuel. The thermal penetration into the fuel grain has been shown to be quite 

slow, considering the temperatures involved in combustion (Santi et al., 2017). This is primarily 

due to the low thermal conductivity of the paraffin wax and the repeated formation of the 

insulating liquid layer. The tests conducted by Santi et al. (Santi et al., 2017) were only 

considered for pure paraffin wax, while aluminised paraffin wax has a thermal conductivity 

coefficient nearing a factor of 3 higher (Veale et al., 2018). While some early thermal 

simulations indicate that the expected thermal wave penetration into an aluminised grain is still 

not faster than the fuel regression, thus not causing slumping, this property should still be 

considered in the case of high ambient temperature launches.  

 

The Johnson-Cook constitutive model (Johnson and Cook, 1983) was developed to determine 

an equivalent stress as a function of plastic strain, strain rate and temperature in metals. The use 

of this model is designed specifically for a range of metals but is known to have been used in 

some plastic applications within a verified tested range. The model is represented as follows: 

 

𝜎𝑒𝑞 = [𝐴 + 𝐵𝜀𝑝
𝑛][1 + 𝑐 𝑙𝑛𝜀 ∗̇][1 − 𝑇∗𝑚]      (1) 

 

where A, B, n, c, and m are the empirically determined material constants, 𝜀𝑝 is the accumulated 

plastic strain, 𝜀̇∗ is the dimensionless strain rate and  𝑇∗ is the homologous temperature. 

 

Also,  

 

𝜀̇∗ = 𝜀𝑝̇/𝜀0̇           (2) 

 

𝑇∗ = (𝑇 − 𝑇0)/(𝑇𝑚 − 𝑇0)        (3) 
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where 𝜀0̇ is the user-defined reference strain rate, T is the working temperature, 𝑇0 is the room 

temperature, and 𝑇𝑚 is the melting temperature.  

 

The five constants presented in the Johnson-Cook (J-C) equation (1) are to be determined 

empirically. The constant A is the yield stress of the material determined from a quasi-static 

tensile test. B and n are the hardening constants and are defined as the power fit curve of the 

true stress plastic strain curve after yield has occurred. The constant c represents the strain rate 

dependence of the material and m is the thermal softening constant. 

 

There are several published methods to determine the constants necessary for the J-C 

constitutive model such as optical strain rate measurements (Stopel and Skibicki, 2016), 

ballistic impact (Burley et al., 2018), Taylor anvil testing (M. Šlais, I. Dohnal and M. Forejt, 

2012) and tensile testing (Banerjee et al., 2015b; Dehgolan, Behzadi and Sola, 2016). In 

general, the agreement between the methods requires material testing to be conducted at both 

quasi-static strain-rates, high strain-rates, and elevated temperatures. The J-C model was 

originally developed for use on a specific range of materials such as copper, brass, iron, 

aluminium and steel. Often, FEA modelling for plastics makes use of a bilinear plastic material 

model which does not take into consideration the strain-rate and temperature dependency of the 

material. In certain cases, the J-C material model can be used on other materials such as 

polymers, with verification for each case (Louche et al., 2009). To determine the J-C model 

constants, the true stress and strain curves from torsion and tensile tests at various strain rates 

and temperatures were modified with the Bridgeman correction and presented in equivalent 

tensile flow form.  The Bridgman correction (Bridgman, 1952) is used to determine the 

equivalent stress of a round tensile specimen after necking occurs due to the tri-axial nature of 

the loading condition at that time. In the case of brittle materials, which demonstrate negligible 

necking, this correction is not necessary as it is a function of the necking diameter. Other 

researchers, such as Banerjee et al.(Banerjee et al., 2014, 2015a), make use of only tensile 

testing to determine the constants required. This simplified approach for determining the 

constants is utilised in this work. The validity of this assumption will be verified through FEA 

modelling, as discussed later in this work. 

 

In addition to the J-C material model, there is also the J-C failure model (Johnson and Cook, 

1985). This is a modified version of the criterion proposed by Hancock and Mackenzie 
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(Hancock and Mackenzie, 1976) to include factors such as stress triaxiality, strain rate and 

temperature effects. This model defines material failure at the point where the accumulated 

damage (D) during plastic straining reaches a critical value. This is defined as follows: 

 

D= {
0, 𝑤ℎ𝑒𝑛 𝜀𝑝 ≤ 𝜀𝑝,𝑑

𝐷𝑐/(𝜀𝑓 − 𝜀𝑝,𝑑), 𝑤ℎ𝑒𝑛 𝜀𝑝 > 𝜀𝑝,𝑑
       (4) 

 

where the fracture strain is 𝜀𝑓, the damage threshold is 𝜀𝑝,𝑑 and the critical damage is Dc. 

 

The J-C failure model define the fracture strain as: 

 

𝜀𝑓 = [𝐷1 + 𝐷2
𝐷3𝜎∗

][1 + 𝐷4𝑙𝑛𝜀̇∗][1 + 𝐷5𝑇∗]     (5) 

 

where the D1 is the strain at the initiation of necking for the quasi-static test, D2 and D3 define 

the variation in the failure strain in relation to the triaxiality (𝜎∗) of the material, D4 is the strain 

rate dependent failure parameter, and D5 defines the effect of temperature on the failure strain. 

For the purposes of this analysis, the triaxiality constants will be considered negligible 

(Hancock and Mackenzie, 1976) as the tensile testing conducted showed effectively no necking.  

4.5 Determining the Johnson-Cook constants 

The determination of the J-C material model constants required a range of tensile tests to be 

conducted at a range of strain rates and temperatures. In the case of paraffin wax, which is a 

brittle microcrystalline wax, the temperature range necessary for testing was quite small when 

compared to other materials which are typically described by the J-C material model. In the 

case of the quasi-static testing, the strain rate was selected where the acceleration effects on the 

load measuring devices were negligible, and where it was not necessary to consider the 

propagation of stress waves through the specimen.   

 

The quasi-static testing was conducted at a strain rate of 2x10-2 s-1, which was taken as the 

reference strain rate (𝜀0̇) for determining the other constants. The constant A was defined as the 

yield strength of the material at this reference strain-rate. In the case of paraffin wax, this is not 

a clearly defined point and was thus determined using a 0.1% offset yield due to the low elastic 

modulus and plastic strain. This low offset yield was applied due to the shape of the stress-
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strain curve, and smooth transition into plastic deformation.  The constants B and n were defined 

by the plastic region of the stress-strain curve. The stress-strain curve was trimmed to only 

reveal the plastic region, after the yield point. A power law trend line was fitted to these data 

on the basis of the least fit square approximation and the constants of the resulting equation in 

the form of 𝐵𝜀𝑝
𝑛, were used to define the hardening constants.  

 

The strain rate dependence constant (c) required testing at a variety of strain rates. In the case 

of this testing regime, the tests were conducted at the reference strain-rate of 2x10-2 s-1, as well 

as at 2x10-1 s-1 and 2 s-1. The constant c was established by plotting the true stress at the yield 

strain for each strain rate, against 𝑙𝑛(𝜀̇∗). The gradient of the linear fit that can be derived from 

these data was used to estimate the constant c.  This plot can be seen in Figure 4 - 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the thermal softening constant, m, was determined by conducting tensile tests at a 

variety of elevated temperatures. Due to the low melting point of paraffin wax, these tests were 

only conducted at 30°C and 40°C. Equation 1 can be rearranged to give Equation 6, which 

shows a linear relationship between ln(T*) and 𝑙𝑛(𝐾 − 𝜎𝑒𝑞), where K  is the remaining 

constants from Equation 1. The constant m, is the gradient of the curve obtained when plotting  

𝑙𝑛(𝐾 − 𝜎𝑒𝑞) against ln(T*). The stress values at a strain of 0.5% and at a strain rate of 2x10-1 s-

1 for each temperature are substituted into this equation, along with the other constants which 

have already been defined to produce a best fit linear curve. This can be seen in Figure 4 - 2.  

 

𝑙𝑛(𝐾 − 𝜎𝑒𝑞) = 𝑚 ln(𝑇∗) + ln 𝐾       (6) 
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Figure 4 - 1: Definition of the J-C constant, c 
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All experimental tests used to find these material constants were conducted a minimum of 5 

times with the average points utilised in this work. The experimental aspects can be found in a 

previous publication (Veale et al., 2018). The J-C constants for both the pure and aluminised 

version of the paraffin wax were determined using the above method. These constants, defined 

in Table 4 - 1, were used as the material input criteria for the ANSYS (ANSYS, 2018b) explicit 

finite element model detailed later. The constants utilised in this model required verification 

prior to the application into the full grain. This was achieved by replicating the tensile tests in 

ANSYS at various temperatures and strain rates and comparing these results with the 

experimental results.  

 

The constants required for the failure criteria are determined similarly to that of the material 

model. The constant D1 is defined by the point in the quasi-static test where necking is initiated. 

In the case of paraffin wax, no necking is evident, and therefore, the plastic strain at failure is 

considered for this variable. For a similar reason, constants D2 and D3 are negligible. Constant 

D4, which defines the strain-rate dependence failure, is defined by the gradient of a linear curve 

fitted to data for plastic strain at failure versus 𝑙𝑛(𝜀̇∗) at different strain rates. Finally, the 

temperature-dependent failure is defined by the gradient of a linear curve fitted to data for 

plastic strain at failure versus T*. The simulated stress-strain data were validated against the 

experimental data, as described in section 4.6. 
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76 

Table 4 - 1: Johnson-Cook constitutive model constants 

Constant PW00 PW40AL 

A 1.3 MPa 1.47 MPa 

B 21.3 MPa 13.169 MPa 

n 0.7319 0.6344 

c 0.175 0.1889 

m 0.5827 0.3 

D1 0.00668 0.0078 

D2 0 0 

D3 1 1 

D4 -0.08 -0.12 

D5 18 10 

4.6 Material model validation 

The material constants, which were determined from the experimental data, were then validated 

through FEA modelling. The tensile test scenario was represented in a 1/8th symmetry model 

of a tensile test specimen using the ANSYS Mechanical Explicit Solver (AUTODYN). The size 

of the model could be reduced as a result of geometrical and boundary condition symmetry. 

The tensile specimen was discretised with a finer mesh in the active region (region of the 

extensometer), and a coarse mesh in the grip region. Due to the simplicity of the geometry, and 

loading, a full hex mesh could be applied to the model in order to reduce computational expense. 

First order hexahedral elements are susceptible to hour-glassing affects when experiencing 

large deflections, and thus hourglass dampening controls were required in this validation model 

to prevent unrealistic deformation of the elements. The hourglass dampening control utilised in 

this model was the Flanagan Belytschko method (Flanagan and Belytschko, 1981), with a 

stiffness coefficient of 0.03 and a viscous coefficient of 0.1. 

 

Finite element models employing explicit solution regimes are computationally expensive, 

thus, the model duration is normally minimised, and utilised for impact or shock loading 

situations. In the case of modelling experimental tensile tests, the modelled duration, especially 

in the case of quasi-static testing, is significantly longer than what would normally be 

represented. The time taken to run a simulation is determined by the number, size and type of 

elements employed as well as the time step applied. In this case, the shockwave propagation 

within the material needs to be considered such that the resultant shockwave front is not able 

to travel further than the length of an element for each time step (ANSYS, 2018a). This ensures 

that the material’s reaction to loading and deformation is considered. The time step size is 
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therefore calculated according to the ratio of the material speed of sound (C) and the length of 

the element (l), as described in equation (7) (ANSYS, 2018a).  

 

∆𝑡 ≤
𝑙

𝐶
          (7) 

where 

𝐶 = √
𝐸

𝜌
          (8) 

The meshed tensile test specimen model can be seen in Figure 4 - 3. The mesh is split into two 

parts, which are joined by connection nodes. These parts define the grip area and the test area 

between the grips.  This allows the velocity load to be applied to the whole grip area. A 50 mm 

extensometer was used to measure the strain of the region of interest. A comparison of 

simulated stress-strain data and experimental data is presented in Figure 4 - 4, and provides an 

indication to the level of agreement between data sets.  

 

The plots in Figure 4 - 4 and Figure 4 - 5 show the difference between the empirical tensile data 

and the simulated data. The shapes of the stress-strain curved between the experimental and 

simulated results differ, with a discrepancy being particularly evident near the yield point, while 

the elastic modulus, plastic region, as well as the failure point, correlate closely. The reason 

behind this discrepancy is due to the development of the J-C model based on materials with 

more clearly defined transitions between the elastic and plastic regions, while the transition in 

paraffin wax is comparatively extended over a strain range. As described, the definition of the 

first three constants in the J-C constitutive model (Eqn.1) represent the yield point (A) , and the 

power law that defines the plastic region (𝐵𝜀𝑝
𝑛). The results presented indicate the plausibility 

of using the J-C model within the regime presented in the tensile tests, and may therefore be 

applied for the purpose of estimating the structural integrity of a paraffin wax fuel grain as the 

point of interest is the failure. 

Figure 4 - 3: Meshed 1/8th model of tensile specimen 
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Figure 4 - 4: Graph of experimental (EX) vs. simulated (SIM) tensile tests at room 

temperature for pure wax 

Figure 4 - 5: Graph of experimental (EX) vs simulated (SIM) tensile tests at room 

temperature for 40% aluminised wax 
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4.7 Fuel grain geometry 

Design and test data of rocket motors is necessary to evaluate the use of the defined model 

parameters, and thus the authors based such inputs on design characteristics associated with 

sounding rockets of the University of KwaZulu-Natal’s Phoenix Hybrid Sounding Rocket 

Program (Genevieve et al., 2012, 2015; Leverone et al., 2013, 2019; Balmogim et al., 2015). 

These vehicles are at varying stages of development and are designed with a large variety of 

desired apogees and research outcomes. The primary propellant combinations for each of these 

vehicles are paraffin wax and nitrous oxide, while some make use of fuels containing 

aluminium additives. The vehicles considered for this analysis include the P-1A, a 10 km design 

apogee sounding rocket, the P-2A and the P-2A II, a 100 km design apogee sounding rocket, 

and the P-1B, a 15 km apogee design sounding rocket. The P-1A’s pure wax hybrid rocket 

motor has been both static-fire tested, and flight tested. The P-1B’s pure wax motor has been 

static-fire tested, and the P-2A and P-2A II motors remain as paper designs. The varying sizes 

of these vehicle designs offer a decent variety of loading conditions and resultant internal 

stresses to view the structural response of the material utilising the J-C material model.  The 

geometrical properties of the above-mentioned vehicles can be seen in Table 4 - 2. The various 

geometrical and performance properties of these vehicles were determined using the internally 

developed Hybrid Rocket Performance Simulator (HYROPS). More information on the design 

process and the use of HYROPS can be found in the references (Leverone et al., 2013; 

Balmogim et al., 2015; Genevieve et al., 2015). 

 

Table 4 - 2: Phoenix Rocket fuel grain design properties 

 

Composition 

P-2A P-2A II P-1A P-1B 

 
Pure 

Wax 
40% Alu 

Pure 

Wax 

Pure 

Wax 

Fuel grain 

Outer Diameter (m) 0.365 0.365 0.151 0.148 

Port diameter (m) 0.254 0.254 0.069 0.06 

Length (m) 1.64 1.33 0.385 0.404 

OD/ID 1.44 1.44 2.1 2.46 

Combustion 

Chamber 

Design chamber pressure - max (bar) 42 42 40 40 

Ignition transient - modelled (s) 0.03 0.031 0.027 0.02 

Actual chamber pressure - max (bar) - - 33 34 

Ignition transient - actual (s) - - 0.3 0.66 

 

The ratio of the outer diameter (b) to the inner diameter (a) (OD/ID ratio) has been used as a 

general design rule to reduce internal stresses of the grain as per Figure 4 - 6 with an 

understanding that the material approaches the failure boundary as the OD/ID ratio (or b/a as 
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depicted in the figure) increases (Majdalani, 2011). The radial distance, r/a, is the ratio of any 

point (r) within the grain thickness to the port diameter (a). In Figure 4 - 6, the simulated stress 

profile within an unspecified grain geometry is similar to that of a thick-walled pressure vessel 

with an internal pressure Pi, with some reaction given by the motor casing. The stress 

distribution over the thickness of the grain, without a reaction from the motor casing, is 

graphically presented in Figure 4 - 7(a). It can be seen that the tangential (or hoop) stresses in 

this schematic are positive, while the radial stresses are negative, with the maximum in both 

cases occurring closest to the port. When comparing this result to that presented in Figure 4 - 

6, it can be seen that, in some cases, the hoop stresses become compressive as a reaction to the 

motor casing. The extent of this reaction force (Po) will depend greatly on the material of the 

fuel and combustion chamber as well as the internal pressure. When there is a large material 

stiffness difference between the grain and combustion chamber, it is estimated, based on multi-

layered thick walled pressure vessels design calculations,  that the stress distribution will look 

more similar to that presented in Figure 4 - 7(b), where both the tangential and radial stresses 

are compressive, while still exhibiting a similar trend. This means that a smaller OD/ID ratio 

may result in primarily compressive loads within the motor, reducing the likelihood of failure. 

It is also known that an increased fuel grain OD will further increase the maximum hoop 

stresses, and therefore, the OD\ID ratio should be considered in conjunction with the maximum 

OD of the grain.  

 

Figure 4 - 6: Fuel grain stress vs. radial distance for a single circular port grain. 

(Majdalani, 2011) 
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(a)                                 (b) 

Figure 4 - 7: Radial and tangential stress profile characteristics through the grain 

thickness without (a) and with (b) reaction from motor casing 

4.8 Model preparation 

The simulations considered apply the J-C material and J-C failure models onto the paraffin wax 

fuel grain encased in an aluminium combustion chamber. The use of the J-C model was verified 

to account for the non-linear properties and strain-rate dependence of paraffin wax within the 

tested range. The modelling regimes, at this stage, only consider the ignition transient pressure 

loading, which in effect, allows the thermal effects, regression of the grain and the inertial loads 

to be neglected.  

 

The motors listed above were modelled as full bodies, with only the grain, post- and pre-

combustion chambers, and the motor casing present. An explicit model implemented in ANSYS 

Explicit (AUTODYN) was utilised due to the software’s ability to model material responses to 

time dependant, high impact loads over very short time frames. In all the cases above, the 

combustion chamber was longer than the grain, as it would be in reality. The pre- and post-

combustion chambers were included as their influence on the grain would need to be 

considered. The thermal liner was removed from the model at this early stage of the modelling 

regime, as the complex nature of composite materials would affect the interpretation and 

understanding of the grain response. It should, however, be included for any quantitative 

structural modelling after adequate material properties are obtained.  
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The fore-end of the motor housing was fully constrained in all degrees of freedom, while the 

aft-end was allowed freedom in the axial direction. This allows the chamber length to expand 

and contract axially, as it would be able to in reality, while restraining the ends in the radial 

direction due to the stiff bulkheads. The fuel grain and pre- and post-combustion chambers were 

set to move freely within the motor housing, however not able to pass the axial limit of the 

combustion chamber. This is a representative limit enforced by the bulkheads on either side of 

the motor. This constraint was applied as the parts are typically loosely fitted within the 

combustion chamber during manufacture and assembly. Of course, this constraint is based on 

the manufacturing method applied in these specific motors and may vary depending on the 

manufacturing and assembly methods used in other designs. An effective pressure load was 

applied as a step-wise, time dependent load to all internal surfaces of the combustion chamber. 

The pressure data applied to the model was determined from pressure transducers placed at the 

fore-end of the motor during experimental hot fire testing as well as the average chamber 

pressure modelled from HYROPS. The application of a constant pressure profile is an over 

simplification of the complex pressure distribution within an igniting hybrid rocket motor. The 

simplification allows us to analyse the resultant pressure profile and application of the J-C 

models before applying complexity. Body interactions between the grain, pre- and post-

combustion chambers and the motor housing were activated to ensure that the varying material 

deformation and reaction forces were adequately accounted for. The load application was 

similar to that presented by Hsiao (Hsiao, 2013) in his work concerning solid propellant grains 

under ignition pressurisation.  

 

A hex mesh, with mapped surfaces, was applied to all parts for computational simplicity, which 

means that hourglass dampening, similar to that described for the tensile test models, needed to 

be applied. Mesh size independency and quality were verified for each model before final 

simulation results were documented. A portion of the mesh used for the P-1A simulation can 

be seen in Figure 4 - 8. A variety of scenarios were simulated for each motor depending on 

what pressure data was available for each motor. These scenarios included actual pressure data 

from available hot-fire tests, the modelled pressure data based on the HYROPS software 

estimations (including an estimated pressure spike), and a reduced pressure profile where the 

chamber pressure does not exceed the design pressure (excluding the pressure spike). All 

pressure profiles are available in references (Genevieve et al., 2012, 2015; Leverone et al., 

2013, 2019; Balmogim et al., 2015). It is important to note that the pressure profiles and start-
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up transients greatly affect the ability of paraffin wax fuel grains to withstand the loads applied, 

as the material is noticeably strain-rate dependent.  

 

4.9 Case study 

Two sets of analyses were considered in this study. The primary analyses considered the 

existing Phoenix sounding rocket motors and their susceptibility to failure given their modelled, 

and if available, tested ignition pressure profiles. The vast difference in the theoretically 

predicted and experimentally measured pressure profiles, as well as the difference in material 

response between the pure and aluminised waxes, affected the structural response of each grain.  

 

Table 4 - 3 shows a summary of grain failure predictions in the respective simulations based on 

the J-C failure model.  Due to the method of load application, if failure of the surface was to 

occur, and the subsequent elements began to erode, the loading profile will no longer be applied 

as intended, and thus the result will be at the point where failure occurs. This means that the 

simulation method utilised here can be used to predict if failure was to occur, but not its extent. 

Having said this, the prediction of failure initiation is an important exercise, which can lay the 

foundation for the development of a computationally intensive explosive model to more 

completely model the expected pressure application. In addition, it should be noted that based 

on the results discussed below, the maximum strain-rates for all the scenarios simulated fall 

Figure 4 - 8: 4mm HEX mesh throughout P-1A motor 
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within the range of the test data, meaning that the ‘slow’ rate of applied load in hybrid ignition 

makes the use of the J-C model suitable. 

 

Table 4 - 3: Summary of grain failures 

Motor Pressure profile Result 

P-1A 

Actual – hot-fire test Pass 

Modelled – with spike Fail 

Modelled – without spike Pass 

P-1B 

Actual – hot-fire test Pass 

Modelled – with spike Fail 

Modelled – without spike Pass 

P-2A Modelled – without spike  Fail 

P-2A II Modelled – without spike Fail 

 

The aim of performing the secondary set of analyses was to investigate the effect that fuel grain 

geometry has on the stress profile within each of the motor’s grains when subjected to the same 

pressure loading profile. This was achieved by applying the same pressure profile on each of 

the described grains, and by applying the same pressure profile to a grain of constant OD, but 

with a modified OD/ID ratio. In this case, secondary influencing bodies such as the pre- and 

post- combustion chambers were removed so that even pressure could be applied to all exposed 

grain surfaces, and to ensure there were no external influences when interpreting the stress 

profiles. The results obtained show the influences grain geometries have on the stress profile of 

the fuel grain, which would influence the design considerations at an early stage. 

4.9.1 P-1A simulation  

A series of images are presented in Figure 4 - 9 detailing the simulated Von Mises equivalent 

stress profiles within the pure wax grain of the P-1A motor, at the end of the ignition time 

during the hot-fire motor test. Due to the lower maximum pressure in this test, the resultant 

stresses are relatively low. A peak equivalent stress of 2.4 MPa is predicted near the aft end of 

the grain where the post-combustion chamber ring interacts with the fuel grain and casing. 

There was no evidence of any form of failure in this motor after this hot-fire test nor in this 

ignition simulation, lending validation to the proposed model. 

 

In the modelled pressure loading scenario of the P-1A, the artificial pressure spike of 15% (47 

bar) (Genevieve et al., 2012) over the start-up transient of 0.027 s resulted in grain failure at 

0.0243s. At this time, the material exceeded its maximum allowable stress at the effective strain 
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rate. The maximum equivalent stress at the moment before failure is 3.3 MPa. The simulation 

of the theoretical pressure transient without the artificial pressure spike did not result in grain 

failure but resulted in a maximum equivalent stress of 3.2 MPa. When comparing these two 

equivalent stresses, it can be seen that the simulation that did not exhibit failure reached an 

equivalent stress very close to that of the simulation that did fail. This reinforces concerns 

regarding the design pressure and the attributed risk associated with ignition spikes.  

 

(a) 

(b)    (c) 

Figure 4 - 9: P-1A actual pressure profile – equivalent stress – (a) longitudinal cross 

section, (b) radial cross section, and (c) external isometric 

 

As discussed, structural response predictions, after the initiation of failure occurs, are not likely 

to be accurate, as some nodes through which loads are transferred fail, and are removed from 

the active model, affecting the intended load application. While there are various ways to 

account for this, the purpose of this work is to determine the effectiveness of a simplified 
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analysis for the purposes to verifying a fuel grain design. It is, however, interesting to visualise 

where the grain failure is initiated. Figure 4 - 10 shows the initial predicted failure, and the 

propagation of the failure of the grain as determined by the J-C failure model which eliminates 

elements where the damage threshold is exceeded. The failure initiates at a few points at mid-

length on the outer diameter of the grain and then propagates diagonally around the OD. At 

some time after this initial failure, as the pressure continues to increase, the grain fails on the 

surfaces in direct contact with the applied ignition pressure.  At this time, it is apparent that the 

grain is failing as a direct response to the surface pressure on the port surface and the fore and 

aft ends.  

 

(a) (b) 

Figure 4 - 10: P-1A modelled (with peak pressure) (a) initiation of failure, (b) 

progression of failure 

4.9.2 P-1B simulation  

The P-1B motor grain was predicted to react similarly to that of the P-1A motor. This is 

attributed to the similar grain outer dimensions. The OD/ID ratio of the P-1B grain is only 

slightly more than that of the P-1A grain, which implies that this may result in a higher stress 

profile, however, the reduced OD will also act to reduce this stress profile slightly. Additionally, 

the actual hot-fire start-up transient time of the P-1B motor is more than double that of the P-

1A motor, which will affect the material response due to its strain rate dependency. Figure 4 - 

11 shows a cross-section of the equivalent stress profile for the P-1B grain under the actual 

loading conditions measured during its hot-fire test. A maximum equivalent stress of 2.5 MPa 

is predicted. The simulation with the pressure spike (43 bar) (Balmogim et al., 2015) resulted 

in grain failure with a maximum equivalent stress of 3.05 MPa measured just prior to failure at 
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0.0165 s. When the modelled pressure scenario was simulated without the pressure spike, the 

grain did not fail and resulted in a maximum equivalent stress of 2.95 MPa at 0.02 s. These 

values are not directly comparable to the P-1A results due to the different pressure profiles. 

 

4.9.3 P-2A simulation 

The P-2A motor has a larger outer diameter when compared to the previous two motors. While 

the fuel thicknesses are similar, the tangential stresses within this motor are expected to be 

larger due to the increased diameter. On the other hand, however, the lower OD/ID ratio should 

counteract this effect. With the modelled loading condition determined during the design of the 

P-2A motor (Leverone et al., 2013), with no ignition pressure spike, failure was predicted to 

occur by the associated simulation at 0.0086 s into the start-up transient.  

 

The result presented in Figure 4 - 12 shows that the maximum equivalent stress prior to failure 

was predicted to be 3.38 MPa, which is significantly lower than the failure thresholds of the 

smaller motors. While the rate at which the load is applied does affect the vehicle’s ability to 

withstand the stresses, the low toughness of this material indicates that the low OD/ID ratio of 

1.44 is not enough to reduce the increased tangential stresses which are present due to the 

increase in diameter. This suggests that larger diameter grains should likely be strengthened 

with additives in order to resist premature failure. 

 

 

Figure 4 - 11: P-1B actual pressure profile - equivalent stress - side cross-section 
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4.9.4 P-2A II simulation 

The P-2A II (aluminised) motor has similar dimensions to that of the P-2A motor except that it 

is shorter as a result of the increase in the density specific impulse, and lower optimal O/F ratio 

of the fuel material. The material properties of the aluminised wax were considered in this 

simulation. Based on the material testing described above, it is clear that the aluminised wax 

considered in this study is notably more brittle than the pure wax. A simulation of the P-2A II 

fuel grain’s response to the modelled pressure profile, with no pressure spike, predicted the 

initiation of failure at 0.00682 s at a peak equivalent stress of 2.99 MPa. The cross section of 

the equivalent stress profile can be seen in Figure 4 - 13. At higher strain-rates the aluminised 

wax is noticeably more brittle than the pure paraffin wax, having a higher strength with less 

allowable deformation. The rapid pressure load therefore results in a rapidly increasing stress 

throughout. This is evident in the image showing the point of grain failure, Figure 4 - 14, where 

the wax grain is predicted to experience many internal failure initiations throughout its volume, 

as opposed to the localised failure, crack propagation predicted in the pure wax grains. While 

this image does not demonstrate the actual failure expected, it is interesting to note the predicted 

differences between the failure profiles of pure wax and aluminized wax indicating an increased 

brittleness of the aluminised grain. 

 

 

 

 

Figure 4 - 12: P-2A modelled pressure profile (design pressure before failure) - 

equivalent stress - side cross-section 
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4.9.5 Summary of results for existing motor designs 

From the simulations presented above, it is difficult to define a direct correlation between 

loading and geometry due to the number of variables associated with failure. Table 4 - 4 lists 

the various peak stresses and strains for each motor at either the end of the simulation or just 

prior to failure. It is noted that all principal stresses are in compression. When considering the 

peak equivalent strains associated with each of the grains considered, it is clear that the higher 

Figure 4 - 13: P-2A II modelled pressure profile (design pressure before failure) - 

equivalent stress - side cross-section 

Figure 4 - 14: P-2A II modelled (design pressure) failure 
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the OD/ID ratio, the higher the strain experienced at the end of the simulation. This correlation 

is not evident in respect of the tangential stresses which decrease as the OD/ID ratio is lowered, 

and increase as the OD is raised. It appears that the increasing OD has more of an effect on the 

stress profile changes in the OD/ID ratio. 

 

Table 4 - 4: Summary of results 

Motor Pressure profile Peak 

Equivalent 

stress (MPa) 

Peak radial 

stress 

(MPa) 

Peak 

tangential 

stress (MPa) 

Peak 

longitudinal 

stress (MPa) 

Peak Equivalent 

strain (mm/mm) 

P-1A 

Actual – Hot fire test 2.40 -3.22 -1.87 -4.12 0.0045 

Modelled – with spike* 3.30 -4.58 -3.15 -5.76 0.0059 

Modelled – without spike 3.18 -4.05 -2.32 -4.67 0.0050 

P-1B 

Actual – Hot fire test 2.50 -3.29 -1.66 -3.74 0.0053 

Modelled – with spike* 3.05 -4.08 -2.10 -4.91 0.0063 

Modelled – without spike 2.95 -3.91 -1.99 -4.72 0.0062 

P-2A Modelled – without spike* 3.38 -3.73 -1.77 -4.50 0.0047 

P-2A II Modelled – without spike* 2.99 -2.88 -1.14 -3.96 0.0027 

* results taken in time step prior to failure 

4.9.6 Effect of geometry on stress profile 

It is clear from the above results that the radial and tangential stresses are, in fact, fully negative. 

However, to fully understand the estimated stress profile presented in Figure 4 - 7(b), these 

solutions cannot be directly utilised as numerous variables affect the result, including, 

primarily, the maximum pressure and the rate of loading. To have comparable results based 

solely on the geometry of the motor, a simplified loading scenario was simulated for each motor 

of different geometry by applying the same fictional loading condition to each motor. The 

maximum pressure simulated was 40 bar, reached at a start-up time of 0.02 s. The pre- and post-

combustion chambers were removed so that the entire system was simplified and only predicted 

the direct response between the applied pressure and grain dimensions. However, the fore and 

aft end pressures were still applied. The radial and tangential stresses predicted for each 

scenario are plotted in Figure 4 - 15, showing the stress profiles through the thickness of each 

grain. A similar trend to that presented by Karabeyoglu (Karabeyoglu, 2011) was observed, 

except that all the predicted resultant stresses in this case are in compression. The maximum 

equivalent stress is predicted to be 2.72 MPa for P-1A grain, 3 MPa for the P1-B grain and 

2.81MPa for the P-2A grain, while the associated maximum equivalent strain is predicted to be 

0.004 mm/mm, 0.0052 mm/mm and 0.0043 mm/mm, respectively.   
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The work presented by Karabeyoglu (Karabeyoglu, 2011) in Figure 4 - 6 shows that for grains 

with the same OD, the grains with higher OD/ID ratio, have more positive tangential and radial 

stresses, while the stresses predicted in Figure 4 - 15 are not ordered in the same fashion. This 

is attributed to the effect of the different OD of each grain in the presented work, indicating that 

both the OD/ID ratio and the absolute OD have an effect on the stress profile within the fuel 

grain. The predicted stresses in this graph indicate that increasing outer diameter negatively 

affects the structural integrity of the grain design, and reducing the OD/ID ratio may not be 

sufficient to prevent failure.  

 

To verify this consideration, an additional simulation was conducted on fictional versions of 

the P-1A fuel grain where the outer diameter remained the same, and the port diameter was 

modified to either reduce or increase the OD/ID ratio. The predicted tangential and radial 

stresses of these simulations can be seen in Figure 4 - 16. There is a distinct similarity to the 

result presented in Figure 4 - 6, also showing that the higher the OD/ID ratio, the closer the 

grain approaches failure. The change in the tangential stress profiles for each grain with varying 

ratios is quite large, while the effect of an increasing OD has an opposite effect.   

 

Figure 4 - 15: Tangential and radial stress vs radial distance for simulated grains 
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4.10 Conclusion 

While it is difficult to ascertain a direct correlation between the results obtained and the 

geometry of a motor grain given the current data set, these results do lead to the conclusion that 

that the J-C material and failure model and modelling method are suitable in the grain structural 

integrity validation during the initial design phases. Fuel grain dimensions, port size and the 

chamber pressure are determined through the mission objectives and design constraints. The 

usefulness of applying the J-C material and failure models to capture the strain rate dependency 

of a material that is not metallic, such as paraffin wax, is limited. However, the data and testing 

presented in this work show that within the range specified, these models can be utilised for 

determining the grain material response and in particular the failure point.  

 

Previous fuel grain stress estimations have considered the fuel grain to be a constrained, thick-

walled pressure vessel, with a different material encapsulating it and restricting its deformation, 

resulting in compressive stress profiles. In the models presented in this paper, the addition of a 

fore- and aft-end loading condition is necessary for an accurate determination of the stress 

profile. While it could be said that the pressure loading imposed on the fuel grain should not be 

applied evenly to all wetted surfaces, as the chamber pressure tends to decrease from the fore- 

to aft-end, this effect was neglected at this early stage in the analysis. Unsymmetrical loading 

would add significant complexity for a very small increase in accuracy with the interpretation 

Figure 4 - 16: Tangential and radial stress vs radial distance for P-1A grain with various 

OD/ID ratios 
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of the resultant stresses and applicability of the J-C material models at this early stage of 

development. This being said, the next phase of analysis and simulation should allow for this 

attribute to be included.  When analysing the principal radial, tangential and longitudinal 

stresses in each design case there is no distinct response pattern, as the same loading condition 

is not applied to each associated geometry. These results do, however, highlight how these 

simulation methods offer more insight into the grain response to unintentional pressure spikes, 

or geometric attributes. 

 

A hypothetical set of analyses was conducted with the same pressure profile applied to each 

geometry to visualise the direct effect that the geometry has on the stress profile. It is clear from 

these results that, while the OD/ID ratio does have an effect on the point of failure, the 

maximum OD of the motor is likely to have a larger effect.    

 

The estimated tangential and radial stress profiles presented in this work show a similar trend 

to what would be expected in a thick-walled pressure vessel. The tangential stress profile is, 

however, in compression due to the constraining force imposed by the combustion chamber, 

which has vastly different material properties. This constraining force will depend on the 

material and geometric characteristics of the combustion chamber and any thermal liner, if 

present.  

 

The results presented here aim to validate a procedure for determining the structural response 

of paraffin wax hybrid rocket motor fuel grains by means of simulations utilising the J-C 

material and failure models within a verified range of testing. While it is impossible to 

determine the validity of each grain simulation without extensive testing, the implication from 

the stress profile shows the plausibility of utilising the J-C models for more grain analyses. Full 

validation of these results can only be achieved with extensive motor testing, which is beyond 

the scope of this paper, however, it should be noted that the simulations which utilised data 

from actual hot-fire tests did not predict failure, and no failure was discovered after the tests. 

Additionally, should the presented modelling methods be utilized, not only for the initial design 

stages but additionally for the final design verification, the ignition pressure profile should be 

applied with an expanding gas model or explosive model to more realistically apply the loads 

inside the combustion chamber after failure occurs. This will allow the pressure profile to be 

applied to the exposed grain surface independent of surface failure, and where complex pressure 

gradients throughout the grain length can be applied more realistically. Further studies into this 
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topic should tackle the material characterisation of a wider range of mechanically strengthened 

paraffin wax grains, and the improvements in geometrical properties that can be obtained with 

these structural enhancements with their associated effects on rocket motor performance. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Original objectives 

At the commencement of this research, an area of paraffin wax hybrid rocket fuel technology 

lacking in development was identified to be the structural performance of paraffin wax hybrid 

fuels. The lack of existing research and development in this area limited the functional use of 

these motors in a wider range of applications. In addressing this topic, a set of objectives were 

generated to bridge the knowledge gap in the fuel development. The primary aim of the research 

was the development of a fuel characterisation and FEA fuel grain modelling methodology for 

paraffin wax hybrid motors. The research objectives set were as follows:  

 

1. Investigate the current paraffin wax-based hybrid rocket state-of-the-art, and identify 

the deficiencies associated with fuel grain structural assessment. This investigation 

should include structural and performance-enhancing additives and the effect these have 

on the performance of the motor.  

2. Develop an experimental testing regime to fully characterise paraffin wax fuel as an 

input to a structural FEA model.  

3. Verify the use of material constitutive and failure models for structural response 

modelling considering the specific characteristics of paraffin wax. 

4. Develop a computationally efficient structural response model to represent the ignition 

pressurisation loading condition associated with a set of hybrid rocket motor designs.  

5. Apply the findings from the above studies to propose recommendations for future work 

and development. 

 

  The following section details the contributions made in addressing each of these objectives.  

5.2 Key contributions of the thesis 

Objective 1 was addressed by means of a review article, published in Volume 141 of Acta 

Astronautica, and presented as Chapter 2 of this thesis. This review addressed the scope of 

current investigation methods into the use of paraffin wax as a hybrid fuel while considering 

performance metrics such as regression rate and the ultimate tensile strength. The review also 

investigated resources that included fuel additives which were hypothesised to either increase 

structural properties and/or regression rate.  
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In terms of regression rate, the review article was able to draw together a multitude of 

experimental testing regimes of paraffin wax-based fuels and compare them with one another. 

There are noticeable differences in the regression rate reported by some of the sources, implying 

that the experimental technique differences were important to note for each source. Specifically, 

there were measurably different results presented when considering annular grains versus slab 

grains, or with respect to the regression rate measurement technique applied. That is, if the 

regression rate was measured instantaneously, or as a time-averaged result at the end of the 

burn.  

 

A primary influencing factor which lacked consistency across the range of the various 

experimental methods is the grade of paraffin wax used. The length of the carbon chain of the 

wax molecule has an influence on the formation of the crystal structure of the paraffin wax in 

solid form, as well as the melting temperature and viscosity of the melt layer. It was often 

difficult to ascertain what type of paraffin wax was used in each experiment, even though the 

results appeared to be heavily influenced by this factor. Often this attribute was overlooked, 

and candidate fuels were generally lumped into one category. 

 

This review also investigated paraffin wax-based fuels with additives, which were either 

included for structural or performance enhancement purposes. In general, metallic additives 

were added for performance enhancement, while polymeric or polymer-like additives were 

added to improve the structural properties. The collation of these results presents a unified 

source of information as to the effects various additives have on the regression rate of paraffin 

wax. The combustion testing of doped fuel grains often do not include information on the now 

modified structural performance. Once again, the grade of paraffin wax and the applied testing 

techniques were noted as influencing factors.  

 

The use of additives in paraffin wax, which as described, has the advantage of being a liquefying 

fuel within the liquid viscosity range which allows for droplet entrainment, is noted to change 

the viscous properties, thus affecting the aforementioned advantage. In the case of structural 

enhancing polymers, the viscosity of the melt layer is increased and the extent of entrainment 

is decreased, negatively affecting the regression performance of the fuel. The use of some 

metallised additives, such as aluminium, increases the performance of the fuel by raising its 

energy density; however, these performance advantages were reported to be heavily dependent 

on the grade, particle size and processing method of the aluminium used.  
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The review additionally assessed the relationship between fuels and regression characteristics 

and the corresponding structural properties. While extensive details concerning regression rate 

testing methodologies are provided, the provision of details concerning structural testing 

methodologies is limited. In most cases, the structural tests were performed only to ascertain 

the difference between the pure wax and the doped wax, and not specifically to determine a 

working set of results for any form of material characterisation.  

 

In general, structural enhancement additives functioned as expected, by increasing structural 

performance. In particular, the use of aluminium additives resulted in a noticeable increase in 

the UTS of the material, albeit with a reduced strain. The complex loading conditions which 

would be present inside a hybrid motor suggest that existing results are of limited value in 

determining the structural feasibility of these fuels for launch applications. 

 

The outcome of the review paper presented in Chapter 2 indicated that there is a limitation to 

the structural consideration of paraffin wax, with only a handful of studies having specifically 

considered structural properties. The review detailed the extent of existing paraffin wax 

combustion testing methods, however noted the lack of consistency in contributing factors such 

as measurement techniques and fuel grades. Additionally, it highlighted the lack of 

investigation into the complexity of material structural properties, such as strain-rate and 

temperature dependency that would usually be considered for this type of material, especially 

under the loading conditions expected.  

 

Objective 2 was addressed in the paper published in Volume 151 of Acta Astronautica and 

presented as Chapter 3 of this thesis. The full characterisation of the paraffin wax-based hybrid 

fuels under consideration was initiated by defining the principal properties which would affect 

the structural performance. Experimental testing was limited to the fuel types used within the 

Phoenix Hybrid Sounding Rocket Program, which were the pure and 40% aluminised SASOL 

0907 paraffin wax, and considered aspects such as the mechanical properties, thermal softening 

and the melting onset temperature of paraffin wax – the temperature at which it is assumed that 

the material is unable to effectively take a load.  

 

This temperature is especially important to consider when making use of metallised additives. 

While paraffin wax itself is fairly insulative, the addition of metallised additives will typically 
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result in an enhancement of heat transfer into the wax during combustion, thus increasing the 

temperature of the solid wax beneath the fuel surface and potentially improving ductility. 

Material samples were tested using Differential Scanning Calorimetry, which identified the 

melting onset temperature as 40 ℃. This was set as the temperature beyond which structural 

tests would not be performed.  

 

The melting onset temperature identified was remarkably low, which prompted concerns about 

the consequences of excessive thermal penetration into the grain body during combustion, 

especially for metallised grains. The conductivity of the wax grains, both with and without 

aluminium, were tested using thermal imagining measurement techniques (TIMTower) to 

determine their thermal conductivity and modelled in a transient thermal analysis to determine 

if the thermal propagation rate exceeds the regression rate of the fuel. This was a simplified 

analysis, which could be considered as a worst-case scenario because the insulative liquid layer 

which is formed by this fuel type, was assumed not to be present. The results indicated that the 

fuel grains considered experience some thermal penetration but without the speed of the 40 °C 

thermal wave exceeding the theoretical regression rate. However, the aluminised grain was 

shown to have a thermal conductivity approximately three times higher than that of pure wax, 

resulting in the thermal wave propagation nearing the theoretical regression rate.  

 

Structural testing in the form of tensile and compressive tests indicated that paraffin wax, in 

both pure and aluminised forms, shows a strong strain-rate and temperature dependency. The 

range of testing conducted ensured that there were both quasi-static results, and high strain-rate 

results. The highest strain-rate was determined by the expected ignition transient within a 

combustion chamber, which is defined to be relatively slow in the case of paraffin wax and 

nitrous oxide when compared to other combustible materials. 

 

The outcome of these tests showed that a high strain rate is associated with a higher material 

UTS, but a reduction in the allowable strain. In the case of aluminised paraffin wax, the UTS 

was higher and the allowable strain was lower, in all cases. This implies that the addition of 

aluminium makes the material stronger in tension and compression, but more brittle. It is also 

important to note the shape of the stress-strain plots. These plots do not show a clear yield point, 

but rather indicate a transition over time from the elastic to plastic regions, with a general, 

continuously increasing stress until failure. This indicates that no necking or cross-sectional 

area reduction is present in the samples during testing.  
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Furthermore, the tests, performed at different temperatures, indicate a rapid reduction in the 

UTS of paraffin wax with even slight temperature increases. The material was shown to rapidly 

soften to the point that it is not able to effectively resist a load, although a much larger strain 

before failure was observed.  

 

It is clear from the testing performed that the material presents complex failure properties well 

within the range of loading conditions expected within a hybrid rocket motor. Characterisation 

of these material properties is, therefore, necessary to accurately model the structural 

performance of these fuels for the desired application. 

 

Objectives 3 and 4 were addressed in Chapter 4 of the thesis, which is presented in the form of 

a publication which is currently under review. Objective 3, which is aimed at determining and 

verifying the use of material constitutive and failure models for structural response modelling, 

makes up the first half of this passage of work. It would appear that the structural performance 

of paraffin waxes has never been analysed to the extent presented in Chapter 4, nor does it seem 

that structural property characterisation has been conducted in as much detailed as in Chapter 3.  

 

This offered a unique opportunity to model and analyse the realistic structural response of a 

paraffin wax hybrid rocket fuel grain during motor ignition. Before any analysis could be 

performed, adequate material constitutive and failure models had to be identified and verified. 

Research into various material models which could capture the strain-rate dependency and 

temperature dependencies of paraffin wax led to the use of the modified Johnson-Cook material 

and failure models, which are able to consider both the temperature dependency and the strain-

rate dependency of a material. This model is ordinarily used for metals, and some plastics, and 

therefore a model verification was necessary.  

 

After the model inputs were determined from the experimental testing presented in Chapter 3, 

the tensile tests that generated the structural data were simulated. The modelled stress-strain 

curves were extracted and compared to the experimental scenarios. The resultant stress-strain 

curves and failure points closely matched those of the experimental tests at the various strain 

rates and were considered acceptable for use in the structural response modelling of a paraffin 

wax fuel grain during motor ignition. 
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Objective 4 was addressed in the second half of the publication presented in Chapter 4. This 

aspect of the work made use of the now verified material models to analyse a simplified 

structural response of fuel grains associated with existing motor designs within the Phoenix 

Program. This work made use of information from the design, combustion modelling and hot-

fire testing of hybrid rocket motors designed within the Phoenix Hybrid Sounding Rocket 

Program. The variety of data sources available offered an opportunity to compare the simulation 

results obtained when using actual combustion data from hot-fire tests versus modelled 

theoretical combustion data.  

 

There was a clear discrepancy between the simulated ignition transient and the actual ignition 

transient, as well as the associated peak chamber pressures. In most cases, the hot-fire test data 

indicated that the motors did not reach their design chamber pressures, nor did the predicted 

ignition chamber pressure spike occur. In the case of the modelled pressure profiles applied as 

the loading conditions, the motors were more susceptible to failure if the pressure spiked above 

the design chamber pressure. However, failure indication was also influenced by the geometry 

of the fuel grains.  

 

A structural and failure analysis method was defined, where key input criteria were taken from 

the published work of Chapter 3. Figure 5 - 1 summarises into flow diagram form, the process 

followed to perform the structural response and failure analysis used for paraffin wax fuel 

grains. The model is defined by addressing input data such as the geometry, part interactions, 

loading conditions and finite element meshing properties. The material structural response 

requires input information from material testing data, and the definition of a material 

constitutive model. The work presented in this thesis made use of the Johnson-Cook material 

constitutive model which considers complex material response information for explicit 

analyses.  

 

To further analyse the structural response of the fuel grain, a failure criteria is also included in 

the simulations. The input information for this includes material failure properties obtained 

from destructive testing. The failure properties are used to define the failure criteria. In the case 

of this research, the failure criteria were obtained on the basis of the Johnson-Cook failure 

model, which defines a damage threshold based on the loads experienced and the material 

properties defined. The simulated output offers insight into the subsequent grain response and 

potential for failure in-flight.  
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The initial analysis then led to the development of a direct structural response comparison 

between geometric variables such as the outer diameter and the outer to inner diameter ratio for 

a constant pressure versus time profile. It was found that an increasing outer diameter and an 

increasing OD/ID ratio both have a negative effect on the grain’s ability to manage the load 

without failure. This is as a result of the compressive radial and tangential stresses within the 

grain. It is also noted from the results that an increase in outer diameter has a larger effect on 

the potential failure than that of the OD/ID ratio. This suggests that larger grains, such as that 

of the Phoenix-2A sounding rocket, will likely require structural compensation in the form of 

additives, structural matrices or reduced chamber pressure.  

5.3 Recommendations for future research 

A substantial amount of experimentation and analysis is required to fully verify the structural 

and regression performance of a paraffin wax fuel grain in a hybrid rocket motor, some of it 

iterative. While the research presented here focuses on a particular range of use cases, it details 

Figure 5 - 1: Process of fuel grain structural and failure analysis 



102 

a clear path for researches to follow when considering the use of a paraffin wax-based fuel. 

There are limitations to the work presented, and several areas would benefit from expansion in 

order to derive a more conclusive structural response analysis.  

 

The structural testing regime was developed specifically to derive the material properties 

required to perform the ignition transient structural response simulations. It is possible to 

expand the testing regime to include other material properties for specific analyses, should they 

be deemed important. For example, should a mission require long term grain storage or 

transportation, material properties relating to the slump characteristics of the material could be 

derived via creep testing.   

 

The modelling work presented should be considered to be an initial assessment, on the grounds 

of the simplicity of the modelling regime employed. Explicit structural analyses are 

computationally expensive, and any additional components or more refined meshing in specific 

areas would significantly increase the simulation run-time. This is not feasible in the 

conceptualisation phase of vehicle design; however, the second phase of analysis should be 

considered after the broad specification of a motor geometry is frozen.  

 

A more complex analysis should consider aspects such as the change in chamber pressure over 

the length of the motor, as well as the strength of bonding between the internal chamber 

components. These additions to the model would improve the representation of the interaction 

between internal components and may lead to alterations in certain design aspects, such as the 

inclusion of strain relief components within the motor design. This would also require a number 

of motor test firings to define certain working parameters, such as the chamber pressure, as well 

as structural bond tests between the material of bonded surfaces, if any. 

 

The described modelling only considered an explicit modelling technique representing a short-

duration transient at ignition. This was assumed to represent the worst-case loading condition 

scenario for a hybrid rocket motor fuel grain due to the ignition pressure spike generally 

anticipated in these motors. It cannot be overlooked that the in-flight loading conditions, i.e. 

the loading that occurs after stable combustion commences, may initiate failure in the fuel grain, 

and further analysis should consider this aspect of the fuel grain operation. During this 

modelling phase, special attention should be given to the regression of the grain as well as 

thermal penetration effects.  
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An aspect which was beyond the scope of this work, but would greatly benefit the accuracy of 

the modelled results would be the development of an analytical method to generate a more 

accurate ignition period pressure profile. In all cases where both actual and theoretical chamber 

pressure data are present, the theoretical pressure profile peaks at a much higher level than that 

of the experimental data, and in a much shorter time. This results in inaccuracies in the 

predictions made by the structural response model, due to its strain rate dependencies. Noting 

that the structural responses generally predicted failure with the theoretical models, and not 

with the experimental models indicates that there could be an unnecessary design rigidity 

applied to a motor grain in terms of failure prevention.  
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