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Abstract

In this thesis, a new model of non-reversal quantum walk is proposed. In such a walk,

the walker cannot go back to previously visited sites but it can stay static or move

to a new site. The process is set up on a line using the formalism of Open Quantum

Walks (OQWs). Afterwards, non-reversal quantum trajectories are launched on a 2-D

lattice to which a memory is associated to record visited sites. The “quantum coins”

are procured from a randomly generated unitary matrix. The radius of spread of the

non-reversal OQW varies with di↵erent unitary matrices. The statistical results have

meaningful interpretations in polymer physics. The number of steps of the trajectories

is equivalent to the degree of polymerization, N . The root-mean-square of the radii

determines the end-to-end distance, R of a polymer. These two values being typically

related by R ⇠ N ⌫ , the critical exponent, ⌫, is obtained for N  400. It is found to

be closely equal to the Flory exponent. However, for larger N , the relationship does

not hold anymore. Hence, a di↵erent relationship between R and N is suggested.
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Notations

H,K : Hilbert space

B(H) : Set of bounded operators on H
~ : Reduced Planck constant

t : time

| i : state vector

h.|.i : inner product in H
|.ih.| : outer product in H
⌦ : tensor product

k.k : Norm in H unless specified di↵erently

Tr : Trace

.† : adjoint

.�1 : inverse

U : Unitary operator

I : Identity operator
d

dt

: di↵erentiation with respect to time

[A,B] : = AB � BA

Abbreviations

1D : one-dimension

2D : two-dimension

SAW : Self-Avoiding Walk

OQW : Open Quantum Walk
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Chapter 1

Introduction

“Avoiding yourself, it turns out, is a hard problem.” [1]

A random walk is a process in which an object (a particle) moves randomly. Random

walks are known to have been used since 1880 by Rayleigh in modeling a sound wave

through a material. However, only 20 years later, the theory of random walks was

proposed by Louis Bachelier through his thesis “La Théorie de la Spéculation” [2].

His objective was to express and predict stock market behaviour. The term “random

walk” was introduced by Karl Pearson in 1905 through a description of mosquito infes-

tation in a forest. Surprisingly, in the same year, the famous publication on Brownian

motion by Albert Einstein came out [3]. It became the major contribution to random

walks. Another such independent work was published by M. Smoluchowski in 1906 [4].

Almost after half a century, scientists started showing interest to the self-avoiding

version of the random walk. Since then, the Self-Avoiding Walk (SAW) has been an

active area of research. Basically, it is a random walk whereby the object cannot go

back to an already visited site of its path. This definition has been convenient espe-

cially to chemists [5, 6] as it makes the SAWs one of the main mechanism that can be

used to model the growth of crystals and polymers [7]. The Nobel prize winner, Paul

J. Flory, came up with an exact formula that characterises the properties of a typi-

cal SAW which has been verified numerically [8]. Recently the Flory conjecture was

proven in 2D [9]. As a result, SAWs have become of equal importance to mathemati-

cians. The classical SAW is being studied on Z2 and on the honeycomb (hexagonal)

lattice [10]. It has also been analysed numerically on other two-dimensional (2D)
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lattices [11]. However, there are some analytical questions about the classical SAW

that remain unsolved so far.

Recently, some types of SAWs have been implemented as unitary quantum walks [12].

They were called the non-reversal quantum walks and non-repeating quantum walks

[13]. Unfortunately, such quantum walks cannot be completely self-avoiding due to

the unitary dynamics of the system [14]. Consequently, a setup of non-reversal walk,

using the non-unitary formalism of an open quantum system [15], is attempted. The

Open Quantum Walk (OQW) has the properties of both classical random walks and

unitary quantum walks [16]. After a careful study of these properties, the non-reversal

OQW is formulated.

The structure of the thesis consists of four main parts.

In Chapter 2, the necessary mathematical formalism is introduced. This includes

the Hilbert space and the Dirac notation of vectors in that space [17]. The axioms

of quantum mechanics are enumerated in terms of the density operator [18]. The

unitary operators are also introduced since they describe the evolution of a closed

quantum system. Chapter 2 is concluded with an explanation of the open quantum

system, whereby decoherence due to the external environment (or the observer) is

taken into consideration.

Chapter 3 revolves around the di↵erent types of random walks. The classical SAW is

defined and implemented on the cartesian plane. Subsequently, quantum walks are

reviewed, especially the Grover walk [19], the non-reversal and non-repeating quan-

tum walks [13]. They are di↵erent with respect to their coin operators. However,

the same step operator is employed for all of them. Both the coin and the step op-

erators are unitary (hence the walks are referred as unitary quantum walks). Lastly,

the Open Quantum Walk on a two-dimensional lattice is described meticulously. Its

mathematical formalism is adapted from [16]. The probability distributions of the

OQW in one dimension and two dimension are analysed.

In the fourth chapter, the trivial case of non-reversal OQW is formulated using the

principle of quantum trajectories. A memory system is associated with the number

line on which the walk takes place. Then, the memory setup is extended to the carte-

sian plane for the formulation of the two-dimensional version of the walk. Di↵erent

2



distributions of non-reversal OQWs are produced by varying the choice of Kraus op-

erators. The radii of spread of the non-reversal walks is analysed with respect to

the di↵erent Kraus operators used. The statistical results are applied in the field

of polymer physics [20] such that the universal critical exponent can be determined.

This is done for the ordinary OQW too.

To conclude, a new formula is suggested for the relationship between the end-to-end

distance of a polymer and its degree of polymerisation. This gives rise to many open

questions that will be investigated in the near future. Other possible prospects of the

suggested model of non-reversal OQWs are also considered. It is speculated that the

non-reversal OQW could be useful in quantum simulations due to its characteristic

of dispersion. This property could make it suitable for search algorithm as well.

Finally, it has been claimed in [21] that random walks are expected to benefit in the

development of quantum algorithms which are fundamental for a conceivable quantum

computer [22]. However, before reaching this stage, the non-reversal OQW demands

further analysis which therefore opens up a wide range of studying opportunities.
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Chapter 2

The Quantum World

To admire the beauty of the world at the quantum scale, one first needs a notion of

the quantum system. The aim of this chapter is to introduce the mathematical lan-

guage in which this system is set up. We shall cover the preliminary linear operators

acting on the Hilbert space as well as their properties [17]. Subsequently, we shall list

the axioms of quantum mechanics and introduce the open quantum system.

A Hilbert space is a complete inner-product complex vector space. Later, we shall

demonstrate the role of the vector space in the enumeration of the axioms of quantum

mechanics. The Hilbert space is also an appropriate setting for probability theory.

Some physicists view quantum mechanics as being the probability theory of nature.

Dirac was one of them. Let us proceed with one of his contributions to the language

of quantum physics.

2.1 The Dirac Notation

Let H be a Hilbert space. A vector, | i 2 H, is called a ket. The corresponding

linear functional, which is an element of the dual space of H, is denoted as h | and
is called bra. Thus, h.| can be seen as a linear transformation that maps each state

� into a functional h�| such that

h�|(| i) = h�| i.

We further define the norm of  ,

k k =
p
h | i.

4



Next, we introduce the mathematical operators which are necessary tools in quantum

physics.

2.2 Linear Operators

Let H1 and H2 be Hilbert spaces. Then, a linear transformation, B̂ 2 B(H1,H2),

over the field of C, is a mapping from H1 to H2 such that 8 | i
i

2 H1,↵j

2 C,

B̂

 
X

m

↵
m

| i
m

!
=
X

m

↵
m

B̂(| i
m

) =
X

m

↵
m

|�i
m

, with |�i
m

2 H2.

When H = H1 = H2, then the transformation is called a linear operator. Further-

more, B̂ is said to be bounded if there exists M > 0 such that 8 | i
i

2 H1,

kB̂(| i
i

)kH2  Mk| i
i

kH1 .

8 |vi, |wi 2 H, given any linear operator A 2 B(H), there exists an adjoint, A† such

that

hA†v|wi = hw|Avi.
Example: Let A be a four by four matrix which represents a linear operator on C4

with complex entries as follows.

A =

0

BBBBB@

a b c d

e f g h

i j k l

m n o p

1

CCCCCA
.

Then, its adjoint is given by

A† =

0

BBBBB@

a⇤ e⇤ i⇤ m⇤

b⇤ f ⇤ j⇤ n⇤

c⇤ g⇤ k⇤ o⇤

d⇤ h⇤ l⇤ p⇤

1

CCCCCA
,

where a⇤ is the complex conjugate of a, b⇤ is the complex conjugate of b, ...
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A is called a self-adjoint operator if A = A†. In the case of finite dimensional Hilbert

space (H = Cn), the typical example of such an operator is the Hamiltonian of the

system.

Let us look at the operators which will be crucial in the formulation of unitary quan-

tum walks.

2.2.1 Unitary operators

U is unitary if its adjoint is equal to its inverse,

U † = U�1.

An example of a unitary matrix is the Hadamard matrix on C2,

H =
1p
2

 
1 1

1 �1

!
. (2.2.1)

A unitary operator preserves length and the angle between vectors. This will ensure

that the conservation of probability is achieved. Moreover, given that U is unitary,

then U † is also unitary such that

U †U = UU † = I.

The next operator that we introduce will play a key role in the implementation of the

Open Quantum Walk in Chapter 3.

2.2.2 Density operators

When the state of a quantum system can be described with a single vector from the

Hilbert space, it is called a pure state. Otherwise, it is referred as mixed quantum

state.

Let a quantum system be described by a vector | 
i

i with probability p
i

for some

i. The set of these possible quantum states {p
i

, | 
i

i} is called an ensemble of pure

states. Then, the density operator is defined as

⇢ ⌘
X

i

p
i

| 
i

ih 
i

|. (2.2.2)

6



We observe that ⇢ is not unique since it can be defined by di↵erent ensembles of

quantum states. For a pure state, the density matrix is always given by

⇢ ⌘ | ih |.

Since | 
i

i are pure states, Equation (2.2.2) can be rewritten as

⇢ ⌘
X

i

p
i

⇢
i

,

where

⇢
i

⌘ | 
i

ih 
i

|.

Properties of density operators

Density operators have intrinsic characteristics. Before looking at them, we need to

understand what is meant by trace.

For a given matrix A = {a
ij

}N
i,j

, the trace is stated as

Tr(A) =
NX

i=1

a
ii

.

The two types of state we came across can be distinguished since

Tr(⇢2)

8
<

:
= 1, for pure state;

< 1, for mixed state.

Another property of ⇢ is that it is Hermitian, that is,

⇢ = ⇢†.

Furthermore, given that K is a Hilbert space. Then, an operator, ⇢ 2 B(K), is the

density operator associated to some ensemble {p
i

, | 
i

i} if and only if

1. Tr(⇢) = 1 (conservation of probability condition);

2. 8|'i 2 K, h'|⇢|'i � 0 (positivity condition).

With the help of the above characterization, we can list the axioms of quantum

mechanics accordingly.

7



2.3 Postulates of Quantum Mechanics

The foundation of Quantum Physics lies upon four fundamental axioms. These ax-

ioms expresses the physical quantum world into a mathematical language. Usually,

the postulates are described in terms of pure state of a quantum system. In our

context, we choose the description in terms of density operators from [18].

Postulate 1: A Hilbert space can be associated with any isolated physical system.

It is referred as the state space of the system. The density operator, ⇢ acts on this

space and describes completely the quantum system in the state ⇢
i

with probability p
i

.

Postulate 2: A unitary transformation sets forth the evolution of a closed quantum

system. This means that the state ⇢ of the system at time t1 is related to the state

⇢0 of the system at time t2 by a unitary operator U which depends only on the times

t1 and t2;

⇢0(t2) = U(t2, t1)⇢(t1)U
†(t2, t1).

Postulate 3: The quantum measurements are specified by a collection of measure-

ment operators {M
m

} acting on the state space of the system being measured. The

index m refers to the possible measurement outcomes in the experiment.

Given that the state of the quantum system is ⇢ just before the measurement is made,

then the probability that result m occurs,

p(m) = Tr(M †
m

M
m

⇢),

and the state of the system after the measurement is

Mm⇢M
†
m

Tr(M†
mMm⇢)

.

The full set of measurement operators satisfies the completeness equation,

X

m

M †
m

M
m

= I.

8



Postulate 4: The state space of a composite physical system is the tensor product of

the state spaces of the component physical systems. Let ⇢
i

be the state of quantum

systems for i = 1, ...n, then the joint state of the total system is given by

⇢1 ⌦ ⇢2 ⌦ ...⇢
n

.

Postulate 4 will help in the study of subsystems of a composite quantum system.

Such a system emphasizes a crucial part of the thesis. Let us elaborate on it.

2.4 Quantum Systems

Consider the Schrödinger equation,

i~ d

dt
| (t)i = H(t)| (t)i, (2.4.1)

where H is the Hamiltonian of the system (In the remaining part of the thesis, it

is assumed that we are working in the system of units where the reduced Planck

constant, ~, is equal to one). Its solution,

U(t, t0) = e�iH(t�t0), (2.4.2)

governs the evolution of a state vector, | (t)i of a closed physical system.

It is very di�cult to isolate a particular closed quantum system. As a result, we

have to face decoherence which arises due to the presence of an external system

(the environment or the “observer”). This phenomenon is a current obstacle to the

realisation of a quantum computer. In order to present the formalism of the open

system, the following tool is essential.

2.4.1 Partial trace

The definition below is an extension to Equation (2.2.2) that helps in describing open

quantum systems.

9



Let A and B be two physical systems whose joint state is represented by a density

operator ⇢AB. Let |↵1i, |↵2i 2 HA and |�1i, |�2i 2 HB. Then, the reduced density

operator for system A is defined as

⇢A ⌘ TrB (⇢AB) , (2.4.3)

where TrB is called the partial trace over system B and is given by

TrB(|↵1ih↵2|⌦ |�1ih�2|) ⌘ |↵1ih↵2|Tr(|�1ih�2|) ⌘ |↵1ih↵2|h�2|�1i.

2.4.2 Open quantum systems

“Quantum mechanics in itself involves an intimate relationship to the notion of an

open system through the action of the measurement process.” [15]

When two quantum systems (the principal system and the environment as shown in

Figure 2.1) are combined, then the subsystem being observed, is said to be open

given that the total combined system is closed and follows Hamiltonian dynamics.

Hence, the formulation of quantum mechanics in terms of the statistical operator, ⇢

defined in section 2.2.2, becomes helpful.

The fact that the open system is in a mixed state, the corresponding equation of mo-

tion for the density operator ⇢ is given by the Liouville-von Neumann equation,

d

dt
⇢(t) = �i [Htot, ⇢(t)] , (2.4.4)

where the total Hamiltonian of this system is expressed as

Htot = Hsys +Henv +Hint,

such that the Hamiltonians:

Hsys 2 B(HA ⌦ IB) is for the system,

Henv 2 B(IA ⌦HB) is for the environment,

Hint 2 B(HA ⌦HB) is for the interaction between the system and the environment.

10



Figure 2.1: The evolution of a total quantum system AB, which is composed of a
system A, coupled to the environment (or the observer) B. HA ⌦HB,HA ⌦ IB and
IA ⌦HB are their respective Hilbert spaces; ⇢, ⇢A and ⇢B are the respective density
states of the systems. While the total system is assumed to be closed and therefore
has a unitary evolution, the principal system has a non-unitary evolution when the
environment is traced out. (Adapted from [15])

The solution of Equation (2.4.4) is given by

⇢(t) = eL(t�t0)⇢(t0), (2.4.5)

where the Liouville superoperator is defined by

L(t)⇢ = �i [Htot(t), ⇢(t)] .

If we want to obtain the evolution of the density operator for a system A excluding an

environment B (as in Figure 2.1), we can make use of Equations (2.4.2) and (2.4.3).

Since the total density matrix ⇢ evolves unitarily, that is,

⇢(t) = U(t, t0)⇢(t0)U
†(t, t0),

⇢A(t) = TrB (⇢(t)) (2.4.6)

= TrB
�
U(t, t0) ⇢(t0) U

†(t, t0)
�
. (2.4.7)

Similarly, the specific equation of motion can be worked out,

d

dt
⇢A(t) = �i TrB [H(t), ⇢(t)] .
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Let (|b
k

i) be an orthonormal basis for the environment B. For example, let the initial

state of the environment be the pure state

⇢env(t0) = |b0ihb0|.

Then, Equation (2.4.7) can be formulated as

⇢A =
X

k

hb
k

|U(⇢⌦ |b0ihb0|)U †|b
k

i

=
X

k

Bk⇢B
†
k,

where Bk are the Kraus operators that act on the state space of the principal

system and are defined as follows,

Bk ⌘ hb
k

|U |b0i. (2.4.8)

They are not unique since there can be di↵erent collections of Kraus operators with

respect to di↵erent orthonormal basis for the environment. However, Kraus operators

always abide to the completeness equation,

X

k

Bk
†Bk =

X

k

hb0|U †|b
k

ihb
k

|U |b0i

= I.

Based on Postulate 3, Bk can be interpreted as measurement operators. We shall use

them to formulate the Open Quantum Walk in the forthcoming chapter where we

shall also present other types of random walks.
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Chapter 3

Random Walks

Randomness has been a topic of great concern throughout the history of mankind. It

plays a central role both in experimental and theoretical aspects of physics. In this

chapter, we shall look at the theoretical implication of randomness in classical and

quantum walks as well as in their self-avoiding version. Finally, we shall introduce

the Open Quantum Walk.

A random walk is a process in which an object translates from a starting point

through a series of successive steps, each associated with a random choice. For in-

stance, this choice can be determined by throwing a die. The outcome is random and

depends on a probability. Figure 3.1 illustrates an example of a random walk. The

Brownian motion is the root of the mathematical description of randomness brought

forward by A. Einstein in 1905 [3] and M. Smoluchowski in 1906 [4].

Figure 3.1: A blue dye particle colliding with water molecules, the arrows indicating

their directions of motion.
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Figure 3.2: For a particle initially at the origin on a number line, a coin is used to

determine the direction (left or right) of its first step. Its probability of moving in

either direction is 0.5.

3.1 Classical Random Walks

Suppose that a particle is at an initial position zero on an integer axis (as shown in

Figure 3.2). It can move its first step either to the right or to the left and this choice

can be determined using a coin.

• For each step, the coin is tossed.

• If a head is obtained, the particle moves to the right; and if a tail is obtained,

the particle moves to the left.

• After a number of steps, the distribution of the possible final position of the

particle is plotted.

If the coin is unbiased, it is most likely that the particle will end up on the very start-

ing point (See details in standard probability theory textbook such as [23]). Later,

we shall compare the classical distribution arising from the above example with a

quantum distribution.

Figure 3.3 is an example of a two-dimensional random walk. Starting from the origin,

at each step, the walker has four choices of direction: up, down, right and left. We

can relate the choices to the four cardinal points: North, South, East and West.

14



Figure 3.3: A trajectory of 1000 steps starting from the origin generated on Mathe-

matica.

One can decipher from Figure 3.3 that many coordinates are visited more than once.

In the next section, we shall see what happens when the coordinates cannot be revis-

ited.

3.1.1 The Self-Avoiding Walk (SAW)

“The exact analysis of self-avoiding walks has stumped mathematicians

for half a century; even counting the walks is a challenge.” [1]

Figure 3.4: Example of SAW: walking out of a maze (picture source: Wikipedia)
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Figure 3.5: Random polymer chains: dimer represented by thick line; their bonds
represented by double thin lines. (Picture source: [5])

A Self-Avoiding Walk (SAW) is a path on a lattice that does not visit the same

site again. Figure 3.4 shows a common example of SAW. Some of the analytical

questions about the SAW are unsolvable so far [24]. Yet, on a positive note, SAW

has given rise to better understanding of stochastic di↵erential equations [25] and

probability theory [26]. Moreover, physicists and biologists make intensive use of it in

modeling chemical processes. In fact, the first usage of SAW was to model a polymer

in dilute solution as shown in Figure 3.5 [5, 6].

In the next section, we study SAWs that rely on random choices.

Implementation of the SAW

If the self-avoidance property is imposed on the one-dimensional walk described in

section 3.1, the result will be a unidirectional walk either to the right or to the left, in

other words, the simplest SAW. Whenever the variance will be measured, it will give

zero. It is more meaningful to explore classical SAWs on a plane (two-dimension) or

in space (three-dimension) [27]. Higher dimensions have been explored to determine

the critical behaviour of SAW [28]. In the thesis, we focus on at most 2D.

In figures 3.6 and 3.7, the walker cannot take a step further when it reaches the red

circle. Therefore this is its ultimate final position. In the last chapter, we are going

to compare the probability distribution of classical SAWs with that of non-unitary

quantum walks. Before exploring non-unitary quantum dynamics, it is wise to review

unitary ones.
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Figure 3.6: A self-avoiding trajectory of 99 steps: the particle starts from the origin
and cannot move further when it reaches the red circle.

Figure 3.7: A self-avoiding trajectory of 207 steps: the particle starts from the origin
and cannot move further when it reaches the red circle.
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Figure 3.8: Probability distribution of 1D unitary quantum walk (in blue) using the
Hadamard coin with initial condition {�1

2
,
p
3/2} and 1D classical random walk (in

red) both starting at the origin.

3.2 Unitary Quantum Walks

The study of quantum walks started with Y. Aharonov, L. Davidovich and N. Za-

gury [29]. They demonstrated its application in quantum optics. In [30], its benefit

to the field of quantum information science [31] is shown especially due to its al-

gorithmic applications [32]. Several experiments [33, 34] and natural systems such

as photosynthesis [35, 36] yield evidences that indeed a photon moves coherently in

superposition through multiple pathways. This leads to interference e↵ects which

enable quadratically faster propagation when it comes to quantum walks [37]. On the

n�bit hypercube, quantum walks spread exponentially faster than classical walks [38].

What makes a quantum walk di↵erent from a classical one is the way the particle

“walks” [39]. Their respective distribution is shown in Figure 3.8. The technicalities

of the walk in one dimension is omitted. In the next section, we shall elaborate on the

two-dimensional case which is more relevant to the subsequent parts of the chapter.

Quantum walks can be realised experimentally [40] using the following methods:

1. Nuclear Magnetic Resonance

2. Cavity QED
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3. Neutral atom traps

4. Quantum optics

We shall implement the unitary quantum walks on a cartesian plane based on the

approach in [12] where the quantum SAWs were also analysed.

3.2.1 The mathematical formalism

Consider a two-dimensional lattice. Let H
p

be the position space spanned by the

basis {|x, yi : x, y 2 Z}. Suppose that l stands for left, r for right, u for up and d for

down. In vector notation,

|li =

0

BBBBB@

1

0

0

0

1

CCCCCA
, |ui =

0

BBBBB@

0

1

0

0

1

CCCCCA
, |di =

0

BBBBB@

0

0

1

0

1

CCCCCA
, |ri =

0

BBBBB@

0

0

0

1

1

CCCCCA
.

Then, let H
c

be the coin space spanned by the basis {|li, |ui, |di, |ri}.

The linear operators, introduced in section 2.2, are leading elements of quantum walks.

They can be devised with the help of the two bases stipulated above.

The coin operator is defined by

C =
X

x,y2Z
|x, yihx, y|⌦ C0, (3.2.1)

where C0 is a unitary matrix. Therefore, C is unitary.

The four by four Grover coin is acquired by substituting C0 with

CG =
1

2

0

BBBBB@

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

1

CCCCCA
. (3.2.2)

It gives rise to the Grover walk which will be presented later on.
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Figure 3.9: Grover walk starting from the origin with real initial state (3.2.7).

The operator responsible for the translation of the walker after the “tossing of the

coin” is also unitary. It is called the step operator and is defined by

S =
X

x,y2Z
(|x+ 1, yihx, y|⌦ |rihr|+ |x� 1, yihx, y|⌦ |lihl|

+|x, y + 1ihx, y|⌦ |uihu|+ |x, y � 1ihx, y|⌦ |dihd|).
(3.2.3)

Given an initial state of a particle located at the origin,

| 0i = |0, 0i ⌦ (↵|li+ �|ui+ �|di+ �|ri), (3.2.4)

where ↵, �, �, � 2 C such that

|↵|2 + |�|2 + |�|2 + |�|2 = 1,

we can formulate the discrete evolution of the unitary quantum walk as follows,

| 
t

i = (S.C)t| 0i, (3.2.5)

where | 
t

i 2 H
p

⌦H
c

, t 2 {0, 1, 2, ...}.

Furthermore, given that (X
t

, Y
t

) denotes the position (x, y) of the particle and j 2
{l, u, d, r}, then the probability distribution of the particle is given at time t by

P (X
t

, Y
t

) = h 
t

| (|x, yihx, y|) | 
t

i. (3.2.6)
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Figure 3.10: Grover walk starting from the origin with complex initial state (3.2.8).

A well-known example of a quantum walk is attributed to the Grover search algorithm

[19]. One of the future aims of the formulation of the non-reversal OQW in this thesis

could be to optimise this algorithm. Let us see how the probability distribution of

this example varies with the initial state applied.

3.2.2 The Grover walk

We have already introduced the Grover coin in Equation (3.2.2). The step operator

for all the unitary quantum walks that will be presented henceforth is the same as in

Equation (3.2.3). Consider Equation (3.2.5) with the initial state,

| 0i = 1

2
|0, 0i ⌦ (|li � |ui � |di+ |ri). (3.2.7)

Then, the graph in Figure 3.9 is the probability distribution of the quantum walk

after 100 steps.

Consider Equation (3.2.5) with a complex initial state:

| 0i = 1

2
|0, 0i ⌦ (|li+ i|ui+ i|di � |ri), (3.2.8)

Then, the outcome is a strongly localised distribution as shown in Figure 3.10.

Figure 3.10 is used as a reference to demonstrate self-avoidance property of other

unitary quantum walks. In the next section, we review how this is done in [12] and

[13].
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Figure 3.11: Probability distribution of 100-step non-reversal quantum walk starting
from the origin with initial state (3.2.8).

3.3 Unitary Quantum Walks in Subspaces

By using the same complex initial state as for the Grover walk but varying the coin

operator, three partially self-avoiding quantum walks are generated in subspaces of

the complete Hilbert space [12]. In the position space, it is called the non-reversal

walk and in the coin space, the non-repeating walk. The third one takes place

in the union of the two subspaces.

3.3.1 Non-reversal quantum walks (in position space)

One way of perceiving the non-reversal walk is that it is halfway between a purely

random walk and a Self-Avoiding Walk [1]. The walker cannot go back to its previous

site. The non-reversal coin operator is defined by substituting the following unitary

matrix into Equation (3.2.1).

Crev =
1p
3

0

BBBBB@

�1 1 1 0

1 1 0 1

�1 0 �1 1

0 1 �1 �1

1

CCCCCA
. (3.3.1)

We use initial state (3.2.8) to produce the probability distribution in Figure 3.11. A

wide square is observed. The number of distinctive peaks and their heights at the

corners are a↵ected by varying the initial condition on the walker [13].
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Figure 3.12: Probability distribution of 100-step non-repeating quantum walk starting
from the origin with initial state (3.2.8).

3.3.2 Non-repeating quantum walks (in coin space)

In the non-repeating walk, a particle has to change direction at every step. The coin

of this walk is obtained by permuting the non-reversal coin operator;

Crep = Crev.

0

BBBBB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1

CCCCCA
.

Thus, Crep =
1p
3

0

BBBBB@

0 1 1 �1

1 0 1 1

1 �1 0 �1

�1 �1 1 0

1

CCCCCA
.

The diagonal entries being zeros ensures that the walker does not move in the same

direction in two successive steps. The corresponding distribution is displayed in Figure

3.12. A square is again observed. Here too, a variation in the initial condition on the

walker a↵ects the number of peaks and their size. In fact, the non-repeating quantum

walk is interconnected to the non-reversal quantum walk. A more general form of the

non-repeating coin operator has been given in [13],
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Crep =

0

BBBBB@

0 �ei↵ �ei� f(�, �)ei✓

�e�i(�+�+↵) 0 �f(�, �)ei( �✓+�) �ei 

��e�i(�+↵+ ) �f(�, �)ei(��✓+↵) 0 �ei�

f(�, �)ei(✓�↵� ����) ��ei(�+↵��) �ei� 0

1

CCCCCA
,

where 0  �2+�2  1 and f(�, �) =
p
1� (�2 + �2). The values of the real variables

are available in [13].

3.3.3 Quantum walks in position and coin space

When the definitions of both the non-reversal and non-repeating quantum walks are

combined, a distribution of quantum SAW in the union of position and coin space is

obtained. The walker cannot step back where it has been before and it cannot move

in the same direction as it did previously. The coin that fulfills these criteria is given

by:

Cscp =
1p
2

0

BBBBB@

0 �1 1 0

1 0 0 �1

1 0 0 1

0 1 1 0

1

CCCCCA
. (3.3.2)

The corresponding probability distribution is shown in Figure 3.13. It resembles that

of the Grover walk with the real initial state (3.2.7).

So far, we were dealing with discrete quantum walks in a closed physical system.

To conclude this section, it is worth mentioning that continuous quantum walks can

also be modeled in a closed system [41]. In that case, the evolution of the walk does

not require a coin. This could be another method of developing the self-avoiding

adaptation of unitary quantum walks. Our next concern will be discrete quantum

walks in an open quantum system.

3.4 Open Quantum Walks (OQW)

This section is the heart of the thesis. The model of the non-reversal Open Quantum

Walk is attributed to the theory elucidated here.
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Figure 3.13: Probability distribution of 100-step quantum SAW, starting from the
origin with initial state (3.2.8), using coin (3.3.2).

The Open Quantum Walk is formulated as classical Markov chain on graphs [42].

It is the quantum version of the classical random walk mentioned in the beginning

of the chapter. It is vital to point out that decoherence plays a key role in such type

of Markov chains. Although we will not elaborate on the aspect of decoherence here,

one may choose to read further from [43].

3.4.1 The mathematical formalism

The mathematical formalism for the Open Quantum Walk has been detailed in [16].

Here, we adapt it to the two-dimensional version.

Let V be a set of coordinates on a cartesian plane. Then, K = CV is the state space

of a quantum system with as many basis vectors as the number of vertices in V .

For every edge (connection between two coordinates), the bounded operator Bx,y

i,j

2 H
acts as a generalized quantum coin. It stands for the e↵ect of translating from the

coordinate (i, j) to the coordinate (x, y) as shown in Figure 3.14.
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Figure 3.14: Translation between two arbitrarily adjacent coordinates (i, j) and (x, y).

In order for probability and positivity to be conserved, for each (i, j),

X

(x,y)

Bx,y

i,j

†Bx,y

i,j

= I. (3.4.1)

Furthermore, given the structure of the density operator of the form,

⇢ =
X

(x,y)

⇢
x,y

⌦ |x, yihx, y|, (3.4.2)

the condition that ⇢ is a state is realised by

X

(x,y)

Tr(⇢
x,y

) = 1,

where each ⇢
x,y

is not necessarily a density matrix on H. Although ⇢
x,y

is a positive

and trace-class operator, its trace may not be 1.

For each (i, j) 2 V , a completely positive and trace preserving map on H of the

density operator ⇢ 2 B(H) can be defined as

M
i,j

(⇢) =
X

(x,y)

Bx,y

i,j

⇢Bx,y

i,j

†. (3.4.3)

In order to “project” M
i,j

on the augmented space H⌦K, the following extension is

used,

Mx,y

i,j

= Bx,y

i,j

⌦ |x, yihi, j|. (3.4.4)
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Given that X

(x,y),(i,j)

Mx,y

i,j

†Mx,y

i,j

= I,

a completely positive and trace preserving map can be defined on the total system,

H⌦K, as

M(⇢) =
X

(x,y)

X

(i,j)

Mx,y

i,j

⇢Mx,y

i,j

†, (3.4.5)

where ⇢ 2 B(H ⌦ K). By iterating this map such that the structure of the density

operator given in Equation (3.4.2) is conserved, the Open Quantum Walk (OQW) is

produced. It can be restated as follows,

M(⇢) =
X

(x,y)

0

@
X

(i,j)

Bx,y

i,j

⇢
i,j

Bx,y

i,j

†

1

A⌦ |x, yihx, y|. (3.4.6)

Given any initial state ⇢[0] on H⌦K, then all the states are of the form

⇢[n] = Mn(⇢[0]) 8n � 1

=
X

(x,y)

⇢[n]
x,y

⌦ |x, yihx, y|,

where ⇢[n+1]
x,y

=
X

(i,j)

Bx,y

i,j

⇢
[n]
i,j

Bx,y

i,j

†.

Moreover, the probability distribution, P [n] on V , of the Open Quantum Walk at time

n, 8n � 1, is given by

P [n]
x,y

= Tr(⇢[n]
x,y

), (x, y) 2 V . (3.4.7)

3.4.2 The “coins”

Assuming four directions of motion of a particle on a plane, a quantum coin is required

to govern each of them. If the directions are related to the cardinal points North,

South, East, West, then, the coins are given by

E = Bi+1,j
i,j

(East),

W = Bi�1,j
i,j

(West),

N = Bi,j+1
i,j

(North),

S = Bi,j�1
i,j

(South).
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The corresponding condition responsible for the conservation of probability and pos-

itivity in the Open Quantum Walk formalism is stated as follows.

E†E +W †W +N †N + S†S = I. (3.4.8)

Two of the ways of procuring the quantum coins are presented below.

Method 1

We take any four by four unitary matrix. Using each of its row, we construct new

four by four matrices as in Example 3.4.1.

Example 3.4.1.

Consider the unitary matrix (3.3.1). Then, the four required matrices are:

N =
1p
3

0

BBBBB@

�1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1

CCCCCA
,

E =
1p
3

0

BBBBB@

0 0 0 0

1 1 0 1

0 0 0 0

0 0 0 0

1

CCCCCA
,

W =
1p
3

0

BBBBB@

0 0 0 0

0 0 0 0

�1 0 �1 1

0 0 0 0

1

CCCCCA
,

S =
1p
3

0

BBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 1 �1 �1

1

CCCCCA
.

One can verify that indeed condition (3.4.8) is respected, that is,

E†E +W †W +N †N + S†S = I.
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Figure 3.15: An illustration of how to extract four Kraus matrices from an 8 by 8
unitary matrix.

Method 2

For a two-dimensional OQW, the coins can be n by n Kraus operators provided the

initial density state is also n by n. However, we restrict the description below to the

simplest case of two by two matrices which we shall use for the simulation of most of

our walks. The Python code for the following method is given in Appendix A.1. It

generates complex matrices unlike the previous method.

Step 1 Generate a random 8 by 8 unitary matrix, U .

Step 2 Considering the first two columns of U , construct the 4 required matrices as

follows. Obtain:

• N using the first 2 rows,

• S using the second 2 rows,

• E using the third 2 rows,

• W using the last 2 rows.

Figure 3.15 shows the position of the four matrices, N , S, E and W in an 8 by 8

unitary matrix.
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Figure 3.16: Probability distribution after 100 steps of 1D OQW starting from the
origin with initial density state (3.4.9) and using the coins (3.4.10) and (3.4.11).
Besides the Gaussian peak, a soliton can be observed with very high probability.

3.4.3 The probability distribution

As an example, a one-dimensional Open Quantum Walk on the set of integers, Z, is
considered. Let the initial density state be given by

⇢[0] =
1

4

 
1 �p

3

�p
3 3

!
. (3.4.9)

Then, Figure 3.16 illustrates the probability distribution of the OQW after 100 steps

arising from the following bounded operators:

B =

 
1 0

0 4
5

!
, (3.4.10)

C =

 
0 0

0 3
5

!
. (3.4.11)

30



!100 !50 50 100
X

0.01
0.02
0.03
0.04
0.05
0.06
Probability

Figure 3.17: Probability distribution of 1D OQW with 2 Gaussian peaks. The walk
starts from the origin with initial density state (3.4.9) and using the coins (3.4.12)
and (3.4.13).

Suppose that the following coins are used instead in the above example.

B =

 
12
13

0

0 4
5

!
, (3.4.12)

C =

 
5
13

0

0 3
5

!
. (3.4.13)

Then, the probability distribution of the walk is given in Figure 3.17.

If we apply Method 1 (described earlier) to the Hadamard matrix in Equation (2.2.1),

we obtain the following “coins”:

B =
1p
2

 
1 1

0 0

!
, (3.4.14)

C =
1p
2

 
0 0

1 �1

!
. (3.4.15)

The corresponding OQW distribution after 100 steps is given in Figure 3.18. It

resembles the classical distribution that was illustrated in Figure 3.8.
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Figure 3.18: Probability distribution of “Hadamard” OQW starting from the origin
with initial state (3.4.9) and bounded operators (3.4.14) & (3.4.15).

The same procedure can be done for 2D OQW. Let the initial density state be

⇢[0] =
1

4

0

BBBBB@

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

1

CCCCCA
. (3.4.16)

If we apply Method 1 to the Grover coin, the corresponding distribution is given in

Figure 3.19. If Method 2 is used instead with initial state (3.4.9), then the Gaussian

distribution in Figure 3.20 is obtained.

On the experimental side, a plausible quantum optical realisation of Open Quantum

Walks was proposed recently [44]. In the next chapter, the OQW with non-reversal

property will be studied.

32



Figure 3.19: Probability distribution of “Grover” OQW starting from the origin with
initial state (3.4.16). The 4 bounded operators are obtained by applying Method 1
to the Grover coin.

Figure 3.20: Probability distribution of OQW starting from the origin with initial
state (3.4.9). The 4 bounded operators are obtained from a randomly generated
unitary matrix (Method 2).
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Chapter 4

Non-reversal Open Quantum Walk

“Quantum physics thus reveals a basic oneness of the universe.”

Erwin Schrödinger (1887 � 1961)

In the last chapter, a new model of Open Quantum Walk with non-reversal property

is suggested. It is based on the principle of quantum trajectories which is introduced

in the first section of the chapter. The non-reversal OQW is presented in one di-

mension with emphasis on the memory structure. The model is then extended to

two dimension and its statistics is analysed with a possible application in the field of

polymer physics.

Most parts of this chapter will be the contents of the manuscript [45],

Goolam Hossen, Y.H., Sinayskiy, I. and Petruccione, F., 2015. Non-reversal Open

Quantum Walks. in preparation.

4.1 Quantum Trajectories

It is known that the behaviour of a particle in a quantum system is di↵erent from the

classical world since it tends to move in superposition. The paths of the particle are

called quantum trajectories. However, if the position of the particle is measured,

its wavefunction collapses such that the particle appears to have moved only through

one trajectory. When dealing with an open quantum system, a quantum trajectory

can be “observed” without destroying the state of the particle. The technique is ex-

plained with the help of the OQW [16].
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Given that a particle on a line with an initial state ⇢[0], is mapped from a site (i, j)

to a site (x, y) by M, then, the partial random state of the particle with respect to

its new position is given by

⇢[1]
x,y

⌦ |x, yihx, y| = Bx,y

i,j

⇢
[0]
i,j

Bx,y

i,j

† ⌦ |x, yihx, y|,

where Bx,y

i,j

are the transition operators. Given that the position is measured, then,

the new density state is given by

⇢[1] =
1

P
x,y

Bx,y

i,j

⇢[0]Bx,y

i,j

† ⌦ |x, yihx, y|,

where the probability to move to that position is

P
x,y

= Tr(Bx,y

i,j

⇢[0]Bx,y

i,j

†).

If the above mapping and measurement procedures are iterated, a non-homogenous

Markov chain (⇢[n]) is obtained with expectation value,

E[⇢[n+1]|⇢[n] = ⇢[0]] = M(⇢[0]).

Hence, the Markov chain describes the quantum trajectory of the Open Quantum

Walk.

Quantum trajectories are believed to decrease the cost of simulations of open systems

[46]. Basically, suppose that the density matrix describing the system is of size m⇥m.

Then, only m entries of the reduced system needs to be determined for a single

trajectory. Subsequently, many such trajectories are simulated and their average

gives the solution of the master equation. Numerically, the method is cheaper. Later,

it will be used to generate the probability distribution of the walks.

4.2 The Non-reversal OQW in 1D

It was mentioned in the previous chapter that the classical SAW on a line is unidirec-

tional. The particle would keep going either to the right or to the left of its starting

point. However, the condition of the walker can be adjusted so that it can either move

to a previously unoccupied position or stay at the same site. Then, the term “step”

does not necessarily mean moving. Rather, it refers to time-step. In this section, we

formulate the quantum version of this more interesting model which is known as the

non-reversal walk.
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Figure 4.1: Memory update for 1D non-reversal OQW given that the walker starts
from the origin, moves to the right in the first time-step, stays static in the second
time-step and moves again to the right in the third time-step.

In the formalism of OQW, measurement of the position of the walker at any instant

does not destroy the dynamics of the system unlike the case of unitary quantum

walks. The reason is that the internal state of the walker, ⇢[n]
x,y

, is independent of its

position, |x, yihx, y|, at any time-step. This can be clearly seen from the definition of

the density state,

⇢[n] =
X

(x,y)

⇢[n]
x,y

⌦ |x, yihx, y| 8n � 1. (4.2.1)

Hence, the non-reversal OQW can be formulated more reliably unlike the non-reversal

unitary quantum walk in [13].

4.2.1 The need for memory

In order to ensure that the particle does not go back to a site where it has been

before, a memory system is required. A permanent memory introduces decoherence

in the system (appropriate for non-unitary dynamics). In our model, the memory

system is associated with the line rather than with the state of the walker as in [47].

Initially, the memory state at each site is zero, except for the starting position (which

is usually the origin as shown in Figure 4.1). When a particular site is visited, its

memory state is altered to one.
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4.2.2 Implementation of the walk

Consider a particle on the origin of a line with initial density state, ⇢[0]. Let B and

C be two quantum coins associated with the particle’s initial movement to the right

and to the left respectively. The bounded operators obey the following condition of

positivity and probability:

B†B + C†C = I. (4.2.2)

Given that the direction is randomly chosen and suppose that the first step of the

particle is to the right, then, its new state is given by

⇢
[1]
1 = B1

0⇢
[0]
0 B1

0
†
. (4.2.3)

The position of the particle and the memory system are updated as shown in Figure

4.1. In the following “steps”, the particle can either move to the right again or stay

on the same spot. The role of the quantum coin B remains the same while coin C

will henceforth be used to update the state of the particle when it does not move.

For instance, assume that in the second “step”, the particle stays on the same site.

Then, its state is updated as follows,

⇢
[2]
1 = C1

1⇢
[1]
1 C1

1
†
. (4.2.4)

A third update of the state is shown assuming that this time the particle moves to

the right:

⇢
[3]
2 = B2

1⇢
[2]
1 B2

1
†
. (4.2.5)

Figure 4.1 illustrates how the memory associated with the line is altered for these 3

“steps”.

4.2.3 The probability distribution

The spread of the non-reversal OQW is investigated using the concept of averaging

over many quantum trajectories. The “walk” is iterated at least 10 000 times on a

finite number line (-100 to 100). After each process, the final position of the walker

is recorded. Let it be x. Subsequently, the probability distribution of x is plotted.
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Figure 4.2: Probability distribution of the final positions x of non-reversal quantum
trajectories on a line that start from the origin with initial density state (3.4.9) using
the coins (3.4.10) and (3.4.11). 50000 iterations (instead of 10000) were carried out
to obtain refined peaks.. A soliton can be observed on the top right.

As an example, consider a particle on the origin with initial density state (3.4.9) and

let the pair of bounded operators be (3.4.10) and (3.4.11). Then, the distribution

after 100 “steps” is illustrated in Figure 4.2. An interesting observation is the two

small Gaussian peaks. If their probability values are added, the value of the single

peak of the corresponding ordinary OQW in Figure 3.16 is obtained. This clearly

demonstrates a di↵usion on both sides of the origin due to the non-reversal property

of the new OQW. Furthermore, the soliton, which was in Figure 3.16, also appears

in Figure 4.2 with the same largest probability 0.25. This means that in most of the

trajectories generated, the walker moved to the right in every step from the origin to

the site x = 100.

Consider another example of non-reversal OQW using the same initial density state

(3.4.9) but the di↵erent bounded operators given by (3.4.12) and (3.4.13). The distri-

bution consists of four Gaussian peaks as shown in Figure 4.3. When contrasted with

the double Gaussian OQW of Figure 3.17, the spread due to the unidirectional nature

of the non-reversal walk is evident. Moreover, no soliton is produced in Figure 4.3.

Hence, the non-reversal OQW follows the statement in [48] that soliton occurrence

depends on the pair of transition operators used.
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Figure 4.3: Probability distribution of the final position x of a walker given that it
starts from the origin with initial density state (3.4.9) and the two coins used are
(3.4.12) and (3.4.13). 100000 iterations (instead of 10000) were carried out to obtain
refined peaks.

4.3 The Non-reversal OQW in 2D

On a plane, the directions of motion of a particle can be related to the cardinal points

North (N), South (S), East (E), West (W). Let the choices of direction be governed

by the following quantum coins,

E = Bi+1,j
i,j

(East),

W = Bi�1,j
i,j

(West),

N = Bi,j+1
i,j

(North),

S = Bi,j�1
i,j

(South).

Then, the condition responsible for the conservation of probability and positivity in

the formalism of the Open Quantum Walk is given by

E†E +W †W +N †N + S†S = I. (4.3.1)
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Figure 4.4: (a) to (d) are the 4 situations of a particle in a SAW. The red circle
represents the current position of the particle. The green arrows indicate the pos-
sibilities of the next move and the black arrows show the few previous movements.
(a) In the first step, the particle has the possibility of moving in four directions. (b)
In the second and third steps, the walker can choose between three directions. (c)
From the fourth step onwards, the number of choices depends on the previous moves
of the walker. In some cases, the particle has two choices. (d) After the fifth step,
the particle may have only one choice of direction.
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Figure 4.5: Non-reversal quantum trajectories of a particle initially at the origin that
moves 2000 steps on a lattice of size 4001 by 4001. Di↵erent sets of quantum coins
are used for each trajectory.

Why Not self-avoiding?

Figure 4.4 demonstrates the four di↵erent situations of a particle throughout a Self-

Avoiding Walk (SAW) as well as the corresponding partial structures of the memory

associated with the lattice. For the first step, the particle has four choices of direction.

However, for all subsequent steps, it has less than four choices. In these situations,

Equation (4.3.1) does not hold anymore. In order to overcome this problem, the

principle of the non-reversal OQW in 1D is adapted. If the walker cannot move in

the chosen direction, it stays on the same spot and its state is updated using the

coin operator corresponding to the chosen direction. This was illustrated in Equation

(4.2.4). As a result, the Open Quantum Walk cannot be completely self-avoiding.

Thus, it is called the non-reversal Open Quantum Walk.

4.3.1 Implementation of the walk

Consider a particle on the origin of a plane with the initial density state given in

Equation (3.4.9). Figure 4.5 shows some examples of non-reversal trajectories ob-

tained using di↵erent sets of quantum coins. The coins are generated on Python as

explained in Section 3.4.2. Interestingly, the simulated trajectories resemble closely

real linear polymer structures as illustrated in Figure 4.6.
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Figure 4.6: Appearance of real linear polymer chains as recorded using an atomic
force microscope on a surface, under liquid medium (Ref. [49]).

Figure 4.7: Probability distribution of non-reversal OQW after 100 steps starting
from the origin with initial density state (3.4.9). The coins used are obtained from a
randomly generated unitary matrix. The highest peak is at (19,�18).
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4.3.2 The probability distribution

We have seen earlier that averaging over many quantum trajectories helps in analysing

the spread of the non-reversal OQW in 1D. The same principle is applied in 2D. At

least 10000 trajectories similar to one of the examples in Figure 4.5 are generated

and the final position (x, y) for each of them is recorded after 100 steps. It is worth

pointing out that the same set of quantum coins is used for the 10000 trajectories.

Then, the probability distribution of the final positions is plotted as shown in Figure

4.7.

4.3.3 Statistical analysis

Results for non-reversal OQW

From Figure 4.5, one can deduce that the direction of the trajectory of the particle

varies with the set of coins used. At this stage, we ignore the detailed structure

of the trajectory and focus more on its end-to-end distance. Therefore, probability

distributions as in Figure 4.7 are of great help. In particular, the point at which the

highest peak occurs is of interest. By using a large sample of quantum coins (10000

randomly generated unitary matrices, each giving one set of four coins), such points

are recorded after a specific number of steps (see Figure 4.8).

Our earlier deduction from Figure 4.5 becomes more obvious when looking at Fig-

ure 4.8. Indeed, the trajectories can end in any of the four quadrants depending on

which set of quantum coins was used. This reveals an interesting property of the

non-reversal OQW that opens doors to further research. The direction of the spread

can be tuned using specific Kraus operators.

The distance between the origin and any of the end points in Figure 4.8 is given by

the norm of the respective coordinate. Each of these distances is called the radius,

r, for the total number of steps. For instance, from Figure 4.7, when the norm of

(19,�18) is calculated, the value of the radius for 100 steps is 26.2. In the case

of larger number of steps (N = 400), radii for intermediate number of steps (N =

50, 100, 150, 200, 250, 300, 350) are also recorded as shown in Figure 4.9. Their mean

values and the standard deviation are given in Table 4.1. These values can be used

to obtain the equation of the line of best fit in Figure 4.9. Else, one can simply use

the function LinearModelFit available in Mathematica to obtain the equation,

r = 7.23682 + 0.218773N. (4.3.2)
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Figure 4.8: Most probable final positions of non-reversal quantum trajectories after
200 steps. Each end point depends on the quantum coins used to propagate the walk
from the origin.

N mean standard deviation
50 18.486 08.245
100 29.982 13.941
150 40.575 19.213
200 51.108 24.701
250 60.803 29.487
300 72.100 34.623
350 83.296 39.527
400 96.057 44.293

Table 4.1: Mean values and standard deviation of the radii of the spread of non-
reversal OQW for di↵erent number of steps, N .
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Figure 4.9: Distribution of the radii, r, of 10000 di↵erent spreads of non-reversal
OQWs each arising from 10000 trajectories with number of steps, N = 50 to N = 400.
The graph also illustrates the corresponding error bars for specific number of steps
as well as the line of best fit determined by the mean values of r for the di↵erent N.

Results for OQW

With each of the randomly generated unitary matrix used for the non-reversal OQW,

distributions of OQW for the di↵erent values ofN are also produced from the resulting

bounded operators and using the same initial density state given by Equation (3.4.9).

In this case, the radius, r, refers to the distance between the origin and the point at

which the Gaussian peak occurs. The values of the radii are plotted in Figure 4.10

for the number of steps, N = 50 to N = 400. Table 4.2 gives the mean values of the

radii of the spreads of OQW for the specific number of steps. Using the the function

LinearModelFit in Mathematica, the equation of the line of best fit is given by

r = 10.8911 + 0.218787N.

Although the line of best fit in Figure 4.10 tends to resemble the one in Figure 4.9 due

to similar gradient values, their vertical intercepts are distinctly di↵erent. However,

these graphs do not allow us to properly appreciate the di↵erence between OQWs and

their non-reversal versions but rather may mislead us to think that they are same.

To clarify this ambiguity, we repeat the analysis for larger number of steps.
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N mean standard deviation
50 19.205 08.355
100 32.684 14.938
150 44.492 21.090
200 54.959 27.224
250 65.850 32.803
300 76.426 38.619
350 86.951 44.919
400 98.577 50.888

Table 4.2: Mean values and standard deviation of the radii of the spread of OQW for
di↵erent number of steps, N .
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Figure 4.10: Distribution of the radii, r, of 10000 di↵erent spreads of OQWs with
number of steps, N = 50 to N = 400. The graph also illustrates the corresponding
error bars for specific number of steps as well as the line of best fit determined by the
mean values of r for the di↵erent N.
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Figure 4.11: Most probable final positions of non-reversal quantum trajectories after
2000 steps. Each end point depends on the quantum coins used to propagate the
walk from the origin.
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Figure 4.12: Most probable final positions of quantum trajectories (without non-
reversal property) after 2000 steps. Each end point depends on the quantum coins
used to propagate the walk from the origin.
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Figure 4.13: Distribution of the radii, r, of 24000 di↵erent spreads of non-reversal
OQWs each arising from 1000 trajectories with number of steps, N = 100 to N =
2000. The graph also illustrates the corresponding error bars for specific number of
steps as well as an interpolated line of best fit determined by the mean values of r
for the di↵erent N.
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Figure 4.14: Distribution of the radii, r, of 24000 di↵erent spreads of OQWs each
arising from 1000 trajectories with number of steps, N = 100 to N = 2000. The
graph also illustrates the corresponding error bars for specific number of steps as well
as an interpolated line of best fit determined by the mean values of r for the di↵erent
N.
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Figure 4.15: Frequency distribution of the end points of non-reversal quantum tra-
jectories after 2000 steps with the origin as starting point. For each trajectory, a
di↵erent set of quantum coins is used.

Results for larger N

The previous procedures are carried out for N = 250 to N = 2000. This time, the

OQW distributions are produced using quantum trajectories (same principle as for

the non-reversal version) to minimise computing power and time. With each of 24000

random unitary matrices, 1000 trajectories undergoing the non-reversal OQW process

and another 1000 undergoing the OQW process are generated. Figures 4.11 and 4.12

illustrate their respective ending points on the lattice. The resulting radii distribution

are shown in Figures 4.13 and 4.14. The mean values of non-reversal OQW is almost

the same as that of ordinary OQW for N = 100 to N = 500. However, as N grows

larger, the mean values tends to have a quadratic increase. The equation of the curves

in Figure 4.13 and Figure 4.14 are given in Mathematica by

r = 20.7484 + 0.16632N + 8.87039⇥ 10�5N2 for non-reversal OQW;

r = 27.1612 + 0.214204N + 8.90438⇥ 10�7N2 for OQW.

The frequency distribution diagrams in Figures 4.15 and 4.16 show the spread of the

non-reversal OQW and OQW respectively.
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Figure 4.16: Frequency distribution of the end points of quantum trajectories (without
non-reversal property) after 2000 steps with the origin as starting point. For each
trajectory, a di↵erent set of quantum coins is used.
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Figure 4.17: DNA: an example of a copolymer (Ref. en.wikipedia.org/wiki/DNA)

4.4 Application in Polymer Physics

In order to demonstrate the relationship between SAWs and polymers, we give a brief

review of the relevant part of polymer physics. A more elaborate description of the

theory can be found in Flory’s manuscripts [50, 51] or in the modern book, Polymer

Physics [52].

4.4.1 Polymer chemistry

Poly - mer means many - parts. A polymer is a large chemical structure made up

of smaller ones called monomers which are sequentially connected to each other by

chemical bonds. Sometimes the monomers may themselves be large units. One such

example is the DNA double helix as illustrated in Figure 4.17. Besides DNA, poly-

mers exist in nature in the form of proteins, nucleic acids, sugar and rubber. They

are also synthesized in laboratories (e.g. nylon, polystyrene) [53]. Their structures

can be classified as homopolymers (composed of identical monomers) or copolymers

(composed of di↵erent types of monomers). Another way of classifying polymers is

as linear or branched. In our work, we only consider linear structures. A typical

example is the polyethylene chain.

Polymers with no self-interaction as shown in Figure 4.6 are modeled using the clas-

sical random walk. Those with a self-interaction, expressed by the excluded-volume

e↵ect, are simulated using the SAW as shown in Figure 4.18. In fact, the excluded-

volume e↵ect refers to the property of self-avoidance. In the language of chemistry,

it means no position can be occupied by more than one monomer [20]. To sum up,

we quote from [53]: “Real chains in good solvents have the same universal features as

SAWs on a lattice.” In the next section, we investigate about one of the two critical

exponents describing these features.
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Figure 4.18: Examples of 3 directed paths on Z2: in combinatorics they are commonly
referred to as (a) ballot paths, (b) generalized ballot paths and (c) partially directed
SAWs [20].

4.4.2 The critical exponent

Earlier, the radii of the spreads of non-reversal OQWs and OQWs were analysed.

When relating random walks to polymers as explained above, the root mean square

of the radii gives the end-to-end distance of the polymer, R (not to be confused with

the end-to-end distance of the trajectory given by r). Furthermore, the number of

steps, N , is equivalent to the size of the polymer. The derivation of the following

equations can be found in [54] which is a review of the mathematical perspective of

Flory theory for polymers.

hR2i = Nb2 (for ideal chain), (4.4.1)

R ⇠ bN ⌫ (for real chain), (4.4.2)

where b is the Kuhn monomer size (or Kuhn length) as defined in [55, Chapter 25].

It can be interpreted as the distance between two connected sites on the lattice. ⌫

is known as the critical exponent that takes values given by the classical Flory

formula for dilute linear polymers,

⌫ =
3

d+ 2
, d  4, (4.4.3)

where d is the dimension of the polymer (or lattice). Formulae for other types of

polymers can be found in [56]. Since ⌫ depends only on the dimension in all the

formulae, it is referred as a universal exponent. It was named after Flory. For an

ideal chain, we have

⌫ =

8
>>>><

>>>>:

1 (ballistic motion);

1
2

(di↵usive motion).
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Thus, the Flory exponent for d = 2, 3 lies between the ballistic and di↵usive values.

For d = 1, the SAW exhibits ballistic motion. SAWs in four or higher dimensions be-

have like classical random walks exhibiting di↵usive motion [28]. Before determining

the critical exponent of the non-reversal OQW, we define an essential property of the

walk.

The fractal dimension

“If a sphere of radius R is drawn with its center in a random position along the chain,

the total length of the polymer contained in the sphere is about RdF ” [54]. If d
F

is

di↵erent from the Euclidean dimension, then it is called the fractal dimension [55,

Chapter 6]. It is not restricted to being an integer. The fractal dimension provides

a statistical measure of the ratio of the space occupied by any fractal object to the

space in which it is embedded. More technical definitions and explanation about

fractals can be found in the book, The Fractal Geometry of Nature [57]. Usually, a

fractal exhibits a certain pattern. As a matter of fact, any SAW is a fractal. Thus,

a polymer is a fractal, whereby d
F

is then the upper critical dimension above which

the excluded volume e↵ect is insignificant.

Determining ⌫ and d
F

In the classical setup, ⌫ is usually determined using graphical method [58]. Firstly,

Equation (4.4.2) is transformed into

lnR = ⌫ lnN + ln b. (4.4.4)

Secondly, lnR is plotted against lnN . As a result, the gradient of the graph gives the

value of ⌫ and the vertical intercept can be interpreted as ln b. In Mathematica, the

equation of the graph can be generated with the help of the function LinearModelFit.

In the case of the Non-reversal OQW, such an equation is obtained using the data

points from Figure 4.19,

lnR = 0.738297 lnN + 0.233043. (4.4.5)

We see that the gradient is approximately equal to the classical Flory exponent for

d = 2. Using the Normalised Root Mean Square Error (NRMSE), the relative error

of the gradient is calculated. Hence, the critical exponent is given by

⌫ = 0.74± 0.01. (4.4.6)

This value determines the mean end-to-end size of a polymer. In classical theory, its

reciprocal gives the fractal dimension of the polymer,

d
F

= 1.35± 0.02. (4.4.7)
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Figure 4.19: Graph of lnR against lnN for non-reversal OQW with a maximum of
200 steps. A straight line is fitted to the data points.

!

!

!

!!

!

!

!

4.5 5.0 5.5 6.0
ln N

3.5

4.0

4.5

ln R

Figure 4.20: Graph of lnR against lnN for non-reversal OQW with a maximum of
400 steps. Two straight lines (one in blue and one in black for larger N) are fitted to
the data points relevantly. Their gradients di↵er slightly.
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Some approximate classical values of ⌫ obtained in the past are cited in [8] where the

author investigates whether ⌫ should always be equal to 3
4
. They range from 0.746 to

0.77 with relative errors ranging from 0.0002 to 0.004. The value determined by the

author was

⌫ = 0.7500± 0.0025. (4.4.8)

Other values arising from di↵erent Flory-type formulae can be found in the book [59].

In our case, if N is increased to 400, a change in ⌫ occurs as illustrated by the change

in gradient in Figure 4.20. In the next section, we investigate further about what

happens with larger N to both the OQW and its non-reversal version.

4.4.3 A new formula?

When lnR is plotted against lnN for 100  N  2000, a curve is obtained as shown

in Figure 4.21 instead of a straight line. This implies that the the graph for the

non-reversal OQW is no more of the typical form of Equation (4.4.4) but rather of a

new form,

lnR = AlnN2 +B lnN + C, (4.4.9)

where

A = 0.140376, (4.4.10)

B = �0.760841, (4.4.11)

C = 4.25281. (4.4.12)

For the OQW, the values of the coe�cients are:

A = 0.0367634, (4.4.13)

B = 0.379127, (4.4.14)

C = 1.23686. (4.4.15)

The corresponding graph is illustrated in Figure 4.22. However, we notice that in

both cases, the quadratic curves do not fit the data points perfectly.
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Figure 4.21: Graph of lnR against lnN for non-reversal OQW with a maximum of
2000 steps. The blue line is a quadratic curve fitted to the data points.
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Figure 4.22: Graph of lnR against lnN for OQW with a maximum of 2000 steps.
The blue line is a quadratic curve fitted to the data points.
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Figure 4.23: Graph of lnR against lnN for non-reversal OQW with a maximum of
2000 steps. The blue line is a curve of fourth order fitted to the data points.
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Figure 4.24: Graph of lnR against lnN for OQW with a maximum of 2000 steps.
The blue line is a curve of fourth order fitted to the data points.
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Figure 4.25: The figure shows values of critical exponents for di↵erent degree of
polymerisation, N , each with their respective error bars. The points on the red line
are the values for OQW and those on the green line are for the non-reversal OQW.
The line, ⌫ = 1, is a suggested upper bound for OQW that needs to be proven. The
two continuous curves arise from logarithmic fits to the respective data sets.

Curves of fourth order as shown in Figures 4.23 and 4.24 are used instead for the

non-reversal OQW and OQW respectively. The respective equations are obtained in

Mathematica using the function Fit[DATA, {1, x, x2, x4}, x]:

lnR = �47.1805 + 32.5056x� 7.82454x2 + 0.837709x3 � 0.0326917x4,

lnR = �8.25094 + 6.22004x� 1.28529x2 + 0.130484x3 � 0.00473977x4,

where x is equivalent to lnN . In the future, we shall calculate chi values of the fits of

di↵erent orders to find out which one is more appropriate. For now, we will assume

the best fit to be quadratic to keep the investigation about the exponent simple.

Change in ⌫

Assuming the derivatives of the curves in Figures 4.21 and 4.22 give values of the

critical exponent of the non-reversal OQW and OQW respectively, then the corre-

sponding changes in ⌫ are illustrated in Figure 4.25. From the latter, one can deduce

that ⌫ increases faster for the non-reversal OQW. As for the OQW, we would think

that ⌫ does not go beyond 1 but this needs to be verified using larger N values. In

the classical case, such a limit has been proven for partially directed SAWs [60].
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Chapter 5

Conclusion

The non-reversal Open Quantum Walk presented in this thesis is a new model of

quantum walk. In the beginning, the project was to develop a Self-Avoiding Walk

using the formalism of OQW. At some point, we deduced that it is not easy to have a

completely self-avoiding process. The reason has been explained in Chapter 4. Subse-

quently, we modified our code to make the walk non-reversal. In that case, the process

was partially self-avoiding and it respected the property of normalisation condition.

After performing extensive numerics, the statistical results obtained looked very in-

teresting from the point of view of polymer physics. Our aim was to use our model as

a substitute of the classical Self-Avoiding Walk used to simulate polymer formation.

Our motivation for application was that non-reversal trajectories could go on for very

large N unlike the classical SAW. Furthermore, the non-reversal property could be

given a physical meaning. It could refer to the “waiting time” in actual polymer for-

mation. Thus, we went ahead to investigate the statistical results of the non-reversal

OQW. Alongside, we analysed the corresponding OQWs too.

In the investigation, the typical relationship between degree of polymerisation and

end-to-end polymer distance did not stand anymore for large N . Instead of a linear

logarithmic relationship, we obtained a quadratic logarithmic relationship. This new

hypothesis not only gave rise to multiple sets of questions but needed to be proven.
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Prior to making any conclusive statements about new relationship between R and N

beyond the classical Flory formula, a more careful study is crucial which is beyond the

scope of the present MSc thesis. Therefore, the application of non-reversal OQW in

polymer physics requires thorough scrutiny which should include more sophisticated

statistical analysis as well as some analytical estimates.
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Appendix A

Algorithm and Codes

A.1 Generating “quantum coins”

For an Open Quantum Walk with initial density state of dimension n by n, the

“quantum coins” are n by n Kraus operators which can be procured through the

procedures below.

Step 1 Generate a random 4n by 4n unitary matrix, U .

Step 2 From the first (or second or third or fourth) set of n columns of U , construct 4

matrices as follows.

Obtain:

• N using the first n rows,

• S using the second n rows,

• E using the third n rows,

• W using the last n rows.

Step 3 Verify that,

N †N + S†S + E†E +W †W = I.

Given that the normalisation condition is fulfilled, then N,S,W,E are the four

“quantum coins”.

Below is the corresponding Python code used in our research. For simplicity, 2 by

2 complex matrices are generated using the first 2 columns of an 8 by 8 unitary matrix.
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def randomunitary(n):

global U;

M=(np.random.randn(4*n,4*n)

+1j*np.random.randn(4*n,4*n))/np.sqrt(2);

q,r=np.linalg.qr(M,mode=’complete’);

A=r.diagonal();

B=[];

for i in A: B.append(i/abs(i));

C=np.diag(B);

U=np.dot(q,C);

return U;

Unitarymatrix = randomunitary(8);

N=np.matrix([[U[k][l] for l in range (0,2)]

for k in range (0,2)]);

S=np.matrix([[U[k][l] for l in range (0,2)]

for k in range (2,4)]);

E=np.matrix([[U[k][l] for l in range (0,2)]

for k in range (4,6)]);

W=np.matrix([[U[k][l] for l in range (0,2)]

for k in range (6,8)]);

Nh=N.getH();

Sh=S.getH();

Eh=E.getH();

Wh=W.getH();

print(np.around(np.dot(Nh,N)+np.dot(Sh,S)

+np.dot(Eh,E)+np.dot(Wh,W)));
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A.2 Non-reversal OQW

A.2.1 Mathematica code for 1D

Bh=ConjugateTranspose[B];

Fh=ConjugateTranspose[F];

Step[initial_]:={

res=initial;

pB=N[Tr[B.initial[[i]].Bh]];

pF=N[Tr[F.initial[[i]].Bh]];

pcurr=RandomReal[];

If[pcurr<=pB,

If[memo[[i+1]]=={0},

res[[i+1]]=N[B.initial[[i]].Bh/Tr[B.initial[[i]].Bh]];

memo[[i+1]]={1};

i=i+1,

res[[i]]=N[B.initial[[i]].Bh/Tr[B.initial[[i]].Bh]]],

If[memo[[i-1]]=={0},

res[[i-1]]=N[F.initial[[i]].Fh/Tr[F.initial[[i]].Fh]];

memo[[i-1]]={1};

i=i-1,

res[[i]]

=N[F.initial[[i]].Fh/Tr[F.initial[[i]].Fh]]]];

res

}[[1]];

FinalPsi[n_,init_]:={

result=Table[{{0,0},{0,0}},{j,1,2*Msites+1}];

resultT=Table[{{0,0},{0,0}},{j,1,2*Msites+1}];

result=init;

Do[{resultT=Step[result];result=resultT},{k,1,n}];result

}[[1]];
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Msites=101;

probdist[nu_]:={

prob=Table[0,{j,1,2*Msites+1}];

Do[{

psi=Table[{{0,0},{0,0}},{i,1,2*Msites+1}];

memo=Table[{0},{i,1,2*Msites+1}];

psiT=psi;

psi[[Msites+1]]=1/4 {{1,-Sqrt[3]},{-Sqrt[3],3}};

memo[[Msites+1]]={1};

tra=Table[{0},{i,1,2*Msites+1}];

i=Msites+1;

(*Kraus matrices that give single Gaussian and soliton*)

B={{1,0},{0,4/5}};

F={{0,0},{0,3/5}};

(*Kraus matrices that give double Gaussian*)

(*B={{12/13,0},{0,4/5}};

F={{5/13,0},{0,3/5}};*)

S=FinalPsi[Msites-1,psi];prob[[i]]++},{num,1,nu}];

pr=Table[{0,0},{k,1,2*Msites}];

Do[pr[[k]]={k-Msites-1,prob[[k]]/nu},{k,2,2*Msites}];pr

}[[1]];

Datapoints=probdist[50000]
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A.2.2 Python code for 2D

#General functions

#Generating random unitary matrix

def randomunitary(ndim):

global a

Mls=(np.random.randn(ndim,ndim)

+1j*np.random.randn(ndim,ndim))/np.sqrt(2)

q,r=np.linalg.qr(Mls,mode=’complete’)

Sls1=r.diagonal()

b=[]

for i in Sls1: b.append(i/abs(i))

Sls2=np.diag(b)

a=np.dot(q,Sls2)

return a;

#trace of a matrix with complex entries

def trace(self):

t = 0

for i in range(2):

t += abs(self[(i,i)])

return t;

#search for coordinate of endpoint with highest probability

def finalposition(sett):

global Msites

(x1,y1)=np.unravel_index(sett.argmax(), sett.shape)

return (y1-Msites-1,x1-Msites-1)
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#OQW FUNCTIONS

#step function for OQW trajectory

def oqwFun(result):

global R, i, j, F, W, M, S, Fh, Wh, Mh, Sh, oLT

rF=np.dot(F, np.dot(result[j][i],Fh));

rW=np.dot(W, np.dot(result[j][i],Wh));

rM=np.dot(M, np.dot(result[j][i],Mh));

rS=np.dot(S, np.dot(result[j][i],Sh));

pF=trace(rF);

pW=trace(rW);

pM=trace(rM);

pS=trace(rS);

if pF != 0: Rig = rF/pF;

else: print(0)

if pW != 0: Lef = rW/pW;

else: print(0)

if pM != 0: Upp = rM/pM;

else: print(0)

if pS != 0: Dow = rS/pS;

else: print(0)

pcurr=np.random.random_sample();

if 0 < pcurr <= pF:

result[j][i+1] = Rig; oLT.append([i+1,j]); i=i+1;

elif pF < pcurr <= pF + pW:

result[j][i-1] = Lef; oLT.append([i-1,j]); i=i-1;

elif pF + pW < pcurr <= pF + pW + pM:

result[j+1][i] = Upp; oLT.append([i,j+1]); j=j+1;

else:

result[j-1][i] = Dow; oLT.append([i,j-1]); j=j-1;

return result;
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#Generating OQW trajectories

def oqwFin(n,ini):

global ff1, ff2, ff3, ff4, ff5, ff6, ff7, ff8, ff9, ff10,

ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, ff19, Msites

global opro1, opro2, opro3, opro4, opro5,

opro6, opro7, opro8, opro9, opro10,

opro11, opro12, opro13, opro14, opro15,

opro16, opro17, opro18, opro19

global oLT, i, j

resT=np.empty((2*Msites + 1,2*Msites + 1,2,2))+0j;

res=ini;

for k in range (0,n):

resT = oqwFun(res);

res = resT;

if len(oLT) == ff1 : opro1[j][i]+=1;

if len(oLT) == ff2 : opro2[j][i]+=1;

if len(oLT) == ff3 : opro3[j][i]+=1;

if len(oLT) == ff4 : opro4[j][i]+=1;

if len(oLT) == ff5 : opro5[j][i]+=1;

if len(oLT) == ff6 : opro6[j][i]+=1;

if len(oLT) == ff7 : opro7[j][i]+=1;

if len(oLT) == ff8 : opro8[j][i]+=1;

if len(oLT) == ff9 : opro9[j][i]+=1;

if len(oLT) == ff10 : opro10[j][i]+=1;

if len(oLT) == ff11 : opro11[j][i]+=1;

if len(oLT) == ff12 : opro12[j][i]+=1;

if len(oLT) == ff13 : opro13[j][i]+=1;

if len(oLT) == ff14 : opro14[j][i]+=1;

if len(oLT) == ff15 : opro15[j][i]+=1;

if len(oLT) == ff16 : opro16[j][i]+=1;

if len(oLT) == ff17 : opro17[j][i]+=1;

if len(oLT) == ff18 : opro18[j][i]+=1;

if len(oLT) == ff19 : opro19[j][i]+=1;

return res;
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#generating many realisations of OQW trajectories

#and recording final positions after specific number of steps

def oqwprobdist(nu):

global ff1, ff2, ff3, ff4, ff5, ff6, ff7, ff8, ff9, ff10,

ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, ff19, Msites

global opro1, opro2, opro3, opro4, opro5,

opro6, opro7, opro8, opro9, opro10,opro11, opro12, opro13,

opro14, opro15, opro16, opro17, opro18, opro19

global psi, j, i, oLT, UnionradiusoN,UnionradiusoP

opro1 = np.zeros((2*Msites + 1,2*Msites + 1));

opro2 = np.zeros((2*Msites + 1,2*Msites + 1));

opro3 = np.zeros((2*Msites + 1,2*Msites + 1));

opro4 = np.zeros((2*Msites + 1,2*Msites + 1));

opro5 = np.zeros((2*Msites + 1,2*Msites + 1));

opro6 = np.zeros((2*Msites + 1,2*Msites + 1));

opro7 = np.zeros((2*Msites + 1,2*Msites + 1));

opro8 = np.zeros((2*Msites + 1,2*Msites + 1));

opro9 = np.zeros((2*Msites + 1,2*Msites + 1));

opro10 = np.zeros((2*Msites + 1,2*Msites + 1));

opro11 = np.zeros((2*Msites + 1,2*Msites + 1));

opro12 = np.zeros((2*Msites + 1,2*Msites + 1));

opro13 = np.zeros((2*Msites + 1,2*Msites + 1));

opro14 = np.zeros((2*Msites + 1,2*Msites + 1));

opro15 = np.zeros((2*Msites + 1,2*Msites + 1));

opro16 = np.zeros((2*Msites + 1,2*Msites + 1));

opro17 = np.zeros((2*Msites + 1,2*Msites + 1));

opro18 = np.zeros((2*Msites + 1,2*Msites + 1));

opro19 = np.zeros((2*Msites + 1,2*Msites + 1));

opro = np.zeros((2*Msites + 1,2*Msites + 1));

for k in range (0,nu):

psi=np.empty((2*Msites + 1,2*Msites + 1,2,2))+0j;

i=j=Msites + 1;

psi[j][i]=(1/4)*np.matrix([[1, -np.sqrt(3)],[-np.sqrt(3), 3]]);

oLT=[[i,j]];

oqwFin(Msites-1,psi);

if len(oLT) == Msites:

opro[j][i]+=1;
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break;

dispOQW1 = finalposition(opro1);dispOQW2 = finalposition(opro2);

dispOQW3 = finalposition(opro3);dispOQW4 = finalposition(opro4);

dispOQW5 = finalposition(opro5);dispOQW6 = finalposition(opro6);

dispOQW7 = finalposition(opro7);dispOQW8 = finalposition(opro8);

dispOQW9 = finalposition(opro9);dispOQW10 = finalposition(opro10);

dispOQW11 = finalposition(opro11);dispOQW12 = finalposition(opro12);

dispOQW13 = finalposition(opro13);dispOQW14 = finalposition(opro14);

dispOQW15 = finalposition(opro15);dispOQW16 = finalposition(opro16);

dispOQW17 = finalposition(opro17);dispOQW18 = finalposition(opro18);

dispOQW19 = finalposition(opro19);dispOQW = finalposition(opro);

norm1 = LA.norm(dispOQW1);norm2 = LA.norm(dispOQW2);

norm3 = LA.norm(dispOQW3);norm4 = LA.norm(dispOQW4);

norm5 = LA.norm(dispOQW5);norm6 = LA.norm(dispOQW6);

norm7 = LA.norm(dispOQW7);norm8 = LA.norm(dispOQW8);

norm9 = LA.norm(dispOQW9);norm10 = LA.norm(dispOQW10);

norm11 = LA.norm(dispOQW11);norm12 = LA.norm(dispOQW12);

norm13 = LA.norm(dispOQW13);norm14 = LA.norm(dispOQW14);

norm15 = LA.norm(dispOQW15);norm16 = LA.norm(dispOQW16);

norm17 = LA.norm(dispOQW17);norm18 = LA.norm(dispOQW18);

norm19 = LA.norm(dispOQW19);normf = LA.norm(dispOQW);

f1f2f3norm = [(ff1 - 1, norm1),(ff2 - 1, norm2),(ff3 - 1, norm3),

(ff4 - 1, norm4),(ff5 - 1, norm5),(ff6 - 1, norm6),

(ff7 - 1, norm7),(ff8 - 1, norm8),(ff9 - 1, norm9),

(ff10 - 1, norm10),(ff11 - 1, norm11),

(ff12 - 1, norm12),(ff13 - 1, norm13),

(ff14 - 1, norm14),(ff15 - 1, norm15),

(ff16 - 1, norm16),(ff17 - 1, norm17),

(ff18 - 1, norm18),(ff19 - 1, norm19),

(Msites - 1, normf)];

UnionradiusoN = set(UnionradiusoN) | set(f1f2f3norm);

UnionradiusoP = set(UnionradiusoP) | {dispOQW};

return ;
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#NOQW FUNCTIONS

#Checking for free sites around

def Test(tra):

global R, i, j

R=[];

if tra[j][i+1] == 0: R.append("ri");

if tra[j][i-1] == 0: R.append("le");

if tra[j-1][i] == 0: R.append("d");

if tra[j+1][i] == 0: R.append("u");

return R;

#Step function for NOQW trajectory

def Fun(result):

global R, i, j, F, W, M, S, Fh, Wh, Mh, Sh, memo, LT

rF=np.dot(F, np.dot(result[j][i],Fh));

rW=np.dot(W, np.dot(result[j][i],Wh));

rM=np.dot(M, np.dot(result[j][i],Mh));

rS=np.dot(S, np.dot(result[j][i],Sh));

pF=trace(rF);pW=trace(rW);pM=trace(rM);pS=trace(rS);

if pF != 0: Rig = rF/pF;

else: print(0)

if pW != 0: Lef = rW/pW;

else: print(0)

if pM != 0: Upp = rM/pM;

else: print(0)

if pS != 0: Dow = rS/pS;

else: print(0)

pcurr=np.random.random_sample();

if 0 < pcurr <= pF:

if "ri" in R:

result[j][i+1] = Rig;

memo[j][i+1] = 1;

LT.append([i+1,j]);
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i=i+1;

else: result[j][i] = Rig; LT.append([i,j]);

elif pF < pcurr <= pF + pW:

if "le" in R:

result[j][i-1] = Lef;

memo[j][i-1] = 1; LT.append([i-1,j]); i=i-1;

else: result[j][i] = Lef; LT.append([i,j]);

elif pF + pW < pcurr <= pF + pW + pM:

if "u" in R:

result[j+1][i] = Upp;

memo[j+1][i] = 1; LT.append([i,j+1]); j=j+1;

else: result[j][i] = Upp; LT.append([i,j]);

else:

if "d" in R:

result[j-1][i] = Dow;

memo[j-1][i] = 1; LT.append([i,j-1]); j=j-1;

else: result[j][i] = Dow; LT.append([i,j]);

return result;
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#Generating NOQW trajectory

def Fin(n,ini):

global ff1, ff2, ff3, ff4, ff5, ff6, ff7, ff8, ff9, ff10,

ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, ff19, Msites

global prob1, prob2, prob3, prob4, prob5,

prob6, prob7, prob8, prob9, prob10,prob11, prob12, prob13,

prob14, prob15, prob16, prob17, prob18, prob19

global memo, LT, i, j

memo=np.zeros((2*Msites + 1,2*Msites + 1));

memo[j][i]=1;

resT=np.empty((2*Msites + 1,2*Msites + 1,2,2))+0j;

res=ini;

for k in range (0,n):

R=Test(memo);

if R!=[]:

resT = Fun(res);

res = resT;

if len(LT) == ff1 : prob1[j][i]+=1;

if len(LT) == ff2 : prob2[j][i]+=1;

if len(LT) == ff3 : prob3[j][i]+=1;

if len(LT) == ff4 : prob4[j][i]+=1;

if len(LT) == ff5 : prob5[j][i]+=1;

if len(LT) == ff6 : prob6[j][i]+=1;

if len(LT) == ff7 : prob7[j][i]+=1;

if len(LT) == ff8 : prob8[j][i]+=1;

if len(LT) == ff9 : prob9[j][i]+=1;

if len(LT) == ff10 : prob10[j][i]+=1;

if len(LT) == ff11 : prob11[j][i]+=1;

if len(LT) == ff12 : prob12[j][i]+=1;

if len(LT) == ff13 : prob13[j][i]+=1;

if len(LT) == ff14 : prob14[j][i]+=1;

if len(LT) == ff15 : prob15[j][i]+=1;

if len(LT) == ff16 : prob16[j][i]+=1;

if len(LT) == ff17 : prob17[j][i]+=1;

if len(LT) == ff18 : prob18[j][i]+=1;

if len(LT) == ff19 : prob19[j][i]+=1;

else: break;

return res;
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#Generating many realisations of NOQW trajectories

#and recording endpoints after specific number of steps

def probdist(nu):

global ff1, ff2, ff3, ff4, ff5, ff6, ff7, ff8, ff9, ff10,

ff11, ff12, ff13, ff14, ff15, ff16, ff17, ff18, ff19, Msites

global prob1, prob2, prob3, prob4, prob5,

prob6, prob7, prob8, prob9, prob10,

prob11, prob12, prob13, prob14, prob15,

prob16, prob17, prob18, prob19

global nur, psi, j, i, LT, UnionradiusN,UnionradiusP

nur=9;

prob1 = np.zeros((2*Msites + 1,2*Msites + 1));

prob2 = np.zeros((2*Msites + 1,2*Msites + 1));

prob3 = np.zeros((2*Msites + 1,2*Msites + 1));

prob4 = np.zeros((2*Msites + 1,2*Msites + 1));

prob5 = np.zeros((2*Msites + 1,2*Msites + 1));

prob6 = np.zeros((2*Msites + 1,2*Msites + 1));

prob7 = np.zeros((2*Msites + 1,2*Msites + 1));

prob8 = np.zeros((2*Msites + 1,2*Msites + 1));

prob9 = np.zeros((2*Msites + 1,2*Msites + 1));

prob10 = np.zeros((2*Msites + 1,2*Msites + 1));

prob11 = np.zeros((2*Msites + 1,2*Msites + 1));

prob12 = np.zeros((2*Msites + 1,2*Msites + 1));

prob13 = np.zeros((2*Msites + 1,2*Msites + 1));

prob14 = np.zeros((2*Msites + 1,2*Msites + 1));

prob15 = np.zeros((2*Msites + 1,2*Msites + 1));

prob16 = np.zeros((2*Msites + 1,2*Msites + 1));

prob17 = np.zeros((2*Msites + 1,2*Msites + 1));

prob18 = np.zeros((2*Msites + 1,2*Msites + 1));

prob19 = np.zeros((2*Msites + 1,2*Msites + 1));

prob = np.zeros((2*Msites + 1,2*Msites + 1));

for k in range (0,nu):

psi=np.empty((2*Msites + 1,2*Msites + 1,2,2))+0j;

i=j=Msites + 1;

psi[j][i]=(1/4)*np.matrix([[1, -np.sqrt(3)],[-np.sqrt(3), 3]]);
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LT=[[i,j]];

Fin(Msites-1,psi);

if len(LT) == Msites:

prob[j][i]+=1;

if LT!=[[-Msites-1,-Msites-1]]:

nur=1;

dispNOQW1 = finalposition(prob1);

dispNOQW2 = finalposition(prob2);

dispNOQW3 = finalposition(prob3);

dispNOQW4 = finalposition(prob4);

dispNOQW5 = finalposition(prob5);

dispNOQW6 = finalposition(prob6);

dispNOQW7 = finalposition(prob7);

dispNOQW8 = finalposition(prob8);

dispNOQW9 = finalposition(prob9);

dispNOQW10 = finalposition(prob10);

dispNOQW11 = finalposition(prob11);

dispNOQW12 = finalposition(prob12);

dispNOQW13 = finalposition(prob13);

dispNOQW14 = finalposition(prob14);

dispNOQW15 = finalposition(prob15);

dispNOQW16 = finalposition(prob16);

dispNOQW17 = finalposition(prob17);

dispNOQW18 = finalposition(prob18);

dispNOQW19 = finalposition(prob19);

dispNOQW = finalposition(prob);

norm1 = LA.norm(dispNOQW1);norm2 = LA.norm(dispNOQW2);

norm3 = LA.norm(dispNOQW3);norm4 = LA.norm(dispNOQW4);

norm5 = LA.norm(dispNOQW5);norm6 = LA.norm(dispNOQW6);

norm7 = LA.norm(dispNOQW7);norm8 = LA.norm(dispNOQW8);

norm9 = LA.norm(dispNOQW9);norm10 = LA.norm(dispNOQW10);

norm11 = LA.norm(dispNOQW11);norm12 = LA.norm(dispNOQW12);

norm13 = LA.norm(dispNOQW13);norm14 = LA.norm(dispNOQW14);

norm15 = LA.norm(dispNOQW15);norm16 = LA.norm(dispNOQW16);

norm17 = LA.norm(dispNOQW17);norm18 = LA.norm(dispNOQW18);

norm19 = LA.norm(dispNOQW19);normf = LA.norm(dispNOQW);
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f1f2f3norm = [(ff1 - 1, norm1),(ff2 - 1, norm2),(ff3 - 1, norm3),

(ff4 - 1, norm4),(ff5 - 1, norm5),(ff6 - 1, norm6),

(ff7 - 1, norm7),(ff8 - 1, norm8),(ff9 - 1, norm9),

(ff10 - 1, norm10),(ff11 - 1, norm11),

(ff12 - 1, norm12),(ff13 - 1, norm13),

(ff14 - 1, norm14),(ff15 - 1, norm15),

(ff16 - 1, norm16),(ff17 - 1, norm17),

(ff18 - 1, norm18),(ff19 - 1, norm19),

(Msites - 1, normf)];

UnionradiusN = set(UnionradiusN) | set(f1f2f3norm);

UnionradiusP = set(UnionradiusP) | {dispNOQW};

return ;
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# MAIN FUNCTION

def fds(xxx):

xcx,id=xxx

np.random.seed(int(time()+id))

#random seed is very important in parallel processing

#to prevent duplication of results on same node

global F, W, M, S, Fh, Wh, Mh, Sh, Msites

global UnionradiusoN,UnionradiusoP, UnionradiusN,UnionradiusP

UnionradiusoN={}; #record radii for OQW

UnionradiusoP={}; #record final point for OQW

UnionradiusN={}; #record radii for NOQW

UnionradiusP={}; #record final point for NOQW

#launching OQWs and NOQWs starting with different unitary matrices

for k in range (xcx):

U = randomunitary(8);

M=np.matrix([[U[k][l] for l in range (0,2)]for k in range (0,2)])

S=np.matrix([[U[k][l] for l in range (0,2)]for k in range (2,4)])

F=np.matrix([[U[k][l] for l in range (0,2)]for k in range (4,6)])

W=np.matrix([[U[k][l] for l in range (0,2)]for k in range (6,8)])

Mh=M.getH()

Sh=S.getH()

Fh=F.getH()

Wh=W.getH()

LisNoqw = probdist(nu); #launching NOQW realisations first

Lisoqw = oqwprobdist(nu); #followed by OQW realisations

#at this point the output are being appended into a text file.

f = open(’oqwnoqw.txt’, ’a’)

f.write(’ \n’)

f.write(str([[UnionradiusoN,UnionradiusoP],[UnionradiusN,UnionradiusP]]))

f.write(’ \n’)

f.close()

return;
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#the following are the inputs:

#modules needed

import numpy as np

from numpy import linalg as LA

#import matplotlib

#from matplotlib import pylab

import multiprocessing

from multiprocessing import Pool

from time import time

#for testing

#Msites,ff1,ff2,ff3,ff4,ff5,ff6,ff7,ff8,ff9,ff10,

ff11,ff12,ff13,ff14,ff15,ff16,ff17,ff18,ff19,nu

=25,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,10

’’’if __name__ == ’__main__’:

with Pool() as p:

p.map(fds, [(2,0),(2,1),(2,2),(2,3),(2,4),(2,5),

(2,6),(2,7),(2,8),(2,9),(2,10),

(2,11),(2,12),(2,13),(2,14),(2,15),

(2,16),(2,17),(2,18),(2,19)])’’’

#for cluster

Msites,ff1,ff2,ff3,ff4,ff5,ff6,ff7,ff8,ff9,ff10,

ff11,ff12,ff13,ff14,ff15,ff16,ff17,ff18,ff19,nu

=2001,101,201,301,401,501,601,701,801,901,1001,

1101,1201,1301,1401,1501,1601,1701,1801,1901,1000

#4001,201,401,601,801,1001,1201,1401,1601,1801,2001,

2201,2401,2601,2801,3001,3201,3401,3601,3801,1000

#launched on 1 node having 20 cores

if __name__ == ’__main__’:

with Pool() as p:

p.map(fds, [(15,0),(15,1),(15,2),(15,3),(15,4),(15,5),

(15,6),(15,7),(15,8),(15,9),(15,10),

(15,11),(15,12),(15,13),(15,14),(15,15),

(15,16),(15,17),(15,18),(15,19)])
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Lobino, M., Gräfe, M., Heinrich, M., Nolte, S. and Szameit, A., 2014. Quantum

walks of correlated photon pairs in two-dimensional waveguide arrays. Physical

review letters, 112(14), p.143604.

[ 34 ] Dür, W., Raussendorf, R., Kendon, V.M. and Briegel, H.J., 2002. Quantum

walks in optical lattices. Physical Review A, 66(5), p.052319.

[ 35 ] Hildner, R., Brinks, D., Nieder, J.B., Cogdell, R.J. and van Hulst, N.F.,

2013. Quantum coherent energy transfer over varying pathways in single light-

harvesting complexes. Science, 340(6139), pp.1448-1451.

[ 36 ] Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mancal, T., Cheng, Y.C.,

Blankenship, R.E. and Fleming, G.R., 2007. Evidence for wavelike energy trans-

fer through quantum coherence in photosynthetic systems. Nature, 446(7137),

pp.782-786.

[ 37 ] Aharonov, D., Ambainis, A., Kempe, J. and Vazirani, U., 2001, July. Quantum

walks on graphs. In Proceedings of the thirty-third annual ACM symposium

on Theory of computing (pp. 50-59). ACM.

80



[ 38 ] Kempe, J., 2005. Discrete quantum walks hit exponentially faster. Probability

theory and related fields, 133(2), pp.215-235.

[ 39 ] Childs, A.M., Farhi, E. and Gutmann, S., 2002. An example of the di↵erence

between quantum and classical random walks. Quantum Information Process-

ing, 1(1-2), pp.35-43.

[ 40 ] Wang, J. and Manouchehri, K., 2013. Physical implementation of quantum

walks. Springer.

[ 41 ] Mülken, O. and Blumen, A., 2011. Continuous-time quantum walks: Models

for coherent transport on complex networks. Physics Reports, 502(2), pp.37-87.

[ 42 ] Attal, S., Petruccione, F. and Sinayskiy, I., 2012. Open quantum walks on

graphs. Physics Letters A, 376(18), pp.1545-1548.

[ 43 ] Santos, R.A.M., Portugal, R. and Fragoso, M.D., 2014. Decoherence in quan-

tum Markov chains. Quantum information processing, 13(2), pp.559-572.

[ 44 ] Sinayskiy, I. and Petruccione, F., 2014. Quantum optical implementation of

open quantum walks. International Journal of Quantum Information, 12(02),

p.1461010.

[ 45 ] Goolam Hossen, Y.H., Sinayskiy, I. and Petruccione, F., 2015. Non-reversal

open quantum walks. in preparation.

[ 46 ] Bouwmeester, D. and Nienhuis, G., 1996. Measuring a single quantum tra-

jectory. Quantum and Semiclassical Optics: Journal of the European Optical

Society Part B, 8(1), p.277.

[ 47 ] Rohde, P.P., Brennen, G.K. and Gilchrist, A., 2013. Quantum walks with

memory provided by recycled coins and a memory of the coin-flip history. Phys-

ical Review A, 87(5), p.052302.

[ 48 ] Sinayskiy, I. and Petruccione, F., 2012. Properties of open quantum walks on

Z. Physica Scripta, 2012(T151), p.014077.

[ 49 ] Roiter, Y. and Minko, S., 2005. AFM single molecule experiments at the

solid-liquid interface: in situ conformation of adsorbed flexible polyelectrolyte

chains. Journal of the American Chemical Society, 127(45), pp.15688-15689.

[ 50 ] Paul J. Flory, 1953. Principles of polymer chemistry. Cornell University Press.

[ 51 ] Flory, P.J., 1969. Statistical mechanics of chain molecules. Interscience.

81



[ 52 ] Rubinstein, M. and Colby, R., 2003. Polymers physics (Vol. 767). Oxford

University Press.

[ 53 ] De Gennes, P.G., 1979. Scaling concepts in polymer physics. Cornell university

press.

[ 54 ] Bhattacharjee, S.M., Giacometti, A. and Maritan, A., 2013. Flory theory for

polymers. Journal of Physics: Condensed Matter, 25(50), p.503101.

[ 55 ] Mark, J.E., 2007. Physical Properties of Polymers Handbook. Springer.

[ 56 ] Isaacson, J. and Lubensky, T.C., 1980. Flory exponents for generalized poly-

mer problems. Journal de Physique Lettres, 41(19), pp.469-471.

[ 57 ] Mandelbrot, B.B., 1983. The fractal geometry of nature/Revised and enlarged

edition. WH Freeman and Co.

[ 58 ] Smailer, I., Machta, J. and Redner, S., 1993. Exact enumeration of self-

avoiding walks on lattices with random site energies. Physical Review E, 47(1),

p.262.

[ 59 ] Chakrabarti, B.K. ed., 2005. Statistics of linear polymers in disordered media.

Elsevier.
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