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Table 1.1 Climatic data measured at the Makatini Agricultural Research Station
(After Heeg and Breen, 1982)

Mean Mean Mean
Month Maximum Minimum Temp. (°C) Rainfall Wind_1 Relative Humidity %
Temp. (°C) Temp. (°C) (mm) (km day ') 08h00 TAh00
July 25,4 8,3 16,8 12,1 - 149.3 86 39
Aug. 26,7 11,4 19,0 6,9 190,4 78 39
Sept. 28,2 14,5 21,3 46,9 240,8 70 - 40
get. 29,0 17,0 23,0 43:7 231,6 72 48
Nov. 29,4 18,4 23,8 64,9 238,7 71 51
Dec. 31,2 20,1 25,6 60,8 233,3 72 51
Jan. 32,5 21,3 26,8 75,9 190,2 74 51
Feb. 31,2 20,5 25,8 105,6 211,4 76 54
March 30,6 19,6 25,0 a5 180,5 81 54
April 28,4 16,6 22,4 BA 2 150,1 84 53
May - 26,8 12,9 19,8 23,6 168,7 86 48
June 25,0 8,4 16,6 4,6 127,0 86 40
Year 28,7 15,8 28 5726 192,7 78 47
Period from 1966 1966 1966 1966 1969 1966 1966

to 1975 1975 1975 1975 1973 1978 1875
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Plate 2.1 A comparison of “large" and "small" turions of P. crispus

a)

Large starch filled turions consisted of swollen
stems with dormant buds in the axils of swollen
leaf bases.

This series illustrates the maturation of a turion
(1-5)

Small turions had stems which were only slightly
swollen and the leaf bases were either absent (1)
or so reduced that the dormant buds protruded beyond
them (2 and 3)

The turions shown here were picked from senescing
plants but the leaves were still intact. A Tlarge
turion without attached leaves ( 4) illustrates
the difference between these two types of turion.
(Scale in cm).
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Table 4.1 The effects of temperature and light on germination
of Potamogeton crispus turions. Results are
expressed as mean percent germination of five
replicates per treatment.

TEMP %  GERMINATION
°C LIGHT ' DARK
15 58.0 51.0 NS
20 41.0 33.0 NS
25 29.0 16.0 *
30 0.0 0.0

LDS

p = 0.01 21.88 12.08 -

LSD = Least significant difference between means

* Germination significantly different in the light

and dark as tested by paired t test (p = 0.05)

NS Not significantly affected by 1ight conditions
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Figure 4.2 Dry matter standing crop (a) and production (b) of P. erispus in Tete pan

during the study period. . In (a) solid line ( ) = total standing crop
and dotted line - - ~ —) = non-reproductive shoot material.
I = + 1 standard error of the mean.
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Changes in concentration of chlorophyll (chl a =
in P. erispus leaves during the study period.
contained no measurable chlorophyll.

s chl b=-==-; chl a + b =—-—)
Note that in April 1976 young plants
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The rate of oxygen production (gross ; net———-) per unit dry mass
of P. erispus shoot tips incubated at their natural depth in Tete pan during
1976.

Vertical bars = 1 standard error of the mean.
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Table 4.2 The numbers and mass of achenes and turions (m_2
the sediment of Tete pan at the beginning of each
winter growing season (95% confidence Timits in
parenthesis) and the approximate achene production
during that season.
YEAR TURIONS (m_z) ACHENES (m'2) APPROX. ACHENE
Numbers  Mass (g) Numbers Mass (g) PROD. (N° m
1976 1129 40.4 1445 3.9 561
(+ 195) (+ 7.0) (+ 209) (+ 0.6)
1977 1317 36.9 1955 3.3 240
(+ 169)  (+ 4.7) (+ 376) (+ 0.6)
1978 1739 57.2 1972 3.9 180
(+ 262) (+ 8.4) (+ 380) (+0.7)
1979 2100 60.0 1006 2.7 40
(+ 273)  (+ 8.0) (+ 144)  (+ 0.39)




Table 4.3 Changes in concentration (% dry mass) of ash, phosphorus
and nitrogen in the standing crop of Potamogeton crispus
in Tete pan during the period 1976 - 1979

DATE ASH p N DATE ASH P N
6/5/76 17.9 0.7 3.3 18/5/78 14.6 0.5 2.
3/6/76 16.3 0.5 2.7 16/6/78 15.0 0.5 2.

10/7/76 15.6 0.7 2.5 11/7/78 14.4 0.4 2.
28/1/176 16.5 0.9 2.6 22/8/78 13.2 0.3 2.
19/8/76 15.1 0.6 2.9 23/9/78 12.1 0.2 1.
8/9/76 12.9 0.5 2.4 30/10/78 12.0 0.2 1.
29/9/76 12.1 0.4 1.8

26/10/76 13.3 0.3 1.6

24/11/76 12.0 0.3 1.4

20/4/77 16.9 0.4 2.5 18/5/79 15.1 0.13 1.
22/5/77 16.4 0.4 2.5 12/6/79 9.5 0.08 1.
20/7/717 17.0 0.4 2.1 3/7/179 14.1 0.11 1.
15/8/77 15.5 0.3 1.9 31/7/79 12.4 0.11 1.
3/9/77 14.9 0.2 1.5 28/8/179 12.2 0.11 1.

15/10/77 13.6 0.3 1.7
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A preliminary mass balance of phosphorus (as Total P, kg) and nitrogen (as N0§ -N in the water

Table 4.4
and Total N in plants, kg) in the plants and water of Tete pan during periods between
summer floods. The difference between mass of nutrients in the water at MRL (when the pan
and river Tost contact) and the next flood represents that transferred to other components
of the system.
NON-REPRODUCTIVE P. CRISPUS
WATER AT MRL WATER AT FLOOD TRANSFERRED AT MAX. ST. CRQOP AT FLOODS
TP No§ -N TP No§ -N TP No§ -N TP TN TP N
1976 42 82 35 21 7 61 152 730 0 0
1977 99 17 19 13 80 5 158 905 0 0
1978 88 127 18 1 80 126 81 647 44 400
1979 58 10 - - - - 33 145 0 0
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Table 4.5 Estimates of annual net production and production:biomass
(P/B) ratio of P. crispus in Tete pan from 1976 to 1978

2 -1

YEAR NET PRODUCTION g m © a MAX. ST. P/B
Non-Repro.  Root Turion  Achene Total CROP g m?

1976 68 3 48 1.1 120.1 43 2.8

1977 107 5 75 0.5 187.5 72 2.6

1978 74 4 81 0.4 159.4 64 2.5
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Table 4.6 Comparisons of estimates for seasonal maximum standing
crop, annual net production and production:biomass ratio
(P/B) of different submerged macrophyte communities
Locality Species Max. St. Net Prod. P/B Source
crop g m2 g m 2
Lawrence Lake Seirpus 338 565 1.7 Rich, Wetzel
Michigan Chara 110 155 1.4 and Thuy
Annuals 130 199 1.5 (1971)
-
Borax Lake Ruppia 60 64 1.1 Wetzel (1964)
California
Swartvlei P. 1952 2506 1.2 Howard-Williams
pectinatus
S.E. Cape (1978)
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General characteristics of the eleven floodplain pans during winter and spring when duck

Table 5.1
populations are largest. Information from Colvin (1971), Musil (1972) and Rogers and
Breen (1981b)
P. crispus Depth Area  Turbidity Conduct. %o Susceptibility  Other aquatic
PAN coverage at MRL Salinity to drought vegetation
coverage
Tete Abundant 1.5 100 ha Clear 900 1°/ 00 Med 2%
Mtikheni Abundant 1.5 25 Clear <500 41 Med 5%
Mhlolo Abundant 2.5 60 Clear 2100 2.5%/ 00 Low 20%*
Sivunguvungu  Abundant 2.5 40 Clear 235 < Med 5%
Bumbe Abundant 2.0 60 Clear <500 < Med 5%
Ntuianene Abundant 1.2 15 Clear <500 <1 High 253*
TOTAL 300 ha
Mzinyeni Sparse 1.8 80 V. Turbid 215 <1 Low 20%
Mandlankunzi Sparse 2.5 250 Turbid 260 <1 Low 15%
Kangazini Sparse 0.5 50 Variable 400 < High 0
TOTAL 380 ha
Namanini None T m 65 ha Turbid < 500 <1 High 0
Sokunti None 4.5 120 V. Turbid 290 Py Low <1%
TOTAL 185 ha

Susceptibility to drougnt

Low
Med.
High

unlikely to dry out even during exceptional drought
will dry out only during protracted drought
usually becomes very shallow each year and frequently dries out

* Includes areas where P. crispus and floating leaved plants occur together

ve



Table 5.2
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Species composition (proportion of sightings)and abundance

of waterfowl on 11 different pans of the Pongolo flood-

plain, 1978.

Pans were grouped according to the

abundance of P. crispus during winter and spring as in

Table 5.1.
P =

< 0.1% or- 8.1 birds e T,

Waterfowl nomenclature

follows Mclachlan and Liversidge (1978)

Species Number of % Total Number of birds per ha.
sightings sightings P. crispus at Max. st. crop
Abundant Sparse None
White-faced Whistling Duck 18504 73.5 48.6 8.9 2.8
(Dendrocygna viduata (L.))
Spur-wing Goose 2363 9.4 3.8 4.0 0.1
(Plectropterus gambensis (L.))
Yellow Billed Duck 1097 4.4 2.5 0.7 0.7
(Anas undulata, Dubois)
Knob-billed Duck 1010 4.0 3.0 0.4 P
(Sarkidornis melanotos
(Pennant))
Pygmy Goose 619 2.6 1.3 0.8 0
(Nettopus auritus (Boddaert))
Red-billed Teal 525 2.2 0.8 0.4 0.9
(Anas erythrorhyncha, Gmelin))
Egyptian Goose 347 1.4 0.6 0.2 0.2
(Alopchen aegyptiacus (L.))
Fulvous Whistling Duck 312 1.3 P 0.8 0
(Dendrocygna bicolor
(Viellot))
Hottentot Teal 216 0.9 0.5 0.1 0.2
(Anas hottentota, Eyton)
Red~eyed Pochard 29 0.1 0.1 p 0
(Netta erythrophthalma (Weid))
Cape Teal 1 P 0 0 P
(Anas capensis, Gmelin)
White-backed Duck 1 P p 0 0
(Thalassornis leuconatus,
Eyton)
TOTALS 25209 99.8%  71.2 ha”' 16.1 ha"' 4.9ha "
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Figure 5.1

The numbers of White-faced Duck (a) and total numbers of
birds of other waterfowl species (b) on 11 different
pans of the Pongolo floodplain during the period January
1978 through January 1979. Number of birds on pans
with : Abundant P. crispus =e —--e ; sparse P. crispus

=e—t—~.—0o ; NO P. crispus = e::-:* . Total on all
11 pans =e—s



Table 5.3 Species composition of waterfowl populations at Tete
Pan during the period 1976 - 1978 expressed as a
percentage of the total sightings for each year.

P= <0.1%

DUCK SPECIES 1976 1977 1978 1979
White-faced Duck 80.9 91.1 88.2 42.9
Spur-wing Goose 0.1 1.3 2.7 11.3
Yellow-billed Duck 0.3 1.0 1.4 20.9
Knob-billed Duck 14.9 4.4 4.5 2.2
Pygmy Goose 2.8 0.5 0.9 0
Red-billed Teal 0.3 0.4 0.7 13.2
Egyptian Goose 0.7 1.1 1.0 8.8
Fulvous Whistling Duck P 0.3 P 0.1
Hottentot Teal p P 0.9 P
Red-eyed Pochard - - p 0.1

Cape Shoveler - - - 0.7
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Figure 5.2 Numbers of White-faced Duck (=——=) and total number of birds of other
waterfowl species (e~ — - -) on Tete pan during the study period.
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Table 5.4 Composition (Aggregate %) and frequency of occurence
of food of 56 White-faced Duck shot on 11 different
pans on the Pongolo floodplain between January 1978
and April 1979 inclusive.

39

Food Species

Organ Winter/spring Summer/Autumn

Agg.% Freq.% Ag9.% Freq.%

Potamogeton crispus Turion  63.5 83 8.0 9
Potamogeton crispus Achene 3.6 17 p 1
Aquatic Insect Larvae - 0.4 29 3.4 6
%;é??ﬁggi? tuberculata Miller _ p 4 4.1 6
Terrestrial Insects - 0 0 7.8 16
Heliotropium indicum L. Nutlet 0 0 42.0 47
Polygonum salicifolium Willd. Achene 0 0 6.4 16
Polygonum senegalense Meisn. Achene 0 0 9.4 13
Cyperus spp. Achene  14.1 17 5.3 9
Ceratophyllum demersum L. Achene 0 0 0.5 3
Fehinochloa pyramidalis (Lam.)

Hitch. and Chase Caryopsis 8.2 13 6.3 6
Nymphaea spp. Seed 2.5 4 1.1 3
Nymphaea spp. Tuber 7.0 13 3.1 3
Legume sp. Legume p 4 p 3
Sp. D. Seed 0 0 3.2 9
Eriochloa sp. Caryopsis 0 0 P 6

TOTAL 99.5 100.6
N = 24 32




Table 5.5

Composition (Aggregate %), frequency of occurence and mass of food of White-faced
between April 1976 and February 1977 inclusive.

Duck shot on Tete pan

CROP CONTENTS MONTH TOTAL TOTAL
SPECIES ORGAN A M J Jg g A S 0 N J F occ* MASS (g)
Nymphaea sp. Tubers 1. 1 0.17
Nymphaea sp Seed P 22.8 14.5 15.4 5 5.71%
Echinochloa
pyramidalis  Caryopsis 74.5 1.3 15.1 5.0 2.8 9 7.68
Polygonum
senegalense  Achene 25.4 74.9 63.1 20.1 0.4 2.0 0.2 16.6 20 0.07
Potamogeton :
erispus Turion 0.3 38.8 83.3 96.2 97.8 99.6 80.0 47.3 53.1 36 7.27
Aquatic Insect
Larvae - 0.3 0.7 0.2 13.2 0.1 0.4 0.1 P 0.8 8.1 14 0.4
Potamogeton
erispus Achene 0.6 6.3 18.6 0.2 1.8 0.3 19.7 13 0.2
Cyperus spp. Achene 0.1 0.9 0.1 5.0 0.2 7 0.4
Heliotropium
indicum Nutlet 42.8 14.0 2 2.73
Sp. F Achene 0.7 0.3 2 0.05
Legume Legume 7.7 1 0.1
Najas Leaf
pectinata Stem P 1.6 2 0.02
Chara Sp. Filaments 0.2 1.5 2 0.02
Sp. D 0.1 1.5 2 0.09
NO OF BIRDS b 7 5 6 5 6 4 8 5 2 4
MEAN CROP MASS (g) 0.95 0.18 1.01 0.47 1.46 3.27 4.37 3.1 2.49 1.72 0.58

P = Present at £ U0.7% of the total composition

* No of occurrences in 57 birds
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Table 5.6 The winter diet (Aggregate %) of some important
waterfowl species on Tete pan during 1978. Three
birds of each species were shot and the data presented

as the aggregate percentage composition.

Duck Species Food Items %
P. erispus Aquatic Bulinus C. dactylon
Turions Achenes Insects natalensis Ostracods leaves
Knob-billed Duck 99.9 - 0.1 - - -
Spur-winged Goose 89.1 10.7 - - - 0.2
Egyptian Goose 95.0 - 0.6 - - 4.4
Fulvous Whistling
Duck 98.8 - 1.2 - - -
Hottentot Teal 2.3 - 0.4 94.6 2.3 -

LY



Table 5.7
achenes.

Carbohydrate

The nutritional quality of P. crispus turions and
Total available (non-

42

structural) carbohydrate; Lipids = Ether extraction
and A.M.E. = Apparent Metabolizable

Turions Achenes
Total Phosphorus (%) 0.16 0.20
Total Potassium (%) 0.95 1.8
Total Calcium (%) 0.27 0.34
Total Nitrogen (%) 0.60 0.94
Protein (%) 3.7 5.9
Carbohydrate (%) 50.0 18.8
Lipids (%) 1.5 15.6
Gross Energy (kj g 16.4 18.9
AM.E. (kj g 12.4 12.3
AM.E. as % Gross E. 75.5 65.1




Plate 5.1 T/S

of turion parenchyma cells showing starch

accumulation.

a:

Developing turion with a few starch granules
in the chloroplasts of each cell
In mature turions most of the cell volume was

taken up by Targe starch granules.
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Table 5.8 Numbers and mass (m'2) of turions and achenes inside
and outside exclosures in Tete pan after the 1976
P. erispus growing season. The significance of
differences was tested by the t test of differences
between two means (Parker, 1973).

EXCLOSURE PAN SIGNIFICANCE OF
DIFFERENCES
Turions (n72) N 890 1317 S (P <0.001)
Mass 30 38 NS (p > 0.05)
Achenes (m™%) N 1543 1955 NS (p > 0.05)
Mass 2.7 3.5 NS (P > 0.05)
Table 5.9 Turion consumption by waterfowl on Tete pan
(calculated by means of the Wiens-Innis model)
in relation to total turion production.
YEAR Mass turions _ Turions on Total turion Percent Turion Production
consumed ( g m ) sediment  production consumed
(g m=¢) (g m-2)
White-faced Other spp. White-faced Other spp.All spp.
1976 7.9 3.4 36.9 48.2 16.4 74 23.5
1977 14.2 4.1 57.2 75.5 18.8 5.4 24.2
1978 10.0 2.1 68.9 81.5 12.3 2.6 14.9
1979 1.8 3.5 - - - -




Table 5.10 The change in mean mass (g) of individual turions, calculated
as the standing crop divided by the total number per square
metre, in Tete pan 1976 -1979.
* indicates the sudden drop in mass discussed in the text.
1976 1977 1978

Date X Mass Date X Mass Date X Mass

4/7 0.051 18/6 0.050 16/6 0.046

29/7 0.050 20/7 0.050 13/7 0.040*

19/8 0.040* 16/8 0.034* 20/8 0.040

10/9 0.032 3/9 0.024 23/9 0.039

30/9 0.030 15/10 0.062 30/10 0.030

26/10 0.028 - - - -

23/11 0.040 - - - -

9%



Table 5.11 Turion and achene numbers and mass per unit area
in Tete pan and exclosures after the 1978 growing

season.

Achenes (m_z) Large Turions(m'z) Small Turions(mfz) Total Turions(m <)
Numbers Mass (g) Numbers Mass (g) Numbers Mass (g) Numbers Mass (g)

Exclosure 803 1.6 1568 88 950 7 2518 94
Pan 778 1.5 851 55 1570 14 2421 69
Signifi-
cant P< *0.001 *0.001 *0.01 *0.001 *0.001
Not signi-

*0.1

ficant P> *0.1 *0.1

LY
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P. erispua growth

production of achenes and
turions by mature plants

> Waterfow! population and
grazing increases

Rooted Plants . Uprooted Plants
; Faw achenes grazed
Turions
¢. 10% remain,most e. 90% grazed
fall to sediment —_—_— Most to sediment
Large turions Small turions
produced ""”‘__,_,——f—,_.,_,fiﬂéUce¢
Continued increase in ‘\\\\N\\“-~_-~\.\;‘ L
waterfowl population Turion and achene

banks replenished
Selective Grazing
‘/Laﬂ;e turions \

Reduced number Increased number
rooted plants uprooted plants

\ et o /

Small/Large turions
Increased Grazing Effort
per unit of food

High (normai) Low (drought)

water level water level

Movement of some Duck feed on “parent”
duck to other pans turions

Decreased grazing pressure
Reward per unit effort
increases

Rapid destructian of
standing crop

Duck population stabilizes Few new turions produced

More turions to sediment

Decline in 2. crispus \\\\\\

standing crop

Few turions to
sediment

Duck move to summer
breeding grounds

Figure 5.4 A conceptual model (hypothesis) of interactions between
waterqu1 and Potamogeton crispus which maintain the
stability of the grazing system in Tete pan.



Plate 6.1 (a

Scanning electron micrographs of the
epiphyton on P. erispus leaves of
different ages.

The youngest leaves are devoid of epiphyton.

A young leaf colonized by a few diatoms
Cocconeis placentula (Cp) and short stout
bacteria (SB) (d inset).

Mature leaves colonized by C. placentula
(Cp)s Gomphonema spp. (G); filamentous
cyanobacteria (Cb); short stout bacteria
(SB) and prostrate rods (PB).

The oldest leaves colonized by C. placentula
(Cp); Navieula spp. (N); cyanobacteria (Cb);
short stout bacteria (SB) and filamentous
bacteria (FB).

A dead leaf densely covered with C.

placentula (Cp); short stout bacteria (SB)
and filamentous bacteria (FB).
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Plate 6.1 (a - j) Scanning electron micrographs of the epiphyton
on P. crispus leaves of different ages.

a & b : The youngest leaves are devoid of epiphyton.

c &d : A young leaf colonized by a few diatoms
Cocconeis placentula (Cp) and short stout
bacteria (SB) (d inset).

e & f : Mature leaves colonized by C. placentula
(Cp) s Gomphonema spp. (G); filamentous
cyanobacteria (Cb); short stout bacteria
(SB) and prostrate rods (PB).

g & h : The oldest leaves colonized by C. placentula
(Cp); Navieula spp. (N); cyanobacteria (Cb);
short stout bacteria (SB) and filamentous
bacteria (FB).

i&J: A dead leaf densely covered with C.

placentula (Cp); short stout bacteria (SB)
and filamentous bacteria (FB).
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Plate 6.2

(a - c)

Bacteria seen on P. crispus leaves of
different ages.

Short stout bacteria (SB) covered by
fimbriate webs which may be used for
attachment.

Upright rods (UB) and short stout
bacteria (SB), the latter seen both
from the side and above.

A diverse community on the oldest leaves;
short stout bacteria (SB); prostrate rods
(PB); upright rods (UB). Filamentous
cyanobacteria are also visible (CB).
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Plate 6.3

a-b:

Scanning electron micrographs of the
epiphyton on basal sections of P. crispus
stems after 12 days incubation in unfiltered
pan water. The diatom and bacterial
communities are similar to but more dense
than, those on leaves incubated for the

same period.
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Plate 6.4 (a - ¢) T/S through P. crispus leaf epidermidi.

a : The youngest leaves have a thin cuticle
(C); layered cell wall (W) and a dense
cytoplasm including mitochondria (M),
dictyosomes (D) and chloroplasts (Ch).

b : A young leaf showing attached bacterial
epiphytes (B) and debris; the layered
cell wall (W); a broad electron trans-
lucent band on the interior of the cell
wall (SW); a narrow band of cytoplasm
with densely packed chloroplasts (Ch)
and mitochondria (M) and a large central
vacuole (V).

C : A higher magnification of the cell wall
showing the electron translucent band to
represent a swelling of the wall (SW)
consisting of loosely arranged microfibrils.
Note the narrow band of cytoplasm (Cy)
and central vacuole (V).
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Plate 6.5 (a - d) T/S of mature P. erispus leaves.

a: Bacteria (B) both inside and outside
the cell wall. Those inside being
surrounded by an electron translucent
(Et) area resembling hydrolysis of the
wall material.

b : Note the absence of a cuticle; the
digestion of the electron translucent
cell wall (Et) and bacteria (B) inside
and outside the cell wall.

c : An epidermal and adjacent mesophyll
cell illustrating the electron trans-
Tucent area (Et) surrounding bacteria (B)
which have invaded the epidermal wall;
the swollen epidermal walls (SW) and the
early stages of such swelling in the
mesophy11l cell (SW ).

d : Cross sections of bacteria within an
epidermal cell wall showing the well
defined cell walls (W); fibrous nuclear
material (Fn) within an electron trans-
Tucent area of cytoplasm. Note the
sparse disorganised microfibrils of
the surrounding plant cell wall,
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Plate 6.6

(a - b)

a :

T/S of the oldest P. crispus leaves.

Note the absence of a cuticle and
extensive damage to the epidermal
wall (W) which is almost entirely
electron translucent; the swollen
cell walls (SW); a narrow band of
cytoplasm enclosing a few swollen
chloroplasts (Ch) with i11 defined
grana stacks and an i1l defined
tonoplast (T).

A mesophyll cell showing the swollen
cell walls (SW) (at higher magnification
in inset); large vacuole (V); chloro-
plasts (Ch); well defined tonoplast (T)
and highly invaginated plasmalemma (P).
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Plate 6.7

(a - b)

T/S of the oldest P. erispus leaves
after 12 days incubation in pan water.

The epidermal cell wall (W) containing
numerous bacteria (B) is almost entirely
electron translucent. Note the bacteria
(B) within the swollen cell wall area
(SW) which contains only very sparse
microfibrils.

Bacteria, with well defined cell wall
(BW) and fibrous nuclear material (Fn),
within the swollen area of the mesophyll
cell wall (SW). Note the swollen, i1l
defined plasmalemma (P) and lack of
cytoplasm; the degraded cell wall (DW)
and very sparse microfibrils of the
swollen area.
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Plate 6.8

(a - c)

a :

T/S of stems of mature P. erispus plants.

Mid-way down the stem occasional bacteria were
evident within the outer epidermal wall,.

Epidermal cells of basal stem sections showed
swelling typical of that in leaf cells.

After 12 days incubation in pan water inter-
cellular spaces of the cortex had been
invaded by bacteria.
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Plate 6. 9

(a - f)

a &b

c §d :

e & f

The effects of snail grazing for 24 hours on the
epiphyton and surface structure of P. erispus
leaves of different ages.

: Young leaves were not damaged despite removal

of most of the epiphyton.

Mature leaves; the outer walls of groups of
epidermal cells had been removed (c) and numerous
“canals" probably resulting from the action of
necrotrophic bacteria can be seen (d).

Senescent leaves were extensively damaged by
snail grazing.
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Plate 6.

10

(a - d)

a&b:

c&d:

The effects of snail grazing on P. crispus
leaves of different ages 6 days after the
introduction of snails.

The youngest (a) and most young (b) Teaves
remained intact and showed no macroscopic
evidence of damage. (x 0.9)

Most mature (c) leaves had been damaged and
the few senescent (d) leaves remaining were
extensively damaged. (x 0.9)
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The relationship between leaf age, conditioning and grazers in P. crispus.

(a):The effects of leaf age and time allowed for conditioning in the absence of grazers,
on leaf edibility (leaves consumed day '). (b): The effects of leaf age on time permitted
for grazing, after conditioning, on the number of leaves remaining at the end of the
experiment (20 days).

(Y1 = youngest leaves; Y2 = young leaves; M = mature leaves; S = senescent leaves).
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Figure 6.2

The relationship between stem position, conditioning and grazers in P. crispus.

(a) The effects of stem position and time allowed for conditioning in the absence of
grazers, on stem edibility (stems consumed day- 1) (b) The effects of stem position and
time permitted for grazing, after conditioning, on the number of stem sections rema1n1ng
at the end of the experiment (20 days).

(T = stem section from tip of plants; M = sections from middle of the stem; B = basal

stem sections).
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Figure 7.1 The growth cycle of P. erispus population in Tete pan
as determined by sequential estimates of standing crops.
Arrows e,, e, and e, indicate the times at which decomposition
experimeﬁts were 1ﬁit1ated.
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Figure 7.2 Loss of dry mass during decomposition of P. crispus shoots
expressed as percent mass remaining in decomposition bags
with time. (a) Experiment initiated at maximum standing
crop (e1 Fig. 7.1). (b) Experiment initiated 30 days after
maximum standing crop (e2 Fig. 7.1).
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Figure 7.3 Loss of dry mass of senescent P. erispus shoots (———-)

and dried shoots ( ) expressed as percent remaining

in !it?er bags with time.  (Vertical bars = 1 standard
deviation from the mean).
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Table 7.1 Mean number and mass of snails (Bulinus natalensis) found
in small mesh decomposition bags containing (1) senescent
plants and (2) dried plants and in (3) large mesh bags
containing senescent plants. LSD = least significant
difference between the means.

TIME SENESCENT DRIED LARGE MESH

(days) No Mass (mg) No Mass(mg) No Mass (mg)
6 48 17 131 34 144 330
12 158 70 177 84 144 570
18 487 453 195 181 174 640
24 325 455 135 202 120 660
LSD . 77 101 121 73 57 186
p = 0.05

99
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Figure 7.5 Mathematical functions of mass of plant material remaining
against time in relation to actual data points for the
1977 experiment. (a) Loss of dried plant material from
decomposition bags as described by a simple exponential
function where y = ae ~ )
(b) Loss of senescent plant material as described by
a linear function where y = ag = X,
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Figure 7.7 Loss of mass of senescent P. erispus from coarse mesh
gauze bags expressed as the percent original mass
remaining. (a) Actual data points. (b) Deﬁcribed by
simple exponential function where y = ae DK,
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Figure 7.8 The changes in (a) concentration and (b) original
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in senescing P. crispus incubated in coarse mesh
gauze bags.
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Figure 7.9 Effects of snails and epiphytic detrital aggregate (EDA) on; (a) loss of mass
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(NS = no snails; S = snails).
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Table 7.2

The effects of snails and epiphytic detrital aggregate (EDA)
on mass loss of uprooted P. crispus plants. Described by

a simple exponential function (y = ae_kt) where r2 =
coefficient of determination, k - rate constant, t, =

time taken for 50% mass loss. i
Significance between regresssions (Sokal and Roh1f, 1969);
NS = not significant; x = p 0.05; xx = p< 0.01.

TREATMENT r k +% SIGNIFICANCE
NO SNAILS 0.981 - 0.033 22 NS  x  xx

NO SNAILS & EDA 0.877 - 0.034 20 NS

SNAILS 0.987 - 0.056 13 * X
SNAILS & EDA 0.999 - 0.091 6 XXX

0L



Table 7.3 The precentage distribution of total nitrogen and phosphorus between the dissolved phase,
fine particulate matter (FPOM) and remaining plant material during <n vitro decomposition
of P. erispus in the presence and absence of snails.

PHOSPHORUS (%) NITROGEN (%)

DAYS 0 6 12 18 24 0 6 12 18 24
Snails + EDA

Plants 99.8 62 35 19 9 99.2 55 33 19 10
Dissolved 0.2 9 24 29 29 0.8 3 4 6 11
FPOM - 28 43 53 63 - 55 119 131 146
Total 100 99 102 101 101 100 113 156 156 167
No Snails

Plants 99.8 78 60 51 49 99.2 94 79 68 60
Dissolved 0.2 7 16 22 27 0.8 2 3 4 3
FPOM - 2 4 6 7 - 4 11 16 19
Total 100 87 80 79 83 100 100 93 88 82

L
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Table 7.4 The concentration of N, P and ash free dry mass (expressed
as a percentage) in senescent P. crispus plants (day 0)
and in the fine particulate organic matter (FPOM; days
6 - 24) during in vitro decomposition in the presence
and absence of snails and epiphytic detrital aggregate

(EDA)
Time Snails + EDA No Snails
Days
P % N % Ash free % P % N % Ash free %
Plants
0 0.31 1.6 85 0.31 1.6 85
FPOM
6 0.30 5.0 70 0.32 4.8 56
12 0.30 6.9 75 0.32 5.5 67
18 0.31 7.0 79 0.32 5.0 68

24 0.32 7.2 77 0.31 5.2 69
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(a) A nonteleological, deterministic system such
as an ecosystem and (b) a teleological (goal seeking)

system typical of man-made automatic control systems.
(After Patten and Odum, 1981).
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