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Abstract

This thesis concerns the formulation of integration algorithms for non-Hamiltonian

molecular dynamics simulation at constant temperature. In particular, the

constant temperature dynamics of the Nosé-Hoover, Nosé-Hoover chain, and

Bulgac-Kusnezov thermostats are studied. In all cases, the equilibrium sta-

tistical mechanics and the integration algorithms have been formulated using

non-Hamiltonian brackets in phase space. A systematic approach has been

followed in deriving numerically stable and efficient algorithms. Starting from

a set of equations of motion, time-reversible algorithms have been formulated

through the time-symmetric Trotter factorization of the Liouville propagator.

Such a time-symmetric factorization can be combined with the underlying non-

Hamiltonian bracket-structure of the Liouville operator, preserving the mea-

sure of phase space. In this latter case, algorithms that are both time-reversible

and measure-preserving can be obtained. Constant temperature simulations of

low-dimensional harmonic systems have been performed in order to illustrate

the accuracy and the efficiency of the algorithms presented in this thesis.
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Chapter 1

Introduction

In the early 1950s, different types of computer simulation techniques devel-

oped were purposely used in military experiments such as nuclear weapon

development[1]. The research carried out primarily used and implemented the

Monte Carlo simulation[2] technique. This type of simulation is a stochastic

process which in general is very powerful but does not permit easy calculation

of time-dependent properties. To overcome this limitation, a new method was

developed in the 1960s which had the capabilities of allowing the calculation of

time-dependent quantities. This method known as molecular dynamics (MD

in short) [1, 2, 3], is deterministic in nature. This thesis shall concern itself

with algorithms for performing MD simulations at constant temperature.

MD in essence is a type of simulation technique for computing the equilibrium

and transport properties of a system of particles[1, 2, 3]. The basic form of the

original formulation of MD follows Hamiltonian dynamics. Given appropriate

boundary conditions specific to the symmetry or geometry of the system, the

time-dependent behavior of the constituent particles can be followed through

numerical integration of their equations of motion[1, 2, 3]. The calculation of

position and momenta[2] of the particle for each instant of time defines the
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trajectory in phase space. Furthermore, the description of the inter-particle

interacting potential[2] affects the accuracy and quality of the results.

Time averages obtained by MD correspond to the microcanonical ensemble of

Statistical mechanics. This connection is made possible using the ergodic hy-

pothesis. Real experiments are very often carried out at isothermal conditions[4].

Thus, results obtained through numerical simulations can be compared with

real ones if one performs the calculations in the canonical ensemble. In the

thermodynamic limit, different ensembles are equivalent[4]. However, it is

difficult to achieve this limit when performing calculations under real-life con-

ditions and thus differences emerge between constant enthalpy Hamiltonian

MD results and those produced by constant temperature dynamics.

It is well known that in principle a canonical representation of the system

of interest coupled to a heat bath can be achieved within a constant energy

scheme. The heat bath in this case is represented using an infinite number

of degrees of freedom. Due to the limited computational resources available,

the infinite conditions can not be simulated in a computer and as such several

proposals[5] have been put forward to overcome this limitation. One such

proposal within constant temperature MD was introduced by Nosé[6, 7, 8,

9] in the 1980s. Nosé further built on the extended systems approach that

was first proposed by Andersen to perform constant pressure MD[5, 10]. The

extended systems approach is characterized by non-Hamiltonian dynamics [11]

that conserves energy in the extended phase space [5].

In recent years, the extended systems dynamics[5] paved the way for deriving

a number of different equations of motion that conserve a generalized energy

function[12]. Moreover, the same phase space[13, 14] distribution function is

achieved using different equations of motion. Following the work of Sergi and

Ferrario [5], it is shown that an underlying unique general mathematical struc-

ture exists for the non-Hamiltonian equations of motion using the symplectic
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form of Hamilton’s equations. From this generalized structure one can select

the compressibility of phase space and obtain an ensemble distribution for

the physical system of interest for a given conserved Hamiltonian. It has been

shown[5] recently how the invariant measure of phase space is formulated using

the compressibility within non-Hamiltonian dynamics.

In the work of Sergi and Ferrario [5], non-Hamiltonian flows that sample

the phase space in line with a chosen distribution function have been de-

rived. Moreover, a new algebraic bracket was formalized by Sergi [15] for

non-Hamiltonian systems in equilibrium statistical mechanics. Given a proper

bracket one can find the Liouville operator. Within the Trotter formalism[16,

17, 18], Tuckerman et al [16] derived time-reversible algorithms using a sym-

metric Trotter factorization of the Liouville propagator. Ezra[19, 20] using

explicitly the bracket structure of the Liouville operator was able to improve

on the approach of Tuckerman et al [16] and produced algorithms which are

both time-reversible and measure-preserving.

In this thesis we set out to accomplish the following goals; First, we reformulate

the dynamics for the Nosé-Hoover, Nosé-Hoover chain and Bulgac-Kusnezov

thermostats using non-Hamiltonian brackets in phase space[5, 15]. Second, we

show how to systematically derive stable and efficient time-reversible and re-

versible measure-preserving algorithms for all the above phase space flows. The

approach towards this method was recently introduced based on the underly-

ing mathematical structure of non-Hamiltonian phase space[20]. Finally, using

a paradigmatic example of a one-dimension oscillator, we present and discuss

numerical results for the Nosé-Hoover chain and Bulgac-Kusnezov thermostats.

The organization of this thesis is as follows. In chapter 2, an introduction

to MD is presented and explained, and a connection to statistical mechanics

given. Moreover, a commonly used method for integrating MD equations of

motion is also presented within the chapter. In chapter 3, we introduce the
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generalized algebraic bracket used in non-Hamiltonian dynamics. In chapter

4, we derive the time-reversible and measure-preserving algorithms for the fol-

lowing deterministic thermostats; Nosé-Hoover, Nosé-Hoover chain and the

Bulgac-Kusnezov. In chapter 5, we investigate different models using the sim-

ple harmonic oscillator. Finally, in chapter 6, we give a conclusion to the

findings.

In addition several appendices have been included. A complete derivation for

a useful operator formula is shown in appendix A. Appendix B shows the

derivation of the invariant measure of the Nosé-Hoover, Nosé-Hoover chain

and Bulgac-Kusnezov phase space flows. Finally, the Liouville operator for the

Nosé-Hoover, Nosé-Hoover chain and Bulgac-Kusnezov dynamics is derived in

Appendix C.
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Chapter 2

Molecular dynamics

In this chapter I give a brief overview of the fundamental approach used in

defining a system mathematically within MD simulation. Also, I shall discuss

the connection between MD and statistical mechanics and show a widely used

algorithm implemented when integrating the equations of motion under MD.

2.1 Introduction

The method of simulating the dynamics of a system of particles or fields[19]

using a computer is what is referred to as molecular dynamics (MD)[1, 2, 3].

From a conceptual perspective, MD simulations can be considered as numerical

experiments, in many respects similar to real ones. This idea can be further

clarified using the following analogy [1]. When performing real experiments,

the following steps are followed; The sample of the material of interest is pre-

pared. Using a measuring instrument (such as a thermometer or barometer)

during certain time interval, the property of interest of the sample is measured.

For greater accuracy, averages over a long period of time have to be taken in

order to diminish the statistical noises[1]. In the case of MD simulations, the
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approach is similar. The sample to be prepared is generally a system consist-

ing of a set of N interacting particles whose dynamical evolution is followed

through numerical integration of Newton’s equations of motion. Using appro-

priate boundary conditions specific to the geometry or symmetry of the system,

the calculation of the system’s properties takes the place in the simulation of

the measurements in the experiments. Moreover, averages are taken after the

system has been properly equilibrated.

The microscopic behavior of a system can be studied using the laws of classical

mechanics given that an inter-particle interaction potential (or force field) is

given. Through MD simulations the information that we obtain on the sys-

tem is given by the particles position and momenta [1, 2] which define the

trajectory in phase space. Once the phase space trajectory is known aver-

ages in phase space provides the connection to macroscopic quantities. The

macroscopic observables in this case are quantities such as temperature and

pressure. Statistical mechanics[2] provides the necessary connection between

the macroscopic observables and the microscopic properties.

The application of MD technique is vast as it is applicable to a wide variety

of problems in many branches of science such as chemistry, astrophysics and

condensed matter physics[1, 21, 22, 23, 24].

2.2 Basic approach

The application of MD to a variety of problems is technically based on the

following important elements. Initial conditions are chosen obeying a specified

thermodynamic constraints in a stochastic way from the correct probability

distribution function[19] in phase space. Also, forces can be calculated by a

careful choice of the interaction potential[2, 19]. The numerical integration of

the equations of motion allows one to follow the dynamical evolution [2, 19]
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of the system. The trajectory is generated through solving Newton’s classical

equations of motion

Fi = miai, (2.2.1)

where i is an index corresponding to each particle coordinate within a system

constituted by a certain number of atoms. Here, Fi is the force acting upon an

atom due to its interaction with the other atoms, mi is its mass and ai is the

acceleration. Equivalently, one can integrate the classical Hamilton’s equation

of motion[2, 4] :

 q̇i

ṗi

 =

 0 1

−1 0

 ·
 ∂H

∂qi

∂H
∂pi

 , (2.2.2)

where pi and qi are the momentum and position coordinates for the ith atomic

coordinate.

The Hamiltonian (energy function), H, is given as a sum of the kinetic and

potential energy functions of the set of N coordinates qi and N momenta pi of

each molecule. Usually the kinetic energy takes the form of p2i
2mi

where mi is

the mass of the molecule and pi is its conjugated momenta, and the potential

energy written in general as V (q1, q2, . . . , qN ) = V (q) contains information

about the intermolecular interactions and is given as a function of all particles

position qi. The coordinate qi and momenta pi collectively define the phase

space of the system (q, p). For a particular system, the Hamiltonian may be

represented as

H =

N∑
i=1

p2i
2mi

+ V (q) . (2.2.3)
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The force on an atom can be calculated as the derivative of energy with respect

to the change in the atom’s position[2]

Fi = −∇iV = −dE
dqi

. (2.2.4)

Using available information about the atomic forces and masses, the positions

of each atom can be solved along a series of infinitesimal time steps[2]. Once

the force is known one can use various numerical algorithms to integrate the

equations of motion.

To summarize the entire procedure, at each time step, the forces on the atoms

are calculated and combined with the current phase space coordinates (q, p) to

generate a new set of coordinates (q, p) a short time step ahead. The atoms

are then moved to the new coordinates, the forces are recalculated and the

new dynamic cycle goes on. For a clearer observation, such an algorithm has

been represented diagrammatically in Fig. 2.1 [4].

The equations of motion have two important properties. The first one is that

they are time reversible[2], that is, when the transformation t → −t is made

the equations of motion retain the same form and as a consequence of this

property the microscopic properties are independent of the direction of flow of

time[2]. The second property is that they conserve the Hamiltonian. This can

be easily seen by computing the time derivative of H and substituting (2.2.2)

for the time derivatives of position and momentum[2]

dH

dt
=

N∑
i=1

[
∂H

∂q
q̇i +

∂H

∂pi
ṗi

]
=

N∑
i=1

[
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

]
= 0 (2.2.5)

The conservation of the Hamiltonian[2] provides an important connection be-

tween MD and statistical mechanics since it is equivalent to the conservation
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Fig. 2.1: Flowchart diagram showing the various steps in calculating a new
set of phase space coordinates from a set of initial conditions.
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of the total energy of the system.

2.3 Relation to statistical mechanics

When performing calculations by MD simulation techniques, one typically fol-

lows a particles phase space trajectory given by its position and momenta.

Such information describes the microscopic properties specific to the system

of interest and can be related to macroscopic observables (pressure, internal

energy, etc.) through statistical mechanics[2]. Consider a system of N par-

ticles with a dynamical quantity, say A, with x being points in phase space

computed along the total time interval T, the time averages are given in the

form

〈A〉time = lim
T→∞

1

T

ˆ T

0
dtA (x (t)) . (2.3.1)

The equations of motion that govern the above equation are a set of ordinary

differential equations that are described in classical systems by Newton’s equa-

tions of motion. Such equations can be solved numerically using a computer.

However, one encounters several problems when carrying out these simulations.

For instance one would simulate a system consisting of a finite number of par-

ticles (e.g 103) as opposed to a system with a truly macroscopic number (e.g

1023)[25], this is due to limited available computational resources. Also, when

obtaining time averages using equation (2.3.1), the integration scheme can not

be performed for an infinite amount of time. Thus, the question that now

arises is whether or not a particle’s trajectory has explored sufficiently regions

of phase space to yield satisfactory time averages within a feasible amount of

computer time[25]. Also, using different initial conditions, the accuracy of dif-

ferent simulations with identical macroscopic parameters (density, energy etc.)
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can be tested for thermodynamic consistencies. Answers to such questions lie

through the careful choices of the integration method schemes which are looked

at further within the thesis.

Due to the complexity of the time evolution of the dynamical quantity A (x, t)

for a large number of particles, Gibbs [25] proposed the replacement of time-

averages with ensemble averages. Gibbs statistical mechanics uses ensemble

averages in obtaining the thermodynamic properties as opposed to the calcu-

lation of time averages implied in MD simulations. The ensemble in this case

is regarded as a collection of points x in phase space distributed according to a

chosen probability function ρ (x). This phase space points define a particular

system at an instant of time. Following a set of equations of motion, each

system can evolve independently in time. As a result, the probability func-

tion ρ (x) also changes in time. However, according to Liouville’s theorem, the

probability distribution function of a system is a constant of time[25], that is,

d

dt
ρ (x) = 0. (2.3.2)

Thus, suppose a system is defined with N number of particles and a specific

distribution function ρ (x) where x is the generalized coordinates (q, pi), q and

p denote the positions and momenta respectively. The total time derivative of

ρ (x) is

d

dt
ρ (x) =

∂

∂t
ρ (x) +

N∑
i=1

q̇i
∂

∂qi
ρ (x) +

N∑
i=1

ṗi
∂

∂pi
ρ (x) . (2.3.3)

The Liouville operator L can be defined as

iL =

N∑
i=1

(
q̇i
∂

∂qi
+ ṗi

∂

∂pi

)
. (2.3.4)
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Thus, equation (2.3.3) can be re-written as

d

dt
ρ (x) =

∂

∂t
ρ (x) + iLρ (x) , (2.3.5)

and using Liouville’s theorem[19], we may write

∂

∂t
ρ (x (t)) = −iLρ (x (t)) . (2.3.6)

Where the formal solution to the above equation is given by

ρ (x (t)) = exp (−iLt) ρ (x (0)) . (2.3.7)

For the dynamical function A (x, t) the equations of motion, which are explic-

itly time independent, take the form

Ȧ (x, t) = iLA (x, t) (2.3.8)

or

A (x, t) = exp (iLt)A (x, 0) (2.3.9)

Within statistical mechanics equations (2.3.6) and (2.3.7) describe the Schrödinger

picture[26] since we consider the time-dependence of ρ at a fixed point in phase

space whereas equations (2.3.8) and (2.3.9) represent the Heisenberg picture

since the dynamical function A (x, t) evolves with time as the trajectory of the

phase space point x is followed throughout the time evolution.

If for an equilibrium ensemble, ∂ρ/∂t = 0, and there exists a trajectory which

passes throughout all the phase space points for which ρ 6= 0 then each system
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will eventually access all the regions of phase space. The ensemble average for

all the states of the system is given by

〈A〉 =

ˆ
dx2Nρ (x)A (x,t) . (2.3.10)

Assuming that the limit T → ∞ for equation (2.3.1) is numerically achieved

and that the sampling for equation (2.3.10) is sufficiently thorough, then one

can invoke the ergodic hypothesis as it relates the ensemble averages to the

time averages. This hypothesis implies that the ensemble and time averages

are equivalent.

2.4 Hamiltonian dynamics

The basic form of the original formulation of MD follows Hamiltonian dynamics[4].

Using Hamiltonian dynamics, the classical Hamilton’s equation of motion[2, 4]

shown by equation (2.2.2), can be defined in symplectic form as

ẋi =
2N∑
i,j=1

Bij
∂H
∂xj

, (2.4.1)

where

B =

 0 1

−1 0

 , (2.4.2)

is the symplectic matrix in block form and x = (q, p) denotes the phase space

point, q and p are the generalized coordinates and momenta, respectively.

The Poisson bracket can be defined as
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{a (x) , b (x)} =

2N∑
i,j=1

∂a

∂xi
Bij

∂b

∂xj
, (2.4.3)

where a (x) and b (x) are arbitrary phase space functions, thus the equations

of motion can then be re-written in the form

ẋi = {xi,H} . (2.4.4)

The algebra is called Hamiltonian (or Lie)[4] if the following properties are

satisfied by the Poisson bracket[27]

{a, b} = −{b, a} , (2.4.5)

{const× a, b} = const× {a, b} , (2.4.6)

{a+ b, c} = {a, c}+ {b, c} , (2.4.7)

{ab, c} = a {b, c}+ {a, c} b, (2.4.8)

as well as the Jacobi relation

J = {{a, b} , c}+ {{c, a} , b}+ {{b, c} , a} = 0, (2.4.9)

where a, b, c are arbitrary phase space functions. Property (2.4.5) indicates the

antisymmetry within the bracket, properties (2.4.6 - 2.4.8) indicates a linear

operation within the bracket for elements of A which can be considered as a

space of mathematical objects {a, b, c, . . .} and any complex numbers which

are constants, while the fulfillment of property (2.4.9), that is J = 0, indicates

that the algebra is left invariant under a time evolution[19].
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2.5 Integrating the equations of motion

2.5.1 Introduction

There are various numerical ways in integrating the equations of motion under

MD. The main problem faced is in the evaluation of the interacting forces.

There is no analytical solution of the potential energy which is a function

dependent on the positions of all the particles in the system, hence the forces

can only be evaluated numerically as they are computed from the potential

energy. Thus a suitable method has to have the following characteristics: it is

energy conserving, time reversible, evaluates only one force per time step and

is computationally efficient[2]. Among the many numerical methods available

(see the following references [1, 21, 25, 27, 28, 29, 30] for other methods), the

verlet algorithm [28, 29, 30] is one of widely used method. This particular

scheme is a widely implemented time integration algorithm method in MD.

2.5.2 Verlet algorithm

The Verlet algorithm method, which is a third-order Störmer algorithm, was

first popularized by Verlet[31] in 1967. The derivation of the algorithm follows

from the Taylor expansion about the coordinate variable x (t):

x (t+ τ) = x (t) + ẋ (t) τ + ẍ (t)
τ2

2
+

...
x (t)

τ3

6
+O

(
τ4
)
· · · (2.5.1)

x (t− τ) = x (t)− ẋ (t) τ + ẍ (t)
τ2

2
− ...
x (t)

τ3

6
+O

(
τ4
)
· · · (2.5.2)

Summing equations (2.5.1) and (2.5.2)
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x (t+ τ) + x (t− τ) = 2x (t) + ẍ (t) τ2 +O
(
τ4
)
,

x (t+ τ) = 2x (t)− x (t− τ) + ẍ (t) τ2 +O
(
τ4
)
. (2.5.3)

This Verlet algorithm method uses the positions x (t), accelerations ẍ (t) and

positions x (t− τ) from the previous time step to evaluate new positions at

time step (t+ τ). New trajectories are calculated to an error of order τ4 and

without the need of the velocities according to equation (2.5.3). However, the

velocities are not essential during the time evolution rather they are needed

to evaluate the kinetic energy of the particles. The total energy E of the

system can be calculated using the kinetic energy K and the potential energy

V according to E = K + V . As a result one can test for conservation of the

total energy throughout the evolution of the simulation. The velocities can be

obtained by subtracting equations (2.5.1) and (2.5.2)

x (t+ τ)− x (t− τ) = 2τ ẋ (t) ,

ẋ (t) =
x (t+ τ)− x (t− τ)

2τ
. (2.5.4)

The error associated with equation (2.5.4) is of order τ2. Moreover, one needs

to know the coordinate x (t+ τ) in order to evaluate the velocity ẋ (t). In

order to obtain more accurate values of the velocities and minimize the incon-

veniences present within equation (2.5.4), more computational resources are

required in storing extra variables. Various methods have recently been pro-

posed [1, 3, 25] to overcome the deficiencies already present within the Verlet

algorithm. One such proposed method is the velocity Verlet algorithm.
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2.5.3 Velocity Verlet algorithm

The velocity Verlet algorithm[32] is derived directly from the Verlet algorithm.

New positions at time step (t+ τ) are evaluated using the positions x (t),

velocities ẋ (t) and accelerations ẍ (t) all at the same time step t. The algorithm

is described using the following equations

x (t+ τ) = x (t) + τ ẋ (t) +
τ2

2
ẍ (t) (2.5.5)

ẋ (t+ τ) = ẋ (t) +
τ

2
[ẍ (t) + ẍ (t+ τ)] . (2.5.6)

By eliminating the velocities in the above equations, the Verlet algorithm may

be recovered. When performing the integration with the equations of motion,

the cycle is implemented using the following steps:

1. Calculate an approximate velocity at mid-step

ẋ
(
t+

τ

2

)
= ẋ (t) +

τ

2
· ẍ (t) (2.5.7)

2. Calculate position

x (t+ τ) = x (t) + τ · ẋ
(
t+

τ

2

)
(2.5.8)

3. Calculate acceleration ẍ (t+ τ) from potential energy which is a function

of x (t+ τ)

4. Calculate velocity at time t+ τ

ẋ (t+ τ) = ẋ
(
t+

τ

2

)
+
τ

2
· ẍ (t+ τ) (2.5.9)
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2.6 Molecular dynamics in different ensembles

2.6.1 Introduction

MD simulations study the dynamical evolution of a system with time and are

performed at constant energy conditions which correspond to the microcanon-

ical ensemble. Constant energy conditions are difficult to replicate within real

life conditions. Real experiments are mostly carried out at constant tempera-

ture. In order to compare results from MD with laboratory experiments, the

calculations have to be performed in the canonical ensemble. In this section,

we give a brief overview of microcanonical and canonical ensembles, and also

show how temperature is estimated within MD.

2.6.2 Microcanonical ensemble

This statistical ensemble is characterized by a system having fixed thermo-

dynamical parameters N,V,E which correspond to the number of particles,

the volume and the energy respectively. Such a system has an equilibrium

distribution function fm given by

fm (q, p) = Z−1δ (H − E) , (2.6.1)

where Z is the partition function given by

Z =

ˆ
dNq dNp δ (H − E) , (2.6.2)

and δ (H − E) is the delta of Dirac which is characterized as having a zero

value except when H − E = 0, in which case it is infinite. The delta of Dirac

function mathematically enforces energy conservation within this ensemble as

it ensures δ (H − E) 6= 0 when H = E.
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Under the principle of equal a priori probabilities one can realize that all the

microscopic states (q, p) with energy H = E are equally probable. It follows

that all the microstates must have the same energy E. However, given E little

will be known about the microstates. This inadvertently leads to a system

where some of the microstates are preferred and assigned higher probabilities

than others. Hence in order to obtain averages in the microcanonical ensemble,

all possible microstates have to be considered. This, however, proves to be ex-

tremely difficult to evaluate since ensemble averages (see Eq. (2.3.10)) require

knowledge of all possible microscopic states. Using the ergodic hypothesis,

ensemble averages are equivalent to time averages (see Eq. (2.3.1)) obtained

when performing experiments numerically under MD simulation. In reality, ex-

periments are carried out with knowledge of the macroscopic properties such

as temperature or pressure. Thus, results from numerical experiments can

be compared with real ones if one performs the calculations in the canonical

ensemble.

2.6.3 Canonical ensemble

This statistical ensemble is characterized by a system having the macrostates

N,V, T which correspond to the number of particles, the volume and the tem-

perature respectively. Temperature control within this ensemble is achieved by

placing the system of interest in contact with a heat bath, which in the ther-

modynamic limit is represented using an infinite number of degrees of freedom.

Such a system has an equilibrium distribution function fc that is dependent

on the temperature given by

fc (q, p) = Z−1e−βH , (2.6.3)

where Z is the partition function given by
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Z =

ˆ
dNq dNp e−βH , (2.6.4)

and

β =
1

kBT
, (2.6.5)

where kB is the Boltzmann constant.

Using the canonical distribution function, given by Eq. (2.6.3), one can easily

show how to obtain the famous Maxwell distribution function. This function

governs the probability distribution of particle velocities in a system in con-

tact with a thermal bath. It also forms the basis for deriving the celebrated

Equipartition theorem expressed as

〈
p2i

2mi

〉
=
kBT

2
. (2.6.6)

Eq. (2.6.6), states that the equilibrium average of the kinetic energy of an

arbitrary particle is constant and equal to kBT/2.

2.6.4 Estimating temperature under molecular dynamics

We have seen that at the thermodynamical equilibrium the temperature is

related to the ensemble average of the kinetic energy of the particles in the

system. Also, we have seen that time averages obtained through MD are equal

to the ensemble averages under the ergodic hypothesis.

Temperature, under MD, can be estimated using the equipartition theorem

and assuming ergodicity. Hence for a system with N degrees of freedom, the

equipartition theorem can be rewritten as

〈
N∑
i=1

p2i
2mi

〉
= N

〈
p2i

2mi

〉
= N

kBT

2
. (2.6.7)
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Thus the temperature can be given using the following equation,

T =
2

NkB

〈
N∑
i=1

p2i
2mi

〉
. (2.6.8)

The instantaneous temperature can also be calculated using

Tt =
2

NkB

N∑
i=1

p2i
2mi

. (2.6.9)

The instantaneous temperature times the Boltzmann constant kBTt is only an

estimate of the inverse of the fixed parameter β of the distribution function

which can fluctuate.
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Chapter 3

Non-Hamiltonian dynamics

In this chapter, I shall introduce the generalized algebraic bracket used within

non-Hamiltonian dynamics and I shall further show how to obtain the com-

pressibility for the following extended systems; Nosé-Hoover, Nosé-Hoover chain

and Bulgac-Kusnezov thermostats.

For a very long time, non-Hamiltonian dynamics has been introduced in MD

simulations to obtain statistical averages results in various ensembles[6, 7, 10,

33, 34] by using additional thermostats and/or barostats coupled to the system

of interest. These additional thermostats together with the physical system of

interest make up what is known as the extended system. In the 1980s, An-

dersen [5] made a significant contribution to the MD computational approach

with his work on constant pressure MD using the extended system[10]. By

representing the thermal reservoir using additional degrees of freedom one can

use the extended system to explore the phase space of a physical system ac-

cording to a desired ensemble distribution different from the microcanonical

distribution function. Moreover, the desired ensemble distribution is found

through averaging the extended variables obtained from the physical system

as it dynamically explores a hyper surface of constant energy that corresponds
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to a microcanonical like distribution function in the extended phase space.

Extended systems maintain a well defined conserved energy in the extended

phase space.

In Ref.[5], a general mathematical structure has been introduced for conserva-

tive non-Hamiltonian equations of motion. Furthermore, it is shown that the

conserved dynamical quantity, the “extended energy” simply referred to as the

Hamiltonian, is used in specifying the phase space flow. It is also noted that

for a given fixed conserved Hamiltonian obtained from a general structure of

the equations of motion one can select the compressibility of phase space and

obtain an ensemble distribution for the physical system of interest. The com-

pressibility, in non-Hamiltonian dynamics, is deemed as the key in building the

invariant measure of phase space [35]. In this chapter we shall introduce the

generalized algebraic bracket[15] used within non-Hamiltonian dynamics and

show how to obtain the compressibility for the following extended systems;

Nosé-Hoover, Nosé-Hoover chain and Bulgac-Kusnezov thermostats.

Consider a conserved time-independent Hamiltonian H, the equations of mo-

tion can be written in a general symplectic form

ẋ =

2N∑
j=1

Bij
∂H
∂xj

, i = 1, 2N, (3.0.1)

or in bracket form

ẋi = {xi,H} , i = 1, . . . , 2N, (3.0.2)

where the point in phase space x = (q, p) is given by the N generalized coordi-

nates q and the N generalized momenta p. Bij is an antisymmetric matrix

Bij = −Bji, i, j = 1, 2N, (3.0.3)
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which has the same 2N dimensions as the phase space and whose elements are

a general function of x. This matrix can be written in block form [15, 5] as

B =

 0 1

−1 0

 , (3.0.4)

and is used in discussing symplectic properties of canonical transformations.

When a noncanonical transformation is applied to the phase space coordi-

nates, the matrix B loses its canonical form[36] but remains anti-symmetric.

Throughout the transformation, equation (3.0.1) preserves the same structure

used in the noncanonical Hamiltonian dynamics [36, 37].

Under any phase space flow defined by equation (3.0.2) a time-independent

Hamiltonian will be a constant of motion due to the anti-symmetric nature of

the matrix Bij . By taking the total time derivative of H, one finds that is es-

sentially taking the trace of the product of a symmetric matrix ∂H/∂xi∂H/∂xj

with an antisymmetric matrix Bij ; such a trace is identically zero [5, 15]:

dH
dt

= {H,H} ,

=

2N∑
i=1

∂H
∂xi

ẋi,

=
2N∑
i,j=1

∂H
∂xi
Bij

∂H
∂xj

= 0. (3.0.5)

It is interesting to note that the property shown in equation (3.0.5) is always

valid for flows described by equation (3.0.1) provided that the matrix Bij is

antisymmetric in nature. This has been exploited by Sergi and Ferrario[5] for

introducing and defining non-Hamiltonian conservative phase space flows[15].

Since the bracket in equation (3.0.2) remains conserved under noncanonical
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transformations, it is used in defining expressions for non-Hamiltonian phase

space flows. However, it must be pointed out that it does not satisfy the Jacobi

relation which is an important algebraic property. As seen from the previous

chapter, the properties satisfied within Hamiltonian dynamics by the Poisson

bracket[27] are

{a, b} = −{b, a} , (3.0.6)

{const× a, b} = const× {a, b} , (3.0.7)

{a+ b, c} = {a, c}+ {b, c} , (3.0.8)

{ab, c} = a {b, c}+ {a, c} b, (3.0.9)

and the Jacobi relation

J = {{a, b} , c}+ {{c, a} , b}+ {{b, c} , a} = 0, (3.0.10)

where a, b, c are arbitrary phase space functions. If the matrix Bij holds in

equation (3.0.4) and satisfies the following condition

2N∑
n=1

(
Bin

∂Bjk
∂xn

+ Bkn
∂Bij
∂xn

+ Bjn
∂Bki
∂xn

)
= 0, (3.0.11)

for any index i, j, k then the flux in phase space remains Hamiltonian. Thus,

as a basis of determining noncanonical Hamiltonian flows [36, 37], Eq. (3.0.1)

is used provided that the conditions described by Eqs. (3.0.3) and (3.0.11) are

satisfied. One such example of the noncanonical Hamiltonian dynamics is the

Andersen constant pressure equations of motion[10].

For non-Hamiltonian dynamics, all the other properties shown in Eqs. (3.0.6-

3.0.9) hold with the exception of the Jacobi relation, that is J 6= 0. The failure
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of the Jacobi implies that the algebra lacks invariance under time translations.

In order to illustrate this feature, lets consider the Jacobi relation J [15],

{a, {b,H}}+ {H {a, b}}+ {b, {H, a}} = J , (3.0.12)

where a, b are the phase space variables and H is the Hamiltonian. Performing

a direct calculation, one can show that

J =
∑
i,j,k,n

∂a

∂xi

∂b

∂xj

∂H
∂xk

(
Bin

∂Bjk
∂xn

+ Bkn
∂Bij
∂xn

+ Bjn
∂Bki
∂xn

)
. (3.0.13)

From the above equation one gets

{{a, b} ,H} = {ȧ, b}+
{
a, ḃ
}

+ J , (3.0.14)

which can be written as

d

dt
{a, b} = {ȧ, b}+

{
a, ḃ
}

+ J . (3.0.15)

An important feature emerges from Eq. (3.0.15). The equation shows that

under time translation the non-Hamiltonian algebra lack invariance. Thus,

non-Hamiltonian bracket of two constants of motion is no longer a constant of

motion because of a non-zero Jacobi relation.

The equations of motion defined by Eq. (3.0.1) will generally lead to a non-zero

phase space compressibility being defined. The compressibility can be derived

as follows,
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κ (x) =
2N∑
i

∂ẋi
∂xi

,

=

2N∑
i,j

∂

∂xi

(
Bij

∂H
∂xj

)
,

=
2N∑
i,j

(
∂Bij
∂xi

∂H
∂xj

+ Bij
∂2H
∂xjxi

)
, (3.0.16)

where the second term in Eq. (3.0.16) is identically zero since it is the product

of a symmetric matrix with the trace of an antisymmetric one Bij . Thus, the

compressibility is

κ (x) =
2N∑
i,j

∂Bij
∂xi

∂H
∂xj

. (3.0.17)

Having a non-zero phase space compressibility means that the dynamics will

not sample the phase space uniformly. However, the approach proposed in Ref.

[35] exploits the ergodic hypothesis to determine explicitly the corresponding

weight in phase space. By choosing the form of the conserved Hamiltonian H,

we can construct particular phase space compressibility κ. This is made pos-

sible by exploiting the structure of Eq. (3.0.1) as it allows one the freedom to

choose the matrix elements Bij [5]. As a result, conservative non-Hamiltonian

equations of motion can be derived with a controlled statistical weight of the

phase space. Such an approach may lead to other possibilities of formulating

non-Hamiltonian dynamics with statistical constraints. In order to address the

general features of non-Hamiltonian dynamics, only static equilibrium proper-

ties shall be discussed within this thesis. This restriction will, in turn, help

when designing ergodic systems.
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3.1 Extended system dynamics

In MD simulations, the underlined structure found in Eq. (3.0.1) exists for

nearly all, if not most of the equations of motion for the extended systems. In

this section we show how to obtain the compressibility for the following deter-

ministic thermostats; Nosé-Hoover, Nosé-Hoover chain and Bulgac-Kusnezov

thermostats.

3.1.1 Nosé-Hoover thermostat

The dynamics for a one-dimensional system that is coupled to a Nosé-Hoover

thermostat has a 2N+2 dimensional phase space where the phase space points

are denoted by x = (q, η, p, pη). The Nosé-Hoover Hamiltonian is

HNH =
N∑
i=1

p2i
2mi

+ V (q) +
p2η

2mη
+NkBTη, (3.1.1)

where (q, p) are the coordinates and momenta respectively. m is the oscillator

mass, while η is the thermostat variable with the corresponding fictitious mass

mη with its associated momenta pη. kB is the Boltzmann constant whereas T

is the temperature.

The equations of motion are given by[34]

q̇i =
pi
mi
, (3.1.2)

ṗi = Fi −
pη
mη

pi, (3.1.3)

η̇ =
pη
mη

, (3.1.4)

ṗη =

N∑
i=1

p2i
mi
−NkBT. (3.1.5)
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Equations (3.1.2-3.1.5) can be re-written in matrix form by using Eq. (3.0.1)

and evaluating explicitly ∂H/∂x one can find the anti-symmetric matrix BNH .

The tensorial form of equations (3.1.2-3.1.5) is (in block form)



q̇i

η̇

ṗi

ṗη


=



0 0 1 0

0 0 0 1

−1 0 0 −pi

0 −1 pi 0





−Fi

NkBT

pi
mi

pη
Mη


, (3.1.6)

where the anti-symmetric matrix is,

BNH =



0 0 1 0

0 0 0 1

−1 0 0 −pi

0 −1 pi 0


. (3.1.7)

Equation (3.1.6) shows the phase space flow given in Eq. (3.0.1) is conserved

and satisfies the structure of non-Hamiltonian dynamics given by Nosé-Hoover

equations of motion[5].

Using equation (3.0.17), one can find the compressibility of the Nosé-Hoover

thermostat as follows

κ =
2N∑
i,j

∂BNHij
∂xi

∂HNH
∂xj

, (3.1.8)

= − pη
mη

. (3.1.9)

Upon introducing the extended phase space function
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HNHT = H+
p2η

2mη
, (3.1.10)

and taking a total time derivative of Eq. (3.1.10) and using the equations of

motion, one finds

dHNHT
dt

= −NkBT
pη
mη

, (3.1.11)

which can be related to the compressibility by

κ = − pη
mη

= β
dHNHT
dt

, (3.1.12)

where β = 1/kBT .

A derivation for the associated invariant measure of the Nosé-Hoover thermo-

stat has been shown in Appendix B.1.

3.1.2 Nosé-Hoover chain thermostat

The dynamics for a one-dimensional system that is coupled to a Nosé-Hoover

Chain thermostat has a 2N + 4 dimensional phase space where the phase

space points are denoted by x = (q, η1, η2, p, pη1 , pη2). The Nosé Hoover chain

Hamiltonian is

HNHC =
N∑
i=1

p2i
2mi

+ V (q) +
p2η1

2mη1

+
p2η2

2mη2

+NkBTη1 + kBTη2, (3.1.13)

where (q, p) are the 2N coordinates and momenta respectively. m is the os-

cillator mass, while η1 and η2 are the two thermostat variables with the cor-
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responding fictitious masses mη1 and mη2 , and their associated momenta pη1

and pη2 . kB is the Boltzmann constant whereas T is the temperature.

The equations of motion are given by [34]

q̇i =
pi
mi
, (3.1.14)

η̇1 =
pη1
mη1

, (3.1.15)

η̇2 =
pη2
mη2

, (3.1.16)

ṗi = −∂V (q)

∂qi
− pi

pη1
mη1

, (3.1.17)

ṗη1 =

N∑
i=1

(
p2i
mi
− kBT

)
− pη1

pη2
mη2

, (3.1.18)

ṗη2 =
p2η1
mη1

− kBT. (3.1.19)

Equations (3.1.14-3.1.19) can be re-written in matrix form by using Eq. (3.0.1)

and evaluating explicitly ∂H/∂x one can find the anti-symmetric matrix BNH .

The tensorial form of Eqs. (3.1.14-3.1.19) is (in block form)



q̇i

η̇

χ̇

ṗi

ṗη1

ṗη2


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 −pi 0

0 −1 0 pi 0 −pη1

0 0 −1 0 pη1 0





−Fi (q)

NkBT

kBT

pi
mi

pη1
Mη1

pη2
Mη2


, (3.1.20)

where the anti-symmetric matrix is,
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BNHC =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 −pi 0

0 −1 0 pi 0 −pη1

0 0 −1 0 pη1 0


. (3.1.21)

Equation (3.1.20) shows the phase space flow given in Eq. (3.0.1) is conserved

and satisfies the structure of non-Hamiltonian dynamics given by Nosé-Hoover

chain equations of motion[5].

Using equation (3.0.17), one can find the compressibility of the Nosé-Hoover

chain thermostat as follows

κ =

2N∑
i,j=1

∂BNHCij

∂xi

∂HNHC
∂xj

, (3.1.22)

= − pη1
mη1

− pη2
mη2

, (3.1.23)

upon introducing the extended phase space function:

HNHCT = H+
p2η1

2mη1

+
p2η2

2mη2

, (3.1.24)

taking a total time derivative of Eq. (3.1.24) and using the equations of motion,

one finds

dHNHCT

dt
= kBT

(
− pη1
mη1

− pη2
mη2

)
, (3.1.25)

which can be related to the compressibility by

39



κ = − pη1
mη1

− pη2
mη2

= β
dHNHCT

dt
, (3.1.26)

where β = 1/kBT .

A derivation for the associated invariant measure of the Nosé-Hoover chain

thermostat has been shown in Appendix B.2.

3.1.3 Bulgac-Kusnezov thermostat

The dynamics for a one-dimensional system that is coupled to a Bulgac-

Kusnezov thermostat has a 2N + 4 dimensional phase space where the phase

space points are denoted by x = (q, ζ, ξ, p, pζ , pξ)[14, 38, 39, 40]. The Hamil-

tonian of the system is given as

HBK =
N∑
i=1

p2i
2mi

+ V (q) +
p2ζ

2mζ
+

p2ξ
2mξ

+NkBTζ +NkBTξ, (3.1.27)

where (q, p) are the coordinates and momenta respectively. m is the oscillator

mass, while ζ and ξ are the Bulgac-Kusnezov ’demons’ with the corresponding

fictitious masses mζ and mξ, and their associated momenta pζ and pξ. kB is

the Boltzmann constant whereas T is the temperature.

The equations of motion are given by
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q̇i =
pi
mi
− qi

pξ
mξ

, (3.1.28)

ζ̇ =
pζ
mζ

, (3.1.29)

ξ̇ =
pξ
mξ

, (3.1.30)

ṗi = Fi − pi
pζ
mζ

, (3.1.31)

ṗζ =
N∑
i=1

(
p2i
mi
− kBT

)
, (3.1.32)

ṗξ = −
N∑
i=1

(qiFi + kBT ) . (3.1.33)

Equations (3.1.28-3.1.33) can be re-written in matrix form by using Eq. (3.0.1)

and evaluating explicitly ∂H/∂x one can find the anti-symmetric matrix BBK .

The tensorial form of Eqs. (3.1.28-3.1.33) is



q̇i

ζ̇

ξ̇

ṗi

ṗζ

ṗξ


=



0 0 0 1 0 −qi

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 −pi 0

0 −1 0 pi 0 0

qi 0 −1 0 0 0





−Fi (q)

NkBT

NkBT

pi
mi

pζ
Mζ

pξ
Mξ


, (3.1.34)

where the anti-symmetric matrix is,
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BBK =



0 0 0 1 0 −qi

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 −pi 0

0 −1 0 pi 0 0

qi 0 −1 0 0 0


. (3.1.35)

Equation (3.1.20) shows the phase space flow given in Eq. (3.0.1) is conserved

and satisfies the structure of non-Hamiltonian dynamics given by Nosé-Hoover

chain equations of motion[5].

Using equation (3.0.17), one can find the compressibility of the Bulgac-Kusnezov

thermostat as follows

κ =

2N∑
i,j=1

∂BBKij
∂xi

∂HBK
∂xj

, (3.1.36)

= −
pζ
mζ
−
pξ
mξ

, (3.1.37)

upon introducing the extended phase space function:

HBKT = H+
p2ζ

2mζ
+

p2ξ
2mξ

, (3.1.38)

taking a total time derivative of Eq. (3.1.38) and using the equations of motion,

one finds

dHBKT
dt

= kBT

(
−
pζ
mζ
−
pξ
mξ

)
, (3.1.39)

which can be related to the compressibility by

42



κ = −
pζ
mζ
−
pξ
mξ

= β
dHBKT
dt

, (3.1.40)

where β = 1/kBT .

A derivation for the associated invariant measure of the Bulgac-Kusnezov ther-

mostat has been shown in Appendix B.3.
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Chapter 4

Time-reversible and

measure-preserving algorithms

In this chapter, I show how to derive systematically time-reversible and measure-

preserving algorithms for the following deterministic thermostats; Nosé-Hoover,

Nosé-Hoover Chain and Bulgac-Kusnezov thermostats.

4.1 Time-reversible algorithms

In the previous chapter, the concept of non-Hamiltonian dynamics has been

defined and justified. One is now faced with searching for appropriate algo-

rithms for integrating non-Hamiltonian equations of motion. The numerical

algorithm to be derived is one that is conjured up by renouncing some basic

theoretical properties (such as time-invariance of the bracket algebra) and has

to be such that it does not break any other symmetries of the problem. As

mentioned in the work of Sergi [15], in the aforementioned numerical algorithm,

the main property that has to be left unchanged is the time-reversal invariance

of the phase space trajectory.
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Tuckerman et al [34] have recently shown how to systematically derive time-

reversible algorithms from the Liouville formulation of classical mechanics.

Their approach involves the following, starting off with the Trotter expansion of

the classical Liouville propagator and the reversible Trotter expansion, several

new integrators are derived for solving Newton’s equations of motion[1].

Consider an arbitrary function f (p (t) , q (t)) with implicit time dependence

that depends on all the coordinates q and momenta p of the system. If a time

derivative of this function is taken, then ḟ will be given by

ḟ = q̇
∂f

∂q
+ ṗ

∂f

∂p
,

≡ iLf, (4.1.1)

where the Liouville operator is defined by

iL = q̇
∂

∂q
+ ṗ

∂

∂p
. (4.1.2)

The classical propagator is then

U (t) = eiLt, (4.1.3)

which is a unitary operator; that is, U (−t) = U−1 (t).

The state of the system at time t is given by integrating equation (4.1.1) under

which the following formal solution is obtained

f (p (t) , q (t)) = U (t) f (p (0) , q (0)) . (4.1.4)
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In all cases of practical interest, much cannot be done with this formal solution,

because the exact integration of the classical equations of motion are equivalent

to evaluating the right-hand side of the equation. However, in a few simple

cases the formal solution is known explicitly. In particular, suppose that our

Liouville operator (4.1.2) can be decomposed into two parts such that

iL = iLq + iLp. (4.1.5)

Now taking only the first term on the right-hand side of Eq. (4.1.2).

iLq = q̇ (0)
∂

∂q
, (4.1.6)

where q̇ (0) is the initial value of q̇ at time t = 0. Substituting Eq. (4.1.6)

into Eq. (4.1.4) and using a Taylor series expansion of the exponential on the

right-hand side, we get

f (t) = f (0) + iLqtf (0) +
(iLqt)

2

2!
f (0) + · · · ,

= exp

(
q̇ (0) t

∂

∂q

)
f (0) ,

=

∞∑
n=0

(q̇ (0))n

n!

∂n

∂qn
f (0) ,

= f [p (0) , (q + q̇ (0) t)] . (4.1.7)

From the above result, it can be seen that the effect of exp (iLqt) is a simple

shift of coordinates. Similarly, the effect of exp (iLpt), with iLp defined as

iLp = ṗ (0)
∂

∂p
, (4.1.8)

is a simple shift of momenta.
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From Eq. (4.1.5), the total Liouville operator, iL, is equal iLq + iLp. How-

ever, exp (iLt) = exp (i (Lq + Lp) t) is not equivalent to exp (iLqt)×exp (iLpt),

because iLq and iLp are non-commuting operators. Thus using the Trotter

theorem one can define exp (i (Lq + Lp) t) as follows

ei(Lq+Lp)t =
[
ei(Lq+Lp)t/P

]P
, (4.1.9)

=
[
eiLq(4t/2)eiLp4teiLq(4t/2)

]P
+O

(
t3/P 2

)
, (4.1.10)

where 4t = t/P . From the above, we obtain the following discretized time

propagator

G (4t) = Uq

(
4t
2

)
Up (4t)Uq

(
4t
2

)
, (4.1.11)

= eiLq(4t/2)eiLp4teiLq(4t/2), (4.1.12)

which is unitary. This property can easily be shown to be the case since

the individual operators that compose G (4t) are separately unitary, therefore

G−1 (t) = G† (t) = G (−t). The implication of this is that any integrator based

on such a Trotter factorization will be reversible[1].

In order to see what the effect is of this operator on the coordinates and

momenta of the particles. Let us define

fq [4t; f (0)] = Uq (4t) f (0) (4.1.13)

and

fp [4t; f (0)] = Up (4t) f (0) (4.1.14)
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to be, respectively, the state at time4t when the system is propagated by

Uq (4t) or Up (4t) starting from the state f (0) at time t = 0. Applying the

operators in equation (4.1.12) serially, that is, first starting off by applying

eiLq(4t/2) to f (0), we obtain

f (p (4t) , q (4t)) = Uq

(
4t
2

)
Up (4t)Uq

(
4t
2

)
f (p (0) , q (0)) ,

= Uq

(
4t
2

)
Up (4t) fq

(
4t
2

; f (p (0) , q (0))

)
,

= Uq

(
4t
2

)
fp

(
4t; fq

(
4t
2

; f (p (0) , q (0))

))
,

= fq

(
4t
2

; fp

(
4t; fq

(
4t
2

; f (p (0) , q (0))

)))
.

(4.1.15)

Using as an example the formulation of deterministic thermostats by means

of non-Hamiltonian dynamics, we can show how in practice a time-reversible

algorithm is built. The use of such deterministic thermostats is a culmination

of a journey from Boltzmann to Gibbs and then back to Boltzmann as they

generally sample the canonical distribution function of a system coupled to a

deterministic bath, represented by a few additional degrees of freedom. Ex-

amples of such deterministic thermostats are Nosé-Hoover, Nosé-Hoover chain

and Bulgac-Kusnezov. In the next sections we shall illustrate the derivation of

time-reversible integration algorithms for the Nosé-Hoover, Nosé-Hoover chain

and Bulgac-Kusnezov dynamics.

4.1.1 Time-reversible integration of Nosé-Hoover dynamics

The Hamiltonian of Nosé-Hoover dynamics is given by
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HNH =

N∑
i=1

p2i
2mi

+ V (q) +
p2η

2mη
+NkBTη, (4.1.16)

where (q, p) are the coordinates and momenta respectively. m is the oscillator

mass, while η is the thermostat variable with the corresponding fictitious mass

mη with its associated momenta pη. kB is the Boltzmann constant whereas T

is the temperature.

The equations of motion can be defined as

q̇i =
pi
mi
, (4.1.17)

ṗi = Fi −
pη
mη

pi, (4.1.18)

η̇ =
pη
mη

, (4.1.19)

ṗη =

N∑
i=1

(
p2i
mi
− kBT

)
. (4.1.20)

The Liouville operator L is associated with the equations of motion Eqs.

(4.1.17) - (4.1.20), and split as

L =
5∑

α=1

Lα, (4.1.21)

where the single terms are given as follows
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L1 =
N∑
i=1

pi
mi

∂

∂qi
, (4.1.22)

L2 =

N∑
i=1

Fi (q)
∂

∂pi
, (4.1.23)

L3 = −
N∑
i=1

pi
pη
mη

∂

∂pi
, (4.1.24)

L4 =
pη
mη

∂

∂η
, (4.1.25)

L5 = Fpη
∂

∂pη
, (4.1.26)

where we have defined the following

Fi (q) = −∂V (q)

∂qi
, (4.1.27)

Fpη =
N∑
i=1

(
p2i
mi
− kBT

)
. (4.1.28)

A propagator

Uα (τ) = exp [τLα] , (4.1.29)

for α = 1, . . . , 5 is associated with each Liouville piece. The Nosé-Hoover

propagator can be written explicitly using the symmetric Trotter formula as

follows

U (τ) = U5

(τ
2

)
U4

(τ
2

)
U3

(τ
2

)
U2

(τ
2

)
,

× U1 (τ)U2

(τ
2

)
U3

(τ
2

)
U4

(τ
2

)
U5

(τ
2

)
. (4.1.30)
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Using the direct translation technique, the pseudo-code form of the time-

reversible algorithm is:

pη → pη + τ
2Fpη

}
: U5

(
τ
2

)
η → η + τ

2
pη
mη

}
: U4

(
τ
2

)

pi → pi · exp
[
− τ

2
pη
mη

] }
: U3

(
τ
2

)

pi → pi + τ
2Fi (q)

}
: U2

(
τ
2

)

qi → qi + τ pi
mi

}
: U1 (τ)

pi → pi + τ
2Fi (q)

}
: U2

(
τ
2

)

pi → pi · exp
[
− τ

2
pη
mη

] }
: U3

(
τ
2

)

η → η + τ
2
pη
mη

}
: U4

(
τ
2

)
pη → pη + τ

2Fpη
}

: U5

(
τ
2

)

4.1.2 Time-reversible integration of Nosé-Hoover chain dy-

namics

The Hamiltonian of Nosé-Hoover chain dynamics is given by

HNHC =
N∑
i=1

p2i
2mi

+ V (q) +
p2η1

2mη1

+
p2η2

2mη2

+NkBTη1 + kBTη2, (4.1.31)
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where (q, p) are the coordinates and momenta respectively. m is the oscillator

mass, while η1 and η2 are the two thermostat variables with the corresponding

fictitious masses mη1 and mη2 , and their associated momenta pη1 and pη2 . kB

is the Boltzmann constant whereas T is the temperature.

The equations of motion are given by

q̇i =
pi
mi
, (4.1.32)

η̇1 =
pη1
mη1

, (4.1.33)

η̇2 =
pη2
mη2

, (4.1.34)

ṗi = −∂V (q)

∂qi
− pi

pη1
mη1

, (4.1.35)

ṗη1 =

N∑
i=1

(
p2i
mi
− kBT

)
− pη1

pη2
mη2

, (4.1.36)

ṗη2 =
p2η1
mη1

− kBT. (4.1.37)

The Liouville operator L is associated with the equations of motion Eqs.

(4.1.32) - (4.1.37), and split as

L =
5∑

α=1

Lα, (4.1.38)

where the single terms are given as follows
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L1 =
N∑
i=1

pi
m

∂

∂qi
+
pη1
mη1

∂

∂η1
+
pη2
mη2

∂

∂η2
, (4.1.39)

L2 =

N∑
i=1

Fi (q)
∂

∂pi
, (4.1.40)

L3 = −
N∑
i=1

pη1
mη1

pi
∂

∂pi
, (4.1.41)

L4 =

[
− pη2
mη2

pη1 + Fpη1

]
∂

∂pη1
, (4.1.42)

L5 = Fpη2
∂

∂pη2
, (4.1.43)

where we have defined the following

Fi (q) = −∂V (q)

∂qi
, (4.1.44)

Fpη1 =

N∑
i=1

(
p2i
m
− kBT

)
, (4.1.45)

Fpη2 =

(
p2η1
mη1

− kBT

)
. (4.1.46)

Operators with the form

Li =

(
− pk
mk

pi + Fpi

)
∂

∂pi
, (4.1.47)

as seen in LB can be expanded following the derivation in Appendix A were

we find

eτLipi = pie
−τ(pk/mk) + τFpie

−τ(pk/2mk)
(
τ
pk

2mk

)−1
sinh

[
τ
pk

2mk

]
. (4.1.48)
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The function
(
τ pk
2mk

)−1
sinh

[
τ pk
2mk

]
is treated through an eighth order expan-

sion.

A propagator

Uα (τ) = exp [τLα] , (4.1.49)

for α = 1, . . . , 5 is associated with each Liouville piece. The Nosé-Hoover chain

propagator can be written explicitly using the symmetric Trotter formula as

follows

U (τ) = U5

(τ
2

)
U4

(τ
2

)
U3

(τ
2

)
U2

(τ
2

)
,

× U1 (τ)U2

(τ
2

)
U3

(τ
2

)
U4

(τ
2

)
U5

(τ
2

)
. (4.1.50)

Using the direct translation technique, the pseudo-code form of the time-

reversible algorithm is:

pη2 → pη2 + τ
2Fpη2

}
: U5

(
τ
2

)
pη1 → pη1e

− τ
4 (pη2/mη2) + τ

4Fη1e
− τ

4 (pη2/2mη2)
(
τ
4
pη2
2mη2

)−1
sinh

[
τ
4
pη2
2mη2

] }
:

U4

(
τ
2

)
pi → pi · exp

[
− τ

2
pη1
mη1

] }
: U3

(
τ
2

)

pi → pi + τ
2Fi (q)

}
: U2

(
τ
2

)
qi → qi + τ pi

mi

η1 → η1 + τ
pη1
mη1

η2 → η2 + τ
pη2
mη2

 : U1 (τ)
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pi → pi + τ
2Fi (q)

}
: U2

(
τ
2

)

pi → pi · exp
[
− τ

2
pη1
mη1

] }
: U3

(
τ
2

)

pη1 → pη1e
− τ

4 (pη2/mη2) + τ
4Fη1e

− τ
4 (pη2/2mη2)

(
τ
4
pη2
2mη2

)−1
sinh

[
τ
4
pη2
2mη2

] }
:

U4

(
τ
2

)
pη2 → pη2 + τ

2Fpη2
}

: U5

(
τ
2

)

4.1.3 Time-reversible integration of Bulgac-Kusnezov dynam-

ics

The Hamiltonian for the Bulgac-Kusnezov dynamics is given as

HBK =
N∑
i=1

p2i
2mi

+ V (q) +
p2ζ

2mζ
+

p2ξ
2mξ

+NkBTζ +NkBTξ, (4.1.51)

where (q, p) are the coordinates and momenta respectively. m is the oscillator

mass, while ζ and ξ are the Bulgac-Kusnezov ’demons’ with the corresponding

fictitious masses mζ and mξ, and their associated momenta pζ and pξ. kB is

the Boltzmann constant whereas T is the temperature.

The equations of motion are given by
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q̇i =
pi
mi
− qi

pξ
mξ

, (4.1.52)

ζ̇ =
pζ
mζ

, (4.1.53)

ξ̇ =
pξ
mξ

, (4.1.54)

ṗi = Fi − pi
pζ
mζ

, (4.1.55)

ṗζ =
N∑
i=1

(
p2i
mi
− kBT

)
, (4.1.56)

ṗξ = −
N∑
i=1

(qiFi + kBT ) . (4.1.57)

The Liouville operator L is associated with the equations of motion Eqs.

(4.1.52) - (4.1.57), and split as

L =

5∑
α=1

Lα, (4.1.58)

where the single terms are given as follows

L1 =

N∑
i=1

(
−qi

pξ
mξ

+
pi
m

)
∂

∂qi
+
pξ
mξ

∂

∂ξ
+
pζ
mζ

∂

∂ζ
, (4.1.59)

L2 =
N∑
i=1

Fi
∂

∂pi
, (4.1.60)

L3 = −
N∑
i=1

pi
pζ
mζ

∂

∂pi
, (4.1.61)

L4 = Fξ
∂

∂pξ
, (4.1.62)

L5 = Fζ
∂

∂pζ
, (4.1.63)

where we have defined the following
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Fi = −∂V
∂qi

, (4.1.64)

Fξ =

N∑
i=1

(−qiFi − kBT ) , (4.1.65)

Fζ =

N∑
i=1

(
p2i
mi
− kBT

)
. (4.1.66)

A propagator

Uα (τ) = exp [τLα] , (4.1.67)

for α = 1, . . . , 5 is associated with each Liouville piece. The Bulgac-Kusnezov

propagator can be written explicitly using the symmetric Trotter formula as

follows

U (τ) = U5

(τ
2

)
U4

(τ
2

)
U3

(τ
2

)
U2

(τ
2

)
,

× U1 (τ)U2

(τ
2

)
U3

(τ
2

)
U4

(τ
2

)
U5

(τ
2

)
. (4.1.68)

Using the direct translation technique, the pseudo-code form of the time-

reversible algorithm is:

pζ → pζ + τ
2Fζ

}
: U5

(
τ
2

)
pξ → pξ + τ

2Fξ
}

: U4

(
τ
2

)
pi → pi · exp

[
− τ

2
pζ
mζ

]}
: U3

(
τ
2

)
pi → pi + τ

2Fi
}

: U2

(
τ
2

)
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ζ → ζ + τ
pζ
mζ

ξ → ξ + τ
pξ
mξ

qi → qie
−τ(pξ/mξ) + τ

(
pi
mi

)
e−τ(pξ/2mξ)

(
τ
pξ
2mξ

)−1
sinh

[
τ
pξ
2mξ

]
 : U1 (τ)

pi → pi + τ
2Fi
}

: U2

(
τ
2

)
pi → pi · exp

[
− τ

2
pζ
mζ

]}
: U3

(
τ
2

)
pξ → pξ + τ

2Fξ
}

: U4

(
τ
2

)
pζ → pζ + τ

2Fζ
}

: U5

(
τ
2

)

4.2 Measure-preserving algorithms

Ezra [20] proposed a method for deriving integrators which are both time-

reversible and measure-preserving. In his proposal, instead of implementing

an arbitrary splitting of the Liouville operator, one starts off with a splitting

the Hamiltonian into a sum of ns terms,

H =

ns∑
α=1

H (α) , (4.2.1)

where the splitting (4.2.1) is not unique.

The equations of motion is readily established as

ẋ =

ns∑
α=1

ẋ (α) , (4.2.2)

where

ẋi (α) =
∑
j

Bij
∂H (α)

∂xj
. (4.2.3)
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As a consequence of the split Hamiltonian, the split Liouville operator is given

by

L =

ns∑
α=1

Lα, (4.2.4)

where

L =
∑
α

∑
i,j

Bij
∂H (α)

∂xj

∂

∂xi
. (4.2.5)

The phase space flow defined by Eq. (3.0.2) has non-zero compressibility, thus

the statistical mechanics must be formulated in terms of a modified phase space

measure[4, 5, 15, 35]

ω̄ = e−ω(x)ω, (4.2.6)

where

ω = dx1ˆ dx2ˆ · · · ˆ dx2N , (4.2.7)

is the volume element in phase spaceG. S. Ezra [20] and the statistical weight

ω (x) is defined by

dω

dt
= κ (x) . (4.2.8)

It has been shown [20] that if,

∂

∂xj

[
e−ω(x)Bij

]
= 0 (4.2.9)

for i = 1, . . . , 2N , then
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Lαω̄ = 0, (4.2.10)

for every α. This implies that propagators defined as

Uα (τ) = exp [τLα] , (4.2.11)

where α = 1, 2, 3 . . . ns , results in single propagation steps that preserve the

phase space measure[41]. Moreover, using the symmetric Trotter factorization,

algorithms that are both time-reversible and measure-preserving can derived

from the complete propagator,

U (τ) = U1

(τ
2

)
· · ·Uns−1

(τ
2

)
· Uns (τ) · Uns−1

(τ
2

)
· · ·U1

(τ
2

)
+O

(
τ3
)
.

(4.2.12)

.

In the next sections we shall illustrate the derivation of measure-preserving

integration algorithms for the Nosé-Hoover, Nosé-Hoover chain and Bulgac-

Kusnezov dynamics.

4.2.1 Reversible measure-preserving integration of Nosé-Hoover

dynamics

The Hamiltonian of Nosé-Hoover dynamics is given by

HNH =
N∑
i=1

p2i
2mi

+ V (q) +
p2η

2mη
+NkBTη, (4.2.13)

where (q, p) are the coordinates and momenta respectively. m is the oscillator

mass, while η is the thermostat variable with the corresponding fictitious mass
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mη with its associated momenta pη. kB is the Boltzmann constant whereas T

is the temperature.

The equations of motion of the dynamics can be defined as

q̇i =
pi
mi
, (4.2.14)

ṗi = Fi −
pη
mη

pi, (4.2.15)

η̇ =
pη
mη

, (4.2.16)

ṗη =

N∑
i=1

(
p2i
mi
− kBT

)
, (4.2.17)

Following Eq. (4.2.1), the Hamiltonian can be split into four terms as follows

H (1) = V (q) , (4.2.18)

H (2) =
N∑
i=1

p2i
2mi

, (4.2.19)

H (3) = NkBTη, (4.2.20)

H (4) =
p2η

2mη
. (4.2.21)

We can find the consequent splitting of the Liouville operator from

Lα =
∑
i,j

Bij
∂Hα

∂xj

∂

∂xi
. (4.2.22)

As a consequence of the splitting of the Hamiltonian, the corresponding Liou-

ville pieces are (see Appendix C.1)
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L1 = −
N∑
i=1

∂V (q)

∂qi

∂

∂pi
, (4.2.23)

L2 =

N∑
i=1

(
pi
mi

∂

∂qi
+
p2i
mi

∂

∂pη

)
, (4.2.24)

L3 = −NkBT
∂

∂pη
, (4.2.25)

L4 = −
N∑
i=1

pi
pη
mη

∂

∂pi
+
pη
mη

∂

∂η
. (4.2.26)

The complete Liouville operator is

L =
N∑
i=1

pi
m

∂

∂qi
−

N∑
i=1

[
∂V (q)

∂qi
+ pi

pη
mη

]
∂

∂pi
+
pη
mη

∂

∂η
+

N∑
i=1

[
p2i
m
− kBT

]
∂

∂pη
.

(4.2.27)

Commuting Liouville operators can be combined for the purpose of defining

an efficient algorithm as follows

LA = L1, (4.2.28)

= −
N∑
i=1

∂V (q)

∂qi

∂

∂pi
, (4.2.29)

=
N∑
i=1

Fi
∂

∂pi
, (4.2.30)
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LB = L2 + L3, (4.2.31)

=
N∑
i=1

pi
mi

∂

∂qi
+

N∑
i=1

(
p2i
mi
− kBT

)
∂

∂pη
, (4.2.32)

=
N∑
i=1

pi
mi

∂

∂qi
+ Fpη

∂

∂pη
, (4.2.33)

LC = L4, (4.2.34)

= −
N∑
i=1

pi
pη
mη

∂

∂pi
+
pη
mη

∂

∂η
, (4.2.35)

where we have defined the following

Fi (q) = −∂V (q)

∂qi
, (4.2.36)

Fpη =
N∑
i=1

(
p2i
mi
− kBT

)
. (4.2.37)

Defining

Uα (τ) = exp [τLα] , (4.2.38)

where α = A,B,C one possible reversible measure-preserving integration al-

gorithm for the Nosé-Hoover thermostat under the symmetric Trotter factor-

ization is then
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U (τ) = UB

(τ
4

)
· UC

(τ
2

)
· UB

(τ
4

)
· UA (τ) ,

× UB

(τ
4

)
· UC

(τ
2

)
· UB

(τ
4

)
. (4.2.39)

Using the direct translation technique the following pseudo code form of the

algorithm can be obtained:

qi → qi + τ
4
pi
mi

pη → pη + τ
4

∑N
i=1

(
p2i
mi
− kBT

)
 : UB

(
τ
4

)

pi → pi · exp
[
− τ

2
pη
mη

]
η → η + τ

2
pη
mη

 : UC
(
τ
2

)

qi → qi + τ
4
pi
mi

pη → pη + τ
4

∑N
i=1

(
p2i
mi
− kBT

)
 : UB

(
τ
4

)

pi → pi + τ · Fi (q)

}
: UA (τ)

qi → qi + τ
4
pi
mi

pη → pη + τ
4

∑N
i=1

(
p2i
mi
− kBT

)
 : UB

(
τ
4

)

pi → pi · exp
[
− τ

2
pη
mη

]
η → η + τ

2
pη
mη

 : UC
(
τ
2

)

qi → qi + τ
4
pi
mi

pη → pη + τ
4

∑N
i=1

(
p2i
mi
− kBT

)
 : UB

(
τ
4

)
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4.2.2 Reversible measure-preserving integration of Nosé-Hoover

chain dynamics

The Hamiltonian of Nosé-Hoover chain dynamics is given by

HNHC =
N∑
i=1

p2i
2mi

+ V (q) +
p2η1

2mη1

+
p2η2

2mη2

+NkBTη1 + kBTη2, (4.2.40)

where (q, p) are the coordinates and momenta respectively. m is the oscillator

mass, while η1 and η2 are the two thermostat variables with the corresponding

fictitious masses mη1 and mη2 , and their associated momenta pη1 and pη2 . kB

is the Boltzmann constant whereas T is the temperature.

The equations of motion are given by

q̇i =
pi
mi
, (4.2.41)

η̇1 =
pη1
mη1

, (4.2.42)

η̇2 =
pη2
mη2

, (4.2.43)

ṗi = −∂V (q)

∂qi
− pi

pη1
mη1

, (4.2.44)

ṗη1 =
N∑
i=1

(
p2i
mi
− kBT

)
− pη1

pη2
mη2

, (4.2.45)

ṗη2 =
p2η1
mη1

− kBT. (4.2.46)

Following Eq. (4.2.1), the Hamiltonian can be split into the following six terms
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H (1) = V (q) , (4.2.47)

H (2) =

N∑
i=1

p2i
2mi

, (4.2.48)

H (3) = NkBTη1, (4.2.49)

H (4) =
p2η1

2mη1

, (4.2.50)

H (5) = kBTη2, (4.2.51)

H (6) =
p2η2

2mη2

. (4.2.52)

We can find the consequent splitting of the Liouville operator from

Lα =
∑
i,j

Bij
∂Hα

∂xj

∂

∂xi
. (4.2.53)

As a consequence of the splitting of the Hamiltonian, the corresponding Liou-

ville pieces are (see Appendix C.2)

L1 = −
N∑
i=1

∂V (q)

∂qi

∂

∂pi
, (4.2.54)

L2 =
N∑
i=1

(
pi
mi

∂

∂qi
+
p2i
mi

∂

∂pη1

)
, (4.2.55)

L3 = −NkBT
∂

∂pη1
, (4.2.56)

L4 = −
N∑
i=1

pi
pη1
mη1

∂

∂pi
+
pη1
mη1

∂

∂η1
+
p2η1
mη1

∂

∂pη2
, (4.2.57)

L5 = −kBT
∂

∂pη2
, (4.2.58)

L6 = −pη1
pη2
mη2

∂

∂pη1
+
pη2
mη2

∂

∂η2
. (4.2.59)

An efficient algorithm can be defined as a result of combining commuting
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Liouville operators as follows

LA = L1,

= −
N∑
i=1

∂V (q)

∂qi

∂

∂pi
,

=

N∑
i=1

Fi (q)
∂

∂pi
, (4.2.60)

LB = L2 + L3 + L6,

=
N∑
i=1

pi
mi

∂

∂qi
+

[
−pη1

pη2
mη2

+
N∑
i=1

(
p2i
mi
− kBT

)]
∂

∂pη1
+
pη2
mη2

∂

∂η2
,

=

N∑
i=1

pi
mi

∂

∂qi
+

[
−pη1

pη2
mη2

+ Fpη1

]
∂

∂pη1
+
pη2
mη2

∂

∂η2
, (4.2.61)

LC = L4 + L5,

= −
N∑
i=1

pi
pη1
mη1

∂

∂pi
+
pη1
mη1

∂

∂η1
+

N∑
i=1

(
p2η1
mη1

− kBT

)
∂

∂pη2
,

= −
N∑
i=1

pi
pη1
mη1

∂

∂pi
+
pη1
mη1

∂

∂η1
+ Fpη2

∂

∂pη2
, (4.2.62)

where we have defined the following
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Fi (q) = −∂V (q)

∂qi
, (4.2.63)

Fpη1 =

N∑
i=1

(
p2i
mi
− kBT

)
, (4.2.64)

Fpη2 =
p2η1
mη1

− kBT. (4.2.65)

Operators with the form

Li =

(
− pk
mk

pi + Fpi

)
∂

∂pi
, (4.2.66)

as seen in LB can be expanded following the derivation seen in Appendix A

were we find

eτLipi = pie
−τ(pk/mk) + τFpie

−τ(pk/2mk)
(
τ
pk

2mk

)−1
sinh

[
τ
pk

2mk

]
. (4.2.67)

The function
(
τ pk
2mk

)−1
sinh

[
τ pk
2mk

]
is estimated using an eighth order expan-

sion.

Defining

Uα (τ) = exp [τLα] , (4.2.68)

where α = A,B,C one possible reversible measure-preserving integration al-

gorithm for the Nosé-Hoover chain thermostat under the symmetric Trotter

factorization is then
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U (τ) = UB

(τ
4

)
· UC

(τ
2

)
· UB

(τ
4

)
· UA (τ) ,

× UB

(τ
4

)
· UC

(τ
2

)
· UB

(τ
4

)
. (4.2.69)

Using the direct translation technique the following a pseudo code form of the

algorithm can be obtained:

qi → qi + τ
4
pi
mi

η2 → η2 + τ
4
pη2
mη2

pη1 → pη1e
− τ

4 (pη2/mη2) + τ
4Fη1e

− τ
4 (pη2/2mη2)

(
τ
4
pη2
2mη2

)−1
sinh

[
τ
4
pη2
2mη2

]
 :

UB
(
τ
4

)
pi → pi · exp

[
− τ

2
pη1
mη1

]
η1 → η1 + τ

2
pη1
mη1

pη2 → pη2 + τ
2

(
p2η1
mη1
− kBT

)


: UC
(
τ
2

)

qi → qi + τ
4
pi
mi

η2 → η2 + τ
4
pη2
mη2

pη1 → pη1e
− τ

4 (pη2/mη2) + τ
4Fη1e

− τ
4 (pη2/2mη2)

(
τ
4
pη2
2mη2

)−1
sinh

[
τ
4
pη2
2mη2

]
 :

UB
(
τ
4

)
pi → pi + τ · Fi (q)

}
: UA (τ)

qi → qi + τ
4
pi
mi

η2 → η2 + τ
4
pη2
mη2

pη1 → pη1e
− τ

4 (pη2/mη2) + τ
4Fη1e

− τ
4 (pη2/2mη2)

(
τ
4
pη2
2mη2

)−1
sinh

[
τ
4
pη2
2mη2

]
 :

UB
(
τ
4

)
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pi → pi · exp
[
− τ

2
pη1
mη1

]
η1 → η1 + τ

2
pη1
mη1

pη2 → pη2 + τ
2

(
p2η1
mη1
− kBT

)


: UC
(
τ
2

)

qi → qi + τ
4
pi
mi

η2 → η2 + τ
4
pη2
mη2

pη1 → pη1e
− τ

4 (pη2/mη2) + τ
4Fη1e

− τ
4 (pη2/2mη2)

(
τ
4
pη2
2mη2

)−1
sinh

[
τ
4
pη2
2mη2

]
 :

UB
(
τ
4

)

4.2.3 Reversible measure-preserving integration of Bulgac-Kusnezov

dynamics

The Hamiltonian of the Bulgac-Kusnezov dynamics is given by

HBK =

N∑
i=1

p2i
2mi

+ V (q) +
p2ζ

2mζ
+

p2ξ
2mξ

+NkBTζ +NkBTξ, (4.2.70)

where (q, p) are the coordinates and momenta respectively. mi is the i − th

mass, while ζ and ξ are the Bulgac-Kusnezov ’demons’ with the corresponding

fictitious masses mζ and mξ, and their associated momenta pζ and pξ. kB is

the Boltzmann constant whereas T is the temperature.

The equations of motion are given by
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q̇i =
pi
mi
− qi

pξ
mξ

, (4.2.71)

ζ̇ =
pζ
mζ

, (4.2.72)

ξ̇ =
pξ
mξ

, (4.2.73)

ṗi = Fi − pi
pζ
mζ

, (4.2.74)

ṗζ =
N∑
i=1

(
p2i
mi
− kBT

)
, (4.2.75)

ṗξ = −
N∑
i=1

(qiFi + kBT ) . (4.2.76)

Following Eq. (4.2.1), the Hamiltonian can be split into six terms as follows,

H (1) = V (q) , (4.2.77)

H (2) =
N∑
i=1

p2i
2mi

, (4.2.78)

H (3) = NkBTζ, (4.2.79)

H (4) = NkBTξ, (4.2.80)

H (5) =
p2ζ

2mζ
, (4.2.81)

H (6) =
p2ξ

2mξ
. (4.2.82)

We can find the consequent splitting of the Liouville operator from

Lα =
∑
i,j

Bij
∂Hα

∂xj

∂

∂xi
. (4.2.83)

As a consequence of splitting the Hamiltonian the split Liouville operator is

(see Appendix C.3)
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L1 =
N∑
i=1

(
−∂V (q)

∂qi

∂

∂pi
+ qi

∂V (q)

∂qi

∂

∂pξ

)
, (4.2.84)

L2 =

N∑
i=1

(
pi
mi

∂

∂qi
+
p2i
mi

∂

∂pζ

)
, (4.2.85)

L3 = −NkBT
∂

∂pζ
, (4.2.86)

L4 = −NkBT
∂

∂pξ
, (4.2.87)

L5 =
pζ
mζ

∂

∂ζ
−

N∑
i=1

pζ
mζ

pi
∂

∂pi
, (4.2.88)

L6 =
pξ
mξ

∂

∂ξ
−

N∑
i=1

pξ
mξ

qi
∂

∂qi
. (4.2.89)

For the purpose of defining an efficient integration algorithm, we can combine

commuting Liouville operators as follows:

LA = L1 + L4,

= −
N∑
i=1

∂V (q)

∂qi

∂

∂pi
+

N∑
i=1

[
qi
∂V (q)

∂qi
− kBT

]
∂

∂pξ
,

=

N∑
i=1

Fi (q)
∂

∂pi
+ Fpξ

∂

∂pξ
, (4.2.90)

LB = L2 + L3,

=
N∑
i=1

pi
mi

∂

∂qi
+

N∑
i=1

[
p2i
mi
− kBT

]
∂

∂pζ
,

=

N∑
i=1

pi
mi

∂

∂qi
+ Fpζ

∂

∂pζ
, (4.2.91)
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LC = L5 + L6,

=
pζ
mζ

∂

∂ζ
−

N∑
i=1

pζ
mζ

pi
∂

∂pi
+
pξ
mξ

∂

∂ξ
−

N∑
i=1

pξ
mξ

qi
∂

∂qi
, (4.2.92)

where we have defined the following

Fi (q) = −∂V (q)

∂qi
, (4.2.93)

FPξ =

N∑
i=1

(
qi
∂V (q)

∂qi
− kBT

)
, (4.2.94)

Fpζ =
N∑
i=1

(
p2i
m
− kBT

)
. (4.2.95)

Defining

Uα (τ) = exp [τLα] , (4.2.96)

where α = A,B,C one possible reversible measure-preserving integration al-

gorithm for the Bulgac-Kusnezov thermostat under the symmetric Trotter fac-

torization is then

U (τ) = UB

(τ
4

)
· UC

(τ
2

)
· UB

(τ
4

)
· UA (τ) ,

× UB

(τ
4

)
· UC

(τ
2

)
· UB

(τ
4

)
. (4.2.97)

Using the direct translation technique the following a pseudo code form of the

algorithm can be obtained:
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qi → qi + τ
4
pi
mi

pζ → pζ + τ
4Fpζ

 : UB
(
τ
4

)

pi → pi · exp
[
− τ

2
pζ
mζ

]
qi → qi · exp

[
− τ

2
pξ
mξ

]
ζ → ζ + τ

2
pζ
mζ

ξ → ξ + τ
2
pξ
mξ


: UC

(
τ
2

)

qi → qi + τ
4
pi
mi

pζ → pζ + τ
4Fpζ

 : UB
(
τ
4

)

pi → pi + τFi

pξ → pξ + τFpξ

 : UA (τ)

qi → qi + τ
4
pi
mi

pζ → pζ + τ
4Fpζ

 : UB
(
τ
4

)

pi → pi · exp
[
− τ

2
pζ
mζ

]
qi → qi · exp

[
− τ

2
pξ
mξ

]
ζ → ζ + τ

2
pζ
mζ

ξ → ξ + τ
2
pξ
mξ


: UC

(
τ
2

)

qi → qi + τ
4
pi
mi

pζ → pζ + τ
4Fpζ

 : UB
(
τ
4

)
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Chapter 5

Model

In this chapter, I shall study the stability and ergodic properties of the dynamics

of the Nosé-Hoover chain and Bulgac-Kusnezov thermostats coupled to a one-

dimensional harmonic oscillator using measure-preserving algorithms.

It is widely known that the Nosé-Hoover dynamics[7, 8, 33] does not sample

uniformly all the regions of phase space. As a result the system fails to gen-

erate the correct canonical ensemble. However, this problem has been solved

by introducing additional thermostat variables presented in the case of Nosé-

Hoover chain dynamics[34, 42] . In the case of Bulgac-Kusnezov dynamics,

Sergi and Ezra[43] have confirmed that the dynamics has some difficulties for

producing the correct canonical distribution function.

In this chapter, we study the stability and ergodic properties of the dynamics of

two deterministic thermostats; Nosé-Hoover chain and Bulgac-Kusnezov ther-

mostats. This is done by coupling the thermostats to a harmonic oscillator in

one dimension which is the typical model used to address the problem of ergod-

icity in the integration of the dynamics. Using previously formulated reversible

measure-preserving algorithms (refer to previous chapter for derivations), we

investigate the ability of our Nosé-Hoover chain and Bulgac-Kusnezov ther-
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k q p ξ ζ pξ pζ

0.5 0.3 0.0 0.0 0.0 0.0 -3.0
1.0 0.3 0.0 0.0 0.0 0.0 0.0
1.5 0.3 0.0 0.0 0.0 1.0 -2.0
2.0 0.3 0.0 0.0 1.0 -2.0 -3.0
2.5 0.3 0.0 0.0 1.0 -3.0 -3.0
3.0 0.3 0.0 -0.5 0.0 0.0 2.7
3.5 0.3 0.0 2.0 0.0 0.0 2.7

Table 5.1: The table shows the initials values used with various k values for q,
p, ξ, ζ, pξ and pζ at t = 0.

mostats to produce the correct canonical distribution functions. The choice

to only investigate simulations using reversible measure-preserving algorithms

is trivial, this is because algorithms formulated under time-reversible are not

measure-preserving while algorithms formulated under measure-preserving are

automatically time-reversible. Thus, the type of numerical calculations con-

sidered within this chapter will follow the general scheme for defining measure-

preserving integrators in the case of the Nosé-Hoover chain and Bulgac-Kusnezov

dynamics. The Hamiltonian used within this thesis is of the form

H =
p2

2m
+

1

2
k · q2, (5.0.1)

where k is the spring constant.

Results and Discussions

During the simulation several values of k ranging from 0.5 to 3.5 were studied.

The results reported within this chapter are for typical values of k = 0.5,

k = 1.0, k = 1.5, k = 2.0, k = 2.5, k = 3.0 and k = 3.5 with the initial values

indicated in table 5.1 at time t = 0.

The time step used during the simulations of the Nosé-Hoover chain and
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Bulgac-Kusnezov dynamics was τ = 0.0025, and all runs were calculated for

107 time steps using the reversible measure-preserving propagator defined by

Eq. (4.2.12). Also, the values for all the masses and kBT were taken to be 1.0.

It has been found that both the Nosé-Hoover chain and Bulgac-Kusnezov

dynamics yield numerically stable integration schemes using the reversible

measure-preserving algorithms. This can be seen by studying the long-term

behavior of the normalized Hamiltonian function H for the two dynamics and

noting that it fluctuates about 1.0. The normalized Hamiltonian function H

for the Bulgac-Kusnezov dynamics fluctuates to the order of 10−2 as seen in

Fig. 5.1 and 10−3 as seen in Fig. 5.4. In Fig. 5.7, Fig. 5.10, Fig. 5.13, Fig.

5.16 and Fig. 5.19, the Bulgac-Kusnezov Hamiltonian function has fluctuations

which are of the order 10−4. On the contrary, the Hamiltonian function for

the Nosé-Hoover chain dynamics maintains a high level of accuracy throughout

the plots with fluctuations of the order 10−6.

In order to check if a particular dynamics samples the canonical distribution

correctly, conservation of the energy function alone is not enough. Following

the work of Sergi and Ferrario[5] and Sergi [15], a detailed way of calculating

the radial dependence and visualizing it for sampling the phase space has been

presented. In this thesis, the radial phase space probability of the Bulgac-

Kusnezov dynamics (seen in Fig. 5.2, Fig. 5.5, Fig. 5.8, Fig. 5.11, Fig. 5.14,

Fig. 5.17 and Fig. 5.20) and the Nosé-Hoover chain dynamics (seen in Fig. 5.3,

Fig. 5.6, Fig. 5.9, Fig. 5.12, Fig. 5.15, Fig. 5.18 and Fig. 5.21) were calculated

and compared to that of the harmonic oscillator since its canonical distribution

is isotropic in phase space and it achieves an exact radial dependence.

Figure 5.2, Fig. 5.5, Fig. 5.8, Fig. 5.11, Fig. 5.14, Fig. 5.17 and Fig. 5.20

all show the comparison between the radial phase space probability for the

Bulgac-Kusnezov dynamics and the harmonic oscillator. The Bulgac-Kusnezov

dynamics is seen to have difficulties in producing the correct canonical distribu-
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tion function as seen from its radial phase space probability plot. The graphs

lack the general bell-like form seen from the radial phase space probability of

the harmonic oscillator. Furthermore, the inset displays of the phase space

distribution for the Bulgac-Kusnezov show that not all regions of the phase

space are sampled uniformly throughout the system. Hence the dynamics is

not ergodic.

Figure 5.3, Fig. 5.6, Fig. 5.9, Fig. 5.12, Fig. 5.15, Fig. 5.18 and Fig. 5.21 all

show the comparison between the radial phase space probability for the Nosé-

Hoover chain dynamics and the harmonic oscillator. The Nosé-Hoover chain

dynamics is seen to produce the correct canonical distribution function as seen

from its radial phase space probability plot. All the graphs have the general

bell-like shape seen from the radial phase space probability of the harmonic

oscillator. Furthermore, by analyzing the inset displays of the phase space

distribution for the Nosé-Hoover chain, one can confirm that the dynamics

samples uniformly all the regions of the phase space throughout the system.

The dynamics is ergodic.
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Fig. 5.1: Normalized energy function H versus time for the Bulgac-Kusnezov and Nosé-Hoover chain
dynamics with initial conditions q = 0.3, p = 0.0, ξ = 0.0, ζ = 0.0,pξ = 0.0, pζ = −3.0 and k = 0.5 at
t = 0. The energy function for the Bulgac-Kusnezov dynamics is displayed in red whereas the energy
function for the Nosé-Hoover chain dynamics is represented in blue.

 0

 0.02

 0.04

 0.06

 0.08

 0  1  2  3  4  5  6

P

r

-4
-3
-2
-1
 0
 1
 2
 3
 4

-4 -3 -2 -1  0  1  2  3  4

p

q

Fig. 5.2: Radial phase space probability for
the Bulgac-Kusnezov dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ =
0.0,pξ = 0.0, pζ = −3.0 and k = 0.5 at
t = 0. Numerical results for the Bulgac-
Kusnezov dynamics are shown using the blue
bullets whereas the red line shows the theo-
retical value. The phase space distribution for
this dynamics is displayed by the inset.

 0

 0.02

 0.04

 0.06

 0.08

 0  1  2  3  4  5  6

P

r

-4
-3
-2
-1
 0
 1
 2
 3
 4

-4 -3 -2 -1  0  1  2  3  4

p

q

Fig. 5.3: Radial phase space probability for
the Nosé-Hoover chain dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ =
0.0,pξ = 0.0, pζ = −3.0 and k = 0.5 at
t = 0. Numerical results for the Nosé-Hoover
chain dynamics are shown using the blue bul-
lets whereas the red line shows the theoretical
value. The phase space distribution for this
dynamics is displayed by the inset.
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Fig. 5.4: Normalized energy function H versus time for the Bulgac-Kusnezov and Nosé-Hoover chain
dynamics with initial conditionsq = 0.3, p = 0.0, ξ = 0.0, ζ = 0.0,pξ = 0.0, pζ = 0.0 and k = 1.0 at
t = 0. The energy function for the Bulgac-Kusnezov dynamics is displayed in red whereas the energy
function for the Nosé-Hoover chain dynamics is represented in blue.
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Fig. 5.5: Radial phase space probability for
the Bulgac-Kusnezov dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0,
ζ = 0.0,pξ = 0.0, pζ = 0.0 and k = 1.0
at t = 0. Numerical results for the Bulgac-
Kusnezov dynamics are shown using the blue
bullets whereas the red line shows the theo-
retical value. The phase space distribution for
this dynamics is displayed by the inset.
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Fig. 5.6: Radial phase space probability for
the Nosé-Hoover chain dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ =
0.0,pξ = 0.0, pζ = 0.0 and k = 1.0 at
t = 0. Numerical results for the Nosé-Hoover
chain dynamics are shown using the blue bul-
lets whereas the red line shows the theoretical
value. The phase space distribution for this
dynamics is displayed by the inset.
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Fig. 5.7: Normalized energy function H versus time for the Bulgac-Kusnezov and Nosé-Hoover chain
dynamics with initial conditionsq = 0.3, p = 0.0, ξ = 0.0, ζ = 0.0,pξ = 1.0, pζ = −2.0 and k = 1.5 at
t = 0. The energy function for the Bulgac-Kusnezov dynamics is displayed in red whereas the energy
function for the Nosé-Hoover chain dynamics is represented in blue.
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Fig. 5.8: Radial phase space probability for
the Bulgac-Kusnezov dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ =
0.0,pξ = 1.0, pζ = −2.0 and k = 1.5 at
t = 0. Numerical results for the Bulgac-
Kusnezov dynamics are shown using the blue
bullets whereas the red line shows the theo-
retical value. The phase space distribution for
this dynamics is displayed by the inset.
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Fig. 5.9: Radial phase space probability for
the Nosé-Hoover chain dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ =
0.0,pξ = 1.0, pζ = −2.0 and k = 1.5 at
t = 0. Numerical results for the Nosé-Hoover
chain dynamics are shown using the blue bul-
lets whereas the red line shows the theoretical
value. The phase space distribution for this
dynamics is displayed by the inset.
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Fig. 5.10: Normalized energy function H versus time for the Bulgac-Kusnezov and Nosé-Hoover chain
dynamics with initial conditionsq = 0.3, p = 0.0, ξ = 0.0, ζ = 1.0,pξ = −2.0, pζ = −3.0 and k = 2.0 at
t = 0. The energy function for the Bulgac-Kusnezov dynamics is displayed in red whereas the energy
function for the Nosé-Hoover chain dynamics is represented in blue.
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Fig. 5.11: Radial phase space probability for
the Bulgac-Kusnezov dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ =
1.0, pξ = −2.0, pζ = −3.0 and k = 2.0
at t = 0. Numerical results for the Bulgac-
Kusnezov dynamics are shown using the blue
bullets whereas the red line shows the theo-
retical value. The phase space distribution for
this dynamics is displayed by the inset.
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Fig. 5.12: Radial phase space probability for
the Nosé-Hoover chain dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ = 1.0,
pξ = −2.0, pζ = −3.0 and k = 2.0 at
t = 0. Numerical results for the Nosé-Hoover
chain dynamics are shown using the blue bul-
lets whereas the red line shows the theoretical
value. The phase space distribution for this
dynamics is displayed by the inset.
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Fig. 5.13: Normalized energy function H versus time for the Bulgac-Kusnezov and Nosé-Hoover chain
dynamics with initial conditionsq = 0.3, p = 0.0, ξ = 0.0, ζ = 1.0,pξ = −3.0, pζ = −3.0 and k = 2.5 at
t = 0. The energy function for the Bulgac-Kusnezov dynamics is displayed in red whereas the energy
function for the Nosé-Hoover chain dynamics is represented in blue.
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Fig. 5.14: Radial phase space probability for
the Bulgac-Kusnezov dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ =
1.0, pξ = −3.0, pζ = −3.0 and k = 2.5
at t = 0. Numerical results for the Bulgac-
Kusnezov dynamics are shown using the blue
bullets whereas the red line shows the theo-
retical value. The phase space distribution for
this dynamics is displayed by the inset.

 0

 0.02

 0.04

 0.06

 0.08

 0  1  2  3  4  5  6

P

r

-4
-3
-2
-1
 0
 1
 2
 3
 4

-4 -3 -2 -1  0  1  2  3  4

p

q

Fig. 5.15: Radial phase space probability for
the Nosé-Hoover chain dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 0.0, ζ = 1.0,
pξ = −3.0, pζ = −3.0 and k = 2.5 at
t = 0. Numerical results for the Nosé-Hoover
chain dynamics are shown using the blue bul-
lets whereas the red line shows the theoretical
value. The phase space distribution for this
dynamics is displayed by the inset.
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Fig. 5.16: Normalized energy function H versus time for the Bulgac-Kusnezov and Nosé-Hoover chain
dynamics with initial conditionsq = 0.3, p = 0.0, ξ = −0.5, ζ = 0.0,pξ = 0.0, pζ = 2.7 and k = 3.0 at
t = 0. The energy function for the Bulgac-Kusnezov dynamics is displayed in red whereas the energy
function for the Nosé-Hoover chain dynamics is represented in blue.
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Fig. 5.17: Radial phase space probability for
the Bulgac-Kusnezov dynamics with initial
conditions q = 0.3, p = 0.0, ξ = −0.5,
ζ = 0.0,pξ = 0.0, pζ = 2.7 and k = 3.0
at t = 0. Numerical results for the Bulgac-
Kusnezov dynamics are shown using the blue
bullets whereas the red line shows the theo-
retical value. The phase space distribution for
this dynamics is displayed by the inset.
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Fig. 5.18: Radial phase space probability for
the Nosé-Hoover chain dynamics with initial
conditions q = 0.3, p = 0.0, ξ = −0.5,
ζ = 0.0,pξ = 0.0, pζ = 2.7 and k = 3.0 at
t = 0. Numerical results for the Nosé-Hoover
chain dynamics are shown using the blue bul-
lets whereas the red line shows the theoretical
value. The phase space distribution for this
dynamics is displayed by the inset.
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Fig. 5.19: Normalized energy function H versus time for the Bulgac-Kusnezov and Nosé-Hoover chain
dynamics with initial conditionsq = 0.3, p = 0.0, ξ = 2.0, ζ = 0.0,pξ = 0.0, pζ = 2.7 and k = 3.5 at
t = 0. The energy function for the Bulgac-Kusnezov dynamics is displayed in red whereas the energy
function for the Nosé-Hoover chain dynamics is represented in blue.
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Fig. 5.20: Radial phase space probability
for the Bulgac-Kusnezov dynamics with ini-
tial conditions q = 0.3, p = 0.0, ξ = 2.0,
ζ = 0.0,pξ = 0.0, pζ = 2.7 and k = 3.5
at t = 0. Numerical results for the Bulgac-
Kusnezov dynamics are shown using the blue
bullets whereas the red line shows the theo-
retical value. The phase space distribution for
this dynamics is displayed by the inset.
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Fig. 5.21: Radial phase space probability for
the Nosé-Hoover chain dynamics with initial
conditions q = 0.3, p = 0.0, ξ = 2.0, ζ =
0.0,pξ = 0.0, pζ = 2.7 and k = 3.5 at
t = 0. Numerical results for the Nosé-Hoover
chain dynamics are shown using the blue bul-
lets whereas the red line shows the theoretical
value. The phase space distribution for this
dynamics is displayed by the inset.
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Chapter 6

Conclusions

Special techniques and algorithms are required to perform constant temper-

ature MD simulations. This is because MD simulations are most naturally

carried out in the microcanonical ensemble under constant energy conditions.

In order to achieve a constant temperature constraints, the simulations have to

be done in the canonical ensemble. Theoretically within Hamiltonian dynam-

ics, this is achieved by coupling the system of interest with a thermal reservoir

with an infinite number of degrees of freedom. With the finite computational

resources available, infinite conditions cannot be represented on the computer.

However, using non-Hamiltonian dynamics the thermal reservoir can be rep-

resented by just a few additional degrees of freedom. Such a methodology is

known as the extended systems approach.

In this thesis, we have reviewed the algebraic formalism for non-Hamiltonian

brackets [5, 15] in phase space for the following deterministic non-Hamiltonian

thermostats; Nosé-Hoover, Nosé-Hoover chain and Bulgac-Kusnezov. Further-

more, we have derived the compressibility and shown how to build the in-

variant measure for these extended systems. Using non-Hamiltonian bracket

structure presented by Sergi and Ferrario[5] and Sergi[15], we have shown how
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to design efficient algorithms for integrating the equations of motion for the

non-Hamiltonian thermostats considered in this thesis. The type of algorithms

considered are time-reversible and measure-preserving in nature. We have pre-

sented a systematic approach to deriving time-reversible algorithms which were

introduced by Tuckerman et al [16] using the Trotter symmetric factorization of

the Liouville propagator. Moreover, by exploiting the non-Hamiltonian struc-

ture we have obtained measure-preserving integrators that automatically and

exactly conserve the invariant measure. This latter approach was formulated by

Ezra[20]. The resulting measure-preserving algorithms formulated from such

integrators are found to be both measure-preserving and time-reversible. The

algorithms have been derived for the following deterministic non-Hamiltonian

thermostats; Nosé-Hoover, Nosé-Hoover chain and Bulgac-Kusnezov.

We have performed calculations for comparing the stability and ergodicity of

the Nosé-Hoover chain and Bulgac-Kusnezov dynamics using a one dimensional

harmonic oscillator integrated by means of measure-preserving algorithms. It

has been found that both dynamics are stable. Moreover, when analyzing

the case of the Nosé-Hoover chain, the dynamics is seen to be efficient in

achieving the correct canonical distribution function by producing conserved

energy functions when different initials conditions are used. However, in the

case of the Bulgac-Kusnezov dynamics, it is necessary to adjust the initial

conditions for achieving the correct canonical distribution function, even if the

total Hamiltonian is correctly conserved in all cases.

The theory and techniques presented here for the derivation and implementa-

tion of algorithms for extended systems are of particular interest within MD

simulations at constant temperature.

Future work will consist of extending the study to classical spin systems.
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Appendix A

Operator formula

From the evolution equation (where i 6= k)

ˆ τ

0

(
− pk
mk

pi + Fpi

)
∂

∂pi
, (A.0.1)

one gets

∂g (pi) =
∂pi

− pk
mk
pi + Fpi

, (A.0.2)

and

g (pi) =

ˆ (
∂pi

− pk
mk
pi + Fpi

)
,

= −mk

pk

ˆ  ∂
(
− pk
mk
pi

)
− pk
mk
pi + Fpi

 ,

= −mk

pk

ˆ ∂
(
− pk
mk
pi + Fpi

)
− pk
mk
pi + Fpi

 ,

= −mk

pk
ln

(
− pk
mk

pi + Fpi

)
. (A.0.3)
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Hence

∂

∂g (pi)
=

∂

∂
[
−mk

pk
ln
(
− pk
mk
pi + Fpi

)] , (A.0.4)

and one finds

g (pi) = −mk

pk
ln

(
− pk
mk

pi + Fpi

)
. (A.0.5)

In order to apply the following identity, an inverse of g has to be determined,

hence for g,

pi = g−1 (g (pi)) ,

= −mk

pk
exp

(
− pk
mk

g (pi)

)
+
mk

pk
Fpi . (A.0.6)

Finally, we obtain
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exp

[
τ

(
− pk
mk

pi + Fpi

)
∂

∂pi

]
pi = exp

τ ∂

∂
[
−mk

pk
ln
(
− pk
mk
pi + Fpi

)]
 pi,

= −mk

pk
exp

[
ln

(
− pk
mk

pi + Fpi

)
− τ pk

mk

]
+
mk

pk
Fpi ,

= −mk

pk

(
− pk
mk

pi + Fpi

)
e−τ

pk/mk +
mk

pk
Fpi ,

= pie
−τpk/mk +

mk

pk
Fpi

(
1− e−τpk/mk

)
,

= pie
−τpk/mk +

mk

pk
Fpie

−τpk/2mk
(
eτ
pk/2mk − e−τpk/2mk

)
,

= pie
−τpk/mk + Fpie

−τpk/2mk

(
eτpk/2mk − e−τpk/2mk

2 pk
2mk

)
,

= pie
−τpk/mk + τFpie

−τpk/2mk

sinh
[
τ pk
2mk

]
τ pk
2mk

 .

(A.0.7)
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Appendix B

Derivation of the invariant

measure

B.1 Deriving the invariant measure for the Nosé-

Hoover dynamics

The phase space compressibility of the Nosé-Hoover thermostat is

κ =
∑
i,j

∂BNHij
∂xi

∂HNH
∂xj

,

= − pη
mη

. (B.1.1)

Upon introducing the function

HNHT = H+
p2η

2mη
, (B.1.2)

one can easily find that
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κNH =
1

kBT

dHNHT
dt

, (B.1.3)

so the invariant measure in phase space reads

dµ = dx exp

[
−
ˆ
t
dtκNH

]
,

= dx exp
[
−βHNHT

]
,

= dx exp
[
−βHNHT

]
exp [η] , (B.1.4)

as desired.

B.2 Deriving the invariant measure for the Nosé-

Hoover chain dynamics

The phase space compressibility of the Nosé-Hoover chain thermostat is

κ =
∑
i,j

∂BNHCij

∂xi

∂HNHC
∂xj

,

= − pη
mη
−
pξ
mξ

. (B.2.1)

Upon introducing the function

HNHCT = H+
p2η

2mη
+

p2ξ
2mξ

, (B.2.2)

one can easily find that
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κNHC =
1

kBT

dHNHCT

dt
, (B.2.3)

so the invariant measure in phase space reads

dµ = dx exp

[
−
ˆ
t
dtκNHC

]
,

= dx exp
[
−βHNHCT

]
,

= dx exp
[
−βHNHCT

]
exp [η + ξ] , (B.2.4)

as desired.

B.3 Deriving the invariant measure for the Bulgac-

Kusnezov dynamics

The phase space compressibility of the Bulgac-Kusnezov thermostat is

κ =
∑
i,j

∂BBKij
∂xi

∂HBK
∂xj

,

= −
pζ
mζ
−
pξ
mξ

. (B.3.1)

Upon introducing the function

HBKT = H+
p2ζ

2mζ
+

p2ξ
2mξ

, (B.3.2)

one can easily find that
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κBK =
1

kBT

dHBKT
dt

, (B.3.3)

so the invariant measure in phase space reads

dµ = dx exp

[
−
ˆ
t
dtκBK

]
,

= dx exp
[
−βHBKT

]
,

= dx exp
[
−βHBKT

]
exp [ζ + ξ] , (B.3.4)

as desired.
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Appendix C

Derivation of the Liouville

operator

C.1 Deriving the Liouville operator for the Nosé-

Hoover dynamics

We can find the consequent splitting of the Liouville operator from

Lα =
∑
i,j

Bij
∂Hα

∂xj

∂

∂xi
. (C.1.1)

Thus

L1 =
∑
i,j

Bij
∂H1

∂xj

∂

∂xi
=
∑
i,j

Bij
∂V (q)

∂xj

∂

∂xi
=
∑
i,j

Bi1
∂V (q)

∂x1

∂

∂xi
,

= B21
∂V (q)

∂x1

∂

∂x2
,

= −∂V (q)

∂q

∂

∂p
, (C.1.2)
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L2 =
∑
i,j

Bij
∂H2

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2

2m

)
∂

∂xi
=
∑
i

Bi2
∂

∂x2

(
p2

2m

)
∂

∂xi
,

= B12
∂

∂x2

(
p2

2m

)
∂

∂x1
+ B42

∂

∂x2

(
p2

2m

)
∂

∂x4
,

= B12
∂

∂p

(
p2

2m

)
∂

∂q
+ B42

∂

∂p

(
p2

2m

)
∂

∂pη
,

=
p

m

∂

∂q
+
p2

m

∂

∂pη
, (C.1.3)

L3 =
∑
i,j

Bij
∂H3

∂xj

∂

∂xi
=
∑
i,j

Bij
∂ (kBTη)

∂xj

∂

∂xi
=
∑
i

Bi3
∂ (kBTη)

∂x3

∂

∂xi
,

= B43
∂ (kBTη)

∂x3

∂

∂x4
= B43

∂ (kBTη)

∂η

∂

∂pη
,

= −kBT
∂

∂pη
, (C.1.4)

L4 =
∑
i,j

Bij
∂H4

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2η

2mη

)
∂

∂xi
=
∑
i

Bi4
∂

∂x4

(
p2η

2mη

)
∂

∂xi
,

= B24
∂

∂x4

(
p2η

2mη

)
∂

∂x2
+ B34

∂

∂x4

(
p2η

2mη

)
∂

∂x3
,

= B24
∂

∂pη

(
p2η

2mη

)
∂

∂p
+ B34

∂

∂pη

(
p2η

2mη

)
∂

∂η
,

= −p pη
mη

∂

∂p
+
pη
mη

∂

∂η
, (C.1.5)

where the splitting of the Liouville operator is
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L1 = −∂V (q)

∂q

∂

∂p
, (C.1.6)

L2 =
p

m

∂

∂q
+
p2

m

∂

∂pη
, (C.1.7)

L3 = −kBT
∂

∂pη
, (C.1.8)

L4 = −p pη
mη

∂

∂p
+
pη
mη

∂

∂η
. (C.1.9)

C.2 Deriving the Liouville operator for the Nosé-

Hoover chain dynamics

We can find the consequent splitting of the Liouville operator from

Lα =
∑
i,j

Bij
∂Hα

∂xj

∂

∂xi
, (C.2.1)

Thus

L1 =
∑
i,j

Bij
∂H1

∂xj

∂

∂xi
=
∑
i,j

Bij
∂V (q)

∂xj

∂

∂xi
=
∑
i

Bi1
∂V (q)

∂x1

∂

∂xi
,

= B21
∂V (q)

∂x1

∂

∂x2
,

= −∂V (q)

∂q

∂

∂p
, (C.2.2)
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L2 =
∑
i,j

Bij
∂H2

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2

2m

)
∂

∂xi
=
∑
i

Bi2
∂

∂x2

(
p2

2m

)
∂

∂xi
,

= B12
∂

∂x2

(
p2

2m

)
∂

∂x1
+ B42

∂

∂x2

(
p2

2m

)
∂

∂x4
,

= B12
∂

∂p

(
p2

2m

)
∂

∂q
+ B42

∂

∂p

(
p2

2m

)
∂

∂pη1
,

=
p

m

∂

∂q
+
p2

m

∂

∂pη1
, (C.2.3)

L3 =
∑
i,j

Bij
∂H3

∂xj

∂

∂xi
=
∑
i,j

Bij
∂ (kBTη1)

∂xj

∂

∂xi
=
∑
i

Bi3
∂ (kBTη1)

∂x3

∂

∂xi
,

= B43
∂ (kBTη1)

∂x3

∂

∂x4
= B43

∂ (kBTη1)

∂η1

∂

∂pη1
,

= −kBT
∂

∂pη1
, (C.2.4)

L4 =
∑
i,j

Bij
∂H4

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2η1

2mη1

)
∂

∂xi
=
∑
i

Bi4
∂

∂x4

(
p2η1

2mη1

)
∂

∂xi
,

= B24
∂

∂x4

(
p2η1

2mη1

)
∂

∂x2
+ B34

∂

∂x4

(
p2η1

2mη1

)
∂

∂x3
+ B64

∂

∂x4

(
p2η1

2mη1

)
∂

∂x6
,

= B24
∂

∂pη1

(
p2η1

2mη1

)
∂

∂p
+ B34

∂

∂pη1

(
p2η1

2mη1

)
∂

∂η1
+ B64

∂

∂pη1

(
p2η1

2mη1

)
∂

∂pη2
,

= −p pη1
mη1

∂

∂p
+
pη1
mη1

∂

∂η1
+
p2η1
mη1

∂

∂pη2
, (C.2.5)
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L5 =
∑
i,j

Bij
∂H5

∂xj

∂

∂xi
=
∑
i,j

Bij
∂ (kBTη2)

∂xj

∂

∂xi
=
∑
i

Bi5
∂ (kBTη2)

∂x5

∂

∂xi
,

= B65
∂ (kBTη2)

∂x5

∂

∂x6
= B65

∂ (kBTη2)

∂η2

∂

∂pη2
,

= −kBT
∂

∂pη2
, (C.2.6)

L6 =
∑
i,j

Bij
∂H6

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2η2

2mη2

)
∂

∂xi
=
∑
i

Bi6
∂

∂x6

(
p2η2

2mη2

)
∂

∂xi
,

= B46
∂

∂pη2

(
p2η2

2mη2

)
∂

∂x4
+ B56

∂

∂pη2

(
p2η2

2mη2

)
∂

∂x5
,

= −pη1
pη2
mη2

∂

∂pη1
+
pη2
mη2

∂

∂η2
. (C.2.7)

As a consequence of the splitting of the Hamiltonian, the corresponding Liou-

ville pieces are

L1 = −∂V (q)

∂q

∂

∂p
, (C.2.8)

L2 =
p

m

∂

∂q
+
p2

m

∂

∂pη1
, (C.2.9)

L3 = −kBT
∂

∂pη1
, (C.2.10)

L4 = −p pη1
mη1

∂

∂p
+
pη1
mη1

∂

∂η1
+
p2η1
mη1

∂

∂pη2
, (C.2.11)

L5 = −kBT
∂

∂pη2
, (C.2.12)

L6 = −pη1
pη2
mη2

∂

∂pη1
+
pη2
mη2

∂

∂η2
. (C.2.13)
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C.3 Deriving the Liouville operator for the Bulgac-

Kusnezov dynamics

We can find the consequent splitting of the Liouville operator from

Lα =
∑
i,j

Bij
∂Hα

∂xj

∂

∂xi
, (C.3.1)

Thus, for a system with one degree of freedom, coordinate q, momentum p and

mass m,

L1 =
∑
i,j

Bij
∂H1

∂xj

∂

∂xi
=
∑
i,j

Bij
∂V (q)

∂xj

∂

∂xi
=
∑
i

Bi1
∂V (q)

∂x1

∂

∂xi
,

= B41
∂V (q)

∂x1

∂

∂x4
+ B61

∂V (q)

∂x1

∂

∂x6
,

= F
∂

∂p
− qF ∂

∂pξ
, (C.3.2)

L2 =
∑
i,j

Bij
∂H2

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2i

2mi

)
∂

∂xi
=
∑
i

Bi2
∂

∂x2

(
p2i

2mi

)
∂

∂xi
,

= B52
∂

∂x2
(kBTη)

∂

∂x5
,

=
p

m

∂

∂q
+
p2

m

∂

∂pζ
, (C.3.3)
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L3 =
∑
i,j

Bij
∂H3

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj
(kBTχ)

∂

∂xi
=
∑
i

Bi3
∂

∂x3
(kBTχ)

∂

∂xi
,

= B63
∂

∂x3
(kBTχ)

∂

∂x6
,

= −kBT
∂

∂pζ
, (C.3.4)

L4 =
∑
i,j

Bij
∂H4

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2

2m

)
∂

∂xi
=
∑
i

Bi4
∂

∂x4

(
p2

2m

)
∂

∂xi
,

= B14
∂

∂x4

(
p2

2m

)
∂

∂x1
+ B54

∂

∂x4

(
p2

2m

)
∂

∂x5
,

= −kBT
∂

∂pξ
, (C.3.5)

L5 =
∑
i,j

Bij
∂H5

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2η

2Mη

)
∂

∂xi
=
∑
i

Bi5
∂

∂x5

(
p2η

2Mη

)
∂

∂xi
,

= B25
∂

∂x5

(
p2η

2Mη

)
∂

∂x2
+ B45

∂

∂x5

(
p2η

2Mη

)
∂

∂x4
+ B65

∂

∂x5

(
p2η

2Mη

)
∂

∂x6
,

=
pζ
mζ

∂

∂ζ
−
pζ
mζ

p
∂

∂p
, (C.3.6)

L6 =
∑
i,j

Bij
∂H6

∂xj

∂

∂xi
=
∑
i,j

Bij
∂

∂xj

(
p2χ

2Mχ

)
∂

∂xi
=
∑
i

Bi6
∂

∂x6

(
p2χ

2Mχ

)
∂

∂xi
,

= B36
∂

∂x6

(
p2χ

2Mχ

)
∂

∂x3
+ B56

∂

∂x6

(
p2χ

2Mχ

)
∂

∂x5
,

=
pξ
mξ

∂

∂ξ
−
pξ
mξ

q
∂

∂q
. (C.3.7)

Consequently we have the Liouville operator as
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L1 = −∂V (q)

∂q

∂

∂p
+ q

∂V (q)

∂q

∂

∂pξ
, (C.3.8)

L2 =
p

m

∂

∂q
+
p2

m

∂

∂pζ
, (C.3.9)

L3 = −kBT
∂

∂pζ
, (C.3.10)

L4 = −kBT
∂

∂pξ
, (C.3.11)

L5 =
pζ
mζ

∂

∂ζ
−
pζ
mζ

p
∂

∂p
, (C.3.12)

L6 =
pξ
mξ

∂

∂ξ
−
pξ
mξ

q
∂

∂q
. (C.3.13)
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