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Abstract 

Unprecedented changes in land use-land cover patterns have led to the deterioration of 

environmental quality and crucial ecological services. Urbanisation for instance, coupled with 

continuous deforestation and forest degradation have increased atmospheric carbon emissions 

and climate change risks and impacts within urbanized areas. In this regard, the emergence of 

reforestation has been viewed as a potential long-term alternative for restoring ecosystem 

services within urban landscapes, including carbon sequestration and climate change 

mitigation. However, information on the contribution of reforestation initiatives to the global 

carbon balance has remained largely unavailable. In this regards, accurate and concise 

quantification of carbon stock and net primary productivity in reforested urban landscape is 

critical for providing informed understanding on the value of reforestation on the global carbon 

flux and climate change mitigation potential. Achieving this demand necessitates adoption of 

affordable and reliable datasets and techniques that can be used to reliably quantify these forest 

services. The utility of remotely sensed data, particularly freely and readily available 

multispectral sensors with improved spatial and spectral characteristics have shown 

unprecedented potential in carbon modelling. Although commercially owned high spatial 

resolution sensors are highly accurate, the associated high costs limits their adoption, especially 

in resource and financially constrained regions like sub-Saharan Africa. Therefore, newly 

launched freely available multispectral sensors remain the most feasible source of primary data 

for carbon quantification in Africa. The main aim of this study was therefore to quantify climate 

regulating ecosystem services (i.e., carbon stock and net primary productivity) in reforested 

urban landscape using freely and readily available remotely sensed dataset. To achieve this 

aim, five objectives were established. One; to review remote sensing application in quantifying 

ecosystem services in sub-Saharan Africa’s urban landscape. The results demonstrated that 

accurate and precise quantification of urban ecosystem services in sub-Saharan Africa using 

high spatial resolution sensors has been a major problem due to acquisition costs and 

unavailability. In this regard, freely and readily available multispectral sensors have gained 

popularity in quantifying the past, current and future urban ecosystem services in sub-Saharan 

Africa. Two; to estimate aboveground net primary productivity of reforested trees in urban 

landscape using integrated biophysical variables and remotely sensed data. The findings 

showed that the utility of spectral data derived from Sentinel-2 multispectral image integrated 

with biophysical parameters successfully estimated net primary productivity (NPP) in 

reforested urban landscape with reasonable accuracy (R2: 0.92 and RMSE: 0.82 Mg ha-1). The 

findings also showed a significant variation in NPP among the reforested tree species with 
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Acacia and Dalbergia obtaining the highest NPP (i.e., 7.61 Mg ha-1 and 7.58 Mg ha-1), while 

Syzygium and Artimisia had the lowest (4.54 Mg ha-1 and 5.26 Mg ha-1). This variation was 

attributed to the fact that different species have unique biophysical and biochemical 

characteristics which influence carbon uptake per unit of absorbed sunlight. Three; to explore 

the utility of Sentinel-2 spectral data in quantifying above-ground carbon stock in an urban 

reforested landscape. The study demonstrated that indices derived from Sentinel-2 MSI, 

especially those generated within the red-edge were reliable and effective in quantifying carbon 

stock of reforested trees with reasonable accuracy (R2: 77.96 to 79.82% and RMSE:0.378 to 

0.466 t.ha-1). Furthermore, the adoption of the random forest model was instrumental for 

selecting optimal variables required for the best regression model. These results are crucial for 

understanding the contribution of reforestation initiative in the global carbon budget and 

climate change mitigation potential. Four; to quantify carbon stock variability across urban 

reforested tree species using texture measures derived from remotely sensed imagery. The 

findings of this work showed a significant variation in carbon stock between reforested tree 

species with Acacia (robusta and caffra) and Brideliar micrantha producing the highest mean 

carbon stock (4.81 to 6.96 t.ha-1), while Erythrina caffra and Syzygium cordatum had the lowest 

(3.97 to 4.26 t.ha-1). Moreover, the utility of texture measures derived from Sentinel-2 MIS 

proved effective and robust for estimating carbon stock variability in reforested urban 

landscape. These findings present a useful image processing technique (i.e., texture metrics) 

which can significantly boost quantification of reforestation carbon stock at species level using 

Sentinel-2 MSI. Five; to test the efficacy of combining Sentinel-1 C-band and Sentinel-2 MSI 

datasets in enhancing reforestation carbon stock estimation in urban landscape. The study 

demonstrated that combining spectral reflectance of optical Sentinel-2 and backscatter of 

Sentinel-1 (SAR) imagery using nearest neighbour diffused fusion technique optimizes carbon 

stock estimation in an urban landscape. The results also showed that cross-polarisation 

produced carbon estimates which are highly correlated with measured carbon, compared to co-

polarisation operation. These results provide valuable methodology that can be effectively 

adopted by forest managers and urban planners to establish informed management and 

monitoring strategies of reforestation ecosystem.  

Overall, this study presents valuable knowledge on the contribution of reforestation initiatives 

in the global carbon balance and climate change regulation within urban landscapes. 

Furthermore, urban reforestation program has shown promising potential in meeting the 

requirements of Reducing Emissions from Deforestation and Forest Degradation (REDD+) and 



iv 

 

Kyoto-Protocol of reducing atmospheric carbon emissions and promote climate resilient urban 

environment. The study also provides unprecedented information that sensitize forest 

managers, land-use planner and policy makers to integrate reforested ecosystems and their 

benefits to informed management and monitoring policies, including planning for larger-scale 

reforestation projects to increase carbon sequestration potential.   

Key words: reforestation, urbanization, climate change, Sentinel-2, synthetic aperture radar  
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Chapter One: General introduction 

1.1 Introduction 

Ecosystem services (ES’s) are defined as processes and benefits derived from a properly 

functioning ecosystems for human well-being and the environment (Davids et al., 2016, 2018; 

Tavares et al., 2019). Such ecosystems include forests, grassland, agro and aquatic, which 

provide a range of services that are subdivided into four classes; provision, regulation, 

supporting and cultural (Davids et al., 2018; de Araujo Barbosa et al., 2015; Roberts et al., 

2012; Tavares et al., 2019). Among these, forests are the most dominant terrestrial ecosystem, 

providing numerous services that are critically important for human-being and the 

environment. Forest ecosystems cover approximately 31% of the world landscape’s (Adams, 

2012; Siry et al., 2005) and support a range of ecological, social and economic functions (Ke 

and Quackenbush, 2011; Kumar, 2011; Porter-Bolland et al., 2012). Furthermore, forest 

ecosystems play a key role in carbon-oxygen cycling, and regulate both local and regional 

climate systems through biosphere and atmospheric interactions (Dube and Mutanga, 2015b; 

Roy and Ravan, 1996). Moreover, forests provide habitat to a variety species, protect soil and 

water resources and improve nutrient cycling (Ke and Quackenbush, 2011; Kumar, 2011; 

Potapov et al., 2008). In South Africa, natural forest ecosystems cover approximately 0.4% of 

the country’s land surface (DAFF, 2015), providing socio-economic goods and services (e.g. 

medicinal plants, food, fibre, firewood, timber etc.) and improving the environment 

(Mansourian and Vallauri, 2005). However, these forest ecosystems are highly fragmented and 

vulnerable to land use change that include urban development, agriculture and mining (Mucina 

et al., 2003; Roongtawanreongsri et al., 2015). 

Over the last decades, conservation and protection of forest ES’s has been challenged by 

persistent urbanisation which exert enormous pressure on natural resources around and within 

urban landscapes (Delphin et al., 2016; Dobbs et al., 2014). Urbanisation, with reported 

population density exceeding 50% leads to extensive natural landscape transformation into 

impervious infrastructure and settlements, hence disproportionately contribute to 

environmental change (Odindi and Mhangara, 2012a; Sithole et al., 2018). Such landscape 

transformation is associated with increasing urban thermal heat, air pollution, loss of 

biodiversity and accelerated  climate change risks and impacts (Livesley et al., 2016a; Sithole 

et al., 2018; Xu et al., 2016). Although urban areas cover a small global land-surface, they 

account for highest amount of global carbon emissions due to higher energy and resource 
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consumption (Luederitz et al., 2015). Furthermore, continuous urban expansion contribute to 

extreme deforestation and forest degradation, which among others include forest clearance for 

agriculture and uncontrolled timber and non-timber harvesting schedules (Cho et al., 2012; 

Murthy et al., 2002); posing serious constrains on the ecosystem productivity and composition. 

Forest loss and degradation constitute approximately 12% of the world’s greenhouse gas 

emissions (Ernst et al., 2013; Saatchi et al., 2011). These emissions result in rapid global 

climate change, and the bulk of these emissions are accounted from urban landscapes (Ernst et 

al., 2013; Saatchi et al., 2011). Consequently, the increasing forest ecosystem loss and 

degradation attributed to the current land use - land cover change, have raised serious concerns 

pertaining to the long-term strategy and policy framework to sustain natural resources for 

current and future generation. In this regard, the United Nations Framework Convention for 

Climate Change (UNFCCC) has established a new program for reducing emissions from 

deforestation and forest degradation (REDD). REDD is an initiative designed for combating 

climate change by promoting agroforestry and ensuring appropriate forest ecosystem 

conservation and protection (Curiel-Esparza et al., 2015; Gara et al., 2016). Recently, 

reforestation has emerged as the most practical approach to reinstating resilient forest ES’s 

(Livesley et al., 2016a; Mansourian and Vallauri, 2005). In the 20th century, forest plantations 

(especially commercial forests) was encouraged to meet the increasing global demands for 

timber and non-timber products, and to a lesser purpose of climate change regulation and ES’s 

restoration (Dudley et al., 2005; Lamb and Gilmour, 2003). However, the establishment of 

Kyoto Protocol in 1997 presented the necessity of reforestation (both exotic and indigenous 

trees) as a cost-effective initiative for reducing greenhouse gas emission and climate change 

(Mansourian and Vallauri, 2005; Trotter et al., 2005).   

Establishment of highly diverse indigenous trees with close canopy is valuable for the 

restoration of ecological benefits (i.e. biodiversity) and enhancing ecosystem functions, while 

increasing carbon sequestration capacity and mitigating effects of climate change 

(Cunningham et al., 2015; Livesley et al., 2016a; Manes et al., 2012). As aforementioned, these 

ES’s can be grouped as provisioning (i.e. freshwater, food, fibre), regulating (i.e. air quality, 

water and climate), cultural (i.e. recreational, spiritual and religious values) and supporting (i.e. 

soil formation, nutrients and water cycling) (Thompson et al., 2009). Although such ES’s are 

critically important to human welfare, their consideration in urban planning, management and 

decision making has been insufficiently integrated (Davids et al., 2018; Nemec and Raudsepp-

Hearne, 2013). The lack of their consolidation in urban planning and decision making can be 
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attributed to limited information benchmarking ES’s hotspot, lack of implementable policy-

framework and difficulty for public authorities to regulate ecosystems (Baró et al., 2016; 

Davids et al., 2018). Despite the key role of urban reforestation initiative on ES’s restoration 

and climate change-adaptation, the knowledge on ES’s generated from urban reforested trees 

remains limited, whereas, continuous information on the quantification and mapping of ES’s 

derived from urban reforested trees is necessary for understanding the response of ecological 

functions and processes to the global carbon balance and climate change. Specifically, 

regulating ES’s have become critical in addressing climate change related challenges (i.e. 

carbon sequestration or stocks, aboveground biomass, net primary productivity etc.). However, 

this ES category has not been adequately retrieved within urban reforested landscapes. Hence 

the quantification of such ES could provide valuable information for developing policy, and 

conservation and monitoring measures that are useful in governing ecological processes and 

functions. Additionally, effective administration and monitoring of ecosystem processes and 

functions could ensure balanced interaction between environmental, social and economic 

functions, while preserving ecological systems (i.e. ecosystem services) and mitigating climate 

change.   

Whereas numerous studies have assessed climate regulating ES’s such as carbon stock or 

sequestration, biomass and primary productivity, these assessments have been restricted to 

natural and commercial forests outside urban landscapes (Baccini et al., 2008; Dube and 

Mutanga, 2015a; Henry et al., 2011). Hence, there is a dearth in information presenting the 

contribution of urban reforested trees to the global carbon flux and climate regulation. 

Therefore, the quantification of regulating ES’s (e.g. carbon sequestration or stocks, biomass 

and net primary productivity) can bridge the knowledge gap on the value of urban reforestation 

programmes. Generally, concise quantification of ES’s has been significantly challenged by  a 

number of limitations that include unavailability of resources, limited standardised 

methodology and technological expertise (Amuzu‐Sefordzi et al., 2016; Baccini et al., 2008), 

especially in developing regions like Sub-Saharan Africa. Nonetheless, adequate information 

on the current and future spatial distribution of urban ES’s could be essential to reforestation 

managers and practitioners for their planning and decision-making phases. In this regard, there 

is a need to establish affordable and robust techniques and datasets for effective local and 

regional forest ES’s quantification and monitoring.   

Previously, the quantification and monitoring of forest ES’s was based on conventional field 

surveys that involve field measurements and destructive methods (Dube and Mutanga 2015, 
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Mngadi et al. 2019b). However, although highly accurate and reliable, this approach is 

laborious and costly, (Gara et al., 2016; Lu, 2006; Mngadi et al., 2019a). Furthermore, 

conventional methods are often impractical in remote areas and large spatial extents, making 

regional assessment and acquisition of sufficient number of tree samples a major challenge 

(Lu, 2006; Mngadi et al., 2019a). It is therefore necessary to adopt methods and datasets that 

can complement conventional approach. Recently, the Inter-Governmental Panel on Climate 

Change Good Practice Guidance (IPCC-GPG) on Land Use, Land Use Change and Forestry 

have prioritised remote sensing as robust technique in providing cost effective and reliable 

primary data necessary for wall-to-wall mapping and estimation of forest ecosystem dynamics 

(Gara et al., 2016; Muukkonen and Heiskanen, 2005). Remote sensing data is characterized by 

larger spatial coverage that allows for acquisition of spectral information at both local and 

regional scale, and in complex landscapes (Dube and Mutanga, 2015a; Mngadi et al., 2019a; 

Peerbhay et al., 2013b). In complementarity with field surveys, these benefits have prompted 

its adoption in forestry for effective decision making on forest ES’s management, monitoring 

and conservation.   

Recently, the newly launched multispectral sensors (i.e. Landsat 8 OLI and Sentinel-2) have 

gained popularity in vegetation mapping and monitoring due to their significant improvement 

in radiometric, spectral and spatial properties, that improve their  precision and accuracy in 

wall-to-wall forest assessment and conservation (Laurin et al., 2016; Mngadi et al., 2019a; 

Shoko and Mutanga, 2017). The sensors are readily-available, cost effective and are 

characterised by larger spatial coverage, hence useful for both large and small-scale ES’s 

mapping and monitoring (Mngadi et al., 2019a; Shoko and Mutanga, 2017). For example, 

Sentinel-2 MSI captures information at 10, 20 and 60 m spatial resolutions aboveground and 

larger swath width (about 290 km), hence facilitating both local and regional forest mapping 

and monitoring. Furthermore, the sensor is characterised by unique band settings that are 

strategically located in red-edge region of electromagnetic spectrum, valuable for vegetation 

assessment. Generally, the spectral-bands within the red edge region are more sensitive to 

various vegetation properties such as chlorophyll content, leaf area index, biomass and leaf 

angle distribution, which are critical for improving forest ecosystem mapping and monitoring 

(Laurin et al., 2016; Shoko and Mutanga, 2017; Sibanda et al., 2016). Despite the sensor’s 

unprecedented properties, its capabilities have not been exploited in the quantification and 

mapping of ES’s of reforested urban trees for effective decision-making and monitoring 

schedules. Furthermore, the sensor’s complementarity with Sentinel-1’s synthetic aperture 
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radar (SAR) counterpart has not been effectively explored for estimating climate regulating 

urban ES’s within reforested landscapes. Generally, medium spatial resolution multispectral 

sensors suffer from saturation and shadowing effects, particularly in dense forest cover 

characterised by heterogeneous trees. However, high penetrating wavelength of SAR imagery 

can overcome such challenges, hence providing pure backscatter capable of enhancing 

multispectral sensor’s performance in estimating climate regulating services within an urban 

reforested environment. Thus, there is a need to test the efficacy of combining SAR imagery 

with optical sensors to improve estimation performance of urban reforested ES’s. Additionally, 

remote sensing techniques provide spectral information that are highly correlated and less 

variable (Mngadi et al., 2019a; Peerbhay et al., 2013b). This could significantly impede 

predictive performance of urban reforested ES’s. A strong correlation between and within the 

spectral predictors limits the statistical techniques to precisely analyse a remotely sensed data 

(Peerbhay et al., 2013b). Therefore, predicting urban forest ES’s using remote sensing data 

requires robust statistical method/s that can improve predictive performance of climate 

regulating ES’s. For instance, ensemble methods such as random forest have proven effective 

in enhancing predictive accuracy of ecological processes and services. Random forest is a non-

parametric statistical method capable of dealing with complex correlation between predictor 

variables through variable importance technique (Dube et al., 2014; Mutanga et al., 2012). This 

model also provides crucial optimization parameters (e.g., Ntree and Mtry) which can be 

effectively used to improve the final prediction model (Breiman, 2001; Forkuor et al., 2018). 

In this regard, random forest model could be valuable in quantifying ES's of reforested trees 

within an urban landscape.       

Overall, there is a need to understand the value of reforestation in restoring crucial ES’s so as 

to inform management and conservation policies that intend to integrate ES’s into urban 

planning and decision-making. Therefore, this study sought to provide comprehensive 

information benchmarking the contribution of reforestation initiative to the global carbon 

cycles and climate change regulation potential. The study specifically focused on regulating 

ecosystem services such as carbon stocks and net ecosystem exchange (i.e. net primary 

productivity), which are instrumental in understanding carbon balance and climate change 

mitigation potential of reforestation. In addition, this research adopted Sentinel (1 and-2) 

satellite imagery, random forest and multiple linear regression techniques for the analysis of 

regulating ES’s within urban landscape.      
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1.2 Research aim 

The main aim of this research was to assess climate regulating ecosystem services (e.g., 

carbon stock and net primary productivity) in reforested urban landscape using freely 

and readily available remote sensing dataset. 

 

1.3 Specific objectives were:  

1. to review the adoption of remote sensing in quantifying forest ecosystem services in sub-

Saharan Africa urban landscapes, 

2. to estimate aboveground net primary productivity of reforested trees in urban landscape 

using integrated biophysical variables and remotely sensed data, 

3. to explore the utility of Sentinel-2 spectral data in quantifying above-ground carbon stock 

in an urban reforested landscape, 

4. to quantify species carbon stock variability of within a reforested urban landscape using 

texture measures derived from remotely sensed imagery, and  

5. to test the efficacy of combining Sentinel-1 C-band and Sentinel-2 MSI datasets in 

enhancing reforestation carbon stock estimation in an urban landscape  

1.4 Study site description 

The study was conducted at Buffelsdraai Reforestation site located within eThekwini 

municipality in KwaZulu-Natal province, South Africa (Figure 1.1). The area is geographically 

situated between 30°58'20.08"E and 29°37'55.17"S. The reforestation site, which is 

strategically positioned around a landfill, spans approximately 809 ha (Douwes et al. 2015). 

The reforestation project was originally developed by the eThekwini Municipality to regulate 

greenhouse gas emissions during the 2010 FIFA World Cup (Douwes et al. 2015). The 

intention of the project was to establish an indigenously diverse, functional, forest ecosystem 

that would sequester large volumes of atmospheric carbon and mitigate the effects of the 

landfill site over time. The site was also envisioned to contribute to the municipality’s climate 

protection strategy, through the management of water flow and soil erosion. The project 

employs local community members to assist with planting a variety of indigenous trees within 

previously cultivated areas, contributing to livelihoods. The average precipitation for the site 

ranges between 600 mm to 1000 mm per year, while mean annual temperature ranges from 

22°C in winter to 27°C in summer (Sithole, Odindi and Mutanga 2018). Furthermore, the area 

is characterised by an uneven topography with soils that range from deep, well-drained red 

Hutton soils, to shallow and poorly drained Glenrosa soil forms, which are supported by dwyka 
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tillite (Sithole et al. 2018). In addition, the site consists of a variety of indigenous tree species 

(e.g. Acacia caffra, Acacia robusta, Apodyties dimidata, Combretum spp, Heteropyxis 

natalensis, Strelitzia nicolai, Erythrina caffra, Silver oak, Syzygium cordatum, Dalbergia 

obovate, Rothmannia glabosa), which facilitates ecological diversity within the area (Douwes 

et al. 2015).  

     

 

Figure 1.1 Location of Buffelsdraai reforestation site and sample points, within the eThekwini 

Municipality in KwaZulu-Natal Province. 
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1.5 Research scope  

This study aimed at quantifying climate regulating ecosystem services within reforested urban 

landscape using freely available remote sensing data. The study focused on the contribution of 

reforestation initiative to the global carbon balance and climate systems regulation potential. 

Furthermore, this study presents the strength of medium-to-fine spatial resolution Sentinel-2 

MSI in accurately quantifying ecosystem services generated in a heterogeneous reforested trees 

within an urban landscape. The study demonstrates robustness of advance image processing 

technique such as texture measures in quantifying carbon stock variability among reforested 

tree species. In addition, the study illustrates the reliability and effectiveness of synthetic 

aperture radar backscattering in optimizing predictive performance of optical Sentinel-2 

through image fusion technique. In this study, the robust non-parametric statistical method 

(random forest regression model) was adopted for carbon stock analysis using remotely sensed 

dataset, while multiple linear regression method was used for net primary productivity 

estimation. 

1.6 Dissertation structure 

This dissertation comprises five articles (which respond to research objectives) that have been 

submitted to peer-reviewed journals. Three articles have been already published, one is in press 

and one under review. The articles present independent information, but contribute to the 

overarching objective (in chapter one) and synthesis (chapter seven). The literature review and 

methodology encompassed in all papers could present some overlap and duplication. The entire 

dissertation consist of seven chapters highlighted below: 

Chapter one 

This chapter presents the general introduction and contextualizes the research study; 

underlining the importance of reforestation initiative in restoring critical ES’s and the need to 

understand its contribution towards climate change mitigation. The chapter also highlights on 

methods and datasets that can be adopted to quantify climate regulating ES’s within urban 

landscape. The research aim and objectives are also presented.  

Chapter two 

This chapter provides an explicit overview of urban ES’s quantification using remote sensing 

technique in sub-Saharan Africa. The chapter present trends, challenges and future prospects 

of remote sensing in quantifying urban ES’s. It further highlights research gaps and need to 
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establish cost effective methods for urban ES’s quantification and monitoring in resource 

constrained regions like sub-Saharan Africa. 

Chapter three  

This chapter focuses on the estimation of aboveground net primary productivity within 

reforested urban landscape using biophysical variables and remotely sensed data. The 

information presented in this chapter is fundamental for understanding the value of 

reforestation in the global carbon budget and climate change regulation potential. In this 

chapter, the net carbon uptake per unit of absorbed radiation by each reforested tree species is 

also presented.  

Chapter four  

Although reforestation initiatives are assumed to be reliable in carbon sequestration and climate 

systems regulation, their carbon accumulation have remained largely unknown. Therefore, this 

chapter examines the prospect of medium-to-fine spatial resolution Seninel-2 MSI in 

quantifying aboveground carbon stock of reforested trees within urban landscape. The chapter 

also explore the potential of new and unique vegetation indices derived from a strategically 

positioned red-edge region of electromagnetic spectrum in boosting reforestation carbon stock 

estimation. 

Chapter five  

This chapter focused on the quantification of carbon stock variability among reforested tree 

species using texture measures derived from Sentinel-2 MSI. The chapter highlights the 

importance of texture measures in quantifying carbon stock variability across reforested tree 

species. It further outlines the need for understanding the contribution of individual tree species 

in the carbon budget and their potential to mitigate climate change.  

Chapter six 

This chapter test the efficacy of integrating Sentinel-1 synthetic aperture radar with Sentinel-2 

MSI to enhance the estimation of reforested carbon stock within an urban landscape. The study 

provide detailed information on the importance of combining backscatter and spectral 

reflectance in improving estimation performance of forest carbon stock within an urban 

landscape. In this chapter, the performances of individual interferometric polarization (e.g., 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HFH25s0AAAAJ&citation_for_view=HFH25s0AAAAJ:GtLg2Ama23sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HFH25s0AAAAJ&citation_for_view=HFH25s0AAAAJ:GtLg2Ama23sC
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cross-polarization and co-polarisation) in predicting reforestation carbon stock are also 

compared. 

Chapter seven 

This chapter provide synthesis of all findings and conclusions from the research objectives. 

The chapter further provides important recommendations for future research. The list of 

references is provided at the end of this chapter. 
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Chapter Two: Quantitative remote sensing of forest ecosystem services in 

sub-Saharan Africa’s urban landscapes: A review 
 

This chapter is based on: 

Mngadi, M., Odindi, J., Mutanga, O. and Sibanda, M., 2022. Quantitative remote sensing of 

forest ecosystem services in sub-Saharan Africa’s urban landscapes: a review. Environmental 

Monitoring and Assessment, 194(4), pp.1-19.  

Abstract 

A dearth of information on urban ecosystem services in the past decades has led to little 

consolidation of such information for informed planning, decision-making and policy 

development in sub-Saharan African cities. However, the increasing recognition of the value 

of urban ecological processes and services as well as their contribution to climate change 

adaptation and mitigation has recently become an area of great research interest. Specifically, 

the emerging geospatial analytical approaches like remote sensing, have led to an increase in 

the number of studies that seek to quantify and map urban ecosystem services at varying scales. 

Hence, this study sought to review the current remote sensing trends, challenges and prospects 

in quantifying urban ecosystem services in sub-Saharan Africa cities. Literature shows that 

consistent modelling and understanding of urban ecosystem services using remotely sensed 

approaches began in the 1990s, with an average of five publications per year after around 2010. 

This is mainly attributed to the approach’s ability to provide fast, accurate and repeated spatial 

information necessary for optimal and timely quantification and mapping of urban ecosystem 

services. Although commercially available high spatial resolution sensors (e.g. the Worldview 

series, Quickbird and RapidEye) with higher spatial and spectral properties have been valuable 

in providing highly accurate and reliable data for quantification of urban ecosystem services, 

their adoption has been limited by high image acquisition cost and small spatial coverage that 

limit regional assessment.. Thus, the newly launched sensors that provide freely and readily 

available data (i.e., Landsat 8 and 9 OLI, Sentinel-2) are increasingly becoming popular. These 

sensors provide data with improved spatial and spectral properties, hence valuable for past, 

current and future urban ecosystem services assessment, especially in developing countries. 

Therefore, the study provides guidance for future studies to continuously assess urban 

ecosystem services (especially net primary productivity and carbon stock) in order to achieve 

the objectives of Kyoto Protocol and Reducing Emissions from Deforestation and forest 
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Degradation (REDD+) of promoting climate resilient and sustainable cities, especially in 

developing world.    

Keywords: reforestation, regulating, supporting, provisioning, cultural  

2.1 Introduction  

Ecosystem services (ESs) are the natural processes that benefit human well-being and sustain 

environmental quality. These services are derived from a range of ecosystems that include 

forests, grasslands, aquatic and agro-systems (Costanza and Liu, 2014; Davids et al., 2016; de 

Araujo Barbosa et al., 2015). Forests are the most influential terrestrial ecosystems and play a 

significant role in the global carbon-oxygen exchange and regulation of regional, national and 

local climate systems through biosphere-atmospheric interactions (Dube and Mutanga, 2015c). 

Although forest ecosystems are the largest reservoirs of ecological processes, services and 

biodiversity, they are the most vulnerable to natural and physical changes (Mashapa et al., 

2014; Solomon et al., 2018; Tetemke et al., 2019; Ubuy et al., 2018). In urban areas, the 

increasing loss of forest ecosystems due to anthropogenic drivers has particularly raised 

concerns on the long-term strategies for protecting and monitoring biodiversity and ESs. 

Generally, the rate of forest lost due to anthropogenic activities, particularly between 1990 to 

2015 amount to 6% (i.e., 3961 to 3721 million hectares) (Keenan et al., 2015; Odebiri et al., 

2020b; Payn et al., 2015). 

Ecosystem Services provided by urban forests are generally categorised as regulating (i.e. air 

quality, water and climate), provisioning (i.e. freshwater, food, fibre), supporting (i.e. soil 

formation, nutrients and water cycling) and cultural (i.e. recreational, spiritual and religious 

values) (Mugwedi et al., 2017; Munien et al., 2015). Commonly, these services are 

compromised by excessive socio-ecological interdependences associated with urbanisation, 

resulting in decline of environmental quality that threatens life quality and triggers climate 

change. In urban areas, literature indicates that the transformation of natural landscapes and 

ecosystems into impervious surfaces increases temperature, air pollution, loss of biodiversity 

and ESs (Livesley et al., 2016a; Nguyen et al., 2019; Sithole et al., 2018; Sutherland et al., 

2016; Xu et al., 2016). Furthermore, although urban areas cover small proportion of the global 

land surface, they exert enormous pressure on the ability of urban forest ecosystems to provide 

crucial socio-ecological services that include sequestration of emitted carbon (Fu et al., 2013; 

Luederitz et al., 2015; Yu et al., 2020). Generally, existing studies on urban ESs are often 

conducted in the Global North, with less focus on the Global South including Africa, hence, 
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little is known about ESs conservation and monitoring potential in sub-Saharan Africa cities 

(Guenat et al., 2019; Magle et al., 2012).  

Sub-Saharan Africa has been noted as the fastest urbanising region, with many cities 

encroaching on a variety of ecosystems and biodiversity (Guenat et al., 2019; Jaligot et al., 

2018). This has consequently compromised and degraded the preservation and provisioning 

potential of ESs essential for human well-being and climate-change adaptation. Thus, 

reforestation has been proposed as a viable and effective initiative to restore lost and degraded 

urban forests ecosystems (Curiel-Esparza et al., 2015; Mugwedi et al., 2017).  According to 

Mugwedi et al. (2017) and Curiel-Esparza et al. (2015), urban reforestation based on 

indigenous trees is valuable for reinstating lost biodiversity and ESs that include regulation of 

regional and local climate systems through eco-biosphere and atmospheric interactions. Few 

cities in sub-Saharan Africa have begun adopting such innovative initiative for re-instating 

urban ESs. For instance, the city of Durban in South Africa has begun its reforestation initiative 

through the Durban Research Action Partnership (DRAP) (Mngadi et al., 2021). Similarly, the 

city of Analamanga in Madagascar has embarked on reforestation project supported by 

Reforest ‘Action (Brunet et al., 2020). In Ivory Coast’s Agnéby-Tiassa city, authorities have 

implemented a reforestation policy through Reforest ‘Action project initiative (Moïse et al., 2019).  

Despite numerous cities in sub-Saharan Africa adopting reforestation initiative, there is still 

paucity in literature on the amount of urban ESs derived from reforested trees. Hence, 

quantification of services derived from reforestation could be valuable to among others, 

reforestation practitioners, urban planners and policy makers to better understand the value of 

reforested trees in reinstating resilient ecological functions, biodiversity and climate change 

adaptation.    

The lack of information to facilitate spatial quantification and mapping of ESs has been a 

critical challenge in understanding the productivity of urban ecosystem services and for making 

accurate decisions and policy. Previously, scientific approaches for quantifying ESs such as 

conversion of primary and proxy data of main land covers into assessments and generation of 

potential services using coefficients accumulation have been widely adopted (Grêt-Regamey 

et al., 2015; Villa et al., 2009). However, such approaches neglect the complexity and multi-

scale variability of ESs, hence do not offer spatially explicit and accurate information for 

informed decision-making. Although such traditional approaches are highly accurate and 

reliable, they are impractical at large spatial extents, are environmentally destructive and often 

impeded by complex geographic terrains (Dube and Mutanga, 2015b, c; Mngadi et al., 2019b). 
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Furthermore, traditional methods require extensive field work, which is time consuming, 

labour-intensive and costly (Dube et al., 2016; Mngadi et al., 2019b). However, the emergence 

of remote sensing has shown remarkable potential in addressing limitations associated with 

traditional methods. Therefore, this study reviewed the utility of remote sensing approaches as 

a cost effective means of providing precise, reliable and up-to-date information, critical for the 

quantification and mapping of urban ESs complexity and variability.  

Remote sensing captures important vegetation characteristics related to biochemical and 

biophysical attributes (Fatoyinbo et al., 2018; Mngadi et al., 2019b; Sithole et al., 2018), which 

are critical indicators of ESs. Furthermore, remote sensing techniques provide spatial data 

characterised by larger swath-width, useful for the quantification and mapping of ESs at 

varying spatial scales (de Araujo Barbosa et al., 2015; Dube and Mutanga, 2015b; Matongera 

et al., 2018). Critically, it allows for repetitive acquisition of information of an area (Dube et 

al., 2016; Matongera et al., 2018), valuable for the quantification and mapping of the temporal 

changes of urban ESs. Additionally, the spatial information captured by remote sensing can be 

easily integrated with ancillary data, optimising the available datasets for informed decision-

making. Considering the growing popularity of optical and active sensors for the quantification 

and mapping of urban ESs in sub-Saharan Africa, it is necessary to review their adoption to 

understand their current state, opportunities and challenges. Such knowledge is useful for 

tracking their use for urban ESs management and for determining uncertainties in the 

application of remote sensing satellite datasets for future assessments. Although few studies 

have reviewed urban ESs in sub-Saharan Africa, such reviews have focused on ecosystem 

governance and conventional approaches (e.g. field survey, laboratory experiments and 

statistics) (Cilliers et al., 2013; Du Toit et al., 2018; Mngumi, 2020; Wangai et al., 2016). 

Generally, there is a dearth in literature on the adoption of remote sensing approaches in 

quantifying urban ESs. Therefore, this study sought to review opportunities, challenges and 

future prospects of remote sensing in quantifying urban ESs.  

2.2 Data sources 

In this review, we collected peer-reviewed papers based on urban ESs using Web of Science, 

Scopus, Science Direct and Google Scholar search engines. The following key words were 

used for our literature search; ‘urban ecosystem services’, ‘urban ecosystem services in Africa’, 

‘urban ecosystem services and remote sensing’, ‘cultural services in Africa’, ‘quantification of 

carbon stock using remote sensing’, ‘climate regulation in Africa’, ‘air quality in Africa’, ‘soil 

accumulation’, and ‘recreational services in Sub-Saharan Africa’. Ninety (90) publications 
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were identified from 2003 January to December 2020 (Figure 2.1). These studies were 

separated into specific ecosystem services categories (i.e. regulating, provisioning, supporting 

and cultural) based on Millennium Ecosystem Assessment classification (2003). Studies that 

used traditional approaches were separated from studies that used remotes sensing approaches 

(Table 2.1). The search result was used for analysis.         

2.3 Number of ecosystem services publications in sub-Saharan Africa  

Historically, the assessment of urban ESs has been minimal, especially those not considered to 

be of direct economic value (Andrew et al., 2014; Costanza et al., 1997). Thus, their 

consolidation into environmental policy and decision making has been limited. Following the 

release of Millennium Ecosystem Assessment and Economics of Ecosystems and Biodiversity 

(MEA-EEB) frameworks, urban ecosystems have received increasing attention (Carpenter et 

al., 2006; Costanza et al., 1997). Specifically,  understanding the value of urban ecosystems on 

ecological, socio-economic and environmental functions has received great interest (Gómez-

Baggethun and Barton, 2013; Mngumi, 2020). However, to date, there is no study that has 

reviewed the quantification of urban ESs using remote sensing approaches in sub-Saharan 

Africa. Literature for instance, shows that only four studies have reviewed urban ESs in sub-

Saharan Africa, mainly focusing on the conventional methods and ecosystem governance 

(Cilliers et al., 2013; Du Toit et al., 2018; Mngumi, 2020; Wangai et al., 2016). The study 

(Table 2.1) found that 48 studies quantified urban ESs using traditional/conventional 

approaches, whereas only 42 studies used remote sensing techniques. Results in Figure 2.1 

show that literature on the quantification of urban ESs sharply increased between 2010 and 

2020 in relation to the period between 2000 and 2009, where relatively few studies (9) were 

published. This indicates that urban ESs is a recent phenomenon on the African continent (Egoh 

et al., 2012; Mngumi, 2020; Müller and Burkhard, 2012). These findings are consistent with 

Costanza and Kubiszewski (2012) who reported that only eight authors published at least five 

(5) papers on urban ESs in sub-Saharan Africa over the last decades (2000 to 2009). The 

increasing ESs studies in sub-Saharan Africa could be attributed to the increasing requirement 

of knowledge referring to the balance between the rapid growths of impervious surfaces 

brought by urbanisation and urban vegetation cover that balance urban ecosystems and offset 

carbon emission (Mngumi 2020, Egoh et al. 2012, Müller and Burkhard 2012). Thus far, most 

of the reviewed studies focused on urban ESs derived from indigenous forests (Kaoma and 

Shackleton, 2015; Mashapa et al., 2014), wetlands (Schuyt, 2005), urban green spaces (Munien 

et al., 2015; Richardson and Shackleton, 2014) and agricultural areas (Padgham et al., 2015; 
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Stenchly et al., 2017). Generally, there is a dearth in the literature on urban reforestation 

initiatives in Africa. 

 

Figure 2.1: Number of studies published per year during the period of 2000 to 2020 on urban 

ecosystem services in sub-Saharan Africa.  

 

This study found that 75% of the total urban ESs studies were conducted in South Africa, 

Zimbabwe, Zambia and Mozambique (Figure 2.2). The majority (52%) of the 75% studies were 

conducted in South Africa, attributable to higher levels of  industrialisation, urbanisation and 

socio-economic development in relation to other sub-Saharan Africa countries (Vaughn and 

Ryan, 2006; Winkler, 2007). The remaining 25% of urban ESs studies were conducted in East 

and Central Africa; mostly in Ethiopia, Kenya, Ghana, Tanzania, Nigeria, Senegal, Burkina 

Faso and Uganda (Dieye et al., 2012; Girma et al., 2019; Hurford and Harou, 2014; Lompo et 

al., 2019; Moore et al., 2019; Scuderi et al., 2019; Wakuru, 2013; Zabbey and Tanee, 2016). 

Insufficient urban ESs studies in these countries could be associated with limited resources and 

investment to support such studies  (Kumwenda et al., 2017). Furthermore, as shown in Figure 

2.3, most of the urban ESs related studies in sub-Saharan African cities have been evaluated in 

eThekwini (South Africa), Harare (Zimbabwe), Nairobi (Kenya) and Dar es Salaam 

(Tanzania). These findings are consistent with Du Toit et al. (2018) who reported that most of 

the urban landscape ESs studies have been conducted in South African, Kenyan and Tanzanian 
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cities. These cities are characterised by rapid growth of demographic and land use boundaries, 

encroaching and degrading ecosystem productive zones (Du Toit et al., 2018; Mulligan et al., 

2020; Munien et al., 2015; Mushore et al., 2019), hence necessitating assessments. Conversely, 

there are other larger cities in sub-Saharan Africa such as Abuja in Nigeria, Bulawayo in 

Zimbabwe and Gaborone in Botswana among the others, without studies evaluating the status 

of their ecosystem services. 

 

Figure 2.2: Number of studies on urban ecosystem services published from each country in the 

sub-Saharan Africa.  
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Figure 2.3: Number of ESs studies published from each city in the sub-Saharan Africa. 
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resilient and sustainable urban landscapes (Costanza and Kubiszewski, 2012; Mngumi, 2020). 

Such services rely on ecological processes and functions, which are scientifically measurable 

and quantifiable. Thus, the number of studies referring directly to urban ESs quantification has 

increased exponentially (Figure 2.4).  
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Figure 2.4: The number of studies published under the cultural, supporting, provisioning and 

regulating urban ecosystem services in sub-Saharan Africa. 
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 Generally, the most common source of information and quantification technique in most 

studies has been based on traditional approaches, compared to remote sensing approach (Table 

2.1). Although traditional approaches are highly accurate, they are costly, labour intensive, 

impractical in remote areas and at landscape scales and may lack spatial representativity. 

Therefore, they are not ideal for regional and immediate need for ESs assessment. Meanwhile, 

as aforementioned, remote sensing provides cheap and spatially explicit spectral information 

at a larger spatial extent, necessary for local and regional assessment of ecological processes 

and services. In this regard, there is need for more studies on urban ESs using cutting-edge 

remote sensing techniques to meet the REDD+ and sustainable objectives.   

Table 2.1. Number of studies published based on each urban ecosystem service and the total 

number of studies that applied remote sensing in sub-Saharan Africa 

Ecosystem 

services  

No. of studies Traditional 

approaches 

Remote sensing studies 

Regulating 41 5 36 

Provisioning  20 17 3 

Supporting 11 8 3 

Cultural 18 18 - 

Total 90 48 42 

  

 2.5 Use of remote sensing in quantifying urban ecosystem services  

The adoption of remote sensing has been valuable for studying complex environmental 

phenomena based on social-ecological interactions (de Araujo Barbosa et al., 2015; Fatoyinbo 

et al., 2018; Sithole et al., 2018). Remote sensing techniques are often used in the quantification 

and mapping of ecosystem processes and functions such as carbon stock, air temperature, 

biomass and primary productivity (de Araujo Barbosa et al., 2015; Fatoyinbo et al., 2018; 

Sithole et al., 2018). It has the capability to provide accurate and up-to-date spatial and spectral 

records of earth features required for the quantification and mapping of urban ESs. With the 

emergence of new and improved products, remote sensing continues to contribute extensively 

to quantifying, mapping and evaluating ESs. Among the satellite borne earth observation 

sensors, conventional medium-to-coarse spatial resolution optical (passive) sensors such as 

Landsat series, MODIS and SPOT have been widely used to quantify natural ESs (Table 2.2). 

Most of these sensors images are freely available and are characterised by larger swath-width 

with short revisiting time, making them suitable for repeated acquisition of information needed 

for multi-temporal assessments of urban ESs. According to Dube et al (2016), the popularity 

of medium-to-coarse spatial resolution sensors such as Landsat could be explained by the large 
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volumes of archived information dating back to 1972 during the first launch of Earth Resource 

Technology Satellite (ERTS-1), commonly referred to as Landsat. Hence, numerous urban 

ecosystem services studies in sub-Saharan Africa have been conducted using aforementioned 

satellite sensors, with reasonable accuracies (Dieye et al., 2012; Feyisa et al., 2014; Mushore 

et al., 2017; Odindi et al., 2017; Wangai et al., 2019).  

Feyisa et al (2014), for instance, used Landsat-7 ETM+ derived bio-geophysical variables such 

as normalized difference vegetation index (NDVI) spectral properties to quantify land surface 

temperature in the parks-vegetation of Addis Ababa, Ethiopia. The study established that the 

cooling effect of urban parks was highly correlated to the NDVI-spectral data (R2: 0.83) and 

Eucalyptus species had a higher cooling effect, thus regulating urban land surface temperature. 

Similarly, Mushore et al. (2017) predicted future distribution of land surface temperature in 

relation to the rapid urban growth using Landsat series (e.g. TM-5 and ETM-7) in Harare city, 

Zimbabwe. Their results demonstrated a high prediction coefficient (R2: 0.98) and reliable 

classification performance (accuracy: 87-89%). They concluded that continuous urban 

expansion would increase land surface temperature in the near future. Dieye et al (2012) 

quantified soil organic carbon variation across different land use-land cover classes using the 

Landsat-7 ETM spectral profiles and achieved a 90.7% accuracy in Dakar, Senegal. Their 

findings showed a reasonable coefficient of determination of 0.60 between soil organic carbon 

and various land management practices. They concluded that the rich Landsat series archive 

provides cost-effective multi-temporal information for understanding urbanization and its 

impact on ecosystem services in an urban landscape. Chapungu et al. (2020) estimated 

aboveground biomass as a proxy of carbon stock using spectral vegetation indices derived from 

Landsat-7 ETM in Mashonaland Central city of Zimbabwe. Their results showed a significant 

relationship (p-value = 0.0386) between NDVI generated from Landsat-7 ETM and 

aboveground biomass, despite low coefficient of determination (R2: 0.35). Their study deduced 

that Landsat-7 ETM derived NDVI between the red and near-infrared bands has great potential 

in assessing and monitoring biomass and carbon stock within urban landscapes. Based on these 

studies, there is a noticeable bias on the use of the Landsat series in understanding urban 

temperature and soil organic carbon in comparison to other ESs (e.g. carbon sequestration, 

primary productivity, water purification etc.) critical for climate change regulation and 

environmental risks control. Despite noticeable successes of Landsat series shown in these 

studies, there is a need for future research to explore the value of newly launched remote 

sensing satellite sensors with improved optical and thermal characteristics (i.e. spectral and 
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spatial resolutions) that can detect green biomass and permit estimation of urban ESs across 

different types of plant species.  Understanding the contribution of individual plant types into 

urban environmental quality and climate systems regulation is necessary for sound 

management and monitoring policies (Peerbhay et al., 2013a). 

Furthermore, the use of MODIS data characteristics has been useful in understanding urban 

ESs. Using thermal values derived from the mid-infrared spectroscopic reflectance of MODIS 

imagery, Odindi et al (2017) for instance successfully estimated the implications of land use 

land cover change on urban thermal characteristics (R2: 0.68-0.88) in eThekwini, Buffalo and 

Nelson Mandela Bay urban municipalities of South Africa. The study concluded that 

eThekwini Municipality was more vulnerable to increasing urban heat and climate change due 

to its high proportion of impervious surfaces. Similarly, Far et al (2015) estimated seasonal 

variation of foraging areas in urban landscape of Accra in Ghana using MODIS spectral 

wavebands. Despite the low regression coefficient (R2: 0.38), the study successfully delineated 

changes in foraging areas between wet and dry season with a 95% confidence interval. These 

two studies highlight the significance and sensitivity of the freely available MODIS spectral-

wavebands imagery for predicting and mapping air temperature and forage variability in urban 

areas. The strength and importance of MODIS in quantifying ecosystem services within urban 

landscape is also affirmed by studies outside sub-Saharan Africa. For instance, Boegh et al 

(2009) used spectral indices (i.e. NDVI) derived from MODIS imagery to model essential 

forest regulating services such as evapotranspiration and runoff fluxes in Sjaelland city, 

Denmark. Their study showed a reasonable relationship between simulated and measured 

evapotranspiration (R2: 0.67 and RMSE: 0.18 mm day-1) and a strong correlation between near-

surface runoff and stream discharge (R2: 0.73). Moreover, they found that urban forest 

ecosystems had a significant influence on evapotranspiration and runoff fluxes and deduced 

that MODIS derived spectral information can be used to understand important vegetation 

parameters and services. Fu et al (2013) evaluated net primary productivity variability in 

response to urban expansion in Guangzhou city, China using MODIS satellite data. Their 

results presented a rapid loss of carbon uptake potential (167*106 g. C) within six years, 

attributed to the conversion of vegetation cover into impervious infrastructure and settlements. 

These two studies illustrate the effectiveness and capability of MODIS data in modelling 

numerous ESs in urban environments. However, development in remote sensing technology 

has seen a shift from the utility of MODIS imagery to new generation sensors for urban ESs 

studies (Mushore et al. 2019, Potgieter et al. 2019, Simwanda et al. 2019).  
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Advancement in sensor technology has led to cheaper or freely-available data with optimal 

spectral properties suitable for urban ESs assessment and monitoring. Hence, there is a need to 

shift towards the adoption of newly launched, freely available and cost-effective multispectral 

sensors such as Landsat 8 OLI, SPOT-7 and Sentinel-2 multispectral instruments in urban ESs 

quantification and monitoring. Numerous studies have embraced the application of new 

generation multispectral sensors with improved spatial, spectral and radiometric resolutions 

(Dube and Mutanga, 2015b; Mngadi et al., 2019b; Mngadi et al., 2020). This has provided 

refined spectral data derived from plants biochemical and biophysical properties, which depicts 

and facilitates ESs quantification and mapping. Recently, newly generated space-borne sensors 

have been gaining popularity in urban forest ESs quantification and monitoring. Results in 

Table 2.2 show that only nine studies have quantified ESs using Landsat 8 OLI imagery in sub-

Saharan Africa (Di Leo et al., 2016; Mushore et al., 2019; Odindi et al., 2017; Orimoloye et 

al., 2019; Simwanda et al., 2019; Sithole and Odindi, 2015). Majority of these studies 

quantified climate regulation services (i.e. land surface temperature) and noted that air 

temperature decreases with the increases in vegetation densities and increases in impervious 

and built-up structures. These studies demonstrated the sensitivity and effectiveness of Landsat 

8’s thermal wavelengths and NDVI derivation for delineating the cooling effect of vegetation 

in urban landscapes. Meanwhile, Orimoloye et al. (2019) investigated vegetation health and 

drought severity using vegetation indices generated from Landsat 8 OLI and normalized 

drought dryness index in the city of Cape Town, South Africa. The study discovered that spatial 

decrease in vegetation cover in favour of built-up increases near surface temperature and 

drought severity. They concluded that Landsat 8 OLI offers improved spatial and spectral 

information valuable for vegetation health and drought severity modelling in urban landscape.  

Surprisingly, despite its unprecedented attributes relevant for ESs estimation, Landsat 8 OLI 

data has not been popular for assessing other important urban ESs such as carbon stocks and 

net primary productivity in sub-Saharan Africa. The robustness and reliability of Landsat 8 

OLI in quantifying various urban ESs is further supported by studies outside sub-Saharan 

Africa (López-Serrano et al., 2020; Safari et al., 2017; Sakici and Günlü, 2018; Wolanin et al., 

2019). Sakici and Günlü (2018) for instance, successfully predicted forest biomass and carbon 

stock using Landsat 8 OLI spectral variables in Kastamonu region of Turkey, obtaining 

reasonable prediction coefficient of determination (R2: 0.65), while Walonini et al (2019) 

estimated forests net primary productivity using Landsat 8 OLI’s derived spectral reflectance 

and achieved remarkable prediction performance (R2: 0.82 and RSME: 1.97 gC d-1.m-2) in 
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Berlin, Germany. These studies deduced that freely available multispectral Landsat 8 OLI 

offers important spectral information critical for concise prediction and monitoring of forest 

ESs at both local and regional scales. Using SPOT-7 imagery, Potgieter et al. (2019) 

successfully estimated the variation in ESs productivity with an accuracy of 87.7% and 

coefficient value of 0.83 (Table 2.2) in Capetown, South Africa, which was much higher than 

the application of mixed-pixel MODIS data reported in literature. The unprecedented SPOT-7 

performance could be explained by the sensor’s sensitivity to the critical ecological properties 

such as chlorophyll concentration and leaf area index, which directly influence energy reflected 

in the visible and NIR regions of electromagnetic spectrum and higher spatial resolution.  

According to Morfitt et al (2015), the spectral wavebands of new generation sensors record 

data with reduced atmospheric effects and high signal-to-noise ratio (SNR), which produces 

relatively pure and robust spectral reflectance data required for accurate quantification and 

mapping of ESs when compared to traditional sensors characterised by low signal-to-noise 

ratio. Traditional sensors are sensors on satellite platforms which have been upgraded over 

time, such as Landsat with 8 and SPOT with 7 imaging archives. Furthermore, some of the new 

and readily available multispectral sensors such as Sentinel-2 provide strategically positioned 

band settings such as those located within in the red-edge section of the electromagnetic 

spectrum, hence comparable to high spatial resolution commercial sensors such as WorldView-

2 and RapidEye. The red-edge region has been proven to be sensitive to numerous vegetation 

leaf properties such as biomass, chlorophyll content and canopy structure, required for optimal 

quantification of ecological processes, structures and services (Mngadi et al., 2019b; Sibanda 

et al., 2016). Many studies have reported that sensors with red-edge configuration produce 

optimal overall performance when delineating vegetation. To the best of our knowledge, no 

studies have attempted to develop new indices from red-edge region of Sentinel-2 MSI to 

enhance urban ESs estimation and monitoring. Furthermore, sensors like Landsat 8 OLI and 

Sentinel-2 MSI cover the shortwave near infrared (SWIR) region, which is essential for the 

estimation of ecological processes and services.  

Several studies have acknowledged the performance of SWIR wavebands for vegetation 

assessments (Mngadi et al., 2019b; Ramoelo et al., 2015; Wang et al., 2004b). This region 

reflects vegetation biochemical properties such as lignin, starch and nitrogen (Ramoelo et al., 

2015; Wang et al., 2004b). Although new generation sensors like Landsat 8 OLI, Sentinel-2 

and SPOT-7 VGT offer unprecedented opportunities for ecological assessments, very few 

studies have explored their potential. Thus, to fulfil the objectives of Intergovernmental 
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Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) as well as Kyoto 

Protocol that proposes continuous vegetation and its services monitoring, there is a need to 

explore their potential for quantifying and mapping a wide-range of urban ESs (i.e. carbon 

stock, primary productivity, biomass, water quality, amongst others), especially in sub-Saharan 

Africa. 

Table 2.2. Application of remote sensing technique in urban ecosystem services and its 

performances from different studies in sub-Saharan Africa  

Type of 

Sensor 

No. ES 

studies 

% avg. 

accuracy 

% avg. 

error  

Avg. 

R2 

Avg. 

coefficient 

City 

Active: 

Lidar (>15 cm) 

 

2 

 

87.7 

 

23.85 

 

0.84 

 

0.88 

 

Hout City and Asmara 

Passive: 

Landsat ETM 

(30 m) 

 

16 

 

90.7 

 

33 

 

0.83 

 

0.57 

 

Harare, Addis Ababa, 

Dakar, Uyo City, 
Libreville, Nairobi and 

Mashonaland  

Landsat 8 OLI 

(30 m) 

14 93.9 19 0.86 0.71 Durban, Harare, Bobo-

Dioulasso, Nairobi, 

Lagos, Addis Ababa, 

Lusaka and  

Johannesburg 

 

SPOT   (>5 m) 2 87.7 14.7    - 0.83 Hout City and Tshwane 

  

MODIS 

(>250m) 

5 84 2.4 0.62 0.75 Durban, 

Nairobi, Malindi, Mbita  

 and Accra,  

Sentinel 

(>10m) 

4 71.7   - 0.72 0.82 Brong Ahafo, Hogsback  

UAV-Drones  

(>0.5cm) 

2 90   - 0.86  - Aboabo 

 

However, despite their robustness in vegetation assessments, passive space-borne sensors have 

major limitations, that include (1) the inability to provide information related to biophysical 

properties such as structural geometry, water/moisture content and surface roughness, (2) the 

lack of short-wavelengths that hinder penetration of thin clouds and dense canopy cover and 

(3) data acquired by passive/optical sensors is often restricted to aboveground biochemical 

attributes such as leaf area index and chlorophyll content due to low penetration-ratio. These 

challenges remain a serious impediment, especially in critical assessments and understanding 

of ecological dynamics of ESs associated with urban forests. The utility of active sensors such 
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as Lidar and radar have been used to address the above-named limitations. Literature has shown 

that vegetation’s bio-geophysical properties (i.e. height and structural attributes) could be 

easily extracted from Lidar or radar with remarkable accuracies (Lin et al., 2016; Shikwambana 

et al., 2019). Airborne Lidar’s unique ability to characterise vegetation properties has attracted 

research interests in sub-Saharan Africa as proxy for quantifying and mapping ESs (Potgieter 

et al., 2019; Shikwambana et al., 2019). For instance, Potgieter et al (2019) successfully 

extracted height information of various forest ecosystem based on Lidar data to a high vertical 

accuracy of 87.7% and R2: 0.84 as a proxy for assessing urban vegetation ecosystem 

productivity in Capetown, South Africa (Table 2.2). Their results demonstrated the strength of 

airborne Lidar data in overcoming cloud and shadow effects, while providing accurate 

information on vegetation structure, useful for assessing urban ESs.  

Although active airborne sensors are highly accurate and provide robust geometric dataset, they 

are characterised by small spatial coverage (swath-width: 0.5cm-6m) (Table 2.3) that hinders 

concise wall-to-wall urban ESs quantification and mapping. Furthermore, the acquisition and 

mosaicking of airborne imageries (i.e. Lidar, radar and UAV-drones) is costly and 

cumbersome, hence their adoption could be a serious challenge to data scarce and financially 

constrained regions like sub-Saharan Africa. Hence, the new generation and freely available 

space-borne multispectral sensors (e.g. Landsat 8 OLI, Sentinel-2 and SPOT-7) remain the 

most viable and relatively affordable source of remotely sensed data in the region for 

characterising urban ES elements. To enhance the utility of new generation sensors data, there 

is need to integrate these datasets with ancillary information. Numerous studies outside Africa 

have shown that ancillary data improve the capability of remotely sensed data for optimal 

estimation of ESs (Lu et al., 2018; Maselli et al., 2009; Mondal et al., 2017). For example, Lu 

et al (2018) used Landsat data in conjunction with ancillary data (i.e. slope length and 

steepness, soil moisture, elevation and vegetation indices) to predict and map soil organic 

carbon. Their results showed high coefficient of determination (R2: 0.909) and low RMSE 

(2.47 g kg-1), concluding that ancillary data effectively improves remotely sensed data 

estimation capability. Similarly, Maselli et al (2009) evaluated a combination of SPOT-VGT 

and ancillary data to estimate primary productivity of water-scarce forest ecosystems in Lazio, 

Italy, and established that the combination significantly improves estimation performance (R2: 

0.67) of the model. These two studies demonstrate the importance of integrating remotely 

sensed and ancillary data to improve the estimation accuracy of the models.  
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Table 2.3. Sensors specifications and their integration with ancillary data for the assessment of 

urban ecosystem services in sub-Saharan Africa. 

Satellite 

sensor 

Spatial 

resolution 

and 

coverage 

Ancillary 

data 

integration 

Type of ES 

quantified 

References 

Lidar 

 

 

UAV-

Drones 

High  

(0.5cm-5m) 

 

Swath width 

(<50 km) 

 

 

 

      - 

Aboveground 

biomass (AGB), 

ecosystem 

productive areas, 

net primary 

productivity (NPP) 

(Potgieter et al. 2019 ; 

Fatoyinbo et al. 2018 ; 

Moore et al. 2019 ; 

Esmail and Geneletti 

2017) 

 

SPOT 

 

Landsat 

 

Sentinel-2 

Medium 

(5m-100m) 

 

Swath width 

(60-290km) 

NDVI, 

temperature, 

rainfall 

High ecosystem 

productive areas, 

soil organic carbon, 

air temperature, 

flood, soil erosion, 

drought and 

biomass 

(Potgieter et al. 2019; 

Sithole and Odindi 2015; 

Simwanda et al. 2019; Di 

Leo et al. 2016; Dieye et 

al. 2012 ; Feyisa et al. 

2014 ; Guenat et al. 

2019 ; Mushore et al. 

2017 ; Mushore et al. 

2018 ; Mushore et al. 

2019; Odindi et al. 2015, 

Wangai et al. 2019)  

MODIS Coarse  

(250m-

1000m) 

 

Swath width 

(2330 km) 

Rainfall, 

NDVI, 

temperature, 

slope, EVI 

Forage area, natural 

hazards control, air 

quality, air 

temperature and 

soil nutrient cycling 

(Fahr et al. 2015; Winkler 

et al. 2017; Odindi et al. 

2017; Boiyo et al. 2017) 

 

2.6 Empirical techniques for assessing urban ecosystem services based on RS data  

The findings of this review show that most of the RS based studies often use machine learning 

algorithm approaches for quantifying urban ESs as compared to other traditional approaches, 

such as statistical analysis (Figure 2.5). Machine-learning algorithms such as decision tree, 

maximum likelihood, random forest, gradient boosting and support vector machine shows that 

they have been widely used in urban ESs quantification. Reviewed literature show that most 

remote sensing based urban vegetation studies in sub-Saharan Africa often utilize the 

traditional maximum likelihood technique in the classification of vegetation species and 

structure (Moore et al., 2019; Potgieter et al., 2019; Simwanda et al., 2019; Sithole and Odindi, 

2015). The maximum likelihood (ML) technique is known for its classic ability of separating 

between and within-classes with maximum statistical probability ratios and variances (Sisodia 

et al., 2014; Sun et al., 2013). Studies that used the conventional maximum likelihood technique 
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for urban ESs mapping obtained high overall accuracies ranging between 73.85% and 90% 

(Moore et al., 2019; Potgieter et al., 2019; Simwanda et al., 2019).  

However, conventional techniques such as ML can be heavily biased at plot-level estimation, 

and the integration of ancillary data could reduce the likelihood of a normal distribution, while 

increasing the error rate due to overfitting (Sisodia et al., 2014). Therefore, improving urban 

ESs quantification and mapping requires adoption of robust and advanced algorithms capable 

of overcoming problems of overfitting and producing optimal classification or regression 

models. Such non-parametric algorithms include decision tree, random forest, gradient 

boosting and support vector machine, which have often been used for analysing remotely 

sensed data with optimal accuracies (Dieye et al., 2012; Hengl et al., 2017). For example, the 

average error rate exhibited by nonparametric algorithms such as decision trees in 

characterising land cover/use for soil organic carbon assessment is below 2%, whereas ML 

exhibited 10% error rates. Also, some of the powerful and reliable machine learning algorithms 

which could be effectively used for urban ESs quantification and mapping include the artificial 

neural network (Linderman et al., 2004) and linear discriminant analysis (Calviño-Cancela and 

Martín-Herrero, 2016; Mngadi et al., 2020). These techniques have been successfully used in 

mapping vegetation elements such as structure, biomass and species productivity (Mngadi et 

al 2020, Mugiraneza et al 2019, Linderman et al. 2004). In a related study, Mugiraneza et al 

(2019) used a support vector machine to map land cover dynamics and their impacts on rural 

ESs, obtaining an overall accuracy of 87%. Mngadi et al (2020) applied linear discriminant 

analysis to discriminate commercial forest species and achieved 88.9% accuracy. The 

robustness of these algorithms lies in their ability to pick up covariances that are associated 

with vegetation elements, which vary in space and time without overfitting the models. These 

abilities include bagging and bootstrapping operations stochasticity as well as numerous 

iterations which facilitate rigorous data mining required to optimally characterise ESs elements 

with high accuracies (Ganjisaffar et al., 2011; Sun and Pfahringer, 2012). Furthermore, these 

algorithms have the ability to select optimal spectral variables suitable for vegetation mapping 

using variable importance in projection (VIP) techniques when compared to traditional RS 

techniques (Calviño-Cancela and Martín-Herrero, 2016; Odebiri et al., 2020b). Although the 

emerging algorithms optimally perform and yield better accuracies in quantifying ESs, there is 

no standard technique that has been proven to be optimal for mapping specific ESs at various 

spatial and temporal scales. Therefore, there is need to evaluate the utility of most robust 

algorithms in estimating urban forest ESs in sub-Saharan Africa. 
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Figure 2.5. Quantification techniques that has been often used for assess urban ecosystem 

services using remote sensing data in sub-Saharan African (GM: Generalized models, AE: 

Allometric equations, SA: Statistical Analysis, EE: Energy Equations, ML: Machine 

Learning).  

2.7 Challenges of quantifying urban ecosystem services  

Although very high spatial resolution airborne sensors such as Lidar and UAV-data produce 

accurate ESs estimations, their application has been limited to only small areas (plot-scale) due 

to small spatial coverage and high image acquisition cost (table 2.2). Thus, high spatial 

resolution airborne sensors are best suited for local-scale, rather than concise wall-to-wall 

estimations of urban ESs at large spatial extent as required by REDD. Despite the advancement 

in the spatial and spectral characteristics of new generation multispectral sensors, most push-

broom scanners (e.g., Landsat 8 OLI and SPOT series) suffer from mixed-pixel issues, which 

hinders accurate quantification and mapping of urban ESs (Basuki et al., 2012; Carreiras et al., 

2012). Literature indicates that along track scanners record signals from a mixture of surfaces 

(i.e. bare soil, shadow cast and canopy) due to larger pixel-size, resulting in the spectral 

confusion and higher possibilities of misclassification (error of commission) and inaccurate 

prediction models (Basuki et al., 2012; Carreiras et al., 2012; Matongera et al., 2018). In 

addition, the establishment of standardized and effective techniques that permit integrated 

delineation of ESs supply and benefits (or demand) to human welfare remains a major 

challenge, despite the need to provide comprehensive information based on the links between 
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where services are produced and consumed by beneficiaries. Recently, many studies have 

emphasised the requirement of adopting reliable and practical techniques that can permit 

integrated assessment of socio-ecological interdependences around urban landscape as 

numerous off-site benefits may be difficult to determine using remote sensing technology (de 

Araujo Barbosa et al., 2015; Grêt-Regamey et al., 2015; Tallis and Polasky, 2009).   

2.8 Remote sensing prospects for quantifying urban ecosystem services  

Although numerous studies have assessed ESs using remote sensing spectral information in 

sub-Saharan Africa, these assessments have focused on natural (Simwanda et al., 2019) and 

commercial forests (Dube and Mutanga, 2015b, c; Odebiri et al., 2020b) outside urban 

landscapes. To the best of our knowledge, there are very few studies, if any, which have 

characterised ESs associated with urban reforestation activities. This is despite the increasing 

concern and need for knowledge on the impact and contribution of urban reforestation to the 

global carbon cycle and climate regulation (Mugwedi et al., 2017). It is therefore necessary for 

future studies to focus on the quantification and mapping of ESs in reforested areas using 

remote sensing techniques. To achieve this, new and readily accessible multispectral sensors 

such as Landsat 8 OLI, Sentinel-2 and SPOT-7, with enhanced spatial, spectral and radiometric 

capabilities could be useful in characterising ESs elements from reforested areas.  

Despite the aforementioned limitations, reliable operational machine learning algorithms with 

robust data processing capacities such as random forest, stochastic gradient boosting and linear 

discriminant analysis can be used to optimize freely and readily available new generation 

sensors (e.g. Landsat 8 OLI, Sentinel-2 and SPOT-7). These machine-learning algorithms, in 

concert with freely and readily accessible earth observation data have exhibited reliable 

accuracies (Dube and Mutanga, 2015c; Mngadi et al., 2020; Odebiri et al., 2020b). These 

models could also be improved by integrating ancillary biophysical (e.g. environmental 

variables, climatic variables and leaf areas index) and bio-geochemical variables (e.g. 

chlorophyll content). Furthermore, the exploitation of Sentinel’s (i.e. Sentinel-1 and 2) data is 

still lacking in the assessment of urban landscape ESs in sub-Saharan Africa. A Sentinel-1 

(SAR) and Seninel-2 hybrid provides reliable datasets that facilitate robust ecological mapping 

with unprecedented accuracies (Balzter et al., 2015). For instance, Sentinel-1 provides data 

related to biophysical properties (e.g. structural geometry, roughness and water/moisture 

content), while Sentinel-2 captures data based on biochemical characteristics (e.g. pigment, 

chlorophyll ) (Balzter et al., 2015). In sub-Saharan Africa, most studies have used Sentinel data 

for land use land cover characterisation and general vegetation assessments (del Río-Mena et 
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al., 2020; Guenat et al., 2019), rather than quantifying specific urban ESs such as carbon stock, 

air temperature and primary productivity. Thus, there is a need for future studies to explore the 

effectiveness of Sentinel datasets for specific urban ESs estimation (e.g. aboveground 

carbon/sequestration, net primary productivity). There is also a need for future research to 

establish and evaluate new and unique red-edge indices to strengthen the quantification 

accuracy of urban ecological processes and services in sub-Saharan Africa cities. In addition, 

future research should explore Sentinel-2’s red-edge inflection point for optimal urban ESs 

quantification. 

Furthermore, future studies can also improve the application of Landsat 8 OLI in quantifying 

ESs within urban landscape using pan-sharpening technique. Landsat images provide 

panchromatic data with better spatial resolution (15 m) which can be used to enhance 

multispectral data for ESs estimation. Pan-sharpening is an image enhancement technique in 

which a panchromatic data is fused with medium spatial resolution multispectral data to 

produce an image with higher spatial resolution characteristics (Mngadi et al. 2019). Despite 

reliability of pan-sharpening technique in generating high spatial resolution image, the fusion 

of panchromatic data and Landsat 8 OLI multispectral image for urban ESs estimation has not 

been explored. In addition, the integration of Landsat and MODIS datasets using spatial and 

temporal adaptive reflectance fusion model (STARFM) can effectively increase both spatial 

and temporal resolutions of MODIS image dataset for urban ESs quantification.  

The utility of cost effective Unmanned Ariel Vehicles (UAVs) also known as drones in urban 

ESs quantification in sub-Saharan Africa is still at infancy. UAVs provide high-spatial 

resolution imagery with less clouds and haze interference, suitable for accurate quantification 

of urban ESs (Moore et al., 2019). Thus, the utility of UAVs in the quantification of urban ESs 

require extensive evaluation. In addition, quantifying a full range of ESs using the imagery as 

a stand-alone dataset is not sufficient. Thus, future research needs to shift towards integration 

of earth observation (i.e. remote sensing) data with social evaluation methods derived data to 

understand the complexity of socio-ecological interdependences (i.e. interviews and 

indigenous knowledge). This could be a practical and reliable approach for a holistic and well-

informed decision-making and policy implementation in the African urban forests.  

2.9 Conclusion  

The current study sought to review the trajectory of remote sensing application on urban ESs 

quantification and mapping in sub-Saharan Africa. Although remote sensing has shown 
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remarkable potential and capability in quantifying and mapping urban ESs, this work 

demonstrates that most of studies often use conventional methods when compared to remote 

sensing related techniques. Despite their reliability, conventional methods are costly, labour 

intensive and logistically impractical in remote areas and landscape scales, hence their 

application is limited to only small-scale assessment. Meanwhile, a few remote sensing based 

studies demonstrate that its techniques offer spatially explicit information covering various 

spatial extents, necessary for local to regional scale urban ESs assessments. The utility of 

medium spatial resolution multispectral sensors has proven successful and useful in 

quantifying urban forest ESs elements with unprecedented accuracies, regardless of their 

mixed-pixels and saturation limitations. Their data is cheaper and readily available, hence ideal 

for immediate requirement of urban forest ESs information, especially in resource scarce and 

financially constrained regions like sub-Saharan Africa. The use of airborne sensors is still a 

challenge in sub-Saharan Africa. This is due to their high image acquisition costs and small 

spatial extent coverages, which limit their application at regional scales. Furthermore, studies 

outside Africa have shown that the utility of multisource data sets such as remotely sensed and 

ancillary data (weather and topographic data) can greatly improve the estimation and 

characterisation of urban forest ESs elements, especially when using freely available 

multispectral datasets. Therefore, the application of integrated multisource data needs further 

investigation in assessing sub-Saharan Africa’s urban forest ESs, especially in reforested areas. 

Deriving accurate information on urban ESs using spatially explicit techniques such as remote 

sensing techniques is critical for well-informed decision-making and policy adoption for 

ensuring sustainable utilisation and resilience of urban ecosystems in sub-Saharan Africa. 

 

2.10 Summary 

Literature have explicitly revealed unprecedented capabilities of remote sensing information 

in estimating and monitoring urban ES’s. Despite numerous studies predominantly addressing 

the importance of regulating ES (i.e., net primary productivity and carbon stock), such studies 

focused on natural and commercial forest ecosystems. To date, the contribution of reforested 

trees in carbon cycle and climate regulation (particularly net primary productivity 

contribution) have remain unknown. In this regard, Chapter 3 estimate net primary 

productivity of reforested trees based on biophysical parameters and remotely sensed 

information.   
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Chapter Three: Estimating aboveground net primary productivity of 

reforested trees in an urban landscape using biophysical variables and 

remotely sensed data 
This chapter is based on: 

Mngadi, M., Odindi, J., Mutanga, O. and Sibanda, M., 2022. Estimating aboveground net 

primary productivity of reforested trees in an urban landscape using biophysical variables and 

remotely sensed data. Science of The Total Environment, 802, p.149958. 

Abstract 

Recently, urban reforestation programs have emerged as potential carbon sinks and climate 

mitigates in urban landscapes. Thus, spatially explicit information on net primary productivity 

(NPP) of reforested trees in urban environments is central to understanding the value of 

reforestation initiatives in the global carbon budget and climate regulation potential. To date, 

numerous studies have mainly focused on natural and commercial forests NPP at a regional 

scale based on coarse spatial resolution remotely sensed data. Generally, local scale NPP 

studies based on fine spatial resolution data are limited. Therefore, this study sought to estimate 

aboveground NPP of an urban reforested landscape using biophysical and Sentinel-2 

Multispectral Imager data derived variables. Using the MOD17 model, results showed that 

mean NPP ranged between 6.24 Mg C ha-1 with high coefficient of determination (R2: 0.92) 

and low RMSE (0.82 Mg ha-1) across all reforested trees within the study area. Results also 

showed a considerable variation in NPP among the reforested trees, with deciduous Acacia and 

Dalbergia obovate species showing the highest NPP (7.62 Mg C ha-1 and 7.58 Mg C ha-1, 

respectively), while the evergreen Syzygium cordatum and shrub Artemisia afra had the lowest 

NPP (4.54 Mg C ha-1 and 5.26 Mg C ha-1). Furthermore, the multiple linear regression analysis 

showed that vegetation specific biophysical variables (i.e. leaf area index, Normalized 

Difference Vegetation Index and Fraction of Photosynthetically Active Radiation) significantly 

improved the estimation of reforested aboveground NPP at a fine-scale resolution. These 

findings demonstrate the effectiveness of biophysical and remotely sensed variables in 

determining NPP (as carbon sequestration surrogate) at fine-scaled reforested urban landscape. 

Furthermore, the utility of species biometric measurements and MOD17 model offers 

unprecedented opportunity for improved local scale reforestation assessment and monitoring 

schedules. 

Keywords:  photosynthetic active radiation, carbon flux, MOD17, species   
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3.1 Introduction 

Increased atmospheric carbon concentration due to anthropogenic activities has raised serious 

concerns on the global land surface energy balance and the changing climate system (Moore et 

al., 2019). Thus, terrestrial ecosystems such as forests have been noted as key in sequestrating 

considerable amounts of atmospheric carbon; counteracting the impact of climate change (Ahl 

et al., 2004; Verma et al., 2015). In this regard, estimation, mapping and monitoring of forest 

benefits such as NPP are central to global climate modelling due to their importance in net 

carbon accumulation. Specifically, information on NPP is central to understanding the rate of 

vegetation carbon uptake through photosynthetic process and other consumptive and non-

consumptive ecosystem goods and services (Pachavo and Murwira, 2014; Ruimy et al., 1994; 

Turner et al., 2005; Zhao et al., 2005).  However, natural landscape transformation into urban 

environment has been considered a major  driver of global environmental change (Odindi and 

Mhangara, 2012a; Sithole et al., 2018). Such landscape transformation is often linked to 

increasing atmospheric greenhouse gases and climate change related impacts. Although urban 

areas cover small land-surface, they account for considerable volumes of carbon emissions 

around the world due to higher energy and resource consumption (Luederitz et al., 2015). 

Generally, urbanization contributes to extreme deforestation and forest degradation, changing 

the dynamics of energy flow between biosphere and atmosphere, while posing serious 

constrains on carbon sequestration potential (Chagas et al., 2019; Cho et al., 2012; Murthy et 

al., 2002). Literature has revealed that forest loss and degradation constitute approximately 

12% of the world greenhouse gas emissions, resulting in rapid global climate change (Cho et 

al., 2012; Ernst et al., 2013; Saatchi et al., 2011). This has raised serious concerns attributed to 

the long-term strategy and policy framework for reducing carbon emissions and climate change 

effects. Consequently, urban reforestation (plantation of native trees to enhance regeneration 

of natural vegetation) has emerged as the most effective approach for offsetting carbon 

emissions and regulating climate change impacts and risks. Furthermore,  the Reducing 

emissions from deforestation and forest degradation (REDD+) and Kyoto Protocol have 

emphasized that reforestation is the most viable long-term and low-cost initiative for reducing 

the impact of greenhouse gas emissions on the global climate systems, particularly in 

developing regions such as Africa (Curiel-Esparza et al., 2015; Gara et al., 2016; Trotter et al., 

2005). Despite the need for spatio-temporal information on carbon dynamics in urban 

reforested trees to inform decision making and adoption of sound policies for monitoring and 

management of urban forest ecosystems and their services, the magnitude of carbon uptake by 

reforested trees in Africa’s urban landscapes remains largely uncertain. In this regard, timely 
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and precise estimation of NPP is important for understanding the contribution of urban 

reforestation initiative in the global carbon cycle.  

Furthermore, the conceptual understanding of NPP is based on energy flow within the 

ecosystems (Goetz and Prince, 1996; Zhu and Southworth, 2013). For instance, green plants in 

an ecosystem absorb considerable amount of incident photosynthetically active radiation 

(PAR) (between 400-to-700 nm wavelengths), which is either re-radiated or stored in organic 

substances during photosynthetic process (Sala and Austin, 2000). Thus, the amount of energy 

stored in organic matter of plant tissues represent the productivity. Literature indicates that 

large amounts of energy accumulated in plant biomass constitute 50% of carbon stock as dry 

mass per unit area per year (g C m-2 yr-1) (Dube and Mutanga, 2015c; Hu et al., 2015a; Pitman, 

2000), hence, absorbed energy in ecosystems is critical for NPP quantification. According to 

Ahl et al (2004), NPP has a linear relationship with absorbed photosynthetic active radiation 

(APAR) on the basis of light-use efficiency (LUE) conversion approaches. However, different 

vegetation plants may have varying energy absorption indices due to differences in leaf 

structure influencing carbon uptake and productive capacity. For instance, Goetz et al (1999) 

reported that LUE for estimating NPP using APAR could not be reliable for different functional 

plant types due to varying relative respiratory capacity. In this regard, understanding the 

contribution of different tree plants in the global carbon flux budget, especially in reforested 

areas is central for planning large scale projects and meeting the demand of Kyoto Protocol 

that aim to counteract climate change.  

Net Primary Productivity cannot be directly measured or observed in the field. This necessitates 

development of models that integrate vegetation biophysical factors and atmospheric 

dynamics. Commonly, APAR and LUE, among other vegetation parameters are integrated into 

NPP models. APAR is a product of the fraction of phytosynthetically active radiation (fPAR) 

(which is derived between the spectral reflectance of near-infrared and red-band as a function 

of normalized difference vegetation index-NDVI) and sum of in-situ measurements of 

photosynthetically active radiation (PAR). LUE on the other hand is derived from 

meteorological data (i.e. temperature) obtained from biome properties look-up table. Models 

that permit consolidation of remotely sensed vegetation parameters offer invaluable 

information for estimating and monitoring spatio-temporal variation of ecosystems primary 

productivity (Turner et al., 2005; Zhao et al., 2005). This is because remote sensing provides 

robust spectral reflectance based on greenness’ critical for measuring vegetation health and 

productivity, which does not require extensive field work. Moderate Resolution Imaging 
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Spectroradiomer (MODIS) MOD17 algorithm is one of the most reliable models used to 

integrate remotely sensed information and ecological biophysical dynamics (Robinson et al., 

2018; Sims et al., 2008; Smith et al., 2016). The model is designed for global estimation and 

monitoring of ecological functions, and currently the only regular model used for NPP 

estimation and monitoring (Robinson et al., 2018; Zhu and Southworth, 2013). Furthermore, 

MOD17 estimation of NPP depends on the interaction between solar radiation and plants 

canopy, and is known to be the canopy photosynthesis model that converts absorbed 

photosynthetic active radiation into carbon flux using LUE (Heinsch et al., 2003; Smith et al., 

2016; Zhao et al., 2005). Although MOD17 model has been frequently used at broad spatial-

scale, its application is not restricted to coarse resolution information such as 250 m MODIS 

products (Robinson et al., 2018). This is because the spatio-temporal variability of NPP across 

landscapes occurs at multiple scales (ranging from small-to-broad). MOD17 model permits 

integration of photochemical reflectance index (PRI) derived from narrow-wavebands (e.g. 

530-570 nm) as a surrogate of LUE (Lin et al., 2019; Pachavo and Murwira, 2014) and 

aforementioned APAR. In urban landscapes, numerous ecosystem processes and production 

often occur at fine resolutions, thus coarse resolution remotely sensed imagery such as MODIS 

is not best suited for evaluating fine-scale ecological processes and impacts. To effectively 

improve assessment and monitoring of NPP, there is need to adopt high resolution remote 

sensing datasets that permit fine-scale evaluations and monitoring of vegetation characteristics 

and dynamics.  

The emergence of high resolution sensors like Sentinel-2 multispectral imager,  with a 

minimum spatial resolution of  10m has shown promising capability in ecological assessment 

and monitoring with high leaf chlorophyll absorption index and vegetation senescing (Mngadi 

et al., 2019b; Wolanin et al., 2019). Sentinel-2 is characterized by its improvement on the 

spatial (10, 20, 60 m), spectral (443–2190 nm) and radiometric (12-bit) resolutions, including 

high temporal resolution (5-day revisit time), important for frequent and precise mapping and 

monitoring of vegetation characteristics. The sensor is characterized by 13 strategically 

positioned spectral wavebands within the electromagnetic spectrum, including additional red-

edge bands, valuable for vegetation modelling at fine spatial-scale. According to Robihnson et 

al (2018) MOD17 model allows replacement of coarse input datasets with fine-resolution 

datasets, hence Sentinel-2 spectral wavebands-reflectance and locally measured biophysical 

variables can be adopted in the model. Robinson et al (2018) for instance, replaced global 

biome input variables obtained from biome parameter look-up table (BPLUT) with finer 
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resolution (30 m) Landsat 8 OLI spectral information in MOD17 model to estimate NPP 

variability at small-scale. Similarly, Chagas et al (2019) used spectral information derived from 

Landsat 8 OLI and MOD17 model to estimate gross primary productivity. These studies 

demonstrate the flexibility of the model to allow multiscale resolutions assessment. Fine-scale 

ecological assessments such as urban landscape reforested trees are critically important for 

species-specific NPP estimates rather than biome-specific evaluation at broad scale. Thus, the 

application of Sentinel-2 could be used to reliably estimate tree species-specific NPP variability 

within urban landscape due to fine spectral and spatial attributes. Therefore, this study sought 

to estimate aboveground net primary productivity of reforested trees in an urban landscape 

using fine resolution Sentinel-2 remote sensing and biophysical variables (i.e. PAR). Since 

NPP cannot be directly derived, this study adopted the MOD17 model and validated the 

estimated NPP using field measured vegetation-specific biophysical variables such as leaf area 

index and chlorophyll concentration. Other essential predictor variables based on vegetation 

greenness (i.e. NDVI and enhanced vegetation index-EVI) and fPAR were generated from a 

remotely sensed Sentinel-2 image. 

 

3.2 Material and methods 

3.2.1 Field data collection 

Field datasets were collected between 21st and 25th of February 2020. During this period, 

climatic conditions (i.e. temperature and rainfall) were favourable for maximum biomass 

productivity and vegetation health. In this study, we established 130 random sample points, 

which were inserted into a GPS and used as way points to navigate to the sites. From each 

point, a 10m x 10m plot-window was adopted and numerous biophysical (i.e. photosynthetic 

active radiation and leaf area index) and biochemical (i.e. chlorophyll concentration) variables 

measured at a species-level within the plot. The photosynthetic active radiation (PAR) was 

recorded using quantum sensor (ACCU-PAR-LP80) - Decagon Devices Inc. version Dec 13 

2013, with different species capturing varying absorption indices. Tree species chlorophyll 

concentration and leaf area index parameters were recorded using Chlorophyll Meter SPAD-

502Plus and Light Sensor Logger (LI-COR-1500). The structural attributes of trees required 

for understanding aboveground biomass such as height (H) and diameter at breast height 

(DBH) were also measured using clinometer and tree Haglof Digitech Calliper instruments. 

The allometric model that consolidate tree height and diameter was utilized to generate in-situ 

AGB productivity estimates, which was used to train and assess the accuracy of remotely 
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sensed estimates of net primary productivity.  Literature indicates that approximately 50% of 

tree biomass (as dry mass) comprise of carbon, hence we used the factor of 0.5 to convert 

biomass into in-situ carbon stock, which was utilized as surrogate for primary productivity 

(Dube and Mutanga, 2015c; Hu et al., 2015b; Tang et al., 2016). The location of each tree was 

captured using Trimble global positioning system (GPS). Furthermore, climatic data (i.e. 

temperature and rainfall) acquired from the South African Weather Services (SAWS) was used. 

3.2.2 Image acquisition and pre-processing  

A cloud free Sentinel-2 MSI image acquired on the 01st of April 2020 was downloaded from 

the European Space Agency (ESA) portal (https://scihub.copernicus.eu/dhus/#/home). The 

sensor consists of 13 spectral bands from the visible including the red edge, NIR and SWIR 

sections of the electromagnetic spectrum positioned between 10 m, 20 m, and 60 m spatial 

resolutions. The image was atmospherically and radiometric corrected using First Line-of-sight 

Atmospheric Analysis Hypercube (FLAASH) embedded in ENVI (64-bit) software where 

radiance values were transformed into reflectance. 

3.2.3 Modelling approach 

Although NPP is established through the difference between carbon gain during gross 

photosynthesis and carbon lost through autotrophic respiration (𝑅𝑎), estimating NPP through 

this difference remains a significant challenge. This is due to uncertainties associated with 

estimation of autotrophic growth and maintenance respiration (Clark et al., 2001). Despite few 

studies indicating progress in estimating respiration, challenges related to the quantification of 

critical plant tissues (i.e. leaves, roots, stem and canopy structure) remain formidable (Waring 

et al., 1998). Thus, the use of absorbed photosynthetic active radiation based-model for 

simulating carbon flux, which determines gross and net primary productivity, remains the most 

reliable and precise approach. In this study, we estimated NPP (Mg C ha-1) using modified 

MOD17 model following Pachavo and Murwira (2014) and Rahman et al (2004) approaches 

expressed by equation: 

  𝑁𝑃𝑃 = 0.5139(𝑃𝑅𝐼 ∗ 𝐴𝑃𝐴𝑅) − 1.9818                                                                            (3.1) 

Where PRI represent photochemical reflectance index and APAR refers to the absorbed 

photosynthetic active radiation by vegetation canopy, while 0.5139 and 1.9818 are constants. 

The absorption of photosynthetic active radiation (APAR) by vegetation canopy is directly 

related to the total amount of carbon (C) sequestered during photosynthesis process, thus the 

estimates of APAR is linearly related to gross primary production (GPP). Literature indicates 
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that photosynthetic response of APAR is an important driver of simulated carbon stock, which 

is expressed as grams of C per unit of APAR. In this study, the APAR was estimated following 

Pachavo and Murwira (2014) and Goetz et al (1999) equations:  

  𝐴𝑃𝐴𝑅 = 𝑓𝑃𝐴𝑅 ∗ 𝛴𝑃𝐴𝑅                                                                                                     (3.2) 

Where fPAR refers to the fraction of absorbed photosynthetic active radiation stored into 

organic dry matter and PAR is the incident photosynthetically active radiation. FPAR is an 

important photosynthetic biophysical variable, which is related to normalized difference 

vegetation index (NDVI) through the absorption and reflection of radiative light-wave in the 

visible region of the electromagnetic spectrum by vegetation foliage (Ruimy et al., 1994). 

Therefore, fPAR was estimated using NDVI reflectance derived from Sentinel-2 near infrared 

(NIR) and Red bands (i.e. b4 and 8) located in the visible region;   

  𝑓𝑃𝐴𝑅 = (1.24 ∗ 𝑁𝐷𝑉𝐼) − 0.168                                                                                      (3.3)  

  Where;  𝑁𝐷𝑉𝐼 = (
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
) 

The daily incident photosynthetic active radiation was directly measured on-site during field 

survey. Furthermore, the estimation of APAR necessitates determination of photochemical 

reflectance index (PRI), which is used as surrogate of LUE (Pachavo and Murwira, 2014; 

Rahman et al., 2004). LUE is a significant relative constant used in many NPP models for 

estimating and converting APAR into carbon flux, while PRI measures reflectance variability 

in the carotenoid pigments such as xanthophyll pigments (Pachavo and Murwira, 2014). 

Literature indicates that carotenoid pigments are essential indicators of LUE, and could be used 

to assimilate the rate of carbon uptake by vegetation per unit of absorbed energy (Rahman et 

al., 2004). In remote sensing, PRI is derived from narrow-bands (i.e. 530-570 nm) spectral 

reflectance, which are critical indicators of photosynthetic efficiency (Pachavo and Murwira, 

2014).  Thus, in this study, PRI was estimated from Sentinel-2’s band 2 (blue: 458-523 nm) 

and band 3 (green: 543-578 nm) reflectance. These spectral wave-bands are significantly 

sensitive to leaf chlorophyll absorption, carotenoids and vegetation senescing. Following 

Pachavo and Murwira (2014) and Rahman (2004) formulation, we estimated PRI using 

equation: 

 𝑃𝑅𝐼 = [0.53 ∗ (
𝑟𝑏𝑎𝑛𝑑3−𝑟𝑏𝑎𝑛𝑑2

𝑟𝑏𝑎𝑛𝑑3+𝑟𝑏𝑎𝑛𝑑2
) + 1] ÷ 2                                                                                      (3.4) 
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3.2.4 Statistical analysis 

The relationship between estimated aboveground net primary productivity and predictor 

variables was tested using multiple linear regression (MLR) analysis in r-studio (version 3.5.3). 

However, we first evaluated the spatial autocorrelation of net primary productivity using 

Moran’s I test (Legendre, 1993) and there was no spatial correlation on the data. We also tested 

collinearity between predictor variables using variance inflation factor (VIF) and all variables 

produced VIF values less than 10 (Gara et al., 2016), hence no collinearity existed between 

predictor variables. In this study, the estimated aboveground net primary productivity was 

recognized as response variable in all regression analyses, while LAI, NDVI, EVI, fPAR, 

APAR, Chlorophyll content and PRI were assigned as predictor variables. Based on the 

descriptive statistical p-value (α ≤ 0.05), we identified predictor variables which significantly 

improved prediction performance of aboveground productivity.   

3.2.5 Accuracy assessment 

The coefficient of determination (R2) and root mean square error (RMSE) based on multiple 

linear regression analysis were utilized to validate model performance in estimating species-

specific aboveground NPP. Generally, high R2 and low RMSE values illustrates good model 

performance (Pachavo and Murwira, 2014). In addition, the estimated species-specific NPP in 

this study was further validated against biome-specific NPP at regional-scale found in literature 

using an African context model. The results were compared at forest type level, where the 

average NPP estimated from reforested deciduous trees (i.e. Acacia caffra, Acacia robust, 

Bridellia microntha and Albizia adianthofolia), evergreen trees (i.e. Syzygium cordatum and 

Silver oak) and shrub trees (i.e. Artimisia afra) were correlated against the literature derived 

NPP values for the respective forest trees.  

𝑅𝑀𝑆𝐸 = √
∑ (ŷ𝑖−у𝑖)2𝑛

𝑖=1

𝑛
                                                                                                            (3.5) 

Where у𝑖 represent observed values, while ŷ𝑖 representing predicted values and 𝑛 the number 

of data points.  

 

3.3 Results 

The overall mean of estimated NPP obtained within reforested landscape was 6.23 Mg C ha-

1with the estimation accuracy (R2) of 0.92 and RMSE of 0.82 Mg ha-1 (14.7%) based on 
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MOD17 model using Sentinel-2 MSI image data (Table 3.1). For individual tree species, 

deciduous trees such as Acacia caffra and Dalbergia obovate yielded higher NPP between 7.58 

and 7.62 Mg C ha-1with accuracy performance (R2) of 0.83 and 0.98 , and error rate (RMSE) 

of 1.77 Mg ha-1 (25.9%) and 0.47 Mg ha-1 (7.12%). The evergreen Syzygium cordatum, 

deciduous Albizia adianthofolia and shrub Artemisia afra species achieved lower NPP of 4.54 

to 5.26 Mg C ha-1, with the R2 of between 0.95 and 0.99, and RMSE of 0.22 to 0.73 Mg ha-1 

(17.9%). 

Table 3.1. Aboveground net primary productivity and its relationship with measured AGB 

productivity of individual reforested tree species. 

Forest type Species  Estimated NPP  

(Mg C ha-1) 

           Accuracies  

R2                   RMSE(Mg/ha) 

 Acacia caffra         7.62 0.83                    1.77(25.9%) 

 Acacia robusta         6.70 0.95                    0.73(12.0%) 

Deciduous trees Bridellia microntha         6.09 0.72                    1.79(32.4%) 

 Albizia adianthofolia         4.98 0.99                    0.22(4.87%) 

 Dalbergia obovata         7.58 0.97                    0.47(7.12%) 

 Erythrina caffra         6.70 0.88                    0.73(12.0%) 

Evergreen trees Syzygium cordatum         4.54 0.95                    0.73(17.9%) 

 Silver oak         6.70 0.95                    0.75(12.3%) 

Shrub trees Artemisia afra         5.25 0.99                    0.24(5.03%) 

Overall mean        -          6.24 0.92                    0.82(14.7%) 

 

Among the seven variables used in the model, three predictor variable (i.e. LAI, NDVI and 

fPAR) obtained higher correlation performance and lower error rate (RMSE) against the 

observed aboveground biomass productivity (Table 3.2). Leaf area index (LAI) produced the 

highest correlation coefficient (0.71) and lowest RMSE (2.029 Mg ha-1), followed by NDVI 

with R2 of 0.57 and RMSE of 2.465 Mg ha-1, whereas fPAR achieved R2 of 0.54 and RMSE of 

2.561 Mg ha-1.   
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Table 3.2. Correlation performance of individual predictor variable in estimating aboveground 

net primary productivity. 

Predictor variables R2  

LAI 0.71  

NDVI 0.57  

fPAR 0.54  

EVI 0.49  

PRI 0.48  

APAR 0.44  

Chlorophyll 0.21  

 

The predictor variables that were significantly important in the estimation of NPP achieved p-

values of less than 0.05 (Figure 3.1). For instance, LAI, NDVI and fPAR generated p-value of 

between 0.01 and 0.00, and were considered optimal in the modelling of aboveground net 

primary productivity. 
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Figure 3.1. Significance of individual variables in estimating aboveground net primary 

productivity. The variables indicated with arrows were optimal and selected for the modelling 

of AG-NPP. 

 

The correlation of LAI against estimated AG-NPP produced higher coefficient of 

determination (0.89) and lower RMSE (1.077 Mg ha-1), NDVI against estimated AG-NPP 

obtained 0.70 and 1.737 Mg ha-1 and fPAR achieved R2 of 0.66 and RMSE of 1.859 Mg ha-1 

(Figure 3.2). Similarly, the measured aboveground biomass (AGB) productivity showed a 

reasonable correlation (e.g. R2 of 0.81 and RMSE of 1.66 Mg ha-1) against the estimated AG-

NPP (Figure 3.2). The p-values (α < 0.05) show that all correlations were significant. 

Furthermore, the results in Figure 4 illustrate the spatial variation of AG-NPP across reforested 

urban landscape. Based on Figure 3.3, the AG-NPP increases with the increase in forest canopy 

density and decreases with the decrease in canopy density.  
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Figure 3.2. Estimated aboveground net primary productivity (AG-NPP) against (a) measured 

aboveground biomass, (b) leaf area index, (c) normalized vegetation index and (d) fraction of 

absorbed photosynthetically active radiation. 

 

 

Figure 3.3. Map of estimated aboveground net primary productivity using MOD17 model in 

conjunction with 10-20 m spatial resolution (Sentinel’s) derived reflectance of reforested trees 

within urban landscape.  

 

 



45 

 

The estimated average NPP for deciduous trees (6.35 Mg C ha-1), evergreen trees (5.62 Mg C 

ha-1) and shrub trees (5.26 Mg C ha-1) were relatively similar to the NPP found in literature for 

the related forest types (Table 3.3). For instance, literature found that deciduous trees produced 

average NPP of 6.15 Mg C ha-1 (Gower et al., 2001; Pachavo and Murwira, 2014), evergreen 

trees yield 4.84 Mg C ha-1 (Gower et al., 2001) and shrub trees yield 4.85 Mg C ha-1 (Hanan et 

al., 1998; Pachavo and Murwira, 2014). Furthermore, the estimated NPP showed a positive 

correlation (R2: 0.85 and RMSE = 0.2801 Mg ha-1) with literature’s NPP. In addition, the 

McNemar’s test shows that the differences between the estimated NPP and literature’s NPP 

were not significant (p-value: 0.4441). 

Table 3.3. Estimated NPP at fine-scale spatial resolution against broad-scale spatial resolution 

NPP found in literature using MOD17 model in Africa. 

Forest types Estimated 

avg.NPP  

(Mg C ha-1) 

Avg.NPP in 

literature 

(Mg C ha-1) 

References Location 

Deciduous 

trees 

6.35 6.15 Pachavo and 

Murwira (2014), 

Gower et al 

(2001) 

South Africa, 

Zimbabwe, 

Cote d’Ivore 

Evergreen trees 5.62 4.84 Gower et al 

(2001) 

Cote d’Ivore 

 

Shrub trees 

 

5.26 

 

4.85 

 

Hanan (1989), 

Pachavo and 

Murwira (2014) 

 

Niger, 

Mozambique 

Mean NPP 5.74 5.28       -       - 

Coefficient of determination (R2) = 0.85    RMSE = 0.2801 Mg ha-1 (5.37%) and  

P-value of 0.44417 

 

 

 

 

 

 



46 

 

3.4 Discussion 

Reliable estimation of reforested tree species net primary productivity is central to 

understanding the contribution of reforestation initiative in the global carbon balance and 

ensuring effective management and monitoring of forest ecosystems and their services. Trees 

contribute to carbon sequestration through the photosynthesis process that generates 

carbohydrate and stores carbon in biomass. The variation in carbon sequestration during 

photosynthesis results in the variation of carbon uptake by different plant species. Reforestation 

is a novel approach to increase atmospheric carbon uptake and mitigating climate change 

(Lamb and Gilmour, 2003; Sithole et al., 2018). Therefore, this study provides estimates of 

reforested tree species contribution in the global carbon flux at a local urban environment.   

3.4.1. Application of MOD17 model in estimating species-specific NPP 

Results in this study show that MOD17 model successfully estimated net primary productivity 

at a fine-spatial resolution with the average mean NPP between 6.24 Mg C ha-1 and R2 of 0.92 

with low RMSE (0.82 Mg ha-1) across all reforested trees within the study area. These findings 

are consistent with previous studies conducted in indigenous or natural forests ecosystems 

using similar models. For instance, Nayak et al (2009) obtained an overall NPP of 6.0 Mg C 

ha-1 in native forest, while Pachavo and Murwira (2014) estimated a NPP of 6.06 Mg C ha-1 in 

South Africa and Zimbabwe native forests. The reliable NPP estimation can be attributed to 

MOD17 model’s ability to consolidate photosynthetic variables which are critical for plant 

productivity through conversion of absorbed energy by green-plant into carbon stock stored in 

plant biomass. This is supported by Ardö (2015) who demonstrated that MOD17 model 

produces higher estimates of NPP due to its sensitivity to incident radiation absorbed by green-

plants biomass. According to Rahman et al (2004), the assumption in the spatial and temporal 

invariability of MOD17 biome-specific input biophysical variables and dependence on coarse 

resolution information limits the robustness and application of the model in multiscale 

resolution. Meanwhile, the consolidation of species-specific data in this study demonstrated 

the capability of MOD17 to effectively estimate NPP at finer spatial resolution. Alh et al (2004) 

reported that site-specific (i.e. local scale) estimates of NPP are more accurate than coarse and 

generalized regional and global NPP quantification. Furthermore, the results also demonstrate 

a considerable variation in aboveground net primary productivity among the species, with 

Acacia and Dalbergia species contributing the highest NPP (6.70 to 7.62 Mg C ha-1) compared 

to Syzygium and Artemisia species the lowest (4.54 to 5.26 Mg C ha-1). This can be explained 

by the distinct variation in the biochemical (i.e. lignin, chlorophyll content, carotenoids etc.) 

and biophysical (leaf stomata, leaf area, canopy structure etc.) attributes between the taxon’s 
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(Jacquemoud and Ustin, 2008), which greatly influences the vegetation’s photosynthetic 

process and carbon uptake. According to Waring et al (1997), the unequal absorption of 

radiation by green-plants due to differences in pigments, leaf optical properties and leaf 

distribution results in uneven primary productivity between the species of different genera. For 

instance, deciduous tree species such as Acacia and Dalbergia have larger stomatal leaf 

properties which increases fraction of absorbed photosynthetically active radiation and plants 

productivity (Hong et al., 2018; Myneni et al., 1997). Conversely, shrub trees such as Artemisia 

have low light absorption ratio due to limited canopy structural geometry, leaf and stem 

biomass (Myneni et al., 1997), hence low carbon uptake per unit of absorbed energy. Street et 

al (2007) reported that variation in leaf-level photosynthetic characteristics between species 

facilitates their differences in primary productivity. 

3.4.2. Relationship between optimal variables and estimated NPP 

The findings of this study showed a close relationship between the estimated net primary 

productivity and optimal predictor variables (e.g. LAI, NDVI and fPAR). Among the predictor 

variables, LAI exhibited the strongest relationship (i.e. R2: 0.89 and RMSE = 1.077 Mg ha-1) 

with the estimated NPP. The correlation in this study is considered remarkable given 

differences in forest composition and variation in leaf-level photosynthetic activities among 

the species. Numerous studies show that leaf area is an important primary driver of 

photosynthesis in forest ecosystems, hence a major long-term control of plant productivity 

(Oberbauer et al., 1989; Street et al., 2007; Williams and Rastetter, 1999). Maximum LAI 

indicates high canopy absorption index associated with foliage and various leaf stomatal 

properties (i.e. density, area, shape etc.), which increases plants primary productivity (Li-li et 

al., 2016). A similar study by Luo et al (2004) established a positive relationship (R2: 0.70) 

between LAI and NPP. Also, this finding is supported by Fang et al (2014) and Myneni et al 

(1997) who demonstrated that the spatial extents of leaf surfaces are primary borders of 

essential canopy processes which includes among others light interception, evapotranspiration 

and gross photosynthesis, significantly influencing net primary productivity. Furthermore, 

studies have shown that green-biomass as represented by NDVI for instance, is a significant 

measure of photosynthetic activity and can be utilized to monitor spatio-temporal dynamics of 

vegetation productivity (Fang et al., 2003; Myneni et al., 1997; Odebiri et al., 2020a; Rafique 

et al., 2016; Wang et al., 2004a). Results in this study show that Sentinel-2’s derived NDVI 

between the near-infrared (band 8) and red (band 4) region strongly correlates (R2: 0.70, RMSE 

= 1.737 Mg ha-1) with the estimated NPP. A strong relationship of NDVI with NPP can be 
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attributed to the sensitivity of internal photosynthetic leaf mesophyll function of healthy green-

leaves to the near-infrared region (Rafique et al., 2016; Wang et al., 2004a). Therefore, 

variability in annual productivity and net carbon flux directly relate to the spatial and temporal 

patterns of NDVI as green-biomass (i.e. NDVI) represent vegetation response to climate. These 

findings are supported by numerous studies which correlated NDVI against net primary 

productivity and carbon flux. For instance, Rafique et al (2016) demonstrated an R2:0.80 

relationship of NPP and NDVI and found that land productivity increases with the increase in 

NDVI values. Similarly, Odebiri et al (2020) established a strong relationship (R2: 0.86) 

between vegetation-green biomass (i.e. NDVI) and soil carbon flux, hence concluded that 

NDVI is an important indicator of ecosystem productivity.  

Furthermore, this study shows that the estimated species-specific NPP at fine-scale is 

comparable with broad-scale biome-specific estimation found in literature. However, the 

present study provides great detail and insight of species-specific contribution in the global 

carbon cycle and trigger sound decision making for local-scale management and monitoring of 

urban forests. The findings demonstrate unprecedented correlation (R2: 0.85 and RMSE = 

0.2801 Mg ha-1) between the estimated NPP in this study and NPP found in literature. Such 

comparison is important for authenticating current study results and effectiveness of MOD17 

model at local vis-a-vis regional-level. Current results indicate that the application of MOD17 

model are not only limited to coarse resolution datasets and biome-specific information derived 

from look-up table. The utility of forests biometric measurements in the model improved and 

allowed the spatial estimation of reforested species-to-species NPP with plausible coefficient 

of determination and proved the model flexibility to consolidate field-dataset at fine-scale. 

Finally, this study proves that high spatial resolution multispectral Sentinel-2’s derived indices 

are better suited for local-scale NPP assessments and monitoring, especially reforested urban 

landscape. Additionally, the study shows that urban reforestation plays an invaluable role in 

carbon sequestration and mitigation of climate systems within urban landscape, necessitating 

effective management and conservation of reforestation ecosystem and its services.    

3.5 Conclusion  

This study sought to estimate aboveground reforested trees net primary productivity within an 

urban landscape using biophysical variables and Sentinel-2 derived spectral variables. The 

consolidation of Sentinel-2’s derived indices and measured biophysical variables successfully 

estimated aboveground net primary productivity. The most optimal predictor variables were 

LAI, NDV and fPAR. Based on the results, a considerable variability of net primary 
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productivity was observed among species, which can be attributed to the differences in 

biochemical and biophysical parameters of individual species that influence photosynthetic 

processes. The study provides the value of reforestation initiative to the global carbon budget 

and climate change mitigation as required by Reducing Emissions from Deforestation and 

Forest Degradation (REDD+) and Kyoto-Protocol. This information also benefits policy-and 

decision-makers and forest managers to plan for monitoring for smaller and larger scale 

projects. Overall, we deduce that MOD17 model is not only restricted to coarse resolution data 

and larger landscapes, it can also be successfully adopted to quantify and monitor carbon fluxes 

at a species-level within a small geographic scale using indices derived from fine resolution 

dataset such as Sentinel-2. 

 

3.6 Summary 

In this study, the estimation of net primary productivity shown that reforesting heterogeneous 

trees can promote atmospheric carbon sequestration and climate resilient cities. However, to 

the best of our knowledge, Sentinel-2 MSI spectral bands and indices have not been explicitly 

adopted to understand and monitor the spatial distribution of carbon stock in reforested urban 

landscape. Thus, the following Chapter 4 examined the prospect of Sentinel-2 spectral 

information in quantifying and mapping the spatial distribution of reforestation carbon stock 

within urban environment.  
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Chapter Four: The utility of Sentinel-2 spectral data in quantifying 

aboveground carbon stock in an urban reforested landscape 
This chapter is based on: 

Mngadi, M., Odindi, J. and Mutanga, O., 2021. The Utility of Sentinel-2 Spectral Data in 

Quantifying Above-Ground Carbon Stock in an Urban Reforested Landscape. Remote 

Sensing, 13(21), p.4281. 

 

Abstract 

The transformation of natural landscape into impervious surface due to urbanization has often 

been considered an important driver of environmental change, affecting essential urban 

ecological processes and ecosystem services. Continuous forest degradation and deforestation 

due to urbanization have led to an increase in atmospheric carbon emissions, risks and impacts 

associated with climate change within urban landscapes and beyond. Hence, urban 

reforestation has become a reliable long-term alternative for carbon sink and climate change 

mitigation. However, there is an urgent need for spatially accurate and concise quantification 

of these forest carbon stocks in order to understand and effectively monitor the accumulation 

and progress on such ecosystem services. Hence, this study sought to examine the prospect of 

Sentinel-2 spectral data in quantifying carbon stock in a reforested urban landscape using the 

random forest ensemble. Results show that Sentinel-2 spectral data estimated reforested forest 

carbon stock to an RMSE between 0.378 and 0.466 t.ha-1 and R2 of 79.82 and 77.96% using 

calibration and validation datasets. Based on random forest variable selection and backward 

elimination approaches, the Red-Edge Normalized Difference Vegetation Index, Enhanced 

Vegetation Index, Modified Simple Ratio Index and Normalized Difference Vegetation Index 

were the best subset of predictor variables of carbon stock. These findings demonstrate the 

value and prospects of Sentinel-2 spectral data for predicting carbon stock in reforested urban 

landscape. This information is critical for adopting informed management policies and plans 

for optimizing urban reforested landscapes carbon sequestration capacity and improving their 

climate change mitigation potential.   

Keywords: Reforestation; Ecosystem services; Carbon stock; Random forest 
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4.1 Introduction 

Urbanization, typified by transformation of natural landscape into impervious built-up 

surfaces, is considered a major driver of environmental change (Odindi and Mhangara 2012, 

Sithole et al. 2018, Adamu et al. 2021). Such transformation significantly affects the integrity 

of important ecological processes and ecosystem services that include deterioration of water 

quality, increase in urban thermal heat, air and noise pollution, loss of biodiversity and 

acceleration of climate change (Sithole et al. 2018, Xu et al. 2016, Livesley et al. 2016a). 

Despite covering small land-surface, urban areas account for the highest amount of global 

carbon emissions due to higher energy and resource consumption (Luederitz et al. 2015). 

Commonly, urban vegetation, especially forest ecosystems sequestrate the emitted carbon and 

regulate climate systems within urban landscapes. However, deforestation and forest 

degradation that typifies urbanization processes reduces urban areas’ carbon sequestration 

potential and increases greenhouse gas accumulations (Odebiri et al. 2020, Keenan et al. 2015, 

Payn et al. 2015, Cho et al. 2012). In sub-Saharan Africa for instance, studies show that 

urbanization exert enormous pressure on the spatial distribution of urban forest ecosystems, 

hence decreasing substantial amount of sequestrated carbon and accelerate potential risks and 

impacts of climate change (Pellikka et al. 2018, Mundia and Aniya 2005).  

Recently, the United Nations Framework Convention for Climate Change (UNFCCC) 

established the Reducing Emissions from Deforestation and forest Degradation (REDD+) that 

requires countries to report their carbon emissions and sink estimates through national 

greenhouse gas inventories (NGHGI) (Deo et al. 2017, Curiel-Esparza et al. 2015). 

Furthermore, the REDD+ and Kyoto Protocol programs have identified reforestation initiatives 

as the most efficient, low-cost and long-term approach for reducing greenhouse gas emissions 

and climate change impacts, especially in urban landscapes (Livesley et al. 2016b, Sithole et 

al. 2018). The emergence and recognition of reforestation as the potential carbon sink in urban 

landscapes is expected to significantly influence global carbon cycle, improve urban 

environmental quality and regulate climate systems. Subsequently, an explicit investigation in 

the methods and procedures for quantifying these carbon emissions and sinks are paramount.  

Numerous studies have assessed regulating ecosystem services such as carbon stock or 

sequestration and aboveground biomass (Baccini et al. 2008, Dube and Mutanga 2015a, Henry 

et al. 2011). However, existing assessments are biased towards natural/indigenous and 

commercial forests. Despite the need for knowledge on the contribution of urban reforestation 

on the global carbon cycle and climate change regulation potential, information on carbon 
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stocks in reforested urban areas remain largely unknown. Hence, there is a need to establish 

affordable, spatially explicit and robust techniques as well as datasets to effectively quantify 

and monitor carbon stocks in urban reforested landscapes.   

Traditionally, field surveys have been used to determine aboveground carbon (Hickey et al. 

2018, Dube and Mutanga 2015b). Whereas field surveys and observations are known to be 

highly accurate, their shortcomings are widely documented in literature (Dube and Mutanga 

2015a, Matongera et al. 2017). Meanwhile, among others, the Inter-Governmental Panel on 

Climate Change Good Practice Guidance (IPCC-GPG) on Land Use, Land Use Change and 

Forestry has proposed remote sensing as  a cost-effective and reliable primary data source and 

technique for wall-to-wall mapping and estimation of forest carbon dynamics, useful for long-

term climate change regulations and policy formulation (Gara et al. 2016). Remote sensing 

techniques offer spatially-explicit spectral information at a larger spatial extent, necessary for 

both local and regional prediction and monitoring of the aboveground carbon stock in 

reforested areas (Hickey et al. 2018, Dube and Mutanga 2015b). Recently, new generation 

commercial sensors such as the WorldView series have been widely used in estimating 

aboveground carbon stock and biomass (Eckert 2012, Karna 2012, Dube et al. 2014). These 

sensors consist of fewer but strategically positioned spectral wavebands, including unique band 

settings within the red-edge region invaluable for enhancing vegetation spectral response 

(Mutanga et al. 2012, Dube et al. 2014, Eckert 2012). However, despite their effectiveness in 

modelling carbon stocks, they are costly and not readily available. Such limitations hinder 

frequent quantification and monitoring of aboveground forest carbon stocks in regions such as 

Southern Africa where financial constraints limit the availability of spatial data. Hence, 

improved and freely-available multispectral sensors remain the most feasible sources of spatio-

temporal data for predicting forest carbon stock. Specifically, the emergence of cutting-edge 

freely available multispectral sensors such as the Sentinel-2 offer better prospects for 

vegetation modelling and monitoring. The sensor is characterised by improved spatial, spectral 

and radiometric properties that offer unprecedented opportunities for estimating aboveground 

carbon stock at both local and regional scales. Sentinel-2 is regarded as an intermediate spatial 

data source between medium spatial resolution (e.g. Landsat series) and high spatial resolution 

sensors (e.g. Worldview-2 and RapidEye) due to its strategically positioned band settings in 

the red-edge region and varying spatial resolution ranging from 10 to 60 m (Korhonen et al. 

2017, Thanh Noi and Kappas 2018). In addition, Sentinel-2 has a higher (5 days) temporal 

resolution, suitable for frequent quantification, monitoring and management of forest 
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ecosystems and carbon stocks. Despite the recent popularity of Sentinel-2 datasets in vegetation 

mapping, no study, to the best of our knowledge has used it to characterise an urban reforested 

landscape. In addition, new and unique indices derived from red-edge region of Sentinel-2 

multispectral image (MSI) for carbon stock estimation in reforested urban landscape have not 

been concisely explored. Such indices optimise spectral reflectance that can significantly 

improve prediction accuracy of terrestrial carbon stock. Studies that have evaluated red-edge 

indices (e.g., red-edge normalised difference vegetation index, red-edge chlorophyll index and 

red-edge modified simple ratio index) have particularly focused on leaf area index and biomass 

estimation (Dong et al. 2019, Delegido et al. 2013, Mutanga et al. 2012). Thus, there is a need 

to test such unique indices derived from strategically positioned red-edge bands of Sentinel-2 

MSI for enhancing carbon stock estimation in reforested urban landscapes.  

Multiple linear regression approaches based on a range of variables are often used for 

modelling aboveground vegetation biomass and carbon stocks (Mutanga et al. 2012, Lu 2006). 

However, optimal prediction of carbon stocks in urban reforested areas requires robust machine 

learning algorithms that do not have assumptions of data normality. For instance, non-

parametric ensemble techniques such as the random forest have proven to be successful in 

modelling forest ecosystems properties with unprecedented performance (Dube and Mutanga 

2015b, Mutanga et al. 2012, Grimm et al. 2008). Random forest is an algorithm known for its 

bootstrapping and creation of a subset of explanatory variables that are randomly selected from 

the input dataset, hence overcoming overfitting (Dube et al. 2014, Ließ et al. 2016). RF is also 

capable of addressing complex correlation problems existing between predictor variables due 

to large volumes of data and noise (Vincenzi et al. 2011). Literature shows that random forest 

regression model performs better than other machine learning algorithms in vegetation 

modelling (Roy 2021, Ghosh and Behera 2018, Safari et al. 2017, Wan et al. 2018). Ghosh and 

Behera (2018) for instance, established that random forest regression model outperforms 

stochastic gradient boosting in estimating forest aboveground biomass. Similarly, Safari et al. 

(2017) found that random forest model was robust in modelling forest aboveground carbon 

stock, compared to support vector machine and boosted regression trees.  In comparing the 

performances of random forest, back-propagation neural network, and support vector 

regression in estimating wetland aboveground biomass, Wan et al. (2018) found that random 

forest performed better than other regression algorithms. However, studies that have utilised 

random forest to estimate aboveground biomass and carbon content have been restricted to 

natural and plantation forests. For example, Dube et al (2014) used random forest ensemble to 
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estimate above ground biomass of Eucalyptus and pine species in a commercial forest. 

Similarly, Odebiri et al (2020) adopted ensemble random forest model to predict soil organic 

carbon stock in plantation forests, while Mutanga et al (2012) demonstrated that random forest 

model is critical in predicting biomass on a wetland. Furthermore, it has been widely proven 

that the integration of Sentinel-2’s spectral bands and vegetation indices in a robust machine 

learning algorithm facilitates accurate determination of aboveground vegetation carbon stocks 

(Korhonen et al. 2017, Forkuor et al. 2018, Baloloy et al. 2018, Dang et al. 2019, Wang et al. 

2019). Dang et al (2019) for instance, integrated spectral indices and bands derived from 

Sentinel-2 MSI in the random forest algorithm to estimate aboveground biomass of forest 

ecosystems in Yok Don Park, Vietnam. Likewise, Wang et al (2019) used spectral indices 

derived from Sentinel-2 MSI bands to predict aboveground biomass and leaf area index using 

robust algorithms such as support vector machine and random forest. The study conducted by 

Baloloy et al (2018) also indicated that Sentinel-2 derived indices and spectral bands are critical 

in modelling vegetation metric such as biomass and carbon. In this regard, this study sought to 

examine the prospect of Sentinel-2 image spectral-data in quantifying carbon stock within a 

reforested urban landscape.  

4.2 Materials and methods 

4.2.1. Field-survey and data collection  

Field survey and data collection were conducted between 21st and 25th of February 2020; during 

the summer season at peak biomass productivity. In this study, about 130 pre-determined 

random sampling points inserted in a global positioning system (GPS) were used to access the 

sampling sites. From each random point, a plot-size window of 10 m * 10 m was established 

and structural attributes such as height and diameter at breast height of reforested trees 

recorded. A clinometer (Vertex IV Hypsometer) was used to measure tree height, while 

diameter at breast height (DBH) was measured using a calliper. In this study, Trimble Global 

Positioning System (GPS) with 0.5 m accuracy was used to record geographic location of each 

sampled tree.  

4.2.2. Allometric modelling of aboveground biomass and carbon stock 

The allometric relationship between the tree diameter and height can significantly affect tree 

biomass, hence their measurements could be effectively used for vegetation biomass estimation 

(Dube and Mutanga 2015b, Dube and Mutanga 2015a). A non -environmental destructive 

approach such as allometric model for biomass estimation has been recommended by the 

Intergovernmental Panel on Climate Change (IPCC) (Clark III, Saucier and McNab 1986, 
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Toochi 2018). In this study, a field measured diameter at breast height (DBH) and height (H) 

of individual reforested trees were integrated into the allometric model to compute 

aboveground biomass using the following generic equation:  

𝑤 = 𝑎(𝐷2𝐻)ᵇ 

Where 𝑊 is the aboveground biomass, D represents diameter at breast height (cm), H indicates 

tree height (m), while 𝑎 and b are regression coefficients (Clark III et al. 1986). 

Generally, the aboveground dry biomass holds about 50% of carbon, as such, a friction factor 

of 0.5 is commonly used for converting dry mass into carbon concentration (Birdsey 1992, 

Toochi 2018). Therefore, in this study, we converted the computed biomass into carbon stock 

using the factor of 0.5.  

4.2.3. Image acquisition and pre-processing   

A multispectral Sentinel-2A satellite image was captured on the 26th of February 2020 during 

cloud-free day and freely downloaded on the 02nd of March 2020 through Quantum Geographic 

Information System (QGIS) portal. Sentinel-2 sensor acquires images at 13 spectral channels 

(e.g. coastal-b1, blue-b2, green-b3, red-b4, red-edge-b5, red-edge-b6, red-edge-b7, near 

infrared-b8, red-edge-b8A, water vapour-b9, cloud-b10, shortwave infrared-b11 and shortwave 

infrared-b12) at varying spatial resolutions of 10, 20, and 60 m. This sensor covers strategically 

located red-edge region (i.e. b5, 6, 7 and 8A) of the electromagnetic spectrum with unique band 

settings that are critical for vegetation modelling (Korhonen et al. 2017). Sentinel-2A data is 

readily available for frequent vegetation assessment and monitoring. In this study, the spectral 

data was atmospherically corrected using Dark Object Subtraction (DOS) embedded in QGIS 

software, which also converted spectral radiances to reflectance. Furthermore, the spectral data 

were extracted from a series of waveband combinations representing vegetation green biomass 

indices (Table 4.1). Indices which were ideal for vegetation assessment and monitoring 

include; normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), 

green NDVI (GNDVI), transformed vegetation index (TVI1), green chlorophyll index (Clgreen), 

modified simple ratio index (MSRI), ratio vegetation index (RVI), triangular vegetation index 

(TVI2), advanced vegetation index (AVI), modified triangular vegetation index (MTVI 1 and 

2) and normalize pigment chlorophyll ratio index (NPCRI). We also derived indices from a 

combination of red-edge bands such as red-edge normalized difference vegetation index 

(NDVIRE), red-edge chlorophyll index (ClRE) and modified simple ratio red-edge index 
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(MSRIRE). In addition, the derived indices were combined with spectral data extracted from 

the individual bands.  

Table 4.1. Spectral indices derived from Sentinel-2 MSI and their formulae. 

Indices                                  Formulae References 

NDVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Rousel et al., 1973) 

EVI 2.5*[
𝑁𝐼𝑅−𝑅𝑒𝑑

(𝑁𝐼𝑅+6∗𝑅𝑒𝑑−7.5𝐵𝑙𝑢𝑒+1)
] (Huete et al., 1999) 

TVI  √(𝑁𝐷𝑉𝐼) + 0.5 (Deering, 1975) 

GNDVI 𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

(Gitelson and Merzlyak, 

1998) 

Clgreen 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
− 1 

(Gitelson et al., 2003) 

RVI 𝑁𝐼𝑅

𝑅𝑒𝑑
 

(Baret and Guyot, 1991) 

MSRI 𝑁𝐼𝑅
𝑅𝑒𝑑

− 1

√𝑁𝐼𝑅
𝑅𝑒𝑑

+ 1

 

(Wu et al., 2008) 

TVI 0.5 ∗ [120 ∗ (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 200 ∗ (𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)] (Broge and Leblanc, 2001) 

AVI √[𝑁𝐼𝑅 ∗ (1 − 𝑅𝑒𝑑) ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)
3

 (Plummer, 1994) 

MTVI1 1.2 ∗ (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 2.5 ∗ (𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛) (Haboudane et al., 2004) 

MTVI2 1.5 ∗ (1.2 ∗ (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 2.5 ∗ (𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)

√(2 ∗ 𝑁𝐼𝑅 + 1)2 − (6 ∗ 𝑁𝐼𝑅 − 5 ∗ √(𝑅𝑒𝑑) − 0.5
 

(Haboudane et al., 2004) 

NPCRI 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
 

(Peñuelas et al., 1994) 

NDVIRE 𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 

(Dong et al., 2019) 

ClRE 𝑁𝐼𝑅

𝑅𝐸
− 1 

(Gitelson et al., 2003) 

MSRIRE 𝑁𝐼𝑅
𝑅𝐸 − 1

√𝑁𝐼𝑅
𝑅𝐸 + 1

 

(Wu et al., 2008) 
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4.2.4. Statistical analysis 

In this study, random forest algorithm was used for regression analysis. Random forest (RF) 

operates as an ensemble learning that creates multitude of decision trees (ntree) and selects the 

final best tree based on the majority vote. RF uses a bootstrapping technique to reduce model 

variance without increasing bias while enhancing accuracy and reducing overfitting (Ließ et 

al. 2016, Breiman 2001). Such an ensemble model has a modified technique (e.g. feature 

bagging) for selecting a random subset of features (mtry) in order to determine the split at each 

tree node (Breiman 2001). Each node in the model represents a predictor variable and all 

selected subset of the data are used as response variables. Random forest first examines and 

tests all predictors from each node before randomly selecting the best split from a set of 

predictors (Dube et al. 2014, Breiman 2001). Furthermore, random forest permits model 

optimization for better results using two parameters, namely; ntree, based on large sets of 

decision trees and bootstrap training sample and mtry, based on the individual predictor 

variables selected from each tree node (Forkuor et al. 2018, Mutanga et al. 2012). Normally, 

the standard value of ntree is set at 500, while mtry takes square-root of the total number of an 

input predictor variable on a normal classification, whereas on the regression, it divides all 

predictor variables by a default factor of three (Breiman 2001, Odebiri et al. 2020). The optimal 

ntree and mtry values for best prediction performance are determined based on the smallest 

out-of-bag error (Breiman 2001). In this study, the ntree was adjusted between 100 and 500 at 

the interval value of 100, whereas mtry was adjusted from 1 to 25 with interval value of 1. The 

best ntree and mtry was determined at the interval value of 300 and 18 based on the least root 

mean square error of the training dataset (n = 56).  

4.2.5. Optimal predictor variables selection  

Commonly, regression analysis suffers a problem of multi-collinearity due to high correlation 

or less variability between some inputs predictor variables (Forkuor et al. 2018, Odebiri et al. 

2020). Despite the capability of ensemble method such as random forest in dealing with strong 

correlation between certain variables, it is necessary to select and utilize optimal predictor 

variables that improve regression model performance. In this study, the out-of-bag (OOB) 

approach based on backward elimination was used to determine a subset of predictor variables 

that were ideal for the best regression model. Backward elimination is critical for removing 

highly correlated variables, which are not important until a subset of ideal predictor variables 

remain in the model. In addition, the values of carbon stock estimated from a subset of predictor 

variables were used to generate a spatially varying map of carbon stock.  
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4.2.6. Model validation and accuracy assessment  

Random forest effectiveness in predicting carbon stock within the urban landscape was tested 

using 10-fold cross-validation. Initially, the total dataset (n = 80) was partitioned into 70% (n 

= 56) as training sets and 30% (n = 24) as testing datasets. The RF model performance was 

evaluated using the coefficient of determination (R2), root mean square error (RMSE) and mean 

absolute Error (MAE). 

4.3 Results 

4.3.1. Carbon stock of reforested trees 

Based on the descriptive statistics, the minimum and maximum value of measured carbon stock 

within reforested urban landscape are 0.244 and 10.20 t.ha-1 with the mean value of 3.386 t.ha-

1 and standard deviation of 2.475 t.ha-1.  

4.3.2. Random forest model optimization 

Figure 4.1 shows random forest optimization parameters (Ntree and Mtry). In this study, the 

Ntree value of 300 and Mtry value of 18 produced the lowest RMSE (0.125 t.ha-1) and were 

selected for further carbon stock prediction. 

 

Figure 4.1. Best random forest optimization parameters (Ntree and Mtry) selected based on the 

lowest RMSE indicated by the red arrow. 
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4.3.3. Variable importance selection 

Results in Figure 4.2 show the predictive performance of individual variables used in the model 

and their ranking in terms of importance based on the OOB error rate, which increases with 

importance, while Figure 4.3 illustrates the number of variables selected for optimal carbon 

stock prediction. Using the backward elimination approach, a subset of four predictor variables 

(i.e. NDVI, EVI, MSRI and NDVIRE) with the smallest error rate was selected for the final 

carbon stock model. The integration of this subset into one random forest model produced the 

lowest OOB RMSE of 0.143 t.ha-1 and a 10-fold cross-validation RMSE of 0.153 t.ha-1. The 

RMSE increased to 0.331 t.ha-1 and 0.345 t.ha-1 for both OOB and 10-fold cross validation 

when using all 25 variables in the training dataset. Finally, this study used four predictor 

variables (i.e. NDVI, EVI, MSRI and NDVIRE) in the final random forest regression model for 

predicting carbon stock within the study area.  

 

 

Figure 4.2. The importance of variables in predicting carbon stock using the random forest 

model. The mean increase in OOB error rate shows greater variable significance. 
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Figure 4.3. Selection of optimal number of predictor variables using backward elimination 

approach. The ideal number of variables (indicated with red arrow) was selected based on the 

RMSE generated from the training dataset using OOB and 10-fold cross validation. 

4.3.4. Random forest model prediction performance 

Results in Table 4.2 show the overall mean carbon stock and prediction performance of 

Sentinel-2’s spectral data and the random forest model. The integration of optimal variables 

selected by random forest produced an overall mean carbon stock of 3.389 and 3.642 t.ha-1 

using calibration (training) and validation (testing) datasets. The random forest regression 

model obtained highest R2 (77.96 to 79.82%) with lowest RMSE (0.378 to 0.466 t.ha-1) and 

MAE (0.189 to 0.233 t.ha-1) when predicting carbon stock using four selected indices combined 

together, compared to the use of individual indices into the model. Figure 4.4 illustrates the 

relationship between predicted carbon stock with allometric derived carbon stock and optimal 

variables that greatly improved the random forest prediction model. Results in Figure 4.4 also 

show a strong correlation coefficient (r) of 0.951 to 0.978 between predicted and measured 

carbon stock. Furthermore, Figure 4.5 represent spatial variability of carbon stock across 

reforested urban landscape. Generally, the spatial variability of carbon stock increases with 

increasing canopy cover and decreases with the decrease in green biomass.  
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Table 4.2. Performance of random forest model in predicting reforested carbon stock using 

selected subset of variables separated into calibration and validation datasets. 

Prediction dataset Mean C (t.ha-1) R2 (%) RMSE (t.ha-1)     MAE (t.h-1) 

Calibration 3.389 79.82      0.378 (11.15%)     0.189 

Validation  3.642 77.96      0.466 (12.79%)     0.233 

 

  

Figure 4.4. Relationship between predicted and measured carbon stock of reforested urban 

landscape for calibration (1) and validation (2) datasets. The regression analysis between 

predicted and measured carbon stock was established using a combined subset of optimal 

indices (A). 
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Figure 4.5. Prediction map of carbon stock within reforested urban landscape using random 

forest model.  

 

4.4. Discussion 

Concise estimation of climate regulating ecosystem services provided by reforested urban trees 

such as carbon stock is key to understanding the role and value of reforestation strategy in the 

global carbon dynamics and climate change regulation potential. Hence, this study sought to 

test the utility of Sentinel-2 satellite data in quantitatively evaluating the amount of carbon in 

an urban reforested landscape.  

Results showed that Sentinel-2 spectral data could be used to estimate carbon stocks in an urban 

reforested area. In this study, a mean carbon stock of between 3.389 and 3.642 t.ha-1, with high 

R2 (77.96 and 79.82%) and low RMSE (0.378 and 0.466 t.ha-1) and MAE (0.189 and 0.233) 

was obtained using calibration and validation subsets dataset. This reasonable estimation 

performance can be explained by Sentinel-2’s strategically positioned wavebands, particularly 

the red-edge region. The region records numerous leaf properties such as chlorophyll 

concentration, leaf area index and green-biomass, necessary for measuring forests services such 
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biomass and carbon stock (Gara et al. 2016, Dube et al. 2014, Sibanda et al. 2016). Hence, its 

inclusion as an explanatory variable significantly improved carbon stock modelling accuracy. 

Our results concur with the hypothesis that sensors (e.g. Sentinel-2 MSI) with strategically 

located band settings such as red-edge, offer unprecedented spectral information critical for 

measuring vegetation metrics and services such as biomass and carbon uptake (Dube et al. 

2014, Mutanga et al. 2012). In addition to the red-edge, Sentinel-2’s near infrared (NIR) bands 

also provide sensitive spectral reflectance capable of explicit estimation of vegetation metrics 

such as biomass and carbon stock. The near-infrared region offers a refined narrow spectral 

wavelength ranging between 850 and 880 nm and highly sensitive to the biophysical and 

biochemical response of vegetation (Jia et al. 2017, Matongera et al. 2017). Biophysical (e.g. 

leaf area, biomass) and biochemical (e.g. chlorophyll content) properties are critical for 

detecting vegetation health and productivity; useful for determining carbon uptake by 

reforested trees.  

Results of this study also showed a strong correlation (r: 0.95 to 0.98) between the estimated 

aboveground carbon stock and measured carbon stock using calibration and validation datasets. 

Such strong relationship is associated with the consolidation of optimal variables (i.e. NDVI, 

EVI, MSRI and NDVIRE) selected by backward elimination process for the final prediction 

model of carbon stock. Among the integrated vegetation indices, NDVI was valuable in the 

estimation of carbon stock within reforested urban landscape. This could be attributed to the 

fact that NDVI is an important indicator of green-biomass, which can be effectively used for 

deriving and monitoring spatio-temporal dynamics of aboveground carbon stock/sequestration 

(Moumouni et al. 2018, Bindu et al. 2020, Gizachew et al. 2016). The findings in this study are 

consistent with those of Moumouni et al (2018) who predicted aboveground carbon stock 

variability across different forest biomes to a R2 of 0.91 using an NDVI. Meanwhile, in a related 

study, Bindu et al (2020) attained an R2 of 0.71 in estimating carbon stock of mangroves trees 

using NDVI. Such a strong predictive performance of NDVI in carbon stock estimation can be 

explained by the sensitivity of the near-infrared region to the internal leaf mesophyll, which is 

a major indicator of vegetation health and is responsible for maximum biomass productivity 

(Rafique et al. 2016, Wang et al. 2004), hence critical for simulating the amount of carbon 

stored in forest ecosystems. NDVI contain robust spectral information derived from Red and 

NIR bands, which are sensitive in detecting vegetation health and productivity, which are 

valuable carbon accumulation indicators. According to Moumouni et al (2018), the spatio-

temporal variability in green-biomass reflectance as measured by NDVI is proportional to the 
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simulated carbon flux. Interestingly, the inclusion of new and unique red-edge indices such as 

NDVIRE boosted the predictive performance of carbon stock within reforested urban landscape. 

The robustness of red-edge indices (i.e. NDVIRE) lies with the ability to provide spectral 

reflectance that have less atmospheric, soil background and water absorption influence or 

effects (Dong et al. 2019, Mutanga et al. 2012). The findings in this study are congruous with 

previous studies, which also established that red-edge indices are highly sensitive to vegetation 

metrics (e.g. leaf area index and biomass) (Dong et al. 2019, Delegido et al. 2013, Mutanga et 

al. 2012, Xie et al. 2018). For instance, Xie et al (2018) found that the red-edge derived spectral 

indices are better prospects for improving estimation coefficient of leaf area index in 

agroecosystems. While Mutanga et al. (2012) established that red-edge indices can 

significantly increase biomass estimation of wetland vegetation. These studies suggested that 

red-edge indices could be effectively used to measure vegetation productivity and health 

(which includes carbon sequestration and stock). Red-edge derived indices are less prone to 

saturation that is common to standard NDVI (Delegido et al. 2013, Dong et al. 2019), hence 

can be effectively applied in dense vegetation cover. In addition, red-edge indices contain 

sensitive spectral data as red-edge wavebands record rapid variations in plants chlorophyll 

content and leaf structure, hence critical for monitoring the spatial and temporal dynamics of 

vegetation health and productivity (Zarco-Tejada et al. 2018, Kim and Yeom 2014). 

Furthermore, the results on the carbon stock map show the variability of carbon stock across 

the study area, which decreases with the decrease in canopy density. This variability in carbon 

stock within the study area can be attributed to the variations in landscape topographic 

characteristics, which influence vegetation density and productivity. For example, studies have 

shown that slope, elevation and aspect can significantly affect the spatial distribution of carbon 

stock across forest landscapes (Zhu et al. 2019, Odebiri et al. 2020, Young et al. 2014). 

Variations can also be triggered by forest species composition due to the differences in 

biophysical (i.e. leaf area, stomata and canopy structure) and biochemical (i.e. leaf pigments, 

lignin and carotenoids) characteristics (Liu et al. 2018, Jacquemoud and Ustin 2008, Waring et 

al. 1998). For instance, deciduous trees (e.g. Acacia and Dalbergia) consist of large leaf 

stomatal properties which increase plant productivity and carbon storage, whereas shrub trees 

such as Artemisia have limited structural geometry, stem and leaf biomass, hence contributing 

low carbon stock (Hong et al. 2018, Myneni et al. 1997). 

In addition, the application of robust regression models such as random forest significantly 

improved the prediction performance of carbon stock in the reforested urban landscape. The 
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robustness of the random forest algorithm is associate with the ability to select important 

variables required for the best regression model (Mutanga et al. 2012, Odebiri et al. 2020). For 

instance, the consolidation of NDVI, EVI, MSRI and NDVIRE derived from Sentinel-2 MSI as 

selected by random forest model offers a remarkable methodology for predicting carbon stock 

in a reforested urban landscape. Overall, this study presents a better and cost-effective option 

for quantifying carbon stock in the reforested urban landscape using freely and readily available 

new generation Sentinel-2 MSI. Moreover, the study demonstrates the significance of the 

reforestation initiative in reducing atmospheric carbon emissions and regulating climate 

systems within the urban landscape, hence suggesting effective management and monitoring 

practices for reforested ecosystems and their services. The information presented in this study 

is useful for planning large-scale reforestation projects in order to maximize sequestration 

capacity and improve climate change regulation potential within urban landscapes. Our 

approach presents a concise methodology to monitor the progress of urban reforestation 

projects locally and similar reforestation projects around the world. In addition, although these 

results may benefit forest managers and decision makers, multi-temporal information on 

aboveground carbon stock variability across seasons and years and effect of topography on 

carbon sequestration within reforested urban areas still requires investigation. Furthermore, the 

inaccessibility of high spatial resolution images (e.g. Worldview-3, Quickbird etc.) and 

associated costs limited the opportunity to estimate carbon stock at a species level.  

4.5 Conclusions 

This study sought to examine the prospect of Sentinel-2 image spectral-data for predicting 

carbon stock in the reforested urban landscape. Based on the findings it is concluded that; 

• the spectral information derived from Sentinel-2 MSI can be effectively used to 

model or predict climate regulating ecosystem services such as carbon stock in 

reforested urban landscape.  

• spectral indices (e.g. NDVI, EVI, MSRI and NDVIRE) are useful in enhancing 

prediction performance of carbon stock in reforested urban environment. 

The findings of this study are critical for understanding the contribution of reforestation 

strategy in the global carbon balance and climate change regulation potential as required by 

Kyoto-Protocol and Reducing Emissions from Deforestation and Forest Degradation 

(REDD+). The study also provides information that is beneficial to decision-and policy-makers 

and forest managers to design optimal management policies and increase reforestation projects. 
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Also, the study demonstrates the significance of the reforestation initiative in reducing 

atmospheric carbon emissions and regulating climate systems within the urban landscape, 

hence can be used to suggest effective management and monitoring practices for reforested 

ecosystems and their services. Overall, we conclude that Sentinel-2 spectral information can 

be effectively used for predicting and monitoring carbon flux in the reforested urban landscape. 

Furthermore, dataset and approaches adopted in this study are easily transferable to similar 

initiatives globally due to S-2’s free availability and global coverable. Also, the random forest 

ensemble has been proven to be robust in estimating forest carbon. 

 

4.6 Summary 

This study presented the effectiveness of Sentinel-2 spectral data in quantifying reforestation 

carbon stock in urban landscape and provided useful methodology that can been adopted by 

forest managers and policy makers to monitor and plan for larger scale reforestation project. 

However, the unique image processing such as texture measures generated from Sentinel-2 

MSI have not been utilized to quantify carbon stock variability across reforested tree species. 

Therefore, the next Chapter 5 test the capability of texture measures derived from Sentinel-2 

MSI in quantifying carbon stock variation between reforested tree species within urban 

landscape.  
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Chapter Five: Quantifying carbon stock variability of species within a 

reforested urban landscape using texture measures derived from remotely 

sensed imagery 
This chapter is based on: 

Mngadi, M., Odindi, J. and Mutanga, O., 2022. Quantifying carbon stock variability of 

species within a reforested urban landscape using texture measures derived from remotely 

sensed imagery. In: Arellano, P. and Pandey, P. (Eds), Advances in remote sensing for forest 

monitoring, Wiley (in press).  

Abstract 

 Urban reforestation initiatives have been identified as valuable for among others, ecosystem 

services restoration, carbon sequestration and climate change mitigation. Hence, information 

on carbon stock accumulation and growth within an urban reforested landscape is critical for 

understanding the contribution of a reforestation initiative in the global carbon cycle and 

climate change regulation potential. Specifically, quantification of carbon stock variability is 

useful in understanding the contribution of reforested species to the global carbon cycle and 

provision of ecosystem goods and services. Hence, this study sought to quantify carbon stock 

variability across tree species within a reforested urban landscape using texture metrics derived 

from remotely sensed data. The study adopted grey level co-occurrence matrix (GLCM) 

technique to derive texture metrics from a Sentinel-2 imagery. Next, the random forest model 

was used for species carbon stock estimation. The results showed significant variation in 

carbon stock among reforested tree species. For instance, Acacia robusta, Brideliar micrantha 

and Acacia caffra produced the highest mean carbon stock (4.81 to 6.96 t/ha) while Erythrina 

caffra and Syzygium cordatum yielded lowest (3.97 to 4.26 t/ha). Furthermore, the results 

demonstrated carbon stock varies significantly (α ≤ 0.05) between the reforested tree species. 

These results are essential for understanding the contribution of different tree species in 

sequestrating carbon emission within urban landscapes, thereby providing evidence-based 

species prioritization for reforestation. This is ultimately invaluable for promoting the value of 

urban ecosystem goods and services, carbon sink capacity and climate resilient cities, 

particularly in the developing world.   

Keywords: reforestation, carbon stock, species, remote sensing, texture metrics  
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5.1 Introduction 

Continuous transformation of natural into impervious urban landscapes that typifies 

urbanization has been considered a major driver of environmental change (Odindi and 

Mhangara, 2012b; Sithole et al., 2018). This transformation adversely affects the quality of 

critical ecosystem processes and services, resulting in, among others, an increase in urban 

thermal heat, air and noise pollution (Livesley et al., 2016b; Xu et al., 2016). Although urban 

landscapes cover marginal land surface worldwide, they account for approximately 70% of the 

global carbon emissions due to dense settlement and high energy consumption (Esch et al., 

2017; Ribeiro et al., 2019). Literature shows that urbanization is often associated with 

unprecedented deforestation and forest degradation; resulting in declining ecosystem goods 

and services and sequestration potential, while increasing greenhouse gas emissions and risk 

of climate change (Delphin et al., 2016; Keenan et al., 2015; Payn et al., 2015). Hence, the 

recently launched program for reducing emissions from deforestation and forest degradation 

(REDD) has identified urban reforestation as the most practical and long-term alternative for 

assimilating emitted carbon and reducing the impacts of climate change (Curiel-Esparza et al., 

2015; Deo et al., 2017; Livesley et al., 2016b; Mansourian and Vallauri, 2005). The recognition 

of urban reforestation initiatives as reliable carbon sinks is presumed to greatly contribute to 

the local, regional and global carbon budget (Sithole et al. 2018, Curiel-Esparza et al. 2015, 

Mngadi et al. 2021). However, despite the immediate need to understand their value on the 

global carbon cycle and climate change mitigation potential, information on carbon stock 

variability in reforested trees remains largely unknown. In this regard, there is need for carbon 

quantification in reforested landscapes in order to facilitate timely and accurate information 

necessary for informed urban ecosystem services regulation, urban environmental 

sustainability and carbon and climate change policy formulation. Despite the recent increasing 

interest in carbon stock assessment in sub-Saharan Africa, especially South Africa, there is 

paucity in literature that seek to understand carbon variability within re-forested landscapes. 

Quantification of carbon stock variability between reforested tree species is an important step 

towards understanding the contribution of urban reforestation initiatives to the global carbon 

balance and climate change (Dube and Mutanga, 2015c; Giardina and Ryan, 2002; Van der 

Werf and Nagel, 1996). For instance, Chen et al. (2015) noted that Eucalyptus urophylla 

produced highest aboveground carbon stock compared to Castanopsis hystrix and other 10-

mixed plantation species, while Dube and Mutanga (2015) showed that  Pinus 

taeda and Eucalyptus grandis species constitute the highest proportion of aboveground carbon 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pinus-taeda
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pinus-taeda
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/eucalyptus-grandis
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stock. Also, Wei et al. (2013) affirmed that aboveground carbon stock varies with different 

forest species. These studies demonstrate that explicit knowledge on carbon balance necessitate 

an understanding of variability of carbon stock between and within forest species.  

Despite numerous studies estimating carbon variations across different forest species types, 

most of the work has been done on commercial forests; with limited information on indigenous 

reforested urban trees (Chen et al., 2015; Dube and Mutanga, 2015c; Wei et al., 2013). 

Furthermore, available studies have often relied on conventional quantification approaches 

such as field measurements and survey models; which are costly, labour intensive and time 

consuming. Literature for instance has demonstrated that field surveys or models result in 

underestimation and uncertainty of the actual magnitude of carbon stored in terrestrial 

ecosystems (Dube and Mutanga, 2015c; Guo et al., 2010; Raich et al., 2014; Zhang et al., 

2012). Meanwhile, the emergence of remote sensing has shown remarkable potential in 

providing reliable spectral-data necessary for accurate and concise quantification of carbon 

stock variability (Gara et al., 2016; Hickey et al., 2018). Remote sensing minimizes the costs 

associated with extensive field survey and data collection at large spatial coverage, thus 

valuable for wall-to-wall quantification of aboveground carbon variability. However, despite 

the suitability of high spatial resolution remotely sensed datasets (e.g. Worldview series, 

QuickBird and RapidEye) in forest carbon quantification, they are costly and not readily 

available. These limitations impede recurrent quantification and monitoring of carbon stock, 

especially in resource constrained regions such as Southern Africa. Hence, the adoption of 

freely and readily available optical sensors remains the most convenient sources of spatial and 

temporal datasets for forest ecosystems carbon stock estimation. For instance, the recently 

launched Sentinel-2, with improved spatial, spectral and radiometric properties has shown 

promising potential in modelling forest biomass and carbon stock (Adamu et al. 2021, Khan et 

al. 2020). The sensor consists of strategically positioned bands in the red-edge region of the 

electromagnetic spectrum, which increases vegetation sensitivity and spectral response. 

However, whereas the utility of Sentinel-2 multispectral image (MSI) is gaining popularity, the 

rich information contained by the sensor is yet to be fully explored using texture-measures for 

estimating forest carbon stock, especially in a reforested urban landscape. Literature shows that 

analysis using spectral vegetation indices have been the most commonly used techniques in 

remote sensing for biomass and carbon modelling (Pandit et al. 2020, Foody et al. 2003, Dube 

and Mutanga 2015, Steininger 2000). The strength of spectral vegetation indices relies on the 

relationship between red and near infrared bands, which are critical for detecting green 
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biomass, including the ability to reduce atmospheric effects, senesced vegetation and soil 

background (Lu 2006, Foody et al. 2003, Sarker and Nichol 2011). However, estimating 

biomass and carbon stock using spectral indices generated from medium-to-coarse spatial 

resolution sensors in dense tropical and sub-tropical forests have been challenging, due to 

saturation problems and complexity of forest structure ecosystems (Lu, 2006).  

Recently, numerous studies have advocated for integration of texture measures with spectral 

data to enhance the quality and accuracy of image dataset (Kupidura 2019, Lottering and 

Mutanga 2012, Dube and Mutanga 2015). Image texture characteristics are considered a 

valuable source of information capable of detecting forest structural attributes, leaf area index, 

age and density using medium-or-high spatial resolution image data (Dube and Mutanga 2015, 

Pandit et al.2020, Lottering and Mutanga 2012, Sarker and Nichol 2011). Texture represent 

spatial arrangement of gray levels of pixels in an image based on local variance of spectrally 

unique and size of dominant objects (Zhu and Yang 1998, Kupidura 2019). Hence, texture 

measures provide robust information on the spatial distribution of pixel-values. Dube and 

Mutanga (2015) for instance showed that texture measures derived from medium spatial 

resolution remote sensing can be effectively used to estimate carbon stock variations across 

different forest species on plantation forests. Generally, the value of texture measures to 

understand carbon variation in indigenous reforested trees remain largely unknown. It is 

therefore necessary to evaluate the value of texture measures computed from Sentinel-2 

Multispectral Imager (MSI) to estimate carbon stock variability within reforested urban 

landscape. Therefore, this study sought to quantify carbon stock variation across different 

species of reforested trees within an urban landscape using Sentinel-2 computed texture 

measures.  
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5.2 Materials and methods 

5.2.1 Field survey and data collection  

Data collection and field surveys were conducted from 13th to 17th of April 2021 during summer 

season at which climatic conditions (i.e. rainfall and temperature) are favourable for maximum 

biomass productivity. In this study, pre-determined 120 random sample points were generated 

and loaded into a global positioning system (GPS) and used to navigate to the sites. Thereafter, 

10 m * 10 m plot-size windows were developed around each point, and tree height and 

circumference (at basal-height of 1.3 m) of the dominant tree species measured and recorded 

onsite. The tree species height was measured using clinometer (Vertex IV Hypsometer), while 

the circumference was measured using tape measure. The tree diameter (D) was then computed 

from circumference measurements using the generic diameter equation (eq.5.1). In addition, 

the geographic location of each sampled tree species was recorded using Trimble GPS.   

𝑑 =  
𝐶

𝜋
                                                                                                                                               5.1 

Where 𝑑 represent diameter, 𝐶 is the circumference and 𝛑 is a constant (3.14).  

5.2.2 Allometric modelling of aboveground biomass and carbon stock 

The adoption of allometric model to estimate aboveground biomass has been recommended by 

Intergovernmental Panel on Climate Change (IPCC, 1988) as the most ideal none destructive 

approach (Clark III et al., 1986; Toochi, 2018). Literature indicates that allometric relationship 

between the tree height and diameter affect tree biomass, thus their measurements can be 

accurately adopted to compute aboveground biomass (Dube and Mutanga 2015, Mngadi et al. 

2021). Hence, this study consolidated tree height (H) and diameter (D) of different reforested 

species in the allometric model to produce aboveground biomass using generic equation 

(eq.5.2).  

𝐴𝐺𝐵 = 𝑎(𝐷2𝐻)ᵇ                                                                                                                                   5.2 

Where 𝐴𝐺𝐵 represent aboveground biomass, D is the diameter at breast height (cm), while H 

indicates tree height (m), and 𝑎 and b are regression coefficients. 

Furthermore, literature indicates that dry biomass contains approximately 50 % of carbon, thus, 

the factor of 0.5 is commonly used to convert dry biomass into carbon stock (Dube and 

Mutanga, 2015c; Hu et al., 2015a; Tang et al., 2016). Hence, in this study, the factor of 0.5 was 

used to compute the actual carbon stock from aboveground biomass. 
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5.2.3 Image acquisition and pre-processing 

In this study, a freely and readily available Sentinel-2 multispectral image captured under clear 

weather conditions on the 18th of April 2021 was downloaded on the 05th of May 2021 from 

the European Space Agency (ESA) portal. The image consists of 13 spectral wavebands located 

in the visible (443.9 – 664.5 nm), near infrared (835.1 – 864.8 nm) and shortwave infrared 

(1613.7 – 2202 nm) regions of the electromagnetic spectrum. The sensor also provides unique 

and strategically positioned band settings in the red-edge region (i.e. b5, 6, 7 and 8A) of the 

electromagnetic spectrum; valuable for vegetation modelling. Sentinel-2 MSI captures spectral 

information at varying spatial resolutions of 10, 20 and 60 m with high (5 days) temporal 

resolution. The sensor’s spectral data was atmospherically and radiometric corrected in QGIS 

software using Dark Object Subtraction (DOS) approach.  

5.2.4 Sentinel-2 MSI texture metrics derivation 

In this study, texture metrics were statistically derived from Sentinel-2 MSI using grey level 

co-occurrence matrix (GLCM) technique embedded in ENVI 3.4 software. The texture 

measures were calculated using a co-occurrence displacement vector (d) of 1:1 and the 

direction (θ) of 45˚ in GLCM algorithm. However, the effect of angle parameter is considered 

minimal on the coefficient of determination (Kayitakire et al. 2006, Lottering and Mutanga 

2012), hence texture measures were computed at a constant angle. Although GLCM technique 

offers many texture metrics, this study selected nine-texture metrics which includes; mean, 

variance, correlation, contrast, entropy, dissimilarity, homogeneity and angular second moment 

(Table 5.1). These texture measures are considered valuable in remote sensing image analysis 

(Baraldi and Panniggiani 1995, Rao et al. 2002). The content of these texture metrics depends 

on the sensor’s spectral domain, spatial resolution and characteristics of sensed features (i.e. 

shape, dimension and spatial distribution).  Image-texture measures are robust in detecting 

forests structure, leaf area index, biomass, density and age (Sarker and Nichol 2011, Dube and 

Mutanga 2015). These ecosystem parameters are strongly related to remote sensing spatial and 

spectral information often used to estimate aboveground biomass and carbon stock. 

Furthermore, one of the key parameters of the GLCM technique is the moving window size. 

Thus, in this study, the window size of 3 x 3 was established to compute texture metrics. In 

addition, texture values from individual band-metric were extracted using ArcMap (version 

10.6).   
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Table 5.1. Image-texture metrics derived from Sentinel-2 MSI s and their formulae. 

Texture variables  Formulae                              Reference 

Mean       (ME)  ∑ ∑ 𝑖 ∗ 𝑃(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1  (Materka and Strzelecki 1998) 

Variance     (VAR)  ∑ ∑ (𝑖 − 𝜇)2 𝑃(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1    (Materka and Strzelecki 1998) 

Correlation   (COR)  
∑ ∑ (𝑖,𝑗)𝑃(𝑖,𝑗)−𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 (Kayitakire et al. 2006) 

Contrast    (CON)   ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1  

 

(Kayitakire et al. 2006) 

Entropy      (ENT)  − ∑ ∑ 𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗))
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1  (Yuan et al. 1991) 

Dissimilarity    (DI)     ∑ ∑ 𝑃(𝑖, 𝑗)│𝑖 − 𝑗│
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1  (Puzicha et al. 1999) 

Homogeneity     (HO)   ∑ ∑
1

1+(𝑖−𝑗)2  𝑃(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1  (Tuttle et al. 2006) 

Angular Second Moment 

(ASM)                          

 

  ∑ ∑ {𝑃(𝑖, 𝑗)}2𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1  (Yuan et al. 1991) 

Note: 𝑃(𝑖, 𝑗) is the frequency in which two compared pixels occur (e.g. one with grey level i and the 

other with grey level j.  

 

5.2.5 Statistical analysis 

In this study, aboveground carbon stock estimates across different tree species was performed 

using random forest model implemented in RStudio (version 3.6.3.) software. Random forest 

is an ensemble machine learning algorithm established to improve regression trees approach 

by combining multiple sets of decision trees. In a regression, random forest builds individual 

trees by randomly selecting a subset of variables from the input dataset. The optimal random 

forest model is determined using three parameters: ntree; which is based on a great set of 

decision trees computed from the observed input bootstrap sample (with default value set to 

500), mtry; which is the number of predictor variables tested at each tree node (mtry takes the 

square-root of the total number of variables as a default value in the classification, whereas, in 

the regression divides all predictors with a default value of three) and node-size; which is the 

lowest value of terminal nodes size of the trees (with default value of one). Commonly, the 

out-of-bag error is often adopted to discover optimal ntree and mtry value for the best 

prediction model. In this study, ntree was evaluated between 100 and 500 at an interval of 100, 
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while the mtry values were evaluated between 1 and 12 using interval value of 1. The node-

size was accepted at a default value of 1 and used throughout the prediction analysis. 

Furthermore, backward elimination methods embedded in random forest algorithm was used 

to determine a subset of predictor variables which were ideal for the final prediction model. 

Backward elimination is necessary for removing predictor variables that suffer from 

multicollinearity, while remaining with optimal predictors which provide better estimation 

performance. In this study, the prediction output of random forest model was integrated into 

the statistical analysis of variance (ANOVA) embedded in OriginPro (version 9.0) software for 

testing significant difference (α ≤ 0.05) in carbon stock variability between different tree 

species.  

5.2.6 Model accuracy assessment 

The prediction performance of random forest was tested based on 10-fold cross validation 

approach. The total dataset (N = 82) was initially separated into training (n = 58) and testing 

(n = 26) datasets. Coefficient of determination (R2) and root mean square error (RMSE) values 

were used for rating the prediction performance of random forest model. The RMSE was 

performed based on the following equation (eq5.3): 

𝑅𝑀𝑆𝐸 = √
∑ (ŷ𝑖−у𝑖)2𝑛

𝑖=1

𝑛
                                                                                                              5.3 

Where у𝑖 represent observed values, while ŷ𝑖 representing predicted values and 𝑛 the number 

of data points.  

 

5.3 Results 

5.3.1 Carbon stock of reforested tree species  

Figure 5.1 illustrates the statistical summary of measured carbon stock variability between five 

different species. The Acacia caffra for instance had the highest mean carbon stock of 6.91 

t/ha, compared to Erythrina caffra and Syzygium cordatum, which had the lowest carbon stock 

of 3.98 and 4.25 t/ha, respectively.  
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Figure 5.1: Descriptive statistics of the aboveground measured carbon stock variability 

between tree species.  

  

Results in Table 5.2 show the optimal Sentinel-2 bands derived texture measures for estimating carbon 

stock across different forest species using cross-validation and backward elimination approaches. 

Optimal texture measures for Acacia caffra and Acacia robusta species carbon stock estimations were 

mean, variance, homogeneity, contrast and correlation, while optimal texture measures for Briderliar 

microntha and Syzygium codartum species were dissimilarity, second moment, mean, contrast and 

correlation. Contrast, second moment and correlation were selected as the most optimal texture 

predictors for Erythrina caffra. Majority of these texture measures were commonly derived from the 

wavebands located between the visible (e.g. B2, 3 and 4), red-edge (e.g. B5, 6 and 7) and near infrared 

(e.g. B8 and 8A) regions of electromagnetic spectrum. The selected texture measures were used to build 

final model for predicting carbon stock variability across different species.  
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Table 5.2. Selection of optimal bands texture measures at the best moving window size (3 x 3) 

using random forest model for estimating carbon stock across different tree species. 

Species  Image bands  Texture measures R2 RMSE (t/ha) 

 B2 (Blue)  Mean 0.29 1.62 

Acacia robusta B8 (NIR) Variance 0.43 1.03 

 B6 (Red-Edge) Homogeneity  0.46 1.01 

 B11 (SWIR) Contrast 0.38 1.27 

 B6 (Red-Edge) Variance, correlation 0.49 1.00 

Acacia caffra B7 (Red-Edge) Homogeneity 0.55 0.81 

 B8A (Red-Edge) Correlation 0.51 0.87 

 B4 (Red) Contrast 0.31 1.45 

Bridelia micrantha B2 (Blue) Dissimilarity 0.52 0.84 

 B5 (Red-Edge) Second moment 0.45 1.01 

 B3 (Green) Correlation 0.40 1.16 

 B11 (SWIR) Mean 0.32 1.41 

Syzygium cordatum B7 (Red-Edge) Variance, dissimilarity 0.56 0.79 

 B2 (Blue) Dissimilarity 0.39 1.21 

 B4 (Red) Contrast, correlation 0.36 1.33 

Erythrina caffra B3 (Green) Contrast 0.39 1.22 

 B8A (Red-Edge) Second moment 0.45 1.01 

 

5.3.2 Prediction performance of carbon stock using remotely sensed data and the 

random forest model 

Results in Table 5.3 show the performance of remote sensing derived texture measures and random 

forest model in estimating carbon stock in the reforested tree species. The consolidation of optimal 

texture measures in the model produced a reasonable prediction performance (R2) of between 0.56 and 

0.88 and error rate (RMSE) of 0.80 to 0.31 t/ha for estimating carbon stock among reforested tree 

species. The relationships between texture predicted carbon against field-measured carbon stock for 

individual species and combined datasets are shown in Figure 5.2.  
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Table 5.3. Performance of optimal texture measures in predicting carbon stock variability 

among different tree species.  

Species  R2 RMSE (t/ha) 

Acacia robusta 

Acacia caffra 

Bridelia micrantha 

Syzygium cordatum 

Erythrina caffra 

All data 

0.58 

0.73 

0.67 

0.59 

0.56 

0.88 

0.78 

0.48 

0.59 

0.73 

0.80 

0.31 
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Figure 5.2. Relationship between predicted versus measured carbon stock of Acacia robusta 

(a), Acacia caffra (b), Bridelia micrantha (c), Syzygium cordatum (d), Erythrina caffra (e) and 

combined dataset for all species (f). 

5.3.3 Carbon stock estimates and variability between reforested tree species 

The estimates of aboveground carbon stock in reforested urban landscape for all studied tree 

species are shown in Figure 3.3. The results of this study demonstrate that Acacia robusta, 

Bridelia micrantha and Acacia caffra contain the largest proportion of carbon stock estimates, 

compared to Syzygium cordatum and Erythrina caffra, which contain lower carbon stock. 

Based on the statistical analysis of variance (ANOVA), the variation in total mean carbon stock 

between reforested tree species is significantly different (α ≤ 0.05). The spatial distribution or 

variation of estimated carbon stock across different reforested species (i.e. Acacia caffra, 

Acacia robusta, Bridelia micrancha, Syzygium cordatum and Erythrina cafffra) is shown in 

Figure 5.4.  
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Figure 5.3. Total mean carbon stock variability between different reforested tree species. Red 

line separates higher and lower mean carbon stock derived from reforested urban landscape. 
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Figure 5.4 Spatial distribution of aboveground carbon stock of Acacia robusta (a), Acacia 

caffra (b), Bridelia micrantha (c), Syzygium cordatum (d), Erythrina caffra (e) and combined 

species (f).   
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5.4 Discussion  

Reliable carbon inventory requires critical understanding of carbon stock variability among 

different tree species. Nonetheless, carbon stock variability for reforested trees has remained 

unknown, despite the need to understand the contribution and value of reforestation programs 

in the global carbon cycle and climate change mitigation. Thus, this study sought to quantify 

aboveground carbon stock variability across different reforested tree species within an urban 

landscape using remote sensed imagery texture measures.  

This study showed that texture measures derived from Sentinel-2 MSI can be used to explicitly 

determine aboveground carbon stock variability among different species of reforested trees 

within an urban landscape. Based on the results, the consolidation of optimal texture measures 

(i.e. mean, variance, homogeneity, contrast, dissimilarity, angular second moment and 

correlation) selected across different species using cross-validation and backward elimination 

techniques yielded R2 ranging from 0.56 to 0.88 and RMSE from 0.31 to 0.80 t/ha in predicting 

carbon stock allocation. Most of these texture measures were mostly computed from the red, red-

edge and NIR bands; which are highly sensitive to vegetation. The importance of these 

wavebands in detecting vegetation health and productivity is widely documented in literature 

(Gara et al., 2016; Sibanda et al., 2016). The results of this study are consistent with Pandit et 

al. (2020) and Dube and Mutanga (2015) who established that remote sensing derived texture 

measures are important for improving the estimation performance of biomass and carbon stock. 

The strength of remote sensing derived texture measures in estimating forest carbon stock 

variability is attributed to the ability to capture crucial information related to biophysical 

properties of vegetation such as canopy structure, leaf area index, biomass and tree age (Pandit 

et al. 2020, Kupidura 2019). According to Lottering and Mutanga (2012), texture measures 

enhance pixels’ relationship, which increases estimation potential of forest structural attributes, 

including biomass and carbon stock. Furthermore, advanced texture image processing 

technique appropriately reduced atmospheric effects, sensor’s view angle and sun-glint (Fan et 

al. 2014, Mousivand et al. 2014), hence providing pure texture values valuable for concise 

estimation of forest carbon stock. In addition, the sensor’s improvement in its push-broom 

scanning properties such as small signal-to-noise ratio and high radiometric resolution (12 bits) 

boosted the performance of texture measures derived from Sentinel-2 MSI for carbon stock 

estimation. Moreover, the adoption of grey level co-occurrence matric allowed for 

homogenization of 20 m bands to 10 m resolution through resampling, which increased the 

spatial information of Sentinel-2 MSI for invaluable estimation of carbon stock. Overall, the 
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study presents a cost effective and useful option of remote sensing data processing and 

acquisition using texture measures technique, especially from Sentinel-2 MSI for monitoring 

and managing the spatial and temporal dynamics of carbon stock variability in reforested urban 

environment.  

5.4.1 Carbon stock variability between reforested tree species  

The results of this study demonstrated a significant variation (α ≤ 0.05) in aboveground carbon 

stock among reforested tree species, with Acacia robusta, Brideliar micrantha and Acacia 

caffra containing higher carbon stock (4.89 to 6.96 t/ha) than Syzygium cordatum and Erythrina 

caffra (3.97 and 4.26 t/ha). Similar results were reported by Dube et al. (2015) who established 

a significant variation in carbon stock between different tree species (i.e. Eucalyptus grandis 

and dunii and Pinus taeda), while, Chen et al (2015) established a substantial variation in 

carbon stock between Acacia crassicarpa, Eucalyptus urophylla and Castanopsis hystrix 

species. Such variation in carbon stock can be explained by differences in biochemical (i.e. 

lignin, carotenoids) and biophysical (i.e. canopy structure, leaf stomata and area) properties 

between the taxon’s, which significantly control vegetation’s net photosynthetic process and 

carbon uptake. This is supported by Waring et al (1997), who noted that unequal carbon uptake 

due to differing photosynthetic absorption parameters such as pigments and leaf optical 

properties result in uneven distribution of carbon stock among tree species of different genera. 

According to Chen et al (2015) and Dube et al (2015), variations in carbon stock across 

different forest tree species can be explained by plant traits like maximum net photosynthetic 

rate (Pmax) per unit forest land area (Pmax multiplied by leaf area index) within different forest 

species. These studies shows that variation in biophysical properties among tree species 

facilitate differences in carbon stock. Moreover, this study demonstrates that reforestation of 

different indigenous tree species with great carbon sequestration capacity and storage reserve 

can promote climate resilient urban landscape and contribute to meeting the requirement of 

Kyoto Protocol and REDD+ to reduce atmospheric carbon emissions and mitigate climate 

change. In addition, the study provides basis for determining future optimal reforestation 

species mix to achieve both carbon assimilation imperatives and provision of other ecosystem 

goods and services. Thus, the prioritization of tree species such as Acacia and Brideliar for 

future reforestation projects is necessary for meeting the demands of Kyoto Protocol.  

5.5 Conclusion   

The current study sought to quantify aboveground carbon stock variability across different 

reforested tree species using remote sensing derived texture metrics dataset. The results in this 
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study have shown that carbon stock varies significantly among reforested tree species groups. 

Across species, Acacia robusta, Bridelia micrantha and acacia caffra have dominant carbon 

stock, whereas Erythrina caffra and Syzygium cordatum produced lower carbon stock. The 

adoption of texture measures derived from freely and readily available Sentinel-2 MSI proved 

instrumental in estimating carbon stock variability within reforested urban landscape. The 

findings of this study provides knowledge on the contribution of reforestation initiative in the 

global carbon budget and climate change mitigation potential. Moreover, the study provides 

necessary information that can benefit forest managers, decision-makers and policy-makers to 

establish well-informed management policies and plans for further improvement in 

sequestration capacity of reforestation program through large-scale projects, especially in 

urban and peri-urban landscapes.  

 

5.6 Summary 

In this study, the adoption of texture measures generated from Sentinel-2 MSI proved 

invaluable in predicting carbon stock variability among reforested tree species. This study 

provide insight on robust image-processing technique such as texture metrics for quantifying 

forests carbon stock at a species-level. However, the utility of complementary information 

generated from fusing Sentinel-1 C-band and Sentinel-2 MSI have not been explored for 

enhancing reforestation carbon stock estimation. Hence, subsequent Chapter 6 test the efficacy 

of combining Sentinel-1 C-band and Sentinel-2 MSI for enhancing reforestation carbon stock 

estimation within urban landscape.   
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Chapter Six: The efficacy of combining Sentinel-1 C-band and Sentinel-2 

MSI datasets in enhancing reforestation carbon stock estimation in urban 

landscape 
This chapter is based on: 

Mngadi, M., Odindi, J. and Mutanga, O., 2022. The efficacy of combining Sentinel-1 

C-band and Sentinel-2 MSI datasets in enhancing reforestation carbon stock estimation 

in urban landscape. Journal of Environmental Management (under peer-review), 

manuscript no: JEMA-D-22-04770. 

Abstract 

Accurate information on reforested carbon stock inventories is vital in understanding the value 

of urban reforestation initiatives and its role in designing climate mitigation strategies. 

However, the carbon stock estimation capabilities of traditional optical sensors are often 

plagued by saturation issues, clouding, and canopy shadowing effects. Although the fusion of 

radar and optical spectral data has shown great promise in reducing these challenges, studies 

on the utility of fused dataset in reforested urban areas remain limited. To this end, this study 

examined the efficacy of combining Sentinel-1 C-band and Sentinel-2 MSI datasets in 

enhancing reforestation carbon stock estimation in urban landscape. To this objective, Sentinel-

1 C-band and Sentinel-2 MSI image datasets were combined using a nearest neighbour diffused 

(NND) fusion technique and reforested carbon stock inventories estimated and mapped using 

a random forest regression model. The best carbon stock model (R2 = 0.78 – 0.83; RMSE = 

0.31 – 0.41 t.ha-1) was produced from the fused sentinel dataset. Among the interferometric 

polarisation, the results show that cross-polarized VH carbon estimates strongly correlate with 

measured carbon stock (r = 0.98), compared to co-polarized VV (r = 0.96). These results 

provide a basis to understand the value and versatility of image fusion in improving carbon 

stock estimation. Hence, the study provides a framework for monitoring reforested urban 

ecosystems, useful for facilitating sustainable urban living, optimal urban environmental 

governance and climate change mitigation.  

Keywords: reforestation, synthetic aperture radar, polarization, climate change, image fusion, 

fusion indices 
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6.1 Introduction 

Unrestrained urban growth has placed considerable pressure natural and ecological 

infrastructure, causing significant environmental degradation within large cities (Keenan et al. 

2015, Odebiri et al. 2020, Payn et al. 2015, Luederitz et al. 2015). Specifically, conversion of 

natural landscapes to other forms of land uses has resulted in elevated levels of carbon 

emissions, leaving  cities vulnerable to severe climate-related events (Adamu et al. 2021, 

Mngadi et al. 2021a). To reverse the effects of natural landscape degradation and safeguard 

against current and future climate change related threats, cost effective and strategic ecosystem 

restoration strategies are necessary in urbanized areas (Bustamante et al. 2019, Cortina‐Segarra 

et al. 2021). Hence, urban reforestation initiatives have emerged as a reliable and sustainable 

long-term mechanism for carbon sequestration and climate change mitigation (Livesley et al. 

2016, Mngadi et al. 2021a).  

Whereas reforested urban areas are generally known to sequester considerable amounts of 

atmospheric carbon, specific contributions of successful urban reforestation initiatives towards 

local and global carbon exchange fluxes and climate change mitigation remain largely 

unexplored in the developing world (Mngadi et al. 2021b, Curiel-Esparza et al. 2015, Deo et 

al. 2017). Moreover, the rapid and dynamic nature of land-use change within third world cities 

has made it increasingly difficult to fully comprehend the contribution of urban reforestation 

programs for global carbon accounting. Thus, cost effective and reliable carbon estimation 

techniques are necessary for determining the value of urban reforestation projects  (Holcomb 

et al. 2021). In this regards, the Inter-Governmental Panel on Climate Change Good Practice 

Guidance (IPCC-GPG) has recommended remote sensing as method reliable approach for 

determining and monitoring of forest carbon stock (Gara et al. 2016).  

Optical remote sensing sensors (e.g. Worldview series, Quickbird, RapidEye and Sentinel-2) 

have been widely used for biomass and carbon stock estimation within forest ecosystems (Dube 

and Mutanga 2016, Eckert 2011, Aricak et al. 2015, Gonzalez et al. 2010, Imran 2021, Mngadi 

et al. 2021c). For instance, Dube and Mutanga (2016) used Worldview-2 (400 nm - 1040 nm) 

to estimate aboveground biomass and carbon stocks for commercial forest species (R2 = 0.73, 

RMSE = 18.57 t.ha-1) within the uMgeni catchment of South Africa, while Aricak et al. (2015) 

used RapidEye (440 nm - 850 nm) imagery to predict aboveground forest carbon biomass (R2 

= 0.71) in Turkey. Additionally Gonzalez et al. (2010) demonstrated the capability of 

Quickbird data (450 nm - 900 nm) to quantify forest carbon density in California, United States, 

while Mngadi et al. (2021) estimated reforestation carbon stock using Sentinel-2 with an R2 
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value of 0.79 in the eThekwini region of South Africa. Despite these successes, the adoption 

of optical sensors are often impeded by several challenges. For instance, optical sensors 

commonly suffer from canopy shadow and clouding effects, and often lack the capacity to 

detect digital terrain features critical for deriving volumetric measurements of forests (Haack 

et al. 2000). Moreover, literature shows that biomass values derived from optical sensors are 

susceptible to asymptotic saturation, particularly within dense vegetation cover (Malhi et al. 

2021, Nuthammachot et al. 2020, Dube and Mutanga 2015).  

Nevertheless, radar sensors (such as Sentinel-1) offers crucial backscattering information 

pertaining to the physical properties of surface features (i.e. roughness, structural geometry and 

moisture content), which can be used to enhance the capabilities of optical sensors and improve 

forest carbon stock estimation performance (Mngadi et al. 2021c, Balzter et al. 2015). For 

instance, the Synthetic Aperture Radar (SAR) sensor attached to Sentinel-1 sensor provides 

advanced information on canopy height and digital terrain using Interferometric Wide Swath 

(IW) mode and dual polarization techniques, namely; Vertical transmit/Vertical receive (VV) 

and Vertical transmit/Horizontal receive (VH) (Balzter et al. 2015). The unique wavelength 

associated with this sensor also provides enhanced penetration through thin clouds and dense 

canopy cover (Nuthammachot et al. 2020, Mngadi et al. 2021c, Keleş et al. 2021), hence, SAR 

data has the capacity to circumvent clouding, shadowing and asymptotic saturation challenges 

associated with multispectral sensors (Haack et al. 2000, Mngadi et al. 2021c).  

The fusion of SAR and optical multispectral data has recently demonstrated great potential in 

biomass and carbon modelling within forested ecosystems (Forkuor et al. 2020, Malhi et al. 

2021, Nuthammachot et al. 2020, Agata et al. 2018). For example, Nuthammachot et al. (2020) 

combined Sentinel-1 and 2 images to boost the estimation performance of aboveground 

biomass. Similarly, Keleş et al. (2021) found that fusing optical images with SAR data 

improves the estimation accuracy of the aboveground carbon stock. Although these studies 

shown the strength and potential of multi-source approaches in modelling biomass and carbon 

sinks within forests, to the best of our knowledge, such an approach is yet to be adopted to 

understand and enhance carbon estimates of reforested trees within urban environments. 

Furthermore, although studies such as Mngadi et al. (2021c), Sarker and Nichol (2011) and Lu 

(2006) have demonstrated the utility of spectral vegetation indices derived from multispectral 

sensors in modelling forest biomass and carbon stock,  structural complexity and saturation 

issues within dense heterogeneous forest canopies remains a noticeable challenge. However, 

the penetrative capacity of Sentinel-1 SAR imagery presents an opportunity to overcome such 
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limitations. Hence it is necessary to explore the utility of complementary information in 

quantifying reforestation carbon stocks within urban environments. Thus, this study sought to 

examine the effectiveness of combining Sentinel-1 SAR and Sentinel-2 multispectral datasets 

in enhancing carbon stock estimation within a reforested urban environment.  

  6.2 Materials and Methods   

6.2.1 Field data collection 

Field data collection was carried out from the 13th to 17th of April 2021 during favourable 

weather conditions. The study generated 120 random sampling points. To correlate with the 

spatial configuration of the sentinel data, a 10 m x 10 m plot-size window was adopted for each 

sample point. Thereafter, structural parameters, such as tree height and circumference (at basal 

height of 1.3 m) of the dominant tree species within each plot were recorded. Tree height and 

circumference were measured using a clinometer (Vertex IV Hypsometer) and tape measure, 

respectively. Tree circumference measurements were then used to compute tree diameter (D) 

based on a generic diameter equation (eq.6.1) (Ngomanda et al. 2012). 

𝑑 =  
𝐶

𝜋
                                                                                                                                               6.1 

Where 𝑑 represent diameter, 𝐶 is the circumference and 𝛑 is a constant (3.14).  

6.2.2 Allometric modelling of aboveground biomass and carbon stock 

Literature has shown that vegetation biomass can be derived through the allometric relationship 

between tree height and diameter (Dube and Mutanga 2015, Clark III et al. 1986, Mngadi et al. 

2021b). Furthermore, the Intergovernmental Panel on Climate Change (IPCC) have endorsed 

allometric models as non-destructive approaches for biomass estimation (Clark III et al. 1986, 

Toochi 2018). Consequently, the measured height and diameter of reforested trees were input 

into the allometric equation below (eq.6.2) to generate aboveground biomass (Altanzagas et al. 

2019).   

𝐴𝐺𝐵 = 𝑎(𝐷2𝐻)ᵇ                                                                                                                                   6.2 

Where 𝐴𝐺𝐵 indicates aboveground biomass, D represent diameter (cm), while H is the tree 

height (m), and 𝑎 and b are regression coefficients. 

In addition, studies have highlighted that aboveground dry biomass contains approximately 50 

% carbon; hence a factor of 0.5 is frequently used to convert biomass to overall carbon stock 
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(Toochi 2018, Mngadi et al. 2021b, Birdsey 1992). Therefore, a 0.5 factor was used in this 

study to convert allometric biomass to carbon stock.  

6.2.3 Images acquisition and pre-processing 

A Sentinel-1, dual polarised (VV/VH) interferometric and Sentinel-2 MSI datasets captured on 

the 18th and 25th of April 2021 and were downloaded for the study area on the 5th of May 2021 

from the European Space Agency (ESA) portal. The C-band (SAR) was radiometrically and 

geometric corrected using the sentinel application platform (SNAP) toolbox and speckle noise 

filtered using the “Refined Lee” feature within the SNAP software. The feature is often used 

in speckle filtering due to its ability to preserve edges, linear features and texture information 

(Filipponi 2019). The terrain corrected sigma naught (σ0) of VV and VH bands was converted 

to decibel units (dB) to provide the best radar measurements that correlate to biomass (Small 

2011, Huang et al. 2018).  In this study, Sentinel-2A’s spectral radiance were atmospherically 

corrected and converted to reflectance using a Dark Object Subtraction (DOS) technique 

embedded in quantum geographic information system (QGIS) software (version 3.4.2). 

6.2.4 Image fusion technique  

Sentinel-1 and Sentinel-2 datasets were fused using a pixel level fusion technique within the 

ENVI (version 3.1.3) software environment. Pixel level fusion has been shown to retain the 

base image’s spectral data without significant levels of distortion or noise (Zhang et al. 2018, 

Mngadi et al. 2021c). In this study, a Nearest Neighbour Diffused (NND) fusion technique, 

which utilizes the pixel spectrum as its lowest unit of operation and uses a mixing model to 

generate a resolution-enhanced spectral image, was used (Zhang et al. 2018). The NND 

technique assumes that each generated spectrum in a fused high spatial resolution image is a 

weighted mixture of neighbouring super pixel spectra in the medium-to-low spatial-resolution 

multispectral image (Sun et al. 2014, Zhang et al. 2018). A diffusion model computed from the 

high-resolution image controls the weights by establishing the relationship or similarity of the 

target pixel to the neighbouring super pixels (Sun et al. 2014, Zhang et al. 2018). Unlike 

traditional techniques (i.e., Gram–Schmidt) that use band-by-band operations, the NND 

technique incorporates per-pixel-spectrum processing, which reduces noise, and minimizes 

distortion through pseudo-sharpening and bilinear interpolation (Peery and Messinger 2020, 

Isidro et al. 2017). This enhances the spatial features of the multispectral image while 

maintaining the embedded spectral information (Peery and Messinger 2020, Isidro et al. 2017). 

In this study, 15 vegetation indices were independently generated from the original Sentinel-2 
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and the fused image. These were used as predictor variables for carbon stock estimation (Table 

6.1).  

Table 6.1. Indices generated and their description and formulae.  

Indices Description Formulae Reference 

NDVI Normalized 

difference 

vegetation index 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Rousel et al. 

1973)  

EVI Enhanced 

vegetation index 
2.5*[

𝑁𝐼𝑅−𝑅𝑒𝑑

(𝑁𝐼𝑅+6∗𝑅𝑒𝑑−7.5𝐵𝑙𝑢𝑒+1)
] (Huete et al. 

1999) 

TVI1 Triangular 

vegetation index 

0.5 ∗ [120 ∗ (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 200 ∗ (𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)] (Broge and 

Leblanc 

2001) 

TVI2 Transformed 

vegetation index 
√(𝑁𝐷𝑉𝐼) + 0.5 (Deering 

1975) 

GNDVI Green normalized 

difference 

vegetation index 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

(Gitelson and 

Merzlyak 

1998) 

MSRI Modified simple 

ratio index 

𝑁𝐼𝑅
𝑅𝑒𝑑

− 1

√𝑁𝐼𝑅
𝑅𝑒𝑑

+ 1

 

(Wu et al. 

2008) 

RVI Ratio vegetation 

index 

𝑁𝐼𝑅

𝑅𝑒𝑑
 

(Baret and 

Guyot 1991) 

Clgreen Green chlorophyll 

index 

𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
− 1 

(Gitelson et 

al. 2003) 

AVI Advanced 

vegetation index 
√[𝑁𝐼𝑅 ∗ (1 − 𝑅𝑒𝑑) ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)
3

 (Plummer 

1994) 

MTVI1 Modified 

triangular 

vegetation index 

1.5 ∗ (1.2 ∗ (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 2.5 ∗ (𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)

√(2 ∗ 𝑁𝐼𝑅 + 1)2 − (6 ∗ 𝑁𝐼𝑅 − 5 ∗ √(𝑅𝑒𝑑) − 0.5
 

(Haboudane 

et al. 2004) 

MTVI2 Modified 

triangular 

vegetation index 

1.2 ∗ (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 2.5 ∗ (𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛) (Haboudane 

et al. 2004) 

NPCRI Normalize 

pigment 

chlorophyll ratio 

index 

𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
 

(Peñuelas et 

al. 1994) 
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NDVIRE red-edge 

normalized 

difference 

vegetation index 

𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 

(Dong et al. 

2019) 

MSRIRE Modified simple 

ratio red-edge 

index 

𝑁𝐼𝑅
𝑅𝐸 − 1

√𝑁𝐼𝑅
𝑅𝐸 + 1

 

(Wu et al. 

2008) 

ClRE Red-edge 

chlorophyll index 

𝑁𝐼𝑅

𝑅𝐸
− 1 

(Gitelson et 

al. 2003)  

 

 

6.2.5 Statistical analysis 

A random forest regression algorithm was used within the R statistical software (RCore 2016) 

to estimate carbon stock within the reforested urban landscape. The random forest regression, 

which is a deterministic ensemble-based method, contends with highly correlated and noisy 

variables using a large matrix of decision trees (Breiman 2001). The algorithm selects several 

bootstrapped samples which are subsequently picked with replacements, the decision tree 

matrix is then grown to a selected node size, where each specific tree is averaged to obtain a 

final prediction (Adam et al. 2014, Breiman 2001). Random forest uses two robust optimisation 

parameters to boost the model performance; namely ntree (based on largest subset of decision 

trees) and mtry (based on the predictor variable selected at each node). Generally, the optimal 

number of decision trees (ntree) and predictor variables (mtry) are identified and defined based 

on the smallest cross-validation error (Breiman 2001). For the Sentinel-2 image, the optimal 

ntree and mtry values were identified as 300 and 18, respectively. Whereas for the fused image, 

the best ntree and mtry was determined at 200 and 14 for cross-polarisation (VH) predictor 

variables and 300 and 19 for co-polarisation (VV) derived predictors.  

The variable importance technique embedded in random forest regression model was used to 

identify the influence of each predictor variable within the carbon stock estimation model. The 

total prediction dataset (N = 82) was divided into calibration (n = 58) and validation (n = 26) 

datasets. The prediction accuracy and error of each carbon stock model were tested using the 

coefficient of determination (R2), root mean square error (RMSE) and mean absolute error 

(MAE) (Adam et al. 2014). 
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6.3 Results 

6.3.1 Reforestation carbon stock 

Descriptive statistics show that the value of measured carbon stock within the reforested urban 

landscape ranged between 0.249 to 10.22 t.ha-1, with a mean and standard error of 3.45 t.ha-1 

and 0.32 t.ha-1, respectively.  

6.3.2 Variable importance selection 

Results in Figure 6.1 show the performance of each individual predictor variable utilized in the 

model. The level of importance of each variable is based on the Out of Bag (OOB) error rate, 

which increases with variable importance. Figure 6.2 demonstrates the optimal number of 

predictor variables selected for carbon stock estimation. For Sentinel-2 derived indices, a 

subset of four predictor variables (i.e., NDVIRE, NDVI, EVI and MSRI) was selected based on 

the smallest error rate using a backwards feature elimination technique. The consolidation of 

this subset into the final random forest regression model generated the lowest OOB RMSE 

(0.121 t.ha-1) and 10-fold cross-validation RMSE (0.129 t.ha-1). From the training dataset 

extracted from the fused optical Sentinel-2 with SAR cross-polarization VH, backwards feature 

elimination selected a subset of three variables (i.e., Red-edge band 8A, EVI and NDVIRE) for 

the final carbon stock model. This subset produced the least OOB RMSE (0.112 t.ha-1) and 10-

fold cross validation RMSE (0.122 t.ha-1), compared to the use of all 25 predictor variables 

(0.343 and 0.394 t.ha-1). Lastly, five variables (i.e., NDVI, NDVIRE, NIR band 8, Red band 4 

and Red-edge band 8A) were selected from the fused Sentinel-2 MSI with SAR co-polarization 

VV. An integration of selected variables in the final carbon stock estimation model obtained 

the smallest OOB RMSE of 0.144 t.ha-1 and 10-fold cross validation of 0.164 t.ha-1, compared 

to a consolidation of all predictor variables in the model (0.342 and 0.424 t.ha-1).  
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Figure 6.1. The measure of variable importance in predicting aboveground carbon stock using 

Sentinel-2 MSI and combined Sentinel-2 with individual SAR’s (Sentinel-1) polarizations (VH 

and VV). An increase in OOB error rate indicate higher variable importance.  

 

 

 



93 

 

  

 

 

 

Figure 6.2. Selection of ideal number of variables using random forest’s backward feature 

elimination technique.  

The optimal number of predictor variables were selected based on the lowest RMSE (shown 

with arrow) of OOB and 10-fold cross validation using training datasets extracted from 

Sentinel-2 MSI and combined optical Sentinel-2 with individual Sentinel-1’s VH and VV 

polarizations. 

6.3.3 Carbon stock model performance  

The results in Table 6.2 show the mean carbon stock estimates and predictive model 

performance. The mean carbon estimates of Sentinel-2 MSI for both calibration and validation 

datasets were 3.64 to 3.89 t.ha-1 with an R2 of 0.76 to 0.78 and RMSE of 0.42 to 0.48 t.ha-1 and 

MAE of 0.21 to 0.24 t.ha-1. In contrast, the integration of optimal spectral predictor variables 

derived from multisource dataset into random forest model generated better results than the 

individual Sentinel-2 MSI model. For instance, the fusion of Sentinel-2 MSI with C-band cross-

polarized VH operation produced an estimated mean carbon stock of 3.99 to 4.05 t.ha-1, with a 

better predictive performance (R2: 0.80 to 0.83) and the smallest error rate (RMSE: 0.31 to 0.35 
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t.ha-1 and MEA: 0.16 to 0.18 t.ha-1) using both calibration and validation datasets. Furthermore, 

the utility of Sentinel-2 MSI fused with co-polarized VV operation yielded a mean carbon value 

of 3.98 to 4.01 t.ha-1 with a coefficient of determination (R2) of 0.78 to 0.81 and an RMSE of 

0.34 to 0.41 t.ha-1 and MAE value of 0.17 to 0.21 t.ha-1 for calibration and validation datasets. 

Among the fused interferometric polarization operations of SAR imagery, results show that 

cross-polarized VH performed better than co-polarized VV.  

Table 6.2. Carbon estimation model performance using Sentinel-2 MSI and the combination 

of Sentinel-2 MSI with individual co-polarized VV and cross-polarized VH operations of SAR 

(Sentinel-1) datasets separated into calibration and validation.  

Image Prediction dataset Mean(t.ha-1) R2 RMSE(t.ha-1) MAE(t.ha-1) 

Sentinel-2 Calibration 3.89 0.78 0.42(10.9%) 0.21 

 Validation 3.94 0.76 0.48(12.6%) 0.24 

VV Calibration 3.98 0.81 0.34(8.54%) 0.17 

 Validation 4.01 0.78 0.41(10.2%) 0.21 

VH Calibration 4.05 0.83 0.31(7.65%) 0.16 

 Validation 3.99 0.80 0.35(8.77%) 0.18 

 

Results in Figure 6.3 demonstrate the relationship between measured and predicted carbon 

stock using spectral datasets derived from Sentinel-2 MSI and fused Sentinel-2 MSI with cross-

polarized VH and co-polarized VV operations of Sentinel-1 SAR imagery. The results show 

that predicted carbon stock is strongly correlated (r) with measured carbon stock, with a 

coefficient value of 0.82 to 0.98 (Figure 6.3). The regression analysis shows that the correlation 

between predicted carbon and measured carbon stock was significant (α ≤ 0.05). Furthermore, 

the spatial distribution of aboveground carbon in reforested urban landscape is presented in 

Figure 6.4. It can be observed that dense canopy cover influences considerable amount of 

carbon stock, which decreases with a reduction in green biomass concentration.  
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Figure 6.3. Relationship between measured versus predicted carbon stock established using 

calibration (1) and validation (2) datasets derived from Sentinel-2 MSI (a), and combined 

Sentinel-2 with cross-polarized VH (b) and co-polarized VV (c) operations.  
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Figure 6.4. Spatial distribution of predicted aboveground carbon stock generated using 

Sentinel-2 MSI dataset and synthetic aperture radar’s cross-polarized VH and co-polarized VV 

operations fused independently with optical Sentinel-2.  
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6.4 Discussion 

To improve carbon stock monitoring capabilities within reforested urban environments, this 

study examined the value of fusion-based spectral metrics derived from Sentinel-1 and 

Sentinel-2 imagery. The outcomes of this study demonstrate that combining optical and radar 

imagery limits the effect of saturation, clouding, and canopy shadowing, and improve carbon 

stock estimation within a reforested urban environment.  

6.4.1 The utility of Sentinel-1 and Sentinel-2 image fusion in carbon stock estimation 

The study findings showed that the inclusion of fusion-based spectral variables noticeably 

improved carbon stock estimation capabilities, with accuracies increasing from R2 = 0.78 for 

Sentinel-2 to R2 = 0.83 and 0.81 for fusion-based cross-polarized VH and co-polarized VV, 

respectively. These findings correspond to Keleş et al (2021) who found that fusion of Sentinel-

2 MSI and Sentinel-1 SAR datasets improves the estimation of aboveground carbon stock. This 

can be attributed to the enhanced sensitivity of backscatter and spectral reflectance to green 

biomass properties (X. Zhang & Ni-Meister, 2014). For instance, backscatter contains 

information related to forest structural geometry, moisture content and surface roughness, 

whereas spectral reflectance provides records of chlorophyll content, leaf area index and 

biomass (Malhi et al., 2021). Individually, however, optical and radar datasets are prone to soil 

background noise, saturation, clouding, and canopy shadowing, which may hamper the 

performance of forest carbon stock estimation (Brede et al. 2015; Gomez et al., 2019). 

Nevertheless, the fusion of optical and radar data reduces these challenges and provides 

detailed information that improves the performance of forest carbon stock estimation (Kumar 

et al. 2015; Lu et al., 2016). For example, Sarker and Nichol (2011) found that multispectral 

images (e.g., Sentinel-2) provide spectral data with reduced atmospheric and soil background 

effects, compared to radar sensors. Meanwhile, optical sensors carbon estimation capabilities, 

whose spectral responses are predominately dependent upon the relationship between solar 

irradiance and forest canopies, are commonly linked to biomass saturation— which often 

hinders reliable carbon stock estimation (Ghasemi et al. 2011). This is particularly evident 

within dense forest canopies (i.e. AGB is ≥ 0.3 g/cm-1), where the relationship between forest 

biomass and spectral responses becomes saturated (Mutanga et al. 2012; Mutanga & Skidmore, 

2004). The use of SAR imagery have demonstrated their value in minimizing the effect of 

saturation invents within forest canopies (Ghasemi et al., 2011; Luckman et al. 1998). The 

longer wavelengths, coupled with various polarization signals permits penetration and 

increases sensitivity of aboveground biomass (Luckman et al., 1998). Consequently, saturation 

thresholds for SAR imagery have been documented by Mermoz et al. (2015), Cutler et al. 
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(2012) and Imhoff (1995), with these saturation thresholds averaging 20t/ha for the C-band, 40 

t/ha for the L-band, and 100 t/ha for the P-band; considerably higher than the 10.22 t.ha-1 

recorded within our study site. Moreover, the high penetration ratio of SAR interferometric 

polarization reduced clouding and canopy shadowing, by providing pure backscattering values 

that are highly correlated to green-biomass. This is supported by Keleş et al (2021) who noted 

that the wavelength transmit of SAR imagery permits penetration through thin clouds and dense 

canopy cover, and provides robust volumetric measurements of forest, which is critical for 

concise biomass estimation. Furthermore, the appropriate conversion of sigma-naught to 

decibels values, which are highly correlated to forest biomass, improved the predictive 

performance of the Sentinel-2 image. The estimation of carbon stock was further enhanced by 

the adoption of the Nearest Neighbor Diffused (NND) pixel-level fusion technique that 

preserved the original image’s spectral information by minimizing image distortion and noise 

during processing. Zhang et al. (2018) and Peery et al. (2020) for instance, established that 

NND produce high quality images compared to other fusion techniques (e.g., Gram-Schmidt, 

High Pass Filter and Principal Component) due to its ability to generate image output with high 

signal-to-noise ratio expressed in decibels.  

Overall, the spatial and radiometric dimensions of the SAR imagery effectively pan-sharpened 

and homogenized the spatial and spectral details of the optical Sentinel-2 image, which enabled 

explicit carbon stock estimation.  

6.4.2 The influence of polarization on carbon stock estimation 

Among the interferometric polarization, the vertical transmit/horizontal receive-cross 

polarization (VH) obtained greater correlation coefficient with carbon stock (r: 0.98), compared 

to the vertical transmit/vertical receive (VV) polarization (r: 0.96). These findings are similar 

to Nuthammachot et al (2020) and Chang and Shoshany (2016) who found that cross-polarized 

VH highly correlated with vegetation green biomass than co-polarized VV operation. 

Polarization, which refers to the direction of the electric field within the electromagnetic waves, 

controls the interaction between the signals and reflectors (Li et al. 2018, Geffrin et al. 2012). 

Consequently, the cross-polarized operation allows for the detection of total scattered light per 

unit of incident radiation which produces maximum backscattering coefficients necessary for 

measuring carbon uptake by green biomass, as opposed to co-polarization operations that are 

highly influenced by surfaces roughness (Laurin et al. 2018). In this study, reforested trees 

were found to respond more strongly to the decibels values of cross-polarized VH as opposed 

to co-polarized VV. Thus, the outcomes of this investigation support the notion that cross-
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polarized backscatter is significantly more sensitive to forests aboveground biomass and carbon 

uptake compared to co-polarized VV (Nuthammachot et al. 2020, Laurin et al. 2018).  

Furthermore, different map models produced in this study showed the variability of carbon 

stock across the study area (Figure 6.4). The spatial distribution of carbon stock within the area 

increase with increasing canopy density and green biomass. This variability can be attributed 

to variations in topographic variables (e.g., slope, aspect and elevation), which significantly 

influences overall biomass productivity and density. This is supported by Odebiri et al (2020) 

and Young et al (2014) who noted that slope, aspect and elevation significantly influence the 

spatial distribution of carbon stock. In addition, forest species composition within the 

reforested site can also play a key role in carbon variations, due to the differences in biophysical 

(e.g., canopy structure and leaf stomata) and biochemical (e.g., pigments and carotenoids) 

properties, which in turn influences the amount of carbon uptake per unit of absorbed light 

energy (Waring et al. 1998, Mngadi et al. 2021b). For example, the prevalence of Acacia caffra 

and Acacia robusta, which favour different soil pH, soil nutrients and elevations (Wakeling, 

Cramer and Bond 2010) and have different root: shoot biomass ratios (Vadigi and Ward 2012), 

may have contributed to biomass variations within the study site. Overall, our findings suggest 

that Sentinel-1 SAR offers reliable and precise backscattering information that complements 

the capabilities of Sentinel-2 and improves carbon stock estimation and mapping within 

reforested urban landscapes. This study further demonstrates that pixel-level image fusion 

techniques, such NND, can be used to combine optical and radar data for forest carbon stock 

estimation. Hence, this study presents a cost-effective framework valuable to relevant stake 

holders in establishing informed conservation and monitoring schemes within reforested 

environments, thus promoting climate resilient and sustainable urban landscapes. Nevertheless, 

improvement of aboveground carbon stock estimation does not necessarily depend only on 

SAR dataset, but also requires advance image processing approaches such as texture 

measurements. Texture measurements provides information related to numerous forest 

structural aspects such as age, leaf area index and density (Sarker et al. 2012), which are crucial 

for enhancing SAR data precision. Consequently, the adoption of texture measurements in 

high-resolution SAR images could significantly boost biomass and carbon stock predictions. 

In this regard, there is a need for future studies to evaluate texture metrics of dual-polarization 

C-band synthetic aperture radar data for biomass and carbon stock estimation in reforested 

urban landscapes.  
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6.5 Conclusion      

This study sought to examine the potential of combining Sentinel-1’s synthetic aperture radar 

imagery and multispectral Sentinel-2 image in enhancing prediction of aboveground carbon 

stock within reforested urban landscape. Results of this study demonstrated that spectral indices 

and bands derived from combining Sentinel-1 SAR imagery with multispectral Sentinel-2 

effectively improves the estimation of carbon stock within a reforested urban landscape. 

Among the polarizations, the results shown that cross-polarized VH performs better than co-

polarized VV operation in estimating and mapping reforestation carbon stock. The information 

provided in this study is valuable for urban planners and forest managers to establish well-

informed management and monitoring strategies of reforested ecosystem and its services, and 

to manage large-scale reforestation projects to increase carbon sequestration capacity and 

climate regulation potential in urban landscapes. Furthermore, the study showed that 

reforestation program has the potential to greatly meet the requirement of Reducing Emissions 

from Deforestation and Forest Degradation (REDD+) and Kyoto-Protocol to reduce 

greenhouse gas emissions and climate change impacts and risks within urban landscapes. 

Moreover, the study deduced that a pixel-level fusion technique of SAR and optical Sentinel-

2 offers reliable and accurate complementary data, necessary for optimizing carbon stock 

estimation performance within reforested urban landscape. 

 

6.6 Summary 

In this study, the combination of Sentinel-1 C-band and Sentinel-2 MSI proved instrumental in 

boosting reforestation carbon stock estimation performance with urban landscape. The study 

further shown that cross-polarization produces carbon estimates that are closely correlated 

with measured carbon stocks, compared to co-polarization. These findings offers invaluable 

insight on the complementary information in improving forests carbon assimilation within 

urban landscape. The following Chapter-7 syntheses overall findings of this research study, 

while providing concise conclusion of entire thesis. The chapter further propose 

recommendations for future research within reforested urban landscape. 
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Chapter Seven: Synthesis  

7.1 Introduction 

Urbanisation, epitomized by natural landscape transformation into impervious surfaces has 

been recognised as a serious driver of environmental change, degrading critical ecological 

processes and ecosystem services (Sithole and Odindi 2015, Adamu et al. 2021). The 

associated deforestation and forest degradation have led to increasing atmospheric carbon 

emissions and climate change risks in urban areas and beyond (Nuthammachot et al. 2022). 

Although urban landscapes cover small land-surface, they account for highest amount of global 

carbon emissions due to higher energy and resource consumption (Luederitz et al. 2015, 

Mngadi, Odindi and Mutanga 2021). This has necessitated long-term mechanisms to reduce 

carbon emissions and potential climate change risks within urban landscapes. Consequently, 

the Reducing Emissions from Deforestation and forest Degradation (REDD+) and Kyoto 

Protocol have identified reforestation as the most feasible, cheap, and long-term strategy to 

reduce greenhouse gas emissions and climate change risks (Livesley, McPherson and 

Calfapietra 2016, Mngadi et al. 2021). The recognition of reforestation as a possible strategy 

to reinstate ecosystem services within urban landscape is expected to greatly influence global 

carbon balance, improve environment quality, and regulate climate change (Curiel-Esparza et 

al. 2015, Deo et al. 2017). Despite these expectations, the contribution of reforestation 

initiatives to the global carbon balance and climate change mitigation potential remains 

unknown. Whereas information on carbon accumulation and progress of reforested trees within 

urban landscape is required for adopting well-informed management and monitoring policies 

of reforestation ecosystem and its services. Therefore, this study sought to quantify climate 

regulating ecosystem services such as carbon stock and net-primary productivity across 

reforested trees within urban landscape. To achieve this, there was a need to establish 

appropriate and reliable and affordable datasets and techniques. 

In this regard, the emergence of remote sensing technology has shown remarkable capability 

in providing cost effective and reliable primary data necessary for accurate estimation and 

mapping of forest services such as carbon stock and primary productivity (Hickey et al. 2018, 

Dube and Mutanga 2015b, Mngadi et al. 2022a). Remotely Sensed imagery are characterised 

by larger spatial coverage, critical for local and regional-scale modelling and mapping of 

ecological services (Aricak et al. 2015, Mngadi et al. 2022a, Pachavo and Murwira 2014). 

Although high spatial resolution sensors (e.g., Worldview series and RapidEye) have been 

popular in estimating carbon sequestration/stock, the associated image acquisition costs and 
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unavailability of such sensors have been a major limitation for their adoption, particularly in 

resource and financially constrained regions like sub-Saharan Africa (Dube and Mutanga 

2015a, Mngadi et al. 2021). Hence, freely and readily available multispectral sensors remain 

the most ideal source of primary dataset for ecosystem services estimation and mapping within 

urban landscape. Despite unprecedented benefits of remote sensing, no study has used recently 

launched freely available sensors (i.e.., Sentinel-1 and 2) to estimate ecosystem services (i.e., 

carbon stock and net primary productivity) of reforested trees within an urban landscape. 

Therefore, the main aim of this study was to quantify climate regulating ecosystem services 

(i.e., carbon stock and net primary productivity) in reforested urban landscape using freely and 

readily available remote sensing dataset. To achieve this aim, the following objectives were 

pursued:  

1. to review the adoption of remote sensing in quantifying forest ecosystem services in 

sub-Saharan Africa urban landscapes, 

2. to estimate aboveground net primary productivity of reforested trees in urban landscape 

using integrated biophysical variables and remotely sensed data, 

3. to explore the utility of Sentinel-2 spectral data in quantifying above-ground carbon 

stock in an urban reforested landscape, 

4. to quantify species carbon stock variability within a reforested urban landscape using 

texture measures derived from remotely sensed imagery, and  

5. to test the efficacy of combining Sentinel-1 C-band and Sentinel-2 MSI datasets in 

enhancing reforestation carbon stock estimation in an urban landscape  

7.2 Objective’s review 

7.2.1 Quantitative remote sensing of ecosystem services in sub-Saharan Africa’s urban 

landscapes: A review   

Over the last decades, ecosystem services were rarely integrated in urban planning due to the 

lack of spatio-temporal information mapping of Ecosystem Services (ESs) productive zones 

(Davids et al. 2018, Nemec and Raudsepp-Hearne 2013). Recently, the recognition of ESs 

value and contribution to the climate change mitigation, including emergence of geospatial 

analytic technique such as remote sensing have led to increasing interest in quantifying urban 

ESs (Mngadi et al. 2022b). To better understand the efficacy, challenges, and opportunities of 

remote sensing techniques in quantifying and mapping urban ESs in sub-Saharan Africa, it was 

necessary to review existing literature (Chapter two). The literature showed that adoption of 

high spatial resolution images in quantifying urban ESs in sub-Saharan Africa have been 
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limited. This can be attributed to high costs and unavailability of commercially owned images, 

which remain a serious challenge to financially constrained regions such as sub-Saharan Africa. 

Hence, studies have often relied on freely and readily available multispectral sensors with 

improved spectral and spatial characteristics for urban ESs quantification and mapping. 

Overall, the findings show that the adoption of remote sensing techniques for urban ESs 

quantification has recently gained popularity in sub-Saharan Africa, hence there is need for 

more studies to adequately integrate urban ESs into decision making, urban planning and 

management. In this regard, subsequent chapters focuses on the quantification of regulating 

ecosystem services (e.g. net primary productivity and carbon stock) using remotely sensed 

dataset within urban landscape. 

7.2.2 Estimating aboveground net primary productivity of reforested trees in urban 

landscape using integrated biophysical variables and remotely sensed data 

The emergence of urban reforestation initiatives has been presumed to be reliable in carbon 

sequestration and climate change mitigation (Curiel-Esparza et al. 2015). Thus, knowledge on 

net primary productivity (NPP) as surrogate of net carbon uptake by reforested trees is 

important for understanding the contribution of reforestation program in the global carbon 

cycle and climate change regulation. In this study, sufficient evidence on the strength and 

capability of biophysical variables and remote sensing information to accurately estimate NPP 

of reforested trees within urban landscape is presented (Chapter three). To achieve this 

objective, Moderate Resolution Imaging Spectroradiomer (MODIS) MOD17 model and 

multiple linear regression were adopted to simulate on-site NPP using remotely sensed 

variables derived from Sentinel-2 multispectral image and biophysical parameters. The results 

of this study showed that reforested trees store a considerable amount of atmospheric carbon. 

For instance, the integration of field measured, and remotely sensed datasets produced an 

average NPP of 6.24 Mg C. ha-1 with a coefficient of determination (R2) of 0.91 and RMSE of 

0.83 Mg. ha-1. The findings also demonstrated a significant variation in NPP among reforested 

trees, where deciduous Acacia and Dalbergia species obtained highest NPP (7.62 and 7.58 Mg 

C ha-1), while evergreen Syzygium and shrub Artimisia produced lowest (4.54 and 5.26 Mg C 

ha-1). These findings are supported by Pachavo and Murwira (2014), who investigated NPP of 

native trees in Southern Africa. Our results demonstrate the strength of remote sensing and 

biophysical parameters in estimating NPP of reforested urban landscape, as well as the 

potential of reforested trees to uptake reasonable amount of atmospheric carbon emissions.   

https://www.sciencedirect.com/science/article/pii/S0048969721050336#bb0160
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7.2.3 The utility of Sentinel-2 spectral data in quantifying above-ground carbon stock in 

an urban reforested landscape 

This study investigated the efficacy of Sentinel-2 spectral indices in quantifying carbon stock 

of reforested trees within an urban landscape (Chapter four). Using the random forest 

regression model, a series of vegetation indices including novel and unique indices from the 

red-edge region of the electromagnetic spectrum were derived from Sentinel-2 MSI and used 

as predictor variables for the estimation of reforestation carbon stock within an urban 

environment. Based on the results, the estimated mean carbon stock in reforested urban 

landscape ranged between 3.39 to 3.64 t.ha-1 with high coefficient of determination (R2) of 

77.96 to 79.82% and low RMSE of 0.378 to 0.466 t.ha-1 using calibration and validation 

datasets. Our findings are congruous to Muhe and Argaw (2021) who obtained an R2 of 0.74 

in estimating carbon stock of native forest ecosystem using Sentinel-2 MSI derived indices. 

Similarly, Bindu et al (2020) estimated forest carbon stock to an R2 value of 0.71 using 

vegetation indices. Such reasonable estimation performance can be explained by the utility of 

optimal predictor variables that are highly sensitive to green biomass spectral response selected 

by cross-validation and backward elimination techniques of random forest regression model. 

These findings demonstrate the potential of reforestation initiative in contributing to carbon 

cycles and climate change regulation. Furthermore, the study demonstrated that freely-

available Sentinel-2 MSI can be effectively used to monitor reforestation carbon stock 

accumulation and progress within an urban landscape.  

7.2.4 Quantifying carbon stock variability of species within a reforested an urban 

landscape using texture measures derived from remotely sensed imagery  

Accurate information on carbon stock variability among reforested trees is central to 

understanding the contribution of reforestation program in the global carbon balance and 

climate change mitigation. To date, spatial information on species carbon variability on 

reforested urban landscapes have remained scarce. It is crucial to understand carbon 

sequestration capacity of tree species for reforestation prioritization. This study predicted 

carbon stock variability across reforested tree species using texture metrics derived from 

Sentinel-2 multispectral image (Chapter five). The study applied grey level co-occurrence 

matrix (GLCM) approach to generate texture metrics from Sentinel-2 MSI and random forest 

algorithm used to predict carbon stock variability between tree species. Among the investigated 

species, Acacia robusta, Brideliar micrantha and acacia caffra produced highest mean carbon 

stock ranging from 4.81 to 6.96 t/ha, while Erythrina caffra and Syzygium cordatum yielded 

lowest (3.97 to 4.26 t/ha) carbon stock. Such variations can be attributed to the variability in 
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biophysical and biochemical characteristics between taxon’s which influence carbon uptake 

per unit of absorbed radiation. This is affirmed by Chen et al (2015) who noted that unequal 

carbon sequestration among forest species can be explained by differences in photosynthetic 

absorption parameters such as carotenoids, pigments and leaf stomatal properties, which 

govern species carbon uptake. The findings in this study also showed that mean, variance, 

homogeneity, contrast, dissimilarity, angular second moment and correlation texture metrics 

were important for predicting species carbon variability. Furthermore, the consolidation of such 

optimal texture measures using robust random forest model proved instrumental in predicting 

species carbon stock with reasonable coefficient of determination (R2) of between 0.56 and 

0.88 and root mean square error (RMSE) of 0.31 and 0.80 t/h. Overall, carbon stock assessment 

at a species level is critical for species prioritization in future reforestation projects.  

7.2.5 Testing the efficacy of combining Sentinel-1 C-band and Sentinel-2 MSI datasets 

in enhancing reforestation carbon stock estimation in urban landscape 

Although reforestation programs are expected to meet the requirement of Reducing Emissions 

from Deforestation and Forest Degradation (REDD+) and the Kyoto-Protocol, information 

benchmarking spatial distribution of carbon stock in reforested urban environment is still at 

infancy. As a results, there is need to continuously quantify and map carbon stock accumulation 

and progress in reforested areas in order to established informed management and monitoring 

policies, including motivating for larger-scale reforestation projects. Generally, freely available 

medium spatial resolution are popular in quantifying forest carbon stock, especially in a 

resource scarce regions like sub-Saharan Africa. However, such sensors are prone to canopy 

shadowing, clouding and saturation problems attributed to structural complexity and density, 

particularly in a heterogeneous forest environments. These challenges can be effectively 

addressed through combining spectral information of multispectral image dataset with 

backscatter data of synthetic aperture radar (SAR) characterized by high canopy penetration 

ratio. Therefore, this study tested the capability of combining Sentinel-1 (SAR) C-band with 

Sentinel-2 MSI for improved reforestation carbon stock estimation within urban landscape 

(Chapter six). The nearest neighbor diffused (NND) fusion technique was used to combine 

optical sensor with SAR imagery, while random forest regression model was used to estimate 

reforested area carbon stock. The utility of complementary information produced highest 

coefficient of determination (R2: 0.78 to 0.83) with lowest RMSE (0.31 to 0.41 t.ha-1). The 

results also demonstrated that cross-polarization (VH) generate carbon estimates that are highly 

correlated with measured carbon stock, compared to co-polarization (VV). The findings in this 

study are consistent to Keleş et al (2021) who also found that the combination of optical 
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Sentinel-2 and SAR image datasets enhances estimation performance of forest carbon stock, 

with cross-polarization operation outperforming co-polarization. These results demonstrate the 

reliability of cheap complementary data for enhancing reforestation carbon stock estimation, 

management and monitoring regimes.  

7.3 Conclusion 

The main aim of this study was to quantify regulating ecosystem services provided by 

reforestation within an urban landscape using remote sensing technology. The study focused 

on carbon sequestration/stock and primary productivity. The results of this study showed that 

reforested trees sequestrate and store a considerable amount of carbon emissions, hence 

contributing to global carbon balance and climate change mitigation. Moreover, the utility of 

freely available multispectral images and robust statistical analytic techniques proved 

instrumental in quantifying ecosystem services within the reforested urban landscape. 

Conclusions based on the results from each objective were; 

1.  Despite their mixed-pixels and saturation limitations, the adoption of newly launched 

medium spatial resolution optical sensors with improved spectral and spatial 

characteristics are valuable in quantifying urban forest ESs elements with 

unprecedented performance. Precise knowledge on urban ESs derived using spatially 

explicit techniques such as remote sensing technology is valuable for adopting 

informed decision-making and policy formulation, useful for sustainable utilisation and 

resilience of urban ecosystems in sub-Saharan Africa. 

2. Urban reforestation plays a key role in carbon sequestration and regulation of climate 

systems, hence effective management and conservation of reforestation ecosystem and 

its services is necessary. The information presented in this study is beneficial to policy-

and decision-makers and forest managers for monitoring both small and largescale 

reforestation projects. Overall, the study deduced that MOD17 model can be 

successfully adopted to quantify and monitor net carbon uptake at a species-level within 

a small geographic scale using spectral information derived from finer resolution 

images such as Sentinel-2 MSI.  

3. The spectral indices generated from Sentinel-2 MSI can be effectively adopted to 

quantify regulating ecosystem services such as carbon stock in reforested urban 

environment. The reforestation initiative is essential in sequestrating atmospheric 

carbon emissions and regulating climate systems within an urban landscape. The 
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information presented in this study is crucial for decision- and policymakers and forest 

managers to design effective management policy frameworks and plan for expanding 

reforestation projects to a larger scale. 

4. The adoption of texture measures generated from freely and readily available Sentinel-

2 MSI can be effectively used to quantify or predict species carbon stock variability 

within reforested urban environment. Overall, the study concluded that reforestation 

programs are capable of promoting crucial urban ecosystem goods and services, carbon 

sequestration and climate resilient cities, hence facilitating well-informed management 

and monitoring schemes, including planning for further improvement in sequestration 

capacity of reforestation initiative.  

5.  The study concluded that combining SAR and multispectral Sentinel-2 imagery 

provides reliable and accurate complementary data essential for carbon stock estimation 

performance within a reforested urban landscape. 

 

7.4 The future 

The adoption of recently launched freely available multispectral imagery offers important 

spectral information valuable for quantifying or predicting regulatory ecosystem processes 

such as carbon sequestration/stock and net primary productivity, particularly in resource-

constrained regions. The results of this study present invaluable insight on the capability and 

effectiveness of freely available multispectral sensors (e.g., Sentinel-2) in quantifying 

regulating ESs within reforested urban landscape. The study also demonstrated that 

reforestation initiatives sequestrate considerable amount of atmospheric carbon emission, thus 

contributing to global carbon budget and climate change mitigation. For future studies, this 

study suggests: 

• An investigation on the utility of multi-temporal remote sensing datasets in estimating 

carbon stock variability across seasons and years within reforested urban landscapes; 

be invest 

• An evaluation of the effects of topography, in conjunction with ancillary data (e.g., 

rainfall and tree age) on the spatial distribution of carbon within reforested urban areas;  

• An evaluation of texture metrics derived from dual-polarization C-band synthetic 

aperture radar for biomass and carbon stock estimation in reforested urban landscape, 

and 
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• An exploration of the of the utility of the newly launched freely available medium 

spatial resolution Landsat 9 Operational Land Imager (OLI) with improved radiometric 

resolution (14 bits) and signal-to-noise ratio for improving ecosystem services 

quantification, especially reforestation carbon stock.  
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