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ABSTRACT 

The assessment of water quality has turned to be an ultimate goal for most water resource and 

environmental stakeholders, with ever-increasing global consideration. Against this background, 

various tools and water quality guidelines have been adopted worldwide to govern water quality 

deterioration and institute the sustainable use of water resources. Water quality impairment is 

mainly associated with a sudden increase in population and related proceedings, which include 

urbanisation, industrialisation and agricultural production, among others. Such socio-economic 

activities accelerate water contamination and cause pollution stress to the aquatic environment. 

Scientifically based water quality index (WQI) models are then essentially important to measure 

the degree of contamination and advise whether specific water resources require restoration and 

to what extent. Such comprehensive evaluations reflect the integrated impact of adverse 

parameter concentrations and assist in the prioritisation of remedial actions. 

 

WQI is a simple, yet intelligible and systematically structured, indexing scale beneficial for 

communicating water quality data to non-technical individuals, policymakers and, more 

importantly, water scientists. The index number is typically presented as a relative scale ranging 

from zero (worst quality) to one hundred (best quality). WQIs simplify and streamline what would 

otherwise be impractical assignments, thus justifying the efforts of developing water quality 

indices (WQIs). Generally, WQIs are not designed for broad applications; they are customarily 

developed for specific watersheds and or regions unless different basins share similar attributes 

and test a comparable range of water quality parameters. Their design and formation is governed 

by their intended use together with the degree of accuracy required, and such technicalities 

ultimately define the application boundaries of WQIs. Such an academic gap is perhaps the most 

demanding scientific need; that is, to establish universally acceptable water quality indices, which 

can function in most, if not all the catchments in South Africa. In cognisance of such, the study 

suggests four water quality models that are not limited to specific application boundaries, and 

such contribution is significant, not only to the authors but to the entire nation. 

 

The first model, namely the universal water quality index (UWQI) developed based on 

conventional techniques using unequal weight coefficients and weighted arithmetic sum method. 

Model input parameters, relative weight coefficients and sub-index rating curves are established 

through an expert opinion by means of participatory based Rand Corporation’s Delphi Technique 

and extracts from literature. The second developed artificial intelligence (AI) in the form of 

artificial neural network (ANN) has three neuron layers parallel-distributed to accommodate 

feedforward sequence and backpropagation. The multi-layer perceptron model architecture 

includes nineteen highly interconnected neuro-nodes and seventy weighted synapses operating in 
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a feedforward manner, from left to right. The study applied the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm to perform backpropagation training and optimising channel weights. 

The three-layered feedforward neural network indicated an increased performance registering an 

overall correlation coefficient of 0.985 and specific performance ratings of 0.987, 0.992 and 0.977 

for training, testing and validation, respectively. The AI-based demonstrated an average target to 

an output error margin of ±0.242. Pointwise sensitivity analysis authenticated the robustness and 

computational aptitude of the suggested artificial neural network model. Both UWQI and ANN 

model functions with thirteen explanatory variables which are NH3, Ca, Cl, Chl-a, EC, F, CaCO3, 

Mg, Mn, NO3, pH, SO4 and turbidity (NTU). 

 

The third model entitled surrogate WQI works with four proxy water quality parameters 

comprising of chlorophyll-a, electrical conductivity, pondus Hydrogenium and turbidity. The 

proxy linear-based mathematical model is an abridged version of an outright WQI, purposefully 

established to substitute the UWQI and ANN model, thereby providing provisional index scores 

in the absence of extensive datasets. Water quality indices (WQIs) are customarily associated 

with massive data input demand, making them more rigorous and bulky. Such burdensome 

attributes are too taxing, time-consuming, and command a significant amount of resources to 

implement. Which discourages their application and directly influences water resource 

monitoring—making it increasingly indispensable to concentrate on developing compatible, more 

straightforward, and less-demanding WQI tools, but with equally matching computational ability. 

Surrogate models are the best fitting, conforming to the prescribed features and scope. 

 

Consequently, the study proposes an alternative water quality monitoring tool requiring fewer 

inputs, minimal effort, and marginal resources to function. Multivariate statistical techniques 

which include principal component analysis (PCA), hierarchical clustering analysis (HCA) and 

multiple linear regression (MLR) are applied primarily to identify four proxy variables and define 

relevant regression coefficients. Resulting in Chl-a, EC, pH and turbidity being the final four 

proxy variables retained. The selected input parameters are conformable with remote monitoring 

systems; which is a vital feature allowing the surrogate index model to be considered for remote 

monitoring programs. 

 

The fourth and final model suggested is a software-based water quality variability model 

(WQVM) established by integrating three distinctive water quality indices (WQIs) emerging from 

this study. The three WQIs are founded on different indexing methods, and they are documented 

as (a) universal water quality index, (b) artificial neural network, and (c) surrogate water quality 

index. Usually, most WQIs are presented as arithmetic formulas that are somewhat challenging 

to comprehend and apply in the real world. Therefore, the study attempts to address such research 
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tendencies and set forth an excel-based hybrid water quality monitoring tool applicable at a 

national level. The WQVM enables the assessment of multiple water quality parameters, thereby 

solving practical water science problems. The proposed WQVM is earmarked for improving and 

promoting water quality monitoring programs, by providing a simple, convenient and user-

friendly monitoring toolkit. Indeed, putting forward the WQVM has an increasing impact on 

water resource evaluation and optimising decision making amongst water scientists and 

professionals. 

Suggested models yield one-digit index values rending from zero to one hundred, where zero 

denotes poor water quality, and one hundred represents excellent water quality. Furthermore, the 

index scores are classified using a categorisation schema having five classes. Whereby “class 

one” with a possible maximum score of hundred designate the highest degree of purity and vice 

versa, “class five” signifies water quality of the lowest degree with index scores nearing or equal 

to zero. 

The WQIs and WQVM are developed and tested using water quality data from Umgeni Water 

Board (UWB) in KwaZulu-Natal Province, South Africa. From the original dataset, the current 

study retained 638 samples with 7,741 tests measured monthly over four years. The water quality 

records are from six sampling stations located within four different river basins identified as 

Umgeni, Umdloti, Nungwane and Umzinto/uMuziwezinto River catchments. The data samples 

are further curtailed to satisfy statistical requirements of each particular WQI model. 

All four models are considered robust and scientifically stable, with minor divergence from the 

ideal values. Better off, the prediction pattern matches the exemplary graph having comparable 

index scores and identical classification ranks, which signifies their readiness to appraise water 

quality status across South African watersheds. The established models symbolise a significant 

milestone with the prospects of promoting water resource monitoring and assisting in capturing 

spatial and temporal changes within river systems. The study intends to substantiate the methods 

used and document results achieved. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Overview 

The current study involves the establishment of various water quality monitoring tools 

functioning with predetermined explanatory physicochemical variables. Such vital scientific 

models are earmarked for assessing spatial and temporal water quality trends within the South 

African river catchments. Against this backdrop, Chapter One serves as an insight highlighting 

the background, purpose and significance of the doctoral work. Reasons justifying the inclusion 

of four different study regions are also discussed in this chapter. Lastly, Chapter One defines the 

study objectives, limitations and assumptions drawn to accomplish the primary purposes of the 

current study. 

1.2 Background 

Various physical, chemical and biological variables are considered detrimental to the aquatic 

environment, mainly if contained in excessive amounts. Such parameters originate from 

anthropogenic and natural sources. Though some might be essential in the aquatic ecosystem, 

however, they might pose a serious risk if present in excessive concentrations. Eventually, 

monitoring and assessment of water resources become mandatory to trace the levels and effects 

of such physio-chemical and biological parameters. And the standard practical method is through 

the application of water quality indices (WQIs). This prompt the need to further exploit the use 

of WQIs and continuously modify such essential tools, to become better, simpler and more 

appropriate towards water resource management needs; which needs are dynamic and forever 

changing (Banda and Kumarasamy, 2020e). 

 

Water quality indices (WQIs) are necessary for simplifying the reporting of complex and 

technical water quality information. They are scientifically based communication models that are 

capable of converting multi-variable water quality data to produce a single unitless digit score 

that describes overall water quality. Deducing water quality into an index score is then crucial for 

providing a structured platform to evaluate and compare the quality of various water resources 

(Sarkar and Abbasi, 2006, Poonam et al., 2015, Banda and Kumarasamy, 2020e). Water quality 

indices are not aimed at replacing detailed water quality analysis. Instead, they are tools aimed at 

providing a quick guide to assist water quality experts, policymakers and the public, by 

communicating water quality data in a more consistent and on-going manner (Poonam et al., 

2015, Luzati and Jaupaj, 2016, Banda and Kumarasamy, 2020e). 
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Water quality index (WQI) is a unique technique employed to describe water quality that has 

proven to be an effective method to evaluate spatial and temporal water changes in South African 

river catchments and the world at large. Water quality indices (WQIs) consolidate a large amount 

of complex water quality data and generates a single value in a simple and reproducible manner. 

Which then explains the successful application of WQIs over the past years, because they help to 

deduce a large amount of scientific data and describe water quality status to the public and 

policymakers, using a simple dimensionless score. Even non-technical stakeholders will 

understand the water quality rating scores, mostly when disseminated to classes presented as 

“poor,” “fair,” “medium,” “good,” and “excellent” (Banda and Kumarasamy, 2020d). 

 

Water quality indices (WQIs) have been recognised as significant environmental performance 

indicators, and the concept of expressing water quality using a numerical value has been easily 

appreciated, leading to the suggestion of various indexing models. A considerable number of 

indices are developed for multiple applications, but mainly they are region-specific; thus limiting 

their implementation to drainage basins influencing their designs. Of lately, various countries 

have embarked on the process of developing composite universal indices to evaluate and describe 

the state of their domestic water. Which is, perhaps, the most demanding scientific need; that is, 

the development of a unified water quality index, that can work for most, if not all the watersheds 

of a given country (Banda and Kumarasamy, 2020d). An index that is not limited to certain 

application boundaries, and thus the aim of this current study. 

 

The current study focuses on developing nationally acceptable water resource monitoring tools 

that are applicable across all the watersheds in South Africa. Such a significant contribution 

facilitates water resource monitoring, thereby assisting in evaluating spatial and temporal trends 

in surface water. Accordingly, four water quality models are proposed, and these are: 

(a) Universal water quality index (UWQI) developed using conventional methods involving 

parameter weights, sub-index functions and an aggregation formula; 

(b) Artificial neural networks (ANN) model based on an artificial intelligence algorithm that 

simulates the functionality of human brains; 

(c) Surrogate water quality index (proxy WQI) established through the application of 

multivariate statistical techniques. The proxy WQI functions as an abridged version of the 

outright UWQI and operates with limited input parameters; and 

(d) Water quality variability model (WQVM) that combine the UWQI, ANN model and proxy 

WQI to become a software-based and practically-oriented monitoring tool.  
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Furthermore, the study suggested an index classification system aimed at interpreting WQI scores 

resulting from the newly developed water quality monitoring tools. The subsequent sections share 

an insight into the recommended water quality monitoring tools. 

1.3 Establishment of water quality monitoring tools 

1.3.1 Universal water quality index (UWQI) model 

Water quality index (WQI) is the most popular method of exhibiting water quality of surface 

water bodies. WQI models are better known for delivering a comprehensive and explicit 

representation of water contamination for both surface water basins and groundwater reservoirs. 

The appraisal concept is concise and more straightforward, leading to wide acceptance across the 

water science community (Tripathi and Singal, 2019b). WQI provides a single numeric value that 

expresses the status of water quality through the integration of multiple microbiological and 

physicochemical parameters (Tripathi and Singal, 2019b, Paca et al., 2019). Water quality index 

scores are classified using a diverse array of rating scales; however, the frequently used grading 

system ranges from zero (bad quality) to hundred (excellent quality) (Boyacioğlu, 2007, Carvalho 

et al., 2011, Banda, 2015, Paca et al., 2019, Banda and Kumarasamy, 2020c).  

 

WQI scores are dimensionless, and can further be categorised using descriptive ranks associated 

with terms like, “poor,” “marginal,” “fair,” “good” and “excellent” (Boyacioğlu, 2007, Carvalho 

et al., 2011, Banda, 2015, Unda-Calvo et al., 2019, Banda and Kumarasamy, 2020e). Water 

quality indices (WQIs) are typically used by water authorities, water scientists, policymakers and 

the general public for various activities. These include decision-making, delineating spatial and 

temporal trends, tracing contamination sources, appraising regulatory guidelines and 

environmental policies, and most importantly for suggesting future recommendations (Poonam et 

al., 2015, Unda-Calvo et al., 2019, Banda and Kumarasamy, 2020c). 

 

The main objective of WQIs is to convert multiple parameter data into information that is 

understandable by both technical and non-technical personnel. The ability of WQIs to synthesis 

complex scientific data into simple and easily understood formats; which makes them the most 

fundamental and indispensable elements of water quality monitoring agenda. Hence, they are 

universally acknowledged as “lifeline” for water quality studies, and their development continues 

as an on-going affair (Banda and Kumarasamy, 2020e). Despite their range of application and 

variety of WQIs developed this far; there is still no definite and commonly acceptable 

methodology for setting water quality indices (Unda-Calvo et al., 2019, Sutadian et al., 2016).  
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Instead, numerous techniques and approaches exist in WQIs formation; nevertheless, the 

conventionally employed method involves, (a) determination of relevant water quality variables, 

(b) establishment of sub-indices, (c) generating significant weightage coefficients, (d) 

aggregation of sub-indices, and lastly (e) ascribing a water classification schema (Abbasi and 

Abbasi, 2012b, Tyagi et al., 2013, Poonam et al., 2015, Paun et al., 2016, Banda and Kumarasamy, 

2020a, Banda and Kumarasamy, 2020e). Each step has alternative methods to consider, which 

becomes extremely important to decide the most suitable of each scenario. Notwithstanding 

having technical knowledge of WQIs, the developer should apply due diligence, avoid subjective 

judgements and biasness in the process of establishing WQIs. Otherwise, the WQI will inherit 

abnormalities and be considered dysfunctional (Banda and Kumarasamy, 2020e). 

 

For the current study, an index model for water pollution control and river basin planning 

functions has been established using expert opinion in the form of participatory based Rand 

Corporation’s Delphi Technique and extracts from existing literature. The process yielded 

thirteen input variables, namely NH3, Ca, Cl, Chl-a, EC, F, CaCO3, Mg, Mn, NO3, pH, SO4 and 

Turb (NTU). Additional to the parameter selection, the study also applied expert opinion to 

develop significant ratings and parameter weightage coefficients. The universal water quality 

index (UWQI) model is an increasing scale index founded on weighted arithmetic sum method 

with resultant values ranging from zero (very bad quality) to hundred (good quality). The overall 

classification is centred on five categories, with Class 1 rank denoting “good water quality” and 

Class 5 rank representing “very bad water quality” (Banda and Kumarasamy, 2020c). 

 

Following the review by Banda and Kumarasamy (2020e), it has been noted that most WQIs are 

designed for a particular region and source-specific, thus creating a gap and ample scope to 

develop a universally acceptable WQI. However, it is a demanding task and extremely difficult 

to formulate a water quality model that is globally acceptable; hence the current studies only focus 

on national boundaries; that is, a model only applicable to South African river catchments. 

Though seemingly problematic to deal with in prospect; it is pertinent and recommended that 

water quality experts embark on developing a unified model that can be utilised across the globe. 

But the immediate mission is to develop nationally acceptable water quality indices and break the 

barrier of region-specific models (Banda and Kumarasamy, 2020e). And this study attempts to 

break such barriers, through the development of a universal index that applies to most river 

catchments in South Africa. Thereby promoting a standardised way of monitoring and comparing 

water quality of various watersheds at a national level, which eventually assists in the 

prioritisation of water resources across all the nine provinces in South Africa (Banda and 

Kumarasamy, 2020c). 
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Umgeni Water Board (UWB) provided water quality dataset used to test the UWQI. The data is 

from six sampling stations located in four different catchments under the jurisdiction of Pangola-

Mtamvuma Water Management Area (WMA) in KwaZulu-Natal Province, South Africa. The 

four watershed regions are Umgeni, Umdloti, Nungwane and Umzinto/Umuziwezinto River 

catchments. The UWQI is earmarked for national application, but it is far-reaching and beyond 

the scope of the study to test the model against data from all the 148 catchments regions in South 

Africa. Nevertheless, the four catchments used are adequate to ascertain the functionality of the 

model and the process is a step towards the ultimate goal of testing the model against most, if not 

all the catchment areas in South Africa. 

 

The model responded steadily to the variation in parameter values and managed to indicate spatial 

and temporal changes in water quality for the four Catchment areas considered for the study. Of 

great importance, the UWQI has been formed autonomously without being linked to neither a 

particular dataset nor specific region. The methods used are exclusively independent of such 

associations, and UWB dataset is entirely for testing purposes, which task can be performed using 

any other available data. 

1.3.2 Artificial neural network (ANN) model 

Artificial intelligence (AI), mostly artificial neural networks (ANNs) have become popular in 

evaluating surface water quality. AI-based are less demanding compared with traditionally 

orientated models and statistically established water quality indices which are associated with 

sub-index functions and aggregation formulae (Gazzaz et al., 2012). ANN are quick alternatives 

and more direct methods of appraising water quality, offering the possibilities of reducing 

computational errors, time and effort required to monitor water resources (Gazzaz et al., 2012, 

García-Alba et al., 2019). 

 

Artificial neural networks (ANNs) uses predefined multidimensional parameter relationships in 

the form of mathematical coding. Its ability to understand and relate to variable dependency 

provides a unique analytical advantage and produces more accurate WQI values than the sub-

indexing methods (Li and Liu, 2019). Similar to the human brains, Artificial Neuron Network 

(ANN) refers to a computing system designed based on the structure and functions of the natural 

biological neural networks. It obeys the same manner in which human brains analyse and process 

information; whereby layers of neurons are interconnected like a web (Singh et al., 2009, Khalil 

et al., 2011, Huo et al., 2013, Seo et al., 2016, Qaderi and Babanezhad, 2017, Bansal and Ganesan, 

2019, Salari et al., 2018, Kadam et al., 2019, Isiyaka et al., 2019, Ramasubramanian and Singh, 

2019, Soro et al., 2020). The first layer consists of input neurons, which functions to receive data, 

attempt to analyse the input information and filter to the relevant neurons in the second layer. The 
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second set of neurons process the input data and convey the information to the third layer of 

neurons, which in turn combine the data into a single consolidated output report. These processing 

units are called the input and output units or neuro-nodes (García-Alba et al., 2019). 

 

ANNs are considered relatively simple non-linear statistical models to enhance Artificial 

Intelligence (AI) and solve analytical problems that would prove challenging and close to 

impossible by human or statistical standards (Khalil et al., 2011, Huo et al., 2013, Kim and Seo, 

2015, Salari et al., 2018, Ramasubramanian and Singh, 2019, Sousa et al., 2019, Tiyasha et al., 

2020). ANNs are evolving the traditional way of computing water quality indices, creating 

convenient analytical platforms and making water quality information accessible using minimal 

effort. Henceforth, the study focuses on developing an artificial neural network (ANN) based 

water quality index (WQI) for examining spatial and temporal trends in surface water. 

 

The ANN model utilises thirteen variables similar to universal water quality index (UWQI) input 

parameters, and these include NH3, Ca, Cl, Chl-a, EC, F, CaCO3, Mg, Mn, pH, SO4 and turbidity. 

The neural network delivers a scientifically justifiable non-dimensional single-digit score ranging 

from zero to hundred, with lower scores relating to poor water quality and higher values 

symbolising water resources of good quality. Index ratings are graded using a five-class ranking 

whereby class 1 corresponds to the highest degree of purity, and class 5 status designates severely 

contaminated water body. The index scores and ranking scales are identical and affiliated with 

gradings suggested for the UWQI and surrogate water quality index (proxy WQI) both designed 

for investigating South African watersheds. 

 

The scope of establishing an ANN model intended to (1) confirm the capabilities of artificial 

intelligence (AI) in water science through the application of an ANN-based WQI free from sub-

indexing and lengthy calculations, (2) define a holistic framework for creating neural networks, 

(3) compare the performance of ANN model against conventional WQI, and (4) propose an 

optimum artificial neural network WQI model for analysing and monitoring water quality status 

within South African river systems. Therefore, the study involves the design, training, validation, 

testing and application of ANNs towards computing index scores. 

1.3.3 Surrogate water quality index model (Proxy WQI) 

Regular water quality sampling and analysis is a costly and demanding task, hence acquiring large 

volumes of water quality data is often a challenge and requires a significant amount of financial 

resources (Pegram and Görgens, 2001, Ochieng, 2007). The challenge has initiated a common 

duty to examine alternative water monitoring techniques that are concise and possibly relieve 

sampling assignments (Banda and Kumarasamy, 2020b). The ultimate goal is to put forward cost-
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effective and flexible water assessment models, with significant attention being given to the 

optimisation of parameter input and mathematical simplicity. 

 

Often, water quality index (WQI) models are heavily parameterised, requiring an extensive 

amount of data, thereby limiting their application due to input parameter demand. To govern such 

tendencies, a surrogate WQI is proposed. A surrogate model is an abridged version of an outright 

WQI, thereto function with limited input data. It represents a quick and easy method of translating 

complex water quality data into simple, but yet testable measure. Though less-detailed, proxy 

models are equally competent and fundamentally identical to the original unbridged models, but 

with reduced computational precision (Razavi et al., 2012, Banda and Kumarasamy, 2020b). 

Although having less accurate arithmetic aptitude, the advantages of surrogate models outbalance 

such unfavourable attributes and compensate for the numerical divergence. Based upon the 

review by Razavi et al. (2012), Asher et al. (2015), and Bhosekar and Ierapetritou (2018), a variety 

of surrogate models exist and documented in existing literature, with Schultz Martin et al. (2004), 

Shamir and Salomons (2008), Castelletti et al. (2010), Preis et al. (2011), and Sreekanth and Datta 

(2011) being practical examples of proxy models developed for water resource management 

functions. 

 

The proposed proxy WQI has been established to be rationally implemented in lieu of the high-

fidelity model for surface water pollution control and river basin planning functions, referred here 

as the universal water quality index (UWQI). The primary objective of developing and applying 

the suggested surrogate WQI is to make better use of typically restricted water resource 

monitoring budgets (Razavi et al., 2012, Banda and Kumarasamy, 2020b). Therefore, the 

proposed surrogate WQI aims to provide a more straightforward and cost-effective model that 

simulates the output of a complex high-fidelity model (Asher et al., 2015, Banda and 

Kumarasamy, 2020b). Undoubtedly, the success of the surrogate WQI and its advantages will 

ultimately intensify regular water resource monitoring in South Africa. In the same context, 

thirteen variables applicable to UWQI have been subjected to multivariate statistical analysis to 

select the most meaningful proxy variables for the surrogate WQI. 

 

Based on the study results, surrogate WQI(a) which includes SO4 as an input variable, struggles 

to assess water quality datasets with excessive parameter concentration levels. In this regard, pH 

performed much better than SO4, hence the inclusion of pH among the model input variables. 

Subsequently, chlorophyll-a, electrical conductivity, pondus Hydrogenium and turbidity are the 

final four proxy parameters.  
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Minimising the input parameters can significantly reduce time, effort and cost required to evaluate 

water resources, thereby making the process more feasible and economically viable (Bhosekar 

and Ierapetritou, 2018, Tripathi and Singal, 2019b, Jahin et al., 2020, Banda and Kumarasamy, 

2020b). It is then vital for water quality scientists to consider the application of surrogate WQIs, 

to reduce parameter input demand, thereby lowering resources required for water quality 

monitoring activities. Despite that, the suggested proxy WQI is developed for surface water 

pollution control and river basin planning functions, the application range of surrogate WQIs 

matches that of high-fidelity models. It can extend to any other water body and serve a diverse 

range of water uses. In this study, the terms “low-fidelity model,” “surrogate model,” and “proxy 

model” bear the same meaning and are used interchangeably. 

1.3.4 Index classification system 

WQI scores from the proposed WQIs are classified using as five-class categorisation schema. The 

ranking mechanism follows an increasing scale identical to the standard percentage hierarchy. 

Thus, offering a better understanding of water classification scale, especially to non-technical 

individuals (Banda and Kumarasamy, 2020c). Similar to the methods used by Abrahão et al. 

(2007), Rabee et al. (2011), Rubio-Arias et al. (2012), Sutadian et al. (2018), appropriate 

mathematical functions with logical linguistic descriptors such as “less than,” “equal to” and 

“greater than” have been assigned to each categorisation class. By so doing, the categorisation 

schema can accommodate all possible index scores regardless of the decimal value. More 

importantly, the established categorisation schema aids in closing gaps identified in the literature 

and present a progressive approach that will contribute significantly towards water quality indices 

development. Such an academic contribution reflects on the models' efficiency and attributes to 

the success of the current study. 

1.3.5 Microsoft Excel-based water quality variability model (WQVM) 

Typically, most water quality (WQIs) are documented as scientific equations that are somewhat 

difficult to comprehend and generally problematic to implement (Banda, 2015). Therefore, to 

overcome such trends, the proposed WQIs are merged and presented in a more useful and 

acceptable manner; a format that is user-friendly and convenient to most people, even non-

technical individuals. Considering that Microsoft Excel is a commonplace and straightforward 

(Varma and Khan, 2014, Avdic, 2018), the proposed water quality variability model (WQVM) 

utilises Excel software as an operating platform. The software integrates three WQIs using 

multiple logistical functions coded to handle thirteen predefined water quality variables and the 

algorithms of each particular water quality index (WQI). Selecting Microsoft Excel program was 

motivated by the functionality and computational power bestowed by Excel. Even more 
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importantly, Excel being a familiar interface, the study has an opportunity to benefit on 

acceptability more than introducing completely new software to operate the WQVM. 

1.4 Research data and study area 

Water quality data from Umgeni Water Board (UWB) was used to achieve specific objectives of 

the current study. The study utilised water quality samples tested weekly for a period of six and 

half years spanning from January 2012 to July 2018. All the water quality variables were sampled 

following standard methods prescribed by the Department of Water and Sanitation (DWS), and 

further analysed according to international standards in an ISO 9001 accredited laboratory owned 

and operated by UWB (Namugize et al., 2018). The research dataset from UWB satisfactorily 

provided all the required thirteen water quality variables, and these are, ammonia (NH3), calcium 

(Ca), chloride (Cl), chlorophyll-a (Chl-a), electrical conductivity (EC), fluoride (F), hardness 

(CaCO3), magnesium (Mg), manganese (Mn), nitrate (NO3), pondus Hydrogenium (pH), sulphate 

(SO4) and turbidity (Turb). 

 

Water quality data provided by Umgeni Water Board originates from six sampling stations falling 

under the jurisdiction of four different catchment areas. The sampling sites are as follows: 

• three stations situated in Umgeni River catchment (U20) and located at Henley, Inyanda 

and Midmar Dams respectively; 

• one station at Hazelmere Dam located within Umdloti River catchment (U30); 

• one station at Nungwane Dam under Nungwane River catchment (U70); and 

• one station at Umzinto Dam found in Umzinto/uMuziwezinto River catchment (U80). 

At least one or more stations were considered for each of the four drainage basins applicable to 

the study. Testing the model with data from these four river catchments supports the objective of 

establishing a water quality index (WQI) appropriate to serve the greater part of South Africa, if 

not the whole country. Over and above the availability of data from UWB, the economic 

significance of KwaZulu-Natal Province (Shoko, 2014, Hughes et al., 2018), the distinctiveness 

of its inter-basin arrangements, the scope of the transfer schemes involved and extensive water 

demand (Umgeni Water, 2018, 2019a, 2019b); all these, uniquely encouraged the choice of the 

study area, which falls under Pongola-Mtamvuna water management area (WMA) (Republic of 

South Africa, 2012, Chiluwe, 2014). The research dataset was sufficient to examine the models 

and accomplish the primary objective of developing nationally acceptable water quality 

monitoring tools. 
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1.5 Purpose and significance of the study 

The current study attempts to provide significant contribution and simplify water resource 

monitoring across all the nine provinces of South Africa, through the development of a flexible 

and much easier, but scientifically justifiable water quality index applicable to most distinct, if 

not all the South African river catchments. Such an essential tool can be decisive in evaluating 

the current water affairs and predicting future trends; which becomes helpful towards water 

resource allocation and prioritisation of water conservation programmes. Consequently, the 

developed universal water quality index (UWQI) has been structured to integrate with the 

proposed water quality variability model (WQVM) and represents quality variability among 

various water use locations. 

 

These models are virtual tools capable of providing realisable water classification, thereby 

attaching the actual value of surface water depended upon contamination level. Thus, ultimately 

intensifying the effectiveness and proficiency of water resource management systems, which 

enables greater economic efficiency and proper environmental protection strategies. Even more 

importantly, the models have the potential to balance water resource allocation, through 

optimisation of water uses based on water quality, which technically translates pollution-based 

water management. 

1.6 Research question 

How capable is the proposed development of water quality index and water quality variability 

model using artificial neural network (ANN) to analyse and monitor water quality status for South 

African rivers? 

 

The study created a multi-layered feed-forward backpropagated artificial neural network (ANN) 

model to address the research question. The capabilities of artificial neural networks towards 

evaluating water quality trends have been demonstrated, and the ANN model proved to be a useful 

alternative to conventional methods of developing water quality indices. Between artificial 

intelligence (AI) and conventional techniques; the AI-based models are more direct and flexible 

than traditional methods. AI involves less prior knowledge of WQIs and offers the opportunity to 

minimise analytical errors, time and effort required to monitor water resources. 

1.7 Study objectives 

The study suggests the following set of objectives, which were prescribed primarily to accomplish 

specific study goals and particularly to substantiate the research hypothesis. 
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1.7.1 Main objective 

Unlike most existing water quality indices (WQIs) which are confined to specific application 

boundaries; the primary objective of the current study involves developing nationally applicable 

water quality monitoring tools that are founded on different fundamentals. 

1.7.2 Specific objectives 

The specific objectives of this doctoral work are framed towards obtaining the primary goal, 

which is centred on establishing practical and sustainable water quality evaluation mechanisms. 

The study objectives are then defined as follows: 

(1) To develop a universal water quality index (UWQI) suitable for use across the catchment 

areas in South Africa; 

(2) To adopt artificial intelligence (AI) using artificial neural network (ANN) model to 

compute WQI and analyse spatial and temporal variability, and then to compare with 

traditional proposed UWQI; 

(3) To develop a surrogate water quality index model that can operate with four key 

determinants as a proxy to the unbridged UWQI; 

(4) To establish a list of water quality parameters for the UWQI, develop a standard ranking 

scale and assigning weights to the selected parameters; 

(5) To establish four proxy determinants for the surrogate WQI and assign relative coefficients 

for the model; 

(6) To produce water classification grading and water categorisation schema suitable for the 

proposed water quality indices and water quality variability model; and 

(7) To transform the proposed water quality indices (WQIs) into a water quality variability 

model (WQVM) that can produce water quality classification grading based on a specific 

water categorisation schema. That is creating a practical tool appropriate for regular water 

resource monitoring. 

The methods applied to fulfil the specific objectives are summarised in the following section and 

are discussed further in Chapter Three of the study. 
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1.7.3 Methodological approach 

Monthly observed water quality data spanning for four years from 2014 to 2018 has been used 

towards fulfilling the primary objective of the study. The dataset emanates from six sampling 

stations located within four different river catchment areas managed by Umgeni Water Board 

(UWB) in KwaZulu-Natal, a coastal province in South Africa. The research data was adequate to 

complement the objective of establishing nationally acceptable water quality tools. 

Objectives (1) and (4): The Rand Corporation’s Delphi Technique popularly known as the 

Delphi method, was used implemented to attain objective one and four. The technique utilises 

expert opinion to define the most significant parameters, assigning of relative weight coefficients, 

setting out the corresponding rating curves and sub-index functions. These attributes allow the 

most imparted parameters to impart the most significant effect on the index score, offering a 

hierarchical structure of influence. 

Objective (2) and research question: A feed-forward backpropagated artificial neural network 

(ANN) model was developed to satisfy objective two. The model is founded on artificial 

intelligence (AI) algorithm similar to the biological neural system with a multi-layered set of 

neurons responsible for accepting input variables, analysing the parameter composition and 

eventually producing an index score. The AI-based network uses the same set of parameters 

considered for the UWQI. 

Objectives (3) and (5): Multivariate statistical methods which include principal component 

analysis (PCA), hierarchical cluster analysis (HCA) and multiple linear regression (MLR) were 

collectively employed to address the requirements of objectives three and five. PCA and HCA 

assisted in defining four proxy determinants for the surrogate WQI, whereas MLR produced the 

parameter coefficients and the linear-based aggregation equation. 

Objective (6): An increasing scale index was established to achieve objective six and simplified 

the interpretation of WQI scores, primarily to accommodate non-technical personnel. The 

classification system follows the typical percentage hierarchy, which is better understood by the 

general public. 

Objective (7): Lastly, the water quality variability model defined in objective seven was built by 

combining three diversified water quality indices (WQIs); which are founded on distinctive 

indexing methods. The three WQIs are (a) UWQI defined by objectives one and four, (b) ANN 

model under objective two, and (c) surrogate WQI from objective three and five. 
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Although the methodologies and techniques were successfully implemented, it is worth noting 

the following limitations and assumptions. 

1.8 Limitations and assumptions 

The suggested limitations and assumptions are technically formulated to ensure appropriate 

application of the proposed tools, and they do not devalue the significance of the study. The 

limitations and assumptions are defined as follows: 

• The universal water quality index (UWQI) was developed entirely independently from any 

water quality data or particular drainage region; hence the application of such a model is 

not restricted to specific boundaries. The dataset from the four river catchments was only 

used to attest the UWQI rather than the development phase; 

• Although the surrogate WQI and ANN model are designed based upon specific water 

quality dataset, their application can stretch beyond the four different watersheds 

considering that the depended (target) variable used were generated form a nationally 

acceptable index system, which is the UWQI; 

• Assume that water boards are using the same set of water quality variables to define 

contamination levels within river catchments. Therefore, index scores may vary when a 

different set of parameters are used as input variables. In order to achieve a composite 

evaluation, all the prescribed variables should be considered; 

• The proposed water quality variability model (WQVM) was built using Microsoft Excel 

software, thus limiting the application of the WQVM to the use of Microsoft Office Suite; 

• Both UWQI and ANN models are restricted to thirteen water quality parameters (NH3, Ca, 

Cl, Chl-a, EC, F, CaCO3, Mg, Mn, pH, SO4 and turbidity), whereas the Proxy WQI is 

limited to only four explanatory variables (Chl-a, EC, pH and turbidity); and 

• The proposed models (UWQI, ANN and Proxy WQI) uses predetermined weighted 

coefficients, limiting the model to specific parameter input range. Inputting of different 

variables other than the defined is prohibited since the models rely only on predetermined 

coefficients. If different variables are desired, then new coefficients must be generated. 

Beyond achieving the specific objectives of the study, the limitations and assumptions mentioned 

above simplifies the models and minimise data requirements while exploiting on their efficiency. 

Therefore, these restrictions do not disadvantage the purpose of the research; instead, they add 

value to the effectiveness and possible application of the models developed under this study. 
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The specified limitations and assumptions provided are related to the methodologies applied, in 

cognisance the gaps and flaws identified from existing literature. Chapter Two contains details of 

existing water quality indices and water quality variability models reviewed under the study. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Overview of the literature review 

A comprehensive evaluation and monitoring of South Africa’s water resources are vital towards 

implementing appropriate management and long-term sustainability of the scares water resources. 

Such practices are done using a significant amount of data, and such information needs to be 

analysed and applied using methods, tools and or models that are capable of deducing such 

amount of information into usable datasets and structured formats. 

 

Proper design and formation of such tools is a pivotal step in assessing our water resources and 

in cognisance of such, this study endeavours to develop a water quality-monitoring tool that 

applies to distinct catchments in South Africa. This tool should analyse and integrate the 

significance of physical, chemical and biological constituents of surface water and be able to 

present them in a simple, but yet technically justifiable method. 

 

In order to properly compile and develop a better model, one has to evaluate, review and consider 

the flaws and limitations of the current and previously developed models of similar nature. 

Henceforth, Chapter Two focuses on reviewing the literature relevant to the study, incognisance 

of the specific objectives described in Chapter One. This chapter concentrates more on aspects 

relating to the development of the water quality indices (WQIs) and water quality variability 

models (WQVMs). 

2.2 Definition and uses of raw water 

2.2.1 Raw water 

Raw water signifies water found naturally in the environment, without any treatment, and this 

includes rainwater, groundwater and surface water found in the form of dams, lakes and rivers. 

Raw water can be abstracted directly from its source without treatment to support activities which 

include but not limited to agricultural, mining, and construction. Furthermore, raw can be 

extracted for purification to meet a variety of purposes, such as medical, industrial and domestic 

applications (Banda, 2015). However, the objectives of this study are centred on raw surface water 

found in South African river catchments. 
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2.2.2 River water quantity and quality 

Rivers are complex large natural flowing watercourses which are typically fed by converging 

tributaries, and they usually contain freshwaters flowing towards another waterbody. In order to 

establish the suitability and sustainability of any river, both the quantity and quality of the river 

water has to be considered. The two, can assist in describing the inherent potential of a river, 

establish whether its condition is stable, ascertain its capacity for self-repair when unsettled and 

the extent of management support required (Karr et al., 1986, Norris and Thoms, 1999). 

 

River water quantity is considered to be the volumetric measure of water resources available for 

abstraction without depleting the environmental reserve. Thus, the surplus water available after 

taking into account the amount of water sufficient enough to cater for the aqua-life and river 

health as a whole. In contrast, river water quality describes the biological, chemical and physical 

characteristics of river water (Davies-Colley, 2013, Banda, 2015). River water quality is naturally 

variable but usually comprises of significant contaminants in the form of dissolved ions, particles 

and living organisms. Features and details of the pollutants vary depending on the degree of 

development along the river, size of the river, human activities as well as physical and 

hydrological catchment characteristics (Chapman, 1996, Alberta, 2011). 

 

Since the efforts by Horton (1965) of developing water quality analysis tools, our proficiencies 

to measure and analyse water quality data has evolved over the past decades, expanding our 

knowledge base and understanding of water quality (Bhargava, 1985, House, 1986, 1989, 1990, 

Smith, 1987, 1990, Dojlido et al., 1994, Nagels et al., 2001, CCME, 2002, Boyacioğlu, 2007, Thi 

Minh Hanh et al., 2011, Banda, 2015, AL-Sabah, 2016, Gitau et al., 2016, Ewaid and Abed, 

2017a, Shah and Joshi, 2017, Trikoilidou et al., 2017). Regardless of such growth, it is still 

difficult to provide a simple definition of water quality. It is very complicated to comprehend the 

combined effect of several complex factors used to describe water quality and the challenges of 

identifying the most significant variables used to evaluate the status of water resources in the 

quantitative terms (Chapman, 1996). 

 

Considering the review work by Lumb et al. (2011a), Poonam et al. (2015) and Sutadian et al. 

(2016), it is noted that various water quality analysis tools have been developed, with the effort 

to measure and quantify the extent at which water resource quality can vary. Such useful 

mathematical tools deduce complex water quality data sets and provide a single classifying value 

that grades water quality based on the degree of pollution. The single grading value is commonly 

known as water quality index (see Khan et al., 2004, Alberta, 2011, Lumb et al., 2011b, Abdel-

Satar et al., 2017, Ewaid and Abed, 2017b). 
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In the same context, this study aims to develop a common water quality index (WQI) model that 

works with various river catchments in South Africa. The specific objectives of this study are 

framed towards achieving a practical and sustainable water quality-monitoring system that will 

provide a holistic approach in solving water quality problems in South Africa. The tool will 

provide an essential platform to measure whether specific water resources need to be restored and 

to what degree. Thus, assisting in the prioritisation of water quality activities. 

2.3 Objectives of establishing water quality monitoring tools 

The world-over has experienced a continuous growth on socio-economic activities; however, 

such progression has been accompanied by accelerated growth in water contamination, causing 

pollution stress on the aquatic environment (Chapman, 1996, Palanisami, 2009). Undoubtedly, 

this evolution of water pollution has led to the birth of numerous water quality indices (WQIs) as 

water quality monitoring tools (Poonam et al., 2015). The development of such tools can be based 

on either (i) a single-objective monitoring process, whereby it addresses a specific single problem 

area or (ii) a multi-objective monitoring process, which covers various water applications and 

provides data for more than one assessment programme (Chapman, 1996). 

 

According to World Health Organisation (1991), global water quality monitoring objectives are 

defined to address the public, government institutions, scientific and research community, water 

economists and policymakers on matters relating to water quality assessment. The specific 

objectives of water quality monitoring programmes are modelled specifically: 

• To define the water quality status and assist in identifying the most favourable action, 

relative to human and aquatic ecosystem health; 

• To describe water quality trends, thereby providing a platform to outline crisis stages; 

• To delineate the source of water quality trends and dominant circumstances; 

• To identify and cluster the types of water quality problems experienced in specific 

catchment areas; and 

• To provide the water quality assessment information in a structured format that can be 

easily understood by water resource management and regulatory agencies when evaluating 

alternatives and making necessary decisions. 

Given the context of water quality monitoring objectives, water quality index is, therefore, a 

useful statistical tool. Its ability to interpret complex water quality information and deduce it into 

a single numeric value makes it a vital model necessary to achieve global water quality objectives. 
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Thus, validating the purpose of this study, which is to develop a universal water quality index 

appropriate for application across various catchment areas in South Africa.  

2.4 Water quality indices (WQIs) 

Water quality indices (WQIs) have been recognised as significant environmental performance 

indicators, and the concept of expressing water quality using a numerical value has been readily 

appreciated, leading to the suggestion of various indexing models. Henceforth, this section of the 

study reviews the formulation of several WQIs and document both the favourable and 

unfavourable elements of most of the existing models. 

 

Specific water quality indices were identified as most significant, based on their wider application 

and are discussed in detail under this section of the study. Nevertheless, the rest of the reviewed 

indices are documented towards the end of this thesis as Annexure A: Details of reviewed water 

quality indices (WQIs). 

2.4.1 Historical background and definition of WQIs 

The idea of describing water quality based on the degree of cleanliness or contamination level 

started as early as 1848 in Germany (Lumb et al., 2011a, Medeiros et al., 2017). Subsequently, 

during the 19th century, Kolkwitz and Marsson (1909) developed the “saprobic system” as 

a biological concept of determining water quality. The system provides a saprobic index value 

based on the organic degradable composition of the water resources (Sládeček, 1973, Cairns, 

1974, Lindegaard, 1995, Hawkes, 1998, Rolauffs et al., 2004, Medeiros et al., 2017). The saprobic 

indexing system relied on the distribution pattern and the relative abundance of various biological 

aquatic species and such a non-chemical analysis, cannot address the modern challenges relating 

to water quality. However, the presence of certain species in water ensures that certain minimal 

water quality conditions have been met, which is why the saprobic system has been accepted by 

the public and remains as a traditional method of assessing the suitability of water for several 

applications (Cairns, 1974, Rolauffs et al., 2004). 

 

More than a century after the birth of the saprobic index, Horton (1965) established the first 

parameter based numerical indexing system. This approach utilises a mathematical model to rate 

and aggregate the combined implication of selected biological, chemical and physical water 

parameters and present them in a simple, but scientifically justifiable method (Kannel et al., 2007, 

Lumb et al., 2011a, Effendi, 2016, Sutadian et al., 2016). After Horton (1965) suggested the first 

water quality index (WQI), subsequently, many other indices were developed to improve the 

original concept (Ewaid and Abed, 2017b). Parameters of consideration, mathematical formation, 

indexing scale (also known as the categorisation schema) and application boundaries are the 



19 

 

significant aspects being targeted with each improvement. And, the objectives of this study are 

aiming to address the same, thereby developing a universal water quality index applicable to 

various river catchments in South Africa. 

 

Water quality is defined by pollutants, which can be grouped as physical, chemical and biological 

properties of the water. These variables can collectively be integrated into a systematically 

structured indexing scale, commonly known as water quality index (WQI). It is capable of 

converting a large quantity of water pollution data into a single dimensionless index value, which 

represents the level of contamination of the water resources (Boyacioğlu, 2007, Darapu et al., 

2011, Kalyani et al., 2016, Ewaid et al., 2018). Considering such ability to integrate a pool of 

water quality variables into a simple easily understood number, WQI is, therefore, regarded as a 

handy and significant communication tool for water managers and policymakers (Zandbergen 

and Hall, 1998, Khan et al., 2005, Kankal et al., 2012). 

 

Water quality indices (WQIs) are used to simplify and streamline what would otherwise be 

impractical assignments, thus justifying the efforts of developing such WQIs. 

2.4.2 Classification of water quality indices 

Poonam et al. (2015) classified water quality indices (WQIs) into four main categories, the first 

three are grouped according to their application, and the fourth one is based on the formation 

technique rather than the purpose of establishment. Statistical approaches are formulation 

techniques, aimed at substituting the Delphi method on establishing parameters, sub-indices and 

weights. It is therefore subjective to consider design method when classifying WQIs. This being 

that, under this study; categorisation of water quality indices is based on the purpose of 

establishment and the groups are as follows: 

(i) General indices: created for general water quality assessment and basically, their 

evaluation process is independent of the purpose and application of the water reserve. A 

practical example being the National Sanitation Foundation Water Quality Index (Brown 

et al., 1970). 

 
(ii) Specific indices: developed for one particular application, and practical examples include 

drinking, irrigation, industrial and ecosystem preservation. The Vaal Water Quality Index 

(WQI) developed by Banda (2015) is an example of a specific index created to evaluate 

the status of raw surface water intended for treatment to portable standards. Another 

example is from Argentina, whereby, Almeida et al. (2012) developed a water quality 

index, particularly for the assessment of recreational water resources. 
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(iii) Planning indices: these are water evaluation tools, purposefully designed to assist water 

managers and policymakers in substantiating their decisions regarding water quality. The 

United States of America developed such an index for routine stream monitoring (Hallock, 

2002, Banda and Kumarasamy, 2020e). 

Generally, WQIs are not designed for broad application, they are customarily developed for a 

specific watershed and or region, unless otherwise if different basins share the same water quality 

monitoring objectives and test the same range of water quality variables. The choice and selection 

of water quality variables to be incorporated in an index is governed by the proposed uses of the 

water quality index. The combined effect of such technicalities eventually demarcates the 

application boundaries of the indexing model (Banda, 2015, Banda and Kumarasamy, 2020e). 

 

Expanding index application boundaries is, perhaps, the most demanding scientific need; that is, 

the development of a unified water quality index, that works with most, if not all the watersheds 

in South Africa. An index not limited to specific application boundaries, and thus the aim of this 

study. 

2.4.3 The basic procedure of developing water quality indices 

A considerable number of indices have been developed since the primary index by Horton (1965); 

however, regardless of such efforts, there is still no globally acceptable manner in which water 

quality indices are developed (Sutadian et al., 2016, Banda and Kumarasamy, 2020e). 

Nonetheless, there is an inevitable and realisable trend, which is distinguished by the following 

common steps (Abbasi and Abbasi, 2012b, Fu and Wang, 2012, Walsh and Wheeler, 2012, Tyagi 

et al., 2013, Poonam et al., 2015, Paun et al., 2016, Unda-Calvo et al., 2019): 

(i) Selection of parameters: identifying and choosing the most critical variables suitable 

enough to provide a practical sense to the water quality index. Proficiency is required to 

establish just enough parameters, not too few or too many. Parameter selection can be 

performed by either expert opinion (whether individually or as a group) or through 

statistical techniques. 

 
(ii) Formation of sub-index values: considering that various water quality parameters have 

different scientific units, it becomes necessary to transform them into a single common 

scale, and this task is achieved by generating sub-indices. 

 
(iii) Establishing weights: parameter weightage coefficients are assigned based on the level of 

importance of each variable, and they are established through evaluating the potential 
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impact of each input variable, especially when parameter concentration levels are outside 

the permissible limits. Though Delphi is a tedious process, the method will minimise 

subjectivity in establishing weights and enhance the credibility of the index. 

 
(iv) Aggregation of sub-indices: thus regarded as the final step towards obtaining an absolute 

index value. In cognisance of the assigned weights, mathematical models are used to 

combine all the sub-indices into one index number. They are various aggregation methods 

available, but there are three fundamental models commonly used. These are additive, 

multiplicative and logical functions. 

Of lately, several attempts have been made to explore the structure and relationship of water 

quality variables using statistical approaches like cluster analysis, discriminant analysis, factor 

analysis and principal component analysis (see Mahapatra et al., 2012, Zhao et al., 2012, Wan et 

al., 2013). Even the application of artificial intelligence methods, which includes fuzzy logic and 

artificial neural networks has been tested, to reduce prejudice and improve on the reliability of 

the water quality index models (Lermontov et al., 2009, Singh et al., 2009, Gazzaz et al., 2012, 

Scannapieco et al., 2012, Cordoba et al., 2014, Poonam et al., 2015). The current study will also 

examine the capabilities of artificial neural network (ANN) to analyse and monitor water quality 

status for South African rivers. 

 

Further details regarding the steps and procedures of developing water quality indices (WQIs) are 

discussed at length in the subsequent sections of this chapter. 

2.4.4 Selection of water quality parameters 

Water quality variables are the most important constituents of any water quality index; they are 

the basis at which the index value is generated. Consequently, the selection of such parameters 

becomes an essential step in the establishment of an index. The selection process is done in 

cognisance of the hazard and risk posed by different pollutants. With special attention being given 

to water quality variables which have more impact in disturbing the environmental and human 

health, whenever their concentration levels exceed the tolerable limits. (European Union, 1995, 

CCME, 2001a, World Health Organization, 2003a, 2003b, 2011a, EFSA, 2012). 

 

In order to critically ascertain the influence of each variable; one has to establish the intended use 

of the water body since acceptability and level of impact differ with each application. Therefore, 

it is equally important to note that; the selection of parameters used to evaluate water quality 

depends mainly on the envisioned use of the water body (Srebotnjak et al., 2012, Banda and 

Kumarasamy, 2020e). Accordingly, the parameter selection process becomes apprehensive with 
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uncertainty and subjectivity, as it is aligned to the usefulness of the water quality index. It then 

becomes crucial to exercise enormous care and sound judgement, in order to reduce the ambiguity 

and ensure that the most representative parameters are included in a WQI (Abbasi and Abbasi, 

2012b). 

 

According to Sutadian et al. (2016), there are three systems applicable to the parameter selection 

process, and the three categories are defined as follows: 

(a) Fixed system: in this case, WQI application is restricted to a limited set of parameters, 

which are selected by the WQI developer as the most suitable set of variables, necessary 

for the calculation of the final index value. Although using a fixed set of parameters allows 

index users to analyse and compare water quality status among different sites appropriately, 

the system is considered rigid; which is a common problem with most of the water quality 

indices. Even if it becomes necessary and vital to include additional variables in the index, 

a fixed system cannot accommodate the addition of new parameters, hence the term rigid. 

 

(b) Open system: a more flexible approach that permits index users to incorporate parameters 

of their choice. Though such water quality indices (WQIs) are flexible and eliminates 

rigidity, they pose critical problems in comparing results from different monitoring sites. 

Unless otherwise, the users enforce the usage of identical parameters, it is then 

inappropriate to apply such indices (open system) as comparison tools; especially when 

generating priority matrixes based on pollution status and water quality classification. 

 

(c) Mixed system: a combination of the fixed and open approach. The design consists of a 

primary definite set of parameters that are compulsory for calculating the index value, as 

well as additional parameters that can be inputted based on the users’ discretion. 

Although the hybrid system is the best fit between the fixed and open system, the mixed system 

still suffers from the same problem with the open system, though with a reduced margin of error. 

Given the advantages and disadvantages of the three methods, the fixed index structure is 

designed to analyse and compare water quality from different water bodies. Henceforth, making 

it the most appropriate system, suitable for the development of a unified WQI, that can be 

functional in most, if not all the catchments in South Africa, which is the main aim of the study. 

 

Parameter selection for a fixed system requires enormous care, attention, experience and 

proficiency, to ensure that the most significant variables are incorporated in the WQI. Expertise 

is necessary to delineate what is regarded as too few or too many variables; the ability to optimise 
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the ideal number of parameters needed or just enough to calculate a meaningful water quality 

index value. The selection procedure can be performed using an expert opinion (either as a group 

or individually), or through statistical methods (Banda and Kumarasamy, 2020e). 

 

Due to human influence, the expert opinion method can be subjective and uncertain. In an attempt 

to reduce the subjectivity in parameter selection, statistical tools have been developed and widely 

adopted as standard practice (Liu et al., 2011, Shyu et al., 2011, Abbasi and Abbasi, 2012b, Zhao 

et al., 2012, Sun et al., 2016a). Hypothetically, this might be the most objective method; however, 

the human influence is paramount on selecting the dataset should be statistically analysed, hence 

compromising the accuracy of the procedure (Sutadian et al., 2016). Nevertheless, through the 

use of pattern recognition; statistical methods, remain as the most powerful technique for 

interpreting the variance between a large number of variables and convert them into smaller 

groups of independent variables (Liu et al., 2011, Sun et al., 2016a). 

 

Water quality parameters are measured in different scientific units, and these units have to be 

transformed into a common scale. The conversion process translates and aligns their influence on 

the single-unitless index value. Henceforth, the application of mathematical sub-indices is 

necessary to achieve the transformation process. 

2.4.5 Formation of sub-indices 

Considering that water quality variables are measured in various units; sub-indices are 

mathematical tools utilised to transform the scientific units into a common non-dimensional scale. 

Most of the traditional WQIs can only aggregate parameters with a common scale; hence the 

process of standardising and rescaling parameter values is necessary. However, a few water 

quality indices do not have such functionality. Instead, the actual measured parameter values are 

used to calculate the final index value (Sutadian et al., 2016). For example; CCME (2001a) 

established a multivariate statistical formula to aggregate the original parameter values without 

the application of sub-indices. In a similar case, Said et al. (2004) developed a mathematical 

equation that calculates the final index value without standardising the actual measured parameter 

values. 

 

Depending on the aggregation technique being employed, variables can be considered directly as 

sub-indices and aggregated into a single index value. Whereas in some instances, the primary 

parameter sub-indices can be further grouped and aggregated into a bigger secondary group of 

sub-indices, which are then later aggregated into the final index value. Such are often composite 

or aggregated sub-indices, and a practical example is Bhargava (1985), which have four different 
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composite sub-indices in the form of organic and inorganic, coliforms, heavy metals and physical 

sub-indices (Sutadian et al., 2016). 

The mathematical relationships between the measured parameter values and the sub-index values 

are referred to as, the sub-index functions. The actual parameters values can be translated to sub-

index through sub-index functions, which can be presented graphically as rating curves 

(parameter values plotted to the corresponding sub-index values). There are three standard 

methods used to develop sub-index functions, that is; (1) expert judgement or opinion, which can 

be done either individually or as a group, (2) use of water quality standards or regulations, and 

lastly (3) statistical methods (Sutadian et al., 2016, Banda and Kumarasamy, 2020e). 

2.4.5.1 Expert judgement 

Similar to the selection of water quality parameters, either individual or group expertise and skills 

are utilised to establish sub-index functions. In this method, critical points of the rating curves are 

established from personal opinion and plotted graphically to represent the impact of each 

parameter at different concertation levels. The process can be done individually, but involving 

several experts minimise partiality and ambiguity. If several water experts are involved, then the 

Delphi method can be employed, whereby questionnaires are used to collect the relevant data 

required for the formation of sub-index functions. Collectively, the set of information from the 

experts’ opinion is converged into rating curves which are further converted into linear or non-

linear sub-index functions. 

 

Since its inception in 1970, the Rand Corporation’s Delphi Technique has been widely adopted 

in the establishment of various water quality indices. Indices which includes the National 

Sanitation Foundation (NSF) Index, Scottish Research Development Department (SRDD) Index, 

Ross’s Index, Oregon Index, House’s Index, Smith Index and Almeida’s Index (see Brown et al., 

1970, SRDD, 1976, Ross, 1977, Dunnette, 1979, House, 1986, Smith, 1987, Almeida et al., 2012). 

2.4.5.2 Use of water quality standards 

The second method involves the use of water quality legislative standards to establish sub-index 

functions. Permissible parameter concentration levels are used to derive the rating curves, which 

can eventually be transformed to sub-index functions. Unlike the Delphi method, the critical 

points of the rating curves are obtained using the permissible limits for each particular parameter, 

incognisance of the intended use of the water body. Actual measured water quality parameter 

values can be translated to sub-index values using three methods, namely, linear interpolation 

rescaling, categorical scaling and comparison with permissible limits. The first technique known 

as linear interpolation rescaling, relays on an identical range of sub-index values, normally 

between zero to hundred (0-100) or zero to one (0-1). 
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Similarly, the establishment of water quality classification follows a sequential order, which can 

be, Class 1, Class 2, …, Class 5. After that, using the permissible limits from the minimum to the 

maximum, each limit corresponding to the relevant water quality classification is assigned to the 

corresponding sub-index number (Sutadian et al., 2016, Banda and Kumarasamy, 2020e). For 

example; considering permissible limits of 20, 30, 40, 80 and 120 mg/ℓ, and sub-index range of 

100, 75, 50, 25 and 1; then the pairing of the key points can observe the following sequence; Class 

1 (20:100), Class 2 (30:75), …, Class 5 (120:1). These paired set of data are the key points of the 

rating curve and are the basis at which sub-index functions are developed. If the actual parameter 

value falls between two classes, the linear interpolation method is used to obtain the real sub-

index value. The following general equations are applicable to this particular approach (Sutadian 

et al., 2016): 

 
 Eq. 2.1 

 
 Eq. 2.2 

where: si is the ith sub-index value; 

 s1 and s2 are the sub-index values for the upper and lower class, respectively;  

 xi is the ith parameter value; and 

 x1 and x2 are values of permissible limits for upper and lower class. 

In the case that a parameter decreases the level of water quality with an increase in parameter 

value, then Equation 2.1 is applicable. Otherwise, Equation 2.2 can be adopted when a parameter 

increases the level of water quality with an increase in parameter value (Sutadian et al., 2016). 

 

The second technique is the categorical scaling method; actual parameter values are transformed 

to sub-indices using constant values of either zero (0) or one (1). The sub-index value of zero (0) 

is assigned to a parameter with concentration levels exceeding the acceptable limit; whereas the 

sub-index value of one (1) is assigned to a parameter with concentration levels below the 

permissible limits (Sutadian et al., 2016). The following two mathematical functions are used for 

this technique: 

si = 0; if xi is well above the permissible limits  Eq. 2.3 

si = 1; if xi is well below the permissible limits  Eq. 2.4 

where: si is the ith sub-index value; and 
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 xi is the ith actual parameter value. 

The third and last approach involves comparing the actual measured parameter values with the 

legislative standards. In cognisance of the permissible limits, sub-indices are generated according 

to the degree of water quality form the worst quality to the highest quality; and the sub-index 

values ranges from zero to one. The sub-index values are computed using Equation 2.5 below: 

 
 Eq. 2.5 

where: si is the ith sub-index value; 

 xi is the ith actual parameter value (mg/ℓ); and 

 xmax is the maximum value of the permissible limit (mg/ℓ). 

2.4.5.3 Statistical Methods 

In this approach, the critical points of the rating curves are developed through statistical analysis 

of historical parameter data. This technique relays on the statistical characteristics like the mean 

values and various quantiles of the parameters measured over a long period. Different water 

quality index developers have successfully used this method; developers like Dunnette (1979), 

Bhargava (1985) and Hallock (2002). 

 

Upon establishment of sub-index functions, the sub-index value has to be factored into the final 

index; this procedure can be achieved by multiplying the sub-index values with assigned 

parameter weightage. Establishment of such parameter weights is discussed in the subsequent 

section of this chapter. 

2.4.6 Establishing weights 

Each parameter has a different effect on water classification; hence weighting factors are used to 

reflect the influence of each parameter on the index model. These mathematical tools are assigned 

to each water quality variable based on the level of significance and their impact on the overall 

index value (Sharma et al., 2014, Sutadian et al., 2016). In general, weighting factors are 

established as either equal or unequal weights. Equal weights are practical if all the water quality 

parameters are regarded as equally important; whereas, unequal weights are useful where some 

parameters are considered as more or less influential than the others (Sutadian et al., 2016). 

 

A limited number of index developers adopted the use of equal weights because of the 

possibilities of unfairness in assigning the weighting factors. Besides, if due diligence is not 

exercised; unequal weights could promote sensitivity of the index model, favouring the heavily 

weighted water quality variables (Sutadian et al., 2016). Such biasness brings about the element 
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of doubt towards the application of unequal weights. This being said, appropriate measures should 

be taken in selecting the most suitable technique of developing unequal weights, and the method 

should minimise prejudice and ratify the integrity of the index model. 

 

Similar to the selection of parameters and development of sub-indices, there are also participatory 

based methods available for establishing weights, and the commonly used are the Analytical 

Hierarchy Process (AHP) and the Rand Corporation’s Delphi Technique (Delphi Method). The 

two procedures are discussed next: 

(i) Analytical Hierarchy Process (AHP): a mature and easy concept which has been broadly 

employed in many other different fields, other than water quality index development. The 

idea allows the incorporation of both quantitative and qualitative aspects in the decision-

making process. Expert opinion is gathered through “pairwise comparison matrices,” in 

which the experts are required to present their preference by comparing numerous 

alternatives. AHP is a beneficial method of establishing weights for either individual or 

aggregated water quality variables. Ocampo-Duque et al. (2006) and Gazzaz et al. (2012) 

have both implemented AHP to generate weights for calculating water quality index. 

 

(ii) Rand Corporation’s Delphi Technique (Delphi Method): using questionnaires, water 

specialists compare relative water quality parameters using a scale of one (highest) to five 

(lowest). All the expert’s ratings are combined, and arithmetic mean values are calculated, 

which are later converted to weight ratings between zero (lowest impact weight) to one 

(most influential parameter). The procedure was introduced by Horton (1965), later 

improved by Brown et al. (1970). Since then, Delphi method has been widely employed in 

various water quality indices to produce relative weights of the selected parameters. 

Notably, for most water quality indices; the total weight, which is the summation of all the weights 

of the selected parameters adds up to unity (1). The reason being that the combined effect of the 

water quality parameters should not exceed a hundred per cent (Banda, 2015). Otherwise, 

aggregation of sub-indices will be compromised, and deem the water quality index dysfunctional. 

2.4.7 Aggregation of sub-indices 

Aggregation of sub-indices is performed by mathematical functions. These equations integrate 

sub-index values of selected critical parameters in relation to the assigned weights; and obtain the 

overall water quality status, which is generally presented as a unit-less number. Application of 

aggregation formula is governed by the degree of accuracy required and whether the parameter 

weights are either equally or unequally defined. Aggregation process may occur in sequential 
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phases depending on whether an index has aggregated sub-indices or not. Though there are 

various aggregation techniques available, the common aggregation methods are the additive 

(arithmetic) and multiplicative (geometric) methods (Sutadian et al., 2016). 

 

The following sub-sections of the study attempts to discuss only the commonly used aggregation 

methods and state their mathematical structures. Nevertheless, the rest of the reviewed 

aggregation techniques, including their mathematical structures, are documented towards the end 

of this thesis as Annexure B: Aggregation formulation of the reviewed WQIs. 

2.4.7.1 Additive method 

The additive method has been broadly used for aggregation of sub-indices of various water quality 

indices (see Brown et al., 1970, Prati et al., 1971, Walski and Parker, 1974, SRDD, 1976, Ross, 

1977, Stoner, 1978, Martínez de Bascarón, 1979, Dunnette, 1979, House, 1989, Sargaonkar and 

Deshpande, 2003, Štambuk-Giljanović, 2003, Liou et al., 2004, Boyacioğlu, 2007, Shuhaimi-

Othman et al., 2007, Thi Minh Hanh et al., 2011, Banda, 2015, García-Ávila et al., 2018). A 

simple technique, wherein, the overall index number calculated by adding the weighted sub-

indices. The following Equation 2.6 and Equation 2.7 apply to parameters with equal weights and 

unequal weights, respectively: 

 
 Eq. 2.6 

 
 Eq. 2.7 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 si is the ith sub-index value; and 

 wi is the ith weight value.  

Note that, on Equation 2.7 for unequally weighted sub-indices; the weight (wi) indicate the relative 

importance of each sub-index (si). 

2.4.7.2 Modified additive method 

Research work such as House (1989), Tyson and House (1989), SRDD (1976), Bordalo et al. 

(2001), Bordalo et al. (2006) and Carvalho et al. (2011) have applied the modified additive 

methods; such that, the mathematical model becomes a squared function and divided by 100. The 

modified additive functions are represented as Equation 2.8 and Equation 2.9 for equally weighted 

parameters and unequally weighted parameters, respectively: 
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 Eq. 2.8 

 
 Eq. 2.9 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 si is the ith sub-index value; and 

 wi is the ith weight value. 

Similar to Equation 2.7 for unequally weighted sub-indices; the weight (wi) in Equation 2.9 

indicates the relative importance of each sub-index (si). 

 

Another version of the modified additive aggregation function was developed by Martínez de 

Bascarón (1979). In this particular version, the final index value is achieved by dividing the total 

sum of the aggregated sub-indices by the total sum of the parameter weights, as indicated in 

Equation 2.22. With continued growth in the application of water quality indices, the Martínez de 

Bascarón (1979) version has been adopted and modified further in various water quality indices 

(see Pesce and Wunderlin, 2000, Debels et al., 2005, Abrahão et al., 2007, Sánchez et al., 2007, 

Koçer and Sevgili, 2014). 

 

According to Smith (1990), the additive model would never register zero as a final water quality 

index value, even if one of the sub-index value is zero. Furthermore, following the review by 

Lumb et al. (2011a), it was found that the additive method lacked sensitivity regarding the impact 

of the low-value parameter. The mathematical formula actually “hides” the effects of variables 

with unacceptable levels and this challenge is commonly known as the eclipsing problem. In this 

aspect, the lowly weighted sub-indices might be dominated by highly weighted sub-indices or 

vice versa; and this ultimately compromises the overall water quality rating (Swamee and Tyagi, 

2007, 2000, Bharti and Katyal, 2011, Juwana, 2012, Juwana et al., 2012). 

2.4.7.3 Multiplicative method 

In an attempt to rectify the eclipsing problem, Brown et al. (1973) proposed a multiplicative 

function as an amendment of the National Sanitation Foundation WQI. Subsequent studies show 

that experts agreed more to the multiplicative formula than they did with the additive method, 

which explains the widespread application of the multiplicative function. However, the additive 

function has equally being used (Lumb et al., 2011a, Abbasi and Abbasi, 2012b). Practical 
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examples of multiplicative aggregation indices include Walski and Parker (1974), Bhargava 

(1985), Dinius (1987), Štambuk-Giljanović (1999, 2003), Almeida et al. (2012), Ponsadailakshmi 

et al. (2018), and Sutadian et al. (2018). The multiplicative functions for equally weighted and 

unequally weighted parameters are shown as Equation and Equation2.10, respectively: 

 
 Eq. 2.10 

 
 Eq. 2.11 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 si is the ith sub-index value; and 

 wi is the ith weight value and w1+ w2 + w3 + …+ wn = 1 for Equation 2.11. 

For unequally weighted sub-indices; the weight (wi) in Equation indicates the relative importance 

of each sub-index (si). When the parameter weights (wi) are equal, then the function takes the 

form represented in Equation 2.11, which is commonly known as the geometric mean of sub-

indices (Abbasi and Abbasi, 2012b). As with all the multiplicative aggregation functions, a water 

quality index value of zero is attained if any one of the sub-indices value is zero. Under such 

circumstances, the eclipsing problem will not exist, because if one particular sub-index 

demonstrates poor water quality, the overall water quality index will respond accordingly and 

presents poor water quality (Abbasi and Abbasi, 2012b). 

2.4.7.4 Minimum operator method 

The minimum operator method was suggested by Ott (1978) and significantly applied by Smith 

(1987, 1990). Equation 2.12 represents the general form of the minimum operator function: 

  Eq. 2.12 

where: Imin is the lowest sub-index value; 

 Isub1 is the sub-index value of the first parameter (1, 2, …, n); and 

 Isubn is the sub-index value of the last parameter (1, 2, …, n). 

Although the minimum operator method is free from the eclipsing and ambiguity problems, the 

operator function fails to provide a composite representation of the overall water quality. Since 

any change, other than the lowest quality variable is not reflected by Equation 2.12; consequently, 

it becomes inappropriate to aggregate sub-indices using such an insensitive model (Swamee and 
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Tyagi, 2000, Abbasi and Abbasi, 2012b). That is, the operator cannot be effectively employed to 

monitor water quality; hence the application of this method has been limited to few indices such 

as Oudin et al. (1999) and Hèbert (2005). These challenges promoted the birth of yet another 

aggregation method, namely the harmonic mean of squares method. 

2.4.7.5 The harmonic mean of squares method 

With an attempt to resolve the eclipsing problem by improving both the arithmetic mean formula 

and the geometric mean method, Dojlido et al. (1994) proposed the harmonic mean of squares 

method in the following form: 

 
 Eq. 2.13 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; and 

 si is the ith sub-index value. 

If si ≠ 0 for each ith sub-index, then Equation 2.13 applies, but if si = 0 for any ith sub-index, 

then the water quality index value will be zero (WQI = 0). 

 

According to Cude (2001), the harmonic mean squares method allows the low-quality variables 

to influence the overall water quality index and further acknowledged that the technique 

significantly tolerates water quality variability with the change in parameter values. Regardless 

of such attributes, Swamee and Tyagi (2000) stated that the harmonic method has ambiguity 

problems. Such a situation occurs where the sub-indices are acceptable, but yet the overall index 

is not. In this case, the water might be of satisfactory quality, but the aggregation index declares 

it unacceptable (Sutadian et al., 2016). 

 

With the continuous efforts of improving the aggregation techniques, Liou et al. (2004) proposed 

the combination of the additive and multiplicative methods. 

2.4.7.6 Mixed aggregation method (a combination of additive and multiplicative methods) 

Aiming to minimise the eclipsing and ambiguity problems, Liou et al. (2004) proposed a different 

approach, whereby water quality variables are grouped into three categories depending on their 

correlation characteristics. The clustered parameters are aggregated into group sub-indices using 

the additive method, and further of which, the group sub-indices are aggregated using the 

multiplicative method in the form of geometric mean model. Besides, the aggregated index is 

multiplied by three prefixed scaling coefficients, addressing the effects of temperature, pondus 
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Hydrogenium (pH) and toxic substances. The following is the general form of the combined 

aggregation method (Sutadian et al., 2016): 

 
 Eq. 2.14 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 wi is the ith weight value for organic parameters; 

 wj is the jth weight value for particulate parameters; 

 wk is the kth weight value for faecal coliform; 

 Ii is the ith sub-index value for organic parameters; 

 Ij is the jth sub-index value for particulate parameters; 

 Ik is the sub-index value for faecal coliform; 

 ctemp, cpH and ctox are temperature, pondus Hydrogenium (pH) and toxic substance 

coefficients respectively. 

Though with some modifications, Thi Minh Hanh et al. (2011) applied a similar hybrid 

summation method to aggregate the sub-indices of the Basic Water Quality Index (WQIB). 

Furthermore, the same author multiplied the hybrid aggregation method with a geometric mean 

function to form a model, namely the Overall Water Quality Index (WQIO). 

 

Another useful technique was introduced in the development of the Canadian Council of 

Ministers of the Environment (CCME) WQI. A unique but simple method of calculating the final 

water quality index using the compliance objectives as established in the national water quality 

standards. 

2.4.7.7 CCME method 

Conceptually, the Canadian Council of Ministers of the Environment (CCME) method consists 

of three factors, namely, scope (F1), frequency (F2) and amplitude (F3). The first factor, scope 

(F1) institutes the number of parameters that are not complying with the water quality standards. 

Whereas, the second factor, frequency (F2) defines the number of occasions with which the 

objectives are not met. Finally, the third factor, amplitude (F3) describes the magnitude of 

deviation; that is, the amount by which the targeted goals are not met (CCME, 2001a, 2001b, 

Lumb et al., 2011a, Sutadian et al., 2016). Further details regarding this method are documented 

under Section 2.4.8 of this study. The following formula represents the CCME aggregation 

function: 
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 Eq. 2.15 

where: WQI is the final index value; 

 F1 is the scope (“failed variables”); 

 F2 is the frequency (“failed tests”); 

 F3 is the amplitude (magnitude of failed tests”); and 

 1.732 is a factor to normalise the WQI to a maximum value of 100. 

Even though Tyagi et al. (2013) have mentioned that the first factor (F1) does not work correctly 

when too few variables are considered or when too much covariance exists among them, the 

CCME method has gathered widespread and applied in various water quality indices (that is, 

Khan et al., 2003, Davies, 2006, Boyacioğlu, 2007, Tobin et al., 2007, de Rosemond et al., 2009, 

Terrado et al., 2010, Lumb et al., 2011b, Nikoo et al., 2011, Sharma and Kansal, 2011, Espejo et 

al., 2012, Hurley et al., 2012, Damo and Icka, 2013, Mostafaei, 2014). 

 

Each aggregation method has its problems; therefore, the developer has to decide on the most 

appropriate and relevant approach, preferably with minimum issues that might negatively impact 

on the final water quality index. Otherwise, the selection of the best aggregation method is close 

to impossible. Since there is no one straightforward and favourable method of developing WQIs, 

several tools have been developed for specific regions, using different water quality variables and 

distinctive analytical techniques. 

 

And for the same reasons, there is continuing interest to develop accurate water quality indices. 

Such vital tools provide a simple and concise method of expressing water quality, and their 

significance is readily appreciated. The most significant water quality indices (WQIs) are 

discussed in the following section. 

2.4.8 Existing water quality indices (WQIs) 

Since Horton (1965), suggested the first numerical water quality index (WQI), there have been 

several more water quality indices developed (Bharti and Katyal, 2011). However, most of such 

WQIs are founded on similar structures and principles; the only realisable distinctions are the 

application boundaries and parameters involved. In general, “conventional” water quality indices 

are based on comparing observed parameter values with the existing local normative standards 

(Debels et al., 2005, Sun et al., 2016b).  
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There are two commonly used methods to develop water quality indices, with subsequent 

modifications. First, the weighted sum method, whereby the index score is generated using sub-

indices which are combined further to become an overall WQI value. Sub-indices are value 

functions used to convert the different units of water quality variables to a mutual scale 

(Boyacioğlu, 2007, Banda, 2015). Second, the amplitude technique (objective-based), where 

overall water quality index value is founded through quantifying the extent at which water quality 

variables deviate from the objectives (CCME, 2001a, Khan et al., 2005, Radwn, 2005, Mostafaei, 

2014). Both methods can further be deduced into various mathematical models, though with the 

same scope and outcomes.  

 

Although the study investigated forty water quality indices (WQIs), only fifteen WQIs are 

discussed in the following sub-sections. Covering all the existing WQIs in this study is out of 

reach, hence commonly used and perceived as important WQIs are discussed in detail. 

Nonetheless, the rest of the reviewed WQIs are presented in summary under Annexure A of this 

study. 

2.4.8.1 Horton model of water quality index (United States of America) 

Horton (1965) established a simple mathematical technique of calculating water quality index, 

based on eight water quality variables, as indicated in Table 2.1. Rating scales between zero and 

hundred were assigned for each variable, and a weighting factor ranging from one to four was 

given to each parameter depending on its relative impact on the final index value. Weight factor 

of four was designated to parameters of high significance, whereas those of minimum impact 

were assigned a weight factor of one. The overall water quality index values ranged from zero to 

hundred, with lower scores representing poor water quality and vice versa (Debels et al., 2005, 

Lumb et al., 2011a, Lumb et al., 2011b). Equation 2.16 represents the mathematical formula 

suggested by Horton (1965): 

 
 Eq. 2.16 

where: WQI is the aggregated index value; 

 n is the number of water quality variables used to evaluate the WQI value; 

 sn is the nth sub-index value, which represents the rating number assigned to each 

variable ranging from zero to hundred; 

 wn is the nth weight factor ranging from one to four; 

 m1 is the temperature correction factor; and  

 m2 is the pollution correction factor. 

...
...
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In this case, the total number of water quality variables (n) is eight and the temperature correction 

factor (m1) is regarded as 0.5 when the temperature is less than 34oC, otherwise 1. Whereas, the 

pollution correction factor (m1) is either 0.5 or 1 depending on the degree of pollution which 

created colour or odour nuisance and this included the formation of sludge, deposits, presence of 

oil, debris, foam, etc. (Lumb et al., 2011a). 

Table 2.1: Water quality variables for Horton’s WQI 

ID 
Water quality variables  

 ID 
Water quality variables  

Description Weight Description Weight 

1 Alkalinity 1.0000  5 Dissolved oxygen 4.0000 

2 Carbon chloroform extract 1.0000  6 pondus Hydrogenium (pH) 4.0000 

3 Chlorides 1.0000  7 Sewage treatment 4.0000 

4 Coliform density 1.0000  8 Specific conductance 1.0000 

Source: Bhargava (1983), Lumb et al. (2011a) 

Notes: Two other variables, namely temperature and obvious pollution appeared in the form of multiplicative factors, 

rather than observed parameter values; hence not considered as input parameters. 

Bhargava (1983) pointed out that, the arithmetic weighted mean used by Horton (1965) lacked 

sensitivity to the effect of lowering the values of some of the water quality parameters and this 

drawback is commonly known as the eclipsing problem. Furthermore, according to Lumb et al. 

(2011b), one of the significant difficulties in Horton’s concept was the arbitrariness in the 

selection of the index parameters, which led to the improvements suggested by Brown et al. 

(1970), as well as Deininger and Maciunas (1971). 

2.4.8.2 National Sanitation Foundation WQI (United States of America) 

Targeting to improve Horton’s water quality model, Brown et al. (1970) established a more 

comprehensive and widely used water quality index. The National Sanitation Foundation (NSF) 

of the United States of America (USA) supported the development and application of the model; 

hence the water quality index is commonly referred to as NFS WQI. Although the NFS WQI is 

similar to Horton’s Index, Brown et al. (1970) employed more rigorous attention and high 

precision in parameter selection, development of the rating curves and assigning of parameter 

weights. The National Sanitation Foundation water quality model comprises of eleven water 

quality variables (Brown et al., 1970, Low et al., 2016). 

 

A team consisting of 142 water experts assisted in establishing the list of significant parameters, 

developing a standard ranking scale and assigning weights to the selected water quality variables. 

Brown et al. (1970) floated questionnaires based on a technique commonly known as the Rand 

Corporation’s Delphi method. With it, expert opinion rating curves were developed to attribute 

the degree of water quality variation caused by different level of concentration of each chosen 
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parameter (Wills and Irvine, 1996, Bharti and Katyal, 2011, Banda, 2015, Poonam et al., 2015). 

Utilising the established quality rating curves and associated parameter weights which are listed 

in Table 2.2, and the original NSF WQI is in the form of the additive model as represented in 

Equation 2.17 (Brown et al., 1972, Abbasi and Abbasi, 2012b): 

 
 Eq. 2.17 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

  is the measured value of the ith parameter; 

 Ti is the quality rating transformation curve of the ith parameter; 

 qi is the individual parameter quality rating (Ti = qi); and 

 wi is the ith weight value such that w1+ w2 + w3 + …+ wn = 1 for Equation 2.17. 

Table 2.2: Water quality variables for NSF WQI 

ID 
Water quality variables   

 ID 
Water quality variables   

Description Impact Weight Description Impact Weight 
1 Biochemical oxygen demand 0.6000 0.1100  7 Phosphates 0.6000 0.1000  
2 Dissolved oxygen 1.0000 0.1700  8 Temperature 0.6000 0.1000  
3 Faecal coliform density 0.9000 0.1600  9 Total solids 0.4000 0.0700 
4 Nitrates 0.6000 0.1000  10 Turbidity 0.5000 0.0800 
5 Pesticides N/A N/A   11 Toxic elements N/A N/A 
6 pondus Hydrogenium (pH) 0.7000 0.1100        

Source: Brown et al. (1972), Abbasi and Abbasi (2012b), Low et al. (2016) 

Notes: The total sum of weights of ALL the nine weighted parameters is equal to 1. Pesticides and toxic elements 

are not weighted and do not form part of the mathematical expression by Brown et al. (1970), (Brown et al., 

1972). Instead, it was considered that if the total contents of detected pesticides or toxic elements (of all types) 

exceed 0.10 mg/ℓ, the overall water quality index value automatically registers zero. 

The most obvious limitation of this technique is that it was developed for particular water quality 

variables; therefore, it does not recognise and describe specific water functions. Any alteration 

on the parameter listings, thus inclusion or exclusion of any water quality variable necessitates 

restarting the whole tedious process again. Although simple to comprehend, the weighted 

arithmetic formulation lacked sensitivity and fails to capture the effect of a single bad parameter 

value towards the overall WQI (Banda, 2015, Low et al., 2016). 

2.4.8.3 Modified NSF WQI (United States of America) 

Considering the flaws of the original National Sanitation Foundation (NSF) water quality index 

developed by Brown et al. (1970), subsequently, Brown et al. (1973) proposed the weighted 

geometric mean (multiplicative) function as a modification of the original NSF WQI. The 

multiplicative model was successfully adopted and considered more appropriate than the original 
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additive model. However, both models have continued to be in use, regardless of the variation in 

prediction accuracy. The modified water quality index is expressed as follows (Bharti and Katyal, 

2011, Lumb et al., 2011a, Abbasi and Abbasi, 2012b, Poonam et al., 2015): 

 
 Eq. 2.18 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 si is the ith sub-index value; and 

 wi is the ith weight value and w1+ w2 + w3 + …+ wn = 1 for Equation 2.18. 

Poonam et al. (2015), suggested that unweighted harmonic square mean formula can be employed 

to improve the weighted geometric mean formula. The inclusion of the harmonic procedure 

allows the most impaired parameter to impart the greatest influence on the WQI, hence offering 

the significance of different variables on overall water quality at different times and locations. 

The modified NSF WQI used the same water quality variables as the original NSF WQI, and they 

are presented in Table 2.2. 

2.4.8.4 Scottish Research Development Department WQI (Scotland) 

Similar to the National Sanitation Foundation (NSF) water quality index developed by Brown et 

al. (1970), the Engineering Division of Scottish Research Development Department (SRDD) 

developed a water quality index based on the Delphi method (SRDD, 1976). The index is 

commonly known as the Scottish water quality index (Scottish WQI) and operates with ten water 

quality indicators established using the Delphi technique. Sub-indices and individual parameter 

weights were developed through a convergence of water quality experts (Sutadian et al., 2016). 

 

The ten water quality indicators and their respective weights are indicated in Table 2.3. The final 

modified weighted arithmetic function (modified additive), which is the result of squaring the 

sum of the products of parameter values (qi), and of the individual variable weightings (wi), 

divided by one hundred as demonstrated with the following Equation 2.19 (Bordalo et al., 2001, 

Bordalo et al., 2006, Dadolahi-Sohrab et al., 2012): 

 
 Eq. 2.19 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 qi is the ith sub-index value; and 
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 wi is the ith weight value and w1+ w2 + w3 + …+ wn = 1 for Equation 2.19. 

Table 2.3: Water quality variables for Scottish WQI 

ID 
Water quality variables  

 ID 
Water quality variables  

Description Weight Description Weight 
1 Ammonia (free and saline ammonia) 0.1200  6 Phosphates 0.0800 
2 Biochemical oxygen demand (BOD5) 0.1500  7 pondus Hydrogenium (pH) 0.0900 
3 Conductivity 0.0600  8 Suspended solids 0.0700 
4 Dissolved oxygen 0.1800  9 Temperature 0.0500 
5 Escherichia coli (E. coli) 0.1200  10 Total oxidised nitrogen 0.0800 

Source: Sutadian et al. (2016) 

Notes: Parameters are listed according to alphabetic, other than the order of importance. The total sum of all weights 

is equal to one whole number. 

Regardless of the Scottish WQI being developed for monitoring the water quality in Scotland 

watersheds, several researchers have modified this particular index and applied it in various 

countries, which includes Spain, Portugal, and Iran (see Bordalo et al., 2001, Bordalo et al., 2006, 

Carvalho et al., 2011, Dadolahi-Sohrab et al., 2012). Such widespread explains its appropriateness 

as a water quality monitoring tool. 

2.4.8.5 Oregon water quality index (United States of America) 

The Oregon water quality index (OWQI) was suggested by Dunnette (1979) and the index 

required enormous resources to calculate and produce the final index value which resulted in the 

index being discontinued in 1983 (Sutadian et al., 2016). Subsequently, Cude (2001) modified 

the original OWQI by adding two more variables (temperature and phosphorus), refining the sub-

indices and improving the aggregation technique. 

 

The original OWQI was modelled after the National Sanitation Foundation (NSF) water quality 

index, which applied the Delphi method for selecting the most significant parameters. Both 

Oregon water quality indices (as suggested by Dunnette, 1979, and Cude, 2001), utilised the 

logarithmic transform to covert water quality indicators into sub-indices. The advantage of this 

method is that a change in magnitude at lower levels of impairment has more significant impact 

than an equal shift in concentration at higher levels of impairment (Cude, 2001, Poonam et al., 

2015). The original OWQI used the weighted arithmetic mean (additive) method and the modified 

index used the unweighted harmonic square mean function as shown by Equation 2.20 and 

Equation 2.21 respectively (Cude, 2001, Sarkar and Abbasi, 2006, Poonam et al., 2015): 
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 Eq. 2.21 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 SIi is the ith sub-index value; and 

 wi is the ith weight value and w1+ w2 + w3 + …+ wn = 1 for Equation 2.20. 

Table 2.4: Water quality variables for Oregon WQI 

ID Water quality variables 
Dunnette (1979) OWQI 

 
Cude (2001) OWQI 

Include Weight Include Weight 
1 Biochemical oxygen demand (Unfiltered BOD5) Yes 0.1000   Yes 0.1250 
2 Dissolved oxygen Yes 0.4000  Yes 0.1250 
3 Faecal coliform density Yes 0.2000  Yes 0.1250 
4 Nitrate + ammonia  Yes 0.1000  Yes 0.1250 
5 Phosphorus N/A N/A  Yes 0.1250 
6 pondus Hydrogenium (pH) Yes 0.1000  Yes 0.1250 
7 Temperature N/A N/A  Yes 0.1250 
8 Total solids Yes 0.1000  Yes 0.1250 

Source: Dunnette (1979), Sutadian et al. (2016) 

Notes: Parameters are listed according to alphabetic, other than the order of importance. The total sum of all weights 

is equal to one whole number. 

Cude (2001) claimed that unequal weights are only applicable to water quality indices that are 

developed for a specific application, rather than general uses, where other parameters might 

contribute more to the index value than the others. Consequently, Cude (2001) employed an 

equal-weighted function for the modified OWQI (Sutadian et al., 2016). 

2.4.8.6 Martínez de Bascarón water quality index (Spain) 

Martínez de Bascarón (1979) suggested a twenty-six-parameter based water quality index 

specifically for Spain, and the index has been modified and applied in various studies for countries 

such as Argentina, Chile, Brazil, India, Spain and Turkey (refer to; Pesce and Wunderlin, 2000, 

Debels et al., 2005, Abrahão et al., 2007, Kannel et al., 2007, Sánchez et al., 2007, Koçer and 

Sevgili, 2014). Although Martínez de Bascarón (1979) recommended twenty-six variables, the 

index can easily allow the inclusion and exclusion of water quality indicators; hence it is regarded 

as a flexible water quality index (Abrahão et al., 2007, Sutadian et al., 2016). Originally, Martínez 

de Bascarón (1979), suggested the subjective water quality index (WQIsub); whereby, the water 

quality index value is multiplied with a subjective constant representing the visual impression of 

the river contamination. WQIsub is expressed as Equation 2.22 (Pesce and Wunderlin, 2000, 

Abrahão et al., 2007, Kannel et al., 2007, Sánchez et al., 2007, Poonam et al., 2015): 
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 Eq. 2.22 

Such an equation overestimates the contamination level due to the application of the subjective 

constant, which is not necessarily correlated to the measured parameter values (Pesce and 

Wunderlin, 2000). Therefore, a modified version known as the objective water quality index 

(WQIobj) was suggested and documented in the existing literature. In this case, the constant (k) is 

considered as one (k=1), thereby allowing the water quality index to represent only the variations 

caused by measured parameter values, without the influence of human judgement in the form of 

“visual impressions.” The WQIobj is expressed as Equation 2.23 (Debels et al., 2005, Abrahão et 

al., 2007, Kannel et al., 2007, Lumb et al., 2011a, Koçer and Sevgili, 2014): 

 

 Eq. 2.23 

A selected few variables, mostly regarded as the crucially important water quality parameters, 

may be used to calculate the minimum water quality index (WQImin). The WQImin method could 

be useful for routine monitoring exercises that require less precision. The WQImin can be worked 

out using Equation 2.24 (Kannel et al., 2007, Koçer and Sevgili, 2014): 

 
 Eq. 2.24 

where: WQIsub is the subjective water quality index value; 

 WQIobj is the objective water quality index value; 

 WQImin is the minimum water quality index value; 

 n is the number of sub-indices; 

 k is the subjective constant representing the visual impression of river contamination; 

 Ci is the value assigned to parameter ith after normalisation; and 

 Pi is the relative weight assigned to the ith parameter and ranges from 1 to 4 as highest. 

The parameters applicable for WQImin varies with the author, purpose of the evaluation, constantly 

available parameter readings, and desired level of accuracy. Nevertheless, the twenty-six 

variables, as suggested by Martínez de Bascarón (1979), together with their weighting factors, 

are indicated in Table 2.5. 
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Table 2.5: Water quality variables for Martínez de Bascarón WQI 

ID 
Water quality variables  

 ID 
Water quality variables  

Description Weight Description Weight 
1 Ammonia nitrogen 3.0000  14 Magnesium 1.0000 
2 Apparent aspect N/A  15 Nitrates 2.0000 
3 Biochemical oxygen demand (BOD5) 3.0000  16 Nitrites 2.0000 
4 Calcium 1.0000  17 Oil and grease 2.0000 
5 Chlorides 1.0000  18 Permanganate reduction 3.0000 
6 Colour 2.0000  19 Pesticides 2.0000 
7 Conductivity 4.0000  20 Phosphorus 1.0000 
8 Cyanides 2.0000  21 pondus Hydrogenium (pH) 1.0000 
9 Detergents 4.0000  22 Sodium 1.0000 
10 Dissolved oxygen 4.0000  23 Sulphates 2.0000 
11 Dissolved oxygen saturation percent 2.0000  24 Temperature 1.0000 
12 Free carbon dioxide 3.0000  25 Total coliform 3.0000 
13 Hardness 1.0000  26 Turbidity 4.0000 

Source: Sutadian et al. (2016) 

Notes: Parameters are listed according to alphabetic, other than the order of importance. The total sum of all weights 

is equal to fifty-five. Apparent aspect does not have any weighting. 

Over the past years, several European studies have adopted and applied the Martínez de Bascarón 

(1979) water quality index (Lumb et al., 2011a), such widely spread use exhibits the flexibility of 

the index and its ability to be used with minimum water quality indicators (Abrahão et al., 2007). 

The challenge with the subjective water quality index (WQIsub), is that; an individual without 

environmental or water quality background might exaggerate the subjective constant (k) that 

represents the “visual impression” of the river contamination which may lead to the presentation 

of distorted index values (Pesce and Wunderlin, 2000). 

2.4.8.7 Bhargava’s water quality index (India) 

One of the first Asian based water quality index (Abbasi and Abbasi, 2012b), derived exclusively 

for the classification of water quality for drinking purposes (Lumb et al., 2011a). Unlike most 

indices, where sub-indices and weighting factors are considered separately; Bhargava (1983, 

1985) developed sensitivity functions which account for both parameter concentrations and their 

weightage coefficients which are related to their level of importance towards the overall index 

calculation process (Al-Ani et al., 1987, Avvannavar and Shrihari, 2008, Lumb et al., 2011a, 

Abbasi and Abbasi, 2012b). Therefore, based on an approach where the significance of each water 

quality parameter is included within the sensitivity function, Bhargava (1983, 1985), suggested a 

simplified and rational model for calculating water quality index value as expressed by Equation 

2.25: 
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where: WQI is the water quality index value; 

 n is the number of variables considered more relevant; and 

 fi(Pi) is the sensitivity function of the ith parameter, which includes the effects of the 

weighting of the ith parameter. 

Bhargava (1985) identified four-parameter groupings which included (1) coliform organisms, (2) 

toxicants, heavy metals, etc., (3) indicators that cause physical effects, that is, odour, turbidity, 

colour, etc., and (4) inorganic and organic, nontoxic substances such as chloride, sulphate, total 

dissolved solids, etc. The index sensitivity functions assumed values of 1.0, 0.8, 0.5, 0.2 and 0.1; 

which related to water quality index values of 100, 80, 50, 20 and 1 (almost zero), thus aligning 

to water class one to five respectively (Bhargava, 1983). 

 

Bhargava (1985), argued that Brown et al. (1970) arithmetic mean (additive) index was not 

significantly sensitive to changes in the values of the water quality parameters, hence, he 

suggested a model in the multiplicative form. The multiplicative models are designed to eliminate 

the eclipsing problem since they respond well when sub-indices value almost reaches or equals 

to zero; the index will react accordingly and register a lower index value (Bhargava, 1983, Abbasi 

and Abbasi, 2012b). The parameter groupings sensitivity functions assumed Bhargava (1985) are 

indicated in Table 2.6. 

Table 2.6: Water quality variables for Bhargava WQI 

ID 
Water quality variables 

 
 

Description Sensitivity function 

1 Parameter Group I  
fi = exp[-16(C-1)] 

 Coliform organism, (coliform bacteria, etc.)  
2 Parameter Group II  

fi = exp[-4(C-1)] 
 Heavy metals, other toxicants (chromium, lead, silver, etc.)  
3 Parameter Group III  

fi = exp[-2(C-1)] 
 Physical variables (turbidity, colour, odour, etc.)  
4 Parameter Group IV  

fi = exp[-2(C-1)] 
 Organic and inorganic nontoxic substances (chloride, sulphate, TDS, etc.)  

Source: Bhargava (1985), Abbasi and Abbasi (2012b), Poonam et al. (2015) 

Notes: No particular weighting factors assigned to the variables; instead, the sensitivity functions are built to include 

the effect of the concentration and weight of the water quality parameter. Variable Group III and IV have 

similar sensitivity functions. 

2.4.8.8 House’s water quality index (United Kingdom) 

In the United Kingdom (UK), House (1986, 1989, 1990) established four water quality indices. 

First, the general water quality index (WQI) for evaluating river health for regular monitoring 

programs. Second, the potable water supply index (PWSI) for assessing the quality and suitability 

of the potable water supply. Third, the aquatic toxicity index (ATI) developed to monitor the 
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toxicity in the aquatic environment, and lastly; the fourth WQI, which was suggested for 

evaluating water quality for the wildlife population and the index is commonly known as the 

potable sapidity index (PSI). These four indices can be used separately or in combination, 

depending on the required outcome and level of accuracy desired (Sutadian et al., 2016). 

Nevertheless, this study focuses on the initially developed general water quality index; which is 

then referred to as House’s water quality index (House’s WQI). 

 

The House’s WQI was conceptually developed in the same manner as the National Sanitation 

Foundation water quality index (NSF WQI) of United States of America (Lumb et al., 2011a), 

where the nine water quality parameters and their weights are established using the Delphi 

method. Table 2.7 represents the nine water quality parameters and their relative weights as 

suggested by House (1986, 1989, 1990), and the aggregation formula is expressed as Equation 

2.26. 

 
 Eq. 2.26 

where: WQI is the aggregated index value; 

 n is the number of sub-indices; 

 qi is the ith sub-index value; and 

 wi is the ith weight value and w1+ w2 + w3 + …+ wn = 1 for Equation 2.26. 

Table 2.7: Water quality variables for House’s WQI 

ID 
Water quality variables  

 ID 
Water quality variables  

Description Weight Description Weight 
1 Ammoniacal nitrogen 0.1600  6 pondus Hydrogenium (pH) 0.0900 
2 Biochemical oxygen demand (BOD5) 0.1800  7 Suspended solids 0.1100 
3 Chlorides 0.0400  8 Temperature 0.0200 
4 Dissolved oxygen 0.2000  9 Total coliforms 0.1100 
5 Nitrates 0.0900     

Source: House (1986, 1989), Tyson and House (1989), House (1990), Sutadian et al. (2016) 

Notes: Parameters are listed according to alphabetic, other than the order of importance. The total sum of all weights 

is equal to one whole number. The PWSI, ATI and PSI water quality parameters are not listed, refer to House 

(1990). 

Index values produced by various aggregation methods were tested and authenticated to select 

the most feasible aggregation technique. Accordingly, the modified arithmetic formula suggested 

by SRDD (1976) in the development of the Scottish WQI was found more suitable and adopted 

as the WQI for river management by House (1989). The WQI developed by House (1986, 1989) 

can be applied objectively and produces results which are reproducible and repeatable manner, 

both temporally and spatially (House, 1989). Thereby allowing a structured comparison of 
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various data sets, providing a precise picture of water quality variability and facilitating the 

development of best management practices (House, 1990). 

2.4.8.9 Smith’s water quality index for river systems (New Zealand) 

Water quality index (WQI) developed by Smith (1987, 1990) is a hybrid of two standard practices 

available for water quality indices formation; that is, the application of both water quality 

standards and the Rand Corporation’s Delphi method. The Delphi procedure was used to establish 

significant parameters, develop sub-indices and to assign relative parameter weight coefficients. 

Eventually, Smith (1987, 1990) applied the minimum operator technique to calculate the final 

index scores and the model is expressed in Equation 2.27 (Smith, 1987, 1990, CCME, 2001a, 

Bharti and Katyal, 2011, Poonam et al., 2015): 

  Eq. 2.27 

where: Imin is the lowest sub-index value; 

 Isub1 is the sub-index value of the first parameter (1, 2, …, n); and 

 Isubn is the sub-index value of the last parameter (1, 2, …, n). 

Smith’s WQI was developed for four water applications, which are bathing, water supply, fish 

spawning (salmonids) and general uses. The index comprises of a maximum of eight water quality 

variables, grouped differently for each particular application, with specific weighting factors 

relevant to specific water use. However, the relative weights are redundant since Smith (1987) 

eventually omitted the application of the multiplicative indexing model. The eight water quality 

variables are included in Table 2.8 and Table 2.9. 

Table 2.8: Water quality variables for Smith’s WQI (water supply & fish spawning) 

ID Water quality variables 
Water supply use 

 
Fish spawning use 

Include Impact Weight Include Impact Weight 
1 Ammonia Yes 2.59 0.1600      
2 Biochemical oxygen demand (Unfiltered BOD5) Yes N/A N/A  Yes 2.48 0.1400  
3 Dissolved oxygen Yes 2.38 0.1800  Yes 1.00 0.3400 
4 Faecal coliform density Yes 1.78 0.2400     
5 pondus Hydrogenium (pH) Yes 2.79 0.1500  Yes 2.81 0.1200 
6 Suspended materials Yes 2.82 0.1500  Yes 2.41 0.1400 
7 Temperature Yes 3.59 0.1200  Yes 1.35 0.2600 
8 Turbidity Yes N/A N/A      

Source: Smith (1987, 1990), and Sutadian et al. (2016) 

Notes: The water supply index used all the nine parameters, whereas the fish spawning index only used five out of 

the nine listed variables. The biochemical oxygen demand (unfiltered BOD5) and turbidity were not included 

in the initially proposed multiplicative model, but later included in the minimum operator index for water 

supply uses; hence their weights and impact rating is not available. 

, , ...,I I I Imin sub sub subn1 2min= ^ h|
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Table 2.9: Water quality variables for Smith’s WQI (bathing & general use) 

ID Water quality variables 
Bathing use 

 
General use 

Include Impact Weight Include Impact Weight 
1 Ammonia        
2 Biochemical oxygen demand (Unfiltered BOD5) Yes 2.23 0.1500  Yes 2.20 0.1800 
3 Dissolved oxygen Yes 2.15 0.1500  Yes 1.33 0.3000 
4 Faecal coliform density Yes 1.00 0.3200  Yes 3.18 0.1200 
5 pondus Hydrogenium (pH) Yes 3.10 0.1000  Yes 3.13 0.1300 
6 Suspended materials Yes 1.73 0.1900  Yes 2.57 0.1500 
7 Temperature Yes 3.78 0.0900  Yes 3.15 0.1200 
8 Turbidity Yes N/A N/A  Yes N/A N/A 

Source: Smith (1987, 1990), and Sutadian et al. (2016) 

Notes: Both bathing and general use indices utilise seven similar parameters, and both WQI tools exclude ammonia 

in their indexing model. Turbidity was not included in the initially proposed multiplicative model, but later 

included in the minimum operator index for both bathing and general uses; hence its weight and impact rating 

is not available. 

The simplicity and flexibility of the minimum operator index make it easier to implement, without 

ambiguity or eclipsing problems. However, the accuracy of Smith’s water quality index (WQI) is 

questionable, since the model can only retain the minimum sub-index value, without considering 

the effects of the rest of the sub-indices. The problem implies that the composite picture of water 

quality is compromised; since any change, other than the minimum sub-index value is not 

reflected in the overall WQI. Such an insensitive operator is unsuitable for aggregation; that is, it 

can work for neither a single source monitoring nor for comparing two different sources (Swamee 

and Tyagi, 2000, Abbasi and Abbasi, 2012b). The situations elaborate on why the application of 

the minimum operator technique has been limited to a few water quality indices (see Oudin et al., 

1999, Hèbert, 2005). 

2.4.8.10 British Columbia WQI (Canada) 

In 1995, the Canadian government, under the guidance of the Ministry of Environment, Lands 

and Parks established water quality index (WQI) for the British Columbia Province (Zandbergen 

and Hall, 1998, Bharti and Katyal, 2011). The BCWQI is an objective-based index similar to the 

Canadian Council of Ministers of the Environment (CCME) WQI. However, one of the factors is 

not considered in any of the other indices, which factor is the percentage of water quality 

guidelines exceeded (F1). The following mathematical expression is used for British Columbia 

WQI (Zandbergen and Hall, 1998, CCME, 2001a, Bharti and Katyal, 2011): 

 
 Eq. 2.28 

where: WQI is the overall water quality index value; 

 F1 is the percentage of water quality guidelines exceeded; 
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 F2 is the frequency with which objectives not met as a percentage of objectives checked; 

 F3 is the maximum by which any of the guidelines were exceeded; and 

 1.453 is the factor to normalise the WQI to a maximum value of 100. 

Two factors are comparable to other water quality indices (WQIs). The index factor two (F2) is 

similar to the Alberta index, whereas, factor three (F3) corresponds to Centre St Laurent index. 

Whilst factor one (F1) does not appear in any of the other WQIs. It was found that BCWQI is 

exceptionally sensitive to sampling design and highly dependent on the specific application of 

water quality objectives. Furthermore, the British Columbia index in its original form has serious 

limitations for comparing water bodies and for establishing management priorities (Zandbergen 

and Hall, 1998, Said et al., 2004). However, comparable to the Council of Ministers of the 

Environment water quality index (CCME WQI), the British Columbia WQI is flexible and 

adaptive to various applications (CCME, 2001a). 

2.4.8.11 Canadian Council of Ministers of the Environment WQI (Canada) 

The CCME water quality index (CCME WQI) is a modification of the British Columbia water 

quality index (BCWQI). Similar to the British Columbia index, the CCME WQI comprises of 

three factors regarded as, (i) scope, (ii) frequency and (iii) amplitude (CCME, 2001a, Khan et al., 

2005, Radwn, 2005, Alberta, 2008, 2011, Abbasi and Abbasi, 2012b). The composition of the 

CCME index and the three factors are discussed as follows: 

(i) Factor 1 - Scope (F1): This factor quantifies the water quality variables that do not meet 

water quality objectives; which explains the extent of water quality non-compliance over a 

specific period of concern (percentage of parameters that do not meet objectives). Factor 1 

is calculated using the following Equation 2.29. 

  Eq. 2.29 

(ii) Factor 2 - Frequency (F2): This factor describes how frequently does measurement not 

meet water quality objectives. The factor is the percentage of individual tests that fail to 

meet objectives (“failed tests”), and test refers to an individual parameter value per 

observation. Equation 2.30 is applied to calculate frequency. 

  Eq. 2.30 

F1 100total number of variables
number of failed variables #=

F2 100total number of tests
number of failed tests #=
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(iii) Factor 3 - Amplitude (F3): This factor represents how much do measurements not meet 

objectives. Which is the amount by which failed test values do not meet their objectives. 

Unlike the scope and frequency factors, the amplitude factor is calculated in three steps. 

The first step involves the calculation of the excursion, which is the number of times by 

which an individual variable is greater than or less than the water quality objective, and is 

defined in two ways. Scenario A, represented by Equation 2.31, that is ideal when the test 

value must not exceed water quality objective and Equation 2.32, applies to Scenario B, 

whereby the test value must not fall below water quality objective. 

 
 Eq. 2.31 

	excursioni	=	 #
objectivej

failed test valuei
$ 	-	1  Eq. 2.32 

The second step involves the calculation of the normalised sum of excursions (nse). That 

is, the collective amount by which individual tests are out of compliance is calculated by 

summing the excursion of individual tests from their objectives and dividing by the total 

number of tests. The normalised sum of excursions (nse) is denoted by the following 

Equation 2.33. 

 
 Eq. 2.33 

Upon that, the third step can be performed, which covers the calculation of the amplitude 

factor. Amplitude is derived by an asymptotic function that scales the normalised sum of 

excursion (nse) from water quality objectives to yield a value ranging from zero to a 

hundred. The following Equation 2.34 is applicable when calculating the amplitude factor. 

  Eq. 2.34 

Finally, using the scope factor (F1), frequency factor (F2) and amplitude factor (F3); the overall 

water quality index is obtained using Equation 2.35 as follows (Nikoo et al., 2011, Hurley et al., 

2012): 
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 Eq. 2.35 

where: WQI is the final index value; 

 nse is the normalised sum of excursions; 

 n is the total number of the excursions; 

 F1 is the scope (“failed variables”); 

 F2 is the frequency (“failed tests”); 

 F3 is the amplitude (magnitude of failed tests”); and 

 1.732 is a factor to normalise the WQI to a maximum value of 100. 

Since each of the three factors values can reach as high as hundred, it means that the vector length 

(1002 + 1002 + 1002)0.5 can reach 173.2, hence the factor 1.732 was introduced into the index 

model to contain the index values not to exceed a maximum of hundred (Lumb et al., 2006). 

 

Considering that the CCME technique does not require statistically defined data to function, it is 

beneficial in the sense that, it provides leverage to alter the selection of water quality variables. 

Because of this, the CCME WQI is a flexible tool adaptable to accommodate various water quality 

parameters, as long as the appropriate pollution limits are adequately defined. These attributes 

explain the widespread and application of the Canadian Council of Ministers of the Environment 

water quality index (refer to, Khan et al., 2003, Davies, 2006, Boyacioğlu, 2007, Tobin et al., 

2007, de Rosemond et al., 2009, Terrado et al., 2010, Lumb et al., 2011b, Nikoo et al., 2011, 

Sharma and Kansal, 2011, Espejo et al., 2012, Hurley et al., 2012, Damo and Icka, 2013, 

Mostafaei, 2014). 

2.4.8.12 Liou’s water quality index (Taiwan) 

Liou et al. (2004), employed a distinctive river status index (RSI) for monitoring Keya River in 

Taiwan. The index is a hybrid of the additive and multiplicative model, which relay on six water 

quality variables as listed in Table 2.10. Based on the principal component analysis (PCA), the 

water quality variables are categorised into three groups, namely organics, particulates and 

microorganisms. The overall index consists of three phases. Firstly, an additive model employed 

to aggregate the grouped variables into group sub-indices. Secondly, the multiplicative function 

used to aggregate the three group sub-indices and further multiplied by three prefixed coefficients 

which address the effects of temperature, pondus Hydrogenium (pH) and toxic substances (Liou 

et al., 2004, Sutadian et al., 2016). The index proposed by Liou et al. (2004) is defined as follows: 
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 Eq. 2.36 

Equal weights are assigned for the variables associated in the same category, that is, organic 

variables are assigned a weighting factor of 0.33. In contrast, particulates are given a coefficient 

of 0.50 and microorganisms retain factor of 1.00 since only one variable is associated with this 

group. Thus, satisfying the following: 

 
 Eq. 2.37 

where: RSI is the aggregated index value; 

 n is the number of sub-indices; 

 wi is the ith weight value for organic parameters; 

 wj is the jth weight value for particulate parameters; 

 wk is the kth weight value for microorganisms; 

 Ii is the ith sub-index value for organic parameters; 

 Ij is the jth sub-index value for particulate parameters; 

 Ik is the sub-index value for microorganisms; and 

 ctemp, cpH and ctox are temperature, pondus Hydrogenium (pH) and toxic substance 

coefficients respectively. 

Table 2.10: Water quality variables for Liou’s WQI 

ID 
Water quality variables   

 ID 
Water quality variables   

Description Group Weight Description Group Weight 

1 Ammonia nitrogen A 0.33  4 Suspended solids B 0.50  

2 Biochemical oxygen demand A 0.33  5 Temperature B 0.50  

3 Dissolved oxygen A  0.33   6 Facial coliforms C 1.00  

Source: Liou et al. (2004) 

Notes: Three other variables, namely pondus Hydrogen (pH), temperature and toxicity, appeared in the form of 

multiplicative factors, rather than observed parameter values; hence not considered as input parameters. 

Group A is the organics; Group B is the particulates, and Group C is the microorganisms. The sum of all the 

group weighting is 1 per each category as defined in Equation 2.37. 

The concern of eclipsing and ambiguity occurring from aggregation and or a large number of 

water quality variables was minimised through categorisation of parameters and assigning 

appropriate mathematical functions. From the proposed hybrid function; if any of the parameters 

approach zero value, the overall index responds accordingly lowering the river status index value 

towards zero (Liou et al., 2004). 
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2.4.8.13 Fuzzy-based water quality index (Spain) 

Fuzzy-based water quality index (FWQI) is one of the most useful tools developed by Ocampo-

Duque et al. (2006) for assessing the water quality of the Ebro river in Spain. FWQI is a rule-

based fuzzy model that deals with non-linear, but ill-defined, mapping of input variables to 

appropriate outputs (Nikoo et al., 2011). That is, a linguistic description is assigned to each fuzzy 

set, and then, the rule-sets are named based on a perceived degree of quality ranging from poor 

to excellent (Lermontov et al., 2009). Fuzzy logic data sets allow the inclusion of the qualitative 

aspects of human knowledge and reasoning process, through qualitative conditional expressions 

with verbal meaning, without employing precise quantitative analysis (Nikoo et al., 2011). 

 

The method of modelling using intrinsically vague linguistic knowledge is based on the 

mathematics of fuzzy sets originally suggested by Zadeh (1965) and further explored by various 

water scientists including Ocampo-Duque et al. (2006), Lermontov et al. (2009), Nikoo et al. 

(2011), Ocampo-Duque et al. (2013), and Wardhany et al. (2018) The FWQI for Ebro river in 

Spain uses a comprehensive set of twenty-seven water quality variables, divided into five 

parameters groupings as indicated in Table 2.11. 

Table 2.11: Water quality variables for Fuzzy-based WQI 

ID 
Water quality variables  

 ID 
Water quality variables  

Description Indicator Group Description Indicator Group 
1 Conductivity Primary  15 Phosphates Anions (cont.) 
2 Dissolved oxygen   16 Sulphates  
3 pondus Hydrogenium (pH)   17 Arsenic Priority element 
4 Suspended solids   18 Atrazine  
5 Biochemical oxygen demand Organic matter  19 Benzene (BTEX)*  
6 Total organic carbon   20 Chromium  
7 Faecal coliform Microbiology  21 Hexachlorbutadiene  
8 Faecal streptococcus   22 Lead  
9 Salmonellas   23 Mercury  
10 Total coliforms   24 Nickel  
11 Ammonia Anions  25 Polycyclic aromatic hydrocarbons  
12 Chlorides   26 Simazine  
13 Fluorides   27 Trichlorobenzenes  
14 Nitrates      

Source: Ocampo-Duque et al. (2006), Abbasi and Abbasi (2012a) 

Notes: *Benzene-toluene-ethylbenzene-xylenes (BTEX). Ninety-six rules were enunciated in the following order, 

three for each indicator, and three for each partial score into groups. Each rule had only one antecedent to 

facilitate the weight assignment. 

The index operates with ninety-six linguistic data rules, three for each parameter and three for 

each partial group score. Ocampo-Duque et al. (2006) used trapezoidal membership functions to 

represent the various fuzzy sets, and the rule-sets are derived from Equation 2.38. Whereas the 

final index score is achieved by Equation 2.39: 
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 Eq. 2.38 

 
 Eq. 2.39 

where: FWQI is the fuzzy-based water quality index value (between 0 and 100);  

 z is the independent variable of the fuzzy output set in each rule; and 

 a, b, c, and d are membership function parameters as summarised in Table 2.11. 

Though regarded as less accurate than the traditional numerical indices, water quality models 

based on fuzzy rules are perceived as adequate tools to represent uncertainties and inaccuracies 

in knowledge and data. The advantages brought by the simplicity, flexibility and computational 

speed of fuzzy-based models, may successively compensate for the loss in accuracy (Lermontov 

et al., 2009). Hence the choice on applicable methodologies depends on whether the index 

developer is concerned with precision, or simplicity and computational capabilities. Of which, 

the debate is biased towards the purpose of the water quality index. 

2.4.8.14 Universal water quality index – Boyacioğlu index (Turkey)  

An index that describes the appropriateness of surface water for drinking purposes was developed 

by Boyacioğlu (2007) and the model is commonly known as the universal water quality index 

(UWQI). The indexing tool utilises twelve water quality variables to describe the quality of 

drinking water and the parameters are listed in Table 2.12. 

Table 2.12: Water quality variables for universal water quality index (UWQI) 

ID 
Water quality variables   

 ID 
Water quality variables   

Description Impact Weight Description Impact Weight 
1 Arsenic 4 0.113  7 Mercury 3 0.086 
2 Biochemical oxygen demand 2 0.057  8 Nitrate - Nitrogen 3 0.086 
3 Cadmium 3 0.086  9 pondus Hydrogenium (pH) 1 0.029 
4 Cyanide 3 0.086  10 Selenium 3 0.086 
5 Dissolved oxygen 4 0.114  11 Total coliform 4 0.114 
6 Fluoride 3 0.086   12 Total phosphorus 2 0.057  

Source: Boyacioğlu (2007), Abbasi and Abbasi (2012b), Boyacioğlu and Gündoğdu (2013), Sutadian et al. (2016) 

Notes: Higher weightage was assigned to parameters related to health matters, whereas chemical parameters were 

assigned lower weighting than microbiological parameters. 

Temporary weights ranging from one to four on a basic scale of importance were assigned to the 

water quality parameters. After that, provisional weights were divided by the sum of all the initial 

impact factors to establish the final weighting coefficients. The UWQI uses the weighted sum 
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method to aggregate the twelve sub-indices, and the formula is as follows (Boyacioğlu, 2007, 

Abbasi and Abbasi, 2012b, Boyacioğlu and Gündoğdu, 2013): 

 
 Eq.  2.40 

where: WQI is the universal water quality index value; 

 wi is the weighted coefficient for the ith water parameter; 

 Ii sub-index for the ith water parameter; and 

 n total number of the ranked water parameters. 

The universal water quality index (UWQI) is based on permissible limits of relevant water quality 

standards set by the Council of European Communities and the Turkish water pollution control 

regulations. Unlike most of the existing indices which are based on particular national water 

quality standards, UWQI was developed by considering multi-national standards, thus ultimately 

extending its application boundaries. Similar to Boyacioğlu (2007) study, the purpose of this 

study includes the development of a universal water quality index suitable for use across various 

catchment areas in South Africa, which may be distinct in their characteristics. By so doing, we 

ascertain the functionality of the WQI, improve simplicity and expand the application boundaries 

of the model. 

2.4.8.15 Vaal water quality index (South Africa) 

Banda (2015) developed an index for evaluating surface waters, particularly for the Vaal Basin 

in South Africa, hence the term Vaal water quality index (Vaal WQI). The index comprises of 

fifteen critical water quality parameters as indicated in Table 2.13. 

Table 2.13: Water quality variables for Vaal WQI 

ID 
Water quality variables   

 ID 
Water quality variables   

Description Impact Weight Description Impact Weight 
1 Ammonia/Ammonium 5 0.0962  9 Manganese 5 0.0962 
2 Calcium 2 0.0385  10 Nitrate/Nitrite 5 0.0962 
3 Chloride 3 0.0577  11 Orthophosphate 4 0.0769 
4 Chlorophyll 665 1 0.0192  12 pondus Hydrogenium (pH) 5 0.0962 
5 Electrical conductivity 3 0.0577  13 Sulphate 3 0.0577 
6 Fluoride 5 0.0962  14 Total alkalinity 3 0.0577 
7 Hardness 3 0.0577  15 Turbidity 3 0.0577 
8 Magnesium 2 0.0385      

Source: Banda (2015) 

Notes: The ranking coefficients are depended on the toxic effects of the pollutant. Death due to short term exposure 

being the highest in the order of the impact is therefore ranked five. Whereas death because of long term 

exposes ranked four. Ranking three and two represents debilitating effects due to immediate exposure and 

long-term exposure, respectively—whilst a minimum score of one express the hierarchy of water quality 

variable with effects of slightest significance. 
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A ranking criterion with five levels was adopted for the Vaal WQI, whereby the maximum score 

of five being the highest order and minimum score of one expressing the ranking of variables with 

effects of the slightest significance. The rankings were assigned separately for human and 

environmental health effects and later combined to form single aggregated ranking value; thus, 

selecting the highest of both the human and environmental impact. The final weight coefficients 

were then formulated using Equation 2.41 and the overall classification of water quality is 

achieved through the weighted sum method (additive) as represented by Equation 2.42 (Banda, 

2015). 

 
 Eq. 2.41 

 
 Eq. 2.42 

where: WQI is the universal water quality index value; 

 bi is the assigned ranking of the ith water parameter (1 minimum and maximum of 5); 

 wi is the weighted coefficient for the ith water parameter (decimal value); 

 Ii sub-index for the ith water parameter; and 

 n total number of the ranked water parameters. 

The coefficients are represented as decimal numbers, and the sum of all coefficients is one, 

thereby guaranteeing that the overall index value does not exceed hundred per cent (w1+ w2 + w3 

+ …+ wn = 1 for Equations 2.41 and 2.42). 

 

The Vaal WQI is specific to the Vaal Basin, hence restrict its application boundaries. And this 

study attempts to break such barriers, through the development of a universal index that applies 

to most river catchments in South Africa. Thereby promoting a standardised way of monitoring 

and comparing water quality of various watersheds in South Africa, which eventually assist in the 

prioritisation of water resources across all the nine provinces of South Africa. 

 

The fifteen water quality indices (WQIs) discussed under Chapter Two, Section 2.4.8 are 

summarised in Annexure A: Details of reviewed water quality indices (WQIs) and Annexure B: 

Aggregation formulation of the reviewed WQIs. The summaries include application boundaries, 

water quality parameters, type of sub-indices and aggregation method used in the formulation of 

the index score. For comparison and benchmarking purposes, it is common practice that water 
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quality index values be presented and described as classes. The categories and details of each 

index rank are discussed in the following section. 

2.4.9 Water classification and index scores 

Water quality index scores can be classified in two different ways. The first approach is whereby 

the index value increases with the decrease in contamination level. This approach is referred to 

as the increasing scale indices. The second approach is where the index value decreases with the 

degree of pollution. This approach is referred to as the decreasing scale indices. Nevertheless, the 

purpose of scaling is the same; both indices reflect water quality based on pollution levels (Banda, 

2015). The assignment of water quality index values to classes of water quality is termed 

“categorisation” or “classification” and indicates an imperative but somewhat subjective process. 

The classification should be based on the best available information, expert judgment, and the 

general public’s expectations of water quality (CCME, 2001a). 

 

Typically, water quality index values are between zero and one hundred (0 to 100) and classified 

in categories ranging from class 1 to class 5. The meaning of the index values and classes depends 

on whether the model is an increasing or decreasing scale index and typical examples are included 

in Table 2.14 and Table 2.15, for increasing scale indices and decreasing scale indices 

respectively. 

Table 2.14: Typical WQI classification for increasing scale index 

Class Increasing scale water quality indices  
House, Bordalo & Carvalho WQI  CCME WQI   Universal & Vaal WQI 
Rank Index score Rank Index score  Rank Index score  

Class 1 Very good 91 to 100  Excellent 95 to 100  Excellent 95 to 100 
Class 2 Good 71 to 90  Good 80 to 94  Good 75 to 94 
Class 3 Reasonable 51 to 70  Fair 65 to 79  Fair 50 to 74 
Class 4 Polluted 26 to 50  Marginal 45 to 64  Marginal 25 to 49 
Class 5 Badly polluted 10 to 25  Poor 0 to 44  Poor 0 to 24 

Source: CCME (2001a), Bordalo et al. (2006), Boyacioğlu (2007), Carvalho et al. (2011), Banda (2015) 

Notes: House WQI: House’s water quality index (United Kingdom), Bordalo WQI: Bordalo et al water quality index 

(Iberian Peninsula: Portuguese-Spanish Border), Carvalho WQI: Carvalho et al water quality index 

(Portugal), CCME WQI: Canadian Council of Ministers of the Environment WQI (Canada), Universal WQI: 

Universal water quality index – Boyacioğlu index (Turkey) and Vaal WQI: Vaal water quality index (South 

Africa). 

A significant gap identified in most of the water quality classification scales is that not all possible 

index scores are accommodated in various WQ classification systems reviewed under this study. 

For instances, considering a classification schema by Rao et al. (2010), index score values 

between 25-26; 50-51; and 75-76 cannot be categorised, unless otherwise, the final index score is 

rounded off to a whole number, which is not the case with most of the research work investigated 



55 

 

under this chapter. Some of the water quality indices with similar challenges include Kannel et 

al. (2007), Ramakrishnaiah et al. (2009), Al Obaidy et al. (2010), Yadav et al. (2010), Khanna et 

al. (2013), Rao and Nageswararao (2013), Bhadra et al. (2014), Sharma et al. (2014), Banda 

(2015), Meher et al. (2015), AL-Sabah (2016), Sudha et al. (2016), Wanda et al. (2016), Abdel-

Satar et al. (2017), and Ewaid and Abed (2017b). 

Table 2.15: Typical WQI classification for decreasing scale index 

Class 
Decreasing scale water quality indices 
BCWQI  Rao, Vatkar & Vasanthavigar WQI  Rao et al WQI 
Rank Index score  Rank Index score   Rank Index score  

Class 1 Excellent 0 to 3  Excellent < 50  Excellent 0 to 25 
Class 2 Good 4 to 17  Good 50.1 to 100  Good 26 to 50 
Class 3 Fair 18 to 43  Poor 100.1 to 74  Bad 51 to 75 
Class 4 Borderline 44 to 59  Very poor 25 to 49  Very bad 76 to 100 
Class 5 Poor 60 to 100  Unsuitable > 300  Unfit 100 and above 

Source: Zandbergen and Hall (1998), Rao et al. (2010), Vasanthavigar et al. (2010), Rao and Nageswararao (2013), 

Vatkar et al. (2016) 

Notes: BCWQI: British Columbia water quality index (Canada), Rao WQI: Rao and Nageswararao water quality 

index (India), Vatkar WQI: Vatkar et al water quality index (India), Vasanthavigar WQI: Vasanthavigar et al 

water quality index (India) and Rao et al WQI: Rao et al water quality index (India). 

Table 2.16: Index score classification for Martínez de Bascarón WQI 

ID 
Water quality classification   
Description of rank and classification  Index score 

1 Class I – Good water quality  
91 ≤ Index ≤ 100 

 Water quality is protected with a virtual absence of threat or impairment; conditions very close to 
natural or pristine levels  

2 Class II – Acceptable water quality  
61 ≤ Index < 91 

 Water quality is usually protected with only a minor degree of threat or impairment; conditions 
rarely depart from natural or desirable levels  

3 Class III – Regular water quality  
31 ≤ Index < 61 

 Water quality is usually protected but occasionally threatened or impaired; conditions sometimes 
depart from natural or desirable levels  

4 Class IV – Bad water quality  
16 ≤ Index < 31 

 Water quality is frequently threatened or impaired; conditions often depart from natural or 
desirable levels  

5 Class V – Very bad water quality  
0 ≤ Index < 16 

 Water quality is almost always threatened or impaired; conditions usually depart from natural or 
desirable levels  

Source: Abrahão et al. (2007) 

Notes: Class 1 index values (excellent) can only be obtained if all measurements are within objectives virtually all 

of the time. 

In some instances, possible index scores fall within two categories; for example, index scores of 

25; 50; 70 and 90 in a scale of ‘very bad’ (0-25), ‘bad’ (25-50), ‘medium’ (50-70), ‘good’ (70-

90) and ‘excellent’ (90-100). Index score 25 falls within the ‘very bad’ and ‘bad’ categories, 

whereas index score 50 falls within the ‘bad’ as well as the ‘medium’ categories, and so forth. 

Practical examples of this scenario are water classification scales developed by Hamid et al. 
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(2013), Vatkar et al. (2013), Kalyani et al. (2016), Luzati and Jaupaj (2016), Guettaf et al. (2017), 

and Shah and Joshi (2017). 

 

Zhao et al. (2012), and Al-Janabi et al. (2015), Abtahi et al. (2015), Al Obaidy et al. (2015), and 

García-Ávila et al. (2018), attempted to resolve the problem by minimising the difference between 

classes to a decimal fraction. Though the problem has been minimised, the fact remains, the 

categorisation schema does not accommodate all the achievable index scores. It is then crucial 

that the use of logical linguistic descriptions like, “less than”, “equal to” and “greater than,” be 

adopted to allow the inclusion of all possible index values. Abrahão et al. (2007), Rabee et al. 

(2011), Rubio-Arias et al. (2012), and Sutadian et al. (2018), are good examples of water 

categorisation schema with appropriate mathematical functions that encompass all the possible 

index values. 

 

Water quality indices (WQIs) are essential instruments capable of minimising a significant 

volume of data and simplifies the expression of the water quality status. They are useful tools 

designed to compare different water bodies through the evaluation of spatial and temporal 

changes in water quality. Water quality index (WQI) is a single unit-less score that describes 

water quality in a simple but structured way, through the aggregation of scientific measurements 

from a list of multiple water quality variables. Since the inception of mathematically based water 

quality indices in 1965, various water quality scientists and experts have been formulating, and 

they continue to develop much more straightforward, but scientifically sound water quality 

models. Such attempts have brought more understanding in the field of water quality science, 

providing much easier, flexible, accurate and efficient water quality indices. 

 

This being that, water quality indices have become a pivotal component of water resource 

management, making them important and popular tools in water quality monitoring initiatives; 

especially in surface water resources management. Water resource monitoring provides basic, but 

yet decisive information, relevant to water authorities for detecting current water affairs and future 

trends. The use of water quality indices ultimately promotes effective water resource management 

and effective prioritisation of decisions and resources among various water management agents 

(WMAs). Hence the need for a more integrated approach in water quality monitoring. 

 

Considering all this, the current study aims to provide a significant contribution towards water 

quality monitoring in South African river catchments, through developing a simple and easily 

understandable WQI that is applicable across many, if not all the river catchments in South Africa. 

A universal water quality index that is not confined to specific regional demographics. Though 
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not fully comprehensive, the study is a step towards a more integrated water resource management 

approach, which consequently creates a more rational water monitoring system. 

 

Water quality indices can be modelled into tools for assessing contaminants in a water resource, 

freshwater in particular. Such tools are called water quality variability models (WQVMs), and 

they are discussed in the subsequent section. 

2.5 Water quality variability models (WQVMs) 

A Water Quality Variability Model (WQVM), is a simplified mathematical tool that converts a 

range of multidimensional water quality data into information that is more understandable and 

practically applicable. It provides a single figure or grading that describes the overall water quality 

based on water quality parameters. (Kankal et al., 2012, Boyacioğlu, 2007, Banda, 2015). There 

is a variety in the type and complexity of WQVMs, and they are generally categorised into three 

(3) groups based on their uniqueness and purpose. That is; empirical, mechanistic and computer 

simulation models and these categories outline the theoretical origins and format of the water 

quality variability model (Riecken, 1995, Banda, 2015). 

 

The models discussed in this review are generally mathematical models with a set of equations 

that describe input parameters and variables to quantified outputs, based on specific assumptions 

(Riecken, 1995, Banda, 2015). The following sections contain definitions and overview of the 

various types of models. 

2.6.1 Types of water quality variability models 

2.6.1.1 Empirical and mechanistic models 

Empirical models are established primarily from analysis of data rather than theoretical principles. 

They are based more on fitting a set of data, whereas mechanistic models are intended to be a 

mathematical description of the theoretical tenets. It should be noted that better functional models 

usually have both empirical and mechanistic features (Riecken, 1995). A practical example of a 

mechanistic model is AQUATOX (Park and Clough, 2012). The model is considered as a general 

ecological risk assessment tool that presents the combined environmental fate and effects of 

conventional pollutants, such as sediments and toxic chemicals in the aquatic ecosystem (Park 

and Clough, 2012, Banda, 2015). 

 

In South Africa, Water Quality 2000 Model (WQ2000) was developed to assess the catchment 

salinity for naturalised and human-altered conditions. It is an interface that links the user to an 

extensive water resource database. The database contains seventy (70) year monthly time series 
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rainfall data, naturalised infiltration and urban catchment runoff and calibrated water quality-total 

dissolved solids (WQT) hydro-salinity model parameter values (Herold and le Roux, 2004, 

Banda, 2015). 

2.6.1.2 Simulation and optimisation models 

Simulation models are imitation tools designed to describe the function of a system. Optimisation 

models are developed to find the most suitable solution in some sense. Thus, the best fit, whether 

of minimum or maximum effect, is often subject to constraints such as cost and environmental 

quality. Considering the computational requirements, many of the simulation models are 

computer-based programs that provide an interface between the user and the model. The nature 

and degree of complexity of the model depend on the developer. Some models are user friendly, 

and some are sophisticated knowledge programs. 

 

A practical example of the simulation and optimisation model being the EUTROMOD (lake 

eutrophication) model which is reasonably simple to use (Hession et al., 2001). Whilst Branched 

Lagrangian Transport Model (BLTM) (stream transport), requires programming background to 

operate, especially when inputting data (Riecken, 1995, Banda, 2015). 

2.6.1.3 Static and dynamic models 

Static, also known as the steady-state models, describe behaviour that is constant over time (time-

independent models). At the same time, dynamic models entail action that varies with time (time-

dependent models) (Riecken, 1995). The Cornell mixing zone expert system (CORMIX) model 

is a practical example of the steady-state model (Jirka et al., 1996), designed for analysing, 

predicting of aqueous toxic or conventional pollutant discharge into the water bodies (Jirka et al., 

1996, Banda, 2015). 

2.6.1.4 Lumped and distributed parameter models 

Lumped parameter models are developed based on the assumption that there are uniform 

conditions throughout the system; hence they are zero-dimensional in space. Conversely so, 

distributed-parameter models describe techniques with variable conditions in one or more spatial 

dimension. The simplest model is a one-dimensional model that simulate either the vertical or 

longitudinal behaviour of a water body. Two-dimensional models simulate longitudinal and either 

transverse behaviour or depth of a water body. The most complex models being the three-

dimensional models, which attempt to simulate all the three types of behaviours (Riecken, 1995, 

Banda, 2015). Water Quality Analysis Simulation Program (WASP) is an example of a model 

which can be applied in one, two and three dimensions. WASP is a mass balance framework for 

modelling contaminant fate and transport in surface waters (Ambrose and Wool, 2009). 
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An example of a comprehensive and versatile one-dimensional stream water quality model is the 

Enhanced Stream Water Quality Model (QUAL2). It is a water planning tool designed to 

determine total maximum daily loads (TMDLs), and identify the magnitude and quality 

characteristics of non-point pollution sources (Birgand, 2004, Hadgu et al., 2014, Banda, 2015). 

2.6.1.5 Deterministic and stochastic models 

Models that use expected values, with no real data for all the parameters and variables and output 

predictions that are also expected values are called deterministic models. Whilst stochastic models 

incorporate variability, and possibly an error in probability density functions for selected 

parameters, resulting in a probability density function for the prediction (Riecken, 1995, Banda, 

2015). 

2.6.2 Water quality variability models (WQVMs) application 

The extent to which a model can be applied relies on the purpose of the modelling exercise, data 

requirements, suitability and computational capability of the chosen model, hardware 

requirements and the ability of the user to interpret the data. Nevertheless, WQVMs are used for 

water quality variability modelling, which includes determining and analysing the environmental 

impact of existing and potential loadings. Furthermore, they are used to understand the complex 

relationships among the biotic and abiotic components of water systems (Riecken, 1995, Banda, 

2015). 

 

With an attempt to extend the application boundaries of water quality variability models and 

keeping to the study objectives, a more straightforward but effective model would be most 

appropriate. That is; self-oriented, requiring fewer input data, with minimum computational 

memory requirements and having output results that are easily understood. The choice of the 

model type usually depends on the data available, and the objective to be achieved. 

2.6 Summary of the review 

Forty water quality indices (WQIs) were reviewed, and only fifteen significant WQIs were 

discussed in detail under Chapter Two, essentially to establish the existing knowledge and provide 

background information to the current study. Consequently, the review was guidance towards 

selecting the most appropriate research methods and ensuring that objectives set for the research 

study are attained, which becomes a logical basis (rationale) for evaluating more existing WQIs. 

Hence the purpose of Chapter Two, in particular, was to provide further information on existing 

WQIs and enables the researcher to anticipate the most appropriate methods. This chapter also 

provides a theoretical framework to justify the outcome of the study and substantiate the choices 
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made. There are numerous water quality indices developed since the 19th century, and it is 

extensive work and beyond reach to attempt discussing all of them under this review. Therefore, 

only forty WQIs were investigated, and supplementary information is attached at the back of the 

thesis as Annexures. 

 

The main objective of WQIs is to convert multiple parameter data into information that is 

understandable by both technical and non-technical personnel. The ability of WQIs to synthesis 

complex scientific data into simple and easily understood formats makes them the most 

fundamental and indispensable elements of water quality monitoring agenda. Hence, they are 

universally acknowledged as “lifeline” for water quality studies, and their development continues 

as an on-going affair. Various methods and procedures are considered when developing water 

quality indices, but the traditionally applied approach involves, (i) selection of the significant 

water quality parameters; (ii) formation of sub-indices; (iii) establishing relative parameters 

weights; (iv) aggregation of the sub-indices; and (v) assigning index scores to a water 

classification schema. 

 

Each step in the development of water quality indices has alternative methods to consider; it is 

then critically important to select the most appropriate of each alternative. Despite having 

scientific knowhow of water quality models, WQIs developers should apply due diligence, avoid 

subjective judgements and biasness in the process of developing water quality indices. Otherwise, 

the water quality index will inherit such problems and be deemed dysfunctional. Hence, proper 

design and formation of water quality indices are then a pivotal step in assessing our water 

resources and in cognisance of such, this study endeavours to develop a water quality monitoring 

tool that applies to distinct catchments in South Africa. This tool should analyse and integrate the 

significance of physical and chemical constituents of surface water and be able to present them 

in a simple, but yet technically justifiable method. 

 

Typically, WQIs are not designed for broad application, but they are customarily developed to 

accommodate specific water quality parameter, only those regarded as the most significant water 

quality variables. Therefore, WQIs cannot evaluate the quality of water for all the applications; 

neither can they outline all the water quality hazards, nor can they deliver a complete and 

comprehensive analysis of water quality. Instead, they can only provide a quick holistic guide 

necessary to evaluate water quality trends. However, the most challenging aspect is that water 

quality indices are developed for a particular region and source-specific; there is no single water 

quality index that has been globally accepted. Which then, perhaps becomes the ultimate goal, to 

explore and delineate the possibilities of breaking such limitations, and witness the birth of a 

robust water quality index that can be applied across various watersheds. 



61 

 

CHAPTER 3 

3. METHODOLOGY 

3.1 Overview 

Chapter Three outlines the methods and procedures applied to accomplish the objectives of the 

study. The discussion and synopsis of this chapter follow the specific goals of the research, as 

discussed in Chapter One. The discussion herein Chapter Three focuses on research data, 

parameter selection, universal water quality index (UWQI) model, artificial neural network 

(ANN) model, surrogate WQI model, index categorisation schema, water quality variability 

model (WQVM), constraints and assumptions of the study. Furthermore, the justification of the 

techniques used to develop the proposed water quality monitoring tools are presented under this 

chapter. Given the practical nature of this study, a comprehensive explanation of the 

methodologies applied might not be feasible in this chapter. Henceforth, chapter three provides 

an overview of the methods used, whilst an in-depth presentation is being accorded in Chapter 

Five of the thesis. 

 

The study involves the development of a universal water quality index (UWQI) which computes 

and reports on the degree of pollution and substantiate the healthiness of water resources in 

relation to individual parameter concentrations. The UWQI model is based on the conventional 

method of developing WQIs. The computation process involves the use of weighted sum 

(additive) method to aggregate the compound influence of thirteen preselected water quality 

variables, with unequally weighted coefficients and sub-indices comprising of sixty-two sub-

index linear functions. The model provides a single-digit score that can be compared and assigned 

to a specific class describing the quality of water. The WQI score is non-dimensional, easy to 

comprehend and most importantly, it is scientifically justifiable. 

 

In an attempt to answer the research question, the study scientifically demonstrated the application 

of artificial neural networks (ANNs). The correlation between the results of the UWQI and that 

of ANN model validated the use of ANNs to analyse and monitor water quality status for South 

African river catchments. The artificial neural network (ANN) model utilises the same thirteen 

water quality variables from UWQI model as input descriptors. Further to this, the ANN model 

contains nineteen neuro-nodes which transforms the water quality variables and aggregates them 

into a single non-dimensional index rating. The ANN model consists of multiple layers presented 

as (i) the input layer responsible for receiving external datasets, (ii) the output layer that produces 

the ultimate result, and (ii) the hidden layers (zero layers) located in-between the input and out 

layer. The methods used in this study are represented in Figure 3.1. 
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Figure 3.1: Flow diagram illustrating the research methods applied in the development of the 

water quality indices and outcomes achieved 

Source: Authors diagram produced for the current study. 

Notes: The flow diagram summaries the processes and techniques adopted in the development of the universal water 

quality index (UWQI). Although the Umgeni Water Board (UWB) has more water quality monitoring 

stations, only six water quality monitoring stations are considered in the development of the UWQI model. 

With an effort to provide a quick water quality evaluation, especially in the absence of a full set 

of parameters, the study also developed a surrogate water quality index model which functions 
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with only four water quality variables selected using statistical analysis. The four parameters are 

chlorophyll-a (Chl-a), electrical conductivity (EC), pondus Hydrogenium (pH) and turbidity 

(Turb). The model is based on a mathematical function with fixed unequal coefficients relative to 

the influence of each of the four selected parameters. The output index value is similar and 

comparable to that of UWQI and ANN models. For comparison and benchmarking purposes, the 

index scores from all the three WQI models are classified using a standard categorisation schema 

with five classes distinguished by mathematical functions with logical linguistic descriptors used 

to compare WQI scores and rank them accordingly. 

 

Although the study attempts to provide water quality tools that are applicable across all river 

catchments in South Africa, it is beyond reach and improbable to consider data from all the Water 

Service Authorities (WSAs) in South Africa. Therefore, a considerable number of catchments 

have been considered for testing the functionality of the models. The selection of these catchments 

does not devalue the objectives of the study; instead, it marks the first step towards justifying that 

the developed models work with most drainage regions in South Africa. Full details about the 

research data and study area are discussed in the following section. 

3.2 Research data and study area 

Water quality data from Umgeni Water Board (UWB) was used to achieve specific objectives of 

the current study. The study utilised 416 samples tested monthly for a period extending to four 

years spanning from 2014 to July 2018. All water quality variables were sampled following 

standard methods prescribed by the Department of Water and Sanitation (DWS), and further 

analysed according to international standards in an ISO 9001 accredited laboratory owned and 

operated by UWB (Namugize et al., 2018). The research dataset from UWB satisfactorily 

provided all the required thirteen water quality variables. These are, ammonia (NH3), calcium 

(Ca), chloride (Cl), chlorophyll-a (Chl-a), electrical conductivity (EC), fluoride (F), hardness 

(CaCO3), magnesium (Mg), manganese (Mn), nitrate (NO3), pondus Hydrogenium (pH), sulphate 

(SO4) and turbidity (Turb). 

 

The study observed some inconsistency in the frequency of sampling, with a more significant 

effect on calcium (Ca), fluoride (F), hardness (CaCO3) and magnesium (Mg); some variables were 

tested on varying intervals of weekly, monthly and quarterly basis. Where possible, estimation of 

missing data was done using interpolation, with a back-and-forward filling of the data gaps. 

Approximation of the missing data in-between measured intervals was achieved by linear 

interpolation using the available last set of measurements before and after the data gaps. Whilst 

missing data at the end or beginning of the period were back or forward filled (Schullehner et al., 

2017). 
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Water quality data provided by Umgeni Water Board is for six sampling stations which fall under 

the jurisdiction of four different catchment areas. That is, three stations situated in Umgeni River 

catchment (U20) and located at Henley, Inyanda and Midmar Dams respectively; one station at 

Hazelmere Dam located within Umdloti River catchment (U30); one station at Nungwane Dam 

under Nungwane River catchment (U70); and lastly one station at Minto Dam found in 

Minto/Umuziwezinto River catchment (U80). 

 

Testing the model with data from these four river catchments support the objective of establishing 

a universal water quality index (UWQI) applicable to the greater part of the country, if not the 

whole of South Africa. Over and above the availability of data from UWB, the economic 

significance of KwaZulu-Natal Province (Shoko, 2014, Hughes et al., 2018), the distinctiveness 

of its inter-basin arrangements, the scope of the transfer schemes involved and extensive water 

demand (Umgeni Water, 2018, 2019a, 2019b). All these attributes uniquely encouraged the 

choice of the study area, which falls under Pongola-Mtamvuna water management area (WMA) 

(Republic of South Africa, 2012, Chiluwe, 2014). The project data was adequate to examine the 

model and complement the objective of developing a universally acceptable water quality model. 

3.3 Water quality index (WQI) 

There are various techniques applied when establishing water quality indices (WQIs), and these 

are usually governed by the degree of accuracy required and application boundaries (Sutadian et 

al., 2016). Nonetheless, the current study adopted only three methods in the development of three 

different, but interlinked WQI models. The first model is based on conventional techniques, the 

second model uses artificial intelligence (AI) in the form of artificial neural networks (ANNs), 

and lastly, as a proxy to the unbridged UWQI, the surrogate water quality index is based on 

statistical techniques. The first two models use thirteen water quality parameters, whereas the 

proxy model uses only four variables. Developing various WQI models presented a platform to 

test each model against similar functioning tools and advocated the readiness of each model. The 

methods used to create the three WQI models are discussed in the following subsections and 

further detailed in Chapter Five. 

3.3.1 UWQI using the conventional method 

With the endeavour to accomplish objective one of the study, UWQI was formulated using the 

conventional method of establishing water quality indices. And such a technique involved four 

common steps, which are (1) selection of water quality variables, (2) setting relative weightage 

coefficients (3) formation of sub-index rating curves and sub-index functions, and (4) deriving of 
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the appropriate aggregation or indexing model (Abbasi and Abbasi, 2012b, Fu and Wang, 2012, 

Walsh and Wheeler, 2012, Tyagi et al., 2013, Poonam et al., 2015, Paun et al., 2016).  

 

The methods employed for the development of the UWQI are selected based on a couple of 

reasons. Firstly, they eliminate individual biasness through the incorporation of objective and 

subjective opinion from water quality scientists through appraisal questionnaires. Secondly, 

comparing to other available techniques, the chosen methods are both practical, convenient and 

easy to implement in electing variables and generating weightage coefficients (Sutadian et al., 

2018). Lastly, the methods are proven and have been performed in WQI studies that include, 

Horton (1965), Brown et al. (1970), Brown et al. (1973), SRDD (1976), Ross (1977), House 

(1986, 1989, 1990), Dinius (1987), Smith (1987, 1990), Tyson and House (1989), Nagels et al. 

(2001), Kumar and Alappat (2009), and Almeida et al. (2012). 

3.3.1.1 Selection of water quality variables 

These steps and procedures were performed cautiously with cognisance of the fact that the model 

should widen its application boundaries and target to become a nationally accepted water quality 

monitoring tool. Reasoning from this fact, a fixed set of parameters were established using expert 

opinion. The advantage of a fixed set of variables is that the model can be applied in various 

catchments without the possibility of altering the structure and functionality of the model 

(Sutadian et al., 2016). Thereby permitting stakeholders to fairly compare the water quality of 

different sites and develop a more informed national prioritisation schedule without prejudice. 

Moreover, expert opinion has the advantage of promoting the acceptability of the model; in the 

sense that, most of the experts engaged are also the targeted end-users of the model. The idea of 

being involved in the process of developing the UWQI might facilitate acceptance through a sense 

of ownership. 

 

Nevertheless, this alone does not warrant the usefulness of the model; the author exercised 

enormous care and great attention to ensure that the most significant variables are incorporated in 

the UWQI. Of great importance, the author had to optimise the ideal number of parameters 

necessary to provide a meaningful water quality index value. 

 

Following the Rand Corporation’s Delphi Technique, a panel of thirty water specialists from 

government parastatals, private sector and academia were established. Delphi Questionnaires 

were circulated to the participants and were asked to consider twenty-one water quality 

parameters for their possible inclusion in the UWQI. The panellists were instructed to designate 

each variable as: “Include” and “Exclude” and further assign a relative significance rating against 

each variable elected as “Include.” The rating scale ranged from one to five, whereby “scale 1” 



66 

 

denoted the uppermost significance and “scale 5” represented a comparatively low significance. 

In addition to the prescribed twenty-one parameters, the experts were allowed to add at most five 

more variables if desired. A total of twenty-one questionnaires were returned out of the thirty 

questionnaires circulated. The Rand Corporation’s Delphi Technique is described in detail by 

Horton (1965), Brown et al. (1970), Linstone and Turoff (1975, 2002) and applied in several 

studies which include Kumar and Alappat (2009), Nagels et al. (2001), Almeida et al. (2012). 

 

Complementary to that, existing literature on WQIs was used to select the most significantly used 

water quality variables. thirty-seven studies were considered, and each variable was designated 

as “Include” if it corresponded to the twenty-one parameters considered for the Delphi 

Questionnaires; else, it was designated as “Not Included.” Furthermore, the formerly assigned 

significance rating was adopted as the relative significance rating for each parameter that was 

“Included” in the study in question. The rating was based on a scale ranging from one to five; 

with “scale 1” representing the lowest significance and “scale 5” for relatively high importance. 

If a different significance rating scale was used in the existing studies, the original rating values 

were equivalently transformed to match the preferred rating scale. 

 

Finally, a holistic ranking order was derived from a combined effect of the two methods, as 

mentioned earlier. Upon which, rejection rationale was employed to eliminate redundant variables 

which are not commonly monitored across South African river catchments (Sutadian et al., 2018). 

Accordingly, the thirteen most appropriate variables consider for inclusion in the UWQI are, 

ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), electrical conductivity (EC), 

fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate (NO3), pondus 

Hydrogenium (pH), sulphate (SO4) and turbidity (Turb). Methods used for deducing the 

weightage coefficients are discussed in the subsequent section. 

3.3.1.2 Establishing relative weightage coefficients 

Considering that in this current study, water quality parameters are viewed to have different 

influence towards the overall classification of water, some variables are considered more 

significant than the others; therefore, weights were established to reflect the diversity of each 

parameter appropriately. The comparative scale used is biased towards the level of influence and 

significance towards the overall index value (Sharma et al., 2014, Sutadian et al., 2016). Since 

some parameters are regarded as less important than the others, a standard scale of influence, 

ranging from one (lowly rated) to five (highly rated) was adopted for the current study. Similar 

to the selection of parameters, assigning of weights was achieved through participatory based 

Delphi method and extraction from existing literature on water quality studies. The weight ratings 

from the two procedures were merged to portray one holistic rating for each variable. 
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The relative weightage coefficients are directly proportional to the weight ratings, and they were 

established by dividing the parameter weight rating value by the sum of all weight ratings. The 

index coefficients are represented as a decimal number with a sum equal to one. In principle, this 

theory governs the model from computing index values above one hundred per cent. Otherwise, 

the aggregation process will be compromised and jeopardise the scientific steadiness of the model 

(Banda, 2015). Upon this, the sub-index rating curves and sub-index functions were formulated 

as discussed in the following Subsection. 

3.3.1.3 Formation of sub-index rating curves and sub-index functions 

Given the fact that model input variables are assessed using different units of measure, sub-indices 

were employed to transform the measurement units into a common unitless scale. Moreover, the 

indexing model can only aggregate parameters with a standard scale, which became more 

necessary to harmonise the parameter values using a standardised non-dimensional scale. Using 

the permissible water quality parameter concentrations prescribe by DWAF (1996a, 1996b, 

1996c), fixed key points of the rating curves were established and converged with straight-line 

graphs. After that, the linear equations associated with the straight-line graphs were collectively 

transformed into linear sub-index functions. The advantage of this technique is that sub-index 

functions can interpolate index values laying between water classification categories using the 

linear regression method. The final sub-index curves and sub-index functions are included in 

Chapter Five. 

3.3.1.4 Deriving of the appropriate indexing model 

Various aggregation methods are documented in the existing literature, and amongst them, there 

is no one distinctive method regarded as the supreme and favourable method. Each aggregation 

method has considerable problems, and some are even unavoidable. Bearing that in mind, the 

author tried and tested three different aggregation techniques. These are (i) weighted sum 

(additive) method, (ii) modified weighted sum method, and (iii) weighted multiplicative method. 

The three aggregation equations are represented in Chapter Five. Using the selected thirteen water 

quality variables, parameter weightage coefficients and sub-indices; the modified weighted sum 

method demonstrated better predictive capabilities. Henceforth, the technique has been 

considered as the most appropriate and relevant method to develop the UWQI targeted for 

assessing water quality within South African river catchments. Upon conducting scenario-based 

analysis, the modified weighted sum equation has been further improved to align with local 

conditions and specific requirements of the UWQI. The final model responded steadily to the 

variation in parameter values and managed to indicate spatial and temporal changes in water 

quality for the four catchment areas considered for the study. 
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Hypothetically, this advocates the readiness of the UWQI model and deem the study a success. 

Such a milestone fulfils the aim of the research, and more importantly, it provides a tool that can 

be adopted across the country and solve challenges being experienced by water quality 

professionals. The structure of the universal water quality index model is represented as Figure 

3.2 below. 

 

Figure 3.2: Design diagram indicating the framework and concept considered for the 

establishment of the universal water quality index (UWQI) model 

Source: Authors diagram documented in Banda and Kumarasamy (2020c). 

Notes: A model framework showing the link between following: (i) thirteen water quality input variables x1, x2, x3, 

…, x13; (ii) corresponding parameter weights w1 to w13, (iii) parameter sub-index functions f(x1) to f(x13), 

and (iv) the aggregation function å f(xi)wi applied to sum the weighted influence of the input variables. 

With success, the whole of Section 3.3.1 satisfies the requirements of objectives one and four of 

the study; in particular, Part 3.3.1.1 to Part 3.3.1.3 addresses objective four, whereas Part 3.3.1.4 

fulfils the specifics of objective one. The methods used to achieve objective two are discussed in 

the forthcoming section. 

3.3.2 Artificial neural network (ANN) model 

Corresponding to the universal water quality index (UWQI), the study designed an artificial 

neural network (ANN) model based on a similar set of input variables as considered for the 

UWQI. Accordingly, the thirteen input descriptors are analysed and processed by predefined 

multidimensional parameter relationships in the form of mathematical coding. The mechanism 

employed is identical to the pattern and functionality of the natural human brains (Singh et al., 

2009, Khalil et al., 2011, Huo et al., 2013, Seo et al., 2016, Qaderi and Babanezhad, 2017, Salari 
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et al., 2018, Bansal and Ganesan, 2019, Isiyaka et al., 2019, Kadam et al., 2019, 

Ramasubramanian and Singh, 2019, Soro et al., 2020). Whereby, layers of neurons are 

interconnected in a web-like structure and communicate from one layer to the other depending on 

the data received and the desired output. Similarly, the ANN model consists of nineteen neuro-

nodes and seventy synapses commonly known as the “channels,” which together transforms 

multiple water quality parameters and combine them into one non-dimensional digit score that 

describes the quality of water resources. The basic structure of the ANN model is represented as 

Figure 3.3. 

Figure 3.3: Basic structure considered for the development of the artificial neural network 

(ANN) model 

Source: Authors diagram showing the basic structure of an artificial neural network (ANN). The graphical model was 

adopted from the following literature: Singh et al. (2009), Huo et al. (2013), Cordoba et al. (2014), Sarkar 

and Pandey (2015), Seo et al. (2016), Yilma et al. (2018), García-Alba et al. (2019), Haldorai et al. (2019), 

and Kim et al. (2019b). 

Notes: The input layer represents the thirteen water quality variables (1, 2, 3, …, 13). Depending on the problem 

being investigated; the number of hidden or “zero” layers may vary and can be more than one, but for 

presentation purposes, they are combined and included as one layer in Figure 3.3 above. The output layer 

contains the final water quality index score (w). 

The developed ANN model comprises of several layers that are connected by links with varying 

weights. These layers are structured as, (1) the input layer that functions to receive external data, 

(2) hidden or “zero” layers which attempt to analyse the input information and filter to the relevant

neurons, and lastly (3) the output layer that integrate data and produce a consolidated output

report. The hidden layers are located in-between the input and the output layers (Sarkar and

Pandey, 2015). ANN models are regarded as “black-box models,” as a consequence of providing
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minimal insight towards the contribution of each variable towards the final index value (Kim and 

Seo, 2015, Salari et al., 2018). However, neural networks are undoubtedly powerful and 

reasonably simple non-linear statistical models that enhance artificial intelligence (AI) and solve 

improbable problems. Hence they are popularly known as “universal function approximators” 

(Kim and Seo, 2015, Bansal and Ganesan, 2019, Kim et al., 2019b, Li and Liu, 2019, 

Ramasubramanian and Singh, 2019, Tiyasha et al., 2020). 

 

The learning process of the neural network was performed using backpropagation algorithm 

(Isiyaka et al., 2019, Rajaee et al., 2020). And research data samples were randomly portioned to 

achieve training (70 %), testing (15 %) and validation (15 %) data subsets (Lucio et al., 2007, 

Shanthi et al., 2009, Banerjee et al., 2011, Safavi and Malek Ahmadi, 2015, Qaderi and 

Babanezhad, 2017, Gebler et al., 2018, Ahamad et al., 2019, García-Alba et al., 2019, Kadam et 

al., 2019, Rajaee et al., 2020). Data splitting is performed to ensure that the model utilises different 

dataset per each learning process. Training data was applied during pattern recognition, selection 

of neuron activation functions and optimisation of hidden layer neurons, channel weights together 

with bias constants. Whereas the generalisation ability of the model was assessed using the testing 

data subset, whilst validation data evaluated the predictive performance of the neural network 

(Isiyaka et al., 2019). The learning process was controlled and terminated using predefined 

stopping guidelines implemented to avoid over-fitting (Singh et al., 2009, Khalil et al., 2011, 

Sarkar and Pandey, 2015, Qaderi and Babanezhad, 2017). 

 

Parameter measurement units were standardised, forming a standard non-dimensional scale 

ranging from zero to one. This approach eliminates the effects of varying measurement scales and 

prohibits particular parameters from erratically dominating the prediction process (Gazzaz et al., 

2012, Huo et al., 2013, Rajaee et al., 2020). Quantitative statistics which includes correlation 

coefficient (R), coefficient of determination (R2) and root mean squared error (RMSE) were 

measured to evaluate the predictive performance of the neural network. Global and pointwise 

sensitivity analysis examined further the appropriateness of the proposed ANN model. 

 

For time preservative and cost-effective measure, the ANN model was developed using TIBCO 

Statistica Automated Neural Networks (SANN) software (TIBCO Software Inc., 2020). This 

program provides an efficient way of configuring the architecture of the artificial neural networks 

(ANNs) and optimising the number of neurons required for the model to function appropriately 

without compromise (Kim et al., 2019b). The development of this ANN model conferred the 

successful implementation of objective two and considered an essential milestone of the study 
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The development of this ANN model conferred the successful implementation of objective two 

and considered an essential milestone of the study. Besides the UWQI and ANN models, the study 

also developed a surrogate water quality index model that works as a proxy WQI in the absence 

of a full dataset. The formation of the proxy WQI is an attempt to achieve objective three of the 

research. 

3.3.3 Surrogate water quality index model 

For this particular model, water quality parameters were defined using a two-stage screening 

process. The procedure included the following (i) Delphi method conducted for the universal 

water quality index (UWQI), where twenty-one parameters were deduced to thirteen variables, 

then (ii) further reduced the parameters to four proxy variables using statistical assessment. Figure 

3.4 illustrates the model architecture applied in the development of the surrogate water quality 

index model. During parameter selection procedure, principal component analysis (PCA) was 

used for pattern recognition and explaining the structure of the underlying dataset (Wold et al., 

1987, Bouza-Deaño et al., 2008). It aided in identifying intercorrelated parameters and provided 

crucial statistical information on the most significant parameters that are regarded as proxy 

variables. 

 

Figure 3.4: Model architecture applied in the development of the surrogate water quality index 

model using four proxy water quality variables 

Source: Authors diagram documented in Banda and Kumarasamy (2020b). 

Notes: A model outline displaying the structure of the surrogate WQI with four input variables x1, x2, x3 and x4; their 

corresponding coefficients b1 to b4, intercept term b0, error term for the regression model symbolised as ℇ, 

and the regression model function f(x) = b0 + b1x1 + b2x2 +…+ b4x4 + ℇ as the proxy or surrogate WQI. 

Further to this, hierarchical cluster analysis (HCA) was performed to provide instinctive similarity 

relationships that exist among water quality parameters and in the process, HCA yielded a 
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dendrogram (tree diagram) that illustrated the cluster arrangement and parameter proximity to 

one another (Zhao et al., 2012, Khalil et al., 2014). After that, multivariate regression analysis 

was adopted to estimate the relationship between WQI (dependent variable) and independent 

variables (predictors/covariates) which are the final four proxy parameters. The resulting 

regression equation and coefficients represent the surrogate WQI model. 

 

The advantage of this method is that optimum selected parameters can still describe water quality 

in the absence of the entire dataset (Zhao et al., 2012, Karamizadeh et al., 2013). It provides an 

essential quick-guide identical to the outcome of the high-fidelity model (UWQI) and conforms 

to the requirements of objective three. All the statistical computations were performed using IBM 

SPSS Statistics Version 24 for Macintosh Operating System (macOS) (SPSS Inc., 2016). 

3.4 Index categorisation schema 

In the interest of simplifying the interpretation of water quality index (WQI) values, mostly to 

accommodate non-technical individuals, an index categorisation schema was established. The 

classification mechanism is based on an increasing scale index, and the advantage of this system 

is that it is identical to a typical percentage hierarchy (Banda, 2015, Banda and Kumarasamy, 

2020c); therefore, the public can easily relate to its function and interpretation. Both models 

applicable to this study yields WQI values between zero and a hundred. 

 

Accordingly, the WQI scores are categorised using classes ranging from one to five. With “Class 

1” representing water of the highest degree of purity with a possible maximum score of hundred 

and vice versa, “Class 5” denotes water quality of the lowest degree with index scores nearing or 

equal to zero. With the aim of closing gaps identified in various existing classification scales 

(Banda and Kumarasamy, 2020e, Banda and Kumarasamy, 2020c), appropriate mathematical 

functions with logical linguistic descriptors which includes but not limited to, “greater than,” “less 

than,” “equal to,” are used to appraise WQI scores and respectively assigned them to the 

corresponding category (Banda and Kumarasamy, 2020b, 2020c). 

 

Studies such as Abrahão et al. (2007), Rabee et al. (2011), Rubio-Arias et al. (2012), and Sutadian 

et al. (2018), have incorporated similar approach, which authenticates the application of the 

method used for this particular study. Beyond doubt, the developed schema can accommodate all 

possible index scores regardless of the decimal value. And such proficiency essentially assists in 

closing the flaws identified in the existing literature and provides insight into the fundamentals of 

water quality index development. Figure 3.5 illustrates the principle and design mechanism 

adopted in formulating the classification tool. 
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Figure 3.5: Water classification system containing subsystems and action blocks that are 

executed using logical linguistic descriptors 

Source: Authors diagram derived from the classification system documented in Banda and Kumarasamy (2020b), and 

Banda and Kumarasamy (2020c). The schematic diagram represents a modified version of the water quality 

index (WQI) categorisation schema suggested by Banda (2015). 

Notes: The highest classification rank representing class 1 index values (excellent) can only be obtained if all 

measurements are within objectives virtually all the time. The water quality categories assume the “green-

yellow-red” colour gradient, corresponding to the relevant water quality classes from excellent (class 1) to 

worse (class 5). 

The establishment of the categorisation schema corresponds with objective six of the study. It 

promotes the achievement of objective seven which involves the transformation of the suggested 

water quality indices (WQIs) into a water quality variability model (WQVM) that can produce 

water quality classification grading based on a specific water categorisation schema. 

3.5 Microsoft Excel-based water quality variability model 

The water quality variability model (WQVM) developed under this study is a combination of 

three diversified water quality indices (WQIs); which are all founded on distinctive indexing 

techniques. With full details being provided elsewhere in the study, the three indices are; (1) 

universal water quality index (UWQI), (2) artificial neural network (ANN) model, and (3) 

surrogate water quality index (WQI). In practice, most of the WQIs are presented as mathematical 
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equations that are somewhat difficult to apply in the real world (Banda, 2015). To overcome such 

trends, Microsoft Excel 2016 Version 16.43 was used to combine the three WQI models into a 

practical tool. 

 

With the aid of Excel, multiple logistical functions were used to explore water quality data and 

provide a status quo based on assigned analytical functions, which are coded to handle specific 

data sets and perform exclusive computational tasks. The choice of Excel is motivated by its 

computational abilities, usability and functionality. More so, Excel is a commonplace that is 

straightforward, convenient and user-friendly (Varma and Khan, 2014, Avdic, 2018). Being a 

familiar interface, Excel has the potential to elevate the degree of acceptance more than building 

entirely new software. The algorithms of the WQVM are clustered and bundled into an array of 

hidden calculation spreadsheets, with each sheet assigned and conforming to a particular WQI. 

Concealing of the calculation sheets minimise the risk of tempering and eliminate the challenge 

of navigating between spreadsheets, especially in light of non-technical end-users. Figure 3.6 

explains the structure of the proposed WQVM. 

 

Figure 3.6: Model diagram illustrating the design principle used to combine the three water 

quality indices into a water quality variability model (WQVM) 

Source: Authors diagram produced for the current study. 

Notes: The model uses a maximum of thirteen predefined parameters, minimum of four proxy variables and three 

different water quality indices defined as (1) universal water quality index (UWQI) model å f(xi)wi with 

thirteen unequal weights, (2) artificial neural network (ANN) model that uses seventy predetermined channel 
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weight coefficients and six bias constants, and (3) surrogate or proxy WQI model in the form of f(x) = b0 + 

b1x1 + b2x2 +…+ b4x4 + ℇ. The proxy WQI operates with four variables with fixed regression constants. 

The WQVM is qualified to handle one thousand samples, which is approximately twenty years 

of weekly measured data. Regardless of the model preference, inputting of explanatory variables 

is done once for all the three WQIs. Both UWQI and ANN models require thirteen variables to 

produce a more accurate and reliable index score, whereas, the surrogate WQI requires only four 

proxy variables to function. The overall WQI grading is displayed in the numeric, graphical and 

descriptive formats. The numeric digit score is given as a ratio equivalent to the percentage, and 

the graphical presentation indicates the highs and lows of the calculated WQI. On the other hand, 

the descriptive format extracts information from the categorisation schema that consist of five 

classes compatible with the degree of cleanness. The five classes are; Class 1 (good quality), Class 

2 (acceptable quality), Class 3 (regular quality), Class 4 (bad quality), and lastly Class 5 (very 

bad quality). 

 

The successful implementation of WQVM is a significant step, not only for the author but the 

national community at large. The model allows South Africans the opportunity to work with a 

robust and steady toolkit, that is seemingly fast and reliable in providing water quality results. 

Needless to mention that, WQVM brings about a rationalised “yardstick” for water resource 

monitoring, thereby encouraging fairness in national prioritisation programs (Banda, 2015). The 

establishment of the WQVM is an important milestone that bundles all the seven objectives of 

the study and translates to the research topic. Which is defined as the “development of a universal 

water quality index and water quality variability model for South African river catchments.” 

 

The constraints and assumptions arising from the procedures as mentioned earlier and 

methodologies applied in the study are presented and discussed in the subsequent section. 

3.6 Constraints and assumptions 

The limits and conditions assumed for this research relate to the methods used and resources 

allocated towards the study. They are entrusted to uphold the functionality and effectiveness of 

the models. Their primitive role is to ascertain the accomplishment of the study objectives and 

ratify the integrity of the research work. Furthermore, the restrictions are set to exploit on the 

proficiency of the models through optimising data requirements, which eventually simplifies the 

models and promote their application. Therefore, they do not devalue the significance of the 

research work; instead, they add value to the effectiveness of the models developed under this 

study and attempt to widen their application boundaries. 
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Regular water quality sampling and analysis is a costly and demanding task, hence acquiring large 

volumes of water quality data is often a challenge and requires a significant amount of financial 

resources (Pegram and Görgens, 2001, Ochieng, 2007). Given that, the current studies could not 

gather its own samples; instead, water quality data from Umgeni Water Board (UWB) was used 

to achieve the objectives of the research and attest the functionality of the models. UWB dataset 

was collected from six stations which fall under the jurisdiction of four different catchment areas 

and contained over four hundred monthly samples extending to four years, ranging from 2014 to 

2018. The research data provided by UWB was adequate and contributed significantly towards 

the success of the doctoral work. 

 

All the WQIs developed uses preselected variables and fix coefficients, which limits the indices 

to operate with a specific parameter input range; otherwise, new coefficients must be generated 

if different variables are preferred. Such restrictions corroborate with the idea of standardising 

the model and have results comparable without prejudice. It is then more of a measure than 

constraint. 

 

Finally, considering that most Water Boards and relevant stakeholders are utilising Microsoft 

applications, the WQVM was developed using Microsoft Excel, thus limiting the application of 

the toolkit to the use of Microsoft Office Suite. 

 

All these constraints and limitations are specific to the objectives of the study and define the 

parameter input range. Application of water quality indices differs depending on the benefit they 

intend to bring and to whom. Therefore, the limits discussed herein might be an advantage to the 

next person, and constraints to the other. But for the current research, they are regarded as 

necessary measures implemented to achieve study objectives. 
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CHAPTER 4 

4. AREA OF STUDY 

4.1 Background and specific considerations 

The subsequent increase in population and improper disposal of wastewater has a significant 

influence on the diminishing of water quality in rivers and other surface water reservoirs. As a 

consequence, routine water quality assessment and pollution control measures are necessary to 

preserve and restore the healthiness of surface water bodies (Low et al., 2016, Banda and 

Kumarasamy, 2020c). On the same basis, this study attempts to put forward a practical and 

standardised tool that can be used towards monitoring surface water quality across all South 

African river catchments. 

 

Even though the current study is targeting all South African river catchments, specific data set 

from a distinct Water Service Authority (WSA) have been considered to ascertain the 

appropriateness of the proposed model. It is a far-reaching and considerable amount of work to 

test the model against water quality data from all the Water Boards (WBs) in South Africa. On 

that ground, water quality data form the Umgeni Water Board (UWB) was deemed fitting to 

establish the effectiveness of the developed water quality model. The selection of UWB does not 

devalue the purpose of the study; instead, it marks the beginning of a long-term undertaking to 

demonstrate that the developed model is indeed universal and applicable to most, if not all South 

African river catchments. 

 

Umgeni Water Board is a Water Service Authority responsible for water and sanitation affairs of 

KwaZulu-Natal Province in the Republic of South Africa (Nozaic et al., 2001, Manickum et al., 

2014). UWB falls under the jurisdiction of Pongola-Mtamvuna Water Management Area (WMA) 

which has four primary drainage regions labelled T, U, V and W. Amongst the four areas, primary 

drainage basin U was considered for the current study. Further to this, only four secondary 

drainage regions were selected, and these are Umgeni, Umdloti, Nungwane and Minto River 

catchments which are identified by the Department of Water and Sanitation (DWS) as U20, U30, 

U70 and U80 respectively. Umgeni River catchment is the major of the four; consequently, the 

drainage basin is regarded as the primary study area and considered more significant than the 

other three catchments. 

 

Chapter Four presents basic information relating to the study area, and the forthcoming sections 

provide details about water service institutional arrangements in the Republic of South Africa; 

more attention being given to details describing Umgeni River catchment and Umgeni Water 
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Board (UWB). Considering the significance of the other three watersheds; then, only baseline 

information is provided for Umdloti, Nungwane and Minto River catchments. 

4.2 Institutional arrangements 

According to the National Water Act No. 36 of 1998 (Republic of South Africa, 1998), the 

Minister in charge of the Department of Water and Sanitation, formally the Department of Water 

Affairs, is empowered to act on behalf of the Nation with ultimate responsibility to fulfil particular 

mandates regarding access, allocation and protection of water resources. Through the 

departmental structures, the Minister is responsible for establishing Water Management Areas 

(WMAs), and these demarcations should be strategically and geographically positioned to 

manage at least one or more primary drainage regions. Furthermore, the Act instituted that WMAs 

be governed by Catchment Management Agencies (CMAs) with Water User Associations 

(WUAs) in subordinate positions. Both CMAs and WUAs are regarded as local level structures 

thereto undertake water-related activities at the catchment level (Republic of South Africa, 1998, 

Chiluwe, 2014). 

 

However, since 1998, the establishment and functionality of CMAs have been a national 

challenge (Chiluwe, 2014). Therefore, in the year 2017, the DWS decided to establish a single 

Catchment Management Agency (CMA) to manage all water resources in the Republic of South 

Africa. The decision was aimed at decentralising water resource management as supported by 

Section 78(3) of the National Water Act (1998), National Water Resource Strategy (2002, 2013) 

and National Policy Positions on Water (2014). Under such developments, the new agency is 

referred to as the National Water Resource Management Agency (NWRMA), and its boundaries 

cover all the nine Water Management Areas (Republic of South Africa, 2017). 

4.2.1 Water management areas (WMAs) 

Previously there were nineteen Water Management Areas (WMAs) in South Africa. Through the 

revision of the National Water Strategy, it was then resolved to restructure the WMAs and reduced 

them to nine instead of the former nineteen Water Management Areas. This decision was reached 

amid efforts to improve the water resource management model for the current funding 

arrangements, available skills sets and expertise, institutional capacity and integrated 

management system. The nine newly formed WMAs are, (1) Limpopo, (2) Olifants, (3) Inkomati-

Usuthu, (4) Pongola-Mtamvuna, (5) Vaal, (6) Orange, (7) Mzimvubu-Tsitsikamma, (8) Breede-

Gouritz, and lastly (8) Berg-Olifants (Republic of South Africa, 2012, Chiluwe, 2014). The 

following Figure 4.1 is indicative of the new WMA boundaries. 
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Figure 4.1: Map showing the new boundaries of Water Management Areas (WMAs) of the 

Republic of South Africa as Gazetted in 2012 

Source: Authors diagram modified from  the water management areas map (Republic of South Africa, 2012). 

Notes: The boundaries of Water Management Areas (WMAs) do not follow the Provincial boundaries; instead, they 

are aligned to the drainage regions. 

The naming of the WMAs is attributed to the major rivers associated with that particular WMA. 

Accordingly, the study area is within Pongola-Mtamvuna WMA, and the details of this specific 

WMA are discussed in the following subsection. 

4.2.2 Pongola-Mtamvuna water management area (WMA) 

Pongola-Mtamvuna Water Management Area (WMA) emerged following the combination of 

Mhlatze, Thukela and Mvoti-Umzimkulu WMAs as set-out in the former demarcations. This 

newly established WMA have major rivers flowing eastward into the Indian Ocean; and these 

include Pongola, Mhlatuze, Mfolozi, Mkuze, Thukela, Mvoti, Umgeni, Umkomazi, Umzimkulu 

and Mtamvuna. As mentioned earlier, Umgeni, Umdloti, Nungwane and Minto/Umuziwezinto 

River catchments are within Pongola-Mtamvuna WMA, with Umgeni Water Board serving as the 

leading Water Service Authority. 

4.3 Umgeni River catchment 

Umgeni River catchment is a sub-humid drainage basin located along the Indian Ocean coastline 

in KwaZulu-Natal Province in the Republic of South Africa (Warburton et al., 2012, Rangeti, 
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2015, Hughes et al., 2018). With Umgeni basin having a diversified land usage and multiple water 

supply systems, the watershed is regarded as one of the complex drainage regions in the country. 

The river basin is subdivided into twelve quaternary drainage regions, also known as quaternary 

catchments (QCs). Seven of the QCs are situated in the uppermost part of Umgeni basin, three 

are in the middle, and two are in the lower part of the secondary drainage region (Warburton et 

al., 2012, Namugize et al., 2018). Umgeni River catchment plays a significant role in the 

economic development of the country; it serves South Africa’s biggest trading port and the second 

largest province in terms of population and economic sizes (Hughes et al., 2018). Such a pivotal 

role influence the perspective of why Umgeni is considered one of the most significant river 

catchments in the Republic of South Africa. 

4.3.1 Significance of Umgeni River catchment 

Umgeni Water Board (UWB) produces approximately 435.0 x 106 m3/yr of potable water; of 

which 95.4 % (415.0 x 106 m3/yr) is achieved using raw water abstracted from Umgeni basin 

(Umgeni Water, 2018). The river catchment supports a geographical coverage of 94 359.0 km2, 

which habitats about 11.4 million people; that is basically 19.7 % of South Africa’s total 

population (Rangeti, 2015, Umgeni Water, 2018, Stats SA, 2018b). Of great significance, the 

Umgeni basin addresses the water needs of the Durban-Pietermaritzburg business corridor. And 

act as the primary source of water supplied to the Port of Durban, which is the biggest trading 

port in Africa and contributes significantly to the Gross Domestic Product (GDP) of the Republic 

of South Africa (Shoko, 2014, Hughes et al., 2018). KwaZulu-Natal Province contributes 

approximately 16.0 % of the National GDP (Stats SA, 2018a), and employs almost 15.0 % of 

South Africa’s employed population. The GDP and Population figures for the Republic of South 

Africa are presented in Figure 4.2. 

 

Considering the social and economic activities in KwaZulu-Natal, the province is regarded to be 

a highly ecologically disturbed region (Namugize et al., 2018), and this describes the motivation 

for the adoption of Umgeni catchment as the main study area. The water demand of KwaZulu-

Natal is expected to increase to 657.0 x 106 m3/yr by the year 2044, resulting from further 

economic developments, increased population migration and improvements in the living 

standards (Hughes et al., 2018). The current activities and projected developments in Umgeni 

River catchment have extraordinary effects on the national water resources. Therefore, they 

require a comprehensive water management monitoring model that focuses on protecting the 

water reserves. It is then essential to develop a water quality index model that can be adopted to 

understand better the dynamics of water quality changes in Umgeni River catchment and South 

Africa as a whole. The model will provide institutional support in delineating water quality 
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concerns across various river catchments and provide factual information to water technocrats 

and decision-makers. 

 

Figure 4.2: Gross Domestic Product (GDP) and Population details for the Republic of South 

Africa during the middle of the Year 2018 

Source: Authors diagram that graphically represents statistical information documented in Stats SA (2018a, 2018b). 

Notes: Population figures (PPle*) are presented in Billion terms and the Gross Domestic Product (GDP**) values 

are presented in Trillion Rand. 

4.3.2 Catchment coverage and land use 

Umgeni River catchment has surface area nearing 4 432.0 km2, with Umgeni River as the primary 

water channel of the drainage basin (Chiluwe, 2014, Olaniran et al., 2014, Shoko, 2014, Singh 

and Lin, 2015, Namugize et al., 2018). The river originates from the Drakensberg mountains and 

flows eastwards towards the Indian Ocean. The 232-kilometre long Umgeni River has four main 

cardinal tributaries which are Lions, Karkloof, Impolweni and Umsunduzi Rivers (Chiluwe, 2014, 

Rangeti, 2015). Lions River is the most contributing tributary on the upstream of Midmar Dam, 

and it serves as the transfer channel conveying water resources from the adjacent Mooi River 

Catchment (Namugize et al., 2018). The basin land cover is characterised as heterogeneous mostly 

consisting of urban areas, natural forest, commercial sugarcane plantations, small-scale to 

commercial agricultural farms and the Port City of Durban (Warburton et al., 2012, Shoko, 2014, 

Hughes et al., 2018, Namugize et al., 2018). Notably, Umgeni River supports the livelihood of 
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informal settlers residing along the river course. They rely on the river for various household 

activities, irrigation and livestock production (Gakuba et al., 2015). 

4.3.3 The climate of Umgeni River catchment 

The rainfall pattern of Umgeni basin is seasonal, with rains concentrated in the summer months 

(October to March). The amount of precipitation is highly variable, increasing from the western 

side to the eastern part of the river catchment. The highest rainfall occurs in coastal areas with a 

range of 1 000.0 mm/yr to 1 500.0 mm/yr (Shoko, 2014, Rangeti, 2015). The rainfall intensity is 

due to moisture-laden air from the warm Mozambique rainfall corridor. Occasionally, Umgeni 

basin experiences tropical cyclones, which are associated with devastating thunderstorms and 

flooding. The inland parts of Umgeni basin generally receive rainfall ranging from 800.0 mm/yr 

to 1 000.0 mm/yr (Warburton et al., 2012, Shoko, 2014, Namugize and Jewitt, 2018). According 

to Chiluwe (2014), groundwater recharge for Umgeni basin varies between 3.0 % and 7.0 % of 

the mean annual precipitation (MAP). The average annual temperature ranges from 12.0 oC to 

22.0 oC; leading to evaporation rates between 1 567.0 mm/yr and 1 737.0 mm/yr (Namugize et 

al., 2018). The headwater of Umgeni River is located 1 760.0 meters above mean sea level 

(AMSL) in KwaZulu-Natal Midlands within the Drakensberg mountains; whereas, the river 

mouth is situated north of Durban’s natural harbour, and discharging into the Indian Ocean at sea 

level (Namugize et al., 2018). 

4.3.4 Surface water reservoirs 

Four major dams are used to regulate and preserve the water resources within the Umgeni 

drainage region. These are, Midmar, Albert Falls, Nagle and Inanda; which were commissioned 

in 1965, 1976, 1950 and 1988 respectively (Namugize et al., 2018, Umgeni Water, 2019a). 

Midmar Dam (235.4 x 106 m3) supplies Pietermaritzburg and some portions of Durban, whereas 

Albert Falls Dam (289.1 x 106 m3), Nagle Dam (24.6 x 106 m3) and Inanda Dam (251.6 x 106 m3) 

cater for the greater part of Durban Metropolitan (Warburton et al., 2012, Chiluwe, 2014, Rangeti, 

2015). In addition to the four major dams, there is Henley Dam (1.5 x 106 m3) situated south of 

Midmar Dam along Msunduzi River, a tributary of Umgeni River. Henley Dam is no longer used 

for domestic supply purposes. Apart from that, there are about 300 farm dams utilised for 

irrigating nearly 185.0 km2 of commercial farms in Umgeni catchment area (Warburton et al., 

2012). 

4.3.5 Inter-basin transfer schemes 

With the focus of reducing the risk of limited or non-supply of water to Pietermaritzburg and 

Durban areas, Mooi-Mgeni Transfer Scheme was implemented to augment Umgeni drainage 

region. The transfer scheme abstracts water from Mearns Weir situated downstream of Springs 
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Grove Dam where Mooi and Little Mooi Rivers converge. From thereon, water is pumped through 

a 21.6 km long pipeline to an outflow structure located along Mpofana River, then flows into 

Lions River and subsequently into Umgeni River upstream of Midmar Dam. The first 13.3 km of 

the pumping main is Ø1.4 m and further reduced to Ø0.9 m for the remaining length of 8.3 km. 

The transfer scheme, formally known as Mearns Emergency Transfer Scheme, was initially 

implemented in 1983 as a drought relief project with an initial capacity of 1.3 m3/s and 

decommissioned in 1993. Later in 2003, the augmentation scheme was upgraded and 

recommissioned as Mooi-Mgeni Transfer Scheme Phase 1 (MMTS1), with the capacity to deliver 

up to 3.2 m3/s. Further, in 2016, Mooi-Mgeni Transfer Scheme Phase 2 (MMTS2) was completed 

to achieve a continuous supply of 4.5 m3/s towards Umgeni System (Umgeni Water, 2019a). 

 

Deliberations are underway to consider the implementation of Umkomazi-Mgeni Transfer 

Scheme to supplement the Umgeni System. Umkomazi River is the third-largest rivers in 

KwaZulu-Natal in terms of mean annual runoff (MAR), hence being contemplated as an 

alternative transfer scheme (Umgeni Water, 2019b). 

4.4 Umdloti River catchment 

Umdloti catchment is situated north-east of Umgeni basin, adjacent to Nagle and Inanda Dams. 

The catchment has an estimated area of 597.0 km2 with Umdloti River as the main watercourse 

of the basin (Umgeni Water, 2019d). The river source is found in the Noodberg area, with an 

altitude of 823.0 m above means sea level (Govender, 2009). Umdloti River course stretches for 

nearly 88.0 km, flowing eastwards towards the Indian Ocean. The river estuary is approximately 

25.0 km north-east of Durban Central (Govender, 2009, Olaniran et al., 2014). A considerable 

portion of the catchment is utilised for commercial farming, dominated by sugarcane and banana 

plantations with minimal of vegetable and citrus farming. Apart from these, other establishments 

include residential, Verulam Town, game reserves, Hazelmere Dam and Hazelmere wastewater 

treatment plant (Govender, 2009). Similar to Umgeni basin, the catchment experiences summer 

rainfall with mean annual precipitation ranging between 800 mm and 1 125 mm. Temperatures 

are varying from 9 oC in winter to 38 oC in summer (Govender, 2009). Hazelmere Dam is the 

primary water impoundment in Umdloti catchment, with an upgraded capacity of 37.1 x 106 m3 

(Umgeni Water, 2019d). The dam was established to service the domestic, industrial and 

agricultural needs of the Durban area, including the new Durban International Airport (Govender, 

2009, Olaniran et al., 2014). 

4.5 Nungwane River catchment 

Located south-west of Umgeni drainage region, Nungwane River catchment has an average 

annual precipitation of 938.0 mm/yr and annual evaporation close to 1 200.0 mm/yr. The 
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significant impoundment in the quaternary catchment is the Nungwane Dam situated along 

Nungwane River, which is a tributary of Lovu River (Umgeni Water, 2019c). The impoundment 

was built in 1977 with a catchment area of 58.0 km2 and a volume of 2.2 x 106 m3 at full supply 

level (FSL). Raw from Nungwane Dam is treated at Amazimtoti water treatment plant and supply 

eThekwini Municipality (Umgeni Water, 2019c). 

4.6 Umzinto/Umuziwezinto River catchment 

Umzinto River catchment also known as Umuziwezinto River catchment lies further south of 

Nungwane Dam. According to Umgeni Water (2019c), the river basin receives rainfall averaging 

985 mm/yr, with an evaporation rate of 1 200.0 mm/yr. In 1983, Umzinto Dam was constructed 

along Umzinto/Umuziwezinto River with a capacity nearing 0.5 x 106 m3 at FSL and catchment 

coverage of 51.6 km2. Together with EJ Smith Dam, raw water from Umzinto Dam is treated at 

Umzinto water treatment plant (WTP) and distributed to Ugu District Municipality (Mwelase, 

2016, Umgeni Water, 2019c). 

 

Both dams, EJ Smith and Umzinto, provides approximately 0.083 m3/s and 0.073 m3/s 

respectively towards the operation of Umzinto WTP, with current utilisation of 13.6 Mℓ/day and 

design capacity of 22.0 Mℓ/day (Mwelase, 2016, Umgeni Water, 2019c). During the drought 

season of 2014/2015, the Mpambanyoni Emergency Scheme was established to augment Umzinto 

System with an additional supply of 8.0 Mℓ/day. The system was abstracting from Mpambanyoni 

River and later decommissioned in 2016 when both EJ Smith and Umzinto Dams reached FSL 

(Umgeni Water, 2019c). 

4.7 Sampling locations 

Umgeni Water Board (UWB) established water sampling stations to enhance water quality 

monitoring, and the stations are strategically positioned to provide a holistic understanding of 

water affairs within the service area of KwaZulu-Natal Province. Instead of establishing new 

research-based sampling stations, the current studies utilised water quality data collected by 

UWB. 

 

The six identified sampling stations fall under four different catchment areas. These are Umgeni 

River catchment (U20) for Henley, Inanda and Midmar Dams; Umdloti River catchment (U30) 

for Hazelmere Dam; Nungwane River catchment (U70) for Nungwane Dam; and lastly 

Umzinto/Umuziwezinto River catchment (U80) for Umzinto Dam. Testing the model with data 

from various river catchments promote the objective of establishing a universal water quality 

index (UWQI) suitable for use across the catchment areas in South Africa. 
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At least one or more stations were considered for each of the four drainage basins as demonstrated 

by Figure 4.3, which illustrates the geographic positions of the six sampling stations. Further 

details of the selected sampling stations are included in the following Table 4.1. 

 

 

Figure 4.3: Locality map for sampling stations relevant to the study, (a) all six sampling 

stations, (b) Henley Dam, (c) Hazelemere Dam, (d) Inanda Dam, (e) Midmar Dam, 

(f) Umzinto Dam, and (g) Nungwane Dam 

Source: Authors diagram (Banda and Kumarasamy, 2020b, 2020c). The underlying map used for the production of 

the locality map was downloaded from Google Earth, and station coordinates are from Umgeni Water Board 

(2014 to 2018 water quality data) presented in Table 4.1. 

Notes: Sampling Stations identity (1) Henley Dam DHL003, (2) Hazelmere Dam DHM003, (3) Inanda Dam 0.3 km 

DIN003, (4) Midmar Dam DMM003, (5) Umzinto Dam DMZ009, and (6) Nungwane Dam DNW003. 
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Table 4.1: Details of sampling stations relevant to the study 

ID Description of the sampling station Station 
identity No. 

Catchment 
identity No. 

Location coordinates (DMS)* 
Latitude Longitude 

1 Henley Dam – Main basin integrated DHL003 U20 S 29o 37' 25.734" E 30o 14' 49.754" 
2 Hazelmere Dam – Main basin integrated DHM003 U30 S 29o 35' 53.722" E 31o 02' 32.121" 
3 Inanda Dam – Integrated 0.3 km from the dam wall DIN003 U20 S 29o 42' 27.403" E 30o 52' 03.352" 
4 Midmar Dam – Main basin integrated DMM003 U20 S 29o 29' 47.332" E 30o 12' 05.655" 
5 Umzinto Dam – Main basin integrated DMZ009 U80 S 30o 18' 40.676" E 30o 35' 34.580" 
6 Nungwane Dam – Main basin integrated DNW003 U70 S 30o 00' 24.473" E 30o 44' 36.150" 

Source: Umgeni Water Board (Banda and Kumarasamy, 2020b, 2020c). 

Notes: *Location coordinates based on the World Geodetic System 84 (WGS 84) and DMS stands for Degrees, 

Minutes and Seconds. Although the Umgeni Water Board (UWB) has more water quality monitoring stations, 

Table 4.1 is an extract of only the eight water quality monitoring stations considered in the development of 

the universal water quality model. 

The economic importance of the Umgeni Basin, the uniqueness of its inter-basin arrangements, 

the magnitude of the transfer schemes involved and extensive water demand; are vital elements 

leading to a comprehensive water resource management. All these distinctively motivated the 

identification and selection of the Umgeni River catchment as the main study area. Beyond that, 

they are three additional catchments incorporated into the study to examine the models further 

and complement the objective of developing universally acceptable water quality models. 
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CHAPTER 5 

5. RESULTS AND DISCUSSION 

5.1 Overview 

Since water quality is a prime natural resource, it is then important to conduct regular water 

quality assessment that describes the degree of pollution and substantiate the healthiness of water 

resources. Of which water quality index (WQI) is an essential tool that can provide a quick initial 

guide necessary to evaluate the water quality status of a given water body. Water quality indices 

are beneficial for integrating significant physical, chemical and biological constituents of water 

and provide a simple, but yet scientifically justifiable water quality rating score. Such a valuable 

and unique rating comprehend the influence of various water quality variables and easily 

communicate water quality data to non-technical individuals and more importantly, the policy-

makers. In order to obtain a WQI, sub-indices of water quality variables are employed to indicate 

water quality on a scale most probably from zero (worst quality) to unity (best quality). 

Furthermore, the sub-indices are aggregated to yield an overall WQI value usually between zero 

(poor quality) and hundred (excellent quality). 

 

In this study, various water quality index models have been evaluated, outlining their advantages 

and disadvantages. Conclusions have been drawn about the similarities and dissimilarities 

existing among different models, and the findings lead to the suggestion of possible methods 

applicable in the development of a universal water quality index (UWQI) for South African river 

catchments. The UWQI model was developed using conventional methods and attested with an 

artificial neural network (ANN) model. Furthermore, a water quality variability model (WQVM) 

comprising of UWQI model, ANN model and surrogate WQI was established and tested. 

 

Therefore, this chapter presents the results and discussion of water quality index development 

using conventional techniques and multivariate statistical methods. Chapter Five also aims to 

document important information relevant to the use of Artificial Intelligence (AI) in water quality 

science, through the application of artificial neural networks (ANNs). 

5.2 Research data 

Although the study is focusing on all South African river catchments, specific data set have been 

considered for testing the functionality of the models developed under this particular research. It 

is extensive work and time consuming to attempt testing water quality data from all the Water 

Boards (WBs) in South Africa. In this regard, water quality data obtained from Umgeni Water 

Board (UWB) has been utilised to achieve specific objectives of the study. The dataset comprises 
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of 416 samples gathered monthly for over four years starting from 2014 until 2018. Table 5.1 

documents the descriptive statistics for the research data. 

Table 5.1: Descriptive statistics for Umgeni water quality data gathered monthly for over four 

years starting from 2014 until 2018 

ID Water quality variables Unit 
Statistical summary of the observed water quality data for Umgeni 

Minimum Average Maximum Standard 
deviation 

Coefficient of 
variation 

1 Ammonia mg N/ℓ 0.040 0.107 0.990 0.072 66.973 % 
2 Calcium mg Ca/ℓ 1.000 9.457 30.500 5.719 60.477 % 
3 Chloride mg Cl/ℓ 1.821 26.843 79.000 14.560 54.244 % 
4 Chlorophyll-a µg/ℓ 0.140 5.057 92.220 7.986 157.917 % 
5 Electrical Conductivity µS/m 6.840 20.708 48.000 8.991 43.417 % 
6 Fluoride mg F/ℓ 0.100 0.140 0.544 0.053 37.423 % 
7 Hardness mg CaCO3/ℓ 6.615 47.752 128.457 23.249 48.687 % 
8 Magnesium mg Mg/ℓ 1.000 5.857 14.600 2.448 41.793 % 
9 Manganese mg Mn/ℓ 0.010 0.051 1.210 0.105 207.381 % 
10 Nitrate mg N/ℓ 0.050 0.590 9.580 0.700 118.598 % 
11 pondus Hydrogenium Unit less 0.000 7.766 9.100 0.545 7.023 % 
12 Sulphate mg SO4/ℓ 0.160 8.696 24.200 6.422 73.846 % 
13 Turbidity NTU 0.600 14.157 367.000 30.956 218.659 % 

Source: Umgeni Water Board (Banda and Kumarasamy, 2020b, 2020c) 

Notes: Parameters are listed according to alphabetic, other than the order of importance. Although the data received 

from Umgeni has more water quality variables, Table 5.1 is an extract of only the thirteen water quality 

parameters considered for the study. The UWB data consist of 416 samples measured from six sampling 

stations located within six different river catchments. 

The total number of samples measured and recorded is 416, and none of the thirteen water quality 

variables has the maximum number of tests recorded; the closest being chlorophyll-a and turbidity 

with both parameters having approximately 97.7 % tests recorded. The degree of consistency in 

sampling is 63.1 % with a noticeable effect on calcium (Ca), hardness (CaCO3), fluoride (F) and 

magnesium (Mg) having missing data equating to 61.5 %, 61.4 %, 94.3 % and 61.5 %, 

respectively. Where circumstances permitted, linear interpolation assisted in estimating missing 

data, especially data gaps lying in-between measured intervals. The back-and-forward filling 

approach was applied to calculate missing data at the start or end of the testing period (Schullehner 

et al., 2017, Banda and Kumarasamy, 2020b). 

 

The UWB measured hardness (CaCO3) quarterly and where possible, using the measured values 

of Ca and Mg, an approximation of CaCO3 missing values were alternatively obtained using 

Equation 5.1. The method is a common practice and prescribed in various studies (see DWAF, 

1996a, 1996b, Banda, 2015, Bogart et al., 2016, Beyene et al., 2019, Banda and Kumarasamy, 

2020c). 

  Eq. 5.1 . .2 497 4 118CaCO Ca Mg3 = +
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Where: CaCO3 is the calculated hardness concentration in milligrams per litre (mg/ℓ); 

 Ca is the observed calcium concentration in milligrams per litre (mg/ℓ); and 

 Mg is the observed magnesium concentration in milligrams per litre (mg/ℓ). 

Regardless of the amount of missing data, the samples obtained from UWB were adequate and 

contributed significantly towards the success of the research studies. Umgeni water quality data 

has been considered based on availability, other than being a priority and limiting the number of 

WBs used for testing the models do not devalue the significance of the study. The rationale used 

in developing the universal water quality index is entirely independent of the data set used for 

testing the functionality of the model. Nevertheless, as an ongoing project and in support of the 

current studies, it is recommended that additional data from other WBs if not all, be considered 

and documented separately. 

 

The subsequent thesis sections discuss the approach and processes employed to select the most 

significant thirteen water quality parameters. There are numerous methods involved in the 

development of water quality indices, but this study focuses on the application of the conventional 

technique, statistical approach and artificial neural networks (ANNs). The application of the three 

methods is also deliberated in the subsequent sections. 

5.3 Universal water quality index (UWQI) using the conventional methods 

Water quality is a multi-parameter attribute, that is assessed through combining the cumulative 

effects of a considerable amount of water quality variables. Accordingly, water quality indices 

provide a sensible solution in resolving lengthy, multi-parameter water analysis reports into a 

single-digit score (Sarkar and Abbasi, 2006, Banda and Kumarasamy, 2020a). Water quality 

index is a simple, but yet intelligible rating score that provides the composite influence of various 

water quality variables in a given water body (Luzati and Jaupaj, 2016, Wanda et al., 2016, 

Guettaf et al., 2017). The index number is generally measured against a relative scale to explain 

the quality of water resources based on categories ranging from zero to hundred, which is further 

classified from very poor to excellent (Paun et al., 2016).  

 

Commonly, the development of water quality indices (WQIs) involves (i) selection of the 

significant water quality parameters; (ii) formation of sub-indices; (iii) establishing relative 

parameter weights; and (iv) aggregation of the sub-indices (Srebotnjak et al., 2012, Al-Mutairi et 

al., 2014, Paun et al., 2016, Sutadian et al., 2016, Shah and Joshi, 2017, Unda-Calvo et al., 2019, 

Banda and Kumarasamy, 2020a). Similarly, the current studies prescribe to the same procedure 

of developing WQIs, especially when using conventional methods. On that premise, the following 

sections of the thesis attempt to discuss the techniques applied during the development of the 
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universal water quality index (UWQI) and present a comparative analysis of the most critical 

aspects of the UWQI. 

5.3.1 Water quality parameters 

As significant indicators of the aquatic-ecosystem health, water quality variables can be employed 

to quantify the degree of impairment of a given water body, which might be attributed to both 

natural and anthropogenic activities (EPA Victoria, 2003). The magnitude and extent of such 

damage can be measured against predefined water quality benchmarks, that is; the criteria, water 

quality objectives, prescribed targets, legislative standards, action levels and associated 

concertation limits. Such yardsticks are established explicitly for individual water quality 

variables to safeguard the aquatic environment and protect human users, considering what is 

regarded as non-toxic and risk-free. Water quality benchmarks have been established with a 

distinctive meaning, and for diverse applications, some are generic, and some are specific (CWT, 

2004, Banda, 2015). 

 

Individual parameter indicator values and limits are defined and governed by Water Quality 

Objectives (WQOs). Thus, the laws, legislative policies and regulations that factors in various 

fundamentals relevant to the establishment of pollution tolerance levels and associated effects, 

whether short term or long-term effects. As experts discover more about conservation 

requirements of the aquatic-ecosystem and evidence relating to the impact of each water quality 

parameter, then adjusting the tolerance limits becomes necessary and regarded as a continuous 

exercise. Such circumstances are the reason why WQOs are forever changing (CWT, 2004, 

Banda, 2015). Therefore, constant evaluation of water quality indices is of great importance, 

especially for water quality models that are built for sustainability and high precision. The process 

explains why the development and modification of water quality indices is forever growing and 

becoming a norm. Given this, regardless of the success of the suggested universal water quality 

index, the parameters and their associated limits need to be reviewed over a particular period time. 

 

The succeeding sections of the thesis document and discuss the thirteen specific water quality 

parameters considered significant in the developing of a universal water quality index model for 

South African river catchments. 

5.3.2 Selection of the significant water quality parameters 

Selection of water quality parameters is the most critical element of establishing a water quality 

index. The index developer should identify and chose the most significant variables; not too few 

or too many, but just enough to provide a practical sense; in cognisance of the purpose of the 

index and the perceived degree of accuracy. The process requires proficiency, enormous care, 
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experience and sound judgement since it can be apprehensive with uncertainty and subjectivity. 

Parameter selection can be achieved through the use of either statistical methods or expert 

opinion, which can be an individual or a group of professionals. 

 

Accordingly, the current studies decided to involve expert opinion with a fixed set of parameters. 

Expert opinion has the advantage of engaging with stakeholders who are potentially the targeted 

end-users of the index model. The process eventually capacitates the acceptance of the index 

model through the sense of ownership, the idea that they are involved and henceforth 

acknowledging the index model as their own. The study purposefully considered the application 

boundaries of the proposed indexing model and decided to implement a fixed system as the most 

appropriate approach to evaluate the water quality status of various catchments. The procedure 

eliminates the possibility of altering the functionality of the model, thereby allowing a proper 

comparison of water quality status among different sites and promote prioritisation of national 

programmes without prejudice. 

 

In respect to the expert opinion, three techniques were applied. Firstly, the Rand Corporation’s 

Delphi Technique commonly known as the Delphi method (Linstone and Turoff, 1975, 2002), 

which involved a panel of water quality specialists communicating and responding through 

questionnaires (Nagels et al., 2001, Kumar and Alappat, 2009, Almeida et al., 2012). Secondly, 

the literature review method, whereby the author considers water quality parameters previously 

selected by similar research studies. Thirdly, the use of rejection rationale to produce a screened 

set of frequently monitored water quality variables. The methods are presented and discussed in 

the following sub-sections. 

5.3.2.1 Selection of parameters by Rand Corporation’s Delphi Technique (Delphi method) 

A total of twenty-one water quality variables were selected for the inclusion into the Delphi 

Questionnaire, and the selection was influenced by the availability of published water quality 

objectives, guidelines, regulations and possible impact towards altering the quality of surface 

water. With a balanced selection of ten water quality specialists from each sector, a combined 

total of thirty panellists were identified from government parastatals, private sector and academia. 

Through existing relationships and referrals, the choice of the panel was reached based on their 

work positions, experience in water quality science and amount of peer-reviewed publications. 

 

Similar to Nagels et al. (2001), and Almeida et al. (2012), Delphi questionnaires were circulated 

to the thirty prospect survey participants. They were asked to consider twenty-one water quality 

variables for their possible inclusion in the universal water quality index. Participants were 

instructed to designate each parameter as: “Include” and “Exclude” and further assign a relative 
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significance rating against each parameter defined as “Include.” The rating was based on a scale 

ranging from 1 to 5; with scale 1 representing the highest significance and scale 5 for relatively 

low significance. Beyond the twenty-one parameters listed in the questionnaire, panellists were 

permitted to add up to a maximum of five more variables if desired. Out of the thirty prospective 

participants, responses were received from twenty-one panellists, and the final significance 

ratings were calculated as tabulated in Table 5.2. 

Table 5.2: Statistical analysis of Rand Corporation’s Delphi Technique 

ID Water quality variables 
Statistical summary of the Delphi Method 

No 
answer Exclude Include 

Significance Final 
significance  1 2 3 4 5 Average 

1 Ammonia 2 0 19 12 4 2 0 1 1.632 4.368 
2 Biochemical Oxygen Demand 1 4 16 10 3 2 1 0 1.625 4.375 
3 Calcium 1 1 19 2 11 3 1 2 2.474 3.526 
4 Chloride 0 0 21 4 9 7 0 1 2.286 3.714 
5 Chlorophyll-a 0 3 18 0 0 2 9 7 4.278 1.722 
6 Dissolved Oxygen 0 0 21 14 1 3 3 0 1.762 4.238 
7 Electrical Conductivity 1 1 19 0 5 11 0 3 3.053 2.947 
8 Faecal Coliforms 6 2 13 1 2 5 1 4 3.385 2.615 
9 Fluoride 0 5 16 3 7 5 1 0 2.250 3.750 
10 Hardness 0 7 14 0 1 8 3 2 3.429 2.571 
11 Magnesium 3 3 15 4 2 7 1 1 2.533 3.467 
12 Manganese 0 5 16 7 5 1 0 3 2.188 3.813 
13 Nitrate 0 0 21 5 11 3 2 0 2.095 3.905 
14 Nitrite 0 0 21 6 9 4 1 1 2.143 3.857 
15 Phosphate 2 4 15 2 7 5 1 0 2.333 3.667 
16 pondus Hydrogenium 0 3 18 11 4 1 2 0 1.667 4.333 
17 Sulphate 1 8 12 0 2 7 3 0 3.083 2.917 
18 Temperature 3 6 12 0 1 9 1 1 3.167 2.833 
19 Total Alkalinity 0 10 11 2 0 4 4 1 3.182 2.818 
20 Total Dissolved Solids 1 7 13 0 1 5 5 2 3.615 2.385 
21 Turbidity 0 3 18 0 3 10 1 4 3.333 2.667 

Source: Twenty-one questionnaires from the water quality specialist considered for the Delphi exercise. 

Notes: Parameters are listed according to alphabetic, other than the order of importance. A total of twenty-one 

questionnaires were captured in Table 5.2. 

The same parameter list used for the Rand Corporation’s Delphi Technique was considered for 

the selection of parameters using the literature review method. 

5.3.2.2 Selection of parameters by literature review method 

Complementing the Rand Corporation’s Delphi Technique, the existing literature on the water 

quality indices (WQIs) was used to select the most significant variables. Thirty-seven studies 

were considered, and each parameter was designated as “Included” if it formed part of the 

identified research work and the predefined twenty-one parameters listed in Table 5.2; otherwise, 

it was designated as “Not Included.” Furthermore, the originally assigned significance rating was 

recorded as the relative significance rating for each parameter that was “Included” in the study in 

question. The rating was based on a scale ranging from one to five; with “scale 1” representing 
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the lowest significance and “scale 5” for relatively high significance. If a different significance 

rating scale was used in the existing studies, the original rating values were equivalently 

transformed to match the preferred rating scale using Equation 5.2 as follows (Banda and 

Kumarasamy, 2020c): 

 y = a + (b – a)(xi – xmin)/(xmax – xmin)  Eq. 5.2 

where: y is the new rating; a, b, are minimum and maximum values of the targeted scale rating; 

 xmin, xmax, are minimum and maximum possible ratings in the specified scale; and 

 xi is the ith rating value of the specified scale. 

The results of the statistical analysis of the literature review method are presented in Table 5.3. 

Table 5.3: Statistical analysis of the literature review method 

ID Water quality variables 
Statistical summary of the literature review method 

Not included Included Maximum 
significance 

Minimum 
significance 

Average of the 
Significance 

1 Ammonia 17 20 5.000 1.650 3.503 
2 Biochemical Oxygen Demand 14 23 5.000 0.331 3.211 
3 Calcium 22 15 5.000 0.989 1.996 
4 Chloride 14 23 5.000 0.010 1.925 
5 Chlorophyll-a 36 1 1.000 1.000 1.000 
6 Dissolved Oxygen 10 27 5.000 1.650 4.214 
7 Electrical Conductivity 18 19 5.000 0.002 2.314 
8 Faecal Coliforms 14 23 5.000 1.780 3.574 
9 Fluoride 29 8 5.000 2.000 3.462 
10 Hardness 22 15 4.000 0.903 1.894 
11 Magnesium 23 14 5.000 1.000 1.933 

12 Manganese 31 6 5.000 1.500 3.109 

13 Nitrate 6 31 5.000 0.176 3.007 
14 Nitrite 25 12 5.000 0.110 2.572 
15 Phosphate 17 20 5.000 1.000 2.535 
16 pondus Hydrogenium 2 35 5.000 0.221 2.595 
17 Sulphate 21 16 5.000 0.989 2.971 
18 Temperature 16 21 5.000 0.500 2.053 
19 Total Alkalinity 28 9 3.580 1.000 2.317 

20 Total Dissolved Solids 10 27 5.000 0.079 2.959 

21 Turbidity 23 14 4.920 0.397 2.623 

Source: Horton (1965), Brown et al. (1970), Brown et al. (1973), SRDD (1976), Dunnette (1979), Martínez de 

Bascarón (1979), House (1986), Smith (1987), Tyson and House (1989), House (1990), Pesce and Wunderlin 

(2000), Cude (2001), Liou et al. (2004), Debels et al. (2005), Kannel et al. (2007), Boyacioğlu (2007), 

Sánchez et al. (2007), Kumar and Alappat (2009), Carvalho et al. (2011), Hamid et al. (2013), Koçer and 

Sevgili (2014), Sharma et al. (2014), Abtahi et al. (2015), Banda (2015), Singh et al. (2015), Ewaid (2016), 

Guettaf et al. (2017), Trikoilidou et al. (2017), Ewaid et al. (2018), García-Ávila et al. (2018), 

Ponsadailakshmi et al. (2018), Sutadian et al. (2018), Tiri et al. (2018), and Yousefi et al. (2018). 

Notes: Parameters are similar to water quality variables listed in Table 5.2 employed on the Rand Corporation’s 

Delphi Technique under Section 5.3.2; and they are listed according to alphabetic, other than the order of 

importance. A total of thirty-seven studies were captured in Table 5.3. 
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The results of the Rand Corporation’s Delphi Technique and the literature review method were 

combined to designate the final list of the parameters included in the universal water quality index. 

5.3.2.3 Final parameters considered for UWQI 

Lessening the monitoring data requirements, governs the input parameter demand and reduce the 

bulkiness of the indexing model. In this way, it intensifies regular use of the index and promotes 

the application of the indexing model in most, if not all, the river catchments within South Africa. 

Which is in line with the primary objective of the study, and if achieved, then the current study 

will be considered successful. On the basis thereof, the twenty-one parameters were reduced to 

an optimum, just enough to ensure functional sense and scientific steadiness. The final water 

quality parameters considered for the index model are included in Table 5.4 below. 

Table 5.4: Ranking of parameters according to significance ratings 

Selection by Delphi method  Selection by literature 
review method  Combined Delphi and 

literature review method  Final water quality 
parameters considered 

Rank Rating Var.  Rank Rating Var.  Rank Rating Var.  Rank Rating Var. 
1 4.375 BOD5  1 4.214 DO  1 4.226 DO  1 3.936 NH3 
2 4.368 NH3  2 3.574 CFU  2 3.936 NH3  2 3.606 F 
3 4.333 pH  3 3.503 NH3  3 3.793 BOD5  3 3.464 pH 
4 4.238 DO  4 3.462 F  4 3.606 F  4 3.461 Mn 
5 3.905 NO3  5 3.211 BOD5  5 3.464 pH  5 3.456 NO3 
6 3.857 NO2  6 3.109 Mn  6 3.461 Mn  6 2.944 SO4 
7 3.813 Mn  7 3.007 NO3  7 3.456 NO3  7 2.820 Cl 
8 3.750 F  8 2.971 SO4  8 3.215 NO2  8 2.761 Ca 
9 3.714 Cl  9 2.959 TDS  9 3.101 PO4  9 2.700 Mg 
10 3.667 PO4  10 2.623 Turb  10 3.094 CFU  10 2.645 Turb 
11 3.526 Ca  11 2.595 pH  11 2.944 SO4  11 2.630 EC 

12 3.467 Mg  12 2.572 NO2  12 2.820 Cl  12 2.233 CaCO3 

13 2.947 EC  13 2.535 PO4  13 2.761 Ca  13 1.361 Chl-a 
14 2.917 SO4  14 2.317 TA  14 2.700 Mg     
15 2.833 Temp  15 2.314 EC  15 2.672 TDS     
16 2.818 TA  16 2.053 Temp  16 2.645 TA     
17 2.667 Turb  17 1.996 Ca  17 2.630 Turb     
18 2.615 CFU  18 1.933 Mg  18 2.568 CFU     
19 2.571 CaCO3  19 1.925 Cl  19 2.443 CaCO3     

20 2.385 TDS  20 1.894 CaCO3  20 2.233 TDS     

21 1.722 Chl-a  21 1.000 Chl-a  21 1.361 Chl-a     

Source: Extracted from Table 5.2 and Table 5.3 of the current study  

Notes: Parameters are listed according to their significance rating scores in ascending order. “Var.” denotes water 

quality variables. The chemical symbols are defined as follows: ammonia (NH3), biochemical oxygen demand 

(BOD5), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), dissolved oxygen (DO), electrical conductivity 

(EC), faecal coliforms (CFU), fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate 

(NO3), nitrite (NO2), phosphate (PO4), pondus Hydrogenium (pH), sulphate (SO4), temperature (Temp), total 

alkalinity (TA), total dissolved solids (TDS), turbidity (Turb). 

Rejection rationale was employed to eliminate seven water quality parameters which are not 

commonly monitored across the South African river catchments. The seven parameters omitted 
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are: biochemical oxygen demand (BOD5), dissolved oxygen (DO), faecal coliforms (CFU), 

phosphate (PO4), temperature (Temp), total alkalinity (TA) and total dissolved solids (TDS). 

Another variable excluded was nitrite (NO2), the reason being that; in most instances, nitrite and 

nitrates are considered as one, and reasoning from this fact, it was found more appropriate to 

eliminate nitrite (NO2) with less aggregated significance rating. 

 

Against this background, the final thirteen parameters considered for the development of the water 

quality index are ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), electrical 

conductivity (EC), fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate 

(NO3), pondus Hydrogenium (pH), sulphate (SO4) and turbidity (Turb). The relative weightage 

coefficients of the final thirteen parameters are deliberated in the following Section. 

5.3.3 Establishing relative parameter weightage coefficients 

For this study, water quality parameters are regarded as diverse, having a unique set of effects on 

the classification of water. Some are regarded as less or more imperative than the others. With an 

attempt to distinguish the influence of each variable, weighting coefficients are assigned to each 

parameter depending on the level of influence and significant towards the overall index value 

(Sharma et al., 2014, Sutadian et al., 2016, Banda and Kumarasamy, 2020e). The significance 

ratings obtained from the participatory based Delphi method are aggregated together with 

significance ratings extracted from literature to form final average ratings. The aggregated weight 

ratings use a basic scale of importance, ranging from one (lowest impact) to five (highest impact). 

Upon deriving the weight ratings, weight coefficients which are directly proportional to the 

weight ratings are then achieved by dividing the rating value by the sum of all ratings as denoted 

by Equation 5.3 (Banda, 2015). 

 
 Eq. 5.3 

where: bi is the assigned significance rating of the ith water parameter (one being the lowest 

rating and five the highest rating); 

 wi is the weighted coefficient for the ith water parameter (decimal value); and 

 n total number of the rated water quality parameters. 

The coefficients are represented as decimal numbers, and the sum of all coefficients is one, 

thereby guaranteeing that the overall index value does not exceed hundred per cent (w1+ w2 + w3 

+ …+ wn = 1 for Equations 5.3). Otherwise, aggregation of sub-indices will be compromised, and 

deem the index model dysfunctional. The weight coefficients and final parameters proposed for 

w
b

b
i

i
i

n
i

1

=

=

|



96 

 

the development of a universal water quality index for South African river catchments are 

presented in Table 5.5. 

Table 5.5: Parameters of consideration and their aggregated weightage coefficients 

ID Water quality variables Symbol Unit 

Impact ratings and weightage coefficients 
Significance 
from Delphi 
method 

Significance 
from review 
method 

Aggregated 
significance 
value 

Aggregated 
weighted 
coefficients 

1 Ammonia NH3 mg N/ℓ 4.368 3.503 3.936 0.103529 
2 Calcium Ca mg Ca/ℓ 3.526 1.996 2.761 0.072631 
3 Chloride Cl mg Cl/ℓ 3.714 1.925 2.820 0.074168 
4 Chlorophyll-a Chl-a µg/ℓ 1.722 1.000 1.361 0.035803 
5 Electrical Conductivity EC µS/m 2.947 2.314 2.630 0.069193 
6 Fluoride F mg F/ℓ 3.750 3.462 3.606 0.094852 
7 Hardness CaCO3 mg CaCO3/ℓ 2.571 1.894 2.233 0.058734 
8 Magnesium Mg mg Mg/ℓ 3.467 1.933 2.700 0.071022 
9 Manganese Mn mg Mn/ℓ 3.813 3.109 3.461 0.091037 
10 Nitrate NO3 mg N/ℓ 3.905 3.007 3.456 0.090907 
11 pondus Hydrogenium pH Unit less 4.333 2.595 3.464 0.091121 
12 Sulphate SO4 mg SO4/ℓ 2.917 2.971 2.944 0.077438 
13 Turbidity Turb NTU 2.667 2.623 2.645 0.069565 
     Totals 38.017 1.000000 

Source: Derived from Table 5.2 and Table 5.3 of the study (Banda and Kumarasamy, 2020b, 2020c). 

Notes: The total sum of all weights is equal to one whole number. Parameters are listed according to alphabetic, other 

than the order of importance. Using aggregated weighted coefficients, the following order of importance is 

achieved: NH3>F>pH>Mn>NO3>SO4>Cl>Ca>Mg>Turb>EC>CaCO3>Chl-a. 

Considering that water quality parameters are monitored in different scientific units; sub-indices 

are applied to convert different units of measure into a single standard non-dimensional scale. 

The standardisation of scientific units is a common practice, and the conventional method 

involves sub-index rating curves which are later transformed into mathematical functions 

commonly known as sub-indices. The sub-index rating curves and mathematical functions for the 

thirteen suggested parameters are presented in the following sections. 

5.3.4 Formation of sub-index rating curves and mathematical functions 

Development of sub-indices is highly subjective and mostly based on personal judgement (Banda, 

2015), however, similar to the selection of parameters and assigning of weight ratings; expert 

opinion can be utilised to delineate rating curves and sub-index functions. The challenge is that 

fitting and optimising a series of hand-plotted graphs is a daunting task, unlike selections of 

parameters and weight coefficients which involves numbers only. In light of that, sub-index rating 

curves and sub-index functions were individually developed by the author. For practical purposes, 

fixed key points of the rating curves were graphically established with reference to the permissible 

concentration limits (see Table 5.6). Straight-line graphs were used to converge the plotted points 

and produce a series of linear graphs, which were further converted into linear sub-index 
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functions. Target Water Quality Ranges (TWQRs) as prescribed by DWAF (1996a, 1996b, 

1996c) were consulted in the process. 

Table 5.6: Range of water quality parameters and their key points defined for establishing the 

sub-index rating curves 

Variable 
Key Points of the Sub-Index Graph (SI0, …, 100 = Sub-Index zero to Sub-Index one hundred) 
Class 5 Class 4 Class 3 Class 2 Class 1 
SI0 SI5 SI10 SI25 SI45 SI50 SI55 SI75 SI90 SI95 SI100 

1 NH3 2.000 1.580 1.470 1.280 0.930 0.840 0.750 0.400 0.130 0.050 0.000 
2 Ca 90.000 83.470 76.950 59.010 49.160 46.700 42.030 23.350 9.340 4.670 0.000 
3 Cl 601.000 501.000 461.010 344.370 188.850 150.000 137.500 87.500 50.000 50.000 50.000 
4 Chl-a 29.000 24.000 20.000 17.000 13.000 12.000 11.000 5.500 1.000 1.000 1.000 
5 EC 492.860 471.440 450.000 385.770 300.000 278.580 257.150 171.450 70.000 70.000 70.000 
6 F 1.510 1.380 1.270 0.920 0.460 0.350 0.330 0.270 0.050 0.050 0.050 
7 CaCO3 300.000 280.000 260.000 200.000 180.000 175.000 170.000 150.000 75.000 50.000 0.000 
8 Mg 91.000 82.000 74.000 50.000 46.000 45.000 44.000 40.000 32.500 30.000 0.000 
9 Mn 1.540 1.430 1.330 1.030 0.630 0.530 0.490 0.340 0.050 0.050 0.050 
10 NO3 2.000 1.750 1.500 0.950 0.750 0.700 0.650 0.370 0.070 0.030 0.000 
11 pH 

a 4.000 4.000 4.000 4.190 4.940 5.120 5.310 6.060 6.620 6.810 7.000 
 pH 

b 11.000 11.000 11.000 10.810 10.060 9.870 9.690 8.940 9.370 8.190 8.000 
12 SO4 350.000 310.000 270.000 150.000 113.980 104.990 95.990 60.000 37.500 30.000 0.000 
13 Turb 45.000 27.500 10.000 8.750 7.080 6.670 6.250 4.600 3.400 3.000 0.000 

Source: The key points are based on Target Water Quality Ranges as prescribed by DWAF (1996a, 1996b, 1996c). 

Notes: a pondus Hydrogenium lower limits (pH a), b pondus Hydrogenium upper limits (pH b). 

The sub-index curves for each variable are presented as Figure 5.1 and sub-index functions are 

Equation 5.4 to Equation 5.16. 
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Figure 5.1: Graphical established sub-index rating curves for the selected water quality 

parameters (a) NH3, (b) Ca, (c) Cl, (d) Chl-a, (e) EC (f) F, (g) CaCO3, (h) Mg, (i) 

Mn, (j) NO3, (k) pH, (l) SO4 and (m) turbidity 

Source: Authors’ graphs produced for the current study (Banda and Kumarasamy, 2020b, 2020c). 

Notes: Fixed key points of the rating curves were graphically established with reference to the permissible 

concentration limits known as the Target Water Quality Ranges (TWQRs) as prescribed by DWAF (1996a, 

1996b, 1996c). Refer to Table 5.6. 

The following are the model sub-index functions for the thirteen water quality parameters 

considered for developing a universal water quality index for South African river catchments. 
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 Eq. 5.14 

 

 Eq. 5.15 

 

 Eq. 5.16 

where: SIa,b, … ,m sub-index for the following thirteen water quality parameters, (a) NH3, (b) Ca, 

(c) Cl, (d) Chl-a, (e) EC, (f) F, (g) CaCO3, (h) Mg, (i) Mn, (j) NO3, (k) pH, (l) 

SO4 and (m) turbidity; and 

 xa,b, … ,m is the observed water quality reading of the respective water quality parameter. 

In respect to the weight coefficients in Table 5.5 and sub-index functions Equation 5.4 to Equation 

5.16, weighted sub-indices were calculated and summarised in Figure 5.2. Annexure E bears the 

weighted sub-index values for each parameter per given data set. 

 

Figure 5.2: Statistical summary of the weighted sub-indices (SIiwi) calculated using Umgeni 

water quality data gathered monthly for four years starting from 2014 until 2018 
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Source: Authors’ graph and the sub-index values are extracts from the water quality variability model (WQVM). 

Notes: Parameters are abbreviated as follows: ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), 

electrical conductivity (EC), fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate 

(NO3), pondus Hydrogenium (pH), sulphate (SO4) and turbidity (Turb). 

In the process of establishing a rational water quality model, professional judgement and expert 

opinion techniques were adopted to determine the number and determinants most adequate to 

define and summarise water quality based on the degree of pollution. The rationale for the thirteen 

parameters of relevance is presented in the following subsection. 

5.3.5 The rationale on selected water quality parameters 

The discussion of the thirteen chosen water quality determinants is done so in the alphabetical 

order and not in order of preference. With more attention being given to the meaning, sources of 

such pollutants, their health effects on both humans and aquatic organisms, as well as the 

treatment options available to minimise the contamination levels to desirable limits. 

5.3.5.1 Ammonia (NH3) 

Ammonia (NH3) is endogenously produced toxicant with a biochemical reaction that is directly 

influenced by the ionic composition, pH levels and temperature of a given water body. An 

increase in pH level instantaneously worsens the toxicity effects of NH3 (USEPA, 1999, CCME, 

2010). According to DWAF (1996a), the ammonia toxicity level is exceptionally high under 

alkaline conditions and generally low under acidic conditions. Which substantiate why water 

bodies free from carbon-based wastes have low ammonia nitrogen concentrations typically less 

than 0.2 mg N/ℓ whereas, concentrations exceeding 10.0 mg N/ℓ are associated with wastewater 

pollution (World Health Organization, 2003a, 2011a). Commonly, unpleasant odour and taste 

problems may be detectable at concentrations between 1.00 and 2.00 mg N/ℓ (SEPA, 2006). The 

presence of NH3 in concentrations exceeding 2.00 mg N/ℓ compromises water chlorination 

process, decreases disinfection efficiency of water, and promotes the formation of nitrite in water 

distribution networks; which eventually cause taste and odour problems (Zhang et al., 2018, Tian 

et al., 2019). 

 

Nitrite is toxic to fish, and aquatic invertebrates at levels as low as 0.10 mg N/ℓ (Francis-Floyd et 

al., 2012) and more importantly, nitrite is possibly fatal, especially to infants (Shah and Joshi, 

2017). Consequently, NH3 levels permitting the nitrification process should then be monitored 

and controlled as a primary measure of this effect (Banda, 2015). According to EFSA (2012), 

NH3 can react with other substances to form salts such as ammonium chloride, ammonium 

sulphate and ammonium nitrate. Furthermore, the World Health Organization (2011a) confirms 

that NH3 reacts with chlorine and reduces free chlorine, which affects water boards (WBs) treating 
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water to potable standards. Ammonia corrosive action damages zinc and copper alloy-based 

metals (Cherchi et al., 2019). Treatment of NH3 in water can be achieved through cation alteration 

using hydrogen zeolite, de-aeration, membrane filtration and chlorination. Whereby, commercial 

ion exchange resins which have a spontaneous affinity for ammonia can be used for the total 

removal of ammonia in water (DWAF, 1996a, Tian et al., 2019). 

5.3.5.2 Calcium (Ca) 

Calcium (Ca) is the most abundant alkaline mineral of the earth (MacAdam and Jarvis, 2015). 

Fortunately, calcium has no adverse short term physiological problems in the human system 

(Sudha et al., 2016); however,  in the long-term, continuous consumption of calcium at excessive 

concentration might cause kidney stones (Rolence et al., 2014). Calcium concentration levels of 

100.00 mg Ca/ℓ and beyond are capable of forming scales in water distribution pipes and 

household appliances (Sudha et al., 2016, Al-Ghouti et al., 2019). Tang et al. (2019), stated that 

water softening technologies which include lime softening, pallet softening, ion exchange and 

membrane filtration, are used to reduce the effects of calcium in potable water. 

5.3.5.3 Chloride (Cl) 

Chloride-containing compounds are a common constituent in water and generally found in the 

form of inorganic salts such as sodium chloride (NaCI), potassium chloride (KCI), calcium 

chloride (CaCI2) and magnesium chloride (MgCl2). They are highly soluble in water and regarded 

as the principal-agents contributing to the variation of water salinity (Oswald et al., 2019). 

Chlorides accumulate in solution form with constituents originating from natural and 

anthropogenic sources including weathering material, atmospheric precipitation, saline intrusion, 

leaching from contaminated soils, wastewater effluent, industrial effluent, and road/overland 

runoff (Medalie, 2013, Corsi et al., 2015, Oswald et al., 2019). Although high chloride 

concentrations are unpleasant, they are necessary for human health, and they can be consumed at 

appropriate quantities to assist the kidneys, nervous system and for nutrition purposes 

(Government of Saskatchewan, 2010). Conversely, excessive intake of chloride is associated with 

kidney failure and hypertension leading to, ischaemic heart disease and stroke (EFSA, 2005). 

 

High chloride concentrations tend to accelerate the rate of corrosion in the distribution systems 

and household appliances (Ng and Lin, 2016, Stets et al., 2018, Venâncio et al., 2018). The 

recommended corrosive thresholds are, 50.00 mg Cl/ℓ for distribution systems and 200.00 mg 

Cl/ℓ for household appliances. Although aesthetic thresholds are dependent on the associated 

cation, approximately 200.00 mg Cl/ℓ gives a salty taste that becomes very distinctive when 

chloride levels reach 400.00 mg Cl/ℓ and intolerable with concentrations beyond 600.00 mg Cl/ℓ. 

In excess of 2,000.00 mg Cl/ℓ, nausea problems are evident, and concentration level of 10,000.00 
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mg Cl/ℓ have a tendency of causing dehydration and vomiting (DWAF, 1996a, World Health 

Organization, 2011a). The recommended threshold for both drinking water and aquatic life is 25.0 

mg Cl/ℓ. Severely elevated chloride concentrations are detrimental to aquatic organisms and 

responsible for a phenomenon called meromixis (stratification) resulting in oxygen depletion and 

ultimately limiting the survival of aquatic life (CCME, 2011, Oswald et al., 2019). Chlorides are 

effectively removed by ion exchange and desalination techniques (Banda, 2015). 

5.3.5.4 Chlorophyll-a (Chl-a) 

Chlorophyll (Chl-a) is an essential indicator of photosynthetic organisms in surface water, and 

Chl-a is generally associated with the presence of phytoplankton and or algae (González-García 

et al., 2018, Nhiwatiwa et al., 2019). In clear surface water, Chl-a concentration levels are 

approximately less than 1.00 µg Chl-a/ℓ, and in severe nuisance conditions, concentrations can 

surpass 50.00 µg Chl-a/ℓ. Though considered as rare scenarios, extreme concentrations above 

1,000.00 µg Chl-a/ℓ have been recorded (DWAF, 1996a). Soluble nutrients, especially 

phosphorus and nitrogen, are the key determinants promoting algae blooms (eutrophication), 

which contribute significantly towards increased levels of chlorophyll-a (Ajmal et al., 2018, 

Sadeghian et al., 2018, Afridi et al., 2019, Andrade et al., 2019, Hashim et al., 2019, Liu et al., 

2019). Such enriching nutrients often originates from anthropogenic activities which include 

septic system leakages, malfunctioning wastewater treatment plants and fertiliser runoff (Banda, 

2015, Omwene and Kobya, 2018, Omwene et al., 2018, Rankinen et al., 2019). 

 

Numerous phytoplankton species exist, some are the source of oxygen and food for herbivorous 

grazers (Kovács et al., 2017), but some are harmful. The most unfavourable algal blooms (i.e., 

cyanobacteria) are burdensome because of their toxicity and the ability to adapt to the most 

extreme environmental conditions (Kim et al., 2019b). Blue-green algae might cause severe 

gastroenteritis, vomiting and liver function impairment in humans. Whereas, in mammals, toxic 

algal might cause neurotoxic poisoning and respiratory arrest (DWAF, 1996a). Furthermore, algal 

gives rise to undesirable tastes and odours, which ultimately causes water to be less acceptable, 

especially for domestic uses. The presents of algal cells in water distribution systems causes 

potential bacterial regrowth and turn treated water into a greenish colour (Jones and Lee, 1982, 

DWAF, 1996a). Although effective removal of algae solely depends on the species involved; 

treatment processes such as coagulation, flocculation, sedimentation and chlorination are among 

the techniques employed to sufficiently eliminate the effects of chlorophyll causing plants. 

However, chlorination may produce potentially toxic by-products (DWAF, 1996a, Banda, 2015). 
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5.3.5.5 Electrical conductivity (EC) 

Electrical conductivity (EC), trustily affected by the presence of inorganic dissolved solids such 

as bicarbonate, carbonate, chloride, nitrate, sulphate, phosphate, sodium, magnesium, calcium, 

iron, potassium and aluminium cations (World Health Organization, 2003d, 2011a). Accordingly, 

EC of water is directly proportional to total dissolved solids (TDS) concentration in water; and 

depending on the accuracy desired, EC and TDS measurements can be used interchangeably to 

indicate an approximate concentration of the other (Rhoades et al., 1999, Payment et al., 2003). 

Although not precisely equivalent, EC and TDS are directly related, and for most purposes, they 

are comparable in their meaning and both used to represent the salinity of surface water (USEPA, 

1986, Piccolo and Marini, 2004, Banda, 2015). Nevertheless, EC is commonly used as compared 

to TDS because, it is easier faster and inexpensive to measure EC of water rather than TDS 

concentration (DWAF, 1996a, 1996c, World Health Organization, 2003d, Wozniak, 2011). 

 

Fundamentally, TDS (mg/ℓ) can be achieved from multiplying EC (µmhos/cm) with an 

experimentally derived coefficient value ranging from 0.55 to 0.90 with 0.65 being the most 

favourable value as suggested by the following conversion equation (DWAF, 1996a, 1996b, 

1996c, Narsimha and Sudarshan, 2018): 

  Eq. 5.17 

Where: TDS  total dissolved solids concentration in milligram per litre (mg/ℓ); and 

 EC is the electrical conductivity concentration in micro Siemens per meter (µS/m). 

Notably, EC is also affected by temperature, and for the same reason, EC measurements are 

standardised at twenty-five degrees Celsius (25 oC). EC of water increases with the increase in 

temperature (DWAF, 1996c, CWT, 2004). Since sewage contains chloride, phosphates, nitrates, 

etc., pollution by wastewater effluent will automatically increase the EC of water; but conversely 

so, oil spillages will significantly reduce electrical conductivity (Banda, 2015). 

 

EC related cations, in particular, calcium and magnesium salts have substantial nutritional value 

when consumed at low concentrations, typically less than 45.00 µS/m. In contrast, high 

concentrations cause an unpleasant taste to water and may adversely affect the kidneys. Besides, 

laxative and neurotoxic effects are associated with intake of salts at high concentrations; 

especially sodium sulphate and magnesium sulphate. (DWAF, 1996a). Extremely low salt 

concentrations may be objectionable because they cause water to have a bland, watery taste. 

Whereas, an increase in dissolved salts escalates hardness of water, which causes soap to lather 

poorly and skin dryness if used for bathing and washing purposes (World Health Organization, 

2003d, Wilson, 2013). 

.6 5TDS EC=
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Scaling and corrosion tendencies triggered by a high concentration of salts, mostly relating to EC 

have a severe effect on durability and functionality of industrial, plumbing and household 

appliances (World Health Organization, 2003d, 2011a, Madarász et al., 2014). Depending on the 

difficultness and complexity of the primary salts to be removed, EC and or TDS can be treated 

with simple processes such as pH balancing, chemical precipitation, and to some extent, with 

costly and sophisticated technologies such as reverse osmosis (DWAF, 1996a, 1996b). 

5.3.5.6 Fluoride (F) 

Considerably in appropriate concentrations, fluoride (F) is regarded as a critical factor to human 

health, beneficial to both dental and bone development. Concentrations of less than 1.0 mg F/ℓ 

are deemed as reasonably safe, ideal for strengthening the bone structure and providing a tooth-

enamel surface that prevents dental decay (Walia et al., 2017, Zhang et al., 2017, Abiye et al., 

2018, Narsimha and Sudarshan, 2018, Barathi et al., 2019). While fluoride is considered an 

essential trace element in human health, excessive expose is harmful to human beings. Excessive 

concentrations give rise to a series of adverse health effects that damages the osseous tissues 

(teeth and bone) and soft tissues (liver, kidney, brain, etc.) (Yang et al., 2018). High 

concentrations exceeding 2.00 mg F/ℓ results in permanently mottled teeth, commonly known as 

dental fluorosis (Ncube and Schutte, 2005, Thiessen, 2010, Azhdarpoor et al., 2018, Buckley et 

al., 2018, Barathi et al., 2019); whereas concentrations above 4.00 mg F/ℓ are associated with 

severe skeletal fluorosis and extreme bone deformity (Vani and Reddy, 2000, World Health 

Organization, 2004a, 2005, Thiessen, 2010, Abiye et al., 2018, Singh et al., 2018, Li et al., 2019). 

 

Studies also suggest that prolonged intake of high fluoride might cause brain damage, increased 

rate of urolithiasis (kidney stones), impaired intelligence development in children (Narsimha and 

Sudarshan, 2018), digestive and nervous disorder (Banda, 2015, Barathi et al., 2019). Worse still, 

the chronic effects of high doses might attack the kidneys of the foetus (unborn babies) and that 

of the suckling mammals (Yang et al., 2018). Increasing water temperature increases the toxic 

effects of fluoride, whilst increasing water hardness reduces the harmful effects (DWAF, 1996c). 

 

Fluoride-bearing minerals are generally associated with local igneous and metamorphic rocks, 

and these minerals can undergo dissolution leading to a significant rise of fluoride in water (Zhang 

et al., 2017, Abiye et al., 2018, Buckley et al., 2018). Other fluoride-contaminants are dispersed 

by wastewater and industrial effluents, with fertiliser, toothpaste, insecticide aluminium and steel 

manufacturing plants being the most contributing agents (Barathi et al., 2019). Solely for health 

benefits, fluoride (F) is frequently added in potable water to achieve the desired concentration of 

about 1.00 mg F/ℓ; which concentration level is regarded as relatively safe and beneficial to 
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human consumption (National Research Council, 2007, Tiemann, 2013, Yang et al., 2018, Barathi 

et al., 2019). 

 

Different reports and studies (DWAF, 1996a, Fawell and Bailey, 2006, Buckley et al., 2018), 

have shown that; technologies employed for the treatment of fluoride in water are relatively 

expensive, both in the capital and operational costs. More so, they are sophisticated, requiring 

high levels of skill during design, operation and maintenance of the treatment plants. The 

purification process is influenced by the proportion of the fluoride ions and the solubility of such 

ions (Webber, 2009). In most cases, because fluoride is a relatively stable anion; it is difficult to 

reduce fluoride to desirable concentration levels. Nevertheless, precipitation, adsorption, ion 

exchange, membrane filtration, electrodialysis and reverse osmosis forms part of the treatment 

methods available for the removal of fluorides in water (Lennon et al., 2004, World Health 

Organization, 2011a, Singh et al., 2018, Barathi et al., 2019). 

5.3.5.7 Hardness (CaCO3) 

Hardness, customarily expressed as calcium carbonate (CaCO3) is an inverse solubility salt, with 

calcium (Ca) and magnesium (Mg) as primary cations (World Health Organization, 2011b, 

Sepehr et al., 2013). CaCO3 is prompted by a change in water temperature, water pressure and 

pondus Hydrogenium (pH) levels, mainly due to reduction of carbon dioxide (CO2) from the 

solution. Calcium carbonate is perhaps, the most frequently encountered deposit formulated in 

water systems and the resulting scale might range from an easily removable, small-thin coating 

to a very hard and widespread encrustation (MacAdam and Jarvis, 2015). Most commonly, water 

bodies with hardness levels exceeding 200.00 mg CaCO3/ℓ, but less than 300.00 mg CaCO3/ℓ are 

considered marginal and tolerated, whilst values exceeding 300.00 mg CaCO3/ℓ are not 

acceptable for most domestic applications (Tirkey et al., 2017, Hailu et al., 2019). 

 

Hardness is categorised in two forms; that is, (i) temporary hardness which is associated with the 

presence of bicarbonates of calcium (Ca) and magnesium (Mg), and (ii) permanent hardness that 

is attributed to non-bicarbonate minerals (salts) such as chloride (Cl), sulphate (SO4) and nitrate 

(NO3). In the absence of observed hardness concentration values, and given the concentrations of 

Ca and Mg, then hardness values can be alternatively obtained using the following Equation 5.18 

(DWAF, 1996a, 1996b, Banda, 2015, Bogart et al., 2016, Beyene et al., 2019): 

  Eq. 5.18 

Where: CaCO3 is the calculated hardness concentration in milligrams per litre (mg/ℓ); 

 Ca is the observed calcium concentration in milligrams per litre (mg/ℓ); and 

. .2 497 4 118CaCO Ca Mg3 = +
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 Mg is the observed magnesium concentration in milligrams per litre (mg/ℓ). 

Hard water is formed when water becomes in contact with carbonate-bearing rock, particularly 

limestone deposits and chalk-containing minerals (MacAdam and Jarvis, 2015). The health 

effects of hardness are directly associated with the major cations involved; for instances, 

hypercalcaemia and milk-alkali syndrome are primarily caused by excessive calcium intake 

(World Health Organization, 2011b). Whereas increased consumption of magnesium salts may 

cause a temporary adaptable change in bowel habits (diarrhoea), and occasionally causes 

hypomagnesaemia. Furthermore, a high concentration of Mg and SO4 might trigger laxative 

effects (World Health Organization, 2011b, Banda, 2015). 

 

Excessively hard water has corrosion tendencies and reduces the lathering capabilities of cleaning 

detergents and washing soaps. It also causes scum formation in heat exchange surfaces, which 

eventually develops anaesthetic marking of enamel surfaces (Kocher et al., 2003, Sepehr et al., 

2013, Wilson, 2013). Furthermore, if such deposits build in thickness, the coating surfaces act 

like insulation and compromise the efficiency of heat transfer (Skipton, 2009, Madarász et al., 

2014). In cases of water transfer pipes, the service diameter will be reduced, affecting the delivery 

capacity of such. 

 

Historically, the most commonly used water softening process, especially at a household level is 

water boiling, and it is most effective were bicarbonate salts responsible for temporary hardness 

are involved. Otherwise, antiscalants and softening agencies are employed to address hardness 

and reduce scaling potential (Cherchi et al., 2019). Depending on the level of cations involved, 

electro deionisation, electrodialysis, adsorption, chemical precipitation (lime soda), ultrafiltration, 

nano-filtration, microbial desalination, reserve osmosis and ion exchange are some of the 

technologies used to address hardness (refer to Bob and Walker, 2006, Apell and Boyer, 2010, 

Brastad and He, 2013, Rolence et al., 2014, Madarász et al., 2014, Zhang and Chen, 2016, Sellami 

et al., 2017). Amongst all these methods, ion exchange has been reported as the most convenient 

and economical without sludge generation (Vaaramaa and Lehto, 2003, Sepehr et al., 2013, Hailu 

et al., 2019). 

5.3.5.8 Magnesium (Mg) 

Magnesium (Mg), together with calcium (Ca), is responsible for water hardness (Yang et al., 

2006, Leurs et al., 2010, Brenner et al., 2015, Kousa, 2015, Jiang et al., 2016, Rosen et al., 2018). 

Magnesium is an essential nutritional element of the human body, involved in various enzymatic 

reactions, and also necessary for several vital physiological functions (World Health 

Organization, 2009, Rosanoff, 2013, Avni et al., 2013, Maraver et al., 2015, Al Alawi et al., 

2018). Therefore, appropriate intake of Mg in water have potential health benefits (Stevanovic et 
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al., 2017) and the recommended dietary intake is approximately 250.00 mg Mg/day (DWAF, 

1996a, Maraver et al., 2015). Assuming water consumption between 3.00 to 5.00 ℓ/capita/day, 

the corresponding Mg concentration range of 50.00 to 83.00 mg Mg/ℓ is still within the dietary 

intake limits. Nevertheless, 70.00 mg Mg/ℓ is the threshold for potable water (DWAF, 1996a). 

 

Evidence suggests that inadequate intake of Mg results in magnesium disorders 

(hypomagnesemia) that are associated with several adverse health outcomes (see World Health 

Organization, 2009, Jiang et al., 2016, Koren et al., 2017, Al Alawi et al., 2018, Rosen et al., 

2018). On the other hand, water with excessively high levels of Mg is aesthetically unacceptable, 

with a bitter taste and potentially cause diarrhoea (DWAF, 1996a). Similar to calcium and 

hardness, Mg inhibits the lathering of washing detergents and contributes to scaling problems 

(Sepehr et al., 2013, Brenner et al., 2015). 

 

Furthermore, Mg is also a cofactor to photosynthesis and protein synthesis operations of the aqua 

plants, low-magnesium-content water results in a decreased leaf magnesium with ultimately 

affect the chlorophyll content of the plants (Avni et al., 2013). In addition to the dissolution of 

carbonate rocks (Kousa, 2015)and seawater intrusion, pollution of surface water with high 

concentrations of Mg is typically from municipal and industrial wastewater discharge (Qadir et 

al., 2018). Although adsorption has been widely accepted, most probably due to low cost and high 

treatment efficiency, other treatment techniques such as membrane filtration, chemical 

precipitation and ion exchange have been employed in the treatment of water containing high 

concentrations of magnesium (DWAF, 1996a). 

5.3.5.9 Manganese (Mn) 

As a naturally occurring element, manganese (Mn) is relatively abundant in the earth’s crust 

(WRA, 2013, Neculita and Rosa, 2019, Pietrelli et al., 2019), and commonly found in water 

through weathering of manganese-bearing rocks (Banda, 2015, Gerke et al., 2016). Among other 

pollution sources, industrial effluent, acid-mine drainage, wastewater discharge, landfill leachate, 

borehole equipment (i.e., casing, piping, pump components, etc.) and underground storage tanks; 

they all significantly contribute towards the presence of Mn in water (Shu et al., 2019, Pietrelli et 

al., 2019, Neculita and Rosa, 2019). Most of the existing concentration limits of Mn in water are 

explicitly derived for aesthetic affairs other than health concerns. The human health effects are 

only relevant at significantly elevated concentrations, most probably at levels approximately ten 

times high than the recommended consumption limit of 0.05 mg Mn/ℓ (DWAF, 1996a, Gerke et 

al., 2016). 
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Nevertheless, considering such extreme exposure, manganese has been associated with 

neurological disorders and intellectual impairment (Ong et al., 2007, Hoyland et al., 2014, Gerke 

et al., 2016, Iyare, 2019, Neculita and Rosa, 2019, Shu et al., 2019), with symptoms such as 

headache, agitation, deafness, rigidity and tremor (Alvarez-Bastida et al., 2013, Pietrelli et al., 

2019). Children have a higher tendency of being affected because of their immature manganese 

homeostatic mechanism (Iyare, 2019). At high levels, Mn results in the formation of dark-brown 

precipitates responsible for altering turbidity (colour) of water, imparting unpleasant taste and 

giving rise to odour (smell) and scaling problems (WRA, 2013, Alvarez-Bastida et al., 2013, 

Hoyland et al., 2014, Gerke et al., 2016). Furthermore, the deposits might break off as black 

particles, which ultimately causes the unpleasant appearance of water, clog delivery pipes, stain 

plumbing fixtures and laundry (World Health Organization, 2011c, Abu Hasan et al., 2014, 

Dvorak and Skipton, 2014). 

 

Rust flakes might also be produced, risking the possibility of unwanted bacteria growth and 

contamination of already treated water in cases of water distribution systems (Banda, 2015, 

Scholz, 2016). The effectiveness of the available treatment techniques depends on the parameter’s 

relative concentration, type of Mn involved and pH level of water. Nonetheless, effective 

treatment methods for reducing manganese levels in drinking water include, aeration followed by 

filtration, adsorption systems, chemical precipitation, greensand filtration, ion exchange, 

oxidising filters and reverse osmosis (refer to; World Health Organization, 2011c, Dvorak and 

Skipton, 2014, Scholz, 2016, Vries et al., 2017, Hoslett et al., 2018, Neculita and Rosa, 2019, 

Pietrelli et al., 2019). 

5.3.5.10 Nitrate (NO3) 

Nitrate (NO3) is a naturally occurring ion (Gupta et al., 2000, Grosse et al., 2006, Fan, 2011, 

World Health Organization, 2011d, Serio et al., 2018), which is widespread and regarded as the 

most significant contaminant in water (Espejo-Herrera et al., 2015, Sadler et al., 2016). Usually, 

under anaerobic conditions; nitrate reduces to nitrite (denitrification process), and through 

oxidation, nitrites transform rapidly to nitrate (nitrification process) (DWAF, 1996a, 1996c, 

Banda, 2015). The processes are governed by water pH levels, temperature and availability of 

oxygen. Due to their co-occurrence and rapid inter-conversion, the two (nitrate and nitrite) are 

normally considered and measured simultaneously for water quality assessment procedures 

(DWAF, 1996a, 1996c, Banda, 2015). 

 

Nitrates can contaminate surface waters via geological formations containing nitrogen 

compounds, agricultural fertilisers, septic tank runoff, wastewater effluent, airborne nitrogen 

compounds emitted by the industry and automobiles, decaying plant and animal excrement from 
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areas of high-density animal confinement (Terblanche, 1991, Weyer et al., 2001, World Health 

Organization, 2011d, Fan, 2011, ODEQ, 2014, Sadler et al., 2016, Moore and Bringolf, 2018, 

Radfard et al., 2018, Serio et al., 2018, Ward and Brender, 2018, Biddau et al., 2019, Kawagoshi 

et al., 2019). Nitrate itself is a low-toxic compound, but when endogenously converted to nitrite 

(NO2), it becomes toxic to human health and the aquatic environment (Fan, 2011, Moore and 

Bringolf, 2018, Serio et al., 2018). 

 

Excessive exposure to nitrate/nitrite has been associated to several human health conditions, 

primarily amongst those are, (i) its tendency to interfere with the oxygen-carrying capacity of the 

red blood cells, leading to infant methaemoglobinaemia which is an acute health condition that 

causes the skin to turn a bluish colour; hence the term “blue baby syndrome” (Sadler et al., 2016, 

Radfard et al., 2018, Ward and Brender, 2018, Uzun and Debik, 2019); (ii) reacts readily with 

nitrosatable compounds in the stomach and generate N-nitroso compounds which potentially 

causes cancers of the digestive tract in adults (Weyer et al., 2001, Grosse et al., 2006, Espejo-

Herrera et al., 2015, Sadler et al., 2016, Schullehner et al., 2017, Uzun and Debik, 2019); and (iii) 

adverse pregnancy outcomes which include spontaneous abortion, foetal deaths (stillbirths), 

prematurity (delivery before thirty-seven weeks gestation) as well as infant mortality (Sadler et 

al., 2016, Ward and Brender, 2018). 

 

Other consequences of high nitrate ingestion are recurrent stomatitis and diarrhoea (Gupta et al., 

2000, Banda, 2015). In addition to human health effects, especially when combined with 

phosphates, high level of nitrate stimulates aqua-plant growth and contribute to eutrophication in 

surface waters (DWAF, 1996a, ODEQ, 2014, Uzun and Debik, 2019). Though the scientific 

community argue about the appropriateness of the current limits set for nitrates in potable water 

(Fan, 2011, Ward and Brender, 2018), 50.00 mg N/ℓ is the norm (Fan, 2011, Espejo-Herrera et 

al., 2015, Sadler et al., 2016, Radfard et al., 2018, Biddau et al., 2019). therefore, to achieve such 

standards, treatment techniques such as water softening (anion exchange), distillation, reverse 

osmosis, nano-filtration and electrodialysis apply to the removal of nitrates in water (DWAF, 

1996a, Gupta et al., 2000, NHDES, 2010, Uzun and Debik, 2019). The limitations in volumetric 

capacity and high cost of operation governs the application of these treatment processes (Gupta 

et al., 2000, Banda, 2015). 

5.3.5.11 Pondus Hydrogenium (pH) 

pH is a master variable, an essential property of the aqueous solution since it influences chemical 

reactions, equilibrium conditions and biological toxicity of an aqueous medium (Marion et al., 

2011, Karastogianni et al., 2016, Salvo et al., 2018, Anes et al., 2019). In surface water, pH is the 

measure of acid-base equilibrium of the water body (World Health Organization, 2003c, CANSE, 
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2008a). pH is governed by the number of free hydrogen ions (H+), hence the term “pondus 

Hydrogenium” referring to “potential Hydrogen” (CANSE, 2008b, Banda, 2015, Salvo et al., 

2018). The parameter is notionally defined as the negative decimal logarithm of the hydrogen ion 

activity (DWAF, 1996a, 1996b, Buck et al., 2002, Camões and Anes, 2015, Qin et al., 2015, 

Karastogianni et al., 2016). Usually, pH values range from 0 to 14.00; at pH level 7.00, the water 

is regarded as neutral. Whereas acidic conditions are indicated by pH values below 7.00 and pH 

levels greater than the neutral mark (pH>7.00), signifies alkaline (basic) conditions (CCME, 

1999, USEPA, 2006, Wilson, 2011, Qin et al., 2015, Karastogianni et al., 2016, Wardhany et al., 

2018). 

 

pH levels in water are primarily influenced by acid mine drainage, acid rain (resultant of industrial 

pollution), solid waste in the landfills, industrial effluent discharge particularly from chemical 

processing institutions, seawater intrusion, geology and geochemical composition of the 

underlying rocks (DWAF, 1996b, CCME, 1999, Qin et al., 2015, Karastogianni et al., 2016). If 

not carefully monitored and controlled, some of the water treatment chemicals and or processes 

might significantly affect the pH levels of both treated and de-sludging water, which might 

eventually lead into freshwater bodies (CANSE, 2008b, Banda, 2015, Qin et al., 2015). 

 

It is difficult and close to impossible to establish direct human health effects of pH, given that, 

pH effects are closely associated with a variety of other water quality variables. Nevertheless, 

abnormal pH values are associated with gastrointestinal irritation (Qin et al., 2015), eye irritation 

and exacerbation of skin disorder (Avvannavar and Shrihari, 2008). The variation of water pH 

levels might negatively affect the disinfection efficiency of chlorine and eventually promote the 

toxicity of other water quality variables (DWAF, 1996a). PH levels may influence the aesthetic 

condition of water; for example, under acidic conditions (pH<4.00), water may taste sour; whilst 

under alkaline conditions (pH>9.00), water test bitter and soapy (DWAF, 1996a, Avvannavar 

and Shrihari, 2008). Corrosion problems escalate with water having pH levels less than 6.50 

(CANSE, 2008b, NHDES, 2009, Qin et al., 2015), and scaling in plumbing pipes and fixtures 

may be evident at pH levels exceeding 8.50 (CANSE, 2008a, 2008b, Banda, 2015). The 

adjustment of pH in water achieved by the addition of alkaline or acid reagent. The commonly 

used alkaline reagents are sodium carbonate, sodium hydroxide and lime; whereas acidic reagents 

include carbon dioxide, hydrochloric and sulphuric acids (DWAF, 1996a, 1996b). Because alkalis 

and acids are hazardous substances, pH adjustment processes require special precautions and 

trained personnel (DWAF, 1996a, Banda, 2015). 
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5.3.5.12 Sulphate (SO4) 

Sulphate (SO4) is a common constituent of water that is regarded as non-toxic and usually coexist 

with calcium (Ca) and magnesium (Mg) pollutants in both, freshwaters and wastewaters (Dou et 

al., 2017). Contamination of water with sulphate often originates from natural activities which 

include, saltwater intrusion, dissolution of sulphate-bearing minerals, acid rock drainage, 

atmospheric deposition and decomposing organic matter (see, World Health Organization, 2011a, 

Meays et al., 2013, Li et al., 2015, Pessoa-Lopes et al., 2016, Burke et al., 2018, Fernando et al., 

2018). Besides, unregulated disposal of sulphates from human activities can artificially raise the 

concentration levels of sulphate in water. Example of such anthropogenic influences includes 

industrial discharge, acid mine drainage, wastewater effluent, burning of fossil fuels and 

agricultural runoff (refer to, World Health Organization, 2004b, Davies, 2007, Szynkiewicz et al., 

2011, Meays et al., 2013, Kabdaşli et al., 2016, Dou et al., 2017). 

 

Sulphate concentration levels below 200.00 mg SO4/ℓ have no health or aesthetic effects. 

Depending on the cation involved, sulphates beyond 400.00 mg SO4/ℓ may cause water to taste 

bitter and or salty (DWAF, 1996a, Nariyan et al., 2018), immediate intestinal discomfort, cause 

diarrhoea and subsequently dehydration (Banda, 2015, Venâncio et al., 2018). The extent of such 

a tendency is related to the cations involved; for example, magnesium will trigger diarrhoea, 

whereas sodium will not induce diarrhoea (DWAF, 1996a, Banda, 2015). The laxative effects 

may be temporary and may cease once accustomed and adaptive to high sulphate concentrations 

(DWAF, 1996a, Government of Saskatchewan, 2007). Further to this, high concentration of SO4 

triggers an increased rate of corrosion of concrete-made hydro-structures, plumbing pipes and 

fixtures (World Health Organization, 2004b, 2011a, Ng and Lin, 2016, Dou et al., 2017, Nariyan 

et al., 2018). As a result of the corrosion effect, metal oxides, and dark slime may be evident in 

the distribution system (CANSE, 2008c, Banda, 2015). 

 

According to EPA (2001), even with minimum dissolved oxygen availability, sulphate can readily 

convert to sulphide and cause water to have noxious odours which smell like rotten eggs. 

Numerous technologies are available for the treatment of sulphate in water; and these include, ion 

exchange/adsorption, chemical precipitation, electrodialysis, distillation and reverse osmosis (as 

explained by, DWAF, 1996a, 1996b, De Los Santos et al., 2015, Kabdaşli et al., 2016, Dou et al., 

2017, Fernando et al., 2018, Nariyan et al., 2018). The suitability and effectiveness of each 

specific treatment method depend on the volume of water to be treated, the concentration of the 

sulphate in water, the presence of other chemical parameters and whether bacterial contamination 

is of paramount concern (CANSE, 2008c, Banda, 2015, Fernando et al., 2018). 
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5.3.5.13 Turbidity (Turb) 

Turbidity is not a contaminant concentration, but a dependant variable representing the collective 

measure of optical properties of other water contaminants responsible for causing light to be 

scattered and absorbed rather than transmitted in straight lines through a water sample (Wilde et 

al., 1998, Slaets et al., 2014, Castaño and Higuita, 2016, Robert et al., 2016, Miljojkovic et al., 

2019). Consequently, it is known to be the “cloudiness” that represents the degree of water clarity 

(Birtwell et al., 2008, Constantin et al., 2016, World Health Organization, 2017, Stevenson and 

Bravo, 2019). They are numerous units of turbidity, which are considered virtually equivalent and 

sometimes used interchangeably (EPA, 2001). Nonetheless, the Nephelometric Turbidity Units 

(NTU) are the most commonly used in South Africa, hence adopted for this study. Turbidity is 

dynamic and somewhat inevitable; its stable state is significantly linked to environmental 

phenomena and operational activities (Miljojkovic et al., 2019, Stevenson and Bravo, 2019). 

 

Nevertheless, the principal contributors to turbidity are, sediments, finely divided organic and 

inorganic matter, soluble coloured organic compounds and microscopic organisms, among others 

(Wilde et al., 1998, CANSE, 2008a, World Health Organization, 2011a). Sources of such 

suspended matter are diverse and include, but not limited to, reservoir drawdown-flushing, algal 

blooms (eutrophication), wastewater discharge, industrial effluent, exceptional rainfall events, 

soil erosion and decomposition of organic matter (Johnson et al., 2007, MPCA, 2008, Kjelland et 

al., 2015, Constantin et al., 2016, Robert et al., 2016, World Health Organization, 2017, Suzuki 

et al., 2018, Uncles et al., 2018). Turbidity might not directly present human health hazards 

(World Health Organization, 2017, Stevenson and Bravo, 2019); however, turbid water have a 

negative impact on consumer acceptability due to the visible cloudiness (World Health 

Organization, 2011a, Banda, 2015). 

 

Direct human health threat depends exclusively on the exact composition of the turbidity causing 

particles (EPA, 2001, World Health Organization, 2017). As noted by DWAF (1996a), turbid 

water readily adsorbs viruses and bacteria, which have a significant effect on the microbiological 

quality of water. In the case of disease-causing organisms (bacteria, viruses, parasites, etc.); 

problems such as nausea, cramps, headaches and diarrhoea might arise (CANSE, 2008a, 2009, 

Robert et al., 2016). Turbidity levels exceeding 5.00 NTU may strongly affect the aesthetic 

properties of water, causing undesirable taste, smell (odour) and colour (DWAF, 1996a, CANSE, 

2009, Banda, 2015). Turbid water is reported to cause evasive behaviour, gill clogging, 

physiological effects, and even death of aquatic organisms, especially less-mobile species 

(Kjelland et al., 2015, Suzuki et al., 2018)  
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In addition, the particles forming turbidity may seriously interfere with the treatability of water, 

and in the case of the disinfection process, the consequences might be severe. Turbid water tends 

to harbour pathogenic microorganisms and impair disinfection (Obi et al., 2008, CANSE, 2009, 

World Health Organization, 2017). Thus, increasing potential health effects and compromising 

the wellbeing of the end-users. Given this, turbidity acts as an indicator of possible microbial 

contamination (World Health Organization, 2011a). Treatment of turbidity depends on the 

primary contributor, for instance; iron and manganese require ion exchange processes, other than 

that; sedimentation of particulate matter through coagulation followed by filtration and 

disinfection is the common practice (Banda, 2015, World Health Organization, 2017, Nishat 

Ashraf et al., 2018). 

 

Conclusively, the selection of the maximum allowable variables that can effectively classify and 

describe the degree of water quality is not always straightforward. Nonetheless, the above thirteen 

water quality parameters are the definite key contaminants regarded as the most frequently 

monitored variables in South Africa, with concentrated pollution effects, and the most dangerous 

variables with obdurate legal restrictions in water quality regulations. Accordingly, they have 

significant effects on water quality, which justify their inclusion as input parameters towards the 

proposed water quality model. The concept of using water quality indices (WQIs) is grounded on 

the comparison of individual water quality variables through the integration of sub-indices in 

relation with assigned weight coefficients of each parameter. Aggregation of sub-indices is 

accomplished through the use of mathematical functions commonly known as indexing models. 

5.3.6 Weighted indexing model 

The mathematical structures and application of indexing models are generally governed by the 

degree of accuracy perceived and the type of weightage coefficients, which might be equally or 

unequally defined. Various aggregation methods exist, and each technique has its formidable 

challenges; hence the index developer has to decisively select the most appropriate and relevant 

indexing model, preferably with fewer complications that might adversely influence the final 

index value. Otherwise, defining the best and absolute aggregation model is close to impossible. 

Since there is no supreme and favourable technique of formulating water quality indices (WQIs), 

various aggregation methods were tried and tested. Modified weighted sum (additive) method, 

was found to be the most appropriate for the development of a universal water quality index for 

monitoring South African watersheds. The modified weighted sum method is represented as 

Equation 5.19. 
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The scenario-based analysis was used to modified and align the model with local conditions to 

developed the final universal water quality index (UWQI), which is an improved version of the 

weighted sum method. The model equation integrates sub-index values of selected parameters 

with relation to assigned parameter weights; and obtain the overall water quality status, which is 

presented as a unit-less number ranging from 0 to 100. The rationale employed is based on solving 

multiple systems of equations (Wang et al., 2019), where key-points of the rating curves were 

used to generate series of m equations, with two unknown variables (x, z) and n water quality 

parameters in the form: 

WQI1 = (1/x1)(SI11w1 + SI12w2 + SI13w3 + … + SI1nwn)z
1 

WQI2 = (1/x2)(SI21w1 + SI22w2 + SI23w3 + … + SI2nwn)z
2 

… 

WQIm = (1/xm)(SIm1w1 + SIm2w2 + SIm3w3 + … + SImnwn)z
m 

 Eq. 5.20 

where: WQI1, …, m are the ideal water quality index values corresponding to the key-points of 

the rating curves; 

 x1, …, m are the equation denominators (first unknown variable); SIm1, …, mn are the 

corresponding sub-indices; 

 w1, …, n are relative weight coefficients for the thirteen water quality parameters; and 

 z1, …, m are the equation exponentials (second unknown variable). 

The first part was to find the optimum values of x and z; thereafter, the closest x-value was rounded 

off and substituted into the same set of equations to find the corresponding optimum z-value, 

which become the final exponential factor of the UWQI. Equation 5.21 represents the final 

universal water quality (UWQI) model: 

 
 Eq. 5.21 

where: UWQI is the aggregated index value ranging from zero to hundred, with zero 

representing water of poor quality and hundred denoting water of the highest 

quality; 

 si is the sub-index value of the ith water quality parameter obtained from the sub-index 

linear functions, and the values range from zero to hundred, similar to WQI 

values; and 
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 wi is the weight coefficient value for the ith parameter represented as decimal number 

and the sum of all coefficients is one, (w1 + w2 + w3 + … + wn = 1); and 

 n is the total number of sub-indices and in this case n = 13. 

5.3.7 Scenario-based analysis (UWQI) 

The scenario-based analysis helps identify potential data-processing gaps, which in turn enlighten 

on the necessary precautions imperative to minimise the impact, or perhaps eliminate the problem. 

To determine such, ideal sets of predictive variables have been established under a variety of 

scenarios to calculate specific water quality variables. Considering increments of five scores, 

eleven probable scenarios have been examined to demonstrate the model’s ability to predict 

scores of all ranges, from class one (excellent) to class five (worse). The eleven forecasts are 

founded on three-level-grading, which comprise of (i) worst-case scenario, 0 £ Index £ 25; (ii) 

base-case scenario, 45 £ Index £ 55; and lastly (iii) best-case scenario, 75 £ Index £ 100. 

 

Purposefully, the groupings provided a complete change of circumstances with each scenario, 

thereby widening the range of analysis and include a considerable array of possibilities. With 

reference to permissible concentration limits and developed linear sub-index functions (Figure 

5.1), definite assumptions about all eleven cases have been carefully considered. Accordingly, 

parameter values corresponding to each scenario have been established and applied to perform 

the analysis. The results of the scenario-based analysis are presented in Table 5.7 and Figure 5.3. 

Table 5.7: Comparison of modified weighted arithmetic water quality index (WQI) and the 

developed universal water quality index (UWQI) using the scenario-based analysis 

to establish the functionality and predictive capacity of the models 

Sample 
identity 

Water quality index results from the scenario-based analysis 
Ideal WQI results  Modified weighted WQI results  Developed UWQI results 
Index score WQI class  Index score WQI class  Index score WQI class 

Max. 100.000 1  99.506 1.0  99.736 1 
Avg. 50.000 4  37.571 4.0  48.406 4 
1 0.000 5  0.000 5.0  0.000 5 
2 5.000 5  0.177 5.0  3.179 5 
3 10.000 5  0.827 5.0  7.364 5 
4 25.000 5  6.250 5.0  22.127 5 
5 45.000 4  20.254 5.0  41.951 4 
6 50.000 4  25.027 4.0  47.069 4 
7 55.000 3  30.269 4.0  52.200 3 
8 75.000 3  56.250 3.0  73.127 3 
9 90.000 2  80.976 2.0  89.159 2 
10 95.000 2  93.749 2.0  96.554 1 
11 100.000 1  99.506 1.0  99.736 1 
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Source: Ideal WQI values are generated using sub-index key points, modified weighted WQI scores are produced 

using House (1986, 1989, 1990) and UWQI results are extracts from the WQVM (Banda and Kumarasamy, 

2020b, 2020c). 

Notes: Samples used for the scenario-based analysis are predictive values ideal for establishing a specific set of 

results as demonstrated with the ideal WQI results columns. With increments of five scores, eleven probable 

scenarios have been considered to illustrate the model’s ability to predict scores of all ranges, from Class 1 

(good) to Class 5 (very bad). 

 

Figure 5.3: Plot diagram showing the results of the scenario-based analysis of the developed 

universal water quality index (UWQI) model and the modified additive water 

quality model (House, 1986, 1989, 1990) against ideal water quality values derived 

from eleven probable scenarios 

Source: Ideal WQI values are generated using sub-index key points, modified weighted WQI scores are produced 

using equation suggested by House (1986, 1989, 1990) and UWQI results are extracts from the WQVM 

(Banda and Kumarasamy, 2020b, 2020c). 

Notes: The eleven cases represented as samples 1, 2, …, n, which corresponds respectively to water quality (WQI) 

values of 0, 5, 10, 25 (worst-cases); 45, 50, 55 (base cases); and 75, 90, 95, 100 (best cases). 

Not to devalue the efforts by House (1986, 1989, 1990), the modified weighted arithmetic model 

could not sufficiently satisfy the expected analytical results. Although the predictive pattern is 

recommendable, there is a significant lag between the calculated results and the ideal case, 

especially with the base-case scenarios (45 £ Index £ 55). Henceforth, the model was further 

improved to suit our local conditions. In view of the analysis results, it is evident that the proposed 

UWQI is robust and technically stable. 

 

The degree of variation from the ideal values is negligible, better off; the prediction pattern 

followed the ideal graph with corresponding values on both WQI scores and classification. Which 
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therefore pronounce the competence of the UWQI to be used as an evaluation tool for monitoring 

South African river catchments. With an attempt to pilot the initiative, Umgeni water quality data 

have been evaluated using sub-indices Equations 5.4 to 5.16, weight coefficients in Table 5.5 and 

the proposed universal water quality index (UWQI) model documented as Equation 5.21. The 

WQI results are summarised in Figure 5.4 and presented in detail as Annexure E. 

 

Figure 5.4: Water quality index results calculated using the developed universal water quality 

index (UWQI) for Umgeni water quality data gathered monthly for four years 

starting from 2014 until 2018 

Source: UWQI results are extracts from the WQVM (Banda and Kumarasamy, 2020b, 2020c). 

Notes: The Umgeni water quality data is from eight sampling stations which fall under four different catchment 

areas. The catchments include Umgeni River catchment (U20) for Henley, Inanda and Midmar Dams; 

Umdloti River catchment (U30) for Hazelmere Dam; Nungwane River catchment (U70) for Nungwane Dam; 

and lastly Umzinto/Umuziwezinto River catchment (U80) for Umzinto Dam. Testing the model with data 

from various river catchments promote the objective of establishing a universal water quality index suitable 

for use across the catchment areas in South Africa. The catchment identity codes in parentheses (); are unique 

codes drafted by the Department of Water and Sanitation to identify river catchments. 

The spatial and temporal changes in water quality for Umgeni Water Board are evident over a 

period extending to four years. The varying sequence is very narrow and comprises of index 

scores as high as 95.154 (class one), an average of 87.780 (class two) and the lowest score of 

75.985 (borderline of class two). 

5.3.8 Evaluation of spatial and temporal trends using UWQI 

Umgeni water quality data have been evaluated using the proposed universal water quality index 

(UWQI) model documented as Equation 5.21. Based on the UWQI, Table 5.8 and Figure 5.4 

indicates spatial and temporal water quality variations among the six sampling sites. The results 
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show that water quality in the region can be categorised as “acceptable water quality,” with the 

lowest WQI score of 75.985 (class two) recorded at station 5 (Umzinto Dam). In this case, Turb 

and Mn are the main contributors to the deterioration of the water quality, having concentration 

levels of 13.20 NTU and 1.05 mg/ℓ, respectively. Sampling station 2 recorded the highest surface 

water quality with an index of 95.154 (class one) during the summer of 2017. NO3 is the principal 

pollutant factor responsible for the minimum WQI scores for station 2, 3, 4 and 6 with NO3 

concentrations of 0.99, 1.31, 4.50 and 1.77 mg/ℓ respectively. 

Table 5.8: Water quality index matrix for the six sampling stations 

Year Month 
Sampling Stations 
Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

2014 July 80.454 91.972 88.398 91.205 89.422 90.709 
 October 83.799 86.983 90.320 83.299 87.035 85.620 
 Seasonal Average 1 82.126 89.478 89.359 87.252 88.229 88.165 
 Annual Average 2 80.937 87.489 89.628 91.417 84.780 88.353 
2015 January 79.093 84.188 92.351 94.918 86.730 90.699 
 April 80.403 82.485 92.888 90.794 90.379 92.198 
 July 79.684 84.039 87.125 87.718 78.318 89.607 
 October 87.127 84.697 91.752 94.053 90.043 93.946 
 Seasonal Average 1 81.577 83.852 91.029 91.871 86.368 91.613 
 Annual Average 2 82.735 83.991 91.322 90.990 86.477 91.603 
2016 January 78.382 84.365 93.280 94.079 85.265 88.383 
 April 81.525 86.613 93.451 92.544 91.893 93.684 
 July 86.512 90.727 83.930 86.759 81.372 91.553 
 October 85.123 90.072 91.647 86.995 89.275 90.266 
 Seasonal Average 1 82.885 87.944 90.577 90.094 86.951 90.971 
 Annual Average 2 81.722 88.799 89.203 89.879 87.797 90.033 
2017 January 82.434 95.154 83.685 92.857 86.034 92.016 
 April 82.422 92.628 91.914 94.349 91.792 91.212 
 July 85.156 91.868 86.296 91.048 91.310 81.898 
 October 81.209 94.462 90.945 93.905 85.208 86.032 
 Seasonal Average 1 82.805 93.528 88.210 93.040 88.586 87.789 
 Annual Average 2 81.862 92.322 88.731 92.926 85.659 85.720 
2018 January 80.474 87.497 84.115 92.964 85.161 87.465 
 April 80.630 94.708 90.520 94.061 87.997 87.905 
 July 83.139 91.396 84.653 91.407 82.548 87.348 
 Seasonal Average 1 81.415 91.200 86.429 92.811 85.235 87.570 
 Annual Average 2 81.259 90.804 86.758 92.830 86.709 87.580 
Station Minimum WQI 3 77.983 77.873 80.007 83.299 75.985 80.482 
Station Maximum WQI 4 88.083 95.154 93.451 94.918 92.639 93.946 
Station Average WQI 5 81.807 87.390 89.054 91.514 86.392 88.739 

Source: UWQI results are extracts from the WQVM (Banda and Kumarasamy, 2020b, 2020c) 

Notes: 1 Seasonal average considering WQI scores for January, April, July and October only, 2 Annual average 

considering WQI values for the entire year from January to December, and 3, 4, 5 Overall station WQI scores 

taking into account the whole period of water quality evaluation; that is, from June 2014 to July 2018. 
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Figure 5.5: Water quality index results calculated using the developed universal water quality 

index (UWQI) for Umgeni water quality data for a period of four years from June 

2014 to July 2018 (a) Umgeni River catchment for Henley Dams, (b) Umdloti 

River catchment for Hazelmere Dam, (c) Umgeni River catchment for Inanda 

Dams, (d) Umgeni River catchment for Midmar Dam, (e) Umzinto/Umuziwezinto 

River catchment for Umzinto Dam, and (f) Nungwane River catchment for 

Nungwane Dam 

Source: Authors’ graphs and UWQI results are extracts from the WQVM (Banda and Kumarasamy, 2020b, 2020c). 

Notes: The water quality data is from six sampling stations observed monthly for a period extending to four years 

ranging from June 2014 until July 2018. 

The high values of NO3 are recorded during the summer periods and considering the socio-

economic developments surrounding the sampling stations (Figure 4.3), the source of 

contamination might be anthropogenic activities, especially wastewater discharge among others. 
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(a) UWQI Station 1: Umgeni RC
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(b) UWQI Station 2: Umdloti RC
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(c) UWQI Station 3: Umgeni RC
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(d) UWQI Station 4: Umgeni RC
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(e) UWQI Station 5: Umzinto RC
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(f) UWQI Station 6: Nungwane RC
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NO3 is a naturally occurring ion (Fan, 2011, Serio et al., 2018), which is widespread and regarded 

as the most significant contaminant in water (Espejo-Herrera et al., 2015, Sadler et al., 2016). 

Nitrate itself is a low-toxic compound, but when endogenously converted to nitrite (NO2), it 

becomes toxic to human health and the aquatic environment (Fan, 2011, Serio et al., 2018). Hence 

the need for regular water quality monitoring to identify water quality trends over time and space 

(Shah and Joshi, 2017). 

 

High levels of turbidity are evident during the summer seasons on stations 1, 2, 5 and 6 with 

corresponding values of 97.20, 66.70, 13.20 and 13.30 NTU. Together with NO3, turbidity 

contributes significantly towards the deterioration of water quality among these sites. Sources of 

turbidity are diverse and include, but not limited to, reservoir drawdown-flushing, algal blooms 

(eutrophication), wastewater discharge, industrial effluent, exceptional rainfall events, soil 

erosion and decomposition of organic matter (Robert et al., 2016, Uncles et al., 2018). Chl-a 

concentrations at station 2 and 3 exceed targeted water quality levels in summer with values of 

20.49 and 19.50 µg/ℓ respectively. Soluble nutrients, especially phosphorus and nitrogen, are the 

key determinants promoting algae blooms (eutrophication), which contribute significantly 

towards increased levels of chlorophyll-a (Andrade et al., 2019, Hashim et al., 2019). Such 

enriching nutrients often originates from anthropogenic activities which include wastewater 

discharge and fertiliser runoff (Banda, 2015, Omwene et al., 2018, Rankinen et al., 2019). 

 

Marginal variations of WQI are observed for stations 1 (77.983 - 88.083) and station 4 (83.299 -

94.918). The two stations are located upstream of the catchment, and the rest of the sampling sites 

are situated downstream of the drainage region towards Durban-Pietermaritzburg business 

corridor. WQI results indicate that surface water quality varies more with the increase in socio-

economic activities along the river water-course, with station 2 having the most considerable 

variation (77.873 - 95.154). 

 

Testing the model with data from various river catchments promote the objective of establishing 

a universal water quality index suitable for use across the catchment areas in South Africa. 

Noticeably, the UWQI model responded steadily to the highs and lows of each water quality 

parameter value, with the index output graphs confirming to the variations. Such performances 

advocate the readiness of the UWQI to interpret water quality data and provide a simple non-

dimensional score that is justifiable and in a repeatable manner. Such success fulfils the objective 

of developing a universal WQI and more importantly presents a “yardstick” that can be applied 

in most, if not all the distinct watersheds in South Africa. This accomplishment is a critical 

milestone, not only to the authors but to most of the stakeholders directly or indirectly involved 

in water quality science. 
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In an effort to confirm the capability of Artificial Intelligence (AI) in water quality science, an 

additional WQI was developed through the application of artificial neural networks (ANNs), and 

the following sections attempt to address the research question: 

“How capable is the proposed development of water quality index and water quality 

variability model using artificial neural network (ANN) to analyse and monitor water 

quality status for South African rivers?” 

An ANN uses a highly nonlinear mapping process with predefined multidimensional parameter 

relationships in the form of mathematical coding. The application of ANNs has its respective 

advantages and disadvantages; however, immediate attention should be drawn towards its ability 

to understand and relate to variable dependency, which provides a unique benefit over the 

conventional way of developing water quality indices (Li and Liu, 2019). 

5.4 Water quality index using artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are robust data-driven “black-box” models competent of 

analysing and outlining both linear and complex non-linear relationships between the target 

variable and the independent variables. Over the years, neural networks have demonstrated their 

efficiency as powerful computational algorithms for developing artificial intelligence-based 

models earmarked for simulating, predicting and forecasting spatio-temporal changes in water 

science. Hence, they have received more attention and become an acceptable substitute for 

conventional methods for hydro-chemical modelling. ANNs are the most commonly applied 

artificial intelligence (AI) algorithms for surface water quality models. Due to such large-scale 

acceptance, their robustness, flexibility and precision, the current study adopts an artificial neural 

network (ANN) technique and develop an alternative water quality index model applicable to 

South African watersheds. 

 

The feed-forward, back-propagated multilayer perceptron model consists of three neuron layers 

in a parallel-distributed architecture with seventy weighted synapses oriented from left to right. 

First, the input layer comprises of thirteen nodes representing thirteen independent water quality 

parameters namely NH3, Ca, Cl, Chl-a, EC, F CaCO3, Mg, Mn, NO3, pH, SO4, and turbidity 

(NTU). Second, the hidden layer with eleven neurons responsible for predictive assignments. 

Third, is the output layer containing one perceptron accountable for transmitting network results 

through a one-digit water quality index score. The index ranges from zero to hundred, with zero 

being poor water quality and a hundred signifying excellent water quality. 

 

The learning process of the AI-based model has been performed using water quality data from 

six sampling stations located in four drainage catchment areas under the jurisdiction of Umgeni 
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Water Board in KwaZulu-Natal Province, South Africa. The dataset consisting of 416 sample 

cases have been randomly partitioned using a split-ratio of 70:15:15% for training, testing and 

validation processes, respectively. The study applied the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) algorithm to perform backpropagation training and optimising channel weights. The 

target variables are index values generated by the universal water quality index (UWQI) model 

established for South African river catchments. 

 

The neural network indicated an increased performance with an overall correlation coefficient of 

0.985, and specific performance ratings of 0.987, 0.992, and 0.977 for training, testing, and 

validation, respectively. Sensitivity analysis further authenticated the readiness and 

computational capabilities of the neural network. Having an average target to output error margins 

of ±0.242; the model has sufficient predictive capacity providing output values identical to the 

target UWQI, recording minimum and maximum model index scores of 75.995 and 94.420 

respectively. Therefore, the three-layer ANN model is regarded as scientifically stable, with index 

scores and water quality grading matching the UWQI results. The following subsections attempt 

to document the procedures implemented and record the results achieved. 

5.4.1 ANN architecture and rationale 

An artificial neural network (ANN) uses a highly non-linear mapping process with predefined 

multidimensional parameter relationships in the form of mathematical coding (Singh et al., 2009, 

Khalil et al., 2011, Kim and Seo, 2015, Sarkar and Pandey, 2015, Salari et al., 2018, 

Ramasubramanian and Singh, 2019, Sousa et al., 2019). The application of artificial neural 

network (ANNs) has its respective advantages and disadvantages. Still, immediate attention 

should be drawn towards its ability to understand and relate to variable dependency, which 

provides a unique benefit over the conventional way of developing water quality indices (Li and 

Liu, 2019). The study developed a feed-forward, back-propagated multilayer perceptron model 

consisting of three neuron layers in a parallel-distributed architecture with seventy weighted 

synapses oriented from left to right. 

 

First, the input layer comprises of thirteen nodes representing thirteen independent water quality 

parameters namely NH3, Ca, Cl, Chl-a, EC, F CaCO3, Mg, Mn, NO3, pH, SO4, and turbidity 

(NTU). Second, the hidden layer with five neurons responsible for predictive assignments. Third, 

is the output layer containing one perceptron accountable for transmitting network results through 

a one-digit water quality index score. The first set of neuro-nodes (input layer) accepts the water 

quality parameters, whereas the second set of perceptron (hidden layer) analyse the 

hydrochemistry. Finally, the third layer (output neuron) generates a single-digit index score 
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describing the spatial and temporal variations of surface water quality. The ANN architecture is 

graphically illustrated in Figure 5.6. 

 

Figure 5.6: Schematic diagram representing the final optimum three-layered feed-forward 

artificial neural network with thirteen neuro-nodes in the input layer, five 

perceptron in the hidden layer, one output neuron, and seventy synapses oriented 

from left to right. 

Source: Authors diagram illustrating the optimum architecture considered for the development of the artificial neural 

network (ANN) model was adopted from the following literature: Singh et al. (2009), Huo et al. (2013), 

Cordoba et al. (2014), Sarkar and Pandey (2015), Seo et al. (2016), Yilma et al. (2018), García-Alba et al. 

(2019), Haldorai et al. (2019), Kim et al. (2019b). 

Notes: The artificial neural network structure was optimised using TIBCO Statistica Automated Neural Networks 

Software, TIBCO Software Inc. (2020). 
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5.4.1.1 Forward propagation process 

Given that f(xi) represents the input parameter, wi is the weight of each channel (synapse) and bij 

denotes the bias of each neuron, then the feed-forward process is described as follows (Singh et 

al., 2009, Khalil et al., 2011, Huo et al., 2013, Seo et al., 2016, Salari et al., 2018, Charulatha et 

al., 2017, Bansal and Ganesan, 2019, García-Alba et al., 2019, Rajaee et al., 2020, Ye et al., 2020): 

(a) Step 1 - inputting: f(xi) admitted as input to each neuro-node of the first layer of the 

artificial neural network (x1, x2, …, xn). 

(b) Step 2 - transmission of data: Feed through channels to the proceeding layer of neurons, 

and the synapses are assigned with relative coefficient known as weight (wij). 

(c) Step 3 - application of weightage coefficients: Inputs from the first layer are multiplied 

by the corresponding numeric weight coefficients and processed as input to the subsequent 

later of neurons in the hidden layer (x1w1 + x2x2 +…+ xnwn) = (∑ xiwi). 

(d) Step 4 - application of bias constants and activation functions: Each hidden layer 

neuron is associated with a numeric constant value known as bias (b1, b2, …, bn), which is 

added to the input sum (∑ xiwi + bi). After that, it passes through a threshold function called 

the activation function, which determines whether the neuron particular neuron gets 

activated or not. The activated neuron transmits information further to the next set of 

neurons; and in this systematic manner, water quality data is forward propagated through 

the network from left to right. 

5.4.1.2 Backward propagation of errors 

Backpropagation is a popular optimisation method for performing automatic differentiation of 

complex nested functions. The procedure is applied to train multilayer artificial neural networks 

in an attempt to optimise the network error, using an error function; backpropagation calculates 

the gradient of the error function with respect to the channel weight (Singh et al., 2009, Huo et 

al., 2013, Kim and Seo, 2015). The optimisation technique proceeds backwards through the 

network, from right to left in a reverse-order approach. Backward propagation of errors allows 

efficient optimisation rather than the naive process of adjusting weights and biases of each layer 

separately (Rajaee et al., 2020). Even more importantly, the backpropagation algorithm allows 

artificial neural networks to be considered for a much wider field of problems that were previously 

off-limits due to computational demands. 

 

Each iteration of feed-forward and backpropagation updates weight parameters and bias constants 

of the model, and the learning process is repeated with numerous cycles until an optimum neural 

network is achieved. The feed-forward and backpropagation process is illustrated graphically in 

Figure 5.7 and 5.8. 
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Figure 5.7: Graphical presentation of the feed-forward and error-backpropagation cycle for an 

artificial neural network model (ANN) 

Source: Authors’ diagram modified from concept documented by Kim and Seo (2015). 

Notes: Feed-forward propagated information through the network from left to right, whereas backward propagation 

of errors proceeds backwards through the network, from right to left in a reverse-order approach. 

 

Figure 5.8: Illustration of the neuro-node operational cycle and feed-forward sequence 

Source: Authors diagram formulated from the neuron processing cycle. 

Notes: Feed-forward process, (1) f(xi) admitted as input by the first set of neurons (x1, x2, …, xn), (2) feedthrough 

channels and proceed to the next set of neurons, (3) apply relative weight coefficients and processed as input 

to the hidden layer (x1w1 + x2x2 +…+ xnwn) = (∑ xiwi), (4) add bias constant to the input sum (∑ xiwi + bi) and 

then passes through a threshold activation function, which determines whether the neuron particular neuron 

gets activated or not. Thereafter, transmit the data to the last set of neurons referred to as the output layer. 

5.4.2 Optimisation and performance analysis 

There is no specific procedure for determining the optimum number of layers and neuro-nodes; 

instead, the configuration is influenced by a different set of conditions (Qaderi and Babanezhad, 

2017). According to the literature (Khalil et al., 2011, Qaderi and Babanezhad, 2017, Gazzaz et 

al., 2012, Sarkar and Pandey, 2015), neural networks with too many layers are associated with 
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“over-fitting” problems and seldomly demonstrate optimal prediction performance. Therefore, 

the study considered three-layered artificial neural network; thus input, hidden and output layer. 

The number of neuro-nodes depends upon the problem being investigated (Singh et al., 2009, 

Sarkar and Pandey, 2015). Whereby input and output neurons are commonly fixed based on the 

number of input variables being considered and the model desired output. Neurons in the hidden 

layer are the core processing units of the neural network and optimising the number of such 

neurons is critical towards the models’ overall performance. Restricting the neuro-nodes might 

limit the network from learning successfully, whereas an excessive number of hidden nodes may 

prolong the training process causing data “over-fitting” (Singh et al., 2009, Khalil et al., 2011, 

Sarkar and Pandey, 2015, Qaderi and Babanezhad, 2017). 

 

Fletcher and Goss (1993) suggested that hidden layer neurons (Hnod) range from 2(Inod)0.5
 + Onod 

to 2Inod + 1; where Inod and Onod denote the number of input and output neuro-nodes respectively 

(Singh et al., 2009, Sarkar and Pandey, 2015). However, Alyuda Research Inc. (2003) argued that 

the Hnod range should be between 0.5Inod and 4Inod. Furthermore, Palani et al. (2008) submitted 

that Hnod may range from Inod to 2Inod + 1, but should not fall beneath 0.333Inod and Onod (Gazzaz 

et al., 2012). Even more recently, García-Alba et al. (2019) recommended that hidden layer nodes 

(Hnod) should be less than twice the input nodes (Inod) and proposed the following Equation 5.22 

(García-Alba et al., 2019): 

 0.5Inod – 2 ≤ Hnod ≤ 2Inod + 2  Eq. 5.22 

Having thirteen fixed input nodes corresponding to water quality input variables and one output 

node representing; the study confined the number of hidden neuro-nodes to 5 ≤ Hnod ≤ 28 following 

parameters set in Equation 5.22. Through trial and error approach, and using the whole spectrum 

of possibilities from 5 to 28 hidden neurons, five potential neural networks were developed as 

summarised in Table 5.9. 

 

Accordingly, the finest ANN architecture (network two on Table 5.9) consists of a multilayer 

perceptron model having nineteen inter-connected neuro-nodes (13-5-1), six bias constants and 

seventy weighted synapses operating in a feed-forward manner from left to right (Figure 5.6). 

Activation functions are responsible for activating the perceptron based on higher weight. Four 

activation functions have been examined, thus (a) tanh, (b) exponential (c), logistic-sigmoidal, 

and (d) identity function. Subsequently, the logistic function, also known as the sigmoid activation 

function, worked better with the proposed neural network for both the hidden and output layers. 
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Table 5.9: Summary of the five potential artificial neural networks (ANNs) developed 

Item Description 
Details of the Five Potential Artificial Neural Networks (ANNs) Developed 
1 2 3 4 5 

1 Network structure MLP 13-16-1 MLP 13-5-1 MLP 13-12-1 MLP 13-28-1 MLP 13-8-1 
2 Training R-value 0.974 0.987 0.980 0.962 0.981 
3 Test R-value 0.970 0.992 0.967 0.905 0.978 
4 Validation R-value 0.949 0.977 0.961 0.938 0.959 
5 Overall R-value 0.964 0.985 0.969 0.935 0.973 
6 Training error 0.491 0.238 0.375 0.708 0.350 
7 Test error 0.601 0.174 0.658 1.815 0.435 
8 Validation error 0.812 0.315 0.630 0.850 0.729 
9 Overall error 0.634 0.242 0.554 1.124 0.505 
10 Training algorithm BFGS 58 BFGS 284 BFGS 105 BFGS 53 BFGS 97 
11 Error function SOS SOS SOS SOS SOS 
12 Hidden activation Tanh Logistic Logistic Tanh Logistic 
13 Output activation Exponential Logistic Logistic Identity Logistic 

Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The ANN software suggested twenty possible networks, but only five best models are extracted and 

represented in Table 5.9 above. Performance R-value represents the statistical correlation coefficient (R). 

The sigmoid function activates the neuro-node when the sum of weights plus bias (∑ xiwi + bi) is 

greater than or equal to 0.500; otherwise, the neuron is not activated. Values < 0.500 are converted 

to zero, and the neuron remains unactivated, but values ≥ 0.500 are transformed to one, and the 

neuron is activated to send through the information. The logistic function is further expressed as 

Figure 5.9 and Equation 5.23 (Palani et al., 2008, Huo et al., 2013, García-Alba et al., 2019). 

 

Figure 5.9: Logistic-sigmoidal activation function 

Source: Authors’ diagram generated from Equation 5.23 as documented by Palani et al. (2008), Huo et al. (2013), 

García-Alba et al. (2019). 

Notes: The diagram represents the logistic-sigmoidal activation function used for the developed artificaila nueral 

networks as documented in Table 5.9 (Model 2 – MLP 13-5-1). 
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 sigmoid function: f(z) = ' 
1

1 + e-z  (  Eq. 5.23 

 where: z = )  wi

n

i=1

xi +	bi  Eq. 5.24 

The sigmoid function is traditionally popular activation function for neural networks with a 

general problem of saturation. Thus, higher sigmoidal values snap to one, whilst small digits snap 

to zero. Furthermore, the sigmoid activated function is sensitive to changes around the mid-point 

of the input. Nonetheless, the logistic-sigmoidal function proved to be the most favourable 

activation function for the developed artificial neural network. 

 

Empirical datasets are generally associated with variables having different measurements units, 

which is quite burdensome and might lead to measurement errors, noise and or interference 

(Gazzaz et al., 2012, Huo et al., 2013, Kadam et al., 2019). Such effects may relay negative inputs 

during network training process since some ANN training algorithms are not compatible with 

diversified data units. For this reason, the study considered standardising the actual water quality 

measurements to match the logistic-sigmoidal units ranging from zero to one. The process 

prohibits parameters from randomly dominating the neural network operations (Gazzaz et al., 

2012, Huo et al., 2013, Rajaee et al., 2020). 

 

Practically, neural network training is performed to establish an optimum neural network with the 

best approximation capacity measurable through various statistical attributes. The training 

process should be guided and terminated using a predetermined stopping criterion which prevents 

overtraining and improves generalisation (Singh et al., 2009). Four stopping procedures were 

prescribed for the study, and these are: 

(a) Terminate the training cycle when cross-validation subset stops changing or begins to 

increase (Gazzaz et al., 2012, Mitrović et al., 2019); 

(b) Minimum improvement in the error corresponding to 0.0000001 (Gazzaz et al., 2012); 

(c) Mean-Squared error (MSE) value on the training set of 0.010 (Gazzaz et al., 2012); and 

(d) Maximum of ten thousand iterations (Gazzaz et al., 2012). 

The study applied, Broyden-Fletcher–Goldfarb-Shanno (BFGS) algorithm (Mitrović et al., 2019, 

García-Alba et al., 2019, Shanthi et al., 2009) to perform network training and optimising the 

channel weights together with bias constants which are included under Table 5.11 and 5.10, 
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respectively. The identity and connections listed on these two tables correspond to the labels 

provided in Figure 5.6. 

Table 5.10: Channel relative weightage coefficients for the proposed multi-layered feed-forward 

perceptron model 

Code 
Weightage Coefficients for the Final ANN Model 

 Code 
Weightage Coefficients for the Final ANN Model 

Identity Connection Weight Coefficient Identity Connection Weight Coefficient 
1 wa1b1 NH3: Na1 - Nb1 -1.736787  36 wa8b1 Mg: Na8 - Nb1 -3.214513 
2 wa1b2 NH3: Na1 - Nb2 5.504801  37 wa8b2 Mg: Na8 - Nb2 1.744056 
3 wa1b3 NH3: Na1 - Nb3 1.188668  38 wa8b3 Mg: Na8 - Nb3 -4.429081 
4 wa1b4 NH3: Na1 - Nb4 -1.692601  39 wa8b4 Mg: Na8 - Nb4 0.279011 
5 wa1b5 NH3: Na1 - Nb5 -0.001097  40 wa8b5 Mg: Na8 - Nb5 1.944368 
6 wa2b1 Ca: Na2 - Nb1 3.468499  41 wa9b1 Mn: Na9 - Nb1 -7.983205 
7 wa2b2 Ca: Na2 - Nb2 2.115498  42 wa9b2 Mn: Na9 - Nb2 6.424076 
8 wa2b3 Ca: Na2 - Nb3 1.106156  43 wa9b3 Mn: Na9 - Nb3 -5.471109 
9 wa2b4 Ca: Na2 - Nb4 0.220185  44 wa9b4 Mn: Na9 - Nb4 -0.342985 
10 wa2b5 Ca: Na2 - Nb5 -1.346809  45 wa9b5 Mn: Na9 - Nb5 -0.484034 
11 wa3b1 Cl: Na3 - Nb1 -3.556672  46 wa10b1 NO3: Na10 - Nb1 -16.055562 
12 wa3b2 Cl: Na3 - Nb2 0.457860  47 wa10b2 NO3: Na10 - Nb2 -23.849729 
13 wa3b3 Cl: Na3 - Nb3 -1.580444  48 wa10b3 NO3: Na10 - Nb3 6.729461 
14 wa3b4 Cl: Na3 - Nb4 0.374732  49 wa10b4 NO3: Na10 - Nb4 -8.960559 
15 wa3b5 Cl: Na3 - Nb5 -0.404492  50 wa10b5 NO3: Na10 - Nb5 -0.338867 
16 wa4b1 Chl-a: Na4 - Nb1 1.377876  51 wa11b1 pH: Na11 - Nb1 -15.304164 
17 wa4b2 Chl-a: Na4 - Nb2 -3.330414  52 wa11b2 pH: Na11 - Nb2 3.871621 
18 wa4b3 Chl-a: Na4 - Nb3 -7.024330  53 wa11b3 pH: Na11 - Nb3 -8.330722 
19 wa4b4 Chl-a: Na4 - Nb4 -0.022393  54 wa11b4 pH: Na11 - Nb4 0.954006 
20 wa4b5 Chl-a: Na4 - Nb5 0.693426  55 wa11b5 pH: Na11 - Nb5 1.730046 
21 wa5b1 EC: Na5 - Nb1 1.885811  56 wa12b1 SO4: Na12 - Nb1 4.874266 
22 wa5b2 EC: Na5 - Nb2 0.005186  57 wa12b2 SO4: Na12 - Nb2 -9.213797 
23 wa5b3 EC: Na5 - Nb3 5.441349  58 wa12b3 SO4: Na12 - Nb3 -0.854192 
24 wa5b4 EC: Na5 - Nb4 -1.280430  59 wa12b4 SO4: Na12 - Nb4 0.483610 
25 wa5b5 EC: Na5 - Nb5 -0.245986  60 wa12b5 SO4: Na12 - Nb5 -0.429851 
26 wa6b1 F: Na6 - Nb1 -5.420631  61 wa13b1 Turb: Na13 - Nb1 5.242365 
27 wa6b2 F: Na6 - Nb2 15.774371  62 wa13b2 Turb: Na13 - Nb2 2.942964 
28 wa6b3 F: Na6 - Nb3 2.011805  63 wa13b3 Turb: Na13 - Nb3 -1.860321 
29 wa6b4 F: Na6 - Nb4 -1.672389  64 wa13b4 Turb: Na13 - Nb4 0.832442 
30 wa6b5 F: Na6 - Nb5 -0.553722  65 wa13b5 Turb: Na13 - Nb5 -88.813790 
31 wa7b1 CaCO3: Na7 - Nb1 0.660897  66 wb1c1 Nb1 - Nc1: UWQI -13.400521 
32 wa7b2 CaCO3: Na7 - Nb2 2.067450  67 wb2c1 Nb2 - Nc1: UWQI -0.727691 
33 wa7b3 CaCO3: Na7 - Nb3 -1.458696  68 wb3c1 Nb3 - Nc1: UWQI 2.101400 
34 wa7b4 CaCO3: Na7 - Nb4 0.449066  69 wb4c1 Nb4 - Nc1: UWQI 4.811822 
35 wa7b5 CaCO3: Na7 - Nb5 -0.678565  70 wb5c1 Nb5 - Nc1: UWQI 11.009187 

Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The synapses weights and neuro-nodes correspond with the schematic diagram presented in Figure 5.6. The 

weights are rounded off to six decimal places for presentation only. 

Though requiring high computational memory owing to Hassian matrix, BFGS is a robust second-

order training algorithm with high-speed convergence rate. The technique offers general-purpose 

optimisation based on Nelder-Mead; quasi-Newton simulated annealing, and conjugate-gradient 

algorithms with an option for box-constrained optimisation. BFGS algorithm uses only function 

values and works well for non-differentiable functions. 
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Table 5.11: Proposed bias constants for the three-layered artificial neural network model 

Code 
Bias constants for the Final ANN Model 

 Code 
Bias constants for the Final ANN Model 

Identity Connection Bias constant Identity Connection Bias constant 
1 bb1 Bin - Nb1 -4.408752  4 bb4 Bin - Nb4 0.359861 
2 bb2 Bin - Nb2 4.751969  5 bb5 Bin - Nb5 -2.506008 
3 bb3 Bin - Nb3 8.234114   6 bc1 Bout - UWQI -3.452418 

Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The bias constants correspond with the schematic diagram presented in Figure 5.6. The constant values are 

rounded off to six decimal places for presentation only. 

A dataset comprising of 416 samples has been randomly portioned using data split-ratio of 

70:15:15% for network training, testing and validation processes, respectively (Shanthi et al., 

2009). As documented in Table 5.12, various split-ratios are suggested in the literature (Lischeid, 

2001, Lucio et al., 2007, Mas and Ahlfeld, 2007, Olszewski et al., 2008, May and Sivakumar, 

2009, Amiri and Nakane, 2009, Oliveira Souza da Costa et al., 2009, Shanthi et al., 2009, Singh 

et al., 2009, Banerjee et al., 2011, Gazzaz et al., 2012, Cordoba et al., 2014, Safavi and Malek 

Ahmadi, 2015, Seo et al., 2016, Qaderi and Babanezhad, 2017, Gebler et al., 2018, García-Alba 

et al., 2019, Isiyaka et al., 2019, Kadam et al., 2019, Rajaee et al., 2020, Soro et al., 2020). 

However, the study adopted the default ratio supported by Statistica Automated Neural Networks 

software developer TIBCO Software Inc. (2020). 

Table 5.12: Documented data splitting schemes for developing artificial neural networks 

Scheme 
Data split-ratio (%) 

Reference 
Training Validation Testing 

1 80.000 % 10.000 % 10.000 % (Palani et al., 2008, Gazzaz et al., 2012, Seo et al., 2016, García-Alba et al., 2019) 
2 75.000 % 10.000 % 15.000 % (Gazzaz et al., 2012) 
3 70.000 % 10.000 % 20.000 % (May and Sivakumar, 2009) 

4 70.000 % 15.000 % 15.000 % 
(Lucio et al., 2007, Shanthi et al., 2009, Banerjee et al., 2011, Safavi and Malek 
Ahmadi, 2015, Qaderi and Babanezhad, 2017, Gebler et al., 2018, Ahamad et al., 
2019, Kadam et al., 2019, García-Alba et al., 2019, Rajaee et al., 2020) 

5 65.000 % 15.000 % 20.000 % (Mas and Ahlfeld, 2007) 
6 60.000 % 20.000 % 20.000 % (Singh et al., 2009, García-Alba et al., 2019, Isiyaka et al., 2019) 
7 60.000 % 15.000 % 25.000 % (Amiri and Nakane, 2009) 

5 50.000 % 25.000 % 25.000 % (Lischeid, 2001, Olszewski et al., 2008, Oliveira Souza da Costa et al., 2009, 
Cordoba et al., 2014, Soro et al., 2020) 

Source: Gazzaz et al. (2012) and particular studies as cited in Table  5.12. 

Notes: The above-listed figures represent the percentage equivalent to the split ratios applied for each particular study 

to create data subsets for training, validation and testing procedures. 

The training dataset is utilised during the learning process; whilst validation samples are used for 

cross-validation, thus establishing when to stop network training before over-fitting happens. 

Testing dataset assists in performing a reliable out-of-sample assessment and establishing an 

accurate network predictive error. After that, statistical performance evaluators are deployed to 

measure the usefulness of artificial neural network the AI-based model. 
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In order to evaluate the performance of the neural networks and identifying the best optimum 

model, six different quantitative statistical attributes are considered. These include correlation 

coefficient (R), coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) mean absolute 

error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) 

(Palani et al., 2008, Singh et al., 2009, Gazzaz et al., 2012, Huo et al., 2013, Kim and Seo, 2015, 

Sarkar and Pandey, 2015, Seo et al., 2016, Qaderi and Babanezhad, 2017, Gebler et al., 2018, 

Salari et al., 2018, Yilma et al., 2018, Azimi et al., 2019, Kadam et al., 2019, Mitrović et al., 2019, 

Rajaee et al., 2020, Tiyasha et al., 2020). Networks with the lowest regression error and highest 

performance rate for classification are retained (Gazzaz et al., 2012). Correspondingly, twenty 

models were trained, and training was terminated upon satisfying the prescribed stopping options. 

Thereupon, five networks with the lowest prediction error and the highest classification rate were 

retained. The statistics are indicated in Table 5.13, and the corresponding equations are 

documented from Equation 5.25 to 5.29. 

Table 5.13: Performance statistics for the MLP 13-5-1 model 

Item 
Performance Statistics 
Metrics Ratings 

1 Mean absolute error (MAE) 0.521 
2 Root mean squared error (RMSE) 0.692 
3 Nash-Sutcliffe efficiency (NSE) 0.974 
4 Mean absolute percentage error (MAPE) 0.600% 
5 The correlation coefficient (R) 0.985 
6 Coefficient of determination (R2) 0.970 
7 Mean squared error (MSE) 0.479 

Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The ratings are categorised as follows (Gazzaz et al., 2012, Charulatha et al., 2017, García-Alba et al., 2019, 

Lu et al., 2019, Mitrović et al., 2019, Rajaee et al., 2020): MAPE ≤ 10.0 % (highly accurate), 10.0 MAPE < 

MAPE ≤ 20.0 % (good), 20.0 < MAPE ≤ 50.0 % (reasonable), MAPE > 50.0 % (inaccurate); 0.75 < NSE ≤ 1 

(very good), 0.650 < NSE ≤ 0.750 (good), 0.500 < NSE ≤ 0.650 (satisfactory), NSE ≤ 0.500 (unsatisfactory); 

and R2
 > 0.500 (acceptable). 

Equations 5.25 to Equation 5.29 are documented in the following studies: Palani et al. (2008), 

Singh et al. (2009), Khalil et al. (2011), Safavi and Malek Ahmadi (2015), Qaderi and Babanezhad 

(2017), Gebler et al. (2018), Yilma et al. (2018), García-Alba et al. (2019), Lu et al. (2019), 

Mitrović et al. (2019), Isiyaka et al. (2019), Ye et al. (2020). 

MAE = 
1

n
)+ yo- yi	+

n

i=1

Eq. 5.25 
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n
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2
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	 Eq. 5.29 

where: yo is the target value, 

yi is the predicted model value, and 

ym is the target mean value as 

The artificial neural network model expressed a significantly high degree of accuracy registering 

an overall correlation coefficient (R) of 0.985 (p < 0.010) with specific R-values of 0.987, 0.992 

and 0.977 for training, testing and validation, respectively. The correlation coefficient describes 

the predictive performance of the model with values greater than 0.500 being satisfactory and 

values close to 1.000, explaining a highly accurate model (Rajaee et al., 2020). Consequently, the 

R-values achieved are satisfactory, indicating an increased performance and well-specified neural

network.

The goodness-of-fit is further explained using the coefficient of determination (R2) which is 

equivalent to Nash-Sutcliffe efficiency (NSE) (Palani et al., 2008). Whereby the best optimum 

model is selected based on the highest value of R2 ranging from zero to one, where the greater the 

value and closer to one, the better (Gazzaz et al., 2012, Safavi and Malek Ahmadi, 2015, 

Charulatha et al., 2017, Qaderi and Babanezhad, 2017, Rajaee et al., 2020). However, the 

coefficient of determination value greater than 0.500 is regarded as satisfactory. The proposed 

neural network has an NSE/R2 value of 0.970, meaning that the neural network explains 

approximately 97.0 % variations in the measured WQI values. The ANN model has an average 

target to output error margins of ± 0.242; implying that the model has sufficient predictive 

capacity providing output values identical to the target UWQI, recording minimum and maximum 
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model index scores of 75.995 and 94.420 respectively. Figure 5.10 and 5.11 explain the 

relationship between the target UWQI and ANN output WQI. A summary of the UWQI scores is 

presented in Figure 5.12. 

 

Figure 5.10: Results of ANN model validation showing a scatter plot of the relationship between 

the target UWQI values and their corresponding ANN model predictions. The plot 

demonstrates that a reasonable approximation was made by the ANN model across 

the spectrum of the UWQI values. 

Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The overall agreement between the measured (target variable) and simulated (output) WQI values was very 

satisfactory (R = 0.985, p < 0.010; R2 = 97.0 %; NSE = 0.970, RMSE = 0.692, MAPE = 0.6 % and n = 416). 

 

Figure 5.11: Comparison between the artificial neural network WQI scores (ANN Output) and 

the universal water index values (UWQI Target) with prediction error values 
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Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The artificial neural network model has an average target to output error margins of ± 0.242, which confirms 

the appropriateness of the neural network. 

 

Figure 5.12: Index score counts for the universal water index values (UWQI Target) 

Source: UWQI results extracted from Banda and Kumarasamy (2020c). Graph generated from TIBCO Statistica 

Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The water quality data used for calculating the UWQI scores is from six sampling stations observed monthly 

for a period extending to four years ranging from June 2014 until July 2018. 

Beyond that, mean absolute error (MAE) and root mean squared error (RMSE) were observed 

with values of 0.521 and 0.693, respectively. Both MAE and RMSE are common quantitative 

statistics applied to measure the predictive capacity of the model, and the matrices range from 

zero to infinite number. They are negatively-oriented figures meaning that lower values are better 

(Safavi and Malek Ahmadi, 2015, Rajaee et al., 2020). A mean absolute percentage error (MAPE) 

of 0.6 % was recorded, signifying that the proposed neural network is highly accurate (refer to 

scale ratings in Table 5.13). MAPE expresses accuracy as a percentage and zero explains a perfect 

fit; however, MAPE has no upper limit, but models with MAPE values beyond 50.0 % are 

considered inaccurate (Rajaee et al., 2020). In light of these performance indicators, the proposed 

artificial neural network is regarded as robust and computationally stable. 

5.4.3 Sensitivity analysis 

Sensitivity analysis is viewed as a powerful method for evaluating essential factors that contribute 

to output and comprehending the interrelationship among variables in multivariable datasets (Guo 

et al., 2011, Huo et al., 2013). Sensitivity analysis allows to properly apportion the uncertainty in 
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outputs to the variability of the input parameters over their entire range of interest. SA determines 

the most contributing input variable towards a particular output behaviour. 

Global sensitivity analysis involves input factors being varied simultaneously, whilst sensitivity 

is assessed over the whole range of each input factor. The process quantifies the impact of network 

input and their interactions with respect to the network output (Zhou et al., 2008). The method is 

more appropriate for a non-linear input-output relationship, even more importantly, the technique 

is more realistic considering applicability since the process enables all input parameters to be 

performed concurrently without difficulties (Zhou et al., 2008, Huo et al., 2013). There are various 

global sensitivity methods which include Fourier amplitude sensitivity test (FAST), Monte-Carlo-

based regression-correlation indices and Sobol’s sensitivity estimates. In this case, the study 

employed Fourier amplitude sensitivity test (FAST), and the SA results indicate that the proposed 

artificial neural network is computationally robust and scientifically stable. 

 

The novel pointwise sensitivity analysis has been employed to investigate further the local 

patterns and sensitivity at individual data points; which outlines links between a focal point and 

neighbours (Guo et al., 2011). To better understand the usefulness of pointwise analysis, the 

method assisted to outline how water quality index scores are influenced by a particular input 

variable, either positively or negatively. Furthermore, the analysis describes the variables with a 

more significant effect on water quality indexing (Guo et al., 2011). The rationale is that; given 

the correlation between WQI scores (y-variables) and water quality parameters (x1, x2, …, x3), 

sensitivity analysis explains the change rate of y-variables as xi fluctuate (Guo et al., 2011). Each 

x-variable is adjusted using an outlier factor to establish anomalous local patterns that cannot 

conform with the global pattern. Pointwise sensitivity analysis authenticated the robust and 

analytical aptitude of the suggested ANN model. 

5.4.4 Evaluation of spatial and temporal trends using ANN 

Water quality data from Umgeni Water Board (UWB) have been assessed to substantiate spatial 

and temporal trends between six sampling sites. The spatiotemporal water quality variations are 

presented in Figure 5.11, 5.13 and 5.14. 
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Figure 5.13: WQI results calculated using the ANN model for Umgeni water quality data from 

2014 to 2018 (a) Umgeni Basin for Henley Dams, (b) Umdloti Basin for 

Hazelmere Dam, (c) Umgeni Basin for Inanda Dams, (d) Umgeni Basin for 

Midmar Dam, (e) Umzinto/Umuziwezinto Basin for Umzinto Dam, and (f) 

Nungwane Basin for Nungwane Dam 

Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: The water quality data is from six sampling stations observed monthly for a period extending to four years 

ranging from June 2014 until July 2018 
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Figure 5.14: Seasonal water quality variability for Umgeni water quality data gathered monthly 

for over four years starting from 2014 until 2018 

Source: ANN results from TIBCO Statistica Automated Neural Networks Software, TIBCO Software Inc. (2020). 

Notes: Quarter average is denoted by “Qtr Avg.” The yearly average is represented as “Yr Avg.” Quartly average 

figures are seasonal mean index scores considering WQI scores for January, April, July and October only. 

The yearly average figures are mean index values considering the WQI ratings for the entire year. 

Using the index scores generated by the newly developed artificial neural network model, the 

results suggest that water quality with the four river catchments can be classified as class 2 – 

acceptable water quality. The region has the lowest index score of 77.713 (class 2) recorded at 

sampling station 5 for Umzinto Dam within Umzinto/Umuziwezinto River catchment area. The 

lowest index score resulted from the high concentration level of NH3, Chl-a, Mn and turbidity 

with observed values of 0.99 µg/ℓ 8.29 mg/ℓ, 0.53 mg/ℓ and 7.10 NTU, respectively. Station 4 

located at Midmar Dam with Umgeni River catchment have the highest WQI rating of 94.337 

(class 2) during April 2018 (Figure 5.13 and 5.14). 

 

Two stations situated upstream of the drainage region recorded the minimal variations in WQI 

values, with station 1 having WQI range of 77.798 – 88.109, and station 4 ranging from 83.616 

to 94.337. sampling stations 2, 3, 5 and 6 are located downstream of the catchment towards the 

Indian Ocean. From the assessment, WQI ratings highlighted that river systems are affected more 

with the increase in socio-economic activities along the river’s watercourse. The situation is more 

evident on areas surrounding the Durban-Pietermaritzburg with stations 2 and 3 having significant 

water quality variations ranging from 78.452 – 94.316 and 79.637 – 93.830, respectively. Chl-a, 

NO3 and turbidity are the main polluting agents influencing water quality scores for Umgeni 
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Water Board with maximum concentrations corresponding to 92.22 µg/ℓ, 9.58 mg/ℓ and 367.00 

NTU, respectively. 

 

Excessive levels of NO3 are recorded during the summer seasons, with anthropogenic activities 

being the possible source of contamination, especially considering the socio-economic 

developments around the sampling stations. As common and naturally forming ion, NO3 is 

regarded as the most notable pollutant in river systems. When viewed in isolation, nitrate is as a 

low-toxic compound, but when transformed to nitrite (NO2), it becomes increasingly toxic to both 

human health and aqua life. Hence, the need for routine water quality monitoring, thereby 

evaluating water quality trends over time and space. Similar to NO3, high levels of turbidity are 

also evident during the summer seasons owing to a diverse range of sources. These indicate algal 

blooms, wastewater and industrial effluent, decomposition of organic matter, soil erosion, 

reservoir drawdown flashing, among others combined with NO3, turbidity contributes heavily 

towards the deterioration of water quality within the six sampling stations. Chl-a concentrations 

are influenced by eutrophication resulting from soluble nutrients emanating from phosphorus and 

nitrogen compounds. These enriching nutrients usually originate from human-based operations 

which includes, but not limited to wastewater discharge and fertiliser runoff. 

 

Evaluating water quality trends for various drainage basins supports the objective of establishing 

water quality monitoring tools with broad application. Of significant importance, the artificial 

neural network model could simulate WQI scores generated using the universal water quality 

index model (Figure 5.11). The correlation between the UWQI values and ANN model scores is 

exceptional with similar prediction patterns. Such accuracy upholds the preparedness of the neural 

network to evaluate water quality and identify water quality trends within the South African river 

basins. 

5.5 Surrogate water quality index model (Proxy WQI) 

Often, water quality index (WQI) models are heavily parameterised, requiring an extensive 

amount of data, thereby limiting their application due to input parameter demand. To govern such 

tendencies, a surrogate WQI is proposed. A surrogate model is an abridged version of an outright 

WQI, thereto function with limited input data. It represents a quick and easy method of translating 

complex water quality data into simple, but yet testable measure. Though less-detailed, proxy 

models are equally competent and fundamentally identical to the original unbridged models, but 

with reduced computational precision (Razavi et al., 2012). Although having less accurate 

arithmetic aptitude, the advantages of surrogate models outbalance such unfavourable attributes 

and compensate the numerical divergence. 
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The proposed proxy WQI has been established to be rationally implemented in lieu of the high-

fidelity model, referred here as the universal water quality index (UWQI). The primary objective 

of developing and applying the suggested surrogate WQI is to make better use of typically 

restricted water resource monitoring budgets (Razavi et al., 2012). Therefore, the proposed 

surrogate WQI aims to provide a more straightforward and cost-effective model that simulates 

the output of a complex high-fidelity model (Asher et al., 2015).  

 

Undoubtedly, the success of the surrogate WQI and its advantages will ultimately intensify 

regular water resource monitoring in South Africa. In the same context, thirteen variables 

applicable to UWQI have been subjected to multivariate statistical analysis to select the most 

meaningful proxy variables for the surrogate WQI. Subsequently, chlorophyll-a, electrical 

conductivity and pondus Hydrogenium and turbidity are the final four proxy parameters. 

Minimising the input parameters can significantly reduce time, effort and cost required to evaluate 

water resources, thereby making the process more feasible and economically viable (Bhosekar 

and Ierapetritou, 2018, Tripathi and Singal, 2019b, Jahin et al., 2020). 

 

In this study, the terms “surrogate model,” “proxy model” and “low-fidelity model” bear the same 

meaning and are used interchangeably. 

5.5.1 A rationale for developing the proxy model (multiple linear regression model) 

Consider a range of data comprising of n statistical units (observations) of the response variable 

y (dependent variable) and p-vector of regressors x (independent explanatory variable). Then, 

their mathematical relationship is designated as a linear regression model in the form (Jurečková, 

2011, Vatanpour et al., 2020, Banda and Kumarasamy, 2020b): 

  Eq. 5.30 

The observations are assumed to be the result of random deviations from an underlying 

relationship between the dependent variable (y) and the independent variable (x). With regards to 

observed data, the linear function is defined as (Jurečková, 2011, Vatanpour et al., 2020, Banda 

and Kumarasamy, 2020b): 

  Eq. 5.31 

Where i = 1, 2, …, n and variables ℇi symbolise unobservable regression model errors. Which are 

presumed to be independent and identically distributed random variables; with a distribution 

function F and density f. Of which, the density is unknown and expected to be symmetric at zero 
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(0). The corresponding coefficients b1 to bp and intercept term b0, are unknown values calculated 

based on the dependent variable y = (y1, y2, …, yn) and independent variable x = (xi1, xi2, …, xip). 

Besides the conventional least-squares method, various statistical estimators of model coefficient 

(b) exist and they are documented in the existing literature. Some of the methods are 

distributionally robust (less sensitive to deviations from the assumed distribution factors), whilst 

others are resistant to the leverage points in the design matrix and have a high breakdown point 

(Jurečková, 2011, Banda and Kumarasamy, 2020b). 

 

Following the above rationale, linear regression was considered in the development of the proxy 

water quality index model, and the results are documented in the following subsections. 

5.5.2 Parameter selection for the surrogate WQI 

A combination of two methods has been adopted in the selection of the most suitable explanatory 

variables for the suggested proxy model. The methods include, (1) the Rand Corporation’s Delphi 

Technique (Delphi method) and, (2) multivariate statistical analysis. Figure 5.15 illustrates the 

two-stage screening process established to select significant water quality parameters. 

 

Figure 5.15: Flow diagram illustrating the two-stage screening process employed for selecting 

the significant water quality parameters 

Source: Authors diagram (Banda and Kumarasamy, 2020b) 

Notes: Statistical analysis was performed using water quality dataset from Umgeni Water Board (UWB) monitored 

monthly from 2014 to 2018. 

The Delphi method has been employed to abridge the list of parameters from twenty-one to 

thirteen variables which apply to the universal water quality index (UWQI). Furthermore, 

statistical analysis assisted in reducing the parameters to four proxy variables applicable to the 

surrogate water quality index (WQI). Principal component analysis (PCA) have been performed 

for pattern recognition and outlining the framework of the project data. At the same time, 

hierarchical cluster analysis (HCA) helped to establish the degree of similarity among water 

quality parameters. Accordingly, chlorophyll-a (Chl-a), electrical conductivity (EC), turbidity 
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(Turb) and pondus Hydrogenium (pH) are the final four proxy parameters considered for the 

surrogate WQI. Additional information relating to the selection of these input variables is 

discussed and presented in the succeeding sections. 

5.5.3 Multivariate statistical analysis 

5.5.3.1 Principal component analysis (PCA) 

Considering that water quality is generally described using multiple physicochemical and 

biological variables; principal component analysis (PCA) can ideally transform complex 

multivariate datasets to a minimal and manageable number of factors without loss of information 

(Jolliffe, 2011, Awomeso et al., 2020). More importantly, PCA preserves the structure and pattern 

of the original dataset to the maximum extent possible (Tripathi and Singal, 2019b, Jahin et al., 

2020). PCA is an accurate and extensive method for parameter reduction; which is significant and 

can drastically lower assessment cost, time and effort, thereby promoting routine monitoring. The 

rationale behind PCA is centred on decreasing dimensions of a multivariate dataset through 

summarising information dispersed in several dimensions into a reduced number of dimensions 

that are not correlated (Kim et al., 2019a, Nnorom et al., 2019, Tripathi and Singal, 2019b). The 

technique eliminates collinearity amongst explanatory variables, discard redundant or 

significantly correlated variables and develop new uncorrelated variables known as principal 

components (PCs) (Paca et al., 2019, Njuguna et al., 2020). The application of statistical 

techniques in the development of water quality indices (WQIs) lessens biasness and makes them 

more objective in nature (Tripathi and Singal, 2019b). 

 

The first step in performing PCA involves delineating the number of PCs that can adequately 

explain the structure and pattern of a given dataset. This process is accomplished by the use of (a) 

scree-plot, (b) real data eigenvalues, and (c) randomly generated eigenvalues. It should be noted 

that, although it is common practice to disregard low-variance PCs, sometimes they can be useful 

in their own right; for instance, they can assist in identifying outliers and enhance quality control 

(Jolliffe, 2011). Ideally for PCA to draw purposeful and reliable conclusions, the standard advice 

is to retain factors characterised by the following (Tripathi and Singal, 2019a): 

(i) Associated eigenvalues that are greater than one ( > 1.000); 

(ii) Initial eigenvalues percentage of variance of greater than ten percent ( > 10.0 %); and 

(iii) Cumulative percentage of variance of greater than sixty percent ( > 60.0 %). 

However, these are just suggestive figures and should be regarded as indicative of the ideal 

situation. Notably, different opinions exist in the existing literature, especially on the cumulative 

percentage of variance contribution. Tripathi and Singal (2019a) suggest a minimum of 60.0 %, 
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whereas Jolliffe (2011), and Gradilla-Hernández et al. (2020) propose a range between 70.0 % 

and 90.0 % with an acknowledgement that the value can be higher or lower depending on the 

context of the dataset. 

 

A scree-plot developed using real data eigenvalues assisted in identifying the number of principal 

components to be extracted. Corresponding to the scree-plot sagging point; principal components 

with eigenvalues greater than one (latent-root-one) were considered significant to explain the 

underlying structure of the dataset (Horn, 1965, Mitra et al., 2018, Rezaei et al., 2019, Tripathi 

and Singal, 2019a, Jahin et al., 2020, Patil et al., 2020). Complementary, Parallels Analysis 

Engine (PAE) aided in confirming the number of factors retained. Using research data, PAE 

computed eigenvalues from randomly generated correlation matrices, which were used to 

intercept the cut-off point on the scree-plot diagram. Both PCA and PAE eigenvalues were 

presented graphically as two different plots, and their intercept point established the number of 

factors retained during multivariate statistical analysis (Horn, 1965, Patil et al., 2007). All the 

principal components above the PAE graph were considered; in this case, the first five factors 

were deemed statistically important. The results of this procedure are graphically displayed in 

Figure 5.16. 

 

Figure 5.16: Determination of the number of Principal Components (PCs) to be extracted using 

eigenvalues from Principal Component Analysis (PCA) and randomly generated 

eigenvalues from Parallel Analysis Engine (PAE) 

Source: Authors’ diagram illustrating PCA results from IBM SPSS Statistics (SPSS Inc., 2016) and Parallel Analysis 

Engine (Patil et al., 2007). 

Notes: Randomly generated correlation matrix was established using PEA and PCA correlation matrix was set using 

research dataset from Umgeni Water Board (UWB). 
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In order to obtain meaningful and more accurate results, the dataset subjected to Principal 

Component Analysis (PCA) should have a minimum of 150 - 300 test cases (Sutadian et al., 2017, 

Tripathi and Singal, 2019a, 2019b, Jahin et al., 2020). Accordingly, the current study used 416 

test cases monitored from six sampling stations observed monthly for four years (refer to Table 

5.1). The case study surpasses the recommended threshold, thus satisfying the stated criterion. 

The study performed Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity to authenticate 

the suitability of the dataset to effectively handle principal component analysis (PCA) and factor 

analysis (FA). KMO is the measure of sampling adequacy that signifies the degree of variance 

caused by underlying principal components (PCs) (Mitra et al., 2018). Generally, KMO values 

below 0.500 are undesirable, whereas values ranging from 0.500 to 0.700 are considered 

sufficient, and higher values (above 0.700) are outstanding (Nnorom et al., 2019, Tripathi and 

Singal, 2019b, Ustaoğlu et al., 2019, Patil et al., 2020). The current study achieved KMO value 

of 0.510, which is satisfactory. 

 

Bartlett’s test examines the possibility of the correlation matrix being an identity matrix. If such 

a case exists; Bartlett’s test of sphericity assumes that all variables are unrelated and 

dimensionality reduction is not feasible, thus making PCA and FA inapplicable. Bartlett’s test 

scores less than 0.050 are favourable and suggest that significant relationships exist among 

variables (Tripathi and Singal, 2019b). In the current case, Bartlett’s significance level is 0.000, 

thus confirming the appropriateness to perform principal component analysis and factor analysis. 

Table 5.14 presents the correlation matrix, KMO and Bartlett’s test results. 

Table 5.14: Correlation matrix, KMO and Bartlett’s test results for the thirteen physicochemical 

variables shortlisted for multivariate statistical analysis 

 NH3 Ca Cl Chl-a EC F CaCO3 Mg Mn NO3 pH SO4 Turb 
NH3 1.000             
Ca 0.077 1.000            
Cl 0.092 -0.012 1.000           
Chl-a -0.090 -0.061 -0.178 1.000          
EC 0.359 0.186 0.153 -0.078 1.000         
F 0.021 -0.019 -0.006 -0.042 0.057 1.000        
CaCO3 0.066 0.998 -0.005 -0.071 0.170 -0.028 1.000       
Mg 0.050 0.987 0.003 -0.086 0.149 -0.041 0.995 1.000      
Mn 0.196 -0.054 0.031 0.024 0.201 -0.022 -0.046 -0.033 1.000     
NO3 0.399 -0.020 0.223 -0.125 0.256 0.012 -0.023 -0.028 -0.066 1.000    
pH 0.006 0.032 -0.194 -0.018 0.070 0.034 0.024 0.014 -0.170 0.012 1.000   
SO4 0.115 0.138 0.091 -0.078 0.126 0.028 0.128 0.115 -0.226 0.215 0.066 1.000  
Turb 0.173 0.113 0.191 -0.090 0.183 0.272 0.109 0.101 0.125 -0.006 -0.070 -0.134 1.000 
Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy 0.510       
Bartlett’s Test of Sphericity significance 0.000       

Source: UWB (2014 to 2018), statistical analysis results from IBM SPSS Statistics (SPSS Inc., 2016). 

Notes: Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is 0.510, which is satisfactory, and Bartlett’s Test 

of Sphericity is 0.000, thus confirming the appropriateness of the dataset. Parameters are abbreviated as 
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follows: ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), electrical conductivity (EC), 

fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate (NO3), pondus Hydrogenium 

(pH), sulphate (SO4) and turbidity (Turb). 

Correlation matrix assisted in evaluating inter-relationships between the thirteen water quality 

variables shortlisted for statistical analysis. Similar to Wang (2018), Nnorom et al. (2019), 

Ustaoğlu et al. (2019), and Patil et al. (2020), the classification adopted is defined as follows: (a) 

r < 0.300, considered of no relevance; (b) 0.300 ≤ r < 0.500, less relevance; (c) 0.500 ≤ r < 0.800, 

median relevance; and (d) r ≥ 0.800, high relevance. Considering such groupings, the analysis 

indicates that Mg is highly related to Ca and CaCO3. Though with less relevance, the results 

suggest that NH3 is correlated with EC and NO3. 

 

As a common practice, rotation (Oblimin with Kaiser Normalisation) was executed to ensure that 

variables with higher loading values are not considered on the same factor. Rotation transforms 

the factorial axes into a structure where each of the retained factors is preferably loaded with only 

one variable. Furthermore, primarily where few principal components (PCs) exist, rotation 

restricts variables to overlay factor loadings on more than one principal component (PC) (Tripathi 

and Singal, 2019a). Post rotation, the leading parameters with the highest loadings are grouped 

as intermediate composites and assigned weights. The weights are then aggregated, and their 

compound effect is proportional to the percentage of variance explained by a particular 

component (Tripathi and Singal, 2019a). 

 

Considering that water quality parameters have different units, standardisation (z-scores) 

harmonised the dataset to a common scale with zero mean and unit standard deviation (Jolliffe, 

2011, Paca et al., 2019, Jahin et al., 2020, Liew et al., 2020, Njuguna et al., 2020, Tripathi and 

Singal, 2019b). Principal component analysis (PCA) helped in reducing the dimensionality of the 

dataset and summarised the variables to five important components. The first five principal 

components (PCs) retained accounted for 68.5 % of the total variance with eigenvalues greater 

than one ( > 1.000). For ease reference and factor interpretation, factor loadings are classified as 

“weak,” “moderate,” and “strong” corresponding to absolute loading values of 0.300 to 0.500, 

0.500 to 0.800 and > 0.800 respectively (Nnorom et al., 2019, Rezaei et al., 2019, Ustaoğlu et al., 

2019). 

 

Having strong positive loadings of 0.979, 0.972 and 0.979 for Ca, Mg and CaCO3 respectively, 

the first component (PC 1) accounts for 23.9 % of the total variance with eigenvalue of 3.118. 

The second PC features moderate loadings of -0.681, 0.624 and 0.522 corresponding to NH3, NO3 

and EC with eigenvalue of 1.948 and variance of approximately 15.0 %. Moderate factor loadings 

of SO4 (-0.654), Mn (0.624), and Turb (0.522) dominate the third component (PC 3) which 
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represents 11.4 % of the original variability with eigenvalue of 1.482. Signifying 9.2 % variance 

and eigenvalue of 1.195, the fourth factor (PC 4) contains fluoride as the most significant variable 

with a strong positive factor loading of 0.763. Lastly, the fifth component (PC 5) accounts for 9.0 

% of the total variance with eigenvalue of 1.171. Two parameters dominate this component, thus 

Cl and pH, with moderate factor loadings of -0.629 and 0.610 respectively. The five extracted 

principal components (PCs) are presented in Table 5.15. 

Table 5.15: Principal component analysis vectors of coefficients for the first five Principal 

Components (PCs) with eigenvalues greater than one ( > 1.000) for Umgeni water 

quality data (2014 to 2018) 

Variable symbol and name 
Principal components (PCs)a 

Communalities 
PC 1 PC 2 PC 3 PC 4 PC 5 

Ca Calcium 0.979 -0.175 0.035 -0.019 -0.003 0.991 
CaCO3 Hardness 0.979 -0.184 0.043 -0.027 -0.020 0.995 
Mg Magnesium 0.972 -0.194 0.053 -0.035 -0.043 0.987 
NH3 Ammonia 0.191 0.681 -0.042 -0.223 0.308 0.647 
NO3 Nitrate 0.080 0.636 -0.428 -0.124 -0.012 0.609 
EC Electrical Conductivity 0.313 0.593 0.029 -0.120 0.321 0.569 
SO4 Sulphate 0.215 0.182 -0.654 0.069 -0.105 0.523 
Mn Manganese -0.033 0.277 0.624 -0.408 0.195 0.671 
Turb Turbidity 0.188 0.372 0.522 0.472 0.008 0.669 
F Fluoride 0.001 0.188 0.171 0.763 0.188 0.682 
Cl Chloride 0.067 0.492 0.039 0.042 -0.629 0.646 
pH pondus Hydrogenium 0.042 -0.110 -0.395 0.261 0.610 0.610 
Chl-a Chlorophyll-a -0.148 -0.296 0.118 -0.260 0.345 0.310 
Eigenvalues ( > 1.0) 3.118 1.948 1.482 1.195 1.171  
Percentage of variance (%) 23.949 14.986 11.397 9.192 9.008  
Cumulative variance (%) 23.949 38.935 50.332 59.525 68.533  

Source: PCA results from IBM SPSS Statistics (SPSS Inc., 2016) 

Notes: a five components extracted using Principal Component Analysis (PCA) as the extraction method. Rotation 

method: Oblimin with Kaiser Normalization and rotation converged in seven iterations. The statistical 

analysis was performed using Umgeni water quality data for four years, from 2014 to 2018. 

Principal component analysis (PCA) is the most used tool in exploratory data analysis. It provides 

an accurate interpretation of multi-constituent measurements which enables a better 

understanding of water quality composition (Jolliffe, 2011, Rezaei et al., 2019, Gradilla-

Hernández et al., 2020, Tripathi and Singal, 2019b). PCA is a standard primary method used for 

pattern recognition, and the technique is regarded as the simplest of the true eigenvector-based 

multivariate analyses. One of the most influential and informative graphical illustrations of 

multivariate analysis is through the use of biplots. They optimally represent relationships between 

variables and principal components. Biplots suggests groups of highly correlated variables using 

an approximation of the original multidimensional space (Gradilla-Hernández et al., 2020, Patil 

et al., 2020). Biplots are illustrated in either two or three-dimensional subspace. On that basis, the 
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statistical results of the current study are further explained using 2D and 3D biplots in Figure 5.18 

and 5.17 respectively. 

 

Figure 5.17: 2D biplot of the first five retained principal components 

Source: Authors’ diagram showing PCA results from IBM SPSS Statistics (SPSS Inc., 2016). 

Notes: The five principal components are denoted as PC 1, PC 2, PC 3, PC 4 and PC 5. Parameters are abbreviated 

as follows: ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), electrical conductivity (EC), 

fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate (NO3), pondus Hydrogenium 

(pH), sulphate (SO4) and turbidity (Turb). 
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Figure 5.18: 3D biplot illustrating the relationship between highly correlated variables and the 

first three principal components 

Source: Authors’ diagram representing PCA results from IBM SPSS Statistics (SPSS Inc., 2016). 

Notes: PC 1, PC 2, and PC 3 are principal components one, two and three, respectively. Parameters are abbreviated 

as follows: ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), electrical conductivity (EC), 

fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate (NO3), pondus Hydrogenium 

(pH), sulphate (SO4) and turbidity (Turb). 

5.5.3.2 Hierarchical cluster analysis (HCA) 

Hierarchical cluster analysis (HCA) essentially outlined the hierarchical relationships between 

variables and assisted in arranging thirteen variables into corresponding clusters. Various 

hierarchical clustering methods exist, but in this doctoral study, centroid based clustering 

algorithms and Ward’s hierarchical clustering methods were examined. Eventually, Ward’s 

technique was preferred amongst the two approaches. Ward’s procedure generates approximately 

identical grouped clusters, unlike the other techniques were groupings are not equally 

proportional (Gradilla-Hernández et al., 2020).  

 

Cluster analysis uses a distance matrix, and the model intervals were calculated using squared 

Euclidean distance technique (Gradilla-Hernández et al., 2020, Grzywna and Bronowicka-

Mielniczuk, 2020). The method is regarded as the best option and most appropriate measure of 

distance in the physical world. Since variables are measured in different units, standardisation 

was performed to transform the observed measurements into a common scale. The tree diagram 

in Figure 5.19 represents the hierarchical clustering dendrogram for the thirteen explanatory 

variables considered in the analysis. 
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Figure 5.19: Hierarchical clustering dendrogram model for water quality variables using Ward’s 

Linkage and Euclidean Distance method (Hierarchical Cluster Analysis) 

Source: Authors’ diagram showing HCA results from IBM SPSS Statistics (SPSS Inc., 2016). 

Notes: Parameters are abbreviated as follows: ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a), 

electrical conductivity (EC), fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate 

(NO3), pondus Hydrogenium (pH), sulphate (SO4) and turbidity (Turb). 

As expected, extremely correlated variables are clustered together. For example, variables from 

principal component one are all clustered together under ‘Hierarchical Cluster A.’ Likewise, 

variables in principal component two are included in the second group of the hierarchical cluster 

dendrogram. The four clusters assisted in selecting the final four proxy variables incorporated in 

the surrogate index. At this stage, two sets of variables were considered as input parameters for 

the surrogate water quality index (WQI). The sets are grouped as (Banda and Kumarasamy, 

2020b): 

(i) Turb, Chl-a, EC and SO4 – referred to as proxy WQI(a); and 

(ii) Turb, Chl-a, EC and pH – documented as proxy WQI(b). 

Multivariate statistical analyses are highly objective, and their application in WQI development 

makes the process unbiased (Rezaei et al., 2019, Tripathi and Singal, 2019a, 2019b, Jahin et al., 

2020). However, the process does not incorporate local conditions and or expert opinion. 
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Nevertheless, this study integrated professional judgement through the decision to include pH as 

input parameter, even though the variable is extremely correlated to EC. The individual 

importance of pH could not be neglected, hence the need to evaluate the performance of proxy 

WQI(b). 

5.5.3.3 Multiple linear regression (MLR) 

As previously stated, multiple linear regression (MLR) analysis was performed to establish 

regression coefficients of the two preliminary surrogate index models. Multiple regression is a 

statistical procedure that predicts the values of the dependent (response) variable from a multiple 

independent (exploratory) variables. More precisely, multiple regression analysis enables the 

estimation of y-value for specified values of x1, x2, …, xk (Liew et al., 2020, Vatanpour et al., 

2020). Durbin-Watson (DW) method was employed considering that water quality data is time-

series; each case or test is time-based. DW technique uses the “line of best fit” technique to 

establish the linear regression equation. All the significant proxy variables were subjected to MLR 

to determine optimal linear fitting and generate the best regression coefficients used to establish 

an empirical mathematical equation applicable in evaluating the cleanness of surface water.  

 

Following the results of the multiple linear regression (MLR), the subsequent mathematical 

coefficients in Table 5.16 have been suggested for the two preliminary proxy models. 

Table 5.16: Multiple linear regression (MLR) coefficients for two preliminary surrogate index 

models, proxy WQI(a) and proxy WQI(b) 

Multiple Linear Regression Coefficientsa 

M
od

el
 

Var. 
Unstd. Coeff. Std. 

Coeff. 
t Sig. 

95 % Confidence 
Interval for B Correlations Collinearity 

Statistics 

B Std. 
Error Beta Lower 

Bound 
Upper 
Bound 

Zero 
order Partial Part Tol. VIF 

Pr
ox

y 
W

Q
I(

a)
 Const. 87.047 0.474  183.490 0.000 86.116 87.979      

Turb -0.088 0.007 -0.452 -12.644 0.000 -0.101 -0.074 -0.424 -0.449 -0.433 0.918 1.090 
EC -0.196 0.028 -0.336 -7.049 0.000 -0.251 -0.141 -0.173 -0.270 -0.241 0.516 1.940 
SO4 0.108 0.046 0.113 2.346 0.019 0.018 0.198 -0.028 0.093 0.080 0.510 1.961 
Chl-a -0.042 0.021 -0.069 -1.978 0.048 -0.084 0.000 -0.152 -0.078 -0.068 0.963 1.038 

Pr
ox

y 
W

Q
I(

b)
 Const. 85.273 2.969  28.726 0.000 79.444 91.102      

Chl-a -0.042 0.022 -0.068 -1.921 0.055 -0.084 0.001 -0.152 -0.076 -0.066 0.946 1.057 
EC -0.151 0.020 -0.259 -7.375 0.000 -0.191 -0.111 -0.173 -0.281 -0.254 0.959 1.043 
pH 0.224 0.378 0.021 0.593 0.553 -0.518 0.966 0.003 0.024 0.020 0.977 1.024 
Turb -0.090 0.007 -0.462 -12.964 0.000 -0.103 -0.076 -0.424 -0.458 -0.446 0.930 1.075 

Source: MLR results from IBM SPSS Statistics (SPSS Inc., 2016). 

Notes: aDependent variable: UWQI (universal water quality index value). Abbreviations are defined as follows: 

chlorophyll-a (Chl-a), electrical conductivity (EC), pondus Hydrogenium (pH), sulphate (SO4), turbidity 

(Turb), constant (Const.), unstandardised (Unstd.), standardised (Std.), coefficient (Coeff.), significance 

(Sig.), tolerance (Tol.) and variance inflation factor (VIF). 
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Once the multiple regression equation is developed, the appropriateness and predictive ability of 

the model can be examined using values of known scenarios. Therefore, to validate the selection 

of four key proxy variables, the two preliminary surrogate water quality indices were subjected 

to a scenario-based analysis. The outcome of the procedure is documented in the following 

subsection. 

5.5.4 Scenario-based analysis to determine the most appropriate surrogate WQI 

Following the same procedure performed for UWQI; the two proxy WQIs have been examined 

to delineate their proficiency and ability to analyse water quality data. The eleven scenarios and 

parameter values used herein, are identical to those applied for UWQI, and the scenario-based 

analysis results for the surrogate WQIs are included as Table 5.17 and Figure 5.20. Both proxy 

WQIs have similar predictive patterns, which are consistent with the ideal graph. Furthermore, 

both models have corresponding water quality scores for base-case and best-case scenarios. 

Except for the worst-case scenario, the two indices have different results, with proxy WQI(b) 

being much closer to the ideal graph than proxy WQI(a). Ultimately, the analysis proved that; 

surrogate WQI(a) struggles to evaluate water quality samples with higher parameter 

concentrations. Against this background, proxy WQI(b) is then considered as the most 

appropriate surrogate index developed for this study. 

Table 5.17: Comparison of the proxy water quality indices (a) and (b) using the scenario-based 

analysis to establish the functionality and predictive capacity of the models 

Sample 
identity 

Water quality index results from the scenario-based analysis 
Ideal WQI results  Proxy WQI(a) results  Proxy WQI(b) results 
Index score WQI class  Index score WQI class  Index score WQI class 

Max. 99.506 1.0  77.033 1  76.229 1 
Avg. 37.571 4.0  46.743 4  43.515 4 
1 0.000 5.0  23.088 5  6.389 5 
2 0.177 5.0  24.698 5  11.499 5 
3 0.827 5.0  26.287 4  16.479 5 
4 6.250 5.0  26.152 4  26.458 4 
5 20.254 5.0  39.387 4  39.895 4 
6 25.027 4.0  42.694 4  43.252 4 
7 30.269 4.0  46.001 4  46.609 4 
8 56.250 3.0  59.286 3  60.097 3 
9 80.976 2.0  77.033 2  75.837 2 
10 93.749 2.0  76.261 2  75.917 2 
11 99.506 1.0  73.285 3  76.229 2 

Source: Ideal WQI values are generated using sub-index key points, and the other WQI results are extracts from the 

surrogate WQI(a) and WQI(b) suggested for the study (Banda and Kumarasamy, 2020b, 2020c). 

Notes: Samples used for scenario analysis are predictive values ideal for establishing a specific set of results as 

demonstrated with the ideal WQI results columns. With increments of five scores, eleven probable scenarios 

have been considered to illustrate the model’s ability to predict scores of all ranges, from class one (excellent) 

to class five (worse). 
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Figure 5.20: Plot diagram showing the results of the scenario-based analysis of the developed 

proxy water quality indices (a) and (b) against ideal water quality values derived 

from eleven probable scenarios 

Source: Ideal WQI values are generated using sub-index key points, and the other WQI results are extracts from the 

surrogate WQI(a) and WQI(b) suggested for the study (Banda and Kumarasamy, 2020b, 2020c). 

Notes: The eleven cases presented herein are similar to those applied for UWQI, and they are represented as samples 

1, 2, …, n, which corresponds respectively to water quality (WQI) values of 0, 5, 10, 25 (worst-cases); 45, 

50, 55 (base cases); and 75, 90, 95, 100 (best cases). 

The model, as represented by Equation 5.32; functions with four input variables, namely, turbidity 

(Turb), chlorophyll-a (Chl-a), electrical conductivity (EC) and pondus Hydrogenium (pH). This 

aligns with objective five, which involves establishing four proxy determinants for the surrogate 

WQI and assign relative coefficients for the model (Banda and Kumarasamy, 2020b). 

WQI = 85.273 – 0.042Chl-a + 0.224pH – 0.090Turb – 0.151EC  Eq. 5.32 

where: WQI is the calculated index value ranging from zero to hundred, with zero representing 

water of poor quality and hundred denoting water of the highest quality; 

 Chl-a is the observed chlorophyll-a concentration in micrograms per litre (µg/ℓ); 

 pH is the observed pondus Hydrogenium levels which are unitless;  

 Turb is the observed turbidity concentration measured in Nephelometric Turbidity 

Units (NTU); and 

 EC is the electrical conductivity concentration in micro Siemens per meter (µS/m). 
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Umgeni water quality data have been examined further to demonstrate the applicability of the 

proposed surrogate index, and the results are presented in the following plot diagram (Figure 

5.21). 

 

Figure 5.21: Water quality index results calculated using the proposed surrogate water quality 

index (Proxy WQI) for Umgeni water quality data gathered monthly for over four 

years starting from 2014 until 2018 

Source: WQI results are extracts from the WQVM (Banda and Kumarasamy, 2020b). 

Notes: The Umgeni water quality data is from eight sampling stations which fall under four different catchment 

areas. The catchments include Umgeni River catchment (Henley, Inanda and Midmar Dams); Umdloti River 

catchment (Hazelmere Dam); Nungwane River catchment (Nungwane Dam); and lastly 

Umzinto/Umuziwezinto River catchment (Umzinto Dam). 

A scientifically balanced surrogate water quality index (WQI) have been suggested. The 

multivariate statistical approach has been virtually adopted and employed for selecting four proxy 

parameters and establishing their relative coefficients. Two models were developed, each with 

four indicators; in fact, the first three variables are similar except the forth parameter of each 

model. The identical variables are turbidity (Turb), chlorophyll-a (Chl-a), and electrical 

conductivity (EC). Proxy WQI(a) has sulphate (SO4) as the fourth parameter, whereas proxy 

WQI(b) uses pondus Hydrogenium (pH) instead. Both models are technically sensible, with the 

latter model being considered as the most applicable proxy index. The four parameters retained 

in the proposed proxy model can be easily measured, even using remote sensors; which would 

drastically reduce time, effort and cost of evaluating water quality across South African river 

catchments. 
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The development of the Surrogate WQI is an attempt to provide an alternative index, better 

functional with minimum variables, especially in the absence of a full-dataset applicable to the 

proposed universal water quality index (UWQI). Though with a slight prediction disparity, the 

proxy WQI can systematically replicate the prediction capabilities of the suggested UWQI. This 

being that, the Surrogate WQI developed under this study is regarded as an achievement and 

considered successful enough to fulfil objective three of the research. The objective is defined as 

developing a surrogate water quality index model that can operate with four key determinants as 

a proxy to the unbridged UWQI. 

 

Index scores from the universal water quality index (UWQI), artificial neural network (ANN) 

model and surrogate WQI are all classified using a common index categorisation schema. The 

focus is on maintaining a standardised unit and compare results of the same group. The index 

categorisation schema developed for the study is described in the following section. 

5.6 Index categorisation schema 

Water quality index (WQI) classification approach integrates WQI results into a much simpler, 

but yet decisive expression that can describe the spatial and temporal changes in water quality. 

Water categorisation has brought more clarity and understanding in the interpretation of water 

quality index scores, making it more favourable to non-technical individuals and water 

management officials. Accordingly, an increasing scale index with values ranging from zero to 

hundred (0 to 100) with categorisation classes ranging from class 1 to class 5 has been adopted 

for the classification of the universal water quality index scores. Class 1 water quality with a 

possible maximum index score of hundred (100) represents water quality of the highest degree. 

In contrast, Class 5 water quality with an index score close or equal to zero (0) denotes water 

quality of the lowest degree. 

 

Table 5.18 indicates the index score classification for the universal water quality index (UWQI) 

for South African river catchments. The indexing schema satisfies the requirements of objective 

six of the study, which involves the production of water classification grading and water 

categorisation schema suitable for the proposed water quality index and water quality variability 

model. Similar to the methods used by Abrahão et al. (2007), Rabee et al. (2011), Rubio-Arias et 

al. (2012), and Sutadian et al. (2018), appropriate mathematical functions with logical linguistic 

descriptors such as less than, equal to and greater than have been assigned to each categorisation 

class. By so doing, the categorisation schema can accommodate all possible index scores 

regardless of the decimal value. 
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Table 5.18: Index score classification for the universal water quality index (UWQI) for South 

African river catchments 

ID 
Water quality classification   
Description of rank and classification  Index score 

1 Class 1 – Good water quality  
95 < Index ≤ 100 

 Water quality is protected with a virtual absence of threat or impairment; conditions very close to 
natural or pristine levels  

2 Class 2 – Acceptable water quality  
75 < Index ≤ 95 

 Water quality is usually protected with only a minor degree of threat or impairment; conditions 
rarely depart from natural or desirable levels  

3 Class 3 – Regular water quality  
50 < Index ≤ 75 

 Water quality is usually protected but occasionally threatened or impaired; conditions sometimes 
depart from natural or desirable levels  

4 Class 4 – Bad water quality  
25 < Index ≤ 50 

 Water quality is frequently threatened or impaired; conditions often depart from natural or 
desirable levels  

5 Class 5 – Very bad water quality  
0 < Index ≤ 25 

 Water quality is almost always threatened or impaired; conditions usually depart from natural or 
desirable levels  

Source: Banda and Kumarasamy (2020c, 2020b); a modified version of the water quality index (WQI) categorisation 

schema suggested by Banda (2015). 

Notes: Class 1 index values (excellent) can only be obtained if all measurements are within objectives virtually all 

the time. 

This method ultimately assists in developing more flexible and precise water quality variability 

models (WQVMs). More importantly, the established categorisation schema aids in closing gaps 

identified in the existing literature and present a progressive approach that will contribute 

significantly towards water quality indices development. Such an academic contribution reflects 

on the efficiency of the model and attributes to the success of the current study. 

5.7 Water quality variability model (WQVM) 

In practice, most water quality indices (WQIs) are presented as mathematical expressions that are 

somewhat difficult to apply in the real world (Banda, 2015). Such research tendencies contributed 

to the absence of a holistic water monitoring tool that is appropriate for most, if not all the South 

African river catchments. The lack of such an algorithmic model substantiates the attempt to apply 

even the most fundamental logical functions and establish a practically-oriented monitoring tool. 

Henceforth, Microsoft Excel functions are employed to combine three WQI models into a virtual 

toolkit. 

 

WQVM, a software-based toolkit earmarked for analysing water quality data through the 

application of three distinctive WQIs, which are founded on different indexing methods. All the 

three WQIs are developed under this study, and they are: (a) universal water quality index, (b) 

artificial neural network model, and (c) surrogate water quality index. The WQVM enables the 

definition of multiple water quality parameters, thereby solving practical problems in the field of 

water science. Following study objectives seven and eight, the proposed WQVM is aimed at 



158 

promoting and improving water quality monitoring programs, by providing a simple, convenient 

and user-friendly monitoring tool. Undoubtedly, the suggested toolkit has an effect on increasing 

productivity in water resources assessment and optimising decision making, amongst water 

scientists and professionals. 

There are no definite modelling functions generated for water quality analysis; basically, there 

are no prescribed functions built for any particular modelling environment. Instead, the choice 

and effectiveness of procedures applicable to any modelling project depend on our modelling 

skills-sets, competence and acquaintance with available best practices. To an extent, the options 

are influenced and governed by the resources at our disposal, more than our knowledge and 

expertise. 

5.7.1 The rationale for using Microsoft Excel 

At present, Microsoft Excel remains as one of the most popular and pervasive computer programs. 

Its widespread have transformed the application to become commonplace, with an estimated 

users’ nearing 750 million, and figures are ever-rising (Avdic, 2018). The software arranges data 

in cells containing rows and columns used to perform simple arithmetic to complex computational 

analysis. It enables us to skillfully administer cumbersome formulas and provides a platform to 

handle complex mathematical expressions that are problematic and otherwise unsolvable using 

ordinary arithmetic operators. 

Excel strikes a balance between usability and functionality; hence the program is regarded as the 

most useful and ubiquitous computing tools, surpassing most computer-assisted audit tools 

(CAATs) (Varma and Khan, 2014). In simple terms, Excel is straightforward, convenient and 

user-friendly. All these merits consequently influenced the choice of using Microsoft Excel to 

build the water quality variability model (WQVM). Using the Excel platform reduces application 

barriers and presents end-users with a more familiar interface. The level of acceptance is then 

expected to be higher than suggesting utterly new software. 

5.7.2 Microsoft Excel-based WQVM 

Taking account of the merits as mentioned earlier, computational tools contained in Excel were 

used to integrate three water quality indices (WQIs) and form an ultimate monitoring tool. The 

WQVM consist of user interface page and various hidden calculation spreadsheets. The user 

interface page is subdivided into input and output segments. The input section is designed to 

accommodate one thousand samples with a maximum of thirteen predefined water quality 

variables. The stated data input limitations are due to the conditions under which the model was 
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developed, other than the computational capacity of the software. Nonetheless, one thousand 

samples are considerably more than enough, that is nearly twenty years of weekly observed data. 

 

Regardless of the model preference, inputting of water quality parameters is done once for all the 

three WQIs. Maximum of thirteen variables are required to perform a more precise and 

dependable water quality evaluation; otherwise, the model is designed to function with four proxy 

variables. Both UWQI and ANN models can accommodate the maximum thirteen variables, 

whereas the surrogate WQI is capacitated to handle only four variables. The preferred degree of 

accuracy and end-user preferences defines the amount of input data. The parameter input 

arrangement is governed by the input requirements of the underlying WQIs, which are the basis 

at which the WQVM is developed (Banda, 2015). 

 

The output section presents the model results in numeric, graphical and descriptive order. The 

model results include, (i) digital WQI score displayed as ratio equivalent to percentage, (ii) visual 

presentation showing the rises and the falls of the index values, and (iii) descriptive analysis that 

is based on a categorisation schema consisting of five classes related to the degree of purity. The 

five levels are; Class 1 (good quality), Class 2 (acceptable quality), Class 3 (regular quality), Class 

4 (bad quality), and lastly Class 5 (very bad quality). A block diagram of the WQVM is shown in 

Figure 5.22. 

 

Figure 5.22: Block diagram showing the structure of the water quality variability model 

(WQVM) developed using Microsoft Excel 

Source: Authors’ diagram which combines Figure 3.2 (UWQI), Figure 3.3 (ANN), Figure 3.4 (surrogate WQI) and 

Figure 3.5 (categorisation schema). 

Notes: The thirteen explanatory variables are as follows: ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-

a (Chl-a), electrical conductivity (EC), fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), 

nitrate (NO3), pondus Hydrogenium (pH), sulphate (SO4) and turbidity (Turb). The model uses three different 
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water quality indices defined as, (i) universal water quality index (UWQI) model (2/3)(å f(xi)wi)1.0880563 

with unequal weights, (ii) artificial neural network (ANN) model that uses nineteen neuro-nodes, seventy 

predetermined channel weight coefficients and six bias constants, and (iii) surrogate or proxy WQI model in 

the form of f(x) = b0 + b1x1 + b2x2 +…+ b4x4 + ℇ. The water quality categories assume the “green-yellow-

red” colour gradient, corresponding to the relevant water quality classes from excellent (class 1)  to worse 

(class 5). 

With an attempt to protect information oversights and overrides, data validation schemes were 

created using Excel built-in functions together with customised IF statements. Such blueprints are 

necessary to identify potential calculations errors and impending functional problems. In so 

doing, model formulas are adequately protected, and it reduces the risk of program failure and 

system crash. 

 

Tables and figures are drawn from the WQVM form part of the research results presented herein 

Chapter Five and Annexure E of this thesis, which signifies Excels capabilities in analysing water 

quality data. More so, the results validate the usefulness of the techniques employed; whilst 

demonstrating the ability of Excel to process high volumes of data. Needless to mention that, 

techniques presented in this study, provide fast and accurate ways to evaluate water resources. 

More importantly, the proposed WQVM show much promise and potential. If accorded adequate 

exposure, the model could afford water professional with a robust and steady tool that can 

interpret and transform water quality information, from one form to another. 

 

Furthermore, the proposed WQVM gives rise to a well-balanced monitoring structure that 

assumes a standardised mechanism. Which, in turn, encourages justice and impartiality in 

resource allocation and national prioritisation programs. Above all, the model promotes water 

resource monitoring and easy the capturing of spatial and temporal changes in surface water. All 

these collectively address significant gaps that exist in the South African water sector, which is 

an important milestone, not only for the study but the country at large. 
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CHAPTER 6 

6. CONCLUSION AND RECOMMENDATIONS 

6.1 Introduction 

Water quality monitoring is an essential environmental management task and the most demanding 

activity of the twenty-first century. Practical monitoring tools are then necessary to minimise the 

burden and promote regular water quality assessment programs. Water quality indices (WQIs) 

are useful tools which utilise a pollution-based method to perform a holistic analysis of any given 

water body. WQIs provides more straightforward and scientifically justifiable index scores, 

usually ranging from zero (worst quality) to hundred (excellent quality). The index ratings are 

non-dimensional and can be interpreted easily, even by non-technical individuals. 

 

Various indexing models exist; however, most of them are region-specific and oriented to a 

particular source. The approach governs the index application boundaries and limits its horizon. 

Such an academic gap prompted the need to consider universally acceptable water quality indices. 

Henceforth, the current study attempts to put forward flexible water resource monitoring tools 

that are broadly acknowledged. With immediate attention being given to nationally applicable 

index model which works for most, if not all the river catchments in South Africa. The research 

outcomes have the potential to intensify water resource monitoring and facilitate a unified of 

assessing spatio-temporal trends in river systems.  

 

Therefore, the study presents five distinctive water quality indicators for appraising water status 

of South African river catchments. The proposed tools are: 

(a) Universal water quality index (UWQI) developed using conventional methods involving 

parameter weights, sub-index functions and an aggregation formula; 

(b) Artificial neural networks (ANN) model based on an artificial intelligence algorithm that 

simulates the functionality of human brains; 

(c) Surrogate water quality index (proxy WQI) established through the application of 

multivariate statistical techniques. The proxy WQI functions as an abridged version of the 

outright UWQI and operates with limited input parameters;  

(d) Water quality variability model (WQVM) that combine the UWQI, ANN model and proxy 

WQI to become a software-based and practically-oriented monitoring tool; and 
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(e) An index classification system aimed at interpreting WQI scores resulting from the newly 

developed water quality monitoring tools. 

The research framework is aligned towards satisfying the seven objectives of the study, and the 

targeted goals were successfully achieved. Subsequently, Chapter Six presents the conclusions 

and recommendations drawn from the results of this study.  

6.2 Conclusion 

A unified index model for assessing water contamination levels and facilitate river control 

functions have been established using expert opinion gathered through participatory based Delphi 

method and extracts from previously published studies. The universal water quality index 

(UWQI) is an increasing scale index operating with thirteen fixed variables, parameter weight 

coefficients, sixty-two sub-index functions, and weighted arithmetic aggregation model. The 

index scores follow the common percentage hierarchy ranging from zero to hundred, which 

corresponds to bad and good water quality, respectively. The WQI values are further ranked using 

a standardised classification system founded on five categories. 

 

The UWQI demonstrated its predictive supremacy through evaluation of spatial and temporal 

trends of four different drainage basins in KwaZulu-Natal, a coastal province located east of South 

Africa. Based on the study results, the model is technically stable with a traceable predictive 

pattern. Such success advocates the readiness of the UWQI to appropriately appraise water quality 

trends and thus satisfying the requirements of objective one and four of the study. 

 

Similar to statistically derived models, artificial neural network (ANN) models are developed 

using dependent (target) variable henceforth their level of reliability in prediction depends upon 

the accuracy of the base-model or source of the dependent variable. Subsequently, their level of 

reliability in forecast relies on the accuracy of the base-model generating the dependent variable. 

Without paying enough attention, problems emanating from the parent model might be rolled-

forward and influence the descending model. The computational power of artificial intelligence 

(AI) towards evaluating water quality trends has been verified. The study established as a three-

layered parallel-distributed feed-forward neural network model for assessing long-term spatial 

and temporal water quality variations within South African river systems. 

 

Index scores from the universal water quality index (UWQI) together with water quality data from 

Umgeni were utilised to formulate a fully-connected neural network model. The dataset consists 

of 416 samples having thirteen water quality variables measured monthly on six different 

sampling sites for a period exceeding four years. The ANN model expressed a significantly high 
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degree of accuracy by registering an overall correlation coefficient (R) and coefficient of 

determination (R2) corresponding to 0.985 and 0.970, respectively. Accordingly, the R-values 

achieved are satisfactory, suggesting an increased predictive performance and well-defined neural 

network. 

 

Findings from the study insinuate that artificial neural networks (ANNs) are powerful and 

efficient analytical tools for evaluating surface water quality. The results further substantiate the 

usefulness of modelling ANNs as an effective alternative to traditional and statistical methods 

modelling methods, thereby satisfying objective two and the study hypothesis. Consequently, the 

study should encourage water scientists and water resources professionals to considered neural 

networks as a comprehensive and highly effective technique for assessing water quality trends. 

Therefore, artificial neural networks are recommended for routine monitoring of environmental 

resources. Hopefully, the study provides a useful platform beneficial for the application of 

artificial neural networks. 

 

Further to the two above stated models; a scientifically balanced surrogate water quality index 

(WQI) has been suggested. The multivariate statistical method has been virtually adopted and 

employed for selecting four proxy parameters and establishing their relative coefficients. Two 

models were developed, each with four indicators; in fact, the first three variables are similar 

except the forth parameter of each model. The identical variables are chlorophyll-a (Chl-a), 

electrical conductivity (EC) and turbidity (Turb). Proxy WQI(a) has sulphate (SO4) as the fourth 

parameter, whereas proxy WQI(b) uses pondus Hydrogenium (pH) instead. Both models are 

technically sensible, with the latter model being considered as the most applicable proxy index. 

The four parameters retained in the proposed proxy model can be easily measured, even using 

remote sensors; which would drastically reduce time, effort and cost of evaluating water quality 

across South African river catchments. 

 

The proxy WQI is not intended at substituting comprehensive water quality evaluations; instead, 

it is designed to deliver a quick guide of water resources status. The proxy model which should 

assist water quality experts, policymakers and the public by communicating water quality data in 

a more consistent and on-going manner. Developing the surrogate WQI is an attempt to provide 

an alternative index, better functional with minimum variables, especially in the absence of a full-

dataset applicable to high-fidelity model referred to as universal water quality index (UWQI). 

Though with a slight prediction disparity, the proxy WQI can systematically replicate the 

prediction capabilities of the UWQI. The surrogate WQI developed under this study is regarded 

as an achievement and considered successful enough to fulfil objectives three and five of the 
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research. The objective is defined as developing a surrogate water quality index model that can 

operate with four key determinants as a proxy to the unbridged UWQI. 

 

Classification of index scores is regarded as useful, and the approach offers advantages over the 

typical index range. Water quality rankings associated with descriptive statements are easily 

comprehended instead of a single-digit score. Therefore, the current study proposes an index 

categorisation schema with five-classes distinguished as class 1, 2, 3, 4, and 5. The upper rank 

(class 1) denotes “good water quality,” whereas the lowly-ranked class 5 represents “very bad 

water quality.” The classification system was perfectly aligned with the three WQIs and the water 

quality variability model developed for the study, which is an accomplishment of objective six of 

the research work. 

 

Typically water quality index models are presented as mathematical codes that’s are somewhat 

difficult to comprehend and inappropriate for practical use. In an attempt to break such barriers; 

the study developed a practical-based water quality variability model (WQVM). The WQVM 

integrates the functionality of the three WQIs (UWQI, ANN model and proxy WQI) and provides 

a hybrid Microsoft Excel-based application. Thirteen water quality variables are defined as the 

input parameters (NH3, Ca, Cl, Chl-a, EC, F, CaCO3, Mg, Mn, NO3, pH, SO4 and turbidity). The 

model is capable of producing a single-digit unitless index score together with a descriptive index 

rank. Microsft Excel was adopted since it’s commonplace and to maximise on the computational 

abilities of such a familiar software. The WQVM is readily available upon request and through 

the University of KwaZulu-Natal structures. Providing such a useful tool fulfils objective seven 

and promote the application of the proposed three water quality indices (WQIs). 

 

Over four hundred water quality samples from six sampling stations located in four different river 

catchments are evaluated using UWQI, ANN model and the surrogate WQI.  Chapter Five of the 

thesis provide details of the trend analysis. The spatial and temporal changes in water quality for 

Umgeni Water Board are evident over four years, with a varying sequence comprising of index 

scores as high as 95.154 (class one), an average of 87.780 (class two) and the lowest score of 

75.985 (borderline of class two) across the six sites. The best surface water quality was recorded 

at station 2 during the summer period of 2017, whereas the lowest water quality was recorded at 

station 5 during August 2014. The main pollution contributors are NO3 (station 2, 3, 4 and 6), 

turbidity (station 1, 2, 5 and 6), Chl-a (station 2 and 3) and lastly, Mn on station 5. 

 

The sources of pollution may be associated with anthropogenic activities considering the socio-

economic developments surrounding the affected sampling stations. Otherwise, the rest of the 

water quality parameters are virtually within permissible levels. There is a need for regular water 
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quality appraisal to monitor concentration levels against pollution control regulations and record 

the variability trends, especially for sampling stations located within the Durban-Pietermaritzburg 

business corridor. The application of the proposed water quality monitoring tools can well serve 

and perform sustainable water resource functions for river basin management. 

6.3 Recommendations 

The research data suffered a considerable amount of missing values, and this might have impacted 

on the accuracy of the results obtained. It is therefore recommended that Water Boards (WBs) 

and Water Service Authorities (WSAs) improve on water quality sampling activities. Such 

improvements will bear a positive impact on future studies and ultimately promote the production 

of efficient water management and monitoring tools. 

 

Considering the lack of well-defined water quality objectives and targeted water quality ranges 

for South Africa, it is highly necessary to initiate a research study focusing on refining the existing 

water quality limits and guidelines for South African authorities. It would be more practical if the 

objectives are not generalised, instead be established for every distinctive water use. 

 

In an attempt to improve the developed surrogate WQI and water quality variability model 

(WQVM), further refinement of the regression coefficients should be considered. Such an 

improvement would be advantageous in modifying the suggested proxy model into a more robust 

and compact application tool. Nevertheless, both current models are virtually useful and can be 

vigilantly employed to assess surface water quality. 

 

The study opens a path for unified WQIs to be considered in South Africa, as the first attempt to 

demonstrate the use of nationally applicable indices. It is highly expected that the study impacts 

on methods of developing future water quality indices, contribute to our understanding of index 

models and supplement our knowledge in water quality science. It is needful to research into 

unified WQIs formed based on multivariate statistical approaches. Further research is required to 

understand better the performance of objective methods on nationally applicable indices and 

address the effects of subjectivity on traditional methods of establishing WQIs. 

 

As an on-going study, additional data from other river catchments should be considered and 

evaluated using the suggested UWQI. The assessment will further demonstrate the universality 

of the model and perhaps, guide on necessary modification requirements. Nevertheless, the initial 

step towards the ultimate goal has been achieved, which is, the development of a universal water 

quality index (UWQI). 
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ANNEXURES 

Annexure A: Details of reviewed water quality indices (WQIs) 

In Chapter Two, fifteen significant water quality indices (WQIs) were discussed, essentially to 

establish the existing knowledge and provide background information to the current study. 

Consequently, this works as guidance towards the selection of the most appropriate research 

methods and ensure that objectives set in Chapter One are attained, which becomes a logical basis 

(rationale) for evaluating more existing WQIs. Hence the purpose of this Annexure (Section) is 

to provide further information on existing WQIs and enables the researcher to anticipate the most 

appropriate methods. It also provides a theoretical framework to justify the outcome of the study 

and substantiate the choices made. 

There are numerous water quality indices developed since the 19th century, and it is extensive 

work and beyond reach to attempt discussing all of them under this study; therefore, only forty 

WQIs are mentioned in Table A.1 below. 

Table A.1: Specific details of the reviewed WQIs 

Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters,

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition)

1 (a) Horton Water Quality Index (Horton’s WQI). Horton (1965), Debels et al. (2005), Lumb et al. (2011a), and Lumb et 

al. (2011b) 

(b) Developed for United States of America for general assessment of water quality, through the Ohio River Valley Water

Sanitation Commission in USA

(c) 8 parameters: Alkalinity, carbon chloroform extract, chlorides, coliform density, dissolved oxygen, pondus

Hydrogenium [pH], sewage treatment and specific conductance. Note that, temperature and pollution are included as

factors rather than parameters

(d) Horton’s rating scales and unequal weights were used with the weights ranging from 1 to 4

(e) The WQI utilities an Arithmetic weighted mean function

2 (a) National Sanitation Foundation Water Quality Index (NSF WQI). Brown et al. (1970), Brown et al. (1973), Deininger 

(1980), dos Santos Simões et al. (2008), Bonanno and Giudice (2010), and Lumb et al. (2011b) 

(b) Developed for United States of America and further applied in Brazil, India and Iran. Created for general assessment

of water quality

(c) 11 parameters: dissolved oxygen, faecal coliform, pondus Hydrogenium [pH], five-day biochemical oxygen demand,

phosphates, nitrates, temperature, turbidity, total solids, pesticides and toxic elements

(d) Associated rating curves and unequal weights were developed through Delphi Method of involving expert’s opinions.

Sum of weights equals to 1. Pesticides and toxic elements were handled differently without weights

(e) Additive aggregation function was used for the first version in 1970, whereas, multiplicative was adopted for the second

version in 1973 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters, 

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition) 

3 (a) Water Pollution Index (WPI). Nemerow (1971), Xu et al. (2010) 

(b) Index instituted by United States of America specifically for direct and indirect human contact uses as well as remote 

contact uses 

(c) 15 parameters: alkalinity, chloride, colour, dissolved oxygen, faecal coliform, hardness, temperature, total dissolved 

solids, total nitrogen, turbidity, manganese, pH, suspended solids, sulphates and Iron 

(d) Sub-indices are generated based on the mean and highest ratio between the particular parameter value over the standard 

allowable limits. The index is developed using equal weightage 

(e) WPI utilises the root mean square model to aggregate the equally weighted sub-indices and obtain one final index value 

4 (a) Prati Single Index of Pollution (Prati’s Pollution Index). Prati et al. (1971) 

(b) Italy index of pollution instituted to describe the extent of surface water pollution 

(c) 13 parameters: alkyl benzene sulfonates, ammonia, carbon chloroform extract, chemical oxygen demand (based on 

permanganate), chlorine, dissolved oxygen, five-day biochemical oxygen demand, Iron, manganese, nitrates, pH and 

suspended solids 

(d) All parameters are considered as indices of pollution with unequal weights adding to a total sum of 1 

(e) Additive method is used to combine the indices of pollution to provide the pollution index value 

5 (a) Harkin Water Quality Index (Harkin’s WQI). Harkins (1974), Landwehr et al. (1974) 

(b) A scientific tool initiated for collective evaluation of water quality within the United State of America 

(c) No parameter guidelines: any number of parameters may be used to compute the water quality index (WQI) value 

depending upon the intended ultimate use and or objective of the evaluation 

(d) In cognisance of the permissible limits (target values), standardisation of the variables is performed to achieve one 

dimensional scale of the water quality parameters. Unequal weights are assigned with total sum of one whole number 

(e) A non-parametric classification statistical procedure is used to establish the WQI value, through Multivariate Kendall’s 

Static technique 

6 (a) Walski and Parker Water Quality Index (Walski WQI). Walski and Parker (1974) 

(b) Index for analysing the suitability of water resources earmarked for recreational uses in the United States of America 

(USA) 

(c) 10 parameters: coliform count, colour, grease, nutrients, odour, pH, suspended solids, temperature, toxicity and 

turbidity 

(d) All parameters are considered as sub-indices with unequal weights adding to a total sum of 1 

(e) Additive aggregation equation is utilised to describe the water quality index (WQI) 

7 (a) Scottish Research Development Department Water Quality Index (SRDD Index) SRDD (1976), Bordalo et al. (2001), 

Bordalo et al. (2006), Carvalho et al. (2011), and Dadolahi-Sohrab et al. (2012) 

(b) Water quality index developed by the Scottish Government for general water quality assessment in Scotland. Though 

SRDD Index was applied in several studies for Spain, Portugal, Thailand and Iran 

(c) 10 parameters: dissolved oxygen, pH, free and saline ammonia, five-day biochemical oxygen demand, total oxidised 

nitrogen, suspended solids, phosphorus, E. coli, conductivity and temperature 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters, 

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition) 

(d) Conceptually similar to NSF WQI, the parameter rating curves and unequal weights were developed through Rand 

Corporation’s Delphi Technique with the sum of all weights adding to 1 

(e) Final index value was established based on the additive aggregation function 

8 (a) Ross Water Quality Index (Ross WQI). Ross (1977) 

(b) Established for the United Kingdom territory for general water quality assessment 

(c) 4 parameters: ammoniac nitrogen, dissolved oxygen, five-day biochemical oxygen demand and suspended solids 

(d) Sub-indices with rating curves developed through Rand Corporation’s Delphi Technique with unequal weights and the 

sum of all weights adding to 10 

(e) Additive aggregation method is used by Ross WQI 

9 (a) STORET Water Quality Index (STORET Index). Canter (1977), Ministry of the Environment of Indonesia (2003) 

(b) Index for general water quality evaluation for the North America 

(c) No specified list of parameters. Rather variables are categorised into 3 groups (biological, chemical and physical) 

(d) Unequally weighted 3 group sub-indices derived from an analysis of monitored parameter values against the permissible 

limits 

(e) The additive function is used to combine the group sub-indices into a single index value 

10 (a) Stoner Water Quality Index (Stoner’ Index). Stoner (1978) 

(b) WQI specifically modelled for assessing the suitability of irrigation water within the United States of America 

(c) 16 parameters (irrigation): aluminium, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, faecal 

coliform, fluoride, manganese, nickel, sodium absorption ratio [SAR], specific conductance, vanadium and zinc 

 13 parameters (water supply): ammonia-nitrogen, chloride, colour, copper, faecal coliform, fluoride, Iron, methylene 

active blue substance [MBAS], nitrate-nitrogen, pH, phenols, sulphate and zinc 

(d) All water quality parameters are taken as a sub-index with unequal weights adding to a total sum of 1 

(e) Additive aggregation function is used to provide the final index number 

11 (a) Oregon water quality index (OWQI) Dunnette (1979), Cude (2001), and Sarkar and Abbasi (2006) 

(b) Utilised by Oregon (pacific northwest, west coast) and Idaho (north-western region), United States of America. Both 

indices were developed for general water quality assessment of Oregon and Idaho States 

(c) 6 parameters (first version): dissolved oxygen, faecal coliform, pH, five-day biochemical oxygen demand, nitrates, 

ammonia and total solids 

 8 parameters (second version): temperature and total phosphorus, adding to the parameters of the first version of the 

water quality index (WQI) 

(d) Both indices used logarithmic transforms to convert water quality variables into sub-indices values. The first version 

used unequally weights with total sum of weight adding to 1, while, the second version used equal weights 

(e) Additive formula and un-weighted harmonic mean of squares of the sub-indices were used to aggregated the final WQI 

value for both the first version and second version of the index respectively 

12 (a) Martínez de Bascarón Water Quality Index (Bascarón Index). Martínez de Bascarón (1979), Pesce and Wunderlin 

(2000), Debels et al. (2005), Abrahão et al. (2007), Sánchez et al. (2007), Kannel et al. (2007), and Koçer and Sevgili 

(2014) 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters,

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition)

(b) Formulated for use in Spain and later modified by various researchers for application in Argentina, Brazil, Korea and

India. Original index was for general water quality assessment, but the evolution of the index, was targeting specific

uses 

(c) 26 parameters: pH, five-days biochemical oxygen demand, dissolved oxygen, temperature, total coliform, colour,

turbidity, permanganate reduction, detergents, hardness, pesticides, oil and grease, sulphates, nitrates, cyanides, sodium,

free carbon dioxide, ammonia nitrogen, chloride, conductivity, magnesium, phosphorus, nitrites, calcium and apparent 

aspect 

(d) Sub-indices generated from segmented (piecewise) linear transformation. Unequal weights were assigned with a total

sum of 54

(e) The final index value was obtained through the application of a modified additive function

13 (a) Bhargava’s Water Quality Index (Bhargava’s Index). Bhargava (1985), Al-Ani et al. (1987), and Avvannavar and 

Shrihari (2008) 

(b) Established to evaluate water quality of River Yamuna, Delhi, India

(c) Identified 4 parameter groups: (i) coliform organisms to represent bacterial variables, (ii) toxicants, heavy metals,

etc., (iii) physical parameters and (iv) organic and inorganic nontoxic substances 

(d) Water quality parameters clustered in the same group were aggregated to obtain 4 different group sub-indices. Unequal 

weights with a total summing up to 1

(e) Bhargava’s index used a modified multiplicative model 

14 (a) House’s Water Quality Index (House’s Index). House (1986, 1989, 1990), Tyson and House (1989), and Carvalho et 

al. (2011) 

(b) Water quality index for the United Kingdom, which was further modified for application in Spain. Its purposes included 

general assessment of water quality, appraisal of portable water supply and evaluating suitability of aquaculture 

(c) 9 parameters: dissolved oxygen, ammonia nitrogen, pH, five-day biochemical oxygen demand, chlorides, total

coliform, total phosphorus, nitrates and temperature

(d) Conceptually similar to NSF WQI, the parameter rating curves and unequal weights were developed through Rand

Corporation’s Delphi Technique with the sum of all weights adding to 1

(e) Final index value was established based on the additive aggregation function

15 (a) Dinius Water Quality Index (Dinius WQI). Dinius (1987), Sarkar and Abbasi (2006) 

(b) Dinius WQI established in United Kingdom for general water quality evaluation, which included public water supply,

recreation, fisheries, shellfish, agriculture and industrial waters

(c) 12 parameters: alkalinity, chlorides, coliform count, colour, dissolved oxygen, E-coli count, five-day biochemical

oxygen demand, hardness, nitrates, pH, specific conductance and temperature

(d) Parameter sub-indices with unequal weightage assigned based on the evaluation of importance by the Delphi panel 

members

(e) Multiplicative aggregation function is utilised to combine all the sub-index functions into one overall index value

16 (a) Smith Water Quality Index (Smith’s WQI). Smith (1987, 1990) 

(b) River and stream water quality index for New Zealand. Used to assess suitability of water resources for various uses

such as bathing, water supply and fish spawning 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters, 

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition) 

(c) 7 parameters (water supply): ammonia, dissolved oxygen, faecal coliform, five-day biochemical oxygen demand 

(unfiltered), temperature, turbidity and suspended solids 

 6 parameters (general and bathing): dissolved oxygen, faecal coliform, five-day biochemical oxygen demand 

(unfiltered), temperature, turbidity and suspended solids 

 4 parameters (fish spawning): five-day biochemical oxygen demand (unfiltered), temperature, turbidity and 

suspended solids 

(d) Sub-indices and rating curves developed through a panel of experts (Delphi’s Method) with sum of unequal weights 

adding to 1 

(e) The lowest value of all the sub-indices is retained as the final index value, thus the minimum operator technique 

17 (a) Ved Prakashi Water Quality Index (Ved Prakashi’s Index). 1990 

(b) Index for India attempting to evaluate the general water quality status of Indian water resources 

(c) 4 parameters: biochemical oxygen demand, dissolved oxygen, faecal coliforms and pH 

(d) Each water quality variable was considered as a sub-index with unequal weights adding to a total sum of 1 

(e) Parameter sub-indices were combined using the additive aggregation function 

18 (a) Diljido Water Quality Index (Diljido’s Index). Dojlido et al. (1994) 

(b) Mathematical tool developed in Serbia for analysing the water quality status of various water sources 

(c) 7 basic parameters: ammonia, chemical oxygen demand (Mg), chlorides, dissolved oxygen, dissolved solids, five-day 

biochemical oxygen demand, suspended solids, phosphates 

 19 additional parameters: cadmium, chemical oxygen demand (Cr), chlorides, chromium, copper, free cyanides, 

hardness, lead, iron, manganese, mercury, nickel, nitrate, organic nitrogen, phenols, total chromium, sulphates and zinc 

(d) Sub-indices with equal weights 

(e) Combination of parameter sub-indices was achieved through the application of a mathematical function simply known 

as the harmonic mean square root formula (harmonic model) 

19 (a) British Columbia water quality index (BCWQI). Zandbergen and Hall (1998), CCME (2001a), Bharti and Katyal (2011) 

(b) Though adaptive to various applications, the BCWQI was designed for general water quality assessment for the British 

Columbia Province in Canada 

(c) No prescribed list of parameters, instead, a minimum of 4 parameters are required and there is no defined maximum 

number of parameters 

(d) The index does not use neither sub-indices nor weights, rather the deviation of the monitored parameter value form the 

standards is used to describe water quality 

(e) No aggregation function, in fact, 3 factors are employed to express the extent of water quality noncompliance and 

divergence from water quality standards 

20 (a) Status and Sustainability Index (SS Index). Oudin et al. (1999), Fulazzaky (2010) 

(b) Developed for France mainly for general water quality assessment 

(c) 15 parameter clusters: based on their similar nature and their impact on environment. Acidification, colour, metals in 

bryophytes, microorganisms, mineralisation, mineral micro pollutants, nitrates, non-pesticides, organic micro-

pollutants, pesticides, phosphorus matter, phytoplankton, suspended particles and temperature 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters, 

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition) 

(d) Colour, nitrates and temperature alteration classes are considered directly as sub-indices, whereas, with the other 

classes, only one variable with the worst monitored value is considered as sub-index of that particular alteration class, 

obeying the minimum operator method. All parameters have equal weights 

(e) Minimum operator function is used to aggregate the final index value 

21 (a) Contact Recreation Index (NZ Recreation Index). Nagels et al. (2001) 

(b) Established in New Zealand for assessing recreational water resources 

(c) 8 parameters: Escherichia coli (or faecal coliform), colour, dissolved inorganic nitrogen, dissolved reactive 

phosphorus, five-day biochemical oxygen demand, pH, turbidity and visual clarity 

(d) Parameter sub-indices with equal weights 

(e) The final index value is obtained through the application of the minimum operator function 

22 (a) Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI). CCME (2002), Khan et al. 

(2003), Khan et al. (2004), Davies (2006), Lumb et al. (2006), Tobin et al. (2007), de Rosemond et al. (2009), 

Boyacioğlu (2010), Terrado et al. (2010), Nikoo et al. (2011), Sharma and Kansal (2011), Espejo et al. (2012), Hurley 

et al. (2012), Damo and Icka (2013), and Mostafaei (2014) 

(b) Originally for Canada and adopted for India, Albania, Chile, Egypt, Iran, Spain, Turkey and Poland. The original WQI 

was designed for general water quality assessment, whereas the modified indices are for specific uses 

(c) No prescribed list of parameters, instead, a minimum of 4 parameters are required and there is no defined maximum 

number of parameters 

(d) The index does not use neither sub-indices nor weights, rather the deviation of the monitored parameter value form the 

standards is used to describe water quality 

(e) No aggregation function, in fact, 3 factors (scope, frequency and amplitude) are employed to express the extent of water 

quality noncompliance and amplitude from the standards 

23 (a) Hallock Water Quality Index (Hallock’s Index). Hallock (2002) 

(b) Developed for United States of America for routine stream monitoring exercise 

(c) 8 parameters: dissolved oxygen, faecal coliform bacteria, pH, temperature, total nitrogen, total phosphorus, total 

suspended sediments and turbidity 

(d) Total suspended sediments and turbidity are combined to become one sub-index using average mean value. Whereas 

faecal coliform bacteria, pH, and temperature are considered as parameter sub-indices generated from permissible 

limits. The rest of the parameters are directly considered as sub-indices developed using historical data. All the sub-

indices are weighted equally 

(e) Hallock’s Index is based on an additive function 

24 (a) Dalmatian Water Quality Index (Dalmatian Index). Štambuk-Giljanović (1999, 2003) 

(b) Used in Serbia as a tool for general water quality evaluation 

(c) 9 parameters: five-day biochemical oxygen demand, dissolved oxygen, corrosion coefficient, mineralisation, protein 

N, temperature, total coliforms, total nitrate and total phosphorus 

(d) Parameter sub-indices with unequal weights adding to a total sum of 1 

(e) Additive or multiplicative functions can be utilised to aggregate the final index rating 

25 (a) Overall Index of Pollution (Indian OIP). Sargaonkar and Deshpande (2003) 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters, 

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition) 

(b) OIP is designed as an indicator of surface water pollution in India 

(c) 13 parameters: arsenic, biochemical oxygen demand, chloride, colour, dissolved oxygen, fluoride, hardness, nitrate, pH, 

turbidity, sulphate, total coliform and total dissolved solids 

(d) Individual water quality parameter sub-indices with equal weights 

(e) The final OIP value is obtained through the application of additive aggregation function 

26 (a) Liou’s Water Quality Index (Liou’s WQI). Liou et al. (2004) 

(b) Taiwan WQI developed for general water quality assessment 

(c) At least 9 parameters: ammonia nitrogen, dissolved oxygen, faecal coliform, five-day biochemical oxygen demand, 

pH, suspend solids, temperature, toxicity and turbidity 

(d) All parameters have sub-indices, which are further grouped into 3 cluster sub-indices, which are [a] microorganism 

sub-index (total coliform), [b] organics sub-index (ammonia nitrogen, chemical oxygen demand, dissolved oxygen and 

five-day biochemical oxygen demand) and finally [c] particulates sub-index (suspended solids and turbidity) 

(e) Both additive and multiplicative functions are used. Additive formula combines water quality parameters of the same 

characteristic into group sub-indices (that is, organic and nutrients as well as particulates). Whereas the multiplicative 

function aggregates all the 3 group sub-indices 

27 (a) Said Water Quality Index (Said’s WQI). Said et al. (2004) 

(b) WQI produced for general water quality evaluation of surface water resources in the United States of America 

(c) 5 parameters: dissolved oxygen, faecal coliform, total phosphates, turbidity and specific conductivity 

(d) Utilises equally weighted parameter sub-indices 

(e) Index value generated through the application of a specific linear function 

28 (a) Fuzzy-based Water Quality Index (Fuzzy Index). Ocampo-Duque et al. (2006), Lermontov et al. (2009), Nikoo et al. 

(2011), Mahapatra et al. (2012), and Ocampo-Duque et al. (2013) 

(b) WQI for Spain and introduced in Iran, India, Brazil and Columbia. Fuzzy Index was developed for general water quality 

evaluation 

(c) No guidelines provided 

(d) Using fuzzy logic and unequal weights 

(e) Using fuzzy logic 

29 (a) Universal Water Quality Index - Boyacioğlu Index (UWQI). Boyacioğlu (2007) 

(b) WQI developed to evaluate the suitability of drinking water supplied in Turkey 

(c) 12 parameters: arsenic, cadmium, cyanide, dissolved oxygen, five-day biochemical oxygen demand, fluoride, 

mercury, nitrate-nitrogen, pH, selenium, total coliform and total phosphates 

(d) Sub-indices are generated in cognisance of the permissible limits governed by Turkey water standards. The WQI utilises 

unequal weights adding up to a total sum of 1 

(e) Aggregation of the sub-indices is achieved through the utilisation of an additive formula 

30 (a) Malaysian Water Quality (Malaysian Index). Shuhaimi-Othman et al. (2007) 

(b) Applied in Malaysia for general water quality valuation 

(c) 6 parameters: sulphates, phosphate, pH, chemical oxygen demand, nitrates and ammonia nitrogen 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters, 

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition) 

(d) Variable directly considered as sub-indices using unequal weights adding up to a total sum of 1 

(e) Additive aggregation method applied to aggregate the final water quality index value 

31 (a) Hanh Water Quality Index (Hanh’s WQI). Thi Minh Hanh et al. (2011) 

(b) WQI formulated to evaluate surface water resources in Vietnam 

(c) Minimum of 11 parameters: ammonium nitrogen, chemical oxygen demand, dissolved oxygen, five-day biochemical 

oxygen demand, orthophosphate, total coliform, suspended solids, temperature, turbidity and toxicity 

(d) All parameters have sub-indices, which are further clustered into 3 group sub-indices, thus [a] bacteria sub-index (total 

coliform), [b] organic and nutrients sub-index (ammonia nitrogen, chemical oxygen demand, dissolved oxygen, five-

day biochemical oxygen demand, and orthophosphate) and lastly [c] particulates sub-index (suspended solids and 

turbidity 

(e) Both additive and multiplicative functions are used. Additive formula aggregates water quality variables of the same 

characteristic into clustered parameter sub-indices (that is, organic and nutrients together with particulates). Whilst the 

multiplicative model combines all the 3 group sub-indices 

32 (a) Almeida Water Quality Index (Almeida’s Index). Almeida et al. (2012) 

(b) Research initiative for Argentina, created mainly for water quality assessment of recreational water resources 

(c) 9 parameters: chemical oxygen demand, detergents, Escherichia coli, enterococci, faecal coliforms, nitrates, 

phosphate, pH, and total coliforms 

(d) Parameter sub-indices with unequal weights adding to a total sum of 1 

(e) Almeida’s Index uses multiplicative function to combine the sub-indices into a single index grading 

33 (a) Vaal Water Quality Index (Vaal WQI). Banda (2015) 

(b) Specifically developed for the Vaal Basin in South African to evaluate the status of surface raw water intended for 

purification to portable standards 

(c) 15 parameters: ammonia/ammonium, calcium, chlorophyll 665, chloride, electrical conductivity, fluoride, hardness, 

magnesium, manganese, nitrate/nitrite, orthophosphate, pondus Hydrogenium [pH], sulphate, total alkalinity and 

turbidity 

(d) Variable directly considered as sub-indices using unequal weights adding up to a total sum of 1 

(e) Vaal WQI utilises additive aggregation model to combine the unequally weighted sub-indices 

34 (a) Wanda Water Quality Index (Wanda’s Index). Wanda et al. (2016) 

(b) Suggested for evaluating water resources for Mpumalanga and North-West Provinces in South Africa 

(c) 7 parameters: pondus Hydrogenium [pH], electrical conductivity, five-day biochemical oxygen demand, Escherichia 

coli [E-coli], temperature, turbidity and nutrients [nitrogen and phosphates) 

(d) Parameter sub-indices with unequal weights adding to a total sum of 1 

(e) The final index value is obtained through the application of the modified additive function 

35 (a) Medeiros Water Quality Index (Medeiros WQI). Medeiros et al. (2017) 

(b) Developed for evaluating water quality for Murucupi River Basin, Barcarena City in the Pará State, Brazil 

(c) 11 parameters: temperature, pH, total dissolved solids, total suspended solids, dissolved oxygen, five-day biochemical 

oxygen demand, thermotolerant, coliforms, total nitrogen, total phosphorus, and turbidity 
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Identity 

Specific details of the reviewed water quality indices (WQIs) 

(a) Name and associated authors, (b) Region of application and purpose, (c) Selected water quality parameters, 

(d) Sub-indices and weights, and (e) Aggregation method (mathematical composition) 

(d) All parameters are considered as sub-indices with unequal weights adding to a total sum of 1 

(e) Multiplicative aggregation equation is utilised to describe the water quality index (WQI) 

36 (a) García-Ávila Water Quality Index (García-Ávila Index). García-Ávila et al. (2018) 

(b) Developed to analyse drinking water for Azogues City in Ecuador 

(c) 13 parameters: turbidity, temperature, electrical conductivity, pondus Hydrogenium [pH], total dissolved solids, total 

hardness, calcium, magnesium, alkalinity, chlorides, nitrates, sulphates and phosphates 

(d) Variable directly considered as sub-indices using unequal weights adding up to a total sum of 1 

(e) García-Ávila Index is based on additive aggregation function that combine unequally weighted sub-indices 

37 (a) Drinking Water Quality Index (DWQI). Ponsadailakshmi et al. (2018) 

(b) Index established to assess the drinking water in Nagapattinam, Tamil Nadu in Southern India 

(c) 17 parameters: pondus Hydrogenium [pH], electrical conductivity, sodium, chloride, sulphate, alkalinity, total 

hardness, calcium, magnesium, iron, fluoride, nitrate, manganese, zinc, chromium, lead and copper 

(d) Parameter sub-indices with unequal weights adding to a total sum of 1 

(e) Both arithmetic and geometric methods were applied to aggregate the final water quality index value 

38 (a) Fuzzy-based Water Quality Index (FWQI). Tiri et al. (2018) 

(b) WQI for El Hai Basin in Algeria 

(c) 10 parameters for both FWQI and the traditional WQI: pondus Hydrogenium [pH], total dissolved solids, calcium, 

magnesium, Sodium, potassium, chloride, sulphate, bicarbonate and nitrate 

(d) Using fuzzy logic and unequal weights the traditional WQI uses parameter sub-indices and unequal weights 

(e) Using fuzzy logic and the traditional WQI uses additive method to aggregate sub-indices into WQI 

39 (a) West Java Water Quality Index (WJWQI). Sutadian et al. (2018) 

(b) Tool developed to assess water quality in rivers of the West Java Province in Indonesia 

(c) 17 parameters: temperature, suspended solids, chemical oxygen demand, dissolved oxygen, nitrite, total phosphate, 

detergent, phenol, chloride, zinc, lead, mercury, and faecal coliform 

(d) Parameters directly considered as sub-indices with unequal weights adding up to a total sum of 1 

(e) WJWQI utilises geometric aggregation model to combine the unequally weighted sub-indices 

40 (a) Mhlongo’s Water Quality Index (Mhlongo’s Index). Mhlongo et al. (2018) 

(b) Index suggested for evaluating mining water along the Upper Olifants River, Witbank Dam, South Africa 

(c) 5 parameters: pondus Hydrogenium [pH], turbidity, total dissolved solids, sulphates and manganese 

(d) The index does not use neither sub-indices nor weights, rather the deviation of the monitored parameter value form the 

standards is used to describe water quality 

(e) No aggregation function, in fact, allowable upper and lower limits are used to express the extent of water quality 

noncompliance from the national standards 

Source: As indicated with each WQI (also see Lumb et al., 2011a, Poonam et al., 2015, Sutadian et al., 2016) 

Notes: The listing of the water quality indices (WQIs) in Table A.1 above is based on the year at which the WQI was 

developed and or published, rather than preference. 
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Annexure B: Aggregation formulation of the reviewed WQIs 

The aggregation functions applicable to the fifteen water quality indices (WQIs) discussed under 

Chapter Two, Section 2.4.8 are summarised herein Annexure B: Aggregation formulation of the 

reviewed WQIs, under Table B.1 below. The summary only focuses on the aggregation method 

used in the calculation of the index value. The fifteen WQIs are widely used and perceived as the 

most fundamental water quality indices. The original National Sanitation Foundation water 

quality index (NSF WQI) and the modified NSF WQI are recorded as one in Table B.1, unlike in 

Section 2.4.8 where they are discussed separately. Therefore, the numbering of the WQIs in the 

following table, reduces to fourteen. 

Although several aggregation techniques have been established, with various modifications being 

suggested, additive (arithmetic mean) and multiplicative (geometric mean) functions remain as 

the commonly applied methods. Selection of the most appropriate aggregation technique is an 

ongoing challenge, considering that each method has its advantages and disadvantages. It is 

therefore, upon the water quality index (WQI) developer to apply their expertise and knowledge, 

to select the most suitable method, preferably with minimal disadvantages. The selection process 

is usually guided by the degree of accuracy required, available data and whether the water quality 

variables have equal or unequal weights. 

Table B.1: Aggregation formulation of the reviewed WQIs 

WQI name and symbol description Aggregation formulation 

1: Horton Water Quality Index (Horton’s WQI). Horton (1965), 

Debels et al. (2005), Lumb et al. (2011a), and Lumb et al. (2011b). 

Additive (arithmetic weighted mean), where: WQI is the index 

value, n is the number of variables, si is the ith sub-index value 

which represents the rating number assigned to each variable (0-

100), wi is the ith weight factor (1-4), m1 is the temperature 

correction factor (0.5 or 1), and m2 is the pollution correction factor 

(0.5 or 1).  

 B1.1 

2: National Sanitation Foundation Water Quality Index (NSF 

WQI). Brown et al. (1970), Brown et al. (1973), Deininger (1980), 

dos Santos Simões et al. (2008), Bonanno and Giudice (2010), and 

Lumb et al. (2011b). 

Additive (1970) and multiplicative (1973), where: WQI is the 

aggregated index value,  is the measured value of the ith

parameter, Ti is the quality rating transformation curve of the ith 

parameter, qi is the individual parameter quality rating (Ti = qi),

n is the total number of weighted parameters, and wi is the ith 

weight value such that w1+ w2 + w3 + …+ wn = 1 for both Equation 

B1.2 and Equation B1.3 

The first version, 1970 

 B1.2 

The second version, 1973 

B1.3 
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WQI name and symbol description Aggregation formulation 

3: Scottish Research Development Department Water Quality 

Index (Scottish WQI) SRDD (1976), Bordalo et al. (2001), 

Bordalo et al. (2006), Carvalho et al. (2011), and Dadolahi-Sohrab 

et al. (2012). 

Additive, where: WQI is the aggregated index value, n is the 

number of variables, qi is the ith sub-index value, and wi is the ith 

weight factor such that w1+ w2 + w3 + …+ wn = 1 for Equation B1.5. 

 B1.5 

 B1.6 

4: Oregon Water Quality Index (OWQI) Dunnette (1979), Cude 

(2001), and Sarkar and Abbasi (2006) 

Additive (1979) and unweighted harmonic mean of squares 

(2001), where: WQI is the aggregated index value, n is the number 

of variables, SIi is the ith sub-index value, and wi is the ith weight 

factor such that w1+ w2 + w3 + …+ wn = 1 for Equation B1.7. 

The first version, 1979 

 B1.7 

 B1.8 

The second version, 2001 

 B1.9 

5: Martínez de Bascarón Water Quality Index (Bascarón Index). 

Martínez de Bascarón (1979), Pesce and Wunderlin (2000), Debels 

et al. (2005), Abrahão et al. (2007), Sánchez et al. (2007), Kannel 

et al. (2007), and Koçer and Sevgili (2014). 

Modified additive, where: WQIsub is the subjective water quality 

index value, WQIobj is the objective water quality index value, 

WQImin is the minimum water quality index value, n is the number 

of sub-indices, k is the subjective constant representing the visual 

impression of river contamination, Ci is the value assigned to 

parameter ith after normalisation, and Pi is the relative weight 

assigned to the ith parameter and ranges from 1 to 4 as highest. 

Model for the subjective index 

 B1.10 

Model for the objective index 

 B1.11 

Model for the minimum index 

 B1.12 

6: Bhargava’s Water Quality Index (Bhargava’s Index). Bhargava 

(1985), Al-Ani et al. (1987), and Avvannavar and Shrihari (2008). 

Modified multiplicative, where: WQI is the water quality index 

value, n is the number of variables considered more relevant, and 

fi(Pi) is the sensitivity function of the ith parameter which includes 

the effects of a weighting of the ith parameter. 

  B1.13 

7: House’s Water Quality Index (House’s Index). House (1986, 

1989, 1990), Tyson and House (1989), and Carvalho et al. (2011). 

Additive, where: WQI is the aggregated index value, n is the 

number of variables, qi is the ith sub-index value, and wi is the ith 

weight factor such that w1+ w2 + w3 + …+ wn = 1 for Equation 

B1.14. 
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WQI name and symbol description Aggregation formulation 

8: Smith Water Quality Index (Smith’s WQI). Smith (1987, 1990). 

Minimum operator, where: Imin is the lowest sub-index value, Isub1 

is the sub-index value of the first parameter (1, 2, …, n), and Isubn 

is the sub-index value of the last parameter (1, 2, …, n). 

 B1.16 

9: British Columbia Water Quality Index (BCWQI). Zandbergen 

and Hall (1998), CCME (2001a), and Bharti and Katyal (2011) 

Objective-based model, where: WQI is the overall water quality 

index value, F1 is the percentage of water quality guidelines 

exceeded, F2 is the frequency with which objectives not met as a 

percentage of objectives checked, F3 is the maximum by which any 

of the guidelines were exceeded, and 1.453 is the factor to 

normalise the WQI to a maximum value of 100. 

 B1.17 

10: Canadian Council of Ministers of the Environment Water 

Quality Index (CCME WQI). CCME (2002), Khan et al. (2003), 

Khan et al. (2004), Davies (2006), Lumb et al. (2006), Tobin et al. 

(2007), de Rosemond et al. (2009), Boyacioğlu (2010), Terrado et 

al. (2010), Nikoo et al. (2011), Sharma and Kansal (2011), Espejo 

et al. (2012), Hurley et al. (2012), Damo and Icka (2013), and 

Mostafaei (2014) 

Objective-based model, where: WQI is the final index value, nse 

is the normalised sum of excursions, n is the total number of the 

excursions, F1 is the scope (“failed variables”), F2 is the frequency 

(“failed tests”), F3 is the amplitude (magnitude of failed tests”), and 

1.732 is a factor to normalise the WQI to a maximum value of 1. 

 B1.18 

 B1.19 

 B1.20 

 B1.21 

 B1.22 

11: Liou’s Water Quality Index (Liou’s WQI). Liou et al. (2004). 

Combination of additive and multiplicative, where: RSI is the 

aggregated river status index value, is the number of sub-indices, 

wi is the ith weight value for organic parameters, wj is the jth weight 

value for particulate parameters, wk is the kth weight value for 

microorganisms, Ii is the ith sub-index value for organic 

parameters, Ij is the jth sub-index value for particulate parameters, 

Ik is the sub-index value for microorganisms, and ctemp, cpH and ctox 

are temperature, pondus Hydrogenium (pH) and toxic substance 

coefficients respectively. 

B1.23 

 B1.24 

12: Fuzzy-based Water Quality Index (Fuzzy Index). Ocampo-

Duque et al. (2006), Lermontov et al. (2009), Nikoo et al. (2011), 

Mahapatra et al. (2012), and Ocampo-Duque et al. (2013). 

Fuzzy logic, where: FWQI is the fuzzy-based water quality index 

value (between 0 and 100), z is the independent variable of the 

fuzzy output set in each rule, and a, b, c, and d are membership 

function parameters. 
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WQI name and symbol description Aggregation formulation 

13: Universal Water Quality Index - Boyacioğlu Index (UWQI). 

Boyacioğlu (2007). 

Additive, where: UWQI is the universal water quality index value, 

wi is the weighted coefficient for the ith parameter presented as 

decimal, Ii is the sub-index for the ith parameter and n is the total 

number of the ranked water parameters. 

  B1.27 

   B1.28 

14: Vaal Water Quality Index (Vaal WQI). Banda (2015) 

Additive, where: WQI is the index value, wi is the weighted 

coefficient for the ith parameter presented as decimal, Ii is the sub-

index for the ith parameter and n is the total number of the ranked 

water parameters. 

   B1.29 

   B1.30 

Source: As indicated with each WQI (also see Lumb et al., 2011a, Poonam et al., 2015, Sutadian et al., 2016) 

Notes: The listing of the water quality indices (WQIs) in Table B.1 above is based on the year at which the WQI was 

developed and or published, rather than preference.
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Annexure C: Rand Corporation’s Delphi Technique questionnaire sample 

Research Questionnaire 
 Selection of Water Quality 

Parameters and Weight Ratings 
for the Development of a 

Universal Water Quality Index 
(UWQI) 

Doctoral Studies in Engineering (PhD) 

Thank you for participating. Please select the appropriate BOX with an [ X ] 
Gender Identity Date and Time of completing the Questionnaire 

Female Male dd/mm/yyyy 

Honorific Title Highest Qualification Employment Area 
Ms Prof Doctoral HNDip Academia 

Miss Dr Masters NDip Private Org 

Mx Eng Honours NNDip SOC Ltd 

Hon Mr PGDip NCert Government 

Other Mrs Under Grad None Other 

Please indicate the variables you would prefer to be included or excluded in the universal water quality index (UWQI) for South 
African river catchments, mark ONLY ONCE for each variable as either “Include” or “Exclude” and assign relative significance 
rating against each parameter designated as “Include.” The parameter significance weight rating indicators range from 1 to 5 with, 
1 representing the highest significance and 5 relatively low significance. Your cooperation is much appreciated. Thank you. 

Water Quality Variable Alphabetic Rank, Name and Symbol Preference Significance Weight Rating 
Item Parameter Description Symbol Include Exclude 1  2  3  4  5 

1 Ammonia NH3 

2 Biochemical Oxygen Demand BOD5 

3 Calcium Ca 

4 Chloride Cl 

5 Chlorophyll-a Chl-a 

6 Dissolved Oxygen DO 

7 Electrical Conductivity EC 

8 Faecal Coliforms CFU 

9 Fluoride F 

10 Hardness CaCO3 

11 Magnesium Mg 

12 Manganese Mn 

13 Nitrate NO3 

14 Nitrite NO2 

15 Phosphate PO4 

16 pondus Hydrogenium pH 

17 Sulphate SO4 

18 Temperature Temp 

19 Total Alkalinity TA 

20 Total Dissolved Solids TDS 

21 Turbidity Turb 

Please ADD up to a maximum of five, any other parameters that should be considered other than the listed above 

22 

23 

24 

25 

26 

Comments/Remarks: 

For the Researcher Only Date Received: Date Captured: 

Please return the completed questionnaire form to the following address: Attention: Talent Diotrefe BANDA (Mr.) | Postal: P. O. 
Box 3154, POLOKWANE, Limpopo Province, South Africa, 0700 | Hand/Postal: 21 Compensatie Street, CDB, POLOKWANE, 
Limpopo Province, South Africa, 0699 | Email: diotrefetb@yahoo.co.uk 
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Annexure D: Aggregated significance weight ratings from selected existing water quality 

indices (WQIs) ranging from 1965 to 2018 
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Annexure E: Weighted sub-indices and water quality index results 

The weighted sub-indices together with the aggregated water quality index values for Umgeni 

monthly water quality data have been calculated using the universal water quality index (UWQI) 

and are presented herein as Table E.1. The data set observed by Umgeni Water Board (UWB) at 

monthly intervals spans for four years from 2014 to 2018. The originally observed parameter 

concentration levels are summarised in Chapter Five, Section 5.2 in Table 5.1 of this study. 

Table E.1: Weighted sub-indices and aggregated water quality index values for Umgeni Water 

Board in KwaZulu-Natal Province 

Weighted sub- indices and aggregated water quality index values for Umgeni Water Board 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
1 8.99 6.66 7.42 3.58 6.92 8.30 5.65 7.05 9.10 0.58 9.11 7.72 0.59 80.235 
2 9.52 6.53 7.42 2.91 6.92 8.30 5.65 7.06 9.10 0.64 9.11 7.72 1.01 80.454 
3 9.87 6.70 7.42 2.81 6.92 8.30 5.65 7.05 8.16 0.84 9.11 7.72 3.36 82.614 
4 9.64 6.69 7.42 2.43 6.92 8.30 5.65 7.05 7.97 1.49 9.11 7.71 0.59 79.467 
5 9.64 6.61 7.42 1.59 6.92 8.30 5.62 7.04 9.10 3.45 9.11 7.71 0.53 81.703 
6 9.87 6.83 7.42 0.00 6.92 8.30 5.70 7.06 9.10 5.91 7.65 7.71 2.53 83.799 
7 9.87 6.16 7.42 0.00 6.92 8.30 5.35 7.00 7.94 6.50 9.11 7.74 0.30 81.238 
8 9.87 6.85 7.42 0.00 6.92 8.30 5.71 7.06 9.10 1.53 9.11 7.70 0.00 77.989 
9 9.87 6.88 7.42 2.53 6.92 8.30 5.72 7.06 9.10 0.00 9.11 7.70 0.00 79.093 
10 8.52 6.80 7.42 2.66 6.92 3.94 5.70 7.06 7.43 6.27 9.11 7.73 0.00 77.983 
11 9.52 6.81 7.42 3.58 6.92 8.30 5.70 7.06 9.10 4.36 9.11 7.72 0.35 84.820 
12 9.52 6.76 7.42 3.20 6.92 8.30 5.68 7.05 9.10 0.53 9.11 7.72 0.53 80.403 
13 9.52 6.77 7.42 2.98 6.92 8.30 5.68 7.05 9.10 3.09 9.11 7.72 1.70 84.196 
14 9.52 6.67 7.42 3.58 6.92 8.30 5.66 7.05 9.10 0.64 7.65 7.73 5.04 84.089 
15 9.52 6.75 7.42 2.75 6.92 8.30 5.67 7.05 9.10 0.53 9.11 7.72 0.32 79.684 
16 9.52 6.74 7.42 1.70 6.92 8.30 5.67 7.05 9.10 2.00 9.11 7.71 1.78 81.675 
17 7.64 6.57 7.42 3.04 6.92 8.26 5.61 7.04 7.05 6.67 9.11 7.72 1.53 83.340 
18 9.52 6.57 7.42 2.98 6.92 8.28 5.61 7.04 9.10 4.64 9.11 7.71 3.20 87.127 
19 9.34 6.60 7.42 2.67 6.92 8.29 5.62 7.04 9.10 6.53 8.63 7.71 3.12 88.083 
20 9.52 6.63 7.42 2.73 6.92 8.18 5.63 7.04 7.28 5.45 9.11 7.71 0.00 82.332 
21 6.82 6.60 7.42 3.15 6.92 8.30 5.63 7.04 6.33 4.91 9.11 7.70 0.00 78.382 
22 9.46 6.77 7.42 3.58 6.92 8.30 5.69 7.06 8.16 1.53 9.11 7.71 0.00 80.272 
23 9.52 6.74 7.42 3.58 6.92 8.30 5.68 7.06 9.10 1.82 8.63 7.71 0.43 81.542 
24 9.52 6.68 7.42 3.01 6.92 8.30 5.66 7.05 9.10 1.91 9.11 7.71 0.49 81.525 
25 9.52 6.73 7.42 2.10 6.92 8.30 5.68 7.06 9.10 1.44 9.11 7.73 1.36 81.089 
26 9.34 6.68 7.42 3.58 6.92 8.30 5.65 7.05 9.10 1.82 8.63 7.71 4.70 85.833 
27 9.52 6.72 7.42 2.53 6.92 8.30 5.67 7.05 9.10 1.91 9.11 7.72 5.57 86.512 
28 9.52 6.71 7.42 2.67 6.92 8.30 5.70 7.07 9.10 1.44 9.11 7.73 0.33 80.586 
29 9.52 6.71 7.42 2.50 6.92 8.30 5.67 7.05 9.10 1.33 9.11 7.72 0.67 80.594 
30 9.52 6.73 7.42 1.44 6.92 8.30 5.67 7.05 9.10 3.64 9.11 7.71 3.62 85.123 
31 9.52 6.55 7.42 3.58 6.92 8.30 5.62 7.04 4.28 3.09 9.11 7.71 0.66 78.244 
32 9.52 6.82 7.42 3.58 6.92 8.30 5.70 7.06 9.10 0.49 9.11 7.70 0.63 80.961 
33 9.52 6.76 7.42 3.58 6.92 8.30 5.69 7.06 9.10 2.18 9.11 7.71 0.38 82.434 
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Weighted sub- indices and aggregated water quality index values for Umgeni Water Board 
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Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
34 9.52 6.93 7.42 2.89 6.92 8.30 5.75 7.07 9.10 0.00 9.11 7.71 0.00 79.210 
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41 9.52 6.58 7.42 2.72 6.92 8.30 5.62 7.04 9.10 1.36 9.11 7.71 5.83 86.187 
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50 9.52 6.75 7.42 3.58 6.92 8.30 5.67 7.05 9.10 0.00 9.11 7.73 1.11 80.871 
51 9.52 6.77 7.42 2.12 6.92 8.30 5.68 7.05 8.16 0.62 8.89 7.72 5.22 83.139 
52 9.69 6.90 7.42 3.58 6.92 8.28 5.69 7.05 9.10 6.96 9.11 7.69 0.40 87.873 
53 9.69 6.90 7.42 3.58 6.92 8.28 5.69 7.04 9.10 6.95 9.11 7.69 3.01 90.679 
54 9.52 6.90 7.42 3.58 6.92 8.29 5.69 7.04 9.10 6.95 9.11 7.69 4.39 91.972 
55 9.28 6.90 7.42 3.58 6.92 8.29 5.69 7.04 9.10 6.94 9.11 7.69 2.57 89.750 
56 9.34 6.90 7.42 3.58 6.92 8.29 5.69 7.04 9.10 6.94 8.87 7.69 0.82 87.666 
57 9.52 6.90 7.42 3.00 6.92 8.29 5.69 7.04 8.16 6.93 9.11 7.69 0.69 86.333 
58 9.52 6.90 7.42 3.14 6.92 8.29 5.69 7.04 8.16 6.93 9.11 7.69 0.61 86.390 
59 9.52 6.90 7.42 3.06 6.92 8.30 5.69 7.04 8.16 6.92 9.11 7.70 0.48 86.157 
60 9.58 6.90 7.42 3.58 6.92 8.30 5.69 7.04 9.10 6.91 9.11 7.70 0.42 87.734 
61 9.87 6.90 7.42 3.03 6.92 8.30 5.69 7.04 9.10 6.91 9.11 7.70 0.15 87.160 
62 9.87 6.89 7.42 3.12 6.92 8.30 5.69 7.04 9.10 6.77 9.11 7.69 0.05 86.983 
63 9.87 6.88 7.42 3.16 6.92 8.30 5.68 7.05 9.10 6.64 9.11 7.68 0.11 86.934 
64 9.87 6.87 7.42 2.68 6.92 8.30 5.68 7.05 9.10 6.50 9.11 7.67 0.18 86.334 
65 9.87 6.88 7.42 3.58 6.92 8.28 5.69 7.05 9.10 6.52 9.11 7.67 0.23 87.360 
66 9.64 6.88 7.42 2.95 6.92 8.26 5.69 7.05 9.10 6.55 9.11 7.68 0.31 86.537 
67 9.87 6.89 7.42 3.00 6.92 8.23 5.69 7.05 9.10 6.57 8.87 7.68 0.32 86.592 
68 9.87 6.89 7.42 3.20 6.92 8.21 5.70 7.05 9.10 6.59 8.14 7.68 0.33 86.052 
69 9.87 6.90 7.42 3.58 6.92 8.19 5.70 7.05 9.10 6.61 9.11 7.69 0.25 87.440 
70 9.87 6.90 7.42 3.08 6.92 8.17 5.70 7.05 9.10 6.64 9.11 7.69 0.27 86.942 
71 9.87 6.90 7.42 3.19 6.92 8.12 5.70 7.05 9.10 6.53 9.11 7.69 0.29 86.891 
72 9.52 6.89 7.42 3.11 6.92 8.07 5.69 7.05 9.10 6.43 7.90 7.69 0.14 84.786 
73 9.52 6.90 7.42 3.15 6.92 8.10 5.69 7.05 9.10 5.76 9.11 7.68 0.16 85.480 
74 9.52 6.91 7.42 3.06 6.92 8.13 5.70 7.05 9.10 4.97 8.87 7.68 0.05 84.188 
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78 9.52 6.93 7.42 2.87 6.92 8.22 5.70 7.05 9.10 1.82 9.11 7.66 0.00 80.932 
79 9.52 6.92 7.42 2.21 6.92 8.17 5.70 7.05 9.10 4.91 9.11 7.66 0.00 83.467 
80 9.52 6.91 7.42 0.00 6.92 8.12 5.70 7.05 9.10 6.98 7.90 7.65 0.00 81.940 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
81 9.52 6.90 7.42 0.00 6.92 8.11 5.70 7.05 9.10 7.09 8.14 7.65 0.00 82.295 
82 9.52 6.90 7.42 0.00 6.92 8.10 5.69 7.05 9.10 7.20 8.38 7.65 0.00 82.651 
83 9.52 6.89 7.42 0.00 6.92 8.09 5.69 7.05 9.10 7.31 7.41 7.65 0.00 81.705 
84 9.52 6.89 7.42 1.61 6.92 8.08 5.69 7.05 9.10 7.42 6.44 7.65 0.00 82.485 
85 9.52 6.88 7.42 2.22 6.92 8.02 5.69 7.05 9.10 7.35 8.63 7.65 0.00 85.342 
86 9.28 6.88 7.42 3.17 6.92 7.96 5.69 7.05 8.16 7.28 7.65 7.65 0.00 83.911 
87 9.52 6.87 7.42 2.80 6.92 7.90 5.69 7.05 9.10 7.22 6.68 7.65 0.00 83.595 
88 9.52 6.87 7.42 3.58 6.92 7.84 5.69 7.05 9.10 7.15 8.87 7.65 0.03 86.666 
89 9.52 6.85 7.42 3.12 6.92 7.94 5.68 7.05 9.10 7.18 8.38 7.65 0.12 85.870 
90 9.52 6.83 7.42 3.58 6.92 8.04 5.68 7.05 9.10 7.22 7.41 7.65 0.20 85.526 
91 9.52 6.81 7.42 3.58 6.92 8.14 5.67 7.05 9.10 7.25 8.38 7.65 0.25 86.743 
92 9.52 6.79 7.42 3.15 6.92 8.24 5.67 7.04 9.10 7.28 7.41 7.65 0.30 85.400 
93 9.17 6.80 7.42 3.58 6.92 8.22 5.67 7.04 8.16 7.14 9.11 7.65 0.20 86.028 
94 9.52 6.81 7.42 3.58 6.92 8.20 5.67 7.04 8.12 6.99 9.11 7.65 0.23 86.230 
95 9.40 6.83 7.42 3.58 6.92 8.18 5.67 7.04 8.12 6.85 8.14 7.66 0.22 84.883 
96 9.52 6.84 7.42 3.19 6.92 8.16 5.67 7.04 7.97 6.70 8.14 7.66 0.00 84.039 
97 9.52 6.87 7.42 3.15 6.92 8.30 5.67 7.04 9.10 4.64 8.63 7.63 0.00 83.669 
98 9.52 6.81 7.42 3.11 6.92 8.30 5.66 7.04 9.10 5.91 7.90 7.64 0.30 84.471 
99 9.52 6.80 7.42 3.17 6.92 8.00 5.65 7.04 8.12 6.18 8.87 7.65 0.50 84.697 
100 9.52 6.84 7.42 3.11 6.92 7.92 5.67 7.04 9.10 7.73 8.14 7.72 0.41 86.526 
101 9.52 6.82 7.42 0.34 6.92 7.97 5.66 7.04 9.10 1.91 9.11 7.64 0.00 77.873 
102 9.52 6.84 7.42 0.12 6.92 8.15 5.67 7.04 9.10 7.73 9.11 7.62 0.28 84.365 
103 9.52 6.85 7.42 2.40 6.92 8.15 5.67 7.04 9.10 7.73 9.11 7.64 2.37 89.079 
104 9.52 6.89 7.42 3.00 6.92 8.16 5.69 7.05 9.10 7.73 7.90 7.63 3.03 89.209 
105 9.52 6.88 7.42 1.96 6.92 8.25 5.69 7.05 9.10 7.73 9.11 7.61 0.40 86.613 
106 9.46 6.83 7.42 3.01 6.92 8.21 5.67 7.04 7.87 7.73 9.11 7.68 0.86 86.807 
107 9.52 6.86 7.42 3.19 6.92 8.25 5.68 7.05 9.10 7.11 9.11 7.70 2.03 89.097 
108 9.52 6.84 7.42 3.58 6.92 8.21 5.67 7.04 9.10 7.22 9.11 7.69 3.12 90.727 
109 9.52 6.83 7.42 3.03 6.92 8.17 5.67 7.04 9.10 6.87 9.11 7.60 0.37 86.652 
110 9.52 6.81 7.42 3.58 6.92 8.17 5.65 7.04 9.10 7.73 9.11 7.57 0.63 88.355 
111 9.52 5.80 7.42 2.78 6.92 8.20 5.21 7.00 9.10 7.73 9.11 7.67 4.37 90.072 
112 9.52 6.81 7.42 3.58 6.92 8.22 5.66 7.04 9.10 7.62 9.11 7.63 4.12 92.153 
113 9.52 6.73 7.42 2.93 6.92 8.21 5.63 7.03 9.10 7.01 8.87 7.59 6.09 92.462 
114 9.52 6.77 7.42 3.58 6.92 8.30 5.65 7.04 9.10 7.73 9.11 7.67 6.74 95.154 
115 9.52 6.79 7.42 2.26 6.92 8.30 5.65 7.04 9.10 7.73 9.11 7.63 6.68 93.656 
116 9.52 6.79 7.42 2.39 6.92 8.27 5.65 7.04 9.10 7.66 9.11 7.64 6.61 93.629 
117 9.52 6.82 7.42 1.49 6.92 8.22 5.67 7.04 9.10 7.45 9.11 7.66 6.77 92.628 
118 9.52 6.91 7.42 3.17 6.92 8.30 5.70 7.05 9.10 7.39 9.11 7.64 5.13 92.811 
119 9.52 6.83 7.42 3.58 6.92 8.21 5.67 7.04 9.10 6.84 9.11 7.64 0.66 87.600 
120 9.52 6.73 7.42 3.06 6.92 8.30 5.63 7.03 9.10 7.56 9.11 7.67 4.45 91.868 
121 9.52 6.81 7.42 2.45 6.92 8.30 5.71 7.06 9.10 7.15 8.87 7.63 6.69 93.087 
122 9.52 6.78 7.42 3.10 6.92 8.30 5.65 7.04 9.10 7.22 9.11 7.64 6.82 94.160 
123 9.52 6.66 7.42 3.58 6.92 8.30 5.60 7.02 9.10 7.25 9.11 7.64 6.78 94.462 
124 9.52 6.73 7.42 2.99 6.92 8.30 5.63 7.03 9.10 7.73 9.11 7.62 6.75 94.416 
125 9.52 6.77 7.42 3.00 6.92 8.30 5.65 7.04 9.10 0.00 8.63 7.65 5.57 84.398 
126 9.52 6.77 7.42 2.53 6.92 8.30 5.64 7.03 9.10 7.73 9.11 7.68 0.70 87.497 
127 9.52 6.82 7.42 2.21 6.92 8.30 5.66 7.04 9.10 7.73 9.11 7.67 6.66 93.666 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
128 9.52 6.75 7.42 1.94 6.92 8.14 5.64 7.03 9.10 7.73 9.11 7.69 6.69 93.136 
129 9.52 6.82 7.42 3.22 6.92 8.30 5.66 7.04 9.10 7.52 9.11 7.69 6.81 94.708 
130 9.52 6.97 7.42 3.58 6.92 8.26 5.71 7.05 7.87 7.45 8.63 7.68 0.69 86.735 
131 9.52 6.84 7.42 3.58 6.92 8.27 5.67 7.04 8.08 6.64 8.87 7.66 2.87 88.489 
132 9.52 6.79 7.42 3.18 6.92 8.27 5.66 7.04 9.10 7.01 8.87 7.66 4.62 91.396 
133 9.58 5.16 7.42 2.78 6.92 8.11 4.83 6.97 9.10 5.64 9.11 7.54 6.78 89.096 
134 9.40 5.14 7.42 2.98 6.92 8.11 4.81 6.97 7.43 7.01 9.11 7.53 6.77 88.749 
135 9.87 5.12 7.42 1.63 6.92 8.12 4.80 6.97 9.10 5.91 9.11 7.53 6.79 88.398 
136 9.87 5.09 7.42 1.72 6.92 8.12 4.78 6.96 9.10 8.41 9.11 7.53 6.82 91.176 
137 9.87 5.07 7.42 2.26 6.92 8.12 4.77 6.96 9.10 7.25 9.11 7.52 6.82 90.471 
138 9.87 5.05 7.42 2.48 6.92 8.13 4.76 6.96 9.10 6.50 9.11 7.52 6.84 89.888 
139 9.87 5.03 7.42 2.09 6.92 8.13 4.74 6.96 8.01 6.27 9.11 7.52 6.81 87.958 
140 9.87 5.00 7.42 2.17 6.92 8.13 4.73 6.96 9.10 8.41 9.11 7.51 6.77 91.440 
141 9.87 4.98 7.42 3.03 6.92 8.14 4.71 6.96 9.10 8.41 9.11 7.51 6.84 92.413 
142 9.75 4.96 7.42 3.17 6.92 8.14 4.70 6.96 9.10 6.47 9.11 7.51 6.86 90.320 
143 9.75 4.94 7.42 3.58 6.92 8.14 4.69 6.95 9.10 6.09 9.11 7.50 6.83 90.282 
144 9.87 4.91 7.42 3.58 6.92 8.14 4.67 6.95 9.10 6.40 0.00 7.50 6.85 80.931 
145 9.87 4.89 7.42 3.12 6.92 8.15 4.66 6.95 9.10 5.00 9.11 7.50 6.83 88.656 
146 9.87 5.13 7.42 3.06 6.92 8.10 5.03 7.02 9.10 7.22 9.11 7.52 6.81 91.673 
147 9.87 5.39 7.42 3.00 6.92 8.09 5.13 7.02 9.10 8.14 9.11 7.51 6.81 92.969 
148 9.87 5.65 7.42 2.82 6.92 8.08 5.24 7.02 9.10 7.49 9.11 7.51 6.71 92.351 
149 9.52 5.91 7.42 2.50 6.92 8.07 5.34 7.02 9.10 7.69 9.11 7.50 3.70 88.955 
150 9.52 6.17 7.42 2.64 6.92 8.06 5.44 7.02 9.10 7.62 9.11 7.49 0.51 85.968 
151 9.52 6.12 7.42 2.65 6.92 8.01 5.41 7.02 9.10 7.52 9.11 7.51 6.69 92.407 
152 9.52 6.13 7.42 2.89 6.92 8.01 5.41 7.02 9.10 7.56 9.11 7.50 6.74 92.755 
153 9.52 6.14 7.42 3.04 6.92 8.01 5.42 7.02 9.10 7.32 9.11 7.48 6.78 92.723 
154 9.52 6.15 7.42 3.14 6.92 8.01 5.42 7.02 9.10 7.73 9.11 7.47 6.71 93.200 
155 9.52 6.17 7.42 3.11 6.92 8.01 5.43 7.02 9.10 7.22 9.11 7.46 6.83 92.746 
156 9.52 6.16 7.42 2.98 6.92 7.97 5.42 7.02 9.10 7.49 9.11 7.48 6.84 92.888 
157 9.52 6.16 7.42 3.58 6.92 7.92 5.42 7.02 9.10 6.64 9.11 7.50 6.89 92.628 
158 9.52 6.16 7.42 3.58 6.92 7.87 5.42 7.02 9.10 4.09 9.11 7.52 6.82 89.771 
159 9.52 6.16 7.42 3.22 6.92 8.04 5.41 7.02 9.10 6.18 9.11 7.53 6.85 91.851 
160 9.46 6.16 7.42 3.58 6.92 8.07 5.41 7.02 8.06 6.74 9.11 7.54 6.79 91.634 
161 9.17 6.15 7.42 3.19 6.92 8.11 5.42 7.02 7.85 6.81 9.11 7.54 6.83 90.828 
162 9.52 6.15 7.42 3.58 6.92 8.14 5.42 7.02 7.65 6.09 9.11 7.55 6.82 90.670 
163 9.52 6.14 7.42 3.58 6.92 8.13 5.41 7.02 7.43 5.00 9.11 7.60 6.83 89.277 
164 9.52 6.15 7.42 3.58 6.92 8.14 5.42 7.02 7.73 4.91 8.87 7.58 6.83 89.258 
165 9.52 6.16 7.42 3.00 6.92 8.15 5.43 7.02 8.04 3.45 8.63 7.56 6.81 87.125 
166 9.52 6.17 7.42 2.94 6.92 8.17 5.43 7.02 9.10 6.00 8.87 7.54 6.81 91.230 
167 9.52 6.13 7.42 3.58 6.92 8.15 5.41 7.02 9.10 6.40 8.63 7.54 6.84 92.041 
168 9.52 6.10 7.42 2.71 6.92 8.13 5.39 7.02 9.10 7.52 9.11 7.55 6.84 92.762 
169 9.52 6.08 7.42 3.00 6.92 8.02 5.38 7.02 9.10 7.73 9.11 7.54 6.81 93.103 
170 9.52 6.07 7.42 3.01 6.92 7.91 5.38 7.02 9.10 6.64 9.11 7.52 6.77 91.752 
171 9.52 6.07 7.42 1.47 6.92 7.91 5.38 7.02 9.10 7.73 8.87 7.53 6.68 90.904 
172 9.52 6.06 7.42 2.87 6.92 7.91 5.37 7.02 9.10 7.73 9.11 7.54 6.71 92.723 
173 9.52 6.06 7.42 1.61 6.92 7.91 5.37 7.02 9.10 6.43 8.87 7.55 6.75 89.738 
174 9.52 6.37 7.42 2.28 6.92 7.86 5.58 7.04 9.10 7.08 8.50 7.53 6.73 91.263 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
175 9.52 6.69 7.42 2.73 6.92 7.81 5.69 7.07 9.10 7.73 8.14 7.51 6.78 92.522 
176 9.52 6.54 7.42 2.62 6.92 7.85 5.64 7.05 9.10 7.73 9.11 7.52 6.77 93.269 
177 9.52 6.39 7.42 3.03 6.92 7.90 5.58 7.04 9.10 6.94 9.11 7.53 6.78 92.701 
178 9.52 6.25 7.42 2.64 6.92 7.95 5.47 7.03 9.10 7.01 8.87 7.54 6.70 91.768 
179 9.52 6.10 7.42 3.58 6.92 8.00 5.36 7.01 9.10 7.73 8.87 7.54 6.66 93.280 
180 9.52 6.14 7.42 2.38 6.92 7.96 5.39 7.02 9.10 7.73 8.87 7.54 6.67 92.031 
181 9.52 6.15 7.42 2.73 6.92 8.00 5.40 7.02 9.10 7.73 9.11 7.52 6.64 92.700 
182 9.52 6.16 7.42 2.47 6.92 8.05 5.40 7.02 9.10 7.52 9.11 7.51 6.69 92.298 
183 9.52 6.17 7.42 2.57 6.92 8.10 5.40 7.02 9.10 7.56 9.11 7.50 6.72 92.524 
184 9.52 6.18 7.42 3.20 6.92 8.14 5.41 7.02 9.10 7.73 8.87 7.60 6.78 93.366 
185 9.46 6.16 7.42 3.12 6.92 8.07 5.41 7.02 9.10 7.73 8.87 7.54 6.82 93.095 
186 9.52 6.23 7.42 3.14 6.92 8.00 5.44 7.02 9.10 7.73 9.11 7.49 6.84 93.451 
187 9.46 6.23 7.42 3.14 6.92 7.96 5.45 7.02 9.10 7.18 9.11 7.50 6.79 92.713 
188 9.46 6.23 7.42 3.09 6.92 8.09 5.46 7.02 9.10 6.57 9.11 7.51 6.84 92.217 
189 9.52 6.19 7.42 3.12 6.92 8.08 5.46 7.03 7.95 6.57 9.11 7.53 6.85 91.057 
190 9.52 6.15 7.42 3.58 6.92 8.07 5.46 7.03 7.63 6.70 9.11 7.55 6.82 91.297 
191 9.52 6.11 7.42 3.04 6.92 8.06 5.37 7.01 7.32 6.94 9.11 7.58 6.84 90.511 
192 9.52 6.14 7.42 3.19 6.92 8.01 5.40 7.02 7.54 0.64 9.11 7.59 6.63 83.930 
193 9.52 6.34 7.42 3.00 6.92 7.96 5.52 7.03 7.94 1.31 9.11 7.58 6.75 85.292 
194 9.52 6.55 7.42 2.84 6.92 7.91 5.61 7.04 9.10 1.71 8.87 7.56 5.39 85.343 
195 9.52 6.41 7.42 3.03 6.92 7.94 5.56 7.03 9.10 3.09 9.11 7.56 6.69 88.513 
196 9.52 6.26 7.42 3.58 6.92 7.98 5.49 7.03 9.10 1.25 8.87 7.56 6.81 86.784 
197 9.52 6.19 7.42 3.17 6.92 7.96 5.44 7.02 9.10 1.02 9.11 7.53 6.26 85.585 
198 9.52 6.12 7.42 3.15 6.92 7.95 5.39 7.02 9.10 0.07 9.11 7.51 6.76 84.910 
199 9.52 6.05 7.42 2.54 6.92 7.93 5.34 7.01 9.10 7.05 9.11 7.48 6.71 91.533 
200 9.52 6.03 7.42 3.58 6.92 7.92 5.32 7.01 9.10 6.40 8.87 7.47 6.74 91.647 
201 9.52 6.01 7.42 2.87 6.92 7.91 5.31 7.01 9.10 1.78 9.11 7.45 6.67 86.025 
202 9.52 5.92 7.42 1.83 6.92 7.90 5.26 7.01 9.10 1.40 9.11 7.43 6.64 84.288 
203 9.52 5.98 7.42 0.45 6.92 7.84 5.20 6.98 9.10 1.25 9.11 7.49 4.20 80.007 
204 9.52 6.04 7.42 1.08 6.92 8.01 5.14 6.96 9.10 2.00 9.11 7.54 4.37 81.887 
205 9.52 6.04 7.42 2.60 6.92 8.01 5.18 6.97 9.10 1.38 9.11 7.52 5.57 84.171 
206 9.52 6.05 7.42 2.69 6.92 8.01 5.23 6.99 9.10 6.87 9.11 7.49 6.43 91.159 
207 9.52 6.05 7.42 2.53 6.92 8.01 5.28 7.00 9.10 7.73 9.11 7.47 6.35 91.857 
208 9.52 6.05 7.42 2.17 6.92 8.01 5.33 7.01 9.10 0.00 9.11 7.45 6.81 83.685 
209 9.52 6.10 7.42 3.13 6.92 7.80 5.36 7.01 9.10 4.82 9.11 7.54 6.83 89.875 
210 9.40 6.12 7.42 3.58 6.92 7.77 5.36 7.01 9.10 7.73 9.11 7.53 6.83 93.361 
211 9.52 6.14 7.42 3.12 6.92 7.75 5.38 7.01 9.10 2.45 9.11 7.56 6.81 87.345 
212 9.52 6.14 7.42 2.86 6.92 7.82 5.39 7.01 9.10 6.27 9.11 7.56 6.71 91.158 
213 9.52 6.14 7.42 2.51 6.92 7.89 5.39 7.02 9.10 6.77 9.11 7.56 6.72 91.403 
214 9.52 6.14 7.42 3.01 6.92 7.96 5.39 7.02 9.10 6.67 9.11 7.55 6.72 91.914 
215 9.52 6.14 7.42 2.67 6.92 8.03 5.39 7.02 9.10 6.91 9.11 7.55 6.74 91.898 
216 9.52 6.31 7.42 3.06 6.92 8.01 5.50 7.03 9.10 7.22 9.11 7.57 6.82 93.033 
217 9.52 6.24 7.42 2.91 6.92 7.99 5.40 7.01 9.10 0.51 9.11 7.56 6.70 85.281 
218 9.52 6.17 7.42 3.06 6.92 7.97 5.29 6.99 9.10 3.18 9.11 7.55 6.74 88.110 
219 8.82 6.13 7.42 2.86 6.92 8.00 5.31 7.00 9.10 5.00 8.87 7.53 6.72 88.833 
220 9.52 6.09 7.42 2.98 6.92 8.04 5.33 7.01 9.10 4.55 9.11 7.52 6.72 89.501 
221 9.52 6.05 7.42 3.10 6.92 8.08 5.35 7.01 9.10 1.51 9.11 7.51 6.66 86.296 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
222 9.52 6.07 7.42 3.18 6.92 8.10 5.36 7.01 9.10 2.82 9.11 7.53 6.83 88.062 
223 9.52 6.05 7.42 3.09 6.92 8.08 5.34 7.01 9.10 1.42 9.11 7.53 6.79 86.364 
224 9.52 6.03 7.42 2.98 6.92 8.06 5.33 7.01 9.10 5.09 9.11 7.53 6.78 90.128 
225 9.52 6.00 7.42 2.86 6.92 8.05 5.32 7.01 9.10 3.55 9.11 7.53 6.71 88.208 
226 9.52 5.98 7.42 3.15 6.92 8.03 5.31 7.01 9.10 5.82 9.11 7.53 6.75 90.945 
227 9.52 6.10 7.42 3.15 6.92 8.03 5.40 7.02 9.10 5.09 9.11 7.53 6.78 90.434 
228 9.52 6.22 7.42 3.08 6.92 8.03 5.48 7.03 9.10 2.82 9.11 7.53 6.77 88.124 
229 9.52 6.34 7.42 3.03 6.92 8.03 5.57 7.04 9.10 1.27 9.11 7.53 6.82 86.685 
230 9.52 6.45 7.42 3.03 6.92 8.03 5.62 7.05 9.10 1.64 7.90 7.53 6.82 85.968 
231 9.52 6.34 7.42 2.84 6.92 8.04 5.56 7.04 9.10 4.45 9.11 7.53 6.72 89.824 
232 9.52 6.22 7.42 3.01 6.92 8.06 5.47 7.03 9.10 3.45 9.11 7.54 5.13 86.991 
233 9.52 6.10 7.42 2.73 6.92 8.07 5.39 7.02 9.10 1.11 9.11 7.54 6.35 85.265 
234 8.76 5.98 7.42 2.20 6.92 8.08 5.30 7.01 9.10 4.27 9.11 7.54 6.71 87.450 
235 9.52 6.02 7.42 2.63 6.92 8.06 5.32 7.01 9.10 3.73 9.11 7.55 6.52 88.013 
236 9.52 6.06 7.42 2.50 6.92 8.05 5.35 7.01 9.10 2.91 9.11 7.56 6.70 87.248 
237 9.52 6.10 7.42 1.84 6.92 8.03 5.37 7.02 9.10 3.73 9.11 7.57 6.63 87.413 
238 9.52 6.14 7.42 2.68 6.92 8.01 5.40 7.02 9.10 5.73 9.11 7.58 0.66 84.115 
239 9.52 6.14 7.42 2.15 6.92 8.00 5.38 7.01 9.10 2.82 9.11 7.57 4.87 84.890 
240 9.52 6.14 7.42 2.80 6.92 7.99 5.37 7.01 9.10 2.82 9.11 7.57 5.65 86.388 
241 9.52 6.13 7.42 2.92 6.92 7.98 5.35 7.01 9.10 5.18 9.11 7.56 6.17 89.585 
242 9.52 6.13 7.42 2.72 6.92 7.97 5.34 7.00 9.10 0.00 8.87 7.55 6.52 83.870 
243 9.52 6.12 7.42 2.49 6.92 7.96 5.33 7.00 9.10 4.64 6.93 7.55 6.69 86.647 
244 9.52 6.12 7.42 1.12 6.92 7.95 5.31 7.00 9.10 5.09 9.11 7.54 6.69 87.971 
245 9.52 6.13 7.42 1.99 6.92 7.94 5.33 7.00 9.10 4.64 7.17 7.54 6.17 85.799 
246 9.52 6.14 7.42 2.38 6.92 7.93 5.34 7.00 9.10 6.70 9.11 7.55 6.35 90.748 
247 9.52 6.15 7.42 2.80 6.92 7.92 5.36 7.01 9.10 6.36 9.11 7.55 6.79 91.334 
248 9.52 6.16 7.42 2.54 6.92 7.90 5.37 7.01 9.10 5.91 9.11 7.55 6.71 90.489 
249 9.52 6.17 7.42 2.62 6.92 7.89 5.38 7.01 9.10 6.40 8.87 7.55 6.75 90.907 
250 9.52 6.17 7.42 2.22 6.92 7.88 5.40 7.01 9.10 5.73 9.11 7.56 6.62 89.889 
251 9.52 6.21 7.42 2.12 6.92 7.85 5.43 7.02 9.10 6.27 9.11 7.55 6.72 90.520 
252 9.52 6.25 7.42 2.28 6.92 7.82 5.46 7.02 9.10 0.87 8.38 7.55 6.63 84.038 
253 9.52 6.24 7.42 2.16 6.92 7.86 5.45 7.02 9.10 4.18 9.11 7.54 6.63 88.259 
254 9.52 6.22 7.42 2.60 6.92 7.90 5.44 7.02 9.10 4.73 8.87 7.54 6.09 88.488 
255 9.52 6.21 7.42 2.74 6.92 7.94 5.43 7.02 8.18 1.76 9.11 7.53 6.17 84.827 
256 9.52 6.20 7.42 3.15 6.92 7.99 5.42 7.02 8.12 1.69 9.11 7.52 6.62 85.618 
257 9.46 6.19 7.42 3.18 6.92 7.99 5.42 7.02 8.11 2.45 9.11 7.53 6.71 86.480 
258 9.52 6.18 7.42 2.65 6.92 7.99 5.41 7.02 8.10 2.55 9.11 7.53 6.75 86.089 
259 9.40 6.17 7.42 2.90 6.92 7.99 5.40 7.02 8.08 1.71 9.11 7.53 6.82 85.381 
260 9.11 6.15 7.42 2.95 6.92 8.00 5.40 7.02 8.07 1.56 9.11 7.53 6.85 84.976 
261 8.52 6.14 7.42 2.87 6.92 8.00 5.39 7.02 8.06 1.20 9.11 7.54 6.62 83.585 
262 9.52 6.13 7.42 3.58 6.92 8.00 5.38 7.02 8.05 1.24 9.11 7.54 6.85 85.684 
263 9.52 6.12 7.42 3.58 6.92 8.03 5.38 7.01 8.12 1.27 9.11 7.54 5.22 84.064 
264 9.52 6.11 7.42 3.18 6.92 8.06 5.37 7.01 9.10 0.62 9.11 7.55 6.64 85.533 
265 9.52 6.10 7.42 2.77 6.92 8.10 5.37 7.01 9.10 1.25 9.11 7.55 6.71 85.873 
266 9.52 6.09 7.42 2.88 6.92 8.13 5.36 7.01 9.10 1.24 9.11 7.55 6.76 86.045 
267 9.17 6.09 7.42 2.63 6.92 8.13 5.36 7.01 9.10 0.80 9.11 7.54 6.52 84.653 
268 6.53 6.87 7.42 3.13 6.92 8.30 5.73 7.07 9.10 7.01 9.11 7.72 2.29 86.154 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
269 9.75 6.86 7.42 2.94 6.92 8.30 5.73 7.07 9.10 7.01 9.11 7.72 3.94 91.205 
270 9.87 6.86 7.42 3.12 6.92 8.30 5.73 7.07 9.10 7.05 9.11 7.72 6.74 94.582 
271 9.75 6.86 7.42 3.07 6.92 8.30 5.73 7.07 9.10 6.77 9.11 7.72 6.61 93.966 
272 7.99 6.86 7.42 3.19 6.92 8.30 5.73 7.07 9.10 0.00 9.11 7.71 5.13 83.299 
273 9.87 6.88 7.42 3.01 6.92 8.30 5.73 7.07 9.10 6.77 8.38 7.73 6.43 93.085 
274 9.87 7.19 7.42 3.12 6.92 8.30 5.83 7.09 9.10 6.91 9.11 7.72 6.74 94.918 
275 9.87 6.86 7.42 2.97 6.92 8.30 5.72 7.07 9.10 7.01 9.11 7.72 6.52 94.129 
276 9.52 6.85 7.42 1.05 6.92 8.30 5.73 7.07 9.10 7.42 9.11 7.72 5.04 90.515 
277 9.49 6.84 7.42 0.11 6.92 8.30 5.72 7.07 9.10 7.03 9.11 7.72 4.45 88.400 
278 9.46 6.84 7.42 2.84 6.92 8.30 5.72 7.07 8.08 6.64 9.11 7.72 5.39 90.794 
279 9.28 6.80 7.42 3.17 6.92 8.30 5.71 7.06 9.10 7.45 9.11 7.73 4.03 91.433 
280 9.52 6.86 7.42 3.16 6.92 7.78 5.73 7.07 9.10 6.91 9.11 7.72 2.70 89.176 
281 9.52 6.86 7.42 2.98 6.92 8.30 5.73 7.07 9.10 6.64 6.68 7.72 3.70 87.718 
282 9.52 6.88 7.42 3.58 6.92 8.30 5.73 7.07 9.10 7.15 8.87 7.72 2.37 89.851 
283 9.52 6.71 7.42 2.98 6.92 8.30 5.67 7.06 9.10 6.67 9.11 7.71 6.00 92.601 
284 9.40 6.86 7.42 2.97 6.92 8.29 5.73 7.07 9.10 7.42 9.11 7.72 6.52 94.053 
285 9.52 6.83 7.42 3.04 6.92 8.27 5.72 7.07 9.10 7.37 8.75 7.72 6.39 93.618 
286 9.52 6.82 7.42 2.62 6.92 8.30 5.71 7.07 9.10 7.32 8.14 7.72 6.63 92.726 
287 9.52 6.82 7.42 3.58 6.92 8.30 5.72 7.07 9.10 7.73 8.38 7.72 6.26 94.079 
288 9.52 6.83 7.42 2.56 6.92 8.30 5.72 7.07 9.10 7.73 8.63 7.73 6.26 93.248 
289 9.52 6.80 7.42 2.78 6.92 8.30 5.71 7.06 9.10 7.73 9.11 7.72 6.09 93.773 
290 9.52 6.79 7.42 3.04 6.92 8.30 5.70 7.06 9.10 7.73 9.11 7.72 4.70 92.544 
291 9.52 5.82 7.42 3.01 6.92 8.30 5.24 7.01 9.10 7.45 9.11 7.72 0.65 86.240 
292 9.52 6.80 7.42 3.12 6.92 8.30 5.71 7.07 9.10 7.73 8.63 7.72 0.67 87.777 
293 9.52 6.83 7.42 2.56 6.92 8.30 5.72 7.07 9.10 7.35 8.63 7.72 0.62 86.759 
294 9.52 6.84 7.42 2.56 6.92 7.98 5.72 7.07 9.10 7.28 9.11 7.72 0.51 86.759 
295 9.52 6.82 7.42 3.58 6.92 8.30 5.72 7.07 9.10 7.01 9.11 7.72 0.59 87.966 
296 9.52 6.84 7.42 2.84 6.92 8.30 5.72 7.07 9.10 6.98 8.87 7.72 0.68 86.995 
297 9.52 6.82 7.42 2.83 6.92 8.30 5.71 7.07 9.10 6.09 9.11 7.72 4.12 89.960 
298 9.46 6.81 7.42 3.01 6.92 8.30 5.71 7.07 9.10 6.27 8.63 7.73 6.61 92.442 
299 9.52 6.66 7.42 3.19 6.92 8.30 5.66 7.05 9.10 7.08 8.63 7.72 6.17 92.857 
300 9.52 6.73 7.42 1.73 6.92 8.30 5.69 7.06 9.10 7.45 9.11 7.72 6.66 92.866 
301 9.52 6.87 7.42 0.70 6.92 8.30 5.73 7.07 9.10 7.61 9.11 7.72 5.39 90.748 
302 9.52 6.86 7.42 3.13 6.92 8.30 5.73 7.07 9.10 7.73 9.11 7.72 6.17 94.349 
303 9.52 6.85 7.42 3.15 6.92 8.30 5.72 7.07 9.10 7.71 8.14 7.72 6.72 93.870 
304 9.52 6.81 7.42 3.58 6.92 8.30 5.71 7.06 9.10 7.23 9.11 7.71 4.45 92.330 
305 9.52 6.84 7.42 2.96 6.92 8.30 5.72 7.07 9.10 7.28 9.11 7.72 3.78 91.048 
306 9.52 6.90 7.42 3.10 6.92 8.30 5.74 7.07 9.10 7.25 7.90 7.72 6.62 93.024 
307 9.52 6.88 7.42 3.08 6.92 8.30 5.73 7.07 9.10 7.28 9.11 7.72 6.00 93.636 
308 9.52 6.81 7.42 3.16 6.92 8.30 5.71 7.06 9.10 6.91 9.11 7.72 6.64 93.905 
309 9.52 5.94 7.42 3.12 6.92 8.30 5.27 7.01 9.10 7.45 9.11 7.72 6.72 93.064 
310 9.52 6.81 7.42 2.75 6.92 8.30 5.71 7.07 9.10 7.32 8.63 7.72 6.67 93.410 
311 9.52 6.80 7.42 1.91 6.92 8.30 5.72 7.07 9.10 7.25 9.11 7.71 6.68 92.964 
312 9.52 6.87 7.42 2.56 6.92 8.30 5.74 7.07 9.10 7.45 9.11 7.71 6.69 94.009 
313 9.52 6.85 7.42 2.84 6.92 8.30 5.72 7.07 9.10 7.73 9.11 7.71 6.69 94.553 
314 9.52 6.83 7.42 2.58 6.92 8.30 5.72 7.07 9.10 7.73 8.80 7.72 6.83 94.061 
315 9.52 6.83 7.42 2.38 6.92 8.30 5.72 7.07 9.10 7.73 9.11 7.72 6.66 94.008 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
316 9.52 6.87 7.42 2.39 6.92 8.30 5.73 7.07 9.10 7.73 9.11 7.72 1.78 88.804 
317 9.52 6.85 7.42 2.24 6.92 8.30 5.72 7.07 9.10 7.73 9.11 7.73 4.37 91.407 
318 9.87 6.26 6.66 3.21 6.92 7.69 5.25 6.97 9.10 2.91 8.38 7.62 6.81 86.657 
319 9.87 6.24 6.55 3.58 6.92 7.69 5.23 6.97 8.05 6.50 9.11 7.56 5.96 89.422 
320 9.58 6.22 6.40 2.64 6.92 7.68 5.22 6.97 2.18 6.60 9.11 7.53 0.63 75.985 
321 9.87 6.21 6.25 2.86 6.92 7.67 5.21 6.96 7.61 4.27 9.11 7.58 0.13 79.137 
322 9.87 6.19 6.09 2.28 6.92 7.67 5.19 6.96 8.01 8.00 9.11 7.59 4.12 87.035 
323 9.69 6.14 6.16 3.58 6.92 4.57 5.12 6.95 7.72 7.52 9.11 7.52 2.87 82.583 
324 9.87 6.43 6.47 3.21 6.92 6.99 5.38 6.99 9.10 8.41 9.11 7.58 6.74 92.639 
325 9.52 6.10 6.31 3.15 6.92 7.74 5.52 7.05 7.79 5.45 9.11 7.59 5.48 86.730 
326 9.52 6.45 6.62 3.08 6.92 7.86 5.44 7.00 7.94 7.73 9.11 7.66 6.67 91.306 
327 9.52 6.51 5.81 3.09 6.92 7.79 5.47 7.00 7.97 7.73 9.11 7.68 6.70 90.589 
328 9.52 6.47 6.43 2.50 6.92 7.70 5.44 7.00 8.01 7.73 9.11 7.65 6.64 90.379 
329 9.52 6.50 7.42 3.01 6.92 7.89 5.47 7.00 8.01 7.73 8.87 7.70 5.91 91.276 
330 9.52 6.31 6.58 2.96 6.92 7.80 5.31 6.98 8.12 7.73 9.11 7.62 5.39 89.559 
331 9.52 6.17 6.55 2.61 6.92 7.91 5.22 6.97 8.08 1.29 8.14 7.63 2.87 78.318 
332 4.30 6.42 6.45 2.35 6.92 8.07 5.40 6.99 4.55 7.05 9.11 7.46 3.12 76.523 
333 9.52 6.28 6.44 2.84 6.92 7.94 5.29 6.98 7.72 7.56 8.87 7.48 4.12 86.981 
334 9.52 6.21 7.42 3.12 6.92 7.67 5.26 6.98 7.65 6.91 9.11 7.62 6.43 90.043 
335 9.52 6.03 6.23 2.98 6.92 5.60 5.11 6.96 7.61 7.73 8.14 7.53 6.67 85.976 
336 9.52 5.94 6.25 2.89 6.92 5.51 4.96 6.93 7.47 7.73 9.11 7.63 0.63 80.043 
337 9.52 6.05 6.18 3.15 6.92 4.80 5.06 6.94 7.28 7.73 8.38 7.72 6.63 85.265 
338 9.52 6.69 6.45 3.11 6.92 7.85 5.65 7.04 8.01 7.73 8.87 7.65 6.68 91.510 
339 9.52 6.49 6.26 3.20 6.92 7.73 5.47 7.00 7.87 7.73 8.14 7.60 6.70 89.851 
340 9.52 6.42 6.56 3.58 6.92 7.91 5.45 7.01 7.97 7.73 9.11 7.66 6.68 91.893 
341 9.52 6.55 6.22 3.03 6.92 8.11 5.52 7.01 8.01 6.64 9.11 7.57 2.95 86.110 
342 9.52 6.47 6.37 3.58 6.92 8.09 5.44 7.00 8.08 7.39 9.11 7.58 6.52 91.412 
343 8.41 6.45 7.42 2.31 6.92 8.01 5.43 7.00 4.67 7.73 9.11 7.60 1.70 81.372 
344 9.52 6.39 6.11 3.22 6.92 6.14 5.59 7.04 8.16 6.67 9.11 7.45 6.17 87.538 
345 9.52 7.11 6.64 2.56 6.92 7.84 5.81 7.08 7.50 7.73 9.11 7.55 3.78 88.272 
346 9.52 6.61 6.60 3.20 6.92 7.95 5.55 7.01 7.94 7.45 9.11 7.61 4.62 89.275 
347 9.52 6.55 6.29 3.21 6.92 6.82 5.50 7.00 8.01 7.32 9.11 7.58 2.53 85.265 
348 9.52 6.35 7.42 3.58 6.92 7.78 5.43 7.01 7.79 7.01 9.11 7.67 1.28 85.797 
349 9.52 6.51 7.42 3.58 6.92 8.04 5.51 7.01 7.54 7.73 9.11 7.62 0.58 86.034 
350 9.52 6.62 7.42 2.66 6.92 7.92 5.59 7.02 7.87 7.73 9.11 7.70 3.03 88.208 
351 9.52 6.50 7.42 3.58 6.92 5.82 5.43 6.99 8.05 7.62 9.11 7.65 3.95 87.635 
352 9.52 6.60 7.42 3.58 6.92 5.62 5.54 7.01 9.10 7.73 9.11 7.64 6.63 91.792 
353 9.52 6.83 7.42 3.58 6.92 7.39 5.65 7.04 9.10 3.55 9.11 7.56 0.36 82.748 
354 9.52 6.52 7.42 3.58 6.92 4.80 5.46 7.00 9.10 0.00 9.11 7.57 2.20 77.595 
355 9.52 6.50 7.42 3.58 6.92 6.11 5.42 6.99 9.10 7.11 9.11 7.58 6.61 91.310 
356 9.52 6.56 7.42 3.21 6.92 7.19 5.51 7.01 1.46 7.05 9.11 7.56 0.24 77.100 
357 9.52 6.38 7.42 3.58 6.92 5.74 5.31 6.97 9.10 7.15 9.11 7.61 6.09 90.135 
358 9.52 6.86 7.42 3.15 6.92 8.28 5.69 7.05 8.05 6.91 8.87 7.62 0.00 85.208 
359 9.52 6.44 7.42 3.21 6.92 5.94 5.35 6.98 9.10 7.73 9.11 7.62 5.91 90.514 
360 9.52 6.77 7.42 3.09 6.92 8.17 5.64 7.03 8.08 1.47 9.11 7.61 0.26 79.624 
361 9.52 6.64 7.42 2.68 6.92 7.94 5.58 7.02 7.79 7.32 9.11 7.66 0.67 85.161 
362 9.52 6.68 7.42 0.00 6.92 8.02 5.60 7.02 8.16 7.73 9.11 7.67 3.87 86.714 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
363 9.52 6.68 7.42 1.27 6.92 8.05 5.60 7.02 8.08 6.60 9.11 7.67 0.95 83.679 
364 9.52 6.68 7.42 2.48 6.92 8.08 5.60 7.02 8.05 7.73 9.11 7.69 2.62 87.997 
365 9.52 6.64 7.42 2.25 6.92 8.04 5.59 7.02 7.76 7.49 8.87 7.68 4.96 89.334 
366 8.87 6.64 7.42 2.90 6.92 8.04 5.59 7.02 7.87 7.45 9.11 7.67 6.68 91.530 
367 8.82 6.66 7.42 2.76 6.92 7.97 5.59 7.02 7.28 6.60 8.63 7.66 0.51 82.548 
368 8.93 7.15 7.42 3.58 6.92 8.30 5.81 7.08 9.10 7.22 9.11 7.73 4.61 92.371 
369 9.05 7.16 7.42 3.08 6.92 8.30 5.82 7.08 9.10 6.67 9.11 7.72 3.98 90.709 
370 9.28 7.17 7.42 3.02 6.92 8.30 5.82 7.09 9.10 6.50 9.11 7.72 0.68 87.170 
371 9.58 7.18 7.42 3.02 6.92 8.30 5.83 7.09 9.10 4.55 9.11 7.71 0.69 85.395 
372 9.23 7.19 7.42 2.98 6.92 8.30 5.83 7.09 7.94 6.47 9.11 7.72 0.51 85.620 
373 9.05 6.96 7.42 2.94 6.92 8.30 5.71 7.05 9.10 6.60 8.38 7.74 0.68 85.797 
374 9.87 6.97 7.42 2.78 6.92 8.30 5.72 7.05 9.10 7.18 7.41 7.70 5.65 91.411 
375 9.52 6.97 7.42 2.97 6.92 8.30 5.71 7.05 9.10 7.22 9.11 7.68 3.45 90.699 
376 9.52 6.95 7.42 2.20 6.92 8.30 5.71 7.05 9.10 7.73 9.11 7.69 6.67 93.883 
377 9.52 6.92 7.42 2.73 6.92 8.30 5.70 7.05 9.10 7.73 9.11 7.70 4.62 92.198 
378 9.52 6.92 7.42 2.69 6.92 8.30 5.70 7.05 9.10 7.73 9.11 7.72 4.37 91.919 
379 9.28 6.92 7.42 2.80 6.92 8.30 5.70 7.05 9.10 7.56 9.11 7.69 4.79 92.027 
380 9.34 6.93 7.42 3.09 6.92 8.30 5.71 7.05 9.10 7.01 8.14 7.70 3.70 89.607 
381 9.52 6.98 7.42 3.11 6.92 8.30 5.71 7.05 9.10 7.32 8.63 7.70 5.30 92.474 
382 9.52 6.94 7.42 2.89 6.92 8.30 5.70 7.05 9.10 6.91 8.63 7.67 5.22 91.608 
383 9.52 6.93 7.42 3.03 6.92 8.30 5.70 7.05 9.10 7.73 9.11 7.70 5.91 93.946 
384 9.52 6.90 7.42 3.01 6.92 8.30 5.69 7.04 9.10 7.11 9.11 7.70 5.30 92.554 
385 9.52 6.97 7.42 2.48 6.92 8.30 5.73 7.06 9.10 7.45 8.38 7.70 0.69 86.721 
386 9.52 6.95 7.42 2.76 6.92 8.30 5.72 7.06 7.83 7.52 8.38 7.69 3.20 88.383 
387 9.52 6.92 7.42 2.29 6.92 8.30 5.70 7.05 9.10 7.73 8.38 7.65 5.22 91.550 
388 9.52 6.93 7.42 2.79 6.92 8.30 5.71 7.05 9.10 7.73 8.63 7.69 4.37 91.498 
389 9.52 6.99 7.42 2.46 6.92 8.30 5.74 7.06 9.10 7.11 9.11 7.71 6.72 93.684 
390 9.23 6.87 7.42 2.97 6.92 8.30 5.68 7.04 9.10 7.73 9.11 7.70 4.79 92.244 
391 9.52 6.94 7.42 3.58 6.92 8.30 5.70 7.05 9.10 3.09 9.11 7.67 1.78 85.065 
392 9.52 6.96 7.42 3.17 6.92 8.30 5.72 7.05 9.10 6.84 9.11 7.72 4.37 91.553 
393 9.52 6.97 7.42 3.11 6.92 8.30 5.72 7.05 9.10 4.73 9.11 7.68 2.03 86.652 
394 9.52 6.86 7.42 2.98 6.92 8.30 5.68 7.04 9.10 5.18 9.11 7.69 3.45 88.373 
395 9.52 6.92 7.42 2.61 6.92 8.30 5.70 7.05 9.10 6.53 8.63 7.70 4.62 90.266 
396 9.52 6.96 7.42 2.43 6.92 8.30 5.71 7.05 9.10 6.74 9.11 7.70 6.66 93.087 
397 9.52 6.94 7.42 2.99 6.92 8.30 5.70 7.05 9.10 6.09 9.11 7.70 2.11 88.046 
398 9.52 6.94 7.42 2.69 6.92 8.30 5.70 7.05 9.10 6.27 9.11 7.70 5.91 92.016 
399 6.12 6.65 7.42 2.64 6.92 8.30 5.66 7.05 9.10 7.15 9.11 7.71 4.54 87.418 
400 9.52 6.93 7.42 2.63 6.92 8.30 5.70 7.05 9.10 7.21 9.11 7.71 2.20 88.951 
401 9.52 7.02 7.42 1.80 6.92 8.30 5.74 7.06 9.10 7.24 9.11 7.70 4.96 91.212 
402 9.52 6.98 7.42 2.24 6.92 8.30 5.72 7.05 9.10 7.32 9.11 7.73 5.22 91.996 
403 9.52 7.03 7.42 2.85 6.92 8.30 5.74 7.06 9.10 0.98 9.11 7.69 0.35 80.651 
404 9.52 6.99 7.42 3.16 6.92 8.30 5.73 7.06 9.10 1.27 9.11 7.70 0.52 81.443 
405 9.52 6.99 7.42 3.07 6.92 8.30 5.72 7.05 9.10 1.71 9.11 7.69 0.62 81.898 
406 9.52 6.92 7.42 2.98 6.92 8.30 5.72 7.06 9.10 4.55 9.11 7.71 0.61 84.776 
407 9.52 6.96 7.42 3.16 6.92 8.30 5.71 7.05 9.10 6.74 7.90 7.71 0.59 86.032 
408 9.52 7.01 7.42 2.99 6.92 8.30 5.73 7.05 9.10 0.42 9.11 7.71 0.63 80.482 
409 9.52 6.98 7.42 3.07 6.92 8.30 5.71 7.05 9.10 1.91 9.11 7.70 0.31 81.769 
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Coeff.1 0.1035 0.0726 0.0742 0.0358 0.0692 0.0949 0.0587 0.0710 0.0910 0.0909 0.0911 0.0774 0.0696 1.0000 
Max.2 9.87 7.19 7.42 3.58 6.92 8.30 5.83 7.09 9.10 8.41 9.11 7.74 6.89 95.154 
Min.3 4.30 4.89 5.81 0.00 6.92 3.94 4.66 6.93 1.46 0.00 0.00 7.43 0.00 75.985 
Avg.4 9.48 6.53 7.35 2.84 6.92 8.05 5.54 7.03 8.78 5.54 8.92 7.63 4.08 87.780 
410 9.52 6.99 7.42 2.81 6.92 8.30 5.72 7.05 9.10 6.57 9.11 7.71 1.20 87.465 
411 9.52 6.98 7.42 2.82 6.92 8.30 5.71 7.05 9.10 6.36 9.11 7.71 3.37 89.573 
412 9.52 6.97 7.42 2.76 6.92 8.30 5.73 7.06 9.10 6.59 9.11 7.72 0.64 86.834 
413 9.52 7.00 7.42 2.70 6.92 8.30 5.72 7.05 9.10 6.81 9.11 7.72 1.45 87.905 
414 9.52 6.98 7.42 3.04 6.92 8.30 5.72 7.05 9.10 6.57 9.11 7.72 0.68 87.160 
415 9.40 6.99 7.42 2.98 6.92 8.30 5.72 7.05 9.10 6.36 9.11 7.72 0.68 86.763 
416 9.52 7.00 7.42 3.16 6.92 8.30 5.73 7.06 9.10 5.82 9.11 7.73 1.45 87.348 

Source: Universal water quality index model (2020) 

Notes: 1 Fixed parameter weight coefficients, 2 Maximum WQI value, 3 Minimum WQI score and 4 Average WQI 

values. Water quality parameters are listed according to alphabetic, other than the order of importance. The 

calculated water quality index values are for Umgeni water quality data for four years from 2012 to 2018. 




