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Abstract  

Forest species discrimination is vital for precise and dependable information, essential for 

commercial forest management and monitoring. Recently, the adoption of remote sensing 

approaches has become an important source of information in commercial forest management. 

However, previous studies have utilized spectral data or vegetation indices to detect and map 

commercial forest species, with less focus on the spatial elements. Therefore, this study using 

image texture aims to discriminate commercial forest plantations (i.e. A. mearnsii, E. dunnii, E. 

grandis and P. patula) computed from a 0.5m WorldView-2 pan-sharpened image in 

KwaZuluNatal, South Africa. The first objective of the study was to discriminate commercial 

forest species using image texture computed from a 0.5m WorldView-2 pan-sharpened image and 

the Partial Least Squares Discriminate Analysis (PLS-DA) algorithm. The results indicated that 

the image texture model (overall accuracy (OA) = 77%, kappa = 0.69) outperformed both the 

vegetation indices model (OA = 69%, kappa = 0.59) and raw spectral bands model (OA = 64%, 

kappa = 0.52). The most successful texture parameters selected by PLS-DA were mean, 

correlation, and homogeneity, which were primarily computed from the red-edge, NIR1 and NIR2 

bands. Lastly, the 7x7 moving window was commonly selected by the PLS-DA model when 

compared to the 3x3 and 5x5 moving windows. The second objective of the study was to explore 

the utility of texture combinations computed from a fused 0.5m WorldView-2 image in 

discriminating commercial forest species in conjunction with the PLS-DA and Sparse Partial Least 

Squares Discriminate Analysis (SPLS-DA) algorithm. The accuracies achieved using SPLS-DA 

model, which performed variable selection and dimension reduction simultaneously yielded an 

overall accuracy of 86%. In contrast, the PLS-DA and variable importance in the projection (VIP) 

produced an overall classification accuracy of 81%. Generally, the finding of this study 

demonstrated the ability of image texture to precisely provide adequate information that is 

essential for tree species mapping and monitoring.  

Keywords: Forest species discrimination, image-texture, texture combinations, PLS-DA, 

SPLSDA, WorldView-2 pan-sharpened imagery. 
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CHAPTER ONE  

1. GENERAL INTRODUCTION  

 
  

Approximately 1.2 million hectares of the South African land surface is covered by commercial 

forest plantations in five of the nine provinces, namely; Mpumalanga, Limpopo, KwaZulu-Natal, 

Western Cape and Eastern Cape (DAFF., 2012). Generally, they are dominated by pine (49%), 

eucalyptus (43%) and a small amount of wattle (7%) (DAFF, 2012).   

These forests provide valuable environmental and economic benefits that include maintenance of 

the local, regional and global ecological balance, promotion of biological evolution and 

community succession, carbon sequestration and regulation of carbon balance and provision of 

ecosystem services like pollination and preservation of water catchments (DAFF., 2012). The 

commercial forest industry is also regarded as a key driver of the country’s economy (DAFF., 

2012). For instance, DAFF (2012) noted that the forestry industry alone provides over 158 000 

jobs and constitutes approximately 2% (R69 billion) of the country’s gross domestic product 

(DAFF., 2012). Therefore, understanding the composition and distribution of commercial forests 

is not only important for the economy, but also for making informed forest management decisions 

that include monitoring ecosystem health, species management practices, and harvest scheduling 

(Mngadi et al., 2019).   

In the recent past, the commercial forestry sector has been faced with considerable pressure from 

population growth and resultant degradation and increased demand for agricultural and housing 

land. Hence, forest managers have adopted different approaches to restore, protect and maintain 

forest productivity while facilitating their sustainable provision of ecosystems goods and services. 

Such approaches involve an understanding of traditional methods such as periodic surveys, field 

data surveys, and aerial photographs, among others (Peerbhay et al., 2013a). However, the 

shortcoming of such approaches have been widely documented in literature (Nichol et al., 2010). 

Therefore, there is still a need for relatively accurate, timely, affordable and efficient methods of 

assessing commercial forests (Dube et al., 2014, Dube et al., 2015, Lottering et al., 2016). 

Remotely sensed earth observation data offer a great opportunity for monitoring forests. In 

comparison to other forest inventorying methods, such data sets are relatively inexpensive and less 
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tedious for assessing and observing tree species while delivering exceptional accuracy (Lottering 

and Mutanga, 2012, Bastin et al., 2014, Barbosa et al., 2014, Sarker and Nichol, 2011, Dube et al., 

2014, Dube et al., 2015). Typically, over different spatial and temporal scales, earth observation 

data facilitate timely and continuous ecosystem observations.  A number of studies (Mutanga and 

Skidmore, 2004, Ingram et al., 2005, Lu, 2006, Godsmark, 2008, Mutanga et al., 2012, Dube et 

al., 2014, Nichol et al., 2010, Sarker and Nichol, 2011, Peerbhay et al., 2013a, Peerbhay et al., 

2013b, Mngadi et al., 2019) have successfully detected and mapped commercial forest plantations 

by adopting earth observation image data.   

Although conventional multispectral data have been particularly useful in forest species mapping 

and discrimination, it has been noticed that the utilization of their broadband multispectral sensors 

produced generalized classifications that are not helpful to forest researchers and managers (Yu et 

al., 2006). Therefore, the emergence of the new generation multispectral sensors (e.g., 

WorldView2, RapidEye and GeoEye), with greater spatial resolutions and strategically placed 

bands, are likely to enhance tree species delineation (Peerbhay et al., 2013b). As a result, this study 

aims to explore the effectiveness of WorldView-2 pan-sharpened multispectral imagery for 

mapping commercial forest species. Pan-sharpening is an image enhancement process where a 

panchromatic high spatial resolution image is merged with a medium spatial resolution 

multispectral image to generate a higher spatial resolution image. This technique was utilized in 

this study to improve the spatial resolution of the image, while maintaining its spectral information 

(Kpalma et al., 2014). Although literature has indicated that remotely sensed data has successfully 

delineated forest species in the past, these studies have centred their attention on the use of spectral 

data and vegetation indices to detect and map commercial forest species. Generally, these 

approaches have produced reasonable classification accuracies, but with a number of limitations 

(Anderson et al., 1993, Dube et al., 2014, Dube et al., 2015, Hlatshwayo et al., 2019). For example, 

canopy shadow and changing vegetation growth affects spectral vegetation indices immensely, 

especially NDVI, which saturates at dense biomass levels (Nichol et al., 2010, Dube et al., 2015, 

Hlatshwayo et al., 2019). These challenges have led to the exploration of approaches that are not 

affected by vegetation growth or saturation. Therefore, the use of image texture has become 

increasingly appealing as a solution for the challenges encountered by vegetation indices and 

spectral data (Fuchs et al., 2009, Nichol et al., 2010, Sarker and Nichol, 2011, Dube et al., 2015).   
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In commercial forestry, texture has been utilized to identify different forest stand structure 

characteristics, which include; age, density, and leaf area index from medium-to-high spatial 

resolution images (Moskal and Franklin, 2004, Sarker and Nichol, 2011). The major strength of 

adopting image-texture is the increased capacity to streamline and simplify complex canopy 

structures (Nichol et al., 2010, Sarker and Nichol, 2011, Dube et al., 2015, Lottering et al., 2020). 

Although, image texture has shown a reasonable degree of accuracy, research have shown that the 

method is unable to manage issues related to sensor angle, topographic effects and radiance from 

the sun (Dube et al., 2015, Hlatshwayo et al., 2019, Lottering et al., 2019). Therefore, studies have 

recently introduced texture combinations to map forest species. The use of texture band 

combinations has achieved a high degree of success in forest species mapping, especially when 

compared to raw texture bands and vegetation indices (Hlatshwayo et al., 2019, Lottering et al., 

2019). The utilization of texture combinations has been outstanding in detecting and mapping 

forest plantations, in contrast to vegetation indices and raw texture bands (Dube et al., 2015).   

However, when dealing with intricated data such as texture combinations whereby data 

dimensionality is extremely high and very difficult to manage, it is worth saying that a robust 

feature extraction technique is needed to deal with these issues. Therefore, partial least squares 

discriminant analysis (PLS-DA) would be a suitable algorithm to overcome the difficulties of 

textural data, due to its excellent display to curb background effects and its ability to manage 

spectral similitudes between tree species. Also, PLS has the capability to store data into few PLS 

latent components (Peerbhay et al., 2014, Chetty, 2020), keeping important texture parameters for 

later use. However, this process does not occur simultaneously and is dependent on the variable 

importance in the projection (VIP) for this to occur. Furthermore, it is worth noting, the issue of 

simultaneous variable selection remains when using PLS-DA. Therefore, there is a need for a novel 

approach that can perform simultaneously variable selection without relying on VIP such as the 

sparse partial least squares discriminant analysis (SPLS-DA), which needs to be tested for 

effectively detecting commercial forest species using image texture. SPLS-DA presents an 

opportunity to reliably map forest plantations and it has proven to be able to deal with complex 

textural datasets (Lottering et al., 2020).  



4  

  

1.1.Aim  

The aim of this study was to discriminate commercial forests species using image texture computed 

from a 0.5m WorldView-2 pan-sharpened image.  

1.2.Objectives of the study   

The study objectives were as follows:  

• To discriminate commercial forest species using image texture computed from a 0.5 m 

WorldView-2 pan-sharpened image and partial least squares discriminate analysis.   

• To explore the utility of texture combinations computed from fused WorldView-2 imagery in 

discriminating commercial forest species.  

1.3. Research questions  

• Can image texture and PLS-DA detect and map commercial forest species?  

• Does image texture combinations in conjunction with SPLS-DA effectively discriminate 

forest species?  

1.4.Thesis Outline   

This thesis consists of two articles that have been submitted for peer review to Remote Sensing 

Applications: Society and Environment and Geocarto International. Both journal papers have been 

published online. These articles are presented as individual chapters in the thesis and each chapter 

comprises an introduction, methods, results, discussion, and conclusion. This thesis constitutes 

four chapters.  Chapter one is the general introduction, chapter two and three are Journal articles 

and finally chapter four is the synthesis.   

Chapter One: This is an introductory chapter which explains the importance of the study. 

Specifically, the aim, objectives, scope, and outline of the thesis are provided. Furthermore, this 

chapter contextualizes the research questions.  

Chapter Two: This chapter explores the potential of image texture using various moving window 

sizes to discriminate commercial forest species. Furthermore, the chapter compares the image 

texture model with vegetation indices and raw spectral bands to determine which model better 

classifies commercial forest species.   



5  

  

Chapter Three: This chapter is an extension of chapter two and explores the value of texture 

combinations in discriminating commercial forest species. The chapter explores the utility of 

texture combinations computed from WorldView-2 imagery in conjunction with PLS-DA and 

SPLS-DA for discriminating commercial forest species.     

Chapter Four: The last chapter is the conclusion, which evaluates and highlights the main findings 

of the two previous chapters.  
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CHAPTER TWO  

DISCRIMINATING COMMERCIAL FOREST SPECIES USING IMAGE TEXTURE 

COMPUTED FROM A WORLDVIEW-2 PAN-SHARPENED IMAGE AND PARTIAL LEAST 

SQUARES DISCRIMINANT ANALYSIS  

  

   

This chapter is based on:  

  

  

Bongokuhle Sibiya, Romano Lottering & John Odindi, 2021. Discriminating commercial forest 

species using image texture computed from a WorldView-2 pan-sharpened image and partial least 

squares discriminant analysis. Remote Sensing Applications: Society and Environment, p.100605.  
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Abstract  

Discriminating forest species is crucial for effective management of commercial forest plantations. 

Whereas several variants of vegetation indices have commonly been used to delineate forest 

species, their efficacy is impeded by saturation at high biomass levels. However, image texture 

does not suffer from saturation at high biomass levels, hence offers a unique opportunity to reliably 

map commercial forest species typically characterized by dense canopies. In this study, we 

integrated image texture computed from a 0.5 m WorldView-2 pansharpened image with partial 

least squares discriminant analysis (PLS-DA) to detect and map commercial forest species. The 

results illustrated that the image texture (overall accuracy (OA) = 77%, kappa = 0.69) outcompeted 

both the vegetation indices (OA = 69%, kappa = 0.59) and raw spectral bands models (OA = 64%, 

kappa = 0.52). PLS-DA together with variable importance in the projection selected homogeneity, 

correlation and mean as the most significant texture parameters, which were predominantly 

computed from the red-edge, near infrared (NIR) 1 and 2 bands. Furthermore, PLS-DA model 

commonly selected the 7 × 7 than the 3 × 3 and 5 × 5 moving windows. Overall, this study 

demonstrates the ability of image texture in discriminating commercial forest species.  

 Keywords: Image texture, species discrimination, PLS-DA, commercial forest  

2.1. Introduction  

Commercial forests cover roughly 1.5 million hectares of South Africa’s landmass (DAFF, 2008,  

DAFF., 2012), and primarily located along the country’s eastern provinces of KwaZulu-Natal and 

Mpumalanga (DAFF, 2008, Clarke, 2018, Lottering et al., 2020). These forests are crucial to South 

Africa’s economy as they contribute approximately 2% of its gross domestic product, mainly 

through the supply of hard- and soft wood (DAFF, 2008, Peerbhay et al., 2013a, Mngadi et al., 

2019). The hardwood forest consists of mainly Eucalyptus (82%) and Acacia (17%), while the 

softwood consists of Pine (28,7%) (DAFF., 2012). Statistics on the distribution of commercial 

forest species is important, to among others, the sector’s economic accounting, national and 

international carbon emission and assimilation agreements, greenhouse effects and expediting 

informed forest management decisions (Sesnie et al., 2010, Peerbhay et al., 2013a, Peerbhay et al., 

2013b, Dube et al., 2015, Mngadi et al., 2019). Such decisions include forest ecosystem health, 

harvest scheduling, site management practices and commercial output and viability. According to 
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Peerbhay et al. (2013a), forest species discrimination is essential for forest inventory management, 

forest fragmentation, conservation planning, assessment of species diversity, fire hazard 

monitoring and control. Hence, it is necessary to find precise and opportune methods to 

discriminate commercial forest species (Van Aardt and Wynne, 2007).   

The use and limitations of traditional approaches used for identifying forest species such as field 

surveys are well documented in literature (Nichol et al., 2010, Sarker and Nichol, 2011, Dube et 

al., 2014, Dube et al., 2015, Mushore et al., 2017, Hlatshwayo et al., 2019, Lottering et al., 2019). 

Recently, remote sensing, in complementarity with field data, has emerged as a viable indirect and 

non-destructive option for forest inventory management (Franklin et al., 2000, Franklin, 2001, 

Moskal and Franklin, 2004, Ismail et al., 2008, Dye et al., 2012, Mutanga et al., 2012, Lottering et 

al., 2016, Dube et al., 2018, Mngadi et al., 2019). For instance, Peerbhay et al. (2013b), used 

WorldView-2 data to successfully discriminate commercial forest species in KwaZulu-Natal, 

South Africa, while Lottering et al. (2016), also successfully used WorldView-2 imagery to 

discriminate commercial forest vegetation, reporting an overall accuracy of 90%. Generally, these 

studies have adopted spectral data and vegetation indices to detect and map commercial forest 

species. However, the use of spectral bands is commonly limited by rapid vegetation growth and 

canopy shadowing while vegetation indices, such as NDVI, saturate at dense biomass levels (Lu 

et al., 2002, Lu and Batistella, 2005, Mather and Koch, 2011, Sarker and Nichol, 2011, Hlatshwayo 

et al., 2019, Lottering et al., 2019, Lottering et al., 2020). These limitations necessitate an 

exploration of approaches that are not compromised by vegetation growth, hence changes in foliar 

spectral characteristics and dense biomass saturation.  

In this regard, several studies have explored the use of image texture as a solution to the 

shortcomings encountered by spectral and vegetation indices (Franklin et al., 1996, Franklin et al., 

2000, Moskal and Franklin, 2004, Nichol et al., 2010, Sarker and Nichol, 2011, Dube et al., 2015). 

This interest is motivated by its ability to identify spectrally unique objects or regions of interest, 

which are based on the function of local variance in the image, hence scale-dependent (Hlatshwayo 

et al., 2019, Lottering et al., 2019, Lottering et al., 2020). Furthermore, image texture has proven 

effective in identifying forest stand structure characteristics that include age, density, and leaf area 

index (Lu and Batistella, 2005, Lottering et al., 2019, Lottering et al., 2020). According to 
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Champion et al. (2008), texture simplifies complex forest canopy structures, especially closed 

canopies, and can be used to detect fine vegetation biophysical properties.  

To date, promising results have been achieved using texture analysis to detect and map spatial 

phenomenon. For example, Lottering et al. (2020), successfully used image texture to detect and 

map Bugweed (Solanum mauritianum) within a commercial forest plantation. Similarly, Franklin 

et al. (2000), incorporated texture into the classification of forest species in Alberta and New 

Brunswick, Canada, recording a 5% and 12% increase in the classification accuracy, respectively. 

However, despite these successes, potential problems in implementing image texture in 

discriminating forest species include texture complexity and potential variability in physiographic 

conditions and varying results based on selected window sizes (Marceau et al., 1990, Franklin et 

al., 2000, Chen* et al., 2004, Dube et al., 2015). Furthermore, processing texture can generate a 

large volume of data, which can be difficult to manage (Chen* et al., 2004). Although texture has 

generally shown great potential in discriminating commercial forest species, the above-mentioned 

challenges remain largely unexplored (Fuchs et al., 2009, Li et al., 2015). For successful image 

texture classification, an effective method for feature extraction is required, as image textural 

parameters may be characterized by high data dimensionality and redundancy (Lottering et al., 

2020).  

Studies have demonstrated that partial least square discriminant analysis (PLS-DA) can effectively 

deal with complex data, as it can reduce background effects and resolve spectral or spatial 

similarities between tree species (Peerbhay et al., 2013a). PLS-DA decomposes complex data into 

PLS latent components (Peerbhay et al., 2013b, Lottering et al., 2020), preserving the most 

significant texture parameters used for further investigation. This is achieved by selecting the 

significant predictor variables using variable importance in the projection (VIP) (Peerbhay et al., 

2013a). These variables are then used as input data to increase the classification accuracy, reduce 

redundancy, and require less storage space when compared to other algorithms.   

Therefore, in this study, we integrated image texture computed from a 0.5 m WorldView-2 

pansharpened image with PLS-DA to discriminate commercial forest species. The WorldView-2 

pansharpened image was selected because of its high spatial resolution, thus providing enhanced 

image texture information for discriminating commercial forest species. Specifically, we explored 

the potential of image texture using various moving windows to discriminate commercial forest 
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species and compared the image texture model with vegetation indices and raw spectral bands to 

determine which model better classified commercial forest species.  

2.2. Material and methods  

2.2.1. Study Area   

This study was conducted in the Sappi Hodgson Estate in KwaZulu-Natal, South Africa  

(30°59’85” E; 29°19’03” S) (Figure 2.1). The area covers 6391 ha and is located in the mist belt 

grassland bioregion of the KwaZulu-Natal midlands. The area receives summer rainfall ranging 

from 730 to 1590 mm per annum and is characterized by mist conditions in winter. The landscape 

is classified as rolling and hilly, with elevation ranging from 1030 to 1590 m above sea level.  

Major tree species in the estate are A. mearnsii, E. dunnii, E. grandis and P. patula.  

  

Figure 2.1. Sappi Hodgsons Estate in KwaZulu-Natal, South Africa.  

2.2.2. Image Acquisition   

A WorldView-2 pan-sharpened image was obtained under cloudless conditions on the September 

20, 2012. The WorldView-2 multispectral system comprises of eight wavebands (Table 2.1). The 

image was atmospherically corrected to the top-of-atmosphere reflectance using the Fast Line-

ofSight Atmospheric Spectral Hypercubes in ENVI 4.7 software. The image was then geo-rectified 
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to a root mean square error (RMSE) of less than one-pixel size (0.5 m) and orthorectified using 

twenty-five well-distributed ground control points. It was then projected to the Universal 

Transverse Mercator projection, using the World Geodetic System 84 datum.  

Table 2.1: Characteristics of the WorldView-2 pan-sharpened bands  

Band  Range (nm)  

Coastal blue  
Blue  

Green  
Yellow  

Red  
Red edge  
Near-IR1  
Near-IR2  

400-450  
450-510  
510-580  
585-625  
630-690  
705-745  
770-895  

860-1040  

  

2.2.3. Field data collection  

Six stands per species (i.e., E. grandis, A. mearnsii, P. patula, and E. dunni) were randomly 

selected within the study area and field visits conducted to verify the status of the selected stands. 

The Hawths tool in ArcMap 10.5 was used to randomly generate 30 × 30 m plots over the study 

area using an existing WorldView-2 image. To ensure that the sample sizes for the species were 

balanced and statistically representative, each stand was sub-sampled to ensure that the sample 

points are equally distributed. The final dataset consisted of 240 sample plots with 70% (n = 168) 

used for training and the remaining 30% (n = 72) as the test dataset. According to Peerbhay et al. 

(2013b), balancing the number of sample classes among training and test data is essential for 

optimal PLS-DA optimization. The R Studio statistical software package version 3.1.3 was used 

to run the data to ensure that the number of samples in the training and test datasets for the various 

species were approximately equal.   

2.2.4. Image texture analysis  

Texture refers to the function of local variance within an image and is dependent on the properties 

of neighborhood pixels (Lottering et al., 2019). The use of texture could be useful for 

discriminating commercial forest species as changes in the canopy structure between species could 

result in a variation in image texture (Lottering et al., 2020). Although several studies have noted 

the potential of image texture as a source of information for high spatial resolution imagery 

(Moskal and Franklin, 2004, Lottering et al., 2020), there is a dearth in literature demonstrating its 
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in classifying commercial forest species, and most are particularly sensitive to the reflectance in 

the visible and NIR regions (Lottering et al., 2018). The choice of these indices was based on 

previous studies that demonstrated their reliability in classifying vegetation (Adelabu et al., 2013, 

Mushore et al., 2017). Also, the emphasis was placed on vegetation indices with wavelengths 

within the red-edge region, as it is known to be useful in determining vegetation health and 

vegetation classification (Barry et al., 2008, Eitel et al., 2011).   

Table 2.4: Vegetation indices tested in this study  

Vegetation index Abbreviation Equation Reference 
Normalized Difference Vegetation Index 

 

NDVI (NIR−RED) 
(NIR+RED) 

(Lottering et al., 2018) 

Simple ratio 

 

SR NIR 
RED 

(Lottering et al., 2018) 

Enhanced vegetation index EVI 2.5 ∗ (NIR−RED) 
(NIR+6∗RED−7.5∗BLUE+1)  

(Huete et al., 2002). 

Red green ratio RGR RED 
GREEN 

(Gamon and Surfus, 

1999) 
Difference vegetation index 

 

DVI NIR – RED (Lottering et al., 2018) 

Atmospherically resistance vegetation index 

 

ARVI (NIR−RED)  
(NIR+BLUE) 

(Kaufman and Tanre, 

1996) 
Plant senescence reflectance index 

 

 

PSRI RED – BLUE 
RED EDGE 

(Sims and Gamon, 2002) 

Green normalized difference vegetation index 

 

GNDVI (NIR−GREEN) 
(NIR+GREEN) 
 

(Ahamed et al., 2011) 

Green difference vegetation index 

 

GDVI NIR – GREEN (Sripada et al., 2006) 

Transformed difference vegetation index 

 

TDVI 

√0. 5 +    
(𝑁𝐼𝑅 − 𝑅𝐸𝐷
(𝑁𝐼𝑅 − 𝑅𝐸𝐷

.

. 
(Bannari et al., 2002) 

Soil adjusted vegetation index 

 

 

SAVI 1.5∗(NIR−RED) 
(NIR+RED+0.5) 

(Lottering et al., 2018) 

Datt/Maccioni index 

 

 

DMI (NIR−RED EDGE) 
(NIR−RED) 

(Maccioni et al., 2001) 

Red Edge yellow ratio 

 

 

REY RED EDGE−YELLOW 
REDEDGE+YELLOW 

(Gwata, 2012) 

Red Edge NDVI 

 

 

NDRE NIR−REDEDGE 
NIR+REDEDGE 

(Lottering et al., 2018) 

Modified triangular vegetation index MTVI2 1.5(1.2(NIR-GREEN)-2.5(RED - GREEN)) 

√((2𝑁𝐼𝑅 + 1)2 − (6𝑁𝐼𝑅 − 5√𝑅𝐸𝐷) − 0.5 

 

(Haboudane et al., 2004) 

Red Edge simple ratio Srre NIR 
 RED EDGE 

(Lottering et al., 2018) 

Green ratio vegetation index GRVI NIR  
GREEN 

(Lottering et al., 2018) 

Modified chlorophyll absorption ratio index 2 MCARI2 1.5[2.5(NIR-RED)-1.3(NIR-GREEN)] 

√[(2𝑁𝐼𝑅 + 1)2 − (6𝑁𝐼𝑅 − 5√𝑅𝐸𝐷) − 0.5 
(Haboudane et al., 2004) 
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2.2.6. Statistical analysis  

2.2.6.1. Partial least squares discriminant analysis (PLS-DA)  

The partial least squares discriminant analysis (PLS-DA) is dependent on the classical partial least 

squares regression method as a basis for constructing predictive models (Peerbhay et al., 2013b, 

Sibanda et al., 2015). PLS regression provides dimension reduction in an application where the 

response variable (Y) is related to the predictor variables (X). In the case of PLS-DA, the response 

variable (i.e. forest species) is binary and expresses class membership (Sibanda et al., 2015). The 

PLS-DA algorithm is expressed by the equations (Peerbhay et al., 2013b):   

X = TP’ + E     (1)  

  

Y = UQ’ + F    (2)  

  

Where; X = the matrix of the wavebands, T = factor score matrix, P = X loadings and E = residual 

or a noise term. Y = matrix of the response variable (forest species), U = scores for Y, Q = Y 

loadings, and F = residual for Y (Peerbhay et al., 2013a, Lottering et al., 2020). In the R statistical 

package version 3.1.3 (Team, 2013), the “plsda” function was used to run the PLS-DA algorithm.  

2.2.6.2. Variable Importance in the Projection  

PLS-DA is dependent on variable importance in the projection (VIP) to select the most important 

wavebands or texture parameters, producing a score for measuring the most important parameters.  

The VIP is defined as follows (Peerbhay et al., 2013b):   

  

where VIPk represents the importance of the k’th texture parameters constructed by the PLS-DA 

model with a component, wak represents the consistent loading weight of the kth texture parameters 

in the a’th PLS-DA component, ta, wa, and qa are the a’th column vectors and K the total number 

of texture parameters. PLS-DA model is identified by those texture measures that have a VIP score 

of greater than 1. Selected VIP texture parameters were then used to create a new PLS-DA model, 

which was used for classifying the test dataset. Using the R statistical package version 3.1.3 (Team, 

2013), the “vip” function was used to run VIP for selecting significant variables.    
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2.2.6.3. Optimizing the PLS-DA model  

To select the optimal number of components using the training dataset, it is important to obtain a 

PLS-DA model with accurate classification performance. A tenfold cross-validation (CV) method 

was utilized to determine the number of components required for the PLS-DA model. The number 

of components were sequentially increased until the CV error became stable, achieved when 

further components did not change the classification output. Once the point of stability was 

reached, the selected number of components were used to classify the test dataset (Lottering et al., 

2020).   

2.2.7. Accuracy assessment   

The results of the classification were calculated using the confusion matrix that was based on the 

test dataset. The calculation of the confusion matrix was accomplished by dividing the entire 

dataset (240) into training data (70%) and test data (30%) using a repeated holdout sample with 

100 repetitions. Class accuracies for individual forest species were also compared by examining 

the user’s and producer’s accuracies. Furthermore, the kappa analysis was utilized as it compares 

observed accuracy and predictable accuracy. This measure uses the k (KHAT) statistic, where 

coefficients closer to or equal to one assume perfect agreement (Peerbhay et al., 2013a, Peerbhay 

et al., 2013b, Mngadi et al., 2019). Figure 2.2 shows a flowchart of the methodology undertaken 

in this study.  
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Figure 2.2. The flowchart of the research methodology  

2.3. Result    

2.3.1. Optimizing the PLS-DA model  

Figure 2.3 shows the number of components used to develop the PLS-DA model for discriminating 

commercial forest species. In this study, the lowest percentage was achieved using a tenfold 

crossvalidation error method to determine the number of components in the model with the lowest 

error rate based on the training (n = 168) dataset. The results showed that the 5th, 6th, and 7th 

component had the lowest error for the image texture, vegetation indices and spectral band models, 

respectively. Therefore, these components were used to develop the PLS-DA model and the 

calculation of VIP scores for each parameter.      
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Table 2.5: Accuracy results for the commercial forest classifications for each dataset.  

  
Accuracy measurements  

 Models   

Spectral data  Vegetation indices  Image texture  
A. mearnsii  

  

User’s accuracy  
Producer’s accuracy  

72  
81  

73  
81  

72  
90  

E. dunnii  

  

User’s accuracy  58  
57  

70  
74  

68  
80  Producer’s accuracy  

E. grandis  

  

User’s accuracy  40  
53  

62  
54  

80  
70  Producer’s accuracy  

P. patula  

  

User’s accuracy  87  
63  

72  
70  

88  
74  Producer’s accuracy  

Overall accuracy  64%  69%  77%  
Kappa coefficient  0.52  0.59  0.69  

Figure 2.4 illustrates the change in overall accuracy produced by each model when run at 100 

iterations for dividing the test and train datasets. The mean overall classification accuracy and 

standard deviation was 69% and 2.2, respectively for image texture model, 77% and 2.2, 

respectively for vegetation indices model and 64% and 2.0, respectively for the spectral bands 

model.  

 In addition, we also ran a McNemar’s test between the models to establish whether the PLS-DA 

image texture model statistically improved the overall classification accuracy over the PLS-DA 

vegetation indices model and the PLS-DA spectral bands model. The following hypotheses were 

tested: the null hypothesis Ho: there were no significant differences in accuracy between the 

models (p > 0.05) versus the alternate hypothesis Ha: there was a significant difference in accuracy 

between the models (p < 0.05). We subsequently rejected the null hypothesis as there was a 

significant difference between the models (p < 0.05).  
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 1 10 19 28 37 46 55 64 73 82 91 100 1 10 19 28 37 46 55 64 73 82 91 100 

 No. of iterations No. of iterations 

 a.             b.    

 

No. of iterations 

 c.     

Figure 2.4. Iterations of PLS-DA a. image texture, b. vegetation indices and c. spectral bands.  

2.3.3. Frequency of selected significant variables for the PLS-DA models  

Since the PLS-DA image texture model was the most significant performer, we only illustrated the 

frequency of this model’s parameters. Figure 2.5 shows the frequency of significant parameters 

selected by VIP for developing the PLS-DA image texture model. Figure 2.5a shows that the 

rededge, NIR1 and NIR2 bands were the most significant in developing texture parameters. Figure 

2.5b shows that the 7 × 7 moving window was the most significant in model development while 

Figure 2.5c shows that homogeneity, correlation and mean texture parameters contained most of 

the commercial species information. In addition, Figure 2.5d shows that the VIP frequently 

selected co-occurrence image texture parameters than the occurrence image texture parameters.  
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Figure 2.6. Species classification map produced by PLS-DA and image texture parameters  

2.4. Discussion   

Whereas several studies have reported on the value of image texture in vegetation mapping 

(Franklin et al., 2000, Lottering et al., 2016, Lottering et al., 2020), its capability has not yet been 

fully explored in commercial forest species discrimination. Therefore, this study aimed to classify 

commercial forest species using image texture computed from a 0.5 m WorldView-2 pansharpened 

imagery using the PLS-DA algorithm. We then compared the image texture model with vegetation 

indices and spectral bands.   

The results showed that although all models performed well in detecting commercial forest species, 

the PLS-DA image texture model performed better than the PLS-DA vegetation indices and the PLS-
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DA spectral band models. This could be attributed to image texture simplifying vegetation canopy, 

variation in stand age, and the high spatial resolution of the WorldView-2 pansharpened image. 

Studies have found that image spatial resolution plays a significant role in texture analysis. Our results 

showing improved image texture performance is consistent with existing literature that reported 

improved performance of image texture over spectral reflectance data (Franklin et al., 2000, Moskal 

and Franklin, 2004, Sarker and Nichol, 2011, Dube et al., 2015, Lottering et al., 2019). For example, 

Nichol et al. (2010), found that image texture outperformed spectral reflectance data in estimating 

vegetation biomass in the Hong Kong Special Administrative Region in the southeast coast of China. 

Similarly, Dube et al. (2015), found that image texture outperformed spectral reflectance data in 

estimating plantation forest aboveground biomass in the Sappi Clan plantation forest in KwaZulu 

Natal, South Africa.   

PLS-DA selected texture parameters predominantly from the red-edge, NIR1 and NIR2 bands of 

the WorldView-2 pan-sharpened image for discriminating commercial tree species. This was due 

to the structurally relevant information contained in these bands (Peerbhay et al., 2013b, Lottering 

et al., 2019, Lottering et al., 2020). The red-edge region is known to effectively determine 

vegetation health and classes (Barry et al., 2008, Eitel et al., 2011). For example, Champion et al. 

(2008), found that the red-edge region was the most valuable for discriminating invasive Giant 

reed from surrounding woody vegetation. In addition, Gong et al. (2003), showed the significant 

relationship between NIR and vegetation, thus increasing information available using image 

texture analysis. Moreover, co-occurrence image texture parameters were generally utilized for the 

development of the PLS-DA image texture model when compared to the occurrence image texture 

parameters. According to Rao et al. (2002), co-occurrence texture parameters are the most 

commonly adopted for remote sensing of vegetation. Gómez et al. (2012), noted that many studies 

have shown that co-occurrence provides better classification than occurrence texture measures. 

The results obtained in this study are similar to those of Yuan et al. (1991), who found that 

cooccurrence texture parameters better detected sugar maple decline than occurrence texture 

parameters. The most selected texture parameters for developing the PLS-DA model were 

homogeneity, correlation, and mean parameters. This finding is consistent with Lottering et al. 

(2020), who found that homogeneity and correlation were critical in detecting and mapping 
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invasive Solanum mauritianum and surrounding commercial forest species in KwaZulu-Natal 

South Africa.  

Finally, the results showed that VIP generally selected the 7 × 7 moving window for model 

development. The superior performance of the 7 × 7 moving window can be attributed to the fact 

that larger window sizes can detect subtle textural changes and variance over larger areas within 

different stands (Dye et al., 2008), thus improving delineation and classification (Lottering et al., 

2020). On the other hand, the inferior performance of the 3 × 3 moving window can be attributed 

to the fact that smaller window sizes can exaggerate the difference within the moving window, 

thus increasing noise on the texture image (Lottering et al., 2020). This study found that image 

texture integrated with the PLS-DA algorithm displayed enhanced accuracy in discriminating 

commercial forest species. Hence, the total number of correctly classified samples were higher 

than the misclassified, providing a higher overall performance for all forest species.  

In summary, results of this study proved that image texture computed from the 0.5 m WorldView2 

pan-sharpened image integrated with the PLS-DA algorithm can be used to classify commercial 

forest species. This can be attributed to the high spatial resolution of the WorldView-2 image. This 

study paves a new way for adopting image texture in commercial forestry applications.  

2.5. Conclusion  

Although the potential of image texture has been previously demonstrated, no study has 

investigated the potential of image texture in classifying commercial forest species. This study has 

therefore shown an integrated approach in classifying commercial forest species using image 

texture, vegetation indices and the PLS-DA algorithm. This study has revealed that:  

• Image texture integrated with PLS-DA produced the highest overall accuracy, when compared 

to vegetation indices and spectral model in classifying commercial forest.   

• Texture parameters selected by the PLS-DA were the homogeneity, correlation and mean, 

which were predominantly computed from the red-edge NIR1 and NIR2 bands.  

• The 7 × 7 moving window was most commonly selected by the PLSDA model when 

compared to the 3 × 3 and 5 × 5 moving windows.   
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Overall, this study was the first to classify commercial forest using image texture and the PLS-DA 

algorithm. It showcases the significance of image texture in detecting and mapping commercial 

forest species.  

  

2.6. Link to next chapter  

Although this study has showcased the significance of raw texture bands in significantly improving 

the detection and mapping of commercial forest species, this model can still only explain 77% in 

delineating these species. Therefore, the researchers decided to take it one step further in Chapter 

3 to improve the model by testing the utility of texture combinations computed from fused 

WorldView-2 pan-sharpened imagery in discriminating commercial forest species.     
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CHAPTER THREE  

  

UTILITY OF TEXTURE COMBINATIONS COMPUTED FROM FUSED WORLDVIEW-2 

IMAGERY IN DISCRIMINATING COMMERCIAL FOREST SPECIES  

  

   

This chapter is based on:  

  

  

Bongokuhle Sibiya, Romano Lottering & John Odindi, 2021. Utility of texture combinations 

computed from fused WorldView-2 imagery in discriminating commercial Forest species, Geocarto 

International, DOI: 10.1080/10106049.2021.1952316  
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Abstract 

Commercial forest species discrimination is valuable for optimal management of commercial 

forests. Therefore, second-order image texture combinations computed from a 0.5 m WorldView2 

pan-sharpened image integrated with sparse partial least squares discriminant analysis (SPLSDA) 

and partial least squares discriminant analysis (PLS-DA) were used to discriminate commercial 

forest species. The findings show that the SPLS-DA model, which is characterised by concurrent 

variable selection and reduction of data dimensionality, produced an overall classification accuracy 

of 86%, with an allocation disagreement of 9 and a quantity disagreement of 5. Conversely, the 

PLS-DA model with variable importance in projection (VIP) produced an overall classification 

accuracy of 81%, with an allocation disagreement of 12 and a quantity disagreement of 7. Overall, 

this study demonstrates the value of second-order image texture combinations in discriminating 

commercial forest species and presents an opportunity for improved commercial forest species 

delineation.   

Keywords: Texture combinations, Species discrimination, PLS-DA, SPLS-DA, WorldView-2   

3.1. Introduction      

Commercial forest plantations cover approximately 1.2 million hectares of South Africa’s land 

mass (DAFF., 2012). These forests are predominantly located in the eastern and southern parts of 

the country with abundant rainfall and warmer temperatures (DAFF., 2012). Commercial forests 

contribute approximately 2% towards the country’s gross domestic product and align with its 

environmental imperatives of reducing the effects of carbon dioxide and greenhouse gas emissions 

(Peerbhay et al., 2013a, Peerbhay et al., 2013b, Peerbhay et al., 2014, Dube et al., 2018, Mngadi 

et al., 2019). Hence, information on their distribution is crucial for making informed decisions that 

include monitoring ecosystems health, species management and harvest scheduling (Franklin et 

al., 2000, Peerbhay et al., 2013a, Peerbhay et al., 2013b, Mngadi et al., 2019). In addition, reliable 

discrimination of commercial forest species is valuable for, among others; terrestrial carbon 

accounting, climate change modelling, biodiversity assessments and fire hazard monitoring and 

control (Cho et al., 2010, Sarker and Nichol, 2011, Dube et al., 2015). In this regard, the 

establishment of reliable and timely forest discrimination approaches is necessary for achieving 

commercial and conservation related planning and monitoring.  
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Generally, conventional methods such as field surveys have been utilized for forest discrimination. 

However, the shortcoming of such approaches are widely documented in literature (Nichol et al., 

2010, Peerbhay et al., 2013a, Peerbhay et al., 2013b, Hlatshwayo et al., 2019, Lottering et al., 2019, 

Lottering et al., 2020). Alternatively, remote sensing approaches have emerged as costeffective means 

for monitoring and assessing vegetation, with reliable classification accuracies (Lottering and 

Mutanga, 2012, Barbosa et al., 2014, Dube et al., 2014, Bastin et al., 2014, Dube et al., 2015). Previous 

studies have generally utilized spectral data or vegetation indices to detect and map commercial forest 

species (Mutanga and Skidmore, 2004, Ingram et al., 2005, Lu, 2006, Godsmark, 2008, Mutanga et 

al., 2012, Dube et al., 2014, Sarker and Nichol, 2011, Nichol et al., 2010, Peerbhay et al., 2013a, 

Peerbhay et al., 2013b, Mngadi et al., 2019). Although the adoption of these approaches have 

produced reasonable classification accuracies, they are characterized by a range of limitations 

(Anderson et al., 1993, Dube et al., 2014, Dube et al., 2015, Hlatshwayo et al., 2019). For example, 

classification accuracies when using spectral vegetation indices are adversely affected by rapidly 

changing vegetation growth and canopy shadowing, while indices like NDVI saturate at dense 

biomass levels (Lu et al., 2002, Lu and Batistella, 2005, Mather and Koch, 2011, Sarker and Nichol, 

2011, Hlatshwayo et al., 2019, Lottering et al., 2019, Lottering et al., 2020). Therefore, the adoption 

of alternative approaches that allow for improved delineation of vegetation structural characteristics 

are necessary (Fuchs et al., 2009, Nichol et al., 2010, Sarker and Nichol, 2011, Dube et al., 2015).   

Image texture is useful in determining the spatial orientation of features and has previously been 

used for forestry management (Franklin et al., 2000, Sarker and Nichol, 2011, Dye et al., 2012, 

Hlatshwayo et al., 2019, Lottering et al., 2019, Lottering et al., 2020). In commercial forestry, it 

has been utilized to identify different forest stand structural characteristics that include density, 

age and leaf area index from medium-to-high spatial resolution images (Champion et al., 2008). 

The major strength of adopting image-texture is its ability to decompose and distinct 

heterogeneous forest canopies, including layered and closed canopies (Nichol et al., 2010, Sarker 

and Nichol, 2011, Dube et al., 2015, Lottering et al., 2020). Several studies have confirmed the 

role of texture analyses to improve classification accuracy, for instance, Lottering et al. (2020), 

recently used image texture to compare partial least squares (PLS) discriminant analysis and sparse 

PLS discriminant analysis to detect and map Bugweed (Solanum mauritianum) invasion in 

commercial forests of KwaZulu-Natal, South Africa, with overall accuracies of 67% and 77%, 
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respectively. In addition, Franklin et al. (2000), adopted texture analysis for the classification of 

forest species in New Brunswick and Canada; achieving a 5% and 12% improved classification 

accuracy in New Brunswick and Canada, respectively.   

Whereas a number of studies e.g., Franklin et al. (2000), Moskal and Franklin (2004), Lottering et 

al. (2016) and Lottering et al. (2020), have explored the value of image texture in discriminating 

vegetation landscapes, our study focuses on the use of texture combinations in discriminating 

commercial forest species. Several studies, Hlatshwayo et al. (2019), Nichol et al. (2010), Dube et 

al. (2015), Lottering et al. (2019) have noted that texture combinations improve mapping accuracy 

over the use of single texture bands. For example, Lottering et al. (2019), used image texture 

combinations in detecting and mapping the Eucalyptus snout beetle (Gonipterus scutellatus) 

induced vegetation defoliation, while Hlatshwayo et al. (2019) explored the capability of image 

texture combinations in mapping aboveground biomass within a reforested landscape. Other 

studies including; Nichol et al. (2010), Sarker and Nichol (2011) and Dube et al. (2015) 

successfully used image texture combinations in mapping forest aboveground biomass, which 

plays a significant role in reducing background and atmospheric effects (Myneni et al., 1995, Wang 

et al., 2012).  

While the use of image texture combinations has demonstrated great potential, its adoption requires 

an optimal feature extraction technique as textural combinations may be characterized by complex 

and redundant data (Lottering et al., 2020). Recently, the Partial Least SquareDiscriminant analysis 

(PLS-DA) has emerged as ideal when dealing with complex image texture combination data, as it 

can effectively reduce background effects and resolve tree species spectral similarities (Peerbhay 

et al., 2013b). Furthermore, PLS has the capability to store data into fewer PLS latent components 

(Peerbhay et al., 2013a, Sibanda et al., 2015), which preserve the most valuable texture 

combinations for analysis based on variable importance in the projection (VIP) (Sibanda et al., 

2015, Peerbhay et al., 2013a, Peerbhay et al., 2013b, Lottering et al., 2020).  Despite notable 

classification performance, PLS-DA has numerical limitation, especially when dealing with large 

datasets with too many correlated predictors (Lê Cao et al., 2008, Peerbhay et al., 2014). Therefore, 

there is a need to employ an innovative approach that is useful in examining dimensional and 

redundant image textural data using the improved Sparse Partial Least Square Discriminant 

Analysis (SPLS-DA) (Peerbhay et al., 2014, Lottering et al., 2020). However, there is a lack in 
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literature on studies that have examined the use of both PLS-DA and SPLS-DA in discriminating 

commercial forest species using texture combinations computed from multispectral image data. 

As a result, the aim of this study was to test the utility of texture combinations by comparing PLS-

DA and SPLS-DA in discriminating commercial forest plantations using a WorldView-2 pan-

sharpened image. The WorldView-2 pansharpened image was adopted due to its high spatial 

resolution, hence enhanced textural information for discriminating commercial forest species 

(Cheng and Chaapel, 2008, Dube et al., 2014, Mngadi et al., 2019, Lottering et al., 2019).   

3.2. Material and methods   

3.2.1. The study area   

The study area is located in the Sappi Hodgson Estate in KwaZulu-Natal, South Africa (30°59’85”  

E; 29°19’03” S) (Figure 3.1). The area covers 6391 ha within the KwaZulu-Natal midlands mist 

belt grassland bioregion and receives 730 to 1590 mm annual rainfall, which is generally 

experienced during summer and mist conditions during winter. The landscape is classified as 

rolling and hilly, with an elevation ranging from 1030 to 1590 m above sea level. The primary tree 

stands in the area are Pine (P. Patula), Eucalyptus (E. Grandis and E. Dunnii) and Acacia (A.  

Mearnsii).  
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Figure 3.1. Location of the study area within KwaZulu-Natal Province, South Africa  

3.2.2. Image acquisition   

A 0.5 m WorldView-2 pan-sharpened image obtained under cloudless conditions on the 20th of 

September 2012 was used in this study. The WorldView-2 pan-sharpened image is comprised of 

eight wavebands (Table 3.1). Using ENVI 4.7 software, the image was atmospherically corrected 

to the top-of-atmosphere reflectance (ToAR). As a function of the WorldView-2 pan-sharpened 

bands, the shape of the solar curve determined the shape of the top-of-atmosphere spectral 

radiance. The ToAR for the WorldView-2 pan-sharpened image is given by:  

                                                                             (1)  

  

Where LλPixel,Band represents the ToAR band averaged respectral radiance, dES is the Earth-Sun 

distance during the acquisition of the WorldView-2 pan-sharpened image, EsunλBand represents the 

band average solar spectral irradiance normal to the surface that is illuminated and θs represents 

that solar zenith angle during the acquisition of the WorldView-2 pan-sharpened image (Omar, 
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2010). The image was then geo- and ortho - rectified using twenty-five evenly spread ground 

control points. A geo-rectification root means square error (RMSE) of less than 0.5 m was 

obtained, and the image projected to Universal Transverse Mercator projection and the World 

Geodetic System 84 datum.   

Table 3.1: Characteristics of the WorldView-2 pan-sharpened bands  

Band Range (nm) Spatial resolution (m) 

Coastal blue 

Blue 

Green 

Yellow 

Red 

Red edge 

Near-IR1 

Near-IR2 

400-450 

450-510 

510-580 

585-625 

630-690 

705-745 

770-895 

860-1040 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

 

3.2.3. Field data collection   

Six forest stands per species (A. Mearnsii, E. Dunnii, E. Grandis and P. Patula) were selected 

randomly within the study area and field surveys conducted to verify the status of the selected 

stands. The Hawths tool in QGIS Desktop 3.14.16 was used to create 30 × 30 m random plots over 

the study area using an existing WorldView-2 image. To ensure that the sample sizes of each 

species was balanced and statistically representative, each stand was sub-sampled to ensure that 

the sample plots were equally distributed (Table 3.2). The final dataset consisted of 240 samples 

plots with 70% (n = 168) used as the training dataset and 30% of the sample plots (n = 72) were 

used as the test dataset. According to Peerbhay et al. (2013a) and Peerbhay et al. (2013b) a 

balanced number of class sample plots for training and testing data is critical for PLS-DA 

optimization. Furthermore, the RStudio statistical software package version 3.1.3 (Team, 2013) 

was used to run the data to guarantee that the number of samples in the test and training datasets 

for each species were approximately similar (Table 3.2).   

Table 3.2: Sample size of each species surveyed (n = 240)  

 

 

 

 

 

Species Number of stands No. of samples Total sample points 

A. mearnsii 6 10 60 

E. dunnii 6 10 60 

E. grandis 6 10 60 

P. patula 6 10 60 
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3.2.4. Image Texture   

Image texture refers to local variance within an image in relation to properties of neighbourhood 

pixels (Lottering et al., 2019). This method could be useful in discriminating commercial forest 

species as species type, crown closure or stem density could result in a variation in image texture 

(Franklin, 2001). Therefore, by utilizing texture parameters, it is possible to determine the spatial 

distribution and image tone variability (Moskal and Franklin, 2004).  

A range of texture analysis approaches have been developed to extract image features from 

remotely sensed imagery (Li et al., 2015). These approaches can be grouped into first-order and 

second-order texture parameters (Lottering and Mutanga, 2012). The first-order texture is 

determined based on pixel intensities of the histogram within a processing window (Hlatshwayo 

et al., 2019, Chetty, 2020) and is independent of the adjacent pixels (St-Louis et al., 2006). The 

second-order texture parameters rely on neighbourhood pixels grey tone matrix to compute texture 

(Sarker and Nichol, 2011). A number of studies have established that the performance of 

secondorder texture parameters is superior to first-order texture parameters within forest 

environments (Yuan et al., 1991, Moskal and Franklin, 2004, Sarker and Nichol, 2011, Lottering 

and Mutanga, 2012, Dube et al., 2015, Lottering et al., 2020). Hence, this study adopted second-

order texture parameters (Table 3.3) computed from a WorldView-2 pan-sharpened image to 

discriminate commercial forest species, using a shift of x = 1, y = 1 and θ = 45°. The angle adopted 

was found to be suitable in calculating image texture parameters to classify commercial forestry.  
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Table 3.3: Filters for the second-order texture parameters  

 

Where µi, µj, σi and σj represent means and std. deviations of marginal distributions associated with P (i, j) which is the 

normalised co-occurrence matrix such that Sum (i, j = 0, N-1) (P (i, j)) = 1 

 

Texture parameters were computed from the WorldView-2 pan-sharpened image using a 7 × 7 

moving window size and the mean value of the sample plots (240) were extracted using zonal 

statistics in QGIS Desktop 3.14.16. Texture combinations were subsequently computed using two 

texture parameters that were generated from the same band. These texture combinations were 

generated using equation (2).   

                                                                                                                         (2)  
Where T1 and T2 are texture parameters.  
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Peerbhay et al. (2013a), defines VIP as a technique that generates a ranked score of bands within the 

data set, where, VIPk represents the importance of the k’th texture combination relating to the PLS-

DA model, wak represents the consistent loading weight of the k’th texture combination in the a’th 

PLS-DA component, ta, wa, and qa are the a’th column vectors and K is the total number of texture 

combinations (Peerbhay et al., 2013b, Lottering et al., 2020). The important texture combinations can 

be identified by VIP scores above 1 as the average of the squared VIP scores equals to 1. In our study, 

a new PLS-DA model was generated from the selected VIP texture combinations, which were then 

used to map the commercial forest species. The PLS-DA model optimization, discriminant analysis 

and VIP were executed in RStudio statistical software package version 3.1.3 (Team, 2013).   

3.2.5.3.Sparse partial least squares discriminant analysis (SPLS-DA)  

In this study, a sparse version of the PLS for discrimination purposes, which is a natural extension 

of PLS-DA (Lê Cao et al., 2008) was utilized. Although PLS was developed for regression (Lê 

Cao et al., 2008), it is also useful for classification purposes. Utilizing this approach for 

discriminating commercial forest plantations is useful, especially when examining high 

dimensional and redundant image texture combination data, which might be challenging for 

PLSDA. In the discrimination process, SPLS-DA recruits a scarcity solution that concurrently 

selects variables and reduces dimensionality, where irrelevant and noisy variables are scored a zero 

value by imposing L1 penalty (Chun and Keleş, 2010). As a result, reducing the contribution of 

irrelevant variables in the modelling process (Lottering et al., 2020). In addition, Peerbhay et al. 

(2014), notes that the latent components are used to explain the optimal discrimination within 

classes by adopting few useful variables (i.e., non-zero variables) and maximize the covariance 

between the predictor and response variables. Variable class membership is then assigned by 

coding the reference cell response matrix (Y) with dummy variables (Chun and Keleş, 2010). Y is 

assumed to be one of the classes (G + 1) indicated by 0, 1,…,G. The recoded response matrix is 

then defined as n × (G + 1) matrix with:    

  

                                                                                                                (6)  

  

where i = 1…, n; g = 0; 1…, G, and I is an indicator function of event (A). After constructing latent 

components, since the number of latent components (K) is generally smaller than n, the last step 

required in SPLS-DA is to fit a classifier. Therefore, linear classifiers are generally used for this 
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purpose (Chun and Keleş, 2010). In this study, we used the “splsda” function in R statistical 

package version 3.1.3 (Team, 2013) to run the SPLS-DA algorithm.   

3.2.5.4.Optimization of PLS-DA and SPLS-DA models  

To develop the PLS-DA model, a tenfold cross-validation (CV) approach was utilized to identify 

the number of components required. The number of components were systematically introduced 

to the model and the CV error was then established (Menze et al., 2009). This process was repeated 

on the training dataset until the addition of more components did not improve the performance of 

the model. Once optimised, the PLS-DA model was then used to classify the training dataset. For 

the SPLS-DA model, two parameters were utilized for model optimization; (1) “k” the number of 

latent components, which is an integer value that is dependent on the size of the sample and the 

number of explanatory variables, and (2) “eta” a sparsity thresholding parameter that ranges 

between 0 and 1 (Chun and Keleş, 2010). In this process, optimal latent components retain the 

most effective texture combinations, while un-important texture combinations are assigned a zero 

probability. Ultimately, the optimized SPLS-DA model was used to classify the image. PLS-DA 

and SPLS-DA model optimization were executed in the RStudio statistical software package 

version 3.1.3 (Team, 2013).   

3.2.6. Accuracy assessment  

The entire dataset (240) was divided into training (70%) test data (30%), with the latter dataset 

being used to create the confusion matrix. To account for variations in accuracy resulting from 

divergent training and testing compositions, the process was run using 100 iterations. Due to Kappa 

analysis being criticised for comparing observed and predictable accuracy (Fassnacht et al., 2014), 

the allocation and quantity disagreement was used to determine the error matrix. In the quantity 

disagreement process, the number of samples for a specific tree species for the training dataset is 

measured by the allocation disagreement, whereas the number of trees samples in the training 

dataset that differ from the samples in the test dataset are calculated by the quantity disagreement 

(Atkinson et al., 2013). As a result, both disagreements are used in the error matrix.  

Figure 3.2 shows a flowchart of the research methodology for this study.  
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Figure 3.3. Testing the discriminatory capability of individual PLS-DA components using texture 

combinations. The black arrow shows the component with the lowest error.  

3.3.2. PLS-DA and VIP  

VIP selected 75 significant image texture combinations for the PLS-DA model. The results show 

that the model generated an overall accuracy of 81%, with an allocation disagreement of 12 and a 

quantity disagreement of 7. Accuracies for individual species users and producers ranged from 

73% to 88% (Table 3.4). Figure 3.4 shows the variation in accuracy based on 100 iterations for the 

training and validation dataset split. A mean overall classification accuracy of 79.6% with a 

standard deviation of 2.29 was achieved.  

  

  

 

  

Figure 3.4. PLS-DA classification accuracies produced based on 100 iterations for splitting the 

training and validation data.  

3.3.3. SPLS-DA model optimization  

Figure 3.5 indicates the significance of each SPLS-DA component using a tenfold cross validation 

method, which was based on the training dataset (n = 168). The initial component produced a CV 

error of 35%, which was later reduced to 16% by using 10 components. The most significant 

component, however, was achieved by using 7 components which produced the lowest CV error 

rate. These components were subsequently used to develop the SPLS-DA model. In addition, an 

“eta” of 0.3 and “k” of 6 were optimum parameters for developing the SPLS-DA model.  
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significant difference (p < 0.05). We subsequently rejected the null hypothesis as there was a 

significant difference in the overall classification accuracy (p < 0.05).   

 

  

Figure 3.6. SPLS-DA classification accuracies produced based on 100 iterations for splitting the 

training and validation data.  

3.3.4. Testing and Applying the principal component analysis (PCA) to discriminate commercial 

forest species for comparative purposes   

The principal component analysis (PCA) is a method that is similar to PLS in terms of reducing 

data dimensionality, however it is an unsupervised technique (Arowolo et al., 2021). For 

comparative purposes, PCA was used to discriminate commercial forest species using the same 

dataset. Results showed that SPLS-DA, with 86% overall classification accuracy was higher than 

PCA with 78% overall classification accuracy.  

3.3.5. Frequency of selected significant variables for the SPLS-DA model  

Since the SPLS-DA model outcompeted the PLS-DA model, we only highlighted the top 10 

combinations used to develop the SPLS-DA model (Table 3.5). SPLS-DA selected 58 significant 

image texture combinations to effectively discriminate commercial forest species. Furthermore, 

the WorldView-2 pan-sharpened texture combinations derived from the Mean/Second Moment, 

Homogeneity/Second Moment, and Entropy/Second Moment appeared more times in the top 10 

selected parameters. In addition, these texture combinations were generally computed from the 

red, red edge and NIR bands.  
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Table 3.5: Top 10 selected image texture combinations for the SPLS-DA model 

 

 

 

 

 

 

 

 

 

 

3.3.6. Mapping the distribution of commercial forest species using SPLS-DA  

Since the SPLS-DA model produced the highest overall accuracy, we then used it to map the spatial 

distribution of commercial forest species. Figure 3.7 shows the spatial distribution of commercial 

forest species over the study area. This distribution map, which covers 1156 ha of the study area, 

illustrates the ability of texture combinations integrated with the SPLS-DA model to effectively 

map the distribution of commercial forest species. This output is vital for making informed 

decisions that may include monitoring forest health, species management and harvest scheduling. 

The map is comparable to that of the WorldView-2 image, with P. patula being the dominant tree 

species. E. dunni and E. grandis were least correctly mapped species due to both species belonging 

to the same genus, respectively.   

 

 

Rank 

SPLS-DA 

Band Moving Window  Texture combination 

1  Red edge  7 x 7   Mean/Second Moment 

2  NIR 1  7 x 7   Correlation/Second Moment 

3  Red   7 x 7   Dissimilarity/Mean 

4  NIR 2  7 x 7   Homogeneity/Second Moment 

5  Green  7 x 7   Mean/Second Moment 

6  NIR 1  7 x 7   Entropy/Second Moment 

7  Red Edge  7 x 7   Homogeneity/Second Moment 

8  Red  7 x 7   Homogeneity/Second Moment 

9  NIR 2   7 x 7   Second Moment/Second Moment 

10  NIR 1  7 x 7   Entropy/Second Moment 
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Figure 3.7. Species classification map produced by SPLS-DA model and image texture 

combinations  

3.4. Discussion  

To effectively manage commercial forests, it is important to accurately and reliably map their 

species. However, conventional methods such as field surveys have proven to be spatially 

restrictive. Hence, our study explored the value of remote sensing approaches to effectively 

discriminate commercial forest plantation using image texture combinations computed from a  

0.5 m WorldView2 pan-sharpened image. We also investigated the utility of SPLS-DA and PLSDA 

in discriminating commercial forest plantations.   
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The findings in this study demonstrated the potential of image texture combinations computed 

from a WorldView-2 pan-sharpened image in conjunction with SPLS-DA and PLS-DA to 

discriminate commercial forest species. While both models successfully discriminated commercial 

forest species, the SPLS-DA was more effective. The lower overall classification accuracy of the 

PLS-DA model suggests that it may not be as effective in dealing with high data dimensionality  

(Lottering et al., 2020). This finding is similar to (Chun and Keleş, 2010), who noted that SPLSDA 

outperformed the PLS-DA model. Furthermore, PLS-DA was unable to effectively deal with 

texture similarities, especially between species of the same genus, hence lowered its overall model 

performance.   

Incorporating SPLS-DA with second-order texture combinations and 7 components yielded an 

overall classification accuracy of 86%. However, our results differ from the findings of Lottering 

et al. (2020) and Peerbhay et al. (2014), who found an overall classification accuracy of 80% when 

discriminating forest species and 77% overall accuracy when mapping Solanum mauritianum in 

commercial forest plantations, respectively. The lower classification accuracy between these 

studies could be due to Peerbhay et al. (2014) using spectral data to delineate species, while 

Lottering et al. (2020), used single texture parameters. Our study takes one step further by utilizing 

texture combinations and our findings are consistent with a number of studies (Nichol et al., 2010, 

Dube et al., 2015, Hlatshwayo et al., 2019, Lottering et al., 2019) that have established that image 

texture combinations simplifies vegetation canopy structure, making it easier to discriminate 

between commercial forest species.  

Furthermore, Mean/Second Moment, Homogeneity/Second Moment and Entropy/Second Moment 

played a significant role in developing the SPLS-DA model using the 7×7 moving window. This 

could be due to these texture combinations corresponding to the high spatial resolution of the 

WorldView-2 pan-sharpened image. These texture parameters have also produced significant 

results in several other studies. (Salas et al., 2016), for instance, established that homogeneity and 

second moment played an important role in mapping summer vegetation in the eastern Pamir 

Mountains, Tajikistan. In another study, Lottering et al. (2020), found that homogeneity and 

second moment were integral texture parameters in developing the SPLS-DA model for detecting 

and mapping Solanum mauritianum and surrounding commercial forest species. In addition, the 

SPLS-DA model generally selected texture parameters that were computed from the red, red-edge 
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and NIR bands of the WorldView-2 pan-sharpened image, which can be attributed to the value of 

these bands in vegetation mapping as noted by other studies (e.g. (Gebreslasie et al., 2011, 

Hlatshwayo et al., 2019, Lottering et al., 2019)).   

For example, the red edge region is known to differentiate tree species due to its sensitivity to plant 

pigmentation within the leaf tissue (Peerbhay et al., 2013b). Fernandes et al. (2013), noted the 

value of this region in discriminating invasive species from surrounding woody vegetation, while 

Gong et al. (2003), demonstrated the co-relationship between NIR and vegetation.  

This study established that image texture combinations generated from a 0.5 m WorldView-2 

pansharpened image using the SPLS-DA algorithm successfully discriminated commercial forest 

species. Hence, the findings of this study provide a basis for mapping larger spatial extents using 

readily and freely available remotely sensed datasets such as Sentinel-2 or Landsat 8.  

3.5. Conclusion  

This study adopted an integrated approach in discriminating commercial forest species. Using 

second-order image texture parameters in concert with a 7×7 moving window and the PLS-DA 

and SPLS-DA algorithms, these are the conclusions made:   

• An integration of the PLS-DA algorithm with second-order image texture combinations 

generated an overall classification accuracy of 81%, with an allocation disagreement of 12 

and a quantity disagreement of 7.   

• An integration of the SPLS-DA algorithm second-order image texture combinations 

generated an overall classification accuracy of 86%, with an allocation disagreement of 9 

and a quantity disagreement of 5.   

• The SPLS-DA model, with simultaneous variable selection and dimension reduction, was 

more superior than the PLS-DA model in discriminating commercial forest species.  

In essence, this study pioneers the use of second-order image texture combinations integrated 

with the SPLS-DA algorithm to delineate commercial forest species. These findings are 

valuable in understanding commercial forest species distribution, which is useful for forest 

management.  
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CHAPTER FOUR  

4. SYNTHESIS  

 
  

4.1. Introduction  

Accurate and precise information on a forest landscape is crucial for effective management and 

monitoring of commercial forest plantations.  In addition to commercial value, plantation forests 

also play a crucial role in carbon assimilation and climate change mitigation, among others 

(Mngadi et al., 2019). Hence, information relating to the distribution, composition, and 

productivity of a commercial forest is critical for understanding the dynamics of commercial forest 

plantations (Peerbhay et al., 2013b, Peerbhay et al., 2014, Lottering et al., 2016). Moreover, 

discriminating commercial forest species is required for, among others; conservation planning, 

biodiversity assessments, site management practices, harvest scheduling, and fire hazard 

monitoring and control (Dube et al., 2018). Therefore, achieving these demands require effective 

and efficient approaches for forest discrimination that can improve the planning, monitoring and 

conservation efforts.  Previous studies have mainly relied on surveys, whose shortcomings are 

widely documented in literature (Sarker and Nichol, 2011, Peerbhay et al., 2014, Mngadi et al., 

2019). However, in recent decades, remote sensing has emerged as a cost-effective alternative for 

monitoring and assessing vegetation whilst producing very high classification accuracies. 

Generally, previous studies adopting remote sensing approaches have utilized spectral vegetation 

indices to detect and map commercial forest species, with less focus on spatial landscape 

characteristics (Hlatshwayo et al., 2019, Lottering et al., 2019). Therefore, the main focus of this 

study was to discriminate commercial forest species using image texture computed from a 0.5 m 

WorldView-2 pan-sharpened image in KwaZulu-Natal, South Africa. The aim and objectives of 

the study are reviewed against the research undertaken throughout this thesis:   

4.2. Aim and objectives reviewed  

4.2.1. Aim  

The main aim of this study was to discriminate commercial forest species, using image texture 

computed from a 0.5m WorldView-2 pan-sharpened image.  
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4.2.2. Objectives reviewed  

In this study two objectives were set out to meet the aim aforementioned. This section will review 

how close the study came to meeting these objectives.  

 Discriminating commercial forest species using image texture computed from a 

WorldView-2 pan-sharpened image and Partial Least Squares Discriminate 

Analysis  

Discriminating forest species using spectral data or vegetation indices has remained a challenge, 

particularly when mapping highly dense canopies, because of saturation and the mixed pixel 

problem. Therefore, the use of image texture offers a viable alternative for forest species 

discrimination and mapping. Based on the findings in this study, the image texture model 

outcompeted both the vegetation indices model and raw spectral bands model in discriminating 

commercial forest species. This study acknowledges the approximate 8% difference between 

image texture and vegetation indices and 13% between texture and spectral data. Hence, it can be 

concluded that image texture is superior to vegetation indices and spectral bands in discriminating 

commercial forest species. Specifically, the valuable parameters selected in classifying 

commercial forest species by the PLS-DA were the homogeneity, correlation and mean, which 

were predominantly computed from the red edge and infrared bands. In addition, the 7x7 moving 

window was commonly selected by the PLS-DA model when compared to the 3x3 and 5x5 moving 

windows. In conclusion, this objective demonstrated the ability of image texture in discriminating 

commercial forest species.  

 To explore the Utility of texture combinations computed from fused WorldView-2 

imagery in discriminating commercial Forest species   

This objective extended on the previous objective, by exploring the utility of the image texture 

combinations in conjunction with PLS-DA and SPLS-DA. Based on the results, the utility of 

the image texture combinations showed a significant improvement when mapping and 

discriminating commercial forests species. The results indicated that SPLS-DA successfully 

performed simultaneous variable selection and dimension reduction, outcompeting PLS-DA 

model in conjunction with VIP. Overall, our study demonstrated the potential of image texture 

combinations in discriminating commercial forest species. With the application of SPLS-DA 
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algorithm, results in this objective demonstrated the value of exploiting full capabilities of 

image texture combinations for improved forest species discrimination and mapping.    

4.3. Conclusions  

The major aim of this study was to discriminate commercial forest species using image texture 

computed from a WorldView-2 pan-sharpened image in KwaZulu-Natal, South Africa. The 

findings of this study concluded that image texture is an important and powerful tool in 

discriminating commercial forest species. In addition, the utility of texture combinations showed 

a great improvement when compared to raw texture parameters. The improved performance of the 

overall models indicated their capability in long-term assessments of commercial forest 

plantations. This conclusion is consolidated based on the observations achieved throughout this 

thesis and respond to the key research questions posed in Chapter One:  

• Can image texture and PLS-DA detect and map commercial forest species?  

This study has decisively shown the ability of image texture parameters with PLS-DA to detect 

and map commercial forest species. Based on the results, the PLS-DA image texture model 

successfully discriminated commercial tree species outperforming both the PLS-DA vegetation 

indices and the PLS-DA spectral band models. This was due to image texture simplifying 

vegetation canopy, variation in stand age, and the high spatial resolution of the WorldView-2 

pansharpened image. In addition, the outcome may also be due to the capability of PLS-DA to 

decrease background effects and ability to overcome the issues of textural similarities between 

plantations. Hence, PLS-DA image texture created platform for detecting and mapping 

commercial forest species.  

• Does image texture combinations in conjunction with SPLS-DA effectively 

discriminate forest species?  

The utilization of texture combinations in the present study showcased the capability of texture 

combinations to adequately detect and map forest species when compared to raw image texture 

parameters. The outstanding achievement from texture combinations is due to bands combinations 

and the high spatial resolution of the WorldView-2 pan-sharpened image.   
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Texture combinations produced an outstanding performance due to their ability to deal with 

topographic effects and errors related with angle from the sensor and sunlight radiance. This makes 

texture combinations the number one candidate for discriminating commercial tree species in 

contrast to spectral reflectance and vegetation indices that lacks the ability to deal with complex 

vegetation structures.   

In addition, the outstanding performance displayed by texture combination is related to integrating 

texture combinations with SPLS-DA. This is because SPLS-DA was able to delineate commercial 

forest species in areas where the PLS-DA model was unable. The outstanding performance is due 

to the fact that SPLS-DA was able to overcome issues related to high data dimensionality, which 

was not effectively dealt with by the PLS-DA algorithm. Therefore, combining SPLS-DA with 

second-order image texture combination and the 7x7 moving window offered improved and 

invaluable information that improved the overall classification outputs.   

 

4.4. The future      

Image texture offers new data sources critical for commercial forest species discrimination and 

mapping. The findings of this study present an insight on the utility of image texture in forest 

species discrimination and mapping. However, this study recommends that:  

• This approach could be applied to large areas by using other remotely sensed images 

such as Landsat 8 OLI or Sentinel-2, which are freely available to test its regional 

classification potential.  

• Image textures need to be further tested, in conjunction with new Textural indicators 

and Variogram analysis for the improved regional forest species discrimination and 

mapping.  
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