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A bstract

Aspects of the fundamental concept of distance are investigated in this
dissertation. Two major topics are discussed; the first considers metrics
which give a measure of the extent to which two given graphs are removed
from being isomorphic, while the second deals with Steiner distance in
graphs which is a generalization of the standard definition of distance in

graphs.

Chapter 1 is an introduction to the chapters that follow. In Chapter
2, the edge slide and edge rotation distance metrics are defined. The edge
slide distance gives a measure of distance between connected graphs of the
same order and size, while the edge rotation distance gives a measure of
distance between graphs of the same order and size. The edge slide and
edge rotation distance graphs for a set S of graphs are defined and investi-
gated. Chapter 3 deals with metrics which yield distances between graphs
or certain classes of graphs which utilise the concept of greatest common
subgraphs. Then follows a discussion on the effects of certain graph oper-
. ations on some of the metrics discussed in Chapters 2 and 3. This chapter
also considers bounds and relations between the metrics defined in Chap-

ters 2 and 3 as well as a partial ordering of these metrics.

Chapter 4 deals with Steiner distance in a graph. The Steiner distance
in trees is studied separately from the Steiner distance in graphs in general.

The concepts of eccentricity, radius, diameter, centre and periphery are gen-

il



eralised under Steiner distance. This final chapter closes with an algorithm
which solves the Steiner problem and a Heuristic which approximates the

solution to the Steiner problem.
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Chapter 1

Introduction

1.1 Graph Theory Nomenclature

The basic text for the graph theory terminology and symbols used here is
Chartrand and Lesniak’s Graphs and Digraphs [CL1]. Here we clarify our

conventions.

We denote by T' the space of all graphs, by I'(p) the space of graphs
of order p, by I'(p,q) the space of all graphs of order p and size ¢ and by
I'c(p, ¢) the space of all connected graphs of order p and size q. The space
of all trees of order n is denoted by 7(n). We denote by S, the space of all
isomorphism classes of graphs on p vertices, by S, , the space of all isomor-
phism classes of graphs with p vertices and ¢ edges and by S, , the space

of all isomorphism classes of connected graphs with p vertices and ¢ edges.

We use p(G), ¢(G), V(G) and E(G) to denote the order, size, ver-
tex set and edge set respectively of a graph G. 1f v € V(G), the degree

of v in G is written as deggv and the minimum degree of G is given by



§(G) = min{deggv : v € V(G)} whereas the maximum degree of G is
A(G) = max{deggv : v € V(G)}. The set of all vertices adjacent to
v in G is denoted by Ng(v). If S is a set of elements (either edges or
vertices) then the number of elements in the set S is written as |S|. If
G,H € T'(p) and G and H are defined on the same vertex set then we
denote by |V (G) — V(H)|(|E(G) — E(H)|), the number of vertices (edges
respectively) which appear in G but not in H. A set S C V(G) of vertices
of G is an tndependent set if no two vertices of S are adjacent in G. If

G € I'(p, q), the cardinality of G is defined to be p + ¢, denoted by |G].

If S C V(G) is a subset of the vertex set of a graph G, then we denote by
(S) the subgraph of G induced by the vertices of S. We denote by I < G
that H is an induced subgraph of the graph G. A block B of a graph G is
a subgraph of G with maximum order such that B contains no cut-vertex.
An end-block of G is a block of G which contains exactly one cut-vertex
of G. A branch B of a graph G at the vertex w € V(G) is a maximum

connected induced subgraph of G containing w as a non cut-vertex.

If G is a given graph with vertex set V(G) = {v,, vy, ...,v,} and edge set
E(G) = {e1, 2, ..., €5} then the line graph L(G) of G is the graph obtained
as follows: L(G) has vertex set {ej, e, ...,e;} and e;e; € E(L(G)) if and

only if e; and e; are incident with a common vertex in G, for 1 < 1 < 71 <q.

For graphs G| and G, the cartesian product G, x G, is a graph which
has vertex set V(G) x V(G;) such that two vertices (u1,u2) and (vy,vs)

are adjacent in Gy x G, if and only if either u; = v; and wuyv, € E(G;) or



uy = vy and uyv; € E(G,). Again if G| and G, are vertex-disjoint graphs,
then the join of Gl and G5, denoted by G| + Gy, is that graph consisting of
the disjoint union G; U G4, together with all edges of the type v v,, where
v; € V(G,) and vy € V(G,). We denote by G — {S}, where S C V(G), the
graph obtained from G by deleting the vertices in S from G together with
all the edges incident with vertices of S. The contraction of graph G along
an edge e = zy € F(G) say, is the graph obtained from G by deleting e and
identifying the vertices £ and y in G in a single vertex which is adjacent to

all vertices in Ng(z) U N¢(v).

A unicyclic graph is a graph containing only one cycle and the girth
9(G) of a graph G is the length of a shortest cycle in G. The star S, is
isomorphic to the graph K ,,.

Other definitions will be given as needed throughout the chapters.

1.2 Distances between Graphs and Steiner
Distance

If two graphs G, and G, are not isomorphic, then how far away from iso-

morphism are they? In Chapters 2 and 3 we define and develop metrics
which can be used to answer this question.

The line of discussion of Section 2.2 is as follows:

Let G,H € I'.(p,q); then G can be transformed into H by an edge

slide if G contains distinct vertices u,v and w such that vv € E(G),uw €



E(G),vw € E(G) and H = G —uv + uw. The edge slide distance between
G and H in this case, denoted d.,(G,H) is 1. The minimum number of
edge slides needed to transform one graph into another gives a measure of
distance between the graphs. In this section we see that for any two graphs
G1,G2 € T'c(p,q) it is always possible to transform G, into G; by means
of a sequence of edge slides. We also consider edge slide distances between
specific classes of graphs. The remainder of this section deals with the edge
slide distance graph D,(S) of a set S C T'.(p, q) of graphs, where D,(S) has
S as its vertex set and two vertices z and y of D,(S) are adjacent if and only

if dos(z,y) = 1. It is shown that every graph is an edge slide distance graph.

The edge rotation distance metric is introduced and discussed in Sec-
tion 2.3. Let G, H € I'(p,q); then G can be transformed in H by an edge
rotation if G' contains distinct vertices u,v and w such that uwv € E(G),
uw € E(G) and H = G — uv + uw. Here we dispense with the restriction
that vw must be an edge of G as is demanded by the edge slide operation.

The discussion folowed in this section is similar to the line of discussion in

Section 2.2.

A number of metrics which give a measure of distance between noniso-
morphic graphs are defined in Chapter 3. These metrics have in common
that they are closely linked to the idea of a greatest common subgraph of

the graphs in question. In Section 3.2 these metrics are defined and dis-

cussed.

In Section 3.3 certain relations between the metrics we have studied are



established, together with some results which set bounds on the distances

between graphs.

The effects of the application of some simple graph operations on the
distances between associated graphs are studied in Section 3.4. The oper-

ations considered are: The join, the union and the subdivision.

A partial ordering for the metrics defined in Chapters 2 and 3 is devel-
oped in Section 3.5.

Chapter 4 deals with the background to the Steiner problem, which is
to connect n given points in the plane by a shortest possible network of
line segments. We consider the extension of this problem to graphs which

is our main topic of discussion here.

The Steiner problem in graphs may be stated as follows: Consider a
connected graph G of order p and a proper subset S C V(G). The problem
is to find a subtree Ts of G of minimum size such that V(Ts) DO S. The
concepts of eccentricity, radius, diameter, centres and peripheries are gen-
eralised under the Steiner distance. The generalisations yield many results
which are separated into two categories. Secion 4.3 includes results which

apply to trees and Section 4.4 considers graphs in general.

Finally in Section 4.5 we present an algorithm which solves the Steiner
problem in graphs exactly but in impractical time for large |S|. Hence we

also present a more economical approximate algorithm for finding a tree T



in our graph G which is close to optimal, and we show just how accurate

this heuristic is.



Chapter 2

Distance Between Graphs

2.1 Introduction

In this chapter we shall define two metrics, both giving a measure of the
distance between certain given graphs and/or between certain classes of
graphs. We will consider some of the properties exhibited by these metrics

and determine distances between specific graphs.

The two metrics to be investigated, namely the edge slide distance met-
ric and the edge rotation distance metric, are similar in nature. They both
involve the deformation of a graph G, which translates G into a graph
G' =G —e; + €, where ¢; € E(G) and e; € E(G). The aim is to transform
one graph to another with the least possible number of such deformations.

The number of deformations gives a measure of distance between the orig-

inal graph and the transformed graph.



2.2 The Edge Slide Distance d,;

The concepts of edge slide and edge slide distance were defined by M.
Johnson in [J1] and independently by Benade, Goddard, McKee and Winter
in [BGMW1].

2.2.1 Definitions

Let G and H be two graphs with the same number, say k, of components,
where the components are so labelled that the 1th component (1 < ¢ < k) of
each of G and H has the same order and the same size. We say that G can
be transformed into H by an edge slide if G contains distinct vertices u,v
and w such that wv € E(G),uw € E(G),vw € I(G) and H = G —uv + uw.

Now let graphs G and H be defined as above; then the edge slide distance
d.s(G,H) between G and H is defined as the smallest nonnegative integer

n for which there exists a sequence

11

G=lywNWEF,..,F,=H

such that F; can be transformed into F;;, by an edge slide, for 7 = 0,‘ 1,2,...,n—
1.



2.2.2 Example
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2.2.4 Figure

In Figure 2.2.3 the graph G cannot be transformed into the graph H by
an edge slide; however in Figure 2.2.4 the graph G can be transformed into
the graph H by the edge slide which removes the edge uv from G and then
inserts the edge uw in G — uv; ie., H = G — wv + uw.

To simplify notation we shall denote an edge slide which results in a
graph G being transformed into the graph G — uv + uw as in the above
example by t = (u,v,w) where uv € E(G), uw € E(G) and vw € E(G).
The graph G — uv + uw will be denoted by tG and to avoid ambiguity ¢

will also be called an edge slide on G.

2.2.5 Remark

Since we may deal with components of G and H with equal size and order
separately, when performing the edge slides which transform G into H, it

will be sufficient in our discussion of edge slides, to consider only the graphs

10



of T'.(p, q). We note also, that if there exists no sequence of graphs F; such
that d,(F;, Fiy1) = Lfor1=0,1,...,n—1, where Fy = G and F,, = H, then
it is usual to say

de,(G,H) = oo.

It was shown in [J1] that for any two graphs A, B € I's(p, q) it is possible
to transform A into B via a sequence of edge slides. The following result

and definition from [J1] will aid us in establishing this.

2.2.6 Lemma

Let A € T.(p,q). Let t be any edge slide on A. Then tA € T'.(p,g); i.e., the

edge slide preserves order, size and connectivity.

Proof

It is clear that tA has size p and order g since vertices do not undergo any

change and edges merely change position. Thus we need only show that tA

is connected.

Suppose t = (u,v,w) and let £ and y be any distinct vertices of A.
Since A is connected there exists a shortest path P = (z =)zoz;...2.(= y)
connecting z and y in A. If path P does not pass through the edge uv then

the path P connects z and y in tA. Thus we only nced consider the case

in which uv occurs once in P.

If uv or vu is a subpath of P and vw or wv is not, then construct the
walk P’ from P by replacing uv or vu by uwv or vwu respectively. If uv or

vu is a subpath of P and vw or wv is also a subpath of P, then since P is

11



a shortest path, P contains a subpath of the form uvw or wvu. Form the
walk P' by replacing uvw or wvu by uw or wu respectively. In either case

P' is a walk connecting z and y in tA. O

2.2.7 Definition

Let A € T.(p,q). We shall say graph G with vertex set V(G) = {1,2,...,p}
and edge set E(G) = {ey, €2, ...,¢q} is a standard form of A if the following

conditions are met:
1. G= A
2. ¢=ab=>a<b

3. The edges of G are labelled according to the lexicographic ordering.
This ordering is obtained by assigning the labels e}, e, ..., €4eq,, 1 to the
edges incident with 1 (where for ¢;, = 17 and e;, = 15 we have 1; < 7,
if and only if ¢ < j), thereafter labelling the edges incident with 2 in

a similar fashion, etc. This finally gives that 1 < 7 = ¢; <ee;.

2.2.8 Lemma

For any A € T'.(p, q) there exists a standard form G, say, of A.

Proof

Assume there exists no standard form of A. Let G be a graph isomorphic
to A with vertex set V(G) = {1,2,...,p} and edge set £(G) = {e}, 9, ..., ¢4}
labelled in such a way that e; = ab implies that a < band e; < e; < ... < ¢,

for some maximum integer k. Since by assumption G is not a standard

12



form of A, k < q and e > e,y;. However this implies that
ey < €y < ... < Clyleee < €

which, with suitable relabelling contradicts the maximality of k. Therefore

k = g and G is a standard form of A. O

The following Theorem is proved in [J1] by means of an adaptation of

a method first introduced by Chartrand, Saba and Zou in [CSZ1].

2.2.9 Theorem

For nonisomorphic graphs A, B € I',(p, ¢), there exists a sequence ¢y, ¢y,

of edge slides such that ¢,...t;A = B.

eyt

Proof

For a graph G with vertex set V(G) = {1,2,...,p} and edge set E(G) =
{e1, €2,...,€4}, call S(G) = ey, €2, ...,¢, the edge sequence of G. Let ex(G)
denote the kth edge in S(G). We shall say that G is 1-minimal if e; = 12;
and for 2 < k < ¢, we shall say that G is k-minimal il G is (k — 1)-minimal
(7 + 1) if j<p

(t+1)(z+2) if j=0p.

If G and H are both graphs in I',(p, ¢), and if both are g-minimal, then

with ex_; =17 and ¢, = {

G and H will have the same edge sequence and therefore will be isomorphic.

A g¢-minimal sequence has the following form:

12, 13,..,1p,23,24,...,2p, ..., (i = 1),y (i = U)p,i(i 4+ 1), ..., i(i + m)
for some integers ¢« and m such that 1 <7/ <p—1land1<m <p-—1.

13



We shall show that there exists a standard form G of A, and a sequence
t1,...,tm of edge slides such that t,,...t;t;G = B. First we show that there

exists a sequence ty,1s, ..., t, of edge slides such that t,...tst;G is ¢g-minimal.

Assume, to the contrary, that there is a largest k, k < ¢, such that
t!...t}G is k-minimal for some edge slide sequence t},...,t! , and some stan-
dard form G of A. Let H =t ...t]G. Note that, by Lemma 2.2.6, H
is connected. We shall obtain a contradiction by proving the existence of
a standard form of H and a sequence ty,t,,...,t,, of edge slides such that

tn...t;H is (k + 1)-minimal.

Case 1) Suppose k < p—1: Then since H is k-minimal, e, (H) = 1(k+ 1), but
ex—1(H) = i where either 1 = Land j > k + 2 or 7 > 1.
There must exist an edge uv where u < k+1 < v for otherwise
the subgraph induced by the vertex set {1,2,...,k + 1} would form a
component of H which would contradict the connectedness property
of H. If v # k + 2 form the graph H' by interchanging the labels
vand k+2;if v=4k+2let H = H. Clearly H' is k-minimal. If
u = 1 then H'is also (k + 1)-minimal. If u # 1 then the edge slide
t = (k +2,u,1) exists, since u(k + 2) € E(H'),(k +2)1 ¢ E(H') and
ul € E(H')i, and tH'is (k 4+ 1)-minimal.

Case 2) Suppose p—1 <k < g: Let e,(1]) =15 and ex+1(1) = wv where, as
H is not (k 4 1)-minimal,

l.j<p=ex1(H)#¢+1)and ~ (1)

2.9=p=> e (H) # (i +1)(¢ +2).

14



We have therefore that H increases minimally at e,_; and therefore

e,_1(H1) = 1p, and thus the edges 1m exist form = 2,...,p. ~ (2)

Assume j < p and eg1(H) = (5 + 1)v. Then t; = ((7 + 1),1,1)
exists by (1) and (2) and deletes 1(j + 1) and creates (7 + 1). Also
ty = ((7 +1),v,1) exists for t; H, and deletes (5 + 1)v and recreates
1(j +1). Clearly tot,H = H — (j + 1)v + ¢(y + 1) and it follows that
tot,H is (k + 1)- minimal since ey (t2t,H) = ¢(5 + 1).

Assume J < p and exy1(H) = u(j+1). Then t; = ((y +1),1,7) exists
on H by (1) and (2). Also t; = ((j + 1),u,1) exists on {;H. Again
we clearly have that tot /1 = H —u(j + 1) +1(7 + 1) and that ¢3¢, 11

is (k + 1)-minimal.

Assume j < p and ey (H) = uv where neither u nor v is equal to
j+ 1. Then t; = (u, 1,7 + 1) exists on H and t; = (u,v, 1) exists on
tiH. Therefore tytyH = H — wv + u(y + 1) which is k-minimal and
has an edge of the form (j + 1)u or u(y + 1) and thus, as above, tyt,

and consequently H, can be transformed into a (k+1)-minimal graph.

Assume j = p. Replacing 7 by 1 + 1 and 7 + 1 by 7 + 2 in the
preceding argument for 3 < p yields the same result, i.e. that I can

be transformed into a (k 4+ 1)-minimal graph.

We have therefore by contradiction that there exists a secquence ty, tq, ..., 1,

of edge slides such that ¢,,...t;G is g-minimal where G is a standard form of

15



Now for A, B € T.(p,q) we know that there exist edge slide sequences
ti,tay ..., b, and uy, ug, .., up such that, for some standard forms G of A and H
of B, we havet,...t;G and u,...u; H are both ¢g-minimal. We note that the in-
verse operation of the edge slide t = (u,v,w) ist™! = (u,v,w) ™! = (v, w,v).
(If ¢t is defined on G, then uw € E(tG), uv € E(tG) and wv € E(tG); there-
fore t! is defined on tG and t 7 1tG = G.)

We have therefore that uj'u;'..u;'t,...t;G = H, which completes the

proof. O

The edge slide distance imposes a metric on the set S, 4 of all isomor-

phism classes of connected graphs which have p vertices and ¢ edges, as

follows: If 01,02 € S; , then obviously the distance d,,(G1,G;) is fixed for
all Gy € 01 and all G € 0; and is also denoted by d,,(0},02).

2.2.10 Theorem

For any integers p > 1,¢ > 0, the edge slide distance is a metric on Spqe
Proof
Let o; € S;’q and let G; € g; for 1 = 1,2, 3.

i) By definition, d.,(0},0,) > 0 and des(0y,02) = 0if and ohly ifds(Gy,Gq) =

0, hence if and only if G; = G; and 0, = o,.

16



ii) If d,,(01,02) = n, then d,,(G1,G2) = n and by definition there exists a
sequence ty, s, ...,t, of edge slides such that ¢,...t;t,G; = G,. Conse-
quently t7%;...t7 Gy = G, and so d,,(G3, G1) < nj le., de(02,01) <
d.,(01,0;). A similar argument shows that d(0y,0) < d.s(0q,01);

hence d.,(0y,03) = d.s(02,01).

iii) Letd,,(0y,05) = nandd,,(02,03) = m; then d,,(Gy, G3) = n, des(G2,Gs) =
m and by definition there exist sequences t;,ts, ..,t, and 1,82, ...,5m
of edge slides such that ¢,...t3¢t;G; = Gy and $,,...825,G2 = Gj3; hence

Sm.--8281tn...tst1G1 = G3. Therefore d,,(Gy,G3) < n+ m and so

des(01a02) S dea(01a02) + des(O'g,Ug). [

A useful characterization of the parameters (or properties) of a graph
with respect to edge slides was introduced in [BGMW1]. It is useful in
that it provides a means of obtaining a lower bound on the edge slide
distance between certain graphs and between certain classes of graphs. It

is formulated as follows:

2.2.11 Definition

A parameter ¥ is said to be slowly changing with respect to the edge slide
operation if and only if for all graphs G, H € T.(p, q), d.s(G, H) = 1 implies
that [¢(G) — v(H)| < 1.

For example, suppose d.,(G, H) = 1 for graphs G,H € '.(p,q). Now
since an edge slide can only either increase or decrease the degree of a vertex

in G by at most one, only one of the following can hold:

) A (H)= AG) i) A(H)=A(G) -1 i) A (H) = AG) + 1

17



lLe, |A(H)-A(G)| L 1.

Hence the following proposition has been established.

2.2.12 Proposition

The maximum degree A(G) of a graph G is a slowly changing parameter

with respect to the edge slide operation.

The following proposition is immediately obvious and will be of use in
determining the edge slide distance between specific pairs of graphs. Our

next two results are from (BGMW1].

2.2.13 Proposition

If ¢ is a slowly changing parameter with respect to the edge slide operation

and if G, H € T'.(p, q) are such that
[¥(G) - ¢(H)|=n

then d.,(G, H) > n, giving a lower bound on the edge slide distance between

G and H.

2.2.14 Theorem

The edge slide distance between the star S, = K, ,_1, on n vertices, and a

given tree T on n vertices is

A(S,) = A(T).

18



Proof

Since S, and T are trees on n vertices we have S,,T € [',(n,n — 1) and
thus by Theorem 2.2.9 we can transform S, into T by means of a sequence

of edge slides (or vice versa). From Propositions 2.2.12 and 2.2.13 we have
des(Sn, T) > A(Sn) — A(T) ~ (1)

Now let v be a vertex of maximum degree in T. If degrv = n — 1 then
T = S,y des(Sn,T) = 0 and A(S,) — A(T) = 0, which satisfies (1). So
assume 7" is not a star and degrv = d (1 < d < n —2); Le.,, A(T) = d.
Then there exists a vertex w € V(T') which is not adjacent to v but is
adjacent to a vertex z in the neighbourhood of v. Now the edge slide
t, = (w,z,v) increases the degree of v by 1. Since by Lemma 2.2.6 the
edge slide operation preserves connectivity, we have that ¢,T is a tree, and
AGT) = A(T) + 1.

By the same argument if ¢;7 is not a star then A(t;T) < n — 2 and
there exists an edge slide t; such that A(t,t,T) = A(0T) +1 = A(T) + 2

and £9t,T is a tree.

‘Repeating the procedure ((n — 1) — d) times gives a tree t(,_;)_g...0.; T
where A(t(ioyy-g. .t T) =AT)+(n-1)—-d=d+(n-1)~d=n-1;

i.e., i(n—l)—d'-'tlT = Sni and
(T, S,) < (n—1) —d = A(S,) = AT) ~(2)

Therefore (1) and (2) imply that d.,(S,,T) = A(S,) — A(T). a

The following corollary to Theorem 2.2.14 appears in [Z3].

19



2.2.15 Corollary

The edge slide distance between a path P, and S, is n — 3.

Proof

In this case, A(S,) —A(P,) =n—1-2 = n-3, hence d,,(S,, Pn) =n—3.0

We recall the following terminology. If G € T',(p,¢q) and diam G = 4, a
pair of vertices u,v € V(G) is said to be a diametrical pair of vertices of G

if d(u,v) = d. Every u—v path of length d is called a diametrical u —v path.

The next five results appear in [BGMW1].

2.2.16 Lemma

The diameter of a graph G € T'.(p, q) is slowly changing with respect to the

edge slide operation.

Proof

Let G € T, (p,q) and let H = tG, where t = (z,y,2) is an edge slide. If
diam H > diam G, then there exists a diametrical pair of vertices {u,v} of
G such that each diametrical u — v path contains the edge zy and not the
vertex z. Hence a shortest u — v path is obtained in H from a diametrical

u — v path in G by replacing zy with zzy and so
diamH = diamG + 1.

If diam H < diam G, then for each diametrical pair of vertices {u,v} of

G there exists a diametrical u — v path P in G which contains the subpath
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zyz. A shortest u — v path is obtain in H by replacing the subpath zyz by
the edge zz in P and hence

diamH = diamG — 1.

Thus d.,(G, H) = 1 implies that |diamG — diamH| < 1 and the lemma
is proved. O

2.2.17 Theorem

For the path P, and a tree T on n vertices, des(Pp,T) = diamP, — diamT'.

Proof

Since P,,,T € I',(n,n—1) we have by Theorem 2.2.9, that P, can be trans-

formed into T via a sequence of edge slides (and vice versa).

From Lemma 2.2.16 the diameter of a graph is a slowly changing pa-
rameter with respect to the edge slide operation, therefore from Proposition

2.2.13 we have
des(Pn,T) > diamP, — diamT. ~ (1)

The case T = P, is trivial, so assume T is not a path; thus diam
T < n—2. Let P be a longest path in T i.e., of length £ = diamT'. Let
P = zgz,...7¢. Now since T is connected and not a path there exists a
vertex w ¢ V(P) and a vertex z;(1 < ¢ < £ — 1) such that wz; € E(T).
Perform the edge slide t; = (z;_;, z;, w) then the tree ;1" has a longest
path zg...T,_jwz;...z, of length £+ 1; ie., diam ¢,T = £+ 1. Similarly, if ¢t,T
is not a path, then there exists an edge slide t, which will give a tree t;¢;T

with diam t5¢,T = £+ 2. Repeat this process (n — 1) — £ times to obtain a
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tree tn_l_g...tgtlT with diam tn_l_g...tgtlfl‘ =0+ (TL - ].) — ¢ =n—1. Since

T has only n — 1 edges this implies that t(n_l)_g...tgtlT ~ P,, and
des(Pn, T) < (n — 1) — £ = diamP, — diamT ~ (2)
Together (1) and (2) yield
des(Pn,T) = diamP, — diamT. O

The following lemma will aid us in establishing the edge slide distance

between the n-cycle C, and any unicyclic graph U of order n.

2.2.18 Lemma

The girth g(G) of a connected graph G is slowly changing with respect to

the edge slide operation.

Proof

Let the graph G' be obtained from the graph G by an edge slide. By
symmetry, G may be obtained from G' by an edge slide. Without loss of
generality, let ¢(G) < ¢g(G'). Let C be a shortest cycle in G. Let e be the
edge that was removed from G to form G'. If e does not appear on the
cycle C, then C is a cycle in G', and thus ¢(G') < ¢(G). 1f e does appear
on C, then e = zy, say, was removed from G and a new edge € = zm,
say, was added to G to form G', where z,y,m € V(G), zm € E(G) and
ym € E(G). By removing e from C and replacing it with the path zmy
one obtains a closed trail in G'. Thus, in either case ¢(G') < g(G) + 1 and

hence |g(G') — ¢(G)| < 1, implying that the girth of a connected graph is a

slowly changing parameter. O
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2.2.19 Theorem

The edge slide distance between the n-cycle C,, and any unicyclic graph U
of order n is given by ¢(Cr) — g(U); i.e.,

des (U, Cy) = ¢(Cn) — g(U).

Proof

By Lemma 2.2.18 we observe immediately that d.,(U,C,) > ¢(C,) — g(U).
If U has girth n then U = C,, and the theorem holds trivially.

Assume then, that U does not have girth n. Let C' = z,z,...z,z, be the
unique cycle in U where ¢ < n — 1. Since U is connected there exists a
vertex y € U which is not on C but is adjacent to a vertex z; say, of C.
Form the graph U' by performing the edge slide t = (z,-1,z,,y) on U; i.e.,
U' = tU. Now U' is unicyclic such that ¢(U') = g(U) + 1. Repeating this
procedure ¢g(C,) — ¢g(U) times will result in a graph which is isomorphic to

Chn. Thus d.,(U,Cp) < ¢(C,) —¢(U) and hence
dcs(U1 Cn) = g(CH) - g(U) O
2.2.20 Theorem

For every nonnegative integer n, there exist graphs G, Gy € ['.(p, q) such
that des(Gl,Gg) =n.

Proof

If n = 0 then for any connected graph G,d(G,G) = 0so that G, = G, =
G.
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Assume then that n > 1 is given. Then we construct G, as follows:
Take two disjoint paths Pj, 2 = 7,23...29,42 and P,i2 = y1Ys...Yns2. Then
let Gy = PopyaUPpya+ YnyoTnye and let Gy = Py, y. Therefore Gy and G,

are connected and have order 3n + 4 and size 3n + 3.

Now let the edge slide t; be given by ti = (yni2,Zut2+i> Tnysti) for

1=0,1,...,n— 1. Then t,,_jt,—9...t1t0G1 = G, and hence
d“(Gl,Gz) S n. ~ (1)

By Lemma 2.2.16, the diameter of a graph is a slowly changing pa-
rameter with respect to edge slides. Now diam G; = 2n + 3 and diam

Gy = 3n + 3. Therefore, by Proposition 2.2.13, we have
des(G1, Ga) > |diamGy — diamGy| = |(3n +3) — (2n +3)| =n.  ~ (2)
Thus from (1) and (2) we have

des(GlyG2) =n. | d
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2.2.21 Figure

The graphs G, and G, of Theorem 2.2.20

2.2.22 Definition

Let S = {s1, S2,..-y5n} be a set of (nonisomorphic) graphs having the same
number of components which are labelled in such a way that the :th com-
ponent (1 < ¢ < n) of all graphs in § have the same size and order.
Then following Chartrand, Goddard, Henning, Lesniak, Swart and Wall
in [CGHLSW1]|, the edge siide distance graph D,(S) of S is defined to be

that graph with vertex set S such that two vertices s; and s; of D,(S) are
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adjacent if and only if d.,(s;,s;) = 1 for 1 <1,57 <n.

This definition leads naturally to the question: which graphs are edge
slide distance graphs? This question was answered in [CGHLSW1].

2.2.23 Theorem

Every graph is an edge slide distance graph.

Proof

Suppose we are given an arbitrary graph G with V(G) = {v1,vs,...,v,}. Let
H be the graph obtained from G by adding two new vertices each adjacent
only to vy, four new vertices each adjacent only to v, and, in general, 2¢ new
vertices each adjacent only to v; for ¢ = 1,2,...,p. Then for ¢+ = 1,2,...,p,
let H; be the graph obtained from H by adding another new vertex u;
adjacent only to v;. In H; we now have that the only vertices that are
not end-vertices are those originally in Gj i.e., {vy, vy, ...,v,}. Therefore H;
contains exactly p vertices that are adjacent to end-vertices of H;. In fact,

for H;, the sequence which displays the number of end-vertices adjacent to

the vertices vy, vy, ..., v, is respectively
2,4,...,21 - 2,21+ 1,20 + 2, ..., 2p.
For 7 > 1 the analogous sequence for H; is
2,4,y 20 — 2,226,204+ 2,...,25 — 2,25 + 1,27 + 2, ..., 2p

It is now easy to see by looking at these “end-vertex degree” sequences

that d.,(H;, H;) = 1 if and only if H; can be obtained from H; by the
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edge slide t = (u;,v;,v;) which exists if and only if v;v; € E(G). Thus
H;H; € E(D,{H,,H,,...,H,}) if and only if v;v; € E(G);

ie., G = D,({Hy,Hy,...,H,}) O

2.3 The Edge Rotation Distance d,,

2.3.1 Definition

Let G and H be two graphs having the same order and size. Then, following
Chartrand, Saba and Zou in [CSZ1|, we say that G can be transformed into
H by an edge rotation if G contains distinct vertices u,v and w such that
wv € E(G), vw € E(G) and H = G — uv + uw.

The edge rotation is similar to the edge slide in that the edge uv is
deleted and the edge uv is created, but the restriction vw € £(G) is dropped
in the definition of edge rotation. This is demonstrated by looking again
at Figures 2.2.3 and 2.2.4 in Section 2.2. In both Figures 2.2.3 and 2.2.4 it
is possible to transform the graph G into the graph H by an edge rotation,

whereas only in Figure 2.2.4 is it possible to transform graph G into graph

H by an edge slide.

2.3.2 Definition

For graphs G and H of the same order and same size, the edge rotation

distance d.,(G, H) between G and H is the smallest nonnegative integer n

for which there exists a sequence

G = Ho, Hy,Hy, ..., H, = H,
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such that H; can be transformed into H;y, ( = 0,1,...,n — 1) by an edge

rotation.

As for edge slides we define t = (u,v,w) to be an edge rotation which
deletes edge uv and creales uw when operating on some graph G, where
wv € E(G) and uw € E(G). We again denote the graph G — uv + uw by
tG. The inverse operation of the edge rotation t = (u,v,w) is denoted by

t~! = (u,w,v) which reverses the operation performed by t; i.e., it creates

uv and deletes uw; so t71tG = G, as required.

It is immediately obvious that any edge slide is an edge rotation and

therefore for G,If € I'.(p,q), the following proposition needs no further

justification.

2.3.3 Proposition

der (G, H) < d,o(G, H).

We also note that by dropping the restriction vw € E‘(G) as described
above, we are no longer restricted to studying distances between connected
graphs of the same order and size; hence we can dispense with restriction

of connectedness. We may therefore consider distances between all pairs of

graphs of the same order and the same size.
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2.3.4 Example
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2.3.5 Figure

Let t;, = (y,w,s), tz = (v,w,t) and t3 = (z,w,u) be edge rotations. Then
considering the graphs G and H of Figure 2.3.5, we have t3t,t,G = H.
The following example demonstrates that the edge rotation operation

does not, in general, preserve connectivity.
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2.3.6 Example
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2.3.7 Figure

In Figure 2.3.7 we see that tG = H where t is the edge rotation (w, z,u).
Since G is connected and H is not connected, this illustrates the fact that

edge rotations unlike edge slides do not in general preserve connectivity.

It was shown in [CSZ1| that for any two nonisomorphic graphs G and
H which have the same order and size it is always possible to transform
G into H via a ﬁnite‘sequence of edge rotations. The proof is essentially
similar to the proof of Theorem 2.2.9, however we shall present it here in a

slightly different way.
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2.3.8 Theorem

Let Gy, Gz € T'(p,q), where p > 4 and ¢ > 2; then there exists a sequence

t1,ta,...,tn of edge rotations such that t,...t2t;G1 = Ga.

Proof

The theorem holds trivially for G, = Gy; so suppose that Gy # G3. As-
sume, without loss of generality, that G and G, are defined on the same
vertex set; i.e., V(G;) = V(G,y) = {1,2,...,p}. Let Gy have edge set
E(G)) = {e1, €2, ..., €4}

Now, by Lemma 2.2.8 there exists a standard form H say, of G, and a
standard form H' say, of G3. We now show that there exists a sequence

ti,te,...,tn of edge rotations such that t,...t; 11 is g-minimal.

Assume that there exists no such sequence; then let k(k < ¢) be the
maximum positive integer for which there exists a sequence t9,t}, ..., t, such
that t!,...t4t} H is k-minimal. Let F =t/ ...t3t\H. Since F is not ¢g-minimal

there exists edges ab and cd such that ab € E(F) while ¢d € E(F) and
ab < cd.

Case 1) Suppose a = ¢. Then b < d. Let ¢t be the edge rotation given by
(a,d,b). Then tF is (k+1)-minimal which contradicts our assumption
and therefore there exists a sequence ¢y, s, ...,t,, of edge rotations such

that ¢,,...tot1 H is ¢g-minimal.

Case 2) Suppose a < c. If b =d or b = ¢ then as in Case 1 the edge rotations

t = (b,c,a) or t = (c,d,a) respectively, show in both cases that ¢ F is
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(k + 1)-minimal.

Assume then that b # d and b # ¢ so that a, b, c and d are four distinct
vertices. Now if bd € E(F) then the edge rotations t; = (d,¢,b) and
t, = (b,d,a) operating respectively on the graphs I and ¢, F, result
in tyt) F being (k + 1)-minimal.

If bd € E(F) then the edge rotations t; = (b,d,a) and t; = (d,c,b)

again result in ¢yt F' being k + l-minimal.

Thus, as in Case 1, we obtain a contradiction and thus there must
exist a sequence ty,t,,...,t,, of edge rotations such that t,,...tot; H is

g-minimal.

Similarly there exists a sequence uy, us,...,u, of edge rotations such that
Ug...uqu H' is g¢-minimal which, since any two ¢-minimal graphs are isomor-

phic yields
u[luz_l...u[ltm...trztlf] = H'. Since H = G, and H' = G,,
we have that there exists a sequence t,, {5, ...,t, of edge rotations such that

te...t, Gy = Gy, O

The edge rotation distance imposes a metric on the set S, , of all iso-
morphism classes of graphs, which have p vertices and ¢ edges, as follows: If
01,02 € Spq, then obviously the distance d,, (G}, G,) is fixed for all G| € o
and all G, € 0, and is also denoted by d,,(0},0;).

32



2.3.9 Theorem

For any integers p > 1,q > 0, the edge rotation distance is a metric on Sy ;.

Proof
Let 0; € Spq and let G; € o; for 1 =1,2,3.

i) By definition, d.,(01,03) > 0 and d.,(01,02) = Oif and only if d.,(G1, G3) =

0, hence if and only if G; = G, and 0; = 0.

ii) If d,,(01,02) = n, then d,.,(G;,G2) = n and by definition there ex-
ists a sequence ty,tq,...,t, of edge rotations such that t,...tot,G| =
G,. Consequently t;'t;'...t;'Gy = G| and so d,,(G,,G,) < n; ie.,
der(02,01) < d.r(01,03). A similar argument shows that d,, (0, 0,) <

dcr(azaol), hence dcr(ol>02) = dcr(OZ)OI)-

iii) Let d. (0y,02) = n and d,,(02,03) = m, then d,,(G;,G;) = n and
d. (G2, G3) = m and by definition there exist sequences of edge ro-
tations ty,ts,...,t, and sy, Ss,...,8, such that t,...t3¢;G; = G, and

Sm.-.$281Gy = Gj; hence sp...8381tn... 1521 Gy = G3. Therefore d,, (G1,G3) <

n + m and so
der(oha.'i) S der(01)02) + dcr(02a03)' O

The following interesting observation concerning complements of graphs

was made in [CSZ1].
2.3.10 Theorem
FOI° graphs GlaGZ € I‘(p) Q)J dcr(GlaG2) - der(GI)GZ)=
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Proof

If d,,(G1,G;) = 0, then G; = G,, and thus G; = G, which implies
d"(él,ég) = 0, which satislies the statement of the theorem. Assume
then that d.,(G1,G2) = n > 1. This implies that there exists a sequence of
graphs

Gy = Ho, Hy,..., H, = Gy

where H; can be transformed into H;,, by an edge rotationforz =0,1,...,n—
1. Let Hyy; = H; —u;v; +u;w;. Then note that H;;, = H; — uyw; +u;v;; Le.,
H; can be transformed into I1;;; by an edge rotation. Thus the sequence

of graphs

1%

G_'l HO)HD""HHFZVGZ

has the property that d,,(H;, H;;,) = 1 for ¢ = 0,1,...,n — 1. This implies
that

der(Gl)G2) < dcr(GhGZ) = n. ~ (1)

However, by (1)

which implies

- Thus (1) and (2) together imply d.,(G1,G3) = d..(Gy, Gy). O

The following example demonstrates that there is no similar result to

Theorem 2.3.10 for edge slides.
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2.3.11 Example
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2.3.12 Figure

Referring to the graphs G,G,H and H of Figure 2.3.12, the edge slide

t = (u,w,z) yields
tG = H.
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However G has one component whereas H has two components. Since,
by Lemma 2.2.6, the edge slide operation preserves connectivity, it is not
even possible to transform G into II; i.e., d.,(G, H) = co. Thus, in general,

d..(G,H) # d.,(G, H).

Both the edge slide and edge rotation operations may be considered to
be deformations which translate a graph G into a graph G' = G — ¢; + e,
where e; € E(G) and e, € E(G). The edge move distance which will be
defined in Chapter 3 also falls into this category. Definition 2.2.11 is gen-
eralized in [BGMW1] to include all such operations.

2.3.13 Definition

We say that a parameter 9 is slowly changing with respect to a particular
deformation if and only if for all graphs G and deformations G' of G it
holds that |¢(G") — %(G)| < 1.

We now formalize the technique used in the proofs of Theorems 2.2.14,
2.2.17 and 2.2.19, in the form of a lemma. This will simplify the work in

determining some specific formulae for distances. The following two results

are from [BGMW1].

2.3.14 Lemma

Let G be a collection of graphs and let ' € § be a designated element.
Further, let 4 be an integer valued graphical parameter and consider a

particular deformation. Then for that deformation, with distance between
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graphs G and H denoted by 6(G, H), it holds that:
§(F,G) = |n(G) — u(F)|, forall G € g,
if the following three properties are satisfied:

P1 The parameter u is slowly changing with respect to that particular

deformation;
P2 F is the only element of § with that value of y; and

P3 given any G € § with u(G) # p(F) there exists a deformation (of the
required type) yielding G' € § such that [u(G') — u(F)] < lu(G) —
w(F)|.

Proof

Property P1 establishes that |u(G) — u(F)| is a lower bound, while prop-
erties P2 and P3 together show that the value |u(G) — u(F)| is an upper
bound for the distance. O

2.3.15 Lemma

The maximum degree A(G) of a graph G is slowly changing with respect

to the edge rotation operation.

Proof

Any edge rotation t = (u,v,w) lowers the degree of the vertex v € V (QG)
by 1, and increases the degree of the vertex w € V(G) by one, when
operating on some graph G with uv € E(G) and uw € E(G). Hence
| A (tG) — A(G)] < 1, and the maximum degree A(G) of a graph G is
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slowly changing with respect to edge rotations. O

The following result appears in [CSZ1].

2.3.16 Theorem

For every nonnegative integer n, there exist graphs G; and G; such that

de,(C?l,(?z) =n.

Proof
If n = 0 then for every graph G,d,,(G,G) = 0; so let G; = Gy = G in this

case.

If n is a given positive integer let Gy = (n+1)K; and G, = K ,11UnKj,
so that G} and G are graphs of order 2n + 2 and size n + 1. Let the edge
set of G| be given by E(G;) = {uovo, u1v1, ..., Unln}.
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2.3.17 Figure

The graphs G, and G, of Theorem 2.3.16.

~

For 1 = 1,2,...,n define the edge rotation t; = (u;,v;,v0); then ¢t,...t;Gy =

G, which implies that
’ der(Glx GZ) S n. ~ (1)

By Lemma 2.3.15, the maximum degree A(G) of a graph G is slowly
changing with respect to edge rotations. Now A(G,) = n+1 while A(G,) =

1, and hence a simple generalization of Proposition 2.2.13 to include edge

rotations yields
d.r(G1,Ga) 2| A (GZ) — A(Gy)| = n. ~ (2)

Therefore (1) and (2) together imply that 4.,.(G,,G,) = n. a
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In order to present upper and lower bounds on the edge rotation distance
between graphs (having the same order and size), we introduce the concept

of a greatest common subgraph which first appeared in [CSZ1].

2.3.18 Definition

For nonempty graphs G, and G, a greatest common subgraph of G| and G,
is defined as any graph G of maximum size without isolated vertices, that

is a subgraph of both G; and G,.

While every pair of graphs G; and G; of nonempty graphs has a greatest
common subgraph G say, this graph G need not be unique. For example the
graphs G; and G, shown in Figure 2.3.19 below, have three greatest com-

mon subgraphs G, G' and G". These graphs are all pairwise nonisomorphic

but all have the same maximum size, 3.
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2.3.19 Figure

Utilising this concept we now prove the following result from [CSZ1| which

sets upper and lower bounds for the edge rotation distance.
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2.3.20 Theorem

Let G;,G; € T'(p,q),q > 1 and let G be a greatest common subgraph of G,

and G,, where G has size s say. Then
qg— S S der(Gl’G2) S z(q - S).

Proof

First we prove d,,(G1,G3) > ¢ — s. Let G, and G be defined on the same
vertex set, so that the subgraphs G' and G" of Gy and G} respectively,
which are isomorphic to G, are identically labelled; i.e., V(G1) = V(Gq) =
(01,02, ey 0} a0d V(G') = V(G") = {vi,, 0y vi,} with vi,v;, € E(G) if and
only if v;;v;, € E(G").

Now E(G,) — E(G,) contains ¢ — s edges; similarly E(G;) — E(G,)
contains ¢ — s edges. Therefore in the transformation of Gy into G, via
edge rotations at least one edge rotation will be needed for each of the g—s
steps in replacing an edge of E(G,) — E(Gy) by an edge of E(G,) — E(G,).
Therefore

der(G1,G2) > q = s. ~ (1)

For the upper bound d.,(Gy,G3) < 2(¢ — s) we note that if s = q then
G, = G; and d.,(G1,G;) = 0. Thus we assume that 1 < s < ¢q. Let G,
and G3 be labelled as before. Now, since Gy # G, the graph G, contains
an edge v;v; ¢ E(G2) and G contains an edge veve ¢ L(Gy). We now
show that the step of transforming G, into G, — v;v; + vyv, = H; requires
at most two edge rotations, and since there are ¢ — s such transformations

necessary, the result will follow immediately.
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Case 1) Suppose that {v;,v;} N {vg,ve} # 0; say v; = vg. Then Gy can be
transformed into H; = G — v;v; + v;v, by a single edge rotation t =

(vj,vi,v¢) and d(Gy, Hy) = 1. Hence we may assume that {vi,v;} N

{’Uk,'l)g} — @

Case 2) Suppose that at least one of v; and v; is nonadjacent in G to at least
one of v and ve, say vivx € E(G,). Then G, can be transformed into
H, by the edge rotations t; = (vi,v;,vk) and t2 = (vi,vi,ve) where

t2t1G1 = Hl. Thus der(Gl)Hl) S 2.

Assume then that each of v; and v; is adjacent to both v, and ve. Then
G, can be transformed into I, by the edge rotation t| = (vi,vs,ve)

and ty = (v;,v;,v), where
tyt| G = Hy.
Therefore d,,(Gy, ;) < 2.

Thus in both cases G, can be transformed into H; and d.,(Gy, H;) < 2.
Now H,; and G35 have s + 1 edges in common. Proceeding as above, we
construct graph Hs such that d,,(H,, H,) < 2; hence d., (G, Hz) < 4 where
H; and G; have s+2 edges in common. Continuing in this way, we construct

a graph H,_, = G, where d,., (G, H,-;) < 2(q — s). Hence

d.,(G1,G2) < 2(q — s), ~ (2)

and (1) and (2) together yield

q_SSder(Gl,GQ) §2(Q‘3) O
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To show that both the upper and lower bounds presented by Theorem
2.3.20 cannot, in general, be improved, we consider two examples from
[CSZ1],in which equality is attained for both the upper and lower bounds

respectively.

2.3.21 Example

For n > 1 define Gy = Ky, U K4n2_4, and Gy = (2n? — n) K,.
Both G, and G4 have order 4n% — 2n and size ¢ = 2n* —n. Now G, and G,

have a unique greatest common subgraph namely G = nK,, which has size

s = n. Therefore
2(q —s) = 2[(2n* —n) —n| = 4n® —4n.

Now G} is 1-regular, while G, contains 4n? —4n isolated vertices. There-

fore d..(Gy,G3) > 4n? — 4n. By Theorem 2.3.20, we also have
der(G1,G2) < 2(q — s) = 4n* — 4n,

which implies that d..(Gy,G2) = 4n* —4n = 2(q — 3).
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2.3.22 Example

Let G; = S, and G = Py, then G, and G, have order 4 and size ¢ = 3.
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2.3.23 Figure

The graphs G, and G, of Example 2.3.22

Now a greatest common subgraph of G, and G; is G = P; which has size
2. In this case ¢ —s = 3 -2 = 1. Now the edge rotation t = (y,w,z)
transforms G, into Gy; i.e., tGy = Gy; hence d,,(G,G,) < 1=q —s.

However from Theorem 2.3.20 we have d,,(Gy,G;) > ¢ — s and so in
this case

d:r(GhGZ) =q4—s5= 1.

Examples 2.3.21 and 2.3.22 show that the bounds presented in Theorem
2.3.20 are sharp.
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We now return to the concept of slowly changing parameters to establish

the edge rotation distance between certain graphs, following [BGMW1].

2.3.24 Theorem

The edge rotation distance between the star S,, and any tree T on n vertices

is equal to the difference of their maximum degrees; i.e.,
der (S, T) = A(S,) — A(T).

Proof

As every edge slide is an edge rotation, it follows from Theorem 2.2.14 that
der(Sny T) < dey(Sn, T) = A(S,) — A(T). Since the maximum degree of
a graph is a slowly changing parameter with respect to the edge rotation

operation, d,,(S,) > A(S,) — A(T); hence d,,(S,.,T) = A(S,) — A(T). O

In Theorem 2.2.17 we saw that d.(P,,T) = diamP, — diam7. How-
ever it is not true in general for a path P, and a tree 7" on n vertices that
der (P, T) = diam P, —diamT. This is demonstrated in the following exam-
ple which also shows that the diameter of a graph is not slowly changing

with respect to the edge rotation operation.
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2.3.25 Example

2.3.26 Figure

Now diamG = 10 while diam P,y = 13, hence |diamG — diamPy4| = 3.
Define the edge rotation ¢t = (vs, v10,v7), then tG = Py4. That is,

d.(G, Py =1 # 3 = diamPy, — diamG.
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Thus in order to find a general formula for d,.(Pn,T) we need to intro-
duce a parameter which is slowly changing with respect to the edge rotation

operation.

2.3.27 Definition

Let G be any graph then we define end(G) to be the cardinality of the
set {v € V(G) : deggv = 1} and end'(G) to be the cardinality of the set
{veV(G):deggv < 1};

ie, end(G) = [{veV(G):deggv =1}, and
end(G) = |{veV(G):deggv <1}

We now show that the parameter end'(G) is slowly changing with respect

to edge rotations.

2.3.28 Lemma

For any graph G the parameter end' (G) is slowly changing with respect to

the edge rotation operation.

Proof

Consider any edge rotation t = (u,v,w) on G; then wv € E(G) and
uw € E(G). Thus deg,; v = degg v—1, deg,c w = degg w+1, and deg,; z =
degg 2 for all z € V(G) — {v,w}. It follows that |end'(G) — end'(tG)| < 2
with equality if and only if either v,w € end(G) and v,w ¢ end'(tG),
or v,w & end'(G) and v,w € end'(tG). However if v € end'(G), then
v € end'(tG) while if w ¢ end'(tG), then w ¢ end'(tG). We conclude that

lend'(G) — end'(tG)| < 1. That is to say, end'(G) is a slowly changing pa-
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rameter with respect to edge rotations. O

With the aid of Lemma 2.3.28 we prove the following result.

2.3.29 Theorem

For all trees T of order n, d.,(P,,T) = end(T) — end(F,).

Proof

If n = 1 the result is clearly true; therefore we assume that n > 2. We
note first that for nontrivial trees T the parameters end'(T) and end(T)
coincide. Thus we reler to end(7T") where, in fact end'(7T') is the slowly
changing parameter (from Lemma 2.3.28). Further, paths are the only
trees with exactly two end-vertices; thus properties P1 and P2 of Lemma
2.3.14 have been verified. Property P3 of Lemma 2.3.14 will follow when
we show that for any tree T with more than two end-vertices there exists a
tree T" formed by a single edge rotation which has one less end-vertex than
T.

Let = be an end-vertex of T', and let y be the vertex of T, of degree
at least three, nearest to z. Let z be any neighbour of y not on the z — y
path in T. Then define the edge rotation t = (z,y,z). Let T' = tT.
Since T" is connected it is a tree, and as z is no longer an end-vertex,
end(T") = end(T) — 1. Thus property P3 of Lemma 2.3.14 is verified and

hence

der(Pn, T) = end(T) — end(P,). O
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2.3.30 Definition

Let S be a set of (nbnisomorphic) graphs of the same order and size. Then
following [CGHLSW1|, the edge rotation distance graph D..(S) of § is de-
fined to be that graph with vertex set S such that two vertices G and H of
D,,(S) are adjacent if and only if d..(G, H) = 1.

The question of which graphs are edge rotation distance graphs arises
naturally from this definition. This question was discussed in [CGHLSW1]
where it was conjectured that all graphs are edge rotation distance graphs;
however this problem remains unsolved. Partial results were however ob-
tained and we now discuss these. Apart {rom Example 2.3.37, all the results

in the remainder of this section first appeared in [CGHLSW1].

2.3.31 Lemma

K, is an edge rotation distance graph.

Proof

Let G be any graph of order p with vertex set V(G) = {v,, vy, ., Uy} and
let {H,, Hy,..., H,} be the set of graphs described in the proof of Theorem
2.2.23. Then for 1 <14 # j < p the edge rotation t = (u;,v;,v;) transforms
the graph H; into Hj; i.e.,
tH; = H,.
Therefore every pair of vertices in D, ({11, H,,...,H,}) are adjacent;

i.e., Der({Hle...Hp}) = Kp. |
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2.3.32 Lemma

For n > 3, C, is an edge rotation distance graph.

Proof

Let C = z1z3...29,422 be a (2n +2)-cycle and for v = 1,2,...,nlet F; = C+
Z1Tiy2. Fori1=1,2,...,n—1, define H; = F;U F;;, and define H,, = F,U F}.
Then for ¢ = 1,2,...,n — 1 the edge rotation ¢t = (z1, 42, Ti+4) transforms

the graph H; into H;;,; i.e.,

tH; = H;y,.
Therefore we have that
der(HiyHiyy) =1 foralli =1,2,...,n— 1. ~ (1)
Now the edge rotation t' = (z,,z3,z,42) transforms H, into H,; i.e.,
t\H, = H,. Therefore
de,-(Hl,Hn) = 1. ~ (2)

Now for any other pair Hj, Hy where 1 < j < k < n, (,k) # (1,n) and
k —7 # 1 we have that
d, (Hj, Hy) > 2. ~ (3)

Therefore (1), (2) and (3) together imply that
Cn =D, ({H,H,,...,H,}). O

2.3.33 Lemma

For n > 1, P, is an edge rotation distance graph.
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Proof

Let C = 7,%3...Zan46T1 be a (2n + 4)-cycle and for ¢ = 1,2,...,n + 1 define
F; = C + z1%iys. For ¢ = 1,2,...,n, define H; = I; U Fiy. Then, as in

Lemma 2.3.32, it is easily shown that
Pn;Der({HlaH27"'aHn})= O

The following two lemmas help to establish that a number of large

classes of graphs are edge rotation distance graphs.

2.3.34 Lemma

Let G, II € I'(p,q). Thend,, (G, H) = Lif and only il d,(G+ Ky, H + K;) =
1.

Proof

If d.,(G,H) = 1 then there exists an edge rotation t = (u,v,w) such
that tG = H (where u,v,w € V(G),uv € E(G) and vw € E(G)); then
G+ K, # H+ K, and t(G + K,;) = H + K,; hence d,,(G,H) = 1 implies
that d,, (G + K1, H + K,) = 1.

Now suppose that d.. (G + K, H + K;) = 1.

Case 1) Assume that there exist vertices u,v,w,z € V(G + K;) such that

i) deggyk, v =p;
ii) vyw,z € V(G + K;) — {u}, vw € E(G) and vz ¢ E(G); and

i) G+ K; + vz —vw = H + K.
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Case 2)

Then necessarily, G + vz —vw = Il and d,,(G,H) = 1.

Assume Case 1 does not occur. Now we know that there exists a
vertex v € V(G + K;) such that degg, g, v = p and u & V(G).
Then by assumption there exist nonadjacent vertices v and w of G
such that G + K; — uwv +vw = H + K,;. Now assume there exists
another vertex z say such that degg,x 2 = p. Then 2 € V(G) and
G+ K, —z2v+vw = H+ K, as in Case 1, a contradiction. Therefore

G + K, has only one vertex, namely u, of degree p.

Since u is the only vertex of degree p in G + K, it follows that w
is the only vertex of degree p in G + K; —uv + vw = H + K;.
This implies that (G + K| — vv + vw) — w = II. Now in G + K|,
degg,x, v = p and degg, g, w = p — 1, where vw € E(G). On the
other hand in G + K, — uv + vw we have degg, g, yy4vp w = p and
degay k) —uvtvw ¥ = p— 1 where uv & E(G + K, — uv + vw). It follows
that

(G+ K; —uwv+vw) —w=G.

This however implies that G = H which contradicts the fact that
de(G + Ki,H + K,) = 1. Therefore Case 2 cannot occur which
completes the proof. O

2.3.35 Lemma

For any edge rotation distance graph G and any positive integer n there

exists a set S, of n-connected graphs such that G = D..(S,).
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Proof

Let 7 be a set of graphs such that G =2 D, (7). Nowlet §, = {II + K, : II €
7}. Since for A,B € 7, d.,(A+ K1, B+ K;) = 1 if and only if .. (4, B) = 1
by Lemma 2.3.34, we have that

G =D, ().

Similarly, letting S; = {H + K; : H € 7} and noting that H + K; =
(H + K;-;) + K,, we find by repeated application of Lemma 2.3.34 that
dew(A+ K;, B+ K;) = 1if and only if do, (A + K;—y, B+ Ki-y) =1 (1 =
2,3,..,n) for A,B € 7. Therefore G = D,,(S§;) for 1 <1 < n.

Taking ¢ = n we now have that G = D,,(S,), where S, = {H + K, :
H € 7}. Since for any graph G, G + K, is n-connected, it follows that S,

is a set of n-connected graphs. O

2.3.36 Lemma

Let Go, Gy, Ho, H; be 2-connected graphs of the same order and the same
size. Then d.,(Go U Gy, Ho U H,) = 1 if and only if G; = H; for some
t,7 € {0,1} and d,,(G,-i, Hy—;) = 1.

Proof

Suppose that, for some ¢,5 € {0,1}, G; = H, and that d,,(G,-;, H,_;) = 1,
where ¢ = (u,v,w) is an edge rotation such that tG,_; = II,_j; then

t(GoUG,) = HoU H,.

Conversely, suppose that d,, (G UGy, Hy U H))=1and let t = (u,v,w)
be an edge rotation such that t(G, U G1) = Hy U H,, where without loss
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of generality, we assume uv € IJ(Gy) and vw ¢ I/(Go U G). Since Gy is
2-connected, Go — uv is connected; so, if w € V(G,) then t(Go U Gy) is
connected. However, t(Gy U G}) is isomorphic to o U I, which is discon-
nected. So w € V(Gp) and t(GoU G,) = tGoU Gy = Ly U I, from which
we obtain tGy = H; for some j € {0,1} and G; = H,_,. O

The following example shows that in the above lemma, we may not

dispense with the condition that Go, G, Hy, H, be 2-connected.

2.3.37 Example

Let Go 2 Gy, = Py, Hy = P, and II; = Ps, as in Figure 2.3.38, then
der (GoUGH, HyUH,) = 1 where t(GoUG,) = HyUH, and t = (u,v,w). Now
G; # H; for any 7,5 € {0,1} and hence the condition that Gy, Gy, Hy, H,

be 2-connected, is necessary for Lemma 2.3.36 to hold.
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2.3.38 Figure

The graphs Go, Gy, Hy and H; of Example 2.3.37.

2.3.39 Theorem

Every induced subgraph of an edge rotation distance graph is an edge

rotation distance graph.

Proof

Let G be an edge rotation distance graph of order n say, with vertex
set V(G) = {vi,v2,..-,Un}. Then by definition there exists a set § =
{S1, S2, ..., S} of graphs with the same order and size such that

G = D..({51, S1, -, Su}).
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We may assume without loss of generality that the graphs S,-, for 1 =
1,2,...,n, are labelled in such a way that vjve € E(G) if and only if
der(Sj, Sk) = 1; i.e., the vertex S in D,.({S1,S2, ..., Sn}) corresponds to

the vertex v; in G.

Let H = (v;,,Viy, - Vi,), where 1 < £ < n, be a proper subset of V(G).
Then for v,,vi, € V((H)),vi,v;, € E((H)) if and only if v;v;, € E(G) if
and only if d..(S;;,Si,)=1.

Therefore we have that (H) = D,,(S;,, Si;, ..., Si,) where 1 <£<n. O

Using Lemmas 2.3.35 and 2.3.36 we are able to prove the next result

which concerns the union and cartesian product of two edge rotation dis-

tance graphs.

2.3.40 Theorem
Let G and H be edge rotation distance graphs. Then
a) GU H is an edge rotation distance graph;

b) G x H is an edge rotation distance graph; and

c) for every pair {v,u} where v € V(G) and w € V(H), the graph
obtained from G and If by identifying v and w is an edge rotation
distance graph. |
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Proof

a)

By Lemma 2.3.35 there exist sets § and 7 of 2-connected graphs such
that D, (S) = G and D, (r) = H. We ensure that the order of the
graphs in S is different from the order of the graphs in 7 to ensure
that if A and B are graphs in S U7 with d,,(A, B) = 1, then A and B
are either both in S or both in 7. This is done by choosing a suitable
n when applying Lemma 2.3.35 to establish the 2-connected sets of
graphs § and 7. It then follows that

GUH =D, (Sur)

The graph described in c) in the statement of the theorem is an
induced subgraph of G x H, thus by Theorem 2.3.39, to complete
the proof it is sufficient to establish b). By Lemma 2.3.35, we may
assume as in c¢), that there exist disjoint sets § and 7 of 2-connected
graphs for which D, (§) = G and D, (1) = H. Let § = {G,: v €
V(G)} with de(Gu, Gy) = 1 if and only if vw € E(G). Similarly let
7={H,:v€V(H)} with d.,(H,, H,) = 1 if and only if vw € E(H).

By Lemma 2.3.36 for u,u’ € V(G) and v,v' € V(H), we have that
der(Gyu U H,, Gy U Hy) = 1 if and only if either G, = Gy and
der(Hy, Hy) = 1or H, = Hyrand d,, (Gy, Guw) = 1. Therefore der (GuU
H,,GuwUH,) = 1if and only if either v = v’ and vv" € E(H)orv=1'
and uu' € E(G). Now (u,v)(u',v') € E(G x H) if and only if either
v =u"and vv' € E(H) or v = v' and uu' € E(G). Therefore it fol-
lows that d.,(G, U H,,Gy U H,) = 1if and only if {(u,v), (u',v")} €
E(G x H). Hence Gx H = D,,({G,UH, : ueV(G),ve V(H)}).0

There are two immediate consequences of Theorem 2.3.40.
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2.3.41 Corollary

If the blocks of a connected graph G are all edge rotation distance graphs,

then G is an edge rotation distance graph.

Proof

We shall proceed by induction on the number of blocks b, of G. If b =1
the statement is obviously valid. Suppose that the statement is true for
all graphs with fewer than b blocks and let G be a connected graph with
b blocks, all of which are edge rotation distance graphs. Let B be an end
block of G containing the cut vertex v of G and let H = G — (V(B) — {v}).
Then H has b — 1 blocks, all of which are edge rotation distance graphs.
Now since B is an edge rotation graphs, the fact that G is an edge rotation

distance graph now follows from part ¢) of Theorem 2.3.40. a

2.3.42 Corollary
Every tree is an edge rotation distance graph.
Proof

Every block of a tree T' is isomorphic to K, which by Lemma 2.3.31 is an

edge rotation distance graph. That 7 is an edge rotation distance graph
now follows directly from Corollary 2.3.41. : O

2.3.43 Theorem

Every line graph is an edge rotation distance graph.
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Proof

Let G be any given line graph. Therefore by definition there exists a graph
H with V(H) = {v1,v,...,v,} and V(G) = E(H) = {e1,ez,...,¢;} where
G = L(H). Let {F\, F;,...,F,} be a set of 2-connected graphs with the
property that d, (F;,F;) = 1 for 1 <1 < j < p. That such a set exists,
follows from Lemmas 2.3.31 and 2.3.35.

For k = 1,2,...,q define the graph G to be F; U Fj, where e, = v;v;.
Let § = {G1, Gy, ...,G,}. Observe that by Lemma 2.3.36, d,,(G;,G;) =1
if and only if G; and G; have exactly one common component. Thus,
d.r(Gi,G;) = 1 if and only if there exist three distinct integers s,t and u
such that Gy = F, U I} and G; = I, U I, say; i.e., e; = v,u; and e; = vyu,,.
It follows that d..(G;,G,)=1 if and only if e;e; € E(G) and therefore

G=D,(S). o
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2.3.44 Example

e,

P

2.3.45 Figure

Let G and H be as in Figure 2.3.45. Let G' be any graph of order 6 with
V(G') = {u1,uz2,...,u¢}. Now add two new vertices adjacent to uy, four
new vertices adjacent to u; and, in general, 2: new vertices adjacent to v;,
for 1 = 1,2,...,6; call this graph F. Now for t = 1,2,...,6 let F; denote the
graph obtained from F by adding another new vertex adjacent only to u;.

Then, as this is a special case of the construction in the proofs of Theorem

2.3.23 and Lemma 2.3.31, we have that
de(Fi, F}) =1for1 <1< 5 <6.

For k = 1,2,...,6 define Gy = F; U F; if e = v;v;. Therefore we have

.G1=F1UF2, G2=F2UF3, G3=F2UF4, G4=F3UF4, 65=F3UF5
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and Gg = Fy U F;. Let § = {G,,G3,...,Gs}. Then
G = D, (S).

We note that the construction in the proof of Lemma 2.3.32 is a special

case of the construction of § in Theorem 2.3.43.

In the proofs of Lemmas 2.3.32, 2.3.33 and Theorems 2.3.40 and 2.3.43,
we used the fact that if Gy, Gy, Hy and H, are 2-connected graphs of the
same order and the same size, then d,,(Go UG, HoU H;) = 1 if and only if
for some 7,7 € {0,1}, Gy-; = H,-, and d,,(G;, H;) = 1 as stated in Lemma

2.3.36. We now extend this concept to include n components.

2.3.46 Remark

Let G1,Gy,...,Gn, Hy, Hy, ..., H, be 2-connected graph of the same order
and the same size, then d..(Gi UG, U...UG,, HHUH, U...UH,) = 1if

and only if for some ¢,7 € {1,2,...,n} we have
G1UG2U..Gio1 U Gipy U UGy = HyUH, U ... UG,y U Hypy U ... U H,y.,

and de,-(G,',HJ') = 1.

2.3.47 Definition

For k and m fixed positive integers, let 7 be a set of m 2-connected graphs
which are pairwise at an edge rotation distance of one from each other.
Define GF (7) to be the set of all graphs with k£ components, each of which

is a (not necessarily distinct) element of 7. It is obvious that if 7' is another
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distinct set of m 2-connected graphs, pairwise at an edge rotation distance

of one, then

65(F) = 165(F)l,  and
D (65(7)) = Dur(G4(F7).

Thus for convenience we shall write G¥ and D, (gF) without reference

to the set *.

2.3.48 Note
i) From Lemma 2.3.31, we have that K, = D,,(§,)-

ii) From Lemmas 2.3.32 and 2.3.33, P, < C, < D..(G}).

iii) From the proof of Theorem 2.3.43, we have that if H is a graph of
order p, then L(H) < D.(§}).

Note 2.3.48 suggests that by considering D,,(G*) for k > 2 it may be
possible to establish many more graphs as edge rotation distance graphs,
that is, show that G < D, (GF) for some k and m for many graphs G.

This approach, however, was found by the authors of [CGHLSW1]| to

be limited, as the following result shows.

2.3.49 Theorem

Let G = D,,(GF) and let z,y € V(G). If dg(z,y) = 2, then (Ng(z)NNg(y))

is isomorphic to one of I, I{; or C,.
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Proof

Let 7 be a set of m 2-connected graphs pairwise at a distance 1; while 7 =

{F\, F,...,Fy.} say. Then any graph in Gk (¥) has the form n; Fy UngFy U

m
... Un, F,,, where ny,n,,...,n, are nonncgative integers, and Y n; = k.
i=1

Thus there is a one-to-one correspondence between the vertices of G' and

m
the set of m-tuples (ny,n, ...,nm) of nonnegative integers with 3- n; = k.
i=1
Suppose that z,y € V(G) where z corresponds to (ni,n2,...,m), ¥
corresponds to (ty,ts,...,tn) and dg(z,y) = 2; then these two m-tuples
differ in either two, three or four entries. We may assume, without loss of

generality, that one of the following situations occurs:
Case 1) z: (n1,ng,n3, Ny, ..y m) and y 1 (ng — 2,12 + 2,13, ny, ey ) s
Case 2) z:(n;,n2,n3, 4y, ) and y: (ng — 2,m9 + 1,m5 + 1,04y 00y )
Case 3) z:(ny,ng,n3, R4y, ) and y i (ni—1,ne— 1 na+1,n4+1,715,...,7m)

Case 4) z: (n1,n3,n3, N4y, N) and y: (ny — 1,0y — 1,ng + 2,14, 000, )
In all cases z and y are nonadjacent. In Case 1), z and y would both
be adjacent in G to the unique vertex z corresponding to the m-tuple
(n1 — 1,ny + 1,n3,n4,...,n,,). In Case 2), z and y are adjacent in G to
exactly the two vertices corresponding to (n; — 1,n3 +1,n3,n4,...,n,) and
(ny — 1,n9,n3 + 1,n4,...,n). In Case 3) z and y are adjacent in G to
the vertices corresponding to (n; — 1,ny,n3,n4 + 1,n5,...,n,,), (ny,ng —
L,ng + 1,n4,...,0p), (ng — 1,ny — 1,n3,n4,...,n,) and (ny,ng,ns + 1,n4 +
1,n5,...,n,). In Case 4) z and y are adjacent to the vertices in G corre-

sponding to (ny,ny — 1,13+ 1,n4,...,n,) and (n; — 1,ng,n3 + 1,14, ..., ).
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Therefore in Case 1), (Ng(z) N Ng(y)) = K. In Cases 2) and 4), (Ng(z)N
Ng(y)) = K; and in Case 3), (Ng(z) N Ng(y)) = Cs. O

2.3.50 Corollary
If G < D, (Gk) and z,y € V(G) where d(z,y) = 2,,then
<NG(1C) M NG(g)) < C4.

We close this chapter with the following:

2.3.51 Conjecture

All graphs are edge rotation distance graphs.
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Chapter 3

Metrics Involving Greatest

Common Subgraphs

3.1 Introduction

In this chapter we shall deal with distances between. graphs, where the
measure of distance, in each case, may be determined by a method involving

a greatest common subgraph of some type.

3.2 The Edge Move Distance d,,
3.2.1 Definitions

Let G and H be graphs of the same order and size. Then following
[BGMW1]| we say that G can be transformed into H by an edge move

if G contains four vertices u,v,w and z, at least three of which are distinct,

such that uvv € E(G), wz € L(G) and H = G — uv + wz.
For graphs G and H of the same order and size, the edge move distance

dem (G, H) between G and H is the smallest nonnegative integer n for which
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there exists a sequence

G = H0>H11H2)“')Hn

1R

H

such that H; can be transformed into Hi;;( = 0,1,...,n — 1) by an edge
move.

It is immediately clear that the edge slide and edge rotation operations
are merely special cases of the edge move operation, that is, every edge slide
and every edge rotation is also an edge move. It also follows immediately

that for graphs G ands H of the same order and size
den(G,H) < d (G, H) < d,(G, H).

We denote an edge move on a graph G by t = (u,v,w,z) where tG =
G —uv+wz. We denote the inverse of the edge move t by t7! = (w, z,u,v).
That ¢! is also an edge move is obvious.

The edge move distance imposes a metric on the set S, , of all isomor-
phism classes of graphs which have p vertices and ¢ edges, as follows: If
01,03 € Sy, then obviously the distance d,,, (G, G;) is fixed for all G; € g,
and all G; € 0, and is also denoted by d,,(01,09).

3.2.2 Theorem

For any integers p > 1,q > 0, the edge move distance is a metric on Sp.q-
Proof

Let 0; € S,4 and let G; € 0; for+ = 1,2, 3.

i) By definition, dem(01,02) > 0 and d,,(0,,0;) = 0 if and only if
dem(G1,G2) = 0, hence if and only if G} = G, and 0, = 0.
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ii) If de(01,02) = n, then, d,,, (G, G3) = n and by definition there exists
a sequence ty,t,,...,t, of edge moves such that t,...t;G; = G,. Con-
sequently t71...t71Gy = G, and 50 dop (G2, G1) < 1 L6, depn(02,01) <
dem(01,02). A similar argument shows that de,(01,03) < dem(02,01);

hence d,mm(01,02) = dem(02,01).

iii) Let d.n(01,02) = n and dep(02,03) = m; then d.,(Gy, G3) = n,
dem(G2,G3) = m and by definition there exist edge move sequences
ti,ta,...,t, and sy, $3,..., S, such that t,...t,G; = G, and s,,...5,G; =
G3; hence sp,...81tp...t1Gy) = G3. Therefore d,,,(G,;,G3) < n + m and
SO dem(01,03) < dem(01,02) + dem(02,03). O

Since the edge slide and edge rotation operations are special cases of

the edge move operation the following result needs no further proof (see

Theorem 2.3.8).

3.2.3 Theorem

Let G1,G, € T'(p,g), then there exists an edge move sequence ty,ts,...,t,
such that t,,...t;t,G, = G,.

We now show that the edge move distance is preserved by complemen-

tation.

3.2.4 Theorem

FOI' graphs GlaGQ € F(pa Q)$ dem(Gl,GZ) = dzm(él,é2)°
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Proof

If d,m(G1,G3) = 0 then G| = Gy and hence Gy = G, which implies that
dem(G1,G2) = 0, which satisfies the statement of the theorem. Assume
then that d.,(G1,G2) = n > 1. By definition there exists a sequence of
graphs |
G, = Ho,Hy,...,.H, = G,
where H; can be transformed into H;,, by an edge move for7v = 0,1, ...,n—1.
Let H;,; = H; — u;v; + w;z;. Then note that H;,, = H; — w;z; + uv;; i.e.,
H; can be transformed into II;,, by an edge move. Thus the scquence of
graphs
G, = My, Iy,...,. 1, =G,
has the property that d,,,(H;, Hit1) = L for : = 0,1,...,n — 1. This implies
that
dem(G1,G3) < den(G1,Gy) = n. ~ (1)
However, by (1)
don(G1, G3) < don (G, G)
which implies that
dem(G1, G2) < do(G1, Gy). ~ (2)

Together (1) and (2) imply dem(G1, G2) = dom (G, Gy). O

Once again we consider slowly changing parameters; this time with re-

spect to edge moves (see Definition 2.3.13).

Since a single edge move can only increase or decrease the degree of a

vertex at most by one, the maximum degree A(G) of a graph G is a slowly
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changing parameter with respect to edge moves. Therefore the proof of

the following theorem may be obtained immediately from that of Theorem

2.3.16.

3.2.5 Theorem

For any nonnegative integer n there exist graphs G1,G; € I'(p, ¢) such that
dcm(Gl,Gg) =n.

The following theorem appears in [BGMW1].

3.2.6 Theorem

The edge move distance between the star S,, and a tree 7" on n vertices is

A(S,) — A(T).

Proof

Since the maximum degree of a graph is a slowly changing parameter with

respect to the edge move operation
de(Sn, T) 2 D(Sa) = B(T). ~ (1)

As every edge rotation is an edge move, it follows from Theorem 2.3.24
that

dem(Smy T) < dep (S, T) = A(Sn) — A(T). ~(2)

Therefore (1) and (2) together yield dow(Sn,T) = O(Sn) — A(T). O
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Using the concept of the greatest common subgraph of two given graphs
(see Definition 2.3.18), we obtain an equivalent formulation of the edge

move distance between two graphs.

3.2.7 Theorem

Let Gy, Gy € T'(p,q). Let G be a greatest common subgraph of G, and G,
of size ¢(G) = s. Then d.n(G1,G2) =g —s.

Proof

If s = ¢ then G| = G; and d,n(G1,G3) = 0.

Assume then that 1 < s < q. Let the vertices of G; and G; be labelled
V1,V2, ..., Uy so that the vertices of the subgraphs of G; and G; isomorphic
to G are identically labelled. Since ¢ > s we have that G; has ¢ — s edges
v;v; not contained in Gy and G, has ¢ — s edges v,v, not contained in Gj.
Therefore

dem(G1,Ga) > ¢ — s. ~ (1)

Let u,v,w,z € V(G,) = V(G,) such that uv € E(G,), uv € E(G,), wz €
E(G,) and wz € E(G;). The edge move t; = (v,v,w,z) on G| results in
t1G, and G, having a greatest common subgraph with s 4+ 1 edges.

Repeating thi.s process for each of the ¢ — s pairs of edges v;v;,vxv,
where v;v; € E(G,),vv; € E(G,),viv, € E(G1) and viv, € E(G,), gives a

sequence ty,lz,...,t,_, of edge moves such that t,_,...t3t1G; = Gy; i.e.,

dem(Gla GZ) S q — S. ~ (2)

71



Together (1) and (2) imply that d,.,.(G1,G3) = g — s. O

Theorem 3.2.6 suggests an alternative method of finding the edge move
distance between two graphs G;, G, € T'(p, ¢). This method involves finding
a greatest common subgraph G of G; and G, and determining its size, s
say. Once we have done this we perform the subtraction ¢ — s to obtain
dem(G1, Gz2). The difficulty of this method lies in finding a greatest common
subgraph of two graphs. Unfortunately no efficient algorithm exists which
does this. This is seen as follows : suppose an efficient algorithm for finding
a greatest common subgraph of two graphs did exist. Then to see whether
a graph G is Hamiltonian, just use this algorithm to see if C,, is a greatest
common subgraph of G and H = C,. This would solve the travelling

salesman problem efficiently and we know that to be N P-complete.

3.2.8 Definition

The simplest metric possible when considering distances between graphs
was defined by Johnson in [J1]. The discrete metric dg :TxT — {0,1}
is defined by dy(G,H) = 0if G = H and dy(G,H) = 1 otherwise. The
metric serves merely to distinguish between isomorphic and nonisomorphic

graphs. This metric is not very interesting and perhaps deserves the title
of The Trivial Metric.

3.2.9 Definition

Define the cardinality |G| of a graph G to be |V (G)| + |E(G)|. Johnson
[J1] defined the subgraph metric d, : T x I' — Z* such that d,(G, H) is the

minimum of |G|+ |H| — 2|C| taken over all graphs C which are isomorphic
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to subgraphs of both G and H.

3.2.10 Definition

Zelinka [Z1] introduced a distance on the space S, of all isomorphism classes
of graphs with n vertices. The tnduced subgraph distance d; is defined so
that if 0y,03 € S, and n + k is the least possible number of vertices of a
graph containing an induced subgraph from each of the classes oy and oy,
then d;(01,02) = k.

If G; and G’z‘ are two graphs of order n, the induced subgraph distance
between G; and G,, denoted by d;(G;, G,), is defined to be the induced
distance between the isomorphism classes of graphs containing G, and Gj,
respectively. Hence d;(G,,G;) is the smallest number k for which there
exists a graph G of order k + n which contains induced subgraphs G| and
G, isomorphic to G; and G, respectively.

Since the graph H obtained from the disjoint union of G; and G; by
identifying a vertex of G; with a vertex of G, clearly contains both G; and

Gy as induced subgraphs, it follows immediately that d;(G;, G;) exists and
that d;(G,G3) <n — 1.

The following three results are from [Z1].

3.2.11 Theorem

Let n be a positive integer and k a nonnegative integer. Let G; and G, be

graphs of order n. Then the following two assertions are equivalent:

1. There exists a graph G of order at most n + k having induced sub-
graphs G and G} such that G| = G, and G, = G,,.
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2.

There exist isomorphic graphs G| and G}, each of order at least n —k,
such that GY is an induced subgraph of G; and G} is an induced
subgraph of G,.

Proof

1= 2

2=>1:

Since the graph G, U G; of order 2n vertices contains G; and G; as
induced subgraphs, we have £k < n. I two sets, each containing n
elements, are subsets of a set with at most n + k elements, where
k < n, then their intersection contains at least n — k elements. Thus
the intersection of the vertex sets V(G)) and V(G}) contains at least
n — k elements; this set of vertices induces a subgraph G" of G and
of both G| and G, which is isomorphic to an induced subgraph G/
of Gy and to an induced subgraph G of G,.

Assume, without loss of generality, that G} and G, are vertex disjoint.
Let ¢ be an isomorphism from G into GY. Let G be the graph
obtained from G, U G; by identifying cach vertex v of G with its
image ©(v) in G3. Evidently G has at most n + k vertices. If we let
G| = G, and G}, = G,, then statement 1 is satisfied and the proof is

complete. O

We show now that the induced subgraph distance d; is a metric on S,,.

3.2.12 Theorem

Let S, be the space of all isomorphism classes of graphs with n vertices.

Then the induced subgraph distance d; together with S, is a metric space.
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Proof

Let 01,09,03 € Sn-

i)

i)

iii)

Suppose 0; = 0y, then the least possible number of vertices of a
graph containing subgraphs from o, and o, is n, because any graph
from the class 0, = o, will be such a graph. Thus d;(0,,0;) = 0. If
d;(01,02) = 0, then there exists a graph with n vertices containing
induced subgraphs from o, and ¢;. Each graph from a class of S,, has
n vertices, and a graph with n vertices contains exactly one induced
subgraph with n vertices’, namely itself. Therefore the graph belongs
to both of the isomorphism classes 0; and o3, thus 0; = 03. Therefore

di(01,02) = 0 if and only if 0 = 0,.

That d;(01,0;) = di(02,0,) follows immediately from the definition of

d;.

Let di(01,03) = ki and let di(0y,03) = kgs. Then there exists a
graph Gy with n + kj, vertices which contains an induced subgraph
G € 0, and an induced subgraph G; € 0,; and there exists a graph
Ga3 with n+ kg vertices which contains an induced subgraph H, € o,
and an induced subgraph Hj € 3. Since both 11, and G, belong to
o3 we have that G; = H, and there exists an isomorphism 1 of
G2 onto H;. Let G be the graph obtained from G;; and Gas by
identifying each vertex v in G, with its image Y (v) in H;. This graph
has n+ ks +n+ ko3 —n = n+ ki + kos vertices and contains G, € oy

and Hs € o3 as induced subgraphs; hence
di(01,03) < kiz + kas = di(0y1,09) + di(04,03).
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Thus the triangle inequality holds for d; and the proof is complete.
U

The following theorem proves that the induced subgraph distance be-
tween two graphs G1,Gy € ['(p) from classes 01,02 € S, respectively, is
the same as the induced subgraph distance between the isomorphism classes

containing the complements to the graphs of G; and G.

3.2.13 Theorem

Let Gl,Gz € I‘(p), then d,’(Gl,Gz) = d,’(él,éz).

¢

Proof

There exists a graph G with p 4+ d;(G, G;) vertices containing G; and G,
as induced subgraphs. Now the complement G of G contains G; and G; as
induced subgraphs and G has p+d;(Gy, G3) vertices, therefore d;(Gy, Gy) <
di(G1,Gs). However, interchanging G; with G, and G, with G, in our
argument, we obtain d;(G,G;) < d;(G1,G2) and therefore

di(G1,Gz) = di(G1,Ga). O

Zelinka [Z2] introduced a metric analogous to the induced subgraph
metric to study a distance between isomorphism classes of trees. Apart

from Theorem 3.2.32 all results in the remainder of this section are from
[22].

3.2.14 Definitions

Consider the set 7, of all isomorphism classes of trees with n vertices, n > 3.

Let 7,7 € 7,, then define the tree metric dr : 7, x %, — Z* U {0} such
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that dr (7, 7) is the least integer with the property that there exists a tree
with n + dp(r;,72) vertices which contains a subtree, T} € 7; and a subtree
T; € 1.

If T| and T, are two trees of order n, the tree distance between 71 and
T, denoted by dr(T1,T2), is defined to be the smallest integer k for which
there exists a tree T of order k + n which contains subtrees 7] and T3,
isomorphic to 77 and T, respectively.

Since the tree H obtained from the disjoint union of T} and T, by
identifying a vertex of 7} with a vertex of T; clearly contains both 7} and

T; as subtrees, it follows immediately that dr(7},7%) exists and that

dT(TI,Tz) S n — ]

3.2.15 Theorem

The functional dr is a metric on the set 7,.

Proof

Let 7q,79,73 € F,.

i) By definition dr(r;,7;) > 0 and dp(ry,7) = 0 if and only if there
exists a tree T' with n vertices such that T € r; and 7" € 7q; le., if

and only if 7, = 7,.

ii) Let dp(r1,72) = m. Then there exists a tree T with n + m vertices
which contains a subtree T, € 7, and a subtree T} € 1. Therefore
dr(r2,m) < m = dr(ry,73). Similarly dr(r1,72) < dr(r,7;) and there-

fore dy(ry,75) = dr(r, ).
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iii) There exists a tree Ty; with n + dp(7,,7;) vertices which contains a
subtree T} € 7, and a subtree 13 € 7, and there exists a tree Ty3
with n + dr(r;,73) vertices which contains a subtree 73 € 75 and a
subtree T3 € 73. The trees Ty and 73 are isomorphic. From T,
and T3 we obtain the graph T by taking an isomorphic mapping
of T, onto 7, and identifying each vertex of T3 with its image in
this mapping. Now T is connected, has n + dr(r,72) + dr(72,73)
vertices and has (n +dg(m1,72) — 1) + (n +dr(r2,713) — 1) = (n — 1) =
n + dr(r1,72) + dr(r2, 73) — 1 edges.

Therefore ¢(T') = p(T')—1 and therefore T is a tree. Now T contains a

subgraph Ty € r; and a subgraph T3 € 13, i.e. dp(r1,73) < dr(r1,72) +
dr(r2,73) and the triangle inequality holds. O

3.2.16 Definition

Denote by 7(n) the set of all trees of order n.

3.2.17 Theorem

Let 71,72 € 7(n) and let k be a nonnegative integer, k < n. Then the

following two statements are equivalent:

1. There exists a tree T' with n + k vertices which contains a subtree

isomorphic to T} and a subtree isomorphic to Ts.

2. There exists a tree Ty with n — k vertices such that both T, and T,

contain subtrees isomorphic to 7.
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Proof

1= 2:

2=1

Suppose statement 1 is true. Let 7] and 7} be subtrees of T iso-
morphic to Ty and T3 respectively. Since k < n, 17| and T, have a
nonempty intersection and this intersection is a subtree T of T'. Now
there are n + k — n = k vertices not in 77, therefore T§ must have
at least n — k vertices. Choose a subtree Ty of 7)) which has exactly
n — k vertices. Taking isomorphic mappings of 7] onto Ty and of 7T}
onto Ty, the images of Ty in these mappings must be subtrees of T}

and T3 and are isomorphic to one another and of course to Tj.

Suppose statement 2 is true. We may assume without loss of gener-
ality that T and T3 are vertex disjoint. Let 73 and T} be subtrees
of Ty and T; respectively, which are both isomorphic to Ty. Let T be
the graph obtained from 7} and T3 by taking an isomorphic mapping
of Tj onto T and identifying each vertex of T} with its image in this
mapping. The graph T constructed as in iii) in the proof of Theorem
3.2.15 is a tree. Now T"hasn +n — (n — k) = n + k vertices and it

contains T} and T, as subtrees. 0

The tree metric distance graph Dy(7,) is defined to be the graph whose
vertex set is 7, and in which ry7; € E(Dr(7,)) if and only if dp(ry,7,) = 1.

3.2.18 Theorem

The distance between any two vertices 7y, 7, of Dr(7,) is equal to dp(r,72).
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Proof

Let 71,7, € V(Dr(#)) and let dp(r1,72) = k. Then there exists a tree T
with n + k vertices which contains a subtree T} € 7, and a subtree T3 € 75.
Now since n > 3, P; is a subtree of every graph in %, and we have from
Theorem 3.2.17 that n — k > 3. Therefore k¥ < n — 3 and therefore 77 and
T, have a nonempty intersection containing, by Theorem 3.2.17, exactly
n —k vertices of T'. Thus, there are k vertices of 177 not belonging to 73 and
k vertices of Ty not belonging to T;. Let {uy,...,ux} be the set of vertices
of T} not belonging to T, where each U is adjacent to either a common
vertex of Ty and T; or to a vertex w; with j < 7. Let {v;,...,v} be the
set of vertices of T, not belonging to Tj such that each v; is adjacent to
either a common vertex of T and T} or to a vertex v; with j > ¢. For each
J=1,2,..,k, let S; be the graph obtained from T, by deleting the vertices
v; for © < 7 and adding the vertices u; for 1 < j together with the edges
which join them and the edges which join them to the common vertices of
Ty and Ty in T'. Each graph S; is a tree since S; is a connected subgraph
of T'. It is evident that Sy = Ti,dr(T2,S5:) = 1 and d7(S;i, Si41) = 1 for
v = 1,2,...,k — 1. The vertices T3, Sy,...,5¢ = Ty of Dr(7,) (where the
trees 13, 5y, ..., Sk represent the isomorphism classes containing them) form

a path of length k in Dz (%,). Therefore in Dr(7,)
d(Tl,T2) S dT(Tl,Tz). ~ (].)

Now suppose that d(r,7;) = £ in Dy(%,). Then there exists a path of
length £ in Dr(7,) consisting of the vertices Ty = S, Sly -y Sy = T3 Thus
dr(S;,8i41) =1fori=0,1,...., — 1. Let S/ be a tree with n + 1 vertices

which contains a subtree isomorphic to S! and a tree isomorphic to St
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For each i = O0,...,£ — 2 we choose an isomorphism of the subtree of S;'
isomorphic to S, onto the subtree of S}, isomorphic to S, and identify
each vertex of the domain of this mapping with its image. Then we obtain
a tree with n + £ vertices which contains a subtree from 7; and a subtree

from 75. Thus dr(m1,72) < £ and therefore
dT(TlaT2) < d(TI)TZ)- ~ (2)
Together (1) and (2) imply that dp(ry,7) = d(r1,72). O
Thus according to Theorem 3.2.18 in order to determine the diameter
of Dr(7,), we may look for isomorphism classes in %, which are furthest

apart with respect to the tree distance. That is, if say 7,7, € %, such that

dr(m1,72) is a maximum then
diamDr (%) = dr(r1,72).
This problem is resolved in the following theorem.

3.2.19 Theorem

The diameter of Dy (7,) is n — 3. There is exactly one pair of vertices in

Dr(7.) between which the distance is n — 3.

Proof

We have already seen in the proof of Theorem 3.2.18 that every tree in 7,
contains P3 as a subtree. Let 71,7, € 7, and let T} € 7, and T, € 7y; then

by Theorem 3.2.17 there exists a tree with n + (n — 3) = 2n — 3 vertices
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which contains a subtree isomorphic to 7y and a subtree isomorphic to T5.

Thus dp(r,m2) <n—3foralln,n e 7. and thus by Theorem 3.2.18

dpp(7)(r1,m2) <n—3, ~ (1)

for any pair of vertices 7,7, € V(Dr(%)).

Now the path P, and the star S, are trees of order n and are therefore
elements of %,, and thus vertices of Dy(7,). Any subtree of P, (S,) with
more than three vertices is a path (a star, respectively) with more than
two edges. Therefore for Ty = P, and T; = S, statement 2 of Theorem
3.2.17 holds only for n — k < 3; i.e., for K > n — 3. Thus statement 2 of

Theorem 3.2.17 does not hold for k¥ < n — 3 and thus statement 1 does not
hold either for £k < n — 3. Thus

dr(P,Sy) =n—3 ~ (2)

and so the isomorphism classes containing P, and S, have tree distance
n — 3 between them.

Together (1) and (2) imply that the diameter of Dy (%) is n — 3.

Finally we show that P, and S, are unique in that the isomorphism
classes containing them are the only ones to have a tree distance of n — 3
between them. Any tree T} € 7, with n > 4 vertices which is neither a path
nor a star contains Py and S; as subtrees. Let 79 € 7, such that r; # 7.
Then P; and Sy are subgraphs of 7 and T3 for any 77 € 7, and T, € 7.
Thus statement 2 of Theorem 3.2.17 holds for n —k = 4 and therefore there
exists a tree T with n+ (n —4) vertices which contains a subtree isomorphic
to T} and a subtree isomorphic to T;. Therefore dr(r,7) < n —4 and by

Theorem 3.2.18 the distance of 7; from any other vertex in Dp(7,) is at

most n — 4. d
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3.2.20 Corollary

The tree distance between any two isomorphism classes 71,7, € %, is at
most n — 3. The isomorphism classes 7; and 7, which contain P, and S,

respectively, are unique in the sense that dr(r,72) = n — 3.

Proof

Immediately from Theorems 3.2.18 and 3.2.19. O

3.2.21 Definition

We define the tree T'(k) for all positive integers k > 3 as follows: First we
define the graph T5(k). The vertex set of Ty(k) consists of all vectors with
dimensions 0,1, 2, ..., g] — 1, whose coordinates are numbers from the set

[51-1

{1,2,....,k —1}. Thus Ty(k) has 1+ 21 (k —1)* vertices. Two vectors u,v
are adjacent in Ty(k) if and only if one of them can be obtained from the
other by adding one coordinate. If k is odd, take two disjoint copies of Ty (k)
and add an edge between the vertices which correspond to the zero vector
in both of them. If k is even, we take a new vertex ¢ and k pairwise disjoint
copies of Tp(k) and insert edges between ¢ and the vertices corresponding
to the zero vector in all of them. The tree obtained in this way will be
[31-1

denoted by T'(k). For k odd, T'(k) has 2 + 2 (k —1)* vertices and for k
=1

i

.

k.

even T(k) has L+ k+k ¥ (k- 1) =1+k

=1 1

o

(k — 1)‘f‘,

1
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3.2.22 Lemma

The tree T'(k) has the maximum number of vertices among all trees with

diameter at most k and with maximum degree at most k.

Proof

Let T be a tree with diameter & and maximum degree k. If k is even,

then T has one central vertex ¢, and for all v € V(T), d(c,v) < % Since

A(T) =k, for each ¢ = 1,2, ,’5‘ there are at most k(k —1)'"! vertices of T
5

whose distance from c is ¢. Thus 7' has at most 1 + & 3 (k — 1)1 vertices
i=1

and this is the number of vertices in T'(k).
If k is odd, then T has two centres ¢; and ¢; which are adjacent. For
each i = 1,2,...,[£] -1 there are at most 2(k — 1) vertices v of T such that
[31-1

J{Eig{d(cj,v)} = 1. Thus T has at most 2 + 2 f§1

N[>

(k — 1) vertices and this

is the number of vertices in T'(k). O

Let a(k) denote the number of vertices in T'(k) for any integer k > 3.
By Definition 3.2.21

k
3

a(k) = 1+k) (k—1)"'for k even and,
i=1

[

(NIt
—

alk) = 2

g

I
—

(k—1)"" for k odd.
Further, for n > 6 we denote

o(n) = max{k € Z* : a(k) < n}.
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3.2.23 Theorem

Let the radius of Dyp(7,) be p. Then p <n —o(n) — 1.

Proof

Let k = o(n). We shall construct a tree C: If a(k) = n, then let C = T'(k).
If a(k) < n, then let C be an arbitrary tree with n vertices which contains

T(k) as a subtree. Let T be any tree with n vertices.

Case 1) Suppose diam T > k. The tree C contains T'(k) as a subtree, and we
know from Lemma 3.2.22 that the diameter of 7'(k) is k. Therefore
both C and T contain Py,; as a subtree. Hence by Theorem 3.2.17
there exists a tree with n+ (n —k — 1) vertices containing C and T as
subtrees. Therefore if z and 7 are the isomorphism classes containing

C and T respectively, it is evident that

dT(Z,T) Sn—k—l.

Case 2) Suppose diam T < k, then since T has n > a(k) vertices, by Lemma
3.2.22, its maximum degree must be greater than k. But since C
contains T'(k) as a subgraph, and A(T'(k)) = k, we must have A(C) >

k. Therefore both C and T' contain Si;; as a subtree and again

dr(z,7) <n—k—1.

The tree distance of z from the isomorphism class containing P, and
from the isomorphism class containing S, is exactly n — k — 1 (by Theorem

3.2.17). Therefore the radius of Dy (%,) is at most n—k—1 = n—o(n)—1.0
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3.2.24 Conjecture

The radius of Dp(%,) is equal to n —o(n) — 1.

We now study the class of trees called caterpillars. Recall that a cater-
pillar is a tree with the property that after deleting all of its end-vertices we
are left with a path, called the body of the caterpillar. (A graph consisting

of one vertex is considered a path.)

3.2.25 Theorem

Let T) and T3 be caterpillars of order n and let dy(T1,T2) = k; then there
exists a caterpillar T' with n+k vertices which contains a subtree isomorphic

to T} and a subtree isomorphic to T5.

Proof

As dr(T1,T;) = k, we have, by Theorem 3.2.17, that there exists a tree Tp
with n — k vertices such that both 7} and 7% contain subtrees isomorphic
to To. Since Ps is a subtree of all trees in 7, we have n — k > 3, and
T, has at least two edges. Tj is a subtree of a caterpillar, and thus Tj
itself is a caterpillar. Let B(T}), B(T:) and B(T,) be the bodies of the
caterpillars 11,13 and 1g respectively. Let T3 and T} be subtrees of T} and
T, respectively, which are both isomorphic to 7. Take an isomorphism of
T} onto T3 and let T be the tree obtained from T} and Ty by identifying each
vertex of Tg with its image in this isomorphism. If T is not a caterpillar,
then there exists an edge e; of B(7}) not belonging to B(T:) and an edge e,
of B(T;) not belonging to B(T}) such that they are both incident to a vertex
vo of B(Ty). Let vy ( vg) be the vertex incident with e; ( es, respectively)
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distinct from vo. Now by identifying the vertices vy and v, in T', we obtain
a tree with n + k — 1 vertices which contains 7} and T, as subtrees; this
contradicts the fact that dp(Ty,T:) = k. Thus T is a caterpillar and the

theorem is proved. _ a

3.2.26 Corollary

The set of all isomorphism classes of caterpillars with n vertices induces a
subgraph bT(?n) of Dy(%.) with the property that the distance between
two vertices in'f)T(}"n) is the same as in Dr(#,). The diameter of DT(TH)

isn— 3.

Proof

Let 71,72 € %, such that Ty € 71, Ty € 7, and T and 715 are caterpillars. Let
dr(r1,72) = k. Then, by Theorem 3.2.18, d(r;,7:) = k in Dr(%,). Now by
Theorem 3.2.25 we have that there exists a caterpillar 7" with n + k vertices
which contains a subtree isomorphic to T, and a subtree isomorphic to 7Ty,
therefore the following analogue to Theorem 3.2.18 holds:

The distance between any two vertices 1, 73 of DT(fn) is equal to dr (71, 72).

The proof is exactly as in Theorem 3.2.18 with the word tree replaced by

caterpillar. Therefore

dDT(.Tn) (Tl) TZ) - d]_’)T(fn) (Tla T2)-
Since the star S,, and the path P, are both caterpillars we have by The-
orem 3.2.19 that the diameter of ET(fn) isn—3. O]

Now for every positive integer £ we construct the caterpillar T(k) Let

the body of T'(k) consist of a path of length k — 2. Let the degree of

87



every vertex of the body in T'(k) be k. The number of vertices in T(k) is
(k—1)+ (k—3)(k—2) +2(k— 1) = k* — 2k + 3.
3.2.27 Lemma

The caterpillar T'(k) has maximum order among all caterpillars with diam-

eter at most £ and maximum degree at most k.

Proof

The diameter of a caterpillar is always the length of its body plus two.
Thus T'(k) has diameter k. In a caterpillar the only vertices which can
have degree greater than one are the vertices which belong to the body of

the caterpillar. Since every vertex contained in the body of f(k) has degree

k, the lemma is proved. O

3.2.28 Theorem
Let p be the radius of ﬁT(}rn). Then

p<n—ad(n)—1where

~

d(n) = max{k € Z* : k¥ — 2k + 3 < n}.

Proof

Let k = 6(n). We construct the caterpillar C. If k* — 2k + 3 = n then let
C = T(k). If k* — 2k + 3 < n then let C be an arbitrary caterpillar with n

vertices which contains j(k) as a subtree. Let T' be any caterpillar with n

vertices.
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Case 1) Suppose diam T > k. The caterpillar C contains j"(lc) as a subtree,
and we know from Lemma 3.2.27 that the diameter of T(k) is k.
Therefore both C and T contain the caterpillar Py,; as a subtree.
Hence by Theorem 3.2.17 there exists a tree 7" with n + (n — k — 1)
vertices containing C and T as subtrees. That 7" is a caterpillar
follows from Theorem 3.2.25. Therefore if 2 and 7 are the isomorphism

classes containing Cand T respectively then

dr(3,7) <n—k—1.

Case 2) Suppose diam T < k, then since T has n > k® — 2k + 3 vertices by
Lemma 3.2.27, A(T) > k. But since C contains T'(k) as a subgraph,
and A(T(k)) = k, we must have A(C) > k. Therefore both C and T

contain the caterpillar Si,; as a subtree and again

dT(E,%) S n—k—1.

The tree distance of z from the isomorphism class containing P, and from
the isomorphism class containing S, is exactly n — k — 1. Thus the radius

of DT(}',,) is at most

ie., p<n—ao(n)—1. O
3.2.29 Conjecture

The radius of Dr(7,) is equal to n — g(n) — 1.

We now compare the tree distance dy with the induced subgraph metric

d; (see Definition 3.2.10).
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3.2.30 Theorem

For elements Ty, Ty € 7(n) for n > 7 the distances dr (T, Ty) and d;(Ty, T3)

are different in general.

Proof

Let Ty = P, and T, be the star on n-vertices. Then by Theorem 3.2.19,

dr(T1,T2) = n — 3. In T} take a maximal independent set of vertices.

n

This set will obviously contain [}] vertices. 1dentily each vertex of this set

with one end-vertex of T;. We obtain a graph G,, with [%”J vertices which

contains 77 and T3 as induced subgraphs. Thus

GT,T) < 5] -n=

2 J <n—3:dq~(Tl,T2). |
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3.2.31 Figure

The graph G, described in Theorem 3.2.30 for n = 7.

To end this section we present a new result analogous to Theorem 3.2.18

for the induced subgraph distance (see Definition 3.2.10).

We define the induced subgraph metric distance graph Dg4.(S,) to be the
graph with vertex set S, and in which 0,0, € E(Dy,(S,)) if and only if
d,’(O’l,Uz) = 1.

A}
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3.2.32 Theorem

The distance between any two vertices 0,03 in Dy, (S,) is equal to d; (01, 03).

Proof

Let 0,,09 € S, such that d;(0y,0;,) = k, then by definition there exists a
graph G with n + k vertices which contains induced subgraphs G and G,
such that G; € 0; and G, € 03. By Theorem 3.2.11, there exist isomorphic
graphs G and G} with n — k vertices such that G’ is an induced subgraph
of Gy and G}, is an induced subgraph of G;.

In G there are n — k vertices common to G; and G3. Therefore there
are k vertices in G; which are not in G; and k vertices in G, not In Gj.
Label arbitrarily the vertices in V(G,) — V(G,) as u;,us,..,u; and those
in V(G3) — V(Gi) as vy,v3,...,0. Now for each j =1,2,...,k let F; be the
subgraph of G induced by the vertexset V (F;) = (V(G1)—{ w1, uz, ..., u;})U
{vi,vsy...,v;}. Let B; be the isomorphism class containing F;. Then it is
evident that §; € S, and F; # F; for j # 7. It is also evident that F} =
Gi, di(F1,G,) =1 and d&;(F;, F;4,) = 1 for j = 1,2,....,k — 1. Therefore
we have constructed a path Gy F\F;...F;y = G; of length k in Dy (S,) and
therefore

di(G1,Ga) > dp, (5,)(G1,G2). ~ (1)

Now suppose that the distance between G; and G in D, (Sy) is £. Then
there exists a path of length £ in Dg,(S,) of the form

G, = FIF..F = G,
We have that d;(Fj, Fj,,) = 1 for j = 0,1,...,¢ — 1. Let F}' be the graph

with n 4+ 1 vertices which contains an induced subgraph isomorphic to FJ'
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and an induced subgraph ismorphic to Fj,, for j =0,1,...,£ — 1. For each

7 =0,1,...,€-2 let F}" be the graph obtained from F}' and F}’

7+1 by choosing

an isomorphism of the induced subgraph of F}' which is isomorphic to Fj,,

and identifying each vertex of the domain of this mapping with its image.
Then F}", is a graph with n + £ vertices containing G; and G; as induced

subgraphs. Therefore
di(G1,G;) <= dDd,-(Sn)(Gl’G2)' ~ (2)
Together (1) and (2) imply that

di(Gl’ Gz) = dDdl.(Sn)(GlaG2)' .

3.3 Bounds and Relations

We now present some results which give bounds and relationships between
some of the metrics we have studied.
As we have already noted for all graphs G, H € I'.(p, q)
dem(G,H) < d,,(G,H) < d.,(G, H).

Our first result from [BGMW1]| stems from the fact that any edge move

can be simulated by a maximum of two edge rotations as was demonstrated

in the proof of Theorem 2.3.20.

3.3.1 Lemma

For graphs G1,G; € I'(p, q)
der(GlaG2) S 2dem(Gl’G2)'
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Proof

Let G be a greatest common subgraph of G| and G, with size s say. Ac-
cording to Theorem 3.2.7, dem(G1,G2) = ¢ — 5. From Theorem 2.3.20, we
have d..(G1,G3) < 2(q — s), and hence

dcr(GlaGZ) S 2dcm(Gl)G2) ]

The following lemma demonstrates that the ratio % can be made
arbitrarily large for graphs G, Gy € T'.(p, ¢) and sufficiently large values of

p.

3.3.2 Lemma

There exist graphs G,,G; € I'.(p,q) such that for any integer @ > 0

des(G1,G2) __ a
dev(GhGZ) *

Proof

Let graph G; consist of two disjoint paths P, = v1vs...v2,41 and P, =
UUz... U204, Of length 2a, together with the edge uq4yv.41 and let graph
G, be a path of length 4a¢ + 1. Now d.,,(G1,G2) = 1. The edge rotations
t1 = (Vat1s Ua+t1s Y2a+1) O Gy and ¢y = (U2a41, Vast1, V2a+1) ON 1, G transform
G, into Gy; i.e., tyt;G; = G,. Hence d.,(G1,G,) < 2. That d,,(Gy,G;) > 2
is shown as follows:

The parameter end'(G) of a graph G is slowly changing with respect to the

edge rotation operation (see Lemma 2.3.28) and
lend'(G,) — end'(G,)| = |4 — 2| = 2,

“hence d.,(G1,G2) > 2. It now follows that d,,.(G;,G,) = 2.
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Define the edge slides t; = (Wat1,VatisVati+1) for 1 = 1,2,...,a and
8; = (Vaat1sUatsr Yatj+1) for § = 1,2,...,a. Then s,...8981t5...8281G1 = Gy,
and hence

des(Gly G2) S 2a.

However since the diameter of a graph is slowly changing with respect
to edge slides (see Lemma 2.2.16), we have that d.,(G;,G,) > |diamG, —
diamG;)| = |(2a + 1) — (4a + 1)| = 2a. Hence d,,(G,,G3) = 2a.

Therefore % = 27“ = a for arbitrary a. a

Note that if we do not restrict ourselves to connected graphs; i.e., con-

sider graphs Gy, G, € I'(p, ¢), then the ratio %Eg—i'%% can be made infinite

by taking any disconnected graph G; € I'(p,q) and any connected graph
G2 € I‘c(p’ q)'
Our next four results are from [GS1]. We aim to provide a relationship

between the edge slide and edge rotation distances between two graphs

G,H € I'(p,q).
3.3.3 Theorem
Let Gy,G; € I'(p, g) then
der(G1U K1,Go U K,) = der(G1 + K1,G2 + K,) = d..(G1,G,).
Proof

Since complementation preserves the edge rotation distance

der(G1 + K1,G: + K;) = der((_;l-F_Kx, G2+K1):der(GIUK1sG2UKI)
der(Gl,G2) = dcr(Gl)G2)'

Il
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Hence we need only prove that d.,. (G, U K;,G, U K;) = d.,(Gy,G3.)

Trivially
dcr(Gl U I(la G2 U I{l) S der(Gla GZ) ~ (1)

Consider a sequence of edge rotations ¢y,ts,...,t, such that t,...t3t;(G; U
K;) = Gy U K. Let z be the designated isolated vertex at the start of the
transformation and let y be the designated isolated vertex at the end of
the transformation. Consider all edge rotations of the form t; = (u;, y, w,-)
where u;,w; € V(G,) (if an edge incident with y is to be rotated twice,
arrange it so that it releases from y first). Thus all such operations reduce
the neighbourhood of y. Of these, perférm all the edge rotations which
do not involve z. Now interchange the labels y and z, this will affect
all the rotations including y and z. Now continue with the edge rotation
sequence. Note that there is a designated isolated vertex throughout the

vtransformation and therefore
der(Gl UK11G2UK1) 2 der(GlaGZ) ~ (2)
Together (1) and (2) imply that d.,(G; U K1,G, U K,) = d,,(G1,G). O

3.3.4 Theorem

Let G, H € I'(p, q), then d,,(G + K, H + K;) < 2d.,(G, H).

Proof

Both G + K; and H + K; are connected graphs and thus by Theorem
2.2.9, we know that d,,(G + K, H + K,) is finite. It is thus only necessary
to show that for z,y,2 € V(G),zy € E(G) and zz € E(G), any edge

rotation ¢t = (z,y,2) on G can be simulated by two edge slides t; and
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t, on G + K, and t;(G + K;), respectively. Let v be the joined vertex
in G + K;. Define the edge slides t; = (z,v,2z) and t; = (z,y,v). Then

zy € E(t3t,(G + K,)), zz € E(t,t1(G + K,)), while vertex v still has degree
p, in tyt, (G + K;). Therefore d,,(G + K, H + K;) < 24,,(G, H). O]

3.3.5 Theorem

Let G,H € I',(p,q) where p > 3 and ¢ > 2, then
de,(G,H) < 2d.,(G,H) — (A(G) + A(H)) + 6p — 6.

Proof

Let v(w) be a vertex of maximum degree in G (H, respectively). Let T,(Ty)
be a spanning tree of G(H, respectively) containing all the edges incident
with v(w, respectively) (e.g. a spanning tree-of G(H) that is distance
preserving from v(w, respectively)). Let G' = G — E(1,)(H' = H — E(Ty))
and let G" = G'+ {vu:u € V(G) — {v}} (H"= H' +{wu:v e V(G) —
w))).

Note, by Theorem 2.2.14, that

ey (G, G") = doy(Ty, Ky pot) = A(S,) = A(T,) = p— 1 — A(G);
deo(H, H") = d,o(Ty, Ky p-1) = A(S,) — A(TY) = p— 1 — A(H). }

~ (1)

Let t,13,...,tn be a sequence of n = d,,(G, H) edge rotations such that
tn...tiG = H. Let H* be the graph obtained by restricting the edge rotation
sequence ty,tz,...,t, to G'; then since H* and H' must have a greatest

common subgraph of size at least ¢ — (p — 1)
dem (H*,H') < p—1,
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hence by Lemma 3.3.1,
de,(H*,H') < 2(p— 1) and so

d (G, H') < d., (G, H) +2(p — 1).
We note that v and w are isolated vertices of G' and H' respectively, so
from Theorem 3.3.3,
de(G' — v, H' —w) < d,(G,H) +2(p — 1). ~ (2)
Now

deo(G",H") = do,((G' —v) + Ky, (H' —w) + Ki)
2de,(G' — v, H' — w) (by Theorem 3.3.4)
2[de, (G, H) + 2(p — 1)] (from (2))
2d,.(G,H) + 4(p — 1).

[Nl

It is evident that
des(G, H) < des(G,G") + dos (G", H") + dos (H", H);
therefore from (1) and (3)
des(G,H) < p—1-A(G)+2d,,(G,H)+4(p—1)+p—-1—-A(H)

' 2d,(G,H) — (A(G) + A(H)) + 6p — 6.

3.3.6 Corollary

Let G, H € T.(p, q) where p > 3 and ¢ > 2; then
doy (G, H) < 2d,.(G, H) + 6p — 10.
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Proof

Since both G and H are connected and have ¢ > 2 edges, A(G) > 2 and
A(H) > 2. Hence A(G) + A(H) > 4 and the result follows directly from
Theorem 3.3.5. 0

The following theorem by Zelinka [Z3] shows that the induced subgraph
distance between two graphs is bounded above by the edge rotation distance

of those two graphs (cf. [Z3] for results 3.3.7 to 3.3.11).

3.3.7 Theorem
Let 0y,03 € Sp4,Gy € 01 and G, € 0;. Then
di(Gly G2) S der(GlaG2)

where equality may occur.

Proof

If d.,(G1,G;y) = 1, then G; may be obtained from G, by a single edge
rotation. Hence there exists a graph G with p vertices and ¢ — 1 edges
which is isomorphic to a subgraph of G; and to a subgraph of G;. Label
the vertices of G; and G4 so that the subgraphs isomorphic to G in G; and
G, respectively, are identical. Suppose then that V = V(G,;) = V(G,) =
{vo,v1,...;vp—1}. Then there exist vertices, say, vo,v1,v2 € V such that
vov; € E(G1) and vov, € E(Gy), while vov; € E(G2) and vov, € E(Gy).
For any other pair of vertices v;,v;, either v;v; € E(G,) and v;v; € E(G,)
or v;v; € E(Gy) and v,u; € E(G,). The set V — {vy} induces the same
subgraph in both G, and G, and thus d;(G, G,) = d.,.(G1,G,) = 1.
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Now let k > 2 be an integer, and let d,,(G1,G2) = k. Then there exist
graphs Hy, Hy, ..., Hy such that Ho = G, and H, = G, and the graph H;
may be obtained from H;_; by a single edge rotation for 7 = 1,2,..., k.
We have d,,(H;_;, H;) = 1 and hence by the above di(H;-y,H;) = 1 for

i =1,2,..., k. Inductively from the triangle inequality we obtain
di(Ho, Hy) = di(G1,G2) < k = dr (G, G). O

The following result demonstrates that we can construct two graphs
for which the difference between their edge rotation distance and induced

subgraph distance may be chosen to be arbitrarily large.

3.3.8 Theorem

Let N be a positive integer. Let 0y,0, € S,,, then there exist graphs
G, € 0, and G; € 0, such that

der(G1,G2) — di(G1,Gy) = N.

Proof

We construct graphs G; and G; with a common vertex set

V = {u1, U2y sy UN41, V1, U2y ooy Un1, W) 10 Gy the set {uy, ug, .., unir, w}
induces a clique and the vertices vy, vs,...,un4+1 are isolated. In G, two
vertices are adjacent if and only if either they both belong to the set
{u1,u2,...,unt1}, or one of them is w and the other belongs to the set
{v1,v2,...,uns1}. Bach of the graphs Gy and G, has (N + 1).(N + 2)
edges. The set V — {w} induces the same subgraph in both G; and Gy,
hence d;(G;,G;) = 1. The graph G, can be obtained from G; by N +1 edge

rotations; each rotation is of the form ¢; = (w,u,,v;) for 1 = 1,2,..., N + 1;
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1.6, tNt1, EN,y s be, 11G1 = Ga. Hence d.,(G1,G2) < N + 1. Now perform-
ing fewer than N + 1 edge rotations on G will result in a graph with at

least one isolated vertex. Since G has no isolated vertices we have that

der(G1,G2) > N + 1; and hence
dr(G1,G2) = N + 1 and the result follows. O

The following lemma will aid us in proving that the edge rotation dis-

tance between two trees is bounded above by their tree distance.

3.3.9 Lemma

Let T be a tree with p‘vertices and edge set E(T'); let Ty be a proper
subtree of T with edge set E(T;). Then there exists a bijection f of the
set E(T) — E(Ty) onto the number set {1,2,...,|E(T") — £(0)|} with the
property that the set E; = E(Ty) U {e € E(T) — E(Ty) : f(e) < ¢} is the
edge set of a subtree of T for each ¢ € {1,2,..|E(T) — E(10)|}.

Proof

We proceed by induction on the cardinality of E(T) — E(Tp). If |E(T) —
E(T,)| = 1, then E; = E(T) and the assertion holds trivially. Let k > 2 be
an integer and suppose that the assertion is true for |E(7') — E(Tp)| < k—1.

Suppose |E(T) — E(To)| = k. There exists at least one edge ¢; € E(T) —
E(To) which is incident with a vertex which is in Tp. Evidently E(7}) =
E(T,) U {e1} is the edge set of a subtree T§ of T. We have |E(T) — E(T})| =
k — 1 and by the induction hypothesis there exists a bijection f' of E(T) —
E(T3) onto {1,2,...,k—1} such that the set E! = E(Tp)U{e € E(T)—-E(T}) :
f'(e) < ¢} is the edge set of a subtree of T for each 1 = 1,2,....,k — 1. We
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define a bijection f of E(T) — E(Tp) onto {1,2,...,k} in such a way that
fler) =1 and f(e) = f'(e) + 1 for each e € E(T) — E(T}). Then evidently
E,=e, and E; = E!_, for i = 2,3, ...,k and the assertion holds. O

3.3.10 Theorem

Let n € N, 1,73 € 7(n), Ty € 7y and T3 € 5. Then
der (T1, T2) < dr (T, T2).

Proof

4

Let dr(11,T2) = k. This means, by Theorem 3.2.17, that the maximum
number of vertices of a tree which is isomorphic to a subtree of T} and
simultaneously isomorphic to a subtree of T, is equal to n — k. Suppose Ty
is a tree with n — k vertices that is a subtree of both T} and T3. Let fi(fs)
be a mapping corresponding to the mapping f from Lemma 3.3.9 where we
consider T (T3, respectively) instead of T'. Both f; and f; are bijections onto
the set {1,2,...,k}. Foreach i =1,2,...,k let e;(¢) (e2(z)) be the edge which
is mapped by f; (f;, respectively) onto the number 2. The vertices incident
with the edge e;(¢)(ez(2)) will be denoted by v,(7) and w, (¢) (v4(2) and w,(2),
respectively) in such a way that the distance of w;(¢)(w, (7)) from a vertex
of Tp is greater than the distance of vy (¢)(v2(¢), respectively) from the same
vertex. Now we identify wy(z) with wy(k+1—1) fori = 1,2, ..., k. After this
identification the trees T} and 73 have the same vertex set. Fori = 1,2, ...,k
define the edge rotation ¢; which deletes the edge e;(z) = v;(¢)w;(¢) and adds
the edge ez(k + 1 —4) = va(k+ 1 —wa(k +1—1) = va(k+ 1 - 1)ws (1),
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ie. t; = (wy(2),v1(1),va(k+1—1). Then ty,tp1,...rtz,8: T2 = T and hence
der (T1, T2) < k = dp(T1, T). O

We now present a result which is similar to that of Theorem 3.3.8.

3.3.11 Theorem

Let N be a positive integer. Then there exist trees T} and T3 of order n
such that
dT(Tl,T2) - der(TlaTZ) = N.

Proof

We construct trees T} and 7, with a common vertex set
V = {u, ug, Us, Ug, Us, Ug, V1, Vg, ooy VaN 445 W1y Woooy Wy 42§ Both Ty and Ty
contain the edges u uy, ugus, usuy, ugus, usug and uqgv; forv = 1,2,...,2N +4.
Further, T contains the edges u4w; and T, contains the edges usw; for
1=1,2,..., N+ 2.

The subtree Ty induced in both T} and T3 by the set
{u1,uq, us, ug, us, ug, v1,...,V2n+4} has 2N + 10 vertices; evidently no tree
with more vertices than T can be isomorphic simultaneously tb a subtree

of T} and to a subtree of T3. The set V contains 3N + 12 vertices, hence
dT(Tl,Tg) e (3N + 12) - (2N + 10) — N + 2.

Let t; = (ug,us, ug) and t; = (us,uq,ug) be edge rotations and let
T} = t2t,T;. Define the bijection f:V — V such that f(us) = ug, f(us) =
us, f(us) = ug, f(ue) = us and f(z) = z for each z € V — {ug, uy, us, ug}.

The mapping f is an isomorphism of 7] onto Ty. Hence T! = T} and T| was
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obtained from T, by two edge rotations. Evidently no single edge rotation
will transform T} into T, (or vice versa) and hence der(T1,T3) = 2. The

result follows. O

The following theorem gives an upper bound for the edge move distance
between two graphs G, H € I'(p,q). The next four results first appeared in
|GS1].

3.3.12 Theorem

Let G and H have order p and size 7 (‘27) where 0 < 7 < 1. Then

don(G, H) < () 7(1 = 7).

Proof

Consider a random bijection ¢ from G onto H. We want to determine the
size of the greatest common subgraph of ¢(G) and H that is induced by
¢. For any edge e in G, the probability that ¢ maps e to an edge in H
is m. Thus it is expected that 7w (’;) edges of G will be mapped to edges
in H and thus the expected size of the greatest common subgraph of ¢(G)
and H is m? (’2’) Thus by the probablistic method there exists a bijection
¢ from G onto H such that a greatest common subgraph‘of #(G) and H

has size at least 7? (’2’) Hence G and H have a greatest common subgraph

with size at least 72 (’2’); thus

dem(G,H) <m (5) — 72 (g) =7 <§> (1—7)as required. O
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Since the expression (’;) 7(1 — ) is maximised for 7 = § the following

result needs no further proof.

3.3.13 Corollary

The maximum distance between two graphs in I'(p, ¢) under the edge move

. 2
distance is at most p—BP—.

From Corollary 3.3.13 above and Lemma 3.3.1 we also obtain the fol-

lowing result.

3.3.14 Corollary

The maximum distance between two graphs in I'(p, ¢) under the edge ro-

. . N 2_
tation distance is at most "—42

The following result determines an upper bound for the edge slide dis-

tance between two graphs.

3.3.15 Corollary

The maximum distance between two graphs G,G; € I'.(p,q) under the

edge slide distance is at most p—h;iﬂ —10.

Proof

From Corollary 3.3.6,

d.s(G1,G,) 2d,.(G,H) +6p— 10
2822 + 6p — 10 (by Collary 3.3.14)

2_ 2
EE+6p—10 = tUe g0,

IAIA A
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O

The following lemma will aid us in determining a lower bound for the

edge rotation distance.

3.3.16 Lemma

If {a;}i=12,.n and {b;}i=12,. n are two sequences of n nonnegative integers
n

with @) > a3 > ... > a, and D = ¥ |a; — b, then D is minimised when the
i=1

sequence {b;} is arranged in nonascending order.

Proof

Suppose {b;} is given in some, not necessarily descending order. It can
then be rearranged in nonascending order by means of a finite number of
term-interchanges each of which involves a pair of terms in ascending order;
i.e., b; and b; are interchanged if b; < b; and ¢+ < j. Specifically, interchange
the smallest b; with b, and the second smallest b; with b,_,, repeating this
procedure until we have a nonascending sequence.

It remains to show that a single interchange, as described above, de-
n
creases the value of 3° |a; — bi]. Suppose that b, < b, where p < ¢, then
i=1
obviously it suffices to look at the sign of

d = (la, — by| + |ag — bp]) — (la, — bp| + |ag — b,]). If d < 0O then the lemma

is proved. There are six cases to consider.

Case 1) Suppose a, > b,, then d = 0.
Case 2) Suppose a, > b, > ay > by, then d = —2[b, — q,|.

Case 3) Suppose a, > b, and b, > a,, then d = —2|b, — b,|.
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Case 4) Suppose b, > a, and a > b,, then d = —2[a, — aql-
Case 5) Suppose by > a, > b, > aq, then d = —2|a, — by
Case 6) Suppose b, > a,, then d = 0. O

The following theorem is from [GS1].

3.3.17 Theorem

Let G1,G; € I'(p,gq). Let the graph G have degree scquence d; > dy >
.. > d, and let the graph G, have the degree sequence e; > €3 > ... > ep.
Then

1 p
der GlaGZ _>_ EZ

Proof

Let V(G,) = V(G2) = {v1,vs,...,vp}, where the vertices of G; and G, are

labelled in such a way that degg, v; = d; and degg, v; = ¢; for 1 = 1,2, ..., p.

Since each edge rotation increases the degree of exactly one vertex by

1 and decreases the degree of exactly one vertex by 1, it follows that
P

der(G1,Ga) 2 % > |degg, vi — degg, vi|. 1t is then an immediate conse-
1=1

quence of Lemma 3.3.16 that

der GI)G2 Z

S ;

l\Jl‘—‘
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3.4 Graph Operations

Following [GSl] in this section, we now determine what effect some simple
graph operations on graphs Gy and G have on the distance between them.
The simplest operations are joining a vertex to a graph and adding an
isolated vertex to a graph. We denote the joining of a vertex to G by
G + K; and the adding of an isolated vertex to G by G U K.

It is clear that edge slide distance between graphs G;,Gz € T'.(p,q) is
preserved when the same number of isolated vertices are added to both G,
and G,; i.e.,

des(Gl U KI,GZ U Kl) = des(GlaG2)-

On the other hand Theorem 3.3.4 showed that joining a vertex to both
G1,G: € T'(p, ) can considerably reduce the edge slide distance between G}
and G,. In some cases (e.g. for Gy € ['.(p, ¢) and G € I'(p, ) disconnected)
it is possible to reduce the edge slide distance between two graphs from
being infinite between G; and G,, to being finite between G| + K, and
G, + K.

By the greatest common subgraph formulation, we see immediately that
both of the operations above preserve the edge move distance. These two
operations are in fact complementary, and as we saw in Theorem 3.2.4 the

edge move distance is preserved by complementation. While edge slide

distance is not preserved by complementation, edge rotation distance is.

3.4.1 Lemma

Let Gy,G; € I'(p, ¢), then allowing multigraphs in the intermediate steps in

transforming G into G via edge rotations does not aflect the edge rotation
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distance.

Proof

Assume we have a minimum edge rotation sequence t;,t,,...,t, where

th.tat G = Gy and tit;_y...tyt, Gy is a multigraph for some (1 < 1 <
n — 1) and where ¢ is a maximum; i.e., we assume that a multigraph is
formed as late as possible in the sequence. Assume that the edge rotation
t; = (z,v,y) results in there being two edges between vertices z and y where
z,v,y € V(tic1...t2t1G1), v € E(ti—1..t3t1Gy) and zy € E(ti_y..t3t,Gy).
Now since Gy is not a multigraph one of these two edges zy must be rotated
to a new position by the edge rotation t; = (y,z,w) say, where n > j > 1.
Now yw € E(t;...t5t,G,) otherwise we would eventually rotate the same
edge three times contradicting the minimality of the sequence t,t,...t,. But
consider the edge rotation sequence ty,2,,...,t;-1,¢;,ti,t;41, ..., t,. This edge
rotation sequence transforms G, into G5, however the formation of a multi-
graph is delayed, contradicting the maximality of 7. It is clear that by
repeating the process above we can obtain a sequence of n edge rotations

which do not involve multigraphs and the result is true. O

Consider G1,G3 € ['(p, g), then it is immediately obvious that d,,(2G1,2G;) =
2ds(G1, Gz). However, quite surprisingly, the analogous result for the edge

move and edge rotation distances does not hold.

3.4.2 Theorem

There exist graphs G, G; € I'(p, ) such that

i) dem(2G1,2G;) < 2d.,,(Gy, G,)
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i) d,,(2G1,2G,) < 2d.,(G1,G,).

Proof

i) Let F be a 4-connected graph with three distinguishable vertices z,y and
z say. Let G, be the disjoint union of four copies of I, namely Fy, Fy, F3, Fy
say, together with the four edges connecting Iy (z) to Fy(z), I3(z) to Fy(z),
Fi(y) to F3(y) and Fy(y) to Fy(y) (where for example, Fi(z) denotes the
distinguishable vertex £ € V(G,) in Fy, see Figure 3.4.3). Let G, be the
disjoint union of four copies of F, namely Fj, F;, F} and. F; say, together
with the four edges connecting F(z) to Fi(z), Fi(y) to Fi(y), F!(2) to Fi(z)
and Fj(z) to Fy(z). |

It is obvious that no two edge moves will transform G, into G5, hence

dem(G1,G2) > 3. Define the edge moves t; = (Fy(y), F3(y), Fi(2), F5(2)), ty =
(F2(y), Fa(y), F2(2), Fi(z)) and t3 = (F3(z), Fy(z), F3(y), Fi(y)). Then

t3t2t1G1 = Gz and hence dcm(Gl)GQ) = 3.

Label the graph 2G; as shown in Figure 3.4.3. Define the edge moves
ty= (Fi(y), B (v), Fa(2), Fa(2)), ty= (Fi(z), Fa(x), Fa(z), i (2)),

ty = (Fs(z), Fy(z), Fy(2), F3(2) and ¢, = (F2(y), Fi(y), Fs(2), F4(2)), then
tytythti Gy = 2G5 and hence

dem(2G1,2G2) S 4 < 2dem(G1,G2) = 6.

ii) Define the edge rotation t, = (Fy(z), Fs(z), F3(2)), t, = (F2(2), Fu(z), Fy(2)),
ts = (Fi(v), F2 (), F3(v)), ta = (Fi(v), Fs(v), F3(2)) and

ts = (F3(2), Fi(y), Fi(2)), then tgtytstot, G, = Gy, hence de,(G1,Gy) < 5.
That d,,(G1,G,) > 5 follows from the fact that there exist no four edge
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rotations which transform G, into G,. Hence d.(G;,G3) = 5. Now by

Lemma 3.3.1,

dcr(2G1,2G2) S 2dcm(2G1,2G2) S 8 <10 = 2dcr(G1,G2). |
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ZGl:
2G2:
X 0z z 6 o> X x<0 z z c’>
NN 0 { -0 7
F3' Fa' F3'

3.4.3 Figure

3.4.4 Definition

For any graph G, the subdivision graph of GG denoted by S(G), is the graph
obtained from G by replacing each subpath uv of length one in G by a path
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of length two, having v and v as end-vertices. Hence the order of S(G)

exceeds that of G by ¢(G)

. We now look at the effect of the subdivision operation on the edge

move and edge rotation distances.

3.4.5 Theorem

For all graphs G, G € T'(p, q), de (S(G1), S(G2)) < der(G1, Ga).-

Proof

For z,y,z € V(Gy), let t = (z,y, 2) be any edge rotation in an edge rotation
sequence which transforms G into G,. It is sufficient to prove that for
each such edge rotation t there is a corresponding edge rotation t" which
deletes the subdivided edge zy and creates a subdivided edge zz in the
transformation of S(G;) into S(G;). Suppose e is the vertex subdividing
the edge zy then the edge rotation t' = (e,y, 2) does what is required. O

3.4.6 Corollary
For all graphs Gy,G; € I'(p, q)
dem(S(Gl)a S(GQ)) S 2dem(G1a G?)

Proof

Evidently d..(S(Gy),S(G2)) < d..(S(G1),S(G,)), while from Theorem
3.4.5,d,,(S(Gy), S(Gy)) < d.,(Gy,G) and from Lemma 3.3.1, d,, (G, G,) <
2dc,—(Gl,G2). Therefore dem(S(Gl),S(Gz)) S 2dem(G1,G2). O
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3.4.7 Example

Let G, be the graph shown in Figure 3.4.8 and let G4 = Fs.

Gq: o ) S(Gy) e o

3.4.8 Figure

Obviously dem(G1,G2) = 1 while dem(S(G1),S(G2)) = 2. This example
shows that the upper bound in Corollary 3.4.6 is sharp since d.., (S(G1), S(G2)) =
2d.n(Gy,G>) in this case.

3.5 Ordering of Metrics

In [J1] Johnson presents a means of partially ordering some of the metrics
that we have studied so far; namely the induced subgraph metric d;, the
edge rotation distance metric d,,, the edge slide distance metric d,,, the
subgraph metric d,, and the discrete metric d4. Throughout the remain-

der of this section the results obtained are essentially from [J1] with the

\
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following exceptions: Lemma 3.5.20 and Theorem 3.5.21 are new, while
Theorems 3.5.15 and 3.5.22 have been modified to include the edge move

distance in the ordering.

3.5.1 Definition

A metric d : W x W — N U {0} will be called an tnteger metric with unit
Aif A = min{d(w,w') : w,w' € W and w # w'}. If an integer metric is
defined on a singleton set then we say that it has unit A for any A € N.
Now for any integer metric d defined on W we associate with it the graph
M (d) which has W as its vertex set, and for w,w' € W, ww' € E(M(d)) if
and only if d(w,w') = A.

3.56.2 Remark

For the edge rotation and edge slide distance metrics with unit A = 1 we
note that the graphs M(d,,) and M (d,,) are the edge rotation distance and
edge slide distance graphs defined in Sections 2.3 and 2.2 respectively.

3.5.3 Definition

~Let d and d' be distinct integer metrics defined on W; then if M (d) is a
subgraph of M (d'), we say that d ezpands d', denoted by d > d'. Since
the subgraph relation is a partial order, this expansion relation is also a
partial order. We shall say that d strictly ezpands d', denoted by d > d', if

d expands d', but not vice versa.

Thus to obtain a partial ordering of the set D = {d,,,d.,, dom, d,, di, dy}

it will be necessary to restrict ourselves to I'.(p,q), or if we wish to obtain
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a partial ordering of a proper subset of D, we will accordingly work with

the most restricted domain of this subset.

We recall that the discrete metric dy : I' x I' — {0, 1} is delined by
dd(Gl,Gg) =0if G1 = G2 and dd(Gl, Gz) = 1, otherwise.

3.5.4 Lemma

Let d and dy be integer metrics defined on W such that d has unit A and dy4
is the discrete metric. Then d > dy and if d(w,w') > A for any w,w' € W,
then d > dg. |

Proof

The graph M (d,) associated with d; is the complete graph, since by defi-
nition w,w' € W and w # w' implies that d,(w,w') = 1. Since all graphs
with vertex set W are subgraphs of the complete graph with vertex set W,
it follows that M (d) is a subgraph of M(dy) and d > d,. If d(w,w') > A

for any w,w' € W, then ww' € E(M(d)) and thus M(d) is not complete;
so M (dy) is not a subgraph of M(d) and d > d,. O

3.5.5 Lemma

Let d and d' be integer metrics defined on W with units A and A’ respectively.
If for w,w' € W,d{w,w') = X implies that d'(w,w') < A\* where \* is an
integer and A' > A*, then M = A* and d > d'.
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Proof

If W is a singleton set, the proposition is true by setting A* = A'. Suppose
then that W is not a singleton set. Then there exist w,w' € W such that
d(w,w') = X. This implies d'{w,w') < A*, and by definiton of A, that
d'(w,w') > N, hence X' < A*. However, X' > X*; therefore A" = A™. 1lence
d(w,w') = X implies d'(w,w') = X; thus M(d) is a subgraph of M(d') and
d>d. U

We note that if d and d' are integer metrics defined on W with units A
and X' respectively, then
i) If W is a singleton set then d > d' and d' > d.

i) If W contains two distinct elements then d > d' if and only if A < X"

3.5.6 Lemma

Let d and d' be integer metrics defined on W with units A and A’ respectively.
Let W' Cc W. If d > d' and if d|W' (the restriction of d to W') has unit A
then d'|W' has unit A" and d|W' > d'[W". '

Proof

Let w,w' € W. Then since d > d', ww' € E(M(d)) implies ww' €&
E(M(d')). Let v,v' € W' such that d(v,v') = A; however this implies
that d'(v,v’) = X'. Hence vv' € E(M(d|W')) implies vo' € E(M(d'|W'),
and thus M(d|W') is a subgraph of M (d'|W') and d|W' > d'|W'. O
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3.5.7 Definition

For any metric d defined on W, we say that d is connected if M(d) is a
connected graph. If M(d) is connected then for any w,w' € W there exists
a shortest path connecting w and w' in M (d), the length of which we denote
by 6(w,w'). The function § : W x W — N U {0} associated with d is a

metric defined on W which we call the path metric associated with d.

3.5.8 Example
The metric d defined on {1,2,3} by d(1,2) =1, d(1,3) = 2 and d(2,3) = 2
has unit A =1 and M (d) = K, U K;, which is not connected.

3.5.9 Lemma

Let d be a connected integer metric with unit A defined on W, and let § be

the path metric associated with d. Then for every w,w' €¢ W
d(w,w') < A6(w,w').

Proof

We proceed by induction on é(w,w'). The statement obviously holds if
b(w,w') = 1.

Suppose w = wo, wy,ws,...,w, = w' is a path of length b(w,w') = n
in M(d). Then d(wo,ws) < d(wo,w;) + d(wy,wy) = 2X by the triangle
inequality. Similarly d(wo,ws) < d(wo, wy) + d(wq,w3) = 2XA + A = 3.
Assume d(wq, w;) < kX for 3 <k <n —1 then

d(wo, wrs1) < d(wp, wi) + d(wr,Wey1) = kA + X = (k4 1)A.
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Therefore

d(wo, wy) = d(w,w') = An = A§(w,w') as required. O

The following lemma will be useful in proving that the metrics we have

studied, subject to their various restrictions, are connected.

3.5.10 Lemma

Let d and d' be any two integer metrics defined on W. 1f d > d' and if d is

connected, then d' is connected.

Proof

Since d > d', M(d) is a connected subgraph of M(d') and since M(d) and

M (d') have the same vertex sct, the result lollows. N

3.5.11 Definition

Let d be any connected integer metric on W with associated path metric 6.
If d(w,w') = A§(w,w') for all w,w' € W then d will be said to be graphable.
Note that 6 is alwziys graphable with unit 1.

Note that if we define d' : W x W — N U {0} by d'(w,w') = ﬂ%w—,l,
we see that any graphable metric with unit A is equivalent to a graphable
metric with unit 1. However, if d is not graphable, d' may not be an integer

metric. From now on we assume, unless stated otherwise, that all metrics

have unit 1.
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The following example shows that a metric can be connected, but not

graphable.

3.6.12 LIxample

Deline the metric d on {1,2,3,4} by d(z,71-1) = 1 forz = 1,2,3, d(1,1+2) =
2 for 1 = 1,2, and d(1,4) = 2. Sce Iigure 3.5.13.

M(d):

3.5.13 I'igure

To see that M (d) misrepresents d in the sense that d is not graphable, note

that 6(1,4) = 3 and d(1,4) = 2 # 3 = §(1,4). The metric d can be changed
into a graphable metric by redefining d(1,4) = 3.
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3.5.14 Lemma

Let d and d' be integer metrics defined on W with units A and A’ respectively.
Let d be graphable. If d > d', then d(w,w') > (—;\—,) d'(w,w') for all w,w' €
w.

Proof

By assumption, d is graphable and hence

= 6(w,w'). ~ (1)

Lemma 3.5.10 and d > d' together imply that d' is connected. Thus §' is
a well defined metric. M(d) is a subgraph of M(d') therefore §(w,w') >

6'(w,w'), and hence from (1)

d !
W) > () ~ (2)
From Lemma 3.5.9
! !
§w,0') > 100 -3

The equations (2) and (3) together imply that ﬂ“ﬁ/\w—') > ﬂ%,w—'l,

, AN
Le. d(w,w') > (;) d'(w,w') as required. O

It is now possible to start developing the partial ordering of the metrics

di) d.!a d:m, dcr and dcs-

3.5.15 Theorem

The integer metrics, d;,d,,d.n,d,, and de, all strictly expand dy on their

respective domains.
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Proof

These are just special cases of lemma 3.5.4. O

3.56.16 Theorem

The restriction of d, to I'(p) expands the restriction to I'(p) of d; for any
peEZt.

Proof

Let e be any edge of K,. Then d,(Ky, K, — e} = 1, Thus d,|I'(p) has unit
1. Let M(d,|I'(p)) be the graph asso'ciated with the metric d, restricted to
I'(p)-

Let GH be any edge in M (d,|T'(p)); then d,(G, H) = 1. Therefore either
G is a proper subgraph of H or vice versa. Without loss of generality assume
G is a proper subgraph of H, then cither V(G) = V(II) and |E(H) —
E(G)| =1 or E(G) = E(H) and |V (1) - V(G)| = 1.

Case 1) Assume V(G) = V(H) and |E(H) — E(G)| = 1. Let uv € E(H) -
E(G). Then G—u is an induced subgraph of both G and I, therefore
(G, H) = 1.

Case 2) Assume E(G) = E(H) and |V(H)—-V(G)| = 1. Then G is an induced
subgraph of both G and H and therefore d;(G, ) = 1.

In both cases we have d;(G, H) = 1; hence d (G, H) = 1implies d;(G, H) =
1 and therefore GH € E(M(d;)). Hence M (d,(I'(p)) is a subgraph of M(d;)
and consequently d,|I'(p) expands d;|T(p); i.e., d,|['(p) > di|T'(p).
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To show d,|T'(p) > d&;|T'(p) for p > 3 we note that for p > 3, there exist
w,v,w € V(K,). Let G = K, and H = K, —uv —uw. Then d,(G,H) =2 >
1 = d;(G, H) and therefore d; does not expand d, since GII € L(M(d;))
but GH € E(M(d,)T'(p)) and hence d, > d; for p > 3. O

3.5.17 Lemma

The metric d, restricted to I'(p, ¢) has unit A > 2.

Proof

Suppose G,H € T'(p,q) such that d,(G,H) = 1. Then G is a proper
subgraph of H or vice versa, and hence either G ¢ I'(p,q) or H ¢ I'(p, q).

The contradiction establishes the lemma. O

3.5.18 Theorem

The edge rotation metric d., on T'(p,q) expands the restriction of d, to

I'(p, ¢), and there exist integers p and ¢ such that d.,|I'(p, q) > d,|T(p, q).

Proof

We establish the conditions of Lemma 3.5.5. Let d,|I'(p, q) have unit \';
then, by Lemma 3.5.17, \' > 2.

Let G, H € I'(p, g) such that GH is an edge of M(d,,); i.e., d., (G, H) =
1. By the definition of the edge rotation distance we may assume without

loss of generality that H = G — uv + vw where u,v,w € V(G),uv € E(G)

- and vw € E(G).
Since H = G — uv + vw it follows that uv € E(H) while vw € E(H).
Hence G — uv is a subgraph of both G and II, and, therelore d, (G, IT) < 2.
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Thus we have that d,, (G, H) = 1 implies that d,(G, 1) <2 where the unit
of d,|I'(p,q) is A' > 2. Applying Lemma 3.3.5 with A* = 2, we obtain

der 2 4|1y q)-

To show that there exists p and ¢ such that d., > d,|I'(p,q) consider the

graphs G and I shown in Iligure 3.5.19.

3.5.19 I'igure

Any single edge rotation of any edge on the 6-cycle Cs = 1234561 in G,
will not transform G into I since it will produce a graph with no 6-cycle.

A single edge rotation t involving cither the 26 or 35 edpe in ¢ eliminates
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the existence of a 4-cycle in tG unless a vertex of degree four is formed,
and H contains no vertex of degree four. Thus no singlg edge rotation will

transform G into H, hence d,,.(G, H) > 2, and therefore
GH ¢ E(M(d.,)). ~ (1)
Since G — 35 is a subgraph of G and H, we have
d,(G,H)<p+qg+p+tqg—-20p+tqg—1)=2
and since G % H and since \' > 2 we haye that d,(G, H) = X' = 2. Hence
GH € E(M(d,|l'(6,8)). ~ (2)
Together (1) and (2) imply that M(d.,|I'(6,8)) is not a subgraph of

M(d,)|T'(6,8) and hence d, < d,,, in this case. O

We will now show that the subgraph metric d, restricted to I'(p,¢q) is
equivalent to the edge move distance d,,,, (which is defined on I'(p, ¢)) in the
sense that M (d,|I'(p,q)) = M(d.n) for all p and g¢; i.e., d,|I'(p, q) > d., and
dem > d,|T'(p, ¢), we denote this equivalence by d.,, ~ d,. Conscquently the
fact that d.,, > d&i|I'(p, ¢) and d., > d.,, will need no further justification.

The following lemma will aid us in establishing this equivalence.

3.5.20 Lemma

Let G, H € I'(p, q) then d,(G, H) = 2d..(G, H).
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Proof

Recall that d,(G, H) = min{|G| + |H| — 2|F|} taken over all graphs F
which are isomorphic to subgraphs of both G and H. Suppose F” is a
graph which minimises the expression above. Obviously |V (F*}| = p and

suppose |E(F*)| = s, then
ds(G,H) =2p+2¢—-2(p+s) =2(q—s).

Now obviously deleting any isolated vertices from I'* yields a greatest
common subgraph of G and H which contains no isolated vertex and hence

by Theorem 3.2.7, d..n(G, H) = ¢ — s and the result follows. O

3.5.21 Theorem

The graph M(d,|I'(p, q) is isomorphic to the graph M(d...); i.e., dem ~
d|I'(p, q).

Proof

Let G, I € I'(p, q) such that d...(G, ) = 1; i.e., Gl € I5(M(d,,,)). Lem-
mas 3.5.17 and 3.5.20 together imply that d,(G,Il) = 2 and d,|I'(p,q) has
unit A = 2. Hence GH € E(M(d,|l'(p,q))) and M(d.,,) is a subgraph of
M (d,|T(p, q))-

Conversely suppose d,|['(p,¢) has unit A > 2 and that G, H ¢ I'(p, q)
such that d,(G,H) = A, i.e. GH € E(M(d,|I'(p, q))). By Lemma 3.5.20,
d., has unit %, and d.,(G,H) = %, hence GH € E(M(d.n)). Thus
M (d,|T'(p, q)) is a subgraph of M(d.,).

It now follows that M(d,|I'(p, q)) = M (d..,). O
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3.5.22 Theorem

If we restrict the metrics dy,d;,d;,dem,de, and dg, to T'(p,q) then dy <
d; <d, ~den <d, <d,. Moreover, there exist integers p and ¢ such that
deg < d; < dy ~ dem < dey < d.s.

Proof

First we show that the expansion relation is transitive. Suppose d,d' and
d" are distinct integer metrics such that d > d' and d' > d". Then M (d)
is a subgraph of M(d') and M (d') is a subgraph of M(d"). It is thus clear
that M (d) must be a subgraph of M(d") and therefore d > d". Thus we
haved > d' > d". ,

From Lemma 3.5.5 and Theorems 3.5.15, 3.5.16, 3.5.18 and 3.5.21, to-

gether with the transitivity of the expansion relation, we have that
ddgdigdawdcmgdcr

where we will assume that all metrics are restricted to I'.(p, ¢). Therefore
to establish the first statement of the theorem we need only show that
des > d... However this is trivial since the edge slide is just a special case
of the edge rotation, and therefore d.(G, H) = 1 implies d,, (G, H) = 1.
Hence M(d.,|T¢(p, q)) is a subgraph of M(d,,|T.(p,q)), and we have

ddsdigda'vdemgder Sdew

To establish the strict expansion relation for some (p,q), we consider the

graphs in Figure 3.5.23.
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3.5.23 [Iigure

First note that C — v contains a 5-cycle for all v € V(C). Since A does
not contain a 5—cycle, we have that a maximum induced subgraph (with
respect to order) of both A and C has order less than 8. But d,(A,C) =n
where by definition n is such that p(A) — n is the maximum order of an

induced subgraph of both A and . Therelore p(A) - w9 < 8 and
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hence n > 1. Thus d;(A4,C) > 1. Thus it follows that M (d;|I’.(9,11) is not
complete and therefore a subgraph of M(d4|T.(9, 11)),hence‘

d;i|Le(9,11) > dyl'c(9, 11). ~ (1)

Now it is clear that A — b = B —b. Thus d;(A4,B) = 1. However
B — €' contains a 3-cycle for all ¢’ € I(B), while A contains no 3-cycles.
Therefore d,(A,B) > (11 +9) + (11 + 9) — 2(9 + 10) = 2. Since the
unit of d,|T'¢(9,11) is A = 2 we have that AB € E(M(d;|T';(9,11))) while
AB ¢ E(M(d,|T.(9,11))) and thus M(d;|T';(9,11)) is not a subgraph of
M(d,|T(9,11)), this together with Theorem 3.5.21 yields

dy|To(9,11) ~ d,|T,(9,11) > d;

r,(9,11). ~(2)

Since C — at = D — gh we have that d,(C, D) = A = 2. However there
exists no single edge rotation that will transform C into D. This is because
a rotation of any edge on the 8-cycle in C, creates a graph in which there is
no 8-cycle, and D has an 8-cycle . Also rotating any one of the edges dc,ef
or at so as to form a 3-cycle, as in D, will either create a graph with a

vertex of degree 4 or a graph with no end-vertex. Therefore d,,(C, D) > 1.
It follows that

dor|Te(9,11) > dy|Te(9,11) ~ dyr|T4(9, 11) ~(3)

Finally let t = (c,d,h) be an edge rotation. Then tD = E. Thus
der(D, E) = 1. To show d,,(D, E) > 1, note that there exist no edge slides
of the form t, = (g,7,v) or t; = (h,7,v) where v € V (D), since these create
multigraphs. Any other edge slide of any edge lying on the 8-cycle of D

will create either a graph in which there exists no 8-cycle or a graph with
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no end-vertex, and E has both an 8-cycle and an end-vertex. The edges
gh,ef and dc of D cannot be slid to form a 3-cycle with one of the vertices

on the cycle adjacent to an end-vertex, and D has such a vertex. It follows

that d.,(D, E) > 1, and that
des|Te(9,11) > d,,|U.(9, 11). ~ (4)

Together (1), (2), (3) and (4) imply that there exist integers p and ¢
such that

des|Le(py @) > der|Te(py q) > do|Le(p, g) ~ dem|Te(p, g) > d;

FC(Pa q) > dd|FC(p’q)'
O
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Chapter 4

The Steiner Problem in
Graphs

4.1 Introduction

The original Steiner problem is easy to state: In a Euclidean space (usually
a Euclidean plane) draw the shortest possible network of line segments
interconnecting, say, 100 given points. [lowever this problem is unsolvable
in many cases. The practical importance to designers of telephone networks,
for example, is obvious, and has led to the development of algorithms that
yield rough solutions quickly.

The Steiner problem generally cannot be solved by simply drawing lines
between the given points, but it can be solved by adding new points, called
Steiner points, that serve as junctions in a shortest network. 7To deter-
mine the location and number of Steiner points, mathematicians and com-
puter scientists have developed algorithms or precise procedures. However
even the best of these algorithms running on the fastest computers can-
not provide a sol_ution for a large set of given points because the time it

would take to solve such a problem is impractically long. Furthermore, the
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Steiner problem belongs to the class of problems known as NP-Hard prob-
lems, for which many computer scientists now believe an efficient algorithm
may never exist. Thus the importance of approximate solutions becomes
apparent. Such approximate solutions are used routinely in designing inte-
grated circuits, determining the evolutionary trees of groups of organisms
and minimizing materials used for networks of telephone lines, pipelines
and roadways.

The Steiner problem, in its general form, first appeared in a paper by
Milosg, Kossler and Vojtéch Jarnik in 1934, but the problem did not become
popular until 1941 when Richard Courant and Herbert E. Robbins [CR1]
included it in their book What Is Mathematics? Courant and Robbins link
this problem to the work of Jacob Steiner, the famous geometer at the
University of Berlin in the early nineteenth century. Steiner worked on the
following problem. Three villages A, B,C are to be joined by a system of
roads of minimum total length. Mathematically, three points A, B, C are
given in a plane, and a fourth point P in the plane is sought so that the
sum a + b + ¢ is a minimum, where a,b and ¢ denote the three distances
from P to A, B and C respectively. Bvangelista Torricelli (1608- 1647) and
Francesco Cavalieri (1598 - 1647) solved the problem independently. They
deduced that if in a triangle ABC all angles are less than 120° then P is
the point from which each of the three sides, AB,BC and CA subtends
an angle of 120°. If, however, an angle of triangle ABC, say the angle at
C, is greater than or equal to 120°, then the point P coincides with the
vertex C. Torricelli and Cavalieri also developed geometric constructions
for finding P. (See pages 356- 358 of [CR1].)

It is natural to generalize the problem to the case of n given points,
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Ay, A, ..., An; we need to find the point P in the plane for which the sum
of the distance a; +ay+ ... +a, is a minimum, where q; is the distance from
point P to point A;. This problem, which was also treated by Steiner, does
not lead to interesting results. To find a significant extension of Steiner’s
problem we abandon the search for a single point P. The extension we
are looking for is expressed by Courant and Robbins as [ollows: Given n
points Ay, Ag,..., A, we seek a connected system of straight line segments
of shortest total length such that any two of the given points can be joined
by a polygon consisting of segments of the system. This problem is called
The Steiner problem.

A similar problem to the Steiner problem, which was proposed by 7Z.A.
Melzak in [M1], will lead us to the extension of the Steiner problem which
we shall study in some detail. Melzak proposed the problem of connecting
n given points in the plane by line segments between these n points, so
that the sum of these distances is a minimum. Extending this problem a
bit further, to include graphs, we will arrive at the problem which we will
call the Steiner problem in graphs. This is the problem which we shall
study in detail in this chapter.

We shall define the Steiner distance of a set of vertices in a connected
graph G (which is a generalization of the well-known concept of distance)
and then investigate properties of the Steiner distance and its related struc-
tures. Since simplifications occur if the graph G is a tree and the related
results differ significantly from those pertaining to graphs which contain
cycles, we shall deal with trees in Section 4.3 and consider more general
graphs in Section 4.4. Representative techniques of calculating Steiner dis-

tances (precisely or approximately) are provided in Section 4.5.
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4.2 The Steiner Problem in Graphs

The distance between two vertices £ and y in a given graph G may be
defined as the minimum size among all connected subgraphs of G whose
vertex sets contain z and y. It is clear that every such subgraph of G would
be a shortest path between z and y, as demanded by the standard definition
of distance. This leads naturally to a generalization of distance, where we

may consider a distance among a set of two, three or more vertices (see

[COTZ1]).

4.2.1 Definition

Let G be a connected graph of order at least two and let S be a nonempty
set of vertices of G. Then the Steiner distance d(S) among the vertices of
S (or simply the distance of S) is the minimum size among all connected

subgraphs of G whose vertex sets contain S.

4.2.2 Note

If H is a connected subgraph of G such that S C V(1) and |E(H)| = d(S),
then H must be a tree, since if H contained cycles then removing an edge
from one of these cycles would yield a connected graph 1/* with fewer edges
than H, with V(H') = V(H) D S, contradicting the minimality of H. Such
a tree is referred to as a Steiner tree for the set S. Further, if $ = {u,v}

where u,v € V(G), then d(S) = d(u,v), while if |S| = n then d(S) >n—1.
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4.2.3 Remark

The Steiner problem in graphs is thus to connect a subset S of vertices of
a graph G with a tree of minimum size which is a subgraph of G. The
difference between this problem and the original Steiner problem is that
no new points (vertices) are added here and the network of line segments
(edges) are already present in the graph G. The problem is to find which
edges of the graph G are to be used in the Steiner tree.

4.2.4 Example

If G is the graph of Figure 4.2.5 and S = {u,v,z}, then d(S) = 4; there
are two trees 17 and T; of size 4 containing S, both of which are shown in

Figure 4.2.5.
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4.2.5 Figure

4.2.6 Example

Let G, = K,_yn-1, with partite sets Vi = {uj,ug,...,u,_1} and V3 =

{v1,v2, ...y Vn1} and let S be any set of n vertices of G. Then (S) is con-
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nected and hence d(S) =n — 1.

4.2.7 Remark

The usual distance between pairs of vertices defined in a connected graph G
is a metric on its vertex set. Thus for vertices u,v,w € V(G) the properties
(1) d(u,v) > 0 and d(u,v) = 0 if and only if u = v, (2) d(u,v) = d(v,u)
and (3) d(u,w) < d(u,v) + d(v,w) hold.

Chartrand, Oellermann, Tian and Zou [COTZ1] extended properties
(1) and (3) to include the Steiner distance. Let G be a connected graph
and let S C V(G), where S # 0. Then d(S) > 0, while d(S) = 0 if and
only if |S| = 1, which extends property (1) above. To obtain an extension
of (3), let S, S; and S; be subsets of V(G) such that § # S C S, U S; and
S1N Sy # 0. Then d(S) < d(Sy) +d(Sz). To see this, let T; be a tree of size
d(S;) such that S; C V(T;) for 1 = 1,2. Let H be the graph with vertex set
V (Ty) UV (T2) and edge set E(Ty) U E(T,). Now T; and T, are connected
and V(T1) NV (T3) # 0, hence H is connected. Since S C V(II) and since
H is connected, d(S) < q(II) < d(S;) + d(Sz). (The extension of (2) to
Steiner distance is obviously tautologous: d(S) = d(95).)

In [COTZ1] the concepts of eccentricity, radius and diameter were gen-

eralized to accommodate the Steiner distance.

4.2.8 Definition

Let G be a connected graph of order p > 2 and let n be an integer with
2 < n < p. The n-eccentricity en(v) of a vertex v € V(G) is delined by

en(v) = max{d(S): S C V(G),|S| =n, and v € S}.
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The n-radius of G is defined by
rad,G = min{e,(v) : v € V(G)}
and the n-diameter of G is delined by
diam,G = max{e,(v) : v € V(G)}.

Note that for n = 2 we have e;(v) = e(v) for all v € V(G) while
rad,G = radG and diam,G = diamG.

4.2.9 Example

In Figure 4.2.10 each vertex of the graph G is labelled with its 3-eccentricity,
so that radsG = 4 and diam;G = 6.
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4.2.10 Figure

4.3 Steiner distance in Trees

We now focus our discussion of Steiner distance on trees. We study trees
separately mainly due to the fact that there is a unique path between every
pair of vertices in a given tree T. This simplifies the search for a connected
subgraph of T of minimum size containing a given set S C V(G). Thus it is
possible to obtain various properties and results related to Steiner distance,

which hold for trees but not for graphs in general. We follow [COTZ1].
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4.3.1 Lemma

Let T be a nontrivial tree and let S C V(T) where |S| > 2; then there is a

unique subtree Ts of T of size d(S) containing the vertices of S.

Proof

Suppose to the contrary that there exist two nonisomorphic trees Ts and
Ts: both of size d(.S) which contain the vertices of S. Since Ts # T's: there
exists an edge e € E(T') say, such that e € E(1s) and e ¢ £ (1’s)). Now
since T is a tree of minimum size that contains S, there exists a pair of
vertices u,v say, of S such that the v — v path in T's contains the edge e.
However Tss contains a v — v path which does not contain the edge e and
hence there are at least two distinct u — v paths in T, which is impossible.

Hence Ts = Tgr. O

4.3.2 Definition

Let T be a nontrivial tree and let S C V(T') where |S| > 2, then the unique
subtree 1's of 1" of size d(S) containing the vertices of S is delined to be

the tree generated by S denoted by 7.

4.3.3 Note

If S and S are sets of vertices of a tree 7" such that S ¢ S', then T C Tse;
otherwise Ts contains an edge e say, that does not belong to Ts: and a
similar discussion to that followed in the proof of Lemma 4.3.1 provides
a contradiction. Hence if S is a subset of the vertex sct of a tree 7' and

ve V(T)— S then Tsu(wy D Ts. Let w be the (unique) vertex of T whose
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distance from v is a minimum. Then Ty} contains the unique v — w path
in T and
d(S U {v}) = d(S) + d(v,w)

or equivalently

d(S U {v}) = d(S) + d(v,Ts)

where d(v,Ts) denotes the minimum distance from v to a vertex of Ts in T'.

We denote by Vy(T') the set of end-vertices of a tree 7' and the number

of end-vertices in T is denoted by p;(T).

4.3.4 Lemma

Let T be a tree and let S be the set of end-vertices of 17 i.e., S = Vi(T),
then Ty =T.

Proof

Suppose to the contrary, that there exists a vertex v € V(7') such that
v & V(Ts). Sincev & V(Ts), v ¢ S and hence degrv > 2. Let z and y
be distinct vertices of T" which are adjacent to v. Let P, = vzz,...x,, be a
longest path in 7" which begins with the edge e; = vz. Then z,, must be an
end-vertex of T'; i.e., z,, € S. Similarly, let P, = vyy1ys...yn be a longest
path in T" which begins with the edge e; = vy. Then y,, € V}(T) = S.
Hence the unique z,, — y,, path in T contains the vertex v. Iowever since
v & Ts there is no z, — y,, path in Ts which implies that T’s is not con-

nected, which contradicts the definition of Ts. Therefore Ts = T. O
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The following corollaries follow directly from Lemma 4.3.4 and require
no further proof.
4.3.5 Corollary
Let T be a tree, and let S = Vy(T'). Then d(S) = ¢(T) and d(S U {v}) =
d(S) = ¢(T) for all v € V(T).
4.3.6 Corollary

Let T be a tree and n > 2 an integer with p,(T) < n, then e (v) = ¢(T)
for all v e V(T).

The following result considers n-eccentricities of vertices in trees with

at least n end- vertices.

4.3.7 Theorem

Let n > 2 be an integer and suppose that T is a tree of order p with
pi(T) >n. Let ve V(T). If S C V(T), such that v ¢ S, [S| =n — 1 and
d(S U{v}) = en(v), then S C V(7).

Proof

Suppose, to the contrary, that there exists a set S of 7" which satisfies the
hypothesis of the theorem such that § Z Vi(T'). Then there exists a vertex
w € S such that degr w > 2. Let T denote the subtree of 7" generated by
So = S U {v}, and let T} be the branch of T" at w that contains v. Suppose

there exists an end-vertex =z of T in a branch of T at w which is different

142



from T}, such that z ¢ S. Then
d(So U {z}) = {w}) > d(So) = en(v),

since the only path from z to v in T includes the vertex w and hence
w € V(Tsyu{z}-{w}), Which produces a contradiction. Hence there is no
such end-vertex z.

Thus every end-vertex y of T in a branch of T' at w different from 7} is
in S. Now deg, w > 2; hence there are at least two branches T} and Ty of
T at w, and there exist vertices z;,2y € S — {w} such that z; € V(1}) and
zy € V(T,). Now the unique z; — z; path in T contains the vertex w. But
then Tp is also the tree generated by S; = Sy — {w}. Let u € V{(T') such
that y ¢ S. Then

d(S; U {y}) > d(So) = e,(v), again a contradiction. O

4.3.8 Corollary

Let n > 2 be an integer and T" a tree with p,(T") > n. Then diam,T" = d(S),

for some set S of n end-vertices of T.

Proof

If n = 2, then diam,T = diamT, and S consists of a pair of end-vertices of
T between which there is a path of maximum length in T. Assume then
that n > 3. Suppose that v € V(T') with e,(v) = diam,7. Let S’ be a set
of n — 1 vertices of T such that d(S' U {v}) = en(v). By Theorem 4.3.7,
S'CVi(T). If w € S, then en(u) > d(S'U {v}) = en(v), which implies
that e,(u) = diam, T. However, then S" = S’ U {v}—{u}isasetof n—1
vertices of T' such that d(S"U{u}) = e,(u) and again by Theorem 4.3.7 we
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have that S" C Vi(T) and hence v € V{(T). Therefore § = S'U{v} is a set
of n end-vertices of T with d(S) = diam,T. O

4.3.9 Lemima

Let S be a set of n > 3 end-vertices of a tree T and suppose that v € S.
Then Ts_(y} can be obtained from Ts by deleting v and every vertex of

degree 2 on a shortest path from v to a vertex of degree at least 3 in T5.

Proof

Let $' =S — {v}. Then from Note 4.3.3 we have that
d(S'U {v}) =d(S') + d(v,Tsr); hence

d(S — {v}) = d(S) — d(v, Ts:). ~ (1)

Now d(v, Ts) is the length of a shortest path P = vv,v,...v, in T such that
v, € V(Ts:) and v; € Ts for 1 <¢ <n—1. Now degp , v, > 2, otherwise v,
is an end-vertex of Tsr and hence of T. But then degy v, > 2 and hence

degr v, > 2 which is a contradiction. Therefore degy v, > 3.

Now Ts — {v,v1,v2, ..., Un-1} = Ts_{y} is a tree with d(S) — d(v,Ts:) =
d(S — {v}) edges, and since by Lemma 4.3.1 this tree is the unique subtree
of T of size d(S — {v}), the result follows. O

The following result proves to be a useful tool in establishing some
important properties in the remainder of this section. We present a slightly

different proof to that which appears in [COTZ1].
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4.3.10 Theorem

Let n > 3 be an integer and suppose that 7' is a tree with p; > n end-
vertices. If v is a vertex of T such that e,(v) = rad,T", then there exists a

set S of n—1 end-vertices of T such that d(SU{v}) = e,(v) and v € V (Ts).

Proof

Assume that the proposition is false. Then there exists a tree T that is
a counterexample to the proposition and a vertex v in 1" for which the
conclusion fails.

By Theorem 4.3.7, there exists a set S of n — 1 end-vertices of T such
that e,(v) = d(S U {v}). From our assumption it follows that v ¢ V (Ts);
hence S is contained in a single component, Tj say, of T'— v. Let u be the
unique vertex of T that is adjacent to v in T and let 73 be the component
of T'— u that contains v. Then 7} and T} are the two components of T'— uv
and T is decomposed into Ty, 7, and the complete graph of order 2 with u
and v as vertices. Note that d(S U {u}) =d(SU{v}) —1=e,(v) — 1.

Now since e,(v) = rad, 1" we have e,(u) > e,(v); let 12 be aset of n—1
end-vertices of T such that d(R U {u}) = e,(u). Then R € V(T}), since
otherwise, if R C V(T1), then d(RU {v}) = d(RU {u}) + 1 > e,(u), which
implies that e,(v) > e,(u). Furthermore, if 2 contains at least one vertex

from each of V (T) and V (T3) then T contains the vertices v and v and so
d(RU{v}) =d(R) = d(RU {u}) = ea(u) > e.(v) > d(R U {v}),

so that d(R U {v}) = e,(v), which contradicts our assumption about T and
v. Hence R C V (T3,). Furthermore

dRU(v}) = d(RU{u}) — 1 = en(u) — 1 > en(v) — 1.
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Nowlet z € S,y € Rand let §; = (S—{z})U{y} and S, = (R — {y})u{z}.
We note that SUR = S;US,, so Tsur = Ts,us, and uv € E(Ts,)NE(Ts,)-

Now
[E(Ts,us:)| = |E(Tsor)l = [E(Tsuy)l + 1 E(Tru) +1

= en(v) = 1+en(u) = 1+1=e(v) +enfu)—1.
But

|E(Ts,us,)| = |E(Ts,)| + |E(Ts,)| — |E(Ts,) 0 E(Ts,)]
< |E(Ts)| + 1E(Ts;)| — 15

hence e,(v) + en(u )—1<|E( )+ E(Ts,)| = 1. So |E(Ts,)| + |E(Ts,)| >
en(v) + en(u) > 2e(v).

It follows that |E(Ts,)| > en(v) or |E(Ts,)| > en(v); assume without loss
of generality that |E(Ts,)| > e.(v). However, Sy is a set of n — 1 vertices,

SO
en(v) 2 |E(Ts,0m| 2 [E(Ts,)] 2 en(v);

hence e,(v) = |E(Ts,u(v})| and v € T,, contrary to our assumption about

v and T. Hence the validity of the theorem follows. ‘ O

4.3.11 Corollary

Let n > 3 be an integer and suppose that T is a tree such that p,(T') > n.

If v is a vertex of T with e, (v) = rad,T, then v is not an end-vertex of T.

Proof

Let S be a set of n — 1 end-vertices of T such that e,(v) = d(S U {v}) =

rad,T. From Theorem 4.3.10 we have that d(S) = d(S U {v}). As-
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sume to the contrary that v is an end-vertex of T. Then v € S and

d(SU{v}) > d(S)+1 > d(S) which is a contradiction. Hence v ¢ V1(7).0

Before presenting the next result we introduce some additional termi-

nology, which was used by Oellermann and Tian in [OT1].

4,.3.12 Definition

For any tree T having at least three end-vertices, a shortest path from an

end-vertex v of T to a vertex of degree at least 3 in T is called a stem of T'.

A relationship between the n-diameter and the (n — 1)-diameter of a
tree, where n > 3 is an integer, was established in [COTZ1| and we now

present this result.

4.3.13 Theorem

Let n > 3 be an integer and T a tree of order p > n. then

. v . el n . 1
diam,_,T" < diam,1" < < 1) diam,,_; 7.

n —

Proof

Suppose S is a set of n — 1 vertices of 7" such that d(S) = diam,_,T. Then

for every set S' of n vertices of T, where S C S', we have
diam, ;T = d(S5) < d(S') < diam, T

Hence the left inequality in the statement of the Theorem follows.
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To verify that diam,T" < (;’_‘—1) diam,,_,7", we note firstly that if T has
at most n — 1 end- vertices then diam,T" = diam,_{T" = p — 1 and hence
diam,T < ;Zydiam,-,T in this case.

Assume now that T" has p;(7T") > n. By Corollary 4.3.8, there exists a set
S of n end-vertices of T such that diam,T = d(S). Let S = {v1,v2,..., 0}
and let £;(1 <7 < n) denote the length of the stem in Ts which contains v;.

We now show that there exists at least one (1 < ¢ < n) such that ¢; <
(1) diam,,T. Suppose that & > (:1;) diam,_,T for all 1(1 < i < n).
Since by Lemma 4.3.9, Ts_¢, ) can be obtained from T by deleting v,, and

every vertex of degree 2 on the stem of T's containing v,,, it follows that

n—1
q(Ts—{va}) > Z £ > (n—1) ( ) diam,_;T = diam, T,
i=1 n-=

which is not possible since
diam, 17" > d(S ~ {va}) = ¢(Ts5-(u,})-

Hence we may assume without loss of generality that ¢, < (n——l—i) diam,,_,7T.

Then from Note 4.3.3 we have that

diam,T =d(S) = d(S — {vn}) + d(Vn, Ts—{u,})
|
< diam,_,T + ﬁdiamﬂ_lT = “rdiam,, T

The following result from [COTZ1] provides a relationship between the
n-diameter and n-radius of a tree (cf. [COTZ1])).

4.3.14 Theorem

Let n > 3 be an integer and T a tree of order p 2> n. Then diam,_|T =
rad, T.
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Proof

If py(T) < n—1, then rad, I’ = diam,_;T" = p — 1. Assume then that
pi(T) > n. We show first that rad, T > diam,_,T". Let v be any vertex of
T and let S be a set of n — 1 end-vertices of 1" such that d(S) = diam,_T.
Then e,(v) > d(S U {v}) > d(S) = diam,_;T". Hence

rad, 7 = min _e,(v) > diam,_;7T.
vEV(T)

We now verify that diam,_;T" > rad,T". Let v be a vertex of T such that
en(v) = rad,T. By Theorem 4.3.10 there exists a set S of n— 1 end-vertices
of T such that d(S U {v}) = d(5) = rad,(T) and v € V(Ts). Therefore,

diam,_,T = max{d(S') : |S'| =n -1, ' CV|(T)} > d(S) = rad,T.
Hence diam,,_;7 = rad,T. O

4.3.15 Corollary

If n > 2 is an integer and T a tree of order p > n, then

n

rad,, T < diam,T" <
n _

rad,T.
1
Proof
The result for n = 2 is well-known. If n > 3 then the result follows directly

from Theorems 4.3.13 and 4.3.14. O

For a connected graph G of order p > 2 the relationship rad,G <

diam,G < 57rad,G, surprisingly does not hold and we will see this in

Section 4.4.
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4.3.16 Definitions

For a connected graph G of order p > 2 the diameter sequence of G is

defined to be the sequence
diam;G, diam;G, ...,diam,G,
while the radius sequence is the sequence
rad,G,radsG, ..., rad,G.

Let G be a connected graph of order p. Let n(2 < n < p) be an integer.
A set S consisting of n vertices of G is called an n-diameter set of G if

d(S) = diam,(G).

4.3.17 Note

If T is a tree with p;(T) end-vertices, then for every integer n (2 < n <
p1(T)) there exists, by Corollary 4.3.8, a set S of n end-vertices of T such
that diam,T = d(S); i.e., there exist n-diameter sets consisting of only

end-vertices of T for all 2 < n < py (7).

We now present a result which appears in [OT1] that will aid us in

characterizing the diameter sequences of trees.

4.3.18 Theorem

Let T be a nontrivial tree. Then there exists for every integer n with

2 < n < py(T), an n- diameter set consisting of only end-vertices of T such

that

Sy CS3C...C Spl(T).
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Proof

Since T is a nontrivial tree, p;(T') > 2; hence T contains a pair u,v of end-
vertices such that diam T = d(u,v). Hence if S; = {u,v}, then d(S;) =
diamT = diam,T" and S, is thus a 2-diameter set. 1f p;(7') = 2 the proof
is complete. Assume then that p;(T7') > 2. We proceed inductively to
complete the proof. Suppose for some integer n and every integer k with
2 <k <n < py(T) that there exists a k-diameter set Sx where S, C V4(T),
such that S; C S5 C ... C Sy C ... C S,. We show now that an (n + 1)-
diameter set S,;; C Vi(T) containing Sn C Vi(T) can be obtained from
Sh-
For every vertex v € V(T') — V(Ts,), let £, = d(v,Ts,).

Let w € V(T) — V(Ts,) be such that

€y = max{{, :v e V(T)—-V(Ts,}.

Define Spy1 = S, U {w}. Then |Sy41] = n+ 1 and w must be an end-
vertex of T; hence S, C S,;; € Vi(T). It remains to be shown that
d(Snt1) = diam, T

Let S' be an (n+1)-diameter set of T such that |S, N S| is as large as
possible. Since |S'| = n + 1 and |S,| = n, the set S’ — S, is nonempty. Let
vg € ' — S, and let P = vyv;...v; be the stem of Ts+ containing vgy. Since

Vo is an end-vertex of T, k > 1.

We now show k < ¢,. Assume, to the contrary, that & > £,. Since
vo € V(T) — V(Ts,), it follows from our choice of w that £,, < ¢,, which
implies that £,, < k. Let 7} be the component of T — vy_ v, that contains

151



vo and let T; be the other component of T' — vi_jvi. There exists at least
one vertex in V(Ty) NV (Ts, ); otherwise, Ts, C T, and hence the length of
the shortest path from vy to a vertex of Ts, is at least k, which implies that
¢,, > k > £, which contradicts our choice of w. Therefore there exists a
vertex u € V (T1) N V(Ts,) such that dr(u,vo) = &,,. (Note that u cannot
be an end-vertex of T , and hence of T, for otherwise the unique vertex
adjacent to u must be a vertex of Ts, and hence £,, < d(u,v) — 1, which
is impossible.) Since V(T1) NV (Ts,) # 0, we have that S, NV (T}) # 0, for
otherwise S,, C V(T37) and hence T's, C T3, which, as we saw earlier, is not
possible. Let v € S,NV (1)), then since by assumption S, C V{(T;) we have
that v is an end-vertex of T'. By definition of the path P, Tsi_(,,y C Ty
hence vg is the only vertex of S' in T, therefore v € S’. Since by Corollary
4.3.7 S' consists of end-vertices of 7' we have that both v and vy are end-
vertices of T'. Also since u is not an end-vertex of T' we have that u # v.

To complete the proof, we consider two cases.

Case 1) Suppose that dr(u,v) < £,,. Then by Note 4.3.3

d((Sn = {v}) U{vo}) = &u, +d(Sn — {v})
> d(u,v) +d(S, — {v})

v

d(Sn) (since u € V(T,)).

which is impossible since |(S, — {v}) U {vo}| = n. Therefore Case 1

cannot occur.
Case 2) Suppose then that dp(u,v) > £,,. If dr(u,v) > £,, then

d((S"— {we}) U{}) = d(S") - dr(u,v0) + dp(u,v)
= d(S") ~ b, + dr(u,v) > d(S")
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which is not possible. Hence dr(u,v) = £,. Further, u € V(P),

otherwise dr(v,vi) > dr(vo,vi), which implies that

d((8' = {vo}) U{v}) = d(S'—{vo}) + dr(v,ve)
> d(S' = {vo}) + dr(vo, vi)
= d(S"),

which is impossible. However, by (1), d((S' — {vo}) U {v}) = d(S5'),

which contradicts our choice of S' since
(" = {vo}) U {v}) 01 S| > [S" 11 Sl

Hence k < £, which implies that
diam, T = d(S')

= q(Tsr-{uo}) + d(v0, Tst—{uo})

= q(Tsi—{wo}) + k < q(Ts,) + Ly = d(Sny1) < diampy, T.
Hence d(Sp4+1) = diamp44 7. O

We now present the characterization of diameter sequences of trees, follow-

ing [COTZ1].

4.3.19 Theorem

A sequence a,,as,...,a, of positive integers is the diameter sequence of a
tree of order p with p;(7') end-vertices if and only if
(1) ap-1 < @, < (nL_l) ap-y for 3 <n < py(T).

(2) an=p—1for pi(T) <n<p,and

(3) an+1_ansan—an_1 fOI'BSTLSp——]_
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Proof

Let T be a tree of order p with p;(T") > 2 end-vertices and diameter sequence
Az, a3, ..., ap. Assume that 3 <n < p,(7"). By Theorem 4.3.13,ap-1 < an <
(n—’_‘T) a,_1. Now by Theorem 4.3.18, there exists an n—d_iameter set S,, and
an (n—1)-diameter set S,_;, each consisting of only end-vertices of T', such
that S,y C Sp; hence S,, = S,,_;U{v} for some end-vertex v € V(T') - S,_;.
Thus, ‘

a, = diam,T" = d(S, U {v}) > d(S,_1) + 1 > d(S,-,) = diam, T = a,_;,

which verifies (1).

If n > py(T), then diam,T = p — 1, so that Apy(T) = Gp (T)41 = oon =
a, = p— 1 and hence (2) is established.

To verify (3), we again employ Theorem 4.3.18. Let a,,_; = d(Sn-1),an =
d(S,) and ap4q = d(Spy1), where

Sp =81 U{v},S41 =S, U{u}and3<n<p-1.
By Note 4.3.3 we have
d(Sn) = d(Sn_l) + d(v,Tsn_,), so that

an = d(Sp) = d(Sp-1 U {v}) = d(S,-,) + d(v,Ts, ,) = tney +d(v,Ts, ).

Therefore a, — a,_y = d(v,Ts,_ ).

Similarly, ap1 = an + d(u,Ts,). Therefore,
A1 — 0 = d(u,Ts, ).

Now d(u,Ts,) < d(u,Ts,_,) since Ts,., CTs, and d(u,Ts, ) < d(v,Ts,_,)
otherwise d(S,-1 U {u}) > d(S,_; U {v}).
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Therefore apy; — a, = d(u,1s,) < d(v,Ts,_,) = a, — a,—y which verifies
(3).

For the converse, suppose that a,,as,...,a, is a sequence of positive
integers satisfying properties (1) - (3). Let I, be a path of length a, and
suppose Hy = vgv;...vq,. For 3 < ¢ < py(T), let H; = v;0v;1..-Viq;—q,_, be
a path of length a; — a;_;. Define T to be the tree obtainedr by identifying
vio(3 <7 < py(T)) with v, where r = [“2]. Then T has size a; + (a3 — az) +
(as —as) + ... 4+ (ap, (1) = @p,(1)-1) = @y, (1) =p — 1, and therefore has order

p. Further, T has diameter sequence a;, as, ..., a,. O

pl(T),a

pL(T)" aPL(T)—l

4.3.20 Figure

The tree T' constructed in Theorem 4.3.19.

This leads to a similar characterization of the radius sequences of trees, as

stated in [COTZI].
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4.3.21 Corollary

A sequence ag, as, ..., a, of positive integers is the radius sequence of a tree

of order p > 2 with p;(T") end-vertices if and only if
(1) az = 2a; or a3 =2a; — 1
(2) an < @pp1 < JHapfor3<n+1< p1(7T)
(3) ap=p—1for py(T)+1<n <pand

(4) Qny1 — Qn S Qp — Qp—1 for 4 S n S p.

Proof

Let T be a tree of order p with p;(T') > 2 end-vertices which has radius
sequence R = ay,as,...,a,. Now by Theorem 4.3.14, rad;T" = diam,T =
diam7'. However if T' is a central tree then diam T = 2rad;T = 2a,, while
if T is bicentral then diam T = 2rad,T — 1 = 2a, — 1. Therefore a3 = 2a,

or ag = 2a; — 1 which verifies (1).

By Theorem 4.3.14 and Corollary 4.3.15, a,,4; < (;%{) a, for3 <n+1<
p1(T). Let S be any set of n vertices of T. Then for any end-vertex
veV(T)-S

d(Su{v}) > d(S)+1>d(S).
Hence rad,1T = min{d(S U {v}) : v € V(T) — S} > min{d(S)} = rad,T

thus a,;; > a, which verifies (2).
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If n > py(T) + 1, then rad, T’ = p — 1, so that a, (1)11 = @p,(T)4+2 = ... =
a, = p— 1 and (3) is established.

To verify (4), we note from Theorem 4.3.14 that for 3 <n < p,
a, = diam,_1T. Therefore the subsequence as,ay,...,a, of R is a sub-
sequence of the diameter sequence of T, and hence by Theorem 4.3.19

Ant1 — @n < ap — a,-1 for 4 < n < p which establishes (3).

For the converse suppose that a,,as,...,a, is a sequence of positive in-
tegers satisfying properties (1) - (4). If a3 = 2a, then let /13 be a path of
length 2a, and suppose Hy = u,,Uq,-1...U1CV V...V, 1Vq,. If a3 = 2a5 — 1
then let Hj be a path of length 2a, — 1 and suppose H3 = v; 0¥; 1...0; 4, a;_,
be a path of length a; — a;_;. Now define T to be the trce obtained by
identifying the vertices v;o (4 <1 < p;(T)+1) in H; with ¢ in Hs. In either

case T has size

as + (ag — as) + (a5 — ag) + ... + (ap,(1)+1 — @p (1) = Gp,(1)41 =P — 1

and therefore T" has order p. Further T has radius sequence R. O

The concept of the centre of a connected graph was generalized in [0T1]

as follows:

4.3.22 Definition

The Steiner n-centre C,(G),n > 2 of a connected graph G is the subgraph
of G induced by the vertices v of G with en(v) = rad,G.

Hence the Steiner 2-centre of a graph is simply its centre.
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4.3.23 Note

We now employ a slight variation in notation for the sake of clarity. Since
we will often need to look at the n-eccentricity of a vertex in a given graph
G, as well as its n-eccentricity in some induced subgraphs of G, we denote

by en(v, G) the n-eccentricity of the vertex v in the graph G.

The next eleven results first appeared in [OT1].

4.3.24 Lemma

Let T be a tree of order p > 3 and n an integer with 3 < n < p. Let T"
be the tree obtained by deleting the end-vertices from 7'. If T has at least

n end-vertices, then
Ca(T) C Co(TY).
Proof
If ve V(T'), then
en(v,1") > e,(v,T) — (n — 1). ~ (1)

Let u be a vertex which is contained in the n-centre of T;ie., e,(u,T) =

rad,T. (Note by Corollary 4.3.11 that u is not an end- vertex of T.) Then

b

by Theorem 4.3.10, there exists a set S of n — 1 end-vertices of T such that
d(S U {u}) = en(u,T) and u € V(Ts), that is,

d(SU{u}) =d(S) = eq(u,T).
For every v € S, let £, be the length of the stem in T'sy(u) containing v.

(Note that Tsupuy = Ts). Let £ = Hlelgl £,. There are two cases to consider.
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Case 1)

Case 2)

Suppose £ = 1 and let v € S such that ¢, = 1. Then every end-
vertex of T that does not belong to S is adjacent to a vertex of T;
otherwise, suppose w € Vy(T) such that d(w,Ts) > 2, then e, (u,T) >
d(SU{u}uU{w}—{v}) > d(SU{u}) = e.(u,T"), which is impossible.
Hence the end-vertices of T' are exactly the end-vertices of Ts — S.
Since Ts has n — 1 end-vertices, 7" has at most. n — 1 end-vertices,
implying, by Corollary 4.3.6, that for all z € V (T"), e,(z,T") = ¢q(T").
Hence T" = C,(T"). Because T has at least n end-vertices we have by

Corollary 4.3.11 that C,,(T') C 1" so that C,(T") C Cn(T").

Assume now that £ > 2. Let S’ be the set of end- vertices of Tg — S.
Since £ > 2, it follows that for y € S, zy € E(Ts) if and only if
z € V1(Ts — S) and hence |S'| = |S| = n — 1. Further,

dp(S'U{u}) = dr(SU{u})—(n—-1)
= ey(u,T) — (n—1).
By Corollary 4.3.6, d7:(S' U {u}) = e,(u,T") and hence e,(u,T") =

en(u,T) —(n—1). Therefore, by (1), e,(u,1") = rad, 7" and u belongs
to Cp(1") and C,(T) C Cu(T). a

4.3.25 Lemma

Let n > 2 be an integer and 7" a tree of order p > n. Then Cn(T) is a tree.

Proof

If n = 2, then the n-centre is simply the centre of 7'. Since the centre of a

tree is isomorphic to either K, or K; (see [K3]), it follows that the 2-centre

of a tree is a tree.
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Assume now that n > 3. If T has at most n — 1 end-vertices, then, by
Corollary 4.3.6, C,(T') = T so the lemma follows in this case. Suppose thus
that T has at least n end-vertices.

Since any induced connected subgraph of a tree is itself a tree it suffices
to prove that C,(T) is connected. Assume, to the contrary, that C,(T') is
disconnected. Let P = vobl...vk be the shortest path in T" between vertices
of two components of Cp,(T). Then k > 2,v; ¢ V(Cy(T)) for 1 <1<k -1
and v, v, € V(Cn(T)). Let Ty be the component of T — v,_; containing
vx. By Theorem 4.3.7, and since vg_; & V(C,(T)), there exists a set S’ of

n — 1 end-vertices of T such that

d(S"U {vk-1}) = ea(ve-1,T) > en(vi, T) + 1 = en(v0, T) + 1. ~ (1)
Observe that S' C V (T}), otherwise
en(ve, T) > d(S"U{v})
> d(S'U{vk-1})

= en(vk— 1y T)

v

en(ve, T) + 1, which is not possible.

Let S" = S'"U{vo}. Then Tsn contains v_, implying that Ts1500,_yy C Tu.

Hence

en(vo,T) Z d(SH) Z d(S' U {Ulc—l}) = en(vk_l,T) 2 En(Uo,T) +1

which is impossible. Hence C,(T) is connected. O

It is well-known (see [CL1]), that a tree T is the 2-centre of a tree if
and only if T' = K, or K,. The following theorem characterizes those trees

that are n-centres of trees for n > 3.
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4.3.26 Theorem

Let n > 3 be an integer and T a tree. Then T is the n-centre of some tree

if and only if p1(T) <n — 1.

Proof

Suppose that T is the n-centre of some tree H. Let u be a vertex of
T = Cn(H). By Theorem 4.3.10, there exists a set S of n —1 end- vertices
of H such that

dy (S U{u}) = en(u, H) and u € V(Hs)

where Hs is the subtree of H generated by S; hence d(S U {u}) = d(S5).
We show first that V(T) = V(C,(H)) C V(Hs). Let v € V() -V (Hs)
and let S' = S U {v}. Since v ¢ V(Hs), it follows that

d(S") > d(S)+1=d(SuU{u}) +1=en(u,l)+ L

Therefore e, (v, H) > e,(u, H) +1, which implies that v ¢ V(Cn(H)).
Hence V(T) = V(Cn(H)) C V(Hs). Since n > 3, the tree Hg has n — 1

end-vertices. Therefore T has at most n—1 end-vertices; i.e., p;(T) < n—1.

For the converse, let T be a tree with p;(T) < n — 1. If 2p(T) > n,
then let H be the tree obtained from T by joining two new vertices to each
end-vertex of T'. If 2p,(T') < n and T' % K|, then let H be the tree obtained
by joining two new vertices to each of p;(7") — 1 end-vertices of 7' and then
joining n — 2(p,(T") — 1) new vertices to the remaining end-vertex of T. If
T = K., then let H be obtained by joining n new vertices to the vertex of

T. In all of the above three cases, p;(/{) > n. Now let S, be the set of
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end-vertices of H, in any one of the above three cases. By Lemma 4.3.24,
C.(H) C Co(H—=S5y). Now I =5, =T and since py (1) <n—1,Co(T) =T.
Hence C,(T) C H. For every vertex v of T we have, by Corollary 4.3.6,
that e, (v, T) = ¢(T') so that

en(v, H) =ep(v,T)+n—1=g(T)+n— 1

Since all the vertices of T have the same n-eccentricity in If and C.(H)CT,
the n-centre of H is precisely T 0

The following corollary follows straight from Theorem 4.3.26 and the

fact that every branch at a vertex v of T must contain an end-vertex.

4.3.27 Corollary

If T is a tree that is the n-centre (n > 3) of some tree, then the maximum

degree A(T') of T' is at most n — 1.

The following Corollary follows as a direct consequence of Theorems

4.3.18 and 4.3.14 together with Lemma 4.3.9.

4.3.28 Corollary

Let T be a tree such that p;(7') > 3, and suppose that n is an integer with
3<n<p(T). Let S,—1 be an (n — 1)-diameter set and S, an n-diameter
set, so that S,,_; € S,.. Then

(1) a vertex v of Ts, is an end-vertex of T, if and only if v € S,;

(2) en(v,Ts,) = diam,(T%s,) if and only if v is an end -vertex of T, ;
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(3) diam,Ts, = q(Ts,) = diam,T;
(4) every vertex v of T, is such that en(v,Ts,) < en(v,T);
(5) if £ is the length of a shortest stem in T, , then
diam, _,Ts, = diam,_,T = rad,Ts, = rad, T = q(Ts,) — £.

4.3.29 Lemma

Let T be a tree such that p;(7") > 3 and suppose that n is an integer with
3 <n <p(T). Let Sp—y be an (n — 1)-diameter set and S,, an n-diameter
set of T" with S,_; C S,,. Suppose that £ is the length of a shortest stem of
Ts,. If

U={ueV(Ts,): there exists v € S, with d(u,v) < - 1},
then Cn(TSn) = TS,. - U

Proof

Suppose w € Sy, such that the length of the stem in Ts, containing w is .
Then let S =S, —w. If v € U, then

en(v,Ts,) > d(S U {v}) > q(Ts,) — €+ 1 =rad,Ts, + 1.

Ifve V(Ts,)—U, then rad,Ts, < e,(v, Ts,) < q(Ts,) —¢€ = rad,Ts,. Hence
en(v,Ts,) = rad,Ts, for all v € V(Ts,) — U. Therefore

Cn(ilvsn) - TS,. - U. O
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4.3.30 Theorem

Let T be a tree such that p,(T) > 3, and suppose that n is an integer with
3<n < py(T). Let Sp-q be an (n — 1)-diameter set and S, an n-diameter
set of T such that S,_; C S,.. Then for every vertex v € V(T%,),

en(v,Ts.) = ea(v,T).

Proof

By Corollary 4.3.28(4), e,(v,Ts,) < en(v,T), for all v € V/(Is,). Therefore
we have only to show that e,(v,Ts,) > eq(v,T) for allv € V(Ts,).

Assume, to the contrary, that there exists a vertex v of Ts, such that
en(v,Ts,) < en(v,T). By Corollary 4.3.28(2) and 4.3.28(3), such a vertex v
is not an end-vertex of Ts_, that is, v ¢ S,. By Theorem 4.3.7, there exists
a set S of n — 1 end-vertices of T such that d(S U {v}) = e,(v,T), and
|S N S,| is as large as possible. Since e,(v,T5s,) < en(v, 1), it follows that
S ¢ Sp; otherwise Tsy(y) C Ts, and hence en(v,1s,) > e,(v,T), which is
not possible. Therefore S — S, # 0 and further, since |S,| — |S] > 1, we
have S, — S # 0. Letue S, — S and w € S — S,. Let £, and Z,, be the
lengths of the stems of 7" = T'sy(y,u) containing v and w respectively.

We show that £, > ¢,. Assume that ¢, < £,. If £, < £,, then (S —
{w}) U{u,v} is a set of n vertices of T containing v with d((S — {w}) U
{u,v}) > d(S U {v}) = e.(v,T), which is not possible. If £, = £,, then
(S — {w}) U {u,v} is a set of n vertices of 7" containing v such that d((S —
{w} U {u,v}) =d(SU{v}) and |[((S — {w}) U {u}) N S,| > |SNS,| which
contradicts our choice of S. Hence €, > €,.

Let T" = T, u{w} and let £, and £, be the lengths of the stems containing
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v and w, respectively, in T".

We show that £/, < ¢/ . Suppose that £, > £; then ¢(T{s, - (u)u(w}) =
d((Sp—{u})u{w}) > q(Ts,) = diam,T’, which is impossible. lence £, < €,.

Since v € V(T") NV (T%s,), the tree 7" contains a path from every vertex
of S — S, to a vertex of T’s,. In fact, since we are dealing with trees, there
is a unique path in 7' between a vertex ol 1" which is not in Ts, and a
vertex of Ts,. Hence T' contains the unique shortest path from any vertex
of S -5, to Ts,.

We show now that if w' € S-S, then a shortest path from w' to a vertex
of T, does not contain a vertex from a stem of 1, that contains a vertex
of S, — S. Assume, to the contrary, that there exists a vertex w' € S — S,
such that a shortest path from w' to a vertex of Ts  contains a vertex z,
say, of a stem of Ts, that contains a vertex u' € S, — S. Choose such a
vertex w' so that d(w',z) is as small as possible. Then d(u',z) > d(w', z);

otherwise,
d((Sn, — {u'}) U{w'}) > d(S,), which is not possible.

Let k be the shortest distance from w' to a vertex of degree at least 3 in
Tsy(uwy- We establish that £ < d(v', z). Tsu{vuy contains the unique
w' — u' path in T which contains z as well as the unique u' — v path which
also contains = as'an internal vertex. Since z is the only vertex common to
the w' — u' path and the u' — v path, it follows that z has degree at least 3
in Tsygv,ury-

Hence

k <d(vw', z).
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Now d(u',z) < k; otherwise if d(u',z) > k, then d((Su{v,u'})—{w'}) >
d(5 U {v}) = en(v,T) which is impossible, and if d(u',z) = k, then (S U
{u'} = {w})NS,| >SN S| and d((SU {v,u'}) —{w'}) = d(SU {v}) which

contradicts our choice of S. This implies that
d(w',z) < d(u',z) < k < d(w', )

which is impossible. Hence if P is a w — z path that is a shortest path from
w to a vertex of T, then = does not belong to a stem of S, that contains
u. Hence the distance from u to a vertex having degree at least 3 in T's, is
simply £/, and the distance from u to a vertex having degree at least 3 in

T' is at least £, that is, £, > €. llence
by > €, >t > sothat €, > €.

Thus, if P’ is a shortest path from w to a vertex 2z', say, having degree
at least 3 in 1", then P' contains z € V(Ts,). Now z has degree 2 in
T', since z' is the first vertex of degree at least 3 on P!, and z € V (T, ).
Therefore z must lie on a path between v and some vertex y € S,,. Suppose
y € S, NS, then the y — v path (and hence also z) is contained in 7' =
Tsu{uvy- However z is on the v — w path in 7" and w # y, therefore (since
£, > d(w,z))degy z > 3 which is a contradiction. Therclore y € S, — S.
Because z has degree 2 in 7",the path from y to z does not contain vertices of
T' other than z. Hence the distance from y to a vertex of T" is d(y, z). Now
d(y, z) < d(w, z); otherwise if d(y, z) > d(w, z) then d((SU{v,y}) —{w}) >
d(S U{v}) = en(v,T) which is impossible, and if d(y,z) = d(w, z) then

[((SU{y}) = {w} N Sa)[ > |90 8] and d(S U {v,y} — {w}) = d(S U {v})

which contradicts our choice of S.



Since y € S, — S, the vertex z does not belong to a stem of Ts, that
contains y. Hence the distance from y to a vertex having degree at least 3 in
Ts,u(w) is less than d(y,z) < d(w, z). However, then d((S, — {y})u{w}) >
d(S,), which is impossible. Therelore e,(v,Ts,) > en(v,1") for every vertex

v € V(Ts,) and hence en(v,Ts,) = ea(v,T) for every vertex v € V(1s,). O

With the aid of Theorem 4.3.30, we now obtain the following result.

4.3.31 Theorem

Let T be a tree such that p;(7') > 3 and suppose that n is an integer
with 3 <n < p((T). Let S, be an n-diameter sct of 7" which contains an

(n — 1)-diameter set of T'. Then C,(T) = C,.(Ts,).

Proof

Suppose there exists a vertex u € V(C,(T)) such that v & V(C,(Ts,))-
Since T is acyclic every path between u and a vertex of T must contain
the vertex z € V(T%,), say, where the u — z path has length d(u,T5s,).

By Theorem 4.3.7 there exists a set S’ of n — 1 end-vertices of T, such
that d(S'U {z}) = en(z,Ts,). But e,(s,Ts,) = en(z,T), Theorem 4.3.30,
and hence d(S' U {z}) = ea(z,T). Note that Tsi,{,) must contain z and
therefore Tsiy(uy D Tsiuq.)- Hence

d(S'U{u}) >1+d(S'U{z}) =1+eu(z,T) > rad,T
which contradicts the fact that v € V/(C,(7")). Therclore

Co(Ts,) 2 Cal(T). ~ (1)



Let v € V(Cn(Ts,))- Then en(v,Ts,) = rad,Ts, . However,
en(v,Ts,) = en(v,T) by Theorem 4.3.30, and rad,Ts, = rad, 1" by Corollary
4.3.28(5). Hence e,(v,T) = rad,T, and thus v € V(Cn(T)). Therefore

Cn(TS,.) C Cu(T) ~ (2)

and the result follows from (1) and (2). O

We are now in a position to present a relationship betwee the n-centre

and (n — 1)-centre of a tree for n > 3 an integer.

4.3.32 Theorem

Let n > 3 be an integer and T a tree of order p > n. Then C,_(T) C
Cn(T). |

Proof

If T has at most n—1 end- vertices, then C,,(T) = T, so trivially Cp,_;(T") C
Cn(T). Suppose now that T has at least n end-vertices. Lét Sn-1 € W(T)
be an (n — 1)-diameter set and S, C Vi(1') an n-diameter sct of T such
that S,—; € S,. Assume first that n = 3. Then S, = Sy = {u,v}, say,
and S; = {u,v,w}. Let Ts, = (v =)uouy...ux(= v). It is known (see [K3|,
pg 65) that the 2- centre of T, is the 2-centre of every subtree H of T
that contains Ts,. Hence Cy(Ts,) = C3(T") = Cy(1s,). The 2-centre of T
is therefore {ug} if k is even and <{u1_<_;_1,u152t1_}> if k£ is odd. Let z be the
vertex of degree 3 in Ts,. Then d(w,z) < min{d(xu, z),d(v,z)}. Therefore
d(w,z) < % if k is even and d(w,z) < k‘Tl if kis odd. By Theorem 4.3.29,
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the 3-centre of T, can be obtained from 1’5, by deleting the vertices of

U={2z€V(Ts,):d(y,z) <d(w,z) - 1fory € Ss}.

Hence if k is even then uy € V (T, — U) = V(Cy(T’s,)) and il k is odd then
{Uk_;_l,u%i} € V(Ts, — U) = V(C3(Ts,)). That is Cz(’T) C C3(Ts,). By
Theorem 4.3.31, C3(Ts,) = C3(T) so that Co(T) C C3(T).

Suppose now that n > 4. Let ¢ and ¢ be the lengths of the shortest

stems of T's, _, and T, respectively. Let
U'={ueV(Ts,_,) : thereexists ve S, ; withd(u,v) <€ —1},and
U'={ucCV(Ts,) : (hereexists v e S, with d(u,v) < €'~ 1}.
By Lemma 4.3.29,
Cu-i(Ts,_,) =Ts,_, —U'and C,(Ts,) = Ts, — U".

Since Ts,_, C Ts, we have ¢' < ¢ and therefore C,_;(T%,_,) C Cn(Ts,)-
Therefore, by Theorem 4.3.31,

Cn-i(T) = Coa (T, ) € Cu(Ts,) = Cu(T);

1

that is
Cn-1(T) C Cn(T). O

4.3.33 Definition

Let n > 2 be an integer and T a tree of order p > max{3,n}. If p;(T) > n,
then define the derivative of 7", denoted by 1", as the tree obtained by delet-
ing the end-vertices of T. Suppose the k"= derivative T of T has been

defined. If T® 2 K, and has pl(T(")) > n, then the (k + 1)**-derivative
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T(k+1) is defined as the derivative of (k)

It is well-known that, by successively deleting the end-vertices of the
trees produced (beginning with T') until a tree isomorphic to K; or Ky
results, we obtain the centre of a tree 7. llence C(7) = T for some

k>1.

4.3.34 Theorem

Let n > 3 be an integer and let 7" be a tree of order p > n. Then there
exists an integer £ such that C,(T) = T® where T¥ has at most n — 1

end-vertices.

Proof

By Theorem 4.3.18 there exists an n-diameter set S, C V;(T) which con-
tains an (n—1)-diameter set S,y C V{(T').Let S, C Vy(T') be an n-diameter
set of T. Let £ be the length of a shortest stem in Ts . By Lemma 4.3.29
Cn(Ts,) = T, Since the end-vertices of Ts, are also end-vertices of T
we have that Téi) C T® and hence C,(Ts,) = Co(T) € T®). Note that
T has at most n — 1 end- vertices. By Corollary 4.3.6, for every vertex
v E V(T(e)), en(v,T(‘)) = q(T(l)). Since C(Ts,) € T\9 C T, it is clear that
for every vertex u € V(C,(Ts,)) NV (T9), eu(u,Co(Ts,)) = en(u,Ts,) <
eq(u, TW) < e,(u,T). However by Theorem 4.3.30, e,(u,Ts,) = e.(u,T),
hence ¢(T0) = e,(u,T¥) = e,(u,Ts,) = en(u,T') = rad,T. Thus every
vertex v € V(T1) has e,(v,T) = rad,T and hence T ¢ C,(T). There-

fore C,(Ts,) = T, .
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The following definition appears in [O1'2]

4.3.35 Definition

A non-decreasing sequence S : ay, as, ..., a, of nonnegative integers is called
a Steiner n-eccentric sequence or simply an n-eccentric sequence, n > 3, if
there exists a connected graph G whose vertices can be labelled vy, vy, ..., v,
such that e,(v;) = a; for 1 <1 < p. In this case, we call S the Steiner

n-eccentricity sequence of (.

The 2-eccentricity sequence of a connected graph is therefore its eccen-

tricity sequence.

4.3.36 Example

The graph of Figure 4.3.37 has 3-radius 4, 3-diameter 6 and 3-eccentricity
sequence S :4,5,5,5,5,6,6,6.
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4.3.37 Figure

The following lemma from [OT1]| which holds not only for trees but for

graphs in general will prove to be useful.

4.3.38 Lemma

Let G be a graph of order p and n an integer satisfying 2 < n < p. If
uwv € E(G), then |e,(u,G) — e.(v,G)| < 1.
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Proof

We may assume without loss of generality that e,(u,G) < e,(v,G). Let S
be any set of n vertices containing v. If v € S, then d(S) < en(u,G). 1f
ud S, then let S' = (S — {v}) U {u}. Since uv € E(G), it follows that

d(S) <d(S") +1 <e,(u,G) + 1.

Hence e,(v) = max{d(S) : S C V(G),|S| =n and v € S} <e,(u,G) + 1;
that is, e (v, G) — e,(u,G) <1 which implics that

len(u,G) — e,(v,G)| < 1. O

The following results concerning n- eccentricities of trees were presented
by Oellermann and Tian in [OT2| and will culminate in a characterization

of the n-eccentricity sequences of trees (cf. [072]).

4.3.39 Lemma

Let T be a tree with p;(7') > 3 and suppose that n is an integer with
3 <n < py(T). Let S,y C Vi(T') be an (n—1)- diameter set and S,, C V(T
an n-diameter set of T such that S,_; C S,. 1If aj,a,,...,a, is the n-
eccentricity sequence of T, then for every integer k with a) < k < g,
there exists some 1 where p — n(e, —a;) < 7 < p — n + 1, such that

a; = ai*l = eee = a,'+n._.1 = k

Proof

Let £ be the length of a shortest stem of Ts . Then for every vertex v
in S, there exists exactly one vertex v' of T such that d(v,v') = €. Let

P, be the v — o' path in 75 . By Lemma 4.3.29, Cn(Ts,) can be obtained
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by deleting, for every v € S, all the vertices of P,, except v', from T, .
Now e,(v,Ts,) = diam,Ts, = a, and since v' € V(C,(T%,)), en(v'. Ts,) =
rad, Ts, = a; for all v € S,; hence, by Lemma 4.3.38, there is at least one
vertex of P, — v' that has n-eccentricity k for a; < k < a,. By our choice

of S, we have
diam,_Ts, = ¢(Ts,) — £ = diam,Ts, — £ = a, — £ = rad, Ts, = a;.

Hence £ = a, — a;, which implies that for each k with a; < k < a, there
is exactly one vertex on P, — v' whose n- eccentricity is k. Since |S,| =n
we have n end-vertices in T, and thus n stems of T, and hence n paths
P,. Thus on each of the n paths P, there is a vertex with n-eccentricity k

where a; < k < a,, and hence the lemma follows. J

4.3.40 Lemma

Let T be a tree of order p > 3 and n an integer with 3 < n < p. Suppose

S :ay,ay,...,a, is the n-eccentricity sequence of T'. Then
(1) a; > n—1,and

(2) for every integer k with a; < k < a, there exist at lcast n consecutive

elements of S equal to k.

Proof

For every vertex v € V(T'),e,(v,T) > n — 1, since a tree with n vertices
has size n — 1; hence it follows that a; > n — 1, which establishes (1). If
T has at most n — 1 end-vertices, then a; = a, and (2) holds vacuously.

Suppose therefore that 7" has at least n end-vertices. Then a; < a,. Let
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S,_1 C Vi(T) and S,, C V(T) be (n — 1)-diameter and n-diameter sets of
T, respectively, such that S,_; C S,. Then, by Theorem 4.3.30, en(v,T) =
en(v,Ts,) for every vertex v € V(Is,)- Since diam,Ts, = diam,T" = a, and
rad, Ts, = rad,T" = a;, Lemma 4.3.39 implics that Ts, and thus T contain
at least n vertices whose n-eccentricity is k for a; < k < a,. Hence (2) is

established. O

4.3.41 Lemma

Let n > 3 be an integer and suppose that S : a;,a,,...,0, is the n-
eccentricity sequence of a tree T of order p > 3. Then il a; # «a,, (L) a; =

n-1

a, + ﬂn"_"—ll where my is the largest integer such that a; = a,,,.

Proof

Let S, C Vi(T) be an n-diameter set of T which contains an (n — 1)-
diameter set. Then by Theorem 4.3.31, the n-centre of T is isomorphic to
the n-centre of T, and, by Lemma 4.3.29, can be obtained from 7, by
deleting end-vertices until a tree with at most n — 1 end-vertices remains.
Let € be the length of a shortest stem in Ts,. Then the ¢ derivative of
Ts, is Co(T). As we saw in the prool of Lemma 4.3.39, £ = a, — a; and
obviously mg is the order of C,(T"). Thus the number of edges in Ts_ is

equal to the number of edges in C,(Ts,) (which is mg — 1), plus n;

ie,a, =fn+myg—1=(a, —a)n+my—1
sona; = (n—1)a, + mg — 1.
n mg — 1
Hence( )a =a .
n-—1 ! a n—1 H
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Lesniak [L1] characterized the eccentricity (or 2-eccentricity) sequences
of trees. A necessary and sullicient condition for a nondecreasing sequence
of integers to be the n-eccentricity sequence of a tree for n > 3, is now

presented, following [OT2].

4.3.42 Theorem

Let n > 3 be an integer. A nondecreasing sequence S : ay,ay,...,a, of p > n

positive integers is the n- eccentricity sequence of a tree if and only if

(1) ay > n—1,

(2) (L) a; = a, + 2251 if a; # a, where mg is the largest integer such

n—1

that a; = ap,, and

3) if a; < a, and k is an integer with a¢; < k < @,, then there exists an
P P
integer 1(2 < ¢ < p-—n+1)suchthat a; = a;4y = ... = a5, 1 = k;

otherwise, if a; = a,, then p =a; + 1.

Proof

Suppose that S : ay,ay,...,q, is the n-eccentricity sequence of some tree of
order p > n. Note that, by Corollary 4.3.6, if a; = a,, then a; = ¢(T) =
p—1; therefore p = a; + 1. Hence together with Lemmas 4.3.39, 4.3.40 and
4.3.41, this implies that conditions (1), (2) and (3) of the thcorem hold.
For the converse suppose that S : aj,az,...,a, is a nondecreasing se-
quence of positive integers satisfying conditions (1), (2) and (3) of the
theorem. If a; = a,, then p = a; + 1. Let T be a path of length a;. Then
each vertex of T' has n-eccentricity p — 1 = a; (since n > 3), that is, S is

the n-eccentricity sequence of 7.
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Assume now that a; < a,. Let A = {a;,,a,0ai,,...,0a;, } with a;, <

to

< ... < a;, be the distinct elements of the sequence S. Then q;

a;, w = 41
and by Lemma 4.3.38, a;, = a, = a; +m. Hence a; = nm+mo—m-—1,q, =
nm+ mgy — 1 and S contains all the integers between a; and a,. Let m; be
the number of occurrences of a;; in S. Let Hyp = vovyv;...Upm,—1 be a path
of order mg and let Ty = Ty = ... = 1, = Ppy1, where 17 = v 00 1...%m
for1 =1,2,...,n. Denote by H the tree obtained from Ily and 1,15, ..., T,
by identifying vy o with one end-vertex of 11y and then identifying v; o with
the other end-vertex of Hy for 2 < ¢ < n if mg > 2, otherwise, identify v;
with the only vertex of Hy for 1 <1 < n. Finally, join m; — n new vertices

to vy ;-1 for 1 <7 < m and let T" be the resulting tree. T'hen T has order

mo + mn + (my — n) + (my —n) + ... + (M, — n)

= mo+mn+ (my+me+..+my)—mn=my+m;+my+..+m,=p,

and we verify now that T has n-eccentricity sequence S. Referring to
Figure 4.3.43 each vertex v; ( 0 < ¢ < mg — 1) has {vi,v;.m}j=12, . .n-1 @S
an n-eccentric set and hence e, (v, 7) = nm+mg —m — 1 = a,. Ilence we
have mg vertices with n-eccentricity equal to a; as required. The vertices
vi1 (1 <1 < n) and the m; — n end- vertices of T adjacent to vy have
n-eccentricity equal to nm 4+ my —m = a; + 1. Hence we have m, vertices
with n-eccentricity a; + 1. Continuing in this manner we sce that there are

m; vertices with n-eccentricity a; + 7 (0 < 5 < m) and it follows that T

has n-eccentricity sequence S. O
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4.3.43 Figure

The graph constructed in Theorem 4.3.42 for m, > 2.

The following definitions were introduced by Oellermann in [O1].
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4.3.44 Definition

The Steiner number S(G) of a connected graph G of order p is the least
positive integer m for which there exists a set S of mn vertices of G such
that d(S) =p— 1.

Thus the Steiner number of a connected graph G is the smallest car-
dinality of a set S of vertices of G such that every connecled subgraph of

minimum size that contains S is a spanning tree of G.

4.3.45 Definition

The k" Steiner number S,(G) of a graph G is the smallest positive integer
m for which there exists a set S of m vertices of G such that d(S) = k.
For every connected graph G of order p, the sequence Sp(G), S;(G), ..., Sp—1(G)
is called the Steiner sequence of G. Note that S,_,(G) = S(G). For exam-
ple the Steiner sequence of the path P, is 1,2,2,...,2.

The following Theorem which appears in [O1] gives necessary and suffi-

cient conditions for a sequence of positive integers to be the Steiner sequence

of a tree.

4.3.46 Theorem

Let S : sg,81,...,8,—1 be a sequence of p > 3 positive integers. Then S

is a Steiner sequence of a tree if and only if the following conditions are

satisfied:

(1) so=1,81 = 2,8 = 2;
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(2) S is a nondecreasing sequence such that 0 < spyp — sp < 1 for 2 <

k <p—1;and

(3) if 3 < n < sp_1, € is the largest positive integer such that Sg(7T) = n,
and k is the largest positive integer such that Sg(4') = n — 1, then

L < ok,

n—1

Proof

Suppose T is a tree of order p > 3, with Steiner sequence S. Then since
K,, Ky and Ps are subtrees of T' it follows that sg = 1,$; = 2 and s, = 2.
Hence (1) is established.

Let S’ be a set of s, vertices of T such that d(S') =r — 1, and let S"
be a set of s, vertices of T such that d(S") = r. Take any v € S". Then v
is an end-vertex of Tsu. Let u be the unique vertex adjacent to v in Tsu.

Let S" = 8" — {v} U {u}. Then d(5") = d(S") — 1 = r — 1. Therefore
sr-1 < |S8") = s,.

Hence S is nondecreasing. We show now that Siy (1) = Si(1") or Sk (1) =
Sk(T) + 1 for all k, 1 < k < p— 1, which will establish (2). Suppose that
1 <k <p-—1and Sg(T) = m. Then there exists a set S’ of m vertices of
T such that Ts: has k edges. Further, v € S' if and only if v € V(Ts). If
T contains a vertex u that is adjacent to a vertex w of ' but u ¢ V(Tg),
then

d(S ~ {wh) U {u)) = k +1

so that S, (T) = m. However, if the end-vertices of T's: are also end-

vertices of T', then it follows, since k < p — 1, that there is a vertex z in
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V(T) such that z & V (T’s) and z is adjacent with a vertex of Ts:. Hence
d(S'U {z}) = k+ 1, s0o Sg1(T) < m + 1. We may thus conclude that
if 1 <k < p—1,then Sy (T) = Se(T) or Spii(T) = Sk(T) + 1. Hence
O0<spy1—spg<lfor2<k<p-1.

To establish (3) we note that if 2 < n < S(G) and k is the largest
positive integer such that Si(7') = n then k& = diam,T'. llence, if n > 3
and £ is the largest positive integer such that S,(7') = n while k is the
largest positive integer such that Si(7') = n — 1, then € = diam,T and
k = diam,_;T. Hence by Theorem 4.3.13 we have that £ < -" k.

Conversely suppose that S : sg,sy,...,5,-1 is a sequence of positive
integers that satisfies conditions (1), (2) and (3) of the theorem. For
v = 1,2,...,5,-1 let d; denote the largest integer such that Sy (T) = 1.
Note since S is nondecreasing and since consecutive terms of S differ
by at most 1, that d; is defined for all v = 1,2,...;s,_;. By condition
(3) of the theorem, d, < "{dn.y for 2 < n < s,y Let m = [%]
and let P = vgu...vq, be a path of length d,. For 7 = 3,4,...,5,1, let
H; = uiouiiuiz...u;i4,-q,_, be a path of length d; — d;_;. Let 7" be the tree
obtained from PU Hs U I{, U ... U I, _, by identilying v,, and the vertices

uio for 1 = 3,4, ...,s,_1. Then T has Steiner sequence S. O
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4.3.47 Figure

The graph T constructed in Theorem 4.3.46.

4.4 Steiner distance in Graphs

Our discussion of Steiner distance is now broadened so as to include graphs
in general. Obviously, any results obtained for graphs in general will also
hold for trees.

Given a graph G of order p, and any subset S C V(G), the minimum
possible value for d(S) is |\S|—1, this being the size of a tree with | S| vertices.
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Now d(S) = |S| — 1 for every subset S of G if and only if G is complete;
for otherwise, if S* = {u,v} where uv ¢ E(G), then d(57) 2 2 = |S*|. The
related problem of determining the minimum size of a graph G of order
p having the property that d(S) = |S| — 1 for all subsets S C V(G) with
|S| = n for a fixed n where 2 < n < p, was discussed in [COTZ1].

4.4.1 Definition

Let n and p be integers with 2 < n < p. A graph G of order p is called
(n;p)-complete if it is of minimum size with the property that d(S) =n-1

for all such S C V(G) with |S| = n.

The goal is thus to determine the size of an (n;p)-complete graph for
each pair n,p of integers with 2 < n < p. The following resulls appear

within a proof of a theorem by Harary [H2] and will prove to be useful.

4.,4.2 Theorem

(i) If 2 <2k =n < p, then C;‘ is n-connected.

(i) Let p be an even integer satisfying p > n = 2k + 1 > 3. If G is the
graph obtained by joining diametrically opposite vertices of C), in C:,

then G is n-connected. '

(iii) Let p be an odd integer such that p > n = 2k + 1 > 3, and let
C, be the cycle v, vy,v3,...,vp-1,v9. If G is the graph obtained by
adding (L;ll edges to C';’,‘, namely those edges joining v; and v;, where

j—t= (%1—), then G is n-connected.
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The following lemma will aid us in the determination of the size of an

(n; p)-complete graph, following [COTZ1].

4.4.3 Lemma

Let n and p be integers with 2 < n < p. Every (n;p)-complete graph is
(p — n + 1)-connected.

Proof

Suppose, to the contrary, that there exists an (n; p)-complete graph G which
is not (p—n+1)-connected. Then there exists a vertex cutset X of cardinal-
ity p—n such that G — X has two or more components. Let S =V (G) — X.
Since |S| = n and (S) is disconnected, G is not (n; p)—complete, producing

a contradiction. O

4.4.4 Note

If G is (n;p)- complete, where 2 < n < p, then §(G) > p — n + 1; since
otherwise if §(G) < p —n + 1, then removing all the vertices adjacent to a
vertex of degree §(G) would result in a disconnected graph or K, implying

that G is not (p — n + 1)-connected.

4.4.5 Theorem

Let n and p be integers with 2 < n < p. The size of an (n; p)- complete

grathisn—lifp:nand[p_";lg] if p>n.

184



Proof

Assume p = n. Then a graph of order n which has minimum size having
the property that its vertex set induces a connected graph of size n — 1, is
a tree. Conversely any tree of order n is an (n;n)-complete graph. Hence
a graph is (n;n)-complete if and only if it is a tree of order n. Therefore
for p = n the size of an (n;p)-complete graph is n — 1.

Assume, then, that p > n. By Note 4.4.4, if G is (n;p)- complete, then
6(G) > p— n + 1. Therefore, if for given integers n and p, with 2 <n <p,
we can exhibit either a (p—n+1)-regular (n; p)-complete graph or an (n; p)-
complete graph all of whose vertices have degree p — n + 1 except at most
one, which has degree p — n + 2, then the result will {ollow.

Suppose first that there exists an integer k£ > 2 such that p = (n — 1)k.
Consider the graph kK,_;. Since any set S of n vertices of kI ,,_; induces a
connected graph, we have that d(S) = n—1. Since kK, | has k(n — 1)=p
vertices and is (p — n + 1)-regular, it is an appropriate (n;p)-complete
graph. Hence assume that n — 1 does not divide p. Thus p = (n — 1)q + r,
where 2 <r <n, r#n-1, ¢ > 1 and ¢ and r are integers. For each
such integer r, we describe the appropriate Harary Graph I, which is an
(n;n — 1 + r)- complete graph with the desired properties. It will then
folow that H, + m is an (n; p)-complete graph with the required

properties, which will complete the proof.

Case 1) Assume r is even, so that that r = 2k > 2. By Thcorem 4.4.2 (i), the
graph 11, = C,’:_Hr is r-conncected. Let S be a set of n vertices of 11,.
Since |V (H,) — S| =r — 1, removing the r — 1 vertices of V(Hd,)-S

from H, will result in a connected graph with vertex set S; ie, (S)is
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connected. Therefore 1I, is a 2k — r-regular, (n;n — 1+ r)-complete

graph. Hence H, + (¢ — 1)K, has order p, is r + (¢ — 1)(n — 1) =

r+q(n—1)—n+1=p-n+lregular, and is thus an (n; p)-complete

graph with size plp=n+l)

2

Case 2) Assume r is odd, so that r = 2k 4+ 1 > 3. We consider two subcases.

Subcase 2.1)

Subcase 2.2)

Assume n is even. Let H, be the graph obtained by joining
diametrically opposite vertices of Cp_14, in ck_,,,. By Theorem
4.4.2 (i), H, is r-connected. The proof follows as in Case 1.

Assume n is odd. Let H, be the graph obtained as follows. First

draw C,’i_Hr and label ils vertices vg, vy, ..., Un_24r, V0. Lhen,

to C’,’:_H, add the edges joining vertex vy to vertices vn-2-- and
2
vntr, together with the edges joining the vertex v; to the vertices
2
v, ni: (where all additions are taken modulo n), for 1 < ¢ <
T

%2'. By Theorem 4.4.2 (iii), I, is r-connccted and, again the

proof follows as in Case 1. O

In Theorem 4.3.42 we established a necessary and suflicient condition

for a nondecreasing sequence of positive integers to be an n-eccentricity

sequence of a tree. Although far less descriptive, a necessary and sufficient

condition for a nondecreasing sequence of positive integers with m distinct

values to be the n-eccentricity sequence of a graph, was established in

[0T2).

4.4.6 Theorem

A nondecreasing sequence S : aj,as,...,a, with m distinct values is the

n-eccentricity sequence , n > 2, of a graph if and only if some subsequence
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of § with m distinct values is the n- eccentricity sequence of some graph.

Proof

Suppose S is a sequence with m distinct values, which is the n- eccentricity
sequence of some graph G; then since S is a subsequence of itself, we have
S is the n-eccentricity sequence of a graph and S has m distinct values.
For the converse, suppose that S’ is a subsequence of S that has the
same m distinct values as S and suppose that S’ is the n-eccentricity se-
quence of some graph G with V(G) = {vy,v2,...,v,}. Let the distinct values
of S’ be given by ty,ty,...,tm. Let s; (1 <7 < m) be the number of oc-
currences of ¢; in S, and let s; (1 <1 < m) be the number of occurrences
of t; in S'. Now for each ¢ (1 < ¢ < m) select a vertex v; of G whose
n-eccentricity in G is t;. Let n; = s; — s! + 1. In G replace v; with a
copy of K,, and join each vertex of K, to all the vertices adjacent to v,
in G. Call this graph G,. Note that cach vertex v of the copy of K,,
has e,(v,G1) = e,(v1,G) = t; while for 2 < 7 < m, en(vi,Gy) = t;. In
G\, replace vy with a copy of K,, and join each vertex of K., to all the
vertices adjacent to v, in Gy. Call this graph G,. Again each vertex v of
the copy of K, has e,(v;G;) = t;, while each vertex w of the copy of K,
has e,(w,G2) = ¢; and, for 3 < ¢ < m, en(vi, G2) = ;. Continue in this
fashion to obtain the graph G,,. Then G,, has order p and has S as its n-

eccentricity sequence. O
The Steiner number S(G) of a connected graph G was introduced in
Definition 4.3.44, as the smallest positive integer m for which there exists

a set S of m vertices of G such that d(S) = p — 1. We now take a closer
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look at the characteristics of such sets S for which d(S) =p —1, following
[O1].

4.4.7 Definition

If G is a connected graph of order p and S is a set of S(G) vertices such

that d(S) = p — 1, then S is called a Steiner spanning set of G.

The following theorem shows that every connected graph has a unique

Steiner spanning set.

4.4.8 Theorem

Let G be a connected graph of order p > 2. A vertex v of G belongs to a

Steiner spanning set of G if and only if v is not a cut-vertex of G.

Proof

Suppose that v is not a cut-vertex of G. Since G — v is connected, we have
for all nonempty subsets S of V(G — v) that dg(S) < p — 2. Hence v is
contained in every Steiner spanning set of G.

Let S be a Steiner spanning set of G. Then d(S) = p - 1. Assume, to
the contrary, that S contains a cut-vertex u of G. 1t follows that S does
not contain vertices from distinct components of G — u, since otherwise if
vy and v, are vertices of S belonging to distinct components of G — u, then
every connected subgraph of G that contains v, and v, must also contain
the vertex u, which implies that d(S) = d(S — {u}) = p— 1. This implies
however, that S(G) < |S — {u}| = |S| — 1, which contradicts the fact that
S(G) = |S].

Let w be a vertex of a component of G - u which contains
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no vertices of S. Then any connected subgraph of minimum size that
contains S does not contain w, which implies that d(S) < p — 2, producing

a contradiction. Hence S contains no cut-vertices of G. O

4.4.9 Remark

Since the only vertices of a tree T', which are not cut-vertices are the end-
vertices, Theorem 4.4.8 implies that the set S = V(7') is the unique Steiner
spanning set of T'. We also note that since there exists an elficient algo-
rithm for determining the cut-vertices of a graph (see [E1]) it follows that
there exists an efficient algorithm for determining the Steiner number of a

connected graph.

Referring to Definition 4.3.45 we now determine the Steiner sequences

of the graphs K, and C, as stated in [O1].

4.4.10 Theorem

The complete graph K, on p vertices has Steiner sequence 1,2,3,...,p, while

the cycle C;, has S¢(C,) = [;%E] for0<k<p-1.

Proof

Since every pair of vertices are adjacent in I, it follows trivially that
Si(Ky)=k+1for0<k<p-1.

Let m,p be integers with 2 < m < p — 1, and let C, be the cycle
V1, V2,0 Up, Uy Let S = {v;,v1,,...,0;, } C V(C,), where 1 < 1; < 4, <

o Sty < p. Let € = max{iy — 11,13 — 5, ...,1,, — Um-1201 + 2 —1,,}. Then

d(S) = p — €. Note that max{d(S)} is obtained when £ is as small as
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possible, and this occurs when € = [2]. Hence

max{d(8)} =p—[ 1.

Now given the integer k with 1 <k <p—1, we seek the smallest value for

m (i.e., Sk(Cp)) for which k =p —[£] and p - [-2-] < k. Hence we seek

m—1

the smallest m such that [E] =p —k; ie,

p—k>2 ~ (1)
m

and —£- > p — k which implies that

P
— _ ~ (2
m 1<p—k | ()

Thus from (1) m > ;{—k, while from (2) m < ;’i—E + 1 and, since m is an

integer,

m=[——-—]. 0

In [CJO1] the periphery P(G) of a graph G was defined as the subgraph
of G induced by those vertices whose eccentricity in G equals diam G. The

following characterization of peripheries, established in [CJO1], we state

without proof.

4.4.11 Theorem

A graph G of order p is the periphery of a graph if and only if G = K, or
the maximum degree A(G) of G is less than p — 1.
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Note that if G is a graph of order p, then G = I, if and only if
diam G = 1. Further, A(G) < p — 1 il and only if rad G = 2. Thus, by
Theorem 4.4.11, a graph of order p is the periphery of a graph if and only
if diam G =1 orrad G > 2.

The following generalization of the periphery of a graph was introduced
by Henning, Oellermann and Swart in [HOS2]. We follow [HOS2] up until
and including Theorem 4.4.22.

4.4.12 Definition

Let n > 2 be an integer. Then the n-periphery P,(G) of a graph G is the
subgraph of G induced by those vertices v of G with e,(v, G) = diam,G.
Hence P(G) = P,(G), that is, the 2-periphery of a graph is its periphery.

We now consider a generalization of Theorem 4.4.11.

4.4.13 Theorem

Let n > 2 be an integer. A graph G of order p > n is the n-periphery of a
graph if and only if diam,G = n — 1 or rad,G > n.

Proof

Suppose G is the n-periphery of some graph H and that rad,,G < n. Then
there exists a vertex v € V(G) such that e,(v,G) = rad,G < n. This
implies that e, (v, G) = n—1, since for a set S’ of n vertices containing v such
that d(S') = e, (v, G), we must have that Ts: is connected and hence d(S') =
¢(Ts) = n—1. Thus, if S is any set of n vertices of G' that contains v, then

the subgraph (S) induced by S is connected. Let D be a set of n-vertices of
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H containing v such that dg (D) = e,(v, {) = diam,H. Then every vertex
w of D has e,(u, H) = diam,H. So D C V(P,(Il)) = V(G). Thus since
D C V(G) contains v we have that (D) is a connected subgraph of G and
thus of H. However., then e,(v, H) = dy (D) = n— 1= diam,H. Therefore
the subgraph induced by every set of n vertices in I, and therefore in G,
is connected. So diam,G = n — 1.

For the converse, suppose first that diam,G = n — 1. Then every set
of n vertices of G induces a connected subgraph and every vertex v &
V(G) has e,(v,G) = diam,G. Let Il = G. Then necessarily P,(I1I) = G.
Suppose now that rad,G > n. Let I = G + K, and suppose that v is
the vertex of degree p in H. Then e,(v,H) = n— 1. Let v € V(G).
Since rad,,G > n, there exists a set of n vertices of G, containing u, that
induces a disconnected subgraph. llowever, if S is any sct of n vertices of
G, containing u, then (S U {v}) is connected, and has size n. Therefore

en(u, H) = n. Thus G = P,(H). O

4.4.14 Definition

A graph G of order p > n > 2 is self n-centred if rad,,G = diam,G.

4.4.15 Remark

Self 2-centred graphs are also called self-centred graphs. Jordan [J3] showed
that the only self-centred trees are I} and K;. By Theorem 4.3.26 we have
that a tree T is self n-centred, n > 3, if and only if 7 is a tree of order
p > n > 3 with at most n — 1 end-vertices. Thus if 7" is a tree of order

p > n > 3 with at most n — 1 end-vertices, then 7T is its own n-periphery.
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We now characterize those graphs which are n-peripherics ol trees for

n > 2. Note that the n-periphery of a tree is acyclic and is thus a forest.

4.4.16 Theorem

Let F be a forest and n > 2 an integer. Then F is the n-periphery of a tree

T if and only if -
1) n=2and F = K; or K3;or
2) n> 3 and F is a tree with at most n — 1 end-vertices; or

3) F = K, for some m > n.

Proof

Suppose F is the n-periphery of a tree 7. Suppose that neither 1) nor 2)
holds. We show F = K,,. Since the n-periphery of a tree of order p > n
contains at least n vertices (by Corollary 4.3.8, and since each vertex of an
n-diametral set of T has cccentricity equal to diam,7"), it follows that F
has order at least n. It remains to be shown that I contains no edges. Let
S be any set of n vertices of T such that d(S) = diam,T. Then S C V(F).
Since 2) does not hold, we have, by Theorem 4.3.7, for every v € S, that
S — {v} consists of end-vertices of T'. Similarly for any vertex u € S where
u # v we have that all vertices of S — {u} are end-vertices of 7" and hence S
consists of only end-vertices of T'. Since every vertex of F' belongs to some
set S of n vertices of T for which d(S) = diam,T', every vertex of F must
be an end-vertex of T". Since 1) does not hold, T % K,. Therefore no two

end-vertices of T" are adjacent. Hence F contains no edges and so F = K,

for some m > n.
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For the converse, suppose {irst that 1) or 2) holds. In cither case let
T = F. From Remark 4.4.15 it follows that F,(T") = F, so that F'is the
n-periphery of a tree in this case. Suppose now that I satisfies 3). Then
let T = K, ,,, label the end-vertices of T, vy,v,,...,v,, and label the ver-
tex of degree m in T, u. Since m > n for each v; (1 < 1 < m) there
exists a set S; consisting of v; and n — 1 other end-vertices of 1" such that
d(Si) = n = diam,T. Therefore for 1 < ¢ < m, e,(v;,T) = diam,T" while
en(u,T) =n—1. Thus P,(T) £ K,, = F and F is the n-periphery of the
tree K ,,. O

We saw in Theorem 4.3.32 that for a tree T, C,_,(T") C Cn(T"). We now
consider for an integer n > 3, relationships between the (n — 1)-centre and
n-centre of a graph as well as relationships between the (n — 1)-periphery
and n- periphery of a graph. The following result demonstrates that the

(n—1)-centre of a graph is not in general contained in the n- centre of that

graph.

4.4.17 Theorem

For every integer n > 4, there exists a graph H, such that
Cno1(Hn) ¢ Cn(H,).

Proof

Consider the 7-cycle C = V1V2V3040506V7v;. Add n—1 new vertices uy, us, ey Uy
to C and join uy, us, ..., u,_5 to v; and Up—y to vs. Fors =1,2, ..., n —3 sub-
divide the edge v u; twice and let V1, Zi, Yi, u; be the path thus produced.

Let H, be the resulting graph.
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Observe that diam,H, =3(n —3) +2+2+2 = 3n— 3 and rad, H, =
3(n—3)+4+1 = 3n—4. The vertices with n-eccentricity equal to diam,H,
are uy, Uy, ..., Un_1, Vs, Us, V4, Vg, V7. All the remaining vertices ol 71, have n-
eccentricity 3n — 4. Figure 4.4.18 a) shows If,, where vertices ol maximum
n-eccentricity are darkened. Note also that diam,_1H, = 3(n—3)+4+1 =
3n — 4 and rad,,.yH, = 3(n — 3) +4 = 3n — 5. The vertices of II, with
(n — 1)-eccentricity equal to diam,_,H, are uj,ug, ..., Upn_1,Vs,V3,v4. All
the remaining vertices have (n — 1)-eccentricity 3n — 5. Figure 4.4.18 b)

shows H,, and vertices of maximum (n —1)-eccentricity have been darkened.

Hence C,-1(H,) ¢ C.(H,). O
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4.4.18 Figure

The graph H, of Theorem 4.4.17

The next result shows that in general the (n — 1)-periphery of a graph is

not contained in its n-periphery where n > 3.

4.4.19 Theorem

For every integer n > 3 there exists a graph G, such that P,;(G,) ¢
P.(G,).
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Proof

Consider the complete bipartite graph I, ,, with partite sets U = {ug, uy, -oryUn_1}
and V = {vo,v1,...,Un_1}. Join a new vertex v to every vertex in U and
delete the edges of the type u;v; for 0 < 1 < n — 1. Finally subdivide
each edge of the type u;v; for 0 < 1,7 < n — 1 with ¢ # j exactly once
and let w;; be the vertex of degree 2 that is adjacent with u; and v;. Let
G, be the resulting graph. Then e,(v,G,) = d({v} U {vo,v1,...sVn-2}) =
1+2(n—1) =2n—1,e,(v;, G,) =d(V) =2(n—1)+4 = 2n+2, e,(u;, G,) =
d({ui} U {vi,vis1,-0sVign-2}) = 44+2(n—2) = 2nfor 0 < ¢ < n-—1
where addition of indices is taken modulo n and e,(w,;,G,) = d({w;;} U
{Vi, Vig1y oy Vigno2}) =5+2(n—2)=2n+1for0<4,5<n—1andi #J.
Further, e, 1(v,G,) = d({v} U {vo, vy, ey vp-3}) = 1+ 2(n — 2) = 2n —
3y en-1(vi, Gn) = d({vi} U{wi;} U {vis1, .y Vign-3}) = 5+ 2(n — 2) =2n-1
for j # 1 where agaih addition of indices is taken modulo n, e, (u;, G,) =
d({ui}U{vi}U{vig1, .0y Vign-s}) = 4 F2(n—3) =2n—2for 0 < 1 < n-—1 and
en-1(wij, Gn) = d({wi;} U {v;} U {vi31, ey Vitn-3}) =5+2(n—3) =2n—1
for 0 < 1,7 <n —1 where i # j. Therefore Po_1(G,n) = ({V U {w;,}}) for
0 <1,7 <n—1wherei# j while P,(G,) = ({V}), and hence it follows
that

Pn—l(Gn) ¢ Pn(Gn)- O
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4.4.20 Figure

The graph G,, of Theorem 4.4.19.

However, if T is a tree, then the next result shows that there is a relationship

between the (n — 1)-periphery and n-periphery of T.
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4.4,21 Theorem

Let T be a tree and n > 3 an integer. Then P,_(T') C P,(T).

Proof

If T has at most n — 1 end-vertices, then by Corollary 4.3.6, P,(T') = T,
so the result follows in this case. Suppose now that 7" has at least n end-
vertices. Let S, be an (n — 1)-diameter set. By Theorem 4.3.18, an
n-diameter set S,, containing S,_; can be obtained from S,_;. Since the
union of all (n — 1)-diameter sets (or n-diameter sets) is the vertex set of

the (n — 1)-periphery (or n-periphery) of T it follows that

P._1(T) C P.(T). O

We showed in Theorem 4.3.13 that if n > 3 is an integer and T is a
tree, then diam,T" < -“rdiam,_,T. However, this inequality does not hold
for graphs in general. For example, for the graph G,, described in Theorem
4.4.19, diam,G, = 2n + 2 while diam,_1G, = 2n — 1. So, in this case,
diam,G, = %f—fdiamn_l(;n > —“-diam,G,. However a bound for the n-
diameter of a graph in terms of its (n — 1)-diameter was established in

[HOS2|.

4.4.22 Theorem

Let G be a connected graph and n > 3 an integer. Then

n+1

diam, G <
n-—1

diam,,_,G.
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Proof

Let S = {vy,vs,...,v,} be an n-diameter set of G. For 1 < ¢ < n, let
Si = S —{v} and let T; be a tree of minimum size containing 5;. Construct
an Eulerian multigraph II by duplicating every edge of 1},. Observe that
q(T;) < diam,,—1G for 1 <17 < n and ¢(/1) < 2diam,,_,G.

We now construct n — 1 connected subgraphs Gy, Gy, ...,Gn-1 (from
Ty,T2,...,Tn-1 and H) each of which contains the vertices of S. Let C be
an Kulerian v — v circuit of . Let v;,v;,,...,v;,_, be the vertices of S, in
the order in which they appear on C for the first time. For j = 1,2,...,n—2,
let R; be a v;; —v;,,, trail of C' between the first appearance of v, and the
first appearance of Vi, Let Ry be the v; | —v;, trail of C between the
first appearance of v;,_, and the first appearance of v;,. Since T;, contains
Vi;,, the edges of T;; and R; induce a connected graph G for 1 <7 <n-2.
Further, since v, ‘is a vertex of T; _, the edges of T}, _, and I¢,,_, also induce
a connected graph G,_;.

Note that each one of the connected graphs G;(1 < j < n — 1) contains
the vertices of S. Ience diam,G < ¢(G;) for 1 < 7 < n — 1. Therelore

(n — 1)diam,G < Eq(Gj)
< Z o(T2) + 2q(T) — Z o(T2) + qi1)

< (n—1)diam,_,G + 2diam, ,G = (n + 1)diam,_,G,

so that diam,G < st diam, G O

The authors of [HOS2| showed that the bound presented in Theorem
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4.4.22 is sharp. Consider for n > 4 the complete bipartite graph K, ,, with
partite sets U = {u,uq,...,us} and V = {vy,vs,...,v,}. Let F, be the
graph obtained from K, , by deleting edges of the type u;v; for 1 <1 < n.
Observe that diam,F, = d(V) =n —1+ 2 =n+1 and that diam,_, F, =
d(V —v,) = n— 1. Hence diam,F, = :—t—idiamn_an. For n = 3, the graph
F3 of Figure 4.4.23 has diam3F3 = d({vi,v2,u1}) = 4 and diam,F3 = 2,

hence diamsF3 = 2diam, F;5.

4.4.23 Figure

It was conjectured in [COTZ1] that Corollary 4.3.15 can be extended to all
connected graphs; i.e., if n > 3 is an integer and G is a connected graph,
then diam,G < —%-rad,G. However Henning, Oellermann and Swart dis-

proved this conjecture in [HOS1| with the following result.

201



4.4.24 Theorem

Let n > 3 be an integer. Then there exists a graph G, such that

2(n +1)

diam, G, = l rad, G,,.

s

Proof

Let H be the complete bipartite graph K, , with partite sets U = {uy, ug, ..., un}
and V = {v;,vs,...,0.}. Let H, be obtained from H — {u;v; : 1 <7 < n}
by joining a new vertex v to every vertex of U. Let k be a positive integer.
Let G,, be obtained from H, by subdividing k — 1 times, every edge of the
type vu; for 1 <1 < n and subdividing 2k — 1 times, every edge of the type
uv; for 1 <1,7 <nand1 #j.

Then diam,G,, = d(V) = 2k(n—1)+4k = 2k(n+1). Further, rad,,G, =
d{viUu(V —{vi}) =2k(n — 1) + k = k(2n — 1). ence

diam, G, = Z(?L +~1)radn(}n, O

n—1
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4.4.25 Figure

The graph G,, of Theorem 4.4.24.

It is immediately evident from Theorem 4.4.24 that there exists a graph G
such that diam3;G = gradgG. The following result from [HOS1|shows that

the 3-diameter of a graph never exceeds %ths its 3-radius.
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4.4.26 Theorem

If G is a connected graph of order p > 3, then

8
diam;G < gradgG.

Proof

Assume, to the contrary, that there exists a connected graph G such that
diamsG > gradgG. Let vy,vy and vy be three vertices ol G such that
d({v1,v2,v3}) = diamsG, and let vy € C3(G).

Then d({vi,vj,v0}) < radsG for 1 < < j < 3. Let T; be a Steiner
tree for {vo,v1,vs,v3} — {v;} for 1 = 1,2,3. Since ¢(7}) < radsG, it follows
that ¢(7;) < %diamgG’. The tree T; together with a shortest path from
vertex v; to a vertex of 7T; contains the vertices vy,vy and vz, therefore
diamsG < ¢(T3)+d(vi, 1) < gdi'd[l'lgG'}‘d(U,',]}). Thus the shortest distance
from v; to every vertex of 1; must be greater than gd]an13(} lore=1,2,3.
In particular d(vg,v;) > %diamgG for0<k<j<a3.

Note that T; cannot be a path; otherwise ¢(7;) > %diamgG—}— gdiamgG =
gdiamgG which contradicts our assumption. Hence 7; has exactly three
end-vertices. Let P; be the vy — vz path in Ty, P, the vy —vs path in 7% and
P; the vy — vy path in Ts. Then at least two of the paths Py, P, and Ps have
size at least %diamsG, otherwise if say P, and P; were both of size less than
%diamgG’ then we could find a Steiner tree 7" for {v;, vy, v3} with size less
than %diamgG + %diamgG = diamyG, which is a contradiction. Suppose P,

and Py are such paths. Let ¢, = dg,(vo, P;) and €3 = dy,(vg, Ps). Then

€y =dr,(vo, 2) = q(T3) — q(1%)
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—d. (; — —d. G = *’ d.d G
C m - 1am .
< lalnsg lalllg 3

Similarly €3 < %diamgG.
Let Q; be the vo—wv; path in 73 for 7 = 1, 3. Then ¢(13) 4 ¢(Qy) = diamsG

1=1

for 7+ = 1,3. Hence Zi: q(T) +€, = q(Ty) +q(T2) +q(T3) + €, = q(T1) +q(T5) +
q(Q1) + q(Qs) > 2diamsG. Thus |
3rads;G + £, > 2diamsG, so that
¢y > 2diamsG — 3radsG > 2diamsG — 1~85fdiamgG = édiamg,G.
This contradiction establishes the theorem. O
From Theorem 4.4.24 we also know that there exists a graph such that

diam,G = Y¥rad,G. Following [l1OS1] we show next that the 4-diameter of
7

every connected graph is bounded above by %ths its 4-radius.

4.4.27 Theorem

If G is a connected graph of order p > 4, then

10
diarn,;G < 7rad4G.

Proof

Assume, to the contrary, that there exists a graph G of order at least 4, for
which diam G > 1—79rad4G. Let D = {v,vy,v3,v4} be a 4_—fliaxrlcter‘ set; i.e.,
d(D) = diamyG. Let vy € C4(G). For each 1 with 1 < i < 4, let T} be a
Steiner tree for D; = (D~ {v;})U{vo}. Then since 7; contains vy € Cy(G) it
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follows that ¢(7;) < rad,G < 1~70diam4G. Taking T;, together with a shortest
path from v; to T}, we obtain a tree containing D and hence of size at least

diamyG. Therefore diamG < q(7}) | d(v;, T3) < 17(3(1];11114(.‘ b d(vi, T3), hence

d(v;, 1;) > diamyG — —176diam4G' = I‘%diaxm(]. In particular this implies that

3
d(’U,’,’UJ') > Edl?muG ~ (1)

for0 <1<y <A4.

We show next that every T;(1 < 7 < 4) has exactly four end-vertices,
namely, the vertices in D;. Observe first that 7} is not a path, otherwise by
(1), ¢(Ty) > 3(%diam,G) = fdiam,G, which contradicts our assumption.
Suppose now that some 7T; has exactly three end-vertices v;,v;, and v;,,
each of which is necessarily in D;. Let v;, be the remaining vertex of D; in
T; and let w be the vertex of degree 3 in T;. We may assume that v;, lies
on the v;; — w path of T;. Let ¢; be the length of the v;, — v;, path of T;,
and £ the length of the v;, — w path. Further let ¢, and 3 be the lengths

of the v;, — w and v;; — w paths, respectively (sce Figure 4.4.28).
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4.4.28 Figure

Since by (1), d(v;,v;) > ﬁ—)diame for 0 <1 < j < 4, it follows that each
of €3 + €3, €+ €y and € + €3 is greater than tdiam,G. Hence £+ £, + ¢+
b3+ L + 8 = 2(+ € + 3) > Ig(—)diarmG, or equivalently ¢ + £, + €3 >
E%diam4G. Since by (1), £; > %diarmG we now have q(Ti) = €+ €; + £, +
;> %dianuG + %diarmG = %gdiame’ > i%diarmG, which produces a
contradiction. Hence T; has exactly four end-vertices, namely, the vertices
in D;(1 <1<4).

Suppose vg, vi;, vi, and vy, are the end-vertices of Ti. Let I, be the
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shortest path from v;; to a vertex of degree at least 3 in 7; for 1 < 5 < 3.
Further, let P;, be a shortest path from vy to a vertex of degree at least
3 in T;. We may assume that P (P;,) is a v;, — w; piath (1,, — w; path,
respectively) and that P (1%,) is a vy, —u; path (vo — u; path, respectively).
It is possible that v; = w;. Let P; be the u; — w; path in T;. For: =1,2,3,4
and j = 0,1,2,3 let ¢(F;,) = &,. Further, let ¢(P;) = £;, and observe that
£; could be zero. T; is illustrated in Figure 4.4.29.
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4.4.29 Figure

From (1) it follows that each of &, +£,, 4, +&+&;, and &, + £+ £;, is greater
than ZdiamG. Thus 2(&, + &, + &, + &) > FdiamG, or equivalently,
G+, + 6, + 4> zg—odiam4G. Since ¢(T;) < llodia.me,‘we conclude that
bo = q(T3) = (&, + iy + &, + &) < (§ — 5)diam,G = 42E Further
by (1), &, + &, > $diam,G and so &, > (I% - %)diame = d%"aﬁ. Now,
interchanging the roles of ¢, and ¢, in the above argument, we obtain

£, < diLT*-Q and ¢, > 42E  Hence for 7 = 1,2,3,4 we have

20
dlazrgl,c <l < dxain,c:’ and e
dlazrél,c: <t < dlainic_

For ¢+ = 1,2,3,4 let T} be the tree obtained from T; by deleting all the
v‘ertices of P, except u; and let T be obtained from T; by deleting all the
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vertices of P, except u;. Observe from (2) that

' 7 1 13 .
Q(Ti”) =q(Ti) — &, < (iﬁ - %> = 56dlam4G' ~ (3)

We now consider two cases.

Case 1) Suppose that for every 1 = 1,2,3,4 we have £;, > ‘—'-i—-‘i‘i‘-(‘)*a. Then

7 1 6
! — f — . S H e 1 4 . ~
q(T-) =q(T;) - &, < <10 10) diam4G 1Od1am“G (4)

Let ¢ be some fixed element of {1,2,3,4}. Observe that T} together
with the v;, — v;, paths of T produces a connected graph containing

the vertices of D. Hence
q(T7)) + &, + €, > diam,G. ~ (5)

Similarly it follows that
q(17) + e,-, + € + £, > diamy,G ~ (6)

and
q(T;,) + €, + € + £, > diam,G. ~ (7)

From (5), (6) and (7) we obtain
2q(T} ) +q(T7) +2(8i+ €, +8,+0,) = 2¢(T7) +q(11) +2q(1)) > 3diam,G
while from (4) we obtain

5(%diam46’) = 3diamyG > 2¢(T})) + ¢(T},) + 2q(T!) > 3diamyG,
which produces a contradiction.
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Case 2) Suppose that for some 7 € {1,2,3,4} we have £;, < diami@ - Since

l;, + 8, > %dianuG‘, e, > (—3— - —vl«) diam,G = @3%‘»&“ Hence

10 10
7 2 diamyG
oy oo (L2 g = G
q(ﬂ ) Q(]‘l) 613 < (10 10) dlaln,; 9 ( )
As in Case 1
‘J(T"’:) + £, + £, > diam,G, ~ (9)
g(T]) + &, + & + &, > diamyG, ~ (10)
and q(17)) + &, + & + £, > diamyG. ~ (11)

Thus by (9), (10) and (11) we have
2q(T::)+q(T‘,;)+2(£1+€u+£u+€:u) = 2Q(T,”)+(I(T,’;)+2Q(T,”) 2 SdiaméGa
while from (3) and (8) we obtain

13 diamsG 59
3( 5 diamyG)+2 ‘af;“ = o diamG > 2(1Y) +q(1!

") +2¢(T}") > 3diamyG

which produces a contradiction.

Therefore diamyG < 1—70rad4G’ for all connected graphs G of order p > 4.0

In view of Theorems 4.4.24, 4.4.26 and 4.4.27, the lollowing conjecture
appears in [HOS1].

4.4.30 Conjecture
For all integers n > 2 and every connected graph G of order p > n

2
diam, G < _:[n r })-rad,lG
n —
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4.4.31 Definition

A vertex v of a connected graph G is n-eccentric if there exists a vertex u
in Cp,(G) and a set S of n vertices of G that contains both u and v such
that d(S) = e.(u,G) = rad,G. The subgraph induced by the n-eccentric
vertices is called the n-eccentricity of G and is denoted by EC,(G).

We now study relationships between the n-periphery and n- eccentricity
of connected graphs. Since trees are the simplest connected graphs we begin

by comparing their n-peripheries and n-eccentricities. The following result,

established by Buckley and Lewinter in [BL1], is stated here without proof.

4.4.32 Theorem

If T is a tree, then ECy(T) = P,(T) (i.e., the eccentricity of a tree is equal
to its periphery).

The following extension of Theorem 4.4.32 was established by Oeller-

mann and Swart in [OS1]

4.4.33 Theorem

Let n > 3 be an integer and T a tree of order at least n. Then P.(T) =
EC,(T).

Proof

If T" has at most n—1 end-vertices, then, by Corollary 4.3.6, ¢, (v, 1) = ¢(T)
for all v € V(T) and hence C,(T) = P.(T) = T. Let w be any vertex of 7.
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If S is any set of n vertices that contains w and all the end-vertices of T,
then S must contain a vertex u # w. Now d(S) = e,(u,T’) = rad,T’, and
u belongs to C,(T). Hence w € EC,(T') which implies that T' = EC,(T);
ie., P,(T) = EC,(T).

Suppose now -that T has at least n end-vertices. We show first that
P.(T) C ECL(T). Let v be a vertex of Py(T) and S, an n-diameter set of
T containing v. Then S,, C V{(T'). So every vertex of S, is an end-vertex
of Ts,. For each vertex = in S, let P, be the stem of T'5, which contains
the vertex z, and let £, denote the length of P,. Suppose u is a vertex of
S, such that €, = min{¢, : = € S,}. Referring to Declinition 4.3.33, we
have by Lemma 4.3.29 that C,(Ts,) = (Ts,)®. Hence by Theorem 4.3.31,
(Ts, )t = C,(T). Therefore

diam,T' = ¢(C,(T)) + nt,. ~ (1)

We show next that rad, T = ¢(C,(T')) + (n — 1)¢,. Let S!_| be any
(n — 1)-diameter set of T. Then, by Theorem 4.3.18, there exists an n-
diameter set S, of T such that S; OS] _,. Let a be the vertex of S! — 5" _,.
For each vertex z € S}, let £, be the length of the stem of Tsi containing z.
Then necessarily £, = min{¢, : z € 5]}, otherwise, if say y € S! has €, <,
then y # a and d(S),_, — {y} U {a}) > d(S!_,), which is not possible. As
before diam,T" = ¢(Ts;) = ¢(Cp(T)) + nt,. Thus from (1) £, = ¢,, and
diamp_,T" = ¢(Ts,) — €, = rad,T. So rad,T = diam,_;T = diam, T — ¢, =
¢(Cn(T)) + nty — £, = q(Cn(T) + (n — 1)4,.

Let y # v be a vertex of S, and suppose w is a vertex on P, such that
drs, (y,w) = £,. Observe that w is a vertex of (Ts5,). Sow € V(C.(T)).
Further, S, — {y} U {w} is a set of n vertices of T that contains both
v and w such that d(S, - {y} U {w}) = ¢(Ts.) — £, = diam, T — £, =
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g(Ca(T)) + (n — 1), = rad,T. Therelore v € V(ECL(T)). llence
P.(T) C EC,(T). ~ (2)

We now show that EC,(T) C P,(T). Assume, to the contrary, that
there is a vertex v € V(EC,(T)) such that v ¢ V(Pa(1)). Thus there
exists a vertex u € V(C,(T)) and a set S of n vertices conlaining v and v
such that d(S) = e,(u,T) = rad,T". By Theorem 4.3.7, v is an end-vertex
of T, since T has at least n end-vertices. Observe that u is an end-vertex of
Ts; otherwise u belongs to Ts_(,(= 75s) and, by Theorem 4.3.14, 5 — {u}
is an (n — 1)-diameter set of 7" which contains v. By Thecorem 4.3.18,
there exists some n-diameter set of 7' which contains S — {u} and hence v.
However, this contradicts our assumption that v ¢ V(P,(T)).

Let S' be an n-diameter set of 7" such that |S'N S| is as large as possible.
Then S'" C Vi(T). Since v € S is not contained in any n-diameter set of T,
it follows that S' — S # 0. In fact, since u ¢ S',|S' — S| > 2. Let £, be the
length of the stem P, of T, which contains v. Suppose P, = (v =)vv;...u
(= w). Observe that the shortest path from every vertex v € S’ — S to
a vertex of Ts must have length at most £,; otherwise if ¢, > ¢, then
d(S — {v} U {y}) > d(S) = e.(u,T) = rad, T, which is not possible. Let
P= (u =)ugu;...u; be the stem of Ts which contains u. Let Ty and T}, be
the two components of 7' — ux_,uy, and assume that u € V(T3). By our
choice of P, u is the only vertex of S in T3. Since u € V(C,(7')) we have by
Theorem 4.3.31 that v € V/(Ts/), hence it follows that 7 contains a vertex,
z say, of §' — S such that the z — v path in T contains P.

We show now that no vertex of P, except possibly w belongs to Ts:.
Clearly vo = v does not belong to 7'y since v does not belong to any

n-diameter set of 7. Assume to the contrary, that there exists a vertex
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a € S' — S such that v; belongs to the a — u path in Ts». We may assume
that ¢ < m is the smallest integer such that v; belongs to the a — u path
of Tsi, where a € S' — S; i.e., if 7 < ¢ then v; does not belong to T's:. The
vo — v; path must have length less than the a — v; path in T; otherwise
d(S' — {a} U {wo}) > d(S'") = diam,T and therefore S' — {a} U {vo} must
be an n-diameter set of 7' that has more vertices in common with S than
S'. Observe that the a — v; path has no vertex of Ts as an internal vertex;
otherwise if b is such a vertex, then since a ¢ S, there must exist a vertex
y € S such that the y — v; path in Ts contains b; however then vovy...v; is
a path from v to a vertex of degree at least 3 in T which is impossible.
However, then d(S U {a} — {v}) > d(S) = e,(u,T) which is not possible.
Therefore no internal vertex of P, belongs to 7.

Suppose now that T contains a vertex a € S' — 5. We show that the
stem @ of T containing the vertex a, does not contain a vertex of T as
internal vertex. Suppose @ = (¢ =)agay...a, and that some a; belongs to
Ts. Choose j to be as small as possible. Then there exists an end-vertex
z € S—5"of T such that ¢; belongs to the z—u path in T. As in the case of
v we can show that a; is not an internal vertex of the stem of Ts containing
z, and no internal vertex of the z — a; path belongs to 7. However, then
d(z,a;) > d(a,a;) which implies that d(S'U {z} — {a}) > d(S') = diam,T.
So S'U{z} — {a} must be an n-diameter set of T that has more vertices in
common with S than S’ contrary to assumption. Therefore T} contains no
vertex of S’ — S, Hence T, must contain at least two vertices of §' — S. Let
z be a vertex of S' — S. Since the shortest path from z to a vertex of T
has length at most ¢, and since u belongs to Ts: and to S, the length of the

stem of T's containing z is at most £,. Ilowever, then d(S'— {z}u {v}) >
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d(S") = diam,T'. So (S' - {2}) U {v} is an n- diameter sct ol T" which has

more vertices in common with S than S', again a contradiction. Hence

EC.(T) C P.(T). ~ (3)

Thus (2) and (3) together imply that EC.(T) = P.(T). O

It was shown, by Reid and Weizhen Gu in [RW1], that there exist graphs
for which the periphery is properly contained in its eccentricity and vice
versa. So Theorem 4.4.32 cannot be extended to graphs in general. The
following results show that Theorem 4.4.33 cannot be extended te include

graphs in general (cf. [OS1]).

4.4.34 Theorem

For every positive integer n > 3 there exists a graph G, such that P, (G,) ; ECL.(G,).

Proof

Consider the complete bipartite graph I, , with U = {ug. %), ...,up,_y} and
V = {vo,vl, ...,ﬁn_l} as partite sets. Join a new vertex v to every vertex in
U and delete the edges of the type u;v; for 0 <7 <n — 1. Now, subdivide
each edge of the type u;v; for 0 < 7,5 <n—-1and # j exactly once. Let w; ;
be the vertex of degree 2 that is adjacent to u; and v;. Let G, be the graph
thus obtained. Then, e.(v,G,) = d({v,vo,v2,...,Un-1}) = rad,G,, = 2n—1,
while e,(vi,Gn) = d(V) = diam,G,, = 2n + 2, for 0 < 7 < n — 1. It
is easily verified that C,(G,) = ({v}), P.(G,) = (V). Take any v, € V,
then d({vi,v,vit2, 0, Visn-1}) = 2n — 1 = rad,G,, for 0 < 1 < n — 1,
where addition of indices is taken module n. Hence v; € V(EC,(G,))

216



for 0 < 1 < n—1. That w;, € E(C.(G,)) may be seen by noting that
d({wy 2,v,V0,V3y ...y Vp—2}) = 2n — 1 and it follows by symmetry that w; ; €
V(EC,(G,)) for 0 < 1,7 <n—1andi+# j. UHence C,(G,) = (V U {w; ; :
0<1i,7<n—1landi# j}). Therefore it is clear that P,(G,) ;ECH(Gn).D

4.4.35 Theorem

For every positive integer n > 3 there exists a graph H, such that EC,.(H,) ; P.(H,).

Proof

Let Q1,Q2,...,Qn-1 be n — 1 cycles of length 5 where Q; = v; Vi 1...v; 4vi0
(1 < 17 < n). Let H, be obtained by identifying the n — 1 vertices
V10, U2,0y -+, Un—1,0 IS @ single vertex vg. Then e, (vo, I1,) = d({vo, V12, V22, -+ er Un—12}) =
2n—2 = rad, H,, while the n-eccentricity of any vertex of I{,—{vy} is 2n—1,
hence diam, H,, = 2n — 1. Thus C,,(H,) = ({vo}) while P,(H,) = H, — vo.
Further, since for all vertices v of the type v;5 and v;3 for 1 <7 <n —1
there exists a set S of n vertices of H, including vy and v such that
d(S) = rad,H,, it follows that EC,(H,) = ({viz,viz: 1 <1 < n —1}).

Hence ECH(Hn)iPn(Hn]. O
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4.4.36 Figure

The graph H, of Theorem 4.4.35

4.4.37 Theorem

For every positive integer n > 3 there exists a graph F, such that P,(F,) ¢
EC.(F.) and EC,(F,) ¢ P.(F,).
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Proof

Let Ry, Ry, ..., Rn_1 be n — 1 cycles of length 7 where It; = v;0vi1...VigVi0
for 1 < i < n—1. Let F, be obtained by identifying the n — 1 vertices
V1,0, V2,05 .-+, Un—1,0 i a single vertex vo and then joining a new vertex u
to vy;. Then again it can be shown that Co(F) = ({vo}), ECA(Is) =
{vig,vig : 1 <1 < n—1}) and P(I,) = {uis,vig :2<i<mn-—-1}U
{u,v14}). Since u belongs to P,([}.) but not to EC,(F,) and v 3 belongs

to EC,(F,) but not to P,(F},) the theorem now follows. O

4.5 An Algorithm and a Heuristic for the
Steiner Problem in Graphs

Given a graph G and a nonempty set S of vertices of GG, we now consider the
practical problem of determining the Steiner distance d(S) of S, as well as
the problem of locating a Steiner tree with size d(.S), which is a subgraph
of G. Our discussion here will be extended to include weighted graphs,
hence the theory discussed thus far in Chapter 4 reduces to the special case
where every edge has weight 1. We call this problem the Steiner Problem in
Graphs (abbreviated SPG). The SPG was formally formulated by Winter
[W1] as follows:

GIVEN: A weighted graph G = (V(G), E(G), ¢) with p vertices, m edges,
the weight function or cost function ¢ : E(G) — R, and a subset S =

{vi,v2,...,v.} CV(G) of n vertices.

FIND: A weighted graph G5 which is a subgraph of G such that there is a
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path in G between every pair of vertices of S, and the sum of the costs of

the edges of G5 is a minimum. (We call this sum the cost of the graph G)

A number of exact algorithms for the SPG exist. We shall mention a few
here and consider an algorithm described by Dreyfus and Wagner [DW1]
in some detail. No polynomial time algorithms for solving the SPG are
likely to exist, since Karp [K1] showed that this problem is NP-complete.
Thus all known algorithms are only useful for small values of n. Hence it is
of practical importance to obtain approximation methods which find trees
whose costs are close to optimal. There are a number. of such heuristics
which are known, and we shall discuss one which was presented by Taka-

hashi and Matsuyama in [MT1|. For a detailed survey of known algorithms

and heuristics for the SPG see [W1].

We examine first some special cases of the SPG, see [W1].

4.5.1 Special Cases

Let G = (V(G), E(G), c) be a connected graph with p vertices and m edges
and cost function ¢ : E(G) — R. Let S C V(G) be a nonempty set of n

vertices of G.

a) Suppose G contains edges with nonpositive weight. Let F = {e €
E(G) : ¢(e) < 0}. Consider the network G obtained by the contrac-
tion of G along the edges in F. Given the solution é’s in é, we obtain
the solution Gs in G by adding to G the edges of F'. When the edge
costs are all positive, every solution is a tree spanning S. Hence for

the rest of this discussion we may assume, without loss of generality,
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that c(e) > 0 for all e € E(G).
b) If | S| = 1 then Gs consists of a single vertex.

¢) If |S| = p then the SPG reduces to the well-known minimal spanning
tree (abbreviated MST) problem. Polynomial time algorithms for
this problem are known (e.g. Kruskal [K2| or Prim [P1]).

d) If |S| = 2, then the SPG reduces to the well-known shortest path
problem. Polynomial time algorithms for this problem are known

(e.g. Bellman [B3] or Dijkstra [D1]).

For the rest of Section 4.5, G is assumed to be a weighted connected graph
with cost function ¢ : E(G) — R, 2 < n < p, and for the reasons given
in a) above c(e) > 0 for all e € E(G). Also S C V(G) is assumed to be a

nonempty set of n vertices of G.

4.5.2 Deflinition

Let G be a graph with order p and size m, and let S C V(G) be any
proper subset of vertices of G. Then a Steiner tree Gg for the set S, in
G, is a connected subgraph of G which has minimum cost among all such

subgraphs whose vertex set contains S. (That Gg is a tree is obvious.)

4.5.3 Some Exact Algorithms for the SPG

Hakimi [H1| provided a straightforward algorithm in which the Steiner tree
Gs can be found by finding the MS'T’s of subgraphs of & induced by sub-
sets W of V(G) such that S C W C V(G). The time complexity of this
algorithm is 0(n?27~" + p®). Winter |[W1] calls this algorithm the Spanning
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Tree Enumeration Algorithm.

Another algorithm is presented by Hakimi in [H1] which Winter [W1]
calls the Topology Enumeration Algorithm. Other exact algorithms can be

found in [A1], [FGS1] and [B1, B2] to mention but a lew.

We shall present the algorithm by Dreyfus and Wagner [DW1] which
solves the SPG exactly, in time proportional to
p3 (3"—1 - 2" + 3)

—+p2 ' -n—-1 .
5 TP n—1)+p >

The time requirement above includes the term %3, which can be eliminated

if the set of shortest paths connecting each pair of vertices in the graph is

available.

4.5.4 Example

Consider Figure 4.5.5, showing a typical solution G5 to a Steiner problem
on S CV(G) in G.
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4.5.5 Figure

Here S = {q,r, s,t}. Note that any vertex belonging to S, say g, belongs to
a branch of the solution tree Gg at the vertex p (which we note has degree
3 and does not belong to S ).

Clearly the path connecting ¢ and p is the shortest path connecting
these two vertices in G, otherwise G5 would not be a subtree of G of mini-
mum cost containing S. Also note that each of the other branches of Gg at
the vertex p represent the solution of a Steiner problem connecting fewer
vertices than the number in the set S. In other words the subgraph of Gg
induced by {p,s,t} has the smallest cost among all connected subgraphs of
G which contain the vertices {p, s,t}, similarly {p,r} cannot be connected
by a shorter path in G than the one which appears in G : If they could,

again G5 would not be a solution to the Steiner problem for S in G.
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The “division” of the Steiner problem by p into three smaller parts as
demonstrated in Example 4.5.4 was called the optimal decomposition prop-

erty by Dreyfus and Wagner in [DW1]. 1t can be formally stated as follows:

4.5.6 Optimal Decomposition Property

Let G be any connected graph of order p and size ¢. Suppose Gg is a
Steiner tree for the set S C V(G), in G, and let z be any vertex of S. If S

contains at least three vertices then there exists a vertex = € V(G) and a

subset D of S such that
1) D is a proper subset of S — {2z}, and D is nonempty.
2) Gs consists of three edge disjoint subgraphs; S, Sy and S;.

3) Si contains {z,z}, S contains {x} U D, while Sy contains {z} U (S —

D — {z}).
4) S,,S; and S; are all Steiner trees for their respective sets in G.

A general proof of the existence of an optimal decomposition of the type

described above, covering all degenerate cases, appears in Appendix A page

205 of [DW1].

.

The solution algorithm from [DW1] which we now describe is based

on the dynamic programming methodology and in his survey Winter [W1]

gives this algorithm the name: Dynamic Programming Algorithm.
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4.5.7 Dynamic Programming Algorithm

The algorithm exploits Property 4.5.6. A straightforward application of
Property 4.5.6 would entail choosing a vertex z € S (any z will do), then
searching for the optimal choice of z. In turn, an optimal choice of z
requires that an optimal choice of the subset D C S be made, and that
the Steiner trees S; and S3 for the sets DU {z} and (S — D — {z}) U {z}
in G, respectively, be known. Thus, the original problem could be solved
recursively. However, we could also build up the desired solution by means
of the following |S| — 1 steps. (Note that we assume the lengths of the

shortest paths between every pair of vertices of G have been calculated; see

[F1].)
Step 1: Remove one vertex, z, from S. Let C = S — {z}.

Step 2: Solve the Steiner problem for each set of two vertices of C and one
vertex y € V(G). (y can be an clement of C, or it can even be the

vertex 2.)

Step 3: Use this result to solve Steiner problems for each set of three vertices

of C and one vertex y € V(G).

Step |S| -2: Solve Steiner problems for each set of |S| — 2 vertices of C and one

vertex y € V(G).

Step |S|-1: Solve the Steiner problem for z and the set C.
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Given a subset D of C, and y € V(G), each step in the solution above
involves two searches: Search 1 locates the intermediate vertex, z € V(G);
Search 2 finds the optimal proper subset I of D so that the cost of the
Steiner trees containing {z}U E and {P}U(D — E), plus the distance from
y to z is a minimum.

The efficiency of this procedure stems from the fact that only optimal
solutions for the relevant subsets are ever considered. Nonoptimal solu-
tions to smaller sﬁbproblems are disposed of at the time that subproblem
is solved. The optimal solution is retained for use in solving later subprob-
lems, and the smaller subproblem is never solved again. Straightforward
enumeration of all possible solutions to the entire problem would unnec-
essarily consider nonoptimal solutions many times. This building up of
larger optimal solutions from optimal solutions of all possible smaller prob-
lems is the fundamental technique in the general methodology of dynamic
programming.

Let us discuss in some detail the procedure whereby the Steiner solu-
tion for a given subset D consisting of a certain j(> 2) vertices of C' and
one vertex, w € V(G), is found. Here again we avoid some unnecessary
calculation by first solving all possible smaller problems of a certain form.
First we associate with each vertex k& € V(G) an integer S,(D) which is
found using the following method:

(1) Divide D into two proper subsets E and F, and add the Steiner dis-
tance for the set consisting of the members of F and vertex k. to the Steiner
distance for the set consisting of the vertices in F and vertex k, and

(2) Minimize this sum over all distinct choices of sets E and F.

(Note that the number Si(D) is not necessarily the Steiner distance of the
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set composed of the elements of D and vertex k, since no saving due to
coalescing the subsolutions at a vertex other than k is considered.) Hav-
ing done this for a given D and all k, to solve the Steiner problem for w
and D,we let dy denote the length of a shortest path from w to kin G
and we minimize dur + Sk(D) over all vertices k € V(G). Let S(w, D)
denote the cost of the Steiner tree for the vertices {w} U D). Since Si(D)
does not depend on the choice of the vertex w, knowledge of Si(D) for all
k € V(G) allows easy computation of Steiner solutions for any w € V(G),
all, of course, for a given D. The computation is repeated, then, for all

choices of the set D.

So far we have described a procedure for generating the cost of the
Steiner tree, but not the actual tree. To determine the tree, there are
two “pure” strategies available. Method 1: For each choice of w and D
one can record the value of k that minimized dyx + Si(D) and the sets
E and F that generated Si(D). Then k is the vertex which produces the
‘optimal decomposition, with w connected to k by a shortest path, while
E and F, respectively, are joined to k by paths in the Steiner trees for
the sets {E U {k}} and {F U {k}} in G, respectively. Method 2: On the
other hand, the values of Si(D) can be stored and the minimizing value
of k and associated sets F and F can be recomputed as needed in the re-
construction of the Steiner tree. In either case, as is typical in dynamic
programming procedures, the Steiner tree is constructed (after the optimal
cost has been determined) by processing sets in the reverse order of that of
the cost-determination algorithm. The first method of tree-construction in-

volves less computation while the sccond uses less compuler strorage. Since
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tree-construction by Method 2 requires at most %th the computation time

of the cost- generation, this is the recommended and most practical method.

We now present a numerical illustration from [DW1] of the procedure

followed in Algorithm 4.5.7.

4.5.8 Example

Let V(G) = {1,2,3,4,5,6,7}, S = {1,2,3,4} and the matrix A of distances

(a;; = aji = the weight of the edge (7,7) between vertices v and j) be

1 2 3 4 5 6 7

1/X 2 2 2 1 1 2
212 X 2 2 2 1 2
A=32 2 X 2 2 2 1
412 2 2 X 1 2 1
51 2 2 1 X 2 1
6|1 1 2 2 2 X 1
7172 2 1 1 1 1 X

First we compute the matrix D of shortest lengths (d;; = dj; = the
length of the shortest path between vertices ¢ and 7) by the method de-

scribed in [F1]. Clearly, by our choice of data, matrix D is identical to

matrix A.
Step 1: Remove one vertex, say vertex 1, from S. Let C = {2,3,4}.

Step 2: Let D = {2,3} Then Sl(D) = d12 + d13 =242 = 4, SQ(D) =
2, Sg(D) - 2, S4(D) - 4, Ss(D) — 4, SG(D) — 3, S7(D) = 3.
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Step 3:

Letting S(w, D) denote the cost of the Steiner tree for the set {wU D},
we have S(1, D) = ""(dy + Si(D)) = 4 (with several dillerent trees
yielding the result e.g. k = 2).

S(2,D) = 2, S(3,D) = 2, S(1,D) = 4, $(5,D) = 4, S(6,D) =
3, S(17,D) = 3.

Now let D = {3,4}. Then Si(D) = 4, S(D) = 4, S3(D) =
2, Su(D) = 2, Ss(D) = 3, So(D) = 4, (D) = 2. Hence S(1,D) =
4, S(2,D) = 4, S(3,D) =2, S(4,D) = 2, 5(5,D) = 3, S(6,D) =
3, S(1,D) = 2.

Finally let D = {2,4}. Then S,(D) = 4, Sy(D) = 2, S3(D) =
4, S4(D) = 2, Ss(D) = 3, Ss(D) =3, S¢(D) = 3. Uence S(1,D) =
4, S(2,D) = 2, S(3,D) =4, S(4,D) =2, S(5,D) =3, S(6,D) =
3, S(7,D) = 3.

We are now ready for Step |S| —1 =4 —1 = 3, in this case.

Let D = {2,3,4}.

Let E = {2} and F = {3,4}. Then S;(D|E,F) = 5(1, E)+S(1, F) =
244 =6. Now let E = {3}, F = {2,3}. Then S;(D|E,F) = 2+4 =6.
Finally let E = {4}, F = {2,3}. Then S;(D|E, F') = 244 = 6. lence
S1(D) = minimum over all choices of E and F of S,(D|E, I') = 6.

Letting ' = {2} and I = {3,4}, S;(D|L,F) = 4. Letting E = {3}
and F' = {2,4},5;(D|E,F) = 4. Letting £ = {4} and I’ = {2,3},
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Sy(D|E, F) = 4. Hence Sy(D) = 4.

Similarly S3(D) = min(4,4,4) = 4. Sy(D) = min(4,5,5) = 4.
S¢(D) = min(5,5,5) = 5. Sg(D) = min(4,5,5) = 4. S (D) =
min(4,4,4) = 4.

Hence S(1,D) = m,i"(dlk + Sp(D)) = dig + Se(D) = 1 + 4 = 5, which
is the size of a Steiner tree for {1,2,3,4} in G.

To construct the Steiner tree for {1,2,3,4} in G, we note that since k = 6
yielded the minimum in the above minimization, vertex 1 is to be connected
to vertex 6 by a shortest path in G, which in this case is the edge connecting
vertices 1 and 6. Now Sg(D) resulted when If = {2} and F = {3,4}.
Hence the shortest path from 6 to 2 is part of the solution Steiner tree
for {1,2,3,4}. This is the edge between the vertices 2 and 6. Finally,
the Steiner tree for the set {6,3,4} in G must be a subtree of the Steiner
tree for {1,2,3,4} in G. Lo find this subtree we refer to S(6, D) above for
D = {3,4} we see S(6,D) = 3 and the value 3 was obtained when k = 7
mkin(d(;k + Si(D)) = do7 + S7(D) = 1+ 2 = 3. Hence vertex 6 must

be connected to vertex 7 by a shortest path in G (the edge connecting 6

yielding

and 7 in this case) and vertex 7 must be connected to verlices 3 and 4 by
shortest paths in G (the edges between 7 and 3, and 7 and 4, respectively,
in this case). Hence the Steiner tree for {1,2,3,4} in G, consists of the edges

(1,6), (2,6), (6,7), (7,3) and (7,4), sce Figure 4.5.9.
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4.5.9 Figure

The Steiner tree G for {1,2,3,4} in G.

The sum of the weights of the edges of G5 is indeed 3, agreeing with our
computed value of S(1,D) for D = {2,3,4}.

With reference to Property 4.5.6, if vertex 1 is identified with vertex ¢
in the statement of the property, then vertex 6 is identified with vertex p
and vertex 2 constitutes the set D in the statement of the property. Then

set Sy consists of the edge (1,6), set S, consists of (2,6) and S; consists of

{(6,7), (7.3), (7,4)}.

For verification of the time requirement for Algorithm 4.5.7 see [DW1].
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Since the time nceded to solve the Steiner problem increases exponen-
tially with an increase in the size of our set S, we deduce that Algorithm
4.5.7 is useful only for small |S|. Ilence we now turn our attention to ap-
proximation methods which find trees which have costs close to that of a
Steiner tree.

There are many such heuristics available, see [P2], [R1] and [A1] for ex-
amples. We shall consider the approximate solution for the Steiner problem
in graphs developed by Takahashi and Matsuyama [MT'l|, which requires
at most O(np?) time and we shall determine the accuracy of the approxi-

mation. For the remainder of this section we follow [MT1].

4.5.10 Definition

Let W be a proper subset of V(G), then define Path (W,v) to be a path
whose cost is minimum among all paths from vertices in W to vertex v ¢ W.

Denote by ¢(W,v) the cost of Path (W,v).

4.5.11 Approximation Algorithm

Step 1: Start with subgraph T) = (V}, E;) of G, with vertex set V; and edge

set E) consisting of a single vertex, say vy, where v, € S; i.e., Vi, =

{Ul} and El = @ Let ¢ = 2,3,...,TL.

Step i: Find a vertex in S—V;_;, say v,, such that ¢(Vioy,vi) = min{é(V;_y, v;)
v; € S — Vi_1}. Construct tree 7} = (Vi, E;) with vertex set V; and
edge set Ej, by adding Path (V;_;,v) to Ti_,; i.e., set V, = Vi,uv

(Path (Vi_y,v;)) and E; = B, U L(Path (Vi_y,v)).
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We assume that when there are ties in step 7, they may be broken
arbitrarily. At each step in this algorithm, a tree containing a subset
of S has been built up, and a new vertex of S is inscerted together with
a path of minimum cost connecting the tree and the vertex.” Hence
we end up with a tree T,, which is our approximate solution to the

Steiner problem.

We note by Dijkstra’s algorithm [D1] that Path (V;_;,v;) can be com-
puted in time complexity 0(p?); hence this algorithm requires at most 0(np?)

time.

4.5.12 Definition

Let OPTIMAL represent the cost of the Steiner tree for the set S in G,

and let ds(u,v) denote the cost of the path between vertices u and v in a

Steiner tree Ts.

The following lemma will aid us in determining the accuracy of Approx-

imation Algorithm 4.5.11.

4.5.13 Lemma

Let Gs be a Steiner tree for the set S in a graph Gi, and let V(Gg) =
{vi,v2,...,v,}. There exists a permutation ty,t,,...,¢, of 1,2,....n such that
ds(v“,v,z) + ds(Utz,Uts) + ...+ dS(Ut“-“Ul,.) + ds('Ut",U“) = 2. OPTIMAL

and

2
).OPTIMAL.

ds(ve,,ve,) > (;
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Proof

Suppose that v;, € S is visited after v;,_ € S for each 2 < 7 <nin a depth

first search of a Steiner tree G for S in G, starting from an arbitrary vertex

of Gs. Then
dS (v,-l,v,-z) + ds (v;n_l,v.;n) + ds (v‘-n,v“) = 2.0PTIMAL.

Assume dg(v;,_,,v;,) = max{ds(vi,,vi;), 0, ds(Vi,_,» v v;, ), ds(vi,,vi,) for
some r, 2 < r < k. Then setting t; = try .., bnors1r tnori2z = Thheensbn = -1,

we have ds(vi;_,,ve; < ds(vt,,ve,) for all 2 <7 < n. Hence
ZOPFIMAL—ds(Uh,Ut2)+ +ds(Ut" VU )+d5(1}t ,’U“) <nd3(t )vh)

and hence

(3> OPTIMAL < dg(v,,,v,). 0
n

4.5.14 Definition

Let APPROXIMATE be the cost of the tree T, obtained by Approximate

4]

Algorithm 4.5.11. Then APPROXIMATE is equal to L ¢(Vicy, vi).

We now show that the tree T}, obtained by Approximate algorithm 4.5.11

has a worst case cost ratio to the Steiner tree for S in G which is less than

or equal to 2(1 — 1).

4.5.15 Theorem
Forallpandn (2 <n <p-1)

APPROXIMATE 1
T g1 ),
OPTIMAL n
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Moreover if n = p, then APPROXIMATE = OPTIMAL.

Proof

If n = p, then the problem reduces to the well-known minimal spanning

tree problem, hence the latter half of the theorem is Prim’s algorithm [P1].

Since the cost of Path (Vi_,v;) is minimum among all paths between

vertices in V;_; and vertices in S — V;_y, we have
e(Visy,vi) < ds(vp,v,) for all 2 <@ < n, ~ (1)

where 1 < min{p,q} < i—1 and ¢ < max{p,q} < n. By Lemma 4.5.13

there is a permutation t,ts,...,t,, of 1,2,...,n such that

dS(Utnvtg) + ds(Uh,Ula) 4+ .+ dS (’Ug"kl,vgn) + dS(Ut,.»vtl) = 2.0PTIMAL
~(2)

and

9
ds(ve,ve,) > <—) OPTIMAL. ~ (3)
n

We can construct a one-to- one correspondence between the numbers 1,

t=2,3,...,n and pairs (t;_y,t;),7 = 2,3,...,n, such that
E(V,;l,v,-) < ds(vtj_l,vt,-)-

Such a correspondence can be established by the method which Resenkrantz,
Stearns and Lewis II used in a more general case in [LRS1, Proof of
Lemma 3|. For each ¢ with 2 < 1 < n, consider the longest subsequence
Ep(i)s Lp(i) 415 =y Ty oy Bq(i)—1, Lq(i) including 7 of the sequence t,,t,,...,t, such

that t,4) < 1, tgu) <7 and t; > 1 for each 7, 7 = p() +1,...,9(:) = 1. In
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other words, subsequence t,(;), .-, ty(i) includes 1, and all the intermediate
numbers except for 7 in that subscquences are larger than i. We deline the
critical number ¢* for ¢ by
o(s) if ty) =1,
=0 L) if tpm) = %
max{t,(), Loy} otherwise.
The critical pair for 7 is defined to be

(tp(i)’ tp(i)+1) if i_*

(tag)-15tan) i

f
T

pli)
to(s)-

fl

Next we show that no two numbers 7 and 7 from the sequence ty,ts,...,tn
can have the same critical pair. Assume, to the contrary, that : and j(¢ < j)
have the same critical pair (¢{,_1,t,). Assume that t, < t,_,. Then t, is
critical for 7 and j, and r = ¢(7) = ¢(y). Since all the intermediate num-
bers in the subsequence from j to ¢, of subsequence t,t,,...,t, are larger
than 7, number 7 cannot be in that subsequence. This implies since 1 < 3
that number 7 is in the sequence {rom 7 to t,. Since then by definition
t, < 1, all the numbers in the sequence from 1 to j are larger than t,. Thus
tp(j) > tr = tg(j), contradicting the assumption that ¢, is critical for j. The

same contradiction is concluded if we assume ¢, > 1,_,.

Let (tr(i)-1,t.(i)) be the critical pair for 7, then from (1) we have, since
min{t,¢)-1,tr6)} <1 < max{t (-1, ¢, )} holds,
6(‘/!'—1’1“) < dS(Uty(()fn’Ufy(.J)' ~ (4)
From (2), (3) and (4), we have

APPROXIMATE = > é(Viy,v)

i=2
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n

< ZdS(vl,(.') |’v‘a(~'))
1=2

and since no two numbers have the same critical pair

n ) n
Z ds [Uh(.‘)—x ) Uly(.)) = Z ds (Utl'-l ) v‘p)
1=2 p=2

hence

APPROXIMATE < Y ,ds(v, ,,v,) = 2.0PTIMAL — d(v,,,v,,)

<

< 2.0PTIMAL - (2).OPTIMAL = 2.(1 — 1).OPTIMAL
U

Finally we show that for n < p — 1, we can construct graphs for which

the APPROXIMATE to OPTIMAL ratio is equal to 2(1 — l;)

4.5.16 Theorem
For all p and n (2 < n < p), there exists a graph [or which

APPROXIMATE 201 1)
OPTIMAL n'’

Proof

Let V.= {1,2,...,p}, E = {(4,7) : i = 1,2,..,p, j = 1,2,....p}, and
S ={1,2,...,n}. Suppose that
1 i:l,Q,...,n, ]:n+]_,
c(1,7) = 2 i=1,.,n—1,7=1+41,

10 otherwise

Then let G be the graph with vertex set V, edge set I and cost function c.
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It is evident that the tree T}, with vertex set S and edge set E(71,) =
{(7,k): 7=1,2,...,n—1, k = 5+ 1} with every edge of T}, having weight 2
(see Figure 4.5.17), is obtainable by Approximation algorithm 4.5.11. The
cost of T}, is thus 2(n — 1). It is also evident that a Steiner tree Gg for S in
G has vertex set V(Gs) = {SU{n+1}}, edgeset E(Gs) = {(1,n+1): ¢ =
1,2,...,n} with every edge of G5 having weight 1 (see Figure 4.5.18). The
cost of G is then n. Hence using our previous terminology OPTIMAL =

n while APPROXIMATE = 2(n — 1) and

APPROXIMATE  2(n—1) 21 1
OPTIMAL no n)

as required. O

By Theorems 4.5.15 and 4.5.16, the worst case ratio of APPROXIMATE
to OPTIMAL is 2(1 — ’—ﬁ)
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4.5.17 Figure

The tree T, of Theorem 4.5.16.
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n+l

4.5.18 Figure

The Steiner tree Gg of Theorem 4.5.16.

In view of the complexity of the problem of determining the Steiner dis-
tance of a given set of vertices in a graph, efforts have been made to consider
graphs with special properties in which Steiner distances of given sets may
be found in polynomial time. For instance, for any integer k > 2, Day,
Oellermann and Swart defined a graph G to be k-Steiner distance heredi-
tary if, for every S C V(G) such that |S| = k and every connected induced
subgraph H of G containing S, dy(S) = dg(S). In [DOS1] they showed
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that if G is 2-Steiner distance hereditary, then G is k-Steiner distance hered-
itary for every integer k > 2. They then gave ellicient algorithms for testing
whether a graph is 2-Steiner distance hereditary and for determining the
Steiner distance of a set of k vertices in a k-Steiner distance hereditary
graph, thereby providing an eflicient algorithm for obtaining the Steiner

distances of sets of k vertices in 2-Steiner distance hereditary graphs.

The search for further large classes of graphs in which Steiner distances
may be determined by means of eflicient algorithms presents a challeng-
ing new field of research as does the investigation of graph§ with specified
properties such as the uniquely Steiner n-eccentric graphs investigated by
Henning, Oellermann and Swart in [IIOS3]. Furthermore, in view of the
complexity of tlie problem of evaluating the n-Steiner radius and n-Steiner
diameter of a graph, an investigation of graphs that have maximal or min-
imal order or size and given n-radius or n-diameter may yield results that

have useful applications as would the characterization of the associated

classes of extremal graphs.
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