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Abstract

Aspects of the fundamental concept of distance are investigated in this

dissertation. Two major topics are discussed; the first considers metrics

which give a measure of the extent to which two given graphs are removed

from being isomorphic, while the second deals with Steiner distance in

graphs which is a generalization of the standard definition of distance in

graphs.

Chapter 1 is an introduction to the chapters that follow. In Chapter

2, the edge slide and edge rotation distance metrics are defined. The edge

slide distance gives a measure of distance between connected graphs of the

same order and size, while the edge rotation distance gives a measure of

distance between graphs of the same order and size. The edge slide and

edge rotation distance graphs for a set S of graphs are defined and investi­

gated. Chapter 3 deals with metrics which yield distances between graphs

or certain classes of graphs which utilise the concept of greatest common

subgraphs. Then follows a discussion on the effects of certain graph oper­

ations on some of the rnetrics discu ssed in Chapters 2 and :30 This chapter

also considers bounds and relations between the rnetrics defined in Chap­

ters 2 and 3 as well as a partial ordering of these metrics.

Chapter 4 deals with Steiner distance in a graph. The Steiner distance

in trees is studied separately from the Steiner distance in graphs in general.

The concepts of eccentricity, radius, diameter, centre and periphery are gen-
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eralised under Steiner distance. This final chapter closes with an algorithm

which solves the Steiner problem and a Heuristic which approximates the

solution to the Steiner problem.
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Chapter 1

Introduction

1.1 Graph Theory Nomenclature

The basic text for the graph theory terrninology and syrnbols used here is

Chartrand and Lesniak's Graphs and Digraphs [CLl]. Here we clarify our

conventions.

We denote by I' the space of all graphs, by r (p) the space of graphs

of order p, by I'[p, q) the space of all graphs of order p and size q and by

r c(p, q) the space of all connected graphs of order p and size q. The space

of all trees of order n is denoted by T (n). We denote by Sp the space of all

isomorphism classes of graphs on p vertices, by Sp,q the space of all isomor­

phism classes of graphs with p vertices and q edges and by se the spacep ,q

of all isomorphism classes of connected graphs with p vertices and q edges.

We use p(C), q(C), V (C) and E( C) to denote the order, size, ver­

tex set and edge set respectively of a graph C. If v E V (C), the degree

of v in G is written as degcv and the minimum degree of G is given by
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<5 (G) == min{degcv : v E V (G)} whereas the maximum degree of G is

6(G) == max{degcv : v E V(G)}. The set of all vertices adjacent to

v in G is denoted by Ne (v). If S is a set of elernents (either edges or

vertices) then the number of elements in the set 8 is written as 181. If

G, HEr (p) and G and H are defined on the same vertex set then we

denote by IV(G) - V(H)I(IE(G) - E(11)1), the number of vertices (edges

respectively) which appear in G but not in 11. A set S ~ V (G) of vertices

of G is an independent set if no two vertices of 8 are adjacent in G. If

GE I'{p, q), the cardinolitsj of G is defined to be p + q, denoted by IGI.

If 8 ~ V (G) is a subset' of the vertex set of a graph G, then we denote by

(8) the subgraph of G ind uced by the vertices of 8. We denote by 11 < G

that H is an induced subgraph of the graph G. A block B of a graph G is

a subgraph of G with maximum order such that B contains no cut-vertex.

An end-block of G is a block of G which contains exactly one cut-vertex

of G. A branch B of a graph G at the vertex w E V (G) is a maximum

connected induced subgraph of G containing w as a non cut-vertex.

If G is a given graph with vertex set V (G) == {VI, V2, ... , vp } and edge set

E( G) == {et, e2, ... , eq } then the line graph L( G) of G is the graph obtained

as follows: L(G) has vertex set {el, e2, ... , eq } and eiej E E(L(G)) if and

only if e, and ej are incident with a common vertex in G, for 1 ::; i < J ::; q.

For graphs G I and G 2 , the cariesian product G I X G2 is a graph which

has vertex set V(Gd x V(G2 ) such that two vertices (UI,U2) and (VI,V2)

are adjacent in GI x G2 if and only if either UI == VI and U2V2 E E(G 2 ) or
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U2 = V2 and UI VI E E( Cd. Again if Cl and C 2 are vertex-disjoint graphs,

then the [oin of G I and G2 , denoted by G I +G2 , is that graph consisting of

the disjoint union G I U G2 , together with all edges of the type VIV2, where

VI E V(Gd and V2 E V(G2 ) . We denote by G - {S}, where S ~ V(G), the

graph obtained from G by deleting the vertices in S from G together with

all the edges incident with vertices of S. The contraction of graph G along

an edge e = xy E E( G) say, is the graph obtained from G by deleting e and

identifying the vertices x and y in G in a single vertex which is adjacent to

all vertices in Na(x) U Na(y).

A unicyclic graph is agraph containing only one cycle and the girth

9(G) of a graph G is the length of a shortest cycle in G. The star Sn is

isomorphic to the graph !{l,n'

Other definitions will be given as needed throughout the chapters.

1.2 Distances between Graphs and Steiner
Distance

If two graphs G I and G2 are not isomorphic, then how far away from iso­

morphism are they? In Chapters 2 and 3 we define and develop metrics

which can be used to answer this question.

The line of discussion of Section 2.2 is as follows:

Let G, HErc (p, q); then C can be transformed in to H by an edge

slide if G contains distinct vertices u, v and w such that uv E E(G), uw E
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E(C), vw E E( G) and If ~ G - uv + uw. The edge slide ·d is tance between

G and H in this case, denoted des (G, H) is 1. The minimum number of

edge slides needed to transform one graph in to another gives a measure of

distance between the graphs. In this section we see that for any two graphs

G1,G2 E fc(p,q) it is always possible to transform G 1 into G 2 by means

of a sequence of edge slides. We also consider edge slide distances between

specific classes of graphs. The remainder of this section deals with the edge

slide distance graph Ds(S) of a set S ~ fc(p, q) of graphs, where Ds(S) has

S as its vertex set and two vertices x and y of Ds(S) are adjacent if and only

if des (x, y) == 1. It is shown that every graph is an edge slide distance graph.

The edge rotation distance rnetric is introduced and discussed in Sec­

tion 2.3. Let G, H E f(p, q); then G can be transformed in H by an edge

rotation if G contains distinct vertices u, v and w such that uv E E (G),

uw E E(G) and H ~ G - uv + uw. Here we dispense with the restriction

that vw must be an edge of G as is demanded by the edge slide operation.

The discussion folowed in this section is similar to the line of discussion in

Section 2.2 .

A number of metrics which give a measure of distance between noniso­

morphic graphs are defined in Chapter 3. These me tries have in common

that they are closely linked to the idea of a greatest common subgraph of

the graphs in question. In Section 3.2 these metrics are defined and dis­

cussed.

In Section 3.3 certain relations between the metrics we have studied are
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established, together with some results which set bounds on the distances

between graphs.

The effects of the application of some simple graph operations on the

distances between associated graphs are studied in Section 3.4. The oper­

ations considered are: The join, the union and the subdivision.

A partial ordering for the metrics defined in Chapters 2 and 3 is devel­

oped in Section 3.5.

Chapter 4 deals with the background to the Steiner problem, which is

to connect n given points in the plane by a shortest possible network of

line segments. We consider the extension of this problem to graphs which

is our main topic of discussion here.

The Steiner problem in graphs may be stated as follows: Consider a

connected graph G of order p and a proper subset 5 ~ V(G). The problem

is to find a subtree Ts of G of minimum size such that V (Ts ) ~ 5. The

concepts of eccentricity, radius, diarneter, centres and peripheries are gen­

eralised under the Steiner distance. The generalisations yield many results

which are separated into two categories. Secion 4.3 includes results which

apply to trees and Section 4.4 considers graphs in general.

Finally in Section 4.5 we present an algorithm which solves the Steiner

problem in graphs exactly but in irnpractical tirne for large 151. Hence we

also present a more economical approximate algorithm for finding a tree T1
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in our graph G which is close to optimal, and we show just how accurate

this heuristic is.
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Chapter 2

Distance Between Graphs

281 Introduction

In this chapter we shall define two metrics, both giving a measure of the

distance between certain given gr aphs and/or between certain classes of

graphs. We will consider some of the properties exhibited by these metr ics

and determine distances between specific graphs.

The two metrics to be investigated, namely the edge slide distance met­

ric and the edge rotation distance metric, are similar in nature. They both

involve the deformation of a graph G, which translates G into a graph

C' == C - el + e2 where el E E(G) and e2 E E(G). The aim is to transform

one graph to another with the least possible number of such deformations.

The number of deformations gives a measure of distance between the orig­

inal graph and the transformed graph .
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2.2 The Edge Slide Distance des

The concepts of edge slide and edge slide distance were defined by M.

Johnson in [J1] and independently by Benade, Goddard, McKee and Winter

in [BGMW1].

2.2.1 Definitions

Let G and H be two graphs with the sa me number, say k, of components,

where the components are so labelled th at the ith component (1 :S i :S k) of

each of G and H has the sarne order and the same size. We say that G can

be transformed into H by an edge slide if G contains distinct vertices u, v

and w such that uv E E(G),uw E E (G ), vw E E(G) and 11 ~ G -uv+uw.

Now let graphs G and 1-1 be defined as above; then the edge slide distance

des (G, H) between G and H is defined as the smallest .non nega t ive integer

n for which there exists a sequence

such that Fi can be transformed into Fi+l by an edge slide, for i = 0,1,2, ... , n­

1.
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In Figure 2.2.3 the graph G cannot be transformed into the graph H by

an edge slide; however in Figure 2.2.4 the graph G can be transformed into

the graph H by the edge slide which removes the edge uv from G and then

inserts the edge uw in G - uv; i.e., H ~ G - uv + uw.

To simplify notation we shall denote an edge slide which results in a

graph G being transformed into the graph G - uv + uw as in the above

example by t = (u,v,w) where uv E E(G), uw E E(G) .and vw E E(G).

The graph G - uv + uw will be denoted by tG and to avoid ambiguity t

will also be called an edge slide on G.

2.2.5 Remark

Since we may deal with components of G and H with equal size and order

separately, when performing the edge slides which transform G into H, it

will be sufficient in our discussion of edge slides, to consider only the graphs
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of re (p, q). We note also, that if there exists no sequence of graphs F. such

that des(Fi , Fi+d = 1 for i = 0,1, .oo, n - 1, where Fa ~ G and E; ~ If, then

it is usual to say

It was shown in [J1] that for any two graphs A, B E fc(p, q) it is possible

to transform A into B via a sequence of edge slides. The following result

and definition from (J 1] will aid us in establishing this.

2 e 2.6 Lemma

Let A E rc(p,q). Let t be any edge slide on A. Then tA E rc(p,q); i.e., the

edge slide preserves order, size and connectivity.

Proof

It is clear that tA has size p and order q since vertices do not undergo any

change and edges merely change position . Thus we need only show that tA

is connected.

Suppose t = (u, v, w) and let x and y be any distinct vertices of A.

Since A is connected there exists a shortest path P == (x =) XOXl ••• X n ( = y)

connecting x and y in A. If path P does not pass through the edge uv then

the path P connects x and y in tAB Thus we only need consider the case

in which uv occurs once in P.

If uv or vu is a subpath of P and vw or wv is not, then construct the

walk P' from P by replacing uv or vu by uwv or vwu respectively. If uv or

vu is a subpath of P and vw or wv is also a subpath of P , then since P is
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a shortest path, P contains a subpath of the form uvw or wvu. Form the

walk pi by replacing uvw or wvu by uw or wu respectively. In either case

pi is a walk connecting x and y in tA. 0

2.2.7 Definition

Let A E fc(p,q). We shall say graph G with vertex set V(G) = {1,2, ... ,p}

and edge set E(G) = {el, e2, ... , eq } is a standard form of A if the following

conditions are met:

1. G r-.J A

2. e, = ab =} a < b

3. The edges of G are labelled according to the lexicographic ordering.

This ordering is obtained by assigning the labels el, e2, .. ., edego 1 to the

edges incident with 1 (where for ei 1 = 1i and eh = 1i we have i l < i1
if and only if i < i), thereafter labelling the edges incident with 2 in

a similar fashion, etc. This finally gives that i < i => e, < ej.

2.2.8 Lemma

For any A E I'c (p, q) there exists a standard form G, say, of A.

Proof

Assume there exists no standard form of A. Let G be a .gr aph isomorphic

to A with vertex set V(G) = {1,2, ...,p} andec.Ige setE(G) = {el,e2, ,e q }

labelled in such a way that e, = ab implies that a < band el < e2 < < ek

for some maximum integer k. Since by assumption G is not a standard
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form of A, k < q and ek > ek+l' However this irnplies that

which, with suitable relabelling contradicts the maximality of k. Therefore

k == q and G is a standard form of A. 0

The following Theorem is proved in [J 1] by means of an adaptation of

a method first introduced by Chartrand, Saba and Zou in [CSZ1].

2.2.9 Theorem

For nonisomorphic graphs A, B E r e(p, q), there exi sts a sequence t h t2 , 00" tn

of edge slides such that tnooot lA ~ B .

Proof

For a graph G with vertex set V(G) == {1, 2, oo.,p} and edge set E(G) ==

{et,e2,oo.,eq}, call S(G) == el,e2, oo .,eq the edge sequence of G. Let ek(G)

denote the kth edge in S(G). We shall say that G is l-minimal if el == 12;

and for 2 ~ k ~ q, we shall say that G is k-minimol if G is (k - 1)-rninirnal

. h - . . d - { i(j + 1) if j < P
WIt ek-l - 1,) an ek - ( . 1)( . 2) if . _

. 1, + 1, + I) - p.

If G and H are both graphs in r e(p, q), and if both are q-minimal, then

G and H will have the sarne edge sequence and therefore will be isomorphic.

A q-minimal sequence has the follo wing form:

12, 13,oo.,1p,23, 24, 00" 2p, 00" (i - 1)i, 00" (i - l)p, i(i + 1), 00" i(i + m)

for some integers i and m such that 1 ~ i ~ p - 1 and 1 ::; m ~ p - i .
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We shall show that there exists a standard form G of A, and a: sequence

tl, ... ,tm of edge slides, such that i-; ... t2t l G =B. First we show that there

exists a sequence tl, t2 , ••• , t.; of edge slides such that tn .•. t2t l G is q-minimal.

Assume, to the contrary, that there is a largest k, k < q, such that

t~ ...t~ G is k-rninirnal for some edge slide sequence t~, ... , t~, and sorne stan­

dard form G of A. Let If == t~ ...t~ G. Note that, by Lemma 2.2.6, H

is connected. We shall obtain a contradiction by proving the existence of

a standard form of H and a sequen ce t l, t 2 , •• •, t.; of edge slides such that

tn...tlH is (k + I)-minimal.

Case 1) Suppose k < P -1: Then since H is k-minimal, ek(lf) == l(k + 1), but

ek-dlf) == ij where either i == 1 and j > k + 2 or i > 1.

There must exist an edge uv where u :s; k + 1 < v for otherwise

the subgraph induced by the ver tex set {I, 2, ... , k + I} would form a

component of If which would contradict the connectedness property

of H-. If v t=- k + 2 form the graph 11' by interchanging the labels

v and k + 2; if v == k + 2 let H' == H. Clearly H' is k-minimal. If

u == 1 then H' is also (k + 1)-min imal. If u t=- 1 then the edge slide

t == (k + 2, u, 1) exists, since u(k + 2) E E(Il'), (k + 2) 1 tf. E(li') and

uI E E(H'), and tH' is (k + I)-minimal.

Case 2) Suppose p - 1 ::; k < q: Let ek(l / ) == i j and ek+l(ll) == uv where, as

If is not (k + l)-minirnal,

1. j < p => ek+dlf) t=- i(j + 1) and

2. j == p => ek+dH) t=- (i + l)( i + 2).

14
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We have therefore that H increases minimally at ep-l and therefore

ep_l(Il) == lp, and thus the edges Im exist for m == 2, ... , p. rv (2)

Assume j < p and ek+l(H) == (j + l)v. Then t l == ((j + 1)' 1, i)

exists by (1) and (2) and deletes l(j + 1) and creates i(j + 1). Also

t 2 == ((j + 1), v, 1) exists for tIll, and deletes (j + l)v and recreates

l(j + 1). Clearly t 2t l H == 11 - (j + l)v + i(j + 1) and it follows that

t2t l H is (k + 1)- minimal since ek+l(t2t 11-I) == i(j + 1).

Assume j < p and ek+l(H) == u(j + 1). Then t l == ((j + 1), 1, i) exists

on I-I by (1) and (2). Also t 2 == ((j + 1), u , 1) exists on tIll. Again

we clearly have that t 2 t 111 == 11 - u(j + 1) + i (j + 1) and that t2t 111

is (k + I)-minimal.

Assume j < p and ek+l(1-I) == uv where neither u nor v is equal to

j + 1. Then t l == (u, l,j + 1) exists on 1-I and t2 == (u, v, 1) exists on

tlH. Therefore t2t lH == H - uv + u(j + 1) which is k-minim~l and

has an edge of the form (j + l)u or u(j + 1) and thus, as above , t 2 t 1H

and consequently H, can be transformed into a (k +1)-minimal graph.

Assume j == p . Replacing i by i + 1 and j + 1 by j + 2 in the

preceding argurnent for j < p yields the sarne result, Le. that 1-I can

be transformed into a (k + I)-minimal graph.

We have therefore by contradiction th at th ere exis ts a sequence t 1, t 2 , ... , t n

of edge slides such that t.; ...tlG is q-rninimal where G is a standard form of

15



A.

Now for A, B Ere (p, q) we kno w that there exist edge slide sequences

t 1 , t 2 , •••, t.; and Ul', U2, •• , Ue such that, for some standard forms G of A and H

of B, we have t; ...tlG and Ue ...ulH are both q-minimal. We note that the in­

verse operation of the edge slide t == (u, v, w) is t- 1 == (u, V, W)-l == (u, w, v).

(1ft is defined on G, then uw E E(t G), uv E E(tC) and wv E E(tC); there­

fore t- l is defined on tG and t-ltC == G.)

We have therefore that Ullu2l ",ueltn .. .tlC ~ If, which completes the

proof. 0

The edge slide distance imposes a metric on the set S; ,q of all isomor­

phism classes of connected graphs which have p vertices and q edges, as

follows: If 01,02 E S;,q, then obviously the distance des(G1,G2) is fixed for

all Cl E 01 and all C 2 E 02 and is also denoted by des (Ol ,02)'

2.2.10 Theorem

For any integers p ~ 1, q ~ 0, the edge slide distance is a metric on S;,q'

Proof

Let a, E S;,q and let G i E a, for i == 1,2,3.

i) By definition, des (01,02) ~ 0 and des(01,02) = 0 if and only if des (C1, C 2) ==

0, hence if and only if Cl ~ C 2 and 01 == 02 .

16



ii) If des (0"1,0"2) = n, then des (G1,G2) = n and by definition there exists a

sequence t b t2, , tn of edge slides such that t.;...t 2t1G1 ,...., G2. Conse-

quently tllt21 t;;IG2 ~ G1 and so des(G2,Gd ::; n; i.e., des(0"2,O"d ::;

des(0"1,0"2). A similar argument shows that des(0"1,0"2) ::; des(a2,ad;

hence des(al,a2) = des(a2,al).

iii) Letdes(al,a2) = nanddes(a2,a3) = m; thendes(G1,G 2) = n, des(G2,G3) =

m and by definition there exist sequences t1,t2, .., t.; and SI, S2, ..., Sm

of edge slides such that tn...t2t1G1~ G2 and Sm ...S2s1G2 ~ G3 ; hence

Sm ...S2s1tn ...t2tlGl ~ G3 • Therefore des(G1, G3 ) ::; n + m and so

o

A useful characterization of the parameters (or properties) of a graph

with respect to edge slides was introduced in [BG11\V1]. It is useful in

that it provides a means of obtaining a lower bound on the edge slide

distance between certain graphs and be tween certain classes of graphs . It

is formulated as follows:

2 02,,11 Definition

A par~meter 'I/J is said to be slowly changing 'v.ith respect to the edge slide

operation if and onl y if for all graph's G, HErc (p ,q), des (G , H ) == 1 implies

that 1'ljJ (G) - 1/;(H) 1::; 1.

For example, suppose des(G,H) = 1 for graphs G,H E rc(p,q). Now

since an edge slide can only either increase or decrease the degree of a vertex

in G by at most one, only on~. of the following can hold:

i) 6 (H) = 6(G) ii) 6 (H) == 6(G) - 1 iii) 6 (H) == 6(G) + 1;

17



i.e., 16 (H) - 6(G)1 ~ 1.

Hence the following proposition has been established.

2 .. 2 .. 12 Proposition

The maximum degree 6(G) of a graph G is a slowly changing parameter

with respect to the edge slide operation.

The following proposition is immediately obvious and will be of use in

determining the edge slide distance between specific pairs of graphs. Our

next two results are from [BGMWl].

2.2.13 Proposition

If'l/J is a slowly changing parameter with respect to the edge slide operation

and if G,H E fc(p,q) are such that

I'l/J (G) - 7jJ (H )I = n

then des (G, H) ~ n, giving a lower bound on the edge slide distance between

G and H.

202.,14 Theorem

The edge slide distance between the star Sn = KI ,n-I, on n vertices, and a

given tree T on n vertices is

18



Proof

Since Sn and T are trees on n vertices we have Sn,T E f c(n , n - 1) and

thus by Theorem 2.2.9 we can transform Sn into T by means of a sequence

of edge slides (or vice versa). From Propositions 2.2.12 and 2.2.13 we have

~ (1)

Now let v be a vertex of maximum degree in T. If degTv = n - 1 then

T ~ Sn, des(Sn, T) = 0 and 6(Sn) - 6(T) = 0, which satisfies (1). So

assume T is not a star and degTv = d (1 :S d :S n - 2); i.e., 6(T) = d.

Then there exists a vertex w E V (T) which is not adjacent to v but is

adjacent to a vertex x in the neighbourhood of v. Now the edge slide ·

t l = (w, x, v) increases the degree of v by 1. Since by Lemma 2.2.6 the

edge slide operation preserves connectivity, we have that tIT is a tree, and

6(t IT) = 6(T) + 1.

By the same argument if tIT is not a star then 6(t IT) :S n - 2 and

there exists an edge slide t2 such that 6 (t 2t IT ) = 6(t IT ) + 1 = 6 (T ) + 2

and t 2t 1T is a tree.

Repeating the procedure ((n,- 1) - d) t imes gives a t ree t (n- l )-d ...t-T

wh ere 6 (t (n- I )- d...t IT ) = 6(T) + (n - 1) - d = d + (n - 1) - d = n - 1;

Therefore (1) and (2) imply that des(Sn ,T) = 6(Sn) - 6(T). 0

The following corollary to Theorem 2.'2.14 appears in [Z3].
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2.2.15 Corollary

The edge slide distance between a path Pn and Sn is n - 3.

Proof

We recall the following terminology. If G E I' c (p, q) and diam G == d, a

pair of vertices u, v E V(G) is said to be a diametrical pair of vertices of G

if d(u, v) == d. Every u - v path of lengt h d is called a diametrical u - v path.

The next five results appear in [BGMW1].

2.2.16 Lemma

The diameter of a graph G E re (p , q) is slowly changing with respect to the

edge slide operation.

Proof

Let G E fc(p,q) and let H == tG, where t == (x,y,z) is an edge slide . If

diam H > diam G, then there exis ts a diametrical pair of ver t ices {u, v} of

G such that each diametrical u - v path contains the edge xy and not the

vertex z . Hence a shor test u - v path is obtained in H from a d iametr ical

u - v path in G by replacing xy with x zy and so

diamH == diamG + 1.

If dia~ H < diam G, then for each diametrical pair of vertices {u, v} of

G there exists a diafuetricalu '- v path p , i'n' G which' contains the subpath
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xyz. A shortest u - v path is obtain in H by replacing the subpath xyz by

the edge xz in P and hence

diamH == diamG - 1.

Thus des (G, H) == 1 implies that IdiamG - diamII I ~ 1, and the lemma

is proved. 0

2.2.17 Theorem

For the path Pn and a tree T on n vertices, des (Pn, T) == diamP; - diamT.

Proof

Since Pn , T E r c(n,n - 1) we have by Theorem 2.2.9, that Pn can be trans­

formed into T via a sequence of edge slides (and vice versa).
11

From Lemma 2.2.16 the diameter of a graph is a slowly changing pa­

rameter with respect to the edge slid e operation, therefore Irorn Proposition

2.2.13 we have

'" (1)

The case T ~ Pn is trivial, so assume T is not a path; thus diam

T ::; n - 2. Let P be a longest path in T; i.e., of length £ == diarnT. Let

P = XOXI".Xl. Now since T is connected and not a path there exists a

vertex W fJ. V(P) .and a vertex xi(l ~ i ~ £ - 1) such that WXi E E(T).

Perform the edge slide t 1 == (Xi -1, X i , w) then the tr ee t 11' has a longest

path XO".Xi-IWXi'''Xl of length £+ 1; i.e., diam t 1T == £+ 1. Similarly, if tIT

is not a path, then there exists an edge slide t 2 which will give a tree t2t 1T

with diam t2t 1T == £+ 2. Repeat this process (n - 1) - £ times to obtain a
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tree tn- 1- l ...t2t 1T with diam tn-l -l ... t2tlT == i + (n - 1) - i == n - 1. Since

T has only n - 1 edges this implies that t(n-l)-l ...t2t 1T ~ Pn , and

~ (2)

Together (1) and (2) yield

o

The following lemma will aid us in establishing the edge slide distance

between the n-cycle Cn and any unicyclic graph U of order n.

2.2.18 Lemma

The girth g(G) of a connected graph G is slowly changing with respect to

the edge slide operation,

Proof

Let the graph G' be obtained from the graph G by an edge slide. By

symmetry, G may be obtained from G' by an edge slide. Without loss of

generality, let g(G) ~ g(G'). Let C be a shortest cycle in G~ Let e be the

edge that was removed from G to form G'. If e does not appear on the

cycle C, then C is a cycle in G', and thus g(G') ~ g(G). If e does appear

on C, then e == xy, say, was removed from G and a new edg e e' == xm,

say, was added to G to form G', where x,y, m E V(G), ..xm E E(G) and

ym E E(G). By removing e from C and replacing it with the path xmy

one obtains a closed trail in C'. Thus, in either case 9 (C') ~ g(C) + 1 and

hence Ig (C') - g(C) I ~ 1, irnplying that the girth of a connected graph is a

slowly changing parameter. 0
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2.2.19 Theorem

The edge slide distance between the n-cycle Cn and any unicyclic graph U

of order n is given by g(Cn) - g(U); i.e.,

Proof

By Lemma 2.2.18 we observe imrnediately that des(U, Cn) ~ g(Cn) - g(U).

If U has girth n then U ~ Cn and the theorem holds trivially.

Assume then, that U 'does not have girth n. Let C == XlX2",X gXl be the

unique cycle in U where 9 ::; n - 1. Since U is connected there exists a

vertex y E U which is not on C but is adjacent to a vertex xi say, of C.

Form the graph U' by performing the edge slide t == (Xj-l, Xj, y) on U; i.e.,

U' == tU. Now U' is unicyclic such that 9(U') == 9 (U) + 1. Repeating this

procedure g(Cn) - g(U) times will result in a graph which is isomorphic to

c; Thus des (U, Cn) ::; g(Cn) - g(U) and hence

o

2.2 .. 20 Theorem

For every nonnegative integer n, there exist graphs Gl, G2 Ere (p, q) such

that des(G l , G 2 ) == n.

Proof

If n == 0 then for any connected graph G, des (G, G) == 0 so that G 1 == G 2 ==

G.
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Assume then that n 2: 1 is given. Then we construct Cl as follows:

Take two disjoint paths P2n+2 = XlX 2... X2n+2 and Pn+2 = YlY2 ...Yn+2. Then

let Cl = P2n+2 U Pn+2 + Yn+2 Xn +2 and let C 2 = P3n+4' Therefore Cl and C 2

are connected and have order 3n + 4 and size 3n + 3.

Now let the edge slide i, be given by t, = (Yn+2' Xn+2+i, x n+3+d for

i = 0,1, ... , n - 1. Then tn-ltn-2 ... tltoCl =C 2 and hence

~ (1)

By Lemma 2.2.16, the diameter of a graph is a slowly changing pa­

rameter with respect to edge slides. Now diam Cl = 2n + 3 and diam

G2 = 3n + 3. Therefore, by Proposition 2.2.13, we have

Thus from (1) and (2) we have

o
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2.2.21 Figure

The graphs G1 and G2 of Theorem 2.2.20

2.2.22 Definition

Let S = {S17 S2, ••• , sn} be a set of (nonisomorphic) graphs having the same

number of components which are labelled in such a way that the ith com­

ponent (1 ~ i ~ n) of all graphs in S have the same size and order.

Then following Chartrand, Goddard, Henning, Lesniak, Swart and Wall

in [CGHLSWlj, the edge slide distance graph D,(S) of S is defined to be

that graph with vertex set S such that two vertices Si and si of D!(S) are
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1 for 1 < i, j ~ n.

This definition leads naturally to the question: which graphs are edge

slide distance graphs? This question was answered in [CGHLSWl).

2.2.23 Theorem

Every graph is an edge slide distance graph.

Proof

Suppose we are given an arbitrary graph G with V (G) = {VI, V2, •.• , vp } . Let

H be the graph obtained from G by adding two new vertices each adjacent

only to VI' four new vertices each adjacent only to V2 and, in general, 2i new

vertices each adjacent only to Vi for i = 1,2, ... ,p. Then for i = 1,2, ... ,p,

let Hi be the graph obtained from If by adding another new vertex Ui

adjacent only to Vi. In Hi we now have that the only vertices that are

not end-vertices are those originally in G; i.e., {VI, V2, .•. , vp } . Therefore Hi

contains exactly p vertices that are adjacent to end-vertices of Hi. In fact,

for Hi, the sequence which displays the number of end-vertices adjacent to

the vertices VI, V2, •.• , vp is respectively

2,4, ... , 2i - 2, 2i + 1, 2i + 2, ... , 2p.

For J > i the analogous sequence for Hi is

2,4, ... , 2i - 2, 2i, 2i + 2, ... , 2j - 2, 2j + 1, 2j + 2, ... , 2p

It is now easy to see by looking at these "end-vertex ,degree" sequences

that des (Hi, Hi) = 1 if and only if Hi can be obtained from Hi by the
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edge slide t == (Ui,Vi,Vj) which exists if and only if ViVj E E(G). Thus

HiH j E E(Ds{H1 , H2 , ••• , Hp}) if and only if v», E E( G);

o

2.3 The Edge Rotation Distance der

2.3.1 Definition

Let G and H be two graphs having the same order and size. Then, following

Chartrand, Saba and Zou in [CSZl], we say that G can be transformed into

H by an edge rotation if ,G contains distinct vertices u, v and w such that

uv E E(G), uw E E(G) and H ;:: G - uv + UW.

The edge rotation is similar to the edge slide in that the edge uv is

deleted and the edge uv is created, but the restriction vw E E(G) is dropped

in the definition of edge rotation. This is dernonstrated by looking again

at Figures 2.2.3 and 2.2.4 in Section 2 ~2 . In both Figures 2.2.3 and 2.2.4 it

is possible to transform the graph G into the graph H by an edge rotation,

whereas only in Figure 2.2.4 is it possible to transforrn graph G into graph

H by an edge slide.

2.3.2 Definition

For graphs G and H of the same order and same size, the edge rotation

distance der (G, H) between G and H is the smallest nonnegative integer n

for which there exists a sequence
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such that Hi can be transformed into Hi+1 (i = 0,1 , ... , n - 1) by an edge

rotation.

As for edge slides we define t = (u, v, w) to be an edge rotation which

deletes edge u v and creates uw when operating all sorne graph G, where

uv E E(G) and uw E E(G). We again denote the graph G - uv + uw by

tG. The inverse operation of the edge rotation t = (u, v, w) is denoted by

t- 1 = (u, w, v) which reverses the operation perforrned by t; i.e., it creates

uv and deletes uw; so t-ltG = G, as required.

It is immediately obvious that any edge slide is an edge rotation and

therefore for G, If Ere (p, q), the following proposition needs no further

justification.

2.3.3 Proposition

We also note that by dropping the restrict ion vw E E( G) as described

above, we are no longer restricted to study ing distances between connected

graphs of the sarne order and size; hence we can dispense with restriction

of connectedness. We may therefore consider distances between all pairs of

graphs of the sarne order and the same size.
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2.3.4 Example

o.
w

01'---------4.)

x
o·
uvz

x Y s y S

0- 0 0-

V t
G o.

t
G: o· H:

z u
<:) o·

2.3.5 Figure

Let t1 = (y,w,s), tz = (v,w,t) and t3 = (z,w,u) be edge rotations. Then

considering the graphs G and H of Figure 2.3.5, we have t3t1.tlG ~ H.

•

The following example demonstrates that the edge rotation operation

does not, in general, preserve connectivity.
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2.3.6 Example

w v u c:~

G: H:

0 0 0

x s z x y z

2.3.7 Figure

In Figure 2.3.7 we see that tG == H where t is the edge rotation (w, z, u).

Since G is connected and H is not connected, this illustrates the fact that

edge rotations unlike edge slides do not in general preserve connectivity.

It was shown in [CSZl] that for any two nonisomorphic graphs G and

H which have the same order and size it is always possible to transform

G into H via a finite sequence of edge rotations. The proof is essentially

similar to the proof of Theorem 2.2.9, however we shall .present it here in a

slightly different way.
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2.3.8 Theorem

Let G
I

, G2 E r(p, q), where p ~ 4 and q ~ 2; then there exists a sequence

tl, t2, ... , t n of edge rotations such th at t n···t 2tl Cl ~ G2·

Proof

The theorem holds trivially for Cl ~ C 2 ; so suppose t hat G I ?F G2 • As­

sume, without loss of generality, that Cl and G2 are defined on the same

vertex set; i.e., V(Gd == V(G2 ) == {1,2, ... ,p}. Let G l have edge set

E(Cd == {et, e2, ... , eq } .

Now, by Lemma 2.2.8 there exists a standard form H say, of Cl and a

standard form H' say, of C2 • We now show that there exists a sequence

t l , t 2 , ... , t« of edge rotations such th at tn...t1lf is q-minimal.

Assume that there exists no such sequence; then let k(k < q) be the

maximum positive integer for which there exists a sequence t 'l , t~, ... , t~ such

that t'm ...t~t~H is k-minimal. Let F == t~ ...t~t~H . Since F is not q-minimal

there exists edges ab and cd such that ab E E(F) while cd E E(F) and

ab < cd.

Case 1) Suppose a == c. Then b < d. Let t be the edge rotation given by

(a, d, b). Then tF is (k+ I)-minimal which contradicts our assumption

and therefore there exists a sequence t l , t 2 , ... , t.; of edge rotations such

that t-; ...t2t l H is q-minimal.

Case 2) Suppose a < c. If b == d or b == c then as in Case 1 the edge rotations

t == (b, c, a) or t == (c ,d, a) resp ect ively, show in bo th cases that tF is
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(k + I)-minimal.

Assume then that b i- d and b i- c so that a, b, c and d are four distinct

vertices. Now if bd E E(F) then the edge rotations t1 == (d, c, b) and

t 2 == (b, d, a) operating respectively on the graphs F and t IF, result

in t 2t 1F being (k + I)-minimal.

If bd E E (F) then the edge rotations t1

again result in t2 t 1F being k + I-rninirnal.

(b, d, a) and t2 (d,c,b)

Thus, as in Case 1, we obtain a contradiction and thus there must

exist a sequence t1, t2 , ... , i-; of edge rotations such that tm ... t2t 1H is

q-minirnal.

Similarly there exists a sequence U1, U2, ... , Ue of edge rotations such that

Ue ••• U2U1H' is q-minimal which, since any two q-minimal graphs are isomor­

phic yields

-1 -1 -It t t H ""-J H' S' H ""-J G d H' ""-J Gu 1 u2 "'Ue m'" 2 1 == . mce == 1 an == 2,

we have that there exists a sequence tl, t2 , ... , t.; of edge rotations such that

o

The edge rotation distance imposes a metric on the set Sp,q of all iso­

morphism classes of graphs, which have p vertices and q edges, as follows: If

01,02 E Sp,q, the!1 obviously the distance der(G l , G2) is fixed for all G 1 E 01

and all G2 E 02 and is also denoted by der( a 1 , a 2) '
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2.3.9 Theorem

For any integers p ~ 1, q ~ 0, the edge rotation distance is a metric on Sp,q.

Proof

Let a, E Sp,q and let G, E a, for i = 1,2,3.

i) By definition, der (a1,a2) ~ 0 and der (a1,a2) = 0 ifand only if der(G1,G2) =
0, hence if and only if G 1 =G2 and a1 = a2 .

ii) If der (Cl1,a2) = n, then der(G l , G2) = n and by definition there ex­

ists a sequence t1,t 2 , o•. .i; of edge rotations such that t; ...t2t 1G1 "'J

G2. Consequently tllt21 ••. t~lG2 =Gl and so der (G2, Gd ~ n; i.e.,

der (a2,ad ~ der (al ,a2). A similar argument shows that der (al ,a2) ~

der (Cl2,ad , hence der(al ,a2) = der (a2,ad .

iii) Let der(al ,Cl2) = nand der(a2,a3) = m, then der(G1, G2) = nand

der(G2 , G3 ) = rri and by definition there exist sequences of edge ro­

tations t1,t2, ... ,t n and Sl,S2, ... ,Sm such that t.; ...t 2t1G1 ~ G2 and

Sm •• , S2 s1 G2 =G 3; hence Sm ... S2s1tn ... t2tlGl =G3 . Therefore der(G1, G3 ) ~

n + m and so

o

The following interesting observation concerning complements of graphs

was made in [CSZl].

2.3.10 Theorem
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Proof

If der(GI , G2 ) 0, then GI ~ G2 , and thus G't ""' G2 which implies

der ( Gl,G2) = 0, which satisfies the staternent of the theorem. Assume

then that der (G I, G2 ) = n 2 1. This implies that there exists a sequence of

graphs

where Hi can be transformed into l1i +1 by an edge rotation for i = 0,1, ... , n­

1. Let H i+l = Hi - UiVi +UiWi . Then note that Hi+l = Hi - UiWi +UiVi; i.e.,

j1i can be transforrned into IIi+1 by an edge rotation. Thus the sequence

of graphs

has the property that der(fIi , fIi +d = 1 for i = 0, I , ... , n - 1. This implies

that

""' (1)

However, by (1)

which implies

der(G1, G2) ~ der(G1, G2) .

Thus (1) and (2) together imply der(G I , G2 ) = der(G1 ,G2 ) . o

The following example demonstrates that there is no similar result to

Theorem 2.3.10 for edge slides.
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2.3.11 Example

u v u v

G:

G:

,w

u

w

x

v

x

2.3.12 Figure

H:

tl:

w

u

w

x

v

Referring to the graphs G, G, Hand H of Figure 2.3.12, the edge slide

t = (u,w,x) yields

tG ~ H.
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However G has one component whereas fI has two components. Since,

by Lemma 2.2.6, the edge slide operation preserves connectivity, it is not

even possible to transforrn G into It, i.e., des (G, if) = 00. 'rhus, in general,

Both the edge slide and edge rotation operations rnay be considered to

be deformations which translate a graph G into a graph G' = G - el + e2

where el E E(G) and e2 E E(G). The edge move distance which will be

defined in Chapter 3 also falls into this category. Definition 2.2.11 is gen­

eralized in [BGMW1] to include all such operations.

2.3.13 Definition

We say that a parameter 'l/J is slowly changing with respect to a particular

deformation if and only if for all graphs G and deforrnations G' of G it

holds that I'l/J(G/) - 'l/J( G) I ~ 1.

We now formalize the technique used in the proofs of Theorems 2.2.14,

2.2.17 and 2.2 .19, in the form of a lemma. This will simplify the work in

determining some specific forrnulae for distances . The following two results

are from [BGMW1] .

2.3.14 Lemma

Let 9 be a collection of graphs and let F E 9 be a designated element .

Further, let J.l be an integer valued graphical parameter and consider a

particular deformation. Then for that deformation, with distance between
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graphs G and H denoted by 8(G,H), it holds that:

8(F, G) == IJl(G) - Jl(F)I, for all G E 9,

if the following three properties are satisfied:

PI The parameter Jl is slowly changing with respect to that particular

deformation;

P2 F is the only element of 9 with that value of u; and

P3 given any G E 9 with Jl( G) i= Il(F) there exists a deformation (of the

required type) yielding G' E 9 such that IJl(G') - Jl(F)1 < IJl(G) -

JL(F) I·

Proof

Property PI establishes that IJl( G) - Jl(F)I is a lower bound, while prop­

erties P2 and P3 together show that the value IJl( G) - Jl(F) I is an upper

bound for the distance.

2.3.15 Lemma

o

The maximurn degree 6(G) of a graph G is slowly changing with respect

to the edge rotation operation.

Proof

Any edge rotation t == (u, v, w) lowers the degree of the vertex v E V (G)

by 1, and increases the degree of the vertex w E V (G) by one, when

operating on some graph G with u v E E (G) and uwEE (G). Hence

I 6 (tG) - 6(G) I < 1, and the maximum degree 6(G) of a graph G is
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slowly changing with respect to edge rotations.

The following result appears in [CSZ1].

2.3.16 Theorem

o

For every nonnegative integer n, there exist graphs Gland G 2 such that

der {Gb G2) = n.

Proof

If n = 0 then for every g~aph G, der ( G, G) = 0; so let G1 = G2 = G in this

case.

If n is a given positive integer let G1 = (n+ 1)1(2 and G2 = K1,n+l UnK1,

so that G1 and G2 are graphs of order 2n + 2 and size n + 1. Let the edge

set of G1 be given by E(Gd = {UOVO,UIVl, ••• ,Unvn}.
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2.3.17 Figure

The graphs G1 and G2 of Theorem 2.3.16.

For i = 1,2, ... ,n define the edge rotation t, = (Ui,Vi,VO); then t.; ...t1G1 ==

G2 which implies that

-- (1)

By Lemma 2.3.15, the maximum degree 6(G) of a graph G is slowly

changing with respect to edge rotations. Now 6(G2 ) = n+1 while .6(Gr) =
1, and hence a simple generalization of Proposition 2.2.13 to include edge

rotations yields

Therefore (1) and (2) together imply that der ( Gb G2) = n. 0
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In order to present upper and lower bounds on the edge rotation distance

between graphs (having the same order and size), we introduce the concept

of a greatest common subgraph which first appeared in [CSZ1].

2.3.18 Definition

For nonempty graphs Cl and C 2 a greatest common subgraph of Cl and C 2

is defined as any graph C of maximum size without isolated vertices, that

is a subgraph of both Cl and C 2 •

While every pair of graphs Cl and C 2 of nonempty graphs has a greatest

common subgraph C say, this graph G need not be unique. For example the

graphs G I and G2 shown in Figure 2.3.19 below, have three greatest com­

mon subgraphs G, C' and G". These graphs are all pairwise nonisomorphic

but all have the same maxirnum size, 3.
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o

,.
r. G' :

2.3.19 F'igure

G":

Utilising this concept we now prove the following result from [CSZ1] which

sets upper and lower bounds for the edge rota.tion distance.
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2.3.20 Theorem

Let G I , G 2 E I'{p, q),q 2: 1 and let G be a greatest common subgraph of G I

and G 2 , where G has size s say. Then

Proof

First we prove der(G I , G2 ) 2: q - s. Let G I and G 2 be defined on the same

vertex set, so that the subgraphs C' and G" of Cl and C 2 respectively,

which are isomorphic to G, are identically labelled; i.e., V(Cd == V(G 2) ==

{Vl,V2""'Vp} and V(G') == V(G") == {ViI' ""Vi.} with VijVik E E(C') if and

only if Vij ViI. E E(G").

Now E(Gd - E(G2 ) contains q - s edges; similarly E(G2 ) - E(Gd

contains q - s edges. Therefore in the transformation of Cl into G2 via

edge rotations at least one edge ro tation will be needed for each of the q - s

steps in replacing an edge of E(Cd - E(G 2 ) by an edge of E(G 2 ) - E(Cd.

Therefore

~ (1)

For the upper bound der(G 1, G2) ::; 2(q - s) we note that if s == q then

Cl ~ G 2 and der(G I , G 2 ) == O. Thus we assume that 1 :S s < q. Let G I

and G2 be labelled as before. Now, since G I '¥- G2 , the graph Cl contains

an edge ViVj (/. E(G 2 ) and G2 contains an edg e VkVe tJ. ,E' (Gd . We now

show that the step of transforming G I into Cl - ViVj + VkVe == HI requires

at most two edge rotations, and since there are q - s such transformations

necessary, the result will follow immediately.
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Case 1) Suppose that {Vi,Vj} n {Vk,Ve} i- 0; say Vi == Vk. Then Cl can be

transformed into HI == Cl - ViVj + VjVe by a single edge rotation t ==

(Vi,Vi,Ve) and d(Cl,Hd == 1. Hence we may assume that {Vk,Vi} n

{Vk,Vi} == 0.

Case 2) Suppose that at least one of Vi and Vi is nonadjacent in Cl to at least

one of Vk and Vi, say ViVk rt. E(Cd . Then Cl can be transformed into

HI by the edge rotations t l == (v"Vj,Vk) and t2 == (Vk,Vi,Ve) where

t2t l C I 3: HI. Thus der(CI,Hd ::; 2.

Assume then that each of Vi and Vi is adjacent to both Vk and Vi . Then

Cl can be transformed into III by the edge rotation t~ == (Vb Vi, Vi)

and t~ == (Vi, Vi' Vk), where

Thus in both cases G I can be transformed into HI and der(GI , Hd ::; 2.

Now HI and G 2 have s + 1 edges in common. Proceeding as above, we

construct graph If2 such that der(Hl, If2 ) ::; 2; hence der(C l , If 2 ) ::; 4 where

H2 and C2 have s+2 edges in cornrnon. Continuing in this way, we construct

a graph Hq-s ~ C 2 where der(Cl,Hq-s) ::; 2(q - s). Hence

-- (2)

and (1) and (2) together yield

o
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To show that both the upper and lower bounds presented by 'The<:>rem

2.3.20 cannot, in general, be improved, we consider two examples from

[CSZI],in which equality is attained for both the upper and lower bounds

respectively.

2.3.21 Example

For n 2:: 1 define G1 = ](2n U i(4n2 -4n and G2 = (2n 2 - n)J(2.

Both G 1 and G2 have order 4n2
- 2n and size q = 2n2 - n. Now G1 and G2

have a unique greatest common subgraph namely G = nKn which has size

s = n . Therefore

2(q - s) = 2[(2n2
- n) - n] = 4n2 - 4n. .

Now G2 is J-regular, while G1 contains 4n2 -4n isolated vertices. There­

fore der(G1 , G2 ) 2:: 4n2
- 4n. By Theorem 2.3.20, we also have
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2.3.22 Example

Let G 1 =8 4 and G'], ~ P", then G 1 and G'], have order 4 and size q = 3.

x

x

2.3.23 Figure

The graphs Cl and C'l of Example 2.3.22

Now a greatest common subgraph of Gland G'], is G == P3 which has size

2. In this case q - s = 3 - 2 = 1. Now the edge rotation t = (y, w,x)

transforms Cl into C2 ; i.e., tC 1 == G2 ; hence der (G1G2 ) ~ 1 = q - s,

However from Theorem 2.3.20 we have der (G17 G2 ) ~ q - s and so in

this case

Examples 2.3.21 and 2.3.22 show that the bounds presented in Theorem

2.3.20 are sharp.
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We now return to the concept of slowly changing parameters to establish

the edge rotation distance between certain graphs, following (BGMW1].

2.3 .. 24 Theorem

The edge rotation distance between the star Sn and anytree T on n vertices

is equal to the difference of their maximum degrees; i.e.,

Proof

As every edge slide is an edge rotation, it follows frorn Theorem 2.2.14 that

der(Sn,T) ~ des(Sn,T) = 6(Sn) - 6(1') . Since the maximum degree of

a graph is a slowly changing parameter with respect to the edge rotation

operation, der(Sn) ~ 6(Sn) - 6(1'); hence der(Sn'1') = 6(Sn) - 6(1'). 0

In Theorem 2.2.17 we saw that des(Pn,1') = diamP; - diam?'. How­

ever it is not true in general for a path Pn and a tree T on n vertices that

der(Pn,T) = diamP; - diam1'. This is demonstrated in the following exarn­

ple which also shows that the diameter of a graph is not .slowly changing

with respect to the edge rotation operation.
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2.3.25 Example

G:

2.3.26 Figure

Now diamG = 10 while diam PH = 13, hence [diamo' - diamP141 = 3.

Define the edge rotation t = (vG, VlO, V7), then tG ~ PH- That is,

de,.{G, PH) = 1 i 3 =diamP14 - diamG.
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Thus in order to find a general formula for der(Pn, T) we need to intro­

duce a parameter which is slowly changing with respect to the edge rotation

operation.

2.3.27 Definition

Let G be any graph then we define end(G) to be the cardinality of the

set {v E V (G) : deg., v = I} and end' (G) to be the cardinality of the set

{v E V (G) : deg., v S; I};

i.e., end(G)
end'(G)

I{v E V(G) : degav = l}\,
I{v E V(G) : deg., v :s; I} I.

and

We now show that the parameter end'(G) is slowly changing with respect

to edge rotations.

For any graph G the parameter end'(G) is slowly changing with respect to

the edge rotation operation.

Proof

Consider any edge rotation t = (u,v,w) on G; then uv E E(G) and

uw E E(G). Thus deg ta v = dega v -I, degta W = dega w+l, and degta Z =

degaz for all z E V(G) - {v,w}. It follows that lend'(G) -end'(tG)1 S; 2

with equality if and only if either v, w E end'(C) and v, w t/:. end'( tG),

or v,w t/:. end'(G) and v,w E end'(tC) . However if v E end'(G), then

v E end'(tG) while if w t/:. end'(tG), then w rJ. end'(tG) . We conclude that

Iend' (G) - end' (tG) I S; 1. That is to say, end'(G) is a slow ly changing pa-

48



rameter with respect to edge rotations.

With the aid of Lemma 2.3.28 we prove the following result.

2.3.29 Theorem

For all trees T of order n, der(Pn , T) == end(T)- end(Pn ) .

Proof

o

If n == 1 the result is clearly true; therefore we assume that n 2: 2. We

note first that for nontri~ial trees T the parameters end'(T) and end(T)

coincide. Thus we refer to end(T) where, ill fact enrl'(T) is the slowly

changing parameter (frorn Lernrna 2.3.28). Further, paths are the only

trees with exactly two end-vertices; thus properties PI and P2 of Lemma

2.3.14 have been verified. Property P3 of Lemma 2.3.14 will follow when

we show that for any tree T with more than two end-vertices there exists a

tree T' formed by a single edge rotation which has one less end-vertex than

T.

Let x be an end-vertex of T, and let y be the vertex of T, of degree

at least three, nearest to x. Let z be any neighbour of y not on the x - y

path in T. Then define the edge rotation t == (z, y, x). Let T' == tT.

Since T' is connected it is a tree, and as x is no longer an end-vertex,

end(T') == end(T) - 1. Thus property P3 of Lemma 2.3.14 is verified and

hence

o
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2.3.30 Definition

Let S be a set of (nonisomorphlc] graphs of the same order and size . Then

following [CG HLS W1], the edge rotation distance graph Der ( S) of S is de­

fined to be that graph with vertex set S such that two vertices G and H of

D er (S) are adjacent if and only if d., (G, H) == 1.

The question of which graphs are edge rotation distance graphs arises

naturally from this definition. This question was discussed in [CG HLS W 1]

where it was conjectured that all graphs are edge rotation distance graphs;

however this problem remains unsolved. Partial results were however ob­

tained and we nowdiscuss these. Apart Irorn Examplc 2.3 .37, all the results

in the remainder of this section first appeared in [CGHLSWl].

2.3.31 Lemma

K p is an edge rotation distance graph.

Proof

Let G be any graph of order p with vertex set V (G) == {VI, V2, .. . , vp } and

let {Ht, H2 , ... , Hp} be the set of graphs described in the proof of Theorem

2.2.23. Then for 1 :::; i =1= j :::; p the edge rotation t == (Ui' Vi, Vj) transforms

the graph Hi into .Hi ; Le.,

Therefore every pair of vertices in Der ( {Ill, 112 , ... , lip}) are adjacent;

i.e., Der({HIH2 ...Hp}) ~ tc; 0
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2.3.32 Lemma

For n ~ 3, Cn is an edge rotation distance graph.

Proof

Let C == XlX2 ... X2n+2X be a (2n + 2)-cycle and for i == 1,2, ... , n let F; == C +
XlXi+2. For i == 1,2, ... , n - 1, define Hi == F, U Fi+ l and define H n == E; U Fl •

Then for i == 1,2, ... , n - 1 the edge rotation t == (Xl, Xi +2, Xi +4) transforms

the graph Hi into Hi+l ; i.e.,

Therefore we have that

der(Iii , Iii+d == 1 for all i == 1,2, ... , n - 1. -- (1)

Now the edge rotation t' == (Xl, X3, X n +2) transforms li1 into H n ; i.e.,

t~Hl ~ H. , Therefore

-- (2)

Now for any other pair Hj, H, where 1 :s; j < k :s; n, (j, k) i- (1, n) and

k - j i- 1 we have that

der(Hj , H k ) ~ 2.

Therefore (1), (2) and (3) together im p ly that

203,,33 Lemma

For n ~ 1, fn is an edge rotation d istance graph ,
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Proof

Let C == XlX2 ••• X2n+6Xl be a (2n + 4)-cycle and for i == 1,2, ... , n + 1 define

Fi == C + XlXi+2. For i == 1,2, ... , n, define Hi == Fi U Fi+ l • Then, as in

Lemma 2.3.32, it is easily shown that

o

The following two lemmas help to establish that a nurnber of large

classes of graphs are edge rotation distance graphs .

203.34 Lemma

Let G, 11 E r(p,q). Then dt!r(C, 11) == 1 if and only if du(G +}(l' 11+Kd ==

1.

Proof

If der(G,H) == 1 then there exists an edge rotation t == (u,v,w) such

that tG '"'J H (where u, v, w E V(G), uv E E(G) and uw E E(G)); then

G + K, ~ H + K, and t(G + Kd ~ H + K l ; hence der( G, H) == 1 implies

that der(G + K l , H + Kd == 1.

Now suppose that der(G + Kl,H + ](I) == 1.

Case 1) Assume that there exist vertices u, v, W, x E V (G + Kd such that

i) deg C+K 1 u == p;

ii) v,W,X E V(G + !{d - {u}, vw E E(G) and vx tt E(G); and

Hi) G + K l + VX - vw ~ H + K l .
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Then necessarily, G + vx - vw =11 and der (G, If) == 1.

Case 2) Assume Case 1 does not occur. Now we know that there exists a

vertex u E V(G + Kd such that degG+K1U == P and u ~ V(G).

Then by assumption there exist nonadjacent vertices v and w of G

such that G + K 1 - UV + vw =H + Kt. Now assume there exists .

another vertex z say such that deg G+ K1 Z == p. Then z E V (G) and

G + K 1 - ZV + vw =If + 1(1, as in Case 1, a contradiction. Therefore

G + K 1 has only one vertex, namely u , of degree p.

Since u is the only vertex of degree p in G + K, -it follows that w

is the only vertex of degree p in G + K 1 - UV + vw = H + K l •

This implies that (G + ](1 - UV + vw) - w =11. Now in G + ](1,

degG+K1u == p and degG+K1w == p - 1, where vw E E(G). On the

other hand in G + K 1 - UV + vw we have degG+Kl-uv+tJw w == p and

degG+K1-utJ+tJw u == p -1 where uv t/.. E(G + Kt - UV + vw) . It follows

that

(G + 1(1 - UV + vw) - w =G.

This however implies that G =H which contradicts the fact that

der(G + Kt,H + Kd == 1. Therefore Case 2 cannot occur which

completes the proof. 0

2.3.35 Lemma

For any edge rotation distance graph G and any positive integer n there

exists a set Sn of n-connected graphs such that G =Di; (SI'l).

53



Proof

Le t T be a se t 0 f graphs such that G ~ 1)er ( T ). Now let SI = {II + K 1 : lIE

T}. Since for A,B E T, der(A+Kl,B+](t} = 1 if and only if der(A,B) = 1

by Lemma 2.3.34, we have that

Similarly, letting Si = {H + K, : HET} and noting that H + K, ==

(H + Ki-d + K l , we find by repeated application of Lemma 2.3.34 that

der(A + Ki, B + Kd = 1 if and only if der(A + ](i-l, B + ](i-t) == 1 (i ==

2,3, ... , n) for A, B E To Therefore G ~ D er(Sd for 1 ~ i ~ n.

Taking i == n we now have that G ~ Der(Sn), where Sn == {H + K; :

HET}. Since for any graph G, G + }(n is n-connccted,it follows that Sn

is a set of n-connected graphs.

2.3.36 Lemma

o

Let Go, Gb Ho,HI be 2-connected graphs of the same order and the same

size. Then der(Go U Gb I-Io U Hd == 1 if and only if G, ~ Hi for some

i,j E {a, 1} and der(GI - i , IIl- ; ) = 1.

Proof

Suppose that, for some i,j E {a, 1}, G, ~ H; and that der(GI - i , Ifl - ; ) = 1,

where t == (u,v,w) is an edge rotation such that tG 1- i ~ 111- ; ; then

t(Go U Gd ~ n; U HI'

Conversely, suppose that der(GoU G I , Ho U I-Id == 1 and let t == (u, v, w)

be an edge rotation such that t(Co U Cd ~ Ho U HI, where without loss
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of generality, we assurne uv E E(Co) and uw tl E(Go U Cd. Since Go is

2-connected, Go - uv is connected; so, if w E V(Gd then t(Go U Gd is

connected. However, t(Co U Cd is isornorphic to 110 U 111, which is discon­

nected. So w E V(Go) and t(G o U Gd = tGo U G1 ~ 110 U 111, from which

we obtain ic; ::: Hi for some j E {a, I} and G I ~ H-I - i . 0

The following example shows that in the above lemma, we may not

dispense with the condition that Go, G I , Ho, HI be 2-connected.

2.3.37 Example

Let Go ~ G 1 ~ P4' lio ~ P2 and 111 .~ P6 , as in Figure 2.3 .38, then

der(GOUG b HoUHd = 1 where t(GoUGd ~ IfoUlf l and t = (u, v, w). Now

G i ~ Hi for any i,j E {a, I} and hence the condition that Go, G l , Ho, HI

be 2-connected, is necessary for Lemma 2.3.36 to hold .
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2.3.38 Figure

The graphs Go, G17 Ho and H l of Example 2.3.37.

2.3.39 Theorem

Every induced subgraph of an edge rotation distance graph IS an edge

rotation distance graph.

Proof

Let G be an edge rotation distance graph of order n say, with vertex

set V (G) = {Vb V2, ••• , vn } . Then by definition there exists a set S =
{8b 8 2, ••• , 8 n } of graphs with the same order and size such that

G == D er ({8l, 82 , ••• , Sn}).
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We may assume without loss of generality that the graphs Si, for i ==

1,2, ... , n, are labelled in such a way that VjVk E E( C) if and only if

der(Sj, Sk) == 1; i.e., the vertex Si in Der({S1' S2' ... , Sn}) corresponds to

the vertex Vi in G.

Let H == (Vip Vi 2 , ... , ViJ, where 1 ~ e< n, be a proper subset of V(C).

Then for Vij,Vik E V((H)),VijVik E E((H)) if and only if VijVjk E E(C) if

and only if der (Si j , Sik ) == 1.

Using Lernrnas 2.3.35 and 2.3.36 we are able to prove the next result

which concerns the union and cartesian product of -two edge rotation dis­

tance graphs.

2.3.40 Theorem

Let G and H be edge rotation distance graphs. Then

a) C U H is an edge rotation distance graph;

b) C x H is an edge rotation distance graph; and

c) for every pair {v,u} where V E V(C) and w E V(Ii), the graph

obtained from G and If by identifying V and w is an edge rotation

distance graph.
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Proof

a) By Lemma 2.3.35 there exist sets Sand r of 2-connected graphs such

that Ir; (S) ~ G and Ir; (r) ~ H. We ensure that the order of the

graphs in S is different from the order of the graphs in r to ensure

that if A and B are graphs in SUr with der(A, B) = 1, then A and B

are either both in S or both in t . This is done by 'choosing a suitable

n when applying Lemma 2.3.35 to establish the ' 2 ~ connec ted sets of

graphs Sand t . It then follows that

G U H ~ o; (S U r)

b) The graph described in c) in the staternent of the theorem is an

induced subgraph of G x H, thus by Theorem 2.3.39, to complete

the proof it is sufficient to establish b) . By Lemma 2.3.35, we .m ay

assurne as in c), that there exist disjoint sets S 'and T of 2-connected

graphs for which Der(S) ~ G and Der(r) ~ H . Let S = {Gu : u E

V(G)} with der(Gu, Gw ) = 1 if and only if uw E E(G). Similarly let

r = {Hv :.V E V(II)} with der(Ilv, Il w ) = 1 if and only ifvw E E(H) .

By Lemma 2.3.36 for u,u' E V(G) and v ,v' E V(H), we have that

der(Gu U u., GUl U HU') = 1 if and only if either c; ~ GUl and

der(Hv, HUI) = 1 or H; ~ HUI and der(Gu,GuI) = 1. Therefor e der(GuU

H v, GUl UHv') = 1 if and only if either u = u' and vv' E E(If) or v = v'

and uu' E E(G). Now (u, v)(u', v') E E(G x H) if and only if either

u = u' and vv' E E(II) or v = v' and uu' E E( G). Therefore it fol­

lows that der(Gu U llv, GUl U llu I) = 1 if and only if {(u, v), (u', v')} E

E(GxH)~ HenceGxlf~Der({GuUJfv: UEV(G),VEV(If)}).O

There are two immediate consequences of Theorem 2.3.40.
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2.3.41 Corollary

If the blocks of a connected graph G are all edge rotation distance graphs,

then G is an edge rotation distance graph.

Proof

We shall proceed by induction on the number of blocks b, of G. If b = 1

the statement is obviously valid. Suppose that the statement is true for

all graphs with fewer than b blocks and let G be a connected graph with

b blocks, all of which are edge rotation distance graphs. Let B be an end

block of G containing the cut vertex v of G and let If = G - (V (E) - {v}).

Then If has b - 1 blocks, all of which are edge rotation distance graphs.

Now since E is an edge rotation graphs, the fact that G is an edge rotation

distance graph now follows from part c) of Theorem 2.3.40. 0

2.3.42 Corollary

Every tree is an edge rotation distance graph.

Proof

Every block of a tree T is isomorphic to K 2 which by Lemma 2.3.31 is an

edge rotation distance graph. That T is an edge rotation distance graph

now follows directly from Corollary 2.3.41. 0

2.3.43 Theorem

Every line graph is an edge rotation distance graph .
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Proof

Let G be any given line graph. Therefore by definition there exists a graph

H with V(H) = {Vl,V2'''''Vp } and V(G) = E(I-I) = {el,e2, ... ,eq } where

G r'V L(H). Let {Ft, F2 , ••• , Fp} be a set of 2-connected graphs with the

property that der (Fi , Fj ) = 1 for 1 :::; i < j :::; p. That such a set exists,

follows from Lemmas 2.3.31 and 2.3.35.

For k = 1,2, , q define the graph Gk to be F; U Fj , where ek = ViVj.

Let S = {Gb G2, ,Gq } . Observe that by Lemma 2.3 .36, der(Gi,Gj ) = 1

if and only if G i and ~i have exactly one comrnon cornponent. Thus,

der(Gi , G j ) = 1 if and only if there exist three distinct integers s, t and u

such that G i = F 3 U Ft and G j = lit U l;~ say; i.e., e, = V3Vt and ej = VtVu.

It follows that der(Gi, Gj )=1 if and only if e.e, E E(G) and therefore

o
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2.3.44 Example

. H: G=L (H) :

2.3.45 Figure

Let G and H be as in Figure 2.3.45. Let C' be any graph of order 6 with

V (C') = {Ul' U~h ••• , U6}' Now add two new vertices adjacent to Ut, four

new vertices adjacent to U2 and, in general, 2i new vertices adjacent to V"

for i = 1,2, ... , 6; call this graph F. Now for i = 1,2, ... , 6 let Fi denote the

graph obtained from F by adding another new vertex adjacent only to Ui.

Then, as this is a special case of the construction in the proofs of Theorem

2.3.23 and Lemma 2.3.31, we have that

For k = 1,2, ... ,6 define C le = F, U F, if elc = ViVj. Therefore we have

G1 = r, U F2 J G2 = F2 U F3 1 C3 = F2 U F4 J G. = F3 U F4 , Gs = F3 U Fs
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We note that the construction in the proof of Lemma 2.3.32 is a special

case of the construction of S in Theorem 2.3.43 .

In the proofs of Lemrnas 2.3.32, 2.3.33 and Theorems 2.3.40 and 2.3.43,

we used the fact that if Co, Cl, Ho and HI are 2-connected graphs of the

same order and the same size, then der(GoU Cl, IIo U Hd = 1 if and only if

for some i.i E {O, I}, C l - i ~ 1f l - j and der( Gi , Hj ) = 1 as stated in Lemma

2.3.36. We now extend this concept to include n components.

2.3.46 Remark

Let Cl, C 2 , ... , Cn, Hi ;112 , ... , H; be 2-connected graph of the sarne order

and the same size, then der(Cl U C 2 U ... U Cn, HI U 112 U ... U Hn) = 1 if

and only if for some £,J' E {I, 2, ... , n} we have

2.3.47 Definition

For k and m fixed positive integers, let J be a set of m 2-connected graphs

which are pairwise at an edge rotation distance of one from each other.

Define g~(J) to be the set of all graphs with k components, each of which

is a (not necessarily distinct) element of J . It is obvious that if JI is another
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distinct set of m 2-connected graphs, pairwise at an edge rotation distance

of one, then

19~(1)1 = 19~(1')\, and

Der(9~(1)) ~ Der(9~(1')).

Thus for convenience we shall write 9~ and Der(9~) without reference

to the set 1.

2.3.48 Note

i) From Lemma 2.3.31, we have that K n ~ Der(9~)·

H) From Lemmas 2.3.32 and 2.3.33, Pn-1 < en < Der(9~)·

Hi) From the proof of Theorern 2.3.43, we have that if If is a graph of

order p, then L(lf) < Der(9; ).

Note 2.3.48 suggests that by considering Der(9~) for k > 2 it may be

possible to establish many more graphs as edge rotation distance graphs,

that is, show that G < Der(9~) for some k and m for many graphs G.

This approach, however, was found by the authors of [CGHLSWl] to

be limited, as the following result shows.

2.3.49 Theorem

Let G ~ Der(9~) and let x,y E V(G). If dc(x,y) = 2, then (Nc(x)nNc(Y))

is isomorphic to one of ](1, }(2 or C4 •
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Proof

Let 1 be a set of m 2-connected graphs pairwise at a distance 1; while 1 =

{FI , F2, ... , Fm} say. Then any graph in .9~(1) has the form nlFI U n2F2 U

m

... U nmFm, where nl, n2, ... , n m are non negative integers, and L n, = k.
i=1

Thus there is a one-to-one correspondence between the vertices of G and
m

the set of m-tuples (nI, n2, ... , n m) of nonnegative integers with I: n, = k.
i=1

Suppose that x,y E V(G) where x corresponds to (nl,n2, ... ,nm), Y

corresponds to (t l , t2 , ••• , tm ) and dc(x, y) = 2; then these two m-tuples

differ in either two, three or four entries. We may assume, without loss of

generality, that one of the following situations occurs:

In all cases x and y are nonadjacent. In Case 1), x and y would both

be adjacent in G to the unique vertex z corresponding to the m-tuple

(nl - 1, n2 + 1, n3, n4, ... , n m ) . In Case 2), x and y are adjacent in G to

exactly the two vertices corresponding to (nl - 1, n2 + 1, n3, n4, ... , n m) and

(nl - 1, n2, n3 + 1, n4, ... , n m). In Case 3) x and y are adjacent in G to

the vertices corresponding to (nl - 1, n2, n3, n4 + 1, ns, .. . , n m ), (nI, n2 ­

1, n3 + 1, n4, ... , n m ), (nl - 1, n2 - 1, n3, n4, ... , n m ) and (nI, n2, n3 + 1, n4 +
1, ns, ... , n m ) . In Case 4) x and y are adjacent to the vertices in G corre-

sponding to (nI' n2 -1, n3 + 1, n4, ... , n m ) and (nl - 1, n2, n3 + 1, n4, ... , n m).
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Therefore in Case 1), (Na(x) n Na(y)) ~ «; In CasesZ] and 4), (Na(x) n
Na(y)) ~ 1(2 and in Case 3), (Na(x) n Na(y) ) ~ C4 • 0

2.3.50 Corollary

If G < Der('9~J and x,y E V(G) where d(x,y) = 2,.then

We close this chapter with the following:

2.3.51 Conjecture

All graphs are edge rotation distance graphs.

65



•

Chapter 3

Metrics Involving Greatest

Common Subgraphs

3e1 Introduction

In this chapter we shall deal with distances between. graphs, where the

measure of distance, in each case, rnay be determined by a method involving

a greatest common subgraph of so me t ype .

3.2 The Edge Move Distance dem

3.2.1 Definitions

Let G and If be graphs of the same order and size. Then following

[BGMWl] we say that G can be transformed into 11 by an edge move

if G contains four vertices u, v, wand z , at least three of which are distinct,

such that uv E E(G), wx E E (G) an d 1/ ~ G - u v + w x .

For graphs G and H of the sarne order and size, the edge move distance

dem(G, H) between G and H is the smallest nonnegative integer n for which
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there ex ists a sequence

such that Hi can be transformed into Hi+l (i = 0,1, ... , n - 1) by an edge

move.

It is immediately clear that the edge slide and edge rotation operations

are merely special cases of the edge rnove operation, that is, every edge slide

and every edge rotation is also an edge rnove. It also follows irnmediately

that for graphs G and.H of the same order and size

We denote an edge rnove on a graph C by t = (u, v, w, x) where tC =
C-uv+wx. We denote the inverse of the edge move t by t- l = (w,x,u,v).

That t- 1 is also an edge move is obvious.

The edge move distance imposes a metric on the set Sp,q of all isomor­

phism classes of graphs which have p vertices and q edges, as follows: If

O"b0"2 E Sp,q, then obviously the distance dem(Gl , C 2 ) is fixed for all Cl E 0"1

and all C 2 E 0"2 and is also denoted by dem(a l , a2).

3.2.2 Theorem

For any integers p ~ 1, q ~ 0, the edge move distance is a metric on Sp,q.

Proof

Let a, E Sp,q and let G, E o, for i = 1,2,3.

i) By definition, dem(al , a2) 2: 0 and dem(al , a2) = 0 if and only if

dem(C 1 , C 2) = 0, hence if and only if Cl ~ G 2 and al = 0"2'
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ii) If dem(Ol,02) = n, then, dem(G1 , C 2 ) = n and by definition there exists

a sequence t 1,t 2 , ••• .t.; of edge mov es such that t; ...tIC I =C 2• Con­

sequently tll ...t~IG2 =GI and so dem(G2,Gd :::; n; i.e., dem(02,od :::;

dem(01,02). A similar argument shows that dem(01,02) :::; dem(02,od;

hence dem(01,02) = dem(02,od .

• iii) Let dem(01,02) = nand dem(02, 03) = m; then dem(GI, G2) = n,

dem(G 2 , G3 ) = m and by definition there exist edge move sequences

t bt2, ... .t; and SI,S2, ...,Sm such that tn-..tIGI ~ C 2 and Sm ...SIG2 ~

C 3 ; hences., ... Sltn ...tIG I ~ C 3. Therefore dem(G1 ; G3) :::; n + m and

so dem(OI ,03) :::; dem(Ol ,02) + dem(02,03). 0

Since the edge slide and edge rotation operations are special cases of

the edge move operation the following result needs no further proof (see

Theorem 2.3.8).

3.2.3 Theorem

Let Cl, C2 E I'{p, q), then there exists an edge move sequence tl, t 2, ... , tn

such that t n ••. t 2t I G 1 ~ G 2•

We now show that the edge move distance is preserved by complemen­

tation.

3.2.4 Theorem
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Proof

If dem(Gl , G2) = °then Gl ~ G2 and hence G't ~ G2 which implies that

dem ( Gb ( 2) = 0,: which satisfies the statement of the theorem. Assume

then that dem(Gl , G2 ) = n 2: 1. By definition there exists a sequence of

graphs

where Hi can be transformed into Hi +l by an edge move for i = 0,1, ..., n-1.

Let H i+1 = Hi - UiVi + WiXi. Then note that Hi+ l = Hi - WiXi + UiVi; i.e.,

n, can be transformed into 1li +l by an edge move. Thus the sequence of

graphs

has the property that dem(Ifi , IIi+d = 1 for i == 0,1, ... , n - 1. This implies

that

....., (1)

However, by (1)

which implies that

dem ( G1, G2) ::; a.:(c,,G2) .

Together (1) and (2) imply dem(G1 , G2 ) = dem(G1 , ( 2). o

Once again we consider slowly changing pararneters; this time with re­

spect to edge moves (see Definition 2.3.13).

Since a single edge move can only increase or decrease the degree of a

vertex at most by one, the maximum degree 6(G) of a graph G is a slowly
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changing parameter with respect to edge moves. Therefore the proof of

the following theorem may be obtained immediately from that of Theorem

2.3.16.

3.2 .. 5 Theorem

For any nonnegative integer n there exist graphs G I , G2 E f(p, q) such that

dem(G1 , G2 ) = n.

The following theorem appears in [BGMW1].

3 .. 2.6 Theorem

The edge move distance between the star Sn and a tree T on n vertices is

Proof

Since the maximum degree of a graph is a slowly changing parameter with

respect to the edge move operation

~ (1)

As every edge rotation is an edge move, it follows from Theorem 2.3.24

that

dem(Sn,1') ~ der(Sn,T) = 6(Sn) - 6(1'). ~ (2)

Therefore (1) and (2) together yield dem(8n , T) = 6(8n ) - 6(1'). 0
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Using the concept of the greatest common subgraph of two given graphs

(see Definition 2.3.18), we obtain an equivalent formulation of the edge

move distance between two graphs .

3.2.7 Theorem

Let Gb G2 E I'[p, q). Let G be a greatest common subgraph of G1 and G2

of size q(G) = 8. Then dem(GI , G2 ) = q - 8.

Proof

Assume then that 1 ::s; 8 < q. Let the vertices of Gland G2 be labelled

VI, V2, ... ,Vp so that the vertices of the subgraphs of G I and G2 isomorphic

to G are identically labelled. Since q > 8 we have that G1 has q - 8 edges

vivi not contained in G2 and G2 has q - 8 edges VkVt not contained in G I •

Therefore

~ (1)

Let u,v,w,x E V(Gd = V(G 2 ) such that uv E E(Gd, uv E E(G2 ), WX E

E(Gd and wx E E(G2). The edge move t l = (u,v,w,x) on G I results in

tlG I and G2 having a greatest common subgraph with 8 + 1 edges.

Repeating thi.s process for each of the q - 8 pairs of edges ViVj,VkVt

where ViVj E E(Gd,ViVj E E(G2),VkVt E E(Gd and VkVt E E(G2 ), gives a

sequence t l , t 2 , ••• , tq - a of edge moves such that t q- a •• •t 2t 1 G I =G 2 ; i.e.,

-- (2)
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•

Together (1) and (2) imply that dem(Cl,C2 ) == q - s, o

Theorem 3.2.6 suggests an alternative method of finding the edge move

distance between two graphs Cl, C 2 E r(p, q). This method involves finding

a greatest common subgraph C of Cl and C 2 and determining its size, 8

say. Once we have done this we perform the subtraction q - s to obtain

dem ( Cl, C 2 ) . The difficulty of this method lies in finding a greatest common

subgraph of two graphs. Unfortunately no efficient algorithm exists which

does this. This is seen as follows: suppose an efficient algorithm for finding

a greatest common subgraph of two graphs did exist. Then to see whether

a graph G is Hamiltonian, just use this algorithm to see' if Cp is a greatest

common subgraph of G and if ~ Cp. This would solve the travelling

salesman problem efficiently and we know that to be N P-complete.

302.8 Definition

The simplest metric possible when considering distances between graphs

was defined by Johnson in [J1). The discrete metric dd : r x I' ~ {a, I}

is defined by dd(G, H) == 0 if G ~ El and dd(G, if) == 1 otherwise. The

metric serves merely to distinguish between isornorphic and nonisornorphic

graphs. This metric is not very interesting and perhaps deserves the title

of The Trivial Metric.

3.2.9 Definition

Define the cardinality IGI of a graph C to be IV(C)I + IE(C)I. Johnson

[J1) defined the eubqraph. metric d, : I' x I' ~ Z+ such that d, (G, If) is the

minimum of IGI +IHI- 21CI taken over all graphs Cwhich are isomorphic

72



to subgraphs of both G and H.

3.2.10 Definition

Zelinka [Zl] introduced a distance on the space Sn of all isomorphism classes

of graphs with n vertices. The induced subgraph distance d, is defined so

that if 01,02 E Sn and n + k is the least possible number of vertices of a

graph containing an induced subgraph from each of the classes 01 and 02,

then di ( 0 1 , 0 2 ) = k.

If G 1 and G2 are two graphs of order n, the induced subgraph distance

between G1 and G2 , denoted by di(G1 , G2 ) , is defined to be the induced

distance between the isomorphism classes of graphs containing Gland G2,

respectively. Hence di (G1, G2 ) is the smallest number k for which there

exists a graph G of order k + n which contains induced subgraphs G~ and

G~, isomorphic to G1 and G2 , respectively.

Since the graph H obtained from the disjoint union of Gland C 2 by

identifying a vertex of Cl with a vertex of C 2 clearly contains both Cl and

G2 as induced subgraphs, it follows immediately that di(G I , G2) exists and

that di(G1 , G2} :::; n - 1.

The following three results are from [Zl] .

3.2811 Theorem

Let n be a positive integer and k a nonnegative integer. Let Cl and C 2 be

graphs of order n. Then the following two assertions are equivalent:

1. There exists a graph G of order at most n + k having induced sub­

graphs G~ and G~ such that C~ ~ Cl and C~ ~ C 2 •
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2. There exist isomorphic graphs G'{ and G~, each of order at least n - k,

such that G~ is an induced subgraph of G l and G~ is an induced

subgraph of C 2 •

Proof

1 => 2: Since the graph Cl U G2 of order 2n vertices contains Cl and C 2 as

induced subgraphs, we have k :::; n. If two sets, each containing n

elements, are subsets of a set with at most n + k elements, where

k :::; n, then their intersection contains at least n - k elements. Thus

the intersection of the vertex sets V (G~) and V (G~) contains at least

n - k elements; this set of vertices induces a subgraph G" of G and

of both G'l and G~, which is isomorphic to an induced subgraph G~

of Cl and to an induced subgraph G~ of G2 •

2 => 1: Assume, without loss of generality, that GI and G2 are vertex disjoint.

Let cp be an isomorphism from G'; into G~. Let G be the graph

obtained frorn GlUG2 by identifying each vertex v of G'{ with its

image cp(v) in G~. Evidently G has at most n + k vertices. If we let

G~ = G I and G~ = G2 , then statement 1 is satisfied and the proof is

complete. 0

We show now that the induced subgraph distance d, is a metric on Sn.

3.2.12 Theorem

Let Sn be the space of all isomorphism classes of graphs with n vertices.

Then the induced subgraph distance d, together with Sn is a metric space.
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Proof

i) Suppose 01 = 02, then the least possible nurnber of vertices of a

graph containing subgraphs from 01 and 02 is n, because any graph

from the class 01 = 02 will be such a graph. Thus d,(01,02) = O. If

di ( O I , 0 2) ~ 0, then there exists a graph with n vertices containing

induced subgraphs from 01 and 02 . Each graph from a class of Sn has

n vertices, and a graph with n vertices contains exactly one induced

subgraph with n vertices, namely itself. Therefore the graph belongs

to both of the isomorphism classes 01 and 02, thus 01 = 02. Therefore

di ( O l ' 02) = 0 if and only if 01 = 02.

ii) That di ( 0 1 , 0 2) = di ( 0 2 , o d follows immediately from the definition of

die

iii) Let di ( O I , 0 2) = k12 and let di ( 0 2 , 0 3 ) = k23 . Then there exists a

graph G 12 with n + k 12 vertices which contains an induced subgraph

Cl E 01 and an induced subgraph G2 E 02; and there exists a graph

G23 with n + k23 vertices which contains an induced subgraph H2 E 02

and an induced subgraph 113 E 03. Since both u, and G2 belong to

02 we have that G2 ~ H2 and there exists an isomorphism 1/J of

G2 onto H 2 • Let G be the graph obtained from G 12 and Gn by

identifying each vertex v in G2 with its image 1/J (v) in H 2 • This graph

has n + k 12 + n + k23 - n = n + k 12 + k 23 vertices and contains G1 E 01

and H 3 E 03 as induced subgraphs; hence
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Thus the triangle inequality holds for di and the proof is complete.

D

The following theorem proves that the induced subgraph distance be­

tween two graphs G1, G2 E f(p) from classes 01,02 E Bp, respectively, is

the same as the induced subgraph distance between the isomorphism classes

containing the complements to the graphs of Gland G2•

3.2.13 Theorem

Proof

There exists a graph G with p + di(G 1, G2 ) vertices containing G1 and G2

as induced subgraphs. Now the complement G of G contains G1 and G2 as

induced subgraphs and Ghas p+di(G1 , G2) vertices, therefore di (G1 , C2 ) S;

di(G1 , G2 ) . However, interchanging G1 with Cl and G2 with C2 in our

argument, we obtain di(G1,G2 ) S; di (G1,G2 ) and therefore

D

Zelinka [Z2] introduced a metric analogous to th e ind uccd subgraph

metric to study a distance between isomorphisrn classes of trees . Apart

from Theorem 3.2.32 all results in the remainder of this section are from

[Z2].

3.2014 Definitions

Consider the set I n of all isomorphism classes of trees with n vertices, n -2: 3.

Let 1"1,1"2 E I n , then define the tree metric dT : I n x I n ---t Z+ U {O} such
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that dT(rb r2) is the least integer with the property that there exists a tree

with n + dT('fb r2) vertices which contains a subtree, T1 E rl and a subtree

T2 E r2.

If T1 and T2 are two trees of order n, the tree distance between T1 and

T2 denoted by dT(T1 , T2), is defined to be the smallest integer k for which

there exists a tree T of order k + n which contains subtrees Tf and T~,

isomorphic to T1 and T2 respectively.

Since the tree H obtained from the disjoint union of T1 and T2 by

identifying a vertex of T1 with a vertex of T2 clearly contains both T1 and

T2 as subtrees, it follows immediately that dT(Tl, T2) exists and that

3.2.15 Theorem

The functional dT is a metric on the set ' n •

Proof

i) By definition dT(rl,r2) ~ 0 and dT(rl,r2) = 0 if and only if there

exists a tree T with n vertices such that T E rl and T E r2; i.e., if

and only if rl = r2.

ii) Let dT(rl, r2) = m. Then there exists a tree T with n + m vertices

which contains a subtree T2 E r2 and a subtree Tl E rl . Therefore

dT(r2,rd ~ m = dT(rl,r2). Similarly dT(rl,r2) ~ dT(r2,rd and there­

fore dT(rl, r2) = dT(r2, rd.
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iii) There exists a tree Tl2 with n + dT (Tl, T2) vertices which contains a

subtree T1 E Tl and a subtree 1"2 E T2, and there exists a tree T23

with n + dT(T2' TS) vertices which contains a subtree T~ E T2 and a

subtree Ts E Ts. The trees T2 and T~ are isomorphic. From Tl2

and T2S we obtain the graph T by taking an isomorphic mapping

of T2 onto T~ and identifying each vertex of 1"2 with its image in

this mapping. Now T is connected, has n + dT(Tl,T2) + dT(T2,TS)

vertices and has (n + dT(Tl' T2) - 1) + (n + d1'(T2' T3) - 1) - (n - 1) =
n + dT(Tl, T2) + dT(T2' TS) - 1 edges.

t

Therefore q(T) = p(T) -1 and therefore T is a tree. Now T contains a

subgraph T1 E Tl and a subgraph Ts E TS, Le. d1, (Tl, TS) :::; dT (Tl, T2) +
dT (T2' TS) and the triangle inequality holds. 0

3.2.16 Definition

Denote by T(n) the set of all trees of order n.

3.2.17 Theorem

Let T 1 , T 2 E T (n) and let k be a non negative integer, k < n. Then the

following two statements are equivalent:

1. There exists a tree T with n + k vertices which contains a subtree

isomorphic to T1 and a subtree isomorphic to 12.

2. There exists a tree To with n - k vertices such that both T1 and T2

contain subtrees isomorphic to To.
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Proof

1 => 2: Suppose statement 1 is true. Let T{ and T~ be subtrees of T iso­

morphic to T1 and T2 respectively. Since k < n, T{ and T~ have a

nonempty intersection and this intersection is a subtree T~ of T. Now

there are n + k - n = k vertices not in T{, therefore T~ must have

at least n - k vertices. Choose a subtree To of 1~ which has exactly

n - k vertices. Taking isomorphic mappings of T{ onto T1 and of 'T~

onto T2 , the images of To in these mappings must be subtrees of T1

and T2 and are isomorphic to one another and of course to To.
r

2 => 1 Suppose statement 2 is true. We may assume without loss of gener­

ality that T1 and T2 are vertex disjoint. Let T~ and T~' be subtrees

of T1 and T2 respectively, which are both isomorphic to To. Let T be

the graph obtained from T1 and T2 by taking an isomorphic mapping

of T~ onto T~' and identifying each vertex of T~ with its image in this

mapping. The graph T constructed as in iii) in the proof of Theorem

3.2.15 is a tree. Now T has n + n - (n - k) = n + k vertices and it

contains T1 and T2 as subtrees. 0

. The tree metric distance graph D1·(ln ) is defined to be the graph whose

vertex set is I n and in which 1"11"2 E E(DT (l n ) ) if and only if dT ( 1"I ' 1"2) = 1.

3.2.18 Theorem

The distance between any two vertices 1"1,1"2 of DT (In ) is equal to dT (1"1,1"2)'
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Proof

Let 1"1,1"2 E V(DT (l n ) ) and let dT (1"I, 1"2) = k. Then there exists a tree T

with n + k vertices which contains a subtree T1 E 1"1 and a subtree T2 E 1"2·

Now since n ~ 3, P3 is a subtree of every graph in I n and we have from

Theorem 3.2.17 that n - k ~ 3. Therefore k ::; n - 3 and therefore T1 and

T2 have a nonempty intersection containing, by Theorern 3.2.17, exactly

n - k vertices of T. Thus, there are k vertices of T1 not belonging to T2 and

k vertices of T2 not belonging to T1• Let {Ub ••• , Uk} be the set of vertices

of T1 not belonging to T2 where each Ui is adjacent to either a common
t

vertex of T, and T2 or t? a vertex ui with j < i. Let {Vb .•• , Vk} be the

set of vertices of T2 not belonging to T1 such that each Vi is adjacent to

either a common vertex of T1 and T2 or to a vertex vi with j > i. For each

j = 1,2, ... , k, let Si be the graph obtained from T2 by deleting the vertices

Vi for i ::; j and adding the vertices Ui for i ::; j together with the edges

which join them and the edges which join them to the common vertices of

T1 and T2 in T. Each graph Si is a tree since Si is a connected subgraph

of T. It is evident that Sk = T1 , dT(T2 , Sd = 1 and dT(Si, Si+d = 1 for

i = 1,2, ...,k - 1. The vertices T2 , SI , ,,,,Sk = T1 of DT(l n ) (where the

trees T2, SI, ... , Sk represent the isomorphism classes containing them) form

a path of length k in DT (In ) . Therefore in DT (In )

'" (1)

Now suppose that d(Tl,1"2) = I, in DT (l n ) . Then there exists a path of

length I, in DT(l n ) consisting of the vertices T1 = S~, SL ..., S~ = T2 • Thus

dT(SI, SI+d = 1 for i = 0,1, ... , I, - 1. Let SI' be a tree with n + 1 vertices

which contains a subtree isomorphic to S~ and a tree isomorphic to S~
1 1+1'
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For each i == 0, ... , l - 2 we choose an isomorphism of the subtree of SI'

isomorphic to S:+1 onto the sub tree of S:~1 isomorphic to S:+1 and identify

each vertex of the domain of this mapping with its image. Then we obtain

a tree with n + l vertices which contains a subtree from '1 and a subtree

from '2. Thus dT(' I ' 12) ~ l and therefore

~ (2)

o

Thus according to Theorem 3.2.18 in ' order to determine the diameter

of DT (In ) , we may look for isomorphism classes in I n which are furthest

apart with respect to the tree distance. That is, if say '1,'2 E I n such that

dT(' I ' '2) is a maximum then

This problem is resolved in the following theorem.

3.2.19 Theorem

The diameter of DT (1n ) is n - 3. There is exactly one pair of vertices in

D T (1n ) between which the distance is n - 3.

Proof

We have already seen in the proof of Theorem 3.2.18 that every tree in 1n

contains P3 as a subtree. Let '1, '2 E I n and let T1 E '1 and T2 E 12; then

by Theorem 3.2.17 there exists a tree with n + (n - 3) == 2n - 3 vertices
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which contains a subtree isomorphic to T1 and a subtree isomorphic to T2 •

Thus dT ( 1"b !2) ~ n - 3 for all 1"1,1"2 E 1n and thus by Theorem 3.2.18

'" (1)

for any pair of vertices 1"1,1"2 E V (DJ' (1n ) ) .

Now the path Pn and the star Sn are trees of order n and are therefore

elements of 1n, and thus vertices of DT (1n). Any subtree of Pn (8n) with

more than three vertices is a path (a star, respectively) ' with rnore than

two edges. Therefore for T1 ~ Pn and 12 ~ 8 n staternent 2 of Theorem

3.2.17 holds only for n - k ~ 3; i.e., for k 2: n - 3. Thus statement 2 of .

Theorem 3.2.17 does not- hold for k < n - 3 and thus staternent 1 does not

hold either for k < n - 3. Thus

and so the isomorphism classes containing Pn and Sn have tree distance

n - 3 between them.

Together (1) and (2) imply that the diameter of DT (1n ) is n - 3.

Finally we show that Pn and Sn are unique in that the isomorphism

classes containing them are the only ones to have a tree distance of n - 3

between them. Any tree T1 E 1"1 with n 2: 4 vertices which is neither a path

nor a star contains P4 and 8 4 as subtrees. Let 1"2 E 1n such that 1"1 =j:. 1"2.

Then P4 and 54 are subgraphs of T1 and T2 for any 1'1 E 1"1 and T2 E 1"2'

Thus statement 2 of Theorem 3.2.17 holds for n - k = 4 and therefore there

exists a tree T with n+ (n-4) vertices which contains a subtree isomorphic

to T l and a subtree isomorphic to T2 • Therefore dT (1"1, 1"2) ~ n - 4 and by

Theorem 3.2.18 the distance of 1"1 from any other vertex in DT (1n ) is at

most n - 4. 0
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3.2.20 Corollary

The tree distance between any two isomorphism classes Tl' T2 E I n is at

most n - 3. The isomorphism class es Tl and T2 which contain Pn and Sn,

respectively, are unique in the sense that dT (Tl' T2) = n - 3.

Proof

Immediately from Theorems 3.2.18 and 3.2.19.

3.2.21 Definition

o

We define the tree T(k) for all positive integers k 2 3 as follows: First we

define the graph To(k). The vertex set of To(k) consists of all vectors with

dimensions 0,1,2, ... , r~l - 1, whose coordinates are numbers from the set

r!1-12 •

{I, 2, ... , k - I}. Thus To(k) has 1 + 2:= (k - 1)' vertices . Two vectors u, v
i =1

are adjacent in To(k) if and only if one of them can be obtained from the

other by adding one coordinate. If k is odd, take two disjoint copies of To (k)

and add an edge between the vertices which correspond to the zero vector

in both of them. If k is even, we take a new vertex c and k pairwise disjoint

copies of To(k) and insert edges between c and the vertices corresponding

to the zero vector in all of them. The tree obtained in this way will -be

r~ l -l .
denoted by T(k). For k odd, T(k) has 2 + 2 L: (k - 1)' vertices and for k

i =1

k-l k

even T (k) has 1 + k + k 22: (k - 1)i = 1 + k t (k - 1)i- I .
i=l i = I '
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3.2.22 Lemma

The tree T(k) has the maximum number of vertices among all trees with

diameter at most k and with maximum degree at most k.

Proof

Let T be a tree with diameter k and maximum degree k. If k is even,

then T has one central vertex c, and for all v E V (T), ·d(c, v) ~ .~ . Since

.6.(T) = k, for each £= 1,2, .. ., ~ there are at rnost k(k - l)i-l vertices of T
k

whose distance from c is i. Thus T has at most 1 + k t (k - 1)i-l vertices
i=l

and this is the number of vertices in T (k).

If k is odd, then T has two centres Cl and C2 which are adjacent. For

each i = 1,2, ... , r~l -1 there are at most 2(k - 1)i vertices v of T such that

[~I-l

~in{d(cj,v)} = i, Thus T has at most 2 + 2 22: (k - 1)i vertices and this
1=1.2 . i=l

is the number of vertices in T (k ). 0

Let o:(k) denote the number of ver t ices in T(k) for any integer k ~ 3.

By Definition 3.2.21

k
2"

o:(k) 1 + k I:(k - 1)i-l for k even and,
i=l

r~l

o:(k) = 2 I)k - 1)i-l for k odd.
i=l

Further, for n ~ 6 we denote

a(n) = max{k E Z+: o:(k) ~ n}.
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3.2.23 Theorem

Let the radius of DT (1n ) be p. Then p ~ n - o(n) - 1.

Proof

Let k == o(n). We shall construct a tree C: If a(k) == n, then let C ~ T(k).

If a(k) < n, then let C be an arbitrary tree with n vertices which contains

T(k) as a subtree. Let T be any tree with n vertices.

Case 1) Suppose diam T ~ k. The tree C contains T(k) as a subtree, and we

know from Lemma 3.2.22 that the diarneter of T(k) is k. Therefore

both C and T contain Pk+1 as a subtree. Hence by Theorem 3.2.17

there exists a tree with n + (n - k -1) vertices containing C and T as

subtrees. Therefore if z and T are the isomorphism classes containing

C and T respectively, it is evident that

dT (z ,T) ~ n - k - 1.

Case 2) Suppose diam T < k, then since T has n ~ a(k) vertices, by Lemma

3.2.22, its maximum degree must be greater than k. But since C

contains T(k) as a subgraph, and 6(T(k)) == k, we rnust have 6(C) ~

k. Therefore both C and T contain Sk+l as a subtree and again

dT ( Z , T) ::; n - k - 1.

The tree distance of z from the isomorphism class containing Pn and

from the isomorphism class containing Sn is exactly n - k -1 (by Theorem

3.2.17). Therefore the radiusofDT (1n ) isatmostn-k-1 == n-o(n)-1.0

85



3.2.24 Conjecture

The radius of DT (l n ) is equal to n - o(n) - 1.

We now study the class of trees called caterpillars. Recall that a cater­

pillar is a tree with the property that after deleting all of its end-vertices we

are left with a path, called the body of the caterpillar. (A graph consisting

of one vertex is considered a path.)

3.2 .. 25 Theorem

Let T1 and T2 be caterpillars of order n and let dT(T1 , T2 ) = k; then there

exists a caterpillar T with n+k vertices which contains a subtree isomorphic

to T1 and a su btree isomorphic to T2 •

Proof

As dT(T1 , T2 ) = k, we have, by Theorem 3.2.17, that there exists a tree To

with n - k vertices such that both T1 and T2 contain subtrees isomorphic

to To. Since P3 is a sub tree of all trees in I n we have n - k ~ 3, and

. To has at least two edges. To is a subtree of a caterpillar, and thus To

itself is a caterpillar. Let B(Td, B(T2 ) and B(To) be the bodies of the

caterpillars T1 , T2 and To respectively. Let T~ and 1~' be subtrees of T1 and

T2 respectively, which are both isomorphic to 10. Take an isornorphism of

T~ onto T~' and let T be the tree obtained from T1 and T2 by identifying each

vertex of T~ with its image in this isomorphism. If T is not a caterpillar,

then there exists an edge el of B(Td not belonging to B(T2 ) and an edge e2

of B(T2 ) not belonging to B(Tt} such that they are both incident to a vertex

Vo of B(To) . Let VI ( V2) be the vertex incident with el ( e2, respectively)
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distinct from Vo' Now by identifying the vertices VI and V2 in T, we obtain

a tree with n + k - 1 vertices which contains T1 and T2 as subtrees; this

contradicts the fact that dT(T1 , T2 ) == k. Thus T is a caterpillar and the

theorem is proved.

3.2.26 Corollary

D

The set of all isomorphism classes of caterpillars with n vertices induces a

subgraph DT (In ) of D1, (In ) with the property that the distance between

two vertices inDT (l n ) is the same as in DT (l n ) . The diameter of b T (l n )

is n - 3.

Proof

Let Tb T2 E 1n such that T I E TI, T2 E T2 and T1 and T2 are caterpillars. Let

d T(Tl,T2) = k. Then, by Theorem 3.2.18, d(7"1,T2) == k in DT (l n ) . Now by

Theorem 3.2.25 we have that there exists a caterpillar T with n +k vertices

which contains a subtree isomorphic to TI , and a subtree isomorphic to T2 ,

therefore the following analogue to Theorem 3.2.18 holds:

The distance between any two vertices 7"1,7"2 of DT (l n ) is equal to d T(7"I, 7"2)'

The proof is exactly as in Theorem 3.2.18 with the word tree replaced by

caterpillar. Therefore

dDT(ln) (Tl, T2) == dbT(J"n) (7"1,1"2) '

Since the star Sn and the path Pn are both caterpillars we have by The-

orem 3.2.19 that the diameter of DT (l n ) is n - 3. D

Now for every positive integer k we construct the caterpillar T(k). Let

the body of T(k) consist of a path of length k - 2. Let the degree of
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every vertex of the body in T(k) be k. The number of vertices in T(k) is

(k - 1) + (k.- 3)(k - 2) + 2(k - 1) == k2
- 2k + 3.

3.2.27 Lemma

The caterpillar T(k) has maximum order among all caterpillars with diam­

eter at most k and maximum degree at most k.

Proof

The diameter of a caterpillar is always , the length of its body plus two.
(

Thus T(k) has diameter k. In a caterpillar the only vertices which can

have degree greater than one are the vertices which belong to the body of

the caterpillar. Since every vertex contained in the body of T(k) has degree

k, the lemma is proved. 0

3.2.28 Theorem

Let p be the radius of DT(ln). Then

p~ n - a(n) - 1 where

a(n) == max{k E Z+ : k2
- 2k + 3 ~ n}.

Proof

Let k == a(n). We construct the caterpillar C. If k 2 - 2k + 3 == n then let

C f"oJ T(k). If k2
- 2k+ 3 < n then let C be an arbitrary caterpillar with n

vertices which contains T(k) as a subtree. Let f be any caterpillar with n

vertices.
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Case 1) Suppose diam T ~ k. The caterpillar C contains T(k) as a subtree,

and we .know from Lemma 3.2.27 that the diameter of T(k) is k.

Therefore both C and f contain the caterpillar Pk+1 as a subtree.

Hence by Theorem 3.2.17 there exists a tree T' with n + (n - k - 1)

vertices containing C and T as subtrees. That T' is a caterpillar

follows from Theorem 3.2.25. Therefore if zand T are the isomorphism

classes containing C and f respectively then

dT (Z,T) ::; n - k - 1.

Case 2) Suppose diarn T < k, then since i"has n ~ k 2 - 2k + 3 ver t ices by

Lemma 3.2.27, 6(T) > k. But since C contains i~ ( k ) as a subgraph,

and 6(T(k)) = k, we must have 6(0) ~ k. Therefore both 0 and T
contain the caterpillar Sk+l as a subtree and again

dT ( Z, T) ::; n - k - 1.

The tree distance of z from the isomorphism class containing Pn and from

the isomorphism class containing Sn is exactly n - k - 1. Thus the radius

of DT (In ) is at most

i.e.,

n - k - 1 = n - o(n) - 1;

.P::; n - o(n) - 1. o

3.2.29 Conjecture

The radius of DT (l n ) is equal to n - o(n) - 1.

We now compare the tree distance dT with the induced subgraph metric

d; (see Definition 3.2.10).
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3.2.30 Theorem

For elements Tb T2 E r(n) for n ~ 7 the distances dT(T1 , T2 ) and di(T1 , T2 )

are different in general.

Proof

Let T1 "-J Pn and T2 be the star on n-vertices. Then by Theorem 3.2.19,

dr (T1 , T2 ) = n - 3. In T1 take a maxirnal ind ependent se t of vertices.

This set will obviously contain ri 1vertices. Identify each vertex of this set

with one end-vertex of T2 • We obtain a graph Gn with l3
2
n J vert ices which

contains T1 and T2 as induced subgraphs. Thus

o
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3.2.31 Figure

The graph Gn described in Theorem 3.2.30 for n = 7.

To end this section we present a new result analogous to Theorem 3.2.18

for the induced subgraph distance (see Definition 3.2.10).

We define the induced subgraph metric distance graph D di (5n ) to be .the

graph with vertex set S; and in which ala2 E E(Ddi (5n ) ) if and only if

d; (aI, a2) = l.
\
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3.2.32 Theorem

Proof

Let 0b02 E Sn such that di ( 0 1 , 0 2 ) = k, then by definition there exists a

graph G with n + k vertices which contains induced subgraphs G l and G2

such that G l E 01 and G2 E 02. By Theorem 3.2.11, there exist isomorphic

graphs G~ and G~ with n - k vertices such that C'l is an induced subgraph

of G l and G~ is an induced subgraph of 92.
In G there are n - k .vert ices common to Gland G2. Therefore there

are k vertices in G1 which are not in G2 and k vertices in G2 not in G1 •

Label arbitrarily the vertices in V(Gd - V(C z) as Ul,UZ, .. ,Uk and those

in V (Gz ) - V (Gd as Vb Vz, ... , Vk. Now for each j = 1,2, ... , k let Fj be the

subgraph of G induced by the vertex set V(Fj ) == (V(Gd-{ Ut, U2, 00" Uj})U

{Vl,V2' ... , Vj}. Let fJj be the isomorphism class containing Fj • Then it is

evident that fJj E S« and Fj i- F; for j i- i. It is also evident that Fk ~

G2 , di(F1,G 1) == 1 and di(Fj,Fj+d = 1 for j = 1,2, ... ,k -1. Therefore

we have constructed a path G1F1F2°o.Fk ~ Gz of length k in Ddj (Sn) and

therefore

~ (1)

Now suppose that the distance between G1 and G2 in D dj (Sn) is l. Then

there exists a path of length £ in D dj (Sn) of the form

We have that di(F},F}+l) = 1 for j == 0,1'00"£ .: 1. Let FJ' be the graph

with n + 1 vertices which contains an induced subgraph isornorphic to F~
1
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and an induced subgraph ismorphic to FJ+I for J' = 0,1, .. ., £ - 1. For each

i = 0,1, ... , £:-2 let FJ" be the graph obtained from FJ' and Fi~l by choosing

an isomorphism of the induced subgraph of Fi' which is isomorphic to Fi+l
and identifying each vertex of the domain of this mapping with its image.

Then F:~2 is a graph with n + £ vertices containing Cl and C2 as induced

subgraphs. Therefore

,..; (2)

Together (1) and (2) imply that

o

3.3 Bounds and Relations

We now present some results which give bounds and relationships between

some of the metrics we have studied.

As we have already noted for all graphs C, HErc (p, q)

Our first result from [BGMW1] stems from the fact that any edge move

can be simulated by a maximum of two edge rotations as was demonstrated

in the proof of Theorem 2.3.20.

3.301 Lemma

For graphs G I , G 2 E r(p, q)

•
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Proof

Let G be a greatest common subgraph of Gland G2 with size s say. Ac­

cording to Theorem 3.2.7, dem(GI , G 2 ) = q - s, From Theorem 2.3.20, we

have der(G I , G2 ) ~ 2(q - s}, and hence

o

The following lemma demonstrates that the ratio ~::~~: :~~~ can be made

arbitrarily large for graphs G I , G2 E fc(p, q) and sufficiently large values of

p.

383.2 Lemma

There exist graphs Gb G2 Ere (p, q) such that for any integer a > 0

de. (G l ,G2) - a
der(G 1.G2) - •

Proof

Let graph G I consist of two disjoint paths PI = VI V2 ••• V 2a+ 1 and P 2 =
UIU2,..U2a+1 of length 2a, together with the edge Ua +IVa+1 and let graph

G2 be a path of length 4a + 1. Now dem(GI , G2) = 1. The edge rotations

t 1 = (Va+l' Ua+b U2a+l) on G1 and t2 = (U2a +l' Va +l, v2a+d on t1G I transform

G1 into G2 ; i.e., t 2t 1G1 ~ G2• Hence der(G1,G2 ) ~ 2. That der(G1,G2 ) ~ 2

is shown as follows:

The parameter end'(G) of a graph G is slowly changing with respect to the

edge rotation operation (see Lemma 2.3.28) and

lend'(Gd - end'(G2)1= 14 - 21 = 2,
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Define the edge slides t i == (U a+l , Va+i , Va+i+ d for i == 1,2, ... ,a and

. Sj == (V2a+l,~a+j,ua+j+d for J' == 1,2, ... ,a. Then Sa···S2s1ta.··t2tlGl '" G 2,

.and hence

However since the diameter of a graph is slowly changing with respect

to edge slides (see Lemma 2.2.16), we have that des(G1 , G2 ) ~ IdiarnG 1 ­

diamG2) I == I(2a + 1) - (4a + 1) I == 2a. I-Iencedes (G1, G2) == 2a.

Therefore d<l.(G 1,02) == 2a == a for arbitrary a. 0
du ( G 1,G2) 2

Note that if we do not restrict ourselves to connected graphs; i.e., con­

sider graphs Gb G2 E I'{p, q), then the ratio ::;f~::~~~ can be made infinite

by taking any disconnected graph G1 E I' (p, q) and any connected graph

G2 E I'c (p, q) .

Our next four results are from [GS1]. We aim to provide a relationship

between the edge slide and edge rotation distances between two graphs

G, H E f(p, q).

3.3.3 Theorem

Proof

Since complementation preserves the edge rotation distance

der(G 1 + tc., G2 + Kd - der(G 1 + K 1, G2 + Kd == der(G\ U 1(1, (;2 U Kd
- der((;1, (; 2) == d., (G1, G2) . .
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Hence we need only prove that der(G 1 U K 1 , G2 U Kd == der(G 1 , G2 . )

Trivially

-- (1)

Consider a sequence of edge rotations t1 , t2, ••• , t.; such that tn ••• t2t 1 (G l U

KI) -- G2 U K 1 • Let x be the designated isolated vertex at the start of the

transformation and let y be the designated isolated vertex at the end of

the transformation. Consider all edge rotations of the form ti == (Ui' y, wd
where Ui, Wi E V (Gd (if an edge incident with y is to be rotated twice,

. arrange it so that it releases from y first]. Thus all such operations reduce
I

the neighbourhood of y. Of these, perform all the edge rotations which

do not involve x. Now interchange the labels y and x, this will affect

all the rotations including y and x. Now continue with the edge rotation

sequence. Note that there is a designated isolated vertex throughout the

transformation and therefore

3.3.4 Theorem

Proof

Both G + K 1 and H + K 1 are connected graphs and thus by Theorem

2.2.9, we know that des (G + K 1 , H +Kd is finite. It is thus only necessary

to show that for x,y,z E V(G),xy E E(G) and x z E E(G), any edge

rotation t == (x, y, z) on G can be simulated by two edge slides t
1

and
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t 2 on G + K 1 and t 1 (G + Kd, respectively. Let v be the joined vertex

in G + K 1• Define the edge slides t 1 = (x, v, z) and t 2 = (x, y, v). Then

xy E E(t 2t 1(G+ Kd), xz E E(t 2t 1(G+Kd)' while vertex v still has degree

p, in t 2t 1(G + K d . Therefore de$(G+](l,II + !(d ::; 2der(G, 11). 0

3.3.5 Theorem

Let G, HErc(p, q) where p ~ 3 and q ~ 2, then

de$(G,H) ~ 2der(G,H) - (6(G) + 6(H)) + 6p - 6.

Proof

Let v(w) be a vertex of maximum degree in G (H, respectively) . Let T; (Tw )

be a spanning tree of G (H, respectively) containing all the edges incident

with v(w, respectively) (e.g. a spanning tree of G(H) that is distance

preserving from v(w, respectively)). Let G' = G - E(Tv)(H' = H - E(Tw ) )

and let G" = G' + {vu : u E V (G) - {v}} (11" = H' + {wu : u E V (G) ­

{w}}).

Note, by Theorem 2.2.14, that

de,(G, G") = du(Tv , K1,p-d = 6(Sp) - 6(Tv ) = p - 1 - 6(G); }
de,(H, Hit) = de,(Tw , K1,p-d = 6(Sp) - 6(1'w) = p - 1 - 6(11).

-- (1)
Let t b t2 , ... , t n be a sequence of n = der(G, H) edge rotations such that

tn...t1G -- H. Let H* be the graph obtained by restricting the edge rotation

sequence t1) t 2 , ••• , t n to G'; then since 11'" and 11' must have a greatest

common subgraph of size at least q - (p - 1)

dem(H"', H') ~ p - 1,
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hence by Lemma 3.3.1,

der(H·, H') ::; 2(p - 1) and so

We note that v and ware isolated vertices of G' and If' respectively, so

from Theorem 3.3.3,

der(G' - v, H' - w) ::; der(G, H) + 2(p - 1). '" (2)

Now

des{G",H") des{{G' - v) + K l , (H' - w) + Kd
- 2der{G' - v,H' -w) (by Theorem 3.3.4)
< 2[der(G, H) + 2(p - 1)] (from (2))
- 2der {G, H) + 4(p - 1).

It is evident that

therefore from (1) and (3)

des(G, H) < P - 1 - 6(G) + 2der(G, H) +4(p - 1) + p - 1 - 6(H)
- 2der(G, H) - (6(G) + 6(H)) + 6p - 6.

o

3.3.6 Corollary

Let G, H E rc(p, q) where p 2: 3 and q 2: 2; then
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Proof

Since both G and H are connected and have q ~ 2 edges, 6(G) ~ 2 and

6(H) ~ 2. Hence 6(G) + 6(H) ~ 4 and the result follows directly from

Theorem 3.3.5. 0

The following theorem by Zelinka (Z3] shows that the induced subgraph

distance between two graphs is bounded above by the edge rotation distance

of those two graphs [cf. : (Z3] for results 3.3.7 to 3.3.11).

3.3.7 Theorem

where equality may occur.

Proof

If der(G l , G2 ) = 1, then G2 may be obtained from G l by a single edge

rotation. Hence there exists a graph G with p vertices and q - 1 edges

which is isomorphic to a subgraph of G l and to a subgraph of G2• Label

the vertices of G l and G2 so that the subgraphs isomorphic to G in G l and

G2 respectively, are identical. Suppose then that V = V(GI) = V(G 2 ) =

{VO, Vb ... , Vp-l}' Then there exist vertices, say, Vo, Vl, V2 E V such that

VOVl E E(GI) and VOV2 E E(Gd, while VOVl E E(G2 ) and VOV2 E E(G2 ) .

For any other pair of vertices Vi,Vj, either ViVj E E(Gdand ViVj E E(G2 )

or ViVj E E(Gd and ViVj E E(G2 ) . The set V - {VD} induces the same

subgraph in both G l and G2 and thus di(G l , G2 ) = der(G l , G2 ) = 1.
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Now let k 2:: 2 be an integer, and let der(GI, G2) == k. Then there exist

graphs Ho, 1!.1, 00" Hk such that lio ~ GI and Hk ~ G2 and the graph Hi

may be obtained from Hi - l by a single edge rotation for i == 1,2, 00" k.

We have der(Hi-I,Hd == 1 and hence by the above di(Hi-I,Hi) == 1 for

i == 1,2'00" k. Inductively from the triangle inequality we obtain

o

The following result demonstrates th at we can construct two graphs

for which the difference between their edge rotation distance and induced

subgraph distance may be chosen to be arb itrarily large.

3.3.8 Theorem

Let N be a positive integer. Let aI, a2 E Sp,q, then there exist graphs

G l E al and G2 E a2 such that

Proof

We construct graphs GI and G2 with a common vertex set .

V = {UI, U2"",UN+I,Vl,V2,,,,,VN+l,W}. In Cl the set {Ul,U2,oo.,UN+l,W}

induces a clique and the vertices Vb V2, 00" VN+I are isolated. In G2 two

vertices are adjacent if and only if either they both belong to the set

{UI, U2,oo"UN+I}, or one of them is w and the other belongs to the set

{Vt, V2,oo"VN+l}. Each of the graphs G1 and G2 has t(N + l).(N + 2)

edges. The set V - {w} induces the same subgraph in both G1 and C
2

,

hence d, (G 1, G2 ) = 1. The graph C 2 can be obtained from C I by N +1 edge

rotations; each rotation is of the form i, = (w, Ui, vd for i = 1,2, 00" N + 1;
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i.e., tN+l,tN, ... ,t2,t l G l ~ G2. Hence der(Gl,G2 ) ~ N + 1. Now perform­

ing fewer than N + 1 edge rotations on G l will result in a graph with at

least one isolated vertex. Since G2 has no isolated vertices we have that

der ( G l , G 2) ~ N + 1; and hence

o

The following lemma will aid us in proving that the edge rotation dis­

tance between two trees is bounded above by their tree distance.

3.3.9 Lemma

Let T be a tree with p vertices and edge set E(T); let To be a proper

subtree of T with edge set E(To). Then there exists a bijection f of the

set E(T) - E(To) onto the number set {I, 2, ... , IE(1') - £(10)1} with the

property that the set E, == E(To) U {e E E(T) - E(To) : f(e) ::; i} is the

edge set of a subtree of T for each i E {I, 2, ..·IE(T) - E(To)I}.

Proof

We proceed by induction on the cardinality of E(T) - E(To). If IE(T) ­

E(To)I == 1, then El == E(T) and the assertion holds trivially. Let k ~ 2 be

an integer and suppose that the assertion is true for IE(1') - E(10) I ::; k-1.

Suppose IE(T) - E(To) I = k. There exists at least one edge el E E(T) ­

E(To) which is incident with a vertex which is in To. Evidently E(T~) ==

E(To) U {ell is the edge set of a subtree T~ of T. We have IE(T) - E(1'~)1 ==

k - 1 and by the induction hypothesis there exists a bijection J' of E(1') ­

E(1'~) onto {1,2, ... ,k-1} such that the set EI ~ E(To)U{e E E(T)-E(T~):

I' (e) ~ i} is the edge set of a subtree of T for each i == 1,2, ... , k - 1. We
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define a bijection for E(T) - E(To) onto {1,2, :..,k} in such a way that

f(ed = 1 and I(e) = I'(e) + 1 for each e E E(T) - E(T~). Then evidently

El = e1 and E, = E:_1 for i = 2,3, ... , k and the assertion holds. 0

3.3.10 Theorem

Proof

Let dT(T1,T2) = k. This means, by Theorem 3.2.17, that the maximum

number of vertices of a tree which is isomorphic to a subtree of T1 and

simultaneously isomorphic to a subtree of Tz is equal to n - k. Suppose To

is a tree with n - k vertices that is a subtree of both T1 and T2. Let J1 (/2)

be a mapping corresponding to the mapping 1 from Lemrna 3.3.9 where we

consider T1(Tz, respectively) instead of T. Both 11 and 12 are bijections onto

the set {1, 2, ... , k}. For each i = 1,2, ... , k let e1(i) (e2(i)) be the edge which

is mapped by Jl (J2' respectively) onto the number i. The vertices incident

with the edge e1 (i)(e2( i)) will be denoted by VI (i) and wd i) (V2 (i) and W2 (i),

respectively) in such a way that the distance of W1 (i) (W2 (i)) from a vertex

of To is greater than the distance of VI (i)(vz (i), respectively) from the same

vertex. Now we identify w2(i) with wI(k+ I-i) for i = 1,2, ... , k. After this

identification the trees T1 and Tz have the same vertex set. For i = 1,2, ... , k

define the edge rotation t, which deletes the edge e1(i) = VI (i) w1 (i) and adds

the edge e2(k+ 1 - i) = v2(k + 1 - i)wz(k + 1 - i) = v2(k + 1 - i)W1(i),
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o

We now present a result which is similar to that of Theorem 3.3.8.

3.3.11 Theorem

Let N be a positive integer. Then there exist trees T I and T2 of order n

such that

Proof

We construct trees T, and T2 with a common vertex set

V == {UI,U2,U3,U4,US,U6,VI,V2"",V2N+4,WI,W2 .•• ,WN+2}' Both T, and T2

contain the edges UIU2, U2US, U3U4, U4US, USU6 and U2Vi for i == 1,2, ... , 2N+4.

Further, T, contains the edges U4Wi and T2 contains the edges USWi for

i == 1,2, ... ,N + 2.

The subtree To induced in both T, and T2 by the set

{UI, U2, U3, U4, Us, U6, VI, ... , V2N+4} has 2N + 10 vertices; evidently no tree

with more vertices than To can be isomorphic simultaneously to a subtree

of T l and to a subtree of 12. The set V contains 3N + 12 vertices, hence

dT(Tt, T2 ) == (3N + 12) - (2N + 10) == N + 2.

Let t I == (U2, U3, U4) and t 2 == (us, U4, U6) be edge rotations and let

T{ == t 2t l T2 • Define the bijection f : V ~ V such that f(us) == U6, f(U4) ==

us, f(us) == U4, f(U6) == Us and f(x) == x for each x E V - {us, U4, us, U6}'

The mapping f is an isomorphism of T{ onto TI . Hence T{ ~ T1 and T{ was
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obtained from T2 by two edge rotations . Evidently no single edge rotation

will transform T1 into T2 (or vice versa) and hence der (T1 , T2 ) == 2. The

result follows. o

The following theorem gives an upper bound for the edge move distance

between two graphs G, If E r(p, q). The next four results first appeared in

[GSl].

3.3.12 Theorem

Let G and H have order p and size (7r (~) where 0 < 7r < 1. Then

dem(G, H) ~ (~) 7r(1 - 7r).

Proof

Consider a random bijection cP from G onto H. We want to determine the

size of the greatest common subgraph of cP( G) and H that is induced by

cP. For any edge e in G, the probability that cP maps e to an edge in H

is 7r. Thus it is expected that 7r7r (~) edges of G will be mapped to edges

in H and thus the expected size of the greatest common subgraph of cP(G)

and 11 is 7r
2 (~). Thus by the probablistic method there exists a bijection

4> from G onto H such that a greatest common subgraph of 4>( G) and H

. has size at least 7r
2 (~). Hence G andH have a greatest common subgraph

with size at least 7r
2 (~); th~

d,m(G, H) ~ 1r (~) - 1r
2 G) = 1r (~) (1 - 1r) as required. 0
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Since the expression (~) 7l" (1 - 7l") is maximised for 7l" = ~ the following

result needs .no further proof.

3.3.13 Corollary

The maximum distance between two graphs in r (p, q) under the edge move
~ .

distance is at most ~.

From Corollary 3.3.13 above arid Lemma 3.3.1 we also obtain the fol­

lowing result.

3.3.14 Corollary '

The maximum distance between two graphs in I'[p, q) under the edge ro­

tation distance is at most p2; p.

The following result determines an upper bound for the edge slide dis­

tance between two graphs.

3.3.15 Corollary

The maximum distance between two graphs Cl, C 2 E rc(p, q) under the

edge slide distance is at most p2~llP - 10.

Proof

From Corollary 3.3.6,

des(G},G2 ) < 2der(G,H) +6p-10
2

< 29 + 6p - 10 (by Collary 3.3.14)
< p2;p + 6p _ 10 = p2~llP - 10.
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The following lemma will aid us in determining cl. lower bound for the

edge rotation distance.

3.3.16 Lemma

If {ai h=l,2, ... ,n and {bih=l,2, ...,n are two sequences of n nonnegative integers
n

with al ;::: a2 ;::: ... ;::: an and D = L lai - bd, then D is minimised when the
i =l

sequence {bi } is arranged in nonascending order.

Proof

Suppose {bi } is given in some, not necessarily descending order. It can

then be rearranged in nonascending order by means of a finite number of

term-interchanges each of which involves a pair of terms in ascending order;

l.e., b, and bj are interchanged if bi < bj and i < j. Specifically, interchange

the smallest b; with bn and the second smallest b, with bn- l , repeating this

procedure until we have a nonascending sequence.

It remains to show that a single interchange, as described above, de-
n

creases the value of L lai - bil. Suppose that bp < bq where p < q, then
i=l

obviously it suffices to look at the sign of

d = (lap - bql + laq - bp!) - (lap - bpl + laq - bq!). If d ~ 0 then the lemma

is proved. There are six cases to consider .

Case 1) Suppose aq ;::: bq , then d = o.
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Case 6) Suppose bp ~ ap, then d == O.

The following theorem is from [GS1).

3.3.17 Theorem

o

Let G I , G 2 E I'{p, q). Let the graph Cl have degree sequence dl ~ d2 ~

.... ~ dp and let the graph C 2 have the deg ree sequence El ~ E2 ~ ... ~ ep'

Then

Proof

Let V(Gd == V(G 2 ) == {VI,V2'''''Vp } , where the vertices of Cl and C 2 are

labelled in such a way that degcl Vi == di and degc2 Vi == e, for i == 1,2, ... , p.

Since each edge rotation increases the degree of exactly one vertex by

1 and decreases the degree of exactly one vertex by 1, it follows that

I p
der (C I, C 2) ~ 2 E Idegc Vi - degc Vi I· It is then an immediate conse-

i=l 1 2

quence of Lemma 3.3.16 that

o
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3.4 Graph Operations

Following [GSl] in this section, we now determine what effect some simple

graph operations on graphs Gland G2 have on the distance between them.

The simplest operations are joining a vertex to a graph and adding an

isolated vertex to a graph. We denote the joining of a vertex to G by

G + K l and the adding of an isolated vertex to G by G U K l ·

lt is clear that edge slide distance between graphs Gl, G2 E r c(p, q) IS

preserved when the same number of isolated vertices are added to both Gl

and G2 ; i.e.,

On the other hand Theorem 3.3.4 showed that joining .a vertex to both

G1 , G2 E r(p, q) can considerably reduce the edge slide distance between G1

and G2 • In some cases (e.g. for G1 Ere (p, q) and G2 E r (p,.q) disconnected)

it is possible to reduce the edge slide distance between two graphs from

being infinite between Gland G2, to being finite between G1 + K land

G2 + K 1 •

By the greatest common subgraph formulation, we see immediately that

both of the operations above preserve the edge move distance. These two

operations are in fact complementary, and as we saw in Theorern 3.2.4 the

edge move distance is preserved by complementation. While edge slide

distance is not preserved by complementation, edge rotation distance is.

3.4.1 Lemma

Let Gl, G2 E r(p, q), then allowing multigraphs in the interrnediate steps in

transforming G1 into G2 via edge rotations does not affect the edge rotation
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distance.

Proof

Assume we have a minimum edge rotation sequence i., tz, "" tn where

t.;....t 2tlG l ~ G2 and titi-l ...t2tlGl is a multigraph for some i(l ::::; i <
n - 1) and where i is a maximum; i.e., we assume that a multigraph is

formed as late as possible in the sequence. Assume that the edge rotation

ti = (x, v, y) results in there being two edges between vertices x and y where

x,v,y E V(ti-I ... t2tIGd, vx E E(ti-I ... t2tIGd and xy E E(ti-I ... t 2tIGd ·

Now since G2 is not a multigraph one of these two edges xy must be rotated

to a new position by the edge rotation tj == (y, x, w) say, where n ~ j > i.

Now yw E E(ti ... t2tl Gd otherwise we would eventually rotate the same

edge three times contradicting the minimality of the sequence tlt2 ... tn' But

consider the edge rotation sequence t l , t 2 , ... ,ti- l, tj, t i, t j + l, ... , tn. This edge

rotation sequence transforms G I into G2 , however the forrnation of a multi­

graph is delayed, contradicting the maximality of i. It is clear that by

repeating the process above we can obtain a sequence of n edge rotations

which do not involve multigraphs and the result is true. .. 0

Consider G I , G2 E fc(p, q), then it is immediately obvious that des(2G I , 2G2) ==

2des(G1 , G2) . However, quite surprisingly, the analogous result for the edge

move and edge rotation distances does not hold.

3.4.2 Theorem

There exist gr~phs G I , G2 E I'{p, q) such that
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Proof

i) Let F be a4-connected graph with three distinguishable vertices x, Y and

z say. Let GIbe the disjoint union of four copies of F, namely F1 , F2 , F3, F4

say, together with the four edges connecting F1(x) to F2(x), F3(x) to F4(x),

F1(y) to F3(y) and F2(y) to F4(y) (where for example, Fdx) denotesthe

distinguishable vertex x E V(Gd in F1 , see Figure 3.4.3). Let G 2 be the

disjoint union of four copies of F, namely F{, F~, F~ and F~ say, together

with the four edges connecting F~(x) to FHx), F~(y) to F~(y), F{(z) to F~(z)

and F~(z) to F~(z).

It is obvious that no two edge moves will transform G1 into G2 , hence

dem (G1 , G2 ) ~ 3. Define the edge moves t1 == (FdY), F3(y), Fdz), F3(z)), t 2 ==

(F2(y), F4(y), F2(z), F4(z)) and t3 == (F3(x), F4(x), F3(y),.F4(y)). Then

Label the graph 2G1 as shown in Figure 3.4.3. Define the edge moves

t~ == (Fdy),F3(y),Fdz),F3(z)), t~ - == (F1(x),F2(x),F2(z),Fdz)),

t~ == (Fg(x), F4,(x) , F2(z), F3(z) and t~ == (F2(y), F4 (y), F4(z), F4 (z)), then

t~t~t~t~Gl "J 2G2 and hence

ii) Define the edge rotation t1 == (F4(x), F3(x), F2(z)), t2 == (F2 (z), F4(x), F4 (z)),

t3 == (F4 (y), F2 (y), F3(y)), t4 == (Fdy)' F3(y), F3(z)) and

ts == (F3 (z), Fdy)' Fdz)), then tSt4t3t2t1G1 ~ G2, hence der (G1,G2 ) ::; 5.

That der (G 1, G 2 ) ~ 5 follows from the fact that there exist no four edge

110



rotations which transform G I into G2 • Hence der(GI , G2 )

Lemma 3.3.1,

5. Nowby
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3.4.4 Definition

For any graph G, the subdivision graph of G denoted by S(G), is the graph

obtained from G by replacing each subpath uv of length one in G by a path
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of length two, having u and v as end-vertices. Hence the order of S(G)

exceeds that of G by q(G)

. We now look at the effect of the subdivision operation on the edge

move and edge rotation distances.

3.4.5 Theorem

Proof

For x,y,z E V(Gd, let t = (x,y,z) be any edge rotation in an edge rotation

sequence which transforms G I into G2• It is sufficient to prove that for

each such edge rotation t there is a corresponding edge rotat ion i' which

deletes the subdivided edge xy and creates a subdivided edge xz in the

transformation of S(Gd into S(G 2 ) . Su ppose e is the ver tex subdividing

the edge xy then the edge rotation t' = (e, y, z) does wh at is required. 0

3.4.6 Corollary

For all graphs Cl, G2 E r(p, q)

Proof

Evidently dem(S(Gd, S(G2 ) ) ::; der(S(Gd, S(C 2 ) ) , while frorn Theorem

3.4.5, der(S(Gd, S(C2 ) ) ::; der(G1 , G2 ) and from Lemma 3.3.1, der{C 1 , G2 ) ::;

2der(G1,G2) . Therefore dem(S(Gd,S(G2 ) ) ::; 2dem(G1,G2 ) . 0
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3.4.7 Example

Let G 1 be the graph shown in Figure 3.4.~ and let G 2 = P6·

3.4.8 Figure

Obviously dem(G1, G2 ) = 1 while dem(S(Gd, S(G 2 ) ) = 2. This example

shows that the upper bound in Corollary 3.4.6 is sharp since dem(S(Gd, S(G 2 ) ) =
2dem(G 1 , G2 ) in this case.

3.5 Ordering of Metrics

In [J1] Johnson presents a means of partially ordering some of the metrics

that we have studied so far; namely the induced subgraph rnetric d., the

edge rotation distance metric der , the edge slide distance metric des' the

subgraph metric .d! , and the discrete metric dd. Throughout the remain­

der of this section the results obtained are essentially from [J 1] with the
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following exceptions: Lemma 3.5.20 and Theorem 3.5.21 are new, while

Theorems 3.5.15 and 3.5.22 have been modified to include the edge move

distance in the ordering.

3.5.1 Definition

A metric d : W X W -t N U {o} will be called an inieqer metric with unit

A if A == min{d(w,w') : w, w' E Wand w:j w'}. If an integer metric is

defined on a singleton set then we say that it has unit A for any A EN.

Now for any integer metric d defined on W we associate with it the graph

M(d) which has W as its vertex set, and for w, w' E W, ww' E E(M(d)) if

and only if d(w, w') == A.

3.5.2 Remark

For the edge rotation and edge slide distance metrics with unit A == 1 we

note that the graphs M (der) and M (des) are the edge rotation distance and

edge slide distance graphs defined in Sections 2.3 and 2.2 respectively.

3.5.3 Definition

Let d and d' be distinct integer rnetr ics defined on W; then if M (d) IS a

subgraph of M (d'), we say that d expands d', denoted by d 2: d'. Since

the subgraph relation is a partial order, this expansion relation is also a

partial order. We shall say that d str£ctly expands d', denoted by d > d', if

d expands d', but not vice versa.

Thus to obtain a partial ordering of the set D == {des d d d d. dd}, er, em, s, , ,

it will be necessary to restrict ourselves to re (p, q), or if we wish to obtain
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a partial ordering of a proper subse t of D, we will accordingly work with

the most restricted domain of this subset.

We recall that the discrete metric dd : l' x I' -~ {O, 1} is defined by

dd(G l , G2) == 0 if G l ~ G 2 and dd(G1 , G2 ) == 1, otherwise.

3 .5.4 Lem m a

Let d and dd be integer metrics defin ed on W such that d has unit A and dd

is the d iscrete metric. Then d ~ dd and if d(w, w') > A for any w, w' E W,

then d > dd'

P roof

The graph M(dd) associated with dd is the complete gr aph, s ince by defi­

nition w, w' E Wand w -I w' implies that dd(W, w') == 1. Since all graphs

with vertex set ItV are subgraphs of the complete graph with vertex set W,

it follows that M(d) is a subgraph of A1(dd) and d ~ dd - If d(w,w') > A

for any w,w' E IV, then ww' E E(Al(dj) and thus Al(d) is not complete;

so M (dd) is not a subgraph of M (d) and d > dd' 0

3.5.5 Lem m a

Let d and d' be integer metrics defined on ~v with units Aand A' respectively.

If for w,w' E W, d(w, w') == ,,\ implies that d'(w, w') ::; ,,\ " where ,,\ " is an

integer and A' ~ .\ >+ , then A' == A" and d ~ d'.
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Proof

If ItV is a singleton set, the proposition is true by setting A" = A'. Suppose

then that W is not a singleton set. Then there exist w, w' E W such that

d(w, w') = A. This implies d'(w, w' ) ~ A*, and by definiton of A', that

d'(w, w') ~ A', hence A' ::; A". However , A' ~ A"; thcrcfor e A' = A;'. Hence

d(w,w') = A implies d'(w,w') = A'; t hus M (d) is a subgr aph of M(d') and

d ~ d'. 0

We note that if d and d' are in teger metrics defined on ItV with units A

and A' respectively, then

i) If W is a singleton set then d ~ d' and d' ~ d.

ii) If W contains two distinct elements then d ~ d' if and only if A ~ A'.

3.5.6 Lemma

Let d and d' be integer metrics defined on W with units A and A' respectively.

Let W' c W. If d ~ d' and if dl~V' (the restriction of d to ItV') has unit A

then d'IW' has unit A' and dlW' 2 d' II/V'.

P roof

Let w,w' E W. Then since d 2 d', ww' E E(l\1(d)) implies ww' E

E(M(d')). Let v,v' E ItV' such that d(v,v') = A; however this implies

that d'(v,v') = A'. Hence vv' E E(l\1(dIItV' )) implies vv' E E(Al(d'IW'),

and thus M(dIW') is a subgraph of M(d' lvV') and dlIIV' ~ d'IW' . 0
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3.5.7 Definition

For any metric d defined on W, we say that d is connect ed if M (d) is a

connected graph. If M (d) is connected then for any w, w' E \IV there exists

a shortest path connecting wand w' in 1\1(d), the length of which we denote

by 8(w, w'). The function 8 : vV x vV -+ N U {O} associated with d is a

metric defined on ~v which we call the path metric associated with d.

3.5.8 Example

The metric d defined on {I, 2, 3} by d(l, .2) = 1, d(I,3) = 2 and d(2, 3) = 2

has unit A = 1 and M(d) ~ 1(2 U 1(1, which is not connected.

3.5.9 Lemma

Let d be a connected integer metric with unit A defined on lV, and let 8 be

the path metric associated with d. Then for every w, w' E ~v

d(w,w') ~ AO(W,W').

Proof

We proceed by induction on 8 (w,w'). The statement obviously holds if

8(w,w') = 1.

Suppose w = Wo, WI, W2, ... , Wn = w' is a path of length 8(w, w') = n

in M(d). Then d(WO,W2) ~ d(wo,wI) + d(W1,W2) = 2A by the triangle

inequality. Similarly d(WO,W3) ~ d(WO,W2) + d(W2,W3) = 2A + A = 3A.

Assume d(wo, Wk) ~ kA for 3 ~ k ~ ti - 1 then
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Therefore

d(Wo, wn ) == d(w, w') == An == AO (w, w') as required . o

The following lemma will be useful in proving that the metrics we have

studied, subject to their various restrictions, are connected.

3.5.10 Lemma

Let d and d' be any two integer metrics defined on vV. If d 2: d' and if d is

connected, then d' is connected.

Proof

Since d ~ d', M(d) is a connected subgraph of M(d') and since M(d) and

M (d') have the same vertex set , th e result follow s. 0

3.5011 Definition

Let d be any connected integer me tric O Il vV with associ ated path metric O.

If d(w, w') == '\o(w, w') for all w, w' E lV th en d will be said to be graphable.

Note that {) is always graphable with unit 1.

Note that if we define d' : W x vV ~ N U {a} by d'( w, w') = d(w~~,

we see that any graphable metric with unit A is equivalent to a graphable

metric with unit 1. However, if d is not grap hable, d' may not be an integer

metric. From now on we assume, unless state d other wise, t hat all metrics

have unit 1.
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The following exarnple shows that a mctr ic can be conncctcd, but not

graphable.

3.5.12 Exnmple

Defi net11e In etri c don {I, 2, 3, 4} by cl (i , i -\- 1) == 1 for i == 1, 2, :3, d (i , i +2) ==

2 for i == 1,2, and d(1,4) == 2. Sec Figure :L5.13.

1\1 ( d) :

I 4

2 3

3.5.13 F'lg u r e

To see that M(d) misrepresen ts d in the se nse that d is not. graphable, note

that 0(1,4) == 3 and d(1,4) == 2 =13 == 0(1,4). The metric d call be changed

into a graphable rnetric by redefining d(1,4) == 3.
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3.5.14 Lemma

Let d and d' be integer metrics defined on ItV with units Aand N respectively.

Let d be graphable. If d ~ d', then d(w, w') ~ (f,) d'(w, w') for all w, w' E

W .

Proof

By assumption, d is graphable and hence

d(w,w') == 8( ')A w,w . ~ (1)

Lemma 3.5.10 and d ~ d' together imply that d' is connected. Thus 8' is

a well defined metric. M (d) is a su bgraph of M (d') therefore 8(w,w') >

8'(w,w'), and hence from (1)

d(w,w') J:( ')
A ~ uw,w .

From Lemma 3.5.9

J:'( ') d'(w,w')
o w,w > .- A'

The equations (2) and (3) together irnply that d( w~w') ~ d(~"W ' ) ,

i.e. d(w, w') 2 (~,) d'(w, w') as required :

~ (2)

~ (3)

o

It is now possible to start developing the partial ordering of the metrics

di , ds, dem, der and des.

3.5015 Theorem

The integer metrics, di , ds, dem, der and de s all strictly expand dd on their

respective domains.
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Proof

These are just special cases of lemma 3.5.4.

3.5.16 T'heorcrn

o

The restriction of d~ to f(p) expands the restriction to f(p) of d; for any

pE Z+.

Proof

Let e be any edge of K p. Then ds(!(p, !(p - e) == 1, Thus dslf(p) has unit
~

1. Let M (ds If(p)) be the graph associated with the metric d, restricted to

ftp)·

Let GH be any edge in M(dslf(p)); then ds(G, H) == 1. Therefore either

G is a proper subgraph of H or vice versa. Without loss of generality assume

G is a proper subgraph of If, then either V(G) == V(II) and IE(11) ­

E(G)I == 1 or E(G) == E(lf) and IV(Il) - V(G)I == 1.

Case 1) Assume V (G) == V (H) and IE(If) - E( G) I == 1. Let uv E E(11) ­

E(G). Then G - u is an induced subgraph of both G and If, therefore

d, (G, H) == 1.

Case 2) Assume E( G) == E(H) and IV (H) - V(G) I == 1. Then G is an induced

subgraph of both G and If and therefore dd G, 11) = 1.

In both cases we have di (G, H) == 1; hence d, (G, If) == 1 implies d,(G, H) ==

1 and therefore GH E E(M(dd). Hence M(ds(f(p)) is a subgraph of M(dd

and consequently dslf(p) expands dilf(p); i.e., dslf(p) 2: dilf(p).
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To show dslr(p) > dilr(p) for p ~ 3 we note that for p ~ 3, there exist

U,V,w E V(Kp). Let G == K; and If == !(p-uv-uw. Then ds(G,H) == 2 >

1 == di(G, I1) and therefore di does not expand ds since C1l E E(M(dd)

but GIf E E(M(ds)f(p)) and hence d, > di for p ~ 3. 0

3.5.17 Lemma

The metric d, restricted to f(p, q) has unit A~ 2.

Proof

Suppose G, HEr (p, q) such that d, (G, I-I) == 1. Then G is a proper

subgraph of H or vice versa, and hence either G tt. r (p, q) or If tt. r (p, q).

The contradiction establishes the lemma.

3.5.18 Theorem

o

The edge rotation metric der on r (p, q) expands the restriction of d, to

I'[p, q), and there exist integers p and q such that derlf(p, q) > dslf(p, q).

Proof

We establish the conditions of Lemma 3.5.5. Let dBIf'(p, q) have unit A';

then, by Lemma 3.5.17, A' ~ 2.

Let G, H E f(p, q) such that G1i is an edge of Al(der); i.e., der(G, H) ==

1. By the definition of the edge rotation distance we may assume without

loss of generality that H ~ G - uv + vw where u,v,w E V(G),uv E E(G)

and vw E E(G).

Since H "J G - uv + vw it follows that uv E E(H) while vw E E(H).

Hence G - uv is a subgraph of both G and 11, and, therefore ds(G, 11) ::; 2.
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Thus we have that der (G,11) == 1 implies that d, (G, }1) ::; 2 w here the unit

of d!lr(p, q) is A' 2: 2. Applying Lemma 3.3.5 with A" == 2, we obtain

To show that there exists p and q such that de,. > d, II' (JJ, q) consider the

graphs G and 11 shown in Figure :L!).I ~L

G:

6

5

I

2

J

H:

6

5

I

2

3

4 4

3.5.19 F'ig ure

Any single edge rotation of any edge on the 6-cycle C G = 1231561 in G,

will not transforrn G into H since it will produce a graph with HO 6-cycle.

A single edge rotation t involving either the 2G or :~!) Cdl'.'~ ill (/ cl iruinutcs



the existence of a 4-cycle in tG unless a vertex of degree four is formed,

and H contains no vertex of degree [our. Thus no sin~l~ edge rotation will

transform G into H, hence der(G, If) 2: 2, and therefore

~ (1)

Since G - 35 is a subgraph of G and H, we have

ds(G, H) ~ p + q + p + q - 2(p + q - 1) = 2

and since G ~ H and since A' 2: 2 we have that d, (G, H) = A' = 2. Hence

en E E(M(dslr (6,8)). ~ (2)

Together (1) and (2) imply that M(der l1' (6,8)) is not a subgraph of

M(ds ) 11'(6,8) and hence d, < der , in this case. 0

We will now show that the subgraph rnetric d, restricted to I'(p, q) is

equivalent to the edge move distance dem (which is defined on I'(p, q)) in the

sense that M(dslf(p,q)) ~ l\1(dem) for all p and q; i.e., d.'l\f(JJ,q) 2: dem and

dem 2: d"lf(p, q), we denote this equivalence by dem ~ d. : Consequent ly the

fact that dem 2: dil1'(p, q) and der ~ dem will need no fur ther justification.

The following lemma will aid us in establishing this equivalence.

3.5.20 Lemma

Let G, H E f(p, q) then ds(G, If) = 2dem(G, If).
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Proof

Recall that ds(G, H) = min{IGI + IHI - 2!FI} taken over all graphs F

which are isomorphic to subgraphs of both G and H. Suppose F'" is a

graph which minimises the expression above. Obvious ly IV (F ;') I = p and

suppose \E(F-) I = s, then

ds(C,H) = 2p + 2q - 2(p + s) = 2(q - s).

Now obviously deleting any isolated vertices from F '" yields a greatest

common subgraph of G and H which contains no isolated vertex and hence

by Theorem 3.2.7, dem(G, H) = q - s and the result follows.

305,,21 Theorem

o

The graph M(dslf(p, q) is isomorphic to the graph l\1(dem) ; i.e ., dem ~

dslf(p, q).

Proof

Let G, If E I'{p, q) such that dern(G, 11) = 1; i.e., Cll E E(l\1 (dem ) ) . Lem­

mas 3.5.17 and 3.5.20 together irnply that d, (G, 11) = 2 and d. , 11' (p, q) has

unit A = 2. Hence CH E E(M(dslf(p, q))) and M(dem) is a subgraph of

M(d"lf(p, q)).

Conversely suppose d"lf(p, q) has unit A ~ 2 and thatC, H E f(p, q)

such that d8(G,H) = A, Le. CH E E(M(dslf(p,q))) . By Lemma 3.5.20,

dem has unit ~, and dem(C, If) = %' hence CIf E EO(M(dem)). Thus

M(dslr(p, q)) is a subgraph of M(der ) .

It now follows that M(d"lf(p, q)) ~ M(dem). 0
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3.5.22 Theorem

If we restrict the metrics dd,di,ds,dem,der and des to fc(p,q) then dd :::;

d; :::; d., ,..... dem :::; der :::; des. Moreover, there exist integers p and q such that

dd < d, < d, ,..... dem < der < des.

Proof

First we show that the expansion relation is transitive. Suppose d, d' and

d" are distinct integer metrics such that d 2:: d' and d' 2: d". Then M (d)

is a subgraph of M(d') and M(d') is a subgraph of M(d"). It is thus clear

that M(d) must be a subgraph of M(d") and therefore d 2: d". Thus we

have d 2: d' 2: d".

From Lemma 3.5.5 and Theorems 3.5.15, 3.5.16, 3~5.18 and 3.5.21, to­

gether with the transitivity of the expansion relation, we have that

where we will assume that all metrics are restricted to re(p, q). Therefore

to establish the first staternen t of th e theorem wc need onl y show that

des 2: der. However this is trivial since the edge slide is just a special case

of the edge rotation, and therefore des (G, If) = 1 implies der(G, If) = 1.

Hence M(deslfc(p, q)) is a subgraph of M(derlrc(p, q)), and we have

To establish the strict expansion relation for sorne (p, q), we consider the

graphs in Figure 3.5.23.
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3.5.23 F'ig ure

First note that C - v contains a 5-cycle for all v E V (C) . Since A does

not contain a 5-cycle, we have that a maximum induced su bgraph (with

respect to order) of both A and C has order less than 8. But di(A, C) == n

where by definition n is such that p(A) - n is the rIlaxiIIIUIIl order of an

ind uced su bgraph of oath A and C. Thcrclorc 11( A) - 1/. - q n. < f3 and
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hence n > 1. Thus di(A,C) > 1. Thus it follows that M(di !f c(9,11) is not

complete and therefore a stibgraph of l\1(ddlfc(9, 11)),hence

~ (1)

Now it is clear that A - b ~ B - b. Thus di(A, B) = 1. However

B - e' contains a 3-cycle for all et E E(B), while A contains no 3-cycles.

Therefore ds(A, B) > (11 + 9) + (11 + 9) - 2(9 + 10) = 2. Since the

unit of dslfc(9, 11) is A = 2 we have that AB E E(M(dilfc(9, 11))) while

AB rt E(M(dslfc(9,11))) and thus l\1(dilfc(9, 11)) is not a subgraph of

M(dslfc(9,11)), this together with Theorem 3.5.21 yields

~ (2)

Since C - ai ~ D - gh we have that ds (C, D) = A = 2. However there

exists no single edge rotation that will transform C into D. This is because

a rotation of any edge on the 8-cycle in C, creates a graph in which there is

no 8-cycle, and D has an 8-cycle . Also rotating anyone of the edges dc, ef

or ai so as to form a 3-cycle, as in D, will either create a graph with a

vertex of degree 4 or a graph with no end-vertex. Therefore der (C, D) > 1.

It follows that

~ (3)

Finally let t == (c, d, h) be an edge rotation . Then tD ~ E. Thus

der(D, E) == 1. To show des (D, E) > 1, note that there exist no edge slides

of the form t 1 == (g,i,v) or t2 == (h,i,v) where v E V(D), since these create

multigraphs. Any other edge slide of any edge lying on the 8-cycle of D

will create either a graph in which there exists no 8-cycIe or a graph with
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no end-vertex, and E has both an 8-cycle and an end-vertex. The edges

gh, ef and de of D cannot be slid to [ann a 3-cycle with one of the vertices

on the cycle adjacent to an end-vertex, and D has such a vertex. It follows

that de3(D,E) > 1, and that

~ (4)

Together (1), (2), (3) and (4) imply that there exist integers p and q

such that

de3Ifc(p, q) > derlfc(P, q) > dslI'c(p, q) ~ demlrc(p, q) > dilI'c(p, q) > ddlI'c(p, q).

D

130



Chapter 4

The SteinerProblern

Graphs

4.1 Introduction

•In

The original Steiner problern is easy to state: In a Euclidean space (usually

a Euclidean plane) draw the shortest possible network of line segments

interconnecting, say, 100 given points. However this problem is unsolvable

in many cases. The practical irnportance to designers of telephone networks,

for example, is obvious, and has led to the developrnent of algorithms that

yield rough solutions quickly.

The Steiner problem generally cannot be solved by simply drawing lines

between the given points, but it can be solved by adding new points, called

Steiner points, that serve as junctions in a shortest network . To deter­

mine the location and number of Steiner points, mathernaticians and com­

puter scientists have developed algorithms or precise procedures. However

even the best of these algorithms running on the fastest computers can­

not provide a solution for a large set of given points because the time it

would take to solve such a problem is irnpractically long . Furthermore, the
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Steiner problem belongs to the class of problems known as NP-Hard prob­

lems, for which many computer scientists now believe an efficient algorithm

may never exist. Thus the importance of approximate solutions becomes

apparent. Such approximate sol utions arc used rou tincly in designing inte­

grated circuits, determining the evolutionary trees of groups of organisms

and minimizing materials used for networks of telephone lines, pipelines

and roadways.

The Steiner problern, in its gcneral Iorrn , first appeared in a paper by

Miles, Kossler and Vojtech Jarnik in 1934, but the problem did not become

popular until 1941 when Richard Courant and Herbert E. Robbins [CRI]

included it in their book What Is Mathematics? Courant and Robbins link

this problem to the work of Jacob Steiner, the famous geometer at the

University of Berlin in the early nineteenth century. Steiner worked on the

following problem. Three villages A, B, C are to be joined by a system of

roads of minimum total length. Mathematically, three points A, B, Care

given in a plane, and a fourth point P in the plane is sought so that the

sum a + b + c is a minimum, where a, band c denote the three distances

from P to A, Band C respectively. EvaJlgclista Torricelli (1 GU8- IG17) and

Francesco Cavalieri (1598 - 1647) solved the problem independent ly. They

deduced that if in a triangle ABC all angles are less than 120 0 then P is

the point from which each of the three sides, AB, BC and CA subtends

an angle of 120 0
• If, however, an angle of triangle ABC, say the angle at

C, is greater than or equal to 120 0
, then the point P coincides with the

vertex C. Torricelli and Cavalieri also developed geometric constructions

for finding P. (See pages 356- 358 of [CRI].)

It is natural to generalize the problem to the case of n given points,
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AI, A 2 , ... , An; we need to find the point P in the plane for which the sum

of the distance aI +a2 + ... +an is a minimum, where c; is the distance from

point P to point Ai' This problem, which was also treated .by Steiner, does

not lead to interesting results. To find a significant extension of Steiner's

problem we abandon the search for a single point P. The extension we

are looking for is expressed by Courant and Robbins as follows: Given n

points AI, A 2 , ... , An we seek a connected system of straight line segments

of shortest total length such that any two of the given points can be joined

by a polygon consisting of segments of the system. This problem is called

The Steiner problem.

A similar problem to the Steiner problem, which was proposed by Z.A.

Melzak in [Ml ], will lead us to the extension of the Steiner problem which

we shall study in some detail. Melzak proposed the problem of connecting

n given points in the plane by line segments between these n points, so

that the sum of these distances is a rninimum. Extending this problem a

bit further, to include graphs, we will arrive at the problem which we will

call the Steiner problern in graphs. This is the problem which we shall

study in detail in this chapter.

We shall define the Steiner distance of a set of vertices in a connected

graph G (which is a generalization of the well-known concept of distance)

and then investigate properties of the Steiner distance and its related struc­

tures. Since simplifications occur if the graph G is a tree and the related

results differ significantly from those pertaining to graphs which contain

cycles, we shall deal with trees in Section 4.3 and consider more general

graphs in Section 4.4. Representative techniques of calculating Steiner dis­

tances (precisely or approximately) are provided in Section 4.5.
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4.2 The Steiner Problem in Graphs

The distance between two vertices x and y in a given graph G may be

defined as the minimum size among all connected subgraphs of G whose

vertex sets contain x and y. It is clear that every such subgraph of G would

be a shortest path between x and y, as demanded by the standard definition

of distance. This leads naturally to a generalization of distance, where we

may consider a distance among a set of two, three or more vertices (see

[COTZl]).

4.2.1 Definition

Let G be a connected graph of order at least two and let S be a nonempty

set of vertices of G. Then the Sieiner distance d(S) among the vertices of

S (or simply the distance of S) is the minimum size among all connected

subgraphs of G whose vertex sets contain S.

4.2.2 Note

If H is a connected subgraph of G such that S < V (If) and IE(If) I = d(S),

then H must be a tree, since if If contained cycles then rernov ing an edge

from one of these cycles would yield a connected graph 11' with fewer edges

than H, with V (H') = V (H) 2 S, contradicting the minimali ty of If. Such

a tree is referred to as a Steiner tree for the set S. Further, if S = {u, v}

where u, v E V(G), then d(S) = d(u, v), while if 151 = n then d(S) 2: n-1.
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4.2.3 llemark

The Steiner problem in graphs is thus to connect a subset S of vertices of

a graph G with a tree of minimum size which is a subgraph of G. The

difference between this problem and the original Steiner problern is that

no new points (vertices) are added here and the network of line segrnents

(edges) are already present in the graph G. 'The problem is to find which

edges of the graph G are to be used in the St einer tree .

4.2.4 Example

If G is the graph of Figure 4.2.5 and S == {u,v, x}, then d(S) == 4; there

are two trees T, and T2 of size 4 containing S , both of which are shown in

Figure 4.2.5.
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4.2.5 Figure

4.2.6 Example

Let G1 ~ Kn-1,n-b with partite sets VI = {Ub U2, ••• , Un - I} and V2 =

{VI, V2, ••• , Vn-l} and let 8 be any set of n vertices of G. Then (8) is con-
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nected and hence d(S) == n - 1.

4.2.7 Remark

The usual distance between pairs of vertices defined in a connected graph G

is a metric on its vertex set. Thus for vertices u, v, w E V(G) the properties

(1) d(u,v) ~ 0 and d(u,v) == 0 if and only if u == v, (2) d(u,v) == d(v~u)

and (3) d(u, w) ::; d(u, v) + d(v, w) h0 Id.

Chartrand, Oellermann, Tian and Zou [COTZ1] extended properties

(1) and (3) to include the Steiner distance. Let G be a connected graph

and let S ~ V(G), where S i= 0. Then d(S) ~ 0, while d(S) == 0 if and

only if ISI == 1, which extends property (1) above. To obtain an extension

of (3), let S, SI and S2 be subsets of V(G) such that 0 i= s ~ 51 U 52 and

S1 n S2 i= 0. Then d(S)::; d(Sl) +d(S2)' To see this, let T, be a tree of size

d(Si) such that Si ~ V(Td for i == 1,2. Let If be the graphwith vertex set

V(Td U V(T2 } and edge set E(Td U E(1;). Now Tl and 1; are connected

and V (Td n V (T2 ) i= 0, hence H is connected. Since S ~ V (If) and since

If is connected, d(S) ::; q(II) ::; d(Sd + d(S2)' (The extension of (2) to

Steiner distance is obviously tautologous: d(S) == d(S).)

In [COTZ1] the concepts of eccentricity, radius and diameter were gen­

eralized to accommodate the Steiner distance.

4.2.8 Definition

Let G be a connected graph of order p ~ 2 and let n be an integer with

2 ::; n ::; p. The n-eccentricity en ( v) of a vertex v E V (G) is defined by

en(v) == max{d(S) : S ~ V(G), ISI == n, and v E S} .
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The n-radius of G is' defined by

radnG == min{en(v) : v E V(G)}

and the n-diarneter of G is defined by

diamnG == max{en{v) : v E V{G)}.

Note that for n == 2 we have e2(v) == e{v) for all~ E V(G) while

rad2G == radG and diam-C == diarnG.

4.2.9 Example

In Figure 4.2.10 each vertex of the graph G is labelled with its 3-eccentricity,

so that rad3G == 4 and diam3G == 6. .
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4.2.10 Figure

5

4.3 Steiner distance in Trees

We now focus our discussion of Steiner distance on trees. vVe study trees

separately mainly due to the fact that there is a unique path between every

pair of vertices in a given tree T. This simplifies the search for a connected

subgraph of T of minimum size containing a given set 5 ~ V (G). Thus it is

possible to obtain various properties and results related to Steiner distance,

which hold for trees but not for graphs in general. We follow [COTZl].
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4.3.1 Lemma

Let T be a nontrivial tree and let S ~ V (T) where \S I 2: 2; then there is a

unique subtree Ts of T of size d(S) containing the vertices of S.

Proof

Suppose to the contrary that there exist two nonisomorphic trees Ts and

Ts' both of size d(S) which contain th e vertices of 5. Since Ts ?/ Ts' there

exists an edge e E E(T) say, such that e E E(1s) and e (/:. E'(1s'). Now

since Ts is a tree of minimum size that ,contains S, there exists a pair of

vertices u, v say, of S such that the u - v path in 15 contains the edge e.

However Ts' contains a u - v path which does not contain the edge e and

hence there are at least two distinct u - v paths in T, which is impossible.

Hence r, "'J Ts' . 0

4.3,,2 Definition

Let l' be a nontrivial tree and let S~ V (1') where ISI 2:: 2, then the unique

subtree 15 of T of size d(S) containing the vertices of S is defined to be

the tree generated by 5 denoted by 15,

4.3.3 Note

If 5 and 5' are sets of vertices of a tree T such that 5 C 5', then Ts C Ts ' ;

otherwise Ts contains an edge e say, that does not belong to Ts' and a

similar discussion to that followed in the proof of Lemma 4.3.1 provides

a contradiction. Hence if S is a subset of the vertex set of a tree T and

v E V(T) - S then Tsu{v} ~ Ts. Let w be the (unique) vertex of Ts whose
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distance from v is a minirnum. Then 1'5U{v} contains the unique v - w path

in T and

d(S U {v}) = d(S) + d(v,w)

or equivalently

d(S U {v}) = d(S) + d(v,1s)
where d(v, 1'5) denotes the minimum distance from v to a vertex of 1'5 in T.

We denote by VI (1') the set of end-vert ices of a tree T and the nurnber

of end-vertices in T is denoted by PI (1'). ,

4.3.4 Lemma

Let T be a tree and let S be the set of end-ver t ices of 1'; i.e., S = VI (1'),

then Ts = T.

Proof

Suppose to the contrary, that there exists a vertex v E V (1') such that

v (/:. V(T5 ) . Since v (/:. V(T5 ) , v rt S and hence degTv 2:: 2. Let x and y

be distinct vertices of T which are adjacent to v. Let PI = VXXI",Xn be a

longest path in T which begins with th e edge Cl = V X . Then X n mu st be an

end-vertex of T; i.e., X n E S. Similarly, let P2 = VYYIY2'''Y rn be a longest

path in T which begins with the edge e2 = vy. Then Yrn E V1(T ) = S.

Hence the unique X n - Yrn path in T contains the vertex v. However since

v (/. Ts there is no Xn - Yrn path in 1'5 which implies that 1'5 is not con­

nected, which contradicts the definition of 1'5. Therefore 1'5 = 1'. 0
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The following corollaries follow directly from Lemma 4.3.4 and require

no further proof.

4.3.5 Corollary

Let T be a tree,and let 5 = VdT). Then d(5) = q(T) and d(5 U {v}) =
d(5) = q(T) for all v E V(T).

4.3 .. 6 Corollary

Let T be a tree and n ~ 2 an integer with PI (T) < 71" then en ( v) = q(T)
(

for all v E V(T) .-

The following result considers n-eccentricities of vertices in trees with

at least n end- vertices.

4.3.7 Theorem

Let n ~ 2 be an integer and suppose that T is a tree of order P with

PI(T) ~ n, Let v E V(T) . If 5 ~ V(T), such that v rf. 5, 151 = n - 1 and

d(5 U {v}) = en(v), then 5 ~ VI(T).

Proof

Suppose, to the contrary, that there exists a set S of T which satisfies the

hypothesis of the theorem such that 5 Cl:. VI (T). Then there exists a vertex

w E S such that deg-. W ~ 2. Let To denote the subtree of T generated by

So = 5 U {v}, and let T~ be the br anch of T at w t hat contains v . Su ppose

there exists an end-vertex x of T in a branch of T at w which is different
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from T~, such that x tt. S. Then

d(So U {x}) - {w}) > d(So) = en(v),

since the only path from x to v in T includes the vertex wand hence

w E V (Tsou{x}-{w}), which produces a contradiction. Hence there is .no

such end-vertex x.

Thus every end-vertex y of T in a branch of T at w different from T~ is

in S. Now deg-. w ~ 2; hence there are at least two branches 1'1 and 1'2 of

T at w, and there exist vertices ZI, Z2 E S - {w} such that Zl E V (Td and

Z2 E V(T2 ) . Now the unique ZI - Z2 path in T contains the ver tex w. But

then To is also the tree generated by SI = So - {w}. Let u E VI(T) such

that Y tt S. Then

d(Sl U {y}) > d(So) = en(v), again a contradiction. D

4.3.8 Corollary

Let n ~ 2 be an integer and T a tree with Pl(T) ~ n. Then diamnT = d(S),

for some set S of n end-vertices of T.

Proof

If n = 2, then diarn-T = diamT, and S consists of a pair of end-vertices of

T between which there is a path of maximum length in T . Assume then

that n ~ 3. Suppose that v E V (1') with en ( v) = diarnnT. Let S' be a set

of n - 1 vertices of T such that d(S' U {v}) = en(v). By Theorem 4.3.7,

S' ~ V1(T). If u E 5', then en(u) ~ d(S' U {v}) = en(v), which implies

that en(u) = diamnT. However, then SIt = S' u {v} - {u} is a set of n - 1

vertices of T such that d(SItU { u}) = en (u) and again by Theorem 4.3.7 we
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have that Sit ~ VI (T) and hence v E VI (1'). Therefore S == 5' u {v} is a set

of n en d-vertices of T with d(S) == diamn1'. 0

4 .. 3 .. 9 Lernrna

Let S be a set of n ~ 3 end-vertices of a tree T and suppose that v E S.

Then Ts-{v} can be obtained from Ts by deleting v and every vertex of

degree 2 on a shortest path from v to a vertex of degree at least 3 in Ts.

Proof

Let S' == S - {v}. Then from Note 4.3.3 we have that

d(S' U {v}) == d(S') + d(v,Ts')j hence

d(S - {v}) == d(S) - d(v,Ts'), r-.; (1)

Now d(v, Ts' ) is the length of a shortest path P == VVI V2 '" V n in T such that

V n E V (Ts' ) and Vi E Ts for 1 ::; i ::; n - 1. Now degT
s

' V n ~ 2, otherwise V n

is an end-vertex of Ts' and hence of T. But then deg Ts V n ~ 2 and hence

degj- V n ~ 2 which is a contradiction. Therefore degTs V n ~ 3.

Now Ts - {V,VI,V2, ... ,Vn-l} == Ts-{v} is a tree with d(S) - d(v,1s')==

d(S - {v}) edges, and since by Lernma 4.3.1 this tree is the unique subtree

of T of size d(S - {v}), the result follows. 0

The following result proves to be a useful tool in establishing some

important properties in the remainder of this section. We 'present a slightly

different proof to that which appears in [CQ'TZ1].
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4.3.10 Theorem

Let n 2 3 be an integer and suppose that T is a tree with Pi > n end­

vertices. If v is a vertex of T su ch that en(v) == radnT , then ther e exists a

set S of n-l end-vertices of T such that d(SU {v}) == en(v) and v E V(Ts ).

Proof

Assume that the proposition is fals e. Then there exists a tree T that is

a counterexample to the proposition and a vertex v in T for which the

conclusion fails.

By Theorem 4.3.7, there exists a se t S of n - 1 end-vertices of T such

that en (v) == d(S.U {v}). From our assumption it follows that V rt. V (Ts);

hence S is contained in a single component, T l say, of T - v. Let u be the

unique vertex of T, that is adjacent to v in T and let 12 be the component

of T - u that contains v. Then Tl and 12 are the two components of T - uv

and T is decomposed into Ts ,12 and the complete graph of order 2 with u

and v as vertices . Note that d(S U {u}) == d(S U {v}) - 1 = en(v) - 1.

Now since en(v) == radni' we have cn(u) 2 en(v); let R be a se t of n - 1

end-vertices of T such that d(R U {u}) == en (u). Then R ~ V (1'1), since

otherwise, if R ~ V(Tr), then d(R U {v}) == d(R U {u}) + 1 > en(u), which

implies that en (v) > en (u). Furt.herrnore , if R contains at least on e vertex

from each of V (TI) and V (Tz) then 1'n contains the vertices u and v and so

d(R U {v}) == d(R) == d(R U {u}) == en(u) 2 en(v) 2 d(R U {v}),

so that d(R U {v}) = en ( v), which contradicts our assumption about T and

v. Hence R ~ V(T2 ) . Furthermore

d(R U {v}) == d(R U {u}) -1 == en(u) - 1 2 en(v) - 1.
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Now let x E S,y E R and let SI = (S-{x})u{y} and $2 = (R-{y})U{x}.

We note that SuR = SI U S2, so TSUR= TS1US'J and uv E E(Ts1) n E(Ts2)·

Now

\E(TsIUS2) \ = IE(TsUR)1 - IE(Tsu{u})1 + IE(TRU{tJ}) I + 1

_ en(v) - 1 + en(u) - 1 + 1 = en(v) + en(u) - 1.

But

IE(TsIUS2)\ - IE(Ts1)1 + IE(TsJI-IE(Ts1) n E(TsJI

< IE(Ts1)1 + IE(Ts2)1- 1;

hence en(v) +en(u) -1 ~ IE(Ts1)\ + IE(Ts2)1- 1. So IE(Ts1)\ + IE(Ts2)1~

en(v) + en(u) ~ 2en(v).

It follows that IE(181)1 2:: en(v) or IE(Ts2)12:: en(v); assurne without loss

of generality that IE(Ts1)\ 2:: en(v). However, SI is a set of n - 1 vertices,

so

hence en(v) = IE(Ts1U{tJ}) I and vETsI' contrary to our assurnption about

v and T. Hence the validity of the theorem follows. 0

4.3 .. 11 Corollary

Let n 2: 3 be an integer and suppose that T is a tree such that PI (T) 2:: n,

If v is a vertex of T with en (v) = radnT, then v is not an end-vertex of T.

Proof

Let S be a set of n - 1 end-vertices of T such that en ( v) = d(S U {v}) =

rad!\T. Frorn Theorern 4.3.10 we have that d(S) = d(S U {v}) . As-
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sume to the contrary that v is an end-vertex of T. Then v 1:. Sand

d(SU {v}) ~ d(S) +1 > d(S) which is a contradiction. Hence v t/:. V1(T). 0

Before presenting the next result we introduce SOl ne additional tcrrni­

nology, which was used by Oellermann and Tian in [aT!].

4 .. 3 .. 12 Definition

For any tree T having at least three end-vertices, a shortes t path Irorn an

end-vertex v of T to a vertex of degree at least 3 in T is called a stem of T.

A relationship between the n-diameter and the (n - 1)-diameter of a

tree, where n ~ 3 is an integer, was established in [COTZ1] and we now

present this result.

4.3.13 Theorem

Let n ~ 3 be an integer and T a tree of order p ~ n, then

Proof

Suppose S is a set of n - 1 vertices of T such that d(S) = diarnn-1T. Then

for every set Si of n vertices of T, where S ~ S', we have

diamn-1T = d(S) S d(S') S diarrlnT.

Hence the left inequality in the staternent of the Theorem follows.
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To verify that diamn1' ~ (n~l) diaIIln_l1', we note firstly that if T has

at most n - 1 end- vertices then diamnT = diamn-1T = P - 1 and hence

diamnT < n~l diamn-1T in this case.

Assume now that T has PI (T) ~ n. By Corollary 4.3.8, there exists a set

S of n end-vertices of T such that diamnT = d(S). Let S = {Vl,V2, ••• ,vn }

and let ii(l :::; i ~ n) denote the length of the stem in Ts which contains Vi.

We now show that there exists at least one i (1 ~ i ~ n) such that ii ::;

(n~l) diamn-1T. Suppose that ii > (n~l) diamn_1T for all i(l ~ i ~ n).

Since by Lemma 4.3.9, TS-{v n } can be obtained from Ts by deleting V n and

every vertex of degree 2 on the stern of 1s containing 1)11' it. follows that

which is not possible since

Hence we may assume without loss of generality that in :::; (n~l) diaffin-1 T.

Then from Note 4.3.3 we have that

diamnT = d(S)

o
< di T + I di T n di Tlarnn-l n -I larnn-l = n -l larIln - l •

The following result from [COI'Zl] provides a relationship between the

n-diameter and n-radius of a tree (cf. [COTZ1]).

4.3.14 Theorem

Let n ~ 3 be an integer and T a tree of order P ~ n. Then diamn_1T =
radnT.
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Proof

If PI (T) < n - 1, then radnT == diarnn-IT == P - 1. Assurne then that

PI (T) ~ n. We show first that radnT ~ di am.i ..j ?'. Let v be any vertex of

T and let S be a set of n - 1 end-vertices of T such that d(S) == diamn-1T.

Then en ( v) ~ d(S U {v}) 2:: d(S) == diarnn-IT. Hence

We now verify that diamn_1T 2:: radnT. Let v be a vertex of T such that

en (v) == radnT. By Theorem 4.3.10 there .exists a set S of n - 1 end-vertices

of T such that d(S U {v}) == d(S) == radn(T) and v E V(l's). Therefore,

diamn-1T == max{d(S') : IS'I == n - 1, 5' ~ V1(T)} ~ d(S) == radnT.

o

4.3.15 Corollary

If n ~ 2 is an integer and T a tree of order P 2:: n, then

radnT < diamnT· < _ n-radnT .
- - n -1

Proof

The result for n == 2 is well-known. If n 2:: 3 then the result follows directly

from Theorems 4.3.13 and 4.3.14. 0

For a connected graph G of order p ~ 2 the rel ationship radnG ~

diamnG ~ n~l radnG, surprisingly does not hold and we will see this in

Section 4.4 ·.
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4.3.16 Definitions

For a connected graph G of order P > 2 the diameter sequence of G is

defined to be the sequence

while the radius sequence is the sequence

Let G be a connected graph of order p. Let n(2 ~ n ~ p) be an integer.

A set S consisting of n vertices of G is called an n-diameter set of G if

d(S) == diam.]G).

4.3.17 Note

If T is a tree with Pi (T) end-vertices, then for every integer n (2 :S n ~

PI(T)) there exists, by Corollary 4.3.8, a set S of n end-vertices of T such

that diamnT == d(S); i.e., there exist n-diameter sets consisting of only

end-vertices of T for all 2 ~ n ~ PI (T).

We now present a result which appears in [OT!] that will aid us In

characterizing the diameter sequences of trees.

4.3.18 Theorem

Let T be a nontrivial tree. Then there exists for every integer n with

2 ~ n ~ PI (T), an n- diarneter set consisting of only end-vertices of T such

that
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Proof

Since T is a nontrivial tree, PI (T) ~ 2; hence T contains a pair u, v of end­

vertices such that diam T = d(u,v). Hence if S2 = {u,v}, then d(S2) =
diamT = diarn-T and S2 is thus a 2-diaIneter set. If PI (1') = 2 the proof

is complete. Assume then that PI (T) > 2. We proceed inductively to

complete the .proof. Suppose for some integer n and every integer k with

2 ~ k ~ n < PI(T) that there exists a k-diameter set s, where s, C VI(T),

such that S2 c S3 c ... C Sk c ... C Sn. We show now that an (n + 1)­

diameter set Sn+1 ~ VI(T) containing S; C VI(T) can be obtained from

s;
For every vertex v E V(T) - 'V (Ts,J , let lu = d(v, Ts,J.

Let w E V(T) - V(Tsn) be such that

lw = max{lu : v E V(T) - V(ls,. }.

Define Sn+l = Sn U {w}. Then ISn+ll = n + 1 and w must be an end­

vertex of T; hence s; C Sn+l ~ VI (T) . It remains to be shown that

d(Sn+d = diamn+lT.

Let S' be an (n+1)-diameter set of T such that IBn n S'I is as large as

possible. Since IS'I = n + 1 and ISnl = n, the set S' - Sn' is nonempty. Let

Vo E Si - Sn and let P = VOVl ••• Vk be the stem of T s ' containing Vo. Since

Vo is an end-vertex of T, k ~ 1.

We now show k ~ tw • Assume, to the contrary, that k > t w • Since

Vo E V(T) - V(Tsn); it follows from our choice of w that luo ~ lw, which

implies that luo < k. Let T1 be the component of T - vk-lV k that contains
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Vo and let T2 be the other component of T - Vk-lV k- There exists at least

one vertex in V (Td n V (Ts,.); otherwise, Ts,. C T2 and hence the length of

the shortest path from Vo to a vertex of TS n is at least k, which implies that

lvo ~ k > lw which contradicts our choice of w. Therefore there exists a

vertex u E V(Td n V(Ts,J such that dT(u,vo) = l vu . (Note that u cannot

be an end-vertex of Tsn, and hence of T, for otherwise the unique vertex

adjacent to u must be a vertex of TSn and hence lvo ::; d(u., vo) - 1, which

is impossible.) Since V(Td n V(Tsn) =I 0, we have that s; n V(TI) =1O, for

otherwise Sn C V (T2 ) and hence 1s,. C 12, which, as we saw earlier, is not

possible. Let v E S; nV (Td, then since by assumption S; C VI(Td we have

that v is an end-vertex of T. By definition of the path P, TSI_{VO} C T 2

hence Vo is the only vertex of S' in 1'1, therefore v ~ S '. Since by Corollary

4.3.7 S' consists of end-vertices of T we have that both v and Vo are end­

vertices of T. Also since u is not an end-vertex of T we have that u i= v .

To complete the proof, we consider two cases.

Case 1) Suppose that dT(u, v) < lvo. Then by Note 4.3.3

d((Sn - {v}) U {vo} ) l vo+ d(s; - {v})

> d(u,v) +d(Sn -{v})

> d(Sn) (since u E V(lsn)).

which is impossible since I(Sn - {v}) U {vo} I = n. T herefore Case 1

cannot occur.

Case 2) Suppose then that dT(u,v) ~ lvo. If dT(u,v) > lvo then

d((S'- {VD}) U {v}) d(S') - dT(u, vo) + dT(u, v)
d(S') - f vo + dT(u, v) > d(S')
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which is not possible. Hence dT(u ,v) == lvo. Further, u E V(P),

otherwise dT(v,Vk) > dT(vo, Vk), which implies that

d((S' - {VD}) U {v}) d(S' - {VD}) + dT(v,Vk)

> d(S' - {vo}) + dT(vo, Vk)

d(S'),

which is impossible. However, by (1), d((S' - {VD}) U {v}) == d(S'),

which contradicts our choice of 5' since

I((S' - {VD}) U {v}) n Snl > IS' n Snl·

Hence k S; lw, which implies that

d(S')

q(Tsl _{vo}) + d(vo,Ts' _{VO})

q(Tsl _{vo}) + k S; q(Ts,J + e; == d(Sn+d S; diamn+IT.

D

We now present the characterization of diameter sequences.of trees, follow­

ing [COTZl).

4.3.19 Theorem

A sequence a2, as, ... , ap of positive integers is the diameter sequence of a

tree of order P with PI (T) end-vertices if and only if

(2) an == P - 1 for Pl(T) :::; n :::; P, and
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Proof

Let T be a tree of order P with PI (T) 2: 2 end-vertices and diarneter sequence

a2, a3, ... , ape Assume that 3 ~ n ~ PI(T). By Thcoremd.S.Ld, an-l ~ an ~

(n~l) an-I' Now by Theorem 4.3.18, there exists an n-diameter set Sn and

an (n -I)-diameter set Sn-l, each consisting of only end-vertices of T, such

that Sn-l C Sn; hence Sn = Sn-l U {v} [or sorne end-vertex v E V (T) - Sn-l'

Thus,

which verifies (1).

If n ~ pt{T), then diamnT = p - 1, so that ap1(T) = apI(T)+l = ... =
ap = p - 1 and hence (2) is established.

To verify (3), we again ernploy Theorem 4.3.18. Let an-l = d(Sn -d, an =

d(Sn) and an+l = d(Sn+d, where

Sn = Sn-l U {v}, Sn+l = s; U {u} and 3 ~ n ~ p - 1.

By Note 4.3.3 we have

d(Sn) = d(Sn-d + d(v,Tsn_1), so that

an = d(Sn) = d(Sn-l U {v}) = d(Sn-d + d(v,Tsn_1) = an-l + d(v,1 sn_1).
Therefore an - an-l = d(v, TSn_ 1)'

Similarly, an+l = an + d(u, Tsn). Therefore,

Now d(u,Ts n ) ~ d(u,Ts n_ 1 ) since 1S n_ 1 C TSn and d(u , l s n_
1

) :S d(v, T
Sn

_
1

)

otherwise d(Sn-l U {u}) > d(Sn-l U {v}).
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Therefore an+l-an == d(u,Tsn) ~ d(v,1sn_J == an-an-l which verifies

(3) .
For the converse, suppose that a2, a3, ... , ap is a sequence of positive

integers satisfying properties (1) - (3). Let 112 be a path of length a2 and

suppose H 2 == VOVl"'Va2• For 3 ~ i ~ PI(T), let Hi == Vi,OVi,l .. ·Vi,aj-aj_l be

a path of length ai - ai-I' Define T to be the tree obtained by identifying

vi,o(3 ~ i::; Pl(T)) with Vr where r == r~l. Then T has size az + (a3 - a2) +
(a4 - a3) + ... + (apI(T) - apI(T)-d == apdT) == P - 1, and therefore has order

p. Further, T has diameter sequence a2, a3, . .. , ap' o

v.

v~l
v

Vo 'Ill ri~ -1 r~ 11 + 1
v

az-1

0 0------- ---------()

1. v
Pl(T),l.. -- •

, <,
..... .....- "

....

o-r"
•

... .....

~ -
• ~

v
Pl(T),ap1(T)-

v
a 2,a

4-a3
v

Pl(T)-l
i,a

4.3.20 Figure

The tree T constructed in Theorem 4.3.19.

This leads to a similar characterization of the radius sequences of trees, as

stated in [COTZ1].

155



4.3021 Corollary

A sequence a2, a3, ... , ap of positive integers is the radius sequence of a tree

of order P 2:: 2 with PI (T) end-vertices if and only if

(3) an = P- 1 for Pl(T) + 1 ::; n ::; P and

(4) an+l - an ::; an - an-I for 4 ::; n ::; p.

Proof

Let T be a tree of order P with PI (T) 2:: 2 end-vertices which has radius

sequence R = a2, a3, ... , ap • Now by Theorem 4.3.14, radsT = diarn2T .=

diamT. However if T is a central tree then diam T = 2rad2T = 2a2, while

if T is bicentral then diam T = 2rad2T - 1 = 2a2 - 1. Therefore as = 2a2

or a3 = 2a2 - 1 which verifies (1).

By Theorem 4.3.14 and Corollary 4.3.15, an+l ::; (n~l) an for 3 ::; n+1 ::;

pt{T). Let S be any set of n vertices of T. Then for any end-vertex

v E V(T) - S

d(S U {v}) 2:: d(S) + 1 > d(S).

Hence radn+IT = min{d(S U {v}) : v E V(T) - S} > min{d(S)} = radnT

thus an+1 > an which verifies (2) .
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If n ~ PI (T) + 1, then radnT = P - 1, so that apdT)+1 = ap1(T)+2 = ... =
ap = p - 1 and (3) is established.

To verify (4), we note from Theorem 4.3.14 that for 3 ::; n ::; P,

an = diamn-1T. Therefore the subsequence as, a4, ... , ap of R is a sub­

sequence of the diameter sequence of T, and he nce by . Theorem 4.3.19

an+l - an ~ an - an-l for 4 ~ n ::; P which establishes (3) .

For the converse suppose that a2, as , ... , ap is a sequence of positive in­

tegers satisfying properties (1) - (4). If a3 = 2a2 then let 113 be a path of

length 2a2 and suppose Hs = Ua2U a2-1 ...UICVIV2"'Va2-1Va2' If as = 2a2 ~1

then let H3 be a path of length 2a2 - 1 and suppose Hs = Vi,OVi,l'" Vi,aj-aj_l

be a path of length ai - ai-I' Now define T to be the tree obtained by

identifying the vertices Vi,O (4 ~ i ::; pdT) +1) in Hi with C in u; In either

case T has size

and therefore T has order p. Further T has radius sequence R. 0

The concept of the cen tre of a connec ted graph was generalized in [OT1]
as follows:

4 .. 3.22 Definition

The Steiner n-centre Cn ( G), n ~ 2 of a connected graph G is the subgraph

of G induced by the vertices v of G with en(v) = radnG.

Hence the Steiner 2-centre of a graph is sirnply its ccn tr e.
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4.3.23 Note

We now employ a slight variation in notation for the sake of clarity. Since

we will often need to look at the n-eccentricity of a vertex in a given graph

G, as well as its n-eccentricity in sorne induced subgraphs of G, we denote

by en(v, G) the n-eccentrici ty of the vertex v in the graph G.

The next eleven results first appeared in [OT1].

4.3.24 Lemma

Let T be a tree of order p ~ 3 and n an integer with 3 ::; n ::; p. Let T'

be the tree obtained by deleting the end-vertices fromT . If T has at least

n end-vertices, then

Proof

If v E V(T'), then

"'"' (1)

Let u be a vertex which is contained in the n-centre of T; i.e., en ( u, T) ==

radnT. (Note by Corollary 4.3.11 that u is not an end- vertex of T.) Then,

by Theorem 4.3.10, there exists a set S of n - 1 end-vertices of T such that

d(S U {u}) == en(u,T) and u E V(Ts )' that is,

d(S U {u}) == d(S) == en(u,T).

For every v E S, let £u be the length of the stern in Tsu{u} containing v.

(Note that Tsu{u} == T s ). Let £ == min £u . There are two cases to consider.
uES
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Case 1) Suppose l = 1 and let v E S such that lv = 1. 'Then every end­

vertex of T that does not belong to S is adjacent to a vertex of Ts ;

otherwise, suppose w E Vl(T) such that d(w,Ts) ~ 2, then en(u, T) ~

d(SU{u}U{w}-{v}) > d(SU{u}) = en(u,1'),.which is irnpossible.

Hence the end-vertices of T' are exactly the end-vertices of Ts - s.

Since Ts has n - 1 end-vertices, 1" has at most n - 1 end-vertices,

implying, by Corollary 4.3.6, that for all x E V (1"), en(x, 1") = q(T').

Hence T' = Cn (1"). Because T has at least n end-vertices we have by

Corollary 4.3.11 that Cn(T) c T' so that Cn(T) C Cn(T').

Case 2) Assume now that l ~ 2. Let S' be the set of end- vertices of 1s - s.

Since l ~ 2, it follows that for yES, xy E E(18) if and only if

x E Vl(Ts - S) and hence IS'I = ISI = n - 1. Further,

dT , (S' U {u} ) dT (S U {u}) - (n - 1)

en(u,T) - (n - 1) . .

By Corollary 4.3.6, dT , (S' U {u}) == en(u,T') and hence en (u,T')

en(u,T)-(n-1). Therefore, by (1), en(u,1").= r(u.l n l" and u belongs

to Cn(T') and Cn(T) C Cn(T'). 0

4.3.25 Lemma

Let n ~ 2 be an integer and T a tree of order p ~ n. Then Cn(T) is a tree.

Proof

If n = 2, then the n-centre is simp ly the centre of T. Since the centre of a

tree is isomorphic to either K, or K 2 (see [K3]), it follows that the 2-centre

of a tree is a tree.
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Assume now that n ~. 3. If T has at most n - 1 end-vertices, then, by

Corollary 4.3.6, Cn(T) = T so the lemma follows in this case. Suppose thus

that T has at least n end-vertices.

Since any induced connected subgraph of a tree is itself a tree it suffices

to prove that Cn(T) is connected. Assume, to the contrary, that Cn(T) is

disconnected. Let P = VOV1 ...Vk be the shortest path in T between vertices

of two components of Cn(T). Then k ~ 2, Vi tf. V(Cn(T).) for 1 ~ i ~ k - 1

and Vo, Vk E V(Cn(T)). Let 1'1 be the component of T - Vk -:-l containing

Vk. By Theorem 4.3.7, and since Vk -l tf. V(Cn(T)), there exists a set S' of

n - 1 end-vertices of T such that

Observe that S' ~ V(TI), otherwise

en(vk,T) > d(S' U {Vk})

> d(S'U{Vk -l})

en(Vk-l, T)

> en(vb T) + 1, which is not possible.

Let S" = S'U{vo}. Then 1'SII contains Vk-l, implying that TS1 u{Vk _d C 1sll .

Hence

which is impossible. Hence Cn(1') is connected. D

It is well-known (see [CL1]), that a tree T is the 2-centre of a tree if

and only if T ~ K 1 or K 2 • The following theorem character izes those trees

that are n-centres of trees for n ~ 3.
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4.3.26 Theorem

Let n ~ 3 be an integer and T a tree. Then T is the n-centre of some tree

if and only if PI (T) ~ n - 1.

Proof

Suppose that T is the n-centre of some tree If. Let u be a vertex of

T = Cn(H). By Theorem 4.3.10, there exists a set S of n - 1 end- vertices

of H such that

dH(S U {u}) = en(u, Ii) and u E V(Iis )

where Hs is the subtree of H generated by S; hence d(S U {u}) = d(S).

We show first that V(T) = V(Cn(Ii)) ~ V(Ifs ). Letv E V(II) -V(Hs )

and let S' = S U {v}. Since v f/. V (Ifs)' it follows that

d(S') ~ d(S) + 1 = d(S U {u}) + 1 = en (u, If) + 1.

Therefore en(v, H) ~ en(u, H) + 1, which implies that v f/. V (Cn(Ii)).

Hence V(T) . V(Cn(H)) ~ V(Iis ). Since n 2:: 3, the t ree JIs has n - 1

end-vertices. Therefore T has at most n - 1 end-vertices; i.e ., PI(T) ~ n-1.

For the converse, let T be a tree with PI(T) :::; n - 1. If 2PI(T) 2:: n,

then let H be the tree obtained from T by joining two new vertices to each

end-vertex of T. If 2PdT) < nand T ?/- 1(1, then let If be the tree obtained

by joining two new vertices to each of Pl(T) - 1 end-vertices of T and then

joining n - 2(pdT) - 1) new vertices to the remaining end-vertex of T . If

T ~ K 1 , then let H be obtained by joining n new vertices to the vertex of

T. In all of the above three cases, Pd11) ~ n. Now let S1 Le the set of
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end-vertices of H, in anyone of the above three cases. By Lernrna 4.3.24,

Cn(H) c Cn(If ~ Sd. Now if - 51 = T and since PI (1') ~ n -l, Cn(T) = T.

Hence Cn(T) c If. For every vertex v of T we have, by Corollary 4.3.6,

that en (v, T) = q(T) so that

en(v, If) = en(v,T) + n - 1 = q(1') + n - 1.

Since all the vertices of T have the sarne n-eccentricity in If and Cn(If) C T,

the n-centre of If is precisely 1'. 0

The following corollary follows straight frorn Theorem 4.3.26 and the

fact that every branch at a vertex v of T must contain an end-vertex.

4.3.27 Corollary

If T is a tree that is the n-centre (n 2 3) of some tree, then the maximum

degree 6(1') of T is at rnost n - 1.

The following Corollary follows as a direct consequenc e of Theorems

4.3.18 and 4.3.14 together with Lernrna 4.3.9 .

4.3.28 Corollary

Let T be a tree such that PI (T) 2:: 3, and suppose that n is an integer with

3 ~ n ::; pt{1'). Let Sn-l be an (n - I)-diameter set and Sn an n-diameter

set, so that Sn-l C Sn. Then

(1) a vertex v of 1'S n is an end-vertex of 1'S n if and only if v E Sn;

(2) en(v, Ts,J = diarnn(1's,J if and only if v is an end -vcr tcx of 1's,, ;
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(4) every vertex v of TS/I is such that en(v, TS/I) ::; en(v, 1');

(5) if l is the length of a shortest stern in Tsn, t hen

Let T be a tree such that PI (1') ~ 3 and suppose t ha t n is an integer wi th

3 ~ n ~ Pl(T). Let Sn-l be an (n - l)-di arncter se t and Sn an n-diameter

set of T with Sn-l C Sn. Suppose that l is the length of a shor tes t stem of

Tsn. If

u= {u E V(ls,.) : there exists v E Sn with d(u,v) ::; l- I},

Proof

Suppose w E Sn such that the length of the stem in TS/I containing w is l.

Then let S = Sn - w. If v E U, then

Ifv E V(Tsn)-U, thenradnTsn ::; en(v,Ts,.)::; q(ls/I ) - l = radnTsn o Hence

en(v, Ts,J = radnTsn for all v E V (Ts,J - U. Therefore

o
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4.3.30 Theorem

Let T be a tree such that PI (T) ~ 3, and suppose that n is an integer with

3 ~ n ~ PI (T). · Let Sn-I be an (n - 1)-diameter set and Sn an n-diameter

set of T such that Sn-l C Sn' Then for every vertex v E V (1'Sn),

Proof

By Corollary 4.3.28(4), cn(v,Tsn) ::; cn(v,T), for all v E V (Tsn). T herefore

we have only to show that cn(v,TS ,. ) ~ cn(v,T) for all v E V(Tsn).

Assume, to 't he contrary, that there exists a ver tex v of Ts,. such that

cn(v,Tsn) < cn(v,T). By Corollary 4.3.28(2) and 4.3.28(3), such a vertex v

is not an end-vertex of Ts" , that is, v t/:. Sn' By Theorem 4.3.7, there exists

a set S of n -1 end-vertices of T such that d(S U {v}) == cn(v,T), and

IS n Snl is as large as possible. Since cn(v, 1s,J < cn(v, '1'), it follows that

8 et s; otherwise Tsu{u} C TSn and hence cn(v, 18,. ) ~ cn(v, T), which is

not possible. Therefore S - Sn f. 0 and further, since ISnl - ISI 2 1, we

have Sn - S f. 0. Let u E Sn - Sand w E S - Sw Let- f u and fw be the

lengths of the stems of 1." == Tsu{u,u} containing u and w resp ectively.

We show that fw > fu. Assume that fw ~ fu. If fw < fu, then (S ­

{w}) U {u,v} is a set of n vertices of T containing v with d((8 - {w}) U

{u,v}) > d(S U {v}) == en(v,T), which is not possible. If f u = fw , then

(8 - {w}) U {u,v} is a set of n vertices of T containing v such that d((S­

{ w }) U { u, v}) = d(S U {v}) and I((S - {w}) U {u} ) n SnI > IS n SnI which

contradicts our choice of S. Hence f w > fu.

Let T" == TSnu{w} and let f~ and f~ be the lengths of the sterns containing
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u and w, respectively, in T".

We show that l~ ~ l~. Suppose that e; > e~; then q(l( s,, _{u})U{w}) ==

d((Sn-{u})U{w}) > q(Ts,J == diarnnT, which is impossible. Hence l~ ~ l~.

Since v E V (T') n V (Ts,,) , the tree T' contains a path frorn every vertex

of S - Sn to a vertex of Is". In fact, since we are de aling with trees, there

is a unique path in T between a ve r tex of T which is not in Ts" and a

vertex of Is,.. Hence T' contains the unique shortest path frorn any vertex

of S - Sn to Ts,. .

We show now that if w' E S - Sn, then a shortest path frorn ui ' to a vertex

of TSn does not contain a vertex frorn a stern of 1'8" th at contains a vertex

of Sn - S. Assume, to the contrary, that there exists a ve r tex w' E S - Sn

such that a shortest path from w' to a ver tex of Ts,. contains a vertex x,

say, of a stem of Ts,. that contains a vertex u' E Sn - S. Choose such a

vertex w' so that d(w', x) is as small as possible. Then d(u', x) 2: d(w', x);

otherwise,

d((Sn - {u'}) U {w'}) > d(Sn), which is not possible.

Let k be the shortest distance from w' to a vertex of degree at least 3 in

Tsu{v,u'}' We establish that k < d(w', x). T s u{v,u'} contains the unique

w' - u' path in T, which contains x as well as the unique u' - v path which

also contains x asan internal vertex . Since x is the only ver tex common to

the w' - u' path and the u' - v path, it follows th at x has degree a t least 3

in Tsu{v ,u'} '

Hence

k <d(w' ,x) .
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Now d(u',x) < k; otherwise if d(u',x) > k, then d((SU{v,u'}) -{w'}) >

d(S U {v}) = en(v,T) which is irnpossible, and if d(u',x) = k, then I(S U

{u'}-{w})nSnl > IsnSnl andd((SU{v,u'})-{w'}) ~ d ( S U {v } ) which

contradicts our choice of S. This implies that

d(w',x):::; d(u',x) < k:::; d(w',x)

which is impossible. Hence if P is a w - x path that is a shortest path from

w to a vertex of TsfI , then x does not belong to a stern of Sn that contains

u. Hence the distance from u to a vertex having degree at least 3 in TSfI is

simply l~, and the distance from u to a vertex having degree at least 3 in

T' is at least l~, that is, lu ~ l~. Hence

Thus, if P' is a shortest path from w to a vertex z', say , having degree

at least 3 in 1", then P' contains x E V(Ts,,) . Now x has degree 2 in

T', since z' is the first vertex of degree at least 3 on P", and x E V (Is,,).

Therefore x must lie on a path between v and sorne vertex y E Sn' Suppose

y E Sn n S, then the y - v path (and hence also x) is contained in 1" =
Tsu{u,v}' However x is on the v - w path in T' and w i- y, therefore (since

lw ~ d(w, x)) degTI x ~ 3 which is a contradiction. Therefore y E Sn - S.

Because x has degree 2 in 1" ,the path frorn y to x does not contain vertices of

1" other than x.. Hence the distance from y to a vertex of T ' is d(y, x). Now

d(y,x) < d(w,x); otherwise ifd(y,x) > d(w,x) then d((SU{v,y}) -{w}) >

d(S U {v}) = en(v,T) which is impossible, and if d(y,x) = d(w,x) then

I((S U {y}) - {w} n Sn)I > IS n SnI an d d(S u {v, y} - {w }) == d(S U {v})

which contradicts our choice of S.
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Since y E Sn - S, the vertex x does not belong to a .stem of TSn that

contains y. Hence the distance from y to a vertex having degree at least 3 in

1'Snu{w} is less than d(y,x) < d(w,x). However, then d((Sn - {y}) u {w}) >

d(Sn)' which is irnpossible. Therefore en(v,1's,.) 2: en(v,T) for every vertex

v E V(1'sn) and hence en(v,1'sn) = en(v,1') for every vertex v E V(Tsn)· 0

With the aid of Theorem 4.3.30, we now obtain the following result.

Let T be a tree such that Pi (1') ~ 3 and suppose that n is an integer

with 3 ~ n ~ Pi (1'). Let s; be an n-diarneter set of T which contains an

(n - I)-diameter set of T. Then Cn(T) = Cn(Tsn).

Proof

Suppose there exists a vertex u E V(Cn(T)) such that u rt V(Cn(Ts,J).

Since T is acyclic every path between u and a vertex of TSn must contain

the vertex x E V (Tsn), say, where the u - x path has length d(u, Is,J.
By Theorem 4.3.7 there exists a set S' of n - 1 end-vertices of Isnsuch

that d(S' U {x}) = en(x, Ts,J. But en(s, 1's,J = en(x,T), Theorem 4.3.30,

and hence d(S' U {x}) = en(x, T). Note that 1's'u{u} rnust contain x and

therefore Ts'u{u} ~ Ts'u{x}. Hence

d(S' U {u}) 2: 1 + d(S' U {x}) = 1 + en(x,T) > radnT

which contradicts the fact that u E V(Cn(T)). Therefore

'" (1)
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Let v E V(Cn(18,J). Then en(v , l s,J == raonTs,, · However,

en ( v, 1's,J = en ( v, 1') by Theorern 4.3.30, and radnl s11 = radnT by Corollary

4.3.28(5). Hence en(v,T) = radnT, and thus v E V(Cn(T)). Therefore

and the result follows from (1) and (2).

'" (2)

o

We are now in a position to present a relationship betwee the n-centre

and (n - 1)-centre of a tree for n 2: 3 an integer.

4.3.32 Theorem

Let n 2: 3 be an integer and l' a tree of order p 2: n . Then Cn- 1 (1') C

Proof

HT has at most n-1 end- vertices, then Cn(T) == T, so trivially Cn-1(T) ~

Cn(T). Suppose now that T has at least n end-vertices. Let Sn-l C V1(T)

be an (n - 1)-diarneter set and Sn ~ V1(T) an n-diaructer set of T such

that Sn-l ~ Sn' Assurne first that n == 3. Then Sn-l == S2 == {u, v}, say,

and 83 == {u,v,w}. Let TS2 == (u ==)UOUl",Uk(== v). It is known (see [K3],

pg 65) that the 2- centre of 1'S2 is the 2-centre of every su b tree H of T

that contains 182, Hence C2(lsJ == C2(T) == C2(1'sJ . The 2-centre of T

is therefore {u~} if k is even and ({Uk -l,Uti!}) if k is odd . Let x be the
~ 2 2

vertex of degree 3 in 1's3. Then d(w,x) ~ rnin{d(u,x),d(v,x)}. Therefore

d(w,x) ~ ~ if k is even and d(w,x) ~ k;l if k is o dd. By theorerD 4.3.29,
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the 3-centre of 1'S3 can be obtained Irorn 'lS3 by deleting the vertices of

u = {z E V(TS3) : d(y,z) ~ d(w,x) - 1 fory E 53}.

Hence if k is even then u~ E V (ls 3 - U) = V (C3 (1'S3)) and if k is odd then
2

{u!=!,u!±!} E V(1's3 - U) = V(C3(Ts3)). That is C2(T) C C3(TsJ· By
2 2

Theorem 4.3.31, C3(1's3) = C3(T) so that C2(1') C C3(T).

Suppose now that n 2: 4. Let e' and e" be the lengths of the shortest

sterns of 1Sn_1
and 1sn, respectively. Let

tr = {u E V(TS n _ 1 )

U" = {u C V (TsrJ

By Lemma 4.3.29,

there exists v E Sn-l with d(u, v) ~ e' - I}, and

there exists v E Sn with d(u, v) ~ e" - I}.

Since TS n_
1

C TS n we have e" ~ e' and therefore Cn - t{1S11 _1 ) C Cn(Ts n ) ·

Therefore, by Theorem 4.3.31,

that is

o

4.3 .. 33 Definition

Let n ~ 2 be an integer and T a tree of order P ~ max{3, n}. If PI (T) ~ n,

then define the derivative of 1', denoted by 1", as the tree obtained by delet­

ing the end-vertices of T. Suppose the kth_ derivative T(k) of T has been

defined. If T(~) ~ 1(2 and has PI (T(k)) ~ n, then the (k + 1)st-derivative
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T(k+l) is defined as the derivative of T (k).

It is well-known that, by successively deleting the end-vert ices of the

trees produced (beginning with 1') un til a tree isomorphic to J(1 or J\2

results, we obtain the centre of a tree T. Hence C (1') = T( k) for SOIIle

k 2: 1.

403034 Theorem

Let n 2: 3 be an integer and let T be a tree of order .p 2: n . Then there

exists an integer e such that Cn(T) = T(f.) where T( f.) has at most n - 1

end-vertices.

Proof

By Theorem 4.3.18 there exists an n-diameter set s; ~ VI (1' ) which con­

tains an (n-1)-diameter set 8n- 1 C V1(1').Let 8n ~ V1(T) be an n-diameter

set of T. Let ebe the length of a shortest stem in 1'sn' By Lemma 4.3 .29

Cn(Ts,J ~ T~~). Since the end-vertices of 1's" are also end-vertices of T

we have that 11~1) C T (f.) and hen ce Cn{Ts,J = Cn{T) C T (f.) . Note that

T(l) has at rnost n - 1 end- vertices. By Corollary 4.3.6, for eve ry vertex

v E V(T(l)), en(v,T(l)) == q(T(l)). Since Cn(1s,J C Ttl) C 1', it is clear that

for every vertex U E V(Cn(Ts,J) n V (T(l)), en(u,Cn(1s.. )) == en(u,1s,, )~
en(u,T(f.)) :::; en(u,T). However by Theorern 4.3.30, en(u,1s,.) == en(u,T),

hence q(T(f.)) == en(u,T(f.)) = en(u, Ts,.) == en(u, T) = radnT. Thus every

vertex v E V(T(f.)) has en(v,T) == radnT and hence T(f. ) C Cn(1'). T here­

fore Cn(Ts,.) =tv: 0
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The following definition appears in [01' 2]

4.3 e 35 Definition

A non-decreasing sequence S : aI, a2, ... , ap of nonncgative integers is called

a Steiner n-eccentric sequence or simply an n-eccentricsequence, n ~ 3, if

there exists a connected graph G whose vertices can be labelled VI, V2, ••• , vp

such that en(vd = a, for 1 :::; i :::; p. In this case, we call S th e Steiner

n-eccentricity sequence of G.

The 2-eccentricity sequence of a connected grap h is thcrefore its eccen­

tricity sequence.

4.3.36 Example

The graph of Figure 4.3.37 has 3-radius 4, 3-diarnetcr 6 and 3-ccccntricity

sequence S : 4,5,5,5,5,6,6,6.
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6 6

4.3.37 Figure

The following lemma from [OT!] which holds not only for trees but for

graphs in general will prove to be useful.

4.3.38 Lemma

Let G be a graph of order p and n an integer satisfying 2 < n :::; p. If

uv E E(G), then len(u, G) - en(v, G)I :::; 1.
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Proof

We may assume without loss of generality that en ( u, G) ~ en ( v, G). Let S

be any set of n vertices containing v. If u E S, then d(S) ~ en(u, G). If

u f/:. S, then let Si == (S - {v}) U {u}. Since uv E E(G), it follows that

d(S) ~ d(S') + 1 ~ en ( u, G) + 1.

Hence en(v) == max{d(S) : S ~ V(G), IS\ == n and v E S} ~ en(u, G) + 1;

that is, en(v, G) - en(u, G) ~ 1 which implies that

o

The following results concerning n- eccentricities of trees were presented

by Oellermann and Tian in [OT2] and will culrninate in a characterization

of the n-eccentrici ty sequences of trees (cr. [01'2]) .

4.3.39 Lemma

Let T be a tree with Pl(T) 2: 3 and suppose that n is an integer with

3 ~ n ~ pl(T). Let Sn-l C V1(T) be an (71,-1)- diameter set and s; ~ V1(T)

an n-diameter set of T such that Sn-l C Sn. If al, a2, ... , ap is the n­

eccentricity sequence of 1'5", then for every integer k with al < k ~ ap

there exists some i where P - n(ap - ad ~ i ~ P - n + 1, such that

Proof

Let f.. be the length of a shortest stern of 1'5". Then for every vertex v

in Sn there exists exactly one vertex Vi of 1'5" such that d(v, Vi) == f... Let

P; be the v - Vi path in 15". By Lernrna 4.3.29, Cn(Ts,.) can be obtained
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by deleting, for every v E Sn, all the vertices of PIn except V', from Tsn·

Now en(v,Tsn) = diamn1s"= ap and since v' E V(C n(1's,.)), en(v',Ts,J =

radnTsn = al for all v E Sn; hence, by Lemma 4.3.38, there is at least one

vertex of P; - v' that has n-eccentricity k for al < k ::; ap e By our choice

of Sn we have

Hence l = ap - aI, which implies that for each k with al < k ::; ap there

is exactly one vertex on PI) - v' whose n- eccentricity is k. Since ISnl == n

we have n end-vertices in 1snand thus n stems of Ts" and hence n paths

Pv • Thus on each of the n paths P; there is a vertex with n-eccentricity k

where at < k ::; ap , and hence the lemma follows.

4.3.40 Lernma

o

Let T be a tree of order p ~ 3 and ri an integer with 3 ::; n ::; p. Suppose

S : al, a2, ... , ap is the n-eccentrici ty sequence of T. Then

(1) a1 ~ n - 1, and

(2) for every integer k with al < k ::; ap there exist at .lcas t n consecutive

elements of S equal to k.

Proof

For every vertex v E V(T), en(v, T) ~ ti - 1, since a tree with n vertices

has size n - 1; hence it follows that al ~ n - 1, which establishes (1). If

T has at most n - 1 end-vertices, then al = ap and (2) holds vacuously.

Suppose therefore that T has at least n end-vertices . .Then al < ap e Let
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Sn-I C VI(T) and Sn ~ VdT) be (n - l) -diaIneter and n-diarneter sets of

T, respectively, such that Sn-l C Sn' Then, by Theorern 4.3. 30, en(v,T) ==

en(v, Ts,.} for every vertex v E V(l s,') . Since diaIIl,)S,. == di aIIlnT == ap and

rad Ts == rad T == al Lemma 4.3.39 implies that 1's and thu s T containn,. n , ..

at least n vertices whose n-eccentricity is k for al < k :::;. ap ' Hence (2) is

established.

4.3.41 Lemma

o

Let n ~ 3 be an integer and suppose that S : aI, a2, ... , ap is the n­

eccentricity sequence of a tree T of order p 2: 3. Then if al i ap, (n~l) al ==

ap + r:~~1 where. mo is the largest integer such that al == am o•

Proof

Let Sn ~ VI(T) be an n-diameter set of T which contains an (n - 1)­

diameter set. Then by Theorem 4.3 .31, the n-centre of T is iso rnorphic to

the n-centre of TS n and, by Lemma 4.3.29, can be obtained frorn TS n by

deleting end-vertices until a tree with at most n - 1 end-vertices remains.

Let l be the length of a shortest stern in Ts.. . T hen the et h derivative of

TS n is Cn{T). As we saw in the proof of Lcrnrn a 4. 3 . :~ 9 , e= ap - al and

obviously mo is the order of Cn(T). Thus the number of edges in TS n IS

equal to the number of edges in Cn(Ts,J (which is m o - 1), plus in;

I.e., ap == in + mo - 1 == (ap - ad n + nu, - 1
so nal == (n - l)ap + ni« - 1.

(
n ) mi, - 1

Hence -- al == ap + .
n -1 n -1
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Lesniak [L1] characterized the eccentricity (or 2-eccentricity) sequences

of trees. A necessary and sufficient condition for a nondecreasing sequence

of integers to be the n-eccentricity sequence of a tree for n ~ 3, is now

presented, following [OT2].

4.3.42 Theorem

Let n ~ 3 be an integer. A nondecreasing sequence S : aI, a2, ... , ap of p ~ n

positive integers is the n- eccentricity sequence of a tree if and only if

(1) al ~ n - 1,

(2) (n~l) al = ap + :(~-;.l if al i= ap where mo is the largest integer such

that al = am o' and

(3) if al < ap and k is an integer with al < k ::; ap, then there exists an

integer i (2 ::; i ::; p - n + 1) such that a, == ai+ 1 == ... == ai+ n- l == k;

otherwise, if al == ap, then p = al + 1.

Proof

Suppose that S : aI, a2, ... , ap is the n-eccentricity sequence of sorne tree of

order p ~ n. Note that, by Corollary 4.3.6, if al = ap, then al == q(T) =
p - 1; therefore p = al + 1. Hence together with Lemmas 4.3.39, 4.3.40 and

4.3.41, this implies that conditions (1), (2) and (3) of the theorem hold.

For the converse suppose that S : aI, a2, ... , "» is a nondecreasing se­

quence of positive integers satisfying conditions (1) , (2) and (3) of the

theorem. If al = ap, then p = al + 1. Let T be a path of length al. Then

each vertex of T has n-eccentricity p - 1 = al (since n 2: 3), that is, S is

the n-eccentricity sequence of T.
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Assurne now that al < a p ' Let A = {aio,ai1,ai2 , .. ·,ai".} with aio <

a. < < a. be the distinct elements of the sequence S. Thcn aiu = al
11 ••• '"..

and by Lemrna 4.3.38, aim = a p = al + rn. Hence al = nnl,+rno - n2- 1, a p =
nrn + mo - 1 and S contains all the integers between al and ap ' Let mj be

the number of occurrences of tu, in S. Let 110 = VOVIV2",Vmo-l be a path
J

of order mo and let T I ~ T2 ~ ... ~ 1'n ~ Pm+l , where T, = Vi ,OVi,l" .Vi,m

for i = 1,2, ... , n. Denote by H the tree obtained from 110 and 1\, T2 , ... , Tn

by identifying Vl,O with one end-vertex of 110 and then identifying Vi,O with

the other end-vertex of u; for 2 <i ~ n if n20 2 2, otherwise, identify Vi,O

with the only vertex of lio for 1 ~ i ~ n. Finally, join mj - ti new vertices

to VI,,;-l for 1 ~ j ~ m and let T be the resulting tree. then T has order

mo+ m71, + (n11 - 71,) + (rn2 - 71,) + ... + (mm - 71,)

mo + mn + (ml + m2 + ... + mm) - mn = mo + m , + m2 + ... + mm = p,

and we verify now that T has n-eccentr icity sequence S. Referring to

Figure 4.3.43 each vertex Vi ( 0 ~ i ~ mo - 1) has {Vi, Vj, m} i =1,2, ...,n -1 as

an n-eccentric set and hcnce en (Vi, T) = nin + n10 - ni - 1 = al ' lIcnce we

have tru, vertices with n-eccentricity equal to al as required . The vertices

Vi,l (1 ~ i ~ n) and the m, - n end- vertices of T adjacent to Vo have

n-eccentricity equal to nrn + tru, - m = al + 1. Hence we have ml vertices

with n-eccentricity al + 1. Continuing in this mariner we see that thcre are

m,; vertices with n-eccentricity al + j (0 ~ j ~ rn) and it fo llows that T

has n-eccentricity sequence S. 0
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4.3.43 Figure

The graph constructed in Theorem 4.3.42 for rru, 2: 2.

, The following definitions were introduced by Oellermann in [01].
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4,,3,,44 Definition

The Steiner number S(C) of a connect ed gr aph G of ord er ]J is the least

positive integer m for which th ere exists a set 5 of ni vert ices of G such

that d(S) = p - l.

Thus the Steiner nurnber of a connected graph G is the smallest car­

dinality of a set S of vertices of G su ch that every connected subgraph of

minimum size that contains S is a spanning tree of q .

4.3 .. 45 Definition

The /Ch Steiner number Sk(G) of a graph G is the srnallest positive integer

m for which there exists a set S of m ver t ices of G such that d(S) = k ,

For every connected graph G of order p ; th e sequence so tCL51(C), ... , Sp-ItG)

is called the Steiner sequence of G. Note that Sp-l(C) = S (G). For exam-

ple the Steiner sequence of the path Pn is 1,2,2, ... ,2.

The following Theorem which appears in [01] gives nec essary and suffi­

cient conditions for a sequence of positive integers to be the Steiner sequence

of a tree.

4 .. 3 .. 46 'I'heorern

Let S : So, SI, ••• , Sp -l be a sequence of p 2: 3 positive integers. Then S

is a Steiner sequence of a tree if and only if the followin g conditions are

satisfied:

(1) So = 1, SI = 2, S2 = 2;
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(2) S is a nondecreasing seque nce s uch th at 0 ::; Sk -I-l - Sk < 1 for 2 ::;

k < P - 1; and

(3) if 3 :::; n :::; Sp -l, e is the larges t pos itive integer s uc h th at Se( T ) = n,

and k is the largest positive integer such that Sk (1' ) = 11 - 1, then

l ~ n~l k.

Proof

Suppose T is a tree of order p ~ 3, with Steiner sequence S. Then since

K 1 , K 2 and Ps are subtrees of T it follows that S o = 1, SI = 2 and S2 = 2.

Hence (1) is established.

Let Si be a set of Sr-l vertices of T such that d(S') = r - 1, and let Sit

be a set of s, vertices of T such that d(5") = r . Take any v E 5". Then v

is an end-vertex of TSII. Let u be the unique vertex adjacent t o v in TSII.

Let SIll = Sit - {v} U {u}. Then d(S"' ) = d(S") - 1 = r - 1. T herefore

Sr -l:::; 15"'1 = s. .

Hence S is nondecreasing. We show now that Sk+ l (1') = SdT ) or Sk+ l {1' ) =

Sk(T) + 1 for all k, 1 :::; k < P - 1, which will establish (2). Suppose that

1 ~ k < P - 1 and Sk (T) = m. Then there exists a set 5' of m vertices of

T such that Ts' has k edges. Further, v E Si if and only if v E Vd Ts' ) . If

T contains a vertex u that is adjacent to a vertex w of 5' but u et V (Ts' ),

then

d({S - {w}) U {u}) = k + 1

so that Sk+l (T) = m. However, if the end- ver t ices of 1'5' are al so end­

vertices of T, then it follows, since k < P - 1, that there is a vertex x in
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V (1') such that x f/:. V (1'5') and x is adjacent with a vertex of 1'5" Hence

d(S' U {x}) == k + 1, so Sk+d1') S m + 1. We rnay thus conclude that

if 1 ::; k < P - 1, then Sk+I(1') == Sk(1') or Sk+l(1') == Sk(1') + 1. Hence

o ::; 8k+l - 8k ::; 1 for 2 S k < P - 1.

To establish (3) we note that if 2 S n S S(G) and k is the largest

positive integer such that Sk (1') == n then k == diarnn1'. Hence, if n 2: 3

and l is the largest positive integer such that Se(1') == n while k is the

largest positive integer such that Sk (1') == n - 1, then e == diarIln1' and

k == diamn-I1'. Hence by Theorern 4.3.13 we have that e~ n:l k.

Conversely suppose that S : 80,81, ... , 8 p-l is a sequence of positive

integers that satisfies conditions (1), (2) and (3) of the theorem. For

i == 1,2, ... , 8p-l let d, denote the largest integer such that Sdi (1') == 1­

Note since S is nondecreasing and since consecu tive terms of S differ

by at most 1, that di is defined for all i == 1, 2, ... , 8 p -l' By condition

(3) of the theorern, d.; S n:l dn - l for 2 S n S 8 p -l' Let m == l~ J

and let P == VOV1 ...Vd 2 be a path of length d2 . For i == 3,4, ..., 8p-l, let

Hi == Ui,OUi,IUi,2".Ui,di-di_l be a path of length d, - di - l. Let T be the tree

obtained from P U I!3 U ]-[4 U ... U IJ 3 p _ 1 by identifying V rn and the vertices

Ui,O for i == 3,4, ... , 8 p - l ' Then T has Steiner sequence S. 0
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4.3.47 Figure

The graph T constructed in Theorem 4.3.46.

4.4 Steiner distance ill GrapllS

Our discussion of Steiner distance is now broadened so as to include graphs

in general. 0 bviously, any results obtained for graphs in general will also

hold for trees.

Given a graph G of order p, and any subset S ~ V (G), the minimum

possible value for d(S) is IS1-1, this being the size of a tree wi th ISIvertices.
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Now d(S) = ISI - 1 for every subset S of G if and only if G is complete:

for otherwise, if S· = {u,v} where uv ~ E'(G), then d(S.·) 2: 2 = IS·\. The

related problern of determining the rninirnurn size of a graph G of order

p having the property that d(S) = IS I - 1 for all subsets S ~ V(G) with

\81 = n for a fixed n where 2 ~ n ~ p, was discussed in [COTZ1] .

4.4.1 Definition

Let nand p be integers with 2 ::; n ::; p. A graph G of order p is called

(n;p)-cornplete if it is of minirnurn size with the property that d(S) = n - 1

for all such S ~ V (G) with ISI = 71.

The goal is thus to determine the size of an (71;]J)-cornplete graph for

each pair n, p of integers with 2 ~ n ~ p. The following res ults appear

within a proof of a theorem by Harary [H2] and will prove to be useful.

4.4.2 Theorem

(i) If 2 ::; 2k = n < p, then C; is n-connected.

(ii) Let p be an even integer satisfying p > n = 2k + 1 2: 3. If G is the

graph obtained by joining diametrically opposite vertices of Gp in C;,

then G is n-connected . .

(iii) Let p be an odd integer such that p > n = 2k + 1 2: 3, and let

Cp be the cycle VO,Vl,V3, ... ,Vp -l,VO ' If G is the gr aph obtained by

adding (p~l) edges to C;, namely those edges joining Vi and "i» where

j - i = ~, then G is n-connected.
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The following lemma will aid us in the determination of the size of an

(n; p)-complete graph, following [COTZI].

4.4.3 Lemma

Let nand p be integers with 2 ::; n ::; p. Every (n; p)-cornplete graph is

(p - n + 1)-connected.

Proof

Suppose, to the contrary, that there exists an (n; p)-cornplete graph G which

is not (p-n+I)~connected.Then there exists a vertex outset X of cardinal­

ity p - n such that G - X has two or more components. Let 5 == V(G) - X.

Since 151 == nand (5) is disconnected, G is not (n; p) -v co tnp lctc , producing

a contradiction.

4.4.4 Note

o

If G is (n; p)- complete, where 2 ::; n ::; p, then b(G) 2: p - n + 1; since

otherwise if 8( G) < p - n + 1, then removing all the vertices adjacent to a

vertexof degree 8(G) would result in a disconnected graph or 1(1 implying

that G is not (p - n + I)-connected.

4.4.5 Theorem

Let nand p be integers with 2 ::; n ::; p. The size of an (n; p)- complete

graph G is n - ,1 if p == nand [(p-r;+l)p] if p > n.
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Proof

Assume p == n. Then a graph of order 71. which has minimum size having

the property that its vertex set induces a connec te d gr aph of s ize n - 1, is

a tree. Conversely any tree of order 71, is an (71,; ii)-coIIlplet e graph . Hence

a graph is (71,; n)-complete if and only if it is a tree of order n. Therefore

for p == n the size of an (71,; p)-cornplete graph is ii - 1.

Assurne, then, that p > n. By Note 4.4.4, if G is (n; ]1)- complete, then

8( G) 2:: p - 71, + 1. Therefore, if for given integers 71, and p , with 2 ::; 71, ::; p,

we can exhibit either a (p - 71, + 1)-regular (71.; P)-complete gr aph or an (71,; p)­

complete graph all of whose vertices have degree p - 71, + 1 except at most

one, which has degree p - 71, + 2, then the result will follow .

Suppose first that there exists an integer k 2:: 2 such that p == (71, - I)k .

Consider the graph kKn -1' Since any set 5 of 71, vertices of kl(n-1 induces a

connected graph, we have that d(S) == 11, - 1. Sin ce kl(n - l has k(71, - 1) == P

vertices and is (p - 71, + l l-regular, it is an appropriate (11,; p)-complete

graph. Hence assume that 71, - 1 does not divide p. Thus p == (n - I)q + r,

where 2 ::; T ::; 71" r i= 71, - 1, q ~ 1 and q and r ar c integer s. For each

such integer r, we describe the appropriate Harary Graph 11r which is an

(71,; n - 1 +.r)- complete graph with the desired properties. It will then

folow that Hr + (q - I)1(n-1 is an (71,; p)-cornplete graph with the required

properties, which will complete the proof.

Case 1) Assume r is even, so that that r == 2k ~ 2. By Theor em 4.4.2 (i), the

graph JJr ~ C~-l+r is r-cou ncct cd. Lot S Le a set of i i vert ices of It..

Since /V(Hr ) - Si == r - 1, removing the r - 1 ver t ices of V (Jlr ) - S

from Hr will result in a connected graph with vertex se t S; i.e., (5) is
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connected. Therefore llr is a '2k == r-regular, (n; n - 1 + r) -coIflplete

graph. Hence Hr + (q - 1)1(n -l has order p, is r + (q - l)(n - 1) ==

r + q(n -1) - n + 1 == p - n + I-regular, and is thus an (n ; p)-complete

graph with size p(p-;+l).

Case 2) Assume r is odd, so that r == 2k + 1 ~ 3. We consider t wo subcases.

Subcase 2.1) Assume n is even . Let fir be the graph obtained by joining

diametrically opposite vertices of Cn - 1+r in ci.; r ' By Theorem

4.4.2 (ii), fir is r-connected . The proof follows as in Case 1.

Subcase 2.2) Assume n is odd. Let H, be the graph obtained as follows. First

draw C~-I+r and label its vertices vo, VI' . . . , Vn- 2+r , Vo. Then,

to C~-I+r add the edges joining vertex Vo to vertices Vn-;-r and

V!!.±!: , together with the edges joining the vertex Vi to the vertices
2

V _+ !!..±L (where all add itions are t aken rnod ula n), for 1 :::; i <
• 2

n-;+r. By Theorem 4.4.2 (iii), Il, is r-con ncctcd and , again the

proof follows as in Case 1. 0

In Theorem 4.3.42 we establish ed a nece ssary and suff icient condition

for a nondecreasing sequence of positive integers to be an n-eccentricity

sequence of a tree. Although far less descriptive, a nece ssary and sufficient

condition for a nondecreasing sequence of positive integers with m distinct

values to be the n-eccentricity sequence of a graph , was es tablished in

[OT2] .

Theorem

A nondecreasing sequence S : al, a2, ... , a p with m distinct values is the

n-eccentricity sequence, n ~ 2, of a gr aph if and onl y if SOIne subsequence

18G



of 8 with m distinct values is the 71,- eccentricity sequence of some graph.

Proof

Suppose 8 is a sequence with m distinct values, which is the 71,- eccentricity

sequence of some graph C; then since 8 is a subsequence of it self, we have

8 is the n-eccentricity sequence of a graph and S has ni distinct values.

For the converse, suppose that S' is a subsequence of S that has the

same m distinct values as S and suppose that 8' is the n-ecccntricity se­

quence of some graph C with V(C) = {VI,V2' ... ,vp } . Let the distinct values

of 8' be given by t b t 2 , ... , t m . Let Si (1 ::; i ::; m) be the number of oc­

currences of i, in 8, and let s~ (1 ::; i ::; m) be the nurnber of occurrences

of ti in 8'. Now for each t i (1 ::; i ::; m) select a vertex Vi of G whose

n-eccentricity in G is tie Let 11i = Si - s~ + 1. In G replace VI with a

copy of K n1 and join each vertex of ](nl to all the vertices adjacent to VI

in G. Call this graph G r- Note that each vertex v of the copy of [(nl

has en(v, Gd = en(vI, G) = t 1 while for 2 ~ i ~ m, en(Vi , Cl) = ti. In

G I, replace V2 with a copy of K n2 and join each vertex of K n2 to all the

vertices adjacent to V2 in Cl' Call this graph G2. Again each vertex V of

the copy of I(nl has en(v; G 2 ) = t 1, while each vertex w of th e copy of [(n2

has en(w, G2) == t2 and, for 3 ::; i ~ m, en(vi' G2) == tie Continue in this

fashion to obtain the graph Gm. Then Gm has order p and has S as its 11.-

eccentricity sequence. o

The Steiner number S(G) of a connected graph G was introduced in

Definition 4.3.44, as the smallest positive integer m for which there exists

a set 8 of m vertices of G such that d(S) = p - 1. We now take a closer
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look at the characteristics of such sets S for which d(S) == p - 1, following

[01].

4.4.7 Definition

If G is a connected graph of order p and 8 is a set of 8 (G) ver t ices such

that d(8) == p - 1, then 8 is call ed a St. eiuer spanning set of G.

The following theorem shows that every connected graph has a unique

Steiner spanning set.

4.4.8 Theorem

Let G be a connected graph of order p ~ 2. A vertex v of G belongs to a

Steiner spanning set of G if and only if v is not a cu t-vertex of G.

Proof

Suppose that v is not a cut-vertex of G. Since G - v is connected, we have

for all nonempty subsets 8 of V (G - v) that da (8) ~ p - 2 . Hence v is

contained in every Steiner spanning set of G.

Let 8 be a Steiner sp anning se t of G. Then d(8 ) == ]J .- 1. Assume, to

the contrary, that 8 contains a cu t-vertex u of G. It follows t hat 8 does

not contain vertices from distinct com po nents of G - u , since otherwise if

VI and V2 are vertices of 8 belonging to distinct components of G - u, then

every connected ·subgraph of G that contains VI and V 2 rnus t also contain

the vertex u, which implies that d(8) == d(8 - {u}) == p - 1. T his implies

however, that 8(G) ~ 18 - {u}1 == 181 - 1, which contrad icts the fact that

S (G) == IS I. Let w be a vertex of a componen t of G - u w hich contains
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no vertices of S. Then any connected subgraph of minimum size that

contains S does not contain w, which implies that d(S) ~ p - 2, producing

a contradiction. Hence S contains no cut-vertices of G.

4.4.9 Remark

o

Since the only vertices of a tree T, which are not cut-vertices are the end­

vertices, Theorem 4.4.8 implies that the set S = V1(T) is the unique Steiner

spanning set of T. We also note that since there exists an efficient algo­

rithm for determining the cut-vertices of a graph (see [El]) it follows that

there exists an efficient algorithm for determining the Steiner number of a

connected graph.

Referring to Definition 4.3.45 we now determine the Steiner sequences

of the graphs ](p and Gp as stated in [01].

4.4.10 Theorem

The complete graph ](p on p vertices has Steiner sequence 1,2,3, .. "p, while

the cycle c, has Sk (Gp) = r~1for 0 < k ~ p - 1.

Proof

Since every pair of vertices are adjacent In !(p it follows trivially that

Sk(I(p) = k + 1 for 0 ~ k ~ p - 1.

Let rn, p be integers with 2 ~ m ~ p - 1, and let Gp be the cycle

Vl,V2, ••• ,Vp,Vl· Let S = {Vi ll Vi 2 , . , . , Vi ". } ~ V(Cp ) , where 1 ::; i 1 ::; i 2 ~

... ~ i m ~ p. Let l = max{i2 - i 1, i 3 - i 2 , ••• , i m - im - b i1 + P - im } . Then

d(S) = p - l. Note that rnax{d(S)} is obtained wh en f is as small as
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possible, and this occurs when l = r-;1· Hence

max{d(S)} = p - rE.-l·
m

Now given the integer k with 1 ~ k ~ p - 1, we seek the srnallest value for

m (i.e., Sk(Cp ) ) for which k = p - r-;1and p - r~1< k. Hence we seek

the smallest m such that r-;1= p - k; i.e.,

p
p - k 2 -

m

and .-L > P - k which implies that
m-I

p
m -I < - -.

p -k

'" (1) ..

-- (2)

Thus from (1) m 2:: pS, while from (2) m < pS + 1 and, since m is an

integer,

m = r-P-l.
p -k

o

In [CJ01] the periphery P(G) of a graph G was defined as the subgraph

of G induced by those vertices whose eccentricity in G equ als diam G. The

following characterization of peripheries, established in [CJ 0 1], we state

without proof.

4,,4,,11 Theorem

A graph G of order p is the periphery of a graph if and on ly if G ~ }(p or

the maximum degree 6, (G) of G is less than p - 1.
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Note that if G is a graph of order p, then G ~ K; if and only if

diarn G == 1. Further, 6.(G) < P - 1 if and only if rad G 2: 2. Thus, by

Theorem 4.4.11, a graph of order p is the periphery of a graph if and only

if diam G == 1 or rad G ;::: 2.

The following generalization of the periphery of a graph was introduced

by Henning, Oellermann and Swart in [HOS2]. We follow [HOS2] up until

and including Theorem 4.4.22.

4.4.12 Definition

Let n 2:: 2 be an integer. Then the n-periphery J:>n( G) of a graph G is the

subgraph of G induced by those vertices v of G with en ( v, G) == diamnG.

Hence P(G) == P2(G), that is, the 2-periphery of a graph is its periphery.

We now consider a generalization of Theorern 4.4.11.

4.4.13 Theorem

Let n 2:: 2 be an integer. A graph G of order p ~ n is the n-periphery of a

graph if and only if diarrlnG == n - 1 or radnG ~ n.

Proof

Suppose G is the n-periphery of some graph If and that radnG < n. Then

there exists a vertex v E V(G) such that en(v, G) == rad., G < n, This

implies that en ( v, G) == n-1, since for a set S' of n vertices containing v such

that d(S') == en ( v, G), we must have that 1's' is connected and hence d(S') ==

q(Ts') == n-1. Thus, if S is any set of n vertices of G that contains v, then

the subgraph (8) induced by 8 is connected. Let D be a set of n-vertices of
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If containing v such that du (D) = en (v, 11) = di amnII. Then every vertex

u of D has en(u,]f) = diaIlln/I. So D ~ V(Pn(Il)) = V(G). Thus since

D ~ V (G) contains v we have that (D) is a connected subgraph of G and

thus of H. However, then en(v,/l) = dl/(D) = 71, -1 = diarIlnlI. Therefore

the subgraph induced by every set of 11, ver t ices in If, and th er efore in G,

is connected. So diaIIlnG = 71, - 1.

For the converse, suppose first that diarnnG = 71, - 1. Then every set

of 71, vertices of G induces a connected subgraph and every vertex v E

V(G) has en(v, G) = diaIIlnG . Let 11 = G. Then necessaril y Pn(II) = G.

Suppose now that radnG ~ n. Let IJ = G + /(1 and suppose that v is

the vertex of degree p in II. Then en(v,I1) = 71, - 1. Let u E V(G).

Since radnG ~ 71" there exists a set of 71, vert ices of G, containing u, that

induces a disconnected su bgraph. However, if 8 is any set of 71, vertices of

G, containing u, then (8 U {v}) is connected, and has size n. Therefore

en(u,II) == n, Thus G == Pn(II). 0

4.4.14 Definition

A graph G of order p ~ n ~ 2 is self n- centred if radnG == di arnnG.

4 .. 4 e 15 Remark

Self 2-centred graphs are also called self-c entred graphs . Jordan [J 3] showed

that the only self-centred trees are 1(1 and /(2. By Theorem 4.3.26 we have

that a tree T is self n-centred, 71, 2: 3, if and onl y if T is a tree of order

p ~ 71, ~ 3 with at most 71, - 1 end-vertices. Thus if T is a tree of order

p ~ 71, ~ 3 with at most n - 1 end-vertices , then T is its own n-periphery.
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We now characterize those graphs which are n-p(~riphcrics of trees for

n ~ 2. Note that the n-periphery of a tree is acyclic and is thus a forest.

4.4.16 Theorem

Let F be a forest and n 2:: 2 an integer. Then F is the n-periphery of a tree

T if and only if .

2) n 2:: 3 and F is a tree with at most n - 1 end-vertices; or

3) F ~ !(m for some m 2:: n.

Proof

Suppose F is the n-periphery of a tree T. Suppose that neither 1) nor 2)

holds. We show F ~ ](m' Since the n-periphery of a tree of order p 2:: n

contains at least n vertices (by Corollary 4.3.8, and since each vertex of an

n-diametral set of T has eccentricity equal to diarn,}'), it follows that F

has order at least n. It remains to be shown that F contains no edges. Let

S be any set of n vertices of T such that d(S) = diamnT. Then S ~ V(F).

Since 2) does not hold, we have, by Theorem 4.3.7, for every v E S, that

S - {v} consists of end-vertices of T. Similarly for any vertex u E S where

u =f v we have that all vertices of S - {u} are end-vertices of T and hence S

consists of only end-vertices of T. Since every vertex of F belongs to some

set S of n vertices of T for which d(S) = diam.T', every vertex of F must

be an end-vertex of T. Since 1) does not hold, T ::p. ](2. Therefore no two

end-vertices of T are adjacent. Hence F contains no edges and so F ~ Km

for SOII1C m 2: n.
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For the converse, suppose first th at 1) or 2) holds. In either case let

T = F . From Remark 4.4.15 it follo ws that Pn(T ) = F, so t hat F is the

n-periphery of a tree in this case. Suppose now that F sa t is fies 3). Then

let T ~ ](l,m, label the end-vertices of T, VI, V2, ••• , V m and label the ver­

tex of degree m in T, u. Since m 2: n for each Vi (1 S i sm) there

exists a set Si consisting of Vi and n - 1 other end-vertices of 'T such that

d(Sd = n = diam.i?'. Therefore for 1 S i :::; m, en(Vi, T) = diarnnT while

en(u, T) = n - 1. Thus Pn(T) ~ !(m = F and F is the n-pcr iphery of the

tree KI,m. 0

We saw in Theorem 4.3 .32 that for a tree T, Cn-I(T) ~ Cn(T ). We now

consider for an integer n 2:: 3, relationships between the (n - l j-centre and

n-centre of a graph as well as rclntiouships between t.he (n - - l l-pcr iphery

and n- periphery of a graph. The following result dernonstratcs that the

(n - 1)-centre of a graph is not in general contained in the n- centre of that

graph.

4.4.17 Theorem

For every integer n 2:: 4, there exists a graph Hn such t h at

Proof

Consider the 7-cycle C = VIV2V3V4V5VGV7 Vl. Add n -l new ver tices Ul, U2, ••• , Un-l

to C and join Ut, U2, ••• , U n -2 to VI and U n -l to V5. For i = 1, 2, ... , n - 3 sub­

divide the edge VI Ui twice and let VI, Xi, Yi, u, be the path th us produced.

Let fin be the resulting graph.
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Observe that diarnnHn = 3(71 - 3) + 2 + 2 + 2 = 371 - 3 and radnHn =

3(71, - 3) +4 + 1 = 371 - 4. The vertices with n-cccentr icity equal to diamnHn

are UI, U2, ... , Un-I, V2, V3, V4, VG, V7' All the remaining vertices of 1In have 71­

eccentricity 371 - 4. Figure 4.4.18 a) shows 1fn where vertices of rnaxirnurn

n-eccentr icity are darkened. Note also that diamn-1lfn = 3(71 -3)+4+1 =

371 - 4 and radn-1Iln = 3(71 - 3) + 4 = 371 - 5. The vertices of 11n with

(71, - I)-eccentricity equal to diamn- 11f n are Ut, U2, ... , Un-I, V2, V3, V4. All

the remaining vertices have (71 - I)-eccentricity 371 - 5. Figure 4.4.18 b)

shows H n and vertices of maximum (n -1)-eccentricity have been darkened.

o
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H :
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4.4.18 Figure

The graph H; of Theorem 4.4.17

The next result shows that in general the (n - I)-periphery of a graph is

not contained in its n-periphery where n ~ 3.

4.4.19 Theorem

For every integer n > 3 there exists a graph Gn such that Pn - 1 (Gn ) et
Pn ( Gn ) .
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Proof

Consider the complete bipartite graph ](n,n with partite sets U = {uo, Ut, ... , Un-I}

and V = {VO,Vl, ... ,Vn-l}. Join a new vertex v to every vertex in U and

delete the edges of the type UiVi for 0 ~ i ~ n - 1. Finally subdivide

each edge of the type UiVj for 0 ~ i,Jo ~ n - 1 with i -.::J j exactly once

and let Wij be the vertex of degree 2 that is adjacent with u, and vi . Let

Gn be the resulting graph. Then en(v,Gn) = d({v} U {VO,Vl, ...,Vn- 2}) =
1+2(n-1) = 2n-1, en(vi,Gn) = d(V) = 2(n -1)+4 = 2n +2, en(ui,Gn) =
d({Ui} U {Vi,Vi+I, ... ,Vi+n-2}) = 4 + 2(n - 2) = 2n for 0 ~ i ~ n - 1

where addition of indices is taken modulo nand en(wii, G n ) = d({wii} U

{Vi,Vi+b ... ,Vi+n-2}) = 5+2(n-2) = 2n+ 1 for 0::; i.i : n-1 and i -li.
Further, en-l(V,Gn) = d({v} U {VO,Vl, ,Vn-3}) = 1 + 2(71 - 2) = 2n-

3, en-t{Vi,Gn) = d({Vi}U{Wii}U{Vi+l , ,Vi+n-3}) = 5+2(71 -2) = 2n-1

for j -I i where again addition of indices is taken mod ulo n, en-dUi, Gn ) =
d({ud u{v.}U{Vi+l, ... ,Vi-t-n -3}) = 1 -1-2(n -:3) = 2n -2 forO ::; £ S n -1 and

en-I(Wij,Gn) = d({Wii} U {Vi} U {Vi-t-l, ... ,Vi+n-3}) = 5 + 2(n - 3) = 2n-1

for 0 ~ i,j ~ n - 1 where i -.::J j. Therefore Pn-1(Gn) = ({V U {wii}}) for

o ~ i,j ~ n - 1 where i -I j while Pn(Gn) = ({V}), and hence it follows

that

o
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n

v

u v
n n

4.4.20 Figure

The graph Gn of Theorem 4.4.19.

However, if T is a tree, then the next result shows that there is a relationship

between the (n - I)-periphery and n-periphery of T.
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4.4021 Theorem

Let T be a tree and 71. ~ 3 an integer. Then Pn - l (T) C r; (T).

Proof

If T has at most 71. - 1 end-vertices, then by Corollary 4.3 .6, Pn(T) = T,

so the result follows in this cas e. Suppose now that '1' has at least n end­

vertices. Let Sn-l be an (n - l) -diarnet er set. By Theorem 4.3.18, an

n-diameter set Sn containing Sn-l can be obtained fro m Sn- l . Since the

union of all (71. - I)-diameter sets (or n-diame ter se ts ) is th e vertex set of

the (71. - I)-periphery (or n-periphery ) of T it follows that

o

We showed in Theorem 4.3 .13 that if 71. ~ 3 is an integer and T is a

tree, then diamnT ~ n:l diamn-1T. However, this inequ ality does not hold

for graphs in general. For exarnple, for th e grap h Gn described in T heorem

4.4 .19 , diamnGn = 271. + 2 while diam.j.., Gn = 2n - 1. So, in this case,

diamnGn = ;~!i cliamn-l Gn > n: l diarllnG n. However a bound for the 71.­

diameter of a graph in terms of its (71. - Ij-diarneter was es tablished in

[HOS2].

4,,4,,22 Theorem

Let G be a connected graph and n ~ 3 an integer . T hen

di G 11, + 1 .iam., ~ --dlamn_1G.
71. -1
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Proof

Let S = {VI, V2, ••• , vn } be an n-diameter set of G. For 1 ~ i ~ . n, let

Si = S - {Vi} and let T; be a tree of min imum size containing Si. Construct

an Eulerian multigraph 11 by duplicating every edge of 1'n. Observe that

q(Td < diamn- l G for 1 < i <nand q(I1) <2diamn- l G.

We now construct n - 1 connected subgraphs G I , G2 , ••• , Gn- 1 (from

T1 , T2 , ••• , Tn - 1 and 11) each of which contains the vertices of S. Let C be

an Eulerian V - V circuit of If. Let Vii' Vi:p ... , Vi.. _ l be the vertices of Sn in

the order in which they appear on C for the first time. Forj = 1,2, ... , n-2,

let Rj be a Vij - Vij+l trail of C between the first appearance of Vii and the

first appearance of Vi i +l • Let Rn - 1 be the Vi.._l - Vii trail of C between the

first appearance of Vi .._
l

and the first appearance of Vi i. Since Ti j contains

Vij+p the edges of.Ti j and R, induce a connected graph G j for 1 ~ j ~ n - 2.

Further, since Vii is a vertex of T,.. _1 , th e edg es of 1i
ll

_
1

and R n - 1 also induce

a connected graph Gn- 1 •

Note that each one of the connected graphs Gj (l ~ j S n - 1) contains

the vertices of S. IIence diarnnG ::; q(Gj) for 1 ::; j < n - 1. Therefore

n-l

(n - l)diamnG < L q(Gi )
i=1

n-1 n-1
< L q(1i} + 2q(1~} = L q(Td + q(lI)

i=1 i=1

< (n - 1)diamn_1G + 2diamn_IG = (n + 1)diamn _ 1G,

o

The authors of [HOS2] showed that the bound presented in Theorem
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4.4.22 is sharp. Consider for n 2: 4 the complete bipartite graph Kn,n with

partite sets U = {UbU2, ... ,Un} and V = {Vl,V2' ••• 'Vn } . Let Fn be the

graph obtained from Kn,n by deleting edges of the type UiVi for 1 ::; i ::; n.

Observe that diamnFn = d(V) = n - 1 + 2 = n + 1 and that diamn-1Fn =
d(V - vd = n - 1. Hence diamnFn = ~~~ diamn-IFn. For n = 3, the graph

F3 of Figure 4.4.23 has diam3F3 = d({VI,V2, Ul}) = 4 and diam2F3 = 2,

hence diam3F3 = 2diam2F3.

4.4.23 Figure

It was conjectured in [COTZ1] that Corollary 4.3.15 can be extended to all

connected graphs; i.e., if n 2: 3 is an integer and G is a connected graph,

then diamnG ::; n~1 radnG. However Henning, Oellermann and Swart dis­

proved this conjecture in [HOSI] with the following result.
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4.4.24 Theorem

Let n ~ 3 be an integer. Then there exists a graph Gn such that

. 2(n + 1)
dlarnnGn = radn Gn·

271 - 1

Proof

Let H be the complete bipartite graph 1(n,n with partite sets U = {UI' U2, ... , un}

and V = {VI, V2, ••• , vn } . Let Hi; be obtained from H - {Ui Vi : 1 ::; i ::; 71}

by joining a new vertex v to every ver tex of U. Let k bea posi tive integer.

Let Gn be obtained from Hn by subdividing k - 1 times , every edge of the

.type VUi for 1 ::; i ::; n and subdividing 2k - 1 times, every edge of the type

UiVj for 1 ~ i, j :::; nand i i- j.

Then diamnGn = d(V) = 2k(71 -1) + 4k = 2k(71 + 1). Furthe r , radnGn =
d({v} u (V - {VI}) = 2k(71 - 1) + k = k (271 - 1) . lI en ce

. 2( 11, +1)
dl aIIl,.G,. = radn G,. .

211, - 1
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4.4.25 Figure

The graph c, of Theorem 4.4.24.

It is immediately evident from Theorem 4.4.24 that there exists a graph G

such that diam-C = ~rad3G. The following result from [HOSl]shows that

t~e 3-diameter of a graph never exceeds ~ths its 3-radius.
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4.4.26 Theorem

If G is a connected graph of order p 2: 3, then

8
diamjC < - rad3G .- 5

Proof

Assume, to the contrary, that there exists a connected g-raph G such that

diamjC > ~radsG. Let VI, V2 and Vs be three vertices of G such that

d({VI,V2,VS}) == diamjC, and let Vo E Cs(G).

Then d( {Vi, Vi' vo}) :::; radsG for 1 :S i < j :::; 3. Let i: be a Steiner

tree for {vo, VI,V2, Vs} - {Vi} for i == 1,2,3. Since q(Td :::; rad3G, it follows

that q(Ti ) < ~diamsG. The tree 1; together with a shortest path from

vertex Vi to a vertex of T, contains the vertices VI, V2 and Vs, therefore

diam-C ::; q(Ti)+d(Vi' 1i) < ~diarn3G +d(vi' 1i) . Thus the shortest distance

from Vi to every vertex of T, must be greater than ~diaIIl:3G for i == 1,2,3.

In particular d(v». vi) > ~diamsG for 0 :::; k < j :::; 3.

Note that T, cannot be a path; otherwise q(Td > ~diam3G+ ~diam3G ==

~diam3G which contradicts our assurnption. Hence T, has exactly three

end-vertices. Let PI be the V2 - Vs path in TI, P2 the VI - Vs path in T2 and

Ps the VI - V2 path in Ts. Then at least two of the paths PI , P2 and Ps have

size at least ~diam3G, otherwise if say Pz and Ps were both of size less than

ldiamsG then we could find a Steiner tree T' for {VI, V2, V3} with size less

than ldiamsG + ldiamsG == diarnjC, which is a contradiction. Suppose P2

and Ps are such paths. Let i 2 == d1'2(VO' P2 ) and i 3 == d1'3(VO' P3). Then
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5 I Id' G< - d iarl13G - - d iam3G = - larn3 .
8 2 8

Similarly £3 < ldiam3G.

Let o, be the VO -Vi path in12for i = 1,3. Thcn q(1 i) + q(Qd ~ diaro3G

3
for i = 1,3. Hence 2: q(Td + £2 = q(Td +q(T2 ) +q(T3 ) + £2 = q(Td +q(T3 ) +

i =l

q(Qd + q(Q3) ~ 2diam3G. T hus

3rad3G + £2 2: 2diarn3G, so th at

15 d· G Id ' G£2 2: 2diam3G - 3rad3G > 2dian13G - 8 i arn , = 8 iarn, .

This contradiction establishes th e theorem. o

From Theorem 4.4.24 we also kno w th at there ex ists a graph such that

diamjC = 1~rad4G. Following [lIO SI) we show ncxt t ha t th e 1- d ia rnete r of

every connected graph is bounded above by \Oths its 4-radius.

4.4.27 'l'heorem

If G is a connected graph of order p 2: 4, then

Proof

Assume, to the contrary, that t here exists a graph G of order at least 4, for

which diam4G > 170 rad4G . Let D = {Vl,V2 ,V3 , V 4 } be a -l-d iurnctcr se t ; i.e.,

d(D) = diam.C, Let Vo E C4 (G). For eac h i wi th 1 ::; i ::; 4, let T; be a

Steiner tree for o, = (D - {vd) U {vo}. T hcn since 1: contains 1)0 E C4 (G) it
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follows that q(Td ~ rad4G < 17odiam4G. Taking Ti ; together with a shortest

path from Vi to Ti, we obtain a tree containing D and hence of size at least

dlarIl4 G .. Therefore UiUIIl.1G ~ q(1i) -1- d (Vi ' 1i) < {udia1l14C; I d(Vi' 7i), hence

d(vi,li) > diamjC - 17odiarll4G = 130uiarn4G. In particular this implies that

~ (1)

for 0 < i < j ~ 4.

We show next that every Ti (1 ~ i ~ 4) has exactly four end-vertices,

namely, the vertices in Di , Observe first that T, is not a path, otherwise by

(1), q(Td > 3(130diam4G) == todiarn4G, which contradicts our assurnption.

Suppose now that some T, has exactly three end-vertices Vi l' Vi 2 and Via'

each of which is necessarily in D;.. Let V;'4 be the rernaining vertex of D, in

T; and let w be the vertex of degree 3 in Ti, We rnay assurne that Vi, .lies

on the Vi! - w path of Ti. Let i 1 be the length of the Vii - Vi, path of Ti,

and i the length of the Vi, - w path. Further let i z and i 3 be the lengths

of the Vi'J - wand Via - w paths, respectively (see Figur.e 4.'1.28).
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T. :
1 - - - - - - ----..;..,----0 V'.

l ~

4.4.28 Figure

Since by (1), d(Vi'V;} > 130diam"G for 0 ~ i < j ~ 4, it follows that each

of l2 + l3' l + l2 and l + l3 is greater than 130 diarrr.C. Hence l + l2 + l +

l3 + l2 + l3 == 2(l + l2 + e3 ) > 190diam4G, or equivalently e+ e2 + e3 >

290diam-tG. Since by (1), e1 > 130diam"G we now have q(T;) == e+ e1 + e2 +
f.. 3 > 130diam-tG + 290diarn-4G == ~~dialn-4G > i~diam-4G, which produces a

contradiction. Hence T, has exactly four end-vertices, namely, the vertices

Suppose vo, Vi" Vi'] and V'3 are the end-vertices of Ti, Let Pi . be the
1
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shortest path from vt, to a vertex of degree at least 3 in T, for 1 ~ j ~ 3.

Further, let Pio be a shortest path from Vo to a vertex of degree at least

3 in Ti, We may assume that Pi! (PiJ is a Vi! - ui, path (Vi 2 - w, path,

respectively) and that Pi 3 (PiJ is a Vi 3 - Ut path (vo - Ut path, respectively).

It is possible that Vi = uu, Let Pi be the ii, - ui, path in Ti. For i = 1,2,3,4

and j = 0,1,2,3 let q(Pii ) = lii' Further, let q(Pd = f i , and observe that

f i could be zero.: T, is illustrated in Figure 4.4.29 ,
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4.4.29 Figure

From (1) it follows that each of l;1+l;~p l;1 +l;+l;3 and z., +l; +l;3 is greater

than 130diam~G. Thus 2(41 + l;1 + 43 + l;) > 1~diam4G, or equivalently,

41 + l;'J + 43 + l; > iodiam4G. Since q(Td < 170diam4G, 'we conclude that

~o = q(1i) - (£;1 + £;2 + ~3 + £;) < (170 - 290)diam4G = dia7.aG. Further

b (1) D. + I. > ~d' G d P. > (~ - !)d' G - diam.G Ny 't.i3 (",jo 10 ram, an so <-i3 10 " ram, - 20 • ow,

interchanging the roles of 40 and 43 in the above argument, we obtain

D. < diam;G and P. > diamiG Hence for i = 1 2 3 4 we have
<-i3 4 (",jo 20' , , ' .

diam"G < r. < diam"G
20 <-io 4'

diamiG < e. < diamiG
20 <-i3 ..'

and
-- (2)

For i = 1,2,3,4 let Tt be the tree obtained from 1i by deleting all the

v,ertices of Pio except Ui and let Tt be obtained from T, by deleting all the
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vertices of Pia except Ui. Observe from (2) that

We now consider two cases.

C 1) S tl t f . 1 2 3 A } 0 > d ia lll 'lG T lase uppose la or every l == , , ·, '1 we rav e (..io _ - --la - . ien

'" (3)

Let i be some fixed element of {I, 2, 3, 4}. Observe that 1~1 together

with the Vii - Vi2 paths of T, produces a connected graph containing

the vertices of D. Hence

Similarly it follows that

and

Frorn (5), (6) and (7) we obtain

while from (4) we obtain

which produces a contradiction .
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Case 2) Suppose that for some i E {I, 2, 3, 4} we have £iu < d ia~l~/G . Since

£. + £. > ~diarD4G e· > (.1. - .l) d iam4G = d ia r5n
4 G " Hence

ro l3 10 '13 10 10 \

. ( 7 2 ) d iam,G
q(T !' ) = q(T..) - e· < - - - diam4G = .

l l l3 10 10 2

As in Case 1

'" (8)

q(T:~) + e; + £i2 ~ diarIl4 G',
q(T::) + ei 1 + t, + ei o ~ diaru. C ,

and q(1¥~) + ei2 + t; + t; ~ cliarIl4G.

Thus by (9), (10) and (11) we have

while from (3) and (8) we obtain

which produces a contradiction .

Therefore dlamzC :::; 17°ra d4G for all connected graphs G of order p ~ 4.0

In view of Theorerns 4.1.24, 4.4 .26 and 4.4.27, the follo wing conject ure

appears in [HOS1].

For all integers n ~ 2 and every connected graph G of order p ~ n

. 2( n +1)
di am. G < ----- - - ra cl G

H - 2n _ 1 n
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4.4.31 Definition

A vertex v of a connected graph G is si-eccentric if there exists a vertex u

in Cn ( G) and a set S of n vertices of G that contains both u and v such

that d(S) - en(u, G) = radnG. The subgraph induced by the n-eccentric

vertices is called the n-eccentricity of G and is denoted byECn (G).

We now study relationships between the n-periphery and n- eccentricity

of connected graphs. Since trees are the simplest connected graphs we begin

by comparing their n-peripheries and n-eccentricities. The following result,

established byBuckley and Lewinter in IDLl], is stated here without proof.

4.4.32 Theorem

If T is a tree, then EC2 (T ) = P2(T) (i.e., the eccentricity of a tree is equal

to its periphery).

The following extension of Theorem 4.4.32 was established by Oeller­

mann and Swart in [OS1]

4.4.33 Theorem

Let n ~ 3 be an integer and T a tree of order at least n. Then Pn(T)

ECn(T).

Proof

If T has at most n -1 end-vertices, then, by Corollary 1.3.6, en (v, T) = q(T)

for all v E V(T) and hence Cn(T) = Pn(T) = T. Let w be any vertex ofT.
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If S is any set of n vertices that contains wand all the end-vertices of T,

then S must contain a vertex u ::j=. w. Now d(S) = en(u, T) = radnT, and

u belongs to Cn(T). Hence w E ECn(T) which irnplies that T = ECn(T);

i.e., Pn(1') = ECn(1').

Suppose now -t hat T has at least n end-vertices. We show first that

Pn(T) ~ ECn(T). Let v be a vertex of Pn(T) and Sn an ri-diarnoter set of

T containing v. Then Sn ~ VI (1'). So every vertex of 8n is an end-vertex

of Ts,. . For each vertex x in Sn let P; be the stem of Ts" which contains

the vertex z , and let lx denote the length of Px. Suppose u is a vertex of

Sn such that lu = min{ex : z E Sn} . Referring to Definition 4.3.33, we

have by Lemma 4.3.29 that Cn(Ts,,) ~ (1Sra )lu. Hence by Theorem 4.3.31,

(Ts,Jlu "J Cn(T). Therefore

"J (1)

We show next that radnT = q(Cn(T)) + (n - l)eu • . Let S~-1 be any

(n - I)-diameter set of T. Then, by Theorem 4.3.18, there exists an n­

diameter set S~ of T such that S~ => S:. _I' Let a be the vertex of S~ - S~_l.

For each vertex z E S~, let e~ be the length of the stern of 1S:
l

containing z:

Then necessarily l~ = min{e: : z E S~}, otherwise, if say y E S~ has e~ < e~

then y ::j=. a and d(S~_1 - {y} u {a}) > d(S~_I)' which is not possible. As

before diamnT = q(Ts~) = q(Cn(T)) + ne~. Thus fro m (1) e~ = lu, and

diamn_ l T = q(T~n) - e~ = radnT. So radnT = diamn-1T == diamnT - eU. =

q(Cn(T)) + nlu - eu = q(Cn(T) + (n - l)e u •

Let y ::j=. v be a vertex of Snl and suppose w is a vertex on PI! such that

dTSn(y,w) = tu. Observe that w is a vertex of (Ts,Jf u • So w E V(Cn(T)).

Further, Sn - {y} u {w} is a set of n vertices of T that contains both

v and w such that d(Sn - {y} u {w}) = q(Ts,J - eu == diaIIlnT - l u ==
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q(Cn(T)) + (n - 1)i u == radn1'. Therefore v E V(ECn(1')). Hence

Pn(T) ~ ECn(T ). -- (2)

We now show that ECn(1') ~ Pn(1') . Assurne, to the contrary, that

there is a vertex v E V(ECn(1')) such that v rt V(Pn(1')) . Thus there

exists a vertex u E V(Cn(1')) and a set S of n vertices containing u and v

such that d(S) == en(u,T) == radn1'. By Theorem 4.3.7, v is an end-vertex

of T, since T has at least n end-vertices. Observe that u is an end-vertex of

Ts ; otherwise u belongs to 1's-{u}(= 1s)and, by Theorcrn 1.:3.11, S - {u}

is an (n - I)-diameter set of T which contains v. By Theorem 4.3.18,

there exists some n-diameter set of T which contains S - {u} and hence v.

However, this contradicts our assumption that v Ft V(Pn(T)).

Let S' be an n-diameter set of T such that IS' n S I is as large as possible.

Then Si ~ V1(T). Since v E S is not contained in any n-diameter set of T,

it follows that Si - S =1= 0. In fact, since u rt S', IS' - Si ~ 2. Let i v be the

length of the stem P; of 1~ which contains v. Suppose P; = (v ==) VOV l •.. Vm

(== w). Observe that the shortest path from every vertex y ES' - S to

a vertex of 1's must have length at most i v ; otherwise if i y > i v then

d(S - {v} u {y}) > d(S) == en(u,1') = radn1', which is not possible. Let

p== (u ==)UOU1 ••• Uk be the stem of 1's which contains u. Let 1'1 and 12 be

the two components of T - Uk-lUkl and assume that u E V(T2) . By our

choice of P, U is the only vertex of S in '12. Since u E V(Cn(T)) we have by

Theorem 4.3.31 that U E V (1's'), hence it follows that 12 contains a vertex,

z say, of S' - S such that the z - v path in T contains' P .

We show now that no vertex of P; except possibly w belongs to 1'SI.

Clearly Vo == v does not belong to 1'SI since v does not belong to any

n-diarneter set of 1'. Assurne to the contrary, that there ex is ts a vertex
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a E S' - S such that Vi belongs to the a - u path in Ts' . vVe may assume

that i < m is the smallest integer such that Vi belongs to the a - u path

of Ts', where a E S' - S; i.e., if J < i then Vj does not belong to Ts'. The

Vo - Vi path must have length less than the a - Vi path in Ts ' ; otherwise

d(S' - {a} U {vo}) 2: d(S') = diarnnT and therefore 5' - {a} U {VD} must

be an n-diameter set of T that has more vertices in cornrnon with S than

S'. Observe that the a - Vi path has no vertex of Ts as an internal vertex;

otherwise if b is such a vertex, then since a t/:. S, there must exist a vertex

yES such that the y - Vi path in Ts con tains b; however then VOVl'" Vi is

a path from V to a vertex of degree at least 3 in 1s which is impossible.

However, then d(SU {a} - {v}) > d(S) = cn(u,T) which is not possible.

Therefore no internal vertex of Pt) belongs to 1s' ·

Suppose now that T1 contains a vertex a E 5' - S. We show that the

stem Q of Ts' containing the vertex a, does not contain a vertex of Ts as

internal vertex. Suppose Q = (a = )aOal ... a; and that sorne (lj belongs to

Ts . Choose J to be as srnall as possible. Then there exists an end-vertex

x E S - S' of T such that aj belongs to the x - u path in Ts . As in the case of

V we can show that aj is not an internal vertex of the stern of Ts containing

x, and no internal vertex of the x - aj path belongs to 1's,. However, then

d(x,aj) ~ d(a,aj) which implies that d(S' U {x} - {a}) ~. d(S') == diamnT.

So S' U {x} - {a} must be an n-diameter set of T that has more vertices in

common with S than S', contrary to assurnption. Therefore 1\ contains no

vertex of S' - S. Hence 12 must contain at least two vertices of S' - S. Let

z be a vertex of S' - S. Since the shortest path from z to a vertex of Ts

has length at most it) and since u belongs to Ts' and to S, the length of the

stem of Ts' containing z is at most it). However, then d(S' - {z} U {v}) 2:
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d(S') = diarnnT. So (S' - {z}) U {V} is an 71,- diamet er set of T which has

more vertices in common with S than S', again a contradiction. Hence

Thus (2) and (3) together imply th at ECn(T ) = Pn(T ).

'"'"' (3)

o

It was shown, by Reid and Weizhen Gu in [RW1], that there exist graphs

for which the periphery is properl y contained in its ccccn t ricil.y and vice

versa. So Theorem 4.4.32 cannot be extended to graphs in general. The

following results show that Theorem 4.4 .33 cannot be extended to include

graphs in general (cf. [OSI]).

4.4.34 Theorem

For every positive integer n 2 3 there exists a graph c ; su ch th at P; (Cn ) ~ ECn(Gn).

Proof

Consider the complete bipartite gr aph l (n,n with U = {uo, Ul, " ' , Un-I} and

V = {VO, VI, ••• , Vn-I} as partite sets. Join a new vertex v to every vertex in

U and delete the edges of the type UiVi for 0 ::; i ::; 71, - 1. Now, subdivide

each edge of the type UiVj for 0 ::; i, j ::; 71, -1 and i =J j exactly once. Let Wi,j

be the vertex of degree 2 that is adjacent to Ui and vi' Le .~ C n be the graph

thus obtained. Then, en(v, Gn) = d( {v, Vo, V2, ... , Vn -I}) = radn Gn = 271, -1,

while en(vi, Gn) = d(V) = diarnnGn = 271, + 2, for 0 <i -: 71, - L It

is easily verified that Cn( Gn) = ({v} ), Pn(Cn) = (V ). Take any Vi E V,

then d({Vi,V,Vi+2, ... ,Vi+n_I}) = 271, - 1 = radn Gn for 0 S i S 71, - 1,

where addition of indices is taken rnadu lo n . Hence Vi E V (E Cn(Gn))
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for 0 :::; i :::; n - 1. That Wl,2 E E(Cn(Gn)) may be seen by noting that

d({Wl,2, V,Vo, V2, ... ,Vn-2}) == 2n - 1 and it follows by symmetry that Wi,; E

V(ECn(Gn)) for 0:::; i,j :::; n - 1 and i 1= j. Hence £'Cn{G n) == (V U {Wi,; :

o :::; i,j :::; n-1 and i 1= j}). Therefore it is clear that Pn(G.n)~ECn(Gn).D

4.4.35 'I'heorem

For every positive integer n 2 3 there exists a graph Il; such that ECn{Hn) ~ Pn(Hn).

Proof

Let Ql, Q2, ... , Qn-l be n - 1 cycles of length 5 where Qi == Vi,OVi,l ···Vi,4Vi,O

(1 ~ i ~ n). Let Hn be obtained by identifying the. n - 1 vertices

VI/O, V2,O, ... , Vn-I,O is a single vertex Vo. Then en(Vo, IIn) == d({vo, V12, V22, ... ,Vn- I,2}) ==

2n-2 == radnHn, while the n-eccentricity of any vertex of IIn-{vo} is2n-1,

hence diamnHn == 2n -1. Thus Cn(Hn) == ({vo}) while Pn(Iin) == Iin - Vo.

Further, since for all vertices v of the type Vi,2 and Vi,3 for 1 :::; i :::; n - 1

there exists a set S of n vertices of II n including Vo and v such that

d(S) == radnHn, it follows that ECn(l!n) == ({Vi,2,Vi,3 : 1 ::; i ::; n - I}).

Hence ECn(Hn) ~ Pn(Ifn). 0
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4.4.36 Figure

The graph Hn of Theorem 4.4.35

.4.4 .31 Theorem

For every positive integer n ~ 3 there exists a graph F; such that Pn (Fn ) et.
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Proof

Let RI,R2, ... ,Rn- 1 be n -1 cycl es of length 7 where R; == Vi ,OVi,I",Vi ,6 Vi,O

for 1 ~ i ~ n - 1. Let Fn be obtained by identifying the n - 1 vertices

VI,O, V2,O, ... , Vn-I,O in a single vertex Vo and then joining a new vertex u

to VI,I' Then again it can be shown that Cn(Fn) == ({vo}),ECn(Fn) ==

({Vi,S,Vi,4 : 1 ~ i ~ n - 1}) and Pn(Fn) == ({Vi ,S,Vi,4 : 2 :S i :S n - 1} U

{U,VI,4})' Since u belongs to Pn(Fn) but not to ECn(Fn) and VI,S belongs

to ECn(Fn) but not to Pn(Fn) the t heorem now follows . 0

485 An Algorithm and a Heuristic for the
Steiner Problern in Graplls

Given a graph G and a nonempty set S of vertices of G , we no w consider the

practical problem of determining the Steiner distance d(S) of S, as wel,l as

the problern of locating a Stc ine r tr ee with s ize d(S), which is a s ubgraph

of G. Our discussion here will be extended to include weighted graphs,

hence the theory discussed thus far in Chapter 4 reduces to the special case

where every edge has weight 1. We ca ll th is problem th e Sl.c inc r Problem in

Graphs (abbreviated SPG). The SPG was forrnally formulat ed by Winter

[W1] as follows:

GIVEN: A weighted graph G == (V(G), E(G), c) with p vertices, m edges,

the weight function or cost function c : E( G) ~ R, and a subset S ==

{VI, V2, ..., Vn} ~ 'v (G) of n ver t ices .

FIND: A weighted graph Gs which is a s ubgraph of G s uch that there is a
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path in Gs between every pair of vertices of S, and the sum of the costs of

the edges of Gs is a minimum. (We call this sum the cost of the graph Gs.)

A number of exact algorithms for the SPG exist. We shall mention a few

here and consider an algorithm described by Dreyfus and Wagner [DW1)

in some detail. No polynomial time algorithms for solving the SPG are

likely to exist, since Karp [Kl] showed that this problem is NP-complete.

Thus all known algorithms are only useful for small values of n. Hence it is

of practical importance to obtain approximation methods which find trees

whose costs are close to optimal. There are a number, of such heuristics

which are known, and we shall discuss one which was presented by Taka­

hashi and Matsuyama in [MTl]. For a detailed survey of known algorithms

and heuristics for the SPG see [WIJ.

We examine first some special cases of the SPG, see [Wl ].

4.5.1 Special Cases

Let G = (V (G), E(G), c) be a connected graph with p vertices and m edges

and cost function c : E(G) -+ R. Let S ~ V(G) be a nonempty set of n

vertices of G.

a) Suppose G contains edges with nonpositive weight. Let F = {e E

E(G) : c(e) ~ D}. Consider the network Gobtained by the contrac­

tion of G along the edges in F. Given the solution c, in C, we obtain

the solution Gs in G by adding to c, the edges of F. When the edge

costs are all positive, every solution is a tree spanning S. Hence for

the rest of this discussion we may assume, without loss of generality,
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that c(e) > 0 for all e E E(G).

b) If \81 == I then Gs consists of a single vertex.

c) If 18 \ == p then the SPG reduces to the well-known minimal spanning

tree (abbreviated MST) problem. Polynomial time algorithms for

this problem are known (e.g. Kr uskal [K2] or Prim [PI]).

cl) If \8\ == 2, then the SPG reduces to the well-known shortest path

problem. Polynomial time algorithms for this problem are known

(e.g. Bellman [B3] or Dijkstra [DI]).

For the rest of Section 4.5, G is assumed to be a weighted connected graph

with cost function c : E(G) ~ R, 2 ::; n ::; p, and for the reasons given

in a) above c( e) > 0 for all e E E(G). Also 8 ~ V (G) is ass umed to be a

nonempty set of n vertices of G.

4.5 .. 2 Definition

Let G be a graph with order p and size m, and let S ~ V' (G) be any

proper subset of vertices of G. Then a Steiner tree Gs for the set S, in

G, is a connected subgraph of G which has minimurn cost arnong all such

subgraphs whose vertex set contains 8 . (That Gs is a tree is obvious.)

4.5.3 Some Exact Algorithms for the SPG

Hakimi [HI] provided a straightforward algorithm in wh ich the Steiner tree

Gs can be found by finding the MST's of subgraphs of .G ind uced by sub­

sets W of V (G) such that 8 ~ IV ~ V (G) . The time complexity of this

algorithm is O(n22P- n + p3). Winter !\Vl] calls this a lgorit hrn t he Span ning
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Tree Enumeration Algorithrn.

Another algorithm is presented by Hakimi in [HI] which Winter [wi]

calls the Topology Enurneration Algorithrn. Other exact algorithrns can be

found in [AI], [FGSI] and [BI, B2] to mention but a few.

We shall present the algorithm by Dreyfus and Wagner [DWI] which

solves the SPG exactly, in time proportional to

3 (3n - 1 2n + 3)
~ + p2(2n - 1 - n - 1) + p . - .
2 2

3

The time requirement above includes the terrn l?f, which can be elirninated

if the set of shortest paths connec ting each pair of vertices in the graph is

available.

4,,5.4 Example

Consider Figure 4.5.5, showing a typ ical solution Gs to a Stciner problem

on S ~ V (G) in G.
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4.5.5 Figure

Here S = {q,r,s,t}. Note that any vertex belonging to 5, say q, belongs to

a branch of the solution tree Gs at the vertex p (which w,e note has degree

3 and does not belong to 5 ).

Clearly the path connecting q and p is the shortest path connecting

these two vertices in G, otherwise Gs would not be a subtree of G of mini­

mum cost containing S. Also note that each of the other branches of Gs at

the vertex p represent the solution of a Steiner problem connecting fewer

vertices than the number in the set 5. In other words the subgraph of Gs

induced by {p, s, t} has the smallest cost among all connected subgraphs of

G which contain the vertices {p,s, t}, similarly {p, r} cannot be connected

by a shorter path in G than the one which appears in Gs : If they could,

again Gs would not be a solution to the Steiner problem for 5 in G.
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The "division" of the Steiner problern by p into three srnaller parts as

demonstrated in Example 4.5.4 was called the optimal decornposition prop­

erty by Dreyfus an 'd Wagner in [D VV 1]. It can be forrnally st.atcd as follows:

4 .. 5 e 6 Optimal Decomposition Property

Let G be any connected graph of order p and size q. Suppose G s is a

Steiner tree for the set 8 ~ V (G), in G, and let z be any vertex of 8. If 8

contains at least three vertices then there exis ts a vertex x E V(G) and a

subset D of 8 such that

1) D is a proper subset of 8 - {z}, and D is nonernpty.

2) Gs consists of three ~dge disjoint subgraphs; 51,82 and 53'

3) 8 1 contains {x,z}, 82 contains {x} U D, while 83 contains {x} U (8-

D-{z}).

4) 8 b 82 and 83 are all Steiner trees for their respective sets in G.

A general proof of the existence of an optimal decomposition of the type

described above, covering all degenerate cases, appears in Appendix A page

205 of [DWl].

The solution algorithm from [DWl] which we now describe is based

on the dynamic programming methodology and in his survey Winter [wi]

gives this algorithrn the narne: Dynarnic Prograrnrning Algorithrn.
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4.5.7 Dynamic Prograrnrning Algorit.hrn

The algorithm exploits Property 4.5.6. A straightforward application of

Property 4.5.6 would entail choosing a vertex z E S (any z will do), then

searching for the optimal choice of x. In turn, an optirnal choice of x

requires that an optimal choice of the subset DeS be rnade, and that

the Steiner trees S2 and S3 for the sets Du {x} and (S - D - {z}) U {x}

in G, respectively, be known. Thus, the original problern could be solved

recursively. However, we could also build up the desired solution by means

of the following ISI - 1 steps. (Note that we assurne the lengths of the

shortest paths between every pair of vertices of G have been calculated; see

[Fl].)

Step 1: Remove one vertex, z, from S. Let C == S - {z}.

Step 2: Solve the Steiner problem for each set of two vertices of C and one

vertex y E V(G). (y can be an clement of C, or it can even be the

vertex z.)

Step 3: Use this result to solve Steiner problems for each set of three vertices

of C and one vertex y E V (G).

Step ISI -2: Solve Steiner problems for each set of ISI - 2 vertices of C and one

vertex y E V(G).

Step IS/-I: Solve the Steiner problem for z and the set C.
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Given a subset D of C, and y E V (G), each step in the solut ion above

involves two searches: Search 1 locates the intermediate vertex, x E V (G);

Search 2 finds the optimal proper subset E of D so that the cost of the

Steiner trees containing {x} U E and {P} U (D - E), plus the distance from

y to x is a minimum.

The efficiency of this procedure sterns from the fact that only optimal

solutions for the relevant subsets are ever considered. Nonopt irnal solu­

tions to smaller subproblerns are disposed of at the tirne that subproblem

is solved. The optirnal solution is retained for use in solving later subprob­

lems, and the smaller subproblem is never solved again. Straightforward

enumeration of all possible solutions to the entire problern would unnec­

essarily consider nonoptirnal solutions many times, This building up of

larger optirnal solutions from optimal solutions of all possible smaller prob­

lems is the fundamental technique in the general methodology of dynamic

programming.

Let us discuss in some detail the procedure whereby the Steiner solu­

tion for a given subset D consisting of a certain j(2: 2) vertices of C and

one vertex, W E V(G), is found. Here again we avoid some unnecessary

calculation by first solving all possible smaller problems of a certain form.

First we associate with each vertex k E V(G) an integer Sk(D) which is

found using the following method:

(1) Divide D into two proper subsets E and F, and add the Steiner dis­

tance for the set consisting of the members of E and vertex k to the Steiner

distance for the set consisting of the vertices in F and vertex k, and

(2) Minimize this sum over all distinct choices of sets E and F.

(Note that the number Sk(D) is not necessarily the Stcincr distance of the
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set composed of the elements of D and vertex k, since no saving due to

coalescing the subsolutions at a vertex other than k is considered.) Hav­

ing done this for a given D and all k, to solve the Steincr problem for w

and D ,we let dw k denote the length of a shortest path from w to k in G

and we minimize dw k + Sk(D) over all vertices k E V(G). Let S(w,D)

denote the cost of the Steincr trce for the vertices {w} U D . Since Sk(D)

does not depend on the choice of the vertex w, knowledge of Sk(D) for all

k E V(G) allows easy computation of Steiner solutions for any w E V(G),

all, of course, for a given D. The computation is repeated, then, for all

choices of the set D.

So far we have described a proced ure for generating the cost of the

Steiner tree, but not the actual tree. To deter mine the tr ee, there are

two "pure" strategies available. Method 1: For each choi ce of wand D

one can record the value of k that minimized dw k + Sk (D) and the sets

E and F that generated Sk (D). Then k is the vertex which prod uces the

optimal decomposition, with w connected to k by a shortest path, while

E and F, respectively, are joined to k by paths in the Steiner trees for

the sets {E U {k}} and {F U {k}} in G, respectively. Method 2: On the

other hand, the values of Sk(D) can be stored and the minimizing value

of k and associated sets E and F can be recomputed as needed in the re­

construction of the Steiner tree. In either case, as is typical in dynamic

programming procedures, the Steiner tree is constructed (after the optimal

cost has been determined) by processing sets in the reverse or dcr of that of

the cost-determination algorithm. The first method of tree-construction in­

volves less computation while the second uses less computer st rorage. Since
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tree-construction by Method 2 requires at most !th the computation time
p

of the cost- generation, this is the recornmended and most practical method.

We now present a numerical illustration from [DWl] of the procedure

followed in Algorithm 4.5.7.

4.5.8 Example

Let V (G) = {I, 2, 3, 4, 5, 6, 7}, S = {I, 2,3,4} and the m atrix A of distances

(aij = aji = the weight of the edge (i, J) between vertices i and J) be

1 2 3 4 5 6 7

1 X 2 2 2 1 1 2
2 2 X 2 2 2 1 2

A= 3 2 2 X 2 2 2 1
4 2 2 2 X 1 2 1
5 1 2 2 1 X 2 1
6 1 1 2 2 2 X 1
7 2 2 1 1 1 1 X

First we compute the matrix D of shortest lengths (di j = dji. = the

length of the shortest path between vertices i and j) by t he rne thod de­

scribed in [F1]. Clearly, by our choice of data, matrix D is identical to

matrix A.

Step 1: Remove one vertex, say vertex 1, from S. Let C = {2, 3, 4}.

Step 2: Let D = {2,3}. Then Sl(D) = d12 + d13 = 2 + 2 = 4, S2(D)

2, 8 3 (D ) = 2, S4(D) = 4, Ss(D) = 4, SG(D) = 3, S7(D) = 3.
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Let ting 5 (w, D) denote the cos t of the Steiner tree for th e se t {w U D},

we have 5(1, D) == lT~n(d1k + 5k (D )) == 4 (with sever al different trees

yielding the result e.g. k == 2).

5(2, D) == 2, 5(3, D) == 2, 5(4, D) == 4, 5(5, D) == 4, 5(6, D) ==

3, 5(7, D) == 3.

Now let D == {3,4}. Then 5 1(D) == 4, 52(D) == 4, 53(D ) ==

2, 54 (D) == ·2 , 5s(D) == 3, 5dD) == 4, 57(D) == 2 . Hence 8 (1, D) ==

4, 5(2, D) == 4, 5(3, D) == 2, 8(4, D) == 2, 8(5, D) == 3, 8(6, D) ==

3, 8(7, D) == 2.

Finally let D == {2,4}. Then 5 1(D) == 4, 8 2 ( D) == 2, 53(D) ==

4, 84(D) == 2, 85(D) == 3, 86(D) == 3, 57(D) == 3. Hence 5(1, D) ==

4, 5(2, D) == 2, 5(3, D) == 4, 5(4, D) == 2, 8(5, D) == 3, 8(6, D) ==

3, 5(7, D) == 3.

We are now ready for Step \81 - 1 == 4 - 1 == 3, in this case.

Step 3: Let D == {2, 3, 4}.

Let E == {2} and F == {3,4}. Then 81(D IE,F ) == S (l ,E)+ S (l , F ) ==

2+4 == 6. Now let E == {3},F == {2,3}. Then Sl(DIE, .F) == 2+4 == 6.

F in ally let E == {4},F == {2, 3}. T he n SI (DIE, ji') == 2 +4 == 6. 1Ien ce

51(D) == minimum over all choices of E and F of SdDI E, F) == 6.

Letting E == {2} and F == {3,1}, 52 (D IE ,F) == 1. L etting E == {3}

and F == {2,4},52(DIE,F) == 4. Letting E == {4} 'a~ld F == {2,3},

229



Sirnilarly 83(D) == rnin(t1,t1,tt) == -t.

85(D) == min(5, 5,5) == 5. 86 (D )

min(4,4,4) == 4.

8 ,, (1) ) == rnill(tt , 5, 5) == 4.

rnin(4,5,5) == 4. 87(D)

Hence 8(1, D) == m~n (d lk + 8k(D)) == d16 + 86(D) == 1 + 4 == 5, which

is the size of a Steiner tree for {I, 2, 3, 4} in G.

To construct the Steiner tree for {I ,2,3,4} in G, we note th a t s ince k == 6

yielded the minimum in the above minimization, vertex 1 is to be connected

to vertex 6 by a shortest path in G, which in this case is the edge con nect ing

vertices 1 and 6. Now 86(D) resul ted when E == {2} and F' == {3 ,4}.

Hence the shortest path from 6 to 2 is part of t he solu tion Steiner tree

for {1,2,3,4}. This is the edge between the vertices 2 and 6. Finally,

the Steiner tree for the set {6 ,3,4} in G mu st be a sub tree of the Steiner

tree for {1,2,3,4} in G. To find this s ubt ree we refer to 8 (G, D) above for

D == {3,4} we see 8(6, D) == 3 and the va lue 3 was obtai ned when k == 7

yielding m~n (d6k + 8k (D)) == d67 + Sd D) == 1 + 2 == 3. Hence vertex 6 must

be connected to vertex 7 by a shortest path in G (the edge connecting 6

and 7 in this case) and vertex 7 1I1Us t be connected to vertices 3 and 4 by

shortest paths in G (the edges between 7 and 3, and 7 an d 4 , respect ively,

in this case). Hence the Steiner tree for {1,2,3,4} in G, consists of the edges

(1,6), (2,6), (6,7), (7,3) and (7,tt), see F igure 4.5.9.
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The Steiner tree Cs for {1,2,3,4} in G.

The sum of the weights of the edges of G s is indeed 5, agreeing with our

computed value o~'5(1, D) for D = {2, 3, 4}.

With reference to Property 4.5.6, if vertex 1 is identified with vertex q

in the statement of the property, then vertex 6 is identified with vertex p

and vertex 2 constitutes the set D in the statement of the property. Then

set 51 consists of the edge (1,6), set S2 consists of (2,6) and 53 consists of

{(6,7), (7,3), (7,4)}.

For verification of the time requirement for Algorithm 4.5.7 see [DW1J.
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Since the time needed to solve the St.cincr problem increases exponen­

tially with an increase in the size of our set S, we deduce that Algorithm

4.5.7 is useful only for srnall ISI. Hence we now turn our attention to ap­

proximation methods which find trees which have costs close to that of a

Steiner tree.

There are many such heuristics available, see [P2]' [RI] and [AI] for ex­

amples. We shall consider the approximate solution for the Steiner problem

in graphs developed by Takahashi and Matsuyarna [MTl], which requires

at most O(n p2) time and we shall deterrnine the accuracy of the approxi­

mation. For the remainder of this section we follow [MTl] .

4.5.10 Definition

Let W be a proper subset of V(G), then define Path (~V,v) to he a path

whose cost is minimum among all paths frorn vertices in \IV to vertex v (j. W.

Denote by C(W, v) the cost of Path (W, v).

4 e 5.11 Approximation Algorithm

Step 1: Start with subgraph TI ~ (VI, Ed of G, with vertex set VI and edge

set El consisting of a single vertex, say Vb where VI E S; i.e., VI ==

{VI} and El == 0. Let i == 2,3, ... , n.

Step i: F'ind a vertex in S'c-Vjq , say Vi, such thatc(Vi _l,vd == rnin{c(Vi-l,vi):

Vi E S - Vi-I}' Construct tree T, == (Vi, Ed with vertex set Vi and

edge set Ei , by adding Path (Vi-I, vd to Ti - l ; i.e ., set Vi == Vi - 1U V

(Path (Vi-l,vd) and l!Ji == £'i -l U E'(Path (Vi-1,V.)).
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We assume that when there are ties in s tep i, they m ay be broken

arbitrarily. At each step in this algorithrn, a tree containing a subset

of S has been built up, and a new vertex of S is inserted together with

a path of minimum cost connecting the tree and the vertex. · Hence

we end up with a tree Tn which is our approxirnate solution to the

Steiner problem.

We note by Dijkstra's algorithm [Dl] that Path (Vi-l, Vi) can be com­

puted in time complexity O(p2); hence this a lgorithm requires a t rnost O(np2)

time.

4.5012 Definition

Let OPTIMAL represent the cost of th e Stc inc r tree for th e set S in G,

and let ds(u, v) denote the cost of the path between vertices u and v in a

Steiner tree Ts .

The following lemma willaid us in det errnining the accuracy of Approx­

imation Algorithm 4.5.11.

Let Gs be a Steiner tree for the set S in a graph G, and let V (Gs) ==

{Vl,V2, ... ,Vn } . There exists a permutation ll,l2, ... ,tn of 1,2 ,... ,n such that

ds (Vtp VtJ + ds (Vt:l' VtJ + ... + ds (Vt,, _p Vt ,.) + ds (Vt ", Vt.) = 2. OPTIMAL

and
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Proof

Suppose that Vij E S is visited after Vij _l E 5 for each 2 ~ j ~ n in a depth

first search of a Steiner tree Cs for 5 in G, starting from an ar bil.rary vertex

of Cs. Then

Assume dS(Vi,_I,Vi,) == max{ds(vipVi2)' ... ,dS(Vi"_l,Vi,,),ds(Vin,Vi l) for

some T, 2 ~ T ~ k. Then setting t 1 == i.; ... ,tn-r+1,tn-r+2 == i1,· .. ,tn == i r - 1 ,

we have ds (Vtj_l' Vtj ~ ds (Vt",Vtl) for all 2 ~ j ~ n, Hence

and hence

405014 Definition

o

Let APPROXIMATE be the cost of the tree Tn obtained by Approximate
n

Algorithm 4.5.11. Then APPROXIMATE is equal to I: C(Vi -l,Vi) .
i =1

We now show that the tree Tn obtained by Approximate algorithm 4.5.11

has a worst case cost ratio to the Steiner tree for S in G which is less than

or equal to 2(1 - ~).

4.5.15 Theorem

For all p and n (2 ~ n ~ p - 1)

APPROXIMATE ( 1
OPTIMAL < 2 1 - ;;) .

234



Moreover if n == p, then APPROXIMATI~ == OPTIMAL. ·

Proof

If n == p, then the problem red uces to the well-known minimal spanning

tree problem, hence the latter half of the theorem is Prim's algorithm [PI] .

Since the cost of Path (Vi-I, vd is minimum among all paths between

vertices in Vi-I and vertices in S - Vi-I, we have

~ (1)

where 1 ~ rnin{p,q} ~ i -I and i ~ Inax{p, q} ~ n. By Lemma 4.5.13

there is a permutation tt, t2 , .. . , t.; of 1,2, ... , n such that

dS(Vt1,VtJ + dS(Vt2,Vt 3 ) + ... + dS(Vt ,. _l,Vt,.) + ds(Vt .. ,Vtl) = 2.0 PT IM AL

'"" (2)
and

dS(Vt",V, ,) ;::: (D OPTIMAL. ~ (3)

We can construct a one-to- one correspondence between the nurnbers i,

i == 2,3, ... ,n and pairs (tj-l,tj),j == 2,3, ... ,n, such that

Such a correspondence can be established by the method which Rosenkrantz,

Stearns and Lewis II used in a mo re gene ral case in [LRS 1, P roof of

Lemma 3]. For each i with 2 :S i ::; n, cons ider th e longest s ubse quence

tp(i),tp(i)+b ... ,i, ...,tq(i)-l,tq(i) including i of the sequence t 1,t2, ... ,tn such

that tp(i) ~ i, tq(i) ~ i and t j ~ i for each i , j == p(i) + 1, ... , q(i) - 1. In
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th d b t t includes i, and all the intermediateo er wor s, su sequence p(i), ... , q(i)

numbers except for i in that subscquenccs are larger than i. Wc define the

critical number i" for i by

{

tp(i) if tq(i) = i,
i' = tq(i) if tp(i) = i,

Inax{tp(i), tq(i)} otherwise.

The critical pair for i is defined to be

Next we show that no two nurnbers i and j frorn the sequence t 1 , t 2 , ... , t n

can have the same critical pair. Assume, to the contrary, that i and j (i ~ j)

have the same critical pair (tr -l, t r). Assume that i; < t,.-l - Then i, is

critical for i and i, and r = q(i) = q(j). Since all the intermediate nurn­

bers in the subsequence Irorn j to t r of subsequence t 1 , t 2 , ••• , i; are larger

than i, number i cannot be in that subsequence. This implies since i < j

that nurnber j is in the sequence from i to tr' Since then by definition

t; < i, all the numbers in the sequence from i to j are larger than t.: Thus
,

tp(j) > t r = tq(jb contradicting the assumption that i, is critical for j. The

same contradiction is concluded if we assume i, > t r- 1 .

Let (t,.(i)-l' tr(i)) be the critical pair for i, then frorn (1) we have, since

min{t"(i)-l,t"(i)} < i ~ rnax{t"(i) -l,l,.(i)} holds,

C(Vi -1,vd < dS(Vtr(il _l,Vtr(il)'

From (2), (3) and (4), we have

""' (4)

APPROXIMATE
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n

< L d S(Vtr(il _l' Vt rl ij)
i=2

and since no two numbers have the same critical pair

n n

L dS(Vtr(il _l' Vtr( il) = L dS(Vt,,_l' Vt,,)
i=2 p= 2

hence

APPROXIMATE ::; 2:;=2 ds(Vt,._I' Vt,,) = 2.0P'l'IMAL - d(Vt" ,VtJ

~ 2.0P'l'I11AL - (~) .OPTIMAL = 2.( 1 - ~ ) . O PT IMAL

o
Finally we show that for n ~ p - 1, we can construct graphs for which

the APPROXIMATE to OPTIMAL ratio is equal to 2(1 - ~ ) .

4.5.16 'I'heorern

For all p and n (2 ::; 11, ::; p), there ex is ts a gr aph for wh ieh

APPROXHvlATE _ ( _ ~ )

OPTIMAL - 2 1 -."

Proof

Let V = {I, 2, ... ,p}, E = {(i,i) t

S = {I, 2, ... , n}. Suppose that

1,2, ...,p, J 1, 2, ... , p}, and

{

I i=1,2, ...,n,i =n+l,
c(i,j) = 2 i =l, ...,n -l,j =i +l,

10 other wise

Then let G be the graph with vertex se t V, edge se t E and cos t function c.
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It is evident that the tree 1'n with vertex set S and edge set E'(1'n) ==

{(j, k) : j == 1,2, ... , n -1, k == j + I} with every edge of 1'n having weight 2

(see Figure 4.5.17), is obtainable by Approxirnation algorithrn 4.5.11. The

cost of 1'n is thus 2(n - 1). It is also evident that a Sl.cincr tree (;8 for S in

G has vertex set V (Gs) == {S u {n + I}}, edge set E (Gs) '" {(i, n +1) : i ==

1,2, ... , n} with every edge of Gs having weight 1 (see Figure 4.5.18). The

cost of Gs is then n, Hence using our previous terminology OPTIMAL ==

n while APPROXIMATE == 2(n - 1) and

APPROXI~1ATE _ 2(n - 1) _ ( _ ~ )

OPTIMAL - n - 2 1 n

as required. o

By Theorems 4.5.15 and 4.5.16, the worst case ratio of AP PROXIMATE

to OPTIMAL is 2(1 - ~).
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4.5.17 Figure

The tree 1~ of Theorem 4.5.16.
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n+l

1 2 3

4.5.18 Figure

The Steiner tree G 5 of Theorem 4.5.16.

n-l'

In view of the complexity of the problem of determining the Steiner dis­

tance of a given set of vertices in a graph, efforts have been made to consider

graphs with special properties in which Steiner distances of given sets may

be found in polynomial time. For i ns l an ce, for a ny in t. eg ( ~ r le ~ 2, Day,

Oellermann and Swart defined a graph G to be k-S teiner d is tance heredi­

tary if, for every 5 ~ V (G) such that IS I == k and every connected induced

~ubgraph H of G containing 5, dH(S) == dc(S). In [DOS 1] they showed
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that if G is 2-Steiner distance hereditary, then G is k-Steincr di stance hered­

itary for every integer k 2: 2. They then gave efficient ulgorithms for testing

whether a graph is 2-Steincr distance hereditary a nd for dctcrmin ing the

Steiner distance of a set of k vertices in a k-Steiner dis tance hereditary

graph, thereby providing an efficient algorithm for obtaining the Steiner

distances of sets of k vertices in 2-Steiner distance hereditary graphs.

The search for further large classes of graphs in which Steiner distances

may be determined by means of efficient algorithms presents a challeng­

ing new field of research as does the investigation of graphs with specified

properties such as the uniquely Steiner n-eccentric graphs illvestigated by

Henning , Oellermann and Swart in [HOS3]. Furthermore , in view of the

complexity of the problem of evalu ating the n-Stcincr radiu s and n -Steiner

diameter of a graph, an investigation of graphs that have maximal or min­

imal order or size and given n-radius or n-diarneter rnay yield results that

have useful applications as would the characterization of t he associated

classes of extremal graphs.
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