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ABSTRACT 

It is a well-known fact that the selection of the raw material and how it is further treated 

within the stock preparation system has a major affect on the quality of paper obtained. While 

the pulp selection is important for a good product, the refining treatment received by that pulp 

is the determining factor for the properties of the product. It is for these reasons that it is 

interesting and beneficial to study the pulp quality and refining results. The focus of this 

research work was to study the behaviour of selected clones of Eucalyptus materials from 

different site indices under different refining conditions. Poor and good sites were 

investigated. The strength properties of the resulting refined pulp were investigated. 

The project was conducted in three phases with the focus of the project being phase 3. The 

work began with refining of commercial Eucalyptus pulp obtained from Mondi Richards Bay 

(phase 1). The objective here was to get an understanding of the influence of the various 

parameters affecting refining. This knowledge could then be used on a more focused research 

program on the well defined pulps with limited refining variables being considered. The 

results indicated that of the three variables investigated (i.e. stock flow rate, stock consistency 

and refiner speed of rotation) the parameter speed of rotation gave the most repeatable results 

when varied and also resulted in the largest range of refining intensity (SEL) achievable 

compared to the variation of the other two parameters. It was decided that the work on the 

different pulps investigated in phase 3 would be carried out using the parameter speed of 

rotation to vary the SEL and multiple passes through the refiner to vary the specific refining 

energy (SRE). 

A comparison between the refining characteristic of bleached and unbleached pulp was 

carried out (phase 2). It was seen that there were differences in the refining characteristics 

between bleached and unbleached pulp. These differences however, occurred in a predictable 

manner. This indicated that with further investigations on the differences in refining 

characteristics, it would be possible to extend the results obtained from refining studies using 

unbleached pulp to what can be expected from the refining of bleached pulp. 

Phase 3 of the project considered the refming of different pulps. Two different clones of 

Eucalyptus (GU A380 and GC G438) each from two site indices (good and poor), were 

selected to provide raw materials having different wood anatomy. These were pulped under 

similar cooking conditions using the kraft pulping process. The kappa numbers were in the 

range of 18 to 21. The refining trials were then conducted to determine how the different 



pulps affected the refining process and also how the refining process affected the pulp 

properties. Refining was carried out at three different refiner speeds. It was seen that for the 

overall results SRE was a good predictor of all the pulp properties measured except for the 

tear. The pulp fibre length was able to predict the tear best. It was seen that refining higher 

intensities reduced the SRE required to obtain a pulp freeness of 400 ml. 
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GLOSSARY 

Adjusted R2 A goodness-of-fit measure in multiple regression analysis that penalizes 

additional explanatory variables by using a degrees of freedom adjustment in estimating 

the error variance. 

Bark The outer covering of stems and branches of trees. 

Basis Weight Basis weight is the weight in grams of a single sheet of area one square 

meter. 

Beater This refers to the equipment used for beating or refining pulps. 

Beating This is the mechanical treatment of fibres to increase surface area and flexibility 

of pulp fibres. This promotes bonding when dried. 

Bone Dry This is the term that refers to the moisture-free conditions of paper. 

Breaking Length This refers to the theoretical length of a uniform width of paper 

which, when suspended by one end, would break by its own weight. 

Bulk The thickness of a sheet of paper. Units are j..lm 

Bursting Strength The resistance of paper to rupture as measured by the hydrostatic 

pressure required to burst it when a uniformly distributed and increasing pressure is 

applied to one of its side. 

Cellulose Fibre An elongated, tapering, thick walled cellular unit, which is the main 

structural component of woody plants. Fibres in the plants are cemented together by 

lignin. 

Chemical Pulp Pulp obtained from the chemical cooking or digestion of wood or other 

plant material. 

Chipper The machine that converts wood logs into chips. 

Consistency Weight percentage of oven dried pulp in a pulp and water mixture. 

Cooking This is the process whereby the raw material reacts with chemicals under 

elevated pressure and temperature to soften and/or remove lignin to separate fibres. 

Correlation coefficient ( r) A measure of the closeness of the relationship between two 

variables. The value of r ranges from -1 to + 1. As r approaches + 1, the more positive the 

relationship. An r value of 0 indicates no relationship. Negative r values indicate an 

inverse relationship 

Delignification The removal of lignin during the chemical pulping process. 

Digester This refers to the reaction vessel in which the cooking process takes place 

External fibbrillation Partial detachment of fibrils from the outer layer of a fibre. 

Fibre Coarseness Weight per unit length of fibre. 

Fibrils Thread-like elements unraveled from the walls of native cellulose fibres m 

papermaking by the action of refiners. 



Fines Small fibre particles defined arbitrarily by classification. 

Formation Physical distribution and orientation of fibres and other solid constituents in 

the structure of a sheet of paper that affects its appearance and other physical properties. 

Freeness A term used to define how quickly water is drained from the pulp. A pulp 

with a high freeness will drain rapidly whereas a pulp with a low freeness will drain at a 

slower rate. 

Handsheet Circular sheet which is formed on a fine screen from a pulp suspension of 

fibres. 

Hardwood Wood from trees of angiosperms, usually with broad leaves. Hardwoods 

grow faster than softwoods but have shorter fibres compared to softwoods. 

Internal fibrillation This refers to the loosening of internal bonds within a fibre. 

Kappa Number This is a measure of residual lignin in pulp. 

Kraft Pulp Pulp obtained using the Kraft pulping process. In this process chemical 

pulping is achieved by the using solutions of sodium hydroxide and sodium sulphide. 

Lignin A complex constituent of the wood that cement the cellulose fibres together. 

Moisture Content The amount of moisture in paper, pulp, or wood chips. 

No-load power To simply just rotate the refiner plates against the stock flow will require 

some energy. This energy is referred to as the no-load power. 

Oven-Dry see bone dry 

Paper A sheet that is formed on a fine screen from a suspension of pulp fibres . 

Papermaking The process whereby pulp fibres in solution at very low consistency 

undergo a series of dewatering stages and results in the formation of a sheet of fibres 

(paper) on a wire screen. 

Pith The central part of stems or branches of trees. 

Pulp A suspension of cellulose fibres in water produced by either the chemical or 

mechanical treatment of wood. 

Pulping see cooking. The terms cooking and pulping are used interchangeably 

Refiner Equipment used to mechanically treat fibres 

Refining Refining refers to the process where fibres are subjected to a mechanical action 

in order to develop their properties optimally with respect to the products being made. 

Refining Intensity This refers to the rate at which the effective refining energy is 

applied. The units are Ws/m 

Rejects The fibre bundles that do not go through the 200 ).lm mesh screens. 

Relative Humidity The amount of water vapor present in the air as compared to the 

maximum potential amount. 



Screened pulp yield The yield after uncooked fibre bundles, bark and dirt are removed 

through 200llm mesh screens, expressed as a percentage of oven dry mass of pulp per unit 

oven-dry mass of wood. 

Sheet Density This is the reciprocal of bulk and is derived by dividing bulk by the basis 

weight of the handsheet. 

Shives Small bundles of fibres that have not been separated completely during pulping. 

Softwood Wood obtained from gymnosperms, such as pines, spruces and hemlocks. 

This type of wood imparts the strength properties to the paper. 

Specific refining energy This refers to the amount of effective energy applied per unit 

weight of pulp. The units are kWhlt 

Tear Strength A measure of how likely a paper will continue to tear once started. 

Tensile Strength A measure of how likely a paper is to break when pulled at opposite 

ends or the resistant property of a sheet to stress. 

Washing A process of separating spent cooking or bleaching chemicals from pulp 

fibres. 

Yield Ratio of product output and raw material input, expressed in percentage. 
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Chapter 1 

Introduction and Aims 

1.1 Introduction 

When considering the manufacture of pulp and paper, it is a well-known fact that the selection of 

wood and how it is further treated within the stock preparation system has a major affect on the 

quality of paper obtained. While the pulp selection is important for a good product, the refining 

treatment received by pulp is a key determinant of the properties of the end product. Historically, 

the raw materials tended to be long fibres (softwoods) and thus most beating was designed not 

only to develop fibres but also to reduce fibre length. The treatment of long fibres (softwood 

fibres) is significantly different to the treatment of short fibres (hardwood fibres), which are being 

used in larger quantities than in the past. Modem refining practices can produce fine paper from a 

100% hardwood furnish and most contain at least 70-90% (Baker 1995). 

Due to the fine fibre morphology in relation to other common pulping species, Eucalyptus pulps 

(hardwood pulps) gives good values for opacity, bulk, porosity and sheet formation. The 

advantages of its use as raw material not only relates to good printing grades but also physical 

strengths reach the level of the best hardwoods and even though Eucalyptus is a short fibre, its 

mechanical characteristics, after refining, can approach those of long fibres. This allows the 

incorporation of higher percentages of this type of pulp, which can generally be produced at 

lower cost than those of softwoods, thus providing an additional economic incentive to use 

hardwoods to the maximum extent possible (Soini et aI1998). 

1.2 Aims 

Before commencing with the refining trials on four different pulps, to investigate the aim of this 

project, two other investigations had to be considered. These were considered as two other 

objectives in the study. The first was an investigation on selected refiner parameters. This was 

carried out in order to decide on conditions that were used when refining the different pulps. The 

second investigation was a comparison between the refining characteristics of bleached and 

unbleached pulp. This was done to see whether differences in the refining characteristics between 

these two pulps occurred in a predictable manner. After completion of these two objectives the 

aim of the project was considered in phase three. The aim of this project was to investigate the 



differences in refming characteristics of pulps from Eucalyptus species that have different fibre 

morphological characteristics. 
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Chapter 2 

Literature review 

2.1 Background 

Paper is a fibre product in which fibres are bonded together. The basic material of paper is 

cellulose (Bolam 1965). There are many possible sources of this cellulose fibre but the most 

important is wood. Cellulose fibres have the useful property of swelling in the presence of water. 

The fibres act as their own cement if they are soaked in water and allowed to dry in close contact 

with one another. In papermaking, a suspension of cellulose fibres in water is poured onto a wire 

sieve. Most of the water drains through, leaving a layer of fibres that bonds together as it dries to 

form a coherent sheet (Bolam 1965). 

Amongst other things, the properties of the paper are dependent on the properties of the bonds 

formed between the fibres. In the formation of paper, the fibres are brought into contact with each 

other and in the subsequent operations the bonds are formed which give the web mechanical 

strength. The properties of the web are dependent on the size of the contact area and the strength 

of the bond formed. Since the bonds are formed between the fibre surfaces, one of the basic 

factors that determines the degree of bonding is the total free surface area of the fibres which are 

available for bonding. The beating or refining process is in essence a development process. The 

process modifies the physical structure of the papermaking fibres by subjecting them to repeated 

strain (Martinez et al. 1994). Thus with proper refining it is possible to increase the degree of 

bonding and hence improve certain strength properties of the paper. 

Different types of fibres require different types of refining treatment. The refining treatment of 

long softwood fibres for example is harsher than the refining treatment of the comparatively 

shorter hardwood (eg Eucalypts) fibres (Baker 1994). Due to the fine fibre morphology in relation 

to other common pulping species, Eucalyptus pulps result in good sheet formation and good 

values for sheet properties such as opacity, bulk and porosity (Soini et al. 1998). However, the 

advantage of its use as a raw material not only relates to good printing grades. Its physical 

strengths can reach the level of the best hardwoods and even though Eucalyptus is a short fibre, 

its mechanical characteristics, if refined properly, can approach those of long fibres (Baker 1994, 

Soini et al. 1998). This would allow the incorporation of higher percentages of this type of pulp, 

which can generally be produced at lower cost than those of softwoods, thus providing an 

3 



economic incentive to use this hardwood to the maximum extent possible (Soini et al 1998). 

Modem refining practices can produce fine paper from a 100% hardwood furnish and most 

contain at least 70-90% (Baker 1995). 

2.2 Different types of wood 

Botanically, woods have been classified into two major groups; softwoods and hardwoods (Britt 

1970, Smook 1992). The structural features of hardwoods and softwoods differ substantially and 

as a result the way these woods are processed differ accordingly. Softwood fibres are relatively 

long in comparison to hardwoods. It has become a general practice among papermakers to use 

long (softwood) fibres - due to their good mechanical properties - to give the paper web better 

machine runnability during the manufacturing process and the end product higher strength 

properties. The application of short (hardwood) fibre pulps, typically ranging at lower strength 

potentials relative to softwood fibres, are used in most cases for the improvement of surface 

characteristics of the finished sheet. Consequently the relevance of short fibres particularly relates 

to the production of wood-free printing and writing papers where the optical appearance matters 

most. Due to differences in fibre characteristics between hardwoods and softwoods, the refining 

treatment that they require is different. 

The anatomy of eucalyptus fibres, is given by spindle shaped cells with abundant bordered pits. 

In general fibre length, diameter and wall thickness, as well as vessel diameter increase with age 

while vessel frequency decreases. In a literature review by Muneri (Muneri 1994), it was found 

that eucalypt fibres generally range from less than 1mm to about 1.5mm in length with diameters 

of about 15 to 25 Ilffi. Vessel elements are generally shorter than fibres but of larger diameters. It 

was stated that vessel elements range from 80 to 180 Ilm and occupy 10 to 20% of the wood 

volume. The differences in fibre length between woods formed at different ages are greater than 

those between the woods of different species. The basic wood density is regarded as one of the 

main determinants of pulping of Eucalyptus species and papermaking properties. (Hillis et al. 

1978, Bamber 1985). 

2.2.1 Wood and fibre characteristics and papermaking 

The role of the raw material is very important. The paper grade being produced is what 

determines the specific types of raw materials to be used so as to ensure that a superior quality 

product at a competitive value is obtained. The suitability of the fibres with respect to certain 
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desired characteristics must be considered along with the economical factors such as availability 

of wood supply and production costs. 

In considering wood as a source of fibre for the production of pulp and paper, two factors must be 

taken into account. 

• The yield of fibre per given volume or weight of wood (particularly in the chemical 

processes). 

• The quality of the resulting fibre. 

The first factor mentioned is dependent on the characteristics of the wood prior to pulping and the 

process employed in its conversion into pulp. The second factor is mainly a result of 

morphological features of the individual fibres and their modifications brought about by the 

methods of conversion (example, refining to improve strength properties). The quality of the 

resulting fibres depends on the wood structure, that is, the type of cells present in a given wood, 

the morphological characteristics of the individual cells and to a lesser degree on the chemical 

composition of the cell wall material. Some of the fibre variables responsible for determining the 

physical characteristics of pulp and paper are: 

• Fibre cell wall thickness 

• Fibre length 

• Fibre strength 

• Fibre conformability 

• Fibre coarseness 

2.2.1.1 Fiber cell wall thickness 

The fibre wall thickness affects the pulp yield. It is one of the most important factors influencing 

the characteristics of the resulting pulp and paper products. The fibre wall thickness can be used 

as a measure of the fibre quality and there is a good correlation between the wall thickness and 

pulp fibre strength properties (Xu et al. 1997). It has been shown (Alexander et al. 1968, Smook 

1992, Britt 1970, Peel 1999) that thin walled fibres results in the formation of sheets with high 

tensile strength, elastic modulus, burst strength, and fold. They tend to collapse during formation 

to give paper of high density. The thick walled fibres do not collapse readily like thin walled 

fibres and are known to give high bulk, tear strength and porosity but low burst strength, tensile 

strength and fold. Fibre-wall damage and plasticization are the major consequences of the 
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refining or beating process. Work by Alexander and Marton indicated that this results in an 

increased wet fibre flexibility (Alexander et al. 1968). This is believed to be the single most 

important effect of beating. 

2.2.1.2 Fibre length 

A minimum length is required for interfibre bonding. Paper made from fibres that are too short 

have insufficient common bonding area between fibres. This leads to points of weakness for 

stress transfer within the sheet and the paper will be low in strength. The morphological ratio of 

fibre length/fibre diameter (FLIFD) has been explored and it was pointed out that FLIFD 

correlates mainly with the tearing resistance (Alexander et al. 1968). In the work done by 

Alexander and Marton, it was found that longer fibres don't necessarily produce stronger sheets 

(Alexander et al. 1968). When beaten or refined the long fibres are shortened and the possibility 

of entanglement progressively decreases and the sheet tensile strength can be more efficiently 

developed since the fibres contribute more effectively. It was also seen that the shorter the fibres 

the faster their response to refining action (Alexander et al. 1968). 

2.2.1.3 Fibre strength 

The relationship between tensile strength of the individual fibres and the shear strength of the 

fibre-to-fibre bonds is what determines the ultimate failure of the paper. The main problem in 

evaluating the contribution of individual fibres to strength and other properties quantitatively has 

been attributed to the technical difficulties encountered in designing meaningful strength tests of 

single wood cells. However the zero span tensile strength tests can be used to obtain the intrinsic 

strength values of fibres in paper. It was noted that fibre breakage was as prevalent as bond 

breakage in certain types of well-bonded paper. When a well bonded, closely packed sheet is 

ruptured in tension, fibres lying across the rupture line are broken. However if a poorly bonded 

sheet is stressed in tension then provided the fibre strength is adequate, it will be seen that the 

bond breakage is responsible for failure. Therefore fibre strength is important to paper strength in 

well-bonded sheets (Britt 1970). 

2.2.1.4 Fibre conformability 

Fibre conformability refers to the flexibility and collapsibility of the fibres. It is dependent on 

cross-dimensional fibre properties and on the elasticity of the cell wall (Paavilainen 1993). Fibre 

flexibility refers to the axial conformation of fibres while fibre collapsibility refers to vertical 
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conformation of fibres, towards the fibre axis (paavilainen 1989 & 1991). Fibres with a higher 

degree of conformability will have superior strength properties compared to fibres with low 

conformability 

A B 

Figure 2.1: Diagram showing collapsibility of fibres (Smook 1992) 

2.2.1.5 Fibre coarseness 

Fibre coarseness is defined as mass of oven-dry material per unit length of fibre. Fibre coarseness 

varies considerably between softwoods and between hardwood species (Muneri 1994). In the 

literature review by Muneri, it was stated that within eucalypts, since the fibres have similar 

external dimensions, fibre coarseness would be correlated with fibre wall thickness. 

2.2.1.6 Wood density 

The wood density is a measure of the amount of wood substance per unit volume (Malan et 

al.1991). It is a complex wood property and represents a combination of characteristics. It is 

affected by - the thickness of the cell walls; the diameter of cells; the chemical content (cellulose, 

hemicelluloses, lignin, extractives) of the wood and the ratio between earlywood and latewood. It 

affects the yield of wood fibre per m3 of wood in pulp production. It was seen that a low-density 

wood would have inferior strength and produce less wood fibre per unit volume than a high­

density wood (Mary et al. 2001). 
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2.3 Fibre morphology and paper strength properties 

Strength is a very important property because paper is often used under conditions where it must 

withstand considerable stress. According to Casey (1981), paper strength is a vague term and the 

particular property desired by specific paper grades needs to be carefully specified. There are 

many strength tests made on paper and the most common tests carried out are bursting strength, 

tearing resistance, tensile strength, folding endurance and stiffness. None of these is a 

fundamental measurement but rather a combination of factors such as flexibility, bonding 

strength, and fibre strength (Casey 1981). These factors are dependent on the type of fibres, the 

length and thickness of the fibres, the flexibility of the individual fibres, the number of bonds, and 

the strength of individual bonds amongst others as listed by Casey (1981). Dinwoodie (1965) 

gives a thorough review on the relationships between pulp strength properties and fibre 

morphology. 

The comprehensive analysis carried out by Dinwoodie indicated that the three principal factors 

controlling paper strength are (Alexander et al. 1968, Dinwoodie 1965): 

• Cell-wall thickness - this influences both the fibre flexibility and bonding 

• Fibre length - important since a minimum bonded length is required 

• Fibre strength - this limits the sheet strength 

2.4 Fibre treatment - refining or beating 

Pulp as it comes from the pulp mill is not satisfactory for the manufacture of paper. The fibres 

may be long and their surface characteristics may be such that they result in poor formation and 

paper of inferior properties (Calkin 1957, Casey 1952, Britt 1970). Fibres are subjected to a 

mechanical action in order to develop their properties optimally with respect to the products being 

made (Grant 1961, Baker 1991, Casey 1952). This process is referred to as beating or refining. 

The beating or refining process is in essence a development process, in as much as each fibre is 

capable of a certain potential. How the fibre is treated (i.e. refining or beating) determines to what 

extent that latent potential is realised and at what cost (Britt 1970). The process modifies the 

physical structure of the papermaking fibres by subjecting them to repeated strain (Martinez et al. 

1994). Refining straightens fibres and causes both internal and external fibrillation (Stoere et al. 

2001). 
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While the terms beating and refining are often used interchangeably, beating refers more 

precisely to the mechanical action of the rotating bars opposite a stationary bedplate on a 

circulating fibre suspension. The individual fibres themselves are orientated in a perpendicular 

arrangement to the bars (Smook 1992). While beaters are capable of performing many different 

types of action it has one major drawback in that it has not been adapted to continuous operation, 

which in this modem day with the advent of high-speed, high-production paper machines, is a 

necessity (Reid 1965). 

Refining refers to the mechanical action carried out in a continuous conical or disc refiner. Here 

the fibres move parallel to the bar crossings. The objective of using either of the two is the same, 

i.e. to modify the pulp fibres in an optimal way so as to meet the demands of the desired product 

being made (Smook 1992). While the beating or refining of the pulp is one of the most important 

unit operations in the papermaking process, it also an energy inefficient process (Naujock 2001). 

2.4.1 Refining of hardwoods 

Hardwood fibres are shorter than softwood fibres and they do not require any fibre shortening 

during refining for the purpose of good formation. In the past it has been used as a filler pulp with 

little refining treatment. The trend now is to develop these fibres to their maximum potential and 

this requires a gentle treatment (0.5-1.0Ws/m) because since the fibres are already short they do 

not require fibre cutting thus only fibrillation of the fibres is required. It has been noticed that for 

hardwoods like eucalyptus, the tear strength increases with increasing refining (Soini et al. 1998, 

Baker 1995). Thus according to Baker (1995), fairly high specific energy inputs of up to 150 

kWh/ton) can be used to develop strength. For hardwood chemical pulp Lumiainen (1995) 

suggested that specific energy inputs should be between 25-80 kWh/ton and intensities between 

0.3-1.5 Ws/m. However it was also noted that while these figures are typical for unrefined fibres, 

variations can be considerably large as the physical dimensions of fibres and the refining 

resistance vary quite significantly (Lumiainen 1995, Kibblewhite 1994). 
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2.5 Refiner construction & operation 

2.5.1 Principal Features of refiners and beaters 

Batch - operated beaters were originated from stamping mills in the 1600' s. They are still in use 

in the production of specialty paper grades. Figure 2.2 (Peel 1999) shows a Hollander beater. This 

was one of the first pieces of refining equipment. The initial machine made use of a rotor 

containing blades/bars, which operated opposite a stator, which also contained bladeslbars (Reid 

1965, Calkin 1957, Grant 1961). The appearance of these machines has changed a lot but the 

basic principle of operation still exists (Bolam 1965). As the pulp is circulated by the action ofthe 

roll, the fibres are subjected to a rather violent compression and shearing action at high speeds 

between bars of the bedplate. Depending on the application, chemical pulps are beaten for up to 

several hours before being discharged from the beater (Peel 1999). 

The modern refiner, which was developed from the beater, has a similar mechanical action to that 

of the beater however the refiner operates continuously on the supplied stock. So the desired 

structural changes to the fibres must be achieved in one pass between pairs of plates or in 

multiple passes between pairs of plates in one machine or in multiple passes through refiners in 

series (Peel 1999, Reid 1965). The conical and disc refiners have almost completely replaced the 

beaters in the stock preparation systems due to their better efficiency in fibre development and 

their more compact design (Kocurek 1992). Also the beaters have not adapted to a continuous 

operation (Calkin 1957). 

2.5.2 Types of refiners 

There are two major types of refiners that are in use (Smook 1992, Peel 1999, Kocurek 1992): 

• Conical refiners 

• Disc Refiners 

These can be further divided into low-angle and wide-angle conical refiners and even single and 

double disc refiners (Brecht 1967). This study makes use of a disc refiner and only this type of 

refiner is discussed further. 
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Figure 2.2: A Hollander beater (Peel 1999) 

Figure 2.3 Cross section of double disc refiner (Sigl et aI. 2001) 

2.5.2.1 Features of disc refiners 

B 

Pairs of opposing discs are located so that one disc rotates with respect to the other. This is 

achieved by fixing one disc to remain stationary while the other rotates or alternatively both discs 

can be made to rotate at either different speeds or in opposite directions (Casey 1952, Peel 1999) 

The refiner plates are essentially flat and bear special grooved designs. During the operation of 

the refiner, the discs are positioned so that the bar surfaces are separated by fractions of a 
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millimeter. The diameters of commercial refiners usually range from 400 - 2000 mm and the bars 

are typically between 3 and 8 mm wide (peel 1999). The stock is usually pumped to the eye of the 

refiner at a consistency between 2 - 5 % (Calkin 1957, Peel 1999). From here it flows radially 

outwards between the plates. Refiners usually operate as pump-through machines. A 

backpressure ensures that the gap between the plates is full. The residence time is then 

determined by the flow rate of stock entering the refmer. For some refmers that operate with an 

open discharge (i.e. atmospheric discharge), the gap between the plates cannot be maintained full 

of stock so the residence time depends not only on the flow rate of stock entering but on other 

conditions as well (Peel 1999). 

Disc refmers are more recent than conical refiners and are available in a wide variety of designs 

and disc patterns. The refiner plates are parallel to each other. Three basic types exist; 

1. Rotating disc opposite a stationary disc 

2. Two opposing rotating discs. 

3. A double sided rotating disc positioned between two stationary discs 

The double-disc refiner offers a greater efficiency than the standard conical refiners do. This is 

because it has a lower no-load energy consumption (section 2.7 explains what the no load power 

is). It also has a greater potential for fibre treatment due to its two internal zones. The two zones 

allow for higher energy input per refiner for a given refining intensity (SEL). 

2.5.2.2 Disc refiner plates 

The plates for the disc refmers comprise a variety of bars, which are cast onto a base plate. The 

configuration of these bars is important in achieving specific refining effects. Figure 2.4 shows 

some common plate patterns (Sharpe et al. 1988). Studies of the refiner fillings or plate designs 

showed that these variables could modify the edge effect (Fahay 1970) (Section 2.7 discusses the 

refining theories). Coarser patterns will provide higher intensity action which is more suitable for 

fibre shortening whilst the finer patterns are better suited for strength development (Smook 1992). 
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Figure 2.4: Typical Refiner plate patterns (Sharpe et al. 1988) 

2.6 Refiner hydraulics 

The design of the refiner plates is important in that it decides the type of refining action (i.e. 

cutting or fibrillation). The grooves between rotor and stator bars have two functions. Firstly they 

provide the bar edges and surfaces necessary for the refining action and they also transport the 

fibres through the refiner (Hietanen et al. 1990, Kocurek 1992). Refiners need to have sufficient 

hydraulic capacity and this is taken care of by the grooves between rotor and stator bars (Hietanen 

et al. 1990). 

Investigations about the movement of fibres in a refiner have been carried out. There is a 

substantial build-up of pulp fibres on the refiner tackle (Fox et al. 1982). The accumulation of the 

fibres will depend on the size of the fibres , the stock consistency and the speed of the bar relative 

to the stock. 

Edge to ~e Edge to surface Surface to surf.ce 

Figure 2.5: Different phases of refining (Lumiainen 1995) 
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It was seen (Fox et al. 1982), that from just a 3% pulp suspension the collection of fibres on the 

bar could be such that the local consistency in that area reaches consistencies of about 12% thus a 

considerable thickening of the stock may occur within the refiner. All the refining cannot be done 

in the time it takes for the leading edges of the bars to cross each other. Figure 2.5 above shows 

schematically what happens inside a refiner. The refming starts when the leading edges of the 

rotor bars approach the leading edges of the stator bars (edge-to-edge phase). When this happens 

the fibre flocs are compressed and receive a strong impact. This leads to most of the water being 

compressed out of the floc. Next both leading edges slide along the fibre and press it against the 

flat bar surfaces. Most of the refining is carried out during this stage. This phase continues until 

the leading bar edges reach the trailing edges of the opposite bar. When the rotor bars move 

across the stator bars, there are strong vortex flows formed in the grooves between bars and the 

fibres are released and re-absorb water. The process just described describes just a single refining 

impact, the whole length of the impact is dependent on the width of the bars. (Lurniainen 1995, 

Kocurek 1992, Smook 1992, Lurniainen 1991, Fahay 1970) 

The energy split between the phases is highly dependent on the plate pattern while the refining 

outcome itself depends on the energy distribution between phases. If most of the energy is used in 

the edge -to-edge phase then the fibres will experience a cutting type of action while if most of 

the energy is consumed in the other phases then the fibres are more likely to be fibrillated 

(Lurniainen 1991). 

2.7 Refining theory 

The alteration/modification of the fibre characteristics is achieved by employing both hydraulic 

and mechanical forces. The fibres experience a twisting, rolling and tensional action between the 

bars and in the grooves and channels of the refmer. This action subjects the fibres to shear 

stresses. The bending, crushing, and pulling/pushing actions on the fibre clumps, while caught 

between the bar-to-bar surfaces are responsible for the normal stresses that are imposed on the 

fibres. (Smook 1992) 

Recently the refining process has been described by process and equipment parameters with the 

focus being on the energy usage. The knowledge of how this energy is utilised is essential in 

understanding the refining process (Baker 1995, Lurniainen 1991). 
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In examining the perfonnance of a refining system there are two factors of primary importance. 

These are: 

• The net specific energy (SRE) 

• Refining intensity (SEL) 

The first factor refers to the amount of effective energy applied per unit weight of pulp, while the 

second refers to the rate at which this energy is applied. While the first factor can be precisely and 

easily measured, the intensity with which the fibres are hit poses a little difficulty in its 

evaluation. To aid in the evaluation of this, a tenn called the "Specific Edge Load' is commonly 

used. This factor is computed by dividing the net power by the total length of bar edges which 

make contact with the stock per unit time. (Lurniainen 1991, Smook 1992, Lumiainen 1995) 

2.7.1 Refining intensity 

The amount of energy that is absorbed by the pulp is a critical factor affecting the changes that 

occur in the pulp properties but another significant thing to consider is the manner in which the 

work is carried out. To achieve a greater amount of fibrillation as opposed to fibre cutting, which 

is desirable in the development of fibre properties, refining will have to be carried out at lower 

intensities. What this basically means, is that for a fixed amount of energy that will be applied to 

the pulp in a refiner, the fibre treatment will be more optimal if this energy is applied gradually in 

steps as opposed to applying this same amount of energy in a concentrated fashion. Unfortunately 

this gradual application of the energy in low consistency refining usually means that multiple 

refiners will have to be used in series (Ortner et al. 1999, Smook 1992). This was seen 

experimentally when it was observed that conducting refining with three refiners in series instead 

of only two gave better strength properties (Ortner et al. 1999). 

In an extensive study by Brecht and Siewert it was found that the SEL is a good measure of 

refiner perfonnance (Brecht 1967, Kocurek 1992.). In tests where the net energy, speed of 

rotation and the length of the bars were varied, the same beating results were obtained if the 

variables were used such that a relatively constant SEL was used (Brecht 1967, Kocurek 1992). 

Also when using different types of refiners the same refining result will be obtained if operated at 

the same SEL. Thus it was implied that the SRE and the SEL defmes the results that will be 

obtained from refining a given pulp. The bar widths, number of bars, average contact area, speed 

of rotation, stock consistency, and volumetric flow rate had little influence on the refining except 

for the influence that it had within the SRE and SEL parameters (Kocurek 1992). This is in 
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accordance with modem refining theories. In the process of formulating the Specific Edge load 

Theory Brecht and Siewert had demonstrated that an Escher Wyss pilot plant refiner could be 

compared with different types of mill refiners. They showed that for the same conditions of net 

power and energy, different types of refiners gave similar fibre treatment (Baker 1991, Volkan et 

al. 1994). 

2.7.2 Transfer of energy during refining 

The energy is actually transferred to the fibre in three phases (Smook 1992). 

1. The edge-ta-edge phase- here the floes of fibre trapped between the bar edges receives a 

strong impact over a short length of the fibres. 

2. The edge-ta-surface phase-here a brushing action is imparted as the leading edges of both the 

rotor and stator bar presses the fibres against the flat bar surfaces. 

3. The surface-ta-surface phase- after the leading edges reach the trailing edges of the opposite 

bars the fibres undergo a further gliding action. This phase continues until the rotor bar clears 

the trailing edge of the stator bar. 

Parameters such as the sharpness of the bars, the width of the bars and grooves, and the roughness 

of the bar surfaces influences the energy split between the three phases. Fibre cutting or 

shortening is associated with energy consumption in the first phase while energy consumption in 

the second and third phase is associated with fibrillation of the fibres. 

2.7.3 The specific edge load theory 

(Peel 1999, Smook 1992, Kocurek 1992, Baker 1995, Lurniainen 1995) 

This theory involves an empirical measurement of refining action as the type (or intensity) of 

refining, the amount (or extent) of treatment and the energy consumed in the process. The 

refining action is a balance between the total net energy applied, the number of impacts on the 

fibres and the intensity of those impacts. The power consumed by the refiner is made up of two 

components: 

• The idling (or no-load) power consumption. 

• The power applied to the stock. 
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It stands to reason that to simply just rotate the unit against the stock flow will require some 

energy. This energy is referred to as the no-load power. The amount required will vary with type 

of refiner. The net energy applied to stock is the gross energy less the no load energy 

requirement. 

The no load power consumption is given by 

Po = K.N3.D5 

(Peel 1999) Where, 

• Po is the no-load power in kW 

----(1 ) 

• K is a constant, which depends on the refiner plate. 

• N is the refiner speed in revolutions per minute (rpm) 

• D is the plate diameter in m. 

The net power is given by (peel 1999) 

Pnet=P-Po -----(2) 

Where, 

• Pllet is the net power in kW 

• P is the gross refiner power in kW. 

The bar edge length is the total intersecting length of the rotor and stator bars. The product of the 

bar edge length and the refiner speed provides the rates of the bar-edge crossings. The intensity of 

the refining is then calculated by dividing the net refining power by the rate of bar-edge crossings 

(peel 1999, Lumiainen 1995). 

-----(3) 

Where, 

• Ls is the bar edge crossings or cutting speed in mls. 

• Cel is the cutting edge length in mlrev. This parameter is defined by the manufacturer. 

To calculate the Cel (Lumiainen 1995): 

Cel = Zr X Zs x I 

Zr & Zs are the number of rotor and stator bars respectively 

I is the length of the bar 

----(4) 
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The 1/60 is a conversion factor to convert the units ofN from rpm to rps (revolutions per second) 

Then the rate at which the energy is applied is given by (peel 1999, Baker 1995, Lurniainen 

1995): 

SEL = P nellLs -----(5) 

Where, SEL is the Specific Edge Load in Ws/m. The beating result in terms of fibre shortening or 

fibrillation is determined by the SEL (Lundin et al. 1999). A high SEL value denotes a tendency 

to result in fibre shortening or cutting while lower values are associated with fibrillation i.e. good 

refining response (Baker c.P. 1995). This would imply that the longer softwood fibres should be 

refined at higher refming intensities to result in fibre shortening for good formation whereas the 

shorter hardwood fibres should be refined at lower intensities to preserve its length thus not 

resulting in a decrease in strength properties resulting from fibres being cut. 

And the amount of effective energy applied per unit weight of pulp is given by (Peel 1999, Baker 

1995, Kocurek 1992, Lurniainen 1995): 

SRE= PnelM ------(6) 

Where, 

• SRE is the Specific Refining Energy in kWh/ton 

• M is the fibre flow rate in dry tonslhour. 

Equations 5 and 6 are related through a term, which may be defined as the specific number of 

impacts (Ni) 

-----(7) 

The result of the beating is considered to be greatly dependent on the number of impacts on the 

fibres (Lundin et al. 1999). These formulae are used to visualise the refining process and are not 

exact mathematical expressions (Baker 1995). Considering equations 5 & 6 it can be seen that the 

more important refining variables that need to be considered are the: - Refiner Power (kW), No­

load Power (kW), the plate design-since it influences the cutting speed, the speed of rotation, the 

consistency of the stock and the volumetric flow rate (Baker 1995). 

The number and length of bars in the refiner plate in combination with the speed of rotation 

determines the ability of that refiner to either fibrillate or cut efficiently (Baker 1995). The 

Specific edge load theory does not consider the bar width. It considers only the length of the bar 
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edges and assumes that the beating result is independent of the bar width (Lurniainen 1995, 

Lurniainen 1991). 

New theories such as the specific surface load theory, the reference specific edge load theory and 

the c-factor theory have been developed which focus on the severity of impacts received by the 

fibres. However the Specific Edge Load theory is still the most widely accepted and because of 

its ease of application it is the most widely used (Baker 1995, Lundin et al. 1999). Theories that 

neglect the effect of bar width should be used carefully. They work quite precisely if applied to a 

given plate pattern but do not provide an adequate comparison of different plate patterns 

(Lurniainen 1991). That is for studies that considers only variations in process variables in a 

refiner which uses the same plate the Specific Edge Load Theory can be used. 

2.8 Variables affecting refining 

A simple theory of mechanical treatment of pulp fibres has not been developed. The reason for 

this is that the subject is very complex. As indicated by Fahey even if one were to ignore the 

paper properties, the variables that are involved include those related to raw materials, equipment 

and the process (Fahay 1970). Some of the variables that influence the refining process are given 

in table 2.1. 

Table 2.1: Variables affecting the Refining Process (Smook 1992, Kocurek 1992, Fabay 

1970) 

Raw Materials Equipment Characteristics Process variables 

wood species bar size and shape temperature 
pulping method area of bars and grooves pH 
degree of pulping depth of grooves consistency 
bleaching treatment presence or absence of dams additives 
prior processing materials of construction pretreatments 
fibre length distribution wear patterns production rate 
fibre coarseness bar angles applied energy 
earlywoodllatewood ratio speed of rotation 
chemical composition 
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2.8.1 Effect of raw materials 

Different pulps have different refining requirements. There are many contributions to the 

heterogeneity of wood pulps as they are sent to the paper machine. Wood properties are 

influenced by a number of factors , which include their genetic factors and site conditions (Fahay 

1970, Muneri et al. 1998). The site condition is influenced by the climate, altitude and soil 

condition. Environmental variation is known to influence most tree species and it can be expected 

that the wood, pulp and papermaking properties are similarly affected. The majority of pulp mills 

use wood of a number of different species from different sites and very little is known about the 

effects of the growing environment on pulp and paper properties (Clarke et al. 1999). With a 

strong genetic influence environmental effects can be exploited by matching species or genotype 

to sites 

The type of cooking and degree of bleaching also affect the refining requirements. In general 

pulps produced by the Kraft process have a larger energy requirement than sulphite pulps. 

Bleached pulps are usually easier to refme than unbleached pulps (Blechschrnidt et al.2000, 

Smook 1992). Pulps containing larger percentages of hemicellulose are more easily refined. The 

hemicellulose has a large affinity for water thus swelling is promoted which promotes fibrillation 

(Smook 1992). 

2.8.2 Effect of equipment parameters 

With regards to the fillings or plate patterns, plates with narrower bars give a lower intensity 

refining than plates with wider bars. The lower intensity refining results in a less fibre shortening 

than pulp refined at higher intensities (Kocurek 1992). The configuration of the plate or filling is 

the controlling factor in the strength development of the pulp and for this reason both conical and 

disc refiners can be made to operate such that similar results are obtained. The geometrical 

configuration will impose some restrictions though. Although conical and disc refmers can be 

made to give similar results it was observed by Ortner, in mill scale refming trials that a modern 

conical refiner was found to give better and more homogeneous overall refining result compared 

to a conventional disc refiner (Ortner et al. 1999). 
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Table 2.2: Requirements for refiner plates for low intensity refinin2 (Si21 et al. 2001) 
Advantaj!e Limit 

Bar width' • CEL t • Plate material 

• Refiner efficiency t • Cutting effect 
Groove width , • CEL t • Plugging 

• Refiner efficiency t • Throuj!hput 
Bar height' • No-load power , • Lifetime 

• Plate material 

• Throuj!hput 

For table 2.2, the arrows can be read as in the following example. Plates with smaller bar width, 

would have a higher CEL and higher refining efficiency than plates with larger bar width. The 

limiting factors would be the plate material, which depending on the strength of the material 

would limit how narrow the bar can be made. Also, too narrow bars would result in increased 

fibre cutting. 

2.8.3 Effect of process variables 

The substantial process parameters are stock flow rate, pulp consistency, temperature, pressure 

and pH value. Both flow rate and consistency are dictated by production rate and existing pumps 

respectively, whereas temperature, pressure and pH value are determined by the process system. 

2.8.3.1 pH 

Higher pH levels (>7) promotes faster beating. At these high alkalinities the fibres absorb more 

water and thus swell more. The fibres become less compact and thus are less susceptible to 

cutting action thus fibrillation is promoted. Refining in acidic medium usually results in more 

fiber cutting and fines generation (Hietanen et al. 1990, Smook 1992). 

2.8.3.2 ConSistency 

Generally higher consistencies are better since there is increased fibre-to-fibre contact and this 

results in less cutting (Smook 1992, Kocurek 1992, Fahay 1970). The homogeneity of refining 

also increases (Hietanen et al. 1990). From tests carried out in a laboratory beater at constant 

conditions of temperature bar clearance and rotor speed but consistencies varying from 1.1 % to 

2%, it was seen that handsheets made from pulps beaten at higher consistencies were more elastic 

and had more internal bonded areas, as indicated by the z-directional tensile strength, thus 

indicating greater fibre collapse (Brown 1968). Typically, consistencies in low-consistency (LC) 

refining range from 3.0 - 5.0 %. The LC-range is normally limited by conventional pumps that 
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can operate up to consistencies of 6 %. Often refining takes place at around 4 %, which allows an 

unproblematic operation for most of the pump types (usually centrifugal pumps) used in the paper 

industry (Naujock 1995; Paulapuro 2000). 

2.8.3.3 Refiner speed 

It was found, that higher disc speeds provides a lower refining intensity for the same throughput 

and will thus result in a superior fibre development (Smook 1992, Fahay 1970). According to 

Reid (1965), at any production rate, an increase in refiner speed would result in a proportional 

increase of bar-edge impacts received by the pulp. This type of treatment would result in a less 

intense type of refining action received by each fibre thus resulting in less cutting action for any 

level of freeness drop (Reid 1965). The disadvantage is that at these higher rotational speeds there 

is a larger wastage of energy because the no-load energy requirement increases by the cube of the 

rotor speed (Smook 1992). In a study by Brecht, it was seen that pulp refined at higher speeds of 

revolution was treated more rapidly than pulp refined at lower speeds of rotation (Brecht 1967). 

That is for the same specific refining energy the pulp treated at higher speeds of rotation would 

result in a pulp having lower freeness than a pulp treated at lower speeds. The speed of rotation 

also has an influence on the residence time of the fibres in the refiner. As expected from theory it 

was shown that lower rotational speeds resulted in longer residence times in the refining zone 

(Senger et al. 1998). 

2.8.3.4 Temperature 

The effect of temperature on pulp refining is related to fibre swelling, which is reduced at higher 

temperatures and thus should be kept below 45°C (Reeves et al. 1996). According to Baker 

(2003) the increase in temperature over the normal range of refining is low enough so as not to 

have a significant effect on the refining process (Baker 2003, Hietanen et al. 1990). 

2.8.3.5 Refining gap 

There is a direct relationship between the refining gap and the intensity of refining (Hietanen et 

al. 1990, Sharpe et al. 1988). Reduced refming gap reduces the open area between the plates and 

thus the throughput capability while increasing the pulp development. However the clearance 

between the plates should remain above some minimum amount in order to avoid fibre cutting 

(Sharpe et al. 1988). 
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2.9 Effect of refining 

2.9.1 Effect of refining on fibres 

Fibres are basically long hollow cylinders and depending on its ongm (i.e. softwoods or 

hardwoods), they vary in length, diameter, cell wall thickness and flexibility (Kocurek 1992). 

Figure 2.6 shows a typical woo cell. 

Figure 2.6: A typical cellulose fibre (Sjostrom 1981) 

The middle lamella containing approximately 70-90% of the total lignin separates the individual 

fibres (Kocurek 1992). The fibres have different lengths and the cross-sectional area is about one 

hundredth of their length. The fibre wall is made up of several layers: 

• An outer primary wall (PI) 

• The inner secondary wall-which is actually made up of 3 components itself (i.e. S 1, S2, S3) 

Inside the fibre is an empty space called the lumen. The secondary wall is rich in cellulose and is 

considered to be the main body of the fibre (Kocurek 1992). Cellulose in fibres exists in the form 

of microfibrils, which are predominantly crystalline in nature, but they are thought to have small 

areas of disorder (Fahay 1970). 
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Three types of action can occur during the refining process (Reid 1965, Lurniainen 1991, Sharpe 

et al. 1988): 

Cutting or shortening: this refers to the rupturing of the fibre in a plane perpendicular to its 

longitudinal axis leaving two or more fibres shorter in length but with same diameter as 

original fibre 

Splitting: this refers to the rupturing of the fibre in a plane parallel to its longitudinal axis leaving 

two or more fibres ideally with the same length as original fibre but smaller in diameter. 

Bruising: this refers to the internal crushing and flexing of the fibre with ideally no change in 

fibre length but with a reduction in diameter. 

The cutting of fibres is most often considered to be undesirable as it contributes to a slower 

drainage and a reduction in strength. However the cutting of fibres always occurs to some extent 

during refining. Nevertheless this shortening of fibres is sometimes desired in certain applications 

as the shorter fibres promotes good sheet formation or maybe needed to control the drainage on 

the paper machine. As the refining proceeds it will be noted that the drainability of the pulp 

reduces rapidly. That is the pulp drains more slowly and the pulp is described as being less free 

(Smook 1992, Peel 1999). 

Table 2.3 shows the major effect of refining on the fibres (Casey 1952, Smook 1992, Fahay 1970, 

Hietanen et al. 1990). 

Although the primary wall is permeable it doesn' t swell and thus hinders the fibre as a whole to 

swell (Smook 1992, Casey 1952). Upon the partial removal of the primary wall and also the S 1 

layer of the secondary wall, the S2 layer of the secondary wall is exposed and water is absorbed 

into the molecular structure (Smook 1992, Kocurek 1992). The ensuing loosening of the internal 

structure promotes fibre swelling and this leaves the fibre soft and flexible. This is referred to as 

internal fibrillation and is regarded as the most important primary effect of refining following the 

removal of the primary wall. The further refining action, which follows, is referred to as the 

external fibrillation. This involves the loosening of the fibrils and raising of the finer rnicrofibrils 

on the surfaces of the fibres. This produces a very large increase in surface area for the beaten 

fibres (Smook 1992). Hietanen and Ebeling discuss the effects of refining on fibres in more detail 

(Hietanen et al. 1990). 
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Table 2.3: The primary and secondary effects of refining 

Primary Effects 

• Partial removal of the primary wall and the formation of fibre debris or fines 

• Penetration of water into the cell wall (a.k.a bruising/swelling) 

• Breaking of some intra-fibre bonds and the subsequent replacement by water-fibre hydrogen 

bonds 

• Increased fibre flexibility 

• External fibrillation and foliation 

• Fibre shortening 

Secondary effects 

• Fractures in the cell wall 

• Fibre stretching and/or compression 

• Partial solubilization of surface hemicellulose into gels 

• Straightening of the fibre at low consistency 

• Curling of the fibre at high consistency 

As the refining progresses, the fibres become more flexible and the cell walls collapse into the 

lumens. This results in the fibres becoming ribbon-like and they now boast good conformability. 

Figure 2.7 shows visually the difference between refined and unrefined pulp fibres. 

BEFORE REFINING AFTER REFI N I NG 

Figure 2.7: Difference between unrefined and refined pulp 
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It is known that beating or refining is used to develop the strength of the pulp. Several theories 

have been put forward with regards to the mechanisms of the strength development (Page 1985). 

Different authors have different views as to how beating increases the tensile strength of paper. 

Page (1985) suggested that most of these theories couldn't completely explain why this happens 

and proposed a new mechanism of strength development. He proposed that unbeaten fibres of 

dried pulp contains crimps and kinks that are produced in the pulping or bleaching plant and are 

set into fibres by drying. These crimps and kinks are incapable of transmitting load, resulting in a 

poor tensile strength in unbeaten sheets. Beating or refining increases swelling and applies tensile 

stress, which results in the straightening of fibres. This improves the stress distribution and the 

tensile strength is improved. Page (1985) suggests that this mechanism is responsible for the 

increase in tensile strength that occurs as a result of beating. 

According to Britt (1970), the loosening of the concentric layers of the fibres is considered to be 

the most important effect. It was suggested that the strength increase brought about by beating 

depends on the increase of fibre flexibility and plasticity during beating. After formation, pressing 

and drying, this results in increased interfibre bonding and a denser and more transparent sheet 

(Britt 1970). 

2.9.2 Effects of refining on pulp properties 

The resultant changes that occur due to refining are ultimately what the papermaker is particularly 

interested in. The refining conditions can be varied greatly to produce different combinations of 

pulp properties. It was seen from investigations carried out by Volkan (1994) that the change in 

any physical property for a given pulp could be correlated with two parameters. For the specific 

edge load theory these two parameters are the SRE and the SEL. 

The actual response of any pulp furnish to refining is dependent on the initial fibre properties, the 

refiner parameters and the operating conditions (Casey 1952, Smook 1992, Kocurek 1992). It was 

seen that pulp quality differences present in the unrefined stock are generally retained throughout 

the refming process (Kibblewhite 1994). The refining process changes the properties of the 

resultant sheet such that they are all affected but while increased refining may result in an 

increased value of one desired property (for example tensile strength) it may decrease another 

desired property (for example tear strength). Thus the final properties of the paper or board 

products will have to be a proper balance of the desired properties (Kocurek 1992, Casey 1952). 
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The extent of the refining is measured by standard drainage tests. The most commonly used 

drainage tests are the Canadian Standard Freeness (CSF) and the Schopper Riegler wetness eSR). 

Freeness is a measure of the readiness with which water drains freely from a pulp. There is a 

direct relationship between refining and freeness. By describing various sheet properties in terms 

of freeness makes the information less dependent on the type of refiner employed in the refining 

(Grant 1961 , Peel 1999, Kocurek 1992, Calkin 1957, Stephenson 1952). Kibblewhite concluded 

that the pulp freeness - strength property relations can be very different depending on the furnish 

composition, refming stock concentration and specific edge load and either separate or mixed 

refining (Kibblewhite 1994). 

The freeness of the stock decreases with increased refining and the resultant paper sheet becomes 

more dense and with reduced porosity, increased opacity and decreased dimensional stability. 

Tear strength always decreases with refining. This is because the tear strength is dependent on the 

strength of the individual fibres and during beating the individual fibres are made weaker. The 

other strength properties will increase as they are dependent on the degree of bonding between 

fibres and refining increases the surface area available for bonding thus as refining progresses 

there is improved inter-fibre bonding (Grant 1961 , Smook 1992, Casey 1952) 

Kibblewhite observed that the same effects are obtained when furnish components are refined 

separately or co-refined (Kibblewhite 1994). However he also saw that separate refining required 

the least energy and developed the highest tensile strengths at a given freeness value. 

According to work by Alexander et al (1968), sheet density was a reliable measure of inter-fibre 

bonding. Mechanical and optical properties of paper varied in a logical manner with sheet density 

if the sheet density could be taken as a direct indicator of the degree of bonding. However it was 

also noted that even though the variation of paper properties with sheet density is reproducible 

and fundamental, it is not the only criterion for characterising sheet. For a given pulp and set of 

forming conditions (i .e. refining and wet pressing) it was found that there was an optimum sheet 

density beyond which the fibres were so damaged as to lower the sheet strength. Once this point 

was reached it was pointless in continuing a refining treatment to try and achieve greater bonding 

(Alexander et al. 1968). 
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Chapter 3 

Material and Methods 

3.1 Introduction 

Refiners are expensive machines to operate and their impact on the paper quality is very 

significant. The fibre development in a refiner is dependent on the specific refining energy and on 

the intensity with which the energy is applied. There are many different ways that this energy can 

be varied using the various refining variables. 

3.2 Equipment 

A Bauer 8-inch single disc laboratory refiner was used to carry out all the refining trials in this 

project. This refiner was equipped with a variable speed drive. The plate design chosen for the 

investigations was similar to one that was used at Mondi Richards Bay mill (a local mill) with the 

exception of the groove depth. Table 3.1 gives the pattern details. 

Table 3.1: Pattern specification for lab refining application (Mugler 2002b) 

Number of sectors 18 
Master groove width [mm] 10 
Bar width [mm] 2 
Groove width [mm] 2 
Groove depth [mm] 3 
CEL - clockwise [kmIrev] 0.251430 
CEL - anti-clockwise [kmIrev] 0.279009 
Material Stainless steel 

The general principle of the stock feeding operation rig followed the one for changeover chest 

refining. The rig consisted of 2 agitated stock tanks (each tank has a 400 litre capacity) in which 

the pulp suspension was stored before and after passing through the refiner. Four air-actuated 

valves performed the automated changeover between tanks. A progressive cavity pump (or Mono 

pump), was used to transport the stock between chests. The flow was monitored via an electro­

magnetic flow meter that was integrated into the pressurized piping section between the refiner 

outlet and the backpressure valve. A manually operated sampling point was fitted into the 
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atmospheric pressure section before the stock is transported to the second storage tank. Figure 3.1 

illustrates the set-up of the refining rig. 

-------------~. -@ 
Water 

11 
Chest 1 

p tjp disposal p tjp disposal 

Stock ~rJ1) 

p tjp disposal 

Figure 3.1: Layout of the refiner set-up 

3.3 Refining theory used 

S8rJ1)ling/ 
Ptjp disposal 

._.-@ 

._.-® 

The specific edge load theory is still the most widely accepted concept in full-scale refining of 

low consistency pulp. Due to its simplicity, the specific edge load theory was used for the energy 

quantification of the lab refining (Smook 1992, Peel 1999). According to Lurnianen, theories that 

neglect the effect of bar width- should be used carefully. They work quite precisely if applied to a 

given plate pattern but do not provide an adequate comparison of different plate patterns 

(Lurniainen 1991). For studies that consider only variations in process variables in a refiner which 

uses the same plate the Specific Edge Load Theory can be used. 
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Brecht and Siewert demonstrated that an Escher Wyss pilot plant refiner could be compared with 

different types of mill refiners and that for the same conditions of net power and energy, different 

types of refiners gave similar fibre treatment (Baker 1991, Volkan et aI1994). In their extensive 

study it was found that the SEL is a good measure of refiner performance (Brecht 1967, Kocurek 

1992). In tests where the net energy, speed of rotation and the length of the bars were varied, the 

same beating results were obtained if the variables were used such that a relatively constant SEL 

was used (Brecht 1967, Kocurek 1992) 

3.4 Variation of refiner parameters (Phase 1) 

The purpose of this phase was to determine the influence of the various process and machine 

parameters on the refming of Eucalyptus fibres in general. The objective being that this 

knowledge could then be used on a more focused research program on well-defined pulps with 

limited refining variables being considered. The pulp used in phase 1 was unbleached Eucalyptus 

pulp, which was obtained from Mondi Richards Bay (a local pulp mill). This pulp was a mixture 

of different eucalyptus species (about 80% Eucalyptus grandis). The pulp was sampled from a 

point just before the first bleaching stage. It was collected at a consistency of 27% and stored in a 

cold room at 4°C. 

By considering the equations used in the specific edge load theory (Baker 1995), it was 

determined that the more important refining variables to be considered included: 

• Net refining power (kW), 

• the plate design-since it influences the cutting speed, 

• the speed of rotation, 

• the consistency of the stock and 

• the volumetric flow rate 

Table 3.2 shows the parameters that were investigated during phase 1 and also the ranges that 

were used for each parameter. Other parameters (e.g. temperature and pH) were kept constant. 

The pump limited the upper limit for the range of consistencies in the system. It could not handle 

higher consistencies and stalled each time an attempt was made at using a 5% consistency. 
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Table 3.2 Refiner variables investigated and the range considered 

Parameter Parameter range 

Consistency 2.5 ; 3 ; 4; 4.75 % 

Flow rate 0.6 ; 1 ; 1.5 ; 2 Us 
Speed of Rotation 1500; 1750; 2000 ; 2200 rpm 

The values shown in bold are the values that were held constant for each of the other two 

parameters while one of these three parameters were varied. That is for example, while 

investigating the effect of consistency, the flow rate was maintained at 1 Us and rotational speed 

at 2200rpm. When investigating other variables a 3% consistency was used. Each point was 

investigated in triplicate. A refiner gap clearance of 25 micron was used for all the trials. If the 

refiner gap clearance is to be investigated then a more sophisticated refiner system would be 

needed. 

3.4.1 Samples 

From each refming trial a sample was taken from the sampling point indicated in figure 3.1. 

These samples collected were spin-dried for 5 minutes each and stored in the cold room at 4°C. 

The moisture content of the spin-dried samples were determined before any testing of the pulp 

properties was done. The samples were tested to determine the pulp freeness and handsheets were 

made using the standard Tappi method (T205 sp-95) to determine the pulp strength properties. 

Table 3.3 shows the tests that were carried out on the pulp samples and the standard Tappi 

method that was used to test them. 

Table 3.3: Properties tested and standard test method used 

Canadian Standard Freeness (CSF) T 227 om-94 
Tensile strength T494 om-88 
Tear strength T414 om-88 
Bursting strength T403 om-91 
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3.4.2 Analysis of results obtained 

Graphs were plotted showing the average property values with standard errors (See section 4.2). 

Of the 3 different methods used to vary the refining energy, it was determined which method 

yielded the largest range in SEL and produced the lowest overall standard errors. Also for all the 

parameters used to vary the refining energy, the results were studied to determine which point 

within that parameter produced the most repeatable results. This was done by considering the 

standard errors at each point. A principal component analysis was carried out to see which of the 

three parameters was of greatest importance. The outcomes of this phase were used to decide on 

refining conditions used in phase 3 of this project. 

3.5 Comparison between refining of bleached and unbleached pulp (phase 2) 

The quality of the pulp is changed when it is bleached and this affects the refining process. The 

overall focus of the research project involved unbleached pulp due to difficulties in producing 

sufficient bleached pulp that would be required for refining in a laboratory environment. However 

since refining is normally done on bleached pulp, it was decided that a comparison should be 

made between bleached and unbleached pulp to determine any differences in refining 

characteristic between the two pulps. 

The unbleached pulp used in this phase of the project was the same pulp that was used in the first 

phase. Unrefined bleached eucalyptus pulp was obtained from Mondi Merebank, which gets this 

bleached pulp from Mondi Richards Bay. The refining for this phase of the project was carried 

out in stages by multiple passes through the refiner. All refining variables were held constant at 

the values shown in table 3.4. The specific refining energy (SRE) is a cumulative property, i.e. if 

the SRE for a single pass through the refiner is x, and the SRE for the second pass through the 

refiner is y , then the total SRE after the two stages is x +y. The refining intensity is not 

cumulative however and thus remains constant over all stages of refining. 

Table 3.4: Refining conditions used for comparison 

Stock consistency (%) 4.5 
Stock flow rate (Us) 1.2 
refming gap (micron) 25 
Speed of rotation (rpm) 2200 
Number of stages 6 
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Samples were taken after each stage of refining including samples of unrefined pulp. The trials 

were carried out in triplicate. The samples taken were tested as mentioned in section 3.4.l. 

Results are shown in section 5.2. 

3.5.1 Analysis of results obtained 

Graphs showing average property value per stage of refining and standard errors are presented. 

The properties of both pulps were interpolated at a series of fixed SRE values and a series of 

fixed freeness values along the range considered. A one-way analysis of variance (ANOV A) was 

carried out to check for differences between the two pulps at different SRE and freeness values. 

3.6 Refining trials of four different eucalyptus pulps (phase 3) 

The starting characteristics of an unrefmed pulp and its further treatment during refining, has a 

major effect on the quality of paper obtained. While the pulp selection is important for a good 

product, the refining treatment received by that pulp is of equal importance for the properties of 

the end product. It is for these reasons that it is interesting and beneficial to study the effect of 

refining on pulp of different qualities. The focus of phase 3 of this research work was to study the 

behavior of different types of pulps under different refining conditions and the testing of the 

resultant pulp to determine if recommendations can be made about how to refine wood of 

different characteristics in industrial processes. 

Two different clones of eucalyptus each from two different site qualities (good and poor) were 

selected to provide a variation in the wood anatomy of the raw material. Grzeskowiak et al. 

(2000) showed that the GU A380 and GC G438 clones offered different characteristics that could 

meet the required criteria of the project. 

3.6.1 Field Sampling 

GU A380 and GC G438 clones, each from poor and good site qualities were identified for 

sampling. Site quality was based on site index measurements. The table below highlights the key 

characteristics ofthe compartments used. The sampling was conducted in April 2004. 
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Table 3.5: Characteristics of the 4 compartments 

Species GU A380 GU A380 GC G438 GCG438 

Plantation K wambo Timbers Palmridge Mavuya Palmridge 

Age (years) 9 9 7 7 
Site Index 26.6 17.8 28.5 19.0 

Mean DBH (cm) 20.8 16.9 18.9 11.0 
SDDBH(cm) 2.2 1.4 1.5 1.1 

Mean Total Height (m) 30.0 20.4 27.4 19.4 
SD Total Height (m) 1.5 0.9 0.9 0.9 

Ten trees were felled from each compartment and two sets of samples were taken from each tree 

(see figure3.2). The diameter of the ten trees at 1.5m (breast height) from the base was measured 

together with the total tree height. The samples used for the wood density and anatomy 

measurement took the form of a 2cm thick disc taken at breast height. The samples taken for 

pulping and refining consisted of two 1.5m billets taken from either side of the 2cm disc. Thus 20 

billets were obtained for each compartment. These 20 billets from a single compartment were 

pooled together and used to provide enough pulp for the refining trials. The billets were debarked 

in the compartments and samples were appropriately labeled before leaving each compartment. 

T 

two Um billets / ~ r 
<4--- 2cm disc for 

used for pulping ~ ~ ~ 
anatomy and 
density 

base of tree 

Figure 3.2: Samples taken from each tree 
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In total for the four compartments, forty discs and 80 billets were transported back to the ffp 

Research center. 

3.6.2 Wood Anatomy and Density 

The 2cm thick disc samples were used to determine the wood density, and anatomical properties. 

A 2cm block from pith to bark was cut from each disc. From this 2cm block, a 2.5mm thick strip 

from pith to bark was cut which was used for image analysis. This strip was immersed in a beaker 

of water until it was sectioned and slides prepared. The remainder of the 2cm block was prepared 

for the density measurement. This will be discussed shortly in section 3.6.2.2. 

3.6.2.1 Anatomy 

The wood anatomical properties were measured using image analysis techniques. Using a sliding 

microtome, samples were cut from pith to bark from the strips that were immersed in the beaker 

of water. The unbroken transverse sections obtained were placed on a glass slide and wetted with 

99.9% ethanol. The ethanol provides a good medium for the viewing of the cells through the light 

microscope. According to Naidu (2003), wetting the samples with ethanol prevents evaporative 

shrinkage of cells, which would result in imprecise measurements. A cover slip was placed over 

the samples to prevent curling of the sample. Using a research microscope with fluorescent light 

together with a Leica image analysis system and digital camera, measurements of the anatomical 

properties were made systematically from pith to bark. Each strip had to be analysed twice. This 

was necessary because of the different magnifications required to measure the fibre and vessel 

properties. The first time was for the measurement of the fibre properties at 200 times 

magnification and a second time for the measurement of vessel properties at 50 times 

magnification. The anatomical properties measured were 

• fibre cell wall thickness 

• fibre diameter 

• lumen diameter 

• vessel diameter 

• vessel percentage 

• vessel frequency. 
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3.6.2.2 Density 

The remaining portion from the 2cm block of wood was cut to 2.5mm thickness using a specially 

designed saw. This strip was conditioned to constant moisture content in a conditioning room set 

at 23°C and 50% relative humidity before carrying out the density measurements. The density 

measurements were carried out using a gamma ray densitometer. The samples were scanned at 

0.5mm intervals from pith to bark. Wood extractives were not removed thus the density 

measured was the unextracted density. 

3.6.2.3 Analysis of Anatomical properties and Density 

The properties measured for each sample gives the profile of that property along the strip from 

pith to bark. In order to compare the properties, weighted mean values were calculated by 

multiplying each property value by the area measured, then adding all these together and dividing 

by the sum of the areas measured. The equation below was used. 

Where, Xi 

Ai 

WMX 

= Property measured 

= Area of the ithring 

I = 
n 

XiAi i-I 
n 

I Ai 
i = I 

n = The total number of measurements made fom pith to bark 

WMX = weighted mean property 

Using a one-way analysis of variance (ANOVA) at the 95% confidence level, the results obtained 

were analysed to check for variation of wood physical properties amongst the four compartments 

used. As already mentioned, the two different clones from poor and good sites were chosen to 

provide this variation. The Duncan multiple range test was carried out to test for homogeneity. 

Data analysis was carried out using Microsoft Excel and the statistical package Statgraphics. 

Results can be seen in section 6.1. 
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3.6.3 Pulping 

The 20 billets from each compartment were chipped together for pulping purposes. Thus there 

were four batches of chips that represented the four compartments investigated. The chipping was 

done in an industrial mill chipper at Sappi Saiccor. The chips were screened using vibratory 

screens to remove oversized and undersized chips. The screened chips were then left to air-dry 

before commencing with pulping. Representative samples of the air-dried chips from each of the 

four compartments were used to determine the moisture content of the compartment. The 

moisture content was determined by measuring the mass of chips before and after drying the 

chips in an oven set at a temperature of 105°C for 24 hours. The moisture content was calculated 

as the ratio of the mass of water evaporated in the oven to the mass of chips before being placed 

in the oven. 

The Kraft pulping process was used. Table 3.6 below shows the Kraft cooking conditions used. 

Table 3.6: Kraft cooking conditions used 

A.A charge (expressed as % Na20): 18% 
Sulphidity 25% 
Liquor-to-wood ratio: 4.5:1 
Time to 170°C 90 min 
Cooking time at 170°C 50 min 

H factor 892 

The reason for using 20 billets per compartment was that a large quantity of pulp was required for 

the refining trials. The pulping was carried out in an electrically heated rotating batch digester. 

This digester's capacity was such that it could pulp only 800g of oven dried chips at a time. Thus 

in order to produce sufficient pulp for the refining trials approximately 80 cooks had to be done 

per compartment. Thus in total for four compartments 320 cooks were done. 

Only the average results of the pulping, i.e. the kappa number, screened pulp yield, rejects, and 

total pulp yield will be presented. All the pulp produced from the 80 cooks for each of the four 

compartments was divided into 9 batches each. Results are shown in section 6.2. 
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3.6.4 Refining 

It was decided from the results of phase 1 reported in section 4, that the most appropriate method 

of varying the refining energy when refining the four different clones, was to use multiple passes 

through the refmer to vary the SRE and to use different speeds of rotation to vary the SEL. Three 

different speeds were used to provide 3 different refining intensities that could be compared. All 

trials were carried out in triplicate therefore 9 batches of pulp were required per compartment. 

Table 3.7 shows the refining parameters used when refining the pulp from the four compartments. 

Table 3.7: Refiner parameters used during refining of clones 

stock flow rate 1 litre/s 

refiner gap 25 micron 

stock consistency 3% 

speed of rotation 750 : 1500 :2200 rpm 

For refining carried out at 1500 rpm and 2200 rpm, 6 stages of refining were carried out (i.e. 6 

passes through the refiner). Samples of pulp were taken after each stage of refining as well as a 

sample of the unrefined pulp. For refining carried out at 750 rpm the SRE per pass was low so 25 

stages of refining was carried out. This time samples were collected after stages 1,5,10,15, 20 

and 25 as well as a sample of the unrefined pulp. Pulp samples collected from the refining trials 

were tested as outlined in section 3.4.1. 

3.6.4.1 Analysis of results obtained 

A sub sample from each sample collected was sent to Mondi Richards Bay for fibre morphology 

analysis. This was done using a Fibre Lab Analyser manufactured by Metso. The initial pulp fibre 

morphology was obtained from the unrefined pulp samples. The results obtained for this initial 

pulp fibre property were analysed for differences, using a one-way ANOV A at the 95% 

confidence level. The Duncan multiple range test was used to check for homogeneity. 

The results were compared in three ways. Firstly the overall strength properties were considered 

to look at the development of the pulp properties with refining. Results of this are shown in 

section 6.3. The results were then compared at a constant SRE of 100 kWhit. This showed the 

pulp properties after the same level of refining treatment. The results for this are shown in section 

6.4. The results were then compared at a constant freeness of 400 mi. Industry is generally 
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interested in pulp having freeness values in this range. When the results are compared in this way 

the impact of the different quality pulps on the refining process itself was seen in terms of how 

much of refining is needed to achieve this freeness level. Results for this are shown in section 6.5. 

Correlations between initial wood physical properties and pulp strength properties as well as 

correlations between initial pulp strength properties were determined to try to see what drives the 

different pulp strength properties. Principal component analyses were carried out to determine 

which variables could account for most of the differences in the results and thus reduce the 

number of variables that would be used in the multiple regression analysis and also avoid any 

autocorrelations. Multiple regression analysis was carried out to try and predict pulp strength 

properties. By using one-way ANOVA's at the 95% confidence level, results compared at 

constant SRE and constant freeness were analysed for differences due to different pulp qualities 

as well differences due to the three different refining speeds used. 
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Chapter 4 

Results and discussion for the variation of refining variables 

4.1 Introduction 

This chapter deals with the investigations of the impact of refming variables as defmed in section 

3.4. The reason for doing this was to gain an understanding of how these variables influence the 

refining outcome. Upon completion of this phase a suitable parameter would be chosen to 

continue further investigations in phase 3 of this project. 

4.2 Results and Discussion 
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Figure 4.1: Graph of specific refining energy versus parameter varied 

Figure 4.1 shows how the specific refining energy (SRE) changes as one of the parameters is 

varied while maintaining the other parameters constant. As the flow rate and consistency 

decreased, there was an increase in the refming energy. With increasing speed of rotation, there 

was an increase in refming energy. These trends are expected as will be explained shortly. 
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Figure 4.2: Relationship between refming intensity (SEL) and specific refming energy 

(SRE) 

Figure 4.2 shows the relationship between the refIning intensity (SEL) and the specifIc refIning 

energy (SRE). Three different methods were used to vary the amount of refIning energy and it 

can be seen in figure 4.2 that each methods gave rise to a different relationship between SRE and 

SEL. 

When varying the amount of SRE by changing the consistency of the refIning stock it was 

observed that as the stock consistency was decreased, the SRE increased and the calculated SEL 

decreased. The stock flow rate followed the same trend i.e. as the flow rate decreased the specifIc 

refining energy increased and the refming intensity decreased. With increasing speed of rotation 

an increase in both SRE and SEL was observed. 

Table4.1: Table showing range of SEL with variation of each parameter 

Consistency Flow rate Speed 
~ighest SEL (Wslm) 0.64 0.60 0.64 
~owest SEL (Wslm) 0.57 0.44 0.39 
ratio of highest to lowest l.11 l.37 l.63 

Varying the stock consistency led to minimal changes in refming intensity with increasing 

refining energy (the highest SEL was only 11% greater than the lowest SEL). It was noted that a 

change in flow rate from 2 Us down to 1 Us, led to a small change in SEL (only 5% difference). 
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However, a large change in SEL was observed when the flow rate was reduced to 0.6 lis. With 

the variation of speed of rotation it can be seen in table 4.1 that the SEL range was relatively 

larger than for when varying stock consistency or flow rate. 

An understanding as to why these variables relate to the SRE and SEL the way they do can be 

obtained by looking at the way the SRE and SEL are obtained. 

SRE = = P,.et 
fibre flowrate (consistency )x( stock flowrate) 

SEL = = 
cutting speed (Speedofrotation)x(Cutting edge length) 

The cutting edge length depends on the refmer plate patterns and for a given set of plates this is a 

constant. Thus in terms of this study where the same plate was used throughout the SEL only 

changes when the speed of rotation changes or the net power changes. The net power changes as 

any of the refining conditions changes. 

As the stock consistency changed the net power changed only slightly therefore the SEL didn't 

change a lot. However the fibre flow rate changed a lot therefore the SRE changed a lot more 

than the SEL. As the consistency decreased the net power was also observed to decrease very 

slightly and this is what resulted in a decrease in SEL. At the same time due to the lower 

consistency at fixed stock flow rate the fibre flow rate decreased therefore the refining energy 

was distributed to less fibres leading to an increase in SRE. The same explanation applies as the 

stock flow rate was decreased while keeping other variables constant. The exception here is the 

case of a stock flow rate of 0.6 lis where the net power was observed to be low compared to the 

net power observed at flow rates of 1, 1.5 and 2 lis. 

When the speed of rotation was increased both the SRE and the SEL increased. The net power is 

proportional to the cube of the speed so as the speed increases, so does the net power. The SRE 

increases as a result of this net power. Even though the cutting speed increased the SEL was 

observed to increase. This is because for the refiner used the net power increased by a larger 

amount than the cutting speed as the speed was increased. 
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In other studies (Reid 1965), it has been observed that as the speed of rotation increased the 

refining intensity decreased. It was noted that in these studies larger refiners were used. The size 

of the refiner would influence the magnitude of the cutting edge length. It is very likely that this 

parameter is the reason for this study showing an increase in SEL with increasing speed while in 

other studies it has been observed to be different. The cutting speed depends on both the speed of 

rotation and the cutting edge length. The larger refiners used in the other studies mentioned would 

have had larger cutting edge lengths compared to the refiner used in this study. Thus for large 

cutting edge lengths the product of speed and cutting edge length probably increases by a larger 

amount for an increase in speed than the net power increase. 

Figure 4.3 shows the relationship between the freeness of the pulp and SRE. It was observed that 

the freeness correlates very well with SRE. Freeness was observed to decrease as the specific 

refining energy was increased. With larger specific refining energies the fibres are treated more 

and become more collapsible. This causes the fibres to pack more closely together and thus 

hinder the drainability of the pulp. Also with increased refining the amount of fines which are 

produced increases and with increased fines the fibre mat produced as the pulp drains becomes 

less porous and the resistance to drainage of the water increases resulting in decreased freeness as 

refining progresses. The results show that even though different refining treatments were used, 

the freeness of the pulp was similar at the same SRE. The lowest standard errors were observed 

when the variation of speed of rotation was used to vary the SRE. 
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Figure 4.3: Relationship between freeness and SRE and SEL 
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Figure 4.4: Relationship between tensile index and SRE, freeness 

There was a good correlation between tensile index and SRE. The tensile index was observed to 

increase as the specific refining energy increased. The tensile strength is dependent on the bonds 

between fibres. Refining results in an increase in surface area of the fibres and this allows for 

increased bonding between fibres. Britt (1970), pointed out that it is believed that the interfibre 

bonding is the predominant factor in tensile strength while the fibre strength plays a secondary 

role. The refining action causes the fibres to swell by increasing the imbibition of water as the 

fibre surface is ruptured and fibrillated. The fibres become more flexible and are better able to 

mat and contact neighbouring fibres. It can also be seen in figure 4.4 that the freeness correlates 

very well with the tensile index. It was also noted, that of the different methods used to vary the 
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SRE, that the results obtained for the variation of the parameter speed of rotation resulted in the 

lowest standard errors for the tensile strength. This was also noted with all other properties 

measured. 
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Figure 4.5: Relationship between tear index and SRE, freeness 

Tear index (figure 4.5), showed an initial increase in tear strength up to about 35-45 kWhlt 

thereafter with continued refming the tear strength deteriorates. The exception to this trend, are 

the results from the variation of flow rate where the tear index is still high at a SRE of 69.4 

kWhlt. Casey (1981) mentioned that stretch is a factor in the initial tearing resistance of paper. 
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This might contribute to the high tear strength achieved when refining at 0.6 lis. It can be seen in 

figure 4.8 that the refining at 0.61/s resulted in sheets with the highest stretch (3.5%). 

Fibre length and interfibre bonding are both important factors contributing to the tearing 

resistance of paper. It is believed that long fibres result in higher tear strength and the reason for 

this is because longer fibres distribute the stress over a greater area and over more fibres and 

more bonds than short fibres. Thus with shorter fibres the stress is concentrated over a smaller 

area (Britt 1970). With a low degree of interfibre bonding, fibres are able to pull apart easily and 

this results in a low tear strength. As the amount of interfibre bonding increases the fibres do not 

pull apart as easily and tear strength increases. The tear strength increases to a maximum and then 

decreases (Britt 1970). Refining increases the surface area to improve interfibre bonding and this 

is what results in an initial increase in tear strength with refining. However the refining process 

cuts the fibre and decreases the fibre strength and as a result of this the tear strength increases to a 

maximum beyond which point further refining lowers the fibre strength too much and the tear 

strength starts to deteriorate. 

The work involved in tearing a paper is made up of two components (Casey 1981). These are the 

work involved in pulling fibres out of the paper and the work involved in rupturing fibres. 

According to Casey (1981), for paper made from unrefined pulp, the tearing resistance is made up 

mostly of work involved in overcoming the frictional resistance of the fibres being pulled from 

the paper. Casey goes on to mention that, after slight refining, interfibre bonding is increased and 

the tear strength increases due to increased frictional resistance in pulling the fibres out of the 

paper. However with increased refming the fibres do not slip past one another easily and as a 

result of this there is an increase in the number of fibres that are ruptured in tension. When this 

happens, tearing becomes more of shearing action rather than a pulling one. Since the work 

involved in rupturing a fibre is much less than the energy involved in pulling a fibre out of the 

paper, the energy required to tear the paper decreases. What this implies is that with increased 

refining the cohesion of the sheet increases and this concentrates the tearing force over a smaller 

area and because of this lower tear strength values are obtained. 
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Figure 4.6: Relationship between burst index and SRE, freeness 

The burst index increases with increasing SRE (figure 4.6). At a fixed SRE or freeness there were 

no marked differences in burst strength amongst the different methods used to vary the SRE. The 

development of the burst strength occurs in a similar manner as the tensile strength. The reasons 

for the observed increase in burst strength with refining are thought to be the same as mentioned 

for tensile strength (Britt 1970). Increased fibre lengths produce higher burst strength however the 

amount of interfibre bonding has a greater affect on the burst strength. According to Casey 

(1981), the bursting strength is complex function of tensile strength and stretch. While burst 

strength increases with refining over most of the range, some loss in burst strength can occur with 

excessive refming. Casey attributes the loss in burst strength with excessive refining to the 
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disintegration of the fibre and also states that part of the loss could be accounted for by a loss in 

stretch. 
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Figure 4.7: Relationship between sheet density and SRE, freeness and SEL 

The sheet density was observed to increase with increasing SRE (figure 4.7). With increased 

refining the fibres become more conformable and are able to pack more closely together. In 

addition, fmes are produced which fill up any voids and increase the sheet density. At a fixed 

SRE, all refming treatments resulted in pulps which produce similar sheet densities. 
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Figure 4.8: Relationship between stretch and SRE, freeness 
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Stretch is the amount of elongation that the sheet undergoes under tensile stress. With the 

variation of flow rate and speed of rotation, it was seen (figure 4.8) that there was an increase in 

stretch in the sheets produced from the refmed pulps compared to the stretch of the uorefmed 

pulp. In the case of variation of speed of rotation the stretch did not change with SRE. For the 

variation of flow rate, the stretch increased continuously with SRE. The highest stretch obtained 

was about 3.5% for the flow rate of 0.6 lis. In the case where variation of consistency used to vary 

the SRE, there was no change in stretch with SRE. The stretch values were the same as when 

using speed of rotation to vary the SRE. Some of the factors that influence stretch are fibre 

elasticity and strength, sheet density and formation (Britt 1970). Refmiog results in sheets with 
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higher density and better formation. According to Britt (1970), the stretch of normal paper 

generally does not exceed 5%. 
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Figure 4.9: Relationship between TEA and SRE, freeness 
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The tensile energy absorbed (TEA), is a very important measure of the strength of paper. The 

TEA increases with increasing refming energy (figure 4.9). At the same SRE all methods seem to 

give the same TEA. The TEA combines the tensile strength with stretch and is a measure of the 

toughness of the paper (Casey 1981). The reasons for an increase in TEA with refining are 

probably the same the reasons for an increase in tensile strength and stretch with refining. 
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Table 4.2: Regression models for prediction of pulp properties 

p-value 
Property R2 Equation 

<0.0001 
Freeness 88.18 Freeness = 533.519 - 2.60344xSRE 

Tensile <0.0001 Tensile strength = 45.7071 + 
strength 78.95 0.424599xSRE 

<0.0001 Tear = 7.2784 + 0.3348 .J SRE 
Tear strength 69.41 

<0.0001 Burst strength = 2.41039 + 
Burst strength 82.2 0.0369253xSRE 

<0.0001 
Sheet Density 77.33 Sheet density = 587.813 + 1.42043xSRE 

<0.0001 
Stretch 70.2 Stretch = 1.90717 + 0.0168779xSRE 

<0.0001 
TEA 80.61 TEA = 40.4422 + 0.702391xSRE 

A principal component analysis showed that of the three variables varied, the parameter speed of 

rotation was more important. Table 4.2 shows the result of a multiple regression analysis. The 

SRE and SEL were used to try and predict the pulp properties. It was seen that the SRE alone 

resulted in good predictions of the pulp properties. 
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4.3 Summary of findings 

• The SRE is the main determinant in predicting pulp strength properties. 

• The results obtained from varying the parameter speed of rotation had the largest range in 

SEL and had the smallest standard errors. A principal component analysis showed this 

parameter to have a larger weighting than the other two variables used to vary the refining 

energy. Therefore this parameter was used in phase 3 of this project to provide a variation in 

refining intensity when refming the different pulps. 

• Within each parameter investigated the following points had the lowest standard errors for the 

freeness and were chosen to be held constant in phase 3 of the project 

• Flow rate Ills 

• Consistency 3 % 

• It was seen that the control of flow rate led to good development of tear strength compared to 

the other methods used to control the SRE. This could have important implications if the 

results are confirmed with more testing. This is something worth exploring in future projects. 
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Chapter 5 

Results and discussion for the comparison of refining between 

bleached and unbleached pulp 

5.1 Introduction 

Refming is normally done on bleached pulp in industry. The bleaching process changes the 

properties of the pulp. This is due to the removal of more lignin from the fibres which results in 

the fibres becoming more flexible than fibres of unbleached pulp. As a result of the extra 

delignification of the bleached pulp certain fibre strength properties may deteriorate. The project 

considers the refming of unbleached eucalyptus pulp due to the difficulties involved in producing 

sufficient quantities of bleached pulp that would be required for refming trials in a lab 

environment. This chapter deals with investigations regarding the comparison of refming of 

bleached and unbleached eucalyptus pulps. 

5.2 Results and discussion 
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Figure 5.1: Absorbed energy differences for refining of bleached and unbleached pulp 
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Figure 5.1 shows specific refining energy and refining intensity observed for a single pass 

through the refmer during the refming of the bleached and unbleached pulp. It can be seen that 

when all the parameters, i.e. flow rate, refming gap, consistency and speed of rotation, are fixed 

and different pulps are used (in this case bleached and unbleached pulp), the energy 

characteristics are different. It can be seen that the unbleached pulp offers a greater resistance to 

the action of the refmer and thus a larger amount of power is used when all other refmer variables 

are fIXed. Unbleached pulp has a higher lignin content compared to bleached pulp. Fibres with 

higher lignin content will be less flexible and this is what contributes to unbleached pulp having a 

higher resistance to the refming action. 
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Figure 5.2: Relationship between freeness and SRE for bleached and unbleached pulp 

Figure 5.2 shows the results observed for how freeness changed for both pulps at increased levels 

of refining. It can be seen that at a fIXed specific refining energy there is a significant difference 

between the freeness of the two pulps throughout the range considered. This was confirmed by an 

analysis of variance test being carried out and table 5.1 below shows the results. 

Table 5.1: ANOVA table for freeness at constant SRE 

SRE 0 25 50 75 100 125 140 

p-value 0.0008 0.0005 0.0005 0.0007 0.0011 0.0018 0.0023 
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The lower freeness of the bleached pulp is a result of the higher flexibility of the fibres due to the 

lower lignin content as compared to the fibres in the unbleached pulp. This greater flexibility of 

the bleached fibres allows them to pack more closely than the more rigid unbleached fibres and 

thus offer a greater filtration resistance. The refining treatment increases the flexibility of both 

fibres and this contributes the decrease in freeness observed with increased refining treatment. 

Also contributing the decrease in freeness will be the production of fmes during refming. The 

fines ftll up voids between fibres thus increasing the drainage resistance. 
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Figure 5.3: Relationship between tensile index, SRE and freeness for bleached and 

unbleached pulp 
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It was observed that at a fixed specific refining energy there were no significant differences 

between the tensile index of the bleached and unbleached pulp (table 5.2). However when 

compared at constant freeness significant differences were observed for the two pulps. The tensile 

index is significantly higher for the unbleached pulp compared to the bleached pulp at constant 

freeness . Reasons why the tensile index increases with refining have already been discussed in 

section 4.2 

Table 5.2: ANOVA results for tensile index at constant SRE and constant freeness 

SRE I 01 251 501 751 1001 1251 140 
p-value I 0.94701 0.70231 0.43411 0.28461 0.29611 0.317.:u 0.3323 

Freeness I 1501 2001 2501 3001 3501 4001 
p-value I 0.01841 0.0101 1 0.00641 0.00681 0.01351 0.03301 

Figure 5.4 shows the results observed for the relationships between tear index and SRE and tear 

index and freeness. The trend for both pulps showed an initial increase in tear index with 

increased refilling up to a maximum and thereafter starts to decrease. The reason why the tear 

index behaves in this manner has been discussed in section 4.2. The maximum tear strength 

occurs at a SRE of between 65-70 kWhlt and from the figure it appears that the tear strength for 

the unbleached pulp is higher. This difference is not significant however, as can be seen from the 

results from an analysis of variance at constant SRE in table 5.3 below. 

The tear strength graphs cross each other at a freeness of about 325 ml. For freeness values above 

325 ml the unbleached pulp appears to have a higher tear strength value than the bleached pulp 

and for freeness values below 325 ml it appears that the bleached pulp has higher tear strength 

values. These differences are not significant however as can be seen in table 5.3. 

Table 5.3: ANOVA results for tear index at constant SRE and constant freeness 

SRE / 01 251 501 751 100/ 1251 140 
p-values I 0.78541 0.78171 0.6221 1 0.6190/ 0.6421 1 0.7384/ 0.8818 

Freeness I 1501 2001 2501 3001 3501 4001 
p-values I 0.1291 1 0.2062/ 0.40221 0.8285J 0.47621 0.16781 
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Figure S.4: Relationship between tear index, SRE and freeness for bleached and 

unbleached pulp 

Figure 5.5 shows the relationship between tear strength and tensile strength. Generally it is 

desired to optimise both these properties. However, while, the tensile strength increases with 

increasing refming the tear strength only increases initially and thereafter starts to decrease. Thus 

the strength of paper would be a compromise between properties depending on the strength 

requirements of a given paper grade. Figure 5.5 shows that for both bleached and unbleached 

pulp the maximum tear strength occurs at a tensile index of70 kNmlkg. 
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Figure 5.5: Relationship between tear index and tensile index for bleached and 

unbleached pulp 

Figure 5.6 shows the relationship between Burst Index and SRE and Burst Index and Freeness for 

both bleached and unbleached pulp. It can be observed that the Burst Index increases with 

increased refining. The reason for this increase is discussed in section 4.2. An analysis of variance 

(Table 5.4) shows that in the early parts of the refIning there was no signifIcant difference in burst 

strength between the bleached and unbleached pulp at constant SRE. However with increased 

refining (50-140 kWh/t) there were signifIcant differences in burst strength between bleached and 

unbleached pulp at constant SRE. At constant freeness there are no signifIcant differences in burst 

strength between the two pulps below a freeness of350 ml. 

Table 5.4: ANOV A results for burst index at constant SRE and constant freeness 

SRE I 01 251 501 751 1001 1251 140 
p-values I 0.91341 0.23531 0.0443f 0.02891 0.02981 0.03281 0.0347 

Freeness I 1501 2001 250\ 3001 3501 4001 
p-values I 0.41401 0.27281 0.15531 0.08041 0.04591 0.03671 
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Figure 5.6: Relationship between burst index, SRE and freeness for bleached and 

unbleached pulp 

It can be seen in figure 5.7 that at a fixed specific refining energy there is no difference in average 

sheet density from the bleached and unbleached pulp. At constant freeness the unbleached pulp 

has a higher average sheet density compared to the bleached pulp however from an analysis of 

variance it can be seen (table 5.5 below) that there were no significant differences at the 95% 

confidence level. 

60 



-900 ~--------------------------~ 

"'e 
~800 +-------------~~~~~~~----~ 

~700l-----~~~~~~--~--~ 
(I) 

; 600 ~~--~---------------------------i 
o 
~ 500 +---------------------------------~ 
CD .s= 
o 400+-----~-----r-----,-----.----~ 

o 50 100 150 200 250 
SRE (kWh/t) 

I. av bleached ~ av unbleached I 

_ 900 ~------------------------------, 

"'e 
~800 +-----~==~-=----------------~ 
~ -~ 700 +-------~----=~d-~~---------__t 
(I) 

; 600 +-----------------~--~~~~~--~ 
o 
i 500 +-----------------------------------4 
.s= 
o 400+-----~--~----~----~----.---~ 

o 100 200 300 400 500 
CSF (ml) 

I. av Bleached ~ av unbleached I 
The points on the graph show the mean of 
three replicates with the standard errors 
indicated by the error bars. 

600 

Figure 5.7: Relationship between sheet density, SRE and Freeness for 

bleached and unbleached pulp 

Table 5.5: ANOV A results for sheet density at constant SRE and constant freeness 

SRE I 01 251 501 751 1001 1251 140 
p-values I 0.32691 0.65661 0.91141 0.93341 0.83741 0.77421 0.7460 

Freeness I 1501 2001 2501 3001 3501 4001 
p-values I 0.54581 0.46251 0.36601 0.25951 0.15391 0.06951 
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Figure 5.8: Relationship between stretch, SRE and freeness for bleached and 

unbleached pulp 

It was observed that at constant SRE there were significant differences in stretch for the bleached 

and unbleached pulp at the 95% confidence level (Table 5.6). The stretch increases with increased 

levels of refining and the stretch for the bleached pulp is significantly higher than the stretch for 

the unbleached pulp at constant SRE. At constant freeness the average stretch for the bleached 

pulp is observed to be higher than for the unbleached pulp however it can be seen from an 

analysis of variance that the differences at constant freeness are not significant at the 95% 

confidence level. 
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Table 5.6: ANOV A results for stretch at constant SRE and constant freeness 

SRE I 01 251 501 751 1001 1251 140 
p-values I 0.02091 0.01051 0.00621 0.00491 0.00501 0.00601 0.0070 

Freeness I 1501 2001 2501 3001 3501 4001 
p-values I 0. 14551 0.10821 0.08291 0.07431 0.08561 0. 11961 

The TEA was observed to be significantly different at constant SRE at the 95% confidence level 

(Table 5.7). The TEA increased with increased refining and the bleached pulp had a higher TEA 

than the unbleached pulp. It can also be seen in figure 5.9 that there are no observable differences 

in TEA at constant freeness . 

Table 5.7: ANOVA results for TEA at constant SRE and constant freeness 

SRE I 01 251 501 751 1001 1251 140 
p-values I 0.11541 0.01101 0.00081 0.00071 0.00191 0.00441 0.0062 

Freeness I 1501 2001 2501 3001 3501 4001 
p-values I 0.3801 1 0.47981 0.68981 0.83421 0.22791 0.06251 
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Figure 5.9: Relationship between TEA, SRE and freeness for bleached and 
unbleached pulp 
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5.3 Summary of findings 

• There are differences in the refining characteristics between bleached and unbleached 

eucalyptus pulps. The results indicate that the differences in refining characteristics occur 

in a predictable manner. These results indicate that it was acceptable to carry out the next 

phase of work on the different genetic material in an unbleached form. 

• Bleached pulp requires less energy than the unbleached pulp to achieve the same level of 

freeness 

• There were no significant differences in tensile strength of bleached and unbleached pulp 

at the same SRE but at the same freeness the tensile strength of the unbleached pulp was 

significantly higher than the tensile strength of the bleached pulp. 

• The maximum tear strength of the bleached and unbleached pulp occurs at the same SRE 

but at different freeness values. The maximum tear strength of the unbleached pulp 

occurred at a higher freeness than the bleached pulp. For both pulps the maximum tear 

strength occurred at a tensile strength of 70 kNmlkg 

• At constant SRE the average burst strength of the bleached pulp was observed to be 

greater than the average burst strength of the unbleached pulp. At constant freeness 

however the opposite was noted. 

• The bleached pulp had a higher stretch than the unbleached pulp at the same SRE and 

also at the same freeness. However this difference was only found to be significant in the 

case of comparisons at the same SRE. 

• The TEA was significantly higher for the bleached pulp at the same SRE however when 

compared at the same freeness there were no differences in TEA observed between the 

two pulps. 
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Chapter 6 

Phase 3 - Investigations with four different pulps 

6.1 Wood anatomy and density 

The role of the raw material is very important. The paper grade being produced is what 

determines the specific types of raw materials to be used so as to ensure that a superior quality 

product at a competitive value is obtained. It is known that there exist large variations in wood 

properties. Amongst other factors , wood properties are known to vary with species, site quality, 

and age. In order to optimise the conditions of processing and to control the quality of the end 

products, it is important to understand the properties of the wood being processed and how they 

respond to pulping and the refining process 
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Figure 6.1: Graph of weighted mean wood density 

Figure 6.1 above shows the average density for each of the four compartments. The letters (A -

D) on the graph indicate the results of a Duncan multiple range test. For the Duncan test, common 

letters indicate that there were no significant differences between samples at the 95% confidence 

level. In this case it can be seen that the four compartments have significantly different densities. 

The largest density is 0.641g/cm3 for GCP and this is 79% higher than the density for GUG, 

which is 0.358g/cm
3

• At both the poor and good sites the GC clones had a higher density than the 

GU clones. 
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At the good sites the density of the GC clones (0.416 glcm3
) is 16% higher than the density of the 

GU clones. At the poor sites the density of the GC clones is 13% higher than the density of the 

GU clones (0.568g1cm3
). For the same species, the density for GC at the poor site is 54% higher 

than for the GC at the good site. The density for GU at the poor site is 58% higher than for GU at 

the good site. This shows that for the selected material, there are greater differences in wood 

density due to site quality differences than differences due to different species from the same site 

quality. 
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Figure 6.2: Graphs of wood fibre properties 
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The weighted mean fibre diameter for each of the four compartments can be seen in figure 6.2. 

The letters A to C on the graph show the results of a Duncan multiple range test. At both sites the 

GU clones had a larger mean fibre diameter, however at the poor site the difference was not 

significant at the 95% confidence level. There were three significantly different groups at the 

95% confidence level as indicated by the letters on the graph. The GUG had the largest mean 

fibre diameter of 14.79 microns and was 12 % larger than the mean fibre diameter of the GCG 

(13.18 microns). 

It can be seen (figure 6.2), that there were significant differences in wood lumen diameter at the 

95% confidence level. The wood lumen diameter for the GCG and GCP were similar but 

significantly different to the GUG and GUP. The GUG and GUP had significantly different wood 

lumen diameter at the two sites. The GUG had the largest wood lumen diameter of 9.66 microns 

and was 53% larger than the smallest wood lumen diameter from the GCP. For both species, the 

clones from the good sites had a larger lumen diameter than the same clones grown in the poor 

site, however the difference in lumen diameter was not significant at the 95% confidence level for 

the GC clones from both sites. It was seen that the GCG and GCP had a smaller lumen diameter 

than both GUG and GUP. This indicates that irrespective of site quality the GC clones had a 

smaller wood lumen diameter than the GU clones. 

Figure 6.2 shows the weighted mean cell wall thickness for the four compartments. From the 

Duncan test it can be seen that there were significant differences in cell wall thickness among the 

four compartments at the 95% confidence level. The GCG and GCP had thicker cell walls than 

the GUG and GUP. The GCP had the thickest cell wall (3.82 microns) and was 49% larger than 

the cell wall thickness of the GUG, which had the smallest cell wall thickness. 

There were significant differences in wood fibre collapsibility (figure 6.2). The GUG had the 

highest fibre collapsibility (8.9) and was more than double the collapsibility of the GCP (4.2). 

The fibre collapsibility of the GUP was significantly higher than the GCP but similar to the 

collapsibility for the fibres from the GCG. There were no significant differences in fibre 

collapsibility between the GCG and GCP. 

The weighted mean vessel diameter of the four compartments can be seen in figure 6.3. From the 

results of the Duncan test it can be seen that there were significant differences in vessel diameter 

between compartments at the 95 % confidence level. The largest vessel diameter was from the 
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GUG (113.9 microns) which was 33% larger than the GCP (85.5 microns). The difference in 

vessel diameter between the two clones at the good sites was not significant at the 95% 

confidence level. 

Figure 6.3 also shows the mean percentage of vessel for the four compartments. It can be seen 

from the results of the Duncan test, that there was a significant difference in the vessel percentage 

amongst the compartments. The GCG had the highest percentage of vessels (12.3%) this being 

30% larger than the GCP, which had the smallest percentage of vessels (9.5%). There was no 

significant difference in the percentage of vessels between the GCP and GUP. 

The GCP had the highest vessel frequency of 14.3 per mm2 (figure 6.3) being 47% higher than 

the vessel frequency of the GUG (9.8 per mm2
). It can be seen from the results of the Duncan test 

that there were significant differences in vessel frequency amongst the four compartments at the 

95% confidence level. The GCG and GCP had a higher vessel frequency than the GUG and GUP. 

The GUG and GUP had a similar vessel frequency. For both species the clones from the poor 

sites had higher vessel frequency than the clones from the good sites, however this difference was 

only significant for the GC clones. 
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Figure 6.3: Graph showing wood vessel properties 
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6.2 Pulp properties 

The four compartments were pulped using the Kraft pulping process. All the compartments were 

subjected to the same pulping conditions of being cooked for 50 minutes at the conditions 

mentioned in table 3.6 (section 3.6.3). The table below shows the kappa number, yield and 

rejects results. Work with the four clones deals with unbleached pulp. 

Table 6.1: Pulping results for four compartments 

Species GC G438 GC G438 GU A380 GU A380 

Site Index good poor good poor 

Kappa number 20.91 ± 1.31 19.17 ± 1.95 18.10 ± 0.66 21 .31± 1.65 

Screened pulp yield (%) 50.08 ± 0.97 48.32 ± 1.20 51.11 ± 3.38 47.54 ± 0.90 

Rejects (%) 2.04 ± 0.77 0.27 ± 0.16 1.15 ± 0.48 0.61 ± 0.28 

Total pulp yield (%) 52.13 ± 1.28 48.59 ± 1.22 52.27 ± 3.45 48.15 ± 0.85 

The results indicated in the table are the average results of the 80 cooks from each compartment. 

The 80 cooks were required to provide sufficient pulp for the refining trials. It can be seen that 

the GU A380 clones from the good site had the highest screened pulp yield. The GU A380 clones 

from the poor site had the lowest mean screened pulp yield. For both species the mean screened 

pulp yield for the clones from the good sites were higher than the mean screened pulp yields for 

the poor sites. The GU A380 clones from the poor site had the highest average kappa number of 

21.31 and the GU A380 clones from the good site had the lowest average kappa number of 18.10. 

6.2.1 Differences in pulp physical properties 

Figure 6.4 shows the initial pulp fibre length after cooking the material from the four 

compartments for 50 minutes at 170°C using the Kraft pulping process. The fibre length was 

measured using a Fibre Lab Analyser at the Mondi Richards Bay mill. This instrument was not 

calibrated and as such the relative fibre lengths are being compared rather than absolute lengths. 

The letters A to C show the results from a Duncan test and it can be seen that there are significant 

differences in pulp fibre length amongst the four compartments at the 95% confidence interval. 

The largest pulp fibre length was 0.80 mm which is from the GCG. The shortest pulp fibre length 

was 0.70 mm from the GUP. There was a 14% difference in fibre length between these two 
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compartments. There was no significant difference in the average pulp fibre length between the 

GUG and the GCP. 

- 0.80 i 
E c §. 0.77 • • 

GCG = GC G438 - good site 

GCP = GC G438 - poor site 
...J B B 
LL 0.74 c.. GUG = GU A380 - good site 
-::l 
a.. 0.71 • GUP = GU A380 - poor site 

A 
0.68 

GCG GCP GUG GUP 
species 

Figure 6.4: Initial pulp fibre length 

The pulp fibre diameter can be seen in figure 6.5 . Again it needs to be noted that the fibre 

diameter was measured using the fibre lab analyser at the Mondi Richards Bay mill and since the 

instrument was not calibrated relative fibre diameters were compared rather than absolute 

diameters. The GUG had the largest pulp fibre diameter (18.48micron) this was 10% larger than 

the smallest pulp fibre diameter (16.79micron) from the GCG. From the results of Duncan test it 

was seen that there were no significant differences in pulp fibre diameter for the GCG and GCP at 

the 95% confidence level. However, the GCG and GCP were significantly different to the GUG 

and GUP. The GUG and GUP were also significantly different to each other at the 95% 

confidence level. 

The pulp cell wall thickness was also measured using the fibre lab analyser from Mondi Richards 

Bay and as mentioned previously since the instrument was not calibrated relative cell wall 

thicknesses were being compared. There were significant differences in pulp cell wall thickness 

between the GUG and GUP at the 95% confidence level (figure 6.5). The GUG had the thinnest 

cell wall thickness while the GUP had the thickest cell wall thickness. From the results of the 

Duncan test it was seen that the cell wall thickness of the two GC clones were comparable. 
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Figure 6.5: Initial pulp lumen diameter, fibre diameter and cell wall thickness 

73 



The pulp lumen diameter was calculated by subtracting twice the pulp cell wall thickness from 

the pulp fibre diameter. The average pulp lumen diameter (figure 6.5) ranged from 10.62 microns 

for the GCG to 12.36 microns for the GUG. The results from the Duncan test show that there 

were no significant differences in pulp lumen diameter between the GCG and GCP at the 95% 

confidence level. There were significant differences in pulp lumen diameter between the two 

GC's and the two GU's. The mean pulp lumen diameters were significantly different between the 

GUG and GUP. 

There were significant differences in the fines content between the two different species (figure 

6.6) but there were no significant differences in fines content for the same species from different 

sites. The GUG had the highest average fines content (1.65%). This was 28% higher than the 

fines content for the GCG which had the lowest fines content (1.29 %). 

The pulp fibres from the GUG had the highest collapsibility (7.55) and were significantly 

different to the collapsibility of the fibres from the other three compartments (figure 6.6). There 

was an 11 % difference in collapsibility between the most collapsible and least collapsible fibres. 

The collapsibility of the fibres from the GCG, GCP and the GUP showed no significant 

differences at the 95% confidence level. 

There were significant differences in the initial pulp fibre coarseness (figure 6.6). The GCP had 

the highest coarseness (0.0545 mg/m) and this was 72% higher than the GCG, which had the 

lowest coarseness (0.0318 mg/m). The two poor sites had a higher coarseness than the two good 

sites. Coarseness has been found in many studies to be related to the cell wall thickness 

(Broderick et al. 1996) The results in this study agree with this. 
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6.3 Strength properties at all refining levels 

6.3.1 Introduction 

This section deals with the results of all stages of refIning and not at any fIxed level of refming. 

The reason for considering the results fIrstly in this manner was to see how the different pulps 

behaved with increasing levels of refIning. Analyses was carried out to determine whether a 

combination of the refining parameters (SRE and SEL), together with either the wood or pulp 

properties could be used to predict the resultant pulp properties after refming. 

6.3.2 Discussion 
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Figure 6.7: Graph of Refining Intensity (SEL) versus speed of rotation 

Figure 6.7 shows the refining intensity (SEL) at each speed for each of the pulps. It was seen that 

at the same refming parameters the refining intensity for the different pulps were slightly 

different. When refming at 750 rpm, the refming intensity ranged from 0.15 Wslm for the GUG 

to 0.22 Ws/m for the GCP. At 1500rpm the refining intensity ranged from 0.31 Ws/m for the 

GUP to 0.43 Ws/m for the GCG. At 2200 rpm the SEL ranged from 0.45 Wslm for the GUP to 

0.52 Ws/m for the GCG. The three different speeds were chosen to provide three different SEL's 

and this was seen. However at each speed the SEL for the four different pulps were similar 

though not exactly the same so in the discussions to follow, the three speeds will be used to refer 

to the three different refming intensities. 
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The pulp freeness decreased with increased refining as expected (figure 6.8). The reasons for 

freeness decreasing with refining have already been mentioned in section 4.2. When refining at 

the lowest speed of750 rpm, there were no differences in the freeness of the pulps with increased 

refining up to an SRE of about 100kWhlt. From this point onwards, the pulps split into two 

different groups with the GCP and GUP leveling of at a higher freeness than the GCG and GUG. 

The freeness of the GCP and GUP were about 430rnl at 150kWhlt. The GCG and GUG had a 

freeness of 350rnl at the same SRE. This shows that the GCG and GUG are more easily refined at 

750 rpm. At a speed of 1500 rpm, with the exception of the GUP, there were no differences in 

freeness amongst the different pulps. The GUP had a lower freeness than the other three pulps. At 

150kWhlt the pulps reached a freeness of about 300rnl. The GUP reached a freeness of 300rnl 

faster than the other pulps at 100kWhlt. At 2200 rpm, it was seen that with increased refining 

differences in pulp freeness became more noticeable. From an SRE of about 80kWhlt it was seen 

that the GCG had a higher freeness than the other three pulps. The GUP generally had the lowest 

freeness but this became most noticeable at very high refining levels. The GCP and the GUG had 

similar freeness levels. In considering each of the four pulps being refined with the three different 

speeds (Figure D5 in Appendix D shows this clearly), it was seen that the three different refining 

speeds (or intensities) did not have very different effects on the pulp freeness except for the GUP 

and GCP, which when refined at 650 rpm, initially behaved in the same way as when they were 

refined at the two higher speeds but with increased refining (> 1 00 kWhlt) started to level off at a 

higher freeness level than when refined at the two higher speeds. 

Table 6.2 shows the results of a multiple regression analysis. It was seen that pulp freeness could 

be predicted fairly well with a model R2 of 88.6%. The SRE was the largest contributor to this 

model (80.1 %). This indicates that even though there are differences in pulp physical properties, 

the SRE playa major role in the final freeness of the pulp. 
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As expected from the literature, figure 6.9 shows that the tensile strength increased with increased 

refining (Smook 1992, Muneri 1994). Section 4.2 discusses why the tensile strength increases 

with refining. The impact of the different pulps on the tensile strength was most evident when 

refined at the lowest speed. At this low speed it was seen that the GUG had the highest tensile 

strength and the GUP had the lowest. The GCG and the GUP had similar tensile strength. When 

refining using a speed of 1500 rpm it was seen that the tensile strength increased with increasing 

SRE but the four pulps all resulted in similar tensile strength. When refining was carried out at 

2200 rpm, it was seen that initially (up to about 100kWhlt) the tensile strength was not very 

different for the four pulps. After 100kWhlt the pulps separated into two groups. The GU clones 

had a higher tensile strength than the GC clones. 

In considering the three different refining treatment on each of the four pulps (Figure D6 in 

Appendix D), it was seen that for the GUG the different refining treatments did not have different 

effects on the tensile strength. For the other three pulps refining at 750 rpm resulted in a slightly 

lower tensile strength. 

From the results of multiple regression analysis (table 6.2), it was seen that tensile strength could 

be predicted fairly well with a model R2 of 77.5%. The SRE contributed 67.2% to this model. 

This indicates that the SRE can account for 67.2% of the variation in tensile strength and is better 

able to predict the tensile strength than the pulp physical properties. 
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The tear strength initially increased with increased refining up to a maximum value and thereafter 

started decreasing with increased refining (figure 6.10). The reason for this behaviour of tear 

strength with refining has already been discussed in section 4.2. At all speeds of refining the GCG 

generally had the highest tear strength. The GUP generally had the lowest tear strength at all 

speeds. 

When refining at 750 rpm, the GCG reached a maximum tear strength of 12 kNm2/kg and then 

with increased refining it dropped to 11.4 kNm2/kg and seemed to stabilise at this value. The GCP 

and GUG both reached a maximum tear strength of 11 kNm2/kg. At 1500 rpm, the GCG reached 

a maximum tear strength of 12.3 kNm2/kg and with further refining the tear strength dropped 

down to 10.7 kNm2/kg. Tear strength for the GUG and GCP peaked at about 10.5 kNm2/kg. The 

GUP had the lowest tear strength and achieved a maximum of about 8.5 kNm2/kg. When refining 

at 2200 rpm, for the GCG the tear strength increased compared to the unrefined pulp but it did not 

fluctuate much. While it did not achieve its highest tear strength as observed in the case of 

refining at 1500 rpm, the tear strength did not drop below 11 kNm2/kg even with very high levels 

of refining. The tear strength for the GCP seemed steady between 9.5 and 10 kNm2/kg. Thus it 

appears that the GCG and GCP were more resistant to fibre damage. The GUG peaked at 10.4 

kNm2/kg and thereafter the tear strength dropped with increased refining down to a tear strength 

of about 8.4 kNm2/kg. The GUP peaked at 8.7 kNm2/kg and dropped to 7.2 kNm2/kg with 

increased refining. On considering the effect of the three different refining speeds on each of the 

four pulps, it was seen that they were not affected very differently except for the GUG. For the 

GUG, refining at 750 rpm seemed to give better tear strength than the when refining at the two 

higher speeds (Figure D7 in the appendix shows this clearly). 

The initial pulp fibre length accounted for 44.3% of this variation (Table 6.2). It is believed that 

long fibres result in higher tear strength and the reason for this is because longer fibres distribute 

the stress over a greater area and over more fibres and more bonds than short fibres. Thus with 

shorter fibres the stress is concentrated over a smaller area (Britt 1970). 

Figure 6.11 shows the tear tensile relationship. When refining at 750 rpm the maximum tear 

strength for the GCG, GCP, GUG and GUP occurred at a tensile strength of about 80, 72, 90 and 

90 kNrnlkg respectively. These occurred at freeness values of about 440, 460, 450 and 400rnl 
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respectively. At 2200 rpm the freeness values for these clones, corresponding to the maximum 

tear strength were about 350, 295, 380 and 295ml respectively. Generally it is desired that the 

freeness be between 400 and 500 because of drainage on the paper machine. 
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It was seen in figure 6.12 that the burst strength increased with increased refining as expected 

from the literature. The reasons why the burst strength increases with refining have been 

mentioned in section 4.2. The development of the burst strength occurs in a similar manner as the 

development of the tensile strength. When refining was carried out at 750 rpm, two groups were 

noted. The GCG and GUG had similar burst strength and these were higher than the burst 

strength of the GUP and GCP, which were similar to each other. The GCG and GUG reached a 

maximum burst strength of about 7 MN/kg while the GCP and GUP reached a maximum burst 

strength of about 5.5 MN/kg. Refining at 1500 rpm resulted in the four pulps having similar burst 

strength. The burst strength for the GCG was approaching 8 MN/kg. When refining at 2200 rpm, 

it was seen that up to about 150 kWhit the GUG had a higher burst strength than the other three 

pulps which had similar burst strength. For SRE levels higher than 150 kWhlt, the GUG and GUP 

had similar burst strength and were higher than the burst strength of the GCG and GCP, which 

were similar to each other. The burst strength of the GUG and GUP approached 9 MN/kg while 

the GCG and GCP approached 8 MN/kg. 

For the GUG and GCG the three different speeds did not affect the burst strength differently 

(Figure D9 in Appendix D shows this clearly) . For the GUP and GCP, refining at 750 rpm 

resulted in lower burst strength than refining at the two higher speeds. 

Table 6.2 shows the results of a multiple regression analysis. It was seen that burst strength could 

be predicted fairly well with a model R2 of 83.42%. The SRE was the largest contributor to this 

model (75 .67%). This indicates that even though there are differences in pulp physical properties, 

the SRE can explain 75.67% of the differences in burst strength. 
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The sheet density increases with increased refining as can be seen in figure 6.13. Reasons why 

sheet density increases with refining have already been mentioned in section 4.2. When refining 

was carried out at 750 rpm it was seen that the GUG had the highest sheet density and the GCP 

had the lowest sheet density. The GCG and the GUP had similar sheet density. There were no 

differences in sheet density amongst the pulps when refined at 1500 rpm. When refining at 2200 

rpm it was seen that the GUG and GUP had a higher sheet density than the GCG and GCP. 

For the GUG and GUP, the three different refining speeds did not affect the sheet density very 

differently (figure D10 in Appendix D). For the GCP it was seen that refining at 750 rpm resulted 

in lower sheet densities than refining than when refining at the two higher speeds. 

The results from the multiple regression analysis showed that 57.96% of the variation in sheet 

density could be explained by the SRE together with the initial pulp lumen diameter. The SRE 

accounted for 47% ofthe variation in this model. 
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Figure 6.14 shows results for stretch. When refining at 750 rpm it was seen that initially up to 100 

kWhlt, the different pulps had similar stretch. Thereafter the GCG had a higher stretch reaching 

about 3.5% while the other three pulps levelled of at a stretch of about 2.7%. When refining at 

1500 rpm all pulps had similar stretch and reached a stretch of 3.5%. There was also no 

difference in stretch amongst the four pulps when refined at 2200 rpm. At 2200 rpm the stretch 

also leveled of at 3.5%. According to Britt (1970), the stretch of normal flat paper does not 

usually exceed 5%. The results from the multiple regression analysis showed that overall the SRE 

could account for 70.32% of the variation in sheet stretch. For the GUG and GCG the three 

different refining treatments did not impact differently on the stretch. (Figure D 11 in Appendix D 

shows this clearly). For the GCP and GUP when refined at 750 rpm, the stretch leveled off at a 

lower value than when refined at the two higher speeds. 

There was an increase in TEA with increased refining (figure 6.15). For refining carried out at 

750 rpm it was observed that the GCG and GUG had similar TEA and this was higher than the 

TEA for the GCP and GUP, which were similar. Refining at 1500 rpm gave similar TEA for the 

different pulps except at the high levels of refining where the GCG had a higher TEA. There were 

no differences in TEA observed when refining at 2200 rpm except at the very high levels of SRE. 

It can be seen in table 6.2 that the SRE can account for 71.8% of the overall variation in TEA. 

The GUG was not affected differently by the three different speeds (Figure D12 in Appendix D 

shows this clearly). For the GUP and GCP refining at 750 rpm resulted in lower TEA than when 

refining at the two higher speeds. For the GCG when refining at 1500 rpm, the TEA seemed to be 

higher than when refined at the other two speeds for SRE > 100 kWhit. 

When refining at 750 rpm it was seen that the zero-span tensile increased with increasing SRE 

(figure 6.16). While initially there appeared to be some differences in zero-span tensile it was 

seen that with increased refining (about (150kWhlt), the zero-span tensile for the four 

compartments seemed to approach the same value (about 2.25 kN/m). When refining at 1500 

rpm, it was seen that the four compartments reached this same zero-span tensile with less refining 

(about 50 kWhlt) and this was maintained with increased refining. Differences in zero-span 

tensile were more evident when refining at 2200 rpm. In this case the GCG was seen to have a 

higher zero-span (2.5 kN/m) than the other three compartments (2 kN/m). The results obtained 

could not explain the overall variation in zero-span tensile. 

89 



200 
7SOrp~ 

175 

150 , .-. 
M 125 .@ 

<IL +t ~ 100 
~ ~ .. .. . --< 

r-l 75 .' . . ~ Eo; 

50 
~ -

25 

0 

0 50 100 150 200 250 300 

SRE(kWhlt) 

200 1500 rpm 

175 
T • • 150 

.-. it 1 • .L 
M 125 .@ ~ T f, 
~ 100 
-< J.~ 

& 

r-l 75 
J. +~ I Eo; 

50 T 
25 

GCG = GC G438 - good site 

GCP = GC G438 - poor site 

GUG = GU A380 - good site 

GUP = GU A380 - poor site 

0 

0 50 100 150 200 250 300 

SRE(kWhlt) 

2200 rpm 
200 

~ .L 175 
150 Til t • • I • 

.-. .... Yfr • • 1, E 125 r"I . .. 
~100 
-< 75 .. ' + 
~ III 50 

25 
0 

0 50 100 150 200 250 300 

SRE (kWh/t) 

I ~ GCP .GCG .GUP • GUGI 

Figure 6.15: Grapb of TEA versus SRE 

90 



3.0 2200 rpm I 
E 2.5 • -

. ' • i • ~ -z 
TI • ~ .,. T_ 

~ 2.0 
J tI I -p 

I i ! ! JI • 
fI) • X I 1.5 N 

• 

1.0 

0 50 100 150 200 250 300 
SRE (kWh/t) 

I ~ GCP • GCG + GUP • GUG I 

3.0 -~' 1500 rpm 
...... 

E 2.5 - r~ ~ z . • -.I lor • ~ ~&.A1 -· I . ... 
; 2.0 

j ~ 
. y ! ! 

fI) 
1.5 I 

N 

GCG = GC G438 - good site 

GCP = GC G438 - poor site 

GUG = GU A380 - good site 

GUP = GU A380 - poor site 

1.0 

0 50 100 150 200 250 300 
SRE (kWh/t) 

I ~ GCP • GCG + GUP • GUG I 

3.0 ~------------------- 750~m 

-E 
2.5 -z 
2.0 ~ -c::: 

as 
0. 1.5 fI) 

I 

N 

1.0 

0 50 1 00 150 200 250 300 
SRE (kWh/t) 

I ~ GCP eGCG + GUP . GUGI 

Figure 6.16: Grapb of Zero-span Tensile versus SRE 

91 



Table 6.2: Multiple regression results for the overall strength properties at all refining levels 

Tensile Tear Burst 
Sheet 

Stretch Freeness 
Density 

model R2 85.2 72.9 44.3 80.1 47 75 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

SRE 80.1 67.2 - 75.7 47 70.3 

SEL 5.1 5.74 - 4.7 4.7 

initial pulp FL - - 44.3 - - -

Table 6.2 shows the results of the multiple regression analysis. It was seen that when considering 

the pulp properties at increasing levels of refining rather than at a fixed condition such as constant 

freeness or constant sheet density, the SRE was a good predictor of the pulp properties. 

The initial pulp and wood anatomy did not come up strongly in this case and the reason for this is 

that while the refining process is developing the pulp properties, the initial wood or pulp anatomy 

for each of the pulps would be just a single value for a particular pulp and this single value cannot 

be used to predict a range of pulp properties that arises for that pulp after various levels of 

refining. The pulp anatomy after each stage of refining was also measured and using only the 

actual anatomy at each stage of refining in the multiple regression analysis showed that the pulp 

cell wall thickness was the strongest predictor for most of the pulp strength properties. (Table 

Dll in the Appendix D). However if the actual pulp anatomy was used together with the SRE and 

SEL then again the SRE proved to be the best predictor. While the pulp fibre length did not come 

up strongly in the multiple regression analysis for the overall results it was seen that at a 

compartment level the fibre length showed good relationships with most of the pulp properties. 

(Figures D-14 to D 17 in Appendix D). 
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6.4 Results at constant SRE (lOOkWblt) 

6.4.1 Introduction 

This section considers the pulp properties of the different pulps after being refined at the same 

SRE. Analysing the results in this way shows the development of the pulp properties for each of 

the four pulps after being treated with the same amount of specific refming energy using three 

different speeds to apply this energy at three different rates. 

6.4.2 Discussion 
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Figure 6.17: Graph of pulp fibre length for four compartments 

after refining with three different refiner speeds to 100 kWh!t 
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Figure 6.17 shows the pulp fibre length after refming at three different speeds at an SRE of 100 

kWhlt for each of the four compartments. There was a slight decrease in pulp fibre length with 

refining. This is due to the cutting of fibres during the refming action. For the GC clones there 

were no significant differences in pulp fibre length with the three different refming speeds at 100 

kWhlt (Table 6.8). For the GU clones the pulp fibre length was significantly higher when refmed 

at 750 rpm as compared to refining at the two higher speeds. The reason for this is probably 

because of the lower intensity refming at 750rpm resulting in less fibre shortening. Table 6.3 

shows the percentage decrease in fibre length relative to its original length. For the GUG there 

was very little change in average fibre length (0.3%) when refmed using the lowest speed (lowest 

intensity). There was a 4% decrease in fibre length when refmed at the two higher speeds. The 

pulp fibre length for the GUP was impacted on the most. It showed the greatest decrease in fibre 
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length (7.8%) when refmed at a speed of 1500 rpm. When refmed at a speed of 750 rpm there 

was only a 1 % decrease in fibre length and a 5.6% decrease in fibre length when refined using a 

speed of 2200 rpm. 

Table 6.3: Percent decrease in fibre length at 

100 kWh/t using the three different rermer speeds 

Speed GCG GCP GUG GUP 
(rpm) (%) (%) (%) (%) 
2200 -2.1 -4.6 -4.2 -5.6 
1500 -2.7 -3.6 -4.1 -7.8 
750 -3.5 -2.5 -0.3 -1 
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Figure 6.18: Graph of pulp fibre diameter for four compartments after 

rerming with three different rermer speeds to 100 kWh/t 

Figure 6.18 shows the fibre diameter after refming at an SRE of 100 kWhlt using three different 

treatments. In general the pulp fibre diameter of the refmed pulp was lower than the unrefmed 

pulp. With the exception of the GUG, there were no significant differences in pulp fibre diameter 

for the other three pulps when refmed at the three different speeds (Table 6.8). For the GUG the 

pulp fibre diameter was significantly smaller when refined at 750 rpm than at the other two 

speeds. It is possible that fibrillation that occurs as a result of refming could affect the 

measurement of the fibre diameter since it can make the fibre diameter appear larger than it really 

IS. 
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Table 6.4 shows the percentage decrease in fibre diameter after refming to 100kWh/t using three 

different speeds. It was seen that the GCG showed the smallest decrease in pulp fibre diameter. 

The GUP showed the largest decrease in fibre diameter (5%), this occurred when it was refined at 

a speed of 1500 rpm. 

Table 6.4: Percent decrease in fibre diameter at 

100 kWh/t using the three different rermer speeds 

Speed GCG GCP GUG GUP 
(rpm) (%) (%) (%) (%) 
2200 -1 .5 -1.9 -1.4 -2.6 
1500 -1.3 -3.7 -1.8 -5 

750 -1.2 -2.3 -3.8 -2.7 

Figure 6.19 shows the resultant pulp cell wall thickness for the four compartments after being 

refined using three different treatments. It can be seen that with refming there is a decrease in 

pulp cell wall thickness. Only the GUP showed significant differences in pulp cell wall thickness 

with the three different refming speeds (Table 6.8). The pulp cell wall thickness was significantly 

higher when refmed at 750 rpm than when refmed at 1500 rpm. 
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Figure 6.19: Graph of pulp cell wall thickness for four compartments 

after refining with three different rermer speeds to 100 kWh/t 

GCG = GC G438 - good site 

GCP = GC G438 - poor site 

GUG = GU A380 - good site 

GUP = GU A380 - poor site 

After refming to 100kWh/t at 750, 1500 and 2200 rpm, the resultant pulp cell wall thickness 

decreased by 3.4, 3.6 and 3.6% respectively (Table 6.3). Again the three different treatments had 

the most pronounced effect on the pulp from the GUP. The percentage decrease in cell wall 

thickness were 5.9, 10.7 and 8% when refmed at 750, 1500 and 2200 rpm respectively (Table 

6.5). 
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Table 6.5: Percent decrease in pulp cell wall thickness at 

100 kWh/t using the three different refiner speeds 

Speed GCG GCP GUG GUP 
(rpm) (%) (%) (%) (%) 
2200 -3.4 -5.8 -3.9 -8 
1500 -3.6 -7.2 -5.2 -10.7 
750 -3.6 -4.8 -4.8 -5.9 

• • 
• GCG = GC G438 - good site 

• • • GCP = GC G438 - poor site 

i I • GUG = GU A380 - good site • 
I GUP = GU A380 - poor site 

7fIJ 1f1JO 22fIJ 
Speed (1"JX1i 

I. GCP • GCG • G.P • QX31 
Figure 6.20: Graph of pulp lumen diameter for four compartments after 

refining with three different rermer speeds to 100 kWh/t 

The pulp lumen diameter did not change with refming figure (6.20). This would be expected 

because it is the outer walls of the fibres that are affected by refming. Only the GUG had a lower 

lumen diameter when refmed at 750 rpm compared to the umefmed pulp. The GUG maintains the 

highest lumen diameter, compared to the other pulps, from the umefmed state. 
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Figure 6.21: Grapb of pulp fines content for four compartments after 

refining witb tbree different refmer speeds to 100 kWb/t 

Figure 6.2 1 shows that GUG and GUP had higher pulp fmes content than the GCG and GCP. The 

results from an ANaVA and Duncan test (Tables 6.7 and 6.8), showed that there were significant 

differences in pulp fmes content due to both, the different refining treatments and the different 

pulps. The highest fmes content was for the GUG after being refined at 2200 rpm. At 750 rpm the 

GCG, GUG and GUP had similar fines content. The GCP had the lowest fmes content after 

refining at all speeds and was effected the least by the three different treatments. Initially, the 

fines content for the GCG and GCP were 1.29% and 1.34% respectively. However it can be seen 

in table 6.6, that while the increase in fmes content due to the refming treatments were low for the 

GCP, they were markedly higher for the GCG. This resulted in the GCP having the lowest fmes 

content after refming, causing a change in rank in terms of which pulp had the lowest fmes 

content before and after refining. The pulp fmes content correlated negatively with the pulp fibre 

length (r = -0.52). That is the pulp fmes content increases as the pulp fibre length decreases. This 

is because fines are produced as the fibres are cut. 

Table 6.6: Percent increase in pulp fmes content at 

100 kWb/t using tbe three different refiner speeds 

Speed GCG GCP GUG GUP 
(rpm) (%) (%) (%) (%) 
2200 19 8.9 28.3 19.8 
1500 27.2 6.3 17.1 18.6 
750 25.1 6.2 0 4 
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Table 6.7: Results of Duncan multiple range test for homegeneneity across the different 

pulps at the same refining speed at a fixed SRE of lOOkWhlt 

Freeness TEA 

Speed GCG GCP GUG GUP p-value 
(rpm) 

Speed GCG GCP GUG GUP p-value 
(rpm) 

750 A B A AB 0.0976 750 B A B A 0.0008 

1500 B B B A 0.0001 1500 A A A A 0.3500 

2200 e B B A 0.0002 2200 A B A A 0.0078 

Tensile % Fines 

Speed GCG GCP GUG GUP p-value 
(rpm) 

Speed GCG GCP GUG GUP p-value 
(rpm) 

750 B A e B 0.0001 750 B A Be c 0.0002 

1500 A A A A 0.9145 1500 B A e e 0.0001 

2200 A A B AB 0.0456 2200 B A D e <0.0001 

Tear FL 
Speed GCG GCP GUG GUP p-value 
(rpm) 

Speed GCG GCP GUG GUP p-value 
(rpm) 

750 e B B A <0.0001 750 B B B A 0.0001 
1500 e B B A <0.0001 1500 e B B A <0.0001 
2200 e B B A <0.0001 2200 e B B A <0.0001 

Burst FD 

Speed GCG GCP GUG GUP p-value 
(rpm) 

Speed GCG GCP GUG GUP p-value 
(rpm) 

750 B A B A <0.0001 750 A A e B 0.0004 
1500 B A AB B 0.0143 1500 AB A C B <0.0001 
2200 A AB e B 0.0003 2200 A A e B <0.0001 

Sheet density CWT 

Speed GCG GCP GUG GUP p-value (rpm) 
Speed GCG GCP GUG GUP p-value 
(rpm) 

750 B A e B 0.0012 750 A A A A 0.3200 
1500 A A A A 0.4596 1500 B AB AS A 0.1280 
2200 A B B B 0.0094 2200 A A A A 0.3800 

Stretch 

Speed GCG GCP GUG GUP p-value (rpm) 

750 B A A A 0.0082 
1500 B A AB B 0.0441 
2200 A B AB A 0.0176 
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Table 6.8: Results of Duncan multiple range test for homegeneneity for each of the four 

pulps across the three different refining speeds at a fixed SRE of 100 kWh/t 

Freeness TEA 

Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP 
(rpm) 

750 A C B B 750 AB A A A 

1500 A B B A 1500 B B A B 

2200 A A A A 2200 A C A B 

P - value 0.3296 0.0006 0.0022 <0.000 P - value 0.0956 0.0008 0.5950 0.0017 

Tensile % Fines 

Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP 
(rpm) 

750 A A A A 750 AB A A A 

1500 B C A B 1500 B A B B 

2200 A B A B 2200 A A C B 

P - value 0.0013 0.0007 0.6345 0.0373 P - value 0.0940 0.7060 <0.000 0.0036 

Tear FL 

Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP 
(rpm) 

750 B B B B 750 A A B C 

1500 B AB AB A 1500 A A A A 

2200 A A A AB 2200 A A A B 

P - value 0.0072 0.0352 0.0123 0.1000 P - value 0.1800 0.1520 0.0260 <0.000 

Burst FD 

Speed 
GCG GCP GUG GUP 

(rpm) 
Speed 

GCG GCP GUG GUP 
(rpm) 

750 B A A A 750 A A A A 

1500 C B A B 1500 A A B A 
2200 A B B B 2200 A A B A 

P - value 0.0004 0.0056 0.0036 0.0080 P - value 0.9500 0.2390 0.0090 0.1000 

Sheet density CWT 

Speed 
GCG GCP GUG GUP 

(rpm) 
Speed 

GCG GCP GUG GUP (rpm) 
750 AB A A A 750 A A A B 
1500 B B A AB 1500 A A A A 
2200 A B A B 2200 A A A AB 

P - value 0.0587 0.0040 0.9858 0.0990 P - value 0.9700 0.2700 0.3300 0.0970 

Stretch 

Speed 
GCG GCP GUG GUP (rpm) 

750 B A A A 
1500 B A B B 
2200 A B B AB 

P - value 0.0249 0.0018 0.0151 0.0904 
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Tables 6.7 and 6.8 show the results of an (ANOVA) and the Duncan test. The letters in the table 

show which groups are similar and which are different. Table 6.7 reads across the table for the 

four pulps at each speed and Table 6.8 reads down the table for each pulp across the three speeds. 

Similar letters indicate no significant differences in the property at the 95 % confidence level, 

while different letters indicate that there are significant differences at the 95% confidence level. 

The higher-ranking letters indicate a higher property value, for example, consider the freeness in 

Table 6.7. At 750 rpm the GCG has an A while the GCP has a B. This means that the freeness of 

the GCP is significantly higher than the freeness of the GCG at the 95% confidence level. The 

results indicated in the table are referred to while discussing the properties. 
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Figure 6.22: Grapb of Freeness for tbe four compartments at an SRE of 

lOOkWb/t using 3 different speeds 

Figure 6.22 shows the freeness of the material from four different compartments after using three 

different types of refining speeds and refming to an SRE of 100 kWhlt. The three different 

treatments did not have a significant difference on the pulp freeness for the GUG (Table 6.8). It 

was observed that for the GCP, GUG and GUP, the pulp freeness was significantly higher when 

refined at 750 rpm than when refmed at 2200 rpm. This is because the fibres are treated more 

slowly at the lowest intensity than at the higher intensity. 

Industry requires the pulp freeness to be usually higher than 400 ml because of drainage 

constraints on the paper machine. The results indicate that if refining of these four pulps were 

carried out at 750 rpm to an SRE of 100 kWhlt then the freeness level does not drop to 
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unacceptable levels for any of the pulps. However it was seen that for refining carried out to 100 

kWhit at 1500 rpm, the two pulps from the poor site (GCP and GUP), were refined too much 

from an acceptable freeness point of view. When refining was carried out at 2200 rpm, the pulp is 

treated faster and refining to 100 kWhit caused all the pulps except the GCG to have unacceptable 

freeness levels. 

When refining at 2200 rpm (the highest intensity refining), the GCG were the hardest to refine 

and had the highest freeness (432ml) and the GUP had the lowest freeness (344ml). The GCP and 

the GUG had similar freeness (Table 6.7). When refining at 1500 rpm (medium intensity 

refining), the GCG and the GUG had similar freeness values of 401ml and 402ml respectively. 

The GUP had the lowest freeness (303ml). When refining at both 1500 rpm and 2200 rpm it was 

seen that the material from the good sites had a higher freeness than the material from the poor 

sites. When refining was carried out at 750 rpm it was noted that with this type of refining 

treatment the GCP had the highest freeness. (465ml). The freeness of the GCG and the GUG were 

similar (414ml and 415ml respectively). 

The fibre length will influence the freeness of the pulp since shorter fibres will be able to pack 

more closely than longer fibres. It was noted in figure 6.16, that with the exception of the GCG, 

the material refined at 750 rpm had longer fibres compared to refining at the higher speeds. This 

might account for the higher freeness observed when refined at 750 rpm. The freeness of the pulp 

will also be influenced by the fines content of the pulp and pulps with higher fines content will 

have a lower freeness. The reason for this is that fines will fill up voids between fibres and 

thereby increase the resistance to the drainage of water. It will be seen in figure 6.21 that with the 

exception of the GCG, all the other compartments had the lowest fines content when refined at 

750 rpm. For the GCG it was noted that the fines content from lowest to highest was for the pulps 

refined at 2200, 750 and 1500 rpm in that order. The freeness for these pulps decreased in the 

same order. The correlation coefficients (r), for freeness with plup fibre length and pulp fines 

content are 0.63 and -0.53 respectively. 

The results from the multiple regression analysis showed that the initial pulp fibre length could 

account for most of the differences in freeness among the four pulps at an SRE of 100 kWhit 

when refined at the two higher speeds (Table 6.9). The multiple regression analysis results when 

considering wood anatomy (Table 6.10), showed that the wood coarseness could account for 

some of the differences in pulp freeness . 
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Figure 6.23 shows the tensile index for the four compartments. It can be seen that apart from the 

GUG which was not affected differently by the three different treatments (Table 6.8), aU the other 

sites showed that the tensile strength was significantly higher when refmed at 1500 rpm. When 

refined at 1500 rpm, there were no significant differences in tensile strength among the four 

different pulps (Table 6.7). For refining carried out at 750 rpm and 2200 rpm significant 

differences in tensile strength occurred among the four pulps, with the GUG having the highest 

tensile strength at both speeds. At 750 rpm, the GCP had the lowest average tensile strength and 

at 1500 rpm the GCG had the lowest average tensile strength. To optimise tensile strength for the 

four pulps refining should be carried out at 1500 rpm. Also the GUG should be used in grades 

that require high tensile strength. 
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Figure 6.23: Grapb of Tensile strengtb for tbe four compartments at an SRE 

of lOOkWb/t using 3 different speeds 

The tensile strength is influenced by a combined effect of several factors, one of which is the 

inherent bonding ability of the fibre surface. This is dependent on surface area available for 

bonding and strength per unit bond. The surface area of the fibres will be dependent on properties 

such as fibre diameter, lumen diameter and the collapsibility of the fibres. Multiple regression 

analysis (Tables 6.9 and 6.10), showed that at 750 rpm the initial pulp coarseness together with 

the initial pulp lumen diameter could be used to predict the tensile strength (R2 = 80%). The 

initial pulp coarseness contributed 56.3% towards this prediction. Britt (Britt 1966) showed that 

less coarse fibres had a greater degree of interfibre bonding in both refined and unrefmed states of 
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1500 rpm is recommended since there are other various advantages such as the freeness is still 

greater than 400 ml and tensile strength is high. For the other three pulps, to maximise tear 

strength, refming needs to be carried out at 750 rpm, although it needs to be noted that this 

treatment does not give the high tensile strength obtained when refmed at the higher speeds 

except for the GUG where the tensile strength was high at all speeds of refming. The GUP gives 

very low tear strength compared to the other three pulps and this pulp should be used in grades 

that do not require high tear strength. 

The results of analysis show a strong correlation between fibre length and tear strength (r =0.89, 

0.93 and 0.93 for 750, 1500 and 2200 rpm respectively). According to Britt (1970), the 

explanation for longer fibres resulting in higher tear strength is that longer fibres tend to distribute 

the stress over a greater area, over more fibres and bonds, while with shorter fibres the stress is 

concentrated over a smaller area. The multiple regression analysis results show that at all speeds 

the initial pulp fibre length could account for most of the differences in tear strength (Table 6.9). 

It was seen that at all refming speeds the wood coarseness could account for about 30% of the 

differences in tear strength (Table 6.10). Britt (1966), saw that coarser fibres had a higher tear 

strength than less coarse fibres. 
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Figure 6.25: Graph of Burst strength for the four compartments at an SRE of 

lOOkWh/t using 3 different speeds 

Figure 6.25 shows the burst strength for the four compartments refmed at 100 kWhlt using three 

different speeds. For the GUG the highest burst strength occurred at 2200 rpm, while the other 

104 



two speeds resulted in similar burst strength (Table 6.8). For the GCP and GUP refining at 750 

rpm resulted in the lowest burst strength while the two higher speeds gave similar burst strength 

(Table 6.8). When refining at 1500 rpm the GCG had the highest mean burst strength. When 

refining at 750 rpm and 2200 rpm, the GUG had the highest burst strength. When refined at 750 

rpm, the burst strength correlated with the pulp fibre length, pulp fibre diameter and initial pulp 

coarseness (r = 0.66, 0.51 and -0.95 respectively). When refining at 2200 rpm, burst strength 

correlated strongly with the pulp fibre diameter and lumen diameter (r = 0.95 and 0.96 

respectively). 

The results from the multiple regression analysis using initial wood and pulp properties (Tables 

6.9 and 6.10), showed that at the two lower speeds the initial pulp and wood coarseness could 

account for differences in burst strength. According to Britt (1966), less coarse fibres were seen 

to have a higher degree of interfibre bonding. At 2200rpm tables 6.9 and 6.10 show that the initial 

pulp and wood lumen diameter was able to account for the differences in burst strength among 

the different pulps. 
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Figure 6.26: Graph of sheet density for the four compartments at an SRE 

of lOOkWh/t using 3 different speeds 

When refmed at 750 rpm, the good sites had a significantly higher (Table 6.7) sheet density than 

the poor sites (figure 6.26). The sheet density for the GUG was the highest and the lowest sheet 

density was for the GCP. There were no significant differences in sheet density between the GCG 

and the GUP. The results obtained showed that the sheet density correlated with the pulp fmes 
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content, fibre diameter and lumen diameter (r = 0.52, 0.72 and 0.71 respectively), when refmed at 

750 rpm. When refmed at 1500 rpm, the differences in sheet density were less marked than at the 

other two speeds. When refmed at 2200 rpm, the sheet density of the GCG was the lowest while 

the other three pulps had similar sheet density. The GU clones had a higher sheet density than GC 

clones. There were strong correlations between sheet density and fines content, fibre diameter, 

fibre length and lumen diameter (r = 0.87, 0.79, 0.57 and 0.83 respectively) when refmed at 2200 

rpm. 

The results from the multiple regression analysis showed that at 1500 rpm the sheet density could 

not be predicted in terms of the initial pulp properties or wood properties (Tables 6.9 and 6.10). 

At 750 rpm, the initial lumen diameter together with initial fmes content could explain 70% of the 

variation in sheet density. At 2200 rpm the ratio of initial fibre length over initial fibre diameter 

could account for 43% of the variation in sheet density. For the wood properties, it was seen that 

at 750 rpm the wood cell wall thickness accounted for 82% of the variation in sheet density at 100 

kWhlt. At 2200 rpm the wood fibre diameter was seen to account for 67% of the differences in 

sheet density. 
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Figure 6.27: Graph of stretch for the four compartments at an SRE of 

lOOkWh/t using 3 different speeds 

There was a general increase in stretch from when refming at 750 rpm to when refining at 1500 

rpm (figure 6.27). There was a further increase in stretch for the GCP and GUG when refined at 

2200 rpm however the stretch of the GCG and GUP decreased. This decrease was significant at 

the 95% confidence level for the GCG (Table 6.8). The stretch of the GUP at 2200 rpm was 
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mutually similar to the stretch at 750 rpm and 1500 rpm. The results from the multiple regression 

analysis (Table 6.9 and 6.10) showed that when refined at 750 rpm the initial pulp lumen 

diameter together with the initial pulp coarseness could account for 65% of the variation in 

stretch among the sites. At 1500 rpm and 2200 rpm the pulp physical properties could not account 

for the variation in stretch among the sites. 

Figure 6.28 shows the TEA for the four sites after refining to 100kWhlt using three different 

speeds. The TEA behaves in a similar manner as the stretch. There was a 0.72 correlation 

between TEA and pulp fibre length. There were no significant differences in TEA at 1500 rpm at 

the 95% confidence level (Table 6.7). The results of the multiple regression analysis showed that 

when refmed at 750 rpm and 2200 rpm, the initial pulp or wood coarseness could be used to 

account for some of the differences in TEA. At 1500 rpm, neither pulp nor wood properties could 

predict the TEA. 

1~ .-------------------------~ 

~ 120 +-----,..----~!_----.-_l 
~ 100 +-----t.J-----:t.--i --=-- ------l 
~ - !: • 
o N 80 +-----...,..------------1 o E r __ z. 

@:2.60 +------------~ 

~ ~ t-------------------------~ 
W 
~ 20~·~--------------------------~ 

O+--------.------~--------~~ 

o 750 1500 2250 
Speed (rprrt 

I. GCP • GCG • GUP • GLOJg 

GCG = GC G438 - good site 

GCP = GC G438 - poor site 

GUG = GU A380 - good site 

GUP = GU A380 - poor site 

Figure 6.28: Graph of TEA for the four compartments at an SRE 

of lOOkWh/t using 3 different speeds 

The GCP had a higher zero-span tensile than the other three pulps at all speeds (Figure 6.29). 

This was more marked at the two higher speeds. At 750 rpm the GCP, GCG and GUP had similar 

zero-span tensile strength and the GUG had the lowest zero-span tensile strength. At 1500 rpm 

the GUP had the lowest mean zero-span tensile strength and the GCG and GUG had similar 

strength. When refining at 2200 rpm, the GCG had the lowest zero-span tensile strength and the 

GUG and GUP had similar strength. From the results of multiple regression analysis (Tables 6.9 

and 6.10) it was seen that at the different refming speeds there were different variables that were 
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accounting for most of the differences in zero-span tensile. At 2200 rpm either the initial pulp or 

wood coarseness could be used to account for more than 60% of the differences in zero-span 

tensile. For refming carried out at 1500 rpm it was seen that either the initial pulp or wood fibre 

diameter could be used to account for more than 75% of the differences in zero-span tensile. At 

750 rpm the initial pulp fibre length was able to give a good prediction of the zero-span tensile 

but the measured wood properties could not give a good prediction. 
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Figure 6.29: Graph of zero-span tensile for the four compartments at 

an SRE of lOOkWh/t using 3 different speeds 
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Table 6.9: Multiple regression analysis results using initial pulp anatomy to predict pulp 

freeness and sheet properties after refining to a fixed SRE of 100 kWh/t 

750 rpm (SEL range = 0.15 -0.22 Ws/m» 

Freeness Tensile Tear Burst Sheet density Stretch TEA Z-span 

Model R2 37.35 79.87 83.04 88.66 70.23 64.52 88.34 91.99 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

i-Coarse 37.35 56.31 88.66 38.31 80.71 

i-LD 23.56 42.31 26.21 

i-FL 83.04 7.63 86.4 

i-fines 27.92 

i-Collaps 5.59 

1500 rpm (SEL range = 0.31 Ws/m· 0.43 Ws/m) 

Freeness Tensile Tear Burst Sheet density Stretch TEA Z-span 

Model R2 86.59 - 83.13 45.71 - - - 75.49 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

i-Coarse 45.71 

i-LD 8.29 

i-FL 78.3 77.98 

i-fines 

i-Collaps 

i-FD 5.15 75.49 

2200 rpm (SEL range =0.45Ws/m • 0.52 Ws/m 

Freeness Tensile Tear Burst Sheet density Stretch TEA Z-span 

Model R2 88.91 44.76 88.56 72.22 42.89 - 60.23 81.55 
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

i-Coarse 8.36 47.15 68.34 
i-LD 44.76 14.44 72.22 
i-FL 69.54 74.12 13.08 

i-fines 

i-Collaps 11 .01 13.21 
i-FD 

i-FUFD 42.89 
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Table 6.10: Multiple regression analysis results using initial wood anatomy and density to 

predict pulp freeness and sheet properties after refining to a fixed SRE of 100 kWhit 

750 rpm (SEL range = 0.15·0.22 Ws/m) 
Freeness Tensile Tear Burst Sheet density Stretch TEA Z-span 

Model R2 38_24 89.59 51 .84 91.28 81.63 69.37 82.12 37.05 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

Density 38.24 

WCWT 83.81 21 .5 81 .63 

WLD 6.28 28 

w-Coarse 30.34 91 .28 82.12 37.05 

WFD 41 .37 

1500 rpm (SEL range 0.31 Ws/m ·0.43 Ws/m) 
Freeness Tensile Tear Burst Sheet density Stretch TEA Z-SDan 

Model R2 33.64 - 69.24 41.3 - - - 86.03 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

WCWT 40 

w-Coarse 33.64 29.24 41 .3 

WFD 86.03 

2200 rpm (SEL range =0.45 Ws/m • 0.52 Ws/m) 
Freeness Tensile Tear Burst Sheet density Stretch TEA Z-SDan 

Model R2 83.4 52.95 74.3 80.92 66.76 - 42.55 78.31 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

WCWT 24.93 

WLD 80.92 

w-Coarse 58.47 34.19 42.55 62.35 

WFD 52.95 66.76 
w-Collaps 40.11 15.96 
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6.5 Results at constant freeness (400ml) 

6.5.1 Introduction 

In this section the results are compared at a constant freeness of 400 ml. Industry is generally 

interested in pulp having freeness levels in this range due to drainage constraints on the 

papermachine. When the results are compared in this way the impact of the different quality pulps 

on the refining process itself was seen in terms of how much of refining was needed to achieve 

this freeness level. 

6.5.2 Discussion 

Figure 6.30 shows the pulp anatomy of the four sites after being refined to freeness of 400ml 

using three different refining treatments. The three speeds used provided three different refining 

intensities with the lowest speed being the lowest intensity and the highest speed being the 

highest intensity. When refining each of the clones with the different intensities, it was seen that 

the pulp from the GUG and GUP had a significantly higher resultant fibre length when refined at 

the lowest speed compared to when they were refined at the two higher speeds (Table 6.12). The 

GCG and GCP had no significant differences in fibre length when refined using the different 

refining treatments. In considering differences across sites, when refining was carried out at the 

lowest speed, the GCG and GUG had similar fibre lengths (Table 6.11). With the exception of the 

similarity just mentioned, the fibre length of the GCG was the highest while the GUP had the 

shortest fibre lengths. The fibre lengths were similar for the pulp from the GCP and GUG when 

refined at the two higher speeds. 

Figure 6.30 also shows that the pulp fibre diameter and lumen diameter behaved similarly. The 

GUG had the highest fibre and lumen diameters at all refining intensities (Table 6.11). The pulp 

fibre and lumen diameters for the pulp from the GCG and GCP were similar at all refining 

intensities. These pulps had the lowest pulp fibre and lumen diameter. 

The pulp cell wall thickness (figure 6.30) appeared to be higher when refined at the highest 

intensity for three of the sites. However after carrying out an analysis of variance it was seen that 

these differences were not significant at the 95% confidence level (Table 6.12) 
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Figure 6.31: Graph of pulp fines content at the different refining speeds 

For pulp from the GUG and GUP refining at the two higher speeds resulted in a higher pulp fmes 

content than refining at the lowest speed (figure 6.31). This difference was signifIcant at the 95% 

confidence level (Table 6.12). The fmes content of the GCG was signifIcantly higher than the 

fines content of the GCP (Table 6.11). For the GU clones, the fmes content of the GUG was 

significantly higher than the fmes content of the GUP at the two higher speeds. At the two higher 

speeds it was also seen that both GU clones had a significantly higher fmes content than the two 

GC clones. At 750 rpm only the GCP had a significantly lower fmes content than the other three 

pulps. The fmes content would increase as a result of fibre cutting during the refming process. 

While refming treatment is mild and does not result in much fibre cutting fibre shortening almost 

always occurs to some degree even if only very slightly. It would be noted in figure 6.30, that the 

GUG and GUP underwent a significant reduction in fibre length when refined at the two higher 

intensities. These corresponded to the highest fmes content. There was not much fibre length 

reduction noted in the GCG and GCP when compared at the different refming intensities. This 

fibre length reduction or lack of fibre length reduction displayed by the different pulps 

corresponds to the increase in pulp fines content. 

Tables 6.11 and 6.12 show the results of an analysis of variance (ANOVA) and the Duncan test. 

The letters in the table show which groups are similar and which are different. Table 6.11 reads 

across the table for the four pulps at each speed and table 6.12 reads down the table for each pulp 

across the three speeds. Similar letters indicate no signifIcant differences in the property at the 95 

% confidence level, while different letters indicate that there are significant differences at the 

95% confidence level. The higher-ranking letters indicate a higher property value. The results 

indicated in the table are referred to while discussing the properties. 

113 



Table 6.11: Results of Duncan multiple range test for homegeneneity across the different 

pulps at the same refining speed at constant freeness (400 ml) 

SRE TEA 
Speed GCG GCP GUG GUP p-value 
(rpm) 

Speed GCG GCP GUG GUP p-value 
(rom) 

7fIJ A e A B 0.0011 7fIJ e AB Be A 0.0412 

1f:1JO B B B A 0.0002 1f:1JO B A AB A 0.0225 

2200 e AB B A <0.0001 2200 B AB B A 0.0788 

Tensile % Fines 
Speed GCG GCP GUG GUP p-value 
(rpm) 

Speed GCG GCP GUG GUP p-value 
Imml 

7fIJ AB A B AB 0.1815 7fIJ B A B B 0.0020 
1f:1JO B AB AB A 0.1360 1f:1JO B A 0 e <0.0001 
2200 AB A B A 0.0221 2200 B A 0 e <0.0001 

Tear FL 
Speed GCG GCP GUG GUP p-value 
(rpm) =:: GCG GCP GUG GUP p-value 

7fIJ e AB Be A 0.0138 7fIJ e B e A 0.0002 
1f:1JO e B B A 0.0002 1f:1JO e B B A <0.0001 
2200 0 B e A <0.0001 2200 e B B A <0.0001 

Burst FD 
Speed GCG GCP GUG GUP p-value 
(rpm) ~= GCG GCP GUG GUP p-value 

7fIJ B AB e A 0.0028 7fIJ A A B A 0.0009 
1f:1JO e B Be A 0.0002 1f:1JO A A e B <0.0001 
2200 B A C A <0.0001 2200 A A e B <0.0001 

Sheet density CINT 
Speed GCG GCP GUG GUP p-value 
(rom) 

Speed GCG GCP GUG GUP p-value 
(rom) 

7fIJ AB A e B 0.0067 7fIJ A A A A 0.57fIJ 
1f:1JO Be AB e A 0.0289 1f:1JO A A A A 0.3718 
2200 AB A e Be 0.0051 2200 A A A A 0.9330 

Stretch 
Speed GCG GCP GUG GUP p-value 
(rpm) 

7fIJ B A A AB 0.1249 
1f:1JO e AB Be A 0.0167 
2200 e AB B A O.OOfIJ 
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Table 6.12: Results of Duncan multiple range test for homegeneneity for each of the four 

pulps across the three different refining speeds at constant freeness (400ml) 

SRE TEA 

Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP 
(rp_m) 

7ffJ A B C C 7ffJ AS A B B 

1500 A A A A 1500 B A AS B 

2200 A A B B 2200 A A A A 
p.value 0.37ffJ 0.0002 0.0022 <0.0001 p-value 0.0690 0.7399 0.0497 0.0196 

Tensile % Fines 

Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP 
(rpm) 

7ffJ A A A A 7ffJ A A A A 
1500 B A A A 1500 A A B B 
2200 A A A A 2200 A A C B 

p.value 0.0056 0.2570 0.6970 0.1680 p-value 0.2240 0.8800 <0.0001 0.0061 

Tear FL 
Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP 
(rpm) 

7ffJ A B B B 7ffJ A A B C 
1500 A AS A A 1500 A A A A 
2200 A A A A 2200 A A A B 

p.value O.17ffJ 0.0143 0.0087 0.0011 p-value 0.2360 0.7030 0.0540 0.0001 

Burst FD 
Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP 
(rpm) 

7ffJ AS A B B 7ffJ A A A A 
1500 B A A A 1500 A A B A 
2200 A B B A 2200 A A B A 

p-value 0.0230 0.0238 0.0040 0.0032 p-value 0.9760 0.3290 0.0041 0.2104 

Sheet Density eWT 
Speed GCG GCP GUG GUP 
(rpm) 

Speed GCG GCP GUG GUP JiEIll} 
7ffJ AS AS A B 7ffJ A A AS A 
1ffJO B B A A 1500 A A A A 
2200 A A A AS 2200 A A B A 

p-value 0.0730 0.1053 0.6770 0.0717 p-value 0.9020 0.8100 0.0832 0.2780 

Stretch 

Speed GCG GCP GUG GUP (rpm) 
7ffJ A A AS B 
1500 A A B AS 
2200 A A A A 

p-value 0.2070 0.1340 0.0227 0.0157 
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Figure 6.32 shows the refining energy required to refme the pulp to a freeness of 400rnl at the 

different speeds. It was seen that generally refIning at lower intensities required signifIcantly 

more energy to refme the pulp to a specifIc freeness (Table 6.12). This difference was more 

marked for the pulps from the poor sites than the pulps from the good site. When refming at the 

lowest intensity it is seen that the GCP was the most difficult to refme and required signifIcantly 

more energy than the other three sites (Table 6.11). The pulps from the good sites were refmed 

with similar ease and required the less energy than the poor sites to be refmed to a freeness of 

400ml when refined at the lowest speed. When refining at the highest speed an ANOV A showed 

that statistically for both species the pulp from the poor sites required less energy than the good 

sites to be refmed to a freeness of 400rnl. While the SRE for the GUG and GUP were statistically 

different to each other, both were similar to the SRE for the GCP. Multiple regression analysis 

showed that the wood coarseness could account for a large percentage of the differences in 

refining energy required to reach a freeness level of 400 rnl for the different pulps when refming 

at 750 rpm and 2200 rpm (Table 6.14). At 1500 rpm, the wood properties could not give a good 

prediction of the SRE required to refme the pulp to a freeness of 400 rnl, however the wood 

coarseness could account for 29% of the differences in SRE required to reach a freeness of 400 

rnl. For the pulp properties, at the lowest refming speed the initial pulp coarseness could account 

for 80% of the differences in SRE required to reach a freeness of 400 ml. At the two higher 

speeds, the initial pulp fIbre length was best able to account for the differences in SRE required to 

reach a freeness of 400 ml (Table 6.13). 
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The results indicate that refming of these four pulps at the lowest speed (lowest intensity range) 

should be avoided since the SRE requirements to reach a freeness of 400 ml are very much larger 

than when refined at the two higher speeds. Alami et al. (1997), also found that using lower 

intensities reduced the SRE to obtain a given pulp quality however the studies in that case was 

refming in the manufacture of thermomechanical pulp (TMP). The energy is one of the major 

costs of the paper industry and refining at the two higher speeds would reduce this cost and 

strength properties will still be achieved. 

Figure 6.33 shows the tensile index at a freeness of 400rnl (400CSF). When refming was carried 

out at the lowest intensity only the tensile strength of the GCP and GUG were statistically 

different at the 95% confidence level (Table 6.11). When refming at 1500 rpm, the only 

significant difference in tensile strength was between the GCG and GUP. At the highest refining 

intensity it was seen that the GUG had the highest tensile strength while the tensile strength for 

the other three sites were not significantly different at the 95% confidence level. For all pulps 

except the GCG, there were no significant differences in tensile strength at the three different 

refming speeds (Table 6.12). For the GCG refming at 1500 rpm gave higher tensile strength. 

Multiple regression analysis was carried out to determine what wood and initial pulp properties 

were impacting on the tensile strength. The regression was carried out at each speed separately. It 

was seen that the measured wood and pulp properties could not give a good prediction of the 

tensile strength at 400CSF. Tables 6.13 and 6.14 shows the outcome of the multiple regression 

analysis 
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Figure 6.33: Graph of tensile index at 400cSF 
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Figure 6.34 shows the results of the tear strength at 400CSF using three different refming speeds. 

There were significant differences in tear strength among the four pulps at 400CSF (Table 6.11). 

The GCG had the highest tear strength at all refming speeds. The GUP had the lowest tear 

strength at all speeds. The other two sites had similar tear strength at all refming speeds. There 

were no significant differences in tear strength for the GCG when refined at the three different 

intensities (Table 6.12). The other sites had a significantly higher tear strength when refmed at the 

lowest speed than when refmed at the two higher speeds. 

For paper grades requiring higher tear strength the GCG is recommended since it gives the 

highest tear strength at all speeds, however refming at 1500 rpm will be better due to the lower 

SRE requirement and it also gives high values for all the other strength properties at this speed. If 

the other three pulps were used then refming at 750 rpm maximises the strength however it must 

be noted that this speed also uses the most energy and the other strength properties are not 

necessarily high. 

From the results of the multiple regression analysis it was seen that at all speeds the initial pulp 

fibre length could account for most of the differences in tear strength at 400CSF. The wood 

coarseness and Runkel ratio could also explain some of the differences in tear strength at 400CSF 

at all three speeds. 
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Figure 6.34: Graph of tear index at 400cSF 
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Figure 6.35 shows the burst strength of the four pulps at 100 kWhlt. The burst strength of the 

clones from the good sites was generally significantly higher than the burst strength of the clones 

from the poor sites (Table 6.11). When refmed at the lowest and highest speeds, the GUG had the 
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highest burst strength. At 1500 rpm it was seen that GCG had a higher mean burst strength than 

the GUG however it was seen from an analysis of variance that this difference was not significant 

at the 95% confidence level. There were significant differences in burst strength for each of the 

four pulps when rermed at the three different speeds (Table 6.12). The GCG had the highest burst 

strength when it was rermed at 1500 rpm while the GCP achieved a higher burst strength when it 

was rermed at 2200 rpm. The GUP had a higher burst strength when it was refined at 750 rpm, 

while the GUG had similar burst strength at 750 rpm and 2200 rpm and a lower burst strength at 

1500 rpm. 

It can be seen in table 6.13 that when refined at 750 rpm and 2200 rpm the initial pulp coarseness 

was able to account for some of the differences in burst strength. When rermed at 1500 rpm, the 

initial pulp fibre length seemed to be more important. The wood density and properties related to 

the density was also seen to influence the burst strength of the different pulps at all speeds. 
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Figure 6.35: Grapb of Burst index at 400cSF 

Figure 6.36 shows the sheet density at 400CSF. There were significant differences in sheet 

density both across sites and across the different refining treatments (Tables 6.11 and 6.12). The 

pulp from the GUG produced sheets with the highest sheet density, however at 1500 rpm it was 

not significantly higher than the sheet density of the pulp from the GCG. The GUG was not 

affected differently by the three different rerming speeds. The two GC clones had a significantly 

higher sheet density when rermed at 1500 rpm than when rermed at 2200 rpm. For the GUP the 

highest sheet density occurred when refined at 750 rpm. 
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The results of the multiple regression analysis (Tables 6.13 and 6.14), showed that either the 

initial pulp or wood lumen diameter could account for most of the differences in sheet density at 

400CSF. When refined at 1500 rpm, the wood or initial pulp coarseness was able to account for 

some of the differences in sheet density. For refming carried out at 750 rpm, it was seen that the 

wood Runkel ratio or the initial pulp fibre diameter could be used to account for most of the 

differences in sheet density. 
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Figure 6.36: Graph of sheet density at 400CSF 
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The pulp from the GCG resulted in sheets with higher mean stretch at all three speeds (Figure 

6.37). The pulp from the GUP resulted in sheets with the lowest stretch when refined at the two 

higher speeds (Table 6.13). For the two GC clones there were no significant differences in stretch 

with the three different speeds (Table 6.12). For the GUG the stretch of the pulp refmed at 1500 

rpm was significantly higher than when refmed at 2200 rpm. For the GUP refming at 750 rpm 

resulted in significantly higher stretch than when refmed at 2200 rpm. 

Multiple regression analysis (Tables 6.13 and 6.14), showed that at 750 rpm neither initial pulp 

nor wood properties could give a good prediction of the stretch. At the two higher speeds the 

initial pulp fibre length and also the wood coarseness and wood Runkel ratio was able to account 

for some of the differences in stretch. 
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Figure 6.37: Graph of stretch at 400cSF 
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Figure 6.38 shows the tensile energy absorbed by the pulps at 400CSF. It was seen that when 

refined at the highest speed, the pulps had the lowest TEA. The results of the multiple regression 

analysis (Tables 6.13 and 6.14), show that at all speeds the initial pulp fibre length was able to 

predict the TEA to some extent though not very strongly. At the two lower speeds the wood 

coarseness was able to explain some ofthe differences in TEA. 

140 
120 

N 100 
.E 80 .., -« 60 
~ 40 

20 
o 

o 

i5 

• • I : 

750 Speed (rp~r 

Figure 6.38: Graph of TEA at 400cSF 

GCG = GC G438 - good site 
I 

• GCP = GC G438 - poor site 

GUG = GU A380 - good site 

GUP = GU A380 - poor site 

2250 

121 



With the exception of the GCP the other sites all had the highest zero span tensile strength when 

refined at 750 rpm (figure 6.39). For the GCP, the zero span tensile strength did not change much 

with the different speeds of refining when compared at a freeness of 400 ml, the other sites 

decreased with increasing speed. The differences in zero span tensile strength due to the different 

pulps were most marked when refmed at 2200 rpm. The results from the multiple regression 

analysis (Tables 6.13 and 6.14), show that at 2200 rpm the wood or initial pulp coarseness was 

able to account for most of the differences in zero-span tensile at 400CSF. When refming was 

carried out at 1500 rpm, the wood cell wall thickness was a good predictor of the zero-span 

tensile and from the initial pulp properties, a combination of pulp coarseness and fibre length also 

gave a good prediction of the zero-span tensile. 
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Table 6.13: Multiple regression analysis results using initial pulp anatomy to predict pulp 

freeness and sheet properties at constant freeness (400ml) 

750 rpm (SEL range = 0.15 Ws/m • 0.22 Ws/m) 

I SRE SEL Tensile Tear Burst Sheet density Stretch TEA Z-span 

Model R2 80.41 61.01 36.2 61 .67 58.21 78.44 32.97 59.02 90.5 

p-value <0 .0001 <0 .0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

i-Coarse 80.41 45.34 34.47 

I-LD 42.83 36.2 56.03 

i-FL 18.18 61.67 59.02 

i-f ines 17.59 32.97 

i-Collaps 12.87 
i-FD 60 .85 

1500 rpm (SEL range = 0.31 Ws/m ·0.43 Ws/m) 

SRE SEL Tensile Tear Burst Sheet density Stretch TEA Z-span 
Model R2 77.01 87.83 34.97 74.53 89.4 82.29 56.48 50.95 89.6 
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

i-Coarse 18.3 12.47 47.3 44.94 
I-LD 

i-FL 77 .01 69.53 34.97 74.53 76.93 56.48 50.95 44.66 
i-CWT 34.99 

2200 rpm (SEL range = 0.45 Ws/m • 0.52 Ws/m) 

SRE SEL Tensile Tear Burst Sheet density Stretch TEA Z-span 
Model R2 61 .72 40.32 58.08 92.67 87.41 57.39 58.4 43.31 96.85 
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

i-Coarse 57.88 91 .23 
I-LD 23.89 17.93 22.64 57.39 
i-FL 61 .72 40 .32 34.19 74.74 6.89 58.4 43.31 5.62 
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Table 6.14: Multiple regression analysis results using initial wood anatomy to predict pulp 

freeness and sheet properties at constant freeness (400ml) 

750 rpm (SEL range = 0.15 Wslm ·0.22 WsI,) 

SRE SEL Tensile Tear Burst Sheet density Stretch TEA Z-span 

Model R2 79.21 74.98 37.64 54.78 62.44 72.76 30.66 45.17 99.18 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

Density 62.44 

WCWT 74 .98 23.06 

w-Coarse 79.21 30.88 45.17 

WFD 30.66 76.12 

w-Collaps 37.64 

w-Runkel 23.9 72.76 

1500 rpm (SEL range = 0.31 Ws/m· 0.43 Wslm) 

SRE SEL Tensile Tear Burst Sheet density Stretch TEA Z-span 
Model R2 28.52 93.06 23.13 77.59 65.1 50.58 53.08 58.51 71.79 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

WCWT 14.14 71 .79 
w-Coarse 28.52 60.06 23.13 34 .19 53.57 50.58 38 .27 34.18 
w-Collaps 18.86 
w-Runkel 43.4 11 .53 14.81 24.33 

I 2200 rpm (SEL range = 0.45 Ws/m • 0.52 Ws/m) 

SRE SEL Tensile Tear Burst Sheet density Stretch TEA Z-span 
Model R2 91.76 33.89 39.5 83.18 81.12 73.39 67.04 - 87.43 
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Contributors to the model and their percentage contribution 

Density 39.5 
WCWT 71 .15 
WLD 73.39 

w-Coarse 54.22 33 .89 28.52 9 .97 36.48 87.43 
Runkel 37.54 54.66 30.56 
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6.6 Summary of findings 

Wood Anatomy and Density 

• There were larger differences in density due to differences in site than differences in species. 

These significant differences due to site must be considered when selecting where to grow 

these species. 

• There were significant differences in the wood anatomical properties measured except for: 

• GCG and GCP which had similar lumen diameter 

• GCG, GCP and GUP which had similar collapsibility 

• GCG and GUP which had similar cell wall thickness 

• GCP and GUP which had similar fibre diameter 

Pulp properties 

• Good sites had a higher yield than poor sites. 

• The good sites had longer and less coarse fibres than the poor sites. The GU clones have 

shorter fibres than the GC clones 

• The GUG had the largest fibre diameter and lumen diameter and the thinnest cell walls. Thus 

they were the most collapsible fibres compared to the other three pulps. 

Overall strength properties 

• The SRE was the best predictor for freeness and all strength properties except the tear 

strength. For the tear strength the best predictor was the initial pulp fibre length 

• Tensile strength developed the slowest when refmed at the lowest speed of750 rpm. 

• GCG gave the highest tear strength and the GUP gives the lowest tear strength at all speeds. 

The GCP and GUG have similar tear strength 

• At 1500 rpm, the GCG quickly achieved the highest tear strength but the tear strength 

declined rapidly. At other speeds the maximum tear strength achieved was maintained for 

longer. The GCG gave the best tear tensile relationship. 

• At 750 rpm the maximum tear strength for the pulps occurred at about 70 kNmlkg and the 

higher speeds the maximum tear strength occurred at a higher tensile strength (about 90 

kNmlkg) 
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• At 1500 rpm, differences in burst strength, tensile strength, TEA, sheet density and zero-span 

tensile among the different pulps was small. 

• For stretch the least difference amongst pulps occurred at the highest speed (2200 rpm). 

• For the zero-span tensile, the largest most differences due to different pulps occurred when 

refined at 2200 rpm. 

At constant SRE 

• GUP, which had the lowest fibre length initially, underwent the largest decrease in fibre 

length 

• With refining the amount of fines increased with higher speeds for the GU clones. 

• Least differences in freeness among the four pulps occurred at 750 rpm. 

• There was an increase in tensile strength from 750 rpm to 1500 rpm but for all the pulps 

except the GUG the tensile strength dropped at 2200 rpm. The GUG developed its tensile 

strength the fastest. 

• GCG gives the highest tear strength and the GUP gives the lowest tear strength at all speeds. 

The GCP and GUG have similar tear strength 

• At the lowest speed, the good sites have higher burst strength than the poor sites. At the 

highest speed both GU clones higher burst strength than the GC clones. 

• The biggest differences in zero-span tensile among the different pulps occurred at 2200 rpm. 

Constant Freeness 

• Only the GU clones underwent very slight decrease in pulp fibre length. 

• There was a general decrease in pulp cell wall thickness which was independent of the 

refining speed used. 

• The GU sites had a larger increase in fines content with the GUG having the highest increase 

in fines content. 

• GCG gives the highest tear strength and the GUP gives the lowest tear strength at all speeds. 

The GCP and GUG have similar tear strength 

• There was a decrease in stretch and TEA at the highest speed. 

• Zero-span tensile for the good sites decreased at 2200 rpm. 
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Chapter 7 

Conclusions and Recommendations 

Phase 1 

It was seen that although different variables were used to vary the specific refining energy the 

SRE was still a very good predictor of the pulp properties, even though the variables themselves 

were not good predictors of the properties. It was noted that the control of flow rate led to good 

development of the tear strength compared to the other methods used to vary the SRE. This 

finding could have important implications if this finding is backed up with confirmatory studies 

on different pulps. Further investigations should be done on this since it is desirable to develop 

the optimum tear strength for specific grades. However the results indicated that the high tear 

strength occurred at low flow rates. This would affect the production rates in the mill and it 

should be noted that the opportunity to manipulate flow rate is fairly limited in an industrial 

environment and the practical limitations should be taken into account in an experimental design. 

In personal communications with a number of refiner experts (Joris 2005, Pauck 2004-2005), it 

was concluded that the existing refiner plate pattern was not ideal for low consistency refining of 

eucalyptus pulps. The 10 mm groove between sectors was higher than normally acceptable in a 

refiner of this size. Due to machining limitations, this is the smallest groove size achievable in 

normal plate production. In order to resolve this technical limitation, future plates would have to 

be manufactured with casting technology. It was decided that while the plate pattern is not ideal, 

it was the best at the time and its limitations do not invalidate the work done using this plate It is 

recommended that a more appropriate plate pattern be specially cast to obviate machining 

limitations. 

Phase 2 

The results from phase 2 of the project showed that there were differences in the refining 

characteristics between bleached and unbleached pulp. However the results indicated that the 

differences in the refining characteristic occurred in a predictable manner. This indicated that 
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refining work carried out on unbleached pulp could be used to predict how fully bleached pulp 

would behave on refining. This finding indicated that it was acceptable to carry out phase 3 of the 

project on different genetic material in an unbleached form. 

Phase 3 

With the range of different pulp characteristics it was found that, the SRE was still the best 

predictor of the pulp freeness and other strength properties measured except for tear strength. If 

SRE and SEL were left out of the multiple regression analysis and only the pulp properties were 

considered in the multiple regression, then it was seen that pulp cell wall thickness gave good 

predictions for most of the pulp properties and the fines content gave a fairly good prediction of 

the sheet density. For tear strength, initial pulp fibre length was the best predictor. 

When refining eucalyptus pulps using a low refiner speed of 750 rpm (SEL range for the different 

pulps = 0.15 to 0.22 Ws/m), the specific refining energy required to reach a freeness of 400 ml 

was significantly higher than when refining at the two higher refining speeds. This implies that 

the SRE demand could be lowered if refining was carried out at higher intensities. It was seen in 

the case of the GCG clone that by refining at an intensity of about 0.4 Ws/m instead of 0.2 Ws/m, 

the high tear strength was still maintained while the other strength properties increased and the 

SRE required to reach 400 ml was lower than when refined at an intensity of 0.2 W s/m. 

All clones responded in a similar manner to refining conditions. This would indicate that clones 

with different characteristics can be processed together under the same conditions. However there 

were significant differences between the clones, most notably for tear strength. These differences 

were driven by anatomical characteristics and remained fairly constant throughout at different 

refining conditions. It is therefore recommended that if products with specific characteristics are 

required then material with appropriate characteristics should be selected. 

The GCG should be used in grades where high tear strength is required. This pulp should be 

refined using a SEL of about 0.4 Ws/m as this was seen to be the most favourable. For this pulp 

refining at this intensity resulted in this pulp achieving its highest strength properties. The GUG 

resulted in good tensile strength and moderate tear strength. This pulp would be ideal for grades 

requiring high tensile strength and where high tear strength is not required. 
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Appendix A 

Equations 

1. Calculations for pulping properties 

The equations below show how the pulp yield and rejects were calculated. 

S d I . ld (01) Mass of oven dry pulp 100°1 creene pu p yze 10 = X 10 
mass of oven dry chips 

R . (0/) Mass of oven dry rejects 100°1 ejects 10 = X 10 
mass of oven dry chips 

Total pulp yield (%) = Screened pulp yield (%) + Re jects (%) 

2. Calculations for refining energy and refining intensity 

.. . Al 

... A2 

. .. A3 

The control panel on the refiner gives the percentage of the nominal power that is being used. The 

no-load power (Po) was calculated by running the refiner with only water at the appropriate speed. 

The net refining power was calculated as the difference between the gross refiner power (P) and 

the no-load power. 

... A4 

The stock flow rate in litres per second was converted to a volumetric flow rate (m3/hour). 

Assuming a stock density of 1 ton/m3 the volumetric flow rate was converted to a mass flow rate 

(m). 

1m3 3600s I ton 
m (ton I h) = stock flow rate(l Is) x --x x -- ... A5 

lOOOI lh 1m 3 

Using the stock consistency the fibre flow (M) rate can be calculated. 

M (ton I h) = m (ton I h) x consistency (%) 
100% 

... A6 
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The specific refining energy (SRE) was then calculated as the net power divided by the fibre flow 

rate. 

P (kW) 
SRE (kWh / ton) = ---""nec.....t -­

M(ton/h) 

The refining intensity (SEL) was calculated as, 

SEL(Ws/m) = Pnet (kW) 
CEL(m/rev) x speed (rev/ s) 

... A7 

... A8 

The CEL is the cutting edge length in meters per revolution. This is fixed for a given set of refiner 

plate. For the refiner plates that was used the CEL was 279.01 mlrev in the anticloclcwise 

direction which was used. The speed is the speed of rotation of the refiner plates in revolutions 

per second when used in this equation. 

3. Calculations for pulp properties 

a) Freeness 

The pulp freeness was recorded as the volume of water (ml) that drained out of the side orifice of 

the freeness tester. The freeness was corrected for temperature and mass according to the 

equations listed in the Tappi standards. 

b) Basis Mass 

The average mass of the conditioned sheets in grams were determined. The bone dry mass was 

calculated by assuming that the conditioned sheets had a moisture content of 7%. The diameter of 

one handsheet is 20cm or 0.2m. The area of the hand sheet was determined and the basis mass was 

calculated using equation AI. 

B' ( / 2) Average bone dry mass (g) aSlS mass g m = 2" .A9 
Area of sheet (m ) 

c) Sheet Density 
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Bulk thickness values were recorded on micrometer. Sheet density in kg/m3 was calculated by 

dividing the basis mass in kg/m2 by the bulk thickness m (equation A2). 

d 
. (k / 3) Basis mass (kg / m

2
) Sheet enslty g m = ----....:......::=------..:... 

bulk thickness (m) 
. .. AlO 

d) Burst Index 

The units for burst strength from the instrument were in kilopascals (kNm·2). The burst index was 

obtained by dividing the burst strength by the basis mass (equation A3). 

BUSRT INDEX (kN / g) = Average bursting strength(kN / m
2

) ••• All 
BasisMass(g/m2) 

The burst results will be presented in the units of MN/kg. The results in MN/kg are numerically 

equal to the results in kN/g since lkN/g = 1MN/kg 

e) Tear Index 

The machine gave the tear strength in milli-Newtons (mN). The tear index was calculated by 

dividing the tear strength in Newtons(N) by the basis mass in kg/m2 (equation A4). 

TEAR INDEX (Nm 2 / Kg) = Average Tear Strength (N) 
Basis Mass (kg / m2) 

1) Tensile Index 

... A12 

The machine gave the tensile force in Newtons (N). The tensile strip had a width of 15 mm or 

0.015 m. The tensile strength was calculated as the tensile force (N) divided by the strip width 

(m). Then the tensile index was calculated from equation AS. 

TENSILE INDEX (Nm/g) = Average Tensile Strength (N / m) 
2 •• . A13 

Basis Mass (g / m ) 

The results were presented in kNmlkg. The results in kNmlkg are numerically equal to the results 

in Nmlg since 1 Nmlg = 1 kNmlkg. 
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g) Stretch 

The stretch was recorded from the tensile machine together with the tensile force. The stretch was 

recorded as a percentage and presented in the same way. 

h) Tensile energy absorbed (TEA) 

The TEA was recorded from the tensile machine together with the tensile force. The TEA was 

recorded in J/m2 and presented in the same way. 

i) Zero-span tensile (Z-span) 

The machine gave the tensile force in Newtons (N). This was divided by the strip width (0.015m) 

to give the zero-span tensile force in N/m. The results had to be corrected to a basis mass of 60 

glm2
• This was done by my multiplying the zero-span tensile force by (60 glm2/basis mass (glm2

). 

ZERO SPAN TENSILE (N 1m) = Average Zero span Tensile Strength (N / m)x 60g / m
2 

Basis Mass (g / m 2 ) 

. . . A14 

4. Calculations of certain morphological properties 

a) Coarseness 

The wood coarseness was calculated using equation A15 (Miles et al. 1991). The pulp fibre 

collapsibility was obtained by multiplying the wood coarseness by the yield (Britt 1966). 

Coarseness = wood fibre diameter x wood density ... AlS 
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b) Collapsibility 

The collapsibility gIves an indication of how collapsible the fibre are. The higher the 

collapsibility the more collapsible the fibres. The collapsibility was calculated according to 

equation A16 

II 
'b'I' 3 x fibre diameter + 5 x cell wallt hickness 

Co apSl l lty = ----=-----------------:-----
(cell wall thickness) 2 

... AI6 

c) Muhlsteph Ratio 

The muhlsteph ratio is also an indication of fibre collapsibility. The lower the muhlsteph ratio the 

more collapsible the fibres . Equation A17 gives the equation for the mUhlsteph ratio (Seth et al. 

1997) 

A~ hI h (fibre diameter) 2 
- (lumen diameter)2 

IVIU step = --=--------'----------''----------'--
fibre diameter 

... AI7 

d) Runkel Ratio 

The Runkel ratio is also an indication of collapsibility. Equation A18 gives the equation for the 

Runkel ratio. 

R k I 
. 2 x cell wall thickness 

un e ratlO = --------
fibre diameter 
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Table B1: Energ calculation results for when va ing flow rate 

run 1 
Gap setting micron 25 25 25 25 

% power % 53.90 62.66 61.43 62.87 

% no load power % 29.38 29.38 29.38 29.38 

full power kW 18.50 18.50 18.50 18.50 

flow lIs 0.60 1.00 1.50 2.00 

consistency % 3.04 3.04 3.04 3.04 

Power kW 9.97 11.59 11.36 11.63 

Po kW 5.44 5.44 5.44 5.44 

Speed rpm 2200.00 2200.00 2200.00 2200.00 

P-Po kW 4.54 6.16 5.93 6.20 

Peripheral-speed mls 23.37 23.37 23.37 23.37 

Vol Flow M"3/h 2.16 3.60 5.40 7.20 

Mass Flow ton/hr 2.16 3.60 5.40 7.20 

M ton/hr 0.07 0.11 0.16 0.22 

GEL mlrev 279.01 279.01 279.01 279.01 

ls mls 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 69.08 56.25 36.12 28.31 
SEL Ws/m 0.44 0.60 0.58 0.61 

run 2 
Gap settinQ micron 25 25 25 25 
% power % 53.31 61 .83 60.99 62.19 
% no load power % 29.38 29.38 29.38 29.38 
full power kW 18.50 18.50 18.50 18.50 
flow I/s 0.60 1.00 1.50 2.00 
consistency % 2.98 2.98 2.98 2.98 
Power kW 9.86 11.44 11 .28 11 .51 
Po kW 5.44 5.44 5.44 5.44 
Speed rpm 2200 2200 2200 2200 
Peripheral-speed mls 23.37 23.37 23.37 23.37 
P-Po kW 4.43 6.00 5.85 6.07 
Vol Flow M"3/h 2.16 3.60 5.40 7.20 
Mass Flow ton/hr 2.16 3.60 5.40 7.20 
M ton/hr 0.06 0.11 0.16 0.21 
GEL mlrev 279.01 279.01 279.01 279.01 
ls mls 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 68.78 55.95 36.34 28.29 
SEL Ws/m 0.43 0.59 0.57 0.59 

run3 
Gap setting micron 25 25 25 25 
% power % 53.72 60.62 60.99 62.86 
% no load power % 29.38 29.38 29.38 29.38 
full power kW 18.50 18.50 18.50 18.50 
flow lIs 0.60 1.00 1.50 2.00 
consistency % 2.96 2.96 2.96 2.96 
Power kW 9.94 11.22 11 .28 11 .63 
Po kW 5.44 5.44 5.44 5.44 
Speed rpm 2200 2200 2200 2200 
Peripheral-speed mls 23.37 23.37 23.37 23.37 
P-Po kW 4.50 5.78 5.85 6.19 
Vol Flow M"3/h 2.16 3.60 5.40 7.20 
Mass Flow ton/hr 2.16 3.60 5.40 7.20 
M ton/hr 0.06 0.11 0.16 0.21 
GEL mlrev 279.01 279.01 279.01 279.01 
ls mls 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 70.43 54.24 36.59 29.06 
SEL Ws/m 0.44 0.56 0.57 0.61 



Table 82: Energy calculation results for when va ing consistenc 

run 1 
Gap setting micron 25 25 25 25 
% power % 62.98 63.10 64.70 65.05 
% no load power % 30.30 30.30 30.30 30.30 
full power kW 18.50 18.50 18.50 18.50 
flow lIs 1.00 1.00 1.00 1.00 
consistency % 2.60 2.97 4.00 4.78 
Power kW 11 .65 11.67 11.97 12.03 
Po kW 5.61 5.61 5.61 5.61 
Speed rpm 2200.00 2200.00 2200.00 2200.00 
Peripheral-speed mls 23.37 23.37 23.37 23.37 
P-Po kW 6.05 6.07 6.36 6.43 
Vol Flow M"3/h 3.60 3.60 3.60 3.60 
Mass Flow ton/hr 3.60 3.60 3.60 3.60 
M ton/hr 0.09 0.11 0.14 0.17 
GEL mlrev 279.01 279.01 279.01 279.01 
ls mls 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 64.59 56.75 44.19 37.36 
SEl Ws/m 0.59 0.59 0.62 0.63 

run 2 
Gap setting micron 25 25 25 25 
% power % 61.47 62.16 64.59 65.01 
% no load power % 30.30 30.30 30.30 30.30 
full power kW 18.50 18.50 18.50 18.50 
flow lIs 1.00 1.00 1.00 1.00 
consistency % 2.60 3.00 4.00 4.78 
Power kW 11 .37 11 .50 11.95 12.03 
Po kW 5.61 5.61 5.61 5.61 
Speed rpm 2200.00 2200.00 2200.00 2200.00 
Peripheral-speed mls 23.37 23.37 23.37 23.37 
P-Po kW 5.77 5.89 6.34 6.42 
Vol Flow M"3/h 3.60 3.60 3.59 3.61 
Mass Flow ton/hr 3.60 3.60 3.59 3.61 
M ton/hr 0.09 0.11 0.14 0.17 
GEL mlrev 279.01 279.01 279.01 279.01 
ls mls 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 61 .61 54.58 44.19 37.17 
SEl Ws/m 0.56 0.58 0.62 O.~ 

run 3 
Gap setting micron 25 25 25 25 
% power % 61 .78 63.81 66.31 66.80 
% no load power % 30.30 30.30 30.30 30.30 
full power kW 18.50 18.50 18.50 18.50 
flow lIs 1.00 1.00 1.00 1.00 
consistency % 2.60 3.00 4.00 4.78 
Power kW 11.43 11 .80 12.27 12.36 
Po kW 5.61 5.61 5.61 5.61 
Speed rpm 2200.00 2200.00 2200.00 2200.00 
PeriQheral-speed mls 23.37 23.37 23.37 23.37 
P-Po kW 5.82 6.20 6.66 6.75 
Vol Flow M"3/h 3.60 3.60 3.59 3.60 
Mass Flow ton/hr 3.60 3.60 3.59 3.60 
M ton/hr 0.09 0.11 0.14 0.17 
GEL mlrev 279.01 279.01 279.01 279.01 
ls mls 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 62.22 57.40 46.45 39.24 
SEl Ws/m 0.57 0.61 0.65 0.66 

0" 



Table 83: Energy calculation results for when va ing speed 

run 1 
Gap setting micron 25 25 25 25 

% power % 28.64 42.84 52.67 68.82 

% no load power % 14.06 21 .86 29.60 33.22 

full power kW 18.50 18.50 18.50 18.50 

flow lIs 1.05 1.05 1.05 1.05 

consistency % 3.05 3.05 3.05 3.05 

Power kW 5.30 7.93 9.74 12.73 

Po kW 2.60 4.04 5.48 6.15 
Speed rpm 1500 1750 2000 2200 
Peripheral-speed m/s 15.9 18.59 21 .25 23.37 
P-Po kW 2.70 3.88 4.27 6.59 
Vol Flow MA3/h 3.78 3.78 3.78 3.78 
Mass Flow ton/hr 3.78 3.78 3.78 3.78 
M ton/hr 0.12 0.12 0.12 0.12 
CEl m/rev 279.01 279.01 279.01 279.01 
ls m/s 6975.23 8137.76 9300.30 10230.33 
SRE kWh/ton 23.40 33.67 37.02 57.13 
SEl Ws/m 0.39 0.48 0.46 0.64 

run 2 
Gap setting mIcron 25 25 25 25 
% power % 29.58 42.02 57.75 70.16 
% no load power % 14.23 21 .17 28.80 34.35 
full power kW 18.50 18.50 18.50 18.50 
flow lIs 1.03 1.03 1.03 1.03 
consistency % 3.07 3.07 3.07 3.07 
Power kW 5.47 7.77 10.68 12.98 
Po kW 2.63 3.92 5.33 6.35 
Speed rpm 1500 1750 2000 2200 
Peripheral-speed m/s 15.9 18.59 21.25 23.37 
P-Po kW 2.84 3.86 5.36 6.63 
Vol Flow MA3/h 3.71 3.71 3.71 3.71 
Mass Flow ton/hr 3.71 3.71 3.71 3.71 
M ton/hr 0.11 0.11 0.11 0.11 
CEl m/rev 279.01 279.01 279.01 279.01 
ls m/s 6975.23 8137.76 9300.30 10230.33 
SRE kWh/ton 24.93 33.89 47.04 58.20 
SEl Ws/m 0.41 0.47 0.58 0.65 

run3 
Gap setting rrucron 25 25 25 25 
% power % 28.64 41.75 57.54 69.17 
% no load power % 14.23 21 .17 28.80 34.35 
full power kW 18.50 18.50 18.50 18.50 
flow lIs 1.00 1.00 1.00 1.00 
consistency % 3.01 3.01 3.01 3.01 
Power kW 5.30 7.72 10.64 12.80 
Po kW 2.63 3.92 5.33 6.35 
Speed rpm 1500 1750 2000 2200 
Peripheral-speed m/s 15.9 18.59 21 .25 23.37 
P-Po kW 2.67 3.81 5.32 6.44 
Vol Flow MA3/h 3.60 3.60 3.60 3.60 
Mass Flow ton/hr 3.60 3.60 3.60 3.60 
M ton/hr 0.11 0.11 0.11 0.11 
CEl m/rev 279.01 279.01 279.01 279.01 
ls m/s 6975.23 8137.76 9300.30 10230.33 
SRE kWh/ton 24.60 35.14 49.06 59.45 
SEl Ws/m 0.38 0.47 0.57 0.63 



Table B4: Raw Data for work from phase 1 

Basis Sheet 
Speed Gap Consistency Flow SRE SEL Freeness Mass Burst Tear Tensile Stretch Density TEA 

(rpm) (micron) (%) (1/5) (kWh/t) (Ws/m) (ml) (g/m2) (MN/kg) kNm2/kg) (kNm/kg) (%) (kg/m3
) (J/m2) 

2200 25 4.78 1 39.24 0.66 406.03 60.44 4.37 10.10 62.54 2.75 639.94 76.99 
2200 25 4.78 1 37.36 0.63 452.31 61.87 3.36 9.65 56.07 2.52 611.06 64.83 
2200 25 4.78 1 37.17 0.63 424.41 61.43 4.12 10.31 67.17 2.62 668.08 71.14 
2200 25 4 1 44.19 0.62 418.97 57.28 4.30 9.39 72.23 2.72 641.41 83.77 
2200 25 4 1 46.45 0.65 429.61 57.97 4.44 9.76 72.90 2.86 673.23 77.77 
2200 25 4 1 44.19 0.62 445.30 56.64 4.08 8.93 69.04 2.65 663.10 71.20 
2200 25 3 1 56.75 0.59 386.14 59.55 3.75 9.10 64.12 2.54 653.61 83.58 
2200 25 3 1 54.58 0.58 393.65 60.93 4.12 10.08 70.10 2.71 677.03 80.42 
2200 25 3 1 57.40 0.61 375.86 60.09 4.41 8.85 73.46 2.76 677.11 90.02 
2200 25 2.6 1 61.61 0.56 393.15 59.06 4.29 9.39 66.39 2.84 635.60 70.98 
2200 25 2.6 1 62.22 0.57 374.45 62.71 4.77 9.07 66.99 2.48 683.06 81.02 
2200 25 2.6 1 64.59 0.59 400.84 58.71 4.13 9.50 62.91 2.76 651.35 65.02 

0 0 0 0 0.00 0.00 533.40 60.59 2.01 7.20 42.42 1.84 571.73 33.01 
0 0 0 0 0.00 0.00 522.99 60.59 2.01 6.95 42.42 1.89 571.73 37.00 
0 0 0 0 0.00 0.00 543.70 57.73 2.34 7.14 44.52 1.79 592.90 40.00 

2200 25 3 2 28.31 0.61 431.84 60.34 3.60 9.86 55.53 2.31 645.54 55.68 
2200 25 3 2 28.29 0.59 444.90 57.68 4.30 8.89 66.18 2.63 622.59 70.51 
2200 25 3 2 29.06 0.61 433.36 57.03 3.79 8.98 64.26 2.54 648.74 60.90 
2200 25 3 1.5 36.12 0.58 417.02 56.00 3.86 10.08 65.94 2.31 647.18 62.99 
2200 25 3 1.5 36.34 0.57 421.31 58.51 3.93 8.75 64.74 2.65 657.27 56.67 
2200 25 3 1.5 36.59 0.57 428.21 59.30 4.03 9.89 58.80 2.71 634.46 68.94 
2200 25 3 1 55.95 0.59 393.15 59.06 4.29 9.39 69.21 2.84 635.60 71.98 
2200 25 3 1 54.24 0.56 374.45 62.71 4.77 9.72 66.99 2.48 683.06 81.02 
2200 25 3 1 56.25 0.60 400.84 58.71 4.13 10.36 71.43 2.70 651 .35 69.02 
2200 25 3 0.6 70.43 0.44 299.49 53.63 5.78 10.83 79.72 3.43 699.53 94.52 
2200 25 3 0.6 68.78 0.43 333.56 56.39 5.21 10.45 83.45 3.47 694.07 104.45 
2200 25 3 0.6 69.08 O.~ 318.77 56.10 5.04 10.51 73.23 3.42 695.18 96.37 
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... Table B4 continued 

Basis Sheet 
Speed Gap Consistency Flow SRE SEL Freeness Mass Burst Tear Tensile Stretch Density TEA 

(rpm) (micron) (%) (lIs) (kWh/t) (Ws/m) (ml) (g/m2) (MN/kg) kNm2/kg) (kNm/kg) (%) (kg/m3
) (J/m2) 

0 0 0 0 0.00 0.00 531.33 63.25 2.05 6.98 41.18 1.47 576.47 40.98 
0 0 0 0 0.00 0.00 548.57 56.39 2.48 7.27 45.87 1.77 592.75 35.34 
0 0 0 0 0.00 0.00 548.57 56.39 2.48 7.27 45.87 1.77 592.75 40.98 

2200 25 3 1 58.20 0.65 400.72 56.64 4.42 9.14 63.83 2.75 671.84 81 .62 
2200 25 3 1 59.45 0.63 412.42 56.05 4.19 8.97 70.98 2.71 671.46 74.40 
2200 25 3 1 57.13 0.64 428.31 63.50 4.21 9.37 65.83 2.53 670.36 74.40 
1500 25 3 1 23.40 0.39 480.92 63.35 3.06 8.28 53.81 2.65 617.21 62.93 
1500 25 3 1 24.60 0.38 462.74 60.59 3.46 8.58 56.91 2.66 617.89 62.93 
1500 25 3 1 24.93 0.41 472.41 57.28 3.64 9.40 58.58 2.63 633.53 63.46 
1750 25 3 1 33.67 0.48 456.01 63.84 3.38 9.46 55.46 2.60 625.41 65.37 
1750 25 3 1 35.14 0.47 443.09 53.19 3.59 10.24 62.80 2.59 638.24 65.37 
1750 25 3 1 33.89 0.47 437.50 53.38 4.00 10.31 62.72 2.72 638.48 62.66 
2000 25 3 1 37.02 0.46 439.40 65.42 3.67 9.24 59.40 2.53 652.41 70.48 
2000 25 3 1 49.06 0.57 422.00 60.09 4.45 9.80 66.28 2.89 682.45 70.48 
2000 25 3 1 47.04 0.58 407.76 54.27 4.16 9.14 61.71 2.65 637.45 72.43 

-- - -
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Table C1: Raw data for refining trials carried out on unbleached pulp in phase 2 
Stage& Basis Sheet 

Sample Replicate SRE SEL Freeness mass Burst Tear Tensile Stretch Density TEA 
( kWh/t) ( Ws/m) (ml) (g/m2) (MN/kg) I (kNm2/kg) (kNm/kg) (%) (kg/m3

) (J/m2) 
Unbleached OA 0.00 0.00 527.00 62.90 2.28 7.40 35.37 1.21 580.84 26.33 
Unbleached OB 0.00 0.00 544.00 65.99 1.84 6.80 30.33 1.29 590.37 30.25 
Unbleached OC 0.00 0.00 515.64 58.47 2.34 7.21 42.58 1.83 605.71 28.68 
Unbleached 1A 34.58 0.72 406.57 60.07 3.49 9.19 58.53 1.98 626.78 69.16 
Unbleached 1B 32.00 0.68 410.92 65.19 3.67 9.31 55.58 2.48 674.36 62.96 
Unbleached 1C 32.48 0.60 438.36 61.96 3.84 9.78 62.33 2.68 658.01 70.74 
Unbleached 2A 69.17 0.72 376.32 60.88 4.20 9.91 62.66 2.76 647.89 76.84 
Unbleached 2B 64.01 0.68 359.00 65.19 4.37 9.14 67.90 3.22 718.61 85.56 
Unbleached 2C 64.96 0.60 390.00 62.10 3.85 9.82 68.05 2.60 670.31 73.30 
Unbleached 3A 103.75 0.72 347.56 60.29 4.60 9.68 70.34 2.81 637.44 85.12 
Unbleached 3B 96.01 0.68 315.00 63.44 5.06 8.51 74.89 3.11 752.51 99.21 
Unbleached 3C 97.43 0.60 337.33 56.85 4.78 8.83 79.48 3.22 700.95 99.42 
Unbleached 4A 138.34 0.72 233.42 60.80 5.41 8.87 89.37 3.08 716.70 118.40 
Unbleached 4B 128.02 0.68 242.00 65.73 6.01 8.53 83.78 3.39 810.32 121.11 
Unbleached 4C 129.91 0.60 264.42 60.70 6.01 8.1 8 84.53 3.68 748.40 107.30 
Unbleached 5A 172.92 0.72 201.00 57.10 5.78 7.88 91 .52 3.10 709.68 114.10 
Unbleached 5B 160.02 0.68 175.00 62.70 6.62 7.43 95.72 4.06 822.94 136.19 
Unbleached 5C 162.39 0.60 212 .34 58.06 6.79 7.53 93.92 3.55 781.43 127.61 
Unbleached 6A 207.51 0.72 131 .98 60.23 5.87 7.97 95.84 3.83 703.24 161.20 
Unbleached 6B 192.02 0.68 109.00 63 .00 6.22 7.03 105.24 4.05 850.63 170.42 
Unbleached 6C 194.87 0.60 162.98 62.10 6.81 7.66 101.35 4.23 826.43 191.39 

--- --------
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Table C2: Raw data for refining trials carried out on bleached pulp in phase 2 
Stage& Basis Sheet 

Sample Replicate SRE SEL Freeness mass Burst Tear Tensile Stretch Density TEA 
( kWh/t) ( Ws/m) (ml) (g/m2) (MN/kg) i(kNm2/kg) (kNm/kg) (%) (kg/m3

) (J/m2) 

Bleached OA 0.00 0.00 460.71 61.08 2.16 6.94 36.37 2.18 580.95 31.27 
Bleached OB 0.00 0.00 472.74 61 .72 2.07 7.46 35.54 2.11 578.64 31.66 
Bleached OC 0.00 0.00 452.83 58.81 2.48 7.90 40.71 2.38 584.05 37.49 
Bleached 1A 22.11 0.40 366.48 60.07 3.56 9.24 57.16 3.01 636.04 76.73 
Bleached 1B 24.22 0.44 384.23 54.86 3.39 8.66 56.41 2.71 615.30 66.57 
Bleached 1C 23.76 0.45 349.60 60.19 3.87 8.47 57.59 3.24 644.92 84.39 
Bleached 2A 44.23 0.40 315.92 60.88 3.81 9.73 57.69 3.12 552.76 89.42 
Bleached 2B 48.43 0.44 337.29 61 .33 4.02 8.77 58.32 2.91 631 .70 81 .51 
Bleached 2C 47.52 0.45 304.75 63.20 5.06 8.88 73.77 3.48 721.16 100.29 
Bleached 3A 66.34 0.40 311.80 61.88 4.31 8.87 66.96 3.64 658.10 105.44 
Bleached 3B 72.65 0.44 283.19 64.34 5.12 9.30 70.03 3.90 713.75 121.11 
Bleached 3C 71.28 0.45 272.30 63.05 5.58 8.19 76.86 4.15 743.03 128.80 
Bleached 4A 88.45 0.40 225.22 62.88 5.26 9.00 80.80 3.77 674.72 120.16 
Bleached 4B 96.87 0.44 243.60 63.00 5.34 9.61 76.54 4.30 713.26 146.24 
Bleached 4C 95.05 0.45 260.20 61 .67 5.67 8.73 77.70 4.20 747.55 127.70 
Bleached 5A 110.56 0.40 163.78 60.29 5.86 8.63 84.43 4.29 676.15 158.35 
Bleached 5B 121.09 0.44 188.33 64.34 5.47 8.42 76.76 4.31 805.61 150.22 
Bleached 5C 118.81 0.45 154.67 63.05 5.80 7.56 76.95 3.86 776.05 146.40 
Bleached 6A 132.68 0.40 169.49 61.29 6.63 8.77 96.13 4.04 668.62 171.94 
Bleached 6B 145.30 0.44 152.39 63.00 6.19 7.69 88.62 4.41 768.87 168.68 
Bleached 6C 142.57 0.45 141.43 61.67 5.96 7.87 79.66 3.86 807.35 142.68 
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T bl 01 W d a e 00 t It f th f "t ana omy resu 5 or e oursles 
Sample WMFD WMLD WMCWT Collaps Muhlsteph Runkel FD/LD FD/CWT CWT/LD 

(micron) (micron) (micron) 

GCG 13.052 6.409 3.321 5.057 0.759 0.509 2.036 3.931 0.518 

GCG 13.297 7.062 3.117 5.709 0.718 0.469 1.883 4.265 0.441 

GCG 13.314 5.722 3.796 4.088 0.815 0.570 2.327 3.507 0.664 

GCG 13.204 6.444 3.380 4.946 0.762 0.512 2.049 3.906 0.525 

GCG 13.134 6.657 3.238 5.303 0.743 0.493 1.973 4.056 0.486 

GCG 13.255 7.098 3.079 5.818 0.713 0.465 1.868 4.305 0.434 

GCG 13.179 6.498 3.341 5.039 0.757 0.507 2.028 3.945 0.514 

GCG 13.054 6.219 3.417 4.816 0.773 0.524 2.099 3.820 0.549 

GCG 13.164 5.976 3.595 4.447 0.794 0.546 2.203 3.662 0.602 

GUG 14.618 10.238 2.190 11 .427 0.510 0.300 1.428 6.675 0.214 

GUG 14.712 8.893 2.910 6.931 0.635 0.396 1.654 5.056 0.327 

GUG 15.500 9.609 2.945 7.057 0.616 0.380 1.613 5.262 0.307 

GUG 14.698 9.822 2.438 9.467 0.553 0.332 1.496 6.028 0.248 

GUG 14.987 10.276 2.355 10.227 0.530 0.314 1.458 6.363 0.229 

GUG 14.416 9.999 2.208 11 .132 0.519 0.306 1.442 6.528 0.221 

GUG 15.266 9.753 2.756 7.846 0.592 0.361 1.565 5.540 0.283 

GUG 14.191 8.766 2.712 7.632 0.618 0.382 1.619 5.232 0.309 

GUG 14.506 9.184 2.660 8.029 0.599 0.367 1.579 5.453 0.290 

GUG 15.053 10.083 2.485 9.328 0.551 0.330 1.493 6.059 0.246 

GCP 14.217 6.512 3.852 4.172 0.790 0.542 2.183 3.690 0.592 
GCP 15.022 6.073 4.474 3.369 0.837 0.596 2.473 3.358 0.737 
GCP 13.988 5.955 4.016 3.847 0.819 0.574 2.349 3.483 0.674 
GCP 13.634 6.686 3.474 4.827 0.760 0.510 2.039 3.924 0.520 
GCP 14.089 6.256 3.916 4.033 0.803 0.556 2.252 3.598 0.626 
GCP 13.170 6.448 3.361 4.984 0.760 0.510 2.043 3.918 0.521 
GCP 13.808 6.799 3.506 4.797 0.758 0.508 2.031 3.939 0.516 
GCP 13.710 5.931 3.889 4.006 0.813 0.567 2.311 3.526 0.656 
GCP 13.857 6.096 3.881 4.048 0.806 0.560 2.273 3.570 0.637 
GUP 14.088 7.300 3.395 5.140 0.732 0.482 1.930 4.150 0.465 
GUP 14.211 6.708 3.751 4.362 0.777 0.528 2.118 3.788 0.559 
GUP 14.536 7.885 3.324 5.450 0.706 0.457 1.843 4.373 0.422 
GUP 15.398 8.712 3.343 5.630 0.680 0.434 1.767 4.606 0.384 
GUP 13.635 6.635 3.500 4.768 0.763 0.513 2.055 3.896 0.528 
GUP 14.220 6.380 3.919 4.053 0.799 0.551 2.229 3.629 0.614 
GUP 14.033 8.548 2.742 7.422 0.629 0.391 1.642 5.118 0.321 
GUP 14.136 8.115 3.011 6.340 0.670 0.426 1.742 4.695 0.371 
GUP 14.260 7.924 3.167 5.843 0.691 0.444 1.800 4.502 0.400 



Table 02: Wood anatomy results for the four sites 

Sample Densiy 
(kg/m3) 

GCP 633.315 
GCP 673.307 
GCP 624.675 
GCP 623.287 
GCP 649.911 
GUP 580.349 
GUP 564.394 
GUP 549.927 
GUP 564.355 
GUP 579.901 
GCG 421 .961 
GCG 423.260 
GCG 417.381 
GCG 416.883 
GCG 398.968 
GCG 406.850 
GCG 399.459 
GCG 423.641 
GCG 439.125 
GUG 354.834 
GUG 363.957 
GUG 356.382 
GUG 344.061 
GUG 392.499 
GUG 345.748 
GUG 350.137 

It was initially planned to do anatomy on ten samples, one from each tree felled, 
however some of the samples broke as they were being prepared and therefore 
the number of samples for each compartment is different. This will not affect the 
results since it was the whole compartment density that was needed and this 
can still be calculated from the data available. 



Table 03: Initial pulp anatomical properties 
Sample i-FL i-fines i-FD i-CWT i-LD i-Collaps i-Muhlsteph i-Runkel i-FD/LD i- FD/CWT i-CWT/LD i-FUFD i-Coarse 

(mm) (%) (um) (~m) (~m) (mg/m) 
GCG 0.79 1.27 16.60 3.10 10.40 6.80 0.61 0.37 1.60 5.35 0.30 47.59 0.03 
GCG 0.80 1.27 17.30 3.15 11.00 6.82 0.60 0.36 1.57 5.49 0.29 46.24 0 .03 
GCG 0.79 1.25 17.00 3.05 10.90 7.12 0.59 0.36 1.56 5.57 0.28 46.47 0.03 
GCG 0.81 1.33 16.60 3.15 10.30 6.61 0.62 0.38 1.61 5.27 0.31 48.80 0.03 
GCG 0.79 1.34 17.00 3.15 10.70 6.73 0.60 0.37 1.59 5.40 0.29 46.47 0.03 
GCG 0.78 1.36 16.20 2.95 10.30 7.28 0.60 0.36 1.57 5.49 0.29 48.15 0.03 
GCG 0.83 1.11 16.50 3.10 10.30 6.76 0.61 0.38 1.60 5.32 0.30 50.30 0.03 
GCG 0.79 1.40 17.10 3.15 10.80 6.76 0.60 0.37 1.58 5.43 0.29 46.20 0.03 
GCG 0.78 1.28 16.80 2.95 10.90 7.49 0.58 0.35 1.54 5.69 0.27 46.43 0.03 
GCP 0.76 1.16 17.20 3.25 10.70 6.42 0.61 0.38 1.61 5.29 0.30 44.19 0.05 
GCP 0.76 1.29 17.10 3.05 11.00 7.15 0.59 0.36 1.55 5.61 0.28 44.44 0.05 
GCP 0.77 1.20 17.20 3.15 10.90 6.79 0.60 0.37 1.58 5.46 0.29 44.77 0.05 
GCP 0.77 1.21 17.40 3.25 10.90 6.48 0.61 0.37 1.60 5.35 0.30 44.25 0.05 
GCP 0.78 1.20 16.90 3 .20 10.50 6.51 0.61 0.38 1.61 5.28 0.30 46.15 0.05 
GCP 0.77 1.17 17.00 3.20 10.60 6.54 0.61 0.38 1.60 5.31 0.30 45.29 0.05 
GCP 0.78 1.63 16.60 3.05 10.50 6.99 0.60 0.37 1.58 5.44 0.29 46.99 0.05 
GCP 0.77 1.23 16.70 3.15 10.40 6.64 0 .61 0.38 1.61 5.30 0.30 46.11 0.05 
GCP 0.76 1.93 16.90 2.90 11.10 7.75 0.57 0.34 1.52 5.83 0.26 44.97 0.05 
GUG 0.78 1.53 19.00 3.20 12.60 7.1 3 0.56 0.34 1.51 5.94 0.25 41 .05 0.04 
GUG 0.78 1.72 18.60 3.10 12.40 7.42 0.56 0.33 1.50 6.00 0.25 41 .94 0.04 
GUG 0.77 1.53 18.00 3.00 12.00 7.67 0.56 0.33 1.50 6.00 0.25 42.78 0.04 
GUG 0.78 1.63 18.50 3.10 12.30 7 .39 0.56 0.34 1.50 5.97 0.25 42.16 0.04 
GUG 0.75 1.71 18.50 3.05 12.40 7.61 0.55 0.33 1.49 6.07 0.25 40.54 0.04 
GUG 0.77 1.61 18.90 3.10 12.70 7.51 0.55 0.33 1.49 6.10 0.24 40.74 0.04 
GUG 0.76 1.92 17.90 2.95 12.00 7.87 0.55 0.33 1.49 6.07 0.25 42.46 0.04 
GUG 0.78 1.62 18.40 3.00 12.40 7.80 0.55 0.33 1.48 6.13 0.24 42.39 0.04 
GUG 0.77 1.57 18.50 3.05 12.40 7.61 0.55 0.33 1.49 6.07 0.25 41 .62 0.04 
GUP 0.70 1.75 17.40 3.15 11.10 6.85 0.59 0.36 1.57 5.52 0.28 40.23 0.05 
GUP 0.71 1.62 18.50 3.40 11 .70 6.27 0.60 0.37 1.58 5.44 0.29 38.38 0 .05 
GUP 0.70 1.54 17.60 3.20 11.20 6.72 0.60 0.36 1.57 5.50 0.29 39.77 0.05 
GUP 0.70 1.66 17.70 3.10 11 .50 7.14 0.58 0.35 1.54 5.71 0.27 39.55 0.05 
GUP 0.69 1.61 17.40 3.15 11 .10 6.85 0.59 0.36 1.57 5.52 0.28 39.66 0.05 
GUP 0.70 1.58 17.50 3.05 11.40 7.28 0 .58 0.35 1.54 5.74 0.27 40.00 0 .05 
GUP 0.70 1.79 17.30 3.15 11 .00 6.82 0.60 0.36 1.57 5.49 0.29 40.46 0.05 
GUP 0.70 1.65 17.40 3.10 11 .20 7 .04 0.59 0 .36 1.55 5.61 0.28 40.23 0.05 
GUP 0.70 1.56 17.90 3.25 11.40 6 .62 0 .59 0 .36 1.57 5.51 0.29 39.11 0.05 

D-3 



Table 04: Energ calculation for refining the ul 5 at 750 rpm 

GUG -750 RPM GUC -750 RPM 
Gap setting micron 25 25 25 25 25 25 

Run 1 2 3 1 2 3 
% power % 4.78 4.69 4.77 4.94 5.93 5.99 
% no load power % 1.88 1.88 1.88 1.89 1.89 1.89 
full power kW 18.50 18.50 18.50 18.50 18.50 18.50 
flow lIs 1.00 1.00 1.00 1.00 1.00 1.00 
consistency % 3.00 3.00 3.00 3.00 3.00 3.00 
Power kW 0.88 0.87 0.88 0.91 1.10 1.11 
Po kW 0.35 0.35 0.35 0.35 0.35 0.35 
Speed rpm 750.00 750.00 750.00 750.00 750.00 750.00 
p·Po kW 0.54 0.52 0.53 0.57 0.75 0.76 
Vol Flow MA3/h 3.60 3.60 3.60 3.60 3.60 3.60 
Mass Flow ton/hr 3.60 3.60 3.60 3.60 3.60 3.60 
M ton/hr 0.11 0.11 0.11 0.11 0.11 0.11 
GEL m/rev 279.01 279.01 279.01 279.01 279.01 279.01 
ls m/s 3487.61 3487.61 3487.61 3487.61 3487.61 3487.61 
SRE kWh/ton 4.96 4.80 4.94 5.24 6.92 7.02 
SEl Ws/m 0.15 0.15 0.15 0.16 0.21 0.22 

GUP -750 RPM GCP -750 RPM 
Gap setting micron 25 25 25 25 25 25 
Run 1 2 3 1 2 3 
% power % 4.70 4.71 4.53 4.90 4.92 4.91 
% no load power % 0.75 0.75 0.75 0.75 0.75 0.75 
full power kw 18.50 18.50 18.50 18.50 18.50 18.50 
flow lIs 1.00 1.00 1.00 1.00 1.00 1.00 
consistency % 3.00 3.00 3.00 3.00 3.00 3.00 
Power kW 0.87 0.87 0.84 0.91 0.91 0.91 
Po kW 0.14 0.14 0.14 0.14 0.14 0.14 
Speed rpm 750.00 750.00 750.00 750.00 750.00 750.00 
p·Po kW 0.73 0.73 0.70 0.77 0.77 0.77 
Vol Flow MA3/h 3.60 3.60 3.60 3.60 3.60 3.60 
Mass Flow ton/hr 3.60 3.60 3.60 3.60 3.60 3.60 
M ton/hr 0.11 0.11 0.11 0.11 0.11 0.11 
GEL m/rev 279.01 279.01 279.01 279.01 279.01 279.01 
ls m/s 3487.61 3487 .61 3487.61 3487.61 3487.61 3487.61 
SRE kWh/ton 6.76 6.79 6.47 7.11 7.14 7.13 
SEl Wsfm 0.21 0.21 0.20 0.22 0.22 0.22 

The tables show the SRE per stage of refining. For multiple passes through the refiner the SRE 
is accumulated per stage while the SEl is not cumulative but is the same SEl for all stages 



Table 05: Energ calculation for refining the pulps at 1500 rpm 

GUG - 1500 RPM GCG - 1500 RPM 
Gap settinQ micron 25 25 25 25 25 25 

Run 1 2 3 1 2 3 

% power % 27.38 29.01 28.11 29.94 29.53 29.42 

% no load power % 13.40 13.40 13.40 13.39 13.39 13.39 

full power kW 18.50 18.50 18.50 18.50 18.50 18.50 

flow I/s 1.00 1.00 1.00 1.00 1.00 1.00 

consistency % 3.00 3.00 3.00 3.00 3.00 3.00 

Power kW 5.07 5.37 5.20 5.54 5.46 5.44 

Po kW 2.48 2.48 2.48 2.48 2.48 2.48 

Speed rpm 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 

P-Po kW 2.59 2.89 2.72 3.06 2.99 2.96 

Vol Flow M1\3/h 3.60 3.60 3.60 3.60 3.60 3.60 

Mass Flow ton/hr 3.60 3.60 3.60 3.60 3.60 3.60 

M ton/hr 0.11 0.11 0.11 0.11 0.11 0.11 

GEL m/rev 279.01 279.01 279.01 279.01 279.01 279.01 

ls m/s 6975.23 6975.23 6975.23 6975.23 6975.23 6975.23 

SRE kWh/ton 23.95 26.75 25.20 28.35 27.65 27.45 
SEL Ws/m 0.37 0.41 0.39 0.44 0.43 0.43 

GUP -1500 RPM GCP - 1500 RPM 
Gap setting micron 25 25 25 25 25 25 
Run 1 2 3 1 2 3 
% power % 25.29 24.65 24.96 27.60 27.76 27.25 
% no load power % 13.36 13.36 13.36 13.94 13.94 13.94 
full power kW 18.50 18.50 18.50 18.50 18.50 18.50 
flow I/s 1.00 1.00 1.00 1.00 1.00 1.00 
consistency % 3.00 3.00 3.00 3.00 3.00 3.00 
Power kW 4.68 4.56 4.62 5.11 5.14 5.04 
Po kW 2.47 2.47 2.47 2.58 2.58 2.58 
Speed rpm 1500.00 1500.00 1500.00 1500.00 1500.00 1500.00 
P-Po kW 2.21 2.09 2.15 2.53 2.56 2.46 
Vol Flow M1\3/h 3.60 3.60 3.60 3.60 3.60 3.60 
Mass Flow ton/hr 3.60 3.60 3.60 3.60 3.60 3.60 
M ton/hr 0.11 0.11 0.11 0.11 0.11 0.11 
GEL m/rev 279.01 279.01 279.01 279.01 279.01 279.01 
ls m/s 6975.23 6975.23 6975.23 6975.23 6975.23 6975.23 
SRE kWh/ton 20.44 19.35 19.88 23.40 23.67 22.80 
SEL Ws/m 0.32 0.30 0.31 0.36 0.37 0.35 

The tables show the SRE per stage of refin ing . For multiple passes through the refiner the SRE 
is accumulated per stage while the SEl is not cumulative but is the same SEl for all stages 



Table 06: Energy calculation for refining the pulps at 2200 rpm 

GUG - 2200 RPM GCG - 2200 RPM 
Gap setting micron 25 25 25 25 25 25 
Run 1 2 3 1 2 3 
% power % 64.02 61.42 60.28 61 .26 64.77 65.20 
% no load power % 35.06 35.06 35.06 34.87 34.87 34.87 
full power kW 18.50 18.50 18.50 18.50 18.50 18.50 
flow I/s 1.00 1.00 1.00 1.00 1.00 1.00 
consistency % 3.00 3.00 3.00 3.00 3.00 3.00 
Power kW 11 .84 11 .36 11.15 11.33 11 .98 12.06 
Po kW 6.49 6.49 6.49 6.45 6.45 6.45 
Speed rpm 2200.00 2200.00 2200.00 2200.00 2200.00 2200.00 
P-Po kW 5.36 4.88 4.67 4.88 5.53 5.61 
Vol Flow W'3/h 3.60 3.60 3.60 3.60 3.60 3.60 
Mass Flow ton/hr 3.60 3.60 3.60 3.60 3.60 3.60 
M ton/hr 0.11 0.11 0.11 0.11 0.11 0.11 
CEl m/rev 279.01 279.01 279.01 279.01 279.01 279.01 
ls rn/s 10230.33 10230.33 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 49.61 45.17 43.21 45.19 51.21 51.95 
SEL Ws/m 0.52 0.48 0.46 0.48 0.54 0.55 

GUP - 2200 RPM GCP- 2200 RPM 
Gap setting ITIlcron 25 25 25 25 25 25 
Run 1 2 3 1 2 3 
% power % 59.78 59.33 58 .65 61.00 61 .39 59.22 
% no load power % 34.41 34.41 34.41 34.61 34.61 34.61 
full power kW 18.50 18.50 18.50 18.50 18.50 18.50 
flow I/s 1.00 1.00 1.00 1.00 1.00 1.00 
consistency % 3.00 3.00 3.00 3.00 3.00 3.00 
Power kW 11 .06 10.98 10.85 11 .29 11 .36 10.96 
Po kW 6.37 6.37 6.37 6.40 6.40 6.40 
Speed rpm 2200.00 2200.00 2200.00 2200.00 2200.00 2200.00 
P-Po kW 4.69 4.61 4.48 4.88 4.95 4.55 
Vol Flow M"3/h 3.60 3.60 3.60 3.60 3.60 3.60 
Mass Flow ton/hr 3.60 3.60 3.60 3.60 3.60 3.60 
M ton/hr 0.11 0.11 0.11 0.11 0.11 0.11 
CEl rn/rev 279.01 279.01 279.01 279 .01 279.01 279.01 
ls rn/s 10230.33 10230.33 10230.33 10230.33 10230.33 10230.33 
SRE kWh/ton 43.45 42.68 41 .52 45.21 45.87 42.16 
SEL Ws/m 0.46 0.45 0.44 0.48 0.48 0.45 

The tables show the SRE per stage of refining . For multiple passes through the refiner the SRE 
is accumulated per stage while the SEl is not cumulative but is the same SEl for all stages 



Table 07: Raw data for results from the refining trials of the GCP 

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre 

Pulp fibre Pulp Sample Speed SEL SRE Freeness Tear Stretch TEA Z-span Length Length Length Fines LD 
Replicate Index Index Density (Ln) (LI) (Lw 

diameter CWT 

(rpm) (Ws/m) (kWh/t) (ml) I (\<Nm/k g) IlkNm'l1<al (MN/kg) (ka/m') ('!o ) (Jim' ) (N/m) (mm) (mm) (mm) ('!o ) (j.U11) (j.U11) (j.U11) 

GCP 1500 OA 0.00 0.00 587.37 51.30 6.32 2.36 636.45 1.50 26.95 1666.64 0 .63 0.77 0 .66 1.21 10.90 17.40 3.25 

GCP 1500 08 0.00 0.00 594.25 52.65 7.00 2.52 612.66 1.55 3 1.11 1666.64 0 .64 0.76 0.67 1.20 10.50 16.90 3.20 

GCP 1500 OC 0.00 0.00 592.22 50.67 7.69 2.31 616.52 1.26 24.04 1666.64 0 .63 0.77 0 .66 1.17 , 10.60 17.00 3.20 

GCP 1500 1A 0.36 23.40 482.86 65.74 9.07 3.75 676.26 1.97 51.69 1797.16 0 .61 0.74 0 .64 1.35 10.40 16.40 3.00 

GCP 1500 18 0.37 23.67 505.47 66.27 6.05 3.77 635.10 2.06 53.71 1797.16 0.59 0.73 0 .67 1.60 10.90 16.50 2.60 

GCP 1500 1C 0.35 22.80 485 .97 66.54 6.90 3.62 646.61 1.93 51.36 1797.16 0.62 0.76 0.64 1.31 10.70 17.00 3.15 

GCP 1500 2A 0.36 46.80 486.62 71 .69 9.02 3.96 641.63 2.04 56.40 2137.06 0.6 1 0.74 0 .63 1.31 10.70 16.60 3.05 

GCP 1500 28 0.37 47.35 513 .47 63.30 10.12 4.63 702.17 2.53 63.22 2137.06 0.57 0.71 0.60 1.73 11 .30 17.60 3.15 

GCP 1500 2C 0.35 45.60 476.69 64.95 9.6 1 5.24 694.24 2 .44 79.42 2137.06 0.56 0.7 1 0.61 1.44 10.40 16.10 2.65 

GCP 1500 3A 0.36 70.20 436.02 74.67 11 .04 5.02 747.06 2.60 79.50 2173.01 0.61 0.76 0.66 1.34 10.70 16.90 3.10 

GCP 1500 38 0.37 71.02 426.99 61 .54 10.99 5.23 664.40 2.61 93.93 2173.01 . 0.63 0.77 0 .66 1.29 10.70 16.60 3 .05 

GCP 1500 3C 0.35 68.40 4 14.45 96.26 9 .36 5.90 700.62 2 .91 110.61 2 173.01 0.62 0.76 0 .67 1.24 10.30 16.30 3 .00 

GCP 1500 4A 0.36 93.60 407.64 67 .43 10.26 5.22 697.64 2.63 99.16 2120.66 0.61 0.75 0.84 1.40 10.35 16.15 2.90 

GCP 1500 48 0.37 94.69 381.08 63.00 11 .65 5.62 701 .70 2.76 66.45 2120.66 0.61 0.74 0.64 1.37 10.30 16.10 2 .90 

GCP 1500 4C 0.35 91.20 391.49 93.69 10.44 6.01 719.94 2.61 10 1.12 2120.66 0.60 0.75 0.64 1.44 10.40 16.20 2 .90 

GCP 1500 SA 0.36 117.00 368.46 66.01 10.20 6.16 713.36 2 .66 97.39 2171 .30 0 .61 0.75 0.65 1.33 10.60 16.50 2 .65 

GCP 1500 58 0.37 118.37 355.55 100.26 10.26 6.43 734.07 3.62 130.04 2171.30 0 .61 0.75 0.65 1.45 10.50 16.50 3.00 

GCP 1500 5C 0.35 114.00 337.02 94.66 9.90 6.64 730.66 3.32 127.76 2 171 .30 0 .61 0.75 0.64 1.41 10.10 15.90 2 .90 

GCP 1500 6A 0.36 140.39 329.64 92.96 10.09 6.54 750.74 3.11 115.90 2053.31 0 .58 0.72 0.62 1.58 10.50 15.70 2 .60 

GCP 1500 68 0.37 142.04 29 1.3 1 96.46 10.66 7.06 736.09 3.33 133.96 2053.31 0 .59 0.72 0.62 1.56 10.90 16.70 2.90 

GCP 1500 6C 0.35 136.80 278.92 104.94 10.26 7.03 734.39 3.45 142.66 2053.31 0 .60 0 .74 0.63 1.34 10.50 16.20 2 .65 

GCP 2200 OA 0.00 0.00 592.80 43.79 6 .26 1.67 579.14 1.29 21 .66 1365.36 0 .63 0.76 0.65 1.16 10.70 17.20 3.25 

GCP 2200 08 0.00 0.00 583.15 46.43 7 .10 2.26 606.42 1.35 24.23 1365.36 0 .62 0 .76 0.66 1.29 11.00 17.10 3.05 

GCP 2200 OC 0.00 0.00 608.11 40.41 5.90 1.96 565.58 1.27 16.91 1365.36 0 .63 0.77 0.66 1.20 10.90 17.20 3.15 

GCP 2200 1A 0.48 45.21 468.6 1 77.49 10.92 4 .47 683.76 2 .62 98.20 1791.00 0.62 0.75 0.85 1.35 10.70 16.90 3.10 

GCP 2200 18 0.48 45.87 439.86 67.48 9 .04 4.16 664.82 2 .25 68.02 179 1.00 0.61 0.75 0.64 1.38 10.60 16.20 2.80 

GCP 2200 1C 0.45 42.16 467.9 1 74.38 10.32 4.04 692.13 2.37 73.45 1791.00 0.61 0.74 0.83 1.39 10.60 16.40 2.90 

GCP 2200 2A 0.48 90.4 1 393 .16 76.33 10.10 4.93 669.64 2.76 89.66 1561.57 0.61 0.75 0.85 1.35 10.80 16.80 3 .00 

GCP 2200 28 0.48 91.75 339.24 81 .46 10.00 5.10 648.29 2.52 86.55 1561 .57 0.60 0.73 0.82 1.43 11 .00 16.90 2.95 

GCP 2200 2C 0.45 84.3 1 363.76 91.33 10.48 6.32 7 13.54 3.01 102.27 1561.57 0.57 0.71 0.81 1.59 10.90 16.70 2 .90 

GCP 2200 3A 0.48 135.62 281.89 93.62 9 .38 6.71 730.90 3.26 119.70 1697.00 0.58 0.72 0.82 1.65 10.70 16.50 2 .90 

GCP 2200 38 0.48 137.62 256.96 93.21 10.16 6.63 727.44 3.47 125.47 1697.00 0.57 0.71 0.80 1.70 10 .80 16.80 3.00 

GCP 2200 3C 0.45 126.47 275.5 1 96.17 9.15 6.67 730.40 3.39 1 30.0~ 1697.00 0.57 0.71 0.80 1.54 10.70 16.40 2 .85 
- - -
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... Table 07 Continued 

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre 

Pulp fibre Sample Speed SEl SRE Freeness Tear Stretch TEA Z-span length length length Fines lD PulpCWT 
Replicate Index Index Density (In) (ll) (lw) 

diameter 

(rpm) (Ws/m) (kWh/t) (ml) (kNmlkg) (kNm'/kll) (MN/kg) (kll/m') ("!o) (Jim') (N/m) (mm) (mm) (mm) ("!o ) (um) (um) (um) 

GCP 2200 4A 0.48 180.82 224.44 100.96 10.42 6.92 729.13 4 .03 167.57 2102.54 0.59 0.73 0.83 1.56 10.80 16.60 2.90 

GCP 2200 4B 0.48 183.49 206.79 92.07 9.08 7.08 723.43 3.23 117.70 2102.54 0.58 0.71 0.80 1.57 10.70 16.30 2 .80 

GCP 2200 4C 0.45 168.62 214.1 1 101.00 9.84 7.28 699.24 3.52 144.89 2102.54 0.56 0.70 0.80 1.68 10.70 16.60 2 .95 

GCP 2200 5A 0.48 226.03 205 .61 92.67 9.65 7.10 733.16 3.55 131 .82 1973.98 0.58 0.72 0.83 1.53 10.50 15.90 2 .70 

GCP 2200 5B 0.48 229.37 180.42 100.43 9.57 7.46 751 .84 3.34 120.69 1973.98 0.57 0.71 0.80 1.62 10.50 16.00 2 .75 

GCP 2200 5C 0.45 210.78 205 .01 99.31 9.32 7.48 760.16 3.60 145.81 1973.98 0.57 0.71 0.81 1.59 11.00 16.70 2.85 

GCP 2200 6A 0.48 27 1.23 219.45 102.15 10.46 7.24 751 .79 3.56 144.01 1930.60 0.57 0.71 0.81 1.64 10.40 15.90 2.75 

GCP 2200 6B 0.48 275 .24 165.86 101.10 9.15 7.92 788.51 3.54 115.49 1930.60 0.56 0.70 0.80 1.80 11.10 16.80 2.85 

GCP 2200 6C 0.45 252.94 184.53 101.95 10.47 7 .93 778.57 3.79 159.06 1930.60 0.57 0.71 0.80 1.67 10.70 16.20 2.75 

GCP 750 OA 0.00 0.00 588.93 51 .72 7.05 2 .11 601 .64 1.33 25.35 2484 .12 0.62 0.78 0.88 1.63 10.50 16.60 3.05 

GCP 750 OB 0.00 0.00 575.78 54.38 8.36 2.21 627.48 1.49 28.03 2484 .12 0.63 0.77 0.86 1.23 10.40 16.70 3.15 

GCP 750 OC 0.00 0.00 598 .62 51 .56 7.50 2 .61 561 .00 2.46 36.00 2484.12 0.64 0 .76 0.76 1.93 11.10 16.90 2.90 

GCP 750 1A 0.22 7. 11 543 .59 55.39 8.09 2.81 594.39 1.64 34.91 2126.52 0.63 0.77 0.86 1.17 10.80 16.80 3.00 

GCP 750 1B 0.22 7.14 549.88 62 .63 8.52 3.21 602.81 1.93 48.37 2126.52 0.62 0.78 0.90 1.30 10.40 16.30 2.95 

GCP 750 1C 0.22 7.13 553 .76 51.08 7.32 1.93 647.54 1.26 43.00 2126.52 0 .63 0.76 0 .86 1.27 10.90 17.30 3.20 

GCP 750 5A 0.22 35.54 507.60 55.85 9.96 3 .50 642.13 2.08 46.38 1940.14 0 .63 0.76 0.86 1.29 10.50 16.90 3.20 

GCP 750 5B 0.22 35.70 530.13 55.34 9.70 2.74 599.00 1.57 47.54 1940.14 0 .63 0.77 0 .87 1.25 10.60 16.50 2 .95 

GCP 750 5C 0.22 35.63 510.72 67.21 9.44 3.29 628.10 1.96 54 .58 1940.14 0 .61 0.75 0 .85 1.52 10.70 16.60 2 .95 

GCP 750 10A 0.22 71.09 494.87 62.99 11.41 4.12 671 .00 2.43 62.81 2136.71 0 .63 0.76 0.86 1.32 10.40 16.40 3.00 

GCP 750 10B 0.22 71.40 441.19 74 .55 10.71 5.07 675.66 2.48 69.47 2136.71 0.60 0.74 0.84 1.43 10.40 15.90 2 .75 

GCP 750 10C 0.22 71.26 463 .66 69.99 10.74 4 .14 600.36 2.28 63.59 2136.71 0.61 0.75 0 .84 1.28 10.80 17.30 3.25 

GCP 750 15A 0.22 106.63 463.40 77.15 10.38 4 .69 656.89 2.70 81.80 2179.76 0.61 0.75 0 .84 1.42 10.40 16.20 2.90 

GCP 750 15B 0.22 107.09 423 .16 72.52 11.02 4 .53 700.08 2.52 73.96 2179.76 0.61 0.74 0.83 1.34 10.50 16.40 2.95 

GCP 750 15C 0.22 106.89 408.37 71.83 11 .86 4.75 641.79 2.49 71.67 2179.76 0.61 0.74 0.84 1.43 10.70 16.90 3.10 

GCP 750 20A 0.22 142.18 458.18 78.40 9.93 4.99 673.51 2 .67 82.96 2264 .06 0.64 0.77 0.87 1.23 10.50 16.30 2.90 

GCP 750 20B 0.22 142.79 438 .72 78.52 9.31 5.35 680.31 2 .76 85.51 2264 .06 0.61 0.75 0.85 1.47 10.30 16.20 2.95 

GCP 750 20C 0.22 142.52 442 .34 80.09 10.67 4 .90 658.44 2 .67 85.52 2264.06 0.62 0.76 0 .87 1.31 10.50 16.50 3.00 

GCP 750 25A 0.22 177.72 428.05 78.97 11 .74 5.35 669.92 2 .28 98.00 2557 .76 0.62 0.76 0.86 1.41 11 .20 17.20 3.00 

GCP 750 25B 0.22 178.49 390.78 80.60 10.46 4.94 711 .94 2 .65 99.58 2557.76 0.60 0.74 0.84 1.57 10.60 16.50 2.95 

GCP __ 750 25C 0.22 178. 15 391.99 96.59 8.82 6.21 669.38 3.02 103.00 2557 .76 0.55 0.68 0 .78 1.78 11 .10 16.80 2.85 
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Table 08: Raw data for results from the refining trials of the GCG 

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre 

Pulp fibre Pulp Sample Speed SEL SRE Freeness Tear Stretch TEA Z-span Length Length Length Fines LD 
Replicate Index Index Density 

ILn) ILl) ILw) 
diameter CWT 

(rpm) (Ws/m) (kWh/t) (ml) I (kNm/k2) IkNm'/kal (MNlkg) Ikalm'l ('!o) IJ/m'1 (Nl m) (mm) (mm) (mm) ('!o) (11m) (~) (~) 

GCG 1500 OA 0.00 0.00 624.48 64.93 10.04 3.50 698.11 2.10 60.40 204B.64 0.66 0.B1 0.90 1.33 10.30 16.60 3.15 

GCG 1500 OB 0.00 0.00 599.45 53.22 B.19 2.B3 634.25 1.50 29.57 204B.64 0.64 0.79 0.B9 1.34 10.70 17.00 3.15 

GCG 1500 OC 0.00 0.00 587.49 53.01 7.74 2.51 675.44 1.55 27.B2 204B.64 0.63 0.7B O.BB 1.36 10.30 16.20 2.95 

GCG 1500 1A 0.44 28.35 513.36 B1 .91 10.92 4.73 726.13 2.47 B3.37 2161 .49 0.63 0.79 0.90 1.53 11 .00 16.90 2.95 

GCG 1500 1B 0.43 27.65 516.03 71 .21 10.52 4.14 670.33 2.20 57.60 2161.49 0.61 0.7B O.BB 1.64 10.BO 17.10 3.15 

GCG 1500 1C 0.43 27.45 522.26 71 .14 11 .B5 3.93 650.54 2.27 61 .50 2161 .49 0.63 0.7B 0.68 1.45 10.40 16.60 3.10 

GCG 1500 2A 0.44 56.71 458.80 91 .16 12.42 6.1B 756.51 3.02 112.04 2212 .B5 0.62 0.7B O.BB 1.61 10.BO 17.20 3.20 

GCG 1500 2B 0.43 55.31 462.55 79.53 11 .2B 5.76 754.02 2.67 90.30 2212.B5 0.61 0.77 0.B7 1.63 10.40 16.50 3.05 

GCG 1500 2C 0.43 54.90 447.93 77.76 11 .68 5.66 671 .00 2.56 74.77 2212.B5 0.61 0.77 0.B7 1.59 10.70 16.60 2.95 

GCG 1500 3A 0.44 85.06 436.64 92.59 12.97 5.76 751 .92 3.04 11B.13 2212.3B 0.63 O.BO 0.91 1.4B 10.50 16.60 3.05 

GCG 1500 3B 0.43 82.96 426.32 92.90 11 .65 6.9B 771 .27 3.42 132.BO 2212.3B 0.61 0.76 0.B5 1.57 10.70 16.90 3.10 

GCG 1500 3C 0.43 82.35 403.75 BB.43 12.23 5.76 699.49 2.96 97.92 2212.3B 0.60 0.76 0.B5 1.71 10.30 16.20 2.95 

GCG 1500 4A 0.44 113.41 391.53 105.13 12.05 7.1B 7BO.21 3.67 164.93 2404.56 0.62 0.77 0.87 1.63 10.60 16.50 2.95 

GCG 1500 4B 0.43 110.62 361.38 96.91 12.1B 7.03 792.57 3.45 153.76 2404.56 0.62 0.7B O.BB 1.63 10.00 15.BO 2.90 

GCG 1500 4C 0.43 109.80 386.65 9B.25 11 .16 6.B3 697.B5 3.04 111 .75 2404.56 0.60 0.76 0.B6 1.64 10.70 16.70 3.00 

GCG 1500 5A 0.44 141.76 366.35 100.30 11 .B7 7.06 769.67 3.57 155.76 2230.91 0.64 O.BO 0.91 1.49 10.40 16.30 2.95 

GCG 1500 5B 0.43 138.27 329.34 109.11 10.35 7.01 BOB.04 3.B2 1B6.1B 2230.91 0.61 0.7B 0.B9 2.07 10.90 16.70 2.90 

GCG 1500 5C 0.43 137.25 31 8.66 105.64 11 .77 7.3B 714.06 3.36 135.95 2230.91 0.62 0.7B 0.90 1.63 11 .00 16.BO 2.90 

GCG 1500 6A 0.44 170.1 2 286.78 105.00 10.55 B.01 797.91 3.67 163.B5 2004.B6 0.60 0.75 0.B5 1.B1 10.60 16.20 2.BO 

GCG 1500 6B 0.43 165.92 312.79 107.B3 10.75 B.15 B04.1B 3.76 171 .67 2004.B6 0.60 0.77 0.B6 1.B3 11 .00 16.BO 2.90 

GCG 1500 6C 0.43 164.70 285.18 101 .10 10.B5 7.07 725.62 3.25 127.21 2004.B6 0.60 0.75 0.B5 1.71 10.60 16.30 2.B5 

GCG 2200 OA 0.00 0.00 626.42 SO.61 B.99 2.26 602.71 1.51 29.60 2127.2B 0.65 0.79 0.68 1.27 10.40 16.60 3.10 

GCG 2200 OB 0.00 0.00 605.92 50.35 B.09 2.70 607.37 1.46 24.94 2127.2B 0.65 O.BO 0.90 1.27 11 .00 17.30 3.15 

GCG 2200 OC 0.00 0.00 610.65 65.49 10.04 3.29 646.72 1.B6 47.05 2127.2B 0.64 0.79 O.BB 1.25 10.90 17.00 3.05 

GCG 2200 1A 0.48 45.19 426.62 BO.4B 10.9B 5.14 619.45 2.77 B6.05 2192.24 0.62 0.7B O.BB 1.70 10.20 16.10 2.95 

GCG 2200 1B 0.54 51.21 437.97 73.03 11 .19 4.62 600.13 2.31 60.92 2192.24 0.63 0.7B O.BB 1.63 10.90 16.90 3.00 

GCG 2200 1C 0.55 51.95 469.47 B3.1B 12.03 5.23 637.3B 2.61 B3.10 2192.24 0.60 O.BO 0.B9 1.43 10.90 16.70 2.90 

GCG 2200 2A 0.48 90.38 418.04 7B.B3 11 .24 4.B1 615.BB 2.64 79.06 2449.6B 0.63 0.7B O.BB 1.4B 10.20 16.00 2.90 

GCG 2200 2B 0.54 102.42 408.11 91 .36 11.45 5.92 752.03 3.15 122.SO 2449.6B 0.61 0.77 0.B7 1.65 10.30 16.20 2.95 

GCG 2200 2C 0.55 103.89 403.47 77.44 10.3B 5.26 692.59 2.66 59.74 2449.6B 0.62 0.7B O.BB 1.57 10.25 16.10 2.93 

GCG 2200 3A 0.48 135.57 366.41 B6.22 11 .96 6.03 661 .68 3.07 104.53 2309.04 0.60 0.76 0.B7 1.74 10.50 16.20 2.B5 

GCG 2200 3B 0.54 153.63 347.56 B7.42 11 .20 5.68 740.07 3.10 10B.06 2309.04 0.62 0.7B 0.68 1.57 10.50 16.60 3.05 

GCG 2200 3C 0.55 155.84 322.03 9O.B2 11 .BB 6.70 717.43 3.10 112.45 2309.04 0.59 0.75 0.B5 1.B1 11 .00 17.00 3.00 
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... Table 08 Continued 

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre Pulp fibre 

Sample Speed SEL SRE Freeness Tear Stretch TEA Z-span Length Length Length Fines LD PulpCWT 
Replicate Index Index Density 

ILn) ILl) ILw) 
diameter 

(rpm) (Ws/m) (kWhlt) (ml) I (kNmlkg) IkNm2/ka) (MN/kg) Ikalm') ("!o) IJ/m2) (N/m) (mm) (mm) (mm) ("!o) lum) (um) (um) 

GCG 2200 4A 0.48 180.77 334.41 93.07 11.76 6.10 658.74 3.36 126.79 2546.13 0.60 0.76 0.87 1.68 10.60 16.60 3.00 

GCG 2200 48 0.54 204.84 275.70 97.93 12.62 6.73 711.03 3.48 140.93 2546.13 0.61 0.76 0.86 1.68 10.00 15.80 2.90 

GCG 2200 4C 0.55 207.78 279.47 100.09 10.79 7.16 701 .37 3.75 150.80 2546.13 0.62 0.79 0.90 1.52 10.60 16.20 2.80 

GCG 2200 SA 0.48 225.96 298.36 94.72 11.17 6.29 696.21 3.33 119.97 2461.40 0.60 0.76 0.85 1.68 10.80 16.60 2 .90 

GCG 2200 58 0.54 256.05 253.79 96.81 10.56 7.66 718.63 3.35 121.02 2461.40 0.60 0.76 0.87 1.66 10.10 15.70 2.80 

GCG 2200 5C 0.55 259.73 293.87 97 .25 11.71 6.44 668.85 3.42 125.74 2461.40 0.61 0.77 0.87 1.66 10.40 16.70 3.15 

GCG 2200 6A 0.48 271.15 286.01 103.32 12.25 7.39 753.57 3.63 141.54 2335.52 0.62 0.78 0.89 1.63 10.50 16.50 3.00 

GCG 2200 68 0.54 307.26 247.71 107.93 10.32 8.30 806.33 3.78 171.21 2335.52 0.58 0.74 0.84 1.84 11.00 16.80 2.90 

GCG 2200 6C 0.55 311.67 289.31 109.26 10.88 8.03 802.33 3.63 161 .99 2335.52 0.60 0.76 0.86 1.74 10.80 16.70 2.95 

GCG 750 OA 0.00 0.00 607.24 53.83 9.24 3.18 723.83 2.02 73.56 1370.13 0.68 0.83 0.92 1.11 10.30 16.50 3.10 

GCG 750 08 0.00 0.00 589.66 51.21 8.52 2.60 591 .72 1.56 26.80 1370.13 0.64 0.79 0.90 1.40 10.80 17.10 3.15 

GCG 750 OC 0.00 0.00 586.76 50.24 9.15 2.82 617 .73 1.55 27.11 1370.13 0.64 0.78 0.87 1.28 10.90 16.80 2.95 

GCG 750 1A 0.16 5.24 590.21 59.14 9.76 3.42 681.42 1.85 48.82 1607.88 0.64 0.79 0.88 1.52 10.50 16.80 3.15 

GCG 750 18 0.21 6.92 559.26 59.04 9.70 3.22 612.31 1.84 40.32 1607.88 0.63 0.78 0.87 1.46 10.50 16.70 3.10 

GCG 750 1C 0.22 7.02 570.66 52 .74 8.70 3.18 622.91 1.83 41.50 1607.88 0.65 0.80 0.90 1.31 10.60 17.00 3.20 

GCG 750 SA 0.16 26 .18 491.71 69.23 12.31 4.64 689.48 2.33 69.89 2065.82 0.62 0.78 0.87 1.54 10.40 16.40 3.00 

GCG 750 58 0.21 34.59 528.54 73.10 12.13 4.61 699.01 2.59 85.32 2065.82 0.64 0.79 0.89 1.44 10.30 16.20 2.95 

GCG 750 5C 0.22 35.11 519.66 66.03 11.82 4.33 640.16 2.26 57.42 2065.82 0.63 0.78 0.88 1.47 10.30 16.30 3.00 

GCG 750 10A 0.16 52.37 476.89 76.33 12.42 5.43 711 .00 2.76 90.08 2216.75 0.64 0.79 0.89 1.42 10.50 16.30 2 .90 

GCG 750 108 0.21 69.19 457.27 78.33 11 .93 5.12 697.48 2.78 94 .36 2216.75 0.61 0.78 0.90 1.68 11 .00 17.10 3.05 

GCG 750 10C 0.22 70.21 4 14.43 77.06 11.66 4 .99 682.35 2.60 82.06 2216.75 0.63 0.79 0.90 1.53 10.90 16.80 2.95 

GCG 750 15A 0.16 78.55 442.80 74.38 11.47 5.65 720.16 2.90 89.60 2366.99 0 .63 0.78 0.88 1.43 10.90 17.20 3.15 

GCG 750 158 0.21 103.78 413.62 81.79 11.56 5.80 680.91 3.29 104.76 2366.99 0.60 0.75 0.84 1.68 10.40 16.20 2 .90 

GCG 750 15C 0.22 105.32 434.33 89.90 11 .17 6.00 743.81 3.03 107.18 2366.99 0.62 0.77 0.87 1.58 10.50 16.30 2 .90 

GCG 750 20A 0.16 104.73 389.61 91 .85 11.68 5.86 702.65 3.41 127.33 2263.36 0.60 0.76 0.85 1.66 10.90 17.40 3.25 

GCG 750 208 0.21 138.37 345.80 83.07 11.17 6.21 675.01 3.08 92.51 2263.36 0.62 0.78 0.90 1.58 10.60 16.80 3.10 

GCG 750 20C 0.22 140.43 365.5 1 86.86 11.37 7.30 751.84 3.15 122.19 2263.36 0.59 0.75 0.84 1.82 10.30 15.90 2.80 

GCG 750 25A 0.16 130.91 326.95 99.45 11.42 7.12 762 .20 3.75 152.70 2281.50 0.62 0.78 0.88 1.68 10.60 16.40 2.90 

GCG 750 258 0.21 172.97 355.24 98.77 11.49 6.68 781.05 3.82 156.01 2281 .50 0.57 0.72 0 .82 1.89 10.40 15.70 2.65 

GCG 750 25C 0.22 175.54 321.76 87 .21 11.19 6.62 707.35 3.19 123.86 2281 .50 . 0.59 0.74 0.85 1.75 11.00 16.80 2.90 
-
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Table 09: Raw data for results from the refining trials of the GUP 

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre 

Pulp fibre Pulp Sample Speed SEl SRE Freeness Tear Stretch TEA z..span length length length Fines l D 
Replicate Index Index Density 

(lnl (ll) (lwl 
diameter CWT 

(rpm) (Ws/m) (kWh/t) (ml) I (kNm/kg) (kNm'/kg! (MNlkg) (kg/m3 ! ('!o ) {JIm' ! (N/m) (mm) (mm) (mml ('!ol hun! hun! {1Lm1 

GUP 1500 OA 0.00 0.00 572.10 72.98 8.48 2.50 656.89 2.04 56.25 1638.33 0.56 0.70 0.82 1.66 11 .50 17.70 3.10 

GUP 1500 08 0.00 0.00 583.23 53.37 7.52 2.67 645.93 1.59 31 .37 1638.33 0.56 0.69 0.78 1.61 11.10 17.40 3.15 

GUP 1500 OC 0.00 0.00 577.17 55.49 5.61 2.72 655.78 1.53 31 .54 1638.33 0.57 0.70 0.79 1.58 11.40 17.50 3 .05 

GUP 1500 lA 0.32 20.44 454.68 50.23 6.64 2.49 620.23 1.38 24.90 1690.43 0.53 0 .66 0.75 1.90 11 .10 16.90 2 .90 

GUP 1500 18 0.30 19.35 431.46 81.51 7.96 3.35 699.11 2.52 75.21 1690.43 0.55 0.68 0.78 1.78 11.90 18.00 3.05 

GUP 1500 lC 0.31 19.88 478.92 69.13 7 .78 3.74 674.30 2.12 53.96 1690.43 0.54 0.66 0.75 1.79 11.70 17.40 2.85 

GUP 1500 2A 0.32 40.89 465.22 64.19 7.87 4.15 677.32 2.21 54.75 1900.60 0.54 0.67 0.75 1.82 10.90 16.60 2.85 

GUP 1500 28 0.30 38.69 445.39 94.02 9.43 4.89 631.20 2.12 64.12 1900.60 0.54 0.67 0.75 1.73 10.90 16.70 2.90 

GUP 1500 2C 0.31 39.75 429.25 75.79 8.11 4.94 686.82 2.51 71.56 1900.60 0.54 0.66 0.75 1.73 10.80 16.20 2.70 

GUP 1500 3A 0.32 61.33 380.59 71.24 8.27 3.82 719.23 2 .02 55.57 2120.75 0.53 0.65 0.73 1.85 11.40 17.50 3.05 

GUP 1500 38 0.30 58.04 361.25 95.59 8.06 5.72 624.55 2 .74 101 .24 2120.75 0.53 0.65 0.74 1.86 10.70 16.50 2.90 

GUP 1500 3C 0.31 59.63 372.25 84.37 8.49 4.95 691 .74 2 .54 78 .59 2 120.75 0.54 0.67 0.75 1.88 10.90 16.50 2.80 

GUP 1500 4A 0.32 81.77 357 .64 86.79 7.93 5.56 727.58 2.93 99.54 2108.97 0.54 0.65 0.73 1.72 11.10 16.90 2.90 

GUP 1500 4B 0.30 77 .38 342.59 95.89 8.26 5.77 732.74 3.04 115.08 2108.97 0.53 0.65 0.74 1.84 11 .30 17.20 2.95 

GUP 1500 4C 0.31 79.51 319.16 98.47 8.18 6.27 703.48 3.03 112.05 2108.97 0.53 0.65 0.74 1.80 11 .10 16.50 2.70 

GUP 1500 SA 0.32 102.21 315.10 97.48 8.50 6.49 753.87 3.17 120.72 2183.35 0.53 0.66 0.74 1.76 11 .30 17.60 3.15 

GUP 1500 5B 0.30 96.73 261.46 94.28 8 .09 6.00 740.16 3.69 157.10 2183.35 0.52 0.64 0.73 2.16 11 .10 16.70 2.80 

GUP 1500 5C 0.31 99.39 310.13 100.97 7.30 6.24 702.77 3.20 125.59 2183.35 0 .52 0.64 0.72 1.96 11 .00 16.60 2.80 

GUP 1500 6A 0.32 122.66 295.90 98.44 8.43 6.81 746.23 3.27 129.78 1871 .59 0.52 0.65 0.74 2.02 11 .00 16.50 2.75 

GUP 1500 6B 0.30 116.08 294.85 93.86 8.26 6.64 731 .33 3.38 132.02 1871.59 0.52 0.64 0.73 2.11 11 .10 16.90 2.90 

GUP 1500 6C 0.31 119.26 281.14 107.41 8.69 6.72 687.74 3.31 119.02 1871 .59 0.52 0.64 0.73 1.93 11 .30 16.70 2.70 

GUP 2200 OA 0.00 0.00 584.70 46.87 6 .53 2.36 648.57 1.38 23.61 1552.11 0.56 0.70 0.80 1.75 11 .10 17.40 3.15 

GUP 2200 08 0.00 0.00 591.54 45.60 5.90 2 .30 653.48 1.37 22.84 1552.11 0.57 0.71 0.81 1.62 11 .70 18.50 3.40 

GUP 2200 OC 0.00 0.00 577.10 50.02 6.68 2.35 651.47 1.29 22.82 1552.11 0.57 0.70 0.78 1.54 11 .20 17.60 3.20 

GUP 2200 lA 0.46 43.45 455.52 67.43 8.46 3.78 669.95 2.02 50.18 1812.81 0.56 0.69 0.81 1.72 11 .40 17.20 2.90 

GUP 2200 l B 0.45 42.68 445.44 69.01 8 .73 4.08 667.36 2.17 56.99 1812.81 0.53 0.66 0.74 1.84 11 .50 17.60 3.05 

GUP 2200 lC 0.44 41.52 447.69 70.45 8.47 4 .04 685.33 2 .15 58.22 1812.81 0.55 0.68 0.77 1.73 11 .60 17.60 3.00 

GUP 2200 2A 0.46 86.90 345.38 81.45 8.59 5.23 706.42 2.59 80.91 1927.54 0.54 0.67 0.75 1.87 11 .00 16.70 2.85 

GUP 2200 2B 0.45 85.36 325.70 78.94 8.34 5.45 724.75 2 .72 86.34 1927.54 0 .54 0.67 0.75 1.80 10.80 16.30 2.75 

GUP 2200 2C 0.44 83.03 334.92 91 .69 8.46 5.78 723.03 2.66 96.48 1927.54 0 .52 0.64 0.73 2.02 11 .50 17.30 2.90 

GUP 2200 3A 0.46 130.35 248 .39 88.16 9 .18 6.09 750.73 3.10 111 .01 1966.68 0 .52 0.65 0.74 1.91 11 .20 17.10 2.95 

GUP 2200 38 0.45 128.04 253.32 98.99 7.99 6.73 778.02 3.20 129.88 1968.68 0.52 0.65 0.74 1.90 11 .60 17.50 2.95 

GUP 2200 3C 0.44 124.55 234.39 98.86 8.91 7.45 870.46 3.24 125.39 1966.68 0.53 0.66 0.75 1.99 11 .00 16.30 2.65 
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Table 09 Continued --- - -- -- - - - ------

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre 

Pulp fibre Sample Speed SEL SRE Freeness Tear Stretch TEA Z-span Length Length Length Fines LD Pulp CWT 
Replicate Index Index Density 

(Ln) (L1) ILw\ 
diameter 

(rpm) (Ws/m) (kWh/t) (ml) (kNm/kg) (kNm'/kg) (MN/kg) (kg/m') (%) (Jim') (N/m) (mm) (mm) (mm) (0/o) (~m) Cum) Cum) 
GUP 2200 4A 0.46 173.80 197.91 110.42 7.51 8.17 790.27 3.22 137.76 1778.70 0.51 0.63 0.71 2.17 11.00 16.40 2.70 

GUP 2200 48 0.45 170.72 200.05 106.19 7.99 7.56 796.78 3.34 145.17 1778.70 0.51 0.64 0.72 2.14 11.60 17.30 2.85 

GUP 2200 4C 0.44 166.06 196.54 108.42 8.00 7.85 793.48 4.29 163.71 1778.70 0.50 0.63 0.72 2.28 11 .10 16.20 2.55 

GUP 2200 SA 0.46 217.26 142.33 103.00 8.66 8.49 840.61 3.58 150.99 1969.72 0.51 0.65 0.75 2.18 11.50 17.30 2.90 

GUP 2200 58 0.45 213.40 129.72 113.63 7.38 8.73 834.34 3.54 162.93 1969.72 0.49 0.61 0.70 2.37 11 .30 16.90 2.80 

GUP 2200 5C 0.44 207.58 117.94 120.99 6.53 8.67 834.77 3.92 186.17 1969.72 0.48 0.61 0.70 2.56 11 .30 16.60 2.65 

GUP 2200 6A 0.46 260.71 126.23 109.75 8.18 8.57 829.33 3.07 133.26 1789.70 0.48 0.61 0.70 2 .60 11.10 16.70 2.80 

GUP 2200 68 0.45 256.08 84.94 112.44 7.15 8.75 885.96 3.08 136.58 1789.70 0.47 0.60 0.69 2.78 11.50 16.30 2.40 

GUP 2200 6C 0.44 249.09 91.86 119.53 6.38 9.16 863.30 4 .14 201.36 1789.70 0.47 0.61 0.69 2.79 12.30 17.90 2.80 

GUP 750 OA 0.00 0.00 552.70 47 .31 5.97 2.30 611 .00 1.47 24.83 1599.29 0.57 0.70 0.79 1.79 11 .00 17.30 3.15 

GUP 750 08 0.00 0.00 567.48 48.50 7.03 2.59 666.13 1.35 23.49 1599.29 0.57 0.70 0.79 1.65 11.20 17.40 3.10 

GUP 750 OC 0.00 0.00 548.80 51.47 7.17 2.53 604.90 1.31 26.96 1599.29 0 .57 0.70 0.79 1.56 11.40 17.90 3.25 

GUP 750 1A 0.21 6.76 527.61 58.39 6.93 2 .83 635.57 1.50 32.88 1674.79 0 .56 0.69 0.78 1.67 11 .10 17.00 2.95 

GUP 750 18 0.21 6.79 528 .15 58.42 7.07 2.82 639.73 1.54 32.75 1674.79 0.57 0.70 0.80 1.66 11.00 17.50 3.25 

GUP 750 1C 0.20 6.47 507.84 56.50 6.75 2.76 621.29 1.51 31.63 1674.79 0.57 0.70 0.79 1.57 11.40 17.60 3.10 

GUP 750 SA 0.21 33.82 518.64 66.90 6.89 3.34 645.98 1.83 42.40 1963.12 0.56 0.69 0.78 1.65 11 .00 17.00 3.00 

GUP 750 58 0.21 33.95 467.08 66.75 7.30 3.55 663.91 1.90 49.31 1963.12 0.57 0.70 0.79 1.69 11.00 17.10 3.05 

GUP 750 5C 0.20 32.35 485.24 70.47 8.14 3.71 648.91 2.04 57.03 1963.12 0.56 0.69 0.77 1.68 11 .20 17.20 3.00 

GUP 750 10A 0.21 67.64 438.16 79.55 8.55 4.03 673.76 2.44 76.59 1935.18 0.55 0.67 0.76 1.61 10.90 16.90 3.00 

GUP 750 108 0.21 67.89 444.88 76.78 8.92 4.09 694 .21 2 .43 74.33 1935.18 0.54 0.68 0.76 1.90 10.90 16.60 2.85 

GUP 750 10C 0.20 64.69 436.26 73.29 8.67 4.15 735.29 2.95 76.40 1935.18 0.56 0.69 0.79 1.70 10.80 16.50 2.85 

GUP 750 15A 0.21 101.45 407.43 78.90 8.49 4.73 687.42 2.33 66.46 1791.85 0.55 0.68 0.77 1.67 10.90 16.50 2.80 

GUP 750 158 0.21 101.84 438.65 80.61 9.51 4.66 692.49 2.65 85.40 1791 .85 0.55 0.68 0.77 1.77 10.80 16.80 3.00 

GUP 750 15C 0.20 97.04 416.78 77.57 9.07 5.31 714 .78 2.90 70.60 1791 .85 0.55 0.69 0.77 1.84 10.60 16.20 2.80 

GUP 750 20A 0.21 135.27 442.74 84.28 7.99 4.76 699.45 2.43 84 .22 2062.10 0.56 0.68 0.77 1.67 11.80 17.70 2.95 

GUP 750 208 0.21 135.79 434.66 83.61 7.94 4.81 700.96 2 .53 77.80 2062.10 0.55 0.69 0.78 1.88 11 .00 16.70 2.85 

GUP 750 20C 0.20 129.38 429.25 83.61 9.95 5.16 678.43 2.36 74.32 2062.10 0.56 0.69 0.78 1.67 11.40 17.50 3.05 

GUP 750 25A 0.21 169.09 433.29 81 .68 8.67 5.33 729.47 2.35 90.24 2173.34 0.57 0.72 0.82 1.80 11 .70 17.80 3.05 

GUP 750 258 0.21 169.73 413.21 91.63 10.73 6.00 718.61 2.76 84.00 2173.34 0.58 0 .71 0.82 1.50 11 .00 16.80 2.90 

GUP 750 25C 0.20 161.73 411.83 92 .14 9.67 5.53 776.1 8 2.77 91 .30 2173.34 0.57 0.70 0.78 1.69 11 .90 18.30 3.20 
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Table 010: Raw data for results from the refining trials of the GUG 

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre 

Pulp fibre Pulp I Sample Speed SEL SRE Freeness Tear Stretch TEA Z-span Length Length Length Fines LD 
Replicate Index Index Density (Ln) (LI (Lw\ 

diameter CWT 

(rpm) (Ws/m) (kWhlt) (ml) (kNmlk2) (kNm'/ko\ (MN/kg) (kolm'l ('10) (J/m' l (N/m) (mm) (mm) (mm) ('10) <I'm lIun) (1'fTl) 

GUG 1500 OA 0.00 0.00 600.91 73.14 10.63 3.52 723.85 1.88 54.05 1996.70 0.61 0.78 0.89 1.63 12.30 18.50 3.10 I 

GUG 1500 OB 0.00 0.00 594.08 57.26 8.88 2.90 658.62 1.61 33.38 1996.70 0.59 0.75 0.86 1.71 12.40 18.50 3.05 ! 

GUG 1500 DC 0.00 0.00 578.98 53.17 8.20 2.89 639.53 1.35 24.02 1996.70 0.60 0.77 0.88 1.61 12.70 18.90 3.10 

GUG 1500 1A 0.37 23.95 487.83 85.89 9.49 4 .68 727.35 2.23 68.36 2250.50 0.58 0.74 0.85 1.78 12.60 18.40 2.90 

GUG 1500 1B 0.41 26.75 482.50 70.85 10.27 4.14 690.63 2.07 53.05 2250.50 0.60 0.76 0.88 1.61 12.30 18.30 3.00 

GUG 1500 1C 0.39 25.20 475.22 78.43 10.26 4.32 677.28 2.28 62.03 2250.50 0.58 0.74 0.84 1.92 11 .90 17.50 2.80 

GUG 1500 2A 0.37 47.90 420.57 93.84 9.54 5.38 728.07 2.50 82.31 2237.55 0.58 0.75 0.87 1.81 11 .90 17.20 2 .65 

GUG 1500 2B 0.41 53.49 447.79 84.86 10.01 5.38 713.05 2 .55 75.69 2237.55 0.59 0.76 0.89 1.88 12.50 18.20 2.85 

GUG 1500 2C 0.39 50.40 427.91 88.36 9.76 5.68 730.17 2.43 75.04 2237.55 0.57 0.73 0.84 1.85 12.60 18.70 3.05 

GUG 1500 3A 0.37 71.85 420.56 83.31 9.87 5.32 770.69 2 .67 81.07 1970.70 0.59 0.75 0.86 1.79 12.10 18.20 3.05 

GUG 1500 3B 0.41 80.24 425.91 81.15 10.86 5 .47 699.53 2.37 66.13 1970.70 0.59 0.75 0.87 1.82 12.30 17.80 2.75 

GUG 1500 3C 0.39 75.61 410.23 95.33 9 .92 5.82 777.49 2.98 115.14 1970.70 0.57 0.73 0.84 1.98 12.20 17.70 2.75 

GUG 1500 4A 0.37 95.80 400.68 86.52 10.53 5.60 756.54 2.90 100.17 2081 .57 0.56 0.72 0.83 2.11 12.90 18.90 3.00 

GUG 1500 4B 0.41 106.98 417.77 106.95 10.55 6.74 728.25 3.40 150.05 2081 .57 0.58 0.75 0.87 2 .01 12.80 18.80 3.00 

GUG 1500 4C 0.39 100.81 395.96 91 .17 10.02 6.41 770.54 2.91 115.23 2081 .57 0.59 0.76 0.87 1.85 12.10 18.00 2.95 

GUG 1500 SA 0.37 119.75 399.32 89.23 10.09 6 .19 773.19 2.91 105.85 2134.09 0 .56 0.72 0.83 1.99 12.40 18.00 2.80 

GUG 1500 5B 0.41 133.73 390.73 85.86 11 .06 5.80 780.05 3.04 93.54 2134.09 0 .58 0.74 0.85 1.88 12.10 17.60 2.75 

GUG 1500 5C 0.39 126.01 370.83 102.92 9.56 6.90 733.18 3.36 129.00 2134.09 0 .56 0.73 0.85 2.22 12.80 18.50 2.85 

GUG 1500 6A 0.37 143.70 345.26 100.51 9.61 6.82 778.69 3.14 126.67 2097.97 0 .58 0.74 0.85 1.82 12.30 18.30 3 .00 

GUG 1500 6B 0.41 160.48 325.98 99.21 11 .24 6.91 787.30 3.86 125.00 2097.97 0 .57 0.74 0.87 2.05 12.00 17.90 2.95 

GUG 1500 6C 0.39 151.21 330.00 110.40 9.06 7.40 784.04 3.21 126.24 2097.97 0 .56 0.72 0.83 2.07 12.10 17.90 2 .90 

GUG 2200 OA 0.00 0.00 546.51 60.84 8 .73 3.65 847.45 1.53 32.14 1841 .70 0 .62 0.78 0.88 1.53 12.60 19.00 3.20 

GUG 2200 OB 0.00 0.00 586.77 73.43 8 .90 3.97 700.95 1.95 37.00 1841 .70 0 .61 0.78 0.88 1.72 12.40 18.60 3.10 

GUG 2200 OC 0.00 0.00 571.50 59.63 10.10 3.74 696.99 1.90 41 .65 1841 .70 0 .61 0.77 0.89 1.53 12.00 18.00 3.00 

GUG 2200 1A 0.52 49.61 423 .91 89.69 10.12 6.42 726.70 2.50 80.89 2308.86 0 .56 0.73 0.84 2.23 12.50 18.40 2.95 

GUG 2200 1B 0.48 45.17 473.59 71 .80 10.65 6.03 763.14 2.32 82.97 2308.86 0.56 0.72 0.83 1.97 12.30 18.40 3.05 

GUG 2200 1C 0.46 43.21 444.57 85.25 10.56 5.82 757.76 2.44 84.56 2308.86 0.58 0.75 0.86 1.83 12.60 19.10 3.25 

GUG 2200 2A 0.52 99.22 366.67 110.85 10.18 7.11 731 .51 2 .80 97.40 1985.23 0 .58 0.77 0 .91 2.13 12.50 18.50 3.00 

GUG 2200 2B 0.48 90.33 355.25 91.08 9.98 6.76 714.02 2.62 91 .14 1985.23 0.58 0.74 0.85 1.91 12.00 17.80 2 .90 

GUG 2200 2C 0.46 86.42 399.59 89.86 9.50 6.75 792.35 2.77 103.83 1985.23 0.55 0.72 0.83 2.24 11 .70 17.60 2 .95 

GUG 2200 3A 0.52 148.83 313.33 110.31 9.41 7.94 765.36 2.99 127.50 1969.02 0.56 0.73 0 .84 2.26 12.60 18.30 2 .85 

GUG 2200 3B 0.48 135.50 305.23 95.88 9 .33 7.39 761 .13 2.97 109.00 1969.02 0.55 0.71 0 .83 2 .22 12.60 17.80 2.60 

GUG 2200 3C 0.46 129.63 269.18 108.10 9.15 8 .13 814.45 3.19 146.51 1969.02 0.57 0.74 0.87 2.23 12.80 18.40 2.80 
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... Table 010 Continued 

Stage & Tensile Burst Sheet 
Fibre Fibre Fibre 

Pulp fibre Sample Speed SEL SRE Freeness Tear Stretch TEA Z.span Length Length Length Fines LD Pulp eWT Replicate Index Index Density 
(Ln) (LI) (Lw) 

diameter 

(rpm) (Ws/m) (kWh/t) (ml) I (kNmlkg: (kNm2/kg) (MN/kg) (kg/m') (%) (J/m2) (N /m) (mm) (mm) (mm) (%) (11m) (11m) 111m] 
GUG 2200 4A 0.52 )98.44 236.13 110.31 9.26 6.70 754.46 3.04 127.13 2169.35 0 .55 0.72 0.63 2 .35 12.1 0 17.70 2.60 

GUG 2200 4B 0.48 180.66 22 1.2S 107.16 9.21 6.63 796.59 3.19 127.75 2169.35 0.54 0.71 0.62 2.49 11.60 17.50 2.65 

GUG 2200 4C 0.46 172.84 194.21 117.32 7.49 9.59 652.17 3.73 176.67 2169.35 0.55 0.73 0.64 2 .55 12.10 17.60 2 .75 

GUG 2200 5A 0.52 248.0S 183.88 111.63 9.92 6.74 770.00 3.36 140.93 2010.49 0.53 0.71 0.63 2.67 12.40 17.90 2 .75 

GUG 2200 5B 0.48 22S .83 20S.22 104.24 6.73 6.14 775.00 3.44 162.00 2010.49 0.52 0 .66 0.60 2 .76 13.00 16.90 2 .95 

GUG 2200 5C 0.46 216.06 192.62 116.07 7.77 9.65 662.43 3.36 163.00 2010.49 0.54 0 .72 0.64 2.53 12.00 17.40 2.70 

GUG 2200 6A 0.52 297.67 141.40 110.12 6.61 9.39 610.47 3.41 140.67 1702.42 0.52 0.70 0.61 3.05 11.60 17.40 2.90 

GUG 2200 6B 0.48 270.99 114.28 120.76 6.65 9.03 644.04 4 .03 166.73 1702.42 0.52 0.70 0 .62 2.92 12.90 16.40 2.75 

GUG 2200 6C 0.46 2S9.27 166.89 121 .21 7.71 9.50 676.94 4 .00 212.23 1702.42 0.53 0.71 0 .63 2.74 12.20 17.60 2.70 

GUG 7S0 OA 0.00 0.00 588 .22 64.66 9.46 3.40 667 .76 1.74 40.44 1156.69 0.59 0.76 0.66 1.92 12.00 17.90 2 .95 

GUG 7S0 OB 0.00 0.00 S9S .62 56.97 9.43 3.14 650.46 1.54 35.47 1156.69 0.61 0.76 0.69 1.62 12.40 16.40 3.00 

GUG 7S0 OC 0.00 0.00 607.29 63.96 6.73 3.13 656.47 1.65 40 .44 1156.69 0.61 0.77 0.66 1.57 12.40 16.50 3.05 

GUG 7S0 1A O.IS 4.96 S73 .29 64.1 6 9.20 3.49 625.59 1.76 40.66 1292.46 0.60 0.77 0.67 1.51 12.00 17.90 2.95 

GUG 7S0 1B O.I S 4.80 S64.9S 73.06 10.26 4.16 665.66 2 .06 55.55 1292.46 0.60 0.77 0.88 1.86 12.30 18.S0 3.10 
GUG 7S0 1C O. IS 4.94 597.76 73.35 10.26 3.96 726.22 1.99 40.66 1292.46 0 .61 0.77 0.66 1.63 12.10 16.10 3 .00 

GUG 7S0 5A O. IS 24.79 571.93 61 .24 10.49 4 .66 757.75 2.15 65.61 1269.47 0.60 0.76 0.66 1.64 12.45 16.35 2 .95 

GUG 7S0 5B O.IS 23.99 S62.73 66 .41 11 .04 3.15 646 .21 1.64 56.25 1269.47 0 .60 0.76 0.66 1.74 12.30 16.30 3.00 

GUG 7S0 5C O.IS 24.68 S21. 12 79.06 11.19 3.93 666.73 2.10 65.61 1269.47 0.62 0.63 0.66 1.63 12.60 16.40 2.90 

GUG 7S0 10A O.IS 49.S7 494.87 77.67 10.66 4.67 709.46 2.34 69.69 1661 .77 0.61 0 .77 0.60 1.56 11.20 17.10 2.95 

GUG 7S0 10B O.IS 47.98 496.02 62 .67 11 .69 4 .91 760.90 2.43 71.40 1661 .77 0.62 0 .76 0.69 1.56 12.10 16.40 3.15 

GUG 7S0 10C O.IS 49.3S S07.68 77.64 10.36 4 .34 707.37 2.40 69.69 1661.77 0.61 0 .77 0.66 1.65 11 .70 17.50 2.90 

GUG 7S0 15A O. IS 74.36 4S2.09 66.66 9.96 5.59 736.16 2 .31 76.71 2307.20 0.60 0.75 0.66 1.71 12.10 16.20 3.05 

GUG 7S0 15B O.IS 71.97 44S.88 91 .29 10.46 5.79 735.17 2.44 91 .63 2307.20 0.60 0.69 0.79 1.61 11.60 17.60 3.00 

GUG 7S0 15C O. IS 74.03 446.67 91 .37 10.29 5.55 753.69 2.55 76.71 2307 .20 0.61 0.77 0.66 1.49 11.60 17.40 2.60 

GUG 7S0 20A O.IS 99. IS 419.40 91 .52 11.36 6.05 741.26 2.55 90.69 2266.60 0.61 0.76 0.67 1.56 12.20 16.10 2.95 

GUG 7S0 20B O.IS 9S.96 40S .38 91 .30 9.95 6.23 745.30 2.60 111 .39 2266.60 0.61 0.77 0.66 1.66 11.60 17.40 2.90 

GUG 7S0 20C O. IS 98.70 414.69 92 .50 11.09 6.13 765.93 2.93 90.69 2266.60 0.61 0.76 0.69 1.67 12.10 16.00 2 .95 

GUG 7S0 25A O.IS 123.93 381.98 104.43 10.77 6.69 756.55 3.01 127.26 2334.05 0.60 0.77 0.66 1.72 12.00 17.50 2.75 

GUG 7S0 25B O.IS 119.9S 394.S9 94 .51 11 .04 6.61 744.95 2.75 65.71 2334.05 0.62 0.76 0.69 1.59 12.40 16.30 2.95 

GUG 7S0 25C O. IS 123.38 388.32 91.75 11 .90 6 .99 765.54 2.72 127.26 2334 .05 0.63 0.60 0 .92 1.67 11 .60 17.60 2.90 
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Table 011: Multiple regression analysis results using actual pulp properties after 
each stage of refining for all three speeds together 

Freeness Tensile Tear Burst 
Sheet 

Stretch TEA Z-span 
density 

R2 78.76 70.57 56.08 73.24 65.27 63.2 55.46 7.56 

Contributors to the model 
FL 2.48 36.13 4.42 7.56 
FD 8.54 4.73 3.2 

CWT 66.58 63.92 19.95 58.54 9.28 55.39 55.46 
fines 3.64 4.17 5.55 55.99 4.61 
LD 



Table 012: Pulp properties at constant SRE - 100 kWh/t 

Sheet 
Sample speed SEL Freeness Tensile Tear Burst density Stretch TEA Z-span FL Fines FD eWT LD 

(Ws/m) (ml) (kNmlkg) i(kNm2/kg) (MN/kg) (kg/m') (%) (J/m2) (kN/m) (micron) (%) (micron) (micron) (micron) 
GCP 0 0 591.25 49.23 7.24 2.25 600.79 1.50 26.26 1.63 0.77 1.34 17.00 3.13 10.73 
GCP 750 0.22 445.33 72.02 10.98 4 .66 661 .33 2 .65 72.11 2.35 0.75 1.42 16.61 2.98 10.64 
GCP 1500 0.36 377.64 96.50 10.55 5.74 721.00 2.81 106.33 2.34 0.74 1.42 16.37 2.91 10.55 
GCP 2200 0.47 333.00 86.00 9.79 5.81 725.67 3.44 130.67 2.45 0.73 1.46 16.67 2.95 10.77 
GCG 0 0 594.55 51.76 8.97 2.86 644.42 1.71 42.49 1.85 0.80 1.26 16.80 3.07 10.62 
GCG 750 0.20 414.12 84.92 12.01 6.08 706.99 3.14 105.30 2.19 0.77 1.61 16.59 2.97 10.64 
GCG 1500 0.43 401.43 97.17 12.24 6.73 749.67 3.31 128.00 2.13 0.77 1.64 16.57 2.97 10.62 
GCG 2200 0.52 396.00 82.35 11.32 5.37 662.00 2.83 91 .23 1.57 0.78 1.54 16.54 2.98 10.58 
GUP 0 0 556.33 49.09 6 .72 2.48 627.34 1.38 25.09 1.60 0.70 1.67 17.53 3.17 11.29 
GUP 750 0.21 425.00 81 .80 8 .88 4 .75 700.33 2.63 70.58 2.27 0.69 1.71 17.16 2.98 11 .19 
GUP 1500 0.31 303.20 96.16 8.28 6.26 725.71 3.18 120.61 1.97 0.65 1.95 16.75 2.83 11 .09 
GUP 2200 0.45 307.67 90.50 8.47 6.05 746.02 2 .86 105.50 1.96 0.66 1.96 17.17 2.92 11 .33 
GUG 0 0 597.04 62.54 9.21 3.22 665.56 1.64 38.78 1.67 0.77 1.70 18.27 3.00 12 .36 
GUG 750 0.1 5 414.71 93.1 8 10.99 6 .22 754.94 2 .71 99.49 1.79 0.77 1.63 17.77 2.91 11 .94 
GUG 1500 0.39 401 .85 94.64 10.26 6 .25 755.05 2.98 107.13 2.18 0.74 1.93 18.14 2.90 12.34 
GUG 2200 0.49 351.67 97.33 9.59 7.22 758.00 3.12 106.33 1.96 0.74 2.12 18.22 2.94 12.34 
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Table 013: Pulp properties at constant freeness - 400 ml 

Sheet 
Sample speed SEL SRE Tensile Tear Burst density Stretch TEA Z-span FL Fines FD CWT LD 

(Ws/m) (kWh/t) (kNmlkg) (kNm2/kg) (MN/kg) (kg/m3
) (%) (J/m2) (kN/m) (micron) (%) (micron) (micron) (micron) 

GCP 0 0 0.00 49.23 7.24 2.25 600.79 1.50 26.26 1.63 0.77 1.34 17.00 3.13 10.73 
GCP 750 0.22 166.92 85.67 10.72 5.58 685.73 2.79 96.00 2.31 0.74 1.40 16.57 2.95 10.67 
GCP 1500 0.36 85.67 87.90 10.30 5.58 705.81 2.80 97.35 2.33 0.74 1.41 16.43 2.93 10.56 
GCP 2200 0.47 69.00 80.33 10.10 4.84 673.51 2.55 91 .33 2.45 0.74 1.43 16.70 2.96 10.77 
GCG 0 0 0.00 51 .76 8.97 2.86 644.42 1.71 42.49 1.85 0.80 1.26 16.80 3.07 10.62 
GCG 750 0.20 105.00 87.33 11 .95 5.96 713.07 3.10 109.58 2.56 0.77 1.64 16.55 2.96 10.63 
GCG 1500 0.43 94.67 94.33 12.03 6.35 742.70 3.12 123.14 2.13 0.77 1.64 16.56 2.97 10.62 
GCG 2200 0.52 98.00 83.66 11.47 5.55 679.01 2.84 90.00 1.65 0.78 1.57 16.53 2.97 10.58 
GUP 0 0 0.00 49.09 6.72 2.48 627.34 1.38 25.09 1.60 0.70 1.67 17.53 3.17 11.29 
GUP 750 0.21 142.26 88.67 9.57 5.42 725.01 2.82 90.16 2.30 0.69 1.73 16.92 2.90 11 .13 
GUP 1500 0.31 51 .17 80.83 8 .28 4.84 690.35 2.56 84.83 2.11 0.66 1.83 16.99 2.91 11 .17 
GUP 2200 0.45 61 .00 75.53 8.53 4 .76 713 .15 2.34 74.19 2.10 0.67 1.86 17.30 2.98 11 .33 
GUG 0 0 0.00 62.54 9.21 3.22 665.56 1.64 38.78 1.67 0.77 1.70 18.27 3.00 12.36 
GUG 750 0.15 110.00 94.00 10.87 6.41 759.84 2.78 103.82 2.29 0.77 1.63 17.72 2.91 11 .90 
GUG 1500 0.39 93.33 91 .75 10.18 5.99 749.97 2.91 101.43 2.05 0.74 1.93 18.11 2.89 12.32 
GUG 2200 0.49 74.33 90.67 9.78 6.35 745.97 2.58 92.00 1.87 0.74 2.06 18.27 2.97 12.34 
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Table 014: Correlation table for results at 100 kWh/t at a speed of 750rpm 

I;)neel 
Freeness Tensile Tear Burst density Stretch TEA FL Fines Pulp FibrE Pulp CWT LD 

Density 0.66 -0.90 -0.44 -0.95 -0.84 -0.45 -0.85 -0.56 -0.47 -0.51 0.47 -0.56 
WVD -0.71 0.94 0.18 0.85 0.86 0.37 0.73 0.29 0.70 0.58 -0.41 0.62 
WVP -0.59 0.63 0.69 0.90 0.52 0.77 0.90 0.64 0.29 0.02 -0.25 0.06 
WVF 0.52 -0.79 0.44 -0.38 -0.77 0.15 -0.21 0.26 -0.84 -0.80 0.33 -0.82 
WFD -0.01 0.37 -0.50 -0.03 0.46 -0.68 -0.22 -0.19 0.20 0.84 -0.36 0.86 
WLD -0.38 0.78 -0.19 0.48 0.81 -0.30 0.27 0.10 0.45 0.93 -0.52 0.97 

WCWT 0.55 -0.92 -0.04 -0.73 -0.91 0.00 -0.54 -0.28 -0.54 -0.84 0.54 -0.90 
w-Collaps -0.44 0.85 0.01 0.64 0.87 -0.14 0.45 0.29 0.41 0.88 -0.56 0.94 

w-muhlsteph 0.44 -0.84 0.09 -0.58 -0.86 0.19 -0.38 -0.19 -0.47 -0.91 0.54 -0.96 
w-Runkel 0.46 -0.85 0.11 -0.58 -0.87 0.18 -0.38 -0.17 -0.50 -0.91 0.53 -0.96 
w-Coarse 0.64 -0.78 -0.61 -0.96 -0.69 -0.65 -0.92 -0.63 -0.38 -0.25 0.36 -0.30 

yield -0.48 0.74 0.68 0.93 0.70 0.40 0.85 0.82 0.08 0.41 -0.50 0.47 
i-FL -0.22 0.13 0.92 0.61 0.15 0.66 0.74 0.90 -0.48 -0.24 0.01 -0.23 

i-fines 0.27 0.08 -0.41 -0.34 -0.11 -0.66 -0.41 -0.37 0.16 0.54 -0.12 0.53 
i-FD -0.33 0.65 -0.26 0.36 0.74 -0.27 0.12 -0.05 0.53 0.88 -0.43 0.91 

i-CWT -0.01 -0.26 -0.46 -0.25 0.05 0.12 -0.22 -0.46 0.24 -0.16 0.25 -0.20 
i-LD -0.31 0.70 -0.12 0.42 0.69 -0.29 0.18 0.09 0.44 0.88 -0.48 0.92 

i-Collaps -0.15 0.52 0.28 0.39 0.29 -0.23 0.25 0.38 0.03 0.55 -0.41 0.60 
i-muhlsteph 0.24 -0.66 -0.09 -0.43 -0.51 0.29 -0.22 -0.24 -0.26 -0.77 0.49 -0.82 

i-Runkel 0.24 -0.65 -0.09 -0.42 -0.51 0.29 -0.22 -0.24 -0.26 -0.77 0.48 -0.82 
FUFD 0.01 -0.24 0.78 0.25 -0.27 0.61 0.46 0.66 -0.61 -0.62 0.24 -0.63 

inintial Ci 0.66 -0.78 -0.58 -0.95 -0.68 -0.66 -0.91 -0.60 -0.41 -0.23 0.34 -0.28 
Freeness 1.00 -0.77 -0.18 -0.67 -0.63 -0.48 -0.71 -0.14 -0.60 -0.42 -0.09 -0.38 

Tensile Index 1.00 0.12 0.81 0.86 0.20 0.70 0.27 0.64 0.74 -0.37 0.76 
Tear Strength 1.00 0.61 0.09 0.69 0.70 0.89 -0.38 -0.27 -0.08 -0.24 
Burst Index 1.00 0.79 0.60 0.92 0.70 0.27 0.37 -0.35 0.41 

Sheet density 1.00 0.22 0.64 0.34 0.48 0.72 -0.41 0.75 
Stretch 1.00 0.74 0.47 0.09 -0.29 0.28 -0.32 

TEA 1.00 0.72 0.20 0.20 -0.15 0.22 
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Table 015: Correlation table for results at 100 kWh/t at a speed of 1500rpm 

l:Sheet 
Freeness Tensile Tear Burst density Stretch TEA FL Fines FD CWT LD 

Density -0.55 0.10 -0.39 -0.59 -0.51 -0.33 -0.11 -0.42 -0.49 -0.72 -0.30 -0.65 
WVD 0.28 -0.11 0.16 0.65 0.46 0.46 0.19 0.14 0.70 0.70 0.13 0.67 
WVP 0.64 0.02 0.72 0.72 0.46 0.48 0.29 0.66 0.11 0.27 0.53 0.16 
WVF 0.26 0.16 0.48 -0.34 -0.24 -0.30 -0.06 0.48 -0.96 -0.73 0.33 -0.78 
WFD -0.20 -0.23 -0.65 -0.37 0.02 -0.38 -0.39 -0.46 0.58 0.74 -0.47 0.82 
WLD 0.10 -0.23 -0.33 0.05 0.29 -0.09 -0.23 -0.18 0.75 0.96 -0.23 0.99 

WCWT -0.27 0.20 0.07 -0.31 -0.41 -0.12 0.08 -0.03 -0.74 -0.94 0.04 -0.94 
w-Col/aps 0.28 -0.22 -0.13 0.14 0.37 -0.05 -0.20 0.03 0.68 0.98 -0.08 0.98 

w-muhlsteph -0.18 0.22 0.22 -0.14 -0.34 0.03 0.19 0.08 -0.74 -0.97 0.15 -0.99 
w-Runkel -0.16 0.22 0.24 -0.16 -0.34 0.00 0.17 0.10 -0.77 -0.96 0.16 -0.98 
w-Coarse -0.63 0.04 -0.60 -0.68 -0.50 -0.43 -0.21 -0.58 -0.29 -0.50 -0.45 -0.40 

yield 0.81 -0.11 0.58 0.36 0.48 0.06 -0.06 0.69 0.17 0.69 0.43 0.60 
i-FL 0.90 0.09 0.89 0.09 0.35 -0.07 0.02 0.96 -0.58 0.02 0.68 -0.12 

i-fines -0.28 -0.28 -0.53 0.22 0.17 0.18 -0.04 -0.53 0.94 0.73 -0.35 0.79 
i-FD 0.05 -0.23 -0.46 -0.20 0.34 -0.25 -0.25 -0.24 0.64 0.87 -0.30 0.91 

i-CWT 0.03 0.05 -0.05 -0.65 0.28 -0.24 0.19 0.08 -0.49 -0.33 0.14 -0.36 
i-LD 0.04 -0.23 -0.44 -0.07 0.28 -0.20 -0.28 -0.25 0.71 0.90 -0.32 0.95 

i-Col/aps 0.02 -0.18 -0.23 0.37 -0.02 0.02 -0.31 -0.20 0.74 0.77 -0.29 0.82 
i-muhlsteph -0.01 0.23 0.38 -0.13 -0.15 0.10 0.31 0.26 -0.78 -0.89 0.34 -0.94 

i-Runkel -0.01 0.23 0.39 -0.13 -0.14 0.10 0.31 0.26 -0.78 -0.88 0.34 -0.94 
FUFD 0.58 0.20 0.88 0.20 0.03 0.11 0.16 0.79 -0.76 -0.50 0.64 -0.62 

inintial Ci -0.59 0.03 -0.59 -0.71 -0.49 -0.47 -0.24 -0.55 -0.31 -0.47 -0.44 -0.38 
Freeness 1.00 -0.17 0.83 0.03 0.37 -0.21 -0.17 0.93 -0.38 0.31 0.63 0.19 

Tensile Index 1.00 0.08 0.42 -0.03 0.47 0.51 0.04 -0.11 -0.34 -0.26 -0.28 
Tear Strength 1.00 0.28 0.18 0.12 0.10 0.93 -0.53 -0.12 0.70 -0.25 
Burst Index 1.00 0.17 0.72 0.47 0.17 0.32 0.02 0.09 0.00 

Sheet density 1.00 0.41 0.59 0.30 0.27 0.41 0.51 0.31 
Stretch 1.00 0.89 -0.06 0.41 -0.10 0.13 -0.12 

TEA __ 1.00, 0.00 0.19 -0.23 0.22 -0.26 
--_. 
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Table 016: Correlation table for results at 100 kWh/t at a speed of 2200rpm 

Sheet 
Freeness Tensile Tear Burst density Stretch TEA FL Fines FD CWT LD 

Density -0.61 -0.29 -0.41 -0.43 0.11 0.38 0.63 -0.49 -0.48 -0.55 -0.19 -0.51 
WVD 0.44 0.34 0.20 0.43 -0.03 -0.55 -0.72 0.23 0.63 0 .58 0.06 0.56 
WVP 0.88 -0.13 0.78 -0.06 -0.54 -0.44 -0.70 0.75 -0.01 0 .04 0.40 -0.01 
WVF 0.19 -0.59 0.45 -0.63 -0.43 0.48 0.47 0.42 -0.95 -0.76 0.30 -0.78 
WFD -0.59 0.76 -0.74 0.88 0.84 0.23 0.27 -0.52 0.82 0.88 -0.42 0.90 
WLD -0.15 0.75 -0.39 0.91 0.60 -0.06 -0.15 -0.18 0.92 0.98 -0.24 0.98 

WCWT -0.16 -0.62 0.10 -0.78 -0.35 0.24 0.40 -0.07 -0.84 -0.89 0.09 -0.87 
w-Collaps 0.05 0.69 -0.18 0.87 0.47 -0.08 -0.23 0.03 0.84 0.94 -0.13 0.93 

w-muhlsteph 0.03 -0.71 0.27 -0.88 -0.52 0.11 0.23 0.07 -0.89 -0.96 0.18 -0.95 
w-Runkel 0.03 -0.71 0.28 -0.87 -0.51 0.14 0.26 0.09 -0.90 -0.95 0 .19 -0.95 
w-Coarse -0.79 -0.06 -0.63 -0.17 0.35 0.42 0.69 -0.66 -0.22 -0.28 -0.32 -0.24 

yield 0.68 0.25 0.54 0.45 -0.11 -0.06 -0.37 0.71 0.26 0.50 0 .28 0.46 
i-FL 0.85 -0.18 0.87 -0.04 -0.47 0.14 -0.17 0.96 -0.37 -0.04 0.53 -0.10 

i-fines -0.44 0.42 -0.67 0.54 0.50 -0.47 -0.34 -0.64 0.90 0.69 -0.47 0.73 
i-FD -0.24 0.68 -0.48 0.78 0.56 -0.03 -0.07 -0.33 0.82 0.93 -0 .07 0.91 

i-CWT -0.33 0.05 -0.42 -0.12 0.10 -0.02 0.16 -0.55 0.11 0 .03 0 .26 0.00 
i-LD -0.15 0.71 -0.38 0.86 0.57 -0.03 -0.12 -0.1 8 0.84 0.98 -0.15 0.97 

i-Collaps 0.19 0.34 0.1 4 0.59 0.24 0.01 -0.19 0.37 0.37 0.51 -0.31 0.54 
i-muhlsteph -0.01 -0.61 0.15 -0.84 -0.48 0.01 0.1 8 -0.10 -0.71 -0.87 0.28 -0.88 

i-Runkel -0.01 -0.61 0.15 -0.84 -0.48 0.02 0.18 -0.09 -0.71 -0.87 0.28 -0.88 
FUFD 0.75 -0.55 0.91 -0.51 -0.69 0.11 -0.09 0.88 -0.76 -0.60 0.42 -0.63 

inintial Ci -0.79 -0.04 -0.63 -0.14 0.38 0.47 0.72 -0.64 -0.21 -0.26 -0.31 -0.21 
Freeness 1.00 -0.37 0.94 -0.31 -0.75 -0.28 -0.54 0.90 -0.36 -0.18 0.66 -0.25 

Tensile Index 1.00 -0.47 0.89 0.73 0 .30 0.24 -0.29 0.73 0.77 -0.34 0.78 
Tear Strength 1.00 -0.45 -0.77 -0.10 -0.36 0.93 -0.59 -0.41 0 .57 -0.47 
Burst Index 1.00 0.77 0.29 0 .1 9 -0.20 0.80 0.92 -0.35 0.93 

Sheet density 1.00 0.44 0 .53 -0.59 0.63 0.63 -0.48 0.67 
Stretch 1.00 0.90 0.08 -0.24 0.02 -0.02 0.03 

TEA 1.00 -0.21 -0.23 -0.07 -0.07 -0.06 
._. 
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Table 017: Correlation table for results at constant freeness (400 ml) at a speed of 750rpm 
I:;nee 

SEL SRE Tensile Tear Burst Density Stretch TEA FL Fines FD CWT LD 
Density 0.78 0.89 -0.50 -0.45 -0.81 -0.69 -0.26 -0.61 -0.65 -0.43 -0 .56 0.04 -0.56 

WVD -0.75 -0.88 0.52 0.25 0.67 0.76 0.23 0.45 0.41 0.66 0 .59 -0.14 0.60 
WVP -0.45 -0.85 0.19 0.70 0.62 0.33 0.55 0.74 0.71 0.30 0.10 0.17 0.06 
WVF 0.64 0.50 -0.55 0.31 -0.34 -0.80 0.14 0.05 0.14 -0.77 .(1.72 0.38 .(1.79 
WFD .(1.52 0.09 0.49 .(1.52 0.26 0.57 -0.61 -0 .33 -0.16 0.12 0.80 -0.38 0.86 
WLD .(1.81 -0.41 0.65 -0 .20 0.61 0.83 -0.33 0 .04 0.19 0.37 0.92 -0.33 0.97 

WCWT 0.88 0.67 .(1.65 -0.05 .(1.74 .(1.86 0.10 -0 .28 -0.38 -0.47 -0.86 0.25 .(1.89 
w-Collaps .(1.87 -0.54 0.66 -0.01 0.74 0.83 -0.23 0.21 0.38 0.33 0.90 -0.26 0.94 

w-muhlsteph 0.85 0.51 .(1.66 0.10 -0.68 .(1.85 0.26 -0.14 -0.28 -0.39 .(1.91 0.30 .(1.95 
w-Runkel 0.85 0.52 .(1.66 0.11 .(1.67 .(1.85 0.24 -0.14 -0.26 -0.42 .(1.91 0 .30 .(1.95 

Ci 0.63 0.90 -0.35 -0.61 .(1.74 -0.51 -0.43 .(1.71 -0.72 -0.37 -0.32 -0.08 -0.30 
yield .(1.75 -<1 .74 0.44 0.58 0.89 0.53 0.18 0.67 0.87 0.05 0.52 0 .07 0.49 
i-FL -0.29 -0.39 -0 .05 0.81 0.56 -0.04 0.49 0.79 0.87 -0.46 -0.10 0 .49 -0.20 

i-fines -0.06 0.34 0.45 -0.57 -0.01 -0.05 -0.62 -0.40 -0.37 -0.05 0.53 -0.09 0.54 
i-FD -<1.67 -0.35 0.58 -0.21 0.46 0.80 -0.27 -0.14 0.04 0.48 0.83 -0.34 0.88 

i-CWT 0.20 0.11 -0.34 -0.1 3 -0.43 0.22 0 .36 -0.17 -0.43 0.37 -0.28 -0.24 -0.22 
i-LD -<1 .69 -0.37 0.65 -0.16 0.57 0.71 -0.37 -0.08 0.16 0.35 0.88 -0.26 0.91 

i-Collaps -0.48 -0.26 0.56 0.02 0.59 0.18 -0.45 0.07 0.39 -0.10 0.63 0.06 0.60 
i-muhlsteoh 0.62 0.33 -<1.66 0.08 -0.62 -0.46 0.45 0.01 -0.29 -0.13 -<1.81 0.1 1 -<1.81 

i-Runkel 0.61 0.33 -<1.66 0.09 -0.61 -0.46 0.45 0.01 -0.28 -0.14 -<1.81 0.11 .(1.81 
FUFD 0.13 -<1.10 -0.33 0.68 0.15 -0.44 0.50 0.63 0.59 -0.57 -0.50 0.53 -0 .60 

inintialCi 0.60 0.91 -0.33 -0.60 -<1.71 -0.50 -0.45 -<1.70 -0.68 -0.40 -0.30 -0.08 -0.27 
SEL 1.00 0.69 -0.59 -0.19 .(1.78 .(1.81 -0.06 -0.45 -0.51 -0.24 .(1.83 -0.10 -0.79 
SRE 1.00 -0.29 -0 .41 -0.54 -0.56 -0 .33 -0.46 -0.50 -0.58 -0.38 -0.16 -0.33 

Tensile 1.00 0.15 0.64 0.46 0.11 0.28 0.21 0.25 0 .59 -0.10 0.60 
Tear 1.00 0.55 0.08 0.76 0.77 0.80 -0.1 9 -0.20 0 .28 -0.26 

Burst 1.00 0.62 0.26 0.72 0.78 -0.06 0.62 0 .08 0.59 
Sheet density 1.00 0.08 0.24 0.28 0.49 0.72 -0 .32 0.77 

Stretch 1.00 0.66 0 .35 0.10 -0.34 0 .32 -0.40 
TEA 1.00 0.81 -0 .20 0.09 0 .23 0.03 
FL 1.00 -0.30 0.19 0.15 0.1 5 

Fines 1.00 0.20 -0.34 0.26 
FD 1.00 -0.02 0.98 

CWT 1.00 -0.23 
LD 1.00 
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Table 018: Correlation table for results at constant freeness (400 ml) at a speed of 1500rpm 
Sheet 

SEL SRE Tensile Tear Burst Density Stretch TEA FL Fines FD CWT LD 
Density -0.65 -0.50 -0.47 -0.43 -0.64 -0.73 -0.52 -0.46 -0.42 -0.66 -0.66 0.02 -0.63 

WVD 0.44 0.23 0.30 0.20 0.41 0.58 0.33 0.31 0.14 0.82 0.69 -0 .08 0.66 
WVP 0.86 0.61 0.58 0.75 0.81 0.70 0.73 0.73 0.67 0.27 0.18 0.27 0.13 
WVF 0.20 0.32 0.14 0.44 0.20 -0.15 0.22 0.24 0.49 -0.97 -0.80 0.35 -0.81 
WFD -0.46 -0.23 -0.25 -0.64 -0.38 -0.04 -0.45 -0.57 -0.49 0.59 0.81 -0.55 0.84 
WLD -0.04 0.04 0.03 -0.30 0.01 0.34 -0.10 -0.21 -0.20 0.84 0.98 -0.44 1.00 

WCWT -0.24 -0.22 -0.20 0.04 -0.26 -0.53 -0.15 -0.05 -0.01 -0.87 -0.94 0.31 -0.93 
w-Col/aps 0.17 0.23 0.17 -0.10 0.21 0.49 0.08 -0.04 0.00 0.80 0.98 -0.37 0.98 

w-muhlsteph -0.08 -0.13 -0.10 0.19 -0.12 -0.42 0.00 0.11 0.11 -0.85 -0.98 0.40 -0.99 
w-Runkel -0.06 -0.11 -0.09 0.21 -0.10 -0.42 0.01 0.11 0.13 -0.87 -0.98 0.40 -0.99 

Ci -0.80 -0.59 -0.55 -0.63 -0.76 -0.74 -0.66 -0.63 -0.58 -0.46 -0.42 -0.15 -0.37 
yield 0.79 0.77 0.59 0.61 0.80 0.80 0.64 0.53 0.68 0.38 0.59 0.01 0.56 
i-FL 0.85 0.89 0.64 0.88 0.89 0.66 0.78 0.74 0.96 -0.40 -0.13 0.34 -0.17 

i-fines -0.26 -0.33 -0.25 -0.50 -0.30 0.09 -0.29 -0.34 -0.54 0.94 0.81 -0.37 0.82 
i-FD -0.19 -0.01 -0.12 -0.45 -0.10 0.31 -0.20 -0.28 -0.27 0.71 0.90 -0.50 0.92 

i-CWT -0.20 0.05 0.05 -0.09 -0.03 0.07 0.07 0.16 0.07 -0.54 -0.34 0.23 -0.36 
I-LD -0.14 -0 .02 -0.12 -0.42 -0.09 0.29 -0.21 -0.30 -0.28 0.79 0.93 -0.53 0.96 

i-Col/aps 0.04 -0.04 -0.11 -0.20 -0.03 0.13 -0.17 -0.30 -0.21 0.83 0.80 -0.49 0.83 
i-muhlsteph 0.08 0.05 0.14 0.36 0.08 -0.22 0.22 0.33 0.28 -0.86 -0.92 0.54 -0.95 

i-Runkel 0.09 0.06 0.15 0.36 0.09 -0.21 0.23 0.34 0.29 -0.86 -0.92 0.54 -0.95 
FUFD 0.69 0.61 0.50 0.86 0.66 0.26 0.65 0.67 0.81 -0.68 -0.61 0.52 -0.65 

inintial Ci -0.78 -0.56 -0.53 -0.62 -0.74 -0.72 -0.65 -0.63 -0.56 -0.47 -0.39 -0.16 -0.35 
SEL 1.00 0.90 0.63 0.94 0.93 0.72 0.87 0.78 0.93 -0.09 0.03 0.30 -0.02 
SRE 1.00 0.56 0.86 0.85 0.72 0.79 0.64 0.93 -0.21 0.11 0.18 0.08 

Tensile 1.00 0.66 0.79 0.49 0.77 0.75 0.68 -0.05 0.08 0.32 0.03 
Tear 1.00 0.87 0.53 0.85 0.77 0.94 -0.34 -0.23 0.41 -0.28 

Burst 1.00 0.80 0.92 0.89 0.92 -0.08 0.07 0.27 0.02 
Sheet density 1.00 0.75 0.75 0.64 0.27 0.40 0.17 0.36 

Stretch 1.00 0.94 0.83 -0.09 -0.01 0.40 -0.07 
TEA 1.00 0.76 -0.12 -0.13 0.52 -0.20 
FL 1.00 -0.38 -0.14 0.35 -0.18 

Fines 1.00 0.84 -0.27 0.83 
FD 1.00 -0.30 0.99 

CWT 1.00 -0.43 
LD 1.00 

---
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Table 019: Correlation table for results at constant freeness (400 ml) at a speed of 2200rpm 

Sheet 
SEL SRE Tensile Tear Burst Density Stretch TEA FL Fines FD CWT LD 

Density -0.49 -0.56 -0.67 -0.37 -0.91 -0.51 -0.47 -0.27 -0.49 -0.59 -0.51 0 .02 -0.51 
WVD 0.36 0.41 0.51 0 .14 0.79 0.59 0.28 0 .04 0 .23 0.73 0.56 0 .05 0 .56 
WVP 0.70 0.88 0.51 0.73 0.68 0.06 0.75 0.33 0.74 0.12 -0.01 -0.01 0 .00 
WVF 0.13 0.21 -0.21 0.50 -0.47 -0.80 0.31 0 .32 0.41 -0.96 -0.78 -0.11 -0.78 
WFD -0.46 -0.69 0.24 -0.71 0.32 0.76 -0.59 -0.10 -0.50 0.77 0.89 -0.02 0.90 
WLD -0.11 -0.25 0 .52 -0.39 0.72 0.87 -0.24 0 .03 -0.17 0.94 0.97 -0.01 0.98 

WCWT -0.13 -0.07 -0.61 0 .12 -0.86 -0.81 -0.03 -0.11 -0.07 -0.90 -0.87 0 .01 -0.87 
w-Collaps 0.05 -0.06 0.63 -0.19 0.84 0.83 -0.05 0 .16 0 .04 0.89 0.93 -0.04 0.94 

w-muhlsteph 0.01 0.13 -0.57 0 .28 -0.79 -0.86 0 .13 -0.08 0.06 -0.93 -0.95 0.02 -0.95 
w-Runkel 0.02 0.13 -0.56 0 .29 -0.78 -0.86 0 .13 -0.05 0.08 -0.94 -0.94 0 .01 -0.95 

Ci -0.63 -0.76 -0.61 -0.59 -0.82 -0.27 -0.65 -0.32 -0.66 -0.35 -0.24 0.02 -0.24 
yield 0.54 0.59 0.80 0.54 0.95 0.38 0 .58 0.53 0.72 0 .38 0.44 -0.11 0.46 
i-FL 0.68 0.81 0.63 0.88 0.62 -0 .18 0.79 0.70 0.97 -0.25 -0.10 -0.10 -0.09 

i-fines -0.34 -0.47 -0.11 -0.74 0.20 0.70 -0.60 -0.53 -0.64 0.89 0.72 -0.04 0.73 
i-FD -0 .06 -0.33 0.40 -0.52 0.49 0.70 -0.44 -0.02 -0.32 0.82 0.94 0.33 0.91 

i-CWT -0.25 -0.36 -0.23 -0.45 -0.45 -0.12 -0.44 -0.12 -0.55 0.04 0.08 0.77 0 .00 
i-LD 0.02 -0.24 0 .50 -0.42 0.66 0.78 -0.33 0 .01 -0.17 0.86 0.98 0.11 0.97 

i-Collaps 0.21 0.17 0.47 0 .16 0.75 0.55 0 .21 0 .12 0 .38 0.43 0.47 -0.60 0.53 
i-muhlsteph -0.13 0.05 -0.56 0 .16 -0.81 -0.78 0.09 -0.06 -0.11 -0.75 -0.84 0.28 -0.87 

I-Runkel -0.13 0.05 -0.55 0.16 -0.81 -0.77 0.09 -0.05 -0.11 -0.75 -0.84 0.29 -0.87 
FUFD 0.51 0.78 0 .20 0.94 0.13 -0.56 0.82 0 .50 0.87 -0.67 -0.65 -0.26 -0.63 

inintial Ci -0.63 -0.77 -0.57 -0.58 -0.79 -0.26 -0.64 -0.29 -0.63 -0.34 -0.21 0.01 -0.21 
SEL 1.00 0.74 0.41 0.67 0.41 -0.23 0.49 0 .25 0.73 -0.17 -0.12 0.13 -0.13 
SRE 1.00 0 .37 0.88 0.41 -0.34 0.81 0.33 0.82 -0.27 -0.34 -0.07 -0.34 

Tensile 1.00 0.40 0.83 0 .31 0.42 0.63 0.57 0 .32 0.49 0.11 0.48 
Tear 1.00 0 .34 -0.41 0.93 0 .61 0.93 -0.52 -0.48 -0.05 -0.48 

Burst 1.00 0.60 0.45 0.42 0 .52 0.57 0 .64 -0.07 0.65 
Sheet density 1.00 -0.18 -0.03 -0.29 0.85 0.83 -0.01 0.84 

Stretch 1.00 0 .59 0.83 -0.34 -0.34 -0.01 -0.34 
TEA 1.00 0.67 -0.22 0 .01 0.31 -0.02 
FL 1.00 -0.36 -0.25 -0.10 -0.24 

Fines 1.00 0.90 0.01 0.91 
FD 1.00 0 .11 1.00 

CWT 1.00 0.02 
LD 1.00 
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Figure Dl: Graph of pulp fibre length (FL) against SRE at the three different refining 
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