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ABSTRACT 

Theoretical waste minimisation opportunities and options for electroplating were sought 

from the literature. Their suitability under the specific site conditions of a chromium 

electroplating plant were evaluated using the results of a waste minimisation audit (audit). 

The audit showed that many waste minimisation practices were already in place. These 

included counter current flowing rinse systems, multiple use of rinses and recycling of the 

drag-out solution back into the plating solution. Two types of information were collected 

during the audit, namely new chemical monitoring (concentration levels of sodium, iron, 

zinc, copper, lead, chromium and nickel and conductivity, total dissolved solids and pH) 

and flow rate data and existing data (composition of the process solutions, products and 

waste outputs, and raw materials, workpieces and utility inputs). The data were analysed 

using four established waste minimisation techniques. The Scoping Audit and the Water 

Economy Assessment results were determined using empirically derived models while the 

Mass Balancing and the True Cost of Waste results were obtained through more detailed 

calculations. The results of the audit showed that the three most important areas for waste 

minimisation were water usage, effluent from rinse water waste streams and nickel 

consumption. Water usage has the highest waste minimisation potential followed by nickel. 

Dragged-out process chemicals and rinse water consumption contribute to ranking the 

effluent stream the most important waste minimisation opportunity identified by the True 

Cost of Waste Analysis. Potential financial savings were roughly estimated to be in the 

order of R19949 and Rl26603 for water and nickel respectively. Intervention using only 

"low cost-no-cost" waste minimisation measures was recommended as a first step before 

contemplating further focus areas or technical or economical feasibility studies. 



Ill 

D E C L A R A T I O N 

1 hereby certify that this research is the result of my own investigation which has not 

already been accepted in substance for any degree and is not being submitted in candidature 

for any other degree. 

Signed 

K.Tf Ghebregziabher (BSc) 

We hereby certify that this statement is correct. 

Signed. 

Signed. 

Dr. Sally Spankie 

(Supervisor) 

a 
Dr. Colin Southway 

(Co-supervisor) 

Pietermaritzburg 

June 2004 



iv 

DEDICATION 

This study is dedicated to my father Tesfamariam Ghebregziabher, my mother 

Silas Weldetinsae, my brothers and sisters. 



v 

ACKNOWLEDGEMENTS 

My sincere gratitude must go to my supervisor, Dr. Sally Spankie, for all her assistance in 

this project. Her enthusiasm, attention and above all her excellent "human" approach were 

extremely encouraging and much appreciated. Thanks also to my co-supervisor, Dr. Colin 

Southway, for his advice, incredible help in the laboratory work and for having 

sympathetic ear about any thing and everything. 

Thanks are also due to: 

• Saayman Danks Electroplaters especially Noel Ferguson and Livingstone Colbert 

for their extreme friendly approach during informal interview when gathering on-site 

data about the general working principle of the Chrome Shop. Both the laboratory and 

administration workers of this plant are also very much appreciated for giving all the 

necessary handwritten and computerised data I requested for the project. 

• Dr. Murray Low for his input in my literature review on Chapter 1 and creating a 

pleasant working atmosphere in the duration of my masters studies. 

• Dr. Nicola Brown a waste minimisation expert, for her encouragement, ideas and her 

input on my literature review on Chapter 2. 

• Postgraduate chemistry students and all my friends, especially Mesfin Hagos, 

Bereketeab Tesfagaber, Fitsum Kidane, Habtom Haileslase, Esayas Berhe and Yonas 

Habtesslase for their help and moral support through out the study. 

• The Eritrean Human Resource Development (EHRD) for providing fund for the 

project and for financial assistance. 

• Mrs Karen Kader and Craig Grimmer for all their help during the research work. 

• My family and relatives for their encouragement and advice during my studies. 

Special thanks must go to the Lord for giving me strength and endurance. 



vi 

TABLE OF CONTENTS 

ABSTRACT ii 

DECLARATION Hi 

DEDICATION iv 

ACKNOWLEDGEMENTS v 

LIST OF ABBREVIATIONS x 

LIST OF UNITS OF MEASUREMENTS xi 

LIST OF FIGURES xii 

LIST OF TABLES xiii 

CHAPTER 1 INTRODUCTION TO THE ELECTROPLATING PROCESS 1 

1.1 Breakdown of the electroplating process 2 

1.2 Chemicals used in the pre-treatment stage 6 

1.2.1 Solvent cleaning 7 

1.2.2 Soak alkaline cleaning 8 

1.2.3 Electrolytic cleaning 11 

1.2.4 Acid cleaning 13 

1.2.5 Non-chemical cleaning 14 

1.3 The Electroplating stage 15 

1.3.1 The electrochemistry behind the electroplating processes 21 

1.3.2 The chemistry at the anode 27 

1.3.3 The plating solution 28 

1.3.3.1 Inorganic compounds in the electroplating solution 30 

1.3.3.2 Organic compounds in the electroplating solution 32 

1.3.4 Chromium electroplating 35 

CHAPTER 2 INTRODUCTION TO WASTE MINIMISATION IN 

THE ELECTROPLATING INDUSTRY 46 

2.1 Waste minimisation and waste management 46 

2.2 Waste auditing in the waste minimisation programme 49 

2.3 Waste minimisation opportunities in electroplating 57 



vii 

2.4 Waste minimisation options and measures 58 

2.4.1 Drainage ofworkpieces 59 

2.4.2 Rinsing ofworkpieces 61 

2.4.3 Maintenance of process solution 68 

CHAPTER 3 COMPANY AND PROCESS PROFILE 73 

3.1 Company description 73 

3.2 The chromium plating lines 75 

3.3 The manual decorative chromium plating line 76 

3.3.1 Surface treatment on the MDCPL 78 

3.3.2 Rinsing on the MDCPL 83 

3.3.3 Non-chromium plating in the Chrome Shop 84 

3.4 Waste minimisation option used in and waste minimisation 

opportunities found for the MDCPL 86 

CHAPTER 4 SCOPE AND AIMS 88 

CHAPTER 5 MONITORING METHODOLOGY 90 

5.1 Collection of existing data 90 

5.2 Collection of new data on-site 91 

5.2.1 Rinse water flow rate 91 

5.2.2 On-site measurements using direct read instruments 92 

5.3 New data collected by sampling and chemical analysis 93 

5.3.1 Sampling strategy for the MDCPL 93 

5.3.1.1 Storage of samples 96 

5.3.2 Chemical analyses of samples 96 

5.3.2.1 Determination of Cr (VI) concentration by 

UV-visible spectrophotometry 96 

5.3.2.2 Experimental procedure 98 

5.3.2.3 Determination of metal concentrations by ICP-OES 100 

5.3.2.4 Experimental procedure 102 



CHAPTER 6 RESULTS 105 

6.1 Results from existing data 105 

6.2 Results from on-site collection of new data 109 

6.3 Results from chemical analyses 109 

6.3.1 Concentration of Cr(Vl) in the samples 109 

6.3.2 Concentration of metal ions in the samples 111 

CHAPTER 7 DISCUSSION 113 

7.1 Water usage 114 

7.1.1 Water used in the flowing rinse tanks 115 

7.1.2 Water used in static rinse tank 116 

7.1.3 Water used in the drag-out tanks 116 

7.1.4 Water use as solvent in the process solutions 117 

7.1.5 Total water usage 119 

7.1.6 Reducing water usage 120 

7.2 Characterisation of rinse water solutions 124 

7.2.1 Soak (acid and alkaline) cleaner's rinse 125 

7.2.2 Electrolytic cleaner's rinse 127 

7.2.3 Acid dip rinse system 128 

7.2.4 Nickel plating rinse systems 129 

7.2.5 Chromium plating rinse systems 132 

7.2.6 The composition of the MDCPL rinse systems 136 

7.3 Chemicals used and wasted 137 

7.3.1 Scoping Audit 139 

7.3.2 Mass Balance Analysis 141 

7.3.3 True Cost of Waste Analysis 145 

7.3.4 The Water Economy Diagram 147 

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 149 

8.1 Conclusion 149 

8.1 Recommendations 151 



ix 
REFERENCES 152 

APPENDIX A Instruments used to determine concentration of metals in 

samples collected on 9/06/03 and 20/06/03 164 

APPENDIX B Calibration graph of Cr(VI) standard solutions for 

samples collected on 9/06/03 and 20/06/03 165 

APPENDIX C Calibration graph of Ni, Fe, Cr, Na, Zn, Cu and Pb standard 

solutions for samples collected on 9/06/03 and 20/06/03 166 

APPENDIX D Average concentration (mg/L) of Ni, Fe, Cr, Na, Zn, Cu and Pb 

in samples collected on 31/3/03 and 11/4/03 168 



LIST OF ABBREVIATION 

BT 

>DL 

<DL 

E 

EC 

EDTA 

HEDP 

HEEDTA 

HEEF 

ICP-OES 

IE 

MDCPL 

MF 

MSDS 

NM 

NTA 

PVC 

RO 

SME's 

SREP 

SRHS 

ST 

TDS 

UV 

Bottom tank 

Above detection limit 

Below detection limit 

Evaporation 

Electrical conductivity 

Ethylenediaminetetraacetic acid 

1-hydroxyethylenediamine-l ,1-diphosphoric acid 

Hydroxyethylenediaminetriaceticacid 

High energy efficiency formulations 

Inductively coupled plasma optical 
emission spectrophotometer 

Ion exchange 

Manual decorative chromium plating line 

Micro-filtration 

Material safety data sheets 

Not measured 

Nitrilotriacetic acid 

Polyvinyl chloride 

Reverse osmosis 

Small and medium scale enterprises 

Standard reduction electrode potential 

Self regulating high speed 

Surface tank 

Total dissolved solids 

Ultraviolet 



L I S T O F U N I T S O F IVIEASUREIVIENTS 

A/dm2 

°B6 

°C 
C/mol 

cm 

g/L 

J/Kmol 

kHz 

kPa 

kW 

L/min 

M 

rnVhr 

MHz 

ML 
mL 

mm 

mol/L 

nm 

rpm 

V 

urn 

uS/cm 

ug/L 

ampere/ square decimeter 

degree Baum6 

degree Centigrade 

Coulomb/mole 

centimeter 

gram/litre 

Joule/degree Kelvin mole 

kiloHertz 

kiloPascal 

kiloWatt 

litre/miute 

molarity 

cubic meter/hour 

megaHertz 

megalitre 
millilitre 

millimeter 

mole/litre 

nanometer 

revolution per minute 

Volt 

micrometer 

microSiemen/centimeter 

microgram/1 itre 



xii 

L I S T O F F I G U R E S 

Figure 1.1 Simple process flow diagram of the stages in electroplating operation 3 

Figure 1.2 Three stage cascading rinse systems 5 

Figure 1.3 A typical electroplating tank 16 

Figure 1.4 Perforated horizontal barrel 17 

Figure 1.5 Oblique barrel 17 

Figure 1.6 Different types of jigs used during cleaning and plating of workpieces 19 

Figure 1.7 Baskets used in the electroplating plant for cleaning workpieces 20 

Figure 1.8 A selection of additives used in nickel plating 33 

Figure 2.1 Simple industrial process model 46 

Figure 2.2 The waste management hierarchy 47 

Figure 2.3 The stages for establishing and running a waste 

minimisation programme 49 

Figure 2.4 Types of filters used in electroplating 71 

Figure 2.5 Cartridge filter assembly 71 

Figure 2.6 Disc and plate clarifying filter assembly 71 

Figure 3.1 Some decorative chromium plated workpieces at 

Saayman Danks electroplaters 74 

Figure 3.2 Tank arrangement for the chromium, copper, and brass plating lines 77 

Figure 3.3 Unit for the continuous filtration of the nickel plating solution 81 

Figure 3.4 Gantry used in lifting jigs in and out from chromium plating bath 82 

Figure 5.1 On-site measuring instruments (from left to right) HI 98311 waterproof 

EC/TDS and temperature meter, Dist WP 2 and HI 98128 waterproof 

pH and temperature meter 92 

Figure 5.2 A depth sampler used to collect bottom tank samples 94 

Figure 5.3 Schematic diagram of a single beam spectrophotometric experiment 97 

Figure 5.4 Schematic diagram showing the major components in 1CP-OES 101 

Figure 7.1 Water Economy Diagram 148 



LIST OF TABLES 

Table 1.1 Formulation of alkaline cleaners solution 11 

Table 1.2 Composition and operating parameters of conventional 

chromium plating baths 28 

Table 1.3 Composition and operating parameters of nickel baths 29 

Table 1.4 Composition of different types of chromium electroplating baths 41 

Table 2.1 Waste Minimisation Cost Assessment Table 52 

Table 2.2 Waste minimisation measures and options for improving 

workpiece drainage 60 

Table 2.3 Waste minimisation measures and options for improving rinsing 62 

Table 2.4 Methods of detecting and removing pollutants from process solution 69 

Table 3.1 Trade chemicals and their ingredients used on the MDCPL 79 

Table 3.2 Trade chemicals and their ingredients used on the copper plating line 85 

Table 3.3 Trade chemicals and their ingredients used on the brass plating line 85 

Table 5.1 Summary of existing data collected 90 

Table 5.2 Conditions of the MDCPL on 9/06/03 at 10: 05 and on 20/06/03 at 13:55 95 

Table 5.3 ICP-OES specifications and operating conditions 102 

Table 5.4 Selected wavelengths and the reported instrumental detection limit 102 

Table 5.5 Dilution factor on samples collected on 9/06/03 103 

Table 5.6 Dilution factor on samples collected on 20/06/03 104 

Table 6.1 Raw material data for the factory and for the MDCPL 

from 1/03/03 to 25/10/03 106 

Table 6.2 Raw materials used in the MDCPL from 1/03/03 to 25/10/03 106 

Table 6.3 Municipality water costs for MDCPL and automatic chromium 

plating line (at R 4.8/m3) 107 

Table 6.4 Workpieces plated on the Chrome Shop from 9/03/03 to 20/06/03 108 

Table 6.5 Average flow rate of the mains water in to rinse tanks of the MDCPL 109 

Table 6.6 Reading taken on 9/06/03 and 20/06/03 109 

Table 6.7 Average concentration of Cr (VI) for diluted samples 

collected on 9/06/03 110 

Table 6.8 Average concentration of Cr (VI) for diluted samples 

collected on 20/06/03 110 



XIV 

Table 6.9 Average concentration (mg/L) of metals in the samples 

collected on 9/06/03 111 

Table 6.10 Average concentration (mg/L) of metals in the samples 

collected on 20/06/03 112 

Table 6.11 Orlik chemical suppliers' analytical results for the 

nickel plating bath (Tank9) 112 

Table 6.12 Chemserve chemical suppliers' analytical results for the 

chromium plating bath (Tank 14) 112 

Table 7.1 Annual volume of flowing rinse water used in flowing rinses 115 

Table 7.2 Total annual volume of water used in flowing rinse tanks 116 

Table 7.3 Annual volume of water used in static rinse tanks 116 

Table 7.4 Annual volume of water used in drag-out tanks 117 

Table 7.5 Annual volume of solvent additions made to process solutions 118 

Table 7.6 Annual volume of water used in making up the process solution baths .... 119 

Table 7.7 Estimation of water usage and cost for the Chrome Shop 119 

Table 7.8 Optimal value for rinsing criteria 121 

Table 7.9 Effluent discharge and contaminant concentration limit values 121 

Table 7.10a An estimate of annual water savings for the plating processes 122 

Table 7.10b An estimate of annual water savings for the plating processes 123 

Table 7.11 Rinse water tanks in the MDCPL 124 

Table 7.12 Annual usage and cost of input materials 139 

Table 7.13 Waste Minimisation Cost Assessment Table for the MDCPL 141 

Table 7.14 Estimation of Ni waste using existing data 142 

Table 7.15 Estimation of Ni waste using new data 143 

Table 7.16 Estimation of Cr waste using existing data 144 

Table 7.17 Estimation of Cr waste using new data 144 

Table 7.18 Estimation of maintenance materials used in Ni plating 

and their costs using existing data 145 

Table 7.19 Estimation of maintenance and reactive rinse chemicals 

used in Cr plating and their costs using existing data 146 

Table 7.20 Estimation of annual drag-out loss using existing data 146 

Table 7.21 A True Cost of Waste summary: quantity and cost breakdown 147 



CHAPTER X 

INTRODUCTION TO THE ELECTROPLATING PROCESS 



1 

CHAPTER 1 

INTRODUCTION TO THE ELECTROPLATING PROCESS 

Electroplating is a process of coating a conducting surface with a metal using electrolysis. ' ' 

The metal referred to in this definition is a thin 10"5-10"' mm layer (coating or plate) which is 

deposited on the surface of the object (workpiece, substrate or base metal item) which is 

undergoing electroplating.4 The workpiece can be made of metal throughout or merely have a 

conducting outer surface. Special coating techniques, using a metallic loaded paint or silver 

reduced spray, can be utilised to make non-conducting surfaces, such as plastic and glass, 

electrically conductive for electroplating.5 The electrolysis reaction involved in plating takes 

place at the surface of the workpiece which is made the cathode in an electrolytic cell. 

Electricity is used to reduce metal ions, usually from the solution, onto the workpieces. 

There are three main reasons for electroplating: for decoration, to slow or prevent chemical 

corrosion and for functional purposes.6'7' *•9 Electroplating is therefore used to change the 

properties of the surface of a workpiece, for example its strength, resistance to abrasion, 

chemical resistance, size, hardness, solderability, electrical conductivity and reflectivity.10 

The process has been used successfully in coating objects of many different sizes, shapes and 

composition. These include solid objects such as jewellery, screws, nuts and bolts, wire 

products such as shelving, grilles and baskets and sheet (steel) objects such as shelving, car 

bumpers and hubcaps. 

A literature survey was carried out to characterise the electroplating process in terms of the 

chemicals, equipment, operating conditions and the electrochemical principles used in the 

industry. The results are presented and discussed in this chapter from the point of view of 

waste minimisation. Section 1.1 outlines the chemical and electrochemical stages found in 

electroplating. In Section 1.2 and 1.3, some of these stages are discussed in greater depth. The 

manual (jigs, barrel and basket), mechanised (jigs and barrels) and automatic (mainly barrels) 

means by which the workpieces are contained and moved down the electroplating line and 

other equipment (tanks, cathodes, anodes and power supply) will be discussed in the context of 
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how the (electro)chemical demands of industrial electroplating can be characterised using a 

waste minimisation approach. Section 1.4 looks at how these issues affect chromium plating 

specifically. 

1.1 BREAKDOWN OF THE ELECTROPLATING PROCESS 

A typical electroplating process is made up of three surface treatment stages namely pre-

treatment (cleaning and activation of the workpiece surface), the metal deposition (plating) step 

and the post-treatment (passivation, neutralisation and/or sealing) of the plate (see Figure 1.1). 

These can be chemical (degreasing, cleaning, pickling, etching, coating and electroless plating) 

or electrochemical (plating, electrocleaning, electropolishing and anodising) processes."' I2 

Electroplating uses a number of hazardous inorganic such as cyanides and chromates and to a 

lesser extent organic chemicals such as halogenated hydrocarbons in these cleaning, metal 

deposition and passivation steps. These chemicals are used in aqueous solutions, usually 

contained in a dip tank. They are commonly called process solutions.12 The workpieces are 

immersed (dipped) in the process solutions one after the other, starting with the cleaning 

solution (usually alkaline then acid), then the plating solution and finally the passivation 

solution. The cleaning solutions remove grease, oils, metal oxides and scales which have 

accumulated on the surface during the manufacturing process or from rusting. Depending on its 

end purpose, a strike may be applied to the workpiece after acid cleaning but before final 

plating. A strike is a solution used to quickly produce an initial thin layer of plate which 

completely covers the workpiece. This has been found to improve the adhesion of the 

subsequent plates and the quality of the final plate.13 Typical examples include a copper strike 

followed by a nickel layer on zinc based die-castings before chromium plating, a nickel strike 

or a copper strike followed by a nickel layer on steel before chromium plating, a cadmium or 

tin strike on cast iron before zinc plating.14, 15 In some plating processes, such as hard 

chromium plating, strikes are not used and the final plate is deposited directly on the workpiece 

after acid dipping. After final plating, generally the workpiece is treated with passivating 

solution to reduce corrosion of the plate and prevent discoloration.14 



Solvent cleaning (optional) 

iz. 
Rinse 
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Alkaline soak cleaning 

sz 
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Acid pickling 

1L 
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iz 
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iz_ 
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iz 
Electroplating 

iz. 
Rinse 

iz 
Passivating 

Drying 

Figure 1.1 Simple process flow diagram of the stages in electroplating operation 
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The loss of chemicals from the process solution arises mainly from their consumption in the 

chemical reactions which make up the surface treatment process. However, process solutions 

can also be lost from the tank by drag-out. Drag-out occurs when solution is pulled out of a 

processing tank on the surface of the work being transferred.15 This happens when the 

workpieces are manually or automatically moved from one dip tank to another down the 

electroplating line. 

An electroplating line is the layout of the process tank solutions in which one (or more) metal 

finishing treatment is applied to workpieces." It may or may not be in the same order as the 

dipping sequence used to treat the workpieces. Drag-out has been reported as a significant 

cause of contamination of one process solution by another. • • • This can be reduced by 

having rinse tanks between the process tanks (see Figure 1.1). The rinse water washes the 

process solution covering the workpiece into the rinse tank where it mixes with the rinse water. 

This also stops the chemical reactions on the surface associated with the cleaning, 

electroplating and passivating and limits chemicals coming out of solution and depositing as a 

stain on the surface. ' ' The drop in chemical content of a process solution can be measured 

and the appropriate amount added to restore it to its original value. This is known as topping-

up.14'21 However when the solution eventually becomes ineffective, through contamination for 

example, it is termed "spent".12 The solution is then thrown out (dumped) and replaced with a 

fresh solution (make-up). Post-treatment solutions are generally replaced more frequently 

(every few days, weeks or even months) than pre-treatment solution. Well maintained (filtered 

and/or chemically treated) plating solutions should last for years or decades.3 The chemistry of 

the process solutions will be discussed in Section 1.3. 

There are two basic types of rinsing used in electroplating, namely spray and immersion.14' " 

The most common of these is immersion which involves dipping the workpieces in a tank of 

water. Immersion rinsing leaves a thin liquid film on the surface of the item which has the 

same concentration as the rinse tank solution. There are a variety of ways in which to carry out 

immersion rinsing. These include single or multiple static rinsing, single or multiple running 

rinses and cascade countercurrent rinsing.18 
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A static rinse, also called a still recovery or stagnant rinse, is a rinse tank with no water inlet or 

outlet for continually changing the water used for rinsing.1 This rinsing system is usually used 

when a high quality rinse is not required. A static rinse is generally placed directly after the 

process tanks. The water from this rinse solution is often used to top up the process bath in 

order to replace the volume lost by drag-out and by evaporation. Static rinses produce the 

smallest volume of wastewaters but at higher concentrations than found for flowing rinses. 

A flowing rinse has an inlet and outlet in the tank which allows water to flow into the filled 

tank from the water supply and exit from the tank into the effluent treatment plant then the 

sewer. The water is added continuously to wash out the contaminants from the rinse water. The 

rinse water usually enters from the bottom of the tank and leaves from the top of the opposite 

side. In a multiple system there are several tanks lined up one after the other. Cascade counter 

current rinsing has the rinse water moving through a series of tanks as shown in Figure 1.2 

below. This water flows in the opposite direction to that in which the workpieces are travelling 

down the line. This means the water coming out of the last rinse tank (which is the cleanest) is 

piped into the tank before it on the line and so on down the line. These rinse systems are 

usually found together with the drag-out (static rinse tank) immediately after the plating tank, 

after the acid cleaners and after the post-treatment passivation and are named after each 

process i.e. plating rinse, acid rinse and passivation rinse. 

Workpieces movement 

i 
Process 

tank 
Rinse 
tank 1 

Effluent 

Rinse 
tank : 

* 

* 

Rinse 
tank3 

t 
Rinse water influent 

Figure 1.2 Three stage cascading rinse systems 11,12 

The quantitative aspects of rinsing pertaining to waste minimisation will be discussed in 

Section 2.4.2 of Chapter 2. 
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1.2 CHEMICALS USED IN THE PRE-TREATMENT STAGE 

The surface of the workpiece must undergo preparation or pre-treatment before a metallic plate 

can be successfully applied to it. This is done to remove any contaminants from the surface 

and, in some cases, to activate the surface for plating or further treatment."',4,15 

A number of cleaning methods have been developed in order to remove the contaminants 

without damaging the workpiece. These include chemical, mechanical and other specialised 

cleaning methods such as ultrasonic cleaning.22 Chemical cleaning is the most widely used 

industrially and various preparations have been developed to deal with the range of surface 

contaminants found on the workpieces. The selection of a suitable cleaning material for 

chemical cleaning is influenced by the surface to be cleaned (see Section 1.2.2), the dirt or soil 

to be removed, the degree of cleanliness required (see Section 1.2.4), the methods of 

application of the cleaning materials, the impact of disposal of the spent (waste) solution on the 

environment and overall cost of the operation (see Section 6.1 in Chapter 6).23'24 

Contamination of the surface can cause poor adhesion of the plate to the workpiece. This has 

been observed as bare patches on the workpiece and lifting of the plate away from the surface 

(forming a bubble or a blister). In extreme cases this has been known to prevent deposition. It 

also affects the quality of the plate itself. It is well established that poor cleaning causes rough, 

porous, flaky and patchy coatings.3,14 The main sources of such surface contamination are the 

manufacturing process and the exposure to the environment. The manufacturing process leaves 

organics such as oil or grease and inorganics such as mineral dusts and scales on the surface. 

Exposure to the atmosphere can cause rust and tarnish to form on the surface. These have been 

termed extrinsic and intrinsic contaminants respectively.7 

Cleaners can be applied to the surface by immersion (soak or electrolytic) in a chemical bath 

and by spraying cleaners from nozzles mounted close to the tank lip or on a series of upright 

pipes or risers in a tunnel. Spray and electrolytic methods have been shown to be more 

effective." This has been put down to the combined mechanical and chemical cleaning which 

takes place in such cases. However, there are application problems such as ensuring that the 

spray reaches all parts of the surface and of excessive foaming of the detergents during 
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spraying. This has raised concerns in the industry that spraying may lessen the solution 

concentration of the detergent and reduce the cleanliness of the workpiece compared to that 

obtained by immersion cleaning."'I2 

In chemical cleaning, contaminants are removed by active reagents and additives dissolved or 

emulsified in the cleaning solution. Chemical cleaning covers both solvent cleaning and 

aqueous cleaning.25 With safety, health and the environment (SHE) considerations to take into 

account, aqueous cleaners including alkaline soak cleaners, acid soak cleaners and electrolytic 

cleaners have become the more widely used in industry.25'26'27'28 These will be discussed in 

Sections 1.2.2 to 1.2.4. Solvent cleaners will be discussed in Section 1.2.1 and non-chemical 

based cleaning methods will be described briefly in Section 1.2.5. 

1.2.1 SOLVENT CLEANING 

Solvent cleaning is a surface pre-treatment process that has been developed for removing 

organic compounds such as grease or oil from the surface of a workpiece. The organic 

compounds are dissolved off the surface of the workpiece by the solvent. There are two 

principal types of solvent cleaning, namely cold solvent cleaning and vapour degreasing.29 

Cold solvent cleaning is carried out at room temperature. It is used most often for low 

production applications where time spent cleaning is not central to process efficiency and in 

situations where initial equipment costs must be kept down and so inexpensive cleaning is 

essential.29 After cleaning, workpieces may be dried at room or elevated temperatures by 

centrifugation or air blowing usually with a compressed air line. Some common examples of 

cleaners used in this process are aliphatic hydrocarbons such as kerosene, petrol and naphtha; 

chlorinated hydrocarbons such as methylene chloride (CH2CI2), 1,1,1-trichloroethane 

(CH3CCI3); alcohols such as ethanol (C2H5OH)or isopropanol {CH3(COH)CH3}; and other 

solvents such as acetone {CH3 (CO)CH3}.23,29 

Vapour degreasing is a cleaning process which uses hot vapour of non-flammable solvents to 

remove oils, grease and waxes from the workpieces. Workpieces are placed in the bottom of 

what is known as a vapour degreasing unit. The unit consists of a tank with a heated solvent 
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sump at the bottom and a cooling zone at the top. Heat applied into the sump boils the solvent 

and generates hot solvent vapour. When this hot vapour reaches the cool workpieces in the 

cooling zone the vapour condenses on the workpieces and dissolves the dirt. There are two 

main benefits of vapour degreasing.23 Firstly, because the workpieces are heated by the 

condensation of the solvent vapours onto the workpieces surfaces, workpieces dry immediately 

as they are withdrawn from the vapour zone. Secondly the solvent vapour that carries out the 

cleaning is not polluted with oil and grease removed from the surface. These are left behind in 

the bottom of the tank when the liquid solvent vapourises again. 

The most commonly used vapour degreasing solvents are trichlorethylene (CHCICCI2), 

perchloroethylene (C2CI4), 1,1,1-trichloroethane (CCI3CH3), methylene chloride (CH2CI2) and 

trichloro-trifluoroethane (CCI3CF3).30 These are viewed as detrimental to the environment and 

their use is being phased out or discouraged.31 

1.2.2 SOAK ALKALINE CLEANING 

Alkaline cleaners are specifically formulated chemical blends composed of alkaline builders, 

buffers, water softeners, surfactants as wetting agents or emulsifiers, and chelating 

agents.23'32'33 Alkaline builders cover a broad group of chemicals such as sodium hydroxide 

(caustic soda, NaOH), potassium hydroxide (caustic potash, KOH), phosphates {trisodium 

orthophosphate (Na3P04), disodium orthophosphate (Na2HP04), monosodium orthophosphates 

(NaH2PC>4) and sodium tripolyphsphate (NasPsOio)}, silicates {sodium orthosilicate (NajSiCU) 

and sodium metasilicate (Na2Si03>} and sodium carbonate (soda ash, Na2CC>3).3'7' 32 The 

cleaning action of the builders is largely carried out by the saponification of oil and grease (see 

Equation 1.1). The alkali metal hydroxides in particular, and to a lesser extent the other 

builders, provide hydroxide ions to saponify oils and grease (carboxylate esters) and release 

long chain (10-18 carbon atoms) carboxylates (soaps) into the solution. 

RCO2CH3 (s) + NaOH(aq) ^ RCOj (aq) + Na+(aq) + CH3OH(aq) Equation 1.1 

R = Hydrocarbon chain 
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Sodium and potassium hydroxide produce highly alkaline solutions of pH values ranging from 

12-14.32 However, these compounds have low cleaning ability for non-saponifiable soils. The 

soaps produced when alkalis are used on saponifiable compounds in the grease film can 

improve the cleaning by their surface activity and the soil carrying capacity of the cleaners (see 

Equation l.l).33 The other builders also have a surface active cleaning effect which allows the 

cleaners to remove non-saponifiable dirt. 

Sodium orthosilicate and sodium metasilicate are the main silicates used in alkaline cleaners. 

They develop their alkalinity through hydrolysis. Hydrolysis is a process in which a salt reacts 

with water to produce an acid and a base.34 In this case the silicates hydrolyse to form 

hydroxide and silicic acid (see Equation 1.2). 

Na2Si03(s) + 2H20(l) ^ 2NaOH(aq) + H2Si03(s) Equation l. 2 

This silicic acid, present in a colloidal state, assists in emulsification and suspension of the 

surface soils. Silicates are known to adsorb on metals such as zinc and steel forming a thin film 

during the cleaning process. This protective coating can reduce oxidation by the alkaline 

solution.33 Chemicals which protect the exposed metal of the substrate are called inhibitors.29 

Equations 1.2, 1.3 and 1.5 show how salt hydrolyses of silicates, phosphates and carbonates 

form alkaline solutions. The hydroxide ions produced in the equilibrium can participate in the 

reaction shown in Equation 1.1. 

Carbonates are a cheap source of alkalinity like silicates and phosphates.32 They have a 

buffering effect that helps to stabilise (keep down) the pH of the solution during the cleaning 

process (see Table 1.1). 

C03
2_(aq) + H20(1) ^ HCO"(aq) + OH"(aq) Equation 1.3 

Carbonates and phosphates are also used for softening hard water which contains chlorides, 

sulfates and bicarbonates salts of magnesium, calcium and iron. They react with the 
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magnesium, calcium or iron cations which are responsible for the hardness of the water to 

remove them as an insoluble precipitate.3'35 

CaCl2(aq) + Na2C03(aq) — CaC03(s) + 2Na+(aq) + 2Cl"(aq) Equation 1.4 

Phosphates are used in alkaline cleaners in the form of orthophosphate (PO3,), 

pyrophosphate ( P ^ ' j o r tripolyphosphates(P30'o). In aqueous solutions phosphates help to 

provide an alkaline environment required for effective cleaning.35 

P3O[0- (aq) + H20(1) ^ HP30^ (aq) + OH(aq) Equation 1.5 

Proprietary surfactants provide the wetting and emulsification properties that lower the surface 

and interfacial tensions of the water in the solution and prevent soil re-deposition onto the 

workpieces being cleaned. Surfactants frequently used in aqueous based cleaners are either 

fatty acid soaps (as formed in Equation 1.1) or synthetic organic surfactants.26 These 

surfactants are classified as anionic, cationic, non-ionic or amphoteric.26'36 Anionic surfactants 

like alcohol ether sulfonates {for example isopropanolamine dodecylbenzenesulfonate, 

NH2CH2C(OH)(CH2)i2C6H4SC>3"Na+} and non-ionic surfactants like alkyl phenol ethoxylates 

{for example nonylphenol ethoxylate, C9Hi9C6H4(OCH2CH2)nOH} are the most widely used 

compounds in the electroplating industry for cleaning.32 Non-ionic surfactants remove oils 

from the surfaces of the workpieces but are not as good as anionic surfactants at keeping dirt 

particles in suspension. These are however the preferred type for addition to electroplating 

solutions where they do not become involved in electrochemical reduction or oxidation.36 

Complexing agents are used in alkaline cleaners to soften water and complex metal ions that 

form undesirable products such as hard water soap scum. Some widely used chelating agents 

are sodium gluconate, ethylenediaminetetraacetic acid (EDTA), sodium tripolyphosphate, 

sodium citrate, nitrilotriacetic acid (NTA), hydroxyethylenediaminetriacetic acid (HEEDTA), 

triethanolamine and l-hydroxyethylenediamine-l,l-diphosphoric acid (HEDP).23'26'33 
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Solution composition and concentration have been used to divide alkaline cleaners into three 

main groups: heavy, medium and light-duty cleaners (see Table 1.1). Heavy-duty cleaners are 

usually used to remove soils like grease and oil from iron or steel workpieces. They are not 

used industrially on brass, zinc or aluminum substrates. The hydroxide ions attack the zinc in 

zinc die-casting, aluminum and brass forming zincate and aluminate ions in solution. Medium-

duty cleaners are applied to clean steel and in certain cases for brass. Light-duty cleaners are 

utilised to provide a final clean to brass or zinc die-castings and to wet their surfaces ready for 

electroplating. 

Table 1.1 Formulation of alkaline cleaners solution 

Solution composition 

Sodium hydroxide, NaOH 
Sodium carbonate, Na2CC>3 
Tribasic sodium phosphate, Na3P04.12H20 
Sodium metasilicate, Na2Si03.5H20 
Wetting agents 
Operating temperature (°C) 

Concentration of chemicals in the cleaners (g/L) 
Heavy-duty 

37.5 
25 
6.2 

-
1.5 

80-95 

Medium-duty 
12.5 
25 
12.5 
12.5 
0.75 

80-90 

Light-duty 
-
-

25 
25 

0.75 
80-90 

1.2.3 ELECTROLYTIC CLEANING 

In electrolytic cleaning (electrocleaning) the workpiece is made the anode or cathode in a 

specially prepared alkaline cleaning solution. The method is used after alkaline soak cleaning 

for the final removal of any residual soil from the workpieces prior to acid dipping. As such, 

electrocleaning solutions are not primarily formulated to chemically remove large amounts of 

oil or grease from the workpiece's surface. During cleaning a direct current is applied through 

the solution at a current density of 1-15 A/dm2.23 It is the scouring or scrubbing of the 

workpiece surface by the gas bubbles produced from the reaction that takes place during 

electrolysis of water and hydroxide ions (see Equations 1.6 and 1.7) that loosens and removes 

any remaining surface contamination. • 

Cathode reaction: 4H20(1) + 4e" -» 40H"(aq) + 2H2(g) Equation 1.6 

Anode reaction: 40H"(aq) -* 2H20(1) + 02(g) + 4e" Equation 1.7 
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The two main methods of electrocleaning used industrially are cathodic (direct) and anodic 

(reverse) electrocleaning.13 In cathodic cleaning the workpiece is used as a cathode (see 

Equation 1.6) and the anode is made of steel or more commonly (and incorrectly) the tank 

walls. During the process hydrogen ions are discharged to produce hydrogen gas on the surface 

of the workpiece. 

Equations 1.6 and 1.7 show that, on a mole basis, twice as much hydrogen is evolved at the 

cathode when compared to oxygen at the anode at the same current density. This means 

stronger agitation for lifting soil off the surface and better surface cleanliness is obtained in 

cathodic compared to anodic electrocleaning.13'23 However, exposure to hydrogen produced 

during electrolysis can have a detrimental effect on the integrity of the hardened workpieces. 

This is known as hydrogen embrittlement.14' ,5' 39' 40 This occurs when atomic hydrogen, 

liberated on the metal part, penetrates the metal surface to become absorbed inside the bulk 

metal. The hydrogen can then form chemical compounds (hydrides) with the metal or can 

diffuse into the base metal and form hydrogen gas which leads to rupture and cracking of the 

part.40 Hydrogen embrittlement is frequently encountered in steeL aluminum, copper, nickel, 

titanium and zirconium substrates.39' 4I Hydrogen embrittlement can be reduced by using 

anodic cleaning, keeping the cathodic cleaning time to a minimum or baking the workpieces at 

high temperature (about 200 °C) for a period of time (about 2-3 hours) after cleaning to drive 

off the hydrogen held inside the workpieces.23'42'43 The negative charge on the workpieces has 

been found to attract positively charged species such as metallic ion impurities and some 

colloidal materials causing them to plate-out as a loose smut on the metal surface. 

The disadvantages associated with the use of direct electrocleaning have led to anodic cleaning 

becoming more widely used.13 In anodic electrocleaning (reverse current cleaning) the 

workpiece is made the anode. Electrons are discharged by the hydroxide ions to the metal 

resulting in the liberation of oxygen gas. A higher current density must be used for anodic 

electrocleaning in order to produce an equivalent volume of oxygen to maintain good scouring 

action.44 Exposure to the oxygen evolved has been observed to passivate the surface by 

creating oxide films on the anode surface. Dissolved oxygen generated at the anode has been 

known to also oxidise organic additives in the cleaner.13'23 However the oxides can be removed 
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in the next stage (acid cleaning). The metal surface does not absorb oxygen because the oxygen 

atoms are too large to penetrate the structural packing of the metal workpiece.44 

Electrocleaning is often carried out using cathodic and anodic electrocleaning together.14 This 

is called periodic reverse cleaning and the polarity of the workpieces is switched every few 

seconds between negative and positive potentials. Anodic electrocleaning is preferred as a final 

step in the preplate cycle because it removes any bath contaminants that have plated onto the 

workpiece surface.13,23 

1.2.4 ACID CLEANING 

Treatment of the surface of workpieces with acid solutions is undertaken to remove oxides and 

to neutralise residual alkaline films dragged out from the rinse. Acid cleaning includes pickling 

and bright dipping. Pickling is the removal of thick oxides, scales and tarnish by chemical 

reaction with acids (see Equation 1.8).14 It also includes a light etch of the surface of the metal 

workpiece by the acid (see Equation 1.9) for better adhesion.45 

M20„(s) + 2nH+(aq) -* 2Mn +(aq) + nH20(l) Equation 1.8 

M(s) + 2H+(aq) — M2+(aq) + H2(g) Equation 1.9 

Pickling is usually performed as a preparatory step before plating. Natural inhibitors such as 

coal tar, gelatin and glue or synthetic inhibitors such as aldehydes, amines (triethanolamine) 

and pyridines can be used in the pickling solution.43 Inhibitors minimise acid consumption, 

production of smut, hydrogen embrittlement and over etching of the metal workpieces (see 

Equation 1.9).40 

Bright dipping, as its name suggests, is a cleaning process used to produce a clean and lustrous 

surface after pickling.13 This is usually the final step in the cleaning process and removes thin 

oxides or tarnish films to activate the surface without significant etching of the metal 

workpiece. 
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Depending upon the workpieces, and the type and thickness of the oxides involved, many acids 

and combinations of acids can be used for acid dipping. The most widely used acid dips are 

solutions of sulfuric acid (H2SO4) and of hydrochloric acid (HO).45'46 Sulfuric acid is most 

often used because it is the least expensive. The pickling rates can be enhanced by increasing 

the acid concentration, temperature and degree of agitation of the solution. The optimum 

concentration range for H2SO4 is 20-30% by mass of the concentrated acid.40 Like alkaline 

soak cleaners, H2SO4 baths can be operated hot up to 95 °C.4 On the other hand HC1 solutions 

give off acid fumes at high temperatures and cannot be operated above 40 °C.40 The optimum 

concentration of HC1 used for the pickling process is 1-10% of the concentrated acid by mass.4 

It has been found that HC1 is faster and more economical on a large scale where recovery and 

regeneration is practical. Its disadvantage compared with H2SO4 is its higher cost for the acid 

waste sludge disposal and its greater acid consumption.4'40,45'47 

1.2.5 NON-CHEMICAL CLEANING 

Mechanical and ultrasonic cleaning do not use chemicals to remove dirt. The former is a dry 

abrasive method used either as the only cleaning step to obtain a specific kind of surface on the 

workpieces or as a preparatory step to remove heavy solid deposits before chemical cleaning or 

coating. The method includes blasting, polishing, buffing, grinding and deburring where the 

surface of the workpiece is cut or worked by abrasives.9'l1,48'49 These abrasives are moved 

over the surface of the workpiece on rotating wheels or moving belts or they strike the surface 

when sprayed in air or water.11 Mechanical cleaning is useful for removing surface roughness, 

scales, burrs, scratches and irregularity of edges resulting from the primary production stage. It 

is not very good for precision cleaning. However, for large prefabricated structures such as 

bridge girders and hulls of ships, it may be the only feasible method available.4 

Ultrasonic cleaning involves the use of high frequency ultrasonic sound waves, usually in the 

range of 20-40 kHz in a tank of cleaning solution.7'50'5I Ultrasonic sound waves are waves 

which have a frequency above 18000 Hz.42' •52 These waves are transmitted into the cleaning 

solution by a transducer. A transducer is an instrument that converts electrical energy into 

mechanical energy. The cleaning solution can be trichlorethylene or any alkaline metal cleaner 

usually heated to 60 °C.43 The pressure front created as the sound waves pass through the 
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cleaning solution produces millions of microscopic bubbles at the surface of the metal 

workpiece. When these bubbles implode, the shock waves produced enhance cleaning by 

stripping away contaminants from the workpiece.53 This phenomenon is known as cavitation.54 

Ultrasonic cleaning action can penetrate cracks, concealed holes and crevices of workpieces 

making it suitable for precision and general cleaning. The main application of ultrasonic 

cleaning in industry is in the manufacture of small precision components, such as watch parts 

and intricate jewellery.14 

1.3 THE ELECTROPLATING STAGE 

In basic terms electroplating is an electrochemical reduction process in which a dissolved metal 

is precipitated out of solution, usually onto a metallic surface. The workpiece to be plated is 

made the cathode in an electrolytic cell (see Figure 1.3). A plating cell is an electrolytic cell 

which uses electrical energy from a direct current source to make a non-spontaneous reduction 

reaction proceed at the surface of the cathode during electrolysis.55 The cathode, a negatively 

charged electrode, is the workpiece at which positive ions are discharged as a deposit of metal 

when there is a flow of current.7'56 An electrolyte is a solution that contains ions of the plating 

metal.57 The anode is the positive electrode and is usually made of the plating material. When a 

current passes, the plating metal is dissolved from the anode into the solution (oxidation of the 

solid metal). The dissolved ions of the plating metal move through the solution to the cathode. 

The plating metal is then deposited from the solution onto the surface of the cathode (reduction 

of the aquated or complexed ions). However in some cases like chromium, a salt of the plating 

metal is dissolved in the solution. This has proved a better way of getting the required amount 

of metal (plate) ions into the solution when oxidation of the solid anode to aqueous ions is 

problematic. In such cases a "dummy" lead alloy anode is used to complete the circuit and let 

current flow through the cell.'' 
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Figure 1.3 A typical electroplating tank 56 

Figure 1.3 above shows an electroplating tank together with the anode and cathode bars (flight 

bars) from which the anode and cathode are hung. The cathode is connected to the negative 

terminal of a rectifier and the anode to the positive terminal. A rectifier is a device that 

converts an alternating current into a direct current by permitting flow of current in one 

direction and providing a high resistance in the opposite direction.58'59 It also reduces the 

incoming voltage from thousands of volts from the power station to 220 V (single phase) and 

380 V (three phase) on the rectifiers. Single phase rectifiers are used for small scale and 

experimental operations of electroplating and other electrolytic processes that require a current 

up to about 150 A.14'58 However for chromium plating three phase rectifiers are required.5 

Current from the rectifiers is supplied to the electroplating tank by means of flight bars. These 

are made from high conducting metals such as copper rods or brass tubes or tin-plated 

aluminum.14,58 Workpieces are hung in the centre of the bath and the anodes symmetrically on 

the outside as shown in Figure 1.3. 

Electroplating tanks (vats) are used to hold rinse waters and process solutions in the 

electroplating line. There are different kinds of tanks used in an electroplating line. These tanks 

can be used bare or lined with rubber, plastics or lead depending on the composition and the 

type of solution employed in the process. The most commonly used tanks are made of mild 

steel, stainless steel and plastics. Due to their low cost, good mechanical strength and 
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convenience in construction, mild steel tanks are widely used in most electroplating plants. ' 

These tanks are employed without protection for alkaline solutions and cyanide containing 

solutions. When lined with plastics, they are used to handle acids and acid plating solutions. 

Stainless steel tanks are the second most widely used after mild steel. They are employed for 

holding hot rinses, alkaline cleaners, pickling solutions such as nitric acid, chromic acid or 

sulfuric acid, fluoride free acid dips and plating solutions. Commonly used plastic tanks 

include polyvinyl chloride (PVC), polyethylene, polypropylene, fibre re-inforced polyester and 

Perspex. 

During the electroplating process, workpieces are manually or automatically moved from one 

dip (immersion) tank to another down the electroplating line. They are either contained in 

barrels or baskets or alternatively are mounted on frames called jigs or racks. Barrels are used 

for the bulk processing at one time of many small to medium sized workpieces such as screws, 

nuts, bolts, washers, small fasteners and certain electronic contacts.25'29 They are generally 

made of polypropylene. There are two common types of barrels used in electroplating: 

horizontal and oblique (see Figure 1.4 and 1.5). 

Figure 1.4 Perforated horizontal barrel Figure 1.5 Oblique barrel37 

Horizontal barrels are by far the most widely used in industry for handling large loads and a 

variety of workpieces. These barrels have a hexagonal cylindrical shape and a diameter ranging 

from 15-75 cm." One of the barrel walls contains an opening with a removal panel through 

which workpieces can be loaded and unloaded. They are fitted with a handle for lifting the 

barrel in and out of the solution by hand or hoist. Horizontal barrels containing the workpieces 

are dipped into the solution of the plating line. The anode is positioned outside the barrel as 
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shown in Figure 1.4. This means that barrels and jigs can use the same tank set-up. These 

barrels can be rotated to tumble and mix the workpieces with the plating solution and bring 

them in contact with the cathode. The cathode is a flexible cable with a metal tip on the free 

end commonly referred to as a "dangler".60 It enters the barrel through openings in the two end 

walls. Depending on the diameter of the barrel and the nature of the article to be plated, barrels 

can be rotated at variable speeds. Big barrels are operated between 6-12 revolutions per minute 

and small ones at 10-15 revolutions per minute.58 The plating solution enters and leaves the 

barrel through cylindrical holes in the sides and door. The total number of holes is usually 

under 30% of the barrel surface area in order to optimise the barrel strength and maintain good 

plating performance.60 

The barrel is effectively a resistance to current flow in the solution (see Equation 1.13). This 

has resulted in platers using voltages higher than, and getting current density lower than, that 

used in rack plating.61 Current density is the rate of current flow per unit area of the electrode 

in the solution.15' In many cases, the chemical supplier advises the electroplaters on what 

current density should be used with a particular plating solution at a given temperature. This is 

so that plating is carried out at current densities below that which causes burning or roughness 

but above that which would give no coverage. The barrel plating process does not require 

solution agitation, wiring (i.e. jigging) of workpieces or special (conforming) anodes for 

different shapes of workpieces as with rack plating.62 Although barrels have been widely used 

in industry, there are some problems with their use. The surface of the barrelled workpieces 

can be scratched during tumbling, the parts can get caught up and stuck in each other and with 

the danglers.37 Other problems with barrelling are electrochemical in nature. For example 

barrel processing requires a higher voltage than jig plating due to the resistance added by the 

barrel walls. This will be discussed in Section 1.3.1. 

Oblique barrels are generally used to hold small loads of very small workpieces such as 

screws.58 They have an opening in the end wall for loading and unloading workpieces. Oblique 

barrels are constructed in one of two ways: either with solid walls to contain the plating 

solution or with porous walls to be contained in the plating solution. In the former case the 

anode and cathode as well as the workpieces are all inside the barrel. In the latter case the 



19 

cathode is inside the barrel and the anode is positioned outside the barrel in the bulk solution of 

the plating tank. 

Jigs are widely used as an alternative means of dipping workpieces in a bath of an 

electroplating line. They are used to process workpieces that are too heavy, too large or too 

complex in shape to be barrel processed.25'29 In the process, the workpieces are held in a fixed 

position on a vertical frame by copper wiring or by hooking them in place. The jigs are then 

hung vertically from bus bars which lie across the surface of the tank solution. Ideally the top 

of the jig should be 15 cm below the surface of the solution and the bottom of the jig should be 

15-30 cm above the bottom.15 This practice has been used successfully to prevent disturbance 

of sludge lying on the tank bottom during transfer of jigs from one solution to another or when 

shaking the immersed jig to provide agitation. 

Jigs are generally constructed from copper because of its high current carrying capacity, ease 

of fabrication and relatively high strength.44 In fact all current in the external circuit is carried 

by copper or brass cables. Jigs are coated with a suitable insulating material such as polyvinyl 

chloride, waxes, lacquers or sprayed plastic coatings with only the conducting tips left 

exposed. The purpose of the insulating coating is to restrict current loss and so prevent metals 

from plating onto the jig.58 It also protects the jig from corrosion and thus keeps the plating 

solutions free from contamination by the resulting corrosion products. 

Figure 1.6 Different types of jigs used during cleaning and plating of workpieces 
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It is often found that during plating the jig tips become coated with an excess of the plated 

metals. This can entrap the plating solution leading to drag-out which can contaminate the rinse 

water tank. The plate has been known to reduce the flexibility of the tips causing breakage and 

so down time in production results. To avoid all these problems the plated metals are usually 

chemically stripped off the jigs by dipping them in different solutions. Depending on the nature 

of the plated deposit and the workpieces, the solution used for stripping can be nitric acid, 

hydrochloric acid, sulfuric acid or phosphoric acid. Sometimes the plated metal can be stripped 

off the jigs by using electricity. For example the anodic stripping of chromium is accomplished 

by using electricity in a solution of sodium hydroxide and sodium carbonate.14 The coated jig 

made with the anode in an electrolytic cell is oxidised from chromium to chromium(VI), 

Cr(VI). The resulting Cr(VI) forms the eliminate io^CrO^", in the alkaline solution. Equation 

1.10 shows that CrO^" ions are predominant in alkaline or dilute aqueous solutions while 

dieliminate ions,C^O,", are the preferred species in acidic or concentrated solutions. 

2 Cr04
2_ (aq) + 2H+(aq) •* Cr20*" (aq) + H20(1) Equation 1.10 

Baskets (perforated buckets) are used to process very small workpieces such as screws by 

hand. Generally the baskets are made of plastics such as polyvinyl chloride and polypropylene. 

Figure 1.7 Baskets used in the electroplating plant for cleaning workpieces 
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The electroplating solution is in fact more complex in its chemistry and operation than is 

described above. A more detailed account of the electrochemistry and chemistry involved in 

electroplating is presented in Sections 1.3.1 and 1.3.2 respectively. 

1.3.1 THE ELECTROCHEMISTRY BEHIND ELECTROPLATING PROCESSES 

The voltage or potential for a reduction reaction (for example, Equation 1.11 below) under 

equilibrium conditions where hydrogen is the reference electrode, is approximately given by 

the Nernst Equation (see Equation 1.12).3 

M"* + ne" 5* M Equation 1.11 

E = E° + — InfMn+1 Equation 1.12 
nF l J 

E° = standard reduction electrode potential, V 

R = gas constant, 8.314 J/Kmol 

T = temperature, K 

n = number of electrons per mole of oxidised form 

F • Faraday's constant, 96485 C/mol 

[M1*] = concentration of the oxidised species, mol/L 

In practice the operating voltage (applied, tank or bath voltage) required to deposit a metal 

plate onto a workpiece in a plating cell is greater than the electrode potential calculated using 

Equation 1.12. The standard reduction electrode potential for the reduction of 

Cr(VI)(dichromate) to chromium metal, Cr, has been reported as 0.40 V.3 Most plating and 

electrocleaning processes use about 8 V.23 Decorative chromium plating uses between 

4-10 V3'63 while hard (functional) chromium plating uses around 12 V.14, 58 Anodising 

requires a higher voltage of about 16 V in sulfuric acid and up to 50 V in chromic acid.43 

There are a number of inherent causes as well as practical reasons for using voltages of around 

8 V.1 For example some of the current generated in the plating cell will become unavoidably 

used up by undesirable electrocleaning reactions. The electrolysis of water, the oxidation of 
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organic additives (e.g. brighteners) and the reduction of metal impurities (e.g. Fe , Cu and 

Pb2+) found in solution are among those side reactions which have been identified as sources of 

energy wastage in electroplating.23, 40'44, M Consequently extra voltage has to be applied in 

order to carry out the desired plating reaction because of these unnecessary but largely 

unpreventable processes.65 These are often referred to as resistances. Equation 1.13 shows that 

the applied voltage is largely made up of the potentials (resistances) equivalent to electrode 

polarisation (Tja and nc) and the solution resistance (Vs). 

V = Ea + Ec + Vs + na + nc + V0 Equation 1.13 

V = applied voltage between cathode and anode 

Ec = equilibrium reduction electrode potential for plating reaction 

i.e. for the cathode reaction (Equation 1.12) 

Ea = equilibrium electrode potential for the anode reaction 

Vs = voltage drop across the plating solution 

T]a = anode overpotential 

Tic= cathode overpotential 

Vo = voltage drop in the external circuit 

The cathode, which is the workpiece being plated, is supplied with electrons from the rectifier 

in the form of current. This means the reactions at each electrode are not at equilibrium. The 

forward reaction in Equation 1.11, i.e. the reduction or deposition reaction, is taking place at a 

faster rate than the oxidation or dissolution reaction at the cathode. Cathode polarisation arises 

only when current is passed through the workpiece. More voltage than Ec has to be supplied in 

order to deposit the metal at a reasonable rate. This is called the overpotential or overvoltage 

and is defined as the difference between the potential of the electrode when it is working l5 i.e. 

carrying a significant current and the "rest" or "reversible" potential when it is not. The 

electrode is said to become polarised. 

The series of standard reduction electrode potentials (SREP) or E° values and the derived 

values from the Nernst Equation are based on the thermodynamics of the reactions at 

equilibrium. Unlike the E° value, the overpotential originates from the kinetics of the reduction 



23 

reaction. Such a change in potential on the cathode and anode from the E (and E) value has to 

do with the concentration gradients and structure of the aqueous layer, the electrode, the type 

of electrolyte (simple or complex ions), solution agitation and the mechanism of the electrode 

reaction taking place.58 The first of these is thought to contribute to the additional voltage 

needed to deposit the metal onto the workpiece. As the metal plates onto the workpiece the 

levels of reducible metal ions in the solution close to the cathode become depleted. This means 

the conductivity of the solution rails and so the solution resistance next to the electrode 

increases. This is reflected in the extra voltage required for reduction. 

Overpotential is not found to be the same at all points on the surface.66 This is a result of the 

shape of the workpieces influencing the current distribution on their surfaces. At points on the 

cathode furthest from the anode i.e. holes and recesses, the solution resistance is higher. This is 

because the path between the anode and the cathode is longer. This means less current will 

flow through the cavities. Such points are said to have a low current density and have low 

overpotential or surface polarisation. Conversely projections from the cathode surface 

including corners, tips, points and edges are high current density areas and have a high 

overpotential. The variation of current density and polarisation is an established cause of 

inconsistent deposit thickness on the workpiece surface and of the quality (poor, medium, 

good) of throwing power of the solution.66 Throwing power is the ability of a plating bath to 

uniformly deposit metal on a cathode surface so plate thickness is the same at all points on the 

cathode.43 A better throwing power can be obtained by choosing an appropriate bath 

composition, appropriate operating parameters, use of auxiliary (internal or inside) anodes for 

coating intricate shapes and use of additional (dummy) cathodes on either side of a workpiece 

in order to take off excess current from the edges.40 A bath with good throwing power is able to 

decrease the excess deposition at high positions and enhance the deposition at recessed 

positions. This is due to the evening out effect of the plate thickness caused by cathode 

polarisation. 

Polarisation makes it harder for current from the rectifier to reach the prominent points on the 

surface. This prevents or reduces the deposition of excess metal at high current density spots 
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reducing burning. Conversely polarisation promotes deposition on the low current density 

areas. This results in a more uniform thickness of deposit on irregular shaped workpieces. 

The multi-step mechanism of the electrolytic reduction of water to hydrogen gas is considered 

to be responsible for the hydrogen overpotential (see Equation 1.6).58 This is the polarisation 

which occurs during the formation of hydrogen gas during the electrolysis reaction.15'58 In a 

mixture such as a plating solution the most easily oxidisable species lying higher in the SREP 

series (more negative E° values) will be oxidised first and the most easily reduced species 

(more positive E° values) will be reduced first. This means hydrogen would be expected to be 

discharged preferentially at the cathode or concurrently with the plated metal. 

The hydrogen overvoltage makes the potential at which hydrogen is reduced more negative. 

When it falls well below the value for the reduction at the plated metal only the metal is 

deposited. This is observed for copper and nickel for example. However, in a few cases like 

zinc and chromium plating the cathodic potential for hydrogen lies close to that for the metal 

reduction. This causes hydrogen to be discharged along with the metal at the workpiece 

surface. In certain types of steel this gives rise to hydrogen embrittlement (see Section 1.2.3) 

and low current efficiency. 

It is necessary for the surface area of an anode to be proportional to the area of the cathode 

(workpiece).56 This is because the current flowing through the solution prefers the path of least 

resistance between the anode and the cathode. This means if the cathode is large, most current 

will flow towards its centre resulting in burning rather than deposition. This leads to high reject 

rates and/or the need for rework i.e. stripping and replating. Increasing the size of the anode 

helps to avoid this but if the cathode is too small more plate will deposit closer to the edges and 

less in the centre. This may give rise to rejects or wasted raw material by plating more than the 

specified thickness. This is wasteful of time and uses more plating and stripping chemicals than 

necessary. 

If all of the current passing through the plating bath is not used to deposit the metal plate, the 

cathode efficiency is said to be low. Cathode current efficiency has been defined as the fraction 
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or percentage of the total current actually used to deposit the metal plate on the workpiece.43'58 

This is represented in Equation 1.14 below. Good current efficiency means the mass of the 

metal deposited equates with that defined by Faraday's Law. 

0 =— Equation 1.14 

0 = cathode current efficiency 

Ic = current passing through cathode associated with deposition reaction 

It = total current passing through the electrolyte 

This can be measured in terms of the actual mass of metal deposited (see Equation 1.15 below) 

compared to the mass which should be obtained at 100% cathode efficiency. This theoretical 

quantity of metal deposited is obtained from Faraday's Law (see Equation 1.15). This law 

states that the mass of the metal produced by electric current is proportional to the quantity, I, 

of electricity used.14 

Measured mass of the electroplated metal 

mass of metal calculated using Faraday's Law 

_ m 
0 = Equation 1.15 

ItM/nF * 
I = current, A 

t = time, s 

m = mass of the electroplated metal, g 

M = molar mass of metal, g/mol 

n = number of electrons per mole of oxidised form 

F = Faraday's constant, C/mol 

This can be simplified to Equation 1.16 

r 
m = 0 Mfri 

Equation 1.16 
\ n F ; 
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For nickel plating cathode efficiency is high, hence very little hydrogen is discharged along 

with the nickel. However, in chromium plating the cathode efficiency is low, reaching a 

maximum of around 20%.7 When the cathode efficiency is poor compared to the anode 

efficiency the levels of plating metal ions can build up to concentrations over the specified 

value. This is wasteful of raw materials which have to be removed from the solution to restore 

the concentration to the specified level. The current efficiency and quality of the plate are 

known to be affected to a greater or a lesser extent by the bath temperature, current density and 

bath composition. 

The current efficiency of most electroplating baths has been reported as increasing with 

increasing temperature and as being largely independent of current density. Increasing the 

temperature of the bath is consistent with increasing the conductivity of the solution hence the 

current that may flow through the cathode.68 This would give rise to an increased deposition 

rate. Increasing current density however, would bring about an increase in the overpotential at 

the electrode surface. The associated increase in resistance would in turn make it more difficult 

for current carried by the solution to reach the cathode. Therefore there would be no apparent 

increase in the deposition rate. In conventional chromium plating baths the current efficiency 

has been found to fall with increasing temperature.40 This has been attributed to the different 

reaction mechanism used in chromium deposition. Compared to other metals Cr(VI) has been 

shown to deposit from a Cr(VI) containing film formed on the cathode rather than directly 

from aqueous or complexed Cr(VI) in the electrolyte solution.4 The thickness of this film 

decreases as the temperature rises because the film becomes more soluble and so the Cr(VI) 

held in the film re-dissolves. This means less Cr(VI) is available in the cathodic film for 

reduction to chromium metal. High bath temperatures give low deposition rates at a given 

current density but the plate has good brightness and the bath has good throwing power. 

In chromium plating, cathode efficiency has been found to increase with current density for 

certain solution compositions (see Self Regulating High Speed solution in Section 1.3.4).67The 

effect of this has been related to the poor throwing power of the bath. On complex shaped 

workpieces there is heavier deposits on corners, edges and points close to the anode. Normally 

corrective action has to be taken in order to ensure uniform coverage. Such action is usually 
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based on increasing the local concentration of Cr(VI) close to the cathode by for example 

agitation of the solution and use of complexing ions in the electrolytes.14'58 These effectively 

increase the supply of Cr(VI) to the cathode film and so higher current density can be used 

without burning occurring at the points on the surface corners and edges. This means low 
CO 

current efficiency in chromium plating can be compensated for by using high current density. 

The minimum current density at which deposition takes place is two or three times that of zinc, 

nickel etc. This in turn requires a high voltage (4-10 V) compared with plating other metals 

which use less current.63 Rectifier capacity is therefore greater for chromium plating (see 

Section 1.3). 

1.3.2 THE CHEMISTRY AT THE ANODE 

Anodes are positive electrodes in a plating bath where oxidation takes place.56 They are utilised 

for two purposes. Firstly, to complete the electrical circuit and secondly, where it is a soluble 

anode, to enable replenishment of the metal content removed during the plating process of the 

plating bath.58 

There are two types of anodes used in electroplating namely soluble and insoluble (inert) 

anodes.4'68 Soluble anodes are electrodes that can undergo oxidation to release metal ions into 

the electrolyte during electroplating processes. In most electroplating processes such as the 

plating of copper, nickel zinc, cadmium, tin, lead and silver soluble anodes made of the 

corresponding metals are used. Soluble anodes are selected when metal replenishment in the 

form of addition of a salt is costlier than in the form of metal. The disadvantages of using 

soluble anodes are tying up capital in the form of costly anodes, cumulative buildup of 

impurities (particles on the surface of the anode, sizing from anode bags or sludges resulting 

from the anode dissolution) derived from the anode material and passivation of the anodes.58 

Passivation is the formation of coatings such as oxides on the surface of the metal which act as 

barriers and prevent further chemical action.14 Passivation can cause a lowering of the metal 

content of the bath due to metal ions not being released from the anode. 
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Insoluble (inert) anodes provide current but not metal ions for plating.4 The ions used for 

plating come from metal salts already in the solution thus the bath needs periodically to be 

replenished by adding more chemicals. Insoluble anodes are generally made of stainless steel 

or platinum-coated metal or lead and lead alloys. These anodes are often used when the 

depositing metal is unavailable in fabricated form or when it is too expensive to use pure metal 

as anodes.4'5 

1.3.3 THE PLATING SOLUTION 

The chemistry of the plating solution and the chemicals used in the plating solution will be 

discussed in this section. Plating solutions used in metal finishing contain both organic and 

inorganic chemicals in addition to the metal ion precursor to the plate and conducting counter 

ions. The plating solution is essentially an aqueous solution which contains a mixture of 

soluble ions of the metal being plated, various electrolytes, complexing agents and additives 

that ensure the electroplate has the desired structures, properties and quality.69 The metal to be 

plated is generally present as a simple hydrated or as a complex ion in an acid or alkaline 

solution.16,69 Acidic electrolytes have been used for the deposition of chromium, nickel, copper 

and zinc.70 Alkaline electrolytes contain the metal as hydroxy, cyano or cyanohydroxo mixed 

complexes and are used for plating copper, zinc, cadmium, gold, silver and brass.16 Except for 

the precious metal baths which are low (for instance, some gold baths operate at gold level less 

than 0.051 moll i. the metal to be plated is present in the solution in high concentration, 

typically 1-3 mol/L.69 The chemical composition of solutions used to plate nickel and 

chromium are given in Tables 1.2 and 1.3 respectively. 

Table 1.2 Composition and operating parameters of conventional chromium plating baths' 
Parameters 

Chromic acid, Cr03 (g/L) 

Mass ratio (Cr0 3 /SOf) 
Temperature (°C) 
Cathode current density (A/dm2) 
Cathode efficiency (%) 

Decorative chromium plating 
200-400 

80:1-125:1 

40-43 
7.5-17.5 

6-12 

Hard chromium plating 
250-400 

75:1-100:1 

54-60 
22-100 
10-15 
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Table 1.3 Composition and operating parameters of nickel baths' 

Parameters 

Nickel sulfate, NiS04.6H20 (g/L) 
Nickel chloride, NiCl2.6H20 (g/L) 
Nickel sulfamate, Ni(S03NH2)2(g/L) 
Nickel fluoborate, Ni(BF4)2 (g/L) 
Boric acid, H3BO3 (g/L) 
PH 
Temperature (°C) 
Cathode current density (A/dm) 
Cathode current efficiency (%) 
Anode 

Watts 

225-410 
30-60 

-
-

30-45 
3-4 

46-71 
1-10 

95-100 
nickel 

Sulfamate 

-
0-30 

263-450 
-

30-45 
3-5 

38-60 
2.5-30 
95-100 
nickel 

Fluoborate 

-
0-15 

-
225-300 

15-30 
3-4.5 
38-71 
2.5-30 
95-100 
nickel 

All chloride and 
high chloride 

70-200 
100-300 

-
-

20-55 
1-4 

38-71 
2.5-30 
95-100 
nickel 

Although the chemistry of industrial plating baths is well established, the chemical 

composition of some ingredients, organic additives in particular, are often patented by the 

chemical manufacturers. This means exact and complete qualitative and quantitative 

composition data on these additives and hence the chemical formulation of the solution is not 

always available. This has to be borne in mind whenever attempting to quote the specification 

of an electroplating solution. Available compositional data is often quoted in terms of the metal 

as the element or as a compound. For example in zinc cyanide plating using sodium cyanide, 

the concentration of zinc is expressed as zinc ions. When nickel is plated on a workpiece from 

a Watts bath the nickel levels are expressed in terms of nickel sulfate (300 g/L) and of nickel 

chloride (60 g/L).73 This in no way reflects the speciation of the metal in solution. However it 

may show how the metal is added to water at make-up or how much is added to the solution as 

top-up or merely be a means of expressing concentration but not detailed chemistry. The 

speciation of zinc in alkaline zinc cyanide plating solution is not simple zinc ions but rather 

mixed cyanohydro complexes. Similarly the nickel in a nickel plating solution is not added as 

chloride or sulfate salts. A soluble anode is used to supply nickel ions into an acid solution 

made up from hydrochloric and sulfuric acids. Alternatively the electroplating specification 

can be given as a mass ratio of the metal to complexing or counter anion. For example in 

chromium plating, the ratio by mass of chromic acid to sulfate is maintained within definite 

limits but preferably at 100:13,7,63 and in zinc cyanide plating the mass ratio of zinc to cyanide 

(expressed as sodium cyanide) is 2.5:1.3 
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It is an established practice for the chemical suppliers to quote a range of values within which 

the bath composition must lie for best performance. For instance, during chromium plating 

using I anuna 34 the operating concentration range for chromic acid is from 125-375 g/L with 

an optimum concentration of 250 g/L.74 Supply houses offer a regular (weekly or monthly) test 

service when they sample and analyse the bath and recommend "top-up" rates to restore the 

constituent concentration to the specified level. 

1.33.1 INORGANIC COMPOUNDS IN THE ELECTROPLATING SOLUTION 

The various electrolytes present in the plating bath are used to increase conductivity of the 

plating solution and improve anode corrosion.69 Conductivity is the ability of a solution to 

carry an electric current.75 For example the addition of sulfuric acid to copper sulfate and tin 

sulfate baths, the addition of sodium hydroxide to cyanide baths, the addition of nickel chloride 

to nickel baths, the addition of carbonate to silver and gold baths are all used to increase the 

electrical conductivity of the baths. In chromium plating the chromic acid (C1O3) concentration 

of 400 g/L gives the best conductivity.63 Compounds such as carbonates in cyanide copper 

baths and chloride in nickel baths are used to obtain a proper dissolution of the anodes. 

Some electrolytes are also used to buffer the plating solution to give a good quality deposit. A 

buffer is a solution that resists a change in pH when small amounts of acid or alkali are added 

or when dilution occurs.76 For example boric acid buffers nickel plating solutions (see 

Table 1.3) by controlling the pH in the cathode film.77 

H3BO3 (aq)+ H20(1) - H2B03"(aq) + H30
+(aq) Equation 1.17 

Equation 1.17 shows a simplified version of the buffer action of boric acid at the concentration 

found in a nickel plating solution. It can be seen that the addition of excess acid in the solution 

(H30+) shifts the equilibrium to the left side of the reaction to consume the W^f. Any OH' 

produced from the electrolysis of water at the cathode (see Equation 1.7) would cause the 

equilibrium shift to the right side to replace the H30
+ which is removed by OH". For either 

situation, the equilibrium constant of the buffer solution remains the same. Therefore, the pH 

remains practically constant to within the operating range. 
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In some plating solutions, for instance nickel, controlling the pH of a plating bath is essential 

for achieving good deposits and efficient use of materials and electricity. In nickel plating, if 

the pH of the bath is higher than the optimum recommended value, the deposit will be rough, 

burned, dull and brittle due to precipitation of metallic contaminants and increased 

consumption of brightener components.58,77 On the other hand, low pH causes evolution of 

hydrogen which consequently results in a decrease in cathode efficiency.58 This in turn leads to 

an accumulation of hydroxide ions in the cathode region and consequent precipitation of basic 

salts that may get included in the electrodeposits, thereby altering the deposit properties. 

Therefore, the pH of a bath must be regulated without a significant change in the bath 

composition. This can be done automatically by the buffer within certain limits or by chemical 

additions made by the operators. To increase the pH of acidic baths, for example, nickel baths, 

nickel carbonate or nickel hydroxide can be used. To decrease the pH of chloride or sulfate 

baths of nickel and acid zinc, dilute acids such as hydrochloric or sulfuric acid may be 

employed. The pH of alkaline baths containing hydroxides can be increased by adding sodium 

or ammonium hydroxide. Generally, highly acidic baths such as chromic acid, acid copper 

sulfate, fluroborate formulation, or alkaline baths such as a stannate tin bath cannot use pH 
C O 

measurements to monitor and control the composition of the plating solution. 

Complexing agents are compounds or ions that combine with metallic ions in solution to form 

complex ions.43 The most common complexing agents used in the electroplating industry are 

cyanides, hydroxide and the sulfamate ion. Complexing agents have been widely used in 

plating baths to make the deposition potential more negative when it is necessary to prevent a 

spontaneous chemical reaction between the cathode and the plating ion e.g. plating of copper 

onto iron as shown in Equation 1.18.69 

Cu2+(aq) + Fe(s) - Cu(s) + Fe2+(aq) Equation 1.18 

The E° values for the reduction of Cu2+ and Fe2+ are 0.34 V and -0.44 V respectively (see 

Equation 1.18). The addition of a complexing agent makes the potential of the Cu /Cu couple 

more negative than that for the Fe2+/Fe couple thus Equation 1.18 is no longer 

thermodynamically favoured.69 
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Complexing agents have also been used to improve the throwing power. This is affected by the 

electrical conductivity of the solution, the degree to which the cathode polarizes with an 

increase in current density and the relationship between cathode current efficiency and cathode 

current density.40' 58 The steeper the slope of cathode polarisation and the greater the 

conductivity of the solution, the more uniform will be the current diffusion at the cathode. The 

evenness of metal distribution will be higher, the greater the decrease of cathode current 

efficiency with an increase in current density. 

Complexing agents have been used to enhance the solubility of slightly soluble salts added to 

the plating bath during top-up. For instance, silver cyanide and copper(I) cyanide are slightly 

soluble in water. However, these dissolve readily in sodium or potassium cyanide solutions to 

form highly soluble metal cyanide complexes (see Equation 1.19). 

AgCN(s) + KCN (aq) * K+(aq) + [Ag(CN)2]" (aq) Equation 1.19 

Complexing agents also facilitate the dissolution of the anode and in so doing prevent 

passivation and loss of current efficiency during the oxidation of the anode.69 

1.3.3.2 ORGANIC COMPOUNDS IN THE ELECTROPLATING SOLUTION 

Additives are often high molecular weight organic compounds or colloids added in relatively 

low concentration, usually from 10"4 to 10"2 mol/L, to the electroplating bath in order to modify 

the structure and properties of the cathode deposit.78 They are classified into four major 

categories: brighteners, levellers (dendrites and roughness inhibitors), structural modifiers e.g. 

stress relievers, and wetting agents.69'78 Some additives belong to more than one category 

because they perform more than one function.63 The only structural modifiers which will be 

discussed in this section are stress relievers which also serve as brighteners. 

Brighteners usually cause the workpiece to have a bright and shiny look compared to the matte 

or dull deposits obtained from baths without such additives. This means the surface must be 

even (not rough) so that a high proportion of the light reflected from them is not scattered. 
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Brighteners usually cause the formation of an even and fine-grained deposit by modifying the 

deposition processes during plating. 

Brighteners are used extensively in nickel plating baths. There are two types of nickel 

brighteners: class I (primary or maintenance brighteners) and class II brighteners (secondary or 

carrier brighteners).63 

A) Sodium naphthalene trisulfonate 

S03Na 

Na03S- S03Na 

B) AIM sulfonic acid 
CH2 = CH —CH2—S03H 

C) p-toluene sulfonamide 

CH, 

S02NH2 

D) o-benzoic sulfonimide (saccharin) 

NH 

E) Thiomalic acid 

OH 

F) Coumarin 

Figure 1.8 A selection of additives used in nickel plating63 

Brighteners of the first class are aromatic or unsaturated sulfur-containing compounds which 

include aromatic sulfonic acids, sulfonamides and sulfonimides (see Figure 1.8).63'79 Saccharin 

(Structure D, Figure 1.8) is a widely used example of this type of brightener. These brighteners 

produce very bright plate only if the workpiece surface itself has been prepared to a bright 

finish. They work by incorporating sulfur into the nickel plate but fail to give high lustre with 

continued plating. Brighteners of the second class are needed in order to give such a folly 

bright plate.63 However, class I brighteners, unlike class II brighteners, do not cause brittleness 

or stress in the deposit which may lead to deformation of the workpiece or rupture of the plate. 
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This has led to low concentrations (0.005-0.2 g/L) of class II brighteners being used together 

with higher concentrations (1-10 g/L) of class I brighteners in order to achieve a bright and 

stress free finish.3 Compounds like saccharin (structure D, Figure 1.8), sodium naphthalene 

trisulfonate (Structure A, Figure 1.8), allyl sulfonic acid (Structure B, Figure 1.8) and p-toluene 

sulfonamide (Structure C, Figure 1.8) are among the class I brighteners which are used to 

reduce stress in nickel plating.63 Depolarisers such as thiocarboxylic acid e.g. thiomalic acid 

(Structure E, Figure 1.8) are also added to reduce stress in the plate and so allow higher 

concentrations of these chemicals to be used in the electroplating solution.23 

"Throwing", "covering" and "levelling" are all terms used to describe the distribution of the 

plate on the surface of the workpiece.63' As such they all deal with plate thickness but in 

quite different ways. Plate distribution has been traditionally looked at in terms of shapes, both 

workpiece shape and surface contours. This has been termed the macro- and micro-level 

approach respectively. The term good "throwing power" has been given to a plating solution 

which deposits an even thickness of plate over the whole three dimensional form of the 

workpiece i.e. in protruding (sharp corners and points) and in recessed areas (holes and 

indentations). This is a macro-level "shape"phenomenon.7 Good coverage means that there is 

no bare areas on the surface of the workpieces i.e. the plate is continuous. Good "levelling" on 

the other hand has been used to describe a surface where the plate has filled in any scratches or 

pores on the substrate's surface, irrespective of that surface being on a protruding or recessed 

area of the workpiece. Good throwing power means that the measured plate thickness should 

be the same at every point on an irregularly shaped cathode.66 In levelling the thickness is not 

considered the same for the layer of levelled plate which is effectively the initial layer of atoms 

deposited directly onto the substrate. This is because levellers put more plate in surface troughs 

than on the flat surfaces and the peaks. This is thought to occur because more levellers become 

incorporated into the deposit at the peaks and less in the troughs on the surface. This has been 

observed to make the deposition reaction occur at a more negative potential and so it is more 

difficult for the reduction reaction to occur on the peaks than in the troughs. Levellers do not 

tend to be sulfur based compounds. Coumarin (Structure F, Figure 1.8) for example is used to 

deposit semi-bright deposits usually as part of a duplex system. But it is also a class II 
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brightener for fully bright nickel plating. Those levellers containing sulfur cannot be used to 

deposit semi-bright nickel and are found only in bright nickel baths. 

Wetting agents or surfactants are used to control pitting (holes developed because of gas 

bubbles) and to decrease drag-out by reducing the surface and interfacial tension of the plating 

solution.32 This means that air and hydrogen bubbles do not adhere to the workpieces being 

plated and neither does much process solution. This is because wetting agents make the process 

and rinse solution flow off the surface faster. Sodium lauryl sulfate (C^thsSC^Na), sodium 

lauryl ethoxy sulfate, CH3(CH2)n(OCH2CH3)OS03Na, and sodium lauryl sulfonate, 

CH3(CH2)i iS03Na, are some common wetting agents used in nickel plating baths. 

The working principle of additives is based on an adsorption mechanism.78 The molecules of 

the compound are adsorbed on the metal nuclei which are depositing. When new ions are 

discharged, the resultant metal atoms cannot deposit over the previous nuclei covered with the 

addition agents, but instead, start new nuclei resulting in fine-grained deposit. Very small 

amounts of additives are usually adequate to produce the desired improvement. If additives are 

present in excess, the nuclei carry a large amount of the additives and the deposit becomes 

loose and powdery or brittle.68 This explains why the concentration of additive must be kept 

within a definite range for best results. 

1.3.4 CHROMIUM ELECTROPLATING 

There are two main types of chromium plating namely decorative and hard chromium plating. 

A decorative chromium plate is a very thin deposit with a thickness of between 0.25 and 

0.8 um.14'58 Some authors have reported decorative chromium plating thickness of 1.3 urn or 

more. ' Decorative chromium offers a long lasting, bright, lustrous appearance while also 

providing corrosion resistance, lubricity and durability.80 
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Hard chromium plating, also called heavy industrial, functional or engineering chromium 

plating has the following characteristics. It is: 

• used to build up badly worn or undersized parts and so increasing the service life of 

the workpieces;14,23'81 

• usually deposited to a thickness ranging from 2.5 - 500 urn;58,82 

• generally plated directly on the base metal and only occasionally over other 

electrodeposits such as nickel.14'58 

The chemistry of both plating baths is broadly similar. However, hard chromium plating has 

been traditionally carried out using more dilute solutions and over a longer period of time.5,7'83 

This discussion will look at decorative chromium plating only i.e. bright, porous and cracked. 

The chemistry and operating conditions under which decorative plating has been carried out 

has changed relatively little since the 1920's.84 This can be explained in terms of the inherent 

differences and difficulties of chromium plating compared to that of other metals like nickel 

and zinc. The important developments which have been made will be highlighted here except 

for the commercialisation of the trivalent chromium plating (use of chromium(III) plating 

solutions) system. This has not been widely adopted in South Africa as yet and so is excluded 

from this discussion. 

Chromium plating differs from the other plating systems in several important areas which are 

related to the electrochemistry of the process.3'40'63'66'67 These include the following: 

• low cathode current efficiency; 

• poor throwing power; 

• tendency of the solution to stratify; 

• high current density requirement; 

• high bath temperature requirement; 

• undercoat requirement; 

• insoluble anode requirement. 



37 

These characteristics are often interrelated. For example high current densities are used in 

chromium plating compared to that for other metals because of the poor current efficiency at 

the cathode.40 This in turn improves the throwing power, giving an even thickness of deposit 

everywhere on the workpiece. This arises because there is less of an increase in polarisation 

with increasing current density at the low points (recesses) on the cathode surface than there is 

on the high points (projections). In contrast to most other metal plating, high bath temperatures 

give bright deposits but this leads to the lowering of current density and hence throwing 

power.67 

Chromium is a transition metal with a rich redox chemistry. It exists in an oxidation state from 

-2 to +6. The -2, -1, 0 and +1 are formal oxidation states displayed by chromium in 

compounds such as carbonyls (-C=0) and nitrosyls (-N=0) and with organoligands, for 

instance C2H4. The chromous or chromium(II), Cr(II), species is basic and is very unstable 

since it oxidises in air or water to give chromic or chromium(III), Cr(III).7'85 

Cr(IIXaq) ^ Cr(III)(aq) + e" Equation 1.20 

The E° for Equation 1.20 is -0.41 V.7 Cr(III) is amphoteric and the most stable oxidation state 

of the element. It forms many compounds which have commercial applications, for example 

chromic oxide (Cr203) and basic chromium sulfate [Cr(OH)(H20)s]S04.85 The former 

compound is used for making pigments and the latter for leather tanning. Cr(VI) has the 

greatest industrial application due to its acidic and oxidant properties and its ability to form 

strongly coloured and insoluble salts.85 One of the primary and most important uses of Cr(VI) 

is for electroplating. 

During chromium plating different reactions occur at the cathode and anode. The cathode 

reactions are those reactions that take place at the surface of the workpieces being plated. Even 

though the exact speciation of Cr(VI) in the plating solution is unknown and there are a 

number of theories to explain the mechanism of plating, the overall reaction that produces the 

chromium plate at the cathode is accepted to be the stepwise reduction of Cr(VI) to Cr.64 This 

can be represented by Equation 1.21, i.e. the conversion of the dichromate ion (C^O*-) to 
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chromium metal atoms. However, as will be mentioned again later, this is not an accurate 

representation of the reduction reaction leading to the deposition which takes place at the 

cathode. 

Cr207_(aq) + MH^aq) + 12e" — 2Cr(s) + 7H20(1) Equation 1.21 

The standard redox potential for the reaction given in Equation 1.21 is 0.4 V.3 In the actual 

electroplating process a higher voltage is used because chromium deposition is characterised 

by low cathode efficiency (10-20%).7'40'63 This is because most of the current is consumed on 

side reactions. A significant side reaction is the electrolysis of water which involves the 

conversion of hydrogen ions to hydrogen gas molecules (see Equation 1.6) and hydroxide to 

oxygen gas molecules (see Equation 1.7)40. About 80-90% of the power consumed in the 

chromium electroplating processes is used by this reaction resulting in the evolution of very 

large quantity of hydrogen gas from the workpieces' surface.64 

2^(80.) + 2e" — H2(g) Equation 1.22 

Another side reaction is the reduction of the dichromate ion, Cr2C>7~, to Cr(III). 

C r ^ " (aq) + 14H*(aq) + 6e" — 2Cr3+(aq) + 7H20(1) Equation 1.23 

When chromic acid is dissolved in water, it forms a mixture of species including the chromate 

ion, CrO^" and the dichromate ion,Cr2C>7~. These are in a dynamic equilibrium with each 

other as shown in Equation 1.10. These polymerise further through oxygen and hydroxo 

bridges to give extended anions containing Cr(VI).3 When the solution is electrolysed, a strong 

film of basic chromium(III) chromate (CrOH.CrQO is formed at the cathode (see 

Equation 1.24) that hinders the formation of a metallic deposit.3'40 

2H+(aq) + Cr04
2" (aq) + 3e" — CrOH.Cr04(s) + 30H(aq) Equation 1.24 



39 

The sulfuric acid in the bath loosens the film by forming a soluble complex with Cr and thus 

prevents formation of the film at the cathode.40 

Most decorative chromium plating solutions operate satisfactorily below 3-4 g/L of 

chromium(III) in the bath.64 The maximum concentration of Cr(III) that can be tolerated is 

7.5 g/L.86 Greater concentrations than the maximum value in the plating bath cause the 

conductivity of the solution to decrease which leads to chromium plate adhesion problems. 

The anodes used in chromium plating are generally made of insoluble lead alloys.63'87 For 

conventional sulfate baths lead-antimony (6-8% antimony) alloy is preferred, while for fluoride 

containing baths lead-tin (4-7% tin) alloy is recommended.'' Chromium metal cannot be used 

as an anode for several reasons. Firstly, it is more economical to use an insoluble anode of 

some type and keep the concentration of chromium in the solution at the correct value by 

adding chromic acid than by using chromium anodes. • Secondly, chromium deposits with 

only about 10-20% efficiency while a chromium anode will dissolve with approximately 85-

100% efficiency.7 This means that the bath could very soon deviate from the specified Cr(VI) 

concentration level. If the solution becomes Cr(VI) rich (~ 400 g/L C1O3), the conductance of 

the solution will fall and it will become ineffective for plating.63 Thirdly, the use of soluble 

anodes (chromium anode) is not satisfactory because as they dissolve chemically to give 
7 Xf 

Cr(III) there will be little possibility of re-oxidation to Cr(VI). • The ratio of the anode-to-

cathode area used is between 1.5:1 to 2.0:1, in order to control the concentration of 

chromium(III) and carry sufficient current.66'88 

Three reactions are involved at the anode and these are given in Equation 1.25-1.27.64 The first 

reaction is the discharging of hydroxyl ions to give water and oxygen gas. 

40H"(aq) — 2H20(1) + 02(g) + 4e" Equation 1.25 

The second reaction is the combination of the lead anode with hydroxyl ions to give lead(IV) 

that coats the anode surface. 
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Pb(s) + 40H"(aq) — Pb02(s) + 2H20(l) + 4e" Equation 1.26 

The film of lead(IV) oxide formed at the anode is very important because it causes the third 

reaction to take place (see Equation 1.27). That is it oxidises the Cr(III) which is constantly 

formed in the bath to chromic acid and so maintains the Cr(III) concentration in the bath at the 

desired level.759,64 

Cr(III)(aq) -» Cr(VI)(aq) + 3e" Equation 1.27 

Bright chromium deposits have traditionally been obtained from Cr(VI) plating solutions used 

as aqueous solutions of chromic acid, CrC»3.23 Chromium is deposited without the use of 

brighteners, which have been found to decompose in such strong oxidising conditions, but in 

the presence of one or more acid radical catalysts.7 The chemistry of the solutions must be 

maintained within the specified concentration values for each constituent (see Table 1.4) to 

achieve an acceptable deposit. The most commonly used catalyst is sulfate. Developments in 

chromium electroplating have largely involved making improvements to the catalyst system.3 

The exception to this came in the 1970's with the introduction of the first Cr(III) plating 

solution.23 

The first catalyst used with C1O3 was sulfuric acid.23,83 It is now thought that the function of 

the sulfate ion is to complex Cr(VI) in the form of a film on the cathode surface. It is only once 

the Cr(VI) is present in the cathodic film that reduction to Cr can take place. Many 

explanations have been put forward to account for the deposition of this reaction.4'7'63 They 

usually involve extended species where Cr centres are bridged by oxygens in SOj", hydroxy 

groups, in water and oxygen itself. This means that the reduction of Cr(VI) as a dissolved 

species in the electrolyte, as shown in Equation 1.21 is not a true reflection of the 

electrochemical reduction reaction. 

The composition of the simple sulfate only and the three different dual-catalysed plating 

solutions are given in Table 1.4. 
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Table 1.4 Composition of different types of chromium electroplating baths4'7' 

C1O3 (g/L) 

SO2" (g/L) 

CrOs/SO2,- mass ratio 

SiF6
2" (g/L) 

Sr as SrS04 (g/L) 
KasK2Cr04(g/L) 
Alkene sulfonic acid 

Temperature (UC) 
Current density (A/dm2) 
Cathode efficiency (%) 

Single 
catalyst 

250 
2.5 

100:1 

-

-
-
-

40 
10 
8 

Double Catalyst 

Fluoride 

250 
1.67 

150:1 

2 

-
-
-

45 
15 
15 

Non-Fluoride 

250 
2.5 

100:1 

-

-
-

1 - 3% of 
CH2(S03H)2 

55 
30 
25 

Self Regulating 
High Speed (SRHS) 

>250 
<1.5 

150:1 

6 

4 
14 
-

45 
15 
15 

Although one concentration value for the C1O3 and H2SO4 is given in Table 1.4 for each 

solution, a range of values in fact can be used. For example the highest chromic acid levels 

which can be used for the single catalyst bath, the fluoride bath, the non-fluoride bath and the 

Self Regulating High Speed (SRHS) bath are 500 g/L, 400 g/L, 300 g/L and 400 g/L 

respectively.7 However in all cases the CrC^SO2^ is kept at one preferred value. Higher bath 

concentrations than shown in Table 1.4 result in lower current efficiency. The bath 

conductance has been observed to drop above 400 g/L and so would require a higher voltage to 

achieve a particular current density.63 

Mixed catalyst baths are similar to conventional sulfate baths in conductivity but have a higher 

current efficiency than that of the conventional sulfate bath of the same concentration.7 In 

addition the baths can be operated at higher current densities giving a higher deposition rate, 

producing smoother, harder and brighter deposits than the conventional sulfate baths.3'7'23'80 

They also exhibit a better ability to activate passive nickel surfaces. Due to their greater current 

efficiency and ability to operate at higher current densities, mixed catalyst baths have been 

known to double production over that of conventional sulfate baths.23 The disadvantage of 

these baths is their corrosive nature which shortens the life of the plating equipment such as 

tank liners and heating coils. Besides this, they are more expensive than the conventional 

sulfate plating baths.7,80 
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In chromium plating cathode efficiency has been found to be closely related to bath 

composition. For any current density, cathode efficiency falls with increasing temperature in a 

single catalyst system. This is because the solubility of the film increases with temperature. 

Therefore the film dissolves in the plating solution and the thickness decreases and Cr is 

released into solution and less is available for reduction. However for a SRHS bath the cathode 

efficiencies tend to rise with increasing temperature. This is linked to the increased solubility 

of the secondary catalyst e.g. K2SiF6 in this bath.71 

Sulfuric acid has been used together with one of two catalysts, namely fluoride or an organic 

acid such as methane disulfonic acid, CH2(SC«3H)2 (see Table 1.4).7 These have been 

commercially available as high energy efficiency formulations (HEEF). Simple fluoride salts 

are not generally used as a source of the fluoride ion catalyst in the plating solution.3 They are 

needed in such small amounts that it was found difficult to determine the drag-out losses from 

the solution and to manually administer the correct amount in order to restore the specified 

levels. The chemistry of the fluoride system was then developed further giving rise to the 

SRHS plating solutions. This system uses complex fluorides such as silicon hexaflouride to 

supply the fluoride ions to the plating solution (see Equation 1.28). 

SiF6
2' (aq) + 3H20(1) ^ 6F"(aq) + 6H+(aq) + SiO 2{ (aq) Equation 1.28 

This preserves the useful properties of fluoride catalysed systems, like higher current efficiency 

at higher temperatures, higher current density and better throwing power, while avoiding 

etching of the workpiece's surface.63'80'83 In SRHS baths fluoride compounds of low solubility 

like potassium silicon hexaflouride (K2SiF6) provide the fluoride catalyst while strontium 

sulfate supplies the sulfate. The CrC^ to catalyst (SO2- and F") ratio is kept constant by using 

the chemistry of the common ion effect.63 The C1O3 to SO J~ ratio is controlled by saturating 

the solution with strontium sulfate (see Equation 1.29).7 This means any sulfate lost from the 

bath may be replenished by dissolution of more of the excess solid strontium sulfate in the bath 

and thus maintaining the equilibrium situation. Conversely if sulfate levels rise, by adding 

impure C1O3 or by drag-in, strontium sulfate would be precipitated out of the solution.83 
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Additions of slightly soluble strontium chromate have also been used to suppress the 

dissolution of the strontium sulfate if the levels become too high. 

SrS04(s) ^ Sr2+(aq) + SO*~ (aq) Equation 1.29 

A similar situation is found for the fluoride catalysed system. A desired amount less than the 

saturated solution concentration of potassium silicon hexafluoride can be kept in solution by 

the addition of potassium dichromate to a saturated solution.63 The addition of potassium 

dichromate displaces the equilibrium in Equation 1.30 to the left hand side and automatically 

precipitates the potassium silicon hexafluoride out of the solution. 

K2SiF6(s) 5* 2K+(aq) + SiF6
2" (aq) Equation 1.30 

Decorative chromium deposits are generally plated over nickel for economic reasons as well as 

to achieve good corrosion protection and plate brightness.14 These will be discussed below. 

Chromium deposition is characterised by its low cathode efficiency.40 Chromium is also a 

relatively expensive metal to plate.90 This is evident from the long deposition time which 

results in high power usage. So chromium plating directly onto the base metal has not been an 

economic possibility for decorative plating. 

The corrosion protection offered by a plated system depends on the following related 

points: 

• potential difference between the undercoat and the chromium plate and between the 

undercoat and the substrate; 

• thickness and porosity of the undercoat and of the chromium plate; 

• passivity of the top chromium layer. 

Decorative electroplated chromium deposits are very chemically stable, thin and porous.63 This 

means that they do not offer protection to ferrous substrates. In fact, they accelerate corrosion 

of the base metal at the bottom of the pores or cracks in the deposit. It is the bright nickel 
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deposit which is used to provide electrochemical (sacrificial) protection to the base metal. 

Chromium provides protection from the environment through a barrier mechanism by forming 

a passive surface layer when it is neither cracked nor porous.91 

The E° values for the reduction of Ni2+ and Fe2+ are -0.25 and -0.44 V respectively.65 The E° 

of Cr(III)/Cr is lower still at -0.74 V.3 From these E° values, it can be seen that nickel ions 

would be reduced and iron would be oxidised (see Equation 1.31). 

Fe(s) + Ni2+(aq) ^ Fe2+(aq) + Ni(s) Equation 1.31 

This means that thermodynamically chromium should corrode to protect iron and nickel. 

However, it is nickel which oxidises when a nickel plus chromium coating corrodes. Such E° 

predictions are based however on a single metal substance and a simple neutral aqueous 

solution. The predictions fail to consider the actuality of the situation which includes the 

following points.58'63'65 

• the chromium is co-deposited with additives which lowers its E°; 

• the chromium is passive which means the exposed chromium is present in an 

oxidised form in a clear oxide film; 

• the chromium deposits are sometimes discontinuous i.e. cracks and pores occur. 

When the chromium coating is breached or is porous or cracked the nickel layer becomes 

exposed. The sulfur brighteners in the nickel plating solution form a species with the nickel 

which lowers the E° (makes it more negative) below that of iron and probably chromium.40 

This means that nickel is preferentially oxidised to Ni2+ (see Equation 1.32) and supplies 

electrons to sacrificially protect the exposed iron of the substrate. This is commonly reported as 

being "anodic" protection in the literature.13 

Ni(s) *s* Ni2+(aq) + 2e" Equation 1.32 

The reduction reaction which takes place in the nickel layer while the nickel is oxidised is 

shown in Equation 1.33. 
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2H20(1) + 02(g) + 4e ^ 40H(aq) Eu = 0.4 V Equation 1. 33 

This principle is well known for causing hydrogen embrittlement in cyanide zinc plating where 

cyanide lowers the deposition potential for zinc close to that for the hydrogen overpotential. 

This leads to considerable hydrogen discharge accompanying zinc plating. 

Discontinuities are found in most electroplated chromium deposits.63 These are of two types, 

micro-porous and micro-cracked. Crack free chromium (electro)plate has been obtained largely 

from a single catalyst chromium plating solution, having low CrCVcatalyst ratio and a high 

C1O3 concentration. However such coatings tend to rupture under service to form a macro-

cracked structure. Obviously this reduces the barrier protection offered by chromium to the 

nickel undercoat. However, micro-cracked and micro-porous chromium (electro)plate spread 

the corrosion reaction out over many corrosion points on the surface. This improves the 

corrosion protection over that obtained from crack free chromium when it ruptures in use. This 

has been explained in terms of the lowering of potential difference between the two half 

reactions in Equation 1.32 and Equation 1.33. This occurs because the redox reactions are not 

located at one point but rather are spread across the entire surface. This slows down the 

oxidation rate of the nickel and so the effects of corrosion take longer to show up. The high 

protection comes from chromium with 10-17x103 pores/cm and 27-50 cracks/mm in the 
„ , , . • , „ 71,92 

coating. 
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INTRODUCTION TO WASTE MINIMISATION IN THE 

ELECTROPLATING INDUSTRY 

2.1 WASTE MINIMISATION AND WASTE MANAGEMENT 

An industrial process can be regarded as the conversion of low cost input/s into more valuable 

output/s using machinery and/or labour (see Figure 2.1 ).93, 94 These input are of two types, 

energy and matter. 

Chemical Input 
^ 
w 

PROCESS Desired Output 

Waste In process 
recycling/ re-use 

Figure 2.1 Simple industrial process model93'94,95 

Chemical inputs include primary raw materials which end up in the finished product as well as 

process, ancillary or secondary raw materials that are not found in the final product but are 

necessary to run the process.94 The latter includes lubricating oils for plant machinery, catalysts 

to speed up the process, analytical chemicals for process monitoring and control, any personal 

protective equipment worn by workers and water used as a chemical (raw material), solvent (or 

carrier) or as a rinse. Output can also be of two types: desirable and undesirable. The desired 

output is obviously the final product which meets those specifications laid down by the 

customer or by trade law. Undesired outputs are waste. There are very few industrial plants that 

do not produce waste when preparing their desired products. Waste is defined as any matter, 

whether gaseous, liquid or solid or any combination thereof, which is deemed as undesirable or 

superfluous by-product, emission, residue or remainder of any process or activity.96 This means 

that it exists in material and energy forms, which can be interconverted. Material waste streams 

include wastewater or liquid effluent discharge, particulate and gaseous atmospheric emissions 
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and solid waste. These can be conscious and/or accidental emissions. For example the release 

of chromic acid mist from an electroplating solution into the atmosphere would be an 

established process waste whereas a vapour leak from a solvent degreaser would be an 

accidental or fugitive emission. Chemical wastes are often referred to as pollutants and 

contaminants in the literature.35 In both these cases, the chemicals are present in higher 

concentration than that found in the natural or ambient environment. This increase is man made 

through, for example, industrial or agricultural activities. Such waste only becomes a pollutant 

at these elevated concentrations if it damages the environment whereas it is termed a 

contaminant if it has no adverse effect on the environment. These wastes are all covered by the 

National Environmental Management Act No. 107 of 1998 and include the waste produced 

from metal finishing processes like electroplating and powder coating of workpieces. 

Once waste is formed it can be handled in many different ways depending on the amount or 

volume, its physical form (solid, liquid or gas), its toxicity and its suitability for re-processing. 

These approaches to handling waste are listed in order of decreasing sustainability in the waste 

management hierarchy (see Figure 2.2). 

/ \ Best 

Worst 

Figure 2.2 The waste management hierarchy*7- **•w-10° 

Waste management looks at using waste minimisation approaches at the upper end of the 

hierarchy to deal with industrial waste. The ideal approach therefore is to reduce waste at 

source; that is decrease (minimise) or eliminate (waste avoidance or zero-waste) any waste 

produced in the process.96' • ,02 This means using less raw materials (which end up in the 

finished product) and less process chemicals at the start of the process. By not forming waste in 
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the first place, it means there will be no storage, handling, treatment, disposal or recovery 

problems of waste. This approach to waste management is termed start of pipe treatment.94'I03 

The alternative to waste minimisation is the treatment of waste once it has already been 

produced. This uses waste management approaches from the lower end of the hierarchy to deal 

with the waste. This means having to re-use or recycle the waste and, where this is not 

possible, having to treat the waste so that it can be disposed of safely. Re-use and 

recycling104'l05 is concerned with used raw materials (which have been through the process), 

processed and rejected workpieces and waste. Re-use sends used materials or workpieces 

through the same process again (in-process recycling which takes place on-site). Recycling 

looks at re-processing used raw materials etc. in order to make different products or in energy 

production (waste recycling). Recycling can take place on- or off-site and the selling of waste 

for recycling can generate income. Such an approach is referred to as end of pipe 

treatment.106107 

The hierarchy also defines the order of preference for ranking potential waste minimisation 

efforts that can be implemented in an industrial process. This is based on achieving the 

maximum conversion of input to output and the minimum conversion of input and output to 

waste in a sustainable way. It aims to make high environmental savings or benefits by 

preventing damage to the environment caused by the creation and disposal of waste. The 

former involves producing less waste by not using excessive amounts of non-renewable or 

scarce resources as input to the process.94' 96 This avoids depleting raw material stocks by 

conserving mineral and other non-farmed or cultivated resources. The latter means not placing 

toxic waste output into the land, water courses or the atmosphere where they can cause damage 

by migrating, (bio)accumulating or persisting in the environment.105'108 However the hierarchy 

does not always offer a practical means for enabling industry to prioritise its waste 

minimisation efforts. The fact that waste minimisation can be expressed in monetary terms as 

well as by volume or amount of waste can be used to overcome this problem.104 The cost of 

producing waste based on raw material consumption has been widely used as a means for 

selecting suitable waste minimisation options from a range of potential options in order to 

achieve sustainable waste minimisation.102 Producing less waste can reduce the economic 

expenditure on purchasing raw materials (pay for then use), on waste treatment and disposal 
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and on collecting and transporting both raw and waste material. It also reduces the cost of 

utilities including water and electricity which, unlike the other raw materials, are used first and 

paid for later. The waste minimisation audit takes this into account by seeking to identify the 

most cost effective and viable ways to achieve waste minimisation using established waste 

minimisation analysis techniques. Other benefits arising from practising waste minimisation 

include reduced immediate and future criminal risk and liabilities and a better, greener public 

image.109 However the financial savings and reduced operating costs which a company can 

make have been found to be the most significant incentive for the adoption of a waste 

minimisation approach in industry.110 

2.2 WASTE AUDITING IN THE WASTE MINIMISATION PROGRAMME 

Waste minimisation is defined as the application of a systematic approach to reducing the 

generation of wastes at the source."1 It applies to all inputs to and outputs from the process. 

This includes emission to the air, water, or land; utilities consumption; materials used both 

directly and indirectly in products, processes or operations. 

Waste minimisation is accomplished through a Waste Minimisation Programme.12'96 This is a 

structured, stepwise approach to initiating and sustaining waste minimisation efforts in 

industry. Many models for such programmes have been published in literature94'97'105'108, " 2 

and one particular example is shown in Figure 2.3 below. 

COMMITMENT TO ACTION 

PLANNING AND ORGANISATION 

I 
PRE-ASSEMENT OR AUDIT 

MONITORING AND TARGETING FEASIBILITY ANALYSES 

ACTIONS 

I 
DISSEMINATION 

Figure 2.3 The stages for establishing and running a waste minimisation programme 
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The first stage in a waste minimisation programme is to obtain commitment from senior 

management to run a waste minimisation programme. Once commitment has been obtained the 

next stage is planning and organisation. The essential elements of this stage are setting overall 

waste minimisation goals and appointing personnel to carry out the programme. In many cases 

this has led to establishing an assessment and evaluation task force and appointing a project 

champion."4 This has been widely reported in the literature and will not be discussed further 

here.105'108-"4 

The next stage is the waste minimisation audit which deals with data gathering on the 

composition, flow rate and cost of all process input and output streams for assessment and 

analysis of the data thus gathered in order to: 

• identify waste minimisation opportunities; 

• generate waste minimisation options for the opportunities; 

• prioritise these opportunities and options for a feasibility analysis.I05, "4 

The feasibility analysis includes technical, economic and environmental evaluations. 

The last stage in the waste minimisation programme is the implementation of the most feasible 

of the selected waste minimisation options. Once the selected options are implemented, the 

process is monitored and the performance of the selected options is reviewed. The waste 

minimisation procedure can be repeated further by putting new options in place to further 

improve the process."2 

The stage in this programme which will be discussed in detail in this section is the waste audit 

step (also called the preliminary, initial or pre-assessment step). It is the third stage shown in 

Figure 2.3. The waste minimisation study reported in this dissertation, involves an audit of an 

electroplating plant in terms of material wastage and identifies some potential waste 

minimisation options. 

The waste audit identifies, quantifies and prioritises sources of waste and waste streams."4 It 

also seeks out ways to bring about waste reduction in the process stage. The first step in 

auditing is to understand the process. This involves establishing all input, output and return 
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streams in all the stages of the process. This includes waste streams. The waste source is the 

point in the process where waste is generated. The waste may stay there or may be moved 

through the process in a waste stream. Such locations of waste generation or accumulation in 

the process identified by the waste audit represent targets for waste minimisation 

(reduction).94'108 An established waste problem is known as a waste minimisation opportunity. 

Waste minimisation options or measures are the (waste reduction) solutions to these waste 

problems. These have been widely reported in the literature and are discussed in Section 2.3. 

However some form of waste treatment will always exist until a process produces zero waste. 

The current waste segregation systems and waste treatment and disposal methods for example 

chemical treatment, recycling and re-use must therefore be identified for the process.21'w 

Data on composition and flow rate (or loads for a batch process) of these process streams must 

be collected. This information is then compiled into a Process Description which can be 

represented in a Process Flow Diagram (see Company and Process Profile in Chapter 3). This 

data can then be analysed using established waste minimisation audit techniques to determine 

the composition, quantity and cost of the waste streams. These techniques include a Scoping 

Audit94'%, Mass Balance Analysis93, % ' , 0 8 , True Cost of Waste Analysis93'94, Monitoring and 

Targeting93'94 and Statistical Process Control.93'94'96 The latter two will not be considered in 

this study. Cost data must also be gathered for use in the Scoping Audit and the True Cost of 

Waste Analyses. This is used to charge the cost of the waste directly to the process which 

generates them and would represent a financial saving which could be made if that waste were 

not produced.94 

Some of the required information may already be held in company documents. Such Existing 

Data can be retrieved for use in the auditing analyses. This is known as a Historical 

Survey.94'96 Other data will be lacking and will need to be collected as New Data. This is 

carried out using a Live Audit.93 

Data can be collected from various sources which include the company, chemical suppliers, 

regulators, and trade and research literature.94' %' l14 The data can include raw material 

purchases and requisition records, utility bills, production records, waste disposal manifests, 
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process solution and effluent analysis results and articles and publications on the industry. The 

existing data for this project have been collected from computerised and handwritten company 

documents, discussions with plant owners and employees, analyses results of plating tanks 

from chemical suppliers, Material Safety Data Sheets (MSDS) issued by the suppliers and a 

literature survey. New data has been obtained from on-site measurements made using direct 

reading instruments, sampling and chemical analyses results of the rinse and drag-out tank 

solutions and observing work practices. 

A Scoping Audit is used to analyse the data using empirically determined percentage savings 

on raw material, waste and energy streams. To perform a Scoping Audit, it is essential to 

determine the amounts and costs of raw materials, utilities and wastes. This information is 

utilised in filling in a waste minimisation cost assessment table (see Table 2.1). 

Table 2.1 Waste Minimisation Cost Assessment Table 

Resources and 
services 

Materials: 
Raw materials 
Cleaning agent 
Packing 
Utilities: 
Electricity 
Heat 
Water 
Waste: 
Effluent 
Solid wastes 
Total 

Quantity 
Cost per 

year 
Scope to 
save (%) 

1-5 
5-20 
10-90 

5-20 
10-30 
20-80 

20-80 
10-50 

Scope 
(min) 

Scope 
(max) 

Priority 
(1 =highest) 

In the table, each material, utility and waste is allocated an established minimum and maximum 

scope to save percentage. The scope to save percentages published by Environmental Good 

Practice Guide for Industry were developed for industries in the United Kingdom. Since no 

equivalent percentages have been determined for South African industries, these percentages 

were adopted in this study. Multiplying the cost of each input or output stream by the 

respective scope to save percentage gives the scope for potential financial saving. Scope (min) 

is the minimum saving that can be attained and scope (max) is the maximum saving that can be 

attained through waste minimisation. The scope to save results can be rated to distinguish the 
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area where the largest savings can be attained. Thus waste minimisation attempts can be 

focused on those streams.96 

True Cost of Waste allows the main areas of wastage, which are the most expensive to the 

company, to be identified. True Cost of Waste is found by adding together the costs of raw 

materials and utilities which are not converted to product, as well as any other waste-related or 

associated loss costs.93'%''l6 These include material costs like waste treatment costs, rework 

costs of rejected products and personal protective equipment. It includes the cost of production 

time lost through for example process down time during plant repair, setup time for product 

change over and time taken for reworking items. Potential environmental and financial savings 

may be calculated for each stream using the True Cost of Waste and the cost of the waste 

remaining after a waste minimisation option has been put into place. Implementation of waste 

minimisation options that are considered as "low cost-no cost" measures will bring about 

financial savings that are very close to the actual cost of the waste. 

Put simply, Mass Balance Analysis seeks to fit the collected mass data on material input and 

output (from composition and flow rate in a continuous process or directly as a mass 

measurement in a batch process) onto a partial (e.g. a process stream or system therein) or 

complete process flow diagram. It makes it possible to see quantitatively where the inputs are 

turned into products and where they are converted to waste. Mass Balance Analysis may be 

used here to confirm that waste is a real loss and not missing or unmeasured data. This is 

particularly useful for water usage where (municipality) metered water consumption (input) 

should equal the sum of the volumes of water calculated as being used in the individual wet 

steps of the process (output). This can be represented by Equation 2.I.96 

Loss from the process = Input - Output Equation 2.1 

For chemical usage an overall Mass Balance Analysis is carried out using the relationship in 

Equation 2.2.93'% 

Loss from the process = Input - Output - Stock Equation 2.2 
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This means that the volume or mass of purchased raw materials (inputs) should be material not 

yet used (in the store as stock), or already converted into desired products (outputs) or wasted 

(loss from the process). This however takes a very broad based view of a process and is often 

not focused enough to select and rank individual waste streams as potential waste minimisation 

opportunities.96 

Equations 2.1 and 2.2 represent Mass Balancing for steady state or equilibrium conditions. As 

will be discussed in Section 2.3, these principles have formed a basis for setting the water flow 

rate in running or flowing rinse systems. There are other chemical input examples in the 

literature where Mass Balance on specific process streams has been carried out. This has 

involved looking at the significant metal in the plating or passivating solution in order to 

quantify losses and wastages from the solution. However, there appears to be no similar cases 

where Mass Balancing analysis has been carried out on organic constituents of the plating 

solutions. This is probably because such organic chemicals are present in small quantities, their 

exact chemical identity is unknown (patented by the manufacturer) and they can undergo 

decomposition mechanisms over time (and/or) at elevated temperature or redox reactions with 

other chemicals or atmospheric oxygen. In such instances Equation 2.3 gives a more accurate 

way of quantifying time variable process streams using Mass Balancing."7 

Loss = Input + Generation - Output - Consumption - Accumulation Equation 2.3 

Accumulation = Input + Generation - Output - Consumption - Loss Equation 2.4 

It takes into account whether or not the inputs are entering the process stream at the same rate 

as that which the outputs are being removed from the stream. In cases where these are 

different, a loss or accumulation of a component of the process stream will result. Chemical 

reactions taking place in a process lead to the generation of new substances through the 

consumption of raw materials. The migration of raw materials through a process (metal ions in 

drag-out for example) may also give rise to the presence of loss and accumulation terms 

(factors) in Equations 2.3 and 2.4. This results in a non-equilibrium or unsteady state condition 

and presents a more complicated Mass Balancing problem. 
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Monitoring and Targeting looks at the consumption of input (raw materials, water, gas, 

electricity or labour {as in hours or number of employees}) and the level of output (product 

meeting specification, rejects, turnover, solid waste or effluent) arising from that 

consumption.93'96 This means that both input and output or input alone are potential targets for 

waste reduction. A linear relationship between the former (plotted on the y axis) and the latter 

(plotted on the x axis) over the same time point or period is assumed. This involves 

establishing (by measurement during down time or calculation when the process is running) the 

quantity of an input consumed at zero production (at x=0).% This is termed the base load of the 

process. By considering the scatter or variability of the data and placing a line of best fit 

through the data points, a profile of the current situation can be drawn and a target for 

reduction of consumption can be set. If the new line then falls below the target line then the 

waste minimisation option which has brought about this improvement has been successful. The 

environmental performance guides publications from the Environmental Technology Best 

Practice Programme (Envirowise) have adopted this technique to show graphically the scope to 

save by indicating the acceptability of levels of waste (water and powder) or output at 

particular raw material consumption levels.118 

Waste minimisation options, generated in Stage 3 of the Waste Minimisation Programme (see 

Figure 2.3) can apply to any of the stages in the process. This means options can be changes 

made to the input, to the manufacturing technology or to the output.100'104' 119The term "process 

change" has been used in the literature to cover input material changes and technology 

changes.97' " 9 Changes in input can be brought about by reducing the amount of the original 

raw material used in a process to ensure the correct amount, rather than excess, is used and not 

wasted. Substituting the original raw material with a less toxic one or the same material 

containing fewer impurities can also effect such changes. Using a less toxic material cuts down 

on the level of hazardous waste and hence the amount of chemicals required to treat it. Using a 

better grade of the same material can help to avoid the introduction of impurities into the 

process and lower the formation of unwanted by-products resulting from the reaction of the 

impurities. Where the source of the raw material can be replenished then the original raw 

material can be substituted for a renewable alternative. This means the planet's stocks can be 

replaced and not depleted permanently. Changes can also be made to the process technology or 
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means of production. This can take one of two forms - structural changes which include 

alterations to equipment or to plant layout, or operational changes which include improved 

operating practices such as changes in the running temperature, pH or time and waste 

segregation. The latter is normally referred to as "good housekeeping"."9 Good housekeeping 

applies where human intervention in the manufacturing operation can bring about better 

management, administration and functioning of the process. This includes for example giving 

attention to inventory control, production schedules, raw materials (out of date, excess or 

obsolete chemicals) and product storage, maintenance and material handling and additions to 

prevent spills and leaks and less downtime on the process. Wastes (waste minimisation 

opportunities) and the waste minimisation options and measures used to combat the generation 

of these wastes are well documented in the literature and are reviewed in Sections 2.3 and 2.4 

respectively. 

It is more difficult to make changes to the product, as this is dependent on the customers' 

demands. Customers often want a certain product made to certain specifications that will meet 

their needs. However it may be possible to persuade a customer to look at an alternative 

especially if it reduces the cost. 

Simple "no cost-low cost" options with immediate benefits have been preferred by metal 

finishers for implementation before the more expensive or time consuming choices. Examples 

of this in the case of small and medium scale enterprises (SME's) are plentiful in the 

literature."8' l20They are often found to be achieved by simple housekeeping measures. 

New data from chemical analysis can be used to determine the costs of wasted raw materials in 

wastewater. Concentrations of elements which originate from the raw materials in the 

wastewater can be measured in the effluent discharge from the electroplating line. The mass of 

elements in the effluent stream that originate from the raw material can be calculated from the 

volume of the effluent and the contaminant concentration. This can be expressed as a mass or 

volume of that raw material if the composition of the raw material is known. This composition 

can sometimes be obtained from the MSDS or can be sought directly by personal 
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communication with the supply house or manufacturer. This is determined over a 

representative time period and then expressed both as a daily and annual amount and cost. 

2.3 WASTE MINIMISATION OPPORTUNITIES IN ELECTROPLATING 

Common waste types in electroplating may be considered as either 1) unused raw materials for 

example the constituents of contaminated rinse water, spent process solutions and spent 

stripping solutions or 2) new undesirable products such as rejects and by-products formed in 

process solutions and sludge. These waste minimisation opportunities can arise from both 

chemical and electrochemical reactions in aqueous solution and from chemical mobility within 

the process. Some waste minimisation opportunities are given below. 

1) Wastewater which contains unused raw materials e.g. cyanide, metals and 

impurities from rinsing of process solution dragged-out on the surface of the 

workpieces or in/on barrels and jigs and in spent process solutions. 

2) Sludge formed from the chemical treatment of exiting rinse water and the 

purification of process solutions. It is usually composed of heavy metals in the form 

of metal hydroxides, sulfides and sulfates. 

3) Carbonates and organic derivatives formed from the breakdown of chemicals added 

to plating solutions e.g. cyanide and brighteners respectively. 

4) Gaseous emissions including hydrogen and oxygen formed at electrodes due to 

electrolysis of water in plating solutions; and acid and alkali mists resulting from 

hot or electrolytic cleaners and plating solutions. 

5) Plating metals and impurities dissolved from the anodes into idle and/or working 

plating solutions. 

6) Unsegregated wastewater from rinsing operations. 

7) Metal pieces including workpieces and wires (used for attaching the workpieces to 

jigs) that have fallen off jigs and remain at the bottom of tanks. After a period of 

time the workpieces start to react with the tank solution and contaminate it with 

iron, zinc or copper impurities. 

8) Corrosion products from flight bars, racks and tanks. 

9) Spills and splashes of solutions onto the floor and into adjacent tanks during transfer 

of workpieces and make-up or top-up of solutions. 
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10) Discarded filters and metal powder in anode bags. 

11) Solution leaks from faulty tanks, pumps and filters. 

12) Airborne pollutants entering the solution. 

13) Substitution of toxic chemicals whose effluent requires chemical treatment prior to 

discharge to the sewer with a safer chemical e.g. Cr(VI) replaced by Cr(III) or by 

zinc. 

2.4 WASTE MINIMISATION OPTIONS AND MEASURES 

Only "low cost-no cost" waste minimisation measures or options will be discussed here. 

Unlike those options which need capital investment, "low cost-no cost" measures do not 

always need to undergo a feasibility analysis prior to their implementation into the waste 

minimisation programme. The literature shows that the important waste minimisation measures 

are associated with reducing the consumption rate of input e.g. water, materials and waste 

treatment chemicals into the process (Section 2.4.2) and making simple changes in procedure 

and administration (Sections 2.4.1 and 2.4.3).12',7'97 

A literature review of waste minimisation practices used in the electroplating industry has 

established two main areas in which waste minimisation options and measures can be assessed. 

These are firstly strict waste source reduction and secondly in-process re-use or 

recycling.100'101 The latter option does mean waste is generated during the manufacturing 

process. However because no waste leaves the process, this fact has not been regarded as 

challenging waste minimisation principles. Rather than being thrown away the waste or a 

component of it is returned to the process for its intended (re-use) or other (recycling) 

purposes. Conversely, recovery of the waste for recycling into a different process (on-site or 

off-site) or for re-use at another site has not been considered as a true waste minimisation 

option. This makes them important factors in determining the True Cost of Wastes. 

Most of the waste minimisation options concerned with source reduction have been directed at 

preventing pollution of the process solutions, particularly the plating baths. The migration of 

chemicals from one solution to another and by-product formation from side reactions in the 

solution have emerged as significant waste minimisation opportunities in electroplating. 
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Together these have led to the carry-over of raw materials, impurities (by-products) and 

released surface contaminants in the process solution on the surface of the workpiece into 

subsequent tank solutions. This is referred to as drag-out in the literature.12 Conditions that 

allow neat process solutions to flow freely off the surface of the workpieces and which promote 

contact between the water in the rinse tanks and the workpieces in order to wash off drag-in 

and dilute the drag-out have been used to reduce drag-out levels. The body of the literature on 

drag-out reduction and other waste minimisation techniques is vast but is largely qualitative 

and generic in nature.16' 121 The results of the literature survey show that a lack of specific 

measurements at a base line level and an approach concentrating on the general overall process 

rather than on individual process streams, has contributed to little accurate quantitative 

treatment of waste minimisation opportunities and options. This will be dealt with in Chapter 7. 

This is especially so with those complex processes. This is understandable for three reasons:-

the cost and the effort involved in obtaining reliable chemical analytical data of complex 

systems, the dynamic and changing nature of the production processes, and scheduling the 

limited publication of detailed data according to the confidentiality agreements struck between 

researchers and industrialists. The findings of the literature survey are discussed below. 

Three main sources of pollution of process solutions have been identified from the literature 

and from observation.122'123 These are: 

1) insufficient drainage of workpieces leaving the process (rinse) solutions 

2) insufficient rinsing of the solution off the surface of the workpieces 

3) insufficient maintenance (for example purification and monitoring) of the 

process solution 

The documented waste minimisation options or measures used to tackle each of the above 

waste minimisation opportunities are discussed in Section 2.4.1 to 2.4.3 and discussed below. 

2.4.1 DRAINAGE OF WORKPIECES 

Promotion of better drainage of process solution from the workpiece as it leaves the tank and of 

the return of most to the solution has received much attention in the literature17',21',22',23'124 

Documented ways to improve drainage are listed in Table 2.2 below. 



60 

Table 2.2 Waste minimisation measures and options for improving workpiece drainage12' 

1) drip time 
2) drip bars 
3) rate of withdrawal 
4) agitation 

5) positioning of workpieces on the jig 
6) shape of the workpieces 
7) composition, concentration and temperature 

of the solution 
8) drain board 

Drain or dripping time is the length of time in which the workpieces are placed above the 

process solution tank before being moved to the next tank in the line.12,2I If this time is cut 

short, then the solution adhering to the workpiece surface will not all have flowed off the 

surface before the workpiece is sent to the next tank. A drain time of at least 10 seconds has 

been established as being able to reduce drag-out by up to 40%.121'122'l23'124 It has been found 

that the drain time on manual lines is frequently shorter than it should be. This is due to 

operator fatigue and the need to work fast in order to meet the set production rate. In rack 

plating, drain time has been successfully extended by fitting above the process solution a drip 

bar (drain bar) onto which the operator can hang the racks.105 This relieves the strain associated 

with holding the racks in position. Programming of delays in automatic process lines has been 

used to increase drain time and to fix immersion time. On manual lines the time to remove an 

immersed item is often signalled by a buzzer or a flashing light but there is no such indicator 

for drip time. 

The speed with which workpieces are taken out from a process bath has a major impact on the 

drag-out volume. The withdrawal speed determines the quantity of solution left on the 

workpieces. The faster a workpiece is lifted out of a solution the more solution is dragged out 

on it and the longer it takes to drain off.21 Some platers believe that more time should be given 

to slow withdrawal rather than to extend dripping for maximum drainage.123 

Agitation refers to the mechanical movement of the workpieces above the solution. Shaking 

and tilting of jigged workpieces and rotating of barrels has been carried out above the process 

solution in order to increase drainage rate. 
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The careful positioning of workpieces on a jig so as to avoid the trapping of chemicals in 

hollows and siphoning of solutions up tubes ensures quick and complete drainage of the 

process solutions.21 Racking workpieces so that the hollows or cavities open downward and 

pipes or tubes are vertically at a slight incline facilitates good drainage. In some instances holes 

have been made in workpieces as an outlet through which process solution can drain.121 

The inherent resistance of a solution to flow is measured by its viscosity. The volume of drag-

out that adheres to the surfaces of workpieces is proportional to the viscosity and surface 

tension (tendency for a liquid to form droplets instead of a film on a surface) of the solution.17 

By reducing the surface tension and viscosity and by lowering the concentration of the active 

process chemicals together with the use of surfactants causes the solution to spread and run off 

the workpieces' surfaces more easily. This may be further enhanced by raising the 

temperature of the solution. However, too high an operating temperature can cause 

decomposition of additives and give evaporative chemical deposits on the surface after 

withdrawal from the hot solution. The buildup of chemical pollutants or the presence of excess 

raw materials in the solution can also increase viscosity and so retard drainage. It is estimated 

that drag-out could be reduced by 50% by improving run off. Solutions run at the lower end 

of the specified concentration range and at a suitable temperature to keep the concentration of 

the dissolved salts to a minimum have been found to result in good drainage.17 

Drain boards are slanting surfaces that bridge the gap between the process and rinse tank.122 

They are used to collect drag-out from workpieces on racks and direct the solution back into its 

original tank. Drain boards not only save chemicals and reduce rinse water requirements but 

also improve housekeeping by keeping the floor dry.125 

2.4.2 RINSING OF WORKPIECES 

Rinsing is used between each wet process step that makes up the metal finishing process e.g. 

pre-treatment, electroplating and post-treatment. Rinsing is carried out between the pre-

treatment steps of alkali and acid cleaning, in chromium plating, in the plating steps of copper 

cyanide, in acid nickel and chrome plating and in the post treatment step of neutralisation. 
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Rinsing is used to:18, l9'126 

• stop chemical reactions on the surface of the workpieces by washing away the raw 

material reactants which come from the process solution; 

• remove raw materials and extrinsic chemicals from the surface of the workpieces; 

• minimise contamination of the next tank in line; 

• avoid salt coatings collecting on the finished workpieces. 

Successful rinsing can obviously be carried out using copious amounts of water to flush the 

surface of the workpieces directly or while they are submerged in a tank of water. However, 

excessive use of water is not consistent with the principle of waste minimisation. Much 

research has been done on how best to achieve good rinsing (rinsability) while using as little 

water as possible.1 Descriptions of established methods of what is termed drag-out reduction 

together with water conservation have been found in the literature and are listed below in 

Table 2.3. Point 12) but will not be discussed here. 

IT Ills I ) 1 I 'V 1 TO 

Table 2.3 Waste minimisation measures and options for improving rinsing ' 

1) drag-out tank 
2) drip tank 
3) drag-in - drag-out rinses 
4) rinsing over the plating tank 
5) flowing (running) rinses 
6) multiple rinse systems 

7) slow flow rates for flowing rinses 
8) design of flowing rinse tanks 
9) dwell (soak) time 
10) agitation 
11) barrelling or jigging of workpieces 
12) water re-use from air cleaners in local 

exhaust ventilation systems etc. 

The direct return of neat or diluted drag-out back into the plating solution has been achieved by 

using entries 1) to 4) on the list of methods given in Table 2.3. However, many cases have been 

reported in the literature where the drag-out must be concentrated or purified in a separate step 

prior to being put back into the plating solution. Alternatively the plating solution itself 

undergoes regular or continuous purification which will be discussed in Section 2.4.3. Similar 

situations have been found for flowing rinse configurations {entries 5) to 8) on the list}. But in 

these cases the rinse water being returned to the rinse system has always been processed in 

some way first to remove chemicals. The return of drag-out or rinse water is discussed more 

fully later in this chapter. However, it is limited to certain processes and can require the use of 



63 

specific and expensive waste minimisation options. This is because the solution or water 

entering or leaving the system must be balanced. For example the volume of water exiting the 

plating solution as drag-out and evaporation (caused naturally and/or forced by using an 

atmosphere or vacuum evaporator) must equal the volume of solution coming in as drag-in and 

top-ups made directly from the drag-out tank solution and/or concentrated and returned drag-

out solution. The drag-out (recuperative, static, still, stagnant or recovery rinse) tank solution is 

a static immersion rinse. The drag-out tank is initially filled with clean fresh water and as 

workpieces go through it the chemical levels rise. This is because drag-out from the plating 

solution is washed from the surface of the workpiece and accumulates in this tank. This is 

preferred over spray rinsing especially when the workpiece has a complicated shape or 

structure. Making up a decrease in volume of the solution in the plating tank with saved drag-

out (recovery rinse) is termed "closing the loop".128 This means that the evaporation losses 

must be high enough to give the tank room for drag-out return (neat or concentrated) without 

risking the tank overflowing. Where the plating solution temperature is high above 50 °C and 

the drag-in is low, the plating tank is more able to receive recovered (treated or not) drag-

out. ' When the concentration of the drag-out tank solution has reached a suitably high 

level then the neat drag-out can be added to the plating solution without concentrating but may 

need purification (see Section 2.4.3). 

A drip tank is an empty tank which captures drag-out after plating but before rinsing.121 It is 

found to be less commonly used than a drag-out tank. It is more suitable for barrelling where 

the barrel can be rotated to increase drainage from workpieces and can maintain continuous 

dripping. Once sufficient solution has been collected it is returned to the plating solution. There 

is no dilution of the drag-out here so this can be used in combination with low temperature 

plating solutions. 

Drag-in drag-out rinsing has been used for plating baths which are not heated. Essentially it 

involves dipping the workpieces in the drag-out solution before they enter as well as after they 

leave the plating baths. This is carried out in order to restrict the direct drag-in of the rinse 

water into the plating bath. Sometimes this means using the drag-out tank twice (double 

dipping). This usually involves passing the workpieces over the plating solution to reach the 
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drag-out. However this is not in keeping with good waste minimisation practice. The 

alternative is to have two static tanks (which may be connected to circulate the solution) either 

side of the plating tank. This is common for cyanide zinc plating where the volume of the rinse 

water dragged-in is often in excess of the combined volume drag-out and evaporation. 

Rinsing over the plating tanks means that the workpieces are held above the plating solution 

and flooded (hosed) or sprayed with rinse water. This water washes the process solution 

covering the surface of the workpiece back into the plating solution. Spray rinses have been 

found to use less water than hoses and have been used on occasions on low temperature plating 

baths.17' '8 However the workpieces must have a simple structure with no hollows or cavities. 

Air flow (air knives) can also be used to blow rather than wash off the solution from 

workpieces back into the tank.127 However, this requires careful operation so as not to dislodge 

any workpieces from the rack with the force of the air and not to dry and hence stain 

workpieces. The latter problem has been overcome by using humidified air. 

The results of the literature survey shows that a second closed loop system, termed zero 

discharge, can be applied this time to the flowing rinse system.12,121 In this case as well as 

recovering and returning chemicals to the plating process, the effluent water from a flowing 

rinse is treated and can be similarly re-used. These two operations together are referred to as 

total recycling which means no materials other than products leave the process.12'I05 

There are a number of means reported by which a closed loop system can be 

established. ' • ' These have been developed to ensure that impurities from the process 

solution and rinse systems are not recycled in the process. They fall under three broad 

categories according to waste minimisation theory and are given below:-

• purification of the plating solution for re-use by removing pollutants and impurities; 

• chemical recovery from the static and flowing rinse water: this involves separation; 

of active plating chemicals from impurities and concentrating the solution to make 

it viable for re-use or for reclamation; 



65 

• water recovery from the flowing rinse for re-use or to comply with effluent 

standards for discharge or to reduce volume of effluent. 

There are many ways for recovering chemicals for potential re-use in the plating solution 

besides using static rinses."'12' l8'124 These include low flow rinsing, multi-static (2 or 3 stage 

static rinse systems), membrane filtration with micro-filtration (MF) or reverse osmosis (RO), 

evaporation (E) and ion exchange (IE). MF, RO, E and IE have also been used in the treatment 

of spent plating solution, obtaining purer rinse water from raw water, the treatment of 

chemically treated wastewater from an effluent plant and for end of pipe waste 

treatment.12',7, ,2U28 These are however expensive. Rinsing is less costly, simpler and the 

benefits can be quickly felt (short payback period). 

In chromium plating the solution in the static or drag-out rinse tank placed immediately after 

the plating solution has been traditionally used to top-up the plating solution. This has been 

done to make-up the drag-out and the plating losses from hot process solutions and save Cr(VI) 

usage. But the returned drag-out often requires purification first to prevent the return and 

buildup of undesirable concentrations of Cr(III), Cu(II), Fe(II), Fe(III) and Zn(II) for example 

in the plating solution. Other rinsing methods like flowing rinses have been used to avoid the 

transfer of solutions from one tank to another by lowering drag-out losses and using little 

water. 

Flowing or running rinses supply a (theoretically) constant flow of clean water into an 

immersion rinse tank full of water. This water washes off and disperses the dragged-in 

chemicals on the workpiece surface into the bulk rinse solution. This solution flows out of the 

tank to be discharged to the drain or fed to another tank. After some time the concentration of 

the dragged-out species reaches a stable level in the rinse water which is less than the 

concentration in the process solutions. This concentration level is related to the rate at which 

the water flows through the tank. The volume of solution that must be removed from the rinse 

tank (D in Equations 2.5-2.8) and replaced with fresh water in order to keep the rinse water 

concentration in the tank at a fixed level, CR in Equations 2.5-2.8, therefore depends on the 
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rate, Q in Equations 2.5-2.8, at which water flows through the tank. This is expressed as a 

rinsing criterion and is basically a dilution factor (see Equation 2.5).I30' •l32 

Q_cD 

D 

Q 

D CR 

= n 
D 

Q 
D 

i 

V^-R; 

Equation 2.5 

Equation 2.6 

Equation 2.7 

r 
Q + D = —5- x D Equation 2.8 

Q = Rinse water flow rate through the tank solution, m3/hr 

D = Drag-out flow rate into the tank, m3/hr 

CD = Concentration of the drag-out coming into the tank (drag-in) 

CR = Concentration of the rinse solution in the tank 

n = number of stages (tanks) in the rinse system 

Equation 2.5 describes the situation at equilibrium when there is a steady state and the solution 

concentration has ceased rising. In practical terms this arises after between 1000- 10000 rinses 

(i.e. 1000-10000 loads have passed through the rinse tank) or over three holdup times 

(i.e. residence time of water in the flowing rinse tank) as defined by Equation 2.9.18'l26 

Volume of tank (m3) 

Rinse water flow rate (m3 /hr) 
Holdup time = — ^j—|—c Equation 2.9 

Equation 2.5 shows that the cleanliness of the workpiece cannot be improved by increasing the 

dwell (residence) time in the rinse solution. No matter how long the workpiece spends in the 

rinse solution it will always leave the rinse solution covered with drag-out which has the same 

concentration as the rinse solution. 
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Immersion rinsing and cleanliness can be improved by increasing the flow rate (adding more 

clean water) or by having a series of these flowing rinse tanks, one after the other.132 The 

extension of a single stage rinsing by introducing two or more rinse tanks each with its own 

supply of fresh clean water is called parallel rinsing or individual feed rinsing.130 However, 

these arrangements use a lot of water. Equation 2.6 shows the volume of water or flow rate, Q, 

required to achieve a specific rinse water quality, CR, when n, the number of individual rinse 

tanks are arranged one after the other. (The rinse water quality in Equations 2.5, 2.6 and 2.7 is 

not well defined in the literature. It has been quoted empirically and most frequently in terms of 

conductivity and total dissolved solids and less often in terms of individual elemental 

concentration. This limits the use of these equations for those pollutants which present a 

particular operational or disposal effect for rinse solutions). 

It is possible to achieve better rinsing by having a number of these flowing rinse tanks placed 

after the process solution. However, this will use proportionally more water. Where the water 

exiting the rinse tank becomes the influent water for another tank significant water savings 
i n I 1 U I I t ] 

have been reported. * This rinsing technique is called cascade or multiple stage rinsing 

(see Figure 1.2 in Chapter 1). This happens when two or more rinse tanks are connected so that 

the fresh rinse water comes into the tank which is furthest away from the process tank (cleanest 

rinse solution) and flows through any intervening tanks finally to the tank closest to the process 

tank (dirtiest rinse solution) where it leaves the rinse system as wastewater. Such multi-staged 

rinsing is termed counter current (counter flow) or co-current rinsing depending on the 

direction in which the workpieces move down the line. The preferred rinsing setup in industry 

has been the counter current option in which the workpiece is rinsed first in the dirtiest rinse 

and finally in the cleanest rinse water. This means it moves in the opposite direction to the 

flowing rinse water. The flow rate needed to maintain a specific rinse water quality can be 

calculated using Equation 2.7.131 

It has been shown that to maintain the same rinse water quality (dilution factor) less water is 

used according to the following rinse system order.130 

Single rinse > Parallel rinse > Counter current rinse 
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Further flowing rinse systems, in contrast to static rinses, should not have to be dumped and 

recharged and so production time is not lost because a tank is out of commission. However, 

there are restrictions on the application of these equations. These equations (Equations 2.5 to 

2.7) do not hold under conditions of low flow rates and incomplete rinsing. It has been found 

that when the rinse tank volume is under ten times the drag-out volume, Equation 2.8 must be 

used.128 This allows for the dilution effect that the drag-out volume will make at low rinse 

volumes. Incomplete rinsing is found when the drag-out film on the workpiece surface is not 

washed off immediately and then well mixed into the bulk rinse water. These equations will be 

used in the water usage analysis in Chapter 7. 

Agitation has been used to ensure equilibrium rinsing i.e. where good mixing of the drag-in and 

the water in the rinsing tank is achieved quickly. This is carried out either by moving the 

workpieces in the solution or by moving the solution over the workpieces. The former can be 

achieved manually or mechanically, by moving the jig backwards and forwards or/and up and 

down or rotating the barrel in the tank solution. In the latter case, sometimes the natural 

movement of the water in a flowing rinse system will be adequate. This may be the case when 

the water enters the tank at the bottom, travels diagonally across the tank and exits at the top of 

the other side and vice versa. However often pumping is needed over and above gravitational 

flow. Air agitation is often used. A perforated pipe runs across the bottom of the tank and 

compressed air is forced through it generating streams of bubbles through the rinse. Barrelling 

and jigging will be discussed more fully in Chapter 3. 

2.4.3 MAINTENANCE OF PROCESS SOLUTION 

The chemicals in process baths are operated within specific concentration ranges recommended 

by the chemical suppliers. The chemical composition of a bath alters continuously during its 

use through various mechanisms such as the surface treatment reaction, drag-out, evaporation, 

side and decomposition reactions. This means there has to be regular addition of chemicals and 

water to the solution in order to keep the specified concentration level constant. The level of 

unwanted chemicals in the bath must be minimised. Several common methods used to detect 

and remove pollutants from process solutions have been identified from the literature and are 

shown in Table 2.4. 
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Table 2.4 Methods of detecting and removing pollutants from process solution766, l28 

1) monitoring of solution chemistry, conductivity levels, pH, temperature and density 
2) monitoring the current consumed over a specified time period (ampere-hours) 
3) filtration and carbon treatment of the plating solution 
4) addition of chemicals to precipitate out impurities 
5) use of electricity to plate out impurities (dummying) 
6) removal of the contaminant source e.g. workpieces dropped from racks and left lying on tank 

bottom 

Various solution monitoring techniques have been developed to detect the buildup of 

impurities in the bath. These include simple measurements like pH, density, conductivity, 

ampere-hours as well as elemental and other chemical analysis of the process solution and the 

consumption of active plating and processing chemicals.7' Monitoring allows the correct 

amount of raw materials and treatment chemicals to be added before any plating problems 

occur. 

A conductivity measurement is one of the simplest ways of determining the quantity of 

inorganic substances present in effluent and flowing rinse water tanks.7 Monitoring the 

conductivity of rinse water helps to maintain chemical concentrations of pollutants at levels 

that provide adequate rinsing and prevent excessive drag-in to subsequent process tanks.133 By 

checking conductivity measurements the amount of water used for rinsing can be also reduced 

using a conductivity based control system to automatically adjust the rinse water flow rate.14 

Chemical changes taking place in the plating solution itself can be monitored by recording 

specific density (Baume reading), pH and ampere-hour measurements. The densities of the 

process solution can be measured directly using a hydrometer. The Baume hydrometer scale is 

calibrated in units of degree Baume (°Be). These readings can be converted to specific density 

(see Equations 2.10 and 2.11) or to C1O3 concentration (using conversion tables):89 

D =
 1 4 4 3 

144.3-N 

g . 1 4 4 3 

134.3-N 

D = density for liquids heavier than water 

5 = density for liquids lighter than water 

N = Baume scale reading 

Equation 2.10 

Equation 2.11 
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The Cr03 levels range from 10.5 °Be (specific gravity 1.080) to 32.0 °Be (specific gravity 1.285) 

and a reading of 21.5 °Be is equal to a C1O3 concentration of 250 g/L.23'134 The presence of 

impurities including iron and copper can lead to erroneously high Baume readings.7'23 

Current, like chemicals, is consumed in the plating process. By monitoring the amperes passed 

through the solution over time, the amount of chemicals used up can be estimated. This has its 

basis in Faraday's Law (see Equation 1.15). Chemical suppliers quote the values of ampere-

hours at which chemical additions should be made. This is particularly useful for monitoring 

additive levels e.g. brighteners. These substances are present in small amounts and are not 

easily chemically analysed. This means chemicals can be added to the solutions at the 

appropriate time to prevent the bath running below the specified level as chemicals are used up 

in the plating process. 

Filtration is one of the common methods used to remove insoluble suspended solids from a 

plating solution. These substances have been found to enter the tank from many sources e.g. 

airborne dust, anode corrosion, drag-in on the workpiece and impurities in make-up chemicals. 

Suspended solids may cause roughness, porosity, poor adhesion and burning on 

workpieces.14'63 Filtration of some plating solutions is carried out continuously e.g. Ni while 

for other solutions it is less frequent (annual) e.g. Cr, Cu, Zn. In both cases the solution is 

usually pumped out of the tank, through the filter into an empty tank, and the cleaned solution 

pumped back into the tank. Various specialised pieces of equipment have been developed for 

filtration of electroplating solutions. The most widely used are wound cartridge filters and disc 

plate or precoat (diatomaceous earth) filters (see Figures 2.4-2.6 and Figure 3.3 in 

Chapter 3).I28 Cartridge filters can be utilised for both small and larger tanks while precoat 

filters are used mostly for large tanks. The filter media are selected depending on the chemical 

composition of the solution. Size of filtration systems are based on solid loading and flow rate 

of the plating solution.128 
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Figure 2.4 Types of filters used in electroplating 

Figure 2.5 Cartridge filter assembly Figure 2.6 Disc and plate clarifying filter assembly 

Soluble organic and inorganic bath contaminants cannot be removed by ordinary filtration. The 

organic contaminants are removed by treatment with activated carbon.7'I36 The carbon adsorbs 

these contaminants and removes them from the solution. Carbon treatment can be applied by 

various methods such as carbon filtration cartridges, carbon canisters and packing between 

precoat filters.128 

The inorganic contaminants, such as dissolved base metals e.g. Fe, Zn and Pb, dragged-in 

treatment chemicals containing Cr, Ca as well as P and Cu from wiring workpieces are 

removed by chemical methods such as precipitation or by dummy electroplating.136 

Precipitation is usually a batch process which is frequently performed by pumping the solution 

into a spare tank where it is chemically treated and filtered and then pumped through the filter 

back to its original tank.128 The precipitated sludge is left behind in the spare tank for disposal. 

Chemicals which can be used for the precipitation purpose include barium hydroxide or 
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carbonate for the removal of sulfate in a chromium bath (see Equation 3.6 and 3.7 in 

Chapter 3), silver oxide or silver carbonate to remove chlorides from chromium plating baths 

(see Equation 2.11), lime addition for the removal of carbonate in silver cyanide baths (see 

Equation 2.12) and nickel carbonate treatment of nickel plating baths to remove metal 

contaminants such as iron and aluminum (see Equation 2.13). " • Iron, zinc and copper 

can be precipitated out of the solution by treatment with NaOH at high pH (see example 

Equation 2.14). 

Ag20(s) + 2HCl(aq) -* 2AgCl(s) + H20(1) Equation 2.11 

CaO(s) + H2C03(aq) — CaC03(s) + H20(1) Equation 2.12 

3NiC03(s) + 2Fe3+(aq) — 3Ni2+(aq) + Fe2(CC-3)3(s) Equation 2.13 

Zn2+(aq) + 2NaOH(aq) — 2Na+(aq) + Zn(OH)2(s) Equation 2.14 

Dummy plating is an electrolytic treatment method used to plate out or oxidise metallic ion 

contaminants from a process solution.128 The process uses low current density usually between 

0.2-0.5 A/dm"2 to plate out metallic ion contaminants such as copper, iron and zinc from a 

process solution onto scrap metal.7' I38 This has been found particularly useful for purifying 

nickel plating baths where hydroxide precipitation leads to loss of nickel as Ni(OH)2. High 

current density between 10-30 A/dm"2 is applied to oxidise Cr(III) to Cr(VI) in chromic acid 

baths used in chromium plating or chromic acid based anodising operations.128 

When workpieces hung on a rack move from one tank to the other in the plating line, they may 

drop into the process solution and dissolve. This may cause Fe or Zn contamination of the 

solution. Regular removal of these dropped workpieces can help to prevent contamination of 

the process solution. 

Maintenance of process chemical solutions helps to extend their useful lives and improves their 

operating efficiencies and effectiveness.7 The former reduces the dumping frequency and re­

charging of process and rinse solutions and the latter reduces reject rates from poor quality 

plate e.g. those with cracks, inclusions and satins. 
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COMPANY AND PROCESS PROFILE 

3.1 COMPANY DESCRIPTION 

Saayman Danks Electroplating operates from premises in Durban and Pinetown. The company 

is a job shop which means it plates and polishes workpieces brought to the factory by 

customers such as general engineering companies and government departments. A so called 

captive shop on the other hand electroplates workpieces manufactured in-house.139 The factory 

was established in 1981 and employs around 70 staff members. The plant operates from 

Monday to Friday for effectively 234 working days in a year. Many changes have been made 

to the factory over the years in order to maintain its leading position among the competing 

companies of KwaZulu-Natal and South Africa. For example, there has been a recent 

amalgamation with Pinetown Electroplaters and the introduction of automation into the 

chromium plating shops. 

The company carries out a number of different surface finishing processes. These include 

chromium, nickel, copper, cadmium, silver, gold, tin, brass and zinc plating, irridising, and 

anodising. The workpieces coming to the factory to be finished are generally made from steel, 

copper, brass, zinc alloy and aluminum. Both jig and barrel plating are employed. 

The factory gets water from the municipality and an on-site borehole. The plating lines 

excluding chromium generally use borehole water which is metered. There is a dual water 

supply system to these lines which allows them to be switched from borehole to mains water if 

the supply dries up. There is also one water meter used to read the total municipality water 

coming to the factory. The chromium electroplating setup is discussed in Section 3.2. The 

chemicals used by the factory are purchased from many different suppliers. Some supply 

houses are used regularly e.g. Orlik, C hem serve and Protea while other chemical traders are 

used when they offer the company a competitive price on materials. 

The workpieces which are plated range from small items such as electrical components, 

screwdrivers, bath handles, chains, knobs and bezels (see Figure 3.1) to larger items like 
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fences, pipes and gates The p.ant has developed considerable capacity and flexibility in order 

to accommodate all varying plating requirements 

Figure 3.1 Some decorative chromium plated p i e c e s at Saayman Danks electroplaters 

The factory has a mectanical finishing system, a vapour degreaser, an effluent treatment plant 

and a sludge dewatering unit. The mechanical finishing includes processes such as pofidring 

and blasting. This finishing process is used to remove scales from workpiec.es through 

mechanical means. Such finishing eliminates or minimises chemical usage in the p.ckhng 

process to follow, smut formations and hydrogen emhrittlement.»• * The vapour degreasmg 

unit uses a condensing vapour of a chlorinated hydrocarbon solvent such as trichlorethylene 

(C2HCI3) above a reservoir of boiling solvent to remove heavy oil and grease from the 

workpiecas prior to sending them to each plating line.23 The vapour degreaser cooling cods are 

supplied with water from the water exiting the pretreatmen. rinse systems of the chromtum 

plating line. 

The central effluent treatment plant is used for collecting and treating all the effluents and 

spent solutions of the electroplating plant. Effluent streams from the various platmg hnes are 

not segregated for treatment. However, Cr(VI) in the plating rinse is reduced in an acidic 

environment (PH between 2-3) to Cr(III) using a sodium metabisulfite treatment (see 

Equation 3.1) 132, 140, 141, 142 

2Cr,Or(aq)+3S20J
2-<a4>+'°H>I>- 4Cr>q> + bSOf (aq) + 5H,0(1) E^onil 

http://workpiec.es
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Cyanides, used in different plating processes such as zinc, are oxidised in an alkaline 

environment (pH between 8-11) first to cyanogen chloride (see Equation 3.2) then hydrolysed 

to cyanates (see Equation 3.3) and finally to carbon dioxide and nitrogen (see Equation 3.4) by 

the addition of sodium hypochlorite and sodium hydroxide in the plating line.143, ,44'145 The 

solution is then sent to the treatment plant. 

2CNXaq) + 20Cl(aq) + 2H20(1) - • 2C1CN(1) + 40Jr(aq) Equation3.2 

2C1CN(1) + 40HXaq) — 2CNO(aq) + 2Cl(aq) + 2H20(1) Equation 3.3 

2CNO(aq) + 40Cl"(aq) — N2(g) + 2C02(g) + 4Cl"(aq) + 20H (aq) Equation 3.4 

The effluents are then chemically treated (by hydroxide precipitation) at pH between 8-9 to 

precipitate the heavy metals before discharging into the sewer (see example Equation 3.5).M 

Cr^aq) + 3NaOH(aq) — CrfOHMs) + 3Na+(aq) Equation 3.5 

The sludge from the clarifier in the effluent plant is then piped into a filter press to remove 

excess water before being loaded into a skip which also acts as a drier. A flocculating agent 

(Orfloc 4410) is used in the clarifier to help settle any fine particles out of solution. 

3.2 THE CHROMIUM PLATING LINES 

The plant has four chromium plating lines: two automatic plating lines, a manual decorative 

chromium plating line (MDCPL) and a second decorative line dedicated to plating 

screwdrivers. The Chrome Shop and the automatic chromium plating lines use only the 

municipal water supply. Each plating line has its own water meter. The project focuses on 

monitoring the rinse tank solutions of the MDCPL. This line was established in 1983. A floor 

plan of the Chrome Shop showing the tank numbering used in this report is given in Figure 3.2. 

All tank numbers quoted herein will refer to those given in Figure 3.2. The line shares its soak 

alkaline cleaner with the copper and brass plating line. All these three lines are housed in what 

is known as the Chrome Shop. The lines in this shop operate for effectively 24 hours a day 

from Monday to Friday and are manned by two shifts. On each shift there are five workers. 

The day shift (5 workers) works from 7:15 to 16:00 and has a 15 minutes tea break in the 
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morning and a half an hour lunch break at 12:45. The night shift works from 18:00 to 3.00 the 

next day but often will do overtime which means the shift works on to 6:00. 

Decorative chromium is mainly plated onto steel and zinc workpieces. Some chromium plating 

is also carried out on lead and brass workpieces. Steel is pre-plated with nickel before 

chromium is applied. Zinc based die-castings, lead and brass are first plated with copper 

followed by nickel and finally with chromium. 

3.3 THE MANUAL DECORATIVE CHROMIUM PLATING LINE 

One tap is used to supply water to the line for filling rinse tanks. This is done by means of a 

piece of hose attached to the tap. This tap is not metered but the water that is piped into the 

Chrome Shop is metered on the roof. The meter in the main down pipe in the shop feeding the 

line however was not working at the time of this study. Water flows through the rinse tanks of 

the plating line continuously for 24 hours for five days a week. Water utilised for process 

solution make-up, filling drag-out tanks and topping up the plating tanks is performed using 

buckets. Chemicals are added to the tank using a batch system. Chemical additions are made 

based on the results from chemical analyses. The process solutions are monitored in-house 

every day (Tank 3,4, 9 and 14) and by the chemical suppliers every week (Tank 9 and 14). 

There are 21 tanks (Tanks 1-21 in Figure 3.2) for the MDCPL. Tank 3 and 21 are also used by 

copper and brass plating lines. The copper plating line is made up of eight tanks (Tanks A-H in 

Figure 3.2) and brass plating has three tanks (Tanks I-1II in Figure 3.2) in the line. 

There are four surface treatments plus associated rinses which comprise the stages in the 

MDCPL. These are cleaning (Tanks 1, 3, 4 and 6), striking with nickel (Tank 9 or Tank 9*), 

plating with chromium (Tank 14) and reducing Cr(VI) and neutralising any acid left on the 

workpieces (Tank 16). The rinse water tanks are numbered 2, 5, 7, 8, 10, 11, 12, 13, 15, 17, 18 

and 19 in Figure 3.2. 
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9*. Nickel plating 
bath 

10*. Nickel drag-out 

10. Nickel 
drag-out 

11. Rinse water 

12. Rinse water 
4 

13.Rinse water 4 

14. Chromium plating 
bath 

15. Chromium drag-out 

16. Neutraliser 

17. Rinse water 

18. Rinse water 4 

19. Hot static rinse 

III. Brass passivating 

20. Chromium stripping 

9. Nickel 
plating bath 

H. Acid dipping 
(H2SO,) 

21. Zinc 
stripping 

II. Brass 
drag-out 

I. Brass 
plating bath 

Mains water 

4 
7. Rinse water 

G. Acid dipping (H2S04) 

t 5. Rinse water 

4. Anodic electrolytic 
alkaline cleaner 

3. Alkaline soak 
cleaner 

2. Rinse water J 

1. Acidderust (HC1) 

A. Anodic electrolytic 
alkaline cleaner 

B. Rinse water S 
C. Organic acid 

D. Rinse water 
^ 

E. Copper plating bath 

Figure 3.2 Tank arrangement for the chromium, copper, and brass plating lines 

The workpieces are loaded into perforated plastic buckets or wired onto jigs for cleaning. They 

are then transferred onto purpose-made j igs for plating and further treatment. The physical 

layout o f the tanks in the line is not the same as the order in which the workpieces are dipped 

in the tank solutions. This is because the tanks are not arranged sequentially. They are arranged 

along three walls o f the shop and in a row down the center o f the shop. This has made the line 

unsuitable for automation. Thus loading o f jigs and baskets and immersion in the tank is 

carried out by hand. 
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In the decorative chromium plating lines the immersion sequence for cleaning, striking, plating 

and post-plating treatment of steel workpieces, in terms of the tank number system shown in 

Figure 3.2, is 1, 2, 3, 2, 4, 5, 6, 7, 8, 9(or 9*), 10 (or 10*), 11, 12, 13, 14, 15, 16, 17, 18 and 19. 

After nickel plating in Tank 9, the workpieces may also be plated with brass in Tank I. The 

immersion sequence for cleaning and striking the workpieces in the copper plating line is 

Tanks 3, A, B, C, B, D and E. After this the workpieces are immersed in Tanks D, F, G, 7 and 

8 to be plated with any of the following: nickel only, brass only, nickel followed by brass or 

nickel followed by chromium. 

The process solutions used for chromium plating will be discussed in Section 3.3.1 and the 

rinse systems will be discussed in Section 3.3.2. Solution composition and concentration, 

dumping and top-up rates are given in Tables 3.1, 3.2 and 3.3. The information presented in the 

tables is the result of extensive on-site data gathering and compilation. This was not directly 

available in this, or any written format from the company. 

3.3.1 SURFACE TREATMENT ON THE MDCPL 

Cleaning of the workpieces is accomplished using both alkaline based and acid based 

solutions. Two forms of alkaline cleaning are used on the line namely soak alkaline and anodic 

electrolytic alkaline cleaners. Soak cleaners are used to remove soils from the surface of the 

metals. The solution in this tank is heated electrically to 50-55 °C to increase its cleaning 

efficiency. A small rotatory propeller, mounted on the side of the tank, is used to mix the 

cleaning solution. Oil is skimmed from the solution daily at the beginning of the shift work. 

The immersion time for the workpieces in the cleaners is between 15 and 20 minutes. 

The anodic electrolytic alkaline cleaner is also heated to 50-55 °C. This is used to remove any 

residual soils that may have been left behind or loosened by the soak cleaners. One bar is 

suspended across the tank to hold the jig containing workpieces and to pass electric current 

from the rectifier to the tank during cleaning processes. The immersion time of the workpieces 

is between land 5 minutes. 
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Table 3.1 Trade chemicals and their ingredients used in on the MDCPL. 

Tank 

Acid de-rust 

Flowing rinse water 

Alkaline cleaners 

Anodic Electrolytic 
cleaners 
Flowing rinse water 

Acid dipping 

Flowing rinse water 
Flowing rinse water 

Nickel plating 

Nickel drag-outs 
Flowing rinse water 
Flowing rinse water 
Flowing rinse water 

Chromium plating 

Chromium drag-out 

Neutralizer 

Flowing rinse 
Flowing nnse 
Hot static rinse 

Chromium stripping 

Zinc stripping 

Layout order 
of tanks 

1 

2 

3 

4 

5 

6 

7 
8 

9 and 9* 

10 and 10» 
11 
12 
13 

14 

15 

16 

17 
18 
19 

20 

21 

Composition oftank solution 

Trade chemical 

30-33% Commercial 
Hydrochloric acid 

Chemalene 03 

Oxyprep 220 

30-33% commercial 
Hydrochloric acid 

Sodium saccharine 

NIchelux-100 plus 
Addition agent SA1 

Addition agent NPA 
Wetting agents AP-7 

Chromic acid 

1 umetrol 140 

Sodium metabisulfite 
Sodium carbonate 

Sodium carbonate 

Caustic soda 
I Ivdrochlonc acid 

Ingredient 

HC1 

Mains water 

NaOH 

NaOH 

Mains w ater 

HC1 

Mains water 
Mains water 
NiS04.6H20 

NiCl2 

H3BO3 

Sodium saccharine 

Patented 

Patented 

Patented 
Patented 

Mains water 
Mains water 
Mains water 

Cr03 

H2SO4 
Patented 

NaS205 

Na2C03 
Mains water 
Mains water 
Mains water 

NajCOa 

NaOH 
HC1 

Make-up quantity 
and specification 

3x28 kg drum 
(5MHC1) 

3x25 kg sack 
(100 g/L) 

3x25 kg sack 
(90 g/L) 

2.9MHC1 

300 g/L 
60 g/L 
40 g/L 

30ml/L 

2ml/L 
5ml/L 

2.5ml/L 
4ml/L 

300 g/L 
2 g/L 

2.5ml/L 

14 kg 
1kg 

20 g/L 

50 g/L 

5MHC1 

Top-up quantities 

0 

3 kg/week 

3 kg/week 

0 

0 
0 

5 kg/month 

Unknown 

5L/day 

150 ml/day 

1 L/week 
1.5L/week 
70L/day 

15 kg/month Cr( VI) 

1.5 L/week 
25L/day 

0 
0 

0 

0 

Dumping 
frequency 

3 months 

Annually 

2 month 

1 month 

Annually 

1 month 

0 

Annuallv 
Annually 
Annually 

0 

3 days 

Annually 
Annually 

2 days 

10 weeks 

6 months 

Volume 
oftank 

(m3) 

0.2574 

0.3223 

0.7501 

0.8303 

0.3483 

0.4272 

0.4381 
0.4697 

3.000 

0.1945 
0.1705 
0.3612 
0.3822 

1.1201 

0.1292 

0.2143 

0.2338 
0.2338 
0.9308 

0.3216 

0.3367 
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Industrial grade hydrochloric acid (32%, 373 g/L, 10 mol/L) and sulfuric acid (98%, 1832 g/L, 

18.7 mol/L) are bought in a concentrated form and then made up to the required dilution factor 

with water. Hydrochloric acid is used to clean and activate steel workpieces and sulfuric acid 

to activate workpieces after copper plating or chromium stripping (see Equation 1.8 in 

Chapter 1). Two different acid solutions are made from the hydrochloric acid, HC1. The first 

HC1 acid solution used on the line is a more concentrated (5.0 M HC1) acid de-rust (pre-

pickling) solution (Tank 1) and is prepared by adding three 28 kg batches (supplied in 25 L 

drums) of the industrial grade hydrochloric acid to three 25 L drums of water in a tank. This 

acid removes oxide films, scales and other contaminants from the surface of the metal. The 

spent acid from Tank 1 is used to top up the zinc stripping (Tank 21) solution which removes 

zinc from wire products. Twice a year this acid is taken to the effluent plant which treats rinse 

effluent from the plating process of the factory. Depending on the amount of rust present, 

workpieces are immersed in this tank for about 15-20 minutes. The second type of acid dipping 

(Tank 6) solution (2.9 M HC1) is made by mixing two 28 kg drums industrial grade 

hydrochloric acid with five 28 kg drums of water. This acid helps to activate the metal for 

plating. Workpieces are immersed in this tank for about one minute. The sulfuric acid solution 

of Tank H is prepared by dissolving 4.5 L of the industrial grade acid in a half filled tank of 

water and topping up with more water. The sulfuric acid solution used in Tank G of the copper 

plating line is also prepared by mixing the industrial grade sulfuric acid with water in a ratio of 

1:3. 

Striking of workpieces is accomplished with nickel using a Watts nickel bath (see Table 1.3 in 

Chapter 1). There are two nickel plating baths (Tanks 9 and 9*) of equal size serving the 

chromium plating solution. These baths contain nickel plating electrolytes (Na2S04.6H20 and 

NiCl2.6H20), a buffering agent (H3BO3), a wetting agent Nickelux 100 plus, addition 

agent SA1, addition agent NPA and an in-house treatment. The wetting agents are added drop-

wise into the plating solution from a 25 L plastic container secured on the edge of the plating 

tank. Metallic contaminants in the plating solution are removed from the bath by electrolytic 

dummying twice a year. The solution is heated electrically to 50-60 °C, with constant filtration 

through activated carbon using a pump (see Figure 3.3). 
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Figure 3.3 Unit for the continuous filtration of the nickel plating solution 

This makes the solution well aerated for complete mixing. The carbon in the filtration tank is 

changed every two weeks. About 300 ml of H2SO4 and 400 ml of HC1 are added to the tank 

solution in each shift to maintain the pH around 4.0 and keep the concentration of nickel within 

the specified values recommended by the chemical suppliers. The optimum concentration of 

nickel specified by the chemical suppliers is 82.5 g/L. There are two nickel drag-out tanks 

(tanks 10 and 10*) of equal size in the MDCPL. Each day 70 L of the drag-out solutions are 

used to top up the process tank. A current density ranging from 1-10 A/dm2 and a voltage of 

5.4-9 V is used during the plating process. Workpieces are plated in these baths with nickel in a 

time of 15 to 20 minutes and the thickness of the plate is around 10 urn. Five flight bars are 

used in the plating tank. Three of the bars are used to suspend the soluble nickel anodes and 

two are cathode bars used to hold the jigs that carry the workpieces. Nickel chips are used to 

provide anode surface and are arranged in the bath to give as uniform a distribution as possible 

of the electrodeposits on the work and to maintain the nickel content of the plating solution. 

The anodes are enclosed in polypropylene bags in order to prevent particles from the surface of 

the anodes passing into the solution. 

The chromium plating bath is made up of chromic oxide (C1O3) and sulfuric acid that serves as 

a catalyst along with a proprietary catalyst based on silicon hexafluoride. The mixed catalyst 

used is Lumina 34 which has been specifically developed for decorative plating where 

uncatalysed C1O3 is used in the plating solution (Protea and other suppliers). In the chromium 

plating bath the ratio of the chromic acid to sulfuric acid is maintained in a fixed ratio, 

preferably 100:1. The high concentration of sulfate resulting from the buildup of drag-out in 
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the bath is removed (precipitated) as barium sulfate by adding barium carbonate (see 

Equation 3.6 and 3.J).66'83, ,47 

BaC03(s) + H2Cr04(aq) — BaCr04(s) + C02(g) + H20(1) Equation 3.6 

BaCr04(s) + H2S04(aq) — BaS04(s) + H2Cr04(aq) Equation 3.7 

Low concentration of sulfates is adjusted by adding extra sulfuric acid. The solution is heated 

electrically to 38-43 C and a current density ranging from 12-25 A/dm is used during plating 

processes. The voltage used during plating ranges from 5.7-10 V and the plating thickness 

from 0.1-0.8 um. Workpieces are plated in the bath with chromium in a time ranging from 3 to 

5 minutes. Each day, 25 L of the drag-out is transferred to the process tank. A fume 

suppressant, Orlik Fumetrol 140, is added to reduce emissions of chromic acid mist from the 

plating tank. An insoluble anode (tin-lead alloy anode) is employed in plating the workpieces. 

The anode contains 4% tin. Two anode bars are used in the tank to suspend the anodes and one 

cathode bar is used to hold the jigs that carry the workpieces. Jigs are lifted in and out of the 

baths by hand except in the case of chrome (see Figure 3.4). Here a gantry is used. Up to four 

jigs can be plated in the chromium bath at the same time. 

Figure 3.4 Gantry used in lifting jigs in and out from chromium plating bath 

Chromium plate that does not fulfill the required specification is stripped off the workpieces 

anodically (see Equation 3.8) in a solution containing 50 g/L caustic soda and 20 g/L sodium 

carbonate in Tank 20. The Cr(VI) produced is thought to exist as chromate, Cr04
2" in this 
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alkaline medium(see Equation 1.22 in Section 1.3.4). The voltage required between the anodes 

and cathode connections is around 6 V. This tank is situated at the far end of the plating line. 

Cr(s) — Cr(VI) (aq) + 6e" Equation 3.8 

Since nickel becomes passive when treated anodically in an alkaline solution, the stripped 

workpieces are re-activated using the dilute sulfuric acid dip of Tank H. The workpieces are 

rinsed in Tanks 7 and 8 and then re-plated with nickel and chromium. Customers may also 

bring steel workpieces plated with zinc to be plated with chromium. In order to avoid 

contamination of the alkaline cleaning solutions of the chromium plating tanks, the zinc is first 

stripped off the workpieces by dipping them in the hydrochloric acid solution of Tank 21. This 

solution is obtained from the acid de-rust tank of the MDCPL. 

The post plating so called neutraliser bath contains sodium metabisulfite (Na2S20s) and sodium 

carbonate (Na2CC>3) to treat the Cr(VI) present. The former compound is used to reduce Cr(VI) 

to (Kill) (see Equation 3.1). The sodium carbonate in the solution neutralises any acid left on 

the workpieces and buffers the solution. 

3.3.2 RINSING ON THE MDCPL 

After placing the workpieces in the process solution, they are rinsed off in mains water. The 

plating line has a drag-out for nickel (Tank 10) and for chromium (Tank 15). There is one hot 

static rinse (Tank 19) used for quick drying of wet workpieces and to dissolve the last traces of 

the chemicals from the surface of the workpieces. This includes the final flowing rinse stage of 

the copper pretreatment line (Tank 2, third stage) and the copper and chromium acid 

pretreatment line (Tank 5, fourth stage), one double-stage counter flowing rinse (Tanks 17 and 

18) and one triple-stage counter flow rinse (Tanks 11,12 and 13). 

Water is piped into the rinse systems of the plating line through Tanks 8, 13 and 18. There is 

no individual metering of water going into any of these flowing rinse systems. The water is 

piped in halfway down the sides of the tank and leaves through an outlet pipe close to the top 

of the tank and flows into the next rinse tank. In the other tanks of the counter current rinses 
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the water enters and leaves through a hole close to the top of the tank. All the effluent rinse 

water that leaves the rinse tanks (as shown in brown line in Figure 3.2) is sent to the central 

effluent treatment plant for treatment before being discharged into the sewer. 

3.3.3 NON-CHROMIUM PLATING IN THE CHROME SHOP 

A copper plating line is situated before the pretreatment step of the MDCPL. This line is used 

to strike zinc, lead, brass and sometimes steel workpieces with copper prior to nickel and 

chromium plating. Workpieces are cleaned first in the alkaline soak cleaner of Tank 3 of the 

MDCPL then in the electrolytic cleaner of Tank A and finally in the organic acid (Galtin 140) 

solution of Tank C of the copper plating line prior to plating with copper. A copper cyanide 

plating system is used, with copper used as the anode. On each day 10 L of flowing rinse water 

from Tank D is used to top up the plating tank. This line does not have a drag-out tank. The 

rinse water of the copper plating line in Tank B flows into rinse Tank 2 and the rinse water of 

Tank F into Tank 5 of the MDCPL. 

Near the copper plating line is a brass plating solution. This solution is used to brass plate 

workpieces after they have been plated with copper, nickel, or copper and nickel. Workpieces 

are cleaned in the alkaline soak cleaners of MDCPL and in the pre-treatment tanks of the 

copper plating line prior to brass plating. Brass is used as the anode. The plating solution is a 

commercial product called brass salt. After plating, the workpieces are dipped in the drag-out 

tank. In each week, 10 L of the drag-out is used to top up the brass plating solution. The 

workpieces are then immersed in a passivating solution of sodium dichromate situated near 

Tank 19 of the MDCPL. Finally they are dipped in Tanks 16, 17, 18 and 19 of the MDCPL. 
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Tank 

Electrolytic cleaner 

Flowing rinse 
Organic acid 
Flowing rinse 

Copper plating 

Flowing rinse 

Acid dipping 

Acid dipping 

Table 3.2 Trade chemicals and their ingredients used on the copper plating line'"*' 

Layout order 
oftanks 

A 

B 
C 
D 

E 

F 

G 

H 

Composition oftank solution 

Trade chemical 

Sodium cvanide 
Sodium carbonate 

Galtin 140 

Copper anode 

Potassium cyanide 

98% commercial 
sulfuric acid 
98% commercial 
sulfuric acid 

Ingredient 

NaCN 
Na2C03 

Mains water 
Patented 

Mains water 

Cu 

KCN 

Mains water 

H2S04 

H2SO4 

Make-up quantity 
and specification 

25 g/L 
25 g/L 

120 g/L 

30g/LCu 

20 g/L 

4.7 M H2SO4 

Top-up quantities 

0 

0 

2 kg/day 

0 

0 

Dumping 
frequency 

3 months 

Annually 
1 week 

Annually 

0 

Annually 

1 month 

3 month 

Volume 
oftank 

(m3) 

0.5409 

0.2151 
0.1947 
0.1682 

1.892 

0.2177 

0.1973 

0.1683 

Table 3.3 Trade chemicals and their ingredients used on the brass plating line146 

Tank 

Brass plating 
Drag-out 
Brass passivating 

Layout order 
oftanks 

I 
II 
III 

Composition oftank solution 

Trade chemical 

Brass salt 

Orprep MS020 

Ingredient 

CuCN, Zn(CN)2 

Na2Cr04 

Make-up quantity 
and specification 

21 g/L 

4 kg/month 

Top-up quantities 

7 kg/month 
10 L/week 

0 

Dumping 
frequency 

0 
Annually 
Monthly 

Volume 
oftank 

(m3) 
1.059 

0.6854 
0.1447 
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3.4 WASTE MINIMISATION OPTIONS USED IN AND WASTE 
MINIMISATION OPPORTUNITIES FOUND FOR THE MDCPL 

A number of waste minimisation options and measures are already in place on the MDCPL. 

These are entries 1) - 14) in the list below. Some options which appear in other lines in the 

factory but are not used on the MDCPL and some obvious ones which are missing are listed 

below from entry 10) onwards. 

1) There is a gantry on the chromium plating tank to allow good drainage of 

workpieces over the solution. 

2) Counter current rinsing has been implemented to keep a low rinse water flow in the 

running rinses. 

3) Drag-out tanks follow the nickel and chromium plating line. 

4) Oil skimming is carried out on the cleaners at the start of every shift. 

5) Reactive rinsing has been used on the pre-treatment line. 

• Effluent from acid rinse Tanks 7, 8 and F is used as the influent for the rinse in 

Tank 5 following the alkaline cleaning baths; 

• Effluent from organic acid rinse Tank B is used as an alkali and acid rinse in 

Tank 2. 

6) Spent acid from Tank 1 is used in the zinc stripping solution. 

7) Spent acid from the zinc stripping solution is used for pH adjustment in the central 

effluent treatment plant. 

8) Fume suppressant forms a foam blanket on the chromium plating solution to retard 

acid mist emission. 

9) The nickel plating solution undergoes continuous filtration. 

10) Regular analyses of the acid de-rust solution (in-house by titration once a week) 

takes place. 

11) Stripping plate off the racks in the chromium stripping solution after each cycle 

takes place. 

12) Rinse tanks are small to favour good mixing and interaction of the solution with the 

workpiece and faster removal of the drag-out. 

13) Effluent liquid waste is converted to solid waste in the electroplating plant. Sludge 

de-watering in a filter press and then in sludge dryer. 
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14) Rinse tank design (water is piped in at about halfway down the side of the tank and 

exits from a circular opening in the wall close to the top of the opposite side and 

flows into next tank and then flows out to the drain from an outlet close to the top 

of the far side of the tank) favours good mixing in the first (dirtiest) tank. 

Some waste minimisation opportunities were observed for the MDCPL and are listed as entries 

15) - 18) below. The effect of the water and chemicals from these opportunities will be looked 

at in this study. 

15) The water meter on the main pipe into the Chrome Shop is broken. 

16) There is no agitation of the water in the rinse tanks. 

17) The rinse systems before and after the nickel process tank are situated opposite to 

each other on either side of the walkway (aisle) and so are not in line with the 

process solution. This means racks of workpieces are carried to and from rinse 

tanks across the walkway, dripping chemicals onto the floor. 

18) Operators tend to use rinses indiscriminately on occasions and not according to the 

work practices laid down. For example after stripping off chromium from 

workpieces, the operators rinse them first in Tank 19 then Tank 18 and finally Tank 

17. When workpieces are passivated with brass the operators rinse them in the same 

way as they do for chromium stripping. 
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C H A P T E R 4 

SCOPE AND AIMS 

The concept of waste minimisation as a means of tackling the generation of industrial waste is 

both a simple and obvious waste management approach. If no waste is produced then no waste 

treatment, handling, transportation or disposal measures are needed. The economic and 

environmental benefits from waste minimisation extend beyond the manufacturing company 

creating the waste to include the broader community and the natural environment. By 

controlling the waste production at the source, the effect of these waste streams on the natural 

and anthropogenic environment is also reduced. Central to the success of waste minimisation is 

the waste audit or pre-assessment stage of a waste minimisation programme. Data collection 

and (waste minimisation) analyses in order to identify waste minimisation opportunities is a 

fundamental step in waste auditing. The success of this in turn depends on the availability of 

sufficient and good quality data for the analyses.93'96 

The areas in which waste minimisation can be applied include the inputs to the process such 

as> 

• utility usage e.g. electricity and water; 

• (other) energy usage e.g. petrol, gas and paraffin; 

• process or ancillary chemical usage e.g. catalysts, machine oil and dust mask; 

• outputs from the process like:-

> rejected finishing goods, 

> solid wastes e.g. sludge, off-cuts, 

> effluents, 

> dust or gaseous emissions into the atmosphere.35 

Reductions in these areas represent the environmental benefits that can be achieved through 

waste minimisation. This project focuses on data gathering and analyses for a chromium 

electroplating process in four of these areas. These are water and raw material usage on the 

input side, and effluent and finished goods on the output side of the chromium electroplating 

process. 



89 

The company hosting the project is a job shop and runs a number of different electroplating 

processes. The six main aims of the waste audit carried out on one of these processes, the 

manual decorative chromium electroplating line (MDCPL), are listed below:-

1) To obtain baseline data on the chemical composition of the rinse waters in order to 

characterise the movement through and accumulation of chemicals in the various 

stages of the electroplating process and to compare the results with effluent 

discharge limits. 

2) To investigate the relationship between the concentration levels of metals in the 

rinse water obtained through sampling and chemical analyses and the pH, 

conductivity and total dissolved solids readings taken by direct reading instruments. 

3) To carry out a water (volume) balance and chemical (cleaner, acid, nickel and 

chromium) mass balance on the manual decorative chromium electroplating line in 

order to identify and quantify losses. 

4) To estimate losses as unused raw materials using new chemical monitoring data in 

waste calculations. 

5) To compare the waste minimisation opportunities generated from a scoping audit 

with those arising from the material balances and waste calculations in 3) and 4) 

respectively. 

6) To establish the potential of water as an area for waste minimisation using a water 

economy diagram.106 

7) To prioritise the waste minimisation opportunities determined using the waste 

minimisation analyses techniques used in 4), S) and 6), and identify some potential 

waste minimisation measures or options which might be applicable to them. 
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CHAPTER 5 

MONITORING METHODOLOGY 

Electroplaters use a range of chemicals (see Chapter 1) in aqueous solution some of which 

become incorporated into the plate and others of which only facilitate the process. Therefore, 

data has to be collected on chemicals, water and output and organised in a suitable manner for 

analysis in the waste audit. Three types of data on the process were collected for the waste 

minimisation audit namely: 

• existing data that were collected from the plant, computerised and handwritten records, 

discussion with the owners and employees of the factory and analysis reports from the 

chemical suppliers; 

• new quantitative data collected on-site using direct reading instruments and 

measurements made on rinse water flow rate and tank volumes; 

• new quantitative data collected from sampling and chemical analysis of samples of 

rinse water. 

5.1 COLLECTION OF EXISTING DATA 

The table below shows the documents from which existing data has been collected from the 

factory for use in waste minimisation and the waste audit. 

Table 5.1 Summary of existing data collected 

Documents and Data 

Material safety data sheet, technical data sheet, certificate of 
analysis, water accounts, water meter reading to the chrome shop, 
price of purchased chemicals, chrome and nickel production chart, 
inventory history (inventory journal and supplier's invoice) 

Stock requisitions; pH, temperature and Baume measurement of 
the process solution 

Chemical analysis of chromium plating bath 

Chemical analysis of nickel plating bath 

Source of documents 

Administration office 

Laboratory 

Chemserve chemical suppliers 

Orlik chemical suppliers 
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The chrome and nickel production chart (a chart that shows the number of workpieces plated 

each day in the Chrome Shop) was collected over a two-week period between 09/06/03 and 

20/06/03. This time period was used due to the large number (79911) of workpieces plated in 

this specified period (see Table 6.4 in Chapter 6). The inventory history and store requisitions 

were collected over a longer time period (March to October 2003) because some chemicals are 

added to the plating bath only after extended time intervals, which may become shorter if the 

output rate increases (see Table 3.1 in Chapter 3). The municipal water bill record for the plant 

was taken from 11/12/02 to 12/12/03 (see Table 6.3 in Chapter 6). 

5.2 COLLECTION OF NEW DATA ON-SITE 

The new quantitative data collected on-site concerning the chrome shop are listed below: 

• rinse water flow rate of the MDCPL using stopwatch and 2000 ml calibrated beaker; 

• on-site solution measurements of solution parameters of MDCPL using direct read 

instruments; 

• measurements of tank volumes of the chrome shop using a tape measure; 

• measurements of the surface area of workpieces using a vernier caliper and a tape 

measure; 

• Observation of work practices and process operations. 

5.2.1 RINSE WATER FLOW RATE 

Flow rates can be measured from water meter readings and the time at which they were taken. 

In the Chrome Shop there was no functioning water meter during the monitoring period. Some 

pipes used to carry the rinse waters into the tank were fixed to the side walls of the tank 

(Tanks 2 and 13). In other tanks the rinse water enters and leaves close to the top through an 

opening in the tank wall, which feeds, into an external pipe. It was possible to measure only the 

inflow rate of Tanks 8 and 18. The flow rates of Tanks 2 and 13 were measured from the 

outflow of the rinse water from the tanks. The flow rate was measured using a 2000 ml 

calibrated plastic container. The process involved timing how long it took to All up the 

container and dividing the volume by the time to express the flow rate in L/min (see 

Equation 5.1). The measurement was repeated until three results were obtained and the average 
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of these three was used as the flow rate. This was repeated on three different dates. An average 

of the three days of measurements was assumed to be the flow rate of the mains water into the 

rinse tanks of the plating line. 

Flowrate(L/min) =— 
Volume of container (L) 

Time taken to fill container with water (minute) 
Equation 5.1 

5.2.2 ON-SITE MEASUREMENTS USING DIRECT READ INSTRUMENTS 

Portable direct reading instruments were used to collect quantitative data for the project. These 

included conductivity, total dissolved solids, temperature and pH measuring instruments. 

Conductivity, total dissolved solids (TDS) and pH readings were taken on-site for the drag-out 

and rinse tank solutions using handheld instruments (Hanna HI98311 conductivity and total 

dissolved solids meter {EC/TDS}, Hanna Dist WP2 total dissolved solids {TDS} meter and 

HI 98128 pH meter respectively). All instruments were calibrated beforehand using proprietary 

standards (Hanna conductivity standard HI 7031, Hanna TDS standard HI 7032 and Hanna 

HIL 7004/500, 7007/500 and 7010/500 buffer calibration standards with pH 4.01, 7.01 and 

10.01 respectively). The calibration point for the EC/TDS meter was 1332 uS/cm and 1303 

mg/L for Hanna Dist WP2 at 22 °C 

Figure 5.1 On-site measuring instruments (from left to right) HI 98311 waterproof EC/TDS and 
temperature meters, Dist WP 2 and HI 98128 waterproof pH and temperature meter. 

Conductivity is the ability of a solution to carry an electric current.75 This ability depends upon 

the concentration and mobility of all ions present. The mobility of the ions, in turn, depends 
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upon their size and charge as well as the dielectric constant of the solvent and the solution 

temperature and viscosity. Conductivity is useful for estimating the total dissolved solids 

contents in a water sample and, hence, in estimating the volumetric flow rate to be used to 

achieve a particular rinsing criterion. 

TDS refers to the total weight of all solids that are dissolved in a given volume of solution. In 

general, the total dissolved solids concentration is the sum of the cations and anions plus 

molecular species in the water generally expressed in milligram per litre or gram per litre. 

The pH is one of the most important measurements commonly carried out in natural waters and 

wastewaters. It is used to express the acidic and alkaline nature of a solution. 

5.3 NEW DATA COLLECTED BY SAMPLING AND CHEMICAL ANALYSIS 

The flowing rinses, drag-outs and static rinse solutions on the MDCPL were sampled for 

laboratory analysis of chromium, nickel, iron, sodium, zinc, lead and copper. These elements 

had been identified as being constituents of the raw materials used in the process solution, and 

as being constituents of the workpieces and jigging wires that had been dissolved in the line 

during the plating process and anode impurities. Samples were taken at the start of a working 

week, then again two weeks later at the end of a working week. This was done to see if there 

was a buildup of the metal ions in the tank in the specified period of time. Initial sampling was 

carried out on 31/03/03 and 11/04/03 in order to establish and test a suitable monitoring 

strategy. 

5.3.1 SAMPLING STRATEGY FOR THE MDCPL 

Samples were collected and stored in 2S0 ml high-density polyethylene bottles which had been 

consecutively washed with diluted Sunlight gel detergent (Lever Ponds), tap water, 0.1 M 

HNO3 (Fluka puriss. pa.) solution, and finally with distilled water. The bottles were left to air 

dry. When dry, each bottle was assigned the same number as the number assigned to the tanks 

in the plating line, a date of sampling and a surface (ST) or bottom tank (BT) designation with 

black ink. 



94 

A total of 27 samples were collected from the MDCPL from 9:45 to 10:05 on 9/06/03. One 

sample was taken from the mains water supply. This was designated the field blank. The 

remaining samples were collected from two drag-outs, and eleven rinse tank solutions of the 

plating line. Samples were taken from the surface and bottom of each tank. This strategy of 

sampling was adopted to see if there was stratification in the tanks that is to determine if a 

concentration gradient existed between the bottom and surface layers of the tank. Surface 

samples were taken by hand, just underneath the surface to avoid the collection of any 

fabrication oils that may have been floating on the surface of the tank solutions. The bottom 

samples were collected using a depth sampler. Figure 5.2 below, from left to right, shows 

chromium and nickel drag-out samples collected using the depth sampler and the sampling 

bottle. 

Figure 5.2 A depth sampler used to collect bottom tank samples 

Bottom samples were taken after the surface samples as the stream of bubbles released during 

depth sampling breaks and disturbs the surface integrity. In the flowing rinse system, the clean 

tank was always sampled first and the dirtier ones last. This was done to limit contamination of 

the samples and tank solutions during sampling. The depth sampler and the gloves worn during 

sampling were flushed with water between taking each sample. All the samples were taken 

from the near side of the tanks where there is a raised duckboard walkway. The far side of each 

of the rinse tanks is right up against a wall and there is no easy access. 

In surface sampling, the bottle was held by its base and its mouth was gently plunged down 

into the solution to avoid introduction of surface scum into the sample. The sample was taken 
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with the mouth of the bottle pointing away from the side of the tank and the bottle pointing 

upwards slightly to allow air to escape and the bottle to fill. After removing the bottle from the 

tank some air space above the solution sample level was left for proper mixing of the sample 

before analysis. Finally the bottle was stoppered tightly, and wiped on the outside. Sample 

location, sampling time, the tank number assigned to the sampling bottles and observations 

made on the tank solutions during sampling on 9/06/03 and 20/06/03 were recorded and they 

are given in Table 5.2 below. 

Table 5.2 Conditions of the MDCPL on 9/06/03 at 10: 05 and on 20/06/03 at 13:55 

Tank 

2 

5 

7 

8 

10 

11 

12 

13 

15 

16 

17 

18 

19 

Mains water 

Sample number 
Surface 

tank 
ST-2 

ST-5 

ST-7 

ST-8 

ST-10 

ST-11 

ST-12 

ST-13 

ST-15 

ST-16 

ST-17 

ST-18 

ST-19 

S-20 

Bottom 
tank 
BT-2 

BT-5 

BT-7 

BT-8 

BT-10 

BT-11 

BT-12 

BT-13 

BT-15 

BT-16 

BT-17 

BT-18 

BT-19 

Comments and observations on the tank solution 

It had a white suspension and oil floating on the surface. 
The solution appeared cloudy and had oil floating on its 
surface. 
The solution was clear and the tank contained a lot of tiny 
workpieces lying on the bottom. 
During sampling there was a jig in the tank holding work-
pieces. The solution was clear with a lot of tiny workpieces 
lying on the bottom of the tank. 
The solution was light green on 9/06/03 and green on 
20/06/03. 
The solution was clear with tiny workpieces lying at the 
bottom of the tank. 
Tank solution was clear with tiny workpieces lying on the 
bottom of the tank. There was a jig holding workpieces in 
the tank on 20/06/03 during sampling. 
The solution was clear with a lot of workpieces lying on 
the bottom of the tank. 
The solution was light orange on 9/06/03 and light brown 
on 20.06/03. 
Tank solution was light green on 9/06/03 and green on 
20/06/03 
Tank solution was cloudy. 
The tank contained oil floating with a lot of metal 
workpieces lying on the bottom. 
The rinse water was hot and cloudy. The solution appeared 
more yellow in colour on 20/06/03 than 9/06/03. 
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5.3.1.1 STORAGE OF SAMPLES 

The samples were transported from the sampling site to the laboratory in an icebox for further 

analysis. Until analysis was performed, the samples were stored in a refrigerator in order to 

prevent interaction of the samples with the sampling bottles and to prevent chemical reaction 

of the substances in the samples. 

5.3.2 CHEMICAL ANALYSIS OF SAMPLES 

Samples collected in the plating line were analysed in the laboratory using ultraviolet visible 

(UV-visible) spectrophotometry and inductively coupled plasma optical emission 

spectrophotometry (ICP-OES). 

5.3.2.1 DETERMINATION OF Cr(VI) CONCENTRATION 
BY UV-VISIBLE SPECTROPHOTOMETRY 

UV-visible spectrophotometry is the study of how a sample responds to light.148 It is a widely 

used technique in quantitative analysis because it is generally accurate, sensitive, selective, 

widely applicable, easy and convenient to use.149 This technique uses ultraviolet visible 

spectrophotometers to measure absorbance in the 200 nm to 1000 nm region.75 Simple 

inorganic ions and their complexes as well as organic molecules which absorb light in this 

region can be detected and determined successfully. Non-absorbing species can be converted to 

absorbing derivatives or complexes by chemical reaction with colour forming reagents.150 For 

example a hexavalent chromium concentration is determined by reacting the sample containing 

chromium with 1,5-diphenylcarbazide reagent. During the reaction chromate is reduced to 

Cr(II) and diphenylcarbazone is formed. These reaction products in turn produce a 

diphenylcarbazone-chromium(II) complex with the characteristic reddish violet colour.151'152 

/N=N-C6H, 
/-NH-NtK^H, / 2+ 

CO +Q04= — • C M ) +Cr +4HP 

2+ 
N=*J— C6H, 

-o—;cr 

N=4^ — C ^ 

Equation 5.2 
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There are two kinds of ultraviolet visible spectrophotometers: double beam and single beam.149 

In double beam spectrophotometers the light from the source is split into two parallel beams 

one of which is directed through the blank (or reference) whilst the other is directed through 

the sample. This instrument has the advantage of removing errors in the sample reading that 

could result from the intensity fluctuation occurring in the line voltage, the power source, or 

the light bulb itself.75 

A single beam spectrophotometer has only one beam of light. The instrument is zeroed with 

the blank (or reference) in place, the blank is then replaced with the sample and the sample 

absorbance can then be measured. A single beam instrument was used for sample analysis in 

this project. The instrument consists basically of a light source, monochromator, cuvette 

(sample holder), and photomultiplier tube as detector (see Figure 5.3).75,153 

Light source fry Monochromator y^v Sample holder (Cuvette) lry>/ 
Detector 

76 Figure 5.3 Schematic diagram of a single beam spectre-photometric experiment 

The light source provides a light to be directed at the sample. Some examples of light sources 

are the tungsten filament lamp, tungsten iodide cycle lamp, mercury vapour lamp, zinc 

discharge lamp, deuterium lamp, and xenon lamp. The most common source of light in the 

ultraviolet region is the deuterium discharge lamp and for the visible region a tungsten filament 

lamp.75 The monochromator is a prism, diffraction grating or filter and has the function of 

selecting a narrow band of wavelength from the light source. The cuvette is an optically 

transparent cell where sample solution is irradiated by the light emerging from the 

monochromator. Cuvettes with a path length of 1 cm are commonly used. Longer cuvettes, for 

example 5 cm, can be used to increase the sensitivity.149 The cuvette is made of quartz, glass or 

plastic. Quartz transmits both visible and ultraviolet light. Since glass and plastic absorb 

ultraviolet radiation, they are used only for measurement at visible wavelengths.76 The detector 

converts light photons into electrons which can be recorded as an electric signal. 
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The first step to be followed when using an ultraviolet visible spectrophotometer for the 

purpose of analysis is to prepare a standard calibration curve. That is, a series of standard 

solutions of the analyte is prepared, over a specific concentration range, which are then treated 

with the colour forming reagent, the absorbance of which is then measured. A plot is made of 

the absorbance against the concentration. The concentration of the analyte in the sample is then 

assessed from the graph. 

The instrument used to determine the concentration of Cr(VI) of the tank samples was a single 

beam Cary 50 ultraviolet visible spectrophotometer, Varian Australia Pty Ltd (see Figure A. 1 

in Appendix A). It uses a xenon lamp as a light source. 

5.3.2.2 EXPERIMENTAL PROCEDURE 

Cr(VI) in the samples was determined using the United States Environmental Protection 

Agency Method 218 NS.154 The analysis was done during the day of sampling because Cr(VI) 

can be slowly converted to Cr(III) on standing. Analysis of the samples was done after 

calibrating the instrument with working (calibrating) standard solutions. These solutions were 

prepared from an intermediate standard solution, which was prepared from a stock standard 

solution. 

To prepare a stock standard solution first some amount of 99.5% anhydrous potassium 

dichromate (Saarchem univAR) was taken on a watch glass and dried in an oven for 1 hour at 

105 0C.155 The dried salt was then allowed to cool in a desiccator over silica gel to prevent 

absorption of moisture. After cooling, 0.1396 g was weighed using a Mettler AJ100 digital 

weighing balance. A pre-weighed watch glass was used in weighing the dried analytical 

reagent salt. The reagent was then dissolved in a 1000 ml volumetric flask using ultra-pure 

water. This gives a concentration of 49.35 u,g hexavalent chromium per 1.00 ml. An 

intermediate standard solution approximately 1000 u.g/L was prepared by taking 2.00 ml of the 

stock solution and diluting it in a 100 ml volumetric flask using ultra-pure water. To prepare 

the working standard solutions 1, 5, 10, 15, 20 and 50 ml of the intermediate standard solution 

were pipetted out into six separate 100 ml volumetric flasks and the volume was made to the 
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mark with ultra-pure water. The concentration of each of the working standard solutions was 

12.3, 55.2, 110, 165, 221 and 552 ug/L respectively. 

200 mg of 98% 1,5-diphenylcarbazide reagent (Riedel-de Haen pa.) was dissolved in 100 ml 

of 95% (v/v) ethyl alcohol (AnalaR BDH) in a beaker. An acid solution prepared in another 

beaker from 40 ml of 95-97% sulfuric acid (Pro Analysi Merck) and 360 ml ultra-pure water 

was added with mixing to the diphenylcarbazide solution. 2.5 ml of this mixed solution was 

added with thorough mixing to each calibrating standard solution in the volumetric flask. After 

15 minutes the absorbance of each solution was measured three times at a wavelength of 

544 nm using 1 cm matched optical quartz cells. Ultra-pure water was used as a blank during 

the calibration of the instrument. From the concentrations and absorbance measurements made 

by the instrument a calibration graph was plotted. A regression (quadratic) was used to find the 

equation of the calibration line, which was then used to determine the concentration of Cr(VI) 

in the samples. 

The chromium plating solution is found in Tank 14, hence samples of Tanks 15 to 19 and the 

field blank were chosen for UV-visible analysis because the plating solution can be dragged by 

the workpieces into these tanks during plating processes. Before the actual analysis 

measurements were made, a number of preliminary tests were carried out to check the method, 

the sensitivity of the instrument and the concentration range over which results could be 

reliably obtained. To do the analysis, the samples were first filtered through a 25 mm 0.45 u,m 

nylon syringe filter (National Scientific Company) in order to remove insoluble substances 

which could interfere by scattering the light that passes through the cuvette. Dilutions were 

made using ultra-pure water to bring the concentration of samples within the concentration 

range of the calibrating standard solutions, i.e. for samples collected on 9/06/03: 

• Tank 15: two successive dilutions were made to give a total dilution factor of 5x104; 

• samples of Tank 19 were diluted 10 times; 

• samples of Tanks 16 to 18 were prepared neat without dilution. 

Similarly for samples collected on 20/06/03: 

• TanklS: two successive dilutions were made to give a total dilution factor of 7.3xl04; 
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• samples of Tank 16 and 19 were diluted 10 times; 

• samples of Tank 17 and 18 were prepared neat without dilution. 

2.5 ml of the acidified 1,5-diphenylcarbazide reagent was added to each sample in the 

volumetric flask and the contents of the flask were thoroughly mixed. The absorbance was 

measured in the same way as the standards. Finally the concentration was calculated by 

substituting the measured absorbance in the calibration equation of the standards. 

5.3.2.3 DETERMINATION OF METAL CONCENTRATION BY ICP-OES 

ICP-OES is an analytical instrument used for the determination of metals and some non-metals 

such as phosphorus in various sample matrices. The main advantages of this instrument are its 

ability to determine the concentration of several elements simultaneously, its good detection 

limits for most elements, its wide linear dynamic range, its low background emission and 

relatively low level of chemical interference.156 

The instrument contains a sample introduction system, an inductively coupled plasma source 

(ICP source) and a spectrophotometer (See Figure 5.4). 15° The sample introduction system 

consists of a peristaltic pump, a nebuliser, spray chamber and drain. The ICP source consists of 

a radiofrequency generator, an induction coil and a torch. The spectrophotometer can be a 

monochromatic or polychromatic type. 

In this technique a flowing stream of argon gas is ionized by an applied oscillating 

radiofrequency field, which is inductively coupled to the ionized gas by a water-cooled coil. 

The coil surrounds a quartz torch that confines the plasma. A plasma is a conducting gaseous 

mixture of cations and electrons. The ICP torch consists of three concentric quartz tubes. 

Argon gas from the outer inlet flows tangentially up the outer tube at a rate of 7-15 L/min and 

sustains the high temperature plasma and positions the plasma relative to the outer walls and 

the induction coil, preventing the walls from melting and thus facilitating the observation of 

emission signals.158 The argon flowing through the intermediate concentric tube (auxiliary 

argon gas) flows at a rate of 0-1.5 L/min and helps in aerosol introduction and in keeping the 

plasma discharge away from the inlet tube.156 
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Figure 5.4 Schematic diagram showing the major components in ICP-OES 158, 159 

Liquid and gas samples are aspirated via a peristaltic pump to a spray chamber and nebuliser. 

Solid samples are extracted or acid digested so that the analyte can be in solution form. Two 

types of nebuliser are used in ICP-OES: pneumatic and ultrasonic. The former nebuliser makes 

use of high-speed gas flows to create an aerosol and the latter breaks liquid samples into a fine 

aerosol by the ultrasonic oscillations of a piezoelectric crystal. In this research a pneumatic 

nebuliser (concentric Meinhard) was used. The sample aerosol generated in the neubliser is 

carried by the inner argon gas flowing from the sample inlet and introduced into the central 

channel of the plasma at a rate between 0.5-1.5 L/min at high temperature up to 10000 K.'58 

These high temperatures liberate analyte elements as free atoms in a gaseous state. Further 

collisional excitation within the plasma converts some of the atoms into ions and subsequently 

promotes the neutral atoms and the charged ions into excited states. Relaxation of these excited 

atomic and ionic species to a lower energy level results in emission spectra. The light emitted 

is focused onto a simple monochromator for sequential determination of analyte elements or 

onto a polychromator and an array detector for simultaneous multi-element (for up to 70 

elements) determination.156 

The ICP-OES instrument used in this work was a Liberty 150 AX Turbo, Varian Australia Pty 

Ltd (see Figure A.2 in Appendix A). The optimum experimental condition used in analysis of 

the samples is shown in Table 5.3 along with the ICP-OES instrumental specifications. The 
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metal ions analysed in the samples, the selected wavelengths for each metal and the detection 

limit of the instrument for the metal ions whose concentrations were to be determined, are 

given in Table 5.4. 

Table 5.3 ICP-OES specifications and operating conditions 
Serial number 
Torch mounting 
Nebuliser 
Radio frequency generator power supply 
Operating power 
Nebuliser pressure 
Photomultiplier voltage 
Plasma argon flow 
Auxiliary argon flow 
Pump speed 
Pumping flow rate 

95081574 
Axial, low flow 
Pneumatic (concentric) 
40.68 MHz 
1.00 kW 
240 kPa 
800 V 
15.0 L/min 
1.5 L/min 
15 rpm 
2.2 ml/min 

Table 5.4 Selected wavelengths and the reported instrument detection limit 

Element 

Wavelength (nm) 

Detection limit (ug/L) 

Ni 

231.60 
15 

Fe 

259.94 

10 

Cr 

267.72 
10 

Na 

589.59 
25 

Zn 

213.86 
2 

Cu 

324.75 
5 

Pb 

220.35 
50 

5.3.2.4 EXPERIMENTAL PROCEDURE 

The concentration of each of the metal ions in the samples collected on the two days of 

sampling was determined using ICP-OES. Analysis of the samples was performed by 

preparing an intermediate and working calibration standard solutions from 1.000 g/L of stock 

standard solutions. The nickel stock standard solution was made up from a purchased ampoule 

(1.00 g) standard concentrate (Fluka) in a 1000 ml volumetric flask. Iron, chromium, sodium, 

zinc, copper and lead stock standard solutions were ready-to-use purchased standard solutions 

(Fluka 1.000 g/L). A 50 mg/L mixed intermediate standard solution was prepared by pipetting 

out 5 ml of each 1.000 g/L standard solution into a 100 ml volumetric flask and filling the 

remaining volume to the mark with 0.1 M HNO3 (Fluka puriss. pa) . The acid was used in 

order to minimize adsorption onto container walls, a critical factor at trace concentrations. 

From the mixed intermediate standard solution, seven working standard solutions of 10, 7.5, 5, 

2.5, 1.25, 0.25, and 0.05 mg/L were used to calibrate the instrument response with respect to 

analyte concentration at a selected wavelength for each element. The intensity reading was 
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recorded three times in order to calculate an average. The calibration procedure included a 

blank correction using 0.1 M HNO3. The ICP-OES was programmed for dynamic background 

correction and to reject any calibration with a correlation coefficient less than 0.995. 

Samples were filtered through a 25 mm 0.45 ^m nylon syringe filter to prevent interference 

and clogging of the nebulizer. Concentrated samples were diluted with 0.1 M HNO3 to make 

their concentration fall within the range of concentrations of the calibrating standard solutions. 

The concentration of each metal ion in the sample was then determined using the instrument. 

In order to get reliable results, a preliminary analysis was done to find the appropriate dilution 

factors and to ensure that the diluted sample intensities fell within the linear calibration range. 

The dilution factors made during the actual analyses of the samples are given in Tables 5.8 and 

5.9 below. The dashes (-) represent further dilution was not made to determine the 

concentration of the metal ions in the samples. 

Table 5.5 Dilution factor on samples collected on 9/06/03 
Tank 

2 
5 
7 
8 
10 
11 
12 
13 
15 
16 
17 
18 
19 
20 

Tank name 
Acid and alkaline flowing rinse 
Anodic electrolytic flowing rinse 
Acid flowing rinse 
Acid flowing rinse 
Nickel drag-out 
Counter current flowing rinse 
Counter current flowing rinse 
Counter current flowing rinse 
Chromium drag-out 
Neutraliser 
Counter current flowing rinse 
Counter current flowing rinse 
Hot static rinse 
Mains water 

M 
10 
-
-
-

89 
10 
10 
-

89 
-
-
-
-
-

Fe 
10 
-
-
-
-
-
-
-

20 
-
-
-
-
-

Or 
-
-
-
-
-
-
-
-

1700 
20 
-
-
-
-

Na 
47 
47 
5 
5 

20 
10 
10 
10 
20 

1700 
47 
10 
10 
5 

Zn 
47 
-
-
-
-
-
-
-

20 
-
-
-
-
-

Cu 
10 
-
-
-
-
-
-
-

20 
-
-
-
-
-

Pb 
-
-
-
-
-
-
-
-

20 
-
-
-
-
-



Table 5.6 Dilution factor on samples collected on 20/06/03 

Tank 
2 
5 
7 
8 
10 
11 
12 
13 
15 
16 
17 
18 
19 
20 

Tank name 
Acid and alkaline flowing rinse 
Anodic electrolytic flowing rinse 
Acid flowing rinse 
Acid flowing rinse 
Nickel drag-out 
Counter current flowing rinse 
Counter current flowing rinse 
Counter current flowing rinse 
Chromium drag-out 
Neutraliser 
Counter current flowing rinse 
Counter current flowing rinse 
Hot static rinse 
Mains water 

M 
-
5 
-
-

1700 
20 
10 
-

89 
10 
-
-
-
-

Fe 
10 
-
-
-

10 
-
-
-

20 
10 
-
-
-
-

Cr 
-
-
-
-
-
-
-
-

4350 
1700 
10 
-

10 
-

Na 
47 
47 
5 
5 

460 
10 
10 
10 
89 

1700 
47 
10 
20 
5 

Zn 
10 
5 
-
-

10 
-
-
-

89 
10 
-
-
-
-

Cu 
10 
-
-
-
-
-
-
-

89 
20 
-
-
-
-

Pb 
-
-
-
-
-
-
-
-

20 
10 
-
-
-
-
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RESULTS 

The results of the project are reported in this chapter in three sections. Section 6.1 presents the 

results obtained from the collection of existing data. Section 6.2 focuses on flow rate and other 

new data collected on-site using direct reading instruments. Section 6.3 presents the results 

obtained from chemical analyses of tank solution samples using spectroscopic techniques and 

gives the analyses results for the electroplating tanks as reported by the chemical suppliers. 

The calibration graph of the chromium working standard solution used in the determination of 

Cr(VI) in the drag-out and rinse water tanks in the two days of sampling (9/06/03 and 

20/06/03) is given in Figures B.l and B.2 of Appendix B. The calibration graph of the metal 

standard solutions whose concentration was determined by ICP-OES in the two days of 

sampling is given in Figures C.l and C.2 of Appendix C. Two initial sets of chemical analyses 

results from 30/3/03 and 11/4/03 (Tables D.l and D.2) for the rinse water solutions are 

presented in Appendix D. 

6.1 RESULTS FROM EXISTING DATA 

Results obtained from existing data are tabulated under three headings. Table 6.1 shows the 

raw materials bought in by the factory for use in chromium and nickel plating and in the 

MDCPL for 163 days between 1/03/2003 and 25/10/03. Table 6.2 breaks down the chemicals 

used in the MDCPL from March to October (1/03/03-25/10/03). Table 6.3 presents a 

breakdown of the costs for mains water used in the factory from 11/12/02 to 12/12/03 as 

obtained from eThekwini Municipality water bills. Table 6.4 presents the workpieces that were 

plated between 09/06/03 and 20/06/03 as the number of each type of item and as the surface 

area plated. 
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Table 6.1 Raw material data for the factory and for the MDCPL from 1/03/03 to 25/10/03 

Rinr materials 

Chemalcnc 03/kg 
Oxvprep 2201-CVkg 
NaOH/kg 
HCl/kg 
ILSCVkg 
Nickel chips/kg 
Nickclux lOOplus/L 

Brightcncr/kg 
Wetting agent/kg 

Addition agent SAI/kg 
H,BOj/kg 
Filter aid 
Filter cartridge 
Filter felt 120 
Activated carbon/kg 
CK)3/kg 
Lumina 34 make-up 
Lumina 24 
Fumetrol 140/1, 
Na2S20s/kg 
Na2COj/kg 

BaCOj/kg 
I ,ead anode 

Copper wire 20 GZ/kg 

Average 
unit 
cost 

tR unit) 

11.70 
14.34 
3.650 
1.640 
l.()9() 
67.63 

51.58 
35.50 
11.46 

34.99 
6.370 
7.881 
8.400 
45.50 
23.00 
15.53 
40.40 
55.00 
250.2 
2.940 
2.260 
2.500 
160.4 

31.18 

Into sfoiv from 
supplier 

Quantity 

525.0 
0.000 
6675 
6272 

18000 
6056 

1375 
100.0 
50.00 

200.0 
863.0 
0.000 
39.00 
0.000 
60.00 
400.0 
100.0 
5.000 
25.00 
1287.5 
1560 

20.00 
12.00 

2184 

Cost tR) 

6143 
0.000 
24364 
10286 
19620 

409567 

70923 
3550 
573.0 

6998 
5497 
0.000 
328.0 
0.000 
1380 
6212 
4040 
275.0 
6255 
3785 
3526 
50.00 
1925 

68097 

Out af start into 

Factory 

Quantity 

469.0 
89.00 
6856 
5936 

17478 
5649 

1395 
120.9 
30.50 

213.0 
733.0 
10.63 
6.000 
5.000 
55.09 
370.0 
90.00 
1.600 
24.50 
1206.5 
1269.5 
18.40 
20.00 

1939 

Cost tR) 

5487 
1276 

25024 
97.35 

19051 
382042 

71954 
4292 
350.0 

7453 
4669 
84.00 
50.00 
228.0 
1267 
5746 
3636 
88.00 
6130 
3547 
2869 
46.00 
3208 

60458 

MIX'PL 

Quantity 

459.0 
74.00 
655.0 
1942 
2714 
2876 
814.0 

51.20 
14.50 

101.0 

67.10 
3.100 
2.000 
3.000 
7.700 
139.0 
64.00 
0.000 
8.500 
494.0 
349.0 
6.480 
0.000 

1193 

Annual cost of chemicals used in the Chrome Shop (R) 

Cost tR) 

5370 
1061 
2.391 
3185 
2958 

194504 

41986 
1818 
166.0 

3534 
427.0 
24.40 
17.00 
137.0 
177.0 
2159 
2586 
0.000 
2127 
1452 

789.0 
16.00 
0.000 

37198 

Aveingc 
Daily Cost 

tR day) 

33.00 
7.000 
15.00 
20.00 
18.00 
1193 

258.0 
II.(X) 
1.000 

22.00 
3.000 

0.1500 
0.1000 
0.8400 
1.100 
13.00 
16.00 
0.000 
13.00 
9.000 
5.000 

0.1000 
0.000 

228.0 

436483 

Table 6.2 Raw materials used in the MDCPL from 1/03/03 to 25/10/03 

Chemical used 

Chemalene 03 
Oxyprep 220EC 
NaOH 
HCI 
H2S04 

Nickel chips 
Nickclux 100 plus 
Brightcner 
Wetting agent air 
Addition agent SAI 
H3BO3 
Filter aid 
Filter felt 120 
Filter cartridge 
Activated carbon powder 
CrO; 

Lumina 34 
Fumetrol 140 
Na2C03 

N a ^ O j 
BaC03 

Copper wire 20GG 

Unit 

kg 
kg 

kg 
kg 
kg 
kg 
L 

kg 
kg 
kg 
kg 

pack 
pack 
pack 

kg 
kg 
kg 
L 

kg 
kg 
kf? 
kg 

March 

29.0 
74.0 
100 
112 
240 
797 
99.0 
4.25 
3.00 
18.5 

0.100 
0.000 
0.000 
0.000 
0.0(X) 
0.000 
0.000 
1.00 
51.0 
55.0 

1.88 
115 

April 

50.0 
0.000 
73.0 
112 
386 

0.000 

no 
6.55 
1.50 
17.5 
15.0 

0.300 
0.0(X) 
0.000 
0.700 
75.0 

0.000 
0.500 
26.0 
65.0 

0.500 
90.0 

May 

50.0 
0.000 
64.0 
224 
314 
450 
79.5 
5.60 
1.00 
17.5 
17.0 

0.600 
O.O(X) 
0.000 
1.60 
20.0 

O.(KX) 
0.750 
28.3 
50.0 

0.250 
105 

June 

35.0 
0.000 
99.5 
224 
253 

O.O(X) 
94.0 
7.00 
2.00 
12.0 

0.000 
0.600 
1.00 
0.00 
1.30 
10.0 

0.000 
1.25 
83.0 
75.0 

O.(KX) 
147 

July 

76.0 
O.O(X) 
40.5 
336 
325 
530 
98.0 
9.30 
4.50 
10.0 
25.0 
1.40 

0.0(X) 
2.00 
1.00 
9.70 
30.0 
1.00 
28.0 
45.0 
0.0(X) 

174 

August 

64.0 
0.0(X) 
72.3 
336 
520 
400 
109 

5.30 
1.00 
8.00 
10.0 

0.0(X) 
0.0(X) 
0.000 
0.000 
0.000 
0.000 
0.500 
38.0 
74.0 
2.15 
173 

September 

60.0 
0.000 

130 
234 
320 
382 
118 

6.10 
0.500 
11.0 

0.000 
0.200 
0.000 
0.000 
2.00 

0.000 
24.0 
2.50 
36.5 
62.0 
1.00 
192 

October 

95.0 
0.000 
75.5 
364 
356 
317 
106 

7.10 
1.00 
6.00 

0.000 
0.000 
2.00 

0.000 
1.10 
24.0 
10.0 
1.00 
58.0 
68.0 

0.700 
197 

Total 

459 
74.0 
655 
1942 
2714 
2876 
814 
51.2 
14.5 
101 

67.1 
3.10 
3.00 
2.00 
7.70 
139 

64.0 
8.50 
349 
494 
6.48 
1193 
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Table 6.3 Municipality water costs for MDCPL and automatic chromium plating line (at R 4.8/m3) 

Month 

11/12/02-15/01/03 
15/01/03-13/02/03 
13/02/03-14/03/03 
14/03/03-14/04/03 
14/04/03-16/05/03 
16/05/03-13/06/03 
13/06/03-30/06/03 
1/07/03-14/07/03 
14/07/03-14/08/03 
14/08/03-15/09/03 
15/0903-14/10/03 
14/10/03-14/11/03 
14/11/03-12/12/03 

Total 

Volume 
used (itf) 

368.0 
1073 
1081 
1076 
1141 
1083 

535.5 
416.5 
1211 
1215 
1464 
1296 
1375 
13335 

Cost 
m 

1766.4 
5150.4 
5188.8 
5164.8 
5476.8 
5198.4 
2570 
1999 

5812.8 
5832 

7027.2 
6220.8 
6600 

64008 

Water fixed 
charge (R) 

166.6 
138.0 
138.0 
147.5 
152.3 
133.2 

153.6 

162.1 
167.3 
151.7 
162.1 

146.42 
790.0 

Trade effluent 
charge (R) 

421.1 
1227.8 
1236.95 
1231.2 
1577.2 
1754.8 
867.7 

766.45 
2228.5 
2235.9 
2694.1 
2384.9 
2530 
21157 

Estimated volume of water used by the Automatic Plating Line (mJ) 
Volume of water used by the Chrome Shop (mJ) 
Cost for the volume of rinse water used by the Chrome Shop (R) 
Water fixed charge allocated to the Chrome Shop (R) 
Trade effluent charge allocated to the Chrome Shop (R) 
Trade effluent monitoring charge allocated to the Chrome Shop (R) 
Total water cost for Chrome Shop (R) 

Trade effluent 
monitoring charge (R) 

640.35 
640.35 
640.35 
640.35 

640.35 

640.35 
691.23 
691.23 
691.23 
691.23 
691.23 
691.23 
4788 
1837 

11498 
55190 
677.0 
18135 
4104 
55867 

The trade effluent charge is calculated based on a volume equal to 96% of the volume of water 

used in the factory. The trade effluent cost is 119.194 cents/m3 from 11/12/02 to 30/4/03. It has 

been observed that the cost increased to 168.761 cents/m3 during the billing period April and 

May. Therefore an average of these two values has been taken in order to estimate the trade 

effluent charge from 14/04/03 to 16/05/03. From 16/05/03 to 30/06/03, the rate was still 

168.761 cents/m3 but from 1/07/03 it increased to 191.69 cents/m3. The company paid 

R 640.35 for trade effluent monitoring charge from 1/01/03 to 30/06/03 and R 691.23 from 

1/07/03 to 30/12/03. The water fixed charge and trade effluent monitoring charges are service 

costs paid by the company to eThekwini Municipality. Company records were used to estimate 

the volume of water used by the Automatic Plating Line. 



Table 6.4 Workpieces plated in the Chrome Shop from 09/06/03 to 20/06/03 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

Workpiece 

Wall racks 
Spiral 
Grids 
Toilet roll stores 
Two tier corners 
fable legs 
Axles 
Cooker tops 
Corner shelves 
Knobs & bezels 
Window stays 
Heater grids 
Jewellery (chains) 
Chrome pipes 
Element support 
Cot rods 
Domes 
Blocks 
2 tier shelves 
U arm 
Shower caddies 
Copper pipe 
Rings 
i.arge basket 
Z.C.C rods 
Ni-Uarm 
Bath plug tops 
Bath handle 
Toilet handle 
Jewellery (chains) 
Jewellery (crosses) 
Spoons 
Wheel nuts 
(ienerie shafts 
K. B.rods 
K. B. brackets 
Head rest bars 
G.U.D moulds 
K.B. arms 
Bracket neck 
Chrome bracket 
Brass moti f 
Brass ring fingers 
Tie back 
Brass motif 
Brass Uarm 
A/B motif 
Brackets 

Workpiece 
composition 

Steel 
Steel 
Steel 
Steel 
Steel 
Steel 
Steel 
Steel 
Steel 
Brass 
Brass 
Steel 
Brass 
Steel 
Steel 
Steel 
Steel 
Steel 
Steel 
Steel 
Steel 

Copper 
Steel 
Steel 
Steel 
Steel 
Steel 
Zinc 
Zinc 

Zinc/Brass 
Zinc 
Zinc 
Steel 
Steel 

Steel/Brass 
Zinc 
Steel 
Steel 

Zinc/Brass 
Zinc 
Steel 
Zinc 
Zinc 
Steel 
Steel 
Steel 
Zinc 
Steel 

Plating 
S\-Stl'lll 

Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 
Ni-Cr 

Ni 
Cu-Ni 

Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 
Cu-Ni-Cr 

Cu-Ni-Brass 
Cu-Ni-Brass 
Cu-Ni-Brass 

Ni-Brass 
Ni-Brass 
Cu-Brass 
Cu-Brass 

Ximiber of 
workpieces plated 

135 
210 
620 
727 
129 
58.0 
7100 
909 
728 
7896 
539 
326 
49.0 
21.0 
661 
1258 
128 
37.0 
9.00 
123 
75.0 
6.00 
303 
18.0 
27.0 
600 
41.0 
1739 
7380 
163 
400 
457 

21708 
1167 
1140 
2919 
941 
52.0 
6432 
515 

2555 
2852 
216 
13.0 
1864 
610 
3495 
560 

Sin face ana of a 
workpiece <cm~) 

2204 
189 
565 
280 
1035 
1433 
31.3 
1398 
378 
28.7 
83.1 
370 

4 
118 
27.2 
209 
9.38 
665 

1.03xl0J 

141 
627 
251 
70.9 

3.38x10s 

764 
141 

804.6 
106 
75.2 

4 
3.7 

42.0 
32.2 
47.0 
51.5 
17 

206 
1.70xlOJ 

13.8 
14.2 
141 
628 

0.033 
94.5 
628 
141 
628 
141 

Total number of workpieces plated 
Total surface area of workpieces plated (m ) 
Total surface area of workpieces plated with Ni (m2) 
Total surface area of workpieces plated with Cr (m~) 

Total surface 
ana of the 

workpieces tin') 

30 
4.0 
35 
20 
13 
8.3 
22 

1.3xl02 

28 
23 
4.5 
12 

0.02 
0.25 
1.8 
26 

0.12 
2.5 

0.93 
0.85 
4.7 
0.15 
2.1 
6.1 
2.1 
8.5 

0.080 
18 

55.0 
7.00x102 

0.150 
1.90 
70.0 
5.50 
5.90 
5.00 
19.0 
8.80 
8.90 

0.730 
36.0 

1.80 xlO2 

7.10x10" 
0.120 

1.20 xlO2 

8.60 
2.20 xlO2 

7.90 
79911 
1194 
966 
648 
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6.2 RESULTS FROM ON-SITE COLLECTION OF NEW DATA 

Table 6.5 shows the average flow rate of the mains water into flowing rinse tanks of the 

MDCPL recorded over three different days of measurements. Table 6.6 presents conductivity 

(EC), total dissolved solids (TDS) and pH readings taken for rinse and drag-out tank solutions 

on 09/06/03 and 20/06/03. 

Table 6.5 Average flow rate of the mains water in to rinse tanks of the MDCPL 

Tank 
Flow rate (nrVhr) 

2 
0.11±0.01 

8 
0.20±0.01 

11 
0.20±0.01 

/<?? 
0.16±0.01 

Table 6.6 Readings taken on 09/06/03 and 20/06/03 

Tank 

2 
5 
7 
8 
10 
11 
12 
13 
15 
16 
17 
18 

9 06 03 

EC 
(/.iS cm) 

>DL 
9.2 x 10' 
8.2 x 10' 
3.0x10-
2.7xlOJ 

3.5 x 10" 
2.9 x 10" 
2.6 x 10-' 

>DL 
>DL 

5.6 x 10' 
2.6 x 10J 

TDS 
(gU 
9.2 

0.56 
0.51 
0.20 
1.5 

0.22 
0.18 
0.16 
>DL 
>DL 
0.34 
0.16 

pH 

3.00 
11.0 
2.00 
7.00 
6.50 
6.90 
6.90 
7.20 
1.00 
4.00 
5.80 
7.10 

20 06 OS 

EC 
(/.iS cm) 

>DL 
1.5x10' 
1.3 xKr 

2.7x10" 
>DL 

1.3 x 10' 
5.5 x 10: 

2.6 xlO2 

>DL 
>DL 

8 .9x l0 : 

3.1 x 102 

TDS 
(gL) 
7.5 

0.88 
0.80 
0.15 
>DL 
0.79 
0.33 
0.16 
>DL 
>DL 
0.58 
0.19 

pH 

1.10 
8.90 
2.20 
6.10 
1.30 
2.30 
3.10 
6.90 
1.30 
6.20 
6.50 
7.50 

> DL = greater than detection limit (10 g/L for TDS) 
> DL = greater than detection limit (3999uS/cm for EC) 

The average temperature of all tanks was found to be around 20 °C. Conductivity, total 

dissolved solids and pH and temperature measurement of Tank 19 were not taken as the tank 

solution was hot. 

6.3 RESULTS FROM CHEMICAL ANALYSES 

6.3.1 CONCENTRATION OF Cr(VI) IN THE SAMPLES 

Table 6.7 shows the concentration and absorbance of Cr(VI) in the samples collected on 

9/06/03. Similarly the concentration and absorbance of Cr(VI) in the samples collected on 
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20/06/03 is given in Table 6.8. Note that the values given in Tables 6.7 and 6.8 for samples 

taken from Tank 15 and 19 of 9/06/03 and samples of Tank 15, 16 and 19 of 20/06/03 are of 

the diluted analytical samples. The dilution factors used for these samples are given in the 

experimental procedure in Section 5.2.3.1. The actual (tank solution) concentrations are 

presented in brackets after the measured average concentration of the analytical sample in the 

fifth column of Tables 6.7 and 6.8. The concentration of Cr(VI) in these original samples, 

before dilution, are calculated using Equation 6.1. 

Concentration of Cr(VI) = Concentration of Cr(VI) after dilution x Dilution factor Equation 6.1 

Table 6.7 Average concentration of Cr(VI) for diluted samples collected on 9/06/03 

Tank 

ST-15 
BT-15 
ST-16 
BT-16 
ST-17 
BT-17 
ST-18 
BT-18 
ST-19 
BT-19 

Mains water 

Concentration 

136 
142 
20.4 
19.4 
6.07 
6.19 
415 
352 
106 
96.1 
2.33 

Absorbance 

0.1092 
0.1132 
0.0178 
0.0170 
0.0063 
0.0064 
0.3182 
0.2721 
0.0854 
0.0778 
0.0033 

%RSD 

0.06 
0.04 
0.3 
0.1 

0.96 
0.56 
0.01 
0.02 
0.04 
0.01 
1.76 

Average concentration 

139 (6.95x106) 

19.9 

6.13 

384 

101 (l.OlxlO3) 

2.33 

Table 6.8 Average concentration of Cr(VI) for diluted samples collected on 20/06/03 

Tank 

ST-15 
BT-15 
ST-16 
BT-16 
ST-17 
BT-17 
ST-18 
BT-18 
ST-19 
BT-19 

Mains water 

Concentration 
fia/L) 

184 
186 
177 
196 
12.4 
14.8 
51.1 
53.7 
137 
145 
3.48 

Absorbance 

0.1429 
0.1440 
0.1378 
0.1519 
0.0114 
0.0133 
0.0415 
0.0435 
0.1076 
0.1132 
0.0044 

%RSD 

0.01 
0.02 
0.02 
0.01 
0.24 
0.13 
0.12 
0.04 
0.02 
0.04 
0.19 

Average concentration 

(ml) 
185(1.35xl07) 

187 (1.87x103) 

13.6 

52.4 

141(1.41xl03) 

3.48 
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6.3.2 CONCENTRATION OF METAL IONS IN THE SAMPLES 

The average concentration of the metal ions (Ni, Fe, total Cr, Na, Zn, Cu and Pb) determined 

by ICP-OES for the samples collected on 9/06/03 and 20/06/03 is given in Tables 6.9 and 6.10 

respectively. The concentration of Cr(VI) shown in these tables is obtained from the UV-

visible analyses results of the samples. On 9/06/03 the concentration of Cr(VI) in Tank 15 was 

6.95xl03 mg/L and in Tank 19 was 1.01 mg/L. On 20/06/03 the concentration of Cr(VI) in 

Tank 15, 16 and 19 was 1.35xl04, 1.87 and 1.41 mg/L respectively. The analyses results of the 

nickel and chromium plating baths obtained from the chemical suppliers are shown in 

Tables 6.11 and 6.12. 

Table 6.9 Average concentration (mg/L) of metals in the samples collected on 9/06/03 

Tank 

2 
5 
7 
8 
10 
11 
12 
13 
15 
16 
17 
18 
19 

Mains water 

Ni 

14.0 
2.60 
4.50 
1.90 
744 
24.0 
16.0 
5.80 
180 
1.40 

0.620 
0.200 
0.230 
<DL 

Fe 

69.0 
5.20x102 

1.70 
<DL 

5.40x103 

3.80x10"3 

4.00x10"2 

0.100 
21.0 

0.600 
0.110 
<DL 
<DL 
<DL 

Total Cr 

2.30 
0.640 
0.300 

9.10xl03 

3.90x10"2 

9.10xl0"2 

5.70x102 

2.00x102 

8.30xl03 

61.0 
4.60 

0.890 
1.30 
<DL 

Cr(VI) 

NM 
NM 
NM 
NM 
NM 
NM 
NM 
NM 

6.95x103 

2.00x1 V2 

6.10xl03 

0.384 
1.01 

2.30x10"3 

Na 

306 
164 
28.0 
25.0 
129 
25.0 
23.0 
21.0 
129 

1.38xl04 

116 
36.0 
23.0 
21.0 

Zn 
446 

2.60x10"2 

0.770 
5.10xl0"2 

3.90 
0.190 
0.150 

6.80x102 

82.0 
0.600 
0.290 

5.70x10° 
2.70x10"2 

<DL 

Cu 
28.0 

0.640 
0.190 

3.90x10"2 

6.20x102 

5.00x10"2 

4.50x102 

4.80x102 

76.0 
0.870 
0.150 

l.lOxlO2 

2.20x102 

6.10x10^ 

Pb 
0.510 

2.20x102 

2.00x102 

l.lOxlO2 

0.350 
2.60x102 

2.20x10-2 

1.50xl02 

10.0 
2.10xl02 

1.30xl02 

4.50x10"3 

4.80x103 

<DL 

NM = not measured 
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Table 6.10 Average concentration (mg/L) of metals in the samples collected on 20/06/03 

Tank 

2 

5 

7 

8 

10 

11 

12 

13 

15 

16 

17 

18 

19 

Mains water 

Ni 

12.0 

1.80 

3.30 

0.930 

6.44x103 

72.0 

43.0 

7.00 

450 

82.0 

1.80 

0.140 

6.70 

<DL 

Fe 

40.0 

5.80 

3.80 

<DL 

28.0 

1.40 

0.500 

<DL 

55.0 

13.0 

0.210 

<DL 

<DL 

<DL 

Total Cr 

2.40 

1.10 

0.230 

<DL 

1.80 

0.510 

0.300 

7.70x10-2 

2.13xl04 

3087 

44.0 

6.40 

76.0 

<DL 

Crfll) 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

1.35xl04 

1.87 

1.40xl02 

5.20x10 -2 

1.41 

3.50x10"3 

Na 

168 

103 

26.0 

25.0 

1023 

33.0 

29.0 

23.0 

234 

1.17xl04 

128 

32.0 

101 

20.0 

Zn 

63.0 

9.60 

4.40 

0.890 

70.0 

0.870 

0.600 

5.40xl02 

178 

22.0 

0.680 

5.60xl0'2 

0.410 

<DL 

CM 

50.0 

1.00 

0.480 

0.180 

1.70 

0.350 

0.150 

<DL 

207 

32.0 

0.420 

l.OOxlO3 

1.40xl0"2 

<DL 

Pb 

0.600 

0.160 

7.00x10J 

<DL 

1.40 

<DL 

<DL 

<DL 

13.0 

3.70 

2.80x102 

<DL 

<DL 

<DL 

Table 6.11 Orlik chemical suppliers' analytical results for the nickel plating bath (Tank 9) 

Chemicals 

Nickel (g/L) 
Nickel sulfate (g/L) 
Nickel chloride (g/L) 
Nickel carrier A5 (ml/L) 
Addition agent SA1 (ml/L) 

Optimum bath 
concentration 

82.50 
300.0 
65.00 
40.00 
4.500 

Date 
03 06 03 

80.57 
272.2 
97.35 
35.20 
4.320 

10 06 03 
78.52 
305.86 
61.36 
38.72 
3.200 

18 06 03 
86.44 

338.91 
64.31 
39.60 
1.080 

24 06 03 
87.31 

346.52 
61.36 
39.60 
4.300 

Table 6.12 Chemserve chemical suppliers' analytical results for the chromium plating bath (Tank 14) 

Chemicals 

Chrome salt (g/L) 
Sulfate (g/L) 
Catalyst X400 (g/L) 
Baume reading 

Optimum bath 
concentration 

300.0 
1.200 
3.000 
21.00 

Date 
4 06 03 
288.4 
2.300 
2.700 
25.00 

J1 06 03 
288.4 
2.300 
2.700 
25.00 

19 03 06 
303.4 
2.500 
2.500 
26.00 

23 06 03 
291.7 
1.700 
2.700 
25.00 
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CHAPTER 7 

DISCUSSION 

In this chapter the results obtained during the data gathering steps of the waste audit of the 

MDCPL in the Chrome Shop are analysed and discussed. The Chrome Shop is a job shop, like 

all the plating lines in this factory. This means that many different types of workpieces (in 

terms of structure e.g. wire or sheet products, flat shapes or indented and substrate composition 

e.g. zinc, iron and occasionally lead) are cleaned and plated on this line. The Chrome Shop is 

housed together with a copper cyanide plating line and a brass plating line. It shares some tanks 

of the pretreatment rinse system with these two lines (see Figure 3.2 in Chapter 3). Therefore 

the data collected on the Chrome Shop is both diverse and variable. As far as possible, the 

contributions of other plating processes to the Chrome Shop data have been identified and 

interferences with the MDCPL results discussed. 

A monitoring period of 9 days was reported from 9/06/03 to 20/06/03 in order to simplify 

collection and analyses of certain data. It was necessary to restrict the monitoring period 

because the volume of data was high and the content diverse. Data on water and chemical 

usage, chemical composition of the rinse water and process solutions and product output were 

obtained over that time period. These data were used in different ways to estimate the water 

and chemical usage per unit of product surface area and the raw materials wastage for the 

nickel and chromium lines. 

Data on chemical purchases (coming from the suppliers into the factory stores), chemical 

requisitions (going from the store to all plating lines and to the Chrome Shop) and the water 

usages for the whole factory were available from the beginning of 2003. Annually adjusted 

figures for requisitions and water data have been used in the Scoping Audit and daily adjusted 

figures in the True Cost of Waste Analysis. 
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7.1 WATER USAGE 

Water is an important commodity in any electroplating plant. In the MDCPL mains water is 

utilised in the process, drag-out and rinse tanks of the electroplating line. Water is used as a 

solvent in the process tanks. It is utilised in the drag-out tanks as a wash and to replace 

evaporation and drag-out losses from the process tanks. Water is used in the rinse tanks first for 

refilling the drained tanks after dumping the contaminated rinse water of the tank. The second 

use of the water in the rinsing system is as a flowing rinse: that is for continuous flow of clean 

mains water into the rinse tanks and the outflow of dirty rinse water (wastewater or effluent). 

Contaminants in the water originate from chemicals such as raw materials, impurities in the 

raw materials and soils released from the surface of the workpieces. 

The total amount of water used in the flowing rinse tank, static rinse tank, drag-out and process 

tank of the Chrome Shop for a year was calculated based on the following assumptions:-

• The solution volume in all tanks was assumed to be the volume of the individual 

tanks minus the head space volume. 

• The water flow rate entering and leaving each rinse bath was assumed to be equal. 

There was no water meter on each water inflow rinse tank. The plastic pipes that 

carry the mains water into rinse Tanks 13 and D ran halfway down the sidewall of 

the tanks and were fixed in position. It was therefore difficult to measure the water 

entering each of these tanks. Because of this, the flow rate was measured from the 

rinse water leaving Tank 11 and 2. The flow rate of water into rinse Tank 8 and 18 

was measured from the water entering the tanks from the main supply because the 

pipes that carry the water were not secured to the sidewall of the tanks. This 

allowed the pipe to be lifted out of the tank and the water flow from this in-pipe to 

be measured directly. 

• The plating line worked effectively for 24 hours from Monday to Friday. The total 

working days of the electroplating plant in the year of 2003 were 234. Therefore, 

there were an average of 46.8 (234 days per year excluding weekends and public 

holidays/5 days per week) working weeks per year and an average of 19.5 (i.e. 

234/12) working days per month. 
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• The rinse tanks solutions were dumped and refilled once a year when the process 

solution tanks were cleaned out during shut down for annual maintenance. 

7.1.1 WATER USED IN THE FLOWING RINSE TANKS 

The total volume of water used in the flowing rinse tanks in a year was calculated by adding 

the total volume of flowing rinse water consumed in the flowing rinse systems per year (see 

Table 7.1) and the water used to refill the flowing rinse baths in a year (see Table 7.2). The 

volume of the flowing rinse water consumed was calculated using Equation 7.1 

Volume of flowing rinse water = Rinse water flow rate x Operating time Equation 7. J 

The operating time in hours is the working days in a year (234) multiplied by 24 hours/day and 

is equal to 5616 hours. 

Table 7.1 Annual volume of flowing rinse water used in flowing rinses 
Tank 

D 
B 
2 
5 
F 
7 
8 
11 
12 
13 
17 
18 

Flow rate (mJ/hr) 
0.11 
0.11 
0.11 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.16 
0.16 

Total volume of water (m5) 

Volume of water flow in a year (mJ) 
618 
618 
618 
1123 
1123 
1123 
1123 
1123 
1123 
1123 
899 
899 

11513 

The flowing rinse tanks are dumped and refilled with fresh water once a year during annual 

maintenance. The refill tank volumes are given in Table 7.2 which are added to the total 

volume of water used in the flowing rinse to give the total volume of flowing rinse water used. 

The internal length, breadth and height (minus head space) of the tank were measured on-site 

and multiplied together to give the volume. These solution volumes are given in Table 3.1. 
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Table 7.2 Total annual volume of water used in flowing rinse tanks 

Tank 
D 
B 
2 
5 
F 
7 
8 
11 
12 
13 
17 
18 

Total volume of water used in filling tanks (m3) 
Total volume of water used in flowing rinse (m3)* 
Total volume of flowing rinse water used (m3) 

Volume of a rinse tank (m3) 
0.168 
0.215 
0.322 
0.348 
0.218 
0.438 
0.470 
0.171 
0.361 
0.382 
0.234 
0.234 
3.60 

11513 
11517 

•From Table 7.1 

7.1.2 WATER USED IN STATIC RINSE TANKS 

The total volume of water used in static rinse tanks was estimated from the volume of the rinse 

baths and the number of dumps of the tank solutions in a given period of time (see 

Equation 7.2). 

Total volume of rinse water = Volume of static solution x Frequency of dumping Equation 7.2 

Table 7.3 Annual volume of water used in static rinse tanks 

Tank 
19 

Volume of rinse bath (m3) 
0.931 

Total volume of water used (m3) 

Number of dumps per year 
117 
109 

7.1.3 WATER USED IN THE DRAG-OUT TANKS 

The total volume of water used in the drag-out tanks was calculated by adding the volume of 

water used to fill the drag-out tanks to the volume of water used to top up the drag-out tank 

after the plating solutions had been topped up from the drag-out tanks. The volume of water 

added to the drag-out tank in a year is assumed to be the same as the volume of drag-out used 

to top-up the plating solutions. The volume of drag-out added to the plating solution during the 
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year is calculated by multiplying the volume added per day (see Tables 3.1, 3.2 and 3.3 in 

Chapter 3) by the total number of working days in a year (see Table 7.4). The drag-out of the 

second nickel plating (Tank 10*) is taken to be the same as for Tank 10 based on analyses 

results obtained on the trials (see Appendix D). Volume of drag-out added to all process 

solutions (Tank 10,15,D and II) is given in Table 7.4 as 41 m3. Only 1.2 m3 of water was used 

to fill up the drag-out and so the total volume of water used in the drag-out system was 42 m3. 

Table 7.4 Annual volume of water used in drag-out tanks 

Tank 

10 
15 
D 
II 

Volume of a 
drag-out tank 

(m3) 
0.195 
0.129 

No drag-out tank 
0.685 

Rate of drag-out 
additions to a process 

bath 
70 L/day 
25 L/day 
10 L/day 

lOL/week 

Frequency of 
additions per 

year 
234 
234 
234 

46.8/week 
Estimated volume of water added to second Ni drag-out (Tank 10*) 
Volume of drag-out added to a process solution (m3) 
Total volume to fill the drag-out tanks (m3) 
Total volume of water used in drag-out (m3) 

Volume of drag-out 
added to the process 
bath per year (m3) 

16 
5.9 
2.3 
0.47 
16 
41 
1.2 
42 

7.1.4 WATER USE AS SOLVENT IN THE PROCESS SOLUTIONS 

The concentrations of chemicals in the process solutions are operated within a concentration 

range specified by the chemical suppliers.74 Since chemicals and water are lost due to surface 

treatment reaction, drag-out, evaporation, side and decomposition reactions, regular addition of 

chemicals and water are made to each solution to restore the concentration back to the 

specified level. Often the chemical additions are recorded whereas the volume of water added 

is not recorded. However, the water additions can be roughly calculated using the equation 

given below if the chemical additions are known and the overall concentration of the process 

solution is maintained at the specified level. 

. . . c . . . . /T. Mass of chemicals added (kg) _ , „ , 
Volume of water addition (L)= ^-=L Equation 7.3 

Specified concentration (kg/L) 

The specified concentration was obtained from the chemical suppliers' MSDS and technical 

data sheets and the average mass of chemicals added per day was calculated from the total 
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mass used on the line over the 163 days of the monitoring period (see Table 6.2 in Chapter 6). 

Table 7.5 shows the annual volume of water used in the process solutions. 

Table 7.5 Annual volume of solvent additions made to process solutions 

Tank 

3 
4 

9 

14 

E 
I 

Chemicals 

Chemalene 03 
Oxyprep 220EC 
H3BO3 
Nickelux-100 Plus 
Addition agent SA1 
Addition agent NPA 
Wetting agents 
Cr03 

Fumetrol 140 
KCN 
NaCN 

Specified 
concentration 

50g/L 
80g/L 
40g/L 

2.0 ml/L 
5.0 ml/L 
2.5 ml/L 
4.0 ml/L 
300 g/L 
2.5 ml/L 
20 g/L 
21 g/L 

Average mass of 
chemicals added/day 

2.8 kg 
0.45 kg 
0.41 kg 
5.0 L 

617 ml 
0.20 L 
88.9 ml 
0.85 kg 
0.052 L 
2.0 kg 

0.36 kg 
Estimated volume of solvent water added to second Ni drag-out (Tank 9*) 
Total volume of water used (m3) 

Water used as 
solvent in process 
tanks per year/m3 

13 
1.7 
2.4 
585 
28.9 
18.7 
5.2 

0.66 
4.9 
23 
4.0 
640 
1328 

The process tank solutions such as cleaning, neutralising and stripping are dumped periodically 

due to a decrease in the activity of the solution and an increase in the concentration of 

contaminants in the solution. Therefore, a new solution is prepared by dissolving an accurate 

weight or volume of the chemicals in water to refill the tanks to the specified concentration 

level. Table 7.6 shows the volume of water used to replace the process tank solutions after 

dumping (53.5 m ) together with the solvent added to top up the working solution i.e. between 

dumps (1328 m3 see Table 7.5). The total volume of water used as a solvent in the process 

solution is the sum of these two values. 
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Table 7.6 Annual volume of water used in making up the process solution baths 

Tank 

1 
3 
4 
6 
9 
9 
14 
16 
20 
21 
A 
C 
E 
G 
H 
I 

III 

Water used for solution make­
up (m3) 
0.129 
0.750 
0.830 
0.384 
3.00 
3.00 
1.12 

0.214 
0.322 
0.337 
0.541 
0.195 
1.892 
0.178 
0.168 
1.059 
0.145 

Dumping frequency 

4 
6 
12 
12 
0 
0 
0 
78 

4.68 
0 
4 

46.8 
0 
12 
3 
0 
12 

Total volume of water used for solution make-up (ms) 
Total volume of water additions to the process tanks (mJ) 
Total volume of water used as make-up solvent in the process bath (m3) 

Total water used for 
solution make-up (m3) 

0.516 
4.50 
9.96 
4.61 

0 
0 
0 

16.7 
1.51 

0 
2.16 
9.13 

0 
2.14 

0.504 
0 

1.74 
53.5 
1328 
1381 

7.1.5 TOTAL WATER USAGE 

Table 7.7 shows a summary of the estimated water used in the Chrome Shop i.e. the percentage 

of the total cost of the water used in the respective tanks of the Chrome Shop, the municipal 

measured water usage and cost and other water related charges (water fixed charge, trade 

effluent charge and trade effluent monitoring charge). 

Table 7.7 Estimation of water usage and cost for the Chrome Shop 
Water usage 

Flowing rinse (sec Tabic 7.2) 
Static rinse (see Table 7.3) 
Drag-out (see Table 7.4) 
Process tank (see Table 7.6) 
Total water used in Chrome Shop 
Municipality measured water usage 
Other water related charges 

Volume (m3 year) 
11517 

109 
42 

1381 
13049 
13335 
13335 

( \)st year (Rand) 
55282 

523 
202 

6629 
62635 
64008 

26733.9 

% of total cost 
88.3 
0.84 
0.32 
10.6 

The total volume of water used in the Chrome Shop was estimated to be 13049 m3. Most of the 

water (88%) was used in the flowing rinses and the lowest amount (0.32%) was used in 



120 

topping up the drag-out tanks. The water used in preparing the process solution was about 11% 

and the water used in the static rinse tank was 0.84% of the total water used in the Chrome 

Shop. The total billed municipality water used per year for both the Chrome Shop and the 

automatic plating line was 13335 m3. Factory records showed that the annual volume of water 

used by the automatic plating line from the municipality water coming to the factory was 1837 

m3. This makes the volume of water used by the Chrome Shop to be 11498 m3. The estimated 

total water used in the Chrome Shop per year was therefore found to be 11.6% greater than the 

value calculated from the bill and water meter reading taken on the automatic plating line. 

There are two main reasons for this over-estimate of the Chrome Shop's water consumption by 

this analysis. Firstly the dumping frequency reported may have been too high. Secondly the 

water flow rate through the flowing rinse is adjusted manually and the water meter on the 

MDCPL was not working for the duration of this study. Therefore it was not possible to ensure 

that the flow rates recorded in this study were the same all year round. 

The cost for the water usage for each month in the one year period is given in the results (see 

Table 6.3 in Chapter 6). The cost of water per m3 was R4.57 from 11/12/02 to 13/6/03. The 

cost increased from 14/6/03 to 12/12/03 to R5.02. The cost of the consumed water in m3 has 

therefore been calculated by taking an average (R4.80) of the two values and is R64008 (see 

Table 7.7). There was also an additional cost for the water fixed charge. Over the one year 

period, the electroplating plant paid R1819 to fixed water charges. Thus the total cost of the 

water consumed and the fixed charge was R65892. 

7.1.6 REDUCING WATER USAGE 

Optimal values for rinse criteria for cleaner, pre- and post plating rinses l62 (see Table 7.8) as 

well as concentration levels163'l64'l65 (see Table 7.9) which should not be exceeded in the final 

(cleanest) rinse solution have been published in the literature. However the rinse criteria are 

given as a broad range of values while published concentration limits are scarce. Further the 

concentration of metals in the exiting (flowing rinse) wastewater must be within the local 

authority's discharge limits.163 The metal concentration in the cleanest rinse should also be 

below the suggested quality criteria for the contaminant limit.164 The contaminant limit has 

been defined as the concentration of that metal that is acceptable in the rinse water because it 
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has no negative effect on the plate. Table 7.9 gives the effluent discharge limits for the 

metals for which published contaminant limits were also found. 

Table 7.8 Optimal values for rinse criteria 
Rinsing process 
Post degreasing and pickling 
Pre electroplating 
Post electroplating 
Post decorative chromium plating 

Dilution factor 
100-1000 
500-2000 
1000-5000 

5000-10000 

The dilution factor found for the nickel in the plating solution (in terms of its optimal 

concentration) and the final rinse tank of the nickel rinse system (Tank 13) was 1.2xl04 and 

1.4xl04 for the two days' analyses results. These values exceed (by a factor of about 2.6) the 

top of the range literature value for the dilution factor required in post plating rinses (see Table 

7.8). Similarly in the final rinse tank of the chromium plating rinse system (Tank 18) the 

dilution factor for chromium range from 2.3x104 to 1.7xl05 over the monitoring period. The 

dilution factors measured for the chromium plating operations were found to be greater (by a 

factor of between 2 and 17) than the literature value for the dilution factor for post decorative 

chromium plating as given in Table 7.8. 

Table 7.9 Effluent discharge and contaminant concentration limits values 

Substance 

Cr03 

Calculated as Cr 
Ni 

cr 
so*-
Total metals 
Zn 
Cu 
Fe 
Pb 
Total dissolved solids 
Conductivity 
PH 

Effluent discharge limit163 

Not specified 
Not specified 

5 mg/L 
500 mg/L 

250 mg/L 

20 mg/L 
5 mg/L 
5 mg/L 
5 mg/L 
5 mg/L 

500 mg/L 
4000 uS/cm 

6.5 to 10 

Contaminant limitm-165 

40 mg/L 
19.2 mg/L 

8 mg/L 
50 mg/L 

200 mg/L 

5 mg/L 
Not specified 
Not specified 
Not specified 
Not specified 

250 mg/L 
200 uS/cm 
6.0 to 8.0 

The Sewage Disposal Bylaws issued by Durban Metro's Department of Waste Management 

only specifies a total chromium discharge limit {Cr(VI), Cr(III), etc} of 5 mg/L when the 
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effluent is going into a small sewage works. A small sewage work is defined as a plant which 

deals with less than 25 ML of effluent per day. The Sewage Disposal Bylaws require that the 

sum of the concentrations of the individual metal ions does not exceed 20 mg/L for a small 

sewage works.163 All these concentration limits are greater for a large sewage works. 

Tables 7.10a and 7.10b presents the data used in estimating the potential financial savings from 

reducing the volume of water used by the flowing rinses following the nickel and chromium 

plating solutions. Such calculations could not be performed on the other two rinse systems 

because these are also used by the other plating processes in the Chrome Shop. 

Table 7.10a shows the water volume that can be saved by halving the flow rate in both flowing 

rinse systems. This (and not the static or reactive rinses) is considered to be the part of the 

rinsing process where water usage can be reduced. This is based on the finding that the dilution 

factors calculated using the optimum process solution concentration and the measured 

concentration in the final rinse solution are about double the top of the range literature value 

for the dilution factor given in Table 7.8 (dilution factor of 5000 for nickel and 10000 for 

chromium) for good rinsing. The projected annual water used in the flowing rinse is obtained 

by multiplying the new flow rate by the number of working hours per year (5616 hours) and 

the annual volume of water saved is estimated to be (4156m3). The annual water savings 

(R19949) is equal to the difference between the annual water used in the flowing rinse and the 

projected annual water used in the flowing rinse. 

Table 7.10a An estimate of annual water savings for the plating processes 
Rinse 
system 

Ni 
Cr 

Annual water used in 
the flowing rinse (m3) 

3369 
1798 

New flow 
rate (m3/hr) 

0.1 
0.08 

Projected annual water 
used in the flowing rinse 

562 
449 

Annual water 
savings 

m 
2807 
1349 

R 
13474 
6475 

Table 7.10b considers the rinsing and dilution in two steps namely that taking place in the 

drag-out and that obtained by the flowing rinse. The first dilution factor describes the situation 

between the process solution and the drag-out (or reactive rinse in the case of chromium) and 

the second dilution factor describes the situation between the drag-out and the final solution of 
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the flowing rinse. The dilution factor between the nickel plating solution and the nickel drag-

out was calculated using the average drag-out concentration over the two monitoring days and 

the specified concentration of 82.5 g/L of nickel in the plating solution. Equation 2.6 given on 

page 66 in Chapter 2 was used to approximate the value for the average drag-out volume (D in 

Table 7.10b). The measured flow rate (Q in Table 7.10b), the average concentration in the final 

rinse (CFR in Table 7.10) and average drag-out concentration (Co in Table 7.10b) were used in 

Equation 7.4 to calculate the drag-out volume (D in Table 7.10). The values for Q are given in 

Table 6.5 in Chapter 6 and the average values CFR and CD are calculated from the analytical 

results for nickel and chromium in Tables 6.9 and 6.10. The new flow rate (QN in Table 7.10b) 

was then estimated using the calculated drag-out volume (D) and a dilution factor value 

calculated for the flowing rinse by dividing 5000 by the dilution value achieved by the static 

rinse. The volume of water (1291 m3) used in the flowing rinse has been estimated by 

multiplying the new flow rate by the number of working hours per year (5616 hours). It is 

assumed in this calculation that the drag-out volume will stay the same despite changes in 

solution concentration. The symbol "n" in Table 7.10 and in Equation 7.4 represents the 

number of stages in the flowing rinse system. The nickel rinse system has a three stage flowing 

rinse and the chromium rinse system has a two stage flowing rinse. 

i 

Equation 7.4 ^(N) _ J CD 
D FR J 

Table 7.10b An estimate of annual water savings for the plating processes 

Rinse 
system 

Ni 
Cr 

Q 
m3/hr 

0.2 
0.16 

Average Cm 
(mg/m3) 

0.0064 
0.0036 

Average Co 
mg/m3 

3.6 
1.6 

D 
m3/hr 

8.1xl03 

3.8 x!0J 

Dilution 
factor 

217 
105 

m3/hr 

0.15 
0.08 

Annual water 
savings 

m3 

842 
449 

A comparison of the flow rate results for obtained for the nickel and for the chromium rinses 

from Table 7.10a and 7.10b show a good correlation for chromium and a higher (by 33%) 

value for nickel using the method based on Equation 7.4. However as the rates were measured 

on site using a crude (bucket and stop watch) method this is probably not such a bad result 

after all. 



124 

7.2 CHARACTERISATION OF RINSE WATER SOLUTIONS 

The trends in and levels of contaminant concentration in the rinse waters will be discussed here 

for 13 of the solutions (see Figure 3.2 in Chapter 3 and Table 7.11) in the four counter current 

rinse systems and the hot static rinse. It must be remembered that there may be numerous 

reasons for the trend in results which cannot be measured or observed by this study. For 

example, there may have been fluctuations in the flow rate of the rinse water or differences in 

the drain time over the rinse tank, in the removal rates of dropped workpieces in the bottom of 

the tanks, in the amount of copper wire used for jigging the various workpieces, and in the 

number and types of workpieces processed on the line. Further, increasing the concentration of 

the cleaning and of the plating solution increases the viscosity of the solution which is known 

to lead to an increase in the chemicals dragged-in to the next tank. 

Table 7.11 Rinse water tanks in the MDCPL 
Tank 

2 

5 

7&8 

10 

11,12 & 13 

15 
16 

17&18 

19 

Non-MDCPL rinse function 
3rd and last rinse for Cu and brass 
plating 
4th and last rinse after acid dip Ni, 
Cr, and Cu 

None 

None 

None 

None 
None 

None 

Hot rinse before Tank III 

MDCPL rinse function 
Soak (acid and alkaline) cleaners' rinse 

Electrolytic alkaline cleaners rinse 

Acid dip rinses (1st and 2nd rinses after acid dip 
for Ni and Cr) 
Static Ni plating rinse (Ni drag-out) 

Counter current flowing nickel plating rinse 
3rd (i.e. last), 2nd and 1st rinse after drag-out. 

Static Cr plating rinse (Cr drag-out) 
Cr neutraliser 
Counter current flowing Cr plating rinse 2IM| 

(last) and 1st rinse after drag-out 
Hot static rinse 

In Chapter 6, Tables 6.9 and 6.10 summarise the chemical analyses results obtained for the 

rinse waters of the MDCPL on 9/06/03 and 20/06/03 respectively. Tables 6.11 and 6.12 show 

the chemical analyses of the process solutions carried out by the chemical manufacturers for 

nickel (Orlik) and for chromium (Chemserve). These results will be used to establish the 

degree of rinsing obtained for the counter current plating rinses and the cost of waste for the 

nickel and chromium lines. 
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The first three entries in Table 7.11 can be regarded as the pre-treatment rinse solutions. Of 

these only the acid dip rinses (third entry in Table 7.11) are exclusive to chromium plating. The 

other two pretreatment rinses are shared with the copper and brass plating operations. The 

remaining entries refer to nickel and chromium plating rinse tank solutions. The rinse solutions 

in Tank 10, 15, 16 and 19 are not flowing rinses. The flowing tank solutions are given in 

column one of Table 7.11 in order of increasing contamination of rinse water, that is from fresh 

rinse water entering from the mains to dirtier, used rinse water coming from the previous rinse 

tank. 

The concentration of the metal ions nickel, iron, chromium, sodium, zinc, copper and lead in 

the mains water and the rinse solution was determined using ICP-OES at the beginning and 

end of the 9 days monitoring period. The concentration of Cr(VI) in the mains and rinse water 

was determined by UV-visible spectrophotometry. Tables 6.9 and 6.10 (Chapter 6) show that 

sodium was the element present in highest concentration in mains water, being at around 

20 mg/L. Similar sodium levels were measured for the flowing rinses situated after the acid dip 

(Tank 6) and after nickel plating (Tank 11, 12 and 13) solutions. The concentrations of all the 

other metal ions were below the detection limit of the instrument. This indicates that the 

concentration of these metal in the mains water is negligible in terms of any adverse effect on 

chromium plating. 

7.2.1 SOAK (ACID AND ALKALINE) CLEANER'S RINSE 

The flowing rinse water in Tank 2 is used to remove drag-out from solutions in Tank 1 and in 

Tank 3 from the surface of the workpieces. The water feed into this tank is through two rinse 

tanks on the copper plating line. Water exiting Tank 2 is piped to the central effluent plant. The 

analyses results for this tank solution show sodium and zinc to be present in the highest 

concentrations on both sampling dates. The highest concentrations of sodium and zinc (306 

and 446 mg/L) in solution were recorded on the 9/06/03. Iron, copper and nickel levels were 

more than a third lower by comparison. Even lower concentrations were observed for 

chromium and lead on this date. The high concentration of sodium in the tank is consistent 

with the dragged-out alkaline soak cleaners containing NaOH, Na2Si03 and sodium based 

surfactants from Tank 3 and from the inflow of rinse water containing sodium cyanide from the 
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copper plating solution (Tank E in Figure 3.2). The pH was around 1.5 making the rinse water 

very acidic and likely to prevent precipitation of metal ions. The workpieces themselves 

represent the most likely source of zinc, iron and lead in this acidic solution. The concentration 

of dissolved zinc would likely originate from the die-cast workpieces such as bath handles, 

jewellery, toilet handles and brass ring fingers (see Table 6.3 in Chapter 6). The iron in 

solution could conceivably originate from the iron oxide removed from the workpieces' 

surfaces in the acid de-rust in Tank 1. The lead is thought to arise from an order of fishing 

weights plated on this line. Copper is the next most abundant metal found in this solution. On 

20/06/03 its concentration was comparable to that of zinc and this solution, excluding the static 

drag-out, had the highest level of dissolved copper of all the rinse waters. Copper observed in 

the tank is likely to originate from two sources. Firstly, from the dissolution of the copper 

wires used in jigging the workpieces and secondly from the water flowing into the tanks from 

the copper rinse solutions in Tank D and B of the copper plating line. The traces of nickel and 

chromium are most likely to be from residual plate which had been dissolved off the jigs 

themselves. This happens when the plate is not properly stripped off before going back through 

the process. There is also the possibility that uncontrolled chromic acid mist, produced during 

chromium plating, may dissolve out from the atmosphere into rinse solutions. The 

concentrations of these two metals was observed to fall over Tanks 2 and 5 and continue to 

drop for Cu in Tanks 7 and 8. 

A comparison of the results over the two sampling days shows sodium, zinc, and iron levels 

fall by a factor of 1.8, 7.1 and 1.7 respectively and the copper rises by a factor of 1.8. The 

addition of chemicals and changes in the daily output can change the concentration of the 

metals through varying chemical consumption rates. On 17/06/03 17 kg of Chemalene 03 was 

added to Tank 3. This together with the addition of 25 g/L of caustic soda and 50 g/L of 

sodium cyanide to the copper plating line on 9/06/03 is one reason why the sodium levels did 

not fall as much as the zinc levels did. The increased output of the plated zinc workpieces was 

higher (4131 workpieces on 9/06/03 and 2092 workpieces on 20/06/03) by a factor of 2.0 on 

9/06/03 compared to that on 20/06/03. This is consistent with the higher zinc levels found on 

9/06/03. However this is not consistent with the iron levels found in the solution on 9/06/03 

and on 20/06/03. The iron levels were lower by a factor of 1.7 on 20/06/03 compared to 
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9/06/03 even though 1513 steel workpieces were plated on 9/06/03 and 2071 on 20/06/03. 

There are numerous reasons why this was observed. For example, the workpieces cleaned on 

this day may have been greasy and the iron was not exposed to the solution or there might have 

been greater number of steel workpieces dropped in the acid de-rust (HC1 solution) on 9/06/03 

which could have caused an increase in the concentration of iron. The sources of copper are 

numerous. These include tips of the jig, the wires used for jigging the workpieces and the 

dragged-out copper plating solution by the workpieces. This means it is difficult to make any 

meaningful comparison of the changes in copper levels over the two days. 

Cushnie quotes a concentration range of 400 to 1000 mg/L as a "rinse criteria for permissible 

levels of contamination".128 Mohler gives a value of 750 mg/L as concentration of 

contaminants in the rinse following cleaning or pickling solutions.166 Taking these as 

equivalent to the total dissolved solids levels and comparing them to the values measured for 

tank 2, 5, 7 and 8, they are all within the acceptable concentration range given by Cushnie. In 

only one case (Tank 2 on 9/06/03) did this value exceed the 750 mg/L limit value given by 

Mohler. 

7.2.2 ELECTROLYTIC CLEANER'S RINSE 

After workpieces are anodically cleaned in Tank 4, they are immersed in Tank 5 to wash off 

the electrolytic cleaner from the surface. The water feed into this tank comes from acid dipping 

for nickel, chromium and copper and flows through Tank 8, 7 and F before reaching Tank 5. 

Water exiting Tank 5 is piped to the central effluent plant. Analyses result for this solution 

show low concentrations of metals (highest being 9.6 mg/L for zinc) compared to Tank 2 on 

both monitoring days, except for sodium. The presence of high concentrations of sodium (164 

and 103 mg/L) on the two days of analysis is likely to have resulted from the drag-in of the 

constituents of the electrolytic cleaners solution by the workpieces. 

The concentration of iron and zinc was much higher on 20/06/03 than on 09/06/03. This is 

opposite to the trend observed in Tank 2. The pH in Tank 4 is quite alkaline (8.8) and so may 

cause these elements to precipitate out of the solution as insoluble hydroxide. 
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7.2.3 ACID DIP RINSE SYSTEM 

Tanks 7 and 8 make up a counter current flowing rinse coming after the acid dipping solution. 

This rinse system is used to prevent contamination of the nickel plating solution with drag-out 

from pretreatment solutions. Tank 7 contains the dirtier rinse tank solution because the 

workpieces from Tank 6 enter this tank before being immersed in Tank 8. The analyses results 

are consistent with this rinse set-up, showing lower concentrations of all metal ions in Tank 8 

compared to those found in the Tank 7 solution. This is because successive rinsing makes the 

drag-out solutions increasingly more dilute. For example, the dilution factor of the 

concentration of nickel on the two tanks in the first and second day of sampling was 2.4 and 

3.5 respectively. However the concentrations of all the metals in the two days analyses results 

except sodium were below 5 mg/L. 

Analyses results from Tank 7 and 8 solutions gave low concentration results for sodium, iron, 

and nickel. The sodium concentration was comparable to that found in the mains water supply. 

The concentrations of chromium, copper and lead metals were under 1 mg/L. This is less than 

the concentration limit 5 mg/L of nickel, iron, copper, zinc, lead and chromium prescribed in 

the effluent bylaws.163 The different levels found for these metals is again consistent with these 

being different sources giving rise to the presence of each metal. This has been discussed in 

previous sections where it has been shown that the changes in each metal's concentration are 

not in the same proportion to each other. The presence of iron and zinc in this solution is 

consistent with the dissolution of the substrate metal of those (unplated) workpieces in the acid 

dip (Tank 6). This is then dragged over into the rinse water on the surface of the workpieces. 

Surprisingly nickel was observed in these rinse waters. After some investigation this was found 

to arise from the stripping of the chromium plate which does not fulfill the required 

specification. After the stripping, the workpieces are dipped in the dilute H2SO4 of Tank 22 and 

then rinsed in Tank 7 and 8 to prepare them for replating with nickel and chromium. Some of 

the removed nickel plate appears in these tanks because it was washed off the workpieces. 

The analyses results of Tanks 5 and 7 show a higher nickel concentration in Tank 7 solution. 

All other metals show higher concentration in Tank 5 solution. Apart from sodium, all metal 

concentrations in both solutions are less than 10 mg/L and most are well under this value. 



129 

Further, a comparison of the results of Tank 7 of the two sampling days shows nickel, 

chromium and sodium levels fell by a factor of 1.4, 1.3 and 1.1 respectively. On the other hand, 

the concentrations of iron, zinc and copper levels were increased by a factor of 0.4, 0.18 and 

0.4 respectively. 

The analyses results over the two days of sampling for Tank 8 show nickel fell by a factor of 

2.0 and the concentration of zinc and copper levels increased by a factor of 17.5 and 4.6 

respectively. The concentration fall for nickel could be due to the decrease in stripping of the 

chromium plated on workpieces on 20/06/03. The increased concentration of zinc and copper 

in both tanks' solutions may reflect the fact that the dumping of the spent acid and the 

replacement with fresh acid had not taken place for that week (see Table 3.1). 

7.2.4 NICKEL PLATING RINSE SYSTEM 

Tank solutions 10, 11, 12 and 13 make up the rinse system used after nickel plating. Tank 10 

solution is a static rinse drag-out located immediately after the plating solution. Aliquots of this 

tank solution are periodically used to top up the nickel plating solution of Tank 9 (see Table 

3.1 Section 3.3.2) 

Tanks 11, 12 and 13 are counter current flowing rinses used after the drag-out tank after the 

nickel plating solution. The main reason for using a counter current flowing rinse is to save 

water and improve the efficiency of rinsing. In the system of rinsing, Tank 11 is the "dirtiest" 

rinse tank and Tank 13 the "cleanest" rinse solution. This is because workpieces are dipped 

first in Tank 11 and process chemicals are washed off the workpieces' surfaces into this tank. It 

also receives the solution exiting from Tanks 12 and 13 which is not a fresh water supply. 

Water exiting Tank 11 is piped to the central effluent plant. 

It is important to rinse the workpieces well after nickel plating in order to remove from the 

surface of the workpieces any chemicals which might be detrimental to the quality of the 

chromium plating and to prevent contamination of the chromium plating solution from 

dragged-in solutions. Iron, zinc, lead and copper concentrations are very low in Tank 13 (less 

than or equal to 0.1 mg/L) and not likely to present a problem. This is reflected in the limited 
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chemical treatment carried out on the chromium plating solution. Chlorides and sulfates from 

the previous tank solution originate from the hydrochloric and sulfuric acid based nickel 

electrolyte in the plating solution. The concentration of nickel in the plating solution is 

measured by the suppliers. It is expressed as the total metal, nickel chloride and nickel sulfate 

concentration. The level of chlorides and sulfates can be established from the values when the 

nickel is in excess. The levels of chlorides and sulfates in the final rinse have been calculated 

based on the dilution factor calculated for nickel levels in Tank 9 and Tank 13 and the 

specified (optimum) sulfate and chloride concentration in the process solution (Tank 9). The 

sulfate levels in Tank 13 were estimated to be 21 mg/L on 9/06/03 and 25 mg/L on 20/06/03. 

The chloride levels in Tank 13 were estimated to be 4.6 mg/L on 9/06/03 and 54 mg/L on 

20/06/03. 

The analyses results show that nickel and sodium are present in the highest concentration in all 

four solutions. The dissolved nickel species originates from the soluble nickel anode in the 

acidic nickel plating solution which has been washed off the workpieces into the drag-out. The 

concentration of sodium is mainly from the brighteners, wetting agents and fume suppressants 

used in the nickel plating solution. Obviously iron and zinc levels would be expected to be low 

since progressively less of the substrate is exposed to the solution during plating. The nickel 

levels are higher in all the rinse solutions than those measured in Tank 8 solutions. The 

concentration of the other metals are higher in the drag-out, and in many cases in Tanks 11 to 

13 solution also, than those found in Tank 8. This is consistent with the drag-out rinse being 

static and so a buildup of metal ions is observed over time. 

A comparison of the results for the Tank 10 solution over the two sampling days shows a 

higher concentration of all metal ions on 20/06/03. The most significant change was observed 

for nickel, sodium, iron and zinc. The concentration change of the metals went up by a factor 

of 8.7, 7.9, 5000 and 18 respectively. The concentration of nickel in the plating solution 

reported by Orlik chemical suppliers ranged from 78 to 87 g/L from 03/06/03 to 24/06/03 (see 

Table 6.11 in Chapter 6). The recommended concentration is 82.5 g/L. The measured 

concentration of nickel in the drag-out from the analysis result was 0.744 g/L on 9/06/03 and 

6.44 g/L on 20/06/03. The low concentration of the drag-out compared to the plating solution 
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was due to the dilution of the dragged-in chemicals by the rinse water in the drag-out tank. 

About 70 L of mains water is added to the drag-out tank daily when 70 L of the drag-out is 

transferred to the nickel plating tank. It would be expected that the nickel levels would be 

highest in a sample of the drag-out solution taken just before transfer and lowest in a sample 

just after transfer. However assuming the concentration measured on 20/06/03 was prior to top-

up i.e. addition of drag-out to process solution and of water to replace drag-out, the 

concentration expected immediately after top-up would be 4.12 g/L. This is 5.5 times higher 

than the value recorded on the 9/06/03. This suggests that the selected top-up had not taken 

place at the correct time or other factors, probably the number of workpieces going down the 

line had contributed to lower the nickel level in the bath than expected soon after top-up. 

The analyses results of the samples of the three counter current rinse tanks of the two 

experimental days shows a decrease in concentration of the metals from Tanks 11 to 13. When 

the concentrations of the metals were compared over the two sampling days, higher 

concentrations were observed for nickel, iron, sodium, zinc and copper on 20/06/03. This is 

expected based on the concentrations in the drag-out tanks. For example in Tank 11 (the most 

concentrated), the concentration increased for these metals by a factor of 3, 368, 1.3, 4.6 and 7 

respectively. Surprisingly the concentration of iron was observed to increase from Tank 11 to 

13 in the samples taken on 9/06/03. During sampling there were around 23 pieces of metal 

dropped in Tank 13, 11 pieces of metal in Tank 12 and six pieces of metal in Tank 11. It is 

likely these metals had dissolved and caused deviation from the expected trend in the 

concentrations. 

Over the monitoring period, however it is interesting to note that on both days the 

concentration of nickel and sodium in Tank 13 was virtually the same. The higher 

concentration of nickel and sodium in the drag-out on the 20/06/03 means the dilution factor 

cannot be the same throughout the rinse system on both days. The dilution factor between 

Tanks 11 and 12 solutions is similar on both days (1.5 and 1.7) whereas it is considerably 

greater between drag-out and Tank 11 (31 and 89) and between Tanks 12 and 13 (2.8 and 6). 
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Cushnie's acceptable "rinse criteria for permissible levels of contamination" for rinsing 

following bright plating ranges from 5 to 40 mg/L.128 Mohler quotes an equivalent value of 

40 mg/L for this parameter.166 The values recorded on both sampling dates in all the nickel 

rinse tanks exceed this value. However during this monitoring period the filtration equipment 

on the nickel plating solution was not working. This may lead to higher than expected total 

dissolved solids levels. 

7.2.5 CHROMIUM PLATING RINSE SYSTEMS 

The chromium plating rinse solutions are found in Tank 15, 16, 17, 18 and 19. Tank 15 is a 

static rinse that contains solutions dragged-in by the workpieces from the chromium plating 

solution in Tank 14. The chromium plating tank is topped up with this drag-out solution. Tank 

16 is also non-flowing but is drained and replenished regularly. It is a reactive rinse used to 

convert any dragged-in Cr(VI) into Cr(III) (see Equation 3.1 in Chapter 3) using sodium 

metabisulfite (Na2S20s) and sodium carbonate (Na2CC«3). 

Chromium(VI) is added to the electroplating solution as solid C1O3. In acidic solution Cr(VI) 

is present largely as the dichromate ion, C^O^", which is in equilibrium with the chromate, 

CrO^", in alkaline conditions (see Equation 1.10 in Chapter 1). This means that Cr(VI) cannot 

be precipitated as the hydroxide by raising the pH because the dichromate ion will be turned 

into the chromate ion. However reduction and precipitation is used for the treatment of 

wastewater containing Cr(VI). The chromium is reduced to Cr(III) by the addition of a 

reducing agent, namely sodium metabisulfite in Tank 16 on the line. Precipitation of the 

reduced chromium as a hydroxide is carried out at the central effluent treatment plant. 

Tanks 17 and 18 constitute a two stage counter current rinse. Clean water enters the system 

through Tank 18 and exits via Tank 17 into the central effluent treatment plant. Tank 19 is a 

hot static rinse water tank. The main reason for making this tank solution hot is to try to ensure 

that any remaining chemicals have been removed from the workpiece surface and to dry the 

washed workpieces quickly in the air. 
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Analyses results from the two days of sampling shows an increase in the concentration of 

metals in the drag-out tank on 20/06/03 compared to that on the 9/06/03. The concentrations of 

chromium, sodium and nickel were highest. For example the concentration of chromium in the 

sample analysed on 20/06/03 was 21 g/L and nickel was the next highest at 6.44 g/L. The 

concentration of chromium is caused by the drag-in of the contents of the chromium plating 

solution of Tank 14 into Tank 15. Chromic acid mist is a well documented side product made 
^ II I f\ \ ft 7") 

when workpieces are plated with chromium. ' '3*- * To prevent the mist from becoming 

airborne a fume suppressant containing sodium is added to the tank solution. This contributes 

to the concentration of sodium in the drag-out tank. The nickel present is likely to come from 

the nickel plate on the workpieces' surfaces which has been dissolved in the acidic Cr(VI) 

solution. The ratio of zinc to iron was the same on both sampling days. This may indicate that 

there were the same steel and zinc workpieces immersed in the bottom of the plating tank on 

both days which were losing iron and zinc at a constant rate. Lead is also dragged-in from the 

plating solution where lead alloy is used as the anode. Copper is dissolved from the tips of the 

jigs and the wires used in the jigging process. 

The concentration of Cr(VI) in the plating tank (Tank 14) is determined by Chemserve 

chemical suppliers every week. On 4/06/03 the concentration was reported to be 288 g/L. The 

same analysis result was reported on 11/06/03. Then 10 kg of C1O3 was added on 12/09/03. 

The analyses reported on 19/06/03 were a concentration of 303 g/L and 291 g/L on 23/06/03. 

The analyses results of the drag-out (Tank 15) were 6.95 g/L on 9/06/03 and 13.5 g/L on 

20/06/03. About 25 L of fresh water is added every day to the drag-out tanks when the same 

amount of drag-out is used to top up the plating tank. It would be expected that the 

concentration of Cr would be higher in the drag-out solution just before top-up and lower in 

this solution just after top-up. The concentration measured on 20/06/03 may be assumed to be 

that prior to the addition of drag-out to the process solution and of water to replace drag-out. 

The concentration calculated for the drag-out after top-up was 10.9 g/L. This is higher than the 

value (6.95 g/L) obtained on 9/06/03. However this figure approaches the measured value of 

13.5 g/L which is reasonable considering the variations in production rate and product range 

processed in a job shop. 
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The analyses results of UV-visible spectroscopy show highest concentration (6.95 and 

13.5 g/L) of Cr(VI) concentrations in the drag-out tank (Tank 15) on both sampling days. The 

same trend is observed for the total chromium (8.3 and 21.3 g/L). The concentration decreased 

from Tank 15 to Tank 17. This is likely to be due to dilution of the dragged chemicals by each 

tank solution. The increase in concentration from Tank 18 to Tank 19 is mainly from the drag-

in of chemicals from the brass passivation solution Tank III (see Figure 3.2 in Chapter 3) 

which contains sodium dichromate. 

The concentration of Cr(III) in the samples (Tanks 15 to 19) could be calculated by subtracting 

the concentration of Cr(VI) obtained by UV-visible spectrophotometry (see Section 6.3.1 in 

Chapter 6) from the total chromium {Cr(VI) and Cr(III)} ICP-OES results. Highest 

concentrations were recorded in Tank 15 in the two days analyses results. The concentration 

was 1.35 mg/L on 9/06/03 and 7.5 mg/L on 20/06/03. These concentrations are not greater than 

the recommended Cr(III) concentration levels in chromium plating baths. In Tanks 16, 17, 18 

and 19 low concentrations were recorded due to a decrease in the concentration of total 

chromium in each tank. 

When the samples of Tank 16 were analysed, high concentrations of sodium and chromium 

were observed. Comparing the Cr(VI) and total Cr concentrations shows that the Cr(VI)-Cr 

ratio in Tank 15 (0.8) is higher than that in Tank 16 (3.3x10*4). This is consistent with the 

continuous formation of Cr(III) from Cr(VI) in Tank 16. The obvious reason for this is the 

presence of sodium metabisulfite and sodium carbonate in Tank 16. However for True Cost of 

Waste Analysis the total Cr concentration is taken to be the same as Cr(VI) which undergoes 

reduction when it is dragged into this tank. The concentration of sodium was greater in Tank 

16 than in Tank 15 because of the presence of sodium containing reducing and neutralising 

agents, sodium metabisulfite and sodium carbonate respectively. The concentration of the other 

metals was understandably less than that in Tank 15. This is because of the washing off of the 

chemicals in Tank 15 and the further dilution of the dragged-in chemicals by the solution of 

Tank 16. 
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The analyses results show that the concentration of the metals in Tank 16 solution on 9/06/03 

was less than that on 20/06/03. This is because the solution on 9/06/03 was freshly prepared 

and the concentration of the metals in Tank 15 was less hence build up of the metal ions by 

dragged-in was lower compared to that on 20/06/03. However, since 20 kg of sodium 

metabisulfite was used on 9/06/03 and 14 kg on 19/06/03 to prepare the tank solution, the 

concentration of sodium in the analysis result was increased by 15% during the first day of 

sampling. 

The concentration of each metal in Tank 18 was less than in Tank 17 of the two days of 

sampling and it was below 1 mg/L for most of the metals. The metals that showed high 

concentration levels in both tanks were chromium and sodium. The concentration of chromium 

is below the range of the effluent discharged by most electroplating industries which is 

15-70 mg/L.167 The concentration of sodium and chromium is mainly from the drag-out of the 

preceding tank solutions. 

The concentration of Cr(VI) in both tank solutions was less than the total chromium 

determined. The concentration of Cr(VI) was below 1 g/L in all cases and was 0.1% (Tank 17 

on 9/06/03) and 43% (Tank 18 on 9/06/03) of the total chromium. It was expected that the 

concentration of Cr(VI) in Tank 18 would be less than that found in Tank 17. The analyses 

results for both days showed that the concentration in Tank 18 was greater than that in Tank 

17. Tanks 18 and 19 are found at the end of the MDCPL. Their position is close to the brass 

and copper lines. This enables these tanks to be used for other purposes such as the rinsing of 

brass plated workpieces after their passivation. In addition to this there is a chromium stripping 

tank at the far end of the plating line. Therefore after passivation or stripping off the chromium 

plating, the operators tend to dip the workpieces in these rinse tanks before they plate them 

again with chromium. The use of these tank solutions for rinsing workpieces after passivation 

and/or stripping was indicated by the Cr(VI) levels measured in Tank 19 being higher than 

those measured in Tanks 17 and 18. 

The analyses results of Tank 19 show generally a higher concentration of metals than in 

Tank 18. This is because the tank is hot and static hence there is a buildup of the contents of 
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the drag-out solution from Tank 18. Analyses results for Tank 19 show that the concentration 

of nickel, chromium, sodium and zinc increased by a factor of 29, 58.5, 4.4, 15.2 respectively 

between each sampling day. Tank 19 is changed (dumped) every two days. Buildup of these 

metals in this tank can increase the concentration of the metals in the tank. The increase in 

concentration of chromium was highest of all metals. During sampling the colour of Tank 19 

solution was yellow. This could be due to drag-in of chemicals mainly the brass passivating 

solution by brass plated workpieces. The decrease in concentration of copper is due to its low 

concentration in Tank 18. Thus the dragged-in copper will be low. 

Comparison of the total dissolved solids recorded in the chromium rinse solutions show values 

above Cushnie's acceptable range of values on both dates of sampling periods. The normal 

range for adequate rinsing after bright plating is given as 5 to 40 mg/L.128 

7.2.6 THE COMPOSITION OF THE MDCPL RINSE SYSTEMS 

The observed drop in the concentration levels for all the metals when comparing Tank 2 results 

with those of Tank 5, is paralleled by a fall in conductivity and TDS values on both sampling 

days. The fall in conductivity and TDS on going from Tank 5 to Tank 7 appears to arise from 

the drop in the sodium concentration in Tank 7 compared to Tank 5. The other metals are 

present in these tanks at much lower concentrations. For example, the metal with the next 

highest concentration after sodium on the 9/06/03 is nickel (concentration is about 60 times 

lower) and on 20/06/03 is zinc (concentration is one tenth that of sodium). The differences 

observed in their concentrations were small and so would be expected to have little effect on 

conductivity. The successive lowering of conductivity and TDS in going from Tanks 7 to 8, 

from Tanks 10 to 11 to 12 to 13 (nickel plating rinse system) and from Tanks 15 to 16 to 17 to 

18 (chromium rinse system) and the increase in conductivity and TDS in going from Tanks 8 

to 10 and from Tanks 13 to 15 is also consistent with the changing metal concentration trends. 

In only six cases over both sampling dates has the conductivity exceeded the effluent discharge 

limit value. The conductivity contaminant limit is quoted in the literature as being 

200 uS/cm.164 The final and cleanest rinse solutions in Tanks 8, 13 and 18 have the lowest 

conductivity values but these slightly exceed the contaminant limit. However the TDS 

contaminant limits have not been exceeded by these solutions. The TDS (mg/L) can be 
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calculated by multiplying the conductivity (uS/cm) by a factor between 0.55 and O.9.75 For the 

least contaminated rinse solutions in Tanks 8, 13 and 18 this factor was found to be about 0.6 

in each case. This suggests that the quoted value (200 uS/cm) for the contaminant limit value 

of conductivity required for good rinse water quality may not have been set quite correctly.164 

However conductivity relates closely to the sodium and zinc levels in the acid and alkaline 

cleaner rinses (Tank 2), sodium levels in the electrolytic alkaline cleaners rinse (Tank 5), 

nickel levels in the nickel drag-out and chromium levels in the chromium drag-out. 

The cleanest rinse tank in the MDCPL is Tank 13. Except for Ni, which has an average 

concentration of 6.4 mg/L, the average concentration of the other metal ions (Fe, Cr, Zn, Cu 

and Pb) in this tank, sent to the central effluent treatment plant, were below both the 

contaminant limit and the effluent discharge limit values given in Table 7.9. The highest 

average concentrations recorded in this tank were for chromium and zinc (0.48 and 0.061 mg/L 

respectively). The roughly estimated concentration of SO^- and CI" levels in Tank 13 (see 

page 129 in Chapter 7) showed that the concentration of these species was below both the 

effluent discharge limit and the contaminant limit value on both sampling dates. Similarly the 

pH was within the recommended range while the TDS value was much lower than the effluent 

discharge limit and the contaminant limit values (see Table 6.6). As mentioned previously the 

conductivity was less than the effluent discharge limit value but greater than the contaminant 

limit value. 

7 J CHEMICALS USED AND WASTED 

Many waste minimisation analyses techniques such as Scoping Audits, Mass Balancing and 

True Cost of Waste determinations can be used to quantify waste streams and to identify and 

prioritise them, with varying degrees of accuracy, as waste minimisation opportunities. This 

prioritising of potential waste problems for waste minimisation solutions (options or measures) 

is most frequently based on the expense they incur to the company. The cost of waste includes 

for example unused raw materials, the treatment and disposal costs of the waste and the 

utilities used in making the waste. The workpiece is a raw material. In a job shop it may not be 

viewed as a direct cost to the electroplating company. This study considers the chemical and 

other material waste but excludes energy beyond the Scoping Audit analysis. 
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In a Scoping Audit (see Section 7.3.1) the source and sink for the waste does not have to be 

established as long as the levels of inputs to and/or outputs leaving the process are known. This 

means little is known about what actually happens to the wasted raw materials during 

processing i.e. how much of a particular raw material becomes what kind of waste and where it 

accumulates in or leaves the process. New data from the chemical monitoring of the rinse 

water allow some materials lost in the wastewater to be measured directly (see Equations 7.5 

and 7.6). The movement of this waste in the rinse water waste streams can therefore be tracked, 

quantified and costed as wasted raw materials in the waste stream. The waste present in the 

wastewater leaving the line contains unused plating chemicals and substrate. The real cost of 

wastewater takes into account the cost of the loss of these chemicals. The concentrations of the 

elements nickel and chromium in the wastewater have been used to determine raw material 

wastage. The mass of the constituent elements in the wastewater, which originate from the raw 

materials, can be calculated from the volume of exiting rinse water and the constituents' 

measured concentrations (see Equation 7.5). 

Mass in the wastewater = Measured concentration x Volume of rinse water Equation 7.5 

This can be expressed as a mass of that raw material if the composition of the raw material is 
known. 

, . . . Mass of the constituent elements in the wastewater .__ 
Mass of rawmaterial lost = xlOO Equation 7.6 

% composition 

Existing data have been used to estimate the total wastage indirectly (see Section 7.3.2). 

Material balance calculations based on raw material usage have been carried out to estimate the 

nickel and chromium losses in the plating process. The losses from other process solutions like 

the soak cleaners, electrolytic cleaners and acid cleaners have been calculated based on these 

loss values obtained for chromium. The lack of compositional data on the formulation of the 

cleaners, together with the multi-use of these pretreatment rinses, made this the best available 

means of estimating losses to the wastewater stream. 
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7.3.1 SCOPING AUDIT 

A Scoping Audit was prepared for the MDCPL in the Chrome Shop using the material data 

presented in Table 6.1 and Table 7.12. Chemicals used in the pretreatment stage were classified 

as "cleaning agents" under the heading Resources and Services in the Waste Minimisation Cost 

Assessment Table for the MDCPL (Table 7.12). The three most expensive raw materials were 

entered separately in Table 7.12. Packing is not used by the company and so was not applicable 

in this case. A category entitled "Treatment agents" (Waste and Process Solution) was created 

under the heading of Resources and Services with the intention to propose a Scope to Save 

category (see Conclusion in Chapter 8). It was given a tentative value of 10-40. This value was 

chosen as it was felt that more could be saved here than on the raw materials. This is because 

operators would tend to ensure all hazardous waste was completely treated and therefore would 

add a large excess of the treatment reagents. 

Table 7.12 Annual usage and costs of input materials 
Input/raw materials 
Chemalene 
Oxyprep 220EC 
NaOH 
HC1 
H2S04 

Ni chips 
Nickelux 100 plus 
Brightener 
Wetting agent 
Addition agent SA1 

H3BO3 

Filter aid 
Filter cartridge 
Filter felt 120 
Activated carbon 
Cr03 

Lumina 34 make-up 
1 um in a 24 

Fumetrol 140 
Na2S205 

Na2C03 

BaC03 

Lead anode 
Copper wire 20GZ 

Average annual consumption 
659 kg 
106 kg 
940 kg 
2788 kg 
3896 kg 
4129 kg 
1169L 
74.0 kg 
21.0 kg 
145 kg 
96.0 kg 

4.00 pack 
3.00 pack 
4.00 pack 

11.0 kg 
200 kg 
92.0 kg 

0 
12.0 L 
709 kg 
501kg 
9.00 kg 

0 
1713 kg 

% of Total Cost 

1.77 
0.35 
0.79 
1.05 
0.97 

63.98 
13.80 
0.60 
0.06 
1.16 
0.14 
0.01 
0.01 
0.04 
0.06 
0.71 
0.85 

0 
0.69 
0.48 
0.26 
0.01 

0 
12.24 

Consumption/m1 

5.51x10' 
1.10x10-' 
7.87x10-' 

2.89 
3.26 
4.27 
1.21 

7.66x10'2 

2.17xl02 

l.x5010"' 
9.94x10'2 

4.14X10'3 

3-llxlO"3 

4.14xl0-3 

1.14x10* 
3.09x10"' 
1.42x10-' 

0 
185xl0"2 

1.09 
0.773 

1.39x10* 
0 

1.43 
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Estimates for the electricity used had to be made as no line is individually metered: this is 

shown in Table 7.13 as NM, not measured. Allocation of electrical consumption to MDCPL 

was discussed with the manager and a monthly figure of R2880 was considered to be a 

reasonable approximation of the consumption for the MDCPL. This is made up of the 

electroplating cells (nickel and chromium), a stirrer on the hot soak cleaner, heaters (for the 

chromium and nickel plating baths, soak and electrolytic cleaners, and the stripping unit), wall 

fan and lighting. It has proved impossible to quantify and cost the sludge output from the 

MDCPL. This is because the wastewater from all the electroplating lines is being continuously 

fed to the central effluent treatment plant. This means the sludge produced from the effluent 

coming from each electroplating line is not segregated and so cannot be quantified for 

individual lines. Therefore sludge has been excluded from the Scoping Audit. The effluent 

volume is quoted as being 96% of the estimated water used on the MDCPL (see Table 7.13) 

and the cost is made up of the trade effluent cost and the monitoring cost. The fixed charge is 

included in the water cost. 

The annual average cost obtained by estimating the average daily cost for these chemicals 

using the data collected for the MDCPL over 8 months (see Table 6.1 in Chapter 6) and 

multiplying it by the number of working days per year using Equation 7.7. The Scoping Audit 

calculations were carried out using Equations 7.8 and 7.9. 

Cost/year = Cost/day x 234 days/year Equation 7.7 

Scope (min) = Minimum scope to save % x Cost/year Equation 7.8 

Scope (max) = Maximum scope to save % x Cost/year Equation 7.9 

The priority for these resources or waste streams as a waste minimisation opportunity is 

assigned based on either of these two costs. The greater the scope min or scope max value then 

the greater is the potential waste problem and the higher the opportunity for waste 

minimisation. Table 7.13 shows that water and effluent present the company with the most 

considerable waste problem with the nickel chips being the next likely problem. The higher the 

waste minimisation opportunity potential of a resource and service, then the smaller the 

numerical value given to the priority rating in the last column in Table 7.13. The treatment 

agents for solution maintenance have the lowest priority for waste minimisation in the current 
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situation. This means opportunities can be ranked simply in terms of the cost they produce or 

the quantity of the resources they consume. This method fails to consider the hazardous nature 

of the waste, its treatment prior to disposal and the payback period associated with the 

institution of a waste minimisation option. Payback period (see Equation 7.10) is basically the 

time it takes to recoup the money which must be spent in order to put the option into practice 

i.e. capital investment. 

_ , , . . . Cost of capital investment _ 
Payback period/year = Equation 7.10 

Annual services - Annual running costs 

Using the priority rating in Table 7.13 means that only "low cost-no cost" waste minimisation 

options (waste minimisation measures) can be considered as solutions to the waste problems in 

this case. 

Table 7.13 Waste Minimisation Cost Assessment Table for the MDCPL 

Resources and services 

Raw materials: 
Nickel chips 
Nickelux 100 plus 
Copper wire 
Cleaning agents: 
HC1 
H2S04 

Treatment agents: 
Filter felt 120 
Activated carbon 
Electricity 
Water 
Effluent 

Quantity 

2876 kg 
814L 

1193 kg 

1942 kg 
2714 kg 

3 pack 
7.7 kg 
NM 

11498mJ 

NM 

Cost per year 
(R) 

279162 
60138 
53411 

4572 
4247 

196.6 
234 

34560 
55190 
22239 

Scope to save 
(%) 

1-5 
1-5 
1-5 

5-20 
5-20 

10-40 
10-40 
5-20 

20-80 
20-80 

Scope 
(min) 

2792 
601 
25.7 

229 
212 

19.7 
23.4 
1728 

11038 
4448 

Scope 
(max) 

13958 
3007 
128.7 

914 
849 

78.64 
93.6 
6912 

44152 
17791 

Priority 

3 
5 
8 

6 
7 

9 
10 
4 
1 
2 

7.3.2 MASS BALANCE ANALYSIS 

The measured concentration values used in Mass Balancing are averaged over the start and the 

end of a 9 day monitoring period over which detailed output data were collected (see Table 6.4 

in Chapter 6). The concentrations were averaged because the concentration levels were 

assumed to be steady state values. This is indicated by the lack of regular (e.g. weekly) 

dumping of the flowing rinse water because of the accumulation of metals to levels which 

adversely affect plating. A daily rate of raw material usage was obtained using the data in 
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Table 6.2. The consumption after the 9 day monitoring period was based on this figure using 

Equation 7.11. 

Average mass of chemicals 
used in a given time period 

The monitoring results for the nickel and chromium plating lines on the 9/06/03 and 20/06/03 

show that these metals lost to the rinse system from the plating solution largely end up in the 

drag-out solutions. From there they are re-used in the plating solution and dragged-out into the 

flowing rinse system. It was not possible to include chemical treatment of portions of the drag-

out for disposal in this study because it is infrequent and not documented. 

The final (exiting) rinse water from Tank 2, 5 and 11 contains an average of 13, 2.1 and 

48 mg/L Ni respectively which is sent to the effluent treatment plant. Tanks 16 and 19 are 

static. The solution in Tank 16 is dumped every 3 days. The volume of the tank is 0.214 m3 

(see Table 3.1 in Chapter 3). In 9 days the volume of solution discharged is estimated to be 

0.64 m3 and the average concentration to be 41.7 mg/L. Tank 19 has a volume of 0.931 m3. 

The contents are dumped every 2 days. In 9 days the volume of solution discharged will be 

4.12 m3 and the average concentration will be 3.47 mg/L. Tables 7.14 and 7.15 show the nickel 

losses calculated using existing and new (monitoring) data respectively. 

Table 7.14 Estimation of Ni waste using existing data 

From input data 

From output data 

Mass of Ni anodes used/day 
Mass of Ni anodes used/9 days 
Total area plated/9 days 
Density of nickel134 

Thickness of Ni plate147 

Mass of Ni plated/9 days 
Mass of Ni lost = Ni anodes used/9 days - Mass of Ni plate/9 days 
Cost of Ni lost 
. , „ _ , MassofNi lost/9days . . . 
% Ni lost = — xl 00 

MassofNi used/9 days 

17.6 kg 
158 kg 
966 m5 

8.9 g W 
10 urn 
86 kg 
72 kg 
R4869 

45.6 

Average mass of 
chemicals used/day 

X Time period/day Equation 7.11 
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Table 7.15 Estimation of Ni waste using new data 

Average concentration of Ni 
in exiting rinse water (mg/L) 
Volume of exiting rinse water (m3) 
Mass of Ni lost in rinse/9 days (g) 
Cost of Ni lost in rinse/9 days (R) 
Estimated mass of Ni lost in rinse (kg) 
Estimated mass of Ni lost in the second 
Ni line (kg) 
Total cost of Ni lost as drag-out (R) 

Tank 2 

13 

26.4 
343 
23.2 

Tank 5 

2.1 

48 
101 
6.82 

Tank 11 

48 

48 
2.30x10J 

156 

Tank 16 

41.7 

0.64 
26.7 
1.80 

Tank 19 

3.47 

4.12 
12.9 
0.87 

2.8 

3.0 

392 

A comparison of the results of Table 7.14 and 7.15 suggests that very little of the total nickel 

losses (72 kg) can be ascribed to the drag-out (about 6 kg) over the 9 day period. If the plating 

thickness were at the lower end of acceptability, 8 urn, the nickel losses would still be high 

(69 kg). The calculated surface area plated is a very rough estimate which could conceivably 

be an over-estimate. However, even at half of the value quoted in Table 7.14 the losses would 

be 43 kg. Anode purity, the mass of the anode stubs and of the suspended nickel removed 

during filtration or capture in anode bags, over-plating, stripping of nickel with chromium in 

the chromium stripping bath (Tank 20), dissolving of nickel in the acid dipping tank (Tank H) 

and dripping of the dragged plating solution onto the floor due to insufficient drain time of the 

solution from the workpieces when transferred to the drag-out tank and to the flowing rinse 

system (see Figure 3.2 in Chapter 3) represent some other possible losses not quantified by this 

study. These results also show that the wetting agent and/or work practices are helping to 

reduce drag-out from the nickel plating solution. It could be argued that the results obtained on 

the trial dates (31/03/03 and 11/04/03) are more typical for the system. This means drag-out 

losses would be higher than those determined here. However job shop operations have an 

irregular throughput of workpieces which are reliant on the clients' orders and it is felt that the 

monitored situation reflects such fluctuations in production rate. 

The main form of Cr(VI) purchased for use in the plating solution is simple C1O3 (see Table 

6.2). Lumina 34 is used infrequently in the chromium plating solution as a source of Cr(VI). 

The 8 month consumption rate (see Table 6.2) is therefore taken as being the same as that for 

the full year for Lumina 34. This means an average of 0.27 kg of Lumina 34 is used per day 

and 2.5 kg over 9 days. Lumina 34 contains C1O3 and organic acids. The percentage 
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composition of C1O3 in Lumina 34 is assumed to be 100% from the information given in the 

MSDS. It will in fact be slightly less than this due to the presence of the catalyst(s). This means 

there are an estimated 1.3 kg of Cr(VI) present in the plating solution originating from 

Lumina 34. 

The exiting rinse water leaving Tanks 2, 5, 16, 17 and 19 (and going to the effluent treatment 

plant) in the chromium plating line contains an average of 2.35, 0.87, 1574, 24.3, and 

38.7 mg/L Cr respectively. Tables 7.16 and 7.17 show the figures for the mass of Cr lost to the 

effluent streams based on existing and new data respectively. 

Table 7.16 Estimation of Cr waste using existing data 

From input data 

From output data 

Mass of Cr03 used/day 
Mass of C1O3 used/9 days 
Mass of Cr used/9 days 
Total area plated/9 days 
Density of Cr134 

Thickness of Cr plate147 

Mass of Cr plated/9 days 
Mass of Cr lost = mass of Cr used/9 days - mass of Cr plated/9 days 
Cost of Cr lost 

. , „ , MassofCr lost/9days . _ . 
% Cr lost = — x 100 

Mass of Cr used/9 days 

0.85 kg 
10.2 kg 
5.3 kg 
648m' 

7.2 g W 
0.4 urn 
1.9 kg 

3.4 
R90 

64 

Table 7.17 Estimation of Cr waste using new data 

Concentration of Cr in exiting 
rinse water (mg/L) 
Volume of exiting rinse water (m5) 
Mass of Cr lost in rinse water/9 days (g) 
Cost of CrC»3 lost in rinse/9 days 
Total mass of Cr lost in rinse (kg) 
Total cost of Cr lost as drag-out (R) 

Tank 2 

2.35 

26.4 
62.0 
0.96 

Tank 5 

0.87 

48 
41.8 
0.65 

Tank 16 

1574 

0.64 
1007 
0.016 

Tank 17 

24.3 

38.4 
933 
14.5 

Tank 19 

38.7 

4.12 
159 
2.47 

2.2 
34.2 

The results from Tables 7.16 and 7.17 indicate that drag-out (2.2 kg) is responsible for about 

two third of the Cr losses (3.4 kg). This implies that the release of Cr(VI)-containing acid mist 

during plating is likely to be significant and the foam blanket (Fumetrol 140) is not stopping all 

Cr(VI) emissions to the atmosphere. Drag-out control appears to need some improvement. A 

hoist is used to lift workpieces in and out of the chromium plating solution and hold them 
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above this solution to allow for good drainage. However perhaps insufficient drain time is 

allowed and so little of this viscous plating solution is actually returned to the tank. Further, 

when the line is busy the drain time is likely to become further compromised. 

The average Cr losses are around 36 times less than the average Ni losses. This is consistent 

with much less Cr being used than Ni over the 9 day period. 

7.3.3 TRUE COST OF WASTE ANALYSIS 

The True Cost of Waste was determined for the raw material wastage and on-site treatment for 

disposal and for maintenance of process solutions. It was mentioned earlier (Section 7.3.1) that 

it was not possible to establish the off-site waste treatment and disposal cost associated with 

MDCPL. For nickel plating there is an additional cost of filtering the plating solution while for 

chromium plating there is an additional cost for the barium carbonate treatment of the plating 

solution and the chemical reduction of the waste Cr(VI) in Tank 16. Existing data are used to 

estimate the maintenance costs for the nickel bath (see Table 7.18) and for the chromium 

plating solution (see Table 7.19) and the chemical reduction cost for the Cr(VI) (see Table 

7.19). The maintenance costs of the nickel plating solution are considered to arise from the 

materials consumed in purifying the solution by continuous filtration. The results in Table 7.18 

can be compared to those entered in Table 7.21 which summarises the calculated True Cost of 

Waste based on significant aspects of raw material usage and wastage. 

Table 7.18 Estimation of maintenance materials used in Ni plating and their costs using existing data 
Maintenance material 
Filter aid (pack) 
Filter felt 120 (pack) 
Filter cartridge 
Activated carbon (kg) 

Quantity used per day 
0.019 
0.018 
0.012 
0.047 

Quantity used per year 
4 
4 
3 
11 

Annual cost per year (R) 

Cost (R) per year 
32 
182 
25 
253 
492 
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Table 7.19 Estimation of maintenance and reactive rinse chemicals 
used in Cr plating and their costs using existing data 

Maintenance material 
Na2S205(kg) 
Na2C03 (kg) 
BaC03(kg) 

Quantity used per day 
3.03 
2.14 
0.04 

Quantity used per year 
709 
501 
9 

Annual cost per year (R) 

Cost (R) per year 
2084 
1132 
23 

3239 

The amount of soak cleaner, electrolytic cleaner and acid cleaner ending up in the wastewater 

and lost to the sewer as drag-out is derived per year using the loss values obtained for 

chromium. The nickel plate production is split between two lines each with their own drag-out. 

However they share the same flowing rinse systems. The drag-out losses from these pre-

treatment solutions, which handle all production, is therefore based on chromium percentage 

value (64%, see Table 7.16 and Tables 7.17). These values were adjusted higher or lower for 

the process solutions according to the operating conditions i.e. temperature and concentration, 

(see Table 7.20). 

Table 7.20 Estimation of annual drag-out loss using existing data 

Average annual quantity (kg) 
% loss through drag-out 
Average annual drag-out loss (kg) 

Soak 
cleaners 

659 
60 
395 

Electrolytic 
cleaners 

106 
50 
53 

HCl 
de-rust 

340 
25 
85 

HCl 
dip 
670 
10 
67 

H2S04 

dip 
3896 
25 
974 

The maintenance and treatment costs for chromium and nickel plating have been included in 

the True Cost of Waste for the effluent stream in Table 7.21. This is because they act to reduce 

contamination of the rinse solutions. Therefore without these measures in place the 

concentration of and perhaps the number of species in the drag-out would be greater. 

The priority rating of the waste stream as a potential waste minimisation opportunity is 

assigned in the same way as for the Scoping Audit. This analysis shows the rinse water 

presents the most significant waste minimisation opportunity. It has about 11 times more 

potential financial savings {see Table 7.21 column three entitled Total cost (R)} than the 

second highest waste minimisation opportunity (soak cleaner). 
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Table 7.21 A True Cost of Waste summary: quantity and cost breakdown 

Waste stream 

Rinse wastewater 
(effluent) 

Spent 
process 
solutions 

Soak cleaner 

Electrolytic 
cleaner 

Acid dip 

Acid dip 

Waste components 

Chemicals 
Soak cleaner 
Electrolytic cleaner 
HC1 (de-rust &dip) 
H2SO4 cleaner 
Cr03 

BaC03 

Na2S205 

Na2C03 

Ni 
MM Ni plating 
Cu 
Water 
Soak cleaner 
Water solvent 
Electrolytic cleaner 
Water solvent 
HC1 
Water solvent 
H2SO4 
Water solvent 

Quantity 
395 kg 
53 kg 
152 kg 
974 kg 
55 kg 
9 kg 

709 kg 
501 kg 
151kg 

Table 7.18 
29.4 kg 

11668mj 

659 kg 
17.5 mJ 

106 kg 
11.66mJ 

2788 kg 
5.13 nr* 
3896 kg 
2.64 mS 

Cost(R) 
4622 
760 
249 
1062 
854 
23 

2084 
1142 

10212 
492 
916 

56006 
7710 

84 
1530 
56 

4572 
25 

4247 
13 

Total 
cost(R) 

85051 

7794 

1586 

4597 

4260 

Priority 

1 

2 

5 

3 

4 

MM Ni plating = Maintenance materials for the Ni plating solution (see Table 7.18) 

7.3.4 THE WATER ECONOMY DIAGRAM 

The Water Economy Diagram, like the Scoping Audit, is an empirical model specifically 

designed for analysing water consumption in electroplating plants. It was developed in the 

United Kingdom based on information supplied by companies in the metal finishing sectors. It 

allows water usage to be classified into one of four categories using a type of monitoring and 

targeting matrix. If the water consumption rate falls into either of the two unacceptable 

categories (Worst and Worse than average) then there is the potential to reduce water usage 

below the current value. 

The Water Economy Diagram shown in Figure 7.1 determines how efficiently water is used in 

terms of output. Output is expressed as the surface area treated per year. The average annual 

surface area treated is 31044 m2 (see Table 6.4). The estimated annual water consumption is 

11498m3 (see Table 6.3). When these are plotted in the water economy diagram, the 

performance point falls in the "worse than average" sector. 
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CHAPTER 8 

CONCLUSION AND RECOMMENDATIONS 

8.1 CONCLUSION 

The waste minimisation analyses results show that more nickel is lost from the process solution 

as drag-out than for chromium plating. Therefore nickel is lost from the process by means 

other than through the flowing rinse system. The opposite appears to be true in the case of the 

chromium losses. Chromium levels measured in the wastewater make up about one third of the 

waste in terms of mg/L. From a comparison of the concentration levels measured on 9/06/03 

with those measured on 31/03/03, 11/04/03 and 20/06/03 it could be argued that the results 

from the 9/06/03 are lower than the norm. However fluctuations in incoming workloads and 

therefore in the rate at which workpieces go down the line are expected in a job shop. This will 

be reflected in the metal content of the solutions and should be considered as an authentic 

representation of the situation rather than an artifact. It should also be remembered that a 

number of assumptions have been made when carrying calculations in this study. Some 

calculations have used some gross estimates for parameters such as surface area and drag-out 

losses for pre-treatment solutions. Conversions between daily, 9 days, 163 days (March to 

October) and 234 days (annual number of working days) have been widely used in 

calculations. However errors of up to 20 % are not unusual in this type of analysis.169 

The contaminant levels in the exiting rinse water represent a waste minimisation opportunity. 

This is indicated by the results from the Scoping Audit, the Mass Balancing, the True Cost of 

Waste Analysis and the Water Economy Diagram. 

The chemical consumption data show that the greatest potential financial savings can be made 

by reducing the nickel losses. The annual total nickel losses have been estimated to be 1872 kg. 

This represents a potential financial saving of R126603. By reducing annual nickel drag-out 

from 151 kg to zero would achieve a potential financial saving of R10212. 

The Mass Balance and True Cost of Waste analysis were performed for nickel because it was 

highlighted as a priority area in the Scoping Audit. It was given the third highest value for 
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scope to save. However the Mass Balance showed that nickel wasted is not ending up in the 

effluent. This means that reducing drag-out is perhaps not the most significant waste 

minimisation measure in this case. However preventing spillage on the floor and minimising 

processing time in the chromium stripping and acid dipping solutions should be looked at. 

Further it should be ensured that when workpieces are being removed from the nickel plating 

they must be carried to the drag-out tank over the solution and not over the floor. 

The Mass Balancing on chromium shows the loss of two thirds of the chromium to the effluent. 

The increase in chromium levels in Tank 19 compared to Tank 18 are likely to be the result of 

the rinsing of workpieces which have been removed from the brass passivation solution (Tank 

III). This confirms that not all the lost chromium from the chromium plating solution is lost as 

drag-out and some losses to the atmosphere may occur. Drag-out losses can be minimised by 

allowing sufficient draining time before transferring workpieces and by using a drain board 

between the plating and the drag-out tanks. The loss of chromic acid mist to the atmosphere 

can be reduced by using sufficient and effective fume suppressants in the chromium plating 

bath and/or by using local exhaust ventilation along the rim of the tank. 

Water is used in the electroplating plant for various purposes, the largest volume used being in 

the flowing rinses and contributing to the effluent waste stream. Minimising the volume of 

rinse water in a plating line reduces the amount of wastewater discharged to the treatment plant 

and the cost spent in treating it. In the Scoping Audit (see Tables 7.10) and in the True Cost of 

Waste Analysis (see Table7.18) water appears first in the waste minimisation opportunity 

priority listing. In the True Cost of Waste Analysis (see Table 7.18) nickel lost by drag-out 

appears second to water in the effluent stream. The "Water Economy Diagram"168 showed that 

the use of water in the plating line was "worse than average". Therefore, water and hence 

effluent, may be considered the most important waste minimisation opportunity in the Chrome 

Shop from which financial savings can be achieved for the plant. 

Water offers the greatest potential financial savings. This is in spite of the fact that 

countercurrent flowing rinses are operated. However there are no audio or visual alarms on the 

process solution tanks to indicate when a surface treatment is complete. This together with the 
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line being manually operated may have led to difficulties in achieving process control. 

Reducing rinse water consumption by switching off the water supply during idle periods has 

been estimated to save 950 m3 of water (R4560). By bringing the flow rate down for nickel and 

chromium plating rinses, in order to achieve a water usage consistent with the literature values 

for the dilution factors, would save approximately 4156m3 (R19949). 

8.2 RECOMMENDATIONS 

From the findings of this waste minimisation study, the following waste minimisation 

measures (focusing mainly on water consumption) of this line are suggested for consideration 

by Saayman Danks Electroplating for the MDCPL. 

• Using water only when necessary. The mains water valve of the Chrome Shop 

should be closed especially during tea time, lunch time and the time between the 

two shift changes either manually or by installing activity based control devices. By 

doing this more than 950 m of water at a cost of R4560 can be saved for the plant 

in a year. 

• Reducing the volume of rinse water cautiously in order to approach the literature 

dilution factors by installing either water flow restrictors or conductivity meters. 

Based on the estimated water savings for only two of the rinse systems a minimum 

of 4156m3 (Rl 9949) may be achieved. 

• Less use of copper wiring and more use of jigs with suitable hooks for jigging of 

workpieces. 

• Installing drain board between tanks. The layout of the MDCPL prevents the use of 

drain boards between tanks which are separated by aisles. 

• Increasing the drain time of the solutions by installing drain bars above the process 

solutions and rinse solutions to hang jigs on. This is especially important before jigs 

are moved across an aisle when taken from one tank to another. 

• Investigating the nickel lost in chromium stripping and acid dipping solutions in 

order to quantify its contribution to the wastage of nickel. 

• Redesigning the structure of the rinse tanks in order to force water entering at the 

top of a rinse tank to leave from the bottom of the opposite side (and not the top) of 

that tank or vice versa. 



REFERENCES 



152 

REFERENCES 

1. Department of Labour Te Tari Mahi, Guidelines for the Safe Use of Chemicals in 

Electroplating and Related Industries, New Zealand, 1996. 

2. C. Morris (editor), Academic Press Dictionary of Science and Technology, Academic 

Press, San Diego, 1992. 

3. F.A. Lowenheim, Modern Electroplating, 3rd edn, John Wiley and Sons, New York, 

1974. 

4. D.R. Gobe, Principles of Metal Surface Treatment and Protection, 2nd edn, Pergamon 

Press, Oxford, 1978. 

5. Electroplating, http://www.epa.gov/ttnchiel/ap42/chl2/final/cl2s20pdf/ Accessed on 20 

December 2003. 

6. M. Weiner, People in Finishing: Coating's Critics, J. Metal Finishing, 1995, (7), 59. 

7. M. Schlesinger and M. Paunovic, Modern Electroplating, 4th edn, John Wiley and Sons, 

New York, 2000. 

8. Surface Finishing Basics, http:// www.AESF.org/finishingbasics.html Accessed on 16 

July 2003. 

9. H.A. Snow (editor), Metal Finishing for Decoration and Protection, J. Metal Industries, 

1979, (6), 25. 

10. D. White, Electroplating, J. Metal Industries, January/February 1976, 8-10. 

11. M. Sittig, Electroplating and Related Metal Finishing: Pollutant and Toxic Materials 

Control, Noyes Data Corporation, Park Ridge, 1978. 

12. United States Environmental Protection Agency, Guides to Pollution Prevention: The 

Metal Finishing Industry, United States Environmental Protection Agency, Office of 

Research and Development, EPA/625/R-92/011, Washington D.C., October 1992. 

13. American Electroplaters Society, Finishing Cycles and Types of Parts Plated, J. Plating 

and Surface Finishing, 2002, (2), 10-54. 

14. The Canning Handbook: Surface Finishing Technology, 23rd edn, W. Canning, 

Birmingham, 1982. 

15. Ulmann's Encyclopedia of Industrial Chemistry, 6th edn, Wiley- VCH, 2001, Electronic 

Release. 

http://www.epa.gov/ttnchiel/ap42/chl2/final/cl2s20pdf/
http://
http://www.AESF.org/finishingbasics.html


153 

16. J.W. Funke and P. Coombs, Water and Effluent Management in the Electroplating and 

Anodizing Industry, Technical Guide K29, National Institute for Water Research, 

Council for Scientific and Industrial Research, Pretoria, 1973. 

17. P. Gallerani and D. Drake, Wastewater Management for the Metal Finishing Industry in 

the 21st Century, J. Plating and Surface Finishing, 1993, (10), 28-35. 

18. F. Dahl, Cleaner Technology in the Metal Finishing Industry. Review of Methods, 

Principles and Strategy, Danish Environmental Centre, February 1997. 

19. J.B. Mohler, Equilibrium and Nonequilibrium Rinsing, J. Plating and Surface Finishing, 

1979, (10), 42-44. 

20. C.A. Grubbs, In Search of-A Quality Finish, J. Metal Finishing, 1994,92(12), 33-37. 

21. PRC Environmental Management, Hazardous Waste Reduction in the Metal Finishing 

Industry, Noyes Data Corporation, Park ridge, 1989. 

22. D.B. Freeman, Phosphating and Metal Pretreatment: A Guide to Modern Processes and 

Practice, Industrial Press, New York, 1986. 

23. American Society for Testing and Materials, Surface Treating and Coating Division 

Council, Metal Handbook: Surface Cleaning, Finishing and Coating, 5, 9th edn, 

American Society for Metals, Metals Park, 1982. 

24. P.A. Scalera and L.R. Carlson, Applying an Environmental Awareness to Quality 

Cleaning Techniques and Practices, J. Plating and Surface Finishing, 2001, (3), 60. 

25. Waste Reduction Institute for Training and Application Research (WRITAR), Profile of 

the Metal Finishing Industry, Document Prepared for the Cleveland Advanced 

Manufacturing Program (CAMP) under contract to the Energy Environment and 

Manufacturing Project of the Technology Reinvestment Programme (EEM-TRP), 

Minneapolis, April 1995. 

26. J.A. Quitmeyer, The Evaluation of Aqueous Cleaners Technology, J. Metal Finishing, 

1995,93(9), 34-39. 

27. United States Environmental Protection Agency, Merit Partnership Pollution Prevention 

Project for Metal Finishers, December 1997. 

28. E.H. Tulinski, Selecting an Aqueous Cleaning System, J. Metal Finishing: 2002, (3), 46-

52. 



154 

29. J.A. Murphy, Surface Preparation and Finishes for Metals, McGraw-Hill, New York, 

1971. 

30. J.A. Mertens, Stabilising Chlorinated Solvents Under Conditions of Extreme Use, 

J. Metal Finishing, 1998, 96(12), 30-34. 

31. E. Groshart, Reducing the Use of Organic Solvents in Cleaning, J. Metal Finishing, 

1998, 96(2), 78-80. 

32. G. Sanko, Alkaline Cleaning Guide, http:// www.pfonline.com Accessed on 20 

November 2003. 

33. R.W. Bird, Aqueous Alkaline Cleaners A Better Alternative, J. Metal Finishing, 1995, 

93(3), 10-14. 

34. C.W. Ammen, The Electroplater's Handbook, Tab Books, Blue Ridges Summit, 1986. 

35. S.E. Manaham, Environmental Chemistry, 7th edn, Lewis Publishers, Boca Raton, 2000. 

36. T. Hargreaves, Surfactants: The Ubiquitous Amphiphiles, Chemistry in Britain, 2003, 

39(1),38-41. 

37. E.A. Ollard, and E.B. Smith, Handbook of Industrial Electroplating, 3rd edn, American 

Elsevier Publishing Company, New York, 1964. 

38. M. Borruso, What Are the Pros and Cons of Trivalent Chromium Plating, J. Plating and 

Surface Finishing, 1992, 79(7), 34-35. 

39. A.W. Gorbin, American Society for Testing and Materials, Standard Test Method 

Standardization News: Hydrogen Embrittlement Problems with Plated Fasteners and 

Other Hardware Items, 1990, (3), 30-33. 

40. A.T. Kuhn, Industrial Electrochemical Processes, Elsevier Publishing Company, 

Amsterdam, 1971. 

41. H.S. Kuo and J.K. Wu, Passivation Treatment for Inhibition of Hydrogen Absorption in 

Chromium-plated Steel, J. Materials Science, 1996, (31), 6095-6098. 

42. McGraw-Hill Encyclopedia of Science and Technology, 6, 9th edn, McGraw-Hill, New 

York, 2002. 

43. CD. Varghese, Electroplating and Other Surface Treatments: A Practical Guide, Tata 

McGraw-Hill Publishing Company, New Delhi, 1993. 

44. A.K. Graham, Electroplating Engineering Handbook, 3rd edn, Van Nostrand Reinhold 

Company, New York, 1971. 

http://
http://www.pfonline.com


155 

45. Acid Pickle, http://www.iams.org/iamsorg/p2iris/metalfinish Accessed on 1 January 

2003. 

46. S.F. Rudy, Surface Preparation-Meeting and Exceeding Today's Requirements, J. 

Plating and Surface Finishing, 2001, (3), 10-13. 

47. Environmental Technology Best Practice Programme, Acid Use in the Metal Finishing 

Industry, EG44 Guide, Crown Copyright, United Kingdom, 1996. 

48. A. Dickman, Polishing and Buffing: Theory and Practice, J. Metal Finishing, 1995, (12), 

34-36. 

49. E.A. Duligal, Surface Preparation for Corrosion Protection of Structural Steel, J. Metal 

Fabrication, Finishing and Protection, July-August 1971,2 (4), 5. 

50. J.D. Bloomgren, Aqueous Design Considerations for Decorative Vacuum Coating, 

J. Metal Finishing, 1996,94 (8), 34-39. 

51. J. Hancock, Enhancing Your Cleaning Process with Ultrasonics, 

http://www.pfonline.com/articles/030205.html Accessed on 13 April 2004. 

52. J. Hilgert, Specifying an Ultrasonic Cleaning System, J. Metal Finishing, 1997, 95 (4), 

54-56. 

53. R. Walker, Ultrasound and Electroplating, Chemistry in Britain, 1990, (3), 251 -254. 

54. B. Sutton, Ultrasonic Cleaning Comes of Age, 

http://www.pfonline.eom/articles/l 103qfl.html Accessed on 13 February 2004. 

55. I.N. Levine, Physical Chemistry, 4th edn, McGraw-Hill, New York, 1995. 

56. L.S. Newman and J.H. Newman, Electroplating and Electroforming for Artists and 

Craftsmen, Crown Publishers, New York, 1979. 

57. G. Wilcox, Getting the Treatment, Chemistry and Industry, 2001, (9), 567-569. 

58. N.V. Parthasarady, Practical Electroplating Handbook, Prentice-Hall, New Jersey, 1989. 

59. P. Cambria, and D.S. Burlington, Plating Rectifiers, http://www.pfonline.com Accessed 

on 5 February 2003. 

60. F.R. Zemo, An Introduction to Barrel Plating, 

http://www.finishing.com/Library/zemo/barrel.html Accessed on 1 March 2003. 

61. G.E. Shahin, Barrel Chromium Plating from a Trivalent Chromium Electrolyte, J. 

Plating and Surface Finishing, 1992,79(8), 18-21. 

http://www.iams.org/iamsorg/p2iris/metalfinish
http://www.pfonline.com/articles/030205.html
http://www.pfonline.eom/articles/l
http://www.pfonline.com
http://www.finishing.com/Library/zemo/barrel.html


156 

62. Barrel Plating, http://www.iams.org/p2iris/metalfinish/1240-t.html Accessed on 20 

January 2003. 

63. J.K. Dennis and T.E. Such, Nickel and Chromium Plating, Butterworths, London, 1980. 

64. American Electroplaters' Society, Decorative Chromium Plating, Winter Park, Fla., 

1980. 

65. D.A. Swalheim, The Plater's Lament: Tell Me Why, J. Plating and Surface Finishing, 

2003, (6), 8-10. 

66. N.V. Mandich, Practical Considerations in Bright and Hard Chromium Plating-Part IV, 

J. Metal Finishing, 1999, 97(9), 78-87. 

67. N.V. Mandich, Practical Problems in Bright and Hard Chromium Electroplating-Part I, 

J. Metal Finishing, 1999, 97(6), 100-108. 

68. S. Glasstone, The Fundamentals of Electrochemistry and Electrodeposition, Franklin 

Publishing Company, New Jersey, 1960. 

69. D. Pletcher and F.C. Walsh, Industrial Electrochemistry, 2nd edn, Blackie Academic and 

Professional, London, 1990. 

70. Binnie and Partners, Water and Wastewater Management in the Metal Finishing 

Industry, Natsurv 2, Water Research Commission, Pretoria, 1987. 

71. N. Zaki, Chromium Plating, http://www.pfonline.com/articles/pdf0016.html Accessed on 

20 January 2003. 

72. J.H. Lindsay, Decorative and Hard Chromium Plating, J. Plating and Surface Finishing, 

2002, (8), 27-29. 

73. G.A. Dibari, Nickel Plating, J. Plating and Surface Finishing, 2002, (8), 34-37. 

74. J.E. Orlik and Associates, Technical Data Sheet Lumina 34: Decorative Bright 

Chromium Process, Durban, 2001. 

75. M. Csuros, Environmental Sampling and Analysis Lab Manual, Lewis Publishers, Boca 

Raton, 1997. 

76. D.C. Harris, Exploring Chemical Analysis, W.H. Freeman, New York, 1997. 

77. G.W. Loar, Nickel Plating, http://www.pfonline.eom/articles/pdf70015.html.#tablel 

Accessed on 29 December 2003. 

78. J.W. Dini, Electrodeposition: The Material Science of Coating and Substrates, Noyes 

Publications, Park Ridge, 1993. 

http://www.iams.org/p2iris/metalfinish/1240-t.html
http://www.pfonline.com/articles/pdf0016.html
http://www.pfonline.eom/articles/pdf70015.html.%23tablel


157 

79. B.A. Graves, Nickel Plating Primer, http://pfonline.com/articles/040102.html Accessed 

on 4 January 2004. 

80. J.M. Tyler, Automotive Application for Chromium, J. Metal Finishing, 1995, 93(10), 11-

13. 

81. J.D. Greenwood, Hard Chromium Plating: A Handbook of Modern Practice, Robert 

Draper, Teddington, 1964. 

82. J.H. Lindsay, Decorative and Hard Chromium Plating, J. Plating and Surface Finishing, 

1999, (11), 47-48. 

83. P. Morisset, J.W. Oswald, C.R. Draper and R. Pinner, Chromium Plating, Robert Draper, 

Teddington, 1954. 

84. D.L. Snyder, Electroplating Nickel/Chromium for the Automobile Industry, J. Metal 

Finishing, 1997,95(8), 29-33. 

85. L. Parmeggiani, Encyclopedia of Occupational Health and Safety, 1, 3rd edn, 

International Labour Organization, Geneva, 1983. 

86. N.V. Mandich, Practical Considerations in Bright and Hard Chromium Electroplating-

Part II, J. Metal Finishing, 1999, 97(7), 42-44. 

87. M.E. Browning, Important Considerations in Hard Chromium Plating, J. Plating and 

Surface Finishing, 2002, (4), 10-13. 

88. N.V. Mandich, Practical Considerations in Bright and Hard Chromium Electroplating-

Part VII, J. Metal Finishing, 2000,98(11), 46-50. 

89. S. Field and A.D. Weill, Electro-Plating: A Survey of Modern Practice Including the 

Analysis of Solutions, 6th edn, Sir Isaac Pitman and Sons, London, 1951. 

90. F. Pearlstein, Selection and Application of Inorganic Finishes: Barrier Layer Protective 

Metal Deposits, J. Plating and Surface Finishing, 2001, (5), 8-12. 

91. E.W. Brooman, Corrosion Performance of Environmentally Acceptable Alternatives to 

Cadmium and Chromium Coatings: Chromium Part I, J. Metal Finishing, 2000, 98(7), 

38-42. 

92. D. Snyder, Quality Decorative Plating, http://pfonline.com/articles/article_printl.cfm 

Accessed on 28 April 2004. 

93. Environment Agency, Waste Minimisation: An Environmental Good Practice Guide for 

Industry, United Kingdom, April 2001. 

http://pfonline.com/articles/040102.html
http://pfonline.com/articles/article_printl.cfm


158 

94. Environmental Technology Best Practice Programme, Saving Money Through Waste 

Minimisation: Raw Material Use, GG25 Guide, Crown Copyright, United Kingdom, 

March 1996. 

95. C. Drew, The Significance of Green Chemistry to Specialised Organics Small- and 

Medium-sized Enterprises, Green Chemistry, G63, United Kingdom, June 1999. 

96. March Consulting Group (now Enviros), Waste Minimisation Modules, 1999. 

97. B. Crittenden and S. Kolaczkowski, Waste Minimisation A Practical Guide, Institution 

of Chemical Engineers, United Kingdom, 1995. 

98. J. Peek and P. Glavic, An Integral Approach to Waste Minimisation, J. Resources, 

Conservation and Recycling, 1996,17(3), 169-188. 

99. K. Martin and T.W. Bastock, Waste Minimisation: A Chemist's Approach, Royal Society 

of Chemistry, Cambridge, 1994. 

100. L.K.Wang and M.H.S.Wang, Handbook of Industrial Waste Treatment, 1, Marcel 

Dekker, New York, 1992. 

101. H.M. Freeman, Hazardous Waste Minimisation, McGraw-Hill Publishing Company, 

New York, 1990. 

102. R.L. Stephenson, and J.B. Blackburn, The Industrial Wastewater Systems Handbook, 

Lewis Publishers, New York, 1998. 

103. The University College of Northampton, What is Waste and Waste minimisation? 

(Session I), http:// www.northampton.ac.uk/aps/env/Waste_Min/Waste/waste.htm. 

Accessed on 10 March 2003. 

104. W.C. Blackman, Basic Hazardous Waste Management, 2nd edn, Lewis Publishers, New 

York, 1996. 

105. United States Environmental Protection Agency, Guide to Industrial Assessment for 

Pollution Prevention and Energy Efficiency, Unites States Environmental Protection 

Agency Office of Research and Development, National Risk Management Research 

Laboratory, EPA/625/R-99/003, Cincinnati, June 2001. 

106. Environmental Technology Best Practice Programme, Minimising Chemical and Water 

Use in the Metal Finishing Industry, GG160 Guide, Crown Copyright, United Kingdom, 

March 1999. 

http://
http://www.northampton.ac.uk/aps/env/Waste_Min/Waste/waste.htm


159 

107. D.P. Paplani, Waste Reduction at the Source, Part I, J. Metal Finishing, 1994, 92(4), 9-

11. 

108. United States Environmental Protection Agency, Waste Minimisation Opportunity 

Assessment Manual, Hazardous Waste Engineering Research Laboratory, EPA/625/7-

88/003, Cincinnati, July 1988. 

109. What are the Benefits of Waste Minimisation? http://www.epa.gov/epaoswer/index.htn 

Accessed on 9 March 2003. 

110. United States Environmental Protection Agency Facility Pollution Prevention Guide, 

http://www.epa.state.oh.us/opp/tanbook/fppgch2.txt, EPA/600/R-92/088, Accessed on 1 

September 2003. 

111. S. Barclay, N. Thambiran, D. Maharaj, C. Buckley and D. Mercer, Waste Minimisation 

Clubs (Part 1): A Feasible Solution to Sustainable Industrial Development, TAPPSA 

Journal, 2000, (3), 26-29. 

112. H. Freeman, T. Harten, J. Springer, P. Randall, M.A. Curran and K. Stone, Industrial 

Pollution Prevention: A Critical Review, J. Air and Waste Management Association, 

1992,42 (5), 618-656. 

113. H.J. Dempster, An Assessment of the Pietermaritzburg Waste Minimisation Club and the 

Waste Minimisation Opportunities on a Coil Coating Plant, Msc dissertation, University 

of Natal, 2002. 

114. S. Barclay, Common Goal: News from Waste Minimisation Club Initiatives, Pollution 

Research Group, University of Natal, Durban, 2000. 

115. Environment Agency, Waste Minimisation and Waste Management: An Environmental 

Good Practice Guide for Industry, United Kingdom, 1998. 

116. Environmental Technology Best Practice Programme, Cutting Costs by Reducing 

Wastes, GG38C Guide, Crown Copyright, United Kingdom, September 1997. 

117. R.M. Felder and R.W. Rousseau, Elementary Principles of Chemical Process, 3rd edn, 

John Wiley and Sons, New York, 2000. 

118. Environmental Technology Best Practice Programme, Paint and Powder Coating Use in 

the Metal Finishing Industry, EG72 Guide, Crown Copyright, United Kingdom, 1996. 

119. R. Batstone, J.E. Smith and D. Wilson, The Safe Disposal of Hazardous Wastes, 1(93), 

The World Bank, Washington D.C., 1989. 

http://www.epa.gov/epaoswer/index.htn
http://www.epa.state.oh.us/opp/tanbook/fppgch2.txt


160 

120. C. Janisch, Finishing Notes: Newsletter of the Cape Metal Finishing Association, Issue 

1, January 2001. 

121. A Pollution Prevention Resource Manual for Metal Finishers: A Competitive Advantage 

Manual http://www.iams.org/iamsorg/pollution_prev/metal_finish.htm Accessed on 14 

May 2002. 

122. Waste Reduction Techniques, http://www.iams.org/p2iris/metalfinish/1240-t.htm 

Accessed on 1 January 2003. 

123. D.P. Piplani, Waste Reduction at the Source, Part II, J. Metal Finishing, 1994, 92(5), 23-

26. 

124. Ohio Environmental Protection Agency, A Pollution Prevention Resource Manual July 

1994, http://www.epa.state.oh.us/opp/mfrm.txt Accessed on 10 January 2003. 

125. G.C. Cushinie, Fact Sheet: Source Reduction and Metal Recovery Technique for Metal 

Finishers, State of Ohio Environmental Protection Agency, 1994,10(24), 1-6. 

126. J.B. Durkee, Rinsing of Parts, J. Metal Finishing, 2002,100(1), 54-57. 

127. United Nations Environmental Programme Industry and Environment Programme 

Activity Centre (UNEP IE/PAC), Environmental Aspects of the Metal Finishing 

Industry: A Technical Guide, Technical Report Series No. 1, Industry and Environment 

Programme Activity Centre, France, 1993. 

128. G.C. Cushnie, Pollution Prevention and Control Technology for Plating Operations, 

National Association of Metal Finishers, National Center for Manufacturing Sciences, 

Ann Arbor, Michigan, 1994. 

129. Newsletter of the KwaZulu-Natal Metal Finishing Association: 20 Ways to Cut Water 

Usage in Plating Shops, 2003, 4(4), 1-9. 

130. R.A. Nagy, Analysis and Design of Rinsing Installations, http//:www.pfonline.com 

Accessed on 25 March 2004. 

131. H.G. Bhatt, R.M. Sykes and T.L. Sweeny, Management of Toxic and Hazardous Wastes, 

Lewis Publishers, Chelsea, 1985. 

132. Pollution Research Group Department of Chemical Engineering University of Natal, 

Investigation into Water Management and Effluent Treatment in South Africa Metal 

Finishing Industries Part II, Water Research Commission, Pretoria, 1987. 

http://www.iams.org/iamsorg/pollution_prev/metal_finish.htm
http://www.iams.org/p2iris/metalfinish/1240-t.htm
http://www.epa.state.oh.us/opp/mfrm.txt
http://www.pfonline.com


161 

133. L. Bloch, Reducing Rinse Water Use, http//www.pfonline.com/articles/020005.html, 

Accessed on 4 April 2004. 

134. D.R. Lide, CRC Handbook of Chemistry and Physics, 89th edn, CRC Press, Boca Raton, 

2002. 

135. R.W. Busby, Guide to the Selection of Equipment for the Metal Finishing Industry, 

Cleaners Metal Finishing Industry Production Project, Durban, 2003. 

136. M. Betchaver, Pump for Plating Application, J. Metal Finishing, 2000, (10), 28-37. 

137. N.V. Mandich, Practical Considerations in Bright and Hard Chromium Plating-Part III, 

J. Metal Finishing, 1999, 97(8), 42-45. 

138. M. Little, Overcoming Nickel Plating Problems, 

http//www.pfonline.com/articles/0404qfl .html, Accessed on 4 April 2004. 

139. H.H. Guyer, Industrial Processes and Waste Stream Management, John Wiley and Sons, 

New York, 1998. 

140. A.C. Broekaert, S. Giicer and F. Adams, Metal Speciation in the Environment, 23, 

Springer, Berlin, 1990. 

141. J.W. Funke, Treatment Methods in Metal Finishing with a View to Limitation of 

Discharges of Toxics into Urban Drainage, Msc Dissertation, University of Pretoria, 

Pretoria, 1973. 

142. N.V. Mandich, S.B. Larvani, T. Wiltkowski and L.S. Lalvani, Selective Removal of 

Chromate Anion by a New Carbon Adsorbent, J. Metal Finishing, 1998, 96(5), 39-42. 

143. L. Hartinger, Handbook of Effluent Treatment and Recycling for the Metal Finishing 

Industry, 2nd edn, Finishing Publications, 1994. 

144. D. Barnes, C.F. Forster and S.E. Hurdey, Survey in Industrial Wastewater Treatment, 3, 

Longman Scientific and Technical, John Wiley and Sons, New York, 1987. 

145. Plating Line Opens Waste Treatment Opportunities, 

http://www.pfonline.com/articles/109603.html Accessed on 13 April 2004. 

146. Personal communication with Noel Ferguson and Livingstone Colbert, Saayman Danks 

Electroplaters, Tel: (031) 4656858, Durban. 

147. E.C. Knill and H. Chessin Purification of Hexavalent Chromium Plating Baths, J. 

Plating and Surface Finishing, 1986, (8), 26-32. 

http://www.pfonline.com/articles/020005.html
http://www.pfonline.com/articles/0404qfl
http://www.pfonline.com/articles/109603.html


162 

148. S.L. Upstone, Inductively Coupled Plasma/Optical Emission Spectrophotometry, 

Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentations, 2, 

John Wiley and Sons, Chichester, 2000. 

149. M. Radojevic and V.N. Bashkin, Practical Environmental Analysis, Royal Society of 

Chemistry, Cambridge, 1998. 

150. P. Patniak, Handbook of Environmental Analysis, Lewis Publishers, Boca Raton, 1997. 

151. G. Svehla, Vogel's Qualitative Inorganic Analysis, 6th edn, Longman Scientific and 

Technical, United Kingdom, 1987. 

152. South Africa Bureau of standards, Hexavalent Chromium Content of Water: South Africa 

Bureau Standard Method 206, 1999. 

153. D.M. Considine and G.D. Considine (editors), Van Nostrand's Scientific Encyclopedia, 

J-Z, 8th edn, Van Nostrand Reinhold, New York, 1995. 

154. United States Environmental Protection Agency, Standard Operating Procedure for the 

Analysis of Chromium-Hexavalent in Water Method 218 NS, Region 5 Central Region 

Laboratory, Chicago, January 2000. 

155. eThekwini Water Services Laboratory, Determination of 33 Elements in Raw, Potable 

and Waste Water by Inductively Coupled Plasma Atomic Emission Spectroscopy: 

Laboratory Test Method CM096 version 1.0, August 2002. 

156. X. Hou and B.T. Jones, Inductively Coupled Plasma/Optical Emission 

Spectrophotometry, Encyclopedia of Analytical Chemistry: Applications, Theory and 

Instrumentations, 11, John Wiley and Sons, Chichester, 2000. 

157. D.A. Skoog, D.M. West and F.J. Holler, Fundamentals of Analytical Chemistry, 7th edn, 

Saunders College Publishing, Fort Worth, 1996. 

158. J.E. Amonette and L.W. Zelazny, Quantitative Methods in Soil Mineralogy, Soil Science 

Society of America, Madison, 1994. 

159. F.W. Fifieid and P.J. Haines (editors), Environmental Analytical Chemistry, Blackie 

Academic and Professional, London, 1996. 

160. Chemserve Systems, Chemalene 03 Technical Data Sheet 2068, No. 5549, 2004, (5), 1-

3. 

161. Chemserve Systems, Oxyprep 220EC Product Data Sheet 002/2002/AMS, No. 5549, 

2004,(5), 1-2. 



163 

162. T.v.d. Spuy (editor), Electroplating Theory and Practice Version 4.1, South Africa Metal 

Finishing Association, Durban, April 2004. 

163. Department of Wastewater Management WMP/mcc/8074, Sewage Disposal Bylaws, 

Durban Metro, February 1990. 

164. R.K. Chalmers, The Use of Water and the Treatment of Effluent in the Metal Finishing 

Industry, Chemistry and Industry, 1970, (44), cited in J.W. Funke and P. Coombs, Water 

and Effluent Management in the Electroplating and Anodizing Industry, Technical Guide 

K29, National Institute for Water Research, Council for Scientific and Industrial 

Research, Pretoria, 1973. 

165. J.B.Mohler, The Performance of a Rinsing Tank, J. Metal Finishing, 1981, (8), 21-28. 

166. American Electroplaters Society, Zinc and Cadmium Plating, Training booklets/coloured 

slides, AES Book Department, Winter Park, FL 32789 cited in J.B. Mohler, Calculating 

Water Flow for Rinsing, J. Plating and Surface Finishing, 1980, (11), 48-51. 

167. J.R Smithson, Water Pollution Control Research Series, Environmental Protection 

Agency, Washington, 12010 E1E, 03, 1971, cited in K. Muthukumaran, 

N. Balasubramanian and T.V. Ramakrishna, Removal and Recovery of Chromium from 

Plating Wastes Using Chemically Activated Carbon, J. Metal Finishing 1995, 93(11), 

46-53. 

168. Environmental Technology Best Practice Programme, Water Use in the Metal Finishing 

Industry, EG45 Guide, Crown Copyright, United Kingdom, March 1997. 

169. Personal communication, Professor C. Buckley, Department of Chemical Engineering, 

University of Natal, Durban,2002. 





APPENDIX A 

In this appendix, the instruments used in determining the concentration of metals in the 

samples are presented. These include UV-visible spectrophotometer used in determining the 

concentration of Cr(VI) and ICP-OES used in determining the concentration of Ni, Fe, total Cr, 

Na, Zn, Cu and Pb present in the mains water, drag-out and rinse water tank samples. 



164 

Figure A.1 Cary 50 ultraviolet visible spectrophotometer 

Figure A.2 Liberty 150 AX Turbo ICP-OES 



APPENDIX B 

This appendix presents the calibration graphs used in determining the concentration of Cr(VI) 

in the samples collected on 9/06/03 and 20/06/03. 
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Figure B.1 Calibration graphs of Cr(VI) on 9/6/03 
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Figure B.2 Calibration graphs of Cr(VI) on 20/06/03 
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This appendix presents the calibration graph of nickel, iron, chromium, sodium, zinc, copper 

and lead standard solutions for the samples collected on 9/06/03 and 20/06/03. Figures C.l 

shows the calibration graph of the metals on 9/06/03 and Figures C.2 show the calibration 

graph of the metals on 20/06/03. 
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A P P E N D I X I > 

In this appendix, the analyses results of the samples collected on 31/03/03 and 11/04/03 are 

presented. Table D. 1 presents the average of three concentrations measured on three different 

samples taken on 31/03/03 from the surface, middle and bottom of the tank at different times 

between 6:50 and 10:15. Table D.2 shows the average concentrations of the metals measured 

on two samples taken from the surface and bottom of the tank at one time one after the other on 

11/04/03 between 12:55 and 1:15. 



Table D.l Average concentration (mg/L) of metals in the samples collected on 31/03/03 

Tank 

2 
5 
7 
8 
10 
II 
12 
13 
15 
16 
17 
18 
19 

Mains water 

Ni 

23 
20 
9.2 
5.6 

4.5x103 

22 
8.8 
1.9 

3.7x10" 
101 
1.5 

0.11 
0.23 
0.21 

Fe 

57 
10 
17 

0.16 
0.11 
0.010 
0.010 
0.010 

52 
10 

0.17 
0.010 
0.065 
0.011 

Cr 

1.6 
0.65 
0.25 
0.31 
0.70 

0.092 
0.054 
0.031 

1.3xl04 

3.3x10" 
17 
3.3 
7.3 

0.076 

Na 

1.6x10' 
1.2x10' 

35 
31 

7.5x10' 
33 
31 
30 

1.8x10' 
6.2xl03 

1.1x10' 
55 
57 
30 

Zn 

62 
4.2 
0.74 
0.14 
18 

0.21 
0.069 
0.016 

90 
17 

0.42 
<DL 
0.025 
<DL 

Cu 

18 
0.97 
0.26 
0.042 
0.37 
0.026 
0.027 
0.019 

1.2x10' 
56 

0.37 
0.056 
0.15 
0.016 

Pb 

0.18 
0.033 
0.063 
0.018 

3.4 
0.020 
0.010 
0.0050 

6.5 
4.2 
0.13 

0.0047 
0.014 
0.0010 

Table D.2 Average concentration (mg/L) of metals in the samples collected on 11/04/03 

Tank 

2 
5 
7 
8 
10 
11 
12 
13 
15 
16 
17 
18 
19 

Mains water 

Ni 

9.4 
6.0 
2.1 
1.2 

6.0xl03 

28 
15 
3.4 

5.5x10' 
3.5xl02 

2.4 
1.4 

0.25 
0.0070 

Fe 

14 
2.1 

0.25 
0.035 
0.098 
<DL 
<DL 
<DL 

76 
34 

0.0010 
<DL 
<DL 
<DL 

Cr 

0.77 
0.29 
<DL 

0.0090 
0.41 
0.44 
0.29 
0.17 

3.4x104 

9.7xl03 

9.0 
6.8 
3.3 

0.035 

Na 

2.3x10' 
2.7x10' 

43 
39 

9.8x10' 
41 
39 
36 

5.5x10' 
8.4x103 

99 
68 
39 
36 

In 

1.0x10' 
3.3 

0.97 
0.26 
21 

0.16 
0.090 
0.020 

2.1x10' 
34 

0.84 
2.5 
3.8 
0.11 

Cu 

63 
1.3 

0.24 
0.18 
1.1 

0.020 
0.0060 
0.030 

1.7x10' 
2.0x10' 
0.030 
0.030 
0.030 

0.0070 

Pb 

0.030 
0.0090 
0.0050 
0.0040 

2.8 
0.030 
0.013 
0.0070 

11 
19 

0.0080 
0.0080 
0.0050 
0.011 


