THE ANALYSIS OF COMPUTER SYSTEMS FOR

PERFORMANCE OPTIMISATION

PIERRE ANDRé MEIRING

Submitted in partial fulfilment of
the requirements for the degree of |

M.Sc.Eng.

Department of Electronic Engineering

University of Natal

PRETORIA
1987

I wish to certify that the work reported in this thesis is
my own original and unaided work except where specific

acknowledgement is made.

Signed

7

P. A, MEIRING

ii

Acknowledgements

The author wishes to record his sincere appreciation for-

the assistance given by the following :

Professor H.L. Nattrass, Head of the Department of
Electronic Engineering, University of Natal, who

supervised the work.

The CSIR for sponsoring the project through a Post Graduate

Study Bursary.

Messrs D.C. Levy and R.C.S. Peplow of the Department of
Electronic Engineering, University of Natal, for their

help arnd technical advice.

Messrs D. Everett and_D. Beard for their aid in building

and installing the electronic equipment develbped and wused

in the project.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS viii

ABSTRACT x

1. INTRODUCTION 1

2. BACKGROUND _AND OBJECTIVES 6

3. THE EQUATION .DESCRIBING PERFORMANCE 15

3.1 Introdﬁction , 15

3.2 The General System Description 15

3.3 The Workload - ' 19
3.3.1 .Characterisation of Workload

Resource Requirements 24

3.3.2 The Multiple Workload Concept ' | 28

3.4 The/Defihitiqn of Performance 30

3.5 Performahce of the System Elements 33

3J.5.1 The Information Processing Element i3
3.5.2 -Tﬁéflnformation-Storage Element 37
3.5.3 The Inforﬁation Acquisition and
Dissemination Element 42
3.5.4 The System Control and Capability
Element 45
3.5.5 The Parameters Required for System
Evaluation ' 49

3J.5.6 Restraints on Measurement Techniques 50

iv

TABLE OF CONTENTS (continued)

Page
EVALUATION OF THE COMPUTER SYSTEM
ANALYSIS TECHNIQUES 51
4,1 When is Optimisation Required 52
4.1.1 The Systen Us#ge Monitor and
Dynamic Usage Display 53
4,2 The Performance Equation for a Real.
System | 55
4.2.1 The System Structure 56
4.2.2 The Workload Characterisation 58
4,2,3 The System Parameters to be
Measured 67
4.3 Test Results of a Simple System_Anaiysis 72
4.4 Discussion of Results 5 , 79

4.4.1 General Loading on System Resources 79

4,4,2 System Performance with the Test

Workleoad 84
DISCUSSION AND CONCLUSION- 88
REFERENCES AND BIBLIOGRAPHY 94
APPENDICES | 98

Appendix A

The COMPAS Performance Analysis

Systenm 98
Appendix B : Workload Characterisation Data 109
Appendix € : Complete Test Results , 119
Appendix D : Experimental Methodology 138

10.

11.

LIST OF TABLES

Main classes of quantitative indices of
computer system performance

Two standard instruétion mixes

Program significance factors for system with
maximum memory

Program sigpificance factors for system with
minimum memory

Need factors per particular element

Systen configuration and variable settings
for test runs

Mean percentage usage of system resources

Mean percentage usage of syStem resources plus
standard deviation

Mean performance iﬁdex

Mean performance index with standard deviation

Performance index in order of merit

vi

Page_

36

60

61.

66

75

76

76
77
78

85

LIST OF FIGURES

Block diagram of a computer system
Sample output of dynamic usage display
Histogram of operation of program FILE
Detail of program FILE histogram
Utilisation graph of IPP, - Test 1

Utilisation graph of ISP,

Test 1

Utilisation graph of ISP, Test 1

Utilisation graph of IAP, - Test 1

vii

Page

54
62
62
73
73
74

74

1. B
2. Bs
3 .COMPAS
4, D
5. GE
6. Gp
7. Gop
8. IAG
9. IAP
10. If
11. IPG
12, IPP
13. ISG
14, ISP
15, It
16. I,
17. K-
18. Ky
19. Ky
20. Ka
21, Lf
22, Nb

LIST OF ABBREVIATIONS

Cyclic Data Transfer Rate of I/0 devices
Transfer Rate between External and Main
Memory

Computer Performance Analysis System
Data Path Width of I/O0 devices

System Global Elements

Nominal Capability of System Resource

Measured Utilisation of System Resource

Information Acquisition and Dissemination

Global

Information Acquisition and Dissemination
Particular

Importance factor of SCP
Information Processing Global
Information Processing Particular
Information Storage Global
Information Storage Particular
System Idle time

Workload Need Factor

SCP Workload Constant

IAP Workload Constant

IPP Workload Constant

ISP Workload Constant

Loading factor of SCP

Number of Bits in External Memory

viii

23.

24,

25.
26,
27,
28.
29,
30.
31

32,
33.

34.

Nw

PE

PSYS

SCG

SCP

TE

Tr

Uf

Ut

Ws

Number of Words in Main Memory

‘Workload Type Priority

System Particular Elements

System Performance

System Control and Capability Global
System Control and Capability Particular
Memory Time Factor

Data Transfer Rate of I/0 devices
Workload Type Usage Factor

Usage factor of SCP

Unit time

Word size in bits

S ix

ABSTRACT

The project investigated the problem of performance
optimisation of computer systems at the systems level.
It was ascertained that no generally accepted technigque
for approaching this problem exists. A theoretical
approach was thus developed which describes the aysten,
the workload and the performance in terms of matrices
which are deduced from measured data. An attempt is then
made to verify this theory.by applying it to a real
system in a controlled environment. A dummy workload is
used and measurements are made 6n the computer system.for
various configurations. The results thus obtained are
‘compared with the expected trends in system performance
and conclusions are drawn which appear to verify the

validity of the ﬁheofy proposed.

1. INTRODUCTION

The world is experiencing a computer boom of staggering
dimensions. Systems are getting larger and more compiex
by the day and fhe users are coming from a wider spectrum
of the population. The days when computers were run by
specialisi personnel om a batch run basis are gone forever,
and amidst all this one very significant factor has
emerged, the.user has an insatiable desire for an improved
service, Interactive opération is no longer a privilege
reserved for only a few, andrspeedy responses to even the

most complex workloads are demanded.

A study of the computer performance analysis'discipline
revéaled that it is the poor relation in the computer
systems' engineering -field. Although there is a great
deal of work done on improving computers and the results
achieved are astounding, at the system level one finds a
lack of precise knowledge, due to the extreme complexity
of the field. It was found that various investigators all
perceived similar problems, namely the lack of a formal
definition of system performance and a lack of agreement on
-techniques to be applied. Furthermore, although various
aspects o0of system performance could be analyzed in detail,
each of these techniques was applied in isolation from the

rest of the system and thus disregarded parasitic effects

and mutual incompatibilities and were often based on

complex mathematical models or theoretical workloads.

The result was that most techniques tended to have serious
inadequacies when confronted with real world systems,

It was thus decided to carry out an investigation in . the
field and attempt to develop a performance analysis
meithodology, basing the technique on simple premises ana
avoiding complex hathematics. As described in Chapter 3
the first phase consisted of a study of the system
structure to identify the component§ of the ‘system and
define the elements and bounds of this system in such a way
that they are usable. The result was a matrik equation
which defines eéch element of the system in terus of its
capability to provide a usable resoﬁrce to the environment;
The environment, or'workload, is defined in terms of the
importance which it atfachéé to each of these resources,
not in terms of a theore;igal model, but in terms of

measurements made on the system.

The result is a complete system definition which has the
advantage of being generalized and is based on the real

world computer system om which it is to be used.

Having developed the skeleton of the proposed technique a
more detailed analysis was done of the individual elements

of the system and the methodology to be applied to

converting the theory into practical results. Four main
elements, to be known as the System Global Elements, which
describe the basic structure of—any operational computer

system were identified.

The Information Processing Global, or IPG, describes the
system's cépability to manipulate or process the
information stcered in the computer and lies at the heart of
its performance 'capability. The Information Storage
Global, or ISG, covers the total spectrum of subsystems
which can be used to store programs and data within the
computer, while the Information Acquisition and
Dissemination G;obal, IAG, describes the mechanism by
which programs and data are input to the system for s%orage
and use, or dutput from the system for external use or
interpretation. = The above three globals describe the

physical hardware making upbthe systen,

The fourth main element, the S&Stem Control and Capability
Global, SCG, describes a concept and not a physical entity
and deals with the manner in which the system's physicai
elements co-exist and operate. It also describes those
tasks carried out by the system for the user and is in a

broad sense analogous to the Software Operating System,SO0S.

Armed with a detailed theoretical analysis the project now

progressed to the stage of illustrating the validity of the

technique on a specific system. The quantities which had
to be measured were determined and the techniques to do so
were developed. The result was a system specific set of
tools which, however, applied general principles that could
be used on virtually any system. These tools consisted of
software capable of extracting data from the operating
system tables to determine the nature of the workload and
the loading on - the system memory and a hardware analyzery
the COMPAS, or Cbmputer Performance Analysis System, with
comparators, counters and data storage facilities which
could monitor the target system's busses and extract data
concefning processor activity, memnory us#ge; input/output
activity and usage of the external memory or discs in the

system. The COMPAS system is described in Appendix A,

Measurement results were presented as arrdys of data which,
after suitable reducfion-using a suite of programs, gave
the analyst a variety of dinformation, Presentation was in
the form of histograms of system activity versus memory
address, used to analyze the operation of programs, traces
of activity within a program énd graphs of re#ource

utilization versus time.

This data was then used to ascertain the validity of the
techniques proposed and provided an accurate and detailed
picture of the system operation. A series of tests wvere

conducted using a dummy workload and the effects of changes

to the system were then ascertained, while the validity of

the integrated model was demonstrated.

It must be emphasized that a full scale aﬂalysis of an
operational systemn was not attempted due to the
experimental nature of the techniques, A basis was,
however, created for future investigations and the wvalidity

of the approach to periormance analysis was confirmed.

2. BACKGROUND ARD OBJECTIVES

During the last decades computer engineering.has advanced
in great strides and today highly complex computing systems
exist. There can be no doubt that‘ these systems perform
the functions that they are designed for correctly.
However, being engineering products, it is also true that
they must meet certain other performance specifications
before being acceftable to the user community. It is for
this reason that the performance measurement, analysis and

optimization of computer systems is of interest.

Much work has been done on the improvement of computer
systéh cdmponents. Nev programming techniques have been
developed, while the hardware in particular is constantly
being evaluated-and improved, This work is. all aimed at the
improvement in performance of individual subsystems and
Myers (1982).quotes this as the reéson for the present day
preoccupation with "addition and multiplication times" as
measures of performance. Bell and Thorley (1985) agree with
this assessment and desdfibe it as a " project oriented
approach " where " performance analysis is undertaken to

attack specific problems ".

On the other hand, the analysis of complete systems as an
entity is a relatively undeveloped field in the computer

engineering environment. Its purpose is to evaluate the

operational effectivéness of the eantire hardware-firmware-
software combination rather than the individual elements of.
the system. This aspect of computer system evaluation
remains the poor relation, according to Kuck (1978), due to
the fact that it is an imprecise and highly complex field.
Indeed, so difficult is it to characterize computer system
performance that at present no gemerally acceptable

definition exists.

According fo Ferrani (1978) the majéf.problems in the field
are the lack of quantitative laws to form the foundation of
scientific studies and the fact that this aspect of
computer engineering is still regarded as being an art and
is taught on a qualitative and desc;iptive basis in the

vast majority of curricula dealing, with computer

organization,

In addressing the problem in this stu@y an attempt is made
to develop a workable and general ;d;finition for éystem
performance based on simple lbgical ffemises. The approach
followed is not based on anything found in the 1literature
and is in fact at variance with the thoughts of authors in
the field. Instead the aim is to take a global view of the
problem, beginning from basic principles, and work to a
complete solution of the problem. This definition can then
be used along with practical evaluation techniques in the

analysis and optimization of the performance of computer

systems.

Definition o0of the problem forms the basis of any analytic
study. In this case two things must be looked at.
Firstly the definition of computer systems and seqondly the
definition of performance as it relates to these ;§stems.‘
Figure 1 shows that computer systems can be described as
closed loop systems. Users generate the workload which
is converted into'performance by the computer installation.

This performance then influences the user community and

thus the workload.

WORKLOAD>
COMPUTER SYSTEM
USER COMMUNITY
<PERFORMANCE
Figure 1 Block diagram of a computer system

Unfortunately the definition of performance is a very

subjective topic. Different evaluators regard different
aspects of performance as being important, Various
authors in the field discuss the problemn, All agree that

many different measures of performance exist but there is

little evidence of agreement as to the best choice,

Kobayashi (1978) divides the measures into two

user oriented measures such as terminal

the system

oriented

measures

such

Svoboda (1976) lists sixteen measures

Ferrani (1978) a similar number.

of examples of such measures,

Table 1

computer system performance

of performance

classes, the

response time

job throughput.

Table 1 shows a number

Main classes of quantitative indices of

Index class

Examples of
indices

General
definition

Productivity

Responsiveness

Utilization

Throughput rate
Production rate
Capacity(maximum
throughput rate)
Instruction
execution rate
Data processing
rate

Response time
Turnaround time
Reaction time

Hardware module
(CPU, memory,
I/0 channel, I/O
device) utiliz-
ation

Public software

The volume of
information pro-
cessed by the
system in unit
time

The time duration
between the
presentation of
an input to the
system and the
receipt of the
appropriate
response to said
input

The ratio between
the time a speci-
fied part of the
system is used

(or used for some
specified purpose)

module (e.g. during a given
compiler) interval of time
utilization and the duration
Data base of that interval
utilization

This does not help a great deal as the question still

and.

and

arises as to which measure is to be used and this seems to
depend on who is to use it, The ideal would seem to be to -
express performance in such a way that it indicates all
aspects of performance in an objective way. The
specification of what constitutes the system is also
subject to many dinterpretations and here again a rigid
definition is desirable, The approach to be used here is
to translate all yhese many facets of computer performance

and structure into a set of mathematical equations,

Looking at the system itself certain proﬁlems arise. The
major of these is that the system by 1its very nature
interacts with its inmediate environment, " This
environment contains hﬁman users impossible to describe in
technical terms, The system itself cam also contain human
elements 1if it requires Hhuman intervention to operate
correctly., To overcome this problem it is proposed that
the evaluation technique be bésed on measured data., This

obviates the necessity for prediction of actions and thus

solves the problem,

A further problem arising during the system description
phase is the great variety of systems which exist.,
According to Lorin (1982) one of the greatest challenges
facing system designers and wusers is to find a common
denominator amongst the various configurations and

architectures found in computer systems to allow them to

10

develop a common strategy for dealing with these systems,
Their structure and capability can vary so greatly that a-

common definition seems impossible.

When dealing with installations ranging from pocket
calculators to systems such as the Control Data Cybernet
system which spans several continents, it is not the
peculiarities but rather the common elements which becone
important. These common elements once identified lead
naturally to the system description proposed and allow any
depth of detail to be specified as shown in the next

chapter,

From che point of view of performance many of the same
"problems apply. The envirnnment in which the system
operates is of great importance as this is what' determines
both the 1loading on the system as well as the 'aspects of
‘the system which are important. For this reason
description of the environment is vital to any performance
evaluation. In this projéct a description technique based
on measurement of the actual workload, this being the
.physical manifestation of the environment on the system, is
employed. Parameters describing the workload, derived
from the measurements, are used directly in evaluating the

performance of the system.

Looking at the performance of the computer system elements

11

themselves, it is found that the individual elements within
the system can be evaluated. The problem as stated by
Hayes (1978) is that no single one, or group of elements,
is capable of expressing the performance of vthe entire
system in all situations. Furthermore, when attempting to
optimize them individually it is soon apparent that many of
them are mutually exclusive, Examples are processing
throughput and system capability; the more processing time
required by thé workload‘the less available to the system
software, thus limiting the complexity and capability of

this software.

This is the kernel of the problenm, since different user
requiremints need obtimization of different systen
characferistics. No hard and fast definition of system
performance describinglall systems can thus be made, but if
the opinion of Croft and Cantrell (1986), who describe a
computer system as é'structure_where the workload generates
equipment wutilisations and a éofresponding user experienced
performance, is accepted then in gemneral it can be said that

an optimized system is one which will complete a specified

set of tasks or workload with the 1least utilisation of

resources.

This definition of an optimum system contains two words
which hold the key to the entire problem, they are

"resources"™ and "tasks". To begin with the system is

12

defined as the sum of its resources, the environment as the
sum of the tasks, the performance as the ability of the.
system to perform these tasks using the fesources within
the system. Obviously if the workload 1is regarded as
being a constant then the smaller the fraction of the total
resources used by the workload the higher the performancé

of the system.

This approach to éomputer system performance is at variance
with the opinion of many authors in the field. Ferrani
(1978), for instance, holds ;hat performance evaluation
cannot be system and application independent. However,
looking at the very latest simulation and modelling
technique queueing network analysis, as described by
Lazowska et al (1985) and Mac Nair‘and Sauer (1985) the
basic cornerstone of the technique 1is its capability to
describe an entire system with reasonable accuracy using a
set of general building blocks. This results in a model of a

system which inherently descrbes'both the workload and the

system structure.

In the same way the techniques described here are designed
to be system and workload independent. This is achieved by
defining a similar set of building blocks which are capable
of implicitly expressing the nature of the system and the

workload in the equations which describe the performance.

13

The objective is thus to identify the resources of computer
systems in common terms, prioritise them based on the .
measured workload and them determine the performance of the

system in terms of the loading of these resources.

14

3. THE EQUATION DESCRIBING PERFORMANCE
3.1 INTRODUCTION
The equation is developed in three stages. Stage one

deals with the physical attributes of the system, its

structure and the nominal performance capability of each

element or resource within the systen., - Next the workioad
is introduced and its effects on the system are
incorporated into the equation, Finally the actual

performance of the system elements is introduced.

Once the basic equation has been described each global
element 1is discussed in >detail .and the various system
parameters that need to be measured in order to determine
system performance are aséertained. .Knowing vhat to
measuré it is then possible to proceed with the development
of the necessary tpols for gathering data on Va real system

in order to verify the validity Qf the theory,
3.2 THE GENERAL SYSTEM DESCRIPTION

This section has as its aim the development of a set of
general equations which may be psed to describe the total
resources of a computer systeﬁ of any kind. To begin with
the types of resource which make up a computer system are

‘identified. These Global Elements, GE, are then expanded

15

to be capable of expressing the detail of each element so
that even the smallest difference between two systems may-
be ciearly illustrated. This expansion of the GE leads to
the System Particular Elements, PE, each of which describes

a particular detail of the system structure,

Taking a simple micro-processor system as a Computer Systen
Model, certain elements common to all systems becone
apparent and they.are the Globals. There are four globals
identifiable in all systems, three are physical entities
and the other one conceptual, This conceptual Global is
nevertheless central to the existence and operation of \any

computer system.

The ability of a computer to process data, or compute, is
the first GE since this is the central concept on which
computers rest, This is the Information Processing Global,
IPG, and from this follows the second GE, namely the
Information Storage Global, ISG; since the computer' nust
store the data which is to be processed as well as the
program which tells it how to process the data, Thé third
GE is the Information Acquisition and Dissemination Global,
IAG, which relates to the way in which the computer
acquires the datd and programs from its environment and
disseminates the results of its | processing back to the

environment. = This covers the three physical types of GE

mentioned,

16

Each of these GE can conceivably consist of several
different physical resources such as multiple parallel -

processors, different types of memory and a vast array of

peripheral interfaces or equipment such as printers,
VDU's and keyboards. In order to describe each of these
elements the PE are defined. The IPP or Information
Processing Particular Elements describe individual

processors within a system, the ISP or Information Storage
Particular Elemeﬂts describe individual types and areas of
memory within the systenm whilst the IAP or Information
Acquisition aﬂd Dissemination Particular Elements describe

individual peripheral devices or interfaces,

The fourth GE, the SCG, is conceptual. It is, however, 2o
less important than the others, since it enhances the
capabilities of the physical resources rby making vtheh
useful to the computerlenvi;onment. This global thus
encompasses the software’ operating system and all its
elements such Aas device driver routines, program
schedulers, memory management software and a variety of

other software which eases the users' task i1in wusing the
system., Each of these routines or programs then make up the

SCP or System Control and Capability Particulars.

Each of the individual resources within the system is now
identified and it remains to arrange them in such a wvay

that the system description can be manipulated

17

mathematically. - To do this the individual elements are
arranged into a matrix format with four rows and N elements -

where each element 1is related to a PE in the form shown

below.
IPG IPP] IPP: ® 6060800 IPPn-‘
ISG ISPy ISP2 eseeees IPS,
SYSTEM = =
IAG IAP‘ IAP: e o a0 000 IAPQ
SCG SCP; SCP2 ececeee SCP,

where n,m,o0,p are equal to the relevant number of PE for

the global and all vacant locations would be set to zero.

This matrix describes - the system structure and its
eleménts, but is insufficient to describe the performance
of a computer system, " The reason for this is that it does
not include the effects of the environment. These effects
or constraints on the system are important since they
determine the importance of the various aspects of the
system in operation. To put it another way, it is true fo
say that the operating environment of a computer systemn
determines those aspects of a computer which are important
and since the physical manifestation of this enviroament
encountered by the computer is in the form of programs which

are run on the computer, it 1is these programs and the

resource load they place on the computer which is important.

18

This is in effect the workload placed .on the computer,
3.3 THE WORKLOAD

In general two approaches are followed’when the problem of
describing the workload is addressed. Most authors 1in the
field make use of hypothetical models based on mathematical
probabilities of instructions occurring. This method
leads to technidues such as the use of instruction mixes,
Certain other authors, howvwever, reject this approach for
tﬁo reasons, namely the fact that they are aimed mainly at
the processors' capabilities and do not exercise the other
resources ’in the system and secondly they tend to be based
on complex mathematical ﬁodels vhicﬁ cannot be verified
very easily, This viewpoint is supported by Bard (1976)
who did extensive studies on the IBM ﬁH/370 operating
system, His findings weré that a workload model based on
measured data generally gives results which are the closest
to the actual workload on a Systém at any time. In this
study this principle is carried even further» since the

workload is based on measured data at all timés.

. It has been established that the workload is the physical
manifestation of the outside world on the system. 1In order
to assess the performance of the system it is necessary to
know what is required of it and to this end it is necessary

to develop a technique which describes this workload and

19

relates the workload needs to the system resources.

Looking at the system description it is true to say that it
can describe the system structure to any depth required.
Each element described is one of the resources of the
system and the workload according to its nature places
differing demands on these resources, By dquantifying
these demands and relating them to the individual resources
it 1is possible to fully describe the workload and the
performance demands made on the system by it. Tﬁis is.the
essence of the workload déscription technique proposed

here.

As with the gereral definition of computer systems there
are a large number of workload definitions extant, and once
again the model proposgd is an attempt at producing . a

generally acceptable and simple model based on a practical

approach to the problem.

Looking at the workload coﬁcept on a macroscopic level it
is true to say that the workload is defined to be : "The
execution of all those duties and tésks required of the

system by the user community"” where the user community is
itself defined as "any person or object providing the
system with a stimulus to which it reacts, and from which
stimulus a resulting stimulus is output beyond the bounds

of the system",

20

The bounds of the system are simply defined as the 1linmits
of the System as described by the system structure globals:

previously defined.

The workload is thus made up of numerous tasks which the
system must perform, On one system these tasks may be
easy to define and describe, an example being the functions
on the keyboard of a calculator. For others such as an
industrial procesé control system, it would be far 1less
simple. When dealing with complex systems the first step
is to divide the tasks into groups or ‘types, the larger the
number of types the more detailed the worklocad description
and since each task consists of a set of input stimuli
which cause system reactions resulting in a set of output
stimuli, it follows that the groupings be made on the basis
of these actions and stimuli. It also foilows that if the
stimuli and actions are siﬁilar, and because system actions

are based on Programs, groupings can be made on the basis

of the programs run on the systeﬁ.

A

S
Definition of the system workload thus consists finally of

aséertaining all programs which run on the system. Once
this is completed it is necessary to decide on groupings.
In some systems where the number of programs is small it is
possible to define each program as a type of workload, in

-others the grouping may be 1less simple and must be based on

similarity.

21

This similarity' must be expressed in terms of program

resource requirements. Any system contains certain-
resources based on its physical configuration. These
resources correspond to the elements of the system, Thus,

for example, programs which wuse similar_'percentages of
processing time, have a similar number of input/ou;put
actions to the same devices, use the same system
capabilities and so on, in unit time, are regarded as being
similar, even though they may in fact be doing completely
different tasks. A resource - requirement table must thus be
drawn up for each program and in this way the programs can
then be grouped. This resource requirement table has a

second use, however, as 1is discussed below.

The whole object of the workload definition is to
facilitate the assigning »of ‘factors of importance to the
elements of the system, This is done by assigning to each
resource in the system a need factor corresponding to the
usage by each program. Thﬁs in the case of a program
which does a lot of processing but little else, the largest
need factor would be appliéd to the processing resource and
only small need factors, if any, to other resources. This
need factor corrésponds to .the values placed in the

resource requirement table drawn up for each workload type.

Next the usage of each workload type is discussed, that is

to say how frequently is a type of program run on the

22

system. Lastly the importance of each type of workload to
the outside envifonment, that is its priority, is covered. -
Combining these three factors, namely resource
requirements, usage and priority for each type of workload
gives a complete description of the various types of
workload. This results in four workload constants Kp,Ks,Ki
and Kc which are each coupled to the four Global variables
IPG,ISG,IAG and SCG. These constants can also be further
sub-divided to relate to the PE. Combining the various

types then results in a complete workload description.

Thus for each resource in the system a workload constant,

which is the sum of the workload constants for the various

types of workload, is found. Each type constant is in
turn the product of the usage, the need factor and the
priority.

Expressed mathematically the workload is thus :

Kpl sz R EE) Kpn

Ks, Ks2 ceesen KS.u
14 =

Kil Kiz ® o 00 00 Kiu

ch Kcz o o 0o 2900 ch

where Ky, is the i'th workload constant of global y and 1is

expressed as

23

Kyi = Ky11 + Kyiz sesses T Kyi.

‘for g types of workload, and

K¥saq = Pa X Ugq X 1Ivia
where P, is the priority factor of workload type q, Ug is
the usage factor and Iy., is the mneed factor for particular

element i of'global vy,

This matrix fully describes the workload on the system and
has a major advantage over conventional models in that it
cakes into account the priority of the individual workload

types. , -

3.3.1 Characterization of Workload Resource

Requirements

Characterizing the werkload consists o0f determining
the way in which each part of the workload contributes
to the total loading of the system and then of
determining the resource needs of each individual

workload type.

The individual workload types are discussed in ternms

of their relative importance to determine the value of

24

P the priority factor. Most computer systems
handling large volumes of work have some form of -
priority structure which accords precedence to one
program over another, In this case the priori;y
structure leads naturally to the value of P since it
is already stated. To incorporate P into the workload
constant it need only be normalized. In cases where
there is no priority structure one of two courses can
typically be‘followed, the P factor can be discarded
in which case all workload types are accorded equal
priority or the evaluator can arbitrarily assign

values to workload types on the basis of his knowledge

of the system or a survey of the users' needs.

The second task is to determine the wusage of
individual programs. - This is done by designing a
tool which measures the frequency with which a
particular workload type is the scheduled program for
executién on the system. | This can be done wusing a
hardware or software monitor on the system which
interrogates the system at a frequency giving a time
interval shorter than the shortest run time of any
worklocad type, The frequency of occurrence of each
workload type must be accumulated'and over a period of
time an accurate picture of the‘ workload distribution
on the system can be assembled, The only restraint

here 1is that if a software monitor is used, it

25

must not load the target system significantly or the
recorded data will be disturbed. This process gives

the usage factor U.

Finally the need factor for each resource, Iy, must be
determined. This is the significance of each resource
within the system to the workload type, relative to
all others. To illustrate this two programs, which
have a similér amount of input/output in unit time,
are used as examples. Let the one, however, be a
simple editing type program where data is input,
stored in memory and output, whilst the other program
inputs the data, does some very complex processing of
the data, wupdates a large database and outputs the newvw
data. Clearly the two progranms have similar
input/output resource requirements but in the case of
the first program, this input/output requirement is
the primary requirement, whilst for the second program
mentioned the requirement éould very easily be far
less important than say, sufficient processing time or

the availability of large external memory.

What 'is thus required is some method of assigning the
importance factor, which takes into account the
structure and opération of the progranm. The method
used in this study is based upon the fact that allied

to any action in the system there must be CPU action,

26

thus based on the percentage of processing done to
complete any action the importance of that action is-

determined.

The processing need factor is assigned a start value
of 1. All other need factors are now determined by
dividing the processing needé amongst these resource
requirements, based on the percentage of processing’
time required. " Each of these neéd factors will then

be less than one.

The various factors are determined using a mixed

listing of the program; a load map of the program and

a histogram of the program operation.

The only aspec;. of .the program not covered by this
technique is the storage requirement in main memory.
Here the need factor .is calculated by - dividing the
available menmory into thé requirement for the
particular program, ‘thus a pProgram requiring the

entire memory has a value of 1.

Having determined the need factor for each resource
the values are normalized to give the relative need

factors for each resource within a particular workload

type.

27

Having defined the workload the concept is carried a

step further.

3.3.2 The Multiple Workload Coencept

In many systems the workload can vary dynamically due,

for dinstance, to the time of month. An example is
the high lecading on systems preparing end of month
accounts or end of year tax returns. In other cases
i} is possible to recognize certain | distinct sub-
workloads on the system. It is thus necessary to be

able to describe the system taking intor account only
these parts of the workload. In this case the
weighting factors used are simply those attributable

to that part of the workload or that sub-workload.

Thus each global weighting factor can be thought of as
the sum of the factors contributed by each part of the

workload or each sub-workload.

Thus . :
KX = le + e e 0 +: KX.. + oo 0 + KXh
where Kx, is the weighting factor due to shbload n of

Kx, which is the weighting for Global x.

28

This now leads to the complete workload description
which is the sum of all the sub-workloads expressed-

mathematically as :

n B m g ' (¢] -4
W = I (I Kpan) + I (L Ksap) + L (I Kians)
a=1 b=1 a=1 b=1 a=1 b=1

P -4
+ X () Kc-..)
a=1 b=1

for a system with g types of workload.

The resulting matrix as originally described on page
18 thus has constant elements vhich would individually
be described as below :

KS1 = KS;; + KS12 + cesese T KS;,

Each element is the description of the importance

placed on each PE in the system by each workload type.

The system and its environment can now be described
comnpletely. The various parameters describe the
system resources whilst, the associated constants
describe the environment, Thus any system can be

described as follows :

29

- -
Kpl.IPPl szoIPPQ * o000 KpnoIPPn
KS‘.ISPI KSQ.ISP; oo 00 KSEQISP.‘
SYS
Ki‘oIAP] KizoIAP: ® e 0 0 0 Kio.IAPu
Kes .SCP, Ke2.SCP2 EEEE Kc,.SCP,
This is a somewhat unwieldy looking description, but
only rarely will it be necessary to break the

system down into its componénts whilst n, m, o, and p

will be small for most systems. Generally the

expression is far more manageable than it would
seem to be at first glance. The beauty of the system
is that it is in fact possible to isolate and describe
even the smallest'aspect of the system whilst Still
taking into account all other aspects of the system in
a general way. This allows great .flexibility in the

examination of any computer system. ~
3.4 THE DEFINITION OF PERFORMANCE

The definition of computer systems given contains within it
a complete description of the system structure and its

environment. It is also true that each element or resource

has a finite capability. For instance the memory of a

computer has a fixed size. Furthermore from the original
definition of performance it is known that the less loading
which a specific workload places on these resources the

higher the performance. Thus by determining the

30

performance of each 1individual element in the system
structure and integrating this performance with the system-
equation in place of the resource description, we will have
an equation which describes the system's performance for

the given workload.

The performance of each individual element is determined by
taking the nominal capability of the element, which is
known from the .system specification and measuring the
actual loading of the same element during system operation.
From this data the spare capacity is then determined and
éxpressed as a.fraction of the nominal capacity. This is

then the performance which is expressed mathematically,
Performance ‘= (G, - Gpp)/6yp

where G, is the nominal capability and Gop is the

measured load on the resource in question.

This then 1leads to the definition of each particular

element as shown in the example below.
IAP, = (G2 = Ga,)/G,
where G- is the nominal capability of information

acquisition and dissemination resource two and G2, 1is the

measured loading of the resource.

31

Determining the values for each particular element and
plugging these values into the matrix description of the-
system gives a | complete idescription of the system
performance. Adding the individual rows of the matrix

gives the performance of the particular global and adding

all the elements in the system gives the total systen
performance. This performance value has a maximum of one
since the workload constants for the entire system are

normalized and add wup to one whilst the maximum value of

performance for each element is one,
Expressed mathematically system performance is thus :

m
(Kpa.IPP.) + I (Ks..ISP.)
1 a=1

PSYS

il
e

P
(Ki. IAP_.) + I (Kco. SCP.) s 1
1 a=1

+
M0

a

This then gives the performance of the. system under a
pérticular wdrkload. If the system is now optimized the
improvement is shown as an increase in the spare capacity
for the 1load in question and the value of PSYS thus
incregses. The maximum value is now reached when = each
resource 1is totally unloaded for a particular workload or

in othgr words the workload in question places no visible

load on the system.

32

Expressing the performance in this way has the advantage
that it is 1immediately apparent which resources in thé
system are reaching maximum capacity. This is important

since these bottlemecks can seriously degrade performance.
3.5 PERFORMANCE OF THE SYSTEM ELEMENTS

This section deals with the detailed analysis of the
technique employed to determine the structure and
performance of each particular element 1in the systen.

Each type of global element is dealt with separatély.

3.5.1 The Information Processing Global

This Global covers all information manipulation done
by the system. In the simplest systeﬁ there is only
one processor.. It.~carries out all information
manipulation»according to predetermined rules and at

fixed rates. Such a system has only one Processing

Particular, the central processor.

In more complex systems there could be multiple
processors with differing functions. Many processor
types are identifiable and they vary greatly in
capability, The most complex type exists in large
single processor systems where one processor mnmust

handle memory management, input/output, data

33

manipulation and conversion as well as system control
processing. Other types are : peripheral processors, -
which only deal with input/output functions, memory
control processors which specificaliy care for system
memory or sections of memory, program prdcessors which
deal with information processing or, stated simply,
deal with "number crunching", and control processors
which exercise control over one or more of the above.
The functioﬁs of these processors can be combined to

form an even greater number of types.

Normally the capability of a processor is expressed in
terms of the speed with which it can process a given
task or benchmark or eise in terms of the number of
instructions it can execute_in # éecond. The former
method requires dedicated testing of the processor to
implement, has been found to yield greatly differing
results based on the particular benchmark to be used
and does not take the workldad into account in any way

and for this reason can be discarded immediately in

this study.

Looking at the second alternative usually uéed in 1its
most simplistic form the result is usually expressed
as a constant, being the average for all types of
instructions, for any one machine, each type of

instruction using a fixed number of basic machine

34

cycles to execute. No notice 1is taken of the
complexity of the processor instruction set or the -
length of code normally generated by different
applications. Furthermore the normal instruction
cycle time can in most machines be influenced by such
outside factors as cycle stealing and wait states
induced by slow memory or peripherals. Once again no
attention has been given to the workload's influence.
<
An extension of the second method has, however, been

developed where the instruction cycle time average is

replaced by a value calculated on the basis of
instruction mixes. Studies have been carried out by
a number of researchers to determine the instruction

usage distribution for various worklocads.

Examples given in Ferrani (1978) for standard
instruction mixes are given in Table 2. Instruction

mixes are, however, subject to a wide variety of

problems, Borovik and Neumann (1979) and Ferrani
(1978) discuss the use of instruction mixes and
conclude that they are often ﬁery sensitive to

workload variations and the same workload on different
systems often generate vastly different mixes as is

obvious from the examples given,

Furthermore, wusing instruction mixes, still does not

35

take into account the volume of processing produced by

a specific workload.

Table 2 Two standard instruction mixes
Instruction class Gibson mrix, Flynn mix,
£i(Z) ‘ £i(Z)
Load/store 31.2 45,1
Index 18.0)
Branch 16.6 27.5
Compare 3.8 i0.8
Fixed point 6.9 7.6
Floating point 12.2 3.2
Shift/logical 6.0 4,5
Other 5.3 1.3
100.0 100.0

Because of the obvious inadequacies of the normal
methods of expressing processor performance a third
approach was decided upon, Performance of a system

particular element was defined to be':
Performance = (G, -~ G,5,)/G,

Novw defining G, to be maximum processor performance

and G,, to be --the actual 1load on the system the

equation becomes :
P = 1 - G6,5/G,

where G,,/G, is the fraction of the processing

resource actually used thus :

36

1 - G,u/G, = 1It/Ut
where It 1is the system idle time in unit time and Ut

is the unit time,

IPP is thus directly given by the fraction of tine

that the system is idle and is expressed as :
IPP, = 1It,./Ut

This approach has severaiﬂadvantages. Firstly the
uée of instruction mixes and benchmarks is avoided and
the method is workload independent. Secondly the
method c¢an be applied directly to an operational
system without placing constraihté on the workload or
the user community and lastly ii'is “generally a fairly
simple exercise to measure -thé idle time of a

processor.
3.5.2 The Information StoragefGlobal

All systems operate under fhe control of a sequence of
instructions, the program, on a.set of data. For
this reason they mnust contain some element within
their structure where the program and: data, the
information, is stored. In the trivial case of
calculators the program is simply a single instruction

stored in the hardware configuration of the machine

37

and the data 1is entered 1into a register of the

machine. Thus the storage is simple.

In general, however, multiple instructions are
sequenced to create programs and these programs as
well as the data operated om, is stored in the system
memory. System memory can further be divided into two
classes, internal or main memory and peripheral or

external memory.

Internal memory is that portion of System memory which
can be accéssed directly by the processor, usually by
means qf a single instruction in the case of data
and automatically in the case of instructions. This
main memory can either be reserved exclusively for
programs or data or be used for both types of
information; furthermore, it can be either dynamic in

which case the processor can change the information

stored in it or static as in the case of Read Only

Memory.

External memory on the other hand is generally used as
mass storage and when required the specified
information is transferred to main memory for the
immediate use of the processor (by processor a part or

the entire system processor facility is meant).

38

All systems have a main memory element but the

external mass memory element is optional. When .
attempting to express the information storage global
mathematically the two types must be approached

individually., In the case of main memory the standard
against which the Main Memory Particular Element is
measured is the maximum memory directly addressable by
the processor, This can include memory controller
elements which allow switching between areas of
memory, Generally, however, the standard is based on
the size of the address bus. Thus, 1in the case of a
system with ab tventy bit address bus, the maximum
would be one mega-words. In addition this size
standard would have to take into account the actual
word size of the memory.

EXpressed mathematically the memory size is :
Main Max = 2=® x Ws in bits

where ab is the address bus width and Ws is the word

size in bits.

This expresses the memory size but the access speed of
this memory must also be takem into account. This
aspect is important as it determines the number of

instructions or the amount of data which the processor

39

can use in unit time givenm that the processor
instruction cycle time is faster than the memory access-
time. To express the memory capability correctly the
time element is taken as the instruction cycle time
divided by the access time provided that the value may
not be greater than one. This time factor then
multiplies the value of the memory particular element.
In many systems it will be one.’ Thus for any
particular area or type of main memory the nominal

"~ value of that Particular Element is :

ISP = Nw x Ws x Tf

where Nw is the number of words, Ws is the word size
in bits and Tf is the time factor.

To determine the performance of/ISP for main memory
particular elements the maximum values of Nw, Ws and
Tf and the actual valueé df Nw, Ws and Tf during
system operation are found and plugged into the
perfornance equation. Assuming that in most systems Tf

is one and Ws is a constant then ISP is expressed as
ISP, = (Nw, - Nw,.,)/Nw.

where Nw, is the maximum value and Nw,, is the

actual amount of memory used by the workload.

40

In the case o0f external memory the actual storage
elements are often interchangeable, the actual size is-
thus taken as the total amount of memory which can be
mounted on the system at any one time., Now while this
expresses the size of external memory it does not
express the entire capability of this memory. This

capability 1is also dependent on the ability of the

system to access this memory. This factor is in fact
more correctly a part of the information acquisition
and dissemination global. For compieteness sake an

external memory accessibility factor which eXxpresses
the ability_ of the system to access the external

memory is, however, included.

ISP for external memory elements is therefore defined

as :
ISP, = Nb x Bs

where Nb is the size in bits of the external memory .
device and Bs is the number of bits accessible in unit

time.,

Assuming now that the size remains a constant, which

need not 'necessarily be true but is often the case,

then the équation for performance becomes :

41

ISP, (Bs, - Bs,p,)/Bs.

1 - Bs,./Bs.

where Bs,, is the maximum data transfer rate and BSnp

is the actual lead generated by the workload on ISP,.

These expressions thus define memory performance for

the system,

3.5.3 The Information Acquisition and

Dissemination Global

Interaction with its environment is one of the most
important aspécts of any computing system. This
interaction can be divided roughly into two types,
namely machine-machine interaction. and man-machine
interaction. The. former covers such areas as
instrument control and autpmatic monitoring as well as

the process whereby external mass memory is accessed.

The 1latter covers the inclusion within the system of
all terminals, printers and plotters and such devices
as either dinput information directly from users or

output it in a form directly useful to the uéer.

The number of such devices or peripherals is vast and

the "tasks they perform numerous, Many of them also

42

have intelligence of their own and are thus systems
within themselves. The question thus arises as to
whether they should be included within the definitioﬁ
Qf a system or not, This decision in general will
depend on the type of system analysis for which the
particular system définition is being carried out and
this again depends on the bounds of the system as
decided upon when definition of the system environment
is carried out. Once a deéision has been made as to
" which peripheral devices constitute a part of the
system the devices must be included in the description

of the systemn.

In the system information is transmitted in terms of
multiples of bits or binary words, Thus associated
with each device will be an information transfer
rate which will be dependent on several factors,
Firstly each type of device will have a maximum
transfer .rate. Secondly transfer of data is also

dependent on several actioms which could result in

this data rate not being transferred continuously but

rather in spurts,

When comparing devices this comparison is made in
terms of the amount of data transferable in unit time,
Thus each individual device will be described in terms

of its theoretical maximum transfer rate, This rate

43

is ‘simply' the maximum baud rate of the device
multiplied by the number of bits transferred -
simultaneously. For serial devices the value is one
whilst for parallel devices it could be any number
although typically it is eight or sixteen. For
asynchronous parallel’ devices the baud rate is based
on the signal timing of each transfer although no

transfer rate is generally given.

The Information Acquisition and Dissemination
Particulars are thus expressed in terms of the nominal

transfer rates of the devices :
Trx = Bx X Du

where Try is the‘dat; transfer rate of device k; B, is
the cyclic rate of the device and Dy is the data path
width. D is one for serial devices whilst B cannot
exceed the baud rate of .the device in question

although in cases it éould be slowver.

Determining the maximum value B, for each device and

the actual value B,, in unit time gives us :

IAP., = 1 - Bn/Bnp

which expresses the performance of each device.

44

3.5.4 The System Control and Capability Glabal

This part of the system description is somewhat
conceptual iﬁsofar as no physical part of the system
is involved. Instead it deals with the manner in
which the system's physical elements co-exist and
carry out their individual tasks. It also describes
those tasks carried out by the system for' the user,

but which are not a direct part of the user's task.

The first factor of importance concérning this global
element is that it in itself consists of a program or
set of programs which run on the system, _sometimes in
conjunction with some hardw#re contained within the
system. " These programs are known as the system

software. The system software has three main roles.

Firstly it must make all decisions concerning
allocation of system ~resources to parts of the
workload, such as scheduling of programs to run,

allocation of main memory area and allocation of usage

of peripheral devices.

Secondly the system software must protect the workload
from self destruction or damaging effects within the
workload. This aspéct, known as system integrity,
prevents any one user from prejudicing the execution

of another's task. The third system role consists of

45

taking care of the organization and operation of
system resources, This includes file management on -
external memory, peripheral device drivers and
numerous other so-called utilities such as keeping
tables of information for use by user programs. This
aspect can be considered as a service performed for

the user,

At this poini it is necessary to men;ion that prograns
j
such as compilers, - loaders and editors are
specifically being excluded. This is contrary to the
opinion of some researchers in the field, notably
Drummond (1973) who contends that these prograﬁs are
provided in the system as a service to users much in
the same way as other utility programs and are thus
nqt part of thg workload . but rather part of the
operating system. The standpoint taken in this
project is, however, based on the premise that these
programs are not necessary-to system operation and are
tasks carried out by the system in direct response to
user requests. This approach is supported by Ferrani
(1978) who maintains that the workload is any task

completed due to some input from outside the systen,

These utilities are thus part of the workload.

The System Control and Capability Global is one to

which it is very difficult to ascribe a performance

46

value and different system software sets could be
regarded in a completely different light by different
parties. For this reason it is only possible to set
down guidelines regarding the important aspects of

system software.

1. The more complex a system the more prone it will be
to faults.

2. The system software must deprive the workload of
as little of the syétem resources as possible.

3. It must be capable of carrying out all those
tasks required of it by the workload.

4, It must be easy to use, this characteristic is
generally known as "friendlimess", and tolerant
to user error.,

5. It must protect all tasks and itself from faults

occurring in other tasks.

Using these guidelines a noﬁinal performance value for
the system software can be decided wupon based on
various inputs sucﬁ as a sﬁrvey of the users, the
system manager's experience, records of the usage of
the various utilities and the 1loading of system
resources by these utilities, Actual comparative
performance can then be determined by the addition or
subtraction of elements of this global and depending

on the nominal value 'of the element added or

47

subtracted compared to the whole system control and
capability global @ the performance index will vary,
bearing in mind that parasitic effects on the other

globals will also play a role.

Expressed mathematically each particular element will

have a value expressed by the equation :
SCP., = Uf x If x Lf

where Uf is the usage o0f the element, If dis the
'statistically rated importance factor of the element
based on a user survey and the system manager or

evaluators assessment and Lf is the loading of system

- resources,

Iﬁ the case of'thé SCPgno performance measurements are
made since an»element is either present or not present
but the value of the globallisbincreased or decreased
by inclusion or exclusion of the elements. It should

be noted that in many cases where the system control

and capability global is not altered during a

performance evaluation study this global will be a
N

constant and can thus be neglected in relative

performance studies,

48

3.5.5 The Parameters Required for System

Evaluation

Having dgveloped a theoretical approach to evaluating
computer system performance the next step 1is to

evaluate the theory.

From the definitions of the particular parameters it
is found that certain of the available quantities are
required in brder to analyze Computer Systenm

Performance, they are :

1. Processor Idlé Time,

-2, Dynamic Mepory Allocation.

3. Direct Memory Access Activity.
4; Input/Output Tr#nsfer Activity.

5. Variatiomns .in System Control and Capability.

Clearly the acquisition of this data is dependent on
the type of computer system involved. The equipment
to be used, although it will perform basically the

same function for any system, must be compatible with

the system or systems in question.

49

3.5.6 Restraints on Measurement Techniques

It is now known what must be measured and the next
step 1is obviously to develop measurement facilities.
However, at this point it is necessary to discuss
certain restraints which should be placed on these

techniques in order that the data acquired be valid.

Since a computer system 1is a complex and séhsitive
machine, intefferencé in its bperation by outside
sources could conceivably affect performance quite
significantly. Measurement techniques mnust fhus be
designed to give minimum or preferably zero-loading of
the system, and must be invisible to_the system in ité
operation in order that system decisions are'_:vnqt
affected. In cases ﬁhere loading is not 2ero or
invisibility not absolute the effects that do quqpr
must be quantifiable and ﬁust be taken into adcg;ﬁé.

These principles must be applied at all times.

50

4, EVALUATION OF THE COMPUTER SYSTEM ANALYSIS

TECHNIQUES

In the previous chapter a mathematical expression was
developed which expresses system performance. The actual
global elements of performance were expressed in terms of
measurable quantities. Gathering the data to be used‘ in

the implementation of this theory is the next Step.

It is at this stage that the project must swing from a
totally generél theoretical study to a more specific one.
The major reason for this is that, although the
measurement techniques which are wused are conceptually
system independent, 1in practice, their implementation
‘must allow for the structure of the particular system.
Bell and Thorley (1985) conclude, however, after a study of
various systems and analysis techniques, that even the most
system spécific hardware and software tools can be modified
to operate on a range of systeﬁs and din particular the

principles applied are Almost always transferable with a

modicum of effort.

In this case the system to '‘be studied is the Hewlett-
Packard 1000 F minicomputer system of the Department of
Electronic Engineering of the University of Natal running
under the Hewlett-Packard Real Time Executive IVB software

package. The system is used in a research and development

51

role and for "computer modeling of engineering systems,
whilst it has a secondary role as a real time controller of

experiments.
4.1 WHEN IS OPTIMIZATION REQUIRED?

Up to this point system performance optimization and
measurement has been discussed in general terms. A
question which arises, ‘however, is when 1is optimization
necessary. Obviously a system which is only used
occasionally and only carries a small load will not benefit

from optimization.

In fact optimization can only really become effective when
the system in question starts "hifting the stops"; in other
words when one or more elements of the system are being
extendgd to their full range for a significant fraction of
the time. ' Determining whether this happens or not, is not
necess;rily a simple matter but it is possible to gain a

good insight into the 1loading of the system using a few

simple techniques.

Bell an Thorley (1985) suggest three software tools which
are always useful to the analyst who wishes to acquire-a
first order indication of system performance. The first is a
CPU soaker which measures CPU utilisation and the others are

an I/0 logger to log system I/0 activity and a CPU sampler

52

to determine CPU tasks at random intervals, The tools used
in this study are a CPU usage monitor which corresponds to
the soaker and a dynamic wusage display which combines

elements of the sampler and I/0 logger.

4.1.1. The System Usage Monitor and Dynamic

Usage Display

These two techniques were developed to attempt to gain
an insight into the actual loading of the systen, In
many systems just such tools as described here are
built into the actual system. The techniques
described are both software techniques and thus
inherently they must affect the 1loading of the system,

but their effect is negligible.

Going back to the definitibns of the different global
parameters it is dbvious that processor throughput is
a major factor in the perfo£mance of any sysfem. It
would thus seem to'be a reasonable supposition that
processor throughput must give a good indication of
system loading, it is after all the system resource
most directly coupled to the running of workload
programs as well as system programs. The system usage
monitor makes use of this fact by measuring the system
idle time over a given period, the more idle time

measured, the less the loading on the system.

53

The dynamic wusage display plays a different rxole.
This program samples the entire system status at a-
predetermined interval and displays the status of
system hemory and all programs active on the system at
such times. It also displays the system usage during
the previous interval. The program is based on an HP
utility program called WHZAT which is a system status
display progranm., An example output from this program

is shown in Figure 2.

R

S T T T T T T e Bh%
* P£., SZ. TP. PRGM. TP, STTS. PRIOR. *
e L LT LT T Ty P T L P ey
* 1 6 RT SMP 2 DORMNT 30 =*
2 14 RT ®
* 3 28 BG : *
= 4 20 - BG PASOO 3 SCHEDD 32767 *
= 5 14 BG PAS1A 3 TM LST 44 =
% 6 88 BG M PASO4 3 EXCTNG 100 *
= 7 28 BG C ®
* 8 20 BG C *
* 9 20 BG C ®
* 10 20 BG C ®
* 11 88 BG M *
* 12. 28 BG S , *
* 13 .18 BG S WHZAT 3 DORMNT 41 *
* 14 14 BG S LGOFF 3 GEN WT 90 +#*
* 15 14 BG S LOGON 3 GEN WT 50 *
* 16 14 BG S PAS87 3 SCHEDD 43 %
* 17 68 BG M *
* 18 28 BG S %
* 19 20 BG S FMG87 3 GEN WT 30 =
* 20 20 BG S RSPN$ 3 GEN WT 5 =%
* 21 _ <Partition Undefined> *
% 22 <Partition Undefined> %
* 23 <Partition Undefined> %
e T L R Y X A A A ARy
TIME: 15 07 45 CPU USAGE: 972

Figure 2 Output of dynamic usage display

4

54

Once it has been determined that the loading of the
systen is sufficient to warrant performance -
optimization the performance analysis techniques can

be implemented.
4.2 THE PERFORMANCE EQUATION FOR A REAL SYSTEM

The first step in analyzihg a computer system is to
formalize the system structure. In this case it was felt
that it was beybnd the scope of the'projectvto analyze and
optimize an operational system. Instead an attempt was
made to illustrate the various concepts and techniques and

for this reason certain limits were imposed.

Firstly the workload was fixed and consisted of six
programs which ran continuously. Secondly only those
elements of the computer syétem which were necessary for
operation of the: system under the named workload were
included in the Computer Sysfem. Describing equation and
lastly only certain dynamically variable parameters within
the system were varied to show the technique's capability
to register changes in performance, thus enabling the user

to optimize system performance accurately for a particular

workload,

Appendix D describes the entire experimental methodology

followved,

55

4.2.1 The System Structure

We begin with IPG the processing global which has only
one PE since the HP 1000 is a single processor system,

Thus :
IPG = 1IPP,

Looking now ét the Information Storage Global, ISG, we
have two barticulars ISP, and ISP,. ISP, is the
main memory alloéation at any time. This is done
dynamically by the system and consists of allocating a

memory partition to a particular program.

In the HP RTE-IVB operating system memory is allocated
in the form of partitions, dirrespective of whether a
program fills all or only part of the partition. - If
all programs are thus smaller than the smallest
partition available, then fhe available memory is
directly proportional to the. number of partitions
available. 1In the tests conducted on this system this
was true. Furthermore the total amount of available
memory on the system exceeded the maximum requirement
by a large margin. The total amount of available memory
was thus reducéd to fit the exact needs of the tests in
order to ensure a controlled situation at all times and

was also reduced below the maximum requirement to

56

demonstrate the effects on performance of a shortage of
memory. At no time was the size available made larger:
than the amount required to load all six programs in

the'workload at one time,

Only three Information Acquisition and Dissemination
Particulars were defined, namely three terminals for
input/output, running at 9600 baud. Each of these was
connected to a standard HP buffered interface card.
All three devices were identical and had sequential
priorities in the HP 1000's dinput/output priority
structure, It would have been possible'to'honitor the
utilization of each channel»individually but this was
deemed ‘unnecessary since the figures'of'interest in
this particular case were overall performance of the
system rather than dndividual devices. For tﬁis
reason IAG was merely regarded as 3 x IAP, and
measurements yere done accordingly, the total mnumber

qf transfers being recorded rathér than the transfers

per channel,

The last global which is ﬁsed in the equation is the
System Control and Capability Global. In this
exercise it is not, however, necessary to give values
to this global since it remains a constant throughout.
We can thus define SCG to be 1 at all times since we

are not changing the system control and capability,

57

The entire system is thus :

r 1 - '1
IPG I1PP,
ISG ISP, ISP.
SYSTEM = =
' IAG IAP, IAP, IAP,
LSCG 1
4.2.2 The Workload Characterization
This is done in two steps. The first step is to
obtain the usage factor on the system contributed by

each program or type of program,

A software suite was developed for thg HP 1000 system
which records program activity, reduces the data and
calculates the usage factors. It is a system which
actually runs on the computer system of dinterest and
s0o would actually degradé the performance of the
system. This is, ‘h6wever, regarded as being
negligible. The actual degrédation figures were
calculated to be less than 2Z but even were it
significant in terms of performance, the data recorded
would still be wvalid if it 1is accepted that the
system's users in any working day woﬁld require a
certain set of tasks to be done and if the performance

becomes degraded the workload would merely take up

58

more of the system idle time. Thus only when the
system 1is running at full capacity during an entire.
_recording period will the recording program lose any
data since any additional load which would have run
during the time taken up by the recording software

will run outside of the recording time.

Accepting that this data wouid .be valid the entire
workload was characterized using this software. The
data received from these programs was verified for
repeatability using sampling frequencies of 20, 30, 40
and 50 ms and was within one percent -for all cases
over any measurement period during which the total
workload over the period was the same. In tﬁe case of
the test system the workload consisted of six programs
of three types. These programs were drawn up with the
objective of'excercising the various aspects of the
system. They were also intended to berdifferent but the
intention was mnot that é particuiar program would

excersize a particular resource,

The first program type is CRNCH, a program which places
a relatively large burdem on the processing resources
of the system along with loading on the external nemory
resources. One copy of this program was included in the
sample worklocad. FILE is a program which placés a

relatively large loading on the input/output

59

resources, together with loading the disc or external
memory and the central processor. Two copies of théi
progfam were included in the sample"workload. RESP
is a short program which loads the processor and the
input/output resources. Three copies of RESP were
included in the workload. All the programs had the

same priority.

Using this .dummy workload the program significance
factors as shown in Table 3 and 4. below were
calculated. The reason that there are two sets of
data is that when the System structure changes, there
can be, as is seen in this case, a sﬁift in the
significance of programs due to competition between
programs for scarce resources or otherwise, In this
case the available memory was artificially reduced
with major impact on performance as shall be seen
later, Within a single system configuration, however,
the repeatability of the méasureménts was checked and

found to be within 1% for all cases, as it should be

when the workload remains constant.

Table 3 Program significance factors for systen
with maximum memory

Program CRNCH FILE RESP

Sig. Factor 0,572 0,266 0,162

60

Table 4 Program significance factors for system
with minimum memory

Program CRNCH FILE RESP

Sig. Factor 0,328 0,354 0,318

Having determined Ug the usage factor for each
program, the next step is to look at the need factors
Iy, which are determined for each program type and

particular element in the systen.

To implement the system practically, as described in
Chapter 3, three tyﬁes of data are required. The
progran listing and load map are automatically
generated by the system but the program operation
histogram is mnot available. However, a hardware
analyzer was reqﬁired to obtain the data needed for
the system performance analysis>and this machine was
designed to have a histogram output facility. Using
this data it was a siﬁple matter to determine the
need factors by calculating areas under the relevant

parts of the graphs as determined from the load map

and listings.

On the following pages are shown the histograms load
map and listing of program FILE as an example of the
data used to determine the workload constants. Mixed

listings are not included due to their length but were

61

ACCESSES X 1293

ACCES3ES x 1%y

25.00

2000

15,004

10004

5.004-

0.00

AL ay '] l

!
[WA

i

26576 5330 46450

Figure 3 Histogram of operation

1

107570 150710
0<T-ADDRESS

of program FILE

6.00 T

4.00

2.00 4.

0.00

26000

32630 36560 42520

NI R llﬂl...._ u&.n_m._lL.l[| I | L gl

46450 52410 56340
OCT-ADDRESS

Figure 4 Detail of program FILE histogram

Il
£F

£
ROR

"y

0PN

CLOSE
RZADF
LURQ

PAUSE
LUTRU
OVRD.
«DADS
LD

RAPAR
.DDI

SZS3N
R/u3

« DG

.DIO0.
.EI10.
< FIICV
rH7TIo
. 10Z2
JUIAP
PAU.E
PUANE
. DDC

. DIV

IFTTY
SALRN
S$OPEN
RWSU3
RUNDS
REIO

SSIHVE
ERO.E
.0PN?

Load map of program FILE

Address

Begin

32042
37706

37751
40332
40547
42057
42672
42572
42701
42702
43012
43160
43225
43526
43544
43703
43713
43775
45212
47455
50707
51023
51035
51037
51110
51122
51130
51216
51334
51511
52063
52213
52340
52433
52434

End

37705

37750

40331
40546
42056
42471
42571
42700
42701
43011
43157
43224
43525
43543
43702
43712
43774
45211
47434
50706
51022
51035
51036
51107
51121
51127
51215
51333
51510
52062
52212
52337
52432
52433
52457

10 PACES RELCCATED

LINKS:BP

/LOADR:FILE

JLOADR:SEND

PROGRAM: EG
READY AT 10:35 A

920067-16125
92067-16125
92067-16125
92067-1X270
24998-1X253
92067-1X303
92067-16125
249593-140306
24993-1%045
92066-1X025
24993-1X040

92067-16125"

920¢7-16125
249935-1X0406
24993-1X331
24998-1X32¢9
24993-1X333
24993-1X328
24998-1X321
24993-1%296

'24998-1X254

92063-1%035
24998-1X039
249953-1X042
92067-1X295
920067-1X271
92067-16125
92067-16125
92067-16125
92067-1X275
92067-1X4383
24998-1X249
26993-1X325

REV.2101
REV.2101
REV.2101
REV.2013
REV.2101
REV.2013
REV.190C3
REV.2001
REV.2001
REV.2101
REV.2001
REV.1903
REV.2101
REV.2001
REV.210]
REV.2101
REV.2101
KEV.2101
REV.2101
RZV.2101
REV.2001
REV.2101
REV.2001
REV.2001
REV.2013
REV.2013
REV.1903
REV.2101
REV.2101
REV.2013
REV.2013
REV.2001
REV.2101

10 PAGES REQ’D

LOAD:TE

coMI0

SUN., 10 JAM., 198

310615
301014
810616
791024
801007
790223
780526 . -
750818
78C318
300919
731021
730413
801013
750313
800929
800¢29
800709
800929
800731
800731
750701
800919
780318
750818
790118
770715
790103
800303
810617
790316
800129
750701
800803

NO PAGES EMA
N:XC

NO PAGES MSEG

Listing of program FILE

0001
0002
0003
0C04
0005
00056
0007
0008
0009
0010
0011

0012°

0013
0014
G015
0013
0017
0018
001¢
0020
0021
0022
0023
€024

0025

CC26
0027
0028
0029
0030
0031
0032

0033 -

0034
0035
0036
0037
0028
0039
0040
€041l
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0C52

27

30

31

)
"~

400

4,1,

PPOGRAM FILE ,3,99

DIMENSION IMNAMI(3),IDC31(144),BUFL(64)
DIMENSION BUFA(1200)

DATA INAM1/2H'F,2ilIL,2HER

LU=1

TiUi=0.0

CALL OPEZN(IDC21,IERR,INAM1,0,0,-52)
CALL FEROR(IERR) '
DO 9 IC=1,1100
" BUFA(IC)=0.0

CONTINUE

IM=0

CALL READF(IDC31,IERR,BUFI,128 IY)
CALL FETOR(IZRR) N

IF (IL.EQ.-1) GO TO 27

DO 25 IS=i,IL/2

:-F%(T‘TTS) 3UFLI(IS)

3UF1(IS)=0.0

CONTINUE

IM=I¥1IL/2

GO TO 25

I14=0

CALL CLOSE{IDC3],IERR)
CML‘E@MIRM _

CALL OPEN(IDCSI1,IZRR,INAM1,0,0,-52)
CALL FZ\OR(ILR\)

THUH=8UFAQD)

T = THUM + 1.0

BUFA(1)=THU

DO 31 IX=1,50

BUF1(IX)=BUFA(IX+1M

IF(IN.GT.IM) GO TO 32

CONTINUE .

H=IN50 _

CALL WRITF(IDCSI,IERR,BUF1,100)
CALL FEROR(IERR)

GO TO 30

CALL CLOSE(IDCBI,IERR)

CALL FEROR(IERR)

FORMAT(" ANOTHER ONE AND ")

DO 277 IV = 1,200

WVRITE(1,400)

CONTINUE

wRITa(LU,ISO)TaJw

ORMAT("' COMPLETED THE “,F8.1," ‘TH RUN "/

°" ANOTHER IN 10 SECONDS. ") :
CALL EXEC(12,0,2,0,-10)
IF(TNUH.CE.I0.0) GO TO 99

GO TO 1

STOP

bad 34
aes

used to determine the actual activities carried
out by each line of FORTRAN code. 1In Appendix B a
complete set of data is given for all three the -

programs CRNCH, RESP and FILE.

The only aspect of the of the program resource
requirement not obtainable using this technique is
the memory requirement. Any program running

under the HP RTE-IVB bperating system, however,

requires at 1least one partition of memory,
independent of program size. Thus a program
which only fits into the largest pértition is
assignedv an importance factor of 1. Other

progfams are assigned importance factors eqﬁal to
the memory size in pages, divided by the largest
partition size in pages. Thus_ for a program
requiring ZQ paggs with a largest partition size
of 80 pages, the importance factor is 0,25.

Using the techniques déscribed and the information
given in Appendix B the néed factors for the three
progranm types were determined. It should be noted
that histograms for various using various sampling
f;tes were analysed and variance over the whole
range of sample frequencies was found to be less

than 1% in all cases between comparable values for

the total number of samples taken,

65

Table 5 shows the need factors determined for each of

the three program types.

Table 5 Need factors per particular element

CRNCH FILE RESP

Ip, 0,40 0,36 0,57

Is, 0,14 0,12 0,08

Is, - 0,24 0,16 0

Ii, 0,02 0,25 0,23

Ii, 0,02 0,25 0,23

Iia : 0,02 0,25 0,23

Ic, 0,11 0,11 : 0,12

Combining these figures with the significance factors
already determined and knowing that the priority
factor P is the same for all programs and equal to 1
and further combining the three particular elements
IAP,, IAP, and IAP; into one, gives a workload

description as follows :

CRNCH FILE RESP TOTAL
-Kp,- —0,228 0,0958 0,0923- —0,4169-
Ks, 0,0801 60,0319 0,0130 0,1250
Ksa = 0,1373 0,0426 0,0 = 0,1798
Ki, 0,0114 0,0665 0,0373 0,1152
Ke, 0,1144 0,0293 0,0194J 0,1631

66

for the system configuration with maximum memory.

CRNCH FILE RESP TOTAL

K1 | (60,1313 0,1274 0,1813 (0,4399)
Ks . 0,045 0,0425 0,0254 0,1138
Ksa| = |0,0787 0,0425 0,0 = lo,1354
Ki, 0,0066 0,0885 0,0731 0,1682
kKe.| - |o,0656 10,0389 0,0382 0,1427

el I A J

for the system configuration with minimum memory.

With these matrices énd the gloﬁél desqribing
functions it is now possible to obtain figures
describing the performance of.the system relative to
every part of the workloadvghd every elemént of the

system, for any variable parameter in the system

configuration.
4.2.3 The Systenm Parametéféuto be Measured

Using the definitions for the structure of the systen
given in 4.2.1 the various PF are now expressed in
terms of system pérameters and those parameters which
need to be measured are thus identifiéd. Looking first

at the Information Processing Particular it is

expressed as follows:

67

IPP = 1 - Idle Time/Unit Time = 1 - It/Ut
In the case of ISP the external memory particular the.
actual allocation of memory was ignored>since the
available disc memory was far greater than the amount
required and this pafticular was only measured in

terms of the transfer rate. Thus :
ISP, = 1 — Nb X Bs/Nboux X BSpmax

Where the values of Nb and Nb_,.. are the same and

BSmax 15 defined to be 1.14M words per second.

The expression for IAP,, IAP, and IAP, is as shown if
all three terminals are lumped together and

considered as a single device :
IAP, = 1 - Cx/2880

where Cx is the number of transfers made to all three
devices since converting the baud rate of 9600 baud
for a single device to words per second gives a

maximum of 960 words per second for a 10 bit word.

The only other particular not covered at this stage is
the main memory allocation. This is done in software
in the RTE-IVB operating system in the tables and is

not accessible using a hardware monitor. For this

68

reason a2 small memory resident routine was developed
which interrogates the tables and stores this data.
This does, however, degrade system performance, but
since it was a constant value, the effect was not
important in relative measurements of the type
conducted in this test. | Furthermore, since the
allocation is done in terms of partitions or segments,
the parameter was expressed in terms of the fractien
of segments' allocated at any time, For the
configuration with ‘maximum memory sixX segments were

available and with minimum memory only one segment,
Thus the particular can be expressed as :
ISP, = 1 - Nseg/NseBmax

It must be no;ed, however, that in a system where
memory size is a critical factor the systenm employed
would not be satisfactory and in fact in wvirtual

memory systems a totally different approach would be

required.

The system's performance is now expressed as:

PSYS

0,4169(1 - It/Ut) + 0,1250(1 - Nseg/6)

+

0,1798(1 ~ Bs/1,14M) + 0,1152(1 - Cx/2880)

+

0,1427(1 - 1)

69

for the system with maximum memory and

PSYS 0,4399(1 - It/Ut) + 0,1138(1 - Nseg/1)

0,1354(1 - Bs/1,14M) + 0,1682(1 -Cx2880)

+

+

0,1427(1 - 1)
for the system with minimum memory.

SCP idis in each case equal to 0 since the systen
control and capability element is constant for all

tests,

The structure and workload description are now
complete, "he next step is to look at the parameters
to be measured to determine the system pgrformance.
There are four particular parameters which must be

measured as listed below :

1. System processor idle time.
2, Main memory allocation. ~
3. DMA transfer rate.

4, Input/Output transfer rate.

Measurement of these parameters camn be achieved by
either hardware or software means but the ideal is
method is a hardware monitor which would be dinvisible

to the system. This approach is generally accepted and

70

is confirmed by studies carried out by NiChdls (1985)
who states that the additional complexity in the data
reduction to allow for software loading in the target
system is virtually impossible to quantify accurately.
A hardware analyzer is thus the 1logical option where
possible and in fhis case such an analyier the COMPAS
or Computer Performance Analysis System with all the
required features, as described in Appendix A, was
developed. fhe decision was taken to develop such an
instrument rather than‘ purchase a commercially
availablé system, a number of which exist for two
reasons, Firstly the commercial systems were all
prohibitively expensive and secondly a study of = such
systems coﬂfirmed the opinion of Bekkens and Decauty
(1976) who concluded that a dynamically ‘variable
analyzer, although complex to use, génerally provides
a systenm whiéh far oufierforms hardwired or patchboard
systems. They also conclude that systems commercially
available all fail to provide such facilities, Nichols
(1985) aéiees with this finding and further lays down a
process for determining tﬁé required configuration of
system. The COMPAS meets and exceeds all the criteria

mentioned in this process.

This instrument was used in conjunction with a suite
of data reduction programs, which vwere also developed,

to produce the data which was used to analyze the

71

performance analysis theory.

4.3 TEST RESULTS OF A SIMPLE SYSTEM ANALYSIS

\

Analysis of the system to illustrate the operation of the
techniques developed was done in‘tvo stages. Firstly thé
systeﬁ was configured in the way described previously and
results were obtained for various settings of processing
time gquantum and'input/output buffer sizes, '_ The system
was then reconfigured with reduced memori.énd certain tests

redone to illustrate the changes produced by reconfiguration

of the system ‘resources.

The results obtained from these tests are shown in tabular
form in Tables 6, 7, 8 and 9. Figures 5, 6,‘ ?- and 8 show
a sample set of gréphs for a particular variable setting.
full sét of graphs aré shown in Appendix B. These graﬁhs
are extracts of the tptal set of data recqrded for each
variable with the no-load situation already iiéorporated and
illustrate the dynamic nature pf the data.recorded.They do
not depict the entire /set of _readings, numbering
aproximately 100 000, recorded for each variabie, which wvere
used to calculate the values shown in the tables nor is
there a direct time correlation between the graphs. - The
value depicted in the graphs must thus be subtracted from
one to get the actual instantaneous free resource factor in

each case, Results 1 to 6 relate to the maximum memory

72

S@.

A0.

3a.

2.

PERCENT

Figure

19a.

75.

50.

PERCENT

Figure 8 Utilization graph of IAP, - Test 1

10.

.ol

Z5.

. 20

5]}

2a.

B

ool

oL

a.

7 Utilization graph of

20

co

SQ. PO

100.

ISP, - Test 1

20

150. 0P

201

oL

2]ul

4|28 8

i

|

a.

ul

50. 8O

100,

1%

28

80. 20

60. 3l

40. DAL

- PERCENT

Q.

20. BB.L

29

@a. Bp

25. 00

50, B9

75. 00

Figure 5 Utilization graph of IPP, - Test 1

120.

aa.

B8@.

70.

60.

PERCENT

40.

50.

2o

100. 20

125.

oe.L

eal

5]

Bo_

e

1]

o.

Do

25. 08

50. 00

75. PO

100. 0D

Figure 6 Utilization graph of ISP, - Test 1

125. 0P

150

each case. Results 1 to 6 relate to the maxXximum memory
configuration in each casé, whilst 7, 8 and 9 refer to the
system reconfigured with reduced memory. The results given
were takem with the workload as described over a fixed time
period. Each program was run repeatedly at fixed

intervals thus giving a constant workload.

A total of nine sets of results were gathered with system
configurations as shown in Table 6. The data collected by

the system was s#ored in the form of a large array. The
data was then reduced to give a mean value and mean value
plus. standard deviationﬁ for each gef of data. These

results are shown in Table 7 and Table 8.

Table 6 System configuration and variable settings for
test runs '

Run No. Timeslice I1/0 Buffer Memory
Quantunm - Limits
1 50 mS 100,400 words maximum
2 | 20 mS 100,400 words maximum
3 150 mS . 100,400 words maximum
4 50 mS 50,200 words maximum
5 ’ 50 mS 200,700 words maximum
6 20 mS 200,700 words maximum
7 50 mS 100,400 words minimum
8 150 mS 50,200 words ninimum
9 20 m»S 200,700 words minimum

75

Table 7

Mean percentage usage of system resources

IPP, ISP, ISP, IAP, SCP,
1 33,08 79,20 4,62 35,60 100,00
2 33,08 78,60 4,52 35,71 100,00
3 33,40 79,50 4,50 35,65 100,00
4 33,19 | 80,30 4,64 35,61 100,00
5 32,98 80,10 4,52 35,74 100,00
6 32,69 79,71 4,69 35,62 100,00
7 42,36 62,80 35,91 35,74 100,00
8 42,42 64,40 32,37 36,64 100,00
5 46,30 61,30 57,96 35,62 100,00
Table 8 Mean percentage usage of system resources plus
standard deviation
IPP, ISP, ISP, IAP, SCP,
1 50,30 99,36 15,45 56,30 100,00
2 49,82 94,17 13,69 57,38 100,00
3 50,66 99,78 19,56 54,51 100,00
% 51,14 95,26 14,50 55,01 100,00
5 52,34 97,94 18,28 57,23 100,00
6 54,43 98,16 15,94 57,76 100,00
7 52,08 71,62 65,35 48,46 100,00
8 55,68 79,23 59,10 47,15 100,00
9 49,11 65,83 75,24 42,99 100,00

The results depicted in these two tables are the

76

percentage

of the available performance for each global type utilized
by the workload. The system overheads were not taken into
account except where such overheads were directly generated
by the workload as is shown by the increased utilizations
for the configuration with minimum memory brought about by
the need to swap programs in and out of memory. Using these
results the mean performance indices were <calculated
according to the equation developed in section 4.2.4 which

states that :

PSYS = Kp;.IPP; + Ks;.ISP; + Ksa.ISP, + Ki,.IAP,

+ Kca .SCP1
These results are depicted in Tables 9 and 10.

Table 9 Mean performance index

CRNCH FILE RESP TOTAL
1 0,5386 0,5795 0,5462 0,5506
2 0,5397 0,5801 0,5464 0,5516
3 0,5372 0,5780 0,5440 0,5491
4 0,5366 0,5777 0,5447 0,5488
5 0,5379 0,5786 0,5457 0,5500
6 0,5393 0,5801 0,5480 0,5515
7 0,4493 0,5153 0,5061 0,4908
8 0,4551 0,5166 0,5024 0,4919
9 0,3828 0,4680 0,4851 0,4455

77

Table 10 Mean performance index with standard
deviation

CRNCH FILE RESP \TOTAL
1 0,4146 0,4242 0,3843 0,4104
2 0,4264 0,4323 0,3953 0,4220
3 0,3998 0,4203 0,3876 0,4030
4 0,4163 0,4309 0,3858 0,4152
5 0,3982 0,4117 0,3717 0,3975
6 0,3950 | 0,4077 0,3584 0,3921
7 0,3243 0,3832 0,4012 0,3767
8 0,3151 0,3820 0,3908 0,3629
9 0,3222 0,4063 0,4485 0,3922

The figures illustrate the constant performance achieved
within a single system configuration. The Performance
Index 1is now recalculated wusing the mean value plus

standard deviation.

The data provided in this section when seen together with
the graphical data in Appendix B provides us with a fund of
information concerning the operation of the system as well
as the needs of the various program types used. Much of
this information is clear from nature of the programs, but
the high degree 0of correlation between what is expected and
what is. measured is significant, A number of the more

important aspects are discussed in the next section.

78

4.4 DISCUSSION OF RESULTS

It must be remembered that the tests done on the system are
aimed at illustrating the relevance of the Performance
equation and the measurement techniques, and not te attempt
to optimize the system for any workload. The sample
workload was deliberately kept simple to enable the results
to be compared with expected trendé based on general
knowledge of the éomputer system and the workload's demands

on the systenmn,

For this reason no quantitative conclusions are reached,
rather the various aspects of the results are inspected to
ascertain whether they conform to predictions based on
knowledge of the worklocad used and the HP 1000 system

running under RTE-IVB,

4.4.1 General Loading on System Resources

Looking at the data in Table 7 in conjunction with thg
graphs in Appendix B three tremnds are evident. Firstly
the mean value of the resource utilization for each of
the four significant global parameters for tests sets
1 to 6 are virtuglly identical. 1In fact the variation
appears to be 1% for ISP,, 1IAP, and IPP, which is

within the bounds of the maesurement accuracy of the

79

COMPAS system. The variation of approximately 2% for
ISP, is also not unexpected due to the lower
measurement accuracy achieved for this global as is.
shown by the graphs. The resolution of only 202 shown
in the graphs is due to the nature of the measurement
technique, although the relative accuracy between sets
of data was confirmed to be aproximately 2% when the

data was averaged.

It is to be éxpected that these figures would be very
close since we are dealing with a situation with fixed
resources on which the workload makes fixed.demands in
a fixed time period. This is due to the facf that the
programs in the workload were time scheduled to run at
fixed periods during the testing. ‘What is important
though is that the graphs of resource utilization
against time vary'ﬁidely showing the dynamic nature of
the instantaneous loading on the system, whilst still
resulting in the same mean 1loading over a perioa of

tinme,

Secondly when we lodk at the last three sets of test
data we find that in two cases the mean value is nearly
the same, but in the case of test 9 there is a
significant difference. This appears to be due to the
fact that one of the resources, the external memory

global, was reaching the maximum possible utilization

80

and thus the processor utilization was being degraded
due to the processor having to wait for programs to be
swapped in and out of memory. The memory utilization.
also appears to be degraded., This may be explained by
the fact that the memory is unassigned whilst swapping
is in process. This test was also accompanied by an
obvious slowing down in the running of programs during
this. phase of the testing as displayed by the rate at

which the terminal output was updated

The overall performance figures calculated for this
test also show that with this system configuration the
performance of the system is significantly degraded

with respect to the workload in use as shown in Table

9.

Looking specifically at tests 7, .8 and 9 we would
expect the very trends displayéd when we consider the
system parameter settings. If we shortem the time
quantum then we get an inc}eased fréquency of swapping
and this increased frequency of swapping must affect
the program which uses the most processing time and
external memory, as is shown in Table 10 where the
performance dindex for program CRNCH is reduced by
approximately 72 for the test number 9 with respect to

tests 7 and 8. For program RESP, which is the least

affected this reduction is less than 2%.

81

The graphs of the various tests also show certain
significant patterns. The first is the cyclic nature of
system resource utilization which is directly as a
result of the programs being time scheduled. The cyclic
operation is not, however, evident in the last three
tests as it appedrs to be overridden by the systen's
need to swap programs in and out of memory. Secondly
this c¢yclic nature is modified 1in the case of IAP, by
the buffer size parameter. Particularly in the case
of tests 5 and 6 where the buffer limits are changed
to 200 and 700 we find that the cyclic frequency is
greatly increased and approaches 100%Z utilization more
4frequent1y. This tells us that although the mean
utilization is still the same the worst case situation
is degraded, something undesirable in the case of an
interactive program, for instance; where s&étem

response time is important.

Having 1looked at the resource utilization data in
general we now look at the picture which is presented
when the workload description is incorporated. We look
‘now at the figures in Table 8. Tﬂe figures shown are
obtained by summing the mean aﬁd the standard deviation
in each case. The reasoning here is that it is

desirable to maintain as constant a 1loading on the

system as possible. Thus when seen in conjunction with

82

the mean value the best case would be the one where the
mean value is as highe as possible whilst the standard
deviation should be as low as possible, dindicating a.
more constant loading on the system. The standard
deviatioh is a measure of the variation ih the
recorded data and this sum 1is a good general
indication of the instantaneous worst case utilization
of any resource, The use of mean value plus standard
deviation as a measure of 1iastantaneous variation in
loading is é well recognized statistical technique and
is strongly supported by Jack (1985) who contends that
this measure 1is in fact often more relevant in
performance studies than the use of simple mean values.
He states that this measuré is particularly important
since a high sfandard deviation immediétely conveys to
the analyst the possibility of serious problems, When
the values are further combined with time related
graphical data, as is the case here, it is also
generally possible to identify these problem areas,
which leads to a far clearer understanding of the

critical areas in system performance.

Mean value plus standard deviation is also used in this
case to find the best parameter settings between two
or more cases Wwhere the means are substantially the

same sSince a more constant utilization of resources is

deemed desirable.

83

It should be noted that in the case where the mean
value for a parameter begins to approach the maximum.
level the standard deviation for the parameter will be
substantially affect by skewing and thus becone
somewhat less relevant. For the purposes of fhis study
these figures which dincorporate the standard déviation

are thus most valuable when looking at tests 1 to 6.
4.4.2 System Performance with the Test Workload

We now move more specifically to a discussion of the
system performance as it appertains to the sample
workload. In Table 11 the results for Performance
Index with Standafd Deviafion are rated in ofder from
best to worst for each program and the entire
workload. These figures when seén in conjunction
with Table 10 allowv us to analyze the performance of
the various parameter settings and work1oads. The

table shows the order of mérit by test number for the

tests done with maximum memory. The values of the
timeslice dquantum parameters in mnS and thé buffer
limit settings showing lower and upper bounds are also

given,

Using this table it is possible to draw certain

conclusions. Firstly for a buffer parameter setting

84

of 50/200 or 100/400 words the performance index is

Table 11 Performance index in order of merit

CRNCH FILE RESP TOTAL TIME BUFFER
mS low/up)
1 2 2 2 2 20 100/400
2 4 4 3 (1503 4 50 50/200
100/400)
3 1 1 4 (503 1 50 100/400
50/200)
4 3 3 3 (503 3 150 100/400
' 100/400)
5 5 5 5 5 50 200/700
6 6 6 6 6 20 200/700
better for a shorter time quantum. Although in the

case of RESP.this does not appear to be true we see
the results are spread over a span of only 0,32, well
within the resolution of - the system, namely 1Z
overall, thus the fact that test number three is
second best could | conceivably - be an error;
FPurthermore in ‘all cases, looking at Téble 10 we
see that, although test 2 appears to give the best

result, tests 1, 3 and 4 are all very close whilst 5

and 6 are clearly poorer.

From the results it can be deduced that the system rwas
very sensitive to the larger buffer size especially
in the case of RESP with a 20 mS timeslice quantﬂm.
Secondly in all cases the very short 20 mS timeslice

gave the best result with a smaller buffer size,

85

whilst conversely, the worst result with a larger

buffer size.

A possible reason for this is that the larger buffer
size resulted in a higher cyclic frequency in the
information acquisition and dissemination global IAP,,
thus causing a less smooth utilization of the other
resources. and consequently higher peak utilization.
" The causes for this ére tied in with the way in which
the systenm ﬁakes use of these buffer limits, but are
in fact irrelevant to this study. What is important

is the technique's ability to register these factors.

Looking now at Table 9 we can also see that CRNCH is
the most sensitive when it comes to fhe reduced memory
situation, particularly since it is‘a program which
places a higher dgmand on the exterhal memory global
as well as the fact that it wéuld be swapped the most

since the total processing time for CRNCH is the

longest. Conversely RESP is less affected as would be
expected.
From the results it is thus possible to see that for

the test workload test number 2 appears to produce
better results which is in line with the conclusion one
would make based purely on a knowledge of the systems

operation. It can also be deduced that a strong

86

possibility for further improvement exists if the
system were to be reconfigured with a timeslice

quantum of 20 mS and buffer limits of 50/200 words,

87

5. DISCUSSION AND CONCLUSION

A need has been identified for a practical and wusable
method to study computer system performance. In the first
three chapters _.a mathematical model was developed to
describe a computer system and its performance, whilst in
the 1latter part of this document a description is given of
the measurement techniques which were developed and the
results achieved using these techniques in an attempt to

illustrate the relevance of the model.

The technique was aimed throughout_at_a practical approach
and is Dbased oh the simplest possible premises and
arguments, The result was a very straightforward, and at
times simplistic, but a very relevant product. Applying the
technique 1is well within the capabilities of any peréon
with reasonable knowledge of computer éystéms and this 1is
seen as 1its main strength when' compared to the other

methods used for computer system performance evaluation.

Furthermore,_ as was stated previously, the technique can
display éﬁy aspect of the system and its performance in
context with the operation of the rest of the System. The
significance of this was very well displayed in the final
test where the external memory utilization 'reached
saturation and resulted in degradation of the processor

utilization, a factor which would not necessarily be

88

displayed by other methods of amalysis which do not follow

an integrated approach.

The measured wvorkload techniques also proved to be
successful, in that using -measured data the mathematical
structure of the workload varied dynamically according to

the system configuration, as was illustrated in chapter 4.

There are however certain weaknesses evident in the system
which could bea; fﬁrther investigation. Firstly the
question of detefﬁining memory usage on the system. As was
stated previously, a software technique was used which did
impaci the system, although in this case the effect
appeared to be insignificant. The system was not compatible
with virtual memory systems, however, and also did not fit

in with the aim for a totally invisible measurement systen.

A possible avenue of investigation which can be suggested
and has possibilities is centered around the fact that the
majority of multi-uééf_operating systems are table driven.
These tables reside in memory at specific locations. If they
could be written to two banks of memory, simultaneously,
one of which could be read by the measurement system
difectly, then this problem could be erased. Secondly in
virtual memory systems it might be possible to relate
paging exceptions in such a system to memory requirements,

a technique which is widely used in the 1large mainframe

89

environment nowadays.

Another aspect of the system which also relates to the

measurement techniques, which would be enhanced by direct
access to the tables, is the workload recording
techniques. Here again drawing program run data directly

from the tables would result in the measurement technique
becoming totally invisible to the systen ‘with all the
resultant advantages in reliability and the removal of the

resource loading on the target system,

Lastiy, although the present syétem gathers dafa adequately
it would be possible to develop the COMPAS sfstem and the
surrounding software suite to reduce the complex process
which at present accompanies use of fhe system

significantly.

It was found that attaching the COMPAS to the system did
result in a significant increase in systenm faults,
directly due to the need to ioad the bus of the HP 1000F
which was not designed fof this. This is a general problem
with hardware analyzers as found by Nichols (1985) and can
only be avoided if suitable tapping points were provided by
the manufacturer. This is, however, unlikely as there is
not yet sufficient motivation for manufacturers to move in

this direction,

90

Secondly with the system in the form it was designed, the
operator was required to go through a lengthy set-up
process for each set of results. This aspect could be
improved upon by enhancing the COMPAS software as well as
the link with a secondary computer. In this project it was
not, however, regarded as necessary due to the highly
experimental nature of the technique. The result was that
recording the nine sets of test data took in excess of
seventy two hours of which only a small fraction was
expended on the ac;ual test runs, whilst the majority was
used in setting up the COMPAS system'and reducing the 'data
to a usable form, the 45 final values found in Tables 7 and
8 being produced from approximately 4 500 000 raw data
points while the 40 workload patrix values were produced

from approximately 16 000 000 raw data points.

Another area which .is seen és one which requires further
investigation is the determination of program type
definitions and resource = requirement specifications.
Although the proposed technique éppéars to work adequately,
it is grounded omn very loose principles, and was develdped
to illustrate the computer system performance analysis
technique. Further investigation could produce more rigid
methods which would reduce the subjective content of the
final results. The proposed technique is nevertheless
regarded as being relevant insofar as it was used in a

study of relative performance and any inaccuracy in this

91

assessment of resource requirements would tend to be

canceled out.

Looking now to the positive aspects of the project,
certain aspects stand out. Firstly, as was mentioned, the

matrix-like structure certainly clearly illustrates the

system configuration as far as performance is concerned.
Secondly the integration of the workload inte this
structure makes use of the results obtained simple, and

clearly illustrates the effect of changes in the systen
configuration. The measured workload technique 1is also
yery. important due both to the accuracy of the results and
the fact that it is based on very simple techniques. The
ability to display dynamic variations on the workload with
changes in system configuration is ulso' a very important

advantage,

The accuracy of the measurement techniques as well as the
fact that they provide a clean picture of the dynamic form

of the resource utilization is also of great value.

In conclusion it is felt that the study undertaken was both
worthwhile and successful and holds great promise, The goal
of develoﬁing‘a relevant structure for‘ performance analysis
as well as the techniques for gathering the necessary data
were successfully compléted and great possibilities for

future developments in this field have been opened up.,

92

6.

BARD,

REFERENCES AND BIBLIOGRAPHY

Y., 1976 A characterization of VM/370 workloads.
Proc. Workshop on Modeling and Performance
Evaluation of Conputer Systenms, The
Commission of the European Communities,

Joint Research Centre, Vorese, Italy.

BEKKENS, Y. and DECAUTY, B., 1976. A versatile

programmable hardware monitor. Proc.
Workshop on Modeling and Performance
Evaluation of Computer Systems. The
Commission of the European - Communities,

Joint Research Centre, Vorese, Italy.’

BELL, T.E. and THORLEY, T.M., 1985, Minicomputer_perforﬁance

BELL,

analysis problems and techniques. CMG '85.
Proc. International Conference on the
Management and Performance Evaluation of
Computer Systems.' Computers and measurements

group, Alexandria, Virginia.

T.E. and THORLEY, T.M., 1985. Tools to analyze

minicomputer performance. CMG '85. Proc.
International Conference on the Management
and Performance Evaluation of Computer

Systems. Computers and measurements group,

94

Alexandria, Virginia.

BOROVITS, 1. and NEUMANRN, S., 1979, Computer Systems
Performance Evaluation, Criteria,
Measurement, Techniques and Costs. Lexington

Books. Toronto.

CROFT, FP.M, and.CANTRELL, R., 1986, Performance measurement
applied to large scale interactive computer
systens. Computers and Industrial

Engineering. Vol 12, 1987. Pergamon Journals,

Great Britain,

DRUMMOND, H;E., 1973. Evaluation and Measurement
Techniques for Digital Computer Systens,
Prentice-Hall Inc., Englewood-Cliffs,

New Jersey.

FERRANI, D., 1978. Computer Systems Performance

Evaluation., Prentice-Hall Imc., Englewood-

Cliffs, New Jersey.

HAYES, J.P., 1978, Computer Architecture and
Organization. Mc Graw-Hill Kogakusha, Ltd.,

Tokyo.

95

Further studies along the lines proposed in this project
could result in very significant improvements in the
performance of computer systems as well as leading to a

clearer understanding of the operation of complex computer

systems.

93

HEWLETT-PACKARD, 1977. HP 1000 F Operators Reference

Manual.

HEWLETT-PACKARD, 1979, HP RTE-IVB., Programmers Reference
Manual.

HEWLETT-PACKARD, 1979, " HP RTE-IVB. Terminal Users

Reference Manual.

~

S

JACK, H.E. 1985, Some parameters to evaluate performance and
and capacity on Burroughs B5000/B6000/B7000
mainframe conmputers. CMG '85. Proc.
International Conference on the Management
and Performance Evaluation of Computer
Systems, Cumputers and measurements group,

Alexandria, Virginia.

KOBAYASHI, H., 1978, Modeling and Analysis : An
Introduction to Systen Performance
Evaluation @ Methodology. Addison-Wesley

Publishing Company. Reading, Mass,
KUCK, D.J., 1978, The Structure of Computers and

Computation Vol., I. John Wiley and Sons,

New York.

96

LAZOWSKA;‘E.D., ZAHORJAN, J., GRAHAM, S.,.SEVCIK, K., 1985.
Quantitative System Performance: Computer
éystem analysis using queueing network
models. Prentice-Hall Inc., Englewood-Cliffs,

New Jersey.

LORIN, H., 1982, Introduction to Computer Architecture and

Organization, John Wiley and Sons, New York.

MAC NAIR, E.A, and SAUER, C.H., 1985, Elements of practical
performance modelling. Prentice-Hall Inc.,
Englewood-Cliffs, New Jersey.

MYERS, G.J., 1982, Advances in Computer Architecture,
Second Edition. John Wiley ahd Sons,

New York.

NICHOLS, S.R., 1985;'. A'_decision process for hardware
monitors, CMG '85. Proc. International
Conference on the Management and Performance
Evaluation of Computer Systems. Computers and

measurements group, Alexandria, Virginia.

SVOBODA, L., 1976. Computer Performance Measurement and

Evaluatibn Methods : Analysis and

Applications. Elsevier Scientific Publishing

Company, Amsterdam.

37

APPENDIX A : The COMPAS Computer Performance Analysis System

In order to make measurements of dynamic performance
parameters on the system a method must be found to extract
the necessary data from the system without affecting the
system operation, The areas of interest are processor
throughput, peripheral device operation, memory

utilization and DMA activity.

Measuring processor throughput requires knowledge of two

aspects of its operation. Firstly the number of
instructions executed in unit time and seéondly' the
function carried out by specific set of instructions.

Peripheral throughput requires knowledge of the number of
trancactions in unit time and the actual time during which
such transactions are possible, the interruptability of a

particular peripheral device.

The number of instructions. executed‘ should ideally be
measured on the processor., This necessitates modification
to the hardware in practice, since the signals of interest
are totally confined to the processor board in question.
An alternative is to record the number of instructions
fetched from the memory. This approach is far easier to
accomplish as the memory buses are easily accessible on the
HP 1000 system. Task recognition is also fairly simple

assuming that the address bus of the memory is available.

98

The technique used is to count the number of accesses to
memory to compute the number of instructions executed.
This is not entirely accurate since many instructions
include a secondary or even multiple memory refe;ences in
theixr execution. Assuming, however, that a standard
instruction mix is valid for the processor, it is a simple
step to assume that instructions executed will normally
occur in a fixed proportion to the recorded number of memory

accesses. If this is true then relative measurements will

be valid.

Insdfar as task recognition is concerned, this is achieved
by recording the actual memory address accessed. If a memory
map of the system is now available, and this is so, it is
simple to - relate a sequence of memory accesses to the

execution of a particular task.

In the use of the periphergl elements on the HP 1000 systemn
it 1is true to say that each individual transaction, except
in the case of DMA transactidns, generates a single
interrupt. Now on the 'brocessor it is possible to access
the interrupt priority and from this chain it is possible
to record directly the occurrence of a device interrupt as
well as 1its duration and in addition» the Vdevice's
interruptability can also be recorded directly., To monitor
the DMA transfers a further signal is available on the

backplanes, which indicates the occurrence of a DMA cycle.

99

It 1is £hus possible imn theory to obtain all the data
required to “calculate the various global performance
parameters. The problem is not quite so simple though as the
cycle times being dealt with are so short, in the region of
2 seconds, that some form of recording and subsequent
evaluation is required. An oscilloscope or logic anélyzer
could be used, but the amount of data which can be
obsérved in this manner is very limited. A device 1is thus
required which can observe and record the data at rates

comparable to the speed of operation of the actual systen,

A number of commercial systems are available but suffer from
certain deficiencies. All appear to be aimed at hardware
mdnitoring and only two include éptional comparators.
Furthermore they require manual reconfiguration. Lastly
price is an important factor and in this country
availability is also a problem. The only similar machines
readily available in thigxcountry being very akin to logic

analyzers and very expensive., '

For this reason an experimental syStem to perform the
required tasks was designed, constructed and tested. The
Computer Performance Analyses System or COMPAS as it is
called, is divided into five operational blocks. It consists
firstly of the microprocessor based control module, a buffer
board which handles all the signal conditioning from the

system being analyzed, comparatof boards which are used to

100

select data for recording, counter/timer boards which
record number and duratiopr of events and external interface
boards which handle the storage of data on external mass.

memory.

The design of the prototype, a block diagram of which occurs
on the next page 1is able to include up to three comparator
. boards and three counter boards. The system is designed
to “be system independent and only the buffer board need be
modified when vérious systems are analyzed. The basic
concept 1is also expandable to include internal memory up to
94 K words and the system can be wused as A stand alone
monitoring system run interactively from the system console
or it <can be éonfigured to run under the control of some

external computer system, even the system being monitored.
The Control Module

The COﬁPAS has to deal with cycles times of 1 to 2 yuseconds
and s0 no microproéessor commoﬁly available can do the
éntire task under software control. For this reasomn a
compromise has been made. fﬁe processor, under software
control, configures each module in the system according to
the actual task it is required to perform when recording
the data and then allows each board to run independently as

configured once recording begins. The timing goals can

thus be met.

101

<DATA>

COMPAS SYSTEM
CONTROLLER -
SABUS 8085 wuP

<REMOTE CONTROL>

<RS5—232,CONSOLE>

BUFFER AND TRIGGER
BOARD —

BUFFERS, TRIGGERS,
CLOCK AND START
‘STOP CONTROL

<MCS CONRTROL BUS>

<MCS DATA BUS>

COMPARATOR BOARDS —
2 x 20 BIT PROG.
COMPARATORS

COUNTER BOARDS —
2 x 16 BIT PROG.
COUNTER/TIMERS

<CONTROL>

INTERFACE BOARD —
MASS MEMORY INTFCE
AND 16 BIT TIMER

<MASS STORAGE>

Block Diagram of COMPAS System

102

Once reéording ends the processor then reads the data off
the modules concerned and stores it in its own memory or
retransmits it to some external master systen, as and when
required. The actual controller in this case is a standard
SABUS 8085 single board computer commercially available.
It includes an RS232 serial port configured as the systenm
console, an 8255 parallel port used as a secondary port
for external control of the system, 1 K of RAM and up to
16 X of ROM for the COMPAS software to be stored in.Within
the systen each. function_ is addressed by the control
processor using an 8 bit function_address. This address
consists of a five bit switch selectable address for each
board plus a fully decoded 3 bit address for each board
function, This allows a maximum of 32 boards with 8

functions on each.

The Buffer/Trigger Board

This board buffers the incoming signals to reduce the ;ignal
loading experienced by the monitdred computer system (MCS)
aé far as possible, This board has severai additional
roles as well. It condjtions the incoming trigger signals
from the MCS which in the case of the HP 1000 is a double
pulse to produce a single trigger pulse for the COMPAS. A
secondary trigger is also produced by dividing down the
primary trigger and this is wused in cases where data

sampling is required. The secondary trigger frequency can

103

be programmed to vary from equal down to omne sixteenth of
the primary trigger frequency. The buffer trigger board
also produces a programmable clock frequency varying from

18 MHZ to 475 KHZ in factors of 2.

In addition the eight qualifier input signals can be
inverted and combined programmably in any combination to

produce three COMPAS system qualifiers,

Lastly the system.on/off and halt control flip-flops are
built into the-buffer/trigger boards. These flip-flops
allow the entire.system to be stopped and started by the
control module as well as including a halt facility whereby
any individual module can halt the system if certain

conditions such as counter overflow occur,

The Comparator Boards

The prototype ié designed to accommodate three comparator
boards although in fact oniy bne is actually included.
Each comparator bﬁard contains two 20 bit coméarators for
address comparisons on the data input from the MCS memor&
address bus. The outputs of the comparators, designated
A and B, are then decoded to give outputs of data equal to
A, equal to B and equal to or between A and B. These
outputs are then conditioned to allow qualification by the

secondary trigger or any of the system qualifiers in any

104

combination.

The final outputs can then be addressed individually to any
one of eight or tieable lines of the system data true bus,
this bus being used to transfer signals between modules of
the COMPAS. These outputs.can also be configured to trigger

the system halt circuitry,

The conmparison reference addresses are stored on the
comparator boards in latches by the control board and can

be configured to any values required.
The Counter/Timer Boards

Each of the up to three counter boards configurable in the
prototype system contains two 16 bit_cpunters. Th;se
counters are individually_triggered by one of'three trigger
signals programmed by the control module from any
combination of the system trigger, the secondary trigger
and the three system qualifiers .as well as any one of the
signals on the system data true bus. In addition they can
each be programmed to act as a timer using the programmable
clock signal genefated on the buffer board, with one of the
three trigger signals starting the timing and a second
stopping it.

{

The outputs of the timers can then be read by the controller

105

once recording ends or they can halt the system when either
one overflows. In the prototype only a single counter

board in included.
The Interface/Timer Board

The primary role of this module is to interface to external
y

memory to facilitate the storage of the recorded memory

accesses. In the case of the COMPAS prototype this external

memory is in fact an HP 1000 M processor, This processor

contains 32 K words of memory and of this 16 K words is used

to store data, the data being transferred from the
interface to the M processor via a 16 - bit parallel
interface board under interrupt control, or, for high

speed transfers using the DMA facility of the M processor.

As fhe COMPAS uses a 20 bit_internal memory address data bus
and the extermal memory is only 16 bits wide the interface
board also has to convert the 20 bit data to 16 bit data.
This 1is done by transmittiﬁg under program control any
adjacent 16 bits of the actual data word, that is either
bits 0 to 15 or 1 to 16 or 2 to 17 and so one. The actual

transmission of data is triggered by any one of data true

lines or the secondary trigger and .any number of these
lines can be selected. In addition two of the data true
lines can be selected to act as start and stop control

lines whilst one of these can start and stop the

106

transmission.

In addition to these functions the interface board also has
on it a 16 bit programmable timer which is triggered by the
\

system clock and can be used optionally to halt the system

after a preprogrammed'interval has elapsed.
The COMPAS Mainframe

All the ©boards comprising the system are designed to plug
into a racking system, This'racking system has a split
backplane with both SABUS backﬁlane connectors for use with .
SABUS compatible modules and a dedicated bus designed
specifically for the COMPAS. In addition the rack has a
front panel which displays the most important COMPAS
signals as well as decoding and displaying, on a variable
range 64 LED displéy,_.the_grea of mémory being accessed at
any moment, with resolution down to any two page area.
Cgrtain interrupt driven functions of the COMPAS can also
optionally be implementéd from front panél push buttons,
giving limited front panelloperation. . The system AC and DC
power switches and the system reset are also on the front

panel. The software is written in such a way that the front

panel control features can be disabled.

The back panel of the rack contains all the connectors for

the various external devices, These are the RS232 port

107

for the system console, the data input connectors, the
controller parallel port and the interface board output, as
well as connectors for extermal DC supplies. The external DC-
shpply is din fact used in the prototype at present as an
internal supply has not been installed due to cost. A
backplane extender connection for the COMPAS bus is also
available allowing expansion of the system to a second rgck,
or the use of logic analyzers or oscilloscopes to display
internal signals. At present the AC supply is only used

to drive two cooling fans mounted in the back panel,
The COMPAS Operating System

This is a 16 Kilobyte program which was developed to enable
the system to be used., It has facilities to configure and
‘'run the COMPAS system as well as retrieving, - storing and
re-transmitting the data. | It is a menu driven systen
which can be operated from the system console or it can be

programmed to run from a remote computer,

Once the COMPAS system had been developed and tested it was
used in conjunction with the program suite developed to
test the Performance Evaluation theory on the Department's

HP 1000 system.

108

APPENDIX B : WORKLOAD CHARACTERIZATION DATA

109

ACCESSES X 10039

ACCESSES X 1004

80,00

60,007

40,001

20.00 4

0.00+4L

. o

1710

8.01

26750

46010

65050 104110
HEX-ADDRESS

Histogram of opefation of program CRNCH

3
T

6.00[

0.00] |

L LI

32560

36370 42200

Detail of program CRNCH histograin

109

,1'.L ll

46010 51620 55430
: HEX-ADDRESS

CRNCH
FEROR

OPEN
CLOSE
READTF
LURQ
PAUSE
LUTRY
OVRD.
« DADS
. DP
RMPAR
.DDI
SESSH
R/US
- DNG
+DIC.
.EIO.

Yy
o aciwV

FMTIO
.ICER
LUFP
PAU.E
PMAME
«RTOI
« FPWR
ALCG

+DDE

.DIN

ERRO

.SNCS
.C'RS
IFTTY
SALRN
$OPEN
RJSUB
RWND$
REIO

$SHVE
ERO.E
«OPN?
e oFCY

Load map of program CRNCH

Address

End

37764
40027

Begin

- 32042
37765

40030
40411
40526
42135
42551
42551
42760
42761
43671
43237
43304
43605
43523
43762
43772
44354
45271
47534
507 %0
51102
51115
51116
51167
51302
51344
51457
51471
51477
51567
51731

40410
40625
42135
42550
42650
42757
42760
43070
43236
43303
43604
43622
43761
43771
44053
45270
47533
507065
51101
51114
51115
51166
51301
51343
51456
51470
51476
51566
51730
52014
52015 52102
52183 52220
5222152375
52376 52747
52750 53077
53100 53224
53225 53317
53320 53320
53321 53344
53345 53361

92067-16125
92067-16125
92067-16125
92067-1X270
24998-1X253
92067-1X308
92067-16125
24998-1X036
24998-1X055
92063~1%025
24998-1%040
92067-16125
02067-16125
24998-1X046
24998~1X331
24996-1X329
245938-14333
24993-1X328
245986-1X321
24995-1X296
24993-1X254
92068-1X035

24998-1X063

24993-1X124
24998-1X162
24993-1X039
24998-1X042
24968-1x250
24998-1X159
24998-1X171

192067-1X295

92067-1X271
92067-16125
92067-16125
92067-16125
92067-1X275
92067-1X483
24998-1X249
24998-1X325
24998-1X132

REV.2101
REV.2101
REV.2101
REV.2013
REV.2101
REV.2013
REV.1903
REV.2001
REV.2G01
REV,.210!
REV.2001
REV.1903
REV.2101
REV.2001
REV.2101
REV.210!
REV.2101
REV.2101
REV.2101
REV.2101
REV.2001
REV.2101
REV.2013
REV.2001
REV.2001
REV.2001
REV.2001

‘REV.2001

REV.2001
REV.2001
REV.2013
REV.2013
REV.1903
REV.2101
REV.2101
REV.2013

REV.20!3

REV.2001
REV.2101

REV.2001

1107

810615
801014
810616
791024
801007
790223
730526
730813
7803518
800919
781021
730413
801013
780818
80092¢
800229
800709
800929
800731
800731
750701
800919
791230
7311006
780424
780318
730813
771122
780424
780424
790118
770715
790103
800303
810617
790316
800123
750701
800803
750701

Listing of program CRNCH

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
- 0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0035
0037
0033
0039
0040
0041
0042
0043
0044
0045
0046
0047
0043
0049
0050

- FI4, L

25

20

27

299

301

30

31

PROGRAY CRICH,3,99

DIIENSION INAMI{3),IDC31(144),BUF1(64%)
DIMENSION BUFA(1200)

DATA INAMI/2MF,2HIL,2HET/

LU=1

TUi=0.0 :

CALL OPEN(IDCBI,IEZRR,INAM1,0,0,-52)
CALL FEROR(IERR)

Do 9 1IC=1,1100

BUFA(IC)=0.0

CONTINUE

I:=0

CALL READF(IDCBL,IERR,BUr1,128,IL)
CALL FEROR(IERR)

IF (IL.EQ.-1) GO TO 27

DO 26 1IS=1,IL/2
BUFA(I'&-IS)=BUF1(IS)
BUT1(1S)=0.0

CCNTINLE

IM=IM+1IL/2

GO TO 25

IN=0

CALL CLOSE(IDCEI,IERR)

CALL FEZROR(IERR)

DC 299 I=1,10000
D=SIN(FLCAT(1))

D=D*%*2

E=ALOS(D)

F=E*%J

CONTINUE

DO 301 I=1,10000
D=SIN(FLOAT(I))

D=D*%2

E=ALOG (D)

F=E®*3

CONTINUE .
CALL OPEN(IDCB!,IERR,INAM1,0,0,-52)
CALL FERCR(IERR)

TNUM=BUFA(1)

TNUM = TNUM + 1.0

BUFA(1)=THU

DO 31 IX=1,50

BUF1 (IX)=BUFA(IX+IN)
IF(IN.GT.IM) GO TO 32

CONTINUE

IN=1M50 :
CALL WRITF(IDCBI1,IERR,BUF1,100)
CALL FEROR(IERR)

GO TO 30

111

0051 32 CALL CLOSE(IDC31,IERR)

0052 CALL FEROR(IERR)

0053 WRITE(LU,150)THU:

0054 .150 FORMAT(" CCMPLETED THE ",F8.1," ‘TH RUW "/
0055 ' 2" AMOTHER IN 20 SECONDS. ") - :

00556 €ALL EXEC(12,0,2,0,-20)
0057 IF(THUM.CE.4.0) GO TO 99
0053 GO TO 1

0059 99 TOP

0050 END

112

80.00

LA

ACCESSES X

60,00~

40.00 L

20.00 T

L

C=1271 . 14110

Histogram of operation of

43210

72310 121410
HEX ADDRESS

program RESP

-

ACZESSES X 1850

-+

t.ouT {
.00 i I]
32000 33120

Detail of

33240

|l' JLIJL.L Allllk"IJ.LL-h..ll ! u L1 "

35360

36910 37630 an7s0
- HEX-ADDRESS

program RESP histogram

113

RES?

PAUSE
. DIC.
.EIO.
MV
FMTIO
- IOER
. UFifP
PAU.E
PNAIE
REIO

ERQ.E

.0PR7?

Load map of program RESP

Address

Begiln
32042

32143
32243
32325
33542
35005
37237
37353
37366

37367.
37440

37365
37565

End

32142

32242
32324
33541
35004
37236

37352

37365
37366
37437
37564
37565
37611

24998-1X253
24983-1¥X331
24993-1X329
249838-1X333
24998-1X323
24998-1X321
24998-1X296
24998-1X254
§2068-1X035
92067-1X%275
24993-1X249
24993-1X325

REV.2101
REV.2101
REV.210!
REV.2101
REV.2101

‘REV.2101

REV.2101
REV.2001
REV.2101
REZV.2013
RZV.2001
REV.2101

1REY

8010907
500929
800929
800709
300929
800731
800731
7507C1
300919
790316
750701
300303

Listing of program RESP

0001
0002
0003
0004
0005
0006
00C07
0003
0009
0Cl0
co11l
0ol2
go13
0Cl4
0015

FTN4,L,Y

100

20

PROGRA! RESP,3,99
NU=0

KUM=NUM+1
WRITE(1,100)n0M
FORMAT(I8)

DO 20 I=1,1000
A=FLOAT(I)

CONTINUE
WRITE(],100)MUd

CALL EXEC(12,0,1,0,-100)
IF(XHUN.GT.200)GO. TO 99
GO T0 1

STOP

EXND

115

S S]

AZCESS

20

-

ACCESSES x !

4.0

+

20,004
s.on]
10.0nL

5.004

o.00d Lay

. |ﬁ

26576

-t

5330 46450

Histogram of operation of program FILE

107570

HEX-ADDRESS

+

1501710

6.00 T

4.00 +

2.00 4.

llP’l l 4

0.00
26000

32630 36560 42520

L1 g

| Y

L,

46450

Detail of program FILE histograﬁ

116

52810

BEX-ADDRESS

56340

FILE
FEROR

0PEIN
CLOSE
RIZADT
LURQ

PAUSE
LUTRU
OVRD.
.DADS
P

RMPAR
.DDI

SESSH
R/W3

.DNG

.DIO.
.EI0.
LBV
FITIO
.I0ER
LUsHp
PAU.E
PHANE
. DDE

.DIn

IFTTY
SALRN
SOPEN
RWSU3
RYNDS
REIOD

C$SHVE
ERC.E
.OPN?

Load map of program FILE

Address

Begin

32042
37706

37751
40332
40547

- 42057

42472
42572
42701
42702
43012
43160
43225
43526
43544
43703
43713
43775
45212
47455
50707
51023
51036
51037
51110
51122
51130
51216
51334
51511
52063
52213
52340
52433

52434

End

37705
37750

40331
40546
42056
52471
42571
42700
42701
43011
43157
43224
43525
43543
43702
43712
43774
45211
47454
507C¢
51022
51035
51036
51107
51121
51127
51215
51333
51510
52062
52212
52337
52432
52433
52457

92067-16125
92067-16125
92067-16125
92067-1%270
249958-1X253
92067~1¥303
92067-16125
24995-1%036
24995-1%045
92068-1%025
24993-1X040
92067-16125
920¢7-16125
24995-1%046
24993-1X331
24998-1%329
24993-1:333
*24998-1¥%328
24998-1X321
24998-1%296
24998-1X254
92063-1%035
24998-1X039
24993-1%042
92067-1X295
92067-1%271
- 92067-16125
92067-16125
92067-16125
92067-1X275
92067-1X433
24998-1X249
24993-1X325

REV.2101
REV.2101
REV.2101
REV.2013
REV.2101
REV.2013
REV.1903
REV.2001
REV.2001
REV.2101
R=V.2001
REV.1903
RZV.2101
REV.2001
REV.2101
REV.2101
REV.2101
REV.2101
REV.2101
REV.2101
REV.2001
REV.2101
REV.2001
REV.2001
REV.2013
REV.2013
REV.1903
REV.2101
REV.2101
REV.2013
REV.2013
REV.2001
REV.2101

117

3105615

801014
810616
791024
801007
790223
780526
730818
730318
800919
731021
73041

801013
730813
800929
800929
800709
800929
800731
800731
750701
800919
780313
780818
790118
770715
790103
800303
810617
790316
800129
750701 _
800803

Listing of program FILE

0001 FTl4,L,M

0002 PROGRAM FILE ,3,99

0003 DIMZ:NSION INAMI(3),IDCB1(144),BUF1(064)
0004 DIMENSION BUFA(1200)

0005 DATA INAM1/2H'F,2iIL,2HER/

0C06 LU=1

0007 TiUM4=0.0

0008 1 CALL OPEXN(IDCE!,IERR,INAM1,0,0,-52)
0009 CALL FEROR(IERR)

0010 DO 9 IC=1,110C0

0011 BUFA(IC)=0.0

0012 9 CORTINUE

0013 IM=0 .
0014 25 CALL READF(IDC31,ISRR,BUF1,128,1IL)
0015 CALL FEDOR(IERR)

0015 ‘ IF (IL.EQ.-1) GO TO 27

0017 DO 25 1S=i,IL/2

0018 BUFA(II%IS)=BUFL(IS)

0019 _ BUF1(18)=0.0

0020 26 - CONTIMNUE

0021 IM=T%IL/2

0022 G0 TO 25

0023 27 1%=0

0G24 CALL CLOSE(IDC31,IZRR)

0025 CALL FEROR(IERR)

0026 . CALL OPEN(IDC3],IZRR,InANL,0,0,-52)
0027 CALL FEROR(IERR) :
0028 TxUH=BUFA(L)

0C29 UM = TRUM + 1.0

0030 BUFA(1)=TuU

0031 30 DO 31 IX=1,50

0032 BUF1(IX)=BUFA(IN+IM)

0033 IF(IN.GT.I) GO TO 32

0034 31 CONTINUE

0035 Li=150

0036 CALL WRITF(IDCEI1,IERR,BUF!,100)
0037 CALL FEROR(IERR)

00as GO TO 30

0039 32 CALL CLOSE(IDCBI,IERR)

0040 CALL FEROR(IERR)

0041 400 FORMAT(" ANOTHER ONE AND ")
0042 DO 277 IV = 1,200

0043 WRITEZ(1,400)

0044 277 CONTINUE

0045 WRITE(LU,150)THUY

0046 150 FORMAT(" COMPLETIZD THE “,F8.1,"™ ‘T4 RUN "/
0047 7" ANOTHER IN 10 SECONDS. ")

0048 CALL EX®C(12,0,2,0,-10)

0049 - IF(TYUM.GE.10.0) GO TO 99

0050 GO TO 1

0051 99 STOP

0052 END

118

APPENDIX C : COMPLETE TEST RESULTS

119

PERCENT

PERCENT

88.

69.

4C.

2.

80.

60.

49.

29.

a.

oo —
)

2oL .
ool B
0oL . 1
mgz.mm 2. 00 S@. 90 ' 75. 00 100. 90 125. 00

pUtilization graph of IPP, - Test 1
6o i . }

/ m

ool 1
eal i
0oL
oD t)\ : 4 4

2. 00 25. 00 50. 00 75. DO 190. 20 125. 00

Dtilization graph of IPP, - Tesf 2

120

PERCENT

PERCENT

BB.

60.

40.

208.

BB.

60.

A0.

2.

. BB

. PO

7]0]

51 M8

204

BD_T

L

b

2. 99

25. 00

S@. Ro

75. 00

Utilization graph of IPP, - Test 3

oa

100. 00

125. 80

el

2]u RN

oo |

2. 20

Utilization graph of IPP, - Tesf 4

25. PO

50. 09

121

4
=¥

7

=

D

(]0)

1002. B2

125. 0

PERCENT

PERCENT

80.

60.

40.

20.

201

V

oL

T

B‘ng.om 23. 20 50. 0@ 75. B0 100. 89 125. 00

Otilization graph of IPP, -~ Test 5
83. B0 — -+ ﬁ'

) f] (\

sm.mm_w_ 1
40. 001 u- 1
20. 0ol 1
2. oD L u , AJ. N -

0. 02 25. B0 5. 0o 75. 8@ 100. 20 125. 0

Otilization graph of IPP, - Test 6

122

PERCENT

PERCENT

80. 20

70. EELL

60. Be .

58. 881

40. 6oL

30. 22

i et

2. 0o

25. pB

50. PO

75. 0@

Utilization graph of IPP, - Test 7

84Q. 20

100. 20

125. 28

78. 00.L

60. 20

Se. el

40. BB .

30.BB.L

20. 0o

4

2. PR

25. 2D

50. 67

75. 00

Otilization graph'of IPP, - Tesﬁ 8

123

100. 20

125. 0

PERCENT

PERCENT

55. b2

50. p@a.L

45, BB

49. BD_\-‘

35. 861

30. 29

-+

g. 89

25. 09

5@. 80

75. 8@

Utilization graph of IPP, - Test 9

160. B2

1006. 20 125.

S0. DAL

80. 201

70. 88

60. 281

50. 28.

40. BO

+
|

D. oo

25. 00

50. 09

75. 20

100. oD

Utilization graph of ISP, - Test 1

124

125, B3 150,

ag

all

PERCENT

PERCENT

120.

0.

80.

70.

68.

se.

40.

100.

75.

50.

25.

(7]4)

pe.L

2o,

ool o .Aq i

. e BN (J

Otilization graph of ISP, - Test 3

125

1 ml r‘ M
28] 1
po ; f t :

0. oo 25.00 . SO.D20 75. 0@ 100. 00 125. 20 150. o

Utilization graph of 1SP, - Test 2
QB l LAJ Xj
pB.l : : i
oel 1
em{_ 1

- ﬂl?i + 4 L 1
e. 1 2s. 00 S8.00 - 75. 80 100. OB 125. 0

PERCENT

PERCENT

100. 00 } ¢ }

op. ool - T

0. 20 ' i] H 1

70. 00, . I ' T
60. B0 U |J _ | | T
sp. 0o : T
4. 08 AT == 25 T 100. 20 125. 00 1.52. o0

Otilization graph of ISP, - Test 4

100. 20 ' ' , '

90. BB L

78. 24

6. ool LI h i L

50. Po.L

40. 832 <+ 4 $ } }
p. B 25. 80 50. 9D 75.00 103. P2 125. 20 150. po

UOtilization graph of ISp, - Tesﬁ 5

126

PERCENT

PERCENT

108@.
on.
80.
7a.
60:
SB.

- 40,

80. B0

650. BB

2. ODJ_

a.

o]0]

20

ea.4.

o8.L

2a.l

B3,

el

B2

a.

Utilization graph of ISP, - Test 6

20

~25. 00

S8. 60

~ 75.00

190. 00

125. 20

150

I

40. BB.L

B. 00

Utilization graph of 1sp, - Testl7

25. 00

SO, pD

127

75. 00

106. B0

125. 0@

150.

. 20

a]u]

PERCENT

PERCENT

B63. B3

75. 881 ’ .

70. 804 . ’ LN

65. B4 : 1

- 60. o0) _ ,
2. 20 25. 20 50. 08 75. B8 100. 62 125. 08 150. 26

UOtilization graph of ISP, ~ Test 8

89. 0P - T ' '
60. 20
4p. OB _ S : . 1
20. 08.|. L
0. B2 + } 1 } t

6. oo 25. 0D 50. 60 75. 0B 100.88 125. 00 150. Ao

Utilization graph of ISP, - Test:9

128

PERCENT

PERCENT

50.

40.

3a.

208.

1.

50.

40.

38.

20.

10.

B.

.o
0. e0

2o

2a..

o]

oo L

u]uAN

|

L

Otilization graph of ISP, - Test 1

[rs]]

Sg. 00

100. 98

1508. 00

280,

2.l

23

oa.l

2.1

]o)

 —

.

Utilization graph.of ISP, - Test'2

(4]7]

5d. 00

129

100. 20

).

150. 00

200.

2o

B0

PERCENT

PERCENT

5a.

40.

3a.

20.

1.

5@.

40.

30.

28.

10.

. 00

. 20

o9

28.1.

ool

2oL

—— .
——

[%]n AP

0. o9 . 50.00 100. 00 158. 02

Utilization graph of ISP, - Test 3

RO

20d.

oz \ | o |

001 | r|

| [P A

281

0. 0o S0. 00 100.90 - 150. B8

Utilization graph of ISP, - Test:4

130

2bo.

o0

20

PERCENT

PERCENT

se. eg

40. 801

34. bB..

28. 8a.L

10. PB]

. 28

B.

Utilization graph of ISP, - Test 5

S0. 20

2]}

50. P2

100 0O

150. B0

22a.

10. 894, .

30@. 8aL -

20. ool

10. 00_L

2. 00.

i

a.

Utilization graph of ISP, - Test:G

5

6]7]

50. Bo

131

100, B0

150. B0

200,

a0

Ba

PERCENT

PERCENT

.......

BBBBBB

PERCENT

PERCENT

100.

75S.

Sa.

25.-00.L

180.

75.

50.

25.

. 2o

.00

o

ool

o

AN

B. 10

Utilization graph of ISP, - Test 9

)%

50. 08 100. PO

150. 00

200. 80

julz RN

u] i

PO

0. 20

50, B0 190. 00

Utilization graph of IApP, - Test;l

133

150. 00

200. PO

PERCENT

PERCENT

180.
75.

5.

i

B.

80.
60.

48.

20.

. B9

joln]

0oL

va.L

|

T

2o

50. DO

100. 0@ 150. 00 20d. 08

Utilization graph of IAP; - Test 2

an

P

20

o

i

WM\ ,fﬂ

2.

20

5@. 0D

100. 00 150. P2 200. PO

Utilization graph of IAP, - Test 3

134

PERCENT.

PERCENT

B80. BB

60. 20| , _"'_

40. 00] - | . 0 N M'
20. DAL | : 7 4
2. 6D

2. e0 50. oD 100. PO 150. 20 2006. 02

Utilization graph of IAP, - Test 4

190. 20

75S. 821 |

25. 88,1

0. PO , ' :
@. 20 s0. 08 100. 08 150. 20 200. 0o

Utilization graph of IAp, - Test'5

135

PERCENT

PERCENT

125.

188

75.

5a.

2S.

B.

70.

68.

50.

40.

30.

20.

10.

9]%) —+

. 20.L

20.1

-t |y
TN

2]%]

i A

|

\

DO

0. oD 50. 2O

198. BY

Utilization graph of IAP, - Test 6

0]}

pa
Vol

P

i

e

P

oL

29

'/\‘/\ /\A A ”/\M

g. 2o 50. 29

Utilization graph

100. 29

of 1IAP, - Testl7

136

150. 2

200.

o]

PERCENT

PERCENT

5@.

40.

30.

20.

18.

45.

40.

35.

3a.

25.

. 2o

ool ' : WL_
i WAAA ML

2. /VLJ ' \/ / %'

ool | . 1

0o+ W T

Bgﬂ. ju]n] Sﬁj. [515] . lﬂg:. [n)e] .IEJ:. 20 , 200. 863

Utilization graph of IAP, - Test 8

20

ool h

-P ” T

\ﬂNJ I “W \ﬂrﬂf}f |

oo 7
i

Utilization graph of IAP,- Test 9

137

2a. B9

APPENDIX D

EXPERIMENTAL, METHODOLOGY

This appendix describes the methods used to obtain the results

included in the thesis. A step by step description is given and the

approach used would form the basis of any actual attempt to use the

system described to carry out pefformance optimisation on a real

computer system,

1. Determining the System Structure

This consists of analysing the computer system to be optimised

and identifying the resources available within it which are

available to the workload for utilisation. In the test system

it consisted of:

(a)
(b)

(c)

(d)

(e)

The Central Processor

A fixed number of meﬁory partitibns constituting the
internal memory _

A hard disk ‘of 25Mb with DMA channel which was the
external memory

Three VDU terminals linked to buffered interface cards
making up the Input/Qutput capability

The operating system with file manager, scheduler, I1/0

drivers and utilities constituting the System Capability

Particular elements.

138

This gave a system structure expressed as below

IPP, 0 0

ISP, USP, 0
SYS = IAP1 IAPg IAP;

SCP, 0 0

2. Workload Characterisation

Characterisation of the worklocad consists of four steps.
Firstly the elements or programs contained in it are
identified. | (In the case used here this is known but the
program developed to record the worklocad was written in such a
way as to be able to identify and sort the various programs
recorded.) Next the frequcncy with which a particular program
was the scheduled program was recerded., This ﬁas done using a
program which in:errogated the scheduler at fixed intervals of
10, \20, 30; 40 or 50mS. The data was then recorded on a
magnetic tape.‘ After these recordings had been made over a
fixed period which coﬁid be equated fo a typical measurenment
run, the data was reduced to a usable form, This consisted of
reading the magnetic tape, sbrting the recordings by program
type, totalling the number of readings per program and

normalising the wvalue by dividing by the total number of

readings.

139

Tl;is then resulted in the program significance factors., The
method used was tested to ascertain the relative accuracy by
using various sampling frequencies as well as recording periods.
and the accuracy was confirmed to be within 1% for repetitive

recordings of the same workload.

Program histograms were now recorded for each program using the
COMPAS system. Once again a number of recordings were taken
and the correlation coefficients for successive runs
determined. .The coefficients were in all cases found to exceed
0,99 implying a relative measurement accuracy error of less
than 1Z. Using these histograms and the memory maps and
program listings each point in memory was linked to a
particular action or program ryoutine which was in turn linked
to a resource u.tilisation'. The actual relative importance of
resources was then determined by integrating the area under the

histogram for each resource.

- The memory i;nportancé for each program was not handled in this
way. Insteéd the value was simply determined by dividing the
actual memory size requirement by the sizé of the smallest
partition. The five need factors were then normaiiéed givihg

the results shown in Table 8 in the text.

140

It should be noted that the histograms taken included operating
system activity directly generated by the program in question

and this activity was assigned to SCP, for each program.'

In the test case the program priorities were all equal so the
priority factor P was made 1. In a real case the relative
priorities for each program would have to be normalised and the
resulting value used instead.

The need faétor, significance factor and priority factors were
now multiplied out to give the workload. constants for each;

- system particular element as shown in the equation below:

CRNCH FILE RESP TOTAL
KP, ' 0,228 0,0958 0,0923 0,4169
KS, 0,0801 0,0319 0,0130 0,1250
KS2 = 0,1373 0,0426 0,0 = 0,1798
KI, 0,0114 0,0665 0,0373 0,1152
KI, 0,1144 0,0293 0,0194 0,1631

for the case with maximum system memory configuration.
3. Utilisation Measurements

The structure of the system and workload descriptions are now
complete, All that remains is to measure the utilisation of
“the various resources. The ideal would be to measure -the
workload and all the utilisations at the same time. This was

not, however, possible with the equipment used in this study.

141

Firstly the workload measuring technique was not invisible to
the system and secondly the COMPAS system did not contain
multiple comparators, counters and timers in the form in whigh.
it was available for this study. For this reason a constant
workload was chosen and all the measurements were carried out

sequentially.

Firstly each type of measurement was tested for relative
accuracy by measuring a specific action repeatedly and
comparing tﬁe results. From this it was determined that the
measurement of processor idle time; DMA channel throughout in
unit time and I/0 channel throughout was accurate to better
than 1%. Memory utilization accuracy was found to be accurate

to approximately 2%, The various tests were now carried out.

Firstly the system was configured as required for the test.
The six programs making up the dummy workload were then loaded
and time scheduléd to.¥un at fixed constant intervals, The
- COMPAS system was then set up and time scheduled to record data

for a fixed period after the workload had been running for a

period of time to ensure that the system had settled.

142

In the case of processor throughput the system wait loop was
monitored and the time that this loop was active in unit time
was repeatedly recorded. Each set of data was recorded over a
15 minute period. This data was stored on magnetic tape and
later reduced by calculating the mean and the standard
deviation over all the recordings, approximately 100 000

readings per final value,

Next the COMPAS was set up to record the time that the DMA
channel was .active in unit time in order to obtain the values
required to ascertain the utilization of external memory.
These data records were reduced in the same way as those for
processor idle time, The time of activity was measured as the
time from the I/0 interrupt initialising the DMA transfer to

the interrupt terminating the transfer,

Lastly the COMPAS was set up. to measﬁre the I/0 channel
utilisation, Heré agaif; the timing was based on the interrupts
- but the intérrupt daisy chain was monitored to determine when
the interrupt began and vhen it ended. This was valid as the
RTE IVB operating system works in such a way that the daisy
chain is broken for the duration of an 1/0 transfer, The

recorded data was once again reduced to a mean value and

standard deviation.

143

Pinally the memory utilisation was determined by using a small
high priority dinterrupt driven pro‘gram which integrated the
system tables at a fixed time interval (20ms in the test case)
to determine how many of the available partitions in memory
were occupied. Again the recorded data was written to magnetic

tapes as in the other cases and reduced in the same way.

This then describes the procedure follqwed to obtain the results set
out in the table and graphs included in this thesis and from which
the conclusions -were made. The same basic procedure would be
followed in evaluating an operational system although it iS to be
hoped that the. workload and memory recordings would b_e made using
methods invisible to the computer system being investigated.
Furthermore the measurement system should ideally have ' sufficient
comparators, counters and times to make all the measurements at the

same time,

	Meiring_Pierre_Andre_1987.front.p001
	Meiring_Pierre_Andre_1987.front.p002
	Meiring_Pierre_Andre_1987.front.p003
	Meiring_Pierre_Andre_1987.front.p004
	Meiring_Pierre_Andre_1987.front.p005
	Meiring_Pierre_Andre_1987.front.p006
	Meiring_Pierre_Andre_1987.front.p007
	Meiring_Pierre_Andre_1987.front.p008
	Meiring_Pierre_Andre_1987.front.p009
	Meiring_Pierre_Andre_1987.front.p010
	Meiring_Pierre_Andre_1987.p001
	Meiring_Pierre_Andre_1987.p002
	Meiring_Pierre_Andre_1987.p003
	Meiring_Pierre_Andre_1987.p004
	Meiring_Pierre_Andre_1987.p005
	Meiring_Pierre_Andre_1987.p006
	Meiring_Pierre_Andre_1987.p007
	Meiring_Pierre_Andre_1987.p008
	Meiring_Pierre_Andre_1987.p009
	Meiring_Pierre_Andre_1987.p010
	Meiring_Pierre_Andre_1987.p011
	Meiring_Pierre_Andre_1987.p012
	Meiring_Pierre_Andre_1987.p013
	Meiring_Pierre_Andre_1987.p014
	Meiring_Pierre_Andre_1987.p015
	Meiring_Pierre_Andre_1987.p016
	Meiring_Pierre_Andre_1987.p017
	Meiring_Pierre_Andre_1987.p018
	Meiring_Pierre_Andre_1987.p019
	Meiring_Pierre_Andre_1987.p020
	Meiring_Pierre_Andre_1987.p021
	Meiring_Pierre_Andre_1987.p022
	Meiring_Pierre_Andre_1987.p023
	Meiring_Pierre_Andre_1987.p024
	Meiring_Pierre_Andre_1987.p025
	Meiring_Pierre_Andre_1987.p026
	Meiring_Pierre_Andre_1987.p027
	Meiring_Pierre_Andre_1987.p028
	Meiring_Pierre_Andre_1987.p029
	Meiring_Pierre_Andre_1987.p030
	Meiring_Pierre_Andre_1987.p031
	Meiring_Pierre_Andre_1987.p032
	Meiring_Pierre_Andre_1987.p033
	Meiring_Pierre_Andre_1987.p034
	Meiring_Pierre_Andre_1987.p035
	Meiring_Pierre_Andre_1987.p036
	Meiring_Pierre_Andre_1987.p037
	Meiring_Pierre_Andre_1987.p038
	Meiring_Pierre_Andre_1987.p039
	Meiring_Pierre_Andre_1987.p040
	Meiring_Pierre_Andre_1987.p041
	Meiring_Pierre_Andre_1987.p042
	Meiring_Pierre_Andre_1987.p043
	Meiring_Pierre_Andre_1987.p044
	Meiring_Pierre_Andre_1987.p045
	Meiring_Pierre_Andre_1987.p046
	Meiring_Pierre_Andre_1987.p047
	Meiring_Pierre_Andre_1987.p048
	Meiring_Pierre_Andre_1987.p049
	Meiring_Pierre_Andre_1987.p050
	Meiring_Pierre_Andre_1987.p051
	Meiring_Pierre_Andre_1987.p052
	Meiring_Pierre_Andre_1987.p053
	Meiring_Pierre_Andre_1987.p054
	Meiring_Pierre_Andre_1987.p055
	Meiring_Pierre_Andre_1987.p056
	Meiring_Pierre_Andre_1987.p057
	Meiring_Pierre_Andre_1987.p058
	Meiring_Pierre_Andre_1987.p059
	Meiring_Pierre_Andre_1987.p060
	Meiring_Pierre_Andre_1987.p061
	Meiring_Pierre_Andre_1987.p062
	Meiring_Pierre_Andre_1987.p063
	Meiring_Pierre_Andre_1987.p064
	Meiring_Pierre_Andre_1987.p065
	Meiring_Pierre_Andre_1987.p066
	Meiring_Pierre_Andre_1987.p067
	Meiring_Pierre_Andre_1987.p068
	Meiring_Pierre_Andre_1987.p069
	Meiring_Pierre_Andre_1987.p070
	Meiring_Pierre_Andre_1987.p071
	Meiring_Pierre_Andre_1987.p072
	Meiring_Pierre_Andre_1987.p073
	Meiring_Pierre_Andre_1987.p074
	Meiring_Pierre_Andre_1987.p075
	Meiring_Pierre_Andre_1987.p076
	Meiring_Pierre_Andre_1987.p077
	Meiring_Pierre_Andre_1987.p078
	Meiring_Pierre_Andre_1987.p079
	Meiring_Pierre_Andre_1987.p080
	Meiring_Pierre_Andre_1987.p081
	Meiring_Pierre_Andre_1987.p082
	Meiring_Pierre_Andre_1987.p083
	Meiring_Pierre_Andre_1987.p084
	Meiring_Pierre_Andre_1987.p085
	Meiring_Pierre_Andre_1987.p086
	Meiring_Pierre_Andre_1987.p087
	Meiring_Pierre_Andre_1987.p088
	Meiring_Pierre_Andre_1987.p089
	Meiring_Pierre_Andre_1987.p090
	Meiring_Pierre_Andre_1987.p091
	Meiring_Pierre_Andre_1987.p092
	Meiring_Pierre_Andre_1987.p093
	Meiring_Pierre_Andre_1987.p094
	Meiring_Pierre_Andre_1987.p095
	Meiring_Pierre_Andre_1987.p096
	Meiring_Pierre_Andre_1987.p097
	Meiring_Pierre_Andre_1987.p098
	Meiring_Pierre_Andre_1987.p099
	Meiring_Pierre_Andre_1987.p100
	Meiring_Pierre_Andre_1987.p101
	Meiring_Pierre_Andre_1987.p102
	Meiring_Pierre_Andre_1987.p103
	Meiring_Pierre_Andre_1987.p104
	Meiring_Pierre_Andre_1987.p105
	Meiring_Pierre_Andre_1987.p106
	Meiring_Pierre_Andre_1987.p107
	Meiring_Pierre_Andre_1987.p108
	Meiring_Pierre_Andre_1987.p109
	Meiring_Pierre_Andre_1987.p109a
	Meiring_Pierre_Andre_1987.p110
	Meiring_Pierre_Andre_1987.p111
	Meiring_Pierre_Andre_1987.p112
	Meiring_Pierre_Andre_1987.p113
	Meiring_Pierre_Andre_1987.p114
	Meiring_Pierre_Andre_1987.p115
	Meiring_Pierre_Andre_1987.p116
	Meiring_Pierre_Andre_1987.p117
	Meiring_Pierre_Andre_1987.p118
	Meiring_Pierre_Andre_1987.p119
	Meiring_Pierre_Andre_1987.p120
	Meiring_Pierre_Andre_1987.p121
	Meiring_Pierre_Andre_1987.p122
	Meiring_Pierre_Andre_1987.p123
	Meiring_Pierre_Andre_1987.p124
	Meiring_Pierre_Andre_1987.p125
	Meiring_Pierre_Andre_1987.p126
	Meiring_Pierre_Andre_1987.p127
	Meiring_Pierre_Andre_1987.p128
	Meiring_Pierre_Andre_1987.p129
	Meiring_Pierre_Andre_1987.p130
	Meiring_Pierre_Andre_1987.p131
	Meiring_Pierre_Andre_1987.p132
	Meiring_Pierre_Andre_1987.p133
	Meiring_Pierre_Andre_1987.p134
	Meiring_Pierre_Andre_1987.p135
	Meiring_Pierre_Andre_1987.p136
	Meiring_Pierre_Andre_1987.p137
	Meiring_Pierre_Andre_1987.p138
	Meiring_Pierre_Andre_1987.p139
	Meiring_Pierre_Andre_1987.p140
	Meiring_Pierre_Andre_1987.p141
	Meiring_Pierre_Andre_1987.p142
	Meiring_Pierre_Andre_1987.p143
	Meiring_Pierre_Andre_1987.p144

