

001010 01101

1

0

Applied

Process Control

Simulations

Michael Mulholland

Applied

Process Control

Simulations

Michael Mulholland

Associated with the following books by Michael Mulholland:

Applied Process Control – Essential Methods

Applied Process Control – Efficient Problem Solving

Copyright © Michael Mulholland 2015

 i

Preface

A number of interactive simulations are provided which explore some of the techniques

presented in Applied Process Control – Essential Methods, and Applied Process Control –

Efficient Problem Solving. The applications arise variously from industrial research studies,

undergraduate projects and student laboratory experiments.

This text is a step-by-step tutorial for the use of the simulator program, and the execution of

the exercises for each application. It refers to the accompanying program RTC (Real-Time

Control). No support can be offered for the use of the program and the conducting of the

exercises. The correspondence between the simulation studies and sections of Applied

Process Control – Essential Methods, is roughly as follows:

Chapter 2 Simulations – Openloop 3.1, 3.2, 3.3, 3.4

Chapter 3 Simulations – Frequency response 4.2.6.2, 8.6

Chapter 4 Simulations – SISO closedloop 4.2, 4.2.6

Chapter 5 Simulations – SISO optimisers 4.2, 4.7, 4.10, 4.11

Chapter 6 Simulations – Multi-loop strategies 4.3-4.9, 5.3.1, 5.3.2, 5.3.3

Chapter 7 Simulations – MIMO closedloop and DMC 4.2.6, 7.8, 7.8.2, 8.6, 8.7

Chapter 8 Simulations – Observers 6.2, 6.4.1, 6.5.1

Chapter 9 Simulations – Hybrid systems 7.14.3

Michael Mulholland

University of KwaZulu-Natal

October, 2015.

ii

 Contents

 Page

Preface.. i

Abbreviations...v

Chapter 1 Simulations - Getting started ..1

1.1 Background ... 1
1.2 Installing the software ... 1
1.3 Model or Plant I/O .. 1

1.4 General features of the RTC interface .. 2

Chapter 2 Simulations - Openloop ...9

2.1 RTD – Residence Time Distribution by pulse injection ... 9

2.1.1 Theory .. 9
2.1.2 Tasks .. 12

References .. 13

Chapter 3 Simulations - Frequency response... 15

3.1 FRP – Frequency response practical ... 15
3.1.1 Typical settings .. 16
3.1.2 Theory .. 16

3.1.3 Tasks .. 18
3.1.4 Method ... 19

3.1.5 Code extracts .. 22
References .. 24

Chapter 4 Simulations - SISO closedloop ... 25

4.1 Notes on tuning a PID loop ... 25

4.1.1 Reaction Curve tuning .. 25
4.1.2 On-line trial & error tuning ... 26

4.2 PID - Dosing tank level and concentration PID loops 28
4.2.1 Typical settings .. 28
4.2.2 Theory .. 28

4.2.3 Tasks .. 30
4.2.4 Code extracts .. 31

4.3 PII - Compressor control with strongly interacting PID loops 33

4.3.1 Typical settings .. 33

 iii

4.3.2 Theory .. 33

4.3.3 Tasks .. 34
4.3.4 Code extracts .. 35

References .. 36

Chapter 5 Simulations - SISO optimisers ... 37

5.1 ALC - Advanced level control of a distillation column .. 37
5.1.1 Typical settings .. 38
5.1.2 Theory .. 38

5.1.3 Tasks .. 39
5.1.4 Code Extracts ... 40

5.2 VPC - Valve position control for distillation column pressure minimisation 43

5.2.1 Typical settings .. 44
5.2.2 Theory .. 44
5.2.3 Tasks .. 44
5.2.4 Code Extracts ... 44

5.3 PSH - Constraint pusher for optimal use of paper machine fibre stocks 46
5.3.1 Typical settings .. 51
5.3.2 Theory .. 52
5.3.3 Tasks .. 53

5.3.4 Code Extracts ... 54

Chapter 6 Simulations - Multi-loop strategies ... 59

6.1 BPL – Boiler pressure and level control... 59

6.1.1 Typical settings .. 60

6.1.2 Theory .. 60
6.1.3 Tasks .. 62

6.1.4 Code extracts .. 64
6.2 FFA – Furnace fuel and air cross-limiting control .. 66

6.2.1 Typical settings .. 66
6.2.2 Theory .. 67

6.2.3 Tasks .. 68
6.2.4 Code extracts .. 69

References .. 71

Chapter 7 Simulations - MIMO closedloop and DMC.............................. 73

7.1 A note on Dynamic Matrix Control .. 73
7.2 DMC – MIMO Dynamic Matrix Control of a partitioned fractionator 81

7.2.1 Typical settings .. 81
7.2.2 Theory .. 81
7.2.3 Tasks .. 85

7.2.4 Code extracts .. 86
7.3 SRE – SISO PID and DMC controllers based on step response 90

7.3.1 Typical settings .. 90
7.3.2 Theory .. 91
7.3.3 Tasks .. 95

iv

7.3.4 Method ... 95

7.3.5 MATLAB® program for the Nyquist plot .. 97
7.4 STR – PID and MIMO DMC controllers based on step response 98

7.4.1 Typical settings .. 98
7.4.2 Theory .. 99

7.4.3 Tasks .. 102
7.4.4 Method ... 103
7.4.5 MATLAB® procedure for calculation of frequency response 105
7.4.6 Code extracts .. 105

7.5 LLE – Multi-Input, Single-Output (MISO) DMC compared with PID 108

7.5.1 Typical settings .. 108
7.5.2 Theory .. 109
7.5.3 Tasks .. 111
7.5.4 Method ... 111

References .. 112

Chapter 8 Simulations - Observers ... 115

8.1 SPR - Smith Predictor for digester pulp Kappa estimation and control 115
8.1.1 Typical settings .. 118
8.1.2 Theory .. 118

8.1.3 Tasks .. 119
8.2 KAL - Kalman filter for adaptive DMC of reservoir chlorine 121

8.2.1 Typical settings .. 125
8.2.2 Theory .. 126
8.2.3 Tasks .. 129

8.2.4 Code extracts .. 129
8.3 MED – Model error detection.. 135

8.3.1 Typical settings .. 135
8.3.2 Theory .. 136

8.3.3 Tasks .. 140
8.3.4 Method ... 140
8.3.5 Code extract ... 143

Chapter 9 Simulations - Hybrid systems .. 147

9.1 MLD - Predictive control of pressure swing adsorption by optimal scheduling of

the Skarstrom cycle .. 147

9.1.1 Typical settings .. 148

9.1.2 Theory .. 148

9.1.3 Tasks .. 155
9.1.4 Methods.. 155
9.1.5 Code extracts .. 158

References .. 159

 v

Abbreviations

A/D analogue to digital (conversion)

ALC advanced level control

BFW boiler feed water

CV controlled variable

CW cooling water

D/A digital to analogue (conversion)

DCS distributed control system

DMC dynamic matrix control

DP differential pressure

DV disturbance variable

EKF extended Kalman filter

GM gain margin

GUI graphic user interface

HS high select

I/P current to pressure (pneumatic) converter

IMC internal model control

I/O input output

LDMC linear dynamic matrix control

LLE liquid-liquid extraction

LP linear programming

LPSOLVE MILP program (http://sourceforge.net/projects/lpsolve/)

LS low select

MATLAB MATLAB® program, distributed by the MathWorks, Inc.

MFR mixed flow reactor

MIDO mixed integer dynamic optimisation

MILP mixed integer linear programming

MIMO multi-input, multi-output

MINLP mixed integer non-linear programming

MLD mixed logical dynamical

MPC model predictive control

MRT mean residence time

MV manipulated variable

P proportional

P/I pressure (pneumatic) to current converter

PI proportional integral

PID proportional integral derivative

PM phase margin

PV process variable

QDMC quadratic dynamic matrix control

http://sourceforge.net/projects/lpsolve/

vi

RTC real time control (simulation program)

RTD residence time distribution

SCADA supervisory control and data acquisition

SD standard deviation

SISO single input single output

SP setpoint

VPC valve position control

 1

Chapter 1 Simulations - Getting

started

1.1 Background

This tutorial includes notes to be used in conjunction with the RTC (Real Time Control)

program  M. Mulholland (2015). The notes give a brief background to the theory and

programming of each application, plus a stepwise set of objectives to illustrate the main

features. The simulations include a number of the techniques described in Applied Process

Control – Essential Methods, and some of the tasks considered in Applied Process Control –

Efficient Problem Solving. Actually, RTC is not merely a suite of simulations: Each

application can be switched from “MODEL” to “PLANT” mode for real-time control of

equipment through a somewhat basic interfacing arrangement. In “MODEL” mode, time can

be accelerated or frozen. Continuous trend graphs and a data logging system allow

examination and capture of the system behaviour.

1.2 Installing the software

The program is available at https://sourceforge.net/projects/rtc-simulator/ . On that page select

FILES and download RTC_exe.zip and Simulations.pdf. Unpack RTC_exe.zip into your

desired working diretory. Find RTCDEMO.exe and create a shortcut to it which you may

place on your desktop. Tutorial instructions and background for each application are

presented in Simulations.pdf. You may need to maximise your screen resolution to see the

diagrams clearly and facilitate small enough fonts.

1.3 Model or Plant I/O

The RTC software has been used extensively in a university laboratory for monitoring and

control of various pieces of plant equipment. In each application, a simulation model is

provided of the equipment, and this can be substituted for the actual plant by selecting

MODEL instead of PLANT. The models are of the linear “Dynamic Matrix” type, and are

based on realistic step-responses.

However, the plant I/O has been set up specifically for the A/D, D/A equipment of a single

vendor, viz. Eagle Technology, 24 Burg Street, Cape Town, 8001, South Africa

(eagle@eagle.co.za , www.eagle.co.za , www.eagledaq.com). This includes a range of plug-

in cards and external USB devices, which are found and sequenced by the software. The

products of this company are available in many countries.

https://sourceforge.net/projects/rtc-simulator/
mailto:eagle@eagle.co.za
http://www.eagle.co.za/
http://www.eagledaq.com/

2 Applied Process Control

Bearing in mind this rather restricted I/O arrangement for a real plant, a somewhat crude

alternative is provided in the software. This alternative relies on the typically slow responses

of chemical plant equipment, allowing scan periods from 3 seconds upwards. On each

“PLANT” I/O update, “reads” and “writes” can be directed to FileInput.txt and FileOutput.txt

in the home directory of the software (rather than to connected hardware). These files are

opened and closed on each read or write, and the read or write does not fail on (temporary)

unavailability. So all that is required from the user is to simultaneously run a separate I/O scan

loop of his or her own choice, and to provide the “read” information and execute the “write”

information using independent writes and reads of the FileInput.txt and FileOutput.txt files.

Clearly, the latter writes and reads need to open and close the files, and must also not cause

software failure due to (temporary) unavailability – which should be infrequent given a big

enough scan interval.

The default setting of the software, if “PLANT” is selected, is to assume hardware I/O for the

equipment. To switch between the hardware and file I/O, press either toggle under “File-IO”

before selecting the desired application (f_1.1).

f_1.1

1.4 General features of the RTC interface

The RTC “Real Time Control” program is a general-purpose Modelling, Testing and

Implementation platform, and it therefore has a hybrid of features. The layouts of the interface

screens provided for the various applications (see “Contents”) have several common features

(starting on f_1.2) which are explained below.

f_1.2

Application Choose from the listed applications (f_1.3).

Chapter 1 Simulations - Getting started 3

f_1.3

Help Information about origin of this program

License Information about origin of this program plus take careful note of the expiry date

Once an application in f_1.3 is selected (eg. PID – f_1.4), its interface screen has a number of

features which are common for all applications.

4 Applied Process Control

f_1.4

The scrollbar cursors can be moved in three ways:

 * click, hold & move the cursor

 * click the end-arrows

 * click on the coloured region either side of the cursor.

Each of these methods has a different sensitivity.

We select the more common buttons and controls shown on this application.

f_1.5

The time settings in f_1.5 are in seconds, except “Acceleration”, which is the number of times

faster than Real Time that the program will execute. If “Plant f/b” is selected (see f_1.8

below), ie. real-time plant feedback for online implementation, the “Acceleration” is

automatically forced back to 1.0 . If the “Log” option is selected, records of all variables will

be stored in the log file (see f_1.10 below) at the chosen log interval. If the “Step Mode” is

selected (see f_1.6 below), the simulation will not run indefinitely, but only over the selected

step interval. Once it stops, pressing the STEP button allows it to continue for another interval,

etc. Depending on the chosen Acceleration, it may be desired to increase or reduce the time-

axis length displayed. Note that the actual change only occurs four seconds after the last

movement of the “Axis Length” cursor, to allow the user to make repeated finer adjustments

of the cursor position.

Chapter 1 Simulations - Getting started 5

f_1.6

Consider the run information at the top-right hand corner of the screen (f_1.6). The indicated

time of day is the actual time of the solution, with all solutions starting at current real-time.

Thus, if an acceleration is applied, this time will increasingly move ahead of real-time. The

Run time elapsed is the time in seconds represented by the solution at any instant – again this

will increase with an acceleration over unity. If the “Log” option is selected (see f_1.10

below), a Run Identity is allocated in the “ID” window. The ID numbers have the following

structure (f_1.7):

f_1.7

RTC5011203

P
re

fi
x
:

R
e
a

l
T

im
e

 C
o
n

tr
o
l

L
a
s
t

d
ig

it
 o

f
y
e

a
r,

 i
e
.

2
0

0
5

M
o
n

th

D
a

y
 o

f
m

o
n

th

C
o

u
n
te

r
o

f
ru

n
s
 t
h

is
 d

a
y

Each time “Log” is re-selected, or the program is “Reset” whilst logging, the previous log file

is ended and closed, the counter of runs (last 2 digits) is incremented, and a new log file (eg.

“RTC5011204.txt”) is started. These are in the form of space-separated columns with the

variable names as headings at the tops of the columns, and the model time and elapsed model

Run seconds running down the leftmost columns.

The “Reset” button (f_1.6) effectively restarts the solution at the default values of the process

variables. Certain settings such as tuning values or controller modes are not reset.

6 Applied Process Control

The “Exit” button (f_1.6) is used to stop the current application. This returns the user to the

initial screen (f_1.2), where another application can be selected, or the program can be shut

down.

The “Step Mode” (f_1.6) toggles this mode on or off. Once it is on, the “Step” button below it

becomes active, allowing piece-wise solutions over intervals of length determined by the

“Step Interval” setting (see above). This is useful for “freezing” the output, or for manual

adjustment of manipulated or disturbance variable settings at a fixed interval. Another use is

for manual entry of process variable feedback (see “Entry f/b” f_1.8 below), if the RTC

program is being used to control a real plant or external model, which might not have an

actual feedback signal connection.

f_1.8

The set of three selectors “Model f/b”, “Entry f/b” and “Plant f/b” (f_1.8) are mutually

exclusive. For normal off-line testing of algorithms using model feedback, clearly the first of

these, “Model f/b”, is selected. As discussed above, it may be necessary to test a control

algorithm on an actual plant or model (eg. “Aspen Dynamics”) which is external to the

program, but which does not offer a direct connection. In this case the “Entry f/b” feedback

option is used, and the appropriate feedback variable scrollbars may be directly manipulated

whilst the control algorithm runs. Beware that the “Acceleration” setting matches the external

process in this case. Sometimes, as in DMC, controlled variable feedback is only reviewed by

the algorithm on a fixed time interval. Then you will wish to select the “Step Mode” and set

the appropriate “Step Interval”. The RTC program will re-compute the manipulated variables

for each interval, and these can be manually transferred to the actual plant or external model.

The “Plant f/b” option is for actual on-line data acquisition and control. When it is selected,

the “Acceleration” is forced to unity for real-time work. In principle, driver software can be

added to service any external A/D, D/A devices for plant input and output. So far, only the

“Enhanced EDR” (EDRE) drivers have been implemented for the electronic interfaces

supplied by Eagle Technology, Cape Town. See section 1.3, where it is explained that the

default assumption for “PLANT f/b” is a hardware interface, yet a crude interchange of data

by files can be automated. In each application, the manipulated variables (MV: output to

plant) and the process variables (PV: input from plant) are expected to occur in a set order,

counting from zero, eg. in the f_1.4 case above:

 Input Channels: Output Channels:

 Ch 0 A Ch 0 V1

 Ch 1 L Ch 1 V2

In the case of the Eagle I/O boards, if more than one board is present, the channel numbers

just continue the count. For more than one Eagle board to be recognised, the program must

Chapter 1 Simulations - Getting started 7

start in Execute mode (“!”), not Go (debug) mode (“”) – ie. if the RTC program is being run

under the Microsoft® Visual C++ environment.

f_1.9

In connection with the “Plant f/b” external data acquisition feature, measurements are

subjected to filter smoothing by default. However, if the raw inputs are desired, eg. for

trouble-shooting, the “No Filter” button should be toggled to the on position (f_1.9).

f_1.10

At the right of the time-scale adjustments are the “Lag” indicator and the “Log” toggle button

(f_1.10). If the ”Acceleration” is set too high, the solution may begin to lag behind its target

time. The “Lag” indicator then turns red to warn you to reduce the acceleration.

If the “Log” button is toggled on, it turns yellow to warn you that all process variables are

being written to a log file at the selected log interval. As mentioned above, toggling the button

off (or “Exit”-ing) will close and store the current file, and toggling it on again (or “Reset”-

ing whilst logging) will start a new file. The files are named sequentially according to the Run

“ID” described above (f_1.7), so it is advisable to note this ID number when a file is started.

They are stored in the main directory from which the RTC program is executed.

Care must be taken not to generate uselessly large log files, which have the potential to crash

the system by filling the hard drive. Note that the “Log Interval” refers to actual model time,

so that an interval of 10 seconds would result in 10 records being stored every real-time

second at an acceleration of 100. A small level of protection is afforded by automatically

closing a log file once the 8640th record is written (ie. one day at 10 second intervals). This is

implemented in case the program is left running and it is forgotten to toggle the “Log” button

off. Care should be taken to purge all “RTC*.txt” files from the main program directory

periodically.

8 Applied Process Control

f_1.11

A typical controller manipulation layout is shown in f_1.11 above, whether it is PID, DMC,

ALC, etc. The “Auto” and “Manual” buttons are mutually exclusive. In “Manual” mode, the

scrollbar of the relevant manipulated variable can be manually adjusted. In “Auto” mode, the

set-point (SP), which is manually adjusted using the left-hand scroll-bar shown, is targeted by

the algorithm, the relevant feedback PV being shown both numerically and by the right-hand

scrollbar.

f_1.12

A tuning block for a PID controller is shown in f_1.12 above. The various parameters will be

discussed in more detail in the next section. Beware that some KC ranges have positive and/or

negative parts. The recursive PID algorithm used has a parameter  for the approximation of

the derivative term. It should normally be small (eg. 0.1) and may be set by the small

horizontal scrollbar (“a”) at the bottom. The “d” checkbox at the bottom right allows one to

select that the derivative term uses just PV for checked “X” (as in common industrial

controllers), or uses (PV-SP) for not checked, in which case the area is highlighted in pink.

 9

Chapter 2 Simulations - Openloop

.

2.1 RTD – Residence Time Distribution by pulse

injection

Examination of the RTD’s of three different vessels by measurement of

the exit concentration response to a pulse injection of tracer at the

vessel entrance:

f_2.1

2.1.1 Theory

10 Applied Process Control

If we have a stream of fluid flowing into a vessel such as a reactor, and we wish to examine

the degree of internal mixing in the vessel, we can inject a pulse of dye or some similar

marking substance into the stream as it enters. Its subsequent behaviour will depend on the

vessel design and the fluid flow properties. Sometimes the dye will move through the vessel

quickly, passing directly from the inlet to the outlet (bypassing); sometimes the cloud of dye

will move through the vessel without back- or forward-mixing with other fluid (plug flow);

sometimes it would be well mixed in the vessel (mixed flow) and some could get into the

corners where the flow velocities are low (dead zones). If the concentration of dye leaving

the vessel is then measured as a function of time, a plot of concentration vs time could be

constructed as shown.

f_2.2

time t

co
n
ce

n
tr

at
io

n

 c

(t
)

Assuming that the dye is a good indicator of the behaviour of the rest of the fluid in the vessel,

the shape of this curve will indicate the degree of mixing and the flow pattern. Levenspiel

(1999) shows that it can be interpreted as the distribution of residence times in the vessel.

As an example, if the flow is through a tubular reactor where there is little mixing in the tube,

we essentially have plug flow and the dye cloud would move through the reactor with much

the same shape and dimensions as it had at the inlet: the concentration measured at the outlet

would be zero up to a certain time, would then jump suddenly to a maximum value and then

fall immediately back to zero: this is ideal plug flow. If the contents of the reactor are well

mixed, the dye cloud would mix immediately with the rest of the fluid in the reactor and the

residence time distribution (RTD) would have an exponential decay with time: this would be

ideal mixed flow. These two ideal conditions are seldom met in practice and most real reactor

systems have RTD curves that lie somewhere between these two extremes.

Chapter 2 Simulations - Openloop 11

f_2.3

t

c(t)

t

c(t)

t

c(t)

Plug Flow Mixed Flow Real Flow

If the tracer injection point is close to the reactor inlet, “zero” time can be taken as the time of

injection of the tracer pulse. The flow rate through the system is also considered to be

constant.

The actual RTD curve, ie. the probability distribution p(t) of residence time t, is given my

 

1

()

i

i

i i

i

c
p t

c t






 
 (2.1)

The mean residence time (MRT) in the reactor is then given by:

1

1

()

()

i i i

i

i i

i

c t t

t

c t









  



 




 (2.2)

The denominator in this expression is evaluated from the area under the concentration

response curve. The numerator is evaluated by constructing a table for each time sample ti,

and with a chosen time interval ti, calculating ci  ti  ti: the sum of these terms then gives

the numerator.

The space time is the theoretical MRT given by:

V

v
  (2.3)

where V is the volume of the reactor and v is the flowrate. The variance of residence time is

given by:

 
22 2t t   (2.4)

where

2

2 1

1

()

()

i i i

i

i i

i

t c t

t

c t









  



 




 (2.5)

12 Applied Process Control

The standard deviation (SD), a measure of the spread of residence time, is thus clearly given

by

 
22t t   (2.6)

2.1.2 Tasks

The piping and instrumentation layout of the equipment is shown in f_2.4 below.

f_2.4

FI
CM

Mixed Flow

Injection Septa

Plug Flow

Plug Flow

with Tubes

Computer

Conductivity Cell

Syphon-

breaker

Mains

Water Supply

Drain

It is aimed to examine:

- the RTD curves for 3 different vessels

- the MRT of the fluid particles in the vessels compared to the Space Time of the vessels

- the SD of residence time vs Space Time for the vessels

- what differences there are between the vessels in terms of these parameters

Chapter 2 Simulations - Openloop 13

f_2.5 f_2.6 f_2.7

In f_2.1 the respective vessels are: [a] PFR with axial mixing in tubes (f_2.5), [b] PFR (f_2.6),

and [c] MFR (f_2.7).

(1) Press the LOG button and take note of the name of the RTC log file which begins

(2) Press the INJECT button for each vessel in turn, noting which vessel was injected at

which time. Obviously wait until the exit concentration of the tracer returns to its datum

value before proceding with the next injection.

(3) Press the LOG button again to terminate the file.

(4) Process the relevant sequences of the RTC log file in a spreadsheet program, in order to

obtain the actual RTD curve, and the required statistics. Beware of concentration datum

offsets.

(5) Only in the event of actual plant data (PLANT instead of MODEL setting), will an

independent space time be available from a flow measurement.

References

Levenspiel, O., “Chemical Reaction Engineering”, Third Edition, John Wiley & Sons, New

York, 255 (1999)

 15

Chapter 3 Simulations - Frequency

response

.

3.1 FRP – Frequency response practical

The frequency response of an interacting tank system is measured to

obtain Ziegler-Nichols PID parameters, which are tested using a

setpoint step response:

f_3.1

16 Applied Process Control

Water is supplied under pressure from the water main. The 4-20mA output (Manipulated

Variable: MV) of the control system passes through an I/P converter, whence the 3-15 psi

signal moves a control valve which feeds water to the first of 3 interacting tanks. Each of the

3 tanks has a level-glass, and the tanks are separated by restriction valves. There is a final

restriction valve at the exit of the third tank. The level in the third tank is the Process Variable

(PV) of interest, and is measured using a bubble-tube sensor. This low pressure (cm H20) is

converted by a differential pressure (DP) cell to the 4-20mA range, which is the feedback

signal to the controller.

3.1.1 Typical settings

 Valve Oscillation: Setpoint Oscillation: PID Tuning:
 Mean=40 Mean=45 KC = 3.0

 Amplitude=6 Amplitude=6 TI = 200

 Frequency= 0.004 Frequency= 0.005 TD = 0.1

  = 0.1

 d : 

 Time Axis:

 Length = 300

 Acceleration = 30

 Log Interval = 5

 Step Interval = 4000

3.1.2 Theory

Although the 3 interacting tanks suggest a third-order system, the various transmitters and

converters in the circuit may have sufficiently long time-constants to affect the system

dynamics. A "black-box" approach will be adopted, and frequency testing will allow us to

estimate suitable parameters Kc , I and D for the PID controller without any knowledge of

the intemals.

The Ziegler-Nichols frequency response method uses the response of the “open-loop” to

sinusoidal excitation, to obtain parameters for the controller. All that is required in this case is

to manipulate the feed valve sinusoidally, and determine the amplitude ratio and phase shift of

the level in the third tank at a series of frequencies.

In general, the input of a sinusoidal excitation to a stable system leads to a "steady-state"

output (frequency response), in which the amplitude and phase differ from those of the input

(f_3.2).

Chapter 3 Simulations - Frequency response 17

f_3.2

G(s)u x

transient “steady-state”

x

u

t

t

Ax

Au

phase

angle

T’

T

2
T

T
 


  

amplitude

ratio

x
A

u

A
R

A


frequency 

The amplitude ratio RA and phase angle  are found to vary according to the frequency  of

the excitation, and a typical “Bode Plot” of this relationship is shown in f_3.3. Here the

original openloop process is represented by GP. By way of example, this plot further shows

curves for a proposed controller GC, and the combined system in series, GPGC. Finally, a

+30db adjustment is made to the gain of the controller GC to achieve a gain margin (GM) of

14 db and a phase margin (PM) of 870. Recall that

 
01

Gain Margin = where is the cross-over frequency where =-180CO

A COR
 


 (3.1)

0 0

1
Phase Margin = 180 . 180 plus where =1

A
AR

ie R 


 (3.2)

18 Applied Process Control

f_3.3

10
-1

10
0

10
1

-120

-100

-80

-60

-40

-20

0

20

40

10
-1

10
0

10
1

-250

-200

-150

-100

-50

0

RA [db]

 [deg]

frequency [RPM]

frequency [RPM]


C

O

-1800

GP

GC

GP GC

GPGC

GPGC GPGC+30db

GM = 14 db

PM

= 870

process

resonant

peak

30

3.1.3 Tasks

(1) Obtain the frequency response of the uncontrolled open-loop process.

(2) Use a Bode Plot of this response to calculate the recommended Ziegler-Nichols settings

for a three-term controller.

(3) Implement these settings on a PID controller. Assess the quality of control using a

quadratic performance index calculated from the response to a set-point step-change.

(4) Attempt to improve the performance using an on-line trial-and-error tuning technique

that involves adjustment of settings and observation of the closed-loop response to a set-

point step-change.

Chapter 3 Simulations - Frequency response 19

(5) For the better controller of (3) and (4), obtain the open-loop frequency response of

controller and process in series. Use this to calculate the Gain Margin and Phase

Margin of the controlled system.

3.1.4 Method

Note that the loop is open when the rectangle next to “open ?” shows in red (f_3.4), and is

closed when it is clear (f_3.5). It is toggled between open and closed by pressing on the

rectangle.

f_3.4 f_3.5

(a) Set the logging task on, with a time-interval of 2 seconds for data storage. You may stop

this logging task at any time. Restarting it will generate a new file with the next name in

the sequence.

(b) Open the loop. Obtain the open-loop frequency response (without the controller: ie.

Gc=1) by manipulating the valve directly as follows (f_3.6): Choose frequencies of

0.04, 0.02, 0.01 and 0.005 Hz in that order, giving periods of 25 - 200 seconds. Be

careful to note the computer time at every measurement sequence, so that the

corresponding sequences can later be traced in the logged data. Obtain the amplitude

ratio RA and phase angle  at each frequency, by plotting out the collected data, and

comparing the valve trace as input to the tank level trace as output. Plot RA and  against

frequency on log-log and log-linear axes respectively.

20 Applied Process Control

f_3.6

(c) Find the cross-over frequency co and the amplitude ratio RA(co) at this frequency.

 Then

 ultimate gain Ku = 1/ RA(co) (3.3)

 ultimate period Pu = 2/ co [with co in radians/time] (3.4)

 = 1/ co [with co in cycles(repeats)/time] (3.5)

 The Ziegler-Nichols settings for a PID controller are as follows (Luyben, 1990):

 Kc = Ku / 1.7 (3.6)

 I = Pu / 2 (3.7)

 D = Pu / 8 (3.8)

 These settings will serve as the “calculated” controller settings for the controlled

response to a step test.

(d) From section 1.5.2, an on-line trial and error tuning technique (Luyben, 1990) will

now be attempted:

(i) With the controller on manual, let the level in the third tank reach a steady value.

Chapter 3 Simulations - Frequency response 21

(ii) Take all of the integral action and derivative action out of the controller by setting

maximum I (eg. 99999), and minimum D (0).

(iii) Position the set-point near the current tank level.

(iv) Set gain Kc, at a low value, say 0.5.

(v) Put the controller on automatic with the loop closed.

(vi) Make a small set-point change up or down, whichever is convenient, and observe

the response of the controlled variable.

(vii) Keep doubling the gain Kc until the loop becomes very underdamped (persistent

variation) and oscillatory.

(viii) Back-off on the gain to half this “ultimate” value.

(ix) Now start bringing in integral action by reducing I by factors of 2 (doubling 1/I),

making small set-point steps at each value of I to see the effect (Start with I

=120s).

(x) Find the value that makes it very underdamped and set I to twice this value.

(xi) Now start bringing in derivative action by increasing D. Make small set-point

steps at each value of D to see the effect. Find the value of D which gives the

tightest control without amplifying noise in the process measurement signal.

(xii) Increase Kc in steps until desirable damping and overshoot are obtained in reponse

to a set-point step.

The controller parameters obtained in the above trial-and-error procedure will be referred to

as the “manual” settings.

(e) For the purpose of comparison, now obtain the controlled response to a particular step

in set-point for the calculated controller settings and the manual controller settings.

Compare your two step-responses using a quadratic performance

index: 2

0

()PV SP dtI


  (3.9)

 If the two steps were of different sizes, this must be accounted for, so that the index

values may be compared (eg., assuming linearity, a step of twice the size will produce a

QPI four times bigger, for control of the same quality).

(f) Using settings as in the better of manual and calculated above, obtain the openloop

frequency response of the system, with

 Gc = Kc [1 + 1/(I s) + D s] (3.10)

 in series (controller on automatic, but loop opened). To achieve this, use the setpoint

oscillation controls on the left (f_3.7) with the same frequencies of 0.04, 0.02, 0.01 and

0.005 Hz. You will have to manipulate the mean position of this signal to prevent the

output level oscillation from drifting. This is because the integral action present requires

that the mean position of the setpoint lies at the mean position of the actual level

oscillation, otherwise there would be a net accumulation (“wind-up”) on each cycle.

22 Applied Process Control

f_3.7

This second openloop Bode plot, with GP and GC in series, allows you to evaluate the Gain

Margin and Phase Margin of this closed-loop control system.

3.1.5 Code extracts

 Controller and Model time-step....

void cFRP::Step()
{

 // Do the oscillations
 double daysec = (double)(theApp.m_hr*3600 + theApp.m_min*60 + theApp.m_sec);
 m_Level_sp = __min(__max(m_LevelSPMean + m_LevelSPAmpl*sin(2*PI*m_LevelSPFreq*daysec) , 0), max_Level);
 if (!b_Auto[0]) m_Valve = __min(__max(m_ValveMean + m_ValveAmpl*sin(2*PI*m_ValveFreq*daysec) , 0),
 max_Valve);

 bool b_changed_tuning = FALSE;
 for (i=0;i<nFRP;i++)
 {
 if (m_Kc[i] != Kc_last[i])
 {
 b_changed_tuning = TRUE;
 Kc[i] = m_Kc[i];
 Kc_last[i] = Kc[i];
 }
 if (m_Ti[i] != Ti_last[i])
 {

Chapter 3 Simulations - Frequency response 23

 b_changed_tuning = TRUE;
 Ti[i] = m_Ti[i];
 Ti_last[i] = Ti[i];
 }
 if (m_Td[i] != Td_last[i])
 {
 b_changed_tuning = TRUE;
 Td[i] = m_Td[i];
 Td_last[i] = Td[i];
 }
 if (m_alpha[i] != alpha_last[i])
 {
 b_changed_tuning = TRUE;
 alpha[i] = m_alpha[i];
 alpha_last[i] = alpha[i];
 }
 if (b_diff_err[i] != diff_err_last[i])
 {
 b_changed_tuning = TRUE;
 diff_err[i] = b_diff_err[i];
 diff_err_last[i] = diff_err[i];
 }
 }
 if (b_changed_tuning) Initialise(TRUE,FALSE); //PARTIAL

 if (theApp.FIRSTLOOP)
 {

 // initialise stacks for FRP loops
 r2[0] = r1[0] = r0[0] = m_Level;
 x2[0] = x1[0] = x0[0] = m_Level;
 m2[0] = m1[0] = m_Valve;

 // initialise Tank Levesls
 m_TankLevel[1] = max_Level;
 m_TankLevel[2] = (max_Level+m_Level)/2;
 m_TankLevel[3] = m_Level;
 theApp.FIRSTLOOP=0;
 }

 while (((theApp.t-tlast_FRP)>=dtFRP) || (theApp.b_FORCE_STEP))
 {
 if (!theApp.b_FORCE_STEP)
 {
 tlast_FRP += dtFRP; // must catch up by looping more than once if necessary
 }
 else
 {
 // to SYNCHRONISE manual moves : b_FORCE_STEP was set TRUE on StepMode button
 tlast_FRP = theApp.t;
 theApp.b_FORCE_STEP = FALSE;
 }

 // Interpret present values
 if (!b_LoopBroken)
 {
 x[0] = m_Level;
 m_LevelScrollBar = m_Level;
 }
 else
 {
 x[0] = m_LevelScrollBar;
 }
 r[0] = m_Level_sp;
 m[0] = m_Valve;

 for (i=0;i<nFRP;i++)
 {
 if (!b_Auto[i])
 {

24 Applied Process Control

 // Not on - reset to starting values
 r2[i] = r1[i] = r0[i] = x[i];
 x2[i] = x1[i] = x0[i] = x[i];
 m2[i] = m1[i] = m[i];
 }
 else
 {
 // On AUTO : calculate FRP action!
 // first cascade stack
 r2[i] = r1[i];
 r1[i] = r0[i];
 r0[i] = r[i];
 x2[i] = x1[i];
 x1[i] = x0[i];
 x0[i] = x[i];
 m2[i] = m1[i];
 m1[i] = m[i];

 // Action:
 m[i] = (- a1[i] * m1[i]
 - a2[i] * m2[i]
 + b0[i] * r0[i]
 + b1[i] * r1[i]
 + b2[i] * r2[i]
 - c0[i] * x0[i]
 - c1[i] * x1[i]
 - c2[i] * x2[i]) / a0[i];
 }
 }

 // back to actual variables
 m_Valve = __max(__min(m[0],max_Valve),0);
 }

 // Model............................

 while ((theApp.t-theApp.tlast_ModelStep) >= dtFRP)
 {
 theApp.tlast_ModelStep += dtFRP;
 if (theApp.b_Model)
 {
 // Simple Euler model
 double F12 = 0.05*(m_TankLevel[1] - m_TankLevel[2]);
 double F23 = 0.05*(m_TankLevel[2] - m_TankLevel[3]);
 double F3 = 0.05*m_TankLevel[3];
 double dTL1 = 1.0*(0.07*m_Valve - F12)*dtFRP;
 double dTL2 = 1.0*(F12 - F23)*dtFRP;
 double dTL3 = 1.0*(F23-F3)*dtFRP;
 m_TankLevel[1] = m_TankLevel[1]+dTL1;
 m_TankLevel[2] = m_TankLevel[2]+dTL2;
 m_TankLevel[3] = m_TankLevel[3]+dTL3;
 m_Level = __max(__min(m_TankLevel[3],max_Level),0);
 }
 }
}

References

Luyben, W.L., “Process Modeling, Simulation and Control for Chemical Engineers”, Second

Edition, McGraw-Hill, (1990).

 25

Chapter 4 Simulations - SISO

closedloop

4.1 Notes on tuning a PID loop

A number of tuning techniques are reported in the literature, such as Ziegler and Nichols

(1942), Cohen and Coon (1953), and an on-line trial and error method. Some are based on the

open-loop frequency response – ie. the steady oscillating output of the uncontrolled process

whilst its input MV is being sinusoidally manipulated. Needless to say, not many operators of

chemical plants subscribe to frequency response methods. Probably the most useful methods

to find a tuning starting point are based on the step response – the so-called “reaction curve”

methods. With a little experience, the persons responsible for setting up PID loops on plants

will quickly bypass such methods, and choose KC, TI , (and possibly TD) directly from their

knowledge of the process, its speed of response, dead-time present, and the types of

disturbances present. For example, we intuitively expect that TI should be several times longer

than the process response time, to prevent the controller from inducing its own oscillations.

Moreover, we can get a good idea of the process response time just by viewing plant data

records. Such skills should clearly be aimed for, but in the meantime, consider a more formal

technique based on the reaction curve.

4.1.1 Reaction Curve tuning

f_4.1
Time

MV

CV (PV) S
T
E

E
P

E
S

T
 S

L
O

P
E

a

xTT

TS

An openloop step response is shown for a PV (process variable) output as a result of an MV

(manipulated variable) step (f_4.1). A curve like this will be obtained provided the process

26 Applied Process Control

does not have a natural pure integrator (eg. the level in a drum responds as a pure integral of

the inflow). Note that the steepest slope of the response is x / TS. The time TT represents a

transport lag (ie. dead-time lag). Certainly, if the process did consist solely of a dead-time lag

and a first order response, TT would be the actual dead-time, because the steepest part of a

first-order response is at its start. In fact, many higher order systems are adequately

represented by a combination of dead-time and first-order response, so it is understandable

that the three parameters

Steady-state gain K = x / a (4.1)

Steepest slope N = x / TS (4.2)

Initial delay TT (4.3)

can form the basis of a “rule-of-thumb” tuning procedure such as that of Ziegler and Nichols:

Proportional: Kc = a / (N TT) (4.4)

Proportional – Integral: Kc = 0.9 a / (N TT) (4.5)

 TI = TT / 0.3 (4.6)

Proportional – Integral – Derivative: Kc = 1.2 a / (N TT) (4.7)

 TI = TT / 0.5 (4.8)

 TD = 0.5 TT (4.9)

When the delay TT is small, it becomes difficult to estimate it accurately, possibly making KC

unduly large. This method obviously cannot be applied when there is no delay TT, or when

there is a pure integrator in the process. The literature abounds with guides to tuning in such

circumstances, but for the meantime just note the on-line trial-and-error method below, which

is performed in closed loop (ie. on “Auto”).

4.1.2 On-line trial & error tuning

(a) Switch to manual and attain a steady operating point.

(b) Take all of the integral action and derivative action out of the controller by setting a

“large” TI , and minimum TD (0).

(c) Position the set-point near the current value of the PV to be controlled.

(d) Set gain KC to a “low” value

(e) Put the controller on automatic.

(f) Make a small set-point change up or down, whichever is convenient, and observe the

response of the controlled variable.

(g) Keep doubling the gain KC until the loop becomes very underdamped (persistent

variation) and oscillatory.

(h) Back-off on the gain to half this “ultimate” value.

(i) Now start bringing in integral action by reducing TI by factors of 2 (doubling 1/TI),

making small set-point steps at each value of TI to see the effect.

(j) Find the value that makes it very underdamped (bu not quite unstable) and set TI to

twice this value.

Chapter 4 Simulations - SISO closedloop 27

(k) Now start bringing in derivative action by increasing TD. Make small set-point steps at

each value of TD to see the effect. Find the value of TD which gives the tightest control

without amplifying noise in the process measurement signal.

(l) Increase KC in steps until desirable damping and overshoot are obtained in reponse to a

set-point step.

28 Applied Process Control

4.2 PID - Dosing tank level and concentration PID

loops

Understanding the PID algorithm and dealing with an integrating

process with some interaction:

f_4.2

4.2.1 Typical settings

 V1 = 50 AC: KC = 0.8 LC: KC = -40 Axis Length = 600

 V2 = 55 TI = 100 TI = 40 Acceleration = 10

 F0 = 35 TD = 2 TD = 2 Log Interval = 10

 ASP = 40  = 0.1  = 0.1 Step Interval = 10

 LSP = 45 d :  d : 

4.2.2 Theory

Chapter 4 Simulations - SISO closedloop 29

f_4.3

LC

LSP

V

L

ACTUAL

PROCESS

PID

CALCULATION-+
E V L

L

LSP

“LC”

error

The three terms in the common PID controller serve the following purposes:

P Proportional action: Moves V proportional to E and provides damping

I Integral action: Most processes do not have natural integration, so a permanent

error E is required to keep V in a new position. Integral action provides a means to

eliminate this offset, because V will continue to move with the integral of E.

D Derivative action: Makes a contribution to the movement of V in proportion to the

derivative of E (actually, the derivative of –L in practice, to avoid large responses to

steps in LSP). The benefit of this is that large movements in V are possible before E has

grown large, giving “lead” to the action (whereas integral action is retrospective and is

said to give “lag”). The size of the gradient of E is clearly assumed to be related to the

size of the incoming disturbance. Thus this action is not suitable when the L signal is

“noisy” (carrying sharp, small disturbances), as this would cause V to oscillate wildly.

Thus D action is used infrequently.

The appropriate equation for the control action V then uses a term proportional to the error

(LSP - L), one proportional to the integral of this error, and, in the case shown, one

proportional to the derivative of (-L) alone:

          
 

0

1 t

C SP SP D

I

dL t
V t K L t L t L t L t dt

dt




   
            

     
 (4.10)

1
Laplace: &

d
s

dt s
  :

     
1

with small eg. 0.1.
1

D
C SP SP

I

s
V K L L L L L

s s




 

 
     

 
 (4.11)

The increase of the order of the denominator renders this term physically realisable. ‘s’ acts as

a derivative

30 Applied Process Control

11 z
s

t





 (4.12)

where z-1 is the backwards shift operator for time-step t.

   1

11
eg. i i

x t x t t x xz
X

t t t




   

  
   

 (4.13)

2 1
(The Tustin approximation could also be used)

1

z
s

t z

 
  

  
 (4.14)

11
By substitution of for obtain

z
s

t





     1 2 1 2 1 2

0 1 2 0 1 2 0 1 2SPa a z a z V b b z b z L c c z c z L             (4.15)

ie.

 1 1 2 2 0 1 1 2 2 0 1 1 2 2

0

1
i i i SPi SPi SPi i i iV aV a V b L b L b L c L c L c L

a
              (4.16)

This is the necessary recursive relationship for PID controller action V. Note that this

relationship has natural anti-windup properties if the manipulated variable V is simply

“clipped” at its upper and lower limits.

4.2.3 Tasks

(1) With both controllers on “Auto”, let the process stabilise at an operating point, then

switch both controllers to “Manual”.

(2) Step V1 up by about 25. Sketch the response. What type of response does this appear to

be? Is the level affected ? Why?

(3) Freezing the response with the “Step Mode” button, estimate the parameters a, x, TT

and TS required for the calculation of controller parameters according to the “Reaction

Curve” method in section 4.1.1 (These will be used later).

(4) Step V2 up by about 25. Sketch the response. What type of response does this appear to

be? Why? Is the composition affected? Is there cross-coupling in this process, which

could lead to control loop interaction (“riding”) ?

(5) Switch both controllers back onto “Auto”. Wait until the system re-attains a steady

operating point.

(6) Step the composition setpoint up by about 25. Sketch the composition response. Look

at the valve motion. Can you explain it?

(7) Repeat (6) with only the PV in the derivative term (Check the box at bottom right of the

tuning controls, and the pink highlight should disappear. This is dicussed at the end of

Chapter 4 Simulations - SISO closedloop 31

section 1.4). How does the setpoint step response differ from (6)? Why? Reduce TD to

zero. Do (6) and (7) still differ?

(8) See if you can detect any effect of the  parameter using the composition controller

(bottom scrollbar in the controller tuning block).

(9) Step the level setpoint up by about 25. Sketch what you see. Why does valve V2 return

to where it started? What happens to the composition?

(10) Decrease F0 by about 25. Why does V2 change position permanently now?

(11) Try to improve the tuning of the composition control loop so that the composition is not

so badly disturbed by the level controller, eg. during level setpoint steps. First try a

controller based on the results obtained in the “Reaction Curve” test in (3) above.

(12) With both loops closed (ie. on “Auto”), see if the “trial and error” closed loop tuning

method (section 4.1.2) gives any improvement on the performance of the level control

loop.

4.2.4 Code extracts

 At start-up or when controller parameters are changed, the following assignments are

executed....

 // New parameters for PID Controllers
 double dtPID2 = pow(dtPID,2);
 for (i=0;i<nPID;i++)
 {
 a0[i] = Ti[i]*(dtPID + alpha[i])/dtPID2;
 a1[i] = Ti[i]*(-dtPID -2*alpha[i])/dtPID2;
 a2[i] = Ti[i]*(alpha[i])/dtPID2;
 b0[i] = Kc[i]*(dtPID2 + alpha[i]*dtPID + Ti[i]*dtPID + alpha[i]*Ti[i] + Ti[i]*Td[i]*diff_err[i])/dtPID2;
 b1[i] = Kc[i]*(- alpha[i]*dtPID - Ti[i]*dtPID - 2* alpha[i]*Ti[i] - 2*Ti[i]*Td[i]*diff_err[i])/dtPID2;
 b2[i] = Kc[i]*(alpha[i]*Ti[i] + Ti[i]*Td[i]*diff_err[i])/dtPID2;
 c0[i] = Kc[i]*(dtPID2 + alpha[i]*dtPID + Ti[i]*dtPID + alpha[i]*Ti[i] + Ti[i]*Td[i])/dtPID2;
 c1[i] = Kc[i]*(- alpha[i]*dtPID - Ti[i]*dtPID - 2* alpha[i]*Ti[i] - 2*Ti[i]*Td[i])/dtPID2;
 c2[i] = Kc[i]*(alpha[i]*Ti[i] + Ti[i]*Td[i])/dtPID2;
 }

 On each time-step, different calculations are executed depending on whether it is the first

call, or whether the controllers are on “Auto” or “Manual”.....

 if (theApp.FIRSTLOOP)
 {
 // initialise stacks for PID loops
 r2[0] = r1[0] = r0[0] = m_A;
 r2[1] = r1[1] = r0[1] = m_L;
 x2[0] = x1[0] = x0[0] = m_A;
 x2[1] = x1[1] = x0[1] = m_L;
 m2[0] = m1[0] = m_V1;
 m2[1] = m1[1] = m_V2;

 theApp.FIRSTLOOP=0;
 }

32 Applied Process Control

 while (((theApp.t-tlast_PID)>=dtPID) | (theApp.b_FORCE_STEP))
 {
 if (!theApp.b_FORCE_STEP)
 {
 tlast_PID += dtPID; // must catch up by looping more than once if necessary
 }
 else
 {
 tlast_PID = theApp.t; // to SYNCHRONISE manual moves :
 // b_FORCE_STEP was set TRUE on StepMode button
 theApp.b_FORCE_STEP = FALSE;
 }

 // Interpret present values
 x[0] = m_A;
 x[1] = m_L;
 r[0] = m_A_sp;
 r[1] = m_L_sp;
 m[0] = m_V1;
 m[1] = m_V2;

 for (i=0;i<nPID;i++)
 {
 if (!b_Auto[i])
 {
 // Not on - reset to starting values
 r2[i] = r1[i] = r0[i] = x[i];
 x2[i] = x1[i] = x0[i] = x[i];
 m2[i] = m1[i] = m[i];
 }
 else
 {
 // On AUTO : calculate PID action!
 // first cascade stack
 r2[i] = r1[i];
 r1[i] = r0[i];
 r0[i] = r[i];
 x2[i] = x1[i];
 x1[i] = x0[i];
 x0[i] = x[i];
 m2[i] = m1[i];
 m1[i] = m[i];

 // Action:
 m[i] = (- a1[i] * m1[i]
 - a2[i] * m2[i]
 + b0[i] * r0[i]
 + b1[i] * r1[i]
 + b2[i] * r2[i]
 - c0[i] * x0[i]
 - c1[i] * x1[i]
 - c2[i] * x2[i]) / a0[i];
 }
 }

 // back to actual variables & clip
 m_V1 = __max(__min(m[0],max_V1),0);
 m_V2 = __max(__min(m[1],max_V2),0);
 }

Chapter 4 Simulations - SISO closedloop 33

4.3 PII - Compressor control with strongly interacting PID loops

Tuning for satisfactory operation under conditions of strong

interaction:

f_4.4

4.3.1 Typical settings

 V1 = 50 PC: KC = -1 FC: KC = 0.5 Axis Length = 300

 V2 = 55 TI = 30 TI = 60 Acceleration = 10

 P0 = 35 TD = 2 TD = 2 Log Interval = 5

 PSP = 40  = 0.1  = 0.1 Step Interval = 5

 FSP = 45 d :  d : 

4.3.2 Theory

34 Applied Process Control

f_4.5

COOLER

COMPRESSOR

“KICK-BACK”

FT P F

FT

P

SURGE

SURGE L
IN

E

PSP

FKB

F
T

=

 F
+

F
K

B

This is a basic surge control arrangement on a compressor. If there were no pressure control,

the compressor would go into surge if the user flow demand (F) cut back (f_4.5). The PC and

FC arrangement shown in f_4.4 effectively forces the compressor to operate at the indicated

point, assuming that the speed (curved lines) is governed at a fixed value.

One expects the arrangement shown to be highly interactive, because the valves draw from a

common point. If the FC valve opens, pressure will drop, requiring a correction by PC, and

vice-versa. In practice, to prevent these two loops from “riding” each other, one loop has to be

made much slower than the other. In this exercise the PC loop will be made fast and the FC

loop slow, as the PC loop offers the primary surge protection.

4.3.3 Tasks

(1) With both controllers on “Auto”, let the process stabilise at an operating point, then

switch both controllers to “Manual”.

(2) Step V1 up by about 25. What type of response does this appear to be? Is the flow

affected? Why?

(3) Step V2 up by about 25. Is the pressure affected? Why?

(4) Switch the pressure controller to “Auto”. Wait for the system to steady, then step the

pressure setpoint down by about 25. Note the response of both flow and pressure.

(5) Switch the flow controller to “Auto”. Wait for the system to steady, then step the flow

setpoint down by about 25. Note the response of both flow and pressure.

Chapter 4 Simulations - SISO closedloop 35

(6) Try to speed up the flow response as much as possible. Primarily you will be attempting

to find a suitable combination of KC and TI of FC, with TD possibly set to zero. Note the

point at which the system goes unstable. Back off to a point which is a compromise

between speed and dampening of the oscillations.

(7) Disturb the system with a step in the suction pressure of the compressor and check the

controlled system’sperformance.

4.3.4 Code extracts

 Model time-step....

// Convolution model based on step responses

 while ((theApp.t-theApp.tlast_ModelStep) >= dtPII_StepResp/(double)Ninterp)
 {
 theApp.tlast_ModelStep += dtPII_StepResp/(double)Ninterp;

 dmlinterp(1) = m_V1-mlastinterp(1);
 dmlinterp(2) = m_V2-mlastinterp(2);
 dmlinterp(3) = m_P0-mlastinterp(3);

 mlastinterp(1) = m_V1;
 mlastinterp(2) = m_V2;
 mlastinterp(3) = m_P0;

 //update interpolated past vector
 // ACCUMULATE the moves falling off the past moves stack
 for (j=1; j<=(Ppii+Qpii); j++)
 {
 dminterpACC(j) += dmpinterp(j);
 }
 // past moves shift one down dmpinterp stack (to incorporate latest move)
 for (i=1; i<=(Npii*Ninterp-1); i++)
 {
 for (j=1; j<=(Ppii+Qpii); j++)
 {
 dmpinterp((i-1)*(Ppii+Qpii)+j) = dmpinterp(i*(Ppii+Qpii)+j);
 }
 }
 for (j=1; j<=(Ppii+Qpii); j++)
 {
 dmpinterp((Npii*Ninterp-1)*(Ppii+Qpii)+j) = dmlinterp(j);
 }

 if (theApp.b_Model)
 {
 cMatrix dx = dB0interp*dmpinterp;
 // Add in any integral effects
 for (i=1;i<=Rpii;i++)
 {
 for (j=1;j<=(Ppii+Qpii);j++)
 {
 dx(i) += dB0interp(i,j)*dminterpACC(j);
 }
 }

 P = P + dx(1);
 F = F + dx(2);
 m_P = __max(__min(P,max_P),0);

36 Applied Process Control

 m_F = __max(__min(F,max_F),0);
 }
 }

References

Cohen, G. and G. Coon (1953) “Theoretical consideration of retarded control”, Transactions

of the ASME, 75, 827-834.

Ziegler, J.G. and N.B. Nichols (1942) “Optimum settings for automatic controllers”,

Transactions of the ASME, 64, 759–768.

 37

Chapter 5 Simulations - SISO

optimisers

.

5.1 ALC - Advanced level control of a distillation

column

Understanding and tuning an algorithm for minimisation of flow

fluctuations between plant items:

f_5.1

In this application, a comparison will be made between the performance of an Advanced

Level Controller, and an ordinary PID controller maintaining the level. In both instances the

controller cascades to the same slave flow controller. A new control switch is provided to

switch between the two supervising controllers (f_5.2).

38 Applied Process Control

f_5.2

To provide a realistically variable environment for the level control to contend with, a feature

is provided for addition of a random component in the feed flow rate into the column. This

has a zero mean, and is added to the normal flow setting to obtain the actual flow into the

column. The size of the random component is determined by the RANDOM scrollbar setting

(f_5.3).

f_5.3

5.1.1 Typical settings

L= 40 ALC: Gap = 10 LC: KC = -4 FC: KC = 1.2 Axis Length = 3600

LSP = 45 TD = 480 (PID) TI = 800 TI = 500 Acceleration = 50

FSP= 35 (desired) TD = 2 TD = 2 Log Interval = 30

F = 45  = 0.1  = 0.1 Step Interval = 600

F valve = 55 d :  d : 

5.1.2 Theory

Chapter 5 Simulations - SISO optimisers 39

f_5.4

LEVEL

L

TDESIRED

TEXPECTED

dL

dt

dL

dt

DESIRED

F=
dL

dt
dL

dt
DESIRED

1

A

Gap

Gap

HIGH LIMIT

LOW LIMIT

-

The idea is to make as few adjustments to the outflow as possible, so as to introduce minimal

variations into the downstream units. In this way, those units downstream can be controlled

more tightly, closer to specification. This idea is made possible by maximum utilisation of the

“buffering capacity” of the vessel in which level is to be controlled – indeed, modern plants

are often designed with additional capacity here so as to facilitate ALC. There is an

assumption that one is dealing with shorter positive and negative flow variations about some

mean. If the outflow could be set up at the estimated mean, it might be possible to “ride out”

the incoming flow variations. In the old days, operators/instrument technicians might have

been quite proud of how tightly they were controlling level in a vessel, but if one looked at

the corresponding flow or valve chart, it could be virtually “painted” with huge variations of

the control action involved. This is all very well for the vessel considered, but what about the

operations downstream?

There would be many variations of algorithms that could minimise the outflow variations –

with different merits in different situations. In fact, this problem is not so straightforward,

with algorithms running into several pages of code. The one proposed here is based on the

idea of a desired time margin (TD , ie. TDESIRED) representing a minimum acceptable time

within which the upper or lower limit of level could be reached. If the present rate of level rise

or fall indicates that the limit will be reached sooner, some minimal evasive action must be

taken, in one step, with the aim of not having to make another adjustment soon. The diagram

shows a way to adjust the outflow setpoint, but as can be seen in the code in section 5.1.4,

there is more to it than just this.

5.1.3 Tasks

(1) Switch to the PID controller and set it on Auto. Press “Reset” and set the random

component on the inflow down to zero. Let the system steady out.

40 Applied Process Control

(2) Step up the inflow by about 10, and note the level and outflow response.

(3) Repeat (1) and (2), but this time with the ALC controller. Note that the “Gap” setting is

relative to the present controller setpoint. How do the level and outflow responses

differ?

(4) Increase the RANDOM setting on the inflow from 0 to about 20. Compare the operation

of the PID and ALC controller again. Comment on the swings in level, violation of the

limits, and the frequency of outflow adjustments.

(5) Change the TD setting, and investigate what effect it has on the ALC controller with

the same random variation of the inflow

(6) Change the Gap setting, and investigate what effect it has on the ALC controller with

the same random variation of the inflow

5.1.4 Code Extracts

 On each time-step, different calculations are executed depending on whether it is the first

call, or whether the controllers are on “Auto” or “Manual”.....

 if (theApp.FIRSTLOOP)
 {
 // initialise stacks for ALC loops
 r2[0] = r1[0] = r0[0] = m_AL;
 r2[1] = r1[1] = r0[1] = m_F;
 x2[0] = x1[0] = x0[0] = m_AL;
 x2[1] = x1[1] = x0[1] = m_F;
 m2[0] = m1[0] = m_V1 = m_F; // Special for ALC
 m2[1] = m1[1] = m_V2;

 theApp.FIRSTLOOP=0;
 }

 while (((theApp.t-tlast_ALC)>=dtALC) | (theApp.b_FORCE_STEP))
 {
 if (!theApp.b_FORCE_STEP)
 {
 tlast_ALC += dtALC; // must catch up by looping more than once if necessary
 }
 else
 {
 tlast_ALC = theApp.t; // to SYNCHRONISE manual moves : b_FORCE_STEP
 //was set TRUE on StepMode button
 theApp.b_FORCE_STEP = FALSE;
 }

 // Interpret present values
 if (b_Auto[0])
 {
 b_Auto[1] = TRUE; // Special for ALC
 m_F_sp = m_V1; // Special for ALC
 }

 x[0] = m_AL;
 x[1] = m_F;
 r[0] = m_AL_sp;

Chapter 5 Simulations - SISO optimisers 41

 r[1] = m_F_sp;
 m[0] = m_V1;
 m[1] = m_V2;

 for (i=0;i<nALC;i++)
 {
 if (!b_Auto[i])
 {
 // Not on - reset to starting values
 r2[i] = r1[i] = r0[i] = x[i];
 x2[i] = x1[i] = x0[i] = x[i];
 m2[i] = m1[i] = m[i];
 if (i==2) n_ALC_counter = 0;
 }
 else
 {
 // On AUTO : calculate control action!
 // first cascade stack
 r2[i] = r1[i];
 r1[i] = r0[i];
 r0[i] = r[i];
 x2[i] = x1[i];
 x1[i] = x0[i];
 x0[i] = x[i];
 m2[i] = m1[i];
 m1[i] = m[i];

 // Action:
 if ((i==1) | (!b_LCbyALC))
 {
 // NORMAL PID CONTROL
 m[i] = (- a1[i] * m1[i]
 - a2[i] * m2[i]
 + b0[i] * r0[i]
 + b1[i] * r1[i]
 + b2[i] * r2[i]
 - c0[i] * x0[i]
 - c1[i] * x1[i]
 - c2[i] * x2[i]) / a0[i];
 }
 else
 {
 // ADVANCED LEVEL CONTROL
 //present gradient
 double dF=0;
 n_ALC_counter -=1;
 if (n_ALC_counter <= 0)
 {
 double dLdt = (x1[0]-x2[0]) / dtALC;
 // delay - bit shorter than full flow response
 int n_counter_reset = int(0.6*NALC*dtALC_StepResp/dtALC);
 // dT_expected
 double dT_expected, level_margin;
 double dT_emergency = 0.7*m_ALC_dTdesired;
 //UPPER SIDE
 level_margin = (r0[0] + m_ALC_Gap) - x0[0];
 if (level_margin < 0)
 {
 dF=((-level_margin+dLdt*dT_emergency) * Area) / dT_emergency;
 n_ALC_counter = n_counter_reset;
 }
 else if (dLdt >= 0)
 {
 dT_expected = level_margin / (dLdt + 1e-10);
 if((dT_expected < m_ALC_dTdesired) & (level_margin < 0.3*
 m_ALC_Gap)) // let it jump around in middle bit
 {
 dF = (level_margin * Area) * (1/dT_expected –
 1/m_ALC_dTdesired);

42 Applied Process Control

 n_ALC_counter = n_counter_reset; //have to give it time
 }
 }
 //LOWER SIDE
 level_margin = x0[0] - (r0[0] - m_ALC_Gap) ;
 if (level_margin < 0)
 {
 dF=-((-level_margin-dLdt*dT_emergency) * Area) / dT_emergency;
 n_ALC_counter = n_counter_reset;
 }
 else if (dLdt <= 0)
 {
 dT_expected = level_margin / (-dLdt+1e-10);
 if((dT_expected < m_ALC_dTdesired) & (level_margin < 0.3*
 m_ALC_Gap)) // let it jump around in middle bit
 {
 dF = -(level_margin * Area) * (1/dT_expected –
 1/m_ALC_dTdesired);
 n_ALC_counter = n_counter_reset; //have to give it time
 }
 }
 }
 m[0] += dF;
 }
 }
 }

 // back to actual variables
 m_V1 = __max(__min(m[0],max_V1),0);
 m_V2 = __max(__min(m[1],max_V2),0);
 }

Chapter 5 Simulations - SISO optimisers 43

5.2 VPC - Valve position control for distillation

column pressure minimisation

Use of a combination of PID loops for simple process operating point

optimisation:

f_5.5

One of the early applications of Valve Position Control was distillation column pressure

minimisation, as proposed by Shinskey, who worked for Foxboro Corporation, and who had a

knack for arranging PID controllers in ingenious ways, even one controller manipulating the

tuning parameters of another! Generally speaking, relative volatilities increase as pressure

drops, so the operation of a distillation column at as low pressure as possible will enhance

separation. Thus one needs to maximise the condenser duty. If it is water-cooled as in this

example, one wants to open the cooling water supply valve as widely as possible. Why not

just open it to 100% and leave it? This is not advisable, as in the operation there are likely to

be other disturbances causing pressure fluctuations, and one would need some adjustment of

the cooling water, both positive and negative, to deal with them rapidly to avoid complete

upset of the column. Thus one needs to reserve some positive movement of the valve, and

would like to maintain it at a setpoint of, say, 90% open. The means of doing this are by

manipulating the setpoint of the pressure controller itself, relatively slowly so as not to upset

the column. Another reason why the valve position controller should be relatively slower than

the pressure controller is because the implicit dependence of these two loops has the potential

to become completely unstable!

44 Applied Process Control

Note that this procedure is a kind of optimisation of a process. Indeed, there are many other

applications of this simple optimisation technique, eg. maximising the use of a cheap coolant

(CW), with only the residual duty being taken up by a very effective, but expensive,

refrigerant. These principles could be applied to any material flows in a process, not just

coolants – eg. maximum re-use of treated effluent water prior to fresh water, etc.

5.2.1 Typical settings

 VP = V2 = 40 VPC: KC = -0.9 PC: KC = -1 Axis Length = 5400

 VPSP =40 TI = 100 TI = 200 Acceleration = 200

 P= 60 TD = 0 TD = 0 Log Interval = 30

 PSP =V1= 60  = 0.1  = 0.1 Step Interval = 600

 R (reflux) = 35 d :  d : 

5.2.2 Theory

The VPC clearly cannot function unless the PC is on “Auto”, accepting the remote setpoint.

This occurs automatically one the VPC is set to “Auto”. If the system pressure is disturbed,

the PC will try to correct it, but as it begins to move the valve V2, it will find its own setpoint

changing., and this can easily lead to unstable oscillations. Thus the VPC should be tuned to

react somewhat more slowly than the PC.

5.2.3 Tasks

(1) With both controllers on “Auto”, let the system reach steady-state. Then switch the VPC

to “manual”, and do a setpoint step-test on the PC. See if you can improve the

performance of the PC by manipulating its KC, TI and TD.

(2) Switch the VPC to “Auto”. Step its setpoint by about +25. See if you can improve the

tuning of the VPC using its KC, TI and TD. At what values does the system go unstable?

(3) Once you finalise tuning for PC and VPC, let the system reach steady state with both

loops closed. Now step the reflux (R) as a disturbance. Can you account for all of the

graphical responses?

5.2.4 Code Extracts

 The only difference to two independent PID loops (as in section 4.2) occurs ahead of the

two loop solutions on each time step, where the following code is inserted:

 // Interpret present values
 if (b_Auto[0]) // VPC has been switched to “Auto”
 {

Chapter 5 Simulations - SISO optimisers 45

 b_Auto[1] = TRUE; // force the PC onto “Auto”
 m_P_sp = m_V1; // pass down remote setpoint
 }
 else
 {
 m_V1 = m_P; // for bumpless startup, keep VPC output variable close to present value
 }

46 Applied Process Control

5.3 PSH - Constraint pusher for optimal use of paper

machine fibre stocks

Understanding and tuning a constrained optimisation with a

performance objective function:

f_5.6

With the access to to all variables in modern DCS or SCADA systems, optimisers (and

constrained optimisers as in this case), are becoming more common. Plant optimisers are

viewed as being near the top of an hierarchical process control pyramid of the form f_5.7:

f_5.7

Base Layer : PID loops PC,FC,TC, etc.

Multivariable controllers

(eg.DMC), APC applications

Plant optimisers

Management

Chapter 5 Simulations - SISO optimisers 47

Generally speaking, the target information for each strategy moves downward in this pyramid.

Actually, the type of optimiser envisaged in the pyramid tends to embrace the entire plant

with an economic objective. It usually does not have any dynamic compensation – ie. it

assumes a steady-state balance (and often has onboard a data-reconciliation package to create

a proper mass and energy balance as a starting point). Such optimisers can run into thousands

of variables and equations. However, the type of constrained optimiser we shall consider here

fits more logically into the APC layer. Here is a simple example of a constraint-pushing

optimiser (f_5.8):

f_5.8

T1

T2

T3

T4

T5

T6

maximum

allowed

catalyst

temperature

Temperature in catalytic bed

heater

catalytic

reactor

valve %

valve 45%

valve 63%

Usually one attempts to operate a catalytic reactor at as high a temperature as possible, in

order to maximise reaction rate and conversion. There will be a limit associated with the

equipment – typically there is a maximum allowed operating temperature for the catalyst to

avoid sintering. So a simple constraint pusher here will find the maximum temperature in the

catalytic bed at any time, and keep on opening the heater valve until this maximum reaches

the limit.

48 Applied Process Control

f_5.9

C1C F1C

white water

(1)

short

fibre

FC LC

r1 r2 r3

C2C F2C

white water

(2)

long

fibre 1

C3C F3C

white water

(3)

long

fibre 2

C3C F3C

white water

(4)

inside

broke

CC

white water

Blend Chest

CBC

SP

SP

SP SP SP

Let us now consider the application at hand (f_5.9): the optimal use of a paper machine’s fibre

stocks. These are suspensions of tiny wood fibres in water, at varying “consistencies”, ie.

mass fibre per mass water. The basic stock supplies are held in storage tanks, and each stock

supply is separately adjusted, as it is drawn, to a setpoint consistency by the addition of white

water. It should be noted that the stocks are suspensions of wood-pulp fibres in the range of 1-

5% m/m. The white-water is merely wash-water, etc, which has a very low (negligible) fibre

content, so it can only be used to adjust the stock consistencies downwards.

In this application, the constraining issues, and the scope for optimisation, may be less

obvious than the reactor above, so some explanation is required. The constraint-pusher

optimiser was developed when deficiencies in an existing fibre stock preparation section were

noted, and it is easier to understand the optimiser if one first reviews the old system (which

can also be run in this simulator). The NEW or OLD method (or MANUAL) can be selected

with the controls below (f_5.10). The “UNCONV” flashes yellow if the new solution cannot

converge, in which case the solution just reverts to the OLD algorithm. Positioning the system

within constraints before switching to the NEW algorithm should avoid this.

f_5.10

In the old method, the overall FC algorithm would calculate setpoints for F1, F2, F3 and F4

(knowing C1, C2, C3, and C4), in order to achieve the following conditions in the total flow

into the Blend Chest:

 fSP : total flow demanded by LC

 cSP : consistency of total flow (ie. mass percent of fibre solids in water)

Chapter 5 Simulations - SISO optimisers 49

 r1 SP : mass percent of Short Fibre in total fibre

 r2 SP : mass percent of Long Fibre 1 in total fibre

 r3 SP : mass percent of Long Fibre 2 in total fibre

 (100 - r1 SP – r2 SP - r3SP) : mass percent of Inside Broke in total fibre

Plant data records showed frequent upsets in the stock consistency and fibre ratios. These

were discovered to arise because the ratio-ing algorithm (FC) was issuing setpoints to the

various stock FC’s, but had no strategy to deal with the possibility that desired flows and

consistencies in the source stocks might not be achievable. For example, a basic stock supply

consistency could drop well below the consistency setpoint of the associated consistency

controller.

The origin of the new “constraint pusher” was in recognising that eight setpoints could be

manipulated (for C1, C2, C3, C4, F1, F2, F3, F4), not just four (for F1, F2, F3, F4). If the

objectives regarding f, c, r1, r2, and r3 could be properly formulated in an objective function,

then C1, C2, C3, C4, F1, F2, F3, and F4 could be manipulated until restricted by constraints, yet

those remaining unconstrained could still be used for cross-compensation, according to the

priorities. On a more basic level, one recognises that eight liquid streams are merely being

combined, four from the basic stock vessels, plus one white water flow each. (It is noted that

there is some freedom regarding the choice of a source of white water – so the maintenance of

typical setpoints for C1, C2, C3, C4 is included as a weak secondary objective.)

The weightings wi applied to the various setpoint deviations in the objective function are set

in a dedicated block (f_5.11). Note the 7th weight, designed to enhance the weight on flow

deviations when there is a large deviation from the level setpoint.

f_5.11

The various setpoints above are set in the following block (f_5.12), representing conditions of

the combined stream entering the Blend Chest:

50 Applied Process Control

f_5.12

The setpoints are highlighted in pink, and are set by the corresponding scrollbars. The actual

value of the controlled variable is shown below the setpoint value. The (fixed) set upper and

lower constraints for c, r1, r2 and r3 are shown on a light grey background next to their

scrollbars. Adjacent to the top and bottom of each scrollbar is an indicator which shows the

status of each of these 4 variables with respect to its constraints. If it is within its constraints,

both indicators are off. If it is at either constraint, the associated indicator flashes green. If it

violates either constraint, the associated indicator flashes red. The NEW algorithm recognises

these constraints, so the indicators will be useful to check its performance.

f_5.13

The consistency of each of the supply stocks can be set using the scrollbar shown above

(f_5.13). Take note of the arrangement around the individual flow and consistency controllers

for each stock, shown below (f_5.14). The desired setpoint for this stock consistency is set on

the upper pink scrollbar, and this consistency is shown numerically highlighted in pink. The

actual consistency is shown on the white scrollbar (and numerically to the left of the setpoint),

and will usually differ when the NEW algorithm is running, because it pays little attention to

these desired setpoints. Should the actual consistency find itself running up against a

constraint, the adjacent “LO/HI” indicator will flash red. This will usually happen when it

cannot be adjusted any higher than the supply consistency (or lower than zero). Similarly, the

flow setting below the pipe has a “LO/HI” “constrained” indicator, which will flash red when

the controlling setpoint has adjusted the scrollbar setpoint to either end of its range.

f_5.14

Chapter 5 Simulations - SISO optimisers 51

PI controllers (TD =0) are provided for the final consistency trim control (f_5.15), and the

Blend Chest level control (f_5.16). Again, the setpoint is highlighted in pink above the value

of the actual feedback variable. The two vertical scrollbars apply to the setpoints. Clearly, the

setpoint for c in the combined flow into the Blend Chest would have to be set higher than the

desired final consistency trim setpoint, since the only means of control is by addition of white

water.

f_5.15

 f_5.16

After the final consistency controller, a flow setting can be manipulated to simulate demand

conditions on the flow of prepared stock. There is a mean setting (left hand scroll bar) and a

zero-mean RANDOM component of size determined by the RANDOM scrollbar (f_5.17).

The resultant flow is indicated to the right of the “F” symbol below the pipe. Note that this

final flow includes the adjacent white-water addition, so if the white water flow fluctuates, the

flow drawn from the Blend Chest will fluctuate inversely.

f_5.17

5.3.1 Typical settings

 LC (PID):

Stock: LSP = 70 Setpoints Weights Time Axis = 1800

C1SP = 4.0 KC = 25 cSP = 3 w1 = 5 Time accel. = 50

C2SP = 4.5 TI = 250 r1SP = 10 w2 = 5 Log Interval = 30

52 Applied Process Control

C3SP = 4.5 (TD = 0) r2SP = 20 w3 = 5 Step Interval = 60

C4SP = 4.0 r3SP = 20 w4 = 50

Supply: CC (PID): w5 = 25

CS1 = 5.0 CSP = 2.0 w6 = 5

CS2 = 5.0 KC = -30 w7 = 0.3

CS3 = 5.0 TI = 50

CS4 = 5.0 (TD = 0)

 Flow drawn Mean F= 80

 Flow drawn RANDOM= 50

5.3.2 Theory

The combined stream property arriving at the Blend Chest can be calculated as follows:

1 2 3 4f F F F F    (5.1)

1 1 2 2 3 3 4 4FC F C F C F C
c

f

  
 (5.2)

1 1
1

FC
r

fc
 (5.3)

2 2
2

F C
r

fc
 (5.4)

3 3
3

F C
r

fc
 (5.5)

It is clear that the variables to be manipulated are non-linearly related to the setpoint

objectives. Thus a constrained optimisation based on Linear Programming is not possible.

Define an objective function as follows

 

 

1 2 3 4 1 2 3 4 1 1 1

2 2 2

3 3 3

4

4

5

1

6 7

, , , , , , ,

1

SP

SP

SP

SP

i iSP

i

SP SP

J C C C C F F F F w r r

w r r

w r r

w c c

w C C

w f f w L L



  

 

 

 

 

   



 (5.6)

where we aim to minimise J by suitable choice of C1, C2, C3, C4, F1, F2, F3, and F4 within

the constraints on all of these variables. It has been chosen to use the magnitude of the

deviations rather than the square (not for any particular reason). The intention with the 6th

term is merely to increase the weighting on compliance with the total flow setpoint (from the

LC) in the event that deviations of the level L from LSP happen to be large. The variable L is

just a measurement, and not influenced by the free variables in the optimisation. Notice the w5

Chapter 5 Simulations - SISO optimisers 53

term which aims to have a weak attraction of the individual controlled stock consistencies

towards their setpoints. In this way the white water will not be drawn all with one of the

stocks.

A somewhat crude but reasonably effective constrained optimisation search has been devised

for this problem. The search proceeds outwards from the last C1, C2, C3, C4, F1, F2, F3, and F4

position, adjusting each of these variables in turn (positive and negative fractions of its range,

before returning it to its original value), to find which of the 16 possible results (excluding

any that fall outside constraints) gives the biggest reduction in J. Then the centre position

moves on to this best point, and the search is repeated. When there is no smaller J, or its value

oscillates within a small tolerance, the search stops.

As an example, consider the following 2-dimensional optimisation (f_5.18):

 

min max

min max

,

:

SP SPMinimise J x y x x y y

for x x x

y y y

   

 

 

 (5.7)

f_5.18

ymax

x
m

a
x

x
m

in

ymin

J
= 0

J
= 1

J
= 2

J
= 3

start

position

ysp

x
sp

5.3.3 Tasks

(1) Switch the system to “AUTO-OLD” (f_5.10), reduce the RANDOM component on the

final flow to zero, and wait for the system to become steady. Notice that once the old

algorithm has got the fibre ratios right, it has no further freedom to adjust the combined

flow c into the Blend Chest. All of the control is done by the final C trim control.

Reduce some of the individual consistency setpoints slightly, and see the c value drop.

54 Applied Process Control

(2) The Inside Broke contributes a lot of the fibre. See what happens when you reduce its

supply consistency slowly down towards 1.0%. Eventually it is impossible to meet both

the fibre ratio requirement, and the total flow requirement, so the solution fails. (This

version does not have enough protection against this at present, so the result is

numerically catastrophic!).

(3) Repeat the test in (3) for a higher final consistency setpoint (say 3%), and you will see

that final consistency cannot be controlled, because the Blend Chest consistency drops

below 3% (before the OLD algorithm actually fails). [If you restart the solution with

“Reset”, you will have to reposition the cursors moved so far]. If you cannot get steady

operation like this, just raise the final consistency setpoint and you will see that the

maximum is determined by c.

(4) With the offset final consistency in (3), set the c setpoint higher than the final

consistency setpoint, and switch from the “AUTO-OLD” to the “AUTO-NEW”

algorithm. If the “UNCONV” indicator flashes yellow, it is probably because you have

started outside of the constraints, and the solution will be reverting to the OLD method

by default. Check which constraint is flashing and temporarily move the associated

setpoint until the system is within constraints, in which case the NEW solution will take

over. Then you can return setpoints to where they were.

(5) With the NEW algorithm still operating, with zero RANDOM component on the final

flow, check the responses to steps in the setpoints of c, r1, r2, r3, L, and C.

(6) Now raise the final flow RANDOM component to about 50, and observe the general

performance of the NEW algorithm in the face of these disturbances. Check how it

handles drops in the stock supply consistencies.

(7) Adjust the objective function weights w1, w2, w3, w4, w5, w6, and w7 , and see if you get

predictable effects. For example, see how the level-control performance improves with

w6, and w7.

5.3.4 Code Extracts

 The following code is executed on every time-step:

 //renormalise fibre ratios if necessary
 double tot1to3 = m_r1+m_r2+m_r3;
 if (tot1to3>100)
 {
 m_r1 = 100*m_r1/tot1to3;
 m_r2 = 100*m_r2/tot1to3;
 m_r3 = 100*m_r3/tot1to3;
 }

 if (theApp.FIRSTLOOP)
 {
 // initialise stacks for PSH loops
 r2[0] = r1[0] = r0[0] = m_Lbc;
 x2[0] = x1[0] = x0[0] = m_Lbc;
 m2[0] = m1[0] = m_fopt;
 r2[1] = r1[1] = r0[1] = m_Cfinal;

Chapter 5 Simulations - SISO optimisers 55

 x2[1] = x1[1] = x0[1] = m_Cfinal;
 m2[1] = m1[1] = m_fww;
 theApp.FIRSTLOOP=0;
 }

 while (((theApp.t-tlast_PSH)>=dtPSH) | (theApp.b_FORCE_STEP))
 {
 if (!theApp.b_FORCE_STEP)
 {
 tlast_PSH += dtPSH; // must catch up by looping more than once if necessary
 }
 else
 {
 tlast_PSH = theApp.t; // to SYNCHRONISE manual moves : b_FORCE_STEP
 // was set TRUE on StepMode button
 theApp.b_FORCE_STEP = FALSE;
 }

 // Interpret present values
 x[0] = m_Lbc;
 r[0] = m_Lbc_sp;
 m[0] = m_fopt;
 x[1] = m_Cfinal;
 r[1] = m_Cfinal_sp;
 m[1] = m_fww;

 for (i=0;i<nPSH;i++)
 {
 if (!b_Auto[i])
 {
 // Not on - reset to starting values
 r2[i] = r1[i] = r0[i] = x[i];
 x2[i] = x1[i] = x0[i] = x[i];
 m2[i] = m1[i] = m[i];
 }
 else
 {
 // On AUTO : calculate PSH action!
 // first cascade stack
 r2[i] = r1[i];
 r1[i] = r0[i];
 r0[i] = r[i];
 x2[i] = x1[i];
 x1[i] = x0[i];
 x0[i] = x[i];
 m2[i] = m1[i];
 m1[i] = m[i];

 // Action:
 m[i] = (- a1[i] * m1[i]
 - a2[i] * m2[i]
 + b0[i] * r0[i]
 + b1[i] * r1[i]
 + b2[i] * r2[i]
 - c0[i] * x0[i]
 - c1[i] * x1[i]
 - c2[i] * x2[i]) / a0[i];
 // back to actual variables as appropriate
 if(i==0) m_fopt_sp = __max(__min(m[0],max_fopt),0);
 if(i==1) m_fww = __max(__min(m[1],m_Ffinal),0); // cannot be bigger than
 // final combined flow!
 }
 }
 }

 // Constraint Pusher Optimiser.......
 while ((theApp.t-tlast_Pusher) >= dtPSH_Pusher)
 {
 tlast_Pusher = theApp.t;

56 Applied Process Control

 // Now do the Flow Apportioning
 if (b_ManualOldNew)
 {
 // No control
 b_unconverged = FALSE;
 m_C1 = __min(m_C1sp,m_Cs1);
 m_C2 = __min(m_C2sp,m_Cs2);
 m_C3 = __min(m_C3sp,m_Cs3);
 m_C4 = __min(m_C4sp,m_Cs4);
 }
 else if(b_AutoOld)
 {
 // Old method
 b_unconverged = FALSE;
 Default_Strategy:
 m_C1 = __min(m_C1sp,m_Cs1);
 m_C2 = __min(m_C2sp,m_Cs2);
 m_C3 = __min(m_C3sp,m_Cs3);
 m_C4 = __min(m_C4sp,m_Cs4);

 cMatrix A, x, y, temp;
 A.Init(4,4);
 x.Init(4,1);
 y.Init(4,1);
 double m_r4_sp = 100 - m_r1_sp - m_r2_sp - m_r3_sp;
 A(1,1) = m_r1_sp-100 ; A(1,2) = m_r1_sp*m_C2/m_C1 ;
 A(1,3) = m_r1_sp*m_C3/m_C1 ; A(1,4) = m_r1_sp*m_C4/m_C1;
 A(2,1) = m_r2_sp*m_C1/m_C2 ; A(2,2) = m_r2_sp-100 ;
 A(2,3) = m_r2_sp*m_C3/m_C2 ; A(2,4) = m_r2_sp*m_C4/m_C2;
 A(3,1) = m_r3_sp*m_C1/m_C3 ; A(3,2) = m_r3_sp*m_C2/m_C3 ;
 A(3,3) = m_r3_sp-100 ; A(3,4) = m_r3_sp*m_C4/m_C3;
 A(4,1) = m_r4_sp*m_C1/m_C4+100; A(4,2) = m_r4_sp*m_C2/m_C4+100;
 A(4,3) = m_r4_sp*m_C3/m_C4+100; A(4,4) = m_r4_sp;
 y(4,1) = 100*m_fopt_sp;
 temp = A.Inv();
 x = temp * y;
 m_F1 = __min(__max(x(1), 0), max_F1);
 m_F2 = __min(__max(x(2), 0), max_F2);
 m_F3 = __min(__max(x(3), 0), max_F3);
 m_F4 = __min(__max(x(4), 0), max_F4);
 }
 else
 {
 // New Optimal Constraint-pusher method
 //=====================================
 //Inputs
 cMatrix x, xmin, xmax, dx;
 x.Init(8,1); xmin.Init(8,1); xmax.Init(8,1); dx.Init(8,1);
 x(1) = m_F1; xmin(1) = 0; xmax(1) = max_F1 ; dx(1) = max_F1/200;
 x(2) = m_F2; xmin(2) = 0; xmax(2) = max_F2 ; dx(2) = max_F2/200;
 x(3) = m_F3; xmin(3) = 0; xmax(3) = max_F3 ; dx(3) = max_F3/200;
 x(4) = m_F4; xmin(4) = 0; xmax(4) = max_F4 ; dx(4) = max_F4/200;
 x(5) = m_C1; xmin(5) = 0; xmax(5) = __min(max_C1,m_Cs1) ; dx(5) = max_C1/200;
 x(6) = m_C2; xmin(6) = 0; xmax(6) = __min(max_C2,m_Cs2) ; dx(6) = max_C2/200;
 x(7) = m_C3; xmin(7) = 0; xmax(7) = __min(max_C3,m_Cs3) ; dx(7) = max_C3/200;
 x(8) = m_C4; xmin(8) = 0; xmax(8) = __min(max_C4,m_Cs4) ; dx(8) = max_C4/200;
 //Outputs
 cMatrix y, ysp, ymin, ymax;
 y.Init(5,1); ysp.Init(5,1); ymin.Init(5,1); ymax.Init(5,1);
 y(1) = m_r1; ysp(1) = m_r1_sp; ymin(1) = m_Lr1c; ymax(1) = m_Hr1c;
 y(2) = m_r2; ysp(2) = m_r2_sp; ymin(2) = m_Lr2c; ymax(2) = m_Hr2c;
 y(3) = m_r3; ysp(3) = m_r3_sp; ymin(3) = m_Lr3c; ymax(3) = m_Hr3c;
 y(4) = m_copt; ysp(4) = m_copt_sp; ymin(4) = m_Lcc; ymax(4) = m_Hcc;
 y(5) = m_fopt; ysp(5) = m_fopt_sp; ymin(5) = 0; ymax(5) = max_fopt;
 double tolerance = 1e-8;
 double J = m_w1*fabs(y(1)-m_r1_sp) + m_w2*fabs(y(2)-m_r2_sp) + m_w3*fabs(y(3)-m_r3_sp) +
 m_w4*fabs(y(4)-m_copt_sp)+
 m_w5*(fabs(x(5)-m_C1sp) + fabs(x(6)-m_C2sp) + fabs(x(7)-m_C3sp) + fabs(x(8)-m_C4sp)) +
 m_w6*fabs(y(5)-m_fopt_sp)*(1+ m_w7*fabs(m_Lbc-m_Lbc_sp));

Chapter 5 Simulations - SISO optimisers 57

 b_unconverged = TRUE;
 double b_nosolution = TRUE;
 double Jminlast = J;
 double Jmin = J;
 int jmin;
 double sensemin = 0;
 for (int iter=1; iter<=1000; iter++)
 {
 jmin=0;
 for (j=1; j<=8; j++) for (int k=0; k<=1; k++)
 {
 if (x(j)<xmin(j)) x(j) = xmin(j); // rescue it back
 if (x(j)>xmax(j)) x(j) = xmax(j); // rescue it back
 double sense = k*2-1;
 x(j) += sense*dx(j);
 if((x(j)>=xmin(j)) & (x(j)<=xmax(j)))
 {
 y(5) = x(1)+x(2)+x(3)+x(4); // f
 y(4) = (x(1)*x(5)+x(2)*x(6)+x(3)*x(7)+x(4)*x(8)) / (y(5) + 1e-5); //c
 y(3) = 100*x(3)*x(7)/(y(4)*y(5) + 1e-5); //r1
 y(2) = 100*x(2)*x(6)/(y(4)*y(5) + 1e-5); //r2
 y(1) = 100*x(1)*x(5)/(y(4)*y(5) + 1e-5); //r3
 if ((y(1)>=ymin(1)) & (y(2)>=ymin(2)) &(y(3)>=ymin(3)) &
 (y(4)>=ymin(4)) & (y(5)>=ymin(5)) &(y(1)<=ymax(1)) &
 (y(2)<=ymax(2)) &(y(3)<=ymax(3)) &(y(4)<=ymax(4)) &
 (y(5)<=ymax(5)))
 {
 b_nosolution = FALSE;
 J = m_w1*fabs(y(1)-m_r1_sp) + m_w2*fabs(y(2)-m_r2_sp) +
 m_w3*fabs(y(3)-m_r3_sp) +
 m_w4*fabs(y(4)-m_copt_sp)+
 m_w5*(fabs(x(5)-m_C1sp) +
 fabs(x(6)-m_C2sp) + fabs(x(7)-m_C3sp) + fabs(x(8)-m_C4sp)) +
 m_w6*fabs(y(5)-m_fopt_sp)*(1+ m_w7*fabs(m_Lbc-m_Lbc_sp));
 if (J<Jmin)
 {
 Jmin = J;
 jmin = j;
 sensemin = sense;
 }
 }
 }
 x(j) -= sense*dx(j); // return to datum;
 }
 if (b_nosolution) goto Default_Strategy;
 // converged?
 if ((jmin == 0) | (fabs(Jmin-Jminlast)<tolerance))
 {
 b_unconverged = FALSE;
 break;
 }
 else
 {
 Jminlast = Jmin;
 x(jmin) += sensemin*dx(jmin); // move in this direction
 }
 }
 if(b_unconverged) goto Default_Strategy;
 m_F1 = x(1);
 m_F2 = x(2);
 m_F3 = x(3);
 m_F4 = x(4);
 m_C1 = x(5);
 m_C2 = x(6);
 m_C3 = x(7);
 m_C4 = x(8);
 }
 }

 m_fopt = m_F1+m_F2+m_F3+m_F4;

58 Applied Process Control

 m_copt = (m_F1*m_C1+m_F2*m_C2+m_F3*m_C3+m_F4*m_C4) / (m_fopt+1e-5);
 m_r1 = 100 * m_F1*m_C1 / (m_fopt*m_copt+1e-5);
 m_r2 = 100 * m_F2*m_C2 / (m_fopt*m_copt+1e-5);
 m_r3 = 100 * m_F3*m_C3 / (m_fopt*m_copt+1e-5);

 // Model step only

 while ((theApp.t-theApp.tlast_ModelStep) >= dtPSH_StepResp/(double)Ninterp)
 {
 if (theApp.b_Model)
 {
 //Do a proper calculation because there are non-linear effects
 double fbc = __max((m_Ffinal-m_fww),0);
 m_Lbc = m_Lbc + (m_fopt - fbc) * (dtPSH_StepResp/(double)Ninterp/60) / 2 ;
 m_Cbc = m_Cbc + ((m_fopt*m_copt - fbc*m_Cbc) *
 (dtPSH_StepResp/(double)Ninterp/60))/(m_Lbc*10+1e-5);
 double m_Cfinal_inst = fbc*m_Cbc / (m_Ffinal+1e-5);
 double Smooth_Cfinal = 1-10*dtPSH_StepResp/(double)Ninterp/(Npsh*dtPSH_StepResp);
 m_Cfinal = (1-Smooth_Cfinal)*m_Cfinal_inst + Smooth_Cfinal*m_Cfinal;
 m_Lbc = __max(__min(m_Lbc,max_Lbc),0);
 m_Cfinal = __max(__min(m_Cfinal,max_Cfinal),0);
 }
 }

 59

Chapter 6 Simulations - Multi-loop

strategies

.

6.1 BPL – Boiler pressure and level control

Three-element boiler drum level control with pressure control, air-

fuel ratio control and oxygen trim control

f_6.1

60 Applied Process Control

6.1.1 Typical settings

FC for FC for FC for LC for PC for AC for

FBFW FFUEL FAIR LBOILER PBOILER %O2

by VBFW by VFUEL by VAIR by FBFWSP by FFUELSP by FAIRSP

KC=1.5 KC=1.0 KC=1.1 KC=1.0 KC=1.0 KC=1.5

I=30 I=30 I=30 I=200 I=100 I=50

D=1.0 D=1.0 D=1.0 D=0 D=0 D=0

α=0.1 α=0.1 α=0.1 α=0.1 α=0.1 α=0.1

FBFWSP=55 FFUELSP=45 FAIRSP=45 LSP=60 PBOILERSP=70 %O2SP=5

REMOTE REMOTE REMOTE LOCAL LOCAL LOCAL

6.1.2 Theory

The figure below shows the well-known “3-element” control scheme for regulation of the

water level in a boiler drum (f_6.2). The three elements are clearly feedback, feedforward and

a supervised flow control loop.

f_6.2

LT1

FT1

FT2

LC1 

FC2



steam

drawn

by users

BFW

1 ton

BFW

per ton

steam

heat from

coil or

thermosyphon

steam drum

+

+

FEEDBACK

FEED-

FORWARD

CASCADE

LSP

SP

All feedforward controllers require a “model”, and in this case it is seen to be a very simple

one, with one ton of steam drawn translating exactly to one ton of BFW to be supplied. Since

the system integrates, and the flow measurements cannot be perfect, a feedback “trim” is

essential, if for nothing else, just to get the level to its initial setpoint!

Chapter 6 Simulations - Multi-loop strategies 61

The delegation of the task of maintaining a desired BFW flow-rate to a slave flow control

loop isolates the rest of the algorithm from such factors affecting the BFW flow as BFW and

drum pressure fluctuations, and indeed non-linearity of the valve itself. The direct summation

of feedforward and feedback BFW demands may appear to require twice as much BFW as

necessary, until one recalls that the entire algorithm is working on the basis of deviations from

the initial “switch on” condition.

Regarding the firing of the furnace, the amount of air supplied for combustion must always be

in excess – ie. there should be a non-zero residual O2 concentration in the flue gas. This is to

ensure that ignition does not occur somewhere in the exit ductwork, or the top of a stack,

where the flue gases first encounter oxygen. On the other hand, one does not want to supply

too much air for the combustion, because recovery of the heat from that extra air is not easy,

so that the furnace efficiency decreases. Maintenance of about 3% residual O2 on a molar

basis (compared to a maximum of 21% in air) seems typical industrially. If there is no actual

measurement of oxygen, then a larger margin may be necessary to ensure safety. This is

certainly the case when only feedforward control is used, ie. air/fuel ratio control.

The figure f_6.3 below shows the full metering control with oxygen trim control presented by

Smith and Corripio (1985). This is an air/fuel ratio control with an additive feedback trim

from a flue gas oxygen controller. The implication at the summer is that the feedback signal

from the AC will request a zero adjustment if the ratio controller, which is working with

absolute flow rates, is already achieving the setpoint %O2. This feedforward-feedback

arrangement will minimise %O2 deviations from setpoint. The air flow rate controller is a

slave in the cascade, whilst the fuel flow setpoint will arrive from the operator, or another

controller such as the process stream TC or a boiler PC as in the simulation under

consideration. The scheme shown includes a high and low “clip” on the setpoint air flow-rate.

The low clip is a good safety measure, but the high clip could lead to incomplete combustion

at high fuel demands. A slight variation of this scheme is sometimes encountered where

instead of supplying an additive trim to the air flow rate setpoint, the oxygen controller

manipulates the setpoint air/fuel ratio RAF SP directly.

62 Applied Process Control

f_6.3
fuel

FT2FC2

FT1FC1

AT1 AC1

air

windbox

furnace

%O2

measurement

%O2 SP



FFUEL SP

FAIR SP

+ +

LS

HS

RA/F SP

setpoint

air/fuel ratio

FAIR MAX

FAIR MIN

The scheme has a drawback to do with the system dynamics. One notes that the fuel flow rate

will always change in advance of the air adjustments, simply because there will be dynamic

lag of the actual air flow as the ratio controller moves the air flow setpoint in response to the

measured fuel flow variations. This situation is described as “fuel leads air in” and “fuel leads

air out”. The latter situation is safe, because air will temporarily be in excess. However, the

“fuel leads air in” is dangerous, because the implication is that there will temporarily be a

deficit of oxygen.

6.1.3 Tasks

(1) Start the simulation with the original settings as in section 6.1.1. Let the system reach

steady-state. The individual loops are selected using the column of numbered buttons on

the left of the diagram below (f_6.4). Then the settings pertaining to that loop are shown

in the top part of the same diagram. Starting by selecting the supervising loops (6,5,4),

switch each to MANUAL. Loops 1,2 and 3 will automatically switch to MANUAL also.

Step the boiler feed water valve, by pressing on the coloured part of the MV scrollbar of

loop 1, above or below the current cursor position. Explain what happens. Before it goes

too far, give the valve a reverse step. Explain what happens.

Chapter 6 Simulations - Multi-loop strategies 63

f_6.4

(2) Rescue the situation in (1) by switchting loop 4, the boiler drum level LC, to AUTO L.

This will switch the BFW FC to AUTO R, as a slave in the cascade, and bring the level

to setpoint. Examine the quality of this control.

(3) Select the air flow FC, loop 3. Switch it to auto with a local setpoint (AUTO L). Step

the air flow setpoint a small amount by pressing rapidly on end-arrow of the yellow SP

scrollbar, about 3 or 4 times. Explain what you see.

(4) Go to loop 6, the AC for %O2 control. Switch it to AUTO L. It will take over loop 3 as

a slave. Check that %O2 is brought to its setpoint. Now step the %O2 setpoint. Is the

tuning of this cascade adequate?

(5) Select loop 2, the FC for fuel. Switch it to AUTO L. Step the fuel flow setpoint a small

amount by pressing a few times on one of the arrows on the SP scrollbar. Explain what

happens. You can recue the situation by switching loop 5, the PC for poiler drum

pressure, to AUTO L. The AC for %O2 control is already on AUTO L, so the %O2 is

taken care of.

(6) Select loop 5, which is the steam drum pressure PC. Step the pressure setpoint a small

amount by pressing a few times on one of the end-arrows of the pressure setpoint (SP).

Observe the response. Note that the %O2 in the flue gas becomes quite upset. There are

large dips below setpoint.

(7) Unsettled behaviour in (6) is caused by the sequence of reactions from the pressure PC

to the fuel FC to theAir/Fuel Ratio PLUS to the resultant %O2, which is again reacted to

by the %O2 AC via the air FC. Probably the responses of the sequence of controllers

need to be slowed down from one to the next. Attempt to improve the overall tuning of

this system.

64 Applied Process Control

6.1.4 Code extracts

 Cascaded control loop interlocks and calculation of control actions:

 if (theApp.FIRSTLOOP)

 {

 // . (omitted code)
 // .

 // Set out first AutoLocal / AutoRemote selections
 for (j=0; j<nBPL; j++) b_AutoRemote[j] = FALSE; // Reset all remotes

 for (i=0; i<nBPL; i++)

 {
 if (b_AutoLocal[i])

 {
 for (j=0; j<nBPL; j++)

 {

 if (LoopTable[i][j] < 0) b_AutoLocal[j] = FALSE;

 if (LoopTable[i][j] > 0) b_AutoRemote[j] = TRUE;

 }

 }
 }

 theApp.FIRSTLOOP=0;

 }

 while (((theApp.t-tlast_BPL)>=dtBPL) || (theApp.b_FORCE_STEP))

 {
 if (!theApp.b_FORCE_STEP)

 {

 tlast_BPL += dtBPL; // must catch up by looping more than once if necessary
 }

 else
 {

 tlast_BPL = theApp.t; // to SYNCHRONISE manual moves : b_FORCE_STEP set TRUE on StepMode button

 theApp.b_FORCE_STEP = FALSE;
 }

 // Interpret present values

 // Loop03: Lboiler by Fbfw_sp1
 x[3] = m_Lboiler;

 r[3] = m_Lboiler_sp;
 m[3] = m_Fbfw_sp1; // was centred to hold the nominal variable in mid-range for plotting

 if (b_AutoLocal[3]) m_Fbfw_sp = __max(__min(m_Fbfw_sp1 + m_Fsteam, max_Fbfw),0);

 // Loop05: Ao2 by Fair_sp1

 x[5] = m_Ao2;
 r[5] = m_Ao2_sp;

 m[5] = m_Fair_sp1; // was centred to hold the nominal variable in mid-range for plotting

 if (b_AutoLocal[5]) m_Fair_sp = __max(__min(m_Fair_sp1 + m_Rairfuel_sp*m_Ffuel, m_Fair_topclip), m_Fair_botclip);

 // Loop00: Fbfw by Vbfw

 x[0] = m_Fbfw;

 r[0] = m_Fbfw_sp;
 m[0] = m_Vbfw;

 // Loop01: Ffuel by Vfuel
 x[1] = m_Ffuel;

 r[1] = m_Ffuel_sp;

 m[1] = m_Vfuel;
 // Loop02: Fair by Vair

 x[2] = m_Fair;
 r[2] = m_Fair_sp;

 m[2] = m_Vair;

 // Loop04: Pboiler by Ffuel_sp
 x[4] = m_Pboiler;

 r[4] = m_Pboiler_sp;
 m[4] = m_Ffuel_sp;

 for (i=0;i<nBPL;i++)

 {

Chapter 6 Simulations - Multi-loop strategies 65

 if ((!b_AutoLocal[i]) && (!b_AutoRemote[i]))

 {
 // Not on - reset to starting values

 if (i==3) {m[i] = m_Ffuel-m_Fsteam;} // for bumpless start
 if (i==5) {m[i] = 0;} // for bumpless start

 r2[i] = r1[i] = r0[i] = x[i];

 x2[i] = x1[i] = x0[i] = x[i];
 m2[i] = m1[i] = m[i];

 }
 else

 {

 // On AUTO (Local or remote) : calculate BPL action!
 // first cascade stack

 r2[i] = r1[i];
 r1[i] = r0[i];

 r0[i] = r[i];

 x2[i] = x1[i];
 x1[i] = x0[i];

 x0[i] = x[i];
 m2[i] = m1[i];

 m1[i] = m[i];

 // Action:

 m[i] = (- a1[i] * m1[i]
 - a2[i] * m2[i]

 + b0[i] * r0[i]

 + b1[i] * r1[i]
 + b2[i] * r2[i]

 - c0[i] * x0[i]
 - c1[i] * x1[i]

 - c2[i] * x2[i]) / a0[i];

 // back to actual variables

 switch (i)
 {

 case 0: // Loop00: Fbfw by Vbfw
 m_Vbfw = __max(__min(m[0],max_Vbfw),0);

 break;
 case 1: // Loop01: Ffuel by Vfuel

 m_Vfuel = __max(__min(m[1],max_Vfuel),0);

 break;
 case 2: // Loop02: Fair by Vair

 m_Vair = __max(__min(m[2],max_Vair),0);
 break;

 case 3: // Loop03: Lboiler by Fbfw_sp1

 m_Fbfw_sp1 = __max(__min(m[3],max_Fbfw_sp1),min_Fbfw_sp1);
 break;

 case 4: // Loop04: Pboiler by Ffuel_sp
 m_Ffuel_sp = __max(__min(m[4],max_Ffuel_sp),0);

 break;

 case 5: // Loop05: Ao2 by Fair_sp1
 m_Fair_sp1 = __max(__min(m[5],max_Fair_sp1),min_Fair_sp1); // special clipping;

 break;
 default:

 break;

 }
 }

 }
 }

66 Applied Process Control

6.2 FFA – Furnace fuel and air cross-limiting

control

An interlocked air/fuel ratio control system which ensures that air

leads fuel in and fuel leads air out

f_6.5

6.2.1 Typical settings

TC for FC for FC for PC for FPROCESS = 55

TFURNACE FFUELSP FAIRSP PFUELSP RA/F = 1

by FFUELSP by VFUEL by VAIR by VFUEL

KC=0.8 KC=1.0 KC=1.0 KC=1.1

I=70 I=20 I=20 I=30

Chapter 6 Simulations - Multi-loop strategies 67

D=0 D=1.0 D=1.0 D=1.0

α=0.1 α=0.1 α=0.1 α=0.1

TFURNACE=60 FFUELSP=45 FAIRSP=45 PFUELSP=10

LOCAL REMOTE REMOTE LOCAL

6.2.2 Theory

The dynamic lag of the air flow controller in the direct ratioing of air to fuel in section 6.1

was seen to cause a temporary drop in the air/fuel ratio when the fuel flow increased. The

cross-limiting scheme shown below (f_6.6) overcomes this problem by using both measured

flows to ensure a minimum air/fuel ratio at all times.

f_6.6
fuel

FT2FC2

FT1FC1

air

windbox

furnace



FUEL SP

LS

HS

RA/F SP

setpoint

air/fuel ratio

TC1
SP



AIR SP

FAIR/RA/F =

allowed

fuel

FAIR

FFUEL

desired

fuel

actual

fuel

desired fuel

The cross-limiting control scheme is best explained using an example. Consider the situation

where the system is initially steady maintaining the correct air/fuel ratio. Now TC1 demands

an increase in fuel in order to maintain its setpoint temperature. This demand will be ignored

at the LS, because the desired fuel will be higher than the allowed fuel (which initially will be

the actual fuel). However, the HS will pass this higher demand rather than the actual fuel, so

after multiplication by the air/fuel ratio, the air flow will start to rise to match the desired fuel.

As the actual air flow rises, following its controller setpoint, the cut-off limit (allowed fuel)

arriving at the LS rises in proportion, gradually allowing the fuel setpoint to increase, and

ultimately the actual fuel will rise to the desired fuel. One notes that “air leads fuel in”, which

is a safe action. Conversely if one follows the sequence of events when desired fuel decreases,

it will be found that “air follows fuel out”, which is again a safe action. So in any transient,

68 Applied Process Control

there will temporarily be a safe excess of air, which will return to the correct ratio when the

process settles down again.

A furnace control scheme as above may also have an additional safety feature to prevent

“flame-out”. It is understandable that the fuel valve could swing to the shut position

temporarily, depending on the controller gain, as it seeks to hold the flow setpoint. This would

cause an irreversible situation where the flame is lost. As the valve moves open again,

uncombusted fuel will accumulate in the furnace box and ducting, and may explode all at one

should a source of ignition be found eg. at a neighbouring furnace sharing the same ducting.

Thus it is necessary to ensure a minimum fuel flow. This can be done using an override

controller which senses the fuel pressure just before the burner nozzle. The figure f_6.7 below

shows an arrangement where an override pressure controller maintains a minimum pressure,

and implicitly a flow.

f_6.7

FT1FC1
FUEL SP

HS

Pmin SP

fuel

burner

PC1
external

reset

(anti-

windup)

FFUEL

 for P

6.2.3 Tasks

(1) Start the simulation with the original settings as in section 6.2.1. Let the system reach

steady-state. The individual loops are selected using the column of numbered buttons on

the left of the diagram below (f_6.8). Then the settings pertaining to that loop are shown

in the top part of the same diagram. Start by selecting the supervising loop TC (4), and

the over-riding loop PC (3), and switching them both to MANUAL. In this case the FC

loops 1 and 2 will automatically switch from remote setpoint AUTO R to local setpoint

AUTO L. Step the fuel flow setpoint by pressing on the coloured part of the SP

scrollbar of loop 1, above or below the current cursor position. Explain what happens.

Chapter 6 Simulations - Multi-loop strategies 69

f_6.8

(2) With the air flow control loop 2 set to local setpoint, AUTO L, adjust the air flow

setpoint by pressing on the arrowheads of the SP scrollbar of loop 2, in order to bring

the air/fuel ratio back to 1.0.

(3) Select the TC control loop (4), and switch this controller to AUTO L. The associated

cross-limiting algorithm takes over the two flow controllers on remote (AUTO R). Wait

for the system to settle down. Observe the trace of the actual air/fuel ratio, which is

shown at 10 times its magnitude as “A/F *10”. What is its value? Make some big steps

in the the process flow-rate through the furnace, by pressing on the coloured parts of the

associated scrollbar. Can you get deviations of the actual air/fuel ratio below the

setpoint? How well is the furnace exit temperature maintained?

(4) Perform setpoint steps in the furnace exit temperature and the air/fuel ratio. Comment

on the responses, noting also where the air/fuel ratio falls below setpoint.

(5) With both the override PC and TC still on AUTO L, reduce the minimum pressure

setpoint as far as possible. Explain the response of lack thereof. Now start increasing the

minimum pressure setpoint. Can you explain the effect? Repeat this test after reducing

the derivative time D to zero. Next, increase the minimum pressure setpoint so that it is

well above the current measured pressure. Explain what happens. Is the furnace exit

temperature maintained? What about the air/fuel ratio?

6.2.4 Code extracts

 On each time-step, calculation of the control action for each of the nFFA = 4 control loops:

 // Interpret present values

 m_Ffuel_highest = __max(m_Ffuel_desired,m_Ffuel);
 m_Ffuel_allowed = m_Fair/(m_Rairfuel_sp+SMALL);

 // Loop03: Tprocess by Ffuel_desired

 x[3] = m_Tprocess;
 r[3] = m_Tprocess_sp;

 m[3] = m_Ffuel_desired;

70 Applied Process Control

 if (b_AutoLocal[3])

 {
 m_Ffuel_sp = __max(__min(__min(m_Ffuel_desired,m_Ffuel_allowed), max_Ffuel),0);

 m_Fair_sp = __max(__min(m_Ffuel_highest*m_Rairfuel_sp, max_Fair),0);
 }

 // Loop00: Ffuel by Vfuel1
 x[0] = m_Ffuel;

 r[0] = m_Ffuel_sp;
 m[0] = m_Vfuel1;

 // Loop01: Fair by Vair

 x[1] = m_Fair;
 r[1] = m_Fair_sp;

 m[1] = m_Vair;
 // Loop02: Pfuel by Vfuel2

 x[2] = m_Pfuel;

 r[2] = m_Pfuel_sp;
 m[2] = m_Vfuel2;

 for (i=0;i<nFFA;i++)

 {
 if ((!b_AutoLocal[i]) && (!b_AutoRemote[i]))

 {
 r2[i] = r1[i] = r0[i] = x[i];

 x2[i] = x1[i] = x0[i] = x[i];

 m2[i] = m1[i] = m[i];
 }

 else
 {

 // On AUTO (Local or remote) : calculate FFA action!

 // first cascade stack
 r2[i] = r1[i];

 r1[i] = r0[i];
 r0[i] = r[i];

 x2[i] = x1[i];

 x1[i] = x0[i];
 x0[i] = x[i];

 m2[i] = m1[i];
 m1[i] = m[i];

 // Action:
 m[i] = (- a1[i] * m1[i]

 - a2[i] * m2[i]
 + b0[i] * r0[i]

 + b1[i] * r1[i]

 + b2[i] * r2[i]
 - c0[i] * x0[i]

 - c1[i] * x1[i]
 - c2[i] * x2[i]) / a0[i];

 // back to actual variables
 switch (i)

 {

 case 0: // Loop00: Ffuel by Vfuel1

 m_Vfuel1 = __max(__min(m[0],max_Vfuel),0);
 break;

 case 1: // Loop01: Fair by Vair
 m_Vair = __max(__min(m[1],max_Vair),0);

 break;

 case 2: // Loop02: Pfuel by Vfuel2
 m_Vfuel2 = __max(__min(m[2],max_Vfuel),0);

 break;
 case 3: // Loop03: Tprocess by Fbfw_desired

 m_Ffuel_desired = __max(__min(m[3],max_Ffuel),0);

 break;
 default:

 break;
 }

 }

 }

 m_Vfuel1_DISPLAY = m_Vfuel1;
 m_Vfuel2_DISPLAY = m_Vfuel2;

Chapter 6 Simulations - Multi-loop strategies 71

 if (b_AutoLocal[3])
 {

 m_Vfuel =__max(m_Vfuel1,m_Vfuel2);
 m_Vfuel1 = m_Vfuel; // anti-windup : external reset

 m_Vfuel2 = m_Vfuel; // anti-windup : external reset

 }
 else

 {
 {

 if ((b_AutoLocal[0]) && (!b_AutoLocal[2]))

 {
 m_Vfuel = m_Vfuel1;

 m_Vfuel2 = m_Vfuel; // for bumpless start
 }

 else

 {
 if ((!b_AutoLocal[0]) && (b_AutoLocal[2]))

 {
 m_Vfuel = m_Vfuel2;

 m_Vfuel1 = m_Vfuel; // for bumpless start

 }
 }

 }
 }

 }

References

Smith, C.A. and A.B. Corripio (1997) Principles and Practice of Automatic Process Control,

2nd Edition, John Wiley & Sons, 204.

 73

Chapter 7 Simulations - MIMO

closedloop and DMC

.

7.1 A note on Dynamic Matrix Control

Dynamic Matrix Control is a form of Model Predictive Control (MPC) which uses a step-

response convolution model for prediction of the effect of possible control actions. Since the

early work of Cutler and Ramaker, (1979) and Garcia and Morshedi (1984), these controllers,

particularly DMC, have proved their worth in many industrial applications.

Dynamic Matrix Controllers have become popular in industry because they are easily

understood and set up, can handle dead-time, inverse response and constraints optimally, and

are particularly useful for multivariable systems in which there is cross-interaction between

inputs and outputs. Cross-interaction becomes problematic where the response times are

similar, making it difficult to decouple the system with individual loops. Distillation columns

are typical examples of systems where such interaction exists, but there are many other

process operations which present similar problems for the alternative multiple PID loop

approach. The DMC algorithm is able to time and coordinate control “moves” on the

manipulated variables (MV’s) in such systems to simultaneouly keep all CV’s (controlled

variables) on setpoint, accounting too, in a feedforward sense, for measured disturbance

variables (DV’s). Should constraints on the MV’s, CV’s, or any combinations thereof prevent

the setpoints from being reached, the closest possible approach to the setpoints will be made

according to the relevant weightings applied to the setpoint deviations.

The DMC algorithm is a particular form of MPC (Model Predictive Control), which belongs

to the family of IMC (Internal Model Control). In order to anticipate what combination of

moves will minimise the performance objective up to a moving time horizon (f_7.1), a model

relating outputs to inputs is required. The particular model for DMC is based on measured

process step-responses, and it is the “Dynamic Matrix” which scales and shifts these to build

the complete response for a series of “moves”. The same method is used to account for the

contribution of past moves to the future output. The ease of building this model is one feature

that has made DMC popular.

74 Applied Process Control

f_7.1
PRESENT

MV

SP

CV

HORIZON

Open loop response

Controlled response

Open loop = no further changes

Closed loop : Optimal move sequence

Consider a 2-input, 2-output system, for example a distillation column (f_7.2) in which reflux

flow (R) and reboiler duty (Q) cause variations in the Top Temperature (TT) and Bottom

Temperature (TB). If the system is steady and we make a step in R, we shall get two separate

responses for TT and TB. Likewise, we shall get distinct responses for TT and TB for a step in

Q. This is shown graphically in f_7.3, for unit positive steps in R and Q. Note that only

changes in TT and TB from their original steady values are considered.

f_7.2

reflux R

distillate

bottoms

heat input Q

d
is

t.
 c

o
lu

m
n

reboiler

condenser

top temperature

 TT

bottom temperature

 TB

feed

Chapter 7 Simulations - MIMO closedloop and DMC 75

f_7.3

x = ()TT

TB

TB (Q =+1 at t=0)

TT (Q =+1 at t=0)

TB (R =+1 at t=0)

TT (R =+1 at t=0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

t

B5(b11)

B5(b21)

B5(b12)

B5(b22)

B3

0

Here the sub-matrices Bi have the form, eg.
11 12

5

21 22 5

b b
B

b b

 
  
 

, where the bij are the

corresponding deviations of the outputs from their initial values, as a result of the unit input

steps.

For the input vector m (R,Q), now consider not just one step but a series of control vector

moves m1, m2, ... ,mM, over a sequence of M time steps. If the system is linear, we can

construct the resultant sequence in x (TT,TB) over P intervals by shifting, scaling and

superposing the above step responses in the convolution model:

x

x

x

:

x

x

:

x

B 0 0 0 0 . . . 0

B B 0 0 0 . . . 0

B B B 0 0 . . . 0

: : : : : :

B B . . . B 0 . . . 0

B B B . . . B . . . 0

: : : : : :

B B B B B . . . B

m

m

m

:

m

m

:

m

1

2

3

M

M 1

P

1

2 1

3 2 1

M M 1 1

M M M 1 1

M M M M M 1 1

1

2

3

M

M 1

P











F

H

GGGGGGG

I

K

JJJJJJJ

L

N

MMMMMMMM

O

Q

PPPPPPPP

F

H

GGGGGGG















I

K

JJJJJJJ
 (7.1)

We represent this convolution model for future outputs as x = Bm, where the “matrix of

matrices” B is generally known as the Dynamic Matrix. Now defining the P x M matrices:

(Steady-state response

achieved M time intervals

ahead with M < P)

76 Applied Process Control

B

B B B B B . . . B B

B B B B B B

B B B B B :

B B B B B :

: : : : : : B

B B B B B . . . B B

: : : : : : :

B B B B B . . . B B

OL

M M M 1 M 2 M 3 3 2

M M M M 1 M 2 3

M M M M M 1

M M M M M

M 1

M M M M M M M

M M M M M M M



  

 





L

N

MMMMMMMM

O

Q

PPPPPPPP

 (7.2)

B

B B B B

B B B B

B B B B

B B B B

: : : :

B B B B

. . . B B

. . . B B

. . . B B

. . . B B

: :

. . . B B

M M 1 M 2 M 3

M M 1 M 2 M 3

M M 1 M 2 M 3

M M 1 M 2 M 3

M M 1 M 2 M 3

2 1

2 1

2 1

2 1

2 1

0 

  

  

  

  

  

L

N

MMMMM

O

Q

PPPPP
 (7.3)

and the present measurements (P) and past inputs (M):

0

0

0

0

0

0

MEAS

MEAS

MEAS

MEAS

MEAS

MEAS

 
 
 
 

  
 
 
  
 

x

x

x

x

x

x and

1

2

3

4

0

M

M

M

M

PAST

 

 

 

 











 
 
 
 

   
 
 
  
 

m

m

m

m

m

m (7.4-7.5)

then the “open-loop” response, corrected for present model offset, is

xOL = x0MEAS + [BOL – B0] mPAST (7.6)

and the “closed loop” response up to the P-step horizon is obtained by including the

contribution of the future control input steps m :

xCL = xOL + B m (7.7)

On each time-step it is possible to compute the future open-loop response xOL based on past

inputs and the present output. Thus the control problem to achieve the desired trajectory xCL

amounts to finding suitable m as in figure f_7.4 below.

Chapter 7 Simulations - MIMO closedloop and DMC 77

f_7.4

+

+

+

_

_

+

xSP x

x0

present

prediction

eMODEL

 OFFSET

xOL

 1,2,3,....,P

xOL

 CORRECTED

 1,2,3,....,P

eOL

 1,2,3,....,P
m

(open-loop trajectory)

find m to min-

imise eCL

 1,2,3,....,P

 REAL

 PROCESS

 PROCESS

 MODEL

measured

A constrained multivariable Linear Dynamic Matrix Controller (LDMC), based on the linear

programming solution of Chang and Seborg (1983), and the formulation of Morshedi et al

(1985), has been developed as follows:

Define xSP to contain a sequence of set-points for the outputs up to the time horizon P steps

ahead, so that the open loop error may be calculated in advance as xOL – xSP. Then the closed-

loop error for a control move sequence m will be

eCL = xCL – xSP (7.8)

 = xOL – xSP + B m (7.9)

 = eOL + B m (7.10)

Generally only a limited sequence of N moves (m*) are optimised (N << P). This is

equivalent to setting mk = 0 for k > N , or alternately replacing B with the non-square P

x N matrix:

78 Applied Process Control

 (7.11)

Then

eCL = eOL + A m*

Now define a quadratic objective function, dependent only on the strategy m*.

J(m*) = (eCL) T W (eCL) + (m*)T (m*)

 = (eOL + A m*)T W (eOL + A m*) + (m*)T (m*) (7.12)

By minimising J with respect to m*, we are able to find an optimal sequence of control

moves, m* , which achieve “minimum” deviation from the set-point trajectory up to the time

horizon P, for “minimum” control move effort. It is the weights in the matrices W and ,

generally diagonal, which determine the extents to which deviations of either parameter are

discouraged. Higher “gains” will generally be associated with higher values in W than . The

values in  cause “move suppression”. Note that the diagonal weights act on the squared

deviations and moves. Thus, in general, a weight would be increased four times to reduce the

associated deviation or move to half of its previous value.

It is easily shown that differentiation of J with respect to the elements of m*, and setting the

result to the zero vector, yields the unbounded quadratic optimum control move strategy

mUQO = - [AT W A + ]-1 AT W eOL (7.13)

In our solution we now wish to account for the constraints of the system. These will include

the ranges over which the the manipulated variables m can be moved, where

m = L m* + mINIT (7.14)

L 

L

N

MMMMMM

O

Q

PPPPPP

I 0 0 0 0 . . . 0

I I 0 0 0 . . . 0

I I I 0 0 . . . 0

I I I I 0 . . . 0

: : : : : :

I I I I I . . . I

 (7.15)

and allowed ranges for the controlled variables x. A global method which will seek the

minimum of J within these constraints requires Quadratic Programming, and is quite

Chapter 7 Simulations - MIMO closedloop and DMC 79

computation-intensive. Here we rather follow the method of Morshedi et al (1985), and seek

that combination of control moves which will get us as close as possible to mUQO, yet keep

us within the constraints. This re-definition of the problem then allows us to use Linear

Programming to handle the constraints. Although it does not guarantee us the quadratic

optimum, we expect to be close (and identical within the constraints), and thus we shall call

this result mBQO (bounded quadratic optimum). Define the residuals

r = mBQO - mUQO (7.16)

In order to allow minimisation of the absolute differences, we represent r using two non-

negative quantitities (one of which will be forced to zero in the LP solution):

r = [r+ - r–] (7.17)

Then the Linear Programming Problem is formulated as follows:

Objective function: wT [r+ + r–] (to be minimised) (7.18)

where w is a weighting vector, possibly chosen as below to improve the approach to mUQO,

by following the steepest descent of J (Mulholland and Prosser, 1997) subject to the

constraints:

[]:

MIN INIT UQO
Input limits  

    L r r m m L m (7.19)

[]
MAX INIT UQO

 
    L r r m m L m (7.20)

[]
MIN INIT UQO

Input combination  
    HL r r δ Hm HL m (7.21)

[]:
MAX INIT UQO

limits  
    HL r r δ Hm HL m (7.22)

[]:
MAX UQO

Input ramp limits  
    r r m m (7.23)

[]
MAX UQO

 
    r r m m (7.24)

 []:
MIN OL UQO

Output limits  
    A r r x x A m (7.25)

 []
MAX OL UQO

 
    A r r x x A m (7.26)

After solving for r+ and r–, one of which will be zero in each pair, the necessary input control

actions are obtained from

mBQO = [r+ - r–] + mUQO (7.27)

mBQO contains optimal values for the limited sequence of steps m1 , m2 , ... ,mN , but it is

only the first step m1 which is actually implemented, before the entire optimisation process

is repeated on the next time-step. The effect of optimising more than one step is that the first

step can be severe (overshooting), with subsequent steps correcting the steady-state response.

In equation 7.27 it is noted that if mBQO cannot reach mUQO (owing to constraints), then

the LP will minimise the weighted sum of the deviation of each manipulated variable move

80 Applied Process Control

from its unconstrained optimal value. This is not the same as minimising the quadratic

objective function given in equation 7.12:

J(m*) = (eOL + A m*)T W (eOL + A m*) + (m*)T (m*) (7.28)

The weights in W, specified to minimise the closed-loop error eCL = eOL + A m*, will be

found to have no effect in the constrained situation, with manipulated variables apparently

making no attempt to find a better position on the constraints to minimise (eCL)2 .The

following procedure is used to deal with this situation, bringing the solution closer to the full

QDMC treatment (Mulholland and Prosser, 1997):

In a constrained situation we would see a steady-state error

eSS = - ASS mSS (7.29)

where mSS is nominally a single unconstrained move that could be made, ultimately giving a

steady-state response which would eliminate this error. The small ASS matrix clearly has the

last point of each response – ie. it is BM. To be consistent with the unconstrained criterion, viz.

minimisation of J, we now really want to minimise

JCON = eSS
T W eSS = mSS

T
 ASS

T W ASS mSS (7.30)

(To use W we have expanded eSS , ASS and mSS by repetition for all points up to the horizon).

This has a gradient with respect to mSS which is 2 ASS
T W ASS mSS. Recognising that

mUQO - mBQO will give a fair estimate of mSS , we propose therefore to weight the

constrained manipulated variables approach to their optimum values according to the strength

(positive or negative) they have in changing the value of JCON. Thus we take w in equation 7.6

as

w = | ASS
T W ASS (mUQO - mBQO) | (7.31)

With w adjusted on each-time-step like this, it is understandable that the solution could start to

to oscillate between two constrained points. Thus the computed values of w are filtered on

each-time-step to slow down the transients.

Chapter 7 Simulations - MIMO closedloop and DMC 81

7.2 DMC – MIMO Dynamic Matrix Control of a

partitioned fractionator

Understanding and tuning this popular predictive controller based on

measured process step responses:

f_7.5

7.2.1 Typical settings

 Weights: Constraints:

TA SP= 19.795 dev TA = 1 max R = 100 Axis Length = 28800

TB SP= 41.646 dev TB = 1 max Q= 50 Acceleration = 300

R = 68.37 move R = 0.1 max TA = 50 Log Interval = 600

Q = 14.20 move Q = 2.0 max TB = 100 Step Interval = 600

F = 61.48 %dev from R/Q = 5

7.2.2 Theory

82 Applied Process Control

The particular example considered in this application is the control of temperatures at two

points in a partitioned distillation column. This is akin to “dual-composition control”, and is

achieved by manipulating the reflux flow R, and the reboiler duty Q. To handle pressure

fluctuations, it is actually the difference between the temperature at the considered point, and

that at the top of the column that are considered, viz. TA=TA-TTOP and TB=TB-TTOP . Here

“A” is just above a dividing wall (separating feed side from sidestream-offtake side), and “B”

is just below this dividing wall. This type of partitioned column is used to provide a middle-

cut without having to use two columns, and the partition reduces the short-circuiting of feed

to the offtake.

If the system is steady and we make a step in R, we shall get two separate responses TA and

TB. Likewise, we shall get distinct responses for TA and TB for a step in Q. This is shown

graphically in the figure below (f_7.6), for unit positive steps in R and Q. Note that only

changes TA and TB from the original steady temperature gaps are considered. These step

response measurements are then used to construct the DMC controller, as discussed in

sdection 7.1.

f_7.6

-2

0

0 3 6 9 12 15 18 21 24

-4

-6

-8

+2

+4

+6

+8

TA for R = +1 at t=0

B3(b11)

B3(b12)

B3(b21)

B3(b22)

TA for Q = +1 at t=0

TB for R = +1 at t=0

TB for Q = +1 at t=0

B1

B2

t [min] tDMC = 3 min

TA , TB

[C]

Below is seen the tuning panel for the DMC controller (f_7.7). Against “dTA” and “dTB” are

the weights on the deviations of the variables TA and TB from their setpoints. Actually, the

objective function requires that these deviations squared, then summed with their appropriate

weights (and the move suppression terms), be minimised. The weights against “R” and “Q”

are the “move suppression” weights on these MV’s. As these weights are increased, the size

of each “move” (step) in the relevant MV, squared and then multiplied by the relevant weight,

increasingly adds a penalty to the objective function. Note that the move suppression weights

do not penalise the overall movement of the MV’s, rather just the rate at which they move.

Chapter 7 Simulations - MIMO closedloop and DMC 83

f_7.7

Also seen on the tuning panel is a setting “moves” for the number of moves into the future to

be optimised. Increasing this is one way of making a DMC more vigorous. With one move it

must minimise setpoint deviations over the whole horizon, and it is therefore obliged to be

conservative. With two moves, the first can be much stronger, causing overshoot, because the

second move is being relied on to correct the future response back towards the setpoint. In any

case, it is only the first move that is actually implemented, before the system moves forward

one time-step, and the entire optimisation computation is repeated.

The DMC tuning panel also allows the setting of a variable “damp” between 0 and 1. This is a

recent enhancement that handles a limitation of the constrained optimisation technique used in

LDMC, the particular form of DMC used here. The theoretical background to this

enhancement is discussed in section 7.1, so will simply be outlined here:

LDMC has the advantage that it is robust and efficient, making use of a Linear Programming

solution rather than the Quadratic Programming solution which is often used (QDMC). A

difference arises when the solution is constrained. The QP solution would still attempt to

minimise the original quadratic objective function, whereas the LP solution switches to

minimising the (weighted) “distance” of the MV’s from those values which would actually

achieve the minimum of this function. The difference is quite subtle, and only noticed in

particular circumstances. However, to make the present LDMC behave like QDMC, a recent

enhancement provides automatic adjustment of the LP weights on these MV distances, to

recognise the contribution of each MV in minimising the quadratic objective function. These

weights cannot be changed rapidly, as this could induce oscillation in the constrained solution.

Thus “damp” is used to slow down the rate of change of the LP weights. Note that LDMC and

QDMC of course produce identical solutions when the quadratic objective function has its

minimum within all of the constraints.

In the case of the separation of 1-octene as the middle-cut from a mixture of olefins, studies

have shown that R and Q cannot be more than about 5% off a line representing proportionality

between R and Q, else conditions in the column cannot be maintained – ie. plates boil empty,

or no vapour reaches the top to provide reflux and downflow. This is because the reflux flow

R largely determines the cooling duty at the top of the column. Thus in addition to the usual

upper and lower limits specified for R, Q, TA and TB, this application also has angled

constraints 5% above and 5% below the appropriate line of proportionality.

84 Applied Process Control

f_7.8

The application has a “Settings” button which is seen above (f_7.8). This gives access to a

window for setting the various constraints as below (f_7.9). Press “Update” to implement the

new constraint arrangement without leaving the window, or “OK” to implement and leave the

window.

f_7.9

It is also possible to apply a “ramp” constraint to each MV. The effect is to limit the size of

positive or negative changes in the MV’s which are made on each time-step of the DMC

algorithm. If at any point in time the defined constraints (MV, CV, combinations thereof, or

ramp) are found to be restraining the controller, the “Constrained ” block shown below

becomes highlighted in pink. The “norm” of the gap, between allowed MV values and those

actually used, is indicated as the “Gap” parameter above. It is still planned that “Con” will

show which (one) of the constraints is responsible when constrained. The “No Solution”

block becomes highlighted if there is no feasible solution in the DMC algorithm – ie. no

combination of MV values can be found which will satisfy all constraints. This typically

occurs when the DMC is started outside of the constraints, and it cannot get within the

constraints within one step. Then MV values are just left at their last settings. You can

experiment to establish the effect of the constraints by un-checking the box in “Constrained

”, which will cause all constraints to be ignored (f_7.10).

Chapter 7 Simulations - MIMO closedloop and DMC 85

f_7.10

7.2.3 Tasks

(1) With the DMC on “Auto”, let the system reach steady-state. Then switch it to “Manual”,

and examine the open-loop responses as follows. Step the reflux R up by about 10.

Observe the responses until steady-state, and note that TA has an inverse response,

something that would cause serious difficulty in PID control. Now step the reboiler duty

Q by about -2. Note the different speeds of the TA and TB responses.

(2) Switch the DMC back on “Auto”. Press “Reset” to start at the normal operating point.

Step up the TA setpoint by about 10. Why does dTB deviate from setpoint? In fact, it is

likely that neither TA nor TB finally go to setpoint. See if a manipulation of the

weights on TA and TB setpoint deviations improves the situation, or allows you to

manipulate the relative sizes of the constrained deviations. Here we are making use of

the enhancement mentioned at the end of section 7.1. The LP weights will alter to

favour that MV which can make the biggest contribution in minimising the objective

function. If they alter too rapidly the solution could become oscillatory. In this case, see

the effect of increasing the “damp” parameter. When this reaches 1.0, the LP weights

remain at their last value – ie. further changes by the algorithm are completely damped

out.

(3) Uncheck the box in “Constrained ”, to remove the constraints, and see how setpoints

are exactly attained. Check the box again to see the solution go back to the constrained

version.

(4) Change the setpoint of TB close to its constrained value. See the solution become

unconstrained as R/Q ends within the 5% margin constraint on this ratio.

(5) Do some further manipulations of the move suppression weights on Q and R (and

possibly the setpoint deviation weights on TA and TB) to determine whether you can

get a variation in the speed at which the system moves towards the new setpoint after a

step. It will be easier to detect changes if you turn the constraints off. Recall that the

weights in W and , which are diagonal, act on the squared deviations and moves. Thus,

in general, a weight would be increased four times to reduce the associated deviation or

move to half of its previous value.

86 Applied Process Control

(6) Repeat the setpoint step test in (5) to determine the effect of increasing the the number

of optimised moves (“moves”) from 1 to 2 and to 3.

 (7) The column feed F is included as a DV (disturbance variable) in the DMC algorithm –

ie. there will be feedforward compensation for feed flow changes. Test this out.

7.2.4 Code extracts

 The following recalculation of the DMC gain matrix is performed at the “Initialise” stage,

and each time that any one of the weights W1, W2, L1, or L2 is changed:

 // Load Wdmc (weights on deviation-squared from setpoint)
 for (i=1;i<=Ndmc;i++) for (ii=1;ii<=Rdmc;ii++)
 {
 j = (i-1)*Rdmc+ii;
 if (ii==1) Wdmc(j,j)= W1; // dTA deviation from SP // so can weight each controlled variable differently
 if (ii==2) Wdmc(j,j)= W2; // dTB deviation from SP
 }
 // Load Ldmc (weights on control-move-squared)
 for (i=1;i<=Mdmc;i++) for (ii=1;ii<=Pdmc;ii++)
 {
 j = (i-1)*Pdmc+ii;
 if (ii==1) Ldmc(j,j)= L1; // REFLUX FLOW MOVE // so can weight each controlled variable differently
 if (ii==2) Ldmc(j,j)= L2; // REBOILER DUTY MOVE
 }
 // Load Bss (ignores possibility of integration)
 cMatrix Bss;
 Bss.Init(Rdmc,Pdmc);
 for (i=1;i<=Rdmc;i++)
 {
 for (j=1;j<=Pdmc;j++)
 {
 rcol=(j-1)*Rdmc+i;
 Bss(i,j)=resp(Ndmc,rcol);
 }
 }
 cMatrix temp1,temp2;
 temp1.Init(Rdmc,Rdmc);
 for (j=1;j<=Rdmc;j++) temp1(j,j) = Wdmc(j,j); // only the first time step for the output states
 temp2 = temp1 * Bss;
 temp1 = ~Bss; // transpose
 phi = temp1*temp2; // will be used for sum of square setpoint deviation error

 // Set up the DMC gain matrix...............
 // Kdmc = inv[B'WB +L] B'W
 BT= ~B; // transpose
 BTWBPL = BT*Wdmc*B + Ldmc;
 BTWBPLi=BTWBPL.Inv(); // inversion
 BTW = BT*Wdmc;
 Kdmc = BTWBPLi*BTW;

 The following code is executed on every time-step of the DMC algorithm:

 if ((theApp.FIRSTLOOP) | (m_nopt != nopt_last)) // have to sart 'w' at default in this case
 {
 w.Init(m_nopt*Pdmc,1);
 for (i=1;i<=m_nopt;i++) for (j=1;j<=Pdmc;j++)

Chapter 7 Simulations - MIMO closedloop and DMC 87

 {
 // fractions of eng value
 if (j=1) w((i-1)*Pdmc+j) = 1.0/Rdatum;
 if (j=2) w((i-1)*Pdmc+j) = 1.0/Qdatum;
 }
 }

 if ((m_W1 != W1_last) || (m_W2 != W2_last) || (m_L1 != L1_last) || (m_L2 != L2_last)
 || (m_nopt != nopt_last) || (m_cdamp != cdamp_last))
 {
 W1 = m_W1;
 W1_last = W1;
 W2 = m_W2;
 W2_last = W2;
 L1 = m_L1;
 L1_last = L1;
 L2 = m_L2;
 L2_last = L2;
 nopt = m_nopt;
 nopt_last = nopt;
 cdamp = m_cdamp;
 cdamp_last = cdamp;
 Initialise(TRUE,FALSE); //PARTIAL
 }

 if (theApp.FIRSTLOOP)
 {
 mlast(1) = RefluxMassFlow; //[t/h]
 mlast(2) = ReboilerDuty; //[MW]
 mlast(3) = FeedMassFlow; //[t/h]
 lasterr = -9999.0; // signal
 mlastinterp(1) = RefluxMassFlow; //[t/h]
 mlastinterp(2) = ReboilerDuty; //[MW]
 mlastinterp(3) = FeedMassFlow; //[t/h]
 theApp.FIRSTLOOP=0;
 }

 while (((theApp.t-tlast_DMC)>=dtDMC) | (theApp.b_FORCE_STEP))
 {
 if (!theApp.b_FORCE_STEP)
 {
 tlast_DMC += dtDMC; // must catch up by looping more than once if necessary
 }
 else
 {
 tlast_DMC = theApp.t; // to SYNCHRONISE manual moves : b_FORCE_STEP was set TRUE
 //on StepMode button
 theApp.b_FORCE_STEP = FALSE;
 }

 dml(1) = RefluxMassFlow-mlast(1); //[t/h]
 dml(2) = ReboilerDuty-mlast(2); //[MW]
 dml(3) = FeedMassFlow-mlast(3); //[t/h]

 mlast(1) = RefluxMassFlow;
 mlast(2) = ReboilerDuty;
 mlast(3) = FeedMassFlow;

 // past moves shift one down dmp stack
 for (i=1; i<=(Ndmc-1); i++)
 {
 for (j=1; j<=(Pdmc+Qdmc); j++)
 {
 dmp((i-1)*(Pdmc+Qdmc)+j) = dmp(i*(Pdmc+Qdmc)+j);
 }
 }
 for (j=1; j<=(Pdmc+Qdmc); j++)
 {
 dmp((Ndmc-1)*(Pdmc+Qdmc)+j) = dml(j); // previous move
 }

88 Applied Process Control

 if (b_AUTO)
 {
 // on AUTO ! ---- do DMC Control !
 for (i=1;i<=Ndmc;i++)
 {
 xsp((i-1)*Rdmc+1) = dTAsp;
 xsp((i-1)*Rdmc+2) = dTBsp;
 x0((i-1)*Rdmc+1) = dTA;
 x0((i-1)*Rdmc+2) = dTB;
 }

 if (lasterr(1) == -9999.0)
 {
 // Initialise
 lasterr = x0 - B0*dmp;
 graderr = 0;
 }
 else
 {
 // smooth estimate of integral error
 double alpha = 0.05; // filter constant
 graderr = alpha*(x0 - B0*dmp - lasterr) + (1.0-alpha)*graderr;
 for (i=1;i<=Ndmc;i++)for (j=1;j<=Rdmc;j++) trajerr((i-1)*Rdmc+j) = i*graderr(j); // ramp
 lasterr = x0 - B0*dmp;
 }

 // set constraints
 m0.Init((Mdmc*Pdmc),1);
 ml=m0;
 mh=m0;
 dmmax = m0;
 for (i=1;i<=Mdmc;i++) for (j=1;j<=Pdmc;j++)
 {
 m0((i-1)*Pdmc+j) = mlast(j); // repeat it through the vector
 if (j==1) ml((i-1)*Pdmc+j) = LoLim_R;
 if (j==2) ml((i-1)*Pdmc+j) = LoLim_Q;
 if (j==1) mh((i-1)*Pdmc+j) = HiLim_R;
 if (j==2) mh((i-1)*Pdmc+j) = HiLim_Q;
 if (j==1) dmmax((i-1)*Pdmc+j) = RampLim_R; // ramp limits
 if (j==2) dmmax((i-1)*Pdmc+j) = RampLim_Q;
 }

 xl = x0; // just to initialise
 xh = x0;
 for (i=1;i<=Ndmc;i++)
 {
 xl((i-1)*Rdmc+1) = LoLim_dTA;
 xl((i-1)*Rdmc+2) = LoLim_dTB;
 xh((i-1)*Rdmc+1) = HiLim_dTA;
 xh((i-1)*Rdmc+2) = HiLim_dTB;
 }

 Hdmc.Init(m0.nRow,m0.nRow); // for combination of elements of m
 zh = m0; // to get size right
 zl = m0;
 double fraction_allowed = Gap_Constraint_Percent/100; //allowed fractional deviation fr. equilib line
 double slope = Qdatum / Rdatum;
 for (int k=1;k<=Mdmc;k++)
 {
 int axoff = (k-1)*Pdmc;
 Hdmc(axoff+1,axoff+1) = 1;
 Hdmc(axoff+1,axoff+2) = -1/slope;
 Hdmc(axoff+2,axoff+1) = -slope;
 Hdmc(axoff+2,axoff+2) = 1;
 zh(axoff+1) = fraction_allowed*Rdatum + Rdatum - Qdatum/slope;
 zh(axoff+2) = fraction_allowed*Qdatum + Qdatum - slope*Rdatum;
 zl(axoff+1) = -fraction_allowed*Rdatum + Rdatum - Qdatum/slope;
 zl(axoff+2) = -fraction_allowed*Qdatum + Qdatum - slope*Rdatum;
 }

Chapter 7 Simulations - MIMO closedloop and DMC 89

 if (DMCstep(Ndmc,Mdmc,Pdmc,Qdmc,Rdmc,
 &x0,&xsp,&dmp,
 &B,&B0,&Bol,&Wdmc,&Ldmc,&Kdmc,&Hdmc,&w,&phi,
 &m0,&mh,&ml,&dmmax,&xh,&xl,&zh,&zl,&trajerr,&dmuqo,&dm))
 {
 RefluxMassFlow = mlast(1) + dm(1);
 ReboilerDuty = mlast(2) + dm(2);
 m_dmc_gap = 100*sqrt(pow((dm(1)-dmuqo(1))/Rdatum,2)/2.0 +
 pow((dm(2)-dmuqo(2))/Qdatum,2)/2.0); // normalised % gap
 if (m_dmc_gap > 0)
 {
 b_constrained = TRUE; // shortcut - see slack variable method with ry below !!!####
 }
 else
 {
 b_constrained = FALSE;
 }
 }
 m_R = RefluxMassFlow;
 m_Q = ReboilerDuty;
 }
 }

90 Applied Process Control

7.3 SRE – SISO PID and DMC controllers based on

step response

Use of a measured openloop step response to design SISO PID and

DMC controllers, and comparison of their performance in response to

a setpoint step

f_7.11

7.3.1 Typical settings

FC for DMC for

F5 F5

by V5 by V5

KC= 1.3 Move suppression weight: V5 : 10

Chapter 7 Simulations - MIMO closedloop and DMC 91

I=20

D=5 Setpoint deviation weight: F5 : 100

α=0.1

F5SP=50 Number of optimised future moves : 1

V5=50

Measured step reponse & constraint settings:

f_7.12

7.3.2 Theory

92 Applied Process Control

f_7.13

FC5

CV5

CV2

T102

C1

LT1

SP

absorption column

water reservoir

bypass

FT5

kickback

A pump supplies water from tank T102 to an elevated packed column as shown in the figure.

The kickback valve CV2 can be used to vary the resistance line of the network, changing the

head that can be supported on the pump characteristic. The orifice plate and DP cell FT5 are

used to measure the flow to the distributor at the top of the column, for different valve

positions of CV5. Thus the focus will be on the relationship between FT5 and CV5. This

exercise will normally be conducted with CV2 at 0% open. CV5 is initially varied manually

in openloop to obtain the desired openloop responses. The controller settings based on these

responses are then implemented in the closedloop FC5, and tested.

The Reaction Curve tuning method (Richards, 1979) is detailed in section 4.1.1. It is based on

the “open-loop” response to a step input. More specifically, the controller is left out of the

circuit altogether, and the manipulated variable (valve position) is stepped. This will result in

a response of the proposed controlled variable, which for most systems has the form shown in

figure f_7.14. In the flow control system considered here, F5 will respond to a step in V5.

Chapter 7 Simulations - MIMO closedloop and DMC 93

f_7.14

CV

x

MV

u

time



m
ax

im
um

 s
lo

pe

xSS

u

SSx
K

u






T

Table 7.1 Ziegler-Nichols reaction curve controller settings

P

PI

PID

KC
TK





0.9

TK





1.2

TK





I

-

0.3

T
0.5

T

D

-

- 2

T

In the “reaction curve” tuning method, Ziegler and Nichols (1942) proposed “good” settings

for P, PI & PID controllers based on these measurements as in Table 7.1. Presently, both a P

and a PID controller will be designed on this basis, and tested in closed loop. Furthermore, as

described in section 7.1, the reaction curve will also be used to create the matrices B, BOL and

B0 required for a SISO dynamic matrix controller.

The gain margin of the PID control loop will be calculated using the assumed first-order-

plus-dead-time model. The process reaction curve represents a % flow output in response

to % valve-open input. Clearly, process models derived on this basis will lump the dynamics

of the control element, the pump and the measuring element, and other converters in the

circuit. The attitude taken is that anything lying between the % valve-open input and % flow

output is “process” (f_7.15):

94 Applied Process Control

f_7.15

+
-

controller process

GC(s) GP(s)

setpoint flow-rate

[% flow]

error valve

[% flow] [% valve] [% flow]

Observation of the response of the process to a step input suggests that it might be adequately

described by a 1st order lag with dead-time in series:

 
1

T s

P

Ke
G s

s










 (7.32)

This may be fitted to the process step responses using average values of the parameters T, the

dynamic lag , and the open-loop gain K = x /uss

The assumed form of Gp(s) may then be used in conjunction with the chosen PID controller to

obtain an open-loop transfer function:

     
1

1
1

T s

O P C C D

I

Ke
G s G s G s K s

s s




 

    
      

    
 (7.33)

The corresponding Nyquist plot has the form shown in figure f_7.16 below

f_7.16

Im [GOPEN (j)]

Re [GOPEN (j)]

increasing 

x

A B-1

start here

Chapter 7 Simulations - MIMO closedloop and DMC 95

In order to establish the Gain Margin of this assumed system, we must find the point A at

which the Nyquist Plot crosses the – ve Real axis with the biggest negative real value. Notice

that the transport lag term T se  would normally cause a continuous spiral inwards to the origin

as s = j increases in the frequency response. (and  OG j decreases). For this particular

idealised open-loop, the phase angle does become increasingly negative as expected, but the

magnitude becomes constant as frequency increases. Why? What will be the asymptotic

magnitude?

We are naturally interested in the crossing ‘A’ which is most negative (largest distance x from

the origin), since this contour will be the first to enclose (–1+j0) with increasing Kc and thus

cause closed-loop instability. Thus care must be taken in plotting  OG j to start with a

sufficiently low frequency (e.g. 0.01 rad s-1) to avoid proceeding inwards on one of the inner

contours, and perhaps only finding point ‘B’.

Starting at a low frequency, plot points at successively higher frequencies until the – ve real

axis is crossed. Join these points with a smooth curve to find A, then

Gain Margin=    10

1
20log dbOG j x

x
    (7.34)

(Note that we could simply have solved for  which gives    0180Oangle G j  , then

substituted this  into  OG j to obtain x.)

7.3.3 Tasks

(1) Obtain the dynamic response of the flow-rate F5 to a step in valve position V5.

(3) Derive recommended Ziegler-Nichols parameters based on this “Reaction Curve” for P

and PID controllers for the SISO loop F5 by V5.

(4) Use your measured step-response matrix to set up a Dynamic Matrix Controller (DMC)

(5) Assess the performance of each of these controllers in closed-loop control by stepping

the set-points and evaluating a quadratic performance index.

(6) Use an assumed system model to calculate the Gain Margin of the system under control

by the PID controller.

7.3.4 Method

(1) Start the RTC program and select the “SRE” application.

96 Applied Process Control

(2) The graphic user interface (GUI) now allows you to set the positions of control valves

V2 and V5. Set V2 to 0% open and V5 to 50% open, and allow the system to achieve

steady state.

(3) Start logging to a data file with a time-interval of 5 seconds.

(4) Note the computer time for future reference to your logging file.

(5) Now input a step of +10% in valve V5 position. (In the case of control of a real plant, an

initial test for valve hysteresis should be done by comparing a response occurring

following continuous movement of the valve in one direction, with that occurring

following a reversing step. Furthermore, to minimise the impact of non-linearity, all

steps should be made from a fixed initial condition, close to the normal anticipated

operating point).

(6) Calculate the recommended Ziegler-Nichols setting Kc for a P controller, and KC, I and

D for each PID controller. Set these values using the scroll-bars for each case.

(7) Choose 10 equally-spaced points in the step response (The suggested spacing is 10s, so

beware that the log-file interval is 5s. Also, the default interval on the SETTINGS

screen may need to be changed to 10s). The portion of curve should represent a smooth

variation of F5 up to steady-state. Divide the measurements by the size of the input step

(+10%) to get a “unit step response”. Enter these values in the response sequence under

the settings section, reached by pressing the SETTINGS button (f_7.17).

f_7.17

 The Settings screen also allows you to change the sample interval, plus constraints that

may be applied to V5 and F5 (for DMC control only). Additional constraints include

“ramp” limits, ie. the maximum change in V5.

(8) The associated Dynamic Matrix Controller is tuned using the DMC weight settings on

the GUI. These set the terms in the diagonal weighting matrices W (for F5 setpoint

deviations) and  (for V5 move suppression). The other tuning parameter is the

“number of optimised moves”, also set on the GUI.

(9) Start a new data log file if necessary. For each closed-loop set-point step response, start

with the system on “manual” at steady-state, with V5 at the same initial settings. Match

the set-point to the feedback F5 before switching to “auto”. Once you are on “auto”, let

the system settle for a short while (eg. 30s). Now obtain the level responses to a step of

+ 20% in flow F5 set-point with the system under closed-loop P, PID and DMC control.

In the case of DMC control, investigate the effect of changing from 1 to 2 or 3

“optimised moves”, as well as the effect of varying the V5 and F5 weights.

Chapter 7 Simulations - MIMO closedloop and DMC 97

(10) Let the system reach steady-state under DMC control. Now create a load disturbance by

stepping V2 open by 20%. Note the response.

(11) Process your log-file as follows: Plot the individual openloop and closedloop responses,

and comment on them. For each closedloop response, calculate a quadratic performance

index for each flow controller, starting at the time when the setpoint was stepped, and

continuing for a fixed period thereafter.

    
2

5 5

1

N

SP

i

QPI F i t F i t


      (7.35)

 Comment on the differences caused by the various configurations and settings.

(12) Using the assumed form of the closedloop transfer function under PID control,

construct a section of the Nyquist plot for the PID controller, and use this to estimate

the Gain Margin.

(13) Comment on all of your observations and calculated results.

7.3.5 MATLAB® program for the Nyquist plot

% Magnitude and Phase Angle of a Process with PID controller

clc
close all

clear

% define the variables:

%ZN
Kc = -0.8; %

tauI = 30;
tauD = 4;

%Open Loop

K = -0.678;
tau = 23.33;

tauT = 18.43; % (L) lag time
w=[0.01:0.001:10];% Freq array

for j = 1:length(w)
 s = w(j)*2*pi*i; % vector of different 's' values of frequency

 % calculating the transfer function G(s)
 G(j) = Kc*(1 + 1/(tauI*s) + tauD*s)*(K * exp(-tauT*s))/(1+ tau*s);

end

% Plotting the Nyquist plot (Re vs. Im)

x = real(G);
y = imag(G);

plot(x,y);

xlabel('Re(G(s))');
ylabel('Im(G(s))');

title('Nyquist Plot');
line([-0.8 0.8],[0 0],'color','k','linestyle','--');

axis manual;

line([0 0],[-0.8 0.8],'color','k','linestyle','--');
grid on;

98 Applied Process Control

7.4 STR – PID and MIMO DMC controllers based

on step response

Use of a measured openloop step response to design PID and DMC

controllers, and comparison of their performance in response to a

setpoint step

f_7.18

7.4.1 Typical settings

LC for LC for DMC for

L1 L2 L1 & L2

by V1 by V2 by V1 & V2

KC= -2.0 KC=4.0 Move suppression weights: V1 : 10

Chapter 7 Simulations - MIMO closedloop and DMC 99

I=100 I=100 V2 : 10

D=0.1 D=0.1

α=0.1 α=0.1 Setpoint deviation weights: L1 : 100

L1SP=60 L2SP=40 L2 : 100

V1=55 V2=45 Number of optimised future moves : 1

Measured step reponses & constraint settings:

f_7.19

7.4.2 Theory

100 Applied Process Control

f_7.20

L1

reservoir

L2

V1V2

shut

shut

shut

shutopen

openopen

launder

open

A pump supplies water from a reservoir to two interconnected 8m tall tanks as shown in

f_7.20. The return valve V1 near the pump effectively varies the resistance line of the network,

changing the head that can be supported on the pump characteristic. A head increase builds up

tank level, whilst a head decrease is accommodated by dumping tank water through bleed

valves to a return launder (or, indeed, by reverse-flow through the water supply line). The

focus will be on the relationships V1L1 and V2L2 for the two PID loops, and [V1,V2]

[L1,L2] for the DMC controller. Note the settings of the remaining valves in the figure

f_7.20.

The Reaction Curve tuning method (Richards, 1979) is detailed in section 4.1.1. It is based on

the “open-loop” response to a step input. More specifically, the controller is left out of the

circuit altogether, and the manipulated variable (valve position) is stepped. This will result in

a response of the proposed controlled variable, which for most systems has the form shown in

f_4.1. In the pump-tank system considered here, both L1 and L2 will respond to separate steps

in V1 and V2, creating a matrix of step responses. As described in section 7.1, these may be

used to create the matrices of matrices, B, BOL and B0 required to construct a dynamic matrix

controller.

In this study, the gain margin of each of the separate PID control loops will be calculated

using the assumed first-order-plus-dead-time model. The available process reaction curves

represent a % level output in response to % valve-open input. Clearly, process models

derived on this basis will lump the dynamics of the control element, the pump/tank process,

the measuring element, and other converters in the circuit. The attitude taken is that anything

lying between the % valve-open input and % level output is “process” (f_7.21):

Chapter 7 Simulations - MIMO closedloop and DMC 101

f_7.21

+
-

controller process

GC(s) GP(s)

setpoint level

[% level]

error valve

[% level] [% valve] [% level]

Observation of the response of the process to a step input suggests that it might be adequately

described by a 1st order lag with dead-time in series:

 
1

T s

P

Ke
G s

s










 (7.36)

This may be fitted to the process step responses using average values of the parameters TT

(T) , the dynamic lag TS (), and the open-loop gain K = x /ass (f_4.1).

The assumed form of Gp(s) may then be used in conjunction with the chosen PID controller to

obtain an open-loop transfer function:

     
1

1
1

T s

O P C C D

I

Ke
G s G s G s K s

s s




 

    
      

    
 (7.37)

The corresponding Nyquist plot has the form shown in the figure below

102 Applied Process Control

f_7.22

Im [GOPEN (j)]

Re [GOPEN (j)]

increasing 

x

A B-1

start here

In order to establish the Gain Margin of this assumed system, we must find the point A at

which the Nyquist Plot crosses the – ve Real axis with the biggest negative real value. Notice

that the transport lag term T se  would normally cause a continuous spiral inwards to the origin

as s = j increases in the frequency response. (and  OG j decreases). For this particular

idealised open-loop, the phase angle does become increasingly negative as expected, but the

magnitude becomes constant as frequency increases. Why?

We are naturally interested in the crossing ‘A’ which is most negative, since this contour will

be the first to enclose (–1+j0) with increasing Kc and thus cause closed-loop instability. Thus

care must be taken in plotting  OG j to start with a sufficiently low frequency (e.g. 0.01 rad

s-1) to avoid proceeding inwards on one of the inner contours, and perhaps only finding point

‘B’.

Starting at a low frequency, plot points at successively higher frequencies until the – ve real

axis is crossed. Join these points with a smooth curve to find A, distance x from the origin,

then

Gain Margin=    10

1
20log dbOG j x

x
    (7.38)

(Note that we could simply have solved for  which gives    0180Oangle G j  , then

substituted this  into  OG j to obtain x.)

7.4.3 Tasks

(1) Obtain the dynamic responses of the levels L1 and L2 to separate steps in valve

positions V1 and V2.

Chapter 7 Simulations - MIMO closedloop and DMC 103

(3) Derive recommended Ziegler-Nichols parameters based on these “Reaction Curves” for

P and PID controllers for separate SISO loops L1 by V1, and L2 by V2.

(4) Use your measured step-response matrix to set up a Dynamic Matrix Controller (DMC)

(5) Assess the performance of each of these controllers in closed-loop control by stepping

the set-points and evaluating a quadratic performance index.

(6) Use an assumed system model to calculate the Gain Margins of the the two SISO

systems under control by their PID controllers.

7.4.4 Method

(1) Start the RTC program and select the “STR” application.

(2) The graphic user interface (GUI) now allows you to set the positions of control valves

V1 and V2. Set to mid-range and allow the system to achieve steady state.

(3) Start logging to a data file with a time-interval of 5 seconds.

(4) Note the computer time for future reference to your logging file.

(5) Now input a step of +20% in valve V1 position. Repeat to get the responses to a +20%

step in V2. (In the case of control of a real plant, an initial test for valve hysteresis

should be done by comparing a response occurring following continuous movement of

the valve in one direction, with that occurring following a reversing step. Furthermore,

to minimise the impact of non-linearity, all steps should be made from a fixed initial

condition, close to the normal anticipated operating point).

(6) Calculate the recommended Ziegler-Nichols settings Kc, I and D for each PID

controller. Set these values using the scroll-bars for each case.

(7) Choose 10 equally-spaced points (default 30s intervals – see instruction below for

changing this) on a smooth “average” step-response to define the variation up to steady-

state for the two L1 responses, and the two L2 responses. Divide the measurements by

the size of the input step (20%) to get a “unit step response”. Enter these values in the

Dynamic Matrix under the settings section, reached by pressing the SETTINGS button

(f_7.23).

104 Applied Process Control

f_7.23

 This screen also allows you to change the sample interval, plus constraints that may be

applied to V1, V2, L1 and L2 (for DMC control only). Additional constraints include

“ramp” limits, ie. the maximum change in V1 or V2 per interval, as well as a facility to

to maintain the ratio of V1 to V2 within defined bounds.

(8) The associated Dynamic Matrix Controller is tuned using the DMC weight settings on

the GUI. These set the terms in the diagonal weighting matrices W (for L1 and L2

setpoint deviations) and  (for V1 and V2 move suppression). The other tuning

parameter is the “number of optimised moves”, also set on the GUI.

(9) Start a new data log file if necessary. For each closed-loop set-point step response, start

with the system on “manual” at steady-state, with V1 and V2 at the same initial settings.

Match the set-points to the feedback L1, L2 before switching to “auto”. Once you are on

“auto”, let the system settle for a short while (eg. 30s). Now obtain the level responses

to a step of + 20% in level L1 set-point, and separately to a +20% step in L2 setpoint,

with the system under closed-loop PID and DMC control. In the case of PID control,

compare the situation when the other PID controller is left on MANUAL, with that

when both PID controllers are on AUTO. In the case of DMC control, investigate the

effect of changing from 1 to 2 or 3 “optimised moves”, as well as the effect of varying

the L1, L2, V1 and V2 weights.

(10) Process your log-file as follows: Plot the individual openloop and closedloop responses,

and comment on them. For each closedloop response, calculate a quadratic performance

index for each level control, starting at the time when the setpoint was stepped, and

continuing for a fixed period thereafter.

    
2

1 1 1

1

N

SP

i

QPI L i t L i t


      (7.39)

    
2

2 2 2

1

N

SP

i

QPI L i t L i t


      (7.40)

 Comment on the differences caused by the various configurations and settings.

(11) Using the assumed form of the process transfer function (first-order plus dead-time),

construct a section of the Nyquist plot for each PID controller, and use this to estimate

the Gain Margin in each case.

Chapter 7 Simulations - MIMO closedloop and DMC 105

7.4.5 MATLAB® procedure for calculation of frequency

response

% Magnitude and Phase Angle of a Process with PID controller

K = 1;

Tt = 3; % [s]
T = 20; % [s]

Kc = 1;
Ti = 10; % [s]

Td = 2; % [s]

% Input frequencies (Hz):
freq = [0.0001;

 0.001 ;
 0.01 ;

 0.1 ;

 1.0 ;

 10.0 ;

 100.0] ;
for k=1:size(freq,1)

 s = (2*pi*freq(k))*i;

 Gc = Kc*(1 + 1/(Ti*s) + Td*s);
 mag_Gc = 20*log10(abs(Gc)); % [db]

 ang_Gc = 180*angle(Gc)/pi; % [deg]
 Gp = K*exp(-Tt*s)/(T*s+1);

 mag_Gp = 20*log10(abs(Gp)); % [db]

 ang_Gp = 180*angle(Gp)/pi; % [deg]

 mag_GcGp = mag_Gc+mag_Gp;
 ang_GcGp = ang_Gc+ang_Gp;

 [freq(k) mag_GcGp ang_GcGp]

end

7.4.6 Code extracts

 Final loading of arrays for the LPSOLVE linear programming solution, plus unpacking of

the results returned by LPSOLVE (Michel Berkelaar -

http://sourceforge.net/projects/lpsolve/):

 // Finally have to order first the "objective", then the "less thans" then the "greater thans"

 CLPproblem LP;
 LP.n = NTc-1;

 LP.m1 = NTr-1; //temporary

 LP.m2 = 0;
 LP.m3 = 0;

 LP.eps = 1e-12; // improve the way this is set !

 LP.SetUp();

 LP.m1=0;
 LP.m=0;

 int lessthans[MAX_VECTOR_SIZE];

 int greaterthans[MAX_VECTOR_SIZE];
 for (i=1;i<=NTr;i++)

 {

 if(I[i]==-1)
 {

 LP.m1 += 1;

 lessthans[LP.m1]=i;
 }

 if(I[i]==+1)

 {
 LP.m2 += 1;

 greaterthans[LP.m2]=i;

http://sourceforge.net/projects/lpsolve/

106 Applied Process Control

 }

 }
 LP.m = LP.m1 + LP.m2;

 for (i=1;i<=NTr;i++)
 {

 if(i==1) //objective

 {
 for (j=1;j<=NTc;j++)

 {

 LP.a(i,j) = G(1,j);
 }

 }

 if((i>1) && (i<=(1+LP.m1))) //a lessthan
 {

 for (j=1;j<=NTc;j++)

 {
 LP.a(i,j) = G(lessthans[i-1],j);

 }

 }
 if(i>(1+LP.m1)) //a greaterthan

 {

 for (j=1;j<=NTc;j++)
 {

 LP.a(i,j) = G(greaterthans[i-(1+LP.m1)],j);

 }
 }

 }

 // SOLVE THE LP
 int icase = LP.Solve();

 m_lastconstraint = 0;

 if (icase!=0)
 {

 *dm=0; // don't move

 b_no_solution = TRUE;
 return(FALSE); // problem!

 }

 else

 {

 // find the result values in the tableau

 double r[MAX_VECTOR_SIZE],ry[MAX_VECTOR_SIZE];
 for (j=1; j<=MAX_VECTOR_SIZE; j++)

 {

 ry[j]=99;
 }

 for (j=1; j<=LP.n; j++)

 {
 int jj=LP.izrov[j];

 if (jj<=LP.n)

 {
 r[jj]=0.0;

 }

 else
 {

 ry[jj-LP.n]=0.0;

 }
 }

 for (i=1; i<=LP.m; i++)

 {
 int ii = LP.iposv[i];

 if (ii!=0)

 {
 if (ii<=LP.n)

 {

 r[ii] = LP.a(i+1,1);
 }

 else

 {
 ry[ii-LP.n] = LP.a(i+1,1);

 }

 }
 }

 // check if any variable is constrained, if BOTH bits of the slack variable are zero

Chapter 7 Simulations - MIMO closedloop and DMC 107

 for (j=1; j<int(double(MAX_VECTOR_SIZE)/2.0); j++)

 {
 if((ry[2*(j-1)+1]==0.0) && (ry[2*(j-1)+2]==0.0))

 {

 // #### b_constrained = TRUE; FAULTY AT THE MOMENT! ####MM041021
 m_lastconstraint = j;

 }

 }

 // now recombine the two bits of r
 for (i=1;i<=P;i++)

 {

 (*dm)(i) = (*dmuqo)(i) + r[2*(i-1)+1]-r[2*(i-1)+2];
 }

 return(TRUE); // no problems
 }

108 Applied Process Control

7.5 LLE – Multi-Input, Single-Output (MISO)

DMC compared with PID

Examination of how the DMC move suppression weights affect the

contributions of two inputs to a single-output system.

f_7.24

7.5.1 Typical settings

HC for HC for DMC for

H H H

by PS by SS by PS & SS

KC= 5 KC=6 Move suppression weights: PS : 50

I=100 I=100 SS : 50

Chapter 7 Simulations - MIMO closedloop and DMC 109

D=0 D=0.1

α=0.1 α=0.1 Setpoint deviation weight: H : 50

HSP=40 HSP=40

PS=50 SS=30 Number of optimised future moves : 1

Measured step reponses & constraint settings:

f_7.25

7.5.2 Theory

110 Applied Process Control

f_7.26

DPH

SS

PS

rising light phase

bubbles

falling

heavy

phase

bubbles

ring

packing

section

stirrer speed setting

common pump

speed setting

hold-up ratio

calculated

from P

A double-headed peristaltic pump supplies both heavy and light liquid phases to a liquid-

liquid extraction contacting column. The rising light phase bubbles first pass through a packed

section to increase interphase contact area. Above the packing the light phase continues to rise

through the continuous heavy phase, under the influence of a stirrer which reduces bubble size

and enhances mass transfer. Above this section the light phase coalesces in a layer which

returns to the bottom of the column via an overflow and its pump head. The heavy phase

leaves at the bottom of the column as shown, with its own overflow near the top, and is

returned to the top of the column via its head of the pump.

Since the peristaltic heads are driven by the same variable-speed motor, their pump rates are

identical and determined by the pump speed setting PS. One expects that as this speed is

increased the fraction of light phase in the measured section (viz. H the “hold-up ratio”) will

increase owing to the increased superficial velocities of the two phases. If the stirrer speed SS

is increased, the fraction of small rising bubbles will increase. The increasing surface area will

increase the drag per unit mass, slowing down the bubbles and again increasing the holdup-

ratio. In practice one likes to keep the hold-up ratio in such a column high, to maximise mass

transfer. But if it gets too high one reaches a condition called “flooding”. Here the feed of

either phase cannot get through the column quickly enough, causing bodily displacement of

phases. Thus a control system is required to maintain the hold-up ratio, normally just below

the flooding point. The aim of this exercise is to examine the control of such a system, where

Chapter 7 Simulations - MIMO closedloop and DMC 111

two inputs (PS,SS) can be manipulated optimally, according to a defined criterion, in order to

regulate a single output, H.

7.5.3 Tasks

(1) Obtain the dynamic responses of the hold-up ratio H to separate steps in pump speed PS

and stirrer speed SS.

(2) Use your measured step-responses to set up a Dynamic Matrix Controller (DMC)

(3) Investigate the performance of the DMC controller for different settings of the move

suppression weights on PS and SS, and the setpoint deviation weight on H.

7.5.4 Method

(1) Start the RTC program and select the “LLE” application.

(2) The graphic user interface (GUI - f_7.24) now allows you to set the pump speed and the

stirrer speed. Set both to mid-range and allow the system to achieve steady state.

(3) Start logging to a data file with a time-interval of 5 seconds.

(4) Note the computer time for future reference to your logging file.

(5) Now input a step of +20% in pump speed by pressing the cursor twice in the coloured

part of the scroll-bar. Repeat to get the responses to a +20% step in stirrer speed.

(6) The DMC controller is this application will step at 10 s intervals. Thus choose 10

equally-spaced points at 10 s intervals on a smooth “average” step-response to define

the variation up to steady-state for the response to pump speed and the response to

stirrer speed. Divide the measurements by the size of the input step (10%) to get a “unit

step response” in each case. Enter these values into the Dynamic Matrix under the

settings section, reached by pressing the SETTINGS button (f_7.27).

f_7.27

112 Applied Process Control

 This screen also allows you to change constraints that may be applied to pump speed, PS,

stirrer speed, SS, and the hold-up ratio H, for DMC control only. Additional constraints

include “ramp” limits, ie. the maximum change in PS or SS per interval, as well as a

facility to maintain the ratio of SS to PS within defined bounds.

(7) The associated Dynamic Matrix Controller is tuned using the DMC weight settings on

the GUI. These set the terms in the diagonal weighting matrices W (for H setpoint

deviations) and  (for PS and SS move suppression). The other tuning parameter is the

“number of optimised moves”, also set on the GUI.

(8) Start a new data log file if necessary. Select the DMC controller, and switch the system

to AUTO. Let the system settle to a steady-state. Now obtain the hold-up H response to

a + 20% step in setpoint. Choose various combinations of high and low move

suppression weights on PS and SS and monitor how the work done to achieve set-point

steps is shared between these two MV’s. What happens when the setpoint deviation

weight on H is reduced, or the number of optimised moves is changed ?

(9) Compare the DMC step responses with PID control using PS as MV, and PID control

using SS as MV.

(10) Process your log-file as follows: Plot the individual openloop and closedloop step

responses, and comment on them. For each closedloop hold-up control response,

calculate a quadratic performance index, starting at the time when the setpoint was

stepped, and continuing for a fixed period thereafter.

    
2

1

N

SP

i

QPI H i t H i t


      (7.41)

 Comment on the differences caused by the various configurations and settings.

References

Chang T.S. and D.E. Seborg, “A linear programming approach for multivariable feedback

control with inequality constraints”, Int. J. Control, 37, 583-597, (1983).

Cutler CR and BL Ramaker, “Dynamic Matrix Control - A computer control algorithm”,

AIChE National Meeting, Houston, Texas, (1979)

Garcia CE and AM Morshedi, “Quadratic Programming Solution of Dynamic Matrix Control

(QDMC)”, Proc. Am. Control Conf., San Diego, California (1984)

Morshedi AM, CR Cutler and TA Skrovanek, “Optimal Solution of Dynamic Matrix Control

with Linear Programming Techniques (LDMC)”, Proc. Am. Control Conf., Boston ,

Massachusetts, 199-208, (1985)

Chapter 7 Simulations - MIMO closedloop and DMC 113

Mulholland M and JA Prosser, “Linear Dynamic Matrix Control of a Distillation Column”,

SA Inst. Chem. Eng 8th Nat. Meeting, Cape Town, April 16-18 (1997).

Richards, RJ, “An Introduction to Dynamics and Control”, Longman, London, pp. 280-281,

(1979).

 115

Chapter 8 Simulations - Observers

.

8.1 SPR - Smith Predictor for digester pulp Kappa

estimation and control

Use of a continuous quality estimator based on intermittent lab

samples, & compensating for dead time:

f_8.1

Smith Predictors as part of “Quality Estimators” are becoming very popular in industry. A

basic robust model of the dependence of some stream property is constructed, often by

regressing laboratory analyses against corresponding plant conditions (P,T,F measurements).

This model is then run on-line, predicting the product property. Periodically, laboratory

analyses are done for the property. The analysis is compared with the prediction that was

made at the time the sample was drawn, and the “offset” error used to correct future on-line

predictions. There is often a significant dynamic part and dead-time in the response of the

actual process for the desired property. These can be included in an IMC (Internal Model

Control) format as a virtual measurement for control feedback.

116 Applied Process Control

f_8.2

Chips

Steam

Steam

S
c
r
e
e
n

s

Chips and
Liquor

Liquor

Liquor

Cooking

Zone

Washing

Zone

Blow Line

Impregnation

High
Pressure
Feeder

Chips

Silo Zone

White Liquor

The application considered here is the prediction of wood-pulp Kappa number (extent of

delignification) at the exit of a Kraft wood digester (f_8.2). Interesting features of this

problem include the long dead-time delay (8-12 hours) as the wood chips move in plug flow

down the reactor, a further delay of about 2 hours whilst the exit “blow-line” pulp undergoes

laboratory analysis, and the dependence of the Kappa number on eight process variables

distributed “in time” along the reactor length.

In the Kraft digester shown in f_8.1, wood chips enter at the top at rate C30 together with

“white liquor”, the fresh chemical cooking solution containing caustic soda and sulphite.

There are zones of counter-current and co-current solution flow as the chips progress

downwards. At the top, most of the reaction takes place, whilst further down there are cooling

and washing stages, with the circulating flows being withdrawn through peripheral screens,

and returned to the desired level down concentric axial tubes from the top of the reactor.

Analysis of Variance (ANOVAR) studies have shown that the flows C30,F01,F05,F11 and

temperatures T00,T08,T12,T26 have the main influence on the final Kappa number. In

addition, the effects of the temperatures T00 and T26 were best correlated 2 hours and 4 hours

respectively prior to the time at which pulp leaves the digester via the blow-line. A simple

linear regression was used to obtain a model for the Kappa number on this basis, yielding

eight coefficients and one bias. In the simulation, T00 and T26 (f_8.3) have been made

completely dependent on the supply of HPS (high pressure steam) to the circulation heater at

the top of the reactor (this will also be the MV for closed loop control).

f_8.3

Chapter 8 Simulations – Observers 117

For the remaining variables affecting Kappa number (C30,F01,F05,F11,T08,T12), a facility is

provided both to set a mean value, and a chosen degree of random variation about this mean

using the following panel (f_8.4).

f_8.4

Samples of pulp can be drawn from the blow-line in either of two ways. If the “Lock” button

is toggled off, then the “Sample” button can be pressed each time a sample is required. This

event will be marked by a 5-minute sample pulse (green line) from the “true” (but

unobservable) blow-line Kappa trace (red). If the “Lock” button is toggled on, then samples

are drawn automatically every two hours. In both cases, it will be seen that the error trace

(“err”) steps 2 hours after the sample was drawn, allowing for the delay in the laboratory,

with the error being established by looking up the historical raw prediction of Kappa

appropriate to the original sampling time. A smoothed version of this error is also generated

(“smerr”: red trace) to be used in correcting current raw predictions. (NOTE that all error

traces are offset by +100 so that positive and negative variations are visible).

f_8.5

The degree of smoothing applied to the error correction is determined by the “ERROR

SMOOTH” scrollbar on the right (f_8.5). The adjoining “MODEL ERROR” scrollbar is used

(for simulation purposes) to set the extent of a slowly-varying difference between the

expected behaviour of the system (based on the regressed correlation used in the Smith

Predictor), and the actual Kappa value emerging from the blow-line (“K” : red trace). The

challenge for a Smith Predictor is to correctly identify this varying offset, and apply it in

correcting the current raw prediction to provide the final corrected prediction of Kappa

presently emerging from the reactor (“Kcorr”: thin blue trace).

In practice, even this corrected Kappa value is not ideal to use in a feedback loop, because

there is still a long dead-time (4 hours from T26 and 2 hours from T00) and dynamic (1 hour)

response between the manipulation of the HPS, and the emergence at the blow-line. Rather,

one wants to control a virtual Kappa value representing where it will finally converge should

the present settings persist. This is called the “ultimate” Kappa (“Kult” : yellow trace). Thus,

118 Applied Process Control

when the PID controller is switched to “Auto”, it is this feedback loop that is closed: from

Kult back to the HPS.

8.1.1 Typical settings

 mean random

C30: 7 10 Kappa SP= 80 PID: Kc = 0.5 Axis Length = 28800

F01: 9 50 HPS = 50 TI = 1000 Acceleration = 500

F05: 35 50 TD = 0 Log Interval = 300

F11: 46 50 MODEL ERROR = 80  = 0.1 Step Interval = 1800

T08: 133 80 ERROR SMOOTH =2000 d : 

T12: 111 80

8.1.2 Theory

Smith Predictors are typically used in dead-time compensation, though sometimes it is more a

case of measurement delay, for example in the case of an-online gas chromatograph. The

algorithm certainly does need to have the delay time appropriate to each sample, so that the

raw prediction at that time can be looked up in an historical buffer file. For a fixed instrument

delay this might not be problematic, but it can become a problem where the measurement

delay is caused by process plug flow. Here the delay will become dependent on the flow-rate

through the process, and a continuous estimate of this delay would help to locate the

appropriate data record.

Because of the possibility of timing errors in locating the appropriate historical record, it is

advisable to “smooth” the error prediction, say in a single-exponential filter as is done here.

smerr(t) =  smerr(t-t) + (1-) err(t) with 0<<1 (8.1)

Furthermore, such smoothing will avoid “bumping” the final corrected value in steps. Note in

particular that Smith Prediction uses an old error to correct new predictions. The following

diagram (f_8.6) shows a version of the Smith Predictor for intermittent sampling, without

error smoothing. Note how the loop can optionally be closed through a controller, in which

case an Internal Model Control (IMC) format has been achieved.

Chapter 8 Simulations – Observers 119

f_8.6

S1

+

+
+

+-

-

POSSIBLE

CLOSED-LOOP

CONTROL

CONTROLLER

(eg. Predictive

Controller)

xSP xu ACTUAL

PLANT

DYNAMIC

MODEL OF

PLANT

DELAY

D

DELAY

D (LAB

RESULT)

SAMPLING

S3

sync

with

S2

ZERO

ORDER

HOLD

Continuous

prediction

of x
Correction

Plant

input

Plant

output

Corrected

continuous

prediction

of x

S2

8.1.3 Tasks

(1) Switch the PID controller to “Manual”, all random errors to zero (ie. on

C30,F01,F05,F11,T08,T12), and the MODEL ERROR and ERROR SMOOTH

parameters to zero. Wait for the system to achieve steady-state. Now step the HPS up

by about 20. Note the responses – Kult predicts the full dynamic response without dead-

time delays, whilst Kraw gives it with the appropriate dead-times: here we see that the

T00 contribution is delayed 2 hours and the T26 contribution is delayed 4 hours. In this

response Kraw is coincident with K, the true Kappa value, because we have not

introduced a MODEL ERROR for simulation purposes.

(2) Now increase the MODEL ERROR to 160, and note how true K now randomly drifts

around Kraw, which is steady on account of the fixed inputs. Note that the err trace

steps 2 hours after each sample is taken, with the error for that sample. Now increase

ERROR SMOOTH to 2000 and see how the smerr curve separates from err and

smoothly varies.

(3) Set the Kappa setpoint to about 60 and switch the PID controller to “Auto”. Now the

HPS (and T00, T26) are varied to cause Kraw to vary in such a way that Kult and thus

K (true) track the Kappa setpoint as well as possible in the face of the varying model

error, which is being detected by the sampling. Note that K (true) is not controlled as

well as Kult because of the heavy smoothing applied to the detected error. Reduce

ERROR SMOOTH to zero and check if K control improves. Switch off the sample

“Lock” and take more frequent samples yourself to see if this improves it. The only

remaining problem is the 2-hour delay for each sample!

(4) Put MODEL ERROR back to a reasonable value – say 80, and ERROR SMOOTH back

to about 2000. Now consider some typical operation, where the Smith Predictor will

120 Applied Process Control

also provide compensation for variations in the other process variables. Set the

RANDOM components for C30,F01,F05,F11,T08,T12 all to about mid-range, and note

the performance of the Predictor and Controller over a period.

Chapter 8 Simulations – Observers 121

8.2 KAL - Kalman filter for adaptive DMC of

reservoir chlorine

Setting up a Kalman filter to estimate an unmeasurable variable for

continuous adaptation of DMC:

f_8.7

The Kalman filter is an “optimal observer” which one uses to find a set of process variable

values which are a compromise between the available measurements, and the modelled

relationship which should exist between these measurements. For example, one might be

measuring three flows – a main supply and two flows that split from it (f_8.8).

122 Applied Process Control

f_8.8

FS

F1

F2

Model: F1 + F2 = FS

The model suggests that the two split flows should add up to the supply flow. But the

measurements probably do not exactly confirm this. So where does the error lie? In the

Kalman filter, one assigns expected errors to the model and each flow measurement. The filter

runs as a continuous “reconciliation” based on these expected errors. Perhaps you are

confident about the model (low error expected), and about the two split flow measurements

(low errors expected), but not the supply measurement. Then the filter will provide continuous

estimates of all three flows in which the estimated supply flow will be close to the sum of the

measured split flows. Note that this “compromise” is not quite the same as process data

reconciliation, where a constraint is imposed to achieve proper mass and/or energy balances.

In fact, the Kalman filter generally handles dynamic processes, where such measurements are

dynamically inter-related – eg. a measured tank level rising in response to a measured inflow.

Moreover, we do not need to restrict ourselves to process states and inputs. We could consider

the size of a tank, a heat transfer coefficient, or, as in the present application, a chemical

reaction rate constant, all to be variables which can or cannot be observed, but for which

reconciled values are required which are a compromise between available observations and

the expected model relationship. These variables may well be nonlinearly arranged in the

model equations (eg. flow  composition in a mass balance). In this case we can locally-

linearise the expression on each step, and still use the Kalman filter. Such a procedure is

termed “Extended Kalman Filter” (EKF) and this is the form used in this application. In f_8.9

it is seen that the Kalman Filter acts to update the model within an Internal Model Control

(IMC) structure.

Chapter 8 Simulations – Observers 123

f_8.9

CSP(t) eOL
FC C

COL

(PRED)

(PREDICTED FULL FUTURE TRAJECTORY)

e
(CORRECTION)

Internal Model

Calculation of optimal

Cl2 dosing flow FC to

minimise eCL= CCL-CSP

Controller

Actual Plant

Calculate

Present

Output

Calculate

Future

Outputs

+-

+

+

+

-
CPRED

COL

(CORRECTED)

Predicted future water

demand trajectory (from

historical patterns)

Kalman Filter

k update

smoothing

filter

The problem considered in this application revolves around adaptive control, in particular, an

adaptive algorithm for DMC, Dynamic Matrix Control. At a waterworks there is a large

“conditioning” reservoir at the exit, to give the water sufficient contact time with a chlorine

dose to sterilise it before it enters the consumer distribution network. The mean contact time

depends on the RTD (Residence Time Distribution) in the conditioning reservoir - as a

simplification, think of this as the volume / through-flow. But the volume varies, as a result of

separate variations of inflow and outflow. A set of differential equations is required to

describe the system properly, but note for the meantime that the response of the outflow

chlorine composition C will be related to the input chlorine dosing FC in a way which depends

on current water flows (F1 & F2) , level (V), and the natural rate of loss of chlorine,

determined by a first-order rate constant k (ie. -kCV). Even this rate constant has been

observed to vary significantly with time (eg. 0.5 day-1 – 2.0 day-1). So if we are to use a DMC

algorithm to control the exit chlorine concentration, by manipulating the chorine dosing rate

(sodium hypochlorite solution to the reservoir inflow), we would want to change the step-

response curves on which the DMC is based in real-time, based on the identified k, and flows

and level – ie. adaptive control. So the algorithm used has two components: a Kalman filter

for continuous estimation of k, using measurements of dosing, flows, level and the exit

chlorine composition, and a continuously-updated DMC calculation.

f_8.10

124 Applied Process Control

In this application the supply of water to the conditioning reservoir F1 can be controlled

manually, or alternatively it can be supervised by a reservoir level controller by toggling on

“AUTO LC” (f_8.10). This level controller is of the “on-off” deadband type, giving a high

inflow (150) when level reaches a defined low limit, and a low inflow (50) when it reaches a

defined high limit. Note that “Level” is represented by the volume “V” in the reservoir.

f_8.11

The outflow F2 represents the flow drawn by consumers (f_8.11). If the random component

“rand” is set down to zero, this flow can be set directly using the left scrollbar. If the “rand”

component is used, then the left scrollbar represents the mean about which the random

component makes positive or negative contributions, of size proportional to “rand”. The

actual random variation has a daily oscillation, with a smaller-amplitude weekly oscillation

superimposed. Each night, when consumers are drawing least (and electricity is cheapest),

there is a surge of flow superimposed when pumps are switched on to transfer water to a

higher supply reservoir some distance away (pink trace in diagram f_8.12).

f_8.12

The EKF and DMC operation block f_8.13 has scrollbar settings for  (EKF) and  (DMC).

The EKF gain parameter  increases the effort made by the extended Kalman filter in

tracking the observations, at the expense of ignoring the model more. Thus the estimated

decay constant k will vary more rapidly, and internal estimates of the exit chlorine

concentration C (and reservoir volume V) will track their corresponding measurements more

closely. Because the DMC has only one input and one output, only one gain parameter  is

Chapter 8 Simulations – Observers 125

required, representing the ratio of W/ ie. the penalty weight on the C setpoint deviation over

the move suppression weight on the hypochlorite dosage flow FC. As  goes up, more

vigorous control action can be expected.

f_8.13

As in the DMC applications given in sections 7.2-7.5, the “Gap” parameter (f_8.13) indicates

how far the solution has been separated from the optimal MV settings, on account of

constraints. In this problem, the only constraints operating are the maxima and minima of FC

and C (as evidenced by their scrollbar ranges). Should a constraint be met, the “Constrained

” block is highlighted in pink, and constraints can be ignored, if so desired, if the “” is

unchecked. If no feasible solution exists, the “No Solution” box is highlighted, and the MV

value remains unchanged. The number of future control moves considered in the optimisation

on each DMC step is set by “nOPT”, and it can be expected, as discussed in section 7.1, that

control actions will become more vigorous, as nOPT is increased to 2.

f_8.14

Note in this application that the “Auto”/”Manual” switch for the DMC is near the top right of

the screen (f_8.14). Just below this is a special block for simulation purposes only. In this

block one can alter the mean true chlorine decay rate constant k, as well as set the size of a

slow oscillatory variation about this mean. This feature is to allow testing of the EKF’s ability

to identify and track k variations from the measurement data available.

8.2.1 Typical settings

126 Applied Process Control

F1 = 100 F2 = 100 EKF & DMC:  = 0.9 Axis Length = 172800

V = 124 rand (for F2) = 125  = 0.2 Acceleration = 1000

CSP = 1.0 k = 0.6 nOPT = 1 Log Interval = 600

 rand (for k) = 1.25 Step Interval = 10800

8.2.2 Theory

Kalman filter:

Three equations describe expected time-variations in the system:

1 2

dV
F F

dt
  (8.2)

 
2C

d VC
F F C kVC

dt
   (8.3)

0
dk

dt
 (8.4)

We obtain dC/dt from the second equation as follows

 
, so

d VC dC dV
V C

dt dt dt
  (8.5)

 2 1 2C

dC
V F F C kVC C F F

dt
     (8.6)

1CF FC kVC   (8.7)

1CF FCdC
kC

dt V V
   (8.8)

Linearising the three differential equations using deviations  1 2, , , , , CV C k F F F      about the

present operating point  1 2, , , , , CV C k F F F , obtain

1

1 1
22

0 0 0 1 1 0

1
0

0 0 00 0 0

C

C

V V F
FC Fd F C

C k C C F
dt V V V V

k k F

   
          

                                                         
   (8.9)

This is a set of first order differential equations of the form

d

dt
 

x
Ax Bm (8.10)

where x is the state vector and m is the input vector. This could be accurately integrated for

the time-step t using the matrix exponential, but we perform a simple Euler integration

instead:

Chapter 8 Simulations – Observers 127

    t t t tt t     x A I x B m (8.11)

We represent this with the discrete system notation

1i i i i i  x A x B m (8.12)

   where andi ii i
t t    A A I B B (8.13)

Consider a situation where we can observe the inputs m and a selection G (perhaps all) of the

states x. The matrix G will typically be rectangular, selecting some of the states to an

observation vector y.

1 0 0
with eg.

0 1 0
i i

 
   

 
y G x G (8.14)

The job of a Kalman filter is to match yi to the corresponding set of measurements ˆ
iy . It does

this by interfering with the normal integration step of the system, using an updated optimal

gain matrix Ki.

 1
ˆ

i i i i i i i i    x A x B m K y G x (8.15)

One way of thinking about this is: If ˆ
iy is “above” i iy G x , then Ki can be thought of as

“positive”, and adding positive increments onto xi on each time step until xi rises sufficiently

for i iy G x to reach ˆ
iy . Kalman showed how to obtain an optimal gain matrix K when the

statistics of error vectors  and  in the system are known as follows:

1: i i i i i iModel predictions    x A x B m δ (8.16)

ˆ: i i iMeasurements  y G x μ

where the and contain uncorrelated, zero-mean random terms with normaldistributionsi iδ μ

  as follows where ... represents the "expectation" or average :E

 TE (model - error covariance matrix)Q δδ (8.17)

 TE (measurement - error covariance matrix)R μ μ (8.18)

   TE δ μ 0 (8.19)

 E δ 0 (8.20)

 E μ 0 (8.21)

Under this circumstance, the optimal gain matrix Ki is yielded recursively on each time-step

of the discrete filter as follows:

1

T T

i i i



   K M G G M G R (8.22)

 1
ˆ

i i i i i i i i i    x A x B m K y G x (8.23)

 1

T

i i i i i i   M A I K G M A Q (8.24)

128 Applied Process Control

The Q matrix is set to represent the errors expected in the model predictions, whilst the R

matrix is set to represent the errors expected in the measurements. Usually, no correlation is

anticipated between the elements within each error vector, so the two error covariance

matrices are diagonal, with the variance of each term (error-squared) on the diagonal. The

“larger” the Q values, the more likely it is that the filter will follow the measurements, and

conversely, the larger the R values, the more likely it is that it will follow the model. The

“gain” is determined by the relative sizes between Q and R elements. Even if a measurement

of a state is not available, as in this case with a non-square G matrix, a prediction will be

produced for that state (k), as seen in the following diagram (f_8.15).

f_8.15

time

time

measurements

&

predictions

Input

measurements

Output

k (predicted)

C (predicted / fitted)

C (measured)

V (measured)

V (predicted / fitted)

F1 (measured)

F2 (measured)

FC (measured)

It is as well to emphasise at this point that the diagonal terms on the Q and R matrices relate

to square errors. Thus, eg., if it is desired to halve the tracking deviations from a measurement,

the corresponding R axis term must be divided by 4. The filter is started off with an assumed

M0 diagonal with small values on the diagonal, to allow rapid variation of M at the start.

Updating the step-response for the DMC:

Recall that the system

1

1 1
22

0 0 0 1 1 0

1
0

0 0 00 0 0

C

C

V V F
FC Fd F C

C k C C F
dt V V V V

k k F

   
          

                                                         
   (8.25)

is integrated discretely as

1i i i i i  x A x B m (8.26)

At any time, a local step response of C to FC is obtained as follows: At t=0 set

Chapter 8 Simulations – Observers 129

1

0 0 2

0 0

0 0

0 and 0

0 1C

V F

C F

k F

        
                  
               

x m (8.27)

then integrate as in the discrete equation above, up to the horizon, having evaluated A, B with

the present local values of F1, FC, C, V and k. It is the response of C that we need as the unit

step response for the DMC convolution model.

8.2.3 Tasks

(1) Set the “rand” contribution of the true chlorine decay rate constant k to zero. Wait for

the Kalman filter estimate kest to reach ktrue. Now consider the effect of various EKF 

values on the tracking of the (unknown) ktrue, by stepping ktrue with different  settings.

Return ktrue to about 0.6. (NOTE that the plotted “k” values are multiplied by 100).

(2) Set the reservoir “AUTO LC” off, remove the “rand” component from the outflow, and

set inflow F1 exactly equal to outflow F2 (around 100) to keep the level steady at some

reasonable V value near 100. Wait for the system to reach steady-state. Using setpoint

step-response tests, assess the effects of different values of the DMC gain parameter ,

and the number of optimised steps nOPT.

(3) Set all parameters back to the typical values listed in section 8.2.1 (press “Reset”). Set

the reservoir level control on “AUTO LC”, to simulate normal operation of the

conditioning reservoir, including a slowly-varying decay rate constant k (rand of k set at

1.25). Note the performance of the EKF and the DMC. Check if any improvements are

possible through changes in  or .

8.2.4 Code extracts

 The following code is executed on every time-step of the system:

 m_V = __max(m_V,1e-7); // can't have an empty reservoir

 // Re-evaluate Model & EKF matrices on every step
 // Have to find the nearest steady-state:
 double F1ss = (m_F1+m_F2)/2;
 double F2ss = F1ss;
 //first do it for the estimate of k
 double Vss_est = m_V_est;
 double kss_est = m_k_est;
 double Term1 = m_Fc/Vss_est;
 double Term2 = m_C_est*(F1ss/Vss_est+kss_est);
 double Term = (Term1+Term2)/2;
 double Fcss_est = Vss_est*Term;
 double Css_est = Term/(F1ss/Vss_est+kss_est);
 cMatrix xr,mr;
 xr.Init(3,1);
 mr.Init(3,1);

130 Applied Process Control

 Acont_est=0;
 Acont_est(2,1) = (F1ss*Css_est - Fcss_est) / pow(Vss_est,2);
 Acont_est(2,2) = -F1ss/Vss_est - kss_est;
 Acont_est(2,3) = -Css_est;
 Bcont_est=0;
 Bcont_est(1,1)=1;
 Bcont_est(1,2)=-1;
 Bcont_est(2,1)=-Css_est/Vss_est;
 Bcont_est(2,3)=1/Vss_est;
 // discrete matrices for KALMAN FILTER step : step small enough for Euler
 Adiscr_est = Acont_est*(dtKAL/(double)Ninterp)/(24*3600);
 Adiscr_est(1,1) = Adiscr_est(1,1)+1;
 Adiscr_est(2,2) = Adiscr_est(2,2)+1;
 Adiscr_est(3,3) = Adiscr_est(3,3)+1;
 Bdiscr_est = Bcont_est*(dtKAL/(double)Ninterp)/(24*3600);

 //NOW do it for the TRUE value of k etc
 double Vss = m_V;
 double kss = m_k;
 Term1 = m_Fc/Vss;
 Term2 = m_C*(F1ss/Vss+kss);
 Term = (Term1+Term2)/2;
 double Fcss = Vss*Term;
 double Css = Term/(F1ss/Vss+kss);
 xr.Init(3,1);
 mr.Init(3,1);
 Acont_true=0;
 Acont_true(2,1) = (F1ss*Css - Fcss) / pow(Vss,2);
 Acont_true(2,2) = -F1ss/Vss - kss;
 Acont_true(2,3) = -Css;
 Bcont_true=0;
 Bcont_true(1,1)=1;
 Bcont_true(1,2)=-1;
 Bcont_true(2,1)=-Css/Vss;
 Bcont_true(2,3)=1/Vss;
 // discrete matrices for model step : step small enough for Euler
 Adiscr_true = Acont_true*(dtKAL/(double)Ninterp)/(24*3600);
 Adiscr_true(1,1) = Adiscr_true(1,1)+1;
 Adiscr_true(2,2) = Adiscr_true(2,2)+1;
 Adiscr_true(3,3) = Adiscr_true(3,3)+1;
 Bdiscr_true = Bcont_true*(dtKAL/(double)Ninterp)/(24*3600);

 if (theApp.FIRSTLOOP)
 {
 mlast(1) = m_Fc;
 mlast(2) = m_F1;
 mlast(3) = m_F2;
 theApp.FIRSTLOOP=0;
 }

 while (((theApp.t-tlast_KAL)>=dtKAL) | (theApp.b_FORCE_STEP))
 {
 if (!theApp.b_FORCE_STEP)
 {
 tlast_KAL += dtKAL; // must catch up by looping more than once if necessary
 }
 else
 {
 tlast_KAL = theApp.t; // to SYNCHRONISE manual moves : b_FORCE_STEP
 // was set TRUE on StepMode button
 theApp.b_FORCE_STEP = FALSE;
 }

 // RECALCULATE DMC MATRICES EACH TIME! (BASED ON ESTIMATED k: ADAPTIVE!)---------------------
-
 // openloop step response of C to a unit step in Fc,F1,F2
 xr=0;
 mr=0;
 mr(3)=1; //Fc input
 for (i=1;i<=Nkal;i++)

Chapter 8 Simulations – Observers 131

 {
 for (j=1;j<=Ninterp;j++)
 {
 xr = Adiscr_est*xr + Bdiscr_est*mr;
 }
 resp(i,1)=xr(2); //C output
 }
 resp(Nkal,1)=resp(Nkal-1,1); // else integration is implied !
 xr=0;
 mr=0;
 mr(1)=1; //F1 input
 for (i=1;i<=Nkal;i++)
 {
 for (j=1;j<=Ninterp;j++)
 {
 xr = Adiscr_est*xr + Bdiscr_est*mr;
 }
 resp(i,2)=xr(2); //C output
 }
 resp(Nkal,2)=resp(Nkal-1,2); // else integration is implied !
 xr=0;
 mr=0;
 mr(2)=1; //F2 input
 for (i=1;i<=Nkal;i++)
 {
 for (j=1;j<=Ninterp;j++)
 {
 xr = Adiscr_est*xr + Bdiscr_est*mr;
 }
 resp(i,3)=xr(2); //C output
 }
 resp(Nkal,3)=resp(Nkal-1,3); // else integration is implied !

 unsigned ii,jj,iB,jB,rcol,rrow;
 // Load B
 for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++) for (j=1;j<=Mkal;j++) for (jj=1;jj<=Pkal;jj++)
 {
 iB=(i+j-2)*Rkal+ii;
 if (iB<=Nkal*Rkal)
 {
 jB=(j-1)*Pkal+jj;
 rcol=(jj-1)*Rkal+ii;
 B(iB,jB)=resp(i,rcol);
 }
 }
 // Load Bol
 for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++) for (j=1;j<=Nkal;j++) for (jj=1;jj<=(Pkal+Qkal);jj++)
 {
 iB=(i-1)*Rkal+ii;
 jB=(j-1)*(Pkal+Qkal)+jj;
 rrow = __min(Nkal-j+i+1, Nkal);
 rcol=(jj-1)*Rkal+ii;
 Bol(iB,jB)=resp(rrow,rcol);
 }
 // Load B0
 for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++) for (j=1;j<=Nkal;j++) for (jj=1;jj<=(Pkal+Qkal);jj++)
 {
 iB=(i-1)*Rkal+ii;
 jB=(j-1)*(Pkal+Qkal)+jj;
 rrow = Nkal-j+1;
 rcol=(jj-1)*Rkal+ii;
 B0(iB,jB)=resp(rrow,rcol);
 }
 // Load W_kal (weights on deviation-squared from setpoint)
 for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++)
 {
 j = (i-1)*Rkal+ii;
 if (ii==1) Wkal(j,j)= beta*pow((1/max_C),2); // C deviation from SP
 // so can weight each controlled variable differently
 }

132 Applied Process Control

 // Load L_kal (weights on control-move-squared)
 for (i=1;i<=Mkal;i++) for (ii=1;ii<=Pkal;ii++)
 {
 j = (i-1)*Pkal+ii;
 if (ii==1) Lkal(j,j)= 1*pow((1/max_Fc),2); // Fc MOVE
 // so can weight each controlled variable differently
 }

 // Set up the KAL gain matrix...............
 // Kkal = inv[B'WB +L] B'W
 BT= ~B;
 BTWBPL = BT*Wkal*B + Lkal;
 BTWBPLi=BTWBPL.Inv(); // inversion
 BTW = BT*Wkal;
 Kkal = BTWBPLi*BTW;
 //--

 dml(1) = m_Fc-mlast(1); //MM050103 (Fc-Fcss)-mlast(1);
 dml(2) = m_F1-mlast(2); //MM050103 (F1-F1ss)-mlast(2);
 dml(3) = m_F2-mlast(3); //MM050103 (F2-F2ss)-mlast(3);

 mlast(1) = m_Fc;
 mlast(2) = m_F1;
 mlast(3) = m_F2;

 // past moves shift one down dmp stack
 for (i=1; i<=(Nkal-1); i++)
 {
 for (j=1; j<=(Pkal+Qkal); j++)
 {
 dmp((i-1)*(Pkal+Qkal)+j) = dmp(i*(Pkal+Qkal)+j);
 }
 }
 for (j=1; j<=(Pkal+Qkal); j++)
 {
 dmp((Nkal-1)*(Pkal+Qkal)+j) = dml(j); // previous move
 }

 if (b_AUTO)
 {
 // on AUTO ! ---- do KAL Control !
 for (i=1;i<=Nkal;i++)
 {
 xsp((i-1)*Rkal+1) = m_C_sp;
 x0((i-1)*Rkal+1) = m_C;
 }
 // set constraints
 m0.Init((Mkal*Pkal),1);
 ml=m0;
 mh=m0;
 for (i=1;i<=Mkal;i++) for (j=1;j<=Pkal;j++)
 {
 m0((i-1)*Pkal+j) = mlast(j); // repeat it through the vector
 ml((i-1)*Pkal+j) = 0;
 mh((i-1)*Pkal+j) = max_Fc;
 }
 dmmax = m0; dmmax = 20;

 xl = x0;
 xh = x0;
 for (i=1;i<=Nkal;i++)
 {
 xl((i-1)*Rkal+1) = 0;
 xh((i-1)*Rkal+1) = max_C;
 }

 w.Init(Mkal*Pkal); //weights for deviations from unconstrained optimal move
 for (i=1;i<=Mkal;i++)
 {
 // fractions of eng value

Chapter 8 Simulations – Observers 133

 w((i-1)*Pkal+1) = 1.0/Fcdatum;
 }

 // Solve the LP problem....
 if (KALstep(Nkal,Mkal,Pkal,Qkal,Rkal,
 &x0,&xsp,&dmp,
 &B,&B0,&Bol,&Wkal,&Lkal,&Kkal,&w,
 &m0,&mh,&ml,&dmmax,&xh,&xl,&trajerr,&dmuqo,&dm))
 {
 m_Fc = mlast(1) + dm(1);
 m_kal_gap = fabs(dm(1)-dmuqo(1));
 if (m_kal_gap > 0)
 {
 b_constrained = TRUE; // shortcut - see slack variable method with ry below
 }
 else
 {
 b_constrained = FALSE;
 }
 }
 m_Fc = m_Fc;
 }
 }

 // now move the model (BASED ON TRUE value of k) forward on a finer time-step (just use Euler integration)
 while ((theApp.t-theApp.tlast_ModelStep) >= dtKAL/(double)Ninterp)
 {
 theApp.tlast_ModelStep += dtKAL/(double)Ninterp;

 mr(1) = (m_F1-F1ss);
 mr(2) = (m_F2-F2ss);
 mr(3) = (m_Fc-Fcss);

 xr(1) = (m_V-Vss);
 xr(2) = (m_C-Css);
 xr(3) = (m_k-kss);

 xr = Adiscr_true*xr + Bdiscr_true*mr;

 if (theApp.b_Model)
 {
 m_V = __min(__max(xr(1)+Vss,0),max_V);
 m_C = __min(__max(xr(2)+Css,0),max_C);
 }

 //---
 // Now Kalman Filter step based on estimated k value, to find k!
 mr(1) = (m_F1-F1ss);
 mr(2) = (m_F2-F2ss);
 mr(3) = (m_Fc-Fcss_est);

 xr(1) = (m_V_est-Vss_est); // these must be based on their estimates! ####MM050104
 xr(2) = (m_C_est-Css_est);
 xr(3) = (m_k_est-kss_est);

 yf(1) = m_V - Vss_est; // observations
 yf(2) = m_C - Css_est;

 cMatrix GfT,temp;
 GfT = ~Gf;
 temp = (Gf* (Mf * GfT)) + Rf;
 Kf = Mf * (GfT * temp.Inv());
 xr = Adiscr_est*xr + Bdiscr_est*mr + Kf*(yf - Gf*xr);
 temp = ~Adiscr_est;
 Mf = Adiscr_est*(If - Kf*Gf)*Mf*temp +Qf; //recursive 'M'

 //recover absolute values
 m_V_est = __min(__max((xr(1) + Vss_est), 0),max_V);
 m_C_est = __min(__max((xr(2) + Css_est), 0),max_C);

134 Applied Process Control

 m_k_est = __min(__max((xr(3) + kss_est), 0),max_k);
 //--

 // Level control if requested ... has to be done in phase with model step
 if(b_AutoLC)
 {
 if ((m_V<=m_Vlow) & (m_Vlast>m_Vlow))
 {
 m_F1 = m_F1high;
 }
 if ((m_V>=m_Vhigh) & (m_Vlast<m_Vhigh))
 {
 m_F1 = m_F1low;
 }
 m_F1 = __min(__max(m_F1,0),max_F1);
 }
 m_Vlast = m_V;
 }

Chapter 8 Simulations – Observers 135

8.3 MED – Model error detection

Identification of MIMO model error dependence using a least squares

fit to a batch of real-time data in a moving window:

f_8.16

8.3.1 Typical settings

Level setpoints: Valves:

LSP1 = 40 X1 = 50
LSP2 = 30 X2 = 50
LSP3 = 80 X3 = 50
LSP4 = 30 X4 = 50

136 Applied Process Control

8.3.2 Theory

f_8.17

Figure f_8.17 shows the experimental rig with the considered four vessels on the left (Kannie

and Managalparsad, 2010).

Chapter 8 Simulations – Observers 137

f_8.18

 463

4

4 1
FFF

Adt

dL


 32

3

3 1
FF

Adt

dL


 25

2

2 1
FF

Adt

dL


F
3

x
3

K
V3

a
3

F
5

K
V5

a
5

F
4

x
4

K
V4

a
4

F
2

x
2

K
V2

a
2

F
6

a
6

K
V6

F
1

x
1

K
V1

a
1

RESERVOIR

TANK

1

TANK

2

TANK

4

TANK

3

WATER TANK

 (8.28-8.31)

f_8.19

aa

22222 a LKxF V

343333 a LLKxF V

44444 a LKxF V

6466 a1  LKF V

1111 a15 VKxF

 (8.32-8.37)

Kannie and Managalparsad (2010) modelled the system as above (f_8.18- f_8.19), obtaining

the parameters KV1-KV6 and a1-a6 by a series of experiments on the apparatus.

 av[1]=200.00; kv[1]=0.123;

 av[2]=3.629; kv[2]=0.187;

138 Applied Process Control

 av[3]=4.25; kv[3]=0.0632;

 av[4]=2.268; kv[4]=0.202;

 av[5]=-4.6; kv[5]=0.122;

 av[6]=0.000; kv[6]=0.090;

The valves on the apparatus were open or shut solenoid valves. Thus flow was proportioned

on a 0-100% scale by time-slicing each valve on a fairly quick cycle so as not to add any extra

measureable transients. The fractional opening of valves is obvious at the bottom of the screen

(f_8.16). However, the model uses the fractional valve setting directly, so that MODEL

operation of the software will not exhibit any dependence on the fractional switching cycles.

Observation of Errors:

As the system runs, there is a measurement of each tank level coming from the plant. In

parallel, the assumed plant model is run, using the same valve settings as are being used on

the plant. Since this will inevitably have large offsets, the assumed plant model is run in a

very particular way. An horizon is established by going backwards in time for a fixed period

(10s), and the measured levels at that time are used as the assumed model starting point. The

assumed model is then run forward in time up to the present, and the error in each level is

obtained as the difference between the present level and the assumed model prediction of it.

This procedure is repeated on every-time step, so there is an updated set of level errors

obtained for every time-step.

Error Correlation Matrix:

For the purpose of identifying the realtionship between each level error and each valve (as a

possible source of the error), a window of data for the 4 level errors, and simultaneous 4 valve

settings is maintained in a stack, going back N=200 points in time. The way that this stack is

processed on each time-step, to update the error/valve correlation matrix, will now be

described.

The method will be developed initially by considering only one of the 4 tank level errors,

which will nominally be called e. The value of this error at position i in the stack 1≤i≤N will

be represented ei. It will be assumed that a linear relationship with fixed offset exists between

this error and the valve settings at time i:

11

22

33

44

51

T

i

i

T

i ii

i

x

x

e x

x











  
  
  
   
  
  

   
   

X α (8.38)

So the objective is to find the set of coefficients α which cause the best least squares fit

objective value J(α) over the whole stack (equally-weighted) as follows:

     
1

N
T

T T

i i i i

i

J e e


  α X α X α (8.39)

Chapter 8 Simulations – Observers 139

  
1

N
T T T

i i i i

i

e e


   α X X α (8.40)

1

N
T T T T T T

i i i i i i i i

i

e e e e


    X α α X α X X α (8.41)

The middle two terms are transposes and scalar, so one can write

 
1

2
N

T T T T

i i i i i i

i

J e e e


  α α X α X X α (8.42)

Differentiating with respect to the vector α,

 

1

2 2
N

T

i i i i

i

J
e




   




α
X X X α 0

α
 (8.43)

to minimise. Thus

1 1

N N
T

i i i i

i i

e
 

   
   

   
 X X α X (8.44)

1

1 1

N N
T

i i i i

i i

e



 

   
   
   
 α X X X (8.45)

Bearing in mind that only an arbitrary level error e has been considered so far, one can

consider all j levels simultaniously, 1≤j≤4 , using

 

11 12 13 14

21 22 23 24

1 2 3 4 31 32 33 34

41 42 43 44

51 52 53 54

   

   

   

   

   

 
 
 
 
 
 
  

A = α α α α (8.46)

and

 1 2 3 4

T

i i i i ie e e ee = (8.47)

so
1

1 1

N N
T T

i i i i

i i



 

   
    
   
 A X X X e (8.48)

In this application, protection against a singularity in the inversion of the X covariance matrix

is obtained using

10

10

10

10

10

10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

0 0 0 10 0

0 0 0 0 10











 
 
 
 
 
 
 
 

Λ (8.49)

so that

140 Applied Process Control

1

1 1

N N
T T

i i i i

i i



 

   
    
   
 A X X Λ X e (8.50)

The correlation matrix presented on the screen is in the form AT:

1 2 3 4

1 11 21 31 41 51

2 12 22 32 42 52

3 13 23 33 43 53

4 14 24 34 44 54

1x x x x

e

e

e

e

    

    

    

    

    









 (8.51)

An efficiency is included in this moving-window application by adjusting only terms affected

by the new point on each time-step, and subtracting out the contribution of the oldest point

which is being lost from the window.

8.3.3 Tasks

In this exercise, the intention is to detect when the apparatus starts to behave differently to the

model. Not only that, but the correlation matrix which is continuously updated in time will

hopefully give us enough information to locate just where in this MIMO system the fault is

likely to be. The exercise will be conducted by initially running with the matched model, then

adjusting the “matched” model so that it differs from the “plant” being measured. Of course,

in off-line MODEL mode, the “plant” will just be the original unchanged model.The updated

correlation matrix seeks whether errors observed in the four level measurements (compared to

expected levels) can be attributed to any of the 4 valves. For the purpose of the exercise, the

behaviour error will be introduced by altering the KV of a valve.

8.3.4 Method

(1) Start the MED application. It should be in MODEL mode (f_8.20). The level setpoints

are to be 40,30,80,30 for LSP1 through to LSP4. Select the DMC control, and then switch

the system to AUTO. Wait for the system to come to steady-state at these setpoints.

Chapter 8 Simulations – Observers 141

f_8.20

(2) For the purpose of identification, few of the relationships in the system can be observed

at steady-state, so frequent time-changes will be forced on the system by moving the

level setpoints in a random fashion. This is arranged so that the setpoints move up 10%,

then back down 10% at random points in time, to avoid saturation of valves or levels.

To start this process, press the S/P STEPPING button (f_8.21).

f_8.21

 (3) Whilst the system continues to track the moving setpoints, keep an eye on the Error

Correlation Matrix. All correlation terms between valves and errors in expected levels

should be remaining zero, because the expected Levels are based on an identical model

to the plant (f_8.22).

142 Applied Process Control

f_8.22

(4) Now create a plant-model mismatch by moving the error factor applied to KV3 (ie. the

coefficient of valve 3) from 1.0 to 2.0 (f_8.23). Because this is applied to the assumed

plant model, in practice it is equivalent to halving the actual KV3 on the plant (eg. partial

blockage).

f_8.23

(5) Observe how the Error Correlation Matrix changes (f_8.24). Because of the system

structure, one expects that the errors should only be identified in L3 and L4, and the

strongesst correlation should be with valve 3.

Chapter 8 Simulations – Observers 143

f_8.24

(6) Now eliminate the error on KV3 by moving the slider back, and do some tests by

applying errors to KV1. KV2 and KV4. Report on your observations and attempt to account

for them.

8.3.5 Code extract

 A prediction error in tank levels is found by going back to measured tank levels TP = 10

seconds ago, and using the assumed model to run forward from there 10 seconds (10 time-

steps) up to present time, where the predicted levels are compared with measured levels to get

the four errors. This modelling calculation is done immediately before the code listed below.

This set of errors E is associated with the set of 4 valve positions at the present time, X, and

this (X,E) pair is fed into a (XS,ES) stack of MaxStack=200 such pairs gathered over the past

sequence of time-points, with the oldest such pair being discarded when the stack reaches

capacity. When the stack is full, the calculation is made verry efficient by just adjusting the

variance and covariance totals for the additional contribution of the new time, and subtracting

the contribution of the oldest time.

// Now we are back at the present
for (j=1;j<=Ntanks;j++)
{
 Lp[j]=Lm[j]; // the predictions of the present levels
 Ep[j]=Lm[j]-m_L[j]; // the prediction errors
}

// Store current predictive errors for correlation analysis
for (j=1;j<=Ntanks;j++)
{
 Elost[j]=Es[Sp][j]; // about to be overwritten
 Es[Sp][j]=Ep[j];
}

// Do correlation if enough data...
if ((!b_Enough_Data) && (Sp==MaxStack))
{
 // time to initialise recursive moving window
 EX.Init(Ntanksp1); // Correlation factors from X's to E's

144 Applied Process Control

 Xcov.Init(Ntanksp1,Ntanksp1); // X covariances
 Mat.Init(Ntanksp1,Ntanksp1); // working matrix
 EXprod.Init(Ntanksp1,Ntanks); // EX products for correlation
 X.Init(Ntanksp1);
 EE.Init(Ntanks);
 Xcov=0;
 EXprod=0;
 Lamda_Suppression.Identity(Ntanksp1,MaxStack*1e-10,0.0);

 for (j=1;j<=Ntanks;j++)
 {
 Xsum[j]=0;
 Esum[j]=0;
 }
 X(Ntanksp1)=1;
 for (i=1;i<=MaxStack;i++)
 {
 for (j=1;j<=Ntanks;j++)
 {
 Xsum[j]+=Xs[i][j];
 Esum[j]+=Es[i][j];
 }
 }
 for (i=1;i<=MaxStack;i++)
 {
 for (j=1;j<=Ntanks;j++)
 {
 Xdev[i][j]=Xs[i][j]-Xsum[j]/MaxStack; //####MM100322Test!!!
 Edev[i][j]=Es[i][j]-Esum[j]/MaxStack; //####MM100322Test!!!
 X(j)=Xdev[i][j];
 EE(j)=Edev[i][j];
 }
 Xcov=Xcov+X*(~X); //#### /MaxStack;
 for (k=1;k<=Ntanks;k++)
 {
 for (j=1;j<=Ntanksp1;j++)
 {
 EXprod(j,k)=EXprod(j,k)+EE(k)*X(j);
 }
 }
 }
 b_Enough_Data=TRUE;
}
else
{
 if (b_Enough_Data)
 {
 X(Ntanksp1)=1;
 for (j=1;j<=Ntanks;j++)
 {
 Xsum[j]+=Xs[Sp][j]-Xlost[j];
 Esum[j]+=Es[Sp][j]-Elost[j];
 }
 for (j=1;j<=Ntanks;j++)
 {
 X(j)=Xdev[Sp][j];
 EE(j)=Edev[Sp][j];
 }
 Xcov=Xcov-X*(~X); // dump oldest contribution
 for (k=1;k<=Ntanks;k++)
 {
 for (j=1;j<=Ntanksp1;j++)
 {
 EXprod(j,k)=EXprod(j,k)-EE(k)*X(j); // dump oldest contribution
 }
 }
 // onto the latest measurements
 for (j=1;j<=Ntanks;j++)
 {
 Xdev[Sp][j]=Xs[Sp][j]-Xsum[j]/MaxStack;

Chapter 8 Simulations – Observers 145

 Edev[Sp][j]=Es[Sp][j]-Esum[j]/MaxStack;
 X(j)=Xdev[Sp][j];
 EE(j)=Edev[Sp][j];
 }
 Xcov=Xcov+X*(~X); // bring in newest contribution (####slight error due to mixture of averages)
 for (k=1;k<=Ntanks;k++)
 {
 for (j=1;j<=Ntanksp1;j++)
 {
 EXprod(j,k)=EXprod(j,k)+EE(k)*X(j); // bring in newest contribution
 }
 }

 //updated, so now find coefficients
 Mat=(Xcov+Lamda_Suppression).InvNoError();
 for (k=1;k<=Ntanks;k++)
 {
 for (j=1;j<=Ntanksp1;j++)
 {
 X(j)=EXprod(j,k);
 }
 EX=Mat*X; // Solution! : Will give ZEROS if Xcov is singular!!!!!! ####MM100325
 for (j=1;j<=Ntanksp1;j++)
 {
 XtoEcoeff[k][j]=EX(j);
 }
 }

 }

}

References

Kannie, N. and U. Managalparsad “Model error detection for a MIMO system”, Final Year

Laboratory Research Project, Chemical Engineering, University of KwaZulu-Natal,

Durban, (2010).

 147

Chapter 9 Simulations - Hybrid

systems

.

9.1 MLD - Predictive control of pressure swing

adsorption by optimal scheduling of the Skarstrom

cycle

A four-phase cyclical scheduling problem, requiring a decision on

when to end each phase in order to optimise production:

f_9.1

148 Applied Process Control

9.1.1 Typical settings

Two identical adsorbers are shown. Though this offers scope for shared use of purge gas, and

for creation of a steadier supply of product, the focus at this point will be on adsorber A.

Adsorber B will have the same settings.

FA1 pressurisation flow 60

FA2 depressurisation flow 40

FA3 purge flow 30

FA4 vent flow 40

Y1 % nitrogen (air feed) 79

Y2sp setpoint % nitrogen in product tank 10

Default Cycle:

(1) Pressurisation: Pressurise by feeding FA1=60 through VA1 until P reaches 95% of

Pmax (Pmax=4.5barg)

(2) Adsorption at high pressure: Continue to feed at FA1=60, opening VA2 to the

product tank to hold pressure at Pmax. When a mass of 60000 of feed has been admitted,

stop the feed by closing VA1. Also close VA2 to the product tank.

(3) Depressurisation: Open VA4 to vent (FA4=40) and allow the pressure to drop to Pmin.

(4) Purge at low pressure: Now use vent valve VA4 to control the pressure at Pmin,

whilst feeding back product gas as purge through VA3 at FA3=30. Once a mass of

10000 of product has been fed back, close VA3 and VA4 and repeat from (1) above.

(Note: The mimic diagram shows the purge flow returning independently of the product flow.

This permits separate accumulators to be shown on these lines, from which the effectiveness

of the process can be judged. The composition in the return purge line is set to that in the

product tank.)

9.1.2 Theory

This example is taken from Mulholland and Latifi (2009). Pressure swing adsorption requires

a repeated cycle of four steps. The periods of these steps, or other defined terminal conditions,

determine the rate and quality of the product, and its cost. In transient situations such as

upsets or grade changes, it is not intuitively obvious how the steps should be progressively

altered to bring the plant to the desired operating point in an optimal fashion. The present

work considers the problem of real-time maximization of the production of a single adsorber,

and maintaining a setpoint concentration in its product receiving vessel. In a modelling

exercise, these objectives have been met using predictive control based on completion of the

Chapter 9 Simulations - Hybrid systems 149

present step, plus two full future cycles to reduce the end-effect. The approach sought to be

fast and robust by suitable linearisation of the system. This allowed MILP solution in the

mixed logical dynamical (MLD) framework as a mixed integer dynamic optimisation

(MIDO). However, this problem was ultimately solved faster and more reliably by testing all

combinations for constraint violations and the objective value.

An increasing range of adsorbent materials is extending the use of pressure swing adsorption

(PSA) in the separation of gas mixtures. These materials are designed to selectively adsorb

one component from a mixture. As in vapour-liquid equilibrium, the equilibrium quantity of

this adsorbed component in the solid phase increases with its partial pressure in the gas phase.

Thus the solid can be used to adsorb the component at high pressure, and it can be

“regenerated” by expelling the adsorbed species at low pressure. In air separation, N2 is

selectively adsorbed, leaving an O2-rich product stream. A number of adsorbers can be

arranged to work in complementary cycles so as to smooth out production flow and the use of

common resources. However, the present analysis will focus on a single adsorber with a

product storage vessel. Figure f_9.2 shows a basic pressure swing adsorption configuration for

air separation.

f_9.2

A

B C

D

air N2

O2O2 storage

Four distinct steps, comprising the Skarstrom cycle, are required:

(1) pressurisation:

 A open; B,C & D closed

(2) adsorption at high pressure:

 A & B open; C & D closed

(3) depressurisation:

 D open; A,B & C closed

150 Applied Process Control

(4) purge at low pressure:

 C & D open; A & B closed

During step 2, a high purity product can be obtained, particularly if some of the product itself

is used in step 4 for purging, as is shown here. The mechanism by which a high-purity

product is obtained is not entirely self-evident. It is in fact achieved by developing a suitable

composition profile in the solid phase which acts to “screen” the down-ward moving air in

step 2. That profile will of course oscillate through each full cycle of four steps, but the so-

called “cyclic steady state” (CSS) is achieved once a fixed associated profile arises at the end

of each step.

To date, most of the work aimed at optimising PSA operation has focused on the optimal

“positioning” on the CSS cycle. The cycle can be positioned by choosing a particular set of

four times, one for each of the Skarstrom steps. Alternatively, it can be positioned by choice

of a particular set of heuristic rules, eg. based on pressure or flow. Figure f_9.3 sows a

discrete representation of states in a pressure-swing adsorber.

f_9.3

m1

M

w1

m2

M

w2

mi

M

wi

mN-1

M

wN-1

mN

M

wN

r1

r2

ri

rN-1

rN

 i
i i i

dw
r k m cw

dt
  

f u1

Fu1

f d0

Fd0

f uN+1

FuN+1

f dN

FdN

f ui+1

Fui+1

f di

Fdi

f ui

Fui

f di-1

Fdi-1

In start-up, shut-down or recovery from an upset, heuristic rules are likely to be conservative

and inefficient. What one seeks is an optimal strategy to bring the process from its current

point to one which ensures product quality and rate, at minimum cost, possibly in

coordination with other adsorbers.

The adsorber is modelled as a series of N mixed compartments as shown in f_9.3. In

compartment i, wi is the total number of moles of adsorbed N2, mi is the unadsorbed N2, and

M is the total unadsorbed gas, which will be the same for all compartments. Typical values

are used for air separation, using a linear equilibrium relationship for the N2 (mi
*=cwi) and

ignoring the small amount of O2 adsorbed. Pressure losses through the bed and thermal effects

Chapter 9 Simulations - Hybrid systems 151

are likewise neglected. In the equations, M and Fi respectively represent the total gas

inventory of a compartment, and the total gas flow, whilst fi is the N2 flow. Flows are divided

into “downward” (d) and “upward” (u), of which one or the other will be zero depending on

the step of the cycle.

 

,0 , 1 , ,1

1

1
d u N d N u

N

i i

i

F F F F
dM

dt N k m cw





   
 

  
  

 


 (9.1)

 , 1 , 1 , ,
i

d i u i d i u i i i

dm
f f f f k m cw

dt
       (9.2)

 i
i i

dw
k m cw

dt
  (9.3)

The only nonlinearity arises as the requirement that the effluent composition from a

compartment obeys the following equations for downward or upward flow respectively.

, ,

, ,

or
d i u ii i

i i

d i u i

f fm m
y y

F M F M
    (9.4-9.5)

This was linearised using deviations () from an estimated operating point (‘)

f f m m

F F M M

   


   
 (9.6)

and neglect of the deviation products andf M F m    .

Figure f_9.4 compares (a) Nonlinear Model and (b) Linearised Model predictions for the

Skarstrom cycles, under the same conditions. W is the total adsorbed mass of N2. Though

some errors are manifest in the linearised solution, they do not appear to disrupt the solution

badly.

152 Applied Process Control

f_9.4

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ybottom

ymiddle

ytopP

W

1

2

3

1

4

2

3

44

y
[%

 N
2
]

o
r

W
[1

0
3
g

m
o

l
N

2
ad

so
rb

ed
]

y
[%

 N
2
]

o
r

W
[1

0
3
g

m
o

l
N

2
ad

so
rb

ed
]

P

[b
ar

a
]

P

[b
ar

a
]

time [s]

time [s]

(a) Non-linear model

(b) Linearised model

ybottom

ymiddle

ytopP

W
1

2

3

1

4

2

3

44

In the real-time situation, the controller is cycling asynchronously at its own time-interval. In

the present case this is 10s. It does not need to match the tj of any of the Skarstrom steps j

because the entire optimisation calculation is repeated a priori on each controller time-step.

What is important to the control algorithm is to know the system state at this time. A first step

was thus to develop a state observer. A Kalman filter based on the linearised models in

equations above, changing in sequence, was able to provide good estimates of the 2×N+1 state

values using just three “measurement” outputs of the original non-linear model [(i) pressure

P; (ii) product outflow composition during step 2; and (iii) purge outflow composition during

steps 3 and 4].

Chapter 9 Simulations - Hybrid systems 153

f_9.5











purge pressurise adsorb de-pressurise purge

OPTIMISED CHOICES

present

time

future

time

upper constraint

lower constraint

P

4 1 2 3 4

 

FIRST FULL CYCLE n COPIES

Apart from these state values, the predictive control algorithm of course needs to know which

of the four possible steps of the Skarstrom cycle is presently being conducted. (Historical

information - eg. how long it has been in this step - is not required). Figure f_9.5 shows the

concept of future Skarstrom step length optimisation for a system found (for example) to be in

a purge mode on the controller time-step. A look-up table indicates the required future

sequence for completion of an entire Skarstrom cycle (constrained), followed by a repeat full

cycle with the same step lengths (unconstrained):

[1] pressurisation:

 complete 1 then do 2341 , 2341

[2] adsorption at high pressure:

 complete 2 then do 3412 , 3412

[3] depressurisation:

 complete 3 then do 4123 , 4123

[4] purge at low pressure:

 complete 4 then do 1234 , 1234

The identified future sequence is then the basis of the optimisation. It amounts to a choice of

the number of intervals tj to spend in each of the Skarstrom steps j (figure 4). The result is

five separate interval counts. Steps occurring after the production step 4 would appear to play

a neutral or negative role (eg. use of Product for purging). Thus the objective function used

here is based on one further repetition of the cycle (n=1) to reduce such “end-effects”. The

computational load is reduced by forcing the “copies” to use the Skarstrom step lengths of the

first full cycle.

The main predictive control interest is in whether the intervals left in the first (partial) step

add up to less than the controller time-step. In that case the controller must take action now by

switching to the next Skarstrom step.

154 Applied Process Control

For each of the Skarstrom steps j=1,…,4 a range of transition models is pre-prepared, one for

each of the possible number of intervals 1 ≤ i ≤ nmax that could be used for that step:

       i i

j j jt i t t   x A x b (9.7)

The new arrays  i
jA and  i

jb are obtained by individually recursing equation 9.7 i times for each

case j Now if the particular choices of i made to complete the present step j and the next 4

complete steps are

         , 1 , 2 , 3 , 4i j i j i j i j i j    ,

where it is understood that the index values will “wrap” around in the range 1,2,3,4, then it is

these choices that must be made optimally in determining the future state sequence.

Representing   jt i j t x by
jx one has

     

1

i j i j

j j j j x A x b (partial step) (9.8)

     

     

1

4 3

1,..., 4

i j k i j k

j k j k j k j k

i j k i j k

j k j k j k j k

k

 

    

 

     

  


  

x A x b

x A x b

 (9.9-9.10)

After completion of the present partial step, two whole cycles are executed, with the second

cycle re-using the same number of intervals in each step as in the first cycle.

In this form, the problem lends itself to solution in the mixed logical dynamical (MLD)

framework of Morari and co-workers (Bemporad and Morari, 1999; Morari et al., 2000;

Morari, 2002). Furthermore, the use of linear dynamic models allows solution by mixed

integer linear programming (MILP). The selection of the optimal number of steps is

facilitated by binary variables , eg. for equation 9.8 one requires the constraints

   

max 1 max

i i

j ij j j j    x e A x b e (9.11)

   

min 1 min

i i

j ij j j j    x e A x b e (9.12)

max

1

1
n

ij

i




 (9.13)

Here the vectors e contain the maximum and minimum deviation values when (all but one of)

the i-models are not obeyed (large positive and negative numbers).

Whereas the task required was quite simple - viz. choose the best combination of interval

numbers in the first five Skarstrom steps - it became clear that the linear program was an

inefficient means of solving the problem. The numerous additional constraints required for

model choice as in equations 9.11 to 9.13, and to deal with variable saturation, slowed down

LPSOLVE (Michel Berkelaar - http://sourceforge.net/projects/lpsolve/), and caused failures.

Even if continuous variables were included in the search, it would be quicker to evaluate

every apex of the system for its objective value and compliance with constraints. Indeed, this

was the procedure used to produce the results in figure f_9.6, for predictive control of the N2

concentration in the storage vessel.

http://sourceforge.net/projects/lpsolve/

Chapter 9 Simulations - Hybrid systems 155

f_9.6

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

-5

-4

-3

-2

-1

0

1

2

3

4pressure

% N2 at the bottom

of the adsorber

% N2 in the receiving tank

SP

p
re

ss
u

re
 [

b
ar

a]

%
 N

2

time [s]

PMAX

PMIN

9.1.3 Tasks

Only operation of the single ‘A’ adsorber will be considered:

(1) Run the ‘A’ adsorber on the default cycle, until the concentration of N2 in the product

storage tank becomes steady

(2) Switch to optimal control of the ‘A’ adsorber and track changes in the production rate

and composition.

(3) Once steady under optimal control, step the %O2 setpoint, and observe the response

9.1.4 Methods

(1) When you start the MLD application, the buttons on the right should look like this

(f_9.7):

156 Applied Process Control

f_9.7

 This means that the plots refer to the A adsorber, which is represented by the model.

The full model results are being presented directly to the control algorithm (ie. all states,

without having to use the Kalman filter to extend the three nominal measurements to the

full state. Presently neither the A nor the B adsorber is on automatic control. All inlets

and outlets are sealed.

(1) Press the DEFAULT CYCLE button to start a standard fixed cycle as detailed in section

9.1.1 (f_9.8). The ‘A’ adsorber should be on ‘A manual’ (f_9.9).

f_9.8 f_9.9

Chapter 9 Simulations - Hybrid systems 157

(2) Set the product O2 tank composition setpoint to 10 %N2, and set the total inventory of

this tank (level) to a fixed mass of 10000 (setting the “Tank Outflow” scrollbar to 100

will ensure that the excess is “trimmed out” to consumers (f_9.10).

f_9.10

(3) Let the default cycle repeat a number of times until the system is reacting in a steady

fashion to it, then start a LOG file to record changes (f_9.11). The %N2 in the product

storage tyank (Y3) will have dropped from its starting value of 20%.

f_9.11

(4) In this analysis, the supply of gas to the nominal “storage tank” has been disconnected

from the return purge gas as follows: The supply arrives as FA2 during the Skarstrom

steps 2 and 3. This flow is represented ifigure f_9.12 by two “accumulators”, of which

the top one (14295) represents the mass of N2 delivered by FA2 so far, and the bottom

one (57915) is the total mass of gas (N2 and O2) delivered by FA2 so far.

f_9.12

 Since in this analysis, the product storage tank volume has been set, the excess gas must

leave the vessel for consumption/overflow. Regardless, the storage vessel is well mixed,

so this creates a first-order response as far as % N2 in the vessel is concerned. This

computed %N2 is transferred to Y3, the % N2 in the returning purge gas flow FA3.

However, the total purge gas used is otherwise unlimited, is kept independent of FA2

and the storage vessel, and is only recorded on two similar accumulators in figure

158 Applied Process Control

f_9.13, one for the accumulated mass (8831) of N2 returned as purge and the other for

the total mass (29769) of gas (N2 and O2) returned as purge (but always at current Y3).

f_9.13

 Thus the net production and cumulative composition of production over a period of time

is given by the difference between these two sets of accumulators.

(5) Once the default cycle is steady, set the ‘A’ adsorber to optimal control by pressing the

“A AUTO” button, and then immediately switch off the default cycle by pressing the

DEFAULT CYCLE button again.

(6) Let the system run for some time to assess how well the controller brings the storage

tank composition Y3 to its setpoint (10% N2). Check that the “LAG” warning at the

bottom of the screen does not switch on (f_9.12). This would mean that the

computations are starting to take longer than the simulation clock (which has been left

with its acceleration too great). If this happens, reduce the acceleration to allow the

computations to catch up.

(7) Once the system has settled again, step the storage tank setpoint up to 20% N2, and

observe the response for a number of cycles.

(8) Close your log file by pressing LOG again (f_9.12). Exit the application and retrieve

your log file. Process your data to track the storage tank %N2 variations during the

transitions, and how the total production rate (average per time) varied between the

default cycle and optimal controller.

9.1.5 Code extracts

 The final part of the LP solution set-up, after the constraints are set, is the definition of the

objective function, and execution of the LP.

 (................after setting of all of the constraints for the LP,continue with.........)

 //[ALP] SET UP OBJECTIVE FUNCTION (BUT IT IS SAID TO BE FASTER AHEAD OF CONSTRAINTS? #########)

 ret+=set_add_rowmode(lp, FALSE); //[ALP] have to turn if off when stopped adding rows
 j = 0; //[ALP]########first objective col is at 1 not 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 for (iphase=1; iphase<=Nphase_TOTAL; iphase++) //######################### was 2 to 5 !!!!

 {

 // add the absolute deviations in the "whole" part of the cycle (include "skip" s for the meantime!!!!!!!!!!!###############)

 //[ALP] OBJECTIVE FUNCTION : X_Tank_SP tracking incentive (LEVEL CONTROL)
 colno[j] = n*iphase+nAb+4*N+4; // X_Tank_absdev

Chapter 9 Simulations - Hybrid systems 159

 row[j++] = -X_Tank_SP_wt;

 //[ALP] OBJECTIVE FUNCTION : m_Tank_SP tracking incentive (COMPOSITION CONTROL)

 colno[j] = n*iphase+nAb+4*N+5; // m_Tank_absdev
 row[j++] = -m_Tank_SP_wt;

 }

 //[ALP] OBJECTIVE FUNCTION : Production rate incentive (as W2)

 colno[j] = 1*n+2*N+1+6; // W2 at end of FIRST phase
 row[j++] = -ProductionW2_wt; // not really necessary but makes numbers more meaningful

 colno[j] = Nphase_TOTAL*n+2*N+1+6; // W2 at end of LAST phase

 row[j++] = +ProductionW2_wt;

 //[ALP] OBJECTIVE FUNCTION : Consumption rate dis-incentive (as W3)
 colno[j] = 1*n+2*N+1+7; // W3 at end of FIRST phase

 row[j++] = +ConsumptionW3_wt; // not really necessary but makes numbers more meaningful

 colno[j] = Nphase_TOTAL*n+2*N+1+7; // W3 at end of LAST phase
 row[j++] = -ConsumptionW3_wt;

 //[ALP] Finally....

 ret+=set_obj_fnex(lp, j, row, colno); //[ALP]

 set_maxim(lp); //[ALP] direction of optmisation

 //[ALP] Now lpSOLVE the optimisation!
 //[ALP] =============================

 set_verbose(lp, IMPORTANT); //[ALP] only important messages to be shown (##########how????)

 set_timeout(lp, 40); //[ALP] timeout in seconds############
 set_scaling(lp,SCALE_EXTREME); //[ALP] scaling - various choices ??########

 LPresultA = solve(lp); //[ALP]

 //[ALP] Results (ret)
 //[ALP]==============

 //[ALP] Solver status values
 //[ALP] UNKNOWNERROR -5

 //[ALP] DATAIGNORED -4

 //[ALP] NOBFP -3
 //[ALP] NOMEMORY -2

 //[ALP] NOTRUN -1

 //[ALP] OPTIMAL 0

 //[ALP] SUBOPTIMAL 1

 //[ALP] INFEASIALE 2
 //[ALP] UNBOUNDED 3

 //[ALP] DEGENERATE 4
 //[ALP] NUMFAILURE 5

 //[ALP] USERABORT 6

 //[ALP] TIMEOUT 7
 //[ALP] RUNNING 8

 //[ALP] PRESOLVED 9

 //[ALP] get results
 double objval=get_objective(lp);

 get_variables(lp, row);

 //[ALP] Interpret results
 //[ALP] =================

 LPsoln_numberA+=1;

 if (LPresultA == 0) //############MM090113 ####((LPresultA == 0) || (LPresultA == 1)) //[ALP] or SUBOPTIMAL
 {

 .
 .

 . (.....implement optimal control action first move and step model.......)

References

160 Applied Process Control

Bemporad A. and Morari M. (1999) “Control of systems integrating logic, dynamics and

constraints”, Automatica 35, 407-427

Morari M. (2002) “Hybrid system analysis and control via mixed integer optimisation”,

Chemical process control VI, AIChE Symposium Series No.326, Vol.

Morari M., Bemporad A. and Mignone, D. (2000), “A framework for control, state estimation,

fault detection and verification of hybrid systems”, Automatisierungstechnik 48, 1-8.

Mulholland, M. and M.A. Latifi, “Predictive control of pressure swing adsorption”, AT&P

Journal PLUS 2, ISSN 1336-5010, 43-50 (2009)

