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Preface 

 

 

A number of interactive simulations are provided which explore some of the techniques 

presented in Applied Process Control – Essential Methods, and Applied Process Control – 

Efficient Problem Solving. The applications arise variously from industrial research studies, 

undergraduate projects and student laboratory experiments.  

 

This text is a step-by-step tutorial for the use of the simulator program, and the execution of 

the exercises for each application. It refers to the accompanying program RTC (Real-Time 

Control). No support can be offered for the use of the program and the conducting of the 

exercises. The correspondence between the simulation studies and sections of Applied 

Process Control – Essential Methods, is roughly as follows:  

 

Chapter 2  Simulations – Openloop     3.1, 3.2, 3.3, 3.4 

Chapter 3  Simulations – Frequency response   4.2.6.2, 8.6 

Chapter 4  Simulations – SISO closedloop   4.2, 4.2.6 

Chapter 5  Simulations – SISO optimisers   4.2, 4.7, 4.10, 4.11 

Chapter 6  Simulations – Multi-loop strategies   4.3-4.9, 5.3.1, 5.3.2, 5.3.3 

Chapter 7  Simulations – MIMO closedloop and DMC 4.2.6, 7.8, 7.8.2, 8.6, 8.7 

Chapter 8  Simulations – Observers    6.2, 6.4.1, 6.5.1 

Chapter 9  Simulations – Hybrid systems    7.14.3 

 

 

 

Michael Mulholland 

University of KwaZulu-Natal 

October, 2015. 
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A/D analogue to digital (conversion) 

ALC advanced level control 
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CV controlled variable 
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DV disturbance variable 
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MATLAB MATLAB® program, distributed by the MathWorks, Inc. 
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MILP mixed integer linear programming 
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MLD mixed logical dynamical 
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MRT mean residence time 
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Chapter 1   Simulations - Getting 

started 

 

 
1.1  Background 
 

This tutorial includes notes to be used in conjunction with the RTC (Real Time Control) 

program  M. Mulholland (2015). The notes give a brief background to the theory and 

programming of each application, plus a stepwise set of objectives to illustrate the main 

features. The simulations include a number of the techniques described in Applied Process 

Control – Essential Methods, and some of the tasks considered in Applied Process Control – 

Efficient Problem Solving. Actually, RTC is not merely a suite of simulations: Each 

application can be switched from “MODEL” to “PLANT” mode for real-time control of 

equipment through a somewhat basic interfacing arrangement. In “MODEL” mode, time can 

be accelerated or frozen.  Continuous trend graphs and a data logging system allow 

examination and capture of the system behaviour. 
 

 

1.2  Installing the software 
 

The program is available at https://sourceforge.net/projects/rtc-simulator/ . On that page select 

FILES and download RTC_exe.zip and Simulations.pdf. Unpack RTC_exe.zip into your 

desired working diretory. Find RTCDEMO.exe and create a shortcut to it which you may 

place on your desktop. Tutorial instructions and background for each application are 

presented in Simulations.pdf. You may need to maximise your screen resolution to see the 

diagrams clearly and facilitate small enough fonts.  
 

 

1.3  Model or Plant I/O 

 
The RTC software has been used extensively in a university laboratory for monitoring and 

control of various pieces of plant equipment. In each application, a simulation model is 

provided of the equipment, and this can be substituted for the actual plant by selecting 

MODEL instead of PLANT. The models are of the linear “Dynamic Matrix” type, and are 

based on realistic step-responses. 

 

However, the plant I/O has been set up specifically for the A/D, D/A equipment of a single 

vendor, viz. Eagle Technology, 24 Burg Street, Cape Town, 8001, South Africa 

(eagle@eagle.co.za , www.eagle.co.za , www.eagledaq.com ). This includes a range of plug-

in cards and external USB devices, which are found and sequenced by the software. The 

products of this company are available in many countries. 

 

https://sourceforge.net/projects/rtc-simulator/
mailto:eagle@eagle.co.za
http://www.eagle.co.za/
http://www.eagledaq.com/
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Bearing in mind this rather restricted I/O arrangement for a real plant, a somewhat crude 

alternative is provided in the software. This alternative relies on the typically slow responses 

of chemical plant equipment, allowing scan periods from 3 seconds upwards. On each 

“PLANT” I/O update, “reads” and “writes” can be directed to FileInput.txt and FileOutput.txt 

in the home directory of the software (rather than to connected hardware). These files are 

opened and closed on each read or write, and the read or write does not fail on (temporary) 

unavailability. So all that is required from the user is to simultaneously run a separate I/O scan 

loop of his or her own choice, and to provide the “read” information and execute the “write” 

information using independent writes and reads of the FileInput.txt and FileOutput.txt files. 

Clearly, the latter writes and reads need to open and close the files, and must also not cause 

software failure due to (temporary) unavailability – which should be infrequent given a big 

enough scan interval.  

 

The default setting of the software, if “PLANT” is selected, is to assume hardware I/O for the 

equipment. To switch between the hardware and file I/O, press either toggle under “File-IO” 

before selecting the desired application (f_1.1). 

 

f_1.1  

 

 

1.4  General features of the RTC interface 
 

The RTC “Real Time Control” program is a general-purpose Modelling, Testing and 

Implementation platform, and it therefore has a hybrid of features. The layouts of the interface 

screens provided for the various applications (see “Contents”) have several common features 

(starting on f_1.2) which are explained below. 

 

f_1.2  

 

Application Choose from the listed applications (f_1.3). 
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f_1.3  

 

 

Help  Information about origin of this program 

 

License Information about origin of this program plus take careful note of the expiry date 

 

Once an application in f_1.3 is selected (eg. PID – f_1.4), its interface screen has a number of 

features which are common for all applications. 
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f_1.4  

 

The scrollbar cursors can be moved in three ways: 

 * click, hold & move the cursor 

 * click the end-arrows 

 * click on the coloured region either side of the cursor. 

Each of these methods has a different sensitivity. 

 

We select the more common buttons and controls shown on this application. 

 

f_1.5  

 

The time settings in f_1.5 are in seconds, except “Acceleration”, which is the number of times 

faster than Real Time that the program will execute. If “Plant f/b” is selected (see f_1.8 

below), ie. real-time plant feedback for online implementation, the “Acceleration” is 

automatically forced back to 1.0 . If the “Log” option is selected, records of all variables will 

be stored in the log file (see f_1.10 below) at the chosen log interval. If the “Step Mode” is 

selected (see f_1.6 below), the simulation will not run indefinitely, but only over the selected 

step interval. Once it stops, pressing the STEP button allows it to continue for another interval, 

etc. Depending on the chosen Acceleration, it may be desired to increase or reduce the time-

axis length displayed. Note that the actual change only occurs four seconds after the last 

movement of the “Axis Length” cursor, to allow the user to make repeated finer adjustments 

of the cursor position. 
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f_1.6  

 

Consider the run information at the top-right hand corner of the screen (f_1.6). The indicated 

time of day is the actual time of the solution, with all solutions starting at current real-time. 

Thus, if an acceleration is applied, this time will increasingly move ahead of real-time. The 

Run time elapsed is the time in seconds represented by the solution at any instant – again this 

will increase with an acceleration over unity. If the “Log” option is selected (see f_1.10 

below), a Run Identity is allocated in the “ID” window. The ID numbers have the following 

structure (f_1.7): 

 

f_1.7
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Each time “Log” is re-selected, or the program is “Reset” whilst logging, the previous log file 

is ended and closed, the counter of runs (last 2 digits) is incremented, and a new log file (eg. 

“RTC5011204.txt”) is started.  These are in the form of space-separated columns with the 

variable names as headings at the tops of the columns, and the model time and elapsed model 

Run seconds running down the leftmost columns. 

 

The “Reset” button (f_1.6) effectively restarts the solution at the default values of the process 

variables. Certain settings such as tuning values or controller modes are not reset. 
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The “Exit” button (f_1.6) is used to stop the current application. This returns the user to the 

initial screen (f_1.2), where another application can be selected, or the program can be shut 

down. 

 

The “Step Mode” (f_1.6) toggles this mode on or off. Once it is on, the “Step” button below it 

becomes active, allowing piece-wise solutions over intervals of length determined by the 

“Step Interval” setting (see above). This is useful for “freezing” the output, or for manual 

adjustment of manipulated or disturbance variable settings at a fixed interval. Another use is 

for manual entry of process variable feedback (see “Entry f/b” f_1.8 below), if the RTC 

program is being used to control a real plant or external model, which might not have an 

actual feedback signal connection.  
 

f_1.8  

 

The set of three selectors “Model f/b”, “Entry f/b” and “Plant f/b” (f_1.8) are mutually 

exclusive. For normal off-line testing of algorithms using model feedback, clearly the first of 

these, “Model f/b”, is selected. As discussed above, it may be necessary to test a control 

algorithm on an actual plant or model (eg. “Aspen Dynamics”) which is external to the 

program, but which does not offer a direct connection. In this case the “Entry f/b” feedback 

option is used, and the appropriate feedback variable scrollbars may be directly manipulated 

whilst the control algorithm runs. Beware that the “Acceleration” setting matches the external 

process in this case. Sometimes, as in DMC, controlled variable feedback is only reviewed by 

the algorithm on a fixed time interval. Then you will wish to select the “Step Mode” and set 

the appropriate “Step Interval”. The RTC program will re-compute the manipulated variables 

for each interval, and these can be manually transferred to the actual plant or external model. 

 

The “Plant f/b” option is for actual on-line data acquisition and control. When it is selected, 

the “Acceleration” is forced to unity for real-time work. In principle, driver software can be 

added to service any external A/D, D/A devices for plant input and output. So far, only the 

“Enhanced EDR” (EDRE) drivers have been implemented for the electronic interfaces 

supplied by Eagle Technology, Cape Town. See section 1.3, where it is explained that the 

default assumption for “PLANT f/b” is a hardware interface, yet a crude interchange of data 

by files can be automated. In each application, the manipulated variables (MV: output to 

plant) and the process variables (PV: input from plant) are expected to occur in a set order, 

counting from zero, eg. in the f_1.4 case above: 

 

     Input Channels:     Output Channels: 

 

   Ch 0      A     Ch 0    V1 

   Ch 1      L     Ch 1    V2 

 

In the case of the Eagle I/O boards, if more than one board is present, the channel numbers 

just continue the count. For more than one Eagle board to be recognised, the program must 



Chapter 1  Simulations - Getting started  7 

 

start in Execute mode (“!”), not Go (debug) mode (“”) – ie. if the RTC program is being run 

under the Microsoft® Visual C++ environment. 

 

f_1.9  

 

In connection with the “Plant f/b” external data acquisition feature, measurements are 

subjected to filter smoothing by default. However, if the raw inputs are desired, eg. for 

trouble-shooting, the “No Filter”  button should be toggled to the on position (f_1.9). 

 

f_1.10  

 

At the right of the time-scale adjustments are the “Lag” indicator and the “Log” toggle button 

(f_1.10). If the ”Acceleration” is set too high, the solution may begin to lag behind its target 

time. The “Lag” indicator then turns red to warn you to reduce the acceleration. 

 

If the “Log” button is toggled on, it turns yellow to warn you that all process variables are 

being written to a log file at the selected log interval. As mentioned above, toggling the button 

off (or “Exit”-ing) will close and store the current file, and toggling it on again (or “Reset”-

ing whilst logging) will start a new file. The files are named sequentially according to the Run 

“ID” described above (f_1.7), so it is advisable to note this ID number when a file is started. 

They are stored in the main directory from which the RTC program is executed. 

 

Care must be taken not to generate uselessly large log files, which have the potential to crash 

the system by filling the hard drive. Note that the “Log Interval” refers to actual model time, 

so that an interval of 10 seconds would result in 10 records being stored every real-time 

second at an acceleration of 100. A small level of protection is afforded by automatically 

closing a log file once the 8640th record is written (ie. one day at 10 second intervals). This is 

implemented in case the program is left running and it is forgotten to toggle the “Log” button 

off. Care should be taken to purge all “RTC*.txt” files from the main program directory 

periodically. 
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f_1.11  

 

A typical controller manipulation layout is shown in f_1.11 above, whether it is PID, DMC, 

ALC, etc. The “Auto” and “Manual” buttons are mutually exclusive. In “Manual” mode, the 

scrollbar of the relevant manipulated variable can be manually adjusted. In “Auto” mode, the 

set-point (SP), which is manually adjusted using the left-hand scroll-bar shown, is targeted by 

the algorithm, the relevant feedback PV being shown both numerically and by the right-hand 

scrollbar. 

f_1.12  

 

A tuning block for a PID controller is shown in f_1.12 above. The various parameters will be 

discussed in more detail in the next section. Beware that some KC ranges have positive and/or 

negative parts. The recursive PID algorithm used has a parameter  for the approximation of 

the derivative term. It should normally be small (eg. 0.1) and may be set by the small 

horizontal scrollbar (“a”) at the bottom. The “d” checkbox at the bottom right allows one to 

select that the derivative term uses just PV for checked “X” (as in common industrial 

controllers), or uses (PV-SP) for not checked, in which case the area is highlighted in pink. 
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.  

 

 

2.1 RTD – Residence Time Distribution by pulse 

injection 
 

Examination of the RTD’s of three different vessels by measurement of 

the exit concentration response to a pulse injection of tracer at the 

vessel entrance: 
 

 

 

 

f_2.1  

 
 

 

2.1.1  Theory 
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If we have a stream of fluid flowing into a vessel such as a reactor, and we wish to examine 

the degree of internal mixing in the vessel, we can inject a pulse of dye or some similar 

marking substance into the stream as it enters.  Its subsequent behaviour will depend on the 

vessel design and the fluid flow properties. Sometimes the dye will move through the vessel 

quickly, passing directly from the inlet to the outlet (bypassing); sometimes the cloud of dye 

will move through the vessel without back- or forward-mixing with other fluid (plug flow); 

sometimes it would be well  mixed in the vessel (mixed flow) and some could get into the 

corners where the flow velocities are low (dead zones).  If the concentration of dye leaving 

the vessel is then measured as a function of time, a plot of concentration vs time could be 

constructed as shown. 

 

f_2.2

time    t

co
n
ce

n
tr

at
io

n
  
 c

(t
)

 

 
Assuming that the dye is a good indicator of the behaviour of the rest of the fluid in the vessel, 

the shape of this curve will indicate the degree of mixing and the flow pattern. Levenspiel 

(1999) shows that it can be interpreted as the distribution of residence times in the vessel.  

 

As an example, if the flow is through a tubular reactor where there is little mixing in the tube, 

we essentially have plug flow and the dye cloud would move through the reactor with much 

the same shape and dimensions as it had at the inlet:  the concentration measured at the outlet 

would be zero up to a certain time, would then jump suddenly to a maximum value and then 

fall immediately back to zero:  this is ideal plug flow.  If the contents of the reactor are well 

mixed, the dye cloud would mix immediately with the rest of the fluid in the reactor and the 

residence time distribution (RTD) would have an exponential decay with time:  this would be 

ideal mixed flow.  These two ideal conditions are seldom met in practice and most real reactor 

systems have RTD curves that lie somewhere between these two extremes. 
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f_2.3

t

c(t)

t

c(t)

t

c(t)

Plug Flow Mixed Flow Real Flow

 

 

If the tracer injection point is close to the reactor inlet, “zero” time can be taken as the time of 

injection of the tracer pulse. The flow rate through the system is also considered to be 

constant. 

 

The actual RTD curve, ie. the probability distribution p(t) of residence time t, is given my 

 

1

( )

i

i

i i

i

c
p t

c t






 
             (2.1) 

The mean residence time (MRT) in the reactor is then given by: 

1

1

( )

( )

i i i

i

i i

i

c t t

t

c t









  



 




             (2.2) 

The denominator in this expression is evaluated from the area under the concentration 

response curve.  The numerator is evaluated by constructing a table for each time sample ti, 

and with a chosen time interval ti, calculating ci  ti  ti:  the sum of these terms then gives 

the numerator. 

 

The space time is the theoretical MRT given by: 

V

v
                 (2.3) 

where V is the volume of the reactor and v is the flowrate. The variance of residence time is 

given by: 

 

 
22 2t t                 (2.4) 

where     

2

2 1

1

( )

( )

i i i

i

i i

i

t c t

t

c t








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

 




           (2.5) 
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The standard deviation (SD), a measure of the spread of residence time, is thus clearly given 

by 

 

 
22t t                (2.6) 

 

 

 

 

2.1.2  Tasks 
 

The piping and instrumentation layout of the equipment is shown in f_2.4 below. 

f_2.4

FI
CM

Mixed Flow

Injection Septa

Plug Flow

Plug Flow

with Tubes

Computer

Conductivity Cell

Syphon-

breaker

Mains

Water Supply

Drain

 

 

It is aimed to examine: 

- the RTD curves for 3 different vessels 

- the MRT of  the fluid particles in the vessels compared to the Space Time of the vessels 

- the SD of residence time vs Space Time for the vessels 

- what differences there are between the vessels in terms of these parameters 
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f_2.5    f_2.6   f_2.7  

 

 
In f_2.1 the respective vessels are:  [a] PFR with axial mixing in tubes (f_2.5), [b] PFR (f_2.6), 

and [c] MFR (f_2.7). 

 
(1) Press the LOG button and take note of the name of the RTC log file which begins 

 

(2) Press the INJECT button for each vessel in turn, noting which vessel was injected at 

which time. Obviously wait until the exit concentration of the tracer returns to its datum 

value before proceding with the next injection. 

 

(3) Press the LOG button again to terminate the file. 

 

(4) Process the relevant sequences of the RTC log file in a spreadsheet program, in order to 

obtain the actual RTD curve, and the required statistics. Beware of concentration datum 

offsets. 

 

(5)  Only in the event of actual plant data (PLANT instead of MODEL setting), will an 

independent space time be available from a flow measurement.  
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Chapter 3   Simulations - Frequency 

response 

 
.  

 

 

3.1  FRP – Frequency response practical 
 

The frequency response of an interacting tank system is measured to 

obtain Ziegler-Nichols PID parameters, which are tested using a 

setpoint step response: 

 

f_3.1  
 



16  Applied Process Control 

 

Water is supplied under pressure from the water main.  The 4-20mA output (Manipulated 

Variable: MV) of the control system passes through an I/P converter, whence the 3-15 psi 

signal moves a control valve which feeds water to the first of 3 interacting tanks.  Each of the 

3 tanks has a level-glass, and the tanks are separated by restriction valves.  There is a final 

restriction valve at the exit of the third tank. The level in the third tank is the Process Variable 

(PV) of interest, and is measured using a bubble-tube sensor.  This low pressure (cm H20) is 

converted by a differential pressure (DP) cell to the 4-20mA range, which is the feedback 

signal to the controller. 

 

 

3.1.1  Typical settings 
 

 

 Valve Oscillation:  Setpoint Oscillation:  PID Tuning: 
 Mean=40    Mean=45    KC = 3.0 

 Amplitude=6   Amplitude=6   TI  = 200 

 Frequency= 0.004  Frequency= 0.005  TD = 0.1 

             = 0.1 

           d   :   

 Time Axis: 

 Length = 300 

 Acceleration = 30 

 Log Interval = 5 

 Step Interval = 4000 

 

 

 

3.1.2  Theory 
 

Although the 3 interacting tanks suggest a third-order system, the various transmitters and 

converters in the circuit may have sufficiently long time-constants to affect the system 

dynamics.  A "black-box" approach will be adopted, and frequency testing will allow us to 

estimate suitable parameters Kc , I and D for the PID controller without any knowledge of 

the intemals. 

 

The Ziegler-Nichols frequency response method uses the response of the “open-loop” to 

sinusoidal excitation, to obtain parameters for the controller. All that is required in this case is 

to manipulate the feed valve sinusoidally, and determine the amplitude ratio and phase shift of 

the level in the third tank at a series of frequencies.  

 

In general, the input of a sinusoidal excitation to a stable system leads to a "steady-state" 

output (frequency response), in which the amplitude and phase differ from those of the input 

(f_3.2).  



Chapter 3   Simulations - Frequency response 17 

 

f_3.2
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The amplitude ratio RA and phase angle  are found to vary according to the frequency  of 

the excitation, and a typical “Bode Plot” of this relationship is shown in f_3.3. Here the 

original openloop process is represented by GP. By way of example, this plot further shows 

curves for a proposed controller GC, and the combined system in series, GPGC. Finally, a 

+30db adjustment is made to the gain of the controller GC to achieve a gain margin (GM) of 

14 db and a phase margin (PM) of 870. Recall that 

 

 
01

Gain Margin = where   is the cross-over frequency where =-180CO

A COR
 


   (3.1) 

0 0

1
Phase Margin = 180 . 180 plus  where =1

A
AR

ie R 


        (3.2) 
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f_3.3
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3.1.3  Tasks 
 

(1) Obtain the frequency response of the uncontrolled open-loop process. 

 

(2)  Use a Bode Plot of this response to calculate the recommended Ziegler-Nichols settings 

for a three-term controller. 

 

(3) Implement these settings on a PID controller. Assess the quality of control using a 

quadratic performance index calculated from the response to a set-point step-change. 

 

(4) Attempt to improve the performance using an on-line trial-and-error tuning technique 

that involves adjustment of settings and observation of the closed-loop response to a set-

point step-change. 
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(5) For the better controller of (3) and (4), obtain the open-loop frequency response of 

controller and process in series.  Use this to calculate the Gain Margin and Phase 

Margin of the controlled system. 

 

 

3.1.4  Method 

 
Note that the loop is open when the rectangle next to “open ?” shows in red (f_3.4), and is 

closed when it is clear (f_3.5). It is toggled between open and closed  by pressing on the 

rectangle. 

 

f_3.4             f_3.5  

 

 

(a)  Set the logging task on, with a time-interval of 2 seconds for data storage. You may stop 

this logging task at any time. Restarting it will generate a new file with the next name in 

the sequence. 

 

(b)   Open the loop. Obtain the open-loop frequency response (without the controller: ie. 

Gc=1) by manipulating the valve directly as follows (f_3.6):  Choose frequencies of 

0.04, 0.02, 0.01 and 0.005 Hz in that order, giving periods of 25 - 200 seconds.  Be 

careful to note the computer time at every measurement sequence, so that the 

corresponding sequences can later be traced in the logged data.  Obtain the amplitude 

ratio RA and phase angle  at each frequency, by plotting out the collected data, and 

comparing the valve trace as input to the tank level trace as output. Plot RA and  against 

frequency on log-log and log-linear axes respectively. 
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f_3.6  

 

(c)  Find the cross-over frequency  co and the amplitude ratio RA(co ) at this frequency.   

 Then 

 

 ultimate gain   Ku  =  1/ RA(co )            (3.3) 

 ultimate period  Pu  =  2/ co  [with co in radians/time]   (3.4) 

             =  1/ co   [with co in cycles(repeats)/time]  (3.5) 

 

 The  Ziegler-Nichols settings for a PID controller are as follows (Luyben, 1990): 

 

  Kc  = Ku / 1.7             (3.6) 

  I  = Pu  / 2             (3.7) 

  D  = Pu  / 8             (3.8) 

 

 These settings will serve as the “calculated” controller settings for the controlled 

response to a step test. 

 

(d) From section 1.5.2, an on-line trial and error tuning technique (Luyben, 1990) will 

now be attempted: 

   

(i)  With the controller on manual, let the level in the third tank reach a steady value. 
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(ii)  Take all of the integral action and derivative action out of the controller by setting 

maximum I  (eg. 99999), and minimum D  (0). 

(iii)  Position the set-point near the current tank level. 

(iv) Set gain Kc, at a low value, say 0.5. 

(v) Put the controller on automatic with the loop closed. 

(vi) Make a small set-point change up or down, whichever is convenient, and observe 

the response of the controlled variable. 

(vii) Keep doubling the gain Kc until the loop becomes very underdamped (persistent 

variation) and oscillatory. 

(viii) Back-off on the gain to half this “ultimate” value. 

(ix) Now start bringing in integral action by reducing I by factors of 2 (doubling 1/I), 

making small set-point steps at each value of I to see the effect (Start with I 

=120s). 

(x) Find the value that makes it very underdamped and set I to twice this value.  

(xi) Now start bringing in derivative action by increasing D. Make small set-point 

steps at each value of D to see the effect. Find the value of D which gives the 

tightest control without amplifying noise in the process measurement signal. 

(xii) Increase Kc in steps until desirable damping and overshoot are obtained in reponse 

to a set-point step. 

 

The controller parameters obtained in the above trial-and-error procedure will be referred to 

as the “manual” settings. 

 

(e) For the purpose of comparison, now obtain the controlled response to a particular step 

in set-point for the calculated controller settings and the manual controller settings. 

Compare your two step-responses using a quadratic performance 

index: 2

0

( )PV SP dtI


             (3.9) 

 If the two steps were of different sizes, this must be accounted for, so that the index 

values may be compared (eg., assuming linearity, a step of twice the size will produce a 

QPI four times bigger, for control of the same quality). 

 

(f) Using settings as in the better of manual and calculated above, obtain the openloop 

frequency response of the system, with  

 

 Gc = Kc [1 +  1/(I s) + D s]           (3.10) 

 

 in series  (controller on automatic, but loop opened). To achieve this, use the setpoint 

oscillation controls on the left (f_3.7) with the same frequencies of 0.04, 0.02, 0.01 and 

0.005 Hz. You will have to manipulate the mean position of this signal to prevent the 

output level oscillation from drifting. This is because the integral action present requires 

that the mean position of the setpoint lies at the mean position of the actual level 

oscillation, otherwise there would be a net accumulation (“wind-up”) on each cycle. 
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f_3.7  

 

 

This second openloop Bode plot, with GP and GC in series, allows you to evaluate the Gain 

Margin and Phase Margin of this closed-loop control system. 

 

 

3.1.5  Code extracts 
 

  Controller and Model time-step.... 

 
void cFRP::Step() 
{ 
 
 // Do the oscillations 
 double daysec = (double)(theApp.m_hr*3600 + theApp.m_min*60 + theApp.m_sec); 
 m_Level_sp  = __min(__max(m_LevelSPMean + m_LevelSPAmpl*sin(2*PI*m_LevelSPFreq*daysec) , 0), max_Level); 
 if (!b_Auto[0]) m_Valve  = __min(__max(m_ValveMean + m_ValveAmpl*sin(2*PI*m_ValveFreq*daysec) , 0),  
 max_Valve); 
 
 bool b_changed_tuning = FALSE; 
 for (i=0;i<nFRP;i++) 
 { 
  if (m_Kc[i] != Kc_last[i]) 
  { 
   b_changed_tuning = TRUE; 
   Kc[i] = m_Kc[i]; 
   Kc_last[i] = Kc[i]; 
  } 
  if (m_Ti[i] != Ti_last[i]) 
  { 
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   b_changed_tuning = TRUE; 
   Ti[i] = m_Ti[i]; 
   Ti_last[i] = Ti[i]; 
  } 
  if (m_Td[i] != Td_last[i]) 
  { 
   b_changed_tuning = TRUE; 
   Td[i] = m_Td[i]; 
   Td_last[i] = Td[i]; 
  } 
  if (m_alpha[i] != alpha_last[i]) 
  { 
   b_changed_tuning = TRUE; 
   alpha[i] = m_alpha[i]; 
   alpha_last[i] = alpha[i]; 
  } 
  if (b_diff_err[i] != diff_err_last[i]) 
  { 
   b_changed_tuning = TRUE; 
   diff_err[i] = b_diff_err[i]; 
   diff_err_last[i] = diff_err[i]; 
  } 
 } 
 if (b_changed_tuning) Initialise(TRUE,FALSE);   //PARTIAL 
 
 if (theApp.FIRSTLOOP) 
 { 
   
  // initialise stacks for FRP loops 
  r2[0] = r1[0] = r0[0] = m_Level;  
  x2[0] = x1[0] = x0[0] = m_Level;  
  m2[0] = m1[0] = m_Valve;  
 
  // initialise Tank Levesls 
  m_TankLevel[1] = max_Level; 
  m_TankLevel[2] = (max_Level+m_Level)/2; 
  m_TankLevel[3] = m_Level; 
  theApp.FIRSTLOOP=0; 
 } 
 
 while (((theApp.t-tlast_FRP)>=dtFRP) || (theApp.b_FORCE_STEP)) 
 { 
  if (!theApp.b_FORCE_STEP) 
  { 
   tlast_FRP += dtFRP;     // must catch up by looping more than once if necessary 
  } 
  else 
  { 
   // to SYNCHRONISE manual moves : b_FORCE_STEP was set TRUE on StepMode button 
   tlast_FRP = theApp.t;   
   theApp.b_FORCE_STEP = FALSE; 
  } 
 
  // Interpret present values 
  if (!b_LoopBroken) 
  { 
   x[0] = m_Level; 
   m_LevelScrollBar = m_Level; 
  } 
  else 
  { 
   x[0] = m_LevelScrollBar; 
  } 
  r[0] = m_Level_sp; 
  m[0] = m_Valve; 
 
  for (i=0;i<nFRP;i++) 
  { 
   if (!b_Auto[i]) 
   { 
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    // Not on - reset to starting values 
    r2[i] = r1[i] = r0[i] = x[i];  
    x2[i] = x1[i] = x0[i] = x[i];  
    m2[i] = m1[i] = m[i]; 
   } 
   else 
   { 
    // On AUTO : calculate FRP action! 
    // first cascade stack 
    r2[i] = r1[i];  
    r1[i] = r0[i];  
    r0[i] = r[i];  
    x2[i] = x1[i];  
    x1[i] = x0[i];  
    x0[i] = x[i];  
    m2[i] = m1[i];  
    m1[i] = m[i];  
 
    // Action: 
    m[i] = ( - a1[i] * m1[i] 
          - a2[i] * m2[i] 
       + b0[i] * r0[i] 
       + b1[i] * r1[i] 
       + b2[i] * r2[i] 
       - c0[i] * x0[i] 
       - c1[i] * x1[i] 
       - c2[i] * x2[i] ) / a0[i]; 
   } 
  } 
   
  // back to actual variables 
  m_Valve = __max(__min(m[0],max_Valve),0); 
 } 
 
 // Model............................ 
 
 while ((theApp.t-theApp.tlast_ModelStep) >= dtFRP) 
 { 
  theApp.tlast_ModelStep += dtFRP; 
  if (theApp.b_Model) 
  { 
   // Simple Euler model 
   double F12 = 0.05*(m_TankLevel[1] - m_TankLevel[2]); 
   double F23 = 0.05*(m_TankLevel[2] - m_TankLevel[3]); 
   double F3 = 0.05*m_TankLevel[3]; 
   double dTL1 = 1.0*(0.07*m_Valve - F12)*dtFRP; 
   double dTL2 = 1.0*(F12 - F23)*dtFRP; 
   double dTL3 = 1.0*(F23-F3)*dtFRP; 
   m_TankLevel[1] = m_TankLevel[1]+dTL1; 
   m_TankLevel[2] = m_TankLevel[2]+dTL2; 
   m_TankLevel[3] = m_TankLevel[3]+dTL3; 
   m_Level = __max(__min(m_TankLevel[3],max_Level),0); 
  } 
 } 
} 
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Chapter 4   Simulations - SISO 

closedloop 
 

 
 

4.1  Notes on tuning a PID loop 
 

A number of tuning techniques are reported in the literature, such as Ziegler and Nichols 

(1942), Cohen and Coon (1953), and an on-line trial and error method. Some are based on the 

open-loop frequency response – ie. the steady oscillating output of the uncontrolled process 

whilst its input MV is being sinusoidally manipulated. Needless to say, not many operators of 

chemical plants subscribe to frequency response methods. Probably the most useful methods 

to find a tuning starting point are based on the step response – the so-called “reaction curve” 

methods. With a little experience, the persons responsible for setting up PID loops on plants 

will quickly bypass such methods, and choose KC, TI , (and possibly TD) directly from their 

knowledge of the process, its speed of response, dead-time present, and the types of 

disturbances present. For example, we intuitively expect that TI should be several times longer 

than the process response time, to prevent the controller from inducing its own oscillations. 

Moreover, we can get a good idea of the process response time just by viewing plant data 

records. Such skills should clearly be aimed for, but in the meantime, consider a more formal 

technique based on the reaction curve. 

 

 

4.1.1 Reaction Curve tuning 

f_4.1
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An openloop step response is shown for a PV (process variable) output as a result of an MV 

(manipulated variable) step (f_4.1). A curve like this will be obtained provided the process 
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does not have a natural pure integrator (eg. the level in a drum responds as a pure integral of 

the inflow). Note that the steepest slope of the response is x / TS. The time TT represents a 

transport lag (ie. dead-time lag). Certainly, if the process did consist solely of a dead-time lag 

and a first order response, TT  would be the actual dead-time, because the steepest part of a 

first-order response is at its start.  In fact, many higher order systems are adequately 

represented by a combination of dead-time and first-order response, so it is understandable 

that the three parameters 

 

Steady-state gain     K = x / a      (4.1) 

Steepest slope     N = x / TS      (4.2) 

Initial delay     TT         (4.3) 

 

can form the basis of a “rule-of-thumb” tuning procedure such as that of Ziegler and Nichols: 

 

Proportional:     Kc   =   a / (N TT)      (4.4) 

 

Proportional – Integral:   Kc   =   0.9  a / (N TT)     (4.5) 

       TI =   TT   / 0.3      (4.6) 

 

Proportional – Integral – Derivative: Kc   =   1.2  a / (N TT)     (4.7) 

       TI   =   TT  / 0.5      (4.8) 

       TD   =   0.5 TT      (4.9) 

 
When the delay TT is small, it becomes difficult to estimate it accurately, possibly making KC 

unduly large. This method obviously cannot be applied when there is no delay TT, or when 

there is a pure integrator in the process. The literature abounds with guides to tuning in such 

circumstances, but for the meantime just note the on-line trial-and-error method below, which 

is performed in closed loop (ie. on “Auto”). 

 

 

4.1.2 On-line trial & error tuning 
 

(a) Switch to manual and attain a steady operating point. 

(b) Take all of the integral action and derivative action out of the controller by setting a 

“large” TI  , and minimum TD (0). 

(c) Position the set-point near the current value of the PV to be controlled. 

(d) Set gain KC  to a “low” value 

(e) Put the controller on automatic. 

(f) Make a small set-point change up or down, whichever is convenient, and observe the 

response of the controlled variable. 

(g) Keep doubling the gain KC until the loop becomes very underdamped (persistent 

variation) and oscillatory. 

(h) Back-off on the gain to half this “ultimate” value. 

(i) Now start bringing in integral action by reducing TI by factors of 2 (doubling 1/TI), 

making small set-point steps at each value of TI  to see the effect. 

(j) Find the value that makes it very underdamped (bu not quite unstable) and set TI  to 

twice this value.  
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(k) Now start bringing in derivative action by increasing TD. Make small set-point steps at 

each value of TD to see the effect. Find the value of TD which gives the tightest control 

without amplifying noise in the process measurement signal. 

(l) Increase KC in steps until desirable damping and overshoot are obtained in reponse to a 

set-point step. 
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4.2  PID - Dosing tank level and concentration PID 

loops 
 

 

Understanding the PID algorithm and dealing with an integrating 

process with some interaction: 

 
 

f_4.2  

 

 

4.2.1  Typical settings 
 

 

 V1 = 50  AC: KC = 0.8  LC: KC = -40  Axis Length = 600 

 V2 = 55   TI  = 100   TI  =  40  Acceleration = 10 

 F0 = 35   TD = 2   TD = 2  Log Interval = 10 

 ASP = 40     = 0.1     = 0.1  Step Interval = 10 

 LSP = 45   d   :     d   :   

 

 

 

4.2.2  Theory 
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f_4.3
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The three terms in the common PID controller serve the following purposes: 

 

P Proportional action:  Moves V proportional to E and provides damping 

 

I Integral action:  Most processes do not have natural integration, so a permanent 

error E is required to keep V in a new position. Integral action provides a means to 

eliminate this offset, because V will continue to move with the integral of E. 

 

D Derivative action: Makes a contribution to the movement of V in proportion to the 

derivative of E (actually, the derivative of –L in practice, to avoid large responses to 

steps in LSP). The benefit of this is that large movements in V are possible before E has 

grown large, giving “lead” to the action (whereas integral action is retrospective and is 

said to give “lag”). The size of the gradient of E is clearly assumed to be related to the 

size of the incoming disturbance. Thus this action is not suitable when the L signal is 

“noisy” (carrying sharp, small disturbances), as this would cause V to oscillate wildly. 

Thus D action is used infrequently. 

 

The appropriate equation for the control action V  then uses a term proportional to the error 

(LSP - L),  one proportional to the integral of this error, and, in the case shown, one 

proportional to the derivative of (-L) alone: 
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The increase of the order of the denominator renders this term physically realisable. ‘s’ acts as 

a derivative 
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where z-1 is the backwards shift operator for time-step t. 
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(The Tustin approximation could also be used)
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a
                 (4.16) 

 
This is the necessary recursive relationship for PID controller action V.  Note that this 

relationship has natural anti-windup properties if the manipulated variable V is simply 

“clipped” at its upper and lower limits. 

 

 

4.2.3  Tasks 
 

(1) With both controllers on “Auto”, let the process stabilise at an operating point, then 

switch both controllers to “Manual”. 

 

(2) Step V1 up by about 25. Sketch the response. What type of response does this appear to 

be? Is the level affected ? Why? 

 

(3) Freezing the response with the “Step Mode” button, estimate the parameters a, x, TT 

and TS required for the calculation of controller parameters according to the “Reaction 

Curve” method in section 4.1.1 (These will be used later).  

 

(4) Step V2 up by about 25. Sketch the response.  What type of response does this appear to 

be? Why? Is the composition affected?  Is there cross-coupling in this process, which 

could lead  to control loop interaction (“riding”) ? 

 

(5) Switch both controllers back onto “Auto”.  Wait until the system re-attains a steady 

operating point. 

 

(6) Step the composition setpoint up by about 25.  Sketch the composition response. Look 

at the valve motion. Can you explain it? 

 

(7) Repeat (6) with only the PV in the derivative term (Check the box at bottom right of the 

tuning controls, and the pink highlight should disappear. This is dicussed at the end of 
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section 1.4). How does the setpoint step response differ from (6)? Why? Reduce TD to 

zero. Do (6) and (7) still differ?  

 

(8) See if you can detect any effect of the  parameter using the composition controller 

(bottom scrollbar in the controller tuning block). 

 

(9) Step the level setpoint up by about 25. Sketch what you see. Why does valve V2 return 

to where it started? What happens to the composition? 

 

(10) Decrease F0 by about 25. Why does V2 change position permanently now? 

 

(11) Try to improve the tuning of the composition control loop so that the composition is not 

so badly disturbed by the level controller, eg. during level setpoint steps. First try a 

controller based on the results obtained in the “Reaction Curve” test in (3) above. 

 

(12)  With both loops closed (ie. on “Auto”), see if the “trial and error” closed loop tuning 

method (section 4.1.2) gives any improvement on the performance of the level control 

loop. 

 

4.2.4  Code extracts 
 

  At start-up or when controller parameters are changed, the following assignments are 

executed.... 

 
 // New parameters for PID Controllers 
 double dtPID2 = pow(dtPID,2); 
 for (i=0;i<nPID;i++) 
 { 
  a0[i] = Ti[i]*( dtPID  +  alpha[i])/dtPID2; 
  a1[i] = Ti[i]*(-dtPID  -2*alpha[i])/dtPID2; 
  a2[i] = Ti[i]*(                   alpha[i])/dtPID2; 
  b0[i] = Kc[i]*( dtPID2 + alpha[i]*dtPID + Ti[i]*dtPID +    alpha[i]*Ti[i] +   Ti[i]*Td[i]*diff_err[i])/dtPID2; 
  b1[i] = Kc[i]*(               -  alpha[i]*dtPID - Ti[i]*dtPID - 2* alpha[i]*Ti[i] -  2*Ti[i]*Td[i]*diff_err[i])/dtPID2; 
  b2[i] = Kc[i]*(                                                                            alpha[i]*Ti[i] +   Ti[i]*Td[i]*diff_err[i])/dtPID2; 
  c0[i] = Kc[i]*( dtPID2 +  alpha[i]*dtPID + Ti[i]*dtPID +    alpha[i]*Ti[i] +   Ti[i]*Td[i]                   )/dtPID2; 
  c1[i] = Kc[i]*(               -  alpha[i]*dtPID  -  Ti[i]*dtPID - 2* alpha[i]*Ti[i] - 2*Ti[i]*Td[i]                   )/dtPID2; 
  c2[i] = Kc[i]*(                                                                             alpha[i]*Ti[i] +   Ti[i]*Td[i]                   )/dtPID2; 
 } 
 
 

  On each time-step, different calculations are executed depending on whether it is the first 

call, or whether the controllers are on “Auto” or “Manual”..... 
 

 
 
 if (theApp.FIRSTLOOP) 
 { 
  // initialise stacks for PID loops 
  r2[0] = r1[0] = r0[0] = m_A;  
  r2[1] = r1[1] = r0[1] = m_L;  
  x2[0] = x1[0] = x0[0] = m_A;  
  x2[1] = x1[1] = x0[1] = m_L;  
  m2[0] = m1[0] = m_V1;  
  m2[1] = m1[1] = m_V2;  
 
  theApp.FIRSTLOOP=0; 
 } 



32  Applied Process Control 

 

 
 while (((theApp.t-tlast_PID)>=dtPID) | (theApp.b_FORCE_STEP)) 
 { 
  if (!theApp.b_FORCE_STEP) 
  { 
   tlast_PID += dtPID;     // must catch up by looping more than once if necessary 
  } 
  else 
  { 
   tlast_PID = theApp.t;         // to SYNCHRONISE manual moves :  
                // b_FORCE_STEP was set TRUE on StepMode button 
   theApp.b_FORCE_STEP = FALSE; 
  } 
 
  // Interpret present values 
  x[0] = m_A; 
  x[1] = m_L; 
  r[0] = m_A_sp; 
  r[1] = m_L_sp; 
  m[0] = m_V1; 
  m[1] = m_V2; 
 
 
  for (i=0;i<nPID;i++) 
  { 
   if (!b_Auto[i]) 
   { 
    // Not on - reset to starting values 
    r2[i] = r1[i] = r0[i] = x[i];  
    x2[i] = x1[i] = x0[i] = x[i];  
    m2[i] = m1[i] = m[i]; 
   } 
   else 
   { 
    // On AUTO : calculate PID action! 
    // first cascade stack 
    r2[i] = r1[i];  
    r1[i] = r0[i];  
    r0[i] = r[i];  
    x2[i] = x1[i];  
    x1[i] = x0[i];  
    x0[i] = x[i];  
    m2[i] = m1[i];  
    m1[i] = m[i];  
 
    // Action: 
    m[i] =   ( - a1[i] * m1[i] 
       - a2[i] * m2[i] 
       + b0[i] * r0[i] 
       + b1[i] * r1[i] 
       + b2[i] * r2[i] 
       - c0[i] * x0[i] 
       - c1[i] * x1[i] 
       - c2[i] * x2[i] ) / a0[i]; 
   } 
  } 
   
  // back to actual variables & clip 
  m_V1 = __max(__min(m[0],max_V1),0); 
  m_V2 = __max(__min(m[1],max_V2),0); 
 } 



Chapter 4   Simulations - SISO closedloop  33 

 

 

 

4.3  PII - Compressor control with strongly interacting  PID loops 
 

 

Tuning for satisfactory operation under conditions of strong 

interaction:  
 

 

f_4.4  

 

 

4.3.1  Typical settings 

 
 

 V1 = 50  PC:   KC = -1  FC: KC = 0.5  Axis Length = 300 

 V2 = 55   TI  = 30   TI  =  60  Acceleration = 10 

 P0 = 35   TD = 2   TD = 2  Log Interval =   5 

 PSP = 40     = 0.1     = 0.1  Step Interval =  5 

 FSP = 45   d   :     d   :   

 

 

 

4.3.2  Theory 

 



34  Applied Process Control 

 

f_4.5

COOLER

COMPRESSOR

“KICK-BACK”

FT P F

FT

P

SURGE

SURGE L
IN

E

PSP

FKB

F
T

 
=

 F
+

F
K

B

 

 

This is a basic surge control arrangement on a compressor. If there were no pressure control, 

the compressor would go into surge if the user flow demand (F) cut back (f_4.5). The PC and 

FC arrangement shown in f_4.4 effectively forces the compressor to operate at the indicated 

point, assuming that the speed (curved lines) is governed at a fixed value. 

 

One expects the arrangement shown to be highly interactive, because the valves draw from a 

common point. If the FC valve opens, pressure will drop, requiring a correction by PC, and 

vice-versa. In practice, to prevent these two loops from “riding” each other, one loop has to be 

made much slower than the other. In this exercise the PC loop will be made fast and the FC 

loop slow, as the PC loop offers the primary surge protection. 

 

4.3.3  Tasks 
 

(1) With both controllers on “Auto”, let the process stabilise at an operating point, then 

switch both controllers to “Manual”. 

 

(2) Step V1 up by about 25. What type of response does this appear to be? Is the flow 

affected? Why? 

 

(3) Step V2 up by about 25. Is the pressure affected? Why? 

 

(4) Switch the pressure controller to “Auto”. Wait for the system to steady, then step the 

pressure setpoint down by about 25. Note the response of both flow and pressure. 

 

(5) Switch the flow controller to “Auto”. Wait for the system to steady, then step the flow 

setpoint down by about 25. Note the response of both flow and pressure. 
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(6) Try to speed up the flow response as much as possible. Primarily you will be attempting 

to find a suitable combination of KC and TI of FC, with TD possibly set to zero. Note the 

point at which the system goes unstable. Back off to a point which is a compromise 

between speed and dampening of the oscillations. 

 

(7) Disturb the system with a step in the suction pressure of the compressor and check the 

controlled system’sperformance. 

 

 

 

4.3.4  Code extracts 
 

  Model time-step.... 

 
// Convolution model based on step responses 
 
 while ((theApp.t-theApp.tlast_ModelStep) >= dtPII_StepResp/(double)Ninterp) 
 { 
  theApp.tlast_ModelStep += dtPII_StepResp/(double)Ninterp; 
 
  dmlinterp(1) = m_V1-mlastinterp(1);  
  dmlinterp(2) = m_V2-mlastinterp(2);    
  dmlinterp(3) = m_P0-mlastinterp(3); 
 
  mlastinterp(1) = m_V1; 
  mlastinterp(2) = m_V2; 
  mlastinterp(3) = m_P0; 
 
 
  //update interpolated past vector 
  // ACCUMULATE the moves falling off the past moves stack 
  for (j=1; j<=(Ppii+Qpii); j++) 
  { 
   dminterpACC(j) += dmpinterp(j); 
  } 
  // past moves shift one down dmpinterp stack   (to incorporate latest move) 
  for (i=1; i<=(Npii*Ninterp-1); i++) 
  { 
   for (j=1; j<=(Ppii+Qpii); j++) 
   { 
    dmpinterp((i-1)*(Ppii+Qpii)+j) = dmpinterp(i*(Ppii+Qpii)+j); 
   } 
  } 
  for (j=1; j<=(Ppii+Qpii); j++) 
  { 
   dmpinterp((Npii*Ninterp-1)*(Ppii+Qpii)+j) = dmlinterp(j); 
  } 
 
  if (theApp.b_Model) 
  { 
   cMatrix dx = dB0interp*dmpinterp; 
   // Add in any integral effects 
   for (i=1;i<=Rpii;i++) 
   { 
    for (j=1;j<=(Ppii+Qpii);j++) 
    { 
     dx(i) += dB0interp(i,j)*dminterpACC(j); 
    } 
   } 
 
   P = P + dx(1); 
   F = F + dx(2); 
   m_P = __max(__min(P,max_P),0); 
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   m_F = __max(__min(F,max_F),0); 
  } 
 } 
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Chapter 5   Simulations - SISO 

optimisers 

 
.  

 

 

5.1 ALC - Advanced level control of a distillation 

column 
 

 

Understanding and tuning an algorithm for minimisation of flow 

fluctuations between plant items: 
 

 

f_5.1  

 

 

In this application, a comparison will be made between the performance of an Advanced 

Level Controller, and an ordinary PID controller maintaining the level. In both instances the 

controller cascades to the same slave flow controller. A new control switch is provided to 

switch between the two supervising controllers (f_5.2). 
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f_5.2  

 

To provide a realistically variable environment for the level control to contend with, a feature 

is provided for addition of a random component in the feed flow rate into the column. This 

has a zero mean, and is added to the normal flow setting to obtain the actual flow into the 

column. The size of the random component is determined by the RANDOM scrollbar setting 

(f_5.3). 

 

f_5.3  

 

 

5.1.1 Typical settings 

 
 

L= 40       ALC: Gap = 10           LC: KC = -4 FC: KC = 1.2 Axis Length = 3600 

LSP = 45  TD  = 480 (PID)  TI  =  800  TI  =  500 Acceleration = 50 

FSP= 35  (desired)   TD = 2  TD = 2 Log Interval =  30 

F = 45        = 0.1    = 0.1 Step Interval =  600 

F valve = 55     d   :    d   :   

 

 

 

5.1.2 Theory 
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f_5.4 
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The idea is to make as few adjustments to the outflow as possible, so as to introduce minimal 

variations into the downstream units. In this way, those units downstream can be controlled 

more tightly, closer to specification. This idea is made possible by maximum utilisation of the 

“buffering capacity” of the vessel in which level is to be controlled – indeed, modern plants 

are often designed with additional capacity here so as to facilitate ALC. There is an 

assumption that one is dealing with shorter positive and negative flow variations about some 

mean. If the outflow could be set up at the estimated mean, it might be possible to “ride out” 

the incoming flow variations. In the old days, operators/instrument technicians might have 

been quite proud of how tightly they were controlling level in a vessel, but if one looked at 

the corresponding flow or valve chart, it could be virtually “painted” with huge variations of 

the control action involved. This is all very well for the vessel considered, but what about the 

operations downstream? 

 

There would be many variations of algorithms that could minimise the outflow variations – 

with different merits in different situations. In fact, this problem is not so straightforward, 

with algorithms running into several pages of code. The one proposed here is based on the 

idea of a desired time margin (TD , ie. TDESIRED) representing a minimum acceptable time 

within which the upper or lower limit of level could be reached. If the present rate of level rise 

or fall indicates that the limit will be reached sooner, some minimal evasive action must be 

taken, in one step, with the aim of not having to make another adjustment soon. The diagram 

shows a way to adjust the outflow setpoint, but as can be seen in the code in section 5.1.4, 

there is more to it than just this. 

 

  

5.1.3 Tasks 

 
(1) Switch to the PID controller and set it on Auto.  Press “Reset” and set the random 

component on the inflow down to zero. Let the system steady out. 
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(2) Step up the inflow by about 10, and note the level and outflow response. 

 

(3) Repeat (1) and (2), but this time with the ALC controller. Note that the “Gap” setting is 

relative to the present controller setpoint.  How do the level and outflow responses 

differ? 

 

(4) Increase the RANDOM setting on the inflow from 0 to about 20. Compare the operation 

of the PID and ALC controller again. Comment on the swings in level, violation of the 

limits, and the frequency of outflow adjustments. 

 

(5) Change the TD setting, and investigate what effect it has on the ALC controller with 

the same random variation of the inflow 

 

(6) Change the Gap setting, and investigate what effect it has on the ALC controller with 

the same random variation of the inflow 

 

 

5.1.4 Code Extracts 
 
  On each time-step, different calculations are executed depending on whether it is the first 

call, or whether the controllers are on “Auto” or “Manual”..... 

 
 if (theApp.FIRSTLOOP) 
 { 
  // initialise stacks for ALC loops 
  r2[0] = r1[0] = r0[0] = m_AL;  
  r2[1] = r1[1] = r0[1] = m_F;  
  x2[0] = x1[0] = x0[0] = m_AL;  
  x2[1] = x1[1] = x0[1] = m_F;  
  m2[0] = m1[0] = m_V1 = m_F;   // Special for ALC 
  m2[1] = m1[1] = m_V2;  
 
  theApp.FIRSTLOOP=0; 
 } 
 
 while (((theApp.t-tlast_ALC)>=dtALC) | (theApp.b_FORCE_STEP)) 
 { 
  if (!theApp.b_FORCE_STEP) 
  { 
   tlast_ALC += dtALC;     // must catch up by looping more than once if necessary 
  } 
  else 
  { 
   tlast_ALC = theApp.t;         // to SYNCHRONISE manual moves : b_FORCE_STEP  
                 //was set TRUE on StepMode button 
   theApp.b_FORCE_STEP = FALSE; 
  } 
 
  // Interpret present values 
  if (b_Auto[0]) 
  { 
   b_Auto[1] = TRUE;   // Special for ALC 
   m_F_sp = m_V1;    // Special for ALC 
  } 
 
  x[0] = m_AL; 
  x[1] = m_F; 
  r[0] = m_AL_sp; 
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  r[1] = m_F_sp; 
  m[0] = m_V1; 
  m[1] = m_V2; 
 
 
  for (i=0;i<nALC;i++) 
  { 
   if (!b_Auto[i]) 
   { 
    // Not on - reset to starting values 
    r2[i] = r1[i] = r0[i] = x[i];  
    x2[i] = x1[i] = x0[i] = x[i];  
    m2[i] = m1[i] = m[i]; 
    if (i==2) n_ALC_counter = 0; 
   } 
   else 
   { 
    // On AUTO : calculate control action! 
    // first cascade stack 
    r2[i] = r1[i];  
    r1[i] = r0[i];  
    r0[i] = r[i];  
    x2[i] = x1[i];  
    x1[i] = x0[i];  
    x0[i] = x[i];  
    m2[i] = m1[i];  
    m1[i] = m[i];  
 
    // Action: 
    if ((i==1) | (!b_LCbyALC)) 
    { 
     // NORMAL PID CONTROL 
     m[i] = (  - a1[i] * m1[i] 
      - a2[i] * m2[i] 
      + b0[i] * r0[i] 
      + b1[i] * r1[i] 
      + b2[i] * r2[i] 
       - c0[i] * x0[i] 
       - c1[i] * x1[i] 
       - c2[i] * x2[i] ) / a0[i]; 
    } 
    else 
    { 
     // ADVANCED LEVEL CONTROL 
     //present gradient 
     double dF=0; 
     n_ALC_counter -=1; 
     if (n_ALC_counter <= 0) 
     { 
      double dLdt = (x1[0]-x2[0]) / dtALC; 
      // delay - bit shorter than full flow response 
      int n_counter_reset = int(0.6*NALC*dtALC_StepResp/dtALC);  
      // dT_expected 
      double dT_expected, level_margin; 
      double dT_emergency = 0.7*m_ALC_dTdesired; 
      //UPPER SIDE 
      level_margin = (r0[0] + m_ALC_Gap) - x0[0]; 
      if (level_margin < 0) 
      { 
       dF=((-level_margin+dLdt*dT_emergency) * Area) / dT_emergency; 
       n_ALC_counter = n_counter_reset; 
      } 
      else if (dLdt >= 0) 
      { 
       dT_expected = level_margin / (dLdt + 1e-10); 
       if((dT_expected < m_ALC_dTdesired) & (level_margin < 0.3*  
        m_ALC_Gap))  // let it jump around in middle bit 
       { 
        dF = (level_margin * Area) * (1/dT_expected –  
         1/m_ALC_dTdesired); 
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        n_ALC_counter = n_counter_reset; //have to give it time 
       } 
      } 
      //LOWER SIDE 
      level_margin = x0[0] - ( r0[0] - m_ALC_Gap) ; 
      if (level_margin < 0) 
      { 
       dF=-((-level_margin-dLdt*dT_emergency) * Area) / dT_emergency; 
       n_ALC_counter = n_counter_reset; 
      } 
      else if (dLdt <= 0) 
      { 
       dT_expected = level_margin / (-dLdt+1e-10); 
       if((dT_expected < m_ALC_dTdesired) & (level_margin < 0.3*  
        m_ALC_Gap))  // let it jump around in middle bit 
       { 
        dF = -(level_margin * Area) * (1/dT_expected –  
         1/m_ALC_dTdesired); 
        n_ALC_counter = n_counter_reset; //have to give it time 
       } 
      } 
     } 
     m[0] += dF; 
    } 
   } 
  } 
   
  // back to actual variables 
  m_V1 = __max(__min(m[0],max_V1),0); 
  m_V2 = __max(__min(m[1],max_V2),0); 
 } 
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5.2  VPC - Valve position control for distillation 

column pressure minimisation 
 

 

Use of a combination of PID loops for simple process operating point 

optimisation: 
 

 

f_5.5  

 

One of the early applications of Valve Position Control was distillation column pressure 

minimisation, as proposed by Shinskey, who worked for Foxboro Corporation, and who had a 

knack for arranging PID controllers in ingenious ways, even one controller manipulating the 

tuning parameters of another! Generally speaking, relative volatilities increase as pressure 

drops, so the operation of a distillation column at as low pressure as possible will enhance 

separation. Thus one needs to maximise the condenser duty. If it is water-cooled as in this 

example, one wants to open the cooling water supply valve as widely as possible. Why not 

just open it to 100% and leave it? This is not advisable, as in the operation there are likely to 

be other disturbances causing pressure fluctuations, and one would need some adjustment of 

the cooling water, both positive and negative, to deal with them rapidly to avoid complete 

upset of the column. Thus one needs to reserve some positive movement of the valve, and 

would like to maintain it at a setpoint of, say, 90% open. The means of doing this are by 

manipulating the setpoint of the pressure controller itself, relatively slowly so as not to upset 

the column. Another reason why the valve position controller should be relatively slower than 

the pressure controller is because the implicit dependence of these two loops has the potential 

to become completely unstable! 
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Note that this procedure is a kind of optimisation of a process. Indeed, there are many other 

applications of this simple optimisation technique, eg. maximising the use of a cheap coolant 

(CW), with only the residual duty being taken up by a very effective, but expensive, 

refrigerant. These principles could be applied to any material flows in a process, not just 

coolants – eg. maximum re-use of treated effluent water prior to fresh water, etc. 

 

5.2.1  Typical settings 

 
  

 VP = V2 = 40    VPC: KC = -0.9  PC: KC = -1  Axis Length = 5400 

 VPSP =40   TI  =  100   TI  =  200  Acceleration = 200 

 P= 60   TD = 0   TD = 0  Log Interval =  30 

 PSP =V1= 60    = 0.1     = 0.1  Step Interval =  600 

 R (reflux)  = 35  d   :     d   :    

 

   

 

5.2.2  Theory 
 

The VPC clearly cannot function unless the PC is on “Auto”, accepting the remote setpoint. 

This occurs automatically one the VPC is set to “Auto”. If the system pressure is disturbed, 

the PC will try to correct it, but as it begins to move the valve V2, it will find its own setpoint 

changing., and this can easily lead to unstable oscillations. Thus the VPC should be tuned to 

react somewhat more slowly than the PC. 

 

5.2.3  Tasks 
 

(1) With both controllers on “Auto”, let the system reach steady-state. Then switch the VPC 

to “manual”, and do a setpoint step-test on the PC. See if you can improve the 

performance of the PC by manipulating its KC, TI and TD. 

 

(2) Switch the VPC to “Auto”. Step its setpoint by about +25. See if you can improve the 

tuning of the VPC using its KC, TI and TD. At what values does the system go unstable? 

 

(3) Once you finalise tuning for PC and VPC, let the system reach steady state with both 

loops closed. Now step the reflux (R) as a disturbance. Can you account for all of the 

graphical responses? 

 
 

5.2.4  Code Extracts 
 
  The only difference to two independent PID loops (as in section 4.2) occurs ahead of the 

two loop solutions on each time step, where the following code is inserted: 
 
  // Interpret present values 
  if (b_Auto[0])       // VPC has been switched to “Auto” 
  { 
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   b_Auto[1] = TRUE;   // force the PC onto “Auto” 
   m_P_sp = m_V1;     // pass down remote setpoint 
  } 
  else 
  { 
   m_V1 = m_P;           // for bumpless startup, keep VPC output variable close to present value 
  }
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5.3 PSH - Constraint pusher for optimal use of paper 

machine fibre stocks 
 

 

Understanding and tuning a constrained optimisation with a 

performance objective function:  
  

 

f_5.6  

 

With the access to to all variables in modern DCS or SCADA systems, optimisers (and 

constrained optimisers as in this case), are becoming more common. Plant optimisers are 

viewed as being near the top of an hierarchical process control pyramid of the form  f_5.7: 
 

f_5.7

Base Layer : PID loops PC,FC,TC, etc.

Multivariable controllers

(eg.DMC), APC applications

Plant optimisers

Management
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Generally speaking, the target information for each strategy moves downward in this pyramid. 

Actually, the type of optimiser envisaged in the pyramid tends to embrace the entire plant 

with an economic objective. It usually does not have any dynamic compensation – ie. it 

assumes a steady-state balance (and often has onboard  a data-reconciliation package to create 

a proper mass and energy balance as a starting point). Such optimisers can run into thousands 

of variables and equations. However, the type of constrained optimiser we shall consider here 

fits more logically into the APC layer. Here is a simple example of a constraint-pushing 

optimiser (f_5.8): 

f_5.8
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valve 45%

valve 63%

 

 

Usually one attempts to operate a catalytic reactor at as high a temperature as possible, in 

order to maximise reaction rate and conversion. There will be a limit associated with the 

equipment – typically there is a maximum allowed operating temperature for the catalyst to 

avoid sintering. So a simple constraint pusher here will find the maximum temperature in the 

catalytic bed at any time, and keep on opening the heater valve until this maximum reaches 

the limit. 
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Let us now consider the application at hand (f_5.9): the optimal use of a paper machine’s fibre 

stocks. These are suspensions of tiny wood fibres in water, at varying “consistencies”, ie. 

mass fibre per mass water. The basic stock supplies are held in storage tanks, and each stock 

supply is separately adjusted, as it is drawn, to a setpoint consistency by the addition of white 

water. It should be noted that the stocks are suspensions of wood-pulp fibres in the range of 1-

5% m/m. The white-water is merely wash-water, etc, which has a very low (negligible) fibre 

content, so it can only be used to adjust the stock consistencies downwards. 

 

In this application, the constraining issues, and the scope for optimisation, may be less 

obvious than the reactor above, so some explanation is required. The constraint-pusher 

optimiser was developed when deficiencies in an existing fibre stock preparation section were 

noted, and it is easier to understand the optimiser if one first reviews the old system (which 

can also be run in this simulator). The NEW or OLD method (or MANUAL) can be selected 

with the controls below (f_5.10). The “UNCONV” flashes yellow if the new solution cannot 

converge, in which case the solution just reverts to the OLD algorithm. Positioning the system 

within constraints before switching to the NEW algorithm should avoid this. 
  

f_5.10   

 

In the old method, the overall FC algorithm would calculate setpoints for F1, F2, F3 and F4 

(knowing C1, C2, C3, and C4), in order to achieve the following conditions in the total flow 

into the Blend Chest: 

 

 fSP     :  total flow demanded by LC 

 cSP    :  consistency of total flow (ie. mass percent of fibre solids in water) 
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 r1 SP   :  mass percent of Short Fibre in total fibre 

 r2 SP   :  mass percent of Long Fibre 1 in total fibre 

 r3 SP   :  mass percent of Long Fibre 2 in total fibre 

 (100 - r1 SP – r2 SP  - r3SP) :  mass percent of Inside Broke in total fibre 

 

Plant data records showed frequent upsets in the stock consistency and fibre ratios. These 

were discovered to arise because the ratio-ing algorithm (FC) was issuing setpoints to the 

various stock FC’s, but had no strategy to deal with the possibility that desired flows and 

consistencies in the source stocks might not be achievable. For example, a basic stock supply 

consistency could drop well below the consistency setpoint of the associated consistency 

controller. 

 

The origin of the new “constraint pusher” was in recognising that eight setpoints could be 

manipulated (for C1, C2, C3, C4, F1, F2, F3, F4), not just four (for F1, F2, F3, F4). If the 

objectives regarding f, c, r1, r2, and r3 could be properly formulated in an objective function, 

then C1, C2, C3, C4, F1, F2, F3, and F4 could be manipulated until restricted by constraints, yet 

those remaining unconstrained could still be used for cross-compensation, according to the 

priorities.  On a more basic level, one recognises that eight liquid streams are merely being 

combined, four from the basic stock vessels, plus one white water flow each. (It is noted that 

there is some freedom regarding the choice of a source of white water – so the maintenance of 

typical setpoints for C1, C2, C3, C4  is included as a weak secondary objective.) 

 

The weightings wi applied to the various setpoint deviations in the objective function are set 

in a dedicated block (f_5.11). Note the 7th weight, designed to enhance the weight on flow 

deviations when there is a large deviation from the level setpoint. 

 

f_5.11  
 

The various setpoints above are set in the following block (f_5.12), representing conditions of 

the combined stream entering the Blend Chest: 
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f_5.12   

 

The setpoints are highlighted in pink, and are set by the corresponding scrollbars. The actual 

value of the controlled variable is shown below the setpoint value. The (fixed) set upper and 

lower constraints for c, r1, r2 and r3 are shown on a light grey background next to their 

scrollbars. Adjacent to the top and bottom of each scrollbar is an indicator which shows the 

status of each of these 4 variables with respect to its constraints. If it is within its constraints, 

both indicators are off. If it is at either constraint, the associated indicator flashes green. If it 

violates either constraint, the associated indicator flashes red. The NEW algorithm recognises 

these constraints, so the indicators will be useful to check its performance. 
 

f_5.13  

 

The consistency of each of the supply stocks can be set using the scrollbar shown above 

(f_5.13). Take note of the arrangement around the individual flow and consistency controllers 

for each stock, shown below (f_5.14). The desired setpoint for this stock consistency is set on 

the upper pink scrollbar, and this consistency is shown numerically highlighted in pink. The 

actual consistency is shown on the white scrollbar (and numerically to the left of the setpoint), 

and will usually differ when the NEW algorithm is running, because it pays little attention to 

these desired setpoints. Should the actual consistency find itself running up against a 

constraint, the adjacent “LO/HI” indicator will flash red. This will usually happen when it 

cannot be adjusted any higher than the supply consistency (or lower than zero). Similarly, the 

flow setting below the pipe has a “LO/HI” “constrained” indicator, which will flash red when 

the controlling setpoint has adjusted the scrollbar setpoint to either end of its range. 
 

f_5.14  
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PI controllers (TD =0) are provided for the final consistency trim control (f_5.15), and the 

Blend Chest level control (f_5.16). Again, the setpoint is highlighted in pink above the value 

of the actual feedback variable. The two vertical scrollbars apply to the setpoints. Clearly, the 

setpoint for c in the combined flow into the Blend Chest would have to be set higher than the 

desired final consistency trim setpoint, since the only means of control is by addition of white 

water. 
 

f_5.15   

 

 f_5.16  

 

After the final consistency controller, a flow setting can be manipulated to simulate demand 

conditions on the flow of prepared stock. There is a mean setting (left hand scroll bar) and a 

zero-mean RANDOM component of size determined by the RANDOM scrollbar (f_5.17). 

The resultant flow is indicated to the right of the “F” symbol below the pipe. Note that this 

final flow includes the adjacent white-water addition, so if the white water flow fluctuates, the 

flow drawn from the Blend Chest will fluctuate inversely. 
  

 

f_5.17  

 

 

 

5.3.1  Typical settings 
 

 

   LC (PID): 

Stock:  LSP  =  70            Setpoints         Weights   Time Axis     =   1800 

C1SP  =  4.0  KC   =  25             cSP   =  3  w1  =  5       Time accel.   =       50 

C2SP  =  4.5  TI    =  250  r1SP  =  10   w2  =  5       Log Interval  =       30 
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C3SP  =  4.5  (TD   =  0  )  r2SP  =  20   w3  =  5       Step Interval  =      60 

C4SP  =  4.0      r3SP  =  20   w4  =  50 

Supply:  CC  (PID):      w5  =  25 

CS1  =  5.0   CSP   =  2.0               w6  =  5 

CS2  =  5.0  KC    = -30               w7  =  0.3 

CS3  =  5.0         TI    =   50              

CS4  =  5.0    (TD   =  0  ) 

      Flow drawn Mean F=   80 

      Flow drawn RANDOM=   50 

 

  

 

5.3.2  Theory 
 

The combined stream property arriving at the Blend Chest can be calculated as follows: 

 

1 2 3 4f F F F F                 (5.1) 
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It is clear that the variables to be manipulated are non-linearly related to the setpoint 

objectives. Thus a constrained optimisation based on Linear Programming is not possible. 

Define an objective function as follows 
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      (5.6) 

 

where we aim to minimise J  by suitable choice of  C1, C2, C3, C4, F1, F2, F3, and F4 within 

the constraints on all of these variables. It has been chosen to use the magnitude of the 

deviations rather than the square (not for any particular reason). The intention with the 6th 

term is merely to increase the weighting on compliance with the total flow setpoint (from the 

LC) in the event that deviations of the level L from LSP happen to be large. The variable L is 

just a measurement, and not influenced by the free variables in the optimisation. Notice the w5 
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term which aims to have a weak attraction of the individual controlled stock consistencies 

towards their setpoints. In this way the white water will not be drawn all with one of the 

stocks. 

 

A somewhat crude but reasonably effective constrained optimisation search has been devised 

for this problem. The search proceeds outwards from the last C1, C2, C3, C4, F1, F2, F3, and F4 

position, adjusting each of these variables in turn (positive and negative fractions of its range, 

before returning it to its original value), to find which of the 16 possible results (excluding 

any that fall outside constraints) gives the biggest reduction in J. Then the centre position 

moves on to this best point, and the search is repeated. When there is no smaller J, or its value 

oscillates within a small tolerance, the search stops. 

 

As an example, consider the following 2-dimensional optimisation (f_5.18): 
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          (5.7) 
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5.3.3  Tasks 
 

(1) Switch the system to “AUTO-OLD” (f_5.10), reduce the RANDOM component on the 

final flow to zero, and wait for the system to become steady.  Notice that once the old 

algorithm has got the fibre ratios right, it has no further freedom to adjust the combined 

flow c into the Blend Chest. All of the control is done by the final C trim control. 

Reduce some of the individual consistency setpoints slightly, and see the c value drop.   
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(2) The Inside Broke contributes a lot of the fibre. See what happens when you reduce its 

supply consistency slowly down towards 1.0%.  Eventually it is impossible to meet both 

the fibre ratio requirement, and the total flow requirement, so the solution fails. (This 

version does not have enough protection against this at present, so the result is 

numerically catastrophic!).  

 

(3) Repeat the test in (3) for a higher final consistency setpoint (say 3%),  and you will see 

that final consistency cannot be controlled, because the Blend Chest consistency drops 

below 3% (before the OLD algorithm actually fails).  [ If you restart the solution with 

“Reset”, you will have to reposition the cursors moved so far]. If you cannot get steady 

operation like this, just raise the final consistency setpoint and you will see that the 

maximum is determined by c.  

 

(4) With the offset final consistency in (3), set the c setpoint higher than the final 

consistency setpoint, and switch from the “AUTO-OLD” to the “AUTO-NEW” 

algorithm.  If the “UNCONV” indicator flashes yellow, it is probably because you have 

started outside of the constraints, and the solution will be reverting to the OLD method 

by default. Check which constraint is flashing and temporarily move the associated 

setpoint until the system is within constraints, in which case the NEW solution will take 

over. Then you can return setpoints to where they were. 

 

(5) With the NEW algorithm still operating, with zero RANDOM component on the final 

flow, check the responses to steps in the setpoints of c, r1, r2, r3, L, and C. 

 

(6) Now raise the final flow RANDOM component to about 50, and observe the general 

performance of the NEW algorithm in the face of these disturbances. Check how it 

handles drops in the stock supply consistencies. 

 

(7) Adjust the objective function weights w1, w2, w3, w4, w5, w6, and w7 , and see if you get 

predictable effects. For example, see how the level-control performance improves with 

w6, and w7. 
 

 

 

5.3.4  Code Extracts 
 

  The following code is executed on every time-step: 
 
 //renormalise fibre ratios if necessary 
 double tot1to3 = m_r1+m_r2+m_r3; 
 if (tot1to3>100) 
 { 
  m_r1 = 100*m_r1/tot1to3; 
  m_r2 = 100*m_r2/tot1to3; 
  m_r3 = 100*m_r3/tot1to3; 
 } 
 
 if (theApp.FIRSTLOOP) 
 { 
  // initialise stacks for PSH loops 
  r2[0] = r1[0] = r0[0] = m_Lbc;  
  x2[0] = x1[0] = x0[0] = m_Lbc;  
  m2[0] = m1[0] = m_fopt;  
  r2[1] = r1[1] = r0[1] = m_Cfinal;  
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  x2[1] = x1[1] = x0[1] = m_Cfinal;  
  m2[1] = m1[1] = m_fww;  
  theApp.FIRSTLOOP=0; 
 } 
 
 while (((theApp.t-tlast_PSH)>=dtPSH) | (theApp.b_FORCE_STEP)) 
 { 
  if (!theApp.b_FORCE_STEP) 
  { 
   tlast_PSH += dtPSH;     // must catch up by looping more than once if necessary 
  } 
  else 
  { 
   tlast_PSH = theApp.t;         // to SYNCHRONISE manual moves : b_FORCE_STEP  
                        // was set TRUE on StepMode button 
   theApp.b_FORCE_STEP = FALSE; 
  } 
 
  // Interpret present values 
  x[0] = m_Lbc; 
  r[0] = m_Lbc_sp; 
  m[0] = m_fopt; 
  x[1] = m_Cfinal; 
  r[1] = m_Cfinal_sp; 
  m[1] = m_fww; 
 
 
  for (i=0;i<nPSH;i++) 
  { 
   if (!b_Auto[i]) 
   { 
    // Not on - reset to starting values 
    r2[i] = r1[i] = r0[i] = x[i];  
    x2[i] = x1[i] = x0[i] = x[i];  
    m2[i] = m1[i] = m[i]; 
   } 
   else 
   { 
    // On AUTO : calculate PSH action! 
    // first cascade stack 
    r2[i] = r1[i];  
    r1[i] = r0[i];  
    r0[i] = r[i];  
    x2[i] = x1[i];  
    x1[i] = x0[i];  
    x0[i] = x[i];  
    m2[i] = m1[i];  
    m1[i] = m[i];  
 
    // Action: 
    m[i] = (  - a1[i] * m1[i] 
     - a2[i] * m2[i] 
     + b0[i] * r0[i] 
     + b1[i] * r1[i] 
     + b2[i] * r2[i] 
     - c0[i] * x0[i] 
     - c1[i] * x1[i] 
     - c2[i] * x2[i] ) / a0[i]; 
    // back to actual variables as appropriate 
    if(i==0) m_fopt_sp = __max(__min(m[0],max_fopt),0); 
    if(i==1) m_fww = __max(__min(m[1],m_Ffinal),0);    // cannot be bigger than  
            // final combined flow!  
   } 
  } 
 } 
 
 // Constraint Pusher Optimiser....... 
 while ((theApp.t-tlast_Pusher) >= dtPSH_Pusher) 
 { 
  tlast_Pusher = theApp.t; 
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  // Now do the Flow Apportioning 
  if (b_ManualOldNew) 
  { 
   // No control 
   b_unconverged = FALSE; 
   m_C1 = __min(m_C1sp,m_Cs1); 
   m_C2 = __min(m_C2sp,m_Cs2); 
   m_C3 = __min(m_C3sp,m_Cs3); 
   m_C4 = __min(m_C4sp,m_Cs4); 
  } 
  else if(b_AutoOld) 
  { 
   // Old method 
   b_unconverged = FALSE; 
 Default_Strategy: 
   m_C1 = __min(m_C1sp,m_Cs1); 
   m_C2 = __min(m_C2sp,m_Cs2); 
   m_C3 = __min(m_C3sp,m_Cs3); 
   m_C4 = __min(m_C4sp,m_Cs4); 
 
   cMatrix A, x, y, temp; 
   A.Init(4,4); 
   x.Init(4,1); 
   y.Init(4,1); 
   double m_r4_sp = 100 - m_r1_sp - m_r2_sp - m_r3_sp; 
   A(1,1) = m_r1_sp-100          ; A(1,2) = m_r1_sp*m_C2/m_C1    ;  
   A(1,3) = m_r1_sp*m_C3/m_C1    ; A(1,4) = m_r1_sp*m_C4/m_C1; 
   A(2,1) = m_r2_sp*m_C1/m_C2    ; A(2,2) = m_r2_sp-100          ;  
   A(2,3) = m_r2_sp*m_C3/m_C2    ; A(2,4) = m_r2_sp*m_C4/m_C2; 
   A(3,1) = m_r3_sp*m_C1/m_C3    ; A(3,2) = m_r3_sp*m_C2/m_C3    ;  
   A(3,3) = m_r3_sp-100          ; A(3,4) = m_r3_sp*m_C4/m_C3; 
   A(4,1) = m_r4_sp*m_C1/m_C4+100; A(4,2) = m_r4_sp*m_C2/m_C4+100;  
   A(4,3) = m_r4_sp*m_C3/m_C4+100; A(4,4) = m_r4_sp; 
   y(4,1) = 100*m_fopt_sp; 
   temp = A.Inv(); 
   x = temp * y; 
   m_F1 = __min(__max(x(1), 0), max_F1); 
   m_F2 = __min(__max(x(2), 0), max_F2); 
   m_F3 = __min(__max(x(3), 0), max_F3); 
   m_F4 = __min(__max(x(4), 0), max_F4); 
  } 
  else 
  { 
   // New Optimal Constraint-pusher method 
   //===================================== 
   //Inputs 
   cMatrix x, xmin, xmax, dx; 
   x.Init(8,1); xmin.Init(8,1); xmax.Init(8,1); dx.Init(8,1); 
   x(1) = m_F1; xmin(1) = 0; xmax(1) = max_F1 ; dx(1) = max_F1/200; 
   x(2) = m_F2; xmin(2) = 0; xmax(2) = max_F2 ; dx(2) = max_F2/200; 
   x(3) = m_F3; xmin(3) = 0; xmax(3) = max_F3 ; dx(3) = max_F3/200; 
   x(4) = m_F4; xmin(4) = 0; xmax(4) = max_F4 ; dx(4) = max_F4/200; 
   x(5) = m_C1; xmin(5) = 0; xmax(5) = __min(max_C1,m_Cs1) ; dx(5) = max_C1/200; 
   x(6) = m_C2; xmin(6) = 0; xmax(6) = __min(max_C2,m_Cs2) ; dx(6) = max_C2/200; 
   x(7) = m_C3; xmin(7) = 0; xmax(7) = __min(max_C3,m_Cs3) ; dx(7) = max_C3/200; 
   x(8) = m_C4; xmin(8) = 0; xmax(8) = __min(max_C4,m_Cs4) ; dx(8) = max_C4/200; 
   //Outputs 
   cMatrix y, ysp, ymin, ymax; 
   y.Init(5,1); ysp.Init(5,1); ymin.Init(5,1); ymax.Init(5,1); 
   y(1) = m_r1; ysp(1) = m_r1_sp; ymin(1) = m_Lr1c; ymax(1) = m_Hr1c; 
   y(2) = m_r2; ysp(2) = m_r2_sp; ymin(2) = m_Lr2c; ymax(2) = m_Hr2c; 
   y(3) = m_r3; ysp(3) = m_r3_sp; ymin(3) = m_Lr3c; ymax(3) = m_Hr3c; 
   y(4) = m_copt; ysp(4) = m_copt_sp; ymin(4) = m_Lcc; ymax(4) = m_Hcc; 
   y(5) = m_fopt; ysp(5) = m_fopt_sp; ymin(5) = 0;  ymax(5) = max_fopt; 
   double tolerance = 1e-8; 
   double J = m_w1*fabs(y(1)-m_r1_sp) + m_w2*fabs(y(2)-m_r2_sp) + m_w3*fabs(y(3)-m_r3_sp) + 
     m_w4*fabs(y(4)-m_copt_sp)+ 
     m_w5*( fabs(x(5)-m_C1sp) + fabs(x(6)-m_C2sp) + fabs(x(7)-m_C3sp) + fabs(x(8)-m_C4sp) ) + 
     m_w6*fabs(y(5)-m_fopt_sp)*(1+ m_w7*fabs(m_Lbc-m_Lbc_sp)); 
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   b_unconverged = TRUE; 
   double b_nosolution = TRUE; 
   double Jminlast = J; 
   double Jmin = J; 
   int jmin; 
   double sensemin = 0; 
   for (int iter=1; iter<=1000; iter++) 
   { 
    jmin=0; 
    for (j=1; j<=8; j++) for (int k=0; k<=1; k++) 
    {  
     if (x(j)<xmin(j)) x(j) = xmin(j);  // rescue it back 
     if (x(j)>xmax(j)) x(j) = xmax(j);  // rescue it back 
     double sense = k*2-1; 
     x(j) += sense*dx(j); 
     if((x(j)>=xmin(j)) & (x(j)<=xmax(j))) 
     { 
      y(5) = x(1)+x(2)+x(3)+x(4);  // f 
      y(4) = ( x(1)*x(5)+x(2)*x(6)+x(3)*x(7)+x(4)*x(8) ) / (y(5) + 1e-5); //c 
      y(3) = 100*x(3)*x(7)/( y(4)*y(5) + 1e-5); //r1 
      y(2) = 100*x(2)*x(6)/( y(4)*y(5) + 1e-5); //r2 
      y(1) = 100*x(1)*x(5)/( y(4)*y(5) + 1e-5); //r3 
      if ((y(1)>=ymin(1)) & (y(2)>=ymin(2)) &(y(3)>=ymin(3)) & 
       (y(4)>=ymin(4)) & (y(5)>=ymin(5)) &(y(1)<=ymax(1)) & 
        (y(2)<=ymax(2)) &(y(3)<=ymax(3)) &(y(4)<=ymax(4)) & 
        (y(5)<=ymax(5)) ) 
      { 
         b_nosolution = FALSE; 
         J =  m_w1*fabs(y(1)-m_r1_sp) + m_w2*fabs(y(2)-m_r2_sp) + 
                m_w3*fabs(y(3)-m_r3_sp) + 
       m_w4*fabs(y(4)-m_copt_sp)+ 
       m_w5*( fabs(x(5)-m_C1sp) +  
       fabs(x(6)-m_C2sp) + fabs(x(7)-m_C3sp) + fabs(x(8)-m_C4sp) ) + 
        m_w6*fabs(y(5)-m_fopt_sp)*(1+ m_w7*fabs(m_Lbc-m_Lbc_sp)); 
         if (J<Jmin) 
         { 
          Jmin = J; 
          jmin = j; 
          sensemin = sense; 
         } 
      } 
     } 
     x(j) -= sense*dx(j);  // return to datum; 
    } 
    if (b_nosolution) goto Default_Strategy; 
    // converged? 
    if ((jmin == 0) | (fabs(Jmin-Jminlast)<tolerance)) 
    { 
     b_unconverged = FALSE; 
     break; 
    } 
    else 
    { 
     Jminlast = Jmin; 
     x(jmin) += sensemin*dx(jmin);  // move in this direction 
    } 
   } 
   if(b_unconverged) goto Default_Strategy; 
   m_F1 = x(1); 
   m_F2 = x(2); 
   m_F3 = x(3); 
   m_F4 = x(4); 
   m_C1 = x(5); 
   m_C2 = x(6); 
   m_C3 = x(7); 
   m_C4 = x(8); 
  } 
 } 
 
 m_fopt = m_F1+m_F2+m_F3+m_F4; 
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 m_copt = ( m_F1*m_C1+m_F2*m_C2+m_F3*m_C3+m_F4*m_C4 ) / (m_fopt+1e-5); 
 m_r1 = 100 * m_F1*m_C1 / (m_fopt*m_copt+1e-5); 
 m_r2 = 100 * m_F2*m_C2 / (m_fopt*m_copt+1e-5); 
 m_r3 = 100 * m_F3*m_C3 / (m_fopt*m_copt+1e-5); 
 
 // Model step only 
 
 while ((theApp.t-theApp.tlast_ModelStep) >= dtPSH_StepResp/(double)Ninterp) 
 { 
  if (theApp.b_Model) 
  { 
   //Do a proper calculation because there are non-linear effects 
   double fbc = __max((m_Ffinal-m_fww),0); 
   m_Lbc = m_Lbc + (m_fopt - fbc) * (dtPSH_StepResp/(double)Ninterp/60) / 2 ;      
   m_Cbc = m_Cbc + ((m_fopt*m_copt - fbc*m_Cbc) *  
      (dtPSH_StepResp/(double)Ninterp/60))/(m_Lbc*10+1e-5); 
   double m_Cfinal_inst = fbc*m_Cbc / (m_Ffinal+1e-5); 
   double Smooth_Cfinal = 1-10*dtPSH_StepResp/(double)Ninterp/(Npsh*dtPSH_StepResp); 
   m_Cfinal = (1-Smooth_Cfinal)*m_Cfinal_inst + Smooth_Cfinal*m_Cfinal; 
   m_Lbc    = __max(__min(m_Lbc,max_Lbc),0); 
   m_Cfinal = __max(__min(m_Cfinal,max_Cfinal),0); 
  } 
 } 
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strategies 

 
.  

 

 

6.1  BPL – Boiler pressure and level control 
 

 

Three-element boiler drum level control with pressure control, air-

fuel ratio control and oxygen trim control  
  

 

f_6.1  
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6.1.1  Typical settings 
 

 

 

FC for  FC for  FC for  LC for  PC for    AC for 

FBFW   FFUEL   FAIR   LBOILER  PBOILER      %O2 

by VBFW   by VFUEL  by VAIR  by FBFWSP  by FFUELSP    by FAIRSP 

KC=1.5  KC=1.0  KC=1.1  KC=1.0  KC=1.0    KC=1.5 

I=30   I=30   I=30   I=200  I=100    I=50 

D=1.0   D=1.0  D=1.0  D=0   D=0     D=0   

α=0.1   α=0.1   α=0.1   α=0.1   α=0.1      α=0.1  

FBFWSP=55  FFUELSP=45  FAIRSP=45  LSP=60  PBOILERSP=70  %O2SP=5   

REMOTE   REMOTE  REMOTE  LOCAL  LOCAL     LOCAL  

 

 

 

 

6.1.2  Theory 
 

The figure below shows the well-known “3-element” control scheme for regulation of the 

water level in a boiler drum (f_6.2). The three elements are clearly feedback, feedforward and 

a supervised flow control loop.  

f_6.2 
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+

+
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SP

 

 

All feedforward controllers require a “model”, and in this case it is seen to be a very simple 

one, with one ton of steam drawn translating exactly to one ton of BFW to be supplied. Since 

the system integrates, and the flow measurements cannot be perfect, a feedback “trim” is 

essential, if for nothing else, just to get the level to its initial setpoint!  
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The delegation of the task of maintaining a desired BFW flow-rate to a slave flow control 

loop isolates the rest of the algorithm from such factors affecting the BFW flow as BFW and 

drum pressure fluctuations, and indeed non-linearity of the valve itself. The direct summation 

of feedforward and feedback BFW demands may appear to require twice as much BFW as 

necessary, until one recalls that the entire algorithm is working on the basis of deviations from 

the initial “switch on” condition.  

 

Regarding the firing of the furnace, the amount of air supplied for combustion must always be 

in excess – ie. there should be a non-zero residual O2 concentration in the flue gas. This is to 

ensure that ignition does not occur somewhere in the exit ductwork, or the top of a stack, 

where the flue gases first encounter oxygen. On the other hand, one does not want to supply 

too much air for the combustion, because recovery of the heat from that extra air is not easy, 

so that the furnace efficiency decreases. Maintenance of about 3% residual O2 on a molar 

basis (compared to a maximum of 21% in air) seems typical industrially. If there is no actual 

measurement of oxygen, then a larger margin may be necessary to ensure safety. This is 

certainly the case when only feedforward control is used, ie. air/fuel ratio control. 

 

The figure f_6.3 below shows the full metering control with oxygen trim control presented by 

Smith and Corripio (1985). This is an air/fuel ratio control with an additive feedback trim 

from a flue gas oxygen controller. The implication at the summer is that the feedback signal 

from the AC will request a zero adjustment if the ratio controller, which is working with 

absolute flow rates, is already achieving the setpoint %O2.  This feedforward-feedback 

arrangement will minimise %O2 deviations from setpoint. The air flow rate controller is a 

slave in the cascade, whilst the fuel flow setpoint will arrive from the operator, or another 

controller such as the process stream TC or a boiler PC as in the simulation under 

consideration. The scheme shown includes a high and low “clip” on the setpoint air flow-rate. 

The low clip is a good safety measure, but the high clip could lead to incomplete combustion 

at high fuel demands. A slight variation of this scheme is sometimes encountered where 

instead of supplying an additive trim to the air flow rate setpoint, the oxygen controller 

manipulates the setpoint air/fuel ratio RAF SP directly. 
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f_6.3 
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The scheme has a drawback to do with the system dynamics. One notes that the fuel flow rate 

will always change in advance of the air adjustments, simply because there will be dynamic 

lag of the actual air flow as the ratio controller moves the air flow setpoint in response to the 

measured fuel flow variations. This situation is described as “fuel leads air in” and “fuel leads 

air out”. The latter situation is safe, because air will temporarily be in excess. However, the 

“fuel leads air in” is dangerous, because the implication is that there will temporarily be a 

deficit of oxygen. 

 

 

6.1.3  Tasks 
 

 

(1) Start the simulation with the original settings as in section 6.1.1. Let the system reach 

steady-state. The individual loops are selected using the column of numbered buttons on 

the left of the diagram below (f_6.4). Then the settings pertaining to that loop are shown 

in the top part of the same diagram. Starting by selecting the supervising loops (6,5,4), 

switch each to MANUAL. Loops 1,2 and 3 will automatically switch to MANUAL also. 

Step the boiler feed water valve, by pressing on the coloured part of the MV scrollbar of 

loop 1, above or below the current cursor position. Explain what happens. Before it goes 

too far, give the valve a reverse step. Explain what happens. 
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f_6.4  

 

(2) Rescue the situation in (1) by switchting loop 4, the boiler drum level LC, to AUTO L. 

This will switch the BFW FC to AUTO R, as a slave in the cascade, and bring the level 

to setpoint. Examine the quality of this control. 

 

(3) Select the air flow FC, loop 3. Switch it to auto with a local setpoint (AUTO L). Step 

the air flow setpoint a small amount by pressing rapidly on end-arrow of the yellow SP 

scrollbar, about 3 or 4 times. Explain what you see. 

 

(4) Go to loop 6, the AC for %O2 control. Switch it to AUTO L. It will take over loop 3 as 

a slave. Check that %O2 is brought to its setpoint. Now step the %O2 setpoint. Is the 

tuning of this cascade adequate? 

 

(5) Select loop 2, the FC for fuel. Switch it to AUTO L. Step the fuel flow setpoint a small 

amount by pressing a few times on one of the arrows on the SP scrollbar. Explain what 

happens. You can recue the situation by switching loop 5, the PC for poiler drum 

pressure, to AUTO L. The AC for %O2 control is already on AUTO L, so the %O2 is 

taken care of.  

 

(6) Select loop 5, which is the steam drum pressure PC. Step the pressure setpoint a small 

amount by pressing a few times on one of the end-arrows of the pressure setpoint (SP). 

Observe the response. Note that the %O2 in the flue gas becomes quite upset. There are 

large dips below setpoint. 

 

(7) Unsettled behaviour in (6) is caused by the sequence of reactions from the pressure PC 

to the fuel FC to theAir/Fuel Ratio PLUS to the resultant %O2, which is again reacted to 

by the %O2 AC via the air FC. Probably the responses of the sequence of controllers 

need to be slowed down from one to the next. Attempt to improve the overall tuning of 

this system.  
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6.1.4  Code extracts 
 

  Cascaded control loop interlocks and calculation of control actions: 
 
 if (theApp.FIRSTLOOP) 

 { 

  //    .  (omitted code) 
  //    . 

  // Set out first AutoLocal / AutoRemote selections 
  for (j=0; j<nBPL; j++) b_AutoRemote[j] = FALSE;   // Reset all remotes 

  for (i=0; i<nBPL; i++) 

  { 
   if ( b_AutoLocal[i] ) 

   { 
    for (j=0; j<nBPL; j++) 

    { 

     if (LoopTable[i][j] < 0) b_AutoLocal[j] = FALSE; 

     if (LoopTable[i][j] > 0) b_AutoRemote[j] = TRUE; 

    } 

   } 
  } 

 
  theApp.FIRSTLOOP=0; 

 } 

 
 while (((theApp.t-tlast_BPL)>=dtBPL) || (theApp.b_FORCE_STEP)) 

 { 
  if (!theApp.b_FORCE_STEP) 

  { 

   tlast_BPL += dtBPL;     // must catch up by looping more than once if necessary 
  } 

  else 
  { 

   tlast_BPL = theApp.t;  // to SYNCHRONISE manual moves : b_FORCE_STEP set TRUE on StepMode button 

   theApp.b_FORCE_STEP = FALSE; 
  } 

 

  // Interpret present values 

 

  // Loop03: Lboiler by Fbfw_sp1 
  x[ 3] = m_Lboiler; 

  r[ 3] = m_Lboiler_sp; 
  m[ 3] = m_Fbfw_sp1;  // was centred to hold the nominal variable in mid-range for plotting 

  if (b_AutoLocal[3]) m_Fbfw_sp = __max(__min(m_Fbfw_sp1 + m_Fsteam, max_Fbfw),0); 

 
  // Loop05: Ao2 by Fair_sp1 

  x[ 5] = m_Ao2; 
  r[ 5] = m_Ao2_sp; 

  m[ 5] = m_Fair_sp1;  // was centred to hold the nominal variable in mid-range for plotting 

  if (b_AutoLocal[5]) m_Fair_sp = __max(__min(m_Fair_sp1 + m_Rairfuel_sp*m_Ffuel, m_Fair_topclip), m_Fair_botclip); 
 

 
  // Loop00: Fbfw by Vbfw 

  x[ 0] = m_Fbfw; 

  r[ 0] = m_Fbfw_sp; 
  m[ 0] = m_Vbfw; 

  // Loop01: Ffuel by Vfuel 
  x[ 1] = m_Ffuel; 

  r[ 1] = m_Ffuel_sp; 

  m[ 1] = m_Vfuel; 
  // Loop02: Fair by Vair 

  x[ 2] = m_Fair; 
  r[ 2] = m_Fair_sp; 

  m[ 2] = m_Vair; 

  // Loop04: Pboiler by Ffuel_sp 
  x[ 4] = m_Pboiler;   

  r[ 4] = m_Pboiler_sp; 
  m[ 4] = m_Ffuel_sp; 

 

 
  for (i=0;i<nBPL;i++) 

  { 
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   if ((!b_AutoLocal[i]) && (!b_AutoRemote[i])) 

   { 
    // Not on - reset to starting values 

    if (i==3) {m[i] = m_Ffuel-m_Fsteam;}    // for bumpless start 
    if (i==5) {m[i] = 0;}     // for bumpless start  

    r2[i] = r1[i] = r0[i] = x[i];  

    x2[i] = x1[i] = x0[i] = x[i];  
    m2[i] = m1[i] = m[i]; 

   } 
   else 

   { 

    // On AUTO (Local or remote) : calculate BPL action! 
    // first cascade stack 

    r2[i] = r1[i];  
    r1[i] = r0[i];  

    r0[i] = r[i];  

    x2[i] = x1[i];  
    x1[i] = x0[i];  

    x0[i] = x[i];  
    m2[i] = m1[i];  

    m1[i] = m[i];  

 
    // Action: 

    m[i] = ( - a1[i] * m1[i] 
          - a2[i] * m2[i] 

       + b0[i] * r0[i] 

       + b1[i] * r1[i] 
       + b2[i] * r2[i] 

       - c0[i] * x0[i] 
       - c1[i] * x1[i] 

       - c2[i] * x2[i] ) / a0[i]; 

   
    // back to actual variables 

    switch (i) 
    { 

   

    case  0: // Loop00: Fbfw by Vbfw 
     m_Vbfw = __max(__min(m[0],max_Vbfw),0); 

     break; 
    case  1: // Loop01: Ffuel by Vfuel 

     m_Vfuel = __max(__min(m[1],max_Vfuel),0); 

     break; 
    case  2: // Loop02: Fair by Vair 

     m_Vair = __max(__min(m[2],max_Vair),0); 
     break; 

    case  3: // Loop03: Lboiler by Fbfw_sp1 

     m_Fbfw_sp1 = __max(__min(m[3],max_Fbfw_sp1),min_Fbfw_sp1); 
     break; 

    case  4: // Loop04: Pboiler by Ffuel_sp 
     m_Ffuel_sp = __max(__min(m[4],max_Ffuel_sp),0); 

     break; 

    case  5: // Loop05: Ao2 by Fair_sp1 
     m_Fair_sp1 = __max(__min(m[5],max_Fair_sp1),min_Fair_sp1);  // special clipping; 

     break; 
    default: 

     break; 

    } 
   } 

  } 
 } 

 



66  Applied Process Control 

 

 

 

6.2  FFA – Furnace fuel and air cross-limiting 

control 
 

 

An interlocked air/fuel ratio control system which ensures that air 

leads fuel in and fuel leads air out 
  

 

f_6.5  

 

 

6.2.1  Typical settings 
 

 

 

TC for  FC for  FC for  PC for  FPROCESS = 55 

TFURNACE  FFUELSP   FAIRSP  PFUELSP  RA/F = 1 

by FFUELSP   by VFUEL  by VAIR  by VFUEL   

KC=0.8  KC=1.0  KC=1.0  KC=1.1   

I=70   I=20   I=20   I=30   
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D=0   D=1.0  D=1.0  D=1.0     

α=0.1   α=0.1   α=0.1   α=0.1     

TFURNACE=60 FFUELSP=45  FAIRSP=45  PFUELSP=10    

LOCAL   REMOTE  REMOTE  LOCAL    

 

 

 

 

6.2.2  Theory 
 

 

The dynamic lag of the air flow controller in the direct ratioing of air to fuel in section 6.1 

was seen to cause a temporary drop in the air/fuel ratio when the fuel flow increased. The 

cross-limiting scheme shown below (f_6.6) overcomes this problem by using both measured 

flows to ensure a minimum air/fuel ratio at all times.  
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The cross-limiting control scheme is best explained using an example. Consider the situation 

where the system is initially steady maintaining the correct air/fuel ratio. Now TC1 demands 

an increase in fuel in order to maintain its setpoint temperature. This demand will be ignored 

at the LS, because the desired fuel will be higher than the allowed fuel (which initially will be 

the actual fuel). However, the HS will pass this higher demand rather than the actual fuel, so 

after multiplication by the air/fuel ratio, the air flow will start to rise to match the desired fuel. 

As the actual air flow rises, following its controller setpoint, the cut-off limit (allowed fuel) 

arriving at the LS rises in proportion, gradually allowing the fuel setpoint to increase, and 

ultimately the actual fuel will rise to the desired fuel. One notes that “air leads fuel in”, which 

is a safe action. Conversely if one follows the sequence of events when desired fuel decreases, 

it will be found that “air follows fuel out”, which is again a safe action. So in any transient, 
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there will temporarily be a safe excess of air, which will return to the correct ratio when the 

process settles down again. 

 

A furnace control scheme as above may also have an additional safety feature to prevent 

“flame-out”. It is understandable that the fuel valve could swing to the shut position 

temporarily, depending on the controller gain, as it seeks to hold the flow setpoint. This would 

cause an irreversible situation where the flame is lost. As the valve moves open again, 

uncombusted fuel will accumulate in the furnace box and ducting, and may explode all at one 

should a source of ignition be found eg. at a neighbouring furnace sharing the same ducting. 

Thus it is necessary to ensure a minimum fuel flow. This can be done using an override 

controller which senses the fuel pressure just before the burner nozzle. The figure f_6.7 below 

shows an arrangement where an override pressure controller maintains a minimum pressure, 

and implicitly a flow. 

 

f_6.7
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6.2.3  Tasks 
 

 

(1) Start the simulation with the original settings as in section 6.2.1. Let the system reach 

steady-state. The individual loops are selected using the column of numbered buttons on 

the left of the diagram below (f_6.8). Then the settings pertaining to that loop are shown 

in the top part of the same diagram. Start by selecting the supervising loop TC (4), and 

the over-riding loop PC (3), and switching them both to MANUAL.  In this case the FC 

loops 1 and 2 will automatically switch from remote setpoint AUTO R to local setpoint 

AUTO L. Step the fuel flow setpoint by pressing on the coloured part of the SP 

scrollbar of loop 1, above or below the current cursor position. Explain what happens.  
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f_6.8  

 

(2) With the air flow control loop 2 set to local setpoint, AUTO L, adjust the air flow 

setpoint by pressing on the arrowheads of the SP scrollbar of loop 2, in order to bring 

the air/fuel ratio back to 1.0. 

 

(3) Select the TC control loop (4), and switch this controller to AUTO L. The associated 

cross-limiting algorithm takes over the two flow controllers on remote (AUTO R). Wait 

for the system to settle down. Observe the trace of the actual air/fuel ratio, which is 

shown at 10 times its magnitude as “A/F *10”. What is its value? Make some big steps 

in the the process flow-rate through the furnace, by pressing on the coloured parts of the 

associated scrollbar. Can you get deviations of the actual air/fuel ratio below the 

setpoint? How well is the furnace exit temperature maintained? 

 

(4) Perform setpoint steps in the furnace exit temperature and the air/fuel ratio. Comment 

on the responses, noting also where the air/fuel ratio falls below setpoint. 

 

(5) With both the override PC and TC still on AUTO L, reduce the minimum pressure 

setpoint as far as possible. Explain the response of lack thereof. Now start increasing the 

minimum pressure setpoint. Can you explain the effect? Repeat this test after reducing 

the derivative time D  to zero. Next, increase the minimum pressure setpoint so that it is 

well above the current measured pressure. Explain what happens. Is the furnace exit 

temperature maintained? What about the air/fuel ratio? 

 

 

 

6.2.4  Code extracts 
 

  On each time-step, calculation of the control action for each of the nFFA = 4 control loops: 
 
  // Interpret present values 

 

  m_Ffuel_highest = __max(m_Ffuel_desired,m_Ffuel); 
  m_Ffuel_allowed = m_Fair/(m_Rairfuel_sp+SMALL); 

 
 

  // Loop03: Tprocess by Ffuel_desired 

  x[ 3] = m_Tprocess; 
  r[ 3] = m_Tprocess_sp; 

  m[ 3] = m_Ffuel_desired;  
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  if (b_AutoLocal[3]) 

  { 
   m_Ffuel_sp = __max(__min(__min(m_Ffuel_desired,m_Ffuel_allowed), max_Ffuel),0); 

   m_Fair_sp  = __max(__min(m_Ffuel_highest*m_Rairfuel_sp, max_Fair),0); 
  } 

 

  // Loop00: Ffuel by Vfuel1 
  x[ 0] = m_Ffuel; 

  r[ 0] = m_Ffuel_sp; 
  m[ 0] = m_Vfuel1; 

  // Loop01: Fair by Vair 

  x[ 1] = m_Fair; 
  r[ 1] = m_Fair_sp; 

  m[ 1] = m_Vair; 
  // Loop02: Pfuel by Vfuel2 

  x[ 2] = m_Pfuel; 

  r[ 2] = m_Pfuel_sp; 
  m[ 2] = m_Vfuel2; 

 
 

  for (i=0;i<nFFA;i++) 

  { 
   if ((!b_AutoLocal[i]) && (!b_AutoRemote[i])) 

   { 
    r2[i] = r1[i] = r0[i] = x[i];  

    x2[i] = x1[i] = x0[i] = x[i];  

    m2[i] = m1[i] = m[i]; 
   } 

   else 
   { 

    // On AUTO (Local or remote) : calculate FFA action! 

    // first cascade stack 
    r2[i] = r1[i];  

    r1[i] = r0[i];  
    r0[i] = r[i];  

    x2[i] = x1[i];  

    x1[i] = x0[i];  
    x0[i] = x[i];  

    m2[i] = m1[i];  
    m1[i] = m[i];  

 

    // Action: 
    m[i] = ( - a1[i] * m1[i] 

          - a2[i] * m2[i] 
       + b0[i] * r0[i] 

       + b1[i] * r1[i] 

       + b2[i] * r2[i] 
       - c0[i] * x0[i] 

       - c1[i] * x1[i] 
       - c2[i] * x2[i] ) / a0[i]; 

   

    // back to actual variables 
    switch (i) 

    { 
   

    case  0: // Loop00: Ffuel by Vfuel1 

     m_Vfuel1 = __max(__min(m[0],max_Vfuel),0); 
     break; 

    case  1: // Loop01: Fair by Vair 
     m_Vair = __max(__min(m[1],max_Vair),0); 

     break; 

    case  2: // Loop02: Pfuel by Vfuel2 
     m_Vfuel2 = __max(__min(m[2],max_Vfuel),0); 

     break; 
    case  3: // Loop03: Tprocess by Fbfw_desired 

     m_Ffuel_desired = __max(__min(m[3],max_Ffuel),0); 

     break; 
    default: 

     break; 
    } 

   } 

  } 
 

  m_Vfuel1_DISPLAY = m_Vfuel1; 
  m_Vfuel2_DISPLAY = m_Vfuel2; 
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  if (b_AutoLocal[3]) 
  { 

   m_Vfuel =__max(m_Vfuel1,m_Vfuel2); 
   m_Vfuel1 = m_Vfuel; // anti-windup : external reset 

   m_Vfuel2 = m_Vfuel; // anti-windup : external reset 

  } 
  else 

  { 
   { 

    if ((b_AutoLocal[0]) && (!b_AutoLocal[2])) 

    { 
     m_Vfuel = m_Vfuel1; 

     m_Vfuel2 = m_Vfuel;  // for bumpless start 
    } 

    else 

    { 
     if ((!b_AutoLocal[0]) && (b_AutoLocal[2])) 

     { 
      m_Vfuel = m_Vfuel2; 

      m_Vfuel1 = m_Vfuel;  // for bumpless start 

     } 
    } 

   } 
  } 

 } 

 

 

 

 

References 
 

Smith, C.A. and A.B. Corripio (1997) Principles and Practice of Automatic Process Control, 

2nd Edition, John Wiley & Sons, 204. 





 73 

 

 

 

 

Chapter 7   Simulations - MIMO 

closedloop and DMC 

 
.  

 

 

7.1  A note on Dynamic Matrix Control 

 
Dynamic Matrix Control is a form of Model Predictive Control (MPC) which uses a step-

response convolution model for prediction of the effect of possible control actions. Since the 

early work of Cutler and Ramaker, (1979) and Garcia and Morshedi (1984), these controllers, 

particularly DMC, have proved their worth in many industrial applications. 

 

Dynamic Matrix Controllers have become popular in industry because they are easily 

understood and set up, can handle dead-time, inverse response and constraints optimally, and 

are particularly useful for multivariable systems in which there is cross-interaction between 

inputs and outputs. Cross-interaction becomes problematic where the response times are 

similar, making it difficult to decouple the system with individual loops. Distillation columns 

are typical examples of systems where such interaction exists, but there are many other 

process operations which present similar problems for the alternative multiple PID loop 

approach. The DMC algorithm is able to time and coordinate control “moves” on the 

manipulated variables (MV’s) in such systems to simultaneouly keep all CV’s (controlled 

variables) on setpoint, accounting too, in a feedforward sense, for measured disturbance 

variables (DV’s). Should constraints on the MV’s, CV’s, or any combinations thereof prevent 

the setpoints from being reached, the closest possible approach to the setpoints will be made 

according to the relevant weightings applied to the setpoint deviations. 

 

The DMC algorithm is a particular form of MPC (Model Predictive Control), which belongs 

to the family of IMC (Internal Model Control). In order to anticipate what combination of 

moves will minimise the performance objective up to a moving time horizon (f_7.1), a model 

relating outputs to inputs is required. The particular model for DMC is based on measured 

process step-responses, and it is the “Dynamic Matrix” which scales and shifts these to build 

the complete response for a series of “moves”.  The same method is used to account for the 

contribution of past moves to the future output. The ease of building this model is one feature 

that has made DMC popular. 
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f_7.1
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Consider a 2-input, 2-output system, for example a distillation column (f_7.2) in which reflux 

flow (R) and reboiler duty (Q) cause variations in the Top Temperature (TT) and Bottom 

Temperature (TB).  If the system is steady and we make a step in R, we shall get two separate 

responses for TT and TB. Likewise, we shall get distinct responses for TT  and TB  for a step in 

Q.  This is shown graphically in f_7.3, for unit positive steps in R and Q.  Note that only 

changes in TT and TB from their original steady values are considered. 
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f_7.3
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Here the sub-matrices Bi have the form, eg. 
11 12

5

21 22 5

b b
B

b b

 
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 

, where the bij are the 

corresponding deviations of the outputs from their initial values, as a result of the unit input 

steps. 

 

For the input vector m (R,Q), now consider not just one step but a series of control vector 

moves m1, m2, ... ,mM, over a sequence of M time steps.  If the system is linear, we can 

construct the resultant sequence in x (TT,TB) over P intervals by shifting, scaling and 

superposing the above step responses in the convolution model:  
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                                               (7.1)                

 

We represent this convolution model for future outputs as x = Bm, where the “matrix of 

matrices” B is generally known as the Dynamic Matrix.  Now defining the P x M matrices: 

 

(Steady-state response 

achieved M time intervals 

ahead with M < P ) 
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and the present measurements (P) and past inputs (M): 

 

0

0

0

0

0

0

MEAS

MEAS

MEAS

MEAS

MEAS

MEAS

 
 
 
 

  
 
 
  
 

x

x

x

x

x

x   and  

1

2

3

4

0

M

M

M

M

PAST

 

 

 

 











 
 
 
 

   
 
 
  
 

m

m

m

m

m

m          (7.4-7.5) 

 

then the “open-loop” response, corrected for present model offset, is 

 

xOL  = x0MEAS + [BOL  – B0] mPAST           (7.6)                  

 

and the “closed loop” response up to the P-step horizon is obtained by including the 

contribution of the future control input steps m : 

 

xCL  = xOL + B m             (7.7) 

 

On each time-step it is possible to compute the future open-loop response xOL based on past 

inputs and the present output.  Thus the control problem to achieve the desired trajectory xCL 

amounts to finding suitable m as in figure f_7.4 below. 
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f_7.4
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A constrained multivariable Linear Dynamic Matrix Controller (LDMC), based on the linear 

programming solution of Chang and Seborg (1983), and the formulation of Morshedi et al 

(1985), has been developed as follows: 

 

Define xSP to contain a sequence of set-points for the outputs up to the time horizon P steps 

ahead, so that the open loop error may be calculated in advance as xOL – xSP. Then the closed-

loop error for a control move sequence m will be  

 

eCL = xCL – xSP              (7.8) 

   

       = xOL – xSP + B m             (7.9) 

 

     = eOL + B m             (7.10)                                        

  

Generally only a limited sequence of N  moves (m*) are optimised (N << P).  This is 

equivalent to setting mk = 0  for  k  >  N ,  or alternately replacing B  with the non-square  P 

x N  matrix: 
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          (7.11) 

 

Then 

 

eCL =   eOL + A m*                                                  

 

Now define a quadratic objective function, dependent only on the strategy m*.  

 

J(m*)  = (eCL )  T W  (eCL )  +   (m*)T (m*)   

              = (eOL + A m*)T   W  (eOL + A m* )  +   (m*)T (m*)    (7.12) 

 

By minimising J with respect to  m*, we are able to find an optimal sequence of control 

moves, m* , which achieve “minimum” deviation from the set-point trajectory up to the time 

horizon P, for “minimum” control move effort. It is the weights in the matrices W and , 

generally diagonal, which determine the extents to which deviations of either parameter are 

discouraged. Higher “gains” will generally be associated with higher values in W than . The 

values in  cause “move suppression”.  Note that the diagonal weights act on the squared 

deviations and moves. Thus, in general, a weight would be increased four times to reduce the 

associated deviation or move to half of its previous value. 

 

It is easily shown that differentiation of J with respect to the elements of m*, and setting the 

result to the zero vector, yields the unbounded quadratic optimum control move strategy 

 

mUQO =  - [AT W A +   ]-1 AT W  eOL           (7.13) 

 

In our solution we now wish to account for the constraints of the system. These will include 

the ranges over which the the manipulated variables m can be moved, where 

 

m  =  L m*   +  mINIT            (7.14) 
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and allowed ranges for the controlled variables x. A global method which will seek the 

minimum of J within these constraints requires Quadratic Programming, and is quite 
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computation-intensive. Here we rather follow the method of Morshedi et al (1985), and seek 

that combination of control moves which will get us as close as possible to mUQO, yet keep 

us within the constraints. This re-definition of the problem then allows us to use Linear 

Programming to handle the constraints. Although it does not guarantee us the quadratic 

optimum, we expect to be close (and identical within the constraints), and thus we shall call 

this result mBQO  (bounded quadratic optimum). Define the residuals 

 

r  =  mBQO  - mUQO            (7.16) 

 

In order to allow minimisation of the absolute differences, we represent r using two non-

negative quantitities (one of which will be forced to zero in the LP solution): 

 

r  =   [ r+  -  r– ]             (7.17) 

 

Then the Linear Programming Problem is formulated as follows: 

 

Objective function:   wT [ r+ +  r– ]  (to be minimised)    (7.18) 

 

where w is a weighting vector, possibly chosen as below to improve the approach to mUQO, 

by following the steepest descent of J (Mulholland and Prosser, 1997) subject to the  

constraints: 
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[ ]                                       
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[ ]         
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[ ]:                       
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 [ ]:                  
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Output limits  
    A r r x x A m      (7.25) 

 [ ]                                    
MAX OL UQO

 
    A r r x x A m      (7.26) 

 

After solving for r+ and  r–, one of which will be zero in each pair, the necessary input control 

actions are obtained from 

 

mBQO  =   [ r+ -  r– ]  +  mUQO          (7.27) 

 

mBQO contains optimal values for the limited sequence of steps m1 , m2 , ... ,mN , but it is 

only the first step m1 which is actually implemented, before the entire optimisation process 

is repeated on the next time-step. The effect of optimising more than one step is that the first 

step can be severe (overshooting), with subsequent steps correcting the steady-state response.  

 

In equation 7.27 it is noted that if  mBQO  cannot reach mUQO (owing to constraints), then 

the LP will minimise the weighted sum of the deviation of each manipulated variable move 



80  Applied Process Control 

 

from its unconstrained optimal value. This is not the same as minimising the quadratic 

objective function given in equation 7.12: 

 

J(m*)  =  (eOL + A m*)T   W  (eOL + A m* )  +   (m*)T (m*)    (7.28) 

 

The weights in W, specified to minimise the closed-loop error eCL = eOL + A m*, will be 

found to have no effect in the constrained situation, with manipulated variables apparently 

making no attempt to find a better position on the constraints to minimise (eCL)2 .The 

following procedure is used to deal with this situation, bringing the solution closer to the full 

QDMC treatment (Mulholland and Prosser, 1997):  

 

In a constrained situation we would see a steady-state error 

 

eSS  =  - ASS  mSS            (7.29) 

 

where mSS is nominally a single unconstrained move that could be made, ultimately giving a 

steady-state response which would eliminate this error. The small ASS matrix clearly has the 

last point of each response – ie. it is BM. To be consistent with the unconstrained criterion, viz. 

minimisation of J, we now really want to minimise 

 

JCON  =  eSS
T W eSS  =  mSS

T
  ASS

T W ASS  mSS       (7.30) 

 

(To use W we have expanded eSS , ASS and mSS by repetition for all points up to the horizon). 

This has a gradient with respect to mSS which is 2 ASS
T W ASS  mSS. Recognising that 

mUQO - mBQO  will give a fair estimate of  mSS , we propose therefore to weight the 

constrained manipulated variables approach to their optimum values according to the strength 

(positive or negative) they have in changing the value of JCON. Thus we take w in equation 7.6 

as 

 

w  =  | ASS
T W ASS (mUQO - mBQO ) |         (7.31) 

 

With w adjusted on each-time-step like this, it is understandable that the solution could start to 

to oscillate between two constrained points. Thus the computed values of w are filtered on 

each-time-step to slow down the transients.  
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7.2  DMC – MIMO Dynamic Matrix Control of a 

partitioned fractionator 
 

 

Understanding and tuning this popular predictive controller based on 

measured process step responses: 
 
 

f_7.5  

 

 

 

7.2.1  Typical settings 

 
    Weights:   Constraints: 

TA SP= 19.795      dev TA =  1        max R = 100  Axis Length = 28800 

TB SP= 41.646  dev TB  = 1  max Q= 50   Acceleration = 300 

R  = 68.37   move R = 0.1  max TA = 50  Log Interval =  600 

Q  = 14.20   move Q = 2.0  max TB  = 100  Step Interval = 600 

F  = 61.48          %dev from R/Q = 5  

  

 

7.2.2  Theory 
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The particular example considered in this application is the control of temperatures at two 

points in a partitioned distillation column. This is akin to “dual-composition control”, and is 

achieved by manipulating the reflux flow R, and the reboiler duty Q. To handle pressure 

fluctuations, it is actually the difference between the temperature at the considered point, and 

that at the top of the column that are considered, viz. TA=TA-TTOP and TB=TB-TTOP . Here 

“A” is just above a dividing wall (separating feed side from sidestream-offtake side), and “B” 

is just below this dividing wall. This type of partitioned column is used to provide a middle-

cut without having to use two columns, and the partition reduces the short-circuiting of feed 

to the offtake. 

 

If the system is steady and we make a step in R, we shall get two separate responses TA and 

TB. Likewise, we shall get distinct responses for TA and TB for a step in Q.  This is shown 

graphically in the figure below (f_7.6), for unit positive steps in R and Q.  Note that only 

changes TA and TB from the original steady temperature gaps are considered. These step 

response measurements are then used to construct the DMC controller, as discussed in 

sdection 7.1. 

f_7.6  
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Below is seen the tuning panel for the DMC controller (f_7.7). Against “dTA” and “dTB” are 

the weights on the deviations of the variables TA and TB from their setpoints. Actually, the 

objective function requires that these deviations squared, then summed with their appropriate 

weights (and the move suppression terms), be minimised. The weights against “R” and “Q” 

are the “move suppression” weights on these MV’s. As these weights are increased, the size 

of each “move” (step) in the relevant MV, squared and then multiplied by the relevant weight,  

increasingly adds a penalty to the objective function. Note that the move suppression weights 

do not penalise the overall movement of the MV’s, rather just the rate at which they move.  
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f_7.7  

 

Also seen on the tuning panel is a setting “moves” for the number of moves into the future to 

be optimised. Increasing this is one way of making a DMC more vigorous. With one move it 

must minimise setpoint deviations over the whole horizon, and it is therefore obliged to be 

conservative. With two moves, the first can be much stronger, causing overshoot, because the 

second move is being relied on to correct the future response back towards the setpoint. In any 

case, it is only the first move that is actually implemented, before the system moves forward 

one time-step, and the entire optimisation computation is repeated.  

 

The DMC tuning panel also allows the setting of a variable “damp” between 0 and 1. This is a 

recent enhancement that handles a limitation of the constrained optimisation technique used in 

LDMC, the particular form of DMC used here. The theoretical background to this 

enhancement is discussed in section 7.1, so will simply be outlined here: 

 

LDMC has the advantage that it is robust and efficient, making use of a Linear Programming 

solution rather than the Quadratic Programming solution which is often used (QDMC). A 

difference arises when the solution is constrained. The QP solution would still attempt to 

minimise the original quadratic objective function, whereas the LP solution switches to 

minimising the (weighted) “distance” of the MV’s from those values which would actually 

achieve the minimum of this function. The difference is quite subtle, and only noticed in 

particular circumstances. However, to make the present LDMC behave like QDMC, a recent 

enhancement provides automatic adjustment of the LP weights on these MV distances, to 

recognise the contribution of each MV in minimising the quadratic objective function. These 

weights cannot be changed rapidly, as this could induce oscillation in the constrained solution. 

Thus “damp” is used to slow down the rate of change of the LP weights. Note that LDMC and 

QDMC of course produce identical solutions when the quadratic objective function has its 

minimum within all of the constraints. 

 

In the case of the separation of 1-octene as the middle-cut from a mixture of olefins, studies 

have shown that R and Q cannot be more than about 5% off a line representing proportionality 

between R and Q, else conditions in the column cannot be maintained – ie. plates boil empty, 

or no vapour reaches the top to provide reflux and downflow. This is because the reflux flow 

R largely determines the cooling duty at the top of the column. Thus in addition to the usual 

upper and lower limits specified for R, Q, TA and TB, this application also has angled 

constraints 5% above and 5% below  the appropriate line of proportionality. 
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f_7.8  

 

The application has a “Settings” button which is seen above (f_7.8). This gives access to a 

window for setting the various constraints as below (f_7.9). Press “Update” to implement the 

new constraint arrangement without leaving the window, or “OK” to implement and leave the 

window.   

 

f_7.9  

 

It is also possible to apply a “ramp” constraint to each MV. The effect is to limit the size of 

positive or negative changes in the MV’s which are made on each time-step of the DMC 

algorithm. If at any point in time the defined constraints (MV, CV, combinations thereof, or 

ramp) are found to be restraining the controller,  the “Constrained ” block shown below 

becomes highlighted in pink.  The “norm” of the gap, between allowed MV values and those 

actually used, is indicated as the “Gap” parameter above. It is still planned that “Con” will 

show which (one) of the constraints is responsible when constrained. The “No Solution” 

block becomes highlighted if there is no feasible solution in the DMC algorithm – ie. no 

combination of MV values can be found which will satisfy all constraints. This typically 

occurs when the DMC is started outside of the constraints, and it cannot get within the 

constraints within one step. Then MV values are just left at their last settings. You can 

experiment to establish the effect of the constraints by un-checking the box in “Constrained 

”, which will cause all constraints to be ignored (f_7.10). 
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f_7.10   

 

 

 

7.2.3  Tasks 
 

 

(1) With the DMC on “Auto”, let the system reach steady-state. Then switch it to “Manual”, 

and examine the open-loop responses as follows. Step the reflux R up by about 10. 

Observe the responses until steady-state, and note that TA has an inverse response, 

something that would cause serious difficulty in PID control. Now step the reboiler duty 

Q by about -2. Note the different speeds of the TA and TB responses. 

 

(2) Switch the DMC back on “Auto”. Press “Reset” to start at the normal operating point. 

Step up the TA setpoint by about 10. Why does dTB  deviate from setpoint? In fact, it is 

likely that neither TA nor TB finally go to setpoint. See if a manipulation of the 

weights on TA and TB setpoint deviations improves the situation, or allows you to 

manipulate the relative sizes of the constrained deviations. Here we are making use of 

the enhancement mentioned at the end of section 7.1. The LP weights will alter to 

favour that MV which can make the biggest contribution in minimising the objective 

function. If they alter too rapidly the solution could become oscillatory. In this case, see 

the effect of increasing the “damp” parameter. When this reaches 1.0, the LP weights 

remain at their last value – ie. further changes by the algorithm are completely damped 

out. 

 

(3) Uncheck the box in “Constrained ”, to remove the constraints, and see how setpoints 

are exactly attained. Check the box again to see the solution go back to the constrained 

version. 

 

(4) Change the setpoint of TB close to its constrained value. See the solution become 

unconstrained as R/Q ends within the 5% margin constraint on this ratio. 

 

(5) Do some further manipulations of the move suppression weights on Q and R (and 

possibly the setpoint deviation weights on TA and TB) to determine whether you can 

get a variation in the speed at which the system moves towards the new setpoint after a 

step. It will be easier to detect changes if you turn the constraints off. Recall that the 

weights in W and , which are diagonal, act on the squared deviations and moves. Thus, 

in general, a weight would be increased four times to reduce the associated deviation or 

move to half of its previous value. 
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(6) Repeat the setpoint step test in (5) to determine the effect of increasing the the number 

of optimised moves (“moves”) from 1 to 2 and to 3. 

 
 (7) The column feed F is included as a DV (disturbance variable) in the DMC algorithm – 

ie. there will be feedforward compensation for feed flow changes. Test this out. 

 
 
 

7.2.4  Code extracts 
 
 
  The following recalculation of the DMC gain matrix is performed at the “Initialise” stage, 

and each time that any one of the weights W1, W2, L1, or L2 is changed: 
 
 // Load Wdmc  (weights on deviation-squared from setpoint) 
 for (i=1;i<=Ndmc;i++) for (ii=1;ii<=Rdmc;ii++) 
 { 
  j = (i-1)*Rdmc+ii; 
  if (ii==1) Wdmc(j,j)= W1;   // dTA  deviation from SP // so can weight each controlled variable differently 
  if (ii==2) Wdmc(j,j)= W2;   // dTB  deviation from SP 
 } 
 // Load Ldmc  (weights on control-move-squared) 
 for (i=1;i<=Mdmc;i++) for (ii=1;ii<=Pdmc;ii++) 
 { 
  j = (i-1)*Pdmc+ii; 
  if (ii==1) Ldmc(j,j)= L1;  // REFLUX FLOW MOVE // so can weight each controlled variable differently 
  if (ii==2) Ldmc(j,j)= L2;  // REBOILER DUTY MOVE 
 } 
 // Load Bss (ignores possibility of integration) 
 cMatrix Bss; 
 Bss.Init(Rdmc,Pdmc); 
 for (i=1;i<=Rdmc;i++) 
 { 
  for (j=1;j<=Pdmc;j++) 
  { 
   rcol=(j-1)*Rdmc+i; 
   Bss(i,j)=resp(Ndmc,rcol); 
  } 
 } 
 cMatrix temp1,temp2; 
 temp1.Init(Rdmc,Rdmc); 
 for (j=1;j<=Rdmc;j++) temp1(j,j) = Wdmc(j,j);  // only the first time step for the output states 
 temp2 = temp1 * Bss; 
 temp1 = ~Bss;    // transpose 
 phi = temp1*temp2; // will be used for sum of square setpoint deviation error  
 
 // Set up the DMC gain matrix............... 
 // Kdmc = inv[B'WB +L] B'W 
 BT= ~B;  // transpose 
 BTWBPL = BT*Wdmc*B + Ldmc; 
 BTWBPLi=BTWBPL.Inv();   // inversion 
 BTW = BT*Wdmc; 
 Kdmc = BTWBPLi*BTW; 
 
 
 

  The following code is executed on every time-step of the DMC algorithm: 
 
 if ((theApp.FIRSTLOOP) | (m_nopt != nopt_last))    // have to sart 'w' at default in this case 
 { 
  w.Init(m_nopt*Pdmc,1);        
  for (i=1;i<=m_nopt;i++) for (j=1;j<=Pdmc;j++)  
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  {            
   // fractions of eng value      
   if (j=1) w((i-1)*Pdmc+j) = 1.0/Rdatum;   
   if (j=2) w((i-1)*Pdmc+j) = 1.0/Qdatum;   
  } 
 } 
 
 if ((m_W1 != W1_last) || (m_W2 != W2_last) || (m_L1 != L1_last) || (m_L2 != L2_last)  
                    || (m_nopt != nopt_last)  || (m_cdamp != cdamp_last)) 
 { 
  W1 = m_W1; 
  W1_last = W1; 
  W2 = m_W2; 
  W2_last = W2; 
  L1 = m_L1; 
  L1_last = L1; 
  L2 = m_L2; 
  L2_last = L2; 
  nopt = m_nopt; 
  nopt_last = nopt; 
  cdamp = m_cdamp; 
  cdamp_last = cdamp; 
  Initialise(TRUE,FALSE);   //PARTIAL 
 } 
 
 if (theApp.FIRSTLOOP) 
 { 
  mlast(1) = RefluxMassFlow;   //[t/h] 
  mlast(2) = ReboilerDuty;   //[MW] 
  mlast(3) = FeedMassFlow;       //[t/h] 
  lasterr = -9999.0;  // signal 
  mlastinterp(1) = RefluxMassFlow;  //[t/h] 
  mlastinterp(2) = ReboilerDuty;   //[MW] 
  mlastinterp(3) = FeedMassFlow;  //[t/h] 
  theApp.FIRSTLOOP=0; 
 } 
 
 while (((theApp.t-tlast_DMC)>=dtDMC) | (theApp.b_FORCE_STEP)) 
 { 
  if (!theApp.b_FORCE_STEP) 
  { 
   tlast_DMC += dtDMC;     // must catch up by looping more than once if necessary 
  } 
  else 
  { 
   tlast_DMC = theApp.t;         // to SYNCHRONISE manual moves : b_FORCE_STEP was set TRUE  
                   //on StepMode button 
   theApp.b_FORCE_STEP = FALSE; 
  } 
 
  dml(1) = RefluxMassFlow-mlast(1);  //[t/h] 
  dml(2) = ReboilerDuty-mlast(2);     //[MW] 
  dml(3) = FeedMassFlow-mlast(3);  //[t/h] 
 
  mlast(1) = RefluxMassFlow; 
  mlast(2) = ReboilerDuty; 
  mlast(3) = FeedMassFlow; 
 
  // past moves shift one down dmp stack 
  for (i=1; i<=(Ndmc-1); i++) 
  { 
   for (j=1; j<=(Pdmc+Qdmc); j++) 
   { 
    dmp((i-1)*(Pdmc+Qdmc)+j) = dmp(i*(Pdmc+Qdmc)+j); 
   } 
  } 
  for (j=1; j<=(Pdmc+Qdmc); j++) 
  { 
   dmp((Ndmc-1)*(Pdmc+Qdmc)+j) = dml(j);  // previous move 
  } 
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  if (b_AUTO) 
  { 
   // on AUTO ! ---- do DMC Control ! 
   for (i=1;i<=Ndmc;i++) 
   { 
    xsp((i-1)*Rdmc+1) = dTAsp;  
    xsp((i-1)*Rdmc+2) = dTBsp; 
    x0((i-1)*Rdmc+1) = dTA; 
    x0((i-1)*Rdmc+2) = dTB; 
   } 
 
   if (lasterr(1) == -9999.0) 
   { 
    // Initialise 
    lasterr = x0 - B0*dmp; 
    graderr = 0; 
   } 
   else 
   { 
    // smooth estimate of integral error 
    double alpha = 0.05;   // filter constant 
    graderr = alpha*(x0 - B0*dmp - lasterr)  +  (1.0-alpha)*graderr; 
    for (i=1;i<=Ndmc;i++)for (j=1;j<=Rdmc;j++) trajerr((i-1)*Rdmc+j) = i*graderr(j); // ramp 
    lasterr = x0 - B0*dmp; 
   } 
 
   // set constraints 
   m0.Init((Mdmc*Pdmc),1); 
   ml=m0; 
   mh=m0; 
   dmmax = m0; 
   for (i=1;i<=Mdmc;i++) for (j=1;j<=Pdmc;j++) 
   { 
    m0((i-1)*Pdmc+j) = mlast(j);  // repeat it through the vector 
    if (j==1) ml((i-1)*Pdmc+j) = LoLim_R; 
    if (j==2) ml((i-1)*Pdmc+j) = LoLim_Q; 
    if (j==1) mh((i-1)*Pdmc+j) = HiLim_R; 
    if (j==2) mh((i-1)*Pdmc+j) = HiLim_Q; 
    if (j==1) dmmax((i-1)*Pdmc+j) = RampLim_R;   // ramp limits 
    if (j==2) dmmax((i-1)*Pdmc+j) = RampLim_Q; 
   } 
 
   xl = x0;   // just to initialise 
   xh = x0; 
   for (i=1;i<=Ndmc;i++) 
   { 
    xl((i-1)*Rdmc+1) = LoLim_dTA; 
    xl((i-1)*Rdmc+2) = LoLim_dTB; 
    xh((i-1)*Rdmc+1) = HiLim_dTA; 
    xh((i-1)*Rdmc+2) = HiLim_dTB; 
   } 
    
   Hdmc.Init(m0.nRow,m0.nRow);     // for combination of elements of m  
   zh = m0; // to get size right 
   zl = m0; 
   double fraction_allowed = Gap_Constraint_Percent/100;  //allowed fractional deviation fr. equilib line  
   double slope  = Qdatum / Rdatum; 
   for (int k=1;k<=Mdmc;k++) 
   { 
    int axoff = (k-1)*Pdmc;  
    Hdmc(axoff+1,axoff+1) = 1;  
    Hdmc(axoff+1,axoff+2) = -1/slope; 
    Hdmc(axoff+2,axoff+1) = -slope;  
    Hdmc(axoff+2,axoff+2) = 1; 
    zh(axoff+1) =   fraction_allowed*Rdatum + Rdatum  - Qdatum/slope; 
    zh(axoff+2) =   fraction_allowed*Qdatum + Qdatum  - slope*Rdatum; 
    zl(axoff+1) =  -fraction_allowed*Rdatum + Rdatum  - Qdatum/slope; 
    zl(axoff+2) =  -fraction_allowed*Qdatum + Qdatum  - slope*Rdatum; 
   } 
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   if (DMCstep(Ndmc,Mdmc,Pdmc,Qdmc,Rdmc, 
    &x0,&xsp,&dmp, 
    &B,&B0,&Bol,&Wdmc,&Ldmc,&Kdmc,&Hdmc,&w,&phi, 
    &m0,&mh,&ml,&dmmax,&xh,&xl,&zh,&zl,&trajerr,&dmuqo,&dm)) 
   { 
    RefluxMassFlow = mlast(1) + dm(1); 
    ReboilerDuty = mlast(2) + dm(2); 
    m_dmc_gap = 100*sqrt(pow((dm(1)-dmuqo(1))/Rdatum,2)/2.0 + 
       pow((dm(2)-dmuqo(2))/Qdatum,2)/2.0); // normalised % gap 
    if (m_dmc_gap > 0)  
    { 
     b_constrained = TRUE;  // shortcut - see slack variable method with ry below !!!#### 
    } 
    else 
    { 
     b_constrained = FALSE; 
    } 
   } 
   m_R = RefluxMassFlow;  
   m_Q = ReboilerDuty;   
  } 
 } 
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7.3   SRE – SISO PID and DMC controllers based on 

step response 
 

 

Use of a measured openloop step response to design SISO PID and 

DMC controllers, and comparison of their performance in response to 

a setpoint step 
 

 

f_7.11  

 

 

7.3.1  Typical settings 

 
 

FC for  DMC for   

F5   F5   

by V5  by V5   

KC= 1.3  Move suppression weight:   V5   :  10    
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I=20            

D=5   Setpoint deviation weight:   F5   :  100        

α=0.1      

F5SP=50   Number of optimised future moves  :  1       

V5=50   

 

Measured step reponse & constraint settings: 

 

f_7.12  
 
 

7.3.2  Theory 
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f_7.13
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A pump supplies water from tank T102 to an elevated packed column as shown in the figure. 

The kickback valve CV2 can be used to vary the resistance line of the network, changing the 

head that can be supported on the pump characteristic. The orifice plate and DP cell FT5 are 

used to measure the flow to the distributor at the top of the column, for different valve 

positions of CV5. Thus the focus will be on the relationship between FT5 and CV5. This 

exercise will normally be conducted with CV2 at 0% open. CV5 is initially varied manually 

in openloop to obtain the desired openloop responses. The controller settings based on these 

responses are then implemented in the closedloop FC5, and tested. 

The Reaction Curve tuning method (Richards, 1979) is detailed in section 4.1.1. It is based on 

the “open-loop” response to a step input.  More specifically, the controller is left out of the 

circuit altogether, and the manipulated variable (valve position) is stepped.  This will result in 

a response of the proposed controlled variable, which for most systems has the form shown in 

figure f_7.14. In the flow control system considered here, F5 will respond to a step in V5. 
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Table 7.1  Ziegler-Nichols reaction curve controller settings 
 

  

P 

 

 

PI 

 

PID 

 

KC 
TK




 

0.9

TK




 

1.2

TK




 

 

I 

 

- 

 
0.3

T  
0.5

T  

 

D 

 

- 

 

 

- 2

T  

 

 

In the “reaction curve” tuning method, Ziegler and Nichols (1942) proposed “good” settings 

for P, PI & PID controllers based on these measurements as in Table 7.1. Presently, both a P 

and a PID controller will be designed on this basis, and tested in closed loop. Furthermore, as 

described in section 7.1, the reaction curve will also be used to create the matrices B, BOL and 

B0 required for a SISO dynamic matrix controller. 

 

The gain margin of the PID control loop will be calculated using the assumed first-order-

plus-dead-time model. The process reaction curve represents a % flow output in response 

to % valve-open input. Clearly, process models derived on this basis will lump the dynamics 

of the control element, the pump and the measuring element, and other converters in the 

circuit.  The attitude taken is that anything lying between the % valve-open input and % flow 

output is “process” (f_7.15): 
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f_7.15 

+
-

controller process

GC(s) GP(s)

setpoint flow-rate

[% flow]

error valve

[% flow] [% valve] [% flow]

 

 

Observation of the response of the process to a step input suggests that it might be adequately 

described by a 1st order lag with dead-time in series: 
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             (7.32) 

This may be fitted to the process step responses using average values of the parameters T, the 

dynamic lag , and the open-loop gain  K = x /uss 

 

The assumed form of Gp(s) may then be used in conjunction with the chosen PID controller to 

obtain an open-loop transfer function: 
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      (7.33) 

 

The corresponding Nyquist plot has the form shown in figure f_7.16 below 

f_7.16

Im [GOPEN (j)]

Re [GOPEN (j)]

increasing  

x

A B-1

start here
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In order to establish the Gain Margin of this assumed system, we must find the point A at 

which the Nyquist Plot crosses the – ve Real axis with the biggest negative real value.  Notice 

that the transport lag term T se  would normally cause a continuous spiral inwards to the origin 

as   s = j  increases in the frequency response. (and  OG j decreases).  For this particular 

idealised open-loop, the phase angle does become increasingly negative as expected, but the 

magnitude becomes constant as frequency increases. Why? What will be the asymptotic 

magnitude? 

 

We are naturally interested in the crossing ‘A’ which is most negative (largest distance x from 

the origin), since this contour will be the first to enclose (–1+j0) with increasing Kc and thus 

cause closed-loop instability.  Thus care must be taken in plotting  OG j to start with a 

sufficiently low frequency (e.g. 0.01 rad s-1) to avoid proceeding inwards on one of the inner 

contours, and perhaps only finding point ‘B’. 

 

Starting at a low frequency, plot points at successively higher frequencies until the – ve real 

axis is crossed.   Join these points with a smooth curve to find A, then 

 

Gain Margin=    10

1
20log dbOG j x

x
            (7.34) 

 

(Note that we could simply have solved for    which gives    0180Oangle G j  , then 

substituted this    into  OG j to obtain  x.) 

 

 

7.3.3  Tasks 
 

(1) Obtain the dynamic response of the flow-rate F5 to a step in valve position V5. 

 

(3) Derive recommended Ziegler-Nichols parameters based on this “Reaction Curve” for P 

and PID controllers for the SISO loop F5 by V5. 

 

(4) Use your measured step-response matrix to set up a Dynamic Matrix Controller (DMC) 

 

(5) Assess the performance of each of these controllers in closed-loop control by stepping 

the set-points and evaluating a quadratic performance index. 

 

(6) Use an assumed system model to calculate the Gain Margin of the system under control 

by the PID controller. 

 

 
 

7.3.4  Method 

 
(1) Start the RTC program and select the “SRE” application. 
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(2) The graphic user interface (GUI) now allows you to set the positions of control valves 

V2 and V5. Set V2 to 0% open and V5 to 50% open, and allow the system to achieve 

steady state. 

 

(3) Start logging to a data file with a time-interval of 5 seconds. 

 

(4) Note the computer time for future reference to your logging file.   

 

(5) Now input a step of +10% in valve V5 position. (In the case of control of a real plant, an 

initial test for valve hysteresis should be done by comparing a response occurring 

following continuous movement of the valve in one direction, with that occurring 

following a reversing step. Furthermore, to minimise the impact of non-linearity, all 

steps should be made from a fixed initial condition, close to the normal anticipated 

operating point). 

 

(6) Calculate the recommended Ziegler-Nichols setting Kc for a P controller, and KC, I and 

D for each PID controller. Set these values using the scroll-bars for each case. 

 

(7) Choose 10 equally-spaced points in the step response (The suggested spacing is 10s, so 

beware that the log-file interval is 5s. Also, the default interval on the SETTINGS 

screen may need to be changed to 10s). The portion of curve should represent a smooth 

variation of F5 up to steady-state. Divide the measurements by the size of the input step 

(+10%) to get a “unit step response”.  Enter these values in the response sequence under 

the settings section, reached by pressing the SETTINGS button (f_7.17). 

 

f_7.17  

 

 The Settings screen also allows you to change the sample interval, plus constraints that 

may be applied to V5 and F5 (for DMC control only). Additional constraints include 

“ramp” limits, ie. the maximum change in V5. 

 

(8) The associated Dynamic Matrix Controller is tuned using the DMC weight settings on 

the GUI. These set the terms in the diagonal weighting matrices W (for F5 setpoint 

deviations) and  (for V5 move suppression). The other tuning parameter is the 

“number of optimised moves”, also set on the GUI.  

 

(9) Start a new data log file if necessary. For each closed-loop set-point step response, start 

with the system on “manual” at steady-state, with V5 at the same initial settings. Match 

the set-point to the feedback F5 before switching to “auto”. Once you are on “auto”, let 

the system settle for a short while (eg. 30s). Now obtain the level responses to a step  of 

+ 20% in flow F5 set-point with the system under closed-loop P, PID and DMC control. 

In the case of DMC control, investigate the effect of changing from 1 to 2 or 3 

“optimised moves”, as well as the effect of varying the V5 and F5 weights. 
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(10) Let the system reach steady-state under DMC control. Now create a load disturbance by 

stepping V2 open by 20%. Note the response. 

 

(11) Process your log-file as follows: Plot the individual openloop and closedloop responses, 

and comment on them. For each closedloop response, calculate a quadratic performance 

index for each flow controller, starting at the time when the setpoint was stepped, and 

continuing for a fixed period thereafter. 

 

    
2

5 5

1

N

SP

i

QPI F i t F i t


               (7.35) 

 

 Comment on the differences caused by the various configurations and settings. 

 

(12) Using the assumed form of the closedloop transfer function under PID control, 

construct a section of the Nyquist plot for the PID controller, and use this to estimate 

the Gain Margin. 

 

(13) Comment on all of your observations and calculated results. 

 

 
 

7.3.5  MATLAB® program for the Nyquist plot 

 
% Magnitude and Phase Angle of a Process with PID controller 

clc 
close all 

clear 
  

% define the variables: 

%ZN 
Kc = -0.8; %  

tauI = 30; 
tauD = 4; 

%Open Loop 

K = -0.678; 
tau = 23.33; 

tauT = 18.43; % (L) lag time 
w=[0.01:0.001:10];% Freq array 

  

for j = 1:length(w)    
    s = w(j)*2*pi*i; % vector of different 's' values of frequency 

    % calculating the transfer function G(s) 
    G(j) = Kc*(1 + 1/(tauI*s) + tauD*s)*(K * exp(-tauT*s))/(1+ tau*s); 

end 

 
% Plotting the Nyquist plot (Re vs. Im) 

x = real(G); 
y = imag(G);  

plot(x,y); 

xlabel('Re(G(s))'); 
ylabel('Im(G(s))'); 

title('Nyquist Plot'); 
line([-0.8 0.8],[0 0],'color','k','linestyle','--'); 

axis manual; 

line([0 0],[-0.8 0.8],'color','k','linestyle','--'); 
grid on; 
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7.4   STR – PID and MIMO DMC controllers based 

on step response 
 

 

Use of a measured openloop step response to design PID and DMC 

controllers, and comparison of their performance in response to a 

setpoint step 
 
 

f_7.18  

 

 

 

7.4.1  Typical settings 

 
 

LC for  LC for  DMC for   

L1   L2    L1 & L2   

by V1   by V2   by V1 & V2   

KC= -2.0  KC=4.0  Move suppression weights:   V1   :  10    
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I=100  I=100        V2   :  10    

D=0.1  D=0.1       

α=0.1   α=0.1   Setpoint deviation weights:   L1   :  100    

L1SP=60   L2SP=40        L2   :  100 

V1=55  V2=45  Number of optimised future moves  :  1 

 

Measured step reponses & constraint settings: 

 

f_7.19  
 
 

7.4.2  Theory 
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f_7.20
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A pump supplies water from a reservoir to two interconnected 8m tall tanks as shown in 

f_7.20. The return valve V1 near the pump effectively varies the resistance line of the network, 

changing the head that can be supported on the pump characteristic. A head increase builds up 

tank level, whilst a head decrease is accommodated by dumping tank water through bleed 

valves to a return launder (or, indeed, by reverse-flow through the water supply line). The 

focus will be on the relationships V1L1 and V2L2 for the two PID loops, and [V1,V2] 

[L1,L2] for the DMC controller. Note the settings of the remaining valves in the figure 

f_7.20. 

 

The Reaction Curve tuning method (Richards, 1979) is detailed in section 4.1.1. It is based on 

the “open-loop” response to a step input.  More specifically, the controller is left out of the 

circuit altogether, and the manipulated variable (valve position) is stepped.  This will result in 

a response of the proposed controlled variable, which for most systems has the form shown in 

f_4.1. In the pump-tank system considered here, both L1 and L2 will respond to separate steps 

in V1 and V2, creating a matrix of step responses. As described in section 7.1, these may be 

used to create the matrices of matrices, B, BOL and B0 required to construct a dynamic matrix 

controller. 

 

In this study, the gain margin of each of the separate PID control loops will be calculated 

using the assumed first-order-plus-dead-time model. The available process reaction curves 

represent a % level output in response to % valve-open input. Clearly, process models 

derived on this basis will lump the dynamics of the control element, the pump/tank process, 

the measuring element, and other converters in the circuit.  The attitude taken is that anything 

lying between the % valve-open input and % level output is “process” (f_7.21): 
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f_7.21
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Observation of the response of the process to a step input suggests that it might be adequately 

described by a 1st order lag with dead-time in series: 
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             (7.36) 

This may be fitted to the process step responses using average values of the parameters TT 

(T) ,  the dynamic lag TS (), and the open-loop gain  K = x /ass   (f_4.1). 

 

The assumed form of Gp(s) may then be used in conjunction with the chosen PID controller to 

obtain an open-loop transfer function: 
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The corresponding Nyquist plot has the form shown in the figure below 
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f_7.22
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In order to establish the Gain Margin of this assumed system, we must find the point A at 

which the Nyquist Plot crosses the – ve Real axis with the biggest negative real value.  Notice 

that the transport lag term T se  would normally cause a continuous spiral inwards to the origin 

as   s = j  increases in the frequency response. (and  OG j decreases).  For this particular 

idealised open-loop, the phase angle does become increasingly negative as expected, but the 

magnitude becomes constant as frequency increases. Why? 

 

We are naturally interested in the crossing ‘A’ which is most negative, since this contour will 

be the first to enclose (–1+j0) with increasing Kc and thus cause closed-loop instability.  Thus 

care must be taken in plotting  OG j to start with a sufficiently low frequency (e.g. 0.01 rad 

s-1) to avoid proceeding inwards on one of the inner contours, and perhaps only finding point 

‘B’. 

 

Starting at a low frequency, plot points at successively higher frequencies until the – ve real 

axis is crossed.   Join these points with a smooth curve to find A, distance x from the origin, 

then 

 

Gain Margin=    10

1
20log dbOG j x

x
            (7.38) 

 

(Note that we could simply have solved for    which gives    0180Oangle G j  , then 

substituted this    into  OG j to obtain  x.) 

 

 

7.4.3  Tasks 
 

(1) Obtain the dynamic responses of the levels L1 and L2 to separate steps in valve 

positions V1 and V2. 
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(3) Derive recommended Ziegler-Nichols parameters based on these “Reaction Curves” for 

P and PID controllers for separate SISO loops L1 by V1, and L2 by V2. 

 

(4) Use your measured step-response matrix to set up a Dynamic Matrix Controller (DMC) 

 

(5) Assess the performance of each of these controllers in closed-loop control by stepping 

the set-points and evaluating a quadratic performance index. 

 

(6) Use an assumed system model to calculate the Gain Margins of the the two SISO 

systems under control by their PID controllers. 

 

 
 

7.4.4  Method 

 
(1) Start the RTC program and select the “STR” application. 

 

(2) The graphic user interface (GUI) now allows you to set the positions of control valves 

V1 and V2. Set to mid-range and allow the system to achieve steady state. 

 

(3) Start logging to a data file with a time-interval of 5 seconds. 

 

(4) Note the computer time for future reference to your logging file.   

 

(5) Now input a step of +20% in valve V1 position. Repeat to get the responses to a +20% 

step in V2. (In the case of control of a real plant, an initial test for valve hysteresis 

should be done by comparing a response occurring following continuous movement of 

the valve in one direction, with that occurring following a reversing step. Furthermore, 

to minimise the impact of non-linearity, all steps should be made from a fixed initial 

condition, close to the normal anticipated operating point). 

 

(6) Calculate the recommended Ziegler-Nichols settings Kc, I and D for each PID 

controller. Set these values using the scroll-bars for each case. 

 

(7) Choose 10 equally-spaced points (default 30s intervals – see instruction below for 

changing this) on a smooth “average” step-response to define the variation up to steady-

state for the two L1 responses, and the two L2 responses. Divide the measurements by 

the size of the input step (20%) to get a “unit step response”.  Enter these values in the 

Dynamic Matrix under the settings section, reached by pressing the SETTINGS button 

(f_7.23). 
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f_7.23  

 

 This screen also allows you to change the sample interval, plus constraints that may be 

applied to V1, V2, L1 and L2 (for DMC control only). Additional constraints include 

“ramp” limits, ie. the maximum change in V1 or V2 per interval, as well as a facility to 

to maintain the ratio of V1 to V2 within defined bounds. 

 

(8) The associated Dynamic Matrix Controller is tuned using the DMC weight settings on 

the GUI. These set the terms in the diagonal weighting matrices W (for L1 and L2 

setpoint deviations) and  (for V1 and V2 move suppression). The other tuning 

parameter is the “number of optimised moves”, also set on the GUI.  

 

(9) Start a new data log file if necessary. For each closed-loop set-point step response, start 

with the system on “manual” at steady-state, with V1 and V2 at the same initial settings. 

Match the set-points to the feedback L1, L2 before switching to “auto”. Once you are on 

“auto”, let the system settle for a short while (eg. 30s). Now obtain the level responses 

to a step  of + 20% in level L1 set-point, and separately to a +20% step in L2 setpoint, 

with the system under closed-loop PID and DMC control.  In the case of PID control, 

compare the situation when the other PID controller is left on MANUAL, with that 

when both PID controllers are on AUTO. In the case of DMC control, investigate the 

effect of changing from 1 to 2 or 3 “optimised moves”, as well as the effect of varying 

the L1, L2, V1 and V2 weights. 

 

(10) Process your log-file as follows: Plot the individual openloop and closedloop responses, 

and comment on them. For each closedloop response, calculate a quadratic performance 

index for each level control, starting at the time when the setpoint was stepped, and 

continuing for a fixed period thereafter. 
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 Comment on the differences caused by the various configurations and settings. 

 

(11) Using the assumed form of the process transfer function (first-order plus dead-time), 

construct a section of the Nyquist plot for each PID controller, and use this to estimate 

the Gain Margin in each case. 
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7.4.5  MATLAB® procedure for calculation of frequency 

response 
 
 
% Magnitude and Phase Angle of a Process with PID controller 

K = 1; 

Tt = 3;    % [s] 
T = 20;    % [s] 

Kc = 1; 
Ti = 10;   % [s] 

Td = 2;    % [s] 

% Input frequencies (Hz): 
freq = [  0.0001; 

          0.001 ; 
          0.01  ; 

          0.1   ; 

          1.0   ; 

         10.0   ; 

        100.0]  ; 
for k=1:size(freq,1) 

    s = (2*pi*freq(k))*i; 

    Gc = Kc*(1 + 1/(Ti*s) + Td*s); 
    mag_Gc = 20*log10(abs(Gc));  % [db] 

    ang_Gc = 180*angle(Gc)/pi;   % [deg] 
    Gp = K*exp(-Tt*s)/(T*s+1); 

    mag_Gp = 20*log10(abs(Gp));  % [db] 

    ang_Gp = 180*angle(Gp)/pi;   % [deg] 
     

    mag_GcGp = mag_Gc+mag_Gp; 
    ang_GcGp = ang_Gc+ang_Gp; 

    [freq(k) mag_GcGp ang_GcGp] 

end 

 

 

 

7.4.6  Code extracts 
 
 
  Final loading of arrays for the LPSOLVE linear programming solution, plus unpacking of 

the results returned by LPSOLVE (Michel Berkelaar - 

http://sourceforge.net/projects/lpsolve/): 
 
 // Finally have to order first the "objective", then the "less thans" then the "greater thans" 

     CLPproblem LP; 
 LP.n   = NTc-1;  

 LP.m1  = NTr-1;  //temporary 

 LP.m2  = 0; 
 LP.m3  = 0; 

 LP.eps = 1e-12;  // improve the way this is set ! 

 

 LP.SetUp(); 

 LP.m1=0; 
 LP.m=0; 

 int lessthans[MAX_VECTOR_SIZE]; 

 int greaterthans[MAX_VECTOR_SIZE]; 
 for (i=1;i<=NTr;i++) 

 { 

  if(I[i]==-1) 
  { 

   LP.m1 += 1; 

   lessthans[LP.m1]=i; 
  } 

  if(I[i]==+1) 

  { 
   LP.m2 += 1; 

   greaterthans[LP.m2]=i; 

http://sourceforge.net/projects/lpsolve/
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  } 

 } 
 LP.m = LP.m1 + LP.m2; 

 

 for (i=1;i<=NTr;i++) 
 { 

  if(i==1)   //objective 

  { 
   for (j=1;j<=NTc;j++)  

   { 

    LP.a(i,j) = G(1,j); 
   } 

  } 

  if((i>1) && (i<=(1+LP.m1)))   //a lessthan 
  { 

   for (j=1;j<=NTc;j++)  

   { 
    LP.a(i,j) = G(lessthans[i-1],j); 

   } 

  } 
  if(i>(1+LP.m1))   //a greaterthan 

  { 

   for (j=1;j<=NTc;j++)  
   { 

    LP.a(i,j) = G(greaterthans[i-(1+LP.m1)],j); 

   } 
  } 

 } 
 

 

 // SOLVE THE LP 
 int icase = LP.Solve(); 

 m_lastconstraint = 0; 

 if (icase!=0)  
 { 

  *dm=0;           // don't move 

  b_no_solution = TRUE; 
  return(FALSE);  // problem! 

 } 

 else 

 { 

  // find the result values  in the tableau 

  double r[MAX_VECTOR_SIZE],ry[MAX_VECTOR_SIZE]; 
  for (j=1; j<=MAX_VECTOR_SIZE; j++) 

  { 

   ry[j]=99; 
  } 

  for (j=1; j<=LP.n; j++) 

  { 
     int jj=LP.izrov[j]; 

     if (jj<=LP.n)  

     { 
     r[jj]=0.0; 

     } 

     else 
     { 

     ry[jj-LP.n]=0.0; 

     } 
  } 

  for (i=1; i<=LP.m; i++) 

  { 
   int ii = LP.iposv[i]; 

   if (ii!=0) 

   { 
    if (ii<=LP.n) 

    { 

     r[ii] = LP.a(i+1,1); 
    } 

    else 

    { 
     ry[ii-LP.n] = LP.a(i+1,1); 

    } 

   } 
  } 

  // check if any variable is constrained, if BOTH bits of the slack variable are zero 



Chapter 7   Simulations - MIMO closedloop and DMC  107 

 

  for (j=1; j<int(double(MAX_VECTOR_SIZE)/2.0); j++) 

  { 
   if((ry[2*(j-1)+1]==0.0) && (ry[2*(j-1)+2]==0.0))  

   { 

    // ####  b_constrained = TRUE;  FAULTY AT THE MOMENT!  ####MM041021 
    m_lastconstraint = j; 

   } 

  } 
 

 

  // now recombine the two bits of r 
  for (i=1;i<=P;i++) 

  { 

   (*dm)(i) = (*dmuqo)(i) + r[2*(i-1)+1]-r[2*(i-1)+2]; 
  } 

 

  return(TRUE); // no problems 
 } 
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7.5   LLE – Multi-Input, Single-Output (MISO) 

DMC compared with PID 
 

 

Examination of how the DMC move suppression weights affect the 

contributions of two inputs to a single-output system. 
 
 

f_7.24  

 

 

 

7.5.1  Typical settings 

 
 

HC for  HC for  DMC for   

H   H   H   

by PS   by SS   by PS & SS   

KC= 5  KC=6   Move suppression weights:   PS   :  50    

I=100  I=100        SS   :  50    
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D=0   D=0.1       

α=0.1   α=0.1   Setpoint deviation weight:   H   :  50    

HSP=40  HSP=40         

PS=50  SS=30  Number of optimised future moves  :  1 

 

Measured step reponses & constraint settings: 

 

f_7.25  
 
 

7.5.2  Theory 
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f_7.26

DPH

SS

PS

rising light phase

bubbles

falling

heavy

phase

bubbles

ring

packing

section

stirrer speed setting

common pump

speed setting

hold-up ratio

calculated

from P

 

 

A double-headed peristaltic pump supplies both heavy and light liquid phases to a liquid-

liquid extraction contacting column. The rising light phase bubbles first pass through a packed 

section to increase interphase contact area. Above the packing the light phase continues to rise 

through the continuous heavy phase, under the influence of a stirrer which reduces bubble size 

and enhances mass transfer. Above this section the light phase coalesces in a layer which 

returns to the bottom of the column via an overflow and its pump head. The heavy phase 

leaves at the bottom of the column as shown, with its own overflow near the top, and is 

returned to the top of the column via its head of the pump. 

 

Since the peristaltic heads are driven by the same variable-speed motor, their pump rates are 

identical and determined by the pump speed setting PS. One expects that as this speed is 

increased the fraction of light phase in the measured section (viz. H the “hold-up ratio”) will 

increase owing to the increased superficial velocities of the two phases. If the stirrer speed SS 

is increased, the fraction of small rising bubbles will increase. The increasing surface area will 

increase the drag per unit mass, slowing down the bubbles and again increasing the holdup-

ratio. In practice one likes to keep the hold-up ratio in such a column high, to maximise mass 

transfer. But if it gets too high one reaches a condition called “flooding”. Here the feed of 

either phase cannot get through the column quickly enough, causing bodily displacement of 

phases. Thus a control system is required to maintain the hold-up ratio, normally just below 

the flooding point. The aim of this exercise is to examine the control of such a system, where 
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two inputs (PS,SS) can be manipulated optimally, according to a defined criterion, in order to 

regulate a single output, H. 

 

 

 

7.5.3  Tasks 
 

(1) Obtain the dynamic responses of the hold-up ratio H to separate steps in pump speed PS 

and stirrer speed SS. 

 

(2) Use your measured step-responses to set up a Dynamic Matrix Controller (DMC) 

 

(3) Investigate the performance of the DMC controller for different settings of the move 

suppression weights on PS and SS, and the setpoint deviation weight on H. 

 

 

 

7.5.4  Method 

 
(1) Start the RTC program and select the “LLE” application. 

 

(2) The graphic user interface (GUI - f_7.24) now allows you to set the pump speed and the 

stirrer speed. Set both to mid-range and allow the system to achieve steady state. 

 

(3) Start logging to a data file with a time-interval of 5 seconds. 

 

(4) Note the computer time for future reference to your logging file.   

 

(5) Now input a step of +20% in pump speed by pressing the cursor twice in the coloured 

part of the scroll-bar. Repeat to get the responses to a +20% step in stirrer speed.  

 

(6) The DMC controller is this application will step at 10 s intervals. Thus choose 10 

equally-spaced points at 10 s intervals on a smooth “average” step-response to define 

the variation up to steady-state for the response to pump speed and the response to 

stirrer speed. Divide the measurements by the size of the input step (10%) to get a “unit 

step response” in each case.  Enter these values into the Dynamic Matrix under the 

settings section, reached by pressing the SETTINGS button (f_7.27). 

 

f_7.27  

 



112  Applied Process Control 

 

 This screen also allows you to change constraints that may be applied to pump speed, PS, 

stirrer speed, SS, and the hold-up ratio H, for DMC control only. Additional constraints 

include “ramp” limits, ie. the maximum change in PS or SS per interval, as well as a 

facility to maintain the ratio of SS to PS within defined bounds. 

 

(7) The associated Dynamic Matrix Controller is tuned using the DMC weight settings on 

the GUI. These set the terms in the diagonal weighting matrices W (for H setpoint 

deviations) and  (for PS and SS move suppression). The other tuning parameter is the 

“number of optimised moves”, also set on the GUI.  

 

(8) Start a new data log file if necessary. Select the DMC controller, and switch the system 

to AUTO. Let the system settle to a steady-state. Now obtain the hold-up H response to 

a + 20%  step in setpoint. Choose various combinations of high and low move 

suppression weights on PS and SS and monitor how the work done to achieve set-point 

steps is shared between these two MV’s. What happens when the setpoint deviation 

weight on H is reduced, or the number of optimised moves is changed ? 

 

(9) Compare the DMC step responses with PID control using PS as MV, and PID control 

using SS as MV. 

 

(10) Process your log-file as follows: Plot the individual openloop and closedloop step 

responses, and comment on them. For each closedloop hold-up control response, 

calculate a quadratic performance index, starting at the time when the setpoint was 

stepped, and continuing for a fixed period thereafter. 
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 Comment on the differences caused by the various configurations and settings. 
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Chapter 8   Simulations - Observers 

 
.  

 

 

8.1 SPR - Smith Predictor for digester pulp Kappa 

estimation and control 
 

 

Use of a continuous quality estimator based on intermittent lab 

samples, & compensating for dead time:  
 

 

f_8.1  

 

Smith Predictors as part of “Quality Estimators” are becoming very popular in industry. A 

basic robust model of the dependence of some stream property is constructed, often by 

regressing laboratory analyses against corresponding plant conditions (P,T,F measurements). 

This model is then run on-line, predicting the product property. Periodically, laboratory 

analyses are done for the property. The analysis is compared with the prediction that was 

made at the time the sample was drawn, and the “offset” error used to correct future on-line 

predictions. There is often a significant dynamic part and dead-time in the response of the 

actual process for the desired property. These can be included in an IMC (Internal Model 

Control) format as a virtual measurement for control feedback.  
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f_8.2
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The application considered here is the prediction of wood-pulp Kappa number (extent of 

delignification) at the exit of a Kraft wood digester (f_8.2). Interesting features of this 

problem include the long dead-time delay (8-12 hours) as the wood chips move in plug flow 

down the reactor, a further delay of about 2 hours whilst the exit “blow-line” pulp undergoes 

laboratory analysis, and the dependence of the Kappa number on eight process variables 

distributed “in time” along the reactor length. 

 

In the Kraft digester shown in f_8.1, wood chips enter at the top at rate C30 together with 

“white liquor”, the fresh chemical cooking solution containing caustic soda and sulphite. 

There are zones of counter-current and co-current solution flow as the chips progress 

downwards. At the top, most of the reaction takes place, whilst further down there are cooling 

and washing stages, with the circulating flows being withdrawn through peripheral screens, 

and returned to the desired level down concentric axial tubes from the top of the reactor. 

Analysis of Variance (ANOVAR) studies have shown that the flows C30,F01,F05,F11 and 

temperatures T00,T08,T12,T26 have the main influence on the final Kappa number. In 

addition, the effects of the temperatures T00 and T26 were best correlated 2 hours and 4 hours 

respectively prior to the time at which pulp leaves the digester via the blow-line. A simple 

linear regression was used to obtain a model for the Kappa number on this basis, yielding 

eight coefficients and one bias. In the simulation, T00 and T26 (f_8.3) have been made 

completely dependent on the supply of HPS (high pressure steam) to the circulation heater at 

the top of the reactor (this will also be the MV for closed loop control). 

 

f_8.3  
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For the remaining variables affecting Kappa number (C30,F01,F05,F11,T08,T12), a facility is 

provided both to set a mean value, and a chosen degree of random variation about this mean 

using the following panel (f_8.4). 

 

f_8.4  

 

Samples of pulp can be drawn from the blow-line in either of two ways. If the “Lock” button 

is toggled off, then the “Sample” button can be pressed each time a sample is required. This 

event will be marked by a 5-minute sample pulse (green line) from the “true” (but 

unobservable) blow-line Kappa trace (red). If the “Lock” button is toggled on, then samples 

are drawn automatically every two hours. In both cases, it will be seen that the error trace 

(“err”) steps 2 hours after the sample was drawn, allowing for the delay in the laboratory, 

with the error being established by looking up the historical raw prediction of Kappa 

appropriate to the original sampling time. A smoothed version of this error is also generated 

(“smerr”: red trace) to be used in correcting current raw predictions. (NOTE that all error 

traces are offset by +100 so that positive and negative variations are visible). 

 

f_8.5  

 

The degree of smoothing applied to the error correction is determined by the “ERROR 

SMOOTH” scrollbar on the right (f_8.5). The adjoining “MODEL ERROR” scrollbar is used 

(for simulation purposes) to set the extent of a slowly-varying difference between the 

expected behaviour of the system (based on the regressed correlation used in the Smith 

Predictor), and the actual Kappa value emerging from the blow-line (“K” : red trace). The 

challenge for a Smith Predictor is to correctly identify this varying offset, and apply it in 

correcting the current raw prediction to provide the final corrected prediction of Kappa 

presently emerging from the reactor (“Kcorr”: thin blue trace). 

 

In practice, even this corrected Kappa value is not ideal to use in a feedback loop, because 

there is still a long dead-time (4 hours from T26 and 2 hours from T00) and dynamic (1 hour) 

response between the manipulation of the HPS, and the emergence at the blow-line. Rather, 

one wants to control a virtual Kappa value representing where it will finally converge should 

the present settings persist. This is called the “ultimate” Kappa (“Kult” : yellow trace). Thus, 
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when the PID controller is switched to “Auto”, it is this feedback loop that is closed: from 

Kult back to the HPS. 

 

  

 

8.1.1  Typical settings 
 

 mean   random 

C30:     7      10  Kappa SP=  80  PID: Kc = 0.5  Axis Length =   28800 

F01:     9      50  HPS        =  50   TI  =  1000  Acceleration =  500 

F05:   35        50       TD =  0  Log Interval =   300 

F11:   46      50  MODEL ERROR   =    80    =  0.1  Step Interval =  1800 

T08: 133      80  ERROR SMOOTH =2000 d    :    

T12: 111      80 

 

 

8.1.2  Theory 
 

Smith Predictors are typically used in dead-time compensation, though sometimes it is more a 

case of measurement delay, for example in the case of an-online gas chromatograph. The 

algorithm certainly does need to have the delay time appropriate to each sample, so that the 

raw prediction at that time can be looked up in an historical buffer file. For a fixed instrument 

delay this might not be problematic, but it can become a problem where the measurement 

delay is caused by process plug flow. Here the delay will become dependent on the flow-rate 

through the process, and a continuous estimate of this delay would help to locate the 

appropriate data record. 

 

Because of the possibility of timing errors in locating the appropriate historical record, it is 

advisable to “smooth” the error prediction, say in a single-exponential filter as is done here. 

 

smerr(t)  =   smerr(t-t)  +  (1-) err(t)       with      0<<1      (8.1)  

 

Furthermore, such smoothing will avoid “bumping” the final corrected value in steps. Note in 

particular that Smith Prediction uses an old error to correct new predictions. The following 

diagram (f_8.6) shows a version of the Smith Predictor for intermittent sampling, without 

error smoothing. Note how the loop can optionally be closed through a controller, in which 

case an Internal Model Control (IMC) format has been achieved. 
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8.1.3  Tasks 
 

(1) Switch the PID controller to “Manual”, all random errors to zero (ie. on 

C30,F01,F05,F11,T08,T12), and the MODEL ERROR and ERROR SMOOTH 

parameters to zero. Wait for the system to achieve steady-state.  Now step the HPS up 

by about 20. Note the responses – Kult predicts the full dynamic response without dead-

time delays, whilst Kraw gives it with the appropriate dead-times: here we see that the 

T00 contribution is delayed 2 hours and the T26 contribution is delayed 4 hours. In this 

response Kraw is coincident with K, the true Kappa value, because we have not 

introduced a MODEL ERROR for simulation purposes. 

 

(2) Now increase the MODEL ERROR to 160, and note how true K now randomly drifts 

around Kraw, which is steady on account of the fixed inputs. Note that the err trace 

steps 2 hours after each sample is taken, with the error for that sample. Now increase 

ERROR SMOOTH to 2000 and see how the smerr curve separates from err and 

smoothly varies. 

 

(3)  Set the Kappa setpoint to about 60 and switch the PID controller to “Auto”. Now the 

HPS ( and T00, T26) are varied to cause Kraw to vary in such a way that Kult and thus 

K (true) track the Kappa setpoint as well as possible in the face of the varying model 

error, which is being detected by the sampling. Note that K (true ) is not controlled as 

well as Kult because of the heavy smoothing applied to the detected error. Reduce 

ERROR SMOOTH to zero and check if K control improves. Switch off the sample 

“Lock” and take more frequent samples yourself to see if this improves it. The only 

remaining problem is the 2-hour delay for each sample! 

 

(4) Put MODEL ERROR back to a reasonable value – say 80, and ERROR SMOOTH back 

to about 2000. Now consider some typical operation, where the Smith Predictor will 
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also provide compensation for variations in the other process variables. Set the 

RANDOM components for C30,F01,F05,F11,T08,T12 all to about mid-range, and note 

the performance of the Predictor and Controller over a period. 
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8.2  KAL - Kalman filter for adaptive DMC of 

reservoir chlorine 
 

 

Setting up a Kalman filter to estimate an unmeasurable variable for 

continuous adaptation of DMC: 

   
 

f_8.7  

 

The Kalman filter is an “optimal observer” which one uses to find a set of process variable 

values which are a compromise between the available measurements, and the modelled 

relationship which should exist between these measurements. For example, one might be 

measuring three flows – a main supply and two flows that split from it (f_8.8). 
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f_8.8
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The model suggests that the two split flows should add up to the supply flow. But the 

measurements probably do not exactly confirm this. So where does the error lie? In the 

Kalman filter, one assigns expected errors to the model and each flow measurement. The filter 

runs as a continuous “reconciliation” based on these expected errors. Perhaps you are 

confident about the model (low error expected), and about the two split flow measurements 

(low errors expected), but not the supply measurement. Then the filter will provide continuous 

estimates of all three flows in which the estimated supply flow will be close to the sum of the 

measured split flows. Note that this “compromise” is not quite the same as process data 

reconciliation, where a constraint is imposed to achieve proper mass and/or energy balances.  

 

In fact, the Kalman filter generally handles dynamic processes, where such measurements are 

dynamically inter-related – eg. a measured tank level rising in response to a measured inflow. 

Moreover, we do not need to restrict ourselves to process states and inputs. We could consider 

the size of a tank, a heat transfer coefficient, or, as in the present application, a chemical 

reaction rate constant, all to be variables which can or cannot be observed, but for which 

reconciled values are required which are a compromise between available observations and 

the expected model relationship. These variables may well be nonlinearly arranged in the 

model equations (eg. flow  composition in a mass balance). In this case we can locally-

linearise the expression on each step, and still use the Kalman filter. Such a procedure is 

termed “Extended Kalman Filter” (EKF) and this is the form used in this application. In f_8.9 

it is seen that the Kalman Filter acts to update the model  within an Internal Model Control 

(IMC) structure. 
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The problem considered in this application revolves around adaptive control, in particular, an 

adaptive algorithm for DMC, Dynamic Matrix Control. At a waterworks there is a large 

“conditioning” reservoir at the exit, to give the water sufficient contact time with a chlorine 

dose to sterilise it before it enters the consumer distribution network. The mean contact time 

depends on the RTD (Residence Time Distribution) in the conditioning reservoir - as a 

simplification, think of this as the volume / through-flow. But the volume varies, as a result of 

separate variations of inflow and outflow. A set of differential equations is required to 

describe the system properly, but note for the meantime that the response of the outflow 

chlorine composition C will be related to the input chlorine dosing FC in a way which depends 

on current water flows (F1 & F2) , level (V), and the natural rate of loss of chlorine, 

determined by a first-order rate constant k (ie. -kCV). Even this rate constant has been 

observed to vary significantly with time (eg. 0.5 day-1 – 2.0 day-1). So if we are to use a DMC 

algorithm to control the exit chlorine concentration, by manipulating the chorine dosing rate 

(sodium hypochlorite solution to the reservoir inflow), we would want to change the step-

response curves on which the DMC is based in real-time, based on the identified k, and flows 

and level – ie. adaptive control. So the algorithm used has two components: a Kalman filter 

for continuous estimation of k, using measurements of dosing, flows, level and the exit 

chlorine composition, and a continuously-updated DMC calculation. 

 

f_8.10  
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In this application the supply of water to the conditioning reservoir F1 can be controlled 

manually, or alternatively it can be supervised by a reservoir level controller by toggling on 

“AUTO LC” (f_8.10). This level controller is of the “on-off” deadband type, giving  a high 

inflow (150) when level reaches a defined low limit, and a low inflow (50) when it reaches a 

defined high limit. Note that “Level” is represented by the volume “V” in the reservoir. 

 

f_8.11  

 

The outflow F2 represents the flow drawn by consumers (f_8.11). If the random component 

“rand” is set down to zero, this flow can be set directly using the left scrollbar. If the “rand” 

component is used, then the left scrollbar represents the mean about which the random 

component makes positive or negative contributions, of size proportional to “rand”. The 

actual random variation has a daily oscillation, with a smaller-amplitude weekly oscillation 

superimposed. Each night, when consumers are drawing least (and electricity is cheapest), 

there is a surge of flow superimposed when pumps are switched on to transfer water to a 

higher supply reservoir some distance away (pink trace in diagram f_8.12). 

 

f_8.12  

 

The EKF and DMC operation block f_8.13 has scrollbar settings for  ( EKF) and  (DMC). 

The EKF gain parameter  increases the effort made by the extended Kalman filter in 

tracking the observations, at the expense of ignoring the model more. Thus the estimated 

decay constant k will vary more rapidly, and internal estimates of the exit chlorine 

concentration C (and reservoir volume V) will track their corresponding measurements more 

closely. Because the DMC has only one input and one output, only one gain parameter  is 
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required, representing the ratio of W/ ie. the penalty weight on the C setpoint deviation over 

the move suppression weight on the hypochlorite dosage flow FC. As  goes up, more 

vigorous control action can be expected. 

 

f_8.13  

 

As in the DMC applications given in sections 7.2-7.5, the “Gap” parameter (f_8.13) indicates 

how far the solution has been separated from the optimal MV settings, on account of 

constraints. In this problem, the only constraints operating are the maxima and minima of FC 

and C (as evidenced by their scrollbar ranges). Should a constraint be met, the “Constrained 

” block is highlighted in pink, and constraints can be ignored, if so desired, if the “” is 

unchecked. If no feasible solution exists, the “No Solution” box is highlighted, and the MV 

value remains unchanged. The number of future control moves considered in the optimisation 

on each DMC step is set by “nOPT”, and it can be expected, as discussed in section 7.1, that 

control actions will become more vigorous, as nOPT is increased to 2. 

 

f_8.14  

 

Note in this application that the “Auto”/”Manual” switch for the DMC is near the top right of 

the screen (f_8.14). Just below this is a special block for simulation purposes only. In this 

block one can alter the mean true chlorine decay rate constant k, as well as set the size of a 

slow oscillatory variation about this mean. This feature is to allow testing of the EKF’s ability 

to identify and track k variations from the measurement data available.   

 

 

8.2.1  Typical settings 
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F1 = 100 F2 = 100  EKF & DMC:     = 0.9  Axis Length  = 172800 

V = 124 rand (for F2) = 125        = 0.2  Acceleration = 1000 

CSP = 1.0 k = 0.6     nOPT = 1  Log Interval =  600 

  rand (for k) = 1.25         Step Interval = 10800 

          

  

8.2.2  Theory 
 

Kalman filter: 

 

Three equations describe expected time-variations in the system: 

 

1 2

dV
F F

dt
                (8.2) 

 
2C

d VC
F F C kVC

dt
                  (8.3) 

0
dk

dt
                  (8.4) 

 

We obtain dC/dt from the second equation as follows 

 

 
, so

d VC dC dV
V C

dt dt dt
               (8.5) 

 2 1 2C

dC
V F F C kVC C F F

dt
                 (8.6) 

1CF FC kVC                 (8.7) 

1CF FCdC
kC

dt V V
                 (8.8) 

 

Linearising the three differential equations using deviations  1 2, , , , ,  CV C k F F F      about the 

present operating point  1 2, , , , , CV C k F F F ,  obtain 

 

1
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1
0
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C

C
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FC Fd F C

C k C C F
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k k F

   
          

                                                         
       (8.9)

 

This is a set of first order differential equations of the form 

 

d

dt
 

x
Ax Bm               (8.10) 

 

where x is the state vector and m is the input vector. This could be accurately integrated for 

the time-step t using the matrix exponential, but we perform a simple Euler integration 

instead: 
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    t t t tt t     x A I x B m             (8.11) 

We represent this with the discrete system notation 

1i i i i i  x A x B m               (8.12) 

   where andi ii i
t t    A A I B B          (8.13) 

 

Consider a situation where we can observe the inputs m and a selection G (perhaps all) of the 

states x. The matrix G will typically be rectangular, selecting some of the states to an 

observation vector y. 

 

1 0 0
with eg. 

0 1 0
i i

 
   

 
y G x G            (8.14) 

 

The job of a Kalman filter is to match yi to the corresponding set of measurements ˆ
iy . It does 

this by interfering with the normal integration step of the system, using an updated optimal 

gain matrix Ki. 

 

 1
ˆ

i i i i i i i i    x A x B m K y G x            (8.15) 

 

One way of thinking about this is: If  ˆ
iy  is “above” i iy G x , then Ki can be thought of as 

“positive”, and adding positive increments onto xi on each time step until xi rises sufficiently 

for i iy G x  to reach ˆ
iy . Kalman showed how to obtain an optimal gain matrix K when the 

statistics of error vectors  and   in the system are known as follows: 
 

1: i i i i i iModel predictions    x A x B m δ         (8.16) 

ˆ: i i iMeasurements  y G x μ  

where the and contain uncorrelated, zero-mean random terms  with normaldistributionsi iδ μ  

  as follows  where ... represents the "expectation" or average :E  

 TE (model - error covariance matrix)Q δδ        (8.17) 

 TE (measurement - error covariance matrix)R μ μ       (8.18) 

   TE δ μ 0               (8.19) 

 E δ 0                 (8.20) 

 E μ 0                (8.21) 

Under this circumstance, the optimal gain matrix Ki  is yielded recursively on each time-step 

of the discrete filter as follows: 

 
1

T T

i i i



   K M G G M G R            (8.22) 

 1
ˆ

i i i i i i i i i    x A x B m K y G x           (8.23) 

 1

T

i i i i i i   M A I K G M A Q            (8.24) 
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The Q matrix is set to represent the errors expected in the model predictions, whilst the R 

matrix is set to represent the errors expected in the measurements. Usually, no correlation is 

anticipated between the elements within each error vector, so the two error covariance 

matrices are diagonal, with the variance of each term (error-squared) on the diagonal. The 

“larger” the Q values, the more likely it is that the filter will follow the measurements, and 

conversely, the larger the R values, the more likely it is that it will follow the model. The 

“gain” is determined by the relative sizes between Q and R elements. Even if a measurement 

of a state is not available, as in this case with a non-square G matrix, a prediction will be 

produced for that state (k), as seen in the following diagram (f_8.15).  

f_8.15
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It is as well to emphasise at this point that the diagonal terms on the Q and R matrices relate 

to square errors. Thus, eg., if it is desired to halve the tracking deviations from a measurement, 

the corresponding R axis term must be divided by 4. The filter is started off with an assumed 

M0  diagonal with small values on the diagonal, to allow rapid variation of M at the start. 

 

Updating the step-response for the DMC: 

 

Recall that the system 
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        (8.25)

 

is integrated discretely as 

 

1i i i i i  x A x B m              (8.26) 

 

At any time, a local step response of C to FC is obtained as follows: At t=0 set 
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x m          (8.27) 

 

then integrate as in the discrete equation above, up to the horizon, having evaluated A, B with 

the present local values of F1, FC, C, V and k. It is the response of  C that we need as the unit 

step response for the DMC convolution model. 

 

 

8.2.3  Tasks 
 
 

(1) Set the “rand” contribution of the true chlorine decay rate constant k to zero. Wait for 

the Kalman filter estimate kest to reach ktrue. Now consider the effect of various EKF  

values on the tracking of the (unknown) ktrue, by stepping ktrue with different  settings. 

Return ktrue to about 0.6. (NOTE that the plotted “k” values are multiplied by 100).  

 

(2) Set the reservoir “AUTO LC” off, remove the “rand” component from the outflow, and 

set inflow F1 exactly equal to outflow F2 (around 100) to keep the level steady at some 

reasonable V value near 100. Wait for the system to reach steady-state. Using setpoint 

step-response tests, assess the effects of different values of the DMC gain parameter , 

and the number of optimised steps nOPT. 

 

(3) Set all parameters back to the typical values listed in section 8.2.1 (press “Reset”). Set 

the reservoir level control on “AUTO LC”, to simulate normal operation of the 

conditioning reservoir, including a slowly-varying decay rate constant k (rand of k set at 

1.25). Note the performance of the EKF and the DMC. Check if any improvements are 

possible through changes in  or . 

 
 

8.2.4  Code extracts 

 
 
  The following code is executed on every time-step of the system: 
 
 m_V = __max(m_V,1e-7); // can't have an empty reservoir 
 
 // Re-evaluate Model & EKF matrices on every step 
 // Have to find the  nearest steady-state: 
 double F1ss = (m_F1+m_F2)/2; 
 double F2ss = F1ss; 
 //first do it for the estimate of k 
 double Vss_est = m_V_est; 
 double kss_est = m_k_est; 
 double Term1 = m_Fc/Vss_est; 
 double Term2 = m_C_est*(F1ss/Vss_est+kss_est); 
 double Term = (Term1+Term2)/2; 
 double Fcss_est = Vss_est*Term; 
 double Css_est = Term/(F1ss/Vss_est+kss_est); 
 cMatrix xr,mr; 
 xr.Init(3,1); 
 mr.Init(3,1); 
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 Acont_est=0; 
 Acont_est(2,1) = (F1ss*Css_est - Fcss_est) / pow(Vss_est,2); 
 Acont_est(2,2) = -F1ss/Vss_est - kss_est; 
 Acont_est(2,3) = -Css_est; 
 Bcont_est=0; 
 Bcont_est(1,1)=1; 
 Bcont_est(1,2)=-1; 
 Bcont_est(2,1)=-Css_est/Vss_est; 
 Bcont_est(2,3)=1/Vss_est; 
 // discrete matrices for KALMAN FILTER step : step small enough for Euler 
 Adiscr_est = Acont_est*(dtKAL/(double)Ninterp)/(24*3600); 
 Adiscr_est(1,1) = Adiscr_est(1,1)+1; 
 Adiscr_est(2,2) = Adiscr_est(2,2)+1; 
 Adiscr_est(3,3) = Adiscr_est(3,3)+1; 
 Bdiscr_est = Bcont_est*(dtKAL/(double)Ninterp)/(24*3600); 
 
 //NOW do it for the TRUE value of k etc 
 double Vss = m_V; 
 double kss = m_k; 
 Term1 = m_Fc/Vss; 
 Term2 = m_C*(F1ss/Vss+kss); 
 Term = (Term1+Term2)/2; 
 double Fcss = Vss*Term; 
 double Css = Term/(F1ss/Vss+kss); 
 xr.Init(3,1); 
 mr.Init(3,1); 
 Acont_true=0; 
 Acont_true(2,1) = (F1ss*Css - Fcss) / pow(Vss,2); 
 Acont_true(2,2) = -F1ss/Vss - kss; 
 Acont_true(2,3) = -Css; 
 Bcont_true=0; 
 Bcont_true(1,1)=1; 
 Bcont_true(1,2)=-1; 
 Bcont_true(2,1)=-Css/Vss; 
 Bcont_true(2,3)=1/Vss; 
 // discrete matrices for model step : step small enough for Euler 
 Adiscr_true = Acont_true*(dtKAL/(double)Ninterp)/(24*3600); 
 Adiscr_true(1,1) = Adiscr_true(1,1)+1; 
 Adiscr_true(2,2) = Adiscr_true(2,2)+1; 
 Adiscr_true(3,3) = Adiscr_true(3,3)+1; 
 Bdiscr_true = Bcont_true*(dtKAL/(double)Ninterp)/(24*3600); 
 
 if (theApp.FIRSTLOOP) 
 { 
  mlast(1) = m_Fc;     
  mlast(2) = m_F1;     
  mlast(3) = m_F2;     
  theApp.FIRSTLOOP=0; 
 } 
 
 while (((theApp.t-tlast_KAL)>=dtKAL) | (theApp.b_FORCE_STEP)) 
 { 
  if (!theApp.b_FORCE_STEP) 
  { 
   tlast_KAL += dtKAL;     // must catch up by looping more than once if necessary 
  } 
  else 
  { 
   tlast_KAL = theApp.t;          // to SYNCHRONISE manual moves : b_FORCE_STEP  
       // was set TRUE on StepMode button 
   theApp.b_FORCE_STEP = FALSE; 
  } 
 
  // RECALCULATE DMC MATRICES EACH TIME!  (BASED ON ESTIMATED k: ADAPTIVE!)---------------------
- 
  // openloop step response of C to a unit step in Fc,F1,F2 
  xr=0; 
  mr=0; 
  mr(3)=1;  //Fc input 
  for (i=1;i<=Nkal;i++) 
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  { 
   for (j=1;j<=Ninterp;j++) 
   { 
    xr = Adiscr_est*xr + Bdiscr_est*mr; 
   } 
   resp(i,1)=xr(2);  //C output 
  } 
  resp(Nkal,1)=resp(Nkal-1,1);  // else integration is implied ! 
  xr=0; 
  mr=0; 
  mr(1)=1;  //F1 input 
  for (i=1;i<=Nkal;i++) 
  { 
   for (j=1;j<=Ninterp;j++) 
   { 
    xr = Adiscr_est*xr + Bdiscr_est*mr; 
   } 
   resp(i,2)=xr(2);  //C output 
  } 
  resp(Nkal,2)=resp(Nkal-1,2);  // else integration is implied ! 
  xr=0; 
  mr=0; 
  mr(2)=1;  //F2 input 
  for (i=1;i<=Nkal;i++) 
  { 
   for (j=1;j<=Ninterp;j++) 
   { 
    xr = Adiscr_est*xr + Bdiscr_est*mr; 
   } 
   resp(i,3)=xr(2);  //C output 
  } 
  resp(Nkal,3)=resp(Nkal-1,3);  // else integration is implied ! 
 
  unsigned ii,jj,iB,jB,rcol,rrow; 
  // Load B 
  for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++) for (j=1;j<=Mkal;j++) for (jj=1;jj<=Pkal;jj++) 
  { 
   iB=(i+j-2)*Rkal+ii; 
   if (iB<=Nkal*Rkal) 
   { 
    jB=(j-1)*Pkal+jj; 
    rcol=(jj-1)*Rkal+ii; 
    B(iB,jB)=resp(i,rcol); 
   } 
  } 
  // Load Bol  
  for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++) for (j=1;j<=Nkal;j++) for (jj=1;jj<=(Pkal+Qkal);jj++) 
  { 
   iB=(i-1)*Rkal+ii; 
   jB=(j-1)*(Pkal+Qkal)+jj; 
   rrow = __min(Nkal-j+i+1, Nkal); 
   rcol=(jj-1)*Rkal+ii; 
   Bol(iB,jB)=resp(rrow,rcol); 
  } 
  // Load B0  
  for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++) for (j=1;j<=Nkal;j++) for (jj=1;jj<=(Pkal+Qkal);jj++) 
  { 
   iB=(i-1)*Rkal+ii; 
   jB=(j-1)*(Pkal+Qkal)+jj; 
   rrow = Nkal-j+1; 
   rcol=(jj-1)*Rkal+ii;   
   B0(iB,jB)=resp(rrow,rcol); 
  } 
  // Load W_kal  (weights on deviation-squared from setpoint) 
  for (i=1;i<=Nkal;i++) for (ii=1;ii<=Rkal;ii++) 
  { 
   j = (i-1)*Rkal+ii; 
   if (ii==1) Wkal(j,j)= beta*pow((1/max_C),2);    // C  deviation from SP  
                 // so can weight each controlled variable differently 
  } 
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  // Load L_kal  (weights on control-move-squared) 
  for (i=1;i<=Mkal;i++) for (ii=1;ii<=Pkal;ii++) 
  { 
   j = (i-1)*Pkal+ii; 
   if (ii==1) Lkal(j,j)= 1*pow((1/max_Fc),2);        // Fc MOVE  
               // so can weight each controlled variable differently 
  } 
   
  // Set up the KAL gain matrix............... 
  // Kkal = inv[B'WB +L] B'W 
  BT= ~B; 
  BTWBPL = BT*Wkal*B + Lkal; 
  BTWBPLi=BTWBPL.Inv();   // inversion 
  BTW = BT*Wkal; 
  Kkal = BTWBPLi*BTW; 
  //---------------------------------------------------------------------------------- 
 
  dml(1) = m_Fc-mlast(1);  //MM050103 (Fc-Fcss)-mlast(1);   
  dml(2) = m_F1-mlast(2);  //MM050103 (F1-F1ss)-mlast(2);   
  dml(3) = m_F2-mlast(3);  //MM050103 (F2-F2ss)-mlast(3);   
 
  mlast(1) = m_Fc;   
  mlast(2) = m_F1;   
  mlast(3) = m_F2;   
 
  // past moves shift one down dmp stack 
  for (i=1; i<=(Nkal-1); i++) 
  { 
   for (j=1; j<=(Pkal+Qkal); j++) 
   { 
    dmp((i-1)*(Pkal+Qkal)+j) = dmp(i*(Pkal+Qkal)+j); 
   } 
  } 
  for (j=1; j<=(Pkal+Qkal); j++) 
  { 
   dmp((Nkal-1)*(Pkal+Qkal)+j) = dml(j);  // previous move 
  } 
 
  if (b_AUTO) 
  { 
   // on AUTO ! ---- do KAL Control ! 
   for (i=1;i<=Nkal;i++) 
   { 
    xsp((i-1)*Rkal+1) = m_C_sp;  
    x0((i-1)*Rkal+1) = m_C; 
   } 
   // set constraints 
   m0.Init((Mkal*Pkal),1); 
   ml=m0; 
   mh=m0; 
   for (i=1;i<=Mkal;i++) for (j=1;j<=Pkal;j++) 
   { 
    m0((i-1)*Pkal+j) = mlast(j);  // repeat it through the vector 
    ml((i-1)*Pkal+j) = 0; 
    mh((i-1)*Pkal+j) = max_Fc; 
   } 
   dmmax = m0; dmmax = 20; 
 
   xl = x0;  
   xh = x0; 
   for (i=1;i<=Nkal;i++) 
   { 
    xl((i-1)*Rkal+1) = 0; 
    xh((i-1)*Rkal+1) = max_C; 
   } 
    
   w.Init(Mkal*Pkal); //weights for deviations from unconstrained optimal move 
   for (i=1;i<=Mkal;i++) 
   { 
    // fractions of eng value 
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    w((i-1)*Pkal+1) = 1.0/Fcdatum; 
   } 
    
   // Solve the LP problem.... 
   if (KALstep(Nkal,Mkal,Pkal,Qkal,Rkal,     
    &x0,&xsp,&dmp, 
    &B,&B0,&Bol,&Wkal,&Lkal,&Kkal,&w, 
    &m0,&mh,&ml,&dmmax,&xh,&xl,&trajerr,&dmuqo,&dm)) 
   { 
    m_Fc = mlast(1) + dm(1); 
    m_kal_gap = fabs(dm(1)-dmuqo(1)); 
    if (m_kal_gap > 0)  
    { 
     b_constrained = TRUE;  // shortcut - see slack variable method with ry below 
    } 
    else 
    { 
     b_constrained = FALSE; 
    } 
   } 
   m_Fc = m_Fc;  
  } 
 } 
 
 
 // now move the model (BASED ON TRUE value of k) forward on a finer time-step (just use Euler integration) 
 while ((theApp.t-theApp.tlast_ModelStep) >= dtKAL/(double)Ninterp) 
 { 
  theApp.tlast_ModelStep += dtKAL/(double)Ninterp; 
 
  mr(1) = (m_F1-F1ss); 
  mr(2) = (m_F2-F2ss); 
  mr(3) = (m_Fc-Fcss); 
 
  xr(1) = (m_V-Vss); 
  xr(2) = (m_C-Css); 
  xr(3) = (m_k-kss); 
 
  xr = Adiscr_true*xr + Bdiscr_true*mr; 
 
  if (theApp.b_Model) 
  { 
   m_V = __min(__max(xr(1)+Vss,0),max_V); 
   m_C = __min(__max(xr(2)+Css,0),max_C); 
  } 
 
          //--------------------------------------------------------------------------------------- 
  // Now Kalman Filter step based on estimated k value, to find k! 
  mr(1) = (m_F1-F1ss); 
  mr(2) = (m_F2-F2ss); 
  mr(3) = (m_Fc-Fcss_est); 
 
  xr(1) = (m_V_est-Vss_est);   // these must be based on their estimates! ####MM050104 
  xr(2) = (m_C_est-Css_est); 
  xr(3) = (m_k_est-kss_est); 
 
  yf(1) = m_V - Vss_est;   // observations 
  yf(2) = m_C - Css_est; 
 
  cMatrix GfT,temp; 
  GfT = ~Gf; 
  temp = (Gf* ( Mf * GfT) ) + Rf; 
  Kf = Mf * ( GfT * temp.Inv() ); 
  xr = Adiscr_est*xr + Bdiscr_est*mr + Kf*(yf - Gf*xr); 
  temp = ~Adiscr_est; 
  Mf = Adiscr_est*(If - Kf*Gf)*Mf*temp +Qf;   //recursive 'M' 
 
  //recover absolute values 
  m_V_est = __min(__max((xr(1) + Vss_est), 0),max_V); 
  m_C_est = __min(__max((xr(2) + Css_est), 0),max_C); 
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  m_k_est = __min(__max((xr(3) + kss_est), 0),max_k); 
  //---------------------------------------------------------------------------------------- 
 
  // Level control if requested ... has to be done in phase with model step 
  if(b_AutoLC) 
  { 
   if ((m_V<=m_Vlow) & (m_Vlast>m_Vlow)) 
   { 
    m_F1 = m_F1high;       
   } 
   if ((m_V>=m_Vhigh) & (m_Vlast<m_Vhigh)) 
   { 
    m_F1 = m_F1low;       
   } 
   m_F1 = __min(__max(m_F1,0),max_F1); 
  } 
  m_Vlast = m_V; 
 } 
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8.3 MED – Model error detection 
 

 

Identification of MIMO model error dependence using a least squares 

fit to a batch of real-time data in a moving window:  
 

 

f_8.16  

 
 

8.3.1  Typical settings 
 

Level setpoints: Valves: 

LSP1  =  40 X1  =  50 
LSP2  =  30 X2  =  50 
LSP3  =  80 X3  =  50 
LSP4  =  30 X4  =  50 
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8.3.2  Theory 

 
 

f_8.17  
 

Figure f_8.17  shows the experimental rig with the considered four vessels on the left (Kannie 

and Managalparsad, 2010). 
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f_8.18
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              (8.28-8.31) 

f_8.19

aa

22222 a LKxF V

343333 a LLKxF V

44444 a LKxF V

6466 a1  LKF V

1111 a15 VKxF

 

              (8.32-8.37) 

 

Kannie and Managalparsad (2010) modelled the system as above (f_8.18- f_8.19), obtaining 

the parameters KV1-KV6 and a1-a6 by a series of experiments on the apparatus.  

 

   av[1]=200.00; kv[1]=0.123; 

   av[2]=3.629; kv[2]=0.187;   
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   av[3]=4.25;  kv[3]=0.0632; 

   av[4]=2.268; kv[4]=0.202; 

   av[5]=-4.6;  kv[5]=0.122; 

   av[6]=0.000; kv[6]=0.090; 

 

The valves on the apparatus were open or shut solenoid valves. Thus flow was proportioned 

on a 0-100% scale by time-slicing each valve on a fairly quick cycle so as not to add any extra 

measureable transients. The fractional opening of valves is obvious at the bottom of the screen 

(f_8.16). However, the model uses the fractional valve setting directly, so that MODEL 

operation of the software will not exhibit any dependence on the fractional switching cycles. 

 

Observation of Errors: 

 

As the system runs, there is a measurement of each tank level coming from the plant. In 

parallel, the assumed plant model is run, using the same valve settings as are being used on 

the plant. Since this will inevitably have large offsets, the assumed plant model is run in a 

very particular way. An horizon is established by going backwards in time for a fixed period 

(10s), and the measured levels at that time are used as the assumed model starting point. The 

assumed model is then run forward in time up to the present, and the error in each level is 

obtained as the difference between the present level and the assumed model prediction of it. 

This procedure is repeated on every-time step, so there is an updated set of level errors 

obtained for every time-step. 

 

Error Correlation Matrix: 

 

For the purpose of identifying the realtionship between each level error and each valve (as a 

possible source of the error), a window of data for the 4 level errors, and simultaneous 4 valve 

settings is maintained  in a stack, going back N=200 points in time. The way that this stack is 

processed on each time-step, to update the error/valve correlation matrix, will now be 

described. 

 

The method will be developed initially by considering only one of the 4 tank level errors, 

which will nominally be called e. The value of this error at position i in the stack 1≤i≤N will 

be represented ei. It will be assumed that a linear relationship with fixed offset exists between 

this error and the valve settings at time i: 
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So the objective is to find the set of coefficients α which cause the best least squares fit 

objective value J(α) over the whole stack (equally-weighted) as follows: 
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The middle two terms are transposes and scalar, so one can write 
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Differentiating with respect to the vector α, 
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to minimise. Thus 
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Bearing in mind that only an arbitrary level error e has been considered so far, one can 

consider all j levels simultaniously, 1≤j≤4 , using 
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In this application, protection against a singularity in the inversion of the X covariance matrix 

is obtained using 
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so that 
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The correlation matrix presented on the screen is in the form AT: 

1 2 3 4

1 11 21 31 41 51

2 12 22 32 42 52

3 13 23 33 43 53

4 14 24 34 44 54
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          (8.51) 

 

An efficiency is included in this moving-window application by adjusting only terms affected 

by the new point on each time-step, and subtracting out the contribution of the oldest point 

which is being lost from the window. 

 
 

8.3.3  Tasks 

 
In this exercise, the intention is to detect when the apparatus starts to behave differently to the 

model. Not only that, but the correlation matrix which is continuously updated in time will 

hopefully give us enough information to locate just where in this MIMO system the fault is 

likely to be. The exercise will be conducted by initially running with the matched model, then 

adjusting the “matched” model so that it differs from the “plant” being measured. Of course, 

in off-line MODEL mode, the “plant” will just be the original unchanged model.The updated 

correlation matrix seeks whether errors observed in the four level measurements (compared to 

expected levels) can be attributed to any of the 4 valves. For the purpose of the exercise, the 

behaviour error will be introduced by altering the KV of a valve. 

 
 

8.3.4  Method 

 
(1) Start the MED application. It should be in MODEL mode (f_8.20). The level setpoints 

are to be 40,30,80,30 for LSP1 through to LSP4. Select the DMC control, and then switch 

the system to AUTO. Wait for the system to come to steady-state at these setpoints. 
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f_8.20   

 

 

(2) For the purpose of identification, few of the relationships in the system can be observed 

at steady-state, so frequent time-changes will be forced on the system by moving the 

level setpoints in a random fashion. This is arranged so that the setpoints move up 10%, 

then back down 10% at random points in time, to avoid saturation of valves or levels. 

To start this process, press the S/P STEPPING button (f_8.21). 

 

f_8.21  

 

 

 (3) Whilst the system continues to track the moving setpoints, keep an eye on the Error 

Correlation Matrix. All correlation terms between valves and errors in expected levels 

should be remaining zero, because the expected Levels are based on an identical model 

to the plant (f_8.22).  
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f_8.22   

 

(4) Now create a plant-model mismatch by moving the error factor applied to KV3 (ie. the 

coefficient of valve 3) from 1.0 to 2.0 (f_8.23). Because this is applied to the assumed 

plant model, in practice it is equivalent to halving the actual KV3 on the plant (eg. partial 

blockage).  

 

 

f_8.23  

 

 

 

(5) Observe how the Error Correlation Matrix changes (f_8.24). Because of the system 

structure, one expects that the errors should only be identified in L3 and L4, and the 

strongesst correlation should be with valve 3. 
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f_8.24  

 

(6) Now eliminate the error on KV3 by moving the slider back, and do some tests by 

applying errors to KV1. KV2 and KV4. Report on your observations and attempt to account 

for them. 

 

 

 
 

8.3.5  Code extract 
 
  A prediction error in tank levels is found by going back to measured tank levels TP = 10 

seconds ago, and using the assumed model to run forward from there 10 seconds (10 time-

steps) up to present time, where the predicted levels are compared with measured levels to get 

the four errors. This modelling calculation is done immediately before the code listed below. 

 

This set of errors E is associated with the set of 4 valve positions at the present time, X, and 

this (X,E) pair is fed into a (XS,ES) stack of MaxStack=200 such pairs gathered over the past 

sequence of time-points, with the oldest such pair being discarded when the stack reaches 

capacity. When the stack is full, the calculation is made verry efficient by just adjusting the 

variance and covariance totals for the additional contribution of the new time, and subtracting 

the contribution of the oldest time. 
 
 
// Now we are back at the present 
for (j=1;j<=Ntanks;j++) 
{ 
 Lp[j]=Lm[j];            // the predictions of the present levels 
 Ep[j]=Lm[j]-m_L[j];     // the prediction errors 
} 
 
// Store current predictive errors for correlation analysis 
for (j=1;j<=Ntanks;j++) 
{ 
 Elost[j]=Es[Sp][j];   // about to be overwritten 
 Es[Sp][j]=Ep[j];      
} 
 
// Do correlation if enough data........................................... 
if ((!b_Enough_Data) && (Sp==MaxStack)) 
{ 
 // time to initialise recursive moving window 
 EX.Init(Ntanksp1);      // Correlation factors from X's to E's 
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 Xcov.Init(Ntanksp1,Ntanksp1);  // X covariances 
 Mat.Init(Ntanksp1,Ntanksp1);   // working matrix 
 EXprod.Init(Ntanksp1,Ntanks);  // EX products for correlation 
 X.Init(Ntanksp1); 
 EE.Init(Ntanks); 
 Xcov=0; 
 EXprod=0; 
 Lamda_Suppression.Identity(Ntanksp1,MaxStack*1e-10,0.0); 
 
 for (j=1;j<=Ntanks;j++) 
 { 
  Xsum[j]=0; 
  Esum[j]=0; 
 } 
 X(Ntanksp1)=1; 
 for (i=1;i<=MaxStack;i++) 
 { 
  for (j=1;j<=Ntanks;j++) 
  { 
   Xsum[j]+=Xs[i][j]; 
   Esum[j]+=Es[i][j]; 
  } 
 } 
 for (i=1;i<=MaxStack;i++) 
 { 
  for (j=1;j<=Ntanks;j++) 
  { 
   Xdev[i][j]=Xs[i][j]-Xsum[j]/MaxStack;    //####MM100322 ....Test!!! 
   Edev[i][j]=Es[i][j]-Esum[j]/MaxStack;   //####MM100322 ....Test!!! 
   X(j)=Xdev[i][j]; 
   EE(j)=Edev[i][j]; 
  } 
  Xcov=Xcov+X*(~X);                         //####       /MaxStack; 
  for (k=1;k<=Ntanks;k++) 
  { 
   for (j=1;j<=Ntanksp1;j++) 
   { 
    EXprod(j,k)=EXprod(j,k)+EE(k)*X(j); 
   } 
  } 
 } 
 b_Enough_Data=TRUE; 
} 
else 
{ 
 if (b_Enough_Data) 
 { 
  X(Ntanksp1)=1; 
  for (j=1;j<=Ntanks;j++) 
  { 
   Xsum[j]+=Xs[Sp][j]-Xlost[j]; 
   Esum[j]+=Es[Sp][j]-Elost[j]; 
  } 
  for (j=1;j<=Ntanks;j++) 
  { 
   X(j)=Xdev[Sp][j]; 
   EE(j)=Edev[Sp][j]; 
  } 
  Xcov=Xcov-X*(~X);            // dump oldest contribution 
  for (k=1;k<=Ntanks;k++) 
  { 
   for (j=1;j<=Ntanksp1;j++) 
   { 
    EXprod(j,k)=EXprod(j,k)-EE(k)*X(j);   // dump oldest contribution 
   } 
  } 
  // onto the latest measurements 
  for (j=1;j<=Ntanks;j++) 
  { 
   Xdev[Sp][j]=Xs[Sp][j]-Xsum[j]/MaxStack; 
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   Edev[Sp][j]=Es[Sp][j]-Esum[j]/MaxStack; 
   X(j)=Xdev[Sp][j]; 
   EE(j)=Edev[Sp][j]; 
  } 
  Xcov=Xcov+X*(~X);            // bring in newest contribution  (####slight error due to mixture of averages) 
  for (k=1;k<=Ntanks;k++) 
  { 
   for (j=1;j<=Ntanksp1;j++) 
   { 
    EXprod(j,k)=EXprod(j,k)+EE(k)*X(j);   // bring in newest contribution   
   } 
  } 
 
  //updated, so now find coefficients 
  Mat=(Xcov+Lamda_Suppression).InvNoError(); 
  for (k=1;k<=Ntanks;k++) 
  { 
   for (j=1;j<=Ntanksp1;j++) 
   { 
    X(j)=EXprod(j,k); 
   } 
   EX=Mat*X;               // Solution! : Will give ZEROS if Xcov is singular!!!!!!  ####MM100325  
   for (j=1;j<=Ntanksp1;j++) 
   { 
    XtoEcoeff[k][j]=EX(j); 
   } 
  } 

 

 } 

} 
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Chapter 9   Simulations - Hybrid 

systems 

 
.  

 

9.1 MLD - Predictive control of pressure swing 

adsorption by optimal scheduling of the Skarstrom 

cycle 
 

 

A four-phase cyclical scheduling problem, requiring a decision on 

when to end each phase in order to optimise production: 

   
 

f_9.1  
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9.1.1  Typical settings 
 
Two identical adsorbers are shown. Though this offers scope for shared use of purge gas, and 

for creation of a steadier supply of product, the focus at this point will be on adsorber A. 

Adsorber B will have the same settings. 

 

FA1  pressurisation flow    60  

FA2  depressurisation flow    40  

FA3  purge flow      30   

FA4  vent flow      40 

Y1    % nitrogen (air feed)    79 

Y2sp setpoint % nitrogen in product tank  10 

 

 

Default Cycle: 

 

(1)  Pressurisation: Pressurise by feeding FA1=60 through VA1 until P reaches 95% of 

Pmax (Pmax=4.5barg) 

 

(2)  Adsorption at high pressure: Continue to feed at FA1=60, opening VA2 to the 

product tank to hold pressure at Pmax. When a mass of 60000 of feed has been admitted, 

stop the feed by closing VA1. Also close VA2 to the product tank.  

 

(3)  Depressurisation: Open VA4 to vent (FA4=40) and allow the pressure to drop to Pmin. 

 

(4)  Purge at low pressure: Now use vent valve VA4 to control the pressure at Pmin, 

whilst feeding back product gas as purge through VA3 at FA3=30. Once a mass of 

10000 of product has been fed back, close VA3 and VA4 and repeat from (1) above. 

 

(Note: The mimic diagram shows the purge flow returning independently of the product flow. 

This permits separate accumulators to be shown on these lines, from which the effectiveness 

of the process can be judged. The composition in the return purge line is set to that in the 

product tank.)  

 

 

 

9.1.2  Theory 
 

This example is taken from Mulholland and Latifi (2009). Pressure swing adsorption requires 

a repeated cycle of four steps. The periods of these steps, or other defined terminal conditions, 

determine the rate and quality of the product, and its cost. In transient situations such as 

upsets or grade changes, it is not intuitively obvious how the steps should be progressively 

altered to bring the plant to the desired operating point in an optimal fashion. The present 

work considers the problem of real-time maximization of the production of a single adsorber, 

and maintaining a setpoint concentration in its product receiving vessel. In a modelling 

exercise, these objectives have been met using predictive control based on completion of the 
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present step, plus two full future cycles to reduce the end-effect. The approach sought to be 

fast and robust by suitable linearisation of the system. This allowed MILP solution in the 

mixed logical dynamical (MLD) framework as a mixed integer dynamic optimisation 

(MIDO). However, this problem was ultimately solved faster and more reliably by testing all 

combinations for constraint violations and the objective value. 

An increasing range of adsorbent materials is extending the use of pressure swing adsorption 

(PSA) in the separation of gas mixtures.  These materials are designed to selectively adsorb 

one component from a mixture. As in vapour-liquid equilibrium, the equilibrium quantity of 

this adsorbed component in the solid phase increases with its partial pressure in the gas phase. 

Thus the solid can be used to adsorb the component at high pressure, and it can be 

“regenerated” by expelling the adsorbed species at low pressure. In air separation, N2 is 

selectively adsorbed, leaving an O2-rich product stream. A number of adsorbers can be 

arranged to work in complementary cycles so as to smooth out production flow and the use of 

common resources. However, the present analysis will focus on a single adsorber with a 

product storage vessel. Figure f_9.2 shows a basic pressure swing adsorption configuration for 

air separation. 

 

 

f_9.2 

A

B C

D

air N2

O2O2 storage

 

 

 

Four distinct steps, comprising the Skarstrom cycle, are required: 

 

(1)  pressurisation:  

      A open; B,C & D closed 

 

(2)  adsorption at high pressure: 

      A & B open; C & D closed 

 

(3)  depressurisation: 

      D open;  A,B & C closed 
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(4)  purge at low pressure:  

      C & D open; A & B closed 

 

During step 2, a high purity product can be obtained, particularly if some of the product itself 

is used in step 4 for purging, as is shown here. The mechanism by which a high-purity 

product is obtained is not entirely self-evident. It is in fact achieved by developing a suitable 

composition profile in the solid phase which acts to “screen” the down-ward moving air in 

step 2. That profile will of course oscillate through each full cycle of four steps, but the so-

called “cyclic steady state” (CSS) is achieved once a fixed associated profile arises at the end 

of each step.  

 

To date, most of the work aimed at optimising PSA operation has focused on the optimal 

“positioning” on the CSS cycle. The cycle can be positioned by choosing a particular set of 

four times, one for each of the Skarstrom steps. Alternatively, it can be positioned by choice 

of a particular set of heuristic rules, eg. based on pressure or flow. Figure f_9.3 sows a 

discrete representation of states in a pressure-swing adsorber. 
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In start-up, shut-down or recovery from an upset, heuristic rules are likely to be conservative 

and inefficient. What one seeks is an optimal strategy to bring the process from its current 

point to one which ensures product quality and rate, at minimum cost, possibly in 

coordination with other adsorbers. 

 

The adsorber is modelled as a series of N mixed compartments as shown in f_9.3. In 

compartment i, wi is the total number of moles of adsorbed N2, mi is the unadsorbed N2, and 

M is the total unadsorbed gas, which will be the same for all compartments. Typical values 

are used for air separation, using a linear equilibrium relationship for the N2 (mi
*=cwi) and 

ignoring the small amount of O2 adsorbed. Pressure losses through the bed and thermal effects 
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are likewise neglected. In the equations, M and Fi respectively represent the total gas 

inventory of a compartment, and the total gas flow, whilst fi  is the N2 flow. Flows are divided 

into “downward” (d) and “upward” (u), of which one or the other will be zero depending on 

the step of the cycle. 
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d i u i d i u i i i

dm
f f f f k m cw

dt
                (9.2) 

 i
i i

dw
k m cw

dt
               (9.3) 

 

The only nonlinearity arises as the requirement that the effluent composition from a 

compartment obeys the following equations for downward or upward flow respectively. 

 

, ,

, ,

or
d i u ii i

i i

d i u i

f fm m
y y

F M F M
             (9.4-9.5)        

 

This was linearised using deviations () from an estimated operating point (‘) 

 

f f m m

F F M M

   


   
             (9.6)         

 

and neglect of the deviation products andf M F m    . 

 

Figure f_9.4 compares (a) Nonlinear Model and (b) Linearised Model predictions for the 

Skarstrom cycles, under the same conditions. W is the total adsorbed mass of N2. Though 

some errors are manifest in the linearised solution, they do not appear to disrupt the solution 

badly. 
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In the real-time situation, the controller is cycling asynchronously at its own time-interval. In 

the present case this is 10s. It does not need to match the tj  of any of the Skarstrom steps j 

because the entire optimisation calculation is repeated a priori on each controller time-step. 

What is important to the control algorithm is to know the system state at this time. A first step 

was thus to develop a state observer. A Kalman filter based on the linearised models in 

equations above, changing in sequence, was able to provide good estimates of the 2×N+1 state 

values using just three “measurement” outputs of the original non-linear model [ (i) pressure 

P; (ii) product outflow composition during step 2; and (iii) purge outflow composition during 

steps 3 and 4 ].  
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Apart from these state values, the predictive control algorithm of course needs to know which 

of the four possible steps of the Skarstrom cycle is presently being conducted. (Historical 

information - eg. how long it has been in this step - is not required). Figure f_9.5 shows the 

concept of future Skarstrom step length optimisation for a system found (for example) to be in 

a purge mode on the controller time-step. A look-up table indicates the required future 

sequence for completion of an entire Skarstrom cycle (constrained), followed by a repeat full 

cycle with the same step lengths (unconstrained): 

 

[1]  pressurisation:  

      complete 1 then do 2341  , 2341 

[2]  adsorption at high pressure: 

      complete 2 then do 3412 , 3412 

[3]  depressurisation: 

      complete 3 then do 4123 , 4123 

[4]  purge at low pressure: 

      complete 4 then do 1234 , 1234 

 

The identified future sequence is then the basis of the optimisation. It amounts to a choice of 

the number of intervals tj  to spend in each of the Skarstrom steps j (figure 4). The result is 

five separate interval counts. Steps occurring after the production step 4 would appear to play 

a neutral or negative role (eg. use of Product for purging). Thus the objective function used 

here is based on one further repetition of the cycle (n=1) to reduce such “end-effects”. The 

computational load is reduced by forcing the “copies” to use the Skarstrom step lengths of the 

first full cycle. 

 

The main predictive control interest is in whether the intervals left in the first (partial) step 

add up to less than the controller time-step. In that case the controller must take action now by 

switching to the next Skarstrom step. 
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For each of the Skarstrom steps j=1,…,4 a range of transition models is pre-prepared, one for 

each of the possible number of intervals  1 ≤ i ≤ nmax that could be used for that step:  

 

       i i

j j jt i t t   x A x b              (9.7) 

 

The new arrays  i
jA and  i

jb  are obtained by individually recursing equation 9.7 i times for each 

case j Now if the particular choices of i made to complete the present step j and the next 4 

complete steps are 

         , 1 , 2 , 3 , 4i j i j i j i j i j    , 

where it is understood that the index values will “wrap” around in the range 1,2,3,4, then it is 

these choices that must be made optimally in determining the future state sequence. 

Representing   jt i j t x  by 
jx one has 
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           (9.9-9.10) 

 

After completion of the present partial step, two whole cycles are executed, with the second 

cycle re-using the same number of intervals in each step as in the first cycle. 

 

In this form, the problem lends itself to solution in the mixed logical dynamical (MLD) 

framework of Morari and co-workers (Bemporad and Morari, 1999; Morari et al., 2000;  

Morari, 2002). Furthermore, the use of linear dynamic models allows solution by mixed 

integer linear programming (MILP). The selection of the optimal number of steps is 

facilitated by binary variables , eg. for equation 9.8 one requires the constraints 

 
   

max 1 max

i i

j ij j j j    x e A x b e             (9.11) 

 
   

min 1 min

i i

j ij j j j    x e A x b e            (9.12) 

max

1

1
n

ij

i




                 (9.13) 

Here the vectors e contain the maximum and minimum deviation values when (all but one of) 

the i-models are not obeyed (large positive and negative numbers).  

 

Whereas the task required was quite simple - viz. choose the best combination of interval 

numbers in the first five Skarstrom steps - it became clear that the linear program was an 

inefficient means of solving the problem. The numerous additional constraints required for 

model choice as in equations 9.11 to 9.13, and to deal with variable saturation, slowed down 

LPSOLVE (Michel Berkelaar - http://sourceforge.net/projects/lpsolve/), and caused failures. 

Even if continuous variables were included in the search, it would be quicker to evaluate 

every apex of the system for its objective value and compliance with constraints. Indeed, this 

was the procedure used to produce the results in figure f_9.6, for predictive control of the N2 

concentration in the storage vessel. 

 

http://sourceforge.net/projects/lpsolve/
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9.1.3  Tasks 
 

Only operation of the single ‘A’ adsorber will be considered: 

 
(1) Run the ‘A’ adsorber on the default cycle, until the concentration of N2 in the product 

storage tank becomes steady 

 

(2) Switch to optimal control of the ‘A’ adsorber and track changes in the production rate 

and composition. 

 

(3) Once steady under optimal control, step the %O2 setpoint, and observe the response 

 

 

 

 

9.1.4  Methods 
 
 

(1) When you start the MLD application, the buttons on the right should look like this 

(f_9.7): 
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f_9.7  

 

 This means that the plots refer to the A adsorber, which is represented by the model. 

The full model results are being presented directly to the control algorithm (ie. all states, 

without having to use the Kalman filter to extend the three nominal measurements to the 

full state. Presently neither the A nor the B adsorber is on automatic control. All inlets 

and outlets are sealed. 

 

(1) Press the DEFAULT CYCLE button to start a standard fixed cycle as detailed in section 

9.1.1 (f_9.8). The ‘A’ adsorber should be on ‘A manual’ (f_9.9). 

 

f_9.8            f_9.9  
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(2) Set the product O2 tank composition setpoint to 10 %N2, and set the total inventory of 

this tank (level) to a fixed mass of 10000 (setting the “Tank Outflow” scrollbar to 100 

will ensure that the excess is “trimmed out” to consumers (f_9.10). 

 

f_9.10  

 

(3) Let the default cycle repeat a number of times until the system is reacting in a steady 

fashion to it, then start a LOG file to record changes (f_9.11). The %N2 in the product 

storage tyank (Y3) will have dropped from its starting value of 20%. 

 

f_9.11  

 

(4) In this analysis, the supply of gas to the nominal “storage tank” has been disconnected 

from the return purge gas as follows: The supply arrives as FA2 during the Skarstrom 

steps 2 and 3. This flow is represented ifigure f_9.12 by two “accumulators”, of which 

the top one (14295) represents the mass of N2 delivered by FA2 so far, and the bottom 

one (57915) is the total mass of gas (N2 and O2) delivered by FA2 so far. 

 

f_9.12  

  

 Since in this analysis, the product storage tank volume has been set, the excess gas must 

leave the vessel for consumption/overflow. Regardless, the storage vessel is well mixed, 

so this creates a first-order response as far as % N2 in the vessel is concerned. This 

computed %N2 is transferred to Y3, the % N2 in the returning purge gas flow FA3. 

However, the total purge gas used is otherwise unlimited, is kept independent of FA2 

and the storage vessel, and is only recorded on two similar accumulators in figure 



158  Applied Process Control 

 

f_9.13, one for the accumulated mass (8831) of N2 returned as purge and the other for 

the total mass (29769) of gas (N2 and O2) returned as purge (but always at current Y3). 

 

f_9.13  

 

 Thus the net production and cumulative composition of production over a period of time 

is given by the difference between these two sets of accumulators. 

 

(5) Once the default cycle is steady, set the ‘A’ adsorber to optimal control by pressing the 

“A AUTO” button, and then immediately switch off the default cycle by pressing the 

DEFAULT CYCLE button again. 

 

(6) Let the system run for some time to assess how well the controller brings the storage 

tank composition Y3 to its setpoint (10% N2). Check that the “LAG” warning at the 

bottom of the screen does not switch on (f_9.12). This would mean that the 

computations are starting to take longer than the simulation clock (which has been left 

with its acceleration too great). If this happens, reduce the acceleration to allow the 

computations to catch up. 

 

(7) Once the system has settled again, step the storage tank setpoint up to 20% N2, and 

observe the response for a number of cycles. 

 

(8) Close your log file by pressing LOG again (f_9.12). Exit the application and retrieve 

your log file. Process your data to track the storage tank %N2 variations during the 

transitions, and how the total production rate (average per time) varied between the 

default cycle and optimal controller. 

 

 

 

9.1.5  Code extracts 
 
 
  The final part of the LP solution set-up, after the constraints are set, is the definition of the 

objective function, and execution of the LP. 

 
 
     (................after setting of all of the constraints for the LP, ...............continue with.........)     
 

     //[ALP] SET UP OBJECTIVE FUNCTION  (BUT IT IS SAID TO BE FASTER AHEAD OF CONSTRAINTS? #########) 

     ret+=set_add_rowmode(lp, FALSE); //[ALP] have to turn if off when stopped adding rows 
     j = 0;     //[ALP]########first objective col is at 1 not 0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

     
     for (iphase=1; iphase<=Nphase_TOTAL; iphase++)  //######################### was 2 to 5 !!!! 

     { 

     // add the absolute deviations in the "whole" part of the cycle (include "skip" s for the meantime!!!!!!!!!!!###############) 
 

      //[ALP] OBJECTIVE FUNCTION : X_Tank_SP tracking incentive (LEVEL CONTROL) 
      colno[j] = n*iphase+nAb+4*N+4; // X_Tank_absdev 
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      row[j++] = -X_Tank_SP_wt; 

     
      //[ALP] OBJECTIVE FUNCTION : m_Tank_SP tracking incentive (COMPOSITION CONTROL)  

      colno[j] = n*iphase+nAb+4*N+5; // m_Tank_absdev 
      row[j++] = -m_Tank_SP_wt; 

     } 

 
     //[ALP] OBJECTIVE FUNCTION : Production rate incentive (as W2)  

     colno[j] = 1*n+2*N+1+6;   // W2 at end of FIRST phase 
     row[j++] = -ProductionW2_wt;  // not really necessary but makes numbers more meaningful 

     colno[j] = Nphase_TOTAL*n+2*N+1+6; // W2 at end of LAST phase 

     row[j++] = +ProductionW2_wt; 
 

     //[ALP] OBJECTIVE FUNCTION : Consumption rate dis-incentive (as W3)  
     colno[j] = 1*n+2*N+1+7;   // W3 at end of FIRST phase 

     row[j++] = +ConsumptionW3_wt;  // not really necessary but makes numbers more meaningful 

     colno[j] = Nphase_TOTAL*n+2*N+1+7; // W3 at end of LAST phase 
     row[j++] = -ConsumptionW3_wt; 

 
     //[ALP] Finally.... 

     ret+=set_obj_fnex(lp, j, row, colno);     //[ALP]  

     set_maxim(lp);    //[ALP] direction of optmisation 
 

     //[ALP] Now lpSOLVE the optimisation! 
     //[ALP] ============================= 

     set_verbose(lp, IMPORTANT);  //[ALP] only important messages to be shown (##########how????) 

     set_timeout(lp, 40);   //[ALP] timeout in seconds############ 
     set_scaling(lp,SCALE_EXTREME );           //[ALP] scaling - various choices ??######## 

 
     LPresultA = solve(lp);   //[ALP]  

 

     //[ALP] Results (ret) 
     //[ALP]============== 

     //[ALP] Solver status values  
     //[ALP] UNKNOWNERROR            -5 

     //[ALP] DATAIGNORED             -4 

     //[ALP] NOBFP                   -3 
     //[ALP] NOMEMORY                -2 

     //[ALP] NOTRUN                  -1 

     //[ALP] OPTIMAL                  0 

     //[ALP] SUBOPTIMAL               1 

     //[ALP] INFEASIALE               2 
     //[ALP] UNBOUNDED                3 

     //[ALP] DEGENERATE               4 
     //[ALP] NUMFAILURE               5 

     //[ALP] USERABORT                6 

     //[ALP] TIMEOUT                  7 
     //[ALP] RUNNING                  8 

     //[ALP] PRESOLVED                9 
 

 

     //[ALP] get results 
     double objval=get_objective(lp); 

     get_variables(lp, row); 
 

    

     //[ALP] Interpret results  
     //[ALP] ================= 

 

     LPsoln_numberA+=1; 

 

     if (LPresultA == 0) //############MM090113   ####((LPresultA == 0) || (LPresultA == 1))   //[ALP] or SUBOPTIMAL  
     { 

      . 
      . 

      .  (.....implement optimal control action first move and step model.......) 
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