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ABSTRACT 
Isothermal binary vapour-liquid equilibrium data are presented for gas –liquid systems for R116 and 

ethane with perfluorohexane and perfluorooctane. There are no data in the open literature for these 

systems except for ethane with perfluorooctane. These high pressure VLE (HPVLE) measurements 

form part of the ongoing work by the Thermodynamics Research Unit at the University of KwaZulu-

Natal. The work involves, partly, generating a database of thermophysical properties of 

fluorochemicals. These can be used to develop thermodynamic models. The performance of these 

models in correlating data can be compared to predictive models. They are also useful to study the 

interactions between hydrocarbons and perfluorocarbons. This is important for solvent screening in flue 

gas treatments and absorption processes. HPVLE Measurements were performed over a temperature 

range of 273 – 313 K and pressures up to 5 MPa. The R116 or ethane binary systems were measured 

with perfluorohexane and perfluorooctane at four or five isotherms, at temperatures both above and 

below the critical temperature of the lighter component. The measurements were undertaken using the 

“static-analytic” type apparatus with the sampling of the phases done using a rapid-online sample-

injector (ROLSI™).  The expanded uncertainties (95% confidence level) in the temperature, pressure 

and liquid and vapour composition were estimated as 0.09 K, 0.02 MPa and 0.015 and 0.007 mole 

fraction, respectively. The VLE data were correlated with the Peng-Robinson equation of state with the 

classical one-fluid mixing rule and/or Peng-Robinson equation of state (EoS) containing the Mathias 

Copeman alpha function, Wong Sandler mixing rules with the Non-Random Two-Liquid local 

composition model. The HPVLE data comprising R116 were described well with the Peng-Robinson 

EoS and the classical one-fluid mixing rule. The relative deviations in pressure and composition were 

within 1%. The HPVLE data involving ethane were better represented with the more complex Peng-

Robinson EoS with the Wong-Sandler mixing rule. Relative deviations in pressure and composition 

were within 2%. Although acceptable average absolute relative deviations and bias values in pressure 

and vapour compositions were obtained, systematic overestimations or underestimations of the 

experimental vapour compositions were observed. Both thermodynamic models provide good 

representation of the critical regions.  
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NOMENCLATURE 
𝑎  Equation of state parameter 

𝑎𝑖𝑗  Temperature dependence in the Aspen NTRL τ function/classical combining rule 

A  Molar Helmholtz free energy (kJ.mol-1) 

𝑏   Equation of state co-volume parameter 

𝑏𝑖𝑗  Temperature dependence in the Aspen NTRL τ function 

ci (i=1,2,3) Mathias Copeman parameters 

f  Fugacity (bar) 

𝑔𝑖𝑗  Adjustable parameter for the NRTL model (kJ.mol-1) 

G  Molar Gibbs free energy (kJ.mol-1) 

k  Coverage factor 

kij  Binary interaction parameter 

lij  Binary interaction parameter 

n  Number of data point 

P  Pressure (Pa) 

R  Universal gas constant (J.mol-1.K-1) 

T   Temperature (K) 

𝑢𝑐  Combined standard uncertainty 

𝑈  Expanded uncertainty 

𝑣   Molar volume (m3.mol-1) 

x  liquid mole fraction 

y   Vapour mole fraction 

z  Liquid or vapour compositions 
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Greek Letters 

𝛼  Alpha function in the equation of state 

𝛼𝑖𝑗  Non-randomness parameter in the NRTL model 

𝜑  Fugacity coefficient 

𝜀  Equation of state constant 

𝛾  Activity coefficient 

𝜏  NRTL energy parameter 

𝜎  Standard deviation 

𝜌  Density (kg.m-3) 

𝜔  Acentric factor 

 

Subscripts 

c  Critical property 

cxs  Coexistence curve 

calc  Calculated 

corr  Correlation 

exp  Experimental 

ij  Interaction between i and j 

m  Mixture 

r  Reduced property 

∞  Infinite reference state 
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Superscripts 

E  Excess property 

sat  Saturation (pressure) 

v  Vapour phase 

∞  Infinite reference state 
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1 
CHAPTER ONE 

1. INTRODUCTION 
This work on high pressure vapour-liquid equilibrium measurements forms an integral part of the 

ongoing research into fluorocarbons and their derivatives in the Thermodynamic Research Unit (TRU) 

at the University of KwaZulu-Natal.   

The focal point of this work is the measurement and modelling of phase equilibrium binary systems 

involving fluorocarbons. Fluorocarbons have attracted use in science and engineering because of their 

low toxicity and chemical stability. In an effort to promote research and development to establish in 

time a fluorochemical industry, the South African government launched the Fluorochemical Expansion 

Initiative (FEI). The initiative, since 2008 has been successful from a knowledge generation standpoint 

(Pelchem 2015). The key players under this initiative are the Department of Science and Technology, 

the Department of Trade and Industry, the South African Nuclear Energy Corporation, the two Research 

Chairs for Fluorine Technology and Separation studies at the University of KwaZulu-Natal and the 

University of Pretoria. It is under this initiative that projects looking at the beneficiation of fluorspar 

are being taken on by the key organisations. This project involved generating a database for 

thermophysical properties of fluorochemicals  continuing with the investigations from authors such as 

Ramjugernath et al. (2009), Coquelet et al. (2010), Subramoney et al. (2013) and Nandi et al. (2013).  

The phase equilibrium data of fluorochemicals particularly perfluorocarbons (PFCs) is useful in 

separation and refrigeration processes. Such data can be used in solvent screening in the oil and gas 

industry for flue gas treatment and absorption processes. This curiosity in PFCs from industry comes 

from their exceptional ability to dissolve light gases such as carbon dioxide, oxygen and hydrocarbons 

(Lazzaroni et al. 2005; Dias et al. 2006; Williamson 2007). The interest from the oil industry also meant 

that studies with perfluorocarbon + hydrocarbon mixtures had to be done. Anomalous behaviour in such 

non-polar systems have been observed (Subramoney et al. 2013). Examples include systems such as n-

butane + decafluorobutane that exhibit significant deviations from ideality with liquid-liquid 

immiscibility. The phase equilibrium data for fluorochemicals is also useful in developing 

thermodynamic models for predictive purposes. The predictive parameters for various functional groups 

can be developed off extensive experimental data. Functional groups such as the –CF=CF– double bond 

are not fully described. Having models which can predict the phase behaviour in such systems is 

important especially when experimental data is not available. Correlations for parameters such as those 

for hydrocarbons can be developed with classical models. Also given that most fluorocarbons are 
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expensive, reliable predictive models for fluorocarbons would be a very useful tool in industry and in 

research. 

1.1.Perfluorocarbons and hydrocarbons 

The chemicals of concern in this work are the hydrocarbon ethane and selected perfluorocarbons (PFCs) 

of differing carbon chain length. Hydrocarbons (HCs) are some of the simplest organic compounds and 

they contain only carbon and hydrogen. Perfluorocarbons are halocarbons which contain only carbon 

and fluorine and have the general formula CnF2n+2. There are perfluorinated derivatives of their 

hydrocarbon counterparts. They are saturated fluorocarbons and therefore are completely non-polar 

with mitigated London dispersion forces. Fluorocarbons have attracted interest in industry partly 

because of the peculiar features that arise from the very high electronegativity of fluorine and nature of 

the C – F bond (Lo Nostro 1995) which results in low reactivity. Their low reactivity has attracted 

interest in the oil and gas industry as solvents. A number of fluorocarbons are also used as refrigerants 

and in fire extinguishers. The perfluorocarbons CF4, C2F6 and C3F8 have been used progressively more 

in the semiconductor industry since the 1980s (Muhle et al. 2010). C2F6 is a particularly adaptable 

etchant for many substrates. The other longer chain (liquid) fluorocarbons also have attracted use for 

medicinal purposes (de Abreu et al. 2006). The perfluorocarbons (C6 – C8) have proven to be excellent 

solvents for gases such as oxygen (Williamson 2007), carbon dioxide and short chain hydrocarbons 

(Lazzaroni et al. 2005; Dias et al. 2006).   

1.2.The Chemistry 

In spite of the fact that both PFCs and HCs have similar formulas and are apolar, they have different 

structures and are incompatible in a number of ways. This stems from the atomic properties of fluorine 

and carbon and the related bond. Fluorine has a larger van der Waals radius of 1.47 Å versus 1.20 Å for 

hydrogen. It also has the highest electronegativity in the periodic table, high ionisation potential and 

low polarizability (Lo Nostro et al. 2005). These factors cause fluorinated chains to be bulky and rigid 

because of the reduced conformational freedom. This all leads to PFCs having weak intermolecular 

forces and strong intramolecular bonding (Lo Nostro et al. 2005; Dias et al. 2009). Substituting 

hydrogen with fluorine in a hydrocarbon results in great variation in the physical and chemical 

properties such as boiling point and intermolecular forces. Partial fluorination of a hydrocarbon causes 

the boiling point to progressively increase to a maximum and then decrease with complete  fluorination 

of the hydrocarbon (Lo Nostro 1995). Figure 1.1 shows the boiling point as a function of carbon number 

(n) for PFCs and HCs from C1 – C10. For at least n > 5 HCs have a higher boiling point (bp) and for n 

< 4 PFCs have the higher boiling point. In fact perfluorocarbons’ boiling points are linearly dependent 

on 𝑅𝑚𝑆𝑉−1/3 where 𝑅𝑚 is the molar refractive index, 𝑆 is a constant (= 1 for linear chains) and  𝑉 is 

the volume (Van Der Puy 1993). The difference in boiling points in PFCs and HCs increases with 

increasing chain length which proves that PFCs have weaker intermolecular forces. These weak forces 
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together with the strong intramolecular bonds give PFCs unique properties such as exceptional chemical 

inertness and giving the highest solubility towards gases among other known organic liquids (Dias et 

al. 2006). This also makes PFCs more stable than their hydrocarbon counterparts with low surface 

tensions and refractive indices and high densities and gas solubilities (Dias et al. 2009).     

 

Figure 1.1: Boiling points of hydrocarbons (●) and perfluorocarbons (x) as a function of 
carbon number n. Data generated by the NIST ThermoData Engine.  
 

PFCs and HCs have differences in their chain conformations. The (CH2)n blocks give the well-known 

zig-zag arrangement while the (CF2)n blocks give helical structures which differ depending on the 

temperature (Lo Nostro 1995). The helical structures are a result of the hindrance constraints due to the 

larger van der Waals radius of fluorine.  

The governing forces in saturated FCs and HCs are dispersion forces. They are the attractive forces that 

occur between instantaneous dipoles in a molecule. These forces depend on surface area, that is, contact 

between molecules. As such as the surface area increase the forces become stronger, for instance, CF4 

has weaker forces than C2F6 which has weaker forces than C3F8 and so forth. Moreover as the surface 

area increases (or molecular weight) the boiling point also increases (Figure 1.1). Thus the boiling point 

serves as a measure of how strong the attractive forces are between molecules. In simple terms the 

vapour pressure can give the same information about attractive forces in a molecule. A component with 

a higher boiling point has a lower vapour pressure. Figures 1.2 and 1.3 show the vapour pressure curves 

for the PFCs and HCs. For n ≥ 4 the vapour pressures of PFCs are greater than those of the HCs. For n 

≥ 6 (liquids), the vapour pressures are much smaller – the attractive forces are much larger in liquids.  

The difference in the boiling points and vapour pressures also show the ease with which it is to separate 

these chemicals. For n = 2 – 4 the separation would be the most difficult because the chemicals are such 

close boilers. In fact a binary mixture of C2H6/C2F6 forms an azeotropic mixture (Zhang et al. 2005). 
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The separation becomes easier with an increase in ‘n’ particularly from n = 5 onwards as the difference 

in boiling points increases.  

 

Figure 1.2: Vapour pressures of PFCs (dashed lines) and HCs (solid lines). C1 (black), 
C2 (red), C3 (blue), C4 (green), C5 (orange) 

 

Figure 1.3: Vapour pressures of PFCs (dashed lines) and HCs (solid lines). C6 (black), 
C7 (red), C8 (blue), C9 (green), C10 (orange) 
  

1.3. The Chemicals of Interest 

Four chemicals are of interest in this work, three perfluorocarbons and one hydrocarbon. The focus of 

this study was on perfluorocarbons and the interactions within the same family group and other organic 

compounds, hydrocarbons in particular. The choice of chemicals used was influenced by the availability 

of these chemicals and the possibility of producing new phase equilibrium data. The chemicals chosen 

were ethane, perfluoroethane, perfluorohexane and perfluorooctane. They are discussed in some detail 

below. Included are the chemical structures, uses and physical properties.   

Perfluoro-n-octane 

IUPAC name: 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-octadecafluorooctane 
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Other names: Octadecafluorooctane, perfluorooctane.  

CAS No. 307-34.6 

Chemical formula: C8F18 

Molecular weight: 438 g/mol 

Boiling point: 372 K  

F

F F F F

FFFF

F

F
F

F F F

F F F

 

Figure 1.4: Perfluoro-n-octane chemical structure 
 

For simplicity, perfluoro-n-octane may be referred to as PFO in this work. PFO is the heaviest 

component in this study with a molecular weight of 438 g/mol. It is a clear liquid at room temperature 

and its chemical structure is shown in Figure 1.4. It is a fluorinated derivative of the hydrocarbon n-

octane where all the hydrogens are replaced by fluorine atoms. It consists of 8 carbon atoms surrounded 

by 18 fluorine atoms. The carbons at the ends are bonded to 3 fluorine atoms and one carbon. The rest 

of the carbons atoms are bonded to two fluorine atoms and two carbon atoms on either side. Because 

of the number of carbon atoms and the dipole moments formed between each C – F bond, PFO forms 

helical structures. PFO is less reactive than its hydrocarbon counterpart owing to the electronegativity 

of fluorine compared to that of hydrogen (Lo Nostro 1995).  

Perfluoro-n-hexane 

IUPAC name: 1,1,1,2,2,3,3,4,4,5,5,6,6,6-tetradecafluorohexane 

Other names: Tetradecafluorohexane, Perfluorohexane 

CAS No. 355-42.0 

Chemical formula: C6F14 

Molecular weight: 338 g/mol 

Boiling point: 332 K  
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Figure 1.5: Perfluoro-n-hexane chemical structure. 
 

Perfluoro-n-hexane may also be referred to as PFH in this work. PFH has a molecular weight of 338 

g/mol. It is a clear colourless liquid at room temperature. Its chemical structure is shown in Figure 1.5. 

This chemical, like PFO, is a perfluorinated derivative of hexane. It consists of 6 carbon atoms and 14 

fluorine atoms. It is very similar to PFO, except is a smaller chain fluorocarbon. This does have some 

implications on the physical properties of the component including higher vapour pressures and a lower 

boiling point than the longer chain PFO. Because it has a high vapour pressure and is chemically inert, 

PFH has attracted some use in medicine as a respiratory medium (de Abreu et al. 2006; Kaisers et al. 

2003). 

Perfluoroethane 

IUPAC name: 1,1,1,2,2,2-hexafluoroethane 

Other names: Hexafluoroethane, R116, Fluorocarbon 116 

CAS No. 76-16-4 

Chemical formula: C2F6 

Molecular weight: 138 g/mol 

Boiling point: 195 K  
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Figure 1.6: Perfluoroethane chemical structure. 
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R116 is an odourless gas at standard conditions. Its molecular structure is shown in Figure 1.6. It 

consists of two carbon atoms bonded to each other and three fluorine atoms each. The molecule is a 

derivative of the hydrocarbon ethane. R116 is used in the semiconductor industry and other electronic 

manufacture for plasma etching, chemical vapour deposition and cleaning (Muhle et al. 2010). It is also 

used as a refrigerant in blends.   

Ethane 

IUPAC name: Ethane 

Other names: R170, Dimethyl 

CAS No. 74-84-0 

H

HH

H H

H

 

Figure 1.7: Ethane chemical structure 
 

Ethane is an odourless gas at standard conditions. Its chemical structure is shown in Figure 1.7 and is 

the second simplest hydrocarbon after methane. It consists of two carbon atoms bonded to each other 

and three hydrogen atoms each. It is considerable more reactive than its fluorocarbon counterpart. The 

main use of the component is in the production of ethylene. It is one of the main components of natural 

gas, second only to methane. The gas is flammable and when mixed with air forms an explosive mixture. 

Ethane is also used in refrigeration and refrigeration grade ethane is usually termed R170.  

 

Physical Properties 

Table 1.1: Summary of the physical properties of the chemicals in this work 
Component Formula Molecular 

Weight 
Boiling 
Point [K] 

Reference/Comments 

Perfluoro-n-octane C8F18 438.0569 372.-373. (Brown & Stein n.d.) 
Perfluoro-n-hexane C6F14 338.0418 332.-333. (Brown & Stein n.d.) 
Perfluoroethane C2F6 138.0118 195. ± 0.2. Average of 12 selected values1 
Ethane C2H6 30.0690 184.6 ± 0.6 Average of 23 selected values2 

The data above was compiled by the Thermodynamics Research Centre (TRC), NIST Boulder 

Laboratories. 1,2These data were calculated by TRC.  
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Table 1.2 shows the critical properties and the acentric factor.  

Table 1.2: Critical Properties and Acentric Factor 
Component TC/K PC/MPa ω References 

Perfluoro-n-octane 501.77 1.661 0.62001 Nandi et al. (2013) 

Perfluoro-n-hexane 448.77a 1.868b 0.49458 Mousa et al. (1972) 

Perfluoroethane 293.04 3.042 0.229 

 

Ramjugernath et al. (2009); 

Subramoney et al. (2010) 

Ethane 305.3 ± 0.3c 4.9 ± 0.1d 0.10016e eNandi et al. (2013) 

The Thermodynamics Research Centre assigned uncertainties of a0.2 K and b0.344 MPa to the 

corresponding data. cCalculated by the TRC using an average of 41 out of 46 values and d28 out of 29 

values.  

Density and Refractive Index 

Density and refractive index are often used in chemical laboratories to verify the purity of liquid 

components. Density,𝜌 is the mass per unit volume of a substance. Refraction is the bending of light 

(or in general a wave) as it travels from one medium to another. Indices of refraction are values that 

describe how light travels through a certain medium compared to how it travels through a vacuum. For 

example if the refractive index of a substance is n, then light travels n times faster in a vacuum. The 

densities and refractive indices of the two liquids from literature are presented in Table 1.3 

Table 1.3: Densities and Refractive Indices 
 Density 

[g/ml] 

Refractive Index Reference 

Perfluoro-n-octane 1.766 1.27 (Anon 2008b)The Chemical Book 

Perfluoro-n-hexane 1.669 1.252 (Anon 2008a)The Chemical Book 

The densities were measured at 25oC and the refractive indices were measured at 20oC.  

Although both PFCs and HCs are non-polar, mixtures of PFC/HC show non-ideal behaviour. In fact 

PFCs are incompatible with HCs and most other organic compounds. The incompatibility between 

PFCs and HCs and all its related phenomena such as liquid-liquid immiscibility has been attributed to 

the different chain conformations noted earlier (Mukerjee 1982; Lo Nostro 1995). Phase equilibria study 

of PFCs and their mixtures is therefore essential to gain a deeper understanding of aspects that control 

interactions between these components in a mixture and principles that govern the separation processes.    
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2 
CHAPTER TWO 

2. BINARY VAPOUR-LIQUID EQUILIBRIUM SYSTEMS 

Up to six different binary systems are possible with the combinations of the four components in this 

work. These combinations are shown in the matrix in Table 2.1. The four systems worked on for this 

project are marked. These systems are all gas/liquid systems at standard conditions. There are two all 

PFC systems and two PFC/HC systems. Non-ideal behaviour is expected for the PFC/HC systems. The 

choice for these systems was based on producing new high pressure phase equilibrium data. With 

respect to the conditions and suitability of the equipment and its operating range the C6F14/C8F18 system 

would be low pressure system. The C2H6/C2F6 system has been measured previously by Zhang et al. 

(2005). Moreover R116 and ethane have been studied numerous times (Matschke & Thodos 1962; 

Wichterle & Kobayashi 1972; Zhu et al. 2006; Valtz et al. 2007; Madani et al. 2012) with other gaseous 

organic compounds. The reason for studying these measurements was to obtain model parameters for 

the description of phase mixtures at high pressures from low to high temperatures. The applications in 

industry of these systems include development of refrigeration systems and separations processes for 

light hydrocarbons.  

In particular R116 has not yet been measured with any liquid component which made the choice of 

R116 in this work important. Similarly, as one of the more expensive fluorocarbons, obtaining data with 

R116 was crucial.   

Table 2.1: Matrix of all the possible combinations of binary VLE systems in this work. 
Systems worked on for this project are marked .   

 C2H6 C2F6 C6F14 C8F18 

C2H6     

C2F6 x    

C6F14     

C8F18   x  

 

For the analysis of vapour-liquid separation processes and other thermodynamic processes, one must 

estimate compositions of vapour and liquid in equilibrium (Sandler 2006). This topic is considered in 
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detail in this work with particular reference to binary vapour-liquid equilibrium (VLE) phase diagrams. 

As the name suggests, VLE is when the vapour and liquid in a closed system are in equilibrium with 

each other, that is, the rate of condensation and the rate of evaporation are equal such that there is no 

net change in the vapour and liquid conversions. The amount of vapour in equilibrium with the liquid 

is expressed in terms of vapour pressure (or partial pressure) of the gas in the mixture during 

measurements. The vapour-liquid equilibrium measurements are used to obtain information on the 

partial molar properties of the mixtures (Sandler 2006). This work presents VLE data for the R116 + 

perfluorohexane, R116 + perfluorooctane, ethane + perfluorohexane and ethane + perfluorooctane. In 

literature, a number of binary vapour-liquid equilibrium data involving R116 and ethane have been 

published. However data involving the liquid components is rare. An extensive literature review 

revealed that not many high pressure measurements involving perfluorohexane and perfluorooctane 

have been performed previously. Lazzaroni et al. (2005) presented data for perfluorohexane and Dias 

et al. (2006) and Nandi et al. (2013) presented data for perfluorooctane. The data presented in this work 

represents new work with the exception of the ethane + perfluorooctane system measured by Nandi et 

al. (2013). Some of the data found in literature have been compiled in this section. This is a collection 

of some the measurements recorded involving these components aimed to give an indication of the 

thermodynamic behaviour of these components.  

2.1.Thermodynamic Data from literature 

Phase equilibrium data for binary systems with Perfluorooctane 

Isothermal binary VLE data for carbon dioxide and perfluorooctane was measured from 293 – 353 K 

by Dias et al. (2006) (only P-x data given). The data is presented in Figure 2.1. The authors looked at 

the phase equilibria of carbon dioxide and different perfluorocarbons including perfluorooctane. The 

phase behaviour was modelled using the soft-statistical associating fluid theory (soft-SAFT) equation 

of state. The primary objective was to check the influence of the structure of each solvent on carbon 

dioxide solubility. The data showed that perfluorooctane is a suitable solvent for carbon dioxide and 

possibly other light gases. However there is limited high pressure data on PFCs with much of the data 

in literature being liquid-liquid equilibria from authors such as Lo Nostro et al. (2005). Experimental 

high pressure VLE data is needed to fill this gap.  
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Figure 2.1: P-x data for carbon dioxide(1) + PFO(2) at four isotherms measured by  Dias 
et al. (2006). (◊) 293.15 K, (□) 313.15 K, (Δ) 333.15 K, (○) 353.15 K; (―) trendline/best 
fit  

Phase equilibrium data for binary systems with Perfluorohexane 

Isothermal data for carbon dioxide and perfluorohexane  at 313 K published by Lazzaroni et al. (2005) 

is shown in Figure 2.2. The Patel-Teja (1982) cubic equation of state with the Mathias – Klotz – 

Prausnitz (1991) mixing rules was used to correlate the data. The system was also measured earlier by 

Iezzi et al. (1989) at 314.65 and 353.25 K (not shown).  

 

Figure 2.2: P-x-y data for carbon dioxide(1) + perfluorohexane(2) at 313 K measured by 
Lazzaroni et al. (2005).  
 

Lazzaroni et al. (2005) did not measure points near the critical region. This region is usually not easy 

to measure, but measuring it will ensure the thermodynamic model can accurately correlate the data. 

Carbon dioxide is also considerably soluble in perfluorohexane and in fluorocarbons in general.  This 
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may be because of geometric packing and dispersion interactions (Dias et al. 2006) or/and their similar 

low cohesive energy densities (Lazzaroni et al. 2005).  

The carbon dioxide/perfluorooctane system (Figure 2.1) and the carbon dioxide/perfluorohexane 

system (Figure 2.2) at 313 K have very similar trends with carbon dioxide/perfluorooctane system 

having a more extended two-phase region ― (x1 = 0.721, P = 5.33 MPa) to (x1 = 0.84, P = 6.42 MPa) 

for carbon dioxide/perfluorohexane and (x1 = 0.701, P = 5.32 MPa) to (x1 = 0.85, P = 6.58 MPa) for 

carbon dioxide/perfluorooctane. This is because there is lower solubility of the gas in the longer chain 

PFC.  

Phase equilibrium data for binary systems with Perfluoroethane 

Unlike the liquid fluorocarbons there is more thermodynamic data for perfluoroethane available in 

literature. Ramjugernath et al. (2009) published data for the perfluoroethane/propane system from 263 

to 323 K. The authors measured data at six isotherms. Figure 2.3 presents four of the six isotherms 

measured by the authors, two below and two above the critical temperature of the lighter component, 

perfluoroethane. A discontinuity from the trends is apparent for isotherms below and those above the 

critical temperature of R116. The isotherms below critical point of R116 exhibit the “bird’s beak” 

characteristic (Rainwater 2001) whereas the other two concave inwards. This was also observed in other 

studies with R116, Madani et al. (2012) with 1,1,1-trifluoroethane and Valtz et al. (2007) with carbon 

dioxide. The “bird’s beak” is when the coexistence curves form a cusp at critical concentrations. It is 

characteristic of phase envelopes near the critical region although it is usually observed in mixtures 

with non-volatile solutes. In literature, mixtures with R116 and other light gases have been known to 

have this phenomenon. The feature arises from the fact that near the less volatile critical point, the 

difference in the concentration of the coexisting phases tends to zero faster than the concentration of 

the more volatile component (Fernandez-Prini 1991). In fact at the less volatile component rich side, 

the dew and bubble curves have the same slopes equal to (𝜕𝑃 𝜕𝑥)⁄
𝑉,𝑇

 resulting in the bird’s beak feature 

(Fernandez-Prini 1991; Rainwater 2001).   
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Figure 2.3: P-T-x-y data for the perfluoroethane(1) + propane(2) system measured by 
Ramjugernath et al. (2009). (◊) 263.30 K, (●) 283.25 K, (Δ) 308.21 K, (■) 323.19 K; (―) 
trendlines 
 

The data measured by Valtz et al. (2007) for the R116/carbon dioxide system also shows azeotropic 

behaviour (Figure 2.4). It often happens when the two components are close boilers. Such a mixture is 

of special interest (or irritation) in separation processes.  In Figure 2.4 the phase envelopes around the 

critical temperature of R116 show two critical points due to the azeotropic line being tangent to the 

critical line.  

 

Figure 2.4: P-T-x-y data for the perfluoroethane(1) + carbon dioxide(2) system 
measured by Valtz et al. (2007). (◊) 253.29 K, (□) 273.27 K, (○) 291.22 K, (Δ) 294.22 K, 
(―) critical line. No models were plotted in this figure. (―) Trend lines. 
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Authors who have measured binary systems with  R116  include Subramoney et al. (2010) and Zhang 

et al. (2005), for R116 + hexafluoropropylene or hexafluoropropylene oxide, and R116 + ethane 

respectively. Since the R116 systems considered in this work are gas/liquid systems at standard 

conditions azeotropic behaviour is not expected.  

Phase equilibrium data for binary systems with Ethane 

Nandi et al. (2013) measured VLE data for the ethane/perfluorooctane system at 308 – 338 K and 

pressures up to approximately 5.7 MPa. The data for three of the measured isotherms is shown in Figure 

2.5. 

 

Nandi correlated the measured data using the Peng-Robinson equation of state with Wong-Sandler 

mixing rules incorporating the non-random two liquid (NRTL) excess Gibbs energy model. The data 

were measured at temperatures above the critical temperature of the lighter component, ethane. The 

phase envelopes do not form a cusp or bird’s beak as the ethane mole fraction approaches 1 but rather 

the dew curve concave inwards.  

Subramoney et al. (2012) measured an ethane system with hexafluoropropylene. The data was measured 

at isotherms ranging from 282.93 to 322.89 K and is presented in Figure 2.6. It was correlated using the 

Peng-Robinson equation of state with Wong-Sandler mixing rules incorporating the NRTL excess 

Gibbs energy model. The behaviour of the system is different at temperatures above and below the 

critical temperature of ethane. The authors found that the model parameters followed different trends 

below and above the critical temperature of ethane.  
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Figure 2.5: P-T-x-y data for the ethane(1) + perfluorooctane(2) system measured by Nandi 
et al. (2013). (◊) 308.45 K, (Δ) 323.48 K, (○) 338.43 K. 
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The behaviour of VLE binary systems seems to be affected by the critical temperature of the lighter 

component as evidenced by the data presented above. The implications of this may be useful in the 

application of VLE data in industry and to developing of valuable theoretical models.  

 

Figure 2.6: P-T-x-y data for the ethane(1) + hexafluoropropylene(2) system measured 
by Subramoney et al. (2012). (◊) 282.93 K, (▲) 293.96 K, (○) 312.96 K, (■) 322.89 K. (―), 
(---) trend lines. 
 

Other studies which involved ethane were measured by  Matschke & Thodos (1962) with propane, 

Wichterle & Kobayashi (1972) with methane, Zhang et al. (2005) with R116 and Zhu et al. (2006) with 

tetrafluoromethane. The ethane/R116 system measured by Zhang et al. (2005) exhibited a positive 

azeotrope. The azeotropic composition moved towards the less volatile component with an increase in 

temperature. Usually an increase in temperature shifts the azeotropic composition towards the more 

volatile component (Zhang et al. 2005).  Kariznovi et al. (2011) measured ethane + ethanol system and 

the bubble curve followed a concave down trend instead of what is generally noticed where the bubble 

curve concaves up with increasing composition of the lighter component.  
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3 
CHAPTER THREE 

3. EQUIPMENT REVIEW 
High pressure phase equilibria data are important for the understanding of chemical processes that occur 

at high pressure. It is essential for the design and optimisation of separation operations and chemical 

processes. Examples of such processes include carbon capture and storage, refrigeration, enhanced oil 

recovery and heat-pump cycles (Fonseca et al. 2011). The measurement of phase equilibria is the best 

method to obtain accurate and reliable data. Several techniques for the measurement of these data have 

been published. These methods can be classified into major categories depending on some of the 

defining criteria used. 

3.1.Experimental Equipment and Techniques 

Some authors (Deiters & Schneider 1986; Dohrn et al. 2010; Fonseca et al. 2011), have classified the 

methods according to techniques used to determine the density variables. This separates them into two 

main classes, analytical and synthetic methods which depend respectively on how the compositions are 

determined and whether the mixture was prepared with precisely known compositions or not.  

The analytical method often referred to as the direct method require sampling of each of the phases and 

these are analysed using suitable methods (Bogatu et al. 2005). The most common analysis system is 

using a gas chromatograph. The conditions of the system (pressure and temperature) are adjusted so 

that the mixture separates into its different phases (Muhlbauer 1990; Fonseca et al. 2011). Analytical 

methods can be carried out under isothermal conditions, giving P-x-y results, or under isobaric 

conditions, giving T-x-y results. The synthetic method (indirect method) relies on knowledge of the 

exact overall composition. The phase behaviour is observed and, temperature and pressure are measured 

(Dohrn et al. 2010).  There is no sampling required and the problem of analysing mixtures is replaced 

by the problem of synthesising them. Synthetic methods can be carried out with a phase transition or 

without. With a phase transition, temperature and pressure are adjusted until a homogeneous phase is 

obtained and then the temperature or pressure is varied until a new phase is obtained. In methods without 

a phase transition, equilibrium properties are measured and phase compositions calculated (Fonseca et 

al. 2011).   

Other authors have classified the methods according to the way equilibrium is reached (Raal & 

Mühlbauer 1994; Bogatu et al. 2005). This divides them into static and dynamic methods. If one or both 
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of the phases are circulated through an equilibrium cell, then it is a dynamic method otherwise it is 

called a static method.  

There is no single way for determining all the different phenomena in phase equilibria and just as well 

there exist many different ways to measure high pressure phase equilibria. The different methods that 

have been utilized often are from a combination of the aforementioned categories and many authors 

have used different names for the same method. In this work and in the Thermodynamics Research Unit 

in general, expressions such as static-analytic, static-synthetic or dynamic-analytic are used to describe 

the different methods.   

Figure 3.1 presents an overview of the experimental methods as defined by many of the principal 

researchers of the Thermodynamics Research Unit. The principal sub-divisions in dynamic methods are 

flow and phase recirculation methods. Flow methods are either continuous flow, or single vapour and 

liquid pass, or single vapour pass. In phase recirculation one or both of the phases are continuously 

withdrawn and recirculated into the equilibrium cell until equilibrium is reached (Reddy 2006). Static 

cells can be variable or constant volume cells. In variable volume cells, the change in volume of the 

system affects the pressure of the system. Static cells can combine both analytical and synthetic methods 

and are called combined static methods (Figure 3.1). 

HPVLE Equipment

Dynamic
Methods

Static
Methods

Combined 
Methods

Phase Pass

Synthetic

Phase 
Recirculation

Single Vapour 
Pass

Single Vapour 
and Liquid 

Pass

Analytical

Combined

Single Phase Two Phases

Variable 
Volume

Constant 
Volume

 

Figure 3.1: Classification of equipment for phase equilibrium measurements. Adapted 
from Reddy (2006) 
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3.2. Main Features of VLE Equipment 

The main features of a typical HPVLE apparatus consist of the following (Mühlbauer 1990; Naidoo 

2004):  

 An equilibrium cell in which the two phases are in equilibrium. 

 Isothermal conditions for the cell. The temperature can be controlled by making use of an oil, 

air or water bath (Ramjugernath 2000; Coquelet 2003). 

 A mixing method to reduce the time needed for the mixture to reach equilibrium.   

 Static cells make use of internal stirring or mechanical rocking of the equilibrium cell 

(Klink et al. 1975; Huang et al. 1985).  

 Recirculation of one or both of the phases in the dynamic method. Additional stirring 

can also be used.  

 A mechanism for sampling the phases in the analytical method.  

 In the dynamic method the two phase recirculation and single vapour and liquid pass 

systems can be manipulated to provide loops for sampling. A liquid sampling device is 

also needed in the vapour recirculation method. 

  In the static method a sampling device is used for both the liquid and vapour phases.  

 Analytical sampling devices to analyse the samples, such as gas chromatography and mass 

spectrometry. 

 In the synthetic method, varying the internal volume of the cell affects pressure and 

temperature. The bubble and dew point curves are obtained in this way.  

 Devices to measure temperature and pressure.  

3.3.The Static Analytic Method 

The static-analytic method was used in this work to measure all phase equilibrium data. The method 

was chosen due to its versatility and reliability; it also enables relatively rapid acquisition of phase 

equilibrium data at moderate to high pressures. A typical static analytic apparatus is shown in Figure 

3.2 The operation of this equipment involves loading the cell with a fluid mixture under pressure. 

Isothermal conditions are maintained by immersing the pressure vessel in a liquid or air bath.  The 

heavier component is loaded first. The more volatile component is then fed directly from a storage 

cylinder (Raal & Mühlbauer 1994).  The time taken to reach equilibrium is reduced by rocking or 

stirring of the liquid phase to enhance mass transfer. Equilibrium is noted when the pressure and 

temperature reach the desired values or are sufficiently close and stays at this plateau for at least 30 

minutes (Dohrn et al. 2010). At equilibrium the composition of the coexisting phases are determined 

and the pressure and temperature are recorded. The entire phase envelope is determined by successive 

increases in pressure by loading of the more volatile component and recording the P-T-x-y data.     
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Pressure and Temperature Measuring Device

Vapour 
Sampling

Liquid 
Sampling

Sampling System

Agitator

Equilibrium 
cell

Controlled environment  

Figure 3.2:A Schematic of the Static Analytical Equipment (Mühlbauer 1990). 
 

The static analytic method presents some challenges which arise from the design and operation of the 

apparatus (Raal & Mühlbauer 1994; Naidoo 2004). Some of these challenges are: 

 Volatile impurities which elevate the pressure measurement. It is therefore important to degas, 

especially the liquid components, to get rid of the residual gases.  

 Uniform isothermal conditions.  

 Withdrawal of samples during analysis must not disturb equilibrium. Withdrawing a large 

sample may disturb the equilibrium pressure due to the consequent change in mixture 

composition. This can be rectified by: withdrawing infinitesimal quantities of sample, 6 port 

valves and using variable volume cells. Laugier & Richon (1986) used pneumatic capillary 

samplers for taking infinitesimal samples without any deviations of the system. Several authors 

have used this method, for example, Baba-Ahmed et al. (1999),  Coquelet (2003), Coquelet et 

al. (2010) and Ramjugernath et al. (2009). This type of sampler was used in this work. 

 High quality pressure and temperature measurements truly representative of the cell’s 

conditions.  

 High quality analysis of the phase compositions. This is directly linked to accurate calibration 

of the analysis equipment and correct operation of the sampler.   
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Key Features 

Some of the key features of static analytic equipment are the sampling device, cell volume and the 

mixing mechanisms. Capillaries and valves have been used for sampling and several modifications of 

these have been done over the years. Table 3.1 shows a summary of the sampling techniques and cell 

volumes that have been used over the years.  

Table 3.1: A review of static analytic equipment with a focus on sampling techniques.  
Authors Equilibrium cell Sampling Device 

Liquid Vapour 

Melpolnder (1986) SS, 150cc Six-port valve Six-port valve 

Laugier & Richon 

(1986) 

316SS, 50cc Pneumatic sampling 

capillary  

Pneumatic sampling 

capillary 

Johannsen & Brunner 

(1994) 

SS Six-port valve or four-

port valve 

Six-port valve or four-

port valve 

Pfohl et al. (1997) SS, 1100cc Sampling capillary Sampling capillary 

Baba-Ahmed et al. 

(1999) 

Hastelloy C276, 43cc Pneumatic capillary Pneumatic capillary 

da Silver et al. (2000) Sapphire cell Six-port valve Six-port valve 

Valtz et al. (2003) Sapphire cell Capillary fixed below 

the liquid level in the 

sapphire tube.  

Capillary fixed above 

the liquid level in the 

sapphire tube. 

Silva-Oliver et al. 

(2006) 

Ti cell, 100 cc 1 ROLSI movable 

pneumatic capillary 

and 1 fixed pneumatic 

capillary sampler 

1 ROLSI movable 

pneumatic capillary 

and 2 fixed pneumatic 

capillary samplers 

Ramjugernath et al. 

(2009) 

316SS ROLSI™ pneumatic 

sampler 

ROLSI™ pneumatic 

sampler 

Nelson (2012) Sapphire cell ROLSI™ 

electromagnetic 

sampler 

ROLSI™ 

electromagnetic 

sampler 

Narasigadu et al. 

(2013) 

Sapphire cell ROLSI™ connected to 

six-port GC valve 

ROLSI™ connected to 

six-port GC valve 

 

This evolution in sampling techniques is brought about by the need to combat some challenges faced 

during measurements herein to withdraw samples from equilibrium cells without disturbing 

equilibrium. Withdrawing a large sample from the cell disturbs phase equilibrium by causing a 
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significant pressure drop. The pressure drop can be avoided by use of a 6-port GC valve as in the work 

of Naidoo et al. (2008) or withdrawing smaller volumes from the cell. The use of capillaries and valves 

allows for small samples to be withdrawn. Sampling valves are usually connected to analytical 

equipment such as a gas chromatograph. Using pneumatic and electromagnetic valves such as the 

ROLSI™ (Rapid Online Sampler Injector) allows for micro-sampling. The first report presenting the 

successful use of the first patented ROLSI was in 1986 by Laugier & Richon. This then new instrument 

allowed publishing of new set of accurate data in peer-reviewed journals. Since then continuous 

development has been done along the ROLSI series. The ROLSI™ IV (www.armines.net) is the latest 

generation model which is an electromagnetic version. This model solved safety concerns that were not 

addressed by previous models such as opening if the pressurised circuit fails. This notable sampling 

technique has been implemented by a number of authors including Elizalde-Solis et al. (2003), Valtz et 

al. (2007), and Narasigadu et al. (2013). The ROLSI™ has a movable capillary which enables it to 

sample both the liquid and vapour phases. When using the ROLSI™ there exist a minimum pressure 

(pressure of the carrier gas) at which a sample can be withdrawn from the cell. To allow for sampling 

below this pressure, a six-port GC valve has been used to evacuate the sampling lines; however, this 

has often proven to be difficult and unsuccessful at sub-atmospheric pressures (Narasigadu et al. 2013). 

The ROLSI™ is often connected directly to the gas chromatograph. The only limitation that arises is 

the failure to sample below the carrier gas internal pressure.  

Another feature that has significant implications is the cell volume. Several authors, especially in the 

past opted to use large cell volumes to reduce the effect of the pressure drop in phase compositions. 

However, with the high cost of chemicals, fluorochemicals among others, it is desirable to use small 

volumes for measurements. The smallest cell volume recorded from 2005 to 2008 had a volume of 1 

cm3 and a sample volume of 102mm3 which is the largest relative sample from a constant volume cell 

(Fonseca et al. 2011). Narasigadu et al. (2013) had a cell volume of 17 cm3. These small volume cells 

result in further implications. There is a noticeable change in the cell volume and its pressure when a 

capillary is moved into the liquid phase resulting in samples from both phases being withdrawn at 

different pressures. Narasigadu et al. (2013) counteracted this problem by introducing a stainless steel 

rod with similar dimensions as that of the ROLSI™ capillary. The rod is operated from the bottom of 

the equilibrium cell and moves simultaneously in the same direction as the ROLSI™. The concept of 

this technique is to cancel the volume change when the ROLSI™ is immersed into the liquid. The 60 

cm3 volume cell used in this work had sufficient volume to negate any volume changes that might 

happen when the capillary is immersed into the liquid phase. Another way to avoid to the pressure drop 

is to use a sampling technique with two capillaries fixed in the vapour and liquid phases. In this manner 

there is no movement of capillaries during sampling and no volume disturbances. This was implemented 

by Valtz et al. (2003).   

     

http://www.armines.net/
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4 
CHAPTER FOUR 

4. EQUIPMENT DESCRIPTION 
The static-analytic apparatus used in this work was commissioned by Tshibangu (2010). The equipment 

was later modified by Petticrew (2011) for the measurement of hydrate phase boundaries. Since 

composition analysis in hydrate measurements is not always required the sampling equipment was not 

needed and the provision for the sampling capillary was blocked. Before its use in this work, the 

sampling equipment had to be reconnected to suit high pressure measurements. Further modifications 

to the equipment were also done.  

4.1. The HPVLE Equipment  

All details listed in this section pertain to the equipment commissioned by Tshibangu (2010). The 

HPVLE equipment of Tshibangu (2010) is based on the static-analytic method. The equilibrium cell 

was made from SS 316L metal. It had a fixed volume of approximately 60 cm3. It had two sapphire 

windows and a cylindrical cavity with a diameter of 30 mm and a length of 85 mm. The sapphire 

windows presented a 22 mm viewing diameter on both the front and back of the equilibrium cell. Viton 

“o” rings were used for sealing between the sapphire and the cell. The top flange of the equilibrium cell 

had 3 holes, each 3mm in diameter, drilled into it, a feeding/evacuation valve, pressure transducer valve 

and a provision for the sampler capillary. The hole for the capillary had a thumbscrew cap fitted on it. 

A mobile ROLSI™ was fitted to the equilibrium cell through the cap. This provision was sealed using 

an o-ring compression system. The design involved two o-rings at the top and bottom of a flat Techtron 

cylindrical plug. This was a similar design to that of Narasigadu et al. (2013). The movement of the 

ROLSI™ capillary within the cell was achieved using a differential screw adjuster. Two Pt-100 

temperature probes were inserted into the side body of the cell at the top and bottom. The probes were 

used for the measurement of temperature inside the cell. Pt-100 sensors were also used for temperature 

measurement of sampling lines, pressure transducer lines and block, and the ROLSI™. A P-10 pressure 

transducer (supplied by WIKA, 0 -10 MPa) with a certified accuracy within 0.1% was used for the 

measurement of the equilibrium cell pressure. A data acquisition unit (Agilent 34970A) connected to a 

computer was used to record the temperature and pressure in the cell.  

The stirring apparatus featured a Teflon-coated stirrer bar inside the cell with a horse shoe magnet 

sitting outside the cell. A Heidolph model RZR 2021 mechanical stirrer motor which was placed outside 

the main assembly was connected through a geared drive-chain to the magnet placed beneath the bottom 
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flange of the cell.  Agitation was achieved by magnetic coupling using the magnetic stirrer bar inside 

the cell and the one outside.  

Tshibangu (2010) connected the ROLSI™ to the gas chromatograph via a 6-port GC valve. This allows 

for sampling at pressures below the carrier gas pressure by evacuating the sampling lines (Nelson 2012). 

It was not clear whether there were any samples withdrawn below the carrier gas pressure by Tshibangu. 

The success or failure of this technique could not be analysed for this work. The GC is used for the 

analysis of the samples withdrawn from the equilibrium cell. A Shimadzu GC-17A model equipped 

with both a flame ionization detector and a thermal conductivity detector was used.  

The equilibrium cell was kept at isothermal conditions by submerging it in a galvanised steel bath filled 

with thermostatting fluid. The bath consists of two metal sheets, an internal case and an external case.  

A polycarbonate sheet of thickness 25 mm was inserted between the two metal sheets as insulating 

material. The internal dimensions of the bath were 0.44 x 0.35 x 0.26 m. The dimensions resulted in an 

internal volume of 40 L. The bath had two Perspex® viewing windows with dimensions 11.5 cm x 8 

cm on the front and back. It was supported by an iron framework. This framework also supported the 

equilibrium cell and its housing. A manual jack was used to facilitate the movement of the bath up and 

down to submerge the equilibrium cell into the bath fluid. The bath fluid used depends on the 

temperature range required for the systems of interest and for the measurements. The bath fluid used in 

this work was a 50% v/v mixture of ethylene glycol and water. This fluid has a working temperature 

range of 223.15 – 323.15 K. The bath temperature was controlled using a Grant TX150 digital 

temperature controller in this work. Tshibangu used a Grant Optima GR150. This controller was also 

equipped with a pump circulator to minimise temperature gradients within the fluid. To minimize heat 

loss at the fluid’s surface, the top of the bath was covered with polystyrene material. This is important 

especially at elevated temperatures to avoid thermal gradients. These gradients reduce the quality of 

measurements. To allow for the measurement of temperatures below ambient, a PolyScience Flow 

Through Chiller model KR-80A was used in the bath. 

The process temperatures of the ROLSI™, sampling lines, pressure transducer lines and block were 

controlled by the Shinko ACS 13A digital controllers. The temperature control implemented by these 

controllers is described in Appendix E. All the lines were heated using nichrome wires and the ROLSI™ 

and transducer block were heated using heating cartridges. Voltage controllers were used to supply the 

necessary potential difference. A vacuum pump was connected to the cell to allow degassing of liquid 

components and for evacuating the cell. Figure 4.5 shows the process equipment.  

Several modifications to the HPVLE equipment of Tshibangu (2010) were done in this work and these 

are outlined in the sections below.  
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4.2. Equipment Reconnections 

Following the use of the equipment by Tshibangu, the equipment was modified to measure hydrate 

phase boundaries by Petticrew (2011). This meant removing the sampling equipment as it was leaking 

under pressure. It also was not required for the hydrate measurements. The stainless steel bath was 

changed to a transparent polycarbonate bath to enable viewing inside the cell during isothermal 

conditions.  Hence before use in this work, the sampling equipment had to be reconnected and the 

electrical wiring was redone for safety concerns.  

Temperature and Pressure Measurements 

The temperature of the fluid within the equilibrium cell was measured by two Pt-100 probes from 

WIKA. Two shafts were drilled into the top and bottom on the side of the cell. The shafts are just shy 

of the inside of the cell. The probes were inserted into these shafts and gave an accurate representation 

of the temperature in the equilibrium cell. The probes were inserted at the top and bottom of the cell to 

capture any temperature gradients that might occur. If there was a temperature gradient within the cell, 

measures such as immersing the cell deeper into the fluid and/or covering the top of the bath with 

insulating material were taken to counter this.  

The pressure in the cell was measured using a high pressure 0-100 bar pressure transducer (WIKA; 

model P10). The pressure transducer was situated in a heated aluminium block which was mounted on 

the liquid bath frame just above the bath. A controlled heat load was supplied to the block using a heater 

cartridge powered by a voltage regulator. This ensured that there were no temperature changes around 

the transducer body which may affect the pressure signals of the transducer. 1/8” and 1/16” stainless 

steel 316 lines connected the cell to the pressure transducer. The lines were heat traced and the 

temperature was kept the same as that of the transducer block. The heat load was supplied by insulated 

nichrome wires powered by a voltage regulator and controlled by a Shinko controller.  

The two temperature probes and the pressure transducer were connected to a data logger (Agilent model 

34970A) which was connected to a computer. The Agilent data logger can measure and convert input 

signals such as temperature RTDs into signals readable for data analysis. The analysed signals are 

converted to temperature units before being recorded on the connected computer. The pressure 

transducer converted the pressure into an analogue current signal (4 - 20 mA). This conversion was 

achieved by the physical deformation of the strain gauges which are bonded to the diaphragm of the 

pressure transducer (Anon 2015). The current signals were then sent to the data logger and converted 

to a pressure signal which was recorded in real-time via the computer.  
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Sample Analysis 

The sampling set up which had been disconnected for the work of Petticrew was reconnected for this 

work. In addition, a 6-port GC valve was removed. The vapour and liquid phases were withdrawn online 

using the ROLSI™ and were injected directly to a Shimadzu 2014 gas chromatograph. The ROLSI™ 

was connected directly to the GC via heat traced 1/16” stainless steel lines. The base is thermo-regulated 

and this ensures vaporisation of the withdrawn samples. Samples are withdrawn from the cell via the 

rapid opening and closing of the capillary base. The polymer seat seals against the base of the capillary 

when the ROLSI™ is in the closed position (Figure 4.1). The force to seal is achieved by the force of 

the spring. To break the seal the electromagnet is charged creating a magnetic field that attracts the 

metal end of the seat upwards, momentarily opening the ROLSI™ and allowing a sample to escape.  

A B C D

E F G H I

 

Figure 4.1:Cross-sectional drawing of the ROLSI™: A – capillary, B – carrier gas outlet, 
C – cooling fins, D – electromagnet, E – capillary sealing support, F – Polymer seat 
(closed position), G – carrier gas inlet, H – Vespel scaling seat, I – spring. (MINES-
Paristech 2014) 
 

The maximum operating conditions depend on the type of polymer used. However, the model can be 

used for temperatures up to 530 K and 60 MPa when samples are free of water. The operating conditions 

reduce to 480 K and 20 MPa when samples contain water.  

The samples are transferred to the GC with the carrier gas where they are analysed. The GC has three 

major components: the injector, column and detector. The sample reaches the injector which transfers 

the sample to the column. The injector is heated to ensure the samples are in the gas phase. The column 

separates the samples into its separate components. Different columns are designed to separate different 
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kinds of chemicals based on volatility and their chemical nature. Many separations are temperature 

dependent, so the column is placed in a temperature controlled oven. The column used in this work was 

a Restek nickel 200 tubing column with a Carboblack B support and 5% krytox as the mobile phase. 

From the column the gas stream enters the detector which translates the analytes into a chromatogram. 

The chromatogram is processed by a computer based digital integrator. The integrator measures and 

records peak times and sizes and these are used together with detector calibration data to calculate the 

mole numbers of each of the present components.  

 

4.3.Equipment Modifications  

Further modifications were done to the apparatus. The new ROLSI™ seal provided an excellent seal 

which did not leak. The new mixing mechanism provided better radial mixing and reduced the time that 

was required to reach equilibrium.  

Top Flange ROLSI™ Capillary Seal 

The o-ring system as in the work of Tshibangu can fail because of a number of issues for example 

introduction of an incompatible fluid. The system failed at high pressure in the work of Nelson (2012) 

because  he worked with corrosive systems. A dynamic o-ring sealing was used by Tshibangu. The 

dynamic seal creates a barrier between a stationary (Techtron cylindrical plug) and moving (capillary) 

surface containing the pressure in the cell. The primary and most common cause for o-ring seal failure 

in dynamic applications is extrusion and nibbling (Parker 2007). The extrusion and nibbling is caused 

by degradation and high pressures. The o-ring after extrusion and nibbling failure exhibits a chewed 

and chipped look (Figure 4.2) leading to debris inside the cell which might block the ROLSI™ capillary. 

Frequent changing of the o-rings and unblocking of the capillary then becomes a necessity.  

 

Figure 4.2: Extruded and nibbled o-ring (Parker 2007) 
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A new, improved system was implemented in this work and is shown in Figure 4.3. The core of the 

system involves a Teflon gland packing. The thumbscrew cap was replaced with a bolted cap. As the 

bolt is tightened, the gland follower B and the base of the bolted cap press against the gland packing C 

which in turn is compressed onto the capillary and top flange forming a high-pressure seal. The base of 

the bolted cap is v-shaped to allow the gland packing to compress effectively. The gland follower was 

made from stainless steel and the gland packing from Polytetrafluoroethylene (PTFE). PTFE has no 

memory which means that when it is compressed, the gland packing will not return to its original shape. 

Thus it is important to tighten the bolt at most 1½ times the first time and to only tighten further if a 

gas-tight seal is not formed. With time and continued usage the bolts can be tightened further and further 

until the extrusion of the PTFE becomes excessive. At this point, a new gland packing will be required. 

The PTFE packing is excellent because it provides low friction, outstanding dynamic seal, which 

exhibits no degradation and therefore no introducing of polymer debris into the equilibrium cell. 

Furthermore, PTFE exhibits exceptional chemical compatibility. This mechanism provided a superb 

seal which could withstand high pressures over a long duration. There were no leaks that arose from 

this seal throughout the experimental process.  
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Figure 4.3: Top Flange Capillary sealing design. A-bolt, B- gland follower, C-PTFE 
gland packing, D-ROLSI™ capillary, E-bolt cap, G-Top flange. All dimensions in mm. 
  
 

The Agitation Mechanism 

Agitation of the phases within the equilibrium chamber promotes the attainment of equilibrium. In this 

study, the agitation mechanism utilized by Tshibangu (2010) was improved to hasten the equilibrium 

measurements. The magnetic stirrer bar and the horse shoe magnet utilized by Tshibangu (2010) were 
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replaced with a magnetic stirrer including impellors (see “A” in Figure 4.4). The magnetic coupling 

between the driven magnet and the magnetic stirrer was vastly improved.   

A

B

C

D

E

F

 

Figure 4.4: The Agitation Mechanism. A-stirring blades, B-Stirring magnet, C- bottom 
flange, D- magnet, E- stainless steel disc, F- bottom disc connected to roller chain.  
 

The agitation system is shown in Figure 4.4. The mixing mechanics are similar to those described by 

Ngema et al. (2014). It involves two Neodymium magnets of grade N45. Neodymium magnets have a 

high resistance to demagnetisation but begin to lose their strength if heated above their operating 

temperature (80oC for N series). Above 310oC they become completely demagnetised 

(www.kjmagnetics.com 2015). The magnets were coated with nickel to protect the material particularly 

iron from rust and corrosion. In the mixing mechanism in this work one ring magnet was placed inside 

the cell and the other outside in the thimble-like cavity at the bottom of the bottom flange. The magnet 

inside the cell had a volume of approximately 7.4 cm3 which reduced the cell volume from 60cm3 to 

approximately 52.6cm3. Disc F was connected to a roller chain which was connected to a Heidolph 
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RZR 2021 mechanical rotator as used by Tshibangu (2010). The rotating speed was set on the 

mechanical rotator. Rotation of the discs F and E rotated the magnet D which then rotated the magnet 

A via the magnetic dipole-dipole interactions. In order to achieve this, the bottom flange used in the 

work of Tshibangu was removed and replaced with a flange exhibiting a thimble-like arrangement, as 

shown in Figure 4.4. The new bottom flange was made from series 306 stainless steel which is not 

magnetic, thus the magnet inside the cell was able to simply sit on the cell floor without being attracted 

to the metal. The only attraction was to magnet D via magnetic dipole-dipole interactions. This induced 

the mixing which speeds up the attainment of equilibrium. This fact can be explained by mass transfer. 

Mass transfer occurs by molecular diffusion. This occurs because of a concentration gradient, a species 

flowing from  a high to a low concentration region (Henley et al. 2011). The vertical blades increased 

the region of low concentration of the vapour component which increased the mass transfer rate. This 

rate is proportional to the area normal to the direction of mass transfer (Henley et al. 2011). Mass 

transfer occurred in the liquid phase, gas phase and at the gas-liquid interface. The mass transfer at the 

gas-liquid interface can be explained by two-film theory (Henley et al. 2011). It should be noted that 

there was molecular diffusion from the gas phase into the liquid phase as well as from the liquid phase 

into the gas phase. The transfer stopped when the concentrations were uniform and equilibrium was 

reached.  

Figure 4.5 shows the process flow diagram with all the equipment and the major flows in and out of the 

equipment. 
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Figure 4.5: Process Flow Diagram. A – Data acquisition unit, C – Gas cylinder, CH – Chiller, DS – Differential  screw, DV – Drain valve, 
E – Equilibrium cell, FV- Feed valve, GC – Gas chromatograph, PP – Temperature probes, PT- Pressure transducer, SM – Mechanical 
stirrer motor, TC – Temperature controller. Red indicates the heat traced lines and heated blocks. Adapted from Subramoney et al. 
(2013) 
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5 
CHAPTER FIVE 

5. EXPERIMENTAL PROCEDURE 
 

The experimental procedure included temperature and pressure calibrations, GC calibrations, 

equilibrium cell preparation, vapour pressure measurements and phase equilibrium measurements. The 

preparation involved cell cleaning and leak testing. In the measurement of VLE system, experience is 

very important. Consequently it is required that the performance of the personnel is of a high standard. 

This minimises “unforced errors” ensuring accurate results.  

5.1.Purity of Chemicals 

All chemical purity checks were performed to ensure that the chemicals were pure. The gas chemicals 

were used without any further purification since their GC analysis did not reveal any significant 

impurities. For the liquids, density and refractive index were also measured. The densities were 

measured with an Anton Paar densimeter model DMA 5000M. The refractive indices were measured 

using a Bellingham + Stanley refractometer, model abbe 60/LR. A sodium light source was used with 

the refractometer.  

5.2. Calibrations 

Temperature 

The two Pt-100 temperature probes positioned on the equilibrium cell were calibrated against a standard 

Pt-100 CTB 9100 temperature probe purchased from WIKA, South Africa. The uncertainty of the 

standard probe is stated by the manufacturer as 0.03 K. All three probes were tied together with the tips 

aligned and were immersed into a WIKA calibration bath. The temperature of the bath was increased 

systematically and subsequently decreased and increased again over the entire operating range. At each 

set temperature, measurements from all the probes were recorded over a period of 2 minutes. The 

measurements of the 2 Pt-100 probes were logged by the Agilent data acquisition unit and those of the 

standard probe were recorded manually. These data were fitted to first order polynomials for both the 

Pt-100 probes.  

Pressure 

The 0 – 100 bar pressure transducer was calibrated against a standard CPT 600 pressure transducer, 0-

250 bar, from WIKA, South Africa with a stated accuracy of 0.025%. The WIKA CPT transducer was 
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calibrated by WIKA. Both the standard and the P10 pressure transducer were connected to the 

equilibrium cell and the cell was pressurised with nitrogen. The cell was submerged into a liquid bath 

and kept at 313 K. The transducer block in which the pressure transducer was housed was kept at the 

same constant temperature as that of the equilibrium cell. The pressure in the cell was increased 

systematically and subsequently decreased and then increased again over the entire operating range. At 

each set pressure, once the pressure had stabilised, the measured data were recorded over two minutes 

and averaged. The data from the P10 transducer were logged by the Agilent data acquisition unit while 

the data from the standard transducer were recorded manually. The standard transducer was zeroed by 

adjusting its measured value to zero at atmospheric conditions. The data collected were fitted to a first 

order polynomial.  

A brand new 1 bar transducer was used for liquid vapour pressure measurements. The transducer was 

calibrated by WIKA, its manufacturer. The calibration was validated by measuring the vapour pressures 

for heptane (well documented alkane).  

Gas Chromatograph Detector  

The composition analysis was performed using a Shimadzu Gas Chromatograph model GC-2014 

equipped with a thermal conductivity detector (TCD). A CarboBlack B with 5% krytox packed column 

was used for the analysis. The response of the TCD was calibrated for all the pure components prior to 

analysis. This was done via the direct injection method. Syringes (SGE, Australia) of maximum volume 

0.5µl were used for liquids. Hamilton syringes (Sigma Aldrich) of maximum volume 250µl were used 

for the gases. A gas sample was withdrawn from a gas cylinder or a liquid sample was removed from a 

small vial at known syringe volumes and injected into the column via the injector port. The number of 

moles injected was estimated by the ideal gas law for gases, and molar density for the liquids. The 

temperature of the gas sample was measured with a thermometer at the exit nozzle of a gas cylinder and 

the pressure was measured by a barometer (stated uncertainty of±0.01 mbar). The temperature of the 

liquids was also measured using the same thermometer. The density of the liquid was obtained from 

literature. The peak area from the detector was recorded for multiple injections at each syringe volume, 

to ensure repeatability/reproducibility of the results. This was plotted against the number of moles 

injected; first order polynomials were fitted to the data.  

The accuracy of the direct injection method is linked to the accuracy and precision of the volume of gas 

and liquid injected. When calibrating a liquid and a gas, it is imperative that the volume set on the 

syringe be as precise and consistent as possible since two different syringes are used for the two 

components. While it seems intuitive that correct volumes should be set, the set-point of the plunger in 

relation to the marked degrees is dependent on the perception of the operator that is parallax error. It is 

important to reduce parallax error. If the set-point is changed from one syringe to another, consistency 

of the injection technique is not maintained and the response ratio is affected leading to inaccurate 
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results. Another important aspect to note during the calibration is the pressure and flow of the carrier 

flow gas. The flow set point must stay constant during calibration of both components as a change in 

this will change the response of the detector. A change in the pressure indicates an issue with the GC 

such as leaks in the septum. The pressure is affected by the carrier gas flow and the column temperature. 

As such, if any of the two are changed, the TCD will have to be re-calibrated. However, in theory if the 

flow controller is accurate, a change in the oven temperature should not change the detector response. 

During experiments it is essential to check the validity of linear calibrations. This was done by changing 

the sampling times during the measurement of the same data set. If changing these times did not affect 

the calculated mole fractions, then the calibrations were accepted as linear. If different compositions 

were found then the calibration is probably incorrect. This method can show if a calibration is incorrect 

but does not confirm correctness.  

The GC operating conditions were changed to suit each system. The conditions are outlined in Table 

5.1.  

Table 5.1: GC operating conditions for each system with the Shimadzu gas 
chromatograph (GC-2014) and a CarboBlack B, 5% krytox column 

System Injector/oC Column Oven/oC Detector/oC He flow 

ml/min 

Ethylene/HFP 200 100 250 25 

Ethane/Hexane 200 140 250 25 

Ethane/Perfluorohexane 200 225 250 25 

Ethane/Perfluorooctane 200 225 250 25 

R116/ Perfluorohexane 200 225 250 25 

R116/Perfluorooctane 200 225 250 25 

5.3.Measurements 

Preparation 

Before any measurements can be performed it is necessary to make sure that the equilibrium cell is  

leak-proof under pressure or that it holds under vacuum in case of liquid components with vapour 

pressures below the barometric pressure. Leaks could result in disturbances in equilibrium during 

measurements and therefore distortion of measured results. The first step in detecting leaks is to apply 

Snoop® to all the valves, NPT fittings, compression fittings and seal joints after pressurizing the cell. 

The cell is pressurised to the maximum operating pressure and using Snoop® on all leak points, any 

visible leaks are detected. These leaks must be rectified by tightening the compression and/or NPT 

fittings or replacing o-ring seals. Ultimately one can replace the fitting ferrules, PTFE tape or o-rings 

(Nelson 2012).  The pressurised cell is then submerged into a liquid bath and left overnight under 
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isothermal conditions while the acquisition unit records the pressure profile. If the pressure has 

decreased, the potential leak points must be tested again, and dealt with accordingly. It is useful to leak 

test the equipment before the start of measurements of a new system.  

The performance of the ROLSI™ capillary and the seal were tested. This was done after reconnecting 

the sampler to the equipment before any vapour – liquid measurements were performed. The cell was 

pressurised with nitrogen and the ROLSI™ timer was turned on. With the inlet of the ROLSI™ closed 

shut, the capillary was tested for blockage. This was done by opening the capillary for sampling and 

connecting a beaker filled with water to the outlet of the ROLSI™ via a short 1/16” stainless steel pipe. 

If the gas bubbles through the water then the capillary was clear because the helium was being injected 

through the water. The ROLSI™ sampler should also be able to seal when switched off that is during 

toff times (no sampling done). Using the same technique, it was needed that no gas flow to the beaker 

occurs during the toff times. If a seal cannot be achieved then the polymer seat would need to be replaced. 

The seat had to be replaced with a new one in this work.   

The GC lines were leak tested by connecting the inlet and outlet lines to the GC to each other.  This 

allowed helium carrier gas to flow in a loop. Leaks were detected using the electronic leak detector. 

Any obstructions in the lines were similarly checked for. Heating of the lines allowed for the 

vaporisation of the liquid samples before getting to the GC for analysis. This is particularly important 

for the line that carries samples to the GC for analysis.    

Cleaning of the cell was also done before any components were loaded. This was done by loading n-

hexane and then continuously agitating it. This helped to clean and remove any debris that may have 

been trapped in the cell. To remove the hexane after cleaning, the cell was purged with nitrogen and 

then the cell was placed under vacuum overnight at room temperature.  

Vapour Pressures Measurements 

To validate the pressure and temperature calibrations it is useful to perform pure component vapour 

pressure measurements.  

The apparatus was prepared as described above. The filling lines were evacuated and the component 

was loaded into the cell after opening valve FV. Measurements, either vapour pressure or vapour-liquid 

equilibrium, are sensitive to the chemical purities. It is important to ensure that chemicals are carefully 

degassed.  

Degassing removes any residual gases and/or volatile gases within the less volatile components. The 

components were degassed by periodic vapour withdrawal. For the gaseous components, the gas was 

first heated in the cell to ensure that any volatile components easily move into the vapour phase. The 
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liquid components were degassed under vacuum in the equilibrium cell. The liquid vapour pressures 

were performed in a separate 10cm3 SS cell.  

After filling of a component into the cell and the subsequent degassing, the temperature and pressure 

were allowed to stabilise. The temperature and pressure were then recorded using the Agilent data 

acquisition unit for a period of 5 minutes. The atmospheric pressure was also noted from the barometer. 

The temperature was then increased by adjusting the temperature of the liquid bath. Up to 10 data points 

were recorded from a given starting temperature to the critical temperature of the component for which 

the vapour pressures were being measured. After completion of the vapour pressure measurements, 

vapour liquid equilibrium measurements were performed. 

Vapour-Liquid Equilibrium Measurements 

The equilibrium cell and all the lines were evacuated using a vacuum pump.  Evacuation of the 

equilibrium cell was given enough time in order to remove any gases and liquids that might have been 

trapped in the o-rings and in the cell. This was done overnight and afterwards the lines were closed off 

by shutting valves FV and DV and the vacuum shut off. Thereafter the heavier component was 

introduced into the cell first. Gases were loaded via FV. For the loading of a liquid component the cell 

was kept under vacuum. The liquid was then loaded into the cell via the drain line and valve DV. The 

liquid was drawn into the cell owing to the pressure difference between the outside (atmospheric) and 

the cell (vacuum). After loading, the component was degassed in small amounts first to ensure that no 

gases were dissolved in liquid. To check if degassing was complete the vapour pressures of the pure 

components were measured. If the vapour pressure did not correspond with the literature value the 

component was degassed a further three or four more times. After degassing was complete the loading 

lines were purged by the lighter gaseous component. Thereafter the component was fed into the cell to 

a cell pressure corresponding to the required pressure for the first measurement. The liquid thermostat 

was set to the desired temperature and the bath left to heat/cool. The cell contents were stirred until 

equilibrium was attained. This could take approximately ½ to 1 hour depending on the stirring speed 

that can be achieved and the system. Phase equilibrium is assumed when the temperature and pressure 

readings are constant within their experimental uncertainty for 10 – 15 min. The movable ROLSITM 

sampler was adjusted so that the vapour phase can be sampled. During purging of the vapour phase the 

pressure drops and to ensure both phases are sampled at the same pressure, the vapour phase must be 

sampled first. The capillary tube of the sampler was repeatedly purged by sampling the contents of the 

cell at toff times much shorter than those used at equilibrium sample analysis. At least 8 vapour samples 

were withdrawn for analysis. If the calculated mole numbers did not converge within uncertainty 

(usually up to 3 or 4 decimals) then further purging of the ROLSI™ was required. Care should be noted 

to ensure that the GC peak areas of the sample analysis are within the calibration range. The position 

of the ROLSITM sampler was lowered to allow sampling of the liquid phase. The purging, sampling and 
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analyses were performed in the same way as for the vapour phase, however, the liquid phase did not 

require as much purging. Once the P-T-x-y data set was obtained, additional amounts of the lighter 

component were fed in to the cell via valve FV until the next desired pressure was reached. A new 

equilibrium condition was established and the procedure was repeated until the entire composition range 

was covered. Thereafter, the equilibrium cell was evacuated and refilled, and the procedure was 

repeated at a different isotherm.  

Often it is essential and necessary to reduce the amount of chemicals used especially when performing 

measurements using expensive perfluorocarbons. In such a case, after the first data set (P-T-x-y) is 

obtained at the desired isotherm, the liquid thermostat is set to the next isothermal condition and once 

equilibrium (temperature/pressure and chemical) is reached, analysis of the vapour and liquid phases is 

done. The temperature is raised to the next isotherm until all required isotherms are measured; then it 

is lowered to the initial isotherm. The lighter component is then fed into the equilibrium cell until the 

next pressure is reached and measurements are repeated in this systematic manner. In this case only a 

single loading of the components is required for all isotherms.  

During experimental measurements the safety and health of the operator and those around him/her is 

very important. The safety, health and environment concerns are discussed in Appendix D. 
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6 
CHAPTER SIX 

6. EQUATIONS OF STATE AND EXCESS ENERGY MODELS:   
ANALYSIS OF HPVLE SYSTEMS 

 

The analysis and quantitative description of high pressure phase equilibria (HPVLE), that is, the 

modelling of vapour-liquid equilibrium is key to successful simulation work. There are two well-known 

analytical methods for the description of phase equilibria which are based on the thermodynamic criteria 

for phase equilibria. The first is the combined (𝛾 − 𝜑) method. In this method the activity coefficient 

𝛾 and the fugacity coefficient 𝜑 are used to describe the liquid and vapour phase non-idealities 

respectively through: 

𝑓𝑖
𝐿 = 𝑥𝑖𝛾𝑖𝑓𝑖

𝑜 = 𝑓𝑖
𝑉 = 𝑦𝑖𝜑̂𝑖

𝑉𝑃 

6.1 
 where 𝑓𝑖

𝐿 and 𝑓𝑖
𝑉 are fugacities in the liquid and vapour phases respectively, 𝑓𝑖

𝑜 is the fugacity of pure 

component at a standard state and 𝜑̂𝑖
𝑉 is the fugacity coefficient of a component i in the vapour phase 

of a mixture. The fugacity coefficient is calculated by an equation of state and the activity coefficient 

by an excess Gibbs energy model. Secondly there is the direct (𝜑 − 𝜑) method. The fugacity coefficient 

is used to describe both the vapour and liquid phases using the relation that: 

𝜑̂𝑖
𝑉 = 𝜑̂𝑖

𝐿 

            6.2 
The fugacity coefficients for both phases are calculated by the equation of state using classical mixing 

rules. These methods have their limitations and they are reviewed by these authors (Mühlbauer 1990; 

Raal & Mühlbauer 1997; Ramjugernath 2000; Naidoo 2004) and others. Following their inadequacies 

the direct method was improved. Mixing rules were developed which incorporated excess free energy 

models (activity coefficients) into fugacity coefficients. The activity coefficient can be obtained through 

an equation of state by (Nelson 2012) 

𝛾𝑖 = 𝜑̂𝑖 𝜑𝑖⁄  

6.3 
where 𝜑̂𝑖 and 𝜑𝑖 are the fugacity coefficients of component i in the mixture and pure component 

respectively. The excess Gibbs free energy given by 
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𝐺𝐸

𝑅𝑇
= ∑ 𝑥𝑖𝑙𝑛𝛾𝑖

𝑖

 

6.4 
blends the activity coefficient model with the equation of state using mixing rules.  

6.1. Cubic Equations of State    

Equations of state (EoS) have proven useful in the correlation and prediction of phase equilibrium data. 

Cubic equations of state are the widely used format and are derived from the equation of state proposed 

by van der Waals (1873):  

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎

𝑣2
 

6.5 
van der Waals type equations except for the Patel and Teja (1982) EoS contain two compound-specific 

type parameters, 𝑎 and 𝑏. The first one, ‘𝑎’ is related to energy interactions and ‘𝑏’ called the co-volume 

parameter is related to molecular volume (Voutsas et al. 2004). 

Some of these equations are shown below: 

Redlich-Kwong (1949): 

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎(𝑇)

𝑣(𝑣 + 𝑏)√𝑇
 

6.6 
Soave-Redlich-Kwong (SRK) (1972): 

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎(𝑇)

𝑣(𝑣 + 𝑏)
 

6.7 
Peng-Robinson (PR) (1976): 

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎(𝑇)

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)
 

6.8 
Patel and Teja: (1982) 
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𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎(𝑇)

𝑣(𝑣 + 𝑏) + 𝑐(𝑣 − 𝑏)
 

            6.9 
The SRK and PR are the most renowned equations of state in industry today. This is because they 

require little input information and generate good phase equilibrium correlations for hydrocarbons 

(Voutsas et al. 2004). In relation to this work the chosen model must be able to accurately represent the 

entire phase envelope, be capable of correlating moderate and high pressure VLE and must be able to 

handle non ideal systems. The PR EoS is advantageous in this case because it is capable of handling a 

wide range of pressures and a variety of mixtures (Voutsas et al. 2004). The PR EoS also gives better 

liquid density predictions than the SRK EoS (Nelson 2012). This is important particularly in the 

correlation of the critical region. Moreover, the PR EoS has accurately represented fluorocarbon 

systems measured by the TRU at the University of KwaZulu-Natal. Since this work is a continuation 

of the work by the TRU on fluorocarbons the PR was the equation of choice. 

6.2. The Peng-Robinson Equation of State (Peng & Robinson 1976) 

The equations of van der Waals generally express pressure as a sum of a repulsive pressure term and an 

attractive pressure term. The repulsive term is expressed as: 

𝑃𝑅 =
𝑅𝑇

𝑣 − 𝑏
 

         6.10 
The attractive pressure term is expressed as: 

𝑃𝐴 = −
𝑎

𝑔(𝑣)
 

          6.11 
 

where 𝑔(𝑣) is a function of molar volume v, the constant b is related to the size of the hard spheres and 

the parameter 𝑎 is a measure of the intermolecular attractive force. The parameter 𝑎 is only a constant 

in equation 6.5 (vdW) and b is temperature independent. With an appropriate function for 𝑔(𝑣)  the 

Peng-Robinson equation was proposed as: 

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎(𝑇)

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)
 

          6.12 
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Applying equation 6.12 at the critical point where the first and second derivatives of pressure with 

respect to volume are zero: 

𝑎(𝑇𝑐) = 0.45724
𝑅2𝑇𝑐

2

𝑃𝑐
 

                              6.13 

𝑏(𝑇𝑐) = 0.07780
𝑅𝑇𝑐

𝑃𝑐
 

                             6.14 
 

And at temperatures other than the critical point: 

𝑎(𝑇) = 𝑎(𝑇𝑐) ∙ 𝛼(𝑇𝑟 , 𝜔) 

                              6.15 
𝑏(𝑇) = 𝑏(𝑇𝑐) 

                              6.16 
 

The function 𝛼(𝑇𝑟, 𝜔) is a dimensionless function and equals unity at the critical point. Applying the 

following thermodynamic relationship to equation 6.12 

𝑙𝑛
𝑓

𝑃
= ∫ (

𝑣

𝑅𝑇
−

1

𝑃
) 𝑑𝑃

𝑃

0

 

                               6.17 
 

The fugacity of a pure component can be derived: 

𝑙𝑛
𝑓

𝑃
= 𝑍 − 1 − ln(𝑍 − 𝐵) −

𝐴

2 − √2𝐵
𝑙𝑛 (

𝑍 + 2.414𝐵

𝑍 − 0.414𝐵
) 

                                      6.18 
 

where  
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𝐴 =
𝑎𝑃

𝑅2𝑇2
 

                              6.19 

𝐵 =
𝑏𝑃

𝑅𝑇
 

                              6.20 

𝑍 =
𝑃𝑣

𝑅𝑇
 

                             6.21 
 

Newton’s method and vapour pressure data were used to search for values of 𝛼(𝑇𝑟, 𝜔) for use in 

equation 6.12 and 6.18 such that the equilibrium condition in equation 6.22 is satisfied along the vapour 

pressure curve. 

𝑓𝐿 = 𝑓𝑉 

                             6.22 
 

For all substances examined the following temperature alpha function was established: 

𝛼(𝑇𝑟, 𝜔) = [1 + 𝐾(1 − √𝑇𝑟)]2 

                             6.23 
𝐾 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 

                             6.24 
 

The constant K, in terms of acentric factor improves the prediction of vapour pressures of pure 

substances. An interesting note is that in the SRK EoS, Soave (1972) arrived at a similar equation to 

6.23 by using the definition of the acentric factor. This shows that the acentric factor together with 

reduced temperature improves the vapour pressure prediction of pure substances. Sometimes different 

temperature alpha functions with additional parameters are used to improve the vapour pressure 

predictions. Stryjek & Vera (1986) proposed improvements to the PR EoS by introducing more 

parameters in the temperature function of the attractive term. Twu et al. (1991) proposed a new alpha 

function which correlates the vapour pressure of pure components and additionally, extrapolates to the 

supercritical region. Unlike the Stryjek-Vera function, the Twu alpha function can be used with any 

vdW type EoS. Though the Twu alpha function works well for non-polar components, it is not suited 
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for polar components. Various other modifications to the alpha function have been done. A shortened 

compilation is shown in Table 6.1.  

Table 6. 1: Temperature dependence on the attraction term on cubic EOS 
Reference Proposed temperature dependent function 

Peng & Robinson (1976) 

𝛼(𝑇𝑟, 𝜔) = [1 + 𝐾(1 − √𝑇𝑟)]2 

𝐾 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 

 

Mathias & Copeman (1983) 

𝛼𝑖(𝑇𝑟) = [1 + 𝑐1,𝑖(1 − √𝑇𝑟,𝑖) + 𝑐2,𝑖(1 − √𝑇𝑟,𝑖)
2

+ 𝑐3,𝑖(1 − √𝑇𝑟,𝑖)
3

]2 

 

Stryjek & Vera (1986) 

𝐾 = 𝐾0 + 𝐾1(1 + √𝑇𝑟)(0.7 − 𝑇𝑟) 

𝐾0 = 0.378 + 1.489𝜔 − 0.171𝜔2 + 0.019𝜔3 

 

Twu et al. (1991) 𝛼(𝑇𝑟) = 𝑇𝑟
𝑁(𝑀−1)

exp [𝐿(1 − 𝑇𝑟
𝑁𝑀)] 

 

Twu et al. (1995) 

 

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0)) 

𝛼(0) = 𝑇𝑟
𝐴1exp [𝐵1(1 − 𝑇𝑟

𝐶1)] 

𝛼(1) = 𝑇𝑟
𝐴2exp [𝐵2(1 − 𝑇𝑟

𝐶2)] 

 

 

The alpha functions of Twu et al. (1995) can be used when no vapour pressure data is available. The 

superscripts (0) and (1) correspond to the definition of the acentric factor at 𝜔  = 0 and 1 (Twu et al. 

2002). When vapour pressure data is available the function of Twu et al. (1991) should be used. The 

constants L, M and N are regressed from the vapour pressure data. Notably, however, from the table 

above is the Mathias-Copeman (1983) alpha function. The Mathias-Copeman (MC) alpha function is 

one of the widely used functions. This is because it can predict vapour pressures for both polar and non-
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polar components. The MC alpha function contains three constants regressed from vapour pressure 

data. It is consequently better at predicting vapour pressures than the original function and is the 

function of choice in this work. It is defined as (Mathias & Copeman 1983):  

𝛼𝑖(𝑇) = [1 + 𝑐1,𝑖(1 − √𝑇𝑟,𝑖) + 𝑐2,𝑖(1 − √𝑇𝑟,𝑖)
2

+ 𝑐3,𝑖(1 − √𝑇𝑟,𝑖)
3

]2 

                            6.25 
 

where 𝑐1,𝑖, 𝑐2,𝑖, 𝑐3,𝑖 are the MC parameters which are regressed from pure-component vapour pressure 

data of species i. The function can correlate data accurately from the triple point to the critical 

temperature. In the supercritical region it presents abnormal behaviour where it increases with 

increasing temperature (Twu et al. 2002). Vapour pressures were only measured below the critical point 

in this work, a region where the MC alpha function can accurately represent the data. The MC alpha 

function was used in this work.  

In mixtures the parameters 𝑎 and 𝑏 are also concentration dependent and this gives rise to mixing rules 

(Valderrama & Zavaleta 2005). The fugacity coefficient of a component i in the mixture then becomes: 

𝑙𝑛𝜑̂𝑖 =
𝑏𝑖

𝑏𝑚

(𝑍 − 1) − ln(𝑍 − 𝐵𝑚) −
𝐴𝑚

2√2𝐵𝑚

[
2 ∑ 𝑧𝑗𝑎𝑖𝑗

𝑛
𝑗=1

𝑎𝑚
−

𝑏𝑖

𝑏𝑚
] 𝑙𝑛 (

𝑍 + (1 + √2)𝐵𝑚

𝑍 + (1 − √2)𝐵𝑚

) 

                              6.26 
 

where 𝑎𝑚 and 𝑏𝑚 form the mixing rules.  

6.3. Mixing Rules 

Phase equilibrium is largely dependent on mixing and combining rules. In fact these rules are so 

important that it is often stated that the choice of mixing rules is more important than the mathematical 

function of the equation of state itself (Voutsas et al. 2004). The van der Waals one fluid or classical 

mixing rules and the more complicated GE mixing rules have received extensive use and acceptance. 

The classical mixing rules have widespread use in industry but are accurate for only non-polar fluid 

mixtures only. The more advanced GE mixing rules combine an EoS with a model for the Gibbs free 

energy (or activity coefficient model). This is done in two ways, the first links the EoS and the excess 

Gibbs free energy model at low or zero pressure (Dahl & Michelsen 1990) and the second links the EoS 

and the excess Gibbs (or Helmholtz) free energy  model at infinite pressure (Wong & Sandler 1992). 

The latter was implemented in this work. Classical mixing rules are usually used in simple system where 

they can correlate data well. This is because they result in a one or two parameter model which is 

simpler and easier to evaluate. It is also important to not over-specify a system when fitting a regression 
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model to experimental data. Thus only when the classical mixing rules fail should one use the more 

advanced multiple parameter models. 

The van der Waals One Fluid Classical Mixing Rules 

The one-fluid mixing rules were developed from the virial equation of state. There is a relation between 

the parameters of a cubic equation of state and the virial coefficients of the virial equation of state. The 

relation is that the low density composition dependence of a cubic EoS can be the same as the virial 

expansion if the cubic EoS parameters satisfy the van der Waals one-fluid mixing rule (Naidoo 2004). 

From the virial expansion it can then be deduced that the second virial coefficient boundary condition 

is that the composition dependence must be quadratic in nature. The mixing rules are given by (Peng & 

Robinson 1976): 

𝑎𝑚 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖𝑗

𝑗𝑖

 

                              6.27 

𝑏𝑚 = ∑ ∑ 𝑥𝑖

𝑗

𝑥𝑗𝑏𝑖𝑗

𝑖

 

                              6.28 
 

Equations 6.27 and 6.28 represent interactions between the species in the mixture. The cross parameters 

are linked to pure fluid parameters by what are known as the combining rules: 

𝑎𝑖𝑗 = √𝑎𝑖𝑎𝑗(1 − 𝑘𝑖𝑗) 

                            6.29 

𝑏𝑖𝑗 =
1

2
(𝑏𝑖 + 𝑏𝑗)(1 − 𝑙𝑖𝑗) 

                                       6.30 
 

The parameter 𝑘𝑖𝑗 is an adjustable binary interaction parameter that must be regressed from 

experimental phase equilibrium data. The parameter 𝑙𝑖𝑗 is set to zero for non-polar and most simple 

mixtures (Naidoo 2004). It was set to zero in this work.  
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GE mixing rules 

For mixtures of greater complexity Huron & Vidal (1979) proposed that excess Gibbs energy models 

and EoS  be used together. The key idea was to match the excess Gibbs free energy of an EoS with that 

of an activity coefficient model at a specified state. Two boundary conditions were satisfied. The first 

is that at low densities the composition dependence must be quadratic in nature. The second comes from 

requiring that the excess Gibbs energy from an EoS at liquid-like (high) densities be equivalent to that 

from an activity coefficient model (Sandler 2006). This is done to solve for the mixing rule 𝑎𝑚  in the 

vdW type equations of state using the equation (Voutsas et al. 2004): 

𝐺𝐸𝑂𝑆
𝐸 (𝑥𝑖, 𝑇, 𝑃𝑟𝑒𝑓) = 𝐺𝐴𝐶

𝐸 (𝑥𝑖, 𝑇, 𝑃 = 0) 

                                 6.31 
 

Huron & Vidal (1979) matched the excess Gibbs free energy (GE) of an activity coefficient to that of 

the EoS at infinite pressure such that 𝑃𝑟𝑒𝑓in the above equation is infinite pressure. An EoS and the 

excess Gibbs free energy are related at infinite pressure by: 

𝐺𝐸 = 𝐴𝐸 + 𝑃𝑣𝐸 

                              6.32 
 

It follows that the excess molar volume 𝑣𝐸 must approach zero if GE is to remain finite at infinite 

pressure. At liquid densities, while the excess Helmholtz free energy 𝐴𝐸 is insensitive to pressure, 𝐺𝐸 

diverges as 𝑃 → ∞ because of the 𝑃𝑣𝐸 term. Thus most GE models assume that 𝑣𝐸 = 0 whereas the GE 

of an EoS is a function of pressure. As a consequence limiting values for pressure (𝑃 → ∞, 𝑃 → 0) are 

used to obtain a GE mixing rule (Fischer & Gmehling 1996). It is also useful to use 𝐴𝐸 rather than 𝐺𝐸 . 

The Huron and Vidal mixing rule had some shortcomings (Sandler et al. 1994) among which it did not 

account for the pressure effects as the GE value is different at low pressure and at infinite pressure. The 

Huron-Vidal mixing rule does not satisfy the second virial boundary condition. The resulting model 

could not directly utilise existing activity coefficient parameters correlated from low pressure data. To 

correct this Mollerup (1986) and Dahl & Michelsen (1990) proposed matching GE of an activity 

coefficient to that of an EoS at low pressure. The attractive parameter is evaluated at low or zero 

pressure as well as maintaining that excess molar volume is zero. The zero-pressure approach has the 

disadvantage that the EoS zero pressure liquid exists at low temperatures therefore an extrapolation has 

to be made to obtain a hypothetical zero pressure liquid at higher temperatures (Voutsas et al. 2004). 

Modifications to extend the applicability of this approach were done and these include the modified 

Huron-Vidal first order (MHV1) and second order (MHV2) and the Predictive Soave-Redlich-Kwong 
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mixing rules. These models improved correlative and predictive abilities but still do not satisfy the 

second virial coefficient boundary condition. Wong and Sandler (1992) developed the most capable 

mixing rule. The Wong-Sandler mixing rule is consistent with experimental data at the high density 

limit and satisfies the second virial coefficient boundary condition at the low-density limit (Wong & 

Sandler 1992). This makes it one of the most wide-ranging mixing rules available. Wong et al. (1992), 

Sandler (1994), Coutsikos et al. (1995) and Satyro & Trebble (1998) have all discussed the capabilities 

of the Wong-Sandler mixing rules. 

 

The Wong-Sandler (WS) Mixing Rules 

The Wong-Sandler mixing rules have the advantage that they are capable of modelling highly non-ideal 

systems. Of all excess energy mixing rules, WS mixing rules are the most widely used and are used in 

this work. The WS mixing rules, however, use the excess Helmholtz free-energy AE at infinite pressure 

rather than GE (Valderrama & Zavaleta 2005) and the advantage is that AE is not as strongly dependent 

on pressure as GE and the assumption that 𝑣𝐸 = 0 is not necessary (Nelson 2012). The insensitivity to 

pressure means that low pressure activity coefficient model parameters are found to be useful. The WS 

mixing rules are summarised as follows (Wong & Sandler 1992):  

𝑏𝑚 =

∑ ∑ 𝑥𝑖𝑥𝑗 (𝑏 −
𝑎

𝑅𝑇)
𝑖𝑗

𝑛
𝑗

𝑛
𝑖

1 −
∑ 𝑥𝑖𝑎𝑖

𝑛
𝑖
𝑏𝑖𝑅𝑇

−
𝐴∞

𝐸 (𝑥)
𝜀𝑅𝑇

 

                           6.33 
    

(𝑏 −
𝑎

𝑅𝑇
)

𝑖𝑗
=

1

2
[𝑏𝑖 + 𝑏𝑗] −

√𝑎𝑖𝑎𝑗

𝑅𝑇
(1 − 𝑘𝑖𝑗) 

                               6.34 

𝑎𝑚 = 𝑏𝑚 [
∑ 𝑥𝑖𝑎𝑖

𝑛
𝑖

𝑏𝑖
+

𝐴∞
𝐸 (𝑥)

𝜀
] 

                              6.35 
 

For the PR EoS 𝜀 = 1
√2

⁄ 𝑙𝑛 (√2 − 1). The adjustable binary interaction parameter 𝑘𝑖𝑗 is included in 

the combining rule in equation 6.34 and therefore the equation of state. The excess Helmholtz free-

energy of the EoS is matched with that of an activity coefficient model to solve for the attractive 

parameter 𝑎𝑚 by these equations: 
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𝐴𝐸𝑂𝑆
𝐸 (𝑥𝑖, 𝑇, 𝑃 → ∞) = 𝐴𝐴𝐶

𝐸 (𝑥𝑖, 𝑇, 𝑃 → ∞) 

                             6.36 
The excess Helmholtz free-energy at infinite pressure, 𝐴∞

𝐸 (𝑥) and the excess Gibbs free energy at low 

pressure 𝐺𝐸 are approximated by assuming that  

𝐴∞
𝐸 (𝑥) ≈ 𝐴0

𝐸(𝑥) ≈ 𝐺0
𝐸(𝑥) = 𝐺𝐸 

                           6.37 
 

This equality is possible because of the insensitivity to pressure of AE. The excess Gibbs free energy 

and hence the excess Helmholtz free energy at infinite pressure is calculated by an activity coefficient 

model such as the Van Laar model, Wilson model or the Non-Random Two Liquid (NRTL) activity 

coefficient model. The NRTL model was used to calculate the excess Gibbs free energy in this work. 

Wilson and NRTL models make use of the local composition concept which provides a convenient 

method for introducing non-randomness in a liquid mixture (Renon & Prausnitz 1969). The Wilson 

model however has some disadvantages. In particular it is not applicable to mixtures with only partial 

liquid miscibility. Moreover, the NRTL provides good representation of a wide variety of mixtures 

including highly non-ideal mixtures with partial miscibility. The NRTL was also used by authors who 

worked with fluorocarbons (Valtz et al. 2007; Ramjugernath et al. 2009; Subramoney et al. 2010; Nandi 

et al. 2013)  and excellent results were obtained. It should be noted however, that due to the chemical 

nature of the components used in this work, similar results can be expected for the NRTL, Wilson and 

Van Laar models.  

6.4. The Non-Random, Two Liquid Activity Coefficient Model (Renon & Prausnitz 

1968; Renon & Prausnitz 1969) 

The excess Gibbs free energy is a function of both temperature and composition and is of the form: 

𝐺𝐸

𝑅𝑇
= 𝑓(𝑥1, 𝑥2, 𝑇) 

                             6.38 
 

 For the NRTL equation the excess Gibbs energy is: 

𝐺𝐸

𝑅𝑇
= ∑ 𝑥𝑖

∑ 𝑥𝑗𝐺𝑗𝑖𝜏𝑗𝑖
𝑛
𝑗=1

∑ 𝑥𝑘𝐺𝑘𝑖
𝑛
𝑘=1

𝑛

𝑖=1
 

                              6.39 
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For a binary mixture: 

𝐺𝐸

𝑅𝑇
= 𝑥1𝑥2 (

𝐺21𝜏21

𝑥1 + 𝑥2𝐺21
+

𝐺12𝜏12

𝑥2 + 𝑥1𝐺12
) 

                             6.40 
 

The activity coefficients 

𝑙𝑛𝛾1 = 𝑥2
2 ((

𝐺21

𝑥1 + 𝑥2𝐺21
)

2

𝜏21 +
𝐺12𝜏12

(𝑥2 + 𝑥1𝐺12)2) 

                              6.41 

𝑙𝑛𝛾2 = 𝑥1
2 ((

𝐺12

𝑥2 + 𝑥1𝐺12
)

2

𝜏12 +
𝐺21𝜏21

(𝑥1 + 𝑥2𝐺21)2) 

                              6.42 
 

𝐺𝑖𝑗 for a binary mixture of components i and j 

𝐺𝑖𝑗 = 𝑒−𝛼𝑖𝑗𝜏𝑖𝑗 

                               6.43 
 

Thus the NRTL model contains three parameters(𝜏𝑖𝑗 , 𝜏𝑗𝑖 , 𝛼𝑖𝑗). In Aspen Properties (Aspentech 2012) 

these parameters are defined as follows: 

𝜏𝑖𝑗 = 𝑎𝑖𝑗 +
𝑏𝑖𝑗

𝑇
⁄ + 𝑒𝑖𝑗𝑙𝑛𝑇 + 𝑓𝑖𝑗𝑇 

                               6.44 
 

The parameters 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑒𝑖𝑗 and 𝑓𝑖𝑗 must be regressed from experimental phase equilibrium data. In this 

work, 𝑒𝑖𝑗 and 𝑓𝑖𝑗 were set to zero. They are usually used to account for liquid-liquid equilibria. The 

required energy parameters (𝑔12 − 𝑔22) and (𝑔21 − 𝑔11) as defined by Renon & Prausnitz (1968) are 

obtained by multiplying equation 6.44 by RT where R is the universal gas constant and T is the absolute 

temperature. It is clear then that when temperature dependence is used, linear temperature dependence 

is convenient and useful. The non-randomness parameter is: 
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𝛼𝑖𝑗 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗(𝑇 − 273.15) 

                                       6.45 
 

The parameter 𝑑𝑖𝑗 is set to zero and 𝛼𝑖𝑗 = 𝑐𝑖𝑗 which is not an adjustable parameter. Renon & Prausnitz 

(1968) found that the value for 𝛼𝑖𝑗 should lie between 0.2 and 0.47 for all fluids. Using the rules of 

Renon & Prausnitz (1968) various authors have used, with good approximation based the chemical 

nature of the components in analysis, one of 0.2, 0.3, 0.4, 0.47 as the average values for this parameter. 

This parameter represents the randomness or order of molecules in a system. A value of zero represents 

complete randomness. In this work a value of 0.3 was used. This is sufficient for non-polar components. 

It is also suitable for fluorocarbons and was used by numerous authors (Valtz et al. 2007; Ramjugernath 

et al. 2009; Coquelet et al. 2010; Madani et al. 2012; Subramoney et al. 2013) who worked with 

fluorocarbons.  

6.5. The Predictive Soave-Redlich-Kwong (PSRK) Equation of State 

The PSRK model is the most widely used predictive group contribution model. Its mixing rule combines 

the UNIFAC activity coefficient model and the SRK EoS (Gmehling et al. 1997). It utilises the zero-

pressure method. The PSRK has some advantages over other group contribution methods: (i) the mixing 

rule has a well-defined reference state, (ii) the model gives reliable results for VLE over a wide range 

of temperatures and pressures and (iii) it has a large range of applicability (Li et al. 1998). Consequently 

if the group contribution parameters for the compounds in question exist, the PSRK gives reliable 

predictions. In this work the PSRK was used to compare results for a simple alkane system, for which 

this model is applicable and reliable.  

The Equation  

Starting from the SRK EoS from equation 6.7: 

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎(𝑇)

𝑣(𝑣 + 𝑏)
 

The mixing rules are summarised as (Fischer & Gmehling 1996): 𝑎

𝑏𝑅𝑇
= ∑ 𝑥𝑖

𝑎𝑖𝑖

𝑏𝑖𝑅𝑇
+

𝐴𝐸

𝑅𝑇

𝜀
 

                               6.46 

𝑏 = ∑ 𝑥𝑖𝑏𝑖 

                              6.47 
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𝜀 = 𝑙𝑛 (𝑢
(𝑢 + 1)⁄ ) with u = 1.1. The relationship between AE which is needed and 𝐺0

𝐸 is shown below: 

𝐴𝐸

𝑅𝑇
−

𝐺0
𝐸

𝑅𝑇
= ∑ 𝑥𝑖𝑙𝑛

𝑏

𝑏𝑖
 

                                       6.48 
 

This assumes that the excess molar volume vE is equal to zero which is true for 𝐺0
𝐸. Substituting equation 

6.48 into 6.46 the PSRK mixing rule is 

𝑎

𝑏𝑅𝑇
= ∑ 𝑥𝑖

𝑎𝑖𝑖

𝑏𝑖𝑅𝑇
+

𝐺0
𝐸

𝑅𝑇
+ ∑ 𝑥𝑖𝑙𝑛

𝑏
𝑏𝑖

𝜀
 

                               6.49 
 

The 𝐺0
𝐸 is found by the UNIFAC model. The parameters 𝑎𝑖𝑖 and 𝑏𝑖 are group contribution parameters 

which means this model requires no experimental data.  

6.6. Data Regression 

The high pressure phase equilibrium data were regressed in the Aspen Plus® V8 program. Figure 6.1 

shows the reduction for the Mathias-Copeman parameters from the vapour pressure data. The PRWS 

model was used. Figure 6.2 shows the data reduction process for the mixture data. Two models were 

used, namely, the Peng-Robinson EoS with the classical mixing rule (PENG-ROB/PR) and the Peng-

Robinson with the Mathias-Copeman alpha function and the Wong-Sandler mixing rules incorporating 

the NRTL model (PR-MC-WS-NRTL/PRWS). The PR binary interaction parameter for classical 

mixing rules was generated for the PENG-ROB model. Four parameters (kij, τij, τji, αij) were generated 

for the PR-MC-WS-NRTL model. Parameter fitting was achieved by the data regression system 

included in the Aspen Plus® V8 program. The algorithm used was the Britt-Luecke which uses a 

rigorous maximum likelihood method. To initialise the main algorithm the Deming algorithm, an 

approximate algorithm, was used which results in a good initial guess for the parameters. The objective 

function used was the ordinary least squares. For isothermal data, it minimises the pressure and vapour 

compositions.  
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Choose base method 
PRWS

Select pure component parameters

Choose T-dependent, alpha function equation of state, 
PRMCP-1 for MC parameters

Select Data 
Select thermodynamic models

TP for regression of equation of state parameters 

Enter T and P data

Select regression
Maximum-likelihood 

Select method (PRWS) and enter all data sets

Enter  pure component parameters for MC 

Run Regression

Read output results

Parameters
RRMSE Deviations

Select Componnets

Tcal, Pcal

 

Figure 6.1: Data reduction process for the pure component data using ASPEN Plus ®  
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Select methods, PRWS model
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Select Data
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Components, 
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Enter PXY data

Select regression
Britt-Luecke algorithm
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Objective function: Ordinary Least Squares
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Select regression
Britt-Luecke algorithm
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Objective function: Ordinary Least Squares

 Select the binary parameter for the 
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Run Regression
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If PRWS If PENG-ROB

Parameters RRMSE Deviations

Parameters RRMSE Deviations
Output Results

Output Results

 Pcal, ycal

 Pcal, ycal

Select Components

 
Figure 6.2: Data reduction process for HPVLE data using Aspen Plus® 
 

In the ordinary least squares principle, the error is defined as the difference between the experimental 

and calculated values so that the objective is to minimise the quadratic error summation over the data 

set (López et al. 2006). The parameter estimation was performed using the Britt-Luecke (1973) 

algorithm with the ordinary least squares model by using the following objective functions which 

minimises the pressure and vapour compositions as shown below (López et al. 2006): 
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𝐹1 = ∑ [
𝑃𝑖

𝑒𝑥𝑝
− 𝑃𝑖

𝑐𝑎𝑙

𝑃𝑖
𝑒𝑥𝑝 ]

2𝑛𝑝

𝑖=1
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𝐹2 = ∑ [
𝑃𝑖

𝑒𝑥𝑝
− 𝑃𝑖

𝑐𝑎𝑙

𝑃𝑖
𝑒𝑥𝑝 ]

2

+ ∑ ∑ [
𝑦𝑖,𝑗

𝑒𝑥𝑝
− 𝑦𝑖,𝑗

𝑐𝑎𝑙

𝑦𝑖,𝑗
𝑒𝑥𝑝 ]

2𝑛𝑐

𝑗=1

𝑛𝑝

𝑖=1

𝑛𝑝

𝑖=1
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where np is the number of experimental data points and nc is the number of components. The objective 

function 𝐹1 is used for the calculation of vapour pressures. The objective function 𝐹2 involves iterative 

procedures and the adjustable variables are calculated from a bubble pressure calculation algorithm. 

The bubble pressure algorithm uses equation 6.52 to calculate the pressure at the ith point (Sandler 

2006).   

𝑃𝑖 = 𝑥1
𝑖 𝛾1

𝑖 𝑃1
𝑣𝑎𝑝

+ (1 − 𝑥1
𝑖 )𝛾2

𝑖 𝑃2
𝑣𝑎𝑝 

                               6.52 
 

The optimum values for the parameters of the NRTL model are chosen to minimise the sum of squares 

deviation between measured and calculated pressures. Therefore to find the calculated pressures and in 

turn the parameters the following objective function must be minimised: 

𝑚𝑖𝑛 ∑[𝑃𝑖
𝑒𝑥𝑝

− 𝑃𝑖
𝑐𝑎𝑙]

2
= 𝑚𝑖𝑛 ∑[𝑃𝑖

𝑒𝑥𝑝
− 𝑥1

𝑖 𝛾1
𝑖𝑃1

𝑣𝑎𝑝
− (1 − 𝑥1

𝑖 )𝛾2
𝑖 𝑃2

𝑣𝑎𝑝
]

2

𝑖=1𝑖=1
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Once the parameters are identified, they can be used to calculate the vapour phase compositions. The 

excess Gibbs energy can be calculated from equation 6.40. The Wong-Sandler binary interaction 

parameter can then be calculated using the mixing rule and relations given from equations 6.33 to 6.37. 

When the classical mixing rule is used the objective function 6.53 is solved directly with the classical 

mixing rule and the EoS.   

In addition to obtaining values for the parameters, the estimation methods can be used to evaluate a 

thermodynamic model and test the quality of the measured data by statistical means. The difference 

between experimental and calculated variables or simply residuals and sum of squares error can be used 

to assess the quality of the measured data and the application of model used. The error analysis can be 
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used to identify the best thermodynamic model for a given set of experimental data. Aspen V8®  defines 

the weighted sum of squares error as (Aspentech 2012): 

𝑊𝑆𝑂𝑆𝐸 = ∑ 𝑤𝑙 [∑ ∑ (
𝑍𝑖𝑗 − 𝑍𝑀𝑖𝑗

𝜎𝑖𝑗
)

2𝑚

𝑗=1

𝑘

𝑖=1

]

𝑙

𝑔

𝑙=1
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where ZM is the measured value, Z is the calculated value, 𝜎 is the standard deviation, w is the weighting 

factor for a data group, l is the data group number in the regression case, 𝑔 is the total number of data 

groups used, i is the data point number within a data group, k is the total number of points within a data 

group, j is the measured variable for each data point, (P, T, x, y) and m is the number of measured 

variables for a data point. The residual root mean square error is defined as: 

𝑅𝑅𝑀𝑆𝐸 = √
𝑊𝑆𝑂𝑆𝐸

𝐾 − 𝑛
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where K is the total number of data points in all groups: 𝐾 = ∑ 𝑘𝑙
𝑔
𝑙=1  and n is the total number of 

parameters. For VLE data RRMSE of 10 and less indicates an excellent model fit (Aspentech 2012).  

Experimental vapour-liquid equilibrium data should not be only precise but also accurate. Smoothness 

of data and experimental error only proves that the data sets are precise. Accurate data should be 

thermodynamically consistent as well. VLE data are thermodynamically consistent if they satisfy the 

Gibbs-Duhem (Miller 1963; Eubank & Lamonte 2000) equation. However thermodynamic consistency 

does not guarantee correctness but if data is not thermodynamically consistent it is definitely not correct. 

The Gibbs-Duhem consistency checks can be done in a number of ways. Many reviews have been given 

by Mühlbauer (1990), Ramjugernath (2000) and Naidoo (2004). One method is a two-step method that 

uses the combination of vapour and liquid Gibbs-Duhem equations to check the internal consistency of 

P, x, y at constant T, then uses the liquid Gibbs-Duhem equation to check the liquid phase activity 

coefficients (Eubank & Lamonte 2000).   

In conclusion, it is useful and convenient to use a single set of parameters for all measured isotherms 

of a single binary mixture. Moreover if temperature dependence is to be induced in a set of parameters, 

the parameters must then be fitted simultaneously to all the measured isotherms. This is useful in 

simulations for distillation columns. Parameters which are valid at only one temperature are not useful 
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in distillation columns where temperature profiles exist across the columns and simulations have to be 

done at these temperatures. 
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“To err is human. To err randomly is statistically divine.”  

(Unknown) 

7 
CHAPTER SEVEN 

7. RESULTS AND DISCUSSION 
When carrying out experimental measurements it is important to ensure accuracy of the measured data. 

This is guaranteed by appropriately performing equipment preparation, chemical purity checks and 

calibration of the measured properties. The equipment preparation has already been discussed fully in 

chapter five. The calibrations of the measured properties are discussed in Appendix A. Calibrations are 

done to ensure that the measurement devices measure and record data that is true and accurate. This 

introduces experimental uncertainties. The uncertainty of a measured variable is the interval within 

which the true value lies such that a datum result 𝑥 is reported as 𝑥 ± 𝑈(𝑥)where 𝑈(𝑥)is the uncertainty 

in 𝑥 (Nelson 2012). All experimental data were reported with the associated uncertainties with 95% 

confidence level. The uncertainties were calculated according to the guidelines set by the National 

Institute of Standards and Technology (NIST) as explained by Soo (2011) (see Appendix B). Vapour 

pressure data were measured for all the main measurement chemicals as well as ethylene and 

hexafluoropropylene which were used for test system measurements. The NIST ThermoData Engine 

(TDE) was a useful database for pure component data. The NIST TDE is a tool used for evaluating and 

predicting thermodynamic data. The data generated by the TDE software is critically evaluated and 

fully referenced (Frenkel et al. 2005). The vapour pressure data were correlated using the Peng-

Robinson equation of state incorporating the Mathias – Copeman alpha function (PR-MC). The MC 

alpha function allows for a more accurate representation of the vapour pressures for polar components 

(Mathias & Copeman 1983). MC parameters were consequently regressed for all the components using 

the PRWS model. The binary vapour – liquid equilibrium data were correlated using the Peng – 

Robinson EoS with classical mixing rules or Wong – Sandler (WS) mixing rules. The Non Random 

Two Liquid (NRTL) model was used to estimate the liquid activity coefficients and the excess Gibbs 

free energy. The parameters for the models were regressed individually for each isotherm and globally, 

i.e. together for all the isotherms. Vapour pressure and phase equilibrium data are presented in this 

chapter in graphical form; tabulated data are available in appendix C.  Unless stated otherwise all charts 

in this section were produced using models with global parameters.  
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The average absolute deviation (AAD), average absolute relative deviation (AARD) and Bias are 

statistical means used to judge the agreement between experimental data and modelled or reference 

data. High AARDs and Bias values indicate systematic and/or large random differences between 

measured values and evaluated values. Experimental data are accurately represented by evaluated 

values when these statistical functions are near zero (Subramoney et al. 2013).  The AAD is defined as:  

𝐴𝐴𝐷 =
1

𝑁
∑ |𝑈̂𝑒𝑥𝑝 − 𝑈̂𝑐𝑎𝑙|

𝑁

𝑖=1
 

            7.1 

where 𝑈̂𝑐𝑎𝑙 and 𝑈̂𝑒𝑥𝑝 are calculated and experimental values and N is the number of data points. The 

relative deviation is defined as: 

𝑅𝐷𝑈̂(%) = 100 [
𝑈̂𝑒𝑥𝑝 − 𝑈̂𝑐𝑎𝑙

𝑈𝑒𝑥𝑝
] 

            7.2 

So that AARD and Bias are:  

𝐴𝐴𝑅𝐷𝑈̂(%) =
1

𝑁
∑ |𝑅𝐷𝑈̂(%)|

𝑁

𝑖=1
 

            7.3 

𝐵𝑖𝑎𝑠𝑈̂(%) =
1

𝑁
∑ 𝑅𝐷𝑈̂(%)

𝑁

𝑖=1
 

            7.4 

7.1.Purity of Chemicals 

Table 7.1 presents the chemical purities for all the chemicals used.  

Table 7.1: Purity of chemicals 
Chemical Purchased from Purity (*mol. %, **vol. %) 

Ethylene Air Products 99.9* 

Hexafluoroethylene NECSA 99.9* 

Ethane Air Products 99.9* 

n-Hexane Merck KGaA 99** 

Perfluoroethane  AFROX 99.9* 

Perfluorohexane Sigma Aldrich >99** 

Perflourooctane Apollo Scientific >99** 
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Table 7.2 shows the densities and the refractive indices.  

Table 7.2: Density and Refractive indices for the liquids 
 Density (𝝆) @ 298.15 K Refractive Index (n) @ 293.15 K 

 exp [g/ml] Literature [g/ml] exp Literature 

Perfluorohexane 1.667 1.6691 1.253 1.2522 

Perfluorooctane 1.759 1.7561 1.268 1.273 
1data from NIST ThermoData Engine, 2data from The Chemical Book, 3Williamson (2007). exp is the 

experimental data. U(𝜌) = 0.000005 g/ml, U(n) = 0.00004 

 

7.2. Vapour Pressure Data 

Saturated vapour pressure for ethylene and hexafluoropropylene are shown in figure 7.1. The figure 

shows experimental data, data calculated by the PR-MC and reference data from the NIST ThermoData 

Engine.  

 
Figure 7.1: Vapour Pressure Data for ethylene (left) and HFP (right)  
PR-MC EOS (―), EXP (●), NIST TDE (▲) 

Figure 7.2 displays the saturated vapour pressure data for ethane, perfluoroethane, perfluorohexane and 

perfluorooctane. The figure shows data from experimental work, PR-MC and the NIST TDE.  
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The linear relationship (ln (P/MPa) vs. 1000/(T/K) indicates that there was no decomposition or 

polymerisation of the components during measurements (Nelson 2012). Table 7.3 shows the absolute 

and relative deviations of the vapour pressures of each of the components. The AARD and Bias for both 

the reference and modelled data are well below 1% with the exception of hexafluoropropylene and 

perfluorooctane which are below 2%.  

Table 7.3: Average absolute deviation (AAD) and the relative deviations, Bias and 
average absolute relative deviation (AARD) for the vapour pressure data. 

Component AAD/MPa AARD (%) BIAS (%) 

 PR-MC 
EoS 

NIST 
TDE 

PR-MC 
EoS 

NIST 
TDE 

PR-MC 
EoS 

NIST 
TDE 

Ethylene 0.001 0.008 0.029 0.227 0.023 -0.159 

Hexafluoropropylene 0.012 0.0003 1.304 0.049 -1.304 0.034 

Ethane 0.002 0.009 0.054 0.312 0.010 -0.096 

R116 0.004 0.004 0.232 0.214 0.122 0.015 

Perfluorohexane 0.00001 0.00004 0.034 0.125 0.008 -0.005 

Perfluorooctane 0.0002 0.00008 1.036 1.739 1.036 -1.705 
 

𝐴𝐴𝐷 = 1
𝑁⁄ ∑ |𝑃𝑒𝑥𝑝 − 𝑃𝑟𝑒𝑓|𝑁

𝑖=1  where 𝑃𝑟𝑒𝑓 is the calculated vapour pressure from the PR EoS or from the NIST 

database. 𝑃𝑒𝑥𝑝 is the experimental vapour pressure and N is the number of data points. The relative deviations 

are 𝐴𝐴𝑅𝐷(%) = 100
𝑁⁄ ∑ |

𝑃𝑒𝑥𝑝−𝑃𝑟𝑒𝑓

𝑃𝑒𝑥𝑝
|𝑁

𝑖=1  and 𝐵𝑖𝑎𝑠(%) = 100
𝑁⁄ ∑ (

𝑃𝑒𝑥𝑝−𝑃𝑟𝑒𝑓

𝑃𝑒𝑥𝑝
)𝑁

𝑖=1  

The regressed Mathias – Copeman parameters are shown in table 7.4. The regression was performed 

using the Aspen® V8.0 software. These constants improve the pure component vapour pressure 

prediction of the Peng-Robinson EoS. The parameters regressed are only valid in the temperature range 
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Figure 7.2: Vapour Pressure Data for ethane and R116 (left) and Perfluorooctane and 
Perfluorohexane (right). Ethane (x),  R116 (■), Perfluorohexane (●), Perfluorooctane (+), PR-MC 
(―), NIST TDE ( ) 
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in which the vapour pressure data was measured and this temperature range is included with the 

parameters in Table 7.4 below. 

Table 7.4: Mathias – Copeman constants. 
 Temp range [K] c1 c2 c3 

Ethylene 257.69 - 279.78 0.514 -0.110 0.406 
HFP 261.89 - 303.26 0.572 0.650 0.036 

Ethane 257.73 - 303.86 0.536 -0.123 0.366 
R116 258.55 - 289.32 0.861 -3.234 20.645 

Perfluorohexane 277.74 - 322.72 1.130 -0.769 2.372 
Perfluorooctane 277.72 - 352.86 1.090 0.741 -1.565 

 

7.3. Comparison of Vapour-Liquid Equilibrium Data 

Binary VLE test system measurements were undertaken to explore the functionality of the equipment, 

and to validate the experimental method. The results of the test systems are compared with literature 

data. Two test systems were done in this work, namely ethylene (1) + hexafluoropropylene (2) and 

ethane (1) + n-hexane (2). The two test systems cover gas/gas and gas/liquid systems at standard 

conditions. 

Ethylene (1) + Hexafluoropropylene (2) 

The experimental results were compared with literature data of Subramoney et al. (2013) at 268.24 K. 

The results are shown in Figure 7.3. The data measured by Subramoney was carried out in the 

Thermodynamics Research Unit at UKZN. The chemicals used in both these projects were supplied by 

the same companies, Air Products (ethylene) and NECSA/Pelchem (HFP). The purity of the chemicals 

were > 99.9 mol.%. Subramoney et al. (2013) used a static-analytic apparatus commissioned by 

Tshibangu (2010). The experiments in this work were also performed on the same apparatus 

commissioned by Tshibangu (2010) although some major modifications were done since its use by 

these authors (refer to chapter four). The expanded uncertainties reported by Subramoney et al. (2013) 

were: U(T) = ±0.05 K,  U(P) = ±0.007 MPa, U(x1) = ±0.010 mole fraction and U(y1) = ±0.009 mole 

fraction. The uncertainties reported in this work are: U(T) = ±0.09 K, U(P) = ±0.02 MPa, U(x1) = ±0.011 

mole fraction and U(y1) = ±0.010 mole fraction. All these uncertainties are reported with a coverage 

factor of k = 2.  
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Figure 7.3: P-x-y data for the ethylene (1) + HFP (2) system at 268.24 K.  
 (x) EXP, (○) Subramoney et al. (2013), (―) PR-MC-WS-NRTL, (- - -) Predicted PR-MC-WS-

NRTL using parameters of Subramoney  

The results obtained in this work compare well with the data measured by Subramoney; the data agree 

to within the experimental uncertainty. The modelled results in this work agree with both experimental 

data in this work and that of Subramoney et al. (2013) although the relative volatility is off for x1 < 0.5. 

The data was also predicted using parameters from Subramoney et al. (2013). Similar results are 

expected, given the similarity in the equipment, measurement method and chemicals used.  

 

Figure 7.4: Relative volatility (α12) as a function of liquid composition (x1) for the binary 
system ethylene (1) + hexafluoropropylene (2).  
(x) EXP, (○) Subramoney et al. (2013), (―) PR-MC-WS-NRTL, (- - -) Predicted PR-MC-WS-

NRTL using parameters of Subramoney 

Figure 7.4 shows the composition dependency of relative volatility.  The discrepancy of the model 

results and the experimental data can be seen clearly in some points. This is caused by the deviation 
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noted earlier in y1. The relative deviations and parameters from the PR-MC-WS-NRTL model in this 

work are shown in Table 7.5. There is a strong bias in y1. 

Table 7.5: Relative Deviations AARD and Bias for the ethylene (1) + hexafluoropropylene (2) 

system in this work 

  P y1 

AARD (%) 0.562 2.051 

Bias (%) -0.021 1.965 

 

The AARD and Bias show good agreement of the model results with the experimental data. The 

deviations in y1 are high ≈2% but are acceptable. The PR-MC-WS-NRTL model parameters in this 

work and by Subramoney et al. are shown in table 7.6. A non-randomness parameter of 0.3 was used 

for both sets of data.  

Table 7.6: Model parameters for the ethylene (1) + hexafluoropropylene (2) system 
 (g12 – g22)  (J.mol-1) (g21 – g11)  (J.mol-1) k12 

This Work 17561 3581 0.334 

Subramoney et al.2 5255 -1262 0.217 
1 parameters (aij) multiplied by (RT) to convert units to J/mol 

2valid in the temperature range 258.35 – 278.10 K 

The parameters from Subramoney et al. (2013) were regressed in the temperature range 258.35 – 278.10 

K using an in-house thermodynamics software developed by Mines ParisTech laboratory. In this work 

the parameters were regressed using an Aspen Plus® V8.0 package for the one temperature considered.  

Ethane (1) + n-Hexane (2) 

Results from this test system were compared with two sources, the PSRK EoS and Ohgaki et al. (1976) 

at 298.15 K. These results are shown in Figure 7.5. The data measured by Ohgaki et al. (1976) were 

undertaken using the static-analytic method. This is the same method used in this work. However the 

sampling technique was different. In the work of Ohgaki et al. (1976) the samples were withdrawn 

through a valve from the cell and then expanded before analysis. The composition analysis was done 

by gas chromatography. The compositions were determined by direct comparison of peak area ratios of 

unknown and known samples prepared at similar concentrations. It was not discussed how the known 

samples were prepared. The composition analysis was within 1%. No temperature and pressure 

uncertainties were reported. The composition analysis in this work was also done by gas 

chromatography. For the experimental work in this study the gas chromatograph detector was calibrated 

for each of the components. The ethane used by Ohgaki et al. (1976) had a 99.7 mol. % purity and the 

n-hexane had 99 vol. % purity. The ethane and n-hexane used in this work had purities of 99.9 mol. % 
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and 99 vol. % respectively. The expanded uncertainties in composition reported for this system in this 

work were U(x1) = ±0.013 mole fraction and U(y1) = ±0.004 mole fraction. 

 

 

Figure 7.5a P-x-y data for ethane(1) + n-hexane(2) at 298.15 K. EXP (●), Ohgaki et al. 
(1976)  (○), PSRK (- - -), PR-MC-WS-NRTL (―) 
 

 

Figure 7.5b: P-x-y data for ethane(1) + n-hexane(2) at 298.15 K. EXP (●), Ohgaki et al. 
(1976)  (○), PSRK (- - -), PR-MC-WS-NRTL (―) 
 
The results presented in Figure 7.5 shows excellent agreement between the experimental data in this 

work and the PSRK EoS. The PSRK is a predictive model well suited for predicting behaviour of 

compounds with C-H and CH3 functional groups (hydrocarbons). The data by Ohgaki et al. (1976) 

deviates from the PSRK EoS and experimental data in this work as the less volatile component becomes 

more concentrated. This can also be seen in Figure 7.6 which shows the change in relative volatility 
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with composition. Potentially, this can be attributed to the rather outdated sampling technique they 

implemented. The model by Ohgaki (not shown) was a good fit for the bubble curve. However the dew 

curve was not presented on an expanded composition axis and was impossible to judge. It is possible 

with the improved sampling technique in this work that the measured compositions are the accurate 

representation of the system behaviour since it does fit the PSRK model quite well. The valve used by 

Ohgaki was however one of the common methods before the ROLSI™ had been developed. This test 

system was chosen due to the similarity (boiling points, density, and vapour pressures) of the 

components to the components used in this work.  

 

Figure 7.6: Relative volatility (α12) as a function of liquid composition (x1) 
EXP (●), Ohgaki et al. (1976)  (○), PSRK ( - - -), PR-MC-WS-NRTL (―) 
 

This system was similarly correlated using the PR-MC-WS-NRTL model. There is good agreement 

between the experimental data and the model. The model was consistently within the experimental 

uncertainty. The relative deviations AARD and Bias given in Table 7.7 are well below 1%.  

Table 7.7: Relative Deviations AARD and Bias for the ethane(1) + n-hexane(2) system 
in this work 

  P y1 

AARD (%) 0.832 0.131 

Bias (%) 0.074 0.131 

 

Table 7.8 presents the model parameters. The non-randomness parameter was set to 0.3, which is 

suitable for non-polar hydrocarbons (Renon & Prausnitz 1968).  In the work of Ohgaki et al. the fugacity 

of ethane was calculated using the Redlich-Kwong EoS and the Lewis rule. The activity coefficients of 

the solvent were evaluated using the three parameter Redlich-Kister equation with the relation of the 

Gibbs-Duhem equation.   
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Table 7.8: Model parameters for the ethane (1) + n-hexane (2) system in this work 
(g12 –g22)  (J.mol-1) (g21 – g11)  (J.mol-1) k12 

-123862 4605 0.353 

 

The measured and modelled results obtained from the two test systems show good agreement with the 

data from literature. This shows that the equipment functioned well and the experimental technique was 

executed well.  

 

7.4. Phase Equilibrium Measurements 

The VLE measurements were performed up to pressures of approximately 5 MPa and temperatures 

from 273 K – 313 K. The choice of the temperature range was influenced by the capacity of the bath 

particularly the Perspex® viewing windows which can melt at high temperatures. The Perspex® does 

not have a sharp melting point but start to soften at temperatures around 80oC (www.perspex.co.za).  

The expanded uncertainties in temperate, pressure and composition are shown in Table 7.9. The values 

shown are the maximum values calculated from all data sets for all the isotherms. A more detailed 

description of the calculation of uncertainties is shown in Appendix B together with the tabulated data 

for the VLE in Appendix C.  

Table 7.9: Expanded uncertainties for the VLE systems. Coverage factor k = 2  
System U(T) [K] U(P) [MPa] U(x1) U(y1) 

R116/Perfluorohexane 0.09 0.02 0.015 0.006 

R116/Perfluorooctane 0.09 0.02 0.015 0.002 

Ethane/Perfluorohexane 0.09 0.02 0.014 0.007 

Ethane/Perfluorooctane 0.09 0.02 0.013 0.001 

 

R116 (1) + Perfluorohexane (2) 

Figure 7.7 displays the experimental and modelled VLE data for R116 and perfluorohexane binary 

system. Presented are five phase envelopes from 272 K to 313 K and pressures up to 4 MPa. The 

modelled data include the one parameter classical Peng-Robinson EoS, and the Peng-Robinson EoS 

with the Mathias-Copeman alpha function and the Wong-Sandler mixing rule incorporating the NRTL 

activity coefficient model. There are three phase envelopes below and two above the critical point of 

the less volatile component, namely, R116. The two models provided good description in the near-

critical region despite their limitations in this region as will be discussed later. The critical point of a 

coexistence curve, for any temperature Tc1 < T < Tc2, is such that (𝜕𝑃
𝜕𝑥⁄ )𝑇

𝑐,𝑐𝑥𝑠 = 0 where c denotes 
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critical and cxs denotes coexistence surfaces (Rainwater 2001). The two isotherms above the critical 

temperature of R116 form closed loops. As the temperature is increased the loops become smaller and 

they can shrink to a point at the critical point of perfluorohexane (Fernandez-Prini 1991).  
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Figure 7.7: P-T-x-y data for the R116 (1) + Perfluorohexane (2) system for five isotherms. ( x) 272.80 K, (●) 282.85 K, (+) 292.87 
K, (▲) 302.90 K, (■) 312.92 K, (---) PENG-ROB model, (―) PR-MC-WS-NRTL model 
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Figure 7.8 shows the plot of the relative volatility versus composition of the more volatile component. 

In general the experimental relative volatilities are consistent with the model values. Relative volatility 

is a function of both vapour and liquid compositions; hence a smooth change in relative volatility with 

composition indicates a smooth trend in experimental data. Nonetheless there is some scatter on the 

272.80 K isotherm. The experimental data and the models were however still within the experimental 

uncertainties.  

 

Figure 7.8: Composition dependence on α12 for the R116 (1) + Perfluorohexane (2) 
system for five isotherms. (x) 272.80 K, (●) 282.85 K, (+) 292.87 K, (▲) 302.90 K, (■) 
312.92 K, (---) PENG-ROB model, (―) PR-MC-WS-NRTL model 
 

Figure 7.9 shows deviations in vapour composition from both models. It is clear that both models 

constantly underestimate the vapour composition on most occasions.  Nevertheless all the deviations 

lie within the vapour composition uncertainty.  
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Figure 7.9: Deviations in vapour composition from the PR-MC-WS-NRTL model (left) 
and the PENG-ROB model (right) for the R116 (1) + Perfluorohexane (2) system. (x) 
272.80 K, (●) 282.85 K, (+) 292.87 K, (▲) 302.90 K, (■) 312.92 K 
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Figure 7.10 shows the deviations in pressure from both models. The deviations from both models were 

within the pressure uncertainty. It should be noted, particularly for the PR-MC-WS-NRTL model, that 

the deviations become larger as the pressure reaches the critical region. This can be expected in the 

critical region because these models tend to predict this region with some error (Rainwater 2001).  

 

Figure 7.10: Deviations in pressure from the PR-MC-WS-NRTL model (left) and the 
PENG-ROB model (right) for the R116 (1) + Perfluorohexane (2) system. (x) 272.80 K, 
(●) 282.85 K, (+) 292.87 K, (▲) 302.90 K, (■) 312.92 K 
  

The PR EoS analysis 

Analysis with the PR EoS gave three cases to consider. These are discussed below.  

Case 1: Global k12 

The global parameter regressed for this system was k12 = 0.003499. The k12 value approaches zero as 

the system becomes more ideal. The value obtained for this case is very small inferring that this system 

is ideal. The residual root mean square error for this case was 8.775. Table 7.10 shows the relative 

deviations from the PR EoS. There is a good correlation between the experimental data and model. The 

relative deviations were all within 1%. The AADs in both pressure and vapour composition were below 

the respective experimental uncertainties. 

Table 7.10: Relative deviations AARD and Bias for the R116 and perfluorohexane 
system for the case with a global k12 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.80 0.373 -0.373 0.004 0.023 -0.003 0.0002 
282.85 0.362 0.092 0.005 0.026 -0.016 0.0003 
292.87 0.663 0.408 0.009 0.080 -0.080 0.001 
302.90 0.618 0.162 0.009 0.157 -0.152 0.002 
312.92 0.563 -0.363 0.010 0.274 -0.274 0.002 
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Case 2: Individual k12 

The parameters were also regressed individually for each isotherm. The results are presented in Table 

7.11. The global k12 is within the bounds set by the individual k12 values. Interestingly the RRMSEs 

generally increase with increasing T. This corresponds with the trends seen in the AADs for both 

pressure and vapour composition for both cases 1 and 2. 

Table 7.11: Classical PR EoS parameter regressed individually for each isotherm.  
Temperature [K] k12 RRMSE 

272.80 0.004729 5.054 
282.85 0.003116 6.454 
292.87 0.002033 9.698 
302.90 0.002739 10.47 
312.92 0.004724 9.241 

 

 

Figure 7.11: Classical PR EoS parameter regressed individually for each isotherm. The 
red line is where the critical temperature of R116 lies  (292.855 K). 
 

An interesting trend can also be seen in Figure 7.11. The trend of the k12 values suddenly 
changes past the critical point of R116. This phenomenon when the behaviour of 
parameters of a given model change past the critical point of the lighter component has 
been noted in literature. Valtz et al. (2007) with R116 and CO2, Ramjugernath et al. 
(2009) with R116 and propane and Subramoney et al. (2012) with ethane and HFP are 
just a few examples.  
Table 7.12 shows the absolute and relative deviations for the R116 + perfluorohexane system for the 

case with individual parameters. The relative deviations are once again well below 1%. The deviations 

in this case are, as expected, smaller than for case 1.  
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Table 7.12: Relative deviations AARD and Bias for the R116 and perfluorohexane 
system for the case with an individual k12 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.80 0.232 -0.078 0.002 0.023 -0.003 0.0002 
282.85 0.333 0.008 0.005 0.026 -0.016 0.0003 
292.87 0.549 0.057 0.009 0.081 -0.081 0.001 
302.90 0.595 -0.024 0.009 0.156 -0.153 0.002 
312.92 0.527 -0.061 0.009 0.270 -0.270 0.002 

  

Case 3: k12 = 0 

The binary interaction parameters obtained for this system suggest that this system is ideal. An 

interesting question to know is if the system can be predicted with k12 = 0. Figure 7.12 and Figure 7. 13 

show the performance and comparison of the PR EoS with k12 = 0.003499; 0. The results confirm the 

fact that the R116/perfluorohexane system is ideal and can be described by the classical PR EoS with 

k12 set to zero. This is a very important result with useful applications in industry and in research when 

no experimental data are available. 

 

Figure 7.12: P-T-x-y data for the R116 (1) + Perfluorohexane (2) system for five 
isotherms. (x) 272.80 K, (●) 282.85 K, (+) 292.87 K, (▲) 302.90 K, (■) 312.92 K, (---) 
PENG-ROB EoS with k12 = 0.003499, (―) PENG-ROB EoS with k12 = 0.  
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Figure 7. 13: Composition dependence on α12 for the R116 (1) + Perfluorohexane (2) 
system for five isotherms. (x) 272.80 K, (●) 282.85 K, (+) 292.87 K, (▲) 302.90 K, (■) 
312.92 K, (---) PENG-ROB EoS with k12 = 0.003499, (―)PENG-ROB EoS with k12 = 0. 
 

The PR-MC-WS-NRTL model analysis 

Two cases were considered during the analysis of the data with the PR-MC-WS-NRTL model.  

Case 1: Global parameters 

The Wong-Sandler binary interaction parameter regressed was k12 = 0.316.  This values increases as 

the system asymmetry increases (López & Cardona 2006). The asymmetry of a system can be measured: 

by the ratio of co-volume parameters (b1/b2) which is 1 for symmetric systems or by the ratio of critical 

volumes (Vc1/Vc2) (López & Cardona 2006). The calculation of this parameter is highly dependent on 

the bubble pressure calculation and hence sometimes it is convenient to disregard points with the highest 

deviations in pressure (Trejos et al. 2010).  

NRTL adjustable energy parameters were regressed with a fixed linear temperature dependence. The 

relationship was found to be: 

(𝑔12 − 𝑔22)/(𝐽 ∙ 𝑚𝑜𝑙−1) = 5396 − 7.59 ∙ 𝑇(𝐾)        7.5 

(𝑔21 − 𝑔11)/(𝐽 ∙ 𝑚𝑜𝑙−1) = 0.097 ∙ 𝑇(𝐾) − 2159      7.6 

The parameters are characteristic of the “i-j” interaction. They account, simultaneously for the pure 

component liquid interactions (g11 and g22) and mixed liquid interactions (g12 and g21) (Gebreyohannes 

et al. 2014). These parameters represented the system well, signifying that there were no discontinuities 

in the system along the isotherms and in the critical regions. The non-randomness parameter, α was 
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fixed to 0.3.  A value of 0.3 is applicable to generally non-polar components such as perfluorocarbons 

and most simple chemicals. It was used with sufficient accuracy. In some cases when the system is not 

represented well, this value might be regressed to get a better description of the system, that is, to get a 

value that fully describes order or randomness of the molecules in a system. Table 7.13 shows the 

absolute and relative deviations from the PR-MC-WS-NRTL model. The deviations were well below 

1%. The results presented here are similar to those obtained for case 1 with the PR EoS. The PR-MC-

WS-NRTL performed better in the AAD for pressure. The RRMSE was 8.34. Overall no significant 

differences were noted in the performances of the two models.  

Table 7.13: Absolute and relative deviations AAD, AARD and Bias for the R116 and 
perfluorohexane system for the case with global parameters for the PR-MC-WS-NRTL 
model 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.80 0.389 0.173 0.004 0.032 -0.029 0.0003 
282.85 0.497 0.341 0.007 0.025 -0.010 0.0002 
292.87 0.423 -0.163 0.006 0.073 0.064 0.001 
302.90 0.607 -0.396 0.012 0.171 0.162 0.002 
312.92 0.601 -0.061 0.013 0.334 0.334 0.003 

Case 2: Individual parameters 

The parameters were also regressed individually for each isotherm. It is recognised that regressing each 

isotherm individually gives a better fit. However it is not advantageous since it ignores the temperature 

dependence that is inherent in these parameters and as such this was done to evaluate the model 

performance. The results are presented in Table 7.14, Figure 7.14 and Figure 7.15.  The parameters are 

scattered below and above the global parameters. For all the parameters, the values at 272.80 K are very 

similar followed by two values each below and above the global parameters. There is no significant 

difference in the WS parameter except at 282.85 K. Consequently this isotherm had the lowest RRMSE.    

Table 7.14: PR-MC-WS-NRTL model parameters regressed individually for each 
isotherm 

Isotherm [K] (𝒈𝟏𝟐 − 𝒈𝟐𝟐)/(𝑱. 𝒎𝒐𝒍−𝟏) (𝒈𝟐𝟏 − 𝒈𝟏𝟏)/(𝑱. 𝒎𝒐𝒍−𝟏) 𝒌𝒊𝒋 RRMSE 

Parameters regressed for each isotherm individually 

272.80 3327 -2118 0.315 8.54 

282.85 1731 -1352 0.331 6.96 

292.87 2620 -1890 0.322 9.53 

302.90 3236 -2208 0.314 12.2 

312.92 3307 -2230 0.313 11.5 

Parameters regressed over all isotherms simultaneously 

272.80 - 312.92 5396 − 7.59 ∙ 𝑇(𝐾) 0.097 ∙ 𝑇(𝐾) − 2159 0.316 8.34 
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Figure 7.14: Wong-Sandler binary interaction parameter for the R116 (1) + 
perfluorohexane (2) system. (●) global parameter, (○) individually regressed parameters 
 

  
Figure 7.15: NRTL energy parameters for the R116 (1) + perfluorohexane (2) system. 
(●) global parameters, (○) individually regressed parameters.  
 

Table 7.15 presents the absolute and relative deviations for case 2. There is no discernible difference 

with case 1. The temperature dependence in case 1 provided a good representation of the data.  

Table 7.15: Absolute and relative deviations AAD, AARD and Bias for the R116 and 
perfluorohexane system for the case with individual parameters for the PR -MC-WS-
NRTL model 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.80 0.411 0.170 0.005 0.031 -0.027 0.0003 
282.85 0.248 0.035 0.003 0.033 -0.028 0.0003 
292.87 0.490 -0.131 0.008 0.062 0.050 0.001 
302.90 0.603 -0.156 0.011 0.175 0.169 0.002 
312.92 0.448 -0.102 0.009 0.358 0.358 0.003 
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It is clear that both models with VdW and Wong-Sandler mixing rules provide similar results for the 

R116 + perfluorohexane system. It is both practically and theoretically advantageous to use models 

with fewer parameters. Therefore, the PR-MC-WS-NRTL was unnecessary for this system. In fact the 

system can be predicted with the classical PR EoS with k12 set to zero and this may be applicable to 

other R116 + PFC or similar systems. 

R116 (1) + Perfluorooctane (2) 

Following the conclusions from the R116 + perfluorohexane system, the R116 + perfluorooctane 

system was initially correlated by the PR EoS with classical mixing rules only. On the one hand a good 

correlation of the experimental data was obtained with good absolute and relative deviations. On the 

other hand the relative volatility plot seemed to justify the use of a more complicated model. 

Consequently the PR-MC-WS-NRTL model was also used. Figure 7.16 shows the results for this 

system, R116 + perfluorooctane. The system data were measured from 282 – 313 K and pressures up 

to 4 MPa. Four isotherms are presented, two of which were measured below and the remainder above 

the critical temperature of R116.  

The phase behaviour of mixtures is characterised by critical exponents near the critical region which 

differ from classical exponents that result from equations of state (Rainwater 2001). In this work, and 

in numerous other projects, the critical region is modelled using equations of state. This nonetheless 

results in some error being induced from the use of classical exponents. One cause of this is that classical 

equations of state tend to neglect density fluctuations which become larger near the critical point. 

Another is that the critical point of a mixture as implied by an equation of state is at the top the 

coexistence curve. However the reality is that the critical point is no longer located at the top 

(Abdulkadirova et al. 2010). Rainwater (2001) observed that the use of proper exponents is more 

important for densities than for P-T-x-y phase boundaries. He further concluded that in this type of 

diagram in the critical region, classical critical exponents are not of great importance, in comparison to 

other regions of the diagram. The two dew curves in Figure 7.16 above the critical temperature of the 

lighter component concave inwards towards the critical region. The critical lines for the two isotherms 

most likely have curvature and maxima along the curves. There is however a discontinuity in the T = 

302.95 K isotherm. Discontinuities like this are sometimes the result of the failure of the phase 

equilibrium algorithm to converge in the critical region rather than the equation of state itself (Rainwater 

2001). This interruption can also mean there is gas-gas immiscibility. This happens when the critical 

line goes to temperatures that are over the critical temperature of the less volatile component 

(Fernandez-Prini 1991). But since the isotherm at T = 312.95 K is continuous, the discontinuity noted 

in the isotherm T = 302.95 K is most likely due to the failure of the algorithm to converge.   
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Figure 7.16: P-T-x-y data for the R116 (1) + Perfluorooctane (2) systems at four isotherms. ( ●) 282.89 K, (+) 292.92 K, (▲) 302.95 K, (■) 312.95 
K, (―) PR-MC-WS-NRTL model, (---) PENG-ROB model 
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Just below or equal to the critical temperature of lighter component the isotherms form a “bird’s beak” 

isotherm. At T = Tc1 the dew curve concave upwards and bubble curve convex up and the two come to 

an infinitely sharp point at the R116 critical point. For T < Tc1, the slopes differ resulting in a less sharp 

point at the critical point. This is evident in the two isotherms in Figure 7.16. For any bird’s beak 

isotherm, the coexistence curves may come to an infinitely sharp point but it should be noted that the 

curve cannot be horizontal at the critical point (Rainwater 2001).  

Figure 7.17 shows the change in relative volatility with composition. The first points on each isotherm 

do not agree with the model. These points also did not agree with the model in vapour compositions.  

 

 

Figure 7.17: Relative Volatility as a function of composition for the R116 (1) + 
perfluorooctane (2). (●) 282.89 K, (+) 292.92 K, (▲) 302.95 K, (■) 312.95 K, (---) PENG-
ROB model, (―) PR-MC-WS-NRTL model 
 

The vapour composition and pressure deviations are presented in Figure 7.18 and Figure 7.19 

respectively. The models constantly underestimated the vapour compositions. The pressure deviations 

were randomly distributed along the axis.  The vapour deviations were within the estimated 

experimental uncertainty. Two points in pressure at 312.95 K were outside the pressure deviations.  
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Figure 7.18: Deviations in vapour composition from the PR EOS (left) and the PR-MC-
WS-NRTL model (right) for the R116 (1) + perfluorooctane (2).  (●) 282.89 K, (+) 292.92 
K, (▲) 302.95 K, (■) 312.95 K  
 

 

 

Figure 7.19: Deviations in pressure from the PR EOS (left) and the PR-MC-WS-NRTL 
model (right) for the R116 (1) + perfluorooctane (2).  (●) 282.89 K, (+) 292.92 K, (▲) 
302.95 K, (■) 312.95 K 
 

Analysis with the PR EoS 

Case 1: Global k12 

The global binary interaction parameter regressed for this system was 0.07654 was found. This gave 

the model a good representation of the experimental data. In contrast to the value of the PR binary 

interaction parameter for the R116 + perfluorohexane system, this system is less ideal. This may be due 

to the greater difference in the densities between perfluorooctane and perfluorohexane. Furthermore 

perfluorooctane has larger molecule sizes than perfluorohexane leading to greater intermolecular forces 

for perfluorooctane – R116 than perfluorohexane – R116 molecules. In ideal solutions the forces 
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between the molecules (i-i, j-j, i-j) must be identical (or very close to).  Therefore knowing that the 

perfluorooctane has greater associated VdW forces than the perfluorohexane, the R116/perfluorooctane 

system has greater ‘i-j’ forces and is less ideal.  Table 7.16 shows the absolute and the relative deviations 

from the PR EoS. Both the AARD and Bias are lower than 1%. The AADs in vapour composition are 

lower than the uncertainty in the vapour composition with the exception of the AAD at 312.95 K. The 

AADs in pressure are lower than the uncertainty in pressure. The residual root mean square error is 

23.4. 

Table 7.16: Absolute and relative deviations for the R116 (1) + perfluorooctane (2) 
system using the PR EoS with a global k12. 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

282.89 0.588 0.349 0.008 0.0354 0.0316 0.0004 
292.92 0.469 0.133 0.007 0.1072 0.1072 0.001 
302.95 0.510 0.108 0.008 0.1800 0.1800 0.002 
312.95 0.643 0.092 0.010 0.2786 0.2786 0.003 

Case 2: Individual k12 

The binary interaction parameter was regressed individually for each isotherm. The results are shown 

in Table 7.17. Figure 7.20 shows the comparison of the global and individually regressed parameters. 

The individually regressed parameters follow the trend set by the global parameter showing that the 

global parameter is effective.  

Table 7.17: PR EoS binary interaction parameter regressed individually for each 
isotherm for the R116 (1) + perfluorooctane (2).  

Temperature k12 RRMSE 
282.89 0.00890 15.57 
292.92 0.00718 25.39 
302.95 0.00742 20.65 
312.95 0.00713 20.27 
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Figure 7.20: PR EoS binary interaction parameter for the R116 (1) + perfluorooctane  
(2) system. (―) global k12, (x) individually regressed k12. 
 

Table 7.18 presents the relative and absolute deviations for the R116/perfluorooctane system. The 

deviations obtained for this case were better than case 1.  The RRMSEs were also smaller except the 

292.92 K isotherm.  

Table 7.18: Absolute and relative deviations for the R116 (1) + perfluorooctane (2) 
system using the PR EoS with individually regressed k 12. 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

282.89 0.339 0.034 0.004 0.027 0.025 0.0003 
292.92 0.387 0.196 0.006 0.082 0.082 0.001 
302.95 0.394 0.130 0.007 0.138 0.138 0.001 
312.95 0.484 0.178 0.008 0.213 0.213 0.002 

 

Case 3: k12 = 0. 

Just as for the R116/perfluorohexane system, a k12 = 0 case was tested. Figure 7.21 shows the 

coexistence curves and Figure 7.22 shows the relative volatility versus liquid composition plots. The 

results are compared with those with the global k12 obtained in case 1. The relative volatility plots show 

that the system is, as expected, better represented when the k12 is regressed. The PR EoS with k12 set to 

zero is still able to predict the phase equilibrium data within the experimental uncertainty.   
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Figure 7.21: P-T-x-y data for the R116 (1) + Perfluorooctane (2) systems at four 
isotherms. (●) 282.89 K, (+) 292.92 K, (▲) 302.95 K, (■) 312.95 K, (---) PENG-ROB EoS 
with k12 = 0.007654, (―) PENG-ROB EoS with k12 = 0.  
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Figure 7.22: Composition dependence on α12 for the R116 (1) + Perfluorooctane (2) 
system for four isotherms. (●) 282.89 K, (+) 292.92 K, (▲) 302.95 K, (■) 312.95 K, (---) 
PENG-ROB EoS with k12 = 0.007654, (―) PENG-ROB EoS with k12 = 0. 
 

Analysis with the PR-MC-WS-NRTL 

Case 1: Global parameters 

The Wong-Sandler binary interaction parameter was 0.4704. The R116 + perfluorooctane system is 

more unsymmetrical than the R116 + perfluorohexane system. The NRTL energy parameters were fixed 

to a linear temperature dependence in Aspen Plus® in the same manner as the R116 (1) + 

perfluorohexane (2) system discussed previously. The linear temperature dependence found is: 

(𝑔12 − 𝑔22)/(𝐽 ∙ 𝑚𝑜𝑙-−1) = 53.95 ∙ 𝑇(𝐾) − 13645      7.7 

(𝑔21 − 𝑔11)/(𝐽 ∙ 𝑚𝑜𝑙−1) = 7165 − 29.63 ∙ 𝑇(𝐾)      7.8 

The non-randomness parameter was fixed to the default value of 0.3 for non-polar compounds. The 

absolute and relative deviations are presented in Table 7.19. There was a good agreement between the 

data and the model. The relative deviations were within 1%. The RRMSE for this model was 22.6.  

Table 7.19: Absolute and relative deviations for the R116 (1) + perfluorooctane (2) 
system using the PR-MC-WS-NRTL model with global parameters. 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

282.89 0.615 -0.454 0.011 0.0163 0.0105 0.0002 
292.92 0.333 -0.321 0.007 0.0453 0.0453 0.0005 
302.95 0.164 -0.039 0.004 0.0754 0.0756 0.0008 
312.95 0.222 0.222 0.005 0.118 0.0115 0.0012 
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Case 2: Individually regressed parameters 

The parameters from the PR-MC-WS-NRTL model were also regressed individually for each isotherm. 

This resulted in better residual root mean square errors and deviations. The results are shown in Table 

7.20. In Figure 7.23 and Figure 7. 24 the comparisons of the global and individually regressed 

parameters are shown. 

Table 7.20: Binary parameters for the PR-MC-WS-NRTL model regressed individually 
at each isotherm. 

Isotherm [K] (𝒈𝟏𝟐 − 𝒈𝟐𝟐)/(𝑱 ∙ 𝒎𝒐𝒍-−𝟏) (𝒈𝟐𝟏 − 𝒈𝟏𝟏)/(𝑱 ∙ 𝒎𝒐𝒍−𝟏) 𝒌𝒊𝒋 RRMSE 

282.89 3845 -2262 0.4474 15.26 

292.92 847 -582 0.4705 19.12 

302.95 1899 -1366 0.4757 14.84 

312.95 2239 -1605 0.4804 16.26 

Global parameters 

All 53.95 ∙ 𝑇(𝐾) − 13645 7165 − 29.63 ∙ 𝑇(𝐾) 0.4704 22.63 

 

 

Figure 7.23: Wong-Sandler binary interaction parameter for the R116 (1) + 
perfluorooctane (2) system. (―) Global parameter, (●) individually regressed 
parameters. 

 

Figure 7. 24: NRTL energy parameters for the R116 (1) + perfluorooctane (2) system. 
(●) Global parameters, (○) individually regressed parameters.  
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The individually regressed WS parameters get larger with an increase in temperature. The values do not 

converge along the global parameters. The individually regressed NRTL energy parameters seem to 

follow the linear tend of the global parameters with an increase in temperature. Table 7.21 shows the 

deviations obtained using the parameters in case 2.  

Table 7.21: Absolute and relative deviations for the R116 (1) + perfluorooctane (2) 
system using the PR-MC-WS-NRTL model with individually regressed parameters.  

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

282.89 0.364 -0.241 0.006 0.026 0.024 0.0003 
292.92 0.580 -0.225 0.012 0.069 0.069 0.0007 
302.95 0.369 -0.187 0.009 0.111 0.111 0.001 
312.95 0.317 -0.140 0.008 0.164 0.164 0.002 

 

Ethane (1) + Perfluorohexane (2) 

The components involved in this section: ethane, a hydrocarbon, and perfluorohexane, a 

perfluorocarbon, are dissimilar and the phase equilibrium data were modelled using the two models for 

comparative sake. In fact, the Peng-Robinson EoS with classical mixing rules did not correlate the 

experimental data for this system satisfactorily. This system was measured from 277 K – 313 K and 

pressures up to 5 MPa. Five isotherms were measured, four below the critical temperature of ethane and 

one above. Figure 7.25 shows the results. The PR EoS mostly overestimates the bubble pressure curve. 

Nandi et al. (2013) who modelled ethane with perfluorooctane observed similar results with the PR EoS 

at the lower isotherms although the pressure deviations were not as large as in this case (Table 7.22). 

The PR-MC-WS-NRTL model correlates the experimental data well. The fit of the model to the 

experimental data is within the experimental uncertainty. The “bird’s beak” characteristic can also be 

seen in these phase envelopes. Table 7.22 shows the deviations AAD, AARD and Bias. These were 

obtained using global parameters. The residual root mean square errors for the PR EoS and PR-MC-

WS-NRTL model were 51.1 and 20.4 respectively. The deviations in vapour composition for both 

models were good. In fact, the relative deviations are all below 1% and the average absolute deviations 

are within the experimental uncertainty. However, the deviations in pressure were not satisfactory. The 

AARDs from the PR EoS were over 4% with AADs well over the pressure experimental uncertainty. 

The PR-MC-WS-NRTL model provided better correlations however the AADs were still slightly higher 

than the experimental uncertainty. This is attributed to the ability of the model to confidently correlate 

the vapour phase composition. However, the PR-MC-WS-NRTL can still provide a relatively good 

description of the bubble curve. 
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Figure 7.25: P-T-x-y data for the Ethane (1) + Perfluorohexane (2) system for five isotherms. ( x) 272.77 K, (●) 282.84 K, (+) 292.87 K, 
(■) 302.89 K, (▲) 312.92 K, (---) PENG-ROB EoS, (―) PR-MC-WS-NRTL model 
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Table 7.22: Deviations for the ethane + perfluorohexane system.  
Model AARDP 

(%) 
BiasP 
(%) 

AADP 
[MPa] 

AARDy1
 

(%) 
Biasy1

 
(%) 

AADy1
 

T (K) = 272.77 
PR-MC-WS-

NRTL 
0.664 0.561 0.007 0.075 -0.072 0.0007 

PENG-ROB 4.189 -1.422 0.056 0.072 0.000 0.0007 
 

T (K) = 282.84 
PR-MC-WS-

NRTL 
0.640 0.093 0.008 0.119 -0.116 0.0012 

PENG-ROB 4.280 -0.712 0.065 0.083 0.016 0.0008 
 

T (K) = 292.87 
PR-MC-WS-

NRTL 
1.804 -1.451 0.025 0.145 -0.138 0.0014 

PENG-ROB 4.686 -2.003 0.078 0.162 0.081 0.0016 
 

T (K) = 302.89 
PR-MC-WS-

NRTL 
1.206 0.405 0.021 0.225 -0.224 0.0022 

PENG-ROB 4.871 -0.316 0.083 0.330 0.136 0.0031 
 

T (K) = 312.92 
PR-MC-WS-

NRTL 
1.808 0.445 0.029 0.349 -0.270 0.0030 

PENG-ROB 4.645 -0.670 0.084 0.637 0.289 0.0054 
 

Following the results obtained in the above table, the PR-MC-WS-NRTL was the chosen model to 

describe for this system. It should be noted that subsequent analyses of the measured data only show 

results pertaining to the PR-MC-WS-NRTL model due to its better performance.  

Figure 7.26 presents the deviations in vapour compositions and in pressure. In the region x1 < 0.5, some 

of the deviations in vapour composition are greater than the uncertainties in vapour composition. 

Deviations in pressure were found to be higher at the higher temperatures. All of the deviations that 

were not within the experimental pressure uncertainty were at the two highest isotherms.    
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Figure 7.26: Deviations in vapour composition ( left) and pressure (right) from the PR-
MC-WS-NRTL model for the ethane (1) + perfluorohexane (2) system.  (x) 272.77 K, (●) 
282.84 K, (+) 292.87 K, (▲) 302.89 K, (■) 312.92 K 
 

Case 1: Global parameters 

The Wong-Sandler adjustable binary interaction parameter was found to be 0.5463. Comparing the 

value obtained for the R116 + perfluorohexane system, the ethane + perfluorohexane system is more 

asymmetrical. Intuitively one can say that this is caused by the dissimilarities in the components when 

a change was made from R116 to ethane. The R116 + perfluorohexane system is a mixture with both 

perfluorocarbons and thus results in a more symmetrical and more ideal system. The ethane + 

perfluorohexane system contains a hydrocarbon and a perfluorocarbon which results in much different 

molecule sizes and more complicated interactions. For example, R116 dissolves more easily in 

perfluorohexane than ethane.  

 The temperature-dependent parameters (non-randomness parameter set to 0.3) for the NRTL model, 

regressed over all isotherms simultaneously are:  

(𝑔12 − 𝑔22)/(𝐽 ∙ 𝑚𝑜𝑙-−1) = 11143 − 21.43 ∙ 𝑇(𝐾)      7.9 

(𝑔21 − 𝑔11)/(𝐽 ∙ 𝑚𝑜𝑙−1) = 3.80 ∙ 𝑇(𝐾) − 968                 7.10 

Figure 7.27 shows the relative volatility against liquid composition. The data shows four to five points 

per isotherm that did not agree with the model. The poor fitting of the experimental data are mostly 

found in the region x1 < 0.5. A better model may be needed for this system. However to get a better fit 

in this work, the non-randomness parameter was also regressed and the model parameters were 

regressed individually for each isotherm.    
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Figure 7.27: Composition dependence on α12 for the ethane (1) + Perfluorohexane (2) 
system for five isotherms. (x) 272.77 K, (●) 282.84 K, (+) 292.87 K, (▲) 302.89 K, (■) 
312.92 K, (―) PR-MC-WS-NRTL model with global parameters 
 

Case 2: Global parameters with non-randomness parameter regressed 

The non-randomness parameter was regressed in this case and was 0.415. All the other parameters were 

the same as in case 1. The resulting absolute and relative deviations from this model are presented in 

Table 7.23. Changing the non-randomness parameter was inconsequential. There were no significant 

differences in the deviations obtained in both cases. The RRMSE was 20.3 and in case 1 it was 20.4.  

Table 7.23: Deviations for the ethane (1) + perfluorohexane (2) system using the PR -
MC-WS-NRTL model with α = 0.415. 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.77 0.747 -0.581 0.011 0.069 0.063 0.0007 
282.84 0.822 -0.053 0.011 0.110 0.102 0.001 
292.87 1.739 1.485 0.023 0.132 0.115 0.001 
302.89 1.118 -0.388 0.019 0.198 0.188 0.002 
312.92 1.713 -0.474 0.028 0.309 0.215 0.003 

 

Case 3: Individually regressed parameters 

Table 7.24 shows the results of the parameters regressed individually for each isotherm. The non-

randomness parameter was kept at 0.3 since changing it in case 2 did not improve the model fit. The 

residual root mean square errors were smaller than the overall value obtained when the parameters were 

regressed simultaneously except for the 292.87 K and 312.92 K isotherms. These two isotherms also 

have the largest relative deviations.  
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Table 7.24: Binary parameters for the PR-MC-WS-NRTL model regressed individually 
for each isotherm for the ethane (1) + perfluorohexane (2) system. 

Isotherm [K] (𝒈𝟏𝟐 − 𝒈𝟐𝟐)/(𝑱 ∙ 𝒎𝒐𝒍-−𝟏) (𝒈𝟐𝟏 − 𝒈𝟏𝟏)/(𝑱 ∙ 𝒎𝒐𝒍−𝟏) 𝒌𝒊𝒋 RRMSE 

272.76 5951 47.15 0.5334 10.61 

282.84 5966 -31.45 0.5361 10.66 

292.87 4176 193.14 0.5620 25.32 

302.89 4291 352.56 0.5534 19.83 

312.92 4065 369.62 0.5461 29.83 

 

Figure 7.28 and Figure 7.29 show the comparison of the global and individually regressed parameters 

for the Wong-Sandler and the NRTL parameters respectively. The parameters for the individual 

isotherms are well scattered around the global parameters. The global Wong-Sandler binary interaction 

parameter is a good effective parameter to describe the system. The temperature dependence in the 

NRTL parameters is also adequate to describe the system.  

 

Figure 7.28: Wong-Sandler binary interaction parameter for the ethane (1) + 
perfluorohexane (2) system. (―) Global parameter, (●) individually regressed 
parameters. 
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Figure 7.29: NRTL energy parameters for the ethane (1) + perfluorohexane (2) system. 
(●) Global parameters, (○) individually regressed parameters. 
 

Table 7.25 shows the deviations from the model for the ethane/perfluorohexane system. Regressing 

each isotherm individually is better than simply changing the non-randomness parameter. Better 

deviations were obtained in this case.  

Table 7.25: Absolute and relative deviations for the ethane (1) + perfluorohexane (2) 
system using the PR-MC-WS-NRTL model with individually regressed parameters 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.77 0.376 -0.145 0.005 0.077 0.065 0.0008 
282.84 0.557 -0.149 0.009 0.102 0.087 0.001 
292.87 1.355 -0.028 0.020 0.166 0.166 0.002 
302.89 1.013 0.025 0.020 0.241 0.241 0.002 
312.92 1.801 0.160 0.029 0.313 0.235 0.003 

 

Ethane (1) + Perfluorooctane (2) 

The ethane (1) + perfluorooctane (2) system was measured from 273 – 303 K and pressures up to 5 

MPa (Figure 7.30). Four isotherms were measured all below the critical temperature of ethane. 

Following the results obtained in the previous section, the system was correlated with the PR-MC-WS-

NRTL model. This model gave good results. Moreover this system was also measured and modelled 

by Nandi et al. (2013) from 308 – 338 K using the classical and Wong-Sandler mixing rules. Nandi et 

al. observed that the WS mixing rule provided a more suitable representation of the experimental data.  
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Figure 7.30: P-T-x-y data for the Ethane (1) + Perfluorooctane (2) system for four isotherms. ( x) 272.79 K, (●) 282.80 K, (+) 292.85 K, 
(▲) 302.87 K, (―) PR-MC-WS-NRTL model 
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In Figure 7.30 the bubble pressure curves show similar results to what was observed in the previous 

system with ethane. This is not limited to just ethane + PFCs but a combination of ethane + other liquid 

component. Kariznovi et al. (2011) who modelled ethane + ethanol with PR EoS observed similar 

results to this work while Duta & Geana (2002) who modelled ethane + n-alkanes observed the more 

conventional concave up bubble curves. The model systematically underestimated the experimental 

vapour compositions at the isotherm T = 302.87 K. The “bird’s beak” characteristic can be seen in all 

the isotherms. From all the results obtained in this work, it has been observed that the bird’s beak 

characteristic is induced as the difference in the densities of the two components in the mixture becomes 

greater. Rainwater (2001) discussed the observations of the bird’s beak by describing the critical region 

of vapour – liquid equilibria starting from the modified Leung-Griffiths model. In Figure 7.7 the 

characteristic is effectively non-existent; however when perfluorohexane is replaced with the heavier 

perfluorooctane the bird’s beak phenomenon appears. A similar result is also true for the ethane systems.  

Figure 7.31 displays the relative volatility against liquid mole fraction. A good agreement between the 

experimental data and the PR-MC-WS-NRTL model was observed. A few discrepancies were observed 

at the ethane dilute regions.  

 

Figure 7.31: Plot of relative volatility (α12) versus mole fraction x1 for the ethane (1) + 
perfluorooctane (2) system at four isotherms. (x) 272.79 K, (●) 282.80 K, (+) 292.85 K, 
(▲) 302.87 K, (―) PR-MC-WS-NRTL model 

The deviations in the vapour composition between the experimental and calculated data are shown in 

Figure 7.32. A few points were found to lie outside the vapour composition uncertainty. Most of these 

points are from the T = 302.87 K isotherm. These points can also be seen in Figure 7.30. This 

information corresponds to the results in Table 7.26 where the AAD in vapour composition at T = 

302.87 K is larger than the expanded uncertainty in the vapour composition. Figure 7.32 also shows the 

deviations in pressure. There was a good distribution in the deviations and these were below the pressure 

uncertainty with the exception of two points.  
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Figure 7.32: Deviations in vapour compositions ( left) and pressure (right) between 
experimental data and calculated data from the PRWS model for the ethane (1) + 
perfluorooctane (2) system. . (x) 272.79 K, (●) 282.80 K, (+) 292.85 K, (▲) 302.87 K 
 

Analysis with the PR-MC-WS-NRTL 

Case 1: Global parameters 

The Wong-Sandler binary interaction parameter was regressed once for all the isotherms and a value of 

0.6129 was found. With regard to the chemical constituents of this binary system, it can be considered 

as the most asymmetrical of all the systems undertaken in this work. The high asymmetry and 

comparison thereof can also be seen from the phase envelopes of the respective systems. The system 

with the higher asymmetry and therefore a higher k12 value has the vapour phase composition closer to 

1. A noteworthy comment is that the results show that the asymmetry of a system is connected to the 

difference in the densities of the two components and the ratio of the size of molecules. The asymmetry 

increases as the difference in the densities of the components increases. 

The temperature-dependent correlations for the NRTL parameters, regressed for all isotherms 

simultaneously, obtained were such that: 

(𝑔12 − 𝑔22)/(𝐽 ∙ 𝑚𝑜𝑙-−1) = 12.78 ∙ 𝑇(𝐾) + 5860                  7.11 

(𝑔21 − 𝑔11)/(𝐽 ∙ 𝑚𝑜𝑙−1) = 5379 − 20.66 ∙ 𝑇(𝐾)                  7.12 

Table 7.26 shows the deviations of the PR-MC-WS-NRTL model to the experimental data. The AARDs 

and Bias in pressure are below 1.5% and 1% respectively. The AADs are all below the pressure 

uncertainty. The AARDs and Bias in the vapour composition are well below 1%. At 302.87 K, the AAD 

in vapour composition is above the uncertainty in vapour composition which was 0.0008. Nevertheless 

there is a good correlation between experimental data and the model. The residual root mean square 

error was 33.6.  
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Table 7.26: AARD, AAD and Bias from the fitting of the PR-MC-WS-NRTL model to 
experimental data using global parameters 

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.79 0.813 0.292 0.0094 0.028 -0.027 0.0003 

282.80 0.716 -0.335 0.0095 0.024 0.005 0.0002 

292.85 0.798 -0.384 0.0105 0.062 0.008 0.0006 

302.87 1.437 0.637 0.0181 0.108 0.108 0.0011 

 

Case 2: Individually regressed parameters 

Table 7.27 presents the model parameters that were regressed individually for each isotherm. Figure 

7.33 and Figure 7.34 show the comparison of the global and individually regressed parameters. The two 

sets of parameters exhibit different trends. The individually regressed parameters are not scatted around 

the global ones in this case. However both sets of isotherms converge at the highest isotherm. The 

RRMSE is highest at the 272.79 K isotherm which also has the largest difference in global and 

individually regressed parameters.  

Table 7.27: Binary parameters for the PR-MC-WS-NRTL model regressed individually 
for each isotherm for the ethane (1) + perfluorooctane (2) system.  

Isotherm [K] (𝒈𝟏𝟐 − 𝒈𝟐𝟐)/(𝑱 ∙ 𝒎𝒐𝒍-−𝟏) (𝒈𝟐𝟏 − 𝒈𝟏𝟏)/(𝑱 ∙ 𝒎𝒐𝒍−𝟏) 𝒌𝒊𝒋 RRMSE 

272.79 13483 465 0.5619 45.74 

282.80 13379 1.80 0.5687 22.62 

292.85 12474 -454 0.5792 30.86 

302.87 9627 -897 0.6117 36.42 

 

 

Figure 7.33: Wong-Sandler binary interaction parameter for the ethane (1) + 
perfluorooctane (2) system. (●) Global parameter, (○) individually regressed 
parameters. 
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Figure 7.34: NRTL energy parameters for the ethane (1) + perfluorooctane (2) system. 
(●) Global parameters, (○) individually regressed parameters. 
 

Table 7.28 shows the absolute and relative deviations from fitting the model using individually 

regressed parameters. The deviations obtained were better in this case. All the relative deviations were 

within 1%. The AADs in pressure and vapour composition for the 272.79 K isotherm in this case were 

larger than the values obtained for case 1.  

Table 7.28: AARD, AAD and Bias from the fitting of the PR-MC-WS-NRTL model to 
experimental data using individually regressed parameters.  

T [K] AARDP (%) BiasP (%) AADP [MPa] AARDy1
(%) Biasy1

(%) AADy1
 

272.79 0.913 -0.239 0.0113 0.048 0.047 0.0005 
282.80 0.505 -0.128 0.0128 0.028 0.025 0.0003 
292.85 0.586 -0.302 0.0207 0.067 0.044 0.0007 
302.87 0.763 -0.088 0.0180 0.050 0.021 0.0005 

 

Prediction of the data by Nandi et al. (2013)  

Nandi et al. (2013) measured this system at temperatures higher than the temperatures measured in this 

work. The reported uncertainties were u(x1) = u(y1) = 0.02. The parameters obtained in this work were 

used to predict the data measured by Nandi et al. at the two isotherms that were closest to the ones 

measured in this work. The results are presented from Figure 7.35 to Figure 7.37. The bubble curve 

predictions were reasonable. While the dew curve predictions do not correspond as well as the bubble 

curve predictions, there are within the cited experimental uncertainty. Vapour compositions sensitivity 

to temperature may be greater than the liquid compositions. The use of parameters with a different 

temperature range resulted in much larger deviations. The predicted relative volatilities deviate from 

the experimental data.  There are well outside the ±8% error given by Nandi et al. Clearly this is 

influenced more by the vapour compositions than the liquid composition. As the temperature rises the 
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deviations increase. This is expected because extrapolating parameters to temperatures outside their 

intended range leads to errors.  

 

Figure 7.35: P-T-x-y data for the ethane (1) + perfluorooctane (2) system. Experimental 
data obtained from Nandi et al. (2013). (□) 308.45 K, (x) 318.42 K, (―) PR-MC-WS-
NRTL model predicted at these temperatures using parameters regressed in this work.  
 

 

Figure 7.36: P-T-x-y data for the ethane (1) + perfluorooctane (2) system. Experimental 
data obtained from Nandi et al. (2013). (□) 308.45 K, (x) 318.42 K, (―) PR-MC-WS-
NRTL model predicted at these temperatures using parameters regressed in this work.  
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Figure 7.37: Relative volatility versus liquid composition for the ethane (1) + 
perfluorooctane (2) system. (□) 308.45 K, (x) 318.42 K, (―) PR-MC-WS-NRTL model 
predicted at these temperatures using parameters regressed in this work.  Error bands 
± 8% ― as in the work of Nandi et al. (2013) 
 

The Wong-Sandler binary interaction parameter has its temperature dependence inherent in the excess 

Gibbs free energy and cannot be fully accounted for by simply extending the parameters to a new 

temperature in the Aspen Plus® program. Moreover any temperature dependence implemented in the 

NRTL parameters is only valid within the temperature range it was regressed for. Using the same 

temperature correlation to extrapolate the parameters to a second temperature set results in errors in the 

parameters and in turn the predictions at the second temperature set.  

Six systems were measured and correlated in this work and the results have been presented. Two test 

systems were measured, ethylene/hexafluoropropylene and ethane/n-hexane. They were both modelled 

using the PR-MC-WS-NRTL model. The four main systems were correlated using two models. The 

parameters were regressed together for all the isotherms and individually for each isotherm. Overall the 

PR EoS with classical mixing rules is adequate for the fluorocarbon systems. Actually, the classical PR 

EoS with the binary interaction parameter set to zero can predict these systems. The PR-MC-WS-NRTL 

model is necessary for the hydrocarbon + PFC system. The temperature dependence used in the 

parameters provided a good representation of the data so much that in some of the cases the deviations 

were not significantly different to the deviations obtained when the parameters were regressed 

individually.  
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8 
CHAPTER EIGHT 

8. CONCLUSIONS AND RECOMMENDATIONS 

8.1. Conclusions 

The two test systems performed were ethylene (1) + HFP (2) and ethane (1) + n-hexane (2). The 

ethylene/HFP system was compared to the data reported by  Subramoney et al. (2013). The two sets of 

data agreed well within the experimental uncertainty reported in this work. However the relative 

volatility was off for x1 < 0.5. A strong bias in y1 was also noted. The ethane/n-hexane system was 

compared with data reported by Ohgaki et al. (1976) and the PSRK EoS. The data in this work agreed 

very well with the PSRK EoS. There were discrepancies between data in this work and Ohgaki et al. 

for the y1 data set. This was attributed to the outdated sampling technique implemented by Ohgaki et 

al. (1976). Overall, by the end of these measurements the equipment had been assessed and determined 

to function properly and the operators technique and conduct in the lab deemed outstanding.  

Four binary systems were measured in the main work. These were R116 (1) + perfluorohexane (2), 

R116 (1) + perfluorooctane (2), ethane (1) + perfluorohexane (2), ethane (1) + perfluorooctane (2).  

The R116 + perfluorohexane system was modelled by the Peng-Robinson with both the classical and 

the Wong-Sandler mixing rules. There was no noteworthy difference between the two models. The 

relative deviations were well below 1% and the average absolute deviations were within the 

experimental uncertainties. The system shows ideal behaviour with a classical mixing rule parameter 

k12 less than 0.006. In fact the system can be represented well with the classical mixing rule parameter 

set to zero. The R116 + perfluorooctane system was also modelled with the PR EoS with the classical 

mixing rule and with the Wong-Sandler mixing rule. The PR EoS also proved to be a good model for 

the system with relative deviations that were below 1%. The classical binary interaction parameter 

obtained was 0.0765. The PR EoS with k12 set to zero was also sufficient for this system. The 

coexistence curves showed bird’s beak phenomena.  

The third system was the ethane + perfluorohexane system. This system was modelled with both the 

classical and WS mixing rules. However in this case the classical mixing rule produced unacceptable 

deviations, over 4% in pressure. The chosen model for this system was thus the PR-MC-WS-NRTL 

model. This model had deviations below 2%. The NRTL parameters were regressed with a linear 

temperature dependence. The bird’s beak characteristic was also seen on the coexistence curves for this 

system. The WS binary interaction parameter was 0.546. The last system was the ethane + 
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perfluorooctane system. The PR-MC-WS-NRTL model was used to correlate this system. The relative 

deviations were within 1.5% for pressure and below 1% for the vapour composition. A WS binary 

interaction parameter of 0.6129 was obtained.   

The models chosen for the systems correlated data well for that system. However systematic 

overestimation or underestimation of the vapour phase composition was observed. The maximum 

experimental uncertainties in the variables T, P, x and y were 0.09 K, 0.02 MPa, 0.015 and 0.007 

respectively. Some residuals in pressure and vapour composition fell above the respective overall 

uncertainties.  

8.2. Recommendations 

 Continued improvements to the equipment ensure efficient operation. Thus it is always important to 

improve experimental equipment. The first improvement that must be made to the equipment used in 

this work is to replace the stainless steel cell with a sapphire cell as in the work of Nelson (2012) and 

Narasigadu et al. (2013). The current cell has too many o-rings for sealing the viewing windows. This 

creates leak points. Moreover the o-rings are difficult to replace. Sapphire tubes eliminate the need for 

viewing windows thereby reducing potential leak points. In addition sapphire cells are generally low 

volume which is helpful especially when one is working with expensive chemicals. This will make 

experimental preparation faster and easier. The pressure transducer valves should be placed so that the 

bolts and nut can be inserted vertically or horizontally. This will make it simpler to seal the top flange 

on these points. In this work these point were at angles to the surface and were major leak culprits. 

Solving this problem will greatly reduce leak issues with the equipment. The fluid bath must be replaced 

with a stainless steel bath. This will solve the corrosion problem that the current galvanised steel bath 

has. The problem is exacerbated when the bath fluid used is water. The Perspex® viewing windows 

must be replaced with a material with a wider temperature range. This will allow a larger temperature 

range to be considered for measurements.   
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A 
APPENDIX A 

A. CALIBRATIONS 

A.1. Temperature and Pressure Calibration 

Temperature Calibration 

Both the Pt-100 probes were calibrated against a standard probe from 253 – 353 K. The results are 

shown in table A.1 and figure A.1. These results were obtained by regressing the calibration data to a 

first order polynomial. The constants shown in table A.1 are for the polynomials for both the T110 

probe which was inserted into the top side of the cell and the T111 probe inserted in the bottom side of 

the cell. The deviations in Figure A.1 are the errors that were obtained between the calculated 

temperatures from the calibration polynomials against the true temperature.   

Table A.1: Temperature calibration polynomials constants 
 a b 

T110 (top) 0.9995 -0.5982 
T111 (bottom) 1.001 -1.745 

 

 

 

Figure A.1: Deviations of the calculated temperature from the true temperature using a 
first order polynomial. 
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The maximum absolute errors for were 0.03 K for the T110 probe and 0.06 K for the T111 probe. The 

overall expanded uncertainty was 0.06 K and 0.09 K for the T110 and T111 probes respectively.  

Pressure Calibration 

The 0 – 100 bar pressure transducer was calibrated against a 0 – 250 bar standard transducer from 0 – 

6.5 MPa. The results are shown in table A.2 and figure A.2.  

Table A.2: Pressure calibration polynomial constants 
 a b 

P122 1.0011 0.07402 
 

 

Figure A.2: Deviations of the calculated pressure from the true pressure using a first 
order polynomial 
 

The transducer was kept in a thermo-regulated block. It was calibrated with the block temperature set 

at 313.15 K and measurements were carried out with the block temperature unchanged. Figure A.2 

shows the residuals of the curve fit in table A.2. The residuals were calculated for each of the calibration 

points. The maximum error obtained was 0.001 MPa. The total expanded uncertainty was determined 

to be 0.02 MPa.  

A.2. GC Detector Calibration Curves 

The GC detector calibration was carried out as outlined in chapter 5. The TCD was calibrated using the 

direct injection method. The conditions used for the calibrations and hence phase equilibrium 

measurements are listed in table 5.1. The results of the calibrations are presented in this section in 

figures A.3 to A.8.  
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Figure A.3a: Calibration chart for ethylene, ▲, and hexafluoropropylene, ○. 

 

Figure A.3b: Calibration residuals for ethylene, ▲, and hexafluoropropylene, ○. Δn = 
nTRUE –nCALC where nTRUE is the number of moles injected into the injector and nCALC is 
the number of moles calculated from the curve fit from calibration points.  

 

Figure A.4a: Calibration chart for ethane, ○, and n-hexane, ▲. 
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Figure A.4b: Calibration residuals for ethane, ○,  and n-hexane, ▲. 

 

Figure A.5a: Calibration chart for ethane, ■ and tetradecafluorohexane, ○. 

 

Figure A.5b: Calibration residuals for ethane, ■ and tetradecafluorohexane, ○. 
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Figure A.6a: Calibration chart for ethane, ■ and octadecafluorooctane, ○. 

 

Figure A.6b: Calibration residuals for ethane, ■ and octadecafluorooctane, ○. 

 

Figure A.7a: Calibration chart for perfluoroethane, ■ and tetradecafluorohexane, ○. 
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Figure A.7b: Calibration residuals for perfluoroethane, ■ and tetradecafluorohexane, 
○. 

 

Figure A.8a: Calibration chart for perfluoroethane, ■ and octadecafluorooctane, ○. 

 

Figure A.8b: Calibration residuals for perfluoroethane, ■ and octadecafluorooctane, ○. 
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B 
APPENDIX B 

B. EXPERIMENTAL UNCERTAINTY 
Experimental accuracy and uncertainties are very important in the know-how of measuring and 

reporting high quality data. The conditions measured (temperature, pressure and composition) should 

be precise and accurate which requires calibration of sensors and detectors. Calibrations give rise to 

relative errors between measured values and calculated values and therefore an uncertainty or interval 

in which the true value lies.  The uncertainties reported in this work were calculated according to the 

methods outlined by NIST as presented by Soo (2011) and Nelson (2012). 

Expressions for uncertainty include that for combined standard uncertainty and expanded uncertainty. 

The combined standard uncertainty is given by: 

𝑢𝑐(𝜃) = ±√∑ 𝑢𝑖(𝜃)2

𝑖

 

B.1 
where 𝑢𝑖(𝜃) is the standard uncertainty in 𝜃. The standard uncertainty is evaluated by one of two 

methods, Type A or Type B evaluation. Type A uncertainties are evaluated by statistical methods in 

which the mean represents the true value. They follow normal distributions and are given by:  

𝑢𝑖(𝜃) =
𝜎

√𝑁𝑟𝑝

 

                      B.2 
where 𝑁𝑟𝑝 is the number of repeated data points and the standard deviation is given by 𝜎. In Type B 

uncertainties follow rectangular distributions in which a variable is likely to reside anywhere within the 

distribution. They are given by:  

𝑢𝑖(𝜃) =
𝑏

√3
 

B.3 
In this work 𝑏 is set to be the maximum error that arises from the calibration polynomials. The expanded 

uncertainty is obtained by applying a coverage factor k to the combined uncertainty. Typically a 

coverage of k = 2 is used and this creates a 95% level of confidence for the interval that 𝜃 is expected 

to lie. 
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B.1. Temperature and Pressure 

The combined standard uncertainty in temperature is calculated by: 

𝑢𝑐(𝑇) = ±√𝑢𝑟𝑒𝑝(𝑇)2 + 𝑢𝑐𝑜𝑟𝑟(𝑇)2 + 𝑢𝑠𝑡𝑑(𝑇)2 

B.4 
The standard uncertainty 𝑢𝑟𝑒𝑝(𝑇) is due to measurement repeatability and is found by using Type A 

evaluation. 𝑢𝑐𝑜𝑟𝑟(𝑇) is the due to temperature calibration correlation and is estimated by Type B 

evaluation. 𝑢𝑠𝑡𝑑(𝑇) is from the standard temperature probe and given by the manufacturer. It is also 

estimated by Type B.  

The combined standard uncertainty in pressure is calculated by: 

𝑢𝑐(𝑃) = ±√𝑢𝑟𝑒𝑝(𝑃)2 + 𝑢𝑐𝑜𝑟𝑟(𝑃)2 + 𝑢𝑠𝑡𝑑(𝑃)2 + 𝑢𝑎𝑡𝑚(𝑃)2 

B.5 
By the same measure, 𝑢𝑟𝑒𝑝(𝑃) is the standard uncertainty due to measurement repeatability estimated 

by Type A evaluation. 𝑢𝑐𝑜𝑟𝑟(𝑃), 𝑢𝑠𝑡𝑑(𝑃) and 𝑢𝑎𝑡𝑚(𝑃) which are standard uncertainties due to pressure 

calibration correlation, due to the standard pressure transducer and due to the barometer respectively, 

are all estimated by Type B evaluation.   

B.2. Composition 

The combined standard uncertainty in composition is given by: 

𝑢𝑐(𝑥𝑖) = √𝑢𝑟𝑒𝑝(𝑥𝑖)2 + 𝑢𝑐𝑎𝑙𝑖𝑏(𝑥𝑖)2 

B.6 
In the direct injection method and noting that 𝑥𝑖 = 𝑛𝑖 (𝑛𝑖 + 𝑛𝑗)⁄ , 𝑢𝑐𝑎𝑙𝑖𝑏(𝑥𝑖) can be calculated by:  

𝑢𝑐𝑎𝑙𝑖𝑏(𝑥𝑖) = √[
𝑛𝑗

(𝑛𝑖 + 𝑛𝑗)2
𝑢(𝑛𝑖)]

2

+ [
𝑛𝑖

(𝑛𝑖 + 𝑛𝑗)
𝑢(𝑛𝑗)]

2

 

B.7 
For gases the standard uncertainty in mole numbers 𝑢(𝑛𝑖) is dependent on the ideal gas law and the 

calibration correlation. Thus for a gas: 
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𝑢(𝑛𝑖) = ±√𝑢𝑐𝑜𝑟𝑟(𝑛𝑖)2 + 𝑢𝑖𝑔(𝑛𝑖)2 

B.8 
From the ideal gas law it is known that the number of moles 𝑛𝑖 = 𝑓(𝑃, 𝑉, 𝑇). It follows that  

𝑢𝑖𝑔(𝑛𝑖) = √[(
𝜕𝑛𝑖

𝜕𝑃
)

𝑉,𝑇
𝑢(𝑃)]

2

+ [(
𝜕𝑛𝑖

𝜕𝑉
)

𝑃,𝑇
𝑢(𝑉)]

2

+ [(
𝜕𝑛𝑖

𝜕𝑇
)

𝑃,𝑉
𝑢(𝑇)]

2

 

B.9 
Differentiating and applying the ideal gas law equation B.9 can be simplified to obtain: 

𝑢𝑖𝑔(𝑛𝑖) = 𝑛𝑖
√(

𝑢(𝑃)

𝑃
)

2

+ (
𝑢(𝑉)

𝑉
)

2

+ (
𝑢(𝑇)

𝑇
)

2

 

                             B.10 
The injected mole numbers are calculated from P, V and T. To account for the assumption done in the 

direct injection that pressure and temperature within the syringe are at ambient conditions, standard 

uncertainties in these conditions are introduced. 𝑢(𝑃) is set to 0.001 MPa to allow for a slight positive 

pressure in the syringe and 𝑢(𝑇) is set to 2 K allowing a possible cooling effect. Because of possible 

errors arising from the manufacture and the operator, a 2% error is allowed for 𝑢(𝑉). The standard 

uncertainty 𝑢𝑐𝑜𝑟𝑟(𝑛𝑖) is obtained from the maximum absolute relative error induced by the calibration 

polynomial.  

𝑢𝑐𝑜𝑟𝑟(𝑛𝑖) =

𝑛𝑖 (|
𝑛𝑖,𝑇𝑅𝑈𝐸 − 𝑛𝑖,𝐶𝐴𝐿𝐶

𝑛𝑖,𝑇𝑅𝑈𝐸
|

𝑚𝑎𝑥

)

√3
 

                             B.11 
The distribution is assumed to be rectangular and 𝑛𝑖,𝑇𝑅𝑈𝐸 and 𝑛𝑖,𝐶𝐴𝐿𝐶 are the actual injected and 

calculated number of moles respectively.  

For the liquid in a gas/liquid system equation B.8 can be rewritten as: 

𝑢(𝑛𝑗) = ±√𝑢𝑐𝑜𝑟𝑟(𝑛𝑗)2 + 𝑢𝑖𝑑(𝑛𝑗)2 

                             B.12 
The number of moles for a liquid is calculated from the molar density so that 𝑛𝑗 = 𝑓(𝜌, 𝑉). As such the 

standard uncertainty in mole numbers for a liquid is calculated by: 
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𝑢𝑖𝑑(𝑛𝑗) = 𝑛𝑗√(
𝑢(𝜌)

𝜌
)

2

+ (
𝑢(𝑉)

𝑉
)

2

 

                            B.13 
It is recognised that density is a function of temperature but the temperature effect on density is very 

small. Thus an overall uncertainty in density 𝑢(𝜌) was specified to be 1%. 𝑢(𝑉) was taken to be 3%. 

This comes from the error induced in the operation and manufacturing of the syringe.  

B.3. Relative Volatility 

The standard uncertainty in relative volatility is given by  

𝑢(𝛼12) = √[(
𝜕𝛼12

𝜕𝑥1
)

𝑦1

𝑢(𝑥1)]

2

+ [(
𝜕𝛼12

𝜕𝑦1
)

𝑥1

𝑢(𝑦1)]

2

 

                           B.14 
Noting that 𝛼12 = 𝑓(𝑥, 𝑦) equation          

          B.14 can be reduced to: 

𝑢(𝛼12) = 𝛼12√(
𝑢(𝑥1)

𝑥1𝑥2
)

2

+ (
𝑢(𝑦1)

𝑦1𝑦2
)

2

 

                                    B.15 
To get 𝑢(𝑥1) and 𝑢(𝑦1) the combined standard uncertainties in composition are subjected to Type B 

evaluation.  
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C 
APPENDIX C 

C. TABULATED RESULTS 
 

The tabulated data is presented in this section. All the associated uncertainties are presented as well. 

The overall uncertainties were taken to be the maximum uncertainty values. The vapour and liquid 

uncertainties are largest in the equimolar regions and get smaller in the dilute regions. This is a result 

of directly relating the number of moles to the TCD response as in the direct injection calibration method 

(Nelson 2012).  

C.1. Vapour Pressure Data 

Table C.1: Vapour pressure data for ethylene from 257.69 to 279.78 K. 
Texp [K] Pexp [MPa] PR-MC [MPa] 

Pcal Pexp – Pcal 
257.69 2.85 2.85 0.00 
260.71 3.07 3.07 0.00 
263.72 3.30 3.30 0.00 
265.72 3.46 3.46 0.00 
267.73 3.62 3.62 0.00 
270.74 3.88 3.89 0.00 
273.76 4.16 4.16 0.00 
275.76 4.35 4.35 0.00 
277.77 4.55 4.55 0.00 
279.78 4.75 4.75 0.00 

U(T) = 0.09 K, U(P) = 0.02 MPa 

Table C.2: Vapour pressure data for HFP from 261.89 to 322.93 K. 
Texp [K] Pexp [MPa] PR-MC [MPa] 

Pcal Pexp – Pcal 
261.89 0.22 0.22 0.00 
272.83 0.33 0.33 0.00 
282.87 0.46 0.46 0.00 
292.86 0.63 0.62 0.01 
302.89 0.84 0.82 0.01 
312.89 1.09 1.07 0.02 
322.93 1.41 1.37 0.04 

U(T) = 0.09 K, U(P) = 0.02 MPa 
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Table C.3: Vapour pressure data for Ethane from 257.73 to 302.86 K. 
Texp [K] Pexp [MPa] PR-MC [MPa] 

Pcal Pexp – Pcal 
257.73 1.62 1.62 0.00 
262.73 1.85 1.85 0.00 
267.76 2.10 2.10 0.00 
272.78 2.37 2.37 0.00 
277.79 2.67 2.67 0.00 
282.81 3.00 3.00 0.00 
287.82 3.35 3.36 0.00 
292.84 3.74 3.74 0.00 
298.24 4.19 4.20 0.00 
302.86 4.60 4.61 -0.01 

U(T) = 0.09 K, U(P) = 0.02 MPa 

 
Table C.4: Vapour pressure data for R116 from 258.55 to 284.83 K. 

Texp [K] Pexp [MPa] PR-MC [MPa] 
Pcal Pexp – Pcal 

258.55 1.24 1.24 0.00 
260.26 1.30 1.30 0.00 
262.75 1.39 1.39 0.00 
264.72 1.48 1.47 0.00 
266.78 1.55 1.55 0.00 
268.76 1.65 1.64 0.01 
270.81 1.73 1.73 0.00 
272.77 1.83 1.82 0.01 
276.28 2.00 1.99 0.01 
279.30 2.16 2.15 0.01 
282.31 2.33 2.32 0.00 
284.83 2.47 2.47 0.00 

U(T) = 0.09 K, U(P) = 0.02 MPa 

Table C.5: Vapour pressure data for perfluorohexane from 277.74 to 322.72 K. 
Texp [K] Pexp [kPa] PR-MC [kPa] 

Pcal Pexp – Pcal 
277.74 11.00 11.00 0.00 
282.73 14.24 14.24 0.01 
287.77 18.23 18.24 -0.01 
292.74 23.03 23.04 -0.01 
297.71 28.80 28.81 -0.01 
302.73 35.76 35.76 0.01 
307.72 43.95 43.93 0.02 
312.71 53.55 53.52 0.03 
317.71 64.72 64.69 0.03 
322.72 77.66 77.66 0.00 
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A brand new transducer was used to measure liquid vapour pressures. It was calibrated by WIKA. The 
error in the liquid vapour pressure was assumed to be contributed by temperature only. 

 

Table C.6: Vapour pressure data for perfluorooctane from 277.72 to 352.86 K.  
Texp [K] Pexp [kPa] PR-MC [kPa] 

Pcal Pexp – Pcal  
277.72 1.07 1.10 -0.03 
282.74 1.58 1.54 0.03 
292.72 2.85 2.78 0.07 
302.65 4.87 4.77 0.10 
307.64 6.14 6.13 0.01 
312.78 7.77 7.87 -0.10 
317.78 9.85 9.98 -0.13 
322.79 12.42 12.56 -0.14 
327.84 15.53 15.69 -0.16 
332.87 19.23 19.42 -0.19 
337.88 23.76 23.86 -0.10 
342.87 29.02 29.05 -0.03 
347.85 35.15 35.11 0.04 
352.86 42.35 42.34 0.01 

 

C.2. Phase Equilibrium Data 

Table C.7: Pressure (P), liquid composition (x1), and vapour composition (y1) for the 
ethylene (1) and HFP (2) binary system at 268.24 K.  

Experimental  PR-MC-WS-NRTL 
P [MPa] x1 y1 P [MPa] y1 

T(K) =268.24      
0.61 0.079 0.525  0.61 0.550 
0.62 0.086 0.537  0.62 0.563 
0.76 0.119 0.615  0.76 0.640 
0.79 0.130 0.632  0.79 0.655 
1.00 0.188 0.713  1.00 0.728 
1.45 0.308 0.804  1.45 0.812 
1.52 0.333 0.816  1.52 0.823 
1.86 0.439 0.856  1.86 0.859 
2.15 0.530 0.880  2.14 0.882 
2.47 0.642 0.905  2.46 0.906 
2.95 0.814 0.944  2.95 0.943 
3.33 0.918 0.972  3.33 0.969 

Uncertainties (k =2): U(P) = 0.02 MPa, U(T) = 0.09 K, U(x1) = 0.011, U(y1) = 0.010 
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Table C.8: Pressure (P), liquid composition (x1), and vapour composition (y1) for the 
ethane (1) and n-hexane (2) binary system at 298.15 K. 

Experimental  PR-MC-WS-NRTL 
P [MPa] x1 y1 P [MPa] y1 

0.51 0.154 0.957  0.51 0.959 
0.71 0.213 0.967  0.72 0.970 
1.15 0.332 0.978  1.14 0.980 
1.59 0.454 0.985  1.59 0.985 
1.71 0.480 0.985  1.70 0.986 
2.27 0.621 0.989  2.26 0.989 
2.46 0.671 0.990  2.46 0.990 
2.77 0.748 0.991  2.78 0.992 
3.17 0.838 0.993  3.19 0.994 
3.30 0.859 0.994  3.31 0.994 

Uncertainties (k =2): U(P) = 0.02 MPa, U(T) = 0.09 K, U(x1) = 0.013, U(y1) = 0.004 
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Table C.9: Pressure (P), Temperature (T), liquid composition (x 1), and vapour 
composition (y1) for the R116 (1) and PFH (2) binary system at five isotherms.   

Experimental  PENG-ROB  Uncertainties 
P [MPa] x1 y1 P [MPa] y1 yexp – ycal U(x1) U(y1) 

T = 272.80 K         
0.47 0.304 0.9825  0.47 0.9816 0.0008  0.013 0.0010 
0.62 0.393 0.9862  0.62 0.9862 0.0000  0.014 0.0009 
0.77 0.480 0.9891  0.77 0.9892 -0.0001  0.015 0.0006 
0.92 0.566 0.9915  0.92 0.9913 0.0002  0.014 0.0006 
1.07 0.648 0.9929  1.07 0.9929 0.0001  0.013 0.0004 
1.21 0.724 0.9940  1.21 0.9942 -0.0002  0.012 0.0004 
1.36 0.798 0.9950  1.36 0.9954 -0.0004  0.009 0.0003 
1.51 0.868 0.9964  1.50 0.9966 -0.0002  0.007 0.0002 
1.70 0.953 0.9985  1.70 0.99840 0.00006  0.003 0.00009 
T = 282.85 K         

0.45 0.237 0.9669  0.45 0.9665 0.0005  0.011 0.0019 
0.67 0.350 0.9775  0.68 0.9776 0.0000  0.013 0.0013 
0.89 0.455 0.9832  0.89 0.9831 0.0001  0.014 0.0010 
1.09 0.542 0.9867  1.09 0.9862 0.0004  0.015 0.0008 
1.30 0.627 0.9888  1.28 0.9886 0.0002  0.014 0.0006 
1.49 0.709 0.9908  1.48 0.9905 0.0002  0.012 0.0005 
1.69 0.788 0.9924  1.68 0.9923 0.0002  0.010 0.0004 
1.89 0.865 0.9944  1.90 0.9940 0.0004  0.007 0.0004 
2.09 0.933 0.9956  2.10 0.9960 -0.0005  0.004 0.0003 
2.16 0.951 0.9969  2.17 0.9967 0.0001  0.003 0.0002 
T = 292.87 K         

0.44 0.194 0.945  0.45 0.945 0.001  0.009 0.003 
0.68 0.296 0.963  0.69 0.963 0.000  0.012 0.002 
0.94 0.397 0.9728  0.94 0.9724 0.0003  0.014 0.0016 
1.17 0.482 0.9784  1.16 0.9774 0.0010  0.015 0.0012 
1.41 0.565 0.9815  1.39 0.9809 0.0006  0.014 0.0011 
1.64 0.648 0.9844  1.63 0.9836 0.0008  0.013 0.0009 
1.87 0.726 0.9872  1.88 0.9858 0.0014  0.012 0.0007 
2.10 0.800 0.9888  2.12 0.9877 0.0010  0.009 0.0007 
2.33 0.863 0.9905  2.34 0.9895 0.0010  0.007 0.0006 
2.59 0.928 0.9925  2.60 0.9918 0.0008  0.004 0.0004 
T = 302.90 K         

0.46 0.166 0.918  0.46 0.916 0.002  0.008 0.004 
0.74 0.270 0.946  0.75 0.946 -0.000  0.011 0.003 
0.99 0.351 0.959  0.99 0.958 0.001  0.013 0.002 
1.26 0.435 0.9677  1.25 0.9653 0.0025  0.014 0.0018 
1.53 0.517 0.9719  1.51 0.9703 0.0016  0.015 0.0016 
1.80 0.598 0.9761  1.79 0.9740 0.0022  0.014 0.0014 
2.07 0.674 0.9791  2.07 0.9766 0.0025  0.013 0.0012 
2.38 0.759 0.9812  2.40 0.9790 0.0022  0.011 0.0011 
2.78 0.853 0.9819  2.79 0.9812 0.0007  0.007 0.0011 
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3.11 0.920 0.9831  3.11 0.9824 0.0007  0.004 0.0010 
T = 312.92 K         

0.45 0.135 0.874  0.46 0.872 0.002  0.007 0.006 
0.67 0.204 0.914  0.68 0.910 0.004  0.007 0.005 
0.86 0.261 0.930  0.86 0.928 0.003  0.011 0.004 
1.04 0.314 0.940  1.04 0.938 0.001  0.013 0.003 
1.33 0.391 0.951  1.32 0.949 0.003  0.014 0.003 
1.64 0.473 0.959  1.62 0.956 0.003  0.014 0.002 
1.93 0.547 0.964  1.91 0.961 0.004  0.014 0.002 
2.23 0.621 0.9678  2.22 0.9639 0.0039  0.014 0.0018 
2.54 0.696 0.9680  2.55 0.9662 0.0018  0.012 0.0019 
2.83 0.760 0.9690  2.84 0.9674 0.0016  0.011 0.0018 
3.15 0.827 0.969  3.17 0.968 0.0017  0.008 0.002 
3.63 0.915 0.965  3.62 0.963 0.0023  0.005 0.002 

Overall Uncertainties (k =2): U(P) = 0.02 MPa, U(T) = 0.09, U(x1) = 0.015, U(y1) = 0.006 
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Table C.10: Pressure (P), Temperature (T), liquid composition (x1), and vapour 
composition (y1) for the R116 (1) and PFO (2) binary system at four isotherms.   

 Experimental  PENG-ROB  Uncertainties 
P [MPa] x1 y1 P [MPa] y1 yexp – ycal U(x1) U(y1) 

T(K) = 282.89         
0.47 0.253 0.9959  0.48 0.9948 0.0011  0.011 0.0004 
0.65 0.336 0.9965  0.65 0.9960 0.0005  0.013 0.0004 
0.83 0.422 0.9970  0.83 0.9967 0.0003  0.015 0.0003 
1.01 0.500 0.9975  1.00 0.9972 0.0003  0.015 0.0003 
1.19 0.577 0.9978  1.18 0.9975 0.0003  0.015 0.0003 
1.38 0.655 0.9979  1.37 0.9978 0.0002  0.013 0.0002 
1.58 0.733 0.99799  1.56 0.99800 -0.00001  0.012 0.00017 
1.75 0.803 0.99817  1.74 0.99822 -0.00005  0.009 0.00015 
1.88 0.853 0.9983  1.88 0.9984 -0.0001  0.008 0.0002 
1.97 0.885 0.99849  1.97 0.9985 -0.00005  0.006 0.00011 
2.08 0.927 0.99882  2.10 0.9988 0.00005  0.004 0.00007 
2.19 0.957 0.99915  2.20 0.9991 0.00010  0.003 0.00007 
T(K) = 292.92         
0.46 0.205 0.9919  0.46 0.9906 0.0013  0.010 0.0004 
0.69 0.299 0.9942  0.69 0.9932 0.0010  0.012 0.0004 
0.89 0.377 0.9950  0.89 0.9944 0.0006  0.014 0.0003 
1.09 0.452 0.9953  1.09 0.9951 0.0002  0.015 0.0005 
1.29 0.520 0.9959  1.28 0.9956 0.0003  0.015 0.0002 
1.50 0.591 0.9962  1.49 0.9959 0.0003  0.014 0.0004 
1.75 0.671 0.9967  1.73 0.9962 0.0005  0.013 0.0005 
1.98 0.744 0.9970  1.97 0.9964 0.0006  0.011 0.0002 
2.28 0.838 0.9971  2.28 0.9967 0.0005  0.008 0.0002 
2.43 0.881 0.9970  2.44 0.9968 0.0002  0.006 0.0002 
2.56 0.916 0.9974  2.58 0.9970 0.0004  0.005 0.0003 
2.72 0.953 0.9976  2.73 0.9972 0.0003  0.003 0.0003 
T(K) = 302.95         
0.46 0.175 0.9850  0.47 0.9842 0.0008  0.009 0.0007 
0.70 0.260 0.9889  0.71 0.9887 0.0002  0.011 0.0006 
0.95 0.342 0.9915  0.95 0.9909 0.0007  0.013 0.0007 
1.20 0.421 0.9926  1.20 0.9921 0.0005  0.014 0.0006 
1.47 0.497 0.9934  1.45 0.9928 0.0006  0.015 0.0006 
1.74 0.574 0.9940  1.72 0.9933 0.0006  0.014 0.0006 
2.02 0.648 0.9943  2.00 0.9936 0.0007  0.013 0.0005 
2.31 0.723 0.9945  2.29 0.9937 0.0008  0.012 0.0004 
2.62 0.801 0.9943  2.61 0.9936 0.0007  0.009 0.0004 
2.94 0.875 0.9939  2.94 0.9932 0.0007  0.006 0.0004 
3.05 0.901 0.9934  3.06 0.9929 0.0005  0.005 0.0005 
3.30 0.948 0.9923  3.30 0.9920 0.0003  0.003 0.0005 
T(K) = 312.95         
0.47 0.154 0.9777  0.477 0.9752 0.0025  0.008 0.0011 
0.74 0.236 0.9839  0.745 0.9826 0.0013  0.011 0.0008 
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1.03 0.318 0.9872  1.030 0.9861 0.0011  0.013 0.0008 
1.29 0.391 0.9885  1.294 0.9878 0.0007  0.014 0.0007 
1.59 0.465 0.9898  1.578 0.9889 0.0009  0.015 0.0009 
1.91 0.542 0.9906  1.892 0.9895 0.0011  0.015 0.0012 
2.22 0.612 0.9909  2.196 0.9897 0.0012  0.014 0.0018 
2.52 0.678 0.9907  2.497 0.9896 0.0011  0.013 0.0013 
2.82 0.742 0.9904  2.804 0.9892 0.0012  0.011 0.0013 
3.15 0.809 0.9892  3.144 0.9883 0.0009  0.009 0.0009 
3.47 0.870 0.9880  3.467 0.9864 0.0016  0.007 0.0009 
3.87 0.946 0.9791  3.870 0.9780 0.0011  0.003 0.0012 

Overall Uncertainties (k =2): U(P) = 0.02 MPa, U(T) = 0.09, U(x1) = 0.015, U(y1) = 0.0018 
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Table C.11: Pressure (P), Temperature (T), liquid composition (x1), and vapour 
composition (y1) for the ethane (1) and PFH (2) binary system at five isotherms.   

Experimental  PR-MC-WS-NRTL  Uncertainties 
P [MPa] x1 y1 P [MPa] y1 yexp – ycal U(x1) U(y1) 

T = 272.77 K         
0.44 0.117 0.9764  0.44 0.9780 -0.0016  0.006 0.0013 
0.61 0.167 0.9805  0.60 0.9835 -0.0030  0.008 0.0014 
0.88 0.253 0.9871  0.87 0.9879 -0.0009  0.010 0.0008 
1.15 0.353 0.9897  1.14 0.9904 -0.0007  0.012 0.0007 
1.40 0.464 0.9912  1.39 0.9919 -0.0007  0.014 0.0008 
1.61 0.571 0.9928  1.60 0.9929 -0.0001  0.013 0.0004 
1.79 0.684 0.9937  1.80 0.9938 -0.0001  0.012 0.0003 
1.97 0.806 0.9949  1.98 0.9949 0.0000  0.008 0.0003 
2.08 0.874 0.9955  2.08 0.9957 -0.0002  0.006 0.0003 
2.19 0.934 0.9970  2.19 0.9969 0.0001  0.004 0.0002 
T = 282.84 K         

0.44 0.100 0.959  0.45 0.964 -0.005  0.005 0.003 
0.66 0.154 0.9724  0.66 0.9744 -0.0020  0.007 0.0015 
0.97 0.235 0.9798  0.96 0.9812 -0.0015  0.010 0.0011 
1.28 0.325 0.9841  1.26 0.9848 -0.0008  0.012 0.0009 
1.60 0.444 0.9865  1.60 0.9874 -0.0009  0.013 0.0007 
1.87 0.542 0.9879  1.85 0.9888 -0.0009  0.013 0.0007 
2.14 0.666 0.9903  2.14 0.9903 0.0000  0.012 0.0005 
2.28 0.728 0.9906  2.28 0.9910 -0.0004  0.011 0.0005 
2.41 0.799 0.9912  2.43 0.9919 -0.0007  0.009 0.0006 
2.58 0.872 0.9929  2.59 0.9932 -0.0004  0.006 0.0004 
2.72 0.928 0.9950  2.73 0.9949 0.0001  0.004 0.0003 
T = 292.87 K         

0.44 0.085 0.939  0.45 0.942 -0.003  0.004 0.003 
0.72 0.143 0.959  0.72 0.962 -0.003  0.007 0.002 
1.12 0.259 0.9721  1.21 0.9748 -0.0027  0.010 0.0015 
1.41 0.331 0.9762  1.48 0.9783 -0.0020  0.012 0.0013 
1.79 0.425 0.9793  1.81 0.9811 -0.0018  0.013 0.0011 
2.13 0.519 0.9825  2.10 0.9830 -0.0006  0.013 0.0010 
2.49 0.642 0.9852  2.47 0.9850 0.0002  0.013 0.0008 
2.70 0.717 0.9854  2.69 0.9862 -0.0008  0.011 0.0008 
2.89 0.786 0.9866  2.90 0.9874 -0.0009  0.009 0.0008 
3.14 0.870 0.9890  3.15 0.9894 -0.0005  0.006 0.0006 
3.33 0.925 0.9918  3.35 0.9917 0.0002  0.004 0.0005 
T = 302.89 K         

0.44 0.069 0.907  0.43 0.907 0.000  0.004 0.005 
0.77 0.133 0.943  0.77 0.944 -0.002  0.007 0.003 
1.15 0.207 0.955  1.13 0.959 -0.005  0.009 0.003 
1.54 0.307 0.964  1.59 0.968 -0.004  0.011 0.002 
1.97 0.398 0.968  1.96 0.972 -0.004  0.013 0.002 
2.37 0.500 0.9738  2.35 0.9752 -0.0014  0.014 0.0014 
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2.84 0.622 0.9778  2.81 0.9778 0.0000  0.013 0.0012 
3.13 0.695 0.9788  3.08 0.9792 -0.0003  0.011 0.0011 
3.39 0.775 0.978  3.39 0.981 -0.002  0.009 0.002 
3.75 0.868 0.981  3.77 0.983 -0.003  0.006 0.002 
3.99 0.920 0.984  4.02 0.986 -0.002  0.004 0.002 
T = 312.92 K         

0.44 0.058 0.862  0.42 0.858 0.003  0.003 0.007 
0.83 0.130 0.919  0.85 0.923 -0.005  0.007 0.004 
1.24 0.199 0.939  1.23 0.943 -0.004  0.009 0.003 
1.66 0.296 0.947  1.73 0.955 -0.008  0.011 0.003 
2.14 0.382 0.955  2.13 0.961 -0.006  0.013 0.002 
2.61 0.468 0.963  2.52 0.964 -0.001  0.013 0.002 
3.18 0.603 0.9682  3.13 0.9680 0.0002  0.013 0.0017 
3.91 0.763 0.969  3.89 0.971 -0.002  0.010 0.003 
4.40 0.866 0.9719  4.42 0.9733 -0.0014  0.006 0.0015 
4.69 0.914 0.9734  4.71 0.9748 -0.0014  0.004 0.0014 

Overall Uncertainties (k =2): U(P) = 0.02 MPa, U(T) = 0.09, U(x1) = 0.014, U(y1) = 0.007 
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Table C.12: Pressure (P), Temperature (T), liquid composition (x1), and vapour 
composition (y1) for the ethane (1) and PFO (2) binary system at four isotherms.   

Experimental  PR-MC-WS-NRTL  Uncertainties 
P [MPa] x1 y1 P [MPa] y1 yexp – ycal U(x1) U(y1) 

T(K) = 272.79         
0.47 0.149 0.9969  0.48 0.9971 -0.0002  0.007 0.0007 
0.81 0.238 0.9977  0.77 0.9980 -0.0003  0.010 0.0006 
1.13 0.354 0.9981  1.12 0.9984 -0.0003  0.012 0.0007 
1.39 0.451 0.9983  1.38 0.9986 -0.0003  0.013 0.0004 
1.67 0.574 0.9984  1.67 0.9987 -0.0003  0.013 0.0004 
1.79 0.640 0.9984  1.79 0.9988 -0.0004  0.012 0.0002 
1.91 0.725 0.9985  1.93 0.9988 -0.0003  0.011 0.0004 
2.02 0.803 0.9985  2.03 0.9989 -0.0004  0.009 0.0003 
2.10 0.867 0.9987  2.11 0.9990 -0.0003  0.006 0.0004 
2.17 0.913 0.9992  2.17 0.9991 0.0001  0.004 0.0001 
2.18 0.922 0.9991  2.18 0.9991 0.0000  0.004 0.0001 
T(K) = 282.80         
0.47 0.131 0.9958  0.49 0.9948 0.0010  0.006 0.0008 
0.92 0.244 0.9969  0.91 0.9967 0.0002  0.010 0.0004 
1.22 0.327 0.9975  1.21 0.9972 0.0003  0.012 0.0003 
1.56 0.425 0.9975  1.55 0.9975 0.0000  0.013 0.0002 
1.92 0.550 0.9977  1.94 0.9977 0.0000  0.013 0.0003 
2.09 0.607 0.9977  2.09 0.9978 -0.0001  0.013 0.0003 
2.29 0.706 0.9977  2.31 0.9979 -0.0002  0.011 0.0002 
2.45 0.785 0.9982  2.46 0.9980 0.0002  0.009 0.0002 
2.59 0.863 0.9978  2.60 0.9981 -0.0003  0.006 0.0003 
2.70 0.911 0.9983  2.69 0.9983 0.0000  0.004 0.0002 
2.72 0.922 0.9984  2.72 0.9984 0.0000  0.004 0.0007 
T(K) = 292.85         
0.46 0.116 0.9930  0.49 0.9909 0.0021  0.005 0.0004 
0.81 0.190 0.9942  0.80 0.9939 0.0003  0.008 0.0004 
1.32 0.310 0.9946  1.32 0.9955 -0.0009  0.011 0.0006 
1.72 0.404 0.9952  1.71 0.9960 -0.0008  0.013 0.0008 
2.11 0.506 0.9959  2.12 0.9962 -0.0003  0.013 0.0004 
2.67 0.681 0.9961  2.69 0.9963 -0.0002  0.012 0.0003 
2.91 0.763 0.9968  2.91 0.9963 0.0005  0.010 0.0002 
3.13 0.855 0.9965  3.14 0.9965 0.0000  0.007 0.0002 
3.29 0.910 0.9969  3.29 0.9968 0.0001  0.005 0.0002 
3.32 0.919 0.9978  3.32 0.9969 0.0009  0.004 0.0001 
T(K) = 302.87         
0.46 0.104 0.9885  0.48 0.9849 0.0036  0.005 0.0008 
0.92 0.178 0.9920  0.84 0.9902 0.0018  0.008 0.0005 
1.43 0.294 0.9936  1.41 0.9929 0.0007  0.011 0.0008 
1.87 0.383 0.9940  1.85 0.9937 0.0003  0.013 0.0006 
2.43 0.505 0.9945  2.43 0.9940 0.0005  0.013 0.0007 
2.70 0.565 0.9948  2.69 0.9940 0.0008  0.013 0.0008 
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3.04 0.656 0.9945  3.05 0.9939 0.0006  0.012 0.0007 
3.36 0.740 0.9946  3.35 0.9938 0.0008  0.010 0.0008 
3.72 0.848 0.9951  3.71 0.9937 0.0014  0.007 0.0003 
3.94 0.907 0.9953  3.94 0.9939 0.0014  0.004 0.0003 
3.99 0.916 0.9956  3.98 0.9940 0.0016  0.004 0.0002 

Overall Uncertainties (k =2): U(P) = 0.02 MPa, U(T) = 0.09, U(x1) = 0.013, U(y1) = 0.0008 
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D 
APPENDIX D 

D.1. Safety, Health and Environment (SHE) 

Handling and Storage 

During the handling of the chemicals the experimenter must wear the required protective clothing, 

safety shoes, lab coat and goggles. The gas cylinders must be protected from physical damage, that is, 

they must not be dragged, rolled or dropped. They must always be secured in racks and when moving 

cylinders, it must be done in trolleys designed to transport cylinders. The cylinders must be kept away 

from heat. Extra care should be taken when working with flammable gases, ethane in this work, so it is 

important to avoid sparks or any other ignition sources. Sometimes a flashback arrestor is used which 

is a device that prevents back flow and avoids damage and explosions. When a cylinder is connected to 

the high pressure equipment, the system must always be leak-checked with Snoop®. When opening the 

cylinder, the valve must be opened slowly and always closed after each use. When handling the liquids, 

the experimenter must avoid contact with skin. All chemicals must be stored in a cool and well 

ventilated area. The containers must be firmly secured. Spent chemicals must be stored in a fume 

cupboard until they can be appropriately disposed of.  

Exposure and accidental release measures 

When working with equipment under pressure, it is important to regularly leak test. Not only will this 

ensure that chemicals are not released into the air but will also ensure accurate measurements. The 

equilibrium cell was designed to withstand pressures of up to 20 MPa. However measurements were 

well below the design specifications. An exhaust ventilation system was placed on top of the equipment 

to avoid accumulation should the gases be released during experimentation.  

Shut down procedure 

To shut down the HPVLE equipment, first the mixer must be turned off. The most important instrument 

to shut down properly and in the intended order is the gas chromatograph. The carrier gas must never 

be shut while the detector is still on and more importantly the column is at high temperatures. Shimadzu 

state that there is an inbuilt protection to protect the detector only. Thus extra care should be taken to 

ensure that the GC column is not damaged. Firstly the temperatures for the detector, injector and column 

must be lowered to ambient. The carrier gas flow can then be lowered to a minimum value usually 

5ml/min to save gas. If measurements are to be continued as early as the following day, the GC can be 
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left in this condition. However if it is the end of the measurements or if no measurements will be 

performed for a long period then, after the GC has been allowed to cool, the detector is turned off. At 

this point the carrier gas can be completely shut. The GC can then be switched off. The ROLSI™, Tx 

line and GC line temperatures must also be lowered to ambient by switching the voltage regulators off. 

The transducer block temperature must always be kept at constant temperature equal to its operation 

temperature. This ensures that the transducer calibration does not shift. There is an inbuilt temperature 

compensation of the sensors in the transducer which safeguards accuracy in measurements. At the end 

of a system measurement the equilibrium cell must be emptied of its contents.  
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E 
APPENDIX E 

E.1. Temperature Control of the Apparatus 

The electric wires were redone for safety concerns when the equipment was put together. The transducer 

block, ROLSI™, sample and transducer lines temperatures were controlled by Shinko controllers. The 

power was supplied by voltage regulators. The control system that was applied was the feedback control 

system. The controlled process is termed a closed-loop system (Seborg et al. 2011). Block diagrams 

will be used to illustrate the dynamics of the closed-loop systems. Figure E.1 shows the block diagram 

for the standard temperature control system (Seborg et al. 2011). The path from E to T through the 

controller, control element and process blocks is the forward path. The path from T through the Pt-100 

sensor-transmitter to Tm is the feedback path. 

 Gain Controller Control 
element Process

Disturbance

Pt-100 
Sensor-

transmitter

+ 
-

+ 
+ E TTsp Ṯsp

Td

P U Tu

Tm

 

Figure E.1: Block Diagram for the Temperature Feedback Control System. 
T – Controlled variable, U – manipulated variable, P – controller output, E – error signal, Tm – measured value 

of T, Tsp – set point, 𝑇sp – internal controller set point, Tu – change in T due to U, Td – change in T due to the 

disturbance 

The process block represents the effect of the manipulated variable (the heat produced by the heater 

cartridge/nichrome wire) on the controlled variable, the temperature. The control element block 

represents the actual heater cartridges or nichrome wires. The gain, comparator and controller blocks 

all indicate the dynamics the Shinko controller. The disturbance indicates mainly the changes in the 

temperature of the air surrounding the system.  

Figure E. 2 shows the actual temperature control system. The heating elements with power from the 

voltage regulator provides heat for the process lines and blocks which then increase the temperature of 

the mentioned lines and blocks. The Pt-100s transmit the signals from the lines, transducer block and 
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ROLSI™ to the Shinko controllers in a feedback path. The controllers adjust the output signal based on 

the set point and the signal is sent to the heater cartridge and process lines. This happens continuously 

with the controllers’ objective is to minimise the error, E from Figure E.1. However the controller can 

only manage to control the temperature if the power supply from the voltage regulator is not too 

excessive or too low. At the start of the process the user would have to start with a low voltage output 

until an output is reached where the controller is able to control its variable.  

The Shinko ACS 13A is a PID controller (Shinko Technos 2005). This means that it has a combination 

of the proportional, integral and derivative control modes. The PID control is the dominant mode in 

process control because of its enhanced performance. If no control is used in a process, the process will 

slowly reach a new steady state.  
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Relay/12V 
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ROLSITM
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220 V 
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220 V 
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Figure E.2: Block diagram showing the actual process control scheme  
 

Introducing proportional control speeds up response but cannot eliminate the offset or at least can only 

reduce the offset from the set point. Adding the integral control eliminates the offset but induces an 

oscillatory response. Adding the derivative control mode reduces the oscillations and improves the 

response time (Seborg et al. 2011).  
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