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ABSTRACT 

Two of the challenges facing Africa in the 21
st
 Century are effective use of restricted water 

resources and ensuring food security especially for poor communities.  In line with these aims, 

the eThekwini municipality has introduced a multi-tier system of water supply ranging from 

full pressure reticulated systems along with flush toilets to standpipes and dry toilet systems.  In 

the latter case, it was soon recognized that the disposal of greywater presented a problem.  

Bearing in mind that South Africa is already a water scarce region, research was initiated into 

finding means of using this water as a resource rather than as a waste.  Initial on-site trials using 

the greywater to irrigate crops proved popular and it was then regarded as necessary to test the 

possible health effects on the communities of such a system. 

 

A controlled field trial using pot plantings of a selected range of edible vegetables was initiated 

at the University of KwaZulu-Natal. Crops were tested both internally and externally for a 

range of indicator and potentially pathogenic organisms.  Quantitative Microbial Risk 

Assessment (QMRA) techniques were used to assess the health risk to communities from 

growing and eating the greywater- irrigated vegetables.  Although there was a health risk 

related to most of the activities, especially the handling of the greywater itself, the risks could 

be brought within the World Health Organisation guidelines of less than one case of disease per 

10 000 people per year by the implementation of simple barrier interventions.  The greywater 

irrigated crops themselves, did not present a statistically higher risk of infection than the crops 

irrigated with either hydroponic solution or tap water.  These findings show the importance of 

applying QMRA to each case to determine health risk.  This would allow the productive use of 

greywater and other water sources in the correct circumstances, thus providing food 

sustainability for people who currently do not have access to the levels of high purity water 

currently recommended for agriculture. 
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1. INTRODUCTION 

“The key lies in asking the right questions, challenging existing paradigms and ultimately, 

changing the way we think about water” (Turton 2008) 

 

1.1 Study context 

The world is becoming increasingly aware that water is a vital resource, not to be squandered or 

abused.  In many areas, the availability of clean water is a critical issue and economic 

development is being delayed as a result of its lack (CSBE, 2003; Adewumi et al., 2008).  

South Africa is not immune to these problems as its rainfall level of 497 mm/year is well below 

the global average of 860 mm/year (Turton 2008).  Dr Kader Asmal, a previous South African 

Minister of Water Affairs and Forestry, in his budget speech to the National Assembly in 1997 

and in his keynote address to the Stockholm Water Symposium in 1999, expressed the wish 

with respect to water that there would be ―some for all forever‖.  This seemingly simple wish is 

not as straightforward as it sounds when burgeoning populations, climate change and increasing 

levels of pollution are taken into account.  South Africa is widely regarded as being a water 

scarce country (Adewumi et al, 2008; Turton, 2008). It must be recognised that this generous 

wish may therefore not be realised unless every drop of water is carefully husbanded, both for 

human use and for the environment.  According to the National Water Resource Strategy report 

(DWAF, 2004a), around 98% of the total South African national water resource had been 

allocated, with over-allocation in some areas being as high as 150%.  These figures were based 

on data from 1998 and may have worsened since:  according to data from the Department of 

Water Affairs and Forestry quoted in Discussion Document D0405, (StatsSA, 2009),  the water 

balance for the year 2000 was 186 million cubic meters and the prediction for 2025 is a deficit 

of 234  million cubic meters.   It is therefore vital to change the thinking on water use and 

reuse. 

With the change of political dispensation in 1994, it was recognized that the vast majority of 

South Africa’s citizens did not have access to adequate services and that this would need to be 

rectified.  The provincial statistics indicate that Gauteng has the largest share of the national 

population with 21.4%, closely followed by KwaZulu-Natal with 21.2% (StatsSA, 2009).  The 

rapid urbanisation seen in South Africa and particularly in the eThekwini area (previously 
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Durban Metro) has resulted in informal areas of varying degrees of sophistication, from shacks 

built from cardboard boxes and plastic sheeting to more permanent corrugated iron and brick 

structures.  Population growth in the eThekwini municipal area, resulting from urbanisation, 

natural growth and migration, has led to difficulties between socio-economic groups in terms of 

service provision, with many seeing the ―norm‖ of waterborne sanitation as the only acceptable 

service level for all economic strata.  Informal settlements, poverty, unemployment and water 

demands are on the increase and a culture of non-payment for and vandalisation of services 

threatens the economic sustainability of service provision, especially the provision of potable 

water (Moodliar, pers. comm. 2009)
1
.  Moreover, uncontrolled wastewater disposal in informal 

and peri-urban settlements and rural areas on the outskirts of the city is a problem that impacts 

negatively on the environment and public health.  In line with the guidelines set out by the 

Department of Water Affairs and Forestry (DWAF, 2004a), progress has been made in the 

supply of potable water to these areas, but often the provision of sanitation lags behind.  When 

strategic development plans were being discussed for the Metropolitan Integrated Development 

Plan, a great deal of effort was put into obtaining feedback from communities with regard to 

what they saw as the most urgent needs in terms of service provision (Pfaff, pers. comm., 

2008
2
).  It was soon found that generally, the most urgent need with regard to service provision 

was seen as access to potable water.  Originally, the provision of sanitation did not make it into 

the top five. 

With this in mind, the eThekwini Municipality was the first municipality in the country to 

implement the free delivery of six kilolitres of potable water per household per month (N. 

Macleod pers. com
3
. with reference to eThekwini water Services Development Plan 

(Ethekwini, 2003).  This has now been increased to nine kilolitres per month.  This delivery 

ranged from the full pressure delivery common in the urban centres, to semi-pressure roof 

tanks, ground tanks and community standpipes.  According to Winter et al., (2008 a and b), 

92% of the South African population now has access to an improved source of potable water 

but only 65% has access to improved sanitation.  For eThekwini Municipality, the provision of 

water and sanitation is also affected by the topography of the region.  The area rises steeply 

from sea level in the east and, in the western areas in particular, soon becomes very steep and 

inaccessible.  Partially as a result of this and with available logistics in mind, a ―waterborne 

edge‖ has been instituted which delineates the area to which waterborne sanitation can be 

provided, at least in the short term (Pfaff, pers. comm. 2009
4
).   With the easing of access to 

                                                   
1 Moodliar, S. eThekwini Water and Sanitation, P.O. Box 1038 Durban 4000 
2 Pfaff, W. eThekwini Water and Sanitation, P.O. Box 1038 Durban 4000 
3 Macleod, N eThekwini water and sanitation P.O. Box 1038 Durban 4000 
4 As above 
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treated potable water came the problem of disposal of sewage and greywater in areas outside 

the waterborne edge or in areas which did not have sewerage infrastructure.  The full pressure 

systems within the previous urban areas had waterborne sanitation with the necessary 

infrastructure of sewerage pipes, pump stations and wastewater treatment plants, but  in many 

informal settlements and rural areas there was no means of disposing of sewage and greywater 

other than into the latrine or onto the surrounding ground.  In higher density settlements this 

soon led to malfunctioning latrine-type toilets or health hazards from surface pooling of 

discarded used water with the resulting increase in flies, mosquitoes and other vectors and the 

concomitant increase in risk of disease.  An example of these conditions is presented in Figure 

1.1, a photograph taken at an informal settlement in the eThekwini area. 

 

Figure 1.1: Photograph taken by eThekwini staff of surface disposal of greywater leading 

to poor sanitary conditions. 

 This is not a problem peculiar to eThekwini and was investigated by Carden et al., (2007 a and 

b) in relation to the Western Cape where conditions in the Khayelitsha settlement were 

discussed.  Development of a better sanitation system, which would address the problems of 

greywater disposal, was therefore seen as a priority in eThekwini  and became the focus of 

several Water Research Commission projects. 

In any sanitary intervention, the Bellagio principles (Hurst et al., 2002; WHO, 2006a) need to 

be kept in mind to ensure acceptability of the intervention and long term economic and 

environmental sustainability.  These principles were drawn up in 2000 by the Environmental 

Sanitation Working Group of the Water Supply and Sanitation Collaborative Council and are 

stated as four points, covering: 

 Human dignity, quality of life and environmental security at the household level 

 Decision making involving all stakeholders 
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 Consideration of waste as a resource with holistic management 

 Keeping the resolution of environmental sanitation problems to the minimum 

practical size 

Any intervention would therefore have to address more than just the obvious one of waste 

removal.  Interventions would need to explore possibilities which could result in closing the 

water loop, and at the same time improving the condition of the community.  In addition, the 

United Nations Millennium Development Goals clearly state that extreme poverty and hunger 

must be eradicated, child mortality reduced, maternal health improved, HIV/AIDS, malaria and 

other diseases must be combated, and environmental sustainability ensured (www.un.org). 

KwaZulu-Natal arguably has the highest rate of HIV infection in the world (Cullinan, 2004; 

Thurlow et al., 2009) with a level of 36.5% antenatal prevalence, and as such its decision-

makers have to be very aware of the increased health risk faced by people infected with this 

disease and the effect on families of the loss or incapacity of breadwinners.  In many cases, the 

parents of a family are bedridden or have died and the household is headed either by an elder 

sibling or a grandparent, usually a grandmother (Biancallani, pers. comm., 2010)
5
.  Disposable 

income is negligible and the risk of malnutrition is high.  As such, food security is vital and any 

improvement in household access to nutritious food at low cost should be encouraged so long 

as the health risk can be minimized, as those suffering from the disease are extremely 

susceptible to other infections.  The possibility of turning the problem of greywater disposal 

into a means of improving the nutritional situation of households was viewed with interest by 

both the municipality and local communities.  In 2003, a pilot trial was started in a small 

community in eThekwini where household greywater was used to irrigate above ground crops 

for household consumption (T. Gounden, 2003. pers. comm.
6
).  On visual inspection, the crops 

appeared to do well and the community was interested in extending their enterprise.  It was 

however recognized that there might be health risks associated with growing crops in this 

manner and investigation was necessary before official sanction could be given to a larger 

project or range of crops.  A joint project to investigate this was therefore initiated between 

eThekwini Water and Sanitation and the University of KwaZulu-Natal.  This dissertation forms 

part of a larger project conducted under the auspices of the Water Research Commission as 

Project K5/1639. 

 

                                                   
5 Biancallani, M. Right to Life Campaign. P.O. Box 50299, Durban4062 
6 T. Gounden, eThekwini Water and Sanitation, P.O. Box 1038 Durban 4000 

http://www.un.org/
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1.2 Greywater 

Greywater is often regarded as untreated household effluent water from baths, showers, wash 

basins and laundries but not including toilet water (Otterpohl et al., 1997; Dixon et al., 1999; 

Ledin et al., 2001; Eriksson et al., 2002; Ottoson and Stenström, 2003; WHO, 2006a and b; 

Rodda, et al, 2010 in press).   Some authors however, exclude kitchen wastewater from the 

general greywater as a result of its high concentration of oil and biodegradable compounds 

(Christova-Boal et al., 1996; Little, 2002; Al-Jayyousi, 2003; Wilderer, 2004).    Because 

domestic greywater does not generally include wastes from toileting, except by cross-

contamination, it is expected that, while it may still contain pathogens (Cassanova et al., 2001; 

Birks and Hills, 2005), these are likely to be lower than for black water (Ottoson, 2005; WHO 

2006a; Brown, 2009).  Greywater will therefore present less health risk to communities using it 

for irrigation.  The World Health Organisation guidelines for greywater re-use (WHO, 2006a 

and b) also present a spectrum of bacterial loading figures for greywater which show that the 

standard faecal indicator organisms are present at a range of levels in the various types of 

greywater and also within the same type from a different source.  These data are presented in 

Table 1.1 and the use of faecal indicators is presented in Section 1.7.1.  Greywater is 

remarkable for its variability and Eriksson et.al (2002) clearly present this.  It is also likely to 

contain chemicals from household cleaning agents and medications as well as cosmetics, all of 

which may contribute to toxicity or produce endocrine disrupter by-products. 

 

1.3 Drivers for re-use 

Nationally, the re-use of greywater is unlikely to solve problems of water scarcity as the 

volumes involved are relatively small in the overall picture.  In eThekwini however, 

approximately 60% of the potable water sold is used domestically (S. Moodliar 2009, pers. 

comm.
7
), so widespread re-use could have an influence on the local need for increased 

spending on water purchases and infrastructure such as impoundments, reservoirs and piping.  

For individual households and even small communities, water re-use can mean the difference 

between food security and malnutrition.  EThekwini Municipality has increased the cost of 

water by approximately 10% for the 2010 – 2011 financial year and this will impact poor 

households in spite of the current level of 9kL free water per household (EThekwini, 2010). 

 

 

                                                   
7 S. Moodliar, eThekwini Water and Sanitation, P.O. Box 1038, Durban 4000 
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Table 1.1: Reported numbers of indicator bacteria in greywater (Adapted from Ottoson 

and Stenström, 2003 as used in WHO, 2006a).  Different values for greywater were given 

by the various authors and reflect different conditions and habits  

Greywater origin 

Numbers of indicator bacteria (log numbers / 100 mL) 

Total coliforms 
Thermotolerant 

coliforms 

Escherichia 

coli 
Enterococcus 

Bath, hand basin   4.4 1.0 – 5.4 

Laundry 3.4 – 5.5 2.0 – 3.0  1.4 – 3.4 

Shower, hand basin 2.7 – 7.4 2.2 – 3.5  1.9- 3.4 

Greywater 7.9 5.8  2.4 

Shower bath 1.8 – 3.9 0 – 3.7  0 – 4.8 

Laundry, wash 1.9 – 5.9 1.0 – 4.2  1.5 – 3.9 

Laundry, rinse 2.3 – 5.2 0 – 5.4  0 – 6.1 

Greywater 7.2 – 8.8    

Hand basin, kitchen 

sink 
 5.0  4.6 

Greywater, 79% 
shower 

7.4 4.3 – 6.9   

Kitchen sink  7.6 7.4 7.7 

Greywater  5.8 5.4 4.6 

 

Worldwide, there is a movement towards addressing the increased demand for water while at 

the same time trying to cope with the decreasing availability of clean, inexpensive water 

sources.  In the past, water was often viewed as a renewable but finite resource, but it has been 

suggested (Turton, 2008) that it is in fact a flux with almost infinite options for use, limited 

only by innovation.  This means that previously, water was regarded as a stock item which was 

used in various ways and eventually became depleted much as the feedstock in an industrial 

process.  What Turton (2008) suggests is that water can be used and treated for re-use in an 

almost endless cycle.  Across the globe, advances have been made in exploiting hitherto 

untapped sources, developing new industrial practices which use less water in production, 

reducing demand through pricing structures and in recycling (Forster, 1997).  In the urban 

environment, particularly in Africa, the demand for water can be high and where poor 

communities are involved, the financial burden of increased pricing can become intolerable, 

with such communities sinking into extreme poverty.  As such, these communities need to 

investigate ways of using water as fully as possible and to their greatest benefit, before 

disposal. 

According to Winter et al., (2008a;  2008b) it can be assumed that greywater accounts for 

virtually all the water brought onto an un-sewered site and that the volumes and quality 

involved increase with increasing affluence.  Erikson et al., (2003) and Friedler and Hadari 
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(2006) suggest that 50 to 80% of the water going to waste is accounted for by greywater, 

excluding kitchen waste, while Siegrist et al., (1976) assessed a level of 65% and  Brown 

(2009) suggests a level of 60%.  Re-use of such water could therefore have a marked impact on 

the finances of an impoverished household even though, at the levels officially supplied to such 

areas, it might not have an impact on water savings in the South African national context.  

Many countries, notably China, India and others in the east, have for centuries recycled and re-

used domestic effluents successfully (Mara and Cairncross, 1989; Ahmed et al., 2003).  

According to Adewumi et al., (2006) the attitude of the public in South Africa towards water 

re-use still needs to be thoroughly assessed as there is resistance.    

In the Chinese case, greywater has been viewed as a resource delivering both vital water and 

nutrients rather than as an unpleasant waste requiring removal (Mara and Cairncross, 1989).  

According to Redwood (2008), greywater re-use in developing countries is most often linked to 

improving domestic food security.  Re-use also lends itself to the informal settings often 

encountered in the developing world. 

It is now generally accepted worldwide that there is climate change which has led to more 

extreme weather patterns.  These in turn have resulted in  increasing frequencies of drought and 

floods and a concomitant decrease in food crop production (Stockle et al., 1992; Rosenzweig et 

al., 2002; Jones and Thornton, 2003).  In addition, in many parts of the developing world, there 

has been a shift from subsistence farming to growing cash-crops, most recently crops for the 

production of bio-fuel, and this, along with prolonged droughts and severe floods, may have 

contributed to increased food scarcity and increasing food prices (Woods Institute, accessed 

July 2010). 

Countries such as Sweden and Denmark have addressed the issues of water re-use nationally 

and there is a functioning system for delivery of greywater to commercial agriculture (Ottoson 

and Stenström, 2003).  This greywater has been treated before reuse.  This is largely not the 

case in the developing world, where greywater re-use is still generally restricted to use by the 

generating household or, at most, the immediate small community (Morel and Diener, 2006).  

With rising food costs worldwide and the advent of child- or elderly relative headed households 

as a result of the AIDS pandemic, such home or community use can however have a marked 

impact on communities, both financially and in terms of nutrition and health.  This is especially 

true in South Africa where 17% of the population aged 15 to 49 lives with AIDS and there are 

an estimated 1.91 million AIDS orphans (StatsSA, 2009).  However, for re-use to be successful 

in the South African setting, a change in perceptions of sanitation practices and the use of water 

containing human wastes needs to occur  (Friedler and Hadari, 2006; Adewumi et al., 2008). 
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1.4 Guidelines for re-use in terms of health impact 

The World Health Organization recognized the need for guidelines in the use of greywater in 

order to protect both the health of consumers and of the environment.  They therefore published 

guidelines for the use of greywater (WHO, 1989, 1993, 2005 and 2006a).  These were further 

interpreted by Mara and Alabaster (2006).  In general, the guidelines offered a framework for 

the re-use of greywater and a way of determining its suitability for use.  The guideline 

presented three key elements: 

 Health risk assessment 

 Risk management guidance 

 Ways of implementing the guidelines  

They largely moved away from relying solely on microbial loadings towards an assessment of 

health risk (Mara and Alabaster, 2006).  Whilst the implementation of these guidelines will 

probably result in a better actual health outcome for the communities using the greywater, 

monitoring to ensure effective control has become more complex and for managers of such 

schemes, the application of simple field tests is probably no longer sufficient to give the 

information sought.  The guidelines have also recognized that there are differences both in 

microbial loadings and in cultural acceptance of the handling and re-use of greywater and in 

environmental impacts across varying communities and countries.  The drive for re-use and its 

success will therefore vary geographically and culturally and re-education for acceptance will 

be necessary. The guidelines use the Stockholm Framework (WHO, 2006a) which proposes 

that individual countries develop their own risk-based management systems based on health 

outcomes.  Figure 1.2 illustrates how this could be addressed.  This flowchart presents a simple 

cyclic system for evaluating the health risk of greywater re-use and the steps that can be taken 

to make such a system acceptable from a human health point of view.  The cycle can be entered 

at almost any stage, but a useful starting point is the establishment of what is regarded as a 

tolerable risk.  Although a zero risk is generally what would be regarded by the general public 

as the ultimate goal, this is unachievable practically and risk is therefore often based on the 

World Health Organisation target for chemical carcinogens of less than 1 case per 10 000 

persons per annum (WHO, 2006a).  Once a target has been agreed by the stakeholders, it is 

possible to calculate backwards from the risk of infection to an acceptable quality of water for 

the project, the health target.   
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Figure 1.2: Flowchart of risk management adapted from WHO, 2006a 

 

This health target must then be linked to the management objectives of volume of water 

available for use, crops required etc.  The re-use system is examined for critical control points 

at which verification (either analytical or visual) can occur to ensure that the targets are 

achieved.  As the users become more familiar with the system, it is then possible to reassess 

both the outcomes and the control points and measures, and so to tailor the system to the needs 

of the community applying them. 

 

1.5 Environmental impacts 

Greywater is defined, for this project, as including water from laundries and kitchens, and it is 

therefore expected to contain nutrients such as nitrogen and phosphorus from the detergents in 

use as well as from the breakdown products of proteins and lipids from skin cells and laundry 

stains such as are found in blood and food (Eriksson et al., 2003; Winblad and Simpson-Hébert, 

2004).  Uncontrolled disposal of such water in a way which permits ingress into surface or 
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underground water sources could therefore increase nutrient loading, or even lead to 

eutrophication of these water sources (Morel and Diener, 2006).  This in turn would lead to 

increased costs for the purification of water to potable standard and decrease the availability of 

water suitable for meeting the needs of the environment and the recreational, food and aesthetic 

requirements of the local community.  This would run counter to the spirit of the South African 

National Water Act (DWAF, 1998) which requires that an environmental reserve is maintained 

and that a water body remains fit for use.  The degradation of a water source further impacts 

poor communities, leading to an ever steepening decline into poverty, disease and squalor.  

According to Winblad . and Simpson-Hébert, (2004), greywater can also be expected to contain 

metals such as aluminium and compounds containing elements such as boron which are found 

in various washing powders and cleaning agents.  The levels are not however expected to differ 

markedly from those in mixed household wastewater.  In addition, there is a certain loading of 

fats and other readily biodegradable compounds from laundry, bathing and kitchen activities 

which could lead to soils becoming salinised or made hydrophobic when greywater is used 

indiscriminately (Morel and Diener, 2006).  These aspects are not addressed in this dissertation 

as they form the basis of another research project currently being conducted under the auspices 

of the University of KwaZulu Natal. 

 

1.6 Greywater re-use 

Greywater has been used unofficially by communities throughout the world, either as a normal 

practice or during times of drought or flood.  There is however debate as to whether or not this 

practice should be officially sanctioned.  For this to happen in any particular circumstance, the 

benefits should outweigh the costs or risks. 

 

1.6.1 Benefits of greywater re-use 

As mentioned in Section 1.5, it is estimated that between 50 and 100% of the water brought 

onto an unsewered site is converted to greywater which requires disposal.  When this disposal 

is controlled, benefits in terms of health protection, food security, protection of fresh water 

sources and reduction in fresh water demand can accrue.  In some developing countries such as 

Vietnam, Jordan and Mali, greywater may be disposed of into road-side drains, and thereafter 

into the local surface water, impacting on community and environmental health (CSBE, 2003; 

Morel and Diener, 2006).  According to Faruqui and Al-Jayyousi, (2002) households in Aman, 
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Jordan using greywater for irrigation enjoyed savings of USD 376 per annum as a result of 

increased crop yields and decreased water and fertiliser costs.  Redwood (2004) states that a 

36% saving in water bills was enjoyed by households in Cyprus which re-used greywater.  

Studies in New Zealand showed that an on-site greywater system recouped its initial costs in 

less than nine years, even before government incentives were taken into account (Brown, 

2009).  According to Brown (2009) no incidents of illness as a result of greywater re-use have 

been recorded in the literature and the incidence of indicators in greywater does not present the 

same health risk correlation that is seen for sewage.  He goes on to say that ―Many more direct 

pathways for infection exist within the population, which is not significantly more exposed 

when greywater is recycled within the individual lot.‖  This lower likelihood of risk from 

greywater re-use is supported by the WHO (2006a), which states that pathogen levels in 

greywater can be over-estimated by a factor of 1 000 when indicators are used.  Brown (2009) 

also quotes the Australian guidelines (EPHC, 2006) as stating that smaller scale greywater re-

use systems present less health risk than larger scale systems. 

 

1.6.2 Quality of greywater / wastewater irrigated produce 

Microbial indicators of greywater quality are to be found alongside those for domestic 

wastewater (sewage) in several publications (Cassanova et al., 2001; Ottoson and Stenström, 

2003; Winblad and Simpson-Hébert, 2004;  Ottoson, 2005; Birks and Hill, 2005; Winward et 

al., 2007) and are generally found to be lower than those for sewage.  This supports the premise 

that greywater re-use presents less risk than the re-use of untreated domestic effluent.   

The health risk from vegetable crops irrigated with greywater is closely linked to the microbial 

standard of the water, the type of vegetable and the weather conditions.  The World Health 

Organisation states that inactivation of pathogens is often more rapid on crops and in soils than 

in the stored greywater (WHO, 2006 a and b).  These guidelines go on to state that pathogen 

inactivation is more rapid in hot, sunny conditions than in cold ones and that the greatest health 

risk is to be expected from salad crops, root crops and crops grown in close proximity to the 

ground.  Some crops also appear to have a greater susceptibility to contamination than others 

(Armon et al., 2002; Solomon, et al, 2002; Blumenthal, 2003).    According to Keller et al., 

(2008), lettuce irrigated with polished wastewater was found to comply with the regulations for 

food microbial quality set by the National Health Vigilance Agency of Brazil.  Jacobs and van 

Staden (2008), reported that from nineteen surveys conducted on the re-use of greywater for 

irrigation, none reported a detrimental effect on vegetable growth.  Shuval et al., (1997) 

reported differences in the amount of irrigation water retained by lettuce and cucumber 
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respectively and Stine et al., (2005) reported that cantaloupes and lettuce retained pathogens 

from irrigation water whereas bell peppers did not.  Several references in the guidelines also 

stated that pathogen levels could be reduced below those found on market products through 

barriers such as the withholding of re-use water irrigation for one to two weeks immediately 

prior to harvesting (Bastos and Mara, 1995; Armon et al., 2002) 

 

1.7 Health risk assessment 

For every human activity there is a degree of risk involved.  Some of these, such as the use of 

cell phone technology, are accepted almost without thought as being well within acceptable 

levels.  Others, such as car racing, have been accepted as high risk to those involved and are 

avoided by most people and discouraged by insurance companies.  Perceptions of risk, 

especially health risk, can vary over time and what was once considered an acceptable risk 

becomes unacceptable as more knowledge becomes available.  Public perception is also not 

always based on fact and emotions have to be acknowledged as having a role to play in what 

the public perceives as an acceptable or unacceptable risk.  For most health risks, an assessment 

can be made either from epidemiological data or through the application of quantitative 

microbial risk assessment (QMRA).   

Epidemiology assesses health risk of an activity by comparing the levels of disease in subjects 

exposed to the presumed risk with levels in those who are unexposed.  Such studies are not 

always possible, either because of the ethics of exposing subjects to serious risks or through the 

scale and expense of study that would be necessary to obtain the required information (Haas, et 

al.,1999).  For the information obtained from an epidemiological study to be useful, careful 

matching of subjects and control of extraneous factors which could confound the results has to 

be maintained.  Bearing these difficulties in mind, it is unsurprising that epidemiological 

evidence is often not available for low profile activities such as greywater re-use.  QMRA is a 

more indirect route of obtaining the risk information.  Four steps are involved in the risk 

assessment via this route and these are presented in Table 1.2.  Using these steps, predictions 

can be made as to how a population will react to various levels of exposure to a pathogen or 

toxicant.  Figures on dose response can be accessed from previous studies and combined with 

the exposure and dose characteristics of the scenario of interest.  The assessment becomes more 

and more accurate as figures for person-to-person transmission, immunity, duration of illness 

and other factors are used in the calculations.  Not all of these figures are readily available for 

all pathogens or community susceptibilities, but enough are available to make the use of the 
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QMRA tools extremely useful in decision making.  Even when only the basic information on 

level of exposure and dose-response ratios is available, QMRA can provide very useful 

information on the acceptability of various scenarios and the effect of alterations to steps 

involved in them such as the introduction of barriers to infection. 

Table 1.2: Steps involved in QMRA of human health effects. (From WHO, 2006 a) 
Step Aim 

Hazard 

identification 

To describe acute and chronic human health effects associated with any particular 

hazard, including pathogens or toxic chemicals 

Hazard 

characterisation 

Dose-response assessment, to characterise the relationship between various doses 

administered and the incidence of the health effect, including underlying mechanisms 

and extrapolation from model systems to humans 

Exposure 

assessment 

To determine the size and nature of the population exposed and the route, amount and 

duration of the exposure 

Risk 

characterisation 

To integrate the information from exposure assessment, hazard characterisation and 

hazard identification steps in order to estimate the magnitude of the public health 

problem and to evaluate variability and uncertainty 

 

1.7.1 Hazard identification 

The pathogens expected in greywater are similar to those to be found in sewage although at a 

decreased loading (Cassanova et al., 2001; Ottoson and Stenström, 2003; Winblad and 

Simpson-Hébert, 2004;  Ottoson, 2005; Birks and Hill 2005; Winward et al., 2007 and 

Winward et al., 2007).  As greywater does not contain the same faecal loading as sewage / 

black water (Winblad and Simpson-Hébert, 2004; WHO, 2006a), the risk of contracting disease 

through contact with the greywater is not expected to be as high as that for sewage.  However, 

there could still be some risk and this should be quantified before extensive re-use is advocated 

by any official body such as a municipality.  Table 1.3 presents the most common 

microorganisms to be expected in faeces, (Ottoson and Stenström , 2003; WHO, 2006a) and 

hence likely to be found in greywater contaminated with even a small amount of faecal matter.  

The actual pathogens found will vary according to those diseases endemic in the community, 

any current epidemics, the season of the year, microorganisms present on the skin and in body 

fluids, contaminants contributed by the washing and preparation of food and the general health 

status of the community.  It must be remembered that most pathogens will only be excreted by 

patients exhibiting symptoms or by symptomless carriers of the disease and are therefore likely 

to be present in greywater at low levels (Ottoson, 2005).  As pathogens may be difficult or 

expensive to detect, it has been common practice to use indicator organisms such as E. coli 

instead. (Gerba, 2000; Roesner et al., 2006).   
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Table 1.3: Pathogens that may be excreted in faeces along with their related diseases.  

Extracted from (WHO, 2006a) and (Ottoson, 2005). 

Group Pathogen Disease and symptoms 

Bacteria Aeromonas sp Enteritis 

 Campylobacter jejuni/coli Campylobacteriosis,  

 
Escherichia coli (EIEC, EPEC, 

ETEC, EHEC) 
Enteritis 

 Salmonella typhi/paratyphi Typhoid/paratyphoid fever  

 Salmonella spp Salmonellosis  

 Shigella spp Shigellosis  

 Vibrio cholerae Cholera  

 Yersinia spp. Yersiniosis  

Viruses Enteric adenovirus 40 and 41 Enteritis 

 Astrovirus Enteritis 

 Calicivirus (Incl norovirus) Enteritis 

 Entero virus types 68-71 
Meningitis – 

 

 Hepatitis A virus Hepatitis  

 Hepatitis E virus Hepatitis 

 Poliovirus Poliomyelitis  

 Rotavirus Enteritis 

Parasitic 

protozoa 
Cryptosporidium parvum Cryptosporidiosis  

 Cyclospora cayetanensis Often asymptomatic 

 Entamoeba histolytica Amoebiasis 

 Giardia intestinalis Giardiasis  

Helminths 
Ascaris lumbricoides 

(roundworm) 
Ascariasis  

 
Taenia solium/saginata 

(tapeworm) 
Taeniasis - 

 Trichuris trichiura Trichuriasis  

 

Ancylostoma duodenale 

/Necator americanus 

(hookworm) 

Itch, rash. Cough, anaemia, protein deficiency 

 Schistosoma spp  
Schistosomiasis – 

Bilharziasis  

A good indicator organism should always be found in high numbers where faecal 

contamination is present, but be absent elsewhere.  It should have similar characteristics to the 

pathogens of interest and it should be cheap and easy to analyse (Ottoson, 2005).  It has become 

the norm that indicators from the most likely groups e.g. bacteria, viruses, protozoans and 

helminths are included as far as possible.  The most common indicators for faecal 

contamination in wastewater have been the coliforms and this practice has been followed for 

greywater as well.  In addition to total and thermotolerant (previously termed faecal) coliforms 

and Escherichia coli (E. coli), enterococci such as Enterococcus faecalis and Enterococcus 

faecium and various bacteriophages have also been used as indicators (Rose et al., 1986; 

Christova-Boal et al., 1996; Ottoson and Stenström , 2003; Rose et al., 2004).  No single 

indicator can give all the information required, and using a suite composed of representatives of 

bacteria, viruses, protozoans and helminths provides a more complete understanding of the 
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possibility of the presence of pathogens.  The levels of the organisms chosen as faecal 

indicators are likely to be far in excess of that of the pathogens described in Table 1.3.  As 

greywater by definition contains a lower faecal loading than blackwater (sewage), it is expected 

that generally most of the faecally excreted pathogens will be below detection limits of the 

routine methods of analysis.  From Table 1.3, it can also be deduced that the most likely health 

hazard from exposure to greywater is diarrhoea, possibly accompanied by vomiting although 

other disease outcomes are possible. 

 

1.7.2 Dose response assessment 

Health risks are generally assessed using epidemiological studies of disease outbreaks or the 

response of volunteers in controlled studies.  In the latter case, healthy volunteers and less 

virulent strains of pathogens are generally used to determine a level at which fifty percent of 

the subjects become infected (ID50).  There is therefore no allowance for differences in 

infectivity of environmental strains or increased sensitivity of the host as a result of pre-existing 

disease.  The results of these studies are not directly applicable to communities without some 

mathematical modelling taking place (Haas et al., 1999).    It is therefore necessary to integrate 

other scientific fields into the results obtained from epidemiology. 

The discipline of Quantitative Microbial Risk assessment (QMRA) is used to enable integration 

of information from a variety of sources to model potential health risk.  Various models have 

been applied to microbial risks with the beta-Poisson distribution found to fit viral as well as 

many bacterial infection data (Haas et al., 1999).  Other distributions such as the Gaussian, log-

normal, negative binomial or exponential have all been used to describe the distribution of 

microorganisms.  It is therefore necessary to have enough data available to fit a distribution for 

the microorganism of interest, as the assumption that all microbial data fit a log-normal 

distribution is not necessarily correct (Haas et al., 1999).  The limitation for the risk assessment 

models is the availability of sufficient data on specific organisms, dose/response rates and the 

outcome of infection in a range of human subjects.  Where such data are not available, data 

from similar organisms or suitable indicators are used.  This usually results in a worst case 

scenario calculation.   

The discipline of Quantitative Microbial Risk Assessment is relatively young but extremely 

powerful.  It was originally applied to chemical toxicants (Haas et al., 1999) In this case, 

knowledge of the dose per exposure and the number of exposures was sufficient to calculate the 

risk of a toxic outcome.  However, microbiological infection does not follow such a simple 
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route, with individual organisms having varying infectivity, a range of susceptibility in a 

community and the possibility of secondary infection all influencing the apparent overall risk.  

It was previously considered that, similar to many toxic chemicals, there was a threshold value 

for microbial pathogens below which no consequence was likely.  The independent-action 

hypothesis, in which a single organism can cause disease, has however been found to represent 

the actual findings more closely (Haas et al., 1999).  According to this hypothesis, the presence 

of even one viable microorganism can lead to infection, particularly in the case of persons with 

low immunity such as the very young, the elderly and those with HIV/AIDS or who are 

otherwise immune-compromised. According to Haas et al., (1999), the likelihood that one 

microorganism will evade the host’s defences and initiate infection is however very small.  For 

some of the indicators used in risk assessments, it is recognized that there can potentially be 

reproduction in the environment, particularly in the case of E. coli and Enterococcus.  This is 

unlikely to be the case for pathogens which require a host for multiplication.  In such cases, the 

indicator count is likely to give an over-estimation of actual risk from pathogens. 

Each organism has its own infection rate (Peterson and Ashbolt, 2002).  This implies that, for 

any given population of microorganisms, the probability that each individual organism will 

result in infection ranges over a continuum from a zero probability to certainty of infection.  

For the exposed population, there are also various states that can be occupied by an individual.  

With regard to specific disease organisms, a person may be immune or susceptible, may be 

infected and exhibiting symptoms or be a silent carrier, may have recovered and have a degree 

of immunity or have acquired immunity through vaccination or genetics.  In addition it is 

possible for a patient exposed to the primary source to infect others and there may already be a 

risk of infection in the environment other than the primary source under investigation (Roesner 

et al., 2006).  The risk calculations for microbial infections are therefore more complex than 

those for chemical toxicity, often requiring a dynamic risk assessment model as opposed to a 

static one.  The concept is represented in Figure 1.3.  In this figure, the various states in which a 

member of a community may be situated as well as the sources of infection are represented by 

boxes.  The lines connecting the boxes indicate transition from one state to another.  In each 

case the symbols on the connecting lines represent the rate at which conversion from one state 

to another occurs.  The parameters β1 and β2 are respectively the rate of conversion of a 

susceptible person to an exposed one as a result of exposure to pathogens in the wastewater or 

the normal environment.  The rate of conversion from exposed to carrier status without having 

shown symptoms of disease is represented by α, and Psym is the rate of conversion to actual 

diseased status.  The diseased person can in turn convert to a second carrier status at a rate δ.  

The conversion from either of the carrier states to a post-infection state is performed at a rate σ.  
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A person who has been infected and who has recovered may be protected for a period as a 

result of immune reactions but converts to a susceptible state again at a rate γ.   All these rates 

are particular to the individual involved and may vary considerably (Roesner et al., 2006).  

Standard values for these factors are available (Soller, 2006) and are frequently used when they 

have not been characterised for the population under review.  

 

 

Figure 1.3: Dynamic risk assessment conceptual model from Roesner et al., 2006 

 

The dynamic model is often simplified into the static model where only the susceptible and 

infected states are recognized.  This model is represented in Figure 1.4 where P(d) is the 

probability of an individual moving from the susceptible to the diseased state, controlled by the 

dose and infectivity of the pathogen under review. 

In this model no cognisance is taken of the probability of degrees of susceptibility to infection 

or of the risk of secondary infection in a population.  It is clear from these two figures that far 

more information is required to build the mathematical model for the dynamic model than for 

the static model.  The information required for modelling the processes is given in Table 1.4. 
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Figure 1.4: Static risk assessment model from Roesner et al., 2006 

 

Table 1.4: Parameters required for modelling either the static or dynamic disease process.  

From Roesner et al., 2006  

Class Parameter Static model Dynamic model 

Exposure related parameters 

 

Concentration of pathogen 

Volume of water ingested 

Proportion of population exposed 
Frequency of exposure 

X 

X 

X 

X 

X 
X 

Pathogen related parameters   

 

Dose response parameter/s 

Duration of incubation 
Duration of infectiousness 

Duration of disease 

Duration of protection 

Probability of symptomatic response 
Person-to-person transmission potential 

Background concentration level 

X X 

X 
X 

X 

X 

X 
X 

X 

 

According to the World Health Organisation (WHO, 2006a), with reference to Blumenthal and 

Peasey (2002), there are very few data on epidemiological studies related to the use of greywater 

in agriculture.  It is however, not always necessary to acquire all the information required for the 

dynamic model as, in some circumstances, the difference in risk calculated by the two models is 

insignificant.  According to Soller (2006), the difference in prediction between the two models is 

most strongly influenced by: 

 Dose of pathogen 

 Exposure intensity 

 Dose-response parameter β 

 Dose response parameter α 

 Duration of infection 
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It is important to be able to determine whether or not the information gained from a static model 

is sufficient for making sound decisions.  Figure 1.5 gives one example of how this may be 

done.  In this figure, columns three to five represent the dose levels of the pathogen being 

investigated, the rows present the exposure intensity, the shape, (circle, square or triangle) show 

the β dose-response parameter and the red colour represents the conditions resulting in a low 

difference between the model predictions, whilst the white is cases where the difference is not 

low according to the grid definition.  The green indicates special requirements. 

 

Threshold A: Low difference in predicted incidence = < 10 / 100 000 per year 

  
Dose Low (10

-8
) Medium (10

-4
) High (1.0) 

Difference in predicted 

incidence 

Exposure 
intensity 
(day-1) 
(Proportion 

of population 
exposed x 
frequency of 
exposure) 

High (0.1) 

   

 <10 / 100000 

Medium (10-3) 

   

 <10 / 100000 if α low 

Low (3 x 10-5) 

   

 >10 / 100000 

    
  

Threshold B: Low difference in predicted incidence = <1 / 100 000 per year 

 
Exposure 
intensity 
(day-1) 
(Proportion 
of population 
exposed x 
frequency of 
exposure) 

High (0.1) 

   

 <1 / 100000 

Medium (10-3) 

   

 
<1 / 100000 if α low and σ 

low 

Low (3 x 10-5) 

   

 >10 / 100000 

    
  

Threshold C: Low difference in predicted incidence = < 0.01 / 100 000 per year 
 
Exposure 
intensity 

(day-1) 
(Proportion 
of population 
exposed x 
frequency of 
exposure) 

High (0.1) 

  
 

 <0.01 / 100000 

Medium (10-3) 

  
 

 >0.01 / 100000 

Low (3 x 10-5) 

   

  

    
  

In each case: 
 

Low β (0.21) 

 

Medium  β (39) 

 

High β (440 000) 

Figure 1.5: Graphical summary of model evaluation from Soller, 2006 

 

Using this grid in Figure 1.5, decisions can be made as to whether or not it is necessary to use 

the dynamic model or whether the more easily calculated static model will give enough 

information for decisions to be made.  For example, in a case where the exposure intensity is 

approximately 0.1, β is medium and the dose is medium, the static and dynamic models will 

give similar results with differences of less than 10 per 100 000 persons.  However, at the level 

of 1 or 0.1 persons per 100 000, the differences become significant.  If a difference in 

assessment of less than 0.001% is acceptable, the less onerous static model may therefore be 
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used in this case with acceptable results.  This tool does not take into account the reaction when 

more than one infectious agent is present (Soller, 2006).  In order to compare the severity of 

different diseases, use is often made of disability adjusted life years (DALYS).  These compare 

the severity of the diseases by taking into account the number of days lost through premature 

death or disability as compared to the normal life span free of disease.  To make use of this 

system, it is necessary to have data on the life expectancy of a community, the average duration 

of a disease and its severity (WHO, 2006a).  This is not always available.  

 

1.7.3 Exposure assessment 

In the re-use of greywater for crop irrigation, the possibility of exposure to risk occurs when the 

greywater is collected, when it is used to irrigate the crop, when the soil is tilled, at harvesting 

of the crop, at preparation for consumption and at consumption (WHO, 2006a and b).  Studies 

at each of these hazard points have been conducted internationally for treated wastewater and 

generally acknowledged pathogen reduction figures are presented in Table 1.5.  Most of the 

research on which these figures are based has been done in temperate or cold climates and may 

therefore not give as high a reduction as could be expected in a warmer, sunnier climate.  It is 

also recognized that greywater contains readily biodegradable organic compounds and as such 

may support the re-growth of some of the indicators generally used to estimate the faecal load 

(Ottoson and Stenström, 2003; WHO, 2005).  The indicator loads may therefore give an 

inflated estimate of health risk.   

 

Table 1.5: Reduction of pathogens on crops through use of barrier interventions. 

Extracted from WHO, 2006a 

Control measure 

Pathogen 

reduction 

(log10 units) 

Notes 

Pathogen die-off 

(withholding time) 
0.5 – 2 day

-1 Dependant on temperature, sunlight intensity, 

humidity, crop type etc 

Produce washing with water 1 Washing salad crops or fruit with fresh water 

Produce disinfection 2 
Washing salad crops, vegetables, or fruit with a 

weak disinfectant solution 

Produce peeling 2 Fruits, root crops 

Produce cooking 6 - 7 
Immersion in boiling or close-to-boiling water 

until food is cooked 

 

In order for infection to occur, subjects must be exposed to the infective agent and therefore 

knowledge of the route of exposure and the concentration of organisms involved is required.  A 
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means of detecting the organisms is necessary for assessment.  There are various methods for 

the detection of the organisms used as indicators as well as for the detection of pathogens 

themselves.  Each has its benefits and drawbacks and these are thoroughly covered in the 

standard works such as the Standard Methods published by the American Water Works 

Association (APHA/AWWA, 2005).  It is rare that pathogens are examined directly in 

wastewaters and it is more usual for indicators to be used (Gerba, 2000; Rose et al., 2004; 

Roesner et al., 2006).  

The most studied microorganisms are the bacteria which have been used as predictors of 

potential health risk for decades.  The most commonly used bacterial indicators are the 

coliforms, with the focus gradually narrowing firstly from total coliforms to the thermotolerant 

coliforms and then to Escherichia coli itself as being the coliform most closely linked to the 

presence of faecal matter (APHA/AWWA, 2005).  Enterococcus sp are now also often used 

(Rose et al., 1986; Christova-Boal et al., 1996; Ottoson and Stenström , 2003; Rose et al., 

2004). In classical studies, the ability of these microorganisms to grow on or in selective culture 

media such as agars or broths has been used.  These media have become more specific and 

selective with time.   

Originally the ability to ferment lactose in a defined period at a defined temperature formed the 

criterion of identification of  E. coli  (APHA/AWWA, 2005).  Current cultural techniques are 

now often based on the expression of enzymes peculiar to the coliforms or E. coli itself such as 

β-galactosidase and β-glucuronidase respectively (APHA/AWWA, 2005)  This has allowed the 

identification process to be accelerated from several days to less than 24 hours.  Media utilising 

the expression of these enzymes for identification purposes are produced by several companies 

such as Merck and IDEXX.  Such techniques are also available for enterococci and some other 

organisms of interest in health risk analysis, where other specific enzymes are targeted 

(APHA/AWWA, 2005).  These methods have the advantage of being relatively inexpensive 

and simple enough to be performed routinely in most water microbiology laboratories.  For 

many of the bacteriological pathogens themselves however, pre-enrichment followed by 

enrichment and then selective culture are still needed for the classical analyses 

(APHA/AWWA, 2005) and therefore results are qualitative rather than quantitative.  Examples 

of this are Salmonella sp., Shigella sp. and Vibrio cholerae.  This enrichment process is time 

consuming but many of these analyses are also performed routinely by water laboratories.  For 

the development of the databases of exposure, this time factor is not of importance, but it could 

prove critical in the identification of an outbreak of illness in a community.   



22 

 

The culture-based techniques allow the examination of large volumes of sample when filtration, 

immune-capture or centrifugation is used to capture the organism of interest.  The greatest 

drawback of the cultural techniques is that they are not available for all organisms of interest, 

particularly the helminths and protozoa, as well as many viruses.  In some cases, the organism 

has not as yet been grown in culture (e.g. Norovirus) and in other cases the organism can go 

into a viable but non-culturable state in which it can still cause infection but is un-culturable by 

standard techniques, e.g. Vibrio cholerae (Hurst et al., 2002).  

The tissue culture technique required for the identification of human enterovirus is exacting and 

requires specialized tissue culture facilities unavailable to most basic laboratories.  For this 

reason, indicator virus such as somatic or F-specific coliphage or the phages of other faecally- 

linked bacteria are regularly used as indicators of potential entero-viral contamination 

(APHA/AWWA, 2005).  Other techniques such as the polymerase chain reaction (PCR), 

immune-capture and fluorescent in situ hybridization (FISH) are available at more sophisticated 

research laboratories.  As these techniques were not available for this study, they are not 

discussed further here. 

Whilst each of the above techniques could be used in the assessment of exposure, it is likely 

that classical culture techniques will continue for some time as the backbone of analysis, 

perhaps supported by more sophisticated techniques where possible.  As indicators are 

generally used instead of pathogens, a relationship between the two needs to be used to 

estimate health risk.  Brown (2009), states that indicators overestimate the presence of 

pathogens by approximately 1 000 times, whilst according to Hamilton et al. (2007b), when 

wastewater was used as an aerosol to irrigate crops, no
 
increased health risk was attributed to 

waters
 
with 10

4
 to 10

5
 total coliforms L

–1
, implying a ratio of less than one pathogen per 

10
4
 indicator organisms. According to Peterson and Ashbolt (2002) bacterial and viral 

pathogens normally range between 10
5
 and 10

10
 per gram of faeces and Mara and Horan (2003) 

state that E. coli is present at levels of 10
7
 to 10

9
 whilst pathogens are only intermittently 

present at similar levels.  Ottoson (2005) presents levels of 10 to 10
4
 for Salmonella in sewage 

along with levels of up to 10
5.4

 for E. coli and 10
2.4

 to 10
4.6

 for Enterococcus in greywater.  In 

this dissertation a conversion factor of 10
-2

 has been used for E. coli and Staphylococcus, a 

factor of 10
-4

 for total coliforms, and Enterococcus has been considered as being present at 

approximately equivalent levels to pathogens in order to give a very conservative conversion to 

potential pathogens. 
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1.8 Exposure routes 

According to the World Health Organisation (WHO, 2006a) there is a risk of exposure at 

several points in the greywater irrigation system and these are presented in Table 1.6.  The 

consumption of the final crop is considered a major potential area of risk and vegetable 

consumption levels for the South African situation have been reported (Nel and Steyn, 2000) 

and an extract is presented in Table 1.7.  Not all vegetable crops have been assessed in the latter 

publication and, where this is the case, for this project, data from vegetables with an apparently 

similar consumption rate have been used to model potential exposure. 

Table 1.6: Exposure to greywater in irrigation system extracted from (Ottoson, 2005) and 

(WHO, 2006a) 

Exposure 
Health-related modelling units 

involved 
Volume ingested 

Accidental ingestion of 

greywater (one time exposure) 
Water in retention pond 1 mL/exposure 

Ingestion from a field irrigated 

with greywater (26 exposures) 
Survival on plants 1 mL/exposure 

Ingestion / inhalation of 

aerosols 
Spray irrigation e

-4.2±2.2
mL 

It can be expected that the health risk presented by the consumption of various crops will vary 

as both the actual mass and the percentage of the population consuming it on a daily basis vary 

markedly as can be seen in Table 1.7.  These factors can be entered into the QMRA model and 

the effect of alterations in each can be assessed. 

Table 1.7: Food and water consumption patterns in South Africa. From (Nel and Steyn, 

2000) 

Food/drink 

ingested  

Food 

consumption 

in SA 

g/person/day 

% of pop. 

consuming 

item 

Comment 

Water 2000 100 
common assumed consumption of 

2L/person/day 

Cabbage 17.4 73.8 cooked 

Onions 2.5 12.8 raw 

Swiss chard 9.2 27.4 cooked 

Carrots 3.9 30.8 cooked, flesh and skin 

Potato 45.4 27.1 cooked 

For a system using greywater to irrigate vegetables, the various exposure routes all have to be 

assessed and their influence needs to be assessed for different groups within the community.  

The first risk would be from handling the greywater, either in collection or in handling it during 

irrigation.  This will only affect those members of the community involved in the practices and, 

through secondary infection, those with whom they come in contact.  A broad outline of the 
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risk can be obtained by using point estimates such as the mean, mode, 95
th
 percentile or 

maximum levels of indicators or pathogens in the water in the model for infection.  A better 

estimate is obtained when distributions are fitted to the microbial data and this distribution is 

used.  The model becomes successively more complex – and more accurate – as distributions 

are used for the microbial load, the probability of infection from primary exposure and 

secondary exposure, the probability of a range of susceptibility to infection and the rates of 

conversion from infection to disease.  These models should be built for each route of exposure 

so that the final risk to an individual is a complex combination of a variety of exposure routes 

and distributions.  Even for the first stage of exposure – that of exposure to the greywater – the 

probability of exposure alters dramatically depending on how the irrigation is conducted.  The 

highest risk would be from mist spray irrigation as the contamination could be inhaled both by 

the workers themselves and by those within aerial exposure range.  Exposure would also occur 

from skin contact and ingestion, each of which could have different distributions for risk of 

infection.  A reduction of risk would occur from reducing aerial contact.  This is done through 

preventing aerosolisation through utilising surface flow irrigation, drip or subsurface irrigation.  

The next area of risk would be from handling the soil during the raising of the crop.  Again, the 

levels of the microorganisms of interest need to be modelled with distributions that take into 

consideration the die-off in the soils as a result of predation, temperature, water availability and 

other variable influences which affect microbial survival or infectivity.  This route of exposure 

would only be applicable to the crop workers and their immediate contacts.  Further exposure 

would occur from post-harvest handling of the crops, and crop consumption.  This latter route 

is again varied depending on whether the crop is consumed raw, thoroughly cooked or treated 

in any other way such as pickling.  Different distributions will apply to each of these routes. 

 

1.8.1 Parameters required for modelling 

Many of the values required for modelling are available from literature and some of these are 

presented in Table 1.8.  In addition to these pathogen-related parameters, information about the 

dosage and frequency of exposure is required.  For many years it was accepted that although 

microorganisms were particulate and therefore were not normally distributed in nature, 

performing a logarithm transform would give an approximately normal distribution.  This is no 

longer always considered to be the case and other distributions such as the Poisson are 

considered more suitable as they consider non-continuous events as is the case with 

microorganisms (Haas et al, 1999).   
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Table 1.8: Pathogen dependent parameter values from Soller, 2006 

 

Enterovirus Rotavirus Salmonella 
E. coli 

O157H7 
Shigella Composite 

Duration of incubation 

(day-1) 
0.286 - 8 1.33- 4 1.333-16 0.33-8 0.571-4 0.067-16 

Proportions of 

symptomatic 

responses 
0.25-0.75 0.1-0.45 0.14-0.4 0.23-0.5 0.29-0.5 0.1-0.75 

Duration of 

infectiousness (day-1) 
0.133-4 0.2-0.5 0.011-0.267 

0.14-

0.31 
0.4-0.8 0.011-4 

Duration of disease 
0.19-4 0.364-2 0.143-1.333 

0.133-

0.6 
0.16-2 0.04-4 

Duration of protection 

(day-1) 
0.06-0.133 

0.0037-

0.011 
0.14-96 

0.052-

0.11 

0.005-

0.1 
0.0037-96 

Dose response α 0.126-0.5 0.126-0.5 0.3126-0.89 0.221 0.21 0.126-0.89 

Dose response β 
1.26-76.16 0.21-0.84 

2883.95-

440000 
8 722.5 42.86 

0.21- 

440 000 

Person to person 

transmission 
0.042 0.06 0.003 0.0269 0.041 0.039 

Average point 

prevalence 
0.00016 1.4 x 10-5 10 0.01 0.0005 0.00055 

The first piece of information that is normally obtained is the dose of the organism per 

exposure.  In the case of irrigation of crops using wastewater, this has usually been based on a 

mean or 95
th
 percentile value for a sample of the entire population of the crop, assuming a log-

normal distribution.  Other distributions can be used and both the exponential and the inverse-

Gauss may be appropriate.  In most instances of risk assessment, statistical software is used to 

fit the most appropriate distribution to the data and the resulting information is then used for 

further manipulation (Havelaar et al., 2003; Hamilton et al., 2007a).  In addition to the 

microbiological data, information on exposure routes and levels is also required.  This is 

obtained from the exposure assessment. 

 

1.8.2 Risk characterisation 

According to the World Health Organisation (WHO, 2006a), risk characterisation ―integrates 

the information from the hazard identification, hazard characterization and exposure 

assessment to estimate the magnitude of the public health problem.‖  A probability of infection 

is calculated based on the data available and relating the probability either to the population as 

a whole or to the exposed population only.  Point estimates are based on single values such as 

the mean or 95
th
 percentile of the microbial concentration, but more accurate analyses are 

performed using values selected randomly from the distribution according to statistical 

probability.  This is known as stochastic sampling and results in a distribution of probability of 

infection which allows for an understanding of the ranges and most probable values of 
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probability of infection under the defined circumstances.  Probabilities can also be related to 

single exposure or annual risks.  Once again various statistical distributions are used to perform 

this calculation depending on the organism chosen as the pathogen or indicator and the 

availability of data, but the exponential or β-Poisson are the most common (Soller, 2006) .  Use 

of distribution data in the calculations allows for the range of data and therefore provides a 

better estimation of risk than the use of a single information value such as the mean or 95
th

 

percentile which was often used before such software packages were readily available. 

 

1.9 Research question and hypotheses 

This dissertation addresses the health risk inherent in the production and consumption of crops 

irrigated with greywater using a sub-soil irrigation system 

The hypotheses to be tested were as follows: 

Hypothesis 1: There is no difference in the microbiological quality of crops irrigated below the 

soil with greywater and those similarly irrigated with water of a non-waste origin. 

Hypothesis 2: The health risk to handlers and consumers of crops irrigated sub-surface using 

greywater can be easily brought within the World Health Organisation guidelines. 

 

1.10 Aims 

Two interacting projects were undertaken by two registered students, each as research towards 

a Masters degree; one addressing the growth of crop plants irrigated with greywater and the 

other investigating the microbiological quality of the crop produced.  The overall aims of the 

present study were: 

 to investigate the occurrence of faecal indicator organisms and some selected 

pathogens in and on an array of vegetables irrigated sub-surface with greywater, 

 to determine the differences in levels of contamination between sub-surface greywater-

irrigated vegetables and those similarly irrigated with a non-wastewater source, 

 to determine any differences in faecal indicator organisms and pathogen load between 

different types of vegetables, 
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 to assess if there was a health risk to community members from handling, growing or 

consuming these vegetables. 

 

1.11 Delineations and limitations 

The study applies only to situations similar to those found in the informal settlement 

investigated.  In other areas of South Africa and elsewhere, where access to potable water is not 

as easy as was the case here, the microbiological condition of the greywater may be 

significantly different (Carden et al., 2007 a and b) and the results obtained here will not 

necessarily apply.  In addition, the residential sites would need to be of similar size to those 

investigated to ensure that greywater dispersal was adequate. 

It is impossible to analyse for all the potential organisms that might be present in the greywater 

(Peterson and Ashbolt, 2001).  A selection was therefore made based on endemic disease in 

similar communities, standard faecal indicators which could be analysed relatively quickly and 

cheaply and organisms likely to be found in greywater or on human skin which could result in 

infections in immune-compromised persons.  In all cases, the analyses were restricted to those 

techniques which were readily available in the laboratory hosting the project and were based on 

standard culture-based methodologies.  As such, no cognisance has been taken of enteric and 

other viruses which have the potential to cause severe disease (Ottoson and Stenström, 2003). 

A small number of similar vegetables was purchased commercially and put through the same 

processes as the crops grown at the test site with the three different water treatments.  These 

were intended to provide a non-statistically tested baseline of what the contamination, and 

hence health risk, was from current practices.  A statistical evaluation was not attempted as 

there could be neither knowledge nor control of factors other than the irrigation waters used in 

the production of these crops which could have affected the results.  

 

1.12 Outline of dissertation  

The remainder of this dissertation is outlined as follows: 

Chapter Two  outlines the methodology used for this investigation. 

Chapter Three  presents the results of the investigation. 

Chapter Four  presents a discussion of the results in the context of the literature 
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Chapter Five  outlines the conclusions and recommendations. 
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2. METHODS 

2.1 Experimental setup  

 

2.1.1 Site selection 

Cato Crest is a peri-urban settlement, located in Durban, in close proximity to the University of 

KwaZulu-Natal, Howard College campus (Figure 2.1). 

 

Figure 2.1: Location of the Cato Crest sampling site. (eThekwini Water and Sanitation, 

GIS Department) 

Potable water is supplied to households in this area in 200 L ground tanks Figure 2.2) that are 

refilled daily with the free potable water household supply. Eight households from which 

30
o
 58' 12" E 

29
o
 58' S 

31
o
 0' 0" E 

29
o
 52' 59" S 
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greywater was to be collected were selected by means of a questionnaire survey aimed at 

identifying household composition, different sources of greywater and user habits.  The total 

number of residents in the experimental group was 53, comprising 37 adults (18-100 yr), 12 

children (2-18 yr) and 4 infants (0-2yr).  Selected households were supplied with 20L plastic 

buckets to collect their greywater.  These plastic buckets were collected by eThekwini Water 

and Sanitation on a daily basis from Monday to Friday and delivered to the test site at the 

University of KwaZulu-Natal, Howard College campus.   

The test site consisted of a disused tennis court, surrounded on four sides by diamond mesh 

wire fencing to which medium weight green shade cloth was attached.  Greywater from various 

households was mixed in one 200 L container prior to use for irrigation in order to obtain an 

overall average of the greywater in the community. The test site was plumbed by eThekwini 

Water and Sanitation to receive both potable water and greywater for use in irrigation of the 

trial (Figure 2.3).  Supervision of the site was done by Lumka Salukazana, a registered M.Sc. 

student at the University of KwaZulu-Natal. 

 
Figure 2.2: 200L potable water ground 

tank 

 
Figure 2.3:  Greywater storage tanks at 

pilot site 

   

2.2 Greywater characterisation 

Before using greywater for irrigation, a full physico-chemical and microbiological 

characterisation was conducted in triplicate.  Analyses were conducted at the laboratories of 

eThekwini Water and Sanitation according to the methods as presented in Standard Methods 

(APHA/AWWA, 2005) unless stated otherwise.  The microbiological methods are detailed in 

Chapter 7, Appendix 1.  Physico-chemical analysis included 5-day biological oxygen demand 

(BOD5) performed using Merck Oxy-top analysis, chemical oxygen demand (COD) by 

microwave (Milestone) digestion using potassium dichromate, pH using a meter (Crison), 
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nitrate as nitrogen (NO3-N) and ammonia as nitrogen (NH3-N) both using sequential flow 

analysis (Lachat), total Kjeldahl nitrogen (TKN) using Buchi digestion and conductivity using a 

meter (WTW).  Microbiological analysis, in triplicate, included examination for Escherichia 

coli and total coliforms using membrane filtration onto Merck™ Chromocult agar (Chapter 7, 

Appendix 1, Section 7.2), Enterococcus by membrane filtration onto Enterococcus selective 

medium (Biolab; Chapter 7, Appendix 1, Section 7.3), coliphages according to the double layer 

agar technique (Grabow, 1984; Chapter 7, Appendix 1, Section 7.7), Pseudomonas by 

membrane filtration onto Cetrimide agar (Biolab), (Chapter 7, Appendix 1, Section 7.4) and 

Ascaris lumbricoides according to the standard South African procedure (Archer et al., 2006; 

Chapter 7, Appendix 1, Section 7.1).  Analyses for Shigella and Salmonella were conducted 

using the standard enrichment procedure from Standard Methods (AWWA, 1999; Chapter 7, 

Appendix 1, Section 7.5).    

 

2.3 Crop selection, setup and harvesting 

Representative leafy, rooted and above-ground crops were chosen, based on the selections 

generally made by the community members for their domestic consumption, and plants were 

grown in 2 L black plastic bags at the test site.   

The final crop selection was as follows:- 

Above ground    Leafy -  Swiss chard (Beta vulgaris subsp maritima) 

Non-leafy  Green peppers (Capsicum annuum),  

Chillies (Capsicum frutescens) 

Below ground     Carrots (Daucus carota), 

Beetroot (Beta vulgaris), 

Onion (Allium cepa) 

 

Swiss chard and green peppers were chosen as representative above-ground crops.  Swiss chard 

represents a potentially high risk crop as the entire above-ground plant is harvested for 

consumption and it is sometimes eaten raw as a salad vegetable.  Green peppers are also often 

used raw in salads but are smooth-skinned with a waxy coating which repels water and only the 

fruit is harvested for consumption.  They were therefore regarded as being of lower risk. 
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Beetroot and potato were considered as being low risk as they are rarely eaten raw whereas 

carrots and onions were considered as high risk as they are often eaten raw in salads.  It was 

also considered that onions might present the highest health risk as their structure, a 

multilayered bulb, would lend itself to the entrapment of bacteria or parasites. 

A simple manual drip irrigation system, initially implemented in preliminary field trials 

conducted by eThekwini Water and Sanitation, was adapted to a smaller scale for purposes of 

this study.  Plastic bottles (500mL) were punctured several times through the base, and the 

bottles buried to approximately half to three-quarters of the length of the bottle in each plant 

bag (Figure 2.4 and Figure 2.5).  Water was administered by pouring carefully into each bottle, 

ensuring that irrigation occurred below the soil surface.  This differs from the method used in 

the field only in the size of container used.  The field study typically used 20 L containers, 

supplying more than one plant each.  Supervision of the irrigation was done by L. Salukazana, a 

registered MSc student at the University of KwaZulu-Natal.  Three experimental treatments 

were investigated.  Standard municipal tap water, containing no added nutrients, served as a 

negative control; water amended with a commercial hydroponics medium served as the positive 

growth control and the mixed greywater was the experimental treatment.  Plants were watered 

daily with 500 mL of the respective treatments, with the exception of the positive control.  In 

accordance with usage instructions, the hydroponics medium was applied once weekly and tap 

water was used on the remaining days for the positive control plants.  The plants were set up in 

individual blocks per crop type, with the different treatments set side by side in columns.  

Supervision of the treatments was done by L. Salukazana.  The trial was run over a two year 

period, allowing for examination over two summer and two winter seasons.  In addition, 

vegetables of the same type were accessed from local commercial outlets for comparison 

purposes. 

 

Figure 2.4: Example of the technique used 

to provide sub-surface irrigation of crops 

using a perforated 500 mL plastic bottle 

 

Figure 2.5: Example of perforated bottle 

used to deliver irrigation sub-surface 
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2.4 Microbial analysis  

 

2.4.1 Selection of faecal indicators / pathogens to be monitored 

As explained in Chapter 1, it was anticipated that greywater would contain a lesser load of 

pathogens and faecal indicators than black water or combined sewage (Ottoson, 2005).  As the 

water for this project came from relatively impoverished households, it was however expected 

that certain pathogens endemic to the community would probably be present.  It was also 

expected that there would be some faecal indicator organisms as a result of full body washing, 

particularly of infants and sick household members, as well as washing of laundry, especially 

infant nappies.  Although it was recognized that some members of the selected groups of 

organisms could re-grow in water given suitable conditions, it was considered that conclusions 

based on counts under such circumstances would result in even greater protection to user health 

as the increased numbers resulting from such re-growth would give an apparent increase in risk 

which would not necessarily be true.  The microorganisms selected for analysis in this study are 

shown in Table 2.1. 

 

Table 2.1: Microorganisms selected for analysis based on locally prevalent diseases 

Organism Role as indicator 

Total coliforms General bacterial load 

Escherichia coli Faecal indicator and potential pathogen 

Enterococcus sp Faecal indicator 

Pseudomonas sp Opportunisitic pathogen 

Staphylococcus sp Skin commensal / opportunistic pathogen 

Ascaris lumbricoides Endemic helminthic parasite 

Somatic coliphage Enterovirus indicator 

 

Total coliforms are ubiquitous in the environment (Hurst et al., 2002) and can be used to give 

an indication of whether or not there has been any die-off of microorganisms in general as a 

result of the handling of the greywater when post-treatment results are compared with those 

pre-treatment.  Escherichia coli are a broadly accepted indicator of faecal contamination by 

warm blooded animals, including humans, as well as being a potential pathogen (Bitton, 2005).   

Enterococcus species, especially Enterococcus faecalis is also a widely used faecal indicator 

but tends to survive longer in water than Escherichia coli (Bitton, 2005).   Pseudomonas 
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species are opportunistic pathogens particularly of the skin and can cause severe illness in 

immune-compromised persons as well as in infants.  Staphylococcus species are causative 

agents of skin infections such as boils as well as being part of the normal skin flora 

(APHA/AWWA, 2005).  Ascaris lumbricoides was used both as an indicator of endemic 

infection itself and as an indicator of potential contamination with protozoan or other 

helminthic parasites (Rose et al., 2004).  Somatic coliphage were used as indicators for 

enteroviruses which could be expected in the greywater contaminated with faeces through 

bathing and washing of faecally soiled laundry (Rose et al., 2004).   

 

2.4.2 Microbiological analyses 

Throughout the time period of this project, crops were harvested as soon as the treatment with 

the most advanced crop reached maturity.  This resulted in a range of sample sizes and numbers 

as in some cases, the most advanced crop was large (e.g. Swiss chard) or had several fruits (e.g. 

green pepper) whereas the least was small or had no fruits. All harvested vegetables were 

analysed for microbiological contaminants, on both the surface and the interior of the crop, in 

order to determine whether or not potential pathogens had penetrated the outer layers. In some 

cases, the organisms of interest were overrun by non-specific organisms or contaminated by 

fungi and these plates were rejected.  Samples were randomly selected from each crop, weighed 

wet and then dried at 108
o
C in a drying oven until a steady mass was obtained.  A minimum of 

three samples per crop per treatment was assessed.  The percentage moisture was calculated 

and used to convert all further samples to their dry mass for comparison purposes.   

The extraction of microorganisms from the exterior and interior of crops was based on past 

eThekwini laboratory experience in the extraction of microorganisms from soil and plant 

samples.  For analysis of external contamination of crops, fresh, weighed samples were placed 

into suitable volumes of sterile Ringers solution (Chapter 7, Appendix 1, Section 7.8) and 

shaken on a platform shaker at 220 rev/min for one hour.  The solution was then drained off 

and utilised for microbiological analyses.  All results were converted back to counts per gram 

dry weight of sample. 

For analysis of internal contamination, the samples that had been used for external analysis 

were sonicated in a 20% solution of a commercial sodium hypochlorite solution (Jik) with 

0.1mL of Tween 80 detergent added to ensure removal of any waxy coatings and the 

disinfection of residual surface microorganisms.  This method had been used with success by 

the author to sterilise field plant tissue for tissue culture.  The rinsed and drained disinfected 
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material was then placed in suitable volumes of sterile Ringers solution in sterile honey jars and 

mascerated with a sterilised domestic food blender.  Aliquots of the resultant mixture were 

analysed as for the external samples. 

At each harvesting event, a dilution series ranging from 10
0
 to 10

-8
 was made for each 

crop/treatment set and 1 mL from each dilution was filtered through a 0.47 μm membrane filter 

and the filter was placed onto the specified selective medium.  Total coliforms and E. coli were 

analysed using Merck™ Chromocult agar (Chapter 7, Appendix 1, Section 7.2).  This is a 

specific-enzyme detection medium capable of enumerating total coliforms and E. coli by 

detecting β-glucuronidase and β-galactosidase activity. As a result of the chromophores in the 

medium, E. coli colonies turn purple and total coliform colonies are pink.  Enterococcus 

species were enumerated similarly by membrane filtration onto Enterococcus selective agar 

(Oxoid) with positive colonies producing darkening in the agar around the colonies.   

Membrane filtration was also used for the analysis of Pseudomonas sp with positive colonies 

being those that produced green fluorescence on Cetrimide agar (Biolab).  Staphylococcus sp 

were enumerated by membrane filtration onto Slanetz and Bartley agar (Biolab) with positive 

colonies being black with zones of clearing in the surrounding agar.  Ascaris ova were 

enumerated using the South African recommended method which employs an ammonium 

bicarbonate separation and microscopic identification of ova (Archer et al., 2006; Chapter 7, 

Appendix 1, Section 7.1).  Somatic coliphage were enumerated using a double layer technique, 

(Grabow, 1984,  Chapter 7, Appendix 1, Section7.7).  All microbiological methods are given in 

detail in Chapter 7, Appendix 1. 

 

2.4.3 Analysis limitations 

The possibilities of re-growth or die-off of the various microorganisms in the greywater were 

recognized.  However, as the experimental greywater was used within the same time frame as 

that normally found in the community setting, it was decided that the results obtained in this 

project would at least model what could be expected in the field. 

 

2.5 Statistical analysis 

The microbial load data were tested for normality using the Kolmogorov-Smirnov test in the 

statistical package Statistica 7 (StatSoft) and it was found that the majority could be fitted to a 

log-normal distribution although this was often not the best fit.  As some data could not be 
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readily transformed to a normal distribution, and for others the log-normal fit was not strong, 

with reference to Levin (1987), the Mann-Whitney U test, a non-parametric method, was used 

to test pairs of data.  In addition, the Kruskal-Wallis test was applied to sets of data to ensure 

comprehensive analysis.  Mean value and 95
th

 percentile were calculated accordingly.  Box and 

whisker graphs of the results were prepared using Statistica 7 in order to evaluate the range of 

the data and the central tendency.  As many of the samples resulted in nil bacterial counts, the 

median value was very small and often reflected as zero.  This was discussed with an applied 

statistician (Jackson, pers. comm., 2010
8
) and it was agreed that for empirical data the median 

value was an acceptable, robust statistic.  Best-fit distributions for use in the calculation of 

probability of infection were fitted using @ Risk 5.5 (Pallisade) and tested using the chi-

squared test.  No significant increase in contamination was found over the growing cycles so all 

data were used in the statistical analysis. 

 

2.6 Health risk assessment  

This project did not extend to epidemiological studies and the direct calculation of health risk in 

the studied community.  Health risk estimates were performed using standard Quantitative 

Microbial Risk Assessment (QMRA) techniques.  As a stochastic approach to the risk model 

was considered desirable, distributions were fitted to the microbial data and correction factors 

for the amount consumed, the percentage of the population exposed and any barrier- 

intervention reductions of load were applied.  Monte Carlo sampling of the data for each crop / 

treatment-set was used with 10 000 iterations for each set.  The best-fit distributions were then 

used to establish the dose to be used in the following equation for calculation of probability of 

infection as shown in Equation 2.1: 

 

Equation 2.1: Calculation of probability of infection using a beta-Poisson distribution 

where d=dose of microorganisms, α andβ = the dose response parameters from Haas et 

al., 1999 and Westrell, 2004. 

 

Where the variation in microbiological data was insufficient to fit a distribution, for example 

where most results were zero but there were still a few positive results, the arithmetic mean of 

the untransformed results was used in the calculation as this was likely to provide a higher 

                                                   
8 Jackson, Dr E.S. Applied Statistician. Cambridge, England 
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estimate of risk than the use of the geometric mean (Havelaar et al., 2004).  When only one 

value was available it was used in the calculations to provide maximum risk information.  In 

accordance with WHO standards, (WHO, 2006a) a β-Poisson relationship between dose and 

response was used, as a range of sensitivity to infection was to be expected in the population 

and this technique would give conservative results better fitted to this scenario than those that 

would be obtained from a normal or exponential distribution (Haas et al., 1999).  The dose 

distribution obtained from @RISK was multiplied by the relevant factor per crop to convert the 

number of organisms per gram dry weight to number of organisms per gram wet weight so that 

daily average mass consumed as given in Chapter 1, Table 1.7 could be used to obtain an 

average daily risk.  Further multiplications by the percentage of people in the population being 

examined likely to consume that dose, (also obtained from Chapter 1, Table 1.7 and by the 

conversion factor assumed to convert the number of indicator organisms to a theoretical 

pathogen were performed.   With reference to the literature sited in Chapter 1, Section 1.7.3, 

levels of E. coli were conservatively estimated to be at least two-log units higher in value than 

pathogens,  Enterococcus would give a similar load to the pathogens and total coliforms would 

be approximately four-log units higher than the pathogens. These levels were estimated, taking 

into account that pathogens are only excreted by infected members of the population, generally 

for short periods of time, whereas the indicators are excreted in large numbers constantly or are 

ubiquitous in the environment.  The dose response parameters α and β were obtained from 

Chapter 1, Table 1.8, using the figures for Shigella, as this organism was most likely to 

approximate the risk from either enterovirus or bacteria in the greywater.  Based on the 

observation that five out of the observed population of fifty-three people were regularly 

involved in the tending and harvesting of crops, the figure for the population exposed to the 

greywater and soil used in the calculation of risk was estimated at 9% on a daily basis and the 

volume of water or soil inadvertently ingested was based on the figures from the World Health 

Organisation presented in Chapter 1, Table 1.6.  For the calculation of health risk from 

consumption of the vegetables, the bacterial loading for both interior and exterior was 

combined to provide the most conservative data for consumption of the vegetable.  These 

values were entered into Equation 2.1so that: 

d = Distribution calculated by @RISK  wet mass conversion factor  % observed population 

consuming dose  mass consumed  conversion factor to pathogen 

α = 0.21 and β= 42.86 

It needs to be noted that the corrections mentioned occur to the dose before insertion into the 

equation to calculate the probability of infection as they do not necessarily have a linear impact 
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on the probability of infection.  In addition to the basic exposure, calculations were also 

performed to determine the probability of infection where various risk-reducing barrier 

interventions were tested.  These interventions and their expected reduction in microbiological 

load were taken from Chapter 1, Table 1.5.  Again, the effect on dose was calculated before use 

in Equation 2.1 to calculate probability of infection. 

Once the probability of infection for a single dose was calculated, it was expanded to give the 

yearly probability of infection using the equation (Haas et al., 1999): 

 

Equation 2.2: Calculation of annual probability of infection where Pinf  is the probability 

of infection (from Equation 2.1) from individual exposure and n is the number of 

exposures per year.  From Haas et al., 1999 and Westrell, 2004 

For the consumption of crops, n was 365 as the mass of vegetable consumed was that given for 

daily consumption in Chapter 1, Table 1.7, and therefore the contaminant dose was that to be 

expected on a daily basis in the community consuming the crop.  This was regarded as a 

conservative estimation.  Where exposure to greywater and soil were concerned, n was much 

lower and this is explained in Chapter 3. 

The data presented here are for risk of infection, but as data for the conversion of infection to 

illness were not available for this population, there has been no attempt at conversion of the 

data to probability of illness and therefore no calculation of DALYs was possible.  As there is a 

risk of a high incidence of immune-compromised persons in the community, to provide the 

greatest safety, a conversion factor of 1 could be used for the conversion from an infected to a 

diseased state.  This would imply that anyone becoming infected would convert to illness.  No 

inherent immunity was assumed and neither secondary infection nor protection from infection 

during the course of the disease would have been factored in. 

As rates of conversion from an infected to a diseased or carrier state were not known for this 

population, Pinf was not manipulated further to give Pdisease. With reference to Chapter 1, if the 

population as a whole, i.e. the population of South Africa, was the point of reference, the 

exposure per day would be extremely low as was the dose and therefore a difference in the 

probability of infection of less than 1 per 100 000 population could be expected from using the 

static as opposed to the dynamic model.  For the observed population only, i.e. the Cato Crest 

community involved in this project, the exposure per day would be moderate and the dose low 

so a difference in probability of infection of less than 10 per 100 000, or in this case,  0.005 per 
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53, could be expected.  It was therefore taken that the slightly expanded static model could be 

used here and would give sufficient information for comparison of health risk at this stage.   

For each of the crops, the probability of infection as a result of crop consumption was modelled 

using the distribution function for each indicator organism and the values presented in Table 

2.2  For each set, the 5
th
 percentile, 95

th
 percentile, maximum and mode values were 

determined.  The data were tabulated and are presented in Chapter 8, Appendix 2, Table 8.1 to 

Table 8.9 and box-and-whisker plots are presented with the discussion of the results for each 

crop.  The model was then re-run for each crop, implementing barriers to infection.  

For each of the crops, the probability of infection as a result of crop consumption was modelled 

using the distribution function for each indicator organism and the values presented in Table 

2.2.  For each set, the 5
th

 percentile, 95
th
 percentile, maximum and mode values were 

determined.  The data were tabulated and are presented in Chapter 8, Appendix 2, and box-and-

whisker plots are presented with the discussion of the results for each crop.  The model was 

then re-run for each crop implementing barriers to infection.  

Table 2.2: Factors used in the calculation of probability of infection from the consumption 

of crops  
Factor Value and source 

Produce washing with water 1-2 log reduction Chapter 1, Table 1.5 

Produce disinfection 2 log reduction Chapter 1, Table 1.5 

Produce peeling 2 log reduction Chapter 1, Table 1.5 

Produce cooking 6-7 log reduction Chapter 1, Table 1.5 

Days of irrigation per year 200 

Days of consumption per year 365 Chapter 1, Table 1.7 

Swiss chard 
Daily consumption 9.2 g dry;  % population 

27.4, Chapter 1, Table 1.7 

Green peppers 
Daily consumption 2.5 g dry; % population 12.5, 

Chapter 1, Table 1.7 

Chillies 
Daily consumption 0.6 g dry; % population 12.8, 

Chapter 1, Table 1.7 

Beetroot 
Daily consumption 3.9 g dry;  % population 12.8 

Chapter 1, Table 1.7,  

Potato 
Daily consumption 45.4 g dry; % population 

27.1, Chapter 1, Table 1.7  

Carrot 
Daily consumption 3.9 g dry; % population 30.8, 

Chapter 1, Table 1.7 

Onion 
Daily consumption 2.5 g dry; % population 12. 

Chapter 1, Table 1.78,  

Conversion to potential pathogen – E. coli 0.001 (2-log excess) 

Conversion to potential pathogen – Enterococcus 1 - equivalent 

Conversion to potential pathogen –Staphylococcus 0.001 (2-log excess) 

Conversion to potential pathogen – total coliforms 0.0001 (4-log excess) 
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For the greywater and soil exposure, the probability of infection as a result of exposure was 

modelled using the distribution function for each indicator organism and the values presented 

inTable  2.3.  For each set, the 5
th

 percentile, 95
th
 percentile, maximum and mode values were 

determined.  The data were tabulated and are presented in Chapter 8, Appendix 2, Table 8.1 

and Table 8.2, and box-and-whisker plots are presented with the discussion of the results for 

each risk.  The model was then re-run for each crop implementing barriers to infection. 

 

Table  2.3: Factors used in the calculation of health risk through exposure to greywater or 

soil during irrigation 
Factor Value and source 

Volume consumed per exposure to greywater 1 mL (Chapter 1, Table 1.6) 

Volume consumed per exposure to soil 1g based on a similar exposure as to water 

Days of irrigation per year 200 - estimated 

% of Community exposed 100 – would be 9 for whole community 

Conversion to potential pathogen – E. coli 0.01 (2-log excess) 

Conversion to potential pathogen – Enterococcus 1 - equivalent 

Conversion to potential pathogen –Staphylococcus 0.001 (3-log excess) 

Conversion to potential pathogen – total coliforms 0.0001 (4-log excess) 

Wearing gloves / washing arms Single log reduction 

Wearing boots 2-log reduction 
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3. RESULTS 

3.1 Factors contributing to microbiological quality of crops 

 

3.1.1 Rainfall 

It was considered that rainfall might have an impact on the loading of bacteria in the soil or on 

above-ground crops through splash-back.  Data on rainfall for the experimental period were 

obtained from eThekwini Parks, Recreation and Culture Department and are presented in 

Figure 3.1.  Average monthly rainfall over the three year period showed no statistical difference 

among equivalent months (p=0.05), but the overall rainfall in 2007 was statistically greater 

(p=0.05, n=2334) than that for 2005 (n=1899) and 2006 (n=2907).  The greatest rainfall 

occurred in the summer months (October to March) each year.  It is unlikely that bacterial 

loadings among the months during which crops were grown would have been affected by 

rainfall patterns.  Splash-back onto above-surface crops could have occurred during summer 

rainfall periods, but this was likely to be counteracted by the dilution factor and wash-off of 

organisms by the rainfall.   

 

Figure 3.1: Rainfall during the period January 2005 to December 2007 measured at the 

Botanic Gardens, Durban.  Average monthly rainfall over the three year period showed 

no statistical difference among equivalent months (p=0.05), but the overall rainfall in 2007 

was statistically greater (p=0.05, n=2334) than that for 2005 (n=1899) and 2006 (n=2907). 

Seasonal variation is clearly indicated. Supplied by eThekwini Parks, Recreation and 

Culture Department.  
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3.1.2 Soil microbiology and chemistry 

At the start of the trial, six samples of the Berea red soil used for the trial were analysed and at 

intervals throughout the trial, further samples of the soil from each of the irrigation treatments 

were analysed for alkalinity, free ammonia, Ascaris ova, COD, conductivity, E. coli, 

Enterococcus, Staphylococcus and total coliforms to detect any changes.  The results are 

presented in Table 3.1, with all the microbiological readings presented as log10 values.   

 

Table 3.1: Results from Physico-chemical and microbial analyses performed on soil 

samples from unwatered plants and plants irrigated with greywater, hydroponic solution 

or tap-water respectively.  Mean, maximum, minimum and Standard deviations are 

provided for all parameters.  No statistical significance was found between parameters 

measured and treatments (p≤0.05)  except in the case of Enterococcus where the level in 

greywater irrigated soil was statistically higher than for the other treatments (p≤0.05). 
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Unwatered 

(n=4) 
Mean 139 117.6 5.52 

 
0.00 0 0 

   
Min 52 86 5 

   
0 

   
Max 241 184 5.8 

   
0 2.3 3.7 5.4 

Std 

Dev 
100.2 40.3 0.31 

   
0 

   

Greywater 

irrigated 

(n=9) 

Mean 86 273.7 6.82 0.75 
  

0 2.45 3.1 5.2 

Min 86 78 5.3 0.5 
  

0 0 0 0 

Max 86 406 9.4 1.3 1 0 0 2.99 10.6 5.8 

Std 

Dev 
0 89.99 1.46 0.28 

  
0 2.5 3.2 5.2 

Hydroponic 

solution 

 irrigated 

(n=10) 

Mean 86 365.4 6.47 0.95 
  

0 1.3 3.9 5.2 

Min 86 214 4.9 
   

0 0 0 0 

Max 86 492 8.5 
 

1 0 0 1.9 4.7 5.5 
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0 83.70 1.24 
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0 0 0 0 

Max 86 1553 7.6 1.8 
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Std 

Dev 
0 579.3 0.68 0.40 

  
0 1.4 3.9 5.1 
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No E. coli or viable Ascaris ova were detected in the soil from any of the treatments.  

Staphylococcus and total coliforms did not show significant differences among treatments 

(p≤0.05), but the level of Enterococcus in the greywater-irrigated soil was statistically greater 

than that for the other two treatments (p≤0.05).     

 

3.1.3 Greywater 

At the start of the project, microbiological analyses were conducted on samples of greywater 

(n=32), tap water (n=20) and the hydroponic solution (n=18).  The averaged results are 

presented in Table 3.2.  No Ascaris ova, Salmonella, Shigella or somatic coliphage were 

detected in any of the water samples and E. coli, Enterococcus and Staphylococcus were only 

detected in the greywater and were present at a statistically higher level than for hydroponic 

solution or tap water (p≤0.001).  Total coliforms were significantly higher in the greywater than 

in either of the other two water types used for irrigation (p≤0.001).  In line with normal practice 

at eThekwini laboratory, a log conversion of actual bacteriological counts was used in 

microbiological analysis.  In all cases where no microorganism was detected, the minimum 

detection level of 1 colony forming unit (cfu) per unit volume or mass was used.  This allowed 

a log value of zero to be used in further computations.   

Nine samples of each of the water types were subjected to chemical analysis and the data are 

presented in Table 3.2.  The conductivity of the greywater was significantly lower (p≤0.05) 

than that of the hydroponic solution, indicating that the level of salts in the hydroponic solution 

was higher than in the greywater.  The level of ammonia in the greywater was not significantly 

different (p≤0.05) from that in the hydroponic solution and both were significantly higher than 

that in the tap water (p≤0.05) where the level was extremely low.  The chemical oxygen 

demand (COD) of the greywater was high and approximately 30% was readily biodegradable 

as can be seen from the results for the biological oxygen demand (BOD) and chemical oxygen 

demand (COD) presented in Table 3.3.  This could have been as a result of kitchen and 

bathroom washings or organic contamination from cleansing products in use by the households.   
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Table 3.2:  Results from physico-chemical and microbial analyses performed on 

greywater, hydroponic solution or tap-water respectively.  Mean, maximum, minimum 

and standard deviations are provided for all parameters.  E. coli, Enterococcus and 

Staphylococcus were only detected in the greywater and were present at a statistically 

higher level than for hydroponic solution or tap water (p≤0.001).  Total coliforms were 

significantly higher in the greywater than in either of the other two water types used for 

irrigation (p≤0.001).  The conductivity of the greywater was significantly lower (p≤0.05) 

than that of the hydroponic solution.  The level of ammonia in the greywater was not 

significantly different (p≤0.05) from that in the hydroponic solution and both were 

significantly higher than that in the tap water (p≤0.05).  The significance of the difference 

between the Chemical Oxygen (COD) demand in greywater and the other two water 

treatments could not be tested as no COD was detected in the latter.  
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mg/L mg/L mg/L mS/m Ova / g Log10 (cfu/100 mL) 

Greywater 

Mean 179.03 19.76 584.30 69.82 0 0 4.76 0.41 1.16 6.74 0 

Max 706 157 1120 230 0 0 9.00 5.34 7.53 11.11 0 

Min 0 0.5 39 13 0 0 0 0 0 0 0 
Std 

Dev 
161.2 37.08 342.76 56.16   2.95 1.23 2.07 2.12 - 

Hydroponic solution 

Mean 29 32.5 0 223 0 0 0 0 0.04 0.84 0 

Max 29 33 0 223 0 0 0 0 0.84 4.08 0 

Min 29 32 0 223 0 0 0 0 0 0 0 
Std 
Dev 

- 0.70 - - - - - - 0.19 1.12 - 

Tap water 

Mean 66 <0.5 0 30 0 0 0 0 0 0.55 0 

Max 66 <0.5 0 30 0 0 0 0 0 1.81 0 

Min 66 <0.5 0 30 0 0 0 0 0 0 0 
Std 
Dev 

- - - - - - - - - 0.59 - 
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Table 3.3:  Statistical values for the measurement of biological oxygen demand (BOD) and 

chemical oxygen demand (COD) in greywater.  Approximately 30% of the oxygen 

demand could be attributed to Biological Oxygen Demand (BOD) which could be as a 

result of washings from the kitchen and bathroom or organic contamination from 

cleansing products in use by the households.  Levels for both BOD and COD were 

significantly higher than for either hydroponic solution or tap water when tested at the 

p=0.05 level 
BOD mg/L COD mg/L 

Mean 180.625 Mean 584.303 

Standard Deviation 84.65371 Standard Deviation 342.7572 

Minimum 40 Minimum 39 

Maximum 320 Maximum 1120 

 

3.2 Microbiological quality of above-ground crops 

Harvesting of crops depended largely on the growth, with harvesting of all treatments occurring 

when the treatment with the largest crop was ready for harvesting.  Typically, this was after 6 to 

8 weeks.  In some cases, especially in those plants irrigated with unmodified municipal water, 

the crop was extremely small both in number and size.  There was also some loss of crops to 

insects in one growth cycle.   

 

3.2.1 Swiss chard 

Visually, there was a wide range of Swiss chard leaf sizes across the three experimental 

treatments as shown in , Figure 3.2 A to C; further details on crop yields are available in the 

corresponding project by L. Salukazana.  This yield variance meant that the amount of sample 

examined for each treatment was not always as large as had been expected when harvested at 6 

to 8 weeks when the treatment with the largest crop was ready for harvesting.  Some of the crop 

from one growth cycle was also badly affected by insect attack as shown in Figure 3.2  D.  No 

increase in microbial levels on crops was found with successive growing cycles therefore data 

from all growing cycles were combined for the statistical evaluations.  The three 

experimentally grown crops and purchased produce were analysed as described in Chapter 2.  

No Ascaris ova, Pseudomonas or somatic coliphages were detected in any of the samples.  The 

remaining microorganisms varied in concentration as shown in Figure 3.2 to Figure 3.5, with 

many of the results being zero.  In cases where the median was zero or close to zero, the 5
th

 

percentile is close to the median. Median values per gram dry weight for each of the 

microorganisms are presented in Table 3.4.   
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A: Example of Swiss chard crop irrigated 

subsurface with greywater 

 
B: Example of Swiss chard crop irrigated 

subsurface with hydroponic solution 

 
C: Example of Swiss chard crop irrigated 

subsurface with tap water 

 
D: Swiss chard crop extensively damaged 

by insect attack 

Figure 3.2 : Examples of the Swiss chard crop from the various irrigation regimes 

 

No increase in microbial levels on crops was found with successive growing cycles therefore 

data from all growing cycles were combined for the statistical evaluations.  The three 

experimentally grown crops and purchased produce were analysed as described in Chapter 2.  

No Ascaris ova, Pseudomonas or somatic coliphages were detected in any of the samples.  The 

remaining microorganisms varied in concentration as shown in Figure 3.2 to Figure 3.5, with 

many of the results being zero.  In cases where the median was zero or close to zero, the 5
th

 

percentile is close to the median. Median values per gram dry weight for each of the 

microorganisms are presented in Table 3.4.   

 

 

 

 

 
 



47 

 

 

 Median 
  5%-95% 
 Min-Max 

G ext H ext T ext C ext G int H int T int C int
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
lo

g
 (

c
fu

/g
)

 

Figure 3.2: Box and whisker plot of E. coli counts on external surfaces (ext) or the interior 

(int) of Swiss chard plants irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the three water 

treatments for either the internal or external sets when tested using the Kruskal-Wallis 

test (p=0.05) 
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Figure 3.3: Box and whisker plot of Enterococcus counts on external surfaces (ext) or the 

interior (int) of Swiss chard plants irrigated with greywater (G), hydroponic solution (H), 

tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period.  No statistical difference was found between the three 

water treatments for either the internal or external sets when tested using the Kruskal-

Wallis test (p=0.05) 
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Figure 3.4: Box and whisker plot of Staphylococcus counts on external surfaces (ext) or 

the interior (int) of Swiss chard plants irrigated with greywater (G), hydroponic solution 

(H), tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period.  No statistical difference was found between the three 

water treatments for either the internal or external sets when tested using the Kruskal-

Wallis test (p=0.05) 
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Figure 3.5: Box and whisker plot of total coliform counts on external surfaces (ext) or the 

interior (int) of Swiss chard plants irrigated with greywater (G), hydroponic solution (H), 

tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period.  No statistical difference was found between the three 

water treatments for either the internal or external sets when tested using the Kruskal-

Wallis test (p=0.05) 
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Table 3.4: Median number of organisms per gram dry weight on external surfaces (ext) or 

the interior (int) of Swiss chard plants irrigated with greywater (G), hydroponic solution 

(H), tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period.  No Ascaris ova, Pseudomonas, somatic coliphages, E. coli, 

Enterococcus or Staphylococcus were detected internally or externally for any of the water 

treatments.  Total coliforms were detected for all treatments.   
 Gext Hext Text Cext Gint Hint Tint Cint 

E. coli 0 0 0 0 0 0 0 0 

Enterococcus 0 0 0 0 0 0 0 0 

Staphylococcus 0 0 0 0 0 0 0 0 

Total coliform 800 800 80 2900 800 260 800 800 

 
 

The mean of the microbial loads per irrigation treatment were calculated and compared using 

the Kruskal-Wallis test on untransformed data to determine whether there was a difference 

observable in the bacterial load either internally or externally among the treatments (Table 3.5).  

No significant difference was found between the three water treatments at the p=0.05 level. 

Table 3.5: Statistical comparison, using non-parametric (Kruskal Wallis test) methods, of 

means of bacterial load for the interior (int) and exterior (ext) of Swiss chard plants 

irrigated with greywater (G), hydroponic solution (H) or tap water (T).  No significant 

differences were found at the p=0.05 level 
   

E. coli Enterococcus Staphylococcus Total coliforms 

   
External Internal External Internal External Internal External Internal 

K
ru

sk
al

-

W
al

li
s 

G NS NS NS NS NS NS NS NS 

NS - No significant difference at p=0.05 level 

 

3.2.2 Green peppers 

The tap water-irrigated crop was stunted by comparison with the greywater-irrigated crop, as 

can be seen in Figure 3.6.  This meant that the amount of crop available for assessment of 

bacterial loading on the latter crop was extremely limited and any statistics based on these 

results should be treated with caution.   It was observed that the greywater-irrigated crop was 

more prolific than the hydroponic solution irrigated crop and also ripened earlier. 
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Figure 3.6: Examples of the green pepper crop showing the stunting of the tap water 

irrigated crop.  Courtesy L. Salukazana 

 No Enterococcus was detected in or on any of the test treatment samples analysed. Counts on 

the commercially purchased vegetables were in general low or zero.  There did however appear 

to be internal microbial contamination of the crops at a level higher than would have been 

expected from the external loadings.  This was evident particularly for E. coli in all the 

treatments including the purchased produce.  These positive colonies from the Chromocult™ 

plates were further examined using API 20E biochemical identification strips.  The findings 

were varied, with some colonies definitely identified as E. coli and others being of questionable 

identity as is frequently the case for environmental samples.  The other organisms were also 

detected internally, often with mean levels higher than for the external load.  On discussions 

with an experienced botanist (S. Pillay, pers. comm. 2010)
9
, it was thought that this 

contamination might be due to the inclusion of bacteria during the process of formation of the 

fruit from the flower.  There was no way to confirm this conclusion with the facilities available 

to the project but this possibility should be further investigated.    

Median values per gram dry weight for each of the microorganisms are presented in Table 3.6.  

Except for total coliforms, the median values for all treatments for each of the detected 

microorganisms were generally zero.  The statistical data are presented in Figure 3.7 to Figure 

3.9.  No significant differences were found between the three water treatments for any of the 

indicators.  These data are presented in Table 3.7.  

 

                                                   
9 S. Pillay. CSIR, Durban 

Hydroponic solution 

Greywater 

Tap water 
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Table 3.6: Median number of organisms per gram dry weight on external surfaces (ext) or 

the interior (int) of green peppers irrigated with greywater (G), hydroponic solution (H), 

tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period.  No Ascaris ova, Pseudomonas, somatic coliphages, E. coli, 

Enterococcus or Staphylococcus were detected internally or externally for any of the water 

treatments.  Total coliforms were detected for all treatments except externally for the 

commercial crop.   
 Gext Hext Text Cext Gint Hint Tint Cint 

E. coli 0 0 0 0 0 0 0 0 

Enterococcus 0 0 0 0 0 0 0 0 

Staphylococcus 0 0 0 0 0 0 0 0 

Total coliforms 100 220 100 0 60 800 800 10 
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Figure 3.7: Box and whisker plot of E. coli counts on external surfaces (ext) or the interior 

(int) of green pepper fruits irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the three water 

treatments for either the internal or external sets when tested using the Kruskal-Wallis 

test (p=0.05) 

 

Gext n= 60 

Hext n= 59 

Text n= 27 
Cext n= 12 

 

Gint n= 59 

Hint n= 59 
Tint n= 27 

Cint n= 12 



52 

 

 Median 

  5%-95% 

 Min-Max 
G ext H ext T ext C ext G int H int T int C int

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g

 (
c
fu

/g
)

 

Figure 3.8: Box and whisker plot of Staphylococcus counts on external surfaces (ext) or 

the interior (int) of green pepper fruits irrigated with greywater (G), hydroponic solution 

(H), tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period. No statistical difference was found between the three water 

treatments for either the internal or external sets when tested using the Kruskal-Wallis 

test (p=0.05) 
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Figure 3.9: Box and whisker plot of total coliform counts on external surfaces (ext) or the 

interior (int) of green pepper fruits irrigated with greywater (G), hydroponic solution (H), 

tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period.  No statistical difference was found between the three 

water treatments for either the internal or external sets when tested using the Kruskal-

Wallis test (p=0.05) 
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Table 3.7: Statistical comparison, using non-parametric ( Kruskal-Wallis) method, of 

means of bacterial load for the interior (int) and exterior (ext) of green peppers fruits 

irrigated with greywater (G), hydroponic solution (H or tap water (T).  No significant 

differences were found at the p=0.05 level 
   

E. coli Enterococcus Staphylococcus Total coliforms 

   
External Internal External Internal External Internal External Internal 

K
ru

sk
al

-

W
al

li
s 

G - NS - - NS NS NS NS 

NS – no significant difference at p=0.05 level  - No organisms detected 

 

3.2.3 Chillies 

After the findings of internal contamination in green peppers, it was decided to test a similar 

vegetable using greywater and hydroponic solution to see if the internal contamination 

persisted.  Crops were grown for one growth cycle only.  Chillies were chosen as they also 

form as fruit from a flower, have a waxy coating and develop fruit hanging from the plant 

above ground in the same way as green pepper.  No E. coli, Enterococcus or Staphylococcus 

were detected either internally or externally for either of the crop treatments for this fruit.   

Median values per gram dry weight for each of the microorganisms are presented in Table 3.8.   

Table 3.8: Median number of organisms per gram dry weight on external surfaces (ext) or 

the interior (int) of chillies irrigated with greywater (G),or hydroponic solution (H).  

Results are based on one growing cycle.  No Ascaris ova, Pseudomonas, somatic 

coliphages, E. coli, Enterococcus or Staphylococcus were detected internally or externally 

for any of the water treatments.  Total coliforms were detected externally and internally 

for crops irrigated with either greywater or hydroponic solution.   

 Gext Hext Gint Hint 

E. coli 0 0 0 0 

Enterococcus 0 0 0 0 

Staphylococcus 0 0 0 0 

Total coliforms 0 0 0 0 

The statistical data for total coliforms are presented in Figure 3.10.  As regards total coliforms, 

no significant difference was seen at the p=0.05 level between the three water treatments for 

external or internal contamination This is shown in Table 3.9, but the range of internal 

contamination was again slightly higher than the external.   

These results show that further investigation of the routes of contamination of such fruits would 

be warranted at a later stage.   
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Figure 3.10: Box and whisker plot of total coliform counts on external surfaces (ext) or 

the interior (int) of chillies irrigated with greywater (G), hydroponic solution (H) or 

purchased commercially (C).  Results are based on one growing season.  No statistical 

difference was found between the treatments for either the internal or external sets when 

tested using the Kruskal-Wallis test (p=0.05) 

 

 

Table 3.9: Statistical comparison of means of bacterial load for the interior (int) and 

exterior (ext) of chillies irrigated with greywater (G), hydroponic solution (H), tap water 

(T) or purchased commercially (C), using non-parametric (Kruskall-Wallis) methods.  No 

significant differences were found at the p=0.05 level 
  

E. coli Enterococcus Staphylococcus Total coliforms 

  
External Internal External Internal External Internal External Internal 

K
ru

sk
al

-

W
al

li
s 

- - - - - - NS NS 

- No organisms detected   NS - no significant difference at the p=0.05 level 

 

3.3 Microbiological quality of below-ground crops 

Four crops grown below ground were investigated.   

 

3.3.1 Beetroot 

As beetroot is a root crop, it was exposed directly to greywater during sub-surface irrigation.  It 

is however generally eaten after having been cooked thoroughly and is therefore regarded as a 

low risk crop.  Observation of the crops did not show evidence of differences in crop size 

between crops irrigated with greywater and hydroponic solution, but the tap water-irrigated 
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crop was stunted, as can be seen in Figure 3.11.  Median values per gram dry weight for each of 

the microorganisms are presented in Table 3.10. 

 

Figure 3.11: Examples of tap water irrigated beetroot plants showing stunting of growth 

 

Table 3.10: Median number of organisms per gram dry weight on external surfaces (ext) 

or the interior (int) of beetroot irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No Ascaris ova, Pseudomonas, somatic coliphages, E. coli was 

detected internally or externally for any of the water treatments.  E. coli was detected 

externally for all three water treatments and internally for greywater irrigated crop.  

Enterococcus was detected internally and externally for greywater and hydroponic 

solution irrigated crop and externally for the commercial crop.  Staphylococcus was 

detected internally and externally on crops from all three water treatments but not on the 

commercially bought crop.  Total coliforms were detected internally and externally for all 

treatments.   
 Gext Hext Text Cext Gint Hint Tint Cint 

E. coli 0 0 0 0 0 0 0 0 

Enterococcus 0 0 0 60 0 0 0 0 

Staphylococcus 0 0 0 0 0 0 0 0 

Total coliforms 1100 900 80 17550 10 200 0 30 

  E. coli was detected externally for all three water treatments and internally for greywater 

irrigated crop.  Enterococcus was detected internally and externally for greywater and 

hydroponic solution irrigated crop and externally for the commercial crop.  Staphylococcus was 

detected internally and externally on crops from all three water treatments but not on the 

commercially bought crop.  Total coliforms were detected internally and externally for all 

treatments.  The statistical data are presented in Figure 3.12 to Figure 3.15. 

Tap water 
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Figure 3.12: Box and whisker plot of E. coli counts on external surfaces (ext) or the 

interior (int) of beetroot irrigated with greywater (G), hydroponic solution (H), tap water 

(T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Figure 3.13: Box and whisker plot of Enterococcus counts on external surfaces (ext) or the 

interior (int) of beetroot irrigated with greywater (G), hydroponic solution (H), tap water 

(T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Figure 3.14: Box and whisker plot of Staphylococcus counts on external surfaces (ext) or 

the interior (int) of beetroot irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Figure 3.15: Box and whisker plot of total coliform counts on external surfaces (ext) or 

the interior (int) of beetroot irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 

 

No significant difference was apparent for any of the treatments for any of the indicators when 

tested with the Kruskal-Wallis test at the p=0.05 level.  These results are given in Table 3.11.  

There was little penetration of microorganisms into the tissue of the beetroot as is shown by the 
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low interior counts of bacteria.  No Staphylococcus was detected on or in the purchased 

produce.  Except for total coliforms, the median values for all treatments for each of the 

detected microorganisms were generally zero.  No significant increase in contamination was 

found over the growing cycles so all data were used in the statistical analysis.   

The programme @RISK was used to fit distributions to the data for later use in determining the 

risk of infection.  In each case the best fit was determined using the chi-squared test.   

 

Table 3.11: Statistical comparison, using non-parametric (Kruskal-Wallis) methods,  of 

means of bacterial load for the interior (int) and exterior (ext) of beetroot irrigated with 

greywater (G), hydroponic solution (H) or tap water (T).  No significant differences were 

found at the p=0.05 level 
  E. coli Enterococcus Staphylococcus Total coliforms 

  
Ext Int Ext Int Ext Int Ext Int 

K
ru

sk
al

-

W
al

li
s 

NS NS NS NS NS NS NS NS 

NS – no significant difference at p=0.05 level  - No bacteria detected 

 

 

3.3.2 Potato 

No E. coli or Enterococcus were found for any of the samples either internally or externally.  

Staphylococcus was detected internally and externally on all crops.  Total coliforms were 

detected externally on all crops and internally only on the commercially obtained crop.  The 

median values for total coliforms internally and externally for all treatments were generally 

approximately 800 cfu/g as can be seen in Table 3.12. 

Table 3.12: Median number of organisms per gram dry weight on external surfaces (ext) 

or the interior (int) of potatoes irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No Ascaris ova, Pseudomonas, somatic coliphages, E. coli or 

Enterococcus was detected internally or externally for any of the water treatments.  

Staphylococcus was detected internally and externally on crops from all three water 

treatments and on the commercially bought crop.  Total coliforms were detected 

externally for all treatments and internally for the commercially bought crop.   
 Gext Hext Text Cext Gint Hint Tint Cint 

E. coli 0 0 0 0 0 0 0 0 

Enterococcus 0 0 0 0 0 0 0 0 

Staphylococcus 4.933 4.933 4.933 2148.8 157.48 12.55 12.55 4.93 

Total coliforms 800 800 800 800 800 800 800 20000 
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In the case of the total coliforms, the counts both internally and externally were extremely high.  

No differences between the trial treatments were detected.  The data are presented in Figure 

3.16 and Figure: 3.17.   

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.16: Box and whisker plot of Staphylococcus counts on external surfaces (ext) or 

the interior (int) of potatoes irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Figure: 3.17: Box and whisker plot of total coliform counts on external surfaces (ext) or 

the interior (int) of potatoes irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Little difference in contamination was seen between the external and internal results for potato.  

The statistical comparison of treatments is presented in Table 3.13.  Means were compared 

using the Kruskal-Wallis test.   

Table 3.13: Statistical comparison, using non-parametric (Kruskal-Wallis) methods, of 

means of bacterial load for the interior (int) and exterior (ext) of potatoes irrigated with 

greywater (G), hydroponic solution (H) or tap water (T).  No significant differences were 

found at the p=0.05 level 
  

E. coli Enterococcus Staphylococcus Total coliforms 

  
External Internal External Internal External Internal External Internal 

K
ru

sk
al

-

W
al

li
s 

- - - - NS NS NS NS 

NS – no significant difference at p=0.05  - No bacteria detected 

 

3.3.3 Onion 

The greywater-irrigated crop was very healthy in appearance, with little or no indication of 

disease and many of the bulbs grown with the greywater were of excellent size, as can be seen 

from the example of the crop depicted in Figure 3.18.  

 

Figure 3.18: Example of onion grown with greywater sub-surface irrigation at the UKZN 

test site 

Except for total coliforms, the median bacterial counts were low for both the external and 

internal analyses. The majority of samples were zero for E. coli, Enterococcus and 

Staphylococcus as can be seen in Table 3.14. The statistical data are presented in Figure 3.19 to 

Figure 3.22.   
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Table 3.14:  Median number of organisms per gram dry weight on external surfaces (ext) 

or the interior (int) of onions irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  E. coli was detected externally on all the samples, but not 

internally.  Enterococcus was detected externally on all except the tap-water irrigated 

crop and was not detected internally in any of the samples.  Staphylococcus was detected 

externally on all samples and internally on all except the commercially purchased crop.  

Total coliforms were detected internally and externally on all crops.  
 Gext Hext Text Cext Gint Hint Tint Cint 

E. coli 0 0 0 0 0 0 0 0 

Enterococcus 0 0 0 0 0 0 0 0 

Staphylococcus 0 0 0 0 0 0 0 0 

Total coliforms 4000 2900 800 150 100 40 0 0 
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 Figure 3.19: Box and whisker plot of E. coli counts on external surfaces (ext) or the 

interior (int) of onions irrigated with greywater (G), hydroponic solution (H), tap water 

(T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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 Figure 3.20: Box and whisker plot of Enterococcus counts on external surfaces (ext) or 

the interior (int) of onions irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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 Figure 3.21: Box and whisker plot of Staphylococcus counts on external surfaces (ext) or 

the interior (int) of onions irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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 Figure 3.22: Box and whisker plot of total coliform counts on external surfaces (ext) or 

the interior (int) of onions irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 

  As can be seen in Table 3.15, no significant differences were found for any of the indicators 

for any of the treatments when tested with the Kruskal-Wallis test at p=0.05. 

Table 3.15: Statistical comparison, using non-parametric (Kruskal-Wallis) methods, of 

means of bacterial load for the interior (int) and exterior (ext) of onions irrigated with 

greywater (G), hydroponic solution (H) or tap water (T).  No significant differences were 

found at the p=0.05 level 
  

E. coli Enterococcus Staphylococcus Total coliforms 

  
External Internal External Internal External Internal External Internal 

K
ru

sk
al

-

W
al

li
s 

NS NS NS NS NS NS NS NS 

NS- no significant difference at p=0.05 

 

3.3.4 Carrots 

Carrot was regarded as a high risk crop as it is a root that penetrates more deeply into the soil 

and, in addition, is frequently eaten raw as a salad vegetable or even directly from the ground 

with skin intact.  No significant difference in bacterial load was seen across the growing 

seasons (p≤0.05).  No Enterococcus was found internally for any of the samples.  Except for 

total coliforms, the median bacterial loads were low for both the external and internal analyses 

(<10 cfu/g dry) for all treatments as is shown in Table 3.16.  In some cases the range was wide 

(>100 cfu/g dry).  The statistical data are presented in Figure 3.23 to Figure 3.26.   
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Table 3.16: :  Median number of organisms per gram dry weight on external surfaces 

(ext) or the interior (int) of carrots irrigated with greywater (G), hydroponic solution (H), 

tap water (T) or purchased commercially (C).  Results are based on all samples taken 

over the complete trial period.  E. coli was detected externally for crops grown with 

hydroponic solution and internally and externally for crops grown with greywater. No 

Enterococcus was found internally for any of the samples but was found externally for 

crops grown with greywater or purchased commercially.  Staphylococcus was detected in 

all crops except for those grown with tap water.  Total coliforms were detected internally 

and externally for all treatments except externally for the commercially purchased crop   
 Gext Hext Text Cext Gint Hint Tint Cint 

E. coli 0 0 0 0 0 0 0 0 

Enterococcus 0 0 0 0 0 0 0 0 

Staphylococcus 4 0 0 0 0 0 0 0 

Total coliforms 2600 1100 740 0 400 0 0 580 
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Figure 3.23: Box and whisker plot of E. coli counts on external surfaces (ext) or the 

interior (int) of carrots irrigated with greywater (G), hydroponic solution (H), tap water 

(T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Figure 3.24: Box and whisker plot of Enterococcus counts on external surfaces (ext) or the 

interior (int) of carrots irrigated with greywater (G), hydroponic solution (H), tap water 

(T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Figure 3.25: Box and whisker plot of Staphylococcus counts on external surfaces (ext) or 

the interior (int) of carrots irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 
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Figure 3.26: Box and whisker plot of total coliform counts on external surfaces (ext) or 

the interior (int) of carrots irrigated with greywater (G), hydroponic solution (H), tap 

water (T) or purchased commercially (C).  Results are based on all samples taken over the 

complete trial period.  No statistical difference was found between the treatments for 

either the internal or external sets when tested using the Kruskal-Wallis test (p=0.05) 

 

No significant differences were found externally or internally for any crop for any treatment 

when tested at the p=0.05 level using the Kruskal-Wallis test.  These data are presented in 

Table 3.17. 

Table 3.17: Statistical comparison, using non-parametric (Kruskal-Wallis) methods, of 

means of bacterial load for the interior (int) and exterior (ext) of carrots irrigated with 

greywater (G), hydroponic solution (H) or tap water (T).  No significant differences were 

found at the p=0.05 level 
  E. coli Enterococcus Staphylococcus Total coliforms 

  External Internal External Internal External Internal External Internal 

K
ru

sk
al

-W
al

li
s 

NS NS NS - NS NS NS NS 

- No organisms detected   NS- no significant difference at p=0.05 

 

3.4 Risk assessment 

Although there was no statistical difference for bacterial load for the greywater-irrigated crops 

compared with the other treatments, quantitative microbial risk assessment was performed for 

each case.   

As it was unlikely in many instances that the crop was peeled before consumption, the  

microbial concentration for both the internal and external analysis of each crop was combined 
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before the calculation of risk of infection for each indicator organism to ensure the most 

conservative outcome.  The first stage of the risk assessment was fitting a distribution to the 

microbial data using the chi-squared test to select the best fit.  An example of a typical 

distribution, in this case for E. coli on Swiss chard, is presented in Figure 3.27.  From this 

distribution, it is clear that samples are far more likely to contain low or zero loading of E. coli 

than high loads.  As risk is related to both the load of the contaminant and the likelihood of 

exposure to such a load occurring, the health risk to the population is likely to be low at high 

contaminant levels because of the infrequency of such an occurrence.  The risk to the individual 

consuming such an infrequent high contaminant load would, however, still remain high. 

 

Figure 3.27: Example of a best-fit distribution fitted to the E. coli data for Swiss chard 

irrigated subsurface with greywater. All data throughout the trial was used.  The 95
th

 

percentile is indicated. 

The distributions fitted were then used as the range of contamination from which to calculate 

the ingested dose for further risk assessment.  In each case, a beta-Poisson distribution was used 

for this calculation with the alpha and beta values for Shigella given in Chapter 1, Table 1.8. 

An example of the calculation for E. coli on Swiss chard irrigated with greywater, based on 

Equation 2.1 and using the E. coli distribution given in Figure 3.27, is given in Equation 3.1. 
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Equation 3.1: Probability of infection based on the E. coli concentration detected for 

Swiss chard and using the beta-Poisson distribution function 

 

The factors used in the calculation are presented in Chapter 2, Table 2.2.  The model was run 

for 10 000 iterations, using Monte Carlo sampling, to provide the probability of infection.  The 

distribution for this data set is presented in Figure 3.28.   For the data for E. coli on Swiss chard 

irrigated with greywater it can be seen that the probability of infection drops rapidly. 

 

 

Figure 3.28: Distribution of the probability of infection based on the load of E. coli on 

Swiss chard for daily consumption of the vegetable.  The following were used in the 

calculation α=-0.126, β=42.86, d=distribution fitted to the untransformed data by @RISK.  

This data comprised an estimated daily consumption of the crop = 9.2g, the percentage of 

the population consuming the crop = 27.4%, estimated ration of indicator to pathogen = 

0.01.  The mode and 95
th

 percentiles are indicated 

In order to calculate yearly risk this probability of infection was then used in Equation 2.2, 

where n in this case is 365, as all consumption values were regarded as the normal daily 

consumption for the population.  The output of this calculation for infection from E. coli on 

Swiss chard, based on the distribution presented in Figure 3.28, is presented in Figure 3.29. 
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Figure 3.29: Example of the annual risk based on the loading of E. coli on Swiss chard 

irrigated subsurface with greywater.  The following were used in the calculation α=-0.126, 

β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop = 9.2g, the percentage of the 

population consuming the crop = 27.4%, estimated ration of indicator to pathogen = 0.01 

and n=365.  No risk mitigating factors were modelled.  The mode and 95
th

 percentiles are 

indicated 

 

All the above calculations are based on data from the crop before any risk-mitigating measures 

were put in place.  With reference to Chapter 1, Table 1.5, the bacterial load on crops could be 

reduced by interventions such as washing, peeling or cooking the crop before consumption as 

proposed by the World Health Organisation (WHO, 2006a; Regli et al., 1991).  Each of these 

interventions would result in a reduction of risk, and interventions could be combined to 

increase the microbial load reduction.  The impact on the annual probability of infection by 

reducing the microbial load by 6-log through cooking is demonstrated in Figure 3.30 where it 

can be seen that, under these circumstances, the 95
th
 percentile of risk falls within the WHO 

guidelines of >1 excess case of disease per 10 000 persons (WHO, 2006a; Regli et al., 1991). 
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Figure 3.30: Example of the annual risk based on the loading of E. coli on Swiss chard 

irrigated subsurface with greywater and cooked before consumption.  The following were 

used in the calculation α=-0.126, β=42.86, d=distribution fitted to the untransformed data 

by @RISK.  This data comprised an estimated daily consumption of the crop = 9.2g, the 

percentage of the population consuming the crop = 27.4%, estimated ratio of indicator to 

pathogen = 0.01, n=365 and risk mitigation factor=6 log.  The mode and 95
th

 percentiles 

are indicated 

 

3.4.1 Greywater 

No E. coli, Enterococcus or Staphylococcus were detected in either the hydroponic solution or 

the tap water, so distributions could not be fitted and hence, statistical comparisons with the 

greywater could not be made.  Distributions were fitted to the data for total coliforms obtained 

from all three water types.  For total coliforms in greywater (n=32) the best fit was a log-

normal distribution, while for hydroponic solution (n=20) and tap water (n=18) it was found to 

be a gamma and exponential distribution respectively.  The probability of infection through 

ingestion of the water was modelled as described in Chapter 3, Section 3.4 using the 

distribution function obtained for each water type calculated using @RISK and the factors 

presented in Chapter 2, Section 2.5, Table  2.3.   The model was then re-run instituting barriers 

to infection providing from 1- to 6-log reduction in microbial load.  The risk to the individual 

agricultural worker, rather than the community as a whole, has been calculated in order to 

provide the highest probability of risk.  Results for the three water types are presented in 

Chapter 8, Appendix 2, Table 8.1.  The mode value of probability of infection, based on total 

coliform load, from annual exposure to any of the three water types is presented in Table 3.18. 
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As can be seen from Chapter 8, Appendix 2, Table 8.1 and Table 3.18, when no mitigation is 

put in place, the risk from annual exposure to the greywater at the 95
th
 percentile level is higher 

than the WHO criteria (WHO, 2006a; Regli et al., 1991) and there is a definite risk to the 

agricultural workers tending the greywater-irrigated crops over the course of a year.  This risk 

does not exist for workers using either hydroponic solution or tap water.  Introducing mitigating 

factors to achieve a 5-log reduction in microbial load still results in a health risk above that 

accepted by the World health organisation.  

Table 3.18: Mode value for annual probability of infection from the accidental 

consumption of irrigation water by field workers based on total coliform load.  The 

following factors were used in the calculation α=-0.126, β=42.86, d=distribution fitted to 

the untransformed data by @RISK.  This data comprised an estimated daily consumption 

of water = 1 mL, the percentage of the population consuming the crop = 100%, estimated 

ratio of indicator to pathogen = 0.0001, n=200.  Risk both with a 5-log reduction of risk by 

the implementation of mitigating measures and with no risk abatement are presented.  

When no mitigation measures are implemented there is a certainty of health risk to 

workers using greywater whereas there is negligible risk from hydroponic solution or tap 

water.  This risk is brought to twice the acceptable level of risk by implementing a 5-log 

barrier intervention 
 

Annual risk with no mitigation 
Annual risk with 5-log 

mitigation of risk 

Greywater 1 215.6  10-6 

Hydroponic solution 0 0 

Tap water 5.88 10-5 5.88 10-10 

 

3.4.2 Soil 

A similar scenario to that explained for the greywater was assumed to exist for the risk of 

infection through the handling of soil irrigated subsurface with greywater.  A consumption of 

1g of soil per exposure, (based on the figures presented in Chapter 2, Section 2.5, Table  2.3 for 

potential volume of greywater consumed during agricultural work), has been used in the 

calculations and the remaining factors, except for the bacterial distribution loading, have 

remained the same as those given in Chapter 2, Table  2.3.  No E. coli were detected in any of 

the soil samples.  The model for soil was run in @RISK for the sub-set of irrigation workers, 

and the output is presented in chapter 8, Appendix 2, Table 8.2 with the 95
th
 percentile values 

given in Table 3.19. 
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Table 3.19: 95
th

 percentile value for annual probability of infection from the accidental 

consumption of soil irrigated with one of the three water types based on load of the 

various microorganisms.  The following factors were used in the calculation α=-0.126, 

β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily accidental consumption of soil = 1g, the percentage of the 

population consuming the crop = 100%, estimated ratio of indicator to pathogen = 1 for 

Enterococcus, 0.001 for Staphylococcus and 0.0001 for total coliforms, n=200.  Risk both 

with a 5-log reduction of risk by the implementation of mitigating measures and with no 

risk abatement are presented.  When no mitigation measures are implemented the health 

risk to workers using greywater is not significantly different to that from the other two 

treatments (p=0.05).  This risk is brought within the acceptable level of risk by 

implementing a 5-log barrier intervention.   

Microorganism Water Annual risk with no mitigation Annual risk with 5-log mitigation of risk 

Enterococcus G 3.18335  10-2 3.236  10-5 

  H 1 5.19  10-4 

  T 0.9999997 1.81 9  10-4 

Staphylococcus G 1.4863  10-3 1.487  10-8 

  H 4.494  10-3 4.504  10-8 

  T 0.482845 6.646  10-6 

Total  coliforms G 1.14189  10-2 1.149  10-7 

  H 0.9980694 6.739  10-5 

  T 0.294012 3.496  10-6 

 

3.4.3 Risk of infection from consuming above ground crops 

 

3.4.3.1 Swiss chard 

The risk of infection from the consumption of Swiss chard was calculated as outlined in 

Chapter 2, Section 2.6, using the figures in Table 2.2.  As the majority of the results for E. coli 

were zero, except for crops irrigated with greywater, no distribution of risk could be calculated. 

No significant difference in health risk was found between the treatments (p≤0.05), indicating 

that there was a health risk involved in the consumption of Swiss chard even without using 

greywater irrigation.  For the annual exposures, the risk from the raw crop without any barrier 

treatments generally rose to approximately one, i.e. a certainty of infection, for each indicator 

and for each treatment, except E. coli in tap water where distributions could not be calculated.  

However, once barriers such as withholding irrigation for 2 days immediately pre-harvest and 

washing of the crop took place, resulting in greater than 2-log reduction of microbial load, the 

risk was greatly reduced (Chapter 8, Appendix 2, Table 8.3). Values for the 95
th
 percentile of 

risk are given in Table 3.20.  Statistics for the annual risk of infection are presented in Figure 

3.31. 
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Table 3.20: 95
th

 percentile value for annual probability of infection from the consumption 

of Swiss chard irrigated with greywater (G), hydroponic solution (H), tap water (T) or 

purchased commercially (C) based on load of the various microorganisms.  The following 

were used in the calculation  α=-0.126, β=42.86, d=distribution fitted to the 

untransformed data by @RISK.  This data comprised an estimated daily consumption of 

the crop = 9.2g, the percentage of the population consuming the crop = 27.4% (Nel and 

Steyn (2000), estimated ratio of indicator to pathogen = 0.001 for E. coli, 1 for 

Enterococcus, 0.001 for Staphylococcus and 0.0001 for total coliforms 0.01, n=365.   No 

significant difference (p=0.05) was found between the treatments.  The risk was brought 

within the acceptable level of <1 in 10 000 by implementing mitigation measures resulting 

in a 5-log reduction of microbial load. 

Microorganism Water Annual risk with no mitigation Annual risk with 5-log mitigation of risk 

E. coli G 1 2.742 10-5 

 
H 0.8816289 2.164 10-6 

 
T 0.1648252 1.803 10-7 

 
C 1 2.074 10-5 

Enterococcus G 1 0.0027167 

  H 1 0.0019173 

  T 1 0.0001852 

 
C 1 9.016 10-5 

Staphylococcus G 1 0 

  H 1 0 

  T 1 0 

 
C 1 0 

Total  coliforms G 0.9998433 9.282 10-6 

  H 0.9998397 9.256 10-6 

  T 0.9999998 1.707 10-5 

 C 0.5713752 8.519 10-7 

 

 
E. coli – annual risk without mitigation 

 
E. coli – annual risk with 6-log mitigation 

Figure 3.31: Box-and-whisker plots of the annual probability of infection from the 

consumption of Swiss chard irrigated with greywater (G), hydroponic solution (H), or tap 

water (T) or purchased commercially (C).   The following were used in the calculation  

α=-0.126, β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop = 9.2g, the percentage of the 

population consuming the crop = 27.4% (Nel and Steyn (2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms 0.01, n=365 .  No significant difference (p=0.05) was found 

between the treatments.  The risk was brought within the acceptable level of <1 in 10 000 

by implementing mitigation measures resulting in a 5-log reduction of microbial load.  

The vertical line indicates the range, the box the 5
th

 to 95
th

 percentile and the mode is 

indicated by the numeric value.   
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Enterococcus–annual risk without mitigation 

 
Enterococcus–annual risk with 6-log 
mitigation 

 
Staphylococcus- annual risk without 

mitigation 

 
Staphylococcus- annual risk with 6-log 

mitigation 

 
Total coliforms- annual risk without 

mitigation 

 
Total coliforms- annual risk with 6-log 

mitigation 

Figure 3.31 (Contd): Box-and-whisker plots of the annual probability of infection from 

the consumption of Swiss chard irrigated with greywater (G), hydroponic solution (H), or 

tap water (T) or purchased commercially (C).   The following were used in the calculation  

α=-0.126, β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop = 9.2g, the percentage of the 

population consuming the crop = 27.4% (Nel and Steyn (2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms 0.01, n=365 .  No significant difference (p=0.05) was found 

between the treatments.  The risk was brought within the acceptable level of <1 in 10 000 

by implementing mitigation measures resulting in a 5-log reduction of microbial load.  

The vertical line indicates the range, the box the 5
th

 to 95
th

 percentile and the mode is 

indicated by the numeric value.   
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3.4.3.2 Green peppers 

The risk of infection from the consumption of green peppers was calculated as outlined in 

Chapter 2, Section 2.6, using the figures in Table 2.2.  The results for the probability of 

infection for each microorganism and each irrigation scheme are presented in Chapter 8, 

Appendix 2, Table 8.4.  Values for the 95
th
 percentile of risk are given in Table 3.20.  Box-and-

whisker plots of the probability of infection from annual consumption of peppers both without 

barrier interventions and with a 6-log reduction in load are presented in Figure 3.32. 

Table 3.21: 95
th

 percentile value for annual probability of infection from the consumption 

of green peppers irrigated with greywater (G), hydroponic solution (H), or tap water (T) 

or purchased commercially (C) based on load of the various microorganisms.  The 

following were used in the calculation  α=-0.126, β=42.86, d=distribution fitted to the 

untransformed data by @RISK.  This data comprised an estimated daily consumption of 

the crop =2.5g, the percentage of the population consuming the crop = 12.5% (Nel and 

Steyn (2000), estimated ratio of indicator to pathogen =0.001 for E. coli, 1 for 

Enterococcus, 0.001 for Staphylococcus and 0.0001 for total coliforms 0.01, n=365 .  No 

significant difference was found (p=0.05) for the risk presented by each of the three 

treatments and this risk was brought within the acceptable level of <1 in 10 000 by 

implementing mitigation measures resulting in a 5-log reduction of microbial load.  

Microorganism Water Annual risk with no mitigation Annual risk with 5-log mitigation of risk 

E. coli G 0.9954528 5.588 10-6 

 
H 0.9993824 7.758 10-6 

 
T 0.1635578 1.788 10-7 

 
C 0 0 

Staphylococcus G 0.1917181 2.131 10-7 

  H 0.8195605 1.732 10-6 

  T 0.7534859 1.413 10-6 

 
C 0.2466788 2.838 10-7 

Total  coliforms G 0.0680975 7.056 10-8 

 
H 0.0506622 5.201 10-8 

 
T 0.0495804 5.087 10-8 

 
C 0.0059984 6.017 10-9 

 

It can be seen, that as a result of the distribution of microbial load, the greywater in many 

instances has an apparently lower level of risk than the other treatments for the 95
th
 percentile, 

although this was not found to be statistically significant (p≤0.05).   
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E. coli – annual risk without mitigation 

 
E. coli – annual risk with 6-log mitigation 

 
Staphylococcus–annual risk without 

mitigation 

 
Staphylococcus–annual risk with 6-log 

mitigation 

 
 

Total coliforms- annual risk without 

mitigation 

 
 

Total coliforms- annual risk with 6-log 

mitigation 

Figure 3.32:Box-and-whisker plots of the annual probability of infection from the 

consumption of green peppers irrigated with greywater (G), hydroponic solution (H), or 

tap water (T) or purchased commercially (C).   The following were used in the calculation  

α=-0.126, β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop = 2.5g, the percentage of the 

population consuming the crop = 12.5%, estimated ratio of indicator to pathogen = 0.001 

for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 0.0001 for total coliforms 

0.01, n=365 and risk mitigation factor=6 log and this risk was brought within the 

acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-log 

reduction of microbial load.  The vertical line indicates the range, the box the 5
th

 to 95
th

 

percentile and the mode is indicated by the numeric value.   
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3.4.3.3 Chillies 

As explained in Section 3.2.3, as a result of findings of unusually high microbial contamination 

inside green peppers, chillies were investigated briefly only for greywater and hydroponic 

solution subsurface irrigation for one growth cycle.  No E. coli, Enterococcus or 

Staphylococcus were detected in any of the samples.  The 95
th

 percentile of risk is presented for 

each combination in Table 3.22.  The annual probability of infection based on the loading of 

total coliforms both before mitigation and with a mitigation level of 6-log, are presented in 

Figure 3.33.  It can be seen that, even without any barrier precautions, the results for the 

greywater-irrigated chillies fell within the results for the hydroponic solution-irrigated crop and 

both complied with the WHO requirements.  The full set of results is presented in Chapter 7, 

Appendix 2 as Table 8.5.    

 

Table 3.22: 95
th

 percentile value for annual probability of infection from the consumption 

chillies irrigated with greywater (G) or hydroponic solution (H) based on load of the 

various microorganisms.  The following were used in the calculation  α=-0.126, β=42.86, 

d=distribution fitted to the untransformed data by @RISK.  This data comprised an 

estimated daily consumption of the crop =0.6 g, the percentage of the population 

consuming the crop = 12.8% (Nel and Steyn (2000), estimated ratio of indicator to 

pathogen = 0.0001 for total coliforms, n=365 .  No significant difference was found 

(p=0.05) for the risk presented by each of the three treatments and this risk was within 

the acceptable level of <1 in 10 000 even before implementation of mitigation measures. 

Microorganism Water 
Annual risk with no 

mitigation 

Annual risk with 5-log mitigation 

of risk 

Total  coliforms G 1.077 10-4 1.076 10-10 

 
H 2.917 10-4 2.917 10-10 
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Total coliforms- annual risk without 

mitigation 

 

Total coliforms- annual risk with 6-log 

mitigation 

Figure 3.33: Box-and-whisker plots of the annual probability of from the consumption of 

chillies irrigated with greywater (G) or hydroponic solution (H).  The following were used 

in the calculation  α=-0.126, β=42.86, d=distribution fitted to the untransformed data by 

@RISK.  This data comprised an estimated daily consumption of the crop =0.6 g, the 

percentage of the population consuming the crop = 12.8% (Nel and Steyn (2000), 

estimated ratio of indicator to pathogen = 0.0001 for total coliforms, n=365 .  No 

significant difference was found (p=0.05) for the risk presented by each of the three 

treatments and this risk was within the acceptable level of <1 in 10 000 even before 

implementation of mitigation measures.The vertical line indicates the range, the box the 

5
th

 to 95
th

 percentile and the mode is indicated by the numeric value.   

 

3.4.4 Risk of infection from consuming below-ground crops 

 

3.4.4.1 Beetroot 

The data for beetroot were examined in the same way as explained previously in Chapter 2, 

Section 2.6, using the figures in Table 2.2.  No distribution could be fitted for Enterococcus for 

tap water-irrigated beetroot as there were insufficient non-zero values.  The commercially 

purchased beetroot also had arithmetic means used for the calculations as there was insufficient 

range of results to fit a distribution.  It was considered highly unlikely that beetroot would be 

consumed either unwashed or un-peeled, therefore the result obtained for risk with the 

implementation of a 2-log reduction in microbial load was considered to indicate the highest 

level of risk.  At the 95
th
 percentile level, all indicators except Enterococcus showed a health 

risk of less than 10
-5

 for a single exposure.  The 95
th
 percentiles of risk on an annual basis are 

presented in Table 3.23. 
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Table 3.23: 95
th

 percentile value for annual probability of infection from the consumption 

of beetroot irrigated with greywater (G), hydroponic solution (H) tap water (T) or 

purchased commercially (C) based on load of the various microorganisms.  The following 

were used in the calculation  α=-0.126, β=42.86, d=distribution fitted to the 

untransformed data by @RISK.  This data comprised an estimated daily consumption of 

the crop =3.9 g, the percentage of the population consuming the crop = 12.8% (Nel and 

Steyn (2000), estimated ratio of indicator to pathogen = 0.001 for E. coli, 1 for 

Enterococcus, 0.001 for Staphylococcus and 0.0001 for total coliforms, n=365 .  No 

significant difference was found (p=0.05) for the risk presented by each of the three 

treatments and this risk was mainly brought within the acceptable level of <1 in 10 000 by 

implementing mitigation measures resulting in a 5-log reduction of microbial load.    No 

significant difference was found between the treatments for any indicator at the p=0.05 

level. 

Microorganism Water Annual risk with no mitigation Annual risk with 5-log mitigation of risk 

E. coli G 0.094819 9.969 10-8 

 
H 0.0027714 2.775 10-9 

 
T 0.028166 2.858 10-8 

 
C 0 0 

Enterococcus G 1 0.0004986 

  H 1 0.0001912 

  T 0 0 

 
C 1 2.143 10-5 

Staphylococcus G 0.0787155 8.203 10-8 

  H 0.5765249 8.641 10-7 

  T 0.1380616 1.487 10-7 

 
C 0 0 

Total  coliforms G 0.1602551 1.749 10-7 

  H 0.3009514 3.589 10-7 

  T 0.0425956 4.354 10-8 

 C 0.2689353 3.139 10-7 

 

No significant difference was found for the probability of infection among the treatments 

(p≤0.05).  The annual probabilities of infection across the four treatments and for the four 

indicators are presented graphically in Figure 3.34.  The maximum risk calculated for beetroot 

irrigated with hydroponic solution using total coliforms as the indicator was orders of 

magnitude higher than for the other treatments even though the median values were similar.  

There was no apparent reason for the higher concentration range of total coliforms for this 

treatment and further investigation would be required.   From the data presented it is apparent 

that beetroot would be a suitable crop for growth with greywater-irrigation. 
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E. coli – annual risk without mitigation 

 
E. coli – annual risk with 6-log mitigation 

 
Enterococcus–annual risk without mitigation 

 
Enterococcus–annual risk with 6-log 

mitigation 

Figure 3.34: Box-and-whisker plots of the annual probability of from the consumption of 

beetroot irrigated with greywater (G), hydroponic solution (H), or tap water (T) or 

purchased commercially (C).   The following were used in the calculation  α=-0.126, 

β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop =3.9 g, the percentage of the 

population consuming the crop = 12.8% (Nel and Steyn (2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms, n=365 .  No significant difference was found (p=0.05) for the 

risk presented by each of the three treatments and this risk was mainly brought within 

the acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-

log reduction of microbial load.  The vertical line indicates the range, the box the 5
th

 to 

95
th

 percentile and the mode is indicated by the numeric value.  The maximum risk based 

on total coliform concentration is boxed adjacent to the whisker for this treatment 
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Staphylococcus- annual risk without 

mitigation 

 
Staphylococcus- annual risk with 6-log 

mitigation 

 
Total coliforms- annual risk without 

mitigation 

 
Total coliforms- annual risk with 6-log 

mitigation 

Figure 3.34 (Contd):Box-and-whisker plots of the annual probability of from the 

consumption of beetroot irrigated with greywater (G), hydroponic solution (H), or tap 

water (T) or purchased commercially (C).   The following were used in the calculation  

α=-0.126, β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop =3.9 g, the percentage of the 

population consuming the crop = 12.8% (Nel and Steyn (2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms, n=365 .  No significant difference was found (p=0.05) for the 

risk presented by each of the three treatments and this risk was mainly brought within 

the acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-

log reduction of microbial load.  The vertical line indicates the range, the box the 5
th

 to 

95
th

 percentile and the mode is indicated by the numeric value.  The maximum risk based 

on total coliform concentration is boxed adjacent to the whisker for this treatment 
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cooked crop, i.e. six-log removal of microorganism, was regarded as being the most relevant.  

The 95
th
 percentiles of risk on an annual basis are presented in Table 3.24.   

 Table 3.24: 95
th

 percentile value for annual probability of infection from the consumption 

of potato irrigated with greywater (G), hydroponic solution (H), or tap water (T) or 

purchased commercially (C).   The following were used in the calculation  α=-0.126, 

β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop =45.4 g, the percentage of the 

population consuming the crop = 27.1% (Nel and Steyn (2000), estimated ratio of 

indicator to pathogen = 0.001 for Staphylococcus and 0.0001 for total coliforms, n=365 .  

No significant difference was found (p=0.05) for the risk presented by each of the three 

treatments and this risk was mainly brought within the acceptable level of <1 in 10 000 by 

implementing mitigation measures resulting in a 5-log reduction of microbial load.     

Microorganism Water Annual risk with no mitigation Annual risk with 5-log mitigation of risk 

Staphylococcus G 1 6.245 10-5 

  H 1 2.79 10-5 

  T 0.3283836 3.991 10-7 

 
C 1 1.198 10-4 

Total  coliforms G 0.5864621 8.881 10-7 

  H 0.504534 7.055 10-7 

  T 0.4972232 6.907 10-7 

 
C 0.9998772 9.555 10-6 

Box-and-whisker plots of the probability of infection based on annual consumption are 

presented in Figure 3.35 and show that the values for the greywater-irrigated crop are either 

similar to or less than the values for the commercially purchased crop.   

 
Staphylococcus- annual risk without 
mitigation 

 
Staphylococcus- annual risk with 6-log 
mitigation 

Figure 3.35: Box-and-whisker plots of the annual probability of from the consumption of 

potato irrigated with greywater (G), hydroponic solution (H),  tap water (T) or purchased 

commercially (C).   The following were used in the calculation  α=-0.126, β=42.86, 

d=distribution fitted to the untransformed data by @RISK.  This data comprised an 

estimated daily consumption of the crop =45.4 g, the percentage of the population 

consuming the crop = 27.1% (Nel and Steyn (2000), estimated ratio of indicator to 

pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 0.0001 for 

total coliforms, n=365 .  No significant difference was found (p=0.05) for the risk 

presented by each of the three treatments and this risk was mainly brought within the 

acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-log 

reduction of microbial load.     
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Total coliforms- annual risk without 
mitigation 

 
Total coliforms- annual risk with 6-log 

mitigation 

Figure 3.35 (Contd): Box-and-whisker plots of the annual probability of from the 

consumption of potato irrigated with greywater (G), hydroponic solution (H),  tap water 

(T) or purchased commercially (C).   The following were used in the calculation  α=-0.126, 

β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop =45.4 g, the percentage of the 

population consuming the crop = 27.1% (Nel and Steyn (2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms, n=365 .  No significant difference was found (p=0.05) for the 

risk presented by each of the three treatments and this risk was mainly brought within 

the acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-

log reduction of microbial load.     

 

3.4.4.3 Onions 

In Section 3.3.3 it was shown that the median bacterial counts in onions were low for both the 

external and internal analyses, with the majority of samples being zero for E. coli, 

Enterococcus and Staphylococcus.  The data for onions were examined in the same way as 

explained previously, using the factors presented in Table 2.2.  The data are presented in 

Chapter 8, Appendix 2, Table 8.8.  Box-and-whisker plots of the probability of infection based 

on annual consumption are presented in Figure 3.36When the annual risk of infection was 

reviewed, it could be seen that if eaten raw and without any microbial load-mitigating barriers, 

both the greywater- and the hydroponic solution-irrigated produce presented a health risk above 

that considered tolerable by the WHO for all indicators (Table 3.25).  When a 6-log reduction 

in microbial load was modelled, the risk fell within the accepted limit of 10
-4
.   
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Table 3.25: 95
th

 percentile value for annual probability of infection from the consumption 

of onions irrigated with greywater (G), hydroponic solution (H),  tap water (T) or 

purchased commercially (C) based on load of the various microorganisms.  The following 

were used in the calculation  α=-0.126, β=42.86, d=distribution fitted to the 

untransformed data by @RISK.  This data comprised an estimated daily consumption of 

the crop =2.5 g, the percentage of the population consuming the crop = 12.8% (Nel and 

Steyn (2000), estimated ratio of indicator to pathogen = 0.001 for E. coli, 1 for 

Enterococcus, 0.001 for Staphylococcus and 0.0001 for total coliforms, n=365 .  No 

significant difference was found (p=0.05) for the risk presented by each of the three 

treatments and this risk was brought within the acceptable level of <1 in 10 000 by 

implementing mitigation measures resulting in a 5-log reduction of microbial load.   
Microorganism Water Annual risk with no mitigation Annual risk with 5-log mitigation of risk 

Enterococcus G 1 0.0001151 

  H 0.9999955 1.336 10-5 

  T 0 0 

 C 1 7.63 10-5 

Staphylococcus G 0.2453968 2.821 10-7 

 H 0.3423612 4.202 10-7 

 T 0.2829944 3.334 10-7 

 C 0.0011439 1.145 10-9 

Total  coliforms G 0.9191817 2.557 10-6 

  H 0.9486512 3.027 10-6 

  T 0.1486227 1.611 10-7 

 C 0.0218821 2.213 10-8 

 

When tested statistically, no significant difference was found for any of the risks calculated 

from the four indicator microorganisms (p≤0.05).   
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Enterococcus–annual risk without mitigation 

 
Enterococcus–annual risk with 6-log 

mitigation 

 

Staphylococcus- annual risk without 

mitigation 

 
Staphylococcus- annual risk with 6-log 

mitigation 

 
Total coliforms- annual risk without 

mitigation 

 
Total coliforms- annual risk with 6-log 

mitigation 

 

Figure 3.36: Box-and-whisker plots of the annual probability of from the consumption of 

onion irrigated with greywater (G), hydroponic solution (H), or tap water (T) or 

purchased commercially (C).   The following were used in the calculation  α=-0.126, 

β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop =2.5 g, the percentage of the 

population consuming the crop = 12.8% (Nel and Steyn (2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms, n=365 .  No significant difference was found (p=0.05) for the 

risk presented by each of the three treatments and this risk was brought within the 

acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-log 

reduction of microbial load.  The vertical line indicates the range, the box the 5
th

 to 95
th

 

percentile and the mode is indicated by the numeric value. 
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3.4.4.4 Carrots 

As was stated in Section 3.3.4, no E. coli was detected for either the tap water-irrigated or 

commercially purchased crop and no Enterococcus was found for the hydroponic solution- or 

tap water-irrigated samples.  No probability of infection could therefore be calculated for either 

of these treatments for these indicators.   The data for carrots were examined in the same way 

as explained previously, using the factors presented in Table 2.2.  The data are presented in 

Chapter 8, Appendix 2, Table 8.9 and Table 3.26.   

  

Table 3.26: 95
th

 percentile value for annual probability of infection from the consumption 

of carrot irrigated with greywater (G), hydroponic solution (H), or tap water (T) or 

purchased commercially (C) based on load of the various microorganisms.  The following 

were used in the calculation  α=-0.126, β=42.86, d=distribution fitted to the 

untransformed data by @RISK.  This data comprised an estimated daily consumption of 

the crop =3.9, the percentage of the population consuming the crop = 30.8% (Nel and 

Steyn (2000), estimated ratio of indicator to pathogen = 0.001 for E. coli, 1 for 

Enterococcus, 0.001 for Staphylococcus and 0.0001 for total coliforms, n=365 .  No 

significant difference was found (p=0.05) for the risk presented by each of the three 

treatments and this risk was brought within the acceptable level of <1 in 10 000 by 

implementing mitigation measures resulting in a 5-log reduction of microbial load. 

Microorganism Water 
Annual risk with no 

mitigation 

Annual risk with 5-log mitigation of 

risk 

E. coli G 1 2.766 10-5 

 
H 0.5088989 7.144 10-7 

 
T - - 

 
C - - 

Enterococcus G 1 6.833 10-5 

  H - - 

  T - - 

 
C 1 0.0002578 

Staphylococcus G 0.9999976 1.408 10-5 

  H 0.0815594 8.513 10-8 

  T 0.0316496 3.217 10-8 

 
C 0.7100748 1.248 10-6 

Total  coliforms G 0.887764 2.219 10-6 

  H 0.2165974 2.445 10-7 

  T 0.3741362 4.701 10-7 

 C 0.058377 6.017 10-8 

 

Box-and-whisker plots of the probability of infection based on annual consumption are 

presented in Figure 3.37.  The data from all four treatments indicate that the annual risk of 

consumption of carrots was above the WHO specifications (WHO, 2006a ) when no barriers to 

reduce microbial load were modelled.   
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E. coli – annual risk without mitigation 

 
E. coli – annual risk with 6-log mitigation 

 
Enterococcus–annual risk without mitigation 

 
Enterococcus–annual risk with 6-log mitigation 

 
Staphylococcus- annual risk without 
mitigation 

 
Staphylococcus- annual risk with 6-log 
mitigation 

Figure 3.37: Box-and-whisker plots of the annual probability of from the consumption of 

carrots irrigated with greywater (G), hydroponic solution (H), or tap water (T) or 

purchased commercially (C).   The following were used in the calculation  α=-0.126, 

β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop =3.9 g, the percentage of the 

population consuming the crop = 30.8% (Nel and Steyn, 2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms, n=365.  No significant difference was found (p=0.05) for the 

risk presented by each of the three treatments and this risk was brought within the 

acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-log 

reduction of microbial load.  The vertical line indicates the range, the box the 5
th

 to 95
th

 

percentile and the mode is indicated by the numeric value.  The maximum risk based on 

total coliform concentration for the greywater (G) treatment is boxed adjacent to the 

whisker for this treatment 
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Total coliforms- annual risk without 

mitigation 

 
Total coliforms- annual risk with 6-log 

mitigation 

Figure 3.37 (Contd): Box-and-whisker plots of the annual probability of from the 

consumption of carrots irrigated with greywater (G), hydroponic solution (H), or tap 

water (T) or purchased commercially (C).   The following were used in the calculation  

α=-0.126, β=42.86, d=distribution fitted to the untransformed data by @RISK.  This data 

comprised an estimated daily consumption of the crop =3.9 g, the percentage of the 

population consuming the crop = 30.8% (Nel and Steyn, 2000), estimated ratio of 

indicator to pathogen = 0.001 for E. coli, 1 for Enterococcus, 0.001 for Staphylococcus and 

0.0001 for total coliforms, n=365.  No significant difference was found (p=0.05) for the 

risk presented by each of the three treatments and this risk was brought within the 

acceptable level of <1 in 10 000 by implementing mitigation measures resulting in a 5-log 

reduction of microbial load.  The vertical line indicates the range, the box the 5
th

 to 95
th

 

percentile and the mode is indicated by the numeric value.  The maximum risk based on 

total coliform concentration for the greywater (G) treatment is boxed adjacent to the 

whisker for this treatment 

 

When a 6-log reduction of the microbial load was modelled, all indicators, except Enterococcus 

on the commercially purchased crop, resulted in health risks of less than 10
-4
.  The data for this 

treatment was biased by one sample containing  600 cfu/g dry mass whereas the remaining 

samples were less than 1 cfu/g dry  mass.  As was decided at the start of the project, this result 

was used as a worst case scenario to estimate potential risk.  Taking the 95
th
 percentile of risk 

of infection gives a conservative outcome which provides additional safety to consumers.
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4. DISCUSSION  

4.1 Irrigation water 

In Chapter 1, Section 1.2, Table 1.1, levels of indicator bacteria found in greywater 

internationally were presented.  When these figures are compared with the levels determined 

for the greywater used in this study and presented in Chapter 3, Section 3.1.3, Table 3.2, it can 

be seen that the concentrations are similar or that the local greywater has higher levels of 

microbial contamination than the reported international figures for greywater, but lower than 

the reported international loadings for sewage as presented in Table 4.1.  This is in contrast to 

the findings of Carden et al. (2007b) who found that greywater from un-sewered informal 

settlements in South Africa had high levels of microbial pollution and stated that the greywater 

in South Africa was generally unfit for re-use.  The greywater used in this study is therefore not 

unusual in its characteristics when related to international studies, but may be markedly 

different from what is found in other parts of South Africa and models used internationally 

could be used in this instance with a reasonable degree of accuracy.   

Table 4.1: Reported number of organisms in 100 mL of greywater or sewage water 

respectively (Ottosson and Stenström, 2005). 
Organism Loading log10 (cfu/100mL) 

Greywater 

Total coliforms 7.2 – 8.8 

Thermotolerant coliforms 5.8 

E. coli 5.4 

Enterococcus 2.4 – 4.6 

Sewage 

Salmonella 1.97 – 4.04 

Enterovirus 1 - 3 

    

As stated by the World Health Organisation (WHO, 2006a), the readily available biodegradable 

organics in greywater could allow the growth of indicators in the system and the levels obtained 

are therefore likely to over-estimate the faecal load and hence health risk.  This is supported by 

Roesner et al., (2006), who state that a high level of thermotolerant coliforms in greywater does 

not translate to a high pathogen risk as non-pathogenic coliforms can multiply in greywater 

whereas pathogens tend to die off rapidly.  It is also supported by this study where none of the 

selected pathogens was detected during the course of the project although in some cases high 

levels of the selected indicators were present. 

As can be seen from Chapter 8, Appendix 2, Table 8.1 and Chapter 3, Section 3.4.1, Table 

3.18, the risk from annual exposure to the greywater at the 95
th
 percentile level is higher than 
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the WHO criteria of  less than 1 excess case of disease per 10 000 people per year (Regli et al., 

1991) and there is a definite risk to the agricultural workers tending the crops.  This risk does 

not exist for workers using either hydroponic solution or tap water.  Mitigating measures that 

could be taken to reduce the risk of infection are the use of gloves and boots and thorough 

washing of the face and arms after handling the greywater.   According to the World Health 

Organisation (WHO, 2006a), these would result in a one- to two-log reduction each in exposure 

and a five-log reduction if all were combined.   These measures are easily implemented and, if 

all are applied to achieve a 5-log reduction of exposure, would reduce the annual health risk 

levels of agricultural workers to within the range generally accepted by the World Health 

Organisation (WHO, 2006a; Regli et al., 1991) and the United States Environment Protection 

Agency (USEPA, 2004).    

In line with best practice in barrier protection methods, these measures should start to be 

introduced as far back from the end user as possible and several barriers should be in place to 

provide a redundancy level of protection.  Interventions to reduce the microbial load in the 

greywater itself should be investigated as the most effective measure of reducing overall health 

risk to the community. 

 

4.2 Soil 

Soil from the pot trial was analysed chemically and microbiologically throughout the trial and 

the mean results are presented in Chapter 3, Section 3.1.2, Table 3.1.  These results indicate 

that there is the potential for the accumulation of microorganisms in the soil with prolonged use 

of untreated greywater.  Based on the assumptions made in the model used for field workers, 

the results of which are presented in Chapter 3, Section 3.4.2, Table 3.21 and Chapter 8, 

Appendix 2, Table 8.2, it is apparent that working with soil presents a lesser risk than working 

directly with greywater.  There is however a similar risk from the soil for each of the water 

types used and the risk would be limited to those working the crop or preparing it for 

consumption.  The use of even basic mitigation measures would bring the risk within the range 

considered acceptable by the World Health Organisation (WHO, 2006a; Regli et al., 1991). 
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4.3 Above-ground crops 

 

4.3.1 Swiss chard 

When annual consumption is examined, where no barriers were applied, none of the treatments 

resulted in crops that complied with the WHO guidelines (WHO, 2006a; Regli et al., 1991) at 

the 95
th
 percentile level (Chapter 8, Appendix 2, Table 8.3).  The level of risk varied among the 

indicators, with Enterococcus showing the greatest risk.  No significant difference in health risk 

was found between the treatments (p≤0.05), indicating that there was a health risk involved in 

the consumption of Swiss chard even without using greywater irrigation.  For the annual 

exposures, the risk from the raw crop without any barrier treatments generally rose to 

approximately one, i.e. a certainty of infection, for each indicator and for each treatment, except 

E. coli in tap water where distributions could not be calculated.  However, once barriers such as 

withholding irrigation for 2 days immediately pre-harvest and washing of the crop took place, 

resulting in greater than 2-log reduction of microbial load, the risk was greatly reduced 

(Chapter 8, Appendix 2,Table 8.3). 

 

4.3.2 Green peppers 

In each case, when E. coli was used as an indicator, it is apparent that generally, at the 95
th

 

percentile, the risk for this crop, irrigated with either greywater or hydroponic solution, fell 

outside 1 excess case of disease per 1 000 for individual exposures before any barrier methods 

were utilised.  This level of health risk is not seen for the other indicators.  This could indicate 

re-growth of  E. coli or that the factor used to convert the indicator counts to potentially 

pathogenic counts was too high.  Once any of the barriers providing a load reduction of 2-log or 

more were instituted, the health risk became acceptable (Chapter 8, Appendix 2,Table 8.4).  For 

annual consumption, all the treatments indicated a degree of risk at the 95
th
 percentile level that 

was above the level of 1 in 10 000 (Chapter 3, Section 3.4.3.2, Table 3.21; Chapter 8, Appendix 

2,Table 8.4).  This could have been a result of over-estimating the mass of crop consumed on a 

daily basis or the percentage of the community consuming it.  Further studies into dietary habits 

would be necessary in order to clarify this.  When examined statistically, no significant 

differences in health risk were found between the four treatments (p≤0.05).   
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4.3.3 Chillies 

The risk of consumption of this crop was based solely on the levels of total organisms present 

as no other indicators were detected.  It can be seen (Chapter 3, Section 3.4.3.3, Table 3.25 and 

Chapter 8, Appendix 2,Table 8.5) that, even without any barrier precautions, the results for the 

greywater-irrigated chillies fell within the results for the hydroponic solution-irrigated crop and 

both complied with the WHO requirements (WHO, 2006a;  Regli et al., 1991).  This could be 

attributed to the fact that this crop grows well above the ground and therefore is unlikely to be 

affected by any splash-back from the soil or the irrigating water.  It is also consumed in much 

lower quantities than any of the other crops. 

 

4.4 Below-ground crops 

 

4.4.1 Beetroot 

It was considered highly unlikely that beetroot would be consumed either unwashed or un-

peeled, therefore the result obtained for risk with the implementation of a 2-log reduction in 

microbial load was considered to indicate the highest level of risk for either individual or 

annual exposure.  At the 95
th
 percentile level, all indicators except Enterococcus showed a 

health risk of less than 10
-5

 for a single exposure (Chapter 8, Appendix 2, Table 8.6). For 

annual consumption, only Enterococcus indicated a annual risk greater than 10
-4

 when a 2-log 

mitigation of microbial load was used (Chapter 3, Section 3.4.4.1, Table 3.27 and  Chapter 8, 

Appendix 2, Table 8.6).  These discrepancies were probably caused by one very high 

Enterococcus reading present in the greywater-irrigated set of data.  This result was left in for 

calculation purposes as no scientific reason for discarding it could be found.  No significant 

difference was found for the probability of infection among the treatments (p≤0.05).  This 

indicates that, although the potential for accumulation of microorganism in the soils had been 

shown, this did not appear to affect the microbial quality of this crop.  Although beetroot may 

occasionally be eaten raw in a salad, its more usual form of consumption requires boiling until 

well cooked.  The risk from a single exposure to greywater-irrigated beetroot after boiling was 

generally negligible (<10
-10

) and even the risk for annual consumption (<10
-7

) is extremely low.   
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4.4.2 Potato 

This crop is seldom, if ever, eaten raw in communities such as the one involved in this study.  

The data show (Chapter 3, Section 3.4.4.2, Table 3.24 and Chapter 8, Appendix 2,Table 8.7) 

that, where no risk-mitigating interventions occurred, the risk of infection from individual 

exposure events is not within 1 per 1000 for any of the treatments.   When the annual exposure 

risk is reviewed, the 95
th
 percentile level showed that, where mitigating factors resulting in a 6-

log reduction of risk were implemented, a health risk level of ≤10
-4

 was achieved.  There are 

therefore no data from this project to support restriction of the growth of potatoes using 

subsurface, greywater irrigation in order to protect the health of end consumers as long as the 

crop is thoroughly cooked before consumption.  The risk from handling soil discussed in 

Section 4.2 would however apply to consumers handling unwashed produce.  If the crop is to 

be consumed other than in the immediate household providing the greywater, washing of the 

tubers before leaving the site would be advised in order to reduce the possibility of secondary 

transmission of infections. 

 

4.4.3 Onions 

When the individual risk of infection was reviewed (Chapter 3, Section 3.4.4.3, Table 3.29 and 

Chapter 8, Appendix 2, Table 8.8),  it could be seen that, if eaten raw and without any other 

microbial load-mitigating barriers, this crop generally presented a health risk above 10
-3

.  The 

health risk of individual instances of the raw consumption of this crop could be regarded as 

likely to be significant under any irrigation system. This indicates an inherent risk for this crop.   

When a 6-log reduction in microbial load was modelled, both the single exposure and the 

annual health risk fell within the limit of 10
-4 

(Chapter 3, Section 3.4.4.3, Table 3.29 and 

Chapter 8, Appendix 2, Table 8.8).  When tested statistically, no significant difference was 

found for any of the risks calculated from the four indicator microorganisms (p≤0.05).  As the 

annual risk of consumption of greywater-irrigated onions was not significantly higher than that 

for the other treatments, this produce could be safely used in the same way as the currently 

available onions, although a barrier of at least peeling the produce before consumption raw 

should be required and cooking is recommended in all cases. 
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4.4.4 Carrots 

The data for individual episodes of exposure show that there may be some health risk involved 

in the raw consumption of carrots irrigated with greywater as the probability of infection 

indicated by the indicators E. coli and Enterococcus  is ≥ 10
-3
.  The data from all four 

treatments indicate that the annual risk of consumption of carrots was above the World Health 

Organisation specifications (WHO, 2006a; Regli et al., 1991) when no barriers to reduce 

microbial load were modelled.  When a 6-log reduction of the microbial load was modelled, all 

indicators, for the three water treatments resulted in health risks of less than 10
-4
 (Chapter 3, 

Section 3.4.4.4, Table 3.30 and Chapter 8, Appendix 2,Table 8.9).  The data for the commercial 

crop was biased by one sample containing  600 cfu/g dry mass whereas the remaining samples 

were less than 1 cfu/g dry  mass.  As was decided at the start of the project, this result was used 

as a worst case scenario to estimate potential risk even though the commercial crop was not 

used for statistical comparisons.   The data from this project support the finding that carrots 

could safely be grown with greywater irrigation and that the health risk would be within WHO 

criteria (WHO, 2006a; Regli et al., 1991) as long as the produce was cooked before 

consumption.   

 

4.5 Overall assessment of health risk 

From the results presented, it is apparent that, under the conditions prevailing in this study, it is 

possible to utilise household greywater for food crop irrigation without undue risk to the 

community so long as defined precautions are taken.  The most hazardous areas of operation 

are the handling of the water itself and the tilling of the irrigated soil.  These would both benefit 

from a reduction in the microbial load in the water, as would the crops produced.  An 

intervention would need to reduce the load by at least 2-log in order to benefit the agricultural 

workers.  It is apparent that the above-surface crops grown close to the ground are more likely 

to offer health risk than those growing suspended above the surface.  This might not be true if a 

system other than sub-surface irrigation had been used.  This is because, in this trial, risk of 

splashing of the surface of above-ground crops was reduced through the use of sub-surface 

irrigation; other types of irrigation, especially spraying, would not offer this benefit.  As stated 

previously, according to the World Health Organisation, (WHO, 2006a; Regli et al., 1991) a 

tolerable burden of disease for a single exposure is 1 excess case of disease in 1 000 people for 

drinking water (Regli et al., 1991) and the same level should be achieved for greywater- 
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irrigated crops.  The data presented in this study are for risk of infection, but as data for the 

conversion of infection to illness were not available for this population, there has been no 

rigorous attempt at conversion of the data to probability of illness and therefore no calculation 

of DALYs was possible.  As there is a risk of a high incidence of immune-compromised 

persons in the community, to provide the greatest safety, a conversion factor of 1 could be used 

for the conversion from an infected to a diseased state.  This would imply that anyone 

becoming infected would convert to illness.  No inherent immunity was assumed and neither 

secondary infection nor protection from infection during the course of the disease would have 

been factored in.  Even at this level, the risk of  ≤ 10
-3

 was generally achieved for all the crops 

at the 95
th
 percentile level when the produce was cooked. 

As greywater does not contain the same level of intestinal pathogens as sewage, the factors 

used in this study to convert indicator concentrations to potential pathogen concentrations are 

likely to over-estimate the presence of pathogens by at least two orders of magnitude.  The risks 

presented in this study are therefore extremely conservative and protective of the health of the 

community using the greywater for irrigation purposes.  This, in part, goes to mitigate the fact 

that only bacterial indicators were modelled in this study.  The loads of pathogenic virus could 

be expected to be higher than for bacteria and the risk of infection would be concommitantly 

higher especially as the number of virus required to initiate infection is often lower than that for 

bacteria.  The risks calculated from the greywater irrigation scheme examined in this 

dissertation are also relevant to the community – or actual household – implementing the 

scheme and direct health risks would become insignificant in the wider community. 

Guidelines for water re-use exist in many countries and are well covered by Maimon et al., 

(2010) and Marsden  Jacobs Associates (2005).  According to Rodda et al., (2010 in press), the 

South African National Water Act (DWAF, 1998) does not specifically mention greywater in 

terms of guidelines for its re-use.  However, application of reasonable judgement could put the 

control of greywater re-use in agriculture under ―the use of water containing waste for 

irrigation purposes‖, a ―controlled activity‖ even though the relevant section in the General 

Authorisation (DWAF, 2004b) is headed ―irrigation of any land with waste or water containing 

waste generated through any industrial activity or by a waterwork‖, thus, by inference, 

exempting the domestic situation.  As such, legally, a license would not be required before 

greywater could be used for irrigation if the volumes used fall within the guidelines specified in 

the general authorisation.  Rodda et al. (2010 in press) also state that greywater irrigation would 

not benefit from the most relevant requirement (Chapter 2, Section 2.7 (iii) of the revisions of 

the General Authorisations, Gazette no 26187).  This would not hold true for the greywater 
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examined in this study as the average greywater microbial quality as presented in Chapter 3, 

Section 3.1.3, Table 3.2 and Table 3.3 is within the limits specified for irrigation at the lowest 

volume, as shown in Table 4.2.   

 

 

Table 4.2: Comparison of the mean greywater analysis values with the General 

Authorisation values for irrigation with used water or effluent 

Determinand 
Greywater 

(Mean) 

Irrigation 

volume 

<2 000m
3
 

Irrigation 

volume 

<500m
3
 

Irrigation 

volume <50m
3
 

Faecal coliform 

(log cfu/100mL) 
4.76 <3.3 <5 <5 

COD (mg/L) 584.3 >75 <440 <5 000 

pH  6.0 – 9.0 6.0 – 9.0 6.0 – 9.0 

NH4 (as N) (mg/L) 19.76 <3   

Electrical 

conductivity 
(mS/m) 

69.82 <150 <200 <200 

   

Although there are guidelines for the disposal of sewage and sewage sludge, there are as yet no 

formal guidelines for the use of greywater in South Africa although a Water Research 

Commission project on this topic is in preparation (Rodda et. al., 2010 in press).  This 

document provides guidance for decisions on whether or not greywater in a particular instance 

is suitable for small-scale irrigation use.  It covers chemical, physical and microbiological 

aspects to give tools for decisions on both human health risk and environmental risk.  This goes 

beyond the parameters of this dissertation, but an extract of the microbiological requirements is 

presented in Table 4.3.  When the target figures from this table are compared with the levels of 

E. coli detected in the greywater used for this project, Chapter 3, Section 3.1.3,  Table 3.2 and 

Table 3.3, it is apparent that the greywater from this project would not have been considered 

acceptable for re-use except on a short-term, site-specific basis.  However, the QMRA 

investigation has shown that, in the circumstances prevailing, the resultant health risk could be 

brought well within acceptable levels.  The guidance document therefore provides guidance 

which would preclude the use of some greywater which could be used, in the right 

circumstances, without human health risk.  This highlights the need for QMRA to be performed 

for each scenario before a final judgement is made as to the suitability of the water for 

irrigation purposes.  The application of the targets from the guidance document needs to 

provide high protection of human health but might otherwise prevent a beneficial activity in the 

community and therefore errs on the side of caution to ensure safety in cases where QMRA has 

not been performed.    
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Table 4.3: Water quality guidance for use of greywater for small-scale irrigation in South 

Africa. From South African Water Quality Guidelines for Irrigation, 2nd edition DWAF, 

1996 and Rodda et al. 2010 (in preparation) 

Greywater 
constituent 

 Target water 

quality range 
Maximum water 

quality range 
(applicable only to 

well-drained, 

chemically stable 

soils) 

Water quality 

suitable only for 

short-term use 

on site-specific 

basis.  

Water quality 

not 

recommended 

for irrigation 

use 

Greywater 
from 
project 

Suitable for 
unrestricted use 
with minimal risk to 
human health, 
plants or soil 

Increasing risk to 
human health, plants 
or soil 

Significant risk to 
human health, 
plants or soil; 
tolerable for 
short-term use 
only 

Excessive risk 
to human 
health, plants or 
soil 

E. coli  
(colony-
forming 
units, 
CFU/100 
mL) 

>104 < 1 1 – 103 
(1 – 1 000) 

103  - 105 
(1 000 – 100 000) 
Note: Only with 

appropriate 
exposure 

restrictions – see 
text. Range can 
be extended to 

107 (10 000 000) 

if irrigation is 
sub-surface. 

> 107 
(> 10 000 000) 

Carden et al. (2007 a and b) conducted site surveys throughout South Africa into the generation 

and disposal of greywater.  They showed that there is some resistance to its use for food 

irrigation purposes. These reports also noted that the greywater investigated was generally unfit 

for use for crop irrigation.  The condition of the greywater before any treatment is largely a 

function of the availability of potable water.  Where a reasonably adequate supply is readily 

available, such as was the case in the Cato Crest community, water is seldom used several 

times before being considered for disposal or agricultural use.  Where water has to be carried 

for longer distances or is otherwise limited, the water is used many times before it is considered 

disposable and it is water under these conditions which would be considered unusable in lin 

with the conclusions of Carden et al. (2007 a and b). 

Another very important study performed in South Africa was a project implementing dry 

sanitation and greywater re-use in Kimberley – the Hull Street project (Källerfelt and Nordberg, 

2004). This collaboration between Sol Plaatjies Municipality and the Swedish International 

Development Cooperation Agency (SIDA) showed that simple treatment options were often 

insufficient to provide water of a satisfactory quality for agriculture (Källerfelt and Nordberg, 

2004).  However such treatment may be adequate in conditions such as are present in the Cato 

Crest community.  Reference is made in report for WRC Project K5/1639 (Rodda et al. 2010 in 

press) to a simple prototype pre-treatment system which removes solids and fats from kitchen 
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greywater and provides for its aerobic biodegradation which may show promise for future 

implementation, as do the options presented by Whittington-Jones (2007).  In the project 

presented in the current dissertation, no such pre-treatment occurred and only simple straining 

to remove suspended solids, such as hair, was implemented.  The potential therefore exists to 

mitigate the risk of infection from greywater re-use even further.  Ottoson and Stenström 

(2003) and the WHO (2006a) have proposed that human and environmental health can be 

protected by the use of treatment precautions and exposure barriers.  The current project has 

supported this principle by illustrating that simple precautions in the handling of soil and 

greywater and the post-harvesting treatment of the crops can reduce the health risk from the re-

use of greywater to acceptable levels. 

In order to make health risk understandable to stake-holders, it is necessary to relate it to known 

levels of risk in the community.  Figures drawn from Norman et al., (2000), South African 

Police Services website (http://www.saps.gov.za/)  and Statistics South Africa (StatsSA, 2001), 

are presented in Figure 4.1.  From this figure it can be seen that, even when the community risk 

figures are expanded, without alteration in the percentage of population exposed, to reflect an 

exposed community of ten million, the risk of infection from consumption of greywater-

irrigated produce is significantly less than common risks of severe illness or death.  If a 

conversion from infection to illness of 50% is assumed, the risk from the greywater-irrigated 

produce is even lower.  In addition, the risk of death from malnutrition is only 25% less than 

the risk of infection from consumption of greywater irrigated produce when the entire 

population of 10 million is regarded as having the same risk as the community growing the 

produce.  This scenario presents the extreme of risk and it is also necessary to bear in mind that 

the most likely illnesses would be gastroenteritis.   These would usually be non-life threatening 

in the general population but could however have severe or even fatal results in HIV-positive 

individuals.  When the risks are calculated relative to the size of the community in relation to 

ten million people, they become non-significant.  This does not in any way down-play the 

seriousness of the risk outcomes used for comparison purposes or imply that they are 

acceptable.  The benefits of having excess vegetables either for exchange with other 

community members or for sale have not been addressed but it is clear from Ahmed et al. 

(2003), that these benefits are substantial.  In addition, the introduction of a steady supply of 

fresh vegetables to individuals in poor communities or with lowered immunity would 

undoubtedly have some beneficial impact. 

http://www.saps.gov.za/
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Figure 4.1: Annual outcome for various risks per 10 million persons in South Africa. 

(Norman et al., 2000; South African Police Service (SAPS). http://www.saps.gov.za/; 

StatsSA, 2001) 

 

When the risks are calculated relative to the size of the community in relation to ten million 

people, they become non-significant.  This does not in any way down-play the seriousness of 

the risk outcomes used or imply that they are acceptable.  The benefits of having excess 

vegetables either for exchange with other community members or for sale have not been 

addressed but it is clear from Ahmed et al. (2003), that these benefits are substantial.  In 

addition, the introduction of a steady supply of fresh vegetables to individuals in poor 

communities or with lowered immunity would undoubtedly have some beneficial impact. 

This study has shown that greywater re-use is a feasible option for the growth of edible crops.  

However, as mentioned by Carden et al., (2007a) and as discovered in eThekwini (MacLeod, 

N. 2010, pers. com)
10

, scientific studies do not always overcome the perceptions in 

communities that greywater will cause disease.  Greywater re-use does need to be carefully 

monitored and communities using it will need support from either local government or other 

bodies well into the future to ensure that the potential offered by this resource is used 

beneficially. 

  

                                                   
10 Macleod, N. Head Water and Sanitation, eThekwini Municipality P.O. Box 1038 Durban 4000 

0 200000 400000 600000 800000
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http://www.saps.gov.za/
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

From the results reported in this study, it can be seen that the human health risk to the Cato 

Crest community from exposure relating to greywater irrigation of crops, can be reduced to 

acceptable levels by the implementation of very simple control measures.  For all crops, the 

simple precautions of using sub-surface irrigation, basic hygiene methods and personal 

protective clothing would protect the health of the agricultural workers.  Ensuring that all 

produce grown below ground is either cooked or that greywater irrigation is stopped for two 

days before harvesting and that the crop is peeled before being eaten raw would ensure that the 

community bore no additional health risk from consumption of the greywater-irrigated crops.  

Ensuring compliance with such restrictions would require thorough training and on-going 

support to the community.   

At the start of this project, the following hypotheses were proposed: 

Hypothesis 1: There is no difference in the microbiological quality of crops irrigated below the 

soil with greywater and those similarly irrigated with water of a non-waste origin. 

Hypothesis 2: The health risk to handlers and consumers of crops irrigated sub-surface using 

greywater can be easily brought within the World Health Organisation guidelines. 

The results of the project showed that for crops grown above-ground and not in contact with the 

surface, Hypothesis 1 can be accepted.  For crops grown underground or above-ground but in 

contact with the soil, contrary to expectation, the greywater-irrigated crops did not show a 

statistically higher concentration of microorganisms than similar crops irrigated with the 

hydroponic solution or tap water and therefore Hypothesis 2 should also be accepted.   The 

implementation of basic barrier precautions in the preparation of crops for consumption would 

however still be an advisable precaution in all cases. 

It is recommended that an epidemiological study be performed utilising the expertise of the 

clinics servicing areas such as the Cato Crest community so that the microbiological data for 

rate of infection, conversion from infection to disease etc. could be refined and a full-scale 

dynamic model could be prepared for utilisation in the South African context. 

The re-use of greywater should form part of sustainable water use practices and should be 

incorporated with other sustainable practices such as dry sanitation, composting and solar 
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energy utilisation.  The human health risks should not be ignored, even though this research has 

shown that they can be easily controlled to acceptable levels.  Community education is of 

paramount importance and has to go hand-in-hand with any re-use intervention.  This 

dissertation has suggested that reduction in the microbial concentrations in greywater is a 

necessary intervention.  This could be achieved by interventions such as chemo-therapy for 

parasite load and simple treatment of the generated greywater before use.  Although using 

greywater for small-scale irrigation has been shown in this study to be an acceptable practice, 

every situation has to be examined on its own merits and where either an epidemiological study 

or QMRA cannot be performed, the guidance document (Rodda et al., 2010, in press) should be 

used to determine if the water is fit for the intended use.   

The results presented in Chapter 3, and Appendix 2, Table 8-1 to 8-9, show that the greatest 

health risk is to those members of the community who handle the greywater and the soil but 

that these are not significantly different from the risks inherent in growing crops with water 

other than greywater.  These members of the community are exposed to the full range of health 

risk, i.e. from greywater itself, the soil, crop handling and crop ingestion.  The greatest efforts 

at mitigation should therefore be guided by the risks to these people.  According to Roesner et 

al. (2006), pathogens in greywater can survive for 15 days to several months whilst survival in 

soils or on crops is usually less than two months and is related to environmental conditions 

such as temperature and solar radiation.  They go on to state that contact between the edible 

part of crops and greywater should be limited and that sprinkler systems should be avoided 

whereas drip-irrigation systems can be effective.  By implication, contact between the 

agricultural worker and the greywater should therefore also be avoided and sub-surface 

irrigation would present less risk to the agricultural workers than spraying. 

As in any mitigation regime, the interventions should be started as far removed from the final 

exposure as possible in order to allow additional control points as a backup in case of the 

failure of the major intervention.  In this case, the first intervention should be concentrated at 

the critical point where the water enters the agricultural system in order to produce the greatest 

reduction in health risk, whether or not greywater is used.  Additional safety could be provided 

by giving some treatment to the greywater before use.  Disinfection with chlorine would be a 

reliable, simple and cheap method, but would result in an oxidising agent and probably 

disinfection by-products in the water which could lead to damage to the crops (Morel and 

Diener, 2006).  A simple sand filter or solar-powered ultra-violet disinfection could also lower 

the microbial load without making the water less suitable for agricultural use or adding 

significant ongoing cost to the system (Fangyue et al., 2009).  Both of these should be 
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investigated in further studies.  The barriers of gloves, boots and washing were assessed in the 

model and found to reduce the risk from exposure to either soil or water to acceptable levels for 

greywater (Chapter 3, Table 3.18 and Table 3.19). 

This study addressed largely bacterial pathogens as the facility for examining human viruses 

was not available.  As stated previously, the risk from viruses could be much higher than that 

from bacteria and it is recommended that investigation into the viral load of domestic greywater 

is done.  In addition, this study did not address any of the chemical risk to human health such as 

those from endocrine disrupting compounds.  These are becoming more widespread in the 

environment and, as such, should be studied ass potential risk factors for grey-water re-use. 
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7. APPENDIX 1 

7.1 Detection and enumeration of helminth ova 

Introduction 

The Department of Agriculture has suggested that sludge for use as fertiliser should be checked 

for viable Ascaris ova before use.  Ascaris infestation is acquired by ingestion of ova 

containing second stage larvae.  These hatch in the duodenum and the larvae penetrate the 

intestinal wall and enter the circulatory system where they are carried to the pulmonary system.  

Entering the alveoli of the lungs, the larvae moult twice to become fourth stage larvae about ten 

days after infection.  These fourth stage larvae migrate up the respiratory tree to the pharynx 

where they are swallowed and pass into the stomach and hence the small intestine.  Here they 

undergo the final moult to become adults approximately 25 – 30 days after infection.  Shortly 

after fertilisation, the female worm begins to release embryonated ova, producing 

approximately 200 000 ova per female per day.  Over the normal 17 month lifespan of an adult 

female, this approximates to 26 million ova.  If these ova are deposited in a suitable 

environment of shaded, warm moist soil, they can develop to the infective stage in 10 – 15 days 

and may remain infective for months or years. 

 

Scope/ Field of Application 

This method is suitable for use on wastewater, sewage effluents, wet sludge, dry or composted 

sludge or urine diversion toilet waste. 

 

Principles 

This method allows the separation of parasite eggs from the rest of sludge particulate matter 

thus allowing concentration of most of the parasite eggs in the sludge sample. 

 

Health, Safety and Precautions 

Ascaris ova may be highly infectious, so scrupulous hygiene practices must be observed. 
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Sample Handling 

Samples of sewage sludge must be taken before treatment with polyelectrolyte flocculating 

agents. 

Samples must be cooled for transport. 

 

Apparatus and Equipment 

Centrifuge with swing out rotor 

15 mL plastic centrifuge tubes and holders 

Microscope 

Vortex mixer 

Large plastic funnels (± 220 mm diameter) 

Filter sieves; 1 x 150 µm, 1 x 220 µm. 

Retort stand 

Plastic beakers: 6 x 500 mL 

Plastic wash bottles: 3 

Schott bottles: 1 L, 2 L, 5 L 

Magnetic stirrer and stirrer bars 

Glass beakers 3 x 100 mL 

Plastic Pasteur pipettes 

Glass slides and cover slips 

Hydrometer 

Balance 

Drying oven 

Dessicator 

 

Reagents and Materials 

Zinc sulphate – is made by dissolving 500g of chemical in 880 mL de-ionised or distilled water. 

Ammonium bicarbonate (AMBIC) – this is a saturated ammoniam bicarbonate solution.  This 

is prepared by dissolving 119g of the chemical in 1000 mL de-ionised water. 

0.1% TWEEN 80 - is prepared by taking 1 ml Tween80 using a pipette and add it to 1000 mL 

de-ionised water. 
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Procedure 

In all cases, mix the sample thoroughly.  Weigh and empty weighing boat (DE), add a 

measured volume of sample and re-weigh (DW).  Evaporate to dryness and weigh (DD).  

Repeat this last step until a steady mass is obtained.  From these measurements, the dry mass of 

a fixed volume of sample can be calculated as given below. 

 

Effluent / Wastewater 

Support the 150 µm and 20 µm filters in two funnels, one beneath the other in a retort stand.  

Record the volume of sample to be used and pour it through the funnels, swirling the 20 µm 

filter or stirring gently with a plastic stirring rod to facilitate draining.  Discard debris trapped 

on 150 µm filter and rinse debris from 20 µm filter into a plastic beaker ensuring that none is 

lost.  Pour the contents of this beaker into as many centrifuge tubes as are necessary to 

accommodate the sample and centrifuge at 1389 g (± 3 000 rpm) for 3 minutes.  Pour or suction 

of the supernatant and discard.  Combine the pellets into enough tubes so that there is no more 

than 1 mL in 15 mL tube or 5 mL in a 50 mL tube.  Re-suspend each pellet in a few millilitres 

of ZnSO4 and vortex well to suspend.   

 

Add more ZnSO4  and continue mixing until tube is almost full.  Centrifuge tube at 617 g (±2 

000 rpm) for 3 minutes.  Carefully remove tubes from centrifuge and, using a plastic Pasteur 

pipette, transfer the supernatant to 3 or 4 centrifuge tubes.  Fill the tubes with reagent water to 

reduce the SG of the ZnSO4, so as not to damage the ova and also to allow them to deposit upon 

centrifugation.  Centrifuge the tubes at 964 g (±2 500 rpm) for 3 minutes.  Remove and discard 

the supernatant.  Combine the pellets into one tube and centrifuge again at 964 g (±2 500 rpm) 

for 3 minutes.  Transfer the pellet to one or more microscope slides, cover with a cover slip and 

examine under a microscope using 10x and 40x objective.  Calculate number of ova per litre of 

original effluent sample for each species of helminth.   
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Wet sludge / Sludge to land 

NOTE: It is always preferable to work with small sub-samples as ova may not be easily 

released from a small sample to float out of the sludge during the ZnSO4 flotation technique.  It 

is preferable to increase the number of sub-samples than to try to over-load each tube in order 

to keep tube numbers to a minimum.  The number of sub-samples will also be dependent on the 

helminth ova load expected. 

 

Mix the sludge sample thoroughly by swirling and stirring with a plastic rod.  Take 4 x 15 mL 

samples and put them into 4 x 50 mL tubes.  This should be sufficient if the solids content is 

high, if it is low, take further sub-samples.  Add either a few millilitres of 0.1% Tween80 or 

AmBic solution, vortex and add more wash solution.  Repeat until the tubes are filled to 

approximately a centimetre from the top.  Place the 150 µm sieve in a funnel in a retort stand 

with a plastic beaker underneath to catch the filtrate.  Filter the well mixed tubes one at a time, 

rinsing each tube and washing water through the filter as well.   Pour the filtrate into tubes and 

centrifuge at 1389 g (± 3 000 rpm) for 3 minutes, suction off the supernatant and discard it.  

Combine the pellets into a suitable number of tubes so that there is no more than 1 mL in a 

15mL tube or 5 mL in a 50 mL tube.  Resuspend the pellets in a few millilitres of ZnSO4 and 

vortex well to mix.  Keep adding more ZnSO4 until the tubes are almost full.  Centrifuge the 

tubes at 617 g (±2 000 rpm) for 3 minutes; remove and filter the supernatant through a 20 µm 

filter, washing well with water Collect the matter retained on the filter and wash it into two 

tubes.  Centrifuge at 964 g (±2 500 rpm) for 3 minutes; remove and discard the supernatant.  

Combine the pellets into one tube using water to rinse out all the eggs.  Centrifuge again at 964 

g (±2 500 rpm) for 3 minutes.  Remove all the pellets using a plastic Pasteur pipette and place 

onto one or more microscope slides as required.  Cover with a coverslip and examine 

microscopically using the 10x and the 40x objective.  Enumerate each species of helminth ova 

separately and report as ova per gram of sludge. 

 

Compost – (Sludge that contains grass and sand) or UD waste 

Weigh out two or more samples into 15 mL tubes.  If 50 mL tubes are used, weigh out a 

maximum of 3 g per tube.  Add a few millilitres of either 0.1% Tween 80 or Ambic and vortex 

well. Add more solution to about 6 mL in a 15 mL tube or 20 mL in a 50 mL tube and vortex 
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intermittently repeating the addition of solution until the tubes are filled to 10 mL or 40 mL 

respectively and have been vortexed over a period of about 30 minutes in total.  Centrifuge at 

1389 g (± 3 000 rpm) for 3 minutes, suction off the supernatant and discard it.  Re-suspend the 

pellet in reagent water and vortex to wash off the Ambic or Tween80 and centrifuge again at 

1389 g (± 3 000 rpm) for 3 minutes, suction off the supernatant and discard it.  Re-suspend 

each pellet in a few millilitres of ZnSO4 and vortex well to mix.  Keep adding ZnSO4 until each 

tube is almost full.  Centrifuge the tubes at 617 g (±2 000 rpm).  Carefully remove from the 

centrifuge and, using a plastic Pasteur pipette, transfer the supernatant to 3 or 4 tubes.  Fill the 

tubes with reagent water to reduce the SG of the ZnSO4 so as not to damage the ova and to 

allow them to deposit on centrifugation.  Centrifuge at 964 g (±2 500 rpm) for 3 minutes; 

remove and discard the supernatant.  Combine the pellets into one tube, using water to rinse out 

all the eggs and centrifuge again at 964 g (±2 500 rpm) for 3 minutes to obtain one pellet. 

NOTE: If the sample contains a lot of light debris that floats with the ova, e.g. grass, filter the 

deposit through a 10 µm filter, collect the filtrate in tubes and centrifuge again to prepare a 

pellet for microscopy. 

Remove the final pellet using a plastic Pasteur pipette and place it onto one or more microsope 

slides.  Cover with a coverslip and examine microscopically using the 10 x and 40 x objective.  

Enumerate each species of helminth ova separately and report as ova per gram of compost or 

UD waste. 

 

Calculation 

The g force of the centrifuge is calculated as follows:- 

G-force (org) = (1.118 x 10
-5

)Rs
2
  = 0.00001118 x R x s

2
 

Where:- 

s = revolutions per minute 

R = radius in centimeters from the centre of the rotor to the bottom of the tube bucket when in 

the swung-out position 

 

Ascaris ova count is calculated as follows:- 

Total ova = Count/mass = Count/ (DD – DE) 

Where:- 

Mass = dry mass of original sample 
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Reporting Results 

Results are reported as ova per g dry weight of sample. 

 

7.2 Detection and enumeration of Escherichia coli and total coliforms on 

Chromocult agar   

 

Introduction 

The majority of diseases carried by water are of an enteric nature and it is therefore necessary 

to screen water for possible faecal contamination.  The search for indicator organisms such as 

faecal coliforms and E. coli, instead of for pathogens themselves, is universally accepted for the 

monitoring of microbial pollution of water supplies.  Ideally, the finding of these indicator 

bacteria should denote the potential presence of intestinal pathogens.  Indicator organisms 

should be abundant in faeces and sewage; absent or at least present in very low numbers in all 

other sources; capable of easy isolation, identification and numerical estimation.  They should 

also be more resistant than pathogens to disinfectants such as chlorine, and to environmental 

stress.  In practice, there is no organism which consistently meets all these criteria, but most of 

them are fulfilled by Escherichia coli as the essential indicator of pollution by faecal material 

of human or animal origin.  The coliform group as a whole is used as an indicator of the 

hygienic status of a body of water. 

The advantage of the membrane filtration technique using Chromocult™ is the speed with 

which results can be obtained as direct counts.   For example, Escherichia coli counts can be 

available after 18 hours.  This enables more rapid corrective action to be taken when required. 

 

Scope/ Field of Application 

Surface waters 

Wastewater treatment works outfalls 

Marine water 

Swimming pool water 
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Potable water 

Definitions 

Pathogen:  Microorganism leading to disease, in this case in humans. 

Indicator organism: Microorganism which is present in large numbers whenever a 

pathogen is present but absent when pathogens are absent.  Usually not 

a pathogen itself and easier to isolate and identify than pathogens. 

Total Coliforms: Gram negative bacteria possessing the enzyme  β -D- galactosidase. 

Escherichia coli: As above and also possessing the enzyme  β -D- glucuronidase. 

 

 

Chromophore:  Chemical substrate which produces a colour on being cleaved by the 

specific enzyme. 

Gram positive: Organism retaining the crystal violet-iodine stain of the differential 

Gram stain. 

Gram negative: Organism losing the crystal violet-iodine stain of the differential Gram 

stain and taking up the safranin stain of the differential Gram stain. 

Chromocult™ An enzyme based, chromogenic, selective agar medium suitable for the 

detection and enumeration of total coliforms and E. coli. 

Tergitol™: A detergent which helps to prevent the growth of some 

microorganisms. 

Sub-lethally injured: Organisms in water which have been damaged in such a way that they 

are slow to grow under normal culture conditions, but may be revived 

by the use of specialised techniques or specific media. 

 

Masking: Growth of non-target organisms which may interfere with the detection 

of target organisms. 

 

Principles 

The interaction of the constituents of the medium results in rapid growth of even sub-lethally 

injured coliforms.  Gram negative bacteria as well as some Gram positive bacteria are inhibited 

by the inclusion of Tergitol®7 which does not interfere with the growth of coliforms.  This 

helps to prevent overgrowth and masking of the target coliforms. 
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A chromophore-linked glucuronide is used for the identification of the enzyme -D-

glucuronidase which is characteristic for E. coli.  Colonies producing β-D-glucuronidase 

release the chromophore, producing blue colonies.  A second chromophore-linked substrate, 

Salmon-GAL, is used to detect the production of β -D-galactosidase which is an enzyme 

produced by total coliforms.  Colonies producing the enzyme appear salmon to red.  As E. coli 

produces both enzymes, the colonies appear dark blue to violet.   

 

Health, Safety and Precautions 

Interferences for this method are as follows: 

Turbidity 

Highly turbid samples can block membrane filters and therefore prevent proper analysis 

according to this method.  If a sample stops going through the filter or takes an unusually long 

time to do so, further dilution of the sample before filtering should be considered or an MPN 

method should be used. 

 

 ToxicantsToxicants in the sample will interfere with the resuscitation of the organisms and 

therefore result in a low organisms count.  This problem may occasionally be alleviated by 

diluting the sample. 

 

Temperature 

Too high a temperature reduces the survival of the target organisms, whilst too low a 

temperature permits the growth of other, non-target organisms. 

Condensate 

Inversion of Petri dishes for the duration of incubation prevents water droplets forming on the 

lid and dropping onto the surface of the medium with a resultant blurring of colonies. 

 

 

Sample Handling 

The bacterial load of different types of water varies and this is compensated for by using 

different volumes of water for analysis.  The following volumes have been found to be 

generally appropriate. 
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Matrix Volume (mL) 

Potable water - 100 

River water   -  0.2 

 0.01 

Outfalls 1 

 0.2 

Beaches 5 

 1 

Pools 100 

 

Apparatus and Equipment 

Bunsen burner 

Autoclave 

Biohazard cabinet 

Water purifier 

Automatic pipette 

Filter manifold and pump 

Forceps 

Microwave 

Incubator 

Plate viewer 

 

Reagents and Materials 

Chromocult® Coliform Agar 

Re-hydrate 26.3 g Chromocult® Coliform agar in 1L of reagent water (See below). 

Heat in a microwave until all agar is dissolved.  Do not autoclave.   

Cool small aliquot and test pH. 

pH should be within the range 6.8 ± 0.2. 

Adjust pH if necessary with HCl or NaOH.   

Aseptically dispense medium into sterile Petri dishes and allow to solidify.   

Store finished medium at 2 - 10
°
C in sealed plastic containers and discard unused medium after 

two weeks.  
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Record the media preparation on the appropriate form and sign. 

 

Reagent Water - Water from the bacteriology water purifier which should have a conductivity 

of < 0.5 mS/m. 

Sterilise in autoclave at 121
0
C for 15 minutes. 

Cool. 

Store at <10
0
C. 

 

Sterile gridded 0.45 µm pore size, 47 mm diameter membrane filters.  Individually packed 

membranes from acceptable supplier. 

 

Calibration 

Balance must have passed QC check within the last week.   

pH meter must have passed QC check within the last week.   

Incubator must show a steady temperature on the Laboratory Temperature Logger. 

Automatic dispenser must have passed QC check within the last week. 

Automatic pipettes must have passed QC check within the last week.   

Medium batch must have passed QC check 

Laminar flow cabinets must have passed QC check within the last week.  Autoclave run must 

have passed QC check.   

 

Quality Control  

For each batch of media prepared, inoculate one Petri dish with positive and negative controls, 

namely E. coli and Enterococcus faecalis. 

The E. coli colonies should be purple/blue and the Enterococcus faecalis should be minimal 

and grey/white in colour. 

 

If any of the above calibrations has failed, the method should not be deemed fit for use before 

remedial action has been shown to be successful. 

 

Kovacs Reagent for confirmation of E. coli.  Suspected E. coli colonies can be coated with a 

drop of Kovacs reagent.  The development of a cherry-red colour acts as confirmation.  The β -
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D-glucuronidase reaction is, however, sufficient in conjunction with the β -D-galactosidase 

reaction to confirm the presence of E. coli and this additional step is rarely used 

Procedure 

Technique 

Take out of the fridge sufficient Petri dishes of medium for the expected number of 

samples. 

Allow to warm to room temperature. 

Where a 100 mL volume is used, filter directly onto the filter membrane as described in 

the procedure ―Membrane Filtration‖.  

Where dilutions are required, pipette 5 mL, 2 mL, 1mL, 0.2 mL or 0.01 mL volumes as 

necessary out of the well mixed sample. 

Place in approximately 30 mL of sterile reagent water. 

Filter the sample or aliquot under vacuum through a 0.45µm pore size membrane filter 

in a sterile filter assembly. 

Open the filter assembly carefully. 

Remove the membrane using sterile technique. 

Roll it onto the surface of the Chromocult™ agar in a Petri dish. 

Invert the Petri dishes. 

Place in the 37 ± 1
0
C incubator for 18 – 24 hours.  

For each batch of 10 samples or less, one sample must be run in duplicate.  The 

selected sample must have a replicate entered against it in LIMS. 

 

Incubation 

Incubate the prepared membranes in an inverted position at 37± 1
0
C for 18 – 24 hours.  

Incubate samples within 30 minutes of filtering. 

Enumeration 

E. coli colonies are dark blue to violet, total coliforms are salmon to red, and other 

Enterobacteriaceae are colourless.   

Count colonies with a colony counter employing illumination and magnification. 

Count E. coli results first and record. 

Count total coliforms next.  
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Record actual counts in the laboratory record sheet and sign.  

Enter result onto LIMS where the count per 100 mL is calculated automatically. 

Note: The detection of E. coli is regarded as sufficient evidence of faecal pollution.  

However, further tests for the confirmation of E. coli may be carried out if considered 

necessary. 

 

Disposal 

Collect all counted Petri dishes and place in autoclave bag. 

Autoclave at 121
0
C for 15 minutes to sterilise. 

Place sterilised cultures in hazardous waste disposal container for disposal by approved 

disposal company. 

 

Calculation 

Calculation of E. coli 

Count all dark blue to violet colonies and multiply by the dilution factor to obtain E. coli  per 

100 mL. 

Calculation of Total Coliforms 

Count all salmon to red colonies and add to the number of dark blue to violet colonies to obtain 

the total coliform count.  Multiply by the dilution factor to obtain total coliforms per 100mL. 

 

Method Performance Assessment 

This method was run in parallel with the standard mFC medium for E. coli detection over the 

course of a year.  Results obtained from the Chromocult medium were found to be higher than 

for the standard medium, but a spot check on colonies proved the identification.  In addition, 

this technique was run in a national ring trial comparing it to the ISO accredited Colilert 

method and the results were found not to be significantly different for E. coli determination.  

This method is now accredited by the American Department of Environmental Affairs and is 

suitable for its intended use. 
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Reporting Results 

All total coliform and E. coli results are entered into LIMS where the count per 100 mL is 

automatically calculated.  Specification limits have been set for each water type and any results 

outside these limits will appear on the LIMS screen in red.  These results must be further 

investigated according to the procedure for the handling of non-conforming results. 

 

7.3 Detection and enumeration of Enterococcus on Enterococcus selective agar  

 

Introduction 

The search for organisms indicative of faecal pollution instead of for pathogens directly is 

universally accepted for the monitoring of microbial pollution of water supplies.  Ideally, 

finding  indicator bacteria should denote the potential presence of intestinal pathogens.  

Indicator bacteria should be abundant in faeces and sewage. They are usually absent or at least 

present in very low numbers in all other sources and are capable of easy isolation, identification 

and numerical estimation.  They should also be more resistant than pathogens to disinfectants 

such as chlorine and to environmental stress.  In practice, there is no bacterium which 

consistently meets all these criteria.  Enterococci have however been found useful in this regard 

as, although present in faeces in lower numbers than E. coli, it has been shown that the ratio of 

faecal coliforms to enterococci is a useful indicator of whether water has been polluted 

predominantly by human or animal faeces.  The method is not however exact and should only 

be used as an indicator.  Studies at marine and fresh water bathing beaches also indicate that 

swimming-associated gastroenteritis is directly related to the water quality and that enterococci 

are the most efficient indicator of this. 

 

Scope/ Field of Application 

Fresh water. 

Marine recreational water. 

Potable water 

Swimming pools 
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Definitions 

Enterococcus: This group is a subgroup of the faecal streptococci and includes E. 

faecalis, S. gallinarum and S. avium.  All give a positive reaction with 

Lancefield’s Group D antisera and have been isolated from the faeces 

of warm blooded animals.  For this method, enterococci are those 

bacteria which produce black colonies on Enterococcus selective agar 

and are catalase negative and Gram positive. 

 

Principles 

Sodium azide is a selective agent which suppresses the growth of Gram positive organisms.  

Esculin hydrolysis and bile tolerance are regarded as being reliable, constant characteristics of 

faecal streptococcii. The microorganisms hydrolyse the glycoside esculin to dextrose and 

esculin which forms an olive green to black complex with iron (III) ions.   

 

Health, Safety and Precautions 

Temperature Incubation temperature is critical.  The incubator must hold the 37±1
o
C 

temperature throughout the chamber over a 48 hour period. 

Turbidity Membranes are unsuitable for use with waters of high turbidity as the 

membrane will block before sufficient water can be filtered.  In such a case 

either smaller volumes of the sample could be used or a pre-filter may be fitted 

ahead of the membrane filter to trap the non-microbial suspended material. 

Toxicants Toxic metals  

Toxic organics such as phenols. 

 

Bacteria Staphylococcus aureus may cause a false positive result. 

Sample Handling 

Keep samples chilled from the time they are sampled till delivery to the Laboratory. 

Use insulated boxes and freezer bricks to keep the samples cold. 
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Analyse samples as soon as possible. 

Do not hold samples for more than eight (8) hours before analysis. 

Use volumes yielding 20 to 50 colonies per membrane where possible.  

When the bacterial density is unknown, filter several decimal volumes to establish the density.  

Estimate the volume expected to yield a suitable membrane colony count and select two 

additional volumes representing approximately one tenth and ten times this volume 

respectively. 

The bacterial load of different types of water varies and this is compensated for by using 

different volumes of water for analysis.  The following volumes have been found to be 

generally appropriate. 

 

Matrix Volume (mL) 

Potable water - 100 

River water   -  0.2 

 0.01 

Outfalls 1 

 0.2 

Beaches 5 

 1 

Pools 100 

 

Apparatus and Equipment 

Electronic colony counter. 

Automatic pipettes of suitable volume. 

Membrane filtration unit and manifold. 

Line vacuum, electric pump and filter flask. 

Flask for safety trap containing silica gel. 

Forceps with smooth tips to handle filters. 

Bunsen burner for sterilisation. 

Petri dishes, sterile plastic. 

Tubes, glass for dilutions. 

Membrane filters, white, gridded, 47 mm diameter. 

Incubator. 
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Reagents and Materials 

Enterococcus Selective Agar  

Suspend 55g Enterococcus Selective Agar in 1 lire reagent water.  Boil whilst stirring until 

completely dissolved.  Autoclave at 121°C for 15 minutes.  Cool to 45 - 50°C.  Mix well and 

pour into plates. 

pH 7.1 ± 0.2 pH units. 

 

Composition g/L 

Esculin 1.0 

Ferric Ammonium Citrate 0.5 

Ox Bile 10.0 

Peptone 3.0 

Sodium Azide 0.5 

Sodium Citrate 1.0 

Tryptone 17.0 

Yeast Extract 5.0 

Agar 12.0 

 

Calibration 

Balance must have passed QC check within the last week. 

pH meter must have passed QC check within the last week. 

Incubator must show a steady temperature on the Laboratory Temperature Logger. 

Automatic pipettes must have passed QC check within the last week. 

Media batches must have passed QC check.  

Laminar flow cabinets must have passed QC check within the last week. 

Autoclave run must have passed QC check. 

 

If any of the above calibrations has failed, the method should not be deemed fit for use before 

remedial action has been shown to be successful. 
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Quality Control  

Perform positive and negative controls on each batch of media.   

Positive control is Enterococcus faecalis 

Negative control is Escherichia coli. 

 

Procedure 

Technique 

Take out of the fridge sufficient Petri dishes of Enterococcus medium for the expected 

number of samples and allow to warm to room temperature. 

Where a 100 mL volume is used, filter directly onto the filter membrane. 

Where dilutions are required, pipette 5 mL, 2 mL, 1mL, 0.2 mL or 0.01 mL volumes as 

necessary out of the well mixed sample and place in approximately 30 mL of sterile 

reagent water. 

Filter the sample or aliquot under vacuum through a 0.45µm pore size membrane filter 

in a sterile filter assembly. 

Open the filter assembly and remove the membrane using sterile technique. 

Roll it onto the surface of the agar in a Petri dish. 

For each batch of 10 samples or less, one sample must be run in duplicate.  The 

selected sample must have a replicate entered against it in LIMS. 

 

Incubation 

Invert the Petri dishes.  

Incubate the prepared membranes at 37±1
o
C for 48 hours.  

Incubate samples within 30 minutes of filtering. 

 

Enumeration 

Enterococci form dark brown to black colonies with esculin production 

Count colonies with a colony counter employing illumination and magnification. 

 

 



128 

 

Verification 

Pick selected colonies and streak for purity onto brain heart infusion agar. 

Incubate at 37±1
o
C for 24-48 hours.   

Transfer a loop full to each of two microscope slides. 

Add a few drops of fresh 3% hydrogen peroxide to one slide.  

If no bubbles appear, the culture is catalase negative. 

Make a Gram stain of the other slide. 

Enterococci are catalase negative, Gram-positive, ovoid cells, 0.5 - 1.0µm in diameter, 

mostly in pairs or short chains. 

 

OR 

API Strept. 

 

Calculation 

Compute the density from the sample quantities which produce counts within the desired range 

of 20 - 50 colonies. 

  Enterococcus / 100 ml =  Enterococcus x 100 

      mL of sample filtered 

 

Method Performance Assessment 

This is the standard method for enumeration of faecal streptococci and enterococci – Standard 

Methods no 9230 C and is deemed suitable for use in water analysis. 

 

Reporting Results 

Results are expressed as colony forming units per 100 mL. 
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7.4 Detection and enumeration of Pseudomonas species 

Introduction 

Pseudomonas aeruginosa is the type organism for the Pseudomonadaceae and is found widely 

distributed in nature.  It is the ultimate opportunistic pathogen, capable of infecting almost any 

tissue when the immunity shield is damaged.  Several pseudomonads can grow in water 

containing minimal nutrients and therefore may be of importance as water borne pathogens, 

particularly in hospital environments or any environment where immuno-compromised people 

may come into contact with them.  Pseudomonads are widely distributed in soil and water.  

Several species are pathogenic for man or animals, others cause spoilage of meats and other 

foods.  P. aeruginosa produces a water soluble blue pigment (pyocyanin) and a water soluble 

fluorescent pigment (pyoveridin).  It is mainly a soil and water saprophyte but it is frequently 

an opportunistic pathogen and can often be isolated from wounds, burns and urinary tract 

infections. 

 

Scope/ Field of Application 

Swimming pools 

Potable water from distribution lines. 

 

Definitions 

Pseudomonas aeruginosa: Straight or curved Gram-negative, strictly aerobic rod, member 

of the Pseudomonadaceae which produces green, fluorescent 

pigment. 

 

Principles 

The use of cetrimide largely inhibits the growth of accompanying microbial flora. 

Pigment production by Pseudomonas aeruginosa is not affected. 

P. aeruginosa colonies produce a blue-green pigment and fluoresce under UV light. 
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Health, Safety and Precautions 

Interferences in this method are as follows: 

Temperature 

Incubate plates at 42 ± 1 
0
C. 

Turbidity 

Membranes are unsuitable for use with waters of high turbidity as the membrane will 

block before sufficient water can be filtered. 

In such a case either smaller volumes of the sample could be used or a pre-filter may be 

fitted ahead of the membrane filter to trap the non-microbial suspended material. 

 ToxicantsToxicants in the sample will interfere with the resuscitation of the organisms 

and therefore result in a low organisms count.  This problem may occasionally be 

alleviated by diluting the sample. 

Temperature 

Too high a temperature reduces the survival of the target organisms, whilst too low a 

temperature permits the growth of other, non-target organisms. 

Condensate 

Inversion of Petri dishes for the duration of incubation prevents water droplets forming 

on the lid and dropping onto the surface of the medium with a resultant blurring of 

colonies. 

Bacterial competition 

If heavy contamination with other microorganisms is expected, 15µg/L of nalidixic 

acid may be added. 

 

Any used or unused media is to be autoclaved and disposed of in the medical waste. 

Sample Handling 
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Filter sufficient sample to provide plates with approximately 20 - 80 colonies. 

For natural waters this is usually about 100 mL. 

For chlorinated waters up to 500 mL depending on the source. 

 

Apparatus and Equipment 

Electronic colony counter 

Automatic pipettes of suitable volume 

Membrane filtration unit and manifold 

Line vacuum, electric pump and filter flask 

Flask for safety trap containing silica gel 

Forceps with smooth tips to handle filters 

Bunsen burner for sterilisation 

Petri dishes, sterile plastic 

Tubes, glass for dilutions 

Membrane filters, white, gridded, 47 mm diameter. 

Incubator 

UV light 

 

Reagents and Materials 

Cetrimide Agar 

Prepare according to manufacturer’s instructions 

Cool and pour into Petri dishes. 

Store in plastic containers at 4 -10
0
C for a maximum of four weeks. 

 

Milk Agar 

Yeast extract                                                 3g/L 

Peptone                                                         5g/L 

Milk solids (equivalent to 10ml fresh milk)     1g/L 

Agar                                                            15g/L 

 

Final pH  7.2 +/-  0.2 
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Quality Control  

Balance must have passed QC check within the last week. 

pH meter must have passed QC check within the last week. 

Incubator must show a steady temperature on the Laboratory Temperature Logger. 

Automatic dispenser must have passed QC check within the last week. 

Automatic pipettes must have passed QC check within the last week. 

Medium batch must have passed QC check.  

Laminar flow cabinets must have passed QC check within the last week. 

Autoclave run must have passed QC check. 

Positive control is Pseudomonas aeruginosa (ATCC 9027).  The colonies should be blue/green 

and fluorescent. 

Negative control is Enterococcus faecalis (ATCC 7080) 

 

If any of the above calibrations has failed, the method should not be deemed fit for use before 

remedial action has been shown to be successful. 

 

Procedure 

For each batch of 10 samples or less, one sample must be run in duplicate.  The selected sample 

must have a replicate entered against it in LIMS. 

Incubation 

Incubate the prepared membranes in an inverted position at 42 ± 1
0
C for up to 48 

hours. 

Incubate samples within 30 minutes of filtering.   

Examine colonies after 48 hours. 

 

 

Enumeration 
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Colonies producing a blue-green pigment and fluorescing under UV light are 

considered presumptive P. aeruginosa. 

Verification 

Identification may be confirmed by streaking onto milk agar. 

Pseudomonas aeruginosa hydrolyses casein and produces a yellow to green diffusible 

pigment.  

API test strips may also be used. 

 

Calculation 

Compute the density from the sample quantities which produce counts within the desired range 

of 20-60 colonies. 

  Presumptive P. aeruginosa / 100 mL = Pseudomonas x 100 

        mL of sample filtered 

 

Presumptive P. aeruginosa are expressed as the number of colonies counted per 100 mL of 

sample. 

 

Reporting Results 

The results are expressed as colony forming units (CFU) per 100 mL. 

 

7.5 Detection of Salmonella or Shigella sp. 

Introduction 

Salmonella sp. are generally associated with incidents of food poisoning but have also been 

detected in surface waters, particularly those exposed to poultry.  The organism is generally 

only present at very low levels and it is therefore necessary to concentrate or enrich the sample 

before analysis to enable detection. 

 

Scope/ Field of Application 
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Waters from a variety of sources except raw sewage. 

 

Definitions 

Salmonella  A Gram-negative, oxidase negative, facultatively anaerobic, non-spore 

forming, rod-shaped bacterium, capable of utilising citrate and producing gas 

from glucose. 

 

Principles 

Pre-enrichment 

Pathogenic organisms are only likely to be present at low concentrations in a water 

sample.  It is therefore necessary to pre-enrich in a non-selective medium. 

Selective enrichment 

Selective enrichment is necessary to increase the proportion of Salmonella species in 

relation to other organisms in the pre-enrichment culture. 

Selection on solid media 

In order to increase the probability of detecting Salmonella organisms, two solid media 

are used to detect the target organism.  XLD is only slightly toxic to fastidious 

Salmonella.  Proteus and other coliforms produce yellow colonies in contrast to the 

black centred clourless (but red in appearance) colonies formed by Salmonella.  

Incubation in excess of 24 hours is not recommended.   Brilliant green/phenol red 

lactose medium produces colonies which are red or slightly pink-white and opaque 

with red surroundings. 

Confirmation 

Presumptive colonies are confirmed using biochemical and/or serological tests. 

 

Health, Safety and Precautions 
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Salmonella is a pathogenic organism and strict hygiene and sterility practices must be followed 

at all times in order to prevent infection. 

Sample Handling 

Collect a sample volume of at least 1L for concentration. 

Keep samples cool between sampling and delivery to laboratory. 

 

Apparatus and Equipment 

Autoclave  

Water bath at 70
0
C and 42

0
C  

pH meter P-M-011  

Inoculating loops 

Petri dishes  

Culture tubes with caps 

Filter manifold and pump  

Filter holders 

0.47µm membranes  

Schott bottles 

Incubator  

Electronic balance  

 

Reagents and Materials 

Buffered peptone water  

Obtained from commercial supplier. 

Peptone   10g 

Sodium chloride 5g 

K2HPO4.10H2O  3.5 g  (di-potassium hydrogen phosphate) 

KH2PO4  1.5g (potassium di-hydrogen phosphate) 

Water   to 1 000mL 

Dissolve all ingredients, heating gently. 

Adjust pH to 7.2± 0.1. 
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Dispense into bottles/tubes as required. 

Sterilise at 121
0
C for 15 minutes. 

Store in refrigerator for up to 3 months. 

 

Malachite green / Magnesium chloride 

Obtained from commercial supplier. 

Peptone (Animal tissues) 4g 

Peptone (Soya)   1g 

NaCl    8g 

K2HPO4.3H2O   0.4g 

Water    to 1 000 mL 

 

Supplement 1 

MgCl2.6H2O   31.7g 

Water    to 100 mL 

Store sealed. 

 

Supplement 2 

Malachite green oxalate 0.4g 

Water    to 100 mL 

 

Dissolve constituents of basic medium, heating gently. 

Add supplement 1. 

Add 10 mL of supplement 2. 

Dispense about 10 mL of medium into each culture tube. 

Sterilise at 115
0
C for 15 minutes. 

 

Brilliant green/phenol red lactose agar 

Obtained from commercial supplier. 

Meat extract powder  5g 

Peptone (animal)  5 g 

Na2HPO4   1 g 

NaH2PO4   0.6 g 
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Agar    About 15 g 

Water    to 900 mL 

 

Supplement 1 

Lactose    10 g 

Sucrose    10 g 

Phenol red   0.09 g 

Water    to 100 mL 

 

Supplement 2 

Brilliant green   0.5 g 

Water    to 100 mL 

 

Dissolve constituents of basic medium. 

Autoclave at 121
0
C for 15 minutes. 

Dissolve constituents of supplement 1 in sterile water. 

Heat in water bath at 70
0
C for 20 minutes. 

Cool to 55 ± 1
0
C and use immediately. 

Add the prepared supplement 1 and 1 mL of brilliant green solution to the agar before 

distribution. 

Ensure pH is 7.0 ± 0.1. 

Dry agar plates immediately before use. 

 

XLD agar 

Obtained from commercial supplier. 

D(+)-xylose   3.5 g 

L(+)-lysine   5 g 

Sodium deoxycholate  2.5 g 

Yeast extract   3 g 

Saccharose   7.5 g 

Lactose    7.5 g 

Sodium chloride  5 g 

Sodium thiosulfate  6.8g 
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Iron (III) ammonium citrate 0.8 g 

Agar    13 g 

Water    To 1 000 mL 

 

Supplement 

Phenol red   0.4 g 

Water    To 100 mL 

 

Dissolve all ingredients including 20 mL of the supplement by heating to boiling. 

Adjust pH to 7.4 ± 0.1. 

DO NOT AUTOCLAVE. 

Cool to 50
0
C. 

Pour into Petri dishes. 

 

Nutrient agar 

Obtained from commercial supplier. 

Meat extract  3g 

Peptone   5g 

Agar   15g 

Water   to 1000 mL 

Sodium chloride 5g 

 

Dissolve all constituents by boiling. 

Adjust pH to 7.0 ± 0.1. 

Sterilise in autoclave at 121
0
C for 15 minutes. 

Dispense into Petri dishes. 

 

Iron/two-sugar agar (Kligler) 

Obtained from commercial supplier. 

Meat extract   3g 

Yeast extract   3g 

Peptone    20g 

Lactose    10g 
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D(+)-Glucose   1g 

Iron(III) citrate   0.2 g 

Sodium chloride  5g 

Sodium thiosulphate  0.5 g 

Agar    12g 

Phenol Red   0.025g 

Water    to 1000 mL 

 

Heat gently to dissolve all constituents, including 6 mL of supplement. 

Adjust pH to 7.4 ± 0.2 

Autoclave at 121
0
C for 15 minutes. 

Pour about 6mL into each tube. 

Allow medium to set at a slant to give a butt approximately 2.5 cm long. 

 

Urea Agar 

Obtained from commercial supplier. 

Peptone     1g 

D(+(-Glucose    1g 

Sodium chloride   5g 

Potassium dihydrogen phosphate 2g 

Agar     12 g 

Phenol Red    0.012g 

Water     To 1000 mL 

Supplement 2 

Urea crystals    40g 

Water     To 100mL 

 

Heat gently to dissolve all constituents including 3mL of supplement 1 in 950 mL of 

water. 

Autoclave at 121
0
C for 15 minutes. 

Cool to about 50
0
C 

Sterilize supplement 2 by filtration. 

Aseptically add 50 mL of solution 2 to the autoclaved medium. 



140 

 

Mix well. 

Distribute aseptically in tubes. 

Allow medium to set at a slant to give a butt approximately 2.5 cm long. 

 

 

L-Lysine Iron Agar 

Obtained from commercial supplier. 

Meat peptone    5g/L 

Yeast extract    3g/L 

D(+)-Glucose    1g/L 

L-Lysine monochloride   10g/L 

Sodium thiosulphate   0.04g/L 

Ammonium ferric citrate  0.5g/L 

Bromocresol purple   0.02g/L 

Agar     12.5g/L 

Dissolve 32g in I litre reagent water and pur into tubes.  Adjust to pH 6.8±1. 

Autoclave at 121
0
C for 15 minutes and let set as slants. 

 

Calibration 

Ensure balance has been calibrated within the last week. 

Ensure pH meter has been calibrated within the last week. 

Incubator must show a steady temperature on the Laboratory Temperature Logger. 

Automatic pipettes must have passed QC check within the last week. 

Medium batch must have passed QC check.  

Laminar flow cabinets must have passed QC check within the last week. 

Autoclave run must have passed QC check. 

If any of the above calibrations have failed, the method should not been deemed fit for use 

before remedial action has been shown to be successful. 

 

Quality Control  

Include a positive S. Typhimurium and a negative E. faecalis sample with each sample run. 
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Procedure 

Filter a minimum of 1L of sample through 0.45µm membrane filters. 

Place filters in 50 mL of buffered peptone. 

Incubate at 37± 1
0
C for 16-20 hours. 

Pre-warm malachite green/magnesium chloride medium to 42± 0.5
0
C. 

Transfer 0.1 mL loopfuls of the culture to 10mL malachite green/magnesium chloride 

medium. 

Incubate at 42± 0.5
0
C for 18-24 hours. 

Plate a loopful of the enrichment culture onto plates of each of brilliant green/phenol 

red lactose agar and XLD agar. 

Incubate at 37± 1
0
C for 24 hours. 

Black centered, colourless (appear red) colonies on XLD are presumptive Salmonella. 

Colourless colonies are presumptive Shigella. 

Pinkish white opaque colonies with a red background on brilliant green broth are 

presumptive Salmonella. 

Pick at least five typical colonies from each positive agar medium onto pre-dried 

nutrient agar, streaking for isolated colonies. 

Incubate at 37± 1
0
C for 18 - 24 hours. 

Streak and stab butt of tube of iron/two sugar agar. 

Incubate at 37± 1
0
C for 24 hours.  Typical Salmonella on iron/two sugar slants show 

red slants with gas formation and yellow butts with blackening of the agar. 

Inoculate tube of urea agar.  

Incubate at 37± 1
0
C for 24 hours.  Typical Salmonella on urea slants show a negative 

reaction i.e. no rose-pink colour followed by deep cerise. 

Inoculate a colony just below the surface of the liquid L-Lysine decarboxylase 

medium. 

Overlay with sterile liquid paraffin or oil. 

Incubate at 37± 1
0
C for 18 - 24 hours.  Typical Salmonella cultures show a purple 

colour. 

Confirm identification using serological techniques or API test strips if necessary.  The 

sample may also be sent to a specialist serological laboratory for confirmation if this is 

required. 

 

Method Performance Assessment 
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This method is the same as ISO. 6340:1995(E).  

Specificity 100% 

Selectivity 97.5% 

 

Reporting Results 

The results are reported as the presence or absence of Salmonella or Shigella in the sample 

volume. 

 

7.6 Detection and enumeration of Staphylococcus 

Introduction 

Staphylococci are Gram-positive coccoid organisms primarily associated with the skin and 

mucous membranes.  Their detection in recreational water is indicative of poor disinfection and 

hygiene practices in the running of the pool. 

 

Scope/ Field of Application 

Swimming pool water  

Salt water  

Fresh water 

 

Definitions 

Pathogen:  Microorganism leading to disease, in this case in humans. 

Indicator organism: Microorganism which is present in large numbers whenever a 

pathogen is present but absent when pathogens are absent.  Usually not 

a pathogen itself and easier to isolate and identify than pathogens. 

Staphylococcus: A Gram-positive coccus associated with the skin of humans. 
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Gram positive: Organism retaining the crystal violet-iodine stain of the differential 

Gram stain and taking up the safranin stain of the differential Gram 

stain. 

Masking: Growth of non-target organisms which may interfere with the detection 

of target organisms. 

 

Principles 

Baird Parker medium contains lithium chloride and tellurite to inhibit the growth of 

accompanying microbial flora.  It also contains pyruvate and glycine which selectively 

stimulate the growth of staphylococci.  Staphylococci form black colonies on the medium 

surrounded by zones of clearing in the surrounding agar. 

 

Health, Safety and Precautions 

Interferences for this method are as follows: 

Turbidity 

Highly turbid samples can block membrane filters and therefore prevent proper 

analysis according to this method.  If a sample stops going through the filter or takes an 

unusually long time to do so, further dilution of the sample before filtering should be 

considered or an MPN method should be used. 

 ToxicantsTocicants in the sample will interfere with the resuscitation of the organisms 

and therefore result in a low organisms count.  This problem may occasionally be 

alleviated by diluting the sample. 

Temperature 

Too high a temperature reduces the survival of the target organisms, whilst too low a 

temperature permits the growth of other, non-target organisms. 

Condensate 
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Inversion of Petri dishes for the duration of incubation prevents water droplets forming 

on the lid and dropping onto the surface of the medium with a resultant blurring of 

colonies. 

Staphylococci can cause boils and other skin infections so should be handled with 

appropriate care. 

 

Sample Handling 

Choice of Sample Size 

The bacterial load of different types of water varies and this is compensated for by 

using different volumes of water for analysis.  The following volumes have been found 

to be generally appropriate. 

 

  Potable water - 100 mL 

  River water  - 0.2 and 0.01 mL 

  Outfalls  - 1 and  0.2 mL 

  Beaches - 5 and 1 mL 

  Pools  - 100 mL 

Apparatus and Equipment 

Bunsen burner 

Autoclave 

Biohazard cabinet 

Water purifier 

Automatic pipette 

Filter manifold and pump 

Forceps 

Microwave 

Incubator 

Plate viewer 
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Reagents and Materials 

Baird-Parker Agar 

API Staphylococcus test strips 

Brain-heart infusion broth (BHI) 

 

Reagent Water 

Water from the bacteriology water purifier which should have a conductivity of 

<0.5mS/m. 

 

Sterile water 

Sterilise reagent water in autoclave at 121
0
C for 15 minutes. 

Cool. 

Store at <10
0
C. 

Sterile gridded 0.45 µm pore size, 47 mm diameter membrane filters.  Individually packed 

membranes from acceptable supplier. 

 

Calibration 

Balance must have passed QC check within the last week. 

pH meter must have passed QC check within the last week. 

Incubator must show a steady temperature on the Laboratory Temperature Logger. 

Automatic dispenser must have passed QC check within the last week. 

Automatic pipettes must have passed QC check within the last week. 

Medium batch must have passed QC check.  

Laminar flow cabinets must have passed QC check within the last week. 

Autoclave run must have passed QC check. 

For each batch of media prepared, inoculate one Petri dish with positive and negative controls, 

namely E. coli and Enterococcus faecalis. 

The E. coli colonies should be purple/blue and the Enterococcus faecalis. should be minimal 

and grey/white in colour. 

If any of the above calibrations has failed, the method should not be deemed fit for use before 

remedial action has been shown to be successful. 

 



146 

 

Quality Control  

Negative control E. coli 

 

Procedure 

Filter required volume of sample through a membrane filter.   

Roll membrane onto surface of plate and incubate inverted for 45-48h at 35C.   

Select plates containing 20-200 colonies for counting .   

Colonies of S. aureus are circular, smooth, convex, moist, 2-3 mm in diameter on 

uncrowded plates, gray to jet-black, frequently with light-coloured (off-white) margin, 

surrounded by opaque zone and frequently with an outer clear zone; colonies have 

buttery to gummy consistency when touched with inoculating needle.  

If confirmation is necessary, transfer suspect S. aureus colonies into small tubes 

containing 0.2-0.3 mL BHI broth and emulsify thoroughly.   

Inoculate agar slant of suitable maintenance medium, e.g., TSA or nutrient, with a 

loopful of BHI suspension.   

Incubate BHI culture suspension and slants 18-24 h at 35°C.   

Retain slant cultures at room temperature for ancillary or repeat tests in case coagulase 

test results are questionable.   

Add 0.5 mL reconstituted coagulase plasma with EDTA to the BHI culture and mix 

thoroughly. 

Incubate at 35°C and examine periodically over 6h period for clot formation.  Only a 

firm and complete clot that stays in place when the tube is tilted or inverted is 

considered positive for S. aureus.  Partial clotting, formerly 2+ and 3+ coagulase 

reactions, must be tested further. 

Test known positive and negative cultures simultaneously with suspect cultures of 

unknown coagulase activity.   

Stain all suspect cultures with Gram reagent and observe microscopically.  A latex 

agglutination test may be substituted for the coagulase test if a more rapid procedure is 

desired. 

 

Incubation 
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Incubate the prepared membranes in an inverted position at 35 - 37
o
C for 24 hours.  

Incubate samples within 30 minutes of filtering. 

Enumeration 

Count gray to jet black colonies using an illuminated plate counter. 

Disposal 

Collect all counted Petri dishes and place in autoclave bag. 

Autoclave at 121
0
C for 15 minutes to sterilise. 

Place sterilised cultures in hazardous waste disposal container for disposal. 

Calculation 

If a dilution has been performed, it is necessary to multiply the number of colonies 

counted by the inverse of the dilution factor to obtain number of colonies per 100 mL. 

 

Reporting Results 

All results are entered into LIMS where the count per 100 mL is automatically 

calculated.  Specification limits have been set for each water type and any results 

outside these limits will appear on the LIMS screen in red.  These results must be 

further investigated according to the procedure for the handling of non-conforming 

results. 

 

7.7 Detection and enumeration of somatic coliphage 

Introduction 

Coliphages are bacteriophages (bacterial virus) that infect and replicate in coliform bacteria and 

appear to be present wherever total and faecal coliforms are found.  They are utilised as 

indicator organisms to represent the human enteroviruses as they are of similar size and react in 

a similar fashion to environmental conditions. 

Scope/ Field of Application 
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Marine water. 

Other water sources. 

Sediments. 

Sludges. 

Shellfish extracts. 

 

Definitions 

Somatic coliphage A virus having a selected strain of E. coli as its host, but not requiring 

the sex pili for infection. 

Plaque A zone of clearing in the bacterial lawn caused by cell lysis. 

 

Principles 

The sample is mixed with a small volume of semi-solid nutrient medium, a culture of host 

strain is added and the mixture is plated onto a solid nutrient medium.  The phage infect the 

bacterial cells causing lysis.  This results in a clearing of the bacterial lawn.  Plates are 

incubated and read once visible plaques appear.   

 

Health, Safety and Precautions 

Coliphage are not considered to be pathogenic to humans. 

Sample Handling 

Select the size of sample dependent on the expected number of phage.  

Perform serial dilutions on heavily contaminated samples before use. 

 

Apparatus and Equipment 

Petri dishes 

Autoclave 

Incubator at 37±1
0
C 
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Water bath at 48±2
0
C 

Microwave for melting media 

pH meter 

Plate counting apparatus 

Deep freeze at (-20±5)
0
C 

Pipettes 

Glass bottles 

Refrigerator 

 

Reagents and Materials 

Nutrient agar plus Nalidixic acid (0.5g /20 mL)  

0.5 g Nalidixic acid.  

Dissolve in 4 ml NaOH (1M) add 16 mL water. 

Filter sterilise into a sterile bottle.  

Keep for not longer than 4 weeks. 

 

Standard culture E. coli strain  

Nutrient broth 

Phage base agar 

 11g Agar 

 13g Tryptone 

 8g NaCl 

 1.5g Glucose 

 1L reagent water 

Phage top agar 

 6g Agar 

 10g Tryptone 

 8g NaCl 

 3g Glucose 

 Nalidixic acid (1mL stock /100mL agar) 

 1L reagent water 
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Calibration 

Balance must have passed QC check within the last week  

pH meter must have passed QC check within the last week  

Incubator must show a steady temperature on the Laboratory Temperature Logger Automatic 

pipettes must have passed QC check within the last week  

Medium batch must have passed QC check  

Laminar flow cabinets must have passed QC check within the last week Autoclave run must 

have passed QC check   

If any of the above calibrations has failed, the method should not be deemed fit for use before 

remedial action has been shown to be successful. 

 

Quality Control  

For each batch of media prepared, inoculate one Petri dish each with positive and negative 

controls. 

Procedure 

Take one loopful of host culture from stock. 

Subculture in 50 mL nutrient broth at 37 ± 1
0
C for 4 hours. 

 

On day of analysis 

Pour phage agar base into 10 x 90 mm Petri dishes. 

Allow to set. 

Prepare phage top agar. 

Maintain at 48 ± 2
0
C in water bath. 

Warm 50 mL of sample in water bath. 

Add 125 mL of phage top agar and 10 mL of E. coli host culture. 

Swirl gently to mix, avoiding bubbles. 

Dispense evenly onto prepared agar base. 

Allow to set. 

Incubate at 37±1
0
C for 18-24 hours. 

Count plaques. 
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Calculation 

2 x Total number of plaques in all the Petri dishes = phage per 100mL of sample. 

Method Performance Assessment 

The laboratory participates in inter-laboratory proficiency exercises, when available.  

 

Reporting Results 

Results are reported as plaque forming units (pfu) per 100 mL. 

 

7.8 Ringers Solution 

 

NaCL   6 g 

KCL   0,075 g 

CaCl2   0,1 g 

NaHCO3  0,1 g 

Reagent water 1 L 

Dissolve the salts in reagent water and make up to 1L with reagent water.  Autoclave before 

use.  
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8. APPENDIX 2 

Table 8.1 Probability of infection from single exposure and annual probability of infection for an individual agricultural worker irrigating 

crops subsurface. 

      Single exposure Annual exposure 

Organism Irrigation Mitigation Min Max Mode 5% 95% Min Max Mode 5% 95% 

Total 

coliform G None 
0.083324 0.083324 0.083324 0.083324 0.083324 1 1 1 1 1 

    -1 0.010456 0.010456 0.010456 0.010456 0.010456 0.877831 0.877831 0.877831 0.877831 0.877831 

    -2 0.001075 0.001075 0.001075 0.001075 0.001075 0.193486 0.193486 0.193486 0.193486 0.193486 

    -3 0.000108 0.000108 0.000108 0.000108 0.000108 0.021322 0.021322 0.021322 0.021322 0.021322 

    -4 1.078 10-6 1.078 10-6 1.078 10-6 1.078 10-6 1.078 10-6 0.0002156 0.0002156 0.0002156 0.0002156 0.0002156 

  H None 0 0 0 0 0 0 0 0 0 0 

    -1 0 0 0 0 0 0 0 0 0 0 

    -2 0 0 0 0 0 0 0 0 0 0 

    -3 0 0 0 0 0 0 0 0 0 0 

    -4 0 0 0 0 0 0 0 0 0 0 

  T None 2.94 10-7 2.94 10-7 2.94 10-7 2.94 10-7 2.94 10-7 5.879 10-5 5.879 10-5 5.88 10-5 5.88 10-5 5.88 10-5 

    -1 2.94 10-8 2.94 10-8 2.94 10-8 2.94 10-8 2.94 10-8 5.88 10-6 5.88 10-6 5.88 10-6 5.88 10-6 5.88 10-6 

    -2 2.94 10-9 2.94 10-9 2.94 10-9 2.94 10-9 2.94 10-9 5.88 10-7 5.88 10-7 5.88 10-7 5.88 10-7 5.88 10-7 

    -3 2.94 10-10 2.94 10-10 2.94 10-10 2.94 10-10 2.94 10-10 5.88 10-8 5.88 10-8 5.88 10-8 5.88 10-8 5.88 10-8 

    -4 2.94 10-12 2.94 10-12 2.94 10-12 2.94 10-12 2.94 10-12 5.88 10-10 5.88 10-10 5.88 10-10 5.88 10-10 5.88 10-10 
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Table 8.2: Probability of infection from single exposure and annual probability of infection for an individual working with sub-surface 

irrigated soil  
   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

Enterococcus G None 0.0307664 0.0307664 0.0307664 0.0307664 0.0318335 0.0318335 0.0318335 0.0318335 

    -1 0.0033371 0.0033371 0.0033371 0.0033371 0.275589 0.275589 0.275589 0.275589 

    -2 0.0003366 0.0003366 0.0003366 0.0003366 0.0318335 0.0318335 0.0318335 0.0318335 

    -3 3.369 10-5 3.369 10-5 3.369 10-5 3.369 10-5 0.003231 0.003231 0.003231 0.003231 

    -5 3.369 10-7 3.369 10-7 3.369 10-7 3.369 10-7 3.236 10-5 3.236 10-5 3.236 10-5 3.236 10-5 

  H None 0.0017393 0.0017393 0.0017393 0.0017393 1 1 1 1 

    -1 0.0001747 0.0001747 0.0001747 0.0001747 0.9925162 0.9925162 0.9925162 0.9925162 

    -2 1.748 10-5 1.748 10-5 1.748 10-5 1.748 10-5 0.4030877 0.4030877 0.4030877 0.4030877 

    -3 1.748 10-6 1.748 10-6 1.748 10-6 1.748 10-6 0.0505617 0.0505617 0.0505617 0.0505617 

    -5 1.748 10-8 1.748 10-8 1.748 10-8 1.748 10-8 0.000519 0.000519 0.000519 0.000519 

  T None 0.0032916 0.0032916 0.0032916 0.0032916 0.9999997 0.9999997 0.9999997 0.9999997 

    -1 0.000332 0.000332 0.000332 0.000332 0.8315227 0.8315227 0.8315227 0.8315227 

    -2 3.323 10-5 3.323 10-5 3.323 10-5 3.323 10-5 0.1660088 0.1660088 0.1660088 0.1660088 

    -3 3.323 10-6 3.323 10-6 3.323 10-6 3.323 10-6 0.0180242 0.0180242 0.0180242 0.0180242 

    -5 3.323 10-8 3.323 10-8 3.323 10-8 3.323 10-8 0.0001819 0.0001819 0.0001819 0.0001819 

Staphylococcus G None 0.0001617 0.0001617 0.0001617 0.0001617 0.0014863 0.0014863 0.0014863 0.0014863 

    -1 0.0016107 0.0016107 0.0016107 0.0016107 0.0001487 0.0001487 0.0001487 0.0001487 

    -2 0.0001617 0.0001617 0.0001617 0.0001617 1.487 10-5 1.487 10-5 1.487 10-5 1.487 10-5 

    -3 1.618 10-5 1.618 10-5 1.618 10-5 1.618 10-5 1.487 10-6 1.487 10-6 1.487 10-6 1.487 10-6 

    -5 1.618 10-7 1.618 10-7 1.618 10-7 1.618 10-7 1.487 10-8 1.487 10-8 1.487 10-8 1.487 10-8 

  H None 0.1554871 0.1554871 0.1554871 0.1554871 0.004494 0.004494 0.004494 0.004494 

    -1 0.024178 0.024178 0.024178 0.024178 0.0004503 0.0004503 0.0004503 0.0004503 

    -2 0.0025766 0.0025766 0.0025766 0.0025766 4.504 10-5 4.504 10-5 4.504 10-5 4.504 10-5 

    -3 0.0002594 0.0002594 0.0002594 0.0002594 4.504 10-6 4.504 10-6 4.504 10-6 4.504 10-6 

    -5 2.596 10-6 2.596 10-6 2.596 10-6 2.60 10-6 4.504 10-8 4.504 10-8 4.504 10-8 4.504 10-8 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

  T None 0.0727894 0.0727894 0.0727894 0.0727894 0.482845 0.482845 0.482845 0.482845 

    -1 0.0088652 0.0088652 0.0088652 0.0088652 0.064252 0.064252 0.064252 0.064252 

    -2 0.0009073 0.0009073 0.0009073 0.0009073 0.0066236 0.0066236 0.0066236 0.0066236 

    -3 9.094 10-5 9.094 10-5 9.094 10-5 9.094 10-5 0.0006644 0.0006644 0.0006644 0.0006644 

    -5 9.096 10-7 9.096 10-7 9.096 10-7 9.096 10-7 6.646 10-6 6.646 10-6 6.646 10-6 6.646 10-6 

Total coliforms G None 5.742 10-5 5.742 10-5 5.742 10-5 5.742 10-5 0.0114189 0.0114189 0.0114189 0.0114189 

    -1 5.743 10-6 5.743 10-6 5.743 10-6 5.743 10-6 0.0011479 0.0011479 0.0011479 0.0011479 

    -2 5.743 10-7 5.743 10-7 5.743 10-7 5.743 10-7 0.0001149 0.0001149 0.0001149 0.0001149 

    -3 5.743 10-8 5.743 10-8 5.743 10-8 5.743 10-8 1.149 10-5 1.149 10-5 1.149 10-5 1.149 10-5 

    -5 5.743 10-10 5.743 10-10 5.743 10-10 5.743 10-10 1.149 10-7 1.149 10-7 1.149 10-7 1.149 10-7 

  H None 7.437 10-6 7.437 10-6 7.437 10-6 7.437 10-6 0.9980694 0.9980694 0.9980694 0.9980694 

    -1 7.437 10-7 7.437 10-7 7.437 10-7 7.437 10-7 0.4875433 0.4875433 0.4875433 0.4875433 

    -2 7.437 10-8 7.437 10-8 7.437 10-8 7.437 10-8 0.0651179 0.0651179 0.0651179 0.0651179 

    -3 7.437 10-9 7.437 10-9 7.437 10-9 7.437 10-9 0.0067157 0.0067157 0.0067157 0.0067157 

    -5 7.437 10-11 7.437 10-11 7.437 10-11 7.437 10-11 6.739 10-5 6.739 10-5 6.739 10-5 6.739 10-5 

  T None 2.252 10-5 2.252 10-5 2.25 10-52 2.252 10-5 0.294012 0.294012 0.294012 0.294012 

    -1 2.252 10-6 2.252 10-6 2.252 10-6 2.252 10-6 0.0343423 0.0343423 0.0343423 0.0343423 

    -2 2.252 10-7 2.252 10-7 2.252 10-7 2.252 10-7 0.0034898 0.0034898 0.0034898 0.0034898 

    -3 2.252 10-8 2.252 10-8 2.252 10-8 2.252 10-8 0.0003495 0.0003495 0.0003495 0.0003495 

    -5 2.252 10-10 2.252 10-10 2.252 10-10 2.252 10-10 3.496 10-6 3.496 10-6 3.496 10-6 3.496 10-6 
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Table 8.3: Probability of infection as a result of individual or annual consumption of Swiss chard irrigated subsurface with greywater (G), 

hydroponic solution (H), tap water (T) or purchased commercially (C) calculated according to the selected indicator organisms 

      Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

E. coli G None 0.1774664 7.834 10-7  5.368 10-5 0.062208 1 1 0.0194043 1 

    -1 0.0295484 7.834 10-8 5.369 10-6 0.0073547 0.9999824 2.86 10-5 0.0019578 0.9324161 

    -2 0.0031945 7.834 10-9 5.369 10-7 0.0007497 0.688971 2.86 10-6 0.000196 0.2394709 

    -3 0.0003221 7.834 10-10 5.369 10-8 7.512 10-5 0.1109403 2.86 10-7 1.96 10-5 0.0270457 

    -6 3.224 10-7 7.833 10-13 5.369 10-11 7.513 10-8 0.0001177 2.859 10-10 1.96 10-8 2.742 10-5 

  H None 0.0058293 

No distribution. 

Maximum microbial 

concentration 

utilised 

0.0058293 0.8816289 

No distribution. 

Maximum microbial 

concentration  

utilised 

0.8816289 

    -1 0.0005918 0.0005918 0.1943343 0.1943343 

    -2 5.928 10-5 5.928 10-5 0.0214037 0.0214037 

    -3 5.928 10-6 5.928 10-6 0.0021615 0.0021615 

    -6 5.929 10-9 5.929 10-9 2.164 10-6 2.164 10-6 

  T None 0.0004933 0.0004933 0.1648252 0.1648252 

    -1 4.94 10-5 4.94 10-5 0.0178689 0.0178689 

    -2 4.94 10-6 4.94 10-6 0.0018016 0.0018016 

    -3 4.94 10-7 4.94 10-7 0.0001803 0.0001803 

    -6 4.94 10-10 4.94 10-10 1.8030 10-7 1.803 10-7 

  C None 0.0490408 0.0490408 1 1 

    -1 0.0055903 0.0055903 0.870774 0.870774 

    -2 0.0005672 0.0005672 0.1870575 0.1870575 

    -3 5.681 10-5 5.681 10-5 0.0205212 0.0205212 

    -6 5.682 10-8 5.682 10-8 2.074 10-5 2.074 10-5 

Enterococcus G None 0.6478133 1.904 10-5  0.0026918 0.5301724 1 1 0.626124 1 

    -1 0.4360479 1.904 10-6 0.0002711 0.2724989 1 1 0.094215 1 

    -2 0.1700729 1.904 10-7 2.713 10-5 0.0617942 1 1 0.0098522 1 
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      Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -3 0.0276694 1.904 10-8 2.713 10-6 0.0072973 0.9999644 6.95 10-6 0.0009897 0.9309757 

    -6 3.002 10-5 1.904 10-11 2.713 10-9 7.453 10-6 0.0108968 6.95 10-9 9.902 10-7 0.0027167 

  H None 0.5978514 0.3862585 0.0342056 0.495663 1 1 0.999997 1 

    -1 0.3628418 0.0001989 0.0037447 0.231497 1 1 0.7457376 1 

    -2 0.111449 1.991 10-5 0.0003781 0.0458408 1 1 0.1289405 0.9999999 

    -3 0.015176 1.991 10-6 3.785 10-5 0.0051799 0.9962338 0.0007263 0.0137207 0.8497666 

    -6 1.586 10-5 1.991 10-9 3.785 10-8 5.258 10-6 0.005773 7.267 10-7 1.382 10-5 0.0019173 

  T None 0.2558391 0.1225969 0.0166398 0.2274112 1 1 0.9978117 1 

    -1 0.0548889 0.0025337 0.0017381 0.0444349 1 1 0.4700426 0.9999999 

    -2 0.0063587 0.000255 0.0001746 0.0050017 0.9025425 0.4829016 0.0617446 0.8396198 

    -3 0.0006465 2.552 10-5 1.747 10-5 0.0005067 0.2102529 0.009272 0.0063554 0.1688956 

    -6 6.477 10-7 2.552 10-8 1.747 10-8 5.075 10-7 0.0002364 9.316 10-6 6.376 10-6 0.0001852 

  C None 0.1506645 0.1506645 0.1506645 0.1506645 1 1 1 1 

    -1 0.0230835 0.0230835 0.0230835 0.0230835 0.9998014 0.9998014 0.9998014 0.9998014 

    -2 0.0024528 0.0024528 0.0024528 0.0024528 0.5919511 0.5919511 0.5919511 0.5919511 

    -3 0.0002468 0.0002468 0.0002468 0.0002468 0.0861694 0.0861694 0.0861694 0.0861694 

    -6 2.47 10-7 2.47 10-7 2.47 10-7 2.47 10-7 9.016 10-5 9.016 10-5 9.016 10-5 9.016 10-5 

Staphylococcus G None 0.1488553 2.033 10-8 1.077 10-5 0.0503695 1 1 0.003923 1 

    -1 3.677 10-7 5.012 10-14 2.66 10-11 1.244 10-7 0.0001342 1.829 10-11 9.71 10-9 4.541 10-5 

    -2 9.082 10-14 0 0 3.064 10-14 3.315 10-11 0 0 1.118 10-11 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

  H None 0.1488553 2.033 10-8 1.077 10-5 0.0503695 1 1 0.003923 1 

    -1 3.677 10-7 5.012 10-14 2.66 10-11 1.244 10-7 0.0001342 1.829 10-11 9.71 10-9 4.541 10-5 



157 

 

      Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -2 9.082 10-14 0 0 3.064 10-14 3.315 10-11 0 0 1.11 10-11 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

  T None 0.1488553 2.033 10-8 1.077 10-5 0.0503695 1 1 0.003923 1 

    -1 3.677 10-7 5.012 10-14 2.66 10-11 1.244 10-7 0.0001342 1.829 10-11 9.71 10-9 4.541 10-5 

    -2 9.082 10-14 0 0 3.064 10-14 3.315 10-11 0 0 1.118 10-11 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

  C None 0.1488553 2.033 10-8 1.077 10-5 0.0503695 1 1 0.003923 1 

    -1 3.677 10-7 5.012 10-14 2.66 10-11 1.244 10-7 0.0001342 1.829 10-11 9.71 10-9 4.541 10-5 

    -2 9.082 10-14 0 0 3.064 10-14 3.315 10-11 0 0 1.118 10-11 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

Total coliforms G None 0.1016039 1.705 10-10 2.96 10-7 0.0237178 1 1 0.000108 0.9998433 

    -1 0.0134418 1.705 10-11 2.96 10-8 0.0025245 0.9928419 6.224 10-9 1.08 10-5 0.6025128 

    -2 0.0013922 1.705 10-12 2.96 10-9 0.0002541 0.3986173 6.224 10-10 1.08 10-6 0.0885883 

    -3 0.0001397 1.705 10-13 2.96 10-10 2.543 10-5 0.0497256 6.222 10-11 1.08 10-7 0.0092382 

    -6 1.398 10-7 0 2.96 10-13 2.543 10-8 5.102 10-5 0 1.08 10-10 9.282 10-6 

  H None 0.0918011 5.17 10-10 4.522 10-7 0.0236571 1 1 0.000165 0.9998397 

    -1 0.0118044 5.17 10-11 4.522 10-8 0.0025176 0.9868882 1.887 10-8 1.65 10-5 0.6015126 

    -2 0.0012174 5.17 10-12 4.522 10-9 0.0002534 0.3589326 1.887 10-9 1.65 10-6 0.0883567 

    -3 0.0001221 5.17 10-13 4.522 10-10 2.536 10-5 0.0435993 1.887 10-10 1.65 10-7 0.009213 

    -6 1.222 10-7 0 4.521 10-13 2.536 10-8 4.459 10-5 0 1.65 10-10 9.256 10-6 

  T None 0.1469777 6.98 10-12 8.226 10-8 0.041353 1 1 3.002 10-5 0.9999998 
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      Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -1 0.022266 6.979 10-13 8.226 10-9 0.0046158 0.9997305 2.547 10-10 3.002 10-6 0.8152363 

    -2 0.0023608 6.974 10-14 8.226 10-10 0.0004672 0.57798 2.546 10-11 3.002 10-7 0.1568006 

    -3 0.0002375 0 8.226 10-11 4.677 10-5 0.0830557 0 3.002 10-8 0.0169274 

    -6 2.377 10-7 0 8.216 10-14 4.678 10-8 8.675 10-5 0 2.999 10-11 1.707 10-5 

  C None 0.0176449 6.627 10-5 6.471 10-5 0.0023183 0.9984934 0.0238985 0.0233416 0.5713752 

    -1 0.001848 6.628 10-6 6.472 10-6 0.0002332 0.490917 0.0024163 0.0023594 0.0816162 

    -2 0.0001857 6.628 10-7 6.472 10-7 2.334 10-5 0.0655365 0.0002419 0.0002362 0.0084821 

    -3 1.858 10-5 6.628 10-8 6.472 10-8 2.334 10-6 0.006758 2.419 10-5 2.362 10-5 0.0008515 

    -6 1.858 10-8 6.628 10-11 6.472 10-11 2.334 10-9 6.781 10-6 2.419 10-8 2.362 10-8 8.519 10-7 

 

 

 Table 8.4: Probability of infection as a result of individual or annual consumption of green peppers irrigated subsurface with greywater (G), 

hydroponic solution (H), tap water (T) or purchased commercially (C) calculated according to the selected indicator organisms 

   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

E. coli G Pinf 0.0476181 1.823 10-7 1.598 10-5 0.0146674 1 0.9999703 0.0058176 0.9954528 

    -1 0.005407 1.823 10-8 1.599 10-6 0.0015241 0.8617787 6.655 10-6 0.0005833 0.4269173 

    -2 0.0005484 1.823 10-9 1.599 10-7 0.000153 0.181437 6.655 10-7 5.835 10-5 0.0543236 

    -3 5.491 10-5 1.823 10-10 1.599 10-8 1.531 10-5 0.0198445 6.655 10-8 5.835 10-6 0.0055717 

    -6 5.492 10-8 1.823 10-13 1.599 10-11 1.531 10-8 2.005 10-5 6.655 10-11 5.835 10-9 5.588 10-6 

  H Pinf 0.064083 1.085 10-5 0.0001599 0.0200422 1 0.9999975 0.0567126 0.9993824 

    -1 0.0076162 1.085 10-6 1.6 10-5 0.0021125 0.9386122 0.0003961 0.0058234 0.5378495 

    -2 0.0007769 1.085 10-7 1.6 10-6 0.0002124 0.2469854 3.962 10-5 0.0005839 0.0746074 

    -3 7.784 10-5 1.085 10-8 1.6 10-7 2.125 10-5 0.0280145 3.962 10-6 5.84 10-5 0.0077272 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -6 7.786 10-8 1.085 10-11 1.6 10-10 2.125 10-8 2.842 10-5 3.962 10-9 5.841 10-8 7.758 10-6 

  T Pinf 0.0006272 2.444 10-5 1.656 10-5 0.0004892 0.2046773 0.0088828 0.0060252 0.1635578 

    -1 6.282 10-5 2.445 10-6 1.656 10-6 4.898 10-5 0.0226706 0.0008919 0.0006042 0.0177197 

    -2 6.283 10-6 2.445 10-7 1.656 10-7 4.899 10-6 0.0022908 8.923 10-5 6.043 10-5 0.0017864 

    -3 6.284 10-7 2.445 10-8 1.656 10-8 4.899 10-7 0.0002293 8.923 10-6 6.04 10-6 0.0001788 

    -6 6.284 10-10 2.445 10-11 1.656 10-11 4.899 10-10 2.293 10-7 8.923 10-9 6.04 10-9 1.788 10-7 

  C Pinf 0 0 0 0 

        -1 0 0 0 0 

        -2 0 0 0 0 

        -3 0 0 0 0 

        -6 0 0 0 0 

    Staphylococcus G Pinf 0.0024271 1.19 10-11 1.32 10-8 0.000583 0.5880971 4.344 10-9 4.818 10-6 0.1917181 

    -1 0.0002442 1.19 10-12 1.32 10-9 5.838 10-5 0.0853008 4.344 10-10 4.818 10-7 0.0210856 

    -2 2.444 10-5 1.19 10-13 1.32 10-10 5.839 10-6 0.008881 4.342 10-11 4.818 10-8 0.0021291 

    -3 2.444 10-6 0 1.32 10-11 5.839 10-7 0.0008917 0 4.818 10-9 0.0002131 

    -6 2.444 10-9 0 1.31 10-14 5.839 10-10 8.921 10-7 0 4.782 10-12 2.131 10-7 

  H Pinf 0.022021 3.56 10-13 3.055 10-9 0.0046804 0.9997047 1.299 10-10 1.115 10-6 0.8195605 

    -1 0.0023333 0 3.055 10
-10

 0.0004738 0.573712 0 1.115 10
-7

 0.1588352 

    -2 0.0002347 0 3.055 10-11 4.744 10-5 0.0821232 0 1.115 10-8 0.0171653 

    -3 2.349 10-5 0 3.055 10-12 4.744 10-6  0.0085369 0 1.115 10-9 0.0017301 

    -6 2.349 10-8 0 3.109 10-15 4.744 10-9 8.574 10-6 0 1.135 10-12 1.732 10-6 

  T Pinf 0.0187026 0 2.473 10-9 0.0038292 0.9989832 0 9.027 10-7 0.7534859 

    -1 0.0019643 0 2.473 10-10 0.0003867 0.5121093 0 9.027 10-8 0.1316761 

    -2 0.0001974 0 2.473 10-11 3.871 10-5 0.0695338 0 9.027 10-9 0.0140314 

    -3 1.975 10-5 0 2.473 10-12 3.872 10-6 0.0071841 0 9.027 10-10 0.0014122 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -6 1.975 10-8 0 2.442 10-15 3.872 10-9 7.21 10-6 0 8.915 10-13 1.413 10-6 

  C Pinf 0.0024903 6.632 10-6 1.312 10-5 0.0007758 0.5975101 0.0024178 0.0047765 0.2466788 

    -1 0.0002506 6.632 10-7 1.312 10-6 7.773 10-5 0.0874353 0.0002421 0.0004787 0.0279748 

    -2 2.508 10-5 6.632 10-8 1.312 10-7 7.775 10-6 0.0091128 2.421 10-5 4.788 10-5 0.0028338 

    -3 2.508 10-6 6.632 10-9 1.312 10-8 7.775 10-7 0.0009151 2.421 10-6 4.788 10-6 0.0002837 

    -6 2.508 10-9 6.632 10-12 1.312 10-11 7.775 10-10 9.155 10-7 2.421 10-9 4.788 10-9 2.838 10-7 

Total coliforms G Pinf 0.0008265 1.239 10-7 1.952 10-6 0.0001932 0.260507 4.524 10-5 0.0007124 0.0680975 

 
  -1 8.283 10-5 1.239 10-8 1.953 10-7 1.933 10-5 0.0297801 4.524 10-6 7.126 10-5 0.0070308 

 
  -2 8.284 10-6 1.239 10-9 1.953 10-8 1.933 10-6 0.0030192 4.524 10-7 7.127 10-6 0.0007053 

 
  -3 8.285 10-7 1.239 10-10 1.953 10-9 1.933 10-7 0.0003023 4.524 10-8 7.127 10-7 7.056 10-5 

 
  -6 8.285 10-10 4.864 10-11 1.952 10-12 1.933 10-10 3.024 10-7 1.776 10-8 7.126 10-10 7.05 10-8 

 
H Pinf 0.0004826 6.819 10-7 2.333 10-6 0.0001424 0.1615337 0.0002488 0.0008512 0.0506622 

 
  -1 4.832 10-5 6.819 10-8 2.333 10-7 1.425 10-5 0.0174817 2.489 10-5 8.515 10-5 0.0051871 

 
  -2 4.832 10-6 6.81 10-9 2.333 10-8 1.425 10-6 0.0017623 2.489 10-6 8.515 10-6 0.0005199 

 
  -3 4.832 10-7 6.819 10-10 2.333 10-9 1.425 10-7 0.0001764 2.489 10-7 8.515 10-7 5.201 10-5 

 
  -6 4.832 10-10 1.985 10-13 2.333 10-12 1.425 10-10 1.764 10-7 7.246 10-11 8.516 10-10 5.201 10-8 

 
T Pinf 0.0004259 2.124 10-7 2.306 10-6 0.0001393 0.1439891 7.751 10-5 0.0008415 0.0495804 

 
  -1 4.263 10

-5
 2.124 10

-8
 2.306 10

-7
 1.394 10

-5
 0.015441 7.751 10

-6
 8.418 10

-5
 0.0050738 

 
  -2 4.264 10-6 2.124 10-9 2.307 10-8 1.394 10-6 0.0015551 7.751 10-7 8.419 10-6 0.0005086 

 
  -3 4.264 10-7 2.124 10-10 2.307 10-9 1.394 10-7 0.0001556 7.751 10-8 8.419 10-7 5.087 10-5 

 
  -6 4.264 10-10 4.957 10-12 2.307 10-12 1.394 10-10 1.556 10-7 1.809 10-9 8.419 10-10 5.087 10-8 

 
C Pinf 5.332 10-5 9.181 10-7 2.872 10-7 1.648 10-5 0.0192747 0.0003351 0.0001048 0.0059984 

 
  -1 5.333 10-6 9.181 10-8 2.872 10-8 1.648 10-6 0.0019446 3.351 10-5 1.048 10-5 0.0006015 

 
  -2 5.333 10-7 9.181 10-9 2.872 10-9 1.648 10-7 0.0001946 3.351 10-6 1.048 10-6 6.016 10-5 

 
  -3 5.333 10-8 9.181 10-10 2.872 10-10 1.648 10-8 1.947 10-5 3.351 10-7 1.048 10-7 6.017 10-6 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

 
  -6 5.33 10-11 0 2.87 10-13 1.65 10-11 1.95 10-8 0 1.05 10-10 6.02 10-9 

 

Table 8.5: Probability of infection as a result of individual or annual consumption of chillies irrigated subsurface with greywater (G) or 

hydroponic solution (H) calculated according to the load of total coliforms 

      Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

Total coliform G None 8.6 10-7 4.738 10-9 5.211 10-9 2.95 10-7 0.0003139 1.729 10-6 1.902 10-6 0.0001077 

    -1 8.6 10-8 4.738 10-10 5.211 10-10 2.95 10-8 3.139 10-5 1.729 10-7 1.902 10-7 1.077 10-5 

    -2 8.6 10-9 4.738 10-11 5.211 10-11 2.95 10-9 3.139 10-6 1.729 10-8 1.902 10-8 1.077 10-6 

    -3 8.6 10-10 2.316 10-11 5.211 10-12 2.95 10-10 3.139 10-7 8.453 10-9 1.902 10-9 1.077 10-7 

    -6 8.6 10-13 0 5.329 10-15 2.949 10-13 3.139 10-10 0 1.945 10-12 1.076 10-10 

  H None 2.328 10-6 1.493 10-8 1.376 10-8 7.992 10-7 0.0008492 5.45 10-6 5.022 10-6 0.0002917 

    -1 2.328 10-7 1.493 10-9 1.376 10-9 7.992 10-8 8.495 10-5 5.45 10-7 5.022 10-7 2.917 10-5 

    -2 2.328 10-8 1.493 10-10 1.376 10-10 7.992 10-9 8.496 10-6 5.45 10-8 5.022 10-8 2.917 10-6 

    -3 2.328 10-9 1.493 10-11 1.376 10-11 7.992 10-10 8.496 10-7 5.45 10-9 5.022 10-9 2.917 10-7 

    -6 2.327 10-12 0 1.377 10-14 7.991 10-13 8.495 10-10 0 5.025 10-12 2.917 10-10 

 

 

 

 

 

 



162 

 

Table 8.6: Probability of infection as a result of individual or annual consumption of beetroot irrigated subsurface with greywater (G), 

hydroponic solution (H), tap water (T) or purchased commercially (C), calculated according to the selected indicator organisms 

   Single exposure Annual exposure 

Organism Irrigation Mitgiation Max Mode 5% 95% Max Mode 5% 95% 

E. coli G Pinf 0.0008064 8.70 10-6 4.68 10-6 0.0002729 0.2550628 0.0031697 0.0017061 0.094819 

    -1 8.081 10-5 8.698 10-7 4.678 10-7 2.731 10-5 0.0290657 0.0003174 0.0001707 0.0099183 

    -2 8.08 10-6 8.70 10-8 4.70 10-8 2.73 10-6 0.0029458 3.175 10-5 1.708 10-5 0.0009963 

    -3 8.083 10-7 8.70 10-9 4.68 10-9 2.731 10-7 0.000295 3.17 10-6 1.71 10-6 9.968 10-5 

    -6 8.08 10-10 3.71 10-14 4.68 10-12 2.73 10-10 2.95 10-7 1.35 10-11 1.71 10-9 9.97 10-8 

  H Pinf 2.155 10-5 1.468 10-7 1.337 10-7 7.60 10-6 0.0078335 5.356 10-5 4.879 10-5 0.0027714 

    -1 2.15 10-6 1.47 10-8 1.34 10-8 7.603 10-7 0.0007862 5.36 10-6 4.88 10-6 0.0002775 

    -2 2.155 10-7 1.47 10-9 1.34 10-9 7.60 10-8 7.864 10-5 5.36 10-7 4.88 10-7 2.775 10-5 

    -3 2.15 10-8 1.47 10-10 1.34 10-10 7.60 10-9 7.86 10-6 5.36 10-8 4.88 10-8 2.77 10-6 

    -6 2.15 10-11 8.61 10-14 1.34 10-13 7.60 10-12 7.86 10-9 3.14 10-11 4.88 10-11 2.77 10-9 

  T Pinf 0.000101 1.201 10-5 2.63 10-6 7.827 10-5 0.0361902 0.0043726 0.0009583 0.028166 

    -1 1.01 10-5 1.20 10-6 2.63 10-7 7.83 10-6 0.0036801 0.0004381 9.587 10-5 0.0028534 

    -2 1.01 10-6 1.20 10-7 2.63 10-8 7.82 10-7 0.0003686 4.382 10-5 9.59 10-6 0.0002857 

    -3 1.01 10-7 1.20 10-8 2.63 10-9 7.83 10-8 3.687 10-5 4.38 10-6 9.59 10-7 2.858 10-5 

    -6 1.01 10-10 1.50 10-12 2.63 10-12 7.83 10-11 3.69 10-8 5.47 10-10 9.59 10-10 2.86 10-8 

  C Pinf 0 0 0 0 0 0 0 0 

    -1 0 0 0 0 0 0 0 0 

    -2 0 0 0 0 0 0 0 0 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

Enterococcus G Pinf 0.5424531 1.27 10-6 0.0002945 0.3451193 1 1 0.1019339 1 

    -1 0.2879765 1.27 10-7 2.947 10-5 0.0998927 1 1 0.0107003 1 

    -2 0.0687751 1.27 10-8 2.95 10-6 0.0131497 1 4.65 10-6 0.0010753 0.9920251 



163 

 

   Single exposure Annual exposure 

Organism Irrigation Mitgiation Max Mode 5% 95% Max Mode 5% 95% 

    -3 0.0082821 1.27 10-9 2.95 10-7 0.0013609 0.9519518 4.65 10-7 0.0001076 0.3916971 

    -6 8.48 10-6 1.27 10-12 2.95 10-10 1.37 10-6 0.0030916 4.65 10-10 1.08 10-7 0.0004986 

  H Pinf 0.380769 2.141 10-5 0.001108 0.2310689 1 1 0.3327951 1 

    -1 0.1241452 2.14 10-6 0.0001111 0.045692 1 1 0.0397505 0.9999999 

    -2 0.0175537 2.14 10-7 1.112 10-5 0.005161 0.9984414 7.816 10-5 0.004049 0.8487203 

    -3 0.001838 2.14 10-8 1.11 10-6 0.0005231 0.4890516 7.82 10-6 0.0004056 0.1738429 

    -6 1.85 10-6 2.14 10-11 1.11 10-9 5.24 10-7 0.0006742 7.82 10-9 4.06 10-7 0.0001912 

  T Pinf 0 0 0 0 0 0 0 0 

    -1 0 0 0 0 0 0 0 0 

    -2 0 0 0 0 0 0 0 0 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

  C Pinf 0.0504471 0.0504471 0.0504471 0.0504471 1 1 1 1 

    -1 0.0057729 0.0057729 0.0057729 0.0057729 0.8791522 0.8791522 0.8791522 0.8791522 

    -2 0.000586 0.000586 0.000586 0.000586 0.1926221 0.1926221 0.1926221 0.1926221 

    -3 5.869 10-5 5.869 10-5 5.869 10-5 5.869 10-5 0.0211954 0.0211954 0.0211954 0.0211954 

    -6 5.87 10-8 5.87 10-8 5.87 10-8 5.87 10-8 2.143 10-5 2.143 10-5 2.143 10-5 2.143 10-5 

Staphylococcus G Pinf 0.0009088 3.67 10-9 2.37 10
-7

 0.0002246 0.2824185 1.34 10
-6

 8.652 10
-5

 0.0787155 

    -1 9.11 10-5 3.67 10-10 2.37 10-8 2.247 10-5 0.0327049 1.34 10-7 8.65 10-6 0.008169 

    -2 9.11 10-6 3.67 10-11 2.37 10-9 2.25 10-6 0.0033203 1.34 10-8 8.65 10-7 0.00082 

    -3 9.11 10-7 3.67 10-12 2.37 10-10 2.25 10-7 0.0003325 1.34 10-9 8.65 10-8 8.203 10-5 

    -6 9.11 10-10 0 2.37 10-13 2.25 10-10 3.33 10-7 0 8.66 10-11 8.20 10-8 

  H Pinf 0.0083212 8.09 10-9 1.00 10-6 0.0023514 0.9526389 2.95 10-6 0.0003666 0.5765249 

    -1 0.0008504 8.09 10-10 1.00 10-7 0.0002366 0.2669305 2.95 10-7 3.67 10-5 0.0827368 

    -2 8.522 10-5 8.09 10-11 1.00 10-8 2.367 10-5 0.0306293 2.95 10-8 3.67 10-6 0.0086032 
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   Single exposure Annual exposure 

Organism Irrigation Mitgiation Max Mode 5% 95% Max Mode 5% 95% 

    -3 8.52 10-6 8.09 10-12 1.00 10-9 2.37 10-6 0.0031065 2.95 10-9 3.67 10-7 0.0008637 

    -6 8.52 10-9 0 1.00 10-12 2.37 10-9 3.11 10-6 0 3.67 10-10 8.64 10-7 

  T Pinf 0.001366 6.56 10-6 7.16 10-6 0.000407 0.3928247 0.0023904 0.0026109 0.1380616 

    -1 0.0001371 6.56 10-7 7.16 10-7 4.074 10-5 0.0488088 0.0002393 0.0002614 0.0147601 

    -2 1.371 10-5 6.56 10-8 7.17 10-8 4.07 10-6 0.004993 2.393 10-5 2.614 10-5 0.001486 

    -3 1.37 10-6 6.56 10-9 7.16 10-9 4.07 10-7 0.0005004 2.39 10-6 2.61 10-6 0.0001487 

    -6 1.37 10-9 1.16 10-12 7.16 10-12 4.07 10-10 5.01 10-7 4.22 10-10 2.61 10-9 1.49 10-7 

  C Pinf 0 0 0 0 0 0 0 0 

    -1 0 0 0 0 0 0 0 0 

    -2 0 0 0 0 0 0 0 0 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

Total coliforms G Pinf 0.0013619 2.38 10-6 8.07 10-6 0.0004784 0.3919054 0.0008691 0.002941 0.1602551 

    -1 0.0001367 2.38 10-7 8.07 10-7 4.79 10-5 0.048664 8.694 10-5 0.0002945 0.0173317 

    -2 1.367 10-5 2.38 10-8 8.07 10-8 4.79 10-6 0.0049778 8.69 10-6 2.945 10-5 0.001747 

    -3 1.37 10-6 2.38 10-9 8.07 10-9 4.79 10-7 0.0004989 8.69 10-7 2.94 10-6 0.0001748 

    -6 1.37 10-9 3.79 10-11 8.07 10-12 4.79 10-10 4.99 10-7 1.38 10-8 2.94 10-9 1.75 10-7 

  H Pinf 0.0551375 1.772 10
-5

 7.87 10
-6

 0.0009804 1 0.0064485 0.00287 0.3009514 

    -1 0.0063919 1.77 10-6 7.87 10-7 9.829 10-5 0.9037238 0.0006468 0.0002874 0.0352428 

    -2 0.0006499 1.77 10-7 7.87 10-8 9.83 10-6 0.2112421 6.469 10-5 2.874 10-5 0.0035822 

    -3 6.51 10-5 1.77 10-8 7.87 10-9 9.83 10-7 0.0234826 6.47 10-6 2.87 10-6 0.0003588 

    -6 6.51 10-8 5.33 10-12 7.87 10-12 9.83 10-10 2.377 10-5 1.94 10-9 2.87 10-9 3.59 10-7 

  T Pinf 0.0003473 1.22 10-8 4.36 10-7 0.0001193 0.1190645 4.46 10-6 0.0001591 0.0425956 

    -1 3.476 10-5 1.22 10-9 4.36 10-8 1.193 10-5 0.0126064 4.46 10-7 1.591 10-5 0.0043446 

    -2 3.48 10-6 1.22 10-10 4.36 10-9 1.19 10-6 0.0012679 4.46 10-8 1.59 10-6 0.0004353 
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   Single exposure Annual exposure 

Organism Irrigation Mitgiation Max Mode 5% 95% Max Mode 5% 95% 

    -3 3.48 10-7 1.22 10-11 4.36 10-10 1.19 10-7 0.0001269 4.46 10-9 1.59 10-7 4.354 10-5 

    -6 3.48 10-10 0 4.36 10-13 1.19 10-10 1.27 10-7 0 1.59 10-10 4.35 10-8 

  C Pinf 0.0008579 0.0008579 0.0008579 0.0008579 0.2689353 0.2689353 0.2689353 0.2689353 

    -1 8.598 10-5 8.598 10-5 8.598 10-5 8.598 10-5 0.0308957 0.0308957 0.0308957 0.0308957 

    -2 8.6 10-6 8.6 10-6 8.6 10-6 8.6 10-6 0.003134 0.003134 0.003134 0.003134 

    -3 8.6 10-7 8.6 10-7 8.6 10-7 8.6 10-7 0.0003138 0.0003138 0.0003138 0.0003138 

    -6 8.6 10-10 8.6 10-10 8.6 10-10 8.6 10-10 3.14 10-7 3.14 10-7 3.14 10-7 3.14 10-7 

 

Table 8.7: Probability of infection as a result of individual or annual consumption of potato irrigated subsurface with greywater (G), 

hydroponic solution (H), tap water (T) or purchased commercially (C), calculated according to the selected indicator organisms 

 

   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

Staphylococcus G Pinf 0.2096806 0.0025206 0.0027622 0.1176383 1 1 0.6356385 1 

    -1 0.0386815 0.0002537 0.0002782 0.0163146 0.9999995 0.9999535 0.0965743 0.997531 

    -2 0.0042864 2.539 10-5 2.784 10-5 0.0017027 0.7915149 0.009224 0.0101107 0.4631319 

    -3 0.0004334 2.54 10-6 2.78 10-6 0.000171 0.146355 0.0009263 0.0010158 0.0605192 

    -6 4.34 10-7 2.54 10-9 2.78 10-9 1.71 10-7 0.0001584 9.27 10-7 1.02 10-6 6.24 10-5 

  H Pinf 0.1480372 0.0003711 0.0012395 0.0631155 1 1 0.3640983 1 

    -1 0.0224993 3.71 10-5 0.0001244 0.0074809 0.999753 0.3033567 0.0443769 0.9354815 

    -2 0.002387 3.71 10-6 1.24 10-5 0.0007628 0.5820082 0.0013551 0.0045301 0.2431066 

    -3 0.0002402 3.71 10-7 1.24 10-6 7.64 10-5 0.0839437 0.0001356 0.0004539 0.0275133 

    -6 2.40 10-7 3.71 10-10 1.24 10-9 7.64 10-8 8.77 10-5 1.36 10-7 4.54 10-7 2.79 10-5 

  T Pinf 0.0037232 4.49 10-5 1.97 10-5 0.00109 0.7437245 0.0162601 0.0071653 0.3283836 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -1 0.0003759 4.49 10-6 1.97 10-6 0.0001093 0.1282422 0.0016382 0.0007189 0.0391144 

    -2 3.76 10-5 4.49 10-7 1.97 10-7 1.09 10-5 0.0136415 0.0001639 7.19 10-5 0.003983 

    -3 3.76 10-6 4.49 10-8 1.97 10-8 1.09 10-6 0.0013727 1.64 10-5 7.19 10-6 0.000399 

    -6 3.76 10-9 4.49 10-11 1.97 10-11 1.09 10-9 1.37 10-6 1.64 10-8 7.19 10-9 3.99 10-7 

  C Pinf 0.3063492 0.0038005 0.0052755 0.1793676 1 1 0.8549472 1 

    -1 0.0778221 0.0003838 0.0005348 0.030044 1 1 0.1773865 0.9999854 

    -2 0.0096143 3.84 10-5 5.36 10-5 0.0032524 0.9705833 0.013926 0.0193594 0.6954966 

    -3 0.0009858 3.84 10-6 5.36 10-6 0.000328 0.3023301 0.0014016 0.0019532 0.1128497 

    -6 9.89 10-7 3.84 10-9 5.36 10-9 3.28 10-7 0.0003608 1.40 10-6 1.95 10-6 0.0001198 

Total coliforms G Pinf 0.0036105 0.0018305 0.0013623 0.0024163 0.7329181 0.487645 0.3920009 0.5864621 

    -1 0.0003644 0.0001839 0.0001367 0.0002431 0.1245769 0.0649329 0.0486791 0.0849346 

    -2 3.65 10-5 1.84 10-5 1.37 10-5 2.43 10-5 0.0132269 0.0066938 0.0049794 0.0088413 

    -3 3.65 10-6 1.84 10-6 1.37 10-6 2.43 10-6 0.0013307 0.0006714 0.0004991 0.0008877 

    -6 3.65 10-9 1.84 10-9 1.37 10-9 2.43 10-9 1.33 10-6 6.72 10-7 4.99 10-7 8.88 10-7 

  H Pinf 0.0019221 0.0019221 0.0019221 0.0019221 0.504534 0.504534 0.504534 0.504534 

    -1 0.0001932 0.0001932 0.0001932 0.0001932 0.0680871 0.0680871 0.0680871 0.0680871 

    -2 1.93 10-5 1.93 10-5 1.93 10-5 1.93 10-5 0.0070297 0.0070297 0.0070297 0.0070297 

    -3 1.93 10
-6

 1.93 10
-6

 1.93 10
-6

 1.93 10
-6

 0.0007052 0.0007052 0.0007052 0.0007052 

    -6 1.93 10-9 1.93 10-9 1.93 10-9 1.93 10-9 7.05 10-7 7.05 10-7 7.05 10-7 7.05 10-7 

  T Pinf 0.0018821 0.0018821 0.0018821 0.0018821 0.4972232 0.4972232 0.4972232 0.4972232 

    -1 0.0001891 0.0001891 0.0001891 0.0001891 0.0667099 0.0667099 0.0667099 0.0667099 

    -2 1.89 10-5 1.89 10-5 1.89 10-5 1.89 10-5 0.0068829 0.0068829 0.0068829 0.0068829 

    -3 1.89 10-6 1.89 10-6 1.89 10-6 1.89 10-6 0.0006905 0.0006905 0.0006905 0.0006905 

    -6 1.89 10-9 1.89 10-9 1.89 10-9 1.89 10-9 6.91 10-7 6.91 10-7 6.91 10-7 6.91 10-7 

  C Pinf 0.0243682 0.0243682 3.44 10-6 0.0243681 0.9998772 0.9998772 0.0012538 0.9998772 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -1 0.0025982 0.0025982 3.44 10-7 0.0025982 0.6130941 0.6130941 0.0001255 0.6130931 

    -2 0.0002616 0.0002616 3.44 10-8 0.0002616 0.0910712 0.0910712 1.25 10-5 0.0910709 

    -3 2.62 10-5 2.62 10-5 3.44 10-9 2.62 10-5 0.0095087 0.0095087 1.25 10-6 0.0095087 

    -6 2.62 10-8 2.62 10-8 3.44 10-12 2.62 10-8 9.55 10-6 9.55 10-6 1.25 10-9 9.55 10-6 

 

 

Table 8.8: Probability of infection as a result of individual or annual consumption of onion irrigated subsurface with greywater (G), 

hydroponic solution (H), tap water (T) or purchased commercially (C) calculated according to the selected indicator organisms 

  
Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

Enterococcus 
G Pinf 0.3204052 1.29 10-5 0.0007004 0.1751691 1 1 0.2256592 1 

    -1 0.0853378 1.29 10-6 7.02 10-5 0.0289564 1 1 0.0252875 0.999978 

    -2 0.0107713 1.29 10-7 7.02 10-6 0.0031256 0.9808 4.72 10-5 0.0025584 0.6810157 

    -3 0.0011078 1.29 10-8 7.02 10-7 0.0003151 0.3327462 4.72 10-6 0.0002561 0.1086614 

    -6 1.11 10-6 1.29 10-11 7.02 10-10 3.15 10-7 0.0004056 4.72 10-9 2.56 10-7 0.0001151 

  H Pinf 0.0695308 0.0068733 0.0021295 0.0331842 1 1 0.5407262 0.9999955 

    -1 0.0083909 0.0004796 0.0002141 0.0036229 0.9538385 0.3002267 0.0751903 0.7341327 

    -2 0.0008576 4.80 10-5 2.14 10-5 0.0003657 0.2688774 0.0252634 0.0077898 0.1249821 

    -3 8.60 10-5 4.80 10-6 2.14 10-6 3.66 10-5 0.030888 0.0017513 0.0007818 0.0132727 

    -6 8.60 10-8 4.80 10-9 2.14 10-9 3.66 10-8 3.14 10-5 1.75 10-6 7.82 10-7 1.34 10-5 

  T Pinf 0 0 0 0 0 0 0 0 

    -1 0 0 0 0 0 0 0 0 
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Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -2 0 0 0 0 0 0 0 0 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

  C Pinf 0.1350527 0.1350527 0.1350527 0.1350527 1 1 1 1 

    -1 0.0197317 0.0197317 0.0197317 0.0197317 0.9993067 0.9993067 0.9993067 0.9993067 

    -2 0.002078 0.002078 0.002078 0.002078 0.5319918 0.5319918 0.5319918 0.5319918 

    -3 0.0002089 0.0002089 0.0002089 0.0002089 0.0734306 0.0734306 0.0734306 0.0734306 

    -6 2.09 10-7 2.09 10-7 2.09 10-7 2.09 10-7 7.63 10-5 7.63 10-5 7.63 10-5 7.63 10-5 

Staphylococcus 
G Pinf 0.0035128 7.12 10-9 5.85 10-7 0.0007711 0.7231889 2.60 10-6 0.0002136 0.2453968 

    -1 0.0003545 7.12 10-10 5.85 10-8 7.73 10-5 0.1213906 2.60 10-7 2.14 10-5 0.0278089 

    -2 3.55 10-5 7.12 10-11 5.85 10-9 7.73 10-6 0.0128678 2.60 10-8 2.14 10-6 0.0028168 

    -3 3.55 10-6 7.12 10-12 5.85 10-10 7.73 10-7 0.0012944 2.60 10-9 2.14 10-7 0.000282 

    -6 3.55 10-9 0 5.85 10-13 7.73 10-10 1.29 10-6 0 2.14 10-10 2.82 10-7 

  H Pinf 0.0034259 1.38 10-6 1.62 10-5 0.0011476 0.7142426 0.0005049 0.005906 0.3423612 

    -1 0.0003457 1.38 10-7 1.62 10-6 0.0001151 0.1185495 5.05 10-5 0.0005922 0.0411429 

    -2 3.46 10-5 1.38 10-8 1.62 10-7 1.15 10-5 0.0125486 5.05 10-6 5.92 10-5 0.0041935 

    -3 3.46 10-6 1.38 10-9 1.62 10-8 1.15 10-6 0.0012621 5.05 10-7 5.92 10-6 0.0004202 

    -6 3.46 10-9 1.38 10-12 1.62 10-11 1.15 10-9 1.26 10-6 5.05 10-10 5.92 10-9 4.20 10-7 

  T Pinf 0.0039298 1.76 10-8 1.35 10-6 0.000911 0.7624128 6.41 10-6 0.0004925 0.2829944 

    -1 0.000397 1.76 10-9 1.35 10-7 9.13 10-5 0.1349265 6.41 10-7 4.93 10-5 0.0327828 

    -2 3.97 10-5 1.76 10-10 1.35 10-8 9.13 10-6 0.0144017 6.41 10-8 4.93 10-6 0.0033283 

    -3 3.97 10-6 1.76 10-11 1.35 10-9 9.13 10-7 0.0014497 6.41 10-9 4.93 10-7 0.0003333 

    -6 3.97 10-9 0 1.35 10-12 9.13 10-10 1.45 10-6 0 4.93 10-10 3.33 10-7 



169 

 

  
Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

  C Pinf 3.14 10-6 3.14 10-6 3.14 10-6 3.14 10-6 0.0011439 0.0011439 0.0011439 0.0011439 

    -1 3.14 10-7 3.14 10-7 3.14 10-7 3.14 10-7 0.0001144 0.0001144 0.0001144 0.0001144 

    -2 3.14 10-8 3.14 10-8 3.14 10-8 3.14 10-8 1.14 10-5 1.14 10-5 1.14 10-5 1.14 10-5 

    -3 3.14 10-9 3.14 10-9 3.14 10-9 3.14 10-9 1.14 10-6 1.14 10-6 1.14 10-6 1.14 10-6 

    -6 3.14 10-12 3.14 10-12 3.14 10-12 3.14 10-12 1.14 10-9 1.14 10-9 1.14 10-9 1.14 10-9 

Total coliform G Pinf 0.7612635 8.07 10-6 7.63 10-6 0.0068682 1 1 0.0027812 0.9191817 

    -1 0.6136082 8.07 10-7 7.63 10-7 0.0006992 1 0.0002946 0.0002785 0.2253182 

    -2 0.3854361 8.07 10-8 7.63 10-8 7.00 10-5 1 2.95 10-5 2.78 10-5 0.0252445 

    -3 0.1276219 8.07 10-9 7.63 10-9 7.01 10-6 1 2.95 10-6 2.78 10-6 0.002554 

    -6 0.0001922 8.07 10-12 7.63 10-12 7.01 10-9 0.0677616 2.95 10-9 2.78 10-9 2.56 10-6 

  H Pinf 0.0454526 2.52 10-12 1.11 10-8 0.0081016 0.9999999 9.21 10-10 4.07 10-6 0.9486512 

    -1 0.0051305 2.52 10-13 1.11 10-9 0.0008274 0.8470231 9.21 10-11 4.07 10-7 0.2607659 

    -2 0.0005199 0 1.11 10-10 8.29 10-5 0.1729001 0 4.07 10-8 0.0298142 

    -3 5.21 10-5 0 1.11 10-11 8.29 10-6 0.0188247 0 4.07 10-9 0.0030227 

    -6 5.21 10-8 0 1.11 10-14 8.29 10-9 1.90 10-5 0 4.05 10-12 3.03 10-6 

  T Pinf 0.001653 3.08 10-9 2.78 10-7 0.0004407 0.4532849 1.13 10-6 0.0001015 0.1486227 

    -1 0.000166 3.08 10-10 2.78 10-8 4.41 10-5 0.0587978 1.13 10-7 1.01 10-5 0.0159762 

    -2 1.66 10-5 3.08 10-11 2.78 10-9 4.41 10-6 0.0060435 1.13 10-8 1.01 10-6 0.0016094 

    -3 1.66 10-6 3.08 10-12 2.78 10-10 4.41 10-7 0.000606 1.13 10-9 1.01 10-7 0.0001611 

    -6 1.66 10-9 0 2.78 10-13 4.41 10-10 6.06 10-7 0 1.02 10-10 1.61 10-7 

  C Pinf 6.06 10-5 6.06 10-5 6.06 10-5 6.06 10-5 0.0218821 0.0218821 0.0218821 0.0218821 

    -1 6.06 10-6 6.06 10-6 6.06 10-6 6.06 10-6 0.0022103 0.0022103 0.0022103 0.0022103 

    -2 6.06 10-7 6.06 10-7 6.06 10-7 6.06 10-7 0.0002213 0.0002213 0.0002213 0.0002213 

    -3 6.06 10-8 6.06 10-8 6.06 10-8 6.06 10-8 2.21 10-5 2.21 10-5 2.21 10-5 2.21 10-5 
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Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -6 6.06 10-11 6.06 10-11 6.06 10-11 6.06 10-11 2.21 10-8 2.21 10-8 2.21 10-8 2.21 10-8 

 

 

 

Table 8.9: Probability of infection as a result of individual or annual consumption of carrot irrigated subsurface with greywater (G), 

hydroponic solution (H), tap water (T) or purchased commercially (C) calculated according to the selected indicator organisms 

   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

E coli 
G Pinf 0.1590408 0.0032882 0.0013216 0.0626604 1 1 0.3828888 1 

    -1 0.0250032 0.0003316 0.0001326 0.0074176 0.9999031 0.1140248 0.0472547 0.9339603 

    -2 0.0026704 3.32 10-5 1.33 10-5 0.0007562 0.6231867 0.0120423 0.0048304 0.2412832 

    -3 0.0002689 3.32 10-6 1.33 10-6 7.58 10-5 0.0934977 0.0012109 0.0004841 0.0272785 

    -6 2.69 10-7 3.32 10-9 1.33 10-9 7.58 10-8 9.82 10-5 1.21 10-6 4.84 10-7 2.77 10-5 

  H Pinf 0.0064175 3.87 10-5 3.59 10-5 0.0019463 0.9046246 0.0140228 0.0130227 0.5088989 

    -1 0.0006526 3.87 10-6 3.59 10-6 0.0001956 0.2120039 0.0014113 0.0013101 0.0689182 

    -2 6.54 10-5 3.87 10-7 3.59 10-7 1.96 10-5 0.0235772 0.0001412 0.0001311 0.0071184 

    -3 6.54 10-6 3.87 10-8 3.59 10-8 1.96 10-6 0.0023834 1.41 10-5 1.31 10-5 0.0007142 

    -6 6.54 10-9 3.87 10-11 3.59 10-11 1.96 10-9 2.39 10-6 1.41 10-8 1.31 10-8 7.14 10-7 

Enterococcus 
G Pinf 0.129365 0.1273528 0.0094205 0.12527 1 1 0.9684053 1 

    -1 0.0185798 0.0181808 0.0009655 0.0177723 0.9989357 0.9987653 0.2971196 0.9985631 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -2 0.0019507 0.0019068 9.68 10-5 0.001862 0.5096902 0.5017522 0.0347131 0.4935115 

    -3 0.0001961 0.0001916 9.68 10-6 0.0001871 0.0690696 0.067561 0.0035275 0.0660176 

    -6 1.96 10-7 1.92 10-7 9.68 10-9 1.87 10-7 7.16 10-5 7.00 10-5 3.53 10-6 6.83 10-5 

  H Pinf 0 0 0 0 0 0 0 0 

    -1 0 0 0 0 0 0 0 0 

    -2 0 0 0 0 0 0 0 0 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

  T Pinf 0 0 0 0 0 0 0 0 

    -1 0 0 0 0 0 0 0 0 

    -2 0 0 0 0 0 0 0 0 

    -3 0 0 0 0 0 0 0 0 

    -6 0 0 0 0 0 0 0 0 

  C Pinf 0.2660909 0.2660909 0.2660909 0.2660909 1 1 1 1 

    -1 0.0590658 0.0590658 0.0590658 0.0590658 1 1 1 1 

    -2 0.0069224 0.0069224 0.0069224 0.0069224 0.9207734 0.9207734 0.9207734 0.9207734 

    -3 0.0007048 0.0007048 0.0007048 0.0007048 0.2269038 0.2269038 0.2269038 0.2269038 

    -6 7.06 10-7 7.06 10-7 7.06 10-7 7.06 10-7 0.0002578 0.0002578 0.0002578 0.0002578 

Staphylococcus 
G Pinf 0.1078061 2.37 10-7 2.36 10-5 0.0347978 1 1 0.0085729 0.9999976 

    -1 0.0145235 2.37 10-8 2.36 10-6 0.0038157 0.9952038 8.64 10-6 0.0008607 0.7522607 

    -2 0.0015086 2.37 10-9 2.36 10-7 0.0003854 0.4236545 8.64 10-7 8.61 10-5 0.1312384 

    -3 0.0001514 2.37 10-10 2.36 10-8 3.86 10-5 0.0537831 8.64 10-8 8.61 10-6 0.0139816 

    -6 1.51 10-7 2.37 10-13 2.36 10-11 3.86 10-8 5.53 10-5 8.64 10-11 8.61 10-9 1.41 10-5 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

  H Pinf 0.0007535 2.00 10-6 3.91 10-6 0.0002331 0.240529 0.0007314 0.0014273 0.0815594 

    -1 7.55 10-5 2.00 10-7 3.91 10-7 2.33 10-5 0.0271816 7.32 10-5 0.0001428 0.0084759 

    -2 7.55 10-6 2.00 10-8 3.91 10-8 2.33 10-6 0.0027524 7.32 10-6 1.43 10-5 0.0008509 

    -3 7.55 10-7 2.00 10-9 3.91 10-9 2.33 10-7 0.0002756 7.32 10-7 1.43 10-6 8.51 10-5 

    -6 7.55 10-10 5.55 10-14 3.91 10-12 2.33 10-10 2.76 10-7 2.03 10-12 1.43 10-9 8.51 10-8 

  T Pinf 0.0002956 9.28 10-7 1.35 10-6 8.81 10-5 0.1022791 0.0003389 0.0004933 0.0316496 

    -1 2.96 10-5 9.28 10-8 1.35 10-7 8.81 10-6 0.0107384 3.39 10-5 4.93 10-5 0.0032116 

    -2 2.96 10-6 9.28 10-9 1.35 10-8 8.81 10-7 0.0010791 3.39 10-6 4.93 10-6 0.0003216 

    -3 2.96 10-7 9.28 10-10 1.35 10-9 8.81 10-8 0.000108 3.39 10-7 4.93 10-7 3.22 10-5 

    -6 2.96 10-10 3.10 10-12 1.35 10-12 8.81 10-11 1.08 10-7 1.13 10-9 4.93 10-10 3.22 10-8 

  C Pinf 0.0110822 0.0001394 5.56 10-5 0.0033864 0.9828812 0.0496154 0.0201005 0.7100748 

    -1 0.0011407 1.39 10-5 5.56 10-6 0.0003416 0.3407219 0.0050775 0.0020287 0.1172534 

    -2 0.0001144 1.39 10-6 5.56 10-7 3.42 10-5 0.040903 0.0005089 0.0002031 0.0124033 

    -3 1.14 10-5 1.39 10-7 5.56 10-8 3.42 10-6 0.0041686 5.09 10-5 2.03 10-5 0.0012474 

    -6 1.14 10-8 1.39 10-10 5.56 10-11 3.42 10-9 4.18 10-6 5.09 10-8 2.03 10-8 1.25 10-6 

Total coliforms G Pinf 0.5467111 1.60 10-5 2.32 10-5 0.0059743 1 0.9999911 0.008429 0.887764 

    -1 0.2934454 1.60 10-6 2.32 10-6 0.0006068 1 0.0005857 0.0008462 0.1987202 

    -2 0.0713792 1.60 10-7 2.32 10-7 6.08 10-5 1 5.86 10-5 8.46 10-5 0.0219391 

    -3 0.008659 1.60 10-8 2.32 10-8 6.08 10-6 0.958176 5.86 10-6 8.46 10-6 0.0022162 

    -6 8.88 10-6 1.60 10-11 2.32 10-11 6.08 10-9 0.0032356 5.86 10-9 8.46 10-9 2.22 10-6 

  H Pinf 0.0074878 8.87 10-5 4.07 10-5 0.0006686 0.9356436 0.0318609 0.0147438 0.2165974 

    -1 0.0007635 8.87 10-6 4.07 10-6 6.70 10-5 0.2433031 0.0032333 0.0014844 0.0241495 

    -2 7.65 10-5 8.87 10-7 4.07 10-7 6.70 10-6 0.0275386 0.0003238 0.0001485 0.002442 

    -3 7.65 10-6 8.87 10-8 4.07 10-8 6.70 10-7 0.0027891 3.24 10-5 1.48 10-5 0.0002445 
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   Single exposure Annual exposure 

Organism Irrigation Mitigation Max Mode 5% 95% Max Mode 5% 95% 

    -6 7.65 10-9 8.87 10-11 4.07 10-11 6.70 10-10 2.79 10-6 3.24 10-8 1.49 10-8 2.44 10-7 

  T Pinf 0.005121 1.78 10-7 5.04 10-6 0.0012831 0.8464839 6.51 10-5 0.0018392 0.3741362 

    -1 0.000519 1.78 10-8 5.04 10-7 0.0001287 0.1726026 6.51 10-6 0.0001841 0.0459044 

    -2 5.20 10-5 1.78 10-9 5.04 10-8 1.29 10-5 0.0187893 6.51 10-7 1.84 10-5 0.0046894 

    -3 5.20 10-6 1.78 10-10 5.04 10-9 1.29 10-6 0.0018952 6.51 10-8 1.84 10-6 0.0004699 

    -6 5.20 10-9 1.78 10-13 5.04 10-12 1.29 10-9 1.90 10-6 6.51 10-11 1.84 10-9 4.70 10-7 

  C Pinf 0.0004012 5.05 10-5 1.75 10-5 0.0001648 0.1362391 0.0182571 0.0063753 0.058377 

    -1 4.02 10-5 5.05 10-6 1.75 10-6 1.65 10-5 0.0145516 0.0018411 0.0006394 0.0059991 

    -2 4.02 10-6 5.05 10-7 1.75 10-7 1.65 10-6 0.0014649 0.0001843 6.40 10-5 0.0006016 

    -3 4.02 10-7 5.05 10-8 1.75 10-8 1.65 10-7 0.0001466 1.84 10-5 6.40 10-6 6.02 10-5 

    -6 4.02 10-10 1.63 10-11 1.75 10-11 1.65 10-10 1.47 10-7 5.94 10-9 6.40 10-9 6.02 10-8 
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