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Abstract 

Geosynthetic Clay Liners (GCLs) have become a suitable substitute for compacted clay liners. 

Their use centre on liquid impoundments, such as to prevent leachates from landfills seeping 

into the groundwater system and as sealant in tailings dam.  GCLs are thin sheets of bentonite 

encased between two geotextiles. The main component of GCLs is bentonite, which formed as 

an alteration product of volcanic ash, comprised mainly of montmorillonite. Bentonite exists 

as either sodium bentonite or calcium bentonite, depending on the type of montmorillonite 

present within it. To perform as an effective hydraulic barrier, sodium bentonite is the preferred 

type due to its high-water retention characteristics and swelling potential. Often times, the 

bentonite does not meet the desired swell index. As such, a process known as activation is 

undertaken, whereby soda ash (Na2CO3) is mixed with borderline quality bentonite. This study 

investigated the suitability of bentonites from the Imerys mine in the Western Cape Province 

of South Africa for use in GCLs.  In this research, both activated and non-activated bentonites 

were investigated. X-Ray diffraction analysis was conducted on the bentonites in order to 

determine their bulk mineralogical composition. Swell index test, fluid loss test, plate water 

absorption tests and Atterberg limits test were also conducted on samples of activated and non-

activated bentonites. Furthermore, swell index tests were conducted to investigate the extent of 

beneficiation over time.   The XRD results reveal that activated and non-activated bentonite 

have a smectite content of approximately 58 % and 67 % respectively with the major impurity 

being quartz. The swell index of non-activated bentonite was significantly lower than the 

activated bentonite. However, the activated bentonite did not swell to the required minimum 

of 24 ml/2g as it did not achieve full activation. Activated samples of bentonite tested at 

different times subsequent to activation reveal that the activation requires at least 4 weeks for 

the ideal ratio of 1:50, soda ash to bentonite, to fully activate.  The fluid loss results also 

displayed results slightly above the required minimum, of 18 ml, as a result of the low swell 

index. Activated and non-activated bentonite has an absorption capacity of approximately 

133 % and 121 %. The plasticity index is 101 % for activated bentonite, 15 % higher than non-

activated bentonite. Moreover, a moderate correlation between plate water absorption and 

liquid limit was found for activated bentonite.  The activated bentonite from Western Cape is 

suitable for use in GCLs provided the blend of bentonite is not of very low quality and sufficient 

time is given for activation to reach completion. Imerys bentonite is a medium quality bentonite 

with borderline index properties that requires beneficiation and time to achieve complete 

activation.
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Chapter 1 

Introduction 

1.1 General background 

Geosynthetic Clay Liners (GCLs) have gained much professional attention over the past decade 

as a substitute for compacted clay liners in cover systems, composite bottom liners, 

environmental protection barriers and as liners for canals, ponds or surface impoundments 

(Bouazza, 2002). GCLs are thinly manufactured hydraulic barriers comprising a layer of 

sodium bentonite encased between two geotextiles (Setz et al., 2017). Sodium bentonite is the 

most critical component of a GCL due to its high water retention characteristics and swelling 

potential (Seiphoori et al., 2016).  Subsequent to installation, GCLs hydrate to a certain degree 

of saturation through the uptake of water from the subsoil. When the bentonite absorbs water 

under confinement, it swells, thereby reducing the void ratio.  Thus, a lower void ratio can be 

obtained after the saturated condition, which results in a better performance of the GCL in 

terms of the limited hydraulic conductivity (Seiphoori et al., 2016). 

The primary function of GCLs is to act as hydraulic barriers for various liquids such as 

leachates and tailings in varied environments such as landfills and tailings dams (Bouazza, 

2002). Therefore, investigations are aligned, but not restricted to properties that relate to 

hydraulic conductivity, such as fluid loss, free swell and absorption. 

The focal point of this research was bentonite, which is the active ingredient of GCLs. There 

are two types of bentonites namely, sodium bentonite and calcium bentonite, each type 

denoting the predominant exchangeable ion. Sodium bentonite is preferred over calcium 

bentonite due to its better swelling properties. The primary constituent of sodium bentonite, 

which contributes to swelling, is montmorillonite (Norrish, 1954). Montmorillonite comprises 

two silica tetrahedral sheets with a central octahedral sheet. Water molecules and cations 

occupy the space between the layers (Al-Ani and Sarapää, 2008). Generally, the typical sodium 

bentonite used in GCLs will contain 60–85 % montmorillonite (Von Maubeuge, 2002). 

Sodium bentonite has a high swelling capacity whereas bentonite with lower amounts of 

sodium has a much lower swelling capacity. However, this can be improved by treatment with 

sodium carbonate or soda ash (Na2CO3), to produce sodium exchanged bentonite, by increasing 

the concentration of exchangeable sodium ions within the bentonite (Al-Ani and Sarapää, 

2008). Sodium ion has a large hydration radius, thus has the ability to retain high volumes of 

absorbed water. This is primarily responsible for the high swell index and sealing ability of a 
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bentonite (Alther, 1987).  The process of mixing bentonite with soda ash is called sodium 

activation and the resulting bentonite is said to be sodium activated or simply activated 

bentonite.  

For the purpose of this research, samples of activated and non-activated bentonite were 

obtained from the Imerys mine in the Western Cape Province in South Africa. 

1.2 Location of Imerys Mine 

The Imerys Mine is located near the town of Heidelberg, which is situated approximately 230 

km east of Cape Town in the Western Cape Province of South Africa (Figure 1.1).   

 

Figure 1.1: Map of Western Cape showing Heidelberg (generated in ArcGIS). 

 

The main route to Heidelberg is via the N2 National Highway eastward, from Cape Town. 

Bentonite is mined from 3 to 5 pits just north-west of Heidelberg.  The furthest mining pit being 

no more than 10 km from Heidelberg. Further information about the geology of the bentonite 

deposit is in Chapter 2.    

Major 
roads 
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1.3 Statement of the problem 

Hydration of bentonite without adequate confining pressure will result in free swell. This will 

continuously progress until saturation, as the bentonite absorbs water from the subgrade or 

precipitation.  

In certain instances, the mined bentonite does not possess the desired swell potential.  Thus, a 

process known as beneficiation is required. Beneficiation is a process whereby soda ash 

(Na2CO3) is added to the bentonite to increase its sodium content (von Maubeuge, 2002). 

Customers require bentonite of a certain specification. Thus, all mined bentonite go through 

some processing prior to sale. Bentonite is sourced from Imerys to be used in the manufacture 

of GCLs. But would it meet the minimum fluid loss and swell index performance requirements? 

In this instance, how does non-beneficiated bentonite perform relative to beneficiated 

bentonite? What is the effect of time on the beneficiation process of bentonite used in GCLs?  

Problems such as inadequate swell defeat the main purpose of a GCL and destroy its primary 

function, which is to serve as a hydraulic barrier. However, it is not always feasible to conduct 

extensive tests prior to installation. Hence there is a need to determine complete suitability of 

the Imerys bentonite used in GCLs through extensive laboratory testing. 

1.4 Research hypothesis 

Cape bentonite is a medium quality bentonite with borderline index properties that requires 

beneficiation and time to achieve complete activation. 

1.5 Aim & objectives 

The aims of this research were to investigate the suitability of sodium bentonite from the Imerys 

bentonite mine for its use in GCLs and to examine the difference in the behaviour of 

beneficiated versus non-beneficiated bentonite. 

The objectives of this research were: 

i. to determine the major mineralogical composition of acquired bentonite through X-Ray 

Diffraction (XRD) techniques; 

ii. to subject samples of bentonite to Fluid Loss (ASTM D 5891-02) tests on samples of 

bentonite in order to determine the amount of fluid loss under a specific air pressure;  

iii. to subject samples to Swell Index (ASTM D5890-1) tests in order to determine the 

amount of free swell a sample undergoes when submerged in water. Furthermore, the 
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change in swell index over time was tested to determine the effect of time on activation 

of bentonite on samples of in-house activated bentonite; 

iv. to deduce water absorption of bentonite samples over a specified time period by 

conducting plate water absorption tests; 

v. to determine the liquid and plastic limits of the bentonite by conducting Atterberg limits 

tests; and 

vi. to deduce a relationship between the liquid limit and the plate water absorption. 

1.6 Synopsis of chapters 

1.6.1 Chapter 1- Introduction 

Chapter 1 presents an introduction to the research. It starts by giving a brief background of 

GCLs and bentonite. It also touches on the definition of sodium activation. Thereafter, the 

location of the study is explained, followed by the problem statement. Lastly, the aims and 

objectives of the study are clearly stated. 

1.6.2 Chapter 2 - Geological Setting and Mining Method 

Chapter 2 describes the regional geology of Heidelberg. Comprehensive explanations are given 

about the origin and formation of the bentonite beds within the stratigraphy. The typical 

lithology for each stratigraphic unit of the regional geology is defined.  Further explanation is 

given to illustrate the method of mining and the processing procedures of the raw bentonite. 

1.6.3 Chapter 3 - Literature Review 

Chapter 3 presents a detailed literature review pertaining to the research. To get an 

understanding of clay minerals and the composition of bentonite, the chapter starts by 

explaining the two elementary structures of individual clay minerals. Thereafter, it explains the 

combinations of these building blocks and their mineral classification. The chapter further 

elucidates on smectite minerals and their clay mineral classification. Bentonite is then 

introduced into the chapter and is discussed in detail. Subsequently, GCLs are described 

including its properties, problems and uses. Lastly, beneficiated bentonite is defined and 

explained.  

1.6.4 Chapter 4 – Methodology 

Chapter 4 explicitly outlines the procedures involved in carrying out this research to fulfil the 

objectives set out. It details the test methods for each test conducted and explains why the 
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procedures were carried out in a particular manner. The test procedures include XRD, swell 

index, fluid loss, plate water absorption and Atterberg limits.    

1.6.5 Chapter 5 – Results and Discussion 

Chapter 5 presents the results from the various tests and further discusses the results. These 

results are: XRD analysis, swell index, fluid loss, plate water absorption and Atterberg limits. 

This chapter presents the results of each test in individual sub-sections and immediately 

thereafter discusses the significance of the results. Results for swell index include 

investigations of the effect of time on the beneficiation of bentonite. The Atterberg limits 

section includes the correlation of liquid limit to plate water absorption.  

1.6.6 Chapter 6 – Conclusion and Recommendations 

The concluding chapter highlights and summarises the main points of the research and 

reiterates the key aspects of the dissertation. This chapter also states the main findings of this 

research and the recommendations that should be implemented. It further explains the 

difficulties experienced, the constraints of this study and the necessity for future research. 
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Chapter 2 

Geological Setting and Mining Method 

2.1 Introduction 

The Imerys mine lies within the Heidelberg Basin, which hosts the Uitenhage Group (Figure 

2.1). During the Cretaceous, separation of east and west Gondwana and their eventual 

separation leading to South America and Africa, caused the development of these rift basins 

(Muir et al., 2015). During the continental breakup, a series of normal faults developed in the 

Western Cape which provided accumulation space for what is now known as the Uitenhage 

Group, hosted in several rift basins such as the Heidelberg Basin (Muir, 2018). The Heidelberg 

Basin is situated in the vicinity of Heidelberg, Western Cape, South Africa. Deposited within 

this basin is the Enon Formation, the Kirkwood Formation and the Buffelskloof Formation of 

the Uitenhage Group (Muir et al., 2017a). The bentonite deposits are found within the 

Kirkwood Formation.  

 

Figure 2.1: Geology map of the Heidelberg area (after Council for Geoscience geological 

map, 2019). 

2.2 The Uitenhage Group 

During the Early Cretaceous separation of Africa and South America, a series of normal faults 

developed in the cape region of South Africa, which provided sedimentation space for the 
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Uitenhage Group to accumulate within these rift basins. The Uitenhage Group (Table 2.1) 

currently exists within several on-shore and off-shore basins (Renne et al., 1996; Muir et al., 

2017a). The Uitenhage Group comprises 8 Formations, namely: the Hartenbos Formation, the 

Buffelskloof Formation, the Robberg Formation, the Sundays River Formation, the Brenton 

Formation, the Infanta Formation, the Kirkwood Formation and the Enon Formation (Muir, 

2018) (Table 2.1). However, in the Heidelberg basin, only the Enon Formation, the Kirkwood 

Formation and the Buffelskloof Formation exist.  

2.3 The Enon Formation 

The Enon Formation currently exists in several offshore basins and onshore basins within the 

Eastern Cape and Western Cape Provinces of South Africa (Muir, 2018). It is the oldest and 

most proximal unit of the Uitenhage Group and comprises predominantly conglomerate 

deposits. 

The Enon Formation deposits are primarily thick beds of poorly sorted pebble/cobble 

conglomerates with subordinate sandstone and mudstone. Majority of the deposits were 

derived from the weathering of the Cape Fold Belt Mountains (Muir et al., 2017a). The age of 

the Enon Formation is disputed. However, McLachlan and McMillan (1976) suggested that 

deposition of the Enon Formation occurred over a period of time, from the Jurassic until the 

Early Cretaceous. 

2.4 The Kirkwood Formation 

The Kirkwood Formation has variable layers of fossil bearing sandstones, mudstones and 

shales (Muir et al., 2017b). The age of these beds are broadly defined as Jurassic to Early 

Cretaceous. The Kirkwood Formation in general, is a sedimentary succession of intercalated 

sandstones and mudstones, with subordinate conglomerates, which are usually interbedded 

with sandstone and minor volcanoclastic deposits. The volcanoclastic deposits consist of tuff 

and bentonite (altered tuff), which is of significant economic importance (Muir et al., 2017b). 

During the breakup of Gondwana, many volcanic activities occurred, any of which could have 

contributed to the deposits of volcanic ash within the rift basins. Ash-fall events are generally 

the mechanism of deposition of volcanic ash. However, it is unclear exactly which of the 

volcanic events caused the deposition of volcanic ash within the Western Cape rift basins (Muir 

et al., 2017b). 
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 Table 2.1: Summary of the Uitenhage Group and its formations (after Muir, 2018). 

Ma Era Period Group Formation Typica lithology 

 

100 ma 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150 ma 

M
es

o
zo

ic
 

Early Cretaceous 

 

Uitenhage 

Hartenbos 
Fine to coarse 

grained sandstone 

Buffelskloof Conglomerates 

Robberg 
Fine to medium 

grained sandstone 

Sundays 

River 

Medium grained 

sandstone beds 

interbedded with 

mudstones 

Late Jurassic OR 

Early Cretaceous 
Brenton 

Massive 

claystones, 

siltstones, 

sandstone and 

conglomerates 

Late Jurassic – 

Early Cretaceous 

 

Infanta 

siltstones, 

claystones and 

shales 

Kirkwood 

Mudstone, fine to 

coarse grained 

sandstone, 

conglomerates and 

bentonite 

Enon 

Conglomerates 

with interbedded 

fine to medium 

grained sandstone 
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2.5 The Buffelskloof Formation 

Overlying the Kirkwood Formation in the Heidelberg Basin is the topmost Buffelskloof 

Formation, which is a conglomerate dominated unit of the Uitenhage Group. An angular 

unconformity separates it from the underlying units. The predominant constituents of the 

Buffelskloof Formation are conglomerate with very rare mudstone and siltstone (Viljoen and 

Cawthra, 2019).     

2.6 Bentonite deposits at Heidelberg 

The bentonite deposit is located within the Heidelberg-Riversdale Basin. The basin was first 

formed during the Cape Fold Belt orogeny (i.e. Permo-Triassic) as a foreland basin. Thereafter, 

it continued to subside during the fragmentation of Gondwana due to the opening of the South-

Atlantic (Viljoen & Cawthra, 2019). These basins formed on the southern downthrown side of 

normal mega faults (Horn and Strydom, 1998). Clastic sediments representing alluvial fans, 

braided rivers and lakes, filled the basins and together form the Uitenhage Group (Viljoen & 

Cawthra, 2019). Within this group, bentonite occurs in lacustrine mudstone of the Kirkwood 

Formation and formed as a result of the diagenesis of volcanic ash layers that were deposited 

in lakes receiving suspension-settled muds (Cole et al., 2014). 

During the formation of the Heidelberg-Riversdale basin, alkaline volcanic events occurred, 

leading to the deposition of volcanic ash in a salty lacustrine environment (Cole et al., 2014). 

This saltwater-volcanic ash interaction led to the formation of sodium bentonite. A particularly 

active period of volcanism occurred between 162–72 ma in the Antarctic Peninsula that could 

have provided suitable sources for the bentonites hosted in lacustrine deposits of the Kirkwood 

Formation in the Heidelberg basin of southern Cape (Muir, 2018). The glass components of 

the ashes were chemically altered in this low energy environment and consolidated into distinct 

clay layers. These clay layers currently form the Heidelberg-Riversdale bentonite deposits 

(Christidis and Huff, 2009). 

Alteration of volcanic glass may occur through vapour-phase crystallization, burial diagenesis, 

contact metamorphism, hydrothermal activity, and by hydrolysis either in alkaline or 

percolating groundwater. In most cases, bentonites form through alteration by a fluid such as 

shallow seas or lakes (Christidis and Huff, 2009). Leaching of alkali elements and high 

Mg2+/H+ are required to form smectites during the alteration of volcanic glass. The conversion 

of volcanic glass to smectites involves movement of elements to and from the volcanic glass. 
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The loss of alkalis and a high magnesium activity promote the formation of smectite (Christidis, 

1998). 

There are multiple bentonite horizons mined at Heidelberg. Figure 2.2 shows one of the 

bentonite horizons mined at Imerys. In this illustration, the upper bentonite horizon is a grey-

white layer within the lacustrine facies of the Kirkwood Formation, which is overlain 

predominantly by mudstones. This horizon extends laterally for approximately 30 m with a 

thickness of 1.5 m and a dip of 15˚ to the north. The high montmorillonite content and constant 

dimensions suggest an ash-fall origin of this bentonite. Other bentonite horizons range between 

1 and 1.7 m in thickness and overlain mainly by siltstones (Muir et al., 2017b). 

 

Figure 2.2: A light grey bentonite horizon (outlined in red), overlain and underlain by 

mudstone (after Cole et al., 2014). 

 

The bentonite reserves of South Africa are in excess of 8 million tons although only a portion 

is considered to be mined economically (Agnello, 2004). It is estimated that the bentonite 

reserve of the Heidelberg region is about one million tons (Gray et al., 2013). The mining rights 

for this region is currently held by Imerys.   
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2.7 Mining of bentonite at Imerys Mine 

The method of mining of the bentonite at the Imerys Mine is a shallow open pit method, which 

does not require extensive engineered benches or specific mining techniques. The bentonite 

was excavated, transported to a processing plant and the pit refilled and rehabilitated after 

completion. The pits were excavated to the bentonite layer, which was between 10 and 20 m 

below the surface. Bentonite was removed using an excavator. Since bentonite is soft, no 

drilling and blasting was required, as is the case with other conventional mines. The excavator 

simply cuts through the bentonite with the excavator bucket which is then loaded onto tipper 

trucks for transportation to the processing plant.   An access ramp was constructed from the 

overburden to allow trucks and excavators into the pit. An observed pit was approximately 15 

m deep and 50 m in diameter.  The bentonite at Heidelberg is of varying quality excavated 

from several pits as indicated in Figure 2.3.  

 

Figure 2.3: Satellite image showing the minable area (demarcated in red). The yellow dots 

show the locations of the mining pits. These pits may or may not be in operation (after 

Almond, 2014). 
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To ensure a uniform quality of bentonite, the bentonite from each pit is interlayered with each 

other as illustrated in Figure 2.4. Thereafter, slices are taken vertically to create a blend of all 

qualities and subsequently processed.  The conversion process of natural sodium bentonite to 

activated bentonite follows a procedure by which approximately 1 % to 2 % of soda ash is 

added to the bentonite via a feed hopper containing soda ash. The activated bentonite then 

passes through a rotary drier where all excess moisture is removed. Finally, the dried bentonite 

is added to a roller crusher where it is milled to a fine powder. Bentonite with very low quality 

will be mixed with other bentonites of higher quality so that the quality of the end product has 

an average acceptable industry standard. This method also controls the amount of soda ash that 

is required. With a fairly consistent mix of bentonite, a fixed amount of soda ash can be added 

to every batch mined. This eliminates the need for constantly changing machinery settings and 

constant quality testing of bentonite.  

Figure 2.4: Illustration of interlayering of bentonite to create a consistent mix after mining. 

Thereafter, taking vertical slices, mixing different qualities of bentonite. 
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Chapter 3 

Literature Review 

3.1 Introduction 

This chapter starts by describing the definition and basic structure of clay. This leads onto the 

classification and categorisation of clays, based on structural configuration. The 

physicochemical properties of smectite are then described in relation to the classification of 

clays. The definition and constituents of bentonite as well as its uses are then explained. 

Furthermore, the chemistry and engineering properties of bentonite are elucidated at length. 

Thereafter, GCLs are introduced and their properties, such as hydraulic conductivity, are 

discussed. Moreover, some of the problems associated with GCLs are discussed. Finally, soda 

ash treated bentonite is discussed. 

3.2 Clay minerals 

Clays were initially arbitrarily classified as earthly particles whose diameters were less than 2 

µm (Barton, 2002; Bergaya and Lagaly, 2006; Velde, 2013). However, the crystal structure 

and mineral family is what defines clay minerals. Clay minerals in general possess traits that 

are similar, such as their size, form, crystallographic structure and behaviour, whether physical 

or chemical (Velde, 2013). Their miniscule size and shape inherently produce a large surface 

area compared to the volume of the particle. The properties of clays are in fact dominated by 

their surfaces (Al-Ani and Sarapää, 2008; Velde, 2013). The reason for this is their 

phyllosilicate shape. The width and length in phyllosilicates are often about 20 times the 

thickness. The controlling factor of this specific crystallographic growth is the highly covalent 

ionic bonding present, comprising mostly oxygen and subordinate cations such as silicon and 

aluminium (Murray, 1999; Bergaya and Lagaly, 2006; Velde, 2013). The resulting atomic 

crystal structures are tetrahedral and octahedral sheets. 

3.3 Structure of clay minerals 

The elementary structural units of most clay minerals are a silicon–oxygen tetrahedron and an 

aluminium–hydroxyl octahedron. Although clay minerals comprise tetrahedral or octahedral 

sheets as their basic singular structure, the arrangements of these sheets account for the physical 

and chemical differences between the different types of clays (Murray, 1999; Barton, 2002; 

Al-Ani and Sarapää, 2008). Primarily, ionic bonds occur between oxygen and cations such as 
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aluminium, silicon, magnesium, potassium and sodium (Murray, 2006; Al-Ani and Sarapää, 

2008; Velde, 2013). The ratio between anion to cation radii will determine the number of anion 

cations contacts.  

Table 3.1: The limiting radii ratios, coordination number and geometric configuration of the 

oxygen ions (after Al-Ani and Sarapää, 2008). 

Cation:Anion 

ratio 

Coordination 

number 

Geometric configuration of anions 

(oxygen) 

< 0.16 2 
 

(linear) 

0.16 – 0.23 3 
 

(Triangular) 

0.23 – 0.41 4 

 

(Tetrahedron) 

0.41 – 0.73 6 

 

 

 

(Octahedron) 

0.73 – 1.00 8 

 

(Cube) 

> 1.00 12 Close packed sphere 
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The larger the ratio the more oxygen atoms can surround the cation. The oxygen can bond to 

the cation in varying geometries (Table 3.1) (Murray, 2006; Al-Ani and Sarapää, 2008). The 

number of anions in contact with a cation is known as the coordination number (Al-Ani and 

Sarapää, 2008). Ions forming clay minerals possess a coordination number of 4 or 6, hence 

produce tetrahedral or octahedral molecules. 

3.3.1 Tetrahedron 

Clay structures are built of silicon-oxygen tetrahedron (i.e. four oxygen anion atoms bonded to 

the central silicon cation (Figure 3.1)) (Murray, 2006; Velde, 2013). Seldom, the aluminium 

cation replaces the silicon cation in the silicon-oxygen tetrahedron. The resulting molecular 

geometry is a tetrahedron. The net charge of a single tetrahedron is -4. Bonding of adjacent 

tetrahedron occurs between the three basal oxygens (Figure 3.1a) and hence only the apical 

oxygen remains with a charge of -1.  The valency imbalances result in a net negative charge. 

Thus, singular units do not exist in isolation but combine to produce sheet structures (Mitchell 

and Soga, 2005; Craig, 2013).  

 

 

(a) Tetrahedra 

 

 

 

 

 

  

 

(b) Octahedra 

Figure 3.1: Tetrahedral and octahedral structure (O- Oxygen, Al- Aluminium, Si- Silicon) 

(after Al-Ani and Sarapää, 2008). 
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3.3.2 Octahedron 

Octahedral structures are formed with aluminium, magnesium and ferrous iron ions where six 

oxygen or hydroxyl group atoms lie at each octahedral apex (Figure 3.1b) (Velde, 2013). 

Unlike the tetrahedra, the number of cations can vary between two and three. However, a total 

positive charge of six is always maintained. When three ions are present, the structure is called 

tri-octahedral and when two ions are present it is called di-octahedral (Velde, 2013). For 

example, there could be three Mg2+ ions present or two Al3+ ions in the octahedral sites. These 

two types of octahedral are fundamental in classifying different clay minerals. Octahedral 

sheets are formed by sharing all hydroxyl groups with adjacent octahedral (Figure 3.2) 

(Mitchell and Soga, 2005). 

 

Figure 3.2: Tetrahedral sheet (left) and Octahedral sheet (right) (after Murray, 1999). 

 

3.4 Classification of clay minerals 

Clay minerals occur naturally as a combination of tetrahedral and octahedral sheets. The 

arrangement of these sheets define the type of clay mineral. They are then further classified 

based on chemical considerations, such as net charge. Essentially, two combinations occur 

(Barton, 2002): 

(i) where the ratio of tetrahedral to octahedral sheets is 1:1, and  

(ii) where the ratio of tetrahedral to octahedral sheets is 2:1. 

3.4.1 (1:1) Clay minerals 

The 1:1 clay minerals contain one tetrahedral sheet and one octahedral sheet in their basic 

structural unit (Figure 3.3). These clay minerals exist in both di- and tri-octahedral variations. 

Van der Waals bonding occurs between the apical oxygen of the tetrahedral sheet and the 

octahedral sheet. The layers are held together tightly by hydrogen bonding, which restricts 

expansion and confines reactive action to the external surfaces only (Barton, 2002).  The 

tetrahedral and octahedral units, when bonded to form a sheet, has a given and constant 
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thickness. The thickness of the tetrahedral layers is considered to be 3.4 Å (Ångström – a unit 

of measure equal to 10-10 m) or 0.34 nm, whereas the octahedral layers are thinner (Velde, 

2013). When one layer is interconnected to another through a shared oxygen atom, the 

combined thickness of the two will be less than the sum of the two individuals. A 1:1 clay 

mineral has a total thickness of 7 Å (Velde, 2013).  Isomorphic substitution for Si4+ by Al3+ in 

this mineral is negligible. Hence, 1:1 minerals exhibit a low potential for adsorbing cations 

(Barton, 2002). The Kaolin Group mineral is representative of the 1:1 clay mineral (Bergaya 

and Lagaly, 2006). 

3.4.2 (2:1) Clay minerals 

In this type of clay mineral, an octahedral sheet is sandwiched between two tetrahedral sheets 

(Figure 3.3), wherein adjacent sheets are joined through Van der Waals bonds via the apical 

oxygens of the tetrahedral sheet (Kloprogge et al., 1999; Barton, 2002; Mitchell and Soga, 

2005). The clay mineral has a combined layer thickness of 10 Å (Velde, 2013). Ionic 

substitution is common and hence gives rise to varying minerals of diverse physicochemical 

properties. Expandable 2:1 clay minerals exhibit a similar layer structure to other mineral of 

the same category. However, 2:1 clay minerals vary widely in-layer charge and interlayer 

spacing due to the presence of weakly bonded cations, water, or polar organic molecules within 

their interlayers (Barton, 2002).  Smectites generally refer to a group of expandable 2:1 

minerals with a low charge. Montmorillonite, the most common member of this group, derives 

its charge from the octahedral substitution of Mg2+ for Al3+ (Barton, 2002). Bentonite is a 

combination of predominantly montmorillonite and other clay minerals like hectorite as well 

as impurities such as quartz, plagioclase and muscovite (Gray et al., 2013). 

 

Figure 3.3: Clay minerals of 1:1 sheet (left) and 2:1 sheet (right) (after Al-Ani and Sarapää, 

2008). 
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3.5 Smectite minerals 

Smectite is a 2:1 clay mineral, with two tetrahedral sheets and a central octahedral sheet with 

an average size of 0.5 µm (Grim and Guven, 1978; Odom, 1984). The low charged structure 

permits hydrated ions or polar ions to be inserted between the layers (absorbed), increasing the 

interlayer distance leading to expansion or swelling (Murray, 2006; Velde, 2013). Moreover, a 

layer charge of 0.7 to 0.2 allows the layers to absorb hydrated cations and polar molecules 

between the 10 Å sheets (Mitchell and Soga, 2005; Velde, 2013). Bonding between consecutive 

layers is achieved by Van der Waals forces and by cations that balance charge deficiencies in 

the structure. These bonds are weak and easily separated through hydrous adsorption or other 

polar liquids (Mitchell and Soga, 2005).  

The theoretical composition, of a smectitic mineral, in the absence of isomorphous 

substitutions is (OH)4Si8Al4O20 . n H2O (where n denotes the number of water molecules within 

the interlayer). However, in most smectites, there is substantial isomorphous substitution for 

silicon and aluminium by other cations. Aluminium in the octahedral sheet could be replaced 

by magnesium, iron, zinc, nickel, lithium, or other cations. Aluminium may replace about 15 % 

of the silicon ions in the tetrahedral sheet. Some of the silicon positions could be occupied by 

phosphorous (Grim, 1968; Lee and Shackelford, 2005; Mitchell and Soga, 2005). The cation 

exchange capacity (CEC) of relatively pure smectite can range between 70 and 130 meq/100 

g.  Majority of the CEC is due to charges resulting from structural substitution. Na+ is readily 

replaced by Ca2+ and Mg2+, hence leaching conditions would deplete Na+ (Odom, 1984; Lee 

and Shackelford, 2005). 

The most common smectite mineral is montmorillonite, which exists in two forms namely, Na-

montmorillonite and Ca-montmorillonite. The layer charge deficiency of montmorillonite is 

balanced by the interlayer cation calcium or sodium (Al-Ani and Sarapää, 2008). Since 

bentonite is largely montmorillonite, bentonite also exists in two forms namely, sodium 

bentonite and calcium bentonite.  

Bentonites predominantly comprise either Na-montmorillonite or Ca-montmorillonite and to a 

much lesser extent saponite and hectorite. These smectite (Figure 3.4) minerals that comprise 

bentonites have significantly differing physicochemical properties which govern their utility to 

a major degree (Murray, 1999). 
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3.6 Bentonites      

The name ‘bentonite’ is often loosely used to denote any deposit of a smectite-rich mineral 

(Gates and Churchman, 2006).  Bentonites constitute a rock type rather than a mineral.  True 

bentonites are alteration products of volcanic ash deposited into shallow marine environments 

(Gates and Churchman, 2006). However, smectite is the major constituent in addition to other 

minerals such as quartz. The smectite in bentonites is primarily montmorillonite (Figure 3.4).   

Murray (1999) mentions two definitions of bentonite; defined by Ross and Shannon (1926) as 

a clay altered from glassy igneous material, usually a tuff or volcanic ash and redefined by 

Grim and Guven (1978) as any clay predominantly composed of a smectite mineral, regardless 

of its origin. 

In this research, bentonites tested were volcanic ash deposited in a lacustrine environment and 

hence the definition by Ross and Shannon (1926) will apply.  

Figure 3.4: Classification of silicates (after Al-Ani and Sarapää, 2008). 

 

Bentonite was discovered in the late 1880’s near Fort Benton in Wyoming (Von Maubeuge, 

2002). This magical soil termed “clay of a thousand uses” was first called ‘Taylorite’ after 

William Taylor, the first commercial producer of this clay. Later, the name was changed to 

bentonite after realising the initial name was taken (Von Maubeuge, 2002). Presently, bentonite 
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is often loosely used to denote any deposit of a smectite-rich mineral. The term bentonite is 

now well established for any clay that is composed predominantly of a smectite clay mineral, 

and whose physical properties are controlled by this clay mineral (Gates and Churchman, 2006). 

There are two types of bentonite: sodium bentonite and calcium bentonite, with the prefix 

denoting the predominant exchangeable ion. Sodium bentonite is used over calcium bentonite 

due to its better swelling properties. The primary constituent of sodium bentonite, which 

contributes to swelling, is montmorillonite (Norrish, 1954). Generally, the typical sodium 

bentonite used in GCLs will contain 60–85 % montmorillonite (Von Maubeuge, 2002). 

3.6.1 Uses of bentonite 

The uses of bentonite are numerous and thus, the demand is colossal. Table 3.2 shows a 

summary of some of the many uses of bentonite. 

 

Table 3.2: Industrial uses of bentonites (after Grim and Guven, 1978). 

 

The primary uses of bentonites are in drilling muds, iron ore foundries, water impoundment 

and landfill liners (Figure 3.5), applied as Geosynthetic Clay Liners (GCLs) at the base of 

drilling muds medical formulations crayons 

foundry bondants polishing and cleaning agents cement 

pelletising ores detergents desiccants 

civil engineering/sealing pharmaceutics cosmetics 

animal feed bondants food additives paint 

decolourising edible oils and fats adhesives paper 

industrial adsorbants (oils) plastics fillers 

agricultural carriers de-inking of paper ceramics 

absorbents (pet litter) tape joint compounds catalysts 

beer, wine and liquor clarification emulsion stabiliser pencil lead 
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landfills and as a capping. High swelling sodium bentonite will expand up to ten or more times 

their clay volume when subjected to hydration (Murray, 1999). This unique swelling property 

makes them necessary ingredients for GCLs. The swelling bentonite prevents flow of water 

through earthen structures such as dams, inhibits seepage of water from ponds and irrigation 

channels, and contains chemicals in landfills and in toxic waste impoundments (Murray, 1999).  

Furthermore, their thixotropic properties (the tendency to become less viscous when agitated) 

are suitable in bored pile construction applications. Calcium bentonites are used as animal feed 

bonds, act as absorbents for bacteria and certain enzymes. Granular bentonite is deodorised and 

treated for use as pet waste absorbent (Murray, 1999). The uses are extensive, hence the reason 

for its importance in industry. 

 

Figure 3.5: Landfill with GCL lining (D&E Construction, 2011). 

 

3.6.2 Particle size 

Clays are fine grained whilst those containing smectite clay minerals have extraordinary 

fineness (Pusch, 2015). Often, the particle size distribution is indicative of its smectite content. 

If the particle size is greater than 1 µm, there is a good probability that other minerals are 

present as impurities (Pusch, 2015). Most smectites found in bentonites are classified as clay, 

which means their particle size is less than 2 µm and can be as small as 0.2 µm (Odom, 1984). 

The particle size is an important characteristic as it greatly influences the physicochemical 

properties of bentonites. The specific surface area, acidity and amphoteric character, all 

increase with decreasing mean particle size (Gates and Churchman, 2006). Many of the 



 

22 
 

physical characteristics for which bentonites are known, such as swellability and plasticity, are 

improved with decreasing particle size. In powder form, decreased particle size will enhance 

the ability of a clay to seal when hydrated and speed up the formation of a seal to water 

movement (Gates and Churchman, 2006). Naturally occurring sodium bentonite yields the 

smallest effective particle size and largest surface area making it most suitable for GCL 

applications (Odom, 1984).  

3.6.3 Plasticity index  

Factors that affect clay fabric and rheology also define the plasticity of the bentonite.  These 

are clay type, exchange cation identity and solution properties. Three moisture content limits 

are used to differentiate the plastic state of clay. The liquid limit, the upper limit, is the water 

content at which clays change from a plastic to a viscous semi-liquid. Liquid contents beyond 

the liquid limit will produce a non-malleable clay that cannot hold its form. The plastic limit is 

the water content that defines the lower limit at which a clay will display plastic behaviour. 

Water contents below this will yield a clay that is friable. The shrinkage limit is the water 

content at which no volume change is recorded with a continued loss in moisture. The plasticity 

index is the range between the plastic and liquid limits (Grim and Guven, 1978; Gates and 

Churchman, 2006; Al-Ani and Sarapää, 2008; Craig, 2013). It is reported that bentonite with a 

high plasticity index (~550 %) has a higher permeability to solutions of CaCl2 than one 

composed of a bentonite with a lower plasticity index (~400 %) (Gates and Churchman, 2006).     

3.6.4 Chemistry of bentonites 

Bentonites very rarely exist in its pure form. More often, impurities diminish the value for 

different purposes. The usefulness of bentonite is derived from the smectite content (Lee and 

Shackelford, 2005). The most dominant mineral impurities in bentonites are volcanic glass, 

opal, cristobalite, tridymite, quartz, mica, feldspar and interstratifications of illite-smectite and 

kaolinite-smectite (Gates and Churchman, 2006; Christidis and Huff, 2009). Gates et al. (2002) 

found impurities such as quartz, feldspar, cristobalite/opal, as well as minor amounts of 

clinoptilolite, mica/illite, gypsum and anatase in a bentonite from Australia. Majority of the 

bentonite deposits occur as Ca2+ and Mg2+ forms. It is rare to find Na+ saturated form. Table 

3.3 shows variation in composition of some well-known bentonite deposits around the world. 

The analyses are presented in terms of the percentage of major element oxides present.   
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 Table 3.3: Composition of bentonite deposits around the world (after Gates and Churchman, 

2006).  

 *The upper section of the table lists dioctahedral smectites with chemical analyses ranging 

from the end members montmorillonite to beidellite. The lower section lists some trioctahedral 

hectorites and saponites 

 

 % oxide 

Dioctahedral smectites SiO2  Al2O3  Fe2O3  MgO  CaO  Na2O  K2O  Li2O 

Otay, California 67.72  19.36  1.28  7.321  4.087  0.062  0.01 - 

Cheto, Arizona  67.59 19.85 1.71 6.508 3.919 0.118 0.074 - 

JC Lane, Wyoming  67.78 22.70 4.70 2.490 2.860 0.060 0.030 - 

Arumpo 130E, New South Wales 66.45 20.56 4.13 4.778 3.181 0.00 0.380 - 

Arumpo, ‘pure’ New South 

Wales 
66.65 19.69 4.56 4.798 2.724 0.00 0.758 - 

Surrey, United Kingdom 65.05 18.40 8.45 4.119 3.143 0.029 0.104 - 

Upton Wyoming (SWy)  65.56 23.72 4.93 2.523 2.937 0.027 0.047 - 

Upton, Wyoming 64.90 24.05 4.95 2.920 3.098 0.090 - - 

Ossean, South Africa 65.92 22.55 3.03 4.856 3.699 0.036 - - 

Miles, Queensland 67.16 24.19 6.02 2.625 2.904 0.038 0.029 - 

CE150, Miles, Queensland 64.26 22.26 5.67 3.797 3.569 0.033 0.026 - 

Mt Binjour Queensland 63.77 26.25 1.71 3.868 4.052 0.074 0.016 - 

DeLamar 62.11 32.09 0.50 1.330 3.298 0.009 0.711 - 

Silver City, Idaho 60.77 31.99 2.02 0.859 3.012 0.015 0.660 - 

Trioctahedral smectites         

Hector, California 64.15 0.95 0.32 28.36 2.851 -  2.399 

Hector, California 64.41 0.55 0.22 27.79 3.172   3.863 

Burro Creek, Arizona 60.26 7.18 0.46* 27.82 3.429 0.075 0.017 - 

Lake E, West Australia 58.73 6.17 2.47 29.28 2.730 0.084 0.121 - 

Ballarat, California 59.05 5.31 0.98 31.68 2.980 0.04 0.004 - 
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Other elements, such as nickel, copper, titanium, zinc and cobalt, are present in trace amounts 

in most bentonites. These do not significantly impact on the chemistry. Most montmorillonitic 

bentonites will provide analyses within the ranges listed in Table 3.3 (Gates and Churchman, 

2006).  

In addition to particle size, relating to surface area, layer charge has a significant impact on 

chemical reactivity. These net charges originate from imbalanced compositions. Often, 

substituting cations have a lower charge resulting in a net negative charge (Lee and Shackelford, 

2005).   

Layer charge is directly responsible for several properties such as cation exchange capacity 

(CEC) and charge potential at layer surfaces. Layer charge moreover positively affects 

adsorption but negatively affects swelling and viscosity (Gates and Churchman, 2006). 

3.6.4.1 Cation exchange 

The net negative charge permits clay minerals to attract cations from solution provided normal 

pH conditions exist. The number of cations they attract per unit weight is directly related to 

their negative charge. Therefore, negative charge is commonly expressed as cation exchange 

capacity (CEC) (Gates, 2004).  

Layer charge and CEC are identical for low charge smectites when the molecules carry no net 

electric charge (isoelectric point). The CEC can be lower than the layer charge, particularly in 

high charge smectites.  The CEC for almost pure smectite ranges between 70 and 130 meq/ 

100 g. About 80 % of the CEC is due to charges resulting from structural substitution and 20 % 

from broken bonds at crystal boundaries (Odom, 1984). The exchangeable ions are easily 

replaced, Na+ is readily replaced by Ca2+ and Mg2+, hence leached smectites are depleted of 

Na+ (Ross and Shannon, 1926; Odom, 1984).  

Exchangeable ions themselves play a significant role in determining the commercial use of 

smectitic bentonite. Sodium rich smectites tend to have a high swelling capacity whilst Na-

leached smectites display a remarkably reduced degree of swelling. It is therefore incumbent 

to thoroughly study exchangeable ion content of commercial bentonite as serious consequences, 

such as a high hydraulic conductivity, could result. In general, a smectite with a high layer 

charge (> 0.85 e- or > 110 meq 100 g-1) provides high contaminant adsorption and retention yet 

low crystalline and bulk swelling (Gates and Churchman, 2006). 
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3.6.5 Swelling of bentonite 

Swelling occurs when water enters between clay particles resulting in an increase in volume. 

Smectites generally swell differently from each other based on their physicochemical 

characteristics of attraction and repulsion, between clay particles and between clay and the 

solution within the interlayer space. Two types of swelling are described; two-dimensional 

(crystalline) swelling and three-dimensional (bulk) swelling (Norrish and Quirk, 1954). 

Two-dimensional swelling arises when a polar solvent enters interlayer space between clay 

particles thereby causing a separation. Bentonite predominantly comprises Li+- or Na+-smectite 

will exhibit unlimited swelling when taking up water provided the solution electrolyte 

concentration is very low. This occurs when repulsive forces dominate attractive forces. Ca2+-

smectite will display limited swelling. This means that while interlayer cations can collect 

water, forces of attraction outweigh the repulsive force necessary for the swelling to continue 

(Norrish, 1954). 

The swell index (Figure 3.6) is a measure of volume change a unit mass of bentonite undergoes 

upon absorption of a liquid (Gates and Churchman, 2006), which measures bulk swelling in ml 

per 2 g of bentonite. Typical bentonite swelling index values range from 4 to 50 ml/2g and it 

depends on the exchange cation, the degree of dispersion and whether its initial fabric has been 

disrupted (Gates and Churchman, 2006). 

 

Figure 3.6: Bentonite before swell (left) and after swell (right) (after Mudavath, 2018). 
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3.6.5.1 Attractive forces 

Electrostatic forces of attraction between the exchange cations and the layer of smectites is the 

major force that inhibits clay swelling. Layer charge influences the degree of attraction. Higher 

layer charge results in greater electrostatic forces of attraction (Komine and Ogata, 1996; Gates 

and Churchman, 2006). This further results in a more densely packed layer of surface cations. 

Thus, bentonite comprising clay minerals of higher layer charge will certainly display limited 

swelling. Additionally, the solvent ionic strength influences clay swelling.   Solvents of high 

ionic strength or containing divalent counter-ions (like Ca2+) inhibit clay swelling, whereas low 

ionic strength or monovalent counter-ions (like Na+) promote swelling (Komine, 2004; Gates 

and Churchman, 2006). Thus, as explained earlier, the reason Na-leached bentonite displays a 

remarkably reduced degree of swelling.  

3.6.5.2 Repulsive forces 

Repulsive forces promote clay swelling. Ions such as Li+ and Na+ possess high hydration 

potential. These small cations have a higher hydration energy and thus have a greater tendency 

to be hydrated. This hydration of the singular ion plus a small valency, significantly reduces 

the electrostatic forces of attraction (Komine and Ogata, 1996; Gates and Churchman, 2006).  

The volume of water adsorbed are governed correspondingly by the size and charge of the 

saturating cation, as well as by the value and localization or distribution of the charge of the 

adjacent silicate sheets that the exchangeable cations neutralize (Cases et al., 1997). Na+- 

bentonites possess the ability to rehydrate, whereas K+-bentonite will not rehydrate (Gates and 

Churchman, 2006). Small divalent cations also possess high hydration energy and their 

attraction to the clay surface is greater than a monovalent cation, hence exhibit limited swelling 

(Gates and Churchman, 2006). 

3.6.5.3 Factors affecting clay swelling 

Gates and Churchman (2006) summarise 4 factors that affect clay swelling, which are 

discussed below in order of most to least importance. These factors are based on the works of 

several researchers (e.g. Mooney et al., 1952; Norrish, 1954; Emerson, 1962; Posner and Quirk, 

1964; Suquet et al., 1977; Low, 1980; Low, 1987; Low, 1992 ):      

i. Electrostatic attraction vs. hydration-energy 

- If hydration energy of the exchange cation is large, and electrostatic attraction is 

low, then the repulsive force of cation hydration will overcome the electrostatic 

attractive force then crystalline swelling will occur. 
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- If the electrostatic attraction is large, such as having a high charge per unit cell, then 

crystalline swelling will be suppressed. 

ii. Layer charge 

- High charged smectites with layer charge existing predominantly within the 

octahedral sheet tend to swell more than those with layer charge originating within 

the tetrahedral sheet. 

- Low charged smectites tend to experience greater crystalline swelling than high 

charge smectites. This is mostly independent on the location of layer charge. 

iii. Cation identity 

- For monovalent cations, the ability to influence crystalline swelling decreases in the 

order: lithium (Li+) > sodium (Na+) >> potassium (K+) > rubidium (Rb+) > caesium 

(Cs+). 

- For divalent cations, the ability to induce crystalline swelling decreases in the order: 

magnesium (Mg2+) = calcium (Ca2+) > strontium (Sr2+) > barium (Ba2+). 

iv. Electrolyte concentration 

- The ability of a smectite to experience crystalline swelling decreases with 

increasing electrolyte concentration, and vice versa. 

- Electrolyte solutions composed of multi- and divalent ions suppress swelling more 

than solutions composed of monovalent ions. 

3.7 Geosynthetic Clay Liners (GCLs) 

Geosynthetic Clay Liners (GCLs) comprise a thin layer of either sodium bentonite or calcium 

bentonite, bonded between a geomembrane or geotextile (Figure 3.7)(Bouazza, 2002). Those 

using geotextiles sandwich the bentonite by needle-punching, stitching or by using a non-

polluting adhesive (Bouazza, 2002). Needle-punched GCLs comprise an encasing nonwoven 

filament geotextile where the needle punching process pierces fibres from the upper geotextile 

to the bottom geotextile (Kong et al., 2017). This process entangles the fibres to the bottom 

geotextile bonding the sheathing layers together. Bonding may also be achieved through 

heating, causing the piercing geotextile to fuse to the bottom geotextile.  The stitching method 

involves sewing the geotextiles together using stitching bonded yarns (Kong et al., 2017). 

Geomembrane supported GCLs use non-polluting adhesives to bond the bentonite to a 

geomembrane.  
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Figure 3.7: Different types of GCLs. (a) Needle punched non-woven geotextile GCL. (b) 

Geomembrane supported GCL (after Kong et al., 2017). 

 

Though there are many types of GCLs, the fundamental difference and most importantly is the 

type of bentonite used (Bouazza, 2002). The bentonites used in GCLs can either be granular or 

powdered and sodium or calcium. The main advantages of GCLs are limited thickness, good 

endurance to differential settlements of underlying soil or waste, simple installation and low 

cost (Bouazza, 2002). The advantages and disadvantages are summarised in Table 3.4. 

 

Table 3.4: Advantages and disadvantages of GCLs (after Bouazza, 2002). 

Advantages Disadvantages 

Quick installation. 

Low cost and low skilled labour. 

Low hydraulic conductivity. 

Excellent self-healing characteristics of small 

punctures. 

Resistance to the effects of freeze-thaw cycles. 

More airspace resulting from the smaller 

thickness. 

Field hydraulic conductivity testing not required. 

Hydrated GCL is an effective gas barrier. 

Reduce overburden stress. 

Low shear strength of hydrated bentonite 

GCLs can be punctured during or after 

installation. 

Possible loss of bentonite during placement. 

Potential strength problems at interfaces with 

other materials. 

Possible increase of hydraulic conductivity due 

to compatibility problems with leachate if not 

pre-hydrated with water.  

Prone to ion exchange. 

Prone to drying if not properly covered. 

 

3.7.1 Hydraulic conductivity of GCLs 

The hydraulic conductivity is the most critical parameter that defines the effectiveness of GCLs 

(Kong et al., 2017). Perceptibly, the hydraulic barrier is created by the bentonite within the 
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GCL. However, in geomembrane GCLs, the membrane also contributes to hydraulic 

retardation. Generally, hydraulic conductivities of geotextile GCLs measured in the laboratory 

of different water types range between 2 × 10-12 m/s and 2 × 10-10 m/s (Bouazza, 2002). 

Hydraulic conductivity also largely depends on the applied confining stress, as illustrated in 

Figure 3.8 (Bouazza, 2002). 

GCLs are frequently used to contain liquids or leachates in addition to water. These leachates 

may have a very different effect on the hydraulic conductivity of GCLs. Compatibility testing, 

where the specimen is permeated with a sample of liquid to be contained, is vital prior to 

installation. Other features of GCLs that effect their hydraulic conductivity with liquids besides 

water are aggregate size, content of montmorillonite, thickness of adsorbed layer, pre-hydration 

and void ratio of the mineral component. Conversely, the main factors related to the liquid that 

influence the hydraulic conductivity are concentration of monovalent and divalent cations 

(Bouazza, 2002).  

Figure 3.8: Variation of hydraulic conductivity versus confining stress (after Bouazza, 2002). 

 

Hydraulic conductivity tests for various applications are generally tested in flexible wall 

parameters with regard to liquids deviating from the norm (Liu et al., 2014). However, the 

flexible wall parameter test is time consuming hence the Fluid Loss test method evaluates the 

ability of bentonite in suspension to form a filter cake (i.e. a hydraulic barrier). Low fluid loss 

over a certain time will surely imply low hydraulic conductivity. It was found that with 

increasing fluid loss values the hydraulic conductivity increased (Liu et al., 2014). 
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3.7.2 Problems associated with GCLs 

3.7.2.1 Puncturing  

GCLs may suffer lacerations during installation or from root encroachment or from wet-dry 

cycles leading to desiccation and cracking (Kong et al., 2017). The obvious result is that it 

would compromise the hydraulic performance of the barrier by allowing a path for fluid flow. 

However, it has been observed that minor punctures can be effectively sealed by the swelling 

bentonite with inconsiderable compromise to the hydraulic conductivity as compared to an 

intact specimen (Bouazza, 2002). Lin and Benson (2000) found that ion exchange where 

calcium replaced sodium in the exchange complex, resulted in a decreased swelling capacity 

close to that of typical Ca-bentonite. 

In general, the swelling capacity equates to the healing capacity and factors that affect swelling 

would affect healing as well. The only factor contributing to self-healing capacity is the amount 

of bentonite or smectite present to effectively heal a hole, provided it is less than 30 mm in 

diameter (Rowe and Li, 2016). 

3.7.2.2 Thinning and piping 

The performance of a GCL depends to an extent on the thickness or mass of bentonite or the 

distribution of mass per area (Bouazza, 2002). The concern is notable as hydrated bentonite 

exhibits very low shear strength hence can expect lateral squeezing when loaded (Koerner and 

Narejo, 1995). A simple solution to this problem is prior to hydration, an adequate backfill of 

suitable thickness and particle size should be placed over a GCL (Koerner and Narejo, 1995; 

Bouazza, 2002). The subgrade on which the bentonite lies is as important as the cover soil.  It 

should be suitable with respect to particle size and thickness (Bouazza, 2002). 

Another issue encountered is internal erosion of the bentonite. The process of internal erosion 

involves the migration of fines due to the presence of a high hydraulic gradient typically 

common in fluid containment facilities (Bouazza, 2002). Rowe and Orsini (2003) 

unequivocally pointed out that “The presence of large hydraulic gradients combined with clay 

soils that may be inadequately filtered creates the potential for internal erosion and possible 

hydraulic failure of the liner”. 

Rowe and Orsini (2003) further mentioned that GCLs possess the potential to display 

dispersive behaviour. High hydraulic gradients can cause internal erosion within the GCL. The 

problem is most severe when the gradients are capable of moving soil particles and is coupled 

with a situation where the repulsive forces between the clay particles exceed attractive forces. 

This causes dispersion of clay particles, which then enter into suspension, and is carried away 
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by flowing water. GCLs have the potential to exhibit this behaviour. Loss of bentonite from 

the GCL core by this mechanism may increase the hydraulic conductivity of the liner (Rowe 

and Orsini, 2003). This would increase the hydraulic conductivity, instantaneously defeating 

its purpose.  Stark (1998) discussed migration of bentonite in GCLs due to the presence of 

wrinkles in an overlying geomembrane. The wrinkles create air pockets, which can cause 

hydrated bentonite to migrate into the airspace under the wrinkle. Fox et al. (1998a) conducted 

a field study wherein they assessed installation damage with varying GCL products, cover soil 

type, cover soil thickness, bulldozer type and number of times driven over by bulldozers, over 

the installed GCL after hydration. They concluded that significant damage resulting in 

bentonite migration can occur for soil cover thickness less than 305 mm and that significant 

migration can occur with increasing cover soil particle size and rate of loading. Giroud and 

Soderman (2000) proposed a limit of 10 g/m2 for tolerable bentonite migration into a geonet 

drainage layer. 

3.7.2.3 Gas migration 

Waste containment facilities tend to exude substantial amount of gasses. The migration of these 

gasses has gained a lot of professional interest. The migration of these gasses occurs by two 

major transport mechanisms: advective and diffusive flow (Vangpaisal and Bouazza, 2004). In 

advective flow, gasses migrate in response to a total pressure differential. To equalise pressure 

gradients, gasses migrate from high pressure to low pressure. In the context of landfill 

containment facilities, the primary cause for gas migration is pressure differentials caused by 

natural atmospheric pressure fluctuations (Bouazza, 2002). Low atmospheric pressure will 

cause gas to migrate out of the system increasing gaseous concentration near the surface whilst 

high atmospheric pressure will force air into the landfill thereby diluting near surface gasses 

(Vangpaisal and Bouazza, 2004). Other factors such as a change in water table or temperature 

can also cause pressure differences resulting in gas migration. Uncontrolled gas migration and 

monitoring can lead to catastrophic events. Williams and Aitkenhead (1991) reported that an 

explosion was caused by undetected methane gas migration from a landfill site in Loscoe, UK 

in March 1986. The explosion, although 70 m from the landfill, was caused by gas migration 

through geologic pathways. 

Another concern related to gas migration is that the accumulation of gas could gradually 

increase positive pressures beneath a GCL (Vangpaisal and Bouazza, 2004). The positive 

pressures beneath the GCL may reduce the interface shear strength between the GCL and 

underlying soil layer due to insufficient normal forces acting on the GCL. This may lead to 
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slope failure. At present, gas migration has been identified as a design problem for landfill 

covers. Thus, Thiel (1999) put forward a methodology to design for gas migration. The 

methodology incorporates knowledge of the gas transmissivity of a chosen medium to design 

a spacing for highly permeable strip drains. The strip drains would discharge the gas either to 

vents or an active gas collection system. The gas relief layer typically consists of sand or a 

geonet composite. Less disastrous movement is gas movement by diffusion, where gasses 

diffuse into a lesser concentrated area. Thus, molecules migrate in response to a partial pressure 

gradient or concentration gradient of the gas (Vangpaisal and Bouazza, 2004). 

3.7.2.4 Slope stability 

Besides using GCLs as hydraulic barriers, their installation in conjunction with other materials 

is required to be stable. The GCL layer could be a plane of weakness and low shear strength. 

Slope failure can easily result along the GCL plane. GCLs are very weak compared to other 

materials and exhibit significant loss of shear strength with displacement. It is difficult to 

entirely quantify the shear strength of GCLs because they contain different component 

interacting with each other. The surrounding soil or material interacts with the GCL on either 

side and the internal component of the GCL interacting with each other (Bouazza, 2002). 

Non-reinforced GCLs display a much lower shear strength than reinforced (needle-punched) 

GCLs. This is so because the interlocking threads increase the internal shear strength of the 

bentonite thereby increasing the shear resistance (Bouazza, 2002; Chiu and Fox, 2004). Studies 

conducted by Fox et al. (1998b) showed that failures generally occur at the geotextile bentonite 

interface. These failures will rupture the stitching or rip out the fibres of reinforced GCLs. 

Bouazza and Bowders Jr (2009) mentioned four steps for successful design of slopes containing 

GCLs: 

1. Define the geometry, loading conditions and consequences of a failure of the slope 

during construction, operation and after completion. 

2. Select appropriate material properties for the GCL and all other materials in the slope. 

Consider rate of loading, deformations, normal stresses and fluid pressures. 

3. Analyse and evaluate slope stability. 

4. Take steps to mitigate the slightest of concerns about slope stability.        



 

33 
 

3.7.3 Soda ash treated bentonite  

Bentonite used in GCL manufacturing often does not possess the desired properties. Borderline 

quality bentonites are mixed with soda ash (Na2CO3) to increase the quantity of exchangeable 

sodium ions. Sodium ions, because of its large hydration radius, is primarily responsible for 

the sealing ability of a bentonite. This allows a larger volume of water retention thereby 

increasing swell. Bentonites with the highest swelling potential, highest liquid limit and a low 

water loss contain at least 60 % exchangeable sodium ions (Alther, 1987).   

However, soda ash treated bentonite may degrade considerably over time as compared to 

natural sodium bentonite (Von Maubeuge, 2002). Investigations carried out by Von Maubeuge 

(2002) showed the difference in swell index of natural sodium bentonite (Wyoming Bentonite) 

and sodium activated calcium bentonite after certain time periods. The activated calcium 

bentonite may degrade considerably faster, through ionic exchanges, than natural sodium 

bentonite (Von Maubeuge, 2002). The results are shown in Table 3.5. 

Although the use of activated calcium bentonite as an alternative can be accepted, it is by far 

not as effective as natural sodium bentonite. The soda ash activation process of calcium 

bentonites (and even natural sodium bentonites of lower quality) takes place in the field where 

a specified amount of soda ash is added to the un-beneficiated bentonite (Von Maubeuge, 2002). 

 

Table 3.5 Swell index of natural vs. sodium activated bentonite after certain time periods 

(after Von Maubeuge, 2002). 

Time 

Swell Index (ml/2 g) 

Wyoming bentonite Na+ activated calcium bentonite 

17 months 35 8 

19 months 34 7 

24 months 32 2 

28 months 30 Not tested 

 

Inhomogeneities in exchange can result in regions of higher permeability (Von Maubeuge, 

2002). Several researchers (e.g. Alther, 1987; Szabó and Balázs, 2000; Mansour, 2001), have 

shown that naturally occurring sodium bentonite is considerably more effective than sodium 

activated calcium bentonite and is more resilient than sodium activated bentonite. 
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3.8 Summary 

Clay minerals are defined by their crystal structure and mineral family. They generally possess 

traits that are similar, such as their size, form, crystallographic structure and behaviour, whether 

physical or chemical. Their phyllosilicate shape inherently produce a large surface area 

compared to the volume. The elementary units of most clays are silicon–oxygen tetrahedron 

and an aluminium–hydroxyl octahedron. The arrangements of these sheets account for the 

physical and chemical differences. Clay minerals occur as a combination of tetrahedral and 

octahedral sheets. The arrangement of these sheets define the type of clay mineral. The 

arrangements are either 1 tetrahedral sheet to 1 octahedral sheet or 2 tetrahedral sheets to 1 

octahedral sheet. In the latter combination, the octahedral sheet is sandwiched between two 

tetrahedral sheets. Smectite is a 2:1 clay mineral with extraordinary properties. They possess a 

finer particle size compared to other clay minerals. The inherently low charge of smectite 

permits hydration and swelling. 

Bentonite is often loosely used to denote any deposit of a smectite-rich mineral. The smectite 

in bentonites is primarily montmorillonite. The usefulness of a bentonite is often derived from 

its smectite content. Impurities in the form of other minerals diminish the quality and swelling 

ability of a bentonite. Certain inherent properties of smectite, such as CEC and electrostatic 

forces, affect the swelling potential of a bentonite. Not all bentonites possess exact 

physicochemical properties, hence will have different swelling abilities. Two types of 

bentonites exist; sodium bentonite and calcium bentonite. The preferred type for the use in 

GCLs, is sodium bentonite as it is proven to have a superior swelling ability.  The wide ranging 

uses of bentonite make them a product that is highly in demand. Bentonites are used in GCLs 

to serve as hydraulic barriers that are commonly applied in landfills and dams. GCLs comprise 

a thin layer of either sodium bentonite or calcium bentonite, bonded between a geomembrane 

or geotextile. The most critical parameter that defines the effectiveness of GCLs is its hydraulic 

conductivity. There are problems associated with GCLs. They may suffer puncturing during 

installation or from root encroachment. This resultantly leads to a decrease in hydraulic 

conductivity. Other concerns related to GCLs are; uneven bentonite distribution or piping, gas 

migration underneath a GCL (particularly in landfill applications) and slope instability. 

Bentonite often does not possess the desired properties. Borderline quality bentonites are mixed 

with soda ash (Na2CO3) to increase the quantity of exchangeable sodium ions. This allows a 

larger volume of water retention thereby increasing swell. 
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The intention of this research was to exhibit a thorough understanding of bentonite and its 

suitability. Lack of literature regarding activation processes and how different variables, such 

as time, affect the quality of activated bentonite indicates a knowledge gap. This research 

critically examines bentonite and bring to light the requirement for further research. It bridges 

the gap by introducing the effect of time on the activation of bentonite and opens the door to 

future research.     
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Chapter 4 

Methodology 

4.1 Introduction 

This chapter describes the different tests carried out, in order to partly fulfil the objectives of 

the research. Prior to the testing of any sample, an extensive literature review was conducted 

to ensure a thorough understanding of GCLs and its key component, bentonite. Samples of 

beneficiated and non-beneficiated bentonite were obtained from the Imerys bentonite mine in 

Heidelberg, Western Cape, South Africa. 

The laboratory tests conducted were XRD, swell index, fluid loss, plate water absorption and 

Atterberg limits. These tests were conducted at different locations. The XRD test was 

conducted in Pretoria by XRD Analytical & Consulting. The fluid lost test was conducted at 

the Kaytech Laboratory. The fluid loss test was done by Golder Associates in USA. The plate 

water absorption test was done at the University of KwaZulu-Natal (UKZN) Engineering 

Geology laboratory. The Atterberg limits test was initially conducted at UKZN but was also 

conducted by the eThekwini Soil Laboratory for validation. The swell index, plate water 

absorption and Atterberg limits test were conducted by the author.  

4.2 Sample collection and storage 

Samples were collected from stockpiles of activated and non-activated bentonite from the 

Imerys bentonite mine (Figure 1.1 of Chapter 1). Approximately 5 kg of each were packed in 

thick polyethylene bags and then stored in a controlled laboratory environment at 24˚C and 

65 % relative humidity. Samples were taken randomly from the storage bags for various tests 

which include Swell Index (ASTM D 5890), Fluid Loss (ASTM D 5891), Plate Water 

Absorption (ASTM E 946-92), X-Ray Diffraction and Atterberg Limits. 

4.3 X-Ray diffraction 

Samples of activated and non-activated bentonite powder, 100 % passing through the 75 µm 

sieve, were used. The samples were prepared by drying 10 g of activated and non-activated 

bentonite in a laboratory oven at 100˚C. The dried bentonite was then crushed with a mortar 

and pestle and sieved using a 75 µm sieve. Powdered activated bentonite and non-activated 

bentonite were packed and sealed in a polyethylene bag then shipped to XRD Analytical and 

Consulting for the analysis. 
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Less than 2 g of powdered bentonite was placed in the X-Ray Diffraction (XRD) machine 

where monochromatic X-Rays are radiated in a vacuum, onto the powdered sample. By 

measuring the angles and intensities of the diffracted X-ray beams, the crystalline phases of 

the powdered bentonite could be determined (Hanawalt et al., 1986). 

The material was prepared for XRD analysis using a back-loading preparation method. It was 

analysed with a PANalytical Empyrean diffractometer with PIXcel detector and fixed slits with 

Fe-filtered Co-Kα radiation. The phases were identified using X’Pert Highscore plus software. 

The relative phase amounts (weight %) were estimated using the Rietveld method. The 

Rietveld analysis is a method that uses a non-linear least squares algorithm to produce a refined 

profile to the experimental data, in order to quantify the mineralogy (Rietveld, 1967). This is 

done using specified software.  

4.4 Swell index 

The swell index test follows the procedure according to the American Society for Testing and 

Materials (ASTM) standard, (ASTM D 5890 - 2011). The swell index test measures the volume 

of free swell of a 2 g sample of powdered bentonite in 100 ml reagent, which in this case, was 

de-ionised water.  

The method involved drying about 15 g of bentonite in a laboratory oven at 100˚C, to a constant 

mass for a minimum of 16 hours. The dried sample was then crushed to a fine powder using a 

mortar and pestle (Figure 4.1). The powdered bentonite was sieved with the 75 µm aperture 

sieve.  

Figure 4.1: Mortar and pestle. 
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Samples passing the 75 µm were used in the swell index tests. A total mass of 2 g of the sieved 

powdered bentonite was placed in a 100 ml graduated cylinder, filled with 90 ml of distilled 

water, in 0.1 g increments every 10 minutes. Once the entire 2 g sample was added to the 

cylinder, the water was then topped to 100 ml and left undisturbed for 16 hours (Figure 4.2). 

The temperature, pH and electric conductivity of the water were measured before and after 

each test. 

Initial testing of Samples 1, 2 and 3 were conducted. Sample 1 comprised activated, processed 

(dried and milled) sodium bentonite; Sample 2 comprised unprocessed activated sodium 

bentonite and Sample 3 comprised unprocessed non activated sodium bentonite. Activation of 

Samples 1 and 2 occurred at Imerys mine whereby approximately 1 % soda ash was added to 

the bentonite. 

To further investigate the effect of time on the beneficiation process, three samples of bentonite 

where activated in-house with different amounts of soda ash. Soda ash, obtained from Imerys 

bentonite mine, was added in specified amounts to non-activated bentonite. Samples A, B and 

C were mixed with 2 g, 4 g and 6 g of soda ash respectively, resulting in ratios of soda ash to 

bentonite of 1:50, 1:25 and 1:16 correspondingly. Swell Index tests were conducted at specific 

time intervals subsequent to activation. Each sample was tested within 24 hours and after 1 

week, 2 weeks and 3 weeks, respectively.  

Figure 4.2: Swell index test showing bentonite and distilled water in a 100 ml graduated 

cylinder. 
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4.5 Fluid loss 

The tests were conducted by Golder Laboratories in the United States since there are no 

accredited laboratories in South Africa equipped to conduct the fluid loss test. For this reason, 

it was not feasible to conduct many tests. It was only feasible to conduct three test each, for 

activated and non-activated bentonites.    

The fluid loss test was done in accordance with the ASTM (D 5891). It involves preparing 50 

g of bentonite by drying in a laboratory oven, at 100˚C for at least 16 hours, and milling to a 

powder, in this case, 100 % passing through the 75 µm sieve. A total mass of 22.5 g of this 

powdered bentonite was added to 350 ml of deionised water. It was then stirred on an automatic 

mechanical mixer. The mixer is designed such that it is capable of 11 000 revolutions per 

minute. The impeller must be sinuous shaped with an approximate diameter of 25 mm and a 

minimum weight of 5.1 g. The clay suspension was then mixed for a total of 20 minutes. 

Thereafter, the clay mixture was stored in a sealed container and left to rest for a minimum of 

16 hours. 

After aging (i.e. the process of leaving the bentonite overnight in a sealed container), the clay 

slurry is mixed again for an additional 5 minutes to break the gel strength. The fluid loss cell 

(Figure 4.3) assembly is prepared in the interim. Filter paper and rubber gaskets are added to 

the filter cell to prevent leakage. The bentonite slurry is added to the fluid loss cell and sealed. 

Air pressure of 700 kPa is applied to the sealed cell. Water draining from the filtrate tube is 

collected in a 10 ml graduated cylinder. After 7.5 minutes, any liquid in the 10 ml graduated 

cylinder is discarded. The liquid draining through the filtrate tube is collected for the next 22.5 

minutes in a new graduated cylinder. The volume retained in the second graduated cylinder is 

recorded. The fluid loss is calculated as follows: 

Fluid loss = 2 ×  (ml filtrate volume for the last 22.5 min) ml           (4.1) 

Which simply means 2 times the amount of water collected in 22.5 minutes after the cell has 

been given 7.5 minutes to equilibrate. 
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Figure 4.3: Fluid loss cell set up (after Fadairo et al., 2012). 

 

4.6 Plate water absorption test 

The plate water absorption test was designed to assess the binding ability of bentonite clay 

binders for iron ore palletisation (McDonald and Kawatra, 2017). The procedure originated 

from the ASTM E946-92 testing method, which was initially intended to test the absorption of 

dried bentonite over a specific period of time. Balling or pelletizing is a process where iron ore 

is processed into a pellet or ball. Bentonite acts as the binding agent in the production of iron 

ore pellets (Sastry and Fuerstenau, 1973). 

In this case as well, the bentonite is required to have a specific absorption capacity. However, 

this method has been receded as McDonald and Kawatra (2017) pointed out that Plate Water 

Absorption (PWA) values did not correlate well with the overall pellet quality as the water 

used in the PWA test is distilled and in an operating pellet plant it is not. Due to this 

phenomenon, the published standard was withdrawn by ASTM in 1997. However, the PWA 

value is still used as a measurement metric when pelletizing facilities purchase bentonite. 
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Nevertheless, for this research, the PWA test was used to determine the absorption capacity of 

bentonite and to determine whether the PWA test has any correlation with fluid loss, swell 

index or Atterberg Limits.  

The PWA test involves partially submerging a sintered alumina plate in distilled water in a bath 

as illustrated in Figure 4.4. Approximately 2 g of previously dried powdered bentonite is placed 

on a 9 cm diameter filter paper. The bentonite is spread over the filter paper within a 5 cm 

diameter template. The paper and bentonite are placed on the semi-submerged sintered plate, 

ensuring the bath is sealed, to absorb water for 18 hours (Figure 4.5). The height of the sample 

above the water surface was approximately 1.2 cm. The water temperature is recorded before 

and after the 18 hours. The bentonite and filter paper are then weighed. The average weight of 

the wet filter paper is subtracted from the weight of the hydrated filter paper plus the bentonite. 

This average weight is determined prior to testing by allowing 4 filter papers to absorb water 

over an 18-hour period without any bentonite. 

To form a definitive correlation between water absorption and liquid limit, 5 samples of 

activated bentonite and 5 samples of non-activated bentonite were prepared and tested. The 

liquid limit for each sample was also tested and plotted linearly against the plate water 

absorption. Each absorption test followed the same aforementioned procedures. 

Figure 4.4: Sketch of the plate water absorption test. 

 

The water absorbed by the bentonite is calculated as a percentage of the dry mass as follows:  

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛, % =  
𝑊𝑤−𝑊𝑑

𝑊𝑑
 × 100             (4.2) 

Where: 

Absorption is the percentage of water absorbed 

Ww is the weight of the hydrated bentonite, g 

Wd is the weight of the dry bentonite, g 
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The purpose of conducting the PWA test in this research was to determine primarily, any 

comparisons between PWA and Atterberg limits.  

Initial testing began with four tests being conducted to determine the absorption ability of the 

bentonite. In addition, five samples each, for activated and non-activated bentonite, were riffled 

and prepared for PWA and liquid limit test.  

 

Figure 4.5: Laboratory plate water absorption test. 

 

4.7 Atterberg limits 

The procedures for the Atterberg limits tests follow the British Standard (BS); BS 1377-2:1990. 

The Atterberg limit is a measure of the critical moisture content, as a percentage of the dry 

mass, at which a clay soil changes consistency (White, 1949). Changing the liquid content of 

the clay will manifest in three distinct phases of consistency: the solid phase where the clay 

will display brittle behaviour, the plastic phase where the clay will exhibit a malleable 

consistency and the liquid phase where the clay will display flow like characteristics when 

slightly agitated. The moisture content above which a clay will act as a liquid is known as the 

Liquid Limit (LL). The moisture content below which a clay will display brittle behaviour is 

known as the Plastic Limit (PL). The moisture content range in which a clay will remain plastic 

is known as the Plasticity Index (PI) (White, 1949). 
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The PI is the difference between the LL and the PL: 

𝑃𝐼 = 𝐿𝐿 − 𝑃𝐿                              (4.3) 

The test was conducted using powdered bentonite. The bentonite sample was prepared by 

mixing distilled water with the bentonite to make a paste. The bentonite paste was left to cure 

for at least 24 hours. The test then begins by placing a small amount of bentonite clay into the 

Casagrande device cup (Figure 4.6). The cup is movable in a vertical direction. When the 

handle is rotated the cup rises then taps down on the rubber base (Figure 4.7).  

 

Figure 4.6: The Liquid Limit test using the Casagrande device. 

 

A grooving tool was used to scrape a groove through the centre starting from the back and 

ending at the front. The handle was then rotated at a rate of 120 revolutions per minute (2 

revolutions per second). The tapping motion of the falling cup causes the groove to close. The 

number of blows were counted until the two parts of the soil sample come into contact at the 

bottom of the groove along a distance of 10 mm.  The soil closest to the closed groove was 

taken and tested for moisture content. The test was repeated at least four times, making sure 

each test results in a blow count between 10 and 50. The liquid limit corresponds to a blow 

count of 25 and is determined by plotting the results on a graph, where the number of blows is 

plotted as abscissa on a logarithmic scale and the corresponding water content as ordinate. The 
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straight-line curve corresponding to 25 blows gives the water content at the liquid limit 

boundary (Figure 4.9). 

 

Figure 4.7: Casagrande device and sketch (after Clayton et al., 1995). 

 

The plastic limit was determined by mixing the clay with enough water so that is becomes 

malleable in the hand. About 8 g of clay was rolled into a ball. The ball was rolled between the 

fingers and glass plate to form a thread of an approximate uniform diameter of 3 mm. A rod of 

3 mm diameter was used for reference. When a diameter of 3 mm was reached, the soil was 

moulded again into a ball. The process of rolling and moulding should continue until the thread 

forms cracks at 3 mm diameter (Figure 4.8). The clay has reached is plastic limit when the 

threads crack and crumble. The threads are then used for water content determination. The test 

was conducted three times and the average water content of the clay threads at their crumble 

point was taken as the plastic limit.  
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Figure 4.8: Plastic limit test. 

 

Figure 4.9: Example of the liquid limit determination graph (after BS 1377-2, 1990). 

 

The correlation between liquid limit and plate water absorption was investigated by conducting 

an additional five test each, for activated bentonite and non-activated bentonite.  

These ten samples were prepared separately by drying and crushing. Each sample was then 

tested individually for liquid limits and plate water absorption. The resultant liquid limit data 
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was plotted as the abscissa (x values) and the plate water absorption data as the ordinate (y 

values). 

The reasoning behind attempting to draw a correlation between the liquid limit and plate water 

absorption is to formulate a method to determine the performance of a bentonite absorption 

ability. Given that the liquid limit test is widely available this correlation aims to allow testing 

at any geotechnical soil laboratory. Another contributing factor was that previous studies 

(Sridharan and Nagaraj, 1999) have dealt with similar correlations and a comparison could be 

made with this study. 

4.8 Post laboratory 

After all data was collected the results were analysed and all discussions are noted down in the 

relevant chapter. Where necessary, tests were compared to find links between them, especially 

between liquid limit and plate water absorption. Results for all tests were meticulously stored 

in a laboratory notebook to ensure correct record of all results. The crude data for all tests 

conducted can be found in Appendix 2. 
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Chapter 5 

Results and Discussions 

5.1 Introduction 

This chapter presents the results and further discusses the results obtained from the various 

tests described in the previous chapter. The XRD results present the major mineral composition 

of the bentonite. The swell index shows unconfined swell. The fluid loss indicates the amount 

of water loss of a bentonite slurry, when subjected to air pressure. The plate water absorption 

shows the amount of water absorbed by the bentonite over an 18 hour period. The Atterberg 

limits reveal the liquid limit, plastic limit and linear shrinkage.  

5.2 X-Ray diffraction 

The results obtained from the XRD analysis for both the activated bentonite and non-activated 

bentonite are shown in Table 5.1.  The results are presented in terms of the major minerals 

present.  

 

Table 5.1: Mineral content of activated bentonite and non-activated bentonite. 

 

The results show a substantial amount of impurities in both the activated bentonite and non-

activated bentonite. According to Gates and Churchman (2006), these impurities may adversely 

affect the swelling properties of the bentonite. Typically, bentonites contain around 60 % 

montmorillonite (von Maubeuge, 2002). The bentonites of this study can be regarded as typical 

 Percentage major minerals (%) 

 Activated bentonite Non-activated bentonite 

Calcite 1.0 1.8 

Cristobalite 0.1 8.5 

Diopside 1.7 2.4 

Mordenite 2.5 4.0 

Muscovite 2.6 3.7 

Plagioclase 6.7 5.7 

Quartz 18.6 15.7 

Smectite 66.7 58.2 
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bentonites as their composition is dominated by smectite which is around 60 %. There is no 

standard compositional requirement for bentonites used in GCLs. Bentonites with impurities 

will not possess a desirable swell due to the impact that the non-smectite fraction has on the 

material’s physical and chemical properties. The most detrimental types of impurities are non-

swelling impurities which diminish the swelling ability of the bentonite (Gates and Churchman, 

2006). This may be a contributing factor as to why the tested bentonites do not possess the 

desired swell index or fluid loss results as would be shown later in this chapter.  According to 

Churchman et al. (2002), Wyoming bentonite has a smectite content of 90 % with far less 

accessory minerals (Table 5.2). The average quality of Imerys bentonite has a smectite content 

of less than 70 %. The quality and quantity of smectite and the chemical composition of 

bentonite critically influence the permeability and its performance as a sealing material 

(Dananaj et al., 2005). 

 

Table 5.2: Mineral composition of Wyoming bentonite (after Churchman et al., 2002). 

 

The XRD patterns of the activated bentonite and non-activated bentonite are shown in Figure 

5.1 and is graphically represented in Figure 5.2. The peak positions of around 25, 30 and 60 

are characteristics of montmorillonite. The other peaks correspond to impurities such as quartz, 

feldspars and calcite (Karnland et al., 2006). The most significant impurity is quartz. The non-

activated bentonite has a similar mineral composition to the activated bentonite, apart from 

cristobalite, which is notably higher.  

It should be noted that von Maubeuge (2002) mentioned that the XRD method is somewhat 

unsuitable for fingerprinting bentonite and allowing a distinction between activated bentonite 

and non-activated bentonite. With XRD, the identification of mineral species and a simple 

quantitative estimation of their percentages within a sample is possible but an exact 

quantification requires several complementary analyses such as X-ray fluorescence (XRF) and 

scanning electron microscopy (SEM) (von Maubeuge et al., 2007). 

Mineral type % 

Montmorillonite 94 

Gypsum <1 

Feldspar <4 

Quartz <2 
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Figure 5.1: XRD pattern of activated bentonite and non-activated bentonite. 

 

Figure 5.2: Mineral composition in percentages. 

5.3 Swell index 

5.3.1. Activated bentonite and non-activated bentonite 

The results obtained from the swell index tests for the 5 tests conducted on the activated 

bentonite and non-activated bentonite are shown in Table 5.3 and in Appendix 2.1. The average 
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swell index obtained for the activated bentonite is 15.6 ml/2 g in comparison to 9.8 ml/2 g for 

the non-activated bentonite. 

Table 5.3: Results from the swell index tests for the activated bentonite and non-activated 

bentonite. 

Swell index (ml/2 g) 

 Activated bentonite Non-activated bentonite 

Test 1 15 10 

Test 2 16 9 

Test 3 16 10 

Test 4 16 10 

Test 5 15 10 

Average 15.6 9.8 

 

The results for the temperature, electrical conductivity (EC) and pH of the distilled water before 

and after each test, for the activated bentonite and non-activated bentonite, for the five tests 

carried out, are shown in Table 5.4. 

 

Table 5.4: Temperature, EC and pH results of the distilled water before and after testing of 

the activated bentonite and non-activated bentonite. 

 

The results from the swell index show that the activated bentonite has a higher swell index than 

the non-activated bentonite. Activated bentonite has additional exchangeable sodium ions as a 

result of activation. Sodium ions, because of its large hydration radius, is primarily responsible 

Distilled water 

Activated bentonite Non-activated bentonite 

Temperature 

(˚C) 

EC 

(µS/cm) 
pH 

Temperature 

(˚C) 

EC 

(µS/cm) 
pH 

Before testing 24 5 9.5 25 3 9.09 

After Test 1 23 633 9.82 24.5 134 9.36 

After Test 2 23 628 9.9 24.5 155 9.34 

After Test 3 23 665 9.91 24.5 165 9.35 

After Test 4 23 705 10.1 24.5 194 9.35 

After Test 5 23 642 9.9 24 151 9.33 
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for the swelling bentonite (Alther, 1987). This explains why, the activated bentonite has a 

higher swell index than the non-activated bentonite. A magnitude of 5 to 6 ml/2 g increase in 

swell index is seen between the activated bentonite and the non-activated bentonite. This is 

about a 50 % to 70 % increase in swell. Figure 5.3 graphically shows the difference in swell 

index between the activated bentonite and non-activated bentonite. 

 

Figure 5.3: Swell index of activated bentonite and non-activated bentonite. 

 

The swell index for the activated bentonite does not reach the minimum requirement of 24 ml/2 

g (ASTM D 5890). Further investigation was conducted as to why the swell index did not reach 

the required specification. This was experimented by testing the swell index of activated 

bentonite at specific time intervals after activation, as elaborated further in Section 5.3.2. The 

investigation concluded that at least 1 month is required after activation before the bentonite 

acquires the desired swell index. The activation process is an ionic exchange process whereby 

the sodium content of the bentonite is enhanced at a molecular level. The medium of this 

reaction being water. For complete activation, time is required for the reaction to reach 

completion (Patel et al., 2019). 

Wyoming bentonite, commonly referred to as MX80 bentonite, has a swell index of 

approximately 27 ml/2 g (Davies et al., 2017). The swell index of Wyoming bentonite is much 

higher than the activated bentonite and non-activated bentonite. This may be attributed to the 

high montmorillonite content in the Wyoming bentonite. 
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The temperature, pH and EC of the distilled water before and the reagent after were measured. 

Since distilled water (de-ionised) was used, it can be assumed that no isomorphous ionic 

substitution occurred that could have affected the swelling potential of the bentonite. The 

temperature remains unchanged indicating no exothermic or endothermic chemical reaction 

between the deionised water and the activated bentonite and the non-activated bentonite.  

The EC increases substantially. The initial EC for the distilled water used for the activated 

bentonite and non-activated is 5 µm/cm and 3 µm/cm, respectively. The EC increased to a 

maximum of 705 µm/cm for the activated bentonite and 194 µm/cm for the non-activated 

bentonite. Expectedly, ions enter into solution thereby increasing the electric conductivity. The 

EC of activated bentonite is higher than the non-activated due to the ionic exchange of sodium 

allowing the dissolution of accessory minerals into the surrounding solution. The most quickly 

dissolving components in natural bentonites are carbonates and sulphates (Muurinen and 

Lehikoinen, 1999). 

Using Equation 5.1, the total dissolved solids (TDS) of the reagent can be calculated using the 

EC values (Thirumalini and Joseph, 2009; Rusydi, 2018). Other equations do exist, such as 

Siosemarde et al. (2010). However, the equation by Thirumalini and Joseph (2009), and Rusydi 

(2018) is used due to its simplicity and ease of application. Both equations produced the same 

results (the first equation, the one used subsequently, is by Thirumalini and Joseph (2009) and 

Rusydi (2018) and the second equation is by Siosemarde et al. (2010)).  

𝑇𝐷𝑆=0.64 ×𝐸𝐶                                                               (5.1) 

The TDS of the distilled water equated to 3.2 ppm or 0.064 meq/L and 1.92 ppm or 0.03 meq/L 

for the activated bentonite and non-activated bentonite, respectively. This indicates virtually 

zero colloidal particles being present in the distilled water before testing. The water ensuing 

testing resulted in a maximum TDS value of 451.2 ppm or 9.02 meq/L for the activated 

bentonite and 124.2 ppm or 2.48 meq/L for the non-activated bentonite.  

 Kaufhold and Dohrmann (2008) did a study to identify the differences in the stability of 

bentonites in contact with deionized water. Stability, in this case, connotes detachment of 

colloidal particles and/or dissolution of the bentonite. They concluded that the bentonites 

release ultrafine colloidal particles and that the colloidal particles are mainly montmorillonite. 

Approximately 10 % of the elemental concentration measured in the water solution is from 

dissolution of the octahedral sheet. However, detachment of colloidal particles was found to be 

the dominating mechanism (Kaufhold and Dohrmann, 2008). Thus, in the case of this research, 
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it can be assumed that the contributor to an increased EC would be colloidal particles present 

in the reagent subsequent to testing.   

The pH remains almost constant before and after the tests. However, the pH of the deionised 

water is around 9 to 9.5. This is not typical values for deionised water. The most plausible 

reason for this is uncalibrated lab equipment. However, this measurement does not influence 

the outcome of results but was merely used to detect a change in pH before and after each test. 

5.3.2 In-house activated bentonite 

In-house activation was conducted on three samples to investigate the effect of time on the 

beneficiation of bentonites.  

The results of swell index tests conducted on 3 Samples (A, B and C) at time intervals of 1 day, 

7 days, 14 days and 21 days after activation are shown in Table 5.5 and in Appendix 2.2. 

Samples A, B and C contained 2 g, 4 g and 6 g of soda ash respectively, which equated to a 

ratio, by mass, of soda ash to bentonite of 1:50, 1:25 and approximately 1:16 respectively. 

 

Table 5.5: Swell index over time after activation. 

 Swell index (ml/2 g) 

Days after activation Sample A Sample B Sample C 

0 10 10 10 

1 10 10 22 

7 16 19 25 

14 18 21 25 

21 21 23 26 

 

A plot of swell index versus time after activation is also shown in Figure 5.4 for Samples A, B 

and C. The plots show that Samples A and B show no increase in swell index within 24 hours. 

This shows that low amounts of sodium activation does not affect the bentonite over such a 

short period of time. However, Sample C shows an increase in swell index after 24 hours of 

activation, though lower than the required minimum. All three samples show a marked increase 

in swell index 7 days after the activation process. Although there is no change in the swell 

index for Samples A and B after 24 hours, Sample B however, swelled significantly more than 

Sample A beyond 24 hours. The most significant increase in swell for Samples A and B was 

after one week, with Samples A and B increasing by 6 and 9 ml/2 g of swell respectively, from 
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the initial swell index of 10 ml/2 g. However, two weeks of activation time is not sufficient for 

Samples A and B to reach the required minimum value of 24 ml/2 g. Sample C, however, 

attained the required minimum value after 1 week of activation. Thus, Sample C represents the 

best ratio required for activation over a short period of time, with a ratio of soda ash to bentonite 

of approximately 1:16.  Although Sample C achieves majority of the required swell within the 

first week after activation, the swell index is enhanced significantly at the start and thereafter 

levels off. Samples A and B show a consistent increase in swell index over time with a 

decreasing rate of swell progressively. Swell indices for Samples A and B do not reach the 

benchmark even after 3 weeks of activation although Sample B is expected to reach a swell of 

24 ml/2 g slightly over a 3-week period. Sample A will take slightly longer than Sample B. 

Further testing of these were halted as the laboratory in which these tests were conducted closed 

down. 

 

 

Figure 5.4: Swell index at time intervals after activation of Samples. 

 

It was also observed that bentonite with higher levels of soda ash resulted in a dispersive sample. 

The bentonite dispersed throughout the distilled water making the water murky and difficult to 

read as there was no definite top surface. The sample containing 6 g of soda ash displayed a 

dispersive character when tested for swell index as compared to the 2 g and 4 g samples. Davies 

and Lacey (2009) explain that a sodic clay is dispersive, such that a substantial amount of 

sodium interferes with the structural stability of the soil. The reason being that when the ratio 

of sodium to other exchangeable ions (such as Ca2+, Mg2+, K+ and Na+) is high, clay particles 
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are less tightly bound to each other and the soil easily disperse when the soil becomes wet. 

With this understanding, an addition of excess soda ash will add unnecessary sodium into the 

bentonite thereby increasing the ratio of sodium to other exchangeable ions. Figure 5.5 shows 

the different degrees of dispersion of a clay soil from least sodic to most sodic. A similar milky 

sample was observed for Sample C (Figure 5.6). This may be detrimental if the bentonite is 

used in a GCL. 

 

 

Figure 5.5: Dispersion of soils. Least sodic to most sodic is from left to right (Davies and 

Lacey, 2009). 

 

 

Figure.5.6: Dispersive Sample C, similar to that observed by Davies and Lacey (2009). 
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5.4 Fluid loss 

The results from the fluid loss tests conducted on the activated bentonite and non-activated 

bentonite are shown in Table 5.6 and in Appendix 2.3.  

Table 5.6: Fluid loss results of activated and non-activated bentonite. 

Fluid loss (ml) 

 Average Range 
Number of tests 

conducted  

Activated bentonite 23.2 23.0 – 23.4 3 

Non-activated bentonite 26.8 25.7 – 27.9 3 

 

Activated bentonite was expected to have a lower fluid loss due to a higher swelling and sealing 

ability (Liu et al., 2014). The maximum ASTM requirement for fluid loss of bentonite used in 

GCLs is 18 ml. The tested bentonites, activated and non-activated, does not comply with the 

required maximum fluid loss. 

Fluid loss is indicative of the hydraulic conductivity. Liu et al. (2014) conducted a study where 

they used fluid loss as a quick method to evaluate the hydraulic conductivity of bentonite within 

geosynthetic clay liners. Liu et al. (2014) further pointed out that the hydraulic performance of 

GCLs depends directly on the swelling capacity of the bentonite component when in contact 

with water. Studies have shown that an increase in hydraulic conductivity is mainly due to 

limited bentonite swelling (Shackelford et al., 2010). The fluid loss test evaluates the capability 

of bentonite suspension to form a hydraulic barrier. A low fluid loss indicates low flow through 

the bentonite barrier within a given time and therefore implies a low hydraulic conductivity. In 

this study, failure to achieve the recommended fluid loss can be attributed to a lack of swell, as 

mentioned by Shackelford et al. (2010).     

Lee and Shackelford (2005) investigated the effect of the quality of bentonite on the hydraulic 

conductivity. They found out that the hydraulic conductivity of high-quality bentonites is 3 

times lower than the hydraulic conductivity of low-quality bentonites, when the bentonites 

were permeated with water. Furthermore, the high-quality bentonite is distinguished by a 

higher montmorillonite content as well as a higher plasticity index.  

It is evident that, although the bentonites are being used in GCLs with the prerequisite of 

activation, the quality of the bentonite product alone, prior to activation, is of substandard 

quality. Activation, in a way, increases the quality of the bentonite to act as a hydraulic barrier. 

It is evident from this study that although the bentonite may have undergone some activation, 
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incomplete beneficiation will result in a deficient product. The beneficiation process may 

require additional time or additional treatment to achieve full activation. 

5.5 Plate water absorption 

The absorption ability of the bentonite was measured as the water content absorbed by the 

bentonite, after a fixed period of time. The results from the plate water absorption tests for both 

the activated bentonite and non-activated bentonite are presented in Table 5.7.  Supporting data 

for the fluid loss tests are presented in Appendix 2.4. The results are presented as a percentage 

of the dry mass. The average absorption for the activated bentonite is 133.6 % whilst the 

average for the non-activated bentonite is 121.6 %. 

 

Table 5.7: Summary of results from plate water absorption tests. 

 Water absorption (% of the dry mass) 

 Test 1 Test 2 Test 3 Test 4 Average 

Activated 

bentonite 
119.1 129.1 144.1 142.1 133.6 

Non-activated 

bentonite 
120.7 117.7 124.1 123.7 121.6 

 

The water absorbed is way above the dry mass of the sample. Bentonite, whether activated or 

non-activated, absorbs more water than the actual sample mass. The activated bentonite 

absorbed almost 10 % more water than the non-activated bentonite. This increase in absorption, 

which is intermolecular and intramolecular, is what gives rise to the increase in swell and 

resultantly decreases the fluid loss and thereby enhancing sealing behaviour. It is evident that 

the addition of soda ash increases the absorption capabilities of bentonite. Swelling occurs 

when water enters between clay particles resulting in an increase in volume (Norrish and Quirk, 

1954), hence a greater absorption of water results in a higher swell. 

Test 1 for activated produced results similar to that of non-activated bentonite. There are two 

possible reasons for this. This could be as a result of incomplete activation. It could also be as 

a result of randomly selecting a non-activated area. It is possible that some areas of the 

bentonite do not achieve activation during the beneficiation process as a consequence of 

indiscriminate processes. Since the sample size of the plate water absorption test is miniscule, 

it is likely a non-activated area of bentonite may have been randomly selected.         
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Bentonite with better absorption simply means that the bentonite has a higher ability to absorb 

water. Since absorption is directly related to swell, the plate water absorption would indicate 

the bentonite ability to swell. 

5.6 Atterberg limits 

The results from the Atterberg limits tests are shown in Table 5.8 and in Appendix 2.6.  

Activated bentonite has 9 % higher liquid limit and 10 % higher plasticity index whereas the 

plastic limits are almost the same. The liquid limit is derived by corresponding the water 

content to a blow count of 25 on the liquid limit flow curve (Figure 5.7). The remaining flow 

curves for all the liquid limit tests are presented in Appendix 3. The plasticity index is derived 

by taking the difference between the liquid limit and plastic limit. Therefore, the plasticity 

index presented in Table 5.8 is the difference between the average liquid limit and the average 

plastic limit. The higher liquid limit for the activated bentonite suggests it has higher plasticity. 

The linear shrinkage results are identical. The linear shrinkage test was not of much 

significance to this study. It simply gives an indication to the degree of shrinkage when the 

bentonite is completely dry. The bentonite forms a powder when entirely dehydrated thus a 

straightforward measurement was impractical. Hence, the 25 % linear shrinkage is somewhat 

of an estimated figure.  

 

Table 5.8: Atterberg limits results. 

 Atterberg limits (%) 

 Activated bentonite Non-activated bentonite 

Liquid limit 

Average 144 135 

Range  130 - 154 128 - 141 

No. of 

tests 
8 8 

Plastic limit 

Average 50 51 

Range 48 - 51 49 - 53 

No. of 

tests 
3 3 

Plasticity index Average 94 84 

Linear shrinkage 

Average 25 25 

Range - - 

No. of 

tests 
1 1 

 

Interparticle forces control the liquid limit of bentonite. The dominant interparticle force of 

bentonite is repulsion through osmotic activity (Warkentin, 1961). This repulsion keeps the 
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particles in a fixed configuration which prevents free movement (Warkentin, 1961). As the 

repulsion is decreased, particles move freely at lower liquid limits. Strength results from the 

force of repulsion resisting displacement of particles in the shear plane. Sodium increases the 

repulsion forces enabling a higher liquid limit. This is related to the higher repulsion found 

with monovalent ions, such as Na+ (Warkentin and Yong, 1960; Warkentin, 1961). Activation 

increases the concentration of Na+ within the bentonite thereby increasing the interparticle 

forces and hence increasing the swell index. Consequently, the activated bentonite has a higher 

liquid limit than the non-activated bentonite.   

 

Figure 5.7: Liquid limit for activated bentonite, Sample A1. 

 

There are many studies showing correlations of Atterberg limits to other soil properties. Farrar 

and Coleman (1967) went as far as correlating the cation exchange capacity (in meq %) with 

the liquid limit, with a high level of confidence (Equation 5.2). 

 

C= -5+0.45WL                                                             (5.2) 

Where C is the cation exchange capacity (CEC) and WL is the liquid limit. 

Using Equation 5.2 and average values for WL, CEC values for the activated and non-activated 

bentonite are 59.8 meq/100 g and 55.75 meq/100 g, respectively. These are typical CEC values 

for bentonite as documented by Kayabali (1997), who recorded CEC values between 55 

meq/100 g and 60 meq/100 g for sodium bentonite.  
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It is also possible to correlate the liquid limit to the absorbed water content. Sridharan and 

Nagaraj (1999) correlated liquid limit to water absorption. Their correlation between liquid 

limit and water absorption can be seen in Figure 5.8. 

The absorbed water content is plotted against the liquid limit. Sridharan and Nagaraj (1999) 

shows that the absorbed water content is almost the same as the liquid limit of a clay soil. The 

correlation can be given by Equation 5.3 

 

WA = 0.92WL                           (5.3)  

Where WA is the absorbed water content and WL is the liquid limit. 

 

Figure 5.8: Correlation of liquid limit and absorption. The line of equality is where y = x 

(after Sridharan and Nagaraj, 1999). 

 

To determine whether Sridharan and Nagaraj (1999) correlation of liquid limit to absorption 

applies to this study, a further 10 liquid limit and plate water absorption tests were conducted. 

The results are showed in Figure 5.9 for the activated bentonite and Figure 5.10 for the non-

activated bentonite (data for liquid limit verses plate water absorption are presented in 

Appendix 2.7). The resultant linear regression curve for the activated bentonite, exhibits the 

formula given by Equation 5.4. Where the intercept is set to the origin. 
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Wa = 0.96WL                                                      (5.4) 

Where Wa is the water absorption and WL is the liquid limit. 

 

The correlation equation derived from this research is somewhat comparable to Sridharan and 

Nagaraj (1999). This relationship is specifically important for bentonite studies considering 

liquid absorption is a key requirement in some bentonite applications. The correlation exists 

specifically when using distilled water and may be different if bentonite is subjected to test 

using a different liquid, such as acidic leachates.      

 

Figure 5.9: Absorption verses liquid limit for activated bentonite. 

 

Non-activated bentonite displayed a more dispersed plot, lacking a convincing correlation. 

This linear regression curve produces the formula given in Equation 5.5. 

 

Wa = 0.89WL                                                      (5.5) 

A clearer trend is visible for the activated bentonite. However, a conclusive correlation could 

not be achieved for the non-activated bentonite. It is possible that this correlation applies only 

to sodium bentonite, studied in this research, and that different correlations could apply to soils 

of varying composition. It is conceivable that, in general, correlation is affected by the texture 

and fabric of the soil, and by the total surface area (Farrar and Coleman, 1967). Thus, soils 

different from those tested in this research may produce different results.  
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Figure 5.10: Absorption verses liquid limit for non-activated bentonite. 

5.7 Summary of results 

The XRD test revealed an almost identical mineralogical makeup except for cristobalite and 

smectite. Non-activated bentonite has approximately 8 % more cristobalite than activated 

bentonite, whereas activated bentonite has approximately 8 % more smectite. More than 30 % 

of these bentonites contain impurities which abates the swell index and hydraulic performance. 

Swell index tests produced results below the expected for activated bentonite. The average 

swell index is 15.6 ml/2 g and 9.8 ml/2 g for activated bentonite and non-activated bentonite, 

respectively. The expected swell index of activated bentonite was 24 ml/2 g, clearly falling 

short of this ASTM requirement. Further investigation revealed that inadequate activation may 

cause insufficient swelling. Two factors affect activation; the time required for the activation 

to reach completion and the amount of soda ash added to the bentonite. For a 2 % (i.e. a ratio 

1:50) addition of soda ash, at least 4 weeks is required for the bentonite to reach complete 

activation. The electric conductivity of distilled water before and after the swell index test 

reveal substantial detachment of ultra-fine colloidal particles and/or dissolution of the bentonite. 

The pH and temperature of the distilled water before and after testing remained largely constant. 

The bentonite fluid loss displayed results of 23.2 ml for activated bentonite and 26.8 ml for 

non-activated bentonite, after 22.5 min. The activated bentonite has a lower fluid loss 

indicating a reduced hydraulic conductivity compared to non-activated bentonite. The quality 

and quantity of montmorillonite within the bentonite influences its hydraulic performance. 
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Activated bentonite has a higher montmorillonite content and is enhanced with sodium, through 

the addition of soda ash, hence the fluid loss is less than the non-activated bentonite.   

The average absorption for the activated bentonite is 133.6 % whilst the average for the non-

activated bentonite is 121.55 %. Absorption is directly related to swell. Therefore, a higher 

absorption results in a higher swell index, evidently shown as the activated bentonite swells 

more and has a higher absorption percentage than non-activated bentonite.  

The plasticity index for activated bentonite is 10 % higher than non-activated bentonite and the 

liquid limit is 9 % higher for activated bentonite when compared to non-activated bentonite. 

Interparticle forces, responsible for the liquid limit, are enhanced by the addition of soda ash. 

This is related to the higher repulsion found with monovalent ions, such as Na+. The liquid 

limit can be used to derive other soil properties, such as the CEC and absorption via correlation 

equations. Using these equations, the CEC for activated and non-activated bentonite is 63.4 

meq/100 g and 56.65 meq/100 g, respectively. The plastic limit and linear shrinkage are 

virtually identical for activated and non-activated bentonite. The linear regression curve 

displays a moderate correlation between the liquid limit and plate water absorption for activated 

bentonite. A weaker correlation exists for the non-activated bentonite. 
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Chapter 6 

Conclusion and Recommendations 

6.1 Conclusion 

Geosynthetic clay liners have become a common feature in many civil and environmental 

applications such as landfill hydraulic barriers, environmental protection barriers and as water 

impoundment liners. Their robust design and easy installation have favoured them over 

compacted clay liners. The abundance of bentonite deposits worldwide makes GCLs widely 

available. In South Africa, activated powdered sodium bentonite from the Imerys mine in 

Heidelberg Basin is used in the production of GCLs.  

GCLs comprise powdered bentonite encased between two geotextile or geomembrane sheets. 

However, the fundamental component of GCLs is the bentonite used, which at times may not 

be of the desired quality. Consequently, a process known as beneficiation, whereby soda ash 

(sodium carbonate) is added to the bentonite, is carried out to enhance its quality. This results 

in the bentonite being referred to as activated bentonite. Soda ash principally increases the 

amount of exchangeable sodium ions within the bentonite, as the ionic exchange of sodium is 

the largest contributor of bentonite swell, when in contact with water.   

The aims of this research were to investigate the suitability of sodium bentonite from the Imerys 

bentonite mine in the Western Cape Province of South Africa, for its use in GCLs and to 

examine the difference in the behaviour of activated bentonite versus non-activated bentonite. 

In addition, an attempt was made to draw correlations between liquid limit and plate water 

absorption. Through liquid limit data one may be able to approximate the bentonite 

performance of a GCL. This study subjected samples of activated and non-activated bentonite 

to laboratory test to determine the bulk mineralogical composition, swell index, fluid loss, plate 

water absorption and Atterberg limits. 

XRD tests reveal that the Imerys bentonite, derived from the Heidelberg Basin, comprises 

approximately 60 % smectite. The balance comprises non-swelling impurities, which is mainly 

quartz. The major difference in mineralogy is that the activated bentonite has 8 % more smectite 

than the non-activated bentonite whereas the non-activated bentonite has 8 % additional 

cristobalite. Other impurities such as calcite, diopside, mordenite, muscovite, plagioclase and 

quartz are almost identical.   

The swell index for the sodium activated bentonite and the non-activated bentonite does not 

reach the required minimum of 24 ml/2 g within the required 24 hours. In the case of activated 
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bentonite, this could possibly be due to incomplete activation. However, the swell index for 

activated bentonite is 5 ml/2 g more than non-activated bentonite. Subsequent to swell index 

testing, the EC of the water spiked considerably. Minimum EC values for deionized water were 

recorded at 5 µS/cm. The maximum EC for the water after testing the activated bentonite was 

recorded at 705 µS/cm and the maximum EC for the non-activated bentonite was recorded at 

194 µS/cm. The TDS can be calculated from the EC. The water ensuing after the swell index 

test resulted in a maximum TDS value of 451.2 ppm or 9.02 meq/L for the activated bentonite 

and 124.2 ppm or 2.48 meq/L for the non-activated bentonite. The increase in EC and TDS can 

be attributed to the ionic exchange of sodium allowing the dissolution of accessory minerals 

into the surrounding solution and the release of ultrafine montmorillonite colloidal particles.  

The fluid loss for activated and non-activated test produced results higher than the required 

minimum fluid loss of 18 ml. Average fluid loss results for activated and non-activated 

bentonite are 23.2 ml and 26.8 ml, respectively. This is attributed to low quality bentonite and 

incomplete activation. 

The linear regression curve for liquid limit verses plate water absorption of activated bentonite 

show a modest linear relationship. The same cannot be said for non-activated bentonite. A 

clearer relationship may have been achieved with more laboratory tests, which time did not 

permit. The results show that the natural sodium bentonite is not suitable for GCLs. Activated 

bentonite, however, may sometimes fall short of the required specification due to insufficient 

activation or a low-quality blend 

The key property that controls hydraulic performance, is the bentonite’s swelling ability. It is 

unknown how the swelling is affected by different processing environments. The method of 

crushing and milling may eventually have an effect on the swelling. The temperature at which 

bentonite is dried and the time spent in the oven may change the physicochemical behaviour 

of the bentonite. This study, however, does reveal the effect of time on the activation of 

bentonite. Samples with ratios of soda ash to non-activated bentonite of 1:50, 1:25 and 1:16 

were tested for swell index. The swell index over time was recorded to ascertain the best ratios 

of soda ash to non-activated bentonite and the time required for complete activation to occur.  

In practice, a very small amount of soda ash is added to non-activated bentonite. Consequently, 

4 weeks is the minimum time required for non-activated bentonite to reach the desired degree 

of activation.  

Considering all the laboratory results it can be concluded that Imerys bentonite is a medium 

quality bentonite with borderline index properties that requires beneficiation and time to 
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achieve complete activation. The appropriate ratio that suits beneficiation is 1:50 and the 

required time for beneficiation is at least 4 weeks. 

6.2 Limitations 

This research was not without limitations. The geosynthetic industry is relatively new to the 

South African market and hence there has been very little academic interest. Apart from the 

Kaytech Geosynthetic Laboratory in Pine Town, which eventually shut down due to economic 

reasons, there are no accredited geosynthetic laboratories in South Africa. Research on 

geosynthetics is rather new in South Africa. It would have been ideal to continuously test 

samples throughout the course of this research. However, the Kaytech laboratory which is well 

equipped for all the necessary tests was shut down late 2018. Consequently, it was impossible 

to continue with extensive laboratory testing that was initially planned for this research. The 

outsourcing of laboratory testing has been time consuming and expensive as some samples had 

to be shipped to Gauteng and the United States of America for XRD and fluid loss testing, 

respectively. 

6.3 Recommendations 

Particularly for this research, it is recommended that a change in the method of field activation 

is required. Quality control measures should be implemented to ensure complete activation of 

bentonite. The blending process of different qualities of bentonite should be thoroughly 

reconsidered. Bentonite in nature presents itself as a moist and very soft rock. Breaking down 

the size of larger pieces to at least gravel size would ensure complete activation. The method 

of field activation requires more attention to ensure complete activation of bentonite. A 

standard procedure of field activation is needed to guide operators and professionals.      

A statutory body should be established to govern the method of activation and processing, 

particularly when used in GCLs. Mines and quarries processing bentonite for use in GCLs 

should be accredited to distribute the bentonite. On a national scale academic research interest 

is required to guide this industry, especially considering the fact that geosynthetics are 

becoming a common engineering and environmental geological feature. 

6.4 Future research  

Future research is required to investigate optimum soda ash to bentonite ratios and the optimal 

moisture content at which activation should take place. The swell index, and to some extent, 

fluid loss tests are operator dependent qualitative tests wherein the results are dependent on a 
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variety of factors, such as the quality of water used, the duration and temperature at which the 

bentonites are dried and the operator’s diligence to perform the arduous test correctly. Lengthy 

tests result in operator fatigue and deviant testing techniques. Research into modifying the 

current testing procedures are needed. Less operator dependent and more time efficient tests 

are required to assess swelling and hydraulic performance.   

Geosynthetic clay liners are an absolutely robust technology that can be adapted to various 

environments. With the correct understanding of the intricate physicochemical behaviour and 

reactions to certain environments it can be used with phenomenal success. 
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Conference paper 
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Appendix 2 

Laboratory results 

2.1 Swell index. 

2.2 Swell index of in-house activated bentonite. 

2.3 Fluid loss. 

2.4 Plate water absorption. 

2.5 XRD 

2.6 Atterberg limits 

2.7 Liquid limit vs absorption 
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2.1 Swell index 

Sample 1 – Activated bentonite 

Test 1  Test 2 Test 3 Test 4 Test 5 

 

Swell Index (ml/ 2g) 

15 16 16 16 15 

 

Temp after 16 hours (˚C) 

23 23 23 23 23 

 

Electric conductivity (µS/cm) 

633 628 665 705 642 

 

pH  

9.82 9.9 9.91 10.1 9.9 

Properties of the distilled water used  

Temp (˚C) EC (µS/cm) pH 

24 5 9.5 

 

Sample 2 – Non activated bentonite 

Test 1 Test 2 Test 3 Test 4 Test 5 

 

Swell index (ml/ 2g) 

10 9 10 10 10 

 

Temp (˚C) 

24.5 24.5 24.5 24.5 24 

 

EC (µS/cm) 

134 155 165 194 151 

 

pH 

9.36 9.34 9.35 9.35 9.33 

 

Properties of the distilled water used  

Temp (˚C) EC (µS/cm) pH 

25 3 9.09 
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2.2 Swell index of in-house activated bentonite 

After 1 day of activation 

Swell index (ml/2 g) 

Sample A Sample B Sample C 

10 10 22 

 

After 7 days  

Swell index (ml/2 g) 

Sample A Sample B Sample C 

16 19 25 

 

After 14 days 

Swell index (ml/2 g) 

Sample A Sample B Sample C 

18 21 25 

 

After 21 days 

Swell index (ml/2 g) 

Sample A Sample B Sample C 

21 23 26 

 

2.3 Fluid loss 

Sample 1 – Activated bentonite 

Fluid loss (ml) 

23.2 23.4 23.0 

Average 23.2 

 

Sample 2 – Non activated bentonite 

Fluid loss (ml) 

26.8 27.9 25.7 

Average 26.8 

 

2.4 Plate water absorption 

Test 1 Test 2 Test 3 Test 4 

 

Mass of hydrated filter paper (g) 

1.31 1.29 1.34 1.33 

Average 1.318 
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Sample 1 – Activated Bentonite 

Water absorption (%) 

119.1 129.1 144.1 142.1 

Average 133.6 

 

Temp of water (˚C) 

22 23 22 22 

 

Sample 2 – Non activated bentonite 

Water absorption (%) 

120.7 117.7 124.1 123.7 

Average 121.6 

 

Temp of water (˚C) 

23 23 23 23 

 

2.5 XRD 

Sample 1 – Activated Bentonite 

% major minerals 

Calcite Cristobalite Diopside Mordenite Muscovite Plagioclase Quartz Smectite12 Smectite14 

1.05 0.1 1.73 2.47 2.64 6.7 18.6 45.32 21.39 

 

Sample 2 – Non activated bentonite 

% major minerals 

Calcite Cristobalite Diopside Mordenite Muscovite Plagioclase Quartz Smectite12 Smectite14 

1.83 8.47 2.39 3.98 3.7 5.72 15.67 13.31 44.93 
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2.6 Atterberg Limits 

Liquid Limit  

Activated Bentonite Non-activated Bentonite 

Sample Data (%) Sample Data (%) 

A1 154 N1 137 

A2 153 N2 139 

A3 149 N3 134 

CA1 130 CN1 130 

CA2 133 CN2 132 

CA3 142 CN3 128 

CA4 139 CN4 141 

CA5 148 CN5 139 

Average 144 Average 135 

 

Plastic Limit 

Activated Bentonite Non-activated bentonite 

Sample Data (%) Sample Data (%) 

A1 50 N1 49 

A2 48 N2 53 

A3 51 N3 51 

Average  50 Average  51 
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Linear shrinkage  

Activated Bentonite Non-activated bentonite 

25 % 25 % 

 

2.7 Liquid limit vs absorption 

Activated bentonite 

Liquid Limit (%) Absorption (%) 

130 121 

133 128 

142 139 

139 140 

148 138 

 

Non-Activated bentonite 

Liquid Limit (%) Absorption (%) 

130 115 

132 120 

128 122 

141 119 

139 126 
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Appendix 3 

Liquid limit flow curves 
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Appendix 4 

Test methods: 

4.1 Swell index 

4.2 Fluid loss 

4.3 Plate water absorption 
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4.1 Swell Index
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4.2 Fluid loss
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4.3 Plate absorption
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