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"This tree [Eucalyptus] grows faster than the cottonwood, taller than the redwood,

straight as a fir. Its timber is as strong as oak, as elastic as hickory and as beautiful as

maple and as enduring as cedar".

Pratt , 1910
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ABSTRACT

Hybrid clones of the fast-growing Eucalyptus grandis and cold-tolerant E. nitens (GN

clones) have been identified by the South African Forestry Industry as being highly

suitable for plantations in cold-dry marginal areas. However, one of the main problems

regarding their propagation is the difficulty in rooting of cuttings, both in vitro and ex

vitro. The aims of this investigation, therefore, were (1) to develop widely applicable

and efficient in vitro rooting system(s) for these commercially important clones, and (2)

to assess some physiological characteristics of the roots produced.

Adventitious shoots (15-20 mm in length) were obtained (l0 shoots/explant) from

axillary buds on Murashige and Skoog's (MS) medium containing 0.01 mg.l" NAA,

0.01 mg.l" IBA and 0.2 g.l' FAP. The effect of various medium components, as well as

modificatiOIi'of culture environment on in vitro rooting, were investigated. The highest

rooting frequencies in clones GN121 (75%) and GN107 (65%) were achieved on lf4 MS

with additional 0.22 g,rl CaCh.2H20 and 0.18 g.r1 MgS04.7H20, 0.1 mg.l" IBA, 0.1

mg.l" biotin, 0.1 mg.l" calcium pantothenate, 15 g.r1 sucrose and 4 g.r1 Gelrite. Best

culture conditions were an initial 72-hours dark incubation followed by a 16-hours

day/8-hours night photoperiod at a PPFD of 37 umol.mi.s" and 23°C day/21°C night

for seven days, after which the PPFD was increased to 66 umol.m'r.s" at 27°C day/21°C

night for 18 days.

Towards the development of a more widely applicable in vitro rooting protocol for GN

clones, the use of Agrobacterium rhizogenes strains was investigated. Production of

transgenic roots was observed on carrot discs and shoots from seedlings of Eucalyptus

grandis and E. nite,,!s, but not on shoots of GN clones. Therefore, a method needs to be

established for the successful transfer and integration of the Ri plasmid of

Agrobacterium into the hybrid plant genome for induction of transgenic roots.
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The quality of roots produced in vitro and from cuttings was assessed by examination of

root anatomy and hydraulic characteristics. Adventitious roots were prepared for

measurement of hydraulic conductivity by detopping explants, then filtered, acidified

distilled water was drawn through undisturbed potted root systems under partial

vacuum, causing no damage to the roots. Initial studies showed that tissue culture­

derived roots exhibited ahigher specific root mass hydraulic conductivity than those

derived from cuttings (6.46 x 10-6 vs. 3.06 X 10-6 g.kPa-1.s-1.g-1 dry root), probably due

to root architecture. Curves relating vulnerability to water potential were constructed

and both types of roots showed vulnerability to cavitation at high water potentials.

Differences were also observed in staining reactions (safranin and fastgreen) which

might suggest differences in presence and level of secondary metabolites in these roots

at the juvenile stage.

Applications of the developed protocols and future research strategies are discussed.
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CHAPTER 1: GENERAL INTRODUCTION

Chapter I

1.1 Brief history and importance of Eucalyptus

The genus Eucalyptus (family Myrtaceae) was first discovered in Australia just over

200 years ago by Charles Louis L'Heritier de Brutelle (Turnbul, 1991). Later in the

nineteenth century, seed dispersal by travelers, traders, gold miners, soldiers, priests and

botanists spread eucalypts to many parts of the globe. Australia's soils are generally

ancient, of Tertiary origin (about 50 million years), and many are rather nutrient poor,

particularly phosphorus (Beadle, 1981). Most eucalypts are thus adapted to occasional

droughts and soils low in phosphorus and other nutrients (Muller-Dombois, 1992). It

has been reported recently that there are now over eight million hectares of eucalypt

plantations established worldwide (Turnbull, 1991). Approximately one and a quarter

million hectares (ha) are found in the southern hemisphere (Smith, 1996), and this is

made up of 524 000 ha in South Africa, 240 000 ha in Argentina, 238 000 ha in Chile

and 127 OOO'ha in Australia.

The South African government began developing plantations in the early 20th century to

take the pressure off indigenous forests (Smith, 1996; Anon, 1998). In the 19th century,

during the discovery of gold in the Witwatersrand, the forestry industry was mainly

based on the harvesting of indigenous trees for timber production. Since the indigenous

species generally grew too slowly for the increasing demand, gum trees (Eucalyptus

species, especially E. grandis) with key characteristics were imported to South Africa
' . '.

from Australia. The development of plantations was uncontrolled by the government

until 1972 when the Afforestation Permit System (APS) was introduced to regulate the

planting of exotic trees and to reduce the area of land to be planted to trees so that water

could be conserved (Anon, 1998). Land varies from flat to steep terrain and soil from
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sand to loamy (Smith, 1996). A range of species is planted such as Eucalyptus grandis,

E. saligna, E. macarthurii, E. fastigata, E. diversicolor, E. paniculata, E. nitens, and E.

dunnii as well as several hybrids (Smith, 1996; Denison and Kietzka, 1993). In addition

to pulp and paper production, South African companies (mainly Mondi Forests and

Sappi) produce eucalypts for woodchip export and mining timber (Smith, 1996).

Eucalypts are regarded as "super trees" because they provide many useful products to

mankind (Smith, 1996). Different species are used for a wide variety of purposes,

including production of industrial charcoal, domestic and industrial energy, sawn

timber, essential oils, honey, tannin, shade and shelter, and leaves are used as animal

fodder (Hills and Brown, 1978; McComb and Bennett, 1986; Turnbull, 1991; Le Roux

and van Staden, 1991b). Rural communities (e.g. in China, India and South Africa) are
, )

often' forced by poverty and population pressure to destroy natural forests to survive.

Hence, Turnbull (1991) and Denison and Kietzka(1993) suggested that eucalypt

plantations would be competitive with wood from natural forests in the future and take

pressure off this resource.

In Australia, eucalypt plantations have been used on a small scale for disposal of

industrial and urban waste (Turnbull, 1991). According to that author, such plantations

offer the possibility of producing cheap fue1wood as well as providing the solution to an

urb~) environmental problem. In South Africa there is a large potential market for high

grade E. grandis and E. saligna timber which dominate the hardwood sawn timber

industry (Muller, 1988). However, hybrids (especially cold-tolerant clones) are

expected to play a more significant role in clonal forestry (Denison and Kietzka, 1993).

South Africa is arguably the world leader in small size log utilization and drying, but

Australia and New Zealand which handle a more diverse range of species have much to

contribute from processing (sawing and seasoning) research (Turnbul, 1991).

,2
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1.2 Importance of intensive hybrid forestry in South Africa

The areas most suitable for commercial forestry plantations in South Africa stretch

across a narrow belt along the east coast because of good climate, rainfall and soils

(Denison and Kietzka, 1993). However, such 'fertile' areas are also in demand for

agricultural crops and conservation of indigenous flora. Therefore, forestry companies

are not able to purchase 'fertile' land anymore, and the government has also imposed

strict policies to control commercial forestry plantations in an effort to balance the

hydrological circle (Denison ar"ld Kietzka, 1993; Smith, 1996). In order to remain

productive and meet the required wood product demands, the forestry industry needs to

maximize productivity from existing plantations by incorporating biotechnological

methods(e1 tissue culture) in breeding programmes and also use land in cold and dry

marginal areas that was traditionally considered unsuitable for plantation forestry

(Denison and Kietzka, 1993; Watt et al., 1997). Most species of the genus Eucalyptus

that possess rapid growth and good form characteristics are frost-sensitive (e.g. E.

grandis, and E. nova-anglica - Mehra-Palta, 1982). A few, such as Eucalyptus nitens

have attracted attention as fast-growing and productive species which, due to .their

inherent cold-tolerance, are suitable for temperate regions subject to frost attack

(Bandyopadhyay et al., 1999; Denison, 1999).

About ten years ago Mondi Forests started an intensive hybrid breeding programme

with E. grandis and other species for planting in marginal areas and increasing

productivity from existing plantations (Denison, 1999). The most common hybrid

combinations for the more subtropical areas are Eucalyptus grandis crossed with either

E. camaldulensis (GC), E. urophylla (GV), or E. tereticornis (GT) (Denison and

Kietzka, 1993). For the temperate areas the hybrids produced are E. grandis x E. nitens
,~:-L

(GN) and E. grandis x E. macarthurii (GM) (Denison and Kietzka, 1993). These

hybrids outperform the pure species on marginal sites and are consistently more

resistant to ~iseases, pests, cold, heat and drought (Denison and Kietzka, 1993). The

3
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wood and growth properties of these hybrids are normally intermediate between the

parent species, but superior growth to both parents is common (Denison and Kietzka,

1993). Further, the benefits of hybrid forestry include: (1) hybrid vigour (heterosis)

(stronger in zones which are marginal for pure species), (2) disease resistance (E.

grandis is resistant to many diseases, so are its hybrids), (3) wood properties (more

homogenous wood density), (4) nursery efficiency (hybrids root more readily compared

with pure species), and (5) adaptability (hybrids can tolerate limiting factors and

withstand stress more readily) (Denison and Kietzka, 1993).

Several authors have warned that one must be careful in the assessment ofhybrid vigour

because it is affected by time and location (Zobel and Talbert, 1984; Martin, 1988;

Denison and Kietzka, 1993). According to Denison and Kietzka (1993), many of the E.

grandis hybrids express heretosis early in life, but do not maintain the good growth

through to rotation (sprinters). Those authors suggested that decisions on the acceptance

of hybrid combinations for operational programmes should not be made until at least

half rotation age for the eucalypt hybrid. Presently, Mondi's commercial clonal

programme 'is comprised of E. grandis, GC, GT, GU, GN, E. nitens hybrids and E.

dunnii clones matched to site and product (Denison, 1999). Although cold-tolerant GN

hybrids are difficult to root, they have shown superior pulp properties and yield

(Denison, 1999), and research is currently ongoing to improve their rooting ability.

Further, these GN hybrids may be the most desirable for planting in marginal areas as

studies have indicated that they appear to be more water-use efficient than pure E.

grandis and some hybrids such as GC (February et al., 1995).

4



Introduction Mokotedi , 1999 Chapter 1

1.3 Propagation of Eucf!l)!ptus species and hybrids

1.3.1 Vegetative propagation in clonal programmes

In areas of natural forests (e.g. Australia) where trees are removed by selective felling,

natural regeneration from seed occurs (McComb and Bennett, 1986). However,

eucalypts are preferably propagated as rooted cuttings (McComb and Bennett, 1986) or

scions are grafted onto seedling rootstocks of the same genotype (Gardner, 1998).

Cuttings are normally obtained from clonal hedges every three to four weeks, treated

with rooting powder and maintained under misthouse conditions. However, a significant
: .,-':

drawback against cuttings is the physiological aging of parent plants from which

cuttings are obtained (Biondi and Thorpe, 1981; Le Roux and van Staden, 1991b).

Burdon (19~8) notes that hedging appears to be effective technically, although few

hopes are held for it halting maturation indefinitely. Some species of Eucalyptus such as

E. regnans and E. nitens do not sprout readily at all, whereas others (e.g. E.

camuldulensis and E. deglupta) sprout vigorously and root easily while other species

sprout readily but root with difficulty (E. globulus) (Zobel, 1993). Paton et al. (1970)

reported that cuttings from most mature eucalypts do not root, and suggested the

presence of a rooting inhibitor that is expressed only in adult material. Zobel (199'3)

emphasized the fact that there is no one methodology of rooting that works for all

Eucalyptus species and suggested that each organization must work out techniques

suitable for "Slonal propagation for its own conditions.

Grafting is expensive but can be used to 'rejuvenate' shoots for subsequent use, either

as cuttings or as explants for tissue culture (McComb and Bennett, 1986). At ICFR

(Institute for Commercial Forest Research, Pietermaritzburg), researchers observed that

late grafting (after early spring) may have disastrous effects on percentage of survival of

grafts 'made (Gardner, 1998). For example, of the 600 grafts made for E. dunni, 56.5 %

survived after six months compared with 9.5 % survival of 410 grafts made for E.

5
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nitens and 32.5% of 320 grafts made for E. smithii. As with grafting, air layering is a

labour-intensive process and eucalypts are very slow to root when layered (Hartney,

1980; McComb and Bennett, 1986).

Benefits of vegetative propagation include production of more uniform wood, selection

of clones for desired wood, and the opportunity to match clones with site and
. -;-"

silvicultural treatment (Zobel, 1993). Zobel (1993) further noted that eucalypt clones

generally show a strong genotype x environment interactions when environments vary

considerably. An example cited by that author referred to wind and rain damage of one

of the best phenotypes which produced superior clonal planting for the first 1.5 years of

its test. Every member of that particular clone had only two major roots that were

approximately 1800 apart. In the wet soil, the wind just pivoted the trees out of the

ground. Such observations emphasize the need to study root characteristics

(morphology, anatomy and physiology) in relation to methods of propagation and

plantation sites.'In some genera, rooted cuttings have root systems that are qualitatively

different from those formed ' by seedlings. For example, roots of cuttings of

Bombacopsis quinata may be shallow and fibrous, without formation ofmassive taproot

generally fO;Fed by seedlings (Zobel, 1993). This limits the use of rooted cuttings to

moister sites because they may be drought prone on the drier sites (Zobel, 1993). The

pyramid shaped inserts that are normally used in ex vitro rooting of cuttings (e.g. at

Mountain Home Laboratory, Mondi Forests) may further minimize plagiotrophic root

growth and encourage gravitropism instead.

1.3.2 Biotechnological approaches
,''''',

Biotechnology. as a scientific discipline encompasses a large number of different

techniques such as tissue culture, genome analysis, molecular markers, gene cloning

and the genetic modification of organisms using combination of several methods

(Schuch, 1991). Of these, relevant to the present study are tissue culture

6
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(micropropagation) and genetic modification (i.e. production of chimeras) usmg

Agrobacterium rhizogenes.

In vitro techniques such as micropropagation may be utilized in conjunction with a

macropropagation production programme (rooting of cuttings) (Biondi and Thorpe,

1981; Yang et al., 1995; Watt et al. 1997). Asexual multiplication of both hardwoods

(eucalypts) ~d softwoods (pines) using tissue culture methods can be achieved by three

approaches, namely (1) enhancing axillary bud breaking, (2) production of adventitious
, .

buds and (3) somatic embryogenesis (Thorpe et al., 1991). The first two approaches

lead to plantlet formation via organogenesis through the production of unipolar shoots,

which must then be rooted in a mult!staged process. In contrast, somatic embryogenesis

leads to the formation ofa bipolar embryo, through steps that are often similar to
·r, .

zygotic embryogenesis (Thorpe et al., 1991). The potential for forming large numbers

of plants in vitro increases in the above order, but unfortunately, so does the difficulty

in producing plantlets (Thorpe et al., 1991). Bornman l (pers.comm. 1998) expressed

similar sentiments and emphasized that the main drawback in somatic embryogenesis is

the maturation step. In many species, plantlets recovered from somatic embryos have

lost clonal fidelity owing to induced mutation during tissue culture (Barwale and

Widholm, 1987). For these reasons, the forestry industry has opted to invest funding

into research to establish protocols using the direct organogenesis approach to clonally

prop~gate selected superior Eucalyptus trees in vitro.

Tissue culture may be used for the production of stock and hedge material from which

cuttings arevharvested for plantation establishment. In this regard, Watt et al. (1995,

1997) reported that cuttings from micropropagated Eucalyptus species and hybrids

exhibit higher percentages of rooting, and in some cases produce more shoots than

conventional adult sources. However, with some plant species and hybrids the problem

of poor rooting ability persists in vitro, especially with cold-tolerant E. grandis x nitens

I C. R~ornman, SaxtorpsvaegenZ'B, S-261 94 LandskronaSweden
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clones. One of the major problems is the formation of large amounts of callus at the

base of stems which may inhibit the development of roots. Hence, there is an urgent

need for research to improve rooting as it is regarded as the rate-limiting step in
;.'

micropropagation (Nemeth, 1986), and also because root quality directly affects the

quality and size of the plants produced (Adendorff and Schon, 1991). Once rooting

protocols are well established, it is expected that micropropagation will improve

forestry yield by producing many plantlets per parent genotype in a shorter period, and

also reduce the cost ofmicropropagules as direct planting stock (Haines, 1994).

Towards the development of more efficient in vitro rooting methods for

micropropagated shoots of woody trees that do not root readily, research institutes are

moving towards using wild-type strains of Agrobacterium rhizogenes. Most

dicotyledonous plants have shown susceptibility to this gram negative soil pathogen,

and studies have shown that at the site where the bacterium infects the plants, tissues are

typically induced to produce a profusion of roots covered with root hairs ('hairy roots')

(Riker et al., 1930; Hildebrand et al., 1934; van Wordragen et al., 1991). The effect is

caused by the transfer of a r~ot-inducing plasmid (pRi) from the bacterium to the host

(McMee et al., 1993). The bacterium inserts a part of its DNA (T-DNA) into the plant

genome where the T-DNA becomes stabilized and expressed. Root promotion is due to

just a few T-DNA loci (rol A, B and C, particularly rol B) (Rugini and Mariotti, 1991).

The symptoms observed with A. rhizogenes are suggestive of auxin effects resulting

from an increase in cellular auxin sensitivity rather than auxin production (McAffee et

al., 1993). However, not all dicotyledonous plants are susceptible to A. rhizogenes and

recalcitrant species might be influenced by both the Agrobacterium strain and the

cultivar used (Puonti-Kaerlas et al., 1989). George (1996) concluded that root

induction, which depends on the transformation by the A. rhizogenes plasmid or its
, , .

genes; would be useful only 'if it were able to improve rooting and survival of difficult

subjects.

8
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Plantlet production via in vitro multiplication is a laborious and relatively expensive

process compared to the production of rooted cuttings (Watt et al., 1995). It has been

estimated at Mondi Forests that under the present production regimes, the production

cost for a plantlet produced via tissue culture is approximately three times that of a

rooted cutting (Watt et al., 1995). According to Kozai (1991), the high production costs

in conventional micropropagation are mainly due to high labour costs, limited rates of

plant growth during multiplication, poor rooting and low survival rates of the plantlets

during acclimatization. Some authors (McComb and Bennett, 1986; Constantine, 1986)

have suggested that the in vitro rooting stage should be omitted and shoots be treated as

tender cuttings and rooted in the greenhouse as it has been done for some fruit trees and

other woody plant cultures (Hutchinson, 1982; Watt et al., 1998). According to Thorpe

et al. (1991), the main advantages of using ex vitro conditions is that rooting and

acclimatization can be carried out simultaneously, and callus rarely forms at the base of

shoots thereby ensuring a continuous vascular connection between shoot and roots. This

technique of rooting micropropagated shoots ex vitro is also used routinely at Mountain

Home Laboratory (Mondi Forests, Hilton) for clones that root readily (i.e. 'good

rooters') such as E. grandis but it is not feasible with many species and hybrids.

Constantine 1(1986) suggested that another method of tackling the high cost of

micropropagation is to replace labour with machines (automation).

Apart from the large investments required for the development and appropriate testing

of most biotechnologies, large investments in many tree breeding programmes are

required to reach appropriate levels of advancement, frequently with added levels of

structural sophistication (Haines, 1994). Therefore, the high costs of the required

research programmes argue strongly for collaboration, rather than competitive

proprietary biotechnology.

9
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1.4 Some ecological aspects of Eucalyptus plantations

The ~~tagonistic approach towards eucalypts has taken a number of forms, and ranges

from uninformed to serious scientific uncertainty about research results and their

implications. for land use options and policies (Zobel, 1993). The objection to

Eucalyptus may have nothing to do with the properties of the tree and the way it is

managed but may have something to do with traditional patterns of land-use and social

customs (Adlard, 1987). Problems have arisen when eucalypts have been planted

indiscriminately near villages, near stream sources or where the ground water table is

near the surface. According to Adlard (1987), the few well-documented cases of the

adverse effects of Eucalyptus plantations on soils, associated crops and water relations

under specific conditions of those studies are often quoted out of context in support of

quite independent political and psychological issues. For example, Armstrong et al.

(1998) claimed that timber farming in South Africa affected all three components of

biodiversity (composition, structure and function) by eliminating genes, populations and

species, and changing communities (e.g. open grassy plains and hillsides to woodland).

Eucalypts, being gross users of ground water, have been pinpointed by conservationists

as a primary cause of drought in many parts of South Africa (Smith, 1996). Once the

rootsreach the water table i~ck of stomatal control of transpiration in some species (e.g.

E. grandis), even at high temperatures, can lead to excessive water use (Adlard, 1987).

However, studies from Australia have shown that eucalypts use water conservatively (as

opposed to 2oniferous forests) and that water use is generally consistent with stands of

other tree species (Florence, 1983; Adlard, 1987). Therefore, it is the management's

responsibility to examine the annual water use patterns of a species before it is selected

for planting and make careful site selection and matching with original climate and soil

type (Adlard, 1987).

' "'0 '
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Eucalyptus woodlot farming has been criticized as diverting potentially good

agricultural land to tree crops resulting in less food production and requirements for

labour, and to being allelopathic on some agricultural crops (Tumbull, 1991). Hence,

the South African government has effectively banned new plantation establishment by

making it more difficult for companies to obtain new permits to plant (Turnbull, 1991;

Smith, 1996; Watt et al. 1997; Meadows, 1999). Other hardwoods such as Gmelina,

Acacia, and Populus are preferred by conservationists (Zobel, 1988) because they are

considered to be 'environmentally friendly'. Although these species are also important,

they are not as economically viable as eucalypts to meet the increasing global wood

demands because their growth properties are not as good as those of eucalypts.

1.5 Aims of this study

Biotechnological techniques such as micropropagation have a very significant role in

the improvement of tree breeding in forestry. The demand by the forestry industry for

improved productivity through these techniques has emphasized the need for a greater

understanding of factors regulating in vitro plant development, especially the rooting

stage which has proven difficult both in vitro and ex vitro. Further, very little is known

about physiological properties (e.g. hydraulic conductivity) of roots produced in vitro

which might be related to the survival, establishment and fast-growth of

micropropagated trees.

The aims of this study were, therefore (1) to develop widely applicable in vitro rooting

protocol(s) for two cold-tolerant clones of Eucalyptus grandis x nitens (GN), and (2) to

assess the anatomy and hydraulic efficiency of roots produced by in vitro vs. cutting

propagation. The first objective was to establish an efficient and reliable in vitro rooting

protocol by optimizing medium and culture conditions. With the objective of

developing ~ more widely applicable in vitro rooting protocol for GN clones, the use of

wild-type strains of Agrobacterium rhizogenes was investigated. The second objective

11
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was to assess the quality of roots produced in vitro and to compare it with that of roots

produced ex vitro from cuttings. The strategy employed was to investigate the root

anatomy of the two clones before and six months after hardening-off. The anatomy of

roots from cuttings was compared with that of roots produced in vitro after six months.

The physiological functioning of these roots was investigated by determining their

hydraulic conductivity as a function of root dry mass and the vulnerability of these roots

to cavitation.

12
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CHAPTER 2: DEVELOPMENT OF in vitro ROOTING SYSTEMS FOR COLD-TOLERANT

CLONES OF Eucalyptus grandis x nitens

2.1 LITERATURE REVIEW

2.1.1 Micropropagation via axillary budproliferation

Micropropagation is the true-to-type propagation of a selected genotype using in vitro

culture techniques (Nashar, 1989; Debergh and Read, 1991). Micropropagation involves

at least three stages (a) establishment of cultures, (b) regeneration of plants and (c)

transfer of plants from the test tube to soil (Bajaj, 1986). One of its main applications is

to multiply trees that are old enough to have demonstrated their superior characteristics

(Biondi and Thorpe, 1981)~or most micropropagation work, the explant of choice is
_ ,--..A_'- -,~ ...--.-_\../-,,-._~ .~ . ---.---~

.an apical or axillary bud (Biondi and Thorpe, 1981 ; Nashar, 1989; Watt et al. , 1996)L
~~'----..---~--_ .--........_. _ - ~- . --- -'_.- _. ---- -- -.- -'·---.k - ------·---·-·-~--------·-·--~-----···- · - - ·--- ·.--_.--

The age of the stock plant, the physiological age of the explant and its developmental
~ --- --- --~---. ---~-------_ - - -~- _.. , - ~ ._-- ----_..•._-~--
stage, as_~ell _as it~~~!~~__~_@_._delermine__the _success _gfJ~.p[Q£~.4!U'_~.JQ~.Qtg~__ill!~L__

'-0.------- -

...Sh~rringt?!.!1=· 1~]4; __R~!2~~g~~_gea~Ll.~2.lL}n micropropagation of forest tree

species, axillary buds are preferred for maintaining the selected genetic qualities,
.c-~

however, the most successful explants for initiation of cultures that root readily have

been mature embryos or seedling parts (Biondi and Thorpe, 1981; Le Roux and van

Staden, 1991b; Watt et al., 1996). Thorpe et al. (1991) suggested that the reason for this

choice of explants is that by the time some trees are old enough for evaluation, they are

oftenrecalcitrant in culture.

In many iIlstitutes practicing micropropagation, regular spray programmes with

fungicides and insecticides are instituted to minimize subsequent culture contamination

(Cohen, 1986; Le Roux and van Staden, 1991b). Bacterial and fungal infections are

often exacerbated when the starting material for culture (Le. the explant) is taken from

13
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field-grown parent plants which carry endogenous (systemic) contaminants that cannot

be eradicated by conventional surface sterilization (Warrag et al., 1990; Watt et al.,

1996). Fortunately, Eucalyptus has the ability to coppice and sprout, thus producing

juvenile material less exposed to micro-organisms (Hartney, 1980). To yield more

hygienic explants, stock plants can be grown in the greenhouse (Debergh and Read,

1991). Sterilization of the initial explants is generally obtained by treatment with

fungicides, alcohol and calcium or sodium hypochlorite solutions (Nashar, 1989;

Warrag et al., 1990) in the presence of Tween-20 to increase surface wetting (Gordon,

1991). Eucalypt tissue is often killed by sterilization solutions (time and exposure are

species dependent) and explants tend to produce a brown exudate which prevent growth

of axillary shoots that do survive (Cresswell and de Fossard, 1974; Das and Mitra,

1990; Watt et al., 1996; Mokotedi, 1997). Some fungicides such as Benlate (at 0.5 and I

g.r1
) and Bravo (at 0.25 and 0.5 g.r1

) have been found to be phytotoxic on E. grandis

because they inhibited survival, multiplication and growth as well as rooting of
;

seedlings (Watt et al., 1996). Kelly (1993) suggested that Benlate cause various types of

injury, ranging from stunted plant growth to leaf drop and small twisted leaves in

omamentals, vegetables and fruit crops. Further, Debergh and Read (1991) found that

with Cordyline species, the sterilizing agents easily entered the stem through scars

(stems defoliated to minimize contamination) on the leaf bases and the surrounding

tissues, and in most cases the axillary buds were killed.

Under sterile culture conditions, rapid heterotrophic growth of bacteria and fungi is

often observed when there is sugar in the medium (Kozai, 1991). Cytokinins used to

induce proliferation of shoot cultures impede the growth of cryptic bacteria, which may

only becomevirulent once plant material is moved to rooting media (George, 1996).

14
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2.1.2 Factors affecting in vitro rooting

In addition to stable shoot multiplication, micropropagation requires also successful

rooting of .•. microcutings (Sanchez et al., 1996). As previously mentioned,

micropropagated shoots of some Eucalyptus species (e.g. E. grandis x nitens) do not

root readily. In addition, preliminary studies in our laboratory have shown that different

clones of the same hybrid required different conditions for rooting (Makwarela, 1996).

In vitro rooting protocols for most eucalypts are usually first established with seedling

or juvenile material. Ho'wever, according to McComb and Bennett (1986), such a

strategy of using juvenile explants has not been entirely successful for the development

of rooting techniques for shoots from adult material. Those authors explained that the

problem could be difficult to alleviate by manipulations of the media as it may be a

reflection of the time the material has been in culture, or the individual genotype. The

most often manipulated parameters for improving in vitro rooting are growth regulators,

light and temperature (Debergh and Read, 1991).

a) Chemical factors

Plant growth regulators: Root formation in eucalypts is generally inhibited by high

concentration of cytokinins used to induce shoot multiplication or shoot formation (de
I~

Fossard et al., 1978). Occasionally, sufficient cytokinin may be carried over from

elongation stage to inhibit rooting (McComb and Bennett, 1986; Thorpe et al., 1991;

Blomstedt et al., 1991; Bennett et al., 1992, 1994; George, 1996). However, Curir et al.

(1990) carried out a study on the physiological effects of cytokinins on in vitro rooting

of Eucalyptus gunnii microcuttings, and found that kinetin (6-furfuryl aminopurine) and

zeatin [6-(4-hydroxy-3-methylbut-2-enylamino) purine] induced a physiological state

characterized by high sensitivity of microcuttings to the rooting stimulus exerted by

IBA (indole-3-butyric acid), whereas BA (N6-benzyladenine) did not have the same
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effect (all concentrations at 0.5 mg.l"), The rooting response was correlated with the

production of particular flavonoids (quercetin glucosides) under the influence of the

cytokinin in the shoot multiplication medium. Working with clones of Eucalyptus

globulus, E. occidentalis and E. marginata, Bennett et al. (1992) and Trindade and Pais

(1997) (E. globulus) found that alternation of the use of BA with kinetin improved

rooting up to 75% when kinetin was used in the last multiplication medium. It is

possible that BA is more effective than kinetin in switching on endogenous cytokinin

production (Vankova et al., 1991) and this in turn may inhibit root initiation (Bollmark

et al., 1988).

It is well established that auxins are the main factors involved in the formation of roots

(Nemeth, 1986; George, 1996). Indole-3-butyric acid (IBA) is the most commonly used

auxin for rooting woody microcuttings because of its stability (Curir et al., 1990; Riov,

1993) and has been effective with several eucalypt species (Bennett and McComb,

1982; Franclet and Boulay, 1982; McComb and Bennett, 1986; Burger, 1987; Le Roux

and van Staden, 1991 a,b). However, excessive concentrations of IBA (depending on

genotype) promotes callus formation at basal ends of shoots, and roots produced have

an abnormal appearance and their average length, and subsequent shoot growth may be

decreased (Warrag et al., 1990; George, 1996). Le Roux (1990) employed 2 mg.l" IBA

to induce rooting in a cold-tolerant E. grandis x macarthurii clone and reported that

plants with roots developed from callus at basal ends of shoots did not survive the

hardening-off period. This suggests that vascular connections between the roots and the

stem do not form if the proliferation of callus occurs before root initiation.

Improvements in the frequency of rooting have also been reported when a-naphthalene

acetic acid (NAA) was used instead of IBA (Rasmussen, 1991), but that growth

regulator is not commonly used. That author observed that in vitro rooting of cold­

tolerant clones of E. nitens increased as the level ofNAA was reduced (from 9 mg.l" to

4.5 mg.l") in the 'i4 Murashige and Skoog ('i4 MS) medium (Murashige and Skoog,
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1962). Veierskov and Andersen (1982) suggested that some of the effects of auxins on

rooting ability of pea cuttings was caused by a mobilization of carbohydrates.

Although IBA has been identified by GCIMS (Gas Chromatography-Mass

Spectrometry) analysis as an endogenous constituent of various plants (e.g. carrot,

Epstein et al., 1991; Epstein and Ludwig-Muller, 1993), it is still regarded as a synthetic

auxin. Several studies have shown that synthetic IBA is rapidly metabolized into auxin

conjugates (with aspartic acid to form indole-3-butyrylaspartic acid [IBAsp] or with

glucose [GE] to form IBA-GE) which then act as rooting promoters (for example, in

Vigna radiata, Riov, 1993; Pyrus communis, Baraldi et al., 1993 and Sequoia

sempervirens, Blazkova et al., 1997). Conjugates of IBA seem to be a better source of

free auxin compared with IAA conjugates because they are more stable to metabolic

degradation within the plant tissues (Riov, 1993). There is increasing evidence that

indole-3-acetic acid aspartate (IAAsp), the major IAA'conjugate (with aspartic acid) is

subjected to oxidation to biologically inactive products such as oxoindole-3­

acetylaspartic acid (Riov, 1993). The rooting activity of applied auxins depends on the

release of free auxins from the endogenously formed conjugates following applied

auxin application. Epstein et al. (1993) postulated that an easy-to-root cultivar of sweet

cherry (Prunus avium), as opposed to the difficul-to-root cultivar, had the ability to

hydrolyze the ester conjugate at appropriate time to release free IBA which promoted

root J nitiation. Moreover, Baraldi et al. (1993) showed that only the easy-to-root

cultivar of pear showed the ability to convert IBA into free IAA during the root

induction period.

Gaseous environment: The available oxygen within cultured plant tissues is influenced

by (1) the concentration of the gas in the ambient atmosphere; (2) its rate of diffusio~

into the culture vessel (influenced by the vessel shape and type of enclosure); and (3) its

rate of diffusion into the cultured cells or tissues (George, 1993). Submerged tissues or

organs such as the basal part of the stems in a static medium are poorly aerated. In
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vessels sealed with Parafilm, the use of oxygen by the culture creates a local deficit

which may not be immediately compensated because of the impedance to diffusion

(George, 1993). Increasing incubation temperature of a culture decreases the amount of

oxygen which can be dissolved in the medium (e.g. from 21 to 25°C, amount of oxygen

is decreased by approximately 9% - George, 1993). Further, dissolved salts and non­

electrolytes such as sucrose, diminish the solubility of gases. The amount of oxygen in

the culture media will depend on the surface to volume ratio of the medium in the vessel

and the concentration (partial pressure) in the immediate gas phase (George, 1993).

In vitro rooting of eucalypts and other plant species has generally been improved when

large vessels (as opposed to tubes) :were used in cdnventional and photoautotrophic

micropropagtion (see Section 2.1.4 later) (Kozai, et al., 1988, Kozai, 1991; Kirdmanee,

1999; Kirdmanee et al., 1995; McClelland and Smith, 1990). One of the reasons given

for that observation was that gas exchange (carbon dioxide and oxygen) was more

efficient because of greater quantity of air and less ethylene was accumulated within

culture vessels. Rooting in large vessels probably resembles ex vitro rooting because of

better aeration of the medium.

b) Biological factors

Positional effect: Ammirato (1986) and Cohen (1986) pointed out that although cells

within an organism may be considered to be of the same genotype, there are striking

differences from cell to cell and from organ to organ within a plant in the ability to

undergo morphogenesis. Further, the explant may retain a memory of its position on the

parent plant that affects its growth. This memory may be stable over many subcultures

and is one example of epigenetic change, i.e. a change in gene expression that can

persist in vegetatively propagated progeny but is not transmitted through sexual

reproduction (Cohen, 1986). The implication of the above statement is that the

differences usually observed in the rooting ability of shoots regenerated from different
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axillary buds of the same parent plant may be attributed to differences in physiological

age and position of the axillary buds. Therefore, investigations may be required to

establish best rooting 'lines' and these should be maintained (possibly) indefinitely on

multiplication medium for subsequent rooting.

Browning: The cut surface of many explants start to discolour soon after excision and

explants frequently continue to darken when they are introduced into the culture vessel,

whereby they may also exude dark coloured substances (phenolics) into the medium.

This type of 'blackening' or 'browning' is associated with wounding (Debergh and

Read, 1991(George, 1993). Browning is often particularly apparent on a solid medium

where exudates are trapped by the agar/Gelrite and become concentrated in the vicinity

of the explarit. Toxicity is thought to occur by phenols becoming reversibly attached to

proteins by hydrogen bonding, and by their oxidation to highly active quinones which

then become cyclic or polymerized, and/or oxidize proteins to form increasingly

melanic compounds (Harms et al., 1983), which are sometimes termed 'polyphenols' in
~ ~J:

the literature (George, 1993).

A special gr.9uP ofphenolics are auxin synergists and protectors (antioxidants inhibiting

the oxidation of IAA catalyzed by peroxidants) (Debergh and Read, 1991; George,

1993). Browning which results from the oxidation of phenols (especially in light ­

Creasy, 1968) is therefore not necessarily detrimental to morphogenesis as substances

formed by the wound reaction can promote rooting (George, 1993). Further, it has been

suggested that rhizogenesis capacities induced by auxin (IBA) are modulated when

phenolic compounds (e.g.tphloroglucinol, myricetin, quercetin glucosides) are added in
,;r

the medium (Zimmerman, 1984; Curir et al., 1990; Jay-Allemand et al., 1993).

Activated charcoal and polyvinylpyrrolidone (PVP) have been used in some studies to

adsorb and/or inhibit the oxidation and polymerization of phenolics (Le Roux and van

Staden, 1991 a,b; Jones and van Staden, 1994). However, George (1993) cautioned that
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activated charcoal must be used with caution because it can also adsorb growth

regulators and other essential components of the medium. Further, not all antioxidants

are effective, some like ascorbic acid, are only suited for short period interventions and

quickly become strong oxidants themselves (Debergh and Read, 1991). There are many

reports of successful treatments with PVP, but it does not always stop blackening of

tissue cultured plants (George, 1993). George and Sherrington (1984) suggested that

cultures should be kept in the dark to prevent or reduce the activity of enzymes

concerned with both the biosynthesis and oxidation of phenolics. However, their

activity can also be reduced by lowering temperature (Cresswell and Nitsch, 1975).

Callus formation: Callus is usually formed at basal ends of shoots most notably when

concentration of auxins (e.g. IBA, NAA) and nutrients are high in the medium
~ ," '. :\

(Mohammed and Vivader, 1988; Le Roux, 1990; Le Roux and van Staden, 1991 a,b;

Mokotedi, 1997) or when cultures are left too long in th~ rooting medium (Thorpe et al.,

1991). If roots originate from these cells, the vascular connections between the root and

shoot may be interrupted (Thorpe et al., 1991; Le Roux and van Staden, 1991 a,b).

Callus formation at basal ends of shoots prevents rooting in most cold-tolerant clones of

E. grandis (Le Roux and van Staden, 1991), probably by limiting efficient absorption

and movement of water and nutrients (Martin, 1985).

c) Mineral composition ofculture medium

The medium of Murashige and Skoog (1962) (MS) is the most popular nutrient

formulation-in micropropagation because most cultures react to it favourably (George,

1996). However, Eliasson (1978) reported that applied nutrients had no or slight

influence on the number of roots formed on cuttings of Pisum sativum. Furthermore,

that author .suggested that applied nutrients may not be needed during rooting because

endogenous nutrients (products of photosynthesis) are basipetally transported from the

shoot to the rooting zone. Further, Warrag et al. (1990) observed that the level of basal
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minerals (Yt, 'li and full strength MS nutrients) had little effect on the percentage of

rooting of Eucalyptus grandis x camaldulensis and E. grandis x robusta, and suggested

that the use of Yt MS may be more economical. However, other studies have shown that

a medium with a lower salt concentration than that used for axillary shoot induction is

necessary for root initiation (Gasper and Coumans, 1987; Norton and Norton, 1989;

Blomstedt et al., 1991; Cheng et al., 1992; George, 1996; Mokotedi, 1997). Similarly,

Rasmussen (1991) reported that E. nitens and some of its tested hybrids rooted more

efficiently (above 80%) when the concentration of MS nutrients was reduced to Yt MS.

Working with a rose cultivar, Rahman et al. (1992) suggested that the effect of the

strength of basal nutrients on rooting depends on the type and concentration of auxins

used, but such an effect has not been reported for Eucalyptus.

Nitrogen: One of the most important constituents of the medium in effecting

morphogenesis is the source and concentration of nitrogen (Ammirato, 1986). For many

species, the optimum nitrogen concentration for rooting has been found to be much

lower than for adventitious shoot formation and growth (George, 1996). Hyndman et al.

(1982) showed that the improved root initiation on rose shoots was particularly due to

the provision of a total nitrogen concentration closer to the optimum of 7.5 mM (instead

of 60 mM present in full MS). In the MS formulation, nitrogen is provided as

ammonium and nitrate ions. Although the effect of the ionic form and concentration of

nitrogen required for root development has been reported for several pine species

(Kirby et al., 1987), this information is not available for eucalypts.

Carbon source: Explants and plantlets in vitro have been considered to have little

photosynthetic ability and require sugar (usually sucrose) as a carbon and energy source

for their heterotrophic or mixotrophic growth (Kozai, 1991). Root formation is an

energy-demanding process arid carbohydrates must be provided through photosynthesis

or form exogenously supplied sugars (Rahman et al., 1992; George, 1996). If the

combined source is too great, rhizogenesis may be inhibited (George, 1996). According
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to Kozai (1991), growth and development of explants in vitro is probably improved

with sugar supply at the very early stages of multiplication, even if the in vitro

environment is properly controlled for promoting photosynthesis. Mohammed and

Vivader, 1988) compiled studies which showed that decreased sucrose levels in the

rooting medium helps conifer plantlets later during the transition from heterotrophism

to autotrophism.

Calcium and boron: Many authors have stressed the importance of calcium ions (Ca2+)

for rooting of eucalypts. De Fossard et al. (1978) found high Ca2
+ desirable for rooting

Eucalyptus cuttings. McComb and Bennett (1982) also obtained better rooting of plants

inthis genus in ~MS macronutrients than in full-strength solution, provided that CaCh

was kept at ~MS level. Similar results were reported for Pisum sativum (Eliasson,

1978). As a cation, calcium helps balance anions within the plant, but it is not readily

mobile. Many plant enzymes are also calcium-dependent and calcium is a cofactor in

the enzymes responsible for the hydrolysis of ATP (adenosine triphosphate) (George,

1993). Calcium ions are actively removed from the protoplasm to prevent the

precipitation of phosphates (and the disruption of phosphate-dependent metabolism) and

interference\vith the function of Mg2
+ (George, 1993).

Calcium deficiency in plants results in poor root growth and in the blackening and

curling of the margins of apical leaves, often followed by a cessation of growth and

death of the shoot tip (George, 1993). After death of the tip, shoots often produce lateral

branches, and in extreme ,cases the tips of these will also die and branch again. As

ca1ci&n is not remobilized within plant tissues, actively growing shoots need a constant

supply of ions in the transpiration stream. An inadequate supply of calcium can result

from limited, uptake of the ion, and inadequate transport, the latter being caused by the

absence of transpiration due to the high humidity in the culture vessel (McCown and

Sellmer, 1987; George, 1993). A remedy can sometimes be obtained by reducing the

culture temperature so that the rate of shoot growth matches calcium supply, using
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culture vessels which promote better gas exchange (thereby increasing the transpiration

and xylem transport), or by increasing the concentration of calcium in the medium

(McCown and Sellmer, 1987). However, adding extra calcium ions to the medium is
"

not always effective and can introduce undesirable anions. Chloride toxicity can result if

too much calcium chloride is added to the medium (George, 1993). To solve this

difficulty, McCown et al. (Zeldin and McCown, 1986; Russell and McCown, 1988)

added 6 mM calcium gluconate to woody plant medium (WPM) to correct calcium ion

deficiency, without altering the concentrations of the customary anions.

Myo-inositol: Vitamins such as myo-inositol are generally thought to be inessential

additives to media in which shoots are to be rooted (George, 1996), but are sometimes

addedto rooting media ofeucalypts (Le Roux and van Staden, 1991 a,b; Jones and van

Staden, 1994). The myo-inositol molecule has six hydroxyl units, therefore it can react

with up to sixmolecules forming various esters (George, 1993). It appears that inositol
.:.

phosphates act as secondary messengers to the primary action of auxin in plants: phytic

acid (inositol hexa-phosphate) is one of these (George, 1993). The addition of small

amounts of myo-inositol is frequently found to stimulate cell division (Murashige,

1974). However, Blomstedt et al. (1991) reported that the presence of myo-inositol in

the rooting medium lowered the rooting frequency of Eucalyptus regnans explants.

d) E~vironmental factors

In micropropagation systems, environmental factors such as light intensity and
••j. o

temperature are easy to control and standardize. These factors ultimately influence the

physiological state of the explant and also responses in culture (Biondi and Thorpe;

1981). According to Mohammed and Vivader (1988), light intensity and temperature

affect rooting possibly by controlling auxin activity.
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Temperature: In their natural environment, plants usually experience temperatures that

fluctuate widely, especially between day and night (George, 1993). In many

experiments, this change in temperature is simulated by increasing temperature during

light hours and decreasing it during the dark hours of the photoperiod. One of the

advantages of alternating temperatures is that they assist the exchange of gases in

culture vessels (Chalupa, 1987; George, 1993). Studies have shown that the optimum

range for rooting most forest tree species is between 26 and 28°C (e.g. Mehra-Palta,

1982; Warrag et al., 1990; George, 1996). According to studies compiled by George

(1996), root induction in vitro is generally promoted by culturing shoots in relatively

high temperatures and even shoots of species adapted to cool climates are induced to

form roots most rapidly at temperatures several degrees above normal soil temperatures.
,

Zimmerman (1984) reported that dark incubation of shoots of a difficult-to-root apple

cultivar at 30°C for the first week improved rooting significantly. Therefore, the

beneficial influence of higher temperatures on root initiation may be due to its effect on

translocation of supportive factors (carbohydrates) and on the related increase ' in

respiration (Ooishi et al., 1978) and in catabolism of simple sugars stored in starch at

lower temperatures (Veierskov and Andersen, 1982).

Light intensity and photoperiod: Although photosynthesis provides carbohydrates

needed for root initiation and root growth, keeping micropropagated shoots (or just the

bases of the shoots) in the darkness during the inductive phase, is generally favourable

for rooting (George, 1996; Sanchez et al., 1996). Photoperiod, light intensity and

wavelength affect shoot growth and morphogenesis as well as rooting, in addition to

having a role in photosynthesis (Cohen, 1986; Hughes, 1981; Thorpe et al., 1991). A

period of dark incubation is often required for rooting (Wang, 1992; George, 1996).

Druart et al. (1982) suggested that the beneficial effect of darkness on rooting could be

due to the dark induced decrease of peroxidase activity and an increase of endogenous

phenols in shoots during root initiation. For in vitro rooting of eucalypts and other

woody forest trees, a 16-hours light/8-hours dark photoperiod has been found to be
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optimum (Franclet and Boulay, 1982; Zimmerman, 1984; Trindade and Pais, 1997; Le

Roux and van Staden, 1991a,b; Wang, 1992).

Light, acting through the ubiquitous photomorphogenetic sensor pigment phytochrome,

and hormones, are decisive development effectors directing growth and morphogenesis

of the multicellular plant (pfaff and Schopfer, 1980; Hughes, 1981). However, with

Sinapsis alba, Pfaff and Schopfer (1980) showed that phytochrome does not operate
~ ",

through changes of the growth regulator (lAA, gibberellic acid, kinetin, abscicic acid

and ethylene) levels. Depending on concentration, the application of those growth

regulators was either ineffective or inhibitory in the rooting response when hypocotyl

explants were incubated in the dark or far red light. Phytochrome (P) has been found to

be most effectively mediated by red (Ph 660 nm), far-red (Ptr, 730 nm) and blue (350

nm) lights as well as darkness, and may control developmental response by differential

gene activation, differential. gene repression or both (Hughes, 1981; Walker et al.,

1987). The major photosynthetic pigments, chlorophyll a (absorption peaks at 440 and

680 nm) andchlorophyll b (470 and 650 nm), absorb In both thered and blue portions

of the spectrum, hence red and blue lights are necessary for photosynthesis (Hughes,

1981). Illumination of the cultures with red light at 36 umol.m'i.s" was found to be as

effective on promoting rooting as treatment with 1.0 mg.l" NAA (pear cultivars ~

Bertazza et al., 1995) or 0.3 mg.l" IBA (wild cherry - Rossi et al., 1993). White light (a

mixture of wavelengths) has been found to be secondary to red and far red lights in

promoting rooting (Rossi et al., 1993; Bertazza et al., 1995).

Short days and low irradiance generally promote root induction in a similar fashion to

darkness. For-instance, de Fossard et al. (1978) noted that a low light level (10

Ilmol.m-2.s-1) was conducive to rooting Eucalyptus in a similar way to darkness,

whereas 300 umol.mi.s" was clearly inhibitory. In contrast, Jones and van Staden

(1994) reported that shoots of clones of E. grandis x urophylla often became etiolated

as a result of low light intensity (14 umol.mi.s"). The effect of light intensity on in
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vitro rooting of E. grandis hybrids therefore appears to be genotype specific. Light

given to basal part of Pisum sativum (Eliasson, 1978) and Quercus rubur and Q. rubra

(Sanchez et al., 1996) cuttings was reported to have a strong inhibitory effect on rooting

and negatively affected the number of roots formed.

2.1.3 Hardening-off of regenerated plants

The in vitro grown plants are characterized by an absence of epicuticular wax and a

modified epidermis due to the water saturated atmosphere in the flask (Nashar, 1989).

The plantlets must undergo a gradual transition (over 2 - 3 weeks) from constantly high

humidity regime to one of varying and low humidity in the greenhouse, inside a ' close

case' environment provided by polyethene tents or fogging (Biondi and Thorpe, 1981;

Constantine, 1986; Nashar, 1989). Some shading is necessary to prevent leaf burn

during the plantlet's transition from laboratory conditions to full sunlight. Soil should

be sterilized but, even so, systemic fungicides may be needed to prevent fungal attack

(Le Roux and van Staden, 1991b). The transfer ofplantlets to nursery beds or the field

is sometimes a problem because the vascular connection between shoot and root is

incomplete, as is lack of root hairs in agar-grown roots (Biondi and Thorpe, 1981).

Transfer success can be improved by developing rooting media that induce a minimum

of callus before roots appear and by transferring from the culture media as soon as the

roots emerge rather than wait for long roots to develop (McComb and Bennett, 1986).

2.1.4 Photoautorophic micropropagation

A most recent form of vegetative micopropagation is the so-called photoautotrophic

micropropagation. All the carbon is derived from C02 (Kozai, 1991; Kozai et al., 1988,

1999; Kirdmanee et al., 1995; Zobayed et al., 1999). Carbon dioxide inside the culture

vessel can be increased easily using a gas permeable film as a closure, however, CO2
1 ~ •

enrichment for growth promotion is effective only under high light intensity (Kozai,
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1991). Photosynthetic photon flux density (PPFD) above the vessel should be at least

100 umol.m'f.s" and preferably 150 or more, compared with a PPFD of 30 - 50

/lmol.m-2.s- i ' normally applied in conventional micropropagation. Time periods of

multiplication, rooting and acclimatization will be shortened with a high PPFD and C02

enrichment (Kozai, 1991). Eliasson (1978) suggested that mobilization of nutrients

(carbohydrates and nitrogenous compounds from the leaves) within a cutting is

enhanced under increased high irradiance, however, the presence of sucrose in the

medium under high irradiance (40 W.m-2) delayed root emergence and also reduced root

length. Kirdmanee et al. (1995) obtained high (100%) in vitro rooting frequency on

Eucalyptus camuldulensis shoots under photoautotrophic conditions.

When using a gas permeable film as closure, loss of water from the medium and/or

plantlets in vitro to the room air and a resultant decrease in relative humidity in the

vessel may occur (Kozai, 1991; George, 1993). Because of the air conditioner, the air in

the culture room is almost always dehumified during the photoperiod. In circumstances

where this water loss is not desirable for any reason, one can use an ultrasonic

humidifier, which produces fog, with a humidistat to increase the humidity (Kozai,

1991). It should be noted, however, that desiccation of the head space in vitro may

result in beneficial effects such as the development of a thicker cuticular layer, more

normal stomatal functioning, greater nutrient uptake with greater water uptake, etc.

Risks of growth of fungi on the surfaces made of inorganic matter in the culture room

can be minimized if there is no condensation on the surfaces and the relative humidity

in the room is maintained lower than 80% (Kozai, 1991). The environmental conditions

created for the photoautotrophic treatment under forced ventilation also made possible

the in vitro acclimatization of Eucalyptus camaldulensis. Thus, after exposing the
" :"

plantlets to the ex vitro conditions, transpiration and the percent of water loss were

reduced in comparison to those of the photomixotrophic plantlets (Zobayed et al.,

1999). In photoautotrophic micropropagation, the multiplication, rooting and

27



Literature Review Mokotedi, 1999 Chapter 2

acclimatization can be conducted at the same time under aseptic or semi-septic

conditions (Kozai, 1991; Kozai et al., 1999).

2.1.5 Root induction with Agrobacterium rhizogenes

Many woody plants, economically important for timber and/or fruit production, are

often difficult to root both in conventional and in vitro propagation. Recently, many

attempts to overcome this problem have been carried out on fruit trees and woody

species using Agrobacterium rhizogenes (Damiano and Monticelli, 1998). The hairy

root syndrome, caused by A. rhizogenes on dicotyledonous plants, characteristically

consists of an abundant proliferation of adventitious roots at the site of bacterial

infection (Cardarelli et al., 1987b). However, root formation is sometimes preceded by

tumour-like outgrowth, while in some hosts (e.g. Nicotiana glauca) only

undifferentiated tumours are observed upon inoculation with A. rhizogenes (White et

al., 1982; Spano et al., 1985). Tepfer (1983) reported that in axenic, continuous culture,

roots induced by A. rhizogenes differ morphologically and physiologically from normal

roots: (1) they grow faster, (2) they are highly branched (reduced apical dominance),

and (3) they are plagiotrophic, Le. they tend to grow horizontally instead of downward.

Rapid tip elongation combined with a high frequency of lateral root formation results in

an elevated accumulation of root biomass in culture. The root systems of T-DNA

containing plants, regenerated from transformed roots, exhibit the rhizogenes phenotype

(Tepfer, 1983, 1984, 1990). The aerial parts of these plants are also modified: (1) the
~:)

leaves are wrinkled, (2) apical dominance is reduced, i.e. they are highly branched, and

(3) some biannual species (e.g. carrot) become annual (Tepfer, 1983).

The molecular biology of Agrobacterium-plant cell interactions was intensively studied

throughout the 1980s with A. tumefaciens, which has been called a natural genetic

engineer of plants (Walden, 1988). It is now well known how A. tumefaciens induces

plant tumours by transferring a piece of its DNA (tumour-inducing or Ti DNA) into the
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plant cell, where it is integrated and expressed in the host genome. However, very little

is known about how its close relative, A. rhizogenes, induces the formation of hairy

roots in dicotyledons (via the root inducing plasmid - pRi). Further, De Cleene and De

Ley (1981) reported that under natural conditions, the host range of A. rhizogenes is

much more limited than that ofA. tumefaciens. Host range is broadly described in terms

of the organisms on which a parasite can live, from which it obtains food (Grimsley,

1990). It has generally been assumed in the literature that the mechanism by which pRi

is transferred into plant cells resembles that of the Ti plasmid ofA. tumefaciens (Tepfer,

1983; Spano et al., 1985). The essential difference between the Ri and Ti T-DNAs lies

in their effects on the plant cell. The genes contained by the transferred DNA (T-DNA)

are thought to be controlled by plant regulatory sequences, and they encode proteins

involved in the biosynthesis of plant growth factors (the oncogenes) (Tinland, 1996;

. Nilsson et al., '1997) and bacterial nutrients (the opine synthesis genes) (Tepfer, 1983;

Petit and Temper, 1985): the opine concept proposes that opines act as chemical

mediators of parasitism (Petit and Tempe, 1985). In addition, wound sites are necessary

for infection by Agrobaeteria (Lippincott and Lippincott, 1969; Hooykaas, 1983;

Winans, 1992).

Virulent A. rhizogenes contains a large plasmid, which has a virulence (vir) region
\

homologous with the vir regionof the Ti plasmid and also transfers T-DNA to the plant
".,

genome (Walden, 1988). The T-DNA does not encode any genes important for the

transfer process - the vir genes are located elsewhere on the RilTi plasmid (Tinland,

1996). The~nly eis-acting elements required during this step are two (imperfect) 25

base pair (bp) direct repeat sequences, the border sequences, which delimit the region of

DNA to be excised from RilTi plasmid (Wang et al. 1987; Tinland, 1996). It is possible

to insert any DNA sequence to be introduced into plant cells between these two borders,

because none of the genes carried by the T-DNA are required by for the transfer step

(Tinland, 1996).

, :'. :
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Petit et al. (1983) surveyed literature on all A. rhizogenes strains available and

concluded that these belong to two main opine-types, the agropine-type and the

mannopine-type, corresponding to two main opines (derivatives of sugars and amino

acids) synthesized in hairy roots and catabolized by the inducing bacterium. In a sense,

therefore, Agrobacterium can be said to use genetic engineering to transform the host

plant into a producer of custom-made chemical food (Nilsson and Olsson, 1997).

Veluthambi et al. (1989) alleged that opines (octopine and nopaline at 1 to 10 mv)

added to the induction medium of A. tumefaciens (strain A348) enhanced its virulence

two to 10-fold. In addition, another important opine function is to act as a signal

molecule to stimulate the spread of the molecular disease determinant (the Ti/Ri

plasmid) to dther Agrobacterium cells by conjugation (Veluthambi et al., 1989).

The agropine-type root inducing plasmid (pRi) transfers two separate T-DNA regions,

left (Td and right (TR) regions (based on their position on the conventional plasmid

map), to the plant genome, suggesting that agropine type Ri plasmids from strains A4

and HRl can induce root proliferation by two independent transformation mechanisms

(Viletne and Casse-Delbart, 1987). According to Vilaine and Casse-Delbart (1987), the

intensity of the plant response to TL-DNA or TR-DNA transfer varies according to the

plant specie~i On the other hand, the mannopine (e.g. 8196) and cucumopine (e.g. 2659)
L ~

Ri plasmids (both lack auxin-synthesis genes) appear to have a single T-DNA region

(Walden, 1988). Vilaine and Casse-Delbart (1987) hypothesized that the molecular

mechanism of root proliferation induced by the TL-DNA is probably equivalent to that

of mannopine type Ri plasmid T-DNA. The copy number of TL and TR-DNA of the

agropine type Ri plasmids is not always the same in the transformed tissue and whereas

the pr,esence of the TL-DNA is essential for the hairy root phenotype, TRis not, and may
~ r'

be absent altogether (Walden, 1988). However, neither of these regions alone provides a
. ,. .

response as strong as that of the wild-type strain, suggesting that the two regions co-

operate in the wild-type response (Vilaine and Casse-Delbart, 1987).
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The TL-DNAof the agropine type Ri plasmids has been sequenced and found to contain

18 open reading frames (ORPs) (Slightom et al., 1986) of which ORPs 10, 11, 12 and

15 correspond to (root loci - rol) rol A, B, C and D loci which are important in affecting

the virulence on different plants (White et al., 1985). A detailed analysis of the

functions of rol geneshas been reviewed by Nilsson et al. (Nilsson and Olsson, 1997;

Nilsson et al., 1997). It should be noted, however, that of the four rol genes, only rolB

has been shown to be able to induce hairy roots on its own (White et al., 1985; Spena et

al, 1987; Capone et al., 1989; Nilsson and Olsson, 1997). However, Di Cola et al.

(1996) argued that the presence and expression of rolB is not sufficient to induce

rhizogenesis in transformed cells, and that a high rooting potential should be associated

with the presence of pre-committed cells, whose potentiality could be amplified by

rolB. TR region contains an agropine synthase gene as well as genes which are
- .

homologous to the auxinbiosynthetic genes of octopine TL-DNA ofA. tumefaciens, but
1; , ~

these are not absolutely required for the maintenance of the hairy root phenotype

(Walden, 1988). However, it is possible that the gene products of the Ri TL-DNA make

the transformed cell more responsive to auxins either synthesized by the plant itself or,

in the case of the agropine type T-DNA, auxins encoded by the TR-DNA. Hence TR may

be seen as an accessory DNA acting to extend the virulence of the agropine-type strains

ofA. rhizogenes on different host plants (Carderalli et al., 1987 a,b).

2.1.5.1 The mechanism ofDNA transfer from Agrobacterium to the plant genome

Transfer of DNA from the Agrobacterium to the plant,~ell requires the participation of

both the plant cell and the bacterium, hence the deveiopmental stage of the plant cell

which is to be transformed is critical (Vilaine and Casse-Delbart, 1987; Walden, 1988).

The mechanism ofT-DNA transfer has been divided into several stages:
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a) Chemotaxis 'and plant cell conditioning

Agrobacterium species are peritrichous motile organisms and there are several reports

indicating that motility and chemotaxis play a role in the early events of the infection

process (Winans , 1992). According to Walden (1988), it is now clear that wounded

plant tissue releases several phenolic derivatives and one of them, viz., acetosyringone,

acts at low concentrations as a chemical attractant to Agrobacterium (Stachel et al.,

1985; Spencer et al., 1990). At the same time, nopaline-type Agrobacterium synthesize

and secrete trans-zeatin which is thought to 'condition' plant cells to transformation,

possibly by inducing cell division (Walden, 1988). Several bacterial chromosomal loci

are i~volved in the plant-bacterial interaction and mutations in these genes are

pleotrophic and result in the bacteria being unable 'to attach to the plant cell wall

(Lippincott et al., 1977; Walden, 1988).

b) Induction ofvir loci

Expression of the vir genes appears to be under the control of at least two regulatory

mechanisms: virA and virG are expressed constitutively at significant levels in the

bacteria whereas virC and virD are expressed at very low basal levels in un-induced

bacteria and appear to be controlled by chromosomal ros locus (Walden, 1988). When

bacteria are exposed to wounded plant cells the expression of vir B, C, D, E and G is

induced to high levels. The induction of the vir and pin (plant inducible) loci is

mediated by the phenolic compounds acetosyringone and c-hydroxyacetosyringone

which are released by wounded plant cells (Stachel et al., 1985; Stachel et al., 1986a).

The virA product is a protein associated with the bacterial membrane which is thought

to act as a sensory molecule (hence influence host range specificity), sensing the

presence of acetosyringone in the rhizosphere and in turn interacting with the virG

product which induces the transcription of the vir and pin loci (Walden, 1988; Spencer

et al.;'1990; Tinland, 1996).
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Following its interaction with acetosyringone-activated virA product, the virG protein

induces the transcription of not only itself but also vir B, C, D, E and G (Stachel and

Zambryski, 1986a,b; Tinland, 1996). The vir loci encode a large number of

polypeptides some of which are absolutely essential for tumour/root formation (vir A,

B, G and D) whereas others are not (vir C, E, F) (Walden, 1988).

d) Production ofT-DNA intermediates and transfer ofDNA to the plant cell

Induction of the vir loci results in the appearance of both site- and strand-specific nicks

in the bottom strand of the 25 bp border sequences of the T-DNA and the appearance of

a single-stranded DNA, the T-strand, that corresponds to the bottom strand of the T­

DNA with its 5' and 3' ends mapping to the right and left borders, respectively

(Walden, 1988). The nicks appear approximately 12 hours after the bacterial cells have

been exposed to acetosyringone and occur between third or fourth base (± 1 or 2 bases)

from left hand side of the 25 bp border repeats (Albright et al., 1987; Wang et al., 1987;

Stachel et aI., 1986 a,b). It is known that virD encodes site specific endonuclease that

regulates the production of single-stranded T-strand which is thought to act as the T­

DNA transfer intermediate (Walden, 1988). VirD2 and virD1 proteins excise the single­

stranded T-DNA from the Ti/Ri plasmid (Tinland, 1996); this molecule is then exported

to the plant cell through a channel, probably based on the virB proteins (11 different

virB proteins produced by the virB operon). This channel is also used for the export of

virE2 proteins (protects T-stranded T-DNA against nucleases in the plant cell) (Tinland,

1996). In plant cells, association of virE2 with the single-stranded T-DNA-virD2

molecule leads to the T-complex structure. The virD2 and virE2 proteins mediate the

entry of T-DNA into the nucleus through the nuclear-pore complexes (Tinland, 1996).

In the nucleus, the T-DNA can integrate randomly into the plant cell genome (Walden,

1988).
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A single bacterium can transfer more than one copy of the T-DNA to the plant cell

during one infection event (Walden, 1988). During infection the majority of the singly­

transformed plant cells are infected by a single bacterium and many of these plant cells

contain more than one T-DNA copy integrated into the nucleus suggesting that

replication of the T-DNA takes place either within the bacterium or the plant cell prior

to stable integration into the plant genome (Depicker et al., 1985).

e) Stabilization ofthe T-DNA within the nucleus

At present, the only way to investigate the mechanism by which stabilization takes

place is by analyzing the T-DNA in the transformed cell and make comparisons with

untransformed control cells (Walden, 1988). Comparison of the plant sequence before

and after insertion of the T~DNA has shown that complex rearrangements of the plant

DNA, presumably during insertion of the T-DNA, can take place, including small

deletions « 100 nucleotides) and rearrangements (Gheysen et al., 1987; Tinland, 1996).

Because there appears to be no firm evidence for the involvement of Agrobacterium

coded polypeptides in this process, it is considered that the plant's normal

recombination and repair mechanism are responsible for T-DNA integration (Gheysen

et al., 1987; Tinland, 1996).

f) Expression ofthe T-DNA and establishment oftransformedphenotype
-,'; . .. : -

The enzymes encoded by the Ti/Ri plasmid synthesize auxin and cytokinin which
~ , ~

disrupt the hormonal balance of the cell and initiate disorganized growth and synthesis

and selection of opines (bacterial source of carbon and nitrogen) (Walden, 1988). The

neoplastic growth (tumours and/or hairy roots) of infected plants creates an ecological

niche for the Agrobacterium. On the other hand, gene products of the TL-DNA of the Ri

plasmid appear to sensitize the transformed cell to the auxin whose synthesis can be

directed by the TR-DNA, if it is present, or those that are being synthesized by the plant
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cell (Walden, 1988; Shen et al. 1988). Epstein et al. (1991) provided evidence which

showed that endogenous levels of IAA and IBA in carrot tissue increased following

treatment of discs with wild-type A. rhizogenes (strain A4). Those authors concluded

that increased level of endogenous auxins is essential for hairy root formation. Plant

auxin can also trigger root differentiation of cells transformed by Agrobacterium

rhizogenes T-DNA devoid of auxin genes (e.g. mannopine type T-DNA) (Cardarelli et

al., 1987a).

2.1.5.2 Methods used in the transformation ofwoody trees

Forlaboratory purposes, a standard method used in many studies to test the virulence

(Le. presence 'of functional Ri plasmid) is the carrot disc assay (Moore et al., 1979;

Pawlicki et-al., 1992). Once virulent strains are established, they are then used to

transform the selected plant material, and routinely used strategies for delivering the Ri

plasmid across the plant cell are summarized in Table 2.1. Following interactions with

bacterial cells, inoculated explants are washed in a solution of an antibiotic, usually

cefotaxime (250 - 500 mg.I") to cure bacterial cells. That antibiotic is usually also

incorporated into regeneration/eo-cultivation media for a number of subcultures until

colonies of A. rhizogenes are cured. Antibiotics act by binding to proteins in the

bacterial periplasm, thereby interrupting the synthesis of peptidoglycan and provoke

lysis of the cellwall of the bacteria (Nauerby et al., 1997).
:.,

As previously mentioned, acetosyringone induces the virulence of Agrobacterium

(Fenning et al., 1996). Data of Veluthambi et al. (1989) and Godwin et al. (1991)

suggested that the incubation of A. tumefaciens cells overnight or for 24 hours with

acetosyringone (10 flM and 200 flM, respectively), and opines such as nopaline (30 mM)

results in the increased transformation frequency of plant cells (e.g. Nicotiana tabacum,

Glycine max and Antirrhinum majus). However, from the work of Godwin et al. (1991),
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there was some evidence which suggested that acetosyringone may suppress virulence

in some strain/plant species interactions.

Agroinfection, a term coined by Grimsley et al (1986, loc.sit. Grimsley, 1990) can be

broadly defined as the introduction of plant infectious agents (such as viral or viroidal

sequence) into plants via Agrobacterium. In the present study, however, this term has

beenused to refer to inoculation or infection of plant tissue with wild-type strains ofA.

rhizogenes.

i .. "
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Table 2.1: Production of chimerical woody trees by transformation ofstem bases with wild-type strains ofA. rhizogenes.

Plant species Explant A. rhizogenes' Method Results Reference

Prunus
amygdalus

Olea europea

Eucalyptus
grandis, E.
dunnii and E.
nitens

Populus tremula
x alba, Prunus
avium and
Juglans nigra x
regia

Bare
rootstock

Bare
rootstock

2 week-old
seedlings

Microcuttings

232 (derivative of
TRI05)

232 (derivative of
TRI05)

LBA 9402 (+++),
R1601 (+) and
TR8.3 (+)

A4

Explants were cut to expose a fresh surface,
then eo-cultured with bacterial suspensions
for 24 hours in darkness at 20 - 23°C. Plants
were then covered with sandy loess soil.

Explants eo-cultured with bacterial
suspensions for 28 hours at 22°C. Placed in
loess soil, then transferred to the greenhouse
at 21°C, 12-hours photoperiod, 270
umol.m'i.s" .

Stem bases inoculated with 48-hours old
cultures grown on LB plates, then inverted in
tubes for seven days, thereafter normal
position; 16-hours photoperiod, 26°C, 36
umol.m'i.s'.

Explants infected by wounding with a trident
forceps dipped into bacterial suspension
before wounding.

Larger root number and
mass. Improved shoot
morphology.

Secondary roots initiated
by bacterium integrated
into existing vascular
system of older roots .

Hairy roots. Plants
appeared normal without
rhizogenes phenotype.

Dense roots with hairy
root phenotype on
poplar. Small tumours on
wild-cherry. 90%
necrosis on walnut.

StrobeI and
Nachrnias, 1985

StrobeI et al.,
1988

MacRae, 1991

Brasileiro et al.,
1991

·Number of crosses indicates the degree ofvirulence
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Plant species

E. globulus and
E. gunnii

Pinus monticola
P. banksiana,

. and Larix
laricina

Pelargonium
species.

Pinus nigra

Explant

Seedlings,
hypocotyls,
cotyledons

Shoots from
mature
embryos and
seedlings

Leaf discs,
mirocuttings

3-8 week old
de-rooted
seedlings

A. rhizogenes'

8196 C++), 1855
C+), 2659 C+)

A4 C++) , R1000
C+)

A4 C+), HR1 C++),
8196 C+), A4RSI
C+)

8196 C++), 15834
C+), A4 C+)

Method

Explants eo-cultured with 72-hours old
bacterial cultures for 12 hours.

Diagonal basal cut on elongated shoots,
then inoculated with a loop scrapped across
bacterial lawn. De-rooted six-week old
seedlings wounded at the base with scalpel,
eo-cultured with 48- hours isolates , cultured
on vermiculite. 16-hours photoperiod, 22°C,
120 umol, m·2.s·1

•

Each explant was cut and left in the
bacterial suspension for 30 minutes.
28°C max/22°C min, 16-hours photoperiod,
40 umol. m '2.s'l .

Explants smeared with a scrap of freshly
prepared bacterial culture. Kept on moist
sterile filter paper for 12,24 or 48 hours.

Results

Depending on age:
callus, bud regeneration
or hairy roots.

Hairy roots. Taller stems
and greater root mass .

Hairy roots.

Adventitious root
induction without hairy
root phenotype.
Improved growth.

Reference

Chriqui et al.,
1991

McAfee et al.,
1993

Pellegrineschi
and Davolio­
Mariani, 1996

Milhaljevic et
al ., 1996

·Number of crosses indicates the degree ofvirulence
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Plant species Explant A . rhizogenes• Method Results Reference

Juglans nigra Microcuttings 1855 Basal part immersed into bacterial Callus formation, Caboni et al.,
suspension, gently shaken for 24 hours in followed by root 1996
the dark. 12-day maintenance in the dark, development.
then light. 16-hours photoperiod, 45

: umol.mf.s", 21± 1°C.

Zizipus j uj uba Cuttings from A4 (+), TRI05 Vertical shallow slice across the base, then Hairy roots. Hatta et al.,
mature trees (++) scrape against the actively growing 1996

bacterial colonies . Stuck in vermiculite and
kept in the greenhouse under intermittent
mist.

Eucalyptus 3-cm high de- A4 (++), R1601 Explants wounded at the base with a Hairy roots. However, Machado et al.,
grandisx rooted (+), LBA9402 trident forceps dipped into the bacterial most plants developed 1997
urophylla seedlings (+++), 8196 (+), suspension. 23 ± 2°C, 16-hours only tumors.

2659 (+) photoperiod

Prunus Microcuttings 1855 Basal parts of explants dipped for 24 hours Both transgenic (6.8%) Damiano and
amygdalus and in darkness in 0.5 ml bacterial suspension. and non-trangenic (67%) Monticelli, 1998
other fruit trees 16-hours photoperiod, 21± 2°C, 37 roots. 26.2% showed both

mmol m·2s" types.

·Number of crosses indicates the degree of v irulence
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2.2 MATERIALS AND METHODS
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2.2.1 Plant material and maintenance of parent plants

Cutting-derived potted plants of Eucalyptus grandis x nitens (clones GN121 and

GN107) and seeds of E. grandis and E. nitens were obtained from Mountain Home

Laboratory, Mondi Forests, Hilton (KwaZulu-Natal, South Africa) . The seeds were

wrapped tight in plastic bags and stored at 10°C. The potted plants were maintained in

the greenhouse at the University of Natal, Durban (29°52'S, 30059'E; 25°C day/18°C

night) and sprayed with fungicides and fertilizers weekly. The fungicides were mixtures

of 0.2% (w/v) mancozeb (Dithane; Efekto, South Africa) and 0.1% (v/v) chlorothalonil

(Bravo; Shell, South Africa) (applied as a foliar spray), and 0.1% (w/v) prochloraz

manganese chloride (Sporgon; Hoechst Schering AgrErvo, South Africa) and 0.125%

(w/v) tebuconazole (Folicur; Bayer, South Africa) (applied as soil spray). The fertilizer

were 0.25% (v/v) trace element solution (per liter: 18g Fe, 4g Cu, 2g Zn, 19 Band OAg

Mo) (Trelmix; Hubers, South Africa) (applied as foliar spray) and 0.1% (w/v) Mondi

orange IN-2P-lK (Harvest Chemicals, South Africa) (applied as soil spray). These

parentplants were cutback every three to four weeks to stimulate coppice growth.

2.2.2 Establishment of in vitro shoot cultures

a) From nodal material

Fresh sprouted lateral branches (10 - 20 cm in length) with preformed apical and

axillary buds were harvested and surface sterilized in 0.2'g.r1 mercuric chloride plus

one drop of Tween-20 forl Ominutes and rinsed several times in sterile distilled water.

The fnaterial was then soaked for 10 minutes in 10 g.l' calcium hypochlorite and

thereafter rinsed several times in sterile distilled water. The sterile branches were

trimmed into ~odal sections (3 - 3.5 cm in length) each containing two leaves cut to a
"' ~.
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third of their original length. Shoot proliferation was induced in multiplication medium

comprised of Murashige and Skoog (MS) nutrients (Murashige and Skoog, 1962;

Highveld Biological, South Africa), 0.01 mg.l" U-naphthaleneacetic acid (NAA), 0.2

mg.l" 6- benzylaminopurine (BAP), 0.1 mg.l" biotin, 0.1 mg.l" calcium pantothenate,

30 g.r1 sucrose and 4 g.r1 Gelrite (Polychem, South Africa). As soon as the axillary

buds opened (approximately five to ten days after culture initiation), they were excised
\'

from the nodal explants and transferred to fresh multiplication medium. After four

weeks, they were subcultured for another month. Several batches were maintained in

multiplication stage to bulk up material for subsequent rooting experiments. Shoots

were elongated in MS nutrients, 0.01 mg.l" NAA, 0.01 mg.l" indole-3-butyric acid

(IBA), 0.2 mg.l" 6-furfurylaminopurine (FAP), 0.1 mg.l" biotin, 0.1 mg.l" calcium

pantothenate, 25 g.r1 sucrose and 4 g.r1 Gelrite. All cultures were grown under a 16­

hours photoperiod at a photosynthetic poton flux density (PPFD) of 66 umol.mf.s"

provided by Biolux tubes (Osram L58W) (sideways and overhead lighting) and 27°C

day/21°C night. For both shoot multiplication and elongation, four shoots or three small

clunips of shoots were cultured in bottles (5 x 7.5 cm) containing 20 ml medium. After

three to four weeks, 1.5 to 2 cm-long shoots were used for the rooting experiments and

a single shodt was cultured per culture tube (2.5 x 10 cm) containing 10 ml of rooting

medium. All media were adjusted to pH 5.8 with 1M NaOH and autoclaved for 20

minutes at 120°Cand 121 kPa.

b) From seed material

Seedswere sterilized and germinated according to Thokoane (1998). They were surface

sterilized for 15 minutes in 3.5% (v/v) sodium hypochlorite plus one drop of Tween-20.

The husks ~ere released when the beaker containing seeds was gentl~ swirled and these

husks were aspirated with a Pasteur pipette. After several rinses in sterile distilled water

seeds were soaked in 4% (v/v) hydrogen peroxide for 10 minutes, rinsed several times

in water and then immersed in 50 mg.l" Gentamycin sulphate (Sigma Chemical
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Company, USA) solution. Seeds were placed on MS nutrients (without hormones)

fortified with 1 g.r1 casein hydrolysate, 1 g.r1 benomyl (Benlate; Efekto) 10 g.r1

sucrose and 4 g.r1 Gelrite, incubated in the dark at room temperature for five days, and

then transferred to a 16-hours photoperiod at 66 umol.mi.s" PPFD and 27°C day/21°C

night. After 14 days, the seedlings were subcultured onto the same medium without

casein hydrolysate and Benlate. Another week later, elongated seedlings (3 - 4 cm in

length) were used to test the efficiency of the established in vitro rooting protocol and

also the ability ofwild-type strains ofA. rhizogenes to induce transgenic roots.

2.2.3 Establishment of the in vitro rooting protocol

Initial studies were undertaken with clone GN121 and the best protocol was then

applied to GN107 clone. The basic protocol involved placing shoots in modified Y4 MS

nutrients (Ca2+'and Mg2+ as for % MS), 0.01 mg.l" IBA, 0.1 mg.l" biotin, 0.1 mg.l"

calcium pantothenate, 15 g.r1 sucrose and 4 g.r1 Gelrite (Mokotedi, 1997). The shoots

were incubated in the dark for 72 hours (~25°C), after which they were transferred to a

16-hours photoperiod at 66 umol.m'r.s" PPFD and 27°C day/21°C night. The rooting

period, including the three days of dark incubation, lasted four weeks.

Tested alterations to this protocol involved exposing shoots to varIOUS media

compositions and environmental conditions. These included: (1) elimination of the

vitamin myo-inositol in the Y4 MS formulation, (2) the replacement of ammonium

nitrate in the presence and absence of 1 g.l" PVP (polyvinylpyrrolidone) in Y4 MS

formulation with 0.15 g.r1 L-glutamine, the latter medium was then designated Y4 MSG;

For subsequent experiments, the concentration of IBA was increased from 0.01 to 0.1

mg.l" IBA, then (3) Y4 MS was modified to contain calcium (as CaCh.2H20) and

magnesium (as MgS04.7H20) to Y2 and %-strength of full MS by addition of 0.11 g.r1

and 0.22 g.r1 Ca, and 0.092 g.l" and 0.18 g.r1 Mg; (4) rooting efficiency in tubes (2. 5 x

10 cm) was compared to rooting in small and larger culture bottles (5 x 7. 5 mm and 6 x
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11 cm, respectively); (5) a step-wise increase In light intensity and temperature,

following an initial 72-hours dark incubation period at room temperature from 37

Ilmol.m-z.s-lpPFD (sideways lighting only) and 23°C day/21°C night for seven days to

66Ilmol.m-z.s·1 PPFD (sideways and overhead lighting) and 27°C day/21°C night for 18

days.

To test the effect of temperature, shoot explants of GN107 and/or GN121 clones were

incubated in the dark at .. 1O°C or 30°C for 72 hours prior to a 16-hours photoperiod

under conditions described in (5) above. Temperature was also kept constant at 27°C

day/21°C night following a 72-hours dark incubation at 30°C. The effect of light

intensity was itested by maintaining temperature constant at 27°C day/21°C night
I .

following dark incubation at room temperature (-25 ± 2°C). Light intensity was then

increased from 37 to 66 umol.mi.s" PPFD; and finally (6) concentration of

molybdenum (as NaM04.2HzO) was increased to ~ and % levels of full MS in modified

Vi MS by addition of 6.25 x 10-5 g.r1 and 1.25 x 10-4 g.r1 Mo.

2.2.4 Hardening-off of r~generatedplantlets
\: .

Plantlets were transferred to sterile, moistened potting,mixture of 1 river sand : 9 pine

bark (v/v, pH ·5.6 - 6.5) (Grovida Horticultural Products, South Africa), enveloped in

transparent plastic bags and kept in the greenhouse. After one week, the humidity of the

microclimate was reduced by punching holes on the bags, which were then removed

completely a week later. The hardening-off period to greenhouse conditions lasted four

weeks when plant survival was recorded. The plantlets were then maintained under

normal greenhouse conditions (Section 2.2.1).
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2.2.5 Growth and maintenance of Agrobacterium rhizogenes

Twelve wild-type strains of A. rhizogenes were tested, viz., LBA9402, A2183, R47,

TR7, TR8.3, HR1, R1500, R1600, R1601, A4, TR101 and 8196; the last eleven strains

were obtained from Ms. Thiru Naidoo (CSIR, Foodtek, Pretoria). Initially, the bacteria

were grown in liquid YM broth containing 10 g.r l yeast extract, 10 g.rl mannitol, 0.65

g.r1 K2HP04.3H20, 0.2 g.rl MgS04.7H20 and 0.1 g.l" NaCl. Growth was faster when

bacteria were grown in high salt formulations of Luria-Bertani (LB) broth (5 g.r1 yeast

extract, 10 g.r1 tryptone and 5 g.r1 NaCI) and Luria broth (L) (Kado and Liu, 1981) (5

g.r1 yeast extract, 10 g.r1 casein hydrolysate and 10 g.l' NaCI) (Fig. 2.1). All media

were supplemented with 50 ug.ml" rifampicin (Sigma Chemical Co., St. Louis, USA)

and adjusted to pH 7 with IM NaOH. Cultures were grown at 28°C in a shaking

incubator (G24 Environmental Incubator Shaker, New Brunwick Scientific Co., USA).

When solid media were required, 15 g.r1 agar (Biolab Diagnostics, South Africa) w~

added.
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Fig. 2.1: Growth of Agrobacterium rhizogenes (strain LBA 9402) in media

'supplemented with 50 p'wol.m-2.s·1 rifampicin.
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Bacterial cul~es were stored in three ways following an overnight growth in liquid

YM broth plus 50 ug.ml" rifampicin: (1) for short-term storage, cultures were streaked

on 25 ml plates of YMA with 50 ug.ml" rifampicin then stored at SOC for four weeks;

(2) for medium-term storage, stab cultures were prepared with 7 ml YMA plus 50

. ug.ml" rifampicin and stored at room temperature for a year; and (3) for long-term

storage, liquid cultures were mixed with 40% (v/v) glycerol and frozen at -SO°C.

Cell number

The bacterial cell numbers were determined according to Hope (1994). Briefly,

bacterial cultures were grown overnight in LB broth plus 50 ug.ml" rifampicin. The

optical density (OD) was measured at 600 nm and serial dilutions were then performed

with fresh LB broth plus 50 ug.ml" rifampicin. Diluted cultures were grown overnight

on LB plates at 2SoC, resulting colonies were counted and the cell number per milliliter

was then calculated (Fig. 2.2). The cell numbers for some strains were calculated as 4.S

x 1010 for TRS.3 strain (OD = 1.9), 2.S x 1010 for R1601 strain (OD = 1.2), 2.5 x 1010

for HR1 strain (OD = O.S), 1.S X 1010 for R1600 strain (OD = 0.7) and 1.3 x 1010 for

R47 strain (OD = 0.6).
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Fig. 2.2: The relationship between volume plated and cell number for

. Agrobacterium rhizogenes strai~ grown in LB broth.
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2.2.6 Carrot disc assay
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Fresh carrots were purchased from a local supermarket arid the epidermal layer of roots

was removed with a scalpel blade. Roots were then soaked for five minutes in 70%

(v/v) ethanol, rinsed several times in sterile distilled water, thereafter immersed for 10

minutes in 0.2 g.r1 mercuric chloride plus one drop of Tween-20. After several rinses in

sterile distilled water, carrot roots were submerged in 10 g.l" calcium hypochlorite for

10 minutes then rinsed thoroughly in sterile distilled water. Sterile roots were sectioned

into approximately 0.5 cm thick discs arid these were used to test the root inducing

ability of wild-type A. rhizogenes strains. Bacterial strains were grown overnight in

liquid LB broth with 50 ug.ml" rifampicin. Each carrot disc was inoculated with a drop

ofliquid culture (approx. 1010 cells.ml"). Eight discs from different roots were used per

strain, four were inoculated on the apical side (facing the root tip) arid four on the basal

side (facing the shoot). The inoculated discs were incubated in the dark at room

temperature in culture bottles (6 x 11 cm) containing 8 g vermiculite moistened with 60

ml MS nutrients plus 10 g.l'sucrose. Results were recorded after four weeks arid the

treatments were repeated three times.

2.2.7 Agroinfection of explants ofE.grandis x nitens clones

2.2.7.1 Localized inoculation method

Protocol 1

Nodal cuttings of GNI07 arid GN121 clones were obtained from sterilized coppice

(Section 2.2.2 (a)). Three days after sterilization, a fresh cut was made at the tip of the

stem stump arid leaves as well as part of the stem below the level of axillary buds were

wounded with a razor blade. Five strains of A. rhizogenes (R47, HRl, R1600, R1601

arid TR8.3) were selected on their ability to incite many transgenic roots on carrots

discs. Overnight cultures (approx. 1010 cells.ml") were centrifuged in Eppendorf tubes
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at 8°c for three minutes (6000 rpm, Sigma 201M), then resuspended in 2 ml LB broth

without 50 ug.ml" rifampicin. These were allowed to grow for an hour at 28°C.

Thereafter, a flamed and cooled bacterial loop was dipped in liquid culture and used to

inoculate the wounded areas. The inoculated and control explants (n = 12 per treatment)

were cultured on 'l'2 MS medium (without hormones), 15 g.r1 sucrose and 4 g.r1 Gelrite

(pH 5.8) in the dark at room temperature (~25 ± 2°C) for six weeks. The bacteria were

not cured because there was no contact made with the culture medium.

In another treatment, lower leaves on stems of micropropagated shoots (1.5 to 2 cm in

length) of clone GN121 were removed and a fresh cut was made across the bases of

stems. A flamed and cooled bacterial loop was dipped in overnight cultures of strains

mentioned above and used to inoculate the cut surfaces. Shoots were then placed up

side down into tubes containing 10 ml of same medium used for nodal cuttings

(MacRae, 1991). Tubes .were not sealed with parafilm and were incubated in a

ventilated oven at 28°C for 48 hours. Thereafter, agroinfected explants and controls (n =

12 per treatment) were soaked in a solution of 500 mg.l" cefotaxime (Claforan; Roussel

Laboratories" South Africa) for 45 minutes. Explants were blotted dry with sterile filter
.r:

paper then cultured with their basal ends inserted in the medium containing 500 mg.l"

cefotaxime and transferred to a direct 16-hours photoperiod at 37 umol.m'i.s" PPFD

and 23°C day/21°C night.

Protocol 2

Leaves of two-week old sterilized coppice of clone GN121 were reduced from the apex

to about two thirds of their original length. The five selected strains of A. rhizogenes

(R47, HRl, ~1600, R1601 and TR8.3) were grown overnight at 28°C on plates of LB
:-'i

plus 50 ug.ml" rifampicin. Ten leaves were used per treatment and the freshly cut

surface was scrapped across the bacterial lawn. Agroinfected leaves were then cultured

with their basal ends in tubes containing 10 ml of medium (as for Protocol 1). Control
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leaves were not inoculated with bacteria and all explants were incubated in the dark for

four weeks.

2.2.7.2 Leafdisc-liquidpurge method

Protocol 1

Expanded leaves were selected from micropropagated shoots of clone GN121 in

elongation medium andsectioned into approximately 0.5 x 0.5 cm sections. Eighteen

leaf pieces were prepared for each bacterial strain and six were cultured per Petri dish (9

cm in diameter) containing 25 ml of MS nutrients (with and without 0.1 mg.l" IBA), 20

g.l" sucrose and 4 g.r1 Gelrite (pH 5.8), then incubated in the dark at room temperature

for 48 hours. · The explants were placed with their adaxial surfaces (i.e. upper leaf

surfaces) on the medium. The five strains of A. rhizogenes were grown in 30 mlliquid

LB broth and also in 30 ml liquid MS nutrients both supplemented with 50 ug.ml"

rifampicin for 48 hours (late log phase, approx. 1010 cells.ml"). Before eo-culturing

with leaf pieces, bacterial strains were centrifuged for five minutes at 8°C (3400 rpm,

GPR Beckman GH 3.7 rotor) and resuspended in the fresh liquid MS or LB broth

without 50 ug.ml" rifampicin. Leaf discs were then submerged for two to five minutes

in bacterial cultures (R47, HRl , R1600, R1601 and TR8.3) then blotted on sterile filter

paper to remove unbound bacteria. They were then returned to the same Petri dishes in

which they ,.\Vere pre-cultured, sealed with parafilm and incubated in the dark for 48

hours at 28°C. The leaf discs were subcultured to fresh medium with 500 mg.l"

cefotaxime every 2 - 3 days until the bacteria were cured after two weeks in the case of

strains grown on LB broth. By the end of a six-week period, those grown in MS

nutrients were still not cured.
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In a modification of the above treatment, leaf pieces eo-cultured with bacteria grown in

MS nutrients were incubated in the dark for two weeks and thereafter transferred to a

16-hours photoperiod at 37 umol.m'f.s" PPPD and 23°C day/21°C night for another

two-week period. <

Protocol 2

Leaf pieces or whole leaves (n = 10) from micropropagated shoots of clone GN121

were wounded with a razor blade on either the abaxial or adaxial surface, eo-cultured

overnight with five selected bacterial strains in LB without 50 ug.ml" rifampicin for

two to five minutes, thereafter incubated under conditions similar to those of the carrot

disc assay (Section 2.2.6).

Protocol 3

Coppice leaves of GN121 and GN107 clones were sterilized as previously mentioned

and sectioned into squares an hour before agroinfection to enable them to produce

phenolics. The virulence of HR1, R1600 and R47 strains was induced with filter­

sterilized acetosyringone (prepared in 50% (v/v) ethanol) at 0, O.O~ g.r I (penning et al.,

1996), 0.2 g.r I and 0.3 g.r l
. The bacterial cultures were grown overnight in 80 ml of

.,..'

LB broth plus 50 ug.ml" rifampicin, centrifuged, then resuspended in 80 ml of MS

nutrients (without hormones) only. The suspension was split into four 20 ml aliquots to

which acetosyringone was added and these were allowed to grow overnight at 28°C in a

shaking incubator. Leaf pieces (n = 20) were eo-cultured with bacteria (approx. 1010

cells.ml') for 6, 12 and 24 hours in Petri dishes (9 cm in diameter) in the dark. At the

end of each period, the explants were blotted on sterile filter paper, soaked for one hour

in a (500 mg.l" cefotaxime, thereafter split into two groups and cultured on ~ MS

nutrients (with and without 0.1 mg.l" IBA), 15 g.r l sucrose and 4 g.l" Gelrite. Control
"

explants were treated similarly but were not agroinfected.
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In another treatment, 0.02 mg.I" acetosyringone was incorporated into plates of LB

broth plus 50 ug.ml" rifampicin. Leaf pieces from coppice material of clone GNI07

were scrapped across the overnight bacterial lawn of the three strains mentioned above

and eo-cultured for 6, 12 and 24 hours with bacteria on moist sterile filter paper in Petri

dishes (9 cm in diameter). Thereafter, the explants were washed for an hour in a

solution of 500 mg.l" cefotaxime, blotted on sterile filter paper and cultured on 12 MS

nutrients (without IBA), 15 g.r1 sucrose and 4 g.r1 Gelrite. They were incubated in the

dark for three days then transferred to a 16-hours photoperiod at 37 umol.mi.s" PPFD

arid 23°C day/21°C night for six weeks.

2.2.8 Agroinfection of E. grandis and E. nitens seedlings

The rpethod used was that'ofMacRae (1991). Roots of three-week-old seedlings of E.

grandis and E. nitens (Section 2.2.2 (b)) were trimmed-off and basal ends of shoots (n =

20) were scrapped across bacterial lawns of R47, TR8.3, LBA9402, A4, HRl, R1600

and R1601 ' 'strains grown on plates of LB broth plus 50 umol.ml" rifampicin.

Agroinfected seedlings were placed up side down into tubes containing 12 MS nutrients

(without IBA), 15 g.r l sucrose and 4 g.r l Gelrite. Explants were incubated in the dark

at room temperature for 72 hours before a 16-hours photoperiod at 66 umol.m'i.s"

PPFD and 27°C day/21°C night for six weeks. Control shoots were treated similarly but

were not agroinfected. Shoots were re-orientated into the medium after three to five

days .when the initial sig~~ '~f root formation were observed. Results were recorded after

two weeks and roots were excised and cultured in liquid MS nutrients (without

hormones) supplemented with 15 g.r l sucrose.

2.2.9 Data analyses and Photography

In vitro rooting experiments were repeated three times with 20 - 25 samples each.

Experiments aimed at screening wild-type strains of A. rhizogenes for root inducing
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ability where repeated two to three times and the number of replicates has been

specified per treatment. Data wereanalyzed statistically using a one-way analysis of

variance (ANOVA) and differences were contrasted using Duncan's multiple range test.

Photographs of rooted shoots and transformed carrot discs were recorded with a Nikon

FM2 camera fitted with a 60 mm Mikro Nikkor macro lens. Leaf explants used in

transformation experiments were screened with a Wild M3 stereomicroscope and

recorded using a Wild Photoautomat MPS 55 system.

. ; ~ . ;
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2.3 RESULTS

2.3.1 Shoot production

Mokotedi,1999 Chapter 2

Multiple shoots were regenerated in vitro from axillary buds. Buds were excised from

parent nodal cuttings as soon as they broke (approximately 5 - 10 days after culture
". "

initiation) and transferred to fresh multiplication medium (Fig. 2.3). An average of 10

shoots per bud explant was obtained in four weeks and these were subcultured monthly

to bulk up material for rooting experiments. Contamination resulted in the loss of less

than 10% of nodal explants as well as micropropagated shoots. Shoots were elongated

for three to four weeks before rooting trials were initiated. Explants in both

multiplication and elongation media produced large amounts of callus at basal ends

which was trimmed off at each subculture stage.

At the early stages of this study, shoot explants were lost as a result of browning which

occurred most notably when elongated shoots (1.5 - 2 cm in length) were transferred to

rooting media (30 --60%). In the multiplication and elongation stages, shoot cultures

that produced large amounts of callus at basal ends encountered browning and die-back

phenomenon (5 to 10%), which started at the apical bud and proceeded basipetally.

Initially, those phenomena in the rooting stage were ascribed to nutrient limitation in the

modified rooting media, but they persisted during experiments with various

concentrations of macro- and micronutrients. Observations suggested that the method

used to transfer those 'fragile' micropropagated shoots possibly played an important

role ih initiating browning and die-back. Exp1ants died-back from the shoot tip because

they were either held with forceps that were still too hot during the transfer process or

their stems were held too tight. Some of the explants produced roots and then died-back
j ',

(Fig. 2.4). Hence, browning accompanied by die-back might have affected the initial

percentages of rooting. Those phenomenon were minimized by removing callus at basal
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ends of shoots during each subculture stage and also by allowing forceps to cool-off

sufficiently before transfer of explants.

Fig. 2.3: Initial stages on the micropropagation of cold-tolerant Eucalyptus grandis x nitens

clones. 1 == nodal explants, 2 == shoot buds after being excised from parent plants, 3 == shoot

multiplication, and 4 == shoot elongation. Bar == 1.7 cm.

Fig. 2.4: Browning response and die-back of a GN121 shoot explant after two weeks in

rooting medium. Bar == 5.8 cm.
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2.3.2 Establishment of an in vitro rooting protocol

2.3.2.1 Preliminary investigations with clone GN121

In our laboratory, selected clones of Eucalyptus grandis x nitens were regenerated

successfully via axillary buds up to the stage of shoot production by another worker. As

mentioned previously, those initial studies showed that different clones required

different rooting media and culture conditions for root initiation (Makwarela, 1996). In

the present study aimed at the establishment of a basic rooting protocol, media were

formulated based on information in the literature and on the initial investigations

conducted with clone GN121 by Mokotedi (1997). Parameters investigated were

concentration and mode of IBA application, concentration and formulation of nutrients,

and the type of a supporting agent as well as presence of additives such as activated

charcoal. Results of these preliminary investigations are presented here only as a brief

summary.

Activated charcoal did not have a significant effect on rooting frequency but shoots

appeared healthier .and continued to elongate. , No rooting was observed when

vermiculite was used together with Gelrite for supporting shoots. A chronic application

of IBA at 0.OtO.1, 1, 2 and 20 mg.l" (24-hours and 72-hours pulses) across different

concentrati6hs of MS medium (!J.I, 1/3, ~ and full MS) produced callus at basal ends of

shoots, from which in some cases, roots developed (Fig. 2.5). Increasing the

concentrations of calcium and magnesium to %-strength of full MS in !J.I MS medium

did not improve rooting frequency significantly, but prevented the formation of large

amounts ofcallus at shoot bases.

The.ohservations mentioned above led to the formulation of an initial rooting medium

that formed the basis of all subsequent investigations (!J.I MS nutrients with additional
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0.22 g.r l CaCh.2H20 and 0.185 g.r l MgS04.7H20, 0.01 mg.l" IBA, 0.1 mg.l" biotin,

0.1 mg.l" calcium pantothenate, 15 g.rl sucrose and 4 g.r1 Gelrite .

Fig. 2.5: Callus formation and adventitious rooting on micropropagated shoots of clone

GN121 cultured on MS nutrients (Y-., 113, Y2 and full MS) supplemented with 0.1 mg.l"

mA. Bar = 0.1 cm.

2.3.2.2 Optimization ofthe rooting protocol

2.3.2.2 .1 Studies with clone GN121

a) Effect ofmyo-inositol

The first step towards modification of the basic protocol involved elimination of the

vitamin myo-inositol from the 14 MS formulation. In the literature, low-rooting
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percentages of hardwoods has generally been attributed by some authors to presence of

vitamins, especially myo-inositol. However, elimination of myo-inositol in the present

study lowered the previously observed percentage of rooting from 64% to 30% and

shoots produced fewer, shorter roots (Table 2.2). Further, the percentage of browned

shoots also increased in the absence of myo-inositol, but phenolics were not exuded into

the rooting media.

Table 2.2: Effect of eliminating myo-inositol on in vitro rooting of clone GN12l. Medium

components were modified V4 MS nutrients (Ca+2 and Mg2+ as for % MS), 0.01 mg.l" IBA,

0.1 mg.l' biotin, 0.1 mg.l' calcium pantothenate, I g.l' PVP, 15 g.l" sucrose and 4 g.r1

Gelrite. Shoots were rooted under 66 Ilmol.m-2.s·1pPFD and 27°C day/2loC night following

an initial 72-hours dark incubation period.

Medium
modifications

None

No inositol

Rooting"
(%)

64.0 ± 0.5 a

30.0 ±0.5 b

Average root
number per shoot

2.0 ± 1.2 a

1.0± 0.9 b

Average root
length (mm)

34.0±25.1 a

31.0 ± 27.5 a

Browned non­
rooted shoots (%)

O.O±O.O a

28.0 ± 0.3 b

ZMean separation within columns by Duncan's multiple range test, P :s 0.05. Values represent

means ± one standard deviation of one (control) and three replication(s). Results were recorded

after 28 days . n = 20 -25.

b) Effect ofL-glutamine and the antioxidant PVP

Ammonium nitrate is one of the important nitrogen sources for explants in the MS

medium. In this study, NHtN03 was replaced with 0.15 g.r) L-glutamine in the

modified 'l'4 MS medium (Ca2
+ and Mg2

+ as for % MS) and this medium was designated

'l'4 MSG. Rooting in 'l'4 MSO medium occurred after approximately ten days (compared

to 2 - 3 weeks in modified 'l'4 MS) but rooting frequency was still lower compared to the
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basic protocol (57% vs. 64%) (Table 2.3), hence this medium was not used anymore.

Further, most roots lacked well-developed lateral roots and about 5% of those rooted

experienced browning (Fig. 2.4). In an effort to minimize browning, PVP

(polyvinylpyrrolidone) was incorporated in the ~ MSG medium. The presence of PVP

lowered percentage of rooting further and resulted in increased browning of shoots in

concert with the exudation of phenolics into the rooting medium (Table 2.3) (Fig. 2.6).

Large amounts of callus were not produced at basal ends of shoots in all treatments.

Table 2.3: Effect of replacing ammonium nitrate with L-glutamine on in vitro rooting of

clone GN121 in the presence and absence of 1 g.r1 PVP. Other medium components were

modified Y4 MS nutrients (Ca+2 and Mg2+ as for % MS), 0.01 mg.l" IBA, 0.1 mg.l" biotin,

0.1 mg.l" calcium pantothenate, 1 g.r1 PVP, 15 g.r1 sucrose and 4 g.l' Gelrite. Shoots were

rooted under 66 umol.mi.s" PPFD and 27°C day/21°C night following an initial 72-hours

dark incubation period.

Medium Rooting" Average root Average root Browned non- Phenolic
modificati (%) number per length (mm) rooted shoots exudation

ons shoot (%) (%)
.....

None ' 64.0 ± 0.5 b 2.0± 1.2 a 34.0 ± 25.1 a O.O±O.O a O.O±O.O a

Y4MSG 57.0 ±0.5 ab 3.0 ± 1.6 a 75.0 ± 54.1 b 37.0±0.5 b O.O±O.Oa
(no PVP)

'/.i MSG 50.0 ± 0.5 a 3.0 ± 1.5a 75.0± 56.3 b 40.0 ± 0.5 b 45.0± 0.5 b
(plus PVP)

ZMean separation within columns by Duncan's multiple range test, P:'S0.05. Values present means

± one standard deviation of one (control) and three replication (s).Results were recorded after 28
d'

days. n = 20 -25.
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Fig. 2.6: Production of phenolic exudates by rooted shoots on % MSG medium

supplemented with 1 g.r1 PVP. Bar =0.66 cm.

c) Effect ofadditional calcium and magnesium

The effect of increasing the concentrations of calcium (as CaCb.2H20) and magnesium

(as MgS04.7H20) in 14 MS nutrients to Y2 and %-strength of full MS level was re­

investigated (Section 2.3.2.1), but the concentration of IBA was increased from 0.01

mg.l" to 0.1 mg.l" IBA in an effort to improve rooting frequency. The presence of both

additional calcium and magnesium at %-strength of full MS had no significant effect on

percentage of rooting for clone GN121 (53% vs. 52% of control) (Table 2.4), but

prevented callus formation at the bases of stems. Rooting frequency was lowered when

those nutrients were furnished individually at Y; and %-strength in the medium. Large

amounts of callus (that could inhibit rooting) were only visible at basal ends of control

explants.
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Table 2.4: Effect of additional calcium and magnesium on in vitro rooting of clone GN121

on ~ MS medium sup~i~mentedwith 0.1 mg.l" ffiA. Other medium components were 0.1

mg.l" biotin, 0.1 mg .l'lcalcium pantothenate, 15 g.r l sucrose and 4 g.r l Gelrite. Shoots were

rooted under 66 pmol.m'i.s" PPFD and 27°C day/21°C night following an initial 72-hours

dark incubation period.

Medium Rooting" Average no. Average root Browned non- Shoots

modifications (%) roots per length (mm) rooted shoots callusing

shoot (%) (%)

, ~

None 52.0 ±0.5 b 2.0 ± 1.1 b 34.0 ± 22.4 a O.O±0.0 a 48.0± 0.5 a

% Ca and Mg 53.0 ± 0.5 b 1.0 ± 0.8 ab 27.0± 19.8 a 40.0±0.5 b 0.0 ± 0.0 b
1 ~

Y2 Ca 35.0 ± 0.5 ab 2.0± 1.9 ab 41.0 ± 25.0 a 30.0 ± 0.5 ab 0.0 ± 0.0 b

:y.. Ca 25.0 ±0.4 a 3.0 ± 1.2 ab 52.0 ± 48.5 a 38.0 ± 0.5 ab O.O±O.O b

Y:zMg 15.0 ± 0.4 a 2.0 ± 1.5a 49.0 ± 16.8 a 42.0± 0.5 b O.O ± 0.0 b

31Mg 17.0 ± 0.4 a 2.0 ± 1.6 ab 34.0±48.5 a 25.0 ± 0.4 ab O.O±O.Ob

zMean separation within columns by Duncan's multiple range test, P :s 0.05. Values represent means

± one standard deviation of three replications. Results were recorded after 28 days. n = 20.
"

d) Effect ofvessel size

Rooting was attempted in small (5 x 7.5 cm) and larger culture bottles (6 x 11 cm) and

the rooting frequency was then compared with that observed in tubes (2.5 x 10 cm).

Percentage of rooting was significantly higher in tubes than in culture bottles (53% vs.
•, I '

22 arid 11% in small and larger vessels, respectively) (Table 2.5). The percentage of

shoot browning also increased with the increasing size of the vessel. Browning was
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attributed to vessel size because shoots were cautiously handled. Callus proliferation

was not observed at basal ends of shoots in any of the treatments.

Table 2.5: Effect of vessel size on in vitro rooting of clone GN121 on modified % MS

nutrients (Ca+2 and Mg+2 as for % MS) supplemented with 0.1 mg.l" mA, 0.1 mg.l"

biotin, 0.1 mg.r1calcium pantothenate, 15 g.l" sucrose and 4 g.r1 Gelrite. Shoots were

rooted under 66 umol.m'r.s" PPFD and 27°C day/21°C night following an initial 72-hours

dark incubation period.

Vessel size

Tubes

(25 x 100 mm)

Culture bottles

(50 x 75 mm)

Culture bottles

(60 x 110 mm)

Rooting"

(%)

53.0 ± 0.5 a

22.0 ± 0.4 b

11.0 ± 0.3 b

Average no.

roots per shoot

1.0± 0.8 a

1.0 ± 0.5 a

1.0 ± 0.4 a

Average root

length (mm)

27.0 ± 19.8 a

49.0 ± 28.6 b

31.0 ± 21.1 a

Browned non-

rooted shoots (%)

40.0±0.5 a

60.0±0.5 a

78.9 ± 0.4 b

ZMean separation within columns by Duncan's multiple range test, P :::; 0.05. Values represent means

± one standard deviation of three replications. Results were recorded after 28 days. n = 30 - 60.

e) Effect oflight intensity and temperature

In all investigations discussed . the light intensity and temperature culture regime was

. 66 umol.m'r.s" PPFD and 27°C day/23°C night. The study whereby lf4 MS medium was

modified to contain Ca2
+ and Mg2

+ to 'h and %-strength of full MS (Table 2.4) was

repeated with a different light and temperature culture regime. After the initial 72-hours

dark incubation period, the cultures were placed under a 16-hours photoperiod at 37

60



Results Mokotedi, 1999 Chapter 2

umol.m'r.s" PPFD and 23°C day/21°C night for seven days before being exposed to 66

umol.mi.s" and 27°C day/21°C night for 18 days. This step-wise increase in light

intensity and temperature resulted in 75% rooting frequency (Table 2.6). Callus was not

visible at basal ends of shoots and roots were long and thick with well-developed lateral

roots (Fig. 2.7). At the end of in vitro rooting period, plantlets were hardened-off to

greenhouse conditions (Section 2.2.4) and data were recorded after 28 days (Table 2.9).

Fig. 2.7: Adventitious root induction on micropropagated GN121 clone cultured for

28 days on modified v.. MS nutrients (Ca2+ and Mg2+ as for % MS) supplemented

with 0.1 mg.l" mA and incubated under optimized culture conditions.

Bar = 5 cm.
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Table 2.6: Effect of a step-wise increase in light intensity and temperature on in vitro

rooting of clone GN12!. Medium components were '!4 MS nutrients supplemented

with 0.1 mg.l" IBA, 0.1 mg.l" biotin, 0.1 mg.I''calcium pantothenate, 15 g.r1sucrose

and 4 g.r1 Gelrite. Light intensity and temperature were increased from 37

~mol.m-2.s-1pPFD and 23°C day/21°C night after seven days, to 66 umol.mi.s" PPFD

and 27°C day/21°C night for 18 days following an initial 72-hours dark incubation

period.

Medium Rooting" Average no. Average root Browned non-

modifications (%) Roots per shoot length (mm) rooted shoots (%)

None 53.0 ± 0.5 b 1.0± 0.8 a 27.0 ± 19.8 a 40.0±0.5 ab

%CaandMg 75.0 ± 0.4 e 2.0± 1.6 a 49.0±32.7 b 25.0± 0.4 a

' .

Yz Ca 66.0 ± 0.5 be 2.0± 1.3 ab 36.0 ± 29.4 ab 30.0± 0.4 a

0/., Ca 40.0± 0.5 ab 1.0 ± l.l a 29.5 ± 26.4 a 35.0 ± 0.5 ab

\l, Mg 28.0 ± 0.4 a 3.0±0.8b 82.0 ±37.6 e 20.0 ± O.4a

%Mg 35.0 ± 0.4 ab 2.0± 0.9 ab 47.6± 38.4 b 53.0 ± 0.5 b

ZMean separation within columns by Duncan's multiple range test, P ~ 0.05. Values represent

means± one standarddeviation of three replications. Results wererecorded after28 days. n = 20.

The effect of each temperature and light intensity on in vitro rooting was investigated

separately by keeping one of the parameters constant. No rooting was observed when

shoot explants of clone GN121 were incubated in the dark at ro-e for 72 hours prior

to a 16-hours photoperiod under optimized culture conditions (data not shown). A

72-hours dark incubation period at 300e lowered rooting frequency of clone GN121

from 75% frequency to 30% rooting frequency (an average of one root per shoot)
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(data not shown). Leaves of all explants were yellowish-green and they were

browned around the edges, probably by the heat. A similar response was observed

when temperature was maintained constant at 27°C day/23°C night following dark

. incubation at 30°C. An increase in only the light intensity from 37 umol.mi.s" PPFD

to 66 umol.m'r.s" (constant temperature at 27°C day/23°C night) resulted in only

50% rooting frequency (an average of two roots per shoot) (data not shown) and

noneof the shoots were browned as previously observed with temperature studies.

f) Effect ofmolybdenum

Molybdenum is one of the micronutrients whose limiting effect if sometimes

associated with browning and/or shoot-tip necrosis (Abrie.' pers.comm. 1998). In

this study, this micronutrient was furnished as sodium molybdate and its ability to

reduce browning/die-back and also improve rooting was tested by increasing its

concentration to ~ and %-strength of normal MS. Percentage of rooting was

insignificantly increased from 75% to 80% for clone GN121 when the concentration

of molybdenum was increased to 12 MS level (fable 2.7). However, callus

proliferation also increased from zero to 40% (~ Mo) and 65% (% Mo) and all

rooted shoots had produced callus as shown in Fig. 2.5. Further, shoot browning also

increased from 25% to 40% (Table 2.7) and molybdenum at % MS level lowered the

rooting frequency significantly.

2 M. Abrie, Agrocultural Research Council-Roodeplaat, Pretoria 0001, South Africa

63



Results Mokotedi, 1999 Chapter 2

Table 2.7: Effect of increasing the concentration of molybdenum in modified % MS

nutrients (Ca+1 and Mg+1 as for % MS) on in vitro rooting of clone GN12!. Other

medium components were O.lmg.l'' IBA, 0.1 mg.l" biotin, 0.1 mg.l'calcium pantothenate,

15 g.r1 sucrose and 4.g.r1 Gelrite. Light intensity and temperature were increased from 37

pmol .m'i.s" PPFD and 23°C day/21°C night after seven days, to 66 umol.mi.s'iand 27°C

day/21°C night for 18'days following an initial 72-hours dark incubation period.

Medium Rooting" Average no. Average root Browned non- Non-rooted

modifications (%) roots per shoot length (mm) rooted shoots shoots

(%) callusing (%)

None 75.0 ± 0.4 bi -- - 2.0± 1.6 ab 49.0 ±32.7 a 25.0 ± 0.4 a O.O± 0.0 a

Yz NaMo4.2H2O
80.0 ± 0.4 b 3.0 ± 1.7 b 84.0± 53.2 b 25.0 ± 0.4 a 40.0 ±0.5 b

% NaMo4.2H2O
45.0 ± 0.5 a 2.0 ± 1.1 a 38.0 ± 24.6 a 40.0 ± 0.5 a 65.0± 0.5 c

ZMean separation within columns by Duncan's multiple range test, P S 0.05. Values representmeans

± one standarddeviation of three replications. Results wererecorded after28 days. n = 20.

g) Established rooting protocol for clone GN121

The modified lf4 MS nutrients (Ca2
+ and Mg2

+ as for % MS) without additional

molybdenum was deemed the best medium for in vitro rooting of cold-tolerant

GN121 clone because it resulted in 75% rooting frequency and produced no callus at

basal ends of shoots. Therefore, the best protocol established comprised of modified

lf4 MS nutrients (Ca2
+ and Mg2

+ as for % MS) supplemented with 0.1 mg.l" IBA, 0.1

mg.l" biotin, 0.1 mg.l" calcium pantothenate, 15 g.r l sucrose and 4 g.r l Gelrite. Best

culture conditions were an initial 72-hours dark incubation period (-25°C) followed

by a step-wise increase in light intensity and temperature under a lti-hours
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photoperiod from 37 umol.m'i.s" PPFD and 23°C day/21°C night after seven days, to

66Ilmol.m-2.s-1 PPFD and 27°C day/21°C night for 18 days.

2.3.2.2.2. Selected studies on clone GN107

Effect ofadditional calcium and magnesium and the culture environment

The in vitro rooting ability of clone GNI07 was also tested under increased

concentrations of calcium and magnesium (Section 2.3.2.2.1(c)) and similar responses

to clone GN121 were observed. Under a 66 umol.m'f.s" PPFD and 27°C day/21°C, the

highest rooting frequency (30%) occurred when both calcium and magnesium

concentrations were raised to % MS (Table 2.8). The treatments were repeated with a

temperature and culture regime previously found most suitable for GN121 (Table 2.6).

After the initial 72-hours dark incubation period, the cultures were placed under a 16­

hours photoperiod at 37 umol.m'r.s" PPFD and 23°C day/21°C night for seven days,

then transferred to 66 umol.m'f.s" and 27°C day/21°C night for 18 days. As for clone

GN121, this step-wise increase in light intensity and temperature produced a positive

resulf(65% rooting) (Table 2.8), and callus was not visible at basal ends of shoots.

Although GN121 and GN107 clones were rooted under similar conditions, differences

were observed in rooting frequency (75% vs. 65%) (Tables 2.6 and 2.8). This may be

attributed to clonal variations. Therefore, it is suggested that the efficiency of the

established protocol should be tested on other cold-tolerant GN clones.
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Table 2.8: Effect of additional calcium and magnesium on in vitro rooting of clone GN107

on % MS medium supplemented with 0.1 mg.l" mA. Other medium components were 0.1

mg.l" biotin, 0.1 rng.I''calcium pantothenate, 15 g.r l sucrose and 4 g.r
l

Gelrite. Shoots were

rooted under two light and temperature regimes following an initial 72-hours dark incubation

period.

Medium

modifications

Rooting'

(%)

Average no. roots

per shoot

Average root

length (mm)

Browned non-rooted

shoots (%)

66 pmol.m·2.s'l PPFD and 21'C day/2rC night/or 25 days Y

% Ca and Mg 30.0 ± 0.4 a 2.0±0.6 a 27.0 ± 21.1 ab 20.0 ±0.5 a

37 umol.m'i.s" and 23°C day/2rC night/or seven days", thereafter standard conditions/ or 18 days

% Ca and Mg 65.0 ± 0.5 b 2.0 ± 1.4 b 28.0 ± 24.4 b 30.0 ± 0.4 a

Y2 Ca 15.0 ± 0.4 a 1.0 ±0.5 a 20.0 ± 13.5 a 35.0 ± 0.4 a

%Ca 30.0 ± 0.4 a 1.0 ± 0.5 a 25.0 ± 10.0 ab 75.0 ± 0.4 b

Y>Mg 15.0 ± 0.4 a 1.0 ± 0.0 a 30.0 ± 35.0 a 30.0 ± 0.4 a

%Mg 40.0± 0.5 ab 1.0 ± 0.0 a 20.0 ± 21.4 ab 65.0 ± 0.4 b

ZMean separation within columns by Duncan's multiple range test, P S 0.05. Values represent

means ± one standard deviation of two replications . Results were recorded after 28 days. n = 20.

Y Standard environmental conditions.

x Modified environmental conditions.

I ~ \ .
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2.3.2.3 Hardening-offofregeneratedplants

At the end of rooting period, the medium was gently rinsed from the roots of plantlets

produced under improved light and temperature culture regime (Table 2.6 and 2.8).

After determination of root number and length, plantlets were transferred to moist,

autoclaved potting mixture of 1 river sand: 9 pine bark (v/v), then sealed in transparent

plastic bags to maintain a high humidity condition. The humidity of the microclimate

was gradually reduced by punching holes on the bags after one week and another week

later, bags were removed completely. The number of plantlets that survived was

recorded at the end of hardening-off period (28 days) (Table 2.9) (Fig. 2.8) and plantlets

were subjected to normal greenhouse conditions (Section 2.2.1).

Table 2.9: Survival rates of regenerated plantlets of clones GN121 and GNI07 after 28

days of hardening-off to greenhouse conditions. The potting mixture was sterilized in 250

crrr' pots and one plant was cultured per pot.

Modifications of Y4 MS
rooting medium

GN121 clone % survival" GNI07 clone % survival"

% Ca and Mg 78.0 ±0.4 a 58.0 ± 0.4 a
~ !.:.;

Y2 Ca 87.0 ± 0.4 a 67.0±0.3 a

0/.0 Ca 71.0 ± 0.3 a 0.0 ± O.Ob

y:'Mg 60.0± 0.4 a 50.0±0.2 a

%Mg 88.8±0.4 a 67.0 ±0.3 a

ZMean separation within columns by Duncan's multiple range test, P ~ 0.05. Values represent

m~~ns ± one standard deviation of three replications. Results were recorded after 28 days. n =20.
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Fig. 2.8: Hardened-off plantlets of E. grandis x nitens rooted with the optimized

protocol. Results were recorded 28 days after hardening-off period. Bar = 1.8 cm.

2.3.2.4 In vitro rooting ofseedlings ofE. grandis andE. nitens

The optimized in vitro rooting protocol (Tables 2.6 and 2.8) was further tested with

three-week-old shoots from seedlings of E. grandis and E. nitens. The objective was to

ascertain if the parent genotypes affect in vitro rooting of GN hybrid clones. There was

no clear indication of such a parental effect as there was no significant difference in the

rooting frequency between the two species (Table 2.10). Over 90% of seedlings

produced roots (Fig. 2.9), but significant differences were observed with respect to the

average root numbers and length. Regenerated plantlets were hardened as previously

mentioned (Section 2.3.2.3).
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Table 2.10: Effect of the optimized in vitro rooting protocol on the rooting ability of

seedling shoots of E. grandis and E. nitens. Medium components and culture conditions

were as shown in Table 2.6.

Source of seedling Rooting" Average no. roots per Average root length

shoots (%) shoot (mm)

E. grandis 97.0 ± 0.2 a 4.0 ± 1.2 a 91.5 ± 38.7 a

E. nitens 93.0 ± 0.2 a 3.0 ± 1.0 b 63.96 ± 34.9 b

ZMean separation within columns by Duncan's multiple range test, P :s 0.05. Values represent

means ± one standard deviation of three replications. Results were recorded after 28 days. n = 20.

Fig. 2.9: In vitro rooting of seedlings of Eucalyptus grandis and E. nitens on

optimized protocol. Bar = 6.8 cm.
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2.3.3 Towards the development of a non genotype-specific in vitro rooting

protocol

A literature survey revealed that rooting and subsequent survival of many woody tree

species recalcitrant to rooting by conventional techniques (e.g. apple cultivars, pines,

etc.) was improved by inoculation with wild-type strains of Agrobaterium rhizogenes.

This bacterium in known to affect many dicotyledonous plants, producing transgenic

roots and/or tumours/callus. The purpose of this investigation was to establish if wild­

type strains of A. rhizogenes were suitable for inducing roots on two cold-tolerant GN

clones.

2.3.3.1 Selection ofA. rhizogenes strains

The carrot disc assay was conducted to test the virulence or root-inducing ability of

twelve wild-type strains of A. rhizogenes, viz., LBA9402, R1500, R1600, R1601, HR1,

TR7, R47, TR8.3, A4, 8196, A2183 and TR10l. Fresh, sterilized carrots were sectioned

into approximately 0.5 cm-thick discs and agroinfected with one drop (approx. 1010

cells.ml") of overnight bacterial culture on either the apical side (facing the root tip)

(four discs) or basal side (facing the shoot) (four discs). After four weeks of dark

incubation at room temperature, only nine of the twelve strains had produced transgenic

roots on the apical side of carrot discs (Table 2.11). Only HR1 and R1601 strains

induced roots on both apical and basal surfaces of carrot discs (data not shown), and

TR7, A2183 and TR101 produced only tumours/callus on both sides (Fig. 2.10). In

some cases, the initial response preceding root production was tumour/callus formation

that raised the surface of the pericycle (Fig. 2.10). The HR1 strain produced the highest

number of roots, which was assessed by the size of root mass, whereas the LBA9402

strain produced the least number of roots.
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Table 2.11: Induction of transgenic roots on apical side of carrot discs by wild-type strains

of A. rhizogenes after four weeks of dark incubation. Agroinfected discs were placed on

8g verrniculite moistened with 60 ml MS nutrients supplemented with IO g.r1 sucrose.

Strains TR7, TRIOI and A2I83 produced only tumuors/callus on either the apical or basal

side of the carrot discs.

Wild-type strain Rooting (%Y Wild- type strain Rooting (%y

Control o.o a 0.0 a R1500 33.0 ± 0.4 ab

"
·. I:-IRl 92.0 ± 0.2 d TR8.3 33.0 ± 0.4 ab

Rl600 83.0 ± 0.4 cd LBA9402 8.0 ±0.2 a

R47 83.0 ± 0.4 cd A4 33.0 ± 0.4 ab

RI601 50.0 ± 0.5 be 8196 25.0 ± 0.4 ab

ZMean separationwithin columns by Duncan's multiplerange test, P :'S 0.05. Values represent means

± one standard deviation of three replications. n = 20.
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Fig. 2.10: Effect of wild-type strains of A. rhizogenes on carrot discs after four weeks on

vermiculite moistened with MS nutrients (without hormones) supplemented with 10

g.r
l

sucrose. A = control discs, B = production of tumours/callus and roots and C =

production oftransgenic roots. Bar = 0.6 cm.
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2.3.3.2 Effect ofA. rhizogenes on explants ofE. grandis x nitens

Based on the results of the carrot disc assay, the following strains were selected for

subsequent experiments based on their ability to incite many transgenic roots, viz.,

HR1, R1600, R1601, R47 and TR8.3 (Table. 2.11). Studies focused on various explants

of GN clones such as leaf and stem explants to ascertain the virulence of the selected

strains.

a) Localized inoculation method
.. ~' .

The surfaces ofleaves and stem of nodal cuttings (GN107 and GN121) were wounded

with a razor blade (three scratches) three days after sterilization. A flamed and cooled

bacterial loop was dipped into overnight bacterial liquid culture (approx. 1010 cells.ml')

and used to inoculate wounded areas. Of the five selected strains, only the HR1 strain

produced tumours/callus at all four inoculated areas (Fig. 2.11), but no rooting occurred

in six weeks. Bud-break took longer, probably because of lack of hormones in the

support medium and continuous dark culture conditions. On the controls and other

remaining four tested strains, the wounded areas were browned and neither rooting nor

tumour/callus proliferation was observed (Fig. 2.11).

Rooting did also not occur on leaves of clone GN121 obtained from fresh coppice and

reduced to t-\tothirds of their original length, then scrapped across the bacterial lawns of

the five selected strains. Inoculated explants and about 50% of controls were browned

from the cut-end up to the surface of the supporting medium (Fig. 2.12).
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Fig. 2.11: Effect of HR1 strain on nodal explants of clones GN121 and GN107 cultured on

Yz MS nutrients (without hormones), 15 g.r1 sucrose and 4 g.l" Gelrite after six weeks in

the dark. Arrows indicate inoculated areas and plant response. A = control, B =

agroinfected. Bar = 0.7 cm.

Fig. 2.12: Browning observed on coppice leaf explants of E. grandis x nitens clones

agroinfected with selected strains of A. rhizogenes and cultured on Yz MS nutrients

(without hormones), 15 g.r1 sucrose and 4 g.l" Gelrite after four weeks in the dark.

Arrows indicate the remains of bacterial colonies on the leaf explant. Bar = 3.5 cm.
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In another treatment where micropropagated shoots were used, the HR1 strain also

produced tumours/callus at basal ends of shoots of clone GN121 (results not shown).

Shoot bases were agroinfected with a bacterial loop dipped in liquid overnight cultures

of the five strains mentioned previously (Section 2.2.7). Agroinfected shoots and

controls were placed up side down in tubes containing medium and incubated in a

ventilated oven at 28°C for 48 hours. Those were culture conditions optimal for

bacterial growth on solid LB or YMA media. However, after four weeks under a 16­

hours photoperiod at 37 umol.mi.s" and 23°C day/21°C night, rooting was not

observed at basal ends of shoots.

a) Leafdisc - liquidpurge method

Expanded leaves selected from micropropagated shoots of clone GN121 were sectioned

into approximately 0.5 x 0.5 cm sections and precultured on their adaxial surfaces on

MS nutrients (with and also without 0.1 mg.l" IBA). After 48 hours, explants had

exuded phenolics into the medium and were then eocultured for two to five minutes

with five selected strains ofA. rhizogenes (HR1, R1600, R1601, R47 and TR8.3) growri

either in LB broth or MS nutrients (without hormones). Explants were washed in 500

mg.l" cefotaxime solution and subcultured regularly (every two to three days) to a

medium with the same antibiotic. No rooting occurred on explants cultured on medium

with or without 0.1 mg.l' IBA, However, in both media the inoculated explants were

curled and had produced callus from the midribs. The HR1 strain produced large

amounts of tumours/callus and a more complex curling of leaf explants (Fig. 2.13). The

choice of coculture medium (LB broth or MS nutrients) had no significant effect on

formation of tumours/callus but leaf curling was more enhanced on explants inoculated

with strains grown on the LB broth. Further, bacterial strains grown on MS nutrients

were difficult to cure compared to those grown on LB broth which were cured within

two to three subcultures. Pink stained substances (probably anthocyanins) were

associated with tumours/callus produced by HR1 strain grown on MS nutrients.
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Transfer of inoculated explants and controls on MS medium with and without 0.1 mg.l"

IBA at 37 umol.mi.s" and 23°C day/21°C night did not promote the initiation and

developments of roots.

Fig. 2.13: The response of micropropagated leaf explants of clone GN121 to agroinfection

with five selected strains of A. rhizogenes. Explants were cultured on MS nutrients (with

and without 0.1 mg.l" IBA), 20 g.l' sucrose and 4 g.l" Gelrite. A = control explant, B =

explant inoculated with either R1600, R1601, R47 or TR8.3, C = explants inoculated with

HR1 strain. Results were recorded after six weeks. Bar =200 JlID.
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In another investigation, leaf pieces or whole leaves obtained from micropropagated

shoots of GN12l clone were wounded with a razor blade, cocultured with five selected

bacterial strains and cultured on vermiculite moistened with MS nutrients (without

hormones) supplemented with 15 g.r l sucrose. These were the culture conditions

optimal for the carrot disc assay; however, by the end of a four-week period, all

explants had turned brown and died (data not shown).

In an attempt , to make HRl, R47 and R1600 strains more virulent and improve

chemotaxis between bacterial and plant tissue, various concentrations of acetosyringone .

were tested. Bacterial cultures were grown first in LB broth then resuspended in MS

nutrients (without hormones) supplemented with 0, 0.02, 0.2 and 0.3 g.r l

acetosyringone. Leaf explants from fresh coppice of both GN clones were cocultured

for 6, 12 and 24 hours with bacterial cultures. No rooting occurred after six weeks and

the number of explants lost to browning increased with an increase in eoculture time

and concentration of acetosyringone used. All explants submerged in culture medium

containing 0.2 and 0.3 g.r l acetosyringone died. Rooting did not occur also when

coppice leaf explants were scrapped with the cut surface across the overnight bacterial

lawns of the above strains grown on media with 0.2 g.l" acetosyringone. Transferring

explants to a 16-hours photoperiod at 37 umol.m'f.s" and 23°C day/2l°C night did not

promote rooting. .

In conclusion, the absence of transgenic roots on tested GN clones suggested that the

root inducing plasmid (pRi) was either not efficiently transferred across the plant

genome, or if transferred. ' it was not properly integrated. The production of

tumours/callus in the presence of HRl strain and absence of plant growth regulators in

the induction medium suggested that GN clones could be susceptible to some bacterial

strains, even though roots were not produced within four to six weeks. The tumours

produced were not analyzed for the presence of opines which would confirm

transformation. However, root production on carrot discs provided evidence that most

(J '.

'-"i,
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of the bacterial strains tested were virulent (i.e. a functional plasmid was present and

transferred across the carrot genome). Therefore, a method for the transfer and

successful integration of the Ri plasmid into the GN genome still needs to be

established.

2.3.3.3 Effect ~jA. rhizogenes on seedlings of E. grandis and E. nitens

Since no transgenic roots were produced on explants of the two tested GN clones, the

question arose as to the susceptibility of each of the two parent species to A.

rhizogenes. Consequently, roots of three-week-old seedlings were trimmed-off and

bases of shoots scrapped across overnight bacterial lawns of the following wild-type

strains, viz., R47, TR8.3, LBA9402, A4, HRl, R1600 and R1601. Agroinfected plants

and ~~ntrols were placed up side down in culture tubes and rooting occurred within four

days. All roots, including those produced by control explants appeared 'hairy' before

stem bases were inserted into the medium. However, on explants inoculated with

agrobacterial strains roots were produced higher on the stem at all points where contact

was made with bacteria, whereas on control explant roots were produced only from the

bases of stems (Fig. 2.14). Roots produced on inoculated explants maintained the 'hairy

root' phenotype after bases of stems were inserted into the medium, but as for the

controls, the hairy phenotype appeared to have been limited only to the initial stages

befor~ explants were re-orientated into the medium. Control roots did not grow as fast

nor branch as profusely as those from inoculated explants. Differences in percentages of

rooting were not significant within the two species, although more E. grandis shoots

rooted under the influence of bacteria than those of E. nitens (Table 2.12). Significant

differences were observed in the average number of roots produced per shoot explant

for both species and bacterial cultures resulted in the production of fast-growing, long

roots (Fig. 2.14). Roots were excised and cultured in liquid MS nutrients (without

hormones) supplemented with 15 g.r1 sucrose for 28 days. Only roots from inoculated
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shoots (i.e. transformed hairy roots) showed the ability to grow on hormone-free

medium (Fig. 2.15).

Fig. 2.14: Effect of wild-type strains of A. rhizogenes on rooting ability of shoot explants of

E. grandis and E. nitens obtained from three-week old seedlings. A= hairy root induction

B = root morphology after 14 days, control explant is shown on the left. Bar = 0.6 cm.
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Table 2.12: In vitro root induction on three-week-old seedlings ofE. grandis and E. nitens

by wild-type strains ofA. rhizogenes. Medium components were Y2 MS nutrients (without

hormones), 15 g.r l sucrose and 4 g.r l Gelrite. Shoots were rooted under 66 umol.m'i.s" and

27°C day/21°C night following an initial 72-hours dark incubation period.

Wild-type E. grandis E. grandis E. nitens E. nitens

strain Rooting' Average no. Roots Rooting" Average no. roots

(%) per shoot (%) per shoot

Control 74.0± 0.4 a 2.0 ± 1.2a 52.0± 0.5 a 2.0±0.8 ab

R47 78.0± 0.4 a 4.0±2.4 ab 56.0± 0.5 a 2.0 ± 1.0abc

TR8.3 70.0± 0.4 a 3.0 ± 1.6ab 70.0±0.4 a 2.0±0.9 abe

LBA9402 68.0± 0.4 a 4.0 ± 2.3 ab 68.0±0.4 a 2.0 ± 1.0e
, ,,;'

A4 70.0 ± 0.4 a 4.0±2.7 ab 54.0± 0.5 a 3.0 ± 1.1 be

HRI 80.0± 0.4 a 4.0±2.5 ab 50.0± 0.5 a 2.0±0.9 a

Rl601 70.0± 0.4 a 5.0± 3.6 b 54.0±0.5 a 1.0± 0.7 a

Rl600 86.0± 0.4 a 4.0± 2.4 b 66.0±0.4 a 2.0±I.4b

zMean separation within columns by Duncan's multiple range test, P ::;0.05. Values represent means

± one standard deviation of three replications. Results were recorded after 14 days. n = 20.
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Fig. 2.15: Growth of transgenic roots of E. grandis on hormone-free MS nutrients

supplemented with 15 g.l" sucrose. Roots were excised from three-week old shoots flrcm

seedling after 14 days. A= roots at day zero and B = roots after 28 days of growth in the dark

Bar = 0.5 cm.
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2.4.1 Establishment of shoot cultures

Sterile shoot cultures were successfully generated from axillary buds and few explants

were lost because of contamination « 10%), indicating that endogenous contamination

(usually experienced with woody species, e.g. Warrag et al., 1990; Le Roux and van

Staden, 1991b) was not a problem. An average of ten shoots per bud explant was

obtained in four weeks and these were routinely subcultured to bulk up material for

subsequent rooting. Similar shoot yields (per bud explant) were obtained by Gupta et al.

(1981) (5 - 10 shoots with Eucalyptus citriodora), Bennett et al. (1992, 1994) (11

shoots with E. globulus) and Yang et al. (1995) (10 shoots with E. grandis x urophylla).

Several studies have demonstrated that cytokinins used in multiplication and elongation

media could affect subsequent rooting (Curir et al. 1990; Bennettet al., 1992, 1994).

Although the effect of those growth regulators was not investigated in the present study,

it is possible that alternating BAP (in multiplication medium) with FAP (kinetin) (in

elongation medium) affected the rooting ability of shoots, as reported for several

eucalypts by Curir et al. (1990), Bennett et al. (1992, 1994) and Jones and van Staden

(1994). In studies by Bennett et al. (1992, 1994), most clones of E. globulus and other

eucalypts showed higher shoot survival in rooting medium when shoots were taken

from the multiplication/elongation medium in which kinetin was used. Those taken

from(a BAP-containing medium experienced leaf reddening and abscission (Bennett et

al., 1992).

2.4.2 Parameters that affected rooting of GN clones

According to Srikandarajah et al. (1990), the physiology of adventitious root formation

is still not clearly understood. Reports on difficult-to-root woody species have
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concentrated on factors such as temperature (Zimmerman, 1984; Warrag et al., 1990),

light intensity and wavelength (Pfaff and Schofer, 1980; Hughes, 1981; Wang, 1992;

Bressan et al, 1992), growth regulators (Nemeth, 1986; Curir et al., 1990), activated

charcoal (Blomstedt et al., 1991; Sanchez et al., 1996), support medium (Le Roux,

1990), number of subcultures in multiplication medium (Warrag et al., 1990; Trindade

and Pais, 1997) and phloroglucinol (Zimmerman, 1984). In this study, the most

important factors that influenced rooting were light intensity and temperature (Tables

2.6 and 2.8, Fig. 2.7). However, the mineral composition of the medium (e.g. additional

calcium and magnesium) also played a positively significant role (Table 2.4).

Much research on the effect of environmental factors such as light intensity and

. temperature has been conducted on fruit trees. ·Of the"environmental factors, light has

generally been accepted as being the most important as it regulates photomorphogenic

processes in tissue culture through the phytochrome system (Wang, 1992; Rossi et al.

1993; Bertazza et al., 1995). The temperature effects are normally eliminated by

maintaining the same temperature under different light intensities (Le Roux, 1990;

Wang, 1992). In addition to photomorphogenic functions, light also has the .

photosynthetic function on rooting of cuttings in vitro, especially under high intensity

(Hughes, 1981; Walker et al., 1987; Kozai, 1991).

The study whereby Y-! MS medium was modified to contain calcium and magnesium

ions at %-sttength of full MS was repeated with a different light and temperature culture

regime (Tables 2.6 and 2.8). After the initial 72-hours dark incubation period, the

cultures were placed under a 16-hours photoperiod at 37 umol.m'f.s" PPFD and 23°C

day/21°C night for 7 days before being exposed to 66 umol.m'f.s" PPFD and 27°C

day/21°C night for 18 days. This step-wise increase in light intensity and temperature

resulted in 75% (GN121) and 65% (GNI07) rooting frequency and callus was not

visible at basal ends of shoots (Tables 2.6 and 2.8). The roots exhibited the desirable

morphology of long and thick roots (Fig. 2.7) with well-developed lateral roots that
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could improve survival in ex vitro conditions. These results were invariably consistent
. .

with those of several authors, where rooting was promoted when shoots were exposed

initially to low and then high irradiance levels (Bressan et al., 1982; Baadsmand and

Andersen, 1984; Zimmerman, 1984). According to Wang (1992) the positive effect of

increasing irradiance from 10 to 80 llmol.m-2.s-1 PPFD on rooting may be as a result of

the uptake, transport and accumulation of applied auxins in cuttings. Eliezer and Morris

(1980) suggested that high light intensity increase the velocity of auxin transport in

intact pear plants. A condition of high light intensity was also reported to produce high

carbohydrate availability relative to nitrogen (Hyndman et al., 1982).

Since in this study low levels of sucrose were supplied in the rooting medium (15 g.r1
)

\

under increased ' irradiance, it is suggested that rooting occurred under

photoautomixotrophic conditions because tubes were loosely capped with plastic lids

and were not sealed with parafilm. Hence, C02 concentration inside the tubes could

have been similar to the ambient level (± 350 ppm) (Kozai, 1991). In contrast, Rossi et

al. (1993) as well as Bert~za et al. (1995) concluded that rooting differences found

under different light regimes were unlikely related to differences in photosynthetic

carbon fixation since under their experimental conditions there was an exogenous

carbohydrate supply (20 g.r1 sucrose), low photon fluxes (maximum of36 umol.m'i.s")

and the lack of CO2 enrichment. Further, the 500 ml and 100 ml glass jars used for

rooting by those authors, respectively, were wrapped in plastic foil, hence there was

little, if any, air exchange. Therefore, in those studies, rooting response was attributed to

the control of phytochrome because a linear relationship was determined between the

two. Light quality has also been found to affect the action of auxins in regulating

rooting (Rossi et al., 1993).

High light irradiance (up to 280 umol.m'i.s") improved percentage of rooting of the

difficult-to-root clone of Sequoia sempervirens obtained from trees several hundred

years old (Walker et aI., 1987), but it was reported inhibitory for cold-tolerant
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E. grandis X macarthurii (Le Roux, 1990) and other woody species (Rugini et al. 1988).

Le Roux (1990) observed that under high light intensity (40 to 60 Jlmo1.m-2.s-1 PPFD),

in vitro rooting of an E. grandis x macarthurii clone was inhibited by leaf senescence

brought about by the production of white sugary callus on the surface of leaves. In

contrast, Jones and van Staden (1994) reported that shoots of E. grandis x urophylla

clones often became etiolated as a result of low light intensity (14 Jlmo1.m-2.s-1 PPFD).

The effect of light on in vitro rooting of E. grandis hybrids therefore appears to be

genotype specific.

Temperature has been shown to exert a strong influence on rooting during dark

incubation for apple cultivars (Zimmerman, 1984), pear rootstock (Wang, 1992), rose

cultivars (Rahm.an et al., 1992)and some other fruit trees Rugini et al. (1988). Rahman

et al:;'(1992) reported that increasing temperature from 24 to 28°C under a 16-hours

photoperiod gave a significantly higher number of roots with maximum shoot length

increment. Asobserved in the present investigation, temperatures at and above 30°C

were reported to lower rooting frequency (Zimmerman, 1984; Wang, 1992). However,

temperature was initially increased simultaneously with light intensity (Tables 2.6 and

2.8), and its beneficial effect was probably on the translocation of supportive factors

(carbohydrates) and related increase in respiration (Ooishi et al., 1978). As suggested

by Veierskov and Andersen (1992) for IAA on pea cuttings, it is assumed in the present

study that IBA at lower temperatures (23°C day/ 21°C night) affected the accumulation

of carbohydrates at the base of shoots, which were then used in root formation later

when the temPtrature was increased (27°C day/21°C night) (Tables 2.6 and 2.8). Using

infrared thermometry, Baadsmand and Andersen (1984) estimated leaf temperature of

Pisum sativum at 38 W.m-2 to be 33°C, while the air temperature was unchanged at

27°C. According to those authors, it was therefore possible that the effect of irradiance

during auxin transport was temperature-mediated. Those authors further suggested that

it was the temperature in the plant tissue that determined the transport velocity of auxins

and not the ambient temperature. In addition, George (1996) pointed out that
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temperature inside the culture is usually higher that outside because of the greenhouse

effect. In their conclusion, Baadsmand and Andersen (1984) stated that the effect of

high irradiance level (38 W.m-2) in conjunction with increased tissue temperature

determined 'the strength of the polarity of auxin transport in the pea cuttings. The

observations made in the present study strongly support the above argument, because

rooting was significantly improved when both light intensity and temperature where

increased simultaneously (Tables 2.6 and 2.8). Increasing either light intensity or

temperature reduced the percentage of rooting from 75% to 50% and 30%, respectively.

It is suggested therefore, that increasing light intensity accounts for the accumulation of

IBA (or its conjugate, IBAap) at the base of stems, whereas an increase in temperature

improves IBA uptake as well as the velocity of carbohydrates and organic nitrogenous

compounds towards the rooting zone.

Additional calcium and magnesium ions were shown to prevent callus formation at

bases of shoots (Section 2.3.2.1). When those macronutrients were added separately at

~ and %-strength of MS level in the Y4 MS medium, they had a negative effect on

rooting (Table 2.4). Although the highest rooting frequency (53%) was observed when

Ca2+ and Mg2+ 'were maintained both at %-strength of normal MS, differences with the

contr6l explants were not significant (53% vs. 52%) (Table 2.4). Murashige and Skoog

(1962) reported that in tobacco the requirements for' 'calcium increased as those of

magnesium ;increased. The ineffectiveness of calcium and magnesium alone in

promoting root formation may have been due to lack of absorption and/or assimilation

of either ion in the other's absence. Calcium ions may also act as chemical messengers;

a temporary increase in calcium ions to 1 or 10 IlM(approx. 6.6 IlMin the present study)

does not significantly alter the ionic environment with the cell, but is yet sufficient to

trigger fundamental cell processes such as polarized growth, response to gravity and

plant"growth substances, cytoplasmic streaming, and mitosis (Ferguson and Drebak,

1988; Poovaiah, 1988). Calcium has been suggested to prevent leakage of auxin
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protectors from the tissue into the nutrient medium (Stonier, 1971 cited by Nemeth,

1986).

As previously mentioned, IBA is the most commonly used auxin for rooting of

woody macro- and microcuttings. For continual maintenance on IBA, the

concentration normally used for rooting Eucalyptus species and hybrids ranges from

1 - 2 mg.r1 (Le Roux and van Staden, 1991b). However, an increase in callus

proliferation at bases of stems was observed previously with an increase in IBA

concentration from 0.01 to 2.5 mg.l" (72-hour pulses) and 20 mg.l" (24-hour pulse)

(Section 2.3":2.1). When callus proliferation proceeds root development, vascular

connections between the roots and the stem may be interrupted, interfering with the

transport of water and nutrients to the shoot (Martin, 1985). Further, essential

nutrients that may be required by the shoot to synthesize rooting compounds could

be directed towards nourishment of the undifferentiatedcells.

In th~ present study, a chronic application of 0.1 mg.l" IBA did not have any

significant effect on rooting of clone GN121. However, rooting frequency was

lowered slightly from 64% to 53% (Tables 2.2 and 2.4). Callus was not formed at
."' .

bases of stems, probably due to additional Ca2
+ and Mg2

+ in the rooting medium.

Studies have shown that IBA is rapidly conjugated to IBA aspartate (IBAsp) which

actually acts as a rooting promoter (Riov, 1993; Epstein et al., 1993; Baraldi et al.,

1993). Hence, increasing IBA concentrationwithin limits could possibly increase the

concentration and availability ofIBAsp. However, Epstein et al. (1993) have shown

that there are differences between cu1tivars of sweet cherry in their ability to

hydrolyze the ester conjugate at appropriate time to release free IBA which may

promote rooting. It may therefore be argued that easy-to-root eucalypts such as E.

grandis possess the hydrolytic ability in contrast to difficult-to-root cold-tolerant

hybrids such as E. grandis x nitens. Alternatively, such differences may also exist
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between clones, resulting in the observed variation in rooting frequency between the

clone GN121 (75% rooting) and clone GN107 (65% rooting).

The high variability in rooting percentages (shown by standard deviations) observed

within the two tested clones could also be an indication of the physiological age

difference of the axillary buds from which shoots were regenerated. Ammirato (1986)

suggested that cells or organs on the same parent plant do not the same ability to

undergo morphogenesis, therefore, it is possible that shoots regenerated from buds

higher on the stem were physiologically more juvenile than those lower down, giving

them the ability to root readily.

Other tested parameters discussed from here onwards had a negative effect on rooting

frequency of GN121and GNi07 clones. The first parameter investigated was the use of

the antioxidant PVP (polyvinylpyrrolidone) in an effort to minimize browning and

shoot die-back 'and also to improve rooting. That antioxidant has been used successfully

at 1 g.r1 in rooting media to minimize exudation of phenolics and to improve rooting

frequency of clones of E. grandis x macarthurii, E. macarthurii as well as E. grandis x

urophylla (Le Roux, 1990; Le Roux and van Staden, 1991a; Jones and van Staden,

1994). Le Roux (1990) suggested that the absence of PVP reduced rooting of E.

macarthurii shoots and that in its presence, the antioxidant would bind auxin in root

initiation media as well as inhibitory compounds released by the shoots. In the present
H

study, however, the presence of PVP in the modified ~ MSG medium lowered rooting

frequency and stimulated the release and oxidation of phenolics (Table 2.3) (Fig. 2.6).
rl"

George (1993) pointed out that although PVP has been used successfully in many other

plant species, it does not always stop exudation of phenolics. Observations made in the

present study lead to the suggestion that PVP might have interfered with normal activity

of endogenous protectors of phenolics and promoted exudation of those substances

whose oxidation was precipitated by light (Creasy, 1968).
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Glutamine is synthesized'from~imt.pnium ions and may be regarded as a precursor of
(. r .-,,-:J .

other amino acids in the metabolic pathway of nitrogen. By replacing ammonium nitrate

with L-glutamine in the medium, a readily assimilated and energetically inexpensive

nitrogen source that may be required in root initiation is made readily available (Kirby ­

et al., 1987). This may explain how rooting happened quicker in the presence of L­

glutamine (v.. MSG medium) instead of .smmonium nitrate, even though rooting

frequency was lower than in the latter (50~(j vs. 64%) (Tables 2.3). Glutamine has also

been shown to be a requirement for cell division in pines (Kirby et al. 1987). Working

with a rose cultivar, Hyndman et al. (1982) reported that reducing the total nitrogen

concentration in the medi~~tu 7 ~M (instead of 60 mM present in full MS) improved

rooting frequency up to 75%. A similar response was observed in the present study for

cold-tolerant clones of E. grandis x nitens when total nitrogen was reduced to about 15

mM (75% [ONI21]and 65%. [GN107] rooting frequency) under improved culture

conditions (Table 2.6 and 2.8). Hyndman et al. (1982) added that neither nitrate (as

NaN03) nor ammonium (as (NRt)2S04) alone had the effect on rooting that both had

together in the ratio ofthe MS salt formulation, and that the ionic form of nitrogen in

the medium appeared to have a significant effect on root initiation.

Hyndman et al. (1982) proposed that the presence of both nitrate and ammonium at

ratios of MS formulation is important for maintaining the desired pH of the medium,

because pl-l.isiucreased by the former and lowered by the latter. Hence, the absence of

ammonium nitrate in the present study could-have made the medium more alkaline (and

probably toxic), thus inhibiting some metabolic processes and the availability of some

nutrients required for root initiation. In some: cases, roots produced in v.. MSG medium

(i.e. v.. MS in which NRtN03 had been replaced with L-glutamine) lacked well­

developed lateral roots (Fig. 2.4), a disadvantage not shown in normal v.. MS. It is

therefore possible that in the absence of ammonium ions, a situation of nitrogen

deficiency occurred in 14 MSG medium, resulting in the -formation of undesired root

morphology. However, Srikarzlarajah et al. (1990) observed up to 100% rooting
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frequency in difficult-to-root apple cultivars when Nf4N03 was completely omitted in

the '!4 MS mediuni 'and KN03 was provided at full strength. Finally, since shoots grown

in vitro are not photosynthetically efficient under heterotrophic or mixotrophic

conditions (Kozai, 1991), it is possible that leaves were not synthesizing organic

nitrogen at a rate that matched morphogenesis and growth, therefore, leaves and

growing shoot tip might have acted as strong sinks for the supplied organic nitrogen

source (L-glutamine) (as described by Altman and Wareing, 1975).

Svenson and Davies, jr (1995) found that the concentrations of molybdenum, iron

and copper in the basal portions of unrooted stem cuttings of Poinsettia increased

during the root ,initiation stage, suggesting that concentrations of those

micronutrients may be important for early root primordia formation or other

concurrent growth processes-.Those authors suggested that accumulation of iron and

molybdenum at root initiation site may help support nitrogenase and nitrate reductase

activity on subsequent root growth and development. As an essential micronutrient,

molybdenum is a component of the MS medium and its effect on rooting was tested

at ~ and %-strength of normal MS in the modified '!4 MS medium (Ca2+ and Mg2+ as
,

for % MS)~ Although additional molybdenum slightly improved rooting frequency

(from 75% to 80%) of clone GN121 (Table 2.7), the improvement was accompanied

by callus proliferation at shoot bases (as shown in Figure 2.5). This should be

avoided as it may reduce survival yield of micropropagated plants (Le Roux and van

Staden, 1991 a,b). For these reasons, subsequent studies on clone GN107 omitted the

use ofmolybdenum.
',:1:

In the present study, rooting frequency was found to be greater in tubes than in bottles

(Table 2.5).)t was expected that rooting would be promoted better in larger vessels

where oxygen content is higher than in tubes. However, that was not the case and

browning accompanied by shoot die-back, was greater in bottles than in tubes and it

probably had a significant effect on percentage of rooting (Table 2.5). Carter and Slee
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(1991) observed high rooting percentage of E. grandis on a mixture of peat, perlite and

sand, compared to perlite or sand alone and suggested that the relatively high moisture

cont~nt may be more important than air content for maximum root formation on

cuttings. In te~s of in vitro rooting of GN clones, the implication of the above study is

that relative humidity may be important in keeping shoots from desiccating in order to

produce nutrients required for root initiation in response to culture stimuli. Further, in

vitro shoot cultures have been reported to have little (if any) cuticle (Nashar, 1989)

compared with their ex vitro counterparts. This may further explain the observed

increase in browning with an increase in culture vessel size (Table 2.5). Shoots may

have dehydrated because the humidity of the microclimate was probably reduced by

high Gelrite (4 g.r l
) concentration in the medium. Less water was available to create

high humidity since little or no condensation was observed on the sides of the larger

vessels or oh the surface of the medium. Usually, about 2 gXI Gelrite is used to solidy

media for 'rooting of eucalypts, however, explants encountered hyperhydric

transformation due to excess humidity (Le Roux and van Staden, 1991a; Jones and van

Staden, 1994).

2.4.3 Genotypic responses

Although the culture conditions were the same, the percentage of rooting of clone

GNI07 was lower than that ofGN121 (65% vs. 75%). This may be accounted for by

the fact thatclonal variation does occur. Some authors have reported similar

variations in rooting efficiencies among Eucalyptus nitens clones and suggested that

the effect of provenance on rooting ability of in vitro-produced shoots and

macrocuttings was due to genetic differences (Willyams et al. (1992) and Tibbits et

al. (1997). Nevertheless, the environmental or culture conditions appear to determine

the limits within which rooting is achieved.
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Three-week-old shoots derived from seedlings of pure E. grandis and E. nitens were

rooted with the optimized protocol. The results showed that both pure species rooted

efficiently (over 90%) (Table 2.10) (Fig. 2.9) with the optimized protocol, with no

significant differences in rooting frequency between them. The question remains as to

the reasons for the lower rooting rates of the hybrid clones.

Willyams et al. (1992) observed that with E. nitens rooting recalcitrance increased with

age of shoots derived from seedlings. For example, rooting frequency of shoots after

one week, four weeks and eight weeks after germination was 93%, 80% and 43%.

Furthermore, E. nitens has generally been reported to root with difficulty both in vitro

and ex vitro although 'good' rooting clones have been found in certain families

(Rasmussen, 1991; Willyams et al., 1992; Tibbits et al., 1997). In contrast, it is also

agreed that E. grandis shoots root with relative ease (Willyams et al., 1992). Therefore,

it is tempting to suggest that GN clones are recalcitrant to rooting because of some E.

nitens parent genotypes. It is therefore suggested that before crosses are made for

creating hybrids, the in vitro footing ability of seedlings from parent genotypes must be

screened under different culture conditions so that rooting ability is not ' lost' , or

lowered by thepoor rooting parent.

The frequency of the protocol established in this study for two GN clones requires to be

tested further on other cold-tolerant E. grandis clones. Adendorff and Schon (1991)

suggested that the propagation of a clone with a poor root strike (percentage of

successfully rooted cuttings) and poor root quality (structure and size of a root system)

is uneconomical; irrespective of the yield potential of the clone.

2.4.4 Production of plantlets
r ,

At the end of in vitro rooting period, regenerated plantlets were hardened-off to

greenhouse conditions and data were recorded after 28 days. The GN121 clone
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rooted with the optimized protocol (Table 2.6) exhibited higher survival yields (78%)

after hardening-off compared to GN107 clone (58%) (Table 2.9). Warrag et al.

(1990) also observed clonal variations with regard to survival of regenerated E.

grandis hybrids after hardening-off. The observed hardening-off success in this study

could have been affected by factors such as roots being injured during the transfer

process from tubes or by leaf-bum during the initial stages of hardening-off. Many

authors recommended that plantlets should be transferred to ex vitro conditions as

soon as a few roots are produced and variability between clones (with respect to

rooting frequency and survival after hardening-oft) should be considered (Durand­

Cresswell et al., 1982; McComb and Bennett, 1986; Warrag et al., 1990; Thorpe et

al., 1991). Jones and van Staden (1994) reported in their study that the survival of

plantlets of E. grandis x urophylla plantlets could have been reduced by callus

formed at the base of stems, which inhibited normal water transport to the shoot.

Although some of the factors that may affect ex vitro establishment of

micropropagules have been established (Section 2.1.3), few studies (about 10% of

those reviewed in this study, e.g. Yang et al., 1995) have reported on survival of

plantlets after hardening-off; only the number of plantlets rooted in vitro is reported

(e.g. Bennett et al., 1992, 1994). This is unfortunate as the success of a

micropropagation protocol should be judged on the number of plants that can be

transferred to the field. Such protocols may not be of much benefit to the forestry

industry which is more interested in the number of plantlets (trees) suitable for

plantations. This could probably explain why micropropagation as a means of

improving forestry productivity has been criticized and branded a waste of resources

(Wilson, 1998).

In summary, multiple shoots of cold-tolerant E. grandis x nitens clones may be cultured

successfully in vitro, although the rooting frequency is clone dependent. In a research

environment, an average often shoots per bud explant was produced in four weeks and

': "
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these were subcultured once to produce 10 more shoots each. Therefore, in theory ,

about one million shoots may be generated from one axillary bud after seven

subcultures.;Of these, 75% (GNI21) and 65% (GN107) can be rooted successfully in

vitro. With the observed hardening-off success, this translates to about 585, 000 and

377, 000 plants, respectively, within one year. If the successes of the research

environment can be transferred to the commercial laboratory, some of these plants can

then be used to establish clonal hedges and others for afforestation in dry, cold marginal

areas.

2.4.5 Towards an establishment of a non genotype-specific in vitro rooting
"

protocol

The production of cold-tolerant clones of E. grandis x nitens on a commercial scale has

been hampered by their poor rooting ability. Although considerable success was

achieved in Chapter 2, clonal variations to the established protocol were observed

(Tables 2.6 and 2.8). In order to circumvent genotype-related difficulties in the rooting

ability of the two GN clones (GNI2l and GNI07), the objective of the present

investigation was to establish a more general, non genotype-specific protocol involving

transformation of micropropagated shoots with wild-type strains of Agrobacterium
i /

rhizogenes. .

Chimeras produced with A. rhizogenes have been shown to have normal shoot growth,

better stand establishment and showed increased biomass production in both the root

and aerial parts when compared with control plants (e.g. Prunus amygdalus and Olea

europea, Strobel et al. [Strobe! and Nachmias, 1985; Strobe! et al., 1988], Populus

deltoides x nigra, Charest et al., 1992; and Pinus nigra, Milhajevic et al., 1996). Since

only the basal cells of the shoot are transformed, aberrant morphology of the plants is

usually avoided (Sutter and Luza, 1993). Unfortunately; if roots result from transformed

tissue , the improved rooting will not be carried to the later vegetative generations
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produced by stem cuttings (Hatta et al., 1996). Transformed roots can either be

functionally and anatomically similar to normal untransformed roots (e.g. in Daucus

carrota, Moore et al., 1979) or abnormal (e.g. in Malus pumila, Sutter and Luza

(1993)).

In the present study, virulent strains of A. rhizogenes from a series of 12 (mostly

agropine) wild-type strains were selected using the carrot disc assay (Table 2.11). Only

the HR1 and R1600 agropine-type strains produced roots on both sides of the carrot

discs (Fig. 2.10) and appeared to be the most virulent strains (Table 2.11). Similar

observations were reported previously for several agropine-type strains (e.g. Bercetche

et al., 1987) and factors affecting root induction on carrot discs by A. rhizogenes were

discussed by Whiteman Runs Him et al. (1988). In this study, mannopine strains (such

as TR7, 8196) produced either tumours/callus only on both apical and basal sides of

carrot discs, or produced mostly tumours/callus and few roots on apical side only (Table

2.11). However, the observations mentioned above could have been affected by factors

such as the genotype of the carrots and the pH of the medium (Whiteman Runs Him et

al., 1988) ahd are in agreement with what was previously reported by Vilaine and

Casse-Delbart (1987). Thoseauthors reported that on carrot discs (0.5 cm in thickness),

wild-type agropine strains (A4 and HR1) were virulent on both apical (facing the root

tip) and basal (facing the shoot) surfaces, while the root inducing ability of mannopine

strain TR7 was limited to the apical surface. Similar observations were recorded by

Cardarelli et al. (1987a) who suggested that the basal side of carrot discs was auxin­

depleted and mannopine-type strains such as 8196 depend on plant auxin for the

triggering of neoplastic growth.

Huang et al. (1991) suggested that compatibility betweenA. rhizogenes and host plants,

sensitivity of the plant tissues to the T-DNA, phytohormone production, and juvenility

of the host tissue are important factors in inoculation success and hairy root production.

In this study, explants of GN121 and GN107 clones were obtained from greenhouse
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plants and in vitro shoots, and were treated with five wild type strains of A. rhizogenes

selected from the results of carrot disc assay. Leaf explants appeared to be susceptible

to all five strains (HR1, R47, R1600, R1601 and TR8.3) (Fig. 2.13) and their most

common response was to curl and produce tumours/callus from the cut-end of midrib

(Fig. 2.13). The curling leaf response was similar to that observed on leaf discs of

Nicotiana glauca inoculated with A. tumefaciens (strain LBA1010 (p35SGUS-INT))

(Mozo and Hooykaas, 1992). Leaf curling and tumour/callus production was more

pronounced on explants inoculated with HR1 strain (Fig. 2.13) which also appeared to

be more virulent on carrot discs (Table 2.11). On nodal cuttings, only tumours/calli

were produced by the HR1 strain at all inoculated points (Fig. 2.11). Similar

observations were reported by Charest et al. (1992) with strains A4 and 8196 on

microcuttings of Populus deltoides x nigra and P. nigra x maximowiczii. Those authors

concluded that production of tumours instead of roots by A4 and 8196 strains could

indicate that in poplar there is a potential effect of T-DNA hormonal genes on

endogenous hormonal balance. Machado et al. (1997) attributed tumour/callus

formation on Eucalyptus grandis x urophylla seedling explants treated with agropine

strains (A4, R1601, LBA9402) to increased levels of cytokinin at the site of inoculation;

only the cucumopine strain (2659) produced dense hairy roots. Van Wordragen et al.

(1992) reported that hairy roots were later produced from tumours/callus produced by

LBA9402 on explants of Denranthema grandiflora.

Because transgenic roots were not obtained on explants of GN clones, the next step was

to ascertain if both parent genotypes were susceptible to transformation by A.

rhizogenes. Three-week-old de-rooted seedlings of E. grandis and E. nitens were

agroinfected at stem bases (according to MacRae, 1991) (Section 2.2.8). Both

genotypes appeared to be susceptible to infection but responded differently in terms of

rooting frequency, although there were no significant differences with the controls

(Table 2.12). In addition, roots produced on control and inoculated explants appeared

hairybefore explants were inserted into the medium (Section 2.3.4.3). Therefore, it is
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suggested that although A. rhizogenes is capable of producing transgenic roots (usually

confirmed by opine assay), the 'hairiness' of those roots could be attributed to the fact

that roots were exposed to air and produced many secondary roots to increase surface

area for absorption of moisture/water. The obvious sign of the transformed nature of

those roots in this study was their fast growth, profuse branching and ability to grow in

hormone-free medium (Figs. 2.14 and 2.15).
, ,;~ .:

A variety of factors appear to affect transformation frequency of those species that have

been successfully transformed with A. rhizogenes. In the study of MacRae (1991),
..

seedlings of Eucalyptus grandis, E. dunnii and E. nitens were inoculated with wild-type

strains of A. rhizogenes and strain LBA9402 was found to be most virulent (80%

rooting) (Table 2.1). In this study, however, that strain was not very efficient on carrot

discs, explants of GN clones and seedlings of E. grandis and E. nitens (Table 2.11, Fig.

2.10). MacRae (1991) also observed variations in the response of Eucalyptus species to

bacterial strains and found that percentage of rooting was dependent on both species

and the bacterium. Nester et al. (1984) suggested that different individuals of a single

species can give different responses to a particular bacterial strain, and even different

organs of a single plant can give different responses. Therefore, it is possible that results

obtained in this study were different from those of McRae (1991) because seeds from

different parent plants were used.

MacRae (1991) reported that transformed roots displayed the typical hairy root

phenotype and grew rapidly in hormone-free medium (see also Machado et al., 1997).

Such high density of E. grandis transformed roots was not observed in this study (Fig.

2.15). This could be because of both transgenic and normal roots being produced as

reported by Hatta et al. (1996) and Damiano and Monticelli (1998) for several fruit

trees.
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With seedlings of Pinus nigra, Milhajevic et al. (1996) reported that the frequency of

root formation was related to the age of seedlings inoculated. Those authors observed

best results (75% rooting frequency) with the explants of eight week-old seedlings,

compared to 2.7% and 0% for six and four-week-old seedlings. Successful

transfomation .or production of chimeras with eucalypts has generally been achieved

when very young material from seedlings was used, as shown by MacRae (1991) and

Chriqui et al. (1991) (Table 2.1). Chriqui et al. (1991) have shown that differentiated

organs from mature plants as well as micropropagated explants of Eucalyptus globulus

and E. gunnii never reacted whatever the strain (8196, 2659, 1855) used. Only young

seedlings or organs excised from these seedlings were susceptible and gave rise to

rhizogenic symptoms, the optimal responses being observed on 24 day-old plantlets.

Those authors associatecithe'loss of susceptibility of differentiated eucalypt tissue to the

increased ability to produce polyphenolics after wounding and inoculation.

Sugars and'i 'phenolic compounds released from the plants and membrane-binding

protein can differ according to plant genotypes, thus producing differing responses to A.

rhizogenes (Damiano and Monticelli, 1998). In this study, leaf explants exuded

phenolics into the medium and because these appeared to be oxidized (brownish

exudate) by the time explants were eo-cultured with bacterial cells, it is possible that

oxidized phenolics were toxic (explants died ultimately) or did not attract bacteria.
" .

Further, is has been reported that once explants of eucalypts exude phenolics into the

medium, most of them perish (Durand-Cresswell and' Nitsch, 1977; Das and Mitra,
. '

1990) or the wounded area becomes browned (George, 1993; Figs. 2.11 and 2.12),

prohibiting the passage of the bacterial cells to 'living' tissue. In this study, oxidized

phenolics probably led to the death of cells around wounded areas and could be

responsible for blocking root development.

As previously mentioned, tissue transformed with A. rhizogenes appears to be more

sensitive to auxin than untransformed tissue (Shen et al., 1988, 1990). The presence of
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IBA in the medium improved rooting frequency of Juglans nigra explants treated with

A. rhizogenef (strain 1855) from 58.5% (no IBA) to 62.9% (with 2 mg.l" IBA) although

callus was produced in large amounts in the presence of that auxin (Caboni et al., 1996).

However, in the present study, the presence of IBA did not promote rooting but

increased the size of the tumours/callus produced in its absence (Section 2.3.4.2). Even

the presence of acetosyringone did not promote rooting by inducing the virulence of

wild-type A. rhizogenes strains.

In summary, transgenic roots were not obtained on cold-tolerant clones of Eucalyptus

grandis x nitens (GN121 and GN107). Based on the observed results (Fig. 2.11), it is

assumed therefore that these clones were either transformed inefficiently or not at all by

this system. The fact that tumours/calli were produced by the HR1 strain on hormone­

free medium suggests that GN clones could be susceptible to some A. rhizogenes strains

(Nilssorr', pers. comm., 1999). One possibility is that the T-DNA was transferred into

the plant cells (as observed by tumour/callus induction by HR1 strain) but was not

successfully integrated into the host genome, or either it was transferred and integrated

but not expressed (Walden, 1988). There is evidence to suggest that methylation of the

DNA in transformed tissue can seriously affect its expression (Hepburn et al., 1983).

Van Wordragen et al. (1991) reported that in some cases the T-DNA might be

imperfectly transferred to the host plant genome.

There are many possible reasons why the wild-type strains of A. rhizogenes failed to

induce roots on explants of GN clones. The block in root induction may have resulted

from either the inability of the bacterium to transfer its T-DNA to the plant cell or the

plant cell not responding to changes in hormone level (Walden, 1988). Gheysen et al.

(1987) suggested that host DNA synthesis is required for the integration of T-DNA,

thus successful transformation may depend on the ability of the plant cell to carry out

one or morec~il cycles (Binns, 1990). According to Tinland (1996) certain plants (such...;

3 o.Nilsson, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Sweden
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as monocotyledons) may be difficult to transform with Agrobacterium because they are

equipped with better proofreading systems that do not allow the stable entry of foreign

DNA into their genomes, hence the process of T-DNA integration may be aborted.

Furthermore, the wild-type strains tested could have diverged in the two laboratories

(CSIR, Pretoria and University of Natal, Durban) and a mutation in the TL region of

agropine strains abolished their ability to induce root proliferation by itself (Vilaine and

Casse-Delbart, 1987). Finally, the tested strains could have been weakly motile and

acetosyringone did not elicite virulence of strains at the concentrations tested (Winans,

1992). Therefore, conditions that would favour successful transfer, integration and

expression of the T-DNA ofthe pRi need to be established in order to produce chimeras

ofE. grandis x nitens.

'f: '~'
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CHAPTER 3: ASSESSMENT OF THE HYDRAULIC EFFICIENCY OF ROOTS PRODUCED BY in

vitro VS. CUTTING PROPAGATION

3.1 LITERATURE REVIEW

Vegetative propagation of selected genotypes of Eucalyptus via cuttings and in vitro

techniques is commonly used to establish clonal plantations because of rapid genetic

gain and reduced variability among planted individuals (Yang et al., 1995). The

advantages and procedures for the clonal propagation of cold-tolerant clones of

Eucalyptus grandis x nitens were discussed in the previous chapters. Although there

have been a few field trials comparing cuttings with tissue culture-produced plants, not

enough is known about properties of roots ofplants propagated by those methods. To be

of value, micropropagated trees should be similar or better physiologically than those

derived from cuttings. In this regard, studies on hydraulic conductivity are important

because differences III growth responses between macropropagated and

micropropagated plants may be related to their ability to transport water from the roots

tothe shoot. Therefore, the objective of the present investigation was to contribute to

the understanding of this issue by comparing root anatomy and hydraulic conductivity

of the roots of clones GN121 and GN107 produced in vitro (Chapter 2) and from

cuttings (provided by Mountain Home Laboratory, Mondi Forests) .

3.1.1
i j

: The nature and origin of roots

Audus (195~) defined a root as a cylindrical organ, often branched, growing vertically

or obliquely downwards into the substratum on which the plant lives, and serving

thereby two important functions: (1) anchorage and support for the aerial portions of the.

plant; and (b) absorption of water and dissolved mineral salts which are essential for
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continued plant growth. Hartmann and Kester (1975) divided the process of

development of adventitious roots in stems of cuttings into three stages: (1) cellular

differentiation followed by the initiation of groups of meristematic cells (the root

initials); (2) the differentiation of these cell groups into recognizable root primordia;

and (3) the growth and emergence of the new roots, including rupturing of other stem

tissues, and the formation of vascular connections with the surrounding tissues of the

cutting. Continuous sclerenchyma rings between the phloem and cortex exterior to the

point of adventitious roots, may constitute an anatomical barrier to rooting. In a study of

olive stem cuttings, such rings were associated with difficult-to-root cuttings, whereas

those that were easy-to-root were characterized by discontinuities of the sclerenchyma

(Clampi and Gellini, 1963, loc.cit. Hartmann and Kester, 1975). Biricolti et al. (1994)

noticed pronounced changes in the stem of shoots of Castanea sativa x crenata during .

the initial stages of root development. Briefly, there was an interruption of the rhythmic

sclerenchyma rings and their replacement by less differentiated structures, the transition

of the medullary rays from uniseriate to multiseriate, and the exceptional increase of

parenchymatissues in the hyperplastic cortex. In woody perennial plants, where one or

more layers of the secondary xylem are present, adventitious roots in stem cuttings

usually originate in the young secondary phloem (Hartmann and Kester, 1975).

It is well known that in vitro microcuttings form adventitious roots in greater number

and more quickly than ex vitro cuttings (McClelland et al., 1990). However, it is

unclear whether the majority of original in vitro roots are tenacious in the ex vi;"o

environment, or are replaced by more competent ex vitro roots after transplanting

(Torrey, 1986;"McClelland et al., 1990). Roots are highly variable; major differences
i , •

are seen among species, habitats and even along the length of an individual root. This

means that their ability to transport water may differ because of anatomical differences.. ,
therefore, results of hydraulic conductivity obtained with one experimental system

cannot be automatically applied to all roots (Steudle and Peterson, 1998).
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3.1.2 ., The hydraulic architecture of roots

The mechanism of sap ascent in the xylem was explained by the cohesion theory (Dixon

and Joly, 1895; Tyree and Sperry, 1989; Tyree and Ewers, 1991; Milburn, 1996). Water

ascending trees usually does so under negative pressure down a gradient of increasing

negative pressur~ (Tyree and Ewers, 1991). The negative pressure is physically

equivalent to a tension (a pulling force) transmitted to soil water via a continuous water

column, and any break in the column necessarily disrupts water flow (Tyree and Sperry,

1989). Hydrogen bondiIl:g. ?romotes cohesion between water molecules and allows

water to remain liquid under tension (metastable state) (Tyree and Sperry, 1989;

Milburn, 1996).

.(
Under conditions of transpiration, water is not taken up actively by the roots, but instead

it moves passively through the root in response to a water potential gradient set up by

transpiration (Steudle and Peterson, 1998). The structure of the water conducting system

of roots, i.e. the hydraulic architecture, influences water transport from the surface of

the roots to the root xylem. Water moves through a series of tissues each with a

hydraulic conductivity (i.e. .the ability to conduct water) that can change with root

devel~pment and with the availability of soil moisture (North and Nobel, 1996). By

applying Ohm:,s law to water flow through the root cylinder of young maize root,

Steudle andPeterson (1998) suggested that the water potential will drop along the

different tissues which are arranged in series (epidermis, cortex, pericycle, parenchyma

and tracheary element walls) because their resistances are additive.

Three main parallel pathways of water flow that play an important role during the

passage of water across the different tissues have been distinguished (i.e. apoplastic,

symI?~.astic and transcellular paths) and these form the basis of the composite transpot

model of water across roots (Peterson and Enstone, 1996; Steudle, 1997; Steudle and

Heydt, 1997; Steudle and Peterson, 1998). Apoplastic transport occurs through the cell

.'~
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walls, skirting the protoplasts of the cells; symplastic transport occurs when a substance

already in the cytoplasm passes into the cytoplasm of a neighbouring cell through

plamodesmata; and transcellular movement occurs when the substance passes through

both the plasmalemma and tonoplast on its way through the cell, thus moving through

the vacuole (Peterson and Enstone, 1996).

Roof hydraulic conductivity for most plants is limited by radial conductivity of the

tissues outside the xylem, although the xylem or axial conductivity can be limited near

the root tip where conduits are immature (McCully and Canny, 1988; Frensch and

Sperry, 1989). The development of suberin lamellae in the radial and transverse walls of

the endodermal and exodermal cells (characterized by presence of the Casparian band)

places two hydrophobic resistances in the transcellular path of water flow through cells

(peterson and Enstone, 1996). The function of a suberinized Casparian band is to

channel some of the water movement from the apoplast into the symplast.

In roots undergoing secondary (thickening) growth, the endodermis loses its function as

an apoplastic barrier but only after being replaced by a suberized periderm which can

also influence water uptake (Moon et al., 1986; McKenzie and Peterson, 1995).

According to the composite transport model of Steudle and eo-workers (Steudle et al.,

1987; Steudle et al., 1993; Steudle and Frensch, 1996; Steudle and Heydt, 1997), the

differences in the degree of suberization of the endo- and exodermis between species

may account for the differences in hydraulic conductivity of their roots. The model

further proposes that in transpiring plants with a demand for water from the shoot, root

hydraulic conductance would be high (low hydraulic resistance), and there would be

considerable apoplastic flow of water. At water shortages and low or zero rates of

transpiration, the apoplastic path will be less used and flow would be largely osmotic

which would require a high osmotic pressure in the root xylem to take up water. On the

other hand, a high hydraulic resistance of the root would reduce water losses to a dry

soil (Steudle and Heydt, 1997). Furthermore, the composite transport model assumes

d:
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that axial hydraulic resistances for primary roots of seedlings (e.g. maize roots) are

small compared with radial resistances. However, according to the authors of the model,

the approach is a good approximation for short roots but may be questioned for long

roottor extended root systems, when the axial resistance is relatively high compared

with the radial resistance (Steudle and Heydt, 1997).

Passage cells frequently occur in the endodermis and exodermis of roots and since they

lack suberin lamellae, they would constitute a lower resistance pathway for water flow

into the stele (Peterson and Enstone, 1996). Passage cells are limited to the zones of cell

division, cell elongation and cell differentiation along the root, whereas cells in the zone

of cell maturation cannot serve as passage cells because they have developed suberin

lamellae (peterson and 'Enstone, 1996). Along cell-to-cell path, water channels
.r-

(aquaporins) in the plasma membrane play an important role in water transport. It is

thought that aquaporins are highly selective for just water because of their narrow

diameter (hydrophilic pore) that allows the passage of water molecules just one by one

in a single file (Steudle and Heydt, 1997). Transport of water through the channels

enhances the hydraulic conductivity of cell membranes several times, and it is thought

to be purely passive flow following water potential gradients across the membranes

(Steudle and Heydt, 1997). Since roots show considerable changes in cell and root

hydraulic conductivity in response to environmental factors, Steudle and Heydt (1997)

hypothesized that in additi~n to the apoplastic path, the cell-to-cell path for water could

be controlled as well, namely by opening and closing of water channels. Steudle and

Peterson (1998) further proposed that water channel activity accounts for 'fine

adjustment' ":of water uptake under conditions of water shortages in young roots, or

when the endo- and exodermis have suberin lamellae with the exception of passage

cells.
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3.1.3 Hydraulic conductivity
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Vascular plants have evolved two types of highly modified cells, tracheids and vessel '

members, strands ofwhich provide an axial pathway with an exceedingly low resistance

to water flow. In the tracheids, this is accomplished by loss of protoplasts, and in some

species degradation of the primary wall material in pits intervening between adjacent

elements. In the case of vessel members, there is a similar loss of the protoplast and also

a partial or complete removal of end walls between axially adjacent cells. These

modifications reduce resistance to water flow (Steudle and Peterson, 1998).

The axial component within the lumena of tracheary elements is purely a bulk flow that

is propelled''by hydrostatic gradients set up by transpiration. In the root cylinder, the

xylem acts as a duct that collects the water taken up radially and rapidly transfers it to

the shoot. This however, requires that the axial hydraulic conductance is much larger

than that of the radial pathway across the root cylinder (Steudle and Peterson, 1998).

According to Poiseuille's law, the diameter of the conducting channel has a huge effect

on its hydraulic conductance (which varies with its fourth power), and consequently the

narrow diameters of the conduits offer considerable resistance to water flow

(Zimmermann, 1983; Tyree and Ewers, 1991; Steudle and Peterson, 1998). According

to February et al. (1996), vessel diameters and vessel element lengths generally
:"),J

decrease while vessel frequencies increase with increasing aridity.

Hydraulic conductivity is typically measured on excised xylem samples attached to a

hydraulic system for measuring the pressure difference (~P) of a fluid (usually water)

across the sample and the mass flow rate (m) through the sample (Sperry et al., 1988).

The pressure-flow relationship has been expressed in a variety of ways, the simplest
. ~ J ; ' .

being hydraulic conductivity (kh) , where kh = m/Al'. In the case of roots, specific root

mass hydraulic conductivity (Ks) can be comparedamongst samples by expressing

conductivity.per unit mass or surface area (K, = m/(~P/g) or Kh = m/ ~P/area).
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Data for hydraulic conductivity of roots of seedlings (especially primary maize roots)

has been obtained by the root pressure probe technique (Rudinger et al., 1994; Steudle

and Meschcheryakov, 1996; Steudle and Heydt, 1997). With that method, root hydraulic

conductivity was expressed on the basis of root surface area. However, Tyree et al.

(1994b) cautioned that this approach is appropriate only if flow is approximately

uniform over the whole root surface area and the main barrier to flow is at the outer

surface. According to Ford and Harrison-Murray (1997), those conditions would not

necessarily be satisfied by the newly formed adventitious root system of a cutting. For

example, a tenuous vascular connection at the junction between roots and the stem

might present a major resistance to flow. Furthermore, accurate measurements of the

root surface are difficult (Ford and Harrison-Murray, 1997). Therefore, either root fresh

mass or dry mass is used to express hydraulic conductivity of an adventitious root

system.

Forbranched adventitious roots, the hydraulic method of Sperry et al. (1988) was

modified by several authors (Kolb et al., 1996; Ford and Harrison-Murray, 1997) and

was deemed more reliable than other methods of measuring hydraulic conductivity by

Tyree and Sperry (1989). Branched root systems have lower conductances than their

unbranched counterparts, and because it is easier to measure flow from one entry point,

vacuum pressure instead of above-atmospheric pressure is normally used to drive the

flow (Kolb et al., 1996; Ford and Harrison-Murray, 1997). The use of vacuum pressure

allows for a maximum pressure difference (and increased flow) with less danger of

refilling embolized conduits in the process (Kolb et al., 1996). According to Ford and

Harrison-Murray (1997), a potential problem with vacuum-type measurement is the

formation of air bubbles in the water emerging from the cut stem, which may lead to

erroneously-high estimates of water flux. Under hand-lens magnification, those authors

observed bubbles originating from the cortical regions of the stem, suggesting that

pressurizing the root system might be causing infiltration of water into the intercellular

air spaces of the root cortex, such that displaced air was being forced out through the

1 .. .~
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cortex at the cut end of the system. Ford and Harrison-Murray (1997) noticed that

"decorticating" about 1 cmof the stem before attaching the silicone tubing to the root

system reduced the air bubble problem significantly.

The junctions of tree branches in gymnosperms and some angiosperms were reported to

be hydraulically constricted (Tyree et al., 1983; Ewers et al., 1989). The function of this

hydraulic segmentation would be to favour the main pathway over any side branches

(Zimmermann, 1983). Therefore, it is possible that the junction of the adventitious roots

and the stem represent an area of high resistance to water flow. In times of stress when

water is limiting, secondary and tertiary roots may be sacrificed first according to the

hydraulic segmentation hypothesis (Tyree and Ewers, 1991). Although micropropagated

eucalypts produce more adventitious roots and thus grow faster for the first few years,

filed studies have shown that cutting-derived plants catch up in height after a few years

(Watt et al., 1995; Yang et al., 1995). It is possible that the rate of growth in

micropropagated plants is slowed down or reduced because of the increasing hydraulic

resistance at the shoot-root junction with increasing height, since more roots are

connected to the stem than in cutting-derived plants.

3.1.4 Vulnerability to cavitation

The occurrence of cavitation and subsequent embolism in the xylem decreases hydraulic

conductance and may diminish the ability of a plant to maintain water transport and

carbon uptake (Zimmermann, 1983; Tyree and Ewers, 1991). Cavitation occurs when a

void of sufficient radius forms in water held under negative pressure in the xylem

conduits. It results in a vapour-filled xylem conduit that gradually becomes air-filled as

air diffuses in from surrounding tissues (Tyree and Ewers, 1991; Tyree et al., 1994a).

These air-filled or embolized conduits are incapable of water transport and reduce the

overall conductance of the xylem (Kolb et al., 1996) until water potential returns to near

atmospheric pressure for the air bubbles to dissolve (Tyree and Ewers, 1991). As
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opposed to the radial hydraulic resistance discussed previously, the magnitude of axial

hydraulic resistance appears to depend on the number of xylem vessels affected by

embolism. Surface tension usually makes the void/water interface stop at the pit

membranes between adjacent conduits and prevents its from advancing to adjacent

conduits (Tyree and Ewers, 1991). At water potential near zero, surface tension can

raise the pressure of the air bubble above atmospheric pressure, causing the embolism to

dissolve over a period of days (Tyree and Sperry, 1989).

Four mechanism were proposed for the nucleation of cavitation in xylem vessels, and

the most widely accepted is the air-seeding hypothesis of Ziminermann (1983) (see

review by Tyree et al.,1994a). According to the hypothesis, air seeding occurs when an

air bubble is sucked into a water-filled lumen via a pore from adjacent air spaces.

Embolisms are the natural consequence of foliar abscission, herbivory, wind damage

and other mechanical fates that might befall a plant (Tyree et al., 1994a). The literature

does not provide a solid indication of whether roots are equally susceptible to cavitation

like shoots, nor does it show whether the water potential of the roots and shoots are

equal or similar.

A correlation exists between large conduits and vulnerability to cavitation within an

individual, But it does not necessarily hold among species (Tyree and Sperry, 1989).

Increasing the permeability of pits to air by changing the surface tension of the xylem

sap, or by other means (e.g. pathogens) also increases the vulnerability of the xylem to

,
/ embolism. Thus rather than conduit diameter, it is pit membrane pore diameter that

determines a conduit's vulnerability; the larger the pore, the more vulnerable the
!
ii conduit (Tyree and Sperry, 1989). According to Tyree and Sperry (1989), there are

)

' tra~e~()ffs betw. "" ~lnerability to cavitation and vessel size: smaller pores confer

resistance to cavitation and on the other hand, they may reduce the hydraulic

conductivity of'the xylem.
~. 12.
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In essence, the hydraulic conductivity of the xylem of excised plant segments is

measured before and after removal of air embolism by high-pressure flushes (e.g. 175

kPa) (Sperry et al., 1988). Xylem embolism is then quantified by expressing the initial

conductivity as a percentage of the maximum obtained after flow impeding air emboli

have ,been removed. In this way, the cumulative effect of all cavitations that have

occurred (and not been repaired) is measured (Tyree and Sperry, 1989). Reduction in

the conductivity of the roots is visualized by determining a "vulnerability curve", which

is a plot of the percent loss in hydraulic conductivity versus the xylem pressure potential

required to induce that loss (Sperry et al., 1988; Tyree and Ewers, 1991; Kolb et al.,

1996). Although ' this is a destructive method of cavitation assessment, it simply

involves the measurement of the hydraulic conductivity of excised root or shoot

segments dehydrated to known water potentials, before and after the removal of air

embolisms by a high pressure treatment (Kolb et al., 1996). Measurements of the

vulnerability curves of roots and the hydraulic architecture can provide valuable insight

into the possible drought resistance of trees and limitations imposed on the species by

environmental 'stresses (Tyree and Ewers, 1991).

3.1.5 Aim of this investigation

The present investigation was focused on assessing the anatomy and hydraulic

conductivity of roots produced by in vitro vs. cutting propagation. Root anatomy of

micropropagted plants wasdetermined before and six months after hardening-off and of

cuttings after six months. Hydraulic conductivity and the vulnerability of cavitation

were determined following dehydration to known water'potentials,
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3.2 MATERIALS AND METHODS

3.2.1 Root hydraulic conductivity

a) Measurement apparatus

Mokotedi, 1999 Chapter 3

The hydraulic conductance of adventitious roots was measured according to Kolb et al.

(1996). Plants were prepared for hydraulic measurements by de-topping explants outside

water to avoid re-imbibing dehydrated material. The root system with the original potting

medium left undisturbed was turned up side down and the stem stump immediately

submerged in water. The second cut was then made under water about 2 cm below the first.

The stump was then fitted via tubing to a supply of filtered (0.22 urn), degassed and

acidified distilled water (pH 2,32% (v/v) HCl). This filtered, low pH solution was reported

to inhibit microbial growth within the tubing system that can lead to clogging of the xylem

during conductance measurements (Sperry et al., 1988). Tests have shown no influence of

that solution on hydraulic conductance compared with distilled water or organic acid

solutions (Sperry and Saliendra, 1994). The water was degassed to minimize the formation

of air bubbles and filtered to prevent particulate matter from blocking the conduits (Sperry

et aI., 1988; vander Willigen, 1996).

The end of the stem stump was wrapped with seal tape and inserted into plastic tubing

connected to a water reservoir (i.e. a volumetric flask half-filled with filtered, acidified

distilled water) (Fig. 3.1). The undisturbed adventitious root system was then placed in a 9

x 50 cm polyvinyl chloride (PVC) pipe (pressure chamber) capped at both ends by

removable Plexiglas lids. The lids were provided with holes; for fitting the pressure gauge

at one end of the chamber and for the proximal end of the stem stump to protrude at the

other end. The stump was then pushed through a rubber stopper to provide an airtight seal

after it was connected to the tubing. The water reservoir was placed on a balance connected

to a computer. The surface of the water reservoir was placed about 25 cm below the

pressure chamber to ensure no gravity-induced flow into the adventitious root system.

111



Materials and Methods Mokotedi,1999 Chapter 3

Distal end of the tubing was attached to a 10 ml pipette (bent at 90°) dipped into the water

reservoir (Fig. 3.1).

Pressure gauge

B -----.

To vacuum pump
or gas cylinder

D
E

Fig. 3.1: The apparatus used for measuring the hydraulic conductance of

undisturbed potted roots. Solution was supplied to the roots from a reservoir (A)

located on a balance (which was interfaced with a computer). Roots were enclosed in

a PVC pipe (B) with their original pot (C) and vacuum/flushing pressure applied. A

two-way valve (D) was used to control the supply of solution from the reservoir or

from a 20 ml syringe (E) which was used to refill the reservoir and also to release any

air bubbles trapped within the system.
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Flow through the xylem was induced by vacuum pressure at 40 kPa and the slope of the

curve (flow rate in g.S-I) prior to removal of emboli provided initial hydraulic conductance

(k.). After measuring k, the pressure chamber was half-filled with distilled water, which

was then forced under a 160 kPa pressure (provided by compressed air from a gas cylinder)

through the xylem in the direction opposite to normal flow for 30 minutes. Following

removal of emboli, a fresh cut was made across the stem stump and any bubbles introduced

into the tubing were released before reconnection of the tubing to the stump under water.

Flow rate was then measured and the slope of the curve after all emboli had been removed

provided the maximum hydraulic conductance (km). After measuring km the supporting

medium was carefully washed from the roots with minimum damage and the wet masses,

were determined.

Representative plots of hydraulic conductance for in vitro and cutting-derived adventitious

roots were determined using non-stressed plants (water potential less than 100 kPa) across a

vacuum pressure difference (40, 60, 80 and 100 kPa). At the end of each initial and final

measurement, the tubing was allowed to relax for 10 minutes to return to its pre-pressurized

state because under vacuum conditions, the walls of the tubing may be slightly compressed

and when pressurized they may expand. \ '

b) Conductivity calculations

Roots, with some of the potting material still attached were oven dried at 80°C for 48 hours

to a constant dry mass (in grams). Thereafter, potting debris was removed and the actual

dry mass was determined by subtracting the mass of potting debris. Specific root mass

hydraulic conductivity (k.) was then determined by dividing the hydraulic conductance by

the root dry mass. The leaf area of the whole shoot was measured using a CI-251 Leaf Area

Meter (CID, Inc., Vancouver, Canada) and used to determine leaf specific conductivity.
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The following formulae were used to calculate hydraulic conductivity:

Hydraulic conductivity (kh) = flow rate (g.s-I)/pressure difference (kPa)

Specific root mass h~draulic conductivity (k.) = kh (in g.kPa-1.s-1)/root dry mass (g)

The leaf specific conductivity was calculated by ' dividing hydraulic conductivity

(g.kPa-1.s-l ) by the leaf area (m-2
) supplied by those roots.

3.2.2 Plant material

Four-week old rooted cuttings of GN107 clone were obtained from Mountain Home

Laboratory, Mondi Forests. These had been rooted under misthouse conditions in 55 cnr'

inserts containing a mixture of 1 vermiculite : 3 perlite (v/v). Micropropagated plants of

GN121 and GNI07 clones (Chapter 2) were hardened-off in 250 cnr' pots containing a

potting mixture of 1 river sand: 9 pine bark (v/v). All plants were watered daily and

sprayed with fungicides and fertilizers weekly (Section 2.2.1). Plants propagated by the two

methods were grown for six months in the greenhouse in original containers before

hydraulic characteristics were studied.

Before measurements of hydraulic conductance, two preliminary tests were conducted to

ascertain if cuttings were properly sealed at the base of the stem. Stems of four cuttings

were trimmed approximately 7 cm from the root system. Two of these were joined through

the sttunp to tubing connected to a gas (air) cylinder. The supporting medium was gently

rinsed from root-system (with minimal damage) which was subsequently submerged in a

beaker filled \Vith water. Air was forced at 200 kPa for 30 minutes through the cut end of

the stem stump and the base of the stem was observed for release of air bubbles. After that

period, no bubbling occurred. The other two cuttings were used in the second test, where a

solution of safranin (0.05% w/v) was forced through the roots from the cut-end of the

stump at 200 kPa for 1~ hours. Cross sections of the stem stump and roots revealed

safranin only in the root and stem xylem above the rooting zone but not below that zone.
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These experiments confirm,l?d that cuttings were properly sealed and water flow would be

through the roots.

3.2.3 Loss of hydraulic conductivity

Experiments were conducted in summer when temperatures in the greenhouse reached

3SoC during the day. Twenty to twenty-five explants were selected at random, watering was

withheld and the plants allowed to dehydrate over a period of two to three days in the

greenhouse. At two-hour intervals during that period, two plants were tightly enveloped in

plastic bags and transferred to the laboratory where they were incubated in the dark for 24

hours to allow water to equilibrate throughout the shoot and root systems. The shoot system

was covered in a 14 x 17 cm bag and the whole plant with its insert/pot enveloped in a 22 x

30 cm bag. The stems were then excised, water potential measured using a pressure

chamber and k, and kmax determined as described above.

Vulnerability calculations

The percentage loss of hydraulic conductivity (PLC) was then calculated as

:,PLC = 100 (kmax - ki)/kmax

wherekmax and k, represent maximum and initial hydraulic conductance, respectively.

Measurementswere conducted until all the leaves had dried and that occurred by the end of

day two for cuttings and day three for in vitro-produced plants. Vulnerability curves were

constructed by plotting the loss of hydraulic conductance against water potential. Each

point on the curves represented a separate individual plant.

': -- •.'i,
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3.2.4 Root anatomy

a) Wax embedding
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Root anatomy of micropropagated GNI07 and GN121 clones was studied before and six

months after hardening-off. The anatomy of roots from cuttings of GNI07 clone was

examined after six months of growth in the greenhouse. Samples of root midsections and

root tips (± 1 cm in length) were excised and fixed in formalin : acetic acid: alcohol (FAA)

for 24 hours (Appendix). They were then dehydrated in a series of butanol:ethanol:water,

thereafter tak~n through waxlbutanol solutions. Samples were incubated overnight in

Paraplast paraffin wax (100%) then embedded into moulds in fresh wax.

b) Sectioning and staining

Embedded samples were sectioned at 10 - 15 urn with a rotary microtome (AO 820,

American Optical, Buffalo'Ny, USA), adhered to slides pretreated with Haupt's adhesive

and double stained with 1% (w/v) safranin and 0.5% (w/v) fast-green both in 70% (v/v)

ethanol (Appendix). Sections were cleared in xylene and coverslips were mounted with

DPX (Unilab Saarchem, South Africa) for light microscopy.

c) Light microscopy and Photography

Slides of cross sections of samples were viewed under a Wild M3 stereomicroscope and

recorded using a Wild Photoautomat MPS55 system.
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3.3 RESULTS AND DISCUSSION

3.3.1 Hydraulic characteristics
~ .<
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Figure 3.2 is a representative plot of the vacuum pressure flow relationship before and

after the removal of emboli. A straight line was fitted through the data by linear

regressionfk/ values ranged from 0.88 to 0.99 for in vitro-produced roots and from

0.86 to 0.99 for those of cuttings), and the slope of the line was used as an estimate of

the root system hydraulic conductance. The initial hydraulic conductance (k.) of a

cuttiiig-derived root system (A) was 5.0 x 10-5 g.s-l.kPa-1 and of an in vitro-derived root

system (B) was 10 x 10-5 g.sl .kl'a'. The maximum hydraulic conductances (km) after

removal of all ~mboli were 8.0 x 10-5 and 25 x 10-5 g.s-l.kPa-1 for cutting- and in vitro­

derived roots respectively. The root systems were 38% (A) and 60% (B) embolized.
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Fig. 3.2: Specimen graph showing the rate of water flow. through the root systems of

cuttings (A) and in vitro-produced roots (B) of GNI07 clone before (+) and after

flushing (.) with filtered, acidified distilled water.

Figure 3.2 indicates that after a 3D-minutes flushing with filtered, acidified distilled

water, the slope of the maximum hydraulic conductance for in vitro-produced roots was
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closer to a zero intercept than the slope of the initial conductance, suggesting that most

of the native embolisms have been dissolved. Zimmermann (1983) suggested three

causes of the initial non-zero intercept: osmotic uptake of water by the symplast,

gradual dissolution of air emboli in xylem conduits, and capillary uptake of water in

intercellular space. In any case, flushing the xylem with solution would eliminate or

reduce the intercept (Kolb et al., 1996). However, the maximum hydraulic conductance

of roots of cuttings was further from zero than the initial conductance, suggesting that

flushing increased hydraulic resistance or some xylem vessels were somehow blocked

as a result of flushing, even though the perfusing solution was filtered. This observation

may suggest an experimental error or that roots of cuttings require higher pressures

during flushing to dissolve embolisms.

It was surprising that roots of fully hydrated plants showed a 38% and 60% reduction in

xylem conductance. A similar observation was reported by Kolb et al. (1996) for

seedling roots of a desert shrub (Artemisia tridentata), and those authors suggested that

perhaps root xylem was more vulnerable to embolism than stem xylem. Therefore, the

water 'potential of shoots ofwell-hydrated plants « 100 kPa) may not necessarily reflect

the water potential status of the roots even when transpiration is minimized by covering
,~,--r

the plants in plastic. With eucalypt trees, February et al. (1995) reported that xylem

vessel diameters tend to be greater in roots than stems and greater in the stem than

branches. Hence, roots may be more efficient in transporting water than 'stems and

branches.

At any rate, in vitro-produced roots were capable of transporting about twice the

amount of water to the shoot (Fig. 3.3). Specific root mass hydraulic conductivity (k.)
'i;

and . leaf specific conductivity (ki) were calculated by dividing the hydraulic

conductivity by the root dry mass (in grams) and leaf area (in m2
) , respectively. Values

for in vitro-produced roots were found to be significantly higher (Student r-test, P '<

0.05), compared with those of cuttings (Fig. 3.3) and such differences were attributed to
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differences in leaf areas (l: 2, cuttings : in vitro) and dry root masses (l: 3, cuttings : in

vitro). In some studies, root fresh mass was found useful for expressing hydraulic

conductivity of roots because of a significant increase in hydraulic conductivity with an

increase in root wet mass (e.g. in Corylus maxima and Weigela florida, Ford and

Harrison-Murray, 1997). However, fresh root mass may not be reliable because it

depends on factors such as root density, amount of water absorbed by the roots and

other soil debris attached to the roots. In the present study, larger (dry) root mass of in

vitro-produced roots resulted in consistently high specific hydraulic conductivity (k.)

values (Fig. 33).
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Fig. 3.3: Some hydraulic characteristics of six month-old adventitious roots

produced in vitro and from cuttings ofGNl07 clone.
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3.3.2 Vulnerability to cavitation
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The vulnerability of roots to cavitation was measured as the percent loss of hydraulic

conductivity with decreasing water potential (Fig. 3.4). Both types of roots appeared

vulnerable to cavitation at low water potentials regardless of the significant differences

in root mass. .Further, there appeared to be no significant differences between the

curves (Fig. 3.4). This suggests that conductivity is lost over a narrow range of water

potentials for adventitious roots of clone GN107. The lack of any differences in the

vulnerability of the xylem to cavitation between cutting-derived and in vitro-produced

roots further suggests that even though the former had a greater xylem area than the

latter (Fig. 3.6), this was not large enough to result in any change in vulnerability.

Although, there are some reservations about the data presented in Figure 3.4, it came as

no surprise that conductivity of the roots was reduced at low water potentials since

well-hydrated roots showed high percentages of embolism at low shoot water potentials

(Fig. 3.2).

As mentioned previously, one of reservations concerns the water potential of the roots

dehydrated to 'known' water potentials. As shown in Figure 3.4 some root systems at

low water potentials « 50 kPa) experienced up to 70% loss of hydraulic conductivity.

This is in contrast to what was previously observed for shoots obtained from field­

grown and greenhouse-grown cuttings of Eucalyptus grandis hybrid clones (February

et al.; 1995; vander Wilii~~n, 1996). Therefore, it is possible that the water potential of

the' 'roots in this study was not the same as the water potential of the shoot after 24

hours of equilibration. However, since the root system has to be at lower water

potential than the shoot system for water to flow into root cells, it is tempting to agree

with Kolb et al.'s (1996) suggestion that roots may be more vulnerable to xylem

dysfunctions (such as embolism) than shoots.
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On the other hand, it may be possible that a 40 kPa vacuum pressure facilitated refilling

of embolized vessels, thus reducing the difference between the initial and maximum
< .•'

hydraulic conductivities. This in turn would have resulted in high PLC values at low

water potentials. The suggestion is supported by a previous report of Cochard et al.

(1994). Those authors showed that with culms of Rhipidocladum racemoflorum, high

vacuum pressures (> 2 kPa) refilled embolized vessels.
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Fig. 3.4: Vulnerability curves of adventitious roots of clone GNI07 using the method of

Kolb et al. (1996). Roots produced in vitro (.) and from cuttings (~) were allowed to

dehydrate over two to three days whilst data was recorded.

The pathway for water flow through the roots involves two components, radial (root

surface to xylem) and a~ial (longitudinal in the xylem). Working with two desert
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succulents (Agave desertii and Ferocactus acanthodes), North et al. (1992) found that

embolisms caused by dehydration reduced the axial conductance at the junction of the

main root-lateral root whereas the radial conductivity increased at those areas. The

stellar anatomy at main root-lateral root junctions was found to be different from that in

a main root or a lateral root. For example, in nonjunction regions, xylem vessels were at

least surrounded by relatively thin walled parenchyma cells whereas the proximal tissue

of the lateral root at the junction consisted of thick, suberized and lignified phloem

cells. (North et al., 1992). Therefore, it is possible that following dehydration, the

overall hydraulic conductivity of roots is reduced depending on the degree of increased

watef 'potential caused by a decrease in axial conductivity. Further, North et al. (1992)

proposed that anatomical changes accompany an increase in radial conductivity during

drying. Those authors found that for A. desertii, the thin walled parenchyma cells

between the thickened, sclerified layers of the main root and the lateral root may have

lost turgor and separated during drying, thereby opening a channel for more water

movement from the root surface to the stele. For the present investigation, the above

observation could imply that flushing with an acidic filtered solution significantly

increased the flow rate because the passage of water was increased when certain cells

collapsed during drying, considering the juvenile age of those roots.
L' ·

Xylem pressure potentials of the roots may differ from those of shoot systems because

of the existence of root pressure in some plant species. Root pressure is a force

developed in the root cells when there is excess water in the soil and quantities have

been moving into the root cells (Wilson et al., 1971; Dittmer, 1972). However, fast­

growing and efficient ground-water consuming crops such as eucalypts may not exhibit

root pressure. In species that exhibit this phenomenon (e.g. Rhipidocladum racemijlora,

Cochard et al., 1994), root pressure may occasionally be useful in forcing air out of

xylem vessels and re-establishing broken water columns, but is certainly of no value in

lifting quantities of water in transpiring plants (Wilson et al., 1971; Dittmer, 1972).
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3.3.3 Relationship between hydraulic conductance and physical status of roots

In the present investigation, root hydraulic conductance was measured on intact ,

undisturbed roots of clone GNI07 propagated in vitro and through cuttings, by placing

the root system with its original container into the pressure chamber. As shown earlier

(Fig. 3.2), a line drawn through the data points was not as straight as in those studies

whereby roots were excavated and washed free of soil before determination of

hydraulic con~uctance (Kolb et al., 1996; Ford and Harrison-Murray, 1997). Ford and

Harrison-Murray (1997) noted that when hydraulic conductance was measured on an

undisturbed root system of Corylus maxima, a plot of hydraulic conductance against

root fresh mass was more scattered than when soil was washed-off the roots. However,

there was no significant difference between the slopes when both sets of data were

modelled by linear regression constrained through the origin.

Kolb .et al. (1996) removed the root tips of seedlings of Artemisia tridentata prior to

assessment of hydraulic conductance in order to expose the xylem at both ends of the

flow path so that flow could be measured in parallel to all severed root tips. In that

study, it was not reported whether removal of root tips had a significant increase in

hydraulic conductance but authors agreed that it may at least be difficult to remove all

root tips of a branched root system or at most impossible to make comparisons between

root systems. Ford and Harrison-Murray (1997) reported that excision of root tips of

Cotylus maxima led to an initial increase in hydraulic conductance but the rate of flow

decreased with time presumably because of rapid blocking of the conduits by micro­

organisms and particleaentering the cut. Hence any broken roots were sealed with

molten lanolin. According to those authors, the effect of excising the root tips indicated

, that radial resistance in intact roots provided the major barrier to water flow. Roots of
'1trees have been suggested to be less permeable to sap than those of herbaceous crops

probably due a higher degree of suberization of the endo- and exodermis as well as the

periderm (Steudle and Heydt, 1997). Steudle and eo-workers (Frensch and Steudle,
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1989; Steudle and Peterson, 1998) demonstrated experimentally that in young maize

roots it is the radial rather than the axial resistances that limit water uptake. Therefore,

removal of the root tips may provide incorrect hydraulic conductivity of roots because

conductivity depends on both radial and axial water flow.

3.3.4 Root external morphology and anatomy

Invitro-propagated plants of clone GNI07 (and GN121) hardened-off in 250 cnr' pots

containing 1 river sand : 9 pine bark, produced more roots than cuttings in 55 cnr'

inserts containing 1 vermiculite : 3 perlite after six months (Fig. 3.5). On average,

cuttings produced one thick main root and a few fine roots (smaller root volume) a short

distance above the stem base, whereas in vitro-propagated plants produced over three

thick main roots from the stem base and more fine roots (larger root volume) (Fig. 3.5).

Most roots produced from in vitro-propagated plants appear to have been produced ex

vitro because an average number of two roots were produced in vitro after 28 days of

rooting (Table 2.8). For the sake of clarity and distinction between roots originally

produced ex vitro from cuttings, those roots of in vitro-propagated plants will hereafter

be referred to as 'in vitro-produced' roots.

The different types of supporting medium must have affected the number and size of

roots produced. Initial attempts to harden-off in vitro-propagated plantlets in 55 cnr'

inserts containing 1 vermiculite : 3 perlite resulted in 100% mortality rate, probably

because of rapid loss of moisture from the supporting medium. Differences between the

two types of roots were also observed in the root tips. The root tips of cuttings appeared

'swollen' and sausage shaped probably because they were exposed outside the support

medium, whereas those of in vitro-propagated plants were normally tapered and did not

grow out of drainage holes of containers (Fig. 3.5).
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The rooting habit of Eucalyptus has an important bearing on the ability of many

members of the genus to grow aggressively and survive in drought conditions where

less productive species may fall (Adlard, 1987; Mueller-Dombois, 1992). In the present

investigation, plants propagated by cuttings and in vitro methods were far smaller than

their field-grown counterparts at six months, and it was assumed that their growth had

been slowed down once the roots became pot-bound. Schuch and Pittenger (1996)

reported that that plants of Eucalyptus citriodora growing in tall (10 x 40 cm in height)

vs. regular (16 x 17.5 cm in height) containers had 58% more root dry weight and 39%

more shoot dry weight three months after transplanting. Therefore, the small containers

used in this study to grow cutting-derived and in vitro-produced plants could have

impeded growth and extension of the adventitious roots.

Fig. 3.5: Root morphology of cuttings (left) and in vitro-propagated plants (right) of clone

GNI07 after six monthsofgrowth in 55 cm' and 250 cm'' containers. Bar = 1.7 cm.

A direct, comprehensive morphological or anatomical comparison of the two types of

roots (i.e. in vitro- and cutting-produced roots) after transplanting and hardening-off

was first reported by McClelland et al. (1990) with Acer rubrum, Betula nigra and
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Malus x domestica. In the present investigation, 10 - 15 urn sections of roots of clones

GN121 and GN107 were double stained with safranin and fastgreen (Fig. 3.6). After 28

days of in-vitro rooting, roots of both clones appeared polyarch, Le. primary xylem

differentiated with arms (> 4) radiating from a common center like points of a star;

GN121 had 12 and GN107 had six protoxylem elements. In addition, the epidermis of

GN107 comprised of two layers of cells, whereas GN121 had a single layer of

epidermal cells (Fig. 3.6). The cortical cells of clone GN121 were much more uniform

and compactly organized than those of GNI07 clone. However, those cells of GNI07

clone could 'have been damaged during sectioning, as the specimen could have been

improperly infiltrated with wax or sectioned at a different angle.

Material for examining the anatomy of GNI07 cuttings 28 days after rooting and also

of GN121 cuttings (28 day-old and six-month-old) was not available. Therefore, for

clone GNI07, lateral roots were sectioned because they represent the youngest part of

the ~~ot (Fig. 3.6). The anatomy of lateral roots resembled that of in vitro roots of

GNI07 clone in terms of being polyarch, and the ' cortical cells were also not as
-:.,

compact as , those of clone GNI21. McClelland et al. (1990) observed anatomical

differences between in vitro-produced and ex vitro-produced roots of Acer rubrum

during the first 4 - 5 weeks after root initiation, however, after 16 - 20 weeks in vitro

and ex vitro roots had acquired similar characters such as a greater proportion of

vascular tissue relative to the root cross-section.

Aftersix months of growth,in the greenhouse, there were no traces of cortical cells and
; .;

roots appeared matured with late metaxylem vessels (Fig. 3,6). The bark of the root (i.e.

the periderm plus phloem) was thicker in in vitro-produced roots than those derived

from cuttings, and was made up of square and rectangular cells. Cells of the phellogen

(one of three layers ofperiderm) were identified by dark coloured substances frequently

identified as tannins (Cuttler et al., 1987). The uniseriate medullary rays were well

developed especially in the in vitro-produced roots, and appeared heterocellular, Le.
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cells were rectangular in the periderm and square to oval in the xylem. In both types of

roots, the xylem area was made up of wide solitary vessels arranged rows, but the total

xylem area was smaller in the in vitro-produced roots than in those produced from

cuttings (Fig. 3.6). Similar observations were recorded by McClelland et al. (1990).

The larger xylem area of roots of cuttings suggests that they may be more
. .

physiologically mature than their in vitro-produced counterparts since a larger

proportion of mature eucalypt dry mass is made up of wood. Xylem vessel frequency

and size were not measured in this study but from Figure 3.6 it appears that there are no

significant differences in the size of xylem vessels between the two types of roots (i.e.

cutting and in vitro-produced) although the xylem vessel frequencies may be different.

Differences were also observed in the staining reactions of the two types of roots. Roots

produced from cuttings absorbed more fast-green in the periderm than their in vitro­

produced counterparts, This observation suggests that there may be differences in the

chemical composition of roots at that juvenile age. For example, phloroglucinol staining

confirmed a higher lignin composition for ex vitro root sections ofAcer rubrum than in

vitro-produced sections after five weeks of hardening-off, probably due to their more

advanced vascular development (McClelland et aI., 1990).

Fig. 3.6: Root anatomy of GN121 and GNI07 roots produced in vitro and from cuttings.

(A) cross-section of a 28 day-old in vitro-produced root of GN121 clone showing 12

protoxylem .elements surrounded by the pericycle and compact cortical cells; (B) cross­

section of (A) after six months, note the thick root bark; (C) cross-section of a 28 day-old in

vitro-produced root ofGNI07 clone showing six protoxylem elements and a double layer of

epidermal cells; (D) cross-section of (C) after six months, note the developing lateral root;

(E) cross-section of a lateral root of a six-month-old GNI07 cutting-derived root; and (F)

cross-section of a GNI07 cutting-derived root after six months, note large xylem area

compared to (B) and (D).Bar = 200 um.
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Although the tips of roots of cuttings were morphologically different from those of in

vitro-produced roots after six months (Fig. 3.5), there were no anatomical differences

with regards to tissue organization (data not shown). Further, there were also no

significant differences between 28 day-old in vitro-produced root tips and six month-old

root tips from cuttings (Fig. 3.7). In roots of cuttings, isodiametric cells in the

meristematic zone of the root tip were the only cells stained with safranin, probably

because they were more actively dividing than cells at any part of the root. However,

the whole vascular area of in vitro-produced roots 28 days after rooting was stained

with safranin (Fig. 3.7) and that difference was probably related to the physiological age

of the roots.

Fig. 3.7: A comparison of root tips of clone GNI07 after 28 days of in vitro rooting (A) and

of cuttings at six months (B). In (A), the whole vascular area was stained with safranin

whereas in (B), only cells in meristematic tip were stained with safranin. Bar = 208 urn.
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In summary, the hydraulic characteristics of adventitious roots propagated in vitro and

through cuttings of a clone of Eucalyptus grandis x nitens (ONlO?) were investigated

in this preliminary study. The loss of hydraulic conductivity at low water potentials

may suggest that roots are more vulnerable to cavitation than shoots, or may suggest

that the experimental method caused the hydraulic conductivity to increase. Therefore,

future research is aimed at modifying the technique of measuring the hydraulic

conductivity of roots. Further, those factors that were not taken into account, such as

the size of potting containers and potting mixture will also be considered.

s »

This preliminary study has shown that in vitro-propagated plants may be able to grow
.,

faster than those derived form cuttings initially, because they are capable of conducting

about twice the amount of water to the shoot than cuttings. Observations were related

to differences in root architecture, which was in turn probably determined by the size of

the potting container and the supporting medium.

Differences were also observed in the staining reactions between cutting-derived and in

vitro-produced roots. As mentioned previously, this may suggest differences in

presence and/or level of secondary metabolites at that juvenile age.

Finally, roots are ' difficult to study; perhaps this is why this field of hydraulic

architecture and drought tolerance is often overlooked (vander Willigen, 1996). As

previously suggested by vander Willigen (1996), detailed hydraulic maps would

provide a more extensive information on the hydraulic and vulnerability segmentation

ofEucalyptus grandis hybrids.
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CHAPTER 4: CONCLUDING REMARKS AND FUTURE RESEARCH STRATEGIES

The achievements of this work and proposed future research are summarized in Table

4.1.

4.1 Production of GN clones for commercial plantations

An efficient in vitro rooting protocol was established in this study for two cold-tolerant

clones ofEucalyptus grandis x nitens GN121 and GN107). Of all the parameters tested,

rooting was affected mostby a step-wise increase in light intensity and temperature.

The level of macronutrients (Ca2+ and Mg2+) in the rooting medium also played a

significant role especially in preventing callus formation at basal ends of shoots. With

the established in vitro rooting protocol and subsequent hardening-off success (Tables

2.6,2.8 and 2.9), over 500,000 (GN121) and 300, 000 (GN107) plants can be produced.
from one axillary bud within one year. Such results are good, considering the low

success obtained by others working with cuttings.

Clonal variations were observed in percentages of rooting and hardening-off rates

(Tables 2.6, 2.8 and 2.9). 'it'is suggested therefore, that the established in vitro rooting

protocol should be tested on other GN clones for its applicability on a wide range of

genotypes, particularly commercially important ones. In this manner, superior selected

genotypes 6~ be multiplied and integrated into forestry clonal and production

pr<?grammes. Tissue culture may be used in clonal programmes to increase plant output

for planting in dry, cold marginal areas or improve productivity of existing plantations.

" :
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Table 4.1: Summary of successes achieved during this investigation and areas where

further research is required.

Protocol Results

completed.

modification.

Preliminary study

Protocol requires

(Section 3.3.1)

Preliminary study completed.

(Section 3.3.4). More detailed

investigations required.

Root anatomy.

Establishment ofan in vitro rooting protocol

Modification of medium and culture conditions. Achieved (Section 2.3.2.2)

Agrobacterium rhizogenes-mediated root induction on Not yet achieved (Section 2.3.4.2),

GN clones. ongoing investigations

Outstanding work

Construction of a root-inducing vector with a Proposed future research.

disarmedsupervirulent strain ofA. tumefaciens .

Establishment of a root-induction protocol with a

modified A. tumefaciens (carrying the pRi) for

micropropagated shoots and cuttings.

Comparison of roots from macro- and microcuttings

Hydraulic conductivity.

Outstanding work(with all root types)

Determination of hydraulic conductivity of roots Proposed future research.

grown under identical conditions.

Anatomy and hydraulic characteristics of transformed

roots once protocol is established.

Measurement of xylem area, frequency and size.

Investigations into different staining reactions.
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4.2 Progress towards the production of E. grandis x nitens chimeras

Transformation work on GN clones with wild-type strains ofAgrobacterium rhizogenes

was not successful. Wild-type strains that produced tumours and transgenic roots on

carrot discs (Table 2.11, Fig. 2.10) and shoot explants of pure E. grandis and E. nitens

shoots (from seedlings) (Table 2.12) did not produce roots on GN clones. However, the

results with HR1 strain indicated that some transformation events occurred on GN leaf.
and nodal explants. Tumours/calli were produced in the absence of growth regulators.

Although it'could be argued that such neoplastic growths could have been caused by

plant cytokinins (Section 2.4), the fact that they were not produced on the controls (Fig.

2.11) suggests the involvement of the root inducing plasmid (pRi). Towards improving

the in vitro rooting ability of Prunus padus, Grant4 (pers.comm. 1999) transformed that

species with the AUX1 gene (a putative cellular auxin influx carrier) from Arapidopsis

thaliana. Unfortunately, in that study, transformants rooted poorly compared with their

control counterparts and that observation was attributed to the 35S CaMV (cauliflower

mosaic virus) promoter which may have interfered with gene expression. Hence, it may

be necessary to use plant tissue-specific promoters (such as those occurring on the

plasmid DNA of Agrobacterium species) to regulate expression of genes that could

improve rooting frequency.

In the present study, a more detailed investigation is required to establish why the T­

DNA, if it was transferred into the plant cell, was either not integrated into the host

genome or not expressed. It may be possible that cold-tolerant clones of E. grandis

could be more susceptible to wild-type strains of A. tumefaciens than to A. rhizogenes

since the former has the widest host range. Puonti-K~erlas et al. (1989) showed that

supervirulent strains of A. tumefaciens can be disarmed and genes of interest can be

placed between the 25 bp borders. Therefore, by replacing the tumour-inducing T-DNA

of A. tumefaciens (e.g. C58 strain) with root-inducing T-DNA of A. rhizogenes (e.g.

4 Grant, Plant Genetics and Biotechnology, Horticulture Research International, Wellesboume, Warwirk, Warwicksh ire UK
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HR1 strain), successful non genotype-specific root induction may be achieved. Such an

approach is planned for future transformation work with Agrobacteria, and should it be

successful, the anatomy and hydraulic characteristics of those transgenic roots will be

studied and compared with those of other in vitro-produced (Chapter 2) and cutting­

derived roots (Chapter 3).

Of interest, studies have shown that plants with only a transformed root system (Le.

chimeras) produce a much higher biomass than their control counterparts (e.g. Strobel

and Nachmias, 1985; StrobeI et al., 1988), a character much appreciated in the forestry

industry (Hammatt, 1992).

4.3 "Methods ofvegetative propagation and hydraulic characteristics of roots

The hydraulic properties of roots from cuttings and micropropagated shoots were

compared after six months of growth in the greenhouse. Both types of roots showed

vulnerability to cavitation at high water potentials. The observations made in the present

investigation suggest that roots produced in vitro and ex vitro from cuttings are equally

vulnerable to drought induced cavitation, regardless of the significant differences in root

mass. However, studies need to be undertaken on roots grown under the same

conditions (e.g. size of pots and potting medium) and for this reason, hardening-off

conditions need to be investigated.

'~,{.

Since root anatomical changes have been suggested to accompany drying (North et al.,

19,92), it may be important to investigate if such changes occur in ON clones. Roots of

micropropagated ON clones as well as those derived from cuttings appeared to have

already undergone secondary growth after six months (Fig. 3.6). This may contribute

towards an explanation of the fast growth of ON clones.
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Field trials will also be conducted to determine the maximum hydraulic conductivity as

well as vulnerability to cavitation of roots in situ, in both 'wet' and 'dry' treatments.

Towards a much broader understanding of the physiological function of roots, one of

the objectives planned for future research is to study the application of the hydraulic

segmentation hypothesis (Tyree and Ewers, 1991) to adventitious roots of GN clones

propagated in vitro (through tissue culture and by Agrobacterium rhizogenes) and ex

vitro via cuttings. The other objective is to investigate solute transport in those roots.

For example, roots would be grown in a solution of radioactively labeled potassium

solution and the pathway of that nutrient traced and quantified throughout the roots.

These studies will aim to contribute to the understanding of root physiology in

Eucalyptus trees and whether or not roots produced by different propagation methods

have significant physiological differences that may have economical implications for

the industry.
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5.1 Wax embedding method

Fixation

Mokotedi, 1999

CHAPTER 5: ApPENDIX

Chapter 5

Fix root samples (± lcm in length) in approximately 2 - 3 ml of formalin: acetic acid:

alcohol (FAA) for 24 hours at room temperature.

Eth~ol (95%)

Acetic acid (glacial)

Formalin (37 - 40% formaldehyde)

Distilled water

Dehydration

50ml

5 ml

10ml

35 ml

Dehydrate samples in a butanol: ethanol : water series. Use 2 - 3 ml of mixture at each

step. ;

Butanol Ethanol (95%) Water Time (min)

10 20 70 30

15 25 60 30

25 30 45 30

40 30 30 30

55 25 20 45

70 20 10 60

85 15 0 90

· 100 0 0 overnight
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Embed samples in paraffin wax-melting point 52°e.

Take samples through a series of wax/butanol (w/w) mixtures. Use enough mixture to

cover samples.

Wax Butanol Time (hour)

25 75 2

50 50 3

75 25 3

100 0 overnight

Replace 100% wax after overnight incubation with fresh molten wax (100%) before

proceeding with mould preparation.

Moulds

Melt wax to about 65 -70oe (waterbath usually most convenient), pour into moulds and

position sample at the base of the mould with a pair of forceps while is still molten

(speed is essential as wax hardens rapidly). Place a paper label with the sample

identification on the surface of the wax and allow to solidify at room temperature. Store

at room temperature in an airtight container.

Sectioning

Pre-treatment of microscope slides with an adhesive preparation is required. Place one

drop of Haupt's Adhesive' on the surface of a clean glass slide and smear thinly across

the slide. Allow to dry. When sections are obtained, float on the surface of a drop of

water on the slide. Flatten the sections by placing the slide on a hot tray. Do not allow

wax to melt ! 'Remove slide from hot tray and allow to dry overnight before staining.
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Haupt's Adhesive:
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gelatin

water

glycerol

phenol crystals

Chapter 5

Ig

100ml

15 ml

2g

Mix the gelatin with the water and melt in a waterbath at 30°C. Add the glycerol and

phenol and mix together.
.,

r ,.

5.2 Staining procedure

Safranin/fast green for wax- embedded samples

1. Xylene

2. Xylene

3. Xylene/ethanol (1:1, v/v)

4. 95% ethanol
. '

5. 70% ethanol

6. 1% safranin in 70% ethanol

7. 95% ethanol

8. Absolute ethanol

9. Absolute ethanol

10. Xylene/ethanol (1:1, v/v)
····:v· .

11. 0.5% fast green in xylene/ethanol

12. Xylene/ethanol (1 :1, v/v)
".'.

13. Xylene ,

Allow to dry and mount with DPX.

\ .

2 min.

30 sec.

1 min .

30 sec.

30 min.

15 min.

30 min.

1min.

1 min.

. 1 min.

10 sec.

30 sec.

1 min.
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