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Abstract  

Southern Africa is characterised by an unpredictable environment with daily and 

seasonal temperature fluctuations. As a local or non-migratory endothermic species 

occurring over an altitudinal gradient from the Drakensberg to the coast of KwaZulu- 

Natal in southern Africa, Amethyst Sunbirds (Chalcomitra amethystina) experience 

challenging thermal conditions and increased energetic stress as a result of ambient 

temperature variation. Flexibility of metabolic rates within a species allows for the 

colonization of different habitats along an altitudinal and thus temperature gradient. It 

was predicted that over this altitudinal gradient Amethyst Sunbirds would exhibit 

variation in metabolic rates, particularly basal metabolic rates, pre- and post-

acclimation, as well as variation in hematocrit levels in winter and summer trials. It 

was also predicted that Amethyst Sunbirds would exhibit seasonal variation in 

metabolic parameters.  

Sunbirds were caught in a winter and summer season (2006-2007) using mist 

nets in three locations; Underberg (1553 m), Howick (1075 m) and Oribi Gorge (541 

m). Upon capture, metabolic rate was measured indirectly by quantifying oxygen 

consumption (VO2) using flow through respirometry, at 5 and 25°C. Birds were then 

acclimated at 25°C for 6 weeks on a 12L:12D cycle. VO2 was measured post-

acclimation at 8 different temperatures (15, 5, 10, 20, 30, 28, 25 and 33°C). 

Hematocrit levels were taken pre-acclimation and pre-release. Winter and summer 

data were compared. 

 In the winter trials it was found that there was little variation in VO2 between 

individuals from the same locality, whereas significant variation was observed  at the 

same temperatures between localities and thus between altitudes. The subpopulation 

from the highest altitudinal site had the highest basal metabolic rate (BMR). Summer 
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trials showed that metabolic rates did not differ significantly between altitudinal 

subpopulations of Amethyst Sunbirds, however, BMR was observed to decrease as 

altitude decreased. The comparison of seasonal data showed that Amethyst Sunbird 

subpopulations from Underberg and Howick showed higher post-acclimation VO2 

values per temperature in winter than in summer trials. Post-acclimation resting 

metabolic rate (RMR) values for Howick subpopulations were generally higher in 

winter than in summer, Underberg Amethyst Sunbirds showed a significant difference 

between summer and winter RMR at 5 and 10°C and Howick sunbirds showed a 

significant difference in RMR between seasons at 5°C. The Oribi Gorge 

subpopulation, however, showed no significant differences in metabolic rate between 

any temperatures when comparing a summer and a winter season. Thermal neutral 

zones of all of the subpopulations of Amethyst Sunbirds shifted between the winter 

and summer trial period.  

This study thus emphasized the need to understand plasticity in metabolic rates 

and acknowledge altitudinal and seasonal differences within a species, in order to 

make accurate predictions about a species thermal physiology and responses to 

changes in ambient temperatures. In particular, the variation in BMR, which is usually 

used as a species specific value, should be acknowledged in comparative studies of 

avian metabolic rates or in climate change models.  

 

Keywords: Altitude, Amethyst Sunbird, basal metabolic rate, metabolic rate, season, 

thermal neutral zones. 
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Chapter 1 

Introduction 

 

In a climate like that of southern Africa, which is characterised by unpredictable daily 

and seasonal temperatures and precipitation (Schulz et al., 1997), fluctuations pose 

challenging thermal conditions for vertebrates, especially for mammals and birds, 

which are endothermic. As homeothermic endotherms, birds are able to maintain a 

constant body temperature over a broad range of ambient temperatures by adjusting 

their metabolism (Chaui-Berlinck et al., 2002). Many species of birds exist 

successfully in climates both cold and warm, as a result of variation in metabolic 

parameters between populations of the same species (Furness, 2003). Besides 

seasonal ambient temperature fluctuations, climate change, and thus more permanent 

temperature shifts, will influence many areas of species survival, as a result of 

differing abilities to adapt and move with the changing climate. Simmons et al. (2004) 

pose the question of whether some species will exhibit rapid adaptations to climate 

change. 

Adaptation was defined by Mayr (1988) as “the morphological, physiological 

and behavioural equipment of a species or member of its species that permits it to 

compete successfully with individuals of its own species or members of another 

species that allows it to tolerate the extant physical environment.”  Adaptation may 

refer to changes that occur within an individual in response to changes in the 

environment, which may help the animal respond to these changes (Garland and 

Adolph, 1991). 

However, a more flexible form of adaptation has been proposed in the form of 

phenotypic plasticity, which implies the general capacity for change and production of 
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a range of relatively fit phenotypes within genotypes in response to changing 

environmental conditions (DeWitt et al., 1998; Kingsolver et al., 2002; Piersma and 

Drent, 2003). However, instead of using the term “phenotypic plasticity”, Piersma and 

Drent (2003) propose instead using the term “phenotypic flexibility” which refers to 

variation within a characteristic of a single individual which is reversible, and a 

function of both predictable and unpredictable fluctuations in environmental 

conditions. Birds are known to show flexibility in their thermoregulatory response, 

showing the ability to increase heat or cold resistance seasonally or in response to 

laboratory conditions, i.e. acclimation (Dawson, 2003). It is important to note that 

acclimation is taken to be a physiological change in an organism in response to a 

particular environmental factor in a laboratory, whereas acclimatization is a 

progressive change in an organism in response to changes in its natural environment 

(Hine and Martin, 2005). 

 Previous comparative studies of avian thermal biology have focussed on the 

origin of study birds in terms of captive bred or wild caught populations and the effect 

of this factor on basal metabolic rate (BMR) (e.g. Weathers et al., 1983; McKechnie 

et al., 2007; McKechnie, In Press), but do not take into consideration the geographic 

and altitudinal origin of the wild caught species as a possible source of variation. 

Alternatively, studies have looked at metabolic adaptations along an aridity gradient 

(e.g. Tieleman et al., 2002), the effects of seasonal and environmental changes on 

BMR of a species (Ambrose and Bradshaw, 1988), phenotypic flexibility in the BMR 

of one population as a representative of a species (McKechnie et al., 2007), or have 

assessed population responses to climate change as a mean response at the population 

level (Møller et al., 2004). Importantly, published data often represents a single RMR 

or BMR value per species, regardless of altitudinal origin or whether birds were 
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captive bred or wild caught (e.g. Bech, 1980; Cooper and Swanson, 1994; Boix-

Hinzen and  Lovegrove, 1998;  Maddocks and Geiser, 2000; McKechnie and 

Lovegrove, 2001; López-Calleja and Bozinovic, 2003; Lovegrove and Smith, 2003; 

McKechnie et al., 2007; Smit et al., In Press), thus neglecting the need to 

acknowledge the role of phenotypic flexibility within a species.  

 Very few avian studies have looked at variation in the thermal physiology of a 

species over an altitudinal gradient (Soobramoney et al., 2003). According to Körner 

(2007), altitudinal gradients are very important ‘natural experiments’ for testing 

ecological and evolutionary responses to influences such as temperature. Variation 

would be expected in metabolic rates over an altitudinal gradient due to these changes 

in ambient temperature ranges, and thus the adaptations subpopulations show to these 

temperature ranges. More specifically, in this case, few studies have looked at 

phenotypic plasticity or flexibility within a subpopulation seasonally, between pre-and 

post-acclimation trials, and over an altitudinal gradient. This is an oversight in 

metabolic studies as McNab (2003) found that 99% of the observed variation in the 

BMR of birds of paradise was due to inter-specific variation in body mass, food habits 

and distribution over an altitudinal gradient. Although McNab (2003) focused on 

inter-species differences, one can conclude that if inter-species differences can be 

attributed to altitude, it can be assumed that subpopulations of the same species would 

also display variation in certain bioenergetic parameters as a result of existing in a 

non- or local migratory manner over an altitudinal gradient. As early as 1962, Hart 

noticed that a striking feature of small birds was their ability to withstand changes in 

ambient temperature with very little protection, but at greater metabolic cost. 

Similarly, Swanson and Weinacht (1997) noted that seasonal differences in 

metabolism are common in small passerine birds and that birds display phenotypic 
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flexibility in maintenance energy requirements, and are able to up or down regulate 

BMR over a period of time during thermal acclimation (McKechnie et al., 2007). The 

dynamic interaction between animals and the environment is reflected in the 

physiological plasticity of the animal, employed to avoid the problems of evolutionary 

history or lifestyle (Tieleman et al., 2002).  

The ability to adapt and change is most pronounced in species living in 

fluctuating environments (Cossins et al., 2006). The ability to employ flexibility and 

regulation of maintenance energy is important within a species inhabiting locations 

over an altitudinal and thus temperature gradient. More so, small diurnal birds that are 

locally migratory or non-migratory, have to deal with seasonal changes in ambient 

temperature and thus would have to employ seasonal adjustments in their physiology 

in order to reduce the thermal stress placed on these small passerines (Maddocks and 

Geiser, 2000).  

Individuals (and thus populations) that are able to adjust their thermal 

physiology in response not only to their thermal environmental range, but ecological 

factors leading to rapid environmental changes (shorter than their lifetime), may enjoy 

a selective advantage and thus higher fitness pay-offs than those who cannot (DeWitt 

et al., 1998; Piersma and Drent, 2003). Thus the role of phenotypic flexibility relative 

to changing environmental conditions needs to be evaluated, and the ecological 

factors able to predict inter-specific (as well as intra-specific) differences in response 

to climate change need to be identified (Møller et al., 2004).  

Evaporative water loss (EWL) is a homeostatic mechanism used by animals 

when ambient temperatures increase and affect body temperature. In many small 

mammals, such as Gerbillurus species, short-term evaporative cooling is employed to 

deal with hyperthermia above the thermal neutral zone (Downs and Perrin, 1990). 
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Thus the rate at which water is, and can, be lost from an animal has important 

implications for thermoregulation and thus survival (McKechnie and Wolf, 2004).  

Birds living over an altitudinal gradient experience differing ranges of ambient 

temperatures and would have differing evaporative cooling requirements. Thus we 

would expect to see flexibility in the ability of subpopulations to employ EWL as a 

thermoregulatory mechanism.  

Møller et al. (2004) stated that the current knowledge of the effects of climate 

change on birds is mostly restricted to passerines from northern hemispheric 

temperate zones, and more work is needed on their southern hemisphere counterparts. 

The proposed study will aim to investigate differences in physiology between 

subpopulations of Amethyst Sunbirds, Chalcomitra amethystina (Shaw, 1811), over 

an altitudinal gradient within a latitudinal zone in KwaZulu-Natal (KZN). The 

Amethyst Sunbird is a relatively large African nectarivorous sunbird with a mean 

mass of approximately 15g (Cheke et al., 2001; Tree, 2005). Adult Amethyst Sunbirds 

exhibit sexual dimorphism. Adult males have blackish-brown plumage with purplish-

copper on the throat and shoulders and silvery light green on their heads whereas 

females are grey-brown with pale grey brown underbellies (Cheke et al., 2001; Tree, 

2005). The distribution of Amethyst Sunbirds, in KZN includes a latitudinal zone 

from the Drakensberg mountains to the coast (Tree, 2005). Their populations in KZN 

are described as being fairly sedentary, with some localised winter movement (Tree, 

2005). This makes them a suitable species for a study on metabolic variation within a 

species over an altitudinal gradient. As the climate varies between the Drakensburg 

and the coastal regions of KZN, sites along this altitudinal gradient will allow for 

comparison between subpopulations of Amethyst Sunbirds living in different ambient 

temperature ranges. Thus the altitudinal and seasonal physiological adaptations and 
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inter-specific plasticity/flexibility of the subpopulations of Amethyst Sunbirds in these 

habitats can be determined.  

Consequently, knowledge of the plasticity/ flexibility in metabolic strategies 

employed to cope with ambient temperature fluctuations, both altitudinal and 

seasonal, is important in understanding terrestrial vertebrate survival in southern 

Africa, in terms of predicted climate change models. It was predicted that Amethyst 

Sunbirds will differ in thermal parameters, particularly BMR, resting metabolic rate 

and thermal neutral zone, within and between seasons.  

This thesis is presented as chapters for submission to Journals: 

 Chapter 2. Physiological variation in Amethyst Sunbirds (Chalcomitra  

amethystina) over an altitudinal gradient. Part A: in winter. 

 Chapter 3. Physiological variation in Amethyst Sunbirds (Chalcomitra  

amethystina) over an altitudinal gradient. Part B: in summer. 

Chapter 4. A comparison of summer and winter metabolic rates of Amethyst  

Sunbirds (Chalcomitra amethystina) over an altitudinal gradient. 

with a final concluding chapter.  

As chapters have been prepared as stand alone manuscripts, some overlap and 

repetition between chapters has been unavoidable. 
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Chapter 2 

Formatted for the Journal of Experimental Biology 

 

Physiological variation in Amethyst Sunbirds (Chalcomitra amethystina) over an 

altitudinal gradient. Part A: in winter. 

 

Claire V. Lindsay1, Colleen T. Downs1 and Mark Brown1 

 

1 School of Biological and Conservation Sciences, University of KwaZulu-Natal, 

Private Bag X01, Pietermaritzburg, 3201, South Africa 

 

Flexibility of metabolic rates within a species allows for the colonization of different 

habitats along an altitudinal and thus temperature gradient. The distribution range of 

Amethyst Sunbirds (Chalcomitra amethystina) within southern Africa includes an 

altitudinal gradient from the Drakensberg to the coast of KwaZulu-Natal. We 

expected that over this altitudinal gradient Amethyst Sunbirds would exhibit variation 

in metabolic rates, particularly basal metabolic rates (BMR), pre- and post-

acclimation readings, as well as variation in hematocrit levels. Sunbirds from three 

locations; Underberg (1553 m), Howick (1075 m) and Oribi Gorge (541 m) were used 

for this study. Upon capture, metabolic rate was measured indirectly by quantifying 

oxygen consumption (VO2) using flow through respirometry, at 5 and 25°C. Birds 

were then acclimated at 25°C for 6 weeks on a 12L:12D cycle. VO2 was measured 

post-acclimation at 8 different temperatures (15, 5, 10, 20, 30, 28, 25 and 33°C). 

Hematocrit levels were taken pre-acclimation and pre-release. We found little 

variation in VO2 between individuals from the same locality, whereas significant 

variation was observed in VO2 at the same temperatures between localities and thus 
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between altitudes. In particular, BMR decreased significantly with decreasing altitude 

post-acclimation. This study emphasizes the need to understand plasticity/flexibility 

in metabolic rates and acknowledge altitudinal differences within a species, in order to 

make accurate predictions about a species thermal physiology and responses to 

changes in ambient temperatures.  

Corresponding author:  downs@ukzn.ac.za 

 

Keywords: Altitudinal variation, Amethyst Sunbird, metabolic rates, phenotypic 

plasticity, phenotypic flexibility. 

 

Introduction 

Phenotypic plasticity implies the general capacity for change and transformation 

within genotypes in response to changing environmental conditions (DeWitt et al., 

1998; Kingsolver et al., 2002; Piersma and Drent, 2003). However, instead of using 

the term “phenotypic plasticity”, Piersma and Drent (2003) propose the use of the 

term “phenotypic flexibility” which refers to variation within a characteristic of a 

single individual which is reversible, and a function of both predictable and 

unpredictable fluctuations in environmental conditions.  

The ability to employ flexibility and regulation of maintenance energy 

requirements is important within a species inhabiting locations over an altitudinal and 

thus temperature gradient.  Avian species have shown the ability to enhance heat or 

cold resistance seasonally and in response to experimental conditions (Dawson, 

2003). At higher altitudes, the effect of reduced oxygen partial pressure as well as 

decreasing ambient temperatures pose significant challenges to avian gas exchange 

and thus metabolic parameters (Clemens, 1988). Individuals (and thus populations) 

that are able to adjust their thermal physiology in response, not only to their thermal 
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environmental range, but to rapid environmental changes (shorter than their lifetime), 

may enjoy a selective advantage and thus higher fitness pay-offs than those who 

cannot (DeWitt et al., 1998; Piersma and Drent, 2003). Thus the role of phenotypic 

flexibility relative to changing environmental conditions needs to be evaluated, and 

the ecological factors leading to inter-specific (as well as intra-specific) differences in 

response to climate change need to be identified (Møller et al., 2004).  

Birds are considered to be homeothermic endotherms, which implies the 

ability to maintain a constant body temperature over a broad range of ambient 

temperatures by adjusting their metabolism (Chaui-Berlinck et al., 2002). However 

small homeotherms have higher energetic demands at colder temperatures and require 

physiological adjustments in MR to counteract this (Downs and Brown, 2002; 

Soobramoney et al., 2003). As a result of this many birds display phenotypic 

flexibility in maintenance energy requirements, and are able to up or down regulate 

basal metabolic rate (BMR) over a period of time during thermal acclimation 

(McKechnie et al., 2007). Recent evidence suggests that winter BMR of species living 

in highly seasonal environments reflects the conditions in which the animal existed in 

immediately prior to metabolic measurements being taken (McKechnie, In Press) and 

thus it becomes important to differentiate metabolic measurements made pre-

acclimation and those made post-acclimation (Smit et al., In Press). Klaasen (2004) 

suggested that it is important to recognize whether seasonal changes in BMR 

represented a separate acclimation or acclimatization response or was merely 

variation in working capacity. 

In avian comparative studies, much focus is placed on the origin of study birds 

in terms of captive bred or wild caught populations and the effect of this factor on 

BMR (e.g. Weathers et al., 1983; McKechnie et al., 2007; McKechnie, In Press), but 

this does not take into consideration the geographic and consequent altitudinal origin 
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of the wild caught species as a possible source of variation. Previous studies in avian 

thermal biology have examined metabolic adaptations along an aridity gradient (e.g. 

Tieleman et al., 2002), the effects of seasonal and environmental changes on BMR of 

a species (e.g. Hart, 1962; Dawson and Carey, 1976; Weathers and Caccamise, 1978; 

Ambrose and Bradshaw, 1988; Maddocks and Geiser, 2000; Smit et al. In Press), 

phenotypic flexibility in BMRs of one population as a representative of a species (e.g. 

McKechnie et al., 2007), or have assessed population responses to climate change as a 

mean response at the population level (e.g. Møller et al., 2004). Published data often 

represents a single BMR or RMR value per species, regardless of altitudinal origin, or 

alternatively data from one population as a representative of an entire species (e.g. 

Bech, 1980; Cooper and Swanson, 1994; Boix-Hinzen and Lovegrove, 1998; 

Maddocks and Geiser, 2000; McKechnie and Lovegrove, 2001; Downs and Brown, 

2002; López-Calleja and Bozinovic, 2003; Lovegrove and Smith, 2003; McKechnie et 

al., 2007), thus highlighting the need to acknowledge the role of phenotypic flexibility 

within a species.  

Very few avian studies, however, have looked at variation in the thermal 

physiology of a species over an altitudinal gradient (Soobramoney et al., 2003). More 

specifically, in this case, few studies have looked at phenotypic plasticity or flexibility 

within a subpopulation pre- and post-acclimation, and over an altitudinal gradient, as 

well as examining altitudinal intra-specific variation in BMR. Thus the fact that 

plasticity may exist in phenotypic flexibility, with respect to physiological parameters, 

is not acknowledged. 

This is an oversight in metabolic studies. For example, McNab (2003) found 

that 99% of the observed variation in the BMR of Birds of Paradise (Family 

Paradisaeidae) was due to inter-specific variation in body mass, food habits and 

distribution over an altitudinal gradient. Although McNab (2003) focused on inter-
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species differences, one can assume that if inter-species differences can be attributed 

to altitude, that subpopulations of the same species would also display variation in 

certain bioenergetic parameters as a result of existing in a non- or local migratory 

manner over an altitudinal gradient.  

Evaporative water loss (EWL) plays an important role in thermoregulation 

when ambient temperature exceeds body temperature. Thus the rate at which water is 

lost from an animal has important implications for thermoregulation and thus survival 

(McKechnie and Wolf, 2004).  

The Amethyst Sunbird, Chalcomitra amethystina (Shaw, 1811), is a relatively 

large African nectarivorous sunbird with a mean mass of approximately 15g (Cheke et 

al., 2001; Tree, 2005). Adult Amethyst Sunbirds exhibit sexual dimorphism. Adult 

males have blackish-brown plumage with purplish-copper on the throat and shoulders 

and silvery light green on their heads whereas females are grey-brown with pale grey 

brown underbellies (Cheke et al., 2001; Tree, 2005). Amethyst Sunbirds occupy a 

broad geographical region within South Africa which includes an altitudinal gradient 

from the Drakensberg mountain range to the coast of KwaZulu-Natal (KZN) (Cheke 

et al., 2001).  Their populations in KZN are described as being fairly sedentary, with 

some localised winter movement (Tree, 2005). 

The current knowledge of the effects of climate change on birds is mostly 

restricted to passerines from northern hemispheric temperate zones, and more work is 

needed on their southern hemisphere counterparts (Møller et al., 2004). Thus this 

study aims to address this by looking at the way in which subpopulations of the same 

species survive over an altitudinal gradient and thus a range of temperatures, as well 

as how they adapt to changes in ambient temperature. 

We predicted that the metabolic rates of subpopulations of Amethyst Sunbirds 

would vary over the altitudinal gradient due to acclimatization and adaptations to 
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different temperatures, as well as pre- and post-acclimation due to innate 

physiological differences in approach to acclimation to 25°C and the Pietermaritzburg 

altitude (660m).  BMR is generally thought to be species specific, but we predicted 

plasticity/flexibility between subpopulations, within a species, due to temperature 

differences over altitude.  

In addition, as hematocrit levels (% red blood cell concentration) generally 

increase with altitude in mammals (Willmer et al., 2005), it was predicted that in this 

avian species hematocrit values, would vary from high to low altitudes as a result of a 

change in oxygen concentration. 

 

Materials and Methods 

Study site, Bird capture and maintenance  

Amethyst Sunbirds were captured in the winter of 2006 (May-June) at three different 

locations in KZN, South Africa, under permit from Ezemvelo KZN-Wildlife, using 

mist-nets. The three sites were: Underberg (29°47.614S, 29°30.319E, 1553 m above 

sea level, n = 9), Howick (29°28.203S, 30°13.316E, 1075 m above sea level, n = 6) 

and Oribi Gorge (30°40.067S, 30°15.316E, 541 m above sea level, n = 8). Study 

individuals were weighed and colour banded to allow for capture location and 

individual identification (Downs & Brown, 2002).  

After capture birds were transferred to the University of KwaZulu-Natal 

(UKZN) Pietermaritzburg campus’s Animal house, at an altitude of 660 m, where 

they were housed individually in cages (1 x 0.35 x 0.5m) in a constant environment 

(CE) room. Room temperature was set at 25°C with a 12L:12D photoperiod for the 

study duration (May- September 2006). Artificial nectar (20% sucrose plus Ensure®), 

as well as water, were available ad libitum to birds from nectar feeders in cages. 
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Fruitflies were bred on rotting fruit in the room in which birds were housed, to 

supplement protein intake. 

Birds were allowed to feed during the day prior to VO2 measurements due to 

their rapid food transit times (Downs, 1997; Downs & Brown, 2002), but deprived of 

food during trials. Thus it was assumed that birds were post absorptive and that 

resting metabolic rate (RMR) was measured.  

 

Metabolic Measurements and Protocol 

Sunbirds were kept in the animal house for one night after capture before pre-

acclimation respirometry trials to reduce the effect of transport stress. Acclimation is 

regarded as changes in the organism in response to changes in any component in the 

environment of the laboratory (Garland and Adolph 1991; Smit et al., In Press).  

Metabolic rate was measured indirectly by quantifying oxygen consumption 

(VO2) using a respirometer. The respirometer was switched on at least one hour prior 

to commencement of respirometry trials. Birds were weighed and then placed 

individually in respirometry chambers between 16h30 and 17h00. Respirometry 

chambers of clear perspex were used (volume = 3.96l), and contained a wooden perch 

as well as a wire grid at the base. Respirometry chambers were placed in a sound-

proof Conviron® cabinet (1m3). Light dark photoperiods were set in synchronization 

with that of the constant environment room where birds were housed (12L:12D). 

Conviron® cabinet temperature (Ta) was measured using thermistor probes calibrated 

with a standard mercury thermometer (0.05°C) in a water bath at temperatures 5- 

45°C.  

Air flow was controlled using a computerized open flow-through system 

(Depocas and Hart, 1957; Hill, 1972). Atmospheric air was pumped in and partially 

dried using silica gel, before reaching the Conviron® cabinet.  Flow rate was 
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maintained at a level that ensured <1% change in oxygen concentration, between 

0.500 and 0.600 l.h-1 (Downs and Brown, 2002). The flow rate of each chamber was 

measured using a Brooks thermal mass flow meter (Model 580E) factory calibrated to 

STP. A steady flow of air through the chamber was ensured as air entered the bottom 

and was expelled through the top of the respirometry chambers. Simultaneous 

measurements of six chambers (five experimental and one control chamber) was 

achieved by using solenoid valves and a separate pump for each chamber.  

Excurrent air was passed through a water condenser (a copper tube in which 

air was cooled to approximately 3°C, or below dew point) to remove water vapour, 

and soda lime, to remove Carbon Dioxide (CO2). An oxygen analyzer (Model S-3A/1, 

Ametek) was used to determine the fractional concentration Oxygen (O2) in dry air 

samples. The fractional concentration of O2 in the control chamber was measured at 

the start of every six minute cycle, and the O2 values from the experimental chambers 

were then subtracted from this value. The problem of long term drift in O2 analyzer 

outputs was thus limited to that which would occur in five minutes cycles. To further 

ensure the accuracy of measurements, a cell restore was run on the oxygen analyser 

every two weeks, and the oxygen analyser was calibrated regularly. Measurements of 

the various parameters for each chamber (Ta, flow rate and fractional O2 

concentrations) were recorded at the end of each 45s sampling interval, so as to allow 

sufficient time for the flushing of air from the previous channel from the ducting 

between relay valves and the sub sample tubing. VO2 was recorded digitally every six 

minutes, was corrected for standard temperature and pressure and expressed as a mass 

specific value. Thus ten readings per individual were recorded on an hourly basis. 

Analog signals from the thermistor probes, mass flow meter and oxygen 

analyzer were recorded digitally using an A/D converter and software written by R. 

Van Zyl, UKZN.  
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The following equation was used to calculate mass specific oxygen 

consumption:  

     

VO2 = (VE(FIO2-FEO2)/(1-FIO2))/ Mb ……………………equation (1) 

 

Where VO2= metabolic rate (ml O2g
-1h-1), VE= flow rate (ml min-1), FIO2 = 

incurrent fractional O2 concentration and FEO2 = excurrent fractional O2 

concentration and Mb = body mass (g) (Hill, 1972).  

 

At 07h00 the following morning evaporative water loss (EWL) was recorded 

by measuring the amount of water collected from the excurrent air of each chamber 

by the water condenser. Birds were removed from the chambers, weighed and 

returned to their cages in the CE room in the Animal House. Food and water were 

available to them ad lib. 

Pre-acclimation VO2 values were measured at ambient temperatures of 25°C 

(assumed to be in the TNZ) and 5°C (assumed to be at an extreme) within four days 

of capture using an interspersed design within each subpopulation.  

After the initial trials, birds were acclimated in the CE room for six weeks as 

described. This long acclimation period was necessary to ensure that sunbirds were 

all acclimated to the same conditions. After this time VO2 measurements were 

repeated as in the earlier trials at randomly ordered ambient temperatures of 15, 5, 

10, 20, 30, 28, 25 and 33°C, to ensure the absence of temperature acclimation. Birds 

were carefully monitored at 33°C and removed at approximately 21h00.  
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Blood hematocrit measurements 

Hematocrit protocol was designed and carried out according to Soobramoney et al. 

(2005) and Yahav et al. (1996) with modifications. Blood samples for hematocrit 

measurements were taken upon capture from the brachial vein using 32 mm 

microcapillary tubes (5ul, Compur, Drummond). These were spun in a Compur 

M1101 mini-centrifuge for 8 minutes before % red blood cell readings were taken. 

Hematocrit measurements were repeated for each individual bird pre-release, 

approximately seven weeks after capture. Additional blood samples were taken for 

future genetic analyses. 

 

Release 

Birds were weighed and released back at the original capture site upon completion of 

respirometry trials. 

 

Statistical analyses 

Descriptive statistics were calculated in STATISTICA (Statsoft, Tulsa, USA) for each 

subpopulation of Amethyst Sunbirds. Hourly rates of VO2 for individuals from each 

subpopulation of sunbirds were determined and plotted against time for each Ta. The 

minimum RMR at each of these temperatures for each individual was used in analysis 

to determine change with temperature using Generalized Linear Models (commonly 

called GLIM) Repeated Measures Analysis of Variance (RMANOVA). BMR was 

calculated by taking the lowest mean RMR per subpopulation. The TNZ was 

determined using Post-hoc Sheffé tests to determine over what range minimum RMR 

did not differ significantly. GLIM RMANOVA was further used for the comparison 

of VO2 measurements between populations at different altitudes and between pre- and 

post-acclimation data as well as to determine whether birds maintained constant blood 
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hematocrit levels. Post-hoc Sheffé tests were done to determine where significant 

interactions occurred (p < 0.05), between populations and within population pre- and 

post acclimation.  Data were presented as mean ± SE of the individuals measured (n). 

Percentage change in MR (BMR or RMR) between populations was calculated by the 

following equation: (higher altitude MR- lower altitude MR)/ higher altitude 

MR)*100. Similarly, percentage change between pre- and post-acclimation MR 

values were calculated using the following equation: (Pre-acclimation MR- Post-

acclimation MR)/ Pre-acclimation MR)*100). 

 

Results 

Pre- vs post-acclimation 

Acclimation had a significant effect on VO2 values for Amethyst Sunbird 

subpopulations at Ta = 5°C when compared within and between sites (Fig. 1a, 

RMANOVA, F(2, 8) = 14.977, p = 0.002). Mean VO2 values at 5°C changed 

significantly between pre- and post-acclimation for Underberg (n = 9) and Oribi 

Gorge (n = 8) subpopulations (Post-hoc Sheffé test, p < 0.05).  

The Underberg subpopulation showed an 51.8% increase in VO2 from pre- to 

post-acclimation at 5°C from 8.44 ± 0.170mlO2g
-1h-1 (0.047 W) to 12.81 ± 

0.949mlO2g
-1h-1 (0.071 W). Oribi Gorge sunbirds showed a 52.5% decrease in VO2 

between pre-and post-acclimation  trails at 5°C, from 12.59 ± 0.699 mlO2g
-1h-1  (0.070 

W) to 5.98 ± 0.499 mlO2g
-1h-1  (0.033 W). Howick sunbirds did not show a significant 

difference between pre- and post-acclimation VO2 at 5°C (Post-hoc Sheffé , p > 0.05), 

with a marginal 7.2% decrease in VO2 between pre- and post-acclimation, from 15.94 

± 0.426 mlO2g
-1h-1 (0.089 W) to 14.79 ± 1.337 mlO2g

-1h-1  (0.083 W).  

Further analysis of pre-acclimation VO2 values at 5°C (Fig. 1a) showed a 

significant difference between Underberg and Howick (Post-hoc Sheffé, p < 0.05), 
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and Underberg and Oribi Gorge (Post-hoc Sheffé, p < 0.05), but not between Howick 

and Oribi Gorge subpopulations (Post-hoc Sheffé, p > 0.05).  However, post-

acclimation subpopulation comparisons indicated a significant difference between 

Underberg and Oribi Gorge (Post-hoc Sheffé, p < 0.05), Howick and Oribi Gorge 

(Post-hoc Sheffé, p < 0.05), but no significant difference in VO2 values between 

Underberg and Howick subpopulations (Fig. 1a, Post-hoc Sheffé, p > 0.05).  

Acclimation had a significant effect on VO2 values for Amethyst Sunbird 

subpopulations at Ta = 25°C when compared within and between sites. (Fig. 1b,  

RMANOVA, F(2, 10) = 10.345, p = 0.004). Significant variation existed between 

Underberg and Howick, and Underberg and Oribi Gorge subpopulations post-

acclimation to 25°C, in 25°C trials (Post-hoc Sheffé, p < 0.05). The Underberg 

subpopulation showed very little change between pre- and post-acclimation trials at 

25°C with a decrease of only 2.9% from 6.71 ± 0.146 mlO2g
-1h-1 (0.037 W) to 6.52 ± 

0.493 mlO2g
-1h-1 (0.036 W) (Post-hoc Sheffé, p > 0.05). VO2 for Howick and Oribi 

Gorge subpopulations decreased significantly between pre- and post-acclimation trials 

(Post-hoc Sheffé, p < 0.05), with the VO2 of Howick subpopulations decreasing by 

58.4% (from 7.20 ± 0.447 mlO2g
-1h-1  (0.040 W) to 3.00 ± 0.386 mlO2g

-1h-1 (0.017 

W))  from pre- to post-acclimation, and Oribi Gorge sunbirds exhibiting a 48.7% 

decrease in VO2 (from 7.48 ± 0.742 mlO2g
-1h-1  or 0.042 W to 3.84 ± 0.387 mlO2g

-1h-1  

or 0.021 W) from pre- to post-acclimation trials at 25°C. 

The Underberg subpopulation of Amethyst Sunbirds (Fig. 2), showed a much 

greater within individual variation post-acclimation at 5°C than pre-acclimation at the 

same temperature, however very similar variation between pre-and post-acclimation 

at 25°C. At 5°C, Howick sunbirds showed greater between individual variation pre-

acclimation, but a similar between individual variation pre- and post-acclimation at 

25°C (Fig. 3). Oribi Gorge pre- and post-acclimation subpopulation data (Fig. 4) 
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showed more variation between individuals pre-acclimation at 5°C, but similar 

variation between pre- and post-acclimation at 25°C. 

 

Post-acclimation 

The VO2 of different altitudinal subpopulations of Amethyst Sunbirds (Figs 5, 6 and 

7) levelled off to RMR between 19h00 - 05h00. VO2 increased pre-dawn (06h00) 

starting at approximately 05h00, and VO2 started to decrease pre-sunset (18h00). 

Oribi Gorge displayed the lowest inter-individual variation (Fig. 7), and Underberg 

the highest inter-individual variation (Fig. 5) over the range of ambient temperatures. 

The Howick subpopulation of sunbirds displayed a high inter-individual variation in 

VO2 at Ta = 5-20, 33°C (Fig. 6), then a decrease in individual variation from Ta = 25-

30°C, thus corresponding with the thermal neutral zone (TNZ). Inter-individual 

variation increased as altitude increased.  

Mean resting metabolic rates for each of the different Amethyst Sunbirds 

subpopulations over the range of ambient temperatures are summarised in Figure 8. 

There was little variation in VO2 between individuals from the same locality, whereas 

significant variation was observed at the same temperatures between localities and 

thus between altitudes. There was a significant effect of altitude and temperature 

when comparing VO2 values for the subpopulations of sunbirds (RMANOVA, F(14, 70) 

= 21.039, p < 0.001).  There was a significant difference between the VO2 values of 

Underberg and Oribi Gorge subpopulations at 5, 10, 15, 20, 28, 30°C (Post-hoc 

Sheffé, p < 0.05), and between Underberg and Howick subpopulations at 25 and 28°C 

(Post-hoc Sheffé, p < 0.05), and finally between Howick and Oribi Gorge 

subpopulations at 5, 10 and 15 °C (Post-hoc Sheffé, p < 0.05). BMR was determined 

for each subpopulation by using the mean of the lowest hourly individual RMRs: 

Underberg (5.71 ± 0.402 mlO2g
-1h-1 (0.032 W) at 33°C), Howick (2.46 ± 0.299 
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mlO2g
-1h-1 (0.014 W) at 28°C) and Oribi Gorge (3.49 ± 0.312 mlO2g

-1h-1 (0.019 W) at 

30°C). 

 Overall there was a significant effect of altitude on BMR (RMANOVA, F(2, 10) 

= 15.183, p = 0.001). BMR decreased significantly from Underberg to Howick by 

56.9% (Post-hoc Sheffé, p < 0.05), and by 38.9% from Underberg to Oribi Gorge 

(Post-hoc Sheffé, p < 0.05). However comparison of the BMR data from Howick to 

Oribi Gorge showed a non-significant increase of 41.7% (Post-hoc Sheffé, p > 0.05).  

Post-hoc Sheffé tests (p < 0.05) were used to determine the thermal neutral 

zone (TNZ) and differences in the TNZ range between altitudinal subpopulations 

were evident, (Underberg = 15-33°C, Howick = 25-30°C and Oribi Gorge = 5-33°C), 

with the subpopulation at the lowest altitude having the broadest TNZ.   

 

Hematocrit 

There was a significant overall interaction of acclimation and altitude in hematocrit 

values of Amethyst Sunbirds (Fig. 9, RMANOVA , F(2, 10) = 5.010, p = 0.031). 

However only Oribi Gorge sunbirds showed a significant change in hematocrit levels 

post-acclimation (Post-hoc Sheffé test, p < 0.05).  There was more variation about the 

mean pre-acclimation for all locations, than post-acclimation (Fig. 9).  

 

Evaporative water loss 

Evaporative water loss (EWL) of three altitudinal subpopulations of Amethyst 

Sunbirds over the range of experimental temperatures differed significantly (Fig. 10. 

RMANOVA, F(12, 60) = 4.8092, p < 0.001). However, post-hoc tests revealed that only 

the Oribi Gorge subpopulation’s EWL measured at 33°C differed significantly from 

other EWL measurements (Post-hoc Sheffé test, p < 0.05). Generally sunbirds had 

lower EWL below the TNZ. 
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Body Mass 

There was no significant difference between mean pre- and post-acclimation mass (g) 

of Amethyst Sunbirds within sites nor was there a significant differences between pre- 

and post-acclimation masses between altitudinal subpopulations of Amethyst 

Sunbirds  (Fig. 11, RMANOVA, F(2, 22)= 0.345, p = 0.712). 

 

Ambient temperature 

Ambient temperatures for the three altitudinal locations (January 2004- May 2007), 

Underberg (Shaleburn), Howick (Cedara), and Oribi Gorge (Paddock) are represented 

in Table 1. as per data obtained from the South African Weather Service. Underberg 

consistently had lower ambient temperatures over the winter months (May- August) 

than the other altitudinal locations. Howick had higher mean ambient temperatures 

than Oribi Gorge in the winter months. 

 

Discussion 

Many metabolic studies (particularly comparative studies), both avian and other, 

have used a mean BMR for a population regardless of capture location, or 

alternatively have used data from one population as a representative for an entire 

species (e.g. Bech, 1980; Cooper and Swanson, 1994; Boix-Hinzen and Lovegrove, 

1998; Maddocks and Geiser, 2000; McKechnie and Lovegrove, 2001; López-

Calleja and Bozinovic, 2003; Lovegrove and Smith, 2003; McKechnie et al., 2007; 

Smit et al., In Press). However, this study showed that populations respond 

differently to acclimation, possibly as a result of persistent underlying physiological 

differences, or persistent effects of altitudinal acclimatization. Recent evidence 

suggests that winter BMR of species living in highly seasonal environments reflects 

the conditions in which the animal existed in immediately prior to metabolic 
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measurements being taken (McKechnie, In Press). As a result of this, after the six 

week acclimation period to 25°C and an altitude of 660m, we would expect birds 

from all of the altitudinal subpopulations to react similarly if not uniformly to the 

range of ambient temperatures of the respirometry trials,  and thus differently to pre-

acclimation trials, thereby displaying phenotypic flexibility. However, differences in 

MR, and in particular BMR, between subpopulations in post-acclimation trials 

indicate that this is not necessarily the case. Altitudinal subpopulations still showed 

differences in MR post-acclimation, thus indicating that captive bred populations of 

birds would not represent the entire species as well as assumed, unless altitudinal 

origin of the original population is known, and laboratory populations represent 

subpopulations over the entire altitudinal gradient occupied by the species. It is also 

difficult to assess the end point of thermal acclimation (Rezende et al., 2004; Bush, 

2007) and thus it is possible that this was merely a stage in the ability of Amethyst 

Sunbirds to change their thermal phenotype over a longer period of time. 

The fact that there was no significant difference between the post-

acclimation masses of the three subpopulations of Amethyst Sunbirds shows that 

this difference is not a result of the effects of body mass and thus could indicate a 

difference in acclimation strategies, most likely as a result of adapting to live in 

different altitudinal and thus thermal environments. This further emphasizes the 

need for knowledge of the origin of study populations, and not just in terms or 

captive vs. wild caught populations. In recent comparative avian reviews, much 

focus is placed on whether study birds were captive-bred or wild caught (e.g. 

Weathers et al., 1983; McKechnie et al, 2007; McKechnie, In Press) and on 

phenotypic flexibility. However, changing views in avian physiology as yet omit to 

recognize the altitudinal origin of the study population. A review by McKechnie (In 

Press) recognized that the data represented in the literature often uses a single BMR 
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value per species and is assumed to represent a fixed species specific value. Indeed, 

most studies of avian thermoregulatory abilities have used a mean BMR from one 

population as a representative for the entire species, which does not take into 

consideration the altitudinal origin of the study animals, nor does it acknowledge the 

fact that phenotypic flexibility, with respect to physiological parameters, may not be 

consistent throughout a species. 

Amethyst Sunbirds exhibited significant differences in pre-acclimation 

metabolic rates at both 5 and 25°C, indicating that altitudinal acclimatization plays a 

big role in sunbird physiology at any point in time. The results also indicate that 

different subpopulations show different responses to acclimation, and that differences 

in TNZ were evident post-acclimation, which indicated that physiological differences 

were not just a result of acclimation to the temperature and altitude of the acclimation 

site. Post-acclimation results also showed significant differences in VO2 between 

Underberg and Oribi Gorge subpopulations at 5, 10, 15, 20, 28, 30°C, and between 

Underberg and Howick Amethyst Sunbird subpopulations at 25, 28°C and between 

Howick and Oribi Gorge subpopulations at 5, 10 and 15°C. Similarly, Soobramoney 

et al. (2003) found that there was a difference in metabolic rates of the Common 

Fiscal (Lanius collaris) over an altitudinal temperature gradient as colder 

temperatures at high altitudes require an increase in metabolic heat production in 

homeotherms. However, Common Fiscals showed higher metabolic rates in 

subpopulations from the warmer altitudes, whereas Amethyst Sunbirds 

subpopulations from the warmer location (Oribi Gorge, lowest altitude) showed lower 

metabolic rates. As winter temperatures vary dramatically between the two habitats it 

would be expected that individuals that could survive in that range of ambient 

temperatures would be selected for over the generations and thus we would expect 

underlying physiological differences between altitudinal subpopulations.  
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Our data, and that of other altitudinal studies, emphasizes the need to 

acknowledge altitudinal differences between populations and not just use species 

means, as species means do not fully incorporate the effect of phenotypic 

plasticity/flexibility. 

We predicted that as altitude increased, and atmospheric oxygen concentration 

decreased, hematocrit values would increase in order to facilitate a higher oxygen 

uptake to assist in regulating MR in a species that occupies habitats over an altitudinal 

gradient. A study by Soobramoney et al. (2005) on the Common Fiscal showed an 

altitudinal difference in hematocrit values (32.5 - 48.3%). In contrast, hematocrit 

levels between altitudinal subpopulations of Amethyst Sunbirds showed no significant 

differences pre- or post-acclimation. However, Oribi Gorge sunbirds showed a 

significant decrease in hematocrit levels between pre- and post-acclimation. Blood 

hematocrit levels for avian species typically range between 30- 45% (Willmer et al., 

2005). The optimum for blood hematocrit levels is 50%, above which circulatory 

problems could result due to increased viscosity (Yahav et al., 1996). Overall, 

hematocrit levels for Amethyst Sunbirds were high when compared with other avian 

species and predicted values (e.g. Jones and Johansen, 1972; Soobramoney et al., 

2005). However, Amethyst Sunbirds have achieved, if not exceeded a hematocrit 

level of 50%, pre-acclimation. Similar to this, Rosy finches (Leucosticte arctoa) and 

House Finches (Carpodacus mexicanus) (Clemens, 1988) showed mean hematocrit 

values of 53% and 64- 68% respectively at high altitudes (3800m). Broiler Chickens 

(Gallus domesticus) on the other hand, have a mean hematocrit level of approximately 

30% (Yahav et al., 1996). Possibly, as a result of these discrepancies in expected and 

observed hematocrit ranges, the hematocrit range of avian species needs to be re-

examined, taking into consideration the altitudinal origin of studied individuals. 
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As ambient temperature increases, evaporative cooling is required in order to 

assist endotherms in maintaining a constant body temperature, and thus we would 

expect higher EWL at higher ambient temperatures. A study on Spinifexbirds, 

Eremiornis carteri (body mass ± 13 g) (Ambrose and Bradshaw, 1988) showed an 

increase in EWL with increase in Ta particularly in and above the TNZ.  As is typical 

in most birds, the same trend was found in Amethyst Sunbird subpopulations over a 

range of ambient temperatures. However, the Oribi Gorge subpopulation showed the 

highest levels of EWL, which is to be expected for the altitudinal subpopulation 

adapted to the higher ambient temperature range and thus requiring higher levels of 

evaporative cooling. In many small mammals, such as Gerbillurus species, short-term 

evaporative cooling is employed to deal with hyperthermia above the thermal neutral 

zone (Downs and Perrin, 1990). However, Amethyst Sunbirds showed an increase in 

EWL, particularly Oribi Gorge sunbirds, within their thermal neutral zone at higher 

temperatures. 

  

Conclusion 

Variation exists in RMR, BMR and TNZ between populations of Amethyst Sunbirds 

over an altitudinal gradient. Variation persisted, if not increased, post-acclimation, 

indicating phenotypic flexibility within the species. Thus acclimation time should be 

taken into account. Hematocrit levels were generally high and did not change 

significantly. Physiological phenotypic flexibility within a species indicates differing 

abilities to adapt to climate change and thus may lead to different survival predictions 

for each population. Thus one subpopulation should not be used as a representative of 

a species, and location and altitude of experimental subpopulations should be taken 

into account when making species predictions or comparing species. 
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Figure 2. Pre- vs. post-acclimation VO2 (mlO2g
-1h-1) of the Underberg subpopulation of Amethyst Sunbirds in winter, 17h00- 07h00  

at  5 and 25°C (mean ± SE , n = 9). 
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Figure 3. Pre- vs. post-acclimation VO2 (mlO2g

-1h-1) of the Howick subpopulation of Amethyst Sunbirds in winter, 17h00-07h00 at 5  
and 25°C (mean ± SE , n = 6).
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Figure 4.  Pre- vs. post-acclimation VO2 (mlO2g

-1h-1) of the Oribi Gorge subpopulation of Amethyst Sunbirds in winter, 17h00- 
07h00 at 5 and 25°C (mean ± SE, n = 8). 
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Figure 5. Post-acclimation VO2 (mlO2g
-1h-1) in the Underberg subpopulation of  

Amethyst Sunbirds over an ambient temperature range in winter (mean ± SE, 

n = 8).   
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Figure 6. Post-acclimation VO2 (mlO2g
-1h-1) in the Howick subpopulation of  

Amethyst Sunbirds over an ambient temperature range in winter (mean ± SE,  

n = 6).  
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Figure 7.Post-acclimation VO2 (mlO2g
-1h-1) in the Oribi Gorge subpopulation of  

Amethyst Sunbirds over an ambient temperature range in winter (mean ± SE, 

n = 9).
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Figure 8. Post-acclimation mean resting metabolic rates (VO2 mean ± SE) for the  

three winter acclimatized subpopulations of Amethyst Sunbirds (Underberg, 

Howick and Oribi Gorge) at Ta = 5, 10, 15, 20, 28, 30, 33°C. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Mean hematocrit values (% red blood cells) for the three subpopulations of  

Amethyst Sunbirds in winter (Underberg, Howick and Oribi Gorge) pre- and 

post-acclimation to 25°C in winter.  
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Figure 10. Mean evaporative water loss per temperature per subpopulation of  

Amethyst Sunbirds in winter. 

 

  

 

 

 

 

 

 

 

 

 Figure 11. Change in mass (g) of Amethyst Sunbirds between pre- and post- 

acclimation trials in winter. 
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Table 1. Monthly average, minimum and maximum temperatures (°C), for Underberg  

(Shaleburn), Howick (Cedara) and Oribi Gorge (Paddock), January 2004-  

May 2007. 

 

 

 
 

 

 Temperature (°C) 

 Underberg (Shaleburn) Howick (Cedara) Oribi Gorge (Paddock) 

MONTH  Mean ± SE Min Max Mean ± SE Min Max  Mean ± SE  Min Max 

1 18.27 ± 0.12 6.70 31.70 20.06 ± 0.12 9.80 34.70 21.81 ± 0.07 12.80 35.80 

2 18.07 ± 0.13 3.70 31.90 20.44 ± 0.12 8.60 36.60 22.64 ± 0.06 14.00 37.30 

3 15.51 ± 0.13 0.80 29.90 17.87 ± 0.12 6.90 35.40 20.49 ± 0.06 12.20 34.80 

4 13.24 ± 0.16 -4.80 28.00 16.30 ± 0.13 1.00 31.00 19.47 ± 0.07 9.20 34.60 

5 8.36 ± 0.21 -11.80 26.20 12.54 ± 0.16 -3.60 30.40 17.55 ± 0.08 6.60 34.00 

6 5.91 ± 0.30 -8.50 24.50 10.06 ± 0.22 -1.40 26.40 15.72 ± 0.09 6.00 29.90 

7 7.73 ± 0.28 -8.00 26.20 11.62 ± 0.22 -1.80 29.20 15.67 ± 0.10 6.40 34.70 

8 9.86 ± 0.23 -6.90 29.00 12.31 ± 0.19 -1.70 30.70 16.86 ± 0.10 6.90 35.40 

9 12.57 ± 0.24 -7.00 30.20 15.26 ± 0.16 0.20 34.10 17.30 ± 0.10 6.10 37.80 

10 14.98 ± 0.23 3.30 30.80 16.79 ± 0.14 6.70 35.60 18.49 ± 0.08 9.70 36.30 

11 15.77 ± 0.15 1.60 30.90 17.48 ± 0.13 5.60 35.00 19.88 ± 0.08 10.60 41.20 

12 16.64 ± 0.14 5.60 31.90 18.03 ± 0.13 5.20 35.60 20.70 ± 0.08 12.10 35.20 
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Chapter 3 

Formatted for the Journal of Experimental Biology 

 

Physiological variation in Amethyst Sunbirds (Chalcomitra amethystina) over an 

altitudinal gradient. Part B: in summer. 

 

Claire Lindsay1, Colleen Downs1 & Mark Brown1 

 

1 School of Biological and Conservation Sciences, University of KwaZulu-Natal, 

Private Bag X01, Pietermaritzburg, 3201, South Africa 

 

Amethyst Sunbirds (Chalcomitra amethystina) occur over an altitudinal gradient 

within KwaZulu-Natal, South Africa, from the Drakensberg mountain range to the 

coast. Sunbirds were caught in summer (November - December 2006) at three 

altitudinal locations within KwaZulu-Natal; Underberg (1553m), Howick (1075m) 

and Oribi Gorge (541m). Oxygen consumption (VO2) was measured pre-acclimation 

at 5 and 25°C. After post-acclimation to 25°C and 660m for 6 weeks, VO2 

measurements were taken at 8 different temperatures (15, 5, 10, 20, 30, 28, 25 and 

33°C). Pre- and post-acclimation hematocrit levels were measured. Resting metabolic 

rates differed significantly between altitudinal subpopulations of Amethyst Sunbirds. 

Basal metabolic rate was observed to decrease as altitude decreased. This summer 

research complemented an earlier study on altitudinal variation in Amethyst sunbirds 

in winter. It again emphasized the need to acknowledge altitudinal differences 

between subpopulations and not just use species means, as species means do not fully 

incorporate the effect of phenotypic plasticity/flexibility. 
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Keywords: Altitudinal variation, Amethyst Sunbird, metabolic rates, phenotypic 

plasticity, phenotypic flexibility. 

 

Introduction 

This is a continuation of an investigation into phenotypic plasticity/flexibility over an 

altitudinal gradient as described earlier (Chapter 2).  Birds are considered to be 

homeothermic endotherms, which implies the ability to maintain a constant body 

temperature over a broad range of ambient temperatures by adjusting their metabolism 

(Chaui-Berlinck et al., 2002). According to McKechnie et al. (2007), many birds 

display phenotypic flexibility in maintenance energy requirements, and are able to up 

or down regulate basal metabolic rate (BMR) over a period of time during thermal 

acclimation.  

Amethyst Sunbirds (Chalcomitra amethystina), relatively large African 

sunbirds (mean body mass 15g) (Cheke et al., 2001; Tree, 2005), occupy a relatively 

broad geographical region within South Africa which includes an altitudinal gradient 

within KwaZulu-Natal (KZN), from the Drakensberg mountain range to the coastal 

regions (Cheke et al., 2001). The distribution of Amethyst Sunbirds over an altitudinal 

gradient makes them an ideal species in which to study plasticity in thermal 

physiology within a species, as well as flexibility within a population.  

As in the winter study, it was predicted that the metabolic rates of 

subpopulations of Amethyst Sunbirds would vary over the altitudinal gradient due to 

acclimatization and adaptations to different temperatures, as well as pre- and post-

acclimation due to innate physiological differences in approach to acclimation to 

25°C and the Pietermaritzburg altitude (660m).  BMR is generally thought to be 
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species specific, however, it was predicted that plasticity/flexibility would occur 

between subpopulations, within a species, due to temperature differences over 

altitude. Similarly to the winter study, it was predicted that hematocrit values (% red 

blood cell concentration), would vary from high to low altitudes as a result of a 

change in oxygen concentration in atmospheric air and that evaporative water loss 

would increase with increasing ambient temperatures. 

 

Materials and Methods 

Study site, capture and maintenance  

Amethyst Sunbirds were captured in the summer of 2006 (November- December) at 

three different locations in KZN, South Africa, under permit from Ezemvelo KZN-

Wildlife, using mist-nets. The three sites were: Underberg (29°47.614S, 29°30.319E, 

1553 m above sea level, n = 10), Howick (29°28.203S, 30°13.316E, 1075 m above 

sea level, n = 10) and Oribi Gorge (30°40.067S, 30°15.316E, 541 m above sea level, n 

= 10). Study individuals were weighed and colour banded to allow for capture 

location and individual identification (Downs & Brown, 2002).  

After capture birds were transferred to the University of KwaZulu-Natal, 

Pietermaritzburg campuses’ Animal House, at an altitude of 660 m, where they were 

housed individually in cages (1 x 0.35 x 0.5m). Room temperature was set at 25°C 

with a 12L:12D photoperiod for the study duration (November 2006 - March 2007). 

Artificial nectar (20% sucrose plus Ensure®, Abbott Laboratories SA Ltd, 

Johannesburg, South Africa), as well as water, were available ad libitum to birds from 

nectar feeders in cages. Fruitflies were bred on rotting fruit in the room in which birds 

were housed, to supplement protein intake. 
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Birds were allowed to feed during the day prior to oxygen consumption (VO2) 

measurements due to their rapid food transit times (Downs, 1997; Downs and Brown, 

2002), but deprived of food during trials. Thus it was assumed that birds were post 

absorptive and that resting metabolic rate (RMR) was measured. None of the birds 

used in the experiments showed any indication of breeding activity, indicated by the 

absence of brood patches upon capture. 

 

Metabolic measurements and protocol 

Sunbirds were kept in the animal house for one night before pre-acclimation 

respirometry trials to reduce the effect of transport stress. 

Metabolic rate was measured indirectly by quantifying oxygen consumption 

(VO2) overnight, pre-acclimation at 5 and 25°C, and post-acclimation at 15, 5, 10, 20, 

30, 28, 25 and 33°C, using a respirometry protocol as per Chapter 2. Flow rate was 

maintained as per winter trials, between 0.500 and 0.600 l.h-1, ensuring <1% change 

in oxygen concentration. 

 

Blood hematocrit measurements 

Hematocrit protocol was performed according to Soobramoney et al. (2005) and 

Yahav et al. (1996) with modifications as per Chapter 2.  

 

Statistical analyses 

Descriptive statistics were calculated in STATISTICA (Statsoft, Tulsa, USA) for each 

subpopulation. The minimum RMR at each of these temperatures for each individual 

was used in analysis to determine change with temperature using Generalized Linear 

Models (commonly called GLIM) Repeated Measures Analysis of Variance 
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(RMANOVA). BMR was calculated by taking the lowest mean RMR per 

subpopulation. The TNZ was determined using Post-hoc Sheffé tests to determine 

over what range minimum RMR did not differ significantly. GLIM RMANOVA was 

further used for the comparison of VO2 measurements between populations at 

different altitudes and between pre- and post-acclimation data as well as to determine 

whether birds maintained constant blood hematocrit levels. Post-hoc Sheffé tests were 

done to determine where significant differences occurred (p < 0.05), between 

populations and within each population pre- and post acclimation.  Data were 

presented as mean ± SE of the individuals measured (n). As in winter trials percentage 

change in MR (BMR or RMR) between populations was calculated by the following 

equation: (higher altitude MR- lower altitude MR)/ higher altitude MR)*100. 

Similarly, percentage change between pre and post-acclimation MR values were 

calculated using the following equation: (Pre-acclimation MR- Post-acclimation MR)/ 

Pre-acclimation MR)*100). 

 

Release 

Birds were weighed and released back at the original capture site upon completion of 

respirometry trials. 

 

Results  

Pre- vs post-acclimation 

There was no significant combined effect of altitude and acclimation on Amethyst 

Sunbird VO2 at 5°C (Fig. 1a, RMANOVA, F(2, 18) = 1.634, p = 0.223). However, all of 

the altitudinal subpopulations showed significant differences between pre- and post-

acclimation VO2 values at Ta = 5°C (RMANOVA, F(1, 9) = 60.660, p < 0.001). At 5°C, 
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the Underberg subpopulation of sunbirds showed a significant increase in VO2 of  

80.9% between pre- and post-acclimation trials (Post-hoc Sheffé, p < 0.05), from 4.47 

± 0.263 mlO2g
-1h-1  (0.025 W) to 8.09 ± 0.511 mlO2g

-1h-1 (0.045 W). The Howick 

subpopulation showed a significant increase in VO2 of 20.9% (Post-hoc Sheffé, p < 

0.05), from 6.08 ± 0.350 mlO2g
-1h-1 (0.034 W) to 7.35 ± 0.481 mlO2g

-1h-1 (0.041 W). 

The Oribi Gorge subpopulation, however, showed a significant decrease in VO2 of 

19.5% (Post-hoc Sheffé, p < 0.05)  between pre- and post-acclimation trials from 7.36 

± 0.450 mlO2g
-1h-1 (0.041 W) to 5.93 ± 0.398 mlO2g

-1h-1 (0.033 W). There was a 

significant difference in VO2 values between sites (RMANOVA, F(2, 18) = 74.976, p < 

0.001). Pre-acclimation    VO2 values at 5°C showed between site significance for all 

sites (Post-hoc Sheffé, p < 0.05). Post-acclimation, post-hoc tests showed a significant 

difference between Underberg and Oribi Gorge, and between Howick and Oribi 

Gorge subpopulations (Post-hoc Sheffé, p < 0.05), however differences in VO2 values 

between Underberg and Howick subpopulations of sunbirds were not significant 

(Post-hoc Sheffé, p < 0.05). 

At Ta = 25°C there was a significant combined effect of altitude and 

acclimation on Amethyst Sunbird VO2 values (Fig. 1b, RMANOVA, F(2, 18) = 5.266, p 

= 0.016). The Underberg subpopulation (Fig. 2) showed a significant increase of 

85.2% in VO2 (Post-hoc Sheffé, p < 0.05) between pre-and post-acclimation values  

from 2.30 ± 0.143 mlO2g
-1h-1 (0.013 W) to 4.26 ± 0.255 mlO2g

-1h-1 (0.024 W). 

Sunbirds from Howick (Fig. 3) showed a significant 42.8% increase in  VO2 (Post-hoc 

Sheffé, p < 0.05) from pre- to post-acclimation trials from 2.81 ± 0.352 mlO2g
-1h-1 

(0.016 W) to 4.01 ± 0.230 mlO2g
-1h-1 (0.022 W). Oribi Gorge sunbirds, however, 

showed virtually no change in RMR between pre- and post-acclimation at Ta = 25°C, 
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with a decrease of 0.3% from 3.86 ± 0.278 mlO2g
-1h-1  (0.022 W) to 3.85 ± 0.244 

mlO2g
-1h-1 (0.021 W) (Post-hoc Sheffé, p > 0.05). 

Comparison of pre-acclimation data indicated a significant difference between 

Underberg and Oribi Gorge (Post-hoc Sheffé, p < 0.05), and between Howick and 

Oribi Gorge subpopulations (Post-hoc Sheffé, p < 0.05), however, Underberg and 

Howick subpopulations were not significantly different pre-acclimation (Post-hoc 

Sheffé, p > 0.05). Post-acclimation VO2 data did not show any significant differences 

between altitudinal subpopulations (Post-hoc Sheffé, p > 0.05). 

 

Post-acclimation 

Altitudinal Amethyst Sunbird subpopulations responses (Underberg, Howick and 

Oribi Gorge) to a range of temperatures indicated that that as Ta increased, intra-

subpopulation variation decreased (Figs 5-7). In general, RMR was reached between 

19h00 and 20h00 over the range of ambient temperatures for all of the altitudinal 

subpopulations.  

In summer there was a significant combined effect of altitude and temperature 

on resting metabolic rates of subpopulations of Amethyst Sunbirds in post-

acclimation trials (Fig.8, RMANOVA F(14, 126) = 10.054, p < 0.001). There was a 

significant difference in RMR between Underberg and Oribi Gorge at 5, 10, 15 and 

20°C (Post-hoc Sheffé, p < 0.05), Howick and Oribi Gorge at 5, 10 and 15°C (Post-

hoc Sheffé, p < 0.05), but no significant difference in RMR for Underberg and 

Howick (Post-hoc Sheffé, p > 0.05) when comparing between the same ambient 

temperatures. There was very little variation between individuals within a 

subpopulation at each of the ambient temperatures (Fig. 8). 
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When comparing Amethyst Sunbird BMR post-acclimation between 

altitudinal subpopulations in summer (Fig. 8) it was found that BMR values did not 

differ significantly (RMANOVA, F(2, 18) = 0.462, p = 0.637),  the Underberg 

subpopulation of sunbirds had the highest BMR (3.50 ±  0.245 mlO2g
-1h-1 or 0.020 W 

achieved between 30-33°C), then Howick (3.47 ± 0.216 mlO2g
-1h-1 or 0.019 W 

achieved between 28-33°C), with Oribi Gorge sunbirds displaying the lowest BMR 

(3.29 ± 0.232 mlO2g
-1h-1 or 0.018 W achieved between 28-33°C). BMR decreased by 

0.7% between Underberg and Howick subpopulations, by 5.9% between Underberg 

and Oribi Gorge, and by 5.3% between Howick and Oribi Gorge subpopulations, 

indicating a decrease in BMR as altitude decreased. Post-hoc Sheffé tests (p < 0.05) 

indicated relatively broad TNZ ranges for all of the subpopulations (Underberg (Ta = 

20-33°C), Howick (Ta = 20-33°C) and Oribi Gorge (Ta = 15-33°C)) with the 

subpopulation at the lowest altitude having the broadest TNZ. 

 

Hematocrit 

Although there was no overall significant combined interaction between site and 

acclimation on hematocrit levels of Amethyst Sunbirds (Fig 9, RMANOVA, F(2, 16) = 

2.617, p = 0.104), hematocrit levels were significantly effected by acclimation 

(RMANOVA, F(1, 8) = 89.628, p < 0.001). Post-hoc tests indicated that only 

Underberg sunbirds displayed a significant change post-acclimation (Post-hoc Sheffé, 

p < 0.05). Hematocrit data for the altitudinal subpopulations showed a significant 

difference between pre-acclimation hematocrit values for Underberg and Oribi Gorge 

subpopulations of sunbirds (Post-hoc Sheffé, p < 0.05). However, no significant 

difference was observed between subpopulations post -acclimation to 25°C and 

Pietermaritzburg altitude (Post-hoc Sheffé, p > 0.05).  
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Evaporative Water Loss 

Evaporative water loss of three altitudinal subpopulations of Amethyst Sunbirds over 

the range of experimental temperatures increased marginally with increasing ambient 

temperature. There was a combined significant effect of temperature and altitude (Fig. 

10, RMANOVA, F(12, 108) = 5.189, p < 0.001) . At 5°C EWL in summer trials was 

negligible. 

 

Body Mass 

There was no significant difference between pre- and post-acclimation body mass (g) 

for each subpopulation, nor between altitudinal subpopulations of Amethyst Sunbirds 

(Fig 11, RMANOVA, F(2, 18) = 0.935, p = 0.411).  

 

Ambient temperature 

Summer ambient temperatures for January 2004- May 2007 (Table 1), showed that as 

altitude increased the mean monthly ambient temperature decreased. 

 

Discussion  

As was discussed in Chapter 2, avian metabolic data is often grouped together 

regardless of altitudinal origin of study birds, or alternatively one subpopulation is 

selected as a representative for the entire species in terms of metabolic measurements 

(e.g. Bech, 1980; Cooper and Swanson, 1994; Boix-Hinzen and Lovegrove, 1998; 

Maddocks and Geiser, 2000; McKechnie and Lovegrove, 2001; Downs and Brown, 

2002; López-Calleja and Bozinovic, 2003; Lovegrove and Smith, 2003;  McKechnie 

et al., 2007; Smit et al. In Press). However, avian BMR is emerging as a highly 
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flexible thermal trait, influenced by ambient temperature fluctuations, as well as other 

environmental changes (McKechnie, In Press).  

As in the winter study, we predicted that the metabolic rates of subpopulations 

of Amethyst sunbird subpopulations would exhibit plasticity/flexibility over the 

altitudinal gradient due to acclimatization and adaptations to different ambient 

temperatures, as well as pre- and post-acclimation. Pre-acclimation data showed a 

significant difference between Underberg (highest altitude) and Oribi Gorge (lowest 

altitude), and between Howick (intermediate altitude) and Oribi Gorge (lowest 

altitude) subpopulations. As sunbird subpopulations would be acclimatized to 

different altitudes with differing variation in ambient temperatures respectively, it 

appears that they have adopted metabolic strategies to survive in the differing climatic 

conditions of their altitudinal sites and to minimize energy loss to metabolic heat 

production. 

 In summer Amethyst Sunbirds showed within species variation between 

altitudinal subpopulations in post-acclimation resting metabolic rates over the range 

of ambient temperatures, particularly at the lower ambient temperatures studied. 

Colder temperatures require that homeotherms increase metabolic heat production 

(Soobramoney et al. 2003). Underberg sunbirds were acclimatized to lower summer 

ambient temperatures than Oribi Gorge sunbirds, and similarly Howick sunbirds 

acclimatized to a lower range of summer ambient temperatures than Oribi Gorge 

birds. Consequently the differences in metabolic rate between these subpopulations 

shows a higher rate of metabolic heat production typical of  higher altitude 

subpopulations compared with those at lower altitude in order to combat the effect of 

lower ambient temperatures and maintain homeothermy .  
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 Although the effect of altitude on summer BMR of Amethyst Sunbird 

subpopulations was not significant, the higher altitude subpopulation (Underberg) 

exhibited the highest BMR, and the lowest altitude subpopulation (Oribi Gorge), the 

lowest BMR. This appears to be a consequence of the variation in ambient 

temperature at the differing localities along the altitudinal gradient where coldest 

mean monthly ambient temperature in Underberg was approximately 10°C lower that 

that of Oribi Gorge, and thus the colder temperatures at the higher altitudes would 

necessitate an increase in metabolic heat production by a homeothermic species 

(Soobramoney et al., 2003). Similarly, a summer study on Rosy Finches (Leucosticte 

arctoa) and House Finches (Carpodacus mexicanus) showed a decrease in BMR with 

decreased altitude from 3800m to 150m above sea level (Clemens, 1988). However, 

unlike those of Amethyst Sunbirds, these changes in BMR were significant, most 

likely as a result of a much greater difference in altitude between study sites. Thermal 

neutral zones for altitudinal subpopulations were similar, with only Oribi Gorge 

sunbirds (the warmest and lowest habitat) showing a slightly broader TNZ than the 

other two subpopulations, possibly due to natural acclimatization to the broader range 

of ambient temperatures experienced.  

Evaporative water loss (EWL) plays an important role in thermoregulation 

when ambient temperature exceeds body temperature and consequently, the rate of 

water from an animal has important implications for thermoregulation and thus 

survival (Downs and Perrin, 1990; McKechnie and Wolf, 2004). Summer 

subpopulations of Amethyst Sunbirds all showed a marginal increase in EWL with 

increased ambient temperature, particularly within the TNZ.  

It was predicted that summer hematocrit levels of Amethyst Sunbird 

subpopulations would increase with increasing altitude and decreasing atmospheric 
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oxygen concentration to aid in oxygen carrying capacity and thus metabolic rates. Pre-

acclimation hematocrit values differed significantly between the highest (Underberg) 

and lowest altitude (Oribi Gorge) subpopulations of sunbirds.  Soobramoney et al. 

(2005) found a similar trend in the hematocrit values of Common Fiscals Lanius 

collaris over the studied altitudinal gradient. Underberg sunbirds displayed a 

significant change post-acclimation. Hematocrit levels were high when compared 

with other avian species, for example, Broiler Chickens (Gallus domesticus) which 

had a mean hematocrit value of 30% (Yahav et al., 1996) which is within the typical 

range of hematocrit values for avian species suggested by Willmer et al. (2005) of 

between 30- 45%. High hematocrit values are possibly due to the small body size of 

Amethyst Sunbirds and the high metabolic cost of flight.  

Along with the results of Chapter 2, these summer results emphasize the need 

to acknowledge the altitudinal origin of study populations and its effect on 

physiological parameters. Again it shows that in comparative avian studies the 

variation in physiological parameters of subpopulation is important, rather than just 

using a mean value for a species. This also has implications for models of the effects 

of climate change on the distribution of a species when physiological parameters, 

particularly thermal, are considered. 

 

Conclusion 

Similarly to chapter 2 summer studies of physiological parameters of  Amethyst 

Sunbirds from different altitudinal subpopulations indicated variation in pre- and post-

acclimation RMR, BMR and TNZ. This further emphasized the need to consider the 

altitudinal origin of study individuals, and to consider the effect of phenotypic 

flexibility on metabolic parameters, over an acclimation period.  
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Figure 1. Pre- and post-acclimation VO2 values for the three subpopulations of  

Amethyst Sunbirds at 5 (a) and 25ºC (b) in summer (UB = Underberg, 
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Figure 2. Pre- vs. post-acclimation VO2 (mlO2g
-1h-1) of the Underberg subpopulation of Amethyst Sunbirds in summer, 17h00-07h00 at 5 and 25°C (mean ± SE, n=10). 
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Figure 3. Pre- vs. post-acclimation VO2 (mlO2g
-1h-1) of the Howick subpopulation of Amethyst Sunbirds in summer, 17h00-07h00 at 5 and 25°C (mean ± SE, n = 10).                                    
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Figure 4. Pre- vs. post-acclimation VO2 (mlO2g
-1h-1) of the Oribi Gorge subpopulation of Amethyst Sunbirds in summer, 17h00-07h00 at 5 and 25°C (mean ± SE, n = 10).    
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Figure 5. Post-acclimation VO2 (mlO2g
-1h-1) in the Underberg subpopulation of Amethyst  

Sunbirds over a range of ambient temperatures in summer (mean ± SE, n =10). 
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Figure 6. Post-acclimation VO2 (mlO2g
-1h-1) in the Howick subpopulation of  

Amethyst Sunbirds over a range of ambient temperatures in summer (mean ± 

SE, n = 10). 
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Ta = 25oC
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Figure 7. Post-acclimation VO2 (mlO2g
-1h-1) in the Oribi Gorge subpopulation of  

Amethyst Sunbirds over a range of ambient temperatures in summer (mean ± 

SE, n =10).
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Figure 8. Mean post-acclimation resting metabolic rates for the three subpopulations  

of Amethyst Sunbirds in summer (Underberg, Howick and Oribi Gorge) at Ta 

= 5, 10, 15, 20, 28, 30, 33°C.  

 

 

 

 

 

 

 

 

 

Figure 9. Mean hematocrit values (% red blood cells) for the three subpopulations of  

Amethyst Sunbirds in summer (Underberg, Howick and Oribi Gorge) pre- and 

post-acclimation to 25°C. 
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Figure 10. Mean (+ SE) evaporative water loss with temperature of subpopulations of  

Amethyst Sunbirds in summer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Pre- vs post-acclimation mean body mass (g) for Amethyst Sunbird  

subpopulations over an altitudinal gradient in summer. 
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Table 1. Monthly average, minimum and maximum temperatures (°C), for Underberg  

(Shaleburn), Howick (Cedara) and Oribi Gorge (Paddock), January 2004- May  

2007.

 Temperature (°C) 

 Underberg (Shaleburn) Howick (Cedara) Oribi Gorge (Paddock) 

MONTH  Mean ± SE Min Max Mean ± SE Min Max  Mean ± SE  Min Max 

1 18.27 ± 0.12 6.70 31.70 20.06 ± 0.12 9.80 34.70 21.81 ± 0.07 12.80 35.80 

2 18.07 ± 0.13 3.70 31.90 20.44 ± 0.12 8.60 36.60 22.64 ± 0.06 14.00 37.30 

3 15.51 ± 0.13 0.80 29.90 17.87 ± 0.12 6.90 35.40 20.49 ± 0.06 12.20 34.80 

4 13.24 ± 0.16 -4.80 28.00 16.30 ± 0.13 1.00 31.00 19.47 ± 0.07 9.20 34.60 

5 8.36 ± 0.21 -11.80 26.20 12.54 ± 0.16 -3.60 30.40 17.55 ± 0.08 6.60 34.00 

6 5.91 ± 0.30 -8.50 24.50 10.06 ± 0.22 -1.40 26.40 15.72 ± 0.09 6.00 29.90 

7 7.73 ± 0.28 -8.00 26.20 11.62 ± 0.22 -1.80 29.20 15.67 ± 0.10 6.40 34.70 

8 9.86 ± 0.23 -6.90 29.00 12.31 ± 0.19 -1.70 30.70 16.86 ± 0.10 6.90 35.40 

9 12.57 ± 0.24 -7.00 30.20 15.26 ± 0.16 0.20 34.10 17.30 ± 0.10 6.10 37.80 

10 14.98 ± 0.23 3.30 30.80 16.79 ± 0.14 6.70 35.60 18.49 ± 0.08 9.70 36.30 

11 15.77 ± 0.15 1.60 30.90 17.48 ± 0.13 5.60 35.00 19.88 ± 0.08 10.60 41.20 

12 16.64 ± 0.14 5.60 31.90 18.03 ± 0.13 5.20 35.60 20.70 ± 0.08 12.10 35.20 
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Chapter 4 

Formatted for the Journal of Experimental Biology 

 

A comparison of summer and winter metabolic rates of Amethyst Sunbirds 

(Chalcomitra amethystina) over an altitudinal gradient. 

 

Claire Lindsay1, Colleen Downs1 & Mark Brown1 

 

1 School of Biological and Conservation Sciences, University of KwaZulu-Natal, 

Private Bag X01, Pietermaritzburg, 3201, South Africa 

 

Southern Africa is characterised by an unpredictable environment with daily and 

seasonal temperature fluctuations, thus posing challenging thermal conditions and 

increased energetic stress for endothermic vertebrates. Amethyst Sunbirds 

(Chalcomitra amethystina) are relatively large African sunbirds (15g). They are 

considered non- or locally migratory and thus have to deal with the temperature 

changes and physiological stresses a new season brings. This study compared 

altitudinal subpopulations and the seasonal shifts between and within the 

subpopulations in metabolic parameters. Amethyst Sunbirds were caught in summer 

and winter at three different altitudinal subpopulations; Underberg, Howick and Oribi 

Gorge. Upon capture, metabolic rate of the sunbirds were measured indirectly by 

quantifying oxygen consumption (VO2) using flow through respirometry, at 5 and 

25°C. Birds then underwent a 6 week acclimation period at 25°C on a 12L: 12D 

cycle. VO2 was measured post-acclimation at 8 different temperatures (15, 5, 10, 20, 
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30, 28, 25 and 33°C). Hematocrit levels were taken pre-acclimation and pre-release. 

Experiments were repeated for a winter and summer season. 

In general, Amethyst Sunbird subpopulations from Underberg and Howick 

showed higher post-acclimation resting metabolic rates per temperature in winter than 

in summer trials. Underberg and Howick subpopulations respectively showed a 

significant difference between summer and winter VO2 at 5 and 10°C. Thermal 

neutral zones of all of the subpopulations of sunbirds shifted between winter and 

summer. Post-acclimation basal metabolic rate of sunbirds decreased significantly by 

38.8% from winter to summer for the Underberg subpopulation, increased by 44.8% 

for the Howick subpopulation and did not change significantly for the Oribi Gorge 

subpopulation (5.8% decrease). 

   

Introduction 

Southern Africa is characterised by an unpredictable environment with daily and 

seasonal temperature variation (Schulz, 1997). These fluctuations pose challenging 

thermal conditions and increased energetic stress for vertebrates, especially for 

mammals and birds, which are endothermic. Climate can affect birds directly or 

physiologically, though its impact on energy maintenance and water balance, and/or 

indirectly (i.e. ecologically), through its influence on vegetation, food availability, 

photoperiod and thus available foraging time (Carey et al., 1980; Weather and 

Caccamise, 1978; Weathers and van Riper, 1982; Cooper, 2000; Cooper, 2002; 

Lovegrove and Smith, 2003; Crick, 2004).  It would be a mistake to regard organisms 

that are exposed to the external environment as being passive to change, since they 

often show an ability to use physiological adjustment or plasticity to alleviate the 

effects of seasonal environment changes as well as experimental conditions  (Dawson, 
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2003; Rezende et al., 2004; Cossins et al., 2006). The ability to adapt and change is 

most pronounced in species living in fluctuating environments, which in this case 

could describe seasonal changes in ambient temperature, or alternatively changes in 

mean temperatures over an altitudinal gradient, and such species require seasonal 

acclimatization in order to facilitate thermoregulatory homeostasis  (Cooper, 2000;  

Arens and Cooper, 2005; Cossins et al., 2006). As early as 1962, Hart noticed that a 

striking feature of small birds was their ability to withstand changes in ambient 

temperature with very little protection, but to a greater metabolic cost. Similarly, 

Swanson and Weinacht (1997) noted that seasonal differences in metabolism are 

common in small passerine birds. Weathers and van Riper (1982) showed that birds 

show a remarkable degree of physiological adjustment to differing climates. More so, 

small diurnal birds that are locally migratory or non-migratory, such as Amethyst 

Sunbirds (Chalcomitra amethystina) (Tree, 2005), have to deal with seasonal changes 

in ambient temperature and thus would have to employ seasonal adjustments in their 

physiology in order to reduce the thermal stress placed on these small passerines 

(Withers, 1992; Maddocks and Geiser, 2000), particularly as their small size restricts 

the ability of increased body insulation to assist in seasonal acclimatization (Clemens, 

1988). 

Avian basal metabolic rate (BMR) is beginning to be viewed as a highly 

flexible physiological trait influenced by environmental fluctuations, and in particular 

changes in ambient temperatures. Many non-migrants have been found to adjust their 

BMR seasonally, and winter- acclimatized and cold-acclimated birds have been 

known to exhibit higher basal metabolic rates, than those summer-acclimatised or 

warm acclimated birds (Klaasen et al., 2004; McKechnie, In Press). Recent evidence 

suggests that during winter, BMR of species resident in highly seasonal environments 
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reflects the prevailing conditions immediately before metabolic measurements 

(McKechnie, In Press). Summer responses may be less varied due to temperature 

fluctuations remaining within the thermal neutral zone (TNZ). It was predicted that 

BMR and TNZ would vary between bird subpopulations from different altitudinal 

localities, and between seasons. In addition, it is predicted that post-acclimation to a 

particular temperature over a period of six weeks, birds from different altitudes will 

respond similarly, in terms of physiology, to a range of ambient temperatures, and 

differ to pre-acclimation trials, therefore displaying phenotypic flexibility in 

physiological parameters, particularly thermal. Differences in altitudinal 

subpopulations post-acclimation were expected to indicate a difference in acclimation 

strategies, most likely as a result of adapting to live in different altitudinal and thus 

thermal environments.   

Thus the ecological significance of seasonal acclimatization for animals living 

in a non- or locally migratory manner in a changing environment is obvious 

(Southwick, 1980) and consequently, knowledge of the plasticity in ecophysiological 

parameters and the strategies employed to cope with variability in food and water 

availability and extreme ambient fluctuations (in terms of seasonal and daily 

fluctuations) is important in understanding the survival of birds in southern Africa. 

Klaasen et al. (2004) questioned whether physiological flexibility in response to 

ambient temperature variation was a general feature of the metabolic properties of 

birds, irrespective of whether seasonal and daily temperature fluctuations were 

extreme. Thus, as most of the studies on small passerines have been on Holarctic 

species (McKechnie, In Press), substantially more research is required on the seasonal 

metabolic changes in small subtropical passerines. The necessity for further research 

into the phenotypic flexibility of metabolic rates (in particular BMR), as well as to 
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recognize altitudinal differences between subpopulations of the same species has been 

highlighted in Chapter 2 and 3. However seasonal differences and possible 

plasticity/flexibility of populations in physiological responses between seasons 

necessitates comparison between winter and summer studies.  Here physiological data 

from Amethyst Sunbird subpopulations from KwaZulu-Natal (KZN), South Africa 

from winter and summer studies, and pre- and post-acclimation, in terms of resting 

metabolic rate (RMR), BMR, TNZ and evaporative water loss (EWL) were compared. 

In addition, changes in hematocrit values between seasons, and pre-and post-

acclimation for subpopulations at each of the altitudinal study sites were compared.  

 

Materials and Methods 

Study site, Bird capture and maintenance  

Amethyst Sunbirds were captured in summer (November 2006- December 2006) and 

winter (May 2006-June 2006) at three different locations in KZN, South Africa, under 

permit from Ezemvelo KZN Wildlife, using mist-nets. The number of sunbirds 

caught, capture co-ordinates and capture site altitudes and are shown in Table 1. Study 

individuals were weighed and colour banded to allow for capture location and 

individual identification (Downs & Brown, 2002). None of the birds used in the 

experiments showed any indication of breeding activity, as indicated by the absence 

of brood patches. Experimental protocol for metabolic measurements was kept 

standard between winter and summer trials, and these methods are described in 

chapters 2 and 3. 

Weather data was obtained from the South African Weather Service 

(SAWS) for Shaleburn (representing Underberg), Cedara (representing Howick) and 

Paddock (representing Oribi Gorge) for January 2004- May 2007.  
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Statistical analyses 

Descriptive statistics were calculated in STATISTICA (Statsoft, Tulsa, USA) for each 

subpopulation. The minimum RMR at each of these temperatures for each individual 

was used in analysis to determine change with temperature using Generalized Linear 

Models (commonly called GLIM) Repeated Measures Analysis of Variance 

(RMANOVA). BMR was calculated by taking the lowest mean RMR per 

subpopulation. GLIM RMANOVA was further used for the comparison of seasonal 

VO2 measurements between populations at different altitudes, between pre- and post-

acclimation data and for body mass comparison Post-hoc Sheffé tests were done to 

determine where significant differences occurred (p < 0.05). Pre-acclimation VO2 data 

and weather data was analyzed using Factorial ANOVA. Post-hoc Sheffé tests were 

done to determine significance. Data are presented as mean ± SE of the individuals 

measured (n). Percentage change in Pre-acclimation MR and BMR between winter 

and summer was determined using the following equation: (Winter MR- Summer 

MR)/ Winter MR)*100). 

 

Release 

Birds were weighed and released back at the original capture site upon completion of 

respirometry trials. 

 

Results 

Body Mass 

Body mass (g) of Amethyst Sunbirds was compared between summer and winter, pre-

acclimation and post-acclimation (Fig. 1). There were no significant differences 
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between pre- or post-acclimation masses between seasons or between altitudinal 

subpopulations within seasons (Fig. 1, RMANOVA, F(2, 10) = 1.106, p = 0.368).  

 

Pre-acclimation Summer vs. Winter 

Pre-acclimation VO2 of Amethyst Sunbirds was compared between altitudinal sites 

and between seasons for 5 and 25°C (Fig. 2a and b).  At 5°C, all subpopulations 

showed a significant decrease in pre-acclimation VO2 from winter to summer (Fig. 2a, 

RMANOVA, F(1, 4) = 102.19, p = 0.001). Underberg showed a 47.0% decrease from 

8.44 ± 0.170 mlO2g
-1h-1  or 0.047 W to 4.47 ± 0.263 mlO2g

-1h-1 or 0.025 W (Post- hoc 

Sheffé, p < 0.05), Howick a 61.9% decrease from VO2 values of 15.94 ± 0.426 mlO2g
-

1h-1 or 0.089 W to 6.08 ± 0.350 mlO2g
-1h-1 or 0.034 W (Post- hoc Sheffé, p < 0.05). 

Oribi Gorge subpopulations showed the lowest seasonal difference between the 

altitudes with a decrease in VO2 from winter to summer trials of 41.6%, from 12.59 ± 

0.699 mlO2g
-1h-1 or 0.070 W to 7.36 ± 0.450 mlO2g

-1h-1 or 0.041 W (Post- hoc Sheffé, 

p < 0.05).  

A comparison of seasonal pre-acclimation Amethyst Sunbird VO2 data at 

25°C also showed a decrease in VO2 values from winter to summer (Fig. 2b, 

RMANOVA, F(1, 5) = 83.600, p < 0.001). From winter to summer, Underberg sunbirds 

showed a 65.7% decrease in VO2 from 6.71 ± 0.146 mlO2g
-1h-1 or 0.037 to 2.30 ± 

0.143 mlO2g
-1h-1 or 0.013 W (Post- hoc Sheffé, p < 0.05), Howick sunbirds showed a 

61.0% decrease in VO2 between seasons from 7.20 ± 0.447 mlO2g
-1h-1 or 0.040 W  in 

winter to 2.81 ± 0.352 mlO2g
-1h-1or 0.016 W in summer (Post- hoc Sheffé, p < 0.05). 

Oribi Gorge again showed the least change in VO2 between seasons with a 48.4% 

decrease from 7.48 ± 0.742 mlO2g
-1h-1 or 0.042 W in winter to 3.86 ± 0.278 mlO2g

-1h-

1 or 0.022 W in summer (Post- hoc Sheffé, p < 0.05).  
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Post-acclimation Summer vs. Winter 

Post-acclimation summer and winter VO2 values of Amethyst Sunbirds were 

compared for each location (Figs 3a-c). In general, the Amethyst Sunbird 

subpopulation from the highest altitude, Underberg, showed higher post-acclimation 

VO2 values per temperature in winter than in summer trials (Fig. 3a, RMANOVA, F(7, 

98) = 46.372, p < 0.001). Post-acclimation VO2 values for Howick subpopulations 

were generally higher in winter than in summer (Fig. 3b, RMANOVA, F(7, 546) = 

195.710, p < 0.001, however at 25 and 28°C summer VO2 values were higher than 

winter values, although not significantly so (Post- hoc Sheffé, p > 0.05). Underberg 

sunbirds showed a significant difference between summer and winter RMR values at 

5 and 10 °C (Figs 3a, Post-hoc Sheffé, p < 0.05), and Howick sunbirds showed a 

significant seasonal change in RMR at 5°C (Figs 3b, Post-hoc Sheffé, p < 0.05). The 

lowest altitude, Oribi Gorge, sunbirds showed no significant differences between a 

winter and a summer season between any of the ambient temperatures (Fig 3c, 

RMANOVA, F(7, 119) = 1.369, p = 0.225).  

Thermal neutral zones of Amethyst Sunbird subpopulations shifted between 

winter and summer seasons (Figs 3a-c). The TNZ for Underberg sunbirds in winter 

ranged from 10-33°C, but in summer it was narrower, between 20-33°C. The Howick 

sunbirds indicated a shift from a very narrow TNZ in winter (Ta = 25-30°C) to a 

broader range of temperatures in summer (Ta = 20-33°C).  Oribi Gorge sunbirds 

displayed a smaller shift in TNZ between the winter (Ta = 20-33°C) and summer 

season (Ta = 15-33°C) with both TNZs relatively broad. 

There was a significant effect of both season and altitudinal site on post-

acclimation BMR (Fig. 4, RMANOVA, F(2, 10) = 9.547, p = 0.005). Underberg 
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sunbirds significantly decreased BMR (Post-hoc Sheffé, p < 0.05) by 38.8% from 

winter to summer, from 5.71 ± 0.402mlO2g
-1h-1 or 0.032 W to 3.50 ±  0.213 mlO2g

-1h-

1 or 0.020 W (both at 30°C). Howick sunbirds showed a 44.8% increase in BMR from 

winter to summer, from 2.46 ± 0.299 mlO2g
-1h-1  or 0.014 W to 3.47 ± 0.216 mlO2g

-1h-

1 or 0.019 W (at 28 and 30°C respectively), however this increase was not statistically 

significant (Post-hoc Sheffé, p > 0.05). There was very little effect of season on the 

BMR of the Oribi Gorge sunbirds (Post-hoc Sheffé, p > 0.05), with only a slight 

decrease of 5.8% in summer, from 3.49 ± 0.312 mlO2g
-1h-1 or 0.019 W to 3.29 ± 0.232 

mlO2g
-1h-1 or 0.018 W (at 30°C).  

 

Weather 

Mean monthly temperatures per location were compared (Fig. 5, RMANOVA F (22, 

61298) = 78.503, p < 0.001) and it was found that there was a significant difference 

between mean temperature (°C) per month for all of the locations (Post-hoc Sheffé, 

p < 0.05). The mean temperatures for February (hottest month) and June (coldest 

month) were compared for each of the locations as representing the seasonal 

extremes.  Underberg showed the greatest seasonal extremes in temperature with a 

change in mean temperature between February and June of 12.2°C. Howick 

(10.4°C) and Oribi Gorge (6.9°C) which displayed less difference between seasons. 

Summer seasons showed less variability between altitudes than winter.  

 

Discussion 

It is thought that changes in body insulation in small birds are limited by their size and 

thus are not as marked as metabolic adjustments and only has a small role in seasonal 

acclimatization and adaptation to cold (Clemens, 1988; Cooper and Swanson, 1994; 
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Swanson and Weinacht, 1997). Studies on a small passerine the Australian Silvereye 

(Zosterops lateralis) by Maddocks and Geiser (2000), Monk Parakeets (Myiopsitta 

monachus) by Weathers and Caccamise (1978) and Black-capped Chickadees 

(Poecile atricapilla) by Cooper and Swanson (1994), indicated very little seasonal 

variation in body mass. Similarly, body mass in Amethyst Sunbirds did not vary 

seasonally or between altitudinal subpopulations within a season. This is contrary to 

most other species which displayed a 7% higher body mass in winter acclimatized 

birds (Weathers and Caccamise, 1978). As there was no significant change in body 

mass between seasons within altitudinal subpopulations, nor within seasons between 

altitudinal subpopulations, it can be concluded that changes in body fat stores were 

not an influencing factor in shifts in metabolic rates and thus seasonal acclimatization.  

Maddocks and Geiser (2000) found that variation within populations of 

Silvereyes, in terms of MR, was higher in summer than in winter. However, 

subpopulations of Amethyst Sunbirds consistently showed greater variation around 

the mean in winter than in summer. Maddocks and Geiser (2000) observed a shift in 

TNZ from 25.4 -33.5°C in summer, to a slightly narrower TNZ range between 27.0- 

33.6°C in winter. Dawson and Carey (1976), found the zone of thermal neutrality for 

the American Goldfinch (Carduelis tristis) ranged from approximately 23- 35oC in 

both summer and winter. Monk Parakeets (Weathers and Caccamise, 1978), showed a 

shift in thermal neutral zones between winter and summer from 24.5- 38.5°C to 28.0- 

40.0°C.  Amethyst Sunbird subpopulations, however, showed mixed responses to 

seasonal TNZ changes. The higher altitude Underberg sunbirds showed a decrease in 

TNZ range between winter and summer, possibly as a result of reduction in 

temperature extremes in summer. Howick and Oribi Gorge sunbirds, however, 

showed an increase in TNZ range from winter to summer. Thus Howick and Oribi 



 

 85 

Gorge sunbirds showed a similar response to that found by Maddocks and Geiser 

(2000). This response was to be expected due to exposure to a broader range of 

ambient temperatures in summer, and thus we expected birds to be able to cope with a 

broader range of temperatures. The absence of significant differences in winter and 

summer BMR values in Goldfinches (13g), tested over a range of temperatures in the 

laboratory (34 to -33°C), showed a striking ability to maintain and regulate MR and 

thus reduce energy expenditure (Dawson and Carey 1976), thus displaying flexibility 

in metabolic response enabling homeothermy. Similarly, seasonal studies on the 

Northern Bobwhite, Colinus virginianus,, (Swanson and Weinacht, 1997), a relatively 

large bird (210-225g), and the Southern White-faced Scops-owl, Ptilopsis granti 

(±220g) (Smit et al., In Press), showed no significant difference in BMR between a 

winter and a summer season  

 Hart (1962), found a significant difference between winter and summer in MR 

for Pigeons (Columba livia) and House Sparrows (Passer domesticus), but no 

significant seasonal difference in VO2 in Starlings (Sturnus vulgaris) and evening 

Grosbeaks (Hesperiphona vespertina). House Sparrows displayed higher oxygen 

consumption in winter when compared with summer, however the pigeons studied 

showed a decrease in VO2 for winter as compared to summer trials (Hart, 1962). 

However, at the lower temperatures tested, summer birds (except starlings) showed 

lower oxygen consumption than winter birds. This however was not a measure of 

BMR as it was done for only one hour during the day. Mountain Chickadees (Poecile 

gambeli) and Juniper Titmice (Baeolophus griseus), largely non-migratory passerines, 

showed a significantly greater winter BMR than summer BMR (Cooper, 2002), and 

Black-capped Chickadees indicated a significantly higher RMR referred to as 

standard metabolic rate in winter than summer (Cooper and Swanson, 1994). 
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However, Sharbaugh (2001), studied a population of Black-capped Chickadees in the 

much colder climate of Alaska and found no seasonal difference in RMR.  Maddocks 

and Geiser (2000) found an increase of 25.2% in the BMR of Silvereyes between 

winter and summer acclimated birds and concluded that RMR reduction in winter is a 

common occurrence in small passerines. Weathers and Caccamise (1978) measured 

fasting metabolic rate in Monk Parakeets at night and found it significantly lower in 

winter than in summer. White-crowned Sparrows (Zonotrichia leucophrys) showed 

increased oxygen consumption in winter (Southwick, 1980). Similarly, BMRs of cold 

acclimated Garden Warblers (Sylvia borin) were found to be 18.5% higher than 

warm-acclimated birds (Klaasen, 2004). Weathers and Caccamise (1978) suggest that 

in a small species, winter fasting MR show a strong tendency to exceed summer 

fasting MR, while the opposite generally applies to larger birds. One suggested 

explanation was that due to their size, small birds are unable to use significant 

increases in body insulation as a compensatory technique in response to winter 

conditions and thus may resort to increased metabolic heat production at lower 

ambient temperatures (Dawson and Carey, 1976; Weathers and Caccamise, 1978). 

However, even Mute swans (Cygnus olor) (Bech, 1980), a much larger species (± 5-

12kg), showed a higher RMR in winter than summer. This is contrary to predictions 

by Weathers and Caccamise (1978) that birds > 200g would show the opposite trend 

to smaller birds and decrease MR in winter. 

Amethyst Sunbirds, as relatively small birds, do not show significant 

differences in mass between seasons (implying a negligible change in body insulation 

and organ mass). However, in our study, different altitudinal subpopulations 

responded differently, in terms or metabolic parameters, to seasonal changes. In 

general Underberg and Howick subpopulations decreased RMR between winter and 
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summer, whereas the lowest altitude subpopulation, Oribi Gorge, showed very little 

seasonal change in RMR. This was expected as Oribi Gorge did not show a great 

change in seasonal ambient temperatures, whereas Underberg and Howick weather 

data showed a more marked seasonal shift in ambient temperature. The Underberg 

subpopulation showed a decrease in BMR of 38.8% from winter to summer. Howick 

sunbirds increased BMR by 44.8% in summer, whereas the Oribi Gorge 

subpopulation showed very little difference between a winter and summer season 

(5.8%). As a relatively small avian species, Amethyst Sunbirds do not respond 

according to predictions for the effect of season on the MR of small birds, thus 

serving to further emphasize the need to acknowledge the importance of altitudinal 

origin of a studied species. Our results may also explain the conflicting results from 

other studies, where some small birds have been found to increase BMR in winter 

(Hart, 1962; Southwick, 1980), some to decrease BMR in winter (Hart, 1962; 

Maddocks and Geiser, 2000; Weathers and Caccamise, 1978) and some to show no 

change in BMR seasonally (Hart 1962). Different subpopulations of Amethyst 

Sunbirds showed each of these seasonal responses, indicating that altitude can vastly 

affect studies of seasonal changes in BMR. In comparison, although such variations 

are more likely to be prominent in sedentary birds, even long-distance migratory birds 

(in particular the Knot, Calidris canutus) have been found to have pronounced 

seasonal variation in BMR (Piersma et al., 1995). 

Climate change, or long terms shifts in average weather, affects the MR of 

birds by requiring changes in energy expenditure (Crick, 2004). Consequently, one of 

the factors that could inhibit the ability to adapt to climate change, is a lack of 

phenotypic flexibility and thus the inability to adapt to climate change (Crick, 2004). 

According to Bernardo et al. (2007) there is a urgent need in conservation biology and 
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climate change research to find criteria for assessing the susceptibility of a species to 

climate change induced extinction. Many species of birds are found to exist in cold 

and warm climates, with metabolic parameters varying between populations of the 

same species (Furness, 2003). Surely, a promising indicator of a species ability to 

survive in a changing climate, is the ability to adapt and survive in response to 

seasonal as well as altitudinal shifts in temperature thus displaying flexibility/ 

plasticity in metabolic parameters and consequently the ability to survive changes in 

ambient temperatures. This study on Amethyst Sunbirds showed that within a species, 

different altitudinal subpopulations and thus populations exposed to different ranges 

of ambient temperatures are able to adapt and survive in changing environments. 

Seasonal variation in BMR and RMR in Amethyst Sunbirds and other avian species 

thus questions the relevance and accuracy of predictions made in avian comparative 

studies which have used a mean BMR or RMR per population, and not considered the 

variation around the mean, particularly as a consequence of altitude or season, as an 

effect on these physiological parameters. Similarly, non- or local migratory species, 

such as Amethyst Sunbirds show the ability not only to endure temperature shifts 

between seasons, but also reduced foraging time and changes in food availability, and 

thus ecological constraints.  

 

Conclusion 

When considering a population to use as a representative for the species in 

physiological studies, not only does one have to take altitudinal origin into account, 

but also the season to which the study population is acclimatized to. It may be 

possible to acclimate birds to the same temperature and altitude over a period of time, 

but our results have shown that underlying physiological differences can persist post-
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acclimation. Besides this, data from birds acclimated to pseudo environmental 

conditions may not represent the wild populations accurately, as significant 

differences were observed in metabolic parameters between pre- and post-acclimation 

trials. 
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Figure 1. Comparison of pre (a) and post-acclimation (b) body masses of Amethyst  

Sunbird subpopulations between sites and seasons. 
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Figure 2.  Seasonal and altitudinal differences in pre-acclimation VO2 values  

of Amethyst Sunbird subpopulations at (a) 5°C and (b) 25°C. 
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c) 

Figure 3. Seasonal differences in post-acclimation resting metabolic rates of the  

altitudinal subpopulations of Amethyst Sunbirds; (a) Underberg, (b) Howick 

and (c) Oribi Gorge.  
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Figure 4. Comparison of basal metabolic rates (VO2) of altitudinal subpopulations  

of Amethyst Sunbirds for a winter and summer season respectively.
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Figure 5. Mean monthly temperatures for each of the three capture locations January 

2004- May 2007 (Solid bar indicates winter months, hollow bar indicates 

summer months) 
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Table 1. Location and number of Amethyst Sunbirds captured in a winter and  

summer seasons. 

  GPS Co-ordinates No. of Sunbirds caught 

Location Altitude (m)  Latitude Longitude Winter Summer 

Underberg 1553 29˚47.614S 29˚30.319E 9 10 

Howick 1075 29˚28.203S 30˚13.316E 6 10 

Oribi Gorge 541 30˚40.067S 30˚15.316E 8 10 
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Chapter 5 

Conclusion 

 

Bernardo et al. (2007) acknowledges an urgent need in conservation biology and 

climate change research to find criteria for assessing the susceptibility of a species to 

climate change induced extinction. Despite the knowledge that species distributions 

are shifting according to changes in climate (Pörtner, 2002), we have little 

understanding of the relationship between a species physiology and its vulnerability to 

climate changes and more permanent shifts in ambient temperature (Calosi et al., In 

Press). Simmons et al. (2004) posed the question of whether some species will exhibit 

rapid adaptations to climate change. However, avian species show remarkable 

plasticity in their thermoregulatory responses and many species of birds are able to 

exist in cold and warm climates, and an increasing number of studies are showing 

variation and flexibility in metabolic parameters, both seasonally and in response to 

experimental conditions, between populations of the same species (Dawson, 2003; 

Furness, 2003; McKechnie, In Press).  

Differences between altitudinal subpopulations of Amethyst Sunbirds in pre- 

and post-acclimation results (Chapters 2 and 3) indicate plasticity in physiological 

responses within a species, as well as in the ability of the species to cope with and 

adapt to changes and differences in ambient temperatures. In combination with this, 

the ability of a species to exist in a variable environment in a non-or locally migratory 

manner, indicates an ability to shift metabolic responses between seasons, and the 

data showed this shift (Chapters 2, 3 and 4). As a result of this plasticity/ flexibility in 

metabolic parameters, Amethyst Sunbirds indicate that they will be able to shift their 

metabolism in response to predicted changes in climate (Chapters 2, 3 and 4).  
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Consequently, variation in basal metabolic rate (BMR) and resting metabolic 

rate (RMR) in Amethyst Sunbirds and other avian species calls into question the 

relevance and accuracy of predictions made in comparative avian studies which have 

used a mean BMR or RMR per species, or alternatively a single population as a 

representative of a species (e.g. Cooper and Swanson, 1994; Boix-Hinzen and 

Lovegrove, 1998; Maddocks and Geiser, 2000; McKechnie and Lovegrove, 2001; 

Downs and Brown, 2002; López-Calleja and Bozinovic, 2003; McKechnie et al., 

2007). None of these studies considered altitude or season as a source of variation in 

these physiological parameters. In particular, the effect of altitude on seasonal 

variation in BMR of Amethyst Sunbirds indicates that the conflicting results of 

seasonal changes in BMR of other small bird species may be a reflection of 

population acclimatization to a particular geographical location, as apposed to species 

differences. 

Thus in conclusion, a promising indicator of a species ability to survive in a 

changing climate, is the ability to adapt in response to seasonal and altitudinal shifts in 

temperature by displaying flexibility/ plasticity in metabolic parameters. As a result of 

this, when considering subpopulations to use as a representative for a species in 

physiological data collection, and ensuing climate change survival predictions, not 

only does one have to take altitudinal origin into account, but also the season to which 

the study population is acclimatized to. Furthermore, the variation around the mean 

for a particular thermal parameter needs to be considered. 

  Further studies should include genetic analysis and for this purpose blood 

samples were taken from all birds sampled. As a consequence of time constraints, 

metabolic measurements in the current study were only undertaken during one winter 

and one summer season. Ideally seasonal data needs to be repeated and field 
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metabolic rates obtained for birds over the altitudinal gradient. In addition, more sites 

should be sampled over a broader altitudinal gradient and the full range of 

temperatures should be tested pre- as well as post-acclimation. However, there are 

numerous constraints to achieving data sets that accomplish all of these criteria.  

 

References 

Bernardo, J., Ossola, R.J., Spotila, J. and Crandall, K.A. (2007). Interspecies  

physiological variation as a tool for cross-species assessment of global 

warming-induced endangerment: validation of an intrinsic determinant of 

macroecological and phylogeographic structure.  Biol. Lett. 3, 695- 698. 

Boix-Hinzen, C. and  Lovegrove, B. G. (1998). Circadian metabolic and  

thermoregulatory patterns of Red-billed Woodhoopoes (Phoeniculus 

purpureus): the influence of huddling. J. Zool. (Lond) 244, 33-41.  

Calosi, P, Bilton, D.T. and Spicer, J.I. Thermal tolerance, acclamatory capacity and  

vulnerability to global climate change. Biol. Lett. (2007) doi: 10.1098/ rsbl. 

2007. 0408 

Cooper, S.J. and Swanson, D.L. (1994). Seasonal acclimatization of  

thermoregulation in the Black-Capped Chickadee. Condor 96 (3), 638-646. 

Dawson, W.R. (2003). Plasticity in avian responses to thermal challenges- An essay  

in honor of Jacob Marder. Israel J. Zool. 49, 95-109. 

Downs, C.T. and Brown, M. (2002). Nocturnal heterothermy and torpor in the  

Malachite Sunbird (Nectarinia famosa). Auk 119(1), 251-260. 

Furness, R. W. (2003). It’s in the genes. Nature. 425, 779- 780.  

López-Calleja, M.V. and Bozinovic, F. (2003). Dynamic energy and time budgets in  



 

 104 

hummingbirds: a study in Sephanoides sephanoides. Comp.  Biochem. Physiol  

134 (A), 283- 295.  

Maddocks, T.A. and Geiser, F. (2000). Seasonal variations in thermal energetics of  

Australian silvereyes (Zosterops lateralis). J. Zool. Lond. 252, 327- 333. 

McKechnie, A.E. Phenotypic flexibility in basal metabolic rate and the changing  

view of avian physiological diversity: a review. J. Comp. Physiol. B. (2007)  

doi: 10.1007/s00360-007-0218-8. 

McKechnie, A.,Chetty, K. and Lovegrove, B.G. (2007). Phenotypic flexibility in  

the basal metabolic rate of Laughing Doves: responses to short-term  

thermal acclimation. J. Exp. Biol. 210, 97-106.  

McKechnie, A.E. and Lovegrove, B.G. (2001). Thermoregulation and the energetic  

significance of clustering behaviour in the White-backed Mousebird (Colius 

colius). Physiol. Biochem. Zool. 74, 238-249. 

McNab, B.K. (2003). Ecology shapes bird bioenergetics. Nature 426, 620-621. 

Pörtner, H.O. (2002). Climatic variations and the physiological basis of temperature  

dependent biogeography: systemic to molecular hierarchy of thermal tolerance 

in animals. Comp. Biochem. Physiol. A. 132, 739-761. 

Simmons, R. E., Barnard, P., Dean, W. R. J., Midgely, G. F., Thuiller, W. and  

Hughes, G. (2004). Climate change and birds: perspectives and prospects 

from southern Africa. Ostrich 75 (4), 295-308. 

 

 


