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ABSTRACT

African animal trypanosomiasis (AAT), restricted to parts of the KwaZulu-Natal Province,

is a disease which contributes significantly to the disease burden of cattle. Drug resistance

is a constraint and dipping of cattle using insecticides has proved to be unsustainable. Even

though the incidence of AAT has increased, little is known about the epidemiology of the

disease in the region. To better understand the dynamics of AAT, mathematical modelling

was done to investigate the interactions between the cattle, tsetse flies and buffaloes which

are considered to be the reservoir host. In addition, a statistical analysis of the data

collected from three sites around the Hluhluwe-iMfolozi Game Park was done to assess the

interactions between the variables.

A susceptible-infected (SI) model was constructed for the different classes of the population

i.e. susceptible and infected cattle and tsetse flies and infected buffaloes. The basic repro-

duction number R0, a threshold determining whether the disease will die out or persist in

the population, was derived using the next-generation matrix since we had two-hosts and

one vector. R0 was used to assess which elements contribute to R0 (i.e. transmission of

AAT from the buffaloes and cattle to the tsetse flies or tsetse flies to the cattle and buf-

faloes). The important element was found to be the transmission of AAT from buffaloes to

flies. Sensitivity analysis was done using the partial rank correlation coefficients (PRCC)

measure. PRCC values can show which parameters to target when looking at intervention

measures and determine how to efficiently reduce AAT. The mortality rate of tsetse flies

and their biting rate were determined to be the most important parameters.

Generalized linear models (GLMs) were used to analyse the data since we had binary and

count data. The AAT prevalence data was modelled using a binomial GLM, using the

packed cell volume (PCV), which is an indicator of whether a cow has AAT or not, region

i.e. whether the cow is located near or further away from the game park and month as the

explanatory variables. PCV and region were found to be significant, so where the cattle

are located seems to be important. The tsetse abundance data was modelled using Poisson
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GLMs, however the problem of overdispersion was evident and so alternative models were

considered. Since there were excess zeroes for G. austeni, zero-inflated models were used

and the best fit was found to be the zero-inflated negative binomial, whereas the negative

binomial model was used for G. brevipalpis to account for the overdispersion. Months

7 and 8 and year were found to be statistically significant for G.austeni. This could be

because month 7 has the lowest minimum and maximum temperatures during the year

and at lower temperatures, tsetse flies become less active and the pupal stage lengthens to

around 50 days and the reproductive rate decreases. For G.brevipalpis only year was found

to be statistically significant.

The AAT prevalence data was fit to the mathematical model using least squares, and

the input parameters were estimated and used to calculate R0 again so that it is more

site-specific. Climate change was also briefly addressed, since it is predicted to affect the

geographical distribution of tsetse flies. Higher temperatures could have a big impact

on the AAT situation because tsetse flies might modify their behaviour and shift their

geographical range to regions that are cooler, which might put cattle populations in other

regions at risk of AAT outbreaks.
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Chapter 1

Introduction

1.1 Background

Trypanosomiasis is a parasitic, vector-borne disease, caused by protozoa of the genus Try-

panosoma, and affects humans, domestic and wildlife animals in tropical and sub-tropical

countries in the world. It is transmitted by blood-sucking insects such as tsetse flies and

biting flies. In South and Central America, Trypanosoma cruzi is transmitted by blood-

sucking insects and causes Chagas disease in humans, whereas in Asia and North Africa

Trypanosoma evansi is transmitted by biting flies and affects camels and horses (known as

Surra). In Africa, the disease is transmitted mostly by tsetse flies of the genus Glossina,

and affects both humans and animals.

Human African trypanosomiasis, or sleeping sickness, is endemic in East, West and Central

Africa, with approximately 70 million people said to be at risk, one third of which are living

in areas of high to moderate risk (Simarro et al, 2012). It is caused by T. brucei gambiense,

which is found in West and Central Africa and is more of a chronic form of the disease,

and T. brucei rhodesiense, found in East Africa and is acute.

Animal trypanosomiasis is a disease affecting livestock in tropical and sub-tropical coun-

tries; transmitted mechanically by biting flies in areas such as in Central and South Amer-

ica, and cyclically by the tsetse fly in Africa. African animal trypanosomiasis (AAT), or

nagana (a Zulu word meaning powerless/useless), has a major impact on livestock pro-

duction and economic development in Africa. It is a cause of poverty and food shortages

affecting the livelihood of about 500 million farmers in rural villages (Deveze, 2010). An-

imals in Africa have great economic and social significance, as they provide milk, meat,
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hides and skins and are a means of accumulating and distributing wealth (Perry et al,

2005). Sick animals eventually become unfit to work or produce meat and/or milk and

will eventually die if they are not treated. AAT causes about 3 million deaths in cat-

tle and estimated economic losses in production of about US$1-2 billion each year (FAO,

2004).

1.2 Epidemiology of AAT

1.2.1 Etiologic Agent of Trypanosomiasis

Tsetse-transmitted trypanosomiasis is caused by parasites of the genus Trypanosoma, which

affects all domestic and wildlife animals. The major species are Trypanosoma congolense,

Trypanosoma vivax, Trypanosoma brucei brucei and Trypanosoma simiae. The two main

cyclically transmitted trypanosomes in cattle are T. congolense, T. vivax and T. brucei

brucei to a smaller degree, while T. brucei rhodensei and T brucei gambense are consid-

erably more important in causing sleeping sickness in humans (Clair, 1988). T. simiae is

rare but very pathogenic to pigs. T. vivax can be transmitted mechanically in non-tsetse

infested areas such as in Central and South America.

1.2.2 Natural History of the Disease

1.2.2.1 Symptoms

Trypanosomiasis is fatal if left untreated. In livestock, it leads to considerable weight

loss and anaemia, and the various symptoms exhibited include fever, emaciation, oedema,

anaemia and paralysis (Steverding, 2008). The advancement of trypanosomiasis varies

according to the parasite strain and the species and breed of animal infected (Connor and

Van den Bossche, 2004).

1.2.2.2 Pathogenesis and Virulence of the Disease

The disease varies from acute to chronic, where acute infection is characterised by high

levels of parasitemia and a fall in packed cell volume (the volume percentage of red blood
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cells in the blood), which leads to fever. Death occurs within 10 days (Connor and Van

den Bossche, 2004). The chronic form of the disease can persist for months, eventually

leading to anaemia and tiredness in the animal. The animal may go from the chronic form

to the acute form if they are in stressful conditions or may recover spontaneously.

The virulence of the trypanosomes is influenced by certain factors such as those affecting

the parasite and the host (Motloang, 2012). Parasite isolates from distinct geographic

regions such as T. vivax strains from West African are more pathogenic in cattle than East

African strains. Variations between sub-species of trypanosomes such as savanna type T.

congolense are more pathogenic than the riverine-forest type. Similarly with hosts, wildlife

are more resistant than domestic animals, and so are indigenous breeds compared to exotic

breeds.

1.3 Methods of Diagnosis

A number of diagnostic tests are available to detect trypanosomiasis, such as serological,

parasitological and molecular diagnostic tests (Marcotty et al, 2008). Microscopy identifies

trypanosomes in stained blood smears. This method has a low sensitivity when low levels

of parasitaemia are present, which is often the case in chronic cases of the disease and also

in large animals (Motloang, 2012). Another parasitological test is the buffy coat method,

where blood is transferred to micro-capillary tubes which are spun in a microhaematocrit

centrifuge, after which the packed cell volume (PCV) can be determined and the presence

of motile trypanosomes can be examined under the microscope (Marcotty et al, 2008).

PCV is a measure of anaemia, which is a known and inevitable consequence of infection

with trypanosomes (Marcotty et al, 2008) and so, is a good indicator of disease. By

using PCV with parasitological tests, detection of trypanosome-infected animals will be

improved.

Molecular diagnostic tests detect the presence of pathogens and are more sensitive and spe-

cific than parasitological tests but they are expensive and require advanced infrastructure,

and like parasitological tests, in chronic cases when parasitaemia levels are low, they are

less sensitive (Marcotty et al, 2008).

The ELISA (enzyme-linked immuno-sorbent assay) test is a serological test which looks

at antibodies produced during a trypanosomal infection. They are relatively cheaper than

3



molecular tests, but they require laboratory equipment, and are not an indication of current

infections as antibodies can remain weeks after infection. ELISA tests, also, cannot be used

in early stages of infection because the antibodies will not have been produced (Marcotty

et al, 2008).

1.4 Disease Control Methods

Trypanocidal drugs are used to treat infected animals, which reduces the losses due to

the disease and eliminates trypanosome reservoirs. However, the continuous use of try-

panocides requires close monitoring of the herd health condition while treatment becomes

expensive and unaffordable to communal farmers. The problem of development of drug

resistance in trypanosomes is the threat to the sustainability of the strategy (Connor and

Van den Bossche, 2004).

Prophylactic trypanocidal drugs can be administered to protect the animal for several

months (Ntantiso, 2012), or as in the case of cattle, trypanotolerant livestock (cattle resis-

tant to trypanosomiasis) can be reared. It has been shown that trypanotolerant cattle are

able to keep their productivity under tsetse and trypanosomiasis infected areas as evidenced

in West Africa (Murray, Morrison and Whitelaw, 1982).

Insecticides, applied from the ground or the air, can be used to control or eradicate the

flies. Alternatively the use of sterile insect technique (SIT) can be used, where males are

made sterile through gamma irradiation, and is effective when the tsetse fly population

density is low (Kappmeier-Green, Potgieter and Vreysen, 2007).

1.5 The vector: The Tsetse Fly

Mechanical transmission of AAT can occur when blood infected with trypanosomes is

transferred from one sick animal to another without the parasite undergoing developmental

change within the fly. Biting flies of the genus Tabanus are considered important mechanical

transmitters. On the other hand, tsetse flies transmit trypanosomiasis cyclically. This

biological transmission happens when blood from a trypanosome-infected animal is ingested

by the fly and the trypanosome multiplies within the fly and reach the infective stage
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(Connor and Van den Bossche, 2004) (See Figure 1.1). Therefore tsetse flies are a crucial

part of the transmission of AAT as without them the disease cannot be maintained.

Tsetse flies fall in the genus Glossina with three sub-genera, each one representing a group

of species (Motloang, 2012). Among the three groups are the fusca group which are for-

est species and feed very little on domestic livestock, the palpalis group which are mainly

riverine species and are important vectors in the transmission of human and animal try-

panosomes, and lastly the morsitans group which are savanna species and play the pre-

dominant role in transmitting AAT as they feed on cattle, sheep and goats (Jordan, 1988).

Up to date, over 30 species of Glossina have been identified, but it is believed that only 8

to 10 of them are of economic importance (Vreysen et al, 2013).

The distinguishable features of tsetse flies are their long and pointed mouthparts and their

wings (See Figure 1.2), which overlap and are about 6-15mm. Both males and females

feed on blood and the feeding preferences differ between species. They travel at low flying

heights and are attracted to visual stimuli such as size and colours. Tsetse flies have

low reproductive rates and long life cycles and lifespans, of up to 3 to 4 months (Leak,

1999). An adult female produces a single egg which hatches to a first-stage larva in 1-2

days while still in the fly uterus.The third-stage larva is deposited into the ground after

2-5 days, immediately changes to a pupa after which an adult fly will emerge after 30-40

days. About 10 offspring or less can be produced in a female’s reproductive life (Leak,

1999).

1.5.1 Tsetse Fly Traps

There are a number of reasons for trapping of tsetse flies, such as to measure the biodiversity

of the flies, to determine seasonal peaks of abundance, to determine AAT risk and it may

also be used as a form of vector control (Leak, 1999). There are a number of trap designs

available such as the biconical trap, pyramidal trap, vavoua trap and H-trap, to name a few.

There are advantages and disadvantages to each trap and each has its own characteristics

that make it suitable for certain environments and to attract specific species of flies. The

biconical and Vavoua traps, for example, are adapted for the capture of riverine species

along rivers. Various features make traps efficient and attractive to flies like the colour,

odour and design. Blue and black are the two colours most used in traps and screens (Leak,

1999). The location and season are crucial factors to consider when placing the traps as
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Figure 1.1: Cyclical development of trypanosomes within the tsetse fly (T.vivax develops in
the mouthparts, T.congolense develops in the midgut and mouthparts, T.brucei develops
in the salivary glands)(Source: Leak, 1999 )
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Figure 1.2: The Tsetse fly
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they determine the efficiency with which tsetse flies are captured.

1.5.2 Tsetse Distribution in Africa

The tsetse fly is restricted to Africa, although some species were found in Saudi Arabia

in 1990 but this seemed not to be as an established population. It inhabits about 10

million km2 (latitude 150N-290S), which affects 37 countries in the Sub-Saharan region

(Connor and Van den Bossche, 2004). The southernmost tsetse fly belt distribution goes

from Mozambique to KwaZulu-Natal (KZN) in South Africa.

1.6 Trypanotolerance and the Role of Reservoir Hosts

Certain breeds of cattle such as the taurine N’Dama and the West African Shorthorn breeds

are known to have a certain level of resistance to trypanosomiasis, that other breeds, such

as the Zebu and European cattle, do not possess (Murray et al, 1982). This is referred

to as trypanotolerance, which is defined as the “ability to survive and to be productive in

tsetse infested areas without the aid of treatment where other breeds succumb to disease”

(Murray, Trail and d’Ieteren, 1990). Even though this feature only applies to about one

third of cattle in tsetse infested areas in Africa and 10% of cattle south of the Sahara, the

production potential of these breeds is great, and possible breeding of these cattle may

result in a solution to the AAT problem.

Wild animals are reservoir hosts of animal trypanosomiasis, and play an important role in

disease transmission. Reservoir hosts are able to carry pathogens indefinitely and display

no clinical symptoms. This complicates the epizootiology of AAT greatly, as elimination

of the disease now requires consideration of and control measures for the wild animals as

well (Clair, 1988). This introduces a multi-host problem in finding control measures which

can be a big challenge.
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Figure 1.3: Tsetse distribution in Africa (Source: Leak, 1999 )

9



1.7 Bovine Trypanosomiasis in South Africa

1.7.1 History

Four species of tsetse flies have been recorded in South Africa, namely Glossina morsitans

morsitans, G. pallidipes, G. brevipalpis and G. austeni (Kappmeier, Nevill and Bagnall,

1998). These species were confined to the KwaZulu-Natal province (except G. morsitans

morsitans which was in the northerly parts of South Africa). During a rinderpest epizootic

during 1896-1897, G. m. morsitans completely disappeared. The three remaining species

were the vectors of AAT, with G.pallidipes considered as the vector of the most pathogenic

trypanosomes, until a massive campaign led to its eradication in the early 1950s (Du Toit,

1954).

Human trypanosomiasis (sleeping sickness) has not been known to occur in South Africa,

whereas a lot of literature on the nagana situation is available from as early as 1923. Be-

tween 1955 and 1990, only sporadic cases of AAT were diagnosed, with localised outbreaks

occurring in certain regions. In 1990, a widespread outbreak of AAT occurred in Zulu-

land, killing 10,000 cattle and where 116,000 were treated (Kappmeier et al, 1998). The

animals were diagnosed as being infected with T. congolense and T. vivax. The outbreak

was controlled by introducing dipping of cattle and treatment of ill animals. Following the

outbreak, tsetse distribution surveys of G. austeni and G. brevipalpis were conducted and

greater research into the epidemiology of the disease in South Africa was and still is being

done.

1.7.2 Tsetse Distribution in KwaZulu-Natal Province

The tsetse fly belt in Zululand, in KZN covers an area of approximately 18,000 km2 (Eester-

huizen et al, 2005). The two tsetse species, G. austeni and G. brevipalpis are found in KZN

and mainly reside in shaded areas along rivers and in forests and thickets (Van den Bossche

et al, 2006). G. brevipalpis is generally found in high indigenous forests and open grass-

lands such as in the Hluhluwe-iMfolozi Game Park and the southern parts of the St. Lucia

Wetlands Park, whilst G. austeni is found throughout central Zululand along communal

areas and lake shores (see Figure 1.4).
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Figure 1.4: Tsetse distribution in KZN, South Africa (Source: Hendrickx et al, 2003 )
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1.7.3 AAT Prevalence in South Africa

Animal trypanosomiasis (nagana) or bovine trypanosomiasis is restricted to parts of north-

ern KZN province and covers an area of 18,000 km2 (Ntantiso et al, 2014). Little infor-

mation is available on the prevalence of disease in cattle in KZN, since the 1990 outbreak.

Van den Bossche et al (2006) conducted a once-off sample of 76 animals in an area near the

Hluhluwe-iMfolozi game park to assess the contribution nagana had to the disease burden

of cattle. The study showed that incidence of nagana caused mostly by T. congolense, had

increased. Baseline data collected by Ntantiso et al (2014) aimed to unravel the epidemi-

ology of nagana in the region where tsetse flies occur, as incidence of the disease in KZN

is unknown. Nagana was seen to be prevalent in 10 of the diptanks surveyed and was the

cause of anaemia in more than 60% of infected cattle.

The buffaloes in the Hluhluwe-iMfolozi Game Park are reservoir hosts of the disease and

harbour the highly virulent strains of T. congolense which is considered as a risk at the

game – livestock interface, as acute forms of AAT are observed in livestock near the game

park (Motloang, 2012; Van den Bossche et al, 2006).

1.7.4 Current Control Policies and Measures

No national control policy has been in place for the last 20 years in South Africa (Ntantiso

et al, 2014). Treatment is available but is not accessible to resource-poor farmers, which

are the ones whom nagana affects the most. Drug resistance to trypanosomiasis is also a

problem, and it becomes too costly to produce new drugs every so often. Dipping of cattle

using insecticides which also kills ticks is done when the disease progresses in a herd but

as it is not enforced, it has proved to be unsustainable. Migration of tsetse flies between

conservation-protected game parks and the regions outside means that an integrated control

policy with treatment is also not viable, and so eradication of the tsetse flies is seen as the

only possible solution (Kappmeier-Green et al, 2007).

1.8 AAT and Climate Change

Vector-borne diseases (VBDs) such as malaria, dengue fever, schistosomiasis, African try-

panosomiasis etc. are considerable public health problems in Africa (TDR, 2012). In-
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Figure 1.5: Disease triangle with host-vector-pathogen-environment interactions

creases in minimum temperatures compared to average and maximum temperature may

allow dengue and other climate-sensitive VBDs to extend into regions that previously have

been free of disease or exacerbate transmission in endemic parts of the world (IPCC, 2014).

Insect vectors’ distribution, abundance and intensity is greatly determined by environmen-

tal factors such as temperature and relative humidity (Pollock, 1982), and global climate

change can potentially lengthen transmission seasons and shift the geographic range of

these vectors. Climate change will also affect the development of pathogens in the vectors

and population dynamics of reservoir hosts (Moore et al, 2012). Sutherst (2004) believes

that variability of climate change and extreme weather events are of more importance than

overall global warming which increases average temperature, and so, Africa especially is at

risk.

African trypanosomiasis is one of the VBDs that is likely to be affected by climate change,

and the effects of which will be seen in an increase of incidence and either an expansion

or a shift of the current tsetse fly geographical range (Moore et al, 2012). Reproductive

rates, pupal and adult stages, and mortality rates of the tsetse fly are dependent on factors

such as temperature, relative humidity deficit and vegetation (Rogers, 1979, 2000; Pollock,

1982; Hargrove, 2004). Many studies have looked at these abiotic factors in relation to
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the various life stages of the tsetse fly, especially the temperature-dependent parameters

(Brightwell et al, 1992; Rogers, 1979, 1991, 2000; Hargrove, 2004; Artzrouni and Gouteux,

2006) and all show the importance of changes in average temperature to the ecology of

tsetse flies. The study by Moore et al (2012) suggests that tsetse distributions may shift

to more favourable conditions such as East and southern Africa, as temperatures become

too hot in their current geographical range, which will put these densely populated areas

at risk of HAT outbreaks. The effects of climate change on tsetse distributions therefore,

need to be closely looked at, as changes could make naive human and animal populations

very vulnerable to infection, and could lead to serious epidemics if not analysed.

1.9 Epidemiological and Statistical Modelling

In vector-borne diseases analytical methods are mostly used to describe the dynamics of

the interactions between parasite/vector/host behaviour (Gettinby, Revie and Forsyth,

1994), through the use of ordinary differential equations (ODEs). Deterministic models

are useful for reaching general principles about the disease transmission, through the use

of Monte Carlo simulation methods (Morris and Marsh, 1994). Disease transmission dy-

namics require information about the determinants of risk to the hosts and challenge by

the vector and their relationship to each other (Rogers, 1994). Other approaches used are

statistical distribution models which describe spatial distribution and predictive mapping

of a vectors’ distribution by using logistic regression or discriminant analysis (Gettinby,

1989; Rogers, 2006), and geographic information systems (GIS) that use data to predict

distribution and abundance of tsetse and trypanosomiasis in order to aid in the planning

and control of trypanosomiasis and other VBDs (Robinson, 1998). Trypanosomiasis is a

unique disease within VBDs due to its complexity and diversity, from the ranging habitats

of the tsetse flies and their seasonal variability to the pathogenicity of the trypanosomes

and the reservoir hosts involved (Gettinby et al, 1994; Gettinby, 1989). Differential models

that divide the animal and fly population into classes according to their disease status, help

in understanding the biology of the disease, while statistical models are used to establish

relationships between the disease variables from the data collected in the field (Gettinby,

1989).
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1.10 Problem Statement and Objectives of Study

AAT, or nagana, has been a serious problem for cattle farmers, leading to significant losses

in production and livestock. There have been efforts to collect data in the surrounding farm

areas of the Hluhluwe-iMfolozi Game Park, in a step towards enhancing knowledge on the

spread of disease, as well as gather information about the tsetse fly population. A study

done by Ntantiso et al (2014) showed tsetse population and disease in cattle in three sites

in KwaZulu-Natal near the Hluhluwe-iMfolozi Game Park. The study also demonstrated

a high prevalence rate of trypanosomiasis in two of the sites and a low tsetse population

and low prevalence rate in the third site. We shall adopt the approach of mathematical

models and statistical techniques to the specific case of Zululand, and the three regions

mentioned, and use the data to predict the basic reproduction number (R0) generated by

the mathematical model.

The objectives of the study are as follows:

• To use mathematical models to investigate the interactions between the tsetse fly,

cattle and buffalo, and analyse it to define the critical threshold, R0 as well as the

next generation matrix.

• To establish possible feedback mechanisms driving the interactions between the tsetse

fly, cattle and buffalo and how these mechanisms influence changes in R0.

• To estimate critical parameters by carrying out statistical analysis using generalized

linear models (GLMs) on the 3 sites where data was collected.

• To fit the designed mathematical models to the data available to check the prog-

nosis of AAT in the Zululand area and come up with recommendations of possible

intervention strategies using results from fitted data.

1.11 Significance of Study

Mathematical modelling is central to infectious disease epidemiology, as it simplifies com-

plex biological systems and leads to an understanding of the disease process, whilst sta-

tistical analysis is the first step in assessing relationships between variables and is used to
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fit models to estimate site-specific parameters. The purpose of this study is to model the

disease transmission of African animal trypanosomiasis in the KwaZulu-Natal Province, by

integrating both the mathematical model and the statistical analysis of the data collected

from the epidemiological study done in the region so that critical processes and patterns

can be outlined and perhaps used to plan and evaluate future control policies.
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Chapter 2

Mathematical Modelling of AAT

2.1 Introduction

The mathematical model developed by Rogers (1988) for African trypanosomiasis used

the Ross-Macdonald model for malaria, as a starting point, and considers a two-host, one-

vector species system. The model incorporated most of the parameters involved in the

transmission process of African trypanosomiasis, for two hosts, which are humans and

domestic animals for human African trypanosomiasis and domestic and wild animals for

AAT, and the different trypanonomes, T. congolense, T. vivax and T. brucei. Rogers also

looks at the basic reproduction number R0, by calculating the effects of one infected fly

biting uninfected hosts which in turn will infect other uninfected flies, and assesses the

importance of each parameter in relation to disease prevalence.

Another model developed for cattle trypanosomiasis by Milligan and Baker (1988), looked

at the epizootiology of the disease and the effects of different control methods, by consid-

ering the transmission from one species of parasite (trypanosome) at a time. A model for

the disease when using control methods (chemotherapy) was developed and then extended

to include density-dependent fly movement inside and out an insecticide controlled area.

Changes in R0 were assessed by looking at the different parameters and sensitivity analysis

was done using Monte Carlo methods.

The basic reproduction number, denoted by R0, is defined as the expected number of sec-

ondary cases produced, in a completely susceptible population by an infected individual

over their infectious lifetime (Diekmann and Heesterbeek, 1990). R0 is a threshold deter-

mining whether a disease will persist in the population (when R0 > 1), or will die out
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(when R0 < 1). So if R0 < 1 then the disease-free equilibrium (DFE) is locally asymp-

totically stable (van den Driessche and Watmough, 2002), and R0 > 1 means the DFE

is unstable. R0 is useful when determining control measures or the need of, for estab-

lished infections (Diekmann, Heesterbeek and Roberts, 2010). The next-generation matrix

(NGM) is a method of arriving at R0 when we have a population that can be divided into

different discrete categories which are epidemiologically important, such as disease stage,

age etc. (van den Driessche and Watmough, 2002). It was introduced by Diekmann and

Heesterbeek (1990), and considers the infected states of the ODE system, and is referred

to as the infected subsystem in Diekmann et al (2010). The NGM, denoted by K, is made

up of two parts i.e. the transmission part F which shows the production of new infections,

and V which is the transition part or changes in state that come about as a result of death

or immunity for example. R0 is then the dominant eigenvalue, or spectral radius of the

NGM K = FV −1. The elements of K, Kij are the expected number of new cases with

state-at-infection i arising from an individual in the jth state-at-infection. The advantage

of calculating R0 from the NGM is that even when multiple hosts and vectors are con-

sidered, the R0 value still has the same properties and interpretation as the one from a

single-host species case (Davis, Aksoy and Galvani, 2011).

2.2 Model Formulation

The dynamics of AAT in KZN, is one of a mixed sylvatic/domestic cycle (Ntantiso, 2012),

meaning that the domestic animals located near the Hluluwe-iMfolozi Game Park, and

the wild animals residing within the game park are both being fed on by the tsetse fly,

and therefore the transmission goes from wild animals to domestic animals, through the

fly and vice versa. So the model included three populations, that is cattle, which is the

domestic host, the buffalo which is considered the reservoir host and the tsetse fly which

is the vector. There are two species of tsetse fly in KZN, G. austeni and G. brevipalpis,

but for the sake of the mathematical model, we assume that only one species transmits

T.congolense, since G. austeni is considered to be the main vector of AAT. We also assume

constant population sizes, the transmission probabilities do not change over time and we

do not distinguish between teneral and non-teneral flies for this study. We adopt an SI

(susceptible-infected) model because without treatment the cattle remain infected for the

entire period of study, tsetse flies remain infected for their entire lifetime and infected

18



buffalo can harbour the trypanosomes for a long time. We therefore have susceptible and

infected compartments for cattle and the tsetse flies, and an infected compartment for the

buffalo. The susceptible buffaloes are considered to be constant. Both the tsetse fly and

buffalo do not die from trypanosomiasis.

Cattle, buffalo and tsetse fly are denoted by C, B and F respectively, and the compart-

ments are denoted by Si and Ii (where i = C,B, F ) for the different populations. µi are the

natural birth and death rates of the respective populations and α is the cattle mortality

rate arising from AAT. β is the tsetse fly biting rate, and f̂ and f̂1 are the probabilities

that an infected fly will lead to an infected cow and buffalo, and f̂2 is the probability that

an infected host will lead to an infected fly. η is a weight of infectivity for the cattle from

the buffalo, so for cattle further away from the game park, the weight will be less and for

cattle closer to the game park, the weight will be more.

The basic model is therefore formulated with the following system of differential equa-

tions:

dSC
dt

= µC − µCSC − βf̂(
IF
NC

+ η
IF
NB

)SC (2.1)

dIC
dt

= βf̂(
IF
NC

+ η
IF
NB

)SC − (µC + α)IC (2.2)

dIB
dt

= βf̂1(
IF
NC

+ η
IF
NB

)S0
B − µBIB (2.3)

dSF
dt

= µF − µFSF − βf̂2(
IC
NC

+
IB
NB

)SF (2.4)

dIF
dt

= βf̂2(
IC
NC

+
IB
NB

)SF − µF IF (2.5)

Ii
Ni

is the proportion of the infected population, given

NC = SC + IC

NB = S0
B + IB

NF = SF + IF
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where Ni is the total of each population and S0
B is the constant susceptible buffalo popu-

lation.

2.3 The Next-Generation Matrix and R0

To derive the basic reproduction number (R0) we use the next-generation matrix (NGM),

which consists of two parts, the matrices F and V , which show the rate of appearances of

new infections in compartment i and the transfer of individuals out of compartment i by

all other means.

We have state variables (SC , IC , IB, SF , IF ) and for the DFE we get (1, 0, 0, 1, 0), so from

that and the infectious subsystem from our system of ODEs, given by

dIC
dt

= βf̂(
IF
NC

+ η
IF
NB

)SC − (µC + α)IC (2.6)

dIB
dt

= βf̂1(
IF
NC

+ η
IF
NB

)S0
B − µBIB (2.7)

dIF
dt

= βf̂2(
IC
NC

+
IB
NB

)SF − µF IF (2.8)

we arrive at the matrices

F =


0 0 βf̂

µF
(
S0
B+η

S0
B

)

0 0 βf̂1(S
0
B + η)

βf̂2
βf̂2
S0
B

0


and

V =

µC + α 0 0

0 µB 0

0 0 µF


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To get the NGM K, we multiply the matrices F and V −1, so that

K = FV −1 =


0 0 βf̂

µF
(
S0
B+η

S0
B

)

0 0 βf̂1
µF

(S0
B + η)

βf̂2
µC+α

βf̂2
S0
BµB

0


where

RCF =
βf̂

µFS0
B

(S0
B + η)

RBF =
βf̂1
µF

(S0
B + η)

RFC =
βf̂2

µC + α

RFB =
βf̂2
S0
BµB

R0 is then the dominant eigenvalue of K. To simplify, we re-write K as

K =

 0 0 RCF

0 0 RBF

RFC RFB 0


which gives the basic reproduction number of

R0 =
√
RBFRFB +RCFRFC . (2.9)

Rij is the average number of cases of type i caused by a single type j or transmission from

i to j (Davis et al, 2011).
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2.4 Analysis of Model

2.4.1 Equilibrium Points

To find the disease-free and endemic equilibrium points we can write the system of equations

2.1-2.5 in terms of the forces of infection λ∗1 and λ∗2 such that

S∗C =
µC

µC + λ∗1
(2.10)

I∗C =
λ1∗

µC + λ∗1
A1 (2.11)

I∗B = A2λ
∗
1 (2.12)

S∗F =
µF

µF + λ∗2
(2.13)

I∗F =
λ∗2

µF + λ∗2
(2.14)

where

λ∗1 =
βf̂λ∗2[(µC + λ∗1)(S

0
B +A2λ

∗
1) + η(µC +A1λ

∗
1)]

(µC + λ∗2)(µC +A1λ∗1)(S
0
B +A2λ∗1)

(2.15)

λ∗2 =
βf̂1[A1λ

∗
1(S

0
B +A2λ

∗
1) +A2λ

∗
1(µC +A1λ

∗
1)]

(µC +A1λ∗1)(S
0
B +A2λ∗1)

(2.16)

and A1 = µC
µC+α

, A2 =
S0
B
µB

.

It is clear that (λ∗1, λ
∗
2) = (0, 0) is a solution to equations 2.15 and 2.16 which corresponds

to the DFE E0 = (1, 0, 0, 1, 0) when substituting them in equations 2.14. This DFE is the

point when the population remains free from the disease.

Next we consider what happens when only one or neither of the forces of infection (λ’s)

are zero:

1. λ∗1 6= 0, λ∗2 = 0. When substituted into 2.15 we get λ∗1 = 0 which is contradictory

since we said that λ1 6= 0.

2. λ∗1 = 0, λ∗2 6= 0. When substitued into 2.16 we get λ∗2 = 0 which is contradictory

22



because we said λ∗2 6= 0.

3. λ∗1 6= 0, λ∗2 6= 0. It follows that this is the only case which gives an endemic equilib-

rium.

Next we show that there exists a unique fixed point (λ∗1, λ
∗
2) with λ∗1 > 0 and λ∗2 > 0

satisfying

ψ(λ∗1, λ
∗
2) =

(
λ∗1
λ∗2

)
where

ψλ11 (λ2) =
βf̂λ2[(µC + λ1)(S

0
B +A2λ1) + η(µC +A1λ1)]

(µC + λ2)(µC +A1λ1)(S0
B +A2λ1)

(2.17)

ψλ22 (λ1) =
βf̂1[A1λ1(S

0
B +A2λ1) +A2λ1(µC +A1)]

(µC +A1λ1)(S0
B +A2λ1)

(2.18)

that corresponds to the endemic equilibrium point E∗. Note that ψλ11 and ψλ22 are the two

components of ψ(λ∗1, λ
∗
2).

For each fixed λ1 > 0 we have the following real valued function that depends on λ2

ψλ11 (λ2) =
βf̂λ2[(µC + λ1)(S

0
B +A2λ1) + η(µC +A1λ1)]

(µC + λ2)(µC +A1λ1)(S0
B +A2λ1)

from which

ψλ11 (0) = 0

and

lim
λ2→∞

ψλ11 (λ2) =
βf̂ [(µC + λ1)(S

0
B +A2λ1) + η(µC +A1λ1)]

(µC +A1λ1)(S0
B +A2λ1)

<∞

The first and second derivatives of ψλ11 (λ2) are given by

∂ψλ11 (λ2)

∂λ2
=
βf̂ [(µC + λ1)(S

0
B +A2λ1) + η(µC +A1λ1)µC ]

[(µC + λ2)(µC +A1λ1)(S0
B +A2λ1)]2

> 0

∂2ψλ11 (λ2)

∂λ22
=

(µc + λ2)− 2βf̂µC [(µC + λ1)(S
0
B +A2λ1) + η(µC +A1λ1)]

(µC + λ2)3
< 0
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so we can therefore see that ψλ11 (λ2) is an increasing function that is finite and concave down

with no change of convexity ∀t ≥ 0 and there exists λ∗2 > 0 such that ψλ11 (λ∗2) = λ∗2.

Similarly, for λ∗2 > 0 we have a function that depends on λ1

ψ
λ∗2
2 (λ1) =

βf̂1[A1λ1(S
0
B +A2λ1) +A2λ1(µC +A1)]

(µC +A1λ1)(S0
B +A2λ1)

from which

ψ
λ∗2
2 (0) = 0

and

lim
λ1→∞

ψ
λ∗2
2 (λ1) = 2βf̂1 <∞

The first and second derivatives for ψ
λ∗2
2 (λ1) are

∂ψ
λ∗2
2 (λ1)

∂λ1
=
βf̂1{[(A1S

0
B +A1A2λ1 +A2µC)(µC(S0

B +A2λ1) +A1λ1(S
0
B +A2λ1))]}

[(µC +A1λ1)(S0
B +A2λ1)]2

−
βf̂1{[(A1S

0
B +A2µC)λ1 + 2A1A2λ

2
1][µCA2 +A1S

0
B + 2A1A2λ1]}

[(µC +A1λ1)(S0
B +A2λ1)]2

> 0

if
{[(A1S

0
B +A1A2λ1 +A2µC)(µC(S0

B +A2λ1) +A1λ1(S
0
B +A2λ1))]}

−{[(A1S0
B +A2µC)λ1 + 2A1A2λ21][µCA2 +A1S0

B + 2A1A2λ1]}
> 1

∂2ψ
λ∗2
2 (λ1)

∂λ21
=
−2βf̂1A1A2[2A1A2λ1 − 2(µCA2 +A1S

0
B)][A1S

0
B + 4A1A2λ1 + µCA2]

[(µC +A1λ1)(S0
B +A2λ1)]3

×
[µCS

0
B + (µCA2 +A1S

0
B)λ1 +A1A2λ

2
1]

[(µC +A1λ1)(S0
B +A2λ1)]3

+
2βf̂1A1A2[(A1S

0
B +A2µC)λ1 + 2A1A2λ

2
1][µCA2 +A1S

0
B + 2A1A2λ1]

[(µC +A1λ1)(S0
B +A2λ1)]3

< 0

if
−[2A1A2λ1 − 2(µCA2 +A1S

0
B)][A1S

0
B + 4A1A2λ1 + µCA2]

[(A1S0
B +A2µC)λ1 + 2A1A2λ21][µCA2 +A1S0

B + 2A1A2λ1]

×
[µCS

0
B + (µCA2 +A1S

0
B)λ1 +A1A2λ

2
1]

[(A1S0
B +A2µC)λ1 + 2A1A2λ21][µCA2 +A1S0

B + 2A1A2λ1]
< 1
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so ψ
λ∗2
2 (λ1) is an increasing concave down function (if the conditions for

∂ψ
λ∗2
2 (λ1)
∂λ1

and

∂2ψ
λ∗2
2 (λ1)

∂λ21
hold) with no change of convexity ∀t ≥ 0 and there exists λ∗1 > 0 such that

ψ
λ∗2
2 (λ∗1) = λ∗1.

Theorem. There exists a nonzero fixed point (λ∗1, λ
∗
2) of the system 2.15 and 2.16 corre-

sponding to the endemic equilibrium point of the system 2.1-2.5.

2.4.2 Stability of Equilibrium Points

Now we shall look at the global stability of our fixed points ψ(λ∗1, λ
∗
2), by looking at the

Jacobian matrix given by

J =

[
∂ψ1

∂λ1
∂ψ1

∂λ2
∂ψ2

∂λ1
∂ψ2

∂λ2

]

The first partial derivatives of ψ(λ∗1, λ
∗
2) at fixed point (0, 0) are given by

∂ψ1(0, 0)

∂λ1
= 0

∂ψ1(0, 0)

∂λ2
=
βf̂(µCS

0
B + ηµ2C)

µ2CS
0
B

∂ψ2(0, 0)

∂λ1
=
βf̂1[(A1S

0
B +A2µC)µCS

0
B]

(µCS0
B)2

∂ψ2(0, 0)

∂λ2
= 0

The characteristic equation obtained from the Jacobian at the fixed point (0, 0) is

λ2 − (
∂ψ1(0, 0)

∂λ2
)(
∂ψ2(0, 0)

∂λ1
) = 0.

For stability, we need for max{|λa|, |λb|} < 1, where λa and λb are given by
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λa =

√√√√ β

µ2C
(
f̂ f̂1(µCS0

B + ηµ2C)(A1S0
B +A2µC)µCS0

B

S0
B
3 )

λb = −

√√√√ β

µ2C
(
f̂ f̂1(µCS0

B + ηµ2C)(A1S0
B +A2µC)µCS0

B

S0
B
3 )

The fixed point (0, 0) is therefore stable when the dominant eigenvalue λa < 1. The Jaco-

bian matrix of ψ(λ1, λ2) at the fixed point (λ∗1, λ
∗
2) is

J(λ∗1, λ
∗
2)

 ∂ψ1(λ1,λ2)
∂λ1

∣∣∣
(λ∗1,λ2∗)

∂ψ1(λ1,λ2)
∂λ2

∣∣∣
(λ∗1,λ2∗)

∂ψ2(λ1,λ2)
∂λ1

∣∣∣
(λ∗1,λ2∗)

∂ψ2(λ1,λ2)
∂λ2

∣∣∣
(λ∗1,λ2∗)


where

∂ψ1(λ1, λ2)

∂λ1

∣∣∣∣
(λ∗1,λ2∗)

=
βf̂λ∗2[(µCA2 + S0

B + ηA1 + 2A2λ
∗
1)(µC + λ∗2)(µC +A1λ

∗
1)(S

0
B +A2λ

∗
1)]

[(µC + λ∗2)(µC +A1λ∗1)(S
0
B +A2λ∗1)]

2

−βf̂λ∗2[(µC + λ∗1)(S
0
B +A2λ

∗
1) + η(µC +A1λ

∗
1)(µCA2 +A1S

0
B + 2A1A− 2λ∗1)]

[(µC + λ∗2)(µC +A1λ∗1)(S
0
B +A2λ∗1)]

2

∂ψ1(λ1, λ2)

∂λ2

∣∣∣∣
(λ∗1,λ2∗)

=
βf̂ [(µC + λ∗1)(S

0
B +A2λ

∗
1) + η(µC +A1λ

∗
1)µC ]

[(µC + λ∗2)(µC +A1λ∗1)(S
0
B +A2λ∗1)]

2

∂ψ2(λ1, λ2)

∂λ1

∣∣∣∣
(λ∗1,λ2∗)

=
βf̂1{[(A1S

0
B + 4A1A2λ

∗
1 +A2µC)(µC(S0

B +A2λ
∗
1) +A1λ

∗
1(S

0
B +A2λ

∗
1))]}

[(µC +A1λ∗1)(S
0
B +A2λ∗1)]

2

−
βf̂1{[(A1S

0
B +A2µC)λ∗1 + 2A1A2λ

∗
1
2][µCA2 +A1S

0
B + 2A1A2λ

∗
1]}

[(µC +A1λ∗1)(S
0
B +A2λ∗1)]

2

∂ψ2(λ1, λ2)

∂λ2

∣∣∣∣
(λ∗1,λ2∗)

= 0

and the characteristic equation is given by

λ2 − λ (
∂ψ1

∂λ1
)

∣∣∣∣
λ∗1,λ

∗
2

+ (
∂ψ1

∂λ1
− ∂ψ1

∂λ2

∂ψ2

∂λ1
)

∣∣∣∣
λ∗1,λ

∗
2

= 0.
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The roots of the above characteristic equation are as follows

D1 =
1

2
(P0 +

√
P 2
0 − 4P1)

D2 =
1

2
(P0 −

√
P 2
0 − 4P1)

where P0 = (
∂ψ1

∂λ1
)

∣∣∣∣
(λ∗1,λ

∗
2)

P1 = (
∂ψ1

∂λ1
− ∂ψ1

∂λ2

∂ψ2

∂λ1
)

∣∣∣∣
(λ∗1,λ

∗
2)

.

The fixed point (λ∗1, λ
∗
2) is therefore stable when max{|D1|, |D2|} < 1.

2.5 Model Simulations

The initial variable values (Table 2.1) are either estimated from our sample data (see Chap-

ter 4) or assumed, and the initial parameter values given in Table 2.2, are from various lit-

erature sources. They were used to assess how the different populations (SC , IC , IB, SF , IF )

changed over time.

Table 2.1: Population variable description and initial values

Variable Description and initial values

Variable Description Value

NC Number of cattle 1462
NB Number of buffaloes 500
S0
B Number of susceptible buffaloes 378

NF Number of tsetse flies 687

The model was run for a year (365 days) and R0 was calculated. We first want to see

whether infection can be maintained just within the cattle population without any infection

from the buffaloes. For infection from only the cattle (Figure 2.1), infected cattle, buffalo

and flies rise at a much slower rate and similarly, susceptible cattle and flies fall at slower

rates. When infection comes from buffaloes (Figure 2.2) then the number of infected cattle

rises very steeply in a shorter amount of time, and the number of susceptible flies falls at a

faster pace (number of SF is more than 100 when at 50 days when we look at infection from

the cattle compared to less than 100 SF when the infection is coming from the buffaloes).
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Figure 2.1: Population curves when infection is from the cattle only
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Figure 2.2: Population curves when infection is from the buffaloes only
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Figure 2.3: Population curves when the infection is from both the cattle and the buffaloes
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Table 2.2: Initial parameter values obtained from different literature sources

Parameter description and values

Parameter Description Value Reference

µC Mortality rate of cat-
tle (excluding disease-
induced)(days−1)

0.0005 Milligan and Baker,
1988

µB Mortality rate of buffaloes
(days−1)

0.0001053 Hassan, Garba, Gumel
and Lubuma, 2014

µF Mortality rate of tsetse fly
(daily)

0.03 Rogers, 1988

α Disease-induced mortality
rate of cattle (days−1)

0.002 Milligan and Baker,
1988

β Biting rate (days−1) 0.25 Milligan and Baker,
1988

η Weight (distance from buf-
faloes)

0-3 estimated

f̂ Probability of infected fly pro-
ducing infection in cow

0.2 Milligan and Baker,
1988

f̂1 Probability of infected fly pro-
ducing infection in buffalo

0.46 Rogers, 1988

f̂2 Probability of infected blood
meal from host producing in-
fection in fly

0.025, 0.05 Rogers, 1988; Milligan
and Baker, 1988

When we look at infection from both cattle and buffaloes then we notice the sharp rises of

both infected cattle and flies in a shorter period of time (Figure 2.3). These figures show

that buffaloes contribute to the number of infected cattle quite significantly, as opposed

to when infection just occurs between the cattle population i.e. without the contribution

of the reservoir host, the buffalo. To note, the curves for IB in Figures 2.1-2.3 rise and do

not dip down again and that is because the buffalo has a long lifespan, of approximately

15 years, and as stated before do not lose infectiousness throughout their lifetime. Next

we look at the NGM and the value of R0:

K =

 0 0 1.67

0 0 1453.98

2.5 0.157 0


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R0 = 15.25.

RCF , RFC and RBF are 1.67, 2.5 and 1453.98 respectively. These values show that the

transmission from cattle and buffaloes to flies and transmission from flies to cattle are im-

portant in maintaining AAT within their populations (since they are greater than 1) which

is in agreement with what is known about the epidemiology of AAT in KZN (Motloang et

al, 2014). When we just consider transmission between cattle and flies (RCF and RFC),

we see that AAT can be maintained between them but the important element in our NGM

K is the transmission from buffaloes to flies which contributes the most to the R0 value.

Transmission from flies to buffaloes (RFB = 0.314) is not important as buffaloes do not

display any clinical symptoms from the trypanosomal infection. Finally, the value of R0 of

15.25, which is greater than 1, means AAT will persist in the population, so interventions

or control measures should be looked at.

2.6 Sensitivity Analysis

2.6.1 Methods

Uncertainty and sensitivity analyses are performed in order to explore the behaviour of

complex models and to assess the uncertainty from the input parameters that result in un-

certainties in the model outcome variables and how the variations in those model outputs

can be apportioned (Marino et al, 2008). These uncertainties in the input parameters are

a result of natural variation, measurement error or the inability to measure them. Uncer-

tainty analysis is used to assess the variability in the outcome variables that arises from

the uncertainty of estimating the input parameter values (Blower and Dowlatabadi, 1994).

An efficient statistical analysis technique that can be used to perform uncertainty anal-

ysis is the Latin hypercube sampling (LHS) method, which is a type of stratified Monte

Carlo sampling (Mckay, Beckman and Conover, 2000). Sensitivity analysis then extends

the uncertainty analysis by identifying the critical input parameters that are important in

contributing to the variability of the outcome variables (Blower and Dowlatabadi, 1994).

Global sensitivity analysis is better than local sensitivity analysis due to the range of values

that are explored, as opposed to using fixed-point estimates (Davis et al, 2011). Differ-
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ent sensitivity analysis measures can be used, such as the Pearson correlation coefficient,

Spearman rank correlation coefficient and the partial rank correlation coefficient (PRCC).

The latter two are for non-linear, monotonic relationships, whereas the former is best for

linear relationships (Marino et al, 2008).

LHS (introduced by Mckay et al (1979)) generates samples of each parameter from a

multidimensional distribution by randomly selecting without replacement values from each

of the parameters’ probability distribution function so that the entire range is explored

(Marino et al, 2008). So, in other words, LHS allows for simultaneous variation of the

input parameter values and each parameter is treated as a random variable with a defined

probability distribution function for each one (Blower and Dowlatabadi, 1994). Since it

uses a probabilistic selection technique, LHS enables results from a deterministic model

to be interpreted within a statistical framework. If we have Xi (i = 1, 2, . . . , k) input

parameters where i represents the first input parameter and k is the last input parameter,

in a model and a sample size of N , that is the number of simulations run, we will have an

LHS matrix with N rows and Xi columns, representing the number of simulations run and

the number of varied parameters respectively. The range of each parameter is divided into

N equiprobable intervals of equal marginal probability 1
N and sampled once (Mckay et al,

2000). Each interval is assigned a sampling index from 1, . . . , N , so say an input parameter

X1 is being sampled, we will have N sample values of x1, x2, . . . , xN .

The probability distribution function of Xi will be f(Xi), where f(Xi) can be from a

uniform distribution, Weibull, Normal distribution etc. The resultant model will have N

observations of the outcome variable of interest e.g. N values of R0 using each combination

of parameter values. The sample size (number of simulations run) N should at least be

equal to X + 1 but larger sample sizes guarantee reduced variability in the estimates of

the outcome variable and greater sampling coverage of the actual probability distribution

functions from which the input parameters were sampled (Sanchez and Blower, 1997).

Since the input parameters of disease transmission models are rarely normally distributed

and the outcome variables are non-linear functions, non-parametric tests of ranked data

are used, therefore the sensitivity analysis measure that we will use is the PRCC (Blower

and Dowlatabadi, 1994). PRCC, introduced earlier, performs a partial correlation on rank-

transformed data and is used to evaluate the statistical relationship between each input

parameter and each outcome variable (generated by the LHS scheme) while keeping the

other input parameters constant. So if Xi and Y are the input parameters and outcome
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variable respectively, then the partial correlation coefficient is the correlation coefficient

between the residuals (Xi − X̂i) and (Y − Ŷ ) where Xi and Y are first rank transformed.

PRCC is a robust measure of sensitivity when there is little or no correlation between the

inputs (Marino et al, 2008).

MATLAB R2013a was used to generate the LHS matrix and do the sensitivity analysis

using the PRCC measure. The parameters’ were assumed to follow a uniform distribution

with a minimum and maximum value for each, since their statistical distributions are not

known, and 1000 simulations were run (N = 1000) for each simultaneously.

2.6.2 Results

The sensitivity analysis was done on the parameters affecting the infected classes (our

outcome variables) i.e. infected cattle, buffaloes and flies. To assess the monotonicity

between the input parameters and the outcome variables, scatter plots were done, given

in Appendix A. The partial rank correlation coefficients (PRCCs) for each parameter in

relation to IC , IB and IF (Table 2.3) were determined as well as their significance based on

a 5% level of significance (shown in Figures 2.4, 2.5 and 2.6). Five time points were used to

assess how the parameters’ PRCCs varied, namely at 10, 30, 50, 70 and 90 days. The sign

of the PRCC shows the relationship between the parameters and the outcome variables,

and the magnitude of the PRCC shows how important that parameter is in contributing to

the prediction imprecision of the outcome variable (Blower and Dowlatabadi, 1994; Marino

et al, 2008). When we look at all our outcome variables (IC , IB and IF ), the parameters

that are consistently shown as important are µF and β. This means that the uncertainty in

estimating the values of these parameters contributes the most to the prediction imprecision

of our outcome variables. The other parameters that are important in relation to IC are

µC and f̂ at time point 10 only. They both have negative relationships with IC meaning as

the natural mortality rate and the probability of an infected fly producing infection in the

cow increases then the number of future infected cattle will decrease. For µC that makes

sense, but we would expect that as f̂ increases then so will the number of future infected

cattle, but as it is only important at time point 10, we can say that f̂ is not important in

the prediction imprecision of future infected cattle cases. The other values for IB and IF

that are in bold can be interpreted in a similar way.

The values of the PRCCs are given in Table 2.3.
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Figure 2.4: The partial rank correlation coefficients for infected cattle where the significant
parameters (marked with *) are µC , µF , α, β, η, f̂ and f̂2.
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Figure 2.5: The partial rank correlation coefficients for infected buffaloes where the signif-
icant parameters (marked with *) are µC , µF , α, β, η, f̂ and f̂2.
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Figure 2.6: The partial rank correlation coefficients for infected flies where the significant
parameters (marked with *) are µC , µB, µF , β, η, f̂ , f̂1 and f̂2.
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Table 2.3: The PRCC values for infected cattle, buffaloes and flies for the different time
points with bold values ≤ −0.5 or ≥ 0.5.

Day µC µF α β f̂ f̂2

Partial Rank correlation coefficients for Infected Cattle

10 -0.7693 0.6603 -0.1685 -0.6107 -0.5961 -0.1514
30 -0.4505 0.7204 -0.0205 -0.4615 -0.3771 -0.1390
50 -0.2865 0.6869 -0.0012 -0.4442 -0.2885 -0.2102
70 -0.1687 0.6516 0.0153 -0.4704 -0.2660 -0.2598
90 -0.0641 0.5853 0.0319 -0.4514 -0.2355 -0.2422

Partial Rank correlation coefficients for Infected Buffaloes

10 -0.8062 -0.6539 -0.7023 0.3426 0.2804 0.0116
30 -0.2203 -0.7839 -0.3974 0.5485 0.3235 0.2516
50 -0.1275 -0.7657 -0.2589 0.6132 0.3360 0.3457
70 -0.1025 -0.7147 -0.1899 0.6022 0.2855 0.3547
90 -0.0774 -0.6561 -0.1717 0.5717 0.2643 0.3222

Partial Rank correlation coefficients for Infected Tsetse flies

10 -0.1879 -0.6829 0.0715 -0.709 -0.2648 -0.6618
30 -0.1168 0.3594 0.0919 -0.6321 -0.1464 -0.5262
50 -0.0728 0.5759 0.1238 -0.6449 -0.1581 -0.4637
70 -0.0228 0.5858 0.1197 -0.6088 -0.1361 -0.423
90 -0.0221 0.5779 0.1217 -0.5960 -0.1033 -0.3992

2.7 Parameters Affecting the Basic Reproduction Number

To see which parameters affect R0 clearly, contour plots of the important ones were done

to determine how the value of R0 changes as they increase (Figures 2.7, 2.8 and 2.9). The

parameters that increase R0 the most are β, µF , f̂1 and f̂2. From Figures 2.7 and 2.8,

we can see that high values of β and f̂1 and f̂2 increase R0, more so for β and f̂2 than

f̂1. Figure 2.9 shows that even for low values of β and high fly mortality rates (µF ), R0 is

quite high and becomes a lot higher as β increases and µF decreases. This shows that R0

is most sensitive to µF and β.
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Figure 2.7: Contour plot of how changes in β and f̂1 affect R0
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Figure 2.8: Contour plot of how changes in β and f̂2 affect R0

40



100

100
100

200

200

200

300

300

400

400

500

500

600
700

800

β

µ F

Contour Plot of β and µ
F

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
R

0

Figure 2.9: Contour plot of how changes in β and µF affect R0
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2.8 Summary

We have constructed a basic SI model (susceptible and infected) depicting the dynamics of

AAT in KZN, where there is interaction between three populations, namely cattle which

are the hosts, buffaloes which are considered the reservoir hosts and tsetse flies which are

the vectors. We have used the next-generation matrix (NGM) for the two-host, one-vector

species and used it to derive R0. To assess how the populations vary when infection is just

from the cattle or just from the buffalo or from both, we saw that the when infection was

coming from only the cattle then the infected cattle, buffaloes and flies rose slower than

when the infection was coming from only the buffalo. When we calculated R0 this confirmed

that transmission from the buffalo to the fly was greater than when the transmission is

between the cattle and the fly.

A sensitivity analysis was done to assess which parameters are important in affecting the

model outputs. This showed that µF and β were the most critical parameters in affecting

the output variability, therefore getting better estimates of these parameters will result in

better prediction precision of future AAT cases in cattle. This was also seen by the contour

plots which showed how certain parameters affect the value of R0.
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Chapter 3

Generalized Linear Models

3.1 Introduction

Generalized linear models (GLMs) are often used to model biological data, which often

have values that are binary (0 and 1) such as when looking at the distribution of a disease

and whether it is present or absent in an area (Rogers, 2006), or count data which take on

non-negative integer values. GLMs were introduced in 1972 by Nelder and Wedderburn,

and are an extension of the classic linear models, to allow for data with non-normally

distributed outcomes and non-linear relationships.

GLMs consist of three components (McCullagh and Nelder, 1989):

i. A random component, specifying the conditional distribution of the n × 1 vector of

response variables Y , given the values of the n × p matrix of explanatory variables

X in the model, where the distribution of Y comes from the exponential family such

as the Binomial, Poisson and Gamma distributions, among others.

ii. A linear predictor (systematic component) ηi which is a linear function of predictor

variables xi
′ = (x1, x2, . . . , xp)

ηi = β0 + β1x1i + β2x2i + · · ·+ βpxpi or in matrix form

η = xi
′β.

So unlike in classic linear models, where the mean of Yi has a linear relationship to

x′i, GLMs use η in the same way.
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iii. A link function g(.), which transforms the means µi = E(Yi) to the linear predictor,

(i.e. a link between the random and systematic components), given by:

g(µi) = ηi

g(.) can take various forms depending on the distribution of the response variable of

interest. For Gaussian outcomes, for example, the identity link is used, for Poisson

counts, it is the log link, for binomially distributed data it is the logit link etc.

3.2 The Model

Since GLMs are extended from classical linear models, we shall first consider the form of

general linear models. Let Yi be a random variable which follows the Normal distribution,

with mean µi and variance σ2 that is

Yi ∼ N(µi, σ
2)

where the expected value µi (i = 1, 2, . . . , n) is a linear function of p predictors, with

values X ′i = (xi, . . . , xp) for the ith case and let β = (β0, β1, . . . , βp)
′ be a p × 1 vector of

unknown parameters, so that µi = X ′iβ. The classic linear model assumes the error terms

are Normally distributed with a constant variance σ2, whereas GLMs allow flexibility in

the error structure of the regression model. Using the components written earlier, if we

have a random variable Yi and a vector of independent observations y = (y1, y2, . . . , yn),

we can say that Y is an independent Normal variable with a constant variance σ2 and

mean E(Yi) = µi, with the identity link function and the linear predictor is equal to

the mean. For GLMs, Yi may come from an exponential family (or extended to non-

exponential families such as the negative binomial distribution) and the link function may

be any monotonic differentiable function (McCullagh and Nelder, 1989). So for example,

if we assume that Yi comes from a Gamma distribution, then the inverse link function is

used and ηi = g(µi) = µ−1i . In the case of classic linear models, the parameters β are fit

using least squares, but for GLMs they are fit using maximum likelihood techniques. Note

that for Normally distributed observations, the two methods give the same results.
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3.2.1 Exponential Family of Distributions

Given that our response variable Yi comes from a distribution in the exponential family

i.e. Gaussian, binomial, Poisson, gamma and inverse-Gaussian, we may use the following

form to express the probability density function:

f(yi; θ, φ) = exp(
yiθi − b(θi)

a(φ)
+ c(yi, φ)) (3.1)

where θ is a canonical parameter (or location parameter), and the canonical link function

is such that θi = g(µi) = ηi for the assumed distribution. φ is a dispersion (or scale)

parameter with φ > 0, and a(.), b(.) and c(.) are some known functions that are related

to the exponential family. The canonical link may be the identity function, log, logit etc.

and there exists a sufficient statistic for β which is given by XTY and φ may be known

or otherwise estimated, which is something we shall consider later on.

The general expression given by (3.1) can be used to derive the mean and variance of the

specific distribution, where the mean E(Yi) and variance var(Yi) are given by

E(Yi) = µi =
db(θ)

dθ
= b′(θ) and (3.2)

var(Yi) = σ2i = a(φ)
d2b(θ)

dθ2
= a(φ)b′′(θ) (3.3)

where a(φ) = φ
w , w being a ‘prior weight’ which varies across observations. This shows

that the variance depends on both the canonical and dispersion parameters θ and φ. For

the binomial and Poisson distributions φ is generally assumed to be equal to 1.

3.2.2 The Log-likelihood and Maximum Likelihood Estimation

The log-likelihood for n independent observations y can be written as

L(θ, φ;y) =

n∑
i=1

yiθi − b(θi)
ai(φ)

+ c(yi, φ)

where θ = (θ1, . . . , θn).

If we let li be ith component for the log-likelihood (i.e. for a single observation) and l =
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∑
i li then the estimating equations for the regression parameters β0, β1, . . . , βp are obtained

by differentiating l with respect to each coefficient using the chain rule so that

∂l

∂βj
=

∂l

∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

for j = 0, 1, . . . , p. Given b′(θ) = µ and say b′′(θ) = V it follows that dµ
dθ = V , and the

derivative of ηi =
∑
βjxi with respect to βj is xi, therefore we get

∂l

∂βj
=

(yi − µi)
a(φ)

1

V

dµi
dηi

xi.

If the dispersion is constant then a(φ) = φ and the above equation becomes

n∑
i=1

yi − µi
V

dµi
dηi

xi = 0

which is the maximum-likelihood estimating equations for βj .

The estimating equations are then solved using a form of iteratively re-weighted least

squares for their solutions as they are nonlinear functions of the regression parameters

(Nelder and Wedderburn, 1972). Given a trial estimate of parameters β̂, we start with

initial values of the estimated linear predictor η̂i
0 = X ′iβ̂ and the fitted values µ̂i

0 = g−1(η̂i)

to calculate a working dependent variable:

z0i = η̂i
0 + (yi − µ̂i0)(

dηi
dµi

)0

with iterative weights

w0
i =

1

b′′(θi)(
dη0i
dµ0i

)2

where b′′(θi) is the second derivative of b(θi). z
0
i is then regressed on the covariates xi with

weight w0
i to obtain new estimates of β̂

1
from which a new η̂i

1 is formed. The weighted

least-squares estimates are given by

β̂ = (X ′WX)−1X′Wz
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where X is the n × p + 1 model matrix, W is a diagonal matrix of weights with entries

wi and z is a n × 1 response vector with zi entries. The procedure is repeated until the

estimates β̂ converge to the maximum-likelihood estimates of β. This algorithm uses the

Newton-Raphson method and gives the same results as the Fisher scoring method.

3.2.3 Goodness of Fit Measures

3.2.3.1 Likelihood Ratio Criterion and the Deviance

When fitting the model to the data, we would like to know how well the fitted values

µ̂ = (µ1, . . . , µn) estimate the observed values y. One goodness of fit measure is the Wald

test (Bewick, Cheek and Ball, 2005). The deviance is another, which is formed from the

logarithm of a ratio of likelihoods, which can be used to compare any two nested models

say ω1 ⊂ ω2.

First we consider the full model, or saturated model, which has one parameter for each

observation and does not consign any variation for the random component (McCullagh and

Nelder, 1989). So if we have µ̂i and θ̂i which is the estimate of θ under our model of interest,

and θ̃i is the estimate of θ for the saturated model, where θ̂ = θ(µ̂) and θ̃ = θ(y), then

the likelihood ratio criterion to compare these two models (which are in the exponential

family) is given by

− 2 log λ = 2

n∑
i=1

yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

ai(φ)
(3.4)

where ai(φ) = φ
wi

. The deviance is then the numerator of (3.4) which can be re-written

as

−2 log λ =
D(y, µ̂)

φ
.

D(y, µ̂) = 2
n∑
i=1

wi[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)].

This shows that the deviance does not depend on unknown parameters i.e. it is a function

of the data only, and for the Normal distribution reduces to the residual sum of squares.
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Given l(µ; y) = log f(y; θ), the scaled deviance is

D∗(y;µ) = 2l(y,y)− 2l(µ,y) (3.5)

=
D(y, µ̂)

φ
(3.6)

where l(y,y) is the “maximum likelihood achievable for an exact fit in which the fitted

values are equal to the observed data” (McCullagh and Nelder, 1989).

3.2.3.2 Pearson X2 Statistic

Another important measure of fit is the generalized Pearson X2 statistic given by

X2 =
∑ (yi − µ̂i)2

var(µ̂i)

where var(µ̂i) is the estimated variance function for the assumed distribution of Yi (given

its from the exponential family). For the Normal distribution the Pearson X2 also reduces

to the residual sum of squares and has an exact χ2 distribution, while for the Poisson and

binomial distributions the original X2 statistic is used.

3.3 GLMs for Binary Data

3.3.1 Binary Responses

When the data is in a form of binary responses i.e. the response variable Yi has two possible

values, for example in epidemiological studies where death status is of interest, Yi can take

the value of either 0 when an event is not observed and 1 if the event is observed. So

the probabilities of ‘not observed’ and ‘observed’ can be written as P (Yi = 0) = 1 − πi
and P (Yi = 1) = πi respectively. For an individual unit, there is a vector of explanatory

variables or covariates xi
′ = (x1, . . . , xp) that are thought to influence the probability of a

positive response, π = π(x). The Bernoulli distribution may be used to model binary data

when we have n = 1, and for n > 1 we may use the binomial distribution.

In this case we want to look at the relationship between the response probability πi and
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xi
′, which will occur through the link function

g(πi) = ηi =

p∑
j=1

xiβj ; i=1,. . . ,n.

The different link functions that can be used for binary responses are the logit link function,

probit, complementary log-log etc. The logit link function is the one that is commonly

used, because of its simple interpretation as the logarithm of the odds and because it can

be used on data that is sampled either prospectively or retrospectively (McCullagh and

Nelder, 1989). It is also the canonical link that is directly obtained from the exponential

family representation of the Bernoulli distributions.

Given we have covariates x1, x2, . . . , xp and parameters β0, β1, . . . , βp, the linear logistic

model can be written as

log(
π

1− π
) = β0 + β1x1 + β2x2 + · · ·+ βpxp

for the log odds of a positive response, or alternatively as the odds of a positive re-

sponse
π

1− π
= exp(β0 + β1x1 + β2x2 + · · ·+ βpxp).

The inverse of the logistic function g(π) = log( π
1−π ) gives the probability of a positive

response which is written as

π =
exp(β0 + β1x1 + β2x2 + · · ·+ βpxp)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βpxp)
=

en

1 + en

where η = β0 + β1x1 + · · ·+ βpxp.

3.3.2 The Binomial Distribution

The binomial distribution is a discrete probability and occurs when the observations Yi are

non-negative counts or Yi ∼ independent B(ni, πi) where ni are the number of trials and πi

is the probability of a ‘success’. The probability density function (PDF) is given by

f(yi) =

(
ni
yi

)
πyii (1− πi)ni−yi .
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By taking the logs of the PDF we can arrive at the general expression given by 3.1:

log f(yi) = yi log(πi) + (ni − yi) log(1− πi) + log

(
ni
yi

)
= yi log(

πi
1− πi

) + ni log(1− πi) + log

(
ni
yi

)
=
yiθi − b(θi)

a(φ)
+ c(yi, φ)

where θi and b(θi) are a function of πi. This means log( πi
1−πi ) = θi. If we make πi the

function, we get

πi =
eθi

1 + eθi

and

1− πi =
1

1 + eθi

so that b(θi) = ni log(1 + eθi), a(φ) = φ = 1 for the binomial distribution and c(yi, φ) =

log
(
ni
yi

)
.

Similarly to get the mean and variance we can use the expressions 3.3

E(Yi) = b′(θi) = ni
eθi

1 + eθi
= niπi

var(Yi) = a(φ)b′′(θi) = ni
eθi

(1 + eθi)2
= niπi(1− πi).

The canonical link θi = g(µi) = ηi for the binomial distribution is the logit function.

3.3.3 Estimation of the Parameters for Logistic Regression

To estimate the parameters for logistic regression we use the Fisher scoring method as

described by Section 3.2.2. Given the n-vector π = (π1, π2, . . . , πn) and the observed value
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y, the log-likelihood can be written as

l(π,y) =
n∑
i=1

[yi log(
πi

1− πi
) + ni log(1− πi)].

Since the systematic part of GLMs is the relationship between ηi and the covariates xi, we

can use the form g(πi) = ηi =
∑
xiβj . so that

g(πi) = ηi = log(
πi

1− πi
) (3.7)

for linear logistic models. The log-likelihood can therefore be written as a function of the

unknown parameters β

l(β,y) =
∑
i

∑
j

yixiβj −
∑
i

ni log(1 + exp
∑
j

xiβj) (3.8)

from which the maximum likelihood estimating equations for βj is derived as:

∂l

∂βj
=
∑
i

yi − niπi
πi(1− πi)

dπi
dηi

xi (3.9)

β̂ can then be obtained, given the initial estimates of β̂0, π̂0 and η̂0, and with the working

dependent variable and iterative weights as

zi = η̂i +
yi − niπ̂i

ni

dηi
dπi

and

wi = niπi(1− πi)

The binomial deviance is given by

D(y, µ̂) = 2
∑
i

[yi log(
yi
µ̂i

) + (ni − yi) log
ni − yi
ni − µ̂i

]

where µ̂i is the maximum likelihood estimate of µi for our model of interest.
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3.4 GLMs for Count Data

3.4.1 The Poisson Model

Many outcomes, such as those in clinical medicine, epidemiology or in behavioural studies,

are counts of events in a Poisson or Poisson-like process (McCullagh and Nelder, 1989;

Byers et al, 2003). The basic Poisson model can be used when successive events occur at

the same rate and independently of each other. The Poisson distribution is assumed to have

an equal mean and variance of µi, and the events observed are non-negative integer values,

with no finite upper limit. For log-linear models, the common choice for the canonical link

is the log function where θ = ηi = log(µi).

The probability mass function (PMF) is given by

f(yi) =
e−µiµyii
yi!

with yi = 0, 1, 2, . . . (3.10)

To get the general expression of the form of (3.1), we take the logs to get

log f(yi) = yi log(µi)− µi − log(yi!)

and can see that θi = log(µi) which confirms that the canonical link is the log function. If

we write θi in terms of µi we have b(θ) = eθi , c(yi, φ) = − log(yi!) and again we assume

that the dispersion parameter φ = 1 so that a(φ) = 1.

The mean and variance will then be

E(Yi) = b′(θ) = eθi and

var(Yi) = a(φ)b′′(θi) = eθi

which verifies that the mean and variance of the Poisson distribution are equal. As µi →∞
for each i, the Poisson distribution tends to the Normal distribution.
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3.4.2 Estimation of the Parameters for Log-linear Models

The log-likelihood for the Poisson regression model is

l(µ,y) =

n∑
i=1

(yi log(µi)− µi)

for a vector of independent observations y. The canonical link is ηi = log(µi) for which

the derivative is dηi
dµi

= 1
µi

. The maximum likelihood estimating equations are the same as

for the logisitic regression (equation 3.9).

The working dependent variable and iterative weights are given respectively as

zi = ηi +
yi − µi
µi

wi = µi

from which the Fisher scoring algortihm can be used to obtain the maximum likelihood

estimates.

Since the log link function is used, the exponentiated coefficients eβj can be interpreted as

the multiplicative effects on the expected response.

3.4.3 The Poisson Deviance

If we let µ̂i be the maximum likelihood estimate of µi for our model of interest ω and

µ̃i = yi for the saturated model, then the deviance function can be written as

D(y,µ) = 2
∑

[yi log(
yi
µ̂i

)− (yi − µ̂i)].

As n → ∞, with fixed number of parameters p, the Poisson deviance has an asymptotic

chi-squared distribution, which can be used as a goodness of fit test.

3.5 Overdispersion

Overdisperion occurs when there is greater variability in the data than would be expected

by a regression model i.e. the variances of Yi are greater than their expected values (Gard-
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ner, Mulvey and Shaw, 1995). Dispersion is determined by the parameter φ, which is

typically set to φ = 1 for the binomial and Poisson models. In practice however, overdis-

persion (φ > 1) is common, such as in epidemiological studies where the incidence of disease

is geographically varied. For count data, overdispersion is almost always present, since the

standard Poisson regression is often used to model it, and the requirement that the mean

and variance are equal is hardly ever met. This means that φ should be estimated to de-

termine whether overdispersion is present or absent, because failure to take it into account

results in misleading inferences (Coxe, West and Aiken, 2009). Underdispersion (φ < 1)

can also occur in some cases when there is this less variation in the data than would be

expected.

If we want to see whether overdispersion is present or not i.e. see whether φ = 1 or φ > 1,

we estimate φ separately without using maximum likelihood methods such as the method

of moments estimator to get

φ̂ =
1

n− p− 1

∑ (yi − µ̂i)2
ˆvar(yi)

.

The estimated asymptotic covariance matrix of coefficients β̂ is given by

cov(β̂) = φ̂(XTWX)−1

where W is a diagonal matrix of weights wi.

If overdispersion is present, then alternative regression models may be used to account

for them. For data that is binomially distributed we may use the beta-binomial model

or quassi-binomial model, and for overdispersed count data, we can use overdispersed

Poisson regression (quassi-Poisson) models, which includes the dispersion parameter φ in

the Poisson model or the negative binomial regression model (Gardner et al, 1995; Coxe et

al, 2009).

3.5.1 Beta-binomial and Negative-binomial Models

In the beta-binomial (BB) distribution, the probability of a ‘success’ for n trials are assumed

to be random and follow the beta distribution, as opposed to the assumption that they
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are fixed as is in the binomial distribution. This helps explain extra variability within

the data that the binomial distribution does not. The BB distribution is used mainly in

Bayesian statistics, but in the frequentist approach, it is used as an overdispersed binomial

distribution.

Given Yi ∼ independent B(ni, pi) then P (Yi = yi|ni, pi) =
(
ni
yi

)
pyi(1 − pi)

ni−yi where

0 < pi < 1 is a parameter that is randomly drawn from the beta distribution. The

marginal PDF of BB is given by

f(yi|ni, α, β) =

∫ 1

0
P (Yi = yi|pi, ni)π(pi|α, β)dp

=

(
ni
yi

)
1

B(α, β)

∫ 1

0
pyi+α−1i (1− pi)ni−yi+β−1dp

=

(
ni
yi

)
B(yi + α, ni − yi + β)

B(α, β)

for α, β > 0 and where π(pi|α, β) = Beta(α, β) =
p
α−1(1−pi)

β−1

i
B(α,β) and

B(α, β) =

∫ 1

0
xα−1(1− x)β−1dx =

Γ(α)Γ(β)

Γ(α+ β)

If we let the response probability be πi = α
α+β , the mean and variance are then

E(Yi) = niπi

var(Yi) = niπi(1− πi)[1 + (ni − 1)φ]

where φ = 1
α+β+1 is the overdispersion parameter (Prentice, 1986).

The coefficients β̂ can be estimated in the same way as for the other GLMs, using maximum

likelihood estimation.

The negative binomial (NB) model can be used as an alternative to the standard Poisson

regression model, because it allows for unexplained variability between individuals, much

in the same way as including an error term in normal linear regression (Coxe et al, 2009).
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The NB assumes that the mean is a random variable that follows the gamma distribution

with mean µi∗ and constant index νi (McCullagh and Nelder, 1989), therefore the NB

model can be thought of as having an error function that is a mixture of the Poisson and

gamma distributions.

If we have a response variable Yi and if Yi ∼ NB(µi, φ) then the probability mass function

(PMF) is

P (Yi = yi;µi, φ) =
Γ(yi + φµi)φ

φµi

yi!Γ(φµi)(1 + φ)yi+φµi

for yi = 0, 1, 2, . . . . As φ→ 0 then the PMF reduces to the Poisson model (Lawless, 1987).

The mean and variance of the NB distribution are given by

E(Yi) = µi

var(Yi) = µi +
µ2i
νi
.

This shows that, given νi is not large, the variance increases more rapidly with the mean

than in the Poisson model. For known νi, a GLM based on the NB distribution can be

iteratively fit by weighted least squares. The Poisson log-likelihood can be used to obtain

the parameter estimates, using the general Fisher scoring method.

3.5.2 Zero-inflated Models

There are situations when fewer or more values of zeros are observed in the data than

would be expected in a given distribution with a specified mean and variance (Coxe et al,

2009). The problem of fewer zeros is referred to as ‘truncated zeros’ and many zeros is

known as ‘excess zeros’. In such a case, one may use zero-inflated models or hurdle models

(see Ridout, Demetrio and Hinde (1998)). Lambert (1992) introduces the zero-inflated

Poisson (ZIP) regression model to include covariates, something not considered previously

by Johnson and Kotz (1969) who first described zero-inflated models. Zero-inflated models

have been used quite a lot in the past, especially with regards to modelling count data with

excess zeros, and so zero-inflated Possion (ZIP) models and zero-inflated negative binomial

(ZINB) models are most commonly used. Hall (2000) looks at the ZIP and adapts it to

obtain a zero-inflated binomial (ZIB) model. Zero-inflated models are thought to have two
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processes (Coxe et al, 2009; Hall, 2000):

i. A ‘zero state’ for which the response variable is necessarily zero and

ii. a ‘Poisson or binomial state’ for which the response may be either a zero or a positive

count.

We shall consider the ZIP and ZINB model first and then look at the ZIB model.

3.5.2.1 Zero-inflated Poisson and Negative Binomial Models

Given a response vector Y we have

Yi ∼

{
0 with probability pi

Poisson(µi) with probability 1− pi

Suppose that pi is the probability that the response Yi for the ith individual is generated

from the zero state, then a binary logsitic regression model can be used so that

log(
pi

1− pi
) = γ0 + γ1zi1 + γ2zi2 + · · ·+ γpzip

where zij are the regressors for predicting those from the zero state and

logµi = β0 + β1xi1 + β2xi2 + · · ·+ βnxij

where xij are the regressors from the Poisson state. logit(pi) and log(µi) are the GLM

canonical link functions. Given

p(yi|x1, . . . , xn) =
µyii e

−µi

yi!

for yi = 0, 1, 2, . . . then

p(0) = P (Yi = 0) = pi + (1− pi)e−µi

p(yi) = (1− pi)
µyii e

−µi

yi!

are the probabilities of observing a count of 0 and a nonzero count respectively.
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The mean and variance are

E(Yi) = (1− pi)µi
var(Yi) = (1− pi)µi(1 + piµi)

so that var(Yi) > E(Yi) (unlike the equal mean and variance of the Poisson distribu-

tion).

The log-likelihood of the ZIP model is

logL(β, γ) =
∑
yi=0

log[exp(zi
′γ) + exp(− exp(xi

′β))] +
∑
yi>0

[yixi
′β − exp(xi

′β)]−

∑
i=1

log[1 + exp(zi
′γ)]−

∑
yi>0

log(yi!)

where zi
′ = (1, zi1, . . . , zip), xi

′ = (1, xi1, . . . , xij), γi = (γ0, γ1, . . . , γp)
T and β = (β0, β1, . . . , βn)T .

The zero-inflated negative binomial (ZINB) model is written similarly to the ZIP model

except now a dispersion parameter φ is included, so Yi can be written as

Yi ∼

{
0 with probability pi

NB(µi, φ) with probability 1− pi

and where pi is the probability that the response Yi for the ith individual is generated from

the zero state, and a binary logsitic regression model and log canonical link functions can

be used so that

log(
pi

1− pi
) = γ0 + γ1zi1 + γ2zi2 + · · ·+ γpzip

where zij are the regressors for predicting those from the zero state and

logµi = β0 + β1xi1 + β2xi2 + · · ·+ βnxij

where xij are the regressors from the Poisson state. The probabilities of observing a count

of 0 and a nonzero count are
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p(0) = P (Yi = 0) = pi + (1− pi)(1 + φµi)
− 1
φ

p(yi) = (1− pi)
Γ(yi + 1

φ)

Γ(yi + 1)Γ( 1
φ)

(1 + φµi)
yi+

1
φ

and the mean and variance are

E(Yi) = (1− pi)µi
var(Yi) = (1− pi)µi(1 + µi(pi + φ))

3.5.2.2 Zero-inflated Binomial (ZIB)

If we have response variable that is a count which has an upper bound then the binomial

distribution would be more appropriate than the Poisson distribution (Hall, 2000). Given

Yi we have

Yi ∼

{
0 with probability pi

B(ni, πi) with probability 1− pi

The mean and variance are given by,

E(Yi) = (1− pi)niπi

var(Yi) = (1− pi)niπi[1− πi(1− pini)]

The canonical link functions for ZIB are both modelled via logistic functions as logit(pi)

and logit(πi).

Lambert (1992) fits the ZIP model using maximum likelihood with the Expectation-

maximization (EM) algorithm and Hall (2000) uses this method for the ZIB model as

well, while the ZINB model is fit using the Newton-Raphson algorithm (Fang, 2008).
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Chapter 4

Statistical Analysis of KZN AAT data

4.1 Description of Data

A study was carried out in the KwaZulu-Natal (KZN) province in South Africa to determine

bovine trypanosomiasis prevalence in farms around the Hluhluwe-iMfolozi Game Park and

along St. Lucia Wetlands Park, two of the major conservation and protected areas in the

Umkhanyakude District (Ntantiso, 2012). The study area is situated within the 18,000

km2 tsetse belt, where the two species of tsetse flies, G.brevipalpis and G.austeni are

present (Eesterhuizen et al, 2005). The vegetation in the area is of natural bush and

sand forest plantations, with average annual temperatures of 22 ◦C to 28 ◦C and rainfall of

approximately 950 mm in summer and 260 mm in winter (Ntantiso et al, 2014).

4.1.1 Trypanosomiasis and Tsetse Abundance Survey

Three communal diptanks, where cattle move freely, located at various distances from

the edge of the Hluhluwe-iMfolozi Game Park were surveyed. The three areas selected

for surveillance were Ekhuphindisweni, Mvutshini and Ocilwane, and the cattle were sur-

veyed regularly on a monthly basis for 15 months. The total number sampled were 1462.

T.congolense was determined to be the dominant trypanosome species infecting the cattle

and the buffaloes in the study area. Treatment against AAT is not a regular practice and

mostly non-existent. AAT prevalence and the packed cell volume (PCV) were determined

using buffy coat smears (Ntantiso et al, 2014). A PCV of greater than 24% is consid-

ered normal, whereas a PCV of 24% or less means the animal is anaemic (Marcotty et al,

2008).
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Odour-baited H-traps were positioned at the three regions that were selected for the try-

panosomiasis surveillance, and also at the Hluhluwe-iMfolozi Game Park, to determine

the species (G.brevipalpis or G.austeni), the apparent density and the infection within the

tsetse fly, which was done by dissecting the fly. The fly catches, with males and females,

were collected every 2 weeks.

Buffaloes in the Hluhluwe-iMfolozi Game Park are considered to be reservoir hosts of the

disease, that is they harbour the parasites but do not display any of the clinical symp-

toms exhibited by cattle. A total of 132 buffaloes were tested for trypanosomiasis as part

of routine testing done for tuberculosis, and the infection rate among them was deter-

mined.

4.2 Exploratory Data Analysis

The three regions in KZN that were examined for tsetse fly populations and cattle, namely

Ekuphindisweni, Mvutshini and Ocilwane, are renamed as Region 1, 2 and 3 respectively

for the sake of ease. These areas surround the Hluhluwe-iMfolozi Game Park (Region 0),

Regions 1 and 2 are situated just outside of the game park (3.143 km2 and 3.172 km2

respectively) and Region 3 a bit further away (4.744 km2). Given their location and the

tsetse fly population abundance, Regions 1 and 2 are considered high challenge areas, where

there is a higher transmission rate and greater infectivity amongst the cattle, resulting in

more cases of AAT. Region 3 is considered a low challenge area, with fewer cases of disease

prevalence and a low tsetse fly population abundance. The winter months are considered

to be from May to September (labelled 5, 6, 7, 8 and 9) and the summer months are from

October to April (labelled 10, 11, 12, 1, 2, 3 and 4).

The herd average prevalence (HAP) is the average disease prevalence in a given region, and

herd average PCV (HA-PCV) is the average PCV of each region. A higher HA-PCV means

lower ’average’ anaemia and therefore better general health of cattle in that region, and

a lower HA-PCV means higher average anaemia in the region, representing a more sickly

herd. Conversely, a higher HAP means a higher prevalence of disease in the region and a

lower HAP means a lower prevalence of disease in a region. Regions 1 and 2 have lower

HA-PCV’s (25.9 and 26.97 respectively) than Region 3 (29.35), showing less healthy cattle.

The HAP for Regions 1 and 2 are higher than for Region 3, with HAPs of 8.17%, 10.34%
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Figure 4.1: The herd average PCV for the three regions

and 1.84% respectively. This can be seen graphically in Figures 4.1 and 4.2, with Regions

1 and 2 having lower HA-PCVs and higher HAPs, whilst Region 3 has a higher HA-PCV

and lower HAP. The average number of tsetse flies (G.brevipalpis and G.austeni) for those

regions and Region 0 (the game park), show higher densities of flies in the game park

(Region 0) and Regions 1 and 2, whilst the number of flies in Region 3 were significantly

lower (Figure 4.3). The apparent density population (number of flies caught per trap)for

G.brevipalpis was substantially higher, compared to the apparent density population of

G.austeni (Tables 4.2 and 4.3), as shown for Regions 1 and 3, where no G.austeni were

caught. This can be because the population of G.austeni is quite small or because the

traps do not attract and catch the species (Ntantiso et al, 2014).
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Figure 4.2: The herd average prevalence (HAP %) for the three regions

Figure 4.3: Total tseste density for the three regions and the game park (Region 0)
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Table 4.1: Basic statistical analysis of PCV for the three regions

Summary Statistics of PCV

Region N Mean Standard Deviation Min Max
1 568 25.9 4.198 10 47
2 428 26.97 4.578 11 44
3 414 29.35 5.582 10 44

Table 4.2: Basic statistical analysis of G.austeni for the three regions and the game park

Summary statistics for G.austeni

Region N Mean Standard Deviation Min Max
0 36 8.53 10.377 0 43
1 20 - - - -
2 40 2.23 3.15 0 13
3 13 - - - -

4.3 Binomial Generalized Linear Model for AAT Prevalence

Data

Since the prevalence of AAT is either 0 (negative) if T.congolense was absent or 1 (pos-

itive) if T.congolense was present, we use the binomial GLM with a logit link, and the

PCV values, region and month used as the explanatory variables. The PCV values were

tranformed to 0 for values > 24 and 1 for values ≤ 24, meaning a cow is non-anaemic and

anaemic respectively.

The GENMOD procedure in SAS version 9.3 was used to fit the model. The parameter

vector β is fitted using maximum likelihood estimation, and the scale/dispersion parameter

is fit using either maximum likelihood, the residual deviance or Pearson’s χ2 divided by

the degrees of freedom (Gordon, 2014).

The goodness of fit statistics for the binomial GLM are shown in Table 4.5. We can see

that the deviance and Pearson Chi-square, divided by their degrees of freedom are 1.22

and 1.43 which are close to 1 and so we can say that this model fits the data reasonably

well. Large values indicate model misspecification or overdispersion, whereas small values

(< 1) also represent model misspecification and underdispersion. The model for our data

is given as
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Table 4.3: Basic statistical analysis of G.brevipalpis for the three regions and the game
park

Summary statistics for G.brevipalpis

Region N Mean Standard Deviation Min Max
0 36 2775.5 1527.47 204 8129
1 16 367.69 265.655 71 1121
2 42 558.07 387.955 54 1603
3 13 58.54 30.953 14 120

Table 4.4: Table showing the class level information used in the binomial GLM for the
AAT prevalence data

Class Level Information

Class Levels Values

Month 12 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12
Region 3 1; 2; 3

log(
πij

1− πij
) = µ+ pcv +monthi + regionj (4.1)

for i = 1, 2, . . . , 12 and j = 1, 2, 3 and where µ is the intercept term. So we are modelling

the response, which is the prevalence of AAT infection in a cow, as a function of whether

the cow is anaemic or non-anaemic (shown by PCV), where the cow is located (Region 1,

2 or 3) and the month it was sampled. Table 4.6 shows the parameter estimates and the

Wald χ2 values with the corresponding confidence intervals and p-values. The reference

category for month is 9 and the reference category for region is 3. We can see that PCV

is highly significant (p-value < 0.0001), and similarly, so is December (p-value of 0.0189)

and Regions 1 and 2 (with p-values of 0.0121 and 0.0001 respectively) at a 5% level of

significance. The odds ratio of PCV is exp (−1.1376) = 0.3206 so the ratio of the odds

of an animal not having the disease between an animal with a PCV of 1 and a PCV of 0

(i.e. of being anaemic and not being anaemic) is 0.3206, or the odds of an animal that is

not anaemic is 0.3206 times the odds of an animal that is anaemic. Similarly, the odds of

having the disease for an animal that is anaemic is 1
0.3206 = 3.119 times the odds of having

the disease for animal that is not anaemic. A cow in Regions 1 and 2 has the odds of disease

prevalence of 0.3035 and 0.1636 (respectively) times that of one in Region 3. Month 12 has

an odds of disease prevalence of 0.2795 times that of one for Month 9. The scale parameter
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Table 4.5: Table of goodness of fit measures for the binomial GLM

Criteria For Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 52 63.5018 1.2212
Scaled Deviance 52 52 1
Pearson χ2 52 74.3609 1.43
Scaled Pearson χ2 52 60.8922 1.171
Log Likelihood -64.9272
AIC 159.8543

Table 4.6: SAS Proc GENMOD results for the binomial model for AAT Prevalence in KZN
(significant parameters marked with *)

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate Std Error Wald 95% CI Pr >ChiSq

Intercept 1 4.5198 0.5639 3.4147, 5.6250 < .0001
PCV* 1 -1.1376 0.2592 -1.6456, -0.6296 < .0001
Month 4 1 0.3266 0.7539 -1.1510, 1.8043 0.6648
Month 8 1 0.3807 0.7498 -1.0890, 1.8503 0.6117
Month 12* 1 -1.2748 0.5430 -2.3390, -0.2107 0.0189
Month 2 1 -0.0087 0.7622 -1.5025, 1.4852 0.9909
Month 1 1 -0.7746 0.6136 -1.9771, 0.4280 0.2068
Month 7 1 -0.7963 0.4792 -1.7354, 0.1429 0.0966
Month 6 1 -0.0734 0.8991 -1.8357, 1.6888 0.9349
Month 3 1 -0.1404 0.6358 -1.3865, 1.1057 0.8252
Month 5 1 -0.4367 0.5522 -1.5190, 0.6456 0.4290
Month 11 1 0.5380 0.58930 -0.6170, 1.6930 0.3613
Month 10 1 0.1520 0.4604 -0.7503, 1.0542 0.7413
Month 9 (ref) - - - - -
Region 1* 1 -1.1924 0.4750 -2.1233, -0.2614 0.0121
Region 2* 1 -1.8101 0.4679 -2.7270, -0.8931 0.0001
Region 3 (ref) - - - - -
Scale 1.1051 [1.1051, 1.1051] -

(φ) was estimated as 1.1051, which shows slight overdispersion, which could be due to the

differences in the regions and months.

Table 4.7 shows the overall significance of the variables used in the model. PCV is highly

significant (p-value < 0.0001), and so is region (p-value = 0.0003), while month is not (p-
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Table 4.7: Type 3 analysis of main effects of binomial GLM

Wald Statistics for Type 3 Analysis

Source DF Chi-square Pr >ChiSq

PCV 1 19.27 < .0001
Month 11 18.37 0.0735
Region 2 16.43 0.0003

value= 0.0735). This shows that prevalence of AAT is not necessarily seasonal, which

could be expected as the parasites can be present in the blood, but the animal may not get

sick until times of stress such as when it has poor nutrition, after which the infection can

appear. For seasonality of AAT to be known cattle need to sampled and treated monthly

in order to determine the incidence of AAT i.e. to look at the new infections appearing.

Since region is significant, we can say that there is a relationship between where the cattle

are located and whether they have the disease or not. Regions 1 and 2 were significant,

so proximity to the game park could play a role, which is in accordance with literature

that reservoir hosts play a big role in the epidemiology of AAT. Since PCV is considered

an indicator of whether a cow is sick or not, it being a highly significant variable is not

surprising.

4.4 Poisson Generalized Linear Model for Tsetse Fly Den-

sity Data

The tsetse fly abundance can be modelled using the Poisson regression model with a log

link for both species. This is also done using Proc GENMOD in SAS. The explanatory

variables used were month and year and the deviance scale parameter (φ) is estimated to

assess whether overdispersion is present or not. Table 4.8 shows that the data for G.austeni

is overdispersed when we use the Poisson GLM. The estimated scale is given as φ = 2.7049

which shows significant overdispersion, and since we know that the Poisson assumption of

an equal variance and mean is violated (we have a variance of 14.316 compared to a mean of

3.63), we look at using the negative binomial (NB) model to account for the overdispersion.

For G.austeni, the zero-inflated Poisson and negative binomial (ZIP and ZINB) models can

also be used because we have excess zeroes in the data. The 4 models are fit (Poisson, NB,

ZIP and ZINB) to determine which model fits the best. For G.brevipalpis, only Poisson
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and the NB model are fit, since we have significant overdispersion of φ = 29.53 (Table

4.9).

Table 4.8: Poisson model for G.austeni with the estimated scale parameter

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate Wald 95% CI Pr >ChiSq

Scale 0 2.7049 [2.7049, 2.7049] -

Table 4.9: Poisson model for G.brevipalpis with the estimated scale parameter

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate Wald 95% CI Pr >ChiSq

Scale 0 29.5283 [29.5283, 29.5283] -

The goodness of fit criteria for the 4 models are compared to see which has the best fit

(Table 4.10). For the Poisson GLM, we see that the deviance and the Pearson Chi-square

(divided by their degrees of freedom) are 7.32 and 6.98 respectively, which are bigger than

1, compared to the NB model which has values of 1.64 and 1.20 which are closer to 1, so

it has a better fit. For the ZIP and ZINB, we have Pearson Chi-squares of 3.57 and 1.31

respectively, so the ZIP is a better fit than the Poisson but is still greater than 1 so the

model is misspecified whilst the ZINB model is closer to the value of 1 but a bit bigger

than the value for the NB model. When we look at the AIC’s, we see that the values are

375, 274, 337 and 272 for the Poisson, NB, ZIP and ZINB models, again showing that the

NB and ZINB are the better fits. Looking at these criterion, the ZINB regression model is

the best fit and we therefore use it to model our data (Table 4.11).

For G.brevipalpis the Poisson and NB model were compared in Table 4.13 and the NB

model was fit (Table 4.14). The deviance/DF and the Pearson Chi-square/DF were 872

and 892 with a very high AIC of 25717.86 for the Poisson GLM, which were greatly reduced

when the NB model was fit (1.5, 1.38 and an AIC of 744), so the model is said to have a

good fit and not overdispersed.

From Table 4.11 we can see that the months that are significantly different from reference

month 12, are months 7 and 8 for G.austeni and year was also significant (p-value= 0.0009).

The regression coefficients for the months 7 and 8 are -1.5675 and -1.1399 respectively, so

the exponentiation of those values are e(−1.5675) = 0.2086 and e(−1.1399) = 0.3199. This

means that the multiplicative differences in the average number of flies for those months
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Table 4.10: Goodness of fit Criteria of the Poisson, negative binomial, ZIP and ZINB for
G.austeni

Criteria for Assessing Goodness of Fit
Model Deviance/DF Pearson χ2/DF Log Likelihood AIC
Poisson 7.3167 6.9761 88.1134 374.9772
Negative Binomial 1.6442 1.2046 423.4176 274.0185
ZIP - 3.5748 664.4937 337.3808
ZINB - 1.3092 -121.1595 272.3189

Table 4.11: SAS Proc GENMOD results of the Zero-inflated negative binomial model for
G.austeni (significant parameters marked with *)

Analysis of Maximum Likelihood Estimates
Parameter DF Estimates Std Error Wald 95% CI Pr >ChiSq
Intercept 1 1215.864 287.8049 651.7773, 1779.952 < .0001
Month 1 1 0.4260 0.6325 -0.8137, 1.6658 0.5006
Month 2 1 0.4252 0.5590 -0.6704, 1.5208 0.4468
Month 3 1 0.9157 0.5329 -0.1287, 1.9601 0.0857
Month 4 1 0.7685 0.5315 -0.2731, 1.8102 0.1482
Month 5 1 -0.2377 0.6052 -1.4238, 0.9484 0.6945
Month 6 1 -0.4855 0.5895 -1.6409, 0.6698 0.4102
Month 7* 1 -1.5675 0.6025 -2.7484, -0.3866 0.0093
Month 8* 1 -1.1399 0.5806 -2.2778, -0.0020 0.0496
Month 9 1 -0.1461 0.5845 -1.2916, 0.9995 0.8027
Month 10 1 -0.6840 0.5547 -1.7712, 0.4032 0.2175
Month 11 1 0.4812 0.5020 -0.5028, 1.4651 0.3378
Month 12 (ref) - - - - -
Year* 1 -0.6049 0.1435 -0.8860, -0.3237 < .0001

Table 4.12: Type 3 analysis of main effects of ZINB model for G.austeni

Wald Statistics for Type 3 Analysis

Source DF Chi-square Pr >ChiSq

Month 11 25.74 0.0071
Year 1 13.33 0.0003

Table 4.13: Goodness of fit Criteria of the Poisson and negative binomial for G.brevipalpis

Criteria for Assessing Goodness of Fit
Model Deviance/DF Pearson χ2/DF AIC
Poisson 871.9206 891.6470 25717.8684
Negative Binomial 1.5010 1.3764 744.2998
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Table 4.14: SAS Proc GENMOD results of the negative binomial model for G.brevipalpis
(significant parameters marked with *)

Analysis of Maximum Likelihood Estimates
Parameter DF Estimates Std Error Wald 95% CI Pr >ChiSq
Intercept 1 -611.362 186.2405 -976.387, -246.338 0.0010
Month 1 1 -0.2591 0.5351 -1.3079, 0.7897 0.6282
Month 2 1 0.2157 0.4691 -0.7037, 1.1350 0.6456
Month 3 1 0.7971 0.4673 -0.1187, 1.7130 0.0880
Month 4 1 0.5119 0.4678 -0.4049, 1.4287 0.2738
Month 5 1 0.0045 0.4377 -0.8533, 0.8623 0.9918
Month 6 1 0.0915 0.4379 -0.7668, 0.9497 0.8345
Month 7 1 -0.6383 0.4383 -1.4974, 0.2207 0.1453
Month 8 1 0.1562 0.4399 -0.7059, 1.0184 0.7225
Month 9 1 0.1447 0.4378 -0.7134, 1.0028 0.7411
Month 10 1 0.1333 0.4372 -0.7237, 0.9903 0.7605
Month 11 1 0.4545 0.4374 -0.4027, 1.3117 0.2987
Month 12 (ref) - - - - -
Year* 1 0.3086 0.0928 0.1266, 0.4905 0.0009

are 0.2086 and 0.3199 times less than the reference month 12. This can be attributed to the

fact that month 7 has the lowest average temperature range (10.64 ◦C− 24.01 ◦C) (Figure

4.4), and Glossina morsitans are known to be active at temperatures of 18 ◦C − 32 ◦C

(Fraumann, 2003) and at low temperatures the pupal period (or stage) can be more than

50 days and the rate of reproduction decreases (Pollock, 1982). To see whether months

and years are significant to the models, we use the Wald Type 3 analysis in Tables 4.12

and 4.15. We can see that both month and year is significant for G.austeni, whereas only

year is significant for G.brevipalpis.

Table 4.15: Type 3 analysis of main effects of NB model for G.brevipalpis

Wald Statistics for Type 3 Analysis

Source DF Chi-square Pr >ChiSq

Month 11/29 11.81 0.3781
Year 1/29 9.36 0.0022
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Figure 4.4: Average minimum and maximum temperatures for Bushlands station (longi-
tude and latitude: -28.13938, 32.2949)

4.5 Summary

The binomial GLM was used to model AAT prevalence data for three regions in the

KwaZulu-Natal Province. The explanatory variables that were used were PCV, which

is considered to be an indicator of AAT in trypanosome endemic areas, month and region

(where the cattle are located to the Hluhluwe-iMfolozi Game Park). PCV was found to

be highly statistically significant at a 5% level of significance, with a p-value of < .0001.

Regions 1 and 2, which are the closest to the game park, were also found to be statistically

significant, so where the cattle are located seems to be important. Month was not found

to be statistically significant, and since this was a study of prevalence and not incidence of

AAT, the parasites could be present and resurface at times when the cow is under stress.

The scaling parameter φ was estimated to determine whether there was overdispersion in

the model and φ was found to be 1.1051, which shows slight overdispersion and this could

be as a result of the heterogeneity in the regions.

To model the tsetse fly abundance of both species, the Poisson GLM was used with month
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and year as the explanatory variables, and the scaling parameter was estimated to deter-

mine whether they were overdispersed. Both the Poisson models for both species had high

values of φ and so alternative count models were fit. G.austeni has a high frequency of

zeros and lower counts, due to either a low population density or because the traps are

not efficient in catching them, while G.brevipalpis has a substantially higher abundance.

For these reasons the negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated

negative binomial models (ZINB) were fit for G.austeni while only the NB model was fit

for G.brevipalpis. The ZINB regression model had the best fit for G.austeni, with both

months 7 and 8 and year found to be statistically significant. This could be because month

7 has the lowest minimum and maximum temperatures during the year and at lower tem-

peratures, tsetse flies become less active and the pupal stage lengthens to around 50 days

and the reproductive rate decreases. For G.brevipalpis the NB regression model was a

much better fit than the Poisson regression model. Only year was found to be statistically

significant in this model.
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Chapter 5

Model fitting and Climate Change

5.1 Data Fit to the Mathematical Model

Many assumptions go into constructing a disease model, and initial parameter values are

usually derived from various literature sources, but there is a need to obtain data that will

help construct, verify and validate the disease model (Carpenter, 1994). These models need

to be developed with both the biological systems in mind and the data that is collected

through the epidemiological studies. Statistical analyses are used to identify relevant risk

factors and help to determine the time to a particular event example incubation, latent

and infectious periods (Carpenter, 1994). In estimating the model parameters, the model

needs to represent the system we are studying so that it can be used to both inform and

predict so that they can be used to develop control strategies (Dransfield and Brightwell,

1989).

As a starting point to judge how the model fits our actual data, we fit it to the KZN

AAT prevalence data using least squares and the parameters that were used in the model

were estimated from that fit. Figure 5.1 shows the real data for 16 months and the model

fit. The model fit seems to increase sharply from month 16, which might not be a true

representation of what happened in those months. More data points need to be added to

see whether it follows the model fit. The estimated parameters from the fit are in Table

5.1, which also shows the values from the literature. The values that do not match the

literature values are µC , α and which are too high to make sense. The parameters that

apply to the tsetse fly i.e. µF and β are within the range, the mortality rates of tsetse

flies vary depending on the mean temperature (Rogers, Randolph and Kuzoe, 1984) and

the biting rate is 2 or 3 days and up to 7 days in cooler seasons (Rogers, Hendrickx and
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Figure 5.1: The data was fit to the mathematical model using least squares using the initial
parameter values from the literature sources
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Table 5.1: The parameters used in the mathematical model with the initial values (sources
given in Chapter 2) and the values estimated from the model fit to the data.

Parameter Description Value from Literature Estimated Value
µC Mortality rate of cat-

tle (excluding disease-
induced) days−1

0.0005 0.2875

µB Mortality rate of buffalo
days−1

0.0001053 0.0001589

µF Mortality rate of tsetse fly
days−1

0.030 0.0240

α Mortality rate of cattle
due to disease days−1

0.002 0.9785

β Biting rate days−1 0.25 0.1378
η Weight (distance from

buffalo)
1.3 2.9746

f̂ Probability of infected fly
producing infection in cow

0.2 0.0544

f̂1 Probability of infected fly
producing infection in buf-
falo

0.46 0.5597

f̂2 Probability of infected
blood meal from host
producing infection in fly

0.025 0.0814

Slingenbergh, 1994). The values for f̂ and f̂1 seem to be reasonable but need to be verified.

The interesting parameter value is that of f̂2 of 0.0814, since the infection with mature

parasites in G. austeni in KZN was found to be 8% (Ntantiso, 2012). The estimated values

can be used to calculate R0 from the NGM K, so we have

K =

 0 0 RCF

0 0 RBF

RFC RFB 0



K =

 0 0 0.9316

0 0 408.1286

0.0089 0.5558 0


from which we get R0 = 15.062 > 1. For RFC = 0.0089 we expect to get a low number

because of the high values of µC and α, but for RCF we have a value of 0.9316 which is
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less than one, so if the transmission is from cattle to the fly then AAT will die out. We

also expect RFB (transmission from fly to buffalo) to be low since the buffalo is a reservoir

host and is not affected by trypanosomiasis. Our important element is RBF = 408.1286,

which contributes the most to R0 and so the transmission from the buffalo to the fly is

significant in maintaining transmission of AAT in KZN.

5.2 Climate Change and Tsetse Population Dynamics

As a result of climate change, global mean surface temperature is likely to increase 0.3 ◦C−
1.7 ◦C by the end of the 21st century (IPCC, 2014). Increases in temperature affect tsetse fly

population dynamics such as rates of larval production, pupal development, mortality rates

etc. (Hargrove, 2004). These changes in the dynamics may mean that the geographical

distribution of the tsetse flies may be altered in a way that will expose naive animals and

humans to infection (Moore et al, 2012), and result in an increased African trypanosomiasis

burden on these vulnerable populations (TDR, 2012).

High temperatures affect the rates of larval production, shorten the pupal period, increase

mortality rates in pupa and adults (Pollock, 1992; Hargrove, 2004). Those factors affecting

the birth rates are easier to predict than the ones affecting mortality rates (Rogers et al,

1994; Hargrove, 2004), so at this point we will look at one the factors affecting birth rates

i.e. the pupal period. Artzrouni and Gouteux (2006) estimate the average duration of

the pupal period as a function of temperature. Surface plots were done to show how for

different temperatures (X), the pupal period (Y) changes, resulting in an average pupal

duration (Z). From the surface plots (Figures 5.2a-5.2c), we see that there is a linear rela-

tionship between temperature and pupal period and the average pupal duration. Different

points on the surface plot were chosen to illustrate our point. For the temperature range

25 ◦C − 30 ◦C, we see that the average duration of the pupal range is 35 days for 25 ◦C

(Figure 5.2a), then goes down to 27 days (Figure 5.2b) and for 30 ◦C it is about 14 days

(Figure 5.2c). So for higher temperatures, the average pupal duration is reduced and if the

temperature becomes too hot, the pupa will die.

To predict how the tsetse population will change in relation to climate change, the different

factors need to be estimated and considered separately (Hargrove, 2004), so that appro-

priate control measures can be put in place, for as Rogers (1994) stated: “the study of
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vector populations dynamics therefore forms a vital part of vector-borne disease epidemi-

ology”.
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(a) Temperature (X) 25 ◦C, average pupal duration (Z) 35.41 days

25 26 27 28 29 30 0

50

100
10

15

20

25

30

35

40

 

Pupal Period

X: 27.4
Y: 65.8
Z: 25.28

Duration of the Pupal Period

Temperature

 

A
ve

ra
g

e 
P

u
p

al
 D

u
ra

ti
o

n

14

16

18

20

22

24

26

28

30

32

34

(b) Temperature (X) 27 ◦C, average pupal duration (Z) 25.28 days
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(c) Temperature (X) 29.9 ◦C, average pupal duration (Z) 14.27 days

Figure 5.2: Surface plots showing how different temperatures affect the average pupal
duration.
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Chapter 6

Discussions and Conclusions

6.1 Discussion and Conclusions

African animal trypanosomiasis, restricted to parts of the KwaZulu-Natal Province, is a

disease which contributes significantly to the disease burden of cattle, and affects resource-

poor farmers especially whom do not have access to treatment. Drug resistance is also

a problem and dipping of cattle using insecticides has proved to be unsustainable. Even

though the incidence of AAT has increased, little is known about the epidemiology of the

disease in the region. To better understand the dynamics of AAT, mathematical modelling

was done to investigate the interactions between the cattle, tsetse fly and buffalo which

is considered to be the reservoir host, and a statistical analysis of the data collected from

three sites around the Hluhluwe-iMfolozi Game Park was done to assess the relationships

between the variables.

In Chapter 2, an SI model was constructed for the different classes of the population i.e.

susceptible and infected cattle and tsetse flies and infected buffaloes. The basic reproduc-

tion number R0 was derived using the next-generation matrix to assess how the different

elements contribute to R0 and although it was found that cattle and flies are able to main-

tain the transmission of AAT, the important element was the transmission from buffaloes

to flies which contributed the most to R0. This was confirmed when we used the model

to see how the different classes vary over time, and when we considered transmission from

just the buffalo population, infected cattle and flies increased a lot more steeply than when

the transmission was just between the cattle and flies.

A sensitivity analysis was done, and contour plots were plotted, to identify the parameters

which affect the prediction imprecision of the outcome variables using partial rank corre-
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lation coefficients (PRCC). It was found that the mortality rate of tsetse flies and their

biting rate were the most important parameters, so by getting more accurate measurements

we can reduce the prediction imprecision of our outcome variables such as infected cattle

and R0. PRCCs can show which parameters to target if we want to look at intervention

measures and determine how to efficiently reduce AAT.

In Chapter 4, generalized linear models (GLMs) were used to analyse the prevalence and

tsetse abundance data collected from the three regions, since we had binary and count data.

The prevalence data was modelled using a binomial GLM and the packed cell volume (PCV)

and region were significant, so PCV is a useful indicator of prevalence and where the cattle

are located also determines prevalence. The data was found to be slightly overdispersed

however, which could be because of the cluster effect of ‘region’. The tsetse abundance data

was modelled using Poisson GLMs but since there was significant overdispersion present,

alternative models were considered. Since there were excess zeroes for G. austeni, zero-

inflated models were done and the best fit was found to be the zero-inflated negative

binomial, while the negative binomial model was used for G. brevipalpis to account for the

overdispersion. Accounting for overdispersion is important, because if we don’t we could

get misleading inferences about the data. Month and year were found to be significant for

G. austeni, but only year was significant for G. brevipalpis. Since G. austeni is considered

the main vector of AAT, seasonal changes in the population need to be looked at in relation

to the incidence of AAT in the cattle to determine the pattern of the disease.

The AAT prevalence data was fit to the mathematical model using least squares in Chapter

5, and the input parameters were estimated and used to calculate R0 again so that it is

more site-specific. From the next-generation matrix we could see that the transmission

from the buffaloes to the flies was again the important element and this time transmission

between cattle and flies did not contribute to R0, since their values were less than one.

Since climate change is predicted to affect the geographical distribution of tsetse flies, the

relationship between temperature and tsetse fly abundance was looked at, specifically the

duration of the pupal period, since it is one of the factors that affects birth rates. For higher

temperatures the duration was shorter than for cooler temperatures. This could have a big

impact on the AAT situation because tsetse flies might modify their behaviour and shift

their geographical range to regions that are cooler, which might put cattle populations in

other regions at risk of AAT outbreaks.
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In conclusion, it was found that the buffalo is an important factor in maintaining AAT

transmission in the sites around the game park, especially when using the parameters that

were estimated from the model fit as it was more site-specific. It was also found that if

interventions are to be put in place, looking at the parameters that affect the tsetse fly are

critical, and seasonal patterns in relation to the incidence of AAT need to be assessed. It is

important to note that for model predictions to be strengthened and to reduce uncertainty

in our outputs, better estimates of the parameters are needed by collecting additional data

so that the model performs more realistically. This initial model and statistical analysis

shows however that if control measures are put in place, they should consider both the

reservoir hosts and the tsetse flies, especially if the implications of climate change are taken

into account, which would lead to naive cattle populations being exposed to AAT.

6.1.1 Future Work

This study can be extended to look at how interventions would affect R0 and include

climate-dependent parameters to the tsetse fly dynamics. To get a more clear picture

of the prevalence of AAT in the different regions, those near and further away from the

game parks, statistical analysis needs to be done on additional data from other regions.

Spatial and spatio-temporal statistical models can also be used in an extension of the

analysis.
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Appendix A

Scatter Plots
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Figure A.1: Scatter Plot for infected cattle and the natural mortality rate of cattle
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Figure A.2: Scatter Plot for infected cattle and the natural mortality rate of tsetse flies
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Figure A.3: Scatter Plot for infected cattle and the biting rate
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Figure A.4: Scatter Plot for infected cattle and the weight of infectivity
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Figure A.5: Scatter Plot for infected cattle and the probability of infected fly producing
infection in cow
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Figure A.6: Scatter Plot for infected buffaloes and the natural mortality rate of cattle
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Figure A.7: Scatter Plot for infected buffaloes and the disease induced mortality rate of
cattle
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Figure A.8: Scatter Plot for infected buffaloes and the biting rate
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Figure A.9: Scatter Plot for infected tsetse flies and the natural mortality rate of flies
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Figure A.10: Scatter Plot for infected tsetse flies and the biting rate
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Figure A.11: Scatter Plot for infected tsetse fly and the probability of infected host infecting
the fly
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Appendix B

SAS Code

*****AAT code***** ;

data tryps ;

set tryps by yearandmonth ;

proc genmod data=tryps descending ;

class month region ;

model prevalence = pcv1 month region / aggregate=(pcv1 month region) dscale dist=bin

link=logit type3 type1 wald ;

title1 ’Binomial Model: Tryps’ ;

run ;

*****Tsetse abundance code*****;

data tst2 ;

set calc2 ;

***G.austeni*** ;

proc genmod data=tst2 ;

class month ;

model gatotal = month year / dscale dist=poi link=log type3 wald ;

title1 ’Poisson:G.austeni’ ;

run ;

proc genmod data=tst2 ;
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class month ;

model gatotal = month year / dscale dist=negbin link=log type3 wald;

title1 ’Negative Binomial:G.austeni’ ;

run ;

proc genmod data=tst2 ;

class month ;

model gatotal = month year / dscale dist=zip type3 wald;

title1 ’Zero-inflated Poisson:G.austeni’ ;

zeromodel ;

run ;

proc genmod data=tst2 ;

class month ;

model gatotal = month year / dscale dist=zinb type3 wald;

title1 ’Zero-inflated Negative Binomial:G.austeni’ ;

zeromodel ;

run ;

***G.brevipalpis*** ;

proc genmod data=tst2 ;

class month ;

model gbtotal = month year / dscale dist=poi link=log type3 wald ;

title1 ’Poisson:G.brevipalpis’ ;

run ;

proc genmod data=tst2 ;

class month ;

model gbtotal = month year / dscale dist=negbin link=log type3 wald ;

title1 ’Negative Binomial:G.brevipalpis’ ;

run ;
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